
Risk prediction for patients with

follicular lymphoma and chronic

lymphocytic leukemia

Vindi Jurinovic

2018





Aus dem Institut für Medizinische Informationsverarbeitung,
Biometrie und Epidemiologie

der Ludwig-Maximilians-Universität München
Direktor: Prof. Dr. rer. nat. Ulrich Mansmann

Risk prediction for patients with

follicular lymphoma and chronic

lymphocytic leukemia

Dissertation

zum Erwerb des Doktorgrades der Humanbiologie

an der Medizinischen Fakultät der

Ludwig�Maximilians�Universität zu München

vorgelegt von

Vindi Jurinovic

aus Sinj, Kroatien

2018



Mit Genehmigung der Medizinischen Fakultät

der Universität München

Berichterstatter: Prof. Dr. Ulrich Mansmann

Mitberichterstatter: Prof. Dr. Michael Ewers
Prof. Dr. Irmela Jeremias

Dekan: Prof. Dr. med. dent. Reinhard Hickel

Tag der mündlichen Prüfung: 11.04.2018



Eidesstattliche Versicherung

Jurinovic Vindi

Name, Vorname

Ich erkläre hiermit an Eides statt,

dass ich die vorliegende Dissertation mit dem Thema

Risk prediction for patients with follicular lymphoma and
chronic lymphocytic leukemia

selbständig verfasst, mich auÿer der angegebenen keiner weiteren Hilfsmittel bedient
und alle Erkenntnisse, die aus dem Schrifttum ganz oder annähernd übernommen
sind, als solche kenntlich gemacht und nach ihrer Herkunft unter Bezeichnung der
Fundstelle einzeln nachgewiesen habe.

Ich erkläre des Weiteren, dass die hier vorgelegte Dissertation nicht in gleicher oder
in ähnlicher Form bei einer anderen Stelle zur Erlangung eines akademischen Grades
eingereicht wurde.

München, 06.08.2017

Ort, Datum Unterschrift Doktorandin



vi



Contents

Nomenclature ix

List of Publications x

Summary xii

Zusammenfassung xv

1 Introduction 1

1.1 Follicular Lymphoma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Chronic Lymphocytic Leukemia . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Statistical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Lasso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.3 Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.4 Supervised Prinicipal Components . . . . . . . . . . . . . . . . . 13

2 Contribution to the Individual Publications 17

3 Original Publications 21

3.1 Publication 1 - The Lancet Oncology, 2015 . . . . . . . . . . . . . . . . 21
3.2 Publication 2 - Blood, 2016 . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Publication 3 - Leukemia, 2011 . . . . . . . . . . . . . . . . . . . . . . . 44

A Appendix 53

Bibliography 63

Acknowledgements 67



viii Nomenclature



Nomenclature

CLL Chronic lymphocytic leukemia

FFS Failure free survival

FL Follicular lymphoma

FLIPI Follicular Lymphoma International Prognostic Index

IgVH Immunoglobulin heavy chain variable region

Lasso Least absolute shrinkage and selection operator

LDH Lactate dehydrogenase

NHL Non-Hodgkin lymphoma

OLS Ordinary least squares

OS Overall survival

PC Principal component

PCA Principal component analysis

PCR Principal component regression

POD24 Treatment outcome at 24 months from treatment initiation

qRT-PCR Real-time quantitative reverse transcription polymerase chain
reaction

SLL Small lymphocytic lymphoma
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Summary

Introduction

Follicular lymphoma (FL) and chronic lymphocytic leukemia (CLL) have long been
considered indolent diseases, characterized by a slow progression and high response
rates to initial therapy. We now know that the clinical course of both diseases is
highly heterogeneous, with a subset of patients experiencing rapid disease progres-
sion or resistance to initial treatment. The most commonly used risk classi�ers in
both FL and CLL are based solely on clinical variables and show marked variation
in clinical course within the risk categories. The aim of this work was to improve
risk prediction in FL and CLL by incorporating molecular biomarkers into compre-
hensive multivariable risk models.

Methods

For FL, we analyzed the mutational status of 74 genes in 151 patients uniformly
treated within the GLSG2000 trial of the German Low-Grade Lymphoma Study
Group. This cohort was used as a training set to develop risk models for prediction
of failure free survival (FFS) and treatment failure within 24 months from treat-
ment initiation (POD24). The models were tested on a validation cohort consisting
of 107 patients from a population-based registry of the British Columbia Cancer
Agency. All patients had symptomatic, advanced stage or bulky FL considered
ineligible for potentially curative irradiation. In addition to model validation, the
models were extensively compared to each other and the Follicular Lymphoma Inter-
national Prognostic Index (FLIPI), the most widely used risk classi�er for patients
with FL.
For CLL, the training cohort consisted of gene expression pro�les of 151 samples
measured by whole-genome microarrays. The cohort was used to develop a model
for prediction of overall survival (OS). For validation on a independent cohort of
149 patients, the expression of genes from the �nal model was assayed by real-time
quantitative reverse transcription PCR. The Laboratory for Leukemia Diagnostics
of the Ludwig Maximilian University of Munich received the samples from german
hospitals and private practitioners for routine diagnostics.
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Results

We developed and independently validated a new risk classi�er for FL, termed m7-
FLIPI, that consisted of two clinical variabes and the mutational status of seven
genes. The m7-FLIPI was highly predictive in both the training and the validation
cohort and outperformed the predictive value of FLIPI alone. Furthermore, we could
show that the pre-treatment classi�er m7-FLIPI is able to predict POD24, which is
a strong predictor for OS, but of limited clinical utility as it can not be assessed prior
to treatment. To further increase the power of predicting POD24, we developed a
new risk model with POD24 as outcome. The new classi�er, POD24-PI, was com-
prised of four variables which were all contained within the m7-FLIPI. POD24-PI
was more sensitive than the m7-FLIPI in predicting POD24, however at a cost of a
lower speci�city. In comparison with FLIPI and POD24-PI, the m7-FLIPI emerged
as the most stringent classi�er with the highest accuracy to predict POD24.
For patients with CLL, we developed a model for prediction of OS composed of
expression levels of only eight genes. The new risk score, termed PS.8, was highly
signi�cant and remained independent of established prognostic markers in a mul-
tivariable Cox-model. Furthermore, it also signi�cantly predicted shorter OS and
shorter time to treatment in patients with Binet A stage CLL.

Conclusion

We were able to signi�cantly improve risk prediction for patients with FL by de-
signing comprehensive risk models that integrate molecular biomarkers which re�ect
disease biology. The m7-FLIPI is currently the most promising risk classi�er that
can identify the smallest group of patients at highest risk of early treatment fail-
ure. Though POD24-PI is less speci�c, its higher sensitivity may make it valuable
when testing well-tolerated treatments. Subsequent studies are on the way that will
further test the m7-FLIPI and explore its predictive potential also in the context
of other regimens. If validated, the m7-FLIPI can be a useful tool to select trial
candidates for novel treatments, as standard immunochemotherapy is currently of
limited bene�t for high-risk patients.
For CLL patients, we could improve the prediction of OS by constructing a model
with less than ten genes from a whole-transcriptome data set. The fact that the
gene expression in the validation cohort was measured on a di�erent technical plat-
form demonstrates the robustness of the model. Because of the small number of
its components, PS.8 can easily be performed in routine diagnostics if validated in
other studies.



Zusammenfassung

Einführung

Das follikuläre Lymphom (FL) und die chronische lymphatische Leukämie (CLL)
wurden lange Zeit für indolente Krankheiten gehalten, die durch einen langsamen
Verlauf und ein gutes Ansprechen auf die initiale Therapie charakterisiert sind.
Heute wissen wir, dass beide Krankheiten einen sehr heterogenen Verlauf haben,
wobei eine Gruppe der Patienten durch ein rasches Fortschreiten der Krankheit
oder primäre Therapieresistenz charakterisiert ist. Die am häu�gsten verwende-
ten Risikoklassi�katoren in FL und CLL sind aus rein klinischen Variablen zusam-
mengesetzt und zeigen innerhalb der Risikogruppen einen merklichen Unterschied im
Krankheitsverlauf. Das Ziel dieser Arbeit war die Verbesserung der Risikovorhersage
für Patienten mit FL und CLL durch Entwicklung von umfassenden multivariablen
Risikomodellen mit Hilfe von molekularbiologischen Daten.

Methoden

Wir untersuchten den Mutationsstatus von 74 Genen in 151 FL Patienten, die
innerhalb der GLSG2000 Studie der Deutschen Studiengruppe für niedrigmaligne
Lymphome einheitlich behandelt wurden. Diese Patientenkohorte wurde als Train-
ingskohorte für die Entwicklung der Prädiktionsmodelle für die Zeit bis zum Ther-
apieversagen (FFS) und das Therapieversagen innerhalb von 24 Monaten (POD24)
verwendet. Die Modelle wurden auf einer unabhängigen Validierungskohorte von
107 Patienten aus dem populationsbasierten Register der British Columbia Cancer
Agency getestet. Alle Patienten hatten ein symptomatisches, fortgeschrittenes FL,
oder konnten wegen hoher Tumorlast nicht kurativ bestrahlt werden. Zusätzlich zur
Modellvalidierung wurden die Modelle ausgiebig miteinander und dem meistverbre-
iteten Risikoklassi�kator für FL Patienten, dem Follicular Lymphoma International
Prognostic Index (FLIPI), verglichen.
Für das CLL Projekt bestand die Trainingskohorte aus Genexpressionspro�len von
151 Proben, die mit Gesamtgenom-Microarrays analysiert wurden. Auf dieser Ko-
horte wurde ein prädiktives Modell für das Gesamtüberleben (OS) entwickelt. Für
die Validierung auf einer unabhängigen Kohorte von 149 Patienten wurde die Expres-
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sion der Gene aus dem �nalen Modell mit quantitativer Echtzeit-Reverse-Transkrip-
tase-PCR gemessen. Das Labor für Leukämiediagnostik der Ludwig-Maximilians-
Universität München erhielt die Proben von deutschen Krankenhäusern und Privat-
praxen für Routinediagnostik.

Ergebnisse

Wir entwickelten und validierten einen neuen Risikoklassi�kator für FL, genannt m7-
FLIPI, der aus zwei klinischen Variablen und demMutationsstatus von sieben Genen
zusammengesetzt ist. Der m7-FLIPI war sowohl in der Trainings- als auch in der
Validierungskohorte hoch prädiktiv und übetraf den prädiktiven Wert von FLIPI.
Darüberhinaus konnten wir zeigen dass der prätherapeutische m7-FLIPI auch für
POD24 prädiktiv ist. POD24 ist ein starker Prädiktor für das OS, aber von bed-
ingtem Nutzen, da er nicht vor der Therapie bestimmt werden kann. Um die Power
der Prädiktion von POD24 weiter zu erhöhen, entwickelten wir ein neues Modell
mit POD24 als Zielvariable. Der neue Risikoklassi�kator, POD24-PI, bestand aus
vier Variablen, die allesamt im m7-FLIPI enthalten sind. Im Vergleich mit FLIPI
und POD24-PI zeigte sich der m7-FLIPI als der spezi�schste Klassi�kator mit der
höchsten Prädiktionsgenauigkeit für POD24.
Für Patienten mit CLL entwickelten wir einen neuen Algorithmus für die Vorhersage
des OS, bestehend aus den Expressionswerten von lediglich acht Genen. Der neue
Risikoscore, genannt PS.8, war hochsigni�kant und blieb im multivariablen Cox-
Modell unabhängig von etablierten prognostischen Markern. Darüberhinaus war er
in der Untergruppe der Patienten im Binet A Stadium sowohl für das OS als auch
für die Zeit bis zum Therapiebeginn signi�kant prädiktiv.

Schlussfolgerung

Durch Entwicklung von Risikomodellen mit Hilfe von molekularen Biomarkern, die
die Krankheitsbiologie widerspiegeln, konnten wir die Risikovorhersage für Patienten
mit FL signi�kant verbessern. Der m7-FLIPI ist gegenwärtig der vielversprechendste
Risikoklassi�kator, der die kleinste Gruppe der Patienten mit höchstem Risiko für
frühes Therapieversagen identi�zieren kann. Obwohl POD24-PI weniger spezi�sch
ist, kann er durch seine höhere Sensitivität beim Testen von gut verträglichen Ther-
apien nützlich sein. Für die Validierung des m7-FLIPI sind schon weitere Studien
geplant, die sein prädiktives Potential auch im Kontext anderer Therapien unter-
suchen werden. Wenn der m7-FLIPI validiert wird, kann er ein hilfreiches Werkzeug
für die Auswahl der Studienteilnehmer für das Testen neuer Therapien sein, da die
gängige Immun-Chemotherapie für ein Hochrisiko-Kollektiv nur von eingschränktem
Nutzen ist.
Für CLL Patienten konnten wir die Vorhersage des OS verbessern, indem wir aus
einem Gesamt-Transkriptom Datensatz ein Modell mit weniger als zehn Genen kon-
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struierten. Die Tatsache, dass die Genexpression in der Validierungskohorte auf
einer anderen technischen Plattform gemessen wurde, spricht für die Robustheit
des Modells. Durch die kleine Anzahl seiner Komponenten kann PS.8 leicht in die
Routinediagnostik übernommen werden, falls er in anderen Studien validiert werden
sollte.
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1. Introduction

1.1 Follicular Lymphoma

Follicular lymphoma (FL) is one of the most common non-Hodgkin lymphomas

(NHL) worldwide with a median age of about 60 years at time of diagnosis [1]. FL

is characterized by a highly variable clinical course with some patients living more

than a decade without need of treatment, while others develop early progression of

disease and have a signi�cantly shorter overall survival (OS) [2]. About 85% of cases

harbor the t(14;18)(q32;q21) translocation that is considered a hallmark of FL [3].

The tumor originates from germinal center B cells and resembles follicles consisting

of variable proportions of centrocytes and centroblasts, surrounded by a mixture

of non-malignant cells [3]. The proportion of centrocytes to centroblasts gives rise

to the grading scheme of FL. Staging is done according to the Ann-Arbor staging

system for malignant lymphomas that classi�es the tumor depending on its location

[4].

About 15− 25% of patients are diagnosed at early stage I or II that may potentially

be cured with radiotherapy [5]. Advanced stage disease is currently considered in-

curable and the treatment goals focus on prolonged failure free (FFS) and overall

survival. Since the addition of the monoclonal CD20-antibody rituximab to vari-

ous �rst-line chemotherapy regimens has been shown to substantially improve the

outcome of FL patients [6�8], the combination of rituximab and chemotherapy has

become a common approach for frontline treatment of advanced stage FL. Such im-

munochemotherapies are able to induce an overall response rate of more than 90% in

advanced stages requiring treatment [5]. However, 20− 25% of patients are primary

treatment resistant or experience treatment failure within 24 months of initial im-
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munochemotherapy (POD24) [9]. These high-risk patients should be identi�ed prior

to treatment since they clearly do not bene�t from standard therapy and should be

prioritized for alternative, highly active regimens.

The most widely used prognostic index in patients with FL is the Follicular Lym-

phoma International Prognostic Index (FLIPI) [10]. It is comprised of 5 risk factors:

� age > 60 years

� hemoglobin level < 120g/L

� elevated serum lactate dehydrogenase (LDH) level

� Ann-Arbor stage III/IV

� > 4 involved nodal areas

Based on the number of positive risk factors, the FLIPI divides patients into three

risk groups:

Risk Number of Proportion of patients 5-year OS 10-year OS

group risk factors (%) (%) (%)

Low ≤ 1 36 - 47 81 - 91 62 - 71

Intermediate 2 26 - 40 66 - 78 48 - 51

High ≥ 3 27 47 - 53 34 - 36

Table 1.1: Prognostic groups in FL according to FLIPI [10, 11].

Though it was developed to predict overall survival for untreated patients in the

pre-rituximab era, the prognostic value of FLIPI has been con�rmed for patients

treated with immunochemotherapy [12] and patients in �rst relapse [13]. It has

also been shown to predict FFS, with the low and intermediate risk group falling

into one category [12]. However, FLIPI classi�es about one-half of patients requiring

treatment as having a high-risk disease, but only about one third of them eventually

experience early treatment failure [5]. Because of this poor speci�city, FLIPI is not

routinely used to guide treatment decisions. Thus, risk prognostication in FL needs

to be further improved to capture the high-risk group of patients with insu�cient

or short response to treatment.

In addition to clinical risk factors, a number of gene mutations has recently been re-

ported to have an association with treatment outcome [3, 14�16]. However, there has
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been no attempt to combine di�erent genetic mutations into one predictive model,

as it was done with clinical variables in case of FLIPI. The goal of this work was to

improve risk prediction for patients with FL by combining information on recurrent

gene mutations and clinical risk factors into one predictive model.

In the �rst publication, we developed and independently validated a new clinicoge-

netic risk model for FL, which we termed the m7-FLIPI. In the same year, POD24

has been shown to be a highly signi�cant surrogate point for overall survival [9].

POD24 is a post-treatment variable and thus can not be used to guide risk-adapted

frontline treatment decisions. This gave rise to the question if the pre-treatment

classi�er m7-FLIPI can also predict POD24. This issue was addressed in the sec-

ond publication. Additionally, we developed and validated a new predictive model

speci�cally designed to predict POD24 and compared its performance to FLIPI and

m7-FLIPI.

1.2 Chronic Lymphocytic Leukemia

Chronic lymphocytic leukemia (CLL) is the most common type of leukemia in adults,

a�ecting mostly elderly patients with a median age of 65 years at time of diagnosis

[17]. Although termed leukemia, the World Health Organization considers CLL and

small lymphocytic lymphoma (SLL) as di�erent manifestations of the same disease,

the only di�erence being in the location of malignant cells. CLL cells are located

predominantly in the blood and bone marrow, while SLL mostly a�ects the lymph

nodes. Like FL, CLL is thus considered a form of NHL.

A major feature CLL shares with FL is its clinical and biological heterogeneity.

While some patients have a normal life span, others experience a rapid progres-

sion with an extremely poor outcome [17]. The most widely used risk classi�cation

for CLL in Europe is the Binet staging system that categorizes patients into three

prognostic groups [18]. Binet stage A and B are both de�ned by the absence of

anemia and thrombocytopenia, whereby the additional presence of 3 or more in-

volved nodal areas de�nes Binet stage B. Binet stage C is de�ned by the presence of

anemia and/or thrombocytopenia, irrespective of the number of involved areas. In

the US and Canada, the Rai staging system is more frequently used [19]. Originally,
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it classi�ed patients into 5 categories, but has since been revised to reduce the num-

ber of prognostic groups to 3 [20]. Thus, both systems categorize patients into a

low-, intermediate- and a high-risk group, albeit a substantial proportion of patients

is classi�ed di�erently by the two systems. The size of di�erent risk categories as

de�ned by the Binet and Rai systems and the corresponding median OS are shown

in table 1.2.

Risk group

Binet Rai

Stage
Proportion Median OS

Stage
Proportion Median OS

(%) (years) (%) (years)

Low A 63 > 10 0 30 > 10

Intermediate B 30 5
1

60 7
2

High C 7 1.5
3

10 1.5
4

Table 1.2: The Binet and Rai staging systems [21].

The categories de�ned by the two systems do not overlap well with one another, with

Binet stage A being about twice as large as Rai low-risk group. Furthermore, there is

substantial heterogeneity in the disease course within the risk categories. About 40%

of patients with Binet stage A experience disease progression to advanced stages,

and about 25% die of causes related to CLL [22]. Thus, new prognostic markers

are needed that can capture the heterogeneity in outcome within the di�erent stage

categories.

Among the �rst biomarkers shown to be predictive of OS were the somatic mutations

in the immunoglobulin heavy chain variable region (IgVH) genes [23, 24]. Patients

with CLL cells that use unmutated IgVH genes have inferior survival compared to

patients with mutated IgVH genes. Additionally, di�erent chromosomal aberrations

have been associated with the disease course [25�28]. Deletions involving the long

arm of chromosome 13 (del(13q)) represent the most common chromosomal aber-

ration in CLL, occuring in about 55% of cases. A sole del(13q) is characterized by

a benign disease course with a median survival of more than 10 years. The second

most common aberration, del(11q), is more common among younger patients and

is associated with inferior outcome. Other frequent aberrations in CLL include tri-

somy 12q, del(6q) and del(17p), which is associated with resistance to treatment and

poorest survival with a median OS of less than three years. Chromosomal aberra-
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tions have by now been incorporated into a hierarchical model that can signi�cantly

predict overall survival in CLL patients [29].

While the predictive value of chromosomal aberrations has been well studied, gene

expression levels have not been systematically analyzed in connection with OS. The

objective of our work that resulted in the third publication was to improve the

prognosis of overall survival by using the information on the whole transcriptome of

CLL cells and incorporating the gene expression levels into one single model. While

we used oligonucleotide microarrays to develop the model, the gene expression in

the validation cohort was measured with real-time quantitative reverse transcrip-

tion PCR (qRT-PCR), making the validation even more stringent. Importantly,

the model was also validated in the subgroups de�ned by other relevant biomark-

ers, including the largest Binet risk group of patients classi�ed as having a low-risk

disease.

1.3 Statistical Methods

1.3.1 Preliminaries

The terms prognostic and predictive marker are often used interchangeably to de-

scribe an association between a predictor and the outcome. However, there is a

substantial di�erence between a prognostic and a predictive variable. A prognostic

marker is associated with the outcome irrespective of the therapy a patient receives.

In contrast, a predictive marker is associated with the outcome only in the context

of a certain treatment. On the other hand, in statistical terminology we say that

a marker M is predictive of the outcome Y if there is an association between M

and Y . However, this does not mean that M is a predictive marker in a medical

sense. To explore this, we would need to test the association between M and Y for

various treatment regimens, for example by including an interaction term between

the marker and the treatment variable in a regression model. Thus, there is a certain

di�erence between the statistical term M is predictive of Y , and the term predictive

marker that is often used in medical literature.

In the �rst two publications that deal with risk prediction in FL, we developed two
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risk models for prediction of FFS and POD24. In the third publication, a model

for prediction of overall survival in patients with CLL was developed. In the �rst

two projects, the set of predictor variables was less than 100, while the number of

potential predictors in the third project exceeded 50 thousand. Moreover, while the

m7-FLIPI and PS.8 were developed to predict a survival variable, POD24-PI was

designed for the binary outcome POD24. Di�erent types of outcomes and di�erent

number of predictors mandate di�erent approaches in developing predictive models.

In the following, the methods used for model building in the three cases will be

introduced.

Linear Regression

Let X = (x0, . . . ,xp) be a matrix of p + 1 predictor variables with sample size n,

y = (y1, . . . , yn)T the outcome (response) of interest. The best known and most

frequently used approach for predicting a normally distributed outcome is the linear

regression model, where the association between the response and the predictors is

assumed to be linear, y = β0x0 + . . . + βpxp = Xβ. From this equation, we want

to calculate the regression coe�cients β0, . . . , βp that can later be used to predict

outcome for future subjects. In the usual setting, however, this system is overdeter-

mined (n > p + 1) and has no solution. Thus, the coe�cients are calculated so that

the predicted values for the data set X are as close as possible to the true values y.

This is done by minimizing the residual sum of squares,

S(β) =
n

∑
i=1

(yi −
p

∑
j=0

xijβj)
2

= ∥y −Xβ∥2.

If the vectors x0, . . . ,xp are linearly independent, the problem has a unique solution

β̂ = (β̂0, . . . , β̂p) = (XTX)−1XTy called the ordinary least squares (OLS) estimates.

Usually, x0 is set to a constant value x0i = 1 for all i ∈ {1, . . . , n} and the corresponding
β0 is called the intercept.

A simple linear model for a simulated data set with sample size 500, X ∼ N(0,1) and
Y ∼X +N(0,1) is shown in �gure 1.1. The estimated model is Ŷ = −0.06+ 1.08 ⋅X,

showing the power of linear regression in case of normally distributed outcomes.
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Figure 1.1: A simple linear model with one predictor variable.

Logistic Regression

As can be seen from �gure 1.1, the linear model allows for any real value of Y

to be predicted. This is reasonable for a normally distributed outcome, but in

some cases, certain values of Y are not possible. For example, a count variable is

always non-negative, while a binary variable can only take on two values. When

the linear model is applied to that kind of data, it predicts values that can not

occur in reality. Figure 1.2 shows the association for a simulated data set between a

binomially distributed binary outcome Y ∼ B(500,0.5) and a predictor X ∼ N(0,1)
for Y = 0 and X ∼ N(2,1) in case of Y = 1. In �gure A, the blue line shows the

values for Y as predicted by the linear model. For example, the predicted value for
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X = −2 is Ŷ = −0.27, which is di�cult to interpret since this value is not permissible.

Therefore, linear regression is not suitable for this kind of data and a model that

predicts reasonable and interpretable values is needed. The logistic regression model

is the most widely used approach for prediction of a binary outcome. It associates

the linear combination of predictors not with the outcome, but with the logarithm

of its odds:

log(Odds) = log( π

1 − π
) = β0 + β1x1 + . . . + βpxp = Xβ,

where π is the probability that the event of interest will occur. Solving for π yields

π = 1

1 + exp(−Xβ)
.

The positiveness of the exponential function ensures that the estimate for π will

always be in the interval ]0,1[, making the results of logistic regression meaningful

and easily interpretable. Figure 1.2 B shows the values for π as predicted by the

logistic regression model for the previous example. This time, the predicted value

for X = −2 is π = 0.0019, and there are no predicted values outside the interval [0,1].
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Figure 1.2: Association between a predictor and a binary outcome, and the predicted
values by A: the linear model; B: the logistic model.
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The regression coe�cients are chosen so that they maximize the joint probability

(likelihood) for the observed outcomes of all n subjects. The estimation is not

as straightforward as in the case of linear regression, as it involves solving p + 1

nonlinear equations that can not be done algebraically. Thus, the solutions need to

be estimated iteratively, which in practice is usually done with the Newton-Raphson

method for solving nonlinear equations [30].

The Cox Proportional Hazards Model

Survival data have the form (xj, yj, δj), where xj = (xj1, . . . , xjp) is a vector of

p predictor values for the j−th patient, yj the observed survival time and δj the

indicator for the event (1 = event, 0 = censored). The most popular regression model

for survival data is the Cox proportional hazards model [31], where the hazard h(t)
at time t for individual j is modeled as

h(t∣xj) = h0(t) ⋅ exp(β1xj1 + . . . + βpxjp),

where h0(t) is the baseline hazard for individuals with all predictor values equal

to zero. It is usually unspeci�ed and the regression coe�cients can be estimated

without any information on h0(t). Similar to logistic regression, the estimation is

done iteratively with the goal of maximizing the joint probability of all observed

events.

1.3.2 Lasso

In general, all regression coe�cients estimated with previously introduced models

will be non-zero, even if the corresponding predictor variable is not associated with

the outcome. This makes the interpretability of results increasingly di�cult with

growing number of predictor variables. Additionally, while their bias is usually

low, the estimates often have a large variance. To overcome these two problems,

a new linear regression method called Lasso (least absolute shrinkage and selection

operator) was introduced by Robert Tibshirani in 1996 [32]. Assuming the outcome
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is normalized to have a mean value equal to zero and all predictors are standardized

so that 1
n ∑

n
j=1 xi

j = 0 and 1
n ∑

n
j=1 (xi

j)
2 = 1, Lasso minimizes

1

n
∥y −Xβ∥2 subject to

p

∑
i=1

∣βi∣ ≤ t.

Thus, the regression coe�cients are penalized by the constraint that the sum of

their absolute values should not exceed the value t. Such regression models that set

constraints on coe�cient values are called penalized regression models.

In case of Lasso, a value of t smaller than the sum of absolute values of OLS es-

timates will cause the regression coe�cients to be shrunk towards zero, with some

values being exactly zero if t is su�ciently small. Therefore, Lasso increases the

interpretability of data by allowing only the most relevant predictors to enter the

model. In practice, the amount of shrinkage needed for a speci�c case is usually es-

timated with cross-validation. Penalization of regression coe�cients has since been

extended to other regression models, including logistic [33] and Cox proportional

hazards regression [34].

We used penalized regression for development of both the m7-FLIPI and the model

for prediction of POD24. As m7-FLIPI was designed to predict failure free survival,

it was built with Lasso for the Cox proportional hazards model. In case of a bi-

nary outcome POD24, penalized logistic regression was used for the construction of

POD24-PI.

The Lasso path plot in �gure 1.3 shows the association between the amount of

shrinkage controlled by the parameter λ and the Lasso regression coe�cients for

the penalized variables used to build the m7-FLIPI. On the far left, the amount of

shrinkage is high and all Lasso coe�cients are equal to 0. With λ decreasing, the

�rst variable to enter the model is EZH2, followed by ARID1A and EP300. The

dashed line indicates the optimal λ estimated by 10-fold cross-validation that re-

sulted in the m7-FLIPI. Thus, all variables that entered the model on the right side

of λoptimal did not make it into the m7-FLIPI.
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Figure 1.3: Lasso path plot for the FL training cohort with FFS as outcome.

1.3.3 Bootstrap

The bootstrap is a resampling procedure that was introduced as a method to es-

timate the sampling distribution of a data set [35]. In statistics, we usually use

a subsample from the population of interest to answer questions about the whole

population. Suppose we want to estimate the mean value of variable X in the popu-

lation by randomly sampling 100 individuals. Each time we repeat this experiment,

we will get a di�erent value for the mean X̄ because of the random nature of sam-

pling. If we could repeat the procedure in�nitely often, we would get all possible
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estimates for X̄. The distribution of these values is called the sampling distribution.

The idea behind bootstrapping is to simulate the many random samples we would

(but usually can not) draw from the whole population by sampling many times from

one single subsample. A bootstrap sample is created by drawing n observations with

replacement from the original data set of sample size n. This means that a boot-

strap sample will contain some observations multiple times, while others will not be

selected at all. This procedure is repeated B times and the estimate of interest is

calculated for each of the B bootstrap samples. The distribution of these estimates

provides an approximation for the sampling distribution, whose variance gives us

the information on the reliability of the estimate from the original data set.

Bootstrapping can also be used in combination with regression models to improve

the stability of results. To test if a predictor is associated with the outcome, we can

�t a regression model in each bootstrap sample instead of testing the association

once in the original data set. A robust predictor will in general not depend much

on random changes in data and will remain signi�cant in most bootstrap samples.

The results from all regression models can be used to interpret each predictor's sig-

ni�cance. For example, we can say that a predictor is associated with the outcome

only if it is signi�cant in more than 50% of bootstrap samples, or if the mean of

bootstrap regression coe�cients is larger than some speci�ed value. This way we

can ensure that only robust predictors enter our further analyses.

Another way to use bootstrap is to estimate the amount of over�tting that is a

common problem in regression models [36]. Over�tting describes the fact that in

general, a score designed to predict the outcome Y will have a higher predictive

power in the data set it was developed on (training set) than in any other data set

(validation set). This means that in a regression model with dependent variable

Y , the score will have a higher regression coe�cient in the training than in the

validation set. The di�erence between these two coe�cients is called the optimism,

which can be used as a measure for over�tting. To estimate the optimism for score

S, the same procedure used to construct S is repeated on each bootstrap sample

of the training set, resulting in B di�erent scores. Next, the training set is used as

a validation set for each of the B scores obtained by bootstrapping. The average

across the B optimism values is the estimated optimism for score S. To correct for

over�tting, the optimism is subtracted from the overestimated regression coe�cient
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the score S has in the training set.

We used bootstrapping for di�erent purposes in all three publications. For predic-

tion of survival in CLL patients where we had to build a model from more than 50

000 variables, we applied bootstrapping for preselection of the most robust predic-

tors. In the two publications on FL, bootstrapping was used as a method to compare

competing models by correcting their raw coe�cients for over�tting.

The bene�t of bootstrapping combined with Lasso was illustrated in detail in a grant

application we submitted to the Wilhelm Sander-Stiftung in 2013. The application

under the name Entwicklung und Validierung einer auf Genexpression basierten

Klassi�kation zur Prädiktion des Ansprechens der Behandlung für Patienten mit

akuter myeloischer Leukämie was approved in 2013 and the project is currently be-

ing �nalized. The section from the application considering bootstrapping and Lasso

is included in the Appendix.

1.3.4 Supervised Prinicipal Components

Principal component analysis (PCA) was �rst introduced in 1901 [37] and has since

been further developed and extensively used in various scienti�c �elds, from image

analysis to electrical engineering. The goal of PCA is to simplify a multivariate data

set by uncovering its underlying structure and using this information to reduce its

dimension. In �gure 1.4, a simple data set containing two correlated variables, X

and Y , is plotted in the cartesian coordinate system, denoted by the coordinates x

and y. To locate a data point in the picture, we need the information on both carte-

sian coordinates, since the data have substantial variance in both the x- and the y-

direction. However, if we used a new coordinate system denoted by the blue coordi-

nates PC1 and PC2, we would be able to �nd the approximate position of a point by

only providing the value for PC1, since there is only a slight variation in direction

of PC2. PCA is about �nding this new coordinate system where the coordinates,

called the principal components (PCs), are positioned so that they explain as much

variability in the data as possible. The �rst principal component, PC1, is chosen as

the direction where the data set has its highest variance. Each succeeding principal

component is chosen to have the largest remaining variance, under the constraint
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that all the principal components have to be orthogonal. Mathematically, this is

done by the eigenvalue decomposition of the covariance matrix of the data set, Σ:

Σ = QΛQ−1.

The columns od Q contain the principal components, while the diagonal matrix Λ

contains the variances along the corresponding PCs.

Once the PCs are found, we can calculate what proportion of variability in the data

is explained by each PC and use this information to decide how many PCs to keep

when analyzing the data. In the previous example, as much as 96% of total variance

in the data is explained by PC1.
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Figure 1.4: Principal components of a two-dimensional data set.
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Principal components can be used in previously described regression models, in a

technique called principal component regression (PCR)[38]. In PCR, principal com-

ponents of the data set containing the predictors instead of the predictors themselves

are used as covariables in the regression model. Usually, a small number of PCs is

chosen, depending on the explained variance needed in the particular case. This has

a number of advantages. Problems that arise when correlated predictors are present

in the model are completely avoided, since the PCs are orthogonal and therefore

independent. Furthermore, as only a small number of PCs is usually chosen for

regression, over�tting that is caused by using too many predictors can be reduced.

However, PCR is not always appropriate and can in certain cases produce mislead-

ing results. Suppose the �rst two PCs have been chosen for regression since they

explain the most variability in the data. If these two PCs are not associated with

outcome, but PC3 and PC4, the model will not show any association between the

data and the outcome. This problem is addressed by supervised principal compo-

nent analysis [39]. Here, only a subset of the whole data set is chosen for PCA,

based on univariate association of each variable with the outcome. The procedure

can be simpli�ed as follows:

1. Compute standardized univariate regression coe�cients βi for each variable xi

in the data set X;

2. Build a subset of X by taking only those variables with ∣βi∣ > θ, where θ is

estimated by cross-validation;

3. Do PCA;

4. Do PCR.

This approach will eliminate the possibility of including only irrelevant PCs in the

model, since PCA is only done with variables that are associated with the outcome.

We chose supervised principal component analysis combined with bootstrapping

as a method to construct a predictive model for overall survival in patients with

CLL. Step 1. of the algorithm was repeated on 5000 bootstrap samples, and only

predictors that were selected in more than 85% of bootstrap samples were chosen

for the principal component analysis. Finally, the model was constructed with the

�rst PC as a predictor in a Cox proportional hazards model.
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2. Contribution to the Individual

Publications

This dissertation summarizes three publications dealing with prediction models in

follicular lymphoma and chronic lymphocytic leukemia. In the �rst publication, we

developed and independently validated a new clinicogenetic risk model for FL, the

m7-FLIPI. In the second publication, the power of m7-FLIPI to predict POD24 was

analyzed, and a new model for prediction of POD24 was constructed. In the third

publication, a model for prediction of overall survival in CLL was developed and

independently validated.

In the following, each publication and my own contribution to the publication will

be outlined.

Publication 1 - Integration of gene mutations in risk prognos-

tication for patients receiving �rst-line immunochemotherapy

for follicular lymphoma: a retrospective analysis of a prospec-

tive clinical trial and validation in a population-based registry.

The Lancet Oncology, 2015.

The aim of this work was to combine clinical variables with the information on

the mutational status of 74 recurrently mutated genes to develop a clinicogenetic

model for prediction of failure free survival in follicular lymphoma. The model was

developed on a training cohort of 151 FL patients treated within the GLSG2000
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trial of the German Low-Grade Lymphoma Study Group [8], and validated on an

independend data set of 107 patients from a population-based registry of the British

Columbia Cancer Agency. The new risk model, termed m7-FLIPI, was highly sig-

ni�cant in the validation set and outperformed FLIPI, which so far has been the

most widely used prognostic tool for FL.

Supervised by Dr. Eva Hoster and Dr. Michael Unterhalt, I was responsible for the

statistical part of the study. This involved the description and statistical analyses of

the data sets, the development of the m7-FLIPI, its validation and interpretation. I

programmed and executed the R-code for all analyses concerning the description of

data, development and validation of the m7-FLIPI and created a number of �gures

for the �nal manuscript.

Publication 2 - Clinicogenetic risk models predict early pro-

gression of follicular lymphoma after �rst-line immunochemo-

therapy. Blood, 2016.

This work was a direct result of questions that arose after the �rst article was

published. Shortly after our �rst publication, an article on POD24 and its strong

association with OS was published in the Journal of Clinical Oncology [9]. This

prompted us to investigate if m7-FLIPI was also predictive of POD24. The results

of this analysis were presented as a talk at the 57th annual meeting of the American

Society of Hematology. A suggestion from the audience motivated further work on

a development of a new predictive model, speci�cally designed to predict POD24.

This work resulted in a new risk classi�er, POD24-PI, that consisted of four risk

factors that were all contained within the m7-FLIPI. Finally, FLIPI, m7-FLIPI and

the new model POD24-PI were compared to each other in terms of speci�city, sen-

sitivity and accuracy, and the pros and cons of each classi�er were discussed.

I was responsible for all statistical analyses concerning this publication. This in-

cluded progamming and executing the whole R code for the data analysis, develop-

ment and validation of the new model, as well as the analysis and comparison of

FLIPI, m7-FLIPI and POD24-PI. Finally, together with Dr. Oliver Weigert, I was

involved in creating the �gures and writing of the manuscript.
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Publication 3 - An eight-gene expression signature for the pre-

diction of survival and time to treatment in chronic lympho-

cytic leukemia. Leukemia, 2011.

In this work, we developed a model for prediction of overall survival in patients with

CLL using the gene expression pro�les of 151 CLL samples as measured by oligonu-

cleotide microarrays. Although we had more than 50 000 transcript probe sets as

potential predictors, we were able to generate a model consisting of the expression

values of only 8 genes (PS.8). This model was validated on an independent data

set of 149 patients with gene expression measured by qRT-PCR. Furthermore, we

showed that the model is predictive of OS and time to treatment in a subgroup of

patients that are classi�ed as having a low-risk disease by the widely used Binet

staging system.

In this study, I was responsible for all statistical analyses, as well as the program-

ming and executing of the corresponding R code. This included the generation and

analysis of bootstrap samples, development and validation of PS.8, and generation

of �gures for the manuscript. I also performed parallel programming for the analy-

sis of bootstrap samples, which was necessary because of the huge amount of data

generated by bootstrapping.
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3. Original Publications

3.1 Publication 1 - The Lancet Oncology, 2015

Pastore A*, Jurinovic V*, Kridel R*, Hoster E* et al. Integration of gene muta-
tions in risk prognostication for patients receiving �rst-line immunochemotherapy
for follicular lymphoma: a retrospective analysis of a prospective clinical trial and
validation in a population-based registry. The Lancet Oncology, 16(9):1111-1122,
2015.

*Equal contribution
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Articles

Integration of gene mutations in risk prognostication for 
patients receiving fi rst-line immunochemotherapy for 
follicular lymphoma: a retrospective analysis of a prospective 
clinical trial and validation in a population-based registry
Alessandro Pastore*, Vindi Jurinovic*, Robert Kridel*, Eva Hoster*, Annette M Staiger, Monika Szczepanowski, Christiane Pott, Nadja Kopp, 
Mark Murakami, Heike Horn, Ellen Leich, Alden A Moccia, Anja Mottok, Ashwini Sunkavalli, Paul Van Hummelen, Matthew Ducar, 
Daisuke Ennishi, Hennady P Shulha, Christoff er Hother, Joseph M Connors, Laurie H Sehn, Martin Dreyling, Donna Neuberg, Peter Möller, 
Alfred C Feller, Martin L Hansmann, Harald Stein, Andreas Rosenwald, German Ott, Wolfram Klapper, Michael Unterhalt, Wolfgang Hiddemann, 
Randy D Gascoyne*, David M Weinstock*, Oliver Weigert*

Summary
Background Follicular lymphoma is a clinically and genetically heterogeneous disease, but the prognostic value of 
somatic mutations has not been systematically assessed. We aimed to improve risk stratifi cation of patients receiving 
fi rst-line immunochemotherapy by integrating gene mutations into a prognostic model.

Methods We did DNA deep sequencing to retrospectively analyse the mutation status of 74 genes in 151 follicular 
lymphoma biopsy specimens that were obtained from patients within 1 year before beginning immunochemotherapy 
consisting of rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP). These patients were 
recruited between May 4, 2000, and Oct 20, 2010, as part of a phase 3 trial (GLSG2000). Eligible patients had 
symptomatic, advanced stage follicular lymphoma and were previously untreated. The primary endpoints were failure-
free survival (defi ned as less than a partial remission at the end of induction, relapse, progression, or death) and overall 
survival calculated from date of treatment initiation. Median follow-up was 7·7 years (IQR 5·5–9·3). Mutations and 
clinical factors were incorporated into a risk model for failure-free survival using multivariable L1-penalised Cox 
regression. We validated the risk model in an independent population-based cohort of 107 patients with symptomatic 
follicular lymphoma considered ineligible for curative irradiation. Pretreatment biopsies were taken between Feb 24, 
2004, and Nov 24, 2009, within 1 year before beginning fi rst-line immunochemotherapy consisting of rituximab, 
cyclophosphamide, vincristine, and prednisone (R-CVP). Median follow-up was 6·7 years (IQR 5·7–7·6).

Findings We established a clinicogenetic risk model (termed m7-FLIPI) that included the mutation status of seven genes 
(EZH2, ARID1A, MEF2B, EP300, FOXO1, CREBBP, and CARD11), the Follicular Lymphoma International Prognostic 
Index (FLIPI), and Eastern Cooperative Oncology Group (ECOG) performance status. In the training cohort, m7-FLIPI 
defi ned a high-risk group (28%, 43/151) with 5-year failure-free survival of 38·29% (95% CI 25·31–57·95) versus 
77·21% (95% CI 69·21–86·14) for the low-risk group (hazard ratio [HR] 4·14, 95% CI 2·47–6·93; p<0·0001; bootstrap-
corrected HR 2·02), and outperformed a prognostic model of only gene mutations (HR 3·76, 95% CI 2·10–6·74; 
p<0·0001; bootstrap-corrected HR 1·57). The positive predictive value and negative predictive value for 5-year failure-
free survival were 64% and 78%, respectively, with a C-index of 0·80 (95% CI 0·71–0·89). In the validation cohort, 
m7-FLIPI again defi ned a high-risk group (22%, 24/107) with 5-year failure-free survival of 25·00% (95% CI 12·50–49·99) 
versus 68·24% (58·84–79·15) in the low-risk group (HR 3·58, 95% CI 2·00–6·42; p<0.0001). The positive predictive 
value for 5-year failure-free survival was 72% and 68% for negative predictive value, with a C-index of 0·79 
(95% CI 0·69–0·89). In the validation cohort, risk stratifi cation by m7-FLIPI outperformed FLIPI alone (HR 2·18, 95% 
CI 1·21–3·92), and FLIPI combined with ECOG performance status (HR 2·03, 95% CI 1·12–3·67).

Interpretation Integration of the mutational status of seven genes with clinical risk factors improves prognostication 
for patients with follicular lymphoma receiving fi rst-line immunochemotherapy and is a promising approach to 
identify the subset at highest risk of treatment failure.

Funding Deutsche Krebshilfe, Terry Fox Research Institute.
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Introduction
Follicular lymphoma is the second most common nodal 
lymphoma worldwide and presents with advanced stage 
disease in most patients.1 Several randomised trials have 
shown that the addition of the monoclonal anti-CD20 

antibody rituximab to various fi rst-line chemotherapy regi-
mens improves progression-free survival and overall sur-
vival.2 Additionally, many patients now receive rituximab 
main tenance after fi rst-line treatment,2 based on a random-
ised trial that showed improved progression-free survival.3
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Follicular lymphoma is a clinically heterogeneous 
disease.4 Identifying the subset of patients at highest 
risk of early treatment failure is essential, as they are 
clearly underserved with current standard immuno-
chemo therapy. Prognostication for patients with 
follicular lymphoma relies primarily on clinical and 
basic laboratory fi ndings.4 The Follicular Lymphoma 
International Prognostic Index (FLIPI) is the most 
widely used risk model and includes fi ve adverse 
prognostic factors: age older than 60 years, stage III–IV, 
haemoglobin less than 120 g/L, four or more involved 
nodal areas, and elevated serum lactate dehydrogenase.5 
For patients who receive rituximab-containing 
regimens, the FLIPI can distinguish patients into two 
risk groups—low or intermediate-risk, and high-risk, 

for failure-free survival.6 Whereas about half of patients 
requiring systemic treatment are classifi ed as high-risk 
FLIPI, only a third of these will experience treatment 
failure within 2 years after treatment initiation.6 
Although useful, the FLIPI needs to be further improved 
to identify those patients at highest risk of early 
treatment failure. Currently, the FLIPI is not routinely 
used to guide risk-adapted treatment strategies.

About 90% of follicular lymphomas harbour the t(14;18) 
translocation, which results in overexpression of BCL2.7 
Recent sequencing studies have catalogued additional 
recurrent genetic alterations in follicular lymphomas,7 
but their eff ects on clinical outcome remain unclear. We 
postulated that integrating gene mutations into prog-
nostic models will improve risk stratifi cation for patients 
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Research in context

Evidence before this study
On April 9, 2015, we searched the Cochrane Library for all 
publications without language or date restrictions using the 
terms “follicular lymphoma” in the title, abstract, keywords, 
and “prognosis OR prognostic OR prediction OR predictive” 
anywhere in the text. This search identifi ed a total of 
79 publications. Additionally, we searched PubMed for all 
original publications (ie, review articles were excluded) using 
the keywords “follicular lymphoma” in the title, and “gene 
mutation” and “prognostic OR prognosis OR predictive OR 
prediction” anywhere in the text. This search identifi ed a total 
of 49 publications.

The relevant papers addressing the eff ect of molecular 
alterations on treatment outcome in follicular lymphoma 
included confl icting reports on the signifi cance of karyotypic 
abnormalities, BCL2 translocation breakpoints and 
immunohistochemistry, positive reports on 
immunohistochemistry for MUM-1, copy number alterations, 
uniparenteral loss of heterozygosity, and gene expression 
signatures, and a negative report on germ-line polymorphisms 
in single genes (TP53, MDM2). Additionally, we identifi ed 
publications on the clinical signifi cance of somatic alterations in 
single genes (TP53, TNFRSF14, CDKN2A, BCL2). In a 
heterogeneously treated patient population, TP53 mutations, 
although rare at initial diagnosis (6%) were predictive for 
shorter progression-free survival and overall survival when 
adjusted for International Prognostic Index (IPI). In one study, 
mutations and chromosomal deletions aff ecting TNFRSF14 at 
1p36 were associated with high-risk clinical features (ECOG 
performance status >1, number of extranodal sites >1, high IPI) 
and shorter overall survival in non-uniformly treated patients, 
some of whom also received rituximab. In another study, 
TNFRSF14 alterations were not associated with poor prognosis. 
Inactivation of the CDKN2A tumour-suppressor gene by 
deletion or methylation was associated with poor clinical 
outcome in one study. Coding sequence mutation in BCL2, 
including silent and non-silent variants have recently been 
associated with increased risk of transformation and shortened 

overall survival, assumed to represent a surrogate marker for 
activation-induced cytidine deaminase-mediated genetic 
instability. Almost all patients in this study were treated in the 
pre-rituximab era.

Added value of this study
By contrast with previous studies that focused on single gene 
alterations, we did a multivariable analysis that included a 
comprehensive compilation of recurrent gene mutations and 
clinical risk factors in patients with symptomatic follicular 
lymphoma receiving fi rst-line immunochemotherapy. To the 
best of our knowledge, this is the largest study to date of 
relevant mutations in follicular lymphoma, and the fi rst 
multivariable assessment of their prognostic relevance. The 
study uses mature clinical data from two independent cohorts 
of patients: a uniformly treated clinical trial population as a 
training cohort and a population-based registry as a validation 
cohort. The resulting model (m7-FLIPI) is, to the best of our 
knowledge, the fi rst prognostic model in follicular lymphoma 
that accounts for both clinical factors and genetic alterations. 
Our study also contrasts with previous studies with regards to 
the stringent inclusion criteria: all patients had follicular 
lymphoma grade 1, 2, or 3A confi rmed by reference pathology, 
advanced stage or bulky disease considered ineligible for 
curative irradiation, symptomatic disease requiring systemic 
treatment, and a diagnostic biopsy specimen obtained 
12 months or less before therapy initiation. Additionally, all 
patients received a combination of rituximab and 
chemotherapy (either CVP or CHOP) as fi rst-line treatment. This 
stringent approach led to the unexpected fi nding that EZH2 
mutations (found in about one-quarter of patients and 
associated with a unique transcriptional signature) are linked to 
favourable outcome in patients with high-risk FLIPI.

Implications of all the available evidence
If validated in subsequent studies, the m7-FLIPI could be highly 
signifi cant for the medical community, as  high-risk patients are 
clearly underserved by current standard treatment and should 
be prioritised for innovative treatment options.
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with follicular lymphoma receiving fi rst-line immuno-
chemotherapy. To address this hypothesis, we analysed 
the full coding sequence of 74 genes that are recurrently 
mutated in lymphomas across two independent cohorts 
of patients who received fi rst-line immunochemotherapy.

Methods
Study design and participants
We did a retrospective analysis of gene mutations and 
clinical risk factors in two cohorts of patients with 
symptomatic, advanced stage, or bulky follicular 
lymphoma grade 1, 2, or 3A, who had a biopsy specimen 
obtained 12 months or less before initiation of a rituximab-
containing fi rst-line immunochemotherapy regimen.

The training cohort (fi gure 1) was derived from the 
randomised GLSG2000 trial8 of the German Low-Grade 
Lymphoma Study Group (GLSG). Between May 4, 2000, 
and Oct 20, 2010, this trial recruited patients with a 
diagnosis of stage III/IV follicular lymphoma. All 
patients needed treatment, as defi ned by the presence of 
B symptoms, bulky disease (mediastinal lymphomas 
>7·5 cm or other lymphomas >5 cm), impairment of 
normal haemopoiesis, or rapidly progressive disease.8 
Patients eligible for potentially curative radiotherapy 
were excluded. Other exclusion criteria were age younger 
than 18 years, pregnancy, Eastern Cooperative Oncology 
Group (ECOG) performance status 3 or more, or severe 
organ dys function unless due to lymphoma. Patients 
with other systemic malignancies, previous radiotherapy, 
chemo therapy, or immunotherapy were ineligible.8

Patients were excluded from the training cohort if the 
diagnosis of follicular lymphoma was not confi rmed by 
central pathology review, or if they were randomised to 
not receive rituximab, or randomised to receive post-
remission high-dose radiochemotherapy followed by 
autologous stem-cell transplantation (fi gure 1) because 
these regimens do not represent current standard 
practice.2 The remaining patients received rituximab 
375 mg/m², plus cyclophosphamide 750 mg/m², 
doxorubicin 50 mg/m², and vincristine 1·4 mg/m² 
(maximum, 2·0 mg) on day 1, and prednisone 100 mg/m² 
on days 1–5 (R-CHOP), every 3 weeks for a total of eight 
cycles.8 Patients achieving at least a partial response after 
six cycles received two additional cycles of R-CHOP 
followed by interferon α maintenance.8 This trial was 
approved by the institutional review board and patients 
signed informed consent that included molecular and 
genetic analyses.

The validation cohort (fi gure 1) consisted of patients 
with symptomatic, advanced stage, or bulky follicular 
lymphoma considered ineligible for curative irradiation, 
receiving fi rst-line immunochemotherapy with six to 
eight cycles of R-CVP (rituximab 375 mg/m² plus 
cyclophosphamide 1000 mg/m², and vincristine 
1·4 mg/m² on day 1, and prednisone 100 mg/day, 
days 1–5) every 3 weeks at the British Columbia Cancer 
Agency (BCCA). Diagnostic tumour biopsies were 

collected between Feb 24, 2004, and Nov 24, 2009, as part 
of a research project approved by the University of British 
Columbia–BCCA Research Ethics Board that included 
molecular and genetic analyses. From 2006 onwards, 
patients achieving at least a partial response were 
scheduled for rituximab maintenance (375 mg/m² given 
every 3 months for a total of eight doses; table 1).

Procedures
We analysed the full coding sequence of 74 genes selected 
based on the presence of recurrent mutations (appendix 
pp 7, 8). Genomic DNA from formalin-fi xed paraffi  n-
embedded pretreatment tumour biopsies was used for 
customised hybrid-capture target enrichment 
(SureSelect, Agilent, Santa Clara, CA, USA) and Illumina 
sequencing, as previously described.9 Non-tumour DNA 
from peripheral blood or bone marrow samples was 
sequenced to exclude germ-line polymorphisms and 
platform-specifi c artifacts (appendix p 2). Matched non-
tumour samples were obtained from 24 GLSG2000 
patients who tested negative or had less than 1% minimal 
residual disease after being treated, as previously 
described,10 and for ten BCCA patients free of lymphoma 
cell infi ltration by routine clinical assessment, allowing 
for the fi ltering of somatic mutations. A panel-of-normals 
fi lter was generated from all matched (34) and other (25) 
non-tumour controls (appendix p 2) available for this 
platform, as previously described.11 Tumour samples 
were fi ltered using the panel-of-normals and variants 
were rejected as germ-line events or sequencing artifacts 
if present in two or more normal samples. Known germ-
line polymorphisms from the Exome Sequencing Project 
and the dbSNP (build 142) databases were also excluded. 
For all genes except for BCL2, we analysed only non-
silent mutations (missense mutations, nonsense 
mutations, in-frame or frame-shift insertions or deletions 
[InDel], translational start site mutations, splice site 
mutations) with variant allele frequencies of 10% or 
more. For BCL2, any variant with variant allele 
frequencies of 10% or more was reported as hyper-
mutation. 100% (46/46, appendix p 9) of a randomly 
selected set of mutations were validated by Sanger 
sequencing. We applied the MutSigCV algorithm12 to 
identify genes that were mutated more often than 
expected by chance given background mutation 
processes. We used the evolutionary conservation of the 
aff ected aminoacid in protein homologues13 to predict the 
eff ect of non-silent mutations.

Statistical analysis
For the training set, we did univariable and multivariable 
analyses for all genes mutated in fi ve or more patients for 
stability reasons of the models, as previously performed.14 
Genes were studied for their correlation with the binary 
FLIPI (high-risk vs low or intermediate-risk) and its 
individual components, ECOG performance status and 
sex. We used the binary FLIPI because no signifi cant 

For the Exome Sequencing 
Project see http://evs.gs.
washington.edu/EVS/

See Online for appendix
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25 with insufficient sequencing library 

24 for deep sequencing 147 for deep sequencing

3 with insufficient quality of 
   sequencing library

3 with insufficient quality of 
   sequencing library

165 with high-quality sequencing data

14 with date between diagnostic lymphoma 
      biopsy and R-CHOP >1 year

151 available for training cohort 

210 with pretreatment biopsy available 

14 with insufficient DNA

196 for preparation of sequencing libraries

467 lymphoma tissue requested from 
         GLSG reference pathology panel

257 with biopsy not available

596 patients randomly assigned to receive 
         IFNα maintenance

129 excluded
 32 with failure-free survival not 
        documented
 67 with incomplete documentation 
       of FLIPI 
 30 with localisation of biopsy unknown

746 patients treated with R-CHOP

150 received post-remission ASCT

1085 patients with untreated, symptomatic, 
    advanced stage follicular lymphoma  
           registered to GLSG2000 trial

295 treated with CHOP
  44 with treatment not documented

107 available for validation cohort

140 with high-quality sequencing data

28 with time between pretreatment
 lymphoma biopsy and beginning of
 R-CVP >1 year
   1 with stage of disease unknown
   3 with insufficient clinical 
 documentation to calculate
       binary FLIPI

144 for deep sequencing

4 with insufficient sequencing quality

176 for preparation of sequencing libraries 
  with PLG-FL1.0

32 with insufficient sequencing library 

187 patients from BCCA with symptomatic 
 follicular lymphoma grade 1, 2, or 3A, 
 receiving first-line R-CVP, pretreatment 
 biopsy available

11 with insufficient DNA 

14 with documentation of extensive or 
      symptomatic disease burden 
      considered ineligible for curative 
      irradiation

15 with Ann Arbor stage I/II disease 

A B

 Figure 1: Patient fl ow for the 
GLSG2000 training cohort 

(A) and BCCA validation 
cohort (B)

HemoSeq1.0 and PLG_FL1.0 
are the exon capture strategies 

(appendix pp 7, 8). 
BCCA=British Columbia Cancer 

Agency. ASCT=autologous 
stem-cell transplantation. 

IFNα=interferon α. 
FLIPI=Follicular Lymphoma 

International Prognostic 
Index. GLSG=German Low-

Grade Lymphoma Study 
Group.
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diff erences for failure-free survival were seen between 
low-risk and intermediate-risk patients treated with 
R-CHOP in a previous study,6 and a recent update of this 
analysis with a median follow-up of 7·8 years (appendix  
p 13). Univariable Cox regression was done with and 
without adjustment for binary FLIPI and ECOG 
performance status. The Bonferroni-Holm procedure 
was used to adjust for multiple testing.

We generated risk models for failure-free survival 
using diff erent sets of predictors. One consisted only of 
recurrent gene mutations and the second also included 
the binary clinical variables FLIPI and ECOG 
performance status. The latter were chosen because they 
were confi rmed to be independent risk factors for failure-
free survival in a large cohort of assessable patients from 
the GLSG2000 trial who received R-CHOP (appendix 
p 13). Additionally, we calculated prognostic models with 
selected genes grouped into well-described functional 
pathways (appendix p 5). L1-penalised Cox regression 
(Lasso) with 10-fold cross-validation was used to select 
gene mutation predictors. To generate prognostic risk 
models for failure-free survival, we used all 31 genes with 
mutations in fi ve or more patients irrespective of results 
from univariable testing. We postulated that clinical 
variables might add prognostic information beyond 
tumour biology, and calculated risk models with and 
without inclusion of the previously well-established risk 
factors, FLIPI5 and ECOG performance status.5,15,16 We 
favoured FLIPI for inclusions in the model over the 
previously described FLIPI-217 because β-2-microglobulin 
serum con cen trations are not routinely measured, 
particularly in North America, and the original FLIPI is 
more commonly used.18 β-2-microglobulin serum con-
cen tra tions were only available from a subset of patients 
from the GLSG2000 trial (84/151) and not for BCCA 
patients. We also calculated the FLIPI-2,17 which is 
comprised of elevated β-2-microglobulin, longest 
diameter of largest node greater than 6 cm, bone marrow 
involvement, haemoglobin less than 120 g/dL, and age 
older than 60 years, for 126 assessable patients with 
available data from the GSLG2000 cohort.

For the model that included FLIPI and ECOG per-
formance status, these categorical variables were not 
penalised and thus forced into the model. A prognostic 
score was calculated as the sum of predictor values 
weighted by Lasso coeffi  cients. The cutoff  value maxi-
mising the log-rank statistics dichotomised patients into 
high-risk and low-risk groups. We used bootstrap on the 
training cohort and selected the model with the largest 
bootstrap-corrected hazard ratio (HR) for failure-free 
survival of high-risk versus low-risk groups. Outcome 
data for the validation cohort remained masked until 
fi nal validation. Sensitivity and specifi city of the fi nal 
model were estimated with the inverse probability of 
censoring weighting (IPCW) approach, as previously 
described.19 Additionally, we calculated the C-index 
(Harrell) for prognostic discrimination.

All statistical analyses were done using the statistical 
software R (version 3.1.0) and the R-packages ggplot2 
(version 1.0.1), corrplot (version 0.73), MEMo (version 1.0), 
survival (version 2.38-1), timeROC (version 0.3), penalised 
(version 0.9-42), pec (version 2.4.4), and SAS 9.2.

Additional methods are described in the appendix 
(pp 2–4).

Role of the funding source
The funding source had no involvement in study design, 
collection, analysis, and interpretation of the data, and in 
writing of the report or decision to submit this paper for 
publication. AP, RK, MM, PVH, MDu, HPS, RDG, 
DMW, and OW had access to the raw sequencing data. 
VJ, EH, MU, and OW had access to raw clinical data of 
GLSG2000 patients. VJ, RK, EH, AAM, MU, RDG, and 
OW had access to raw clinical data of BCCA patients. The 
corresponding author had full access to all the data in the 
study and the fi nal responsibility for the decision to 
submit for publication.

GLSG2000 training cohort BCCA validation cohort p value

Patients

Number of assessable patients* 151 107

Male 78 (52%) 59 (55%) 0·67

Female 73 (48%) 48 (45%)

Clinical risk factors

>60 years 57 (38%) 59 (55%) 0·0083

>4 nodal sites 106 (70%) 78 (73%) 0·74

Lactate dehydrogenase elevated 49 (32%) 22 (21%) 0·074

Haemoglobin <120 g/L 32 (21%) 12 (11%) 0·062

ECOG performance status >1 8 (5%) 16 (15%) 0·016

FLIPI high-risk 77 (51%) 53 (50%) 0·92

Treatment

First-line treatment R-CHOP† R-CVP‡

Maintenance treatment IFNα Rituximab

Number of patients intended for 
maintenance treatment

151 93

Outcome

5-year failure-free survival (95% CI; 
number of events)

66·22% (58·63–74·79; 63) 58·43% (49·73–68·66; 48)

5-year overall survival (95% CI; 
number of deaths)

83·25% (77·20–89·78; 33) 74·40% (66·50–83·23; 32)

Median (IQR) follow-up for overall 
survival, years

7·7 (5·5–9·3) 6·7 (5·7–7·6)

ECOG=Eastern Cooperative Oncology Group. FLIPI=Follicular Lymphoma International Prognostic Index. *Assessable 
patients fulfi lled all of the following inclusion criteria: confi rmed diagnosis of follicular lymphoma by reference 
pathology, symptomatic disease requiring treatment, advanced stage disease or bulky disease considered ineligible for 
curative irradiation, initial treatment regimen contained rituximab, no dose-intensifi ed consolidative treatment, 
diagnostic lymphoma tissue or DNA available, time between pretreatment biopsy and treatment initiation less than 
1 year, and high-quality sequencing data available. †R-CHOP: eight cycles of rituximab 375 mg/m², cyclophosphamide 
750 mg/m², doxorubicin 50 mg/m², vincristine 1·4 mg/m² (day 1), and prednisone 100 mg (days 1–5), every 3 weeks, 
no consolidative transplant; patients achieving at least a partial response received interferon α (IFNα) maintenance 
(3–5 MioU per week). ‡R-CVP: six to eight cycles of rituximab 375 mg/m², cyclophosphamide 1000 mg/m², vincristine 
1·4 mg/m² (day 1), and prednisone 100 mg/day (days 1–5), every 3 weeks; from 2006 onwards, rituximab maintenance 
(375 mg/m² given every 3 months for a total of eight doses) was given to patients achieving at least a partial response. 

 Table 1: Patient and disease characteristics
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Results
The training cohort consisted of 151 GLSG2000 patients 
(table 1, fi gure 1). The median age was 57 years (IQR 50–64), 
78 (52%) were male, and 77 (51%) had a high-risk FLIPI. 
After a median follow-up of 7·7 years (IQR 5·5–9·3), 
5-year failure-free survival was 66·22% (95% CI 
58·63–74·79; 63 events overall) and 5-year overall survival 
was 83·25% (95% CI 77·20–89·78; 33 deaths overall; 
table 1).

The median number of targeted genes with non-silent 
mutations per patient was four (IQR 3–5·5; appendix 
p 14). Nine genes had non-silent mutations in 10% or 
more of patients (KMT2D 79% [n=119], CREBBP 70% 
[105], TNFRSF14 32% [48], EZH2 22% [33], ARID1A 15% 
[22], EP300 14% [21], CARD11 12% [18], STAT6 11% [16], 
and MEF2B 10% [15]). BCL2 was hypermutated in 76% 
(115) of patients. Mutation details on all signifi cantly 
mutated genes12 and on eight additional genes with non-
silent mutations in more than 5% of patients are shown 
in the appendix (p 15).

Overall, 146 (97%) follicular lymphomas harboured 
non-silent mutations in epigenetic modifi ers, with 
predominantly dis ruptive mutations found in KMT2D, 
CREBBP, EP300, ARID1A, and BCL7A. Additional 
disruptive mutations aff ected TNFRSF14, the B-cell 
receptor com ponents CD79A and CD79B, the NFκB 
pathway inhibitor TNFAIP3, and the transcription 
factors IRF8 and ETS1. Overall, 70 follicular lymphomas 
(46%) harboured one or more non-silent mutation in 
lymphoid transcription factors (appendix p 15).

A subset of mutations clustered at known hotspots. 
Mutations in EZH2, the catalytic subunit of the polycomb 
repressor complex 2 (PRC2), were clustered at Tyr641 
(29 [88%] of 33 patients) and Ala677 (three [9%] of 
33 patients).20,21 Other hotspot and clustered mutations 
aff ected CARD11 (16 [80%] of 20 in the coiled-coil 
domain),22 CXCR4 (WHIM-like mutations in fi ve [100%] 
of fi ve),23 exon 1 of FOXO1 (nine [90%] of 10),24 STAT6 at 
Asp419 (seven [44%] of 16),25 and MEF2B mutations (15 
[100%] of 15 within the N-terminal domain;26 appendix 
p 16). By contrast, PIM1 and BCL2, which are known 
targets of aberrant somatic hypermutation,27 predom-
inantly harboured transition mutations (appendix p 17) 
with low predicted functional eff ect. Additional analyses 
for co-occurring mutations are included in the appendix 
(pp 5, 18).

The FLIPI and many individual FLIPI components 
were associated with specifi c gene mutations in 
univariable analyses (appendix p 10). However, none of 
these associations were statistically signifi cant after 
correction for multiple testing. In univariable analyses, 
mutations in EP300 (HR 1·99, 95% CI 1·08–3·68; 
p=0·028) and FOXO1 (HR 2·74, 1·23–6·09; p=0·013) 
were associated with shorter failure-free survival, 
whereas mutations in EZH2 (HR 0·46, 0·22–0·93; 
p=0·030) were associated with longer failure-free 
survival. Adjustment for FLIPI and ECOG performance 

status also revealed that ARID1A mutations correlated 
with longer failure-free survival (HR 0·40, 95% CI 
0·16–0·996; p=0·049) and TP53 mutations with shorter 
failure-free survival (HR 2·85, 1·12–7·27; p=0·029; 
appendix p 19). After correction for multiple testing by 
Bonferroni-Holm, no single mutation (including BCL2 
hypermutation) was signi fi cantly associated with failure-
free survival (appendix pp 19, 20).

TP53 mutations were associated with inferior overall 
survival as a single factor (HR 4·70, 95% CI 1·80–12·23; 
p=0·0015) and with adjustment for FLIPI and ECOG 
performance status (HR 6·32, 2·35–17·01; p=0·00026). 
CARD11 mutations were prognostic for inferior overall 
survival in univariable analysis (HR 2·43, 95% CI 
1·09–5·39; p=0·029) and when adjusted for FLIPI and 
ECOG performance status (HR 3·71, 1·59–8·67; 
p=0·0024). After correction for multiple testing, only 
TP53 mutations remained signifi cantly associated with 
overall survival (adjusted p=0·0081; appendix p 19).

We generated multivariable risk models for failure-free 
survival using diff erent sets of predictors: one consisted 
only of recurrent gene mutations, and the second also 
included the binary clinical variables FLIPI and ECOG 
performance status. Additional risk models are described 
in the appendix (pp 5, 12). Internal validation by bootstrap 
analysis showed superiority of the model that integrated 
gene mutations and clinical factors compared to the 
model of only gene mutations and the other models 
(appendix p 12). This clinicogenetic model, which we 
termed m7-FLIPI, was calculated as the sum of predictor 
values weighted by Lasso coeffi  cients, and included high-
risk FLIPI (βLasso=+0·79), poor ECOG performance status 
(>1, βLasso=+0·38), and non-silent mutations in seven 
genes: EZH2 (βLasso –0·53), ARID1A (–0·4), EP300 
(+0·33), FOXO1 (+0·26), MEF2B (–0·07), CREBBP 
(+0·05), and CARD11 (+0·04; fi gure 2). To divide the risk 
score into high-risk and low-risk cohorts, a cutoff  of 0·8 
was calculated to be optimum (appendix p 3). The 
m7-FLIPI identifi ed a high-risk group (43 [28%] of 151 
patients) with 5-year failure-free survival of 38·29% 
(95% CI 25·31–57·95) and a low-risk group (108 [72%] of 
151 patients) with 5-year failure-free survival of 77·21% 
(69·21–86·14 [HR 4·14, 2·47–6·93; p<0·0001; bootstrap-
corrected HR 2·02]), and outperformed a prognostic 
model of only gene mutations (HR 3·76, 2·10–6·74; 
p<0·0001; bootstrap-corrected HR 1·57). In the patients 
with available FLIPI-2 scores (n=126), the m7-FLIPI 
(p<0·0001) outperformed the FLIPI-2 (p=0·00088; 
appendix p 21).

The validation cohort consisted of 107 BCCA patients 
(fi gure 1). Median age was 62 years (IQR 54–69) and 59 
(55%) were male. 93 (87%) of 107 patients received 
rituximab maintenance. Compared with the GLSG2000 
cohort, the BCCA cohort included more patients older 
than 60 years and more with ECOG performance status 
greater than 1, whereas elevated lactate dehydrogenase 
and haemo globin less than 120 g/L were less frequent 
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(table 1). The fraction of high-risk FLIPI patients was 
similar between the two cohorts (53 [50%] of 107 vs 
77 [51%] of 151; p=0·92). After a median follow-up of 
6·7 years (IQR 5·7–7·6) in the BCCA cohort the 5-year 
failure-free survival was 58·43% (95% CI 49·73–68·66) 
and the overall survival was 74·40% (66·50–83·23).

The median number of mutations in the validation 
cohort was fi ve (IQR 3–6; appendix p 14). The targeted 
mutational landscape of the validation cohort is 
summarised in the appendix (p 22). Compared with the 
training cohort, there were no signifi cant diff erences in 
the mutation frequencies of any of the 74 genes after 

correction for multiple testing. m7-FLIPI defi ned high-
risk (24 [22%] of 107 patients) and low-risk (83 [78%] of 
107 patients) groups with 5-year failure-free survival of 
25·00% (95% CI 12·50–49·99) and 68·24% 
(58·84–79·15), repectively (HR 3·58, 2·00–6·42; 
p<0·0001; fi gure 2, table 2, appendix p 11). The m7-FLIPI 
validated and outperformed FLIPI alone (HR 2·18, 
95% CI 1·21–3·92), and FLIPI combined with ECOG 
performance status (HR 2·03, 95% CI 1·12–3·67); 
fi gure 2, appendix p 20). Performance metrics for 
m7-FLIPI and FLIPI based on 5-year failure-free survival 
in both cohorts are outlined in table 2.
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Figure 2: The clinicogenetic risk model m7-FLIPI
(A) The m7-FLIPI (m7) is calculated as the sum of individual clinical and gene mutation predictor values weighted by their individual coeffi  cients. (B) Mutation frequencies of the GLSG2000 training 
and the BCCA validation cohorts. p values by Fisher’s exact test, without correction for multiple testing.  Depicted are all signifi cantly mutated genes12 and genes with non-silent mutations in more 
than 5% of cases from the GLSG2000 training cohort. Detailed mutation plots for both cohorts are shown in the appendix (pp 15, 22). (C) Kaplan-Meier curves for failure-free survival for the GLSG2000 
training cohort by FLIPI and by m7-FLIPI. (D) Kaplan-Meier curves for failure-free survival for the BCCA validation cohort by FLIPI and by m7-FLIPI. Numbers in parentheses show number of patients 
with event/number of patients per cohort. FLIPI low/int=low or intermediate-risk FLIPI.
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Although m7-FLIPI was developed to predict failure-
free survival, we tested its prognostic utility for overall 
survival. High-risk m7-FLIPI was associated with an 
inferior 5-year overall survival of 65·25% (95% CI 
51·40–82·84) versus 89·98% (84·26–96·08; p=0·00031) 
in the training cohort, and 41·67% (25·95–66·89) versus 
84·01% (76·39–92·39; p<0·0001) in the validation cohort 
(appendix p 21). In each cohort, the m7-FLIPI again 
outperformed the FLIPI alone (appendix p 23).

Distinct molecular features exist between t(14;18)-
positive and t(14;18)-negative follicular lymphomas.28 
Fluorescence-in-situ hybridisation (FISH) data using a 
BCL2 break-apart probe (appendix p 4) was available for 
97 GLSG2000 patients and 104 BCCA patients. t(14;18) 
was present in 88 (91%) assessable GLSG2000 patients 
and 92 (88%) assessable BCCA patients. Similar to the 
overall study population, m7-FLIPI outperformed the 
FLIPI and was signifi cantly associated with failure-free 
survival in the subset of t(14;18)-positive cases from both 
cohorts (appendix p 24). Because of the small number of 
t(14;18)-negative cases in each cohort, it was not feasible 
to test the prognostic utility of m7-FLIPI specifi cally 
within this population.

In both cohorts, the improved performance with m7-
FLIPI resulted from reclassifi cation of a subset of patients 
with high-risk FLIPI into the low-risk m7-FLIPI category 
(fi gure 3). 34 (44%) of 77 patients in the training cohort 
and 29 (55%) of 53 patients in the validation cohort that 
were classifi ed as high-risk by FLIPI were re-classifi ed 
into the low-risk m7-FLIPI group (fi gure 3). Tumours 
from these patients were enriched for mutations in EZH2 
(50% [17/34] vs 0% [0/43] and 55% [16/29] vs 0% [0/24]), 
MEF2B (29% [10/34] vs 0% [0/43] and 28% [8/29] vs 13% 
[3/24]), and ARID1A (32% [11/34] vs 2% [1/43] and 31% 
[9/29] vs 4% [1/24]). By contrast, samples from patients 
classifi ed as high-risk by m7-FLIPI were enriched for 
mutations in EP300 and CREBBP in both the training 
and validation cohorts (fi gure 3, appendix p 25).

The fi nding that all 66 patients across both cohorts 
with EZH2 mutations were classifi ed as low-risk 

m7-FLIPI led us to ask whether EZH2 expression defi nes 
a unique biology in follicular lymphoma. To address this, 
we profi led gene expression in the 107 BCCA patients 
from the validation cohort and 33 additional BCCA 
patients that were excluded from the validation cohort for 
stringency reasons (28 patients, time between lymphoma 
biopsy and initiation of R-CVP >1 year; fi ve patients, 
insuffi  cient clinical docu men tation; fi gure 1). Whole-
genome gene expression profi ling using the Illumina 
cDNA-mediated annealing, selection, extension, and 
ligation assay (DASL; appendix p 4) was done for 
140 BCCA tumour samples with available high-quality 
sequencing data (fi gure 1) and successful for 138 cases, 
including 106 patients from the validation cohort.

All assessable tumour samples were divided into 
mutated and non-mutated cases for the 15 most common 
gene mutations and compared for diff erentially expressed 
genes (p<0·05; appendix p 26). A false discovery rate 
approach to adjust individual p values revealed that 
EZH2 was associated with the highest number (129) of 
diff erentially expressed genes at q values less than 0·05 
(appendix p 26). These genes were used to defi ne a 
distinct gene expression signature for EZH2 mutation 
status by unsupervised clustering of the 106 patients 
from the validation cohort (appendix p 27). This signature 
signifi cantly correlated with both failure-free survival 
and overall survival (appendix p 28). Gene set enrichment 
analysis of our EZH2 signature showed signifi cant 
enrichment of a previously reported EZH2 signature29 
(fi gure 4).

To measure how well this gene expression signature 
correctly identifi ed the presence or absence of EZH2 
mutation, we calculated the accuracy (ie, the proportion 
of true positives and true negatives in the population). 
Overall, the EZH2 mutation status was correctly allocated 
by this gene expression signature in 93 (88%) of 
106 tumour samples, indicating that the mutation is truly 
associated with a distinct transcriptional profi le. The 
presence of EZH2 mutations was associated with a 
signifi cant improvement in both failure-free survival 

High-risk 
patients, % (n/N)

High-risk vs non-high-risk 
5-year failure-free survival 
(95% CI)

Sensitivity 
(%)

Specifi city 
(%)

Positive 
predictive 
value (%)

Negative 
predictive 
value (%)

C index (95% CI)

GLSG2000 cohort m7-FLIPI 28% (43/151) 38·29% (25·31–57·95) vs 
77·21% (69·21–86·14)

52% 85% 64% 78% 0·80 (0·71–0·89)

BCCA cohort m7-FLIPI 22% (24/107) 25·00% (12·50–49·99) vs 
68·24% (58·84–79·15)

41% 89% 72% 68% 0·79 (0·69–0·89)

GLSG2000 cohort FLIPI 51% (77/151) 56·47% (45·61–69·92) vs 
76·14% (66·54–87·12)

65% 60% 45% 77% 0·70 (0·58–0·82)

BCCA cohort FLIPI 50% (53/107) 46·49% (34·69–62·30) vs 
70·08% (58·81–83·52)

64% 62% 55% 71% 0·70 (0·58–0·83)

Sensitivity, specifi city, positive predictive value, and negative predictive value for patients remaining without failure at 5 years. Harrell’s C index or concordance C is a 
generalisation of the area under the receiver operating characteristic curve for survival data and quantifi es prognostic discrimination. FLIPI=Follicular Lymphoma 
International Prognostic Index.

 Table 2: Performance metrics for the m7-FLIPI and FLIPI based on 5-year failure-free survival
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(fi gure 4) and overall survival (appendix p 29) in both 
cohorts, but only among patients with high-risk FLIPI.

Discussion
To our knowledge, we report the largest study of 
recurrent and signifi cant mutations in patients with 
symptomatic follicular lymphoma who received fi rst-line 
immuno chemotherapy and the fi rst to assess prognostic 
relevance of mature data from two independent cohorts. 
By adding the mutational status for seven genes to 
established clinical risk factors, we developed an 
improved prognostic algorithm to help clarify which 

patients are likely to have poor outcome after standard 
immunochemotherapy. Our cohorts span two continents 
and include both a clinical trial population (GLSG2000) 
and a population-based registry (BCCA). We believe the 
fact that the validation cohort received a diff erent 
immunochemotherapy and maintenance regimen and 
gave virtually the same results supports the broad 
applicability of the m7-FLIPI.

By contrast with previous studies that focused 
primarily on single gene alterations,30–33 we took a 
multivariable approach that included a comprehensive 
compilation of recurrent gene mutations and clinical 
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risk factors. The advantage of multivariable modelling is 
that it is unbiased by biological assumptions, and 
thereby refl ects the fact that interactions between 
distinct gene mutations and clinical factors are complex, 
interdependent, and largely unknown. This approach 
does not require that single gene mutations have a 
signifi cant eff ect on outcome. In fact, gene mutations 
signifi cantly associated with outcome by univariable 
analysis (eg, in TP53) can drop out. The superior 
performance of the m7-FLIPI shows that both clinical 
factors that refl ect the patient’s performance status and 
extent of disease as well as gene mutations aff ect 
treatment outcome, and should be combined to provide 
optimum prognostic information.

In both cohorts, about half the patients classifi ed as 
high-risk using FLIPI were classifi ed as low-risk using 
m7-FLIPI and these patients had outcomes in-
distinguishable from those with low-risk FLIPI. This 
reclassifi cation of risk category using the m7-FLIPI score 
primarily results from gene mutations, in particular 
mutation of EZH2, that lower the risk of a failure-free 
survival event after immunochemotherapy. By contrast, 
the remaining high-risk patients were enriched for poor 
outcome, with 5-year failure-free survival in the 
GLSG2000 cohort of only 38·29% (95% CI 25·31–57·95) 
and 25·00% (12·50–49·99) in the BCCA cohort.

Although m7-FLIPI was developed for failure-free 
survival, it was also prognostic for overall survival. 
However, low-risk m7-FLIPI does not necessarily 
indicate a more indolent disease course, as all patients 
studied had required treatment. We did not study 
asymptomatic patients who did not require therapy; 

doing so is particularly challenging because lead time 
(ie, the time between diagnosis and symptomatic 
disease requiring treatment) depends on many variables 
other than disease biology. It is also important to note 
that all patients in both cohorts had biopsies obtained 
within 12 months before beginning treatment. The 
genetics of untreated follicular lymphoma might change 
within a patient over the course of time, so it remains 
unclear whether m7-FLIPI is applicable to patients 
whose sequenced biopsy was obtained many years 
before receiving fi rst-line immuno chemotherapy.

A previous study reported improved prediction of 
failure-free survival using the FLIPI-2 score.17 However, 
we were only able to compare m7-FLIPI with FLIPI-2 in a 
subset of GLSG2000 patients; thus, it will be important to 
further validate m7-FLIPI in additional cohorts that have 
complete documentation of all FLIPI-2 variables. 
Additionally, the predictive value of m7-FLIPI will need to 
be assessed in patients who receive treatment regimens 
containing other chemotherapeutics (eg, bendamustine) 
or alternative anti-CD20-directed anti bodies. Further 
studies are needed in patients with t(14;18)-negative 
follicular lymphoma, as the small numbers of t(14;18)-
negative cases in our cohorts precluded an adequately 
powered assessment of the prognostic utility specifi cally 
within this rare population. Studies are also needed to 
determine whether mutations present at less than 10% 
variant allele frequency can further guide prognostication. 
Finally, with evolving omics and other technologies, 
future studies will be needed to iteratively improve m7-
FLIPI by adding or substituting genetic, epigenetic, 
proteomic, or other factors.
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Many B-cell lymphomas, both with and without 
activating EZH2 mutations, might depend on EZH2 
function.34 As a result, inhibitors of EZH2 activity are in 
clinical trials for patients with relapsed and refractory 
lymphomas.34 Mutations in EZH2 aff ected 33 (22%) of 
151 GLSG200 patients and 31 (29%) of 107 BCCA patients 
and clustered at the Tyr641 and Ala677 hotspots that are 
known to promote hyper trimethylation of lysine 27 on 
histone H3 (H3K27)20,21 and B-cell transformation.35 
Unexpectedly, these mutations were strongly associated 
with low-risk m7-FLIPI, improved failure-free survival 
and overall survival, and defi ned a unique transcriptional 
signature. Thus, patients who harbour EZH2 mutations 
are likely to have good outcomes after conventional 
immuno chemo therapy.

In summary, by adding the mutational status for seven 
genes to established clinical risk factors, we developed an 
improved prognostic algorithm that can be applied to 
patients receiving fi rst-line immunochemotherapy. A 
freely accessible online tool is now available to calculate 
the m7-FLIPI. If the m7-FLIPI is further validated in 
subsequent studies, it could serve as a valuable biomarker 
to select patients for trials of risk-adapted treatment 
strategies (eg, dose intensifi cation or novel molecular 
targeted agents).
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Key Points

• The posttreatment end point
progression of FL within 24
months (POD24) is strongly
associated with OS.

• A pretreatment clinicogenetic
risk model (m7-FLIPI)
predicts POD24 and OS
and identifies the smallest
subgroup with highest
unmet need.

Follicular lymphoma (FL) is a clinically and molecularly heterogeneous disease. Posttreat-

ment surrogate end points, such as progression of disease within 24 months (POD24) are

promising predictors for overall survival (OS) but are of limited clinical value, primarily

because they cannot guide up-front treatment decisions.Weused the clinical andmolecular

data from 2 independent cohorts of symptomatic patients in need of first-line immunoche-

motherapy (151 patients from a German Low-Grade Lymphoma Study Group [GLSG] trial

and 107 patients from a population-based registry of the British Columbia Cancer Agency

[BCCA]) to validate the predictive utility of POD24, and to evaluate the ability of

pretreatment risk models to predict early treatment failure. POD24 occurred in 17% and

23%of evaluableGLSG andBCCApatients, with 5-year OS rates of 41% (vs 91% for those

without POD24, P < .0001) and 26% (vs 86%, P < .0001), respectively. The m7–FL Inter-

national Prognostic Index (m7-FLIPI), a prospective clinicogenetic risk model for

failure-free survival, had the highest accuracy to predict POD24 (76% and 77%,

respectively) with an odds ratio of 5.82 in GLSG (P5 .00031) and 4.76 in BCCA patients

(P5 .0052). A clinicogenetic riskmodel specifically designed to predict POD24, the POD24-PI, had the highest sensitivity to predict

POD24, but at the expense of a lower specificity. In conclusion, the m7-FLIPI prospectively identifies the smallest subgroup of

patients (28%and 22%, respectively) at highest risk of early failure of first-line immunochemotherapy and death, including patients

not fulfilling thePOD24criteria, andshouldbeevaluated inprospective trials of precisionmedicine approaches inFL. (Blood. 2016;

128(8):1112-1120)

Introduction

Follicular lymphoma (FL) is among the most common malignant
lymphomasworldwide and remains incurable formostpatients.1 FL isa
highly heterogeneous disease,2 with a subgroup of patients experienc-
ing remarkably poor outcome. Several recent studies have suggested
that posttreatment surrogate end points are powerful predictors for
overall survival (OS).3,4 For example, 19% to 26%of patients receiving
first-line immunochemotherapy with rituximab, cyclophosphamide,
doxorubicin, vincristine, and prednisone (R-CHOP) experienced pro-
gression of disease within 24 months (“early progression of disease,”4

herein referred to as POD24) and had a 5-year OS of only 34% to 50%
compared with a 5-year OS of 90% to 94% for patients without
POD24.4 Independent validation of these results is needed, also in the

context of different treatment regimens. Furthermore, the length of
first remission was calculated differently across studies, either from
date of diagnosis4 (for database reasons) or after treatment.3

Although conceptually similar results are emerging for event-free
survival at 12 and 24 months (EFS12 and EFS24)5,6 and complete
response rate at 30months (CR30),7 retrospective evaluation of treat-
ment outcome is of limited clinical utility, because it cannot be
used to guide up-front treatment decision. Furthermore, the molecular
determinants of poor patient outcome remain to be defined. To develop
precision medicine treatment strategies, it is essential to establish
pretreatment strategies for risk assessment that include clinically
relevant biomarkers.
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We have previously shown that a clinicogenetic risk model called
the m7–FL International Prognostic Index (m7-FLIPI), which includes
the mutation status of 7 genes (EZH2, ARID1A, MEF2B, EP300,
FOXO1, CREBBP, and CARD11), the FLIPI, and the Eastern
Cooperative Oncology Group (ECOG) performance status at the time
of treatment initiation improves risk stratification for failure-free
survival (FFS) in patients with FL receiving first-line immunochemo-
therapy.8 An online tool for calculating the m7-FLIPI is available at:
http://www.glsg.de/m7-flipi/.

In this study, we aimed to independently validate the predictive
utility of posttreatment evaluation by POD24 in 2 independent cohorts
of patients who received different immunochemotherapy regimens as
first-line treatment. Furthermore, we evaluated and compared the
ability of pretreatment risk models, including the m7-FLIPI, to predict
POD24, and explored additional pretreatment risk models specifically
designed to predict POD24.

Methods

We fully reanalyzed the clinical and molecular data from 2 independent cohorts
of patients with symptomatic, advanced stage, or bulky FL considered ineligible
for curative radiotherapy.All patients had an available biopsy specimen obtained
within 12 months before the initiation of first-line therapy that was previously
sequenced to determine the mutational status of 74 genes.8

Briefly, the GLSG cohort consisted of 151 patients who needed treatment as
defined by the presence of B-symptoms, bulky disease (mediastinal lymphomas
.7.5 cm or other lymphomas .5 cm), impairment of normal hematopoiesis
(hemoglobin level,100 g/L, granulocyte count,1.53 109/L, or thrombocyte
count ,100 3 109/L), compression of internal organs, or disease progression
(.50% increase of lymphoma manifestations within ,6 months). All patients
received R-CHOP and interferon-a (IFN-a) maintenance as part of the ran-
domized GLSG2000 trial of the German Low-Grade Lymphoma Study
Group (GLSG).9 Median age of GLSG patients was 57 years (range 27-77);
77 (51%) had high-risk FLIPI. With a median follow-up of 7.7 years, 5-year
FFS and OS rates were 66% and 83%, respectively.8

The BCCA cohort consisted of 107 patients from a population-based
registry of the British Columbia Cancer Agency (BCCA) who received
rituximab, cyclophosphamide, vincristine, and prednisone (R-CVP), followed
by R-maintenance by intention to treat in 93 patients (87%). Median age of
BCCA patients was 62 years (range 37-83); 53 (50%) had high-risk FLIPI.
With a median follow-up of 6.7 years, 5-year FFS and OS rates were 58%
and 74%, respectively.8

Progression of disease within 24 months was defined as progression or
relapse of the disease within the first 24 months after diagnosis (original
definition)4 or after first-line treatment initiation (modified definition).
Patients were not evaluable for POD24 if they were censored (eg, lost to
follow-up) or died within 24 months without POD.

Failure-free survival was defined as time from treatment initiation until less
thanapartial remission (PR) at the endof induction, relapse, progression, or death
from any cause. Overall survival was calculated from risk-defining event for
POD24 (ie, survival from time of POD for the POD24 cohort, or from 2 years
after initial treatment of patients without POD24),4 and from treatment initiation
for all other survival analyses.

Clinical and molecular data from the GLSG cohort were used to calculate a
riskmodel that specifically predicts POD24 (POD24 Prognostic Index [POD24-
PI]) by applying a previously described statistical approach.8Briefly, themutation
statusof genes thatweremutated in.5patients and the clinical risk factorsFLIPI
.2 (ie, high-risk FLIPI) and poor performance status (ECOG-PS.1)were used
for multivariable L1-penalized logistic regression. Two different risk models
were calculated. In the first model, the coefficients for high-risk FLIPI and
ECOG-PS.1 were not penalized, forcing these variables into the model. In the
secondmodel, all coefficientswere penalized. Internal validationby thebootstrap
procedurewasused to select the bestmodel. Thefinal risk scorewas calculated as

the sum of clinical and molecular predictors weighted by their individual Lasso
coefficients. We determined the optimal cutoff value to maximize the Wald
statistic, and dichotomized patients into high-risk and low-risk subgroups. The
BCCA cohort was used as an independent validation cohort.

Logistic regression analyses were performed to assess whether risk
models were predictive of POD24, and Cox regression analysis was used for
FFS and OS. All calculations were carried out with the statistical software R
(version 3.1.2). The accuracy of pretreatment risk models to predict POD24
was calculated as the number of correctly classified patients ([number of true
positives1 number of true negatives]4 [number of all evaluable patients]).
The R-package penalized (version 0.9-45) was used for penalized logistic
regression, and the survival package (version 2.37-7) for survival analyses.

This studywas covered by approvals of theLudwig-Maximilians-University
Munich Institutional Review Board (#056-00) and the University of British
Columbia–BCCA Research Ethics Board (#H13- 01765).

Results

Validation of POD24 to identify high-risk patients

We first aimed to assess the prognostic impact of POD24 on OS in 2
independent cohorts of patients with FL receiving first-line immuno-
chemotherapy. Nineteen (13%) and 5 patients (5%) from the entire
GLSG and BCCA cohorts were not evaluable for analysis of POD24
because they were censored or died within 24 months without prior
POD (Figure 1A). POD24, originally defined as relapse or progression
of FL within 24 months of diagnosis,4 occurred in 15% (20/132) and
18% (18/102) of evaluable patients from the GLSG and the BCCA
cohorts (Figure 1A). When calculated from time of first-line treatment
initiation to overcome the lead-time bias (ie, the timebetweendiagnosis
and symptomatic disease requiring treatment), the size of POD24
subgroups increased to 17% (23/132) and 23% (23/102), respec-
tively (Figure 1A;Table1).Only1of the8 reclassifiedpatientswas still
alive at 7.6 years, and the median OS of this subgroup was only 3.1
years (range 1.4-9.5; P, .0001 compared with all other patients). The
number of reclassifiedpatients is small (the timebetweendiagnosis and
treatment was ,1 year by inclusion criteria), but the poor outcome
of patients with POD within 24 months of treatment, but not from
diagnosis, suggests that these patients should also be considered early
progressors. Thus, the modified definition of POD24 was used for the
remainder of the study.

Differences in OS, calculated from risk-defining event (ie, survival
from time of POD for early progressors, or from 24months after initial
treatment for non–early progressors) were highly significant between
patients with and without POD24 (irrespective of whether original or
modified definitions were used; Figure 1B). Six and 4 patients with
POD24 from the GSLG and BCCA cohorts were still alive at 5 years,
for a 5-year OS of 41% vs 91% (hazard ratio [HR] 9.72, 95%
confidence interval [CI] [4.51; 20.96], P , .0001) and 26% vs 86%
(HR11.93, 95%CI [5.31; 26.76],P, .0001), respectively (Figure 1B).
This confirms that retrospective evaluation of treatment response at 24
months is strongly associated with OS in patients receiving first-line
immunochemotherapy.

The clinical characteristics of the POD24 and non-POD24
subgroups are summarized in Table 1. The POD24 subgroups were
enriched for high-risk FLIPI (78% vs 44%, P5 .0059, and 70% vs
42%,P5 .035, for GLSG andBCCApatients, respectively; Table 1;
Figure 2A). Another 44% and 42% of patients without POD24 had
high-risk FLIPI, respectively (Figure 2A). However, patients with
high-risk FLIPI and no POD24 did not have inferior FFS compared
with those with low-risk FLIPI and no POD24 (Figure 3A). This
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suggests that the FLIPI, which uses only clinical factors and
classified 51% of GLSG and 50% of BCCA patients as high-risk,
overestimates the number of patients with poor outcome.

The m7-FLIPI is predictive of POD24

We have previously shown that by integrating the mutation status of 7
genes with clinical risk factors, the clinicogenetic riskmodel m7-FLIPI
results in reclassification of approximately one half of high-risk FLIPI

patients into the low-risk group.8 Now,we assessed the performance of
the m7-FLIPI to prospectively distinguish patients with and without
POD24.

Unlike the POD24 classifier, all patients were evaluable for the
m7-FLIPI (Table 2). Forty-three GLSG (28%) and 24 BCCA patients
(22%) were classified as high risk by the m7-FLIPI, with a 5-year OS
from treatment initiation of 65% vs 90% (HR 3.4, P, .0001) and 42%
vs 84% (HR 4.9, P , .0001), respectively (Table 2). High-risk
m7-FLIPI patients were significantly more likely to develop POD24

0 12
0.0

0.4

0.8
(9/79)

(14/84)

(13/18)
(18/23)

Overall survival in years from risk defining event

(12/109)

(14/112)

(13/20)
(15/23)

2 4 6 8 100 12
0.0

0.4

0.8

Overall survival in years from risk defining event
2 4 6 8 10

Su
rv

iv
al

 p
ro

ba
bi

lit
y

HR = 9.7 (p < 0.0001) HR = 11.9 (p < 0.0001)

B

BCCA

not evaluable

GLSG

re-classified by 
modified definition no POD24

POD24

not evaluable

re-classified by 
modified definition

A

total=151 total=107

POD24

no POD24

Figure 1. Progression of disease within 24 months (POD24) is an accurate predictor of poor overall survival (OS). (A) Distribution of patients from the GLSG and

BCCA cohorts according to the POD24 classifier. (B) Kaplan Meier curves for OS from risk-defining events for patients with or without POD24 of diagnosis (dashed lines) or

24 months of treatment initiation (solid lines) from the GLSG (left) and BCCA cohorts (right). Displayed statistics refer to POD24 status calculated from time of treatment

initiation (ie, modified definition).

Table 1. Patient and disease characteristics according to POD24 status

GLSG BCCA

POD24 No POD24 P POD24 no POD24 P

No. of evaluable patients 23 109 23 79

First-line treatment R-CHOP (151/151, 100%) R-CVP (107/107, 100%)

Maintenance treatment by ITT IFN (151/151, 100%) Rituximab (93/107, 87%)

Median follow-up in years 8.4 8.2 7.1 6.7

Age (y), median (range) 61 (27-74) 56 (29-77) .195 62 (43-83) 61 (37-83) .398

Male gender 11/23 (48%) 55/109 (50%) ..99 15/23 (65%) 42/79 (53%) .618

High-risk FLIPI 18/23 (78%) 48/109 (44%) .0059 16/23 (70%) 33/79 (42%) .035

Age .60 y 12/23 (52%) 39/109 (36%) .218 12/23 (52%) 42/79 (53%) ..99

No. of nodal sites .4 19/23 (83%) 71/109 (65%) .165 20/23 (87%) 55/79 (70%) .164

LDH elevated 11/23 (48%) 31/109 (28%) .117 6/21 (29%) 15/77 (19%) .548

Hb ,120 g/L 10/23 (43%) 17/109 (16%) .0064 4/21 (19%) 7/79 (9%) .350

ECOG-PS $2 0/23 (0%) 5/109 (5%) .655 6/23 (26%) 9/79 (11%) .157

ECOG-PS, Eastern Cooperative Oncology Group Performance Status; Hb, hemoglobin; IFN, interferon-a; ITT, intention-to-treat; LDH, lactate dehydrogenase; POD24,

progression of disease within 24 months; R-CHOP, rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone; R-CVP, rituximab, cyclophosphamide, vincristine, prednisone.
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with an odds ratio (OR) of 5.82 (95%CI [2.27; 15.63];P5 .00031) and
4.76 (95% CI [1.68; 13.72]; P5 .0052) in GLSG and BCCA patients
(Figure 2B; supplemental Figure 1A). Compared with the FLIPI, the
specificity of the m7-FLIPI to identify POD24 (ie, the true negative
rate) increased from 56% to 79%, and 58% to 86%, respectively
(Figure 2B). However, 21% of GLSG and 14% of BCCA patients
who did not experience POD24 were still assigned into the high-
risk m7-FLIPI subgroup (Figure 2B). To determine whether these
cases have an inferior prognosis even though they do not progress
within 24 months, we analyzed the impact of high-risk m7-FLIPI in
patients without POD24. In both cohorts, high-risk m7-FLIPI was
still associated with a shorter FFS (Figure 3B) and OS (supplemental
Figure 2B) among patients who did not have POD24. Thus, the
accuracy of the FLIPI to predict POD24 is substantially improved
by adding the ECOG-PS and themutation status of 7 genes (Table 2).
Furthermore, the m7-FLIPI is also predictive for treatment outcome
in patients not fulfilling the criteria of POD24.

A clinicogenetic risk classifier specifically designed to

predict POD24

Despite the superior performance of the m7-FLIPI, 6% of GLSG
patients (9/151) and 12% of BCCApatients (13/107) were classified as
low-risk m7-FLIPI but developed progression of FL within 24 months
of treatment (4 and 6 of whom were high-risk FLIPI), for an overall
sensitivity of 61% and 43%, respectively, at predicting POD24
(Figure 2B). We aimed to improve that by using the clinical and
molecular data from the GLSG cohort to calculate another risk model
that specificallypredictsPOD24. Internal validation showedsuperiority
of the model in which all clinical and molecular coefficients were
penalized (bootstrap-corrected coefficient of 0.95 vs 0.23 for themodel
in which the coefficients for high-risk FLIPI and ECOG-PS .1 were
not penalized).We termed this riskmodel the POD24 Prognostic Index

(POD24-PI). The risk score, calculated as the sum of predictor values
weighted by Lasso coefficients, contained 4 factors that were all within
them7-FLIPI: high-riskFLIPI (bLasso51.0), andnonsilentmutations in
EP300 (bLasso50.58),FOXO1 (bLasso50.14), andEZH2 (bLasso520.42)
(Figure 4A). The optimal cutoff value to stratify patients into high-
and low-risk subgroups was determined to be 0.71 (Figure 4A). The
BCCA cohort was used to independently validate the results.

Compared with the m7-FLIPI, a higher fraction of patients was
classified into the high-risk subgroup by the POD24-PI (Figures 2C
and 5), specifically 42% (63/151) and 36% (39/107) of GLSG and
BCCApatients, respectively (Table 2). As intended, the POD24-PI had
a higher sensitivity to predict POD24 compared with the m7-FLIPI
(78% vs 61%, and 61% vs 43% in the GLSG and BCCA cohorts,
respectively; Figure 2C), albeit at the cost of a lower specificity and
accuracy (Table 2; supplemental Figure 1B). Overall, high-risk
POD24-PI was associated with significantly shorter FFS and
OS (Figure 4; Table 2): the 5-year FFS rates were 50% vs 77%
(HR5 3.06, P, .0001) and 36% vs 72% (HR5 3.01, P, .0001),
and the 5-year OS rates were 71% vs 91% (HR5 3.55,P5 .00026)
and 48% vs 89% (HR5 5.35, P, .0001) in the GLSG and BCCA
cohorts, respectively (Figure 4). In patients without POD24, high-
risk POD24-PI was still associated with a shorter FFS and OS, but
less discriminative compared with the m7-FLIPI (ie, the POD24-PI
had lower HRs and inferior P values compared with the m7-FLIPI
(Figure 3C; supplemental Figure 2C).

Table 2 summarizes the specific features of the 2 clinicogenetic
risk scores, in context with the FLIPI and the POD24 classifier.
Although the m7-FLIPI had the highest accuracy and POD24-PI the
highest sensitivity to predict POD24, 22% (5/23) and 30% (7/23) of
patients with POD24 from the GLSG and BCCA cohorts were still
not correctly identified as high risk by any of the pretreatment risk
models (Figure 5). Because mutations in TP53 are not included in
any of the clinicogenetic risk models but are known to be associated
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with inferiorOS,8,10wecomparedTP53mutation frequency inpatients
with or without POD24. In both cohorts, TP53mutations were in fact
enriched in the POD24 subgroup (13% [3/23] vs 3% [3/109] in
GLSG patients [P 5 .11], and 13% [3/23] vs 4% [3/79] in BCCA
patients [P5 .25]), but failed to reach statistical significance (supple-
mental Table 1; supplemental Figure 3).

Discussion

Currently applied immunochemotherapy regimens result in long-
lasting remissions and excellent OS in a majority (;80%) of patients
withFL requiring systemic treatment.However, our study confirms that
a subset of patients (;20%) experience short remissions and markedly
inferior outcome with a median OS of,5 years. Clearly, strategies to
guide risk-adapted treatment approaches in FL are needed to avoid
overtreatment of low-risk patients, and to prioritize alternative over
standard treatment regimens in high-risk patients. Also, clinical trials
focusing on high-risk patients are likely to identify higher activity
regimens at a much faster rate if study results were not mitigated by
patients with highly indolent clinical courses in unselected study
cohorts.

Retrospective evaluation of treatment response at 24 months after
first-line immunochemotherapy currently represents the strongest
predictor of OS, although a subset of patients with POD24 are still
alive at.5 years (26% and 41% in our series, up to 50% in a previous
series4). By its definition, POD24 is not confounded by subsequent
therapies (as is OS), or by deaths without prior POD as a result of
comorbidity or treatment-related mortality (as is progression-free
survival or event-free survival),11 and thus very closely reflects either
the aggressiveness of the disease and/or treatment-specific resistance.

As such, POD24 will be highly useful to select cases for in-depth
molecular characterization to identify the tumor-biological determi-
nants of poor patient outcome.

POD24will immediately be useful in clinical practice to select high-
risk patients for experimental salvage treatments. One such example is
the S1608 trial conducted through the National Cancer Institute’s
National Clinical Trial Network, which will specifically enroll patients
with POD24 after first-line immunochemotherapy. However, as a
posttreatment surrogate marker, POD24 cannot guide first-line
treatment including consolidation/maintenance regimens in first
remission, and by definition is unable to assess patients who die within
24 months without prior documented POD or to identify high-risk
patients who do not fail first-line treatment within 24 months.

We propose that comprehensive risk models that integrate
established clinical risk factors with disease-specific biomarkers to
predict biology-relevant end points are useful in up-front identifi-
cation of high-risk patients. The previously described m7-FLIPI is
the most stringent pretreatment risk model currently available and
identifies the smallest subgroup of patients (;25%) at highest risk
of early failure of first-line immunochemotherapy and death. The
m7-FLIPI has the highest accuracy and PPV for POD24 among all
pretreatment risk models. Also, high-risk m7-FLIPI is associated
with inferior outcome in patients who do not fail treatment within
24 months, a subset currently missed by the POD24 classifier. As
such, high-risk m7-FLIPI prospectively defines the subgroup of
patients with the highest clinical need in FL before initiation of first-
line treatment, and supports clinical trials with alternative up-front
regimens with highest antitumor activity, potentially accepting higher
toxicity profiles as deemed acceptable for the majority of patients with
low-risk disease. Furthermore, among all pretreatment risk scores, the
m7-FLIPI has the highest specificity for POD24 (ie, it identifies the
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Figure 3. Risk stratification for failure-free survival (FFS) in patients without POD24 according to 3 pretreatment risk models. Kaplan-Meier curves for FFS beyond

2 years after treatment initiation for patients without POD24 according to (A) the FLIPI, (B) the m7-FLIPI, and (C) the POD24-PI. Numbers in parentheses indicate patients with event/

number of patients per subgroup. Pie charts illustrate distribution of risk status of the respective risk classifier and POD24 status.
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highest percentageof non–early progressors correctly as low-risk).This
indicates that the m7-FLIPI might also be useful in up-front identifi-
cation of low-risk patients with excellent outcome with currently
applied immunochemotherapy regimens, and a subset might actually
qualify for treatment de-escalation strategies.

The POD24-PI, specifically designed to improve the sensitivity to
predict POD24, classified more patients into the high-risk subgroup
(;40%), which was less enriched for poor outcome compared with
high-risk m7-FLIPI. Despite its inferior performance by most test
metrics, the POD24-PI may still be considered a valuable predictor
in certain clinical situations; eg, when testing very-well-tolerated
regimens (eg, post-remission vaccines) investigators may want to
minimize the risk of excluding high-risk patients while accepting
some that have been falsely identified as such. Furthermore, the fact
that the POD24-PI contains the 4 highest weighted components of the
m7-FLIPI likely explains theperformanceof the latter topredict POD24,

and provides clues about how the biology of high-risk tumors may be
different from others. Of note, a subset of patients with POD24was not
distinguishable by any of the 2 clinicogenetic risk models, sug-
gesting that further improvements and probably integration of
additional biomarkers are needed to capture these cases.

Based on the results from the PRIMA trial,12 many patients now
receive maintenance treatment with rituximab after first-line im-
munochemotherapy. Interestingly and similar to previous studies,4

the percentage of patients progressing within 24 months was in
the 20% range in both of our cohorts, despite IFN maintenance in
GLSGpatients and rituximabmaintenance for themajority of BCCA
patients, implying no major impact of these approaches on POD24.
Thus, substantial improvement of treatment results is most likely to
be expected from innovative, risk-adapted first-line regimens, eventu-
ally combined with minimal residual disease–guided consolidation/
maintenance strategies.13-17

0.0

0.4

0.8

0.0

0.4

0.8

0.0

0.4

0.8

0.0

0.4

0.8

0 10 122 64 8

0 10 122 64 8

0 10 122 64 8

Failure-free survival in years

Su
rv

iv
al

 p
ro

ba
bi

lit
y

GLSG BCCA

GLSG

low-risk (28/88)
high-risk (37/63)

p < 0.0001 

low-risk (12/88)
high-risk (21/63)

p = 0.00026 

Overall survival in years
0 10 122 64 8

Overall survival in years

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Failure-free survival in years

low-risk (22/68)
high-risk (26/39)

low-risk (10/68)
high-risk (22/39)

BCCA

POD24-PI

POD24-PI

POD24-PI

POD24-PI

C

A

-0.5

0.0

0.5

1.0

In
di

vi
du

al
 c

oe
ffi

ci
en

t

+1.0

+0.58

-0.42

+0.14

FLIPI high EP300 FOXO1 EZH2

0.71

Clinical

high-risk

low-risk

Gene mutation

B

p < 0.0001 

p < 0.0001 
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In this study, we analyzed stringently selected patients with ad-
vanced stage or bulky disease in need of systemic treatment from
both a prospective clinical trial (the GLSG cohort), which might not
necessarily reflect routine clinical practice,18 and a population-based
registry (the BCCA cohort), a retrospective cohort that might be more
prone to confounding and bias, but also more closely reflects real-life
patients. Remarkably, analyzing these 2 different cohorts yielded
highly consistent results. As such, the m7-FLIPI establishes solid
grounds for up-front patient stratification by actual risk; however,
several challenges still remain tobe addressedbefore it canbe applied in
clinical trials and practice. Standardization of molecular technologies
and analysis pipelines will be needed to ensure widely reproducible
results. The m7-FLIPI will have to be validated and compared with
other posttreatment surrogatemarkers (eg,EFS12,EFS24, andCR30)5-7

and pretreatment riskmodels (eg, the FLIPI-2)19 in additional and larger
cohorts with longer follow-up, and evaluated in the context of specific
treatments, such as the now widely used bendamustine plus rituximab
regimen.20,21 Integrating gene mutations into risk assessment for
molecular-targeting approaches will be particularly informative (eg,
for BCL2 and EZH2 inhibitors),22,23 and will ultimately pave the
way from risk-adapted to biology-directed treatment algorithms in
FL. Other potentially targetable candidate genes captured by the
m7-FLIPI include the acetyltransferases EP300 and the structur-
ally and functionally related CREBBP, because mutations in these
genes are primarily disruptive and may sensitize tumors to histone
deacetylase inhibition.24 Likewise, N-terminally clusteredmutations in
FOXO125 might affect response to inhibitors of the phosphatidyli-
nositol 39OHkinase (PI3K) pathway, given that FOXO transcription
factors and PI3K often function as antagonists in the biology of
B cells.26 Eventually, the relative impact of individual molecular
predictors will have to be adjusted to specific molecular targeting
approaches; for example, CARD11 mutations have a relatively small
m7-FLIPI coefficient in the context of immunochemotherapy, but they
might well increase the risk of treatment failure in patients receiving
BTK inhibitors by activating NF-kB signaling downstream of BTK, as
has been shown for ibrutinib for relapsed/refractory diffuse largeB-cell
lymphoma.27 Several large and collaborative efforts are underway to
address these questions.

In summary, the m7-FLIPI currently represents the most promising
predictor for treatment outcome of patients receiving first-line im-
munochemotherapy, including patients with early treatment failure but
not fulfilling thePOD24criteria, and shouldbe evaluated inprospective
trials of precision medicine approaches in FL.
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constitutive cytokine stimulation induces a biased engraftment
of a susceptible sub-population of human leukemic cells.

We conclude that with more than 81% of engraftment,
non-irradiated NSG mice are an excellent tool for xenotransplan-
tation using unsorted primary AML samples from both children
and adults. Serial transplantations with hCD45þ cells of as low as
4� 103 cells using intrafemoral injection can be successfully
applied and maintain cytogenetic stability from different sources
with a reduced median time to engraftment. PCR amplification of
the a-satellite region of human chromosome 17 proved to be
simple and highly predictive for engraftment screening of human
cells. The NSG model is a powerful tool for a variety of
requirements like amplification of primary human AML samples,
LS-IC assays and to assess individualized molecular treatment
modalities in vivo on a large scale.

Conflict of interest

The authors declare no conflict of interest.

Acknowledgements

We thank the members of the laboratory for Cytogenetic and
Molecular Genetics at the Department of Internal Medicine III for
their support with the primary adult samples, the AML–BFM group
for providing the clinical information and patient data and all
members of the animal facility of the University of Ulm. The
technical assistance of Beate Junk is greatly appreciated. This
work was supported by a grant from the Deutsche José Carreras
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An eight-gene expression signature for the prediction of survival and time to treatment in
chronic lymphocytic leukemia

Leukemia (2011) 25, 1639–1645; doi:10.1038/leu.2011.125;
published online 31 May 2011

The clinical course of chronic lymphocytic leukemia (CLL) is
highly variable, ranging from slow progression and survival for
several decades to rapidly progressive and chemotherapy-
resistant disease with death within 1 year of diagnosis. The
hierarchical model of common genomic aberrations determined
by interphase fluorescence in situ hybridization (FISH) and the
analysis of the mutational status of the immunoglobulin heavy-
chain variable region genes (IGVH status) are broadly used
molecular markers to predict the prognosis of CLL patients.

Despite the high prognostic value of IGVH status and FISH
analysis, the clinical course of some patients defies the
predictions.1 Until now the presence of del(17p) or a TP53
mutation are the only established predictive markers for therapy
response.2 However, they are infrequent in newly diagnosed
patients (del(17p): 4%; additional TP53 mutation: 1.1%),3,4

and sometimes misleading (overall survival (OS) rate 65% at 3
years in treatment-naı̈ve patients).1 Thus, a more accurate easy
assessable risk classifier for CLL patients is desirable.

To improve our ability to predict the prognosis of CLL
patients, gene expression profiling (GEP) and microRNA
expression levels were used to develop prognostic scores.5,6
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Calin et al.6 reported a molecular signature of 13 microRNAs
associated with the expression of ZAP70, the mutational status
of IGVH, and the time between diagnosis and initial treatment.
Rodriguez et al.5 used a small custom oligonucleotide micro-
array to generate a prognostic model based on the expression of
seven genes (including genes involved in Wnt and NF-kB
signaling) for time to treatment (TTT) and validated this model in
an independent CLL series. Although these studies provided new
insights into the biology of CLL, all these signatures fell short of
surpassing the traditional genetic markers in prognostic power;
they were generated on small micro array platforms or were not
validated using routine diagnostic techniques like real-time
PCR (RT-PCR) orFmost importantlyFthey were not shown to
predict overall survival.

Therefore, we set out to develop and validate a simple but
powerful gene expression score (PS.8) that predicts survival in
CLL patients by correlating the survival data of a large patient
cohort with genome-wide gene expression data.

Peripheral blood (PB) or bone marrow (BM) samples from
newly diagnosed CLL patients (N¼ 124), patients with pre-
existing CLL (N¼ 171: untreated¼ 92; pretreated¼ 58; un-
known¼ 21), or unknown disease stage (N¼ 5) were analyzed
in the Laboratory for Leukemia Diagnostics, Department of
Internal Medicine III, University of Munich, Germany, between
2001 and 2007. The samples were received for routine
diagnostics from hospitals and private practitioners in Germany.
The diagnostic work-up included standard cytomorphology,
multiparameter immunophenotyping, interphase FISH (11q22.3,
12cen, 13q14.3, 17p13.1 and IgH locus) and IGVH mutational
analysis. A total of 149 patients were analyzed by oligonucleo-

tide microarrays (44754 probe sets, Affymetrix, Santa Clara, CA,
USA) and served as training set (accrued from 2001 to 2005).
Two patients were analyzed twice at different disease stages
(151 microarrays from 149 patients). These two patients
received therapy between their two analysis time points and
were analyzed the second time at relapse. There were 2.5 and 3
years time gaps between these analysis time points. We chose to
treat the two analysis results from each of these two patients as
separate data points because of the disease evolution that had
taken place. The validation cohort consisted of 149 additional
patients (accrued from 2005 to 2007). Follow-up data from the
time of diagnostic work-up (study entry) were obtained from the
Munich Cancer Registry of the Munich Cancer Center or our
clinical database. The patients from both cohorts (training set
and validation set) were not treated on a specific clinical trial.
Patient inclusion in the training and validation set of our study
was only based on sample availability.

As we expected that gene expression profiles change over
time as the disease progresses, we defined the time of molecular
assessment as the starting time point for OS and TTT. Patient
characteristics are shown in Table 1 and in more detail in
Supplementary Table 1. Patient data were anonymized before
analysis. The retrospective study design was approved by the
institutional review board of the medical faculty of the
University of Munich.

The details of the microarray analysis and the development
process of PS.8 are given in the supplement (see also Flow chart;
Supplementary Figure 1). In brief, we used a microarray data set
of 151 CLL samples (44 Affymetrix HG-U133 A&B and 107
Affymetrix HG-U133 Plus 2.0 chips) to identify genes associated

Table 1 Patient characteristics

Variable Training set Validation set P-value

No. of included patients 151a 149
Median age, years (range) 63 (30–84) 63 (33–85) 0.73
Male sex, no. (%) 89 (58.9) 99 (66.4) 0.19
Evaluable for FISH, no (%) 151 (100) 147 (98.7)
Del. 17p13, no. (%) 13 (8.6) 7 (4.8) 0.25
Del. 11q22–23, no. (%) 18 (12) 15 (10.2) 0.71
Trisomy 12q13, no (%) 20 (13.2) 16 (10.9) 0.6
‘Normal’ FISH, no (%) 36 (24) 44 (29.9) 0.3
Del. 13q14, no (%) 87 (57.6) 86 (58.5) 0.91
Del. 13q14 (single), no (%) 63 (42) 67 (45.6) 0.56
Evaluable for IGVH-status, no. (%) 134 (88.7) 133 (89.3)
IGVH mutated, no. (%) 68 (50.7) 66 (49.6) 0.9
IGVH unmutated, no. (%) 66 (49.3) 67 (50.4) 0.9
Median IGVH homology (%) 97.8 98.2 0.38
VH3-21 (%) 8 (6.1) 18 (14) 0.04
Patients evaluable for Binet stage, no. 106 101
Binet A at enrollment, no. (%) 58 (54.7) 52 (51.5) 0.68
Binet B at enrollment, no. (%) 23 (21.7) 25 (24.8) 0.62
Binet C at enrollment, no. (%) 25 (23.6) 24 (23.8) 1
Median white-cell count, cells/mm3 35 500 30 000 0.11
Median hemoglobin, g/dl 13.6 13.9 0.85
Median platelet count, cells/mm3 165 500 161 000 0.92
No. of newly diagnosed CLL (%) 65 (44.2) 59 (39.9) 0.48
No. of preexisting untreated CLL (%) 57 (38.8) 56 (37.8) 0.48
Relapsed CLL, no. (%) 25 (17) 33 (22.3) 0.3
Samples evaluable for TTT, no. 101 105
Treated at progression, no. (%) 56 (55.4) 57 (54.3) 0.89
Samples evaluable for OS, no. 151 149
Deceased, no. (%) 41 (27.2) 41 (27.5)
Median follow-up, years (range) 4.1 (0–7) 4.2 (0–5) 0.31

Abbreviations: CLL, chronic lymphocytic leukemia; Del., deletion; FISH, fluorescence in situ hybridization; OS, overall survival.
aNote that 2 patients were analyzed twice at different disease stages and were considered as different samples due to disease evolution; the data
therefore consist of 149 patients with 151 microarrays.
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with OS. Then, a prognostic score (PS.8) was constructed based
on the weighted expression levels of eight selected genes that
performed best in the microarray and quantitative RT-PCR (qRT-
PCR) assays following the procedure proposed by Bair and
Tibshirani (supervised principal components approach). For
validation, we measured the expression levels of the selected
genes with qRT-PCR in 149 independent CLL patients.
Univariate and multivariate Cox regressions were used to assess
the effect of the score on survival. Prediction error curves were
used to assess prediction quality. The microarray data set is
accessible at Gene Expression Omnibus (GSE22762).

The training and validation set had comparable distributions
of genomic aberrations, the IGVH status, median white-cell and
platelet counts, median hemoglobin levels, age, Binet stage,
number of pretreatments, number and schedules of treatments
and the median follow-up time. Significantly more patients with
a VH3-21 rearrangement were present in the validation set and
different pretreatment schedules were used in the groups
(Table 1 and Supplementary Table 1). The prognostic eight
gene based expression score (PS.8) was derived from the training
set (Table 2) using the procedures described above (see also
Flow chart; Supplementary Figure 1). PS.8 values of the 151
training microarrays were divided into three groups (high-,
intermediate-, poor-risk group) using cutoffs at the 20th and
80th percentiles. Figure 1 demonstrates that PS.8 performs
wellFas expectedFin the training data set. It is highly
predictive (Po0.001) both for OS (Figure 1a) and TTT
(Figure 1b). Additionally, using publicly available small,
independent microarray data sets from CLL patients
(GSE12734 from 14 patients and GSE4392 from 16 patients),
we could show that our prognostic score performed surprisingly
well in the classification of predefined risk groups (Supplemen-
tary Figure 2).

Quantitative RT-PCR for the eight genes of PS.8 was
performed with cDNA samples from 149 independent CLL
patients. The score was calculated using the weights derived
from the training data. PS.8 predicted OS (Po0.001) and TTT
(Po0.001) in the validation cohort. Representative Kaplan–
Meier estimates for OS and TTT in patients with high (480
percentile), low (o20% percentile) and intermediate score
values are shown in Figures 1c and d. Furthermore, PS.8
predicted OS (P¼ 0.002) and TTT (Po0.001) in patients without
previous treatments (Figures 1e and f). The defined risk groups
showed significant associations to markers of tumor burden
(white blood cell count, Binet stage) and IGVH status and the
deletion of 11q but not to other common genomic markers
detected by FISH (Supplementary Table 2).

The performance of PS.8 was additionally evaluated in patient
subgroups defined by known risk factors. Patients with mutated
IGVH genes and no 17p13 or 11q23 deletions on FISH analysis
represent patients with a favorable prognosis, whereas patients
with unmutated IGVH genes or with a 17p13 or an 11q23
deletion have an unfavorable prognosis. PS.8 was able to
significantly predict OS for the patients in the unfavorable
prognosis group (P¼ 0.01), but not in the favorable prognosis
group (P¼ 0.2). The latter result is most probably due to the
weak power of the test caused by a low event rate (15%) in this
group. Representative Kaplan–Meier curves obtained by dichot-
omization of the score are shown in Figures 2a and c. TTT was
significantly predicted by PS.8 for patients with unfavorable
prognosis (Po0.001) as well as for patients with favorable
prognosis (P¼ 0.009). Representative Kaplan–Meier curves are
shown in Figures 2b and d. A total of 52 patients from our
validation data set were defined as Binet A at time of first
assessment. The mere four events in this group made compar-
isons of OS impossible. However, the analysis for TTT showed a
significant effect of PS.8 in Binet A patients (P¼ 0.01).
Representative Kaplan–Meier curves are shown in Figure 2e.
We did not analyze Binet stage B and C patients because these
subgroups were too small. PS.8 was also predictive for the
59 newly diagnosed patients (OS P¼ 0.02; TTT P¼ 0.003).
A representative Kaplan–Meier curve for OS in this group is
shown in Figure 2f. Even though PS.8 was developed using gene
expression data from unsorted PB mononuclear cells, the score
was validated and performed well on expression data obtained
from BM or PB irrespective of whether the cells had been sorted
for CD19 positivity or not. Detailed results of univariate
Cox regression for all subgroup analysis are given in the
Supplementary Table 3.

In the validation set, multivariate Cox regression models were
fitted to OS and TTT using PS.8 (continuous), IGVH status,
17p13 deletion, 11q22–23 deletion, age (o 65 years vs X65
years) and sex as covariates. Binet stage was not included as
covariate because of incomplete data. PS.8 had a highly
significant association with both endpoints (Table 3). For OS,
17p13 deletion, age and PS.8 were the only significant
covariates. In the multivariate model for TTT, PS.8 is dominating
all other covariates and is the only covariate significantly
associated with TTT. Of note, the hazard ratio of PS.8 is given
for one unit of change of the score (range of PS.8: �0.4 to
þ 5.5). For example, an increase in the score from 1.5 to 2.5
results in a 1.92-fold increase in the risk for death (confidence
interval (CI): 1.39–2.65). An increase of PS.8 from 1.5 to 3.5
increases the risk by 1.922 (¼ 3.69) and so on (CI: 1.93–7.02).

Table 2 Genes contained in the eight gene prognostic score

Gene Genomic
location

Affymetrix
probe set

ABI assaya Weight Regulation in
poor prognosis

SFTPB Surfactant protein B 2p11.2 37004_at Hs01090658_g1 0.16 Up
MGAT4A Mannosyl glycoprotein beta

acetylglucosaminyltransferase
2q12 226039_at Hs00923405_m1 �0.151 Down

TCF7 Transcription factor 7 5q31.1 205255_x_at Hs00175273_m1 �0.096 Down
MGC29506 Proapoptotic caspase adapter protein precursor 5q31.2 221286_s_at Hs00414907_m1 0.089 Up
PLEKHA1 Pleckstrin homology domain containing, family

A member 1
10q26.13 226247_at Hs00608662_m1 �0.11 Down

PDE8A Phosphodiesterase 8A 15q25.3 212522_at Hs00400174_m1 �0.108 Down
MSI2 Musashi homolog 2 (Drosophila) 17q22 243010_at Hs00292670_m1 0.081 Up
NRIP1 Nuclear receptor interacting protein 1 21q11.2 202600_s_at

202599_s_at
Hs00942766_s1 �0.208 Down

aApplied Biosystems low density array (LDA) primer.

Letters to the Editor

1641

Leukemia



Subsequently, we excluded all pretreated patients and patients
whose treatment status at analysis was unknown from these
models. In this analysis, age, 17p-deletion and PS.8 again
remained as the only significant covariates for OS, and PS.8 was
the only significant covariate for TTT (Supplementary Table 4a).
In a multivariate model with PS.8 as categorized variable (using
the cutoffs from Figure 1) fitted to OS and TTT, PS.8 showed very
similar results compared with the analysis of PS.8 as a
continuous variable (Supplementary Table 4b). To asses whether
PS.8 is only a surrogate for tumor mass, we included Binet stage
and PS.8 in an additional multivariate model (Supplementary
Table 5a). In this model PS.8 remains as significant covariate for

OS and TTT. This is also the case for patients without previous
treatments (Supplementary Table 5b).

The additional predictive value of PS.8 was assessed using
prediction error curves. For OS, a model solely based on PS.8
was superior to FISH and IGVH status as single markers and
similar to the combined model of FISH and the IGVH status
(Supplementary Figure 3a). The model incorporating PS.8 as
well as FISH and IGVH status performed best. For TTT, PS.8 was
superior to the single parameters and also to a combined FISH
and IGVH status model. The addition of FISH and IGVH status
did not increase the performance of the prognostic score
(Supplementary Figure 3b).

Figure 1 OS and TTT in training and validation set. Prediction of OS and TTT in the training set (a,b; microarray group) and validation set (c,d;
qRT-PCR group). (e,f) Prediction of OS and TTT in patients without previous treatment in the validation set. To display the linear score a cutoff of
20% of the highest and lowest scores was chosen (log-rank test: a–d, f: Po0.001, (e) P¼0.004; median OS and TTT in the low/intermediate/high
risk groups: training set not reached (NR)/NR/16 months for OS and 66/24/5 months for TTT, validation set NR/NR/45 months for OS and
NR/26/4 months for TTT, validation set only untreated patients NR/NR/NR for OS and NR/54/9 months for TTT).
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In summary, we correlated genome-wide micro array derived
gene expression values with OS in a large and heterogeneous
group of CLL patients. This approach resulted in the development
of a score (PS.8) based on the expression levels of eight genes.
The score was validated on a different technical platform (qRT-
PCR) in an independent group of patients. Importantly, PS.8
showed additional prognostic value for OS and TTT compared
with the established genetic markers. Specifically, PS.8 was able
to add information in several subgroups defined by the
established molecular markers and in Binet A patients. The
analysis of the predictive performance using prediction error
curves yielded superior performances for the models containing

the prognostic score compared with the models based on FISH
and IGVH status only. PS.8 was highly significant in the
multivariate analysis of previously untreated patients. Despite
the heterogeneous validation group and the time difference in
sampling, the gene expression score could be validated in an
independent patient cohort. PS.8 remained a prognostic marker
in a multivariate analysis, which included the most powerful
prognostic markers in CLL (FISH and IGVH). These data strongly
indicated that PS.8 is a highly significant and valid risk predictor.

Several of the genes contained in PS.8 are likely to have an
important role in the pathogenesis of CLL. For example, low
expression levels of TCF7 (T cell specific, HMG box), a

Figure 2 OS and TTT in subgroups of the validation set. Prediction of OS (a,c,f) and TTT (b,d,e) in the unfavorable prognosis subgroup (unmutated
IGVH genes or 17p13 or 11q23 deletion; a,b), favorable prognosis subgroup (mutated IGVH genes, no 17p13 or 11q23 deletions; c,d), Binet A
patient group (e) and newly diagnosed CLL patients (f) in the validation set. A dichotomizing cutoff corresponding in size to the number of events in
the subgroups was used (a: 32/74, 43.2%; b: 41/51, 80.4%; c: 9/60, 15%; d: 12/42, 28.6%; e: 11/45, 24.4%; f: 7/59, 11.9%); Log-rank test:
(a): P¼0.03; (b): P¼ 0.008; (c): P¼ 0.07; (d–f): Po0.001.
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downstream target of the Wnt signaling pathway, were found in
CLL patients with poor prognosis. Recently, Kienle et al.7 also
reported on the association of reduced TCF7 expression and
poor outcome in CLL. The Wnt signaling pathway is activated in
CLL, and our data strengthen the case for an important role of
Wnt signaling in CLL. Low transcript levels of the phosphodi-
esterase 8A (PDE8A) were associated with poor prognosis in
our CLL patients. A similar association was reported by
Stamatopoulos et al.,8 who showed that PDE8A was part of a
gene signature that distinguishes between ZAP70 positive and
ZAP70 negative CLL samples. PDE8A might be connected to the
NF-kB signaling pathway, which is frequently activated in
lymphoid malignancies. Five genes in the score (MSI2,
PLEKHA1, MGC29506, MGAT4A, SFTPB) have not been
described in the context of CLL before. We show that high
expression levels of MSI2 (musashi homolog 2) in CLL are
associated with poor survival. MSI2 encodes an RNA-binding
translational modulator that was recently shown to be a key
regulator in the Musashi–Numb pathway and identified as a
prognostic marker in chronic myelogenous leukemia.9

MGC29506 (MZB1) is an endoplasmic reticulum-localized
and B cell-specific protein that was very recently shown to be
a key regulator of antibody secretion, integrin activation and
calcium homeostasis.10 It should be noted that genes like MSI2,
MGC29506, MGAT4A and PLEKHA1 were not contained in
older Affymetrix Arrays like the HGU95A chip that were used in
previous studies on differential gene expression in CLL. Of note,
two well-known prognostic gene expression markers in CLL, LPL
and ZAP70, were not included in PS.8. It might be that the
significance of ZAP70 was weakened by the use of unselected PB
mononuclear cells for the microarray data set. The LPL expression
level was a univariate significant parameter in both data sets (data
not shown), but was excluded in subsequent selection steps.

The expression levels of the genes contained in PS.8 most
probably reflect the status of several important cellular path-
ways, for example, the Wnt, NF-kB and Musashi–Numb
signaling pathways. It is likely that PS.8 integrates and
summarizes the activity of these pathways. In this context, it
should be noted that treatment regimens are on the horizons
that include selective pathway inhibitors targeting, for example,
NF-kB or Wnt signaling.

Taken together, we present a powerful prognostic score for OS
in CLL derived from a comprehensive gene expression analysis in a
large cohort of patients. This score can be determined by
measuring the expression levels of eight genes and can be easily
implemented in a routine diagnostic setting. Prospective trials are
now required to assess the relevance of PS.8 in comparison with

the established genetic markers and to evaluate the usefulness of
the score to guide individualized treatment choices.
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A novel ABL1 fusion to the SH2 containing inositol phosphatase-1 (SHIP1) in acute
lymphoblastic leukemia (ALL)

Leukemia (2011) 25, 1645–1649; doi:10.1038/leu.2011.129;
published online 31 May 2011

The BCR/ABL fusion gene is the most common fusion in
leukemia. The BCR/ABL fusion is the hallmark of chronic
myeloid leukemia and is found in about 20% of all B-lineage
acute lymphoblastic leukemias (ALL). The BCR/ABL fusion leads
to the constitutive activation of the ABL1 tyrosine kinase via the
oligomerization of the fusion protein mediated by the coiled-
coiled domain of BCR.1,2

Even though the ABL tyrosine kinase is one of the most
frequently activated kinases in hematological malignancy, other
than BCR,3 only six additional ABL1 fusion partners have been
identified: ETV6,4 RCSD1,5 EML1,6 NUP214,7 ZMIZ18 and
SFPQ.9 Except for NUP214, the other ABL1 fusions are rare. For
RCSD1, EML1, ZMIZ1 and SFPQ, only case reports have been
described.10 Only the NUP214/ABL1 fusion is found recurrently
in approximately 6% of the T-ALL cases.7 Here, we describe the
discovery and characterization of the novel ABL1 fusion to the
SH2-containing inositol phosphatase-1 (SHIP1; INPP5D).

An 18-year-old woman was diagnosed with common ALL.
Standard cytogenetic analysis revealed a normal karyotype of
46,XX. The routine reverse transcription-PCR screening of the
patient’s bone marrow mRNA for the BCR/ABL fusion transcript
resulted in the amplification of a longer-than-expected PCR
product (faint band Figure 1a, lane 3, white arrow). Sequence
analysis of this PCR product revealed an in-frame fusion
between the 50 portion (exon 9) of the SHIP1 gene (INPP5D)
and the 30 portion of ABL1, starting from exon 2 (Figure 1b). The
presence of the SHIP1/ABL1 fusion transcript was confirmed by
reverse transcription-PCR, using a primer pair specific for the
SHIP1/ABL1 fusion (Figure 1c). For a detailed description of

the materials and methods used in this work, please refer to the
Supplementary Material.

Fluorescence in situ hybridization analysis using a commercially
available BCR/ABL dual color dual fusion probe (Vysis/Abbott,
Wiesbaden, Germany) revealed a normal signal pattern on
metaphase chromosomes (data not shown). However, about 50%
of the interphase nuclei showed four ABL1 signals, suggesting an
ABL1 rearrangement (red signals in Figure 1d (I)). A dual color dual
fusion SHIP1/ABL1 fluorescence in situ hybridization probe
(Figure 1d (II)) revealed three fusion signals (yellow), in addition to
a green and an orange signal for the normal SHIP1 and ABL1 alleles,
respectively (Figure 1d (III)). To distinguish whether these fusion
signals were due to the a 50-SHIP1/30-ABL1 or the reciprocal
50-ABL1/30-SHIP1 fusion, single fusion (SF) SHIP1/ABL1 and SF
ABL1/SHIP1 probes were employed. The SF SHIP1/ABL1 and the SF
ABL1/SHIP1 probes indicated that the cells carried two SHIP1/ABL1
fusions (Figure 1d (IV)) and one ABL1/SHIP1 fusion (Figure 1d (V)).

The new fusion partner of ABL1, SHIP1 (INPP5D) encodes a
protein of 1188 amino acids (aa; 145kDa), with an N-terminal SH2
(scr-homology) domain, an inositol phosphatase domain and a
C-terminal proline-rich region (Figure 1e). The SHIP1/ABL1 fusion
protein contains the first 343 aa of SHIP1, including the SH2 domain
and almost the complete ABL1 protein as it is found in other ABL1
fusion proteins (for example, in BCR/ABL1) (Figure 1e).

To determine the frequency of the SHIP1/ABL1 rearrangement
in leukemia, we screened the cDNA of 63 ALL cell lines (36 pre
B-ALL, 8 B-ALL and 19 T-ALL; Supplementary Table 1), using
SHIP1/ABL1 fusion transcript-specific primers. None of the cell
lines was positive. We expanded our search to include a series
of 678 BCR/ABL-negative childhood ALL cases (age 1.4–17.4
years; mainly B-ALL), which had been examined at the
cytogenetics laboratory of the University of Giessen hospital.
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Prognostic Signatures

July 24, 2013

1 Motivation

In the past decade, many microarray-based gene expression signatures for a wide
variety of different diseases have been published. Very often, these signatures
are not very stable, so that an exclusion of a few samples from the data set
can sometimes result in a very different signature. This can be seen in the fact
that many published gene signatures analyzing the same disease hardly overlap.
Frequently, signatures contain so many genes that it is sometimes unfeasible to
adopt them into everyday clinical practice. We propose to include two steps
in the signature buliding process: first, the bootstrapping procedure should be
used in order to stabilize the signature, followed by penalized regression that is
used to shrunk the signature to a smaller size. We will show that these two steps
improve the stability and produce signatures of a size that is suitable for clinical
use. Moreover, our examples show that this prodecure not only improves the
signature’s feasibility, but it also tends to improve its performance.

2 Example data set and prognostic signature

The microarray data set we use in our example was taken from Metzeler et al.
[2008]. It consists of samples from 163 adult patients with cytogenetically nor-
mal AML (CN-AML), measured on Affymetrix HG-U133A and HG-U133B chips
(44754 different probe sets in total). This data set (“training set”) was used
by the authors to infer a probe set signature that predicts a patient’s overall
survival (OS). The authors used the supervised principal components method
(“superpc”) to construct a prognostic score (Bair and Tibshirani [2004], Bair
et al. [2006]):

First, a univariate Cox regression was performed with all 44754 probe sets,
and the probe sets with absolute Cox scores greater than 2.9 were used. This
threshold was calculated with a 10-fold cross-validation procedure. The result
was a list of 86 probe sets (66 genes) which we will call “prognostic signature”.

Next, a principal component analysis was performed with only these 86 probe
sets, and a correlation of each probe set with the first principal component was
used as a weight for the construction of a continuous predictor. Finally, the
predictor was calculated as a linear combination of expression values of the 86
probe sets multiplied with their previously obtained weights. This gives a single
value for each patient, which we call a “risk score”.

The risk score was tested on two independent data sets. The first valida-
tion cohort consisted of 79 CN-AML patients whose pretreatment diagnostic
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evaluation was done at the Laboratory for Leukemia Diagnostics, University
of Munich. The second validation cohort consisted of 64 CN-AML patients
treated in the Cancer and Leukemia Group B (CALGB) 9621 study. In both
cases, the risk score was shown to be significant, both in univariate and mul-
tivariate regression, the latter including already known prognostic factors age,
NPM1 mutation status and FLT3 ITD/wt ratio.

Taking a closer look at this signature, we discovered that some genes oc-
cured more than once in the signature, because they were represented by more
than one probe set. For example, the gene FHL1 is represented in the signature
by five different highly correlated probe sets. If a gene is associated with the
response and there are several probe sets representing it, it is very probable that
more than one of them will end up in the signature. Thus, the relative freqency
of a gene in a signature is somewhat determined by Affymetrix probe set se-
lection. Furthermore, even if the signature finds its way into clinical practice,
it is very improbable it will be measured by microarrays. For these reasons, a
gene signature should always be preferred to a probe set signature: it is easier
to interpret, and it can be measured in more than one way.

The training set and the first validation cohort can be downloaded from
Gene Expression Omnibus (accession number GSE12417).

3 Bootstrapping improves the stability of signa-
tures

It is well known that gene signatures from different studies analyzing the same
disease have little or no overlap, meaning that the signatures are rather unsta-
ble (Ein-Dor et al. [2005]). This is probably due to the fact that many genes
correlate with each other, so one gene can be substituted with another one (or
a group of other genes) without changing the prognostic value of the signature.
Hovewer, we will show that, even though we probably can never expect to build
stable signatures out of individual genes, the stability can still be substantially
improved.

We propose the following procedure: Insted of calculating a signature once
on a complete data set, create n bootstrap samples and calculate a signature for
each one of them with your method of choice (Buchholz et al. [2008]). For each
variable, calculate the frequency with which it appears in these n signatures. Use
the most frequent variables to build your final signature, with ”most frequent“
depending on the signature size you prefer. Here, we use k-means clustering
on the vector of frequencies and define the variables in the cluster of highest
frequencies to be our new signature. Since we will later use Lasso regression to
shrink the signature, we want the signature size to be smaller than the sample
size because Lasso has some drawbacks in the p > n case (Tibshirani [1996]).
On the other hand, we want the bootstrap signature to be as large as possible,
so Lasso can later identify the most important genes. In our case, 3-means
clustering produces the largest signatures that are still smaller than the sample
size, so this is the method we decided to use.

To compare the stability of signatures with and without bootstrapping, we
created 100 data sets by taking out 5% of samples (≡ 8 samples) from the orig-
inal data set. For each of these data sets, we created one prognostic signature

2



with the superpc method (“superpc signature”), and one signature by calculat-
ing a superpc signature for 1000 bootstrap samples and aggregating them as
described above (“bootstrap signatures”). The length of the superpc signatures
varied from 5 to 220 (4 - 161 genes), while the length of bootstrap signatures
ranged from 37 to 111 (27 - 84 genes), showing a much smaller variance. Com-
bined, the 100 superpc signatures contained a total of 270 probe sets (195 genes),
while the bootstrap signatures contained 210 (156). To compare the stability
of signatures, we calculated the frequency of signature members. For example,
the probe set ”201397 at“ from the first bootstrap signature was present in 44
other bootstrap signatures, so its frequency is 45. 29 probe sets (=13.8%) from
the bootstrap signatures were present in all 100 signatures, while only 5 probe
sets from the superpc signatures were present in all of them. The smoothed
distribution of frequencies is shown in figure 1.
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Figure 1: Smoothed frequencies of probe sets in superpc and bootstrap signa-
tures.

To compare the performance of the signatures, we used the first validation
cohort from Metzeler et al. [2008] and performed a univariate and multivariate
Cox regression for each of the 200 scores. The multivariate regression included
the covariables continuous risk score, FLT3 ITD, NPM1 mutation and age. The
data matrix from the second validation cohort could not be used to test these
scores because it was restricted in the number of probesets.

The p-values for the Cox coefficients of the risk scores are shown in figure 2.
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Figure 2: Summary of 100 p-values for superpc, bootstrap and Lasso signatures.
Left: p-values from univariate Cox regression; Right: p-values from multivariate
Cox regression with the risk score, FLT3 ITD, NPM1 and age as covariables.
The dashed line represents the 0.05 significance level.

Univariately, 15 superpc scores were non-significant at the α-level of 0.05,
while all bootstrap scores stayed under the significance level. Overall, bootstrap-
ping improved the p-values in 85 cases. The picture is similar for multivariate
regression, although the p-values are, on the whole, much higher. This is not
surprising, since variables like mutations are mirrored in the gene expression
of individuals. Examining only the association of gene expression with the re-
sponse variable, we will occasionally find a gene that is significant only through
its assiciation with a prognostic mutation. Putting these two variables together
in a regression model, the p-value for the gene will go up compared to uni-
variate regression. If one wants to find only those genes that are uncorrelated
with known prognostic factors, one can include these factors in the signature
modelling from the start.

For 2-, 4-, and 5-means clustering, the distribution of frequencies is similar to
our results for 3-means clustering, with all p-values under the significance level
as well. However, the median p-value increases with the increasing number of
clusters (data not shown). Therefore, we recomend to first choose a signature
size slightly smaller than the sample size and then to shrink it in the next step
with Lasso regression. If, say, one wants a signature of 20 variables, shrinking
a larger bootstrap signature with Lasso regression to the size of 20 produces
much better results than simply taking the 20 most frequent variables from the
pooled list of bootstrap results.
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4 Penalized regression can make signatures shorter
without a substantial loss of information

One problem with a large signature is its limited feasibility. The more genes
we need to measure, the more time-consuming and error-prone the procedure
becomes. Furthermore, a signature containing many genes is very difficult to
interpret, since it is very hard to tell which of the many genes are the most
interesting ones. Mostly, researchers prefer a smaller model that may have a
slightly higher bias, but is easier to conduct and interpret. For this reason,
penalized regression techniques are widely used in microarray analyses where
researchers are dealing with many predictors. One of the most popular is Lasso
regression [Tibshirani, 1996] that uses the L1-norm to shrink some regression
coefficients to zero. We used Lasso to select the most important genes out of
our large-sized bootstrap signatures.

We shrank 100 bootstrap signatures with the function penalized from the
R library penalized. The optimal penalty parameter for each regression was
calculated with leave-one-out cross validation. To prevent Lasso from penalizing
too many variables, we set the maximal penalty parameter to 20. The new
signatures were from 6 to 17 probe sets long, with a median of 10. These
signatures were also tested on the first validation cohort and the p-values were
compared with the p-values of complete bootstrap signatures (figure 2). 85 p-
values improved by penalizing the signatures, while 14 p-values that did not
improve still remained significant. Only one p-value jumped from 0.01 to 0.06
and thus missed the significance level of 0.05.

Finally, to summarize the goodness of different signatures, we calculated
Nagelkerke’s pseudo R2 that reflects the improvement of the full model over the
null model. We chose this particular pseudo R2 because it was easy to compute
from the output of the R function coxph and it is easier to interpret than the
Cox & Snell pseudo R2 given in the R output. The value was calculated for
all 300 prognostic scores, and the summary for the three different methods is
shown in figure 3.

5 A new signature

Using bootstrapping and Lasso regression, we developed a new signature on the
training data set from Metzeler et al. [2008]. Since the bootstrap calculations
are very time consuming, we did them in parallel on 100 nodes using the R

package snow on our computer cluster:

library(snow)

cl <- makeCluster(100, type = ’MPI’)

Like the authors, we used 10-fold cross validation to determine the opti-
mal cutoff coefficient for each bootstrap sample. We implemented the whole
procedure in the R function Boot:

boot.signatures <- clusterCall(cl, Boot, data.matrix, survival.days,

+ survival.exit, 10)

The result is a list of 100 objects for each cluster node, each object being
a list of 10 boostrap signatures. Thus, the object boot.signatures contains

5
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Figure 3: Summary of 100 R2 values for superpc, bootstrap and Lasso signa-
tures.

1000 bootstrap signatures in total. Next, we pooled all the signatures together
to calculate the frequencies for every probe set:

probes <- unlist(boot.signatures)

freq <- table(probes)

Then we did 3-means clustering on the frequency vector and chose the high-
est cluster to be our bootstrap signature:

km <- kmeans(freq, 3)

signature.cluster <- which.max(km$centers)

boot.signature <- names(km$cluster)[which(km$cluster==signature.cluster)]

Finally, we used the package penalized to calculate the optimal penalty pa-
rameter and perform Lasso regression:

library(penalized)

opt.lambda <- optL1(Surv(survival.days, survival.exit),

+ penalized=t(data.matrix[boot.signature, ]),

+ maxlambda1=20)$lambda

pen <- penalized(Surv(survival.days, survival.exit),

+ penalized=t(data.matrix[boot.signature, ]),

+ lambda1=opt.lambda)

Signature <- names(pen@penalized)[which(pen@penalized!=0)]

The result is a prognostic signature that contains only 15 probe sets (15
genes). All the probe sets from this signature are also contained in the 86-probe

6



probeset gene 15-probe set signature 86-probe set signature
203373 at SOCS2 0.118 0.024
204419 x at HBG1/HBG2 -0.109 -0.013
204438 at MRC1 0.067 0.011
208798 x at GOLGA8A 0.063 0.013
209386 at TM4SF1 0.054 0.011
209760 at KIAA0922 -0.020 -0.003
211597 s at HOPX 0.090 0.014
212509 s at MXRA7 0.031 0.005
213428 s at COL6A1 0.029 0.006
218086 at NPDC1 0.059 0.012
218136 s at SLC25A37 -0.062 -0.01
220377 at FAM30A 0.089 0.017
221210 s at NPL -0.051 -0.009
224710 at RAB34 0.066 0.01
241133 at TRBV27 0.092 0.017

Table 1: List of probe sets contained in the 15-probe set signature

set signature. The probe sets and corresponding genes are shown in table 1
along with their weights in both signatures.

The risk score made of this signature was tested on the test and validation
cohort and compared to the published 86-probe set risk score. Since we did not
have the information on the FLT3 ITD/wt ratio for the patients from the test
cohort, we included the variable FLT3 ITD in the multivariate analysis. For the
exact comparison, we recalculated the multivariate analysis for the 86-probe set
score including FLT3 ITD instead of FLT3 ITD/wt ratio. The coefficients and
p-values for both scores and other covariables are shown in table 2 and 3.

15-probe set signature 86-probe set signature
Variable HR (95% CI) P HR (95% CI) P
Age 1.03 (1.00 - 1.06) 0.04 1.03 (1.00 - 1.06) 0.05
NPM1 Mutation 0.72 (0.33 - 1.53) 0.39 0.55 (0.27 - 1.15) 0.11
FLT3ITD 0.89 (0.34 - 2.34) 0.82 1.34 (0.57 - 3.15) 0.50
Risk score 2.27 (1.31 - 3.94) 0.003 1.75 (1.05 - 2.90) 0.03

Table 2: Results of multivariate Cox regression in the test cohort

15-probe set signature 86-probe set signature
Variable HR (95% CI) P HR (95% CI) P
Age 0.98 (0.95 - 1.01) 0.15 0.87 (0.66 - 1.13) 0.3
NPM1 Mutation 0.43 (0.18 - 1) 0.05 0.43 (0.18 - 1.01) 0.052
FLT3ITD 2.29 (0.9 - 5.84) 0.08 1.75 (0.63 - 4.81) 0.28
Risk score 2.89 (1.3 - 6.43) 0.009 3.40 (1.4 - 8.29) 0.007

Table 3: Results of multivariate Cox regression in the validation cohort
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6 Conclusion

We have shown on a real data example that it is possible to shrink a large gene
signature to less than 20 variables without the loss of information. Moreover,
disregarding the less important genes from the signature seems to improve the
specificity of the risk score.
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