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I do not know what I may seem to the world, but as to myself,

I seem to have been only like a boy playing on the sea-shore,

and diverting myself in now and then finding a smoother pebble

or a prettier shell than ordinary, whilst the great ocean of truth

lay all undiscovered before me.

Sir Isaac Newton





Zusammenfassung

Elektronendynamik an Festkörperoberflächen, die von elektromagnetischen Feldern
mit optischen Frequenzen getrieben wird, findet auf einer Längen- und Zeitskala im
Bereich von Nanometern bzw. Attosekunden statt und ermöglicht eine Vielzahl wis-
senschaftlicher und technischer Anwendungen auf dem Gebiet der Nanooptik und
Nanoplasmonik. Die direkte Visualisierung der Elektronen in Folge ihrer Wechsel-
wirkung mit Licht, was eine ultrahohe räumlich-zeitliche Auflösung erfordert, ist ein
sehr nützliches Instrument zum Verständnis dieser Dynamik und ihrer Kontrolle. In
dieser Dissertation wird eine Kombination aus Photoemissionselektronenmikrosko-
pie (PEEM) mit Femtosekundenlaserpulsen von wenigen Zyklen Dauer sowie extrem
ultravioletten (XUV) Attosekundenpulsen erforscht, um ultraschnelle Elektronen-
dynamik an Metalloberflächen und in Nanosystemen zu untersuchen. Diese Arbeit
beinhaltet die Entwicklung und Implementierung neuer Messinstrumente und Me-
thoden für PEEM-Experimente, insbesondere Detektion, Datenerfassung und Da-
tenanalyse.

Der erste Ansatz für eine direkte, nichtinvasive Untersuchung nanoplasmoni-
scher Felder an ortsfesten Nanostrukturen ist eine Kombination von PEEM mit
Attosekunden-Streaking (Atto-PEEM). Als eine Voraussetzung für die Implementie-
rung des Atto-PEEM-Konzepts wird eine PEEM-Abbildung von lithographisch her-
gestellten Goldstrukturen mittels 93 eV XUV Attosekundenpulsen aus einer 1 kHz
Quelle für die Erzeugung hoher Harmonischer realisiert. Wegen Raumladungseffek-
ten, die durch die niedrige Repetitionsrate der hohen Harmonischen zustande kom-
men, sowie chromatischer Aberrationen aufgrund der hohen Energiebandbreite der
durch die XUV-Strahlung erzeugten Photoelektronen, ist die räumliche Auflösung
auf ∼200 nm begrenzt. Dennoch wird gezeigt, dass trotz dieser Schwierigkeiten ei-
ne mikrospektroskopische Abbildung von inneren Elektronen und Valenzelektronen
mittels unserer energieaufgelöster PEEM möglich ist. Unsere wichtigste Erkennt-
nis ist, dass die schnellen Photoelektronen aus dem Valenzband, die die zeitliche
Struktur der plasmonischen Felder auf der Attosekundenskala abtasten, nicht durch
Raumladungseffekte beeinträchtigt werden. Die sich derzeit in Entwicklung befin-
denden Quellen für Attosekunden-XUV-Pulse mit Megahertz Repetitionsraten sind
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ii Zusammenfassung

daher vielversprechend für die experimentelle Realisierung von nanoplasmonischem
Streaking mit ultrahoher räumlicher und zeitlicher Auflösung in naher Zukunft.

Zweitens wird PEEM mit einem stereographischen, auf Above-Threshold-Ioni-
sation basierenden Einzelschuss-Phasenmessgerät verbunden, was eine Zuordnung
(Tagging) der Träger-Einhüllenden-Phase (carrier-envelope phase, CEP) erlaubt und
dadurch ermöglicht, die Kontrolle der Photoemission auf der Attosekundenskala zu
erforschen. Erste Experimente an Goldnanosphären auf einer Goldebene sowie an ei-
ner rauen Goldoberfläche mit wenige Zyklen kurzen Laserpulsen im Nah-Infraroten
weisen ein CEP-Artefakt mit einer Modulationsperiode von π auf. Es wird gezeigt,
dass dieses Artefakt durch eine Abhängigkeit sowohl der Photoelektronenspektra
als auch der CEP-Messung von der Laserintensität hervorgerufen wird. Die bisheri-
ge CEP-Tagging-Technik wird deshalb um Intensitäts-Tagging erweitert, um dieses
intensitätsabhängige Artefakt zu korrigieren. Als Resultat wird nach angemessenen
Korrekturen basierend auf dem Intensitäts-Tagging eine schwache CEP-Modulation
(∼1 % Amplitude) der Photoemissionsergiebigkeit von einer unstrukturierten Wolf-
ramoberfläche mit einer Modulationsperiode von 2π (wie bei Festkörpern erwartet)
im Above-Threshold-Photoemissionsregime erfolgreich nachgewiesen. Im Tunnelre-
gime wächst die CEP-Modulation auf ∼7 % trotz aufkommender Raumladungseffek-
te aufgrund der starken Spitzenintensität der Laserpulse. Es werden ebenfalls Gold-
nanodreiecke mit dieser Technik untersucht, jedoch kann keine CEP-Modulation
innerhalb der experimentellen Genauigkeit von ∼0.6 % gefunden werden. Dies stellt
eine Obergrenze für eine mögliche CEP-Modulation an dieser Nanostruktur dar.



Abstract

Electron dynamics at solid surfaces unfold on the nanometer length and attosecond
timescale when driven by electromagnetic fields at optical frequencies, enabling vast
scientific and technological applications in the field of nano-optics and nanoplas-
monics. Direct imaging of the electrons upon interaction with light is a highly de-
sirable tool for understanding and control of the dynamics, which requires ultrahigh
spatiotemporal resolution. This thesis explores the combination of photoemission
electron microscopy (PEEM) with few-cycle femtosecond laser pulses and attosec-
ond extreme ultraviolet (XUV) pulses for studying ultrafast electron dynamics from
metallic surfaces and nanosystems. The work involves development and implemen-
tation of new experimental tools including detection, data acquisition and analysis
techniques for PEEM measurements.

The first approach is using a combination of PEEM with attosecond streaking
spectroscopy (atto-PEEM) for direct, non-invasive probing of nanoplasmonic fields
from supported nanostructures. As a first step towards the implementation of the
atto-PEEM concept, PEEM imaging on lithographically fabricated gold structures
employing 93 eV attosecond XUV pulses from a 1 kHz high-harmonic generation
(HHG) source is performed. The spatial resolution is limited to ∼200 nm due to
space charge effects when working with such a low-repetition-rate HHG source and
chromatic aberrations caused by the large energy bandwidth of XUV-generated pho-
toelectrons. Nevertheless, we show that microspectroscopic imaging of core-level and
valence band electrons is achievable using our energy-resolved PEEM despite the
aforementioned issues. Most importantly, we find that the fast photoelectrons from
the valence band, which carry the attosecond temporal structure of the plasmonic
field, are not affected by space charge effects. The currently developed megahertz-
repetition-rate attosecond XUV sources are therefore expected to enable the ex-
perimental realization of nanoplasmonic streaking with ultrahigh spatiotemporal
resolution in the near future.

Second, PEEM is coupled with a single-shot stereographic above-threshold ion-
ization phase meter, which allows carrier-envelope phase (CEP) tagging for studying
attosecond control of photoemission. First experiments performed on gold nano-
spheres on a gold plane and on a random rough gold surface using few-cycle near-
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iv Abstract

infrared pulses show a CEP artefact with a modulation period of π. The artefact is
found to be caused by a laser intensity dependence of both the photoelectron spec-
tra and the CEP measurement. Intensity tagging is therefore added to the current
CEP tagging technique to correct this intensity-dependent artefact. As a result,
a very weak CEP modulation (∼1 % amplitude) of the photoemission yield from
a bulk tungsten surface with a 2π modulation period (as expected from solids) is
successfully detected in the above-threshold photoemission regime after applying ap-
propriate corrections based on the intensity tagging. Entering the tunneling regime,
the CEP modulation increases to ∼7 % despite the presence of space charge effects
due to high laser peak intensity. We also apply this technique to investigate the CEP
dependence on gold nanotriangles and find no apparent CEP modulation within an
accuracy of ∼0.6 % as given by our experimental conditions, which constitutes an
upper limit for a possible CEP modulation from this nanostructure.
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Kling, U. Kleineberg, E. Mårsell, C. L. Arnold, E. Lorek, P. Rudawski, C. Guo, M.
Miranda, F. Ardana, et al. In Imaging Localized Surface Plasmons by Femtosecond
to Attosecond Time-Resolved Photoelectron Emission Microscopy–“ATTO-PEEM”.
Attosecond Nanophysics , pp. 325–364 (Wiley-VCH Verlag GmbH & Co. KGaA,
2015).

vii

http://dx.doi.org/10.1063/1.4989399
http://dx.doi.org/10.1063/1.4989399
http://dx.doi.org/10.1364/OE.24.016788
http://dx.doi.org/10.1007/s00340-016-6374-3
http://dx.doi.org/10.1364/CLEO_QELS.2016.FW1N.1
http://dx.doi.org/10.1364/OE.23.033564
http://dx.doi.org/10.1002/9783527665624.ch10
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Chapter 1
Introduction

It is at the heart of all scientific research to increase humankind’s knowledge about

nature by understanding, ultimately, the time-dependent interactions between fun-

damental particles and fields, as modeled by physics and chemistry, which constitute

our world and our perception of it in daily life. Throughout history, the observation

of dynamics in nature deepened our insight into the most fundamental physical laws,

accurately modeling the universe from the largest scope of astronomy down to the

most minute of atoms and elementary particles.

Exploring processes faster than the perception of the human eye requires exper-

imental instruments, which allow the detection and visualization of such processes.

Since the famous first slow-motion movie of a galloping horse [1] using a series of

optical cameras set to a short exposure time, ever-shorter timescales became acces-

sible owing to the tremendous technological progress in various fields. Modern-day

electronics allow real-time observations on timescales of few picoseconds (10=12 s) [2],

while even shorter timescales of femtoseconds (10=15 s) and attoseconds (10=18 s) are

accessible by exploiting the high bandwidth of mode-locked bursts of laser light [3–

6].

Naturally, interactions on such short timescales are strongly confined in space,

since the speed of light poses an upper limit on any action, e.g. ∼300 nm for 1 fs. De-

pending on the energies and masses of the particles involved [7, 8], this confinement

can be on the nanoscale (e.g. for electric fields, free particles or collective electronic

motion) or on the molecular or atomic scale (e.g. for nuclear motion within molecules

or orbital dynamics). The visualization of fundamental interactions on these ulti-

mate timescales is almost always indirect due to this strong spatial confinement

and focuses on observing other properties than the spatial arrangement. Common

experimental techniques include pump-probe studies of transient macroscopic ab-

sorption [9, 10] and fluorescence [11], waveform control of photocurrents [12, 13] and

1



2 Chapter 1. Introduction

ionization dynamics [14, 15], attosecond streaking spectroscopy [16–18] or attosec-

ond tunneling spectroscopy [19]. Although some structural information is contained

within the observed quantities, access to it is indirect and requires complex modeling.

So far, only a few ultrafast visualization techniques exist which support nanometer

(or better) spatial resolutions and ultimate time resolutions simultaneously. Among

these are ultrafast scanning near-field optical microscopy (SNOM) [20], time-resolved

transmission electron microscopy (TEM) [21] and ultrafast X-ray [22, 23] or electron

diffraction [24, 25], which allow direct visualization of the structural information on

the nanometer (microscopy, X-ray diffraction) and sub-atomic scale (albeit in recip-

rocal space in the case of electron diffraction).

While SNOM can utilize the high time resolution given by the duration of

state-of-the-art ultrashort laser pulses and record electric fields at the surface with

nanometer resolution using a sharp tip, acquiring spatial information requires in-

plane scanning and thus many pump-probe cycles, resulting in a long acquisition

time. TEM on the other hand offers parallel acquisition of spatial information (i.e. an

entire image at once) with superior spatial resolution down to the atomic level [26].

However, achieving ultrahigh time resolution is challenging when using electron

pulses for illumination due to Coulomb interaction and dispersion, resulting in typ-

ical electron pulse durations of several 100 fs in the case of ultrafast TEM [27] or

∼30 fs in the case of ultrafast electron diffraction [25]. The successful combina-

tion of the spatial resolution offered by an electron microscope with the superior

temporal resolution of ultrashort laser pulses has led to the emerging field of time-

resolved photoemission electron microscopy (PEEM) in the past decades [28–30].

Here, a pulse of light excites electron dynamics in a solid sample, which is then

probed by a second light pulse through the emission of electrons from the sample

via the photoelectric effect. The origin of these photoelectrons at the sample surface

is precisely imaged on the nanoscale by the electron optics of the microscope and

contains information about local properties of the sample, such as the work function

or the electric field strength at the surface. Combining a PEEM with an image-

preserving spectrometer, e.g. an imaging energy filter (IEF) or time-of-flight (ToF)

detector, adds the capability of spatially-resolved photoelectron spectroscopy, reveal-

ing surface state excitations or strong-field effects with typically ∼25 nm spatial and

∼50 meV energy resolution [31]. This constitutes a versatile and powerful visualiza-

tion instrument for the all-optical control of nanoscale electron dynamics, which is a

promising contribution to the relatively young field of nano-optics. Various existing

and potential scientific and technological applications for this technique include the

generation and propagation dynamics of collective electron motion at surfaces [32,

33], attosecond control of nanolocalized photoemission [31, 34–36], and, ultimately,
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nano-optical devices which allow switching currents at optical frequencies, or 104

– 106 times faster than present-day current-driven nanoelectronics [37].

In this work, we present two different approaches to observe and control electron

dynamics on the nanometer length and attosecond timescale using PEEM. The first

approach is combining the PEEM with the well-established concept of attosecond

streaking spectroscopy [38, 39] using attosecond extreme ultraviolet (XUV) pulses

for photoemission. This concept has proved to be challenging, as the high energy

bandwidth of the XUV pulses leads to aberrations and reduced resolution of the

PEEM. Furthermore, the limited repetition rate of current attosecond XUV sources

(kHz range) poses a practical limit on signal flux and minimum required acquisition

time. The second approach demonstrates attosecond control of photoemission utiliz-

ing the carrier-envelope phase (CEP) of a few-cycle near-infrared (NIR) laser pulse,

which is the phase difference between the carrier wave and the intensity envelope of

the pulse, defining the shape of the pulse’s electric field. It has been shown that for

a few-cycle pulse different shapes of the electric field (due to different CEPs) lead

to a modulation of photoemission yield and kinetic energy from metal nanotips [12,

40]. This constitutes attosecond control, since a small change in CEP, which shifts

the temporal shape of the pulse by a small fraction of an optical cycle (∼2.2 fs at

our wavelength), is sufficient to detect a modulation of the photoemission. Here,

we present a CEP tagging technique in combination with energy-resolved PEEM in

order to record the CEP for every pulse of a few-cycle laser source, which has not

been CEP-stabilized. After additional correction for random intensity fluctuations

of the laser, we are able to demonstrate CEP control of photoemission from a bulk

tungsten surface measured by PEEM. A CEP-dependent modulation of the pho-

toemission spectrum as low as ∼1 % can be detected with this instrument within

∼30 min of measurement time. This thesis is structured as follows: chapter 2 pro-

vides some basic theoretical background for the ultrashort laser pulses used here,

the photoemission processes and the surface plasmons at metal surfaces. Chapter 3

presents the experimental details, including the energy-resolved PEEM instrument,

the different laser sources used in this work, the CEP tagging technique, as well

as the fabrication methods of the plasmonic nanostructure samples used in these

studies. In chapter 4, the results of some preliminary investigations of the atto-

PEEM approach are shown, in particular nanoscale imaging and spectroscopy using

attosecond XUV pulses (without streaking yet) and the influence of space charge

effects therein. Chapter 5 introduces the CEP tagging technique for PEEM and first

applications on gold nanostructures. Here, a laser-intensity-related artefact is dis-

covered and investigated, which prevents detecting an actual CEP dependence with

small modulation depth. A refinement of the CEP tagging technique is presented in

chapter 6 by adding laser intensity tagging as a remedy for the artefact discovered
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before. The additionally intensity-resolved measurement substantially increases the

CEP sensitivity of the instrument, allowing to detect small CEP modulation depths

between 1 % and 7 % from a bulk tungsten surface with PEEM as a proof-of-principle

at illumination intensities within the above-threshold photoemission (ATP) regime

and the tunneling regime. Furthermore, a preliminary application of this technique

on gold nanostructures is shown. Finally, the results are summarized in chapter 7

and an outlook is given.



Chapter 2
Theoretical background and fundamentals

This chapter aims to provide a comprehensive overview of the theory and funda-

mentals related to the work presented here. First, an introduction on few-cycle laser

pulses, their generation and use in high-harmonic generation (HHG) experiments is

given. Next, linear and nonlinear photoemission from solids and their mechanisms

are described. A brief review on surface plasmons is presented and finally the atto-

PEEM concept and its current status is discussed.

2.1 Ultrashort laser pulses

Since the first demonstration of a mode-locked helium-neon laser [41], modern la-

ser development has constantly pushed the limits of temporal resolution, from the

picosecond to the femtosecond timescale. Up to now, XUV pulses generated by

high harmonic radiation constitute the shortest bursts of light with durations of

80 as [5] and below [6, 42]. Concentrating light into extremely short pulses not only

allows time-resolved studies with ultra-high temporal resolutions but also enables

the generation of remarkably high peak intensities, facilitating nonlinear effects.

Furthermore, unprecedented strong-field (or highly nonlinear) regimes can now be

reached at metallic surfaces with the assistance of field enhancement facilitated by

controlled plasmonic nanostructures [12, 40, 43–45] in combination with ultrashort

laser excitation.

2.1.1 Few-cycle laser pulses and CEP

Ti:sapphire amplifiers in combination with a pulse compressor system based on non-

linear spectral broadening (e.g. in a fiber) and enhanced dispersion control are able to

provide few-cycle pulses in the low millijoule range at kilohertz repetition rates [46,

5
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47] and are some of the most prominent ultrafast sources to date. Other available

few-cycle pulsed laser sources include high-repetition-rate mode-locked Ti:sapphire

oscillators [48] and, more recently, hundred-kilohertz optical parametric chirped-

pulse amplification systems [4, 49].

Basically, a few-cycle laser pulse is composed of a coherent superposition of many

monochromatic waves at different optical frequencies, which are multiples (harmon-

ics) of the laser cavity’s fundamental repetition rate, and appropriate relative phases.

The pulse may contain less than two optical field cycles, thus the electric field am-

plitude considerably changes within one optical cycle, constituting the breakdown of

the slowly varying envelope approximation valid for multi-cycle pulses. Hence, the

phase of the electric field carrier with respect to its envelope (referred to as CEP)

starts to play an important role in light-matter interactions and strongly affects any

nonlinear optical processes, which depend on the instantaneous field strength rather

than on the intensity. CEP effects have already been demonstrated on gases [14,

38, 39, 50, 51], solids [12, 13, 17, 37, 40] and plasmas [52], providing a basic insight

into light–matter interactions and revealing its enormous potential to precisely ma-

nipulate and control ultrafast electron dynamics. The time-varying few-cycle laser

field E(t) can be described as a classical electromagnetic wave using the following

mathematical representation:

E(t) = E0 cos(ωt+ ϕ)f(t). (2.1)

Here, E0 is the electric field amplitude, ω the carrier frequency, ϕ the CEP and f(t)

an envelope function1. The CEP describes the phase (and therefore temporal) offset

between the carrier wave maximum and the pulse envelope maximum, thus defining

the shape of the electric field of each pulse. Fig. 2.1 depicts an illustration of different

CEPs for a few-cycle pulse of 4 fs full width at half maximum (FWHM) duration at

730 nm. In principle, two extreme cases for the pulse shape are found: the cosine-like

waveform is symmetrical about the center of the pulse and has ϕ = 0 or π while

the sine-like waveform is anti-symmetrical and has ϕ = −π/2 or π/2. Note that a

few-cycle pulse requires an octave-spanning spectrum and a flat spectral phase, i.e.

a phase which is constant or has a linear dependence on the frequency.

As the CEP of an ultrashort wavepacket from a laser generally experiences ran-

dom fluctuations from shot to shot due to optical nonlinearity in the laser cavity [53,

54], various methods to stabilize it have been devised [53, 55–59] to ensure no phase

slip between the pulses. Besides actively stabilizing the CEP to a fixed value, one can

also measure it on a single-shot basis via a phase tagging technique simultaneously

1For a transform-limited Gaussian pulse with a FWHM duration τ of its respective intensity
envelope, f(t) = exp

(
−2 ln 2 t2/τ2

)
.
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Figure 2.1: Illustration of a few-cycle laser field in the time domain with a central wavelength
of 730 nm and a pulse duration of 4 fs FWHM. The pulse envelope is denoted by the black
line. The electric field oscillations are plotted for four different CEPs (cosine-like waveform:
ϕ = 0, −cosine-like waveform: ϕ = π, sine-like waveform: ϕ = −π/2 and −sine-like waveform:
ϕ = π/2).

with the experimental data acquisition. The latter technique (see subsections 3.3.2

and 3.3.3) is employed in this work as we aim to study CEP-dependent processes

from metallic surfaces and nanostructures systematically.

Since the spectral phase of a few-cycle laser pulse changes nonlinearly when

propagating through a dispersive medium, e.g. glass and air, it is crucial to carefully

compensate for any introduced positive dispersion to maintain a Fourier-limited

pulse. Generally, negatively chirped mirror sets [60] (negative dispersion) in combi-

nation with a pair of glass wedges (positive dispersion) are used to effectively control

the second-order dispersion or linear chirp and thus correct for broadening of the

pulse duration. In addition, third-order or higher-order dispersion, which can cause a

significant pulse shape distortion besides temporal broadening, can only be removed

by tailor-made dispersive optical elements, such as dispersive filters [61].

2.1.2 HHG and attosecond pulses

HHG in the XUV and X-ray regime, an up-conversion process to large integer mul-

tiples of the fundamental laser frequency, can be achieved by intense laser pulses via

a highly nonlinear interaction with matter, particularly noble gases. In fact, atto-

second science has emerged since the first observation of HHG in gases in the late

1980s [62, 63]. The three-step (“simple man”) model proposed by P. B. Corkum [64]

provides a basic understanding of HHG by a single atom in a semiclassical picture

and is shown schematically in fig. 2.2 (a). In the first step, a linearly polarized laser

field with a strength comparable to that of the binding potential ionizes the atom

via tunneling through the potential barrier by substantially reducing the binding

potential in one direction at that instant (labeled as 1). The tunneled electron is
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Figure 2.2: Schematic illustration of the HHG process. (a) Semiclassical three-step model for
explaining the principle of HHG. See text for details. (b) Schematic photon energy spectrum
of HHG from a macroscopic volume of gas atoms with distinct regions (low-order harmonics,
plateau and cutoff). (c) Color-coded electron trajectories for different emission times. The dark
blue and dark red trajectories correspond to the highest and lowest return energies, respectively.

now set free to the continuum and is immediately accelerated by the laser field away

from the parent ion (labeled as 2). As the field reverses its direction in the next

quarter of the optical cycle, the electron is driven backward to the atomic core.

Upon returning, the electron recombines with its parent ion (with a low probability)

and emits a highly energetic photon as a result of energy gain during the round trip

in the laser field in addition to the ionization potential of the atom (labeled as 3).

Consequently, the maximum photon energy emitted in the HHG process can easily

lie in the XUV regime and is defined by [64–66]

Ecutoff = ~ωmax = Ip + 3.17Up, (2.2)

where ~ is the reduced Planck’s constant, ω the carrier frequency, Ip the ionization

potential of the atom and Up the ponderomotive potential, i.e. the cycle-averaged

quiver energy gained by a free electron in the laser field. Here, Up = e2E2
0/4mω

2, e

being the electron charge, E0 the laser electric field amplitude and m the electron

mass. The highest kinetic energy is obtained when an electron acquires its highest

return energy in the case where the atom is ionized at a phase ωt = 17◦ [64] after

the field crest rather at the crest. Typically, HHG is generated by Ti:sapphire NIR

lasers with a central wavelength around 750 nm, as also in our case. By focusing the

laser pulses of such central wavelength to peak intensities of ∼5 · 1014 W/cm2, this

yields Up ≈ 26.3 eV. Hence, the cutoff energy Ecutoff of HHG under these conditions

is ∼105 eV when a neon gas target (Ip = 21.6 eV) is used, as given by eqn 2.2.

HHG can also be described successfully by a quantum mechanical treatment in

which the wave function of the electron is composed of a bound part ψg in the

ground state and a continuum (unbound) part ψc in the ionization state [67, 68].

As the electron recollides with its parent ion, the unbound part ψc of its electronic
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wave function, having a fast oscillating phase, can interfere with its bound part ψg.

Such interference results in extremely fast oscillations of the electron density, thus

leading to the generation of high harmornics.

In practice, the high harmonics are produced from a macroscopic volume of gas

atoms, therefore phase matching between the fundamental laser and its harmonics

must be provided in order to achieve efficient HHG from different atoms. This can be

accomplished by a proper adjustment of the gas density (gas pressure), interaction

length and focusing geometry in the experiments. Ultimately, a low high harmonic

conversion efficiency in the range of 10=6 – 10=5 [69, 70] is obtained mainly due to

a small recombination probability [71, 72] and absorption of XUV photons by the

surrounding gas atoms [69, 70, 73, 74]. Nonetheless, the XUV photon flux generated

is still very useful for many spectroscopic applications and is typically on the order of

105 – 108 photons per pulse [35, 73–76]. Fig. 2.2 (b) shows a schematic representation

of a typical HHG spectrum from a macroscopic gas target, which consists of discrete

harmonics with a separation of 2ω. Note that only odd-numbered harmonics are

generated because of the inversion symmetry of the gas target. While the intensities

of the low-order harmonics decrease drastically with increasing harmonic number,

the higher-order harmonics form a plateau with almost constant efficiency. The

highest harmonics in the spectrum are characterized by a rapid drop of intensities

again, which is called the cutoff region.

Since the recombination process takes place within every half laser cycle in the

time domain, a train of subfemtosecond XUV bursts which are significantly shorter in

duration than the fundamental laser are emitted. This strong temporal confinement

is crucial for generating attosecond light pulses, and to date HHG constitutes the

only available attosecond light source in practice. Depending on its emission time

in the process of ionization, the electron in the continuum can recollide on different

trajectories which results in different return energies, as shown by the color change in

fig. 2.2 (c). There are two possible trajectories which result in the same kinetic energy

upon recombination, referred to as the short and long trajectories. Furthermore, the

short (long) trajectory produces a pulse with positive (negative) chirp [77]. The

intrinsic chirp of the attosecond pulses limits the achievable shortest pulse duration

and strongest harmonic yield. However, this can be compensated by filtering out the

cutoff spectral region or using chirped multilayer mirrors [78].

The emergence of few-cycle laser pulses has enabled the generation of isolated

attosecond pulses by choosing the appropriate CEP value in combination with ampli-

tude gating [5]. As seen in fig. 2.3, a single isolated attosecond pulse can be created by

spectrally filtering the cutoff region of the XUV spectrum generated by a cosine-like

few-cycle NIR pulse with ϕ = 0 [5]. This is because the highest energetic photons are

only emitted during a single electron recollision event which is completely localized
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Figure 2.3: Schematic diagrams of the CEP dependence of the XUV emission in the HHG
process. For a cosine-like waveform with CEP ϕ = 0, the highest recollision energy is obtained
by the electron upon returning to its vicinity of the parent ion. The electron trajectory in
this case is marked in dark blue. Such a waveform leads to a continuum in the cutoff region
and a single isolated attosecond pulse can be extracted from the residual harmonics using a
suitable spectral bandpass filter. In contrast, the filtered cutoff emission generated by a sine-
like waveform with ϕ = π/2 creates two attosecond XUV pulses. The electron trajectories
are marked in blue indicating a smaller return energy compared to the case of ϕ = 0 (see
fig. 2.2 (c)). Note that the sine-like waveform introduces a quasiperiodic spectral modulation
in the cutoff region. The gray areas illustrate the time dependence of the ionization rate I(t).

in time. On the other hand, a double attosecond pulse is obtained from the spec-

trally filtered harmonic cutoff generated by a sine-like few-cycle pulse with ϕ = π/2.

This can be easily understood by the fact that the highest return energy can be

acquired from two subsequent half-cycles of the laser field in the case of a sine-like

pulse as it exhibits two field extrema with equal strength, and therefore two elec-

tron recollision events contribute to the cutoff energy. Other schemes [79, 80] have

been developed to obtain isolated attosecond pulses including the promising double

optical gating method [6, 81] that utilizes the high dependence of the HHG process

on the fundamental laser’s ellipticity and two-color fields. This method poses less

stringent demands on the driving laser as it has been demonstrated that even 9 fs

long NIR laser pulses could be used for obtaining isolated attosecond pulses [81]. Iso-

lated attosecond pulses are essentially crucial for nonlinear attosecond experiments

as well as for pump-probe spectroscopy [78].
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2.2 Photoemission from solids

A relevant theoretical background of various photoemission processes is introduced

here, which is useful for understanding the experimental methods presented in this

work. The basics of photoemission and its application in a PEEM for the investiga-

tion of plasmonics and strong-field studies are considered.

2.2.1 Linear photoemission

The photoelectric effect was first discovered by H. Hertz in 1887 when he was ex-

perimenting on the efficiency of a spark-gap generator using ultraviolet (UV) light

illumination [82]. However, a quantitative explanation for the mechanism of the pho-

toelectric effect was only brilliantly given by A. Einstein via the quantization of light

in 1905 [83]. The photoemission process described by A. Einstein is formulated as

Ekin = ~ω − φ− EB. (2.3)

An electron is coerced to leave the surface of a solid after acquiring a kinetic energy

Ekin by absorbing a photon with an energy ~ω (here ~ is the reduced Planck’s

constant and ω is the frequency of light). This only takes place if the photon energy

exceeds the work function φ and the binding energy EB of the material. Usually,

EB = 0 if the electron is emitted from the Fermi level to the vacuum level near

surfaces. Eqn 2.3 refers to a direct process of one-photon photoemission without

involving nonlinear effects. Generally, the work function of most solid materials is in

the range of 4 eV – 6 eV [84]. With UV light illumination whose photon energies are

slightly above the work function of these materials, the electrons are emitted in a

process called threshold photoemission. In PEEM imaging, a mercury (Hg) discharge

lamp with a cutoff energy of 4.9 eV is typically used to achieve this purpose.

It was later recognized that such electron emission carries very useful information

about the electronic structure and properties of solids and hence different theoretical

models have been developed to understand and explain these complex photoemission

processes [85–87]. Nevertheless, the three-step model2 in photoemission is the most

common theory to describe the photoemission process intuitively yet successfully

despite its oversimplification [87–89]. The first step is described by Fermi’s golden

rule which states that an electron in its initial state |ψi〉 can be excited to the final

2The three-step model mentioned here is not equivalent to the three-step model in HHG.
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Figure 2.4: Schematic diagram of linear photoemission in a solid. Electrons with kinetic
energies Ekin can escape into the vacuum by absorption of photons with energies ~ω according
to eqn 2.3. The Fermi level EF is between the conduction band and valence band (or within
the conduction band if it is partially filled, as for metals) and is separated by work function φ
from the vacuum level Evac. The electrons in the valence band and core levels with binding
energies EB can be excited to the vacuum by higher photon energies such as X-ray. Secondary
electron cascades formed by electron-electron interactions typically have a higher yield in the
spectrum.

state |ψf〉 by absorption of a photon of an energy of ~ω. The transition probability

per unit time of such excitation is expressed by

Γi→f =
2π

~
|〈ψf |H ′|ψi〉|2 δ(Ef − Ei − ~ω). (2.4)

Here, H ′ represents the perturbing Hamiltonian of the ionizing field and the δ func-

tion ensures energy conservation during the optical transition. The second step is

followed by the transport of the electron through the solid to the surface and finally

the penetration through the surface into the vacuum. There is another more accurate

model which is called one-step model since it takes all effects, e.g. surface-specific

effects, into account [90]. This model considers a direct transition from the initial

Bloch state into a free propagating state in the vacuum by penetrating the solid.

As shown in eqn 2.3, the photoemission technique also provides the possibility to

gain access to the valence bands and core levels of the materials (when EB 6= 0) using

higher energy photons. The direct determination of the band structure via valence

band electrons was only made possible with the advent of angle-resolved photo-
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emission spectroscopy. X-ray photoelectron spectroscopy using mainly synchrotron

radiation has been very useful to reveal deeply bound states of a broad range of

materials by detecting primary electrons for element-specific studies. On the other

hand, secondary (low-energy) electrons created in Auger processes and inelastic elec-

tron scattering are suitable for X-ray magnetic circular dichroism (XMCD) domain

imaging with PEEM. This is because the secondary electron yield is proportional

to the X-ray absorption cross-section which is sensitive to dichroism [91]. Fig. 2.4

depicts schematically how the energy-level diagram and the photoelectron spectrum

relate to each other as a summary for the linear photoemission discussed in this

subsection.

2.2.2 Nonlinear photoemission

The realization of cutting-edge femtosecond laser systems with high peak intensities

in the last decades has prompted experimental studies of nonlinear photoemission

from solid surfaces. Utilizing the field enhancement at nanostructures arising from

surface plasmon excitation has brought new aspects to nonlinear phenomena as the

electromagnetic field can be confined into a nanoscale volume [12, 33, 92, 93]. For

a nonlinear process, the photoelectron yield no longer scales linearly with the in-

tensity of the incident light. Moreover, electrons can be emitted from the surface

even if the photon energy is smaller than the work function of the material (see

subsection 2.2.1). The relevant nonlinear photoemission mechanisms including mul-

tiphoton photoemission and strong-field effects concerning this work, such as ATP

and light-induced tunneling, will be reviewed.

The aforementioned photoemission mechanisms from a solid depend on the in-

tensity of the laser light and work function φ of the solid material. The different

regimes of photoemission can be classified and described successfully by the ubiq-

uitous Keldysh theory albeit it was originally introduced for characterizing the ion-

ization of atoms [94, 95]. The Keldysh parameter γ, also known as the adiabaticity

parameter, is defined as

γ =

√
φ

2Up

=
ω
√

2meφ

eE0

. (2.5)

Here, φ is the work function which can be replaced by the ionization potential Ip

if an atomic system is considered. Up is the ponderomotive potential energy, see

subsection 2.1.2 for its definition. ω is the angular frequency of the laser, me the

electron mass, e the electron charge and E0 the electric field amplitude.

For lower laser intensities (γ � 1), multiphoton photoemission predominantly

takes places since the laser field is not sufficient to overcome the binding potential

of the bound electron. If the photon energy is below the work function, the photo-
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emission process requires n photons to be absorbed quasi-simultaneously to free an

electron into the continuum state (see fig. 2.5 (a)). Hence the kinetic energy Ekin of

an electron released through a n-photon photoemission process can be written as:

Ekin = n~ω − φ. (2.6)

The photoemission rate P (I) = σnI
n is obtained by summing the transitions over

all possible intermediate states; here σn is the proportionality constant related to

the matrix elements, n the number of photons and I the laser intensity. This nonlin-

ear process can accurately be described by n-th order perturbation theory since the

interaction between light and solid is predominantly non-adiabatic and is governed

by the intensity envelope of the laser light. Resonant multiphoton photoemission

occurs when at least one real intermediate state is involved during the transition.

Under such condition, the photoemission probability can be greatly enhanced and

the lifetime of intermediate states can be revealed using time-resolved two-photon

photoemission spectroscopy. On the other hand, non-resonant multiphoton photo-

emission occurs via short-lived virtual intermediate states [96].

Moving towards higher intensity than that needed for multiphoton photoemis-

sion, ATP starts to come into play where more photons are absorbed than the mini-

mum required number (n > nmin), as illustrated in fig. 2.5 (b). ATP is characterized

by non-perturbative effects. Importantly, ATP spectra from flat metal surfaces ex-

hibit a series of peaks spaced by the photon energy ~ω [97–101] which have been

observed before in atomic systems [102, 103]. A more direct evidence of ATP was

shown by M. Schenk et al. [104] where a sharp metal nanotip was used. Distinct peak

features separated by ∼1.5 eV (corresponding to the photon energy) and a photon

order of up to 9 were measured in the spectra. It is worthwhile to mention that

suppression of lowest order peaks and peak shifting to lower energies with increased

laser intensities in the ATP mark the onset of strong-field effects [104].

For very high peak intensities around 1014 W/cm2 – 1017 W/cm2 (γ � 1) at a

wavelength of 800 nm, a tunneling regime (also termed as optical field emission)

is reached. As opposed to the two cases before, an electron can tunnel out from

the metal surface because the optical field is large enough to overcome its binding

potential (see fig. 2.5 (c)). The process is known to be adiabatic since the electron

interacts and follows the field evolution instantaneously. The photoemission rate

P (γ) for γ � 1 in the presence of static electric fields [94, 95] is given as:

P (γ) ∝ exp

(
−4
√

2mφ3/2

3|e|~E0

)
. (2.7)
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Figure 2.5: Potential energy diagrams of different photoemission mechanisms from a metal sur-
face. (a) Multiphoton photoemission: multiple photons (red) are absorbed quasi-simultaneously
by the metal surface to emit one electron (blue) over the potential barrier (dotted black line).
The potential is only weakly perturbed (black line) by the light field. (b) ATP: with increased
laser intensity, more photons are absorbed than necessary by the metal surface to set one
electron free. The potential is more perturbed by the light field compared to the case in (a).
(c) Tunneling regime: the potential is substantially distorted by the strong applied field and
the electron can tunnel out from the Fermi level into the vacuum. This regime can be reached
by either a very strong peak electric field or a low laser frequency (see eqn 2.5).

In general, most bulk metal surfaces or metallic thin films have a laser damage

threshold on the order of 1012 W/cm2 – 1013 W/cm2 [105, 106], which is close to

γ ≈ 1. Metallic nanostructures can surpass this limit easily and reach the tunneling

regime, i.e. γ � 1, owing to their achievable high plasmonic field enhancement for

obtaining very strong optical fields (or very high peak intensities). F. Schertz et

al. obtained γ ≈ 0.2 from a strongly coupled plasmonic system which has a sub-

nanometer gap using a NIR laser with a low peak intensity of ∼1010 W/cm2 without

sample damage [107]. Other possible emission mechanisms such as thermally-assisted

photoemission [108] and field emission [109] can mutually exist together with the

aforementioned nonlinear processes, which may further complicate the interpretation

of photoemission measurements.

2.3 Plasmonics

Plasmonics, which explores the confinement of electromagnetic fields in subwave-

length dimension, is a major area of the rapidly-evolving field of nanophotonics. By

definition, surface plasmons are collective electron excitations at metal-dielectric in-

terfaces appearing as localized field enhancements (localized surface plasmons, LSPs)

on isolated nanoscaled metal structures or traveling plasmon excitations (surface

plasmon polaritons, SPPs), for instance, in plasmonic waveguides upon light exci-
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tation. In this section, a new experimental concept using near-field PEEM to study

LSPs with both attosecond time and nanometer spatial resolution will be presented.

2.3.1 SPPs and LSPs

Theoretically, propagating SPPs are an analytical solution of Maxwell’s equations

considering the boundary conditions at the metal-dielectric interface. These SPPs,

inherently bound to an interface, can only be excited by light under the condition

in which the wavevector of the light is matched to the wavevector of the SPP. As

depicted in fig. 2.6 (a), these propagating electromagnetic waves are of transverse

magnetic polarization in nature, where their electric fields are along the z-direction

at the surface and decay exponentially into the metal (z < 0) as well as into the

dielectric (z > 0). Such exponentially decaying z-components of the electric field are

called evanescent waves. Note that the penetration depth inside the dielectric δd is

longer than the penetration depth inside the metal δm [110] owing to the negative

real part of the metal’s dielectric constant (or relative permittivity) ε. The dispersion

relation of SPPs propagating at the dielectric-metal interface is expressed as

kSPP(ω) = k0

√
εm(ω) · εd(ω)

εm(ω) + εd(ω)
, (2.8)

where k0 is the wavevector in vacuum, and εm(ω) and εd(ω) are the dielectric func-

tions of the metal and the dielectric, respectively. To satisfy the wavevector matching

(or phase matching) between the excitation light and the SPP, a grating or a prism

coupler [111], known as the most common methods, can be used to provide the

required wavevector component for coupling the light to a SPP. To date, numerous

works employing plasmonic waveguides (e.g. metal grooves, metal-insulator-metal

slabs, semiconductor nanowires, elementary logic gates, etc.) for propagating SPP

applications have been studied [112], aiming ultimately to use light to overcome the

speed limit of conventional electronics for future-generation integrated circuits. This

work rather focuses on LSPs, which will be introduced below, attempting to reveal

their subfemtosecond dynamics utilizing a PEEM.

On the other hand, non-propagating surface excitations of small, subwavelength

nanosystems coupled directly to the light without wavevector matching are referred

to as LSPs. Fig. 2.6 (b) illustrates the displacement of the conduction electron cloud

relative to the positive ions driven by the oscillating external electromagnetic field.

The electrons are then accelerated towards the parent ions due to the restoring

force exerted by the electric field built up between them. Such oscillating motion (or

resonance) results in strong light scattering, manifested by intense surface plasmon
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Figure 2.6: Sketches of SPPs and LSPs. (a) Propagating SPP at a metal-dielectric interface
with its collective charge oscillation (+ and −). The electric fields (black arrows) are normal to
the surface and decay exponentially along the direction of SPP propagation (kSPP). Red lines
show the envelopes of the electric fields. (b) LSP excited by an oscillating external light field
(red line and black arrows). The light field displaces the free electrons on the metal sphere,
which are later driven back to the positive ions due to the restoring force, resulting in an
oscillating motion. (c) Radiative and non-radiative decay channels of the surface plasmons.
A plasmon can decay radiatively by emitting a photon with an energy of ~ω. Alternatively,
it decays non-radiatively by creating an electron-hole pair via either an intraband transition
within the sp conduction band (CB) or an interband transition from a lower-lying d-band to
above of the Fermi level EF.

absorption and enhancement of localized electromagnetic fields. For a spherical par-

ticle of radius R � λ, i.e. much smaller than the excitation wavelength, a simple

quasi-static approximation can be used to analytically calculate the electric fields

inside and outside of the sphere. By solving the electrostatic problem, the fields

inside, Ein, and outside, Eout, of the particle, respectively, are evaluated to be [111]

Ein =
3εa(ω)

εp(ω) + 2εa(ω)
E0 (2.9)

Eout = E0 +
3n(n · p)− p

4πε0εa(ω)

1

r3
. (2.10)

Here, n is the normal vector pointing away from the center of the sphere, r is

the distance from the center, ε0 is the electric permittivity of vacuum and εp(ω)

and εa(ω) are the dielectric functions of the particle and of the ambient medium,

respectively. The field of the oscillating wave is assumed to be spatially constant

over the particle volume and induces a dipole moment p proportional to the applied

field amplitude E0. Hence, the resulting polarizability α(ω) of the subwavelength

particle in response to the electric field [111, 113] is expressed as

α(ω) = 4πR3 εp(ω)− εa(ω)

εp(ω) + 2εa(ω)
, (2.11)
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where R is the radius of the particle. A resonant enhancement can easily be ob-

tained when |εp(ω) + 2εa(ω)| is a minimum. If Re[εp(ω)] = −2εa(ω), the Fröhlich

condition is satisfied and the resonance is due to a dipole surface plasmon at the

metallic nanoparticle [111]. The quasi-static approximation is only valid for very

small spheres or ellipsoids with dimensions below 100 nm. For the case of larger par-

ticles above 100 nm, the significant field variation of the incoming light wave needs

to be taken into account. Mie theory [114] proves to provide a successful analytical

solution as it considers the expansion of the internal and scattered fields into vector

spherical harmonics to solve the problem for larger particles. Higher order modes, i.e.

multipoles, can be excited which lead to red shift and broad resonance for increasing

particle size. For plasmonic systems of arbitrary and complex geometries, numerical

methods such as finite element or finite-difference time-domain are preferred over

analytical calculations to obtain the field distributions.

The plasmon resonance is highly sensitive to the size, size distribution and geom-

etry of the nanosystems, type of materials as well as the dielectric properties of the

surrounding environment. Gold, being a chemically stable metal, has an optical re-

sponse in the visible and NIR spectral region. This makes gold an excellent plasmonic

material for fabricating the nanostructures used in this work. Besides single isolated

nanostructures such as gold triangles, coupled nanosystems which can achieve a

much higher field enhancement, e.g. gold nanoparticles on a gold plane (NPOP) and

gold surface roughness, are being explored in this work. Typically, plasmon oscilla-

tions have a lifetime of 1 fs – 100 fs [115–117]. Fig. 2.6 (c) details the possible decay

channels of the plasmon. The first damping process is characterized by a re-emission

of photons to the far field (radiative decay, also referred to as bright modes), par-

ticularly for larger nanostructures, and is being linked to the particle’s scattering

cross-section. A second relaxation pathway are inelastic scattering processes which

result in the creation of electron-hole pairs via intra- or interband excitations and

the thermalization of the electron gas (non-radiative decay, also referred to as dark

modes). The non-radiative process is dependent on the band structure of the nano-

structure. Finally, thermalization of the electrons from the plasmon decay with the

phonons in the lattice and energy transfer to the surrounding environment through

phonon-phonon scattering take place on the picosecond timescale [116, 118].

Far-field optical spectroscopy can be used exclusively to detect bright modes by

measuring the scattering and extinction spectra of the nanostructures. Bright modes

are strong dipole moments that can couple very efficiently to the far field and decay

radiatively under plane wave excitation. Dark modes, on the other hand, are pure

near-field resonances and their dipole moments oscillate out of phase and therefore

vanish in the far field. Under certain circumstances, dark modes can be excited if

the symmetry of the system is broken by employing asymmetric excitations, e.g.
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tilted plane wave excitation (grazing incidence illumination) [119] or a localized

dipole emitter [120]. Non-radiative dark modes can therefore be probed by several

near-field measurement techniques such as SNOM [121, 122], electron energy loss

spectroscopy [123, 124], photon-induced near-field electron microscopy [125, 126] and

PEEM [127, 128]. PEEM, being the technique used in this work, is capable of imaging

the near-field intensity distribution of plasmonic fields directly and noninvasively

with ultrahigh spatiotemporal resolution. The concept and perspectives of utilizing

a PEEM for investigating ultrafast plasmonics, the topics of this work, are elaborated

on in the following subsection.

2.3.2 Atto-PEEM concept for ultrafast plasmonics

Real-time observation of nanoplasmonic fields with femtosecond temporal resolu-

tion, as given by the duration of the probe pulses, has been realized for more than

a decade. One common experimental method to achieve this goal is using interfero-

metric time-resolved PEEM [29, 129, 130] in which the detected photocurrent j(r) is

highly sensitive to the plasmonic field strength due to the nonlinear photoemission

process (e.g. j(r) ∝
∣∣E4
∣∣ in the case of two-photon photoemission). Propagation,

build-up and decay of SPPs could be observed in nanoplasmonic vortices [32]. Fur-

thermore, coherent spatiotemporal control of optical near-field distributions by exci-

tation with polarization-shaped femtosecond light pulses has also been shown [30]. A

different technique has been demonstrated by the group of A. H. Zewail, where they

imaged evanescent electromagnetic fields from carbon nanotubes using high-energy

(200 keV) femtosecond electron pulses. The kinetic energy of these electron pulses

is modulated when passing through the near fields, thus spatiotemporal mapping

could be achieved by using an energy-resolved TEM [125].

Intrinsically, LSPs could undergo ultrafast dynamics as short as a few hundred

attoseconds as given by the inverse broad spectral bandwidth of the plasmonic res-

onances when excited by few-cycle femtosecond laser pulses [117, 131]. In 2007,

M. I. Stockman et al. [117] proposed an approach which combines energy-resolved

PEEM and attosecond streaking spectroscopy [38, 39, 132] to detect the plasmon

dynamics with nanometer spatial and attosecond temporal resolutions in an optical-

pump/XUV-probe scheme. This technique is dubbed “atto-PEEM” and is illustrated

in fig. 2.7 (a). The underlying idea is to use a waveform-controlled (or CEP-resolved)

few-cycle optical pulse (pump pulse) to resonantly excite the nanoplasmonic fields

on a nanostructured metal surface, while a synchronized isolated attosecond XUV

pulse (probe pulse) with a variable time delay is then sent to the system to probe the

fields. The XUV pulse emits valence band electrons from the surface whose kinetic

energies are high enough (due to the high photon energy of the XUV pulse) to sep-
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Figure 2.7: Schematic illustration of the atto-PEEM concept and attosecond nanoplasmonic
fields. (a) Principle and concept of atto-PEEM: local plasmonic fields are resonantly excited in
a nanostructured sample by an incident NIR laser pulse. The sychronized XUV pulse which is
produced in a gas target via HHG by the same NIR pulse is delayed and sent to the nanosystem
for probing the plasmonic fields. The local near field is enhanced with respect to the NIR field. A
pellicle bandpass filter is used to block the central portion of the NIR beam and low harmonics
but allow the XUV to pass through. Both the NIR and XUV pulses propagate collinearly and
are focused onto the sample by a mirror-delay stage. Upon XUV excitation, electrons are
photoemitted from the sample surface and subsequently streaked in the nanoplasmonic fields.
These electrons are then extracted and imaged by a PEEM equipped with a ToF spectrometer
via a delayline detector (DLD). The valence band (VB) electrons which are of interest can be
energy-filtered from the inelastically scattered secondary electrons. (b) A simulated random
rough silver surface consists of a grid of 4 nm×4 nm×4 nm silver cubes. (c) A three-dimensional
map displaying the energy shift ∆EXUV caused by acceleration and deceleration of electrons in
the nanoplasmonic fields. (d)-(e) Topographic maps showing the energy shift (color-coded) for
different instances (or time delays). The spatial distributions of energy shift ∆EXUV showing
hot-spot dynamics for varying time delays; ∆tXUV = 16.68 fs in (c), ∆tXUV = 16.87 fs in (d)
and ∆tXUV = 17.25 fs in (e). Figure taken from [117].

arate them from the background of multiphoton photoemission and ATP induced

by the optical pulse. Photoelectron streaking of the liberated fast valence band elec-

trons in the plasmonic near fields results in an increase or decrease of kinetic energy,

which can then be spatially and spectroscopically detected in PEEM.

Unlike the classical attosecond streaking, the fast XUV-emitted photoelectrons

experience an instantaneous acceleration and escape from the nanoplasmonic field

region with negligible influence of the optical field. In this instantaneous regime,

the electron escape time τe is much shorter than the optical field oscillation period

T (τe � T ) since the plasmonic field is localized within a few nanometers. Hence,

the final kinetic energy EXUV of a photoelectron is related to the instantaneous

local electrostatic potential V (r, tXUV) at the instant of the electron’s emission tXUV
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(precisely defined by the incidence time of the XUV pulse) and the emission position

r via the following equation [117]:

EXUV(r, tXUV) = ~ωXUV − φ+ eV (r, tXUV), (2.12)

where ~ is the reduced Planck’s constant, ωXUV the angular frequency of the XUV

pulse, φ the metal work function and e the electron charge. Fig. 2.7 (b)-(e) show the

simulation results of M. I. Stockman et al. using a random rough silver surface with

a maximum field enhancement factor of ∼30. In their calculations, a 5.5 fs few-cycle

NIR pulse of 800 nm and a 170 as XUV pulse at 93 eV were employed. An energy

shift up to ∼10 eV was obtained for a moderate NIR laser intensity of 1010 W/cm2,

as shown in fig. 2.7 (c). These hot-spot dynamics which occurs on an attosecond

timescale (e.g. 200 as – 400 as) can be measured via the time delay between the

pump and probe pulses (see fig. 2.7 (c)-(e)).

A different approach to access nanoplasmonic fields with attosecond time resolu-

tion was proposed by A. Mikkelsen et al. [35], which is detecting the lateral changes

in electron density at the surface induced by the nanoplasmonic fields by taking

advantage of the abundant secondary electrons released upon XUV excitation. As

opposed to the original atto-PEEM concept, they suggested using a single optical

pulse and a synchronized attosecond XUV pulse train in a pump-probe scheme.

However, the concept of atto-PEEM using secondary electrons is indirect and the

measurable nanoplasmonic dynamics can be limited by the slow secondary electrons

to a temporal resolution close to ∼1 fs [36, 133].

E. Skopalová et al. [134] later theoretically showed that a reconstruction of the

nanoplasmonic fields is feasible from supported gold nanoantennas when spatial av-

eraging is applied at the emission point in the classical oscillatory regime known from

gas-phase atomic targets. Further theoretical studies on nanoplasmonic streaking of

single metallic nanospheres [135–137] demonstrated that the streaking behavior is

highly dependent on the emission position and particle size. So far, nanoplasmonic

streaking utilizing atto-PEEM has not been realized because of the experimental

challenges of working with low-repetition-rate attosecond XUV sources [34, 35, 138].

The main issue is a severely limited photoelectron signal yield, since only a low XUV

intensity can be used in order to avoid space charge effects and maintain high spa-

tial resolution (see section 4.3). Using these XUV sources, it is therefore nearly

impossible to realize reasonable acquisition times for the pump-probe experiments

considering the experimental stability. Due to these reasons, only a recent work on

nanoplasmonic streaking in the oscillatory regime, performed on a gold nanotip with-

out spatial resolution [139] has succeeded so far. Their experimental results showed
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that the near fields at the tip were shifted by ∼200 as with respect to the incoming

laser field for an intensity below the onset of nonlinear effects.



Chapter 3
Experimental setup

In essence, this work presents experimental investigations of ultrafast dynamics from

metallic nanostructures and surfaces with spatial and energy resolution using ultra-

short laser pulses as short as a few femtoseconds to several hundred attoseconds. The

experiments described in this work require a versatile and complex setup involving

many different techniques. The crucial detection instrument for probing ultrafast

dynamics, the energy-resolved PEEM, and its working principle are described. Few-

cycle NIR laser pulses and HHG from 1 kHz and 10 kHz laser systems are utilized

here as the light sources for light-matter interactions. The methods and techniques

of the few-cycle laser sources and XUV generation are given in this chapter. In

addition, the combination of the energy-resolved PEEM with a single-shot stereo-

graphic above-threshold ioninzation (ATI) phase meter for studying CEP control

in plasmonic nanostructures and at surfaces is outlined. Finally, the methods for

nanostructure fabrication are presented.

3.1 PEEM

PEEM has been a powerful tool for studying surface science since its invention in the

early 1930s [140]. It utilizes the photoelectric effect to image the lateral distribution

of electrons emitted from the surface by the absorption of photons with an energy

that exceeds the sample’s work function. The excitation sources are usually UV

light, synchrotron radiation, and lasers. The spatial resolution of PEEM is typically

a few nanometers to a few tens of nanometers, owed to the fact that the de-Broglie

wavelength of electrons is in the nanometer range at an energy of a few electronvolts.

The spatial resolution is essentially only limited by the aberrations due to electron

optics and excitation sources.

23
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Basically, a PEEM consists of an imaging electron lens system, a magnification

unit and an image acquisition device. Besides electrostatic tetrode lenses, magne-

tostatic triode lenses, which have lower aberration, are also used in commercially

available PEEM instruments. The electrostatic lens systems are protected from stray

magnetic fields by a closed µ-metal shielding around the PEEM. The PEEM used

in this work is a ToF-PEEM (FOCUS IS-PEEM) based on electrostatic lenses from

FOCUS GmbH. It has a maximum extractor voltage of 30 kV and we use the stan-

dard 65◦ incidence of illumination to the normal of the sample surface for all the

experiments described in this work. The ToF-PEEM has an integral sample stage

with piezoelectrically driven sample positioning which effectively improves the imag-

ing stability by decreasing vibration and sample drift.

Fig. 3.1 depicts a schematic diagram of the electrostatic lens system of the ToF-

PEEM. It starts with the sample stage which also forms the cathode of the tetrode

objective lens besides the extractor, focus and column electrode. The sample dis-

tance to the extractor is fixed at 2.8 mm, which is rather long in comparison to the

typical distance of 1.8 mm, since our ToF-PEEM has a maximum extractor voltage

of 30 kV. Sample quality such as a clean and smooth sample surface with a good

conductivity is essential to achieve imaging with high spatial resolution. Otherwise,

sample charging due to excessive electrons in the cathode can arise. In addition, the

high extractor field applied on the sample can induce cold field emission at surface

roughness sites, i.e. sharp edges or sharp tips, due to the strongly enhanced local

electrostatic field. These factors can lead to strong and non-uniform variations of

the photocurrent, thus resulting in a reduction of spatial resolution.
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The working principle of ToF-PEEM imaging is illustrated in the following. The

objective lens images the photoelectrons from the sample onto the first image plane

with approximately 40× magnification. A contrast aperture of a variable diameter

between 30µm and 1500 µm is placed in the back focal plane of the objective lens.

Using different sizes of the contrast aperture, the interplay between spatial resolution

and image intensity is optimized. An octupole stigmator/deflector for correcting

astigmatism and alignment errors of the optical axis is positioned right behind the

contrast aperture. The intermediate image is then magnified and focused by two

subsequent projective lenses onto the screen. This telescope configuration allows a

field of view adjustment from 1 mm down to 2µm. The highest magnification of

∼10 000× is achieved by producing two intermediate images before the imaging

assembly. In the k-space imaging mode, the angular distribution of electrons from

the sample is imaged onto the back focal plane (also called diffraction plane) of the

objective lens and consequently projected onto the screen by an additional transfer

lens. A second stigmator/deflector situated before the first image plane is used to

improve the angular resolution of the electrons. A continuously variable iris aperture

right at the first image plane can be used for micro-spot analysis in the k-space

imaging mode or contrast enhancement in the real space imaging mode. A drift

extension is added inside the PEEM after the second projective lens for time- and

energy-resolved imaging. A complementary IEF, which is a high-pass retarding field

analyzer, can also be used for energy-filtered imaging particularly when applying

high intensity. The first imaging assembly consists of a microchannel plate (MCP)

and a fluorescence screen made of a YAG single-crystal with aluminum coating,

which is imaged by a charge-coupled device (CCD) camera (CoolSNAP fx, Roper

Scientific Photometrics). Alternatively, a delayline detector (DLD) can be used for

imaging not only the spatial distribution of the electrons but also recording their

kinetic energies. Both detectors are integrated in a straight column in the PEEM.

3.1.1 ToF spectrometer

In this subsection, the DLD (Model 3636, Surface Concept GmbH) in combination

with the usage of a drift tube as a ToF spectrometer in the PEEM is described in

detail. More comprehensive descriptions on the working principle and applications

of a DLD can be found in [141–144]. In short, a DLD consists of MCPs and two

lithographically manufactured meander-like wire grids. These wire grids are called

delaylines; one is placed below the other, rotated by 90◦, closely together but in-

sulated. The MCPs, as a position sensitive electron multiplier, first amplify the

incoming electrons by a factor of at least 107 [144]. These secondary electron clouds

travel within picoseconds from the MCPs onto the delayline anodes and induce elec-



26 Chapter 3. Experimental setup

TDC 

ldriftlcolumn

Drift tube
Udrift

S
a

m
p

le

-e v

Delayline x

Delayline y

PC

FA+CFD
DLD

 
CFD

 MCP

ty1

tx2

ty2

tx1

0 Time

PD
Start

Stops

(Dt ,Dt ,t )x y sum

(x,y,t )ToF

ty1

ty2

tx1

tx2

FPGA 

Figure 3.2: Working principle of a ToF spectrometer via a DLD. A photoemitted electron
leaves the sample surface upon light excitation with a characteristic velocity, v, accelerates in
the PEEM column and retards in the drift tube. The electron then induces an electrical pulse
after passing the MCP that travels towards the DLD. Four pulses are generated on the delayline
x and y for each incoming photoelectron, later converted into precise time signals by a fast
amplifier (FA) and a constant fraction discriminator (CFD). The same light pulse detected by
a photodiode (PD) starts the clock and acts as a reference for the detected electron which
stops the time measurement. The accurate time measurement is processed by a TDC and a
field-programmable gate array (FPGA) and read by a PC.

trical pulses inside the delayline wires via image charge coupling. The traveling time

of these pulses to the wire ends depends linearly on the respective position on the

wire frame where the electron cloud hits the wire. Using an external start trigger

signal, the DLD therefore enables absolute time measurements (with respect to the

start trigger) in addition to the lateral position measurements. Our DLD has a tem-

poral response width of ∼220 ps FWHM and is able of measuring a count rate of up

to 3 MHz. It should be noted that a DLD is a single-electron counting device, which

is advantageous for efficient low count rate detection.

Owing to its capability of simultaneously acquiring lateral positions of electrons

and their corresponding kinetic energies, microspectroscopic imaging and energy-

selective imaging can be realized when it is used with a PEEM. The detection

scheme of a ToF spectrometer by means of a DLD is outlined schematically in

fig. 3.2. The impinging light pulse releases an electron from the sample. This electron

is accelerated by a voltage over a length lcolumn between the sample and the start

of the drift tube. The same light pulse is used as a start trigger to start the time

measurement. This can be done via a photodiode which converts the light pulse into

a pulse of photocurrent and then feeds it into a constant fraction discriminator to

avoid false threshold triggering. Due to the photoelectric effect, the electron leaves

the sample surface with a certain kinetic energy, Ekin, when the photon energy

exceeds the sample’s work function. Assuming a direct photoemission process, the
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kinetic energy is given by the initial state of the electron. The electron is retarded to

a lower drift potential, Udrift, in order to introduce sufficient temporal dispersion in

the drift tube. Hence, the electron propagates with its characteristic velocity v that

is determined by its kinetic energy after leaving the surface and the drift potential.

In other words, the electron carries an energy of eUdrift + Ekin inside the drift tube

of length ldrift, e being the elementary charge. At the end of the drift path, the

electrons and their arrival time with respect to the start trigger are detected by the

DLD. One should also take into account the work function difference ∆φ between

the sample’s and drift tube’s work function. Therefore the velocity v experienced by

an electron in the drift tube is given simply by the following equation:

1

2
mev

2 = eUdrift + Ekin + ∆φ, (3.1)

me being the electron’s mass. Solving eqn 3.1 for the velocity v and using v = dz/ dt

(z being the position) yields

dt

dz
=

√
me

2e
·
(
Udrift +

Ekin + ∆φ

e

)− 1
2

. (3.2)

We obtain the ToF, tToF, by integrating eqn 3.2:

tToF =

√
me

2e

∫ zd

z0

(
Udrift +

Ekin + ∆φ

e

)− 1
2

dz, (3.3)

where z0 − zd = ldrift. Eqn 3.1 finally yields a linear relation between the ToF and

kinetic energy by a first-order Taylor approximation of eqn 3.3 [145]:

Ekin + ∆φ ≈ 2

√
me

2e
U

3
2

driftldrifttToF. (3.4)

The operation of a DLD is illustrated in fig. 3.2. The induced electrical pulses

travel with a velocity v towards both ends of the delayline x. At the end of the

delayline, a time-to-digital converter (TDC) detects the arrival time of the pulses.

The measured time t = t0 + x/v contains the information about the position x

where the electron hits the delayline. Here, t0 is a time offset (see section below).

The position x can then be calculated by the difference ∆tx = tx1 − tx2 between the

arrival times of both pulses, using an inversion algorithm which takes into account

the geometrical and electrical properties of the delayline. Likewise, the position y

can be determined by the time difference ∆ty = ty1 − ty2 within delayline y. With
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reference to an external clock, given by the start trigger pulses, the ToF of the

electrons can be calculated by the sum of the measured times:

tsum = tx1 + tx2 = 2t0 +
x1

v
+
x2

v
= 2t0 +

Ldelay

v
, (3.5)

where Ldelay is the total length of the delayline x. It is possible to sum only tx1 and

tx2 or ty1 and ty2 . Since both x and y sums carry the same temporal information, the

total sum of all four time measurements, tx1 , tx2 , ty1 and ty2 can be used for obtaining

the ToF with a better precision. From this, the kinetic energy of the electrons can be

obtained using eqn 3.4. For accurate time measurements, a fast data acquisition unit

comprised of a fast amplifier and a constant fraction discriminator is used to process

the pulses before the TDC, which measures the time between the start trigger pulse

and the four stop pulses at the ends of both delaylines. For each detected electron, a

field-programmable gate array computes the image coordinates (x, y) from the time

differences as well as the ToF (tToF) from the time sums and transfers the data as

(x, y, tToF)-tuples to a personal computer (PC). A software is then used to calculate

spatial and temporal histograms from all electron counts (images or ToF spectra,

respectively).

3.1.2 Energy calibration

Absolute spectral measurements are crucial in acquiring the spectroscopic informa-

tion of photoemission processes from surfaces accurately. Therefore, the ToF spec-

trometer used in this work has to be properly calibrated to exclude any systematic

errors. In principle, there are three methods to perform an energy calibration of a

ToF spectrometer:

First, a well-studied sample of a known spectrum, such as the electronic density

of states, can be used as a reference to calibrate a ToF spectrometer for converting

a ToF spectrum into an energy spectrum. Second, a photon peak can be used to

determine the time offset, a time constant related to cable lengths, electron propa-

gation times and experimental geometry. In general, the time offset t0 is related to

the ToF, tToF, and time sum, tsum, as follows:

tsum = t0 + tToF. (3.6)

The photon peak can be detected at the DLD by using the scattered light from

the sample surface [146]. Since the photons travel with the speed of light, they

arrive earlier at the detector than the electrons passing through the drift tube. In

particular, t0 is the time between the start trigger signal and the incidence of the
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light pulse on the sample. Ultimately, this time offset t0 can be determined using

the following equation:

t0 = tphot −
lcolumn + ldrift

c
, (3.7)

where tphot is the time when the photons hit the detector, lcolumn is the distance

between the sample surface and the start of the drift tube1, ldrift is the length of the

drift tube and c is the speed of light. lcolumn and ldrift can be obtained easily by the

known geometry of the PEEM. The ToF spectrum can then be converted to kinetic

energy by using eqns 3.4 and 3.6 and taking into account the time offset t0 given by

eqn 3.7. Third, a bias voltage Ubias can be applied to the sample and scanned over

a desired range while recording the position of the ToF peak (or any other point of

interest within the ToF spectrum) as a function of the kinetic energy [146–148]. Here,

the kinetic energy of the photoelectrons is given by Ekin = Ephot−φ+eUbias, Ephot and

φ being the photon energy and the sample’s work function, respectively. This method

is more precise, since it considers the actual electric potential and trajectories of the

electrons inside the PEEM. It should be noted that this calibration is only valid

for the corresponding PEEM parameter settings and changing the voltages of the

PEEM lens system will therefore require a new calibration. An example of such an

energy calibration carried out with a pulsed diode laser of a central wavelength of

405 nm and a pulse duration of 60 ps is demonstrated in fig. 3.3. The measurement

was performed on a polycrystalline gold surface under an extractor voltage of 22 kV

and using a drift tube voltage of 40 V. In this case, the sample potential was scanned

over a range of 3 V with a step size of 0.6 V. Fig. 3.3 (a) shows the half-maximum

of the low-energy edge from the ToF spectrum as a function of the kinetic energy,

yielding a calibration curve which then can be used for converting an arbitrary

ToF spectrum into energy. The low-energy edge of the ToF spectrum is chosen as a

reference point for the energy calibration, since it denotes electrons with a kinetic

energy of 0 eV [149]. This method is suitable for absolute energy calibration if the

spectrum is lacking well-known features for spectral referencing, such as the Fermi

edge or other absorption edges. For the narrow energy range used here (3 eV), a

linear fit is suitable to approximate the relation between ToF and energy, as shown

in fig. 3.3 (a). Using the fitted slope (=1.48 eV/ns) and intercept (23.41 ns), the ToF

spectrum can be converted into energy as displayed in fig. 3.3 (b). Nevertheless, for

1Note that the drift time in the column is essentially energy-independent for electrons if an
excitation source of low photon energy is used which results in a negligible temporal dispersion of
the electrons.
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a broad energy spectrum, the relation between ToF and energy becomes nonlinear,

as given by the classical equation of motion (see eqn 3.1):

tToF = ldrift

√
me

2Ekin

+ t0. (3.8)

Therefore, a suitable nonlinear fit must be used for the calibration curve to convert

broadband energy spectra. Note that eqn 3.8 is a constant-potential approximation

and does not account for acceleration and deceleration of the electrons when entering

and leaving the drift tube. Thus, only this potential scanning calibration method

provides a proper empirical relation between ToF and energy [148].

In addition, the electron counts need to be weighted by dt(E)/ dE, so that the in-

tegrated counts within an interval of the energy spectrum are equal to the integrated

counts within the corresponding interval of the ToF spectrum (conservation of dif-

ferential counts). This is required particularly for a broad energy spectrum because

of the nonlinear relation between the equidistant time intervals (ToF spectrum) and

the corresponding non-equidistant energy intervals (energy spectrum).

3.1.3 Spatial and energy resolutions of the ToF-PEEM

The current state-of-the-art ToF-PEEM is able to reach a spatial resolution down to

20 nm [143]. The lateral resolution of our ToF-PEEM was determined in a threshold

photoemission mode using UV excitation on a copper-coated microstructured silicon

sample [31]. A contrast aperture of 70µm was used for this test measurement. A

line scan was performed across one edge of the microstructure, marked by the white
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Figure 3.4: Spatial and energy resolution of our ToF-PEEM. (a) A PEEM image taken with
a CCD camera on a microstructured copper sample upon UV excitation. A line scan (marked
by a white line) across the microstructure edge is used for estimation of the spatial resolution.
(b) The line profile from (a) yields a spatial resolution of ∼25 nm, following a 16 % – 84 %
criterion. (c) Measured energy width of the Fermi edge of ∼96 meV obtained from a Mo(110)
sample at room temperature. Figure taken from [31].

line in fig. 3.4 (a). Fig. 3.4 (b) shows the respective step profile from the line scan

in fig. 3.4 (a). The edge slope width is determined to be ∼25 nm following a 16 %

– 84 % criterion error function fit. Hence, the spatial resolution of our ToF-PEEM

is estimated to be at least 25 nm. However, the spatial resolution can be reduced to

the range of 100 nm – 200 nm (refer to section 4.1) when employing a NIR or XUV

source, mainly due to chromatic aberrations.

The resolution of a spectrometer is of vital importance for resolving the fine

spectral details in an experiment. Technically, two limiting factors determine the

energy resolution of a ToF spectrometer: i) the ripple of the drift voltage power

supply ∆Uripple and ii) the time resolution ∆tres of the DLD. The time resolution

can be converted into an energy resolution by the following dispersion relation:

∆Eres =
dEkin

dt
∆tres, (3.9)

where dEkin/dt is the time derivative of the kinetic energy of the electrons. Using

eqn 3.9, the technical energy resolution of the ToF spectrometer follows by addition

in quadrature:

∆Etechnical =

√
(e∆Uripple)

2 +

(
dEkin

dt
∆tres

)2

. (3.10)

In our case, the ripple of the drift voltage, ∆Uripple, is smaller than 20 mV, the DLD’s

∆tres is better than 0.3 ns, and the energy dispersion dEkin/ dt at the Fermi edge
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is 94 meV/ns (courtesy of FOCUS GmbH), yielding a resulting energy resolution of

∆Etechnical = 35 meV. However, the actual energy resolution of a spectrometer can

be slightly worse due to systematic errors in the DLD electronics and broadening

effects inside the PEEM. The ToF spectrometer resolution can be directly deter-

mined by measuring the width of a well-known Fermi edge and comparing it with

the corresponding thermally broadened Fermi-Dirac distribution. The measured en-

ergy resolution, ∆Emeasured, is then obtained by deconvolution:

∆Emeasured =
√

∆EF(measured)
2 −∆EF

2, (3.11)

where ∆EF(measured) and ∆EF are the measured and calculated widths of the Fermi

edge, respectively. Fig. 3.4 (c) displays the ToF spectrum obtained by illuminating

a molybdenum single-crystal, Mo(110), with a 405 nm picosecond pulsed diode la-

ser. The drift voltage used was 10 V which is the lowest practical drift voltage to

obtain the highest temporal dispersion without deteriorating the spatial resolution.

By taking the energy width between the 16 % – 84 % level of the Fermi edge slope

from the molybdenum surface, ∆EF(measured) is determined to be 96 meV at room

temperature (295 K). The thermal broadening at a finite temperature T is provided

by the first derivative of the Fermi-Dirac distribution [150]:

f(E) =
1

e
E−EF
kBT + 1

, (3.12)

where EF is the Fermi energy and kB the Boltzmann constant. Following the 16 %

– 84 % criterion, the energy width of the Fermi edge results as

∆EF = 3.32kBT, (3.13)

corresponding to ∆EF = 84.4 meV at 295 K room temperature. Using eqn 3.11, the

measured ToF spectrometer resolution is determined as ∆Emeasured = 46 meV [31].

This result agrees quite well with the technical estimation mentioned above, consid-

ering the fact that ∆Etechnical = 35 meV does not include all resolution broadening

contributions, thus being a lower limit. It is noteworthy to mention that a more

proper determination of the energy resolution can be performed by measuring the

Fermi edge of polycrystalline samples at the lowest possible temperature. This is

due to the fact that all direct transitions between the electronic levels are averaged

out in polycrystalline samples, while in single-crystalline samples a distortion due

to electronic levels crossing the Fermi level can arise [151].
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3.2 Atto-PEEM

Initiated by the theoretical proposal of M. I. Stockman et al. [117], we first began the

atto-PEEM experiment using attosecond XUV pulses from HHG as a light source

for the PEEM without a pump-probe scheme yet. The atto-PEEM experiment was

carried out at the AS-5 beamline at the Max Planck Institute of Quantum Op-

tics (MPQ). The following section describes the HHG setup based on a commercial

chirped-pulse amplification (CPA) laser system (Femtopower Compact Pro, Fem-

tolasers Produktions GmbH) used in this work. A brief description of the static

atto-PEEM experimental layout is also given.

3.2.1 1 kHz few-cycle laser system

The key components of the laser system used at the AS-5 are outlined in fig. 3.5.

The 1 kHz CPA laser system at the AS-5 beamline is shared with the Petawatt

Field Synthesizer group, where it is primarily used for developing petawatt-scale

CEP-controlled few-cycle laser pulses for ultrahigh-field applications [152, 153]. The

beamline begins with a Kerr-lens mode-locked Ti:sapphire oscillator pumped by a

diode-pumped solid-state laser, generating seed pulses of 750 nm, 3.5 nJ and 7 fs at a

repetition rate of 70 MHz [154]. The seed pulses are stretched to a pulse duration of

10 ps by a SF-57 glass stretcher before entering the CPA stage [154]. Additionally,

the higher-order dispersion of the oscillator output is fine-tuned by an acousto-

optic programmable dispersive filter (Fastlite DAZZLER). After amplification by 10

consecutive passes through a Ti:sapphire amplifier crystal pumped by a Q-switched,

frequency doubled, diode-pumped solid-state Nd:YAG laser (Etna, Thales Laser),

the laser pulse energy reaches ∼2 mJ with a central wavelength of 800 nm and a pulse

duration of 2 ps (see fig. 3.5) [154]. A Pockels cell and a Glan-Thompson prism are

used to reduce the laser’s repetition rate to 1 kHz before the amplifier and the beam

is further divided into two parts of lower repetition rate for simultaneous operation of

the Petawatt Field Synthesizer and AS-5. From here the laser beam is guided to the

experimental laboratory which is situated on the floor below. The laser beam now

enters a hybrid pulse compressor which consists of a paired double-prism compressor

and a set of 16 high-dispersive mirrors. More details can be found in [155]. This final

compression step of the pulses results in a Fourier transform-limited pulse duration

of 26 fs FWHM with a pulse energy of 1.4 mJ [154]. A commercial beam lock system

compensates the thermal and mechanical drift of the laser beam before it passes

into the final compressor stage.

To achieve the broadband spectra required for few-cycle pulses, the laser beam

is focused into a 1 m long hollow-core fiber (HCF) filled with neon gas of a static

pressure of 2.8 bar – 3 bar [154] for spectral broadening. A second beam lock system
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Figure 3.5: Schematic overview of the AS-5 laser system at MPQ. The laser pulses produced
by the 1 kHz CPA laser system from the Petawatt Field Synthesizer are first compressed by
a pair of double-prisms in combination with a set of high-dispersive mirrors. The second step
of pulse compression is completed by the typical spectral broadening in a HCF accompanied
by negatively chirped mirrors in order to achieve few-cycle laser pulse duration. The inset
illustrates the spectrum before and after the HCF; figure adapted from [154].

stabilizes the laser beam position at the fiber entrance. It is worth noting that the

use of noble gases in the HCF advances pulse compression to high energies (sub-

millijoule energy range), owing to the high damage threshold of these gases [156,

157]. The intense laser beam propagates through the gas in the fiber and induces

white light or supercontinuum generation primarily due to self-phase modulation

resulting from the nonlinear Kerr effect. In other words, when an ultrashort laser

pulse propagates in a medium, it changes the refractive index of the medium, thus

producing a phase shift in the pulse and consequently leading to a frequency sweep

within the pulse envelope. The linear relation between the refractive index change,

∆n(t), and gas pressure, p, in the HCF is given by [158]:

∆n(t) = n2I(t) = pψ2I(t), (3.14)

where n2 is the nonlinear refractive index, I(t) the laser intensity and ψ2 the nonlin-

ear refractive index per unit pressure. Self-steepening, in addition to the self-phase

modulation, also contributes to the formation of very broadband pulses due to the

intensity dependence of the group velocity along its direction of propagation (the

group velocity at the pulse peak is slower than that of the trailing edge). This leads
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to an asymmetric spectrum where the blue side is more extended (see fig. 3.5) as the

trailing part of the pulse is steeper than the leading one. The HCF pulses are now

positively chirped and the positive dispersion can be compensated by a set of broad-

band negatively chirped mirrors designed and manufactured at Ludwig Maximilians

University of Munich (LMU). 4 to 8 pairs of chirped mirrors are used for disper-

sion control depending on the amount of positive dispersion in different experiments.

These mirrors use two angles of reflection, 5◦ and 19◦, to achieve an optimized phase

contrast ensuring a homogeneous group delay dispersion. Fine tuning of the laser

pulse length is managed by a pair of fused silica glass wedges. The typical HCF

output spectrum after the chirped mirror compression at AS-5 is shown in fig. 3.5

and the resulting pulse energy is ∼600µJ. The spectrum spans over a full octave

from 450 nm to 1000 nm [154] and its Fourier transform-limited pulse duration is

below 3 fs FWHM, well within the few-cycle regime.

3.2.2 1 kHz HHG source

The AS-5 beamline for the atto-PEEM experimental campaign is illustrated in

fig. 3.6. The first part of the AS-5 beamline covering the 1 kHz laser system for pro-

ducing few-cycle laser pulses has already been presented in subsection 3.2.1. Here,

the second part of AS-5 beamline for HHG is described. Briefly, the second part of

the AS-5 beamline consists of four essential components: HHG chamber, beam di-

agnostic chamber, filter chamber and experimental chamber. The intense few-cycle

laser beam enters the HHG chamber through a fused silica Brewster window where

the loss of the p-polarized laser intensity is minimized to almost zero. High harmonic

radiation is generated by focusing the laser pulses with a concave spherical silver

mirror of a focal length of 50 cm onto a 3 mm diameter nickel tube filled with a

neon gas target. The physics of HHG has been described in subsection 2.1.2. The

nickel tube is mounted on translation stages for precise laser beam positioning. The

laser focus diameter is approximately 150 µm, which is of about the same size as

the laser-drilled hole in the tube. The neon gas pressure is kept between 150 mbar

and 200 mbar for optimal XUV generation. Neon is chosen as the gas target since it

exhibits an optimal combination between ionization potential and absorption cross-

section for high harmonic emission of isolated pulses in the energy range of 70 eV –

130 eV [159]. The gas load emerging from the tube is continuously pumped away by

a turbomolecular pump to maintain a pressure below 10=3 mbar in order to ensure a

minimal re-absorption of the XUV radiation and a rather good vacuum in the first

pumping stage.

Both the broadband NIR beam and XUV beam propagate collinearly into the

diagnostic chamber after passing the differential pumping stages. The latter serve as
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Figure 3.6: Schematic overview of the AS-5 beamline at MPQ for the atto-PEEM experiments.
The XUV pulses are generated in the HHG chamber by focusing the NIR laser pulses onto a
gas target. Both NIR and XUV pulses propagate collinearly into the diagnostic chamber for
XUV beam characterization. The NIR beam is blocked in the filter chamber while the XUV
beam transmits through and enters into the experimental chamber. An iris is used to adjust
the XUV intensity. The vacuum condition inside the beamline is maintained by continuous
pumping with turbomolecular pumps backed by rough pumps.

an intermediate stage to reduce the gas load from the HHG chamber down to a pres-

sure range of 10=6 mbar – 10=7 mbar before reaching the experimental chamber. In

the atto-PEEM experiments, only XUV pulses were used since a NIR-pump/XUV-

probe setup was not intended at that phase. At the diagnostic chamber, the beam

profile and the spectrum of the XUV radiation are monitored. Gold-palladium mir-

rors can be inserted into the beam path to either reflect the XUV beam directly

onto a MCP/phosphor screen or to reflect the beam onto a flat-field grating at graz-

ing incidence which disperses the beam spectrally on the MCP/phosphor screen.

A CCD camera connected to a PC is used for recording the optical data from the

phosphor screen. To avoid saturation of the imaging devices caused by low-order

harmonics and intense NIR light, a 800 nm thick zirconium filter is placed in front

of the MCP/phosphor screen. The XUV spectrometer is calibrated using additional

filters inserted into the beam path to provide spectral information for HHG opti-

mization [154]. At the filter chamber, the NIR beam is blocked completely by using

different filters such as zirconium or silicon nitride mounted on a filter wheel, depend-

ing on the requirement of the experiments, thus only the XUV beam is transmitted

through the filter section. The XUV intensity can then be adjusted by a motorized

iris behind the filter section.

In the experimental chamber, the XUV beam is focused by a concave spherical

XUV mirror (f = 12.5 cm) onto the sample situated in the PEEM. The mirror

assembly can be moved in all three dimensions to align the XUV focus onto the
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sample. Photoelectrons emitted from the sample surface upon XUV excitation are

spatially and energetically detected by the PEEM in combination with a DLD. In

addition, a Hg arc UV lamp emitting unpolarized continuous-wave light with a cutoff

energy of 4.9 eV is used as a standard UV excitation source for sample imaging. This

Hg lamp is mounted on another entrance port of the experimental chamber at an

incidence angle of 65◦ to the sample. A detailed description of the PEEM design

and working principle can be found in section 3.1.

3.3 CEP-tagged PEEM

For CEP control on plasmonic systems we used a phase tagging technique by means

of a stereographic above-threshold ionization (ATI) phase meter instead of a phase-

stabilized laser system in order to retrieve CEP information for every laser shot. This

work includes the novel development of CEP-tagged PEEM and the exploration of

CEP control on metallic nanostructures and bulk tungsten by using PEEM. The

CEP-tagged PEEM was performed using the 10 kHz laser system at LMU. The

work on CEP-tagged PEEM is a parallel research effort along with atto-PEEM,

which paves the path towards the visualization of spatiotemporal dynamics with

nanometer spatial and attosecond temporal resolution.

3.3.1 10 kHz few-cycle laser system

At the LMU beamline, the 10 kHz few-cycle laser generation and operation in prin-

ciple are very similar to the 1 kHz few-cycle laser system at AS-5, MPQ (cf. sub-

section 3.2.1), with several differing details. The 10 kHz laser infrastructure at LMU

is illustrated in fig. 3.7. Here, the seed pulses from a 80-MHz oscillator are ampli-

fied for 9 consecutive passes through a Ti:sapphire crystal. The amplifier output is

compressed by a grating compressor, since gratings provide a much larger negative

dispersion compared to a prism compressor. Hence, an additional set of high dis-

persive mirrors is not needed for the pulse compression. This results in compressed

pulses with a pulse energy of 400 µJ – 600 µJ and a pulse duration of 27 fs FWHM.

A higher repetition rate, 10 kHz in this case, comes at the expense of lower pulse

energy, therefore ∼0.7 bar of argon gas is used in the HCF to achieve few-cycle la-

ser pulse duration. Argon gas exhibits strong enough nonlinearity at a moderate

focused laser intensity and gas density (≤1 bar). A throughput of 130 µJ – 180 µJ

can be achieved after the HCF and negatively-chirped mirrors depending on the

focusing parameters at the entrance of the fiber and gas pressure. The laser pulses

are characterized by a spectrometer and an autocorrelator for laser alignment and
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Figure 3.7: 10 kHz laser infrastructure at LMU. See text for details.

optimization. A broadband beam splitter directs 70 % of the laser beam to the phase

meter and the remaining laser beam to the PEEM experiment, respectively.

3.3.2 ATI phase meter

Conventional active CEP stabilization of the laser [160–162] has been demonstrated

as a well-established technique to control the electron dynamics in matter by scan-

ning the CEP of the phase-stabilized laser pulses. Recently, an improved CEP stabi-

lization technique via a feed forward method [163] has greatly increased the stability

of continuous locking from several hours [164, 165] to more than ten hours [58]. Al-

ternatively, single-shot phase tagging is a promising new approach for CEP-resolved

experiments, as it entirely omits the need for active CEP stabilization. Phase tag-

ging uses a stereographic ATI phase meter [166–168] to measure the CEP of every

laser shot at kHz repetition rates. The concept and design of the ATI phase meter

was pioneered by G. G. Paulus et al. [50, 169, 170]. This technique offers several

advantages over conventional CEP stabilization such as permitting real-time deter-

mination of the CEP for every laser shot and continuous real-time monitoring of the

laser performance. It also allows for long data acquisition times over several hours

and even over more than ten hours with a drift correction scheme [171]. Moreover,

this technique enables parallel data acquisition for all CEPs within a certain mea-

surement time, which evenly distributes any possible dynamic changes during the

measurement, e.g. sample drift, over all CEP values [172]. In contrast, CEP locking

requires a serial scan, where drift of the experimental parameters correlates with the

scanned CEP, leading to systematic errors.

The CEP detection relies on the asymmetric electron emission during strong-

field ionization of noble gases by linearly polarized few-cycle laser pulses. Typically,

the few-cycle laser pulses are focused onto a xenon gas target at a peak intensity of
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Figure 3.8: Working principle of a single-shot stereographic ATI phase meter. (a) and (b)
Single-shot ToF traces from the left and right MCPs of the phase meter for two laser shots
with different CEPs, ϕ1 and ϕ2. Light and dark shaded areas indicate the integration regions,
1 and 2, for determining A1 and A2, respectively (see eqn 3.15). Figure adapted from [164].
(c) A typical PAP for 106 sub-5 fs laser pulses. The dotted radial lines denote 18 segments of
the PAP with an equal number of counts, corresponding to equidistant CEP intervals of 20◦

size. The color scale shows the relative counts.

∼8 · 1013 W/cm2 [168]. ATI electrons, i.e. direct electrons and rescattered electrons,

are emitted from the xenon atoms and fly towards opposing ToF detectors. The

direct electrons of low kinetic energy are suppressed by applying a repelling static

voltage to a mesh in front of the MCP at each detector. In the meantime, two

ToF spectra of the CEP-sensitive rescattered electrons with high kinetic energy

are recorded at both left and right detectors placed along the polarization axis of

the focused laser beam. These ATI electron spectra are detected as time-dependent

electron currents and are converted into time-dependent voltages. In order to retrieve

the CEP in real-time from the ToF spectra, two properly adjusted gated integration

windows, labeled 1 and 2, respectively, are applied to the ToF spectra for each laser

shot. Two asymmetry values can be calculated using an electronic circuit:

A1,2 =
L1,2 −R1,2

L1,2 +R1,2

, (3.15)

where L and R are the integrated electron yields of the left and right MCP de-

tectors, respectively. These asymmetries are then output as analog voltages, which

are proportional to the respective asymmetry values, for data acquisition. Next, a

parametric asymmetry plot (PAP) of A1 and A2 can be generated, in which the

polar angle, θ = arctan(A1/A2), corresponds to the CEP, ϕ, of the laser pulse via

the relation θ = ϕ + ϕ0 [173], where ϕ0 is an arbitrary offset, since the CEP is

randomly and uniformly distributed for our laser system. Hence, the CEP ϕ of each

laser shot can be determined directly from the PAP polar angle θ, except for a con-

stant offset, as long as the measured PAP constitutes a uniform distribution as a

function of polar angle. The asymmetry values are recorded simultaneously with the
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DLD photoelectron counts, therefore enabling phase tagging of every detected event

in the experiment. Fig. 3.8 (a) and (b) depict typical ToF spectra from the left and

right detectors of the ATI phase meter for two laser shots with different CEPs. The

light and dark shaded areas indicate the gated regions (high and low energy) for

retrieving the two asymmetry values, A1 and A2, respectively. Since the asymmetry

values are highly sensitive to the pulse duration of the few-cycle laser pulses and the

CEP, the PAP can also be used to deduce the laser pulse duration. An empirical

relationship between the pulse duration and the radius of the PAP is demonstrated

by A. M. Sayler et al. [167], using pulse duration calibration with spectral-phase

interferometry for direct electric-field reconstruction. The FWHM pulse duration,

∆t, as a function of the radius r of the PAP is therefore

∆t = β +

√
−α

ln(1− r)
, (3.16)

where β = (1.6063± 0.2593) fs and α = (9.7317± 1.5069) fs2, are fitting parameters.

A bigger diameter of the PAP implies a shorter pulse duration. Fig. 3.8 (c) displays

a typical PAP with a pulse duration of 4.13 fs FWHM and its corresponding radius,

r = 0.78. Note that the measured PAP in fig. 3.8 (c) is clearly not a uniform dis-

tribution over the polar angle, i.e. the counts at certain polar angles appear more

frequently than the others. This is due to systematic errors in the stereographic

ATI phase meter, e.g. non-ideal integration windows or nonlinearities in the MCP

detectors, which results in a bias towards certain polar angles. Since the laser’s CEP

is uniformly distributed, the measured PAP needs to be balanced in order to re-

trieve the actual CEP. This is done by splitting the PAP into a certain number of

equidistant polar angle bins (for example, 18 bins of 20◦ size each) and subsequently

adjusting the boundaries between the bins such that every bin contains the same

number of counts (indicated by the radial dotted lines in fig. 3.8 (c)). The mapping

between the redistributed bins and the original bins can then be used to retrieve

the actual CEP from a measured PAP polar angle (except for a constant offset) for

a non-uniform PAP measurement.

3.3.3 Single-shot CEP-tagged PEEM

In this subsection, the combination of single-shot ToF-PEEM with a stereographic

ATI phase meter for studying the CEP control on plasmonic nanostructures is de-

scribed. The setup of single-shot phase-tagged ToF-PEEM is schematically illus-

trated in fig. 3.9. One part of the few-cycle laser pulses, containing 70 % of the

160µJ pulse energy (see fig. 3.7), is focused onto a xenon gas target inside the ATI

phase meter using a 25 cm focal length spherical mirror, while the remaining part
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Figure 3.9: Single-shot CEP-tagged PEEM setup used for this work. A beam splitter separates
the few-cycle laser beam into two paths. The first beam is focused by a 25 cm spherical mirror
into the ATI phase meter containing a xenon gas target; at the same time the second beam
is focused onto a sample inside the ToF-PEEM. Both the ToF-PEEM and the phase meter
are synchronized to the broadband laser to enable simultaneous data acquisition. The laser
trigger signal for synchronization is first obtained with a photodiode (PD) and transformed by
a constant fraction discriminator (CFD) before being fed into the TDC and the phase meter’s
electronics, respectively. The master trigger to start the acquisition of both the ADC and TDC
is controlled by a PC. See text for details on the acquisition synchronization.

is directed into the ToF-PEEM chamber. Individual pairs of fused silica wedges are

used in both beam paths to correct for residual chirp in order to ensure shortest

pulses, and irises are used to vary the laser intensity in both instruments.

The DLD is solely used instead of the fluorescence screen and CCD camera for

the CEP-tagged experiments for two main reasons: first, the DLD is capable of syn-
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chronized single-shot data acquisition, which is essential for phase tagging of every

laser-triggered event. Second, the DLD has a superior signal-to-noise ratio [144],

which enables background-free detection at low count rates, since low laser intensity

is used in order to suppress space charge effects. To implement single-shot phase-

tagged data acquisition, the commercial TDC of the DLD has been modified with a

custom firmware, which assigns an absolute laser shot tag number for a particular

exposure to each detected electron count [172]. This is necessary to maintain a cor-

relation between the DLD and phase meter measurements because of the statistical

nature of the DLD detection, which can result in multiple or zero electron detections

per laser pulse, while the phase meter provides exactly one measurement per laser

pulse. An analog/digital converter (ADC) is used to acquire the asymmetry values

(A1, A2) from the phase meter. For starting an exposure, both the ADC and TDC

are set to a hardware-triggered acquisition mode via a PC (labeled as 1 in fig. 3.9).

In order to ensure synchronized acquisition, both devices are configured to start the

actual data acquisition only upon an external synchronization pulse, once they are

set to the acquisition mode, which is also issued by the PC after a short delay (ca.

100 ms), which makes sure that both devices are ready (labeled as 2). This pulse

itself is synchronized with the laser via a hardware trigger, because it is issued upon

the arrival of the next laser pulse, the according laser trigger signal being obtained

via a photodiode. Thus, the data acquisition of the asymmetry values (A1, A2) at the

ADC and the DLD data (x, y, t) at the TDC are both started simultaneously at a

well-defined time with respect to the laser pulse train (labeled as 3). The subsequent

single-shot acquisition during an exposure is clocked by the 10 kHz laser’s repeti-

tion rate via the same photodiode, providing a trigger for both devices. A constant

fraction discriminator is employed to transform the electrical pulses from the photo-

diode into transistor-transistor logic pulses suitable for the TDC as the start trigger

input. The same transistor-transistor logic pulses are also used to trigger the phase

meter. The data acquisition software then combines both measurements into a single

data stream of asymmetry and DLD values (A1, A2, x, y, t) for each registered elec-

tron count at the DLD using the laser tag number of the particular electron count

from the TDC to assign the corresponding asymmetry values of the respective laser

shot from the phase meter data. By this procedure the asymmetry values from the

phase meter are synchronized with the DLD data from the PEEM for every laser

shot within an exposure, regardless of multi-events or missing events at the DLD. In

chapter 6, another measurement parameter, which is the single-shot laser intensity,

is added to our CEP-tagged PEEM in order to correct for an artefact which arises

from laser intensity fluctuations. Further details about this intensity tagging can be

found in section 6.1.
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3.4 Plasmonic samples

High-definition and reproducible plasmonic nanostructures require well-developed

fabrication techniques. The micro- and nanostructured samples investigated in this

work were fabricated with chemical synthesis and nanolithography using an electron

beam.

3.4.1 Chemical synthesis of NPOP

The NPOP samples used for this work were fabricated by F. Schertz from University

of Mainz. More details of the NPOP preparation and characterization can be found

in [127, 174–176]. NPOP was used as the first sample for CEP-tagged experiments

since it exhibits a very strong field enhancement when in resonance, giving rise to a

higher photoemission signal for detection and CEP-resolved data analysis (see sec-

tion 5.1). The sample fabrication procedure is described in the following. A Si(100)

substrate was deposited with 1 nm of chromium as an adhesive layer and then with

a 50 nm gold film by thermal evaporation. Next, the sample was immersed into a

cysteamine (organic molecule) solution and a self-assembled monolayer was formed

after ∼17 h on the gold surface. The gold nanoparticles (∼90 nm average diameter)

synthesis was achieved using a method reported by G. Frens [177].

In brief, a 100 ml aqueous solution containing 0.25 mmol/L of hydrogen tetra-

chloroaurate (III) trihydrate (HAuCl4 · 3H2O, 99.995 %, Sigma-Aldrich) was heated

under reflux and brought to boiling while stirring. Later, 2 ml of an aqueous solution

of trisodium citrate dihydrate (HOC(CO2Na)(CH2CO2Na)2·2H2O, Sigma-Aldrich)

was added quickly to the boiling solution. The mixture was then cooled down slowly

to room temperature while stirring after maintaining the boiling for 10 min. A color

change from black to dark red indicates the formation of gold nanoparticles as a

result of nucleation and growth. In the last step, the prepared substrate was im-

mersed in the freshly prepared colloidal gold suspension for ∼5 min. This way, the

gold nanoparticles became strongly immobilized by attaching to the cysteamine

monolayer which serves as a spacer, creating a sub-nanometer gap between them

and the gold plane to allow high field enhancement.

3.4.2 EBL

Electron beam lithography (EBL) has a significant advantage in resolution over

conventional photolithography, since the resolution of the latter technique is con-

strained by the diffraction limit of the light used for the development of the photore-

sist. While EBL is capable of fabricating structure sizes down to a few nanometers,

it also allows a large number of structures to be written in a reasonable time. It
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Figure 3.10: Schematic illustration of the fabrication steps required for the EBL technique.
See text for details.

is therefore the technique of choice for achieving tailor-designed and well-defined

metallic nanostructures that exhibit controlled surface plasmon resonances upon

optical excitation. The samples investigated in this work were prepared by C. Späth

from our group and by the Misawa group in the Research Institute for Electronic

Science, Hokkaido University.

Fig. 3.10 illustrates the general fabrication procedure using this technique. As a

first step, a conductive substrate such as silicon or indium-tin-oxide (ITO) coated

glass is cleaned in an ultrasonic bath containing a solvent. Afterwards, the substrate

is spin-coated with a positive or a negative photoresist to a thickness of 80 nm –

200 nm and then exposed to an electron beam that writes a given pattern, inducing

a solubility change on the exposed area. In a subsequent solvent development, the

exposed area with a positive photoresist is dissolved and removed whereas the ex-

posed part with a negative resist is solidified and therefore remains on the sample.

A thin metal film such as gold can be deposited via electron beam evaporation or

magnetron sputtering onto the developed substrate in a high vacuum environment.

The thickness of the metallic film is dependent on the requirements of the exper-

iments and can be controlled by adjusting the deposition time. A polycrystalline

metal film is obtained using such deposition methods. The final step is completed

by a lift-off process, in which the remaining photoresist and its corresponding metal

layer are removed using a solution depending on the photoresist type, resulting in

the formation of metal nanostructures on the substrate. The nanofabrication carried

out in our own group used a 30 kV EBL system (Raith 150) integrated with a scan-

ning electron microscope (SEM), DSM 982 Gemini. To improve the nanofabrication
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method, we also employed a two-layer photoresist method followed by EBL to reduce

the likelihood that the evaporated metal nanostructures are removed during the lift-

off process by creating undercuts in the photoresist [178]. Furthermore, the samples

provided by the Misawa group were fabricated using a high-resolution 125 kV EBL

system (Elionix ELS-F125, Tokyo, Japan). Nanostructures with a gap size of 6 nm

have been fabricated by employing this high-resolution EBL system [179]. In some

cases, EBL in combination with ion beam etching can be used to transfer the written

structure onto a metal.





Chapter 4
Towards atto-PEEM

This chapter reports the experimental implementation of the atto-PEEM concept

and its challenges using a 1 kHz low-repetition-rate HHG source in our group. In this

atto-PEEM setup, we investigated the ultimate spatial resolution of XUV imaging

with attosecond pulses centered at 93 eV photon energy using lithographically fab-

ricated gold structures. It is found that by employing energy-filtered imaging one

could improve the spatial resolution of XUV imaging which is mainly reduced by

chromatic aberrations due to the large energy bandwidth of XUV-generated pho-

toelectrons. Space charge effects, a major issue affecting the imaging quality and

the electron spectrum, as a result of using low-repetition-rate laser sources, are also

studied. The discussion of the results in this chapter is based on [34, 138, 180].

4.1 XUV imaging with attosecond pulses

Following the described atto-PEEM concept (see subsection 2.3.2), we here exper-

imentally carried out a series of XUV imaging using a low-repetition-rate (1 kHz)

HHG source for PEEM with medium magnification. The details of the experimen-

tal setup are already presented in subsection 3.2.2. We used a mixture of isolated

attosecond pulses and attosecond double-pulses for the experiments since the 1 kHz

few-cycle laser system was not actively phase-stabilized (see subsection 2.1.2). A

150 nm zirconium filter and a 150 nm silicon nitride filter are used to block the

collinear NIR beam while spectrally filter the XUV beam. The transmission curves

of these metallic filters are displayed in fig. 4.1 (a). It should be noted that a zir-

conium filter permits a small percentage of XUV transmission at around 25 eV,

therefore a silicon nitride filter of a narrow bandwidth is added to exclude these

low-order harmonics. The resulting XUV spectrum peaks at 97 eV after being fil-

tered by the zirconium and silicon nitride filters, as measured by an XUV flatfield

47
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Figure 4.1: Spectral filters for XUV transmission. (a) Transmission curves of zirconium and
silicon nitride filters, data taken from [181]. (b) XUV spectrum (blue curve) filtered by zirco-
nium and silicon nitride filters and simulated XUV mirror’s reflectivity (green curve) peaked at
93 eV with a bandwidth of 5.4 eV.

spectrograph (see fig. 4.1 (b)). The XUV beam is further spectrally filtered at around

93 eV and focused onto the sample in the ToF-PEEM by means of a concave Mo/Si

multilayer mirror of 12.5 cm focal length. The 5.4 eV FWHM spectral bandwidth of

the mirror reflectivity supports XUV pulses with a Fourier limit of 350 as. The XUV

focus can be aligned onto the sample by using the NIR laser beam1 as a guidance via

the motorized XUV mirror assembly inside the ToF-PEEM chamber. The alignment

is done using the low magnification mode in the PEEM. The XUV focal spot size

on the sample is estimated to be in the range of 200 nm – 400 nm, indicated by the

electron emission spot size in the PEEM.

The photoemitted electrons from the XUV pulses can be recorded either with a

CCD camera placed after the PEEM’s fluorescence screen or a DLD inserted in the

PEEM column before the fluorescence screen (see section 3.1). Fig. 4.2 illustrates

the comparison of image quality using a CCD camera and a DLD. The test sample

used here consists of a thin layer of copper coated on a 10µm × 10 µm silicon grid

which has a depth of 300 nm. A medium-sized backfocal contrast aperture of 150 µm

was used in the PEEM to allow sufficient electron transmission while minimizing

the aberrations for improving the spatial resolution. The contrast aperture may also

act as a low-pass energy filter thus decreasing the energy spread and transverse mo-

mentum spread of the electrons, allowing for higher resolution. Note that the PEEM

voltage settings for both imaging devices (CCD camera and DLD) are comparable

and a medium magnification mode was used. Fig. 4.2 (a) and (c) show the PEEM

images of the copper grid sample acquired by a CCD and a DLD, respectively, upon

excitation by a 4.9 eV Hg arc UV lamp. The required exposure time to obtain both

images is within several minutes. In this case, the high image contrast is formed

by surface topography of the sample, since the entire surface is covered by copper.

1The NIR beam is used to generate the XUV radiation, therefore the two beams are superim-
posed and propagate collinearly.
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Figure 4.2: Comparison between PEEM imaging with a CCD and a DLD. (a) UV-PEEM
image of a copper grid illuminated by an Hg arc lamp with an exposure time of 3 min, taken
by a CCD camera. (b) XUV-PEEM image illuminated by attosecond XUV pulses under the
same conditions as in (a) with an exposure time of 13 min, taken by a CCD camera. (c) UV-
PEEM image of a copper grid illuminated by an Hg arc lamp with an exposure time of 1 min,
taken by a DLD. (d) XUV-PEEM image illuminated by attosecond XUV pulses under the same
conditions as in (c) with an exposure time of 1 h, taken by a DLD.

However, the image contrast of the PEEM image upon XUV excitation is notably

degraded in the case of CCD acquisition (see fig. 4.2 (b)). The reduced contrast is

caused by a broader electron energy spectrum induced by the 93 eV XUV pulses of

5.4 eV bandwidth. XUV contrast can be improved by using a smaller contrast aper-

ture or applying an IEF to achieve a narrower electron energy spectrum, however

at the expense of significantly lower transmission.

In addition, the XUV intensity has to be decreased substantially to reduce the

space charge effect which causes image blurriness, hence a longer exposure time is

required. A neon gas pressure of ∼60 mbar is used to achieve such low XUV intensity

for imaging using both the CCD camera and the DLD (see fig. 4.2 (b) and (d)). A

detailed investigation of the space charge effect on the XUV imaging will be discussed

in section 4.3. It should be noted that the XUV intensity was cut out at the bottom

of the image possibly due to iris clipping and the inhomogeneous illumination could

be caused by the structure of the metallic filter. It is found that an exposure time

of more than 13 min using the CCD camera does not improve the spatial resolution

anymore at such a low XUV intensity, as it starts to saturate. This issue can be

resolved by switching from the CCD camera to the DLD for imaging. An improved

XUV image contrast could be obtained with an exposure time of nearly 1 h using the

DLD with negligible background, albeit with a great loss of intensity for suppressing

the space charge effect. Both edges of the copper grid could be resolved using DLD

imaging whereas only one blurred edge can be seen by CCD camera imaging. The

comparison clearly demonstrates that the DLD intrinsically has a superior signal-to-

noise ratio compared to the CCD camera that produces more electronic noise. This

can be explained by two sources of dark noise [141], which are the MCP and the

CCD in a conventional image intensifier that usually consists of a MCP, a phosphor

screen and a CCD camera. In contrast, the noise originates only from the MCP in
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Figure 4.3: Spatial resolution estimation of the PEEM at medium magnification mode. (a)
Left: UV-PEEM image of gold squares illuminated by an Hg arc lamp with an exposure time
of 2 min; right: exemplary intensity profile extracted from the region marked on the left image
yields a spatial resolution of 152 nm. (b) Left: XUV-PEEM image illuminated by attosecond
XUV pulses under the same conditions with an exposure time of 1.5 h; right: exemplary intensity
profile extracted from the region marked on the left image yields a spatial resolution of 230 nm.

the DLD imaging assembly, and only the portion of the MCP noise which is strong

enough to produce a detectable current pulse inside the DLD wires contributes to

the image noise.

Since PEEM imaging with a DLD can greatly improve the signal-to-noise ratio

for long exposure times, the imaging capability using attosecond XUV pulses in our

setup described here was tested only with a DLD. The sample used for resolution

measurements consists of alternating 1 µm × 1 µm gold squares on a silicon wafer

substrate with native oxide coverage and was fabricated by EBL and ion beam etch-

ing. The gold layer has a thickness of 100 nm. A 15 nm thick chromium layer was

added between the gold layer and the silicon substrate as an adhesion layer to im-

prove the quality of the gold layer. In this series of PEEM imaging, a high drift

voltage of 130 V was applied to the drift tube, thus improving image resolution at

the expense of ToF resolution which was not required for this measurement. The

extractor voltage of the PEEM objective lens was set to 20 kV (medium magnifi-

cation mode) and a contrast aperture of 150 µm was chosen. Fig. 4.3 (a) shows the

PEEM image of the gold square sample excited by a 4.9 eV Hg arc UV lamp. The

UV-PEEM image contrast arises from work function differences at the surface, with

gold appearing bright due to its work function (4.4 eV [84]) being lower than the UV

excitation energy (4.9 eV), while silicon dioxide appears dark due to its higher work

function of 4.9 eV [182].The spatial resolution is estimated by taking the intensity

profile over the structure’s edge region (averaging over the 1 µm edge length) follow-

ing a 16 % – 84 % criterion error function fit. By averaging five intensity profiles from

different sample positions, a spatial resolution of (153± 10) nm is estimated for the

UV-PEEM image. Fig. 4.3 (b) depicts the PEEM image of the same sample excited

by attosecond XUV pulses of 93 eV photon energy. The estimated spatial resolution

for the XUV-PEEM image is (194± 50) nm (average from five different sample po-
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Figure 4.4: Full energy spectrum of XUV excited photoelectrons integrated over the whole
gold square sample area as shown in the left inset. Left inset: energy-integrated image with
XUV excitation over the full electron energy spectrum with an exposure time of 1.5 h. Right
inset: energy-filtered image from 1 eV to 3 eV within the secondary electron peak.

sitions). The images are flat-field corrected for DLD gain. It should be pointed out

that several hot spots on the sample indicated by the very bright areas in the XUV

image are induced by nanoplasmonic fields due to NIR leakage through the pinholes

of the filters. The inhomogeneous illumination on the sample by XUV excitation is

mainly caused by the beam profile and filter structure. The XUV-PEEM image is

typically of lower contrast in comparison to the UV-PEEM image, attributed to van-

ishing work function contrast and a broader electron energy spectrum for the 93 eV

XUV excitation. The XUV pulse intensity was reduced by decreasing the neon gas

pressure to avoid the space charge effect that causes image blurriness. This require-

ment currently limits the ability to achieve PEEM imaging in high-resolution mode

where the transmission of photoelectrons is drastically decreased.

A ToF-PEEM allows for the distinction between the dominating secondary pho-

toelectrons and the direct photoelectrons. In the next series of PEEM imaging, a low

drift voltage of 40 V was applied to the drift tube in order to achieve decent energy

resolution. The PEEM extractor voltage was set to 20 kV and the largest contrast

aperture of 1500µm was used in order to increase the transmission of high-energy

photoelectrons. However, the PEEM resolution was now reduced due to spherical

and chromatic aberrations of the objective lens as a consequence of using a larger

contrast aperture size. Fig. 4.4 shows the electron energy spectrum excited by XUV

which is spatially integrated over the whole sample area as depicted in the left in-

set. The spectrum, which is corrected for the work function difference between the

sample surface and the drift tube, exhibits basically two peaks, one at low energy

(secondary electrons or inelastically scattered electrons) and one at high energy

(primary valence band electrons). The maximum detected kinetic energy (carried
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by electrons at the Fermi edge) corresponds to the central XUV photon energy of

93 eV reduced by the material work function (4.4 eV for polycrystalline gold [84]

and 4.9 eV for amorphous silicon dioxide [182]). By selecting a narrow energy in-

terval ∆E, in this case from 1 eV to 3 eV within the secondary electron peak, the

image contrast can be significantly enhanced due to a smaller energy spread, as il-

lustrated in the right inset of fig. 4.4. However, using this ToF mode with the largest

contrast aperture the spatial resolution is now degraded to ∼300 nm as compared

to ∼200 nm when using a small contrast aperture and a limited ToF resolution.

Energy-filtered imaging using only the high-energy valence band electrons at 83 eV

can be performed similarly; however, gold and silicon dioxide show a very similar

photoelectron yield at 93 eV photon energy excitation (see section below) and thus

do not provide sufficient image contrast.

4.2 Microspectroscopic imaging

Besides filtering the PEEM images for different ranges of kinetic energies, electron

ToF analysis utilizing a DLD has the potential for full-image microspectroscopy in

XUV-PEEM, which was previously only feasible by illumination with synchrotron

radiation. Conventionally, microspectroscopic data in XMCD-PEEM is obtained by

scanning the photon energy for every recorded PEEM image [183, 184]. In compari-

son, a DLD takes advantage of its capability of three-dimensional dataset acquisition,

allowing simultaneous lateral and energy distribution measurements of the photo-

electrons. This is illustrated by selected micro-area spectra from a sample of gold

ellipsoids fabricated on a native oxide covered silicon wafer by EBL and lift-off. The

gold layer thickness is 20 nm and there is a 4 nm thin adhesion layer of chromium

between the gold layer and the native oxide covered silicon wafer. This microspec-

troscopic data is obtained using attosecond XUV pulses of 93 eV photon energy,

as described before. The UV-PEEM image (fig. 4.5 (a)) as well as the XUV-PEEM

image (fig. 4.5 (b)) display the array of gold ellipsoids with three distinctly different

intensity areas visible in the XUV-PEEM image: (i) a moderately bright intensity

from the gold ellipsoids, (ii) a dark background from the native oxide covered silicon

wafer surface, and (iii) very bright intensities observed at the rim of the gold frame

and several gold ellipsoid areas. When defining these three different regions of in-

terest (ROIs), as displayed by colored areas in fig. 4.5 (b), we obtain three different

spectra representing these ROIs in fig. 4.5 (c). The gold spectrum shows a distinct

secondary electron intensity at low kinetic energies and less intense photoemission

from primary photoelectrons of the Au (5d) valence band of gold [185] below the

Fermi edge at high kinetic energies. It should be pointed out that the fine structure

of this Au (5d) valence band cannot be resolved due to the broad spectral band-
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Figure 4.5: Microspectroscopic analysis of 500 nm gap gold ellipsoids coated on a native oxide
covered silicon wafer imaged by a DLD. (a) UV-PEEM image of the sample illuminated by an
Hg arc lamp with an exposure time of 5 min. (b) XUV-PEEM image illuminated by attosecond
XUV pulses under the same conditions with an exposure time of 1 h. Three different regions
(gold, silicon dioxide, and hot spots) on the sample are selected for microspectroscopy. (c) The
corresponding kinetic energy spectra of the three marked ROIs shown in (b) with respective
colors. VB: valence band.

width of the XUV pulses. Meanwhile, the emission from the native oxide covered

silicon (also referred to as silicon dioxide) surface shows a smaller contribution of

the secondary electrons compared to the gold due to a larger work function of sil-

icon dioxide. The contrast in secondary electron emission between gold and silicon

dioxide is mainly determining the observed image contrast in non-filtered PEEM

imaging. At high kinetic energies, the emission possibly consists of a mixture of

valence band electrons from both silicon dioxide and bulk silicon [186, 187]. Note

that the high-energy emission intensities of both Au (5d) and silicon valence band

electrons are very similar, which might prevent achieving PEEM image contrast

in energy-filtered imaging around this energy range. This issue can be resolved by

cleaning the sample surface to increase the photoemission yield from the Au (5d)

valence band significantly compared to the photoemission yield from the substrate.

Furthermore, some indication of photoemission from the O (2s) core level state is

observed. Interestingly, the electron spectrum from the most intense PEEM image

areas manifests as distinct and very intense emission of very low-energy electrons

which may be attributed to photoemission from surface plasmon-assisted hot spots

excited by leaking NIR laser radiation through the metallic filters. In conclusion,
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this successful microspectroscopic identification of core and valence band electronic

states with attosecond XUV pulses proves the capability of using a ToF-PEEM with

a DLD to measure the changes of the electron’s kinetic energy on the order of a few

electronvolts as predicted in the atto-PEEM concept [117].

4.3 Space charge effects

Space charge effects in photoemission are frequently observed when using low-

repetition-rate ultrashort laser pulse systems of pulse durations ranging from fem-

toseconds to attoseconds [35, 188, 189]. A detailed analysis of the influence of space

charge due to the very short attosecond XUV pulses (1 kHz HHG source) on the

PEEM image quality as well as the resulting photoelectron spectra was performed

by means of ToF spectroscopic measurements at different illumination intensities.

Optimal XUV intensity is reached at around 150 mbar – 200 mbar of neon gas in

HHG; however, no useful image contrast and resolution could be achieved under

these illumination conditions due to space-charge broadening. In this investigation,

a 150 nm zirconium filter in combination with a 150 nm silicon nitride filter are used

to spectrally filter the XUV intensity, which is further filtered by a Mo/Si multilayer

mirror of 57 % reflectivity at 93 eV (as described in section 4.1). The XUV peak in-

tensity is estimated to be reduced by over three orders of magnitude by reducing the

neon gas pressure in the gas target besides implementing the filters and the XUV

mirror in order to achieve low enough intensity for PEEM operation without space

charge.

In photoemission induced by ultrashort pulses the tolerable number of photo-

electrons per pulse should not exceed about one electron within 1 µm2 [35, 190],

because multiple electrons emitted quasi-simultaneously suffer from Coulomb repul-

sion either at the sample, or more severely, at the back focal plane inside the PEEM

column where the electron beam trajectories cross. It is also possible that space

charge effects can occur in a retardation lens, especially in the case of a PEEM

incorporated with a hemispherical energy analyzer, as the electrons are decelerated

before entering the analyzer [188]. When attenuating the XUV pulse intensity by

gradually decreasing the neon gas pressure the image contrast as well as the image

resolution improves until an optimum at a neon gas pressure of about ∼50 mbar

(see fig. 4.6 (a)). Thus, the XUV intensity is just below the onset of space charge

at this gas pressure, not exceeding a photoelectron flux of about one electron per

pulse within 1 µm2. Note, however, that the achieved parameters are a trade-off be-

tween reasonable photon flux (image acquisition time) and space charge suppression;

but even under these conditions at 1 kHz repetition rate space charge is not totally

avoided. A similar observation was concluded by A. Mikkelsen et al. [35], who also
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Figure 4.6: Space charge effect investigation. (a) PEEM images obtained by XUV excitation
at different gas pressures. (b) Full energy spectra of XUV emitted photoelectrons at different
gas pressures. Left inset: intensity normalized at secondary electron peak. Right inset: intensity
normalized at primary electron peak.

used attosecond XUV pulses at 1 kHz repetition rate but in pulse trains and with a

central photon energy of 30 eV to image lithographically fabricated gold nanoholes

using a PEEM without a ToF option. Fig. 4.6 (b) displays the corresponding energy

spectra varying with the gas pressure. The image starts to get blurred at a pressure

of 70 mbar (see fig. 4.6 (a)), whereas the spectrum only starts to broaden at 80 mbar

(fig. 4.6 (b)). Note that the very bright spot in the top center area of the images

at 90 mbar and 100 mbar might be an artefact resulting from multiple hits on the

DLD in addition to the blurriness caused by the space charge effects. This can be

explained by a count rate significantly above the laser’s repetition rate at the DLD

at 90 mbar and 100 mbar. Interestingly, it is observed that the high-energy electron

peaks do not shift in energy as the gas pressure increases. In contrast, the low-energy

electron peak starts to shift at 90 mbar from 1.4 eV to 3.7 eV and at 100 mbar to

5.5 eV, respectively. This shows that the low-energy electrons (secondary electrons)

are more easily influenced by space charge effects as they are slow and thus have

more time to disperse before entering the PEEM’s extractor compared to the high-

energy valence band electrons. This is a very important finding, since it underlines

the feasibility of the atto-PEEM concept, which is based on the image acquisition

and analysis using the fast valence band electrons, which carry information about

the instantaneous electric field of the LSPs.

As pointed out in section 4.1, strong attenuation of the XUV intensity to avoid

space charge extends the image acquisition time to a few hours or even more if
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energy-filtered imaging on fast valence band electrons is taken into account, mak-

ing time-resolved experiments nearly impossible at 1 kHz repetition rate. There-

fore, high-repetition-rate XUV sources [191–195] ranging from hundred kilohertz to

megahertz repetition rates are demanded and currently being developed in order to

enable realistic atto-PEEM experiments in a pump-probe scheme as well as for other

applications. The group of A. Mikkelsen has demonstrated an improvement of XUV-

PEEM imaging quality on silver nanowires by a factor of 2 – 3 with a reduced image

acquisition time by a factor of ∼10 when increasing the repetition rate from 1 kHz

to 200 kHz [133, 138]. In their case, the PEEM imaging was also achieved with atto-

second XUV pulse trains centered at around 30 eV, as aforementioned. Ultimately,

we expect that an attosecond XUV source in the low-megahertz regime will allow an

image acquisition time on the order of seconds to minutes while excluding any space

charge effects. On the other hand, high-megahertz HHG sources might be disadvan-

tageous if a ToF spectrometer is used, since the maximum ToF range is limited by

the repetition period. This fundamental limit also prevents a high time resolution

of the ToF spectrometer to be achieved, thus decreasing the attainable energy res-

olution. Alternatively, a PEEM with a hemispherical energy analyzer or IEF can

be considered as a solution to this issue posed by hundred-megahertz HHG sources,

since the resolution of these spectrometers does not depend on repetition rate. They

lack, however, the capability of parallel data acquisition for all electron energies of

interest simultaneously, which is naturally provided by a ToF spectrometer.



Chapter 5
Laser intensity effects in single-shot

CEP-tagged PEEM

In the previous chapter we have demonstrated that a spatial resolution of ∼200 nm

could be achieved using ∼350 as XUV pulses on lithographically fabricated gold

structures. We have shown that utilizing energy-filtered imaging of the secondary

electrons could improve the chromatic aberrations, and we have also successfully

proven the microspectroscopic identification of core and valence band electronic

states using these ultrashort XUV pulses. Ultimately, it is more intriguing to use

the CEP of few-cycle laser pulses (as the pump) to control the plasmonic optical

fields on a nanostructured metal surface, and the field dynamics can be probed by

synchronized attosecond XUV pulses. In this chapter and the next chapter first

studies on CEP control without a pump-probe scheme will be presented. Instead of

employing a typical commercially available CEP locking scheme, we have combined

a single-shot stereographic ATI phase meter with ToF-PEEM (see subsection 3.3.3)

for controlling and probing plasmonic fields [172]. More details on the advantages of

using a phase tagging technique can be found in subsection 3.3.2. First CEP-resolved

measurements on NPOP and surface roughness from a gold film show an apparent

CEP modulation with a period of π. This modulation is found to originate from

an intensity dependence of the photoelectron spectra and the CEP measurement

rather than from an intrinsic CEP dependence, which is confirmed by simulations.

Solutions to eliminate this CEP artefact in our CEP-tagged PEEM setup will be

presented in chapter 6.

57
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5.1 Nonlinear photoemission at nanostructures

Nonlinear photoemission, such as multiphoton photoemission and light-induced tun-

neling, is now made available with the advance of femtosecond laser pulses with

large peak intensities, particularly in conjunction with tailored nanostructures for

enhancing the optical fields at the surface. An introductory description of nonlinear

photoemission is given in subsection 2.2.2. Laser-excited nonlinear PEEM provides

a direct imaging capability which is highly sensitive to the local magnetic or electric

surface fields with a nanoscale spatial resolution. By exploiting such an imaging tech-

nique, we attempt to explore light-field control in supported nanostructures using

intense, CEP-controlled few-cycle laser pulses.

The experiments described in this chapter [172] were performed using 4 fs – 6 fs

few-cycle laser pulses with a central wavelength of 730 nm at a repetition rate of

10 kHz (see subsection 3.3.1). The incident angle of both the UV light and the p-

polarized laser pulses was 65◦ to the sample surface normal. In order to avoid too

high peak intensities on the sample due to the intense few-cycle laser pulses, the

focusing mirror (f = 25 cm) was positioned out-of-focus such that the beam spot at

the sample was rather large, approximately 300µm× 600 µm (FWHM). NPOP was

chosen as the first sample, as it exhibits a very strong field enhancement when in

resonance with the incident light, given by the very small but well-defined gap size

(<1 nm) between the gold nanoparticles and the gold film. See subsection 3.4.1 for

a detailed sample description.

A near-field gap resonance is excited when the light’s electric field is aligned

across the nanoparticles and the gold plane. A field enhancement factor of ∼400 is

obtained based on finite element method simulations using our laser excitation pa-

rameters at an incident angle of 65◦. A peak laser intensity of ∼5 · 108 W/cm2 was

used to illuminate the sample. Fig. 5.1 (a) and (b) depict the NPOP at medium

magnification and high magnification, respectively, under a SEM. The nanoparticles

are separated from each other by some hundred nanometers to several micrometers,

as shown in fig. 5.1 (a). Some unknown contaminant is observed as a transparent

layer surrounding the nanoparticles, which was not present during the measurements

(see fig. 5.1 (b)). The SEM image was taken about three years after the measure-

ments and this contamination must have built up over the time. Fig. 5.1 (c) shows the

energy-integrated PEEM image over 7 · 106 laser shots on the NPOP sample. The

image is smeared out in one direction because astigmatism was not corrected dur-

ing the measurement. Fig. 5.1 (d) illustrates the corresponding integrated electron

energy spectrum from the entire PEEM image of 60 µm field of view. The electron

spectrum represents the kinetic energy distribution of electrons after multiphoton

photoemission reduced by the work function of the sample. It is expected that differ-
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Figure 5.1: Microscopic images and photoemission spectrum of the NPOP sample. (a) SEM
image of the NPOP displaying isolated gold nanoparticles indicated by the bright dots on the
gold film surface. (b) A zoomed-in SEM image of the ∼90 nm gold nanoparticles. (c) PEEM
image of the NPOP illuminated by few-cycle laser pulses. The achievable image contrast is
given mainly by the multiphoton photoemission. The hot spots are from plasmonic-enhanced
photoemission of the nanoparticles. Larger hot spots are formed by clustered nanoparticles.
The colorbar shows the counts. (d) Normalized energy spectrum integrated over the whole
NPOP sample area as shown in (c).

ent numbers of photons are involved in the emission process, since a broadband laser

was used for excitation. In this case, a minimum of three photons (the central pho-

ton energy is 1.7 eV, determined from the laser’s central wavelength) are required to

overcome the sample’s work function of 4.0 eV [107]. Another aspect considering the

contribution of light-induced tunneling on the spectrum of NPOP will be discussed

in subsection 5.2.1.

5.2 Investigation of CEP artefact for NPOP and

surface roughness

This section presents the investigation and analysis of an apparent CEP modulation

found in our first CEP-resolved experiments on plasmonic nanostructures. Any real

CEP effects can possibly be overwhelmed by an undesirable CEP artefact, which

arises from laser intensity fluctuations in the experimental setup. We carried out

intensity-dependent measurements on the kinetic energy of the photoelectrons emit-

ted from hot spot areas of the plasmonic sample and the CEP of the according laser

pulses detected by the stereographic ATI phase meter to gain a deeper understanding

for the cause of this CEP artefact.

5.2.1 Apparent CEP modulation

The PAP obtained from the phase meter for the previously described NPOP mea-

surement is shown in fig. 5.2 (a). The PAP is reconstructed from the phase-tagged

data set by using the asymmetry values measured for every detected electron count
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Figure 5.2: CEP-tagged PEEM results for the NPOP sample. (a) PAP for 7 · 106 laser shots;
the pulse duration is estimated as 4.1 fs FWHM. The colorbar shows the normalized counts.
(b) Normalized CEP spectrogram for the NPOP with the CEP-averaged spectrum subtracted.
The colorbar shows the modulation depth in percent.

and a CEP map is generated by balancing the PAP as described in subsection 3.3.2

in order to obtain the actual CEP ϕ. Subsequently, the DLD data sets (x, y, t) can

be sorted or filtered according to the associated CEP values. More details regarding

CEP-tagged PEEM configuration can be found in subsection 3.3.3. In order to ana-

lyze the CEP dependence, the difference between CEP-resolved electron spectra and

the CEP-averaged electron spectrum, normalized to the peak amplitude of the CEP-

averaged spectrum, is taken to enhance the visibility of the CEP effect and depict

the modulation depth. It is shown as a CEP spectrogram in fig. 5.2 (b). A CEP bin

size of 10◦ is chosen, which yields 36 bins over the entire 2π (360◦) range, providing

adequate statistics within each bin at a reasonable acquisition time. A modulation

of the spectrum with a period of π (180◦) is clearly visible, corresponding to an

apparently CEP-dependent energy shift: the modulation of the high-energy part of

the spectrum around the CEP-averaged central energy peak is inverted, i.e. shifted

by π, compared to the low-energy part, while no modulation is visible at the central

energy.

For comparison, we also carried out a phase-tagged measurement on a 90 nm thick

multicrystalline gold film on an ITO-coated glass substrate. Fig. 5.3 (a) shows the

gold film feature under UV light excitation obtained with the PEEM. Irregularities,

such as bigger crystal grains or possibly unknown particles on the multicrystalline

gold film surface, can be observed, whereas very smooth surfaces are visible on the

ITO-coated glass and single-crystalline gold flake. It is well known that evaporated

multicrystalline gold films exhibit typical crystal grain sizes of 30 nm – 50 nm [196].

Atomic force microscopy (AFM) imaging on the investigated gold film confirms a

crystal grain size of 30 nm – 50 nm in our case. Its corresponding root mean square

(rms) surface roughness is ∼0.9 nm. It is intriguing to see some bigger crystal grains

or unknown hill-shaped particles, which are 15 nm – 60 nm in height and have a

lateral extent of 50 nm – 150 nm in the AFM image (see fig. 5.3 (b)). These irregu-
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Figure 5.3: Microscopic images and photoemission spectrum of the gold surface roughness
sample. (a) PEEM image of the 90 nm thick multicrystalline gold film on an ITO-coated glass
substrate using UV lamp excitation. The surface roughness of <1 nm is too fine to be resolved
with the PEEM. However, larger surface roughness of ∼11 nm rms can be seen on the gold
film surface. (b) AFM image of the area marked by a yellow square in (a). Two kinds of surface
roughness are observed, see text for details. (c) PEEM image of the same sample area as shown
in (a), acquired with few-cycle laser pulses. The hot spots originate from plasmon-enhanced
photoemission from the gold surface roughness. The colorbar shows the counts. (d) Normalized
energy spectrum integrated over the whole surface roughness sample area as shown in (c).

larities result in a rms surface roughness of ∼11.1 nm, and it is believed that the

rough distinct features can be caused by coalescence or contamination either during

the gold evaporation process or the lift-off process in EBL. Surface roughness is cho-

sen as an experimental control to scrutinize the apparent CEP effect observed in our

CEP-tagged setup, since no CEP effect is expected from random nanostructures at

a surface. The photoemission from hot spots formed by the surface roughness of this

gold film is shown in fig. 5.3 (c). A defocused peak laser intensity of ∼8 · 108 W/cm2

was used for the sample illumination. A variety of surface plasmon modes seen as

the hot spots can be excited in the nanoscale gaps between gold crystal grains upon

the broadband laser excitation ranging from 400 nm – 1000 nm. The NPOP exhibits

a slightly higher electron kinetic energy of ∼4 eV (see fig. 5.1 (d)) than the surface

roughness (∼3 eV), even though the laser peak intensities for both samples are com-

parable. This can be explained by an energy gain of the electrons when being expelled

from the strong plasmonic near-field region inside the gap, following the pondero-

motive force [107]. It is believed that a tunnel ionization process is also involved

besides the multiphoton photoemission process in the case of NPOP. This can be

validated by the Keldysh parameter, γ = ω
√

2meφ/eE0 [94], where ω is the angular

frequency of the laser, me the electron mass, φ the work function, e the electron

charge and E0 the electric field amplitude (see eqn 2.5). With a laser peak inten-

sity of ∼5 · 108 W/cm2 and a field enhancement of 400 by the plasmonic resonance,

this yields a total electric field strength Egap of ∼20 GV/m in the gap. Using our

experimental parameters with the sample’s work function being 4 eV and the laser’s

central wavelength being 730 nm we obtain γ ≈ 0.87. Note that multiphoton pho-
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Figure 5.4: CEP-tagged PEEM results of the gold surface roughness sample. (a) PAP for
2 · 106 laser shots; the pulse duration is estimated as 6.5 fs FWHM. The colorbar shows the
normalized counts. (b) Normalized CEP spectrogram for the surface roughness sample with
the CEP-averaged spectrum subtracted. The colorbar shows the modulation depth in percent.

toemission is favored for γ � 1 and tunneling for γ � 1 [94]. Hence, this confirms

our assumption that electron tunneling also plays a role in the emission process,

which is facilitated by the strong near fields at the coupled plasmonic structure.

Note that the static field of the PEEM generated by the extractor is only ∼5 MV/m

and therefore can be neglected, as it is 4 orders of magnitude smaller than Egap. A

smaller PAP is obtained for this measurement, suggesting a longer pulse duration

possibly due to a change in dispersion of the laser pulses (see fig. 5.4 (a)). This PAP

is also reconstructed from the phase-tagged data set. The non-uniform shape of the

PAP is caused by imperfect phase meter alignment. For the gold surface roughness

sample a similar spectral feature with a modulation period of π but with smaller

modulation depth is observed (see fig. 5.4 (b) and cf. fig. 5.2 (b)).

Since we expect no observable CEP dependence from the surface roughness sam-

ple, we suspect the apparent modulation to be caused by a measurement artefact.

Furthermore, a 2π rather than π CEP modulation is expected from solid state sam-

ples [12, 40], thus the same artefact is likely the cause for the observed CEP mod-

ulation from the NPOP sample. A strong evidence for this is the persistence of the

CEP modulation in both measurements when shifting the CEP tagged list by several

events, i.e. associating the CEP of earlier or later laser shots to every electron event.

This persistence is not expected for a real CEP effect, since the CEP is assumed

to be random for every laser shot in a kHz amplified laser system, and any CEP

correlation should be destroyed when shifting the tagged CEP list even by a single

event. Here, we found no apparent change in modulation depth when shifting by

several events (up to ∼10). When shifting by more events, the modulation becomes

less and less pronounced and entirely fades away into random noise after shifting by

a number of events corresponding to about 2 s (events are correlated to timing via

the count rate). This was consistently found for both measurements despite their

different count rates (∼1000 counts/s for NPOP vs. ∼150 counts/s for gold surface
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Figure 5.5: Laser intensity dependence of the photoemission spectra. (a) Photoemission spec-
tra from the gold surface roughness sample at different relative intensities I/I0, I0 being the
intensity used for phase-tagged experiments. Energy shift and broadening are evident. (b)
Shift of the central energy as a function of intensity (blue) showing a nearly linear intensity
dependence after an onset. The count rate increases with an exponent of 4.4 as a function of
intensity (red), indicating a 4 – 5 photon photoemission process.

roughness hot spots). The persistence of the observed apparent CEP modulation

of the photoelectron spectra over timescales on the order of one second suggests a

correlation with slowly varying laser parameters other than its CEP, such as the

intensity, which affects both the photoelectron spectrum and the CEP measurement

inside the phase meter in a correlated way and thus introduces an apparent CEP

artefact into the CEP-tagged measurement. The intensity appears to be a suitable

cause for this effect, since notable intensity fluctuations of our laser take place on

a timescale of hundreds of milliseconds and above with an amplitude of 0.6 % rms

over 1 min and up to several percent over few hours. This means that on timescales

of few hundred milliseconds and below the laser intensity is essentially constant,

which is in good agreement with the observed temporal persistence of the apparent

CEP modulation. On larger timescales (seconds and above), intensity fluctuations

become more pronounced, which destroys any correlation between measured events

via the laser intensity.

5.2.2 Laser intensity dependence

Fig. 5.5 (a) shows normalized photoemission spectra from the gold surface roughness

sample for different relative laser intensities, I0 being the intensity used for the

phase-tagged experiments in fig. 5.3 (c) and (d) as well as in fig. 5.4 (b). A space

charge-induced energy shift and broadening with increasing laser intensity are clearly

visible. Fig. 5.5 (b) quantifies the shift of the kinetic energy peak (blue curve). An

onset is evident at about 0.9I0, attributed to space charge, followed by a nearly

linear energy shift with intensity. Around I0 the energy shift is about 20 meV per

percent of intensity change. Besides the energy shift it is worth to note that the
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Figure 5.6: Laser intensity dependence of the PAP and intensity-induced disbalance of the
CEP retrieval. (a) PAP as a function of relative intensity I/I0, I0 being the intensity used for
phase-tagged experiments. The colorbar shows the normalized counts. (b) Polar distribution
of counts extracted from the PAP. (c) Calculated disbalance of the CEP for a laser intensity
change of 0.6 % (black) and 6 % (blue), respectively, around I0.

count rate increases as a function of intensity with an exponent of 4.4 (red curve),

indicating a 4 – 5 photon photoemission process.

An intensity-dependent energy shift of the photoemission spectrum can only ex-

plain the persistent CEP modulation if it is accompanied by an intensity-dependent

disbalance of the PAP, which induces a deviation from a uniform distribution of

counts over the CEP for different intensities. Fig. 5.6 (a) shows the PAPs for dif-

ferent relative intensities, I0 being again the intensity used for the phase-tagged

experiments in fig. 5.3 (d) and fig. 5.4 (b). A change in shape as well as in the polar

distribution of counts is clearly visible as a function of intensity. The distribution

of counts as a function of the polar angle is depicted more clearly in fig. 5.6 (b) and

is normally used for balancing the PAP such that each every polar angle interval

contains the same number of counts (see subsection 3.3.2). Here, the balancing was

omitted in order to show the naturally non-uniform distribution of counts within

the PAP. Since the shape shifts and changes with intensity, the CEP retrieval be-

comes unbalanced for laser intensities other than the intensity at which the PAP

for CEP tagging was recorded. This disbalance is quantified as the deviation from

unity when normalizing the distribution of counts as a function of CEP at a par-

ticular intensity to the distribution at I0. The counts distribution curve within the

PAP can be obtained for any intensity within the measured range around I0 by

interpolation. Fig. 5.6 (c) shows the resulting disbalance as a function of CEP for
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an intensity change of 0.6 % around I0 in black (typical laser intensity drift over

1 min) and 6 % in blue (typical laser intensity drift over few hours), respectively.

The disbalance exhibits a periodicity of π and scales approximately linearly with

the intensity change. It amounts to ∼2.3 % peak-to-peak (for 0.6 % intensity change)

or ∼23 % peak-to-peak (for 6 % intensity change), respectively.

5.3 CEP artefact simulations

In order to reproduce the impact of this intensity-dependent disbalance on the mea-

sured CEP spectrogram, a phase tagging simulation using 50 million single shots

was performed and the simulation result was compared with the measurement of

the gold surface roughness sample. We chose this sample because of the similarity of

the corresponding PAP (see fig. 5.4 (a)) with the PAP used for the investigation of

the intensity dependence (see fig. 5.6 (a), I/I0 = 1.00). The measured CEP spectro-

gram is shown again in fig. 5.7 (a) for comparison along with the shift of the central

kinetic energy as a function of CEP (see fig. 5.7 (b)), determined by Gaussian fits.

For simplicity, a Gaussian kinetic energy distribution was chosen for the simula-

tion, resembling the experimentally obtained energy spectrum of the gold surface

roughness sample (∼1.6 eV FWHM, ∼0.8 eV central energy), as well as a Gaussian

intensity distribution around I0, the standard deviation of which was used as a vari-

able parameter (see below), and a random CEP for every event. All distributions

(energy, intensity, CEP) were initially uncorrelated, representing a sample with no

CEP dependence. The kinetic energy of each event was then modified according to

the associated laser intensity using the experimentally obtained value of 20 meV per

percent of intensity change (see fig. 5.5 (b)). Also, the weighting of each event was

calculated according to the disbalance value associated with laser intensity and CEP

using the relationship obtained from the intensity dependence measurements for the

gold surface roughness sample (see fig. 5.6 (c)). Afterwards, a CEP spectrogram was

constructed by summing up the weightings of all events in a particular energy and

CEP bin. The standard deviation of the intensity distribution was used as a param-

eter in the simulation in order to find the best match to the measurement. The CEP

spectrogram for a laser intensity distribution of 6 % rms is shown in fig. 5.7 (c) along

with the shift of the central kinetic energy as a function of CEP (see fig. 5.7 (d)). This

value is in good agreement with the typical laser intensity drift over several hours

of measurement time and yields the best match to the measured CEP spectrogram

as well as the measured shift of the kinetic energy of about 26 meV peak-to-peak.

Despite the different PAPs used for the measurement and simulation, resulting in

slightly different shapes, we obtained a remarkable agreement, both qualitatively

(matching modulation period of π) and quantitatively (matching modulation depth
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Figure 5.7: Simulation of apparent CEP modulation caused by laser intensity fluctuations. (a)
Measured normalized CEP spectrogram for the gold surface roughness sample with the CEP-
averaged spectrum subtracted. The colorbar represents the modulation depth in percent (from
fig. 5.4 (b)). (b) Central kinetic energy shift as a function of CEP, obtained from the measured
spectrogram. (c) Simulated normalized CEP spectrogram with the CEP-averaged spectrum
subtracted for a Gaussian intensity distribution with a standard deviation of 6 % around I0.
The colorbar represents the modulation depth in percent. See text for simulation details. (d)
Central kinetic energy shift as a function of CEP obtained from the simulated spectrogram.

and energy shift). Since the simulation was performed with no intrinsic CEP ef-

fect, i.e. no initial correlation between CEP and kinetic energy or weighting, this

result constitutes a strong evidence for laser intensity effects being the cause of the

observed apparent CEP modulation.

This finding is crucial particularly for the studies of weak CEP-dependent pro-

cesses employing the phase tagging technique, as the artefact might easily outweigh a

weak intrinsic CEP modulation of the studied sample. Shortening the measurement

time in order to reduce laser intensity fluctuations seems infeasible with typical kHz

amplified laser systems, given the low count rates necessary to avoid space charge ef-

fects (≤ 1 electron per pulse). Sufficient intensity stabilization of such laser systems

while maintaining adequate pulse energies and spectral bandwidths is also intricate,

requiring an effort comparable to CEP stabilization and thus lessening the benefits of

the phase tagging technique. Alternatively, CEP-tagged ToF-PEEM measurements

have to be restricted to plasmonic samples which exhibit a strong CEP dependence,

such that the CEP artefact becomes negligible compared to the intrinsic CEP mod-

ulation. However, this would prevent ToF-PEEM from studying CEP dependence in

plasmonic nanostructures, since the CEP dependence of such nanostructures [197]
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and even bulk materials [54, 198] (see section 6.3) is on the order of only a few

percent or less. In the next chapter we introduce intensity tagging as a technique for

removing or reducing the intensity-related CEP artefact by expanding the current

phase tagging technique with a single-shot intensity measurement.





Chapter 6
Single-shot intensity-CEP-tagged PEEM

Chapter 5 discusses the discovery of an intensity-related CEP artefact in our first

CEP-tagged ToF-PEEM experiments. Further investigations and analysis confirm

the modulation depth and periodicity of the observed CEP artefact, which arises

from an intensity-dependent energy shift of the photoelectrons emitted from the

sample in combination with an intensity-dependent disbalance of the CEP retrieval

from a stereographic ATI phase meter. In this chapter, we therefore introduce and

incorporate intensity tagging into our current CEP-tagged ToF-PEEM setup, i.e.

recording the intensity for each laser shot in addition to the CEP measurement, as

a mitigation for the intensity-related CEP artefact caused by laser intensity fluctu-

ations. As a result, the artefact background could be sufficiently reduced to reveal

a CEP modulation depth as low as ∼1 % using this additional intensity tagging

channel.

To date, CEP effects in solids have been experimentally studied for a gold cath-

ode [198], tungsten and gold nanotips [12, 40], dielectric nanospheres [199, 200],

plasmonic nanostructures [13, 201, 202] as well as optically transparent materials

such as fused silica [203, 204] and calcium fluoride [203] for potential solid-state

light-phase detections. We investigate and observe a CEP effect from a bulk W(110)

single crystal surface via multiphoton and strong-field photoemission for the first

time by employing the intensity-CEP-tagged ToF-PEEM. An attosecond streaking

experiment using bulk tungsten has been demonstrated previously [17], however,

the photoelectrons from the metal surface were emitted upon XUV excitation and

only afterwards interacted with the few-cycle NIR pulse. Practically, our method

constitutes a simple and relatively sensitive solid-state CEP detector, which does

neither require complex fabrication and handling of nanostructures nor a two-pulse

pump-probe technique. Furthermore, we extend this work to a possible application

69
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of this technique for studying the CEP effects in two-dimensional gold nanotriangles

fabricated by EBL, paving the way to lightwave nanoelectronics.

6.1 Experimental concept of intensity tagging

For implementing single-shot intensity tagging in the CEP-tagged ToF-PEEM setup

(see subsection 3.3.3), a photodiode in combination with a gated integrator was

added to the current data acquisition system to record the laser power for every shot.

The gated integrator is triggered with the laser’s repetition rate (as the rest of the

system) and is set to integrate the photocurrent within a narrow time window around

each laser pulse, corresponding to the photodiode’s response time (about 10 ns), thus

eliminating the majority of electronic noise within the ∼100µs time interval between

laser shots. The integrated signal for each pulse, which is proportional to its intensity,

is held as a voltage at the integrator’s output until the next trigger pulse and sampled

by the ADC system (refer to subsection 3.3.3) along with the phase meter signals.

The assignment of an intensity to each detected electron event thus allows sorting

or filtering the data by intensity in postprocessing and a balanced CEP retrieval can

be performed using an appropriate PAP for the intensity interval of interest on the

CEP-tagged data from the same intensity interval. Note that in this experiment,

unlike in chapter 5, we recorded intensity and PAP information for every laser shot

and not only for those laser shots which resulted in a photoelectron detection. This is

required to observe a CEP-dependent modulation of the photoemission yield, which

we expect from the tungsten sample (rather than only a CEP-dependent energy

shift), by comparing the PAP obtained from all laser shots to the PAP obtained

only from laser shots which produce photoelectron detections.

6.1.1 Intensity-resolved CEP retrieval

The intensity and PAP measurements for every laser shot are used to create a CEP

map for CEP retrieval of every electron detection event based on the balancing

method described in subsection 3.3.2. The additional intensity information allows

creating a PAP, and thus an individual CEP map, for an arbitrary intensity interval.

Fig. 6.1 (a) shows several exemplary PAPs for different intensity intervals around the

average intensity, I0, extracted from a ∼30-min measurement at 10 kHz repetition

rate. Although the shape and the polar distribution of counts are similar, a clear

systematic change of the PAP is visible as a function of intensity. This confirms the

results of the intensity scan shown in subsection 5.2.2; however, here the intensity-

dependence is extracted from a single measurement, albeit over a shorter range,

utilizing the laser’s intrinsic intensity fluctuation.
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Figure 6.1: Intensity-resolved CEP retrieval. (a) Exemplary PAPs for different intensity in-
tervals around the mean intensity, I0, extracted from a single measurement. (b) Top: CEP
map functions for different intensity intervals denoted in (c); bottom: deviation of the CEP
maps from the ideal, i.e. direct, CEP map. (c) Laser intensity distribution for this measurement
relative to the mean intensity, I0 (the integral is normalized to 1). The dashed lines denote
intensity intervals with an equal amount of integrated counts and the colors correspond to the
CEP maps in (b). (d) Resulting two-dimensional CEP/intensity map using 64 intensity bins
with an equal amount of counts. The color scale shows the deviation from the ideal CEP map
for clarity.
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Fig. 6.1 (b) shows intensity-resolved CEP maps generated from these PAPs (1◦

bin size) in the top panel, which can be used to directly convert a measured PAP

polar angle into the corresponding CEP. The bottom panel shows the deviation from

the ideal CEP map1 in order to emphasize the non-uniform distribution of counts

within the PAP and its intensity dependence (see fig. 5.6 (b) in subsection 5.2.2). The

CEP maps and their deviation plots are depicted here exemplarily for seven intensity

intervals, which are shown in fig. 6.1 (c) by the dashed lines and the corresponding

colors along with the intensity distribution of the laser pulses, which exhibits a

standard deviation of 2.35 % around the mean intensity, I0. The intensity intervals

were chosen such that the number of counts within each interval is equal, thus

assuring an identical statistical error for each intensity-resolved CEP map.

The individual CEP maps can be combined into a two-dimensional mapping

function, which allows intensity-resolved balanced CEP retrieval for any electron

detection event with an assigned PAP polar angle and laser intensity. Fig. 6.1 (d)

depicts the resulting CEP/intensity map for 64 intensity intervals with an equal

amount of counts each and the color scale shows the deviation from the ideal CEP

map for clarity. For the actual CEP retrieval, this two-dimensional map is expanded

into 3600 PAP polar angle bins (i.e. 0.1◦ bin size) by interpolation and the intensity

dependence is parametrized for each polar angle bin by a third-order polynomial

in order to smooth the map function and eliminate artefacts due to the limited

number of discrete and non-equidistant intensity intervals. The CEP of an electron

detection event with an assigned intensity and PAP polar angle is then calculated

by taking the nearest polar angle bin in the two-dimensional map and evaluating

the associated polynomial at the measured intensity.

6.1.2 Laser intensity-correlated artefact in CEP retrieval

The intensity-tagging technique also allows intensity filtering of the data in order

to reduce the intensity spread of a given measurement at the expense of statistics.

This eliminates any directly intensity-dependent effects and thus serves as a useful

tool for a thorough investigation of the apparently intensity-related artefact in CEP

retrieval discussed in chapter 5.

Fig. 6.2 (a) shows a typical laser intensity distribution (black line) around the

average intensity, I0 (same as in fig. 6.1 (c)). The blue line shows the photoemission

yield from a bulk tungsten surface measured by the ToF-PEEM at an effective laser

peak intensity of (1.2± 0.6) · 1013 W/cm2 as a function of relative intensity (see

section 6.2 for further details of this measurement and CEP-resolved results). Each

1An ideal CEP map is a direct (1:1) correspondence between the PAP polar angle and the CEP,
except for a constant offset.
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Figure 6.2: Intensity filtering and tag list assignment. (a) Laser intensity distribution relative
to the mean intensity, I0, for all laser shots (black) and only for “tagged” shots (blue), i.e.
shots with electron detection events. The integral for all laser shots is normalized to 1. The
green line shows the photoemission yield per laser shot. The thin orange rectangle denotes
the intensity-filtered region for the investigation of the CEP retrieval artefact. (b) Illustration
of the assignment of the measured laser pulse parameters, PAP polar angle and intensity (θi,
Ii), to the position and ToF (xi, yi, ti) of the electron events measured by the DLD via
the tag numbers. The black tag list (Tag) shows an example of the tagged shots including
missing electron events as well as multi-hits. The red tag list (Tag’) demonstrates a shift of
the assignment by one laser shot by incrementing the measured tag numbers.

electron detection event is assigned with the PAP measurement (consisting of two

asymmetry values A1 and A2, yielding the PAP polar angle θ) and the intensity

of the corresponding laser shot via the tag number of this event provided by the

TDC, as described in subsection 3.3.3. Notably, the resulting intensity distribution

of the detected photoemission events (i.e. “tagged” shots) is narrower than the

laser intensity distribution and centered at a ∼1.1 % higher intensity, which reflects

the nonlinear intensity dependence of the photoemission process. In addition, the

relative yield (green line) is over unity at higher intensities, denoting a significant

contribution of multiple photoemission events from a single laser shot due to the high

laser intensity used. The total yield amounts to ∼0.72 electron detection events per

laser shot at the DLD. For further analysis, the data is intensity-filtered over a

narrow intensity interval of ∼0.3 % of I0 close to I0, denoted by the thin orange

rectangle. The position and width of this interval were chosen to simultaneously

filter ∼5 % of the counts for all laser shots as well as for the tagged subset in order

to avoid statistical bias. The filtered data exhibits a negligible intensity variation,

while providing sufficient statistics (∼106 laser shots).
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As pointed out in subsection 5.2.1, an artefact in the CEP retrieval was observed

as an apparent CEP modulation, even after shifting the list of electron events relative

to the measured PAP list by up to several seconds. This persistence was found

to correlate with the timescale of laser intensity fluctuations. Intensity filtering of

the data enables us now to study this artefact by excluding any direct intensity

dependence. Furthermore, since we recorded the laser pulse parameters for every

shot, the assignment of a PAP measurement to an electron detection event can be

shifted with a single-laser-shot precision, i.e. a time interval of 100µs at a repetition

rate of 10 kHz. Fig. 6.2 (b) illustrates the assignment of the measured PAP polar

angle (resulting from the two asymmetry values A1 and A2) and intensity to each

electron detection event via the tag number. By adding an arbitrary offset N to all

tag numbers in the list, the assignment is effectively shifted by N laser shots. An

offset of N = 1 is shown in red as an example. Since the CEP changes essentially

randomly between consecutive laser shots for a kHz amplifier system [166, 205] any

residual CEP modulation after shifting the tag list by an offset of |N | ≥ 1 shots is

attributed to a systematic error, i.e. an artefact.

Fig. 6.3 (a) depicts several PAPs reconstructed from the PAP asymmetry values

assigned to the tagged shots (i.e. electron detection events) at different laser shot

offsets between N = 0 and N = 10 000 with the PAP reconstructed from all laser

shots subtracted. All PAPs were normalized and the color scale shows the relative

difference in percent. This PAP difference is shown more clearly and quantitatively

in fig. 6.3 (b) as the difference between the CEP maps obtained from the respective

PAPs used in (a). The PAP difference at 0 shot offset reveals the actual CEP-

dependent modulation of the photoemission yield from the tungsten sample with

a clearly visible 2π periodicity. An in-depth analysis of this CEP effect is given in

subsection 6.2.2. At an offset of N = 1 the previous 2π CEP modulation disappears.

However, an apparent CEP modulation with a periodicity of π and a slightly smaller

modulation depth remains. For larger shot offsets this residual CEP modulation

becomes gradually less pronounced and fades into noise for N & 10 000, which

confirms the findings in subsection 5.2.1. The corresponding temporal persistence

of this artefact (∼1 s) is at least 4 orders of magnitude larger than for the true

CEP effect (< 100 µs). The skewed shape of the PAP difference plots in fig. 6.3 (a)

resembles a difference between two PAPs of slightly different intensities, based on the

intensity dependence of the PAP shape shown in fig. 6.1 (a), where the tagged PAP

(skewed red contour) has a seemingly higher intensity. An actual intensity difference

between the PAPs obtained from all shots and from the tagged subset can be ruled

out, since the data has been intensity filtered; thus the observed PAP difference for

1 ≤ N . 10 000 must have another cause.
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As discussed in sections 5.2 and 5.3, the temporal persistence of the CEP artefact

resembles the characteristic timescale of the intensity drift in our laser system, which

is illustrated in fig. 6.3 (c). The relative intensity change between pairs of laser pulses

separated by different amounts of time (from 100 µs, or one shot, to 10 s, or 100 000

shots) is shown as a probability distribution. The distribution becomes significantly

broader when the pulses are separated by 100 ms or more, indicating a higher prob-

ability for a large change in intensity over these timescales. A more complete picture

of the temporal characteristics of the laser intensity fluctuations is provided by the

autocorrelation function of the change in laser intensity, ∆I(t) = I(t)− I0, which is

given by:

∆IAC(t) ∝
∫ ∞
−∞

∆I(t)∆I(t+ τ) dτ. (6.1)

The result is shown in fig. 6.3 (d) as the green curve (only for positive corre-

lation times). A large autocorrelation value denotes a nearly constant (i.e. highly

correlated) intensity on this timescale, while a small or zero value denotes a corre-

lation of essentially random intensities, i.e. little or no correlation at all. The data

acquisition was performed in chunks of 10 s exposure time with few-second breaks in

between for data processing and storage, thus the largest correlation timescale for

an accurate autocorrelation value is 10 s. For enhanced statistics, the autocorrela-

tion was calculated for each 10-s chunk within the ∼30-min measurement and then

averaged. A transition from strong to weak correlation is clearly visible in the 10-ms

to few-second range, revealing the onset of slow intensity drift of the laser system.

Furthermore, a modulation of the autocorrelation trace with a period of ∼430 µs is

visible, corresponding to a frequency of 2.33 kHz. This frequency peak is also found

in the relative intensity noise spectrum of the laser, shown in the inset in fig. 6.3 (d),

denoting characteristic intensity noise on a shot-to-shot timescale, most likely due

to noise in the pump source.

Remarkably, the “strength” of the CEP artefact (red line in fig. 6.3 (d)), given by

the integral over the CEP map difference plots in fig. 6.3 (b) for laser shot offsets N

of the according correlation times (i.e. N ·100µs)2, is in excellent agreement with the

intensity autocorrelation trace after appropriate scaling. This is a strong evidence

that the cause for the artefact is indeed correlated to the laser intensity, despite

intensity filtering. What seems to be a contradiction can possibly be explained by

laser parameters which depend on the peak intensity rather than the average inten-

sity and are not monitored for every laser shot in this measurement scheme, such as

the spectrum and the pulse duration. Since the linear photodiode used for intensity

tagging produces a signal proportional to the pulse energy, which is a measure for

2Note that only offsets up to N = 50 000 (i.e. a correlation time of 5 s) are shown, since larger
offsets would reduce the available data within the 10-s chunks by more than 50 %.



6.1. Experimental concept of intensity tagging 77

the average pulse intensity, it is impossible to distinguish between pulses with dif-

ferent peak intensities, if they have the same pulse energy (or average intensity), for

example, if the pulse duration changes. The stereographic ATI phase meter is highly

sensitive to the shape of the electric field of a laser pulse (see subsection 3.3.2), which

is directly related to pulse duration and peak intensity, and can therefore produce

different PAPs for the same average intensity, for instance, if the pulse duration fluc-

tuates due to changes in dispersion. At the same time, the photoemission yield also

strongly depends on the pulse duration or peak intensity rather than the average

intensity, since it is a nonlinear process. Thus, the PAP generated only from tagged

shots (i.e. photoelectron detection events) is likely biased towards pulses with higher

peak intensity for a given average intensity, while the PAP generated from all shots

is unbiased with respect to peak intensity. This argument is somewhat supported

by the fact that the PAP generated from tagged shots resembles the PAP generated

from all shots but filtered for a higher average intensity, as pointed out earlier. De-

spite not knowing the peak intensity for every shot, this observation can be used to

possibly reduce or entirely eliminate this artefact by slightly adjusting the range of

the intensity filter for the reference PAP generated from all shots.

6.1.3 Intensity-bias technique for artefact correction

Fig. 6.4 (a) illustrates the artefact correction by introducing an intensity bias. While

the tagged laser shots (blue line) are filtered as before within a narrow intensity in-

terval of 0.3 % of I0 close to I0 (blue shaded area), the position of the intensity filter

for the reference PAP obtained from all laser shots (black line) can be varied inde-

pendently (dark gray shaded area) by an arbitrary amount, ∆I/I0. After creating

the respective PAPs for all shots and for tagged shots only, the difference between

the CEP maps obtained from them (see fig. 6.3 (b)) is shown in fig. 6.4 (b) for dif-

ferent values of the intensity bias ∆I/I0 at a laser shot offset of N = 1. For zero

intensity bias, the CEP artefact is prominently visible (cf. second plot in fig. 6.3 (b))

but decreases for positive intensity bias until it is minimized at ∆I/I0 = 0.0062. For

higher intensity bias values the artefact is inverted. A quantitative analysis is given

in fig. 6.4 (c), which shows the residual artefact strength as a function of intensity

bias for different laser shot offsets N . Here, the residue is obtained by integrating the

square of the CEP map difference plots in fig. 6.4 (b). Notably, the optimal inten-

sity bias value, which minimizes the residual artefact, moves from ∆I/I0 = 0.0062

for N = 1 to zero for N & 10 000 (or ∼1 s of correlation time). This is in agree-

ment with the correlation timescale for the laser intensity (cf. fig. 6.3 (c) and (d))

and thus the persistence time of the artefact (cf. fig. 6.3 (a) and (b)). Note that the

systematically similar noise pattern for different values of N reflects the shape of
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Figure 6.4: Artefact correction by introducing an intensity bias. (a) Laser intensity distribution
for all (black) and only for tagged (blue) laser shots (zoom of fig. 6.2 (a)). The tagged laser
shots are filtered as before within a narrow window (0.3 % of I0) close to I0, marked by the blue
shaded area. The filtering window for all shots, however, is moved to slightly higher intensities
by ∆I/I0, denoted by the dark gray shaded area, in order to compensate for the artefact. Here,
an intensity bias of ∆I/I0 = 0.0062 is shown. (b) Difference between CEP maps from the
PAPs obtained from the tagged laser shots and all laser shots, as in fig. 6.3 (b), for a laser shot
offset of N = 1 but different values of intensity bias (∆I/I0 = 0 corresponds to the second
plot in fig. 6.3 (b)). An intensity bias of ∆I/I0 = 0.0062 minimizes the artefact. (c) Residual
artefact strength (integral of the CEP map difference squared) as a function of the intensity
bias for different laser shot offsets N .

the intensity distribution of all laser shots (black line in fig. 6.4 (a)), as the window

of the intensity filter is moved along, while the intensity filter for the tagged shots

stays at a constant position.

The successful elimination of the artefact by simply introducing an intensity bias,

as demonstrated in this particular measurement, relies on the somewhat fortunate

circumstance that the shape of the PAP is very regular and apparently exhibits

a similar dependence on peak intensity as on average intensity. Thus, a balanced

CEP retrieval is still possible, despite the preferential photoemission at higher peak

intensities (for the same average intensity), by choosing an appropriate intensity

range for the reference PAP. In general, however, the PAP at a higher peak inten-

sity may not be approximated by a PAP at a higher average intensity. A change of

the laser pulse’s peak intensity at a given average intensity is usually accompanied

by a non-trivial change of the spectral amplitude and phase and can result in an
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unpredictable change of the PAP shape, especially for irregular or saturated PAPs

resulting from non-ideal alignment of the stereographic ATI phase meter. Further-

more, the optimal intensity bias might depend on the position of the intensity filter

window – although no significant intensity dependence was found in this measure-

ment – and changes with the laser shot offset N , following the shape of the intensity

autocorrelation. Since the optimal intensity bias at N = 0 cannot be determined

directly due to the presence of the actual CEP modulation from the sample, it can

only be approximated from adjacent N values. Still, the significant improvement of

the data quality warrants using the intensity bias technique in this work (see sub-

section 6.2.2) to compensate for the lack of single-shot peak intensity monitoring

during the measurements.

6.2 CEP dependence on bulk tungsten

Using bulk tungsten in this work for proof-of-principle CEP-dependence measure-

ments has an advantage in comparison to minuscule nanotips or nanoparticles as

the emission area is larger, resulting in more detectable signal. The W(110) crystal

(MaTecK GmbH) was cleaned by flash heating via electron bombardment at 2000 ◦C

for several tens of seconds to desorb oxides or contaminants in a portable sample

preparation chamber at around 5 · 10=8 mbar. This process can minimize photoelec-

tron scattering on emission from the tungsten surface. The 10 kHz few-cycle laser

system with a central wavelength of 670 nm described in subsection 3.3.1 was used

for the experiments presented in this chapter.

6.2.1 Strong-field ATP

For the previous experiments described in chapter 5, the pulse duration of the NIR

laser pulses was minimized at the sample in the PEEM chamber by maximizing the

photoemission yield from hot spots at the sample upon NIR excitation via scanning

the insertion of a fused silica wedge pair. However, it turned out to be difficult to

determine the maximum multiphoton photoemission yield accurately in the PEEM

while scanning the wedge insertion when a moderate laser peak intensity in the

range of 108 W/cm2 – 109 W/cm2 was used because the yield changes only weakly

with the pulse duration around the maximum compared to the signal noise due

to laser power fluctuations. In contrast, XUV generation is highly sensitive to the

duration of the driving laser pulses and thus is well suitable as a means for optimizing

the wedge scanning procedure. Therefore, HHG was first generated using the NIR

laser pulses in a dedicated HHG beamline before the PEEM chamber which shares

the laser source with the CEP-resolved PEEM experiment. The XUV yield from
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the HHG was maximized by scanning the wedges to align for the shortest laser

pulses at the HHG target. As a result, the NIR beam became more divergent due

to a focusing mirror (f = 40 cm) used in the HHG chamber for generating the

XUV. This unavoidably causes an uncertainty of ±50 % in the estimation of the

laser peak intensity at the sample in the PEEM because the divergent beam was

clipped crudely by several apertures3 throughout the beamline. The p-polarized laser

beam was focused onto the W(110) sample at an incidence angle of 65◦ with respect

to the surface normal to a focal spot size of ∼30µm× 100 µm (FWHM) using a

focusing mirror (f = 25 cm) and a pulse energy of ∼323 nJ. This corresponds to a

laser peak intensity I0 of (5.4± 2.7) · 1012 W/cm2 at the sample. However, both the

incoming as well as the reflected laser field contribute to the effective intensity at the

sample surface where photoemission takes place [206]. The complex refractive index

of tungsten at our central laser wavelength of 670 nm is n = (3.93 + 3.01i) [207].

Using the Fresnel equation for the p-polarized electric field at our incidence angle

of 65◦ yields the absolute value of the field reflectance coefficient as |r| = 0.48,

or a field enhancement factor of |r| + 1 = 1.48. This corresponds to an intensity

enhancement of 2.2 and hence a resulting effective laser peak intensity Ieff at the

sample of (1.2± 0.6) · 1013 W/cm2. This effective intensity is about a factor of 2 – 3

smaller than the damage threshold intensity.

The very high count rate of photoelectrons generated from the W(110) surface

due to illumination with high laser peak intensity had to be drastically reduced in

order to avoid saturation of the detector. Therefore, the IEF option in the PEEM

was used together with the ToF mode (see subsections 3.1.1 and 3.1.2 for the ToF

mode in the PEEM) for the experiment described in this section. Note that it is not

a common practice to use both the IEF and ToF at the same time because the IEF

is designed to work with a regular non-dispersive camera (i.e. without a dispersive

drift tube) for imaging spectroscopy in the PEEM [143]. A detailed description of an

IEF and its functionality and applications can be found in literature [143, 208–210].

In our case, the IEF is used as a high-pass energy filter for allowing electrons above

a certain kinetic energy to reach the DLD4. In order to investigate the intensity

dependence of the CEP modulation from tungsten, two different laser intensities

were used in the intensity-CEP-tagged PEEM measurements.

Fig. 6.5 (a) and (b) depict the CEP-averaged electron spectra measured by us-

ing the ToF mode at sample voltages (or bias voltages) Usample of 30 V (at Ieff =

3A clipped beam results in a diffracted laser focal spot on the sample which complicates the
calculation of the laser peak intensity, giving rise to an estimated systematic error of ±50 % in the
peak intensity.

4In the normal operation of the IEF mode the energy-filtered electrons are supposed to reach
the fluorescence screen which is behind the DLD with the dispersive drift-tube disabled. See fig. 3.1
for the electron-optical design of the PEEM.
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Figure 6.5: CEP-averaged photoemission spectra and their corresponding PEEM images at
different laser intensities. (a) Kinetic energy spectrum integrated over the full W(110) area
as shown in the inset, recorded at Ieff = (1.6± 0.8) · 1012 W/cm2 and Usample = 30 V. Gray
arrows indicate the ATP peaks. Inset: PEEM image of W(110). The top part of the image
appears brighter because of higher photoelectron yield, as the laser focus was moved off-center
to the top of the image. (b) Kinetic energy spectrum integrated over the full sample area as
shown in the inset, recorded at at Ieff = (1.2± 0.6) · 1013 W/cm2 and Usample = 83.3 V. Inset:
PEEM image of the sample area. A thin bright line is visible in the image and is possibly caused
by an electrostatic lensing artefact due to a very high electron count rate and space charge
effects in the PEEM. Both insets have a field of view of ∼40 µm. See text for details.

(1.6± 0.8) · 1012 W/cm2) and 83.3 V (at Ieff = (1.2± 0.6) · 1013 W/cm2), respec-

tively. Note that for Usample = 30 V the laser focal spot was moved away from the

center of the image area for reducing the intensity impinging on the sample instead

of using the IEF for high-pass filtering (as was done for Usample = 83.3 V) in order to

record the full spectrum containing the ATP feature (see the inset in fig. 6.5 (a)). It

is therefore not possible to estimate the laser peak intensity by using the minimum of

the beam waist in this measurement. Rather, Ieff = (1.2± 0.6) · 1012 W/cm2 was es-

timated from another comparable measurement at similar experimental conditions.

In principle, all photoelectrons with a starting kinetic energy Ekin > eUsample−eUgrid,

where Ugrid is the retarding grid voltage of the IEF, can pass the grid and reach the

detector [211]. Since the retractable DLD is inserted in the PEEM column and situ-

ated in front of the grid during the ToF operation, the grid has no retarding effect on

the electrons arriving at the DLD. Instead, the DLD itself which is at the drift tube

potential Udrift [212] acts as a retarder, thus the high-pass filtering condition can be

rewritten as Ekin > eUsample − eUdrift. Udrift was set to 40 V for achieving a decent

time resolution by temporal dispersion inside the drift tube. The PEEM extractor

voltage was set to 20 kV and the largest contrast aperture of 1500 µm was used in or-

der to increase the transmission of high-energy electrons. For the electron spectrum

obtained in fig. 6.5 (a), Usample was set to 30 V, which is close to Udrift = 40 V, in

order to increase the time resolution. This therefore results in an artificial decrease
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of the kinetic energy inside the drift tube to about 10 eV. By doing so, the ToF

spectrum becomes stretched in time, resulting in an increased time/energy resolu-

tion. Note that the IEF does not function as a high-pass energy filter in this case

because the passing energy (eUsample − eUdrift) is still negative (i.e. electrons with

all kinetic energies can pass). The energy axes shown in fig. 6.5 were appropriately

shifted taking into account the effects from the IEF in order to depict the kinetic

energies of photoelectrons leaving the W(110) surface.

Apparently, multiple peaks spaced by ∼1.85 eV, corresponding to the photon

energy of the laser pulses, are visible in the spectrum depicted in fig. 6.5 (a). The

first and second peak are hardly distinguishable from the noise background because

these low-energy electrons are moving slower than the high-energy electrons inside

the drift tube, making them more susceptible to surrounding stray fields and loss,

which explains why the first and second peak exhibit a lower yield in comparison

to what has been reported [97, 99, 100, 104]. These equally spaced peaks have been

observed in polycrystalline copper [97] and gold [99], Ag(100) [100], Pt(111) [98],

Cu(001) [101] and a W(310) nanotip [104]. The work function of W(110) is 5.3 eV5

hence absorption of at least 3 photons is required for multiphoton photoemission,

as evident by the commonly observed first or lowest-order peak at around 0.25 eV.

Above the photon order of 3, absorption of additional photons gives rise to the ATP

peaks observed in the spectrum. A maximum photon order of 7 and a cutoff energy

range of 8 eV – 11 eV are observed in our case. The Keldysh parameter (see eqn 2.5

and subsection 5.2.1) is found to be γ = 6.3± 2.6 at Ieff = (1.6± 0.8) · 1012 W/cm2,

indicating that the emission process is close to the transition regime between mul-

tiphoton (γ � 1) and tunneling ionization (γ � 1). The majority of photoelectrons

observed here are assumed to originate from a high density of d-band states just be-

low the Fermi level [17]. In a semiclassical theoretical model, ATP peaks can be un-

derstood as spectral interference between at least two electron wave packets emitted

from the metal surface during subsequent cycles of the laser pulse, which then rescat-

ter elastically at the surface after a delay of approximately one optical cycle period

T . This modulates the resulting kinetic energy spectrum at the optical frequency,

f = 1/T , creating sidebands spaced by ∆E ≈ h/T = h/2.23 fs ≈ 1.85 eV [12, 214,

215]. Notably, a moderate space charge effect (≥ 1 electron per pulse) occurs at this

laser peak intensity regime (∼1012 W/cm2); however, this does not destroy the ATP

feature albeit the modulation contrast is reduced due to broadening as compared to

experiments done without space charge effects [99, 104].

The cutoff region increases from 8 eV – 11 eV to 45 eV – 49 eV when the peak

intensity is increased from (1.6± 0.8) · 1012 W/cm2 to (1.2± 0.6) · 1013 W/cm2 (see

5This value was obtained from a private communication with Jürgen Schmidt, who derived it
from photoelectron streaking spectroscopy experiments using XUV [213].
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fig. 6.5 (b)). In the latter case, Usample was set to 83.3 V, which only allows electrons

with Ekin > 43.3 eV to pass the filter and reach the DLD. In fig. 6.5 (b), a kink at

∼43.7 eV is believed to be an artefact introduced by the combined use of IEF and

DLD in ToF mode, and is therefore not an actual energy peak. Although here the

Keldysh parameter γ = 2.3 ± 0.9 (at Ieff = (1.2± 0.6) · 1013 W/cm2) is outside the

tunneling regime (γ � 1), the emission process cannot be separated from strong-

field effects when sub-cycle dynamics takes place [216]. The tunneling process has

been successfully used to elucidate the strong-field signatures of a plateau and the

cutoff observed from tungsten nanotips [12, 214, 217]. In those cases, γ ≈ 2 could be

reached via the assistance of field enhancement at the tips at a moderately low la-

ser intensity of ∼1011 W/cm2. Rescattered electrons in the tunneling process – which

gain additional energy as they recollide with their parent ions and backscatter elasti-

cally into the continuum – are responsible for the plateau structure and high-energy

cutoff in the photoelectron spectra. The rescattering effect has first been identified

in atomic and molecular gases [103, 218] and has also been observed recently at

dielectric nanospheres [199], metal nanotips [12, 43], gold nanoparticles [44] and

silver clusters [202]. In our case, as depicted in fig. 6.5 (b), the high-energy cutoff

region around 45 eV – 49 eV is also attributed to the sub-optical-cycle nature of the

rescattering effect. Further details on CEP sensitivity of the rescattering effect are

provided in subsection 6.2.2. In fact, ATP peaks from solids are also expected to

arise in the tunneling regime as suggested by experimental evidence of ATI peaks

already found in atomic gases [103] when moving from the plateau to the high-

energy cutoff. However, it remains unclear why so far ATP peaks from solids have

not been observed in the strong-field regime. Similarly, no ATP peaks are visible in

the high-energy photoelectron spectrum displayed in fig. 6.5 (b) in contrast to the

ATP structure appearing in the low-energy spectrum shown in fig. 6.5 (a). The space

charge effect at the high peak intensity used here (∼1013 W/cm2) is dominant (� 1

electron per pulse) and may have washed out the peak structure in the high-energy

spectrum if there was any. Furthermore, the use of the IEF at a high-pass energy

of 43.3 eV (to avoid saturation of the detector, as pointed out before) only allows

electrons within a narrow kinetic energy range around the cutoff to reach the de-

tector where ATP peaks may not be present anymore. It should be noted that an

exponential decrease of the count rate is found at the cutoff energy in most pub-

lished work from solids [104]. While this is also found in our case for the low-energy

spectrum (see fig. 6.5 (a)), the cutoff region is more broadened and does not show

a clear exponential decrease for the high-energy spectrum (see fig. 6.5 (b)), which is

likely a consequence of the strong space charge broadening in that case.
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6.2.2 Attosecond control of photoemission with CEP

In the following, CEP-resolved photoemission studies from a bulk W(110) surface

utilizing the newly established intensity-CEP-tagged ToF-PEEM technique are pre-

sented for the first time. The experimental conditions for the results presented here

have already been described before (see subsection 6.2.1). The laser pulse duration

retrieved from the PAPs in these measurements is approximately 5.0 fs FWHM (data

not shown), corresponding to 2.2 cycles at a 670 nm central wavelength. Fig. 6.6

shows the CEP spectrograms and CEP modulation analysis from the W(110) sam-

ple for Usample = 30 V (at Ieff = (1.6± 0.8) · 1012 W/cm2) and Usample = 83.3 V (at

Ieff = (1.2± 0.6) · 1013 W/cm2), respectively. Here, a CEP bin size of 10◦ is cho-

sen for plotting the CEP spectrograms, which results in 36 bins over the entire 2π

range. The recorded data is extended to cover a CEP range from 0 to 4π (effectively

repeating the 0 – 2π range) for better viewing. The typical rms phase noise of the

CEP tagging technique lies within 210 mrad or ∼12◦ [164, 166], which justifies the

choice of the CEP bin size. The corresponding CEP-averaged electron spectra for

these spectrograms are shown in fig. 6.5. To enhance the visibility of the CEP effect,

the CEP spectrograms are obtained by normalizing the CEP-resolved photoelectron

spectra to their respective CEP-averaged spectrum (see fig. 6.6 (a)-(c) and (f)-(h)).

Since the absolute CEP cannot be measured by the phase tagging technique, the

arbitrary CEP offset ϕ0 (see subsection 3.3.2) in fig. 6.6 (f)-(h) is chosen such that

the highest electron yield at the cutoff energy is located at CEP ϕ = −π/4, which is

well-known from literature for the strong-field regime [12, 219]. Applying the same

offset to the low-energy measurement (Usample = 30 V), the resulting CEP modula-

tion in fig. 6.6 (a)-(c) is shifted by ϕ ≈ π/4 with respect to the case of the high-energy

measurement (Usample = 83.3 V). It cannot be excluded, however, that the relative

CEP offset found between the two measurements originates from a change in the

shape of the PAP as a result of laser drift despite being recorded at the same day

without readjustments of the laser parameters other than the intensity on the PEEM

sample.

As discussed in chapter 5 and section 6.1, a CEP artefact which originates from

a laser-intensity-dependent CEP map is introduced when using the phase tagging

technique. This artefact can be comparable in magnitude to a weak actual CEP

effect (modulation depth of a few percent or less) and therefore can easily obscure it

when not corrected. This is clearly demonstrated in fig. 6.6 (a), which depicts CEP

retrieval without intensity tagging, i.e. using the intensity-averaged CEP map for

all detected photoemission events. No actual CEP modulation with 2π periodicity

is visible, as it is entirely buried underneath the strong artefact. After intensity-

resolved CEP retrieval using intensity tagging (see subsection 6.1.1), the artefact

is significantly reduced, partially revealing the underlying 2π CEP modulation (see
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Figure 6.6: CEP-dependence of the photoemission from W(110) for Usample = 30 V (a-e)
and Usample = 83.3 V (f-j). (a-c), (f-h) CEP-resolved photoelectron spectra normalized to the
respective CEP-averaged spectrum; the color bars show the modulation depth in percent. The
CEP retrieval is demonstrated without intensity tagging (a, f), with intensity tagging but with-
out artefact correction (b, g) and after artefact correction by applying an appropriate intensity
bias (c, h). The black curves in (c) and (h) show the respective CEP-averaged photoelectron
spectra from fig. 6.5 as a guide to the eye (arbitrary scaling). (d, i) CEP modulation lineouts
taken from (c) and (h), respectively, averaged over a kinetic energy interval denoted by the
dashed white lines in (c) and (h). The error bars represent the combined systematic (artefact)
and statistical (noise) error and the red solid lines are cosine fits. A 2π modulation with ampli-
tudes of ∼0.9 % and ∼6.0 % is evident for Usample = 30 V and Usample = 83.3 V, respectively.
(e, j) Fitted CEP modulation amplitudes for different kinetic energies. The error bars represent
standard deviations of the fitted amplitudes. See text for details.
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fig. 6.6 (b)). However, a residual artefact still remains, which is attributed to peak

intensity dependence rather than average intensity (i.e. pulse energy) dependence,

since only the latter was monitored by the intensity tagging technique. In the final

step, an appropriate intensity bias is introduced (here, ∆I/I0 = 0.0055) in order to

correct for the difference between average and peak intensity dependence, as has been

explained in subsection 6.1.3. The result is shown in fig. 6.6 (c) where the artefact

is considerably reduced well below the magnitude of the actual CEP modulation

from the sample. Fig. 6.6 (d) shows a lineout of the CEP spectrogram, integrated

over a kinetic energy range between 0.2 eV and 9.2 eV, as indicated by the white

dashed lines in fig. 6.6 (c). The error bars are calculated from the statistics of the

CEP spectrogram lineouts for tag list offsets of N = {−9 . . . 9} (except N = 0),

since no actual CEP effect is present for tag list offsets other than N = 0 and any

deviation from zero is therefore attributed to systematic (mean value for all N) and

statistical (spread for all N) error, respectively. A cosine fit reveals a 2π periodicity

of the photoemission yield with a modulation depth of ∼0.9 %, demonstrating the

high sensitivity of the phase tagging technique when applying intensity tagging and

appropriate corrections. Despite the considerable noise of the data, the standard

error of the fitted phase offset is only 155 mrad, which corresponds to a timing

accuracy of 55 as at our central wavelength of 670 nm. The modulation amplitudes,

i.e. the maxima of the fitted modulation depth curves for different kinetic energies,

are displayed in fig. 6.6 (e) with the error bars denoting rms errors of the fits. It can

be seen that there is no significant change of the modulation amplitude with kinetic

energy within the margin of error.

For the high-energy photoelectron spectrum, a CEP modulation of the same 2π

periodicity is clearly visible when using intensity tagging, as shown in fig. 6.6 (g),

while it is overlaid with a strong artefact when no intensity tagging is applied (see

fig. 6.6 (f)). A small residual artefact can be further corrected by applying an ap-

propriate intensity bias (here, ∆I/I0 = 0.0062), as shown in fig. 6.6 (h). However,

the improvement is not as significant as in fig. 6.6 (c) since the CEP modulation

depth is much bigger here in comparison to the residual artefact. The lineout of

the CEP spectrogram integrated over a spectral range of 45.6 eV – 46.8 eV (cutoff

region, denoted by the white dashed lines in fig. 6.6 (h)) is shown in fig. 6.6 (i) with

the error bars calculated as explained above for Usample = 30 V. A cosine fit (red

line) reveals a modulation depth of 6.0 %. Here, the standard error of the fitted

phase offset is as low as 18 mrad, which implies a remarkable temporal precision of

6.4 as at our central wavelength. This is attributed to the excellent data quality in

this measurement achieved by intensity tagging and additional artefact suppression

by applying an intensity bias. Fig. 6.6 (j) shows the CEP modulation amplitude at

different kinetic energies. Interestingly, the modulation amplitude increases steadily
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from ∼3.4 % at 44.7 eV to ∼6.8 % at 46.8 eV. It seems to decline after 46.8 eV as

the cosine fitting becomes unreliable with the substantially reduced signal-to-noise

ratio when approaching the cutoff limit.

Next, we discuss the interpretation of our experimental findings for these two

intensities (at Usample = 30 V and Usample = 83.3 V). In this work, moderately pro-

nounced CEP effects with a period of 2π have been observed from a bulk tungsten

surface, albeit the measurements were performed in a regime with significant space

charge effects. In our case, a CEP modulation depth of ∼1 % was obtained at a peak

intensity of (1.6± 0.8) · 1012 W/cm2 (γ = 6.3± 2.6), falling within the multiphoton

photoemission regime. Such a modulation depth is ∼10 times higher than what had

been detected from a gold surface6, where a comparable peak intensity was used at a

grazing incidence angle [54, 198]. It is speculated that working in a moderate space

charge regime might broaden the energy spectrum in fig. 6.5 (a) and fig. 6.6 (a)-(c) by

approximately 0.3 eV – 2 eV [34]. M. Krüger et al. show an increase of CEP modula-

tion depth with kinetic energy, remarkably as high as ∼100 % at the cutoff energy,

using a tungsten nanotip [12]. However, we could not observe this in our ATP spec-

trum, probably because of a substantially larger emission site (∼30µm× 100 µm)

with inhomogeneous local intensities as compared to a highly localized emission site

at the tip’s apex (∼10 nm radius), which is well below the laser focal spot size.

Secondly, the average surface roughness of our tungsten sample is ∼2 nm7, which

reduces the fraction of the effective area that is exposed to the normal component of

the electric field and thus weakens the overall CEP sensitivity, since only the normal

component of the electric field is responsible for CEP-dependent modulation of the

photoemission yield [54]. Theoretical works [54, 219] suggest that CEP sensitivity

in multiphoton photoemission tends to increase for pulse durations approaching a

single laser cycle.

In the tunneling regime as depicted in fig. 6.6 (f)-(j), the effect of the CEP on

the photoemission yield becomes much more pronounced, amounting to a maxi-

mum modulation depth of almost 7 % at 46.8 eV, in comparison to only ∼1 % in

the multiphoton photoemission regime (see fig. 6.6 (a)-(e)). As expected, we observe

a stronger CEP dependence of the photoemission yield at higher intensities. This

is in agreement with the CEP-dependent tungsten nanotip experiments [12], where

the CEP modulation becomes stronger for higher kinetic energies. This is further

corroborated by the observed gradual increase of modulation depth as a function

of kinetic energy, reaching ∼7 % before the high-energy cutoff and transition into

6According to private communication with Alexander Apolonski, a CEP modulation depth of
less than 0.1 % was obtained in their case.

7This surface roughness value is based on the product specification. A surface characterization
is needed to confirm the actual roughness.
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background noise, as mentioned before (see fig. 6.6 (j)). This behavior is also ex-

pected for the low-intensity case. However, since the CEP modulation depth is very

small at that intensity, no energy dependence of the modulation could be observed

reliably within the margin of error. As aforementioned, there is a phase difference

of ∼π/4 between the CEP modulation for the two different intensities used (com-

pare fig. 6.6 (d) and (i)). This might indicate a transition from the multiphoton to

the strong-field regime as the intensity is increased from (1.6± 0.8) · 1012 W/cm2 to

(1.2± 0.6) · 1013 W/cm2. It has been predicted and shown that multiphoton photo-

emission has a phase shift of π compared to the tunneling regime in terms of CEP

dependence [12, 219]. The discrepancy in our case might imply that the illumination

conditions for one or both measurements lie within an intermediate regime between

these two emission processes. However, as pointed out before, an instrument-related

cause for this phase shift cannot be entirely excluded.

In the presence of space charge effects, concerns arise regarding the possible

impact of electron-electron interaction on the measured photoelectron spectra and

CEP modulation. We briefly discuss the space charge effects in this study. For low

illumination intensities (Usample = 30 V), an estimated 1 – 3 electrons per pulse are

emitted from the sample, indicated by the number of electrons per second detected

at the DLD after considering the transmission losses inside the PEEM. As discussed

above, such a moderate space charge effect is expected to introduce energy broaden-

ing of a few electronvolts at the low-energy cutoff as well as the high-energy cutoff

of the photoelectron spectrum [34, 40, 188]. Despite this broadening, the ATP peak

structure remains clearly visible (see fig. 6.5 (a)). Quantifying the number of elec-

trons per pulse for the high-energy measurement (Usample = 83.3 V) is not possible

from the experimental data, as only electrons with Ekin > 43.3 eV can pass the filter

and are detected by the DLD, while all other electrons are lost. As a rough esti-

mation, based on a third-order nonlinear process and an increase in intensity by an

order of magnitude as compared to the low-energy case, we expect a photoemission

yield on the order of 103 electrons per pulse, most of which are filtered out by the

IEF. The cutoff energy originating only from the rescattered electrons, Ecutoff , can

be approximated by an analytical formula [220], which has been found very useful

for nanotips [221, 222] and plasmonic nanostructures [201, 223]:

Ecutoff ≈ 10.007Up + 0.538φ, (6.2)

where Up is the ponderomotive potential (see subsection 2.1.2) and φ the work

function. At (1.2± 0.6) · 1013 W/cm2 (Usample = 83.3 V), we obtain a cutoff energy

Ecutoff ≈ 8 eV, which is far below the observed cutoff at around 49 eV. Note that

eqn 6.2 is strictly valid only for the tunneling regime where rescattering processes
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are considered, therefore it cannot be used to justify the cutoff energy of the spec-

tra in fig. 6.5 (a) and fig. 6.6 (a)-(c). It is noteworthy that a cutoff region of 7 eV

– 10 eV has been reported in the ATP photoemission from flat metal surfaces for

low intensities (108 W/cm2 – 1010 W/cm2) [97, 99, 101]. Therefore, the actual cutoff

in the high-energy photoelectron spectrum in fig. 6.5 (b) and fig. 6.6 (f)-(h) can be

significantly higher than ∼8 eV since the intensity here is one order of magnitude

higher than in the case of Usample = 30 V (fig. 6.5 (a)). Apparently, the cutoff law for

the tunneling regime (eqn 6.2) alone cannot account for our experimental findings

for a tungsten metal surface, hence, other causes have to be considered and remain

to be investigated. It is very likely that the main cause for this high energy cutoff

around 49 eV is a severe space charge broadening (� 1 electron per pulse), how-

ever, the exact number of electrons per pulse cannot be determined in this case.

It has been theoretically shown that an emission of 30 electrons per pulse can ex-

tend the cutoff energy to ∼40 eV in a gold nanotip [40]. Although space charge

broadening is expected to have a stronger effect at a nanotip as compared to a bulk

surface due to the high localization of the photoemission, we also expect to pro-

duce significantly more electrons per pulse (∼103, as estimated above) owing to the

high nonlinearity of the photoemission process. A space charge broadening of the

high-energy part in the spectrum is caused by Coulomb repulsion where the fast

electrons are separated from the slow electrons and accelerated by the electric field

of the electron cloud [40, 224], which results in an energy gain and thus a shift of

the cutoff to higher energies. Despite a more severe space charge interaction in the

case of Usample = 83.3 V, a stronger CEP modulation is observed, indicating that

these CEP-sensitive rescattered electrons are not significantly perturbed by space

charge, which confirms previous predictions [40]. Further theoretical and experimen-

tal analysis of these space charge effects is required to elucidate the nature of this

CEP dependence.

6.3 CEP dependence on gold nanostructures

We extend this work using the CEP-intensity-tagged PEEM technique to study

lithographically fabricated, supported gold nanostructures. Briefly, a series of gold

nanotriangles with varying sizes were fabricated onto an ITO-coated glass substrate

using EBL by the group of Hiroaki Misawa. An ultrathin 2-nm-thick titanium ad-

hesion layer was added between the 40-nm-thick gold layer and ITO-coated glass

substrate for improving the nanostructure quality. For fabrication details, see subsec-

tion 3.4.2. The same laser pulses as in the previous section with a central wavelength

of 670 nm were used for sample illumination at an incidence angle of 65◦ with respect

to the surface normal of the sample and the polarization of the laser was set parallel
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to the nanotriangle axis. At this polarization, no normal component of the electric

field is present at the sample plane and thus no CEP modulation is expected for

electrons emitted from the bulk gold. Only electrons emitted from the tips of the

triangles along the sample plane can experience an electric field component normal

to the tip and thus a possible CEP modulation. The pulse length estimated from

its corresponding PAP is approximately 5.4 fs (data not shown). A lower laser peak

intensity on the order of ∼1010 W/cm2 was used here in order to avoid sample dam-

age and excessive space charge broadening of the PEEM image. The PEEM was

operated in ToF mode utilizing the DLD without an IEF (cf. subsection 6.2.1). A

high PEEM extractor voltage up to 22 kV was used to increase the spatial resolu-

tion. In addition, the largest contrast aperture of 1500 µm was used to allow the

transmission of electrons with all kinetic energies.

Fig. 6.7 (a) shows the PEEM image of four identical arrays of nanotriangles with

a vertex angle of ∼32.5◦, starting from the smallest altitude of ∼90 nm which is

increasing in length by 20 nm per step, from the bottom to the top of the PEEM

image. An Hg arc UV lamp was used for the sample illumination. Upon broadband

few-cycle laser excitation, several hot spots (brighter spots compared to others) due

to plasmonic resonance from the nanotriangles around the center of the PEEM image

are observed (see fig. 6.7 (b)). These hot spots most likely originate from the apexes

of the triangles since the laser’s polarization is along the triangles’ axes. We assume

that the corners at the triangles’ bases should not be resonantly excited because

of this polarization direction. However, photoemission from the entire nanotriangle

surface is also expected, albeit not enhanced by plasmon resonance, particularly

around the top and bottom part of the image where the spots are less bright, as the

triangles are not resonant due to their geometry. A very strong hot spot is spotted on

one nanotriangle, located at the top right of the PEEM image, presumably caused

by some surface defect which can result in surface roughness. It is widely known

that surface roughness, an intrinsically nanoscale phenomenon, can exhibit a high

local field enhancement [225, 226], leading to a very high photoemission yield upon

light excitation (see subsection 5.2.1). Here, the laser illumination was homogenous

over the entire sample area (∼5 µm field of view) as the laser focal spot size was

approximately ∼30µm× 100µm (FWHM). Therefore, each nanotriangle in the field

of view was exposed to approximately the same and well-defined laser intensity.

Note that the laser intensity used here was at the onset of the space charge regime

in order to maximize the photoemission yield to achieve a reasonable acquisition

time while maintaining a good enough spatial resolution to distinguish individual

triangles despite some space charge blurring of the image.

As discussed in section 6.1, PAPs for different intensity intervals can be extracted

from the intensity-tagged measurement. Several exemplary PAPs for different inten-
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Figure 6.7: CEP-resolved ToF-PEEM results from supported gold nanotriangles using the
CEP-intensity-tagging technique. (a) PEEM image of arrays of gold nanotriangles of different
sizes using Hg lamp illumination. The inset (yellow box) shows a zoomed-in SEM image of
one of the nanotriangles. See text for details of the nanostructure dimensions. (b) PEEM
image of the same sample area as shown in (a), acquired with few-cycle laser illumination.
Different photoemission yields are visible from different triangles as well as a reduced spatial
resolution due to slight space charge effects. The colorbar shows the normalized counts. (c)
Exemplary PAPs for this measurement filtered around different intensities with respect to the
mean intensity I0 within a window of 0.01I0 width each. The asymmetry axes are scaled from
-1 to 1 as in fig. 6.1 (a). (d) Full two-dimensional CEP/intensity map, showing the difference
from the ideal CEP map on the color scale, as illustrated in fig. 6.1 (d). Here, the CEP/intensity
map is quite irregular and exhibits a complex and non-monotonous intensity dependence. (e)
CEP-resolved spectrogram normalized to the CEP-averaged spectrum (intensity-resolved CEP
retrieval as in fig. 6.6 (b) and (g)) of the whole sample area excluding the very strong hot spot
in the top right; the color bar shows the modulation depth in percent. No intensity bias was
applied here (cf. fig. 6.6 (c) and (h)), as it does not remove the residual artefact (sharp vertical
stripes) due to the irregularity of the CEP/intensity map. The black curve shows the CEP-
averaged photoelectron spectrum as a guide to the eye (arbitrary scaling). (f) CEP-resolved
spectrogram as in (e) but with the tag list deliberately shifted by one laser shot (N = 1, see
subsection 6.1.2). The persistence of the sharp vertical lines confirms their attribution to the
residual artefact. (g) Lineout (red dots) taken from the CEP spectrogram in (e), averaged over
a kinetic energy interval denoted by the dashed black lines in (e). The error bars represent the
combined systematic (artefact) and statistical (noise) error. The green line shows the difference
between the lineouts for N = 0 (e) and N = 1 (f), revealing no observable CEP modulation
within the noise limit of ∼0.6 %.
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sities around the average intensity I0 in this measurement are plotted in fig. 6.7 (c),

each for an interval of 0.01I0 around the respective relative intensity. The shape of

the PAPs as well as the polar distribution of counts (indicated by the color bar)

change as a function of relative intensity. Additionally, the PAPs also rotate slightly

and their size decreases with increasing intensity from 0.94I0 to 1.06I0. Such a signif-

icant and non-monotonous alteration of the PAP as a function of intensity therefore

results in a highly irregular CEP/intensity map (see fig. 6.7 (d) and cf. fig. 6.1 (d)).

This in turn prevents a successful correction of the residual artefact related to peak

intensity dependence by applying an intensity bias, as introduced in subsection 6.1.3,

since a PAP for higher peak intensities (as preferred by photoelectrons, i.e. tagged

shots, see subsection 6.1.3) cannot be simply approximated by a PAP at higher

average intensities in this case. The result can be seen in fig. 6.7 (e) where sharp

vertical stripes originating from the artefact are visible in the CEP-resolved spec-

trogram after intensity-resolved CEP retrieval. No intensity bias was applied here,

as it does not improve the residual artefact. Note that the strong hot spot in the

top right of the image was excluded in the CEP-resolved data analysis since it most

likely originates from surface roughness which does not have a well-defined shape.

To confirm that the sharp vertical stripes in the spectrogram are indeed due to

the residual artefact, the tag list was shifted by one event, N = 1, and the sharp

vertical stripes still persist after the shift, as depicted in fig. 6.7 (f). No actual CEP

modulation should be observed after shifting the tag list by one event, while the

intensity-related artefact has been found to persist nearly unchanged after shifting

by several events and only fades away after shifting by a number of events corre-

sponding to several seconds (see subsection 6.1.2). In fig. 6.7 (g), a lineout (red dots)

is taken from the CEP spectrogram in fig. 6.7 (e), integrated over a spectral range

of 0.2 eV – 1.6 eV, denoted by the dashed black lines in fig. 6.7 (e). Clearly, no CEP

modulation with a periodicity of 2π is observed except for the artefact within the

margin of error. The error bars were determined in the same way as described previ-

ously for the experiments on tungsten (see subsection 6.2.2). To confirm the absence

of an observable CEP modulation, the difference between the lineouts for N = 0 and

N = 1 (also from the same spectral range in fig. 6.7 (f)) is shown as the green line.

The artefact is canceled out, since it is very similar in both cases; however, there

is still no observable CEP modulation within the noise limit of ∼0.6 % (standard

deviation of the lineout for N = 1).

It is possible that a small CEP modulation below ∼0.6 % is present but buried

within the measurement noise and residual artefact. This number therefore rep-

resents an upper limit of the CEP effect from these nanotriangles at our experi-

mental conditions. Our conclusion is supported by a similar work demonstrated by

W. P. Putnam et al. in which a CEP modulation of 0.005 % – 0.1 % was observed
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in the total photocurrent emitted from plasmonic nanotriangles with a resonance

within and around the excitation wavelength [197]. Analyzing single nanotriangles

for their CEP dependence by applying appropriate ROIs also does not reveal any

CEP modulation (apart from the artefact) but only increases the noise level due

to limited electron counts. In addition, the same CEP analysis was also carried out

on the strong hot spot in the top right of the image but the same result as for the

individual nanotriangles was obtained. The total photoelectron count for the entire

PEEM image is about 6.6 · 106 over a measurement time of 142 min, and 4.2 · 106

if the strong hot spot is excluded. In order to reliably detect a CEP modulation

depth of ∼0.1 %, as W. P. Putnam et al. found for this type of structures, we need to

improve the sensitivity of our system by about one order of magnitude. This would

require collecting about 100 times more data from a statistical-error point of view.

Furthermore, the residual artefact needs to be corrected either by adjusting the laser

settings which produce a favorable PAP or by peak intensity tagging as suggested in

subsections 6.1.2 and 6.1.3. A hundred-fold acquisition time (about 10 days) would

stress the boundaries of feasibility, since a substantial drift in laser and environment

parameters over such a long measurement time becomes increasingly challenging

to compensate, although successful attempts have been demonstrated [171]. Using

a higher intensity to increase the photoemission yield would lead to severe space

charge broadening and loss of image resolution, since the intensity used here is al-

ready at the onset of space charge broadening. The most promising way to improve

the intensity-CEP-tagged ToF-PEEM’s sensitivity sufficiently to resolve such small

CEP modulation depths is using a high-repetition-rate laser system in the range of

hundred kilohertz to low-megahertz [227–229].





Chapter 7
Conclusions and outlook

In summary, this work demonstrates the development of a ToF-PEEM as a versatile

tool for studying photoemission from metal surfaces (unstructured and nanostruc-

tured samples) with attosecond temporal and nanometer spatial resolution. The first

part of this work describes the experimental attempts of realizing the atto-PEEM

concept based on the theoretical proposal by M. I. Stockman et al. [117] almost

a decade ago. Static atto-PEEM experiments without a pump-probe scheme were

carried out using a 1 kHz HHG source on lithographically fabricated gold nanostruc-

tures as a first step. The experimental results demonstrated an achievable spatial

resolution of ∼200 nm using ∼350 as XUV pulses of 93 eV photon energy. Our spatial

resolution with XUV imaging is comparable to another research group from Lund

University, Sweden, who used 1 kHz attosecond XUV pulse trains with a lower pho-

ton energy of 30 eV [35]. In addition, we have performed microspectroscopy and were

able to identify the core and valence band electronic states from the investigated

sample. The most intriguing discovery that we found in the course of this experi-

ment is that the primary valence band electrons, which carry the attosecond tempo-

ral information imprinted during the XUV excitation, are not influenced by space

charge effects. This is essentially crucial for atto-PEEM as snapshots of the streaked

photoelectrons in the instantaneous acceleration of attosecond nanoplasmonic fields

can be recorded in an optical-pump/XUV-probe scheme. However, working with

a 1 kHz XUV source has turned out to be very challenging as the measurements

suffered greatly from space charge effects at such a low repetition rate. The spatial

resolution can only be improved by avoiding space charge, which requires using less

XUV intensity, thus further extending the data acquisition time for a pump-probe

scan beyond feasibility.

As high-repetition-rate attosecond XUV sources are becoming more readily avail-

able [191–195], the aforementioned data acquisition time is expected to be vastly

95
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reduced from some tens of hours down to several minutes, facilitating reasonably fast

and reliable measurements. For instance, it has been shown that the image acquisi-

tion time was reduced by a factor of ∼10 when the repetition rate was increased by

a factor of ∼200 while the spatial resolution was improved about 3-fold [133, 138].

Nevertheless, we foresee possible new challenges, which are not present in the case

of PEEM experiments using femtosecond laser pulses. The first and foremost issue

is chromatic aberrations caused by the large energy bandwidth of XUV-generated

photoelectrons. Fortunately, this can be resolved by applying energy-filtering in our

ToF-PEEM to particularly select the primary valence band electrons from the sec-

ondary electron background, which we have demonstrated in this work. The next

steps towards the realization of atto-PEEM will encompass energy-filtered imag-

ing of fast valence band electrons and a spatial resolution down to 100 nm or even

lower when low-megahertz attosecond XUV sources are available. Alternatively, an

aberration-corrected PEEM equipped with an energy analyzer [230] can be employed

specifically for high-megahertz XUV sources since it does not depend on repetition

rate. This type of PEEM has been proven to achieve a theoretical spatial resolution

of ∼4 nm [230], which will possibly enable energy-resolved imaging of the instanta-

neous electron acceleration in a highly localized nanoplasmonic field within a ∼1 nm

region, as originally proposed by M. I. Stockman et al. [117]. Recent theoretical [134,

135] and experimental studies [139] of nanoplasmonic streaking without a microscope

suggest lowering the stringent requirement for probing plasmonic fields in the in-

stantaneous regime as it was demonstrated that a reconstruction of the fields is still

attainable in the classical oscillatory regime.

The second achievement in this work is a successful development and implemen-

tation of a novel CEP-tagged ToF-PEEM instrument for studying CEP-dependent

processes from metal surfaces. A combination of a single-shot ATI phase meter with

the ToF-PEEM offers a real-time measurement of the CEP for every single laser shot

as well as parallel data acquisition, which is advantageous for minimizing possible

dynamic changes during the measurement. First CEP-resolved experiments were

performed on gold NPOP and gold surface roughness samples using a 10 kHz few-

cycle NIR laser source with pulse durations of 4 fs – 6.5 fs. We discovered an apparent

CEP modulation with a period of π in these preliminary measurements, attributed

to an artefact in CEP retrieval. Detailed investigation of this CEP artefact revealed

that it is correlated to our laser intensity fluctuations, arising from an intensity-

dependent energy shift of the photoelectrons emitted from the sample in conjunction

with an intensity-dependent disbalance of the PAP. Further analysis by simulation

confirmed the observed modulation depth amounting to a few percent and the π

periodicity of this artefact. Note that the artefact can easily outweigh a weak CEP

modulation of 1 % – 3 % in these measurements. Such artefact went unnoticed in the
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phase tagging community since most CEP tagged-experiments were performed on

gas targets in which the CEP effect was found to be much higher, from 4 % to some

tens of percent [164, 171, 231]. To remediate this issue, we added intensity tagging

to the current CEP-tagged ToF-PEEM technique by introducing another channel

to record the laser power for every laser shot. As a result, a 2π CEP modulation

as small as ∼1 % from a bulk tungsten surface could be successfully retrieved well

above the artefact background after also applying an appropriate intensity bias,

proving the high sensitivity of the intensity-phase-tagging technique. However, a

slight residual CEP artefact could not be entirely eliminated, which we attribute to

a peak-intensity (or pulse duration) dependence while the current intensity-tagging

technique only allows correcting for the average-intensity dependence. We expect

that the residual artefact can be further suppressed by implementing peak-intensity

tagging instead of average-intensity tagging, e.g. by using a nonlinear photodiode or

another multiphoton process, such as second-harmonic generation, as a detector.

Our experimental results demonstrated the ability to perform and measure CEP

control on photocurrent from a metal surface with energy resolution. To the best

of our knowledge, we reported the first observation of a relatively high CEP mod-

ulation of up to ∼7 % from a metal surface in the strong space charge regime, as

compared to a previous CEP-dependent measurement from a gold surface with less

than 0.1 % modulation depth [54, 198]. With increasing laser intensity, we observed

a transition from multiphoton photoemission to the light-induced tunneling regime,

indicated by an increase of the CEP modulation depth from ∼1 % to ∼7 %. It is

well-known that rescattered electrons in the tunneling regime are sensitive to the

CEP of the laser pulses [12, 50]. We also found that the CEP-sensitive rescattered

electrons were not significantly disturbed by the space charge, confirming previous

predictions [40]. Theoretical models are crucial for further understanding of the role

of space charge effects in the motion of rescattered electrons and are the subject of

current research. Finally, we also explored the CEP dependence on supported gold

nanotriangles but no CEP modulation was observed within a noise limit of ∼0.6 %

in the measurements. A recent publication of similar work indicated a CEP mod-

ulation in the range of 0.005 % – 0.1 % for this type of structures [13]. In order to

detect a very low CEP modulation, e.g. ∼0.1 %, the most promising approach for

improving the sensitivity of our system is using a high-repetition-rate few-cycle laser

source [227–229], which would dramatically increase the electron count rate, hence

improving the detection statistics, without introducing additional space charge. In

parallel, we can improve the sample quality by using ultrasmooth single-crystalline

gold nanostructures, as it was shown that a surface roughness of 2 nm – 3 nm is suf-

ficient to smear out the CEP modulation [232]. These improvements will enable the

observation of CEP control of photoemission from nanostructures with PEEM in

the near future.
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[34] S. H. Chew, F. Süßmann, C. Späth, A. Wirth, J. Schmidt, S. Zherebtsov, A. Guggen-
mos, A. Oelsner, N. Weber, J. Kapaldo, A. Gliserin, M. I. Stockman, M. F. Kling,
and U. Kleineberg. Time-of-flight-photoelectron emission microscopy on plasmonic
structures using attosecond extreme ultraviolet pulses. Applied Physics Letters 100,
051904 (2012).

[35] A. Mikkelsen, J. Schwenke, T. Fordell, G. Luo, K. Klünder, E. Hilner, N. Anttu,
A. A. Zakharov, E. Lundgren, J. Mauritsson, J. N. Andersen, H. Q. Xu, and A.
L’Huillier. Photoemission electron microscopy using extreme ultraviolet attosecond
pulse trains. Review of Scientific Instruments 80, 123703 (2009).

http://dx.doi.org/10.1088/0034-4885/74/9/096101/meta
http://dx.doi.org/10.1038/ncomms9723
http://dx.doi.org/10.1093/oxfordjournals.jmicro.a023542
http://dx.doi.org/10.1093/oxfordjournals.jmicro.a023542
http://dx.doi.org/10.1126/science.1166135
http://dx.doi.org/10.1007/s003400200803
http://dx.doi.org/10.1021/nl0506655
http://dx.doi.org/10.1021/nl0506655
http://dx.doi.org/10.1073/pnas.0913556107
http://dx.doi.org/10.1073/pnas.0913556107
http://stacks.iop.org/0953-8984/21/i=31/a=314005
http://stacks.iop.org/0953-8984/21/i=31/a=314005
http://dx.doi.org/10.1126/science.aaj1699
http://dx.doi.org/10.1007/978-3-540-85156-1_369
http://dx.doi.org/10.1007/978-3-540-85156-1_369
http://dx.doi.org/10.1007/978-3-540-85156-1_369
http://dx.doi.org/10.1063/1.3670324
http://dx.doi.org/10.1063/1.3670324
http://dx.doi.org/10.1063/1.3263759


102 Bibliography
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[77] K. Varjú, P. Johnsson, R. López, T. Remetter, E. Gustafsson, J. Mauritsson, M.
Gaarde, K. Schafer, C. Erny, I. Sola, A. Zair, E. Constant, E. Cormier, E. Mevel,
and A. L’Huillier. Experimental studies of attosecond pulse trains. Laser Physics
15, 888–898 (2005).

[78] M. Chini, K. Zhao, and Z. Chang. The generation, characterization and applications
of broadband isolated attosecond pulses. Nature Photonics 8, 178–186 (2014).

[79] G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto,
P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli. Isolated
single-cycle attosecond pulses. Science 314, 443–446 (2006).

[80] C. Altucci, J. Tisch, and R. Velotta. Single attosecond light pulses from multi-cycle
laser sources. Journal of Modern Optics 58, 1585–1610 (2011).

[81] H. Mashiko, S. Gilbertson, C. Li, S. D. Khan, M. M. Shakya, E. Moon, and Z. Chang.
Double optical gating of high-order harmonic generation with carrier-envelope phase
stabilized lasers. Physical Review Letters 100, 103906 (2008).

[82] H. Hertz. Ueber einen Einfluss des ultravioletten Lichtes auf die electrische Ent-
ladung. Annalen der Physik 267, 983–1000 (1887).
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[194] S. Hädrich, M. Krebs, A. Hoffmann, A. Klenke, J. Rothhardt, J. Limpert, and
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