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Zusammenfassung

Der Weltraum - unendliche Weiten.
– Star Trek

Seit der Antike betrachten wir den nächtlichen Himmel, fasziniert von den Sternen und der Weite
des Universums. Der starke Einfluss dieser Faszination resultierte z.B. in der Geburt der Science
Fiction. Die vielleicht älteste Geschichte ist der sumerische “Epos des Gilgamesh” 2000 Jahre
vor Christus. Trotz des immensen Fortschritts, Menschen und Technik in das All zu bringen,
sind wir hierbei nach wie vor auf unsere Umgebung im Sonnensystem begrenzt. Unsere Vorstel-
lungskraft erforscht jedoch das ganze Universum mittels echter Wissenschaft und Forschung:
Astronomie und Astrophysik.
Moderne Computer erlauben es uns, unser Verständnis über Prozesse im Universum vo-
ranzutreiben. Rechenkapazitäten sind soweit gestiegen, dass wir endlich in der Lage sind, die
Hypothesen zu testen, die Astrophysiker im Laufe des letzten Jahrhunderts aufgestellt haben.
Wir sind an einem Punkt angelangt, an dem weiterer Fortschritt meist dadurch limitiert ist,
wie gut wir unsere grundlegenden numerischen Beschreibungen verbessern und Software op-
timieren können. Im ersten Teil dieser Dissertation geben wir einen Eindruck darüber, was
bereits dahingehend erreicht wurde, das Universum zu beobachten, zu simulieren und zu ver-
stehen. Wir legen den Fokus auf kosmische Magnetfelder in Galaxien und Galaxienhaufen und
werfen offene Fragen auf. Von Kapitel IV an präsentieren wir den Hauptteil dieser Arbeit, der
sich mit Verbesserungen und Erweiterungen unserer numerischen Werkzeuge, Simulationen von
Galaxien und Galaxienhaufen mit verbesserter numerischer Genauigkeit und neuen Modellen
beschäftigt und betten diesen in den großen Kontext der Arbeit ein.
Nach Naab and Ostriker, 2017 können wir die Aufgabe, astrophysikalische Objekte zu
simulieren, in vier Aspekte aufteilen:

1. Wissen über physikalische Prozesse: Bevor wir etwas simulieren können, müssen wir
wissen, welche physikalischen Prozesse eine Rolle spielen und verstehen, wie diese von-
statten gehen, um sie korrekt modellieren zu können. Das reicht von bekannteren wie
Hydrodynamik und Gravitation bis hin zu hochkomplexen wie Sternentstehung, Küh-
lungsprozesse und der Behandlung von schwarzen Löchern. Wir geben einen knappen
Überblick über die Entstehungsgeschichte des Universums und aktuelle Beobachtungen,
vorwiegend von Galaxien und Galaxienhaufen in Kapitel I. Wir fahren mit Beobach-
tungsmethoden, um kosmische Magnetfelder zu untersuchen, fort und geben eine theo-
retische Beschreibung der Magneto-Hydrodynamik in Kapitel II. Weitere Modellierung
physikalischer Prozesse spielt eine Rolle in der restlichen Dissertation.
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2. Anfangsbedingungen: Wir benötigen eine exakte Beschreibung der Anfangsbedingun-
gen jegliches Systems, welches wir simulieren wollen. Sei es ein/e isolierte Galax-
ie/Galaxienhaufen die wir direkt aufsetzen, oder eine kosmologische Box mittels eines
Dichtefelds, das wir aus Beobachtungen des kosmischen Mikrowellenhintergrunds erlan-
gen. Außerdem müssen wir diese mathematische Beschreibung korrekt in ein Format um-
setzen, welches der Simulationscode verstehen kann. Hohe Qualität ist hier von Nöten,
da jegliche Fehler durch die Simulation propagieren und die Ergebnisse negativ beein-
flussen. Dies ist keine leichte Aufgabe, derer wir uns in Kapitel IV widmen. Dort präsen-
tieren wir einen neuartigen Code, der beliebige Dichtefunktionen für Smoothed Particle
Hydrodyamics (SPH) umsetzen kann, um u.a. Code Tests generieren zu können.

3. Rechenwerkzeuge: Von einer numerisch stabilen Diskretisierung, über die Validierung
von Testergebnissen bis zu Parallelisierung und Optimierung eines Codes, sodass er
riesige Aufgaben mit guter Auflösung bewältigen kann - all das gehört zu dieser Kate-
gorie. Sowohl durch verbesserte Werkzeuge als auch steigende Anforderungen wird dies
immer wichtiger und zeitaufwändiger. In Kapitel III fassen wir übliche Techniken zusam-
men, die in astrophysikalischen Codes verwendet werden. In Kapitel V präsentieren wir
neueste Verbesserungen des GADGET Codes und werten ausführliche Tests seiner nu-
merischen Eigenschaften aus. Da Rechenkapazität exponentiell wächst, werden immer
mehr Daten generiert und die Nachbearbeitung kann zu einer extrem schwierigen Aufgabe
werden. In Kapitel VII beschreiben wir deshalb eine neuartige Computerbibliothek, die
es ermöglicht, riesige Datenmengen mit C++ Code automatisch zu verwalten. In Kapitel
VI behandeln wir die Interpretation von SPH Daten, indem wir eine verbesserte Trans-
formationsmethode auf ein reguläres Gitter mit ausgezeichneten Erhaltungseigenschaften
aufzeigen. Außerdem präsentieren wir zwei neuartige Codes, die diese Methode mit aus-
führlichen Nachbearbeitungsroutinen implementieren die wir durchwegs verwenden.

4. Vergleiche mit Beobachtungen: Nach dem Simulieren müssen die Ergebnisse analysiert
und mit unserer besten Informationsquelle, den Beobachtungen, verglichen werden. In
Kapitel VIII präsentieren wir eine neuartige SPH Implementierung und den deutlichen
Einfluss von anisotroper Wärmeleitung in Galaxienhaufen bezüglich deren Entstehung,
mit sowohl kalten Zentren, als auch solchen mit etwa konstanter Temperatur. Wir geben
einen Eindruck eines kürzlich gestarteten Galaxienhaufen Code-Vergleichsprojektes in
Kapitel IX. Dessen Grundlage sind neue Simulationen von über dreihundert Galax-
iehaufen mit verschiedensten numerischen Codes. Weiterhin untersuchen wir in Kapitel
X, in wie weit Magnetfelder Ausflüsse von Scheibengalaxien verursachen können, indem
sie senkrecht zur Scheibenebene aufbrechen und zeigen außerdem den Einfluss auf unter
anderem die Sternentstehungsrate. Dazu simulieren wir mehrere isolierte Galaxien in
einem vergleichsweise heißen Gashalo. Im Anschluss vergleichen wir in Kapitel XI kür-
zlich veröffentliche Beobachtungen bezüglich abfallender galaktischer Rotationskurven
bei Rotverschiebung z ∼ 2 mit Galaxien aus den MAGNETICUM Simulationen. Daraus
resultiert, dass die Beobachtungen mit dem üblichen ΛCDM Modell reproduziert werden
können und diesem nicht widersprechen. Wir schließen in Kapitel XII mit generellen
Schlussbemerkungen sowie Ideen, was als nächstes folgen könnte.



Abstract

Space - the final frontier.
– Star Trek

Since ancient times people gaze into the night’s sky, fascinated by the stars and the vastness of
the universe. This fascination has expressed a great influence onto not only our modern culture.
It has given rise to science fiction in various forms. Maybe the oldest tale is the Sumerian “Epic
of Gilgamesh” which dates back to 2000 BC. Although great progress has been made in terms
of actually bringing humans into space we are still limited to our nearest proximity in our solar
system. That which lets the mind explore the universe is not only science fiction but also actual
science and research, Astronomy and Astrophysics.
Modern computers allow us to further our understanding of processes in the universe. Comput-
ing power has grown so much in an accelerated fashion, that we are finally able to actually test
the hypotheses made by astrophysicists over the last century. We have come to a point where
further progress is actually mostly limited by our capacity of improving the fundamental nu-
merical prescriptions and optimising our software. In the first part of this thesis we aspire to
give a glance on what modern Astrophysics has achieved so far, in observing, simulating and
understanding the universe with more detailed focus onto cosmic magnetic fields in galaxies and
galaxy clusters and pose some open questions. From chapter IV on, we present the main fruits
of this PhD project, improving and extending our numerical tool kit and simulating galaxies
and galaxy clusters with increased numerical accuracy and modelling, and embed them into the
bigger context of this work.
Following Naab and Ostriker, 2017 we can break down the task of simulating astrophysical
objects into four required aspects:

1. Knowledge of physical processes: Before we can simulate the evolution of anything we
need to know which physical processes actually play a role and understand their workings
in order to model them properly. This goes from the basic ones like hydrodynamics and
gravity to more complex ones like star formation, radiative cooling and the treatment of
black holes. We give a brief overview over the universe’s formation history and present
observations of mainly galaxies and galaxy clusters in chapter I. We continue with obser-
vational methods to investigate cosmic magnetic fields and assess the required theoretical
description of magneto-hydrodynamics in chapter II. Further modelling of physical pro-
cesses plays a role throughout the whole thesis.

2. Initial conditions: We need to know an exact description of initial conditions for the
system we want to simulate, be it an isolated galaxy or galaxy cluster which we directly
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set up or a cosmological box using a density seed field provided by observations of the
Cosmic Microwave Background. Additionally, we need to properly translate this mathe-
matical description into a format which the simulation code can understand. High quality
is very important here, since any error will propagate through the simulation and can
flaw the whole result. This is not an easy task that we tackle in chapter IV. We describe
a novel code to set up arbitrary density models for Smoothed Particle Hydrodynamics
(SPH) which turned out to be required especially to be able to properly generate tests for
our actual simulation code.

3. Computional tools: From a numerically stable discretisation of the physical models over
proper validation of the results in test problems to parallelisation and optimisation of the
code so that it can actually handle huge problems with good resolution, all this belongs
in the category of computational tools. As we improve our tools and demands alike this
becomes an increasingly important and especially time consuming topic. In chapter III we
review common techniques used in astrophysical codes. In chapter V we present recent
state of the art improvements of the GADGET code and carry out extensive tests of it’s
numerical properties. As computing power grows exponentially, more data are generated
and post processing can become a really difficult task. In chapter VII we describe a novel
library to automatically handle the management of huge amounts of data in any C++
code in order to approach this issue. In chapter VI we handle the interpretation of SPH
data by proposing an improved transformation method onto a regular grid with excellent
conservation properties. Additionally, we present two novel codes employing this method
amongst extensive post processing toolkits which we used everywhere throughout this
work.

4. Test against observations: Finally, after actually carrying out simulations, they can be
analysed and tested against our best source of knowledge: observational data. In chapter
VIII we present a novel SPH implementation and the significant impact of anisotropic
thermal conduction in galaxy clusters regarding the formation of both cool-core and non-
cool-core clusters. We give some insight into a recently started galaxy cluster code com-
parison project in chapter IX whose backbone is the re-simulation of over three hundred
galaxy cluster regions with different numerical codes. Furthermore, we investigate how
magnetic fields can drive outflows from disk galaxies in chapter X by breaking up per-
pendicular to the disk plane and show how this affects e.g. the star formation rate in the
galaxy using state of the art simulations of isolated disk galaxies sitting in a hot gas halo.
Afterwards, we compare some recent observations of declining galactic rotation curves at
redshift z ∼ 2 to galaxies produced in the MAGNETICUM simulations in chapter XI. We
conclude that the observations can be well reproduced with a standard ΛCDM cosmology
and do not contradict it. Finally, we give some general conclusion remarks and outlook
ideas how to proceed from this point on in chapter XII.
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Chapter I

Superlatives in the universe: Galaxies
and Galaxy Clusters

By three methods we may lean wisdom: First by reflection, which is noblest; Second
by imitation, which is easiest; and third by experience, which is bitterest.

– Confucius

Astronomy is one of the oldest yet one of the most modern sciences. It dates back to the an-
cient high cultures of Babylon, Egypt, China and the Maya and Inka thousands of years BC
being utilised for navigation, time measurements, the introduction of a calendar and religious
purposes.1 The beginning of modern astronomy can be set at around 1500 AD with exceptional
scientists like Copernicus, Brahe, Kepler, Galilei and slightly later Newton. The progress has
always been limited by our ability to observe the sky and to develop methods to understand the
taken data. A big leap has been made with Fraunhofer and Herschel in the 1800s. The second
half of the 19th century can be set as the birth of astrophysics as spectral analyses and photom-
etry became common methods. From that on the field has split up multiple times into different
sub parts as we know them now, from planetary and stellar physics to cosmology. In this chapter
we aim to give a brief overview over the evolution of the universe as far as we understand it and
introduce the relevant basics for this work.

I-1 Cosmological evolution of the universe: The ΛCDM model

To formulate a cosmological model to describe the evolution of the universe we need two impor-
tant ingredients. First, the cosmological principle which occurs first qualitatively in Newton’s
PhilosophiæNaturalis Principia Mathematica (Newton, 1687):

At each epoch, the universe presents the same aspect from every point, except for
local irregularities.

In strict terms it means that at each time t the universe is homogeneous and isotropic on large
scales. Second, we need Weyls postulate (Weyl, 1926):

1For further details see e.g. Herrmann, Bukor, and Bukor, 1973.

1



2 CHAPTER I. SUPERLATIVES IN THE UNIVERSE

The particles of the substratum lie in space-time on a congruence of time-like
geodesics diverging from a point in the finite or infinite past.

Galaxies move like fundamental particles in a fluid on unique geodesics with a unique velocity
of the order of the speed of light c. Locally movement deviates from this geodesic motion
randomly with a comparatively very small velocity. To analyse a universe which obeys these
two use the Friedmann-Lemaître-Robertson-Walker (FLRW) metric.2 A metric gives a way to
measure distance, for example in flat space and Cartesian coordinates

ds2 = gijdx
idxj = dx2 + dy2 + dz2. (I-1)

the metric tensor gij = δij is the unity matrix. For the FLRW metric in a four dimensional
space-time we have

ds2 = c2dt2 − a(t)2K2

(
dx2

1− kx2
+ x2dΩ2

)
(I-2)

with the sign of the curvature k = ±1; 0, x = r/K, r the distance of the comoving observer, K
the radius of curvature (absolute value), a(t) the scale factor of the universe at time t and

dΩ2 = dΘ2 + sin2 ΘdΦ2. (I-3)

This metric only covers large scales. Everything happening on “small” scales in this context lies
beyond. This includes all identifiable objects, even galaxy clusters.
The main equation we get from general relativity is the Einstein equation which, including a
cosmological constant Λ, is given by:

Gαβ = 8πGTαβ + Λgαβ (I-4)

with the Einstein tensorGαβ which depends only on the metric tensor, the energy-impulse tensor
Tαβ , the gravitational constant G, the metric tensor gαβ . Using the FLRW metric and a general
fluid energy-impulse tensor we obtain the Friedmann equations which describe the evolution of
the universe

ȧ2

a2
+
K

a2
=

8πG

3
ρ+

Λ

3
(I-5)

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
(I-6)

with the density ρ and the pressure p containing contributions form baryonic and dark matter
and radiation. As we mention dark matter and a cosmological constant it is important to note
that throughout this thesis we assume the commonly most accepted and simplest cosmological
model compatible with observational data called ΛCDM where CDM stands for “cold dark mat-
ter”. The cosmological constant is usually identified with the presence of dark energy required
in the energy budget for an accelerated expansion. Dark matter poses a possibility to explain

2We do not consider alternative models for gravity in this work and limit ourselves to the successful theory of
Einstein’s general relativity.
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for example observed rotation curves from disk galaxies which behave as if more mass was
present in the outskirts than is visible, ergo a dark matter halo. A similar observation can be
made with galaxy clusters. The idea for dark matter has first come up about 85 years ago with
Oort, 1932; Zwicky, 1933. Galactic rotation curves will become important later this thesis in
chapter XI where we follow up with simulation results consistent with ΛCDM onto state of the
art observations of galaxies, finding declining rotation curves and low dark matter fractions at
redshift z ∼ 2. Since the exact composition and origin of neither dark matter nor dark energy
is known several candidates and ideas have been discusses over the last decades and alterna-
tive approaches to circumvent them have come up. An example being “Modified Newtonian
Dynamics” (MOND) which, however, also brings it’s own problems and lacking explanations
along. For a discussion see e.g. Bertone and Hooper, 2016. Also so called warm or even hot
dark matter has been discussed. This relates to a certain degree of interaction, dark matter parti-
cles may experience besides the obvious gravitational one. Hot dark matter on it’s own has been
already ruled out by simulations (White, Frenk, and Davis, 1983) and by observations of the
cosmic microwave background (CMB) of the COBE satellite (Wright et al., 1992), but weakly
interacting warm dark matter or mixtures of hot and cold dark matter are still an open possibility
(see e.g. Lopez-Honorez et al., 2017, for a recent review paper on the topic). We will not go into
further details about these and commit ourselves fully to the ΛCDM model.
As we have four main contributors to the total energy budget of the universe, (non-) baryonic
matter, radiation and dark energy, it is a straight forward hypothesis that each of them might
have had varying significance during the evolution of the cosmos so far. Following Fließbach,
2006 we rewrite equation I-5 to

ȧ2 − Kr

a2
− Km

a
− 1

3
ΛR2 = −K (I-7)

by splitting up the density part into a matter and radiation contribution and rewriting them to

Kr =
8πG

3c2
ρra

4 = const (I-8)

Km =
8πG

3c2
ρma

3 = const. (I-9)

The different scalings with scalefactor a come from the pressure term which is added onto the
density when calculating the conservation ˙ρr/m = 0. The pressure is equal to zero for dust
only and proportional to the density for radiation. Next we assume that the total curvature of
the universe is negligibly small (we will back this up by observations shortly), meaning K = 0.
Analysing each term’s different proportionality to a in equation I-7, we see directly that we can
differentiate three different eras in time where this term dominates the other two:

ȧ2 ∼


Kr/a

2 for 0 < t < t1

Km/a for t1 < t < t2

Λa2/3 for t2 < t

(I-10)

In figure I.1 we illustrate the different scalings and the rough crossover times. According to
this model we are presently in the last of the three eras dominated by the cosmological constant



4 CHAPTER I. SUPERLATIVES IN THE UNIVERSE

Figure I.1: Energy density evolution over time split up into the three different contributions:
mass, radiation and dark energy (cosmological constant). Coloured are the three different eras
of domination, one per component. c©Pearson Education.

leading to an accelerated expansion. The current composition of energy densities is showcased
in figure I.2 with data taken from the latest Planck satellite paper (Planck, 2016b). The energy
density in radiation is so small, that it is not even visible in this diagram (Ωr ∼ 10−5) and we
additionally split up matter into baryonic (Ωb) and dark matter (Ωdm). These are defined as the
ratio of the respective energy density with respect to the critical density of the universe

Ω =
ρ

ρc
=
ρ · 8πG

3H2
(I-11)

which is the density for the universe to be completely flat which we see to be given by these
observational data to a very good degree. H is the Hubble function given by

H =
ȧ

a
. (I-12)
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Ωb
2.23%

Ωdm

28.66%

ΩΛ

69.11%

Figure I.2: Current energy budget of the universe. Values taken from Planck, 2016b.

Figure I.3: Left: CMB temperature deviations from the mean temperature over the full sky
observed by the Planck satellite. Taken from Planck, 2016a. Right: TT-mode of the CMB
spectrum (temperature angular power spectrum) also measured with the Planck. Taken from
Planck, 2016b.
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It’s value at present time is typically called the Hubble constant H0 = 67.74 ± 0.46 according
to Planck, 2016b.
The Planck satellite has been launched in 2009 with it’s main task being to give more accurate
measurements of cosmological parameters over the course of over four years mission time. For
a Planck mission overview see Planck, 2016a. In Planck, 2016b the latest measurements in con-
junction with other methods can be found. With this task it follows predecessors like COBE or
WMAP. The increased resolution in comparison to these is really noteworthy and is reflected
for example in it’s all sky measurements of the CMB as shown in figure I.3. Observing the cos-
mic microwave background corrected for all the foreground sources properly is an extraordinary
achievement since it allows us to look as far back into the history of the universe as possible
directly with radiation dating back to when the universe was about only 3.8 · 105years old and
matter decoupled from radiation. Before this so called era of recombination the universe was
small enough for the densities being so large that everything was optically thick. Matter was hot
enough to exist only in a Plasma state and Photons would be absorbed, re-emitted and scattered
with such large cross sections that they could never reach an observer. After reaching a certain
size everything cooled down enough to actually form neutral atoms and let photons decouple
and travel rather freely. These photons are what we observe today as the CMB as they have been
redshifted quite drastically from the optical/infrared to the microwave spectrum. The different
peaks of the CMB temperature spectrum (right panel of figure I.3) are related for example to the
curvature of the universe as well as the mean density and the density perturbations at the time of
photon decoupling. A sketch of the universe’s evolution is shown in figure I.4.

Figure I.4: Different stages of the universe’s evolution emphasizing especially the very early
times following the Big Bang model. Taken from https://www.nasa.gov/mission_
pages/planck/multimedia/pia16876b.html.

https://www.nasa.gov/mission_pages/planck/multimedia/pia16876b.html
https://www.nasa.gov/mission_pages/planck/multimedia/pia16876b.html
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I-2 Zooming out: Observing the small and the big

Leaving the early universe behind us, the term “structure formation” covers most of what hap-
pens during 99% of the universe’s lifetime. In a world with uniform density, as we have assumed
it last section, no structures would form since the gravitational forces completely balance each
other. Luckily for us there have been small perturbations in the density field which acted as
seeds for clumping of matter. The imprint of these perturbations is visible in the CMB.

Figure I.5: Bottom-up evolution resulting in an elliptical galaxy. Starting with clumping of
material to form star clusters, a first galaxy, an active galactic nucleus and then merging with
possible multiple other galaxies to form the resulting elliptical. Taken from https://www.
nasa.gov/jpl/spitzer/galaxies-20140129.

There are two possible extreme scenarios how the structures we observe could have formed: ei-
ther “bottom-up” starting with small objects which merge together to bigger ones or “top-down”
where the biggest structures formed first and then small ones inside later. Today we favour
the former one as depicted exemplary on the basis of an elliptical galaxy in figure I.5. Matter
starts clumping and cools. As soon as the gravitational forces overcome the internal pressure a
first star is born. Due to the nature of the density perturbations multiple stars are formed in a
close proximity to each other and form star clusters and then the first galaxy. Due to the large
amount of gas present a lot of huge stars are formed and rather quickly die out, enriching the
surrounding medium with higher order elements. Everything beyond Helium is typically called
a metal in astrophysical jargon. These first stars are still a big mystery to us, because we lack
any direct observation so far. When these stars explode in supernovae neutron stars and stellar

https://www.nasa.gov/jpl/spitzer/galaxies-20140129
https://www.nasa.gov/jpl/spitzer/galaxies-20140129
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black holes are the typical results. Additionally, due to high concentration of matter close to the
centre even a galactic black hole might form. Similar to stars forming close to each other also
galaxies typically form in a close proximity forming a galaxy group or cluster. In these regions it
is highly probable that galaxies experience many close encounters with other galaxies and merge
together. We distinguish between minor and major mergers according to the mass proportion of
both partners. Typically a galaxy can experience tens and hundreds of minor merges or a few
major ones until the resulting object becomes an elliptical galaxy. For an extensive discussion
of the details of structure formation we refer to textbooks like Mo, Van den Bosch, and White,
2010.

Figure I.6: Some of the recent observatories tied to the wavelength regime they ob-
serve in. Taken from https://imagine.gsfc.nasa.gov/science/toolbox/
emspectrum_observatories1.html.

We have learned so much about how structures in the universe evolved by the combination of
theoretical models, simulations and observations to (de-) confirm them. In figure I.6 we show
some of the recent telescopes both earth-bound and spaceborne which are used to observe the
sky over a huge portion of the electromagnetic spectrum from radio frequencies over visible light
to high energy X-ray and γ-ray radiation. All of them are equipped with different instruments
which are sensitive to different waveband channels and serve various purposes. Some directly
take pictures of a portion of the sky while others rely on interferometry to increase their resolu-
tion manifold. Some of the telescopes do not operate from earth’s surface but from a satellite in
an orbit around earth. Although much more complicated and especially costly to design, con-
struction and maintenance it is helpful decreasing sources of error in most waveband and crucial
in the high energy ones due to earth’s atmosphere which does a great job absorbing radiation

https://imagine.gsfc.nasa.gov/science/toolbox/emspectrum_observatories1.html
https://imagine.gsfc.nasa.gov/science/toolbox/emspectrum_observatories1.html
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especially efficient from UV up to higher energies.
With help of figure I.7 we take a quick journey through the universe from small to large objects
beyond our solar system starting top left with Eta Carinae (1,2) which is one of the most lu-
minous systems in our galaxy, the Milky Way. Most of these images are observed in different
wavebands and composed together in different colours. We see a rapidly expanding cloud of
dust which absorbs light from a central and very massive binary star system and re-emits it in
the optical and infrared.3 Next is M16 (3), the Eagle nebula with the so called pillars of creation.
The name originates form the impressive gas and dust columns visible in the optical spectrum
which are the birthplace of many stars. Although star formation seems to decline already, indi-
cated by most stars sitting outside of the pillars, we can observe many young stars in the X-ray
which allows us to look behind gas and dust effectively. The point sources in this image are
coloured from red over green to blue to indicate the energy band in the X-ray spectrum from low
to high.4 Sticking to the proximity of individual stars we have next IC443 called the Jellyfish
Nebula (4). It is a remnant of a supernova type II about 5000ly away from earth. A supernova
type II is created when a massive star runs out of fuel and starts collapsing. The centre forms
a dense core, typically a neutron star and the outer layers collapse onto it, giving it the name
core-collapse supernova. Due to the immense compression further fusion processes ignite and
the system explodes, carrying the outer shells with it in the explosion which then form such a
remnant. The zoom region in the top right features a rotating neutron star, a pulsar, called J0617.
We see typical X-ray winds emitted from the pulsar in blue overlayed on top of the optical data.5

Skipping star clusters, both open and globular clusters, we go directly to what we talked about
already: a spiral galaxy. M51 (5) or also called the Whirlpool galaxy is a disk galaxy about
7.1Mpc away which stands almost perfectly face on towards earth allowing us to thoroughly
observe it. Therefore, it is probably one of the best observed galaxies ever. The name whirlpool
originates from the nicely visible spiral arms and hundreds of point like X-ray sources in them.
The latter are mostly binary systems of compact stars and a black hole. Material from the com-
pact companion is accelerated towards the black hole and thereby heated up which leads to the
observed X-ray emission. The diffuse X-ray emission visible in purple on top of the optical
image is probably emitted from gas heated by supernovae. Additionally, this system allows us
to gain insight about galactic mergers as M51 and a small companion encounter each other in
the top left of the image, triggering waves of star formation in the process.6 Sticking to galaxies
next up we have Stephan’s Quintet (6) which is a compact group of five interacting galaxies.
The image consists of four bands of optical data showing the galaxies themselves and a curved
light blue region in the centre of X-ray emission probably due to shock heating because of the
pass through of NGC7318b through the group’s centre. This is a beautiful case for studying the
complex interaction of several galaxies and showcases their evolution from X-ray faint spirals

3Credits: Wide Field Credits: Optical: DSS, Infrared: NASA/JPL-Caltech http://chandra.harvard.
edu/photo/2014/etacar/more.html

4Credits X-ray: NASA/CXC/U.Colorado/Linsky et al.; Optical: NASA/ESA/STScI/ASU/J.Hester & P.Scowen.
http://chandra.harvard.edu/photo/2007/m16/

5Credits Wide Field Optical: Focal Pointe Observatory/B.Franke, Inset: X-ray: NASA/CXC/MSFC/D.Swartz et
al, Inset: Optical: DSS, SARA http://chandra.harvard.edu/photo/2015/ic443/

6Credits: X-ray: NASA/CXC/Wesleyan Univ./R.Kilgard, et al; Optical: NASA/STScI http://chandra.
harvard.edu/photo/2014/m51/

http://chandra.harvard.edu/photo/2014/etacar/more.html
http://chandra.harvard.edu/photo/2014/etacar/more.html
http://chandra.harvard.edu/photo/2007/m16/
http://chandra.harvard.edu/photo/2015/ic443/
http://chandra.harvard.edu/photo/2014/m51/
http://chandra.harvard.edu/photo/2014/m51/
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Figure I.7: Collage of different observations ranging from star forming regions to galaxy clus-
ters. Starting top left following the green spiral these are Eta Carinae first in the infrared then in
the optical band, M 16, IC 443, M 51, Stephans quintet, Arp 148, Centre of the Perseus cluster,
Hydra A, Abell 1689, El Gordo cluster. Taken from http://chandra.harvard.edu and
http://hubblesite.org, individual credits in text.

http://chandra.harvard.edu
http://hubblesite.org
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to bright ellipticals.7 Another interesting interaction of two galaxies is Arp148 (7), also called
Mayall’s object. It is the result of a previous encounter of two galaxies which resulted in a ring
shaped main galaxy and a long tailed companion.8

Next we go to a bigger class of objects and present the central region of the Perseus galaxy
cluster (8) in three different wavebands: X-ray in blue, optical in pink and radio in red. The
size of this image is about 2.8 · 105ly per side while the visible part of such a cluster in total
is typically a few Mpc in diameter9 and contains about 1015M� in mass. Galaxy clusters are
among the most interesting objects to study in the whole universe as they connect the physics
of very small scales, like the studies of nuclei and plasmas, to those of the largest scales in the
universe by being excellent probes for cosmology. This makes them a perfect class of objects
to probe our understanding of nature. Perseus is a very well studied galaxy cluster because we
nicely see the hot intra cluster medium (ICM) in the X-ray component, as it is extremely hot
plasma (T ∼ 108K) and cools constantly. It is a very prominent example for cooling flows, hot
gas which cools and thereby falls towards the centre of the cluster. It has been a long-standing
problem, because that we can still observe the gas cool means that it is still hot although it calcu-
lating cooling rates suggest that it should have cooled done quite significantly already. Typical
cooling times are computed to be even less than 1Gyr. Several different approaches to solve
this issue have been proposed, typically on the basis of a heating mechanism which offsets the
cooling. Heating from a central AGN is a favoured process. For a nice review we refer to Bor-
gani and Kravtsov, 2009. Also the significance of thermal conduction as a transport process
is heavily discussed. Over the decades of studies the paradigm has changed and nowadays we
rather classify clusters as (non-) cool core, depending on their central temperature profile, metal
distribution and surface brightness (see e.g. Tornatore et al., 2007). From a simulation point of
view the bimodality of (non-) cool core clusters is very interesting because different numerical
approaches until just recently had a lot of difficulties to reproduce it properly and actually agree
with each other (see e.g. Power, Read, and Hobbs, 2014). The treatment of AGN feedback also
plays a crucial role in this discussion (Rasia et al., 2015; Barai et al., 2016). We further investi-
gate the topic of thermal conduction and cool core clusters explicitly in chapter VIII where we
present an implementation of conduction in the presence of magnetic fields and it’s impact onto
galaxy cluster simulations.
Another interesting feature which has been found in Perseus is related to excess emission of
E = hν ∼ 3.5keV X-ray photons observed by XMM-Newton and Chandra. It seems to be un-
clear where these really originate from and recent papers even suggest models of “luminous dark
matter” particles being responsible for these observations. It may also result from the instrument
itself, because although XMM-Netwon and Chandra both see this excess emission, the third tele-
scope Hitomi does not (Conlon et al., 2017).10 We follow up with the Hydra A cluster (9) with a

7Credits: X-ray (NASA/CXC/CfA/E.O’Sullivan); Optical (Canada-France-Hawaii-Telescope/Coelum) http:
//chandra.harvard.edu/photo/2009/stephq/

8Credits: NASA, ESA, the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration, and A. Evans (Univer-
sity of Virginia, Charlottesville/NRAO/Stony Brook University); http://hubblesite.org/image/2309/
news_release/2008-16

91Mpc ≈ 3.3 · 106ly.
10Credits: X-ray: NASA/CXO/Oxford University/J. Conlon et al. Radio: NRAO/AUI/NSF/Univ. of

Montreal/Gendron-Marsolais et al. Optical: NASA/ESA/IoA/A. Fabian et al.; DSS http://chandra.

http://chandra.harvard.edu/photo/2009/stephq/
http://chandra.harvard.edu/photo/2009/stephq/
http://hubblesite.org/image/2309/news_release/2008-16
http://hubblesite.org/image/2309/news_release/2008-16
http://chandra.harvard.edu/photo/2017/dark/
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bright X-ray component in blue, radio jets emitted from a central AGN in pink and optical data
to see stars in yellow. It is a very nice example to study the behaviour of active galactic nuclei.
The outbursts apparently create cavities in the hot gas indicated by radio emission being strong
in holes of the diffuse X-ray emission.11 Next comes the 2.3 · 109ly away Abell1689 cluster
(10) which shows a high merging activity of it’s galaxies. Despite that it’s appearance is quite
smooth in the X-ray (purple coloured). It shows arcs and distortions of galaxies from gravita-
tional lensing effects and is a very fitting object to study mass discrepancies between derivations
using the X-ray emissions and lensing. Estimating masses of galaxy clusters is an important
task on the way to learn more about them but unfortunately it is not very easy. Typically one
even needs to assume the cluster to be in hydrostatic equilibrium which is, however, not always
a good approximation. For a recent discussion we refer to Biffi et al., 2016.12 Last, we have El
Gordo (11) which is a collision between two galaxy clusters. It is the most massive, hottest and
X-ray brightest system measured at it’s distance of ≈ 7 · 109ly and beyond. Blue coloured is the
X-ray emission, stars are shown in the optical mostly infrared due to the cosmological redshift.
It’s unusually bright and blue central galaxy is probably the result of a merger of both original
BCGs (brightest cluster galaxies). Mass measurements are in line with other galaxy clusters and
reveal that only a few percent of the mass lies in stars while the hot ICM is the main contributor
to the visible matter in such a cluster (typically about 15% of the total mass).13

Even beyond galaxy cluster merges in terms of energy come so called γ-ray bursts, which are
the most high energetic radiation events observable in the universe and originate possibly from
extremely high mass stars exploding in a hypernova. In terms of size beyond galaxy clusters
come so called super clusters. Regions in space where we can identify groups of galaxy clusters
closely together. Zooming even further out we reach a view of the cosmic web, along whose
threads all these structures sit with huge void regions in between.
It becomes clear that we can dissect any of these objects into their different components by
looking at it in different wavebands. A more detailed example is given in figure I.8 for M51, our
closest neighbouring galaxy Andromeda. In radio emissions we see gas in the outskirts of the
galaxy. Infrared highlights the dust between spiral arms. The visible regime is the one we are
most suited to. It shows all the stars in the galaxy, from young and blue ones in the spiral arms to
old and red ones in the central galactic bulge. Hot stars are emphasized in the ultraviolet bands
and sit typically along the edges of spiral arms. Finally in the X-ray we see the most energetic
regions near the centre, typically connected to a central black hole. In Andromeda’s centre we
also see a huge number of old stars and with them come supernovea and possible many stellar
black holes which can cause X-ray radiation as mentioned earlier.
Investigating the radio observations closer, especially studying polarisation reveals galactic mag-
netic fields which are aligned pretty well with the spiral arms of the galaxy as shown in figure

harvard.edu/photo/2017/dark/
11Credits: X-ray: NASA/CXC/U.Waterloo/C.Kirkpatrick et al.; Radio: NSF/NRAO/VLA; Optical: Canada-

France-Hawaii-Telescope/DSS http://chandra.harvard.edu/photo/2009/hydra/
12Credits: X-ray: NASA/CXC/MIT/E.-H Peng et al; Optical: NASA/STScI; http://chandra.harvard.

edu/photo/2008/a1689/
13Credits: X-ray: NASA/CXC/Rutgers/J.Hughes et al, Optical: ESO/VLT/Pontificia Universidad. Catolica

de Chile/L.Infante & SOAR (MSU/NOAO/UNC/CNPq-Brazil)/Rutgers/F.Menanteau, IR: NASA/JPL/Rutger-
s/F.Menanteau http://chandra.harvard.edu/photo/2012/elgordo/
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Figure I.8: M51 (Andromeda galaxy) observed in multiple wavelengths from radio to X-ray.
Image credits: Radio:WSRT/R. Braun; Infrared:NASA/Spitzer/K. Gordon; Visible: Robert
Gendler; Ultraviolet: NASA/GALEX; X-ray: ESA/XMM/W. Pietsch. Taken from http:
//planck.cf.ac.uk/science/mm-wave-astronomy.

I.9. Cosmic magnetic fields are actually pretty common. The first detections have been made
when Galilei and fellow scientists in the early 1600s studied dark spots at the surface of our sun.
Stellar magnetic fields are strongly tied to the movement of plasma at the surface of the sun and
influence heat transfer, leading to these colder dark spots.
Then there are galactic magnetic fields of the order of several µG as in M51 (Beck, 2016) and
of course also in our Milky Way as just recently again shown by Planck (see figure I.10). A
exciting topic to study is the evolution of galactic magnetic fields and how they contribute to the
overall dynamics of such a galaxy. For example outflows from galaxies have recently been in
the focus of the galactic simulation community because of their relation towards suppression of
the overall star formation rate which has been typically way to high in simulations. Outflows
then again can be related to magnetic fields breaking up and forming channels for movement
perpendicularly to the plane of a disk galaxy, as we investigate later in chapter X.
Magnetic fields are also especially interesting to study in galaxy clusters. We have already seen
two types of radio emission: the radio halo around the centre of the Perseus cluster and the AGN
jets emitted in Hydra A. The former is one of three types of diffuse radio emission observed
at 1.4GHz related to the ICM which are in the focus of research over the last decades: Radio
haloes, mini haloes and relics. Following e.g. the review of Feretti et al., 2012 and looking at fig-
ure I.11 we can give some basic insight into these object classes. In this image we see the Coma
galaxy cluster which contains both a radio halo and a relic which are additionally even connected
by a bridge of low brightness radio emission because their origin might be actually related. A
previous merging event which have rise to the radio halo might have been also the source of the
shock fronts responsible for the relic. Radio haloes are typically centred in a cluster and spher-
ical while relics are far more outside and often appear in pairs on opposite sites of the cluster
due to their believed origin related to shock fronts giving them a curved structure. Furthermore,

http://planck.cf.ac.uk/science/mm-wave-astronomy
http://planck.cf.ac.uk/science/mm-wave-astronomy
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Figure I.9: Polarized radio emission (contours) and B-vectors of M 51, combined from observa-
tions at 6 cm wavelength with the VLA and Effelsberg telescopes at 8 resolution (from Fletcher
et al. 2011). The background colour image shows the CO line emission from molecular gas
(from Helfer et al. 2003). Taken from Beck, 2016.

Figure I.10: Left: 30GHz synchrotron emission observed by Planck. Right: 353GHz dust
emission observation by Planck. Both rotated by 90

◦
to indicate magnetic field structures in the

sky. See later sections II-1.1 and II-1.3. Both taken from Planck, 2016a.
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Figure I.11: Polarized radio emission in the Coma galaxy cluster after subtracting the bright
background source Coma A. Left is the radio halo Coma C around the centre of the cluster,
right is the relic 2153+275 both connected by a diffuse radio emission bridge. The beam size of
14.25′ · 13′ is indicated in the top right. Taken from Brown and Rudnick, 2011.

haloes have hardly any net polarisation (only a few percent) while relics show polarisations of
about 30% which makes it possible to distinguish them even despite projection effects. Both
classes are typically of similar low surface brightness (∼ 1 − 0.1µJy arcsec−2), have a steep
spectrum and large size (& 1Mpc) while mini haloes are obviously much smaller. They are
typically connected to a powerful radio galaxy and also inhabit a relatively central region in the
cluster. Radio haloes additionally show a correlation between emitted radio power and X-ray
luminosity of their host cluster which enforces the idea that their origin must be connected to
the ICM (Roettiger, Stone, and Burns, 1999; Kale et al., 2013; Kale et al., 2015; Brunetti and
Lazarian, 2011).
These diffusive radio emission signatures hint to the presence of µG magnetic fields tangled on
sizes of about 20kpc (Schlickeiser, Sievers, and Thiermann, 1987) and a population of relativis-
tic electrons which emit this non-thermal radiation. Typically these can carry Lorentz factors of
γ � 1000 but occur only in number densities of about 10−10cm−3 which is very small com-
pared to an average ICM density of 10−3cm−3. The energy density budget contributed amounts
then typically to less than one percent but that does not mean that these relativistic electrons and
magnetic fields are not important for the evolution of such a cluster as we will see later when
investigating the impact of magnetic fields onto thermal conduction in clusters in chapter VIII.
Their effect on small scales has to be modelled correctly and can definitely have a visible net
impact.
But where do these magnetic fields actually originate from? Since the induction equation which
describes the evolution of magnetic fields does not generate a new field out of nothing some kind
of seed field is required. The presence of so called primordial magnetic fields has been discussed
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for quite a while now and multiple models for e.g. homogeneous or stochastical background
fields have been developed. Planck, 2016c test multiple possible origins and observational con-
straints which give consistent results with maximal primordial fields of ∼ nG levels which is
sufficient as simulations show (see chapter X where we compare simulations with different mag-
netic seeding mechanisms). For recent reviews of this topic see for example Ryu et al., 2012;
Widrow et al., 2012. The amplification of magnetic fields from weak primordial ones to what we
observe in the universe is much better understood already, see e.g. Dormy and Soward, 2007.
In order to improve our understanding of the impact of magnetic fields and small scale pro-
cesses we first need to assess some basic requirements to do so. During the next two chapters
we review different observation techniques regarding the detection of magnetic fields in order
to understand how they might be coupled to their surroundings and which physics we need to
understand. We follow up with a theoretical description of magneto-hydrodynamics, the tool
set in order to solve the evolution equations for gas in galaxies and galaxy clusters. As these
become quite complicated it is necessary to resort to numerical simulations. For that purpose
we review common techniques and modern variations and alternatives which have come up and
compare their advantages and disadvantages to understand what is required from there on to
proceed properly.



Chapter II

The elephant in the room: Magnetic
Fields

No law or ordinance is mightier than understanding.
– Plato

As we have shown in our overview in the last chapter many fascinating phenomena in the uni-
verse are related to the existence of cosmic magnetic fields. Nevertheless, especially theorists
like to neglect them in their calculations or simulations in order to keep their life simpler. Thus,
magnetic fields are often called the elephant in the room (see figure II.1). This chapter is sup-
posed to give a broad overview over both observational techniques to gain information about
cosmic magnetic fields (section II-1) as well as a theoretical description of the equations which
we will treat numerically later on (section II-2).

II-1 Important processes and observation methods

We investigate observationally relevant processes involving magnetic fields and the correspond-
ing observational methods and tracers with the goal to learn as much as possible about cosmic
magnetic fields. The goal of these techniques may, however, differ slightly. Some convey in-
formation about magnetic field strengths, some about the field lines’ structures. Some tell us
about the line of sight component some rather about the perpendicular component. Also the
applicability of these approaches to astrophysical objects may differ, depending on several fac-
tors like size, distance or degree of ionisation with additional individual limitations coming into
play. Therefore, it is important to keep the whole picture in mind because the final answer might
always lie in a combination of all that follows. We start with commonly known and well es-
tablished practices and then peak into the territory of novel approaches which are still under
development.

II-1.1 Synchrotron radiation

Synchrotron emission from relativistic charged particles (typical electrons) is probably the most
direct tracer of magnetic fields possible. The basic process behind it is that charged particles

17
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Figure II.1: Illustration for the importance of magnetic fields in the universe as the elephant in
the room. Flyer logo for magnetic fields summer school Tenerife, Spain. Taken from http:
//www.iac.es/winterschool/2013/.

in the presence of magnetic fields are subject to the Lorentz force ~FL = q~v/c × ~B. They do
not experience any force parallel to the magnetic field, only perpendicular to it and thus spiral
around the magnetic field lines (in the non-relativistic limit) with the gyro frequency

ω =
eB

mec
. (II-1)

For relativistic velocities the Lorentz factor γ has to be multiplied onto the denominator. The
radius of the circular motion is called the gyro radius or Larmor radius1:

rg =
mecv⊥
eB

. (II-2)

1Named after Joseph Larmor.

http://www.iac.es/winterschool/2013/
http://www.iac.es/winterschool/2013/
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The emitted power is given by the Larmor formula:

P =
2

3

e2a2

c3
, (II-3)

with the acceleration in the relativistic case becoming

a2 = γ4
(
γ2a2
‖ + a2

⊥

)
(II-4)

with the Lorentz factor

γ =
1√

1− β2
=

1√
1−

(
v
c

)2 . (II-5)

As already mentioned, a‖ = 0 and a⊥ comes from the Lorentz force. This leads to

P =
2e4

3m2c3
B2γ2β2 sin2 θ (II-6)

with the pitch angle θ between velocity and magnetic field. Using the classical electron radius

rce =
e2

mec2
, (II-7)

the Thomson scattering cross section

σT =
8πr2

ce

3
(II-8)

and further substituting the magnetic pressure2

pB =
B2

8π
(II-9)

we get in total

P = 2σT cpBγ
2β2 sin2 θ. (II-10)

Averaging over all angles then gives

P =
4

3
σT cpBγ

2β2. (II-11)

For further insight into the exact calculations we refer for example to Ghisellini, 2013. As the
total emitted power directly depends on the magnetic field strength it serves as an excellent tracer
as we will argue in a bit from an observational point of view.
Before that we quickly show, how the synchrotron spectrum directly results from the (single)
electron having a relativistic velocity. In figure II.2 we show, what happens to if we vary the
velocity v from very small values to those close to the speed of light. In the first case, photons
are emitted isotropically forwards and backwards, indicated by the blue emission lobes in the left
column. The detected electric field is then sinusoidal, the spectrum contains only one frequency.

2Or energy density, depending on the point of view.
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Figure II.2: Illustration of relativistic beaming and it’s effects onto the spectrum. Taken from
Ghisellini, 2013.
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Figure II.3: Synchrotron spectrum of a single electron. The frequency ν is normalised to the
peak frequency of the inverse Compton effect spectrum νc. Taken from Ghisellini, 2013.
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Increasing v makes the emission more asymmetric because relativity becomes important. This
effect is called relativistic beaming. Higher order harmonics are added to the electric field and
the spectrum becomes broader. The typical spectrum is again plotted in figure II.3.
To elaborate how we can infer information about the 3D magnetic field from these considerations
we follow Dormy and Soward, 2007. As already mentioned, the magnetic field strength can be
estimated from the synchrotron intensity. What we have not considered so far is polarisation.
Linear polarised light which travels through an ionised medium undergoes a rotation of it’s
polarisation angle due to the Faraday effect. Three quantities depicted as integrals over the
line of sight are then useful to observer: the total intensity I , the polarised intensity P and the
Faraday rotation measure RM :

I ∝
∫

l.o.s.

ncrB
2
⊥dz (II-12)

P ∝
∫

l.o.s.

ncr 〈B〉2⊥ dz (II-13)

RM ∝
∫

l.o.s.

neB
2
‖dz, (II-14)

with the magnetic field split up into a large scale regular component
〈
~B
〉

and a small scale

random one~b, the number densities of relativistic cosmic ray electrons ncr and of thermal elec-
trons ne. A positive rotation measure corresponds to magnetic field lines pointing towards the
observer and vice versa. The degree of polarisation is given by

p =
P

I
. (II-15)

The angle equals to

∆β = RM · λ2 ∝ neB2
z∆zλ2. (II-16)

Informations about the integrated thermal electron density can be retrieved via the dispersion
measure

DM =

∫
l.o.s.

nedz (II-17)

or using a theoretical model as for example a beta model for a galaxy cluster:

ne (r) = n0

(
1 +

r2

r2
c

)−3β/2

. (II-18)

RM as well as DM can be derived theoretically from the dispersion relation

n =
ck

ω
=

√
1−

ω2
p

ω2 ± ω · ωg
(II-19)



II-1. IMPORTANT PROCESSES AND OBSERVATION METHODS 23

with the gyro frequency ωg and the plasma frequency

ωp =

√
4πnee2

me
(II-20)

by calculating the phase velocity vph = ω/k and the group velocity vgr = ∂ω/∂k respectively.
In the Milky Way light from pulsars is used to obtain these data, therefore the obtained informa-
tion depends highly on the knowledge of the distance to the respective pulsar and of the nature
of the line of sight gas. Combining both dispersion and rotation measure leads to the line of
sight component of the magnetic field:

B‖ ∝
RM

DM
, (II-21)

using equations II-14 and II-17. The quality of this estimate depends on the nature of a statistical
correlation between fluctuations in the magnetic field and the thermal electron density, leading
to factors of a few in error (Beck et al., 2003). For further reference see, amongst others, Padoan
et al., 2001; Ostriker, 2002; Crutcher, 2012.
Using these measurements a lot of data regarding the magnetic field strengths in the Milky Way
and external galaxies has been collected (see e.g. Ruzmaikin, Shukurov, and Sokoloff, 1988;
Beck et al., 1996; Beck, 2000; Beck, 2001). Typically galaxies contain magnetic fields of the
order of 10µGs according to Beck, 2000 and a typical polarisation at short radio wavelengths
of p ∼ 10 − 20% according to Dormy and Soward, 2007. The latter leads to ordered magnetic
field components of 〈B〉 /B ∼ 0.4− 0.5 as a lower limit which makes equation II-21 in general
usable. Magnetic field strengths inferred from rotation measures seem to be systematically lower
than those from synchrotron intensity (see e.g. Beck et al., 2003). For a discussion of these
differences see e.g. Dormy and Soward, 2007.

In figure II.4 we show an illustration of the observed light’s path subject to Faraday rotation.
Typically light from a distant radio galaxy or a pulsar which travels through the magnetic field of
a galaxy cluster is used to infer information about said cluster field. In order to properly probe the
whole cluster many of these observations are actually required which poses maybe the biggest
difficulty of the process. Therefore, the better the sensitivity and resolution of a telescope, the
more individual sources can be observed and the more information can be extracted. State of
the art is only about 1 − 3 sources per deg2. Especially the Square Kilometre Array (SKA) is
the white hope to further these analyses bringing that number up to estimated 300 sources per
deg2 with SKA1 and 5000 per deg2 sources with SKA2. Due to resolution limits only very
large objects, typically galaxies and mostly galaxy clusters, have been observed with Faraday
rotation so far (Clarke, 2004). An example for such an observation of an extended object, in
this case Hydra A, is shown in figure II.5. Smaller objects like molecular clouds are typically
beyond these limits. Things are further complicated in these regimes due to a lower degree of
ionisation and small path lengths (Crutcher, 2012), however the SKA is expected to also shed
light onto them (Strong, Dickinson, and Murphy, 2014) and also the Very Large Array (VLA)
can be effectively utilised for that (Betti et al., 2017).
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Figure II.4: Illustration of the detection process of the Faraday rotation measure. Taken from
https://www.skatelescope.org/magnetism/.

II-1.2 Inverse Compton effect

A process that also plays a role when talking about the effects of relativistic electrons is the
inverse Compton effect: high energy electrons scatter with lower energy photons and increase
the energy of said photons drastically. As an example consider electrons with gamma factors of
γ ∼ 1000 which carry an energy of E = γmec

2 ∼ 0.5GeV . If such an electron conveys just
a portion of it’s energy to a CMB photon (ECMB ∼ 6.6 · 104eV ) it boosts up it’s frequency to
X-ray (EX−ray ∼ 1 − 100keV ) or even γ-ray radiation levels. This radiation can be observed
and combined with synchrotron radiation of the same electrons to again infer information about
the magnetic field strength. To illustrate this we write down the fraction of the power from
synchrotron emission and inverse Compton which translates into the fractions of the respective
source energy densities u:

Ps
Pic

=
uB
ucmb

=
B2

8π

/
4σT 4

c
(II-22)

with σ the Stefan-Boltzmann constant and the CMB temperature depending on the redshift z

T = T0 · (1 + z). (II-23)

The numerator is the energy density of a magnetic field equal to the magnetic pressure. The
denominator resembles the Stefan-Boltzmann law and results from integrating the black body
spectrum over all frequencies:

ucmb =
8πh

c3

∞∫
0

dν
ν3

exp
(

hν
kBT

)
− 1

. (II-24)

https://www.skatelescope.org/magnetism/
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Figure II.5: Faraday rotation map of Hydra A overlayed over total intensity in colours. Taken
from Clarke, 2004.



26 CHAPTER II. THE ELEPHANT IN THE ROOM

Both powers on the left hand side as well as the CMB temperature can be measured, leaving
the magnetic field as the remaining unknown quantity which can then be determined. For more
details about inverse Compton radiation and the resulting spectrum see e.g. Felten and Morrison,
1966.

II-1.3 Dust Polarisation

Following Crutcher, 2012 dust polarisation measurements both due to absorption and emission
are very suitable tools to infer properties of the magnetic field morphology in the interstellar
medium (ISM). Since it highly depends on the alignment of dust grains it becomes clear that
the required resolution actually limits the applicability to targets further away quite a strongly.
Hoang and Lazarian, 2008 state, that the maximum polarised emission of dust grains is perpen-
dicular to the magnetic field component in the plane of the sky. The degree of alignment is,
however, highly dependent on the grain size. Typically emissions in the mm and sub-mm bands
corresponding to molecular clumps are used. The result is then the direction of the magnetic
field vectors in the plane of the sky, modulo a 180

◦
ambiguity. An example for a resulting po-

larisation map is shown in figure II.6. The vector field shown in this observation is very smooth,
making the inferred magnetic field vectors likely representative of a larger scale, ordered com-
ponent of the field on top of which a turbulent more random component may also exist. That
is backed up by the fact that dust emission is typically optically thin which leads to the whole
line of sight being probed by this analyse and therefore most probably rather averaged results
(Crutcher, 2012).
In addition to these absorption features, dust grains are also visible in linear polarised emission
through thermal radiation. The first successful measurements date back to observations of M42
in 1982 (Cudlip et al., 1982). Observations have been made with single dish telescopes as well
as interferometers like the Submilimeter Array.

II-1.4 Zeeman effect and Goldreich-Kylafis effect

An important physical effect for measuring magnetic fields is the so called Zeeman effect, which
has been detected by Pieter Zeeman in 1897 (Zeeman, 1897) and awarded the physics Nobel
price in 1902. It states that spectral lines are split into several components in the presence of
a magnetic field with a small shift in frequency ∆ν � ν due to the coupling of the electron
magnetic dipole to the background field. In terms of quantum mechanics this means splitting
up an energy level into several fine structure levels related to the magnetic quantum number ml.
The magnetic quantum number can take on values symmetric around zero with the maximum
given by the azimuthal quantum number and therefore the principal quantum number. Due to
selection rules, the magnetic quantum number in any transition may only change by

∆ml = 0,±1 (II-25)

for given l. Consequently, a singlet line subject to the Zeeman effect splits up into three indi-
vidual lines, symmetrically around the original one. ∆ml = 0 is called the π line with ν = ν0,
the others are the so called σ lines with ν = ν0 ±∆ν. We follow Crutcher, 2012 to give a brief
overview over the Zeeman effect’s application onto astrophysics.
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Figure II.6: Dust polarisation measurements indicating the magnetic field directions in the Tau-
rus dark-cloud complex superimposed on a 13CO map (black background). The coloured lines
depict the magnetic field directions taken perpendicular to the measured polarisation as indicated
by the two vectors bottom left. The line length scales with the degree of net polarisation. Taken
from Chapman et al., 2011 and modified by Crutcher, 2012.
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As the Zeeman effect depends on the magnetic dipole moment of an electron, not every molecule
is well suited for detection of Zeeman splitting.3 We can write down the change in frequency as

∆ν = ±Z
∣∣∣ ~B∣∣∣ (II-26)

with Z depending on the spectral transition. To get a feeling for the small magnitude of this
effect, a maximum Z can be inferred from the Bohr magneton as4

Z . ZBM =
e

4πmc
= 1, 4

Hz

µG
(II-27)

which results in a upper limit of only one Hertz in a typical µG environment. Representative
detections have been made using the HI 21cm absorption line (first detection by Verschuur, 1968
looking at the Cassiopeia A supernova remnant), OH absorption (observing the molecular cloud
NGC 2024 Crutcher and Kazes, 1983) and CN (e.g. Crutcher and M., 1999). For example the
21 cm line corresponds to

ν = 1.4GHz ≈ 109 ·∆ν · B

1µG
(II-28)

Therefore, a really good spectral resolution is required to actually measure Zeeman splitting
even for good tracer molecules, limiting the method to relatively close targets like interstellar
clouds. Nevertheless, whenever applicable it poses an excellent method because it can allow
to reconstruct the total magnetic field: The π component is linear polarised and it’s strength is
proportional to the magnetic field strength in the plane of the sky parallel to ~B, while the sigma
components are elliptically polarised. The elliptical polarisation comes due to a linear compo-
nent in the plane of the sky perpendicular to ~B and a circular component proportional to the
magnetic field strength along the line of sight. Additionally, the direction of circular polarisa-
tion even gives us the sign of the line of sky magnetic field component (Crutcher et al., 1993).
Applicability of the whole method is of course also limited by magnetic field variations along
the line of sight.
An extensive discussion of the result from Zeeman observations in molecular clouds can be
found in Crutcher and M., 1999, where magnetic fields have been found as a dynamically very
important component of the energy density budget. Additionally, hints towards the importance
of ambipolar diffusion for star formation are given. We will pick up the topic of non ideal MHD
effects later in section II-2.3. We present typical results from observing molecular clouds taken
from Crutcher, 2012 in figure II.7.
This can be further expanded to higher densities and smaller scales by applying Zeeman mea-
surements to Masers5, typically using molecules like OH, H2O and CH3OH. Masers also allow
to extend these measurements to some extent to large scale galactic magnetic fields. This has
been attempted for the Milky Way already in 1960, albeit unsuccessful in the beginning, by Galt,
Slater, and Shuter, 1960 and later e.g. by Reid and Silverstein, 1990. Reid and Silverstein, 1990

3Depending on the respective molecule being paramagnetic.
4Please note that the formula given by Crutcher, 2012 contains an extra factor h and actually leads to an energy

difference.
5Microwave Amplification by Stimulated Emission of Radiation, therefore the analogue of a laser emitting co-

herent electromagnetic waves in the microwave band.
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Figure II.7: Observational results of diffuse and molecular cloud Zeeman measurements plotting
the line of sight magnetic field strength against the number density (green). Additionally the
inferred total magnetic field strength using a Bayesian model is plotted (blue). Figure taken
from Crutcher, 2012.
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note, that the line of sight magnetic field direction should be mostly preserved through contrac-
tion from interstellar densities (n ∼ 10−3cm−3), giant molecular clouds (n ∼ 103cm−3) to OH
maser regions (n ∼ 107cm−3) close to young massive stars during collapse. Recent surveys
observing masers in the Milky Way include the Methanol Multibeam survey (MMB, Caswell
et al., 2010; Caswell et al., 2011; Green et al., 2010; Green et al., 2012), the MAGMO survey
using the Australia Telescope Compact Array (Wilson et al., 2011) and GASKAP (Dickey et al.,
2013).
For further reading we refer to the recently written PhD thesis of Robishaw, 2008 who states
some collected insight onto the question of success of Zeeman measurements. Although the
method theoretically gives information about all properties of the observed magnetic field, espe-
cially on galactic scales observations are unfortunately more dominated by negative results than
positive ones.
An extension of this discussion is the so called “Goldreich-Kylafis effect” which we will not
discuss in detail. Goldreich and Kylafis, 1981; Kylafis and D., 1983; Deguchi and Watson, 1984
have shown, that linear polarisation can be observed also in non-maser lines. The basic idea
behind this is, that an (external but also internal) anisotropic radiation field excites the Zeeman
split levels non-symmetrically. We already discussed the different polarisation properties of the
π and σ transitions. If the transitions now occur non isotropically a net linear polarisation can be
observed. Although first attempts to actually detect the GK effect were not successful (Wannier,
Scoville, and Barvainis, 1983), positive detections in star envelopes and molecular clouds have
been achieved since then (see e.g. Glenn et al., 1997; Greaves et al., 1999).

II-1.5 Examples for novel approaches

Having outlined the most known and well established techniques for magnetic field observations
we follow up with a quick overview over rather recent newcomers to the field or methods which
are still actively refined in recent work.

Chandrasekhar-Fermi method

The Chandrasekhar-Fermi method (hereafter C-F method, Chandrasekhar and Fermi, 1953) is
commonly used to determine the intensity of magnetic fields in the plane of sky when the vari-
ations of polarisation direction and velocity dispersion are both known (Ostriker, Stone, and
Gammie, 2001; Falceta-Gonçalves, Lazarian, and Kowal, 2008; Houde et al., 2009; Novak,
Dotson, and Li, 2009; González-Casanova and Lazarian, 2017). The basic idea behind the C-F
method is, that under the assumption of a flux frozen field turbulent motion leads to irregular
magnetic fields on top of a general mean field. Chandrasekhar and Fermi, 1953 further assume
turbulence to be isotropic and incompressible and equipartition between turbulent and magnetic
energy. The magnetic field value is then given by∣∣∣ ~BPOS∣∣∣ =

√
4πρ

δv

δφ
(II-29)

with δv being the one dimensional velocity dispersion and δφ the polarisation angle dispersion.
This method contains several potential sources of error. For example not all of the structure
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of a potentially tangled magnetic field along the line of sight might be captured, leading to a
reduced δφ. Ostriker, Stone, and Gammie, 2001 have presented some work tackling this issue.
Falceta-Gonçalves, Lazarian, and Kowal, 2008 also present an improved version using the two-
point correlation function of polarisation angles with resulting uncertainties of lower than 20%.
Furthermore, also Cho and Yoo, 2016 and many more show additional modifications of the C-F
method which we will not investigate in any more details here. More references can for example
been found in the review of Crutcher, 2012.

Spectral line width

Houde et al., 2000 suggested an idea to gain information about magnetic fields from spectral
line widths. Due to the restriction of a charged particle’s movement perpendicular to magnetic
field lines, meaning it following a gyration motion, it’s mean perpendicular velocity can become
on average negligibly small. That has a direct impact onto the width of observed spectral lines,
decreasing it for charged particles in contrast to a neutral ones. To compare the change in line
width one has to observe two particle species located in the same region, as for example HCN
and HCO+ and can from that infer the presence of a sufficiently large magnetic field. Further
extensions to the method have been for example carried out by Li and Houde, 2008 who also
take the turbulent velocity dispersion into account. According to Crutcher, 2012 the technique
is promising but still not fully proven to be working.

Density structures: HI Fibers and more

Clark, Peek, and Putman, 2014 present a novel approach to determine the direction of magnetic
fields in the ISM using neutral hydrogen (HI) observations and the so called “Rolling Hough
transform” (RHT). This technique is used to determine linear structures in a huge data set as a
modification of the original Hough transform (Hough V and Paul C., 1962). For a review of
the original method and it’s applicability in image processing see Illingworth and Kittler, 1988.
The modified version of Clark, Peek, and Putman, 2014 does not only assign a binary value
to each pixel of the data map but rather a probability for that pixel to be part of a coherent
linear structure. They use observation data from the GALFA-HI survey (Peek et al., 2011) and
the GASS survey (McClure-Griffiths et al., 2009) and additional single target observations to
demonstrate a correlation between the orientation of HI fibres6 and starlight polarisation and
magnetic fields, depending on resolution. That supports the common idea, that magnetic fields
should in general follow density structures. Clark, Peek, and Putman, 2014 further use the
RHT result to slightly modify the CF-method, achieving qualitatively the same result as with the
classical approach.
These results are further backed up by simulation results presented by Soler et al., 2013. They
show several simulations of molecular clouds with varying parameters and use the Histogram of
Relative Orientations (HRO) technique (Leonardis, Bischof, and Pinz, 2006) to identify density
structures in two as well as three dimensions which are then mostly correlated to their simulated
magnetic fields.

6I.e. elongated HI structures.
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Velocity gradients

A novel technique presented by (González-Casanova and Lazarian, 2017; Yuen and Lazarian,
2017) depends on velocity gradients as tracer of magnetic fields. According to Goldreich and
Srighar, 1995; Lazarian and Vishniac, 1999; Cho and Vishniac, 2000; Cho, Lazarian, and Vish-
niac, 2002 turbulent eddies in a strongly magnetised turbulent medium show rotation related to
the magnetic field lines. As elongated eddies contain largest velocity gradients perpendicular
to their long axes and the magnetic field lines are preferentially parallel to these axes for sub-
Alfvénic turbulence it follows that the local magnetic field should be mostly perpendicular to
velocity gradients. Alternatively density gradients could be used, however Beresnyak, Lazarian,
and Cho, 2005; Kowal, Lazarian, and Beresnyak, 2007 have shown that especially at high Mach
numbers turbulence is better traced by velocity than density.
Since velocity gradients can be observed via spectroscopy using Doppler shifted lines this pro-
vides a suitable tracer for the direction of magnetic field lines whenever these assumptions hold,
as for example in the ISM. This utilises the analysis of the normalised and non-normalised ve-
locity centroids C (~x) and S (~x) (Munch and Wheelon, 1958; Kleiner and Dickman, 1985; O
’dell and Castañeda, 1987; Miesch, Scalo, and Bally, 1999). Assuming that the intensity I (~x)
is proportional to the column-density7, they are given by

S (~x) =

∫
l.o.s.

vzρ dz (II-30)

I (~x) =

∫
l.o.s.

ρ dz (II-31)

C (~x) =
S (~x)

I (~x)
. (II-32)

The projected data is distributed on a Cartesian grid. For each cell they use the neighbourhood
in a certain radius to calculate the direction in which the gradient is largest:

∇U (~x) = max


∣∣∣U (~x)− U

(
~x′ − ~x

)∣∣∣
~x′

 (II-33)

for U = S or C and ~x′ being the centre of the neighbouring cell. The search radius is dependent
on the available data resolution and a value of 7 − 10 cells is suggested by the authors. The
bigger the neighbouring region, the more discrete options for the resulting direction are possible.
A quick sketch in figure II.8 illustrates this graphically for r = 1 which results in only four
possible directions.
The value of the velocity gradient is only required for the calculation of the maximum, but in
the end only the direction

ΩU (~x) = ~x′ − ~x (II-34)

7The density integrated along the line of sight.
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Figure II.8: A schematic illustrating the calculation of velocity gradients as in González-
Casanova and Lazarian, 2017 with search radius r = 1 resulting in four possible directions.
Extending to r = 2 leads to 8 directions of the gradient, including the diagonals.
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counts, since

~B ⊥ ΩU (~x) . (II-35)

Figure II.9: Magnetic field directions obtained via the velocity gradient technique using GALFA
HI data (yellow lines) compared to measurements of polarisation with PLANCK (red) on top of
HI column density presenting very good agreement. Taken from Yuen and Lazarian, 2017.

Using simulations of a turbulent box González-Casanova and Lazarian, 2017 show how well
this method performs and come to the conclusion that both the normalised and non-normalised
centroids give similar results, both better than using only the density centroid. Yuen and Lazar-
ian, 2017 then apply the method to GALFA HI data and compare the resulting magnetic field
directions to polarisation measures using PLANCK, resulting in broadly very good agreement
(see figure II.9).
Furthermore, a modification of the C-F method by using gradients of velocity centroids instead
of the polarisation angle dispersion is proposed, removing the requirement for dust polarisation
data. However, a correction factor has to be introduced which might depend on the strength of
turbulence, self gravity and other environmental properties.
This leads directly to the strongest limitation of this method. This study depends highly on the
relationship between velocity gradients and magnetic field lines studied in a non self-gravitating
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turbulent environment. If self gravity becomes important, this relation is likely to change and is
still subject to ongoing research.

II-2 Magnetic fields in simulations: Analytic prelude

II-2.1 Pure Hydrodynamics

Justification for Hydrodynamics

In order to simulate astrophysical environments like galaxies or galaxy clusters we solve the
equations of hydrodynamics. To be able to do that, the gas needs to be highly collisional mean-
ing that the mean free path is small with respect to the system size. Spitzer, 1956 gives an
approximation for the electron mean free path as

λe ≈ 22.5

(
Te

108K

)2 ( ne
10−3cm−3

)−1
kpc. (II-36)

This formula treats a system only with averaged properties, neglecting any substructure in which
the mean free path would be smaller anyway. Looking at the most extreme case, the hot and
diffuse intra cluster medium (ICM), the electron mean free path is of the order of tens of kpc,
which is certainly not small enough to justify the usage of hydrodynamics. However, we have
to keep in mind the turbulent, tangled magnetic fields present in these environments. Therefore,
the movement of charged particles like electrons is rather determined by their gyroradius given
by

rg,e =
mecv

eB
(II-37)

or the typical length scale on which magnetic fields change∣∣∣ ~B∣∣∣
∇ · ~B

. (II-38)

Assuming again a typical cluster environment with a velocity of v = 1000km/s and a magnetic
field strength of B = 1µG we get a gyroradius of re = 57km which is about 16 orders of
magnitude smaller than the mean free path and definitely small enough to allow to treat the ICM
as a highly compressible fluid.
Furthermore, for example Lazarian and Desiati, 2010; Brunetti and Lazarian, 2011 argue, that
the collisionality of the ICM is actually underestimated when only considering Coulomb colli-
sions. Because it is fully ionised and therefore in a plasma state corresponding plasma insta-
bilities should naturally occur in the presence of turbulence and further decrease the mean free
path (see also Lazarian and Beresnyak, 2006; Schekochihin and Cowley, 2006). Since a tangled
magnetic field is exactly the result of turbulent motion and plasma instabilities this line of argu-
mentation is basically the same. We revisit the calculation of the actual degree of ionisation of a
gas depending on temperature and density in section II-2.3.
Following up on this argumentation, we can make a quick random walk experiment. We
take a homogeneous sphere of radius R = 3Mpc of temperature T = 108K and density
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Figure II.10: Number of scatterings compared to a straight fly outwards, calculated using a
random walk from the centre of an artificial galaxy cluster outwards. The blue line denotes
the maximum value of a Gaussian fit at N/Nstraight ≈ 74. The asymmetric look regarding
smoothness and scattering comes from using linear bins on a logarithmic scale.
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n = 10−3cm−3 and put a test particle into the centre of this sphere. We assume that the particle
undergoes a collision every λe = 22.5kpc as given by equation II-36 which scatters the particle
in a random angle α. We continue this random walk until the particle leaves the sphere and note
the number of collision Nc it experiences. We compare that to the number of scattering events
in the case of a straight fly through Nstraight. This process is repeated a significant number of
times in order to generate proper statistics. We plot the result after 5 · 104 test particles in figure
II.10. Fitting the histogram to a Gaussian gives a factor of ∼ 74 more scatterings than for a
straight path.

The equations of Hydrodynamics

To derive the basic equations of hydrodynamics in Lagrangian form, following Landau and
Lifschitz, 2007; Teyssier, 2015, we start by considering an enclosed volume V . The total force
onto the boundaries of that volume given through all the pressure p onto the boundaries dA is

~F = −
∮
∂V

p d ~A = −
∫
V

~∇p dV (II-39)

using the Gauss’s theorem. The integrand can be understood as the force acting per unit volume.
According to Newton’s second law we then get the equations of motion

ρ
d~v

dt
= −~∇p (II-40)

with the macroscopic8 gas velocity ~v and density ρ. These three equations are called Euler equa-
tions. Note, that the total time derivative operator has to be taken as the Lagrangian derivative

d

dt
=

∂

∂t
+ ~v · ~∇. (II-41)

Other forces acting, like gravity, can then be simply added to the right hand side of equation
II-40. Next we have a look at the conservation of mass. All the mass flowing outside a volume
V per time can be associated with a mass change rate:∮

∂V

ρ~v dA =
∂

∂t

∫
V

ρ dV. (II-42)

Using again Gauss’s theorem leads to∫
V

(
∂ρ

∂t
+ ~∇ · (ρ~v)

)
dV = 0 (II-43)

which must hold for any Volume V . Therefore, we get the continuity equation (i.e. conservation
of mass):

∂ρ

∂t
+ ~∇ · (ρ~v) = 0 (II-44)

8Not to be confused with the velocity of the gas particles but rather the velocity of the whole flow.
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Additionally we need the first of thermodynamics to describe the evolution of the gas’ internal
energy U (or rather of the specific internal energy u), ergo energy conservation:

dU = m · du = −p · dV (II-45)

and describe the rate of change of the fluid volume using the velocity divergence

1

V

dV

dt
= ~∇ · ~v. (II-46)

Combining these two equations leads to

ρ
du

dt
= −p~∇ · ~v (II-47)

Furthermore, we can assume the system to behave adiabatically which results in the introduction
of a constant entropy

ds

dt
= 0. (II-48)

Alternatively we can rewrite the conservation equations and equations of motion into their Eu-
lerian form, which reveals their conservative properties even better:

∂ρ~v

∂t
+ ~∇ · (ρ~v ⊗ ~v + p1) = 0 (II-49)

∂ρ

∂t
+ ~∇ · (ρ~v) = 0 (II-50)

∂E

∂t
+ ~∇ · (~v (E + p)) = 0 (II-51)

with the fluid energy density

E = ρu+
1

2
ρ |~v|2 . (II-52)

In the Lagrangian formulation before we considered an individually moving fluid element while
the Eulerian formulation is based on the description of scalar and vector fields. Both describe
the same system using this different though process. In addition to these equations we need an
equation of state, as for example for an ideal gas given by

p = (γ − 1) ρu (II-53)

with the adiabatic index γ. In addition to these we have to add non-ideal and higher order effects
if they play a relevant role in the system we study. These include for example a treatment of
physical viscosity, requiring to solve the Navier-Stokes equations instead of the Euler equations,
and thermal conduction as studied in chapter VIII of this thesis.
We finish this section with some quick calculations regarding the importance of physical vis-
cosity and the connection to turbulence following Shu, 1991. The Euler equations we presented
derive directly from the lowest order approximation of the Boltzmann equation, while the next
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order leads to the Navier-Stokes equations. We get an additional term Ψ on the right side of the
energy conservation equation (equation II-51) of the form:

Ψ = πik
∂vi
∂xk

, (II-54)

which is the rate of viscous dissipation of energy. Also the equations of motion get an extra term
∼ ~∇π decelerating the motion. Microscopically we can understand viscosity as the exchange of
particles between different regions across a shear flow which leads to a frictional flow. We can
then define the so called shear viscosity coefficient as

µ =
5

8

√
πmkBT

σ
∼ mvT

σ
(II-55)

depending on the thermal velocity vT and the cross section σ. By comparing the gradients of
the energy density of the flow and of the viscous term we can further identify the dimensionless
Reynolds number

∂ (ρvivk) /∂xk
∂πik/∂xk

∼ ρv2/L

µv/L2
=
vL

ν
=: Re (II-56)

using the typical flow velocity v, the typical length scale L and the kinematic viscosity

ν =
µ

ρ
= vT · λ. (II-57)

For a thermal flow of v ∼ vT we get

Re =
vL

vTλ
∼ L

λ
(II-58)

which we already calculated to be in general much bigger than one. The Reynolds number is a
measurement of the degree of turbulence in a system, as it depends on the fraction of the typical
flow velocity to the thermal velocity. Furthermore, viscous forces are not dominant in turbulent
environments, as Re ∝ µ−1. Further comparisons, including conductivity follow later this
chapter in section II-2.3. The question whether we need to treat hydrodynamics relativistically
instead of classically as we wrote down the equations here will be answered in more detail later
in section III-5 where we discuss that issue for gravity. In case of hydrodynamics not only the
fluid velocities have to be much smaller than the speed of light but also the velocities of all
microscopical particles out of which the fluid consists of. In short, for simulations of galaxy or
galaxy cluster formation the answer to the question if we need to solve the relativistic equations
of hydrodynamics is a clear “No”.

II-2.2 Ideal MHD approximation

In order to derive the equations of magnetohydrodynamics, we modify the hydrodynamics equa-
tions by adding contributions of the magnetic field and introduce the evolution equation for mag-
netic fields, the induction equation. For further calculations we require Maxwell’s equations:

Gauss’ law : ~∇ · ~E =4πρq (II-59)
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Magnetic monopoles: ~∇ · ~B =0 (II-60)

Faraday’s law: ~∇× ~E=− 1

c

∂ ~B

∂t
(II-61)

Ampère’s law: ~∇× ~B=
1

c

(
4π~j +

∂ ~E

∂t

)
(II-62)

with the electric field ~E, the magnetic field ~B, the charge density ρq and the current density ~j.
We start by modifying equation II-40 which in the presence of magnetic fields looks like

ρ
d~v

dt
= −~∇p+~j × ~B (II-63)

due to the Lorentz force. Assuming that we can neglect displacement currents, ∂ ~E∂t becomes zero
and we can rewrite the equation using equations II-60, II-62 as

ρ
d~v

dt
= −~∇p+

c

4π

(
~∇× ~B

)
× ~B (II-64)

= −~∇p+
c

4π

[(
~B · ~∇

)
~B − 1

2
~∇
∣∣∣ ~B∣∣∣2] . (II-65)

The right hand side now consists (in that order) of the thermal pressure, the magnetic tension,
which works towards straight magnetic field lines, and the magnetic pressure. Furthermore, we
modify Faraday’s law of induction (equation II-61) by combining Ohm’s law with a general
Lorentz transformation:

~j = σ ~E′ (II-66)
1

σ
~j = ~E +

1

c
~v × ~B (II-67)

Assuming perfect conductivity we get

~E = −1

c
~v × ~B (II-68)

and therefore the resulting induction equation for MHD as

∂ ~B

∂t
= ~∇×

(
~v × ~B

)
. (II-69)

Corresponding, the ideal MHD equations in Eulerian form (following Teyssier, 2015) are given
by

∂ρ~v

∂t
+ ~∇ ·

(
ρ~v ⊗ ~v + p1− ~B ⊗ ~B

)
= 0 (II-70)

∂ρ

∂t
+ ~∇ · (ρ~v) = 0 (II-71)

∂E

∂t
+ ~∇ ·

(
~v (EMHD + pMHD)− ~B

(
~B · ~v

))
= 0 (II-72)



II-2. MAGNETIC FIELDS IN SIMULATIONS: ANALYTIC PRELUDE 41

with the total energy density and pressure

EMHD = EHD +
1

2
~B · ~B = ρu+

1

2
ρ |~v|2 +

1

2
~B · ~B (II-73)

pMHD = pHD +
1

2
~B · ~B = (γ − 1) ρu+

1

2
~B · ~B (II-74)

II-2.3 Importance of non ideal MHD

So far we have only considered ideal MHD. In this section we want to briefly elaborate on non-
ideal MHD effects and their importance for astrophysical simulations. So far we assumed total
ionisation of the gas we treat using the equations of magneto-hydrodynamics Later this section
we come back to calculations of ionisation degrees, but for the moment we drop this assumption.
Partial ionisation gives rise to the three main non-ideal MHD effects:

1. Ohmic resistivity: Drift between electrons and ions / neutral particles where none of the
charged particles are dynamically tied to the magnetic field; Ions and electrons frequently
collide with neutrals over one electron gyration time

2. Hall effect: Drift between electrons and ions with electrons being tied to the magnetic
field; Ions are collisionally coupled to neutral gas

3. Ambipolar diffusion: Drift between ions and neutral particles with both electrons and
ions being tied to the magnetic field

The importance of either these effects varies respectively, depending mainly on the gas density
and the magnetic field strength. Recently the importance of these non-ideal MHD effects has
been noted by several authors in the field of protoplanetary disks where they are a proposed
solution for the so called magnetic braking catastrophe - the inability of numerical simulations to
produce rotationally supported Keplerian disks in the presence of typical magnetic field strengths
as observed in molecular clouds (see e.g. Wurster, Price, and Bate, 2016, and references therein).
Non ideal MHD effects may actually play an important role there, as low ionisation fractions in
molecular clouds have actually been calculated already by Mestel and Spitzer, 1956.
Following Wurster, Price, and Bate, 2016, the three effects manifest as an additional term on the
right hand side of the induction equation, as

∂ ~B

∂t

∣∣∣∣∣
Resistivity

= −~∇×
(
ηR

(
~∇× ~B

))
(II-75)

∂ ~B

∂t

∣∣∣∣∣
Hall

= −~∇×
(
ηH

(
~∇× ~B

)
× B̂

)
(II-76)

∂ ~B

∂t

∣∣∣∣∣
Ambipolar

= −~∇×
(
ηA

((
~∇× ~B

)
× B̂

)
× B̂

)
. (II-77)
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The three resistivity coefficients ηi are given by Wardle and Mark, 2007 and further depend on
the conductivities of the different particle species.
In order to evaluate the importance of non-ideal MHD effects for general astrophysical simu-
lations, we follow the calculations of Balbus and Henri, 2008 regarding the so called Prandtl
number. This quantity is named after the German engineer Ludwig Prandtl, who contributed a
lot of knowledge and research to the field of fluid dynamics. The Prandtl number is defined as
the relation of viscosity to conductivity of a fluid:

Pm =
νvisc
νM

=
Rem
Reh

(II-78)

In our case it can be written as the viscous diffusivity νvisc divided by the magnetic diffusivity
νM or as the inverse fraction of the related Reynolds numbers. Depending on the order of
magnitude of this dimensionless quantity we can judge upon the importance of non-ideal MHD
effects, as they are following diffusion equations. Assuming a fully ionised plasma consisting of
90% hydrogen and 10% helium and following Spitzer, 1962 we can estimate the two diffusivities
as

νvisc ≈
10−15 · T [K]5/2

ρ[g/cm3] · ln ΛH−H
cm2s−1 (II-79)

νM ≈
1012 · ln Λe−H
T [K]3/2

cm2s−1 (II-80)

with ρ the density and ln Λ the Coulomb logarithm for scattering either of protons by protons or
protons by electrons. Therefore, we get

Pm ≈ 10−27 · T [K]4

ρ[g/cm3] · ln ΛH−H ln Λe−H
. (II-81)

Using our assumptions on the gas composition we can calculate the mean molecular weight as

µ =
1 + 4 · YHe
2 + 3 · YHe

·mp ≈ 0.5mp (II-82)

using

YHe =
1−XH

4 ·XH
≈ 0.03 (II-83)

with XH the hydrogen and YHe the helium fraction of the gas. Using

ρ = µ · nH (II-84)

and assuming an approximate value of 40 for the product of coulomb logarithms we get

Pm ≈ 10−5 T [K]4

nH [cm−3]
. (II-85)

In table II.1 we present approximative values for different astrophysical environments. Even if
the assumptions have been very crude, we get a feeling for the order of magnitude. If the Prandtl
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System 〈T 〉 [K] 〈nH〉 [cm−3] 〈Pm〉

Galaxy cluster ICM 108 10−3 1030

H-II Clouds 104 103 108

H-I Clouds 102 102 101

Molecular Clouds 101 104 10−5

Table II.1: Prandtl numbers estimated for different astrophysical systems.

number is way bigger than one we can conclude, that non-ideal MHD effects will most proba-
bly not have a big influence in the respective system due to magnetic fields being dynamically
unimportant. They are most probably only important in rather cold and dense systems, like star
formation regions but not in the hot gas in galaxies and galaxy clusters.
Additionally, as mentioned in the beginning of the section, we take a look at calculating the de-
gree of ionisation of a gas. For that we consider the Saha-Boltzmann equation and for simplicity
assume a pure Hydrogen gas:

n2
e

n− ne
=

2

λ3
tdB

g1

g0
exp

(
−13.6eV

kBT

)
=: A(T ), (II-86)

with the thermal deBroglie wavelength

λtdB =

√
h2

2πmekBT
= 7, 5 · 10−6

(
T

1K

)−1/2

cm (II-87)

and the factor

g1

g0
=

1

2
(II-88)

which are the statistical weights to account for the degrees of freedom. g0 relates to the neutral
Hydrogen and follows

gn = 2(n+ 1)2 (II-89)

while g1 relates to the proton which results just in g1 = 1 and does not follow that equation. We
solve the equation for the ionisation fraction

ne
n

=
1

2
·

[
−A(T )

n
+

√
A(T )2

n2
+ 4 · A(T )

n

]
=
A(T )

2n
·
[
−1 +

√
1 + 4

n

A(T )

]
. (II-90)

For large values of A(T )/n this breaks down, as the quadratic term dominates over the linear
one so much, that the numerator in total becomes zero. To solve that issue we can Taylor expand
the square root until the second order and get

lim
T→∞

ne
n
≈ 1− n

4A(T )
(II-91)
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Figure II.11: Ionisation fraction due to the Saha equation for a pure Hydrogen gas at different
temperatures and densities.
Left: n ∈

{
10−6, 10−3, 1, 103

}
cm−3 from dark to light blue.

Right: T ∈
{

2 · 103, 2.5 · 103, 2.75 · 103, 3 · 103, 3.5 · 103, 4 · 103, 5 · 103
}
K from dark to light

blue.
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As shown in figure II.11, we see that in simulations of galaxies and galaxy clusters we mostly
treat fully ionised plasma. The temperature dependence is way stronger than the density depen-
dence. For the whole relevant density regime and even beyond that ionisation quickly changes
from 0% to 100% due to a small temperature change, having fully ionised gas already at a few
thousand Kelvin. Of course these results change when we drop the assumption of pure Hydro-
gen gas for a more realistic approach, however the basic conclusion stays intact.
Summing up, Ohmic resistivity, the Hall effect and ambipolar diffusion are only important for
systems like molecular clouds, as recent papers like Gressel et al., 2015; Hennebelle et al., 2016;
Wurster, Price, and Bate, 2016 show, but play a very negligible role in simulations of galaxies
and galaxy clusters. Therefore, we will neglect them in the work presented from here on.

II-2.4 Overview of magnetic field (simulation) history

Figure II.12: Paper statistics with “magnetic field” w/o (left) and w/ (right) “numeric” in the
abstract. Blue are the refereed publications, green contain also the non-refereed ones.

To conclude this discussion of magnetic fields we want to give a quick glance back in his-
tory using basic paper statistics. We use the Astrophysics Data System (ADS, see http:
//adsabs.harvard.edu/) to retrieve these data about recorded astrophysical publications.
In figure II.12 we plot a histogram of publications over time which contain the words “magnetic
field” in their abstract in the left panel. Please keep in mind that the further we go back, the less
complete these records are. We start at the end of the 19th century, since extragalactic magnetic
fields (after those of our sun) have been peaking interest even beyond that. For example Alfvén,
1937 presenting work about cosmic rays and their connection to magnetic fields, Fermi, 1949
reporting of µGs magnetic fields or Hall, 1949 writing about observations of polarised starlight.
We see a major trend of massively increased amounts of literature appearing in the second half
of the 20th century. Of course that trend is not because of sudden popularity of magnetic fields
but traces the increased amounts of publications per year in general. Nevertheless, with about

http://adsabs.harvard.edu/
http://adsabs.harvard.edu/
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5000 publications per year magnetic fields have definitely earned a spot of importance. In the
right panel we combine this analysis with the additional term “numeric”. The absolute num-
bers of publications decrease drastically. This is only a very crude and incomplete analysis but
the fact that computing power needed to drastically increase before we could even think about
treating magnetic fields in conjunction with for example structure formation simulations is well
mirrored in this graph.
For completeness we do the same analysis only for abstracts containing “numeric” and plot the
results in figure II.13. The top panel shows the full view since the first publication listed. The
bottom panels show zoomed in regions of this plot with rescaled axes. Again we can see the rise
in amounts of publication, now even more accelerated by the rise in computing power and the
availability of computers. With this single word alone in the abstract, we have reached the point
of about 35000 publications per year and rising. Considering about 15 pages as an average that
would leave somebody only one minute per page to read all these papers until the year is over
without any break, reading 24 hours a day, 7 days a week.
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Figure II.13: Paper statistics with “numeric” in the abstract.
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Chapter III

Simulation techniques: Euler or
Lagrange?

In the midst of chaos, there is also opportunity
– Sun Tzu, The Art of War

Having described a picture of modern observational astronomy focused on magnetic fields we
now come to it’s counterpart: numerical astrophysics which gives us the tool set to understand
the underlying physical processes of what we can observe. In this chapter we give a quick
introduction into the field of astrophysical simulations (section III-1), review the common types
of techniques which are employed to solve the equations of (magneto-) hydrodynamics (section
III-2) and describe the basics of the Smoothed Particle Hydrodynamics method and show, how
the governing equations can be implemented (section III-3). After this overview we briefly
mention modern hybrid approaches and some possible modifications of the standard methods
(section III-4). We follow up by discussing how this plays together with an implementation of
gravity on the one hand and models for complex processes like star formation on the other hand
(section III-5) and conclude with a projection into the rest of this thesis and the possible future
of computational astrophysics (III-6).

III-1 The history and necessity of simulations

The simulation community has grown a lot since the first astrophysical simulation conducted
by Holmberg, 1941. Due to the difficulty of integrating the gravitational forces in a complex
system, instead of mass point tracers for the simulation of a disk galaxy Holmberg, 1941 took
light bulbs and put them onto a distortable frame. Exploiting the analogy of light intensity to
gravity, both following a r−2-law, he measured all accelerations at a certain point in time using
photocells and galvanometers. Then he integrated the equation of motion for a small time step
dt by moving all light bulbs according to these accelerations and started over. With this brilliant
idea he could simulate the formation of spiral arms in a disk galaxy for the first time and even
way before the introduction of a computer. The first NBody code to solve gravitational interac-
tion directly was developed forty years later by Hockney and Eastwood, 1981.

49
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Nowadays things have become much easier for us, utilising the exponentially growing comput-
ing power, our capabilities to evaluate the interplay of complex numerical models in huge details
has become our daily task. By this development it may seem that simulation codes are some-
times extended and improved just for the sake of improvement without any specific scientific
goal in mind. Scientific in this case meaning regarding the field of physics and not computer
science, where this would be exactly the goal to reach without any doubt. The easiest reply to
this apprehension is the big picture itself. Like mathematics, the numerical side of, for example,
computational astrophysics could become a mere tool set which is developed to answer ques-
tions coming up in the future and thereby allowing progress for the sake of itself. While this
might be a valid approach for the future it actually sacrifices what is both the biggest advantage
and difficulty right now: the close coupling between science goals and developing numerical
ways to achieve them.
Now let us take a step back and think about why we actually require simulations nowadays.
Trying to model the universe has been a long-standing desire and even before the invention of
computers, people actually applied similar methods manually. On first glance one would say,
that the alternative to simulations is posed by analytic calculations to solve the coupled systems
of equations which we plug into our simulation codes. However, this is not really an alternative
but actually integrates directly into a combined concept by posing as the direct predecessor of
numerical modelling. Analytic derivations drive us so far that we can actually define the system
of coupled equations we want to solve up until the point where the complexity rises to the point
where we require the assistance of computer based calculations. Therefore, computer simula-
tions are not to be seen as a replacement of traditional calculations but rather as an extension to
what we can evaluate.
The advantages of simulations are easy to spot. They allow us to model all kind of physical
processes from gravity and fluid dynamics to star formation and the interplay of matter and radi-
ation. The list can be endlessly expanded to almost every field of science and we are only limited
by the knowledge we acquired so far. Instead of just static images of the celestial objects we
desire to study, simulations provide us with the opportunity to actually study their formation and
evolution over huge periods of time, much longer than the lifespan of humanity. But this leads
directly to the biggest drawback. What we can observe is actually part of nature but what sim-
ulations show us is just the result from a combination of numerical models. Even if we assume
that we put all the important processes inside our simulation codes all models only present an ap-
proximation to how astrophysicists think, these processes work. All implementations are flawed
by their approximate nature and in addition to numerical inaccuracy of calculations, errors can
accumulate and combine to drastically different results just from minor changes. Therefore, we
want to review some of the most common simulation techniques in today’s astrophysical com-
munity in the next sections and give some insight in the individual capabilities, advantages and
disadvantages.

III-2 Commonly used and established techniques

We start with a quick discussion of two commonly used strategies to handle the equations of
(magneto-) hydrodynamics for astrophysical simulations: volume discretising Grid codes and
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the mass discretisation approach posed by Smoothed Particle Hydrodynamics (SPH). Of course
there exist also other techniques, modern ones as we will present afterwards and also ones which
have been around for quite some time as for example the Particle In Cell (PIC) method. PIC
simulations go back to the 1950s and 1960s, when (Buneman, 1959; Dawson, 1960; Dawson,
1962; Morse, 1969) applied this method to simulations of plasma physics. As the name already
states the basic idea behind this approach is, to simulate the behaviour of (maybe few) particles,
like electrons, in a volume discretised medium.

III-2.1 Volume discretisation

One of the main classes of astrophysical codes come with a volume discretised scheme. In this
section we give a brief review of the basics leading to classical grid codes following Teyssier,
2015.
A volume discretisation is basically partitioning up the simulation space into grid cells. In
principle these cells may be of any shape. The most fundamental being a Cartesian grid with
equally sized, cubic cells. This consequently introduces predominant directions in space which
may be totally arbitrary but nevertheless influence the result at least slightly. To formulate the
equations of hydrodynamics (see section II-2.1) on a grid we use the Eulerian form of the Euler
equations and then typically follow a finite volume approach. All relevant variables describing
the (magneto-hydrodynamical) state are assigned to each cell. To evolve the system in time
fluxes across cell faces are calculated and integrated. We distinguish between flow variables,
which may be discontinuous, and flux functions, which appear in a divergence operator and
must be continuous over cell boundaries.
Solving the conservations laws with propagating waves is a well known problem typically solved
with a Godunov method (Godunov, 1959; Toro, 2009) which provides a solution through cell
averaged conservative variables U as

~Un+1
i − ~Uni

∆t
= − 1

Vi

∫
Si

F̃ · ~n dS (III-1)

with the face’s normal vector ~n and the time averaged flux

F̃ =
1

∆t

tn+1∫
tn

~Fdt. (III-2)

Here i is the cell index and n denotes the iteration step, meaning the point in time. This can be
used to generate a numerical scheme at any order of accuracy for any mesh geometry (Harten,
Lax, and Leer, 1983). First order results in a piecewise constant, second order in a piecewise
linear formulation and so on. The first order accurate scheme is well known as the so called Rie-
mann problem which allows due to self similarity properties to straight forwardly calculate the
flux functions. The Riemann problem is very well studied and multiple solvers have been pre-
sented and utilised over the years. We can primarily distinguish between exact and approximate
Riemann solvers. As the name says, the former solves the Riemann problem directly which,
however, is computationally very expensive. Therefore, usually approximate solvers are used.
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They converge towards the correct result and the iteration process can be terminated after much
less computation time when reaching the desired level of accuracy. For a review of different
Riemann solvers we refer to Toro, 2009. Teyssier, 2015 mention the Lax-Friedrich flux function
(LeVeque, 1992) as the simplest one. For that, the flux function between left state L and right
one R is given by

~F
(
~UL, ~UR

)
=

~FR + ~FL
2

− Smax
2

(
~UR − ~UL

)
(III-3)

with Smax being the maximal wave speed in both cells. To make this better understandable

Figure III.1: Illustration of the one dimensional Riemann problem. Taken from Teyssier, 2015.

we show a schematic for the one dimensional Riemann problem in Figure III.1. The left panel
shows the initial state at t = 0, with the two states ~UL 6= ~UR. The right panel shows the fluxes
between cells and illustrates how the maximum wave speed and the time step correspond to the
cell size. On first glance one could say that the first term of equation III-3 should be already
sufficient since it depicts the average of the left and right fluxes and is a second order accurate
approximation of the flux through the cells’ touching faces. The second term is introduced due to
an additional problematic we have not mentioned yet. While it helps to make the numerical so-
lution actually stable, it is typically associated with numerical diffusion proportional in strength
to the cell size. It is clearly of numerical origin and unphysical. This has been a long standing
problem for grid codes and reducing this diffusion component is an important task in order to
improve the accuracy of any such code. For example higher order schemes help to reduce this
numerical diffusion. This includes for example transitioning form a finite volume approach to
a finite element one which is much harder to construct (Zienkiewicz, 1971) or going even fur-
ther to a discontinuous Galerkin method (Cockburn and Shu, 1998). An alternative approach is
to stick with a finite volume scheme but increase the amount of neighbouring cells taken into
account. These higher order schemes lose the self similarity of the Riemann problem which
makes solving them much more time consuming. Typical approaches are a predictor-corrector
scheme, a Runge-Kutta solver or a high order Taylor expansion scheme (Suresh and Huynh,
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1997; Titarev and Toro, 2002).
An important addition typically employed are so called slope limiters. They ensure positivity
as well as smoothness of the solutions and thereby work towards suppressing oscillatory pertur-
bation effects. Again there is quite a variety of slope limiters around, which can be considered
(Hubbard, 1999).
When applying these methods to astrophysical problems they are confronted with a highly com-
pressible medium with discontinuities and singularities in the important variables describing the
state of the fluid. Studies show, that high order methods are for these kind of challenges typically
less efficient than low order methods with higher resolution and therefore comparable computa-
tion cost. As a result typically second order schemes are used in the astrophysical community.
To preserve Galilean invariance with grid codes is very hard but otherwise results are sensitive to
the presence of bulk velocities Tasker et al., 2008, e.g. when simulating multiple galaxies which
move relatively with very large velocities even faster than the sound speed of the dense ISM.
This leads to not necessarily wrong results but such dependent on frame of reference which still
not desirable.
Solving the equations of magneto-hydrodynamics poses an additional challenge on top of hy-
drodynamics alone. The most crucial problem all numerical approaches (not only grid codes)
have to face, is the well known requirement that

∇ · ~B = 0 (III-4)

down to numerical resolution. Since this can almost never been enforced strongly without vio-
lating any other equation but spurious monopoles can quickly lead to instabilities one typically
has to settle for a trade off. Traditionally some kind of “divergence cleaning” is applied, which
means that any occurring∇ · ~B sources are artificially removed from the magnetic field vectors.
This can be done for basically any numerical scheme. A classical divergence cleaning scheme
is for example given by Brackbill and Barnes, 1980:

∆φ = ∇ · ~Bold (III-5)

~Bnew = ~Bold −∇φ (III-6)

The physically incorrect magnetic field is taken, the potential leading to monopoles is calcu-
lated and it’s gradient is used to calculate a monopole free, new magnetic field. More advanced
approaches might also try to do that in a way which tries to conserve the magnetic energy. Nev-
ertheless, a divergence cleaning approach is not ideal. Magnetic monopoles can still appear
briefly and solving Poisson’s equation (equation III-5) is rather expensive and should be avoided
if possible. Additionally, higher order schemes actually need several cleaning steps (Crockett
et al., 2005). A more advanced approach is for example Powell’s eight-wave scheme (Powell
et al., 1999) which directly accounts for monopoles but is again not strictly conservative any
more.
Finally we want to address a typical issue with classical grid codes: their lack of adaptivity. If a
fixed grid is used this determines the resolution achieved from the beginning of the simulation
on. More resolution means a lot more grid cells and therefore an extreme increase in computing
power. To solve this issue, different approaches have come up. The most well established is
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probably “Adaptive Mesh Refinement” (AMR). The inherent idea is easy to understand. If we
can identify regions in the simulation regime where a higher resolution is desired, for example
due to high densities or velocities at that point, the corresponding grid cells are taken and di-
vided up into smaller sub cells. This (de-) refinement is typically done using factors of two.
This kind of discontinuous refinement can, however, lead to subtle errors. Small scale processes
might be resolved a bit too late, delaying their evolution slightly leading to all kind of secondary
effects. The implementation of an AMR scheme in a numerically stable way with low errors is
highly non trivial due to the very complex resulting mesh geometry. Although it is not cheap
to build such a refined grid and to keep all the structural information in memory it helps a lot
to allow high resolution simulations with moderate computational cost. AMR has already been
introduced by Berger and Oliger, 1984; Berger and Colella, 1989 in general fluid dynamics and
by Klein, McKee, and Colella, 1994 in astrophysics. Later it has been adapted to self gravitat-
ing cosmological flows in the code ENZO by Bryan et al., 1995 which leads to difficulties with
changing gravitational softening due to the refinement strategy. Moreover, self gravity itself can
also be a problem for Eulerian codes, due to emerging problems conserving the total energy
(Mueller and Steinmetz, 1995; Springel, 2010a). O’Shea et al., 2005; Heitmann et al., 2008
have shown that even state-of-the-art AMR codes (at that time) had problems solving gravity
as well as high precision N-body codes without meshes fine grained to an extremely resource
wasting level.
Alternatively to refinement of Cartesian grids people developed algorithms for deformable La-
grangian meshes in order to let adaptivity enter directly in the mesh geometry on a more basic
level (Gnedin, 1995; Pen, 1998). Unfortunately mesh deformations tend to become very extreme
especially in the presence of shear flows and numerical errors build up quite a lot. Furthermore,
Cartesian meshes allow for more cancellation of terms in high order schemes than irregular grids
(Calhoun and LeVeque, 2000). This has ultimately lead to the idea of a Moving Mesh (see e.g.
Springel, 2010b), which we will come back to later in section III-4.

III-2.2 Mass discretisation

In contrast to a volume discretisation scheme, we can also take the mass as our most basic dis-
cretised variable. That has the advantage, that we have a natural feeling for what happens, as
we are used to think in terms of particles. The most important point has to be made right here
in the beginning, when defining proper nomenclature. Typically one actually calls these mass
elements particles for simplicity. However, they may, but in general do not, correspond to actual
particles but rather to moving fluid parcels. That is for example the case in Smoothed Particle
Hydrodynamics.
To derive the proper equations for our system, we simply use the Lagrangian form of the Euler
equations as derived in section II-2.1 and discretise these. A proper derivation of the resulting
SPH equations follow later in section III-3.
We already discussed some of the advantages and disadvantages of grid based methods, so how
does a mass discretised method like SPH fit into that picture? While a grid code requires the def-
inition of a fixed spatial domain, particles can in principle move arbitrarily in some (extendible)
simulation space. Therefore, it is easier to treat phenomena like outflows without the need to cut
at some point and let mass leave the simulation. Although on first glance better, mass leaving a
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simulation might actually desirable if it can be assumed that it will never flow back anyway and
computing time can be saved that way. It all depends on the individual situation.
What we can straight forwardly infer from the concept of particles moving with the flow, is adap-
tivity of resolution. Adaptive mesh refinement is a rather complicated addition to grid codes but
particle schemes do not require such a modification. High spatial resolution is required where
densities are big and therefore, where a lot of mass is concentrated. That corresponds directly to
an over-abundance of particles which in return represents higher resolution. That is probably the
best and most important feature of a particle based scheme, because this adaptivity comes totally
for free. Moreover, it explains why SPH is widely used in cosmological simulations of galaxies
and galaxy clusters, where we have huge ranges of densities which we try to resolve. Further-
more, mass discretised codes are easily able to couple together, as for example an N-Body code
for solving gravity and an SPH code for hydrodynamics. We come back to solving gravity in
more detail later in section III-5.1. Let us just note here, that actually the first astrophysical sim-
ulations coupling self gravity and hydrodynamics have been carried out using SPH (Efstathiou
and Eastwood, 1981; Evrard, 1988; Hernquist and Katz, 1989).
Coming back to the governing equations of (magneto-) hydrodynamics, although they are used
in Lagrangian form conservation properties still hold. Further, conservation of angular mo-
mentum is given for free in a spherical symmetric particle scheme like SPH, while it is more
complicated in a method based on a Cartesian grid. The same goes for Galilean invariance due
to the absence of principal axes in the discretisation.
But there are also drawbacks with particle based methods, as for example the detection and
treatment of shock fronts. A volume discretisation code which works on the basis of solving
the Riemann problem at each cell boundary is exactly built to properly resolve shock fronts i.e.
jumps at interfaces while Particle codes can not even clearly define these boundaries and there-
fore not give as sharp solutions at sudden discontinuities. Dissipation in sub sonic turbulence can
be understood easier in grid codes, because the cell geometry gives a natural dissipation length,
which is very hard to come by in a Lagrangian code. Classical SPH has a lot of further prob-
lems like proper fluid mixing which combined with the mentioned issues with shocks requires
the introduction of an artificial viscosity and conductivity component. One can mitigate these
problems by changing to a different form of SPH by alternating which hydrodynamical variables
we discretise as the base quantities, but that only shifts the issues to other fluid variables. How-
ever, many advancements have been made over the past decade in order to improve on all these
problems and provide modern astrophysical codes with a proper hydrodynamics scheme. More
details on these improvements are shown later in chapter V where we describe the current state
of our version of the GADGET code.

III-3 SPH formalism in details

Having described the main differences, advantages and disadvantages of both volume and mass
discretised schemes we will now go into some more details of the SPH method, as it is used
during the course of this thesis. The origin of SPH can be tracked back to Lucy, 1977; Gin-
gold and Monaghan, 1977. During these 41 years the method has undergone drastic changes to
overcome it’s flaws and further refine it’s accuracy in solving not only astrophysical problems.



56 CHAPTER III. SIMULATION TECHNIQUES

Some changes are considered mandatory nowadays in the astrophysical community, some are
rather side tracks of the main consensus. We go into further details about the state of the art later
in chapter V and concentrate here on the basics required to understand what comes later in this
thesis. When we say that SPH is not only used in astrophysics, then where is it actually relevant
besides that? In Principle it can be applied anywhere, where equations of hydrodynamics have
to be solved and even beyond that. It has become a very popular method in the game and movie
industry, since even badly resolved simulations look very convincing to the bare eye due to the
inherent smoothness of the method. Examples are for example (Spoiler alert) Gollum falling
into the lava of Mount Doom at the end of “Lord of the Rings: Return of the King” (Monaghan,
2011) or various types of fluids to be experienced in “Alice: Madness Returns” (Coombes,
2011). For further reading see also Gourlay, 2013. Also other branches of sciences have picked
up the method, from simulations of tsunamis (Wei et al., 2015) and earthquakes (Chen and Qiu,
2013) up to engineering simulations of turbines, wind canals or dams (Marongiu and Parkin-
son, 2006; Xu, 2016). These efforts have also led to the publication of open source codes like
DualSPHysics (Crespo et al., 2015). We will take a look into developments of the SPH method
especially outside the astrophysical community in section III-4.2.
For explaining the basic concepts and equations of SPH we use the Lagrangian formulation of
the (magneto-) hydrodynamical equations derived earlier in chapter II and follow along the ex-
cellent review papers of Springel, 2010b; Price, 2012b; Somerville and Davé, 2015. Therefore,
we will not give a full derivation of classical SPH and it’s transition towards what is typically
used nowadays but start right away with a formulation of SPH derived from the fluid Lagrangian

L =

∫
ρ

(
~v2

2
− u
)
dV (III-7)

for inviscid ideal gas (Eckart, 1960).

III-3.1 Density approximation and kernel theory

Figure III.2: Illustration of three approaches to calculate the density from mass elements. Taken
from Price, 2012b.
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But before we can write down the equations describing our hydrodynamical system in SPH
formalism we need to define the basics required for this method. As we discretise mass elements
tracing the fluid the most straight forward quantity to start with is density. One can think of
several possibilities on how to calculate the density at each point in space ~r from a distribution
of mass points. Three of them are shown in figure III.2. The left panel depicts the easiest
approach. We lay out a fixed Cartesian grid over the volume and in each cell the density is given
by sum of all mass elements inside the cell divided by the volume. The question is, would we
gain anything from this approach instead of just working with a grid right away? Probably not.
The second approach we show is to take a spherical region of influence around each particle in
which the density is again calculated as sum of all masses divided by the spherical volume. This
has the advantage of Galilean invariance leading to the conservation of angular momentum and
allows us to evaluate each position by drawing a sphere around it. In addition, it provides us
with the possibility of adaptivity if the radius of the sphere is calculated individually for each
particle to keep for example the mass in each sphere constant leading to shorter radii in regions
with larger clustering of mass elements (assuming equal mass elements). The third option in the
right panel adds another improvement on top of the second method which is shown by the grey
shaded region. Masses are not simply summed up any more, they are rather weighted inversely
by their distance to the sphere centre. The idea behind this, that the closer a particle sits to the
evaluation spot ~r, the more important it’s contribution should be. This is the general basis of the
Smoothed Particle Hydrodynamics approach. The density can then be expressed like

ρ (~r) =

Nngb∑
j

mjW (|~r − ~rj | , h) (III-8)

with W the weighting or so called kernel function with a smoothing radius (or length) h and
Nngb the number of neighbouring particles. A quick dimensional analysis reveals the unit of W
to be an inverse volume. In order to find a good candidate for the kernel function we can list a
few basic requirements it should fulfil:

• Positivity

• Monotonically decreasing to weight closer mass elements more than those further away

• Smoothness of derivatives

• Dependency only on the absolute distance and a smoothing length

• Flat central region to reduce impact of small dislocations

• Normalised to unity when integrated over the volume

• Finite in order to decrease computational cost.

A natural choice fulfilling all of the above except the last one is the Gaussian. However, since
it never truncates in principle all particles have to be taken into account as neighbours, even if
their contributions become very small which leads to an unnecessary high computational cost.
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A typical approach is then to truncate a Gaussian artificially, violating the smoothness of deriva-
tives at maximum radius. Alternative approaches try to mimic the form of the Gaussian using
polynomials as for example the well established spline functions which are generated from a
Fourier transform (Schoenberg, 1973; Monaghan and Lattanzio, 1985). Other popular choices
are for example Core-Triangle or High Order Core-Triangle (HOCT) kernels (Read, Hayfield,
and Agertz, 2010) or the Wendland functions (Dehnen and Aly, 2012). These try to solve two
known issues with SPH: The so called tensile or clumping instability (first described by Swe-
gle, Hicks, and Attaway, 1995) and the pairing instability. Although both instabilities show the
same symptoms, particles unphysically clumping together, they emerge due to different reasons.
While the tensile instability appears due to a (originally kernel independent) effective negative
pressure, the pairing instability comes from a negative Fourier transform of the kernel function
(Dehnen and Aly, 2012). The HOCT kernels try to help mitigate the tensile instability by in-
troducing a constant central core to the kernel gradient, resulting in a constant force term in the
centre to prevent this clumping sacrificing monotonicity in the very central region. Different
approaches instead of a peaked kernel are for example an artificial steepened first derivative of
the kernel (Steinmetz, 1996) or an artificial pressure term (Monaghan, 2000). While the tensile
instability is very well observed in idealised test cases it is, however, hardly seen in reality due
to dynamics overshadowing the effect (Springel, 2010b). The pairing instability is really a direct
result from the kernel itself, actually adding another requirement to the list above: a positive
Fourier transform. Therefore, Dehnen and Aly, 2012 propose the Wendland functions which ad-
here to this demand. The pairing instability typically arises when the kernel sizes are chosen too
big or correspondingly a large neighbour number is desired. Classical kernels limit the amount
of neighbours drastically by this instability, but not so the Wendland functions.
All of the mentioned state of the art kernel functions come in different orders. Higher order
kernels are computationally slightly more expensive due to additional terms but approximate
a Gaussian better than lower order ones leading to possibly better convergence. Nevertheless,
choosing a moderate kernel order is usually advisable since higher order kernels can induce ad-
ditional instabilities (Wendland, 2017).

A further well known error arising is the so called kernel bias which originates in the con-
tribution of the central particle (see e.g. Whitworth, 1995). Taking a perfectly uniform density
distribution and calculating the density with different kernels and varying neighbour numbers re-
veals that sometimes the density actually under- or overestimated as shown in figure III.3. This
figure, taken from Dehnen and Aly, 2012, illustrates the degree of bias in the density calculating
for varying types of initial configurations (like lattice, glass, etc), kernel functions and neigh-
bour numbers, which can even reach the percent level for small number of neighbours. Even
sub-percent levels of errors are bad, since they immediately translate into every other fluid vari-
able and calculation and may over time flaw any simulation result. All these initial distributions
plotted are not fully random but adhere to some internal structure. The topic of proper initial
conditions is very complex and we come back to it later in chapter IV. Only for a totally random
distribution evaluating the density at a position where no particle sits would not result in such
a density error (Silverman, 1986), while at a particle position the self contribution (W (0, h))
results in an overestimate. A quasi random distribution can then result in any kind of error, even
none for some special cases as we can see at about 32 or 64 neighbours for the cubic spline
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Figure III.3: Density calculated with different initial conditions (symbols) and different kernels
(colours) for the same uniform density illustrating the kernel bias. Plotted is the number of
particles inside the kernel (neighbour number) against the density calculated via SPH divided by
the actual density. Taken from Dehnen and Aly, 2012.
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(blue). Due to the oscillatory nature of this error for spline kernels it is very hard to find a com-
putationally cheap correction for all neighbour numbers, which is why these sweet spots have
become very popular choices. The HOCT4 kernel (plotted in orange) shows the biggest error
which is very well understandable due to it’s central shape. The Wendland kernels (different
orders plotted in tones of red), as focused on by Dehnen and Aly, 2012, show a moderate level
of bias which decreases monotonically with neighbour number. On the one hand this suggests to
use quite large neighbour numbers to mitigate this error and on the other hand it makes it rather
straight forward to find a fit simple fit function to correct for the bias for all relevant numbers of
neighbours. This is required for a code like GADGET, where we input a desired mean number of
neighbours which can, however, fluctuate quite drastically between individual particles. During
the course of a Bachelor’s thesis we have investigated the kernel bias and confirmed the results
of Dehnen and Aly, 2012.
Summing up, in Gadget we typically use the WendlandC4 or C6 kernel with a few hundreds of
neighbours in three dimensions, as shown later in chapter V.
Now that we have investigated the fundamentals of SPH we can proceed to show how we can
actually write down any equation in SPH formalism starting with the following identity for an
arbitrary variable A:

A (~r) =

∫
A
(
~r ′
)
δ
(
~r − ~r ′

)
d~r ′. (III-9)

Next, we replace the delta function with the kernel and split up the integral into the mean value
and error terms. The mean value of A expanded by a factor 1 = ρ (~r ′) /ρ (~r ′) then looks like

〈A (~r)〉 =

∫
A (~r ′)

ρ (~r ′)
W
(∣∣~r − ~r ′∣∣ , h) ρ (~r ′) d~r ′ (III-10)

≈
Nngb∑
j

mj
Aj
ρj
W (|~r − ~rj | , h) . (III-11)

Consequently we can express the quantity A of particle i as

Ai ≈
Nngb∑
j

mj
Aj
ρj
Wij (hi) (III-12)

introducing a shortened version to write down a kernel function

Wij (hi) = W (|~ri − ~rj | , hi) , (III-13)

which is symmetric under exchange of particle index. A similar derivation can be made for
derivatives of A which results in:

D Ai ≈
Nngb∑
j

mj
Aj
ρj
DWij (hi) (III-14)
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for any spatial derivative operator e.g. D = ~∇k = ∂
∂~rk

or even the unity operator. This is
consistent with equation III-8 as the density of a particle i as

ρi =

Nngb∑
j

mjWij (hi) (III-15)

which can be considered the probably most fundamental equation of traditional SPH. For vari-
able smoothing lengths this equation has to be solved in conjunction with

hi = h (~ri) = η

(
mi

ρi

)1/d

(III-16)

with d the number of spatial dimensions considered and η a constant factor depending on the
relation between kernel support radius and smoothing length (see e.g. Dehnen and Aly, 2012).
Constant smoothing lengths instead make it easier derive some equations and prove properties of
the algorithm (as we will see in the next section) but without this adaptivity SPH looses it’s most
important benefit. Properly considering also variations of smoothing lengths and the continuity
equation (equation II-44) leads to the full time and spatial derivatives of the density as follows:

dρi
dt

=
1

Ωi

Nngb∑
j

mj (~vi − ~vj) · ~∇iWij (hi) (III-17)

~∇iρj =
1

Ωj

Nngb∑
k

mk∇iWjk (hj) (δij − δik) (III-18)

with a term depending on variations of h:

Ωi = 1− ∂hi
∂ρi

Nngb∑
j

mj
∂Wij (hi)

∂hi
. (III-19)

We will not go into a full analysis of errors in SPH, as it is done in the mentioned review articles,
but close with a quick remark derivatives. So far there is still some degree of ambiguity present
in the formulation of SPH we have presented up until now. This can be exploited to improve the
correctness of discretisations. For example calculating the gradient of a quantity Ai as given by
equation III-14 can be expanded into error terms. Subtracting the 0th order term results in

~∇Ai ≈
Nngb∑
j

mj

ρj
(Aj −Ai) ~∇iWij (III-20)

which gives a much better estimate and can be interpreted as

~∇A ≈
〈
~∇A
〉
−A

〈
~∇1
〉

(III-21)

and applying equation III-14. Similar corrections can be carried out in different cases. Also
the straight forward definition of a second order derivative is numerically very problematic but
a much better derivative operator can be actually found. This will become important in chapter
VIII where we present the implementation of thermal conduction in the presence of magnetic
fields in SPH.



62 CHAPTER III. SIMULATION TECHNIQUES

III-3.2 (Magneto-) Hydrodynamics

Having outlined the basics of the SPH method we can proceed by transforming the equations of
magnetohydrodynamics into the formalism. Starting with the fluid Lagrangian (equation III-7)
and applying the least action principle results in the Euler-Lagrange equations of our system
which give us the equations derived earlier in section II-2. For further reference regarding an
implementation of the more general Navier-Stokes equation in SPH see for example Liu and
Liu, 2003. We get the equations of motion

d~vi
dt

= −
∑
j

mj

(
pi

Ωiρ2
i

~∇iWij (hi) +
pj

Ωjρ2
j

~∇iWij (hj)

)
. (III-22)

For constant smoothing lengths Ω becomes 1 and this simplifies to

d~vi
dt

= −
∑
j

mj

(
pi
ρ2
i

+
pj
ρ2
j

)
~∇iWij . (III-23)

We see directly the conservation of linear momentum by calculating

d

dt

∑
i

mi~vi =
∑
i

mi
d~vi
dt

= 0 (III-24)

because of the antisymmetry of the kernel gradient with respect to permutation of the particle
index:1∑

ij

~∇iWij = −
∑
ij

~∇jWij = 0. (III-25)

Geometrically speaking for a particle pair i, j we look down the gradient from one particle but
up the gradient if we switch perspective to the other particle. The same argument holds also for
conservation of angular momentum when looking at∑

i

mi~ri ×
d~vi
dt

= 0. (III-26)

These conservational properties correspond directly to invariance under translation and rotation
as generally known from Noether’s theorem.
Next up is the energy equation which can be derived for either the specific internal energy, the
total specific energy or, as typically favoured, a function of the entropy2 A (S) (see also Ryu
et al., 1993; Springel and Hernquist, 2002):

A (S) =
P

ργ
= (γ − 1)

u

ργ−1
. (III-27)

It is related to the thermodynamic entropy as given by

S = N · 3

2
kB

[
ln

(
mA

N

)
+ ln

(
2πm5/3

h2

)
+

5

3

]
(III-28)

1Remember that the kernel itself is symmetric, so it all comes down to the gradient.
2Often just called entropy for simplicity.
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with the number of atoms N . The change of specific internal energy is given by

dui
dt

=
pi
ρ2
i

dρi
dt

=
pi

Ωiρ2
i

∑
j

mj (~vi − ~vj) · ~∇iWij (hi) (III-29)

using the time derivative of the density from equation III-17. With this we can confirm energy
conservation by calculating

dEi
dt

=
∑
i

mi
dei
dt

=
∑
i

mi

(
~vi ·

d~vi
dt

+
dui
dt

)
= 0 (III-30)

which holds due to the same antisymmetry argument as before.
Now we can extend this to MHD. The first implementation of magnetic forces in SPH has
been performed by Gingold and Monaghan, 1977 while the first full MHD implementation was
presented by Phillips and Monaghan, 1985. As in chapter II we add the magnetic pressure to
all the terms containing the hydrodynamical pressure and additionally transform the induction
equation which then looks like

d

dt

(
~Bi
ρi

)
= −

∑
j

mj (~vi − ~vj)
~Bi

Ωiρ2
i

· ~∇Wij (hi) . (III-31)

The equations of motion (equation III-22) component wise transforms to

dvai
dt

=
∑
j

mj

(
Sabi
Ωiρ2

i

∇biWij (hi) +
Sabj

Ωjρ2
j

∇biWij (hj)

)
(III-32)

using Einstein’s sum convention over index b and introducing the MHD stress tensor (in cgs
units)

Sab ≡ −
(
P +

1

8π
~B2

)
δab +

1

4π
BaBb. (III-33)

The total specific energy

e =
1

2
v2 + u+

1

8π

B2

ρ
(III-34)

changes accordingly to

dei
dt

=
∑
j

mj

(
Sabi
Ωiρ2

i

vaj∇biWij (hi) +
Sabj

Ωjρ2
j

vai∇biWij (hj)

)
. (III-35)

Similar to grid codes SPH also requires a divergence cleaning mechanism, to keep the mag-
netic fields source free. Price, 2012b give an extensive review over different types of cleaning
methods, which we will not cover here. We just want to mention that carrying out divergence
cleaning in the context of a cosmological simulation is an additional challenge on top.
As already mentioned in section III-2.2 there are some flaws SPH brings along and solutions for
them, which we need to talk about. The Euler equations natively produce shocks and contact
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discontinuities (Landau and Lifschitz, 2007) leading to Rankine-Huginiot jump conditions at the
shock front where the entropy is always increased. Therefore, we need some kind of treatment
of viscosity - be it physical or artificial - to dissipate kinetic energy into heat and thereby pro-
ducing the required entropy. Additionally comes the introduction of an artificial conductivity
term to improve fluid mixing and an artificial dissipation of magnetic energy similar to viscosity
but for MHD shocks resembling a resistivity term. An in depth analysis of the state of the art
formulations of the artificial hydrodynamics terms is given later in chapter V.
However, these are not the only options to circumvent these issues. What we have presented
so far is known as the “Density-Entropy” formulation of SPH (assuming we evolve A and not
actually u or e, which would then be called “Density-Energy” formulation). An alternative has
come up and become also quite popular, called the “Pressure-Entropy” formulation. Instead of
a smooth density it evolves the pressure, keeping it smooth and therefore circumventing the ar-
tificial surface tension otherwise leading to issues with the pressure (Ritchie and Thomas, 2001;
Read, Hayfield, and Agertz, 2010; Saitoh and Makino, 2013; Hopkins, 2013; Hu et al., 2014).
For a derivation of the evolution equations for these different formulations in comparison see
e.g. Hopkins, 2013. While this apparently solves the issue it actually just shifts it somewhere
else: the density. It is highly application dependent which formulation is then actually the most
desirable. For example in constant pressure and variable density fluid mixing tests a pressure
instead of density formulation is superior and vice versa. In real applications the, although
significant, impact of these different approaches can be totally hidden by the effects of all the
different physical models part of a complex astrophysical code.
As we typically treat classical fluids (v � c), we do not present an implementation of relativistic
hydrodynamics into SPH here but refer the interested reader to Springel, 2010b and references
therein.
Finally, we have not talked about how to actually evolve the presented equations in time. It has
become state of the art to assign individual time steps for each particle, typically in a power of
two hierarchy (Hernquist and Katz, 1989) using a standard Courant criterion to calculate ∆t

∆ti = C · hi
vsigi

(III-36)

depending on a dimensionless parameter C, the smoothing length hi and the signal velocity vsigi
which may be equal to the sound speed or the Alfvén speed of the fluid. This incorporates well
small times steps due to both high densities and fast fluid flows.
In general symplectic integration schemes (Hairer, Wanner, and Lubich, 2002; Springel, 2005a)
such as Leapfrog are most common and desired because they are time reversible and therefore do
not violate energy conservation. However, to construct a high order symplectic scheme is quite
challenging and carrying it out is time consuming. Springel, 2010b argues that since simulations
typically contain not only (magneto-) hydrodynamics but also a lot of other problems, they are
nevertheless typically not time reversible any more, even if a symplectic integrator is chosen.
Therefore, it is not most important to stick to a symplectic integrator but maybe go to a more
standard high order scheme like Runge-Kutta or a predictor-corrector method.



III-4. MODERN APPROACHES: EVERYTHING WE NEED FROM NOW? 65

III-4 Modern approaches: Everything we need from now?

Grid and SPH codes are well established in the astrophysical simulation community. People have
made great efforts to come around their flaws and thereby modern hybrid approaches have arisen
and celebrated their début in astrophysics during the past decade. In this section we present the
key thoughts behind the two main competitors of “classical” codes: “Moving Mesh” and “Mesh-
less Finite Mass / Volume” and give some insight into the question if these approaches could (and
should) replace classical Eulerian and SPH codes completely. Additionally we present a quick
survey over modified versions of SPH which have been developed not only for astrophysics and
close with an overview over the current code landscape.

III-4.1 Hybrid approaches: Moving mesh and Meshless

We already briefly touched the idea of a Lagrangian, deformable mesh back in section III-2.1
but came to the conclusion that this becomes problematically very quickly because of mesh dis-
tortions for example in strong shear flows (Vilar, Maire, and Abgrall, 2014). In rotating flows
the mesh can even tangle itself. The moving mesh concept follows this approach directly but
circumvents these distortions in a clever way. For this description we follow Springel, 2010a
who describes the concept as it is applied in the AREPO code.
The main idea is to combine the ability of Eulerian codes to treat shocks with very high accuracy
and the inherent adaptivity of a Lagrangian approach without the diffusivity of a classical grid
code. Whitehurst, 1995 presented as one of the first a hydrodynamical code utilising Voronoi
tessellation to circumvent this problem. Gnedin, 1995; Pen, 1998 tried to approach the mesh dis-
tortions using a remeshing algorithm whenever they become to large, which is very challenging,
computationally expensive and adds numerical diffusion. The generic term for these types of
codes is “arbitrary Lagrangian-Eulerian” in short ALE. Inspired by these predecessors Springel,
2010a construct their code based upon a Voronoi mesh constructed from a set of mass points in-
stead of a classical Cartesian one. The density of each cell is given by the particle mass divided
by the Voronoi cell’s volume, following Hess et al., 2010. Due to the mathematical properties
of the Voronoi tessellation deformations are prevented by a frequently changing mesh topology
which also circumvents the need for a mesh refinement technique to gain better mass resolution.
A Voronoi tessellation of space for a given set of points is defined such, that each cell contains
all the volume closer to the corresponding point than to all other points. Therefore, we get poly-
hedra in three dimensions whose faces are equidistant to the original points. An illustration for
better understanding of this concept (in two dimensions) is shown in the left panel of figure III.4.
with Smax being the maximal wave speed in both cells.
For practical reasons we can compute the Delauny triangulation instead of the Voronoi tessella-

tion since they are topologically dual to each other. In the picture of a Delauny triangulation the
set of points gives the vertices of triangles (in two dimensions) defined uniquely such that the
circumcircle around each triangle contains no other mesh generating point. In three dimensions
we have tetrahedra instead of triangles and spheres instead of circles correspondingly. This is
depicted in the middle panel of figure III.4. The mid points of the Delauny triangles form the
vertices of the Voronoi cells and for each line an orthogonal face is corresponding as shown
in the right panel. Constructing these kind of meshes is a well known task and literature con-
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Figure III.4: Illustration of a 2D Voronoi grid (left), the corresponding Delauny triangulation
(middle) and both overlayed with each other (right). Taken from Springel, 2010a.

tains multiple different algorithms to approach that. Springel, 2010a chose the “incremental
insertion” (Bowyer, 1981; Watson, 1981) which is among the fastest of these algorithms and
allows to compute the grid without prior knowledge of the amount of mesh generating points
which helps to formulate it in a well parallelisable way. We present a sketch guiding through
the different steps of this approach in figure III.5. The basic idea behind it is, to take an existing
triangulation, add an additional point and split the triangle in which it sits into three. Then for
each triangle the circumcircle is tested and edges are flipped until all triangles pass the test.
Having constructed the mesh associated with a set of mass points a Godunov type method can

be used to solve the Riemann problem across each face. Springel, 2010a use a MUSCL-Hancock
scheme as basis for their work (Leer, 1984). Also slope limiters, as discussed earlier, come into
play here. The choice of slope limiter poses a trade-off between numerical dissipation of the
scheme and emerging post-shock oscillations. Since the mesh is not a Cartesian one, operators
can not be split along the principal axes but a more complex vector based calculation has to be
carried out. Galilean invariance of the scheme is possible by tying the mesh movement (due to
movement of the underlying mass points) to the fluid motion (which is not a general requirement
for ALE schemes). This does not strictly guarantee that all cell faces also move with exactly with
the fluid motion, resulting still in mass flux between cells, albeit rather small. Therefore, one can
describe the scheme probably best as quasi Lagrangian. In order to avoid noisiness for example
in poorly resolved, cold flows, the same entropic function as in SPH is used in AREPO and
added as an additionally conserved quantity using

∂

∂t
(ρA) + ~∇ · (ρA~v) = 0, (III-37)

which is fully consistent with the fluid description of the Euler equations and just serves as an
additional tool to control conservation of entropy instead of conservation of energy.
Springel, 2010a further present a possible algorithm to make the cells more honeycomb like if
their aspect ratios start to rise to much in order to suppress numerical instabilities. They use
Lloyd’s method (Lloyd, 1982) which moves a mesh generating point to the centre of mass of
it’s cell. Then the mesh is reconstructed and the process can be repeated until the result looks
sufficiently regular again. However, they note that to avoid instabilities the order of reconstruc-
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Figure III.5: Illustration of the point insertion algorithm to construct a Delauny triangulation.
Taken from Springel, 2010a.
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tion needs to be reduced near fluid discontinuities. Additionally, they talk about adaptively (de-)
refining the mesh. While this is not required in order to keep a approximately fixed mass in each
cell, other reasons may exist to increase resolution at any point. For example the volume of each
cell needs to be limited to properly resolve small scale processes and to keep neighbouring cells
of similar size. This means splitting and joining of cells, which is more challenging than typical
AMR since the mesh geometry might need to be adjusted completely afterwards.
Coupling self gravity to the hydrodynamical scheme is very important for astrophysical set ups
and moving mesh codes inherit a great simplicity from their Lagrangian nature and is there-
fore not subject to the issues AMR codes experience. Other physics models can be in principle
adapted from other grid codes due to the similarity of their approach to solve equations across
faces.
Finally, a moving mesh code provides the user with a rather easy treatment of boundaries using
special cells which could be kept fixed. Nevertheless, one has to be careful since big differences
in cell sizes also at the boundaries can result in a notable reduction of accuracy.
Standard fluid tests reveal a very nice performance of the moving mesh code AREPO, for ex-
ample outperforming SPH at shocks and AMR codes at contact discontinuities. To judge on
results means also to consider the amount of computing time required to achieve them, as they
are mostly also dependent on the chosen resolution. At the state of the paper Springel, 2010a
reports similar but slightly less efficiency than the version of GADGET-3 at that time.
The second popular ALE approach we want to discuss here is called the meshless approach.
From the general method two derivations have become popular lately: “Meshless Finite Vol-
ume” (MFV) and “Meshless Finite Mass” (MFM). Originally introduced by Lanson and Vila,
2008a; Lanson and Vila, 2008b; Gaburov and Nitadori, 2011 the two state of the art astrophysi-
cal codes GIZMO and GANDALF contain these methods and the according papers of Hopkins,
2015 and Hubber, Rosotti, and Booth, 2017 present extensive comparisons with traditional and
state of the art SPH as well as grid and moving mesh codes’ performances. As MFM and MFV
belong to the class of ALE methods they automatically share a lot of the advantages with the
Moving Mesh approach, as we listed them earlier this section. Therefore, we limit this descrip-
tion to the required minimum to understand what it is about and refer to the excellent papers
mentioned for further reading.
The derivation of the governing equations starts similar to the moving mesh technique with the
Euler equations in a moving frame. Except for some mathematical details the main difference
of this approach is how the volume is partitioned. Instead of a Voronoi mesh the volume is par-
titioned around particles using a weighting function similar to an SPH kernel. The fraction of
the volume dν~x of a particle i is then given by

Ψi (~x) =
1

ω (~x)
W (~x− ~xi, h (~x)) (III-38)

with the appropriate normalisation

ω (~x) =
∑
j

W (~x− ~xj , h (~x)) . (III-39)

This means that at each location ~x Ψi (~x) determines the degree of how much this spot is as-
sociated with particle i. Due to typical kernel-like properties of the weighting function this is
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Figure III.6: Illustration of the cell/particle volumes in MFM/MFV, moving mesh, and SPH.
Taken from Hopkins, 2015.

a smooth transition between the realm of one particle and another with a mixedly influenced
region in between. An illustration depicting this behaviour in comparison to a Voronoi mesh
and an SPH partitioning is shown in figure III.6. We see that MFM/MFV can be understood as
some sort of middle ground between the latter two, incorporating the bisection of space between
two particles overlayed with an SPH like smoothing indicating that the moving mesh method
can be considered a special case just without the smoothing (except for some implementation
dependent, subtle differences maybe). Hopkins, 2015 explicitly stresses that MFM and MFV
are not a form of SPH despite the similarities.
Hopkins, 2015 and Hubber, Rosotti, and Booth, 2017 both apply again a MUSCL-Hancock
scheme and use a Riemann solver as discussed before. Hopkins, 2015 proposes a different gra-
dient estimator with higher accuracy as described by Mocz, Vogelsberger, and Hernquist, 2014
which employs a direct SPH gradient estimator as fall-back, if the condition number of the cor-
responding matrix which has to be inverted is not good enough. The latter is supposed to happen
only in rare cases though. As before, the particles used as building blocks for the discretisation
could be kept fixed but are ideally moved alongside the fluid to get rid of bulk motion effects
and automatically gain Lagrangian adaptivity.
Besides even higher order schemes being possible, MFM and MFV have become popular ap-
proaches of choice. But what is actually the difference between these two? As indicated by the
respective names, the treatment of volumes and masses differ. Assuming movement of parti-
cles with the fluid bulk motion, the faces between particles can be considered stationary in this
moving frame and a classical Riemann problem can be solved across those faces. That is called
the MFV method. However, except for the bulk motion of the fluid there are usually quite huge
fluctuations present which lead to cell distortions in the other schemes. A different assumption
is, to let the Lagrangian volume actually distort such that the mass inside is conserved leading
to the MFM method. In this picture there remains residual motion of the face which has to be
considered in the Riemann problem. In total, one of the schemes keeps the cells’ volumes fixed
and allows mass flux between cells while the other one rather keeps the mass fixed and let’s the
volumes change. For a smooth flow it is clear, that both methods must become exactly identical
(up to second order accuracy).
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Both the GIZMO and GANDALF paper present extensive test suited comparing the capabilities
of their codes to properly solve idealised hydrodynamical test problems towards codes utilising
SPH, AMR or even moving mesh. We review these slightly when presenting the proficiency of
our modernised version of GADGET later in chapter V. Just for a quick overview we want to
mention that the meshless approaches produce similarly good results as the moving mesh com-
pared to well known issues with SPH and AMR. While in SPH modern codes typically employ
high order kernels and several hundreds of neighbours, the meshless approach works at least
equally well with only 32 neighbours for a similar computational cost.3 Meaning that, while
maybe not necessary at the moment, increasing the neighbour number here will let the compu-
tational cost rise a lot, way beyond that of SPH with the same neighbour number. Furthermore,
MFM and MFV differ slightly in the quality of their results and it depends on the type of test
which one ultimately performs better. MFM has the advantage of better particle tracking, due to
conserved particle mass, better angular momentum conservation and less noise than MFV which
comes for the cost of a slightly more diffusive algorithm capturing discontinuities less sharply.
In total, MFM seems to be somewhat preferable for typical astrophysical applications. Hopkins,
2015 does not show the results from both methods for each tests and reading Hubber, Rosotti,
and Booth, 2017 carefully might reveal why. Although the results in general are really great,
there are still errors left which are in some cases definitely notable and need to be addressed.
Differences between meshless and moving mesh are the most subtle and need to undergo careful
investigation. A key point is however, that due to the SPH like smoothing discontinuities will be
never as sharp as in any grid code without smoothing, just by construction. That said, the main
point left is to state that while SPH and classical finite volume is well studied, these new hybrid
approaches also need some time to be understood thoroughly and be fine tuned to the problems
at hand despite producing very nice results in standardised tests already.
As a quick side note, since magnetic fields are important to us. GIZMO has since it’s first re-
lease been extended by a description of non-ideal MHD (see e.g. Hopkins and Raives, 2016)
utilising the constrained transport scheme of Evans and Hawley, 1988; Mocz, Vogelsberger, and
Hernquist, 2014 to control potentially upcoming magnetic field divergence terms. Without the
constrained transport scheme this type of code which is optimised to minimise numerical dif-
fusion in combination with the employed Powell 8-wave approach tends to produce very long
lasting monopoles. This has not been such a big issue in classical grid codes, as diffusion tends
to damp the occurrence of these non-physical monopoles (Tóth and Gábor, 2000; Pakmor and
Springel, 2013).

III-4.2 Look around: Modified versions of SPH

Outside the realm of astrophysics there exists a big community which also utilises SPH and
brought forward it’s own take onto the problems the numerical discretisation brings with it and
that is engineering. Although the physical problems approached are quite different to what we
do in our simulations, for example a dam break or calculation of flows in turbines, SPH is also
quite suited there. Due to the nature of these tasks, other problems arise. Where we simulate
typically very diffuse and compressible gases with open boundaries, at least weakly or even in-

332 being one of the sweet spots where the kernel bias becomes very small, see section III-3.1.
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compressible fluids like water and their interaction with solid objects and boundaries play a role,
which brings a whole new set of challenges with it. Nevertheless, a Lagrangian code is naturally
well suited for the interaction with free surfaces which is why it is commonly employed as the
basis for such simulations. In comparison to SPH in astrophysics which started with Lucy, 1977;
Gingold and Monaghan, 1977 these applications are even younger, with the first publications ap-
pearing only 25 years ago with Libersky et al., 1993; Randles and Libersky, 1996. And in the
last two decades SPH for these applications has evolved as much as it did in the astrophysical
community. Since our own community has grown so large, we often lack an overview of what
other people in completely unrelated science areas develop, even if they evolve from the same
basis. Therefore, we aim to give a quick overview of some of the different flavours of SPH that
have emerged and show, that sometimes the similarity to our own research is remarkable with
only a common taxonomy missing.
Liu and Liu, 2003 give an overview over different flavours of the SPH method, including Adap-
tive SPH (ASPH), also called Discontinuous SPH which has been first presented by Shapiro
et al., 1996; Owen et al., 1998. The adaptivity of this approach lies in a modification of the
kernel function which is replaced by an anisotropic matrix and, therefore, can handle density
anisotropies below the level of one kernel size. Consequently, instead of one smoothing length
per particle they carry an anisotropic smoothing tensor. The success of this approach is rather
limited in the astrophysical community, where we rather tend to increase the number of res-
olution elements, it can have promising effects for particles interacting with fixed boundaries.
Amongst others, Yu and Turk, 2013; Wang et al., 2016 present algorithmic descriptions and
e.g. Fang et al., 2017 writes about the idea of inverse kernels, which is related. Spreng et al.,
2017 also call their method Adaptive SPH, which approaches boundary problems with a differ-
ent approach by introducing an additional refinement technique. Based on the consistency order
matrix SPH particles can be splitted or merged together to generate additional resolution where
required even in constant density problems.
An approach similar to the idea of inverse kernels, is the Reproducing Kernel Particle Method
(RKPM) by Liu et al., 1995, which is described as “similar to SPH but without the tensile insta-
bility”, using correction functions for boundary effects. It can be formulated based on a Fourier
transformation and reminds of the definitions of the typical spline kernel functions (Schoenberg,
1973; Monaghan and Lattanzio, 1985). The idea behind the RKPM is basically, to modify the
kernel function in order to gain a higher order correctness of discretised estimates. Furthermore,
it can be implemented into a Galerkin finite elements formulation, which has the advantage of
being a standardised formulation with a lot of research and experience already present. RPKM
is still actively developed further, see e.g. Imin, Iminjan, and Halik, 2017 for a detailed descrip-
tion of the method and bridging the gap back to anisotropy in kernel functions and boundary
interactions. For further reading about a Galerkin formulation of SPH see also for example
Cueto-Felgueroso et al., 2004.
As mentioned, naming of the different modifications and distinguishing them can be an issue.
There is for example Symmetric SPH (SSPH), which itself is an over-class of classical SPH,
RKPM, Modified SPH (MSPH) and Moving Least Squares (MLS), and Corrected SPH (CSPH).
The names suggest differences but in the core these methods target the same problems and are
sometimes of similar nature. For further reading about these, see e.g. Dilts, 2000; Fernández-
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Méndez, Bonet, and Huerta, 2005; Batra and Zhang, 2007; Zhang and Batra, 2009 and refer-
ences therein.
Exploring in a different direction is for example so called δ−SPH, which is applied to weakly
compressible fluids and features an additional (physical or artificial) diffusive term in the conti-
nuity equation (Molteni and Colagrossi, 2009; Antuono, Colagrossi, and Marrone, 2012).
SPH-ALE is another interesting topic which reminds of the moving mesh and meshless meth-
ods we discussed in section III-4.1. The basic idea behind this is, to solve a Riemann problem
between each neighbouring particle pair, therefore the method is also known as Riemann SPH.
That allows the SPH formalism to be coupled with a finite volume code. Vila, 1999 present such
an approach and discuss how the merged result can look like. In the astrophysical community
basically the same approach has been discussed under the name Godunov SPH as originally
presented by Inutsuka, 1994. Murante et al., 2011 discuss an implementation of this approach
into the GADGET-3 code and show it’s performance in several test cases. The main advantage
gained, is a better treatment of shock fronts and contact discontinuities, the latter getting rid of
the so called pressure blip, without the need for artificial viscosity. Although on first glance the
Riemann solver is computationally rather expensive, an approximate solver can mitigate this but
the main downside is the choice of kernel. As they present an implementation for a Gaussian
kernel, neighbour numbers become very large which makes this approach very hard to utilise
properly. Also Kumar et al., 2013 present an implementation using a truncated Gaussian.

III-4.3 Code diversity through modern astrophysical codes

Now that we have thoroughly investigated the typical numerical techniques used in astrophysics
and extensions which have come up beyond that, the obvious question “Which one is the best?”
stands dominantly in the middle of the room.4 Looking at the huge range of scales astrophysics
covers, from star forming regions to galaxy clusters, from dense to ultra diffuse gas, from just
a few Kelvins of temperature up to 108 Kelvin it is easily understandable that there can not be
just one answer to that question. It has to be at least modified to “Which one is the best for the
specific problem we want to solve right now?”. With the vast range of different problems and
approaches we can take, a huge landscape of astrophysical codes has emerged and we can just
note a subset of all these listed in table III.1.

We have given insight not only into how these different approaches basically work but also
described the advantages of each method and it’s drawbacks which people have tried to mitigate
over the years. The performance of each method and thereby of each of these codes has been
properly measured using standardised hydrodynamical tests for which have a basic understand-
ing of what should happen. These cover the treatment of shocks and contact discontinuities, fluid
mixing, the development of instabilities and stability of hydrostatic setups. While all these tests
assess the performance of the underlying (magneto-) hydrodynamical scheme from a computer
science point of view they are already a few steps ahead from general code testing which is un-
fortunately rarely done in an automatic fashion in the astrophysical community. Some modern
codes like GANDALF (Hubber, Rosotti, and Booth, 2017) stand out as good examples. These
standard hydro tests maybe simple enough to properly grasp the quality of the numerical results

4On top of the magnetic elephant.
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Mesh based codes
AREPO Springel, 2010a

ART Kravtsov, Klypin, and Khokhlov, 1997
ATHENA Stone et al., 2008

ENZO Bryan et al., 2014
FLASH Fryxell et al., 2000

NIRVANA Ziegler and Udo, 1998; Ziegler, 2005
PLUTO Mignone et al., 2007

RAMSES Teyssier, 2002; Fromang, Hennebelle, and Teyssier, 2006
ZEUS Stone and Norman, 1992a; Stone and Norman, 1992b

SPH codes
GADGET Springel, 2005a

GASOLINE Wadsley, Stadel, and Quinn, 2004
MAGMA Rosswog and Price, 2007

PHANTOM Price et al., 2017
SEREN Hubber et al., 2011
SWIFT Gonnet et al., 2013

Multiple solvers
GANDALF Hubber, Rosotti, and Booth, 2017

GIZMO Hopkins, 2015; Hopkins, 2017

Table III.1: Incomplete list of popular astrophysical hydrodynamics codes grouped by the type
of code and sorted alphabetically.

and the correct result may be even calculable analytically but two important notes have to be
taken here when interpreting the results.
First of all an important factor has to be taken into account and that is the quality of the initial
conditions used for these tests. Depending on the type of code it is highly non trivial to set
up a proper starting configuration which exactly resembles a given model with low numerical
noise. While this is rather straight forward for (at least stationary) grids, particle type methods
are much more difficult. Especially if we want to compare the performance of a grid and a SPH
code where we need different initial conditions we need to take good care that they are of equally
high quality. The topic of initial conditions is of course not only important for testing but also
for setting up simulations for the problems we want to actually solve. We will come back to
this topic later in chapter IV where we present a novel code to set up particle configurations
following any given density model.
The second remark does not directly affect a test’s result but rather targets the importance of
these results. Although the vast comparisons of hydrodynamical solvers have shown notable
differences in practise there is something which may cause even bigger effects. Namely all
the different physics modules we employ in addition to pure (magneto-) hydrodynamics, like a
prescription for star formation, feedback, metal diffusion, AGNs and many more. We have not
touched these extensions so far - but will do so in the next section - since hydrodynamics alone
is not even that simple to solve as we have seen. At this point one can at best take a middle
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ground between two extreme positions. One stating that the underlying numerical description
of a code affects everything which is implemented and that any code which does not even treat
hydrodynamics properly could or rather should never be used for a proper scientific analysis
of even more complex processed. The other extreme would be to say that the differences in
hydrodynamical solvers are still very small compared to, and can be completely shadowed by,
different physical prescriptions of other processes and therefore work has to go into modelling
these processes rather than squeezing pout the last bit of accuracy from the underlying solver
in test cases which never occur isolated from other effects anyway. Extensive code compari-
son projects also on a higher abstraction level have been carried out over the decades, like the
famous Santa Barbara galaxy cluster comparison where all the different codes showed drasti-
cally differences for the results of an isolated galaxy cluster simulation even without radiative
processes involved (Frenk et al., 1999; Agertz et al., 2007; Tasker et al., 2008; Mitchell et al.,
2009). The performance of our modernised version of GADGET regarding this cluster simula-
tion is presented in chapter V. Later there came for example the Aquila project with simulations
of Milky Way like disk galaxies (Scannapieco et al., 2012) and just recently another extensive
comparison project has been launched starting under the name NIFTY which has now evolved
into a comparison of about 300 re-simulated galaxy clusters from a big cosmological box called
“The Threehundred”. We will come back to this project later in chapter IX.
In the end both positions have their valid points and it is best to keep both of them in mind
and find a good way to satisfy both. Modern approaches like moving mesh and MFM might be
the future of astrophysical simulation codes and slowly replace classical SPH and fixed mesh
codes but at the present time there is still a lot more work to be done to properly understand
their behaviour in all the vast ranges of applications. And they are most probably also not the
end of the line, as there are always issues to solve and errors to decrease. Actually, the diversity
of so many different codes is not even something bad because it really gives us the opportunity
to simulate some problem with different approaches and then compare the results and maybe
learn from that which results are rather of numerical origin than of the physical modelling em-
ployed. When we reach a point where all the different codes give us the same answer it is maybe
much more believable than just using one code’s result which makes the mentioned comparison
projects extremely beneficial. As we see for example later in chapter V and compare the Santa
Barbara cluster result to Springel, 2010a this kind of convergence actually happens which is very
exciting. Summing up, classical grid codes and SPH are definitely not dead and it is still worth
further improving them pursuing ambitious science goals.

III-5 Additional physics beyond MHD

Of course not everything can be answered with (magneto-) hydrodynamics alone. Before adding
advanced models for processes like star formation or radiative cooling there stands something
even more important: the gravitational forces via an external potential and self gravity between
all fluid elements. Actually it is even more important than hydrodynamics in order to properly
reproduce structure formation in the universe. While it may seem simple compared to everything
we talked so far, it is definitely not. And without a proper treatment of gravity all the effort can
go to waste. Therefore, big simulation projects typically start with a dark matter only box, where
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only gravity plays a role. The publicly most well known and successful although not biggest dark
matter only simulation is probably the Millennium simulation (Springel et al., 2005). See e.g.
Frenk and White, 2012 for review of the state DM simulations are in. The next two subsections
will give some overview over treatment of gravity and additional physics.

III-5.1 Understanding the gravity of Newton vs Einstein

Cosmological simulations already contain a big hint in their labelling: “cosmological”. Sim-
ulations like Magneticum (Dolag et al. in prep.), Illustris (Vogelsberger et al., 2014) or Eagle
(Schaye et al., 2015) treat the evolution of a big cosmological volume starting at very high red-
shift up until present time. In order to properly run these simulations it offers quite a lot of
benefit, to treat all variables in a co-moving way in order to factor out the expansion of the uni-
verse properly. The next logical step then would be to assume, that we can no longer treat gravity
classically but need to resort to a general relativistic treatment. That might be true, depending on
the target of what is simulated. For the mentioned cosmological boxes, however, it only plays a
very minor role as linear structure growth is the same in both Newtonian and relativistic gravity
and because non linear structure growth induces only velocities much smaller than the speed of
light (Frenk and White, 2012). Chisari and Zaldarriaga, 2011 also show that Newtonian dynam-
ics actually solves dynamics correctly even on large scales. They give a recipe how to judge on
that comparing general relativistic results and the Newtonian limit.
Nevertheless, a more accurate treatment might be relevant in the future. To quantitatively judge
on the importance of a relativistic approach we have to assert the following necessary conditions:

1. To be able to neglect even special relativistic effects, all velocities have to be much smaller
than the speed of light: vi � c.

2. In Newtonian physics the forces of gravity work instantaneously while in general relativity
the signal velocity is the speed of which gravitational waves travel with: the speed of light
c. In order to neglect that we require the typical dynamical timescales to be much bigger
than the time for gravity to operate: tdyn � tlight crossing.

3. In general relativity matter equals to deformation of space-time. To neglect that, the cur-
vature caused by all the fluid elements’ masses has to be negligible.

From observations and analysing simulations we know that velocities are typically small com-
pared to the speed of light. This depends on what we actually look at, but for galaxy formation
(or a similar topic) it is definitely the case and the first condition is fulfilled.

Instantaneous gravity

The velocity of gravitational waves plays a bigger role, the larger the volume we want to simulate
is. A typical example would be a b = 1Gpc sized box with a central halo forming a galaxy cluster
with r = 2Mpc. We do the analysis at redshift z = 0 since the physical volume is then largest
and we do not have to convert between comoving and physical variables. The typical dynamical
timescale can be estimated by the free fall time:

tff ∼
r

v
≈ 20Gyr (III-40)
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for a typical velocity of 100km/s. Sound waves travel with velocities even up to a factor 10
faster, decreasing this time by an order of magnitude. Now, calculating the time a gravitational
wave travels from one side of the box to the other takes

tbox =
b

c
≈ 3Gyr (III-41)

which is actually of comparable magnitude. However, considering only where gravitational
forces are strong we can decrease the travel length from the whole box size down to something
similar to the galaxy cluster’s size, where most of the mass will end up:

tgc =
2 · r
c
≈ 10Myr. (III-42)

That is now several orders of magnitude smaller and the posed criterion can be considered ful-
filled up to some degree of error.

Curvature due to matter overdensities

In order to judge upon the effects of the simulated matter onto space-time we have two possi-
bilities. For one, we need to consider Einstein’s equation (equation I-4). Curvature is depicted
by the Riemann tensor or by reduction of dimensions the Ricci tensor and scalar. To prove
that space-time is sufficiently flat we have to consider an appropriate energy-momentum tensor
for matter and radiation in the region of interest and show that the Ricci scalar is appropriately
small. However, this requires some very complex calculations and a scale with witch we can we
can actually judge the resulting value.
The alternative approach is much simpler but gives a very satisfying result. It is based on the
assumption that the radius of the space-time curvature induced by any object can be at most as
large as the size of the object itself. Furthermore, if the radius curvature is much larger than the
Schwarzschild radius of said object, it does not play a significant role:

rK & r
!
� rs. (III-43)

The Schwarzschild radius is given by

rs =
2mG

c2
. (III-44)

For our sample galaxy cluster with r = 2Mpc we can assume a mass of m = 1015M� which
leads to rs = 9.6 ·10−5Mpc which fulfils the inequality. The same calculation can be done for a
sample Milky Way type galaxy with r = 30kpc andm = 1012M� and therefore rs9.6·10−5kpc.
Just to give a counterexample, neutron stars are so condensed that their size comes close to their
Schwarzschild radius and the inequality is not fulfilled any more.

Approaches to treat Newtonian gravity

Most of the hydrodynamics codes listed in table III.1 contain a coupled gravity solver in order
to follow self gravity of the fluid. The unification of SPH and a tree based gravity solver (which
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we explain in a bit) for example goes back to the code TreeSPH (Hernquist and Katz, 1989). Be-
sides them there also exist pure gravity solvers like NBODY6 (Aarseth, 2003) or STARLAB/kira
(Portegies Zwart et al., 2001). Here we will discuss some of the most popular approaches how
to actually incorporate gravitational forces into such a code.
To add Newtonian self gravity to the equations of hydrodynamics we add the gravitational po-
tential Φ as source term on the right hand side (rhs) of equations II-49

rhs = −ρ~∇Φ (III-45)

and II-51

rhs = −ρ~v · ~∇Φ (III-46)

or the Lagrangian equations respectively. Φ comes from Poisson’s equation:

∆Φ = 4πGρ. (III-47)

Instead of calculating the potential we can also directly work with gravitational forces and apply
them to the accelerations. There are several different approaches we can take and we discuss a
few popular choices in this section.
The most straight forward choice, especially in a particle picture, is the direct sum. This means
to evaluate the gravitational force between each particle pair and apply it to both particles. The
advantage of this approach is the extreme accuracy we can reach with it unfortunately for an
immense cost of an algorithm scaling with O

(
N2
)
, N being the amount of particles, which is

typically not feasible. However one has to note that the amount of particles is always much less
then the amount of real physical particles in the simulated domain, which makes even this direct
approach rather a Monte Carlo method than a totally correct computation.
Due to the bad scaling with particle number of the direct sum approach, typically a so called
tree code is used as for example in the popular form of the Barnes-Hut tree (Barnes and Hut,
1986) which is implemented in GADGET. The basic idea behind that is, to partition the simu-
lation space in a hierarchical tree structure. For example an oct-tree divides each cell into 8 sub
cells in three dimensions up until some criterion after which a tree node is considered a leaf and
not further divided. Typically the criterion is chosen such, that only a few particles are left in
the cell. Alternatively the height can be kept fixed using empty cells for easier parallelisation
as shown by Nabors et al., 1994. Alternatives to an oct-tree are for example a binary kD-tree
(Stadel, 2001) or a structure based on nearest-neighbour pairings (Jernigan and Porter, 1989).
However, an oct-tree has proven it self as very effective since it keeps cell aspect ratios small,
reducing the magnitude of high order multipoles. Furthermore, it can be directly used for neigh-
bour searching in case it is coupled to for example an SPH code as in GADGET which is very
beneficial since the tree has to be built only once per time step. It can be directly coupled to space
partitioning using a space filling curve which also helps efforts for parallelisation. To calculate
the gravitational forces regarding one particle the tree is traversed and if a cell is far enough
away and/or small enough then the force is evaluated with respect to the whole cell instead of
all the particles inside it. A multipole expansion can be carried out with the monopole assuming
all particles inside a cell sitting approximately at the cell’s centre which is typically sufficient.
This saves a lot of interactions compared to the direct sum and it scales only withO (N log (N))
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which makes the method much faster and still pretty accurate depending on the exact opening
criterion, which is typically formulated as a critical angle, for the evaluation. Springel, 2005a
presents an adaptive criterion based on the mass M inside a node of size l at distance r as

GM

r2

(
l

r

)2

≤ α |~a| (III-48)

with the total acceleration |~a| saved from the last time step and a numerical factor α. Using such
a criterion, the typical force error can be kept approximately constant over the whole simulation
domain.
Another hierarchical algorithm is the Fast Multipole method (FMM, see e.g. Cheng, Green-
gard, and Rokhlin, 1999), as implemented in the FMB code, and a hybrid approach presented
by Dehnen, 2000; Dehnen, 2002, as implemented in falcON. FMM decomposes the interactions
into a directly computed near field part and a far field part for which a multipole expansion into
spherical harmonics up to an accuracy order P is carried out. The scaling is then of the order
O (N) which is very quick for large particle numbers but becomes very slow for high desired
accuracy. It is also implemented typically using an oct-tree structure, which has to be traversed
only two times: Once upwards to build the multipole expansions always using those previously
calculated for sub cells and once downwards calculating the local expansion of each cell using
the multipole expansions. The good scaling comes from the ability to keep interactions on a
cell-cell level instead of particle-cell. Dehnen’s hybrid approach combines the Barnes-Hut tree
with the FMM method in a clever but more complicated way assuming that the required pre-
cision is anyway limited due to gravitational softening. Gravitational softening means to apply
always a minimum distance between each particle pair to prevent extremely large forces (or even
singularities in case of the same location) which would require very small time integration steps.
Since the degree of softening amounts basically to a resolution limit ideas have come up to vary
it in a spatially adaptive way (Price and Monaghan, 2007).
As a quick side-note, Fortin, Athanassoula, and Lambert, 2011 reviewed these hierarchical ap-
proaches and assessed accuracy as well as scaling in serial as well as parallel execution. The
important conclusion for us at this point is, that for a large number of neighbours and amount
of processes in parallel the BH-tree in GADGET is definitely the best choice. Looking into
Springel, 2005a reveals that there is even more to it, since it can be coupled to a further method
which goes away from the idea of a hierarchical solver but comes back to the formulation of a
gravitational potential: The Particle-Mesh (PM) approach, Tree-PM in the coupled version (see
also Xu, 1995; Bode, Ostriker, and Xu, 2000; Bagla, 2002; Bagla and Ray, 2003). The idea
behind the particle mesh is that the gravitational potential is split in Fourier space into a short
range and a long range part. The short range part is solved in real space and is in the coupled
method taken over using the Tree while the long range part uses a mesh based Fourier method.
This is also a very common approach, since libraries such as FFTW offer a well tested, good
scaling and fast interface. While this is a very quick and accurate way to compute the gravi-
tational forces, the drawback lies in the fact that there is one whole tree for the full simulation
domain. As the amount of particles grow this tree becomes very large, requiring a huge chunk
of memory just to save the structure on each compute node. This will at some point become
an important bottleneck which lies not to far in the future. Especially due to the recent efforts



III-6. GOALS OF THIS WORK AND INTO THE FUTURE 79

to build hybrid CPU/GPU codes which solve gravity (and of course other parts) on the GPU.
Examples are the upcoming GADGET4 and OPENGADGET.

III-5.2 Additional models as subgrid approach

So far we have discussed the treatment of gravity and magnetohydrodynamics. With this knowl-
edge we can reproduce structure formation and start to simulate astrophysical objects. However,
there are still very important key ingredients missing in our prescription of the universe includ-
ing star formation, stellar feedback, supernovae, chemistry as in treatment of heavy elements,
radiative cooling, formation and feedback from black holes and many more. All these have to be
modelled, if deemed necessary, in a way that they work properly at the given resolution level and
resemble what we think to know about how the underlying processes act. And that is already the
crux here: resolution. Assuming an SPH simulation in which we have modelled a fluid using
mass tracers but we never resolve it down to the level where one tracer particle equals an actual
physical particle. The same comes into play here on several different levels. For example we
want to simulate the evolution of a whole galaxy cluster with all the hundreds of galaxies inside.
In order to form stars the external pressure needs to be large enough on a gas cloud so that it
can collapse. But we can not even resolve these gas clouds in a crude way let alone sample
them well enough to formulate such a criterion properly. Also the time it takes for the cloud to
collapse and a star to form is so much smaller than the typical time steps applied, that is also
falls through time-wise and not only spatial resolution. What astrophysicists do in such a case is
called subgrid model. We try to find a, typically statistical, prescription which mimics the effect
of such a process as star formation on a much coarser level. But this comes with a price: The
model can be plainly wrong. Or it might be correct statistically but a similar model with the
same statistical output can handle details so much differently that the outcome differs quite a lot.
Additionally, each model typical requires some parameters which need to be set such that the
outcome looks realistically. Sometimes model parameters correspond directly to some physical
process and can be constrained well by observations. Otherwise it can become quite arbitrary
how to set them properly. The resulting danger is that people can tune their parameters such that
they basically get out what they put in - which in return let’s us learn absolutely nothing about
the correctness of the employed model. Sometimes it is very hard to distinguish which results
are actually biased in such a way and which are not. For overview of these models and chal-
lenges with respect to galaxy formation in a cosmological context see e.g. Somerville and Davé,
2015. The detailed models used during this work will be referenced in the respective chapters.

III-6 Goals of this work and into the future

Having outlined the different approaches we take to simulate astrophysical objects and their for-
mation and evolution, it has become clear that this is indeed a very difficult endeavour. It is not
only about understanding the physics required but also the computer science behind all these
different methods and codes. One needs to keep some balance between the two since neither
can not work without the other. And as computing power rises we try to increase resolution and
accuracy both in order to be able to really cover all the necessary processes properly. Figure III.7
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Figure III.7: Moore’s law as number of resolution elements over time. Taken from http:
//magneticum.org/simulations.html

http://magneticum.org/simulations.html
http://magneticum.org/simulations.html
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shows Moore’s law for the number of resolution elements in huge astrophysical simulations over
time. Originally stating that the number of transistors in an integrated circuit doubles each year
it also shows this exponential growth in this related matter.
In order to make this growth possible we need to solve all the problems arising due to the in-
creased number of resolution elements and/or accuracy. This means generating equally high
quality initial conditions (chapter IV), improving our SPH scheme to mitigate the discussed
weak points and testing it properly (chapter V), properly analysing the resulting particle based
data by translating it to a volume discretised picture (chapter VI) and finding ways to actually
handle these huge amounts of data (chapter VII). Only then can we proceed to learn more about
astrophysical processes like the influence of anisotropic thermal conduction in galaxy clusters
(chapter VIII), starting with a new generation of a code comparison project studying galaxy clus-
ters (chapter IX), studying magnetically driven winds (chapter X) and rotation curves (chapter
XI) in disk galaxies.
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Chapter IV

Initial conditions generation:
Difficulties of SPH

Everything of importance has been said before by someone who did not discover it.
– Alfred North Whitehead

As laid out earlier the first ingredients of any simulation are proper initial conditions. They
come with two important aspects: First, a good model describing the initial state properly, like a
density field ρ (~r), a temperature field T (~r), a velocity field ~v (~r) and so on. This model might
describe for example a rotation disk galaxy in hydrodynamic equilibrium or contain the infor-
mation from cosmological density perturbations in order to study structure formation. Second,
these scalar and vector fields must be properly translated into a form which the code at hand
can understand. For volume discretising codes this is fairly straight forward, as the functions
can be directly evaluated at whatever sampling point. Mass discretisation schemes like SPH,
which we use throughout this work, are much more difficult to satisfy because the fields need
to be translated properly onto tracer particles. Not only the properties these particles carry are
important but also their locations. One could eliminate the dependency on location by aligning
them on some kind of grid but even that becomes non-trivial in the presence of density gradients.
This chapter revolves around a novel (and future open source) code which tackles this problem
and is supposed to generate any initial conditions by just supplying the describing scalar and
vector fields alongside some general parameters like the number of particles. It is based on the
paper draft of Arth, Donnert, Steinwandel, Halbesma, Pütz, Hubber and Dolag in prep. whose
publication will be pursued in the near future.

IV-0 Abstract

We present a novel application to generate glass-like initial conditions for Smoothed Particle
Hydrodynamics following arbitrary density models based on the work shown in Donnert, 2014.
We enhance an algorithm presented by Diehl et al., 2012 based on a weighted Voronoi tessel-
lation and combine it with improved initial configurations and an additional particle reshuffling
scheme. We show our application’s ability to sample different kinds of density features and to
converge properly towards the given model density as well as a glass-like particle configuration.

83
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We analyse convergence with iterations as well as with varying particle number. Additionally,
we demonstrate the versatility of the implemented algorithms by providing an extensive test
suite for standard (magneto-) hydrodynamics tests as well as a few common astrophysical ap-
plications. We indicate the potential to bridge further between observational astronomy and
simulations as well as applicability to other fields of science by advanced features such as de-
scribing a density model using gridded data for example from an image file instead of an analytic
model.

IV-1 Introduction

With rising computing power simulations have become an integral part of modern astrophysics
over the last few decades. In the past years people have traversed more and more from theoretical
calculations with pen and paper to complex computer driven computations. These range from
high precision simulations of idealised systems on various scales, as for example Bate, Tricco,
and Price, 2013; Pakmor and Springel, 2013; Bonafede et al., 2011, to large cosmological boxes
which model a significant portion of the visible universe (e.g. Hirschmann et al., 2014; Vogels-
berger et al., 2014; Schaye et al., 2015). Several numerical techniques have been developed,
refined and compared in order to improve the tools to widen our understanding of the physical
processes which take place in the universe.
What they all have in common is the prerequisite of some sort of initial conditions for their
simulations. These may be physically motivated as in the examples given above or simply pose
the means to test the behaviour of one’s code with an analytically understood problem. Not
only a proper definition of the physical key quantities in these initial conditions is important, but
also their numerical representation. Often simulations try to analyse physical processes with ex-
tremely small effects which can be easily hidden by noise produced from bad initial conditions.
Depending on the kind of numerical code chosen this might be a nearly trivial task or rather
complicated. The former being the case e.g. for a standard fixed volume discretisation scheme
and the latter, as in the focus of this paper, for example a mass discretisation scheme such
as Smoothed Particle Hydrodynamics (SPH) (Lucy, 1977; Gingold and Monaghan, 1977) or
Meshless Finite Mass / Volume (Gaburov and Nitadori, 2011; Hopkins, 2015). In this paper we
present an open source code which can generate relaxed initial conditions for SPH given any
arbitrary physical description of initial conditions based on the work of Donnert, 2014. We start
by defining the actual task in section IV-2, followed by a description of the presented algorithms
in section IV-3. In section IV-4 we show the performance of our implementation measured by
way of several test problems and finally present a few applications in section IV-5 before closing
with describing the actual usage of the application in section IV-6.

IV-2 Overview of IC generation

IV-2.1 Requirements and degrees of freedom

Initial conditions contain a complete physical description of all physical quantities as a function
of position inside the simulation volume, such as the density ρ (~r), internal energy u (~r) and
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the velocity ~v (~r). This mathematical description can be translated into a volume discretisation
in a straight forward way, just by evaluating the functions at the discretisation points. For a
mass discretisation scheme this is not easy because mass sampling particles have to be placed
somewhere in the simulation volume in such a way, that the physical quantities calculated from
the ensemble resemble the mathematical description given. It directly follows, that the most
important quantity is the density, since it results from the placement of mass tracers. The other
quantities then fall into place and need not to be discussed further.
The density in SPH for a particle i is calculated via a sum over the nearest neighbours of the
mass times the kernel function:

ρi =

#NGBs∑
j

mjW (|~ri − ~rj | , hi) (IV-1)

The kernel function depends on the distance between both particles i and j and the smooth-
ing length hi. As standard kernel in our implementation and all tests presented in this paper
we chose the Wendland C6 kernel function with 295 neighbours in three dimensions, following
Dehnen and Aly, 2012. Since this is the only SPH specific type of equation we need for this
paper, we refer the interested reader to Price, 2012b for a recent review of the SPH method.
To reach a certain model density one can chose to use either constant or variable mass particles.
While the latter makes it possible to choose a universally ideal particle placement by adjusting
the masses to fit the density, it is very disadvantageous. A significant contrast in particle masses
leads to either a large variance in the amount of neighbours inside a kernel and to high computa-
tional cost in low density regions or even to numerical instabilities. Monaghan and Price, 2006
have shown, that one can not reach a low energy state with variable mass SPH particles with the
classical SPH method.1 Therefore, we restrict ourselves to constant mass SPH particles.

IV-2.2 Particle placement

Even for the ideal case of a constant density there exist several common approaches for particle
placement. These include for example random positions, lattice configurations and so called
glass files.
The former, while being very easy to implement, have the inherent flaw of poison noise which
translates directly into the density estimate. In the left panel of figure IV.1 we present a two
dimensional, random particle distribution, which reveals an irregular structure full of holes and
clumps. Furthermore, particles are more likely to be closer to each other than the mean particle
distance, than further away, which introduces an additional anisotropy onto the density noise.
Lattice configurations come in different flavours, for example based on a cubic unit cell (cP, bcc
or fcc) or in hexagonal configuration (hcp, see for example Kotarba et al., 2011). The advantage
of these configurations is their regularity which results in an easy equilibrium configuration.
However, effects known from grid codes are introduced, like the introduction of principle axes
which may lead to orientation dependent results.
Finally, in a glass file particles are distributed in a similar fashion as molecules in a physical

1There exist modern hybrid methods for which this is not necessarily the case, like the MFV method presented in
Hopkins, 2015.
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Figure IV.1: 2D particle placement for a constant density model with 104 particles. Left: Ran-
dom distribution; Right: Glass distribution
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glass. It defines a hydrostatic equilibrium condition for the system and therefore poses a low
energy state. Particles are distributed non-regularly, however, with a very confined distribution
of inter particle distances which helps to reduce noise (White, 1994). This can be seen in the
right panel of figure IV.1.

IV-2.3 Variable density modifications

The random positions can be easily adjusted to follow a different density distribution than the
uniform one and we will later exploit this in section IV-3.2. However, the aforementioned sam-
pling error remains. Therefore, we rule out this method.2 Lattices and glass files can not be
easily translated to a variable density. The homogeneous setup has to be stretched and com-
pressed to follow the underlying density model. This process is already not straight forward and
in addition it results in a loss of regularity for the lattice and usually a less relaxed ensemble
in the glass case. Nevertheless, stretching of uniform distributions is still commonly applied in
the community (Price and Monaghan, 2005). We refer to Diehl et al., 2012 for a comparison of
different approaches.
For example the initial conditions generation used for the novel SPH/N-body code Gandalf
(Hubber and Rosotti, 2016; Hubber, Rosotti, and Booth, 2017) relaxes a set of particles to-
wards a density model and a glass distribution simultaneously by applying two forces between
particle pairs, one for each target property. The algorithm we present in this paper works similar
at it’s core and we proceed by describing our approach in the next section.

IV-3 Code description

Our implementation is based on the method presented in Diehl et al., 2012, called Weighted
Voronoi Tessellation (WVT) and aims to produce relaxed, low energy glass files for any arbi-
trary, given physical model. In the following subsections we will first describe the core parts of
the algorithm, clarify typically arising issues and present a quick study on how to improve the
convergence by choosing the best possible starting configuration.

IV-3.1 WVT relaxation

As shown by Diehl et al., 2012 the original algorithm is based on a Voronoi tessellation, hence
the name WVT, however we do not need to implement the actual tessellation. A short pseudo
code describing the main routine is given in listing IV.1. The relevant parts of the relaxation
algorithm are wrapped inside a generic SPH code which calculates densities and smoothing
lengths for the current particle configuration. In each relaxation step a neighbour sum in classical
SPH fashion is executed and for each particle pair a force is calculated to push the particles
apart. The force is weighted with both the target smoothing length and the distance of both
particles in order to converge to the given density model as well as a glass-like structure. In
addition, a scaling factor for the movement of particles is set, depending on the mean inter-
particle distance. The goal is to find the sweet spot for the magnitude of particle pushes between

2However, random sampling will still pose as a valid starting state for our approach.
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Listing IV.1: Algorithm in pseudo code
1 I n i t i a l p a r t i c l e p l a c e m e n t
2 Do U n t i l conve rged :
3 C a l c u l a t e Dens i ty , Smoothing Leng ths
4 For each p a r t i c l e loop ove r n e i g h b o u r s :
5 D i s t a n c e v e c t o r be tween p a r t i c l e p a i r
6 Weight wi th e x p e c t e d smooth ing & k e r n e l
7 Push p a r t i c l e s a p a r t
8 Check c o n v e r g e n c e c r i t e r i a
9 S e t o t h e r q u a n t i t i e s a t p a r t i c l e p o s i t i o n s

wasting computing time through small steps and the possibility of overshooting. The net particle
displacement of particle i due to particle j is then given by

∆~ri = const · hmij ·W
(
|~rij | , hmij

)
· ~rij
|~rij |

(IV-2)

with the expected model smoothing length

hmi = hm (~ri) =

(
NNGB ·m
4
3πρ

m (~ri)

)1/3

, (IV-3)

which is normalised such that it equals to

hmi =

 1
4
3π
· ρm (~ri)∑
j
ρm (~rj)


1/3

. (IV-4)

Furthermore, it enters in symmetrised form depending on both particles i and j:

hmij =
(hi + hj)

2
. (IV-5)

There are two main changes made compared to the algorithm proposed by Diehl et al., 2012:
First, instead of an arbitrary weighting function which declines with distance we employ the
most natural choice and use the kernel function from the surrounding SPH code, following Don-
nert, 2014. Second, we switch the multiplicative factor of hmi for it’s symmetrised version.
While this may seem more intuitive it has not been done for a clear reason. Consider an ideal
distribution of particles which exactly follows the model density. Then, the algorithm should
not move particles, meaning ∆~ri = 0 ∀i. In a simplified picture the push from a neighbour on
one side and one on the opposing side should cancel each other out. However, that is not the
case any more in with the symmetrised version. But, the use case for our code is to start with
an imperfect particle distribution and iterate towards the desired solution. Tests show, that we
never reach the exact model solution globally anyway and that the symmetrised version gives
much better convergence towards it and lower resulting density errors. Whether we employ the
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arithmetic or geometric mean for the symmetrisation does not make any notable difference, so
we keep the arithmetic one.
Furthermore, since the algorithm is formulated locally, on neighbouring particle pairs, it can in
principle get stuck in a local energy minimum. However, under the condition that the density
structures are well resolved (meaning kernels are not large enough to smooth them out), con-
vergence is generally not an issue. It’s properties are thoroughly analysed in section IV-4. On
the other hand detecting convergence poses a difficult task. Typical criteria formulated on the
average and the maximum density error have proven to be inapt since computation time can be
easily wasted without the majority of particles moving any more. Therefore we employ a more
pragmatic criterion to stop the relaxation as soon as most particles are moved less than a small
fraction of inter-particle distance. In addition, we put an upper limit onto the maximum number
of iterations to prevent getting stuck and wasting computing time.

IV-3.2 Initial state

The rate of convergence is drastically influenced by the initial state of the particle distribution.
Therefore we compare a few different approaches:

• Uniform random distribution

• Von Neumann rejection sampling

• Statistical model along a space filling curve

The simplest approach for an initial setup is just a random arrangement of particles with posi-
tions drawn from a uniform distribution. As already discussed in section IV-2.2 this itself does
not pose a very good density estimate but can still serve as a valid starting point for relaxation.
Due to the distance dependence in our algorithm the most crucial flaw of a random distribution,
namely holes and clumps of particles, are dissolved quite rapidly.
In cases where the density model varies clearly from a uniform density one can improve the
initial state quite a lot with a small amount of effort by changing the random number distribution
to the density function itself. This ensures that the particle density already follows the model
much better without changing any other properties. This is known as Von Neumann rejection
sampling (Von Neumann, 1951) and is basically a Monte Carlo integration method. While the
rejection can sometimes be costly for extremely heterogeneous distributions, the computational
effort is still negligible compared to the relaxation afterwards.
Despite the noise due to particle placement, people still use random distributions in certain cases.
For example when the numerical noise is quickly overshadowed by any physical process or noise
this can be the case without introducing a large error.
We experimented with a different approach where we iterate along a space filling curve through
the simulation volume3 and for each cell compute the probability to place a particle there. This
requires a space filling curve which is much finer grained than the amount of particles to dis-
tribute, so that this statistical approach is valid. One can easily prove that a probability of the

3We chose a Peano curve (Peano, 1890)
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Listing IV.2: Additional redistribution in pseudo code
1 C a l c u l a t e max amount and p r o b e s
2 d e p e n d e n t on i t e r a t i o n
3
4 While r e d i s t r i b u t e d p a r t i c l e s < max amount
5 and p r o b e s < max p r o b e s
6
7 Draw un touched random p a r t i c l e i
8 i n c r e a s e p r o b e s u n t i l a c c e p t e d f o r movement
9 ∀ i t e s t e d i n c r e m e n t p r o b e s

10
11 Draw random p a r t i c l e j
12 u n t i l a c c e p t e d as d e s t i n a t i o n
13
14 Random p o s i t i o n x wi th |x− xj | < 0.3hj
15 Move i t o p o s i t i o n x
16 Mark i as t o u c h e d

form

P = VCell ·
ρ(~rCell)

mParticle
(IV-6)

is properly normalised such that in the limit of very small cells the right amount of particles is
chosen:

lim
V→0

∑
P =

∫
dV

ρ(~r)

mParticle
= NParticle. (IV-7)

While this approach is possibly faster than the rejection sampling in practise it never generates
the exact amount of particles desired.
If a particle is put in a Peano cell it can either be positioned in the cell centre, where the density
was evaluated, or for a more mixed result again placed at a random position inside the cell. The
former guarantees a minimum distance of particles while the latter forms a less ordered result. It
turns out, that the statistical nature of this approach leads to a very similar result as the rejection
sampling just without guaranteeing a certain particle number.
In summary, we therefore prefer the rejection sampling and while the application offers all three
of these possibilities, we carry out all following tests using only this Monte Carlo approach.

IV-3.3 Additional redistribution

While the WVT algorithm allows us to converge against both a given density model and a glass
distribution of particles it turns out that it can not reach any model density perfectly. It will
always converge asymptotically towards the given constraints and settle in a low energy state.
Since the algorithm operates only locally using a kernel weighting a global force term might help
and also change convergence properties. Therefore, we include the possibility for an additional
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global particle redistribution step in our code, which is carried out every few (typically of the
order of five) relaxation steps.
The basic idea behind this approach is, that particles from regions with ρ > ρmodel are taken
and directly moved into regions with ρ < ρmodel. We design an algorithm which is similar to
the well known Metropolis algorithm (Metropolis et al., 1953) with the relative density error
serving as the energy analogue. On top of that we put an upper limit to the amount of particles
sampled, so that less particles are redistributed the closer we come to the model solution. We
present corresponding pseudo code in listing IV.2. We randomly select particles to be moved
and particles which we can use as tracers of an under dense region. Then we place the respective
particles into the close proximity of these region by drawing a random position with maximum
distance of 0.3 of the kernel support radius. To accept a particle i for redistribution we check if
a random number ri fulfils

ri ∈ [0, 1] < erf
(
ρi − ρm (~xi)

ρm (~xi)

)
. (IV-8)

Similarly a particle j is viable as destination if another random number rj fulfils

rj ∈ [0, 1] <
ρm (~xj)− ρj
ρm (~xj)

. (IV-9)

This ensures that particles with large density errors are preferred and that more particles are
probed the closer the density comes to the model. We limit ourselves to a percentage of the
particles in order to preserve the overall density profile and allow us to omit density calculations
in between this process. Otherwise the computational cost would be to high for the method to be
feasible. The maximum number of particles to be redistributed and to be probed is given by run-
time parameters. In order to assist convergence we also let both percentages decay exponentially
over time. For example we start at 1% of particles and decay down to 0.1% of particles until a
certain iteration step. Between each redistribution we carry out several relaxation iterations to
smooth out the distribution. At some point we stop the redistribution and only let the relaxation
run. The impact of this additional algorithm is investigated in section IV-4.3.

IV-4 Test Problems for crucial features

We present how the algorithm behaves in a typical use case. While it is fairly straight forward to
measure the accuracy of the resulting density distribution, the “glassiness” is less easy to judge
on, using properties of the particle distribution. We start with a quick analysis of generated
constant density distributions and then go one step further to our actual application of variable
density models. All test cases are carried out in 3D with periodic boundaries, if not mentioned
otherwise. In order to save computation time we generally set up non-cubic boxes. We run all
tests for maximal 1024 iterations but terminate in general earlier when reaching a quasi steady
state. The additional redistribution of particles is switched off, we demonstrate the effect of this
tweak afterwards.
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Figure IV.2: Density evolution of a 3D constant density model starting from a random distri-
bution with 106 particles. Top: Density ρ against one coordinate of the position x. Bottom:
Distribution of density values.
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IV-4.1 Constant density

We start with the simplest case and show how the density evolves for a constant density model
during relaxation in figure IV.2. The top plot shows the density values of all SPH particles after
different number of relaxation steps while the lower plot presents the according distribution of
density values zoomed onto a ±10% region of density values. We start with the typical Poisson
noise of the order of ±50% around the target value, visible in the top plot of figure IV.2, and
quickly damp down to a reasonable agreement with the density model. One can clearly see the
asymptotic behaviour of the convergence until the algorithm stops after 389 iterations.
To analyse the quality of the particle distribution, an analysis similar to figure IV.1 can reveal the
emerging patterns only in an obscured way due to the integrated third dimension. Furthermore,
it lacks the power of a proper quantitative analysis with a parameter to measure the quality.
A better judgement can be made by looking at the distribution of nearest neighbour distances
(figure IV.3) and the radial distance autocorrelation function4 (figure IV.4).

Figure IV.3: Histogram of nearest neighbour distances for a 3D constant density model for ran-
dom placement and a glass distribution. The expected distance by which the x-axis is normalised
is calculated by dividing the whole box volume up equally onto all particles.

We compare these two measurements for a random distribution and a relaxed glass distribution
4Or just “radial distribution function” in the field of molecular dynamics.
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for a 3D constant density model with only 104 particles in a periodic box to prevent running into
memory issues in our analysis script. We scale the distance by the expected distance calculated
from a perfect distribution of the volume in the periodic box using

d = (Vp)
1.0/3.0 = (V/Np)

1.0/3.0 (IV-10)

with V the volume of the whole box and Np the particle number. Note that while this is the op-
timal distribution of volume onto all particles it does not present a feasible configuration. Even
in best close packing of spheres, there is still about 22.2% of the volume lost (Muder, 1988).
This is reached by a proper hcp lattice and depicts the asymptotic target for a well relaxed glass
distribution. The distributions in figure IV.3 can be fitted by a Gaussian. The deviation of the
mean value from the expected mean and the width of the fit can be taken as a measurement of
quality of the distribution. Since particles tend to clump in a random distribution, the whole
distribution shifts to smaller distances. The width is dominated by the Poisson noise seen in the
density distribution of figure IV.2. While smaller distances are in principal desirable, this plot
completely obscures that when particles clump some also spread to far from each other. There-
fore, we have to not only consider the next neighbours but better analyse the whole distribution
of particles using the autocorrelation function. It gives us even more insight into how well our
particle distribution resembles a physical glass. We bin the distances of all particle pairs and
divide each resulting value by

Norm =
Vbin · 〈ρ〉 ·Np

m
, (IV-11)

with Vbin the bin’s spherical shell volume, 〈ρ〉 the mean density in the bin, Np the particle
number and m the particle mass as presented in Frenkel and Smit, 2001.
We analyse these data by creating a histogram of the distribution (figure IV.4) which we do
not further normalise or stretch in any way. The results from the different approaches can be
compared to a Lennard-Jones fluid model as presented for example in Frenkel and Smit, 2001.
Two criteria of quality are the height of the first peak and the behaviour on large scales. First
of all a glass is characterised by a main peak height of 2.85 according to the Hansen-Verlet
criterion (Hansen and Verlet, 1969) which characterises the transition from a liquid to a frozen
state, demonstrating that our glass is indeed well relaxed. Also the peak’s location is important.
Since the first peak is mainly dominated by next neighbours we did this comparison already
in figure IV.3. While the random sample damps down pretty quickly to a fairly constant
distribution of values, we see dampened wave like behaviour for our glass distribution around a
central value of about one, as expected. The zoom onto large scales in the lower panel of figure
IV.4 especially shows, that this extends out properly until the maximum distances given by half
of the box’ size, showing that the glass distribution we produce is of high quality.

IV-4.2 Variable density

Transitioning to variable density models, the next test consists of two plateaus connected with
linear slopes. Here we examine the behaviour of our implementation with respect to linear gra-
dients and kinks in the density function. In figure IV.5 we present the evolution of the resulting
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Figure IV.4: Auto correlation function for a 3D constant density model for random placement
and a glass distribution including a zoom onto the large distances in the lower panel. The hori-
zontal line marks the Hansen-Verlet criterion for a proper glass.
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Figure IV.5: Evolution of a plateau density function with gradients with 106 particles. The right
two plots present zooms of two kink regions in the profile.
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density profile along with the analytic model. In addition to the overall profile, we also show
zooms onto one upper and one lower kink of the distribution. The analytic model is given by

ρ(x) =


0.5, for x < 0.1
0.5 + (x− 0.1)/0.3 for 0.1 < x < 0.4
1.5 for 0.4 < x < 0.6
1.5− (x− 0.6)/0.3 for 0.6 < x < 0.9
0.5 for x > 0.9.

(IV-12)

Again the scatter reduces quite rapidly and we converge towards the model density. As the scatter
decreases, the density flattens marginally with respect to the actual maxima and minima of the
given density function. Therefore, a low energy state and following the proper density model
seem to be slightly exclusive. Since the extremal values are not fully resolved, the gradients are
marginally shallower than imposed. Also the constant density parts are not totally flat but show
a slight curvature which is expected due to the influence of their surroundings. SPH can not
produce any sharp edges by construction, only up to the resolution level given by the kernel size.
We overplot two circles in both the high and low density region in order to give an idea of the
size of the respective kernels in these regions to show that the model is well resolved with 106

particles. In the end, after 851 iterations steps, we reach a steady solution with a very low degree
of scatter which deviates from the analytic solution by a few percent and shows slight curvature
in the plateau and smoothed out kinks which, however, sit at the expected x-values.
Next, we look at a smoother density model to investigate the error in maxima / minima further

without the introduction of sharp edges or linear gradients. We set the density model according
to

ρ(x) = 1 +
1

2
· sin(2πx) (IV-13)

and plot the resulting density evolution in figure IV.6. Due to the smooth nature of this test
it already converges after 412 iterations. When reducing the scatter to a very low degree the
density function again slightly deviates from the model at the maxima and minima, proving that
this is not an effect of non-smooth density definitions. The lower panel shows the resulting
relative density error compared to the imposed model for all plotted steps. Although slightly
asymmetric the error being of the order of a few percent is definitely satisfactory.
Finally we investigate our algorithm’s behaviour when confronted with sudden density jumps.

We set the target density to

ρ(x) =
1

2
+ 2 ·

(
x mod

1

2

)
(IV-14)

and plot the result in figure IV.7. While we can observe slightly more scatter here than in the
previous tests, indicating that the final state (992 iterations) is probably less converged due to the
presence of the prominent density discontinuity, the very nice thing to see is that the jump itself
is very well resolved. Already after 32 iterations hardly any particles populate intermediate den-
sities between the high and the low state, except for some scatter of course. Also the resulting
density error is in the same regime as before. Thereby, we conclude that our implementation is
able to reproduce all kind of density models within the boundaries of SPH itself and the imposed
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Figure IV.6: Evolution of a sine wave density function with 106 particles. Density distribution
in the top panel, relative density error in the lower one.
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Figure IV.7: Evolution of a sawtooth density function with 106 particles. Density distribution in
the top panel, relative density error in the lower one.
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resolution. Only density models which contain regions with ρ = 0 may pose a strong challenge
and require some fine tuning in our current neighbour finding routine.

Now, we look again at the quality of the produced glasses. If density variations can be de-

Figure IV.8: Auto correlation function for a sine wave density model for random placement and
a glass distribution including a zoom onto the large distances in the lower panel. The horizontal
line marks the Hansen-Verlet criterion.

scribed as small perturbations we can approximate the distribution as constant and apply the
same analysis. Also regularity of the density function helps to keep a clear picture. Since the
tests presented in this section fulfil these conditions slightly, we plot again the autocorrelation
function for 104 particles distributed according to the sine wave model density. While the mean
density is still at the same level as in section IV-4.1, this introduces higher and lower density
regions. High density regions contain more particles than the average. This leads to a shift in the
distribution to smaller distances, especially noticeable at the main peak. We still see the damped
wave pattern as before, however, the dampening is stronger now. Furthermore, we notice that
the distribution overall declines slightly when going to large scales. We have to truncate this plot
at smaller scales since we divide the distances by the box size in x direction while the y and z
direction are slightly smaller here to save computing time.
Summing up, we can judge via this method, that our 3D particle distributions actually form good
glass configurations. Unfortunately, we can not execute a more quantitative analysis and have to
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note, that density variations overshadow for example the wave features of the autocorrelation at
large scales.

IV-4.3 Additional redistribution

Now we investigate the effects of our additionally proposed particle redistribution scheme (sec-
tion IV-3.3). We start to probe ten percent and to redistribute at maximum one percent of all
particles. We carry out this algorithm every 5 iterations until we reach the 512th iteration step
and let the percentages decay exponentially to go down a factor of ten until the end. We carry
out all three presented variable density tests with this setup and compare to the results presented
in section IV-4.2.
The sine wave density shows a bit larger scatter until the redistribution is switched off and the
end results improves by a very small amount. However, it requires about double the amount of
iterations to converge that far, because until the 512th step we basically disturb the distribution
all the time. This can be mitigated by adjusting the parameters initially chosen. The sawtooth
shows only minimal effects, only that the density at the discontinuity becomes a bit sharper and
less round. Since the plateau density shows the biggest effect, we plot the result in figure IV.9.

Figure IV.9: Comparison w/ (colours) and w/o (black) redistribution in the plateau test with 106

particles.
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The colours indicate the same iteration steps as before in figure IV.5 for better comparison and
we include the final result from before as a black line. As can be clearly seen, it settles much
closer to the actual model density here but not without a cost. In this case the amount of iter-
ations it takes to converge is actually about the same, but due to the additional disturbance the
plateau comes out less straight than before. In the end, it is highly problem dependent how much
the redistribution algorithm affects the resulting density distribution but it does so always in a
positive manner.

IV-4.4 Convergence of the iteration process

Figure IV.10: We carry out the plateau & gradients test with 106 particles. Top left panel:
Min, mean and max density errors; Top right panel: Fractions of particles moved farther than
1, 0.1 and 0.01 of the local mean particle separation; Bottom left panel: Min, mean and max
displacements calculated; Bottom right panel: Particles probed and actually redistributed; All
plotted over the course of all 862 iterations.

We choose the test shown in the last subsection, with the density plateau and linear gradients
carried out with 106 particles and the redistribution algorithm in place to have a more detailed
look onto the iteration process. Each iteration we write out some statistics on the global density
error, the movement of all particles in the last step and the degree of particle displacements. We
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plot the results in figure IV.10. In the beginning large particle displacements due to large density
errors take place. These damp down rather quickly and with them very large displacements fade
away. At about 50 iterations, the maximum density error has gone down to a few percent while
the mean error is even a factor 10 smaller. As the errors decline a periodic pattern emerges which
actually increases errors and resulting movement frequently. The errors decays down quickly
again before the next jump happens. This is the imprint of our particle redistribution scheme,
which removes particles from local overdensities and puts them into underdense regions. It
locally destroys the particle ordering and thus worsens the density correctness at first. We see,
that the algorithm actually recovers very quickly from this kind of perturbation. Nevertheless,
we hinder convergence of particle movement while this redistribution part is operational and we
can not see the improvements in the final density correctness shown earlier properly in this plot.
Looking at the bottom right panel reveals that the algorithm operates as designed. The amount
of probes necessary quickly reach the allowed maximum and the amount of particles actually
touched declines drastically down to 10−4 and then follows the imposed decay. We mark the
spot where this part of the code is shut off in the plots by a dotted vertical line, illustrating
that the high frequency periodic imprint stops immediately. We do not improve on the density
error any more but rather sacrifice density correctness slightly for a better glass distribution and
therefore less scatter in the density. The net particle pushes decrease as the distribution relaxes
and movement damps down quickly. One can clearly see, that the net particle movement is well
suited for an abortion criterion since it experiences the quickest change and directly indicates a
steady state.

IV-4.5 Convergence with variable amount of particles

To investigate our implementation’s performance for variable number of particles we plot the
density for the plateau test case with 104, 105 and 106 particles next to each other in figure IV.11,
zooming onto the top plateau. In all three runs we adjust the parameters such, that the initial
degree of particle movement is of the same order to have a fair comparison. While the random
sampling produces very similar results we see that the particle distribution develops differently
in all three runs. The lower resolution runs converge much quicker than the higher resolution
one due to our algorithm working locally on neighbouring particles. The plateau comes closer to
the imposed model with increasing resolution but shows more curvature as we have seen before.
We can distinguish effects of the whole algorithm and of the inherent kernel smoothing. The
latter becomes the most apparent in the lowest resolution, where we see stronger curvature at the
position of the kinks. Finally, the resulting scatter in all three runs is of the same order.
To investigate the behaviour of convergence with iterations and changing amount of particles

quantitatively, we present the L1-error of all of our three standard tests in three different resolu-
tion steps in figure IV.12. The L1 error is defined in e.g. Hopkins, 2015 as

L1 =

∑
i |ρi − ρm|
Np

(IV-15)

All tests have been carried out again with a similar degree of movement in the initial setup and
without the redistribution algorithm. Since the L1 error is a global measurement we only see
the globally most prominent evolution as it happens in the beginning when transitioning from
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Figure IV.11: Zoom of the plateau test with 104 (left), 105 (middle) and 106 particles (right).
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Figure IV.12: L1 error plotted after different iteration counts for all tests and different particle
numbers. Top: Plateau with gradients; Middle: Sine Wave; Bottom: Sawtooth
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a random distribution towards one which actually shows the features of the imposed density
model. After about 100 steps the evolution becomes in general so slow, that we can hardly
see a change. Nevertheless, as expected we see a clear improvement of the L1 error when
increasing the particle number. According to the argumentation of Hopkins, 2015 the L1-error
can not become better than 10−2−10−3 in classical SPH due to the E0 gradient error of particle
disorder (Read, Hayfield, and Agertz, 2010), which poses a lower bound for convergence with
particle number anyway. Nevertheless, we are still dominated by the fact that creating a good
glass distribution hinders us from actually coming this close to the desired density model.

IV-5 Applications

In this section we demonstrate typical use cases in astrophysics from standard code tests to
studies of astrophysical objects.

IV-5.1 Code testing: (Magneto-) Hydrodynamics

Development of a SPH code requires extensive testing of the implementation’s ability to solve
the (magneto-) hydrodynamical equations. Thus, every code release paper needs to prove the
capability of succeeding in standard (magneto-) hydrodynamical benchmark tests. This has been
presented for many common astrophysical codes over the last decade. See for example Springel,
2005b, Dolag and Stasyszyn, 2009, Hu et al., 2014 and Beck et al., 2016 for GADGET-2/3,
Springel, 2010a for AREPO, Hopkins, 2015 and Hopkins and Raives, 2016 for GIZMO and
Hubber, Rosotti, and Booth, 2017 for GANDALF.
A very important part in the construction of a test suite is the generation of high quality initial

conditions to ensure that the SPH code solves the equations of hydrodynamics coming from a
well defined initial state with a low degree of noise. Since the method we present in this paper
is capable of sampling arbitrary density profiles, we provide implementations of such common
benchmark tests listed in table IV.1, alongside references for the implemented models. As one
of the more complex examples of this collection we present the so called Zel’dovich Pancake
(Zeldovich, 1970). We use the same initial configuration, which has been presented in Beck
et al., 2016. We start with the comoving position

x(q, z) = q − 1 + zc
1 + z

sin(kq)

k
, (IV-16)

with the wavenumber of the perturbation k = 2π/λ and the unperturbed coordinate q, as well
as the collapse redshift zc = 1. The density profile is then given via

ρ(x, z) =
ρ0

1− 1+zc
1+z cos(kq)

, (IV-17)

with the initial density ρ0. We use a Box with 64 Mpc side length and sample the density profile
with 106 gas particles. The Zel’dovich Pancake is an important test problem for both numerical
hydrodynamics and numerical integration in a comoving frame where time t is replaced with the
Hubble-function H(t). The resulting initial conditions are shown in figure IV.13. The quality of
the initial conditions is very well in line with our previous results.
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Figure IV.13: Zel’dovich pancake initial conditions with 106 particles.
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Classical Hydrodynamic Tests
Sod-Shock tube Sod, 1978
Sedov blast wave Hu et al., 2016
Kelvin-Helmholtz Instability McNally, Lyra, and Passy, 2012
Keplerian Ring Maddison, Murray, and Monaghan, 1996
Cold Blob Agertz et al., 2007
Hydrostatic Sphere Springel, 2005b
Evrard Collapse Evrard, 1988
Zel’dovich Pancake Zeldovich, 1970
Box-Test Hess et al., 2010
Gresho-Vortex Gresho and Chan, 1990

Classical Magneto-hydrodynamic Tests
Ryu-Jones Shock tube Ryu, Jones, and Frank, 1995
Fast-Rotor Balsara and Spicer, 1999
Strong-Blast Hopkins and Raives, 2016
Orszag-Tang-Vortex Hopkins and Raives, 2016
Linear Alfvén Wave Stone et al., 2008
Rayleigh-Taylor-Instability Abel, 2011

Table IV.1: Hydrodynamic and magneto-hydrodynamics test cases, implemented in the code.

IV-5.2 Binary star formation

In this section, we present the initial conditions for the Boss and Bodenheimer test case (Boss
and Bodenheimer, 1979) to simulate the formation of a binary system of stars. We follow the
implementation presented in Springel, 2005b with the density profile

ρ = ρ0[1 + 0.1 cos(2ϕ)], (IV-18)

using a central density ρ0 = 3.82 · 10−18 g/cm3. Furthermore, we set up a sphere of radius
R = 5 · 1016 cm, a total mass of 1M�, speed of sound cs = 1.66 · 104 cm/s and a solid body
rotation of ω = 7.2 · 10−13 1/s, as of Burkert and Bodenheimer, 1993. In figure IV.14 we show
the rendered density profile in x-y plane with the perturbation in direction of ϕ which matches
the model very well.

IV-5.3 Isolated galaxy cluster

The baryonic content of clusters of galaxies, in general, follows a beta model profile (e.g. Cava-
liere and Fusco-Femiano, 1978), given by

ρgas(r) = ρ0

[
1 + (r/rc)

2
]−3β/2

, (IV-19)

where the density within the core radius rc is constant and decays as a power-law outside the
core. Donnert, (2014) set up initial conditions for idealised binary merger simulations in the
proprietary code TOYCLUSTER, further improved by Donnert et al., (2017b) by adding WVT
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Figure IV.14: Integrated density of the Boss-Bodenheimer test case for binary star formation in
the x-y-plane with 106 particles.
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relaxation. For simplicity, here we ignore the dark matter halo of the cluster as well as the
temperature structure. The ‘cluster’ is set up with general parameters ρ0 = 10−26 g/cm−3,
rc = 20 kpc, and β = 2/3 which could resemble a cool-core cluster of galaxies. We sample the
density profile using 106 SPH particles.
We show the resulting density in figure IV.15 at 32, 64, 128 and 1024 iterations, where we hit

Figure IV.15: Beta profile for an isolated galaxy cluster with 106 particles.

the maximum number of iterations and the algorithm terminated. This happens due to the large
range of more than three orders of magnitudes in density which we try to sample with only 106

particles. In the low density region we can not properly resolve the gradient any more because
the SPH kernels become very large, leading to a locally large spread in the density distribution
early on which it relaxes away nicely. Furthermore, this results in quite big density errors in
the low density regions of the resulting distribution. Judging these errors relatively to the mean
density they are, however, quite small. Consequently, since the particle masses are calculated
from the mean density, this overdensity directly leads to an underdensity in the central regime.
Nevertheless our results are consistent with Donnert, 2014, who successfully uses similar initial
conditions for actual simulations of galaxy cluster mergers.
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Figure IV.16: Example for initial conditions sampled according to a read image of the whirlpool
galaxy M51a and it’s companion M51b with 106 particles.
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IV-5.4 Reading in an initial setup: Image processing

Finally, we present a special feature of our application which allows us to read in a given set of
three dimensional gridded data for the definition of a model density, instead of providing a hard
coded analytic solution. An example where we directly used the brightness scale of an image
utilising our built in png reading routine is shown in figure IV.16. The goal of astrophysical
simulations is always the comparison to observations in order to learn more about the processes
in the universe. Mostly only statistical comparisons can be made because it is extremely diffi-
cult to simulate an observed object exactly in all it’s details. This feature might actually help
here, taking in an observational image in order to model the underlying matter distribution. The
implementation is currently being expanded to take in proper 3D data which might be for ex-
ample de-projected from observational images. Other applications outside of astrophysics can
be found, where one might for example build a CAD model of a 3D distribution see e.g. Dauch
et al., 2017.

IV-6 Code usage

In this final section we talk briefly about the actual usage of our application. It can be down-
loaded from github (Donnert et al., 2017a) and will be made publicly available under the GPL
license with the release of this paper. The current code version described here is v2.1. This
section is split into two parts: First, we state the compilation requirements. Second, we show
the currently required parameters and describe how to actually run the application successfully.

IV-6.1 Requirements and compilation

The code is written in OpenMP parallel C with the C99 standard and requires the gsl and gslcblas
libraries. If the png reader shall be used, libpng is necessary in addition. There are no special
requirements regarding the choice of compiler or any known issues with optimisation flags.
For compilation we provide two identical approaches, a direct Makefile or, as required by some

Option Default Description
SAVE_WVT_STEPS ON Write out a snapshot after each relaxation iteration
SPH_CUBIC_SPLINE OFF Switch from Wendland C6 kernel to cubic spline
SPH_WC2 OFF Switch from Wendland C6 kernel to Wendland C2
REJECTION_SAMPLING ON Use rejection sampling for initial particle distribution
PEANO_SAMPLING OFF Use a Peano curve for the initial particle distribution
EAT_PNG ON Compile with png reading support
TWO_DIM OFF Switch from 3D to 2D, ignoring z coordinates
BRUTE_FORCE_NGB OFF Instead of a tree use a brute force neighbour finder

(mainly used for debugging purposes)
OUTPUT_DIAGNOSTICS ON Output additional diagnostics to file each iteration

Table IV.2: Compilation options with default values and description.
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IDEs, a CMake file which then generates an own Makefile. Both approaches provide the possi-
bility to adjust the compilation by setting some options which are translated into preprocessor
defines. An overview is given in table IV.2.

IV-6.2 Parameters and running the application

Parameter Default Description
Npart 100000 Amount of particles to distribute
Maxiter 512 Maximum iterations of relaxation
MpsFraction 1.0 Scaling parameter for the particle displacements
StepReduction 0.95 Factor to reduce step sizes in case of overshooting
LimitMps -1 Abort if particles moved farther than the local mean par-

ticle separation below this percentage
LimitMps10 -1 Abort if particles moved farther than one tenth of the

local mean particle separation below this percentage
LimitMps100 -1 Abort if particles moved farther than one hundredth of

the the local mean particle separation below this per-
centage

LimitMps1000 -1 Abort if particles moved farther than one thousandth of
the local mean particle separation below this percentage

MoveFractionMin 0.001 Fraction of particles to redistribute maximally after the
decay

MoveFractionMax 0.01 Fraction of particles to redistribute maximally initially
ProbesFraction 0.1 Fraction of particles to be probed for redistribution ini-

tially
RedistributionFrequency 5 How many relaxation steps are executed between two

steps of redistribution
LastMoveStep 256 Exponential decay of the redistribution amount until

this iteration, afterwards shutoff
Problem_Flag 0 Main flag to chose the initial conditions model (full list

in ics.par)
Problem_Subflag 0 Sub flag to chose the initial conditions model (full list

in ics.par)
PNG_Filename pic.png Which png to read in, if the respective Flag and Subflag

have been chosen

Table IV.3: Runtime parameters with example values and descriptions.

In order to run the application, one has to provide a parameter file by path. The main code
directory contains already a sample parameter file called “ics.par”. It lists all provided runtime
configuration options to adjust the main algorithms of the code and chose the respective initial
conditions model. A list of parameters including standard values and short explanations are
given in table IV.3.
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Besides these parameters one can change the behaviour of the OpenMP parallelisation by setting
the usual environment variables to appropriate values, like
OMP_NUM_THREADS.

IV-7 Summary and Conclusions

In this paper we presented a novel application to generate arbitrary initial conditions for SPH
with a glass-like particle structure. The applied algorithms are based on a combination of
weighted Voronoi tessellation (Diehl et al., 2012), density aware random sampling (Von Neu-
mann, 1951; Peano, 1890) and an additional reshuffling of particles (Metropolis et al., 1953).
We showed an overview of common methods to solve this task and illustrated the challenges
that come along. We ran several test problems with different density features, like linear and
non-linear gradients, kinks and jumps, and investigated thoroughly how our implementation
performs when confronted with them. We found that our algorithms converge reasonably well
towards the given density models while also iterating towards a glass structure, which we anal-
ysed in 3D using a radial distance distribution function. We showed, that converging towards
the correct density and a glass distribution at the same time is extremely difficult, since both
tasks slightly contradict each other. Particles have to be pushed apart from each other in order
to remove clumps and holes in the particle distribution, but this results in particles being moved
out of high density regions resulting in lower density maxima and consequently also higher min-
ima. Therefore, one has to settle for an application dependent trade-off. We also analysed the
convergence of our algorithms with variable particle number and see desired behaviour.
Our application also inhibits a suite of various sets of initial conditions, including many stan-
dard test problems for (magneto-) hydrodynamics and the ability to produce idealised setups for
a galaxy cluster (as in Donnert, 2014). These tests are frequently required for code development
of SPH codes and often the ability to judge the quality of a code was limited by pour initial
conditions.
We also presented a special feature which allows the code to sample a density model according
to a png image instead of an analytic model. This might be useful to bridge observations and
simulations further, since it can lead to the ability to simulate observed objects better. For that
more development has to be done, though.
Finally, we also presented the actual usage of our application, including a short description of
all options and parameters which can be set at the moment (v2.1). The source code resides on
github (Donnert et al., 2017a) and will be made publicly available with the release of this pa-
per. More development will go into the project, in order to provide more features and further
improve the usability. This includes for example support for more read in / write out formats,
extending the possible choices of SPH kernels, expanding the 2D image reader eventually to
3D and even improvements on the core algorithms themselves. One idea to reduce the density
errors in the converged result is for example, to encapsulate the existing algorithms in another
loop which gradually adjusts the density model slightly by changing the amplitudes of extremal
values. This could be done for example by a machine learning approach. We feel, that the goal,
to write a flexible and versatile tool applicable for all kinds of problems has been reached and
the next stage of development can then begin. Any feedback and contributions via github are
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welcome.
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Chapter V

A modern SPH scheme: Handling
numerics properly

Mathematics is a game played according to certain simple rules with meaningless
marks on paper.

– David Hilbert

In this chapter we demonstrate recent improvements for our SPH solver. In chapter III we pre-
sented the basics of the SPH method including common advantages and flaws it has inherently.
These improvements are designed to overcome these limitations in such a way that no additional
errors are imposed and that the resulting scheme is numerically stable and well behaved. We
demonstrate how our implementation into GADGET-3 performs in comparison to a classical
SPH implementation in various hydrodynamical test cases. The content of this chapter has been
published in Beck et al., 2016 in a slightly modified manner.

V-0 Abstract

We present an implementation of smoothed particle hydrodynamics (SPH) with improved ac-
curacy for simulations of galaxies and the large-scale structure. In particular, we implement
and test a vast majority of SPH improvement in the developer version of GADGET-3. We use
the Wendland kernel functions, a particle wake-up time-step limiting mechanism and a time-
dependent scheme for artificial viscosity including high-order gradient computation and shear
flow limiter. Additionally, we include a novel prescription for time-dependent artificial con-
duction, which corrects for gravitationally induced pressure gradients and improves the SPH
performance in capturing the development of gas-dynamical instabilities.
We extensively test our new implementation in a wide range of hydrodynamical standard tests
including weak and strong shocks as well as shear flows, turbulent spectra, gas mixing, hydro-
static equilibria and self-gravitating gas clouds. We jointly employ all modifications; however,
when necessary we study the performance of individual code modules. We approximate hydro-
dynamical states more accurately and with significantly less noise than standard GADGET-SPH.
Furthermore, the new implementation promotes the mixing of entropy between different fluid
phases, also within cosmological simulations.

117
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Finally, we study the performance of the hydrodynamical solver in the context of radiative galaxy
formation and non-radiative galaxy cluster formation. We find galactic disks to be colder and
more extended and galaxy clusters showing entropy cores instead of steadily declining entropy
profiles. In summary, we demonstrate that our improved SPH implementation overcomes most
of the undesirable limitations of standard GADGET-SPH, thus becoming the core of an efficient
code for large cosmological simulations.

V-1 Introduction

Smoothed particle hydrodynamics (SPH) is a commonly employed numerical method in as-
trophysics. It solves the fluid equations (Landau and Lifschitz, 2007) in a Lagrangian mass-
discretised fashion, which ensures Galilean invariance and conservation of mass, momentum,
angular momentum, energy and entropy. It was pioneered by Gingold and Monaghan, 1977 and
Lucy, 1977 and has since then become one of the cornerstones of computational astrophysics.
The discretisation of mass automatically adapts spatial resolution by removing the constraint
of handling geometry explicitly. It also easily couples to N-Body schemes for calculation of
gravitational forces (Hernquist and Katz, 1989). An excessive amount of papers and literature
about SPH has been produced over the past decades. We point out the latest reviews by Ross-
wog, 2009, Springel, 2010a, Monaghan, 2012 and Price, 2012b for the basic concepts and e.g.
Ritchie and Thomas, 2001 for an extension to multi-phase fluids and Rosswog et al., 2014 for a
special-relativistic adaption. As every numerical method, SPH comes with its own set of benefits
and pitfalls, which we address in this paper.
The inability of traditional SPH methods to treat contact discontinuities and to mix different
fluid phases is a long-standing problem (Agertz et al., 2007; Wadsley, Veeravalli, and Couch-
man, 2008). It leads to a completely numerical spurious surface tension at the discontinuities
preventing particle movements. Consequently, it results in a failure of these formulations of SPH
to resolve fluid instabilities such as the Kelvin-Helmholtz or Rayleigh-Taylor instabilities (see
e.g. Junk et al., 2010; Valcke et al., 2010; McNally, Lyra, and Passy, 2012; Puri and Ramachan-
dran, 2013). In applications to cosmic structure formation it causes entropy profiles to diverge
towards the centres of dark matter haloes, at variance with Eulerian codes that predict entropy
plateaus to build up (Frenk et al., 1999; Wadsley, Veeravalli, and Couchman, 2008; Planelles and
Quilis, 2009; Vazza, 2011; Power, Read, and Hobbs, 2014; Biffi and Valdarnini, 2015; Rasia et
al., 2015). This difference is due to the lack of mixing in simple SPH, which makes low-entropy
gas in merging substructures sink toward the centre of the main structure. Many modifications
have been proposed to overcome this problem. For example, Wadsley, Veeravalli, and Couch-
man, 2008 propose a mixing solution, which resolves the differences in the entropy profiles of
dark matter haloes between Eulerian and SPH codes (Frenk et al., 1999). Further cosmological
applications have been performed by Shen, Wadsley, and Stinson, 2010. Firstly, the equation of
motion (EoM) can be re-formulated from a standard ’density’ approach into a ’pressure’ based
approach (Saitoh and Makino, 2013; Hopkins, 2013). While the ’pressure’ formulation correctly
treats contact discontinuities, it leads to increased noise at strong shocks. Secondly, considerable
effort has been made to unite grid-based solvers for the fluid equations with the Lagrangian na-
ture of SPH. Eulerian Godunov methods (see e.g. Cha, Inutsuka, and Nayakshin, 2010; Springel,
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2010b; Murante et al., 2011) and their coupling to Lagrangian methods is a promising alter-
native. Connecting a Lagrangian moving-mesh with grid-based solvers (Springel, 2010b) or
mesh-free approaches (Hopkins, 2015; Hopkins and Raives, 2016) represent more advanced ap-
proaches. Thirdly, artificially modelled conduction (AC) of internal energy can be employed
to overcome the mixing problem. Most modern SPH codes include AC of some sort to diffuse
entropy (Read and Hayfield, 2012) or energy (Price, 2008) across particles. The use of AC has
to be taken carefully and it is only desirable at contact discontinuities in traditional ’density’
SPH and at shocks in modern ’pressure’ SPH. The application of AC in other regions can have
catastrophic impact on the fluid dynamics and can smear out gravitationally established pressure
gradients, thus leading to totally numerically induced transport of internal energy (Valdarnini,
2012).

Next, traditional SPH has difficulties treating subsonic turbulence as it experiences a high ef-
fective viscosity, which limits the inertial range (see e.g. Bauer and Springel, 2012). Thus,
traditional SPH cannot achieve high Reynolds’ numbers compared to, for example, Eulerian
methods. This high effective viscosity is a function of resolution, but no general solution has yet
been proposed to resolve this issue in general. For the correct capturing of shocks numerically
motivated artificial viscosity (AV) is commonly employed. It smooths the particle velocity dis-
tribution and gives order to the fluid sampling. However, AV is only desired at the shock and
the fluid should be inviscid otherwise. Too much AV smears out physical motions and damps
subsonic and turbulent motions in isolated tests (Bauer and Springel, 2012) as well as in cos-
mological simulations (Dolag et al., 2005b). Therefore, several different implementations of AV
reduction are proposed (Morris and Monaghan, 1997; Cullen and Dehnen, 2010). They are all
based around a proper shock detection method and a time-dependent viscosity decay scheme.
Application of such advanced schemes give better results in the description of fluid motions
(Dolag et al., 2005b; Price, 2012a).

Finally, it might seem easy to simply reduce the quantitative errors by increasing the number of
neighbours, which contribute to the local density and force estimators. However, the standard
weighting functions of SPH respond differently to an increase of smoothing neighbours and
can possibly become unstable to the pairing instability (Schüssler and Schmitt, 1981; Price,
2012b). Therefore, recently, alternative kernel functions immune against this instability are
proposed for better fluid sampling and convergence (Read, Hayfield, and Agertz, 2010; Dehnen
and Aly, 2012). The advantage of flexible geometry of SPH comes with difficulties in creating
well-defined initial conditions or sampling analytical profiles, where we use either glass set-ups
(White et al., 1996) or Weighted Voronoi-Tessellations (Diehl et al., 2012).

To overcome the named disadvantages we implement a large set of improvements for SPH into
the developer version of the cosmological N-Body / SPH simulation code GADGET-3 (Springel,
Yoshida, and White, 2001; Springel, 2005b). We include a time-step limiter for strong shocks,
a time-dependent viscosity scheme for subsonic turbulence, a high-order gradient estimator and
shear flow limiter for shearing motions, an improved kernel function for convergence and a time-
dependent artificial conduction scheme to promote fluid mixing. We discuss the accuracy and
the performance of our new scheme in hydrodynamical standard test problems, within quiet and
violent environments as well as in Idealized simulations of galaxy and galaxy cluster formation,
in which our new scheme is applied to reasonable astrophysical problems.
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The paper is organised as follows. The improved implementation of hydrodynamics is presented
in Section 2. In Section 3 we validate our SPH algorithms in a set of hydrodynamical standard
tests and we proceed to standard tests with gravity in Section 4. We continue in Section 5 with
Idealized applications to the evolution of an isolated disk galaxy and a forming galaxy cluster.
We summarise our developments and code performance in Section 6.

V-2 A new SPH implementation

We start with a presentation of the main equations corresponding to a ‘standard’ and our ‘new’
formalism of GADGET-SPH. The formalism of SPH is already well described by a large number
of reviews (see e.g. Price, 2012b). We refer to the ‘standard’ version of SPH as the implementa-
tion within the GADGET-3 code without our modifications. We point out our modifications and
discuss the kernel function, the EoM, the particle wake-up scheme and the time-dependent AV
and AC.

V-2.1 Original code platform

We implement our SPH modifications into the developer version of the cosmological N-
Body/SPH code GADGET-3 (Springel, Yoshida, and White, 2001; Springel, 2005b). We evolve
entropy as the thermodynamical variable (Springel and Hernquist, 2002) and use the prescrip-
tions for radiative cooling, supernova feedback and star formation following Springel and Hern-
quist, 2003. In the following sections we compare two different SPH schemes (see also table
V.1), which are distinguished as follows. The ‘standard’ implementation corresponds to the
developer version of GADGET-3 without our modifications (Springel, 2005b). The ‘new’ im-
plementation includes all the SPH improvements presented in this section. In principle, we
always use the entire new scheme and we also employ the same set of all numerical parameters
throughout our entire simulation test suite. Thus, unless otherwise stated, we do not tune indi-
vidual standard tests or astrophysical applications. However, if necessary we sometimes switch
off some of the modifications to analyse their individual and isolated impact on several of the
test problems.

V-2.2 Kernel functions and density estimate

Foremost, there is the question in a Lagrangian method how to derive fluid field quantities from
a given set of point masses. In particular, the estimation of the gas density is crucial as many
further equations rely on it. We employ the standard estimator of SPH and calculate the density
ρ(xi) = ρi of an individual particle i at the position xi by summing the contributions of Ni

neighbouring particles j within a smoothing radius h(xi) at a distance xij in a mass-weighted
(mj) and distance-weighted (Wij(xij , hi)) fashion

ρi =
∑
j

mjWij(xij , hi). (V-1)
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Standard New
Density estimator Traditional Bias-corrected Dehnen and Aly, 2012
Kernel function Cubic spline Wendland C4 Dehnen and Aly, 2012
Neighbours (3D) 64 200 Dehnen and Aly, 2012
Equation of motion Density-Entropy Density-Entropy Springel and Hernquist,

2002
Grad-h terms Yes Yes Springel and Hernquist,

2002
Velocity gradients Low-order High-order Price, 2012b; Hu et al.,

2014
Artificial viscosity Constant Adaptive (locally) Dolag et al., 2005b;

Cullen and Dehnen, 2010
Balsara limiter Low-order High-order Introduction, 1995;

Cullen and Dehnen,
2010; Price, 2012b

Artificial conduction No Adaptive (locally) Wadsley, Veeravalli, and
Couchman, 2008; Price,
2008

Hydrostatic correction No Adaptive (locally) Price, 2008; Valdarnini,
2012

Particle wake-up No yes (fw = 3) Saitoh and Makino, 2009;
Pakmor, 2010; Pakmor et
al., 2012

Table V.1: Comparison of the ‘standard’ (column 2) and ‘new’ (column 3) SPH implementa-
tions in the GADGET code. Furthermore, we give some references (column 4) for extended
descriptions and discussions.
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Simultaneously, the smoothing length hi is a function of density

h(xi) = η

(
mi

ρi

)1/3

, (V-2)

where η defines the ratio of smoothing length to the mean distance between particles. Equations
(V-1) and (V-2) roughly ensure constant mass resolution throughout the simulation and have to
be solved in parallel. This mimics the evolution of spheres of the same mass 4/3πh3

i ρi = Nimi

but with varying number of neighbours. The number of neighbours varies across space and time
with an increase or decrease of smoothing length and local quality of fluid sampling by the point
masses. The weighting function is commonly chosen to decrease monotonically with distance,
yield smooth derivatives, is symmetric with respect to xij = xji and has a flat central portion.
A historical choice (Monaghan and Lattanzio, 1985) of kernel function

Wij(xij , hi) = w(q)/h3
i , (V-3)

is the cubic B-spline function with q = xij/hi and

w(q) =
8

π


1− 6q2 + 6q3 0 ≤ q ≤ 1

2

2 (1− q)3 1
2 ≤ q ≤ 1

0 1 ≤ q
, (V-4)

which we commonly employ with a choice of 64 neighbours in three dimensions. However, this
traditional kernel function is subject to the pairing (or clumping) instability when the number
of neighbours is too large (see Price, 2012b). An alternative choice to achieve better numerical
convergence is necessary and an entire new family of kernels is needed. In a kernel stability
analysis Dehnen and Aly, 2012 show that the Wendland kernel functions are a much better
choice. We choose the Wendland C4 (WC4) kernel with 200 neighbours in three dimensions as
our smoothing function without the pairing instability problem. The functional form of the C4

is given by

w(q) =
495

32π
(1− q)6(1 + 6q +

35

3
q2). (V-5)

For values of q > 1 it is set to w(q) = 0. The Wendland functions require similar computational
effort as the cubic spline kernel but nevertheless, the total computational time increases due
to larger number of neighbours. Therefore, we do not employ the higher-order C6 functions
because of the required 295 neighbours. In summary, the total computational cost of the density
and hydrodynamical force calculation increases by a factor of about two in comparison to a cubic
spline with 64 neighbours. However, a better estimate of the kernel will result in a more accurate
density estimate and improved gradient estimators. These estimators are the cornerstones of the
SPH formalism and determine the accuracy and convergence rate in all our test simulations.
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V-2.3 Equation of motion

The EoM for a system of point masses are derived (see e.g. Price, 2012b) from a discretised
version of the fluid Lagrangian

L =
∑
i

mi

[
1

2
v2
i − ui

]
, (V-6)

where v denotes velocities and u internal energy of individual particles. The Lagrangian nature
of SPH, when complemented with a symplectic time integration scheme, automatically con-
serves mass, momentum, angular momentum, energy and entropy. We use the standard kick-
drift-kick Leapfrog time integration of GADGET (Springel, 2005b). The EoM then follows from
the principle of least action, where the spatial derivative of internal energy comes (if constant
entropy is assumed) from the first law of thermodynamics dU = −PdV . We choose a volume
element depending on density (V = m/ρ) and an adiabatic equation of state for the pressure
P = Aργ , which is defined individually for every particle. We integrate entropy A as the ther-
modynamical variable of choice and thus employ what is commonly called ’density-entropy’
SPH.
The EoM in the ’density-entropy’ (for a derivation see Springel and Hernquist, 2002) for the
hydrodynamical force part of an individual particle reads

dvi
dt

∣∣∣∣
hyd

= −
∑
j

mj

[
f co
i

Pi
ρ2
i

∇iWij(hi) + f co
j

Pj
ρ2
j

∇iWij(hj)

]
, (V-7)

where the factor f co is a correction factor, which accounts for the mutual co-dependence of
smoothing length h(ρ) and density ρ(h) and their corresponding derivatives. Its functional form
is given by

f co
i =

[
1 +

hi
3ρi

∂ρi
∂hi

]−1

. (V-8)

Equation (V-7) leads to a non-vanishing force at contact discontinuities even when pressure is
constant. This is the artificial ’surface tension’ of SPH, which suppresses particle movement
across contact discontinuities. In the following sections, we present our equations in notation of
internal energy u, which is related to the entropic function A = (γ − 1)u/ργ−1.

V-2.4 Artificial viscosity

Smoothing of jumps

By construction, SPH solves the ideal Euler equation and no dissipative terms are included but
those are necessary to describe discontinuities correctly. In highly dynamical regions (e.g. in
shocks) fast particles commonly penetrate into regions of resting particles causing unwanted
particle disorder and oscillations in the sampling of the fluid. However, SPH already contains
an intrinsic remeshing force but to re-establish particle order and capture shocks properly an
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additional dissipative term in velocity is needed. This AV aims to remove post-shock oscillations
and noise and helps to smooth the velocity field (see Monaghan and Gingold, 1983). We include
AV in an energy conserving way with a contribution to the EoM of the form

dvi
dt

∣∣∣∣
visc

=
1

2

∑
j

mj

ρij
(vj − vi)α

v
ijf

shear
ij vsig,v

ij F ij , (V-9)

and with a contribution to the energy equation of the form

dui
dt

∣∣∣∣
visc

= −1

2

∑
j

mj

ρij
(vj − vi)

2 αvijf
shear
ij vsig,v

ij F ij , (V-10)

where the symmetrised variables represent ρij = (ρi + ρj)/2 for the density, αvij = (αvi +

αvj )/2 as a numerical coefficient to include AV (see below) and f shear
ij = (f shear

i + f shear
j )/2

as the Introduction, 1995 shear flow limiter (see Section 2.3.2 below), which aims to ensure the
application of AV only in strong shocks (high velocity divergence) and not in rotating or shearing
flows (high velocity curl). Furthermore, in the above equation F ij = (Fij(hi) + Fij(hj))/2 is
the symmetrised scalar part of the kernel gradient terms ∇iWij(hi) = Fijrij/rij , which are
used to linearly interpolate the second-order Laplacian derivative in the velocity field diffusion
equation. The pairwise signal velocity vsig,v

ij (first introduced by Monaghan, 1997, and already
used in GADGET-2) determines the strength of AV and directly includes a quantitative measure
of particle disorder

vsig,v
ij = csi + csj − βµij , (V-11)

where cs is the sound speed of the particles and µij = vij · xij/xij with a commonly chosen
pre-factor of β = 3. AV is only applied between approaching pairs of particles (i.e. µij < 0)
and otherwise switched off. The local signal velocity vsig

i (also used by the time-step criterion,
see Section V − 2.6) represents the maximum value of vsig,v

ij between all particle pairs ij within
the entire smoothing sphere of particle i.
The calculation of the viscosity coefficient αvi is based on an approach developed by Cullen and
Dehnen, 2010 but modified for more efficient computation as follows. The presence of a shock
is indicated via computation of velocity divergence contributions across the entire smoothing
length by

Ri =
1

ρi

∑
j

sign(∇ · v)jmjWij , (V-12)

where a shock corresponds to Ri ≈ − 1. In principle, an accurate calculation of Ri for every
particle requires the previous computation of (∇ · v)i for every particle. Therefore, an extra
SPH summation loop added between the calculation of density (where velocity divergence can
also be calculated) and hydro forces would be necessary. For computational reasons we use
the velocity divergence calculated in the previous time-step. Furthermore, a convergent flow is
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also indicated by a high velocity divergence but that condition does not distinguish between pre-
shock and post-shock regions. Therefore, we employ the time derivative of velocity divergence
to determine a directional shock indicator

Ai = ξimax(0,−(∇̇ · v)i), (V-13)

which is able to distinguish between pre-shock and post-shock regions. We calculate (∇̇ · v)i
via interpolation between the current and the previous time-step (as suggested by Cullen and
Dehnen, 2010) in the time interval ∆ti.
Subsequently, we use the shock indicator Ri to determine the ratio ξi of strength of shock and
strength of shear in quadratic form via

ξi =
|2(1−Ri)4(∇ · v)i|2

|2(1−Ri)4(∇ · v)i|2 + |∇ × v|2i
, (V-14)

which is proposed by Cullen and Dehnen, 2010 as an additional limiting factor for AV in equa-
tion (V-13) and was experimentally determined. Now, for every particle we can define and set
the target value αloc,v

i of AV with the help of the directional shock indicator to

αloc,v
i = αmax

h2
iAi

h2
iAi + (vsig

i )2
. (V-15)

In the case, where the viscosity coefficient αvi is smaller than αloc,v
i , we set the coefficient to

αloc,v
i . Otherwise, we let it decay with time according to

α̇vi = (αloc,v
i − αvi )

vsig
i

`hi
, (V-16)

which we integrate in time together with the hydrodynamical quantities. The constant ` specifies
the decay length and in our test problems we find a numerical value of ` = 4.0 to give reasonable
results.

Gradient estimators

We use the Introduction, 1995 form of the shear viscosity limiter

f shear
i =

|∇ · v|i
|∇ · v|i + |∇ × v|i + σi

, (V-17)

with σi = 0.0001csi/hi for numerical stability reasons. At this point, the question arises how to
calculate the divergence and vorticity. The common curl estimator of SPH reads

(∇× v)i = − 1

ρi

∑
j

mj (vj − vi)×∇iWij , (V-18)
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which takes the lowest order error term into account. Since higher-order error terms are ne-
glected, this formation performs very poorly in the regime of strong shear flows. Therefore,
we resort to a higher-order calculation scheme of the velocity gradient matrix (see similar ap-
proaches by Cullen and Dehnen, 2010; Price, 2012b; Hu et al., 2014). We follow the approach
presented in Price, 2012b for the computation of the gradient matrix. We expand vj for every
vector component k in a Taylor-series around i with

vkj = vki + (∂δv
k
i )(xj − xi)

δ +O(h2). (V-19)

Inserting equation (V-19) into equation (V-18) yields an easy solution for the linear term ∂δv
k
i

and the velocity gradient matrix by solving the following system of equations:

χαβ =
∑
j

mj(xj − xi)
α∇βiWij , (V-20)

χαβ
∂vki
∂xα

=
∑
j

mj(vj − vi)
k∇βiWij , (V-21)

which requires a matrix inversion for χαβ . Conveniently, the estimator is also independent
of density and thus, can be calculated in the same computational loop along with densities.
Subsequently, the updated estimates of velocity divergence and curl are calculated directly from
the full velocity gradient matrix via

(∇ · v)i =
∂vαi
∂xα

, (V-22)

(∇× v)δi = εαβδ
∂vβi
∂xα

. (V-23)

In our test problems we find the low-order estimator of velocity divergence to give already
satisfying results (see also appendix A2 in Schaye et al., 2015). In contrast, the low-order
estimator of velocity curl performs very poorly and we obtain significantly improved results with
the high-order curl estimator of equation (V-23). The high-order estimators are not restricted
to the AV scheme but they also enter various other modules of the code, where their precise
calculation is required. For example, this additionally greatly improves the approximation of
fluid vorticity written into the simulation snapshots.

V-2.5 Artificial conductivity with gravity correction

Smoothing of jumps

We move on to address the mixing problem in SPH by introducing a kernel-scale exchange term
for internal energy transport. We include AC for purely numerical reasons to treat discontinu-
ities in the internal energy (similar to the capturing of velocity jumps by AV), which arise from
our ’density-entropy’ formulation of SPH. We note that a ’pressure-entropy’ formulation of the
EoM is also able to address the mixing problem but it also requires the presence of AC in order to
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smooth noise in internal energy behind shocks (Hopkins, 2013; Hu et al., 2014). Thus, in either
flavour of SPH the inclusion of AC is recommended and many different formulations of the AC
diffusion equation have been investigated so far. Although their precise details vary across the
literature, they all ensure conservation of internal energy within the kernel. Price, 2008, Price,
2012b and Valdarnini, 2012 propose the diffusion of internal energy, while Read and Hayfield,
2012 propose the diffusion of entropy. Wadsley, Veeravalli, and Couchman, 2008 propose a first
mixing formulation to resolve the differences in entropy profiles within cosmological compar-
ison simulations (Frenk et al., 1999) between grid and SPH codes. The diffusion coefficient is
approximately proportional to αcvsig,cxij and the numerical coefficient αc is commonly treated
as constant through space and time. We adapt the formulation of a spatially varying coefficient
of Tricco and Price, 2013 and additionally calculate a limiter depending on the local hydrody-
namical and gravitational states. We compute the gradient of internal energy as

(∇u)i =
1

ρi

∑
j

mj(uj − ui)∇iWij (V-24)

and approximate the AC coefficient

αc
i =

hi
3

|∇u|i
|ui|

(V-25)

as a measure of noise of internal energy sampling on kernel scale. The time evolution (i.e. spa-
tially varying SPH discretisation of the second-order diffusion equation) of the internal energy
for each particle and its neighbours is then given by

dui
dt

∣∣∣∣
cond

=
∑
j

mj

ρij
(uj − ui)αcijv

sig,c
ij F ij , (V-26)

where we employ the choice of Price, 2008 for signal velocity depending on the pressure gradient
of the form

vsig,c
ij =

√
|Pi − Pj |
ρij

(V-27)

and αcij = (αci +α
c
j)/2 is the symmetrised conduction coefficient, which are individually limited

to the interval [0, 1]. In the literature several other forms of AC (see eg. Wadsley, Veeravalli, and
Couchman, 2008; Valdarnini, 2012) or approaches to the mixing problem (see e.g. Hopkins,
2013) have been proposed.

Gravity limiter

We note that the amount of AC applied depends on the gradients of internal energy and of
pressure. In the case that the thermal pressure gradient is determined by gravitational forces
(i.e. hydrostatic equilibrium) this method would incorrectly lead to unwanted conduction. In the
following, we determine the contribution of hydrostatic equilibrium to the total thermal pressure
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gradient and present a method to limit the amount of conduction. Firstly, for every individual
active particle, we project the gravitational force Fg onto the hydrodynamical force Fhi and
calculate the partial force Fpi of Fhi , which is balanced by Fgi to

Fpi =

(
Fgi · Fhi

)
|Fhi |2

Fhi . (V-28)

The sign of Fpi depends on the spatial orientation of the force vectors. Secondly, we subtract/add
the partial force Fpi from/to the hydrodynamical force Fhi and obtain Fci , which we call the
gravitationally adjusted hydrodynamical force

Fci = Fhi + Fpi (V-29)

and which we use to determine a limitation factor δci for AC

δci =

((
Fci · Fhi

)
|Fhi |2

)q
. (V-30)

The limiter ensures that AC is only applied to the part of Fhi which is not balanced by Fgi . The
exponent q represents a scaling for the aggressivity of the gravity correction. We limit our cor-
rection factor to the interval [0, 1] and directly multiply it onto the individual AC coefficients
αci . The limiter performs only as well as the hydrodynamical scheme is able to resolve hydro-
static equilibrium (in the ideal case the angle between force vectors is 180◦). However, in SPH
simulations small-scale noise is present at all times within the kernel and thus also in the force
vector angles. The exponent q (applied after the boundary verification) can then be understood
to account for the noise in the particle distribution and mimics an opening angle of force vectors.
After extensive studies and performing a variety of test problems, we settle with q = 5. The lim-
iter returns zero in the case no hydrodynamical forces are present and one in the case, where no
gravitational forces are present. We are aware that in the presence of strong pressure gradients
and rotational forces our approach only marginally limits the amount of AC applied. However,
we did not encounter major problems in our simulations performed with the ‘new’ scheme so
far. Therefore, we assume this issue to be not too important at the present state.

V-2.6 Particle wake-up and time-step limiter

GADGET employs individual time-steps for all of the particles to increase computational effi-
ciency. Thus, the particle population is split into a set of active particles, whose hydrodynamical
properties are integrated in the current time-step and a set of inactive particles, which reside on
larger time-steps. These individual time-steps are computed from the local thermodynamical
properties of each particle. However, the splitting between active and inactive computational re-
gions creates problems, where both sets of particles are overlapping. In the case of a rapid gain
in velocity or entropy an active particle can penetrate into a region of inactive particles. The
inactive particles do not notice the sudden presence of the highly dynamical particle and there-
fore large gradients in the time-steps and unphysical results can occur. As a treatment we adopt
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a time-step limiting particle wake-up scheme as proposed and implemented in the GADGET-3
code by Pakmor, 2010 and Pakmor et al., 2012 with the help of K. Dolag. It is similar to the
time-step limiting scheme described by Durier and Dalla Vecchia, 2012 and can be considered
an extension of the Saitoh and Makino, 2009 mechanism. Furthermore, our limiter compares
signal velocities instead of time-steps and accounts for incorrect extrapolations. For every active
particle, in every time-step, the individual time-steps themselves are re-computed according to

∆ti =
Chi

vsig
i

, (V-31)

where C is the Courant factor and vsig
i the maximum signal velocity (see Section V-2.4). For the

calculation of the time-step the maximum of the signal velocity computed between the active
particle i and all its neighbour particles j within the entire kernel is used. GADGET employs
a check during the hydrodynamical force computation for large differences in signal velocities
(see equation (V-11)) within the kernel by evaluating

vsig
ij > fwv

sig
j , (V-32)

with a tolerance factor fw corresponding to a wake-up triggering criterion, which captures sud-
den changes in the pairwise signal velocity. From our hydrodynamical standard tests we find
fw = 3 to give reasonable results. Additionally, the fluid quantities of the recently woken-
up particles could have already been predicted half a time-step into the future. Therefore, the
incorrect extrapolation is removed and the contribution from the real time-step added. These
corrections are performed for all particles for which the time-steps are adapted.

V-3 Hydrodynamical tests without gravity

We evaluate the performance and accuracy of the two different SPH implementations with a
first set of standard problems. These first test problems are purely hydrodynamical and do not
include gravity or more advanced physics, yet. Throughout all the test problems we use an
adiabatic index of γ = 5/3, the same set of numerical parameters (see Section 2) and we do not
specifically tune individual test problems.

V-3.1 Sod shock tube

We consider the Sod shock tube problem (Sod, 1978) to study the SPH behaviour in a simple
weak shock test. We set up 630000 particles of equal masses using a relaxed glass file in a
three-dimensional periodic box with dimensions ∆x = 140, ∆y = 1 and ∆z = 1. On the left
half side of the computational domain (x < 70) we initialize 560000 particles with a density
of ρL = 1.0 and a pressure of PL = 1.0. On the right half side of the computational domain
(x > 70) we initialize 70000 particles with a density of ρR = 0.125 and a pressure of PR = 0.1.
Figure V.1 shows the results of the test problem at time t = 5.0. In general, both SPH schemes
agree fairly well with a reference solution (green line) obtained with the ATHENA code (Stone
et al., 2008) but we note the following differences. In the ‘standard’ scheme (blue dots), the
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discontinuity in internal energy results in a ’blip’ of pressure (see figure V.2) and energy, which
corresponds to the artificial spurious surface tension of SPH. The issue of the ’blip’ has been
discussed for a long time (see e.g. Monaghan, 1992). In the ‘new’ scheme (red dots), AC pro-
motes mixing, resolves the discontinuity, regularizes the pressure and provides a treatment of the
’blip’. A closer look at individual particles (see figure V.3) shows that the pure noise in velocity
of particles behind the shock front is lower, which is a direct result of the improved prescription
of AV. However, reducing the viscosity gives rise to post-shock ringing. Additionally, the change
of kernel function improves the sampling quality of the fluid and yields a smoother estimation
of density. At last, the time-step limiter is of little importance due to the weak shock in this
test. However, as seen in figure V.2 the ’blip’ is not completely removed and this is where some
residual surface tension shows up.

V-3.2 Sedov blast

We consider the Sedov blast problem (Sedov, 1959) to study the SPH behaviour in a simple
ultrasonic strong shock test. We set up 1303 particles of equal masses using a relaxed glass
file in a three-dimensional periodic box with dimensions ∆x = ∆y = ∆z = 6 kpc. In the
entire computational domain we initialize the particles with a density of 1.24 × 106 M� kpc−3

and one Kelvin as temperature. At the centre of the box we point-like distribute the energy
E = 6.78× 1053 erg to mimic a supernova explosion among the nearest 102 particles.
Figure V.4 shows thin slices through the centre of the simulation box and figure V.5 the corre-
sponding particle distribution at time t = 0.03. Furthermore, we perform the ‘standard’ scheme
test also with the time-step limiter (fw = 8000) because of the very strong shock (Mach �
100) of the blast and otherwise any comparison will fail. Without the limiter, shocked parti-
cles penetrate into quiescent regions causing a highly distorted fluid sampling, which results in
an incorrect solution leading to an incorrect propagation of the shock front (see discussions in
Saitoh and Makino, 2009; Durier and Dalla Vecchia, 2012) and corresponding smoothing. The
entire ’new scheme’ reproduces the analytical solution (black line) very well, with the ‘standard’
run (green dots) totally failing, and the ‘new’ run (red dots) capturing the position, density and
temperature of the shock fairly well. In addition, we show a partially improved ‘standard’ run
(blue dots), where we enabled the time-step limiter but nothing else. This run also yields rea-
sonable good results in this test, but as we see later comes short in other tests. We see that the
‘new’ scheme yields a smooth distribution of particles within the central region and therefore a
well-resolved, but smoothed due to AC, temperature solution.

V-3.3 Keplerian ring

We consider the Keplerian ring problem (Cartwright, Stamatellos, and Whitworth, 2009; Cullen
and Dehnen, 2010) to study the SPH behaviour in a simple rotating and shearing test problem.
We set up 20000 particles of equal masses sampling a two-dimensional ring with a Gaussian
surface density profile with a peak at radius R = 15.0 kpc and a standard deviation of σ = 2.0
kpc. For numerical reasons we initialize the distribution in concentric shifted circles and not
in a random fashion (Cartwright, Stamatellos, and Whitworth, 2009). We set the particles on
Keplerian orbits around a central 109 M� point mass with a rotation period of t = 2π. We
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Figure V.1: Sod shock tube. We show the spatial distribution of particles (every 10th particle
is plotted) for density, thermal pressure, total energy and velocities at time t = 5.0. Both SPH
schemes capture the shock well but with differences as follows. The ‘new’ scheme converges
better in the density estimate and the presence of AC nearly removes the pressure blip at the
contact discontinuity.
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Figure V.2: Sod shock tube. We show a zoom-in on the pressure blip (see figure V.1, upper right
panel) at time t = 5.0. Only a small residual of surface tension is left.

Figure V.3: Sod shock tube. We show a zoom-in on velocity in x-direction (see figure V.1,
bottom right panel) at time t = 5.0. Besides some post-shock ringing, the post-shock noise is
smaller with the ’new’ scheme.



V-3. HYDRODYNAMICAL TESTS WITHOUT GRAVITY 133

Figure V.4: Sedov blast wave. We show thin slices through the centre of the computational
volume at time t = 0.03 of the test performed with the ‘new’ scheme. The shock front is clearly
visible in the gas density (left panel) as well as the temperature (right panel).
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Figure V.5: Sedov blast wave. We show the radial distribution of particles (every 5th particle
is plotted) at time t = 0.03 with a time-step limiting criterion of fw = 3. We have performed
the ‘standard’ run with a time-step limiting criterion of fw = 8000 (green lines, otherwise no
meaningful comparison can be performed) and also fw = 3. The classic ‘standard’ scheme
(green lines) fails to capture the shock, while the ‘new’ scheme (red lines) captures the position
and evolution of the shock front much better compared to the analytical solution (black lines).
This test shows the importance of the time-step limiter.
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choose the sound speed orders of magnitudes smaller than the orbital velocity to ensure thermal
stability of the ring. In contrast to our common set of numerical parameters, we start without a
minimal value of AV because it would immediately trigger instability. In the absence of AV the
ring should be stable.
Figure V.6 shows the results of the test problem at the times of onset of runaway instability. We
perform all test runs with the WC4 kernel in order to exclude possible effects caused by the
smoothing scale of kernel sizes and differential estimators. Due to the highly sub-sonic nature
and the absence of strong shocks, the impact of AC and the time-step limiter is negligible. The
initially stable ring (top left panel) evolves as follows for different implementations of AV. In
the ‘standard’ scheme (top right panel), the ring is only stable for about two dynamical times,
before the instability has fully developed and the ring breaks up. Also, the Balsara limiter does
not succeed in limiting AV because of the insufficient calculation of vorticity. In the ’M&M’
scheme (bottom left panel) we use the implementation of a low-viscosity scheme initially pro-
posed by Morris and Monaghan, 1997 and implemented into GADGET by Dolag et al., 2005b.
Their scheme uses a time-dependent evolution of numerical AV coefficient αvi to suppress AV
in the absence of shocks and manages to keep the ring stable for about seven dynamical times.
However, the M&M scheme requires a minimum value of AV and also uses a low-order esti-
mator for vorticity, which leads to the ring break-up. At last, we show the results of the ‘new’
scheme (bottom right panel), which we used without a minimum value for AV. This scheme uses
a high-order estimator of velocity gradient matrix, which results in a very accurate calculation
of divergence and vorticity. Therefore, also the computation of the Balsara shear flow limiter is
very accurate and suppresses AV completely within the entire ring structure. We do not note an
artificially induced transport of angular momentum and orbital changes of test particles. Con-
sequently, the ring remains stable for many dynamical times and the initial Gaussian surface
density distribution is preserved until we stopped the simulation.

V-3.4 Cold blob test

We consider the blob test (Agertz et al., 2007; Read, Hayfield, and Agertz, 2010) set up with
publicly available initial conditions1 to study the SPH behaviour in a test problem with inter-
acting gas phases and surfaces. We initialize 9641651 particles of equal masses using a relaxed
glass file in a three-dimensional periodic box with dimensions ∆x = 10, ∆y = 10 and ∆z = 30
in units of the cold cloud radius. A cold cloud is centred at x, y, z = 5 and travels at a Mach
number ofM = 2.7. The background medium is set-up ten times less dense and ten times hotter
than the cloud. Spherical harmonics are used to seed large-scale perturbations onto the surface
of the cloud. Because of the low Mach number shocks we expect the time-step limiter to be only
of minor importance.
Figure V.7 shows thin slices through the density structure at various times. In the ‘standard’
scheme, the cold gas cloud is prevented from dissociating by the follow major effect (see also
e.g. Agertz et al., 2007). The presence of artificial surface tension confines the blob of cold gas.
This is clearly visible by the numerically induced stretching of the cloud. Cold material, which
should have been mixed into the ambient hot medium is confined within an elongated structure.

1http://www.astrosim.net/code/doku.php
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Figure V.6: Keplerian Ring. We show the initial set-up (top left panel) as well as the results of
three different AV methods. For a fair comparison we only vary the AV scheme and none of
the other SPH modifications. The importance of AV becomes clear as high amounts of viscosity
lead to numerical accretion of particles onto the central point mass. Because angular momentum
is conserved, the ring breaks up and an instability develops. With a low-order Balsara limiter,
neither the standard SPH viscosity (top right panel) nor the M&M viscosity (bottom left panel)
are able to preserve the ring. The ‘new’ scheme (bottom right panel), which has a the time-
dependent AV coupled with a high-order limiter, is able to preserve the ring to even very late
times.
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In the ‘new’ scheme, the presence of AC promotes the mixing with external ambient medium.
We also note that the ‘new’ scheme resolves different shock structures propagating through the
box both more accurately and smoothly.
Figure V.8 illustrates the dissipation of the gas cloud by tracking the time evolution of cold blob
mass. We associate (see also Agertz et al., 2007) particles with the cold cloud with a temperature
criterion of T < 0.9 · Text (in contrast to the external ambient medium) and a density criterion
of ρ > 0.64 · ρcl (in contrast to the initial density of the cloud). In the ‘standard’ scheme (blue
line), only half of the cold gas mass is mixed into the hot ambient medium over five dynamical
times. The effects of the improved AV and WC4 kernel (green line) are negligible. The major
impact and contribution to cloud dissociation is made by AC (pink line) and the corresponding
introduced mixing process. The results are close to a test run performed with the ENZO (Bryan
et al., 2014) code in a comparable set-up, which we took from Hopkins, 2013. However, some
residual surface tension remains.

Figure V.7: Blob test. We show thin slices of gas density through the centre of the computational
domain at times t = 0.0, 3.0, 6.0 and 10.0. In the ‘standard’ scheme, numerical surface tension
prevents mixing between cold and hot phases leading to an artificial stretching of the cloud and
an unphysical solution. In the ‘new’ scheme, AC helps to promote cloud dissociation; however,
some residual surface tension remains left. Furthermore, the shock structures throughout the
box are more defined and better resolved.
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Figure V.8: Blob test. We show the fraction of cold gas as a function of time for four different
SPH schemes. In the ‘standard’ scheme, numerical surface tension prevents mixing between
the cold and hot phases. The importance of AC becomes clear as it promotes mixing between
gas phases, which allows a dissociation of the cloud. Only some residual surface tension is left.
Comparing to a run performed with the ENZO grid code, we find our AC scheme to model
mixing in a conservative way.
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V-3.5 Kelvin-Helmholtz instability

We consider the Kelvin-Helmholtz instability (Agertz et al., 2007; Read, Hayfield, and Agertz,
2010) from publicly available initial conditions1 to study the SPH behaviour in a simple shearing
instability test. We set up 1548288 particles of equal masses using a cubic lattice in a three-
dimensional periodic box with dimensions ∆x = 256 = ∆y = 256 and ∆z = 16 kpc, which is
centred around (0, 0, 0). In the central half of the box (|y| < 64) we initialize 512000 particles
with a density of ρ1 = 6.26 · 103 M�kpc−3, temperature of T1 = 2.5 · 106 K and a velocity in
x-direction of v1 = −40 km/s. In the outer half of the box (|y| > 64) we initialize 1036288
particles with a density of ρ2 = 3.13 · 102 M�kpc−3, temperature of T2 = 5.0 · 106 K and a
velocity in x-direction of v2 = 40 km/s. To trigger the instability, we perturb the velocity in
y-direction with a mode of wavelength 128 kpc and amplitude of 4 km/s at the boundary layer
that is exponentially damped towards the upper and lower edge of the box.
Figure V.9 shows thin projections through the specific entropy structure of the test problem at
various times. In the ‘standard’ scheme, the fluid evolves in a laminar fashion and the growth
of perturbations is totally suppressed by the artificial surface tension confining the central gas
stream and large amounts of AV damping velocity perturbations (see also e.g. Agertz et al., 2007;
Price, 2008). In the ‘new’ scheme, the high-order Balsara shear limiter successfully limits AV
and allows large-scale perturbations to develop two prominent roll-ups. Additionally, AC nearly
removes the artificial surface tension between the two gas phases and promotes mixing within
the roll-ups. The entire test set-up does not evolve completely symmetric because of small
secondary perturbations caused by the initial set-up on a cubic lattice. Most importantly, the
high-order AV and AC prove crucial for this test problem, while the WC4 kernel and time-step
limiter are of less importance. At the late stages, in this set-up the ‘new’ scheme is dominated
by diffusion.

V-3.6 Decaying Subsonic Turbulence

Recent comparisons of standard SPH implementations with static and moving mesh grid codes
have sparked a debate about the capabilities of SPH to model subsonic turbulences (see e.g.
Bauer and Springel, 2012; Price, 2012a; Hopkins, 2013; Hopkins, 2015). We study the be-
haviour of our ‘new’ scheme in Idealized simulations of decaying subsonic turbulence. In par-
ticular, we are interested in the effective viscosity of the two schemes and the behaviour of the
’SPH noise’ under conditions appropriate to galaxy formation and cluster simulations, i.e. non-
isothermal, decaying motions from solenoidal and compressive modes. As most baryons on
cosmological scales are in weakly collisional plasmas, numerical models should aim to mini-
mize viscosity where possible (see e.g. Brunetti and Lazarian, 2007).

Grid and particle conversion procedures

We set up 5123 particles of equal masses within a periodic box of side length 3 Mpc/h using
carefully relaxed SPH glass files to minimize spurious initial kinetic energy. Subsequently,
we define a velocity field on a grid of the same resolution in k-space by sampling a spectral
distribution using the Box-Mueller method. The velocity field is transformed back to real-space
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Figure V.9: Kelvin-Helmholtz instability. We show thin projections of specific entropy through
the centre of the computational domain at times t = 3.0 and 6.0 (dynamical timescale tKH ≈
3.4). In the ‘standard’ scheme, numerical surface tension as well as too much AV prevent the
instability to develop and lead to an unphysical laminar behaviour of the fluid. In the ‘new’
scheme, our formulations of AV and AC promote the formation of roll-ups and onset of instabil-
ity, while at late stages diffusion is dominating.



V-3. HYDRODYNAMICAL TESTS WITHOUT GRAVITY 141

using a Fast Fourier Transformation (FFT), normalized such that the average velocity is of the
desired Mach number. The velocities from the grid are transferred to the particle distribution
using the nearest grid point (NGP) sampling kernel.
To assess the impact of random motions near the resolution scale, we need to measure the ve-
locity power spectrum within the SPH kernel. However, the accurate estimation of the velocity
power spectrum of a particle distribution close to the Nyquist frequency is non-trivial, because
of aliasing of the velocity power by the binning kernel (see discussions in Jing, 2005; Jasche,
Kitaura, and Ensslin, 2009; Cui et al., 2008). This can be compared to a problem in signal
processing, where SPH represents an analogue signal and a grid a digital signal representation
of it. Aliasing is strongest at the smallest scales/largest modes, where the velocity power on the
particles is modified by the shape of the binning kernel in configuration-space. To understand
this effect and compare binning kernels, we take initial conditions with a full Kolmogorov power
spectrum (Pk ∝ k−11/3) without performing a simulation and directly bin the velocity back to a
grid using different kernels. After a forward fast Fourier transformation we radially average the
velocity power in k-space in 32 logarithmic bins.
Figure V.10 shows the resulting power-spectra where the black line represents the original power
spectrum. We show the kernels: Nearest Grid Point (NGP, red line), Cloud in Cell (CIC, green
line), Triangular Shaped Cloud (TSC, violet line), Daubechies scaling function of 20th order
(D20, orange line), and the WC4 SPH kernel with 200 neighbours (SPH, brown line) (Hockney
and Eastwood, 1988; Daubechies, 1992; Dehnen and Aly, 2012). We also show the NGP with
two times oversampling (blue line), which was used in Bauer and Springel, 2012. As vertical
lines we show the Nyquist frequency kNyq = Nkmin, the WC4 smoothing scale kσ and the WC4
kernel compact support khsml = π/hsml (Dehnen and Aly, 2012).
During the binning process, the SPH kernel function conserves density to machine precision but
not energy, i.e. binning with the SPH kernel is a diffusive process. The other kernels behave
opposite, they conserve mass, scalar velocity and energy to less than one per cent but not SPH
density and volume. Figure V.10 clearly shows that the D20 wavelet kernel minimizes aliasing
for sufficiently homogeneous particle distributions (Cui et al., 2008). Our comparison also re-
solves the differences found in Bauer and Springel, 2012 and Price, 2012a, who use the twice
oversampled NGP kernel and the standard SPH kernel, respectively. Prior studies based on the
NGP kernel binning over-estimated the SPH noise, while SPH kernel based binning suppressed
the real noise by aliasing. We conclude that all kernels except the D20 show substantial aliasing
and it seems hard to draw definitive conclusions from simulation results under this condition.
Thus we make it our fiducial choice for this study. We note that in the presence of strong gra-
dients in density the SPH kernel remains the only viable choice to obtain binned quantities,
because it is the only kernel in our comparison that guarantees a non-negative non-zero density
in the entire simulation at all grid resolutions. This works reasonably well for a physical inter-
pretation of velocity power-spectra, because motions below the SPH smoothing scale are caused
by numerical effects (Price, 2012a).

Spectral evolution of turbulence

To compare the ‘standard’ and the ‘new’ schemes we consider decaying turbulence within a
periodic box. We seed compressive and solenoidal modes in the range of k ∈ [1.6, 3.1], to
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Figure V.10: Comparison of different particle to grid binning methods acting on the same particle
distribution sampling a Kolmogorov velocity power spectrum in three dimensions (black line).
We show the NGP kernel (red line), the twice oversampled NGP (blue line), the CIC (green
line), the TSC (violet line), the D20 (orange line) and the SPH WC4 (brown line). The vertical
lines indicate the wave numbers corresponding to the Nyquist frequency (solid line), the WC4
compact support (dashed line) and the WC4 smoothing scale (dotted line).
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Figure V.11: Decaying subsonic turbulence. We show the build-up and decay of velocity power
spectra for different schemes. The colours illustrate the time evolution of the spectra (sound-
crossing time of about ts = 7.0. We initially distribute energy on the largest modes, which
then develops a spectral distribution. In the ‘standard’ scheme (left panel) turbulent motions
are almost completely suppressed by destructive impact of AV. In the ‘new’ scheme (middle
panel) turbulent motions develop and a turbulent cascade is built. The diffusive character of AV
is significantly changed and the velocity field as well as the kinetic energy are preserved. The
spectra are then compared to a simulation without viscosity (right panel).

obtain initial conditions appropriate for the galaxy and cluster environment, where turbulence
is injected by merger infall on the scale of the halo core radius. We normalize the velocity
fluctuations in the box such that the average velocity equals a Mach number of M = 0.1 and we
do not time-average spectra.
Figure V.11 (left and middle panels) shows the time evolution of velocity power-spectra for the
‘standard’ scheme (left panel) and the ‘new’ scheme (middle panel). Here we also show the
scale of the SPH kernel compact support (black vertical line) and the kernel smoothing scale
(dotted vertical line). In-line with previous studies (Bauer and Springel, 2012, their fig. 12), the
‘standard’ scheme does not develop a turbulent cascade and damps kinetic energy very quickly.
Our ‘new’ scheme develops a cascade at large scales (small k) but then shows a depression
of kinetic energy close to the kernel scale. This, again, is in-line with prior studies (Hopkins,
2013). The damping of the spectrum at the later times appears self-similar, i.e. the shape of the
spectrum does not change as energy decreases. Inside the kernel the typical build-up of thermal
motions around the smoothing scale kσ can be observed, but scales outside the kernel are not
affected.
In order to understand if the cause of the velocity depression at k ≈ 10 is caused by the formu-
lation of AV we perform a test-run without any viscosity (figure V.11, right panel). Throughout
the whole evolution, the spectrum at the smallest k follows the Kolmogorov scaling, as expected.
Once the turbulent cascade is established, the spectrum turns over at increasingly smaller scales,
which is equivalent to an isotropisation of kinetic energy inside the kernel and subsequent filling
of larger scales with isotropic motions. This follows from the fact that SPH particles are subject
to the pair-wise repulsive force (Price, 2012b), and hence behave like a thermal gas below the
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Figure V.12: Decaying subsonic turbulence. We show thin slices through the centre of the simu-
lation box after one sound-crossing time for both schemes. The panels correspond to gas density
(left panel) and vorticity (right panel). The velocity field shows well developed turbulence con-
sisting of compressive and shearing motions. The ‘new’ scheme is able to more accurately
compute vorticity and suppress AV with the high-order Balsara limiter.
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Figure V.13: Decaying subsonic turbulence. We show the total kinetic energy in the simulation
box over time.
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kernel scale. Eventually, such a system will show a flat power spectrum as expected from the
second law of thermodynamics. In our simulation, we also observe the depression outside the
smoothing scale, which seems to be an intrinsic feature of SPH related to an energy transfer
from outside the kernel to smaller scales, and not related to our formulation of AV.
In our ‘new’ scheme including AV, thermal motions are well controlled inside the kernel scale,
commonly referred to as ’kernel noise’. We argue that these motions are not spurious, because
no additional energy is retained in them, as SPH is fully conservative and the spectrum decays
roughly in a self-similar manner. If we define the kernel smoothing scale (kσ) as the dissipation
scale intrinsic to SPH, the ‘new’ scheme does not show a bottle-neck effect as found in grid
codes at adjacent larger scales but a depression, roughly in the same range in k. This is in line
with the results shown by Hopkins, 2015, whose code uses a Riemann solver to formulate noise-
free AV on scales of the inter-particle separation to obtain grid-code behaviour. We note that
the difference in dissipation scale (dmin versus σkernel) translates into more resolution elements
required by SPH compared to Eulerian methods, i.e. slower convergence.
Figure V.12 shows thin slices through the centre of the simulation box after one sound-crossing
time. We visualize gas density (left panel) and vorticity (right panel). It can be clearly seen that
our ‘new’ scheme resolves compressive and shearing velocity motions better than the ‘standard’
scheme The high-order derivatives of velocity lead to a more accurate estimation of vorticity and
thus, limit the impact of AV and preserve kinetic energy and turbulent motions. Furthermore, the
difference in AV and velocity dissipation between the two schemes becomes strikingly evident
in the time evolution of kinetic energy (figure V.13). The ‘standard’ scheme dissipates 90% of
the kinetic energy budget within four sound-crossing times, while the ‘new’ scheme preserves
energy better by a factor of 5.
We conclude that our code performs comparably to modern implementations of SPH (Hopkins,
2013; Price, 2012b), even in the case of non-isothermal compressive and solenoidal decaying
turbulence found in cosmological simulations. We show that the disagreement between Bauer
and Springel, 2012 and Price, 2012b is largely caused by technical differences, to solve it we
propose a solution based on the D20 binning kernel. We also show that the downturn in the
velocity power spectrum is not caused by the AV implementation.

V-4 Hydrodynamical tests with gravity

We continue to evaluate the performance and accuracy of the two different SPH implementations
with a second set of standard problems. These second tests include hydrodynamical as well as
gravitational forces and also take a cosmological time integration into account.

V-4.1 Hydrostatic sphere

We consider a sphere in hydrostatic equilibrium to study the SPH behaviour in combination with
gravity in an ideally stable system. We set up 88088 dark matter particles with individual masses
of 2 ·109 M� and 95156 gas particles with individual masses of 4.75 ·108 M�. The total mass of
the sphere is 2.2·1014 M� and we use vacuum boundary conditions and a gravitational softening
length of 12 kpc. We set up the initial equilibrium conditions following Komatsu and Seljak,
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2001, as described in Viola et al., 2008. We evolve the sphere adiabatically and do not include
cooling or heating mechanisms in this test.
Figure V.14 shows the results of the test problem at various times. At first, the initial set-up
(dotted lines) of the sphere is not yet in hydrostatic equilibrium and requires some time to set-
tle. Once hydrostatic equilibrium is reached around time t = 2.6 (dashed lines for the ‘new’
scheme) all hydrodynamical schemes must preserve the structure of the sphere and the radial
profiles towards the final simulation time t = 7.6. Between all schemes, the thermal pressure
profiles are indistinguishable balancing the gravitational pressure. However, the composition of
the thermal pressure P = (γ − 1)ρu changes and the radial profiles for density ρ and internal
energy u change significantly. The ‘standard’ scheme (blue lines) reaches the highest central
density and also features lowest central internal energy and entropy. However, the internal en-
ergy drops towards the centre and no stable solution is reached at all. We suggest this behaviour
to be a joint impact of pairing instability caused by the cubic spline kernel function and lack of
internal energy mixing. When introducing only AC, no gravitational limiter and no further SPH
developments (green lines), the results marginally improve. Internal energy still drops towards
the centre but this time because too much AC was introduced. In principle, AC leads to entropy
cores but without the gravitational limiter over-mixing occurs and internal energy is transported
from the centre to the outskirts along the pressure gradient. The addition of the gravitational
limiter (brown lines) improves the results significantly. The divergence of profiles towards the
centre is removed and a stable core of internal energy and entropy is reached. Furthermore,
no numerically induced transport of heat takes place. Additionally, we perform a test run with
introducing only the WC4 kernel and no further SPH improvements (purple lines). In this run,
the central density is lower than in the ‘standard’ scheme, most probably because the clumping
of particles in the centre and the occurrence of the pairing instability is suppressed by the WC4
kernel in contrast to the run with the cubic spline. This also leads to a plateau in internal energy
in the centre of the sphere. At last, we show the results of the entire ‘new’ scheme (red lines) and
find the results to remain stable with all additional modifications to WC4 kernel, AV and time-
step limiter. We find this run to give the most stable radial profiles in time. This test confirms the
importance of kernel functions immune to pairing instability and a proper implementation of AC
and clearly shows the effects of particle clumping and over- and under-mixing in gravitationally
virialised systems, which are important in cosmological simulations.

V-4.2 Evrard collapse

We consider the Evrard collapse (Evrard, 1988) to study the SPH behaviour in the presence of
dynamically important gravitational forces and collapse of gas. We initialize a sphere of gas with
mass M = 1, radius R = 1 and density profile of ρ ∼ r for r < R and use vacuum boundary
conditions and a gravitational softening length of 0.005. We do not use an external gravitational
potential, dark matter particles or radiative cooling and thus the cloud only self-gravitates on
the free-fall time-scale. The gas is initially at rest and the thermal energy budget is orders of
magnitude smaller than the gravitational binding energy.
Figure V.15 shows the results of the test problem at time t = 0.8 We compare the SPH results
to a reference solution similar to Steinmetz and Mueller, 1993. In density (left panel) as well as
in velocity (middle panel) all schemes show similar trends. The general structure of the test is
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Figure V.14: Sphere in hydrostatic equilibrium. We show radial profiles of density (left panel),
internal energy (middle panel) and entropy (right panel) at three different times. At first, the
initial conditions (dotted lines) must settle into hydrostatic equilibrium (dashed lines), which
then remains stable for an extended period of time (solid lines). The stability of the sphere is
determined by the differences occurring between the settled (only shown for the ‘new’ scheme)
and the evolved state (shown for all schemes). In the ‘standard’ scheme (blue lines), pairing
instability caused by the cubic spline kernel and lack of mixing lead to an incorrect central
solution in density (too high) and internal energy (too low). The addition of the WC4 kernel
(purple lines) prevents the formation of particle clumps at the centre and AC promotes fluid
mixing but full AC without gravity limiter (green lines) leads to a numerical transport of internal
energy outwards. The gravity limiter treats this behaviour (brown lines). The ‘new’ scheme
(red lines) with WC4 and AC and gravity limiter significantly improves the radial profiles in all
physical quantities.
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well reproduced; however, the shock front is slightly smoothed and broadened. The solution in
density deviates slightly from the reference solution at the centre. The most striking differences
can be seen in pre-shock entropy (right panel). The ‘new’ scheme (red line) produces higher
levels of entropy compared to the ‘standard’ scheme (blue line) We investigate this trend and
perform another test simulation (purple line) with the ‘new’ scheme but the cubic spline kernel.
This run is closest to the pre-shock reference solution.

Figure V.15: Evrard collapse. We show radial profiles of density, velocity and entropy at time
t = 0.8 and compare to a reference piecewise parabolic grid computation (green lines). In
principle, all schemes (red, blue and purple lines) show similar characteristics, but they differ
as follows. The pre-shock entropy level is significantly higher in the ‘new’ scheme (red lines),
which we attribute to the WC4 kernel with a larger smoothing size. A comparison run with the
all improvements, but no WC4 kernel (purple lines), shows a lower pre-shock entropy level.

V-4.3 Zel’dovich pancake

We consider the Zel’dovich pancake (Zeldovich, 1970) to study the SPH behaviour for the cos-
mological time integration with Hubble function H(t) instead of time t. This test describes
the evolution of a sinusoidal cosmological perturbation in an expanding Einstein-de-Sitter uni-
verse. After an initial linear growth phase, the one-dimensional perturbation collapses and sev-
eral strong shocks develop. Conveniently, the Zel’dovich pancake has an analytical solution
describing the evolution well up to the collapse, which we used to create the initial conditions
of the simulation. The comoving position x of an initially unperturbed coordinate q at redshift z
is given by

x(q, z) = q − 1 + zc
1 + z

sin(kq)

k
, (V-33)

where k = 2π/λ is the wavenumber of the perturbation with a wavelength of λ. We numer-
ically invert equation (V-33) to obtain q(x). The peculiar velocity corresponding to the initial
displacement is given by

vpec(x, z) = −H0
1 + zc

(1 + z)1/2

sin(kq)

k
, (V-34)
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and the comoving density is given by

ρ(x, z) =
ρ0

1− 1+zc
1+z cos(kq)

, (V-35)

where ρ0 is the critical density, H0 the present-day Hubble constant and zc the redshift of col-
lapse. Furthermore, the temperature evolves adiabatically up to the collapse as

T (x, z) = Ti

[(
1 + z

1 + zi

)3 ρ(x, z)

ρ0

]2/3

, (V-36)

where zi is the initial redshift. We follow Bryan et al., 1995, Trac and Pen, 2004 and Springel,
2010a in our test set-up and choose λ = 64 Mpc/h, zc = 1, zi = 100 and Ti = 100 K. In a fully
three-dimensional box, we set up 2563 dark matter particles of equal masses as well as 2563 gas
particles of equal masses.
Figure V.16 shows the results of the test problem at two redshifts. In the top row we show the
evolution of the pancake before the collapse at redshift z = 3.6, while it is still in the linear
phase. The ‘standard’ (blue lines) and ‘new’ (red lines) schemes give comparable results in
density contrast (left column), temperature (middle column) and velocity (right column). The
simulated evolution agrees well with the analytical solution (green lines), which describes the
linearised evolution of initial sinusoidal perturbation. At this stage of the collapse the test is
dominated by gravitational forces and hydrodynamical forces are negligible. Therefore, we do
not expect striking differences to arise between both schemes. Both capture the linear growth
and adiabatic evolution well.
In the bottom row we show the pancake at the final redshift z = 0. Again, we compare to the
analytical solution in the regions outside the central shock. In general, both schemes agree but
we note the following differences. The peak density contrast is marginally lower in the ‘new’
scheme because of additional smoothing introduced by AC. However, the evolution of density
contrast in the low-density regions is described better by the ‘new’ scheme and is resolved with
less noise. We recall the Sod shock tube (Section 3.1) and the Sedov blast wave (Section 3.2)
problems, where we also find more accurately resolved density fields and lower peak densities.
Concerning temperature, we find the central shock to be slightly broader in the ‘new’ scheme,
which is caused by two effects. Firstly, the higher amount of viscosity within the shock leads
to an earlier heating of particles and thus broadens the shocks. Secondly, the time-step limiting
particle wake-up scheme captures highly active particles before they penetrate into inactive re-
gions, which leads to a better fluid sampling and also shock broadening. This can also be noticed
in velocity, where the profile is slightly smoothed in the central region. In summary, our ‘new’
scheme gives reasonable results in this cosmological test problem and the differences between
both schemes are very small at redshift z = 0. Therefore, our new implementation is ready to
be applied to Idealized astrophysical problems.

V-5 Astrophysical applications

We complete the evaluation of the performance and accuracy of the two different SPH imple-
mentations in idealized simulations of galaxy and galaxy cluster formation.
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Figure V.16: Zel’dovich pancake. We show the evolution of density contrast (left column),
temperature (middle column) and velocity (right column). We show the state of the pancake at
an intermediate redshift z = 3.6, while it is still in the linear regime before the collapse and at
the final redshift z = 0, when it is evolved well into the non-linear regime. Both SPH schemes
agree well with the analytical solution during the linear growth phase. At the final redshift,
the ‘new’ scheme resolves well the density contrast and yields a broader shock and a slightly
smoother velocity.
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V-5.1 Idealized galaxy formation

In order to check if the ‘new’ scheme is numerically stable when coupled with a simple effec-
tive description of the interstellar medium, we consider the formation of an isolated disk from
a cooling gas cloud embedded within a rotating dark matter halo. This idealized application
also includes a the prescription for cooling, supernova feedback and star formation of (Springel
and Hernquist, 2003). We focus on the differences between both hydrodynamical schemes and
therefore, we do not consider a cosmological environment or more advanced physical processes
such as black holes, stellar evolution or metals. Numerical comparison simulations (see e.g.
Scannapieco et al., 2012) are a common tool to study the impact of numerical schemes and
physical modules.
Within a computational domain of roughly 1 Mpc3 we set up 4041345 particles resembling a
Milky Way-like dark matter halo with a total mass of 1.8 · 1012 M�. We include 4466429
gas particles with a total mass of 2.2 · 1011 M�, which corresponds to a baryon fraction of
approximately 11 per cent. The gravitational softening length is 450 pc. Initially, the distribution
of dark matter follows a Navarro-Frenk-White profile (Navarro, Frenk, and White, 1997) and
subsequently, we add the gaseous component similar to the set-up of the hydrostatic test (Section
4.1). The only change is that here, we give the gas and dark matter a rotational velocity which
peaks at 180 km s−1. Obviously, the initial hydrostatic equilibrium is broken by the onset of the
gas cooling and we follow the evolution of the cloud for 10 Gyrs.
Figure V.17 visualizes the spatial distribution of stars, where the colours represent the age of
stars (top panels), and the spatial distribution of star forming gas, where the colours represent
the star formation rate (bottom panels) at time t = 7.5 Gyr. We use the ray-tracing program
SPLOTCH (Dolag et al., 2008; Jin et al., 2010) to create the images and choose a linear colour
bar for stellar age, where the red end of the colour bar corresponds to stars older than 3 Gyrs
and the blue end to recently formed stars. We visualize the star formation rate since it traces
the (cold) gas within the disk and use a linear colour bar, which ranges from the minimum to
the maximum value of star formation rate. We choose identical plot settings for the ‘standard’
scheme (left panels) and the ‘new’ scheme (right panels), which show striking morphological
differences as follows.
In the ‘standard’ scheme, the galaxy shows a prominent bulge containing a large fraction of the
stellar population. The entire galaxy appears more spheroidal with a dominant bulge and the
stellar disk is not well pronounced. We find similar features in the distribution of star formation.
The gas disk is asymmetric and only shows little spiral structure in the face-on view. In the edge-
on projection the disk shows a rolling pin morphology. Both disks are dominated by bulges, but
in the ‘new’ scheme the bulge is significantly less dominant. The bulge contains a smaller frac-
tion of the stellar population and might eventually be associated with an elliptical bar structure.
More as well as younger stars are present within the disk. The gas disk is symmetric and shows
a defined spiral structure. At this stage of code testing it is difficult to track down the impact
of individual code changes. However, we assume the most significant differences are caused
as follows. In the ‘standard’ scheme large amounts of AV might lead to dissipation of kinetic
energy, loss of rotational support and numerical angular momentum transport. Additionally, the
mixing problem and its associated numerical surface tension tend to confine cold and dense gas
blobs. In the ‘new’ scheme, significantly smaller amounts of AV are applied and rotational sup-
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port can be provided. Furthermore, the inclusion of AC promotes gas mixing between hot and
cold phases.

Figure V.17: Idealized galaxy formation. We show the spatial distribution of stars, where the
colours visualize the age of stars (top panels) and the spatial distribution of gas, where the
colours visualize the star formation rate (bottom panels) at time t = 7.5 Gyr. In the ‘standard’
scheme (left panels) the distribution of star formation is clumpy and the object appears bulgy. In
the ‘new’ scheme (right panels) the distribution of star formation as well as the stellar component
are more extended and pronounced in a disk-like structure. Furthermore, the size of the bulge
is smaller and the distribution of young stars is more extended. We show a more quantitative
comparison in Figs. V.18 and V.19.
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We continue with a more quantitative comparison of both schemes, which confirms our previous
findings. Figure V.18 shows density in vertical and radial direction (ρz and ρr) of the stellar
component as well as the associated vertical velocity dispersion (σz) at times 2.5 (dashed lines),
5.0 (dotted lines) and 7.5 Gyrs (solid lines). As seen in ρz (left panel), the ‘new’ scheme produces
a thinner stellar disk and as seen in ρr (middle panel) the disk also extends to significantly larger
radii. This trend is confirmed by σz (right panel), which for the ‘standard’ scheme truncates at
smaller radii than for the ‘new’ scheme.
Figure V.19 shows vertical and radial profiles of gas density (ρz and ρr) as well as the vertical
gas velocity dispersion (σz) of the cold gas at times 2.5 (dashed lines), 5.0 (dotted lines) and
7.5 Gyrs (solid lines). We employ a temperature criterion of T < 105K to distinguish between
cold and hot gas. ρr decreases towards the centre since the gas within the bulge is hot and
exceeds our temperature threshold. In the ‘new’ scheme, the distribution of cold gas is slightly
more extended in vertical as well as radial direction. However, σz indicates a colder gas disk.
Most probably, these features are a result of less numerically induced AV, angular momentum
transport and depression of rotational support. Furthermore, the inclusion of AC allows mixing
between gas phases and promotes dissociation of cold structures.

Figure V.18: Idealized galaxy formation. We show the vertical (z) density profile (left panel), the
radial density profile (middle panel) and vertical velocity dispersion (right panel) of the stellar
component. For the radial plots we use cylindrical bins. In the ‘new’ scheme (red lines), the
galactic disk is more defined, extended and colder.

V-5.2 Santa Barbara Cluster

We carried out the Santa Barbara galaxy cluster (Frenk et al., 1999), which is a common ref-
erence simulation for cosmological hydrodynamical simulation codes. Although no analytic
solutions exists, the cluster has been simulated with a large variety of different codes. The sim-
ulation describes the formation of a massive dark matter halo, with virial mass of 1.2 · 1015 M�
and virial radius of 2.8 Mpc. It is evolved in an Einstein-de Sitter cold dark matter cosmology
with parameters of ΩM = 1.0, ΩΛ = 0.0, and H0 = 50 km s−1 Mpc−1. We choose an initial
redshift of z = 20 with a perturbed distribution of 2563 dark matter particles and 2563 gas par-
ticles, each of equal masses (see also Frenk et al., 1999, for a detailed description of the initial
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Figure V.19: Idealized galaxy formation. We show the vertical (z) density profile (left panel),
the radial density profile (middle panel) and vertical velocity dispersion (right panel) of the cold
gas component. For the radial plots we use cylindrical bins. We use a temperature criterion of
T < 105K to select the cold gas. In the ‘new’ scheme (red lines), the galactic disk is more
defined, extended and colder.

conditions), and follow the formation until redshift z = 0.
Figure V.20 shows thin slices of gas density (left panels), temperature (middle panels) and en-
tropy (right panels) defining the thermodynamical state of the hot intracluster medium (ICM) at
redshift z = 0. For the definition of entropy we use S = T/ne

2/3, which is commonly used
in X-ray studies of the ICM (e.g. Kravtsov and Borgani, 2012). From the maps we note the
following interesting features.
The gas density (left panels) tends to be smoother in the ‘new’ scheme, which is mostly due
to the effect of AC, which introduces entropy mixing among neighbouring gas particles. In
contrast, the ‘standard’ scheme produces a clumpy distribution of gas with gas inhomogeneities
associated to stripping from merging haloes and cold blobs. These structures are persistent in
the hot ICM mainly due to the lack of mixing. In turn, these ’features’ of the ‘standard’ scheme
prevent an efficient action of hydrodynamical instabilities such as Rayleigh-Taylor and Kelvin-
Helmholtz instabilities that are spuriously inhibited. Quite remarkably, the clumps are much
less evident in the ‘new’ scheme, which also produces a lower value for the central gas density.
In the temperatures slices (middle panels) it becomes clear that gas clumps in the ‘standard’
scheme correspond to objects of low temperature. As expected, the effect of introducing AC is
the reduction of the degree of ICM thermal complexity.
However, in the ‘new’ scheme the bow-shock, which is induced by the infall of a large sub-
structure onto the main halo is better defined than in the ‘standard’ scheme. The bow-shock is
located on the right hand side of the main halo centre (see figure V.20). In fact, the WC4 kernel
of the ‘new’ scheme captures the entropy discontinuity associated to the shock better. Most im-
portantly, we note from the entropy maps (right panels) that the entropy level in the innermost
region of the clusters increases in the ‘new’ scheme.
Figure V.21 shows radial profiles of gas density, temperature and entropy in the same units as
shown in figure V.20 at redshift z = 0 for both SPH schemes. Furthermore, for a comparison,
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Figure V.20: Santa Barbara Cluster. In boxes with 1 Mpc/h side length, we show this slices
of gas density (left panels), temperature (middle panels) and entropy (right panels) at redshift
z = 0 for the ‘standard’ scheme (top row) and the ‘new’ scheme (bottom row). In the ‘new’
scheme significantly less dense and cold gas blobs are present, as AC promotes fluid mixing and
blob dissociation. This promotes a smoother distribution of higher temperatures and entropies
at the halo centre, which reduces the ICM complexity.
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we also include results obtained with the MASCLET grid code (see Quilis, 2004). Both schemes
produce quite consistent results at relatively large radii (> 200kpc/h) but show striking differ-
ences in the innermost regions. The ‘new’ scheme predicts a flatter central gas density profile,
also with no evidence for the inversion of the temperature gradient produced by the ‘standard’
scheme. Density and temperature profiles for the ‘new’ scheme combine to produce a flat en-
tropy core, which extends out to ≈ 100kpc/h. In the ‘standard’ scheme, the persistence of cold
and dense clumps in the cluster atmosphere causes their low-entropy gas to sink to the centre
of the cluster, thereby causing the continuous decrease of entropy. In the ‘new’ scheme, AC
promotes mixing of gas phases and helps to dissolve low-entropy gas blobs within the hot ICM
atmosphere and causes a higher entropy level to be established.
The results for the ‘new’ scheme are remarkably similar to those of the MASCLET code and,
more in general, reported by Frenk et al., 1999; Vazza, 2011; Power, Read, and Hobbs, 2014 for
Eulerian codes. We point out that such a close agreement has been obtained without any tuning
aimed at producing the entropy core predicted by Eulerian codes in cosmological simulations
for the formation of galaxy clusters. The choice of parameters for the ‘new’ SPH scheme was
only aimed at preventing the limitations of ‘standard’ SPH in terms of the description of dis-
continuities and efficiency to capture hydrodynamical instabilities. Note also that these results
for the Santa Barbara cluster are in qualitative agreement with those obtained in the hydrostatic
sphere (see Section 4.1). The behaviour of both schemes are in the same direction, even if they
are less evident than in this Santa Barbara cluster test, due to the lack of the hierarchical process
of structure formation within a cosmological environment.
Additionally, we analyse the simulation also at redshifts z > 0. In general, the profiles of the
high-redshift haloes show the same behaviour as their low-redshift counterparts, provided that
we choose quiet and virialised objects. Objects, which host dynamically important shocks or
undergo merger events show altered radial profiles because the timing of the mergers depends
slightly on the simulation scheme. Therefore, a sensible comparison of the entire redshift-
evolution and behaviour of both schemes during these violent phases of structure formation
is not possible and requires controlled experiments.

V-6 Summary and conclusions

In this paper we presented a novel implementation of the SPH scheme in the GADGET code,
which provides improved accuracy for simulations of galaxies and large-scale cosmic structures.
Since the first development of SPH great advancements have been made to improve the reliabil-
ity and stability of this hydrodynamical scheme and, in particular, much effort has been spent
in a proper treatment of discontinuities. We implemented and improved several of these modifi-
cations of SPH into the developer version of GADGET-3, and tested them against a number of
standard hydrodynamical problems, as well as first simple astrophysical applications. The main
modifications (see also table V.1) of this ‘new’ scheme, when compared to the ‘standard’ (see
e.g. Price, 2012b) formulation of SPH, can be summarised as follows.

• Artificial viscosity (AV) is introduced for a proper description of shocks. It prevents par-
ticle interpenetration into unshocked regions and provides a regularisation of the particle
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Table V.2: Overview of our test problems. For each test we note the relative importance of
a standard method (X) or an improved method (X(imp.)) of artificial viscosity (AV), artifi-
cial conductivity (AC), time-step limiter (WakeUp) and the physical processes involved beyond
pure hydrodynamics such as gravity (Grav.), cosmological time integration (Cosmo), radiative
cooling, star formation and supernova feedback (Radiat.).
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Figure V.21: Santa Barbara Cluster. We show radial profiles of gas density (left panel), tem-
perature (middle panel) and entropy (right panel). In each panel, we compare the results of the
‘standard’ (blue lines) and the ‘new’ (red lines) scheme to a reference solution (black lines) ob-
tained with a piecewise parabolic grid computation with the MASCLET code (see Quilis, 2004).
The ‘standard’ scheme does not produce an entropy core but a diverging profile towards the halo
centre. In the ‘new’ scheme an entropy core as well as stable temperature and density profiles
are reached, which are all in good agreement to the grid code computation.

field, which supports a proper sampling of the fluid. First spatially constant low-order for-
mulations of AV introduce viscosity not only at shocks, but also within unshocked regions
and shearing flows, thereby leading to an overly viscous behaviour and a too fast dissipa-
tion of kinetic energy. Most commonly, the so called Balsara switch (Introduction, 1995)
is used to reduce viscosity in shear flows, while further attempts were made to reduce AV
where it is unwanted (Morris and Monaghan, 1997; Dolag et al., 2005b). Recently, mod-
ern formulations of AV (Cullen and Dehnen, 2010; Hu et al., 2014) improved greatly on a
correct detection of shocks and use high-order gradient estimators to calculate divergence
and curl of velocity from the full velocity gradient matrix instead of the classical SPH
estimators. This allows shear flow limiters, such as the Balsara one, to work more accu-
rately and suppress AV outside shocks and in shearing flows. In this way, kinetic energy is
better preserved, thus helping simulating turbulent flows or hydrodynamical instabilities
with higher accuracy. In our ‘new’ scheme, we compute the velocity gradients from the
full velocity gradient matrix instead of low-order classic kernel derivatives.

• Artificial conductivity (AC) is introduced to provide a proper fluid description at con-
tact discontinuities. In fact, in the density-entropy formulation a spurious surface tension
arises at discontinuities, which also suppresses the formation of instabilities and prevents
mixing of different fluid phases. Lately, AC (see e.g. Price, 2008) or pressure-entropy for-
mulations (Hopkins, 2013; Saitoh and Makino, 2013) were proposed to overcome these
issues. AC is applied at contact discontinuities and promotes the transport of heat be-
tween particles. However, in the presence of gravitationally induced pressure or temper-
ature gradients, common AC schemes might lead to unwanted transport opposite to the
gravitational force. Therefore, numerical limiters are necessary to be included in AC.
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In our ‘new’ scheme, we include locally adaptive AC to transport heat and treat contact
discontinuities in SPH and we limit the amount of AC by correcting for gravitationally
induced pressure gradients. While we demonstrated that our AC model is quite efficient
at reducing such a surface tension, admittedly a small residual effect is still present, and
could potentially impact the long-term stability by over-diffusion.

• As for the choice of the interpolating kernel, the commonly employed cubic spline func-
tion has been shown to become easily unstable, which leads to spurious pairs of particles,
incorrect gradient estimators and, in general, a poor fluid sampling. Therefore, a change
of the kernel function is highly recommended, where commonly the Wendland kernels
(Dehnen and Aly, 2012) are now used. In our ‘new’ scheme, we employ the Wendland
C4 kernel function with 200 neighbours instead of a cubic spline with 64 neighbours. We
calculate the density in a classic fashion from the mass distribution of particles and also
compute the hydrodynamical forces with the density-entropy formulation.

• At last, within supersonic shocks highly dynamical and computationally active particles
can penetrate into regions containing computationally inactive particles causing distor-
tions in the fluid sampling and incorrect hydrodynamical solutions. In our ‘new’ scheme
we use a particle wake-up time-step limiting scheme (see Saitoh and Makino, 2009; Pak-
mor et al., 2012) as a solution, so as to shorten the time-steps whenever necessary and
allow particles to become active earlier.

To highlight the improvements associated to this advanced SPH implementation, we investigate
both the new and the original scheme in a variety of hydrodynamical standard tests, with and
without gravity. Furthermore, we study the behaviour in the cosmological problem of the forma-
tion of galaxy cluster and enable simple prescriptions for radiative cooling, supernova feedback
and star formation for a test simulation of an isolated rotating disk galaxy. Table V.2 presents
an overview of our test problems and shows if SPH modules are important in a standard (X)
or improved (X(imp.)) with respect to GADGET-SPH without our modifications. Furthermore,
we list the probed physical features of each test.
The inclusion of AC in SPH changes the thermodynamical evolution of density, internal energy
and pressure. Additionally, physical conduction (see e.g. Arth et al., 2014) is also sometimes
employed in cosmological SPH simulations to promote (an)isotropic heat transport, which also
helps to overcome the limitations of ‘standard’ GADGET-SPH. The joint effect of artificial
conduction, introduced for purely numerical reasons, and of physical conduction awaits further
investigations.
In summary, the ‘new’ GADGET-SPH scheme presented here performs better than the ‘standard’
one in every single of our test simulations. Therefore, it provides a much improved numerical de-
scription for weakly collisionless plasmas in cosmological simulations down to galactic scales.
We base our future simulations of galaxies and large-scale cosmic structures on this updated
formulation of SPH. We will also carry out detailed studies of galactic magnetic fields (see Beck
et al., 2013b; Beck et al., 2016) and the ICM with this advanced method. In view of these ap-
plications, it is important to verify how this new SPH implementation performs when compared
to other variants of SPH and to Eulerian codes. To this purpose, this SPH implementation par-
ticipated to the nIFTy cosmology comparison project (Sembolini et al., 2016a), which compares
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the performances of different hydrodynamical codes in cosmological re-simulations of galaxy
clusters. In that comparison project, our code is shown to agree very well to both Eulerian codes
and modern SPH implementations on the radial profiles of gas density, temperature and entropy.
Given the improvements in the description of hydrodynamics provided by the new SPH imple-
mentation presented here, we regard it as the core of an efficient code for modern simulations of
cosmic structure formation.
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Chapter VI

Understanding SPH data:
Transformation to a grid

Fundamental progress has to do with the reinterpretation of basic ideas.
– Alfred North Whitehead

Having outlined the capabilities of our hydrodynamics solver in the last chapter we come now
to the topic of proper data analysis. Analogous to chapter IV where we had to translate scalar
and vector fields into SPH formalism, we have to perform the inverse transformation in order to
analyse a simulation’s data properly. For that we transform our SPH data back onto a regular
grid. There are multiple possible methods how to carry out that transformation, which we review
in this chapter. We propose a novel modification for a common approach which reduces errors
introduced in the transformation and is designed to better conserve the quantities handled like
total mass in case of a density field. This chapter is a slight modification of the paper Roettgers
and Arth, 2018 which is currently in the submission and reviewing process.

VI-0 Abstract

Analysing data from Smoothed Particle Hydrodynamics (SPH) simulations is about understand-
ing global fluid properties rather than individual fluid elements. Therefore, in order to properly
understand the outcome of such simulations it is crucial to transition from a particle to a grid
based picture. In this paper we briefly summarise different methods of calculating a representa-
tive volume discretisation from SPH data and propose an improved version of commonly used
techniques. We present a possibility to generate accurate 2D data directly without the CPU
time and memory consuming detour over a 3D grid. We lay out the importance of an accurate
algorithm to conserve integral fluid properties and to properly treat small scale structures us-
ing a typical galaxy simulation snapshot. For demonstration purposes we additionally calculate
velocity power spectra and as expected find the main differences on small scales. Finally we
propose two new multi-purpose analysis packages which utilise the new algorithms: Pygad and
SPHMapper.

163
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VI-1 Introduction

Since several decades Smoothed Particle Hydrodynamics (SPH), originally formulated by Lucy,
1977 and Gingold and Monaghan, 1977, is a numerical technique particularly widely used in
astrophysics as well as for example engineering, geophysics and computer graphics. SPH dis-
cretises a medium and also the related equations of hydrodynamics (and potential extensions
such as magnetohydrodynamics), formally derived from the fluid Lagrangian by mass (see e.g.
Rosswog and Price, 2007). For a recent review we refer to Price, 2012b.
To the present day many SPH codes have been written and several modifications and improve-
ments have turned up to solve the intrinsic problems that SPH has by construction. These codes
include for example Gasoline (Wadsley, Stadel, and Quinn, 2004), Gadget (Springel, 2005a),
Magma (Rosswog and Price, 2007), Vine (Wetzstein et al., 2009), Phantom (Price and Feder-
rath, 2010; Lodato and Price, 2010) and Gandalf (Hubber, Rosotti, and Booth, 2017). Much
work has been put into improvements of the formalism targeting convergence, fluid mixing and
related issues. See for example Hu et al., 2014; Beck et al., 2016. While these cover mainly
improvements of the simulation codes themselves, amongst others Beck et al., 2016 hint to the
importance of a proper SPH to grid transformation scheme, since SPH shows only what happens
to one fluid parcel while gridded data shows what happens to a domain. Due to the inherent par-
ticle noise it is advisable to carry out some post-processing even at the location of the original
SPH particles (Springel, 2010b). Therefore, this paper targets the question of how to properly
understand and analyse the resulting SPH data.
The amount of analysis codes is at least as vast as the number of simulation codes itself. To
understand a SPH dataset properly and to translate the fluid variables into a commonly under-
standable form is far from trivial. Since SPH particles discretise mass and not volume, one can
not simply plot, for instance, a column-density map of an astrophysical SPH simulation like of
data produced by a grid code. While it is straight forward to think in terms of particles because
it resembles a micro-physical point of view, one may never forget that SPH particles are not
simply elementary particles of the fluid but rather artificial elements tracing the fluid properties
like density or temperature. To visualise fluid properties in a volume related way or to perform
further calculations one often needs to generate a scalar or vector field describing the respec-
tive quantity as a function of the position at first. Although the applied methods are usually not
mentioned in most scientific articles, it is extremely important to conserve as much accuracy
as possible within a reasonable amount of computing time since any error made in this process
propagates into further analysis. Recent articles about map making and especially visualisation
include for example Dolag et al., 2005a; Navrátil, Johnson, and Bromm, 2007; Fraedrich, Auer,
and Westermann, 2010; Forgan and Rice, 2010; Koepferl et al., 2016.
In this paper, after revisiting required SPH basics in section VI-2, we review a few of the com-
monly used techniques how to transform SPH data to gridded data, display issues which arise
in certain cases and discuss possibilities to solve these issues (section VI-3). We present a
novel formulation we call S-normed SPH binning, hereafter SNSB, which approaches typical
problems in a clever way while maintaining the resolution of the SPH data as good as possible
(section VI-3.2). Furthermore, we show a way to improve the run time requirements of such
an algorithm by an intrinsic reduction of dimensions (section VI-3.2). We compare the differ-
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ent methods using some astrophysical simulation results in section VI-4 and conclude with a
short presentation of two novel multi-purpose analysis tools which incorporate these methods
and many more convenient features in section VI-5.

VI-2 SPH principles

We review some SPH basics required. For an extensive review of SPH we refer to the review
of Price, 2012b. We start with the definition of the (symmetric) smoothing kernel following
Dehnen and Aly, 2012:

W
(
~r, h
)

= H(h)−ν w

(
|~r|
H(h)

)
(VI-1)

with h the smoothing length (a measure for the degree of smoothing, typically direct proportional
to H), H the compact kernel support and ν the dimensionality. The smoothing length and the
kernel support radius may be, but are not necessarily the same quantity. Therefore, we explicitly
distinguish the two. In our tests in section VI-4 we use rather low resolution data with a cubic
spline kernel and 32 neighbours to save computing time. We can define the kernel approximation
of a physical scalar (or similar vector) field A(~r), i.e. a smoothed version:

A(~r) =

∫
d3~r ′A(~r ′) δ(~r − ~r ′) ≈

∫
d3~r ′A(~r ′)W (~r − ~r ′, h) (VI-2)

This integral is discretised in SPH, historically in terms of mass:

A(~r) =

∫
ρ(~r ′)d3~r ′︸ ︷︷ ︸

dm

1

ρ(~r ′)
A(~r ′)W (~r − ~r ′, h) (VI-3)

≈
N∑
j=1

mj

ρj
AjW (~r − ~rj , h) (VI-4)

=
N∑
j=1

∆Vj AjW (~r − ~rj , h) =: 〈A(~r)〉SPH. (VI-5)

Generally, it can be discretised with some volume ∆Vj of the particle j, following Hopkins,
2013.
When binning an arbitrary quantity A(~r) onto a grid, one typically seeks to calculate the mean
value A(~k) at the centre of each cell ~k (here in the scatter approach):

A(~k) =
1

∆V (~k)

∫
∆V (~k)

d3~r A(~r) (VI-6)

(V I−5)
=

1

∆V (~k)

N∑
j=1

∆Vj Aj

∫
∆V (~k)

d3~r W (~r − ~rj , hj) (VI-7)

with ∆V (~k) being the volume of cell ~k.
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VI-3 SPH to Grid: Different Methods

In this section we present some of the commonly used methods for a transition from SPH to
gridded data. In order to judge on the quality of these approaches we briefly devote ourselves
to the question which requirements they should fulfil in order to reproduce the same meaning as
the initial data and to keep the required computation time low:

• Conserving integral properties between SPH and grid data.

• (Which implies:) Taking all particles inside the defined region into account.

• Maintaining the provided resolution of the given SPH data.

• Properly treating boundaries.

• Maintaining balance between a computationally cheap algorithm for post-processing and
small resulting errors.

We already mentioned that SPH particles should not be taken as real physically existing particles
but as moving fluid elements. Therefore, a transformation involving the actual SPH smoothing
kernel most likely gives the best results in contrast to an algorithm which treats the particles
directly. In the following subsections we outline several algorithms from a direct particle picture
to a smoothed approach.

VI-3.1 Particle-Mesh and Window Functions

Eastwood and Hockney, 1974 and Cui et al., 2008 give a comprehensive overview over several
so called window functions. The idea behind this class of algorithms is, to select particles in a
certain range from a grid cell’s centre and add their contribution to the cell’s value multiplied
by a certain weight. The main requirements which these are constructed to fulfil are a compact
top-hat support in Fourier space and a generic compact support also in real space. While the
former helps to minimise sampling effects (i.e. shot noise, for further reference we refer to Jing,
2005), the latter is useful to restrain computational cost by keeping the number of contributing
particles bound.
Technically not a window function but similar nevertheless, Bauer and Springel, 2012 display
the simplest approach by always applying the value of the closest particle to a cell without any
summation. This requires the use of a grid resolution about half the minimum distance of SPH
particles in order to capture all particles and leads to aliasing.
For a generic window function W one can calculate the value of a cell ~k via the sum over all
particles i as

A(~k) =
1

Norm
·
∑
i

AiW (xi)W (yi)W (zi) (VI-8)
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with A(~k) being the value of the grid cell, Ai the particle’s value of property A and xi, yi, zi the
particle’s coordinates with respect to the cell’s centre. Window functions are defined symmet-
rically along all three coordinate axis and the function W itself is the same for each coordinate
direction.
Frequently used window functions are for example the Nearest Grid Point method which takes
all particles inside a cell into account without weighting them (Hockney, 1966):

W (xi) =

{
1 |xi| < 0.5 · d
0 otherwise,

(VI-9)

the Triangular Shaped Cloud method which takes particles in range of half the neighbouring
cells into account using a linear distance weighting (Birdsall and Fuss, 1969; Birdsall, Langdon,
and Okuda, 1970):

W (xi) =

{
1− |xi| |xi| < 1.0 · d
0 otherwise

(VI-10)

and finally the Cloud In Cell method, which further extends the range and provides a smoother
second order weighting, by extending the window function (Buneman, 1973; Hockney and East-
wood, 1981):

W (xi) =


0.75− x2

i |xi| < 0.5 · d
(1.5−|xi|)2

2 0.5 < |xi| < 1.5 · d
0 otherwise,

(VI-11)

with d denoting the grid cells side length. Furthermore, we refer the interested reader to Particle
In Cell (Buneman, 1959; Dawson, 1960; Dawson, 1962; Morse, 1969), extensions (Hockney
and Eastwood, 1981; Birdsall and Langdon, 1991) and improvements like so called Multipole
NGP (Kruer, Dawson, and Rosen, 1973).
Fulfilling the requirement of a compact top hat support in Fourier space leads to a non compact
support in real space. Daubechies, 1992 provide a solution approach for mixture of both criteria:
so called wavelets. These are base functions similar to those of the Fourier transformation,
consisting of sin and cos terms, however, preserving local information better than the latter.

VI-3.2 SPH Kernel Methods

General Idea

Since SPH already comes with a kernel weighting formalism with compact support, one can
straightforwardly replace the sum over particles by the typical SPH sum:

Ã(~k) =

N∑
j=1

∆Vj AjW (~r (~k) − ~rj , hj) (VI-12)
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Please note the important difference to window functions which are defined such, that each
particle is assigned to at least one cell due to the window being of cubic support, which is
(typically) larger than a voxel. However, SPH assumes particles to have a spherical smoothing
via the kernel function which can result in particles not being accounted for. We go into more
detail about that in the next subsection.
Besides clear differences between window functions and a kernel based approach, the choice of
the kernel is equally important especially when it comes to its Fourier properties. For further
reading on this we refer for example to Dehnen and Aly, 2012 and Beck et al., 2016 and state
that, while our models are valid for all kernels, it is important for consistency to use the same
kernel in post-processing as during the SPH simulation itself. In our analysis we use the cubic
spline function.
In principal the SPH sum results in a physically more meaningful value, since it mirrors exactly
how a simulation treats the respective equations. However, some problems, for which we discuss
several solution approaches in the next subsections, can still arise.

Solving Common Issues

Without modifications this approach formally fails all criteria outlined above except being a
computationally relatively cheap scheme even though it resembles very closely how SPH works.
Over the years several people evaluated improvements on the algorithm in order to fix these
shortcomings as best as possible.

Multiple evaluations
So far all mentioned prescriptions assumed that we want to calculate the value in the centre of a
grid cell and, therefore, weighted a particles contribution by the distance to this centre. In order
to increase accuracy one can average over several points within a voxel.1 An example is given
by Pakmor, 2006 using 9 distinct points in the cell:

A(~k) =
1

9
·
∑
i

mi ·Ai
ρi

[
W
(
ri − r (~k)

)
+W

(
ri +

d√
3

(±1,±1,±1)− r (~k)

)]
(VI-13)

Obviously this increases the computational cost by roughly a factor of 9 but captures way more
detail in a single grid cell possibly yielding better results for large variations in one cell. It is
also useful not to miss certain particles, if they actually reside inside a certain grid cell but their
kernels do not overlap with the cell centre. However, the results are still resolution dependent
and the same effect might be reachable by simply decreasing the grid cell size, therefore we do
not further discuss this approach.

Broadening the kernel
To prevent particles from falling through the grid, Pakmor, 2006 also suggests the possibility
to broaden the kernel, i.e. to add a constant to the smoothing length of each particle. Setting
this value to

√
3/2 times the cell size guarantees that each particle will contribute to at least one

cell in three dimensions while the effect on particles with big smoothing lengths is on average

1A voxel is the same as a pixel but in three dimensions.
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small, since the relative change of the smoothing length is small. However, this approach artifi-
cially worsens the acquired resolution of the grid, since small features are increased in size and
therefore smoothed out which is a drastic drawback whenever one is interested in the details.
Furthermore, an additional error term is introduced, regarding the conservation of properties
when integrating over the resulting grid.

Boundaries
A serious problem is posed by the boundaries, since here again particles may easily intersect
with a cell but not any point inside it. We briefly discuss this as a special case when outlying our
final approach in the next section.

Normalisation of SPH noise
SPH fields have shot noise due to the particle discretisation and the fixed form of the kernels.
This means for instance that even if all SPH particles carry the same value for an arbitrary fluid
quantity, the total field is not necessarily constant but flawed by particle noise. One can divide
the end result by the unity condition I as suggested by Price, 2007:

I(~r (~k)) =
∑
i

mi

ρi
W
(
~ri − ~r (~k)

)
≈ 1 (VI-14)

This re-normalisation has its biggest effect at locations where only few SPH particles sit, ergo
for example at the boundaries of a fluid. Without this additional term one can expect very small
values at those locations and a smooth drop off while the re-normalisation increases the resulting
values. While this is certainly not always wished for, it brings the benefit of independence from
the particle structure. Price, 2007 suggests to use this approach whenever no free surfaces are
involved. An additional benefit of this modification is that it allows to generate weighted data
in the particles in a very straight forward way by replacing the quantity Ai in the numerator by
Ai · wi and introducing wi in the denominator. Typically weighting is, however, done in the
volume discretised picture.

Conservation of integral properties
Another conservation property we can impose is that the integral over the whole volume in
particle and grid picture of some quantity should always be the same. This means for example,
that total mass or energy is conserved in the conversion process. We further elaborate on this
condition in the next section and formulate the condition quantitatively, which we then call ‘S-
normalisation’2. Note that this requirement does not conflict with the normalisation of SPH
noise.

Resolution
Finally, we want to be able to transport the same resolution we have in SPH data to the grid. This
is not an easy task with a fixed grid, since SPH has the advantage of being able to model large
density contrasts and therefore inhomogeneities. Mesh refinement techniques come to mind as
an option, however these are beyond the scope of this work. For a fixed grid one can start by

2The S in the name stands for sum, as the sum of the kernel values at the grid points times their volume (a discrete
integral) shall be equal to one as for the continuous integral over the kernels.
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choosing the cells’ side length to a value comparable to the average smoothing length. This
results in general in regions with plenty particles intersecting with a cell and such where only
very few or even no particles lay. While the former leads to a resolution worse than possible, the
latter is what really divides the methods for binning. In contrast to an SPH formalism, window
functions will drastically fail since they rely heavily on counting of particles. This can lead to the
conclusion, that only a SPH-like approach grants the possibility for resolution down to particle
level.

S-Normed SPH-Binning

Having outlined several conditions, problems and solution approaches for general SPH binning,
we propose a different ansatz in this section which we call the S-normed SPH binning (from
here on SNSB). The basic idea behind this method is that we calculate the kernel integral dis-
cretised to the sum S over the grid and require that it is equal to one as the continuous integral
over the kernel:

Sj =
∑
~k

∆V (~k)W (~r (~k) − ~rj , hj) (VI-15)

with the sum over all grid cell centres ~k. In the limit of an infinitesimal small cell size, ∆V (~k) →
0, we indeed recover the continuous integral:

Sj
∆V (~k)→0→

∫
d3~rW (~r − ~rj , hj) = 1 (VI-16)

This normalisation by S implies that each particle j contributes fully and with the correct weight
to the grid (neglecting boundaries of the grid here).
For Sj 6= 0, we define the cell value Ã(~k) for cell ~k by modifying equation VI-12:

Ã(~k)
∣∣∣
Sj 6=0

:=

N∑
j=1

∆Vj (Sj)
−1Aj |Sj 6=0 W (~r (~k) − ~rj , hj). (VI-17)

Please note that the formula asymptotically goes to equation VI-5 for small cells since Sj be-
comes unity. We can easily prove that the integral for an arbitrary property A is conserved using
this modification∑

~k

∆V (~k) Ã(~k)
∣∣∣
Sj 6=0

=

(V I−17)
=

∑
~k

∆V (~k)
N∑
j=1

∆Vj (Sj)
−1Aj |Sj 6=0 W (~r (~k) − ~rj , hj) (VI-18)

=

N∑
j=1

∆Vj Aj |Sj 6=0 (Sj)
−1
∑
~k

∆V (~k)W (~r (~k) − ~rj , hj)︸ ︷︷ ︸
=Sj

(VI-19)
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=

N∑
j=1

∆Vj Aj |Sj 6=0 , (VI-20)

which is transitioning the sum over all cells to the sum over all particles (restricted to where
Sj 6= 0).
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Figure VI.1: A simple example with one particle sitting exactly between two cells (solid blue
line indicating its kernel) and one sitting exactly in a cell (dashed blue line) in order to illustrate
the meaning of the S-normalisation in equation VI-17.

To illustrate the meaning of S we sketched a dimensional example in figure VI.1. Let a particle
sit at the boundary between two cells and overlap only with those two. A traditional SPH binning
assigns only small portions of the particle to both cells, so that part of its information is lost
(W (−0.5) + W (0.5) ≈ 0.5 � 1). Since equation VI-15 denotes the overlap of a particle
with the grid cells, applying this correction increases the impact value of the particle to the
desired amount. Furthermore, if a particle sits close to the centre of a cell and does not (or only
marginally) contribute to any other cells, its impact is highly dependent on the central kernel
value and, hence, its smoothing length due to the integral normalisation property of the SPH
kernel. In that case a particle might even contribute too much to this grid cell, because its kernel
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function is bigger than unity in the central part, which leads to a reduction by S > 1 and equation
VI-17.
Since grid cells are of finite size there may be particles for which S = 0 as they “fall through the
grid” by not having their kernel overlapping with any cell’s centre ~r (~k). We add those particles
in a volume weighted way to the nearest cell k:

Ã(~k)
∣∣∣
Sj=0

:=
∑

~k nearest to ~rj

∆Vj Aj |Sj=0

∆V (~k)
(VI-21)

For those it trivially holds again that

∑
~k

∆V (~k) Ã(~k)

∣∣∣∣∣∣
Sj=0

=
∑

~k nearest to ~rj

∆Vj Aj |Sj=0 , (VI-22)

resulting in overall integral conservation.
Furthermore, there are particles which only partially overlap with the grid, hence, equation VI-16
does not hold any more. Since such a particle’s sphere of influence is cut into a peace contribut-
ing to the grid and a residual, we can not judge properly upon conserving the contribution of this
particle. In this case we therefore set Sj := 1, i.e. we simply evaluate kernels at cell centres. To
guarantee numerical stability we also treat small values (for example S < 10−4) the same way
as particles with S = 0. A different approach would be to extend the grid in order to properly
calculate Sj . In order to be on the completely save side, this extension would have to cover
the largest kernel support radius of all boundary particles. We argue that one typically extends
the grid anyway, keeping all interesting features rather central while typically only a few vox-
els close to the boundaries are actually affected, which renders this safety procedure obsolete.
About 5 voxels per side have to be added as an extension, because as soon as the smoothing
lengths are much larger than the voxel sizes the discrete integral S is close to one. We see this
behaviour later in our test analysis section VI-4.2. We do not concern ourselves much more
with this issue here, since one can always extend the grid’s size in any case where this might be
desirable, without adding to much computational cost.
The presented normalisation seems somewhat similar to the unity condition by Price, 2007, how-
ever one has to keep in mind that the former is calculated per particle while the latter is per grid
cell. This unity condition states a fundamental property of SPH (SPH noise) and does not contra-
dict with the integral conservation condition (equation VI-20) enforced by the S-normalisation,
as one can easily see by calculation. It may seem that the idea of conservation and this unity
condition contradict each other while they are actually compatible, however, using the SNSB
method for the numerator as well as the denominator. We present the impact of this additional
condition briefly in section VI-4.3.

3D vs. 2D

Another problem is, that the grid’s resolution is strongly restricted by the availability of main
memory. Assume a typical use case where we want to generate a 5002 sized map with a line-
of-sight that requires 2000 pixels along. This results already in 4GB of data just for the three
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dimensional grid. There are possibilities like out-of-core computing to approach this problem,
for example the memory management library Rambrain (Imgrund and Arth, 2017a) which is
actually used by the tool SPHMapper presented in section VI-5.2. However, this only allows
to the user to create a huge grid and somehow fit it into memory without reducing the resulting
requirements of CPU time. We propose a different approach, simplifying the problem algorith-
mically. Assuming one is not actually interested in the full 3D information but only in 2D data,
integrating the 3D grid would be the task at hand anyway. It is actually possible to generate 2D
data on the fly in order to minimise the memory footprint as well as runtime. For this approach
we embed the projection task already into the formalism by using the projected kernel:

W |2D,i (~x, h) :=

+∞∫
−∞

driW
(
~r, h
) (V I−1)

= H−ν+1 w|2D (|~x|/H) (VI-23)

where

w|2D (b) :=

√
1−b2∫

−
√

1−b2

d`w
(√

b2 + `2
)

(VI-24)

with the impact parameter b. The integral w|2D can be pre-calculated with high precision and
tabulated as a function of b. We compare this 2D approach with the standard 3D plus integration
approach in section VI-4 and show that it can even lead to better results than the classical 3D
method due to the more precise integral along the l.o.s..

Non-Cartesian Grids

A big advantage of the SNSB method, and most SPH based approaches in general, is that it
is totally independent of the grid structure. The only property of the grid itself which enters
is the volume of each cell, therefore a regular grid is not required for the approach to work
out and complexity rises only when the kernel integral over a voxels volume is not computable
in a straightforward way. Therefore, it is possible to get even better results with techniques
like adaptive mesh refinement (Berger and Oliger, 1984; Berger and Colella, 1989) or perhaps
Voronoi grids (Lejeune Dirichlet, 1850; Voronoi, 1908). A typical type of binning which is
commonly required is a radial or cylindrical one. While usually computed using adapted window
functions, a native SPH binning would be very helpful. However, since the grid cells are not of
constant size any more, typical calculations break down and constructing a method to fulfil the
stated requirements is very difficult and beyond the scope of this paper.

VI-4 Comparison by Examples

In this section we compare some of the methods we discussed in section VI-3 by analysing a
cosmological zoom simulation of a Milky Way-like galaxy at redshift zero. The methods of our
choice are listed in table VI.1. We cut out a cubic box with side length of 600 kpc around the
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Scheme Pros Cons
NGP easy, fast SPH particles treated as point-like
SPH weighting via particle properties misses small particles, not integral con-

serving
Broadened SPH uses all particles wrong weighting of particles, not inte-

gral conserving
SNSB proper weighting of all particles computationally slightly more expen-

sive

Table VI.1: The major pros and cons of the different schemes which we compare in this section.
These cover the Nearest Grid Point method and SPH binning without and with the S-norm as
well as broadened SPH. If applicable, we also compare our direct 2D method to the general 3D
grid followed by integration along the line of sight.

main galaxy and run the analysis tool Pygad (see section VI-5.1) with different settings over
the SPH data in order to generate projected maps. In order to check the errors depending on
grid resolution we remove the effects of boundary particles by considering only particles with
their smoothing kernel being totally enclosed by the selected box. In the following subsections
we focus on the different issues we discussed in section VI-3 and illuminate how the chosen
methods behave in such a common application.

VI-4.1 The dataset

At first we show a qualitative comparison in order to understand what the data at hand contains.
In figure VI.2 we plot the column density of the chosen sample for all four methods with an
underlying grid of size 1203. To ensure robustness of these results we carry out the same analysis
also with higher (200 cells) and lower resolution (84 cells) with similar outcome and therefore
do not present the additional plots. The left column shows the overall box, while the second and
third one present zooms of interesting regions: One of the main galaxy itself and one of a small
satellite galaxy. These three cuts contain 3.1 · 105, 4.1 · 104 and 1.4 · 103 particles respectively.
Starting with the left column we see that while SNSB and broadened SPH agree very well, the
other two methods produce quite different results. The NGP result shows correct density am-
plitudes but by construction lacks smoothing which leads to a rather grainy image. As outlined
before, SPH data is just not interpreted correctly here. On the other hand, the classical SPH bin-
ning has a smoothed character but fails to produce proper densities in the central galaxy. Since
smoothing lengths are small there compared to the voxel size, many particles just fall through
the grid without being taken into account. This is quantitatively analysed later in figure VI.6.
This effect is drastically reduced in the zoom onto the central or satellite galaxy proving this to
be a resolution effect. Here, the classical SPH binning and SNSB produces a fairly similar result,
while the broadened SPH appears to be over-smoothed. It requires a more quantitative analysis
to see properly that substructures are more prominently displayed with the SNSB method as
outlined in the next subsection.
The smaller the voxels, meaning the bigger the grid resolution is in comparison to the SPH
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Figure VI.2: Projected 3D gas density maps generated with the different models for three chosen
volumes. All grids have 1203 = 1.7× 106 voxels and were integrated along the same axis. The
physical sizes of the boxes are (600 kpc)3, (100 kpc)3 and (50 kpc)3. The second column is
a zoom onto the central galaxy of the first column; the last column zooms onto some satellite
galaxy. The rows from top to bottom use the S-normed SPH, broadened SPH, classical SPH
binning, and nearest grid point method.
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resolution, the more empty pixels are produced by the NGP method and we transition from a
grainy picture to an object which appears to live in a totally gas free environment. However,
considering the large smoothing lengths of particles outside of the structures we know that this
circumgalactic medium is not empty but just of low density. While it might have been possible
to live with NGP as an approximation for the whole box, we get a totally wrong result here by
misinterpreting the SPH data.

VI-4.2 Conservation properties

If we want to use the resulting grid data to do further calculations on it, we have to make sure
that for example the total mass inside the simulation is still the same after the transformation.
For that we use the full 600 kpc3 box and compare the sum over all SPH particles inside the
selected region with the integral over the grid. The result is shown in figure VI.3 with the
three dimensional methods in the left column and the two dimensional counterparts on the right.
The upper row shows the relative error between the two mass calculations while the lower one
displays the calculated masses.

Figure VI.3: This figure shows the relative errors of integrated mass over the resulting grid in
comparison to a sum over all particles. We vary the grid resolution from 10 to 250 cells per side.
We compare our new method with and without the correction normalisation of equation VI-15
and broadened SPH binning. The left panel displays the result for the 3D grid data while the
right panel shows the projected method.

Before we come to the differences of the standard 3D approach to the native 2D version, let us fo-
cus on the left panel first. Comparing the standard SPH binning approach with the S-normalised
one we can clearly see, that the latter performs much better most of the time. By construction,
it is even usable for very small resolutions with only very few grid cells since it accounts for
particles which do not actually overlap with any grid cell centre. The resulting relative errors
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are always in the sub-percent regime, while the standard SPH approach needs a minimum res-
olution of about 150 cells per side (which equals roughly 3kpc side length of a cell) to achieve
even percentage error accuracy. Broadened SPH binning lies about half way between both on
a logarithmic scale. Although the methods will converge eventually, changing the amount of
grid cells moves all cell centres by a bit so that more resolution can sometimes even result in
worse conservation. Our SNSB approach converges slightly smoother, only outperformed by
the broadened SPH which is less affected by moving cell boundaries due to the broader kernel.
We omit the result for NGP, since here it would just sum up all particle masses and therefore by
construction conserve mass perfectly.

As we can see in the lower panel, most errors lead to an overestimation of the mass in the
classical SPH case which is a bit counter-intuitive. We stated that the main issue is that particles
are not even taken into account and therefore, their mass is lost in the gridding process. However,
one has to take an additional effect into account. Especially with a low grid resolution many
substructures in the central galaxy may fall through the grid (a more quantitative analysis follows
later this section) but, depending on the exact position of grid cell mid-points, some might be
very close and therefore being taken into account with a strong weighting (S � 1). This leads
to a grid cell with a very large value originating from only a very small particle volume inside
this cell. In total it is very hard to predict, whether the result should over- or underestimate the
integrated result.

Now, we compare this to the right panel, where we used the native 2D prescription as presented
in section VI-3.2. For classical SPH binning this decreases the error the most for all grid res-
olutions compared to the 3D approach. This can be easily explained by the reduction of one
dimension. While the 3D methods have three space dimensions for the possibility of particles
to fall through the grid, here we integrate out one dimension precisely and only two dimensions
remain for the distance calculations. One can imagine this as calculating the distance perpendic-
ular to the line of sight and not to several grid midpoints. Since this effect is most prominent in
the classical binning, that method is affected the most by the 2D approach. Additionally, the na-
tive 2D version even increases the overall smoothness of convergence for all presented methods
for the same reason. Since we replace the discretisation along the line of sight by a tabulated,
more accurately computed integral we remove the weighting’s dependence on this dimension
and therefore reduce fluctuations whenever we change the grid resolution.

Furthermore, an interesting effect shows up for the classical SPH binning (i.e. without the S-
normalisation), that whenever the 2D version underestimates the mass, the 3D also underesti-
mates it. However, this does not hold other way round. This further supports our reasoning
regarding the over- and underestimation. When a particle falls through the grid in the projected
plane, it will also do so in all three dimensions. But if it is not taken into account in three dimen-
sions this might be due to the line of sight component and therefore it is accounted for in the 2D
method.

In order to understand grid resolutions better in the context of our data set we plot the distribution
of smoothing lengths in our full box binned with 1203 pixels in figure VI.4. To better illustrate
the correspondence between grid and SPH resolution, we add the one to one relation as required
number of grid cells per side on top of the plot. Since the particle masses vary slightly in our
data set we plot the accumulated mass instead of counting particles. Particles in the central
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Figure VI.4: This histogram shows the distribution of smoothing lengths of all particles in our
large box (left panels of figure VI.2) colour coded with different bins of S-values (which suc-
cessively include less particles). The dashed line indicates 120 cells per side as used in figure
VI.2 and here for determining the S-values. Furthermore, we note down the mass contained in
the respective selections for a more quantitative comparison.
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galaxy have smoothing lengths in the sub-kpc regime and are therefore much smaller than grid
cells even in our high resolution binning, implying that these are the particles which we mostly
miss out in the standard SPH approach. This is especially fatal, since most of the time people
are strongly interested in the high density regions. In order to fully include all particles in this
simulation, an enormous grid of about 30003 = 2.7 · 1010 cells would be required which is not
feasible regarding computation time and consumed memory. Even with the native 2D variation
this still results in 1.6 · 107 pixels. Since the grid misses out on the adaptivity of SPH this
means about a factor of 100 more cells than particles in the original data set in 2D. In 3D this
amounts to even 105 more cells than particles. With growing SPH resolution smoothing lengths
become even smaller and one would need massive computational power to solve this basic post-
processing step.

In figure VI.5 we colour code different ranges of S-values to better illustrate the impact of our
normalisation. As denoted by the purple region about 11.8% of the mass is completely lost in a
classical SPH binning, since the respective particles do not overlap with any line of sight in the
given grid and therefore have Sj = 0. These particles are added to their respective nearest voxel
according to equation VI-21. This exact number is of course extremely dependent on the dataset
as well as on the grid resolution and position.

Additionally to these particles which fall through the grid, there is also a significant component
of particles of which the contribution to the grid has to be adjusted significantly. About 1.3%
of mass consists of particles with S < 0.5 or S > 2 and 3.2% requires a correction of at least
one percent. Of course, this leaves still 85.0% of mass almost unadjusted, but nevertheless the
impact is quite significant. Furthermore, we see that particles with S-values deviating from 1
are the main contributors of smoothing lengths below ≈ 8kpc. The normalisation is therefore
less necessary for particles which extend over three grid cells in each dimension. (See also the
brief discussion about boundary cells earlier in section VI-3.2.)

Figure VI.5 displays the trend of the mass fractions within certain ranges of S-values in the
3D binning similar to figure VI.4 but as a function of resolution. Again, it becomes clear, that
lower resolution leads to higher importance of our S-normalisation. Grid sizes below 1003 are
drastically affected. With this specific data set at 10003 = 109 cells about 10% of mass is still
at least slightly affected by the normalisation. Since there are no drawbacks except for a slightly
increased computational cost we can conclude that it is always worth to include our modification.

Now, we have a closer look at the distribution of S-normalisation values. With the his-
togram in figure VI.6 we can directly see the amount of contributions we loose without the
re-normalisation. We plot a fine binned S against the mass sitting in each bin up to S = 2 and
note the amount of mass even beyond that. The left plot is for the full box, the middle one for
the central galaxy and the right one for the small satellite. Most particles reside in this range, the
ones beyond S = 2 are the few particles with very narrow kernel functions with a very high cen-
tral value which just by chance actually intersect closely with a cell centre. These particles might
as well just fall through the grid, if we divide the region slightly differently into grid cells. We
see, that the distribution of S-values is quite smooth, increasing towards the unaffected particles
(S = 1; note that this is only about half of the particles of the central galaxy!) from both sides
and for the bigger structures also towards the particles falling through (S = 0). We have already
shown that, as expected, particles with S = 0 have very small smoothing lengths (see figure
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Figure VI.5: Fraction of mass with given S-values as a function of number of cells of the bin-
ning. (Cf. also figure VI.4.)

Figure VI.6: The distribution of S-values of the particles contributing to the grids of figure VI.2
(first row, i.e. the fiducial method with 1203 cells).
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VI.4) in comparison to the grid size, which explains why the distribution is much narrower for
the satellite galaxy, which is much smaller and therefore the effective resolution is bigger since
we keep the number of grid cells fixed. The smoothing lengths of the particles in the satellite
range from one to three times the cell size at this resolution.

VI-4.3 Power-spectra

Figure VI.7: Kinetic power spectrum calculated from a 2003 sized grid for our selected methods
(coloured solid lines) including the theoretical Kolmogorov spectrum with a slope of -5/3 (black
dashed line).The left panel shows spectra from binning as we have presented it until now. The
right panel includes an additional normalisation such that a constant field SPH also results in the
same constant field on the grid (see section VI-3.2 and Price, 2007).

Finally we use our produced grids for a typical application and calculate the kinetic power spec-
tra for the different methods. The result is shown in figure VI.7. The difference between the left
and the right panel is, that on the right we additionally include the unity condition equation VI-
14 as presented by Price, 2007. Since the NGP method is not compatible with that, we can only
include it in the left plot. We over-plot the theoretical Kolmogorov spectrum with a slope of -5/3
to have some indicator on the quality of our results, although we do not expect the simulation
data to lie perfectly on top of it. First of all, we see that the NGP method only works on the very
large scales (small k) but quickly diverges completely from the relation, showing a great amount
of power on the mid range and small scales. This is the effect of the pixelation and graininess
we saw in figure VI.2. The classical binning and our modified version produce extremely sim-
ilar results since both capture features in the structure similarly well. In contrast to them, the
approach with broadened kernels is a bit off. The constant broadening plays the biggest role on
small scales, where it shows up as an additional smoothing. Thus, small scale variations can
vanish and the power on small scales drops. Now, in the left plot the broadened method actually
produces a more convincing result but if we include the unity condition normalisation the power
on small scales drops for all methods leaving the classical and S-normed binning closer to the
expected slope.
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VI-5 Analysis packages

In this final section we present two analysis packages which implement most of the discussed
mapping methods. Although there exist already some publicly available tools (see for example
Dolag et al., 2005a; Price, 2007; Hummel, 2016), these novel codes include not only our im-
proved map making but also incorporate several features which make them a viable choice for
fellow astrophysicists. These cover amongst others typical transformation and selection mech-
anisms of data, calculating of additional derived SPH quantities, combination with commonly
used astrophysical codes like Cloudy (Ferland et al., 2013) and in situ visualisation. Both tools
cover the full range from flexibility and fast visualisation of data to the ability to process huge
datasets on a regular desktop computer.

VI-5.1 Pygad

Pygad is a Python module that provides a framework for general analysis of Gadget simulations
and the basis for fast and easy development of more specific scripts and programs. It also already
provides several specialised sub-modules such as one for generating mock QSO absorption lines.
Pygad is publicly available at https://bitbucket.org/broett/pygad together with
useful data tables and documentation.

The strongest feature of Pygad is that it is designed to put the heavy lifting into the background.
Loading a Gadget snapshot regardless the format is a simple call of one function with the file
name as single argument. Masking the snapshot to just particles of interest is very straightfor-
ward, too, and the resulting sub-snapshot can be used like a regular one in any Pygad function.
This masking can be to certain species of particles (e.g. gas and stars only), regions in space
(e.g. a friend-of-friend (FoF) halo found by the built-in FoF finder or by Rockstar (Behroozi,
Wechsler, and Wu, 2011)), or even a requirement on arbitrary properties using Python syntax
(e.g. gas in a certain temperature range and with metallicities larger than solar).

Another handy feature of Pygad we choose to highlight here are the plotting routines. They
can plot any quantity, whether it is a regular block in the snapshot or a derived quantity such as
stellar luminosities (provided by another module of Pygad) or certain ions (as calculated with
Cloudy tables, also provided with the package). These plotting routines build on the mapping
procedure presented in this work and automatically print the correct units. The units are carried
with all snapshot quantities without noticeable performance penalties.

As any part of Pygad, the plotting routines are kept as general and convenient as possible. And,
as with any runtime critical section of Pygad, these routines are written in C++ which are called
by the Python frontend in order to ensure a smooth experience. They allow to simply pass
a (sub-)snapshot, a region to plot, and the name of a block, or even an Python expression of
several blocks that shall be plotted.

All analyses and plots in this work have been done with Pygad as it allows for quick development
paired with fast runtime.

https://bitbucket.org/broett/pygad
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VI-5.2 SPHMapper

SPHMapper is an application written in the C++11 standard and basically provides the user with
a similar, although currently still more limited usability as does Pygad. With this choice of pro-
gramming language comes a different approach featuring less interactivity but high applicability
to huge data sets and nevertheless high versatility. As computing power grows and simulation
data sets become increasingly bigger over time the main requirement for SPHMapper is to be
able to handle data sets which cannot be kept in main memory all at once. To approach this
issue it features the use of Rambrain (Imgrund and Arth, 2017a), an automatic memory manager
which utilises second storage capacity to overextend memory.
SPHMapper is able to do all common Cartesian and radial binning tasks and is straight forward
to expand further. Amongst other features, it handles snapshot reading, unit conversions, spatial
transformation of the data sets, interaction with Subfind (Springel et al., 2001; Dolag et al., 2009)
outputs and selection of particles based on a complete metric in its parameter file. Binning results
are visualised and output as preview using hplotlib (https://github.com/sweetpony/
hplotlib).
SPHMapper is still under development and will be made publicly available under an open source
license soon.

VI-6 Conclusion

In this paper we reviewed the importance of a proper understanding of SPH particle data and
the difficulties of the transformation into a volume discretised picture. We showed typical ap-
proaches to solve these issues and presented a novel modification to the classical SPH binning.
Our method calculates the discretised kernel integral on the grid (or a cell-particle volume ra-
tio for particles that fall through the grid) which enables us to bin particles properties such as
density in an integral conserving way (in case of density this is mass conserving).
We compared our method with other classically used approaches and analysed the properties
of our method using a real simulation data set of a galaxy and its satellite. We find that our
method allows us to reduce the relative error in integrated mass down to 10−5 even for rather
coarse grids where the classical approach is in the percent rage. We proved that our approaches
main contribution comes from particles sitting in over-dense regions, where smoothing lengths
are small compared to a cell’s size. Highly enough resolved grids, however, are often not fea-
sible. In our full data set, particles with a combined mass of a few percent of the total mass
are significantly affected by the normalisation and over ten percent of mass is completely lost
without the additional treatment of non-intersecting particles. We investigated thoroughly these
contributions for different regions of our data and with different grid to particle resolution levels.
Furthermore, we presented a technique to handle projection onto 2D maps already before the
binning using tabulated integrals, which not only reduces the memory footprint and required
computing time drastically but also reduces errors for all methods. Due to one dimension being
integrated out more precisely the possibility for particles to jump between hitting a cell centre
and not intersecting at all is reduced, granting much smoother convergence with number of cells.
As a typical application we calculated the kinetic power spectrum of our data set and explained

https://github.com/sweetpony/hplotlib
https://github.com/sweetpony/hplotlib
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the behaviour of the compared techniques. As expected, divergence of the methods’ results can
be seen best again at small scales. We also included a quick comparison if we further include the
unity condition into the analysis, which arises from the requirement that a constant field maps to
a constant SPH field.
We further presented two analysis tools, Pygad and SPHMapper, which incorporate the different
options for binning and provide many usage features beyond that. We have shown the prowess
of the S-normalisation and can strongly suggest to include it into any binning code.
Beyond what we have shown here, improvements can be definitely made by applying adaptive
or non regular grids instead of the fixed, Cartesian ones.
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Chapter VII

Analysing big data: The Rambrain
library

A computer would deserve to be called intelligent if it could deceive a human into
believing that it was human.

– Alan Turing

In the last chapter we hinted towards upcoming problems with modern simulations: the huge
amounts of data that are generated which need to be processed somehow. This does not only
affect simulations but also observations of any kind. Computing power has risen to such a
great level that it is sometimes easier to redo entire simulations than to store the resulting data
somehow. But data need to be also processed and evaluated which requires increasing amounts
of memory. We have come to the point where we can not run our analyses on our own computers
any more but need to resort to computing centres also for that. In order to tackle the case of
data intensive low computing cost operations we have developed the open source C++ library
Rambrain, which is featured in this chapter. This chapter is a slightly modified version of the
fully referred arxiv version of the corresponding paper (Imgrund and Arth, 2017b) which has
been accepted for publication in the SoftwareX journal in a shortened version (Imgrund and
Arth, 2017a).

VII-0 Abstract

We introduce Rambrain, a user space C++ library that manages memory consumption of data-
intense applications. Using Rambrain one can overcommit memory beyond the size of physical
memory present in the system. While there exist other more advanced techniques to solve this
problem, Rambrain focusses on saving development time by providing a fast, general and easy-
to-use solution. Rambrain takes care of temporarily swapping out data to disk and can handle
multiples of the physical memory size present. Rambrain is thread-safe, OpenMP and MPI
compatible and supports asynchronous I/O. The library is designed to require minimal changes
to existing programs and pose only a small overhead.

185
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Nr. Code metadata description
C1 Current code version 1.1
C2 Permanent link to code/repository used for

this code version
https://github.com/mimgrund/
rambrain

C3 Legal Code License GPL
C4 Code versioning system used git
C5 Software code languages, tools, and ser-

vices used
C++, OpenMP, MPI

C6 Compilation requirements, operating envi-
ronments & dependencies

Linux, libaio

C7 If available Link to developer documenta-
tion/manual

http://mimgrund.github.io/
rambrain/

C8 Support email for questions arth@usm.uni-muenchen.de

Table VII.1: Code metadata

VII-1 Introduction

Facing large amounts of data, be it simulations or observation results, many astrophysicists have
become part-time software engineers. As the primary target of their work focuses on producing
astrophysical results, developing data analysis code is an inevitable obstacle on their way to the
actual goal. In the case of the authors this goal is respectively to analyse extensive data sets of
pulsar timing information (based on Imgrund et al., 2015) and to post-process large snapshots of
cosmological simulations (see Arth et al. in prep.). While typical software-engineering amounts
to serialising given tasks to be executed as quickly as possible, many everyday codes evaluating
data or simulation results are written to be run only a few times. In this light, the primary focus
of an astrophysicist often lies on saving development time and not execution time.
Writing code that processes large data sets is one of the most time consuming tasks. When de-
veloping applications that use large amounts of main memory, a single larger dataset may suffice
for the system to run out of memory. The typically chosen solution to this is finding a machine
with more main memory. It is obvious that this solution is only temporary when facing growing
amounts of data. The sophisticated solution amounts to writing memory management functions
in an optimised but specialised way for the problem at hand, so called “out-of-core computing”.
This, however, is very (development) time consuming.
Alternatively, one can think of following the typical approach nowadays, which has been made
possible by ongoing hardware developments, and solve the memory shortage by parallelising
one’s code. In addition to a common computing cluster hardware vendors increase the amount
of possibilities by introducing additional components like non-volatile memory (NVRAM) or
memory with high bandwidth (MCDRAM). However, the task of parallelising the code remains
and is, in general, non trivial to implement since a distributed memory parallelisation, for exam-
ple using MPI, has to be chosen. Additionally, not every code scales properly. Thus, one might
run into the issue of wasting a lot of CPU time, which has to be granted after writing computing
proposals, just to fulfil memory requirements.

https://github.com/mimgrund/rambrain
https://github.com/mimgrund/rambrain
http://mimgrund.github.io/rambrain/
http://mimgrund.github.io/rambrain/
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Therefore, we introduce Rambrain, a library that facilitates quick development of applications
in need of large main memory. It is built to easily integrate with existing C++ code on Linux
and helps applications to swap out temporarily unneeded data to transparently access multiples
of the actual physical memory available on the system.
While there may exist other solutions more specific to the problem at hand showing slightly
better performance, we argue that in most situations the flexibility of a fast, reliable and out-of-
the-box solution is preferred to a few percent performance gain. In the following, we provide
a quick review of other solutions to the problem at hand and discuss in which cases Rambrain
might be a superior choice.

VII-2 Common strategies to avoid out-of-memory errors

The most basic strategy to still run an application in a situation of scarce free memory is using
native system swapping. Modern operating systems like Linux manage association of physical
memory to various processes running at a given moment. As an application developer, you are
presented a more or less consecutive virtual memory address space. It is in general not clear
whether a chunk of virtual memory, a so called “page", is residing in a physical main memory
location, called a “frame", at a given time or not. This layer of abstraction facilitates assignment
of memory to a process, so that the system can overcommit physical memory and reassign virtual
pages to physical frames, when desired. When free frames become scarce, the system writes out
currently unused pages to secondary storage (such as hard disks) in order to free frames. When
a process tries to access a non-resident page, a page fault is triggered and the page is read in
from secondary storage by the memory manager of the system (Ligh et al., 2014, p.20) and if
necessary, according frames are freed by writing the occupying pages out beforehand. While
this process is efficient under normal operation, the system typically slows down to being unus-
able when actively consuming nearly all physical memory. Especially when multiple processes
compete for the remaining space (a typical situation for a developer working and debugging),
the computer is virtually unusable until the memory-intense calculation has finished. How long
a system can survive in a usable state might be dependent of the type of secondary storage em-
ployed. For example a SSD may keep a system usable for a longer time than a common HDD
just because of it’s higher speed of reading and writing data. Inevitably, the system will be still
overwhelmed by the amount of data scheduled for transfer and especially the concurrent requests
due to multitasking.
This swapping mechanism is also limited by the available swap space on the secondary storage.
While adding more swap space with the system’s on-board mechanisms1 is possible, it needs su-
per user privileges and reserves the whole swap size on the disk even if it is not used completely.
Furthermore, it aggravates the situation when multiple processes are competing for memory, as
more and more parts of other programs can be swapped out and need to be swapped in again in
order to continue execution.
Using system swapping as a mechanism for overcommitting main memory can also provoke
the action of the so called “Out-Of-Memory Killer (OOM-Killer)". As available memory be-
comes sparse, the system tries to keep most processes running. In order to free memory for

1Using the system tools mkswap/swapon as root.
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other processes, the OOM-Killer will kill one or more processes by assigning a score correlated
with importance, memory consumption, execution and idle times of the candidate process. The
OOM-Killer thus can abort simulation or analysis at the very last step and protections against it
are hard to find (see e.g. Rodrigues, 2009). The OOM-Killer can by now be controlled a bit finer
via the /proc file system, but shutting it off for a certain process needs administrator privileges.
However, one has to keep in mind that even if one can force the own application to stay alive,
the OOM-Killer can simply shut down system processes which may trigger secondary effects on
the target process. To the knowledge of the authors, it is not possible to completely turn off the
OOM-Killer on every system. This becomes clear when concerning the alternatives in a situation
of low RAM. A call to the sbrk-family of functions to increase heap size could possibly block
indefinitely, locking the process that called for more memory. Unless any other process will
free memory or terminate, the next process demanding for more heap memory will block too.
The resulting cascade of blocking processes would probably have much worse consequences for
system health than killing a specific process based on a reasonable metric.
There exist other global kernel parameters such as kernel ’swappiness’ to manipulate kernel
swapping behaviour. At first glance, decreasing or increasing the amount of preemptive swap
out of idle application’s virtual memory to disk sounds like a reasonable strategy to globally
keep the system efficiently in function. Tuning this parameter, however, is only useful when the
amount of free physical memory is huge compared to the problem at hand. While low values of
this parameter will delay starting to swap out considerably, the demand of the main application
for more RAM will dominate at some point below the physical memory size.
In addition, such global tweaks have to be applied system wide. While a user space solution
like Rambrain can be allied to any system at hand, it requires very good corporation with system
administrators to employ such a behaviour on a managed machine.
The next often mentioned solution to memory and swap management is the mlock and mmap
family of kernel functions.
mlock is capable of locking address ranges for kernel swap out and can also advice the ker-
nel to swap in ranges of memory from the swap space. While these functions can be a usable
approach for real-time applications that rely on fast memory access, it in no way limits heap
growth. Thinking from the perspective of ’freeing physical memory for new calculations’, the
functions are of very limited use, as one cannot force the operating system to write out data to
swap and there is no guarantee that this will affect physical process size at all.
The mmap-family of functions is used to seamlessly map disk files to virtual address space. The
file can then be manipulated as if it were resident at that virtual address space location. Com-
bined with mlock calls, the user is able to finely tune which parts of a file will be resident in
physical memory. There even exists an interface that can be used to track which parts of a file
currently reside in physical memory. Also, the memory mapped regions are accounted for as
cache, thus this memory will be swapped away preferably when system memory becomes low,
which reduces the overall memory footprint of the application. However, usage of memory maps
for large files effectively can be very complicated, as it may only be reasonable to open certain
’windows’ into regions of the file used for swapping and the number of regions is limited by file
descriptor limits. Such a more controllable user-space solution is desirable, for example combin-
ing the memory mapping system calls with moderate sized swap files on the secondary storage.
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Memory mapping techniques are fast because they use the same paging and copy mechanisms
such as system swapping, but are subject to stronger limitations than letting the system handle
the paging itself.2 The consecutive logical address space that is handed over to the process has
to be managed by the user. This means that the user has to take care of allocating multiple data
structures on top of the space, a mechanism that the new/delete operators deal with in C++, nor-
mally. While handling for example a vector of fixed size structures in a memory map is simple,
allocating objects of different sizes is highly non-trivial. As the system is responsible for writing
out the memory mapped regions to the file on secondary storage, efficient interaction with the
kernel when changing the memory-mapped region is challenging when trying to optimise this
process for performance. Furthermore, a strategy deciding which contiguous region to swap out
is all but clear.
The authors in fact started to write a backend for the actual swapping I/O of Rambrain with mem-
ory mapped files. On the long run, it turned out to be much more complicated to synchronize
the swapping behaviour of the mapped regions to gain performance without knowing the exact
access pattern of the user beforehand and having only a few guarantees from the Linux kernel
API. Thus, a perhaps more performant solution to a problem at hand can be implemented using
these facilities, but this turns out to be a difficult encounter that will at least lead to complicated
memory management code. Rambrain wants to facilitate development of memory-intensive ap-
plications and is designed to take the burden of writing exactly such code from the user. In that
respect, Rambrain will not beat a custom tailored solution, but coding such a solution is a hard
task in its own respect. This renders such a technique possible, but complicates robust imple-
mentation and favourable run time behaviour in highly dynamic situations.
Of course, there exist already other solutions to tackle large data structures in memory, such as
the STXXL (Dementiev, Kettner, and Sanders, 2008) that facilitate out-of-core computation pro-
viding large standard containers in analogy to the Standard Template Library (STL). While this
is a very useful idea, it has still some drawbacks imposed by it’s specialised approach. Rambrain
has built in class support for the full C++ standard in contrast to the limitation to POD-support of
the STXXL. Rambrain provides direct access to pointers in memory and thus will pose no over-
head over heap allocation once the pointers have been provided. Additionally, objects created
with Rambrain can be used in association with normal STL-containers and will be swapped, too.
An alternative approach, using parallel virtual file systems is also imaginable (see for example
Tang et al., 2004). However, this kind of approach still leaves the programmer with the burden
to write I/O operations himself, even if they may be encapsulated e.g. as a function.
Furthermore, optimising the data flow on this level comes near to developing an out-of-core al-
gorithm for the problem at hand that takes control over all input and output operations manually.
Introductory reviews of such algorithms can be found in Toledo, 1999a; Vitter, 2001. Of course
one can design a very clever way of handling input and output data to boost performance. This,
however, opposes the goal to find a more generic solution that gives the developer moderate
control over input and output flow while taking from him the burden of handling the input and
output manually. Specialised solutions cover for example n-body codes (Salmon and Warren,
1997) or linear algebra calculations (Toledo, 1999b; Reiley and Geijn, 1999).
From the view of the application developer, the situation is very simple: When writing a pro-

2Both the number and size of memory maps are limited by the system.
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Listing VII.1: Typical two dimensional field initialisation
1 double k_x = 1 . , k_y = 1 . ;
2 unsigned int x_max =1024 , y_max =1024;
3
4 double ∗ a r r [ x_max ] ;
5 for (int x =0; x<x_max ;++ x ) //allocate rows
6 a r r [ x ] = new double [ y_max ] ;
7 for (int x =0; x<x_max ;++ x ) { //initialize field
8 double ∗ l i n e = a r r [ x ] ;
9 double xx = x / (double ) x_max ;

10 for (int y =0; y<y_max ;++ y ) {
11 double yy = y / ( double ) y_max ;
12 l i n e [ y ] = s i n ( ( xx∗k_x+yy∗k_y ) ) ;
13 }
14 }
15 //do something and delete afterwards:
16 for (int x =0; x<x_max ;++ x )
17 delete a r r [ x ] ; //deallocate lines

gram the developer knows what data he uses, what he will use next, and what is not needed for
longer time. This information is always present directly in the source code. In the next section,
we introduce the interface which communicates this information to the library to plan swapping
operations.

VII-3 Interfacing Rambrain

In order to manage the storage needs of a C++ application, we are faced with the problem of
designing an interface to tell Rambrain, which data is to be managed and when it has to be
present. In this chapter we introduce this interface built to require minimal changes of existing
code while at the same time providing rich convenience features when possible.

VII-3.1 Basic usage

As a memory manager keeping track of data has some overhead on its own, it is only useful
when the data managed is large. Rambrain can manage simple primitives, arrays, whole classes
and also supports nesting of managed objects into managed classes. For a start, consider the
code in Listing VII.1 that is initialising a two dimensional plane wave field of data type double
on heap memory. We allocate an array of pointers to the respective field rows in line 4, allocate
the actual rows in line 6, and set up a plane wave over all field values in lines 7 to 14. Some
calculations are executed prior to the deallocation of the rows in line 17.
If we assume now that y_max and x_max take large values, the allocated doubles will consume
a non-negligible amount of RAM, passing a gigabyte at roughly 116002 elements. Thus, the
developer would have to swap out elements if he seeks to avoid system-swapping to occur, to
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Listing VII.2: typical two dimensional field initialisation with Rambrain
1double k_x = 1 . , k_y = 1 . ;
2unsigned int x_max =1024 , y_max =1024;
3
4managedPtr <double> ∗ a r r [ x_max ] ;
5for (int x =0; x<x_max ;++ x ) //allocate rows
6a r r [ x ] = new managedPtr <double>(y_max ) ;
7for (int x =0; x<x_max ;++ x ) { //initialize field
8adhereTo <double> g l u e ( a r r [ x ] ) ;
9double ∗ l i n e = g l u e ;
10double xx = x / (double ) x_max ;
11for (int y =0; y<y_max ;++ y ) {
12double yy = y / ( double ) y_max ;
13l i n e [ y ] = s i n ( ( xx∗k_x+yy∗k_y ) ) ;
14}
15}
16//do something and delete afterwards:
17for (int x =0; x<x_max ;++ x )
18delete a r r [ x ] ; //deallocate lines

ensure that the program does not run out of physical memory. Manual implementation inserts
many lines of code when allocating memory and around line 8. Alternatively, the user would
write his own memory manager version calling functions to load and unload data. When several
objects are needed at once, loading and unloading become the dominant part of the code.
Furthermore the additional lines start to obfuscate algorithmic code structure. The nested for-
loops as well as the essential initialisation done will be difficult to spot. Minimal changes to
this passage of code will allocate the arrays so that Rambrain is aware of them and dynamically
loads and unloads the lines if needed, as can be seen in Listing VII.2.
The overall structure is minimally changed. Up to adding line 8 we only wrap data objects.
We introduce two template classes here, managedPtr<> and adhereTo<> to emplace Ram-
brain. When using Rambrain in a minimal way, these two classes will be the only ones actively
referenced by the developer.
The first class, managedPtr<>, replaces allocation and deallocation by Rambrain wrappers.
This replacement is necessary to hide away the pointer to the actual data in logical memory, as
the element may or may not be present when the user dereferences that pointer.
Consequently, we need a way to give back access to the data. This is done by adhereTo<>
which states its meaning in camel-case: This objects adheres to the data. While the respective
adhereTo<> object exists according to scoping rules, it is guaranteed that the user can fetch a
valid pointer to the data by assigning the adhereTo<> object to the pointer, as is done in line
9. In the following, we will also refer to this as “pulling the pointer".
The scoping relieves the user from the need to explicitly state that the data is no longer used
for the moment. While the corresponding adhereTo<> object exists, the pointer to the data
remains valid. When this “glue” to a managedPtr<> is deleted, for example by going out of
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scope, the object may be swapped out to disk in order to free space in physical memory for other
objects, if needed.
This already concludes what a developer needs to know about Rambrain to write his own code
using the library in the most basic fashion.

VII-3.2 Advanced usage

Currently, Rambrain is, amongst others, equipped with the following advanced features that
give more detailed control or convenience. The line numbers given refer to the code examples in
Listing VII.3. The advanced features show that the interface is both minimalistic and powerful
enough to facilitate development with Rambrain.

• Allocation of simple datatypes. The user may allocate a single object or multiple objects
at once, passing an initial value. Also multidimensional arrays are supported, that will be
collapsed to an array of managedPtr<>s of the size of the last dimension. (lines 1-4)

• Class allocation. Class objects may have nested managedPtr<>s which can be
swapped out independently of the class object. Rambrain supports parametrised as well
as default constructors. Destructors will be called in the correct sequence. Furthermore,
the member hierarchy can be tracked. Finally, Rambrain will ensure correct deallocation
of the object. As some or all parts of it may have been swapped out, this is a non-trivial
task. The code supports array initialisation on classes, too. (lines 6-15)

• Different kinds of loading stages. The user may explicitly state whether to load ob-
jects immediately or delay actual loading until the first pointer is being pulled from the
adhereTo<> object.
Rambrain can profit from const-accessing the data. In case of the object having been
swapped out already, the swap file copy is not changed and reused and thus another write-
out is not necessary. If the developer requests write access, the object has to be rewritten
to the file system for a swap-out. Therefore, when only reading data, using const-pointers
is highly encouraged as will be seen in section VII-5.4. (lines 17-23)

• Convenience macros. When adhering to an object and pulling a pointer should happen
in the same slot, we provide convenience macros that create the adhereTo<>-object
together with pulling a pointer in a single line. For class members this may happen shad-
owing a parameter. In this case, the resulting code reads as if the class would contain an
unmanaged array of the same name. Of course, const-versions of these macros exist, too.
(lines 25-30)

• Multithreading options. When using Rambrain in a single threaded context, Rambrain
throws an exception when the user tries to pull pointers referencing more data than the
physical memory limit at once. This can be disabled by a function call to enable over-
commitment in multithreaded situations. In this case, pulling a pointer that would violate
the limits blocks until enough RAM has become available by other threads destroying
their adhereTo<>s. (line 33). However, this can potentially introduce a deadlock. Take
for example a couple of threads that need two pointers each to start their calculation.
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Listing VII.3: Advanced features
1managedPtr <double> a1 ; //single element
2managedPtr <double> a2 ( 5 ) ; //array of five elements
3managedPtr <double> a3 ( 5 , 1 . ) ; //five elements, all set to 1.
4managedPtr <double ,2 > a1 ( 5 , 5 , 0 ) ; //two dim., vals set to 0.
5
6class B { public :
7B ( ) ; B(double &a , double &b ) ;
8~B ( ) ;
9void someFunc t ion ( ) ;
10managedPtr <double> d a t a ; } //Class with ctors/dtor
11
12managedPtr <B> b1 ; //single element, default constructor
13managedPtr <B> b2 ( 1 ) //single element, default constructor
14managedPtr <B> b2 ( 1 , a , b ) ; //single element, param. ctor
15managedPtr <B> b2 ( 5 , a , b ) ; //5 elements, parametrised ctor
16
17adhereTo <double> g l u e 1 ( a1 ) ;//Load right away
18adhereTo <double> g l u e 2 ( a2 ,false ) ; // Load when used
19const adhereTo <double> g l u e 3 ( a3 ) ; // Access const
20
21double ∗ c1= g l u e 1 ;
22double ∗ c2= g l u e 2 ; //If not present, will be fetched here
23const double ∗ c3 = g l u e 3 ;
24
25//= adhereTo<double> a1_glue(a1); double* a1data = a1_glue;
26ADHERETOLOC(double , a1 , a 1 d a t a ) ;
27
28void B : : someFunc t ion ( ) {
29ADHERETO(double , d a t a ) ; //shadows member B::data
30d a t a [ 0 ] = 4 2 . ; }
31
32//MT: Do not fail if too much memory is requested:
33managedMemory : : d e f a u l t M a n a g e r−>s e t O u t O f S w a p I s F a t a l (false ) ;
34//MT: Avoid deadlock when needing multiple data at once:
35double ∗c5 , ∗ c6 ;
36adhereTo <double> c 5 _ g l u e ( a1 ) , c 6 _ g l u e ( a2 ) ;
37{LISTOFINGREDIENTS
38c5 = c 5 _ g l u e ;
39c6 = c 6 _ g l u e ; }
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Assume only half or less of these managedPtr<>s fit into RAM. In this case, all or
some threads may have requested the first of the needed two pointer in parallel. Since
Rambrain cannot free pulled pointers while the respective adhereTo<>s in scope exist,
it blocks all threads and waits for memory to become available to swap-out. This, however,
will never happen, as all threads are waiting and no thread is eventually finishing to unlock
data for swapping. To circumvent this situation, the user may use a globally locking scope
conveniently provided by Rambrain (lines 37-39). It is however highly encouraged not to
over-commit memory also in multi-threaded situations as performance may drop by this
forced serialisation.

VII-3.3 Design considerations for user code

Having introduced the basic usage style of the library, let us evaluate the impact of using Ram-
brain on code design. While the syntax suggests that there would be nothing to keep in mind, a
few limits and caveats apply nevertheless.

Maximum problem size

Rambrain’s physical memory usage is limited to a certain amount the managedPtr<>s may
consume.3 As Rambrain cannot use the native OS paging mechanisms, it is bound to the memory
limits set by the user. Consequently, the set of currently existing adhereTo<>s4 marks data
as in-use and determines what cannot be swapped out. Additional managed pointers may only
consume the remaining free memory. Thus, Rambrain will be unable to manage problems that
demand the simultaneous use of more data than this limit. The code has to be written in a
way that the maximum simultaneously accessed data amounts to less bytes than the limit. This
usually is the case anyway as algorithms are being formulated in a local way on the data.

Data structures

The size of the simultaneously used data structures relates to the way of solving a problem. A
matrix operation, for example, can typically be formulated on various matrix representations
such as rows, columns, sparse single elements or smaller submatrices. To gain something from
managing such a subobject, the user has to take care that the payload per managed pointer is
large enough, so that the overhead of managing the data becomes small. We propose allocating
smaller structures via traditional mechanisms and leaving the data-intense elements to Rambrain.
If however a managedPtr<> is chosen, it is vital to keep in mind that this block of data can
only be swapped out and in as a whole.
Ideally, all elements of a single requested managedPtr<> will be needed in one step of a
calculation. If not, Rambrain might end up having to swap in many excess bytes to use just one
or two elements. Fortunately enough, the same argument applies for normal CPU cache locality
and developers are used to developing for this consecutive, local access scheme. For a review of

3Currently we do not track the overhead imposed by the usage of Rambrain, as well as other heap allocations.
This is planned for a future release.

4Explicit delayed loading can be emplaced to limit this to the set of adhereTo<>s that a pointer was pulled from.
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the term locality and further hints please see for example Denning, 2005; Chellappa, Franchetti,
and Püschel, 2008. Therefore, existing and highly optimised libraries are perfectly suited to be
used together with Rambrain.

VII-4 Architecture and Design

frontend backend

adhereTo<>

managedPtr<> managedMemory

managedSwap

type specific allocation

ensures data locality

swap strategy

disk storage

Figure VII.1: Architecture of Rambrain: Rambrain is divided into four major classes, each
serving a distinct purpose. The classes in dashed boxes are abstract classes.

Having described the interface of Rambrain, let us now describe how Rambrain is internally
implemented and what design decisions have been taken to serve the user’s data requests. As
depicted in figure VII.1, Rambrain is divided into four independent classes. While the user
front end is implemented in a standardized way by the two classes managedPtr<> and
adhereTo<>, whose functioning has been described above, the abstract backend classes can
be inherited to implement a custom strategy which elements to select for swapping. We cur-
rently serve two implementations of these classes each. One amounts to a dummy class that is
used for testing purposes. The other implementations, cyclicManagedMemory as well as
managedFileSwap, will be described in the following sections. We provide profound source
code documentation for all classes. The documentation can be compiled from source code using
doxygen (Heesch, 2015) or viewed online (Imgrund and Arth, 2015a; Imgrund and Arth, 2015b)
in a daily generated version.

VII-4.1 Swapping Strategy

It is a major design decision which elements to choose for swap-out to secondary storage when
facing many currently not used objects. In this section we argue that a generic strategy should
be at least capable of handling random access and access in the same order in an efficient way
and describe the actual implementation.



196 CHAPTER VII. ANALYSING BIG DATA

When swapping out the same amount of data to media not capable of fast random access, swap-
out size and fragmentation factors limit the speed achieved in a practical situation: The through-
put per byte to be written/read is reduced when writing small chunks only, as the overhead of
managing the transfer both physically and logically will take a greater fraction of execution time
of the request. This is especially true when using hard disks as secondary storage: When frag-
ments of the data needed are distributed over larger parts of the disk, the read/write head of the
disk has to be positioned differently at every fragment. This process consumes more time than
accessing consecutively stored data. While this argument does not apply for modern solid state
disks any more, splitting data over multiple locations still poses an overhead as there must exist
structures to describe and manage the splitting. Consequently a strategy writing out and reading
in larger and consecutive parts at once will in general be faster than a strategy swapping out
small chunks.
With no prior knowledge on what access pattern the user will impose on the data we can only
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Figure VII.2: Cyclic managed memory: Having accessed one element, it is very likely that the
former next element will be the next one this time, too. Obeying this ordering, the algorithm will
asynchronously pre-fetch “preemptive" elements and swap out allocated but unused elements
when necessary.

make general assumptions and search for a strategy which can learn access patterns. The actual
pattern encountered will lie somewhere in between the two extremes of a completely ordered
and repeated sequence and random access patterns.
The Linux kernel for example tracks ’page age’ and, when needed, preferably swaps out pages
that have not recently been touched by the memory management subsystem. Without further
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going into details5, this strategy has proven useful to general access patterns encountered on
systems which have to swap memory occasionally. In the intended use case of Rambrain, how-
ever, the need to swap out data is an all present circumstance. Letting the user state which data
is required currently, places Rambrain in a better situation than the kernel memory management
is in. Rambrain is being actively told which data is not required any more and there exist hints,
which data will be accessed by the application in near future. Thus, Rambrain can much more
clearly specify the ’age’ and ’ageing’ of data in the application’s context and also infer what to
swap in next.
Thinking of looping over an array of data, which is very common in scientific codes, the most
simple strategy is based on the assumption that if one element has been accessed right after
the other, it repeatedly may be requested in that sequence in the future. Having accessed all
elements, it is most likely that the first element will be accessed again. When there are multi-
ple array objects, this also holds when a subset of objects is under consideration. Even when
needing only a subset of all arrays, it is likely that the elements of the array will be accessed
in the same order. This assumption suggests a cyclic strategy which we implement in the
cyclicManagedMemory class and illustrate in figure VII.2. This order is represented as
a doubly linked list of element pointers with connected end points.
To organize this as an effective queueing system, the most recently accessed element is marked
with a so called “active" pointer and the last still allocated and not swapped out element as
“counteractive". The counteractive element is followed by swapped out elements or elements
that are in the process of being written to secondary storage. When accessed in an ordered way,
we may keep elements in physical memory for as long as possible. The cycle defines a reason-
able sequence of swap-out: the elements that have not been accessed for the longest time are
the next candidates for swap-out. They are conveniently found by dereferencing the counterac-
tive pointer and moving this pointer backwards as elements are swapped. This will write large
chunks of data consecutive into the swap files. When a swapped out element is requested by the
user, also the elements that are presumed to be needed next will be loaded preemptively and the
elements will be placed in front of the former active element.
In this way, accessing the next element in a local sequence will be very fast as it can have already
been loaded and no re-ordering has to be done to the cycle at all. Only the active pointer has to
be moved backwards one element to apparently move all active elements one position forward
in the cycle. As long as the arrays themselves will be accessed consecutively, local ordering is
also preserved by this scheme when interchanging access to various arrays.

VII-4.2 Preemptive element swap-in and decay

It is a non-trivial question to decide the amount of bytes which are to be swapped in preemptively.
A preemptively swapped in element will use up free physical space. Thus one has to make sure
to not load unneeded elements that would be swapped out again immediately. This could cause
major increase of I/O-operations, thereby slowing down the system. It is prevented by tracking
the amount of preemptively swapped in bytes. Preemptive swap-in will take place only as long
as only a certain number of preemptively loaded bytes or less are present. If a preemptively

5The interested reader may consult e.g. Rusling, 1998 or https://linux-mm.org/
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loaded memory element is accessed by the user, it’s size will be subtracted from the preemptive
budget. If an element has to be swapped in from the swap file, the next elements will be fetched
too, until the preemptive budget is filled up again. In this way, random access does not cause
additional overhead by swapping in unnecessary bytes as the preemptive budget will always be
near its limit and thus no further preemptive elements are swapped in.
This procedure however can lead to a constantly filled up preemptive budget. Imagine that an
array A fills the RAM completely before an array B is accessed consecutively. Given that some
elements of A have been loaded preemptively, they will never be used while B is accessed. Thus,
they effectively block the preemptive budget that would be useful in loading B consecutively.
To avoid this situation, Rambrain implements a decay of preemptive elements. The amount
of decaying preemptive elements is determined by probabilistic arguments to prevent random
access from producing too many useless preemptive bytes in the following way:
The maximum size of the preemptive budget can be used to estimate the probability of hitting a
preemptive element at random:6

Ppreemptive ≈ Lpreemptive/(Lram + Lswap) ≤ Lpreemptive/Lram

Where Lram is the maximum physical memory allowed, Lswap the amount of occupied swapped
out bytes and Lpreemptive the size of the preemptive budget. Now, every time an element is not
available in RAM, we determine the amount of preemptive elements that have been accessed
since the last element had to be swapped in. The probability that these N elements have been
accessed randomly consequently can be estimated by PNpreemptive. If this value drops below 1
percent, we let decay twice the amount of the free preemptive budget, but at least one byte. De-
caying implies swapping out preemptive elements to make space for new preemptive elements.
This typically implies loading at least two elements preemptively, as the preemptive swap-in
fraction is by default set to ten percent and this fraction squared equals the significance level
assumed above.

VII-4.3 Swap file usage

When loaded into RAM, the data area of a managedPtr<> has to be allocated consecutively
as pulling a pointer guarantees consecutive layout. On secondary storage devices we may split
up the data over various swap file locations. While this is not desirable, it is of use when free
swap file location is running out and we want to use smaller left-over chunks from previous
deallocations.
Another major difference to managing heap memory, like the memory allocator in the standard
libraries that is interfaced by the new/delete operator implementations, is that one cannot
easily use the free space for the management overhead. This is because the managing structures
have to be accessible very fast and would cause considerable latency when resident in secondary
storage.
Of course managing the chunks of the swap file in physical memory poses unavoidable over-
head. It will limit the amount of managed memory as this overhead grows over the physical size
of memory available. At the moment the user has to manage large enough data amounts in one

6Assuming equally distributed element sizes which are only a fraction of the preemptive budget.
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managedPtr<> to keep this overhead small. While this sounds like reintroducing the problem
we sought out to solve, we find a typical memory overhead to be 5 to 10 percent of the amount of
allocated structures when the data content is about 1kB. This amounts to being able to manage
half a terrabyte of data as if it were in RAM on a 32GB machine. The data would be saved in
roughly 5 · 108 managedPtr<>s of this size. It is advisable to switch to higher memory loads
per managedPtr<> which reduces the overhead by the according factor, making more space
addressable on disk. We plan to pack up objects into larger sets in future versions of the library
to further reduce the overhead. It is also planned to monitor the overhead and strictly constrain
it to the overall limit in future releases.7

Thus, given the task to swap out a managedPtr<>, our standard implementation
managedFileSwap checks its list of free chunks of memory in the swap files and tries to
find the first free chunk the managedPtr<> fits into. If it fails to find such a chunk, it starts
to split the data consecutively over the remaining gaps. If this also fails, it cleans up cached
managedPtr<>s produced by const accesses and tries again. If no free space is left, it will
simply fail. As this unfortunate case may happen after days of calculation, we also provide a
swap policy mechanism that states how the library should react in that case. Policies amount to
“fail in case of a full swap", “ask the user if he wants to assign more swap space" or “automati-
cally extend swap space if free disk space is left to do so".

VII-4.4 Asynchronous I/O and Direct Memory Access

The main techniques to write out large data sets to secondary storage are Memory Mapping
(MM), Direct Memory Access (DMA) and using Asynchronous I/O (AIO) or a mixture of these.
We briefly review the different approaches with respect to the task of transferring objects from
primary to secondary storage:

• Memory Mapping: The memory management unit in control of the virtual address space
can be used to seemingly load contents of a whole file into physical memory. The same
process used for paging will be utilised to write out or read in missing pieces and let an
application use all space at once. When dealing with large files, this technique is very
popular, as it is fast (may use DMA internally). However, when files become too big, the
memory management unit quickly runs into similar problems to the one encountered with
native swapping. A possible fix may be to map only parts of the swap files. In this case,
however, one has to control tightly which mappings to close first, as closing will block
when the mapped region is not written to disk completely. While there exists kernel hint-
ing, a technique to tell the kernel which pages to write out first, the one-to-one mapping
of allocations to the page file poses a bigger obstacle. Optimal decisions where to store
certain elements are hard to find in a generic way and one is again limited to consecutive
memory allocations. Splitting data would render pulling a pointer to consecutive memory
impossible. Furthermore, the advantage of directly mapping allocations to swap file loca-
tions quickly can become a problem when the data has to be moved to still use a minimal
memory mapped region. We thus quickly deferred using this method. There may be some

7This, however, is a non-trivial task as typically the standard memory allocation implementation has the control
over the system call extending heap size.
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interesting features to it, as automatic pre-fetching might already mimic an early stage of
preemptive loading. Cleverly opening and closing such page-file “windows", however, is
hard to handle having no guarantees for future access patterns.

• Direct Memory Access: DMA can in principle copy parts of memory directly to sec-
ondary storage without routing the data through the CPU. It is fast in both throughput and
latency. However, it imposes memory alignment restrictions on both sides and supports
only writing chunks of a certain size (typically 512kB for hard disks). Since writing is
direct, the action bypasses any buffering by the kernel and thus directly leads to disk ac-
cess. While this can be advantageous in situations where one writes out many consecutive
datasets and implements a write cache on ones own, it typically leads to overhead in our
use case. Together with the imposed alignment restrictions, it is not clear how to write
an efficient implementation without writing complex scheduling code or having lots of
overhead when user objects do not fit into the DMA alignment. DMA, while fast, is very
complex to handle in situations where a priori it is not clear what the user requests from
Rambrain. Thus the benefits of fast I/O and low CPU impact vanish in light of kernel file
system buffering efficiency. There is a long going discussion involving Linus Torvalds
who highly discourages the use of DMA by the user (please see Torvalds, 2002).

• Asynchronous I/O: The Linux kernel provides the user with the possibility to asyn-
chronously load and save data to file descriptors. Primary actions are taken only on the
file system cache which has gone through a long evolution and is by now a very fast and
efficient way to use free physical space without negative effects under high load. Further-
more, DMA or Memory Mapping techniques may be present in the background to bring
the cache in sync with the secondary storage. Implementing Asynchronous I/O upon nor-
mal buffering implies fast execution and efficient write-out while at the same time being
robust to architecture changes. Finally the most efficient way of actually carrying out a
certain storage operation may only be found out at system level.
The interested reader may be warned, however, that there currently exist three AIO im-
plementations: kio (Kernel asynchronous I/O), libaio (which is just a C wrapper for the
former) and POSIX AIO. The latter is currently implemented as blocking AIO, the former
is not guaranteed to be truly asynchronous, as its implementation is file system driver spe-
cific. We use a pool of submitting threads using AIO to provide true AIO where possible
and simulated AIO otherwise, using the libaio wrapper for the system calls. In this way,
I/O operations will be non-blocking and have a low impact on CPU load.
By using asynchronous read and write requests, Rambrain is capable of loading data in
the background with small impact on the CPU load. A technique for doing this is to
first create the adhereTo<>-object, which triggers swapping in of the object. While the
asynchronous I/O is swapping in the element, other calculations can be done. When fi-
nally pulling the requested pointer, it may already have been copied in in the background.
A graphical scheme comparing synchronous and explicit asynchronous requests to Ram-
brain is available in figure VII.3 and a schematic listing of the code producing this access
scheme can be found in Listing VII.4. Putting the highlighted line four after line six would
constitute a synchronous version of the code. As the application can already process other
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data while fetching in next needed objects, this can effectively hide latency similar to
GPU programming techniques or pre-fetching for caches (see e.g. Callahan, Kennedy,
and Porterfield, 1991).

Listing VII.4: Explicit asynchronous access
1 managedPtr <double> d a t a ( 1 0 2 4 ) ,
2 d a t a 2 ( 1 0 2 4 ) ;
3 adhereTo <double> g l u e ( d a t a ) ;
4 adhereTo <double> g l u e 2 ( d a t a 2 ) ;
5 double∗ p t r = g l u e ;
6 d o _ s o m e t h i n g _ o n _ d a t a ( p t r ) ;
7 double∗ p t r 2 = g l u e 2 ;
8 d o_ s o me t h i ng _ o n_ d a t a2 ( p t r 2 ) ;

Having chosen AIO for transferring the data to secondary storage, the actual implementation is
simple on the interface side but quite demanding on the scheduler side, as the scheduler has to
deal with non-complete swap-outs and swap-ins when scheduling further action. As a rule of
thumb, it has been found very useful to “double-book" memory in the sense that chunks moving
from or to physical memory will demand their size in both budgets. At the same time we also
track the amount of memory which will be freed by such actions (and thus can be waited for
when needed). When completed, the budget of free memory on the source side will be restored
to the correct value and the bytes which were pending before will be subtracted from the pending
bytes count. In this way, the scheduler can find the right strategy, given currently pending I/O,
and demand a small amount of I/O to satisfy its constraints imposed by user requests.

VII-4.5 Compatibility to multithreading

Multithreading complicates writing the scheduler code a lot since one has to be very careful that
the needs of one thread do not interfere with the needs of another thread. Scheduler and swap
both are written as one instance shared by all local threads. This design decision was taken as
data may be shared among threads and thus needs a common swapping procedure. Copying
data between threads however will result in various managedPtr<>s for each instance. This
does not impose a big memory overhead since only the shallow control structures are possibly
present multiple times and not the data themselves. Consequently, passing managedPtr<>s
and adhereTo<>s from one to another thread has to happen thread-safely, as well as access to
one managedPtr<> from multiple threads. Thread safety in this sense does not mean that one
thread has exclusive access to a managed pointer, but that the mechanisms ensuring the avail-
ability of the data are written in a way that the object is present if at least one adhereTo<>
in any thread is present and that the object may be swapped out at destruction of the very last
adhereTo<> instance.
While reference counting is strongly related to the concept of shared memory parallelisation,
a distributed memory setup is much easier described. Since every machine harbours it’s own
memory unit, it instantiates it’s own management structures, swap and data pointers. Data are
then copied between threads via the classical send and receive routines of the employed library,
as for example MPI. This poses slightly more overhead than the shared memory case, but also
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Figure VII.3: Exemplary interaction of user code with Rambrain library. Rambrain may
be faster when giving clues about upcoming data requirements. While in (a) the time waiting
for data to arrive is wasted, the user may use this idle time for calculations on already arrived
data, as depicted in (b) and written in Listing VII.4. As preventing idle time is highly desirable,
Rambrain tries to behave like case (b) without the user explicitly hardcoding this. In order to
do so Rambrain tries to guess the upcoming data demands of the program and automatically
pre-fetches elements that will be needed.
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provides the ability of a more intelligent access strategy especially if an asynchronous paralleli-
sation model is implemented. One has to keep in mind, however, that if all machines or compute
nodes write their swap files to the same disk, they may compete and slow down all I/O, highly
dependent on the timing of operations.
In total the amount of memory overhead due to parallelism should be negligible, especially since
typical applications are globally memory dominated by the amount of data handled.

VII-5 Results and Discussion

In this section we measure how code which utilises Rambrain compares to a code without Ram-
brain. Measuring performance is a non-trivial task for technical as well as theoretical reasons.
First of all, tests should be reproducible and measure the overhead imposed by Rambrain. How-
ever, reaching this goal is non-trivial, as file system operations, kernel Asynchronous I/O or
scheduler performance in a multithreaded situation may affect the overall performance as well.
Especially the typical use case - a developer seeking to work and debug on the same system -
is hard to simulate in a reproducible and meaningful way. Separating library-imposed overhead
and I/O performance would be of no use either, as the user is interested in overall performance.
Most of the carried out tests however will be highly speeded up by disk caching, which is also
found in a productive system. We emphasize that while only RAM-to-RAM copying is done
by the OS in these cases, these tests measure best the overhead implied by the workings and
logic of the Rambrain library, since once the user is I/O limited, test results will be dominated
by hardware performance.
In order to provoke swapping actions we set up a test system finding a PC with the smallest phys-
ical RAM module sizes removing all RAM modules up to one. The tests were then carried out
using OpenSuse 13.2 (based on kernel 3.16) on an Intel(R) Core(TM)2 Quad CPU Q6700 oper-
ating at 2.66GHz on an ASUSTeK P5NT WS mainboard with 32Kb L1 Cache, 4MB L2 Cache
and a standard unbranded 2GB memory module. The hard disk used is a Samsung SpinPoint
S250.

VII-5.1 Library overhead without swapping

We present the overhead the library imposes on the execution time of a user code in a regime,
where actually nothing has to be swapped. This allows to judge whether Rambrain reaches near-
to-native performance and thus can be employed if it is unclear whether it will be needed on the
target system. We propose a test in which we perform a rather simple n-body simulation of a
fixed set of particles using a Forward-Euler integrator (Euler, 1768). While each timestep only
depends on the last position and velocities of all particles, we save the trajectories and velocities
along the way in two dimensional arrays. A typical use case for this is in place visualisation of
such a simulation. Therefore, the memory used by the program grows over time, adding two
vectors per particle in each iteration. The results of both runs are shown in figure VII.4.

In the beginning of the simulation, when hardly any data is present, we notice quite a big
relative overhead of the Rambrain library. However, this only amounts to an absolute difference
of only one to two seconds. From a few MB of data on, both curves show the same scaling with
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Figure VII.4: Execution time of a n-body code: We present timing information from a simple
n-body code which accumulates data by saving particle trajectories and velocities. By comparing
a version with and without Rambrain we see that the overhead of the library amounts to only a
few percent of execution time in the regime of reasonable data sizes.
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time, which is given by the algorithm itself. The relative overhead presented by the blue line
declines very rapidly and finally converges down to a value between one and two percent close
to the two GB mark.
In conclusion, a code utilising Rambrain is always a bit slower in the regime where no data has
to be swapped out compared to native code. However, the impact on execution time is not a very
big factor and we see no strict need for user to completely switch off Rambrain in this case.

VII-5.2 Matrix operations

In this subsection we demonstrate the internal movement of data for a common problem: Trans-
posing a big matrix which itself does not completely fit in memory. We save matrices block
wise, as it is done in many linear algebra libraries (see e.g. Blackford et al., 2002). This allows
for a straight forward migration to a Rambrain version of the algorithm, simply replacing one
layer of pointers by a managedPtr<> class.
The result is shown in figure VII.5. The left part of the plot shows the data allocation phase.
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Figure VII.5: Data movement for one ’Block’ algorithm matrix transpose: We show how
data is moved between main memory and swap in one matrix transpose run. The vertical line
marks the time point when the execution progresses from data allocation to the actual transposi-
tion.

At first the main memory is filled up very quickly with data, then data is consecutively swapped
out to make room for more allocations. In the transposition phase afterwards, data is exchanged
from swap to memory and back, loading all necessary blocks for the current transposition step.
Please note that the asynchronous nature of Rambrain makes it very difficult to measure these
values at a few discrete time points, since it is not clear when exactly the AIO events are handled
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Listing VII.5: Standard implicitly asynchronous loading
1 unsigned int numel = 1024 , b y t e s i z e ;
2 managedPtr <managedPtr <char>> a r r ( numel , b y t e s i z e ) ;
3 ADHERETOLOC( managedPtr <char> , a r r , p t r ) ;
4 float l o a d ;
5 float r e w r i t e t i m e s = l o a d / 1 0 0 . ;
6 int i t e r a t i o n s = 10230 ;
7
8 for ( int i = 0 ; i < i t e r a t i o n s ; ++ i ) {
9 unsigned int use = ( i % numel ) ;

10 //AdhereTo
11 adhereTo <char> g l u e ( p t r [ use ] ) ;
12 //Pull the pointer to the object
13 char ∗ l o c = g l u e ;
14
15 //Produce some computational load
16 for ( int r = 0 ; r < r e w r i t e t i m e s ∗ b y t e s i z e ; r ++ ) {
17 l o c [ r % b y t e s i z e ] = r ∗ i ;
18 }
19 }

in the background. Finally, the deletion of data is also plotted in the graph, but happens so fast
that it is below the resolution limit of this plot. In total, we see that our design criteria are met
and that Rambrain behaves well by constraining the usable memory. Additionally, the approxi-
mately linear scaling of the "Swapped Out" curve demonstrates, that the overhead of the library
itself is not dependent on the current state of the memory.
The diagnostic output leading to figures like this can be triggered directly in Rambrain, so that
the user is able to easily profile the fundamental behaviour of his code.

VII-5.3 Asynchronous I/O and preemptive reading/writing

In this subsection we address the possible speed-up in execution time one can gain by efficiently
using the asynchronous nature of Rambrain and the possibility to preemptively load and unload
elements automatically.
To measure the performance of this mechanism, we propose the test shown in Listing VII.5. We
set up a two dimensional array which is realised by a list of managed pointers. While keeping the
first dimension (i.e. the amount of one dimensional arrays) fixed at 1024, we vary the size of the
underlying arrays (second dimension, bytesize). In order to measure the speed-up by asynchro-
nism and preemptive actions we need to give the library some time to work in the background.
Therefore, as in a typical use case, we iterate over the arrays in consecutive order and write the
result of a simple integer multiplication into the respective array. We vary the percentage of the
array that data is written to (load) and data chunk size, simulating an arbitrary computational
load that scales with the data. The results of this test are presented in figure VII.6.
It is clearly observable that the execution time decreases due to preemptive strategy. Increasing
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Figure VII.6: Preemptive loading: We compare enabled and disabled preemptive mechanism
of Rambrain and find that the preemptive behaviour of Rambrain results in a significant perfor-
mance boost.

the work which is done on the data in the left plot, the library’s overhead is already masked
at a few tens of percent of touched array elements. Working on the file buffer cache only, this
test shows the minimal overhead of the Rambrain libraries. In a real use case scenario, the re-
quired computational load to completely mask swapping is increased. This result clearly encour-
ages the user to leave the standard behaviour of preemptive support enabled whenever possible.
Even if the data access is completely random, it does not imply a big performance drawback
to try to be preemptive. Of course a problem-specific approach pre-fetching exactly the next
needed elements without guessing can improve performance here. However, this strongly vio-
lates our assumption, that we value development time over execution time. We therefore argue
that this optimisation leads towards developing a customized out-of-core algorithm, something
no generic memory manager can substitute for. Be aware however, that when disk bandwidth
becomes the limiting factor, only part of the swap in/out procedure can be masked by preemptive
swap-in. For this reason, the overhead loading the data can become dominant when limited by
the disk process and not carrying out enough calculations. While the preemptive strategy is still
faster than not using the calculation time for loading in the next needed data in the background,
the loading overhead in percent assimilates in the bandwidth-limited case. This can be seen in
the lower right panel of the figure, as preemptive and non-preemptive strategies assimilate when
disk-caching is not sufficient any more and write-outs to secondary storage dominate the timing.

VII-5.4 Constant vs Non-Constant

Our next test is designed to examine how much time is saved by properly pulling const pointers
when possible. As outlined in section VII-3.2 it is possible to request a pointer to constant data
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from an adhereTo<> object instead of a pointer to mutable data. This should be done in
general, see e.g. Meyers, 2012, but is of special importance to the case of Rambrain. Not
following this best practise will leave Rambrain with no clue on whether the data has been
modified and forcing Rambrain to write the data out to the swap again. Hence, if the data has
already a representation in the swap and is addressed as constant, this copy is kept as long as the
swap has enough free space. When the in-memory copy of the data pointer is later deleted and a
swap-out occurs, the data needs not to be written out again, saving expensive writing operations.
In order to test this mechanism we allocate two blocks of data consisting of an array of smaller
data chunks. The first one we call the real data while the second one is the dummy data which we
will adhere to and pull a pointer from to ensure the real data being swapped out due to memory
restrictions. Afterwards we access the real data and the dummy data in alternating sequence,
once swapping in the data const and once non-const. We measure the time it takes to swap
in the dummy data in both cases, ergo capturing the time it takes to also swap out the real data.
We present the resulting behaviour for different sizes of data blocks in figure VII.7.
We notice that the change in execution time by const-access obviously scales with the amount
of data, since it is highly dependent on the time it takes to complete the swap-out. In the regime
of a data block amounting to between one and ten megabytes, we decrease the execution time of
the relevant code sections by about 20 to 30 percent. Since these are relatively small data sizes
in comparison to the main memory, we can assume that these data swap-outs are completely
handled by the disk cache. Therefore we save only the time for cache management and basically
a memory copy. When we enter the regime of secondary storage I/O we can expect the difference
in execution time to be even larger since the secondary storage itself is much slower than the
main memory. For most storage types, storing data takes longer than reading data, thus we
expect this mechanism to save even more time in this case. It is strongly advised to use const-
access whenever possible, also in light of other caches’ properties and optimisations being used
by the compiler.

VII-5.5 Comparison with native OS swapping

Finally, let us compare the performance of Rambrain and system swapping. In principle, a local
administrator can equip a Linux system with more swap space than usual by creating additional
swap files or partitions with the system command mkswap and enable them for use with the
command swapon. However, please note that it is not possible to do so as a normal user.
Additionally, this approach requires the allocation of the whole swap file space on secondary
storage already in the beginning - regardless of how much of it will be actually used. Using this
technique we create and enable a 10GB swap file on the described test machine.
We compare a code which uses Rambrain to a non-managed code utilising system swapping.
We carry out two different runs: In the first one, data is written consecutively to an 8GB sized
matrix. In the second one, the application randomly writes to elements of this matrix. In the
latter test we explicitly disabled the preemptive swapping algorithm.
On some attempts to run unmanaged, the native application is killed by the OOM-killer. This
probably happens due to the fast growth of heap memory. Also having a swap file which is not
at least about 25 percent bigger than the actual swapped size often provokes the OOM-killer to
terminate the process. Even if the OOM-killer does not kill the test process, it may be that it
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Figure VII.7: Speed-up by pulling const pointers: We run a simple test where data is drawn
once as constant and once as writeable pointers and compare the time it takes to swap out the
data afterwards in a regime where all the data still fits in the disk cache.

may shut down other processes in the background to free memory for the test process. When the
attempts succeed, the system is virtually unusable as even opening another shell prompt takes
minutes. Furthermore, the interference of the native code with the system does not stop when
the application exits, but leaves the system in a slowly reacting state for minutes to hours of
usage, as large parts of other applications and system processes have been swapped out to disk.
We expect that running other applications such as an integrated development environment in
parallel will aggravate the situation when trying to solve the problem using OS swapping.
But also the actual execution time of Rambrain-managed code is favouring the use of our library.
In the case of consecutive access, the version using Rambrain is about 10 percent faster than the
native version. In case of random access, Rambrain is only 2% faster than the native code, if we
obey the design limitation that all elements of a single managedPtr<> will be accessed.
This test result is further confirmed by daily experience of the authors being able to develop
code on the same machine their analysis software runs in parallel without being disturbed by the
process which uses Rambrain.

VII-5.6 Real world application: Difference imaging

To demonstrate that Rambrain is actually applicable to a real world problem, we choose a mem-
ory intensive difference imaging algorithm. The algorithm is designed to find variable light
sources by comparison of multiple images. To mitigate errors due to noise these have to be
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convolved with a kernel first, before being subtracted from each other. For best accuracy, a vari-
able point-spread function with a high number of free parameters is chosen as a kernel and an
optimal version is computed by a minimisation technique. Alard, 2000 show that best results
can be achieved by choosing one global kernel for the whole image. While this may seem to
be the best approach anyway, we want to emphasize that usually only local kernels can be used
because of the vast amount of memory consumption that arises in case of high resolution image
material. This applies for example for the difference imaging code presented by Goessl and
Riffeser, 2002 into which we embed Rambrain in order to overcome exactly these limitations
set by main memory.
High resolution images taken with state of the art instruments (see for example Lee et al., 2012;
Lee et al., 2015) can easily be of about 140002 pixels in size, each. Typically kernels with sev-
eral hundreds of free parameters are used which lead to an exemplary memory consumption by
kernel matrices of

ImageSize ·KernelSize · (V alues+Errors) · float = 140002 · 400 · 2 · 4B ≈ 600GB.

This exceeds the physical size of main memory of a typical PC while the CPU time needed for
such an analysis amounts to only a few hundred CPU hours.
In figure VII.8 we present the results of such an analysis using simulated data. We assess the

Figure VII.8: Difference imaging residual: Left: Multiple local kernels; Middle: Global kernel
with Rambrain; Right: Difference of both images.

quality of the achieved fit by folding the reconstructed signal with the kernel and subtracting this
from the input. If the kernel that has been constructed by the method reproduces the point spread
function very well, the signal should vanish completely and only noise should remain. The left
panel presents the result with a local kernel, where the image has been subdivided into several
parts in order to fit into memory. The still present starlike features indicate that the kernel does
not fit as well as in the middle image. This panel shows the global kernel in combination with
Rambrain and the right one displays the differences between those two. One can clearly see, that
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it does not only make a difference to use a global kernel, but being able to use this kind of global
algorithm on the data leads to a result that contains a larger fraction of the signal of variable light
sources in the sky.
With Rambrain’s capabilities to extend memory up to disk limitations, even more advanced al-
gorithms can be applied without the typical memory restrictions. Barris et al., 2005 for example
propose to use all unique pairs of images of a given set in order to calculate a yet more elaborate
kernel. Memory management for this task can be delegated to a library suited, such as Rambrain
is. For further scientific analysis of actual observational images we refer to the upcoming paper
of Riffeser et al. in prep.

VII-6 Conclusions And Outlook

We introduced the reader to writing code that utilises the Rambrain library. We described in de-
tail why the proposed interface is sufficient to consistently handle data swap-out automatically
and leads to satisfactory performance. We have demonstrated that the outlined mechanisms not
only work properly, but also outperform naive approaches to mimic their strategy. Of course
the library cannot compete with a fully specialized out-of-core algorithm, but can save a lot of
development time in providing automatic facilities for large data sets. The library handles asyn-
chronous transfer of data which provides latency hiding of disk I/O operations and reduces idle
times to a few percent if computational load allows. Furthermore, we have shown that the mem-
ory and CPU overhead of the library are both in the acceptable regime of only several percent.
As all of this is provided by minimal user-side interaction, we feel the goal of writing a memory
manager that enables the user to transparently access multiples of the physical memory to be
fulfilled. As memory management is a short-cut to just stating what data is currently needed, the
user can focus on the main goals of his application at the price of only a small overhead.
We demonstrated the actual usage of our library via the example of difference imaging in as-
trophysics. However, the opportunities where such data intense problems rise to the surface of
scientific work are vast and growing in numbers.
The interested reader may find the code released as open source project (Imgrund and Arth,
2015b) accompanied by extensive further documentation, a list of the small set of prerequisites,
notes about the (also system-wide) configuration options, a complete list of features and code
examples. Interesting features are planned for future releases, such as direct mapping of file
content to managedPtr<>’s so that loading the data beforehand is not necessary any more.
While currently the usage of Rambrain is only shown natively in other C++ codes, it is possible
to interface and call the relevant functions also from codes written in different programming
languages such as Fortran or Python. The library might lose some of it’s elegance regarding
the usage of strict scoping in C++, however we expect it to be fully functional when interfaced
correctly. Writing such interfaces in proper manor is also part of future plans. Since the code is
open source and available on github, the interested reader is happily invited to collaborate and
assist in the development of such future features.
Carrying out over 100 automatic tests partly consisting of random interaction with the library on
every development step and keeping track of performance has proven very useful to find bugs
which only occur under rare circumstances e.g. in multithreaded situations and improved ro-
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bustness of the code a lot.
We feel this library to be ready for use by a more general scientific audience.
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Chapter VIII

Anisotropic thermal conduction in
SPH: Influence of magnetic fields

We can only see a short distance ahead, but we can see plenty there that needs to be
done.

– Alan Turing

Having outlined all the important aspects around our code, we can progress into the astrophysical
applications. In chapter I we introduced the long going discussions about cooling flows in galaxy
clusters and the search for a mechanism to balance cooling losses effectively. The effect we
want to investigate in depth in this chapter is thermal conduction in the presence of magnetic
fields. As we have shown that the ICM exists in a hot plasma state (see chapter II) and know,
that thermal conduction is based on Coulomb collisions of charged particles it is clear, that
magnetic fields should play a significant role here. We present a description of the conduction
mechanism and an implementation of the discretised SPH equations into GADGET, followed by
some standard tests and a discussion of the impact towards the production of (non-) cool-core
clusters in simulations (see chapter I). This chapter is strongly based on Arth et al., 2014.

VIII-0 Abstract

We present an implementation of physically motivated thermal conduction including the
anisotropic effects of magnetic fields for smoothed particle hydrodynamics (SPH). The dif-
fusion of charged particles and therefore thermal conduction is mainly proceeding parallel to
magnetic field lines and suppressed perpendicular to them. We derive an SPH formalism for
the anisotropic heat transport and solve the corresponding equations with an implicit conjugate
gradient scheme. We discuss several issues of unphysical heat transport in the cases of extreme
anisotropies or unmagnetised regions and present possible numerical workarounds.
We implement our algorithm into the GADGET code and study its behaviour in several 3D test
cases. In general, we reproduce the analytical solutions of our idealised test problems, and obtain
good results in cosmological simulations of galaxy cluster formations. Within galaxy clusters,
the anisotropic conduction produces a net heat transport similar to an isotropic Spitzer conduc-
tion model with an efficiency of one per cent. Compared to observations, isotropic conduction
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with more than 10 per cent of the Spitzer value leads to an oversmoothed temperature distribu-
tion within clusters, while the results obtained with anisotropic conduction reproduce observed
temperature fluctuations well.
A proper treatment of heat transport is crucial especially in the outskirts of clusters and in high
density regions. It’s connection to the local dynamical state of the cluster also might contribute
to the observed bimodal distribution of (non) cool core clusters. Our new scheme significantly
advances the modelling of thermal conduction in numerical simulations and overall gives better
results compared to observations.

VIII-1 Introduction

Galaxy clusters are the largest gravitationally bound systems in our Universe. They typically
contain hundreds of galaxies and are detected in a broad range of frequencies. In particular, we
observe strong X-ray radiation from the hot intra cluster medium (ICM), which is mainly caused
by continuous free-free emission of thermal electrons and discrete metal lines. Observations
show that clusters contain roughly ten per cent of their total mass in a hot baryonic gas compo-
nent with temperatures up to several 108 K (corresponding to about 15 keV) at typical densities
of 10−3 cm−3.
The state of the ICM and its related physical properties are crucial to investigate and learn about
the formation and evolution of galaxy clusters. The gas is partially heated at the virial shock by
the gravitational infall and furthermore raised in temperature by shocks within the ICM. Galactic
winds driven by the star formation process and feedback of active galactic nuclei (AGN) inject
additional kinetic and thermal energy to the hot cluster medium. Radiative processes within the
ICM, such as thermal bremsstrahlung or metal lines (Peterson and Fabian, 2006) allow the gas
to cool and loose energy. Furthermore, all galaxy cluster are known to host magnetic fields with
strengths up to several µG (Kronberg, 1994; Taylor et al., 2006), which influences the dynamics
of the hot plasma. The structure and the amplitude of the cluster magnetic fields guide the
propagation of charged particles and contribute to the equation of motion via the Lorentz force.
The magnetic field lines are assumed to be highly tangled and twisted on small scales, which
then will contribute of the heating of the plasma by magnetic reconnection (e.g. Fabian, 1994).
Little is know about the magnetic field structure as its mapping is observationally challenging
(Fabian, 2002; Sarazin, 2008; Komarov et al., 2014).
We discuss the influence of the anisotropic magnetic field on plasma transport processes and
in particular on thermal conduction. From a microscopic point of view thermal conduction is
the heat transport due to collisions of electrons. Therefore, it strongly depends on tempera-
ture, which allows us to use probes of the hot ICM to study large-scale transport of heat. From
a macroscopic point of view thermal conduction can be modelled as a diffusion process re-
distributing internal energy. Usually, the so called Spitzer conduction see Spitzer, 1956 is used as
a general formulation and multiplied with an efficiency factor, which changes with and depends
on the astrophysical environment. This original formulation assumes an isotropic movement
of electrons and corresponding distribution of collisions. As galaxy clusters host significantly
strong magnetic fields the influence of the magnetic fields onto thermal conduction has to be
taken into account. Since particle movement perpendicular to magnetic field lines is restricted,
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the assumption of isotropic collisions does not hold any longer and thermal conduction is cou-
pled to the magnetic field topology. This result in different heat transport timescales parallel and
perpendicular to the magnetic field. However, the magnetic fields needs to be sufficiently strong
to dominate the mean free path (Rechester and Rosenbluth, 1978).
Observational evidence in galaxy clusters of suppressed perpendicular heat transport is found
in so called cold fronts, i.e. regions with a rather stable temperature gradient, but no pressure
gradient (Owers et al., 2009; Owers, Nulsen, and Couch, 2011). This phenomenon demonstrates
the insulation of gas with respect to conduction most probably through magnetic fields (Peterson
et al., 2003). Moreover, turbulent magnetic fields also become a very interesting case to study
giving rise to different ways to estimate efficiency factors averaging the suppression effect over
volume. For example Chandran and Cowley, 1998 proposed that Spitzer conduction should be
suppressed by a factor of about 1/300, while Narayan and Medvedev, 2001 claimed that conduc-
tion can still be efficient up to 1/5 of the Spitzer value in highly turbulent environments. Recent
studies of density and velocity power spectra also suggest a significant amount of conductivity
in galaxy clusters. (Gaspari et al., 2014)
Thermal conduction was frequently discussed as a heating source to balance cooling losses in
galaxy clusters in order to explain why hot gas is observed despite the cooling times being
smaller than the cluster life times. However, the impact of this effect is questioned and even less
significant, when the anisotropies of the magnetic field are included. For detailed discussions
of this problem we refer to Binney and Cowie, 1981, Bregman and David, 1989, Fabian, 2002,
Loeb, 2002, Zakamska and Narayan, 2003, Voigt and Fabian, 2004, Fabian et al., 2006 and
Rasia et al., 2015.
In pioneering work, usually a factor of 1/3 is multiplied onto the Spitzer value as a correction for
the influence magnetic fields (e.g. Dolag et al. 2004, supported by work presented in Rosner and
Tucker 1989). We present a numerical implementation of the anisotropic heat transport equation
including the seeding and evolution of magnetic fields applied to cosmological simulations of
galaxy clusters.
A solver for anisotropic thermal conduction is already part of several commonly used grid based
codes, which solve the equations of magnetohydrodynamics (MHD). For implementation details
and cluster simulations see for example Parrish and Stone, 2005, Bogdanović et al., 2009, Avara,
Reynolds, and Bogdanović, 2013 (ATHENA code) or Ruszkowski et al., 2011 (FLASH code).
Recently Hopkins, 2016 presented the implementation of diffusion equations for the hybrid code
GIZMO. However, we present the first implementation of anisotropic thermal conduction into a
smoothed particle magnetohydrodynamics (SPMHD) code. In contrast to the Eulerian methods,
which discretise the volume, SPH discretises the mass and is commonly used in simulations of
structure formation. The Lagrangian nature of SPH ensures the conservation of energy, momen-
tum and angular momentum and allows to resolve large density gradients. For a recent review
on the SPH method we refer to Price, 2012b.
In this paper we present simulations performed with the N-body / SPH code GADGET (Springel,
Yoshida, and White, 2001; Springel, 2005a) with the non-ideal MHD implementation based on
Dolag and Stasyszyn, 2009, Stasyszyn, Dolag, and Beck, 2013 and Bonafede et al., 2011. The
SPH code evolves entropy as the thermodynamical variable of choice (Springel and Hernquist,
2002). Additionally, we include several improvements for SPH such as the Wendland kernel
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functions (Dehnen and Aly, 2012). More information on some of the SPH improvements can be
found in Beck et al., (2016). Our cosmological simulations include sub-grid models for radiative
cooling, star formation and supernova feedback as described by Springel and Hernquist, 2003.
Furthermore, we employ a supernova seeding scheme for the magnetic field (Beck et al., 2013b)
in contrast to previous simulations using uniform initial magnetic fields (e.g. Dolag, Bartelmann,
and Lesch, 1999; Beck et al., 2012). Therefore, we start without any initial magnetic field in
all of the simulations. Magnetic fields are then frequently seeded (i.e. injected) during the
simulation within star-forming regions by supernova events and then further evolved by the
MHD equations (Dolag and Stasyszyn, 2009). We use and extend the existing implementation of
isotropic thermal conduction by Jubelgas, Springel, and Dolag, 2004 with the conjugate gradient
solver described in Petkova and Springel, 2009.
The paper is structured as follows. In section VIII-2 we explain the physics behind (anisotropic)
thermal conduction, and describe our SPH implementation in section VIII-3. Section VIII-
4 presents several test problems before we analyse simulations of galaxy cluster formation in
section VIII-5.

VIII-2 Phenomenology of thermal conduction

We start with a brief introduction in the physical properties and concepts of isotropic as well as
anisotropic conduction.

VIII-2.1 Review of isotropic thermal conduction

According to Spitzer, 1956 we can write down a conduction heat flux resulting from a tempera-
ture gradient using Fourier’s law as

~Q = −κ~∇T (VIII-1)

with the conduction coefficient κ. For an idealized Lorentz gas we can assume Spitzer conduc-
tivity, which equals a coefficient of

κSp = 20

(
2

π

)3/2 (kBTe)
5/2 kB

m
1/2
e e4Z ln Λ

, (VIII-2)

with Z the average proton number of the plasma, the Coulomb logarithm ln Λ and electron
temperature Te, mass me and elementary charge e. Most important is the strong dependence
of conductivity on the electron temperature. Therefore, we assume that thermal conduction has
an important influence mainly on very hot gas, as for example in the central regions of massive
galaxy clusters where the plasma reaches temperatures up to about 108K.
In fact, we need to multiply the idealized Spitzer conductivity by an additional factor δ:

κ = δ · κSp. (VIII-3)

This factor has been calculated by Spitzer and Härm, 1953 and is highly dependent on the
average proton number of the plasma. δ = 0.225 for a pure proton electron plasma and rises up
close to 1 for large values of Z.
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Spitzer and Härm, 1953 describe a way to calculate the average proton number by summation
over all ions in the plasma. Applying a primordial hydrogen - helium plasma, they find a value
of Z ≈ 1.136. Using the tabulated values in Spitzer, 1956 we obtain a factor of δ ≈ 0.3.
When used for cosmological simulations one often assumes a primordial gas distribution. A
typical value for an effective conductivity κ is e.g. given by Sarazin, 1986

κ = 1.31 · neλekB
(
kBTe
me

)1/2

, (VIII-4)

or

κ = 4.6 · 1013

(
Te

108K

)5/2 40

ln Λ

erg

s cm K
(VIII-5)

with the electron number density ne and the mean free path of the electrons λe. Because of the
inverse dependence on mass we infer that electrons give a much stronger contribution to heat
conduction than protons. This is reasonable since lighter particles have higher thermal velocities
at a fixed temperature and can be accelerated much easier. Therefore, the amount of collisions in
a given time span are drastically increased for low mass particles. Consequently, only electrons
are considered in the calculation and we omit the index e in our equations hereafter.
We neglect any dependency of the Coulomb logarithm on temperature and electron density and
use ln Λ = 37.8, which is a fairly good approximation for typical plasmas in our study. More
precise calculations for different collision events (e.g. electron-electron or electron-proton) can
be found for example in Huba, 2011. What remains is the strong dependence on temperature to
the power of 5/2.
Furthermore, we need to apply an important correction. So far we assumed, that the typical
length scale of the temperature gradient lT = T/

∣∣∣~∇T ∣∣∣ is always much larger than the mean free
path. However, for very low density plasmas one cannot expect a high conductivity even if the
temperature rises a lot, since scatterings and therefore energy transfer events happen only at a
very low rate. Cowie and McKee, 1977 have calculated the saturated heat flux for this case as

Qsat = 0.4nekBT

(
2kBT

πm

)1/2

. (VIII-6)

Interpolating between these findings and the common Spitzer conduction coefficient we estimate
a corrected heat flux as

Qtot = − κ · T
lT + 4.2λ

~∇T∣∣∣~∇T ∣∣∣ . (VIII-7)

Alternatively, we can redefine the conduction coefficient as

κ =
κSp

1 + 4.2λ/lT
. (VIII-8)

This modified Spitzer conduction is applicable to galaxy clusters and giant elliptical galaxies
if magnetic fields are not taken into account. For a detailed discussion we refer to Rosner and
Tucker, 1989.
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Finally, we can write the effect of thermal conduction as a change of specific internal energy
du

dt
= −1

ρ
~∇ · ~Q =

1

ρ
~∇ ·
(
κ~∇T

)
, (VIII-9)

which depends on the density ρ and on the heat flux directed anti-parallel to the temperature
gradient.

VIII-2.2 Description of anisotropic conduction

Next, we add magnetic fields to the picture. As previously mentioned, thermal conduction is
based on Coulomb collisions of charged particles. Except these collisions particles are allowed
to move freely in the plasma. However, in the presence of magnetic fields the movement per-
pendicular to the field lines is restricted. The electrons move on spiral trajectories around the
field lines. The frequency of the circular motion, which depends on the strength of the magnetic
field B, is called Larmor- or gyrofrequency:

ωg =
eB

mc
. (VIII-10)

To see how this affects the capability of electrons to transport energy, we present some phe-
nomenological ideas and scaling relations on how a general electron diffusion process is affected
by magnetic fields, following Frank-Kamenezki, 1967. A detailed derivation and discussion of
the plasma physics behind this simplistic approach can be found for example in Braginskii, 1965,
who presents three terms of conductive heat flux:

Q = −κ‖∇‖T − κ⊥∇⊥T − κΛB̂ ×∇T (VIII-11)

We investigate how the perpendicular term κ⊥ scales with the magnetic field strength in the
following two subsections and shortly talk about the hall term κΛ afterwards in section VIII-2.2.
Due to the similar microscopic origin we can infer the following relations for diffusion to hold
also for thermal conduction. This connection is motivated through some scaling relations starting
with the ideal gas law

pV = NkBT. (VIII-12)

Assuming a more or less constant density we infer
~∇p ≈ nkB ~∇T. (VIII-13)

Knowing that the source of a heat flux corresponds to the time evolution of pressure and using
equation VIII-1 we obtain

∂p

∂t
∼ ~∇ ·Q → nkB

∂T

∂t
∼ ~∇ ·

(
κ~∇T

)
. (VIII-14)

Discretising the derivatives by typical length and time scales we get for the conduction coeffi-
cient

κ ∼ l2

τ
· nkB ∼ D · nkB, (VIII-15)

where we can identify the diffusion coefficientD. According to this relation, the two coefficients
behave similarly and we can therefore apply the following scaling relations on an implementa-
tion of anisotropic thermal conduction.
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Coefficient proportional to B−2

At first, we connect the mean free path and collision time via the particle’s velocity λ ≈ vτ . A
typical diffusion coefficient of units cm2 s−1 can be defined as

D ≈ λ2

τ
≈ λv ≈ v2τ. (VIII-16)

Since particle movement parallel to the magnetic field is not restricted, the diffusion along the
field lines should not be affected, which corresponds to D‖ = D.
We assume that motion of particles perpendicular to magnetic field lines is only possible by
jumps between cyclotron trajectories, which results in a diffusion coefficient like

D⊥ ≈
v2

ω2
gτ
≈ λv

w2
gτ

2
. (VIII-17)

Therefore, the relation between the two coefficients is
D⊥
D‖
≈ 1

ω2
gτ

2
∝ B−2. (VIII-18)

This is however only valid if ωgτ >> 1, ergo if the gyroradius is much smaller than the mean
free path. In other words, we need the magnetic field to impose a notable restriction onto the
electrons movement. In the regime of ωgτ ∼ 1 we have to change the relation in order to ensure
D⊥ ≤ D‖:

D⊥
D‖
≈ 1

1 + ω2
gτ

2
. (VIII-19)

To evaluate this relation for a given system we require the collision time or the corresponding
frequency

1

τ
= ν =

ωpl
nλ3

D

, (VIII-20)

with the plasma frequency

ωpl =

√
4πne2

m
(VIII-21)

and the Debye length

λD =

√
kBT

4πne2
. (VIII-22)

Putting these relations together we finally obtain

1

ωgτ
=

16π2c e3√mn

(kBT )3/2B
≈ 10−5 n

T 3/2B
cm3 K3/2 G. (VIII-23)

To check the order of magnitude of the fraction of perpendicular and parallel diffusion coeffi-
cient, we use typical values for the magnetic field strength, temperature and density in galaxy
clusters (see section VIII-1). Equation VIII-19 results in a factor of D⊥/D‖ ∼ 10−28 which
means that conduction perpendicular to the magnetic field is be typically extremely suppressed
in the ICM.
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Coefficient proportional to B−1

However, these relations are only phenomenological estimates.Additionally, perpendicular dif-
fusion is overlayed with turbulence transport processes, which are extremely difficult to de-
scribe. However, laboratory experiments show, that the scaling with the magnetic field effec-
tively changes from B−2 to B−1, which characterises so called Bohm diffusion. (Guthrie and
Wakerling, 1949) According to the calculations above we construct a scaling relation for this
kind of behaviour of

D⊥ ≈
v2

ωg
≈ kBTc

eB
. (VIII-24)

We assume an electrons movement with their thermal speed v ≈
√
kBT/m and neglect further

influences for example by plasma instabilities. We get in total

D⊥
D‖
≈ 1

ωgτ
, (VIII-25)

which allows a much stronger diffusion orthogonal to the magnetic field lines for typical values.
A more detailed analysis with similar results is given for example in Golant, Zhilinsky, and
Sakharov, 1980.
For highly tangled magnetic fields Pistinner and Shaviv, 1996 discuss if the coherence length
should replace the gyroradius. However, they find that this assumption is wrong. This matches
the considerations of Rosner and Tucker, 1989 who present that tangled magnetic fields do not
suppress thermal conduction very strongly, despite general believe. Their results state a reduc-
tion factor of 〈cos δθ〉2 which is an average over the local angles between magnetic field lines
and the temperature gradient. We briefly analyse this behaviour for totally random magnetic
field configurations in section VIII-4.1.
Summing up, thermal conduction perpendicular to magnetic fields lines with reasonable field
strengths is in general almost totally suppressed. When we come into a regime where we need
to apply scaling relations regarding the magnetic fields, the ratio κ⊥/κ‖ scales either like B−2

or B−1.

Coefficient for the cross product term

Finally we come to the last term of equation VIII-11 which is a bit different then the other two
contributions to thermal conduction. So far we have only talked about collisional thermal con-
duction. As the name states, heat is exchanged microscopically due to collisions of particles.
This last term arises however from a different origin, namely the Hall effect. This term handles
heat transport in the third spatial direction, perpendicular to both the temperature gradient and
the magnetic field. According to Braginskii, 1965 it scales also linear with the magnetic field
strength, amounting in a similar description of the coefficient as presented in the previous sec-
tion. We will not go into further detail here, since we will later show that this term plays no role
in our discretisation scheme (see section VIII-3.3).
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VIII-2.3 The anisotropic conduction equation

We finalize our considerations and derive the anisotropic conduction equation. In principle,
there are different possible approaches. We briefly repeat the immediate requirements for the
resulting scheme:

• Unchanged isotropic conduction if the magnetic field is parallel to the temperature gradi-
ent,

• Strong suppression of energy transfer via conduction if the magnetic field is perpendicular
to the temperature gradient,

• Scaling of the suppression factor inverse with the magnetic field strength to some power.

A simplistic approach to fulfil the first two requirements, however not the third, can be taken by
multiplying the projection of the magnetic field onto the temperature gradient to the conduction
coefficient

~Q = −κ
~∇T · ~B∣∣∣~∇T · ~B∣∣∣ ~∇T =: − (κ cos θ) ~∇T. (VIII-26)

This approach has the advantage that it requires barely any change in the existing numerical
scheme presented in Jubelgas, Springel, and Dolag, 2004 and does not cost much additional
computation time. It can be regarded as motivation for the 1/3 suppression factor of Spitzer
conduction in earlier simulations including only isotropic conduction. However, we have no
possibility to introduce a scaling of the suppression dependent on the actual strength of the
magnetic field. We therefore would have to assume a sufficiently strong magnetic field, which
can not be guaranteed in the whole computational domain at all times. Problems arise especially
in combination with a magnetic seeding mechanism when no initial magnetic field is present.
Instead we follow a different derivation by splitting up the conduction equation into a part par-
allel and a part perpendicular to the magnetic field and assign different conduction coefficients
to both parts

du

dt
=

1

ρ
~∇ ·
[
κ‖

(
B̂ · ~∇T

)
B̂ + κ⊥

(
~∇T −

(
B̂ · ~∇T

)
B̂
)]
. (VIII-27)

With B̂ being the normalised magnetic field vector. For the moment we focus only on the
collisional terms and come back to the hall term, later.
Please note, that we can easily regain the isotropic equation from this by setting κ‖ = κ⊥ or
B̂ = ~0. Plugging in the relation between parallel and perpendicular diffusion we derived earlier,
it can be seen that all of our requirements are fulfilled.
We reshuffle the terms for better handling.

du

dt
=

1

ρ
~∇ ·
[(
κ‖ − κ⊥

) (
B̂ · ~∇T

)
B̂ + κ⊥~∇T

]
(VIII-28)

From section VIII-2.2 we know that within galaxy clusters mainly κ⊥ � κ‖. However, we
can not simply neglect the second term along the temperature gradient. Comparing the absolute
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values of the two terms we see, that except of κ⊥ � κ‖ the first term contains a cos θ which can
be arbitrarily small and make both terms comparable in magnitude. If the magnetic field and
the energy gradient are almost totally perpendicular, the second term dominates and can not be
neglected. For further reference on how exemplary previous work (mostly on galaxy clusters)
of the past 15 years has handled the different terms of thermal conduction please see Ruderman
et al., 2000; Dolag et al., 2004; Schekochihin et al., 2008; Rasera and Chandran, 2008; Parrish,
Quataert, and Sharma, 2009; Sharma, Parrish, and Quataert, 2010; ZuHone et al., 2013; Suzuki
et al., 2013; Komarov et al., 2014; ZuHone et al., 2015; Dubois and Commerçon, 2015; Kannan
et al., 2015; Yang and Reynolds, 2015.

VIII-3 Numerical implementation

In this section we derive our numerical representation of anisotropic thermal conduction.
Before transforming equation VIII-28 into SPH formalism we note that the second term can be
handled similar to the isotropic implementation just with a different coefficient. For details we
refer to Jubelgas, Springel, and Dolag, 2004. Here we discuss only on the first term.

VIII-3.1 A fully consistent derivation

Initially, the term suggests a split-up of the calculation of temperature gradient and divergence.
However, this requires a large amount of additional computation time, since it needs an addi-
tional SPH loop, but also leads to further numerical errors due to the effective second kernel
derivative introduced (see Brookshaw 1985). Furthermore, chaining SPH discretisations can
introduce strongly growing numerical errors and should be avoided.
Instead, we derive a consistent formulation with only one SPH loop following the example of
Petkova and Springel, 2009, who developed an SPH scheme for a similar diffusion equation
in radiative transfer. In the following calculations latin indices like i, j and k always denote
particles while greek indices like α, β indicate components of tensors.
Before we start discretising the modified conduction equation, we have to find a better estimate
for mixed second derivatives. The derivation is at first similar to the one presented by Jubelgas,
Springel, and Dolag, 2004, but gets more complicated since we also need mixed derivatives.
Consider an arbitrary quantity Q at xj which we expand around xi

Q (xj) ≈ Q (xi) + ~∇Q
∣∣∣
xi
xij +

1

2

∑
αβ

∂2Q

∂xα∂xβ

∣∣∣∣
xi

(xij)α (xij)β +O
(

(xij)
3
)
.(VIII-29)

With the distance vector xij = xi − xj .
We multiply both sides by

(xij)γ
|xij |2

∂Wij

∂(xi)δ
and integrate over

∫
d3xj .

The first order term vanishes due to antisymmetry of the integrand and we solve for the second
order term. More detailed calculations are presented in appendix VIII-A. Assuming Q is a
second order tensor quantity, we can rewrite the equation to

∑
α,β

∂2 (Qi)αβ
∂xα∂xβ

= 2

∫
d3~xj

x ᵀ
ij

[
Q̃j − Q̃i

]
~∇iWij

|xij |2
(VIII-30)
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and

∑
α,β

(Qi)αβ
∂2Ti

∂xα∂xβ
= 2

∫
d3~xj

x ᵀ
ijQ̃i [Tj − Ti] ~∇iWij

|xij |2
(VIII-31)

with the substituted tensor

Q̃ =
5

2
Q− 1

2
tr (Q)1. (VIII-32)

This is a very compact and neat formulation and we use Jubelgas, Springel, and Dolag, 2004 to
check this formula for consistency.
Consider Q = Q · 1. Then we get

Q̃ =
5

2
·Q · 1− 1

2
·Q · 3 · 1 = Q · 1 (VIII-33)

Putting this into equation VIII-30 or VIII-31 we recover the result which can be obtained for the
isotropic implementation, where only non-mixed second derivatives are needed:

∑
α

∂2Qi
∂x2

α

= 2

∫
d3xj (Qj −Qi)

x ᵀ
ij · ~∇iWij

|xij |2
. (VIII-34)

Before we further analyse the properties of these approximation formulas let us at first review
our basic equation.
As previously mentioned we consider only the part of equation VIII-28 parallel to the mag-
netic field (the first term). The term conducting along the temperature gradient can be handled
isotropically, which is described in Jubelgas, Springel, and Dolag, 2004.
We start by writing the equation in component form:

du

dt

∣∣∣∣
1st

=
1

ρ

∑
α,β

∂

∂xα

[(
κ‖ − κ⊥

)
B̂αB̂β

∂

∂xβ
T

]
. (VIII-35)

Furthermore, we define the components of a tensor A as

Aαβ :=
(
κ‖ − κ⊥

)
B̂αB̂β. (VIII-36)

Next, we write the equation only in terms of mixed second derivatives:

du

dt

∣∣∣∣
1st

=
1

2ρ

∑
α,β

(
∂2AαβT

∂xα∂xβ
− T

∂2Aαβ
∂xα∂xβ

+Aαβ
∂2T

∂xα∂xβ

)
. (VIII-37)

Now we use equations VIII-30 and VIII-31 to estimate the second derivatives in equation VIII-
37. Re-factoring the terms leads to a compact expression for particle i:

dui
dt

∣∣∣∣
1st

=
1

ρi

∫
d3xj x

ᵀ
ij


(

Ãj + Ãi

)
(Tj − Ti)

|xij |2

 ~∇iWij . (VIII-38)
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Finally, we discretise the integral and rewrite the temperature to specific internal energy:

dui
dt

∣∣∣∣
1st

=
µ (γ − 1)

kB · ρi
·
Nngb∑
j=1

mj

ρj
· x ᵀ

ij


(

Ãj + Ãi

)
(uj − ui)

|xij |2

 ~∇iWij (VIII-39)

with the mean molecular mass µ and the adiabatic index γ. This equation allows us to calculate
the effects of anisotropic conduction without an additional SPH loop.
One convenient property is that we managed to generate the term (Tj − Ti) like in the isotropic
conduction case. This ensures only conduction if the temperatures of two particles differ and the
sign takes care of the heat flux’ direction.

VIII-3.2 Ensuring the 2nd law of thermodynamics

There might still be a problem with this approximative formula. To ensure the correct flow
of internal energy from hot to cold (according to the second law of thermodynamics) the ten-
sor
(

Ãj + Ãi

)
must be positive definite. However, from the definition of a variable with tilde

(equation VIII-32) we see, that this tensor does not necessarily fulfil this condition. For a very
anisotropic setup heat flows in the wrong direction. In addition to a violation of classical ther-
modynamics this can lead to numerical instabilities depending on the solved used (please see
section VIII-3.4 for further details). To overcome this problem we have basically three options
which are both artificial and therefore might negatively influence onto our discretisation formula
in general:

1. Implement a limiter in the code, which checks for non physical heat flows.

2. Check if a configuration leads to wrong flux and prevent anisotropic conduction

3. Change the tensor to a more isotropic version, which is always positive definite.

Flux limiters in a sense that each heat flux is decreased by a certain amount scaling with it’s ini-
tial amount are hard to judge. There exist several approaches as shown by Petkova and Springel,
2009; Koerner et al., 2014 but usually one has to settle down with an empirically found for-
mulation. It is hard to determine whether a given limiter is the best one for a certain problem.
However, we actually already employ a physically motivated limiter in our code: the considera-
tion of a saturated heat flux for low density plasmas given by equation VIII-6. While this does
not guarantee us to prevent all non physical heat flux it turns out to do a very good job in our
galaxy cluster simulations keeping the convergence of our solver fast and well defined.
The second option seems to be a rather artificial one. We can determine the angle between the
temperature gradient and the magnetic field for each SPH particle and clearly detect, whenever
heat would flow in the wrong direction. In this case we could either forbid all conduction or
simply fall back to the isotropic formulation. Being a mixture of anisotropic and isotropic or
even totally suppressed conduction, this kind of algorithm would be extremely hard to control
and render any results of cosmological simulations incomprehensible.
Petkova and Springel, 2009 also propose the third option, namely to add an isotropic component
to the anisotropic tensor in order to prevent temperature flowing from cold to warm regions. We
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already have a pure isotropic component which is however proportional to κ⊥ and it is not clear
if this is already sufficient.
While the first option is hardly applicable in our tests, we will go on by comparing the fully
anisotropic formulation with an isotropised version in our tests and cluster simulations in the
next sections. In order to ensure that option 3 works, we add an artificial isotropic component
and replace the tensor Ã by

Ã→ αÃ +
1

3
(1− α) tr

(
Ã
)
1. (VIII-40)

Calculations carried out by Petkova and Springel, 2009 show that we need to set α ≥ 2
5 . We

use the minimum value to prevent a large error in the estimate. This leads to Ã → A, which is
computationally very cheap since we have to compute A for each particle, anyway. We call this
formulation the isotropised discretisation.
We can check, that A itself is positive definite by diagonalising it:

diag (A) ∝ diag
(
B̂ ⊗ B̂

)
=

 0 0 0
0 0 0
0 0 1

 . (VIII-41)

This isotropic term added to the conduction matrix helps to remove non-physical heat flux;
however, it does not come straight forward from our derivation of the conduction equation. It
is artificially added and presents itself as an offset to the direct derivation. Therefore, we can
not expect that this isotropised version of the heat flux equation will still behave exactly as the
undiscretised equation dictates. To which degree this adjusted formulation is better or worse
than the fully anisotropic description remains to be investigated by the test cases.
Similar problems of non physical heat fluxes arise also in grid code solutions and are not an
intrinsic problem of SPH formulations (see e.g. Sharma and Hammett, 2007).

VIII-3.3 Discretising the hall term

So far we have left out the cross product term of equation VIII-11 in our discretisation. However,
this can be easily done in the same fashion as before. By writing the equation component wise
we can again define a 3x3 tensor AΛ:

AΛ αβ = κΛB̂γεαγβ, (VIII-42)

which is then differentiated as equation VIII-35, calculating

∂

∂xα

(
AΛ αβ

∂

∂xβ
T

)
(VIII-43)

This allows us to follow the same path of the derivation as before.
However, one crucial difference is not to be overlooked: While the matrix A is symmetric, AΛ

is antisymmetric due to the epsilon tensor in it’s definition. As we see in equation VIII-39,
the matrix is basically multiplied with the position difference vector of two particles from both
sides, since the kernel gradient also points in that direction. But, if an antisymmetric matrix is



226 CHAPTER VIII. ANISOTROPIC THERMAL CONDUCTION IN SPH

multiplied by the same vector from both sides, the result is zero. This can be easily shown by
changing the order of the terms:

xijAΛxij = xijα · κΛB̂γεαγβ · xijβ
= −κΛ · xijαxijβεαβγ · B̂γ
= −κΛ (xij × xij) B̂ = 0

(VIII-44)

Therefore, the hall term vanishes in our discretisation and in all other discretisations with the
same property.

VIII-3.4 Solving the differential equation

Finally, we address the time integration of the resulting equation.
Jubelgas, Springel, and Dolag, 2004 show how to apply a symmetry enforcing finite difference
scheme. This is a fairly simple and computationally cheap approach, however, they conclude
that a kernel averaging of the temperature is required to suppress the effects of small-scale noise
in the temperature distribution. Therefore, an additional SPH loop is required, which greatly
increases the computational cost.
In contrast, Petkova and Springel, 2009 considered an implicit integration scheme. That requires
again an additional SPH loop but has the advantage of much more accurate results for larger
conduction time steps, therefore reducing the computational cost. They chose the so called
conjugate gradient (CG) method which we discuss in the following subsection followed by an
analysis of a possibly more stable alternative..

The conjugate gradient

The CG solver is basically an algorithm to solve a matrix inversion problem. Instead of fully
inverting the matrix, it is also often used as an iterative approximation method with very good
convergence properties. In our case such an iterative approach is mandatory, since the matrix we
are dealing with is of dimension particle number squared. Inverting this matrix explicitly would
consume way to much time to be a viable. Basically the algorithm calculates the direction in
which it has to iterate in order to monotonically approach the correct solution with each iteration
step being weighted by the residual of the previous one. Such an iterative algorithm requires an
initial guess for the solution, for which we plug in the current state of the system. Assuming
that thermal conduction only changes energies on small scales within reasonable time steps,
this approach results in a fast convergence rate for the algorithm. A detailed discussion of the
algorithmic properties is for example given by Saad, 2003.
Due to the advantages in overall computational cost and precision we want to use the conjugate
gradient method to solve the anisotropic conduction equation. At first, we need to ensure, that
our equation suffices the requirements of the CG solver. To discuss the properties consider the
following equation which we want to solve for the vector ~x:

C · ~x = ~b. (VIII-45)

For the algorithm to succeed, we place a few constraints on the matrix C: It needs to be real,
symmetric and positive definite. Because the equations do not contain imaginary parts, the first
condition is always fulfilled.
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Symmetry corresponds to conservation of energy since each matrix entry poses the heat flow
between two particles, which should always be fulfilled for an energy transport scheme. If this
was not the case self-consistently from the derivation, we would have to symmetrise the result
afterwards.1 We see if this property is fulfilled after writing down the equation explicitly as a
matrix inversion problem.
The positive definiteness can be argued as follows: In the continuous limit the matrix becomes
diagonal. Positive definite for a symmetric and real matrix means that the eigenvalues are posi-
tive. In our case this corresponds to heat being transported only anti-parallel to the temperature
gradient following the 2nd law of thermodynamics. We argued about positive definiteness al-
ready in section VIII-3.1: The fully anisotropic formulation can violate this condition, which
can therefore lead to non-physical heat flows as well as numerical instabilities, since the CG
method in principle requires it to be given. The isotropised version is constructed such that it
definitely fulfils positive definiteness.
Now we show how to write equation VIII-39 in CG formalism. Discretising the time step using

dui
dt
→ ∆ui

∆t
=
un+1
i − uni

∆t
(VIII-46)

we get for the part along the magnetic field lines

un+1
i = uni +

Nngb∑
j=1

cij

(
un+1
i − un+1

j

)
(VIII-47)

with

cij = −(γ − 1)µ

kB
· mj∆t

ρiρj
·
x ᵀ
ij

|xij |2
(

Ãi + Ãj

)
~∇iWij . (VIII-48)

We can then write this as the matrix equation C · ~x = ~b with:

• Cij := δij (1−
∑

k cik) + cij

• xj := un+1
j

• bi := uni

Now, we check again if the energy is conserved properly (except for numerical errors). Ã and
therefore c and C are symmetric, which is exactly the property we identified with energy conser-
vation. For the isotropised version we get the same equations just without the tilde above each
A and therefore same argumentation holds.

1Please note that we would have to consider the real internal energy, hence the equations for ui derived above
have to be multiplied by mi.
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An improved approach: The bi-CGStab

Since it is worrisome that the conjugate gradient solver may be numerically unstable for a non
positive definite matrix we also propose a slightly different algorithm: The bi-Conjugate Gradi-
ent. Geometrically speaking this solver does not only converge monotonically along one direc-
tion given by the gradient as the CG does, but also iterates along a second vector. This ensures
that at a saddle point where the gradient can not be determined properly, the algorithm does not
simply get stuck before convergence. There exist several flavours of the bi-CG like for exam-
ple the Conjugate Gradient-Squared (Sonneveld, 1989) or the bi-Conjugate Gradient Stabilised
(Vorst, 1992).
We propose using the latter algorithm since it poses a very good way around the difficulties
with just a few changes required. Since in each iteration two vectors are followed, two matrix-
vector multiplications are needed which a priori doubles the computational cost in comparison to
the CG. However, the bi-CGStab is supposed to have rather smooth convergence properties (in
contrast to other flavours of the biCG) and even uses both operations to increase the convergence
rate. In the case of a positive definite matrix it even falls back to the CG, only with two steps in
one iteration meaning that bottom line no additional computational cost has been added.
Of course there exist also totally different algorithms to handle the matrix inversion problem,
the most popular being probably GMRES (Saad and Schultz, 1986). However, these are also not
guaranteed to perform better with faster convergence and therefore we prefer to use a conjugate
gradient style of method in order to maintain the maximum possible backwards compatibility in
our code.

Further improvements: preconditioning

Independent of the solver, as long as we treat the problem as a matrix inversion, there exists the
possibility to speed up convergence of the iteration by applying a preconditioner to the matrix.
Since our matrix contains the particle-particle interaction terms it has a rather sparse pattern,
limited by the amount of neighbours. Therefore, we do not save the whole matrix in memory
but calculate the elements on demand. Moreover, the sparsity pattern is highly dependent on the
particle ordering by the SPH tree. This makes it highly non trivial to find a good preconditioner
which always helps to speed up convergence. Since our tests reveal, that convergence is not an
issue for us we refrain from implementing a preconditioning matrix here and keep the possibility
in mind should the need arise. For more literature on this topic we like to refer to the references
given by Vorst, 1992.

VIII-4 Tests for the new code

Next, we carry out several tests for the different implementations. We use rather simple test
cases for which we can verify the behaviour analytically, before we apply it to a physically
challenging problem like galaxy cluster evolution.
For all of the following tests we use initial conditions with "glass-like" particle distributions.
Therefore, we rule out any alignment effects which arise by the definition of a grid. Even if
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the test setups could be done in one or two dimensions, we perform all tests in a fully three
dimensional set-up.
Furthermore, we run the simulations with gas only and disable any accelerations on the SPH
particles which would come from self-gravity or the MHD equations. With this approach, we
ensure that hydrodynamical properties like the density and the internal energy are computed
correctly in their respective SPH loops, but we evolve only the conduction equation to thoroughly
test the behaviour of our implementations. Additionally, we keep the heat flux limiter due off to
gain a better understanding of how the code behaves.
We always start by describing a test case and the derivation of an analytic solution. We are only
be able to derive an analytic solution for a constant conduction coefficient, which we enforce
in our code for the test problems instead of using Spitzer conduction. Afterwards we show the
behaviour of the existing code (i.e. isotropic conduction) with a reference run and further present
our results with the new anisotropic approaches (fully anisotropic and isotropised).
Finally, we present a more complicated test, where we allow a temperature dependent Spitzer
conduction and check the influence of different prescriptions for perpendicular suppression.

VIII-4.1 Temperature step problem

At first, we reproduce the first test of Jubelgas, Springel, and Dolag, 2004 and slightly modify it,
so that we can apply it to the new anisotropic conduction implementation. The basic idea is to
set-up a temperature step and let the particles exchange heat. We fix the particle positions (and
also the magnetic field, which we add later) and therefore only evolve the conduction equation.
Also considering a fixed conduction coefficient instead of Spitzer conduction we can pull the κ
out of the divergence and get

du

dt
=
κ

ρ
∆T. (VIII-49)

This simplified conduction equation can be solved analytically (depending on the initial condi-
tions) and we compare to the simulation results. We assume a gas with constant density and use

u = cv · T. (VIII-50)

with the specific heat capacity cv. We rewrite equation VIII-49 to

du

dt
= α ·∆u (VIII-51)

with the so called thermal diffusivity α = κ/cvρ = const, which is simply a diffusion coeffi-
cient, as discussed in section VIII-2.2. For this temperature step problem it is sufficient to solve
the equation in one dimension. The more general solution can be inferred later and basically dif-
fers only in some pre-factors. Following Jubelgas, Springel, and Dolag, 2004 and Landau and
Lifschitz, 2007 this equation can be solved through Fourier transformation. For details please
see appendix VIII-B.
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We describe the initial internal energy distribution with the following step function:

u0(x′) =

{
u0 − ∆u

2 for x′ < xm

u0 + ∆u
2 for x′ > xm.

(VIII-52)

with xm being the position of the temperature step, ∆u the height and u0 the mean value. We
get in total

u(t, x) = u0 +
∆u

2
· erf

(
x− xm
2
√
αt

)
. (VIII-53)

At first, we cross check our calculations with the existing implementation of isotropic conduc-
tion. The result is shown in figure VIII.1. The SPH particles are directly plotted as black points
without any binning or additional smoothing. The result matches well with the analytic solution.
Therefore, the existing implementation works even for sudden temperature jumps.

Figure VIII.1: First conduction test: One dimensional temperature step without magnetic field.
The green line is the analytical solution (equation VIII-53), the black dots are SPH particles.
Both solutions match very well.
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Diagonal magnetic field

The next step is to include a magnetic field into the test problem to check the new anisotropic
implementation. For simplicity we keep the magnetic field fixed. We introduce a homogeneous
field in direction (x, y, z) =

(
1/
√

2, 1/
√

2, 0
)
. Hence, there is an angle of 45◦ between the

~B-field and the energy gradient, which is in our set-up parallel to the x-axis.
The results of the fully anisotropic conduction version at the same simulation time as before are
plotted in figure VIII.2 in the top left box. This implementation reproduces the analytic solution
quite well; however, we get more scatter than in the run with isotropic conduction. It is still not
yet clear what the origin for this noise exactly is, but for a cosmological simulation this is of less
importance, since thermal conduction is not the dominating effect modifying and the scatter is
smoothed out. Probably, this formulation does not ensure a positive definite transport matrix,
which induces errors into the conjugate gradient solver. However, we see that for a 45◦ magnetic
field we do not need an artificial isotropisation to obtain a stable solution.
The top right panel shows the results using the isotropised formulation. Clearly, we never get the
exact analytic result, since the isotropisation is artificially added into the numerics, but our result
is close to the real solution. In contrast to the fully anisotropic formulation we get less scatter
since the anisotropic part of the equation is mixed with an isotropic component and therefore
has a weaker effect. Furthermore, we ensure positive definiteness of the transport matrix which
guarantees stability of the algorithm.

Parallel and perpendicular magnetic field

So far we performed all tests with a magnetic field 45◦ to the temperature gradient. To exclude
the arbitrariness of this choice and to study in more detail the different implementations we carry
out the tests also with two other setups:

• A magnetic field along the temperature gradient to check if the isotropic case can be
recovered with the new code at sufficient accuracy.

• The other extreme case of a magnetic field perpendicular to the temperature gradient to
see if the different implementations really recover total suppression of heat flux.

In the middle row of figure VIII.2 we show the results for a parallel magnetic field again for
both implementations. The fully anisotropic implementation recovers the analytic solution very
well, however, with some noise. The amount of noise is about the same as with a the diagonal
magnetic field. Since we have no difference to isotropic conduction in the case of a parallel
magnetic field we see, that the noise can not origin from computational instability due to a non
positive definite transport matrix. In comparison, we find less scatter but the same expected
offset in the isotropised run as before.
In the bottom row we show similar plots for a magnetic field perpendicular to the temperature
gradient. From our preconditions we expect no conduction in this case, so the initial conditions
should stay constant except for numerical noise.
For the fully anisotropic derivation we find a rather stable solution. However, we encounter the
regime, where the anisotropy is strong enough for heat to flow in the wrong direction. What we



232 CHAPTER VIII. ANISOTROPIC THERMAL CONDUCTION IN SPH

Figure VIII.2: The temperature step problem, simulated with the fully anisotropic implementa-
tion left and the isotropised version right for a diagonal (upper row), parallel (middle row) and
vertical magnetic field (lower row). All plots are made at the same simulation time.
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see here is not a numerical instability, since we eliminated the criterion of positive definiteness
by using the advanced bi-CG solver, but rather an effect of the chosen discretisation. We counter
that behaviour and implemented the isotropised variation as a possible fix. Please keep in mind
that in these tests we did not switch on our satured heat flux limiter on purpose, to better see the
effects of our discretisation on it’s own. Besides that not being the case in r̈eals̈imulations, we do
not expect to see this behaviour in simulations anyway, where other, more dominant, processes
are included and immediately damp numerical instabilities. We will futher investigate how this
error evolves with time in section VIII-4.1.
The isotropised approach can by construction not show a stable solution for this setup: The
anisotropic part may be suppressed, but the isotropic part continues to work independently of
the magnetic field. We find that while the conduction parallel to magnetic field lines is damped,
we gain an increase of the perpendicular component. These violate the initial assumptions of our
derivation for the sake of enforcing a physical heat flux. We have to consider different test setups
to find out, which formulation gives better results and can be used for cosmological simulations.

~B direction ∆full aniso [%] ∆isotropised [%]
No 0.15
45◦ 0.37 0.84
0◦ 0.38 2.2
90◦ 2.2 4.1

Table VIII.1: Mean calculated relative errors of each particle’s internal energy with respect to
the analytic solution for the temperature step problem.

In table VIII.1 we present a more quantitative analysis of these results. For each particle inside
the displayed range of x ∈ [40, 60] cm we calculate the relative error in internal energy and
collect the mean values for each displayed simulation. All shown errors lay at a percent level
or below. Additionally, the isotropised version is about a factor two to ten worse than the fully
anisotropic approach in all cases. For comparison we included the same calculation also for the
reference run without magnetic field, were we reach a slightly smaller error value of about a
factor two.
For later simulation times the errors in the isotropised version rise slightly until the tempera-
ture profiles start to settle down to the isothermal convergence state, while the fully anisotropic
version in general tends to converge stronger to the analytic result.

Random magnetic field

As last configuration, we check whether our implementation reproduces the common idea to
approximate anisotropic conduction by an isotropic implementation damped by a factor of 1/3.
We imprint a random magnetic field onto our initial problems and fit the analytic solution with
fitting parameter κ to it. We find factors of about 0.33 at different times matching our expecta-
tions. The fully anisotropic approach usually shows slightly smaller values than the isotropised
version, however the difference is very small. We emphasize that besides scatter, the shape of
the analytic solution is reproduced very well. We conclude that unphysical errors like in the
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bottom left part of figure VIII.2 will probably not arise in simulations with turbulent magnetic
fields.

Time evolution

So far we only looked at a single snapshot of the internal energy’s time evolution. In order
to judge check that our conduction algorithm also behaves over long timescales and especially
what happens with a perpendicular magnetic field we let the simulations run for a longer time
and plot the result in figure VIII.3.

Figure VIII.3: In this plot we show the time evolution of the temperature step test with the
fully anisotropic formulation. The green line shows the analytic solution, in case of a diagonal
magnetic field, integrated from minus until plus infinity, the black line presents the according
simulation (with a finite box x-length of course, see text for further explanation) and the blue
line depicts the simulation with a perpendicular magnetic field. The upper panel plots three
snapshots in time which are marked by vertical lines in the lower panel, where the integrated
relative error of both simulations compared to the solution are plotted.

In the top layer we plot the analytic solution (green) and simulation (black) for the diagonal
magnetic field and the simulation for the perpendicular magnetic field (blue) at three points in
time, each further evolved than the plots we showed in the last subsections.
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The first thing to notice is, that while the shape of the black and green lines is always similar, the
simulation seems to evolve much faster and settles for an isothermal state in the third plot while
the analytic solution still harbours a significant temperature gradient. This is easily explained
by the fact, that the analytic calculation actually does not match the simulation any more at this
time. Recalling the derivation in appendix VIII-B we see that we integrated along the x-axis from
− inf to inf in order to receive an easy result. However, the simulation box is of finite length in
the x-direction. Namely it ranges between x ∈ [0, 100]. Up until now we plot only a subrange
of this total width because of the same reason that the solution starts to become inaccurate
at the boundaries. One can basically understand the difference as the solution harbouring an
infinite reservoir of heat outside these boundaries, while the simulation has vacuum boundary
conditions. In this plot we reached the time where we can see the influence of this reservoir
become significant by pumping in more heat into the system from one side and providing a
sink on the other one and therefore slowing down the convergence to an isothermal state in an
accelerated manner. We elaborate briefly, why the integration boundaries can not be simply
changed to account for that in appendix VIII-C.
As we can further see in this panel, while the b̈umpsïn the perpendicular configuration run
formed quite quickly they present themselves as extremely stable: The magnitude of the error
does not change at all over the whole evolution the only effect is that it broadens out a bit. The
error is therefore not at all any kind of instability and it’s evolution is strongly suppressed on it’s
own. Please note that the timescale on which we judge here is extremely long, since conduction
becomes more and more ineffective when approaching the isothermal state.
Finally the lower panel shows the time evolution of the integrated relative error of both sim-
ulations w.r.t. their analytic equivalent. We plot the integrated error because this resembles
the conservation of energy. In addition we mark the three times at which the top panel plots
were taken with vertical lines in this plot. The integrated error for the diagonal magnetic field
stays constant over most of evolution after a small acclimatisation period which results from
the discontinuity and a slightly asymmetry in sampling around it with SPH particles. For the
perpendicular magnetic field the integrated error even declines exponentially. This perfectly
displays how well our code is able to preserve the symmetry of the problem even though the
particle setup is not based on a grid but on a glass file.

VIII-4.2 Smooth temperature distribution

Since the temperature step test contained an artificial discontinuity we test the code also with
a similar setup but taking a smooth temperature distribution. Following Cleary and Monaghan,
1999 we take a sinusoidal temperature distribution at t = 0. At first, we derive the analytic
solution for the initial conditions:

u0(x′) = u0 · sin (kx) (VIII-54)

with a generic wavenumber k. The result is:

u(t, x) = u0 sin (kx) e−αk
2t. (VIII-55)
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Assuming periodic boundary conditions we need to add an initial offset to prevent negative
energies:

u(t, x) = u1 + u0 sin
(

2π
x

L

)
e−4π2αt/L2

. (VIII-56)

We chose the arbitrary values of u1 = 1500 erg/g and u0 = 1000 erg/g. Including a magnetic
field we expect a reduced conduction with coefficient κ′ = κ · cos2 ∠

(
~B, ~∇T

)
.

Figure VIII.4: Testing a wave like temperature distribution as initial conditions using both the
full anisotropic approach (upper row) and the isotropised version (lower row) with three different
magnetic field configurations: 45◦ to the temperature gradient (left column), parallel (middle
column) and perpendicular (right column), all at the same simulation time. Basically, the results
are the same as for the temperature step test. However, we see less scatter in our plots for this
smooth setup. Even the error which we saw for the perpendicular magnetic field earlier does not
appear in this test.

We perform this test with both implementations of anisotropic conduction and three magnetic
field configurations with 0◦, 45◦ and 90◦ to the x-axis. The results are shown in figure VIII.4.
Basically, we find a similar behaviour as for the temperature step problem: The isotropised im-
plementation shows always an offset from the analytic solution (weaker conduction parallel and
stronger conduction perpendicular to the magnetic field), while the fully anisotropic implemen-
tation reproduces the solution very well. We emphasise two main differences to our previous
results:
The amount of scatter for the fully anisotropic implementation is similar to what we get for the
isotropised run. Since there is no strong discontinuity in this setup the amount of scatter is way
lower than for the temperature step test.
Furthermore, we do not get any numerical artefacts in our results and even full suppression of
conduction with a perpendicular magnetic field for the fully anisotropic implementation. There-
fore, this approach produces the best results as long as there are no sudden temperature jumps.

VIII-4.3 Hot gas sphere

Next, we test how the code behaves for a more complex scenario. Similar to the second test from
Jubelgas, Springel, and Dolag, 2004 we set-up a sphere of hot gas. We use spherical symmetric
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initial conditions for the internal energy in the form of

u0(r) = u0e
−βr. (VIII-57)

For this test case we only show a qualitative comparison of the different runs, to see if the
anisotropy is reproduced well.

Figure VIII.5: Testing a spherical symmetric temperature distribution with a radial gradient. The
left plot shows the reference run with isotropic conduction, while the middle and right plot show
the fully anisotropic and isotropised implementations both with a magnetic field in x direction,
again all at the same time. One can see, that the overall conduction increases with isotropy of the
implementation. The much stronger anisotropic approach in the middle plot can be seen through
higher ellipticity of isotherms (illustrated by white circles).

In figure VIII.5 we show our test results using isotropic conduction and both anisotropic ap-
proaches for a magnetic field in x direction. The comparison shows well the different overall
effect of the three implementations. The more anisotropy the approach contains the lower the
temperature decline in the inner region. Additionally, we see the stronger anisotropy in the
middle panel compared to the right one through the ellipticity of the resulting profile.
In total, this agrees with our previous findings. Again there are no strange artefacts visible in
any of the runs. We conclude that the fully anisotropic approach should be fairly unproblematic
to use while it gives us more exact results according to the properties we formulated at the
beginning. Therefore, we consider only this formulation.

VIII-4.4 Temperature step with perpendicular Conduction

Finally, we again set up a temperature step problem but now we investigate the behaviour of
the suppression mechanism described in section VIII-2.2. We use typical values for temperature
and density as they are found in hot regions of galaxy clusters and use a homogeneous magnetic
field of the form ~B = {B0, B0, B0} with B0 ∈

[
10−12G, 10−17G

]
. The results are shown in

figure VIII.6.
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Figure VIII.6: Temperature step problem for different magnetic field strengths and treatments
of perpendicular conduction. All plots are made at the same simulation time. One can clearly
identify magnetic field strengths where the relation between linear and quadratic suppression
flips concerning which prescription results in higher net conduction.
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At the beginning we set up the temperature step at x = 50 kpc. The generally expected behaviour
is, that the discontinuity propagates to the low temperature regime while the two levels close
in on the mean temperature. We have run the different set-ups with either totally suppressed
conduction perpendicular to the magnetic field and both phenomenologically motivated scaling
relations presented in section VIII-2.2.
We can identify the following different behaviours when varying the magnetic field strength:

• B0 ≥ 10−13G: The magnetic field is strong enough to fully suppress perpendicular con-
duction no matter which prescription we use.

• B0 ∼ 10−14G: The linear scaling relation results in an increased net conduction while the
quadratic scaling still suppresses perpendicular conduction strongly.

• B0 ∼ 10−15G: Both prescriptions allow a certain amount of perpendicular conduction
however there is no clear relation between both. The denominator of the suppression
factor on the higher energy level is larger than one which results in a stronger suppression
when the factor is squared. However, it is smaller than one for the low energy level. This
is illustrated by figure VIII.7.

• B0 ∼ 10−16G: The relation between linear and quadratic scaling has fully flipped: While
both allow for a lot of perpendicular conduction now we get more net conduction with the
quadratic formula

• B0 ≤ 10−17G: The magnetic field is so weak that it can not suppress perpendicular
conduction any more with either of the discussed scaling relations.

In total, we see that a proper treatment of perpendicular conduction is important mostly for
very small magnetic field strengths. We can not judge from this test which prescription is the
better, however, it is important to include a prescription if small magnetic fields require proper
treatment. Additionally, we note that even if we take into account only hot gas, the suppression
is still also dependent on density, which means that also particles with stronger magnetic fields
can require this proper description.

VIII-4.5 Summary of test results

After all tests we come to the following conclusions:

• The isotropised formulation for anisotropic conduction ensures that the solving algorithm
is stable and does not lead to non-physical heat conduction. However, it violates the
prerequisites we used to derive an anisotropic formulation.

• We find that the fully anisotropic formulation behaves sufficiently well for adequately
smooth temperature distributions. Since the degree of instability should be small in com-
parison to hydrodynamical effects and is further suppressed by the application of a heat
flux limiter, we only apply this formulation in our cosmological simulations. We made
sure that the instability does not grow over time on it’s own and is furthermore not a
numerical one in sense of the solver we apply to the discretisation of the conduction equa-
tion.
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Initial conditions

Figure VIII.7: Number of particles per suppression factor bin for the initial conditions with
B0 = 10−15G. Particles at the higher plateau get a stronger suppression for the quadratic
formalism while particles at the lower plateau show the opposite behaviour.
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• We have briefly investigated the effects of different scalings for perpendicular suppression
and further inquire their behaviour in simulations of galaxy clusters.

VIII-5 Application to galaxy clusters

Figure VIII.8: Shown are the mass weighted temperature maps (5 Mpc × 5 Mpc) of the relaxed
cluster g5699754 at z=0. The upper left panel shows the simulation without any thermal conduc-
tion. The other maps (from upper left top lower right) show the sequence for isotropic thermal
conduction when changing the suppression factor as indicated in the maps. The lower right one
shows the run with anisotropic thermal conduction where the perpendicular term is evaluated
proportional to the magnetic field strength.

In this section we present zoomed in re-simulations of massive COMA-like galaxy clusters se-
lected from large Gpc sized cosmological boxes, where the parameters for a ΛCDM cosmology
with Ωm = 0.24, Ωb = 0.04, ΩΛ = 0.76 and h = 0.72. We select five clusters from the original
set of simulations presented in Bonafede et al., 2011 to study the effect of thermal conduction
within galaxy clusters. These galaxy clusters have virial masses2 of Mvir > 1015M�/h cor-
responding to virial radii of typically rvir ∼ 2.5 Mpc/h. Calculated virial properties for all
runs are listed in table VIII.2. More details about the selection of the galaxy clusters and the
generation of the initial conditions can be found in Bonafede et al., 2011.

2Here we define virial properties based on the averaged density as predicted by the top-hat spherical collapse
model, corresponding to 95 times the critical density for our chosen cosmology.
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VIII-5.1 The effects of different conduction prescriptions

At first, we select one isolated and relaxed looking galaxy cluster (g5699764) to perform sev-
eral simulations testing different settings for the implementation of thermal conduction. Figure
VIII.8 displays projected temperature maps of 5 Mpc wide and thick slices through the clus-
ter, demonstrating the effect of thermal conduction on the temperature structure. The upper left
panel shows the reference run without any thermal conduction. Then, from left to right and top to
bottom the suppression factor is reduced (i.e. the conduction efficiency is increased) for the case
of isotropic heat conduction. The last panel bottom right shows the result for anisotropic heat
conduction, where we include the linearly scaling perpendicular suppression factor as displayed
before (see section VIII-2.2).
As shown already in Dolag et al., 2004, where similar simulations have been carried out with an
earlier version of the implementation of isotropic heat conduction, we see that in such massive
(and therefore hot) galaxy clusters, isotropic conduction has a strong effect on the temperature
distribution. With less suppression of thermal conduction, more heat gets transported from the
central part of the cluster to the outskirts and even more dramatically visible, local tempera-
ture fluctuations get smoothed out. In contrast, the simulation with anisotropic heat conduction
shows only a very mild smoothing of the temperature fluctuations compared to the control run.
This can also be seen in figure VIII.9, where we show the emissivity distributions for all the
isotropic and one anisotropic run. The larger the isotropic conduction coefficient the more the
distribution is taylored around the mean temperature, (e.g. the cluster gets more isothermal),
while the peak increases and shifts to slightly higher temperatures.
To investigate the effect of details in the different treatment of perpendicular conduction for the
anisotropic heat conduction, figure VIII.10 shows temperature maps zooming onto the central
2.5 Mpc of our test cluster. Here we compare the isotropic thermal conduction with a suppres-
sion factor of κ = 0.01 with three anisotropic runs with different treatment of the perpendicular
component: fully suppressed (Aniso), linear (AnisoPerp) and quadratic (AnisoPerpQ) propor-
tionality to the magnetic field strength. It is clearly visible that the detailed choice of treatment
of the perpendicular component has a quite significant effect on the outcome. Still, none of the
anisotropic runs show such a strong smoothing of local temperature fluctuations as the isotropic
conduction simulation, even if we allow for conduction to become rather isotropic for weak
magnetic fields. It also makes a notable difference if we use the linear or the quadratic formula
to calculate the perpendicular suppression factor.
This gets again more clear when looking at the emissivity distributions for the different
anisotropic runs shown in figure VIII.11. While including a perpendicular suppression coeffi-
cient proportional toB−1 shrinks the distribution a bit, since it contains overall more conduction,
we see clearly a different picture for the case proportional to B−2. We find that this prescription
suppresses conduction perpendicular stronger for most particles which results in less conduction
compared to the linear case. Therefore, we see the emissivity distribution broadening again,
even beyond the case with zero thermal conduction.
A more quantitative analysis is shown in figure VIII.12, where the scaled, radial temperature
profiles are presented in the upper panel. Here it can be clearly seen that the stronger we choose
the isotropic conduction coefficient, the more internal energy is transported outwards beyond
the virial radius. In agreement with previous studies in (Dolag et al., 2004), isotropic thermal
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Figure VIII.9: Shown are the emissivity distribution of the ICM within the virial radius as func-
tion of the temperature for different treatments of the thermal conduction. Good to see the trend
to shrink the distribution around the mean temperature with increasing level of the coefficient.
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Figure VIII.10: Shown are the mass weighted temperature maps (2.5 Mpc × 2.5 Mpc) of the
inner part of the relaxed cluster at z = 0. The upper left panel shows the simulation with
isotropic conduction for κ = 0.01. The other three maps show the runs with anisotropic thermal
conduction for different treatment of the perpendicular case (see section- VIII-2.2).
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Figure VIII.11: Shown are the emissivity distribution of the ICM within the virial radius as func-
tion of the temperature for runs with anisotropic thermal conduction for the different treatments
of the perpendicular case (see section VIII-2.2).
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Figure VIII.12: Shown are radial temperature (upper panel) and entropy (lower panel) profiles
for g5699764 with several different conduction settings at z = 0. The temperature profiles are
normalized by the mean temperature within the virial radius for each respective run.
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conduction at a level of 1/3 of the Spitzer value already leads to an isothermal temperature
distribution in the inner part of the galaxy cluster. Regarding anisotropic conduction we include
two runs, the one with full suppression perpendicular to magnetic field lines as well as the
one using the linearly scaling suppression factor. While the totally suppressed run resembles
almost zero level of isotropic thermal conduction, the temperature profile of the latter one lies
somewhere between κ ≈ 0.01 and κ ≈ 0.03 for isotropic thermal conduction. The entropy
profiles in the lower panel are in general more difficult to interpret. Here, already the reference
run builds up a significant entropy core (in line with what was reported for the non ideal MHD
simulations in Bonafede et al., 2011). Their shape is rather similar for all runs and due to
combined effects including the different implementations of thermal conduction the trends are
not easy to interpret and seem to depend on the local dynamical structures in the core of the
galaxy cluster.

Finally, we can compare the simulated cluster to a sample of observations with XMM-Newton
presented by Frank et al., 2013, where they measured the width of the temperature fluctua-
tions within the central part (e.g. within R2500) of a sample of galaxy clusters. Figure VIII.13
shows these observational data points over plotted with results for our different implementations
of thermal conduction within our simulations. Please note that here we not only use the central
galaxy cluster but also make use of a smaller galaxy cluster present within our simulation, which
has a temperature of roughly 1 keV. For the case of isothermal conduction we see that the high
isotropic conduction coefficients (e.g. κ = 0.3 and κ = 0.1) produce results which are below
the observed temperature fluctuations for the high temperature system, similar to the findings in
Rasia et al., (2014). For the low temperatures all implementations are consistent with the ob-
servations. In contrast, the anisotropic runs are matching with the simulations without thermal
conduction. Interestingly, the simulation with the quadratic dependency of the suppression fac-
tors shows the largest temperature fluctuations, in line with the broader temperature distribution
shown before.

To enforce the idea of a proper treatment of perpendicular conduction we display the range of
suppression factors for all hot particles in one of our simulations in figure VIII.14 at several
redshifts. Since conduction scales strongly with the temperature of the plasma, we take into
account only the most important contributors to thermal conduction, selecting particles within
the hot atmosphere of groups and clusters by requesting their temperatures T to exceed 107 K.
As the typical formation time of clusters and groups is around z = 1, the amount of particles
within this hot gas phase increases significantly until the redshift approaches z = 1. While either
suppression formulation results in fairly low suppression factors for the bulk of particles, there
are significant differences in the amount of particles which have moderate suppression factors
up to the regime of almost unsuppressed conduction. Furthermore, it seems that the quadratic
formula produces in general lower factors and therefore less net conduction than the linear one.
As we have already seen in our tests in section VIII-4.4 the two formulations show opposite
behaviour in different regimes.

To further investigate the effects of the isotropic and anisotropic treatment of thermal con-
duction we select the same four, Coma like galaxy clusters (g0272097, g1657050, g4606589
and g6802296) as in Bonafede et al., (2011) and simulate them with zero thermal conduction,
isotropic conduction at a level of κ = 0.3 and anisotropic thermal conduction using the lin-
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Figure VIII.13: Comparing the temperature fluctuations within R2500 as inferred from obser-
vations by Frank et al., 2013 with the one predicted for the simulated relaxed cluster with the
different treatment of the thermal conduction (as labelled).
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Figure VIII.14: This plot shows distribution of linear and quadratic suppression factors cal-
culated for all particles of the run AnisoPerp with temperatures higher than 107 K for several
redshifts. (see section VIII-2.2).

ear scaling for the perpendicular case. Table VIII.2 lists the general properties of the resulting
galaxy clusters.
While the virial properties of the halo are basically unchanged, the amount of condensated
baryons in form of stars and cold gas changes with the treatment of thermal conduction. This
fraction slightly grows with increasing net conduction, similar to previous findings (Dolag et al.,
2004), again indicating that thermal conduction alone is not able to prevent cooling in the centres
of cluster. Although, due to the inclusion of magnetic fields, the fraction of condensed baryons
is smaller than in previous numerical studies, it is still larger than previous observations (Balogh
et al., 2001; Lin, Mohr, and Stanford, 2003; Andreon, 2010). However, more recent observa-
tional studies by Kravtsov, Vikhlinin, and Meshscheryakov, 2014 indicate a significantly larger
amount of stars in the central galaxies of clusters than previously thought. Ultimately, including
anisotropic thermal conduction seems not to change the amount of cold baryons in the centre of
simulated galaxy clusters significantly.
The respective temperature maps for all five clusters with the three settings for thermal conduc-
tion are shown in figure VIII.15. The four additional clusters show a a very similar behaviour
as we saw before in the relaxed one. Temperature is transported outwards with the isotropic
conduction using κ = 0.3, while substructures are strongly smoothed out, where as the run with
anisotropic conduction shows only mild smoothing of temperature fluctuations. One interesting
aspect gets clearly visible in figure VIII.16, where we present the corresponding radial tempera-
ture profiles for five clusters for the three different runs. Again, we see that isotropic conduction
leads to a significant flattening of the temperature profile embedding a cold core with varying
size and moderate temperature. The simulations without thermal conduction show a rising tem-
perature profile towards the centre with a much larger drop of temperature within the central
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Cluster Bon. Cond. κ rvir mvir fcol

g5699754 D17 0 2.568 1.739 0.184
0.001 2.566 1.736 0.183
0.003 2.569 1.742 0.175
0.01 2.569 1.742 0.175
0.03 2.566 1.735 0.181
0.1 2.569 1.741 0.188
0.3 2.564 1.732 0.191
Aniso 2.553 1.710 0.197
AnisoPerp 2.562 1.727 0.188
AnisoPerpQ 2.553 1.709 0.183

g0272097 D2 0 2.375 1.3989 0.179
0.3 2.378 1.393 0.185
AnisoPerp 2.310 1.280 0.267

g1657050 D5 0 2.397 1.427 0.185
0.3 2.387 1.410 0.191
AnisoPerp 2.380 1.398 0.193

g4606589 D13 0 2.145 1.025 0.174
0.3 2.153 1.037 0.191
AnisoPerp 2.154 1.038 0.180

g6802296 D20 0 2.062 0.909 0.172
0.3 2.054 0.899 0.204
AnisoPerp 0.202 8.566 0.211

Table VIII.2: Calculated virial masses [1015 M�/h], virial radii [Mpc/h] and mass fraction of
collapsed baryons (stars + gas with T < 3 · 104 K) for all runs. Different conduction settings
do not alter the global halo properties significantly. The fraction of collapsed baryons seems to
grow slightly with increasing net conduction. For further cross reference our initial conditions
with the numbering used by Bonafede et al., 2011.
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Figure VIII.15: Shown are the mass weighted temperature maps (5 Mpc × 5 Mpc) of the five
simulated clusters at z=0. The upper left row shows the simulation without thermal conduction.
The middle maps show the simulations with isotropic thermal conduction for κ = 0.3 and the
lower row shows the runs with anisotropic thermal conduction, where the perpendicular term is
evaluated with the linear scaling.

Figure VIII.16: Radial temperature profiles for all five clusters as in figure VIII.15. Dashed lines
indicate the first crossing of T = < T >.
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core. The simulations with anisotropic thermal conduction where we used the linear scaling for
the perpendicular component shows a more bimodal temperature profile. Some clusters show
very similar temperature profiles compared to the simulations without any thermal conduction,
some have a very pronounced cold core. The sample is much to small to draw robust conclusions
but this indicates that in the case of anisotropic thermal conduction the amount of heat transport
is strongly varying with the current dynamical state of the cluster and therefore might contribute
to the observed bimodality of cool core and non cool core clusters. The temperature for all runs
drops lower than the specific mean temperature of gas inside the virial radius at about 40 to 45
per cent of the virial radius.
At last, again, we compare the temperature fluctuations to the observational data of Frank et al.,
2013. Similar as before, beside the central, massive cluster we also take other clusters found
in the high resolution region into account, allowing us to get also some objects with various
temperatures, sampling the low temperature region. Figure VIII.17 shows the comparison of
the data with our simulations without thermal conduction, with isotropic conduction using κ =
0.3 and with anisotropic conduction including linear scaling for the perpendicular component.
While the simulated clusters with isotropic conduction using κ = 0.3 fall significantly below
the bulk of data points for clusters above 5 keV, the simulations without thermal conduction
and with anisotropic thermal conduction seem to represent the observed data points reasonably
well. Still a more clearly selected set of simulated galaxy clusters across the whole temperature
range as well as observations in the high temperature regime are needed to draw more robust
conclusions.

VIII-5.2 The magnetic field structure in the simulated clusters

Since there is a tight connection between thermal conduction and magnetic field evolution, we
now investigate the magnetic field in the simulated galaxy clusters. We show in figure VIII.18
thin slices of the magnetic pressure through the cluster centre. In high density regions, in the
cores of clusters and groups, almost all particles have magnetic fields at µG levels, while they
drop down to nG levels in the outer regions. Since the magnetic fields are introduced by super-
nova seeding events we see, that the high magnetic fields are strongly localised in our simula-
tions. Transport processes smooth out the magnetic field distribution but a bubbly structure still
remains. Particles which are not directly influenced by the supernova seeding have rather low
magnetic field values as low as even B ≈ 10−20 G. These particles are sensitive to the chosen
scaling of the conduction mechanism.
Still, also particles sitting in extreme density peaks contribute significantly to this dependency,
since equations VIII-19 and VIII-25 are not only dependent on the magnetic field strength but
also on density. Therefore this discrimination of scaling is always important and not only an
artefact of the magnetic field seeding mechanism.
Since differences in the four maps are only marginally, we also present the radial magnetic field
profiles (volume-averaged) for several runs in figure VIII.19. We see that the radial profiles
for all different runs are of very similar shape and broadly agree with previous findings in the
literature. The more efficient we allow conduction to be, the steeper the profiles become outside
the cluster core. The runs with anisotropic conduction resemble again runs with a very low
isotropic coefficient.
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Figure VIII.17: Comparing the temperature fluctuations within R2500 as inferred from observa-
tions by Frank et al., 2013 with the one predicted for the set of simulated clusters, including also
some less massive ones which are found within the high resolution region of the zoomed simu-
lations. The different colours correspond to the simulations without thermal conduction (black),
isotropic thermal conduction with κ = 0.3 (red) and anisotropic thermal conduction, where the
perpendicular term is evaluated using the linear scaling (pink).
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Figure VIII.18: We present maps of the magnetic pressure PB = B2/8π in a thin slice through
the cluster centre. As before we compare four runs with different conduction settings.
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Figure VIII.19: We show the volume-averaged radial magnetic field profiles of the most massive
galaxy cluster for different conduction settings. Stronger conduction leads to a steeper profile
while the curves of the anisotropic runs are closest to the non-conductive run.
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Figure VIII.20: We show the mean volume-averaged temperature against the mean volume-
averaged magnetic field strength of the five most massive clusters inside the central one Mpc3.
Additionally, we overplot an observational data point for the Coma Cluster taken from Bonafede
et al., (2010).
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To illustrate the resulting magnetic field strengths in the larger cluster sample we plot temper-
ature against magnetic field volume-averaged within a sphere of volume one Mpc3 around the
cluster centres in figure VIII.20. We choose this region in order to compare to an observational
result for the Coma cluster presented by Bonafede et al., (2010). Overall, the results obtained
with our simulated clusters are in good agreement with the magnetic field observed in the Coma
cluster, although there is a trend for some clusters to have slightly lower magnetic fields. The
amplitudes are more in the range of mean magnetic fields inferred from the radio halo (e.g.
0.7 − 1.9µG given by Thierbach, Klein, and Wielebinski, 2003) than from rotation measure-
ments. Compared to previously findings, this is probably related to our seeding mechanism by
supernova events.
Comparing the different runs we present, one can clearly see that changes in the conduction
prescription pose an overall influence over the presented averaged quantities. The runs without
thermal conduction and with our anisotropic prescription produce a larger variance of cluster
temperatures and higher magnetic fields on the high temperature end in comparison to runs with
rather strong isotropic thermal conduction. This matches well with the conclusions we drew
from the radial temperature profiles in the previous subsection.

VIII-6 Summary and Conclusions

We derive and discuss a numerical scheme for anisotropic thermal conduction in the presence
of magnetic fields. We present a discretisation for SPH and implement our new method into the
cosmological simulation code GADGET. We show a variety of standard tests as well as cosmo-
logical simulations of galaxy cluster formation with different choice of conduction parameters,
where we combined the new conduction implementation with a supernova seeding scheme for
the magnetic field (Beck et al. 2013), leading to a self consistent evolution of magnetic fields
within the cosmic structures.
Our numerical scheme for anisotropic conduction in SPH solves the corresponding equations
using a conjugate gradient solver, and therefore need only a very small amount of extra compu-
tational effort in the MHD version of GADGET. However, the straight forward derivation can
violate the second law of thermodynamics in cases of strong anisotropies and large jumps in tem-
perature. Additionally, this can causes an unstable behaviour of the conjugate gradient solver in
the presence of extremely sharp jumps of temperature. Typically, this problem is solved by intro-
ducing a correction which ensures positive definiteness of the linear equation system by adding
an artificial isotropic component. However, this correction can lead to significant, artificial heat
flow perpendicular to the magnetic field and it is therefore questionable if such a numerical cor-
rection is useful in a realistic environment, where it can hide the effect of anisotropic conduction.
In general, for any realistic situation, our anisotropic implementation with fully suppressed per-
pendicular term is already stable enough so that we do not have to add an artificial, destructive
isotropisation term. However, a closer look at the term of the perpendicular conduction coef-
ficient reveals that the amount of suppression of the perpendicular conduction coefficients can
scale with either with B−1 or with B−2 (Huba, 2011). Depending on other plasma properties,
these two scalings can have different relative effect on the amount of perpendicular heat trans-
port. To test them, we perform cosmological simulations of the formation of galaxy clusters
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with different implementations of the perpendicular transport coefficients. We also compare the
results with a fully isotropic implementation of heat transport for different values of the suppres-
sion of thermal conduction with respect to the classical Spitzer value. Our main results can be
summarised as follows:

• Temperature maps from simulated galaxy clusters show that isotropic thermal conduction
not only transports heat outwards, but also smoothes small-scale features. Anisotropic
conduction seems to resemble isotropic transport with coefficients like κ ∼ 0.01 · κSp;
however, prominent substructures in the temperature distribution survive due to insulation
by magnetic field lines.

• Radial temperature profiles change differently when applying anisotropic thermal conduc-
tion depending on the dynamical evolution of the cluster. Some profiles are very similar
to those without thermal conduction showing a rising profile with a large drop towards the
centre while others show a very pronounced cool core. In contrast, isotropic conduction
produce flattened, almost isothermal temperature profiles in the central regions.

• We show the relevance of a proper treatment of perpendicular conduction instead of only
parallel transport. At all times we find a significant amount of particles with temperatures
T > 107 K for which a non negligible perpendicular component is assigned. These
particles sit either in regions with negligible magnetic field or at gas density peaks. The
particles with low or no magnetic field are especially important in the simulations, since
many particles have not undergone magnetic supernova seeding events.

• We find that different conduction prescriptions also have some influence on the resulting
magnetic field of the clusters. Lower conduction leads to steeper radial profiles in the
most massive cluster. In the larger sample we see that anisotropic conduction leads to a
larger variance of mean cluster temperatures and slightly stronger magnetic fields on the
high temperature end.

• We calculate emissivity distributions and compare to observed temperature fluctuations
of Frank et al., 2013. We find that simulations with either zero or anisotropic conduc-
tion reflect the observational data points best, whereas isotropic conduction with κ > 0.1
shows a clear lack of temperature fluctuations compared to the observational data points.
In comparison, although clearly visible, the differences for the different descriptions for
perpendicular conduction show only mild changes in the amount of temperature fluctua-
tions. Here a significant increase of number of simulated galaxy clusters as well as many
more observations of high temperature clusters will be needed to discriminate between
them.

• We compare the fractions of cold gas and stars in different simulations and find a weak
dependence on the conduction parameters. Conduction seems not to play a key role in
suppressing cooling in galaxy clusters, but due to the coupling of the suppression factors
to the local dynamical state of the cluster, the anisotropic conduction might contribute to
the observed bimodality of cool core and non cool core systems.
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In conclusion, anisotropic thermal conduction is not a dynamically dominant process within
galaxy clusters, but can influence the evolution of small-scale structure. In contrary to isotropic
heat conduction, it produces a reasonable amount of temperature fluctuations compared to ob-
servations and still allows locally for transport of heat. In general, it comes only with a small
amount of computational cost for cosmological SPMHD codes and eliminates the need for a free
efficiency parameter. A next step would be to consider also non-collisional thermal conduction
and include the cross term mentioned in section VIII-2.2. Since we have seen that a perpendic-
ular conduction component can have quite an impact we expect this term to also play a role in
the process.
In the future, a larger sample of cosmological simulations with possibly even higher resolution
will allow a better statistical analysis of the detailed temperature and magnetic field structures
and the role of anisotropic transport effects in galaxy clusters. This will help to gain further
knowledge about the scaling relations of perpendicular conduction or the importance of small-
scale plasma instabilities, which is very challenging to resolve.
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VIII-A Solving the Taylor approximation for the second order term

We show the solution of the modified equation VIII-29 solved for the second order term, which
we need to compute the mixed second derivatives in the conduction equation. At first, the kernel
derivative is expressed as

∂Wij

∂ (xi)δ
= −W ′ij

(xij)δ
|xij |

. (VIII-58)

Looking at the first order error term of the modified equation VIII-29, we see, that∫
d3xj

(xij)α (xij)γ

|xij |2
·
(
−

(xij)δ
|xij |

W ′ij

)
= 0, (VIII-59)

since for all possibilities of α, γ and δ there is always at least one component, where the integral
vanishes because of an antisymmetric integrand. All indices range from 1 to 3, so there is always

3http://www.magneticum.org
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one component with an odd amount of xij . The denominator and W ′ij are even with respect to
xj , so the integral vanishes.
The next step is to calculate the integrals of the second order error term with a substitute as

Tαβγδ =

∫
d3xj

(xij)α (xij)β (xij)γ (xij)δ

|xij |3
·W ′ij . (VIII-60)

We distinguish between the following three cases, which we address one after another:

1. At least three indices are unequal

2. All indices are equal

3. The indices form two pairs, e.g. α = β and γ = δ

1. At least three indices are unequal

If at least three of the four indices are unequal, then there is at least one integration where
the integrand contains only a single xij component. Since the denominator and W ′ij are even
functions with respect to xj , the integrand for this component is in total an odd function which
vanishes when integrating over the whole (symmetric) domain. Therefore, the integral is zero.

2. All indices are equal

If all indices are equal, we start the calculations with substituting the integration variable xj →
xij without further implications on the integration. Then equation VIII-60 simplifies to

Tα =

∫
d3xij

(xij)
4
α

|xij |3
·W ′ij , (VIII-61)

where we used the short hand notation Tα := Tαααα.
Since W ′ij is only dependent on |xij | we choose spherical coordinates for xij . We can arbitrarily
choose the rotation of our coordinate system. For simplicity we let (xij)α be along the z-axis of
the coordinate system. This results in

Tα =

∫
dr

∫
dφ

∫
dθ r2 sin θ · (r cos θ)4 · W

′(r)

r3
. (VIII-62)

We can easily perform the φ and θ integrations and obtain

Tα =
4π

5

∫
dr r3W ′(r). (VIII-63)

Next, we perform a partial integration, where the boundary term vanishes, since the kernel is
monotonically decreasing towards zero. It remains:

Tα = −12π

5

∫
dr r2W (r) = −3

5
, (VIII-64)

because of the kernel normalisation condition.
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3. The indices form two pairs

This last case can be calculated pretty similar, except that we have to chose two indices, which
have to be unequal. We choose α = 1 and β = 3. Again, written in spherical coordinates we
get

Tαβ =
∫
dr
∫
dφ
∫
dθ r2 sin θ · (r sin θ cosφ)2 ·

(r cos θ)2 · W
′(r)
r3

.
(VIII-65)

Using the results from the r-integration before we calculate Tαβ = −1
5 and the total result is:

Tαβγδ =



−3
5 if α = β = γ = δ

−1
5 if α = β 6= γ = δ

−1
5 if α = γ 6= β = δ

−1
5 if α = δ 6= β = γ

0 else

(VIII-66)

So basically T is only non zero, if we have two pairs of indices.

All cases combined

Plugging everything back into the modified equation VIII-29 gives:

Iγδ := 2
∫
d3xj

Q(xj)−Q(xi)

|xij |2
(xij)γ

∂Wij

∂(xi)δ

= −
∑
αβ

Tαβγδ
∂2Q

∂xα∂xβ

∣∣∣
xi
.

(VIII-67)

To infer a general behaviour we take a look at an example with γ = δ = 0

I00 =
3

5

∂2Q

∂2x0

∣∣∣∣
xi

+
1

5

∂2Q

∂2x1

∣∣∣∣
xi

+
1

5

∂2Q

∂2x2

∣∣∣∣
xi

. (VIII-68)

Since we want to infer an approximation for second order mixed derivatives of Q, we have to
linearly combine terms for different choices of γ and δ. It can be found that,

∂2Q
∂x20

= 2 · I00 − 1
2 · I11 − 1

2 · I22

= 2 · 5
4 · I00 − 1

2 · I00 − 1
2 · I11 − 1

2 · I22

(VIII-69)

and cyclic permutation for other second derivatives. A similar formula applies for mixed deriva-
tives. Consider for example

I01 =
1

5

∂2Q

∂x0∂x1

∣∣∣∣
xi

+
1

5

∂2Q

∂x1∂x0

∣∣∣∣
xi

. (VIII-70)

It is better to keep both parts separated to explicitly indicate the symmetry for simplicity in the
assembly process.
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From this example we get directly

∂2Q

∂x0∂x1
=

5

4
· I01 +

5

4
· I10 (VIII-71)

and cyclic permutations.
Combining the equations (VIII-69) and (VIII-71) we see that all Iγδ occur times a factor of 5/2
minus a trace term times 1/2. This finding is represented by the substitution equation VIII-32 in
our final result.

VIII-B Analytic solution for the temperature step problem

We show the derivation of the analytic solution of the conduction equation for the temperature
step test (section VIII-4.1). We start with the Fourier transformation of the specific internal
energy in both directions:

u(t, x) =

∞∫
−∞

uk(t)e
ikx dk

2π
(VIII-72)

and

uk(t) =

∞∫
−∞

u(t, x)e−ikx dx. (VIII-73)

The conduction equation expressed in Fourier space is

duk(t)

dt
= −αk2uk(t) (VIII-74)

with the simple solution

uk(t) = uk0e
−αk2t. (VIII-75)

Using u(t = 0, x) = u0(x) we express the unknown coefficient in terms of the initial condition
in real space

uk0 =

∞∫
−∞

u0(x′)e−ikx
′
dx′. (VIII-76)

We insert this result into the reverse Fourier transformation (equation VIII-72) and obtain

u(t, x) =

∞∫
−∞

dx′
∞∫
−∞

dk

2π
u0(x′)e−αk

2teik(x−x′). (VIII-77)



VIII-C. TEMPERATURE STEP WITH VACUUM BOUNDARIES 263

At first, we perform the integration over dk. For this we rewrite the exponentials completing the
square to bring them into Gaussian form, which is a simple integration and get

u(t, x) =
1

2
√
παt

∞∫
−∞

dx′ u0(x′) exp

(
−(x− x′)2

4αt

)
. (VIII-78)

At this point we need to use the specific initial conditions of our problem. For the temperature
step they are defined as

u0(x′) =

{
u0 − ∆u

2 for x′ < xm

u0 + ∆u
2 for x′ > xm,

(VIII-79)

with xm being the position of the temperature step.
Inserting this into equation VIII-78 we get two integrals to perform:

u(t, x) = 1
2
√
απt

[
xm∫
−∞

dx′
(
u0 − ∆u

2

)
e−y

2
+

∞∫
xm

dx′
(
u0 + ∆u

2

)
e−y

2

]
,

(VIII-80)

where we substituted y ≡ y(x′) =

√
(x−x′)2

4αt .
We split this expression into two parts: One which is multiplied by u0 and one which is multi-
plied by ∆u/2. The u0 term can be simply integrated, since it is again only a Gaussian integral,
which results in 2

√
απt · u0. For a little consistence check consider ∆u = 0 then we get

u(t, x) = u0, which is what we would expect for a isothermal region without any other effects
than thermal conduction.
To integrate the second term, with ∆u, one has to rewrite the integrals to resemble the definition
of error functions. The final result reads

u(t, x) = u0 +
∆u

2
· erf

(
x− xm
2
√
αt

)
. (VIII-81)

VIII-C Temperature step with vacuum boundaries

In section VIII-4.1 we require a similar derivation as shown in appendix VIII-B, however, we
need to change the boundaries of the initial conditions given by equation VIII-79 to

u0(x′) =


u0 − ∆u

2 for x0 < x′ < xm

u0 + ∆u
2 for xm < x′ < x1

0 otherwise.

(VIII-82)

This leads to finite integral boundaries in the x-integration which be written again in terms of
the error function

u(t, x) = u0 · [erf (y (t, x1)) + erf (y (t, x0))]

+∆u
4 · [−erf (y (t, x1)) + 2 · erf (y (t, xm))− erf (y (t, x2))]

(VIII-83)
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, which behaves perfectly fine for x0 → − inf , x1 → inf . However, if we let t → inf then
y → 0 and therefore u→ 0 6= u0. Mathematically the difference lies in two integrals of infinite
integration length with integrand zero. Physically this can be understood as heat dissipating into
the boundaries given by x0 and x1. Therefore, it is not possible in a straight forward way to
extract an analytic solution for these modified, finite initial temperature step.



Chapter IX

Galaxy cluster code comparison: The
300

Machines take me by surprise with great frequency.
– Alan Turing

This chapter describes the ongoing work of a galaxy cluster code comparison project which
started with Sembolini et al., 2016a as the nIFTy galaxy clusters simulations and is now going on
as The Three Hundred. The basic idea behind this study is to simulate identical initial conditions
for galaxy clusters with different numerical codes in order to learn about which aspects result
from certain physics modules or maybe are purely of a numerical origin. This is where the code
diversity discussed in chapter III can really pay off.
This chapter is subdivided into four main parts: At first we describe the parent cosmological
simulation box and elaborate on the process of making zoom simulations. Then we briefly
present the projects that have been carried out and published already and finish with a description
of the ongoing project and a list of the current science goals. We have to keep this description
very brief as the new projects are just kicking off.

IX-1 The MultiDark parent simulation

The whole project builds upon the MultiDark cosmological box1 which was first introduced
by Prada et al., 2011. The box used in MultiDark run 1 has a side length of 1h−1Gpc and
contains 20483 dark matter particles which leads to a particle mass of 8.63 · 109h−1M� and
a gravitational softening of 7h−1kpc (see section III-5.1).2 The simulation was carried out
with a ΛCDM cosmology with parameters based on WMAP-5. Klypin et al., 2014 present a
similar cosmological simulation but following the cosmological parameters given by PLANCK
(see chapter I) and with a significantly higher resolution of 38403 particles. Figure IX.1 shows
slices of the resulting density distributions of both runs respectively at redshifts z = 0.53 and
z = 0.51. Both beautifully illustrate the cosmic web which is generated by initial density

1Also called BigBolshoi due to being the successor of the Bolshoi simulation
2h is the dimensionless Hubble parameter h = H0/100 sMpc/km.
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fluctuations and evolving gravity for collision-less cold dark matter. Besides effects from the
increased resolution, which makes the right image look much more finely grained, the effect of
the slightly different cosmological parameters employed can hardly be seen by the naked eye.

Figure IX.1: Left: Density structure of the MultiDark box run 1 at redshift z = 0.53. Right:
Density structure of the higher resolution box with PLANCK cosmology at z = 0.51. Note the
slightly different redshifts due to different output strategies.

IX-2 Zoom simulations

As initial conditions for the code comparison project, the technique described in Klypin et al.,
2001 has been used to extract regions out of the big cosmological boxes and to improve the
resolution simultaneously. The basic process is as follows. First one selects all particles inside
a sphere of a sensible radius around the object to re-simulate. In this case a sphere with radius
6h−1Mpc around a galaxy cluster centre at redshift z = 0 was taken. This set of particles is
then tracked back to the initial conditions to identify a Lagrangian region which is responsible
for the formation of this cluster. This region is then taken and it’s dark matter particles are split
up to improve the resolution. The same is done to achieve initial conditions with gas particles.
Typically each dark matter particle is split into two particles of similar mass, one being dark
matter and the other gas. Proper placement of the resulting particles ensures that the resulting
gravitational potential is not altered.
This process is further enhanced by including several resolution steps with different amounts of
dark matter particles. The GADGET code typically assumes three levels. These can be subdi-
vided into high resolution dark matter particles, which actually form the cluster halo and two
steps of lower resolution which do not actually collide with the cluster material but pose as a
sample points for a realistic environment in order to keep the large scale evolution intact without
wasting computing time on these regions. A typical configuration is shown in figure IX.2.
Sembolini et al., 2016a started with the MUSIC-2 sample extracted from the MultiDark run 1.
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Figure IX.2: Typical particle configuration of zoomed initial conditions with three different
resolution steps of dark matter particles in black, blue and red and gas particles in green.
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The abbreviation term MUSIC stands for MUltidark SImulations of galaxy Clusters. The
MUSIC-2 sample contains a total of 545 zoom initial conditions of central objects in a mass
range of 5 · 1013h−1M� < m < 1015h−1M� at redshift z = 0. For the ongoing projects
over 300 new initial conditions from the MultiDark Planck box have been produced in different
resolution stages. The corresponding data can be accessed online.
The evolution of one of the new clusters is shown in figure IX.3. These plots have been gen-

erated using the SPLOTCH ray-tracing program (Dolag et al., 2008) using the specific internal
energy as colour scale and the gas density as intensity.

IX-3 nIFTy: What has been achieved so far

The niFTy project spawned eight papers so far of which we describe some briefly. Before the
galaxy cluster comparisons began, Knebe et al., 2015 actually started by comparing different
galaxy formation models on top of a 62.5h−1Mpc side length box, exploring 14 different semi-
analytic and halo-occupancy distribution models. So far we have not mentioned these techniques
in this thesis so a brief explanation is of order. Basically a dark matter only simulation is taken.
In there a halo finder is used to identify gravitationally bound structures. The growth history
of these structures is investigated creating a so called merger tree. Then a model is applied,
which assigns several properties to each halo depending on the collected data, like the baryon
fraction, metallicity or star formation rate. These are not simulated directly, but calculated from
a stochastical model using various assumptions.
As mentioned earlier, the first nIFTy paper regarding galaxy cluster comparisons was Sembolini
et al., 2016a presenting a comparison of dark matter only runs and simulations including non-
radiative gas physics.3 The comparison includes classical AMR (see section III-2.1), moving
mesh (see section III-4.1) and several different SPH codes (mostly GADGET2 or GADGET3
based), including our modernised code there called G3-X (see chapter V) and the very similar
one used for the MAGNETICUM simulations G3-Magneticum (see chapter XI). The outcome
of the dark matter comparison is unsurprisingly similar as the gravity solver is actually the same
in most of the employed codes. Nevertheless, differences of the order of a few percent, which
might be at least partially of numerical origin, remain in the resulting density profiles. Including
gas physics increases the deviations by a lot, especially regarding the central concentration of
gas and the radial temperature profiles. The latter, as shown in figure IX.4, reveals very drastic
differences regarding the central temperature of the resulting cluster depending on the chosen
numerical method, as we have hinted towards already in chapter I. Even in the midst of different
flavours of GADGET there is hardly any agreement if the core in that cluster should be cool or
not. This can serve as eye opener, why the diversity of different numerical methods and codes is
important, as to learn about how large the effects of for example bad mixing can become glob-
ally (see also chapter III). Luckily some sort of consensus seems to emerge, as some of the more
modern code choices tend to agree with each other: AREPO, G3-X and G3-SPHS.
The next logical step was to include radiative physics as presented by Sembolini et al., 2016b.
Now the different codes do not only represent various numerical techniques but also incorporate
different subgrid models to handle cooling, star formation, chemistry and stellar and AGN feed-

3Meaning no radiative cooling, feedback or such processes.
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Figure IX.3: Evolution of a zoomed galaxy cluster simulation taken from the MUSIC
web page http://music.ft.uam.es/2012-06-20-09-53-16/radiative/
2015-05-06-01-02-28.

http://music.ft.uam.es/2012-06-20-09-53-16/radiative/2015-05-06-01-02-28
http://music.ft.uam.es/2012-06-20-09-53-16/radiative/2015-05-06-01-02-28
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Figure IX.4: Comparison of radial temperature profiles of the same galaxy cluster simulated
with different codes without radiative physics included. Taken from Sembolini et al., 2016a.
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back. Radial temperature distributions are much less clear to distinguish now but come actually
into better agreement than before while density distributions show a degree of scatter which re-
moves any clear distinguishing between older and modernised or grid and SPH codes.
After these very general comparisons, more detailed analyses could be carried out, including a
more in depth look into galaxies and small subhaloes (Elahi et al., 2016), investigations towards
the actual impact of baryonic physics (Cui et al., 2016), studies of infalling galaxies (Arthur
et al., 2016) and again a comparison of galaxy formation models on top of the dark matter
simulation (Pujol et al., 2017).

IX-4 The Three Hundred

The nIFTy comparison papers only considered one single galaxy cluster simulated with differ-
ent codes. The next step “The Three Hundred” goes a step further, extending this comparison
to a large variety of galaxy cluster initial conditions, allowing to make better statistically driven
statements. Since the first code comparisons revealed already some insight into the effects of
different numerical techniques this project is carried out with a reduced amount of numerical
codes. These are GADGETMUSIC (which was used initially for all the simulations; for the
first data release see Knebe et al., 2018), GADGETX (as representative of the different GAD-
GET flavour which produced excellent results so far), GIZMO (a new addition to get meshless
techniques on board; for a description see section III-4.1) and RAMSES (a classical grid code).
Additionally, three different semi analytic models participate in the comparison project: Galacti-
cus (Benson, 2011; Benson et al., 2012; Benson, 2012), SAG (Cora et al., 2018a; Cora et al.,
2018b) and SAGE (Croton et al., 2016a; Croton et al., 2016b). The sample of initial conditions
is divided up into two: The “Enomotia”4, which contains a selected sub-sample of 36 diverse
clusters (a reference one, relaxed and non-relaxed ones, different sizes and mass assembly histo-
ries and some resembling observations of the Hubble frontier fields), and the “Lochos”5, which
contains all 324 different initial conditions. Some of the regions selected even contain only
structures not bigger than galaxy groups: M < 1013M�. For a spread sheet covering some
basic properties of all these we refer to https://docs.google.com/spreadsheets/
d/1TSvNpkQEsIjgTylIMlSsDsIi2s-Ly-QaXQqpE_XfG2c/edit#gid=0.
Although the project has been kicked off already in 2016, the most time so far has been spent
in actually running all simulations, verifying the outputs and reducing the data. For example
one GADGETX snapshot took up originally about 1.8GB of storage, which could be reduced to
about 700MB. For each simulation 130 snapshots were generated, which in total comes down to
about 30TB just for the runs with this one code. The most time was actually not even spent with
the simulations themselves but with copying, reducing and archiving all the data. The Enomotia
runs are done for all codes, but all codes besides the two GADGET ones are still running part of
the Lochos.
Additionally, some of the Enomotia initial conditions were re-generated with 8 times higher
resolution, to also allow resolution studies. This amounts to a rather small dark matter particle
mass of 1.6 · 108h−1M�, which is equivalent to a 1h−1Gpc box with 76803 particles.

4Named after the smallest unit of the ancient Spartan army.
5Named after a big unit of the ancient Greece army.

https://docs.google.com/spreadsheets/d/1TSvNpkQEsIjgTylIMlSsDsIi2s-Ly-QaXQqpE_XfG2c/edit#gid=0
https://docs.google.com/spreadsheets/d/1TSvNpkQEsIjgTylIMlSsDsIi2s-Ly-QaXQqpE_XfG2c/edit#gid=0
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To validate the data and make comparable analyses especially with semi analytic models possi-
ble, the next step was the evaluation of different halo finder results. Now the Amiga Halo Finder
(AHF, see Gill, Knebe, and Gibson, 2004; Knollmann and Knebe, 2009) and VELOCIraptor
(Elahi, Thacker, and Widrow, 2011; Elahi et al., 2013, https://github.com/pelahi/
VELOCIraptor-STF) are used to generate information about structure and structure growth.
At this point we can only give very short insight into the projects currently spawning from these
data, as not even all data have been generated yet. First, some very general comparisons like the
previous papers will have to be of order, just to validate and improve the previous results. These
can be extended by the comparison with the semi-analytic models, looking for example at stellar
mass functions. The vastness of data provides us with the possibility for proper comparison to
observations by looking at statistics of cluster morphology and X-ray mock observations. Other
applications are for example to look into galaxy properties depending on their environment, in-
vestigate gas stripping and flows of cold gas. This list can go on and on and we will have to see
what happens next. But one thing is clear, the opportunities to make statements about physical
models rather independent of a numerical setting provided by these data are very promising.

https://github.com/pelahi/VELOCIraptor-STF
https://github.com/pelahi/VELOCIraptor-STF


Chapter X

Magnetic driven winds: Break up of a
galaxy

Science is nothing but perception.

– Plato

In this chapter we investigate the effects of a realistic circumgalactic medium (CGM) and the
presence of magnetic fields onto the evolution of a disk galaxy. We describe in detail the process
used to create the required initial conditions, which could now be done easier by using our tool
described in chapter IV. We simulate differently sized galaxies and compare the outcome due
a primordial magnetic field to those of a magnetic seeding models based on supernovae. This
chapter is based on a modified version of the paper draft of Steinwandel, Beck, Arth, Dolag,
Moster, Nielaba in prep. whose publication will be pursued in the near future.

X-0 Abstract

We present simulations of isolated disk galaxies in a realistic environment performed with the
highly parallelised Tree-SPMHD-Code GADGET-3. Our simulations include a spherical cir-
cumgalactic medium (CGM) surrounding the galactic disk, which is represented by a hot gas
halo. The CGM is motivated by observations and cosmological simulations. We present three
galactic models with different halo masses and two different seeding models for the magnetic
field. For each halo mass we perform a simulation without magnetic field and one run for each
magnetic field model. Thus, we get in total nine simulations with various spatial resolutions
and a wide range of halo masses. We are interested in the interaction between the CGM of our
galaxies, the inter stellar medium (ISM) of the galactic disk and the influence of the CGM on
the star formation rate of the galactic disk. In addition we show the structure and evolution of
the magnetic field in both, the galactic disk and the CGM and present results which underpin the
presence of a biconal magnetic driven outflow in our simulations.
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X-1 Introduction

Magnetic fields are a very important component of the Universe and are essential for describing
many processes in theoretical astrophysics correctly. The relevance of magnetic fields range
from the small scales in star formation and in the interstellar medium (ISM) over galaxies and
their circumgalactic medium (CGM) to galaxy-clusters and the large scale structure of the Uni-
verse. While there is a large amount of observational data when it comes to magnetic fields,
especially in the the field of galaxy formation and evolution (i.e. Hummel, 1986; Chyzy et al.,
2003; Chyzy et al., 2007; Beck, 2007) there are just a few simulations in the field of numerical
astrophysics which include detailed studies about the behaviour of magnetic fields, like Kotarba
et al., 2011, Pakmor and Springel, 2013, Beck et al., 2016 or Rieder and Teyssier, 2016.
In the case of galaxies the magnetic field becomes important for several reasons. On the one
hand the magnetic field acts as an additional pressure component, and thus it is required as a
correction of the equations of hydrodynamics, resulting in the well known equations of ideal
magneto-hydrodynamic. This means that if the magnetic field is large enough to reach a value
where it introduces a pressure which is comparable to the thermal pressure and therefore has
a non negligible effect on the dynamical evolution, it is necessary to include it in simulations.
Often this is not the case and pure hydrodynamical simulations are used to study the dynamics
of galactic disks arguing that magnetic fields are not that important for the galaxies dynamical
evolution (Beck, 2009).
Additionally, magnetic fields can be very important for star formation and the regularization of
cosmic rays and should not be excluded when these processes are taken into account.
Observationally there are a few methods to measure the magnetic field in galaxies. Brown et
al., 2007 investigate the magnetic field of the inner Milky Way using rotation measurements of
148 objects behind the galactic disk. Furthermore, magnetic fields of nearby galaxies can be
determined using the radio synchrotron emission of these objects. In this case the unpolarized
component of the magnetic field is important because it is needed to explain galactic dynamics
and magnetic driven outflows (Beck et al., 2016). Radio synchrotron emission is also used to
calculate the magnetic field strengths in nearby galaxies which leads to 20 − 30µG in the spi-
ral arms and to 50 − 100µG in the galactic centre, as shown in Beck et al., 2016. Robishaw,
2008 presented measurements of magnetic fields due to Zeeman-splitting emission in OH-Mega-
masers of five ultra luminous infrared galaxies leading to magnetic field strengths along the line
of sight between 0.5 and 18 mG. Beyond the observations of the magnetic fields in galactic disks
there are also observations of the magnetic fields of the CGM of galactic disks. Carretti et al.,
2013 present measurements of magnetized outflows towards the CGM of the Milky Way in two
giant lobes located in the north and south of the galactic centre with a magnetic field strength of
around 15 µG.
However, when it comes to simulations of isolated disk galaxies the CGM of the observed system
is typically neglected. Therefore, we present a new set of simulations of isolated disk galaxies
explicitly including the CGM of these galaxies. Recent observations of the Milky Way’s CGM
(Miller and Bregman, 2013) indicate that the Milky-Ways CGM can be described using a β-
powerlaw (Cavaliere and Fusco-Femiano, 1978) for its density distribution. The β-powerlaw is
quite popular in studies of globular clusters (Plummer, 1911) and cosmological simulations of
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galaxy-clusters (i.e Donnert, 2014). The CGM is typically neglected in simulations of isolated
disk galaxies to reduce the number of particles and save the computational effort in this simula-
tions. Furthermore, when it comes to pure dynamics the CGM is merely irrelevant. However, an
obvious reason for including the CGM is that it can be found in observations and it helps to get a
more realistic model for an isolated disk galaxy. Furthermore, by including the CGM it is possi-
ble to fix some severe problems in this kind of simulation. Typically, simulations of isolated disk
galaxies are performed by centring the galactic disk in a box and let the system evolve with time.
This results in unrealistic boundary conditions at the edge of the disk, where the density lowers
from a typical density value in a galactic disk to zero in an instant. The presence of the CGM
in such a simulation leads to a more realistic scenario and we are able to study the interaction
between the galactic disk and its CGM directly from the simulation. In the SPMHD formalism
the magnetic field is a property of the gas particles only. Therefore, one needs a carrier for the
magnetic field, which gives further justification for the presence of the CGM in our simulations.
As mentioned above there are not many simulations of disk galaxies in isolation. Wang and
Abel, 2009 investigate the magnetic field in isolated disk galaxies without star formation using
the grid Code ENZO (Bryan and Norman, 1997, O’Shea et al., 2004). Dubois and Teyssier, 2010
studied the magnetic field of dwarf galaxies with a closer look on winds driven by stars using
the grid Code RAMSES (Teyssier, 2002). Pakmor and Springel, 2013 and Rieder and Teyssier,
2016 present studies of magnetic fields for isolated galaxy formation by collapsing a giant gas
halo in a dark matter potential. While Pakmor and Springel, 2013 investigates general properties
of the magnetic field, Rieder and Teyssier, 2016 points out the importance of feedback. Another
detailed study of magnetic fields in isolated disks is presented in Butsky et al., 2017 where they
find a small scale turbulent dynamo of the magnetic field. The same behaviour can be found in
cosmological zoom simulations presented in Pakmor et al., 2017.
There are also studies of the magnetic field evolution using particle methods. Kotarba et al.,
2009 investigates the magnetic field in an isolated disk galaxy using GADGET-3. In Kotarba et
al., 2010, Kotarba et al., 2011 as well as in Geng et al., 2012a, Geng et al., 2012b GADGET-3 is
used to study the magnetic field in galaxy-mergers. Beck et al., 2016 is looking to the magnetic
field structure of the Milky Way in more detail.
In this paper we aim to put the simulations of isolated disk galaxies to the edge in terms of res-
olution with the appropriate star formation models of GADGET-3 and investigate the behaviour
if we include a well shaped CGM in our simulations. Furthermore, we can look into the struc-
ture of the magnetic field in the disk and the CGM as well as the interaction of the CGM and
the galactic disk. On top of that we will investigate the ability of the magnetic field to drive an
effective wind in our simulations.

X-2 Simulation Method

The simulations we present in this paper were performed using the highly parallelised Tree-SPH-
Code GADGET-3, the developer version of the public available GADGET-2 code (Springel,
2005a). In our simulations we use a modern implementation of SPH, as presented in Beck et
al., 2016. This SPH formulation includes various improvements like higher order SPH-Kernels
described by Dehnen and Aly, 2012, a time step limiter, time dependent artificial viscosity and
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a new model for time dependent artificial conduction. GADGET-3 further includes magnetic
fields and magnetic dissipation (Dolag and Stasyszyn, 2009). We also include star formation,
cooling, supernova-feedback and metals following Springel and Hernquist, 2003. Furthermore,
one of our models for the magnetic field couples the seed rate of the magnetic field directly
to the supernova rate within the ISM, which is the model presented in Beck et al., 2013a. In
this section we summarize the used SPH formalism in a very compact way and introduce the
physical models we use.

X-2.1 Kernel function and density estimate

We use the density-entropy formulation of SPH, which means, that we smooth the density dis-
tribution in the way

ρi =
∑
j

mjWij(xij , hi), (X-1)

where hi is the smoothing-length. The sum in equation X-1 is performed over the neighbouring
particles. Wij(xij , hi) is the smoothing kernel with the property

Wij(xij , hi) =
1

h3
w(q), (X-2)

with q = |xij | /hi. In our simulations we use the Wendland C4 function for w(q), with 200
neighbouring particles. The function w(q) is given by

w(q) =
495

32π
(1− q)6(1 + 6q +

35

3
q2), (X-3)

for 0 < q < 1. For q > 1 we set w(q) to zero. We are aware that the Wendland C6 Kernel
as presented by Dehnen and Aly, 2012 gives an even better density estimate as the C4 Kernel.
However, the C6 Kernel needs around 300 particles to work at its optimum. This results in a
higher computational effort for the SPH loop. Because our simulations are performed with very
high particle numbers, compared to other simulations of isolated disk galaxies, we suggest that
the Wendland C4 is sufficient enough when it comes to the estimation of the SPH-density. The
overage of CPU-time can then be used to increase the mass resolution of our simulations.

X-2.2 SPH and SPMHD formulation

It is possible to derive the equation of motion in both, the hydrodynamical and the magnetohy-
drodynamical case from a discrete Lagrangian, via the principle of least action. This has been
presented in Price, 2012b, resulting in the SPH or SPMHD formulation. Because we need both
formulations in our simulations, we shortly present the equation of motion in both cases. The
SPH-formulation of the equation of motion (EOM) is given by
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dvi
dt

= −
∑
j

mj

[
f co
i

Pj
ρ2
j

∂Wij(hi)

∂ri
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j

∂Wij(hj)

∂ri

]
. (X-4)

with
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j =

[
1 +

hj
3ρj

∂ρj
∂hj

]−1

. (X-5)

The formulation of equation X-4 conserves energy, momentum and angular momentum per
construction. For SPMHD, the EOM takes the form

dvi
dt

=−
∑
j

[
Pi + 1

2µ0
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i

Ωiρ2
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Ωjρ2
j

]
. (X-6)

We note, that the magnetic field influences the EOM in two ways. At first the presence of the
magnetic field generates a pressure alongside the thermal pressure of the fluid, which scales with
B2. We note further, that there is a second term which is introduced for numerical stability of
the SPMHD formulation. In general, the second term is needed to fulfil the∇·B = 0 constraint.
For SPMHD energy and linear momentum are conserved down to machine precision. However,
angular momentum is violated due to the fact that the second term in equation X-6 is anisotropic
and therefore not invariant under rotation of the system.

X-2.3 Advanced SPH Methods

We use time dependent artificial viscosity and time dependent artificial conductivity as described
in detail in Beck et al., 2016 to control discontinuities and density jumps much better. We note
that in the case of artificial conduction we need a gravity limiter, because the rate of change of
the artificial conductivity is determined using the gradient of the internal energy. In our case
the pressure gradient is dominated by gravity which leads to unwanted conduction. The details
of this procedure are described in Beck et al., 2016. Furthermore, we use a particle wake-up
scheme, which we need because of the adaptive time-stepping-algorithm in GADGET-3. In this
algorithm particles are split into active and inactive particles. We integrate the hydrodynamical
quantities of the fluid for the active particles, while the inactive particles sleep and wait for their
larger individual time step. If a particle is moving with high velocity, it may happen, that it pene-
trates the region of inactive particles. These particles need to wake up and interact with the high
velocity particle. This procedure is similar to the time-step-limiter of Dalla Vecchia and Schaye,
2012. Furthermore, we need to mention, that artificial-viscosity and artificial-conductivity fix
the above mentioned problems in terms of shock capturing and fluid mixing, but violate the con-
servation of angular momentum. We conserve angular momentum up to the artificial viscosity
and conductivity terms.
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X-2.4 Cooling, Star formation and Supernova Seeding

We briefly describe the cooling, star formation and the supernova-seeding approach that is used
in a subset of our simulations. We include cooling as described in Katz, Weinberg, and Hern-
quist, 1996. In this framework, cooling is mainly driven due to collisional excitation of H0

and He+, collisional ionization of H0, He0 and He+, recombination of H+, He+ and He++,
Di-electronic recombination ofHe+ and free-free emission (thermal Bremsstrahlung emission).
The cooling rates are then calculated via the assumption of ionization equilibrium and optically
thin gas.
We use the stochastical star formation approach, presented in Springel and Hernquist, 2003.
In this model stars are formed in a way that they resemble the Kennicut-Schmidt law of star
formation-density. In the simulations where we calculate the magnetic field but don’t use a pri-
mordial constant magnetic field, we use the supernova seeding presented in Beck et al., 2013b.

X-3 Initial conditions

At first we want to discuss the initial conditions that represent our setup. Our setup contains an
isolated disk galaxy, surrounded by a spherical CGM.
For the setup of the disk, we use the method described in Hernquist, 1993. A more detailed doc-
umentation can be found in Springel and White, 1999, Springel, 2000 and Springel, Di Matteo,
and Hernquist, 2005.
In this method we construct a model for a spiral disk galaxy, consisting out of a dark matter halo,
a bulge, a stellar and a gas disk. The dark matter halo and the bulge are spherical and follow the
density shape of a Hernquist-profile. The stellar and the gas disk follow surface-density-profiles
known from observations. The surrounding CGM is a spherical gas halo, constructed using a
β-model (Cavaliere and Fusco-Femiano, 1978) for the density distribution. In this paper we
prepare the initial conditions for three galaxies with 1010M�, 1011M� and 1012M�. These rep-
resent a dwarf galaxy, a middle size shaped galaxy and a Milky Way-like galaxy. We introduce
the abbreviations LWM for the 1010M� galaxy, MWM for the 1011M� galaxy and HWM for the
1012M� galaxy without magnetic fields. Furthermore, we perform runs with two different mag-
netic field models. The first model uses a constant magnetic seed field in the x-direction. For
this magnetic field model we introduce the abbreviations LBX, MBX and HBX respectively. The
second magnetic field model is the supernova-seeding model presented in Beck et al., 2013a.
For this model we introduce the abbreviations LBS, MBS and HBS respectively. The models
with the same mass are totally equal in terms of the general physical properties, but they are
divided by the implementation of the magnetic field.
In table X.1 we present the particle numbers used in our models and list the mass resolution as
well as the gravitational softening lengths, which we calculated via the recursive formula:

εnew = εold ·
[
(Nold/Nnew) ·Mnew

200 /M
old
200)

]1/3
(X-7)
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Particle Numbers
LMG MMG HMG

Gas disk Ngd [106] 0.8 1.0 1.2
Gas halo Ngh [106] 5.0 6.0 7.0
Stellar disk Nsd [106] 3.2 4.0 4.8
Stellar bulge Nb [106] 1.3 1.6 2.0
Dark matter Ndm [106] 4.6 5.7 6.9

Mass resolution
LMG MMG HMG

Gas particles mgas [M�] 72 510 4800
Star particles mstar [M�] 72 510 4800
Dark matter mdm [M�] 1440 10200 96000

Gravitational softening
LMG MMG HMG

Gas particles εgas [pc] 20 20 20
Star particles εstar [pc] 20 20 20
Dark matter εdm [pc] 83 83 83

Table X.1: Number of particles mass resolution and gravitational softening lengths.

X-3.1 Dark matter halo

The dark matter halo is described using a Hernquist-profile for its density distribution (Hernquist,
1993). The radial density profile ρdm(r) of the halo then follows:

ρdm(r) =
Mdm

2π

a

r(r + a)3
, (X-8)

where Mdm is the mass of the dark matter halo. The parameter a describes the relation between
the halo concentration CC and the scale length rs of the well known Navarro-Frenk-White-
profile (NFW-profile, see Navarro, Frenk, and White, 1997). We use the Hernquist-profile be-
cause it declines faster in its outer regions than the NFW profile, which makes any artificial
truncation unnecessary (Springel, Di Matteo, and Hernquist, 2005).

X-3.2 Bulge, stellar and gaseous disk

The stellar disk and the stellar bulge of the galaxy is modelled by collision lessN -body particles
with an exponential stellar disk and a stellar bulge following a Hernquist-profile (Springel, Di
Matteo, and Hernquist, 2005). Additionally, a gaseous disk is modelled by SPH particles. The
density of the stellar bulge is then given by:

ρb(r) =
Mb

2π

lb
r(r + lb)3

, (X-9)

using the scale length lb of the bulge as free parameter.
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The mass of the bulge is given by Mb = mbM200, where mb is the dimensionless bulge mass
fraction.
The exponential surface densities of the stellar and the gaseous disk are given by Σ? and Σgas:

Σ? =
M?

2πl2d
· exp

(
− r
ld

)
, (X-10)

Σgas =
Mgas

2πl2d
· exp

(
− r
ld

)
, (X-11)

using the scale length ld of the disk. The mass of the disk is given by Md = (M? + Mgas) =
mdM200, with the dimensionless disk mass fraction md. We take a fraction f of the disks mass
to compose the gaseous disk, which consists of SPH-particles. The remaining particles of the
disk are collision less N-body particles of stellar type. The mass which does not belong to the
bulge or to the disk can be assigned to the dark matter halo. So the mass of the dark matter
halo is given by Mdm = M200 − (mb +md) ·M200. Finally, the system is given an angular
momentum through the spin parameter λ. From this spin parameter it is possible to calculate the
total angular momentum as described in Mo, Mao, and White, 1998 via:

J200 = λ ·G
1
2M

3
2

200 · r
1
2
200

(
2

fCC

)
(X-12)

We can now calculate the angular momentum of the galactic disk, using the disk spin fraction,
which is typically set to exactly the same value, we adopt for the disk mass fraction. In this
case one could calculate the angular momentum of the galactic disk, by multiplying the total
angular momentum of the system given by J200 with the disk spin fraction jd, thus the equation
Jd = jd · J200 holds. The factor fCC can be calculated following Mo, Mao, and White, 1998
with:

fCC =
CC

2

1− 1/(1 + CC)2 − 2ln(1 + CC)/(1 + CC)

[CC/(1 + CC)− ln(1 + CC)]2
(X-13)

All parameters we discussed so far are listed in table X.2. These parameters characterize our
galactic system completely.

X-3.3 Initial values for the multi phase model of star formation

In our simulations we use the initial values for the multi phase model of star formation, given
in table X.3. The model itself is shortly described in section X-2.4. For a closer look into the
model we recommend Springel and Hernquist, 2003 where the details of the model are explained
in more details. We calibrate the star formation model using a Schmidt-Kennicut-plot for each
galactic system we present and obtain the values presented in table X.3 which are in accordance
with Springel and Hernquist, 2003.
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Disk Parameters
HMG MMG LMG

Total mass in [1010M�] M200 100 10 1
Virial velocity in [km/s] v200 145 67 31
Virial radius in [kpc/h] r200 145 67 31

Halo concentration CC 12 12 12
Spin parameter λ 0.033 0.033 0.033

Disk mass fraction md 0.041 0.2 0.067
Bulge mass fraction mb 0.014 0.1 0.034
Disk spin fraction jd 0.041 0.2 0.067

Gas fraction f 0.2 0.2 0.2
Disk scale length in [kpc/h] ld 2.1 2.1 2.1

Disk height z0 0.2 0.2 0.2
Bulge size lb 0.2 0.2 0.2

Table X.2: Parameters for the simulated disk galaxies.

Multiphase model parameters
Gas consumption time-scale in [Gyr] tMP 2.1
Mass fraction of massive stars βMP 0.1
Evaporation parameter A0 1000
Effective supernova temperature in [K] TSN 1 · 108

Temperature of cold clouds in [K] TCC 1000

Table X.3: Parameters for the multiphase model.
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X-3.4 Circumgalactic medium

We assume a radial symmetric density distribution for the medium surrounding the galaxy. We
use the well known beta-model (Cavaliere and Fusco-Femiano, 1978) as density distribution.
This choice is motivated by observations (see e.g. Croston et al., 2008). The density distribution
in the beta-model takes the form:

ρgas = ρ0

(
1 +

r2

r2
c

)− 3
2
β

(X-14)

For reasons of simplification we set β = 2
3 (Mastropietro and Burkert, 2008) which is under-

pinned by observations (Miller and Bregman, 2013), where a value for β has been found, close
to 2

3 . We choose the central gas density ρ0 to be 5 · 10−26g/cm3 , motivated by the electron
density found through cosmological simulations (Dolag et al., 2015), as well as in observations
of milky way’s hot gas halo (Miller and Bregman, 2013). rc is called the core radius of our gas
halo which is chosen to be rc = 0.3kpc, also motivated by both observations (Miller and Breg-
man, 2013) and simulations (Donnert, 2014). The value of rc conforms quite well with 1

40rs

where rs is again the scale length of the corresponding NFW-halo, set by rs = r200/CC. The
setting for β makes it very easy to affiliate the mass distribution for our gas halo in a analytic
model. Through integration over the density distribution, given by equation X-14 one finds the
following form for the mass distribution in the presented analytic model inside radius r.

Mgas(< r) = 4πr3
cρ0

[
r

rc
− arctan

(
r

rc

)]
. (X-15)

At first we want to sample the gas density for our CGM. Note, that we want the density distri-
bution as close as possible to equilibrium. Therefore, we have decided to sample the particle
positions of the CGM using a normalized glass distribution. For the construction of the glass
distribution we use the Wendland C4 kernel to be consistent with our simulations of the disk
galaxies. Therefore, we introduce the variable q as follows

qgas =
Mgas(< rnew)

Mgas
(X-16)

This means, that we take the mass distribution and normalize it by the total gas mass we want to
have in the CGM. This leads to a value of q between zero and one. Therefore, we need to solve
the following equation to sample the particle distribution.

4πr3
cρ0

Mgas

[
r

rc
− arctan

(
r

rc

)]
−q= 0. (X-17)

As stated above we want q to be connected to a normalized glass distribution. Now, we take this
glass distribution and transform its components to spherical coordinates r′, θ, φ. As we can see
from equation X-15, the mass distribution of the β-profile depends only on the radius coordinate.
Thus we identify the component r′ with q and solve equation X-17 with the Newton-Raphson-
Method for finding roots i.e. we search r(q) which full fills equation X-17. Doing this we get a
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new radius component, with a slightly different value as r′, representing the density distribution
of equation X-14. Of course this procedure damages the glassiness of our particle distribution,
but the error turns out to be quite small within our simulations. The angular coordinates stay
unchanged and we can perform the transformation from spherical coordinates back to Cartesian
coordinates with the new radius coordinate.
Alternatively q could be rather chosen as a random number or from a cubic or hexagonal lattice.
In case of random numbers, we are dependent of the random number generator we use. How-
ever, in SPH simulations random numbers lead to a noisy density distribution. Furthermore, the
particles do not have any correlation apart from the random number algorithm we plug in and
we do not have any chance to be close to an equilibrium condition. While we could fix the equi-
librium condition by choosing q as a component of a regular grid, we can not fix the noise in the
density distribution at the same quality as in a (kernel dependent) glass distribution. Therefore,
we choose the glass distribution to be the optimal choice for our purpose.
In the end, we have a particle distribution for the CGM which is balanced quite well by gravity
(because of the glass) and by taking hydrodynamics into account for the glass we reduced the
noise of the particle distribution. But we have not balanced the gas halo in the present dark
matter profile of the galactic disk. The condition for hydrostatic equilibrium between the dark
matter halo of the galaxy and the CGM holds as follows

1

ρgas

dPgas

dr
= −GMtotal(< r)

r2
(X-18)

Therefore, we can calculate the temperature profile of the CGM by integrating the equilibrium
condition using the ideal equation of state for a one atomic gas.

T (r) =
µmp

kB

G

ρgas

∫ Rmax

r

ρgas(t)

t2
M200(< t)dt (X-19)

which leads to:

T (r) = G
µmp

kB

(
1 +

r2

r2
c

)
[MdmF0(r) + 4πr3

cρ0F1(r)]. (X-20)

The temperature profile consists of two parts. The first part comes from the dark matter halo and
the second part is the influence of the CGM itself. The functions F0(r) and F1(r) are given via

F0(r) =
rc

a2 + r2
c

[
π

2
(a2 − r2

c) + rc
a2 + r2

c

a+ r

−(a2 − r2
c) arctan

(
r

rc

)
− rca ln

(
(a+ r)2

r2 + rc

)] (X-21)

and

F1(r) =
π2

8rc
− arctan2(r/rc)

2rc
− arctan(r/rc)

r
. (X-22)

The implementation of the gas halo is in principle the same as shown in Donnert, 2014 for
simulations of the cluster collision in El-Gordo.
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From the observational side it is useful to calculate a virial temperature for the gas halo Tc =
T (rc). Which we can write it down as:

Tc =
2Gµmp

kB

[
Mdm

r2
c

(a2 + r2
c)
·
(
π

4r2
c

(a2 − r2
c) +

a2 + r2
c

a+ rc

−aln

(
(a+ rc)

2

2r2
c

))
+ π2r2

cρ0

(
3π

8
− 1

)] (X-23)

In table X.4 we summarize the values which are most important to construct a realistic gas
halo for a Milky Way-like galaxy as we recommend them. These values are chosen by using
observational data from Miller and Bregman, 2013.
Furthermore, the gas halo has to be constructed in a way to ensure that we have a baryon-fraction
between 12 and 17 percent in the whole galaxy.

Gas halo parameters
LMG MMG HMG

Mass in [1010M�] Mgashalo 3.8 3.8 3.8
Temperature in [K] Tvir 106 105 104

Settings for the β-model
Density in [g/cm3] ρ0 5 · 10−26 5 · 10−26 5 · 10−26

Core radius in [kpc] rc 0.6 0.6 0.6
Exponent β 2

3
2
3

2
3

Table X.4: Parameters for the gas halo.

X-3.5 Combination of the galactic disk with the CGM

So far, we have the initial conditions for the galactic disk and the CGM separately. Now we
combine them in a way, that keeps the initial conditions as close to equilibrium as possible.
Furthermore, we do not want any overlap between the particles of the galactic disk and the
CGM to prevent numerical instability and a flawed density estimate. Therefore, we implement
a procedure to cut out the central part of the CGM and place the disk in the resulting gap. An
obvious choice would be to cut out a cylinder, with the radius of the disk and the height of the
disk height. This procedure has the advantage, that it is very simple. However, this method
results in a relatively large gap between the disk and the CGM. Luckily, the density profile of
the galactic disk and the CGM are slightly different and we can use this for selecting the the part
of the CGM we want to take out, by introducing a quality condition for the density in the overlap
region of galactic disk and CGM. To do so, we bring the SPH data of the galactic disk on a grid
and compare the density of the each grid cell to the density of the CGM. To minimise the gap
between disk and gas halo, we remove the particles of the CGM if their density is ten percent
different from the grid cell they are related to. The grid we use for this purpose has a spatial
resolution of 203 = 8000 grid cells. Further note, that we can cut out the CGMs particles better,
if we use a higher grid resolution (higher computational cost) or if we choose a lower deviation
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from the CGM densities to the grid densities, which means that we increase the sensitivity of
the method. The values for the grid and the quality condition are motivated by closing the gap
between galactic disk and CGM. But we do not want the gap to be too small to ensure not to
have an overlap between galactic disk and CGM which could destabilize the whole system.

X-4 Results

In this section we present and discuss the results of our various simulations, evolved without
magnetic field, the supernova seeding introduced in section X-2 and an idealized aligned mag-
netic field in x-direction. We present studies of the disk morphology, the star formation rate,
the growth rate of the magnetic fields, the magnetic field structure and the interaction between
the galactic disk and the CGM. Furthermore, we test the ability of the magnetic field to be the
perpetrator of a galactic wind within our simulations.

X-4.1 Morphology of the galactic disk and the magnetic field
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Figure X.1: The face on view of the projected gas density (top left) and the projected magnetic
field (top right) for the model HBS. The bottom row shows the projected gas density (bottom
left) and the projected magnetic field strength (bottom right) for the edge on view on the galactic
disk. The plot is snapshot for t = 1Gyr.

We start with a closer look onto the morphology of our galactic model, regarding the morphol-
ogy of the gas density, as well as the morphology of the magnetic field strength. We present
both of our magnetic field models and show differences and similarities, especially in terms of
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Figure X.2: Same as figure X.1 but for t = 2Gyr.

the magnetic field morphology within the different approaches. Figure X.1 and figure X.2 show
the projected gas density and the projected magnetic field strength for the model HBS, for two
different points in time. All maps, except otherwise mentioned are produced using SPLASH
Price, 2007. In the top left panel of figure X.1 we can see the face on view of the model HBS
to an early point of our simulation (t = 1 Gyr). Up to this point of time we can present a nice
spiral structure within the projected gas density. Taking a closer look to the bottom left panel
we see that the system evolved to a thin disk. Furthermore, we can see the presence of the CGM
which surrounds the galactic disk very well in the bottom left panel. On the right hand side of
figure X.1 we present the projected magnetic field strength face on (top right of figure X.1) and
edge on (bottom right of figure X.1). So far we seeded a certain amount of magnetic dipoles
through the supernova-seeding model we use. Looking to the top right panel we see that there
are two areas with a large magnetic field strength. The first one is in the centre of our galactic
disk. In this case the magnetic field amplifies due to the large star formation rate in the centre
of the galaxy. The gas density there is larger (top left of figure X.1) which results in a large star
formation rate which then leads to an increased amount of supernova events in the centre of the
galaxy. However, the amplification process of the magnetic field in the centre of the galaxy is
relatively weak, because the galactic rotation curve in the centre is close to zero and the am-
plification of the magnetic field is proportional to the rotation speed of the galaxy in the first
place. In contrast, at the edge of the galactic disk we find a very large rotation speed due to the
differential rotation of the disk. This explains, the strong magnetic field in the outer parts of the
galaxy, although the star formation rate is very low in this region.
In the edge on view of the gas density and the magnetic field we can see the thin disk. In case of
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the magnetic field (right bottom panel of figure X.1) we can see a thicker disk than in the case
of the gas density (bottom left of figure X.1)
figure X.2 presents the same density and magnetic field strength maps as figure X.1, but for a
later point in time (t = 2 Gyr). While the differences in the projected gas density in both the
face on view and the edge on view are relatively small, the changes in the morphology of the
magnetic field are stunning. At first we notice in the face on view of the magnetic field strength
(top right of figure X.2), that any spiral structure the disk evolves in the magnetic field is hidden
by projection effects and will be investigated later. We find a nice structure at the edge on view of
the galactic disk (bottom right panel of figure X.2): an impressive biconal magnetic tube. While
the magnetic field is brought into the ISM by the dipole seeding of the supernovae, the magnetic
field is amplified due to the rotation of the disk. This leads to a larger magnetic pressure within
the disk. At a certain point of time the magnetic pressure in the disk becomes strong enough to
let the field break up perpendicularly to the disk in z-direction.
Another interesting fact that we find is shown in the bottom left panel of figure X.2. While the
edge on view of the disk itself has not changed much, the structure of the surrounding CGM
looks completely different. We can see the indication of a X-shaped or H-shaped structure of the
CGM, which is known from investigations of biconal winds in galactic disks, driven by AGN
or star burst feedback, both features we did not include in our simulations. This becomes even
more clear in the density slices we present in figure X.5, where we can see the X-shape of the
surrounding halo gas much better than in projection. We note that we find a biconal outflow of
the magnetic field. We discuss the ability of the magnetic field as a perpetrator of a galactic wind
in more detail in section X-4.5. Note that we can so far reproduce all indicators, known from
AGN and starburst driven winds just with the magnetic field within our simulations.
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Figure X.3: Same as figure X.1 but with constant initial magnetic field.
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Figure X.4: Same as figure X.3 but for t = 2Gyr.

In figure X.3 and figure X.4 we present the exact same properties at the same points in time and
the findings are quite the similar to the HBS case using the model HBX with an idealized initial
magnetic field uniformly aligned in x-direction. At first we see that the galactic disk evolves
a nice spiral structure in the gas density. The magnetic field is in this case amplified in a ring
structure, because of the high rotation speed at the disks edge. In this case the magnetic field in
the centre of the disk is weaker because there is nearly no rotation and in this model we do not
seed magnetic dipoles with supernovae, thus we see not such a high correlation between the star
formation rate and the magnetic field in the first place.
Finally, we note that such strong magnetic fields which are consistent with observations are not
unproblematic in terms of the disks stability and the structure of magnetic field in the galactic
disk. We need to be careful in this regime and need to proof that they do not destroy the morpho-
logical structure of the galactic disk. From the projected gas densities in figure X.1 to figure X.4,
we can assume that the spiral disk in the gas density is relatively weakly affected by the strong
magnetic fields. But we also want to keep the morphological structure of the magnetic field itself
alive. Therefore, we will check in section X-4.6 if there is any structure left in the magnetic field
in the disk or if the disks magnetic field is dominated by turbulence in the presence of a strong
magnetic field.

X-4.2 Star formation rate within the different models

Now, we discuss the star formation rate for our galaxies as shown in figure X.6 for various
galactic models as a function of time. The left panel of figure X.6 represents the models HWM,
HBS and HBX. The centred panel shows the star formation rate for the models MWM, MBS
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Figure X.5: Density cross section slice for the models HBS (left) and HBX (right). We show
one of the most beautiful features within our simulations the observed X-shape in both of our
magnetic field models.
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Figure X.6: Star formation rate for all models we prepared for our study. The figure on the
left presents the star formation rate for the models HWM (black line), HBS (red line) and HBX
(green line). The centre one presents the star formation rate for the models HWM (black line),
HBS (red line) and MBX (green line). The right one presents the star formation rate for the
models LWM (black line), LBS (red line) and LBX (green line).
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and MBX. In the right panel we present the star formation rate for the models LWM, LBS,
LBX. In each simulation the star formation peaks shortly after the start of the simulation. Every
simulation of an isolated disk galaxy suffers from this behaviour. This is due to the fact, that in
such simulations star formation starts out of a non-equilibrium state. There are no supernovae
which could heat the gas. This means cooling dominates until the first supernovas explode. After
that the star formation can relax into an equilibrium with the heating rate of the supernovae.
After the peak, we notice that star formation drops and we can see from the simulations without
magnetic field (black lines in figure X.6), that the star formation drops to an almost constant
value. This is an expected behaviour, because it seems that the gas disks of the galaxies are
feeding on gas out of the CGM, to compensate the mass loss due to the star formation in the
disk, which actually keeps the star formation rate constant.
Furthermore, one can see by looking to the star formation rates of the models with magnetic
field, that star formation is quenched at a certain point in time. Because this appears only in
the simulations with magnetic field, we can assume that drop of star formation is caused by the
additional magnetic pressure component. Due to the rotation of the galactic disk, the magnetic
pressure rises until the pressure is high enough to move a certain amount of gas out of the disk.
Therefore, we have a lower total gas reservoir in the disk and for that reason star formation is
turned off. Further we note, that this behaviour is also a strong indicator for a magnetic driven
outflow within our set of simulations.

X-4.3 Amplification of the magnetic field

Figure X.7: Magnetic field strength for the models including magnetic fields. The figure on the
left presents the magnetic field strength for the models HBS (red line) and HBX (green line).
The centre one presents the magnetic field strength of the models HBS (red line) and MBX
(green line). The right one shows the magnetic field strength for the models LBS (red line) and
LBX (green line). We split up the contribution from the disk (solid lines) and the CGM (dashed
lines).

A very important part when it comes to the simulations of disk galaxies in SPMHD, is to repro-
duce the correct magnetic field strengths in the disk, known from observations. There are many
observations of magnetic fields in galactic disks (see e.g. Beck, 2008). These show magnetic
fields in the disks ranges from 10µG between the spiral arms up to 50µG in the spiral arms.
We present the growth rate of the magnetic field within our models in figure X.7. The red and
green solid lines represent the magnetic field strength in the galactic disk, in the models with
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supernova-seeding (red) and a constant magnetic seed-field (green). The dashed lines represent
the magnetic field strength in the CGM respectively. The left panel of figure X.7 shows the
magnetic field strengths for the models HBS and HBX. While the initial magnetic field in the
models HBS is equal to zero over the whole simulation domain, we set the initial magnetic field
for HBX to 10−9G in the disk and to 10−12G in the CGM. A drop of the magnetic field at the
edge of the disk from a finite value to zero would be non-physical. Thus, we decided to give the
CGM an initial magnetic field. Of course this also has an edge but any effects from that travel
slowly enough towards the galaxy that we do not need to concern us with them. Regarding the
left panel of figure X.7 we notice, that in the beginning of the simulation the magnetic field in
the disk grows exponentially in both models. This is expected from dynamo-theory. In galax-
ies there operate in general two amplification processes. On the one hand there is the turbulent
small scale dynamo and on the other hand there is the mean-field α-ω-dynamo. In the following
argumentation we point out which dynamo is dominating in which regime. Both dynamos can
lead to either exponential or linear growth of the magnetic field. In case of the turbulent small
scale dynamo the amplification of the magnetic field comes from the turbulent motion in the
ISM as long as we can neglect the pressure caused by the magnetic field itself. Thus the dynamo
operates in the kinetic regime, as stated by Pakmor et al., 2017. The magnetic energy density
rises exponentially until equilibrium with the kinetic energy density is reached. At this point the
magnetic energy can be transported to the large scales due to an inverse energy cascade. In this
regime the small scale dynamo is only able to follow linear amplification as stated in Federrath,
2016. In case of the α-ω-dynamo we argue using the differential rotation and the α-effect (small
scale vertical motion) in the galactic disk itself. This effect can lead to both exponential and
linear growth of the magnetic field. At this point it is unclear which amplification process is
favoured in our simulations.
In the CGM there is nearly no growth of the magnetic field visible. In the case of model HBX
for small times there is a small amplification of the magnetic field in the beginning, because of
the none zero magnetic field in the CGM in this model. But the amplification in this case is
minimal and as expected from dynamo-theory, we can see a small exponential growth. Note,
that there is no relevant magnetic field in the CGM in the first 1.6 Gyr of the simulation in case
of the high mass galaxy. However, at the time of around 1.7 Gyr we see a jump of the magnetic
field strength in the CGM in both magnetic field models about several orders of magnitude fol-
lowed by an oscillatory pattern hinting maybe towards periodic outbursts. In case of the middle
mass galaxy (middle panel) the outflow and therefore magnetisation of the halo sets in later at
around 2.7 Gyr while the low mass galaxies (right panel) shows drastically different behaviour
for the two magnetic field models. Magnetisation of the halo happens at different points in time
and also the magnetic field strength in the disk evolves quite differently. In contrast, there is no
observable difference in the behaviour of the magnetic field strength in the CGM within the two
models for the magnetic field for the high and middle mass galaxy. This underpins the fact, that
the observed magnetic field within our simulations depends mainly on the dynamical structure
of the galaxy and is not dominated by the initial conditions we use for the magnetic field.
To judge on the dominance of magnetic field amplification processes we take a look at the pow-
erspectrum of the magnetic field, which is shown for both magnetic field models in figure X.8.
We obtain these powerspectrum using an appropriate binning for SPH-data on a regular grid
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Figure X.8: Magnetic powerspectra for the models HBS (left) and HBX (right). Both power-
spectra indicate, that the power of the magnetic field follows a similar structure, independent
of the magnetic field model we favour in our simulations. The magnetic field is amplified by
turbulent motion on small scales and is transported to large scales over a inverse cascade. This
behaviour is known as Kazantsev spectrum (Kazantsev, Ruzmaikin, and Solokov D. D., 1985)
and is an indicator for a small scale turbulent dynamo, resulting in an increase of the power
P (k) ∝ k3/2 on large scales. The small scale dynamo stops for larger times due to the large
magnetic field and then we have an Iroshnikov spectrum (Iroshnikov, 1963) with P (k) ∝ k−3/2.

with the same kernel we used within our simulations using the tool SPHMapper (Roettgers and
Arth, 2018). Because the binning and the following calculation of the powerspectra are quite
expensive when it comes to computational power, we just show the powerspectra for the models
HBS and HBX.
The top panel of figure X.8 shows the powerspectrum for five different points in time in the
case of the model HBS. The lower panel of figure X.8 presents the powerspectra of the same
points in time for the models HBS field. We can see that the power of the magnetic field is much
more smooth in the case of the model HBS, than in the case of the model HBX. Regardless, we
find strong evidence for a small scale turbulent dynamo for both magnetic field models. From
dynamo-theory we expect a powerspectrum P (k) ∝ k3/2 in that case which we can see in both
plots very clearly. Especially in the beginning of the simulation, when the equilibrium state be-
tween the magnetic and the kinetic energy is not reached yet. The magnetic field is amplified by
turbulent motion on on the small scales and is transported to the large scales by an inverse energy
cascade, as predicted by dynamo-theory. We note, that the powerspectrum on the large scales is
fully consistent with a Kazantsev spectrum (Kazantsev, Ruzmaikin, and Solokov D. D., 1985)
on the large scales, known from a turbulent small scale dynamo. This is also consistent with the
findings of other simulations of isolated disk galaxies (Butsky et al., 2017; Rieder and Teyssier,
2016; Rieder and Teyssier, 2017a), as well as cosmological zoom-in simulations (Pakmor et al.,
2017; Rieder and Teyssier, 2017b). Interestingly, at later times we do not see the Kazantsev
spectrum on the large scales any more. This is an indicator, that the amplification process is
not dominated by the small scale dynamo at later times any more. We state, that the magnetic
powerspectrum then rather follows an Iroshnikov spectrum for strong magnetic fields (Irosh-
nikov, 1963). Examining this behaviour, we think, that the small scale dynamo is turned off for
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the later times due to the strong, dominating magnetic field in the galaxy. This is in agreement
with the behaviour observed in figure X.7 where we see an exponential growth in the beginning,
which becomes linear for the later times. The combination of the Iroshnikov spectrum and the
linear growth of the magnetic field in the regime of larger times leads to the statement, that the
amplification process of the magnetic field in this regime is driven by the α-ω-dynamo instead
of the small scale turbulent dynamo, which seems to be inactive for larger times.

X-4.4 Interaction between the galactic disk and the CGM

A very important part of our simulations is the CGM we include, compared to simulations of
isolated disk galaxies like Kotarba et al., 2011 or Pakmor and Springel, 2013. This gives us
the advantage to observe the interaction of an isolated disk galaxies with its CGM in detail.
We discussed this already in section X-4.3, due to the fact that the CGM is heavily magnetized
because of outflows in the magnetic field. These outflows are quite strong and transport the
magnetic field which is amplified in the galactic disk via the small scale turbulent dynamo and
the mean field α-ω dynamo to the outer parts of the CGM. We observe an impressive tube with
a radius of approximately 2 kpc close to the disk which opens up to 5 kpc in its outer parts
with a magnetic field strength about 10−6 G. Further, we observe that the tube is quite long and
moves about 80 kpc into the CGM. It transports gas out of the disk into the CGM in positive
and negative z-direction at the same rate with a velocity of a few 100 km/s. After leaving the
disk the gas is moving outwards the magnetized tube and falls back to the disk outside of the
magnetic tube. This means that there is an active exchange of the disks gas with the hot gas of
the CGM. Because the CGM consists of hot gas we can observe an other important process.
There is not just gas which has been initially located in the disk moving to the CGM and
falling back. We also observe a cooling flow of hot gas out of the CGM towards the disk. This
stabilizes the star formation rate in the disk, because the CGM acts as an immense reservoir of
gas which supports the star formation rate.

X-4.5 Magnetic driven outflows

A central part of the presented study here is the strong magnetized outflow from the galactic
centre in the deep regions of the CGM. Thus we study this outflow in more detail. We start the
study about the magnetic outflow by taking a closer look to the cooling flows from the CGM
towards the disk we mentioned in section X-4.4. We investigate this mainly for our high mass
models HWM (black), HBS (red) and HBX (green). In figure X.9 we show the total mass of the
baryonic disk for these three models over time. This result is remarkable for two reasons. The
first one is that we can observe a cooling flow from the CGM to the disk. This alone is not very
surprising, because we have radiative cooling processes included in our simulations. Interesting
is the cooling rate of hot gas to the disk. It is in the same order of magnitude as the star formation
rate turns gas into star particles. This indicates that the disk can compensate the loss of gas mass
due to star formation by accreting hot gas from the CGM.
The second thing we notice is that the accretion of hot gas is constant for larger times and without
the magnetic field the disk keeps accreting more mass from the CGM. In case of the models HBS
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Figure X.9: Total mass of the disk for the models HWM (black), HBS (red) and HBX (green).
While the disk is accreting a large amount of gas in the model HWM, the inflow of gas is
suppressed in the models HBS and HBX when the magnetic outflow sets in at 1.7 Gyr.
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Figure X.10: Rate of change of the mass of the galactic disk in the case of the models HBS (red)
and HBX (green) which drive an outflow. We can identify that the disk looses a certain amount
of gas when that magnetic outflow sets in.
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and HBX were we included magnetic fields we see that the disk mass is dropping around t = 1.7
Gyr significantly. This becomes even more clear by taking figure X.10 into account where we
plot the change of mass of the galactic disk. We can observe a strong magnetic driven wind with
a peak value of around −4M�/yr. After that the change of mass of the disk drops to a value
about −0.3M�, but it is still slightly negative, which means that the mass of the disk is still
decreasing. For larger times the rate of change of the disks mass slowly approaches zero. This
indicates that the system reaches an equilibrium between the magnetic driven outflow and the
cooling flow towards the disk.

X-4.6 Magnetic field structure

surface density

Angle

Figure X.11: Structure of the gas density (left) and of the magnetic field (right) both for the
model HBS both colour coded and indicated with contours. The spiral structure of the magnetic
field follows the spiral structure of the gas density.

We already discussed the general morphological properties of the magnetic field in section X-
4.1. In this section we investigate the structure of the magnetic field and point out whether the
magnetic field is dominated by turbulence or not. At first we show a more detailed comparison
between the structure of the gas density and the magnetic field strength. Therefore, we compare
the surface density of the gas with the magnetic field strength in the case of the model HBS. As
shown in figure X.11 we plot the radius over the azimuthal angle ϕ. In the left panel we show
the surface density, in the right one we show the magnetic field strength in colours. This kind
of plotting is prominent when it comes to the investigation of spiral galaxies in observations,
as shown for example in Bittner et al., 2017. Therefore, figure X.11 is not only useful for the
comparison of the gas density and the magnetic field in our simulations. It makes our simulations
comparable to the surface densities observed in various spiral galaxies. We obtain both plots
using the similar technique. Therefore, we explain it for the case of the gas density in more
detail. We use a two dimensional grid of the size 100 · 66 = 6600. One pixel corresponds to a
certain pair of r and ϕ. For each pixel we calculate the gas density (or the magnetic field) using
the triangular shaped cloud (TSC) method for calculating densities on a regular grid. The plot is
then a density slice for a fixed r for one circulation over the whole galaxy.
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The left panel of figure X.11 shows the spiral structure of the galaxy HBS in great detail. We can
see clearly four peaks within the gas density, where it is larger than in the surrounding regions
of the galaxy. This means that we can observe at least four spiral arms in the model HBS which
equals to two spiral modes. This is somewhat expected from a Milky Way-like type of galaxy.
If we compare our findings of the left panel of figure X.11 to the panel on the right we see that the
same peaks we notable in the gas density are also visible in the magnetic field. This means, that
the magnetic field in this model directly follow the distribution of the gas surface density. This is
something which is also expected from literature (i.e. Beck et al., 2013b), which states that in gas
rich galaxies the spiral structure of the magnetic field follows exactly the spiral structure of the
cold gas.1 Because the model HBS represents a Milky Way-like disk galaxy with an extended
gas rich CGM we can state that this argument matches the presented case. Although we come
up with an explanation for the connection between the gas density and the magnetic field density
we need to mention that our implementation follows the equations of ideal MHD which in the
limit of small magnetic fields leads to a direct correlation between large densities and strong
magnetic fields. Thus from theory it is not surprising that we have a strong magnetic field where
the gas density is high. But the same fact holds for observations as well. The limit of ideal MHD
is allowed in this case, because our magnetic fields are expected to not significantly reach values
above 100µG and we expect effects of non ideal MHD at the cut off around 1000µG.
Furthermore, we present two ways to evaluate the detailed structure of the magnetic field. The
first one is presented in figure X.12. This method is based on the evaluation of the quantity ζ1

given via

ζ1 =
|B−Bsm|
|Bsm|

, (X-24)

where B is the magnetic field and Bsm is the Gauss-smoothed magnetic field.
This quantity is helpful when it comes to the detailed structure of the magnetic field. Because our
simulations were done with a SPH-Code, it is more difficult to obtain ζ1 out of our data, because
we need to bring the SPH-data on a regular grid. This would be of course no problem in a grid
code because it already works perfect on a regular grid by definition. However for SPH data the
case is more difficult. In the first place one could use for example the TSC method we used in
figure X.11 to obtain the density and the magnetic field. Although this works well to make the
point whether the magnetic field follows the gas density, the TSC method is based on a triangular
kernel and thus not accurate enough to point out the detailed structure of the magnetic field in
an SPMHD simulation. Therefore, we decided to work out a proper SPH-binning. We use a two
dimensional grid with a very high resolution with 5122 grid points and calculate the magnetic
field for each grid point by using the Wendland C4 Kernel and taking the neighbouring (roughly
200) particles into account. Thus we have used exactly the same configuration as our underlying
SPH-formalism to bin the data properly. This is the most proper way to work with SPH-data
on a regular gird, because we make sure that the magnetic field on the grid is strongly affiliated
with the SPMHD magnetic field in our simulations. The data binning has been performed using
the SPHMAPPER presented in Roettgers and Arth, 2018.
ζ1 describes the deviation of the magnetic field in our simulations from the smoothed magnetic

1Which is the main contributor to the density here.
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Figure X.12: Structure of the magnetic field in our simulations. The figure shows the normalized
relative deviation of the magnetic field towards the magnetic field smoothed using a Gaussian
shaped kernel using equation X-24. From this figure one can obtain information about the order
in the magnetic field. Blue indicates that turbulence is dominating while red implicates high
order of the magnetic field. The top row is at t = 1.5Gyr, the bottom row at t = 2Gyr. Left is
the seeding model, right the constant initial field.
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field. The smoothing is performed with a Gaussian shaped Kernel. This method is quite popular
in image editing and is called unsharp masking. With this method we can achieve a strong
contrast between the smoothed and un-smoothed magnetic field. Therefore, it is easy to find
detailed structure using this method. A large value of ζ1 indicates a large difference between
the smoothed magnetic field and the original one. This is an indicator for a strong ordering of
the magnetic field. Otherwise a small value of ζ1 shows little deviation between the smoothed
magnetic field and the original one. Therefore, low values indicate a region of strong turbulence.
The upper left panel presents ζ1 for the model HBS at t = 1.5 Gyr. This panel shows the
structure of the magnetic field in the galactic disk shortly before the outflow sets in. We can
observe many structure lines which underline the magnetic fields spiral structure and point out
the more complex structure of the magnetic field beside the spiral arms. The complex structure
lines can be interpreted as higher order terms of the underlying spiral structure of the magnetic
field. Furthermore, we recognise that the turbulent structures are mostly placed in the centre of
the galactic plane. This is interesting for several reasons. The first one is that in section X-4.3
we argued that the magnetic field is amplified via a small scale dynamo. The upper left panel
shows this beautifully. On the small scales (in the galactic centre) the turbulent character of the
magnetic field dominates. Comparing the upper left panel of figure X.12 to the right panel of
figure X.2 we further notice that the turbulent region of the galactic plane is the region where
the the origin of the magnetic outflow is centred. The upper right panel of figure X.12 shows ζ1

for the model HBX. In this case we can also observe the spiral structure of the magnetic field
but we see that the disk is more dominated by turbulence than in the model HBS. Nevertheless,
the previous statement that the turbulent magnetic field is the origin of the magnetized outflow
seems to be valid. If we compare the upper left panel of figure X.12 to the right panel of figure
X.4 we can see that the magnetic outflow is much wider than in the case of the model HBS.
In the panels on the bottom of figure X.12 we show ζ1 in the x-y-plane for t = 2 Gyr. These plots
are interesting to prove that the structure of the magnetic field is not destroyed by the magnetic
outflow which sets in around t = 1.7 Gyr. And indeed we find that much of the magnetic
structure is left in the galactic disk even if a large amount of magnetic energy leaves the disk.
ζ1 evaluates the total magnetic field. By doing this we may ignore some spatial behaviour of
each magnetic field component. Thus, we present a second method to evaluate the structure of
the magnetic field introducing the variable ζ2:

ζ2 =

√(
Bx −Bx/sm

Bx/sm

)2

+

(
By −By/sm

By/sm

)2

+

(
Bz −Bz/sm

Bz/sm

)2

. (X-25)

The main point of this quantity compared to ζ1 is that it takes the structure of the magnetic
field in each spatial direction into account. This means we need in total three maps, one for
each component of the magnetic field, smooth the magnetic field of each direction, calculate
the absolute value of Bi − Bi/sm with i = (x, y, z) and normalise it by the smoothed map for
the magnetic field component i. Following this procedure we get figure X.13. While figure
X.12 clearly shows the underlying magnetic structure of the magnetic field of the disk in the
x-y-plane, this method is not able exploit structure in the z-direction of the magnetic field. Or
even worse some of the structure seen in figure X.12 could just be an artefact of the not visible
z-direction. In figure X.13 on the other hand we normalized each component separately and
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Figure X.13: Same as figure X.12 but using the unsharp masking component-wise according to
equation X-25.
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calculated the absolute value of the magnetic field divergence after the normalisation of each
direction. This prevents an overestimation of the strong magnetized outflows in z-direction we
observed for example in figure X.1 when we are mainly interested in the magnetic structure of
the galactic disk.
Regarding figure X.13 we can also see the beautiful structure lines we already know from figure
X.12. We also notice the magnetic fields spiral structure and can point out that the magnetic
field becomes much more turbulent when the magnetic outflow sets in.

X-4.7 Divergence Cleaning

Figure X.14: Absolute divergence errors obtained in our simulations for the model HBS (top)
and HBX (bottom). We show the divergence cleaning behaviour within our simulations for t = 1
Gyr (left) and t = 2 Gyr (right).

Since every numerical simulation has to deal with the ∇ · B = 0 constraint we need to prove
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that in our simulations we do not seed a large amount of magnetic monopoles. Thus we present
the total∇ ·B in our simulations for the models HBS and HBX in figure X.14 for two points in
time. In each case the left figure represents the time t = 1.0 Gyr and the right figure shows the
time t = 2.0 Gyr. We choose a point of time before the strong magnetic outflow and one after
the outflow sets in. The fact that we can observe a more turbulent structure after the outflow
sets in leads to an increase of the divergence of the magnetic field due to the sharper gradients
we have in this case. In figure X.14 we can see that the maximum value of the magnetic field
divergence is around 10−3 in the turbulent state. This is acceptable when we compare it to other
simulations. Most values of∇ ·B are around 10−8 or below, which is very good for a SPMHD-
Code. We note that there are methods in grid Codes like RAMSES which can keep ∇ · B at
zero down to machine precision. However Pakmor and Springel, 2013 use a cleaning scheme
(Powell et al., 1999) similar to ours and their findings are that this cleaning scheme is sufficient,
because it is much more complicated to control∇·B using a particle method or a moving mesh
because of the irregularity of the particle distribution (for SPH) or the Voronoi-Grid (in case of
a moving mesh).
In figure X.14 we can further observe that the higher values of∇ ·B appear in a spiral structure
following the spiral arms of our disk galaxy. This is an expected behaviour, because the mag-
netic field undergoes strong gradients at the edge of the spiral arms to the surrounding galactic
medium. This behaviour improves with better resolution, because the gradients become better
resolved.
We further notice, that the divergence of B seems to be better resolved in the case of supernova
seeding. This is due to the mechanism how the magnetic field is brought into the ISM. In case
of the supernova seeding we place magnetic dipoles into the ISM. This leads by construction to
the effect that the divergence of B is kept closer to zero, because we force its dipole structure
to appear with the supernova explosions. This leads locally to a smoother distribution of the
magnetic field and therefore to a smaller divergence error.

X-5 Conclusions

In this study we presented a modified idealised model for isolated disk galaxies including a
realistic CGM for galaxies with three different halo masses. The masses of the investigated
systems are equivalent to 1010M� 1011M� and 1012M�. Thus the aim of our study is to present
the general properties of those systems which are describing a dwarf, a middle sized mass galaxy
and a Milky Way-like galaxy. Apart from investigating the general properties of those systems
we present a detailed study of the morphological structure of both, the gas density, as well as
the magnetic field. Furthermore, we present interesting results of the star formation rate where
we noticed a drop of the star formation rate in the simulations we performed using our two
magnetic field models. A promising result in the context of the behaviour of the magnetic field
in our simulations is the small scale dynamo we find in the powerspectra of our galaxies. We
also find a major difference to other simulations of this kind that were performed recently. Our
powerspectra for both magnetic field models indicate, that the small scale dynamo is turned off
for very strong magnetic field in our simulations. This behaviour is interesting because we enter
a regime where we are not in a kinetic framework any more and the magnetic field dominates.
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Furthermore we find realistic magnetic field strengths within our simulations when it comes
to a comparison with observations. A more detailed study of the interaction of galactic disk
and CGM shows that a certain amount of magnetic energy is released in the outer regions of
the CGM having its origin in the centre of the galactic disk. Our study of turbulence in the
magnetic field leads to the assumption that this highly magnetized outflows are mainly driven by
the turbulent magnetic field in the centre of the galactic disk. Moreover the structure analysis of
the magnetic field indicates that the magnetic field follows a complex structure beside the spiral
structure which is obviously following the spiral structure of the gas density.
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Chapter XI

Rotation curves of galaxies in
Magneticum: Supporting ΛCDM

Everything is self-evident.
– Rene Descartes

Finally we pick up on some recent discussions regarding the ΛCDM model and alternatives to
dark matter. As discussed briefly in the introductory section I-1, one of the key observations
which lead to the introduction of dark matter was that rotation curves of disk galaxies extended
way beyond the visible disks. Consequently the galaxies are believed to be surrounded by some
form of invisible dark matter which drives this additional rotation. For a review see e.g. Sofue
and Rubin, 2001. Due to limited resolution originally detailed rotation curves have been mainly
observed for galaxies pretty close by, ergo at low redshift. However, now Genzel et al., 2017
have published some results for a galaxy sample at redshift z ∼ 2 with puzzling results in
rotation curves showing a strong decline outwards the half-light radius.1 This is associated with
a very small dark matter fraction and obviously fuelled the heated discussion if dark matter is
really the correct answer.
In this chapter we present a slightly modified version of our paper “Declining Rotation Curves
at z = 2 in ΛCDM Galaxy Formation Simulations” which has been just accepted in ApJ Letters
(Teklu et al., 2017a) which approaches these findings form a simulation point of view.

XI-0 Abstract

Selecting disk galaxies from the cosmological, hydrodynamical simulation Magneticum
Pathfinder we show that almost half of our poster child disk galaxies at z = 2 show signifi-
cantly declining rotation curves and low dark matter fractions, very similar to recently reported
observations. These galaxies do not show any anomalous behaviour, reside in standard dark mat-
ter halos and typically grow significantly in mass until z = 0, where they span all morphological
classes, including disk galaxies matching present day rotation curves and observed dark matter
fractions. Our findings demonstrate that declining rotation curves and low dark matter fractions

1The radius in which half of the total luminosity is contained.
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in rotation dominated galaxies at z = 2 appear naturally within the ΛCDM paradigm and re-
flect the complex baryonic physics, which plays a role at the peak epoch of star-formation. In
addition, we find some dispersion dominated galaxies at z = 2 which host a significant gas disk
and exhibit similar shaped rotation curves as the disk galaxy population, rendering it difficult to
differentiate between these two populations with currently available observation techniques.

XI-1 Introduction

Since the postulation of dark matter (DM) by Zwicky, (1933), many observational studies
analysing rotation curves of galaxies (e.g. Rubin, Ford, and Thonnard, 1978) have supported this
picture: While rotational velocities (V rot) deduced from the visible matter should decrease pro-
portional to r−1/2 in the outer parts of galaxies, they were found to remain flat. The knowledge
of this discrepancy in the mass content and thus the need for an explanation for this missing
mass lead to the acceptance of dark matter as the dominant mass component of galaxies (see
Naab and Ostriker, (2017) for a detailed review).
Recently, Genzel et al., (2017) (see also Lang et al., 2017) presented measurements of rotation
curves at redshift z ≈ 2 that do not stay flat but decrease with increasing radius, opening a debate
about the importance and even presence of DM in the outer disks and inner halos of these mas-
sive systems (and generally at higher redshift). In this letter we investigate whether the existence
of decreasing rotation curves at high redshifts contradicts or actually is a natural outcome of the
ΛCDM paradigm, using the state-of-the-art cosmological simulation Magneticum Pathfinder2

(K. Dolag et al., in preparation).

XI-2 The Simulations

The Magneticum Pathfinder simulations are a set of state-of-the-art, cosmological, hydrody-
namical simulations (see Beck et al., 2016, for details on the numerical scheme) of different
cosmological volumes with different resolutions. They follow a standard ΛCDM cosmology
with parameters (h, ΩM , ΩΛ, Ωb, σ8) set to (0.704, 0.272, 0.728, 0.0451, 0.809), adopting a
WMAP 7 cosmology (Komatsu et al., 2011).
These simulations follow a wide range of physical processes (see Hirschmann et al., 2014; Teklu
et al., 2015, for details) which are important for studying the formation of active galactic nuclei
(AGN), galaxies, and galaxy cluster. The simulation set covers a huge dynamical range with a
detailed treatment of key physical processes that are known to control galaxy evolution, thereby
allowing to reproduce the properties of the large-scale, intra-galactic, and intra-cluster medium
(see e.g. Dolag, Komatsu, and Sunyaev, 2016; Gupta et al., 2017; Remus, Dolag, and Hoffmann,
2017) as well as the distribution of different chemical species within galaxies and galaxy clusters
(Dolag, Mevius, and Remus, 2017), and the properties of the AGN population (Hirschmann
et al., 2014; Steinborn et al., 2016). Especially, detailed properties of galaxies of different
morphologies can be recovered and studied, for example their angular momentum properties and
the evolution of the stellar mass–angular momentum relation with redshift (Teklu et al., 2015;

2www.magneticum.org
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Figure XI.1: Example galaxies from the z = 2 sample with declining rotation curves (see figure
XI.2), from left to right the three disk galaxies gal 225, gal 127, and gal 62, and the gas-rich
spheroidal system gal 183, rotated to inclinations (e.g. i = 60, i = 45, i = 25 and i = 75,
respectively) similar to those of the galaxies presented in Genzel et al., (2017). Upper row:
Velocity maps of the cold gas component for each galaxy, with contours of the cold gas column
density overlayed. Middle row: Cold gas column density maps with overlayed stellar column
density contours. Lower row: Simulated HST broadband F606W images using GRASIL-3D.
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Teklu, Remus, and Dolag, 2016), the mass-size relations and their evolution (see e.g. Remus
and Dolag, 2016; Remus et al., 2016), global properties like the fundamental plane (Remus and
Dolag, 2016) or dark matter fractions (Remus et al., 2016), the baryon conversion efficiency (see
e.g. Steinborn et al., 2015; Teklu et al., 2017b), as well as the dynamical properties of early type
galaxies (Schulze et al., 2018).
For this study we use the simulation Box4/uhr, which covers a volume of (68 Mpc)3, initially
sampled with 2 · 5763 particles (dark matter and gas), leading to a mass resolution of mgas =
7.3·106M� for the gas andmstars = 1.8·106M� for stellar particles, with a Plummer equivalent
gravitational softening corresponding to 0.33kpc at z = 2 for the star particles and twice this
value for the gas particles.
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Figure XI.2: Rotation curves obtained from the cold gas for 10 out of the 26 poster child
disk galaxies which show clearly declining rotation curves (left panel) and for the 5 gas-rich
spheroidal galaxies (right panel) at z = 2, normalized by V rot

coldgas at the radius of maximum
velocity Rmax. The thick coloured lines in the left panel show the 6 declining rotation curves
presented in Genzel et al., (2017), while the grey lines show 7 poster child disk galaxies at z = 0,
using ≈ 1.4 ·R1/2 as Rmax.

XI-3 Sample of Galaxies

To ensure proper resolution of the inner structure, we only select halos with virial masses above
5 · 1011M� hosting galaxies with stellar masses above 5 · 1010M� for this study. These mass
ranges are consistent with the observed properties of the high-z galaxy sample of Genzel et
al., (2017). This leads to a sample of 212 and 275 halos at z = 2 and z = 0, respectively.
Furthermore, we classify the galaxies based on the distribution of the circularity parameter
ε = jz/r

√
GM(r)/r of the stars within the galaxies, where jz is the z-component of the

stars’ specific angular momentum (see also Abadi et al., 2002; Scannapieco et al., 2008). Thus,
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dispersion-dominated systems represent observed early-type galaxies and are characterized by
a broad peak in the distribution at ε ' 0, while rotation-supported systems have properties that
are characteristic of late-type galaxies and show a broad peak at ε ' 1. We define poster child
disk galaxies as systems which, in addition to a characteristic peak at ε ' 1, have a significant
cold gas fraction (fcold > 0.5 at z = 2 and fcold > 0.2 at z = 0) with respect to their stellar
mass, to distinguish them from transition type systems or ongoing merger events (for details
see Teklu et al., 2015). For our simulations it has been shown that, following this classification
scheme, galaxies of these two populations reproduce accordingly the observed stellar-mass–
angular-momentum–relation (Teklu et al., 2015) and its evolution (Teklu, Remus, and Dolag,
2016), the mass-size relation and its evolution (Remus et al., 2016), as well as the fundamental
plane distributions (Remus and Dolag, 2016).
We then rotate the galaxies such that the minor axis of the gas 3 is aligned with the z-axis, so
that we can extract the rotation curve without any further modifications.
From the total of 212 (275) galaxies at z = 2 (z = 0) we classify 26 (15) as poster child
disks, which we consider for further analysis. In addition, among our 27 poster child spheroidal
galaxies at z = 2 we find 5 systems with a large cold gas fraction (fcold > 0.5).
Figure XI.1 shows a 20 kpc region for 4 gas-rich example galaxies at z = 2, where the upper
row displays the line-of-sight velocity maps of the cold gas component, restricted to regions with
Σgas > 50M�

pc2
, with overlayed cold gas column density contours. The gridded data was created

using SPHMapper (Arth & Roettgers, in prep.). The middle row shows the cold gas column
density maps with overlayed stellar surface density contours. Inclinations and colours were
chosen according to the observations presented in Genzel et al., (2017). Each column represents
one galaxy, where gal 225, gal 127, and gal 62 (from left to right) resemble disk galaxies, while
gal 183 is a gas-rich spheroidal galaxy. Interestingly, all galaxies, even the spheroidal one, show
a similar, regular rotation pattern for the cold gas component. This is due to the fact that the
gas is in a flattened, centrifugally supported disk, even in the systems where the stars form a
spheroid.
The lower panels show mock images of the four galaxies in the HST broadband F606W (4750A-
7000A), which corresponds to rest-frame mid-UV. The images have been generated with the
radiative transfer code GRASIL-3D (Domínguez-Tenreiro et al., 2014). This wavelength range
traces the regions of very recent star formation, and the spheroidal galaxy shows a very similar
mock image as the disks, hiding the real stellar morphology.

XI-4 Rotation Curves at z = 2

The rotation curves for our galaxy sample are directly obtained from the averaged velocities (i.e.
the circular velocities) of the individual cold gas particles. In order to ensure that only gas within
the disk contributes to the rotation curve, only particles within the z-range of ±3kpc are used.
While the z = 0 disk galaxies show normal rotation curves, 12 out of the 26 poster child disk
galaxies at z = 2 show a significantly declining rotation profile for their gas disk. However, we

3Note that this is different from the computation for the classification, where the galaxies are rotated into the
frame where the angular momentum vector of the stars is aligned with the z-axis.
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Figure XI.3: The DM fraction fDM within the half-mass radius R1/2 versus the rotational ve-
locity V rot

coldgas at R1/2 at redshifts z = 2 (left) and z = 0 (right). At z = 2 (left panel), the
simulated disks (blue diamonds) and gas-rich spheroidals (pink open circles) are shown together
with the gas-poor spheroidals (red open circles). The observations from Genzel et al., (2017) are
included as dark-blue points. At z = 0 (right panel), we only show the simulated disk galaxies,
together with observations as presented in Courteau and Dutton, (2015) from the Swells Survey
(Barnabe et al., 2012; Dutton et al., 2013) and the DiskMass Survey (Martinsson et al., 2013).
The dark-blue filled pentagon shows the Milky Way according to Bland-Hawthorn and Gerhard,
(2016). To indicate uncertainties involved in inferring V rot

coldgas,R1/2
we include for the simulated

galaxies both the measured rotational gas velocity at R1/2 as well as the theoretical value ob-
tained from the total mass within R1/2 and connect both points by lines. We explicitly highlight
the data points for those descendents of our z = 2 disk galaxies which are still disk galaxies at
z = 0 (green diamonds).
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further remove 2 of the 12 examples from our detailed analysis, as they show remnants of recent
merger activity.
The left panel of figure XI.2 shows the rotation curves for these 10 poster child disk galaxies at
z = 2, which exhibit a decline in the rotation curve similar to the observed high-z disk galaxies
presented in Genzel et al., (2017) (thick solid lines). Following the observations, we scaled the
individual rotation curves by Rmax and V rot

max, where Rmax is the radius at which the rotational
velocity (V rot

coldgas) has its maximum. We only plot radii larger than two times the gravitational
softening of the gas particles, which corresponds to ' 1.33kpc at z = 2. As can clearly be seen,
the simulated galaxies show the same behaviour as the observed ones, with some having an even
steeper decline in the rotation curves as the observed galaxies. For comparison, the rotation
curves of 7 disk galaxies at z = 0 are shown as grey lines. The difference in profile shapes
between high-z and present-day galaxies is clearly visible.
Since at high redshift galaxies are in general more gas-rich, we also plot the same curves for
the 5 gas-rich spheroidal galaxies from our z = 2 sample in the right panel of figure XI.2. As
for the disks, the gas shows a clear rotational pattern (see also example in figure XI.1), and all
of our gas-rich spheroidal galaxies show a declining rotation curve similar to the observed disk
galaxies. The only difference here is that the gas disks in the spheroidals are much smaller than
the stellar spheroidal bodies, while the sizes are similar in the disk galaxy cases (see figure XI.1).
The high redshift HST images mainly show young stars, which morphologically closely re-
semble the gas disks even in the spheroidals (see lower panel of figure XI.1). This indicates a
potential difficulty in distinguishing disk galaxies from gas-rich spheroidals at z = 2 observa-
tionally. However, this uncertainty should be resolved using the next generation of telescopes
which will be able to probe the old stellar component in high redshift systems as well.

XI-5 DM Fractions

For spheroidal galaxies it is well known that the DM fraction within the half-mass radius is
decreasing at higher redshift, which is commonly interpreted as indication for late growth by dry
mergers of such systems. While this trend is qualitatively supported by cosmological simulations
independent of the details in the implemented feedback models, the AGN feedback used in
our simulation has been shown to produce DM fractions which quantitatively agree well with
observations (see Remus et al., 2016).
The left panel of figure XI.3 shows the DM fractions within the stellar half-mass radius R1/2 for
our full galaxy sample (grey dots) compared to observations at z = 2. Generally, our galaxies
have a tendency for higher average DM fractions with decreasing V rot

coldgas, however, nearly all
fractions are well below 30%. Our disk galaxies (blue diamonds) cover the same range of small
DM fractions as the observations presented in Genzel et al., (2017) (dark-blue filled circles
with error bars) 4. Interestingly, the DM fractions of the disk systems are almost as small as
those of the spheroidal systems. Furthermore, the gas-rich spheroidals cover the same range in
DM fractions as the observed and simulated disk galaxies, again highlighting the similarities
between the gas-rich systems at z = 2 independent of their morphologies and demonstrating the

4Note that especially at z = 2 the unavoidable differences when inferring the half-mass radius in simulations and
observations could lead to noticeable differences.
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difficulty in distinguishing pure rotation-dominated systems from dispersion-dominated systems
which host a significant gas disk.
At z = 0 the disk galaxies in the simulations show much larger DM fractions which decrease
with rotational velocity and agree well with the different measurements for disk galaxies (see
right panel of figure XI.3). To indicate uncertainties involved in inferring V rot

coldgas,R1/2
we used

both, the measured rotational gas velocity at R1/2 as well as the theoretical values obtained by
adopting centrifugal equilibrium and taking the total mass within R1/2.

XI-6 Surface Density, Dispersion and Theoretical Rotation Curve

A detailed look at the four examples from figure XI.1 shows that the surface density profiles
Σ(r) of the cold gas disks in the three poster child disk galaxies and the gas-rich spheroidal
galaxy follow the expected exponential decline, as shown in the upper panel of figure XI.4.
While the theoretical rotation curves as obtained by the total matter distribution within these
halos are flat, as expected, the real measured rotation of the cold gas disk shows a significant
decline, as can be seen in the middle panel of figure XI.4. This decline is a result of the kinetic
pressure effect which partly compensates the gravitational force as proposed by Burkert et al.,
(2010). As expected for a self-gravitating, exponential disk, the maximum of the real rotation
curve for the three disk galaxies in the central part, where the baryons dominate over the dark
matter halo, is slightly (≈ 10-20%) above the maximum value for a spherically averaged mass
distribution (Binney and Tremaine, 2008). Furthermore, at large distances the real rotational
velocity is conspiratorially close to the expected rotational velocity if considering only the cold
gas mass. For the gas-rich spheroidal galaxy gal 183, the latter holds even across almost all
radii, due to its even lower DM fraction and the small size of the disk compared to the stellar
body of the galaxy. As a result, the gaseous disk of the spheroidal galaxy gal 183 is strongly
self-gravitating, more compact and shows an even stronger decline. None of our systems with
a falling rotation curve shows any significant feature or change in the radial component of the
velocity dispersion measured for the cold gas disk which is related to the position at which the
rotation curve declines, as shown in the σr profiles in the lower panel of figure XI.4.

XI-7 Discussion and Conclusions

Selecting disk galaxies with Mvir above 5 · 1011M� and M∗ above 5 · 1010M� from the cosmo-
logical, hydrodynamical simulation Magneticum Pathfinder we investigated the rotation curves
of disk galaxies at z = 2. We find that almost half of our poster child disk galaxies (10 out
of 26) show significantly declining rotation curves, very similar to the observations reported in
Genzel et al., (2017). Interestingly, the peak of the rotation curve is a fairly good approximation
(≈ 10% larger) of the theoretical value, based on the total mass of the galaxies.
These disk galaxies do not show any significant dynamical features except that the radial disper-
sion has generally significantly larger values compared to z = 0 disks, as expected for dynami-
cally young systems in their assembly phase. Forbes, Krumholz, and Burkert, 2011 already pre-
sented a model description to explain this temporal evolution, which also quantitatively agrees
well with the results of the much higher resolution hydrodynamical simulations Eris (Bird et al.,
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Figure XI.4: For the three poster child disks (gal 62, gal 127, and gal 225), and the gas-rich
spheroidal galaxy (gal 183): Upper panel: Surface density Σ of the cold gas. The vertical dashed
line indicates four/two times the gravitational softening of the stellar/gas particles at this redshift.
The grey lines are fits for an exponential surface density profile for Σ(x) = a · exp(−x/b) with
b ≈ 2 kpc. Middle panel: Rotation curves of the cold gas (solid lines) compared to the rotation
curves expected from the spherically averaged total mass distribution (dash-dotted lines). Dotted
lines show the corresponding cold gas contribution. The thick dotted lines at large radii show
the expected theoretical rotation curves when corrected for the asymmetric drift. Bottom panel:
Radial velocity dispersion σr of the cold gas. Thin dotted lines indicate the σ used for the
asymmetric drift correction in the middle panel.
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2013), finding ratios of 3−4 between vrot and σgas for galaxies at z = 0 and much smaller σgas

for galaxies at z = 0. Furthermore, this is also in line with the observational findings of Simons
et al., (2017), who showed that observed galaxies at z ∼ 2, independently of their stellar mass,
typically have σgas ∼ 60 km/s, similar to our galaxies shown in figure XI.4. Applying a simple
correction

v2
rot = v2

circ + 2σ2 × (dlnΣ/dlnR) = v2
circ − 2σ2 × (R/Rd)

for the asymmetric drift (Burkert et al., 2010) based on our measured dispersion profiles onto
the theoretical rotation curve results in reduced rotation curves, which qualitatively agree well
with our measured ones. Therefore, we conclude that the declining rotation curves of the high
redshift galaxies are caused by a relatively thick, turbulent disk, as already discussed in Genzel
et al., (2017). We also find that these galaxies show similarly low DM fractions as reported for
the observations. The DM halos of these disk galaxies have a mean concentration parameter
cvir ≈ 8 (as expected for these halo masses at z = 2) and therefore we can exclude that the low
dark matter fractions are caused by especially low concentrations of the underlying halos.
Tracing these galaxies in the simulations until z = 0 allows us to infer the present-day appear-
ances of these galaxies. We find that, on average, these galaxies still grow by a factor of ≈ 3.5
both in virial as well as in stellar mass. Two of them resemble present-day disk galaxies with
small remaining gas disks, and one ends as a central galaxy of a small group. Three of them
become satellite galaxies of small groups, while the rest is mostly classified as transition types.
Therefore, we can exclude that the low DM fractions at z = 2 imply that these systems have
to be the progenitors of today’s elliptical galaxies with similar stellar mass and low dark matter
fractions.
Interestingly, in our simulations we also find several spheroidal galaxies at z = 2 which host a
massive cold gas disk with similarly declining rotation curves as the disk galaxies. These gas
disks are typically more compact, but as star formation is dominated by the gas disks, these
spheroidals appear indistinguishable from the disk galaxies in our mock HST images, highlight-
ing the need for observational instruments that detect the old stellar component even at high
redshifts.
In general, we conclude that high-redshift disk galaxies with declining rotation curves and low
DM fractions appear naturally within the ΛCDM paradigm, reflecting the complex baryonic
physics which plays a role at z = 2 and can be found commonly in state-of-the-art, ΛCDM
cosmological hydrodynamical simulations.
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Chapter XII

Conclusions and Outlook: The Answer
to the ultimate question of life, the
universe and everything?

The only true wisdom is in knowing you know nothing.
– Socrates

In this thesis we gave an overview of how we improved our numerical tool set for simulations
of galaxies and galaxy clusters during the last few years. We presented our modernised SPH
code and showed how well we can circumvent the typical flaws of any SPH discretisation. We
discussed this in the context of other numerical approaches people take and which, according
to some, will at some point completely overtake classical grid and SPH codes. However, we
aspired to give a glance of the importance of different numerical schemes and the potential the
huge variety of codes actually inhibits. In order to gain knowledge about what we simulate we
always need to divide numerical from physical reason as best as we can which can be done ide-
ally by comparing results from different numerical approaches with each having it’s own biases
and flaws as we aspire in the ongoing comparison project “The Three Hundred”. So maybe it is
not even the question if and when SPH will vanish in favour of e.g. MFM (meshless finite mass)
but rather an important point that this should not even happen.
Besides improving the basic numerics of our code we reported our effort to improve everything
else we need to successfully keep researching with upcoming simulations. These include the
easier creation of better initial conditions, the ability to process huge amounts of data and post
processing codes which can analyse SPH data properly and transform them into a grid picture
without introducing large errors. A lot of time has been spent on these topics and sometimes it
might seem to others almost like a waste of time which could be spent on actually performing
and analysing simulations. Nevertheless, these kind of efforts are necessary to keep the ball
running on the long run. We have reached a point where our simulation codes have grown to
such an extent that developing them further and especially optimising them to scale properly
on huge computing clusters is a full time job and can hardly been done any more just in ones
free time between astrophysical projects. In the future it will become increasingly important to
manage this kind of development properly most probably through collaborations with computer
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scientists which devote all their time on these development and optimisation tasks. There is a
lot to learn in how to improve the processes which take place. For example automatic testing of
code, not in a sense of real physical scenarios but rather on the basis of abstract code unit tests,
is something which is successfully adapted in the development of software on the free market
but has hardly found it’s way into our community yet. This again requires a lot of time on the
short run but saves so much more in long term. There are efforts to drive this, like a new open
source version of our code called OPENGADGET, for which automatic testing is indeed in de-
velopment right now.
All the technical works presented in this thesis were born out of direct requirement coming from
another project. For example, to look further into the performance of our thermal conduction
model we wanted to simulate a small patch of a cluster atmosphere with a shallow density and
temperature gradient in hydrostatic equilibrium in order to see whether our code would success-
fully develop the HBI (heat flux buoyancy instability) and MTI (magneto thermal instability)
plasma instabilities. However, with the methods we had at hand the quality of initial conditions
was never sufficiently well and the relevant gradients were too much hidden by particle noise to
develop the instabilities. This and the experience how much time setting up the standard tests for
our code took lead to the efforts regarding a generic initial conditions generator as we presented
it in this thesis.
On the astrophysical side of this thesis we presented said model for thermal conduction in the
presence of magnetic fields and investigated the impact changing the model and the efficiency
of conduction onto the development of several galaxy clusters. The anisotropic formulation
produces results similar to highly suppressed net conduction (about 1%) due to entanglement
of magnetic fields and is sufficient to let a sample of clusters show a bi-modality of cool-core
and non cool-core temperature profiles, a topic highly discussed as simulations typically fail to
reproduce the bi-modality properly as we observe it.
The importance of magnetic fields got further investigated on the level of disk galaxies where we
looked into the question how magnetic fields can break up when a critical pressure is reached
and drive outflows perpendicular to the plane of a disk galaxy. We studied that question for
galaxies of different mass and with both a primordial magnetic field and fields seeded into the
surrounding medium from supernova explosions. We can nicely follow the build up of magnetic
fields due to a small scale dynamo which stops after a certain growth phase.
Furthermore, due to recent observations of declining rotation curves at high redshift disk galax-
ies, we investigated and found similar behaviour in the Magneticum simulations, showing that
this is indeed consistent with the standard ΛCDM model and not a reason to drop it in favour of
modified gravity.
There are multiple next possible steps building upon this work. As we have improved our hy-
drodynamical backbone of the SPH code this has to be further tested in the context of magneto-
hydrodynamics as for example the signal velocity may change from the speed of sound to the
Alfvén velocity. Also the diffusion of magnetic fields might be subject to improvements. Some
of the parts of this thesis are based on paper drafts which have to be finished obviously and
along go improvements of the actual work described, including the initial conditions generation
code which is far from perfect. The cluster comparison project with a multitude of simulations
is obviously just kicking of and can be the source of many studies. Regarding models in our
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code, magnetic fields are still somewhat disconnected from other parts like star formation and
AGNs, which is already worked on improving. Wherever a hydrodynamical pressure comes
into play, the magnetic pressure might also be of importance. Studying MHD turbulence with
the improved code is certainly an interesting although difficult topic, due to the nature of SPH.
Finally regarding magnetic fields, including for example a prescription of cosmic rays into the
simulations can improve not only results but also provide more possibilities for comparison with
observations. As always, exciting times lie ahead.
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