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Abstract

Waveguide quantum electrodynamics (waveguide QED) describes the interaction between
an electromagnetic field confined to a one-dimensional waveguide with atom-like quantum
emitters close by. The characteristics of these kinds of systems are the possibility for
strong and even ultrastrong interactions between the photonic and atom-like systems, and
practically infinite range interactions between the emitters. These properties are valuable
for a wide range of quantum optical applications, like quantum communication, quantum
networks and quantum metrology. In this thesis we focus on two challenges in quantum
optics, namely the generation and scattering of multiphoton states.

In the first part of this thesis we demonstrate how waveguide QED systems can be
exploited for the generation of multiphoton states, in particular of single-mode Fock states
and superpositions thereof as well as multi-mode photonic states with metrological appli-
cations. The basic setup for this goal is an ensemble of quantum emitters coupled to
a waveguide. In the so-called atomic mirror configuration symmetric Dicke states (or
a superposition thereof) decay superradiantly to the ground state and emit the desired
multiphoton state, which can be efficiently collected at the ends of the waveguide. We
propose various protocols for the preparation of these Dicke states in waveguide QED
systems and characterize the emitted photonic state. It turns out that in the low excita-
tion regime, that is, if the number of photons is much lower than the ensemble size, the
photonic state is emitted into a single mode. This single-mode structure is fundamental
to current proposals for applications in quantum metrology with optical interferometers.
Outside the low excitation regime, a multi-mode photonic state is generated, for which
the metrological capabilities were unknown. We were able to show that these states still
lead to quantum-enhanced optical interferometry.

In the second part of this thesis we demonstrate how the scattering of multiphoton
states on a single quantum emitter coupled to the waveguide can be used for testing the
limits of the light-matter interaction strength. In particular, we investigate systems in the
so-called ultrastrong coupling regime, where the coupling strength between the photonic
and atom-like system is of the order of the emitter’s transition energy. In this regime,
many methods and approximations used in quantum optics, especially the Rotating Wave
Approximation, break down and one needs to develop new analytical and numerical meth-
ods to study these systems. One approach is the so-called polaron Transformation. We
show how this transformation can be applied for predicting the scattering amplitude of
few photons scattering on the emitter. The comparison of these results with numerical
simulations using matrix product states shows a good agreement for moderate coupling
strengths.
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Both parts together show that waveguide QED systems are promising candidates for
the generation of multiphoton states as well as for the investigation of fundamental limits
probed through the scattering of multiphoton states. The latter also finds application in
the implementation of photon-photon nonlinearities induced by the interaction with the
quantum emitters. Apart from these and many other theoretical predictions, waveguide
QED systems are also undergoing rapid progress in experiments. Therefore, we expect
these kinds of systems to bring forth several advances in the field of quantum optics.
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Zusammenfassung

Die Wellenleiter-Quantenelektrodynamik (Wellenleiter-QED) beschreibt die Wechselwir-
kung zwischen dem elektromagnetischen Feld eines Wellenleiters und nahe liegenden atom-
ähnlichen Quatenemittern. Charakteristisch für diese Art von Systemen ist die Möglichkeit
starker und sogar ultrastarker Wechselwirkungen zwischen den photonischen und atom-
ähnlichen Systemen, sowie Wechselwirkungen zwischen den Emittern mit praktisch unend-
licher Reichweite. Diese Eigenschaften sind wertvoll für eine Vielzahl von quantenoptischen
Anwendungen, wie die Quantenkommunikation, Quantennetzwerke und Quantenmetrolo-
gie. In dieser Arbeit befassen wir uns mit zwei Herausforderungen in der Quantenoptik,
nämlich der Erzeugung und der Streuung von Multiphoton-Zuständen.

Im ersten Teil dieser Arbeit zeigen wir, wie Wellenleiter-QED-Systeme für die Erzeu-
gung von Multiphoton-Zuständen, insbesondere von monomodalen Fock-Zuständen und
deren Superposition, sowie multimodalen photonischen Zuständen mit Nutzen für die
Quantenmetrologie, verwendet werden können. Der grundlegende Aufbau für dieses Ziel
ist ein Ensemble von Quantenemittern, die an einen Wellenleiter gekoppelt sind. In der
sogenannten Atomspiegelkonfiguration zerfallen symmetrische Dicke-Zustände (oder eine
Superposition davon) superradiant in den Grundzustand und emittieren den gewünschten
Multiphoton-Zustand, der effizient an den Enden des Wellenleiters entnommen werden
kann. Wir schlagen verschiedene Protokolle zur Bereitstellung dieser Dicke-Zustände in
Wellenleiter-QED-Systemen vor und charakterisieren den emittierten photonischen Zu-
stand. Es stellt sich heraus, dass im niedrigen Anregungsregime, d.h. wenn die Anzahl der
Photonen viel geringer ist als die Größe des Ensembles, der photonische Zustand in eine
einzige Mode emittiert wird. Diese monomodale Struktur ist grundlegend für derzeitige
Methoden und Ansätze in der Quantenmetrologie mit optischen Interferometern. Außer-
halb des niederen Anregungsregimes wird ein multimodaler photonischer Zustand erzeugt,
für den die metrologischen Eigenschaften bislang unbekannt waren. Wir konnten zeigen,
dass diese Zustände immer noch zu einer durch Quantenmechanik verbesserten optischen
Interferometrie führen.

Im zweiten Teil dieser Arbeit zeigen wir, wie die Streuung von Multiphoton-Zuständen
an einem einzelnen Quantenemitter, der an den Wellenleiter gekoppelt ist, zum Testen
der Grenzen der Licht-Materie-Wechselwirkung genutzt werden kann. Insbesondere unter-
suchen wir Systeme im Bereich der so genannten ultrastarken Wechselwirkung, bei dem
die Kopplungsstärke zwischen dem photonischen und dem atom-ähnlichen System in der
Größenordnung der Übergangsenergie des Emitters liegt. In diesem Regime, können viele
Methoden und Näherungen, vor allem die Rotating Wave Approximation, nicht mehr ange-
wendet werden und neue analytische und numerische Methoden müssen entwickeln werden,
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um diese Systeme zu untersuchen. Ein Ansatz ist die so genannte Polaron-Transformation.
Wir zeigen, wie diese Transformation angewendet werden kann, um die Streuamplitude
von Photonen, die an dem Emitter streuen, zu berechnen. Der Vergleich dieser Ergebnisse
mit numerischen Simulationen zeigt eine gute Übereinstimmung bei moderaten Kopp-
lungsstärken.

Beide Teile zusammen zeigen, dass Wellenleiter-QED-Systeme vielversprechende Kan-
didaten, einerseits für die Erzeugung von Multiphoton-Zuständen und andererseits für die
Untersuchung fundamentaler Grenzen, die durch die Streuung von Multiphoton-Zuständen
erforscht werden können, sind. Letzteres findet auch Anwendung in der Erzeugung von
Photon-Photon-Interaktionen, die durch die Wechselwirkung mit den Quantenemittern
induziert werden. Abgesehen von diesen und vielen anderen theoretischen Vorhersagen,
werden Wellenleiter-QED-Systeme auch in Experimenten rapide weiterentwickelt. Daher
erwarten wir, dass diese Art von Systemen zahlreiche Fortschritte auf dem Gebiet der
Quantenoptik hervorbringen wird.
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of single and two-mode multiphoton states in waveguide QED” arXiv:1802.00210.
(2018)

• [6]: V. Paulisch, T. Shi, and J. J. Garćıa-Ripoll. “Multiphoton Scattering in the
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Introduction 0
“[...] the problem of the quantum of action will not cease to inspire research
and fructify it, and the greater the difficulties which oppose its solution, the
more significant it finally will show itself to be for the broadening and
deepening of our whole knowledge in physics.”

— Max Planck’s Nobel Lecture 1920 for his Nobel Prize 1918

0.1 History and Motivation

By now, 100 years after Max Planck was awarded the Nobel prize “in recognition of the
services he rendered to the advancement of Physics by his discovery of energy quanta”,
quantum mechanics is a widely accepted theory for describing systems at the lowest en-
ergy scales. It has been especially fruitful for atomic, molecular and optical physics,
where Quantum Optics describes the interaction between light (e.g., the quantized elec-
tromagnetic field) and matter (e.g., atoms and other systems with discrete energy levels).
Controlling the photonic and atom-like systems individually posed great challenges, but
is nowadays a standard task in laboratories and industry. On their own, these quantum
systems already show great potential for quantum information processing [9], quantum
cryptography [10], quantum metrology [11] and quantum simulation [12]. Interfacing
these atom-like and photonic systems remains a challenge, yet one with a great reward: i)
By linking different atom-like quantum systems through photonic systems one can build
a quantum network [13]. The well controlled atom-like systems then processes quantum
information locally, whereas the photonic system (which naturally interacts only weakly
with the environment) transfers quantum information from one system to another. ii)
Moreover, by using the interaction between the systems one can effectively engineer non-
linear interactions between photons, which otherwise would not interact [14].

The atom-like quantum systems are either natural (e.g., atoms or ions) or artificial
(e.g., spins in solids or superconducting circuits), see Section 0.2.1, which can emit single
photons, such that we will call them quantum emitters. In the simplest case these emitters
are two-level systems (TLS) with a ground state |g〉 and an excited state |e〉. Moreover,
the system needs to be controllable by external driving fields (e.g., laser beams), but also
well enough decoupled from the environment such that quantum properties can emerge.
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Although the electromagnetic field of a laser, e.g., for controlling the quantum states of
the atom-like systems, can be described semiclassically, there are very many states of light
that require a quantum mechanical treatment [15]. One example are squeezed states,
which were first observed in the 1980s [16, 17] and will be essential for increasing the
sensitivity of next generation gravitational wave detectors [18]. In fact, a large class of
nonclassical states can be used to overcome classical limits of optical interferometers [19].
Single photons have also been proposed for photonic quantum computing [20]. However,
this either requires large photon-photon nonlinearities [21, 22], which are difficult to realize
due to the weak interactions between photons, or rely on efficient photon detectors [23].

A requirement to observe quantum effects in the interaction between an atom-like and
a photonic system, is that the time scale of the coupling between these two systems is
faster than those of decoherence processes. This was first accomplished in the early 1990s
in cavities [24, 25]. Achieving strong coupling at the single photon level has remained of
interest ever since. The problem is, that even though single atoms naturally emit single
photons, implementing coherent interactions between these two systems requires more
work. Two approaches to enhance the interaction between these systems are i) the use of
ensembles ofN quantum emitters (in which the interaction strength is enhanced by a factor
of
√
N) and ii) the use of cavities (in which the electromagnetic field is strongly confined

between two mirrors) [13]. We shortly review important concepts and achievements of
these two approaches.

When an ensemble of quantum emitters is coupled to the electromagnetic field, its
coupling strength scales with the number of quantum emitters in the ensemble. Another
advantage is that the ensemble can be controlled globally by one laser-beam and that
specific quantum states stored in these ensembles can be robust against particle loss.
This system (together with linear optical tools) was proposed for long-distance quantum
communication [26] and several advances in this field led to the realization of the basic
building blocks for quantum repeaters with atomic ensembles [27]. However, in contrast to
the TLS, which has very nonlinear features in its light-matter interaction, large ensembles
interact linearly with the electromagnetic field.

In a different approach, namely cavity quantum electrodynamics (cavity QED), one
or many quantum emitters are placed inside a cavity. This cavity typically only supports
one frequency ωcav that is coupled to the emitter with transition frequency ∆. One was
able to reach a regime, in which the coupling g between the emitters and the photonic
mode exceeds the decoherence rates of the system. In most state-of-the-art setups one can
reach this strong coupling regime with coupling strengths much lower than the frequency
of the emitter and cavity, that is, g � ∆, ωcav. In this regime, only the excitation number
conserving interaction terms are relevant, which is the so-called Rotating Wave Approxi-
mation (RWA) [28]. Most applications were devised for this regime and we highlight one
of them, which is relevant for building quantum networks: the transfer of the quantum
state of one TLS in a cavity to another distant TLS-cavity-system [29]. This is important
both on a large scale for quantum communication, but also on a small scale for overcoming
limitations in the number of coupled TLS in current devices [13]. The experimental real-
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ization of this proposal required several advances in cavity QED [30], but was ultimately
successful [31]. With superconducting circuits also the ultrastrong coupling regime, in
which the coupling is comparable to the other frequencies, g ∼ ∆, ωcav, was reached [32,
33].

Recently, quantum emitters have been also strongly coupled to one-dimensional wave-
guides, which support a continuum of propagating photonic modes, to build so-called
waveguide QED systems (see Section 0.2.2). Waveguide QED systems offer several assets:
the photonic states can be easily coupled into and out of the waveguide at the ends; in
contrast to cavity QED, many atoms can couple to a waveguide due to its length without a
significant reduction of the coupling strength; for the same reasons one has more freedom
in designing the properties of the waveguide and therefore also, e.g., the dispersion relation
of the waveguide; the waveguide can support different polarizations of the electromagnetic
field; and the decay rate into the waveguide, Γ1d, can be of the order of or even surpass
the decay rate Γ∗ into other modes, e.g., to free space. We will call the ratio between these
two rates the Purcell Factor P1d = Γ1d

Γ∗ . The enhancement of the light-matter interaction
stems from confining the electromagnetic field to the one-dimensional waveguide and, for
some systems, also from an increased local density of states close to a band edge of the
waveguide.

The initial challenges of coupling quantum emitters to the evanescent field of one-
dimensional waveguides were further complicated by the fact that results valid in free-
space are not directly applicable in the waveguide setup, such that new methods for the
loading, cooling and trapping of the quantum emitters needed to be found. Important ap-
plications like collective dissipation, which leads to superradiant decay, have been shown
both with optical nanofibers [34] and photonic crystal waveguides [35] – the prototypical
waveguides in the optical regime. The future directions are set by proposals for single
photon transistors based on perfect reflection of a photon scattering on a quantum emit-
ter coupled to a waveguide [36], cavity QED setups with atomic mirrors [37], and new
paradigms like chiral interactions (i.e., an interaction depending on the directionality of
the photon), atom-photon bound states, band-gap mediated interactions and many more
[38].

These recent advances in waveguide QED have opened up new avenues for providing
solutions to some fundamental problems and questions of quantum optics. There are many
of those challenges [39]: high-fidelity photon sources and photon detectors are required
for most quantum technologies, in particular for quantum communication and quantum
metrology; quantum memories are needed for storing quantum information for long times;
strong single-photon nonlinearities can form the basis of quantum information processing
based on photons; and ultrastrong light-matter interactions can significantly accelerate
quantum processes. We specifically highlight two open challenges, which are the core
topic of this thesis:

• The generation of multiphoton states has been a long standing goal in quantum op-
tics. Approaches using spontaneous parametric down conversion, single quantum

0.1 History and Motivation | 3



emitters and ensembles of quantum emitters (as reviewed in Section 0.2.3) all have
their advantages and specific drawbacks, like low collection efficiencies, large band-
widths, or low heralding probabilities for non-deterministic sources. The collective
emission from a large ensemble of emitters is probably the best tool for the gen-
eration of photonic states of multiple photons [40]. In fact, by coupling such an
ensemble to a one-dimensional waveguide we can employ the assets of both systems.
The interactions and collective dissipation within the ensemble are then mediated
by the waveguide and are practically of infinite range because of the effectively one-
dimensional setup. Under certain conditions, the ensemble decays superradiantly
and emits a photonic state into the waveguide during the decay, which can be col-
lected efficiently at the ends of the waveguide. The generation of photonic states in
this way is the main goal of Chapter 1 and Chapter 2.

• The scattering of multiphoton states in the waveguide on a quantum system coupled
to it, can be used to study properties of this system. In particular, this approach
can give insights into the ultrastrong coupling regime of waveguide QED systems.
In this regime, the light-matter coupling is of the order of the TLS’s transition en-
ergy and usual approximations (like the Rotating Wave Approximation) break down
[41, 42]. However, finding new tools for studying ultrastrongly coupled systems is
essential for being able to use those interactions for reducing the time of operations
[43, 44] or inducing large photon nonlinearities [45]. In particular, photon-photon
interactions are of fundamental importance for quantum information processing with
photons, because the often used Kerr nonlinearities don’t reach the desired interac-
tion strength [46, 47]. Interactions mediated by an ultrastrongly coupled quantum
emitter can mediate such nonlinearities. However, one first needs to develop new the-
oretical tools to understand and approximate processes in the ultrastrong coupling
regime, which is the main goal of Chapter 3.

0.2 Experimental Achievements and Considerations

We now introduce some of the basic elements of waveguide QED systems and review
experimental achievements relevant to this thesis. The aim is to present the main ideas
and concepts and provide references to reviews where possible. The basic elements we
cover are the quantum emitters themselves (Section 0.2.1), the one-dimensional waveguides
(Section 0.2.2), the generation of photonic states (Section 0.2.3) and the detectors for the
state of quantum emitters and photons (Section 0.2.4).

0.2.1 Quantum Emitters

Quantum emitters are typically classified either as natural (e.g., atoms or ions) or artificial
(e.g., spins in solids or superconducting circuits) [48, 49]. The former have an internal
level structure determined by nature and therefore they have the same characteristics, e.g.,
the same transition energies. Typically, they have many optically excited and metastable
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states, and therefore many optical/microwave transitions to choose from. Furthermore,
these systems show long coherence times in the metastable states. On the other hand, one
requires initial cooling and trapping, e.g., in ion traps or with optical tweezers or lattices,
before the atom-like systems can be coherently manipulated by driving, e.g., an optical
transition of the atom or ion with a laser-beam [50, 51]. In contrast, artificial systems
are typically fixed on a substrate, such that there is no need for trapping. Furthermore,
their level structure, transition energies, position and so forth can be engineered to fit
the desired properties. These systems can be manipulated through their optical and mi-
crowave transitions, but often also by applying voltages and currents. On the other hand,
experimental imperfections when creating these systems lead to deviations from the ex-
act transition energies and positions. Furthermore, due to the contact to the substrate,
they couple more strongly to the environment, which limits their coherence time. Exam-
ples of artificial systems with optical and microwave transitions are quantum dots [52],
e.g., grown from gallium arsenide (GaAs), and point defects in the diamond lattice, like
nitrogen-vacancy centers [53]. A different approach are superconducting artificial atoms
[54], which are superconducting quantum circuits with a Josephson Junction inducing a
nonlinearity in the energy spectrum. These systems can be addressed electronically or via
coupling them to waveguides in the microwave regime [55].

0.2.2 Photonic Waveguides

Let us shortly review some of the experimental implementations of waveguide QED sys-
tems. The common desired characteristics are that the emitters can be positioned close to
the waveguide to facilitate strong coupling, that the transition frequency of the emitters
matches one of the guided modes of the waveguide, and that the emitters can be con-
trolled by additional laser-beams either through the waveguide or from other directions.
Furthermore, it is desirable that the propagating mode of the waveguide can be efficiently
coupled into a regular optical fiber for further propagation and use in quantum optical
applications. The most common waveguides are optical nanofibers and photonic crystal
waveguides in the optical regime and transmission lines for superconducting circuits in the
microwave regime. For full reviews of the current waveguide technologies, see References
[56], [57], and [58], respectively. A common property of all these waveguides is that long
propagation lengths can be achieved, such that we can neglect losses of the propagating
waveguide mode.1

Optical Nanofibers Optical nanofibers are tapered optical fibers, that is, optical fibers
that are stretched and thinned to a subwavelength radius (see Figure 0.1a). Close to
the waveguide, where the exponentially decreasing evanescent field is still large, quantum
emitters can interact strongly with the guided mode of the nanofiber. Due to the tapered
structure, the light within the tapered part is naturally mode matched to the one in the

1The description of systems with a finite propagation length L is nontrivial, but we note that, e.g.,
absorption in the material leads to a trade-off with the Purcell factor and introduces small corrections
to the dynamics of the system of the order of d/L, where d is the distance between emitters. As this
correction is typically very small, we neglect it in the remainder of this thesis.
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Figure 0.1: The three most common platforms of waveguide QED systems are a optical nanofibers, which
are stretched and thinned optical fibers, b photonic crystal waveguides, which have a periodicity in their
dielectric coefficient, and c transmission lines for superconducting qubits. The figures are inspired by the
References [59], [60] and [55], respectively.

untapered part of the optical fiber. The first experiments involved a cloud of atoms sur-
rounding the nanofiber [61], but soon atoms were controllably coupled to the waveguide
by using optical traps [59]. Further experiments showed single atoms emitting single pho-
tons [62], nondestructive dispersive readout of the atom number [63, 64], the theoretically
predicted [65, 36] full reflection of resonant photons [66, 67] and superradiant emission
[34]. In these state-of-the-art experiments the value of the Purcell factor is on the order
of P1d ∼ 0.01 − 0.1 and the number of atoms that have been trapped is on the order of
N ∼ 102 − 103.

Photonic Crystal Waveguides The coupling to the waveguide can be increased by
designing appropriate photonic crystal waveguides. These are dielectric structures with a
periodic dielectric coefficient giving rise to a band structure for the electromagnetic field
of the waveguide (see Figure 0.1b). At the band edge, the group velocity vg is strongly
reduced with respect to the speed of light c, which leads to an enhancement in addition to
the one from mode confinement.2 In particular, the decay rate into the waveguide Γ1d ∝ ng
is proportional to the group index ng = c/vg around the frequency of the TLS, ω ≈ ∆. The
group index ng ∝ D(ω) in turn is proportional to the local density of states D(ω). Both
natural and artificial quantum emitters have been coupled to photonic crystal waveguides,
and one has been able to observe photon emission [68], implement basic building blocks
towards a quantum phase switch [69, 70], induce interactions at the band-edge [71], and
show superradiant emission from few atoms [35]. The Purcell factor of state-of-the-art
systems is on the order of P1d ∼ 1−60. Note, that the group velocity cannot be decreased
too far because with very slow light also negative effects of defects in the waveguides are
enhanced and non-markovian effects can emerge [72, 73]. Currently trapping many atoms
or growing many quantum dots close to the waveguide is challenging and the number of
emitters coupled is on the order of N ∼ 1−10. Recent progress in atom-by-atom assembly
of atomic one and two-dimensional arrays [74, 75] and positioning of quantum dots [76]
indicates that the number of coupled emitters can be significantly improved.

Superconducting Circuits A different route to implementing waveguide QED sys-
tems are superconducting circuits which work in the microwave regime. Here, atoms are

2Intuitively one can understand this behavior by comparison to the enhancement in a cavity. In a cavity
the interaction time between the emitters and the photons is increased because the electromagnetic field
is reflected many times at the cavity mirrors such that it interacts many times with the emitter. When
the photons are traveling slowly in the waveguide also the interaction time with the emitter is increased.
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replaced by superconducting artificial atoms, which are superconducting quantum circuits
with a Josephson Junction inducing a nonlinearity in the energy spectrum. The wave-
guide is replaced by a so-called transmission line, that is, a microwave LC circuit (see
Figure 0.1c). Depending on the engineered behavior for the microwave photons at the
ends of the transmission line, it behaves either like a cavity or a waveguide. The super-
conducting artificial atoms can be coupled to the transmission line either inductively or
capacitatively, but when a device has been constructed, the distance between different
emitters is fixed. However, due to the control over the transition energies, the ratio of
distance and wavelength can be modified. Furthermore, level structures that would not
be possible in other systems (like atoms) can be designed. The first observation of strong
coupling [77] could still be explained classically. Soon thereafter, the first non-classical
state of the microwave field was generated by close to full reflection of a single photon
from a coherent input state [78]. In the following years, first experiments demonstrated
photon mediated interactions and superradiance [79, 80] and bound states near a photonic
bandgap [81]. Recently, also propagating shaped single photons were generated in exper-
iments [82]. A broad variety of level structures and couplings can be fabricated with the
current techniques. In contrast to other waveguide QED systems, the decay rate to other
modes outside the waveguide is very low by construction. Therefore, Purcell factors on the
order of P1d ∼ 10− 100 have been achieved. Furthermore, the coupling to the waveguide
can be of the same order as the transition energy of the artificial atom, that is, one has
reached the ultrastrong coupling regime [83]. However, in recent experiments only on the
order of N ∼ 1− 10 artificial atoms have been coupled to a single transmission line.

0.2.3 Generation of Photonic States

There are a variety of photonic states of theoretical and experimental interest. In this thesis
we are concerned with the generation of multiphoton states, in particular, superpositions
of Fock states. For quantum metrology in the optical regime especially NOON-states,
Yurke states and twin-Fock states are important [19]. However, the generation of these
states can be very challenging [84]. In principle, multiphoton states can be generated
by adding single identical photons, e.g. with linear optical tools [85, 86]. In particular,
photonic states can be added by interfering them at a beamsplitter and heralding on
no detection event in one of the output ports of the beamsplitter. The problem of this
approach is that the probability of generating the desired multiphoton state is the product
of the probability for a successful heralding at every step and is therefore exponentially
low in the number of photons [85]. Nonetheless, let us review the three main approaches
to the generation of (mostly single-photon) photonic states [87, 88]:

• By pumping a nonlinear crystal with a laser, photon pairs can be generated through
Spontaneous Parametric Down Conversion [89]. Even though these photon pairs
are created at random times, this process is widely used because by heralding on
measuring one photon of the pair (the signal photon) one can determine that the
other photon of the pair (the idler photon) is present. In addition to the photon pair
of a single photon, also pairs of two (and more) photons in the signal and idler channel
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each are generated. For generating single photons, one thus has to choose the pump
power small enough such that these higher order processes can be neglected, which
also implies that there are only few events with a single photon in each channel. On
the other hand, one can use the higher photon numbers to generate multiphoton
states directly, but this is also limited due to the low probability of heralding the
correct multiphoton signal state [90, 91, 92, 93].

• One can generate photons deterministically by triggering single quantum emitters to
emit one photon. By placing these emitters in cavities or close to one-dimensional
waveguides, their light-matter coupling and the collection efficiency of emitted pho-
tons can be enhanced. The generation of single photons has been observed from
atoms or ions [94, 95, 96, 97, 98], solid state emitters [99, 100, 101] and supercon-
ducting qubits [102, 103, 82]. Even though one can only generate a single photon at
a time, photons generated by different emitters or from the same emitter at different
times, can be combined as long as their mode profile is the same. This limits the
generation of multiphoton states by artificial quantum emitters because the emitted
photons don’t necessarily have the same mode profile as the emitters themselves
differ slightly.

• To generate a state of more than one photon directly, one can use ensembles of
quantum emitters in which one stores multiple collective excitations and later triggers
the emission of a multiphoton state [26]. This was experimentally realized for single
photons [104, 105, 106, 107, 108], but is limited due to a low retrieval efficiency of
the stored collective excitations. The emitters can be the same as the ones used
for the emission from a single quantum emitter as long as their characteristics are
almost identical. The emission can be enhanced by exciting superradiant states of
the collection of emitters, but the difficulty in this approach typically lies in the
preparation of this collective, superradiant state with a given excitation number.
This is due to the fact that large ensembles of emitters behave like a linear system.

0.2.4 Detectors

In order to verify theoretical predictions, one has to be able to measure properties of the
system, that is, on one side the state of the quantum emitters and on the other side the
photonic state, which couples out of the waveguide at the ends.

Quantum Emitter State When quantum emitters can be addressed electronically (like
quantum dots and superconducting circuits), the state of individual emitters can often be
read out with the same methods. An alternative approach is to excite the emitter and look
into its fluorescence. If the emitters are coupled to a waveguide, part of the fluorescence
is emitted into the waveguide and can be detected efficiently at the ends [61]. One then
typically drives a cyclic transition, in which the emitter is driven from a metastable state
to an optically excited state, from which it decays back only to the same metastable state,
to produce many photons. The emitted photonic state is then measured by a photon
detector.
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Photonic State A photonic state of many photons in the optical regime can be detected
by a regular avalanche photodiode. This is sufficient for the detection of the state of a
quantum emitter as described above. However, the detection of photonic states at the
single photon level and in a number-resolved fashion is more challenging. One of the most
promising approaches [87, 88] are transition-edge sensors. These work at a temperature
around the transition from the superconducting to normal resistance phase. The absorbed
photons and their energy increase the temperature, which can then be detected as a change
of the resistance. These detectors already show a large detection efficiency of around
η ∼ 98% [109], but still suffer from a slow response and low counting rates. On the other
hand, some applications do not require a number resolving measurement of the photons,
but work with a parity measurement of the number of photons [110]. Even though this
has fewer requirements, it doesn’t imply that one can build such parity detectors more
easily because they typically require a photonic nonlinearity [111]. In contrast, in the
microwave regime, different methods for photon detection are necessary because the energy
of microwave photons is around five orders of magnitude lower than that of optical photons.
This was a long-standing challenge in the community [112, 113], but recent achievements
of single photon detection efficiencies of η ∼ 70% [114] suggest that this won’t be a major
limitation in the future. Furthermore, parity measurements in microwave cavities, have
already been implemented [115].

0.3 Light-Matter Interaction in One Dimension

We now introduce the basic theoretical tools for treating waveguide QED systems. We
start with the basic setup of an ensemble of N TLSs coupled to a one-dimensional wave-
guide as depicted in Figure 0.2. We introduce a toy model Hamiltonian to describe the
system (Section 0.3.1), derive a master equation for the ensemble of TLSs (Section 0.3.2)
and introduce the notion of sub- and superradiance in the so-called atomic mirror config-
uration (Section 0.3.3).

0.3.1 Light-Matter Hamiltonian

We use a toy model for the light-matter interaction in one dimension, which is sufficient
for the description throughout this thesis. The results can be rigorously derived using an
approach based on the electromagnetic Green’s functions of the material [116, 117, 118].
We start by discretizing the waveguide of length L into 2n+ 1 segments of length δx and
thus also the photonic field confined to it. The possible wavevectors in one dimension
(say the x-direction) are then k ∈ π

L{0,±1, · · · ± n}. In this discretized version, one can

canonically quantize the electromagnetic field ~E(x) = ê3
∑

k

√
~ωk
2ε0L

(
a†ke
−ikx + ake

ikx
)

,

where we have picked the polarization to be in the z-direction with unit vector ê3, and
where the photonic creation and annihilation operators a†k and ak satisfy the usual bosonic
commutation relations [28]. The j-th TLS can be fully described by the Pauli matrices
σjx/y/z in the basis of the excited state |e〉 and the ground state |g〉. The two systems are
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Figure 0.2: a Quantum emitters are coupled to a one-dimensional waveguide. The photonic field of the
waveguide consists of a continuum of different wavevectors described by the bosonic creation operators
a†k. b The simplest level structure of the emitters are two-level systems, where the transition between
the excited state |e〉 and the ground state |g〉 couples to the waveguide modes with a decay rate Γ1d.
Furthermore, individual spontaneous emission into other modes is embedded into a rate Γ∗.

typically coupled primarily through a dipole transition described by HI = −∑j
~dj · ~E(xj),

where ~dj is the dipole operator of emitter j, and HI is then proportional, e.g., to σjx.

Then, the light-matter interactions is described by a Hamiltonian of the form

H =
1

2
∆
∑
j

σjz +
∑
k

ωka
†
kak +

∑
k,j

gkσ
j
x(a†ke

−ikxj + ake
ikxj ), (0.1)

where we assume gk ∈ R and where we have set ~ = 1 and the speed of light in the
medium c = 1, which we use throughout this thesis. The sums run over all emitters j
and wavevectors k. In this toy model the coupling has the form gk =

√
παωk

2L , where
we collected all system parameters into a constant α which quantifies the strength of
interaction. Note, that we have assumed all emitters to have the same transition energy
∆, and that the phase factors e±ikxj correspond to the phase that the photons acquire
when propagating through the waveguide to the emitter’s position xj . The dispersion
relation ωk is typically assumed to be approximately linear around the emitter energy ∆,
but this depends on the specific microscopic model of the waveguide.

The continuum model of the waveguide is then obtained by taking n→∞ and therefore
the mode spacing δk = 2π

L → 0. The sums are then replaced as
∑

k = 1
δk

∑
k δk → 2π

δk

∫
dk
2π ,

where the integral runs from −L/2 to L/2. The prefactor 2π
δk = L is then incorporated

in the operators a†k →
√
La†k and in the couplings gk →

√
Lgk ≡ g(k). Note, that the

dispersion relation is unchanged when we go to the continuum, ωk → ωk ≡ ω(k). We
use both the discrete and continuum version throughout this thesis and typically also
work in the limit of very long waveguides, so that we can extend the integrals to the
range (−∞,∞). In addition, we often make a change of variables to frequency space, that
is
∫∞
−∞

dk
2π = 2

∫∞
0

dω
2π (∂kω)−1 if the argument and the dispersion relation are symmetric

under interchange k ↔ −k.

We note that other microscopic models for the waveguide may lead to a different form
of the coupling gk. Furthermore, this model can be mapped to a few-impurity spin-boson
model in a rotated spin basis [119]. In that setting it was shown that the dynamics don’t
depend on gk itself but rather on the spectral density, which turns out to be ohmic for the
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coupling we considered above,

J(ω) = 2π
∑
k

|gk|2δ(ω − ωk) ≈ 2π

∫
dk

2π
|g(k)|2 δ(ω − ωk) = παω. (0.2)

This intimate relation to the spin-boson model also transfers some features of the spin-
boson model, like a phase transition at a critical αc depending on the form of the spectral
density, over to the light-matter interface.3 However, these effects are not relevant for the
ohmic case with the values for the coupling strength considered throughout this thesis
(α ≤ 0.5), such that there is no need to discuss them here.

Let us now get a sense of the quantity α by comparing the system of the one-
dimensional waveguide to a cavity QED system, which has been studied thoroughly both
experimentally and theoretically [30]. In fact, the waveguide behaves like a cavity when
its length is equal to half the wavelength corresponding to the emitter transition, that
is L = λ/2 ≈ π/∆. The effective coupling to the cavity is then gcav = ∆

√
α/2 [120].

If the coupling to the cavity is weaker than the decay to other modes, gcav . Γ∗, one
cannot observe coherent processes in the emitters. This is the so-called weak coupling
regime. Most cavity QED systems nowadays reach the strong coupling regime at cou-
pling strengths exceeding the decoherence rates, but still much smaller than the transition
energy of the TLSs, gcav � ∆ (or α � 0.01). In this regime, the relevant interaction

terms are only σj+ak + σj−a
†
k, which is called the Rotating Wave Approximation (RWA)

[28]. In this case, the total excitation number in the TLSs and the cavity is conserved. If
the coupling strength is increased to gcav . ∆ (or α . 0.5), the processes in the TLS are

very fast, but also pair creation and annihilation processes, σj+a
†
k+σj−ak, become relevant.

This regime is known as the ultrastrong coupling regime.

0.3.2 Master Equation of the System

One of the main motivations to study the interaction of TLSs with the electromagnetic
field (also referred to as bath B) is to understand decoherence, and especially, dissipation
in the TLSs. The model introduced above describes a specific type of interaction between
the TLSs and the bath – the origin of the decoherence in the TLSs. The full TLS-bath-
system undergoes unitary evolution, but the state ρ of the full system is quite difficult
to obtain. If one is only interested in observables of the TLSs, it suffices to look at the
reduced state of this system, ρS = TrBρ. The evolution of the TLSs simplifies considerably
if the Born-Markov Approximation is valid, that is if the interactions aren’t too strong
such that ρ(t) = ρS(t) ⊗ ρB over a coarse grained time scale (Born) and the correlation
times of the environment are short compared to the time scales of the TLSs (Markov).
Typically, these approximations are only valid when g � ∆, where one can apply the
RWA. Under this approximation terms rotating with e±i∆t average out quickly over the
timescales of the system g−1

ωk≈∆. The density matrix of the TLSs then evolves under a

3For the ohmic case, the critical coupling strength is αc = 1.
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Master equation in Lindblad form [121],

∂tρS(t) = −i

(HS +
∑
ij

Jijσ
i
egσ

j
ge

)
, ρS(t)

+
∑
ij

γij
(
σjgeρSσ

i
eg − σiegσjgeρS + h.c.

)
, (0.3)

where the sums run over all emitters j with the TLS operator given by σjαβ = |α〉j〈β|, or

equivalently σjeg/ge = σj±. The coefficients γij and Jij are given by the real and imaginary

parts of the coupling matrix Γij = γij + iJij =
∫∞

0 dτ (ei∆τ + e−i∆τ )〈vac|B†i (τ)Bj(0)|vac〉
with the bath operators Bj =

∑
k gk(a

†
ke
−ikxj + ake

ikxj ).

In our one-dimensional system, this matrix evaluates to Γij = Γ1d
2 eik0|xij | with Γ1D =

2|gk0 |2/|∂kωk(k0)| [37, 122]. In particular, the interactions don’t decay with the distance
between emitters, |xij | = |xi−xj |, and only depend on the wavevector k0 corresponding to
the TLS transition energy, ωk0 = ∆. On the one hand, the imaginary part of the matrix
Γij gives rise to coherent flip-flop interactions between emitters i and j,

Hcoll =
Γ1d

2

∑
ij

sin (k0|xij |)σiegσjge. (0.4)

On the other hand, the real part of the matrix Γij gives rise to collective dissipation of
the form

Lcoll [ρS] =
Γ1d

2

∑
ij

cos (k0|xij |)
(
σjgeρSσ

i
eg − σiegσjgeρS + h.c.

)
. (0.5)

In addition to the coupling to the waveguide, there is a coupling to free-space modes
in realistic systems. The decay rate Γ∗ into these modes is typically of the order of the
natural decay rate in free space. Because the photons are emitted into the 4π solid angle,
it is highly unlikely that emitted photons interact with another TLS, such that we can
assume the decay into these modes to be individual. These individual baths are then
described by an additional Lindblad term in the master equation, which reads

Lind [ρS] =
Γ∗

2

∑
j

(
2σjgeρSσ

j
eg − σjegσjgeρS + h.c.

)
. (0.6)

The decay rate Γ∗ into these free-space modes has to be taken in relation to the decay rate
into waveguide modes with rate Γ1d, so recall, that we call this ratio the Purcell factor
P1d = Γ1d

Γ∗ .

We point out, that the parameters of the TLSs can be tuned by replacing them by
three-level systems in a Λ-configuration and driving one of the transitions with a Rabi
coupling Ω off-resonantly with detuning δ. The excited state can then be adiabatically
eliminated, such that the system behaves like a TLS [28]. The renormalized parameters

are then Γ1d → Γ1d
Ω2

4δ2 and Γ∗ → Γ∗ Ω2

4δ2 . Thus, the Purcell factor P1d is unchanged, but
we have gained freedom in the collective decay rate Γ1d.
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0.3.3 The Atomic Mirror Configuration

The coherent flip-flop interactions of Equation 0.4 can be made to vanish by placing the
TLSs such that the distance d between the emitters is commensurate with the wavelength
corresponding to the transition energy ∆, i.e. d = 2π/k0 · n, where k0 is the wavevector
satisfying ωk0 = ∆ and n ∈ N.4 The dynamics of the emitters are then only undergoing
collective decay with Sge =

∑
j σ

j
ge. This configuration is also known as the atomic mirror

configuration because the emitters act as a mirror for a resonant photon [36, 67, 66]. The
master equation without external driving is then

∂tρS = −i [∆See, ρS]+
Γ1d

2
(SgeρSSeg − SegSgeρS + h.c.)+

Γ∗

2

∑
j

(
σjgeρSσ

j
eg − σjeeρS + h.c.

)
,

where we have moved the zero-point energy by ∆/2 up to be able to write ∆See = ∆
∑

j σ
j
ee

instead of 1
2∆Sz. In this configuration, it is generally useful to describe the dynamics in

terms of the collective operators Sαβ =
∑

j σ
j
αβ.

One can unravel master equations of Lindblad form as above into a non-hermitian

evolution S(t, t0)ρ = e−iHeff tρeiH
†
eff t given by an effective Hamiltonian Heff and quantum

jumps J as

ρ(t) = S(t, t0)ρ(t0) +

∞∑
n=1

∫ t

t0

dtn · · ·
∫ t2

t0

dt1S(t, tn)J · · · JS(t1, t0)ρ(t0). (0.7)

Then, the n-th order of the sum corresponds to the evolution where n quantum jumps have
occurred. In the atomic mirror configuration, the effective non-hermitian Hamiltonian is

Heff = (∆− i
Γ∗

2
)See − i

Γ1d

2
SegSge, (0.8)

and the quantum jumps Jρ = Jcollρ + Jindρ are either collective, Jcollρ = Γ1dSgeρSeg, or

individual, Jindρ = Γ∗
∑

j σ
j
geρσ

j
eg.

The arising collective operators are sums of spin operators, e.g., Seg ≡ S+, and there-
fore one can use the theory of addition of angular momenta to simplify the description.
When spins are added, the tensor product of the Hilbert space H of a single spin (H = C2

for a TLS) splits up into the direct sum [123]

H⊗N ∼=
⊕

s=N
2
,N

2
−1,...

H⊗dss , (0.9)

where Hs is a Hilbert space that carries the irreducible spin-s representation of su(2) and
has a multiplicity ds =

( N
N
2
−s
)
−
( N
N
2
−s−1

)
with dN/2 = 1.

4The coherent flip-flop interactions actually also vanish for half this distance, that is d = π/k0 · n with
n odd. In this case, additional factors of (−1)j are introduced, but the physics remain unchanged. For
simplicity, we focus on the distance d = 2π/k0 · n for the remainder of this thesis.
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Figure 0.3: a The basis states |s,ms, α〉 of the Dicke basis can be arranged in orthogonal ladders, within
which the states are connected through the ladder operators S±. The number of excitations in the state
e is m = ms + N

2
. The subspace for a specific total spin s has a degeneracy ds. The states |s,−s〉

are subradiant (blue) and the states |N
2
,ms〉 with ms > −N/2 are superradiant (red). b The Holstein-

Primakoff Approximation replaces the collective spin operators S+ by approximately bosonic operators b†

in the low excitation regime m � N . Here, we visualize this behavior for the maximal spin s = N
2

for
which the states are fully symmetric.

The new basis states |s,ms, α〉 are then characterized as the eigenstates of the collective
spin operator, S2 = (Sx + Sy + Sz)

2, and the projection onto the z-axis, Sz, as

S2|s,ms, α〉 = s(s+ 1)|s,ms, α〉, (0.10a)

Sz|s,ms, α〉 = ms|s,ms, α〉. (0.10b)

For s < N/2 the states are degenerate, such that we have introduced the parameter
α = 1, . . . ds in the basis states |s,ms, α〉. The ladder operators S± = Sx ± iSy = Seg/ge
raise or lower the spin quantum number ms by one and leave s unchanged. This splitting
into distinct ladders can be visualized as in Figure 0.3a. Instead of the quantum number
ms, one can use the number of excitations m = ms +N/2 in the excited state e.

There are two types of states in the Dicke basis with very particular features that
manifest themselves in their decay rate and therefore in the coupling to the waveguide
photons. On the one hand, there are the subradiant states, which are zero eigenstates
of the collective decay operator, i.e., S−|ψ〉 = Sge|ψ〉 = 0. In the Dicke basis these can
be easily found to be |ψ〉 = |s,−s, α〉. They are called subradiant because the collective
decay vanishes and only individual decay processes with rate Γ∗ occur. If Γ∗ = 0 one
often uses the term “Decoherence-Free Subspace” to describe this set of states [124, 125,
126]. On the other hand, the states |N2 ,ms〉 show a strongly enhanced decay rate for
ms > −N/2 and are thus coined superradiant.5 These states have a very strong coupling
to the waveguide and turn out to be essential for the generation of photonic states in the
waveguide. One also uses the term symmetric Dicke state for these states because they

5The decay in the low excitation regime m� N is often only referred to as “collective decay”, to reserve
the term “superradiant decay” for the region of m ∼ N/2, where the decay rate scales quadratically with
the ensemble size, ∼ 1

4
N2. We use both expressions equivalently throughout this thesis.
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can be written as

|ψm〉 = |N
2
,m− N

2
〉 =

(
N

m

)−1/2

sym
{
|e〉⊗m ⊗ |g〉⊗N−m

}
, (0.11)

where m is the excitation number, i.e., See|ψm〉 = m|ψm〉 and “sym” denotes the sym-
metrization operator. As an example, take

|ψ0〉 = |gggg · · · 〉, (0.12a)

|ψ1〉 =

(
N

1

)−1/2

(|eggg · · · 〉+ |gegg · · · 〉+ |ggeg · · · 〉+ · · · ) , (0.12b)

|ψ2〉 =

(
N

2

)−1/2

(|eegg · · · 〉+ |egeg · · · 〉+ · · ·+ |geeg · · · 〉+ · · · ) . (0.12c)

From an historical perspective, superradiance is a term coined by R. H. Dicke and
describes the collective spontaneous emission from a cloud of N excited emitters [127, 128,
129]. In these days it was realized that correlations between the emitters can be induced by
the interaction with a common radiation field, leading to super- and subradiant decay. For
superradiance, the emitters have to be in the same phase, which occurs if all emitters are
in a region that is much smaller than the wavelength of the emitted light. The observation
of sub- and superradiance in this regime is very difficult due to the low optical thickness
[130] and due to propagation effects if they are placed farther apart (while retaining the
phase correlation) [131]. Furthermore, the collective decay rate needs to be larger than the
individual decay rate. Fortunately, all of these requirements can be satisfied in waveguide
QED setups in the optical regime [34, 35].

Coming back to the effective Hamiltonian, we note that if we start in the set of super-
radiant states, we remain in this set until the ground state |ψ0〉 = |g〉⊗N is reached. In
particular, the effective Hamiltonian of Equation 0.8 is diagonal in the symmetric Dicke
state basis,

Heff =
∑
m

(m∆− i
γm +mΓ∗

2
)|ψm〉〈ψm|. (0.13)

The decay rate γm is defined by Γ1dSegSge|ψm〉 = γm|ψm〉 and can be calculated to be
γm = m(N −m+ 1)Γ1d.

To simplify the description, the collective spin operators can be expressed in terms of
bosonic operators by using the Holstein-Primakoff transformation [132, 133, 134],

S+ = b†
√

2s− b†b, (0.14a)

Sz = b†b− s. (0.14b)

One can check that the spin commutation relations [S+, S−] = 2Sz and [Sz, S±] = ±S±
imply the correct bosonic commutation relations

[
b, b†

]
= 1 and [b, b] =

[
b†, b†

]
. The
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operator inside the square root ensures, that the bosonic system is finite and it is impossible
to put arbitrarily many excitations in the system (see Figure 0.3b). This transformation
can be useful to study spin systems in general, but we are interested here in the low
excitation regime m � N . For the symmetric Dicke states (s = N/2) the square root
can be expanded in the low excitation regime 〈b†b〉 = m� 2s = N .6 Thus, the collective
operators S+ are approximated by bosonic operators as

S+ ≈
√

2s b† =
√
Nb†. (0.15)

While the transformation of Equation 0.14 is exact, the Holstein-Primakoff Approximation
(HPA) of Equation 0.15 is only valid in the low excitation regime m � N . In this
case, we find |ψm〉 ≈ 1√

m!
b†m|g〉⊗N and a decay rate linear in the excitation number,

γm ≈ mNΓ1d = mγ1.

As a final point, we emphasize that the collective dissipation in the atomic mirror con-
figuration not only induces sub- and superradiance, but can also lead to collective coherent
couplings induced by the Quantum Zeno Dynamics (QZD) [135]. This is a generalization
of the Quantum Zeno Effect (QZE) [136], in which frequent measurements on a specific
state (QZE) or on a subspace (QZD) of the system restrict the evolution to this state or
subspace. Both the QZE [137] and the QZD [138, 139] have been observed experimentally.
In our case the strong collective decay wit rate ∼ NΓ1d acts as a measurement on whether
the state is in a subradiant state or not. In particular, if one starts in the subspace of
subradiant states and weakly drives a transition on a single emitter with strength Ω to
a state outside this subspace, then the coupling to this state is reduced to Ω2

NΓ1d
. Thus,

through the QZD the collective dissipation together with weak local drivings Ω � NΓ1d

can lead to collective dynamics within the subspace of subradiant states. These dynamics
can also be used to implement a set of universal quantum gates in this subspace [140, 7].

0.4 Outline of this Thesis

The motivation of our work was the development of novel methods for solving two of the
current challenges in quantum optics. On the one hand, we investigated how waveguide
QED tools can be exploited for the generation of propagating photonic states in the well
understood strong coupling regime under the RWA. This problem in itself is twofold:
First, we have to determine which states of an ensemble of emitters generate the desired
photonic states and from what limitations these states suffer. Second, we need to find
methods how to generate said collective emitter states. On the other hand, we propose
to use multiphoton scattering to study the behavior of waveguide QED systems in the
ultrastrong coupling regime. In particular, we look at the scattering of few photons on
a single quantum emitter because the scattering matrix is experimentally accessible [141]
and provide a new method for analytically studying this process. The remainder of this
thesis is split into the following three chapters:

6In fact, this approximation works in the lower part (ms & −s) of every ladder s where 〈b†b〉 =
(ms + s)� 2s, but clearly best for the maximal s = N/2.
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Chapter 1 – Generation of Photonic States As we have motivated, the light-matter
interaction is enhanced both in waveguide QED systems as well as by using many emit-
ters. In particular, the superradiant decay of emitters in the atomic mirror configuration
suggests that this system is a promising candidate for the generation of photonic states.
In fact, symmetric Dicke states over an ensemble of N emitters can be used to trigger the
generation of photonic states in the waveguide. The emitted wavepacket can be shaped to
be time symmetric such that a different ensemble can absorb the photonic state. In the
low excitation regime the outgoing photonic state is a single-mode state. However, when,
e.g., all emitters are excited, the emitted N photon state has a multi-mode structure.
Nevertheless, these states are still useful for quantum-enhanced optical interferometry.
In Chapter 1 we aim to answer the following main questions: For what parameters is a
single-mode photonic state generated? What are the characteristics of the emission? Are
multi-mode photonic states useful for quantum metrology – in general and in the specific
waveguide QED setting?

Chapter 2 – Preparation of Dicke States The generation of arbitrary single-mode
photonic states as described in Chapter 1 requires the preparation of arbitrary symmetric
Dicke states of a specific excitation number and superpositions thereof. These symmetric
states are also of fundamental interest due to their robustness against particle loss and
for atomic interferometry. We investigate how waveguide QED tools can be exploited to
prepare these highly entangled states. We provide various protocols for their preparation,
which favor one or the other experimental platform with their characteristic Purcell factor
P1d and number of coupled emitters N . In particular, there is a simple protocol, which
only requires coherent driving, and others with an increased fidelity, which use either the
collective dissipation or the coherent flip-flop interactions induced by the waveguide. In
Chapter 2 we aim to answer the following main questions: Which waveguide QED resources
are necessary for the preparation of symmetric Dicke states? Can we find protocols for
the efficient and high-fidelity preparation of these states? How can these protocols be
extended to Dicke states over multiple metastable states?

Chapter 3 – Ultrastrong Coupling Regime One of the goals of increasing the light-
matter coupling strength is to decrease the necessary interaction times for specific processes
and enhance nonlinearities of the system. However, when the coupling strength becomes
comparable to the emitter’s transition energy, standard tools (like the Rotating Wave Ap-
proximation) for understanding and analytically studying the interaction between emitters
and photons break down [41, 42]. One alternative approach is the so-called polaron trans-
formation, which is a variational approach to finding the ground state of an ultrastrongly
coupled system. The results obtained from this new approximation can then be compared
to experimental results. We derive the scattering matrix (e.g., reflection and transmission
coefficients for a single photon) for these scattering processes, which can be compared to
numerical results. In Chapter 3 we aim to answer the following main questions: What is
a polaron transformation and why is it expected to aid in describing ultrastrongly cou-
pled systems? How are the scattering properties in the original picture and the polaron
transformed picture related? Is it possible to obtain analytical or numerical results for the
scattering in the polaron transformed picture?
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Generation of Photonic States 1
Abstract

Many methods to use quantum optics for advancing current technologies rely on high fi-
delity photonic states. Examples of such applications are quantum communication [10] and
quantum metrology [11]. However, the efficient and on demand generation of (arbitrary)
photonic states remains elusive. Single photons can be generated trough spontaneous
parametric down conversion, from single quantum emitters coupled to cavities or wave-
guides or from an ensemble of such emitters [88]. States containing multiple photons are
generally obtained by combining single photons with linear optical devices and herald-
ing measurements. This approach is however inherently limited due to a low heralding
probability with increasing photon number [86].

By using an ensemble of quantum emitters, one can prepare specific states that directly
emit multiple photons. We show in this chapter that (superpositions of) symmetric Dicke
states of a chain of quantum emitters coupled to a one-dimensional waveguide efficiently
generate high fidelity multiphoton states. The preparation of these Dicke states will be
covered in Chapter 2. Moreover, we show that the wavepacket of the emitted photonic
state can be shaped to be, e.g., symmetric in time, such that the process is reversible.
Another feature of these photonic states is that they can be emitted into a single mode,
which is a basic requirement for many applications. However, even if the photonic state has
an intricate multi-mode structure, it can still be useful for quantum optical applications,
as we show on the example of quantum metrology.

In this chapter, we first motivate the importance of the generation of photonic states
and introduce some of their applications (Section 1.1). Then we derive the structure of
the emitted photonic state through an input-output formalism (Section 1.2). Finally, we
discuss one of the most important applications of photonic states – quantum metrology
(Section 1.3). After introducing some basic concepts of quantum metrology, we show
that multi-mode photonic states generated by exciting all emitters of the waveguide QED
system are useful for quantum-enhanced optical interferometry. Finally, we summarize
the results (Section 1.4).
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1.1 Motivation and Basic Concepts

Photonic states play a key role in a variety of quantum technologies [39]. Because photons
interact only weakly with the environment, they are a prime candidate for secure transmis-
sion of quantum information over long distances [142] and thus an essential building block
for quantum networks [13]. Quantum states of light can also enhance the performance
of optical interferometers by using non-classical initial states or by special measurements,
e.g. photon number resolving or parity measurements [19]. Other applications for single
photons include the KLM scheme for quantum computation with linear optics [23], and
for many photons, quantum lithography for imaging features below the wavelength of the
light [143].

For most of these applications, one considers single-mode photonic states, where all
photons are in a specific photonic mode, which can have some modal structure,

∫
dk
2πAka

†
k.

The structure of the mode is determined by the coefficient Ak of the superposition of
the propagating photons (with the creation operator a†k for the wavevector k). En-
tangled photonic states are a superposition of photonic states between two orthogo-
nal modes, e.g., in different polarization degrees of freedom, different legs of an in-
terferometer or in different time bins. However, in some setups one might generate
multi-mode photonic states,

∫ {dkj
2π

}
Ak1···kma

†
k1
· · · a†km |vac〉, instead of single-mode states,

1√
m!

(∫
dk
2πAka

†
k

)m
|vac〉. Note, that if one photon from the single-mode state is measured,

one cannot infer any information about the remaining photons, whereas one can for multi-
mode states. It was unclear whether these multi-mode states are as useful for quantum
applications (like quantum metrology) as the single-mode ones. But at least for certain
multi-mode states we show that the classical limit for the phase resolution of an optical
interferometer can still be overcome.

There are a variety of photonic states of theoretical and experimental interest. How-
ever, the generation of these states can be very challenging [84]. As reviewed in Sec-
tion 0.2.3, there are three main approaches to the generation of photonic states, namely
the use of spontaneous parametric down conversion, the emission from single quantum
emitters and from ensembles of quantum emitters. The first two naturally suffer from an
exponentially low heralding probability for generating photonic states with many photons.
On the other hand, in the latter, one can prepare collective states of the ensemble with m
excitations, that can then be triggered to emit m photons, in the ideal case, superradiantly.

In waveguide QED systems, a chain of symmetrically excited quantum emitters in the
atomic mirror configuration undergoes such superradiant decay (see Section 0.3.3) and
emits a photonic state into the waveguide. This photonic state can be efficiently collected
at the ends of the waveguide. In the following sections we study these photonic states and
investigate their usefulness for quantum metrology. The main losses we consider here are
due to spontaneous emission processes from the quantum emitters, whereas we neglect
losses within the waveguide due to the typically large propagation lengths.
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Figure 1.1: The level structures considered within this chapter. a The simplest level structure is a two-
level system, where the g − e transition is coupled to the waveguide. b With a three-level system and a
time-dependent Rabi coupling on the s− e transition, one can trigger the emission and shape the emitted
wavepacket. c If two orthogonal guided modes, which couple the ground state with two optical excited
states eL/R, are available, one can generate two-mode photonic states. The decay rates eL − g and eR − g
are depicted in different colors to highlight that they are related to two orthogonal guided modes.

1.2 Generation of Photonic States

First of all, we need to understand the structure of the photonic states that are emitted by
a chain of quantum emitters in the atomic mirror configuration. Let us therefore assume
that we can prepare a symmetric Dicke state with m excitations in the excited state, that
is

|ψm〉 =
1

m!

(
N

m

)− 1
2

Smeg|g〉⊗N , (1.1)

where N is the number of emitters in the chain and Seg =
∑

j σ
j
eg. We assume the

transition between the ground state g and the optically excited state e to be coupled to
the waveguide modes (see Figure 1.1a). We emphasize, that in three-level systems this
state can be obtained from a symmetric Dicke state in the metastable state s by applying
a π-pulse on the transition s − e (see Figure 1.1b). We propose various protocols for the
preparation of these states in Chapter 2. This excited symmetric Dicke state then decays
to the ground state |ψ0〉 after a time of at most T � (NΓ1d)−1, so that no TLS-photon
entanglement remains. If we neglect spontaneous emission into other modes and assume
linear dispersion, the emitted photonic state in the waveguide after this time T is in general
of the form

|φm〉 =

∫ ∞
−∞

dk1

2π
· · ·
∫ ∞
−∞

dkm
2π

A{k}e
−i
∑
ωkj t

m!
a†k1

a†k2
. . . a†km |vac〉. (1.2)

The coefficient A{k} = Ak1···km is symmetric under all interchanges ki ↔ kj and satisfies

the normalization condition
∫ {dkj

2π

}
1
m! |A{k}|2 = 1, where we write

∫ {dkj
2π

}
as a shorthand

notation for the m momentum integrals. Note, that we require the factor of m! because
the wavevectors are not ordered. If the emission into other modes cannot be neglected,
the emitted state is |Φm〉 = |φm〉+ |φ∗m〉, where all parts of the state where a spontaneous
emission event has taken place have been collected into |φ∗m〉, which is orthogonal to |φm〉.
Note, that in this case |〈φm|φm〉| < 1.

We assume the dispersion to be linear around the energy of the emitter, ωk ≈ |k|, so
that we can apply the input-output formalism (e.g., see Reference [144] and Appendix 1.A)
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to obtain the coefficient

A{k} = (−i)m
∫ ∞

0
ds1 · · ·

∫ ∞
0

dsm ei
∑m
j=1 kjsj 〈ψ0|T Ok1(s1)Ok2(s2) · · ·Okm(sm)|ψm〉, (1.3)

where T denotes the time ordering operator7 and the decay operatorsOk = gk
∑

j σ
j
gee−ikxj

are taken in the interaction picture of the effective Hamiltonian of Equation 0.8, Heff =
(∆− iΓ∗

2 )See − iΓ1d
2 SegSge. Under the Markov approximation, the decay operators can be

taken as independent of the wavevectors,

Ok(s) ≈
√

Γ1deiHeffsSgee
−iHeffs ≡ O(s). (1.4)

Notice that under this approximation, the different time orderings lead to different {k}-
permutations and that therefore, it suffices to calculate one time ordering, e.g., s1 > s2 >
· · · > sm and symmetrize the coefficient with respect to the momenta kj . The coefficient
of the emitted photonic state is then

A{k} ≈
m∏
n=1

√
γn

(n∆−∑n
j=1 kj)− i

2 (γn + nΓ∗)
+ {k − permutations}, (1.5)

where we have introduced the decay rate of state |ψn〉 → |ψn−1〉 as γn = n(N − n+ 1)Γ1d

(see Section 0.3.3). Here, we have also assumed a vanishing Lamb shift δL = 0. If this is
not the case, we simply need to replace ∆→ ∆− δL. The normalization can be calculated
to be

|〈φm|φm〉|2 =

∫
dk1

2π
· · ·
∫

dkm
2π

1

m!
|A{k}|2 =

m∏
n=1

γn
γn + nΓ∗

≤ 1. (1.6)

In the case Γ∗ = 0, we recover |〈φm|φm〉|2 = 1. In the low excitation regime m � N we
find |〈φm|φm〉|2 ≈ 1 − m

NP1d
, that is, the probability of emitting all excitations into the

waveguide is close to 1. Similarly, we can approximate the fidelity of the emitted photonic
state in the low excitation regime as

Fph = |〈Φm|φm〉| ≈ 1− m

2NP1d
, (1.7)

where P1d = Γ1d/Γ
∗ is the Purcell factor of the system. This is also an upper bound for

the fidelity when we map superpositions of symmetric Dicke states to superpositions of
Fock states. In particular, the state |ψ〉 =

∑m
n=0 cn|ψn〉 with

∑ |cn|2 = 1 generates the
waveguide state |φ〉 =

∑m
n=0 cn|φn〉. In that case, the fidelity of the atom-photon mapping

can be lower bounded by 1−∑m
n=0

|cn|2n
2NP1d

≥ Fph.

To study the form of the wavepacket further, we consider the emission of one and two
photons from a symmetric Dicke state. For m = 1, the output wavepacket is a Lorentzian
peaked at the resonance frequency ∆ and with linewidth γ1 = NΓ1d,

Ak =

√
γ1

(∆− k)− iγ1/2
. (1.8)

7The time ordered product of two commuting operators is defined as T O(s1)O(s2) = Θ(s1 −
s2)O(s1)O(s2) + Θ(s2 − s1)O(s2)O(s1) with Θ the Heaviside step function.
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For m = 2 the emitted state can be separated into a linear and a nonlinear part as

Ak1,k2 =

√
γ2

γ1

(2∆− k1 − k2)− i
2(2γ1 + 2Γ∗)

(2∆− k1 − k2)− i
2(γ2 + 2Γ∗)

Ak1Ak2 . (1.9)

From this expression we observe that the output coefficient is a product of the single-mode
functions, Ak1k2 =

√
2Ak1Ak2 , if γ2 = 2γ1. In this case, the two photons are emitted into

the same mode. This linear relation between the decay rates, γn = nγ1, is approximately
true in the low excitation regime n � N , where the Holstein-Primakoff Approximation
is valid (see Section 0.3.3). This result can be extended to higher excitations to obtain
A{k} ≈

√
m!Ak1 · · ·Akm for m � N . The photonic state of the waveguide in the low

excitation regime is therefore approximately a single-mode state,

|φm〉 ≈ |φSM
m 〉 =

1√
m!

(∫
dk

2π
e−iωktAka

†
k

)m
|vac〉, (1.10)

that is, the state is emitted into a single mode with modal structure
∫

dk
2πAka

†
k. Outside

this regime or even for the emission from a fully excited state m = N , a multi-mode state
is emitted. The overlap with the single-mode state (neglecting Γ∗),

〈φm|φSM
m 〉 =

m∏
n=1

2
√
γn · nγ1

γn + nγ1
=

m∏
n=1

√
N(N − n+ 1)

N − (n− 1)/2
≈ 1− m3

24N2
+O(

m4

N2
,

1

N3
), (1.11)

shows that the emitted state is well approximated by a product state in the low excitation
regime.

One important feature of this mapping to photonic states is that the wavepacket can
be shaped as first proposed in Reference [145]. In particular, one requires the wavepacket
to be symmetric in time for quantum communication applications and to build quantum
networks, such that the photonic state can be mapped back to the corresponding emitter
state with high fidelity at another node of the quantum network. If the emitters simply
decay from an excited symmetric Dicke state Smeg|g〉⊗N the wavepacket in time follows the
exponential decay. However, if one uses a three-level system and starts with a symmetric
Dicke state in the metastable levels, Smsg|g〉⊗N , the decay can be modified by driving the
s−e transition with an external driving field and an appropriately chosen time-dependent
Rabi coupling Ω(t) (see Figure 1.1b).

We also point out, that the mapping between symmetric Dicke states and photonic
states can be generalized to orthogonal modes, e.g., different polarization modes. For this,
we require a more complex level scheme of the emitters and two orthogonal guided modes
of the waveguide, e.g., left and right polarized photonic modes aL(R)k which couple to the
optical transitions g − eL(R) (see Figure 1.1c). Because these modes are orthogonal, a
symmetric Dicke state over two modes in the low excitation regime m,n� N maps to a
product of photonic states in the different polarizations,

|ψm,n〉 ∝ SmeLgS
n
eRg
|g〉⊗N −→ |φL

m〉|φR
n 〉 (1.12a)

|φL/R
m 〉 =

∫
dk1

2π
· · ·
∫

dkm
2π

A{k}e
−i
∑
ωkj t

m!
a†L/Rk1

a†L/Rk2
. . . a†L/Rkm |vac〉, (1.12b)
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Figure 1.2: In general an optical interferometer has a preparation step before the phase ϕ is acquired.
With an appropriate measurement on |ψϕ〉 one can then measure the phase shift ϕ. In a Mach-Zehnder In-
terferometer, the preparation step is a beamsplitter transformation and the measurement e.g., an intensity
measurement after passing through another beamsplitter.

To prove this, we use the fact that the collective operators OR/L =
√

Γ1dSgeR/L satisfy
OROL|ψm〉 ≈ OLOR|ψm〉 in the low excitation regime. Therefore, the correlation function
and consequently the final state factorizes,

〈ψ0,0|OL(s1)OR(s2)OL(s3) · · · |ψm,n〉 ≈ 〈ψ0|OL(s1)OL(s3) · · · |ψm〉〈ψ0|OR(s2) · · · |ψn〉.

This type of mapping can be useful to generate entangled photon states in two orthogonal
modes like NOON-states and Yurke states.

1.3 Multi-Mode States for Quantum Metrology

One reason why photonic states are of interest is their value for quantum metrology [11]
in optical setups [19]. In most cases, the quantity to be estimated can be mapped to a
phase ϕ, that the photons acquire during some interaction time. Often one considers a
Mach-Zehnder-Interferometer (MZI) as depicted in Figure 1.2. The phase sensitivity of the
classical MZI is limited by the shot-noise limit (SL), also known as the Standard Quantum
Limit, (∆ϕ)SL = 1/

√
M , where M are the number of resources, e.g., the number of

photons. Nonclassical input states can overcome this limit and even reach the Heisenberg
limit (HL) of (∆ϕ)HL = 1/M .

In this section we first discuss some basic concepts of quantum optical interferometry
(Section 1.3.1). Then, we derive a lower bound for the phase sensitivity ∆ϕ for general
multi-mode states (Section 1.3.2), and show that with a parity measurement one can reach
this bound (Section 1.3.3). Moreover, we use our particular multi-mode states to show
that these can beat the SL and perform only slightly worse than the single-mode states
(Section 1.3.4). Finally, we discuss the effect of decoherence during the emission process
on the phase sensitivity (Section 1.3.5).
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1.3.1 Basic Concepts in Quantum Metrology

The variance of the phase measurement depends on the quantum state ρ used as a resource
and the measurement scheme that is chosen. The Quantum Cramér-Rao Bound (QCRB)
[146, 147] gives a lower bound for the variance for all choices of measurements and only

depends on the quantum state ρϕ = UϕρU
†
ϕ after the phase has been acquired, which is

described by the unitary Uϕ. The QCRB states

(∆ϕ)2 ≥ 1

νFQ[ρϕ]
, (1.13)

where ν denotes the number of repetitions and FQ[ρϕ] is the Fisher Information of the
state ρϕ. One can always construct a measurement scheme to attain this bound [148],
but it might not be realizable easily in an experimental setup. The Fisher Information for
pure states ρϕ = |ψϕ〉〈ψϕ| is given by [19]

FQ[|ψϕ〉〈ψϕ|] = 4
(
〈ψ̇ϕ|ψ̇ϕ〉 − |〈ψ̇ϕ|ψϕ〉|2

)
, (1.14)

where |ψ̇ϕ〉 = ∂ϕ|ψϕ〉.

For single-mode states the phase variance has been thoroughly studied [19]. In this
case, the interferometer can be described with the help of the group SU(2) and group the-
oretical arguments can be used to calculate the Fisher Information and find optimal states
[149]. Single-mode NOON-states |ψ〉 = 1√

2

(
|φSM
M , 0〉+ |0, φSM

M 〉
)

reach the HL as their

Fisher Information can be calculated to be FQ = M2. However, these states are difficult
to prepare. An alternative are the so-called twin-Fock states that have passed through
a 50:50-beamsplitter, i.e. |ψ〉 = UBS|φSM

m , φSM
m 〉, where now the number of resources is

M = 2m. These states have a Fisher Information of FQ = 2m(m + 1) = M(M + 2)/2
which shows the same scaling as the HL for large photon numbers m� 1.

The experimentally observed phase variance also depends on the measurement that
is performed on the state |ψϕ〉. Typical measurement schemes include intensity measure-
ments at the output ports of the MZI, photon number resolving measurements and parity
measurements. A measurement scheme, that reaches the QCRB, for these two states
(and an even wider class of so-called path-symmetric states) is a photon number resolving
measurement [150]. For this measurement scheme the QCRB is attained for any phase
ϕ, but it may be difficult to implement such a photon number resolving detector. Par-
ity measurements of the photon number are a simpler measurement scheme, even though
they too are difficult to implement experimentally. We refer to Section 0.2.4 for a short
overview over current photon detection techniques. With parity measurements one can
also attain the QCRB for the NOON-state and twin-Fock state (and an even wider class
of states) around particular values of the phase ϕ [110]. Even though the phase can only
be approximated very well locally (with HL-scaling), the simpler measurement scheme can
yield an advantage.
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1.3.2 Quantum Fisher Information of Multi-Mode States

The open question is how these results change when we consider multi-mode states as one
obtains, e.g., from the emission of a chain of atoms as described in Section 1.2. On the
one hand, we have shown that in the low excitation regime m� N the emitted photonic
state behaves like a single-mode state and we provide protocols for the preparation of
collective states that can generate Fock states and NOON-states in Chapter 2. On the
other hand, by exciting all emitters of the chain and letting them decay, a multi-mode
state of N photons is generated. We now study the phase variance of arbitrary multi-mode
twin-Fock states at the QCRB.

For this purpose, we assume the phase to be independent of the momenta k over

the relevant range, such that Uϕ = exp
[
−iϕ

∫
dk
2πa
†
kak

]
. We also assume that the two

Fock states arrive at the beamsplitter at the same time, so that we can ignore the time-
dependence in the input states of the form

|φm〉 =

∫
dk1

2π
· · ·
∫

dkm
2π

A{k}

m!
a†k1

a†k2
. . . a†km |vac〉. (1.15)

Furthermore, we assume here that spontaneous emission processes can be neglected, i.e.
Γ∗ = 0, such that |φm〉 is normalized. We discuss the effect of decoherence during the
emission process in Section 1.3.5.

The states after the first beamsplitter and the phase operation, |ψϕ〉 = UϕUBS|φm, φm〉,
with operators ak (bk) in the first (second) arm of the interferometer, can be expressed in
terms of the operators

c†k(ϕ) = UϕUBSakU
†
BSU

†
ϕ =

1√
2

(
a†k + e−iϕb†k

)
, (1.16a)

d†k(ϕ) = UϕUBSbkU
†
BSU

†
ϕ =

1√
2

(
−a†k + e−iϕb†k

)
. (1.16b)

To separate the original ak and bk modes we give the former odd indices and the latter
even indices and introduce the shorthand notation Ak,13···2m−1 = Ak1k3···k2m−1 . With these
definitions,

|ψϕ〉 =

∫
dk1

2π
· · ·
∫

dk2m

2π
Ak,13···2m−1Ak,24···2m

1

m!2

× c†k1
(ϕ) · · · c†k2m−1

(ϕ)d†k2
(ϕ) · · · d†k2m

(ϕ)|vac〉. (1.17)

Before we go on to the evaluation of the Fisher Information, let us first check the
normalization of the state to introduce some methods used later. The main tool is Wick’s
theorem [151] with which we can reduce a correlation function of many bosonic operators
to a product of commutators. As a small example take

〈vac|cp1dp2c
†
k1
d†k2
|vac〉 =〈vac|cp1dp2c

†
k1
d†k2
|vac〉+ 〈vac|cp1dp2c

†
k1
d†k2
|vac〉

=
[
cp1 , c

†
k1

] [
dp2 , d

†
k2

]
+
[
cp1 , d

†
k2

] [
dp2 , c

†
k1

]
. (1.18)
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The brackets above the operators (similar to Wick’s contractions) depict the different
ways in which the annihilation and creation operators can be connected in a nonvanishing
manner. Because the commutator between to bosonic annihilation and creation operators
commute with all other operators, the correlation function reduces to a product of all these
commutators. This motivates the importance of the commutators between the ck(ϕ) and
dk(ϕ), for which we find[

cp(ϕ), c†k(ϕ)
]

=
[
dp(ϕ), d†k(ϕ)

]
= 2πδ(p− k), (1.19a)[

cp(ϕ), d†k(ϕ)
]

=
[
dp(ϕ), c†k(ϕ)

]
= 0. (1.19b)

The normalization of the state is then (omitting the phase dependence and writing ck(ϕ) =
ck for a more compact notation)

〈ψϕ|ψϕ〉 =

∫
dp1

2π
· · ·
∫

dp2m

2π

∫
dk1

2π
· · ·
∫

dk2m

2π
A∗p,13···A

∗
p,24···Ak,13···Ak,24···

1

m!4

× 〈vac|dp2m · · · dp2cp2m−1 · · · cp1c
†
k1
· · · c†k2m−1

d†k2
· · · d†k2m

|vac〉, (1.20)

where we can just take the commutator between pi and ki without loss of generality
because of the symmetry of A{k} under exchange of indices. This yields a factor of m!
within the c’s and d’s each. Thus, the state is normalized,

〈ψϕ|ψϕ〉 =

∫
dk1

2π
· · ·
∫

dk2m

2π
|Ak,13···|2|Ak,24···|2

1

m!2
= |〈φm|φm〉|4 = 1. (1.21)

Returning to the evaluation of the Fisher Information, one needs to take the derivative
of the state with respect to the phase,

|ψ̇ϕ〉 =
−ie−iϕ

√
2

∫
dk1

2π
· · ·
∫

dk2m

2π
Ak,13···2m−1Ak,24···2m

m

m!2
(1.22)

×
(
b†k1
c†k3
· · · c†k2m−1

d†k2
· · · d†k2m

+ c†k1
· · · c†k2m−1

b†k2
d†k4
· · · d†k2m

)
|vac〉,

where we have not explicitly written the phase dependence of the operators ck and dk. Due
to the symmetry of A{k} we have taken the derivative only in ck1 and dk2 together with a
factor of m. The Fisher Information can then be evaluated in analogy to the calculation
of the norm, where the main difference is that due to the b operators the even and odd

modes can mix because
[
bp, c

†
k

]
=
[
bp, d

†
k

]
= 2πδ(p − k) 1√

2
e−iϕ. The calculation yields

(see Appendix 1.B)

〈ψ̇ϕ|ψ̇ϕ〉 =
1

2

(
(2m2 +m)I(0)

m +m2I(1)
m

)
, (1.23a)

|〈ψ̇ϕ|ψϕ〉| =mI(0)
m , (1.23b)
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where we have introduced the integrals I
(l)
m in which l indices of Ak,1··· have been exchanged

with the ones from Ak,2···, i.e. in particular

I(0)
m =

∫
dk1

2π
· · ·
∫

dk2m

2π
|Ak,13···2m−1|2|Ak,24···2m|2

1

m!2
= 1, (1.24a)

I(1)
m =

∫
dk1

2π
· · ·
∫

dk2m

2π
A∗k,13···2m−1A

∗
k,24···2mAk,23···2m−1Ak,14···2m

1

m!2
. (1.24b)

These quantities can be shown to be real by complex conjugating and exchanging of
integration variables.

The Fisher Information of the multi-mode states,

FQ[|ψϕ〉〈ψϕ|] = 4
(
〈ψ̇ϕ|ψ̇ϕ〉 − |〈ψ̇ϕ|ψϕ〉|2

)
= 2m(mI(1)

m + 1), (1.25)

then shows a Heisenberg-like scaling if I
(1)
m is approaching a constant for large m. As we

show in Section 1.3.4 this is true for the emitted state from a fully excited chain of atoms.

We point out, that the single-mode result with I
(1)
m = 1 is recovered straightforwardly

because of the product structure of the coefficient, Ak,13··· =
√
m!Ak1Ak3 · · · .

1.3.3 Phase Variance for a Parity Measurement

We now show that a parity measurement after the second beamsplitter transformation of
the MZI locally resolves the phase at the Heisenberg limit. The measurement operator

can be written as O = U †BS(−1)
∫

dk
2π
a†kakUBS, where the beamsplitter transformation is

generated by
∫

dk
2π i(a†kbk − b

†
kak)π/4, such that

O =
∏
k

e−(a†kbk−b
†
kak)π/4eiπa†kake(a†kbk−b

†
kak)π/4 =

∏
k

ei(a†k−b
†
k)(ak−bk)π/2. (1.26)

We used the transformation U †BSa
†
kUBS = 1√

2

(
a†k − b

†
k

)
. Because O2 = 1 and the variance

of the measurement ∆O2 = 〈O2〉 − 〈O〉2, the phase variance around ϕ ≈ 0,

∆ϕ2 = lim
ϕ→0

∆O2

(∂ϕ〈O〉)2
= lim

ϕ→0

1− 〈O〉2
(∂ϕ〈O〉)2

, (1.27)

only depends on the expectation value 〈O〉 = 〈ψϕ|O|ψϕ〉.

This expectation value can be evaluated by using the transformations O(a† ± b†)O† =

±(a† ± b†), and therefore Oc†k(ϕ)O† = e−iϕc†k(−ϕ) and Od†k(ϕ)O† = −e−iϕd†k(−ϕ). The
expectation value

〈O〉 =

∫
dp1

2π
· · ·
∫

dp2m

2π

∫
dk1

2π
· · ·
∫

dk2m

2π
A∗p,1···A

∗
p,2···Ak,1···Ak,2···

1

m!4
e−i2mϕ

× 〈vac|dp2m(ϕ) · · · cp1(ϕ)c†k1
(−ϕ) · · · d†k2m

(−ϕ)|vac〉, (1.28)
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can then be further evaluated by using the commutation relations[
cp(ϕ), c†k(−ϕ)

]
=
[
dp(ϕ), d†k(−ϕ)

]
= 2πδ(p− k)eiϕ cosϕ, (1.29a)[

cp(ϕ), d†k(−ϕ)
]

=
[
dp(ϕ), c†k(−ϕ)

]
= 2πδ(p− k)(−i)eiϕ sinϕ. (1.29b)

Because the commutators between ck and dk don’t vanish, all indices can become mixed
and the expectation value yields

〈O〉 =
m∑
l=0

(−1)l sin2l(ϕ) cos2(m−l)(ϕ)

(
m

l

)2

I(l)
m , (1.30)

where the integrals I
(l)
m are the natural extension of Equation 1.24. We note, that I

(l)
j =

I
(l)
m−j such that one can reduce the number of calculations if they are necessary.

By observing that ∂ϕ〈O〉
∣∣
ϕ=0

= 0 and 〈O〉ϕ=0 = I
(0)
m = 1, the variance of the measured

phase can be calculated from the second derivative ∂2
ϕ〈O〉 as

∆ϕ2 = lim
ϕ→0

1− 〈O〉2
(∂ϕ〈O〉)2

= lim
ϕ→0

−2〈O〉∂ϕ〈O〉
2∂ϕ〈O〉∂2

ϕ〈O〉
=
(
−∂2

ϕ〈O〉
∣∣
0

)−1
. (1.31)

The second derivative around ϕ ≈ 0 only depends on the first two terms of Equa-
tion 1.30 because all sine-terms vanish when taking the limit ϕ→ 0. We find −∂2

ϕ〈O〉
∣∣
0

=

2m(mI
(1)
m + I

(0)
m ) and therefore, we reach the QCRB locally around ϕ ≈ 0,

∆ϕ2
∣∣
ϕ≈0

=
1

2m(mI
(1)
m + 1)

=
1

FQ[|ψϕ〉〈ψϕ|]
. (1.32)

We note, that for single-mode states I
(l)
m = 1 holds, which leads to the result derived

in Reference [152]. In that case, the expectation value 〈O〉 = Pm [cos 2ϕ] can be expressed
in terms of Legendre Polynomials Pm and the second derivative −∂2

ϕ〈O〉
∣∣
0

= 4P ′m[1] is
calculated with the help of the well-known result P ′m[1] = m(m+ 1)/2.

1.3.4 Evaluation for the Maximal Symmetric Dicke State

For specific coefficients A{k} one can evaluate the integrals I
(l)
m efficiently. For single-mode

states, that is, when the coefficients can be written as a product Ak,13··· =
√
m!Ak1Ak2 · · · ,

one can show I
(l)
m = 1 for all l. In the following we focus on the calculation of I

(1)
m as this

determines the scaling of the Fisher Information and therefore the minimal phase variance.

The evaluation of the integral I
(1)
m for arbitrary multi-mode states may be difficult.

However, due to the origin of the coefficients from exponential decay of a chain of emitters,
one can evaluate the integral through a recurrence relation. To obtain this recurrence
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relation, we substitute the coefficients A{k} in I
(1)
m by their expression as time ordered

correlation functions as in Equation 1.3. The integral over the wavevectors is then replaced
by a time integral,

I(1)
m =

1

m!2

∫ ∞
0

dt1 · · ·
∫ ∞

0
dt2mT 〈vac|O1O3 · · ·O2m−1|ψm〉∗〈vac|O2O4 · · ·O2m|ψm〉∗

×〈vac|O2O3 · · ·O2m−1|ψm〉〈vac|O1O4 · · ·O2m|ψm〉. (1.33)

For a more compact notation, we have defined Oi ≡ O(ti) =
√

Γ1deiHeff tiSgee
−iHeff ti with

Heff as defined in Equation 0.8. Notice, that in the correlation functions two indices (1
and 2) are exchanged, in analogy with the expressions in momentum space, and that the
integral is symmetric with respect to the remaining even (odd) indices.

The integral can be evaluated recursively by picking a time ordering and integrating
over the latest time ti ≥ maxj 6=i tj ≡ T , and repeating this step on the next integral. The
exponential decay then gives rise to the simple form of

∫∞
T dti e−cti = 1

c e
−cT if Re(c) > 0.

Using these results, we can define three structurally different integrals, depending on
whether one has already integrated over one or both of the special (i.e., exchanged) indices
t1 and t2,

F
(2)
ij =

∫ {
dtn

}
T e−c

(2)
ij max tn〈ψm−1−i|O1 · · ·O2i+1|ψm〉∗〈ψm−1−j |O2 · · ·O2j+2|ψm〉∗

× 〈ψm−1−i|O2O3 · · ·O2i+1|ψm〉〈ψm−1−j |O1O4 · · ·O2j+2|ψm〉, (1.34a)

F
(1)
ij =

∫ {
dtn

}
T e−c

(1)
ij max tn〈ψm−1−i|O1O3 · · ·O2i+1|ψm〉∗〈ψm−j |O4 · · ·O2j+2|ψm〉∗

× 〈ψm−i|O3 · · ·O2i+1|ψm〉〈ψm−1−j |O1O4 · · ·O2j+2|ψm〉, (1.34b)

F
(0)
ij =

∫ {
dtn

}
T e−c

(0)
ij max tn〈ψm−i|O3 · · ·O2i+1|ψm〉∗〈ψm−j |O4 · · ·O2j+2|ψm〉∗

× 〈ψm−i|O3 · · ·O2i+1|ψm〉〈ψm−j |O4 · · ·O2j+2|ψm〉. (1.34c)

The integrals only run over the remaining time variables {tn} and we have introduced the

exponents c
(2)
ij = γm−1−i + γm−1−j , c

(0)
ij = γm−i + γm−j , and c

(1)
ij = (c

(2)
ij + c

(0)
ij )/2. Recall

that the decay rates are given by γj = j(N − j + 1)Γ1d. Note that these integrals always

converge because c
(2/1/0)
ij > 0.

By integrating over the latest time, one can remove one operator Oi from the above

expressions until one ends up with F
(0)
00 = 1. This motivates the fact that the integral

I(1)
m =

1

m!2
F

(2)
m−1,m−1 (1.35)

can be evaluated by a recurrence relation (see also Figure 1.3). Let us understand the

structure of the recurrence relation on the example of F
(2)
ij . If the largest time is one with

a regular odd index (for which there are i possibilities), we take without loss of generality
t2i+1 and use the fact that

〈ψm−1−i|O2i+1 =
√
γm−ie

−(γm−i−γm−i−1)t2i+1/2〈ψm−1−i|. (1.36)
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Figure 1.3: The recurrence relation of F
(2/1/0)
ij to calculate I

(1)
m can be represented pictorially, here on

the example of m = 3. The solid lines represent the terms of the recurrence relation in between every
group F (n) → F (n), whereas the dashed lines correspond to the terms F (2) → F (1) and F (1) → F (0). By
grouping the elements in terms of the number of excitations, or equivalently the number of remaining time
integrals, one can evaluate the recurrence relation efficiently.

This term appears twice such that the integral gives a prefactor γm−i

c
(2)
ij +(γm−i−γm−i−1)

= γm−i

c
(2)
i−1,j

.

The remaining integral is then of the form F
(2)
i−1,j . The same considerations apply if the

largest time is one with a regular even index. In contrast, if the largest time is t2 (or
equivalently t1), then after the integration over this variable, the remaining integral is of

the form F
(1)
ij . By carefully calculating all these steps, we find the recurrence relation

F
(2)
ij =i

γm−i

c
(2)
i−1,j

F
(2)
i−1,j + j

γm−j

c
(2)
i,j−1

F
(2)
i,j−1 + 2

√
γm−iγm−j

c
(1)
i,j

F
(1)
i,j , (1.37a)

F
(1)
ij =i

√
γm−iγm−i+1

c
(1)
i−1,j

F
(1)
i−1,j + j

√
γm−jγm−j+1

c
(1)
i,j−1

F
(1)
i,j−1 +

√
γm−iγm−j

c
(0)
i,j

F
(0)
i,j , (1.37b)

F
(0)
ij =i

γm−i+1

c
(0)
i−1,j

F
(0)
i−1,j + j

γm−j+1

c
(0)
i,j−1

F
(0)
i,j−1, (1.37c)

F
(0)
00 =1. (1.37d)

The trick to evaluating this recurrence relation efficiently is to group elements of the
same excitation subspace 0 ≤ k ≤ 2m as in Figure 1.3. Elements of this subspace are, for

example, F
(2)
ij satisfying i + j + 2 = k and 0 ≤ i, j ≤ m − 1. By applying one recursive

step starting from k = 0, in which only F
(0)
00 = 1 lies, one moves to a subspace with one

excitation more k → k + 1 until k = 2m is reached. This subspace only contains the

desired term F
(2)
m−1,m−1. For better numerical results it is also recommendable to remove

the factors of i and j by substituting F
(n)
ij = i!j!F̃

(n)
ij .
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Figure 1.4: a The QCRB bound for single-mode twin-Fock states (red line) has the same scaling with
m−2 in the number of photons used as the Heisenberg limit (lower black line). The bound for the multi-
mode twin-Fock states generated by a chain of quantum emitters in the atomic mirror configuration has
a larger variance in the measured phase (blue dots) but still beats the Standard Quantum Limit (upper

black line). b This behavior relies on the fact that the integral mI
(1)
m (blue dots) is not a constant in m

but is approximated by a linear function 0.82m (blue dashed line). For the single-mode case one obtains

mI
(1)
m = m (red line).

Let us first look at the expression for two photons. Through the recurrence relation
(alternatively by direct evaluation of the integrals) we find

I
(1)
m=2 =

γ2(10γ1 + γ2)

2(γ1 + γ2)(2γ1 + γ2)
. (1.38)

If the number of atoms in the chain is very large N � m = 2, one finds I
(1)
2 = 1− 1

6N2 +
O(N−3) as expected for states close to a single-mode state. If the chain only contains
two emitters, which are both excited and left to decay to a two photon multi-mode state

(N = m = 2), we obtain I
(1)
2 = 11/12 < 1. Even though this is smaller than one, it leads

to a scaling better than the SL.

We now focus on the scaling of I
(1)
m when the number of emitters equals the number

of excitations, i.e. N = m. On the one hand, we consider this state because exciting
all emitters to |e〉⊗N is conceptually straightforward to implement by transferring the
population from g to e in every emitter independently. During the decay, this state
generates the photonic state |φm〉. On the other hand, the emitted state is far away from
being in a single mode, so that we expect the largest deviations from the single-mode

result I
(1)
m = 1. We calculated I

(1)
m by evaluating the recurrence relation of Equation 1.34

numerically and found that the QCRB for this multi-mode state is very close to the
bound for single-mode states (see Figure 1.4a). This is due to the fact the integral is

approximately constant, I
(1)
m ≈ 0.82, for the photon numbers m . 2 · 103 for which we

were able to calculate the integral numerically.

One can prove that these multi-mode states perform at least as good as the SL. This

originates in the fact that the integrals are strictly positive, in particular F
(2)
m−1,m−1 > 0.

However, this does not imply that the scaling with m is necessarily better than the SL.

For claiming a better scaling than the SL, one needs to show that mI
(1)
m does not approach
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Figure 1.5: a I
(1)
m approaches the single-mode value of I

(1)
m = 1 when the number of emitters N with respect

to the excitation number m in the Dicke states |ψm〉 is increased. For N/m = 1 the value of approximately
0.82 (black horizontal line) is attained and for large ratios, the deviations from the single-mode result
vanish as in Equation 1.39 (black lines). b When a nonlinearity u is introduced in the system, the phase
resolution changes from a HL-scaling for vanishing nonlinearity u to the SL-scaling when the nonlinearity
u is large, that is when the photons become distinguishable.

a constant. The fact that we found that I
(1)
m approaches a constant, and therefore, mI

(1)
m

scales linearly (see Figure 1.4b), leads to the conclusion that one can reach a scaling similar
to the HL with multi-mode states. It is still an open question whether an analytical proof
of this behavior can be found.

We emphasize, that we have checked numerically that the integral approaches the
single-mode value when the number of atoms is much larger than the number of excitations
(see Figure 1.5a). In particular, the deviations for large atom numbers N scale as

I(1)
m ∼ 1− 0.16

m

N2
. (1.39)

Furthermore, the recurrence relation can be generalized to any effective Hamiltonian di-
agonal in the Dicke basis, i.e., satisfying Heff |ψm〉 = λm|ψm〉 with Im(λm) < 0. The
decay operators then typically satisfy O|ψj〉 =

√
γj |ψj−1〉, where γj = −Im(λm). The

recurrence relation is then slightly modified (see Appendix 1.C). This generalization is
useful to show certain limits. For example, a large nonlinearity u in the frequency,
Re(λm) = m∆ + um(m − 1) implies that the emitted photons become distinguishable.
Therefore, the quantum enhancement will be lost and the phase can only be measured at
SL precision, which we also see numerically in Figure 1.5b.

1.3.5 Effect of Decoherence during Emission

We close the discussion on the capabilities of multi-mode states in quantum metrology
with some results on the effect of decoherence. Here, we consider only decoherence during
the emission process because the effect of decoherence processes inside the interferometer
has been covered in many prior works [19] – although not necessarily for multi-mode states.

In general, the state that is emitted by a chain of emitters in the atomic mirror con-
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figuration, |Φm〉 = |φm〉+ |φ∗m〉, has a part with m guided photons in the waveguide and a
part where some of the excitations have decayed spontaneously and emitted a photon into
free space. The photonic state at each of the input ports of the MZI is therefore described
by a mixed state

σ = Tr∗|Φm〉〈Φm| = |φm〉〈φm|+ σ⊥, (1.40)

where Tr∗ denotes the trace over the photonic states in free space. Note that σ⊥ =
Tr∗|φ∗m〉〈φ∗m| and |φm〉〈φm| are states in orthogonal subspaces of the Hilbert space of the
photonic states because they have a different number of photons in the waveguide.

The input state σ ⊗ σ is then passed trough the beamsplitter and undergoes a phase
shift in one arm of the interferometer. Because these transformations are all described by
a unitary and σ⊥ has strictly less than m photons, the state on which the measurement
is performed,

ρϕ = N 4|ψϕ〉〈ψϕ|+ ρ⊥, (1.41)

can be written as the desired term and an orthogonal term. We have used |ψϕ〉 =
N−2UϕUBS|φm〉|φm〉 with the normalization N 2 =

∏
n

γn
γn+nΓ∗ ≤ 1 (see Equation 1.6).

Because |ψϕ〉 is normalized the density matrix ρϕ is normalized when N 4 + Trρ⊥ = 1.

Due to the orthogonality of ρ⊥ to the desired state, the density matrix can be written
as a direct sum ρϕ = ⊕kpkρk. Furthermore, the Fisher information is additive under the
direct sum [153], so that it is lower bounded by

FQ [ρϕ] =
∑
k

pkFQ [ρk] ≥ N 4FQ [|ψϕ〉〈ψϕ|] = N 4 · 2m
[
mI(1)

m + 1
]
. (1.42)

The integral I
(1)
m does not change when spontaneous emission events take place and

the state is only renormalized. This renormalization factor of N 4 is responsible for the
reduction of the phase resolution. Fortunately, this factor,

N 2 =
m∏
n=1

γn
γn + nΓ∗

= 1− 1

P1d

m∑
n=1

1

N − n+ 1
+O

(
P−2

1d

)
(1.43)

scales favorably with m for large Purcell factors P1d. In particular, in the low excitation
regime m� N we findN 2 ≈ 1− m

NP1d
. And even for the fully excited state, we still observe

a quantum-enhanced phase sensitivity because of the scaling N 2 ∼ 1− 1
P1d

ln(2m).

The exact Fisher Information is actually better than this bound because elements of ρ⊥
can still lead to a good scaling with a slightly reduced effective photon number, e.g., m−1.
But even with the crude approximation we used above, we have shown that decoherence
processes can reduce the phase sensitivity, but one can still beat the classical limit.
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1.4 Conclusion and Outlook

The generation of photonic states is an essential resource for building quantum networks
[13] and for quantum-enhanced optical interferometry [19]. Existing methods efficiently
generate single photons, but often suffer from an exponentially low probability of gen-
eration with increasing photon number. We have proposed here a novel method for the
generation of multiphoton states. The features of the process are that i) the photonic
state is emitted on-demand, such that one knows that the photons are in a specific time
interval, ii) the wavepacket of the emitted field can be shaped to be e.g., time symmetric,
such that the mapping between the ensemble state and the photonic state is reversible
and iii) the emitted state has a broad bandwidth so that it is localized in position space.

In the first part of this chapter we focused on the mapping between the state of an
ensemble of N quantum emitters to a photonic state. These ensembles are a natural can-
didate for generating multiphoton states because many excitations m ≤ N can be stored
as a collective state in a metastable state s of the quantum emitters. By coupling this
ensemble to a one-dimensional waveguide one can enhance the light-matter coupling and
collect an emitted photonic state efficiently at the ends of the waveguide. In particular,
the (superpositions of) symmetric Dicke states with a specific excitation number m of an
ensemble in the atomic mirror configuration are suitable for the generation of (superposi-
tions) of single-mode Fock states in the waveguide in the low excitation regime m � N .
The emission can be triggered by exciting a symmetric Dicke state in the metastable
state s to the excited state e by a fast laser pulse with Rabi coupling Ω. By choosing
an appropriate time-dependent coupling Ω(t) one can even shape the form of the emitted
wavepacket to be symmetric in time such that the mapping from the ensemble state to the
photonic state can be made reversible. The broad bandwidth stems from the fact, that
the symmetric Dicke states decay superradiantly with rate γm ∼ mNΓ1d. The difficulty in
this approach lies in the preparation of the symmetric Dicke state, for which we propose
protocols in Chapter 2.

This difficulty can be alternatively overcome by noting that the symmetric Dicke state
with excitation number m = N , has a conceptually straightforward preparation: transfer
the population from g to e in every emitter independently. The photonic state generated
from this Dicke state has an intricate multi-mode structure, which motivated us to look
into the quantum applications, in particular quantum-enhanced optical interferometry,
with multi-mode states in the second part of this chapter. The usefulness of a state for
quantum metrological applications is quantified by the Quantum Fisher Information. In
this context, we showed that the photonic states prepared in the low excitation regimem�
N yield the same Quantum Fisher Information as single-mode states up to a correction of
order O( m

N2 ), which is related to the fact that the overlap of these states with the single

mode state is perfect with a correction of order of O
(
m3

N2

)
. Furthermore, we showed that

also the truly multi-mode states emitted by the fully excited Dicke state |ψm=N 〉 overcome
the classical limit of phase sensitivity.

36 | Chapter 1: Generation of Photonic States



Even though the use of waveguide QED systems for the generation of single-mode pho-
tonic states is experimentally challenging because of the state preparation of the ensemble
(see Chapter 2), the generation of multi-mode photonic states through emission from the
maximally excited symmetric Dicke state |ψN 〉 is conceptually realistic. As we showed
in Section 1.3, these multi-mode states still achieve quantum-enhanced optical interfer-
ometry. This opens up future perspectives for the use of multi-mode photonic states in
quantum applications. On the one hand, these can be further improvements in the area of
quantum metrology, e.g., by shaping the wavepacket of the multi-mode photonic state, or
using measurements other than the parity operator. Furthermore, we stress that the ex-
pression for the Quantum Fisher Information of Equation 1.25 is valid for any multi-mode
photonic state, which opens up the field of quantum-enhanced optical metrology to many
new photonic states. On the other hand, the usefulness of multi-mode photonic states has
to be investigated for other quantum applications, e.g., for quantum communication or
quantum teleportation.
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Appendix

1.A Input-Output Formalism

Let us review the ideas behind the input-output formalism of Reference [144]. We as-
sume a light-matter coupling of the system (with Hamiltonian HS) and the bath (with

Hamiltonian HB =
∑

k ωka
†
kak) of the form

H =HS +HB +
∑
k

(
Oka

†
k + h.c.

)
, (1.44)

Ok =gk
∑
j

Oje−ikxj . (1.45)

Note, that this is the same Hamiltonian as introduced in Equation 0.1 with Oj = σjge;
the only difference being, that we have embedded the phase due to the propagation of
the photonic state, e−ikxj , in the operators Ok. We are then interested in how an initial
state evolves to a final state under this Hamiltonian. This is captured in the scattering
amplitude

A(T ) = 〈ψf |〈Bf |e−iH(tf−ti)|Bi〉|ψi〉, (1.46)

where |ψi/f〉 denotes the initial (final) system state and |Bi/f〉 the initial (final) state of
the bath, that is, e.g., the electromagnetic field inside the waveguide. We note, that the
expression only depends on the time difference T = tf − ti. This scattering amplitude con-
tains all the necessary information for the calculation of the various correlation functions.
In order to evaluate the scattering amplitude A(T ), we take the bath states |B〉 = |{nk}〉
to be Fock states, which we can express through (unnormalized) coherent bath states
|{Jk}〉,

|Bf〉 = |{nk}〉 = lim
Jk→0

∏
k

1√
nk!

δnk

δJnkk
|{Jk}〉. (1.47)

The scattering amplitude is then A(T ) = F∗outFinAJ(T ) with F = lim
Jk→0

∏
k

1√
nk!

δnk

δJ
nk
k

. In

particular, this reduced the task to the evaluation of

AJ(T ) = 〈ψf |〈{Jk}|e−iHT |{Jk}〉|ψi〉. (1.48)

This expression can be further simplified by transforming into an interaction picture
rotating with the bath Hamiltonian HB =

∑
k ωka

†
kak and expressing the coherent states
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in terms of a generalized displacement D operator,

|{Jk(ti)}〉 = |{Jkeiωkti}〉 = De
∑
k |Jk|2eiωkti/2|{0k}〉, (1.49a)

D = exp

[∑
k

(
Jk(ti)a

†
k − J∗k (tf)ak

)]
. (1.49b)

By noting that D†D = 1, the scattering amplitude can then be written as

AJ(T ) =e
∑
k |Jk|2e−iωkT 〈ψf |〈{0k}|U(T )|ψi〉|{0k}〉, (1.50a)

U(T ) =D†eiHBtf e−iHT e−iHBtiD. (1.50b)

To obtain analytical expressions for the scattering amplitude, we use the transformations

D†b†kD = b†k + J∗ke
−iωktf , (1.51a)

D†bkD = bk + Jke
iωkti . (1.51b)

This introduces an additional summand HD(t) = exp
[
J∗kOke

−iωk(tf−t) + JkO
†
ke
−iωk(t−ti)

]
in the time evolution (denoting the time ordering operator by T ),

U(T ) = T exp

[
−i

∫ tf

ti

dt (H(t) +HD(t))

]
. (1.52)

When the functional derivatives with respect to Jk are performed to calculate A(T ),
this brings integrals containing the jump operators Ok down. When the initial photonic
state is in the vacuum, one obtains correlation functions of the form

〈ψf |〈{0k}|T Ok1(t1) · · ·Okm(tm)|ψi〉|{0k}〉 (1.53)

where the operators are taken in an interaction picture with respect to H. Note that the
part from HD vanishes when the limit Jk → 0 is taken.

In a final step, the quantum regression theorem [154] is applied, with which one can
trace out the bath degrees of freedom. This replaces the evolution under the full Hamil-
tonian H by the effective non-hermitian evolution of the system Heff (like the one from
Equation 0.8) because only system operators Ok appear in the correlation function. The
correlation functions are then of the form

〈ψf |〈{0k}|T Õk1(t1) · · · Õkm(tm)|ψi〉|{0k}〉 (1.54)

where the exact form depends on the initial and final system states and the operators are
Õk(t) = eiHeff tOke

−iHeff t taken in the interaction picture with respect to Heff .
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1.B Details on the Calculation of the Fisher Information

When evaluating the Fisher Information, we need to calculate 〈ψ̇ϕ|ψ̇ϕ〉 and 〈ψϕ|ψ̇ϕ〉 with
the states as defined in Equation 1.17 and 1.22. In the latter term correlation functions
of the form

〈vac|dp2m · · · dp2cp2m−1 · · · cp1b
†
k1
c†k3
· · · c†k2m−1

d†k2
· · · d†k2m

|vac〉

=
1√
2
m(m− 1)!m!

∏
j

2πδ(pj − kj) (1.55)

appear. When performing the integral this leads to a factor |〈ψϕ|ψ̇ϕ〉| = mI
(0)
m .

In the term 〈ψ̇ϕ|ψ̇ϕ〉 there are more terms emerging in the correlation function, e.g.,

〈vac|dp2m · · · dp2cp2m−1 · · · cp3bp1b
†
k1
c†k3
· · · c†k2m−1

d†k2
· · · d†k2m

|vac〉

= 〈vac|dp2m · · · dp2cp2m−1 · · · cp3bp1b
†
k1
c†k3
· · · c†k2m−1

d†k2
· · · d†k2m

|vac〉

+ 〈vac|dp2m · · · dp2cp2m−1 · · · cp3bp1b
†
k1
c†k3
· · · c†k2m−1

d†k2
· · · d†k2m

|vac〉

+ 〈vac|dp2m · · · dp2cp2m−1 · · · cp3bp1b
†
k1
c†k3
· · · c†k2m−1

d†k2
· · · d†k2m

|vac〉

=
1

2
(m− 1)!2

∏
j>2

2πδ(pj − kj)

× (2π)2
(
m(m+ 1)δ(p1 − k1)δ(p2 − k2) +m2δ(p1 − k2)δ(p2 − k1)

)
. (1.56)

The remaining correlation function has a simpler form again

〈vac|dp2m · · · dp4bp2cp2m−1 · · · cp1b
†
k1
c†k3
· · · c†k2m−1

d†k2
· · · d†k2m

|vac〉

=
1

2
m2(m− 1)!2

∏
j

2πδ(pj − kj). (1.57)

Taking both results together and performing the integration, we obtain a factor 〈ψ̇ϕ|ψ̇ϕ〉 =
1
2

[
(2m2 +m)I

(0)
m +m2I

(1)
m

]
.

1.C Generalization of the Recurrence Relation

The recurrence relation for a general Hamiltonian diagonal with respect to the symmetric
Dicke states |ψm〉 with eigenvalues λm = ωm − iγm is the same as in Equation 1.34 with
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the only exception in F
(2)
ij , which changes to

F
(2)
ij =i

γm−i

c
(2)
i−1,j

F
(2)
i−1,j + j

γm−j

c
(2)
i,j−1

F
(2)
i,j−1 + 2Re

[√
γm−iγm−j

c
(1)
i,j

F
(1)
i,j

]
, (1.58)

and where the factors c
(2/1/0)
ij are now given by the differences δλk = λk − λk−1 with

λ0 = 0. In particular,

c
(2)
ij =− i

(
m−1−i∑

n

δλ∗n +

m−1−j∑
n

δλ∗n +
m−1−i∑

n

δλn +

m−1−j∑
n

δλn

)
=2γm−1−i + 2γm−1−j , (1.59a)

c
(1)
ij =− i

(
m−1−i∑

n

δλ∗n +

m−j∑
n

δλ∗n +
m−i∑
n

δλn +

m−1−j∑
n

δλn

)
=γm−1−i + γm−1−j + γm−i + γm−j − i (δωm−i − δωm−j) , (1.59b)

c
(2)
ij =− i

(
m−i∑
n

δλ∗n +

m−j∑
n

δλ∗n +

m−i∑
n

δλn +

m−j∑
n

δλn

)
=2γm−i + 2γm−j . (1.59c)

Note, that c
(2/1/0)
ij ∈ R if the frequencies are linear functions of the excitation number,

e.g., ωn = n∆ such that δωn = ωn−ωn−1 = ∆. Then also F
(2/1/0)
ij ∈ R and the recurrence

relation simplifies to the one given in Equation 1.37.
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Preparation of Dicke States 2
Abstract

The generation of multiphoton states by exploiting the superradiant decay of ensembles
of quantum emitters coupled to a one-dimensional waveguide as explored in Chapter 1
is very promising for applications in quantum metrology and quantum communication.
To take advantage of the mapping of superradiant quantum emitter states to photonic
states, one requires the high fidelity preparation of symmetric Dicke states. These states
are interesting in themselves as they are highly entangled and robust to particle loss [155,
156, 157]. In particular, they are also useful for building quantum memories and for atomic
interferometry [158, 159, 160, 161].

This chapter is concerned with the preparation of symmetric Dicke states with a specific
excitation number using collective effects arising in waveguide QED systems. We propose
four different protocols exploiting various tools, in particular coherent driving, Quantum
Zeno Dynamics or coherent flip-flop interactions mediated through the waveguide. For
a specific experimental setup with given resources (i.e., the number of coupled emitters
N and the Purcell factor P1d), one can pick the protocol scaling the most favorable with
the available resources. Furthermore, our protocols can be extended to the preparation
of Dicke states over multiple metastable states, which can be used to generate entangled
single-mode photonic states.

In this chapter we first motivate the importance of symmetric Dicke states and in-
troduce the basic concepts (Section 2.1). Then, we shortly present our protocols and
motivate the fundamental principles behind each one, identify possible problems and how
these problems can be overcome (Section 2.2), before we discuss the protocols in detail
(Section 2.3). Because the different protocols exploit the characteristic resources of various
experimental platforms currently available, we examine which protocols are suitable for
each one (Section 2.4). Finally, we show how our protocols can be extended to prepare
Dicke states over two or even more metastable states (Section 2.5) and summarize the
results (Section 2.6).
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2.1 Motivation and Basic Concepts

In this section, we first motivate the importance of preparing Dicke states and then discuss
the atom and waveguide QED tools, on which our protocols are based.

2.1.1 Motivation

Our main motivation for preparing (superpositions of) symmetric Dicke states is their im-
portance for the generation of arbitrary photonic states of a single mode as illustrated in
Chapter 1. Beyond their efficient mapping to multiphoton states, they are of fundamental
interest due to their robustness against particle loss [155] and their entanglement proper-
ties [156, 157]. One asset of the symmetric Dicke states is that they can be characterized
and experimentally studied more easily due to their symmetry [158, 159]. Finally, re-
garding applications, they are useful for building quantum memories [160] and for atomic
interferometry [161].

As our main motivation is the generation of photonic states, our goal is the preparation
of specific states in a chain of N quantum emitters, where we assume the emitters to be
three-level systems so that a quantum state can be stored in the metastable ground states
s and g (see Figure 2.1). In particular, we are interested in preparing Dicke states with m
excitations in a metastable state s,

|ψm〉 =
1

NN,m
sym

(
|s〉⊗m|g〉⊗N−m

)
=

1

m!

(
N

m

)− 1
2

Smsg|g〉⊗N , (2.1)

or superpositions thereof, |ψ〉 =
∑
cn|ψn〉, where we define the collective operator as

Sαβ =
∑

j |α〉j〈β|. The normalization of the state is N 2
N,m =

(
N
m

)
and the symmetrization

operator is denoted as “sym”. By applying the collective operator Ssg on the state |ψm〉, an
additional excitation is generated, |ψm+1〉 = 1√

(m+1)Nm
Ssg|ψm〉, where we have introduced

the effective atom number remaining in the state g as Nm = N −m.

There are several protocols for the preparation of symmetric Dicke states in the lit-
erature, e.g., using adiabatic transitions [162, 163], coherent driving of ensembles [164],
measurement and feedback [165], linear optical tools [166], trapped ion setups [167, 168],
or cavity QED systems [169]. However, only few of these proposals can be extended to the
high fidelity preparation of arbitrary superpositions of symmetric Dicke states with a spe-
cific excitation number, and even fewer for symmetric Dicke states over several metastable
states.

In particular, we look for protocols, with which one can prepare symmetric Dicke states
and superpositions thereof, |ψ〉, with a fidelity of at least

Fem =
√
〈ψ|ρS|ψ〉 ≥ 1− m

2NP1d
= Fph (2.2)

where ρS denotes the density matrix of the emitter state at the end of the protocol and Fph

is the fidelity of the photon generation of Equation 1.7. We emphasize, that we are mainly
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Figure 2.1: a The goal is to prepare Dicke states in a one-dimensional chain of emitters. b These states
can be stored in metastable ground states |s〉 and |g〉. Furthermore, the emitters are required to have an
optically excited state |e〉.

interested in the scaling with the resources in waveguide QED systems, that is the number
of emitters N and the Purcell factor P1d and not the exact proportionality factors. We
distinguish between two types of protocols, namely deterministic and probabilistic ones.
In the latter, one has to perform a heralding measurement on measuring a state |φaux〉.
Therefore, in addition to the figure of merit of the fidelity, for probabilistic protocols one
has to consider the probability pher of successful heralding (and thus projecting on the
state |φaux〉),

pher = Tr [〈φaux|ρS|φaux〉] . (2.3)

2.1.2 Atom and Waveguide QED Tools

We focus on protocols which exploit several properties typical for waveguide QED systems
(see Section 0.2), i.e.,

i) the quantum emitters, e.g., atoms, have a rich level structure with several metastable
ground states, which can be used as quantum memories, as well as several optically
excited and metastable states, which can be addressed by an external driving field or
are coupled to a guided mode of the waveguide;

ii) due to the confinement of the guided photons to the one-dimensional waveguide, the
decay rate to the waveguide, Γ1d, can be of the order of or even surpass the decay
into all other modes, Γ∗, leading to a large Purcell factor P1d = Γ1d/Γ

∗;

iii) the waveguide mediates a practically infinite ranged and collectively enhanced inter-
action between the emitters because it is an effective one-dimensional system.

In particular, recall that the master equation for the ensemble is given by (see Section 0.3.2)

∂tρ = −i [Hext +Hcoll, ρ] + Lcoll [ρ] + Lind [ρ] , (2.4)

where all external, coherent, resonant driving terms (e.g., laser or microwave fields) are
contained in Hext. We assume that we already work in an interaction picture rotating with
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HS = ∆See. The interaction with the waveguide induces coherent, Hcoll, and dissipative
terms, Lcoll, depending on the distance between emitters in the chain, xij = xi − xj . In
particular, if the transition g − e couples to the waveguide they take the form [37]

Hcoll =
Γ1d

2

∑
ij

sin (k0|xij |)σiegσjge, (2.5a)

Lcoll [ρ] =
Γ1d

2

∑
ij

cos (k0|xij |)
(
σjgeρσ

i
eg − σiegσjgeρ+ h.c.

)
, (2.5b)

where k0 is the wavevector corresponding to the emitter energy, that is ωk0 = ∆. In partic-
ular, the interactions only depend on the phase between emitters φij = k0|xij | (mod 2π).
We can distinguish two regimes depending on the distance between the emitters:

• A purely dissipative regime arises in the atomic mirror configuration, where the
distance between emitters is commensurate with the wavelength, that is φij = 0 (see
Section 0.3.3). In this case the coherent part of the interaction vanishes, Hcoll = 0,
and the decay is collective, that is

Lcoll [ρ] =
Γ1d

2
(SgeρSeg − SegSgeρ+ h.c.) . (2.6)

• When the distance between emitters satisfies φij = π/2 an excitation from one emit-
ter can be coherently transferred to a second one through a type of flip-flop inter-
action. For two emitters this would lead to Hcoll = Γ1d

2

(
σ1
egσ

2
ge + h.c.

)
. However, it

is not possible to cancel all dissipative terms, such that for the two emitters there are

additional individual decay terms, Lcoll[ρ] = Γ1d
2

∑
j=1,2

(
σjgeρσ

j
eg − σjegσjgeρ+ h.c.

)
.

Nonetheless, this interaction can be used to couple ensembles of emitters of size N
coherently with an enhanced coupling of

√
NΓ1d.

Furthermore, recall that the spontaneous emission into other modes is assumed to
appear as individual decay, that is

Lind [ρ] =
Γ∗

2

∑
j

(
σjgeρσ

j
eg − σjegσjgeρ+ h.c.

)
. (2.7)

The assumption of individual decay may break in the case of sub-wavelength spacing
between the emitters [170], where strongly subradiant states with highly suppressed spon-
taneous emission emerge. The combination of these states with our protocol opens up an
exciting perspective to improve our protocols.

The main element in the protocols is then the choice of the atomic positions and of the
external driving fields. For some protocols we split up the chain of emitters into different
ensembles, in particular a source ensemble (s), a target ensemble (t) or a detector ensemble
(d). Concerning the external drivings, we only require the lasers/microwave fields to act
collectively on a given ensemble and not individually on specific emitters. Addressing the
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ensembles independently from each other is robust experimentally because the ensembles
can be separated by multiples of 2π/k0 without affecting the dynamics. We then write
the driving, which we assume to be on resonance, in full generality as

Hext =
1

2
Ω

(x)
αβS

(x)
αβ + h.c., (2.8)

where Ω
(x)
αβ is the Rabi coupling between the states α and β of the ensemble (x).

In all cases, the fidelity and heralding probability can be studied by unraveling the
master equation (Equation 2.4) into a non-hermitian evolution and collective and indi-
vidual quantum jumps as in Equation 0.7. For the calculation of the fidelity or heralding
probability it turns out that only the effective non-hermitian evolution is relevant and that
we can forget about the decayed part as this already reduced the fidelity or is heralded
out through some measurement.

2.2 Protocols for the Preparation of Dicke States

With these atom and waveguide QED tools in mind, we now focus on the preparation of
Dicke states in a specific metastable state s in an ensemble of quantum emitters, which
we call the target ensemble (t). We take the ensemble to be in the atomic mirror config-
uration, i.e., with a separation φij = 0 (mod 2π) because this is the setup necessary for
the generation of photonic states (see Chapter 1).

In Section 2.2.1, we first focus on adding a single excitation, i.e., preparing the state
|ψm+1〉t from |ψm〉t. The m excitations can be either directly accumulated in the metasta-
ble state s or in additional metastable states si to be merged together at a later point. We
denote the fidelity of this process as Fm→m+1 and the probability of successful heralding
in probabilistic protocols as pm→m+1. The definitions of these two quantities are just as
in Equation 2.2 and 2.3, respectively.

Once we have analyzed the general step of adding one excitation, we consider in Sec-
tion 2.2.2 the complete process to prepare an arbitrary Dicke state, |ψ0〉t → |ψ1〉t → · · · →
|ψm〉t. For probabilistic protocols we then calculate the average number of repetitions,
Rm, to arrive to |ψm〉t and the average fidelity of the process that we denote as Fm. Both
Rm and Fm depend on the way the excitations are added and changes with the different
protocols.

2.2.1 Summary of the Protocols

Let us start by summarizing the ideas and problems of each protocol shortly here (see also
Table 2.1). Details on the protocols are left to Section 2.3, but we note that with all of
them, one can add a single collective excitation to an already prepared symmetric Dicke

state of m excitations, |ψm〉t → S
(t)
sg |ψm〉t.
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Figure 2.2: Setup for the preparation of a symmetric Dicke state in the target ensemble using emitters
coupled to a one-dimensional waveguide. a Only the target ensemble (t) is required for the protocol using
coherent driving. b By coupling a single source emitter (s) to the target ensemble in the atomic mirror
configuration, one additional excitation in the target ensemble can be generated deterministically through
the joint collective dissipation. c The source and target ensemble can alternatively be coupled through
coherent flip-flop interactions mediated through the waveguide by placing the source emitter in between
the split target ensemble. d The protocol using setup b is extended to a probabilistic protocol by adding
a detector ensemble (d) in the atomic mirror configuration. e Also the protocol using setup c can be
extended to a probabilistic protocol by placing a split detector ensemble around the source and target
ensembles.

1. Our simplest protocol, which is inspired by Reference [26], is a probabilistic pro-
tocol using coherent driving of the target ensemble by an external field acting
collectively on all emitters to excite the ensemble weakly (see Figure 2.2a). The
excited state can then decay collectively to the metastable state s by emitting a
photon into the waveguide. If this photon is detected, this measurement heralds
the preparation of a symmetric state in the metastable state s. However, this state
might contain two excitations instead of only one, lowering the fidelity significantly
if the heralding probability is large.

2. This trade-off between the fidelity and the heralding probability can be overcome by
designing a deterministic protocol with an auxiliary emitter, which we call source
emitter (see Figure 2.2b). In this protocol, the source emitter is coupled to the target
ensemble through a subradiant state of the joint collective dissipation. The emitter
is then excited and the excitation is transferred through this subradiant state to the
target ensemble using Quantum Zeno Dynamics [124, 125, 140, 171] as explained in
Section 2.3. This process is, however, very slow and therefore leads to significant
errors, reducing the fidelity below the one of photon generation. Instead of using the
Quantum Zeno Dynamics, one can also use the coherent flip-flop interactions between
the source and split target ensemble, acting as atomic mirrors (see Figure 2.2c) [37].

3. In order to increase the fidelity, one can design a probabilistic protocol using
collective dissipation, in which we use a heralding measurement to exclude the
cases in which the target ensemble has undergone decay processes, either collectively
or individually. For this purpose, one adds a third ensemble of emitters, on which
an appropriate heralding measurement can be performed, a detector ensemble (see
Figure 2.2d). In addition to transferring the excitation from the source to the target
ensemble, the state of the detector ensemble is then changed by appropriately de-
signing the dynamics. This protocol thus effectively switches the decrease in fidelity
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Protocol pm→m+1 1− Fm→m+1 Requirements

Coherent Driving [3] ηx2 (1− η)x x = Ω
(t)
ge
√
NmT/2� 1

Deterministic [1] 1 1/
√
P1d P1d � 1

Probabilistic (QZD) [3, 5] 1−
√
Nm/P1d 0 P1d � 1

Probabilistic (Coh.) [4] 1−
√

(m+ 1)/Nm (m/N)1.9 N � 1

Table 2.1: Scaling of the heralding probability pm→m+1 and fidelity Fm→m+1 achieved in the different
protocols for the preparation of symmetric Dicke states. We only give the scaling to highest order in P1d

and Nm = N −m and leave out proportionality constants at that order.

of the deterministic protocol over to a decrease of the heralding probability.

4. The previous protocol still requires a large Purcell factor P1d, but by designing a
probabilistic protocol using coherent flip-flop interactions one can achieve
a scaling that depends on the number of emitters N instead of the Purcell factor.
One still requires three ensembles, but to achieve a high heralding probability and
fidelity, one chooses a concatenated setup in which the source and target ensemble are
placed in the middle of the split detector ensemble (see Figure 2.2e). The heralding
probability then depends only weakly on the Purcell factor and can be increased by
increasing the number of atoms in the target and detector ensemble.

2.2.2 Adding Excitations

The protocols above generate a single collective excitation in the metastable state s of
the target ensemble. In three-level systems this adds one excitation directly on top of
m collective excitations in s. However, if many metastable states {si} are available, the
already generated m excitations can be stored in these metastable states and one can
merge these excitations together at the end of the full protocol. This approach can lower
the mean number of steps to reach a specific Dicke state in probabilistic protocols, which
is exponential in m when the excitations are added directly. In this section we consider
the full process |ψ0〉t → |ψ1〉t → · · · → |ψm〉t for different ways of merging the excitations.

When the excitations are directly added (see Figure 2.3a), the mean number of steps
Rm to reach the state |ψm〉 is exponential, because it is the inverse of the products of the
heralding probabilities pj→j+1. In particular,

Rm =
m−1∏
j=0

1

pj→j+1
≥ p−m, Fm ≈ 1−

m−1∑
j=0

(1− Fj→j+1), (2.9)

where p = maxj pj→j+1.

If the excitations have been stored in additional metastable states si, one can merge
the excitations of different metastable states si and sj by using collective microwave
or laser drivings (see Figure 2.3b). Because only two metastable states are relevant for

50 | Chapter 2: Preparation of Dicke States



......

Target Target

Figure 2.3: The excitations can be added either a directly in the metastable states s or b stored in
additional metastable states si to be merged later.

this, we denote a state with ni (nj) collective excitations in the metastable state si(j)
by |ni, nj〉si,sj . The necessary operations on the metastable states are i) displacement
operators, which can be obtained by weak external driving fields between the state of
interest and the ground state g and ii) beamsplitter-like transformations between two
metastable states, which can be obtained by directly applying, e.g., two photon Raman
processes between the metastable states of interest. Furthermore, one can detect the
population in a metastable state very efficiently by pumping to an excited state that
emits a collective photon through the waveguide in a cyclic transition (see Section 0.2.4).
With this, one can verify that a mode is empty, effectively acting as a projection operator
P0j on mode sj . Thus, these tools provide a similar set of tools as the ones used in linear
optics protocols with the advantage of having the excitations stored in the metastable
states si acting as a quantum memory. The excitations can then be combined in various
ways. There are two limiting cases of interest:

• If only one additional metastable state is available, one can merge the m excitations
in the state s1 and the newly generated excitation in s by applying a beamsplitter
like transformation and heralding on detecting no excitations in the state s (see
Figure 2.4a). This leads to the transformation |k, 1〉s1,s → |k + 1, 0〉s1,s with a

probability qk =
(

k
k+1

)k
≥ 1

e . If the heralding fails, one has to start from the

beginning, such that the mean number of steps to reach m excitations in the state
s1, is calculated recursively through Rm = q−1

m (1 +Rm−1). We obtain

Rm ∼
1

p
em, Fm & 1−Rm max

j
(1− Fj→j+1) , (2.10)

where p = maxj pj→j+1 is the maximal number of times one needs to try to success-
fully generate a single excitation on average.

• If more metastable states are available, in particular log2m, one can double the exci-
tations at every step (see Figure 2.4b). This structure is useful because one doesn’t
need to start from the beginning if the heralding has failed. In particular, one com-
bines k excitations in state si and sj by a 50:50 beamsplitter like transformation and
heralds on detecting no excitations in the state sj . This leads to the transformation

|k, k〉si,sj → |2k, 0〉si,sj with a probability qk = (2k)!
22k(k!)2 . Using Stirling’s approxi-

mation, we see that qk ∼ 1/
√
πk → 0 vanishes for large excitation numbers. The
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Figure 2.4: a The excitations in the metastable states can be merged one by one. This only requires one
additional metastable state, but the mean number of steps scales exponentially in the excitation number m
to be reached. b Alternatively, the excitations in the metastable states can be doubled at each step. This
requires additional metastable states, but the mean number of steps scales subexponentially in m. c By
using number resolving measurements, one can reach a polynomial scaling. The exponent can be minimized
by varying the fraction β of excitations that are “lost” after each beamsplitter-like transformation. The
horizontal and vertical gray line represent the minimal value of the exponent log2−β(2/sβ).

mean number of operations to arrive to a state with m excitations can be calculated
recursively through Rm = q−1

m/2

(
1 + 2Rm/2

)
, which scales as

Rm ∼
1

p

√
m

log2 m, Fm & 1−Rm max
j

(1− Fj→j+1) . (2.11)

Hence, the combination of a logarithmic number of levels with the polynomial de-
crease of probability leads to a superpolynomial, but subexponential, scaling of Rm
with the number of excitations m. It can be shown [172] that by combining the dou-
bling steps with single-mode coherent displacement operations, one can also prepare
arbitrary superpositions of single-mode states. Even though the mean number of
steps can be reduced a lot by this method, it will also decrease the fidelity because
one needs to apply a repumping protocol whenever adding a single excitation fails
[3]. We note, that the fidelity can be kept above the fidelity for the photon mapping
if one uses the collective decay for the repumping procedure.

If in addition to the linear optics tools, number resolved detection in a metastable
state is available, one can even reach a polynomial scaling in the mean number of steps.
The idea is to try to double the excitations, but to broaden the range of states one keeps.
In particular, a state is kept if the excitations in sj are below a certain fraction β of the
original number of excitations k. In that case, one knows that there are at least (2− β)k
excitations in the other mode. The price to pay is that the number of steps in the tree
scales in a less favorable way, log2−βm instead of log2m. However, the probability of

detecting β excitations, which is given by sβ ≈
∫ βk/2

0 dj 1

π
√
j(k−j)

when the excitation

number is large, can be made independent of k, e.g., by choosing β = 1/2 this probability
is s1/2 ≈ 1/3. Combining these features, the average number of steps scales as

Rm ∼ mlog2−β(2/sβ), (2.12)
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Figure 2.5: For the protocol using coherent driving as described here we require a single guided mode
coupling to the s− e transition and a coherent driving on the g − e transition with strength Ω

(t)
ge .

which is minimized for β ≈ 0.476, leading to a scaling as Rm ∼ m3.86 (see Figure 2.4c).
Thus, by using number resolved detection one can obtain a polynomial scaling in the mean
number of operations (see also Reference [173]), which is a big improvement if one wants
to scale the protocol to very large excitation numbers.

2.3 Protocols in Detail

Having summarized the main ideas, we devote this section to introducing the main con-
cepts of each protocol. We discuss here only one variant of each protocol and emphasize
that by modifying the protocols one can adapt them to much wider parameter ranges and
further improve the scalings. These modifications are specific to every protocol and not
discussed further here, and we refer the interested reader to References [1, 3, 4].

2.3.1 Probabilistic Protocol using Coherent Driving

Our simplest protocol is inspired by a method originally devised to create long-distant
entangled states in atomic ensembles by weakly exciting the atoms and heralding on the
detection of a photon emitted when decaying to a metastable state [26]. The emitters
are placed in the atomic mirror configuration along the waveguide (see Figure 2.2a) and
excited collectively during a short time T � 1/(NmΓ1d) by an external (or waveguide)

field of strength Ω
(t)
ge (see Figure 2.5). We assume the state of the target ensemble to

already be in a Dicke state |ψm〉t, either in the metastable state s, which is coupled to the
waveguide, or in si, which are decoupled, for which then we effectively have m = 0 while
Nm is unchanged.

We denote the excitation probability from weak driving as x = Ω
(t)
ge
√
NmT/2, so that

the state after the pulse is

|ψ〉t ∝

1 + x
S

(t)
eg√
Nm

+ x2

(
S

(t)
eg√
Nm

)2

+O(x)3

 |ψm〉t, (2.13)

where we have written the normalization
√
Nm with the operator S

(t)
eg .
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After the pulse, we leave the system free to evolve under the interaction with the
waveguide for a time T � 1/Γ∗ so that the population of the excited state can be assumed
to have completely decayed. The wavefunction of the emitter and the photonic modes (in
the waveguide and in free space) at that time is then given by

|Ψ〉t ∝|ψm〉t|0〉ph + x(1− δ)|ψm+1〉t|1〉ph + xδ|ψ∗m〉t|1∗〉ph (2.14)

+ x2(1− 2δ − δ2)|ψm+2〉t|2〉ph + 2x2δ|ψ∗m+1〉t|1, 1∗〉ph + x2δ2|ψ∗∗m 〉t|2∗〉ph,

where ∗ in the target ensemble denotes that an incoherent quantum jump to one of the
metastable states has happened and for the photonic mode it denotes an occupation of a
mode in free space. The spontaneous emission processes occur with a lower probability,
δ ≈ 1

(m+1)P1d
when the excitations are added directly or δ ≈ 1

P1d
when they are stored

in an additional metastable state si. We remark that there are some small factors re-
lated to normalization, that have been left out for the sake of clarity in the expressions.
Nevertheless, the conclusions about the scaling of the heralding probability and fidelity
hold.

By detecting a photon in the waveguide, we aim to herald on the desired part of the
state, the second term, |ψm〉t. However, due to detecting a photon emitted from states
with higher excitations, the heralded state also contains the fourth and the fifth term,
which contain one excitation more in the target ensemble. We assume that we can neglect
the latter as the probability for this is reduced by δ ∝ P−1

1d , that is, the state after heralding
is approximately

|ψher〉 ≈
1

N (|ψm+1〉t + (1− η)x|ψm+2〉)t) . (2.15)

The heralding probability of the heralding measurement (with a photon detector with
detection efficiency η) and the fidelity of the heralded state are then given by

pm→m+1 ≈ηx2 (2.16a)

1− Fm→m+1 ≈(1− η)x (2.16b)

As in Reference [26], the error can be made arbitrarily small at the expense of de-
creasing the heralding probability. If a high fidelity is required the method is practicable
only for very few excitations. Apart from the finite detection efficiency η < 1, the double
excitations have turned out to be the main problem of this protocol.

2.3.2 Deterministic Protocol

Instead of exciting the target ensemble by a coherent driving, it is favorable to determinis-
tically add a single excitation to the ensemble. A single emitter naturally acts as a source
of a single excitation. When coupled to the waveguide, one can play with the distance
of this source emitter to the target ensemble to change the type of interaction between
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Figure 2.6: In the deterministic protocol, we use a source emitter, which is coupled to the target ensemble
either through the collective dissipation or through the coherent flip-flop interaction on the g−e transition.
In both ensembles we require a coherent driving on the s−e transition, but with different driving strengths
Ω

(s)
se and Ω

(t)
se .

them. As the target ensemble is assumed to be in the atomic mirror configuration, the
phase φij between the source emitter and each emitter in the target ensemble is the same.
We focus here on a phase difference of φs−t = 0 (mod 2π) between the source and target
ensemble (see Figure 2.2b), i.e., an extension of the atomic mirror configuration. One may
as well take φs−t = π (mod 2π), which just leads to a slightly different subradiant state
but very similar dynamics. At the end of this section we shortly discuss a modification
using φs−t = π/2 (mod 2π), which is depicted in Figure 2.2c.

In this atomic mirror configuration, the collective dissipation of the source and target

ensemble, S− = S
(s)
ge + S

(t)
ge , which we assume to be on the transition g − e for this

protocol, creates a subspace of subradiant states [124, 125]. This subspace contains all
states |Ψ〉 that are dark with respect to the collective dissipation, i.e., S−|Ψ〉 = 0. Apart
from the states with only population in the metastable states, this subspace contains Nm

excited states for every Dicke state with m excitations. As we assume the drivings of the
ensembles to be collective, i.e., symmetric in each ensemble, there is only one relevant
excited subradiant state, satisfying the symmetry conditions, namely

|Ψsubr
m 〉 =

(√
Nm

Nm + 1
S(s)
eg −

1√
Nm + 1

S
(t)
eg√
Nm

)
|g〉s|ψm〉t. (2.17)

This state can be thought of as a generalized singlet state – an antisymmetric combination
of either an excitation in the source emitter or the target ensemble with weights depending
on the effective number of atoms Nm.

This state can be coupled to the initial state |Ψi
m〉 = |s〉s|ψm〉t by an external laser

field of strength Ω
(s)
se and to the final state |Ψf

m〉 = |g〉s|ψm+1〉t by an external driving of

strength Ω
(t)
se (see Figure 2.6). Thus, the full non-hermitian Hamiltonian is given by

Hnh =
Ω

(s)
se

2

(
S(s)
se + S(s)

es

)
+

Ω
(t)
se

2

(
S(t)
se + S(t)

es

)
− i

Γ∗

2

(
S(s)
ee + S(t)

ee

)
− i

Γ1d

2

(
S(s)
eg + S(t)

eg

)(
S(s)
ge + S(t)

ge

)
(2.18)

The strong collective decay restricts the evolution to the subspace of subradiant states,
the so-called Quantum Zeno Dynamics [140, 171], which leads to an effective three-level
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system,

|Ψi
m〉

√
Nm
Nm+1

Ω
(s)
se

←−−−−−−→ |Ψsubr
m 〉

−
√

m+1
Nm+1

Ω
(t)
se

←−−−−−−−→ |Ψf
m〉. (2.19)

To achieve a full population transfer and low errors, one should choose the two effective

couplings to be the same Ωm ≡
√

Nm
Nm+1Ω

(s)
se = −

√
m+1
Nm+1Ω

(t)
se so that the excitation is fully

transferred at time T = π
√

2/Ωm. The fidelity of the transfer is not perfect due to two
reasons:

• Spontaneous emission at rate Γ∗ when populating the excited subradiant state, which
leads to an error ε∗ = T

4
Γ∗

2 , where the factor T
4 comes from the integrated population

in the excited subradiant state;

• Small population of the superradiant state (that is the symmetric state over the
source and target ensemble), to which the initial and final state couple, which leads

to an error εSR = 3T
8

(
Nm + Nm+1

N2
m

)
Ω2
m/2

(Nm+1)Γ1d+Γ∗ , where the factor 3T
8 comes from

the integrated population in the initial and final state.

The coupling strengths and the time of the pulse then have to be chosen such that fidelity
is maximal. For this, the couplings have to be chosen large enough so that the subradiant
state is populated only during a short time, but at the same time low enough such that
the superradiant state is not significantly populated. We are mostly interested in the low
excitation limit, so that we continue to work in the limit Nm � m. By optimizing the
driving strength (see Appendix 2.A), we find that for Ωm ≈

√
2Γ∗Γ1d/3 one can reach the

maximal fidelity of (see Figure 2.7)

Fm→m+1 =
∣∣∣〈ψf

m|e−iHnhT |ψi
m〉
∣∣∣ ≈ exp

−π√2

4

1√
2
3P1d

 ≈ 1− π
√

3

4
P
−1/2
1d . (2.20)

Arbitrary higher excitations can be reached by resetting the source emitter to the
metastable state s and transferring the next excitation to the symmetric Dicke state of
the target ensemble and repeating this process. Furthermore, one can also prepare any
arbitrary superposition of symmetric Dicke states, by alternating between exciting the
emitter and transferring the excitation to the target ensemble with an appropriate pulse
sequence, as was shown for cavity fields [174]. The appropriate pulse sequence can be
found by studying the inverse process, that is, starting from the final state and removing
excitations, until one reaches the ground state.

Instead of using the Quantum Zeno Dynamics, one can use coherent flip-flop interac-
tions between the source and target ensemble. To reduce the errors, the source emitter
is placed in the middle of the target ensemble, with a phase φs−t = π/2 (mod 2π) be-
tween the source and target (see Figure 2.2c). This model [37] can be mapped to a cavity
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Figure 2.7: The fidelity of the state can be obtained by evolving the initial state with the non-hermitian
Hamiltonian of the system for the optimal parameters for different Purcell factors P1d (red dots). The
black (black dashed) line shows that the first (and second) approximation in Equation 2.20 works well.
We have used the parameters Nm = 50 and m = 0.

QED configuration, where the source atom plays the role of the TLS with effective de-

cay γ = Γ1d + Γ∗ which couples coherently to an effective cavity defined by 1√
Nm

S
(t)
eg,+,

with rate g =
√
NmΓ1d. The cavity mode S

(t)
eg,+ is the symmetric combination between

both parts of the split ensemble. The cavity modes are subradiant states, so that the
cavity loss is given by κ = Γ∗. This is no longer true when many excitations are stored
in the ensemble and is another source of errors. It is known [174] that within the strong
nonlinear coupling regime, e.g., when g � κ, γ, this model can deterministically generate
any arbitrary superposition of the cavity-like mode up to m photons with a fidelity of
Fm→m+1 ≈ 1− m(κ+γ)

g ≈ 1− m√
Nm

.

Even though both these protocols don’t suffer from the double excitation problem of
the first protocol and no measurement is necessary, they don’t reach the desired scaling
of the fidelity, 1− Fem ∝ m/(NP1d).

2.3.3 Probabilistic Protocol using Collective Dissipation

To improve the fidelity, one can design a probabilistic protocol, in which a heralding
measurement rules out any individual or collective quantum jumps. For this purpose, we
introduce a third ensemble in the atomic mirror configuration on which this heralding
measurement can be performed, a detector ensemble with Nd emitters (see Figure 2.2d).
The heralding measurement checks for population in one of the metastable states, in our
case g. Using a cyclic transition, this measurement can be repeated multiple times so that
one can assume this measurement to have perfect detection efficiency and to not suffer
from dark counts (see Section 0.2.4). We assume here only one detector atom, Nd = 1,
but in principle all our considerations can be extended to an arbitrary number of emitters
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Figure 2.8: For the probabilistic protocols using the Quantum Zeno Dynamics and the coherent flip-flop
interactions as described here, we require two guided modes, one on the s − e, the other on the g − e
transition. Furthermore, we assume that in the source and detector ensemble one of these transitions can
be moved out of resonance. A coherent driving on the s−e transition of the source ensemble generates the
excitation, that is moved through the target ensemble to the detector ensemble, where a coherent driving
on the g − e transition deexcites the emitters. Finally, a heralding measurement is performed on the g
state of the emitters in the detector ensemble.

in the detector ensemble.

The idea is to design the interactions in such a way that a transfer of an excitation
from the source to the target ensemble also induces a change in the state of the detector
ensemble, on which we can herald. This is accomplished, e.g., by using two orthogonal

guided modes on the transition g − e (s − e) with rates Γ
g(s)
1d , as depicted in Figure 2.8,

where one of the guided modes in the source and detector ensemble can be decoupled from
the guided mode by shifting the levels out of resonance to avoid any undesired transitions.
This leads to the emergence of a single subradiant state of both collective dissipation
terms, which also satisfies the symmetry conditions in the target ensemble,

|Ψsubr
m 〉 =

1√
Nm +m+ 2

(√
NmS

(s)
eg −

S
(t)
eg√
Nm

+
√
m+ 1S(d)

es

)
|g〉s|ψm〉t|s〉d. (2.21)

This subradiant state is independent of the ratio of decay rates Γ
g/s
1d , in contrast to the two

orthogonal superradiant states. In addition, the source atom (and the detector ensemble)

are driven by external fields on the s− e (g− e) transition with strength Ω
(s)
se (Ω

(d)
ge ). The

full non-hermitian Hamiltonian then reads,

Hnh =
Ω

(s)
se

2

(
S(s)
se + S(s)

es

)
+

Ω
(d)
ge

2

(
S(d)
ge + S(d)

eg

)
− i

Γ∗

2

(
S(s)
ee + S(t)

ee + S(d)
ee

)
− i

Γg1d

2

(
S(s)
eg + S(t)

eg

)(
S(s)
ge + S(t)

ge

)
− i

Γs1d

2

(
S(t)
es + S(d)

es

)(
S(t)
se + S(d)

se

)
. (2.22)

Analogously to the deterministic case, this leads for weak driving to an effective three-level
system

|Ψi
m〉

√
Nm
Nm+2

Ω
(s)
se

←−−−−−−→ |Ψsubr
m 〉

−
√

m+1
Nm+2

Ω
(d)
ge

←−−−−−−−−→ |Ψf
m〉, (2.23)

which can transfer an excitation from the initial state |Ψi
m〉 = |s〉s|ψm〉t|s〉d to the final

state |Ψf
m〉 = |g〉s|ψm+1〉t|g〉d. A full population transfer is achieved for

√
Nm
Nm+2Ω

(s)
se =

−
√

m+1
Nm+2Ω

(d)
ge ≡ Ωm after a time T = π

√
2/Ωm.
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Figure 2.9: The heralding probability of the final state can be obtained by evolving the initial state
with the non-hermitian Hamiltonian of Equation 2.22 for the optimal parameters and for different Purcell
factors P1d (red dots). The black (black dashed) line shows that the first (and second) approximation in
Equation 2.24 works well. We have used the parameters Nm = 50 and m = 0.

The heralding probability of the heralding measurement on state g of the detector
ensemble is reduced by spontaneous emission processes from the subradiant state and
populating the superradiant states like for the fidelity in the deterministic protocol (see
Section 2.3.2). To reduce the population in the superradiant states, one can in principle
optimize the ratio of the decay rates, Γs1d/Γ

g
1d, but for simplicity we choose here Γs1d =

Γg1d ≡ Γ1d. Through a similar optimization as in the previous protocol, one can then find

the optimal value of the driving to be Ωm ≈
√

Γ∗Γ1d
2(m+1)

3Nm
, which leads to a maximal

heralding probability of

pm→m+1 = |〈Ψf
m|e−iHnhT |Ψi

m〉|2 ≈ e
− π

√
3

2
√
m+1

√
NmΓ∗

Γ1d ≈ 1− π
√

3

2
√
m+ 1

(P1d/Nm)−1/2 . (2.24)

A comparison between the full non-hermitian evolution and this approximation is plotted
in Figure 2.9. As this heralding measurement rules out any quantum jumps, the fidelity
of the final state will in fact be perfect, i.e. Fm→m+1 = 1.

Instead of using two orthogonal guided modes, one can replace the single step protocol
with two guided modes as described here by a two step protocol using a single guided mode
and an additional metastable state as described in References [3, 5]. The results for the

scaling of the heralding probability can then be improved to scale as 1−pm→m+1 ∝ P−1/2
1d .

With this probabilistic protocol we are able to exploit the strong collective dissipation
in the atomic mirror configuration for the heralded addition of an excitation to an existing
symmetric Dicke state. By designing a probabilistic protocol, the large decrease of the
fidelity in the deterministic case was transferred to a reduction in the heralding probability.
Therefore, one may have to repeat the protocol several times to reach the desired state,
but when successful, knows that the state has a high fidelity.
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2.3.4 Probabilistic Protocol using Coherent flip-flop Interactions

Recall, that in the deterministic protocol we can replace the Quantum Zeno Dynamics by
coherent couplings when the Purcell factor P1d is not very large. Analogously to this, we
can also design a probabilistic protocol, which depends more strongly on the number of
emitters N and Nd than on P1d. Inspired by the deterministic protocol in which the source
emitter is placed in the middle of the target ensemble (see Figure 2.2c), we concatenate
this with the detector ensemble with Nd emitters, that is the source and target are placed
in the middle of the split detector ensemble as in Figure 2.2e. Each part of the target
(detector) ensemble then contains N/2 (Nd/2) emitters.

Analogously to the probabilistic protocol using Quantum Zeno Dynamics, we require

two orthogonal guided modes on the transition g − e and s − e with decay rates Γ
g/s
1d ,

from which the source and detector ensemble can be decoupled (see Figure 2.8). The
concatenated configuration induces the coherent couplings

Hcoll =
Γg1d

2
S(s)
ge S

(t)
eg,+ +

Γs1d

2
S

(t)
se,−S

(d)
es,− + h.c., (2.25)

where the additional indices ± denote the symmetric (antisymmetric) combination of the
parts of the split ensembles. In addition, within each ensemble there are still decay terms,
leading to a full non-hermitian Hamiltonian of the form

Hnh =Hcoll +
Ω

(s)
se

2

(
S(s)
se + S(s)

es

)
+

Ω
(d)
ge

2

(
S(d)
ge + S(d)

eg

)
− i

Γ∗

2

(
S(s)
ee + S

(t)
ee,+ + S

(d)
ee,+

)
− i

Γg1d

2

(
S(s)
eg S

(s)
ge + S

(t)
eg,−S

(t)
ge,−

)
− i

Γs1d

2

(
S

(t)
es,−S

(t)
se,− + S

(d)
es,+S

(d)
se,+

)
. (2.26)

It is more instructive, to consider the states coupled through this Hamiltonian in the low
excitation regime, that is

|Ψi
m〉

Ω
(s)
se←−→ S(s)

es |Ψi
m〉

√
NmΓg1d←−−−−→ S(s)

gs

S
(t)
eg,+√
Nm
|Ψi

m〉
√

(m+1)NdΓs1d←−−−−−−−−→ S(s)
gs

S
(t)
eg,+√

(m+ 1)Nm

S
(d)
eg,−√
Nd
|Ψi

m〉
Ω

(d)
ge←−→ |Ψf

m〉, (2.27)

where the initial and, respectively, final state is defined as |Ψi
m〉 = |s〉s|ψm〉t|s〉⊗Nd

d and

|Ψf
m〉 = |g〉s|ψm+1〉t S

(d)
gs√
Nd
|s〉⊗Nd

d . Note, that we have used here the encoding |ψm〉 ∝
S

(t)m
sg,− |g〉⊗N .

A maximal population transfer of the excitation from the source to the detector en-

semble via the target ensemble is obtained for tunable decay rates Γs1d =
√

Nm
(m+1)Nd

Γg1d

and coherent drivings satisfying Ω
(s)
se = Ω

(s)
se =

√
2Nm/3Γg1d ≡ Ωm. Note that the ratio of

decay rates is of order one when the number of atoms in the target and detector ensemble
are comparable, Nm ≈ Nd. A tunable decay rate of this order can be easily achieved by
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Figure 2.10: The heralding probability of the final state can be obtained by evolving the initial state with
the non-hermitian Hamiltonian of the system (red dots) for the optimal parameters for m = 0, Nd = Nm
and for a different Purcell factors P1d with Nm = 103 or b different effective emitter numbers Nm with
P1d = 10. The black line shows that the approximation in Equation 2.28 works well. The heralding
probability still depends on the Purcell factor, but the dependence on Nm is much more relevant.

off-resonant drivings, that renormalize the decay rates (see Section 0.3.3). After a time of
evolution T = 2π/Ωm the population is transferred completely from the initial to the final
state. The probability of the successful heralding measurement is then

pm→m+1 ≈ exp

− √
3π

32
√

2Nm

10 + 9

√
Nm(m+ 1)

Nd
+ 29P−1

1d

 , (2.28)

where P1d = Γg1d/Γ
∗. The scaling originates from the fact that the process is very fast,

T ∝ N−1/2
m , and that the non-hermitian terms, which lead to the reduction of the herald-

ing probability, scale with Γg1d and (m + 1)Γs1d =
√

Nm(m+1)
Nd

Γg1d. The prefactors in the

exponential in front of each term arise from the population of the specific states which
are subject to the respective quantum jumps. The above expression is a good approxima-
tion of the real heralding probability, which can be obtained through evolution under the
non-hermitian Hamiltonian as shown in Figure 2.10. Other choices for the parameters, in
particular the ones allowing for Γg1d = Γs1d, may also lead to a sufficiently high heralding
probability and fidelity. These variations are discussed in Reference [4].

The fidelity for adding the first excitation is perfect, F0→1 = 1 but for higher excitations
the non-hermitian Hamiltonian couples to more states than just the ones of Equation 2.27.
We investigated these deviations from the approximation numerically and found that they
reduce the total fidelity by

1− Fm ≈ 0.045
(m
N

)1.9
. (2.29)

Notably, the fidelity is independent of the Purcell factor because transitions to unwanted
states happen through the excited states which are exposed to individual decay in the
same manner.

With this protocol we are able to obtain high fidelities in systems with a low Purcell
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factor P1d by a more complex setup and larger number of emitters in the target and
detector ensemble.

2.4 Discussion of Required Resources

The different protocols are useful for different experimental platforms, that is, for different
resources in the waveguide QED system. We summarize here the conditions and figures of
merit for each protocol and identify the best ones contingent upon the available resources
(see Section 0.2.2).

• The first protocol discussed here [3] requires NP1d � 1 and the use of an exter-
nal single photon detector. The protocol heralds the transfer of single collective
excitations with probability pm→m+1, which has a trade-off with the fidelity, which
scales as 1−Fm→m+1 ∝ √pm→m+1. This protocol is especially suited for generating
low excitation numbers in systems with either a large Purcell factor P1d or systems
with low Purcell factor P1d < 1 and large atom number N like current experimental
setups for optical fibers.

• In the second protocol [1] we introduced a deterministic protocol (pm→m+1 = 1)
which also requires a large Purcell factor P1d � 1 and has a fidelity of Fm→m+1 ≈
1− 1/

√
P1d +O(P−1

1d ). This protocols is well suited for engineered dielectrics or, in
general, any system with large Purcell factor P1d � 1. They can also be extended to
low mode cavity QED systems if the same conditions hold, i.e., if one works in the
bad-cavity limit and has an auxiliary atom which can be addressed independently
from the target ensemble.

• The third protocol [3, 5], also exploits the long-range dissipative coupling for equally
spaced atoms and requires a large Purcell factor P1d � 1. The advantage is that
the probability of heralding a single collective excitation pm→m+1 ∝ e−α/

√
P1d can be

made close to 1 for systems with a Purcell factor P1d � 1. Moreover, the infidelity of
accumulating m excitations is strictly Fm→m+1 = 1. This is certainly the best suited
method in terms of fidelities but to obtain high probabilities we require systems with
P1d � 1.

• The last protocol [4] allows one to overcome the limitations of the probabilities
for systems with low Purcell factor P1d, by using a more elaborate configuration
of emitter positions. The heralding probability of a single collective excitation is

mostly dependent on the number of atoms N , i.e., pm→m+1 ∝ e−α
√
m/N and the

average fidelity to accumulate m excitations, though not being 1, is still quite large,
1− Fm ∝ (m/N)1.9. This is probably the best method for optical fiber setups.
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Figure 2.11: For the preparation of symmetric Dicke states over two modes, we require a more elaborate
level scheme. For two modes, we can simply mirror the three-level system to obtain an inverted W -type
level system. The effect of the protocols on the target ensemble for generating a single excitation in sL/R

are denoted by CL/R.

2.5 Preparation of Multi-Mode Dicke States

Up to now we have developed different methods to prepare a collective excitation in the
target ensemble in one specific metastable state that can be triggered to emit the desired
photonic state in a single mode. An exciting prospect consists of extending these protocols
to generate entangled states of several atomic excitations that can afterwards be triggered
to emit, e.g., into orthogonal polarization modes of the waveguide (see Section 1.2). This
will enlarge the set of photonic states that can be prepared.

The goal of this section is to extend our protocols for adding a single excitation |ψ〉t →
S

(t)
sg |ψ〉t to adding a single excitation over two modes in a heralded way, i.e.

|ψ〉t → (cLS
(t)
sLg

+ cRS
(t)
sRg

)|ψ〉t (2.30)

with |cL|2 + |cR|2 = 1. The index L/R denotes, e.g., the transition coupled to left/right
circularly polarized photons. Clearly, this requires a more elaborate level structure, which
we now assume to form an inverted W -system (see Figure 2.11). We show how to extend
the previous protocols for the heralded generation of a single collective excitation in one
metastable state to the case of adding a superposition to two metastable states. Further-
more, we show how this extension works on the example of three photonic states known
to be of metrological interest.

2.5.1 Generalization of Protocols

As discussed in Section 2.4, the “best” protocol for adding a single excitation to one
metastable state depends on the given experimental waveguide QED resources. The choice
of protocol used, however, is irrelevant for the extension that we perform here. We just
note, that we focus on directly adding an excitation to the two metastable states, that
is we don’t require any additional states. For simplicity of notation, we assume that we
work in the low excitation regime, in which the Holstein-Primakoff Approximation [132]
can be applied, and we approximate the collective spin operators by bosonic operators,

i.e., b†L/R ≈ S
(t)
sL/Rg/

√
N . We have shown that one can transfer a single excitation from the

source atom collectively to the sL/R state in the target ensemble while inducing a change
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in the detector ensemble, from sL/R to g. We denote this operation as

ĈL/R : |sL/R〉s|ψ〉t|sL/R〉d → |g〉sb†L/R|ψ〉t|g〉d + . . . |sL/R〉d, (2.31)

where we are not writing explicitly the state of the source and target ensemble if some
error occurs in the heralding step. For notational simplicity, we write the state of the
detector ensemble as if it only contained one emitter, whereas it can actually contain Nd

emitters. All other possible initial states during the protocol will not change under ĈL/R.

It is important to emphasize that the measurement is not performed after each ĈL/R

but just after both operations have been applied as otherwise the superposition would be
destroyed.

The protocol starts by preparing a superposition state in the source atom, i.e., cL|sL〉s+
cR|sR〉s. The states in the target ensemble are assumed to be in a given state, |ψ〉t, which
may already contain excitations in the metastable state sL/R. The steps of the protocol
can be summarized as follows:

i) We start by transferring one of the states, e.g., sL. For that, we prepare the detector
atoms in sL as well, and apply ĈL such that

(cL|sL〉s + cR|sR〉s) |ψ〉t|sL〉d (2.32)

ĈL−−→ cL|g〉sb†L|ψ〉t|g〉d + cR|sR〉s|ψ〉t|sL〉d + . . . |sL〉d

ii) For the orthogonal mode, we need to transfer the excitation in sL to sR in the
detector ensemble to be able to herald the excitation in g at the end. Furthermore,
the excitations in g should be transferred to sL so that they don’t influence the
dynamics. The state after these transformations is then

→ cL|g〉sb†L|ψ〉t|sL〉d + cR|sR〉s|ψ〉t|sR〉d + . . . |sR〉d. (2.33)

iii) Now, one can apply ĈR which results in

ĈR−−→ cL|g〉sb†L|ψ〉t|sL〉d + cR|g〉sb†R|ψ〉t|g〉d + . . . |sR〉d. (2.34)

iv) Now the excitations have been added but each of them are associated to two different
metastable states in the detector atoms. In order to be able to herald them at the
same time, one needs to apply a 50:50 beamsplitter-like transformation between the
states sL and g states of the detector such that

→ |g〉s
1√
2

(
cLb
†
L + cRb

†
R

)
|ψ〉t|g〉d + . . . |sL/sR〉d. (2.35)

After the last operation, one can herald the transfer of excitation by measuring the state
g of the detector atoms as desired.
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We emphasize here again that the measurement has to be performed after both opera-
tions to avoid destroying the superpositions between the metastable states. Furthermore,
we point out that in case no excitation has been detected in g, one can still measure the
state sL of the detector ensemble, and if this heralding is successful one would have gener-

ated the state 1√
2

(
cLb
†
L − cRb

†
R

)
|ψ〉t. Depending on the goal state, this state can still be

useful and one would avoid a reduction in the probability by a factor of 2. The heralding
probability scales in the same way as for the single-mode preparation, as the operation is
only applied twice compared to once for single-mode states with a factor of 1

2 for some
states.

2.5.2 Examples of Metrological Interest

One of the main motivations to obtain two-mode multiphoton states of light is the pos-
sibility of measuring phases, ϕ, beyond the classical limits of light. It is well known that
classical sources can only achieve the so-called Standard Quantum Limit , i.e., ∆ϕ ∝ 1√

M
with M being the number of photons. However, certain two-mode states of light can
show a higher precision, and even reach the Heisenberg limit, that is, ∆ϕ ∝ 1

M . In this
Section, we see how one can obtain some of these states of metrological interests using our
protocols.

The simplest states to obtain are the so-called Holland-Burnett states [175, 152, 92],
which are obtained by applying a beamsplitter transformation on a dual Fock state |ψHB〉 =
UBS|m,m〉, i.e. M = 2m, which can be shown to achieve a precision given by ∆ϕ =

1√
M(1+M/2)

. As dual Fock states are separable states we can obtain them by simply

applying our protocols in the two metastable states sL/R separately or, even simpler, from
two different ensembles (see also Section 1.3).

Another class of non-classical states with improved precision are Yurke states, i.e.,
|ψYurke〉 = (|m,m− 1〉+ |m− 1,m〉) /

√
2, where M = 2m − 1. This states do not reach

the Heisenberg limit, but scale in the same way, i.e., ∆ϕ = 2
M [176] (at least when ϕ ≈ 0).

We note, that the Yurke state can be written as

|ψYurke〉 =
1√

2(n− 1)!
(b†L + b†R)b†n−1

L b†n−1
R |0, 0〉sL,sR . (2.36)

We note here, that the factor of 2 we mentioned for the general protocol can be avoided
here because the state |m,m− 1〉 − |m− 1,m〉 can be transformed to the Yurke state by

a simple phase shift operator exp(−iπb†LbL). As the dual Fock states can be generated
efficiently with our protocols, one only needs to add one single excitation over the two
metastable states at the end. Other proposals for the generation of Yurke states using
linear optical setups, e.g., by photon subtraction [177], can also be implemented by using
the transitions between metastable states.

Finally, NOON states |ψNOON〉 = |m :: 0〉 = (|m, 0〉+ |0,m〉) /
√

2, that is M = m, are
the only ones that reach the Heisenberg limit of ∆ϕ = 1

M . Using the fundamental theorem
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of algebra they can be written as

|n :: 0〉 =
1√
2n!

(b†nL + b†nR )|0, 0〉sL,sR =
n∏
j=1

(b†L + eiϕjb†R)|0, 0〉sL,sR (2.37)

with ϕj = 2πj/n. Thus by adding excitations one-by-one over two modes with the appro-
priate phase, one can generate these states using the extension of our protocol in an expo-
nential number of steps. In Reference [178], it is shown, that one can “double” a NOON-
state, that is joining two states of the form |m :: 0〉 to obtain |2m − 2 :: 0〉 by heralding
on a twofold detector coincidence measurement. By using this method together with the
metastable states acting as quantum memories, one can obtain NOON-states in a super-
polynomial, but subexponential, mean number of steps. This is very similar to the single-
mode scheme, where the probability of joining the two states is 2

16·4n−1

(
2n−2
n−1

)
≈ 1

8
√
π(n−1)

.

As the phases when adding or doubling states to obtain a NOON-states are very impor-
tant, the single-mode scheme for a polynomial scaling of the mean number of steps cannot
easily be extended to two modes.

2.6 Conclusion and Outlook

Dicke states of ensembles are highly entangled states, robust to particle loss, and when
coupled to a one-dimensional waveguide in the atomic mirror configuration, also valuable
for the generation of photonic states (see Chapter 1). However, large ensembles behave
like a linear system, making the preparation of symmetric Dicke states with a specified
excitation number difficult. We have put forward several state preparation protocols, de-
terministic as well as probabilistic ones, which exploit the tools available in waveguide
QED systems. We required the fidelity of the prepared state to scale at least as good
as the fidelity of the subsequent photon generation. This led to several variants of the
protocols, which have their advantages and disadvantages for a given experimental setup.
Furthermore, these protocols were extended to prepare symmetric Dicke states over mul-
tiple metastable levels, which can be used for the direct generation of entangled two-mode
photonic states.

The first protocol we introduced only required one ensemble in the atomic mirror
configuration, which is driven and thus excited weakly by a laser field. The required trap-
ping of atoms in the atomic mirror configuration close to optical nanofibers and photonic
crystal waveguides is already possible [59, 179]. Furthermore, the simplicity of the setup
makes the first protocol the most viable near-future candidate for the implementation of
our methods for the generation of multiphoton states. On the other hand, it is limited
to few excitation numbers, which can be overcome by protocols using one or many aux-
iliary quantum emitters as a source and detector for collective excitations in the target
ensemble. Because of the simple trapping conditions, the protocols based on the atomic
mirror configuration, are conceptually simple extensions of the first protocol. Satisfying
the trapping conditions for coherent flip-flop interactions between ensembles appears to be
more challenging, and also requires significantly more quantum emitters. We emphasize,
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that the probabilistic protocols studied here only demonstrate the basic principles and the
scalings can be improved by modifying the protocols as we propose in References [3, 4, 5].

Further improvements of the protocols can be achieved by finding simpler or more
robust protocols for merging excitations in the metastable levels. This problem is very
similar to merging photonic states with beamsplitters and heralding on no detection events
[85], but the “photons” are the collective excitations in a metastable state, which act as
a quantum memory. In principle, one could also use flip-flop interactions if the target
ensemble wouldn’t be in the atomic mirror configuration. This has not been investigated
yet, but could lead to dynamics that are useful for state preparation.

Coming back to our atomic mirror setup, one can think of preparing collective states
of the ensemble other than superpositions of symmetric Dicke states and investigate their
usefulness for quantum applications. As an example, take the spin squeezed states, which
can enhance the sensitivity of atomic interferometers [161]. These symmetric states have
a reduced uncertainty in the excitation number (basically Sz) in exchange for a higher
uncertainty in Sy. The squeezing of the collective spin state can be implemented by
first exciting the ensemble collectively to the desired mean number of excitations and
subsequently performing a quantum non-demolition measurement of the excitation number
of the ensemble [180, 64]. We emphasize, that such a spin squeezed state does not emit
a squeezed coherent photonic state, because the reduced uncertainty is not in one of the
quadratures, but in the photon number. Future applications of these states need to be
investigated.
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Appendix

2.A Optimization Procedure in Detail

For most protocols of Section 2.3 we required an optimization procedure for maximizing
the fidelity or the heralding probability. We show here the main steps of this procedure
on the example of the deterministic protocol.

We first check the conditions on the ratio of coupling strengths Ω
(s)
se and Ω

(t)
se and

optimal time of interaction T for a full population transfer from the initial to the final
state when the decay terms can be neglected. We find that the coupling strengths in the

effective three level system should be equal , Ωm ≡
√

Nm
Nm+1Ω

(s)
se = −

√
m+1
Nm+1Ω

(t)
se , such that

after a time T = π
√

2/Ωm the excitation is transferred (see Figure 2.12a). The reduction
in fidelity then comes from two factors:

• Spontaneous emission at rate Γ∗ when populating the excited subradiant state, which
leads to an error ε∗ = T

4
Γ∗

2 , where the integrated population in the excited subradiant
state, T

4 , is multiplied by the rate of spontaneous emission processes;

• Populating the superradiant states, to which the initial and final state couple, leads
to an error of

εSR ≈
3T

8

1

(Nm + 1)Γ1d + Γ∗
1

2

(
1

Nm
Ω(s)2
se +

Nm(m+ 1)

Nm + 1
Ω(t)2
se

)
≈ 3T

16

NmΩ2
m

(Nm + 1)Γ1d + Γ∗
, (2.38)

where the factor 3T
8 comes from the integrated population in the initial and final

state and the prefactors in front of the Rabi couplings from the coupling to the
superradiant state.

The fidelity of the state at time T can thus be approximated by

Fm→m+1 ≈ exp [−(ε∗ + εSR)] = exp

[
−π
√

2

8Ωm

(
Γ∗ +

3

2

NmΩ2
m

(Nm + 1)Γ1d + Γ∗

)]
, (2.39)

which is plotted in Figure 2.12b. To maximize the fidelity, we choose the effective coupling
Ωopt
m ≈

√
2Γ∗Γ1d/3, where we have assumed to work in the low excitation regime Nm � m.
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At this optimal driving, we find a fidelity of

Fm→m+1 ≈ exp

−π√2

4

1√
2
3P1d

 ≈ 1− π
√

3

4
P
−1/2
1d . (2.40)
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Figure 2.12: a The population in the target state |Ψf
m〉 (red line) builds up from the initial state |Ψi

m〉
(blue line) over the subradiant state |Ψd

m〉 (green line) and is maximal after the time T = π
√

2/Ωm (gray
line). We plotted the time evolution for the parameters Nm = 100, m = 0, P1d = 103 and Ωm = 0.01. b
At the time T the fidelity (red dots) is well approximated by the expression of Equation 2.39 (black line)
and is maximal when the coupling satisfies Ωm = Ωopt

m (gray line). We have used the same parameters as
for the time evolution, evaluated the state at T = π

√
2/Ωm, and only varied the coupling strength Ωm.
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Photon Scattering in the Ultrastrong
Coupling Regime 3
Abstract

In the ultrastrong coupling regime the coupling strength between the emitter and the
photons is comparable to the transition energy, g ∼ ∆. In this regime, new features
in the light-matter interaction emerge and lead to new applications using, e.g., large
nonlinearities induced by the emitter [45] and the generation of non-classical states of light
[181, 182]. However, the theoretical description of phenomena in this regime is limited
because many tools used in the regime g � ∆ – like the Rotating Wave Approximation –
can no longer be applied.

One of the theoretical tools available is a polaron transformation with a subsequent
minimization of the ground state energy. This transformation is useful because it re-
moves most of the qubit-photon entanglement in the ground state for moderate coupling
strengths. The polaron transformation has proven to be useful, both for numerical simu-
lations with matrix product states [42] and for analytical predictions of the single photon
scattering amplitude [120]. Our contribution is the extension to the two photon scattering
amplitude, which is essential to understand the photon-photon interactions induced by
the emitter. We provide tools for the calculation of the scattering amplitude for arbitrary
couplings and energy dispersion relations and, more importantly, when additional photon
interaction terms coming from the polaron transformation are present. We show that this
approach yields good qualitative and quantitative results for moderate coupling strengths.

In the following, we first motivate the importance of understanding scattering pro-
cesses and introduce the basic concepts (Section 3.1). Then, we introduce the polaron
transformation and find a set of self-consistent equations for the variational parameters
(Section 3.2). Next, we derive the scattering amplitude for one and two photons on a
single quantum emitter (Section 3.3) and compare these predictions to results obtained
numerically in the polaron frame (Section 3.4). Finally, we summarize and discuss future
perspectives (Section 3.5).
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This chapter is based on and uses parts of Reference

• [6]: V. Paulisch, T. Shi, and J. J. Garćıa-Ripoll. “Multiphoton Scattering in the
Ultrastrong coupling regime” In preparation. (2018).
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Figure 3.1: A single emitter is coupled to waveguide modes with strength gk. The ground state of the
ultrastrongly coupled system, is a qubit-photon dressed state localized in space around the emitter. The
ground state far away from the emitter contains no photons.

3.1 Motivation and Basic Concepts

Up to this point, we have treated waveguide QED systems in a regime, where the light-
matter coupling strength exceeds the rate of decoherence processes but is much smaller
than the transition energies of the emitters. In this regime, the Rotating Wave Approxi-
mation (RWA) [28] can be applied because the exchange of interactions between light and
matter dominates over pair creation and annihilation processes. Under this approxima-
tion, the counterrotating terms σj+a

†
k + σj−ak in Equation 0.1 are dropped and in addition

to the energy, the excitation number N̂ =
∑

j σ
j
ee +

∑
k a
†
kak is conserved. These two

conserved quantities make the theoretical description much easier as one can solve each
excitation sector independently.

On the other hand, the desire to reduce interaction times and increase nonlinearities
[43, 44, 45] has lead to higher and higher coupling strengths up to a point where the
RWA, and theoretical methods based on it, break down [41, 42]. This so-called ultra-
strong coupling regime was first observed in superconducting resonator systems [32, 33]
and recently even in superconducting waveguide QED systems [83]. For the ultrastrong
coupling regime in resonators a generalized RWA was proposed [183] and one can find
the spectrum analytically [184]. For waveguide QED systems on the other hand, there
are only few theoretical tools available yet, so that one has mostly relied on numerical
simulations, e.g., with matrix product states [42, 185] or the renormalization group [186].

Furthermore, we need to relate theoretical predictions to experimental results to check
how far the they are valid. Scattering processes are a way to bridge the gap between
experiment and theory as they are typically easy to prepare and measure. In addition,
one can reconstruct system properties, like the scattering matrix, from the scattering
of coherent states [141]. In the regime where g � ∆ the scattering of photons is well
understood and analytical results have been found with various techniques – using the
wavefunctions directly [187, 188], input-output-theory [189, 190], path integral formalism
[191, 144] or diagrammatic approaches [192, 193, 194]. In the ultrastrong coupling regime
it has proven useful to combine a polaron transformation with scattering theory to predict
the reflection and transmission coefficients for the scattering of a single photon on a single
quantum emitter at moderate coupling strength [120].

Because analyzing processes in the ultrastrong coupling regime is already difficult
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enough, we restrict our discussion here to a single quantum emitter coupled only to the
one-dimensional photonic environment, that is without any decay into other modes (see
Figure 3.1). The light-matter Hamiltonian (compare to Equation 0.1) is then given by

H =
∆

2
σz +

∑
k

ωka
†
kak +

∑
k

gkσx

(
a†k + ak

)
, (3.1)

where ∆ is the qubit energy, ωk the dispersion relation, ak the annihilation operator of a
photonic mode in the waveguide and gk the coupling strength between them. We use here
the Pauli matrices σx/z, which relate to the notation in the first chapters as σx = σeg+σge
and σz = σee − σgg.

The dispersion relation ωk and the coupling gk depend on the underlying microscopic
model, and we assume here an approximately linear dispersion around the qubit frequency
and an environment with ohmic spectral density, such that gk =

√
παωk/2L. Recall from

Section 0.3.1, that the transition to ultrastrong coupling occurs around α ∼ 0.01. For
the numerical results, we take a modulus sine dispersion relation ωk = ωc |sin(k · δx/2)|
with a hard ultraviolet cutoff ωc. This cutoff is related to the discretization δx of the
waveguide because we assume linear dispersion around the transition energy ∆ � ωc,
where ωk ≈ k · ωcδx/2. Because we have set the speed of light in the medium c ≡ 1, we
require ωcδx/2 = 1. For the analytical results it is often favorable to work in a continuum
model with perfect linear dispersion ωk = |k| and a smooth exponential cutoff in the
coupling, g(k) =

√
παω/2e−ω/2ωc . We explained how to go from the discrete to the

continuum description in Section 0.3.1.

As in Reference [120], we study the scattering between asymptotically free photonic
states, from an initial state |ψi〉 to a final state |ψf〉. The scattering amplitude between
these two asymptotically free states is defined as

Sf;i = lim
tf,i→±∞

eiEf tf 〈ψf |e−iH(tf−ti)|ψi〉e−iEiti , (3.2)

where the energies Ef/i are the respective eigenenergies far away from the emitter, i.e.,
Ef/i|ψf/i〉 = H0|ψf/i〉. For finding an analytical expression, the scattering amplitude is
typically expressed in the interaction picture with respect to H0, i.e.,

Sf;i = 〈ψf |T exp

[
−i

∫ ∞
−∞

dt V (t)

]
|ψi〉, (3.3)

where the interaction term V = H − H0 is taken in the interaction picture, that is,
V (t) = eiH0tV e−iH0t and T is the time ordering operator.8

3.2 Polaron Transformation

The polaron transformation is a transformation based on the Lang-Firsov transformation
[195], which displaces the electromagnetic field depending on the state of the emitter. The

8The time ordered product of two commuting operators is defined as T O(s1)O(s2) = Θ(s1 −
s2)O(s1)O(s2) + Θ(s2 − s1)O(s2)O(s1) with Θ the Heaviside step function.
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variational polaron transformation [196, 197] was originally used to study the ground state
of the spin-boson model [198, 199]. Interestingly, this transformation removes most of the
qubit-photon entanglement in the ground state of the polaron transformed Hamiltonian
for moderate coupling strengths α . 0.25 [185, 120].

Before we introduce the polaron transformation, let us simplify the Hamiltonian by
assuming a symmetric dispersion, ω−k = ωk, and bidirectional coupling, g−k = gk. In
this case, we can work with the orthogonal even and odd modes, Ak = 1√

2
(ak + a−k) and

Bk = 1√
2

(ak − a−k) respectively. While both modes evolve under the free Hamiltonian

H0 =
∆

2
σz +

∑
k

ωkA
†
kAk +

∑
k

ωkB
†
kBk, (3.4)

only the even modes couple to the emitter with a coupling of
√

2gk. For simplicity, we
continue to write gk and use gk =

√
παωk/L in the calculations, so that the Hamiltonian

reads

H =
∆

2
σz +

∑
k>0

ωkA
†
kAk +

∑
k>0

gkσx

(
A†k +Ak

)
, (3.5)

The dynamics of the original operators ak can be directly recovered by using the relation
a±k = 1√

2
(Ak ±Bk).

For low coupling strengths (α . 0.01) and low excitations, one typically applies the

rotating-wave approximation [28] in which the counterrotating terms σ−ak + σ+a
†
k are

neglected. In this case, the number of excitations in the system is conserved and one
can treat the evolution in each excitation sector separately. However, for larger coupling
strengths the RWA breaks down and ultrastrong coupling effects become relevant [41, 42].
To obtain analytical predictions in this regime, it was shown to be useful [120] to transform

the Hamiltonian, such that the ground state of the new Hamiltonian HP = U †PHUP is
close to the disentangled state |vac〉 ≈ |0〉TLS|0〉ph. The transformation used is a polaron
transformation UP with variational parameters fk,

UP = exp

[
σx
∑
k>0

(
fkAk − f∗kA†k

)]
. (3.6)

The action of the polaron transformation on the photonic and spin operators can be
calculated by using the relation eXY e−X =

∑
m

1
m! [X,Y ]m with [X,Y ]m =

[
X, [X,Y ]m−1

]
and [X,Y ]0 = Y , which is intimately related to the Baker–Campbell–Hausdorff formula.
The operators transform as

U †PA
†
kUP =A†k − fkσx, (3.7a)

U †PσxUP =σx, (3.7b)

U †PσzUP =σze
2σx

∑
k>0

(
fkAk−f∗kA

†
k

)
=

∆̃

∆
σzO

†
−fOf , (3.7c)
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with the operators Of = exp
[
2σx

∑
k>0 fkAk

]
and ∆̃ = ∆e−2

∑
k>0 |fk|2 . The Hamiltonian

in the polaron frame is then given by

HP = U †PHUP =
∆̃

2
σzO

†
−fOf +

∑
k>0

ωkA
†
kAk +

∑
k>0

σx

(
GkAk +G∗kA

†
k

)
+ E0 (3.8)

with Gk = gk − ωkfk and an energy shift E0 =
∑

k>0 ωk|fk|2 − gk(fk + f∗k ). We now
aim to find the variational parameters fk that minimize the ground state energy of this
Hamiltonian. Note, that when ∆ = 0, the polaron Hamiltonian is diagonalized for fk =
gk/ωk and when gk = 0, the original Hamiltonian is already diagonal (i.e., HP is diagonal
for the variational parameter fk = 0). Thus, we expect the optimal parameters to lie
somewhere in between.

The ground state energy, which we aim to minimize, is −∆̃/2 + E0, assuming the
ground state contains no photons. This yields a set of self-consistent equations for the
variational parameters fk [196, 185],

fopt
k =

gk

ωk + ∆̃
, with ∆̃ = ∆ exp

[
−2
∑
k>0

|fopt
k |2

]
. (3.9)

The renormalized energy for both the linear and modulus sine dispersion relation show
a scaling as ∆̃ = ∆ (p∆/ωc)

α/(1−α) for large ultraviolet cutoffs ωc as predicted for the spin-
boson model [119]. The scaling parameter p depends on the microscopic model used. Note,
that this expression is not well-defined for α = 1 because of the phase transition of the
ohmic model at this point. As we are working in the parameter regime α ≤ 0.5, we do not
discuss this further and refer the interested reader to Reference [119]. For these optimized
parameters, the polaron Hamiltonian reads up to a constant energy shift (and where we
write fk = fopt

k )

HP =
∆̃

2
σzO

†
−fOf +

∑
k>0

ωkA
†
kAk + ∆̃

∑
k>0

fkσx(A†k +Ak). (3.10)

At first glance, this might not seem like an improvement over the original Hamiltonian
as the counterrotating terms still appear, and only the coupling strength is renormalized
to fk = gk

ωk+∆̃
. However, when expanding the polaron Hamiltonian in orders of fk, or

equivalently
√
α, the counterrotating terms vanish in first order [120]. To see this, we

introduce the operator F =
∑

k>0 fkAk and expand

Of = 1 + 2σxF + 2FF +O(α3/2). (3.11)

Then, the resulting Hamiltonian, expanded up to the second excitation subspace, is

H
(2)
P =H0 + δ0

(
F †σ− + σ+F

)
− δ0σzF

†F + δ0σz(FF + h.c.)

− δ0(σzσxF
†FF + h.c.) + δ0σzF

†F †FF, (3.12)
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where we have introduced δ0 = 2∆̃. For a slightly simplified notation in the later sections,
we shift the energy, such that the free Hamiltonian for the even mode is now given by

H0 = ∆̃
1

2
(σz + 1) +

∑
k>0

ωkA
†
kAk. (3.13)

From the expanded polaron Hamiltonian, it is clear that the Hamiltonian in the single
excitation subspace,

H
(1)
P = H0 + δ0

(
F †σ− + σ+F

)
+ δ0F

†F, (3.14)

already conserves the number of excitations. For the higher order counterrotating terms
one can apply the RWA, so that the terms σzFF and σ−F

†FF vanish. In the polaron
frame this approximation is justified for larger couplings α than in the original Hamiltonian
because the effective coupling strength in the counterrotating terms scales with α instead
of
√
α.

This is closely tied to the rate at which transitions out of a specific subspace with
a given excitation number occur, which we sketch shortly here. Because the parity is
conserved, these transitions to first order are either proportional to ∆̃fk1fk2 (i.e., the
creation or annihilation of two photons) or to ∆̃fk (i.e., the creation or annihilation of
an excitation in the TLS and a photon). These rates have to be compared to the energy
difference between the state inside and outside of this subspace, that is ωk1 + ωk2 and
∆̃ + ωk, respectively. The limiting transitions are the generation of two photons at low
energies because the ratio fk1fk2/(ωk1 + ωk2) ∼ α does not vanish for small ωk. We
therefore expect the polaron transformation to be limited to moderate coupling strengths
α . 0.25.

As a final point, note that because the interaction is localized in space and the initial
state is a wavepacket localized far away from the emitter, we can replace the scattering
under the original Hamiltonian by the scattering under the polaron Hamiltonian HP. This
is valid, because the polaron transformation leaves the ground state of the system far away
from the emitter invariant [185].

3.3 Analytical Results for Scattering Amplitudes

In the regime where the RWA is valid the photon-qubit scattering has been thoroughly
studied in recent years for waveguides with linear dispersion [200, 191, 189, 192, 201, 190,
193, 144] and also for dispersive waveguides [191, 202, 203, 194]. Unfortunately, these
results can only be partly generalized to the Hamiltonian in the polaron frame due to the
form of the coupling δ0fk and the additional terms like δ0F

†F .

The single photon scattering in the polaron frame was studied theoretically and nu-
merically in Reference [120] and we extended the results to the scattering of two photons
in the ultrastrong coupling regime. As the two photon scattering amplitude can be derived
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}}
Figure 3.2: The scattering amplitude splits up into an independent part and a part described by the T-
operator. (a) For the scattering of a single photon, it splits into a noninteracting part and a scattered part.
(b) For the scattering of two photons, it splits up into independent scattering and a correlated scattering
part.

from expressions in the single excitation subspace, we first summarize the main ideas in the
single excitation subspace in Section 3.3.1. Having laid this foundation, in Section 3.3.2,
we calculate the scattering matrix of two photons by expressing it in terms of the Green’s
functions G(1) of the one excitation subspace, which can be obtained analytically. We
emphasize that our results are valid for any original coupling strength gk and dispersion
relation ωk.

3.3.1 Single Excitation Regime

For calculating the scattering amplitude between two asymptotically free states of a single
excitation, we need to calculate

Sf;i = 〈ψf |T exp

[
−i

∫ ∞
−∞

dt V (1)(t)

]
|ψi〉, (3.15)

where V (1) is taken in the interaction picture with respect to the free Hamiltonian H0.
This interaction term can be written in form of a vector of operators, ~O1 = (b, F ), and an
interaction matrix, u1 = (0, δ0; δ0, δ0), as

V (1) = H
(1)
P −H0 = ~O†1u1

~O1. (3.16)

The time dependence of the potential in the interaction picture only appears in the vector
of operators ~O1, whereas the interaction matrix u1 is time-independent. Furthermore, we
note that the vector of operators ~O1 annihilates all excitations of |ψf/i〉 such that one can
project onto the ground state in between the creation and annihilation operators in the
interaction term, i.e., V (1) = ~O†1|vac〉u1〈vac| ~O1 for our purposes.

By expanding the scattering amplitude in a Dyson series and summing all orders of
this expansion, we find that the scattering amplitude splits up into a noninteracting and
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scattered part, which can also be seen from the diagrammatic approach in Figure 3.2a. In
particular,

Sf;i =〈ψf |1− i

∫ ∞
−∞

dt1 V
(1)(t) + (−i)2

∫ ∞
−∞

dt

∫ t

−∞
dt2 V

(1)(t1)V (1)(t2) + . . . |ψi〉

=〈ψf |ψi〉 − i

∫ ∞
−∞

dt ei(Ef−Ei)t~v†f u1~vi

+ (−i)2

∫ ∞
−∞

dt

∫ ∞
0

dτ ei(Ef−Ei)t~v†f u1〈0| ~O1(τ)~0†1|0〉eiEiτu1~vi + . . .

=〈ψf |ψi〉 − 2πiδ(Ef − Ei)~v
†
f

[
u1 + u1Π

(1)(Ei)u1 + . . .
]
~vi

=〈ψf |ψi〉 − 2πiδ(Ef − Ei)~v
†
f

[
u−1

1 −Π(1)(Ei)
]−1

︸ ︷︷ ︸
≡T(1)(Ei)

~vi, (3.17)

where we have used the fact that the integrals factorize9 such that we can define the so-
called self-energy bubble Π(1)(z) ≡

∫∞
0 dτ〈0| ~O1(τ)~0†1|0〉eizτ . The initial and final vectors

are ~vf/i = 〈vac| ~O1|ψf/i〉. The infinite sum u1
∑

n

(
Π(1)u1

)n
converges to the finite two-by-

two matrix

T(1) = u1 + u1Π
(1)T(1) =

[
u−1

1 −Π(1)(Ei)
]−1

. (3.18)

Note, that the scattering amplitude splits into a noninteracting part 〈ψi|ψf〉 and a
scattered part, that is described by the T operator, −2πiδ(Ef − Ei)〈ψf |T (1)(Ei)|ψi〉 with

T (1)(z) = ~O†1T
(1)(z) ~O1. The bold-type variables denote two-by-two matrices and we refer

to their (i, j)-elements by writing for example T
(1)
ij . On the other hand, the T operator

and also the Green’s Functions G(0) and G(1), which are introduced below, are operators,

and if they have an index, it should be understood as G
(0)
O1O2

= 〈vac|O1G
(0)O†2|vac〉.

The self-energy bubble can be calculated from the Green’s function of the free Hamil-
tonian G(0)(z) = (z −H0)−1 as

Π(1)(z) = −i

∫ ∞
0

dt〈vac| ~O1(t) ~O†1|vac〉eizt = diag
(
G

(0)
bb (z), G

(0)
FF (z)

)
, (3.19)

where the elements of the diagonal self-energy bubble are G
(0)
bb (z) = (z − ∆̃)−1 and

G
(0)
FF (z) = Σ(z)/(4∆̃2). The self-energy Σ(ω) is given by

Σ(ω+) = 4∆̃2
∑
k>0

|fk|2
ω − ωk + iη

≡ δL(ω)− iΓ(ω)/2, (3.20)

where ω+ = ω+iη with an infinitesimal η > 0. The self-energy contains a renormalization
of the energy, the so-called Lamb shift δL, and a decay rate Γ, which determine the

9As an example take the expression at second order, which factorizes after a change of variables from
t2 to τ = t− t2.

3.3 Analytical Results for Scattering Amplitudes | 79



scattering characteristics. This expression can be evaluated in the continuum regime by
applying the Sokhotski–Plemelj theorem lim

η→0

1
ω±iη = ∓iπδ(ω) + P 1

ω , where P denotes the

Cauchy principal value. Recall, that fk = 1√
L
f(k), so that we obtain

δL(ω) =δ2
0 P

∫ ∞
0

dk

2π

|f(k)|2
ω − ω(k)

, (3.21a)

Γ(ωk) =δ2
0 |f(k)|2/ω′(ωk), (3.21b)

where the derivative ω′(z) = ∂kωk
∣∣
ωk=z

. For the linear dispersion relation with exponential

cutoff in the coupling strength, one can actually find the self-energy (for ω > 0) analytically
for a large cutoff ωc to be

Σ(ω) =
2α∆̃2

(ω + ∆̃)2

(
ω ln

ω

∆̃
− ω − ∆̃− iπω

)
. (3.22)

Note, that although this expression seems to be independent of the cutoff ωc, the depen-
dence is hidden in the renormalized transition energy ∆̃.

By straightforwardly inverting the two-by-two matrices, we can calculate the T(1)(z)-
matrix to be

T(1)(z) ≡
[
u−1

1 −Π(1)(z)
]−1

=
1

h(z)

(
(z − ∆̃)Σ(z) δ0(z − ∆̃)

δ0(z − ∆̃) δ2
0χ(z)

)
, (3.23)

where we have defined the denominator h(z) ≡ z − ∆̃− χ(z)Σ(z) and χ(z) ≡ z+∆̃
2∆̃

.

For the scattering of a single photon, the only relevant contribution comes from T
(1)
22 (z).

Due to the energy conservation term in the scattering amplitude, an initial photonic state
|ψi〉 = A†k|vac〉 can only scatter to a final state of the form |ψf〉 = skA

†
k|vac〉, where the

chiral phase shift sk is given by

sk = 1− i
f2
k

ω′(k)
T

(1)
22 (ωk) = 1− i

χ(ωk)Γ(ωk)

(ωk − ∆̃)− χ(ωk)Σ(ωk)
=
h(ωk)

∗

h(ωk)
, (3.24)

where we used the relation of Equation 3.21b. From the chiral phase shift, which has its
name because |sk| = 1, one can calculate the transmission and reflection coefficients as
tk = 1

2(sk + 1) and rk = 1
2(sk − 1). These expressions can be obtained by noting that a

right-moving photonic state scatters as

a†k|vac〉 =
1√
2

(
A†k +B†k

)
|vac〉 −→ 1√

2

(
skA

†
k +B†k

)
|vac〉 =

(
tka
†
k + rka

†
−k

)
|vac〉. (3.25)

We have plotted the reflectivity in Figure 3.3 to show, that when the coupling strength α
is increased, the dependence on the frequency moves away from the Lorentzian predicted
within the RWA to a much wider and asymmetric distribution.

Let us shortly compare these results with the well known results from the standard
rotating wave regime, where the effective photon-photon interaction term F †F can be
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Figure 3.3: The reflectivity |rk|2 changes its dependence on the frequency when α is increased. For small
α the reflectivity is well described by a Lorentzian, but for larger α it shifts and is no longer symmetric.

neglected and we find χ(z) = 1. Furthermore, the Lamb shift typically vanishes δL ∼ 0
and the decay rate is uniform Γ(ω) ∼ Γ, we then recover the standard result [189]

rk ≈
−iΓ/2

(ωk − ∆̃) + iΓ/2
. (3.26)

For extending the results to the two-photon regime, the Green’s functions G(1) =(
z −H(1)

P

)−1
are more relevant than the T (1)-operator. Fortunately, they can be expressed

in terms of each other by the relation [204]

G(1) = G(0) +G(0)T (1)G(0). (3.27)

In particular, we calculated the elements of the Green’s function to be (see Appendix 3.A)

G
(1)
bb (ω) =

1− Σ(ω)/δ0

h(ω)
, (3.28a)

G
(1)
bAk

(ω) =
1

h(ω)

δ0fk
ω − ωk

= G
(1)
Akb

(ω), (3.28b)

G
(1)
ApAk

(ω) =
δpk

ω − ωk
+

δ0fp
ω − ωp

χ(ω)

h(ω)

δ0fk
ω − ωk

. (3.28c)

3.3.2 Two Excitation Regime

We now focus on finding an analytical expression for the two photon scattering amplitude
in the polaron frame. We solve the two photon scattering by using the hardcore boson
representation [205] with annihilation (creation) operators b (b†). In this representation,
the TLS operators are replaced by bosonic operators, σz → 2b†b − 1 and σ− → b. To
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recover the results for a two level system, one has to introduce an energy penalty for
double excitations, u0b

†b†bb, which has to be taken to the limit u0 →∞ at the end of the
calculations. Under these considerations, the Hamiltonian we aim to approximate is

H
(2)
P = H

(1)
P − 2δ0b

†F †bF − δ0(b†F †FF + h.c.)− δ0F
†F †FF + u0b

†b†bb. (3.29)

The scattering matrix between two asymptotically free states, from |ψi〉 to |ψf〉, with
eigenenergies H0|ψf/i〉 = Ef/i|ψf/i〉 is given by Equation 3.2 where the Hamiltonian this

time is H = H
(2)
P . Instead of transforming to the interaction picture with respect to

the free Hamiltonian H0, we use a frame rotating with the single excitation Hamiltonian

H
(1)
P . This transformation allows us to relate the two photon scattering amplitude to

expressions obtained in the single excitation subspace, which we just solved analytically.
The scattering amplitude can then be calculated using a Dyson expansion of

Sf;i = lim
tf/i→±∞

eiEf tf 〈ψf(tf)|T exp

[
−i

∫ tf

ti

dt V (2)(t)

]
|ψi(ti)〉e−iEiti , (3.30)

where |ψf/i(tf/i)〉 = exp
[
iH

(1)
P tf/i

]
|ψf/i〉. Similarly to the expression in the single excitation

regime, the interaction term can be written as a product of vectors and matrices,

V (2) = H
(2)
P −H

(1)
P = ~O†2u2

~O2, (3.31)

where the interaction matrix u2 = (u0, 0, 0; 0,−2δ0,−δ0; 0,−δ0,−δ0) is now a three-by-
three matrix and the vector of operators ~O2 = (bb, bF, FF ) now has to be taken in the

interaction picture rotating with H
(1)
P . As the initial state contains two excitations, which

are completely annihilated by ~O2, we can project onto the vacuum in between the vectors of
the two creation and annihilation operators, that is, we can write V (2) = ~O†2|vac〉u2〈vac| ~O2.

As for the single photon case, the scattering matrix splits up into two parts (see
Figure 3.2b) when performing the Dyson expansion, i.e.,

Sf;i = Sunco
f;i − 2πiδ(Ef − Ei)~w

†
f T

(2)(Ei)~wi, (3.32)

where the uncorrelated part for an initial state |ψi〉 = A†k1
A†k1
|vac〉 to a final state |ψf〉 =

A†p1A
†
p1 |vac〉 is given by

Sunco
f;i = sk1sk2 (δp1k1δp2k2 + δp2k1δp1k2) . (3.33)

This part of the scattering amplitude is the only relevant one if the two photons don’t
overlap in momentum or position space or have a too narrow or wide bandwidth.

The more interesting case is when the photonic modes overlap, and correlations are
induced. The correlated part of the scattering is encoded in the T(2)-matrix. Just as for
the single photon case, it can be obtained from an infinite sum, which converges to

T(2)(z) = u2 + u2Π
(2)(z)T(2)(z) =

[
u−1

2 −Π(2)(z)
]−1

. (3.34)
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The self-energy bubble Π(2)(z) contains correlators of the four operators appearing in
every combination of (bb, bF, FF ) as

Π(2)(z) = −i

∫ ∞
0

dt〈vac| ~O2(t) ~O†2|vac〉eizt. (3.35)

By applying Wick’s theorem [151] one can reduce the four-point correlators to two two-
point correlators, which can be expressed in terms of the Green’s function G(1) in the
single excitation subspace. In fact, one needs to calculate convolutions over these Green’s

Functions, for example, for the element Π
(2)
11 (z) we find (see Appendix 3.B)

Π
(2)
11 (z) = 2i

∫ ∞
−∞

dω

2π
G

(1)
bb (ω)G

(1)
bb (z − ω). (3.36)

For the model with linear dispersion, the convolution can be calculated easily, at least

numerically, because G
(1)
bb (z) = 〈vac|bG(1)b†|vac〉 is known analytically (see Section 3.3.1)

and doesn’t have any poles along the real axis for α < 0.5 (see Appendix 3.A).

For the final step, we note that the energy conservation for the scattering of a photonic
initial state |ψi〉 = A†k1

A†k2
|vac〉 (and similarly for the final state) originates from the time

dependence of

〈vac| ~O(t)|ψi(ti)〉eiEiti = ~wie
−i(ωk1

+ωk2
)t = ~vi

δ0fk1

h(ωk1)

δ0fk2

h(ωk2)
e−i(ωk1

+ωk2
)t, (3.37)

which at the same time defines the prefactor ~vf/i (see Appendix 3.C). This relation can be
shown by applying Wick’s theorem and expressing the two two-point correlators in terms
of the Green’s Function G(1). The vector in terms of the total energy E = Ef = Ei and
the difference energies εi = ωk1 − ωk2 , εf = ωp1 − ωp2 is given by

~vf/i =

 2

(E − 2∆̃)/δ0
1

2δ2
0
(E − 2∆̃)2 − 1

2δ2
0
ε2f/i

 (3.38)

By combining the above results, we obtain the correlated part of the scattering ampli-
tude to be

Scorr
p1p2;k1k2

= −2πiδ(Ef − Ei)
δ0fp1

h(ωp1)

δ0fp2

h(ωp2)
~vf
†T(2)(Ei)~vi

δ0fk1

h(ωk1)

δ0fk2

h(ωk2)
, (3.39)

where Ei = ωk1 + ωk2 and Ef = ωp1 + ωp2 . We have verified these results using the path
integral formalism [2].

For the standard result, where interaction terms containing more than one photon

operator can be neglected, the only relevant term in the Π(2)-matrix is the element Π
(2)
11 (z),

which is typically the largest of all matrix elements anyways (see Appendix 3.B). For δL ∼ 0

and Γ(ω) ∼ Γ we find δ0fk
h(ωk) = τk =

√
Γ

ωk−∆̃+iΓ/2
. Moreover, the middle part is given by

~vf
†T(2)(Ei)~vi = 4

(
Ei − 2∆̃ + iΓ

)
so that we recover the standard result [189]

Scorr
p1p2;k1k2

≈ −8πiδ(Ei − Ef)τp1τp2

(
Ei − 2∆̃ + iΓ

)
τk1τk2 . (3.40)
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3.4 Numerical Simulation of Two-Photon Scattering

To check the analytical expression of the scattering amplitude of Equation 3.39, we can
compare it to numerical results for the scattering of two photons under the specific Hamil-
tonians we have encountered, that is

1. the polaron Hamiltonian H
(2)
P expanded up to second order and under the rotating

wave approximation from Equation 3.12;10

2. the full polaron Hamiltonian HP of Equation 3.10;

3. the original Hamiltonian H of Equation 3.5.

The numerical evolution under the original and the full polaron Hamiltonian requires
advanced numerical tools and can be achieved by the method of Matrix Product States.
This comparison showed that in single excitations subspace the analytical predictions are
valid for moderate coupling strengths α . 0.25 [120]. Similar calculations in the two-
photon subspace are being carried out currently. We concentrate in the following on the

comparison with the approximated polaron Hamiltonian H
(2)
P and point out the main

characteristics.

For the numerical results, one discretizes the waveguide of length L into 2n+ 1 parts
of width δx so that the wavevectors are discretized into

kn ∈
π

(2n+ 1)δx
· {0,±1, . . .± n} (3.41)

and takes a dispersion relation ωk = ωc| sin (kδx/2) |. This dispersion relation is linear for
small frequencies and has a hard ultraviolet cutoff ωc = 2c/δx. Last but not least, for an
ohmic spectral function, we take the light matter coupling is of the form gk =

√
παωk/L

such that the spectral function is ohmic.

We take as initial states gaussian wavepackets centered at positions far away from the
emitter |ψi〉 =

∑
k1,k2

φk1,k2A
†
k1
A†k2
|vac〉. In particular, we use gaussian wavepackets,

φk1,k2 =
1

2N

(
e−

(ω1−µ1)2

2s
−iω1x1e−

(ω2−µ2)2

2s
−iω2x2 + ω1 ↔ ω2

)
, (3.42)

where ωj = ωkj . The normalization can be expressed in terms of the parameters s, µj , and
xj (see Appendix 3.D). We then let the wavepacket evolve for a sufficiently long time T
such that the wavepacket has interacted with the two level system and it had time to fully
decay back to the ground state, but not too long so that the wavepacket doesn’t reach the
end of the waveguide, i.e., T ≤ L/c. The form of the scattering amplitude predicts that

10These results should agree exactly in the limit of large cutoff ωc.
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the final state splits up into an uncorrelated and a correlated part, such that the outgoing
wavepacket |ψf〉 =

∑
p1,p2

ψp1,p2A
†
p1A

†
p2 |vac〉 has the form

ψp1,p2 = sp1sp2e−i(ω1+ω2)T (φp1,p2 + φp2,p1) + e−i(ω1+ω2)Tψcorr
p1,p2

, (3.43)

where the correlated part is given by ψcorr
p1,p2

=
∑

k1,k2
Scorr
p1p2;k1k2

φk1,k2 . There are some
simplifications for the analytical approximation of this sum, which we summarize in Ap-
pendix 3.D.

In Figure 3.4 we show the close to perfect agreement between the numerical and ana-
lytical results. The slight deviations come from the finite cutoff and only approximately
linear dispersion. We would like to make a few remarks on our results and their physical
relevance:

• We are only interested in the correlated part here because the uncorrelated part is
well understood and it was shown that the analytical predictions from the polaron
transformation work well [120]. Therefore, we take the correlated part from the
difference

e−i(ω1+ω2)Tψcorr
p1,p2

= ψp1,p2 − sp1sp2e−i(ω1+ω2)T (φp1,p2 + φp2,p1) (3.44)

and compare it to the analytical predictions. With this approach we are able to
focus on the most interesting and new features of the two photon scattering.11 For
this purpose, we plot the modulus of the wavefunction |ψcorr

p1,p2
|2 and the spectrum

〈Nk〉 = 〈A†kAk〉. We have checked, that the correlated part vanishes when the
wavepackets don’t overlap in momentum or positions space.

• Within the RWA, one expects a narrow peak around the resonance frequency for
the correlated part, which we recover for small coupling strength α as shown in
Figure 3.4a. When the coupling strength is increased (see Figure 3.4b-c), the shape
widens in momentum space and the region of correlated interaction can stretch over
the whole wavepacket. Furthermore, the shape of the wavepacket of the full scattered
state ψp1,p2 deviates from the gaussian shape of the initial state φk1,k2 .

• The last thing we point out is the dependence of the correlated part on the width s of
the initial gaussian wavepackets. In principle, the significance of the correlated part
depends on this width because when the initial state is too narrow or to wide, the
correlated part will vanish. For example, if the wavepacket is spread out over a large
space region, the probability of two photons close to the emitter at the same time,
and therefore the probability for correlations, is very low. A simulation of this limit
would require the use of many modes, so that we only show the difference between
s = 0.1 (Figure 3.4b) and s = 0.01 (Figure 3.4d). By comparing these figures, one
can see that the ratio of the correlated part of the scattering and the initial state
decreases when it becomes narrower in momentum space.

11On the other hand we skip over some results form the interplay between the uncorrelated and correlated
part [206], like the reemergence of the resonance frequency in the spectrum of the reflected photons when
the correlated part is present.
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There are many more important phenomena and applications of our analysis, that one
could look at, but we close here the discussion on the simulation within the polaron frame.

3.5 Conclusion and Outlook

Light-matter interactions are well understood when the coupling strength is much smaller
than the transition energies of the atom-like systems, g � ∆. When the coupling strength
is increased to g ∼ ∆, typically used methods and approximations break down. We have
presented here a method for studying the dynamics of a photon confined to a waveg-
uide, which interacts with a single TLS in this ultrastrong coupling regime. In particular,
we focused on the scattering of multiphoton states, because the results for the scatter-
ing matrix are experimentally accessible through the scattering of coherent states on the
quantum emitter [141]. Understanding how processes in the ultrastrong coupling regime
can be approximated is essential for finding and developing new approaches for inducing
strong photon-photon nonlinearities via quantum emitters or decreasing interaction times
between the TLSs and the photons.

Our proposed method relies on a polaron transformation with a subsequent minimiza-
tion of the ground state energy. This correctly predicts the renormalization of the TLS
transition energy, as studied for the spin-boson model [119]. Furthermore, the counter-
rotating terms vanish to first order in the polaron transformed picture and thus similar
techniques, as when the RWA is valid, can be applied. However, as the polaron transfor-
mation introduces photon-photon interaction and higher order terms in the Hamiltonian,
the known methods need to be refined. We have derived explicitly the scattering ampli-
tude of one and two photons by expansion in a Dyson series and subsequent summation of
the terms, which can be expressed as products of low-dimensional matrices. Furthermore,
we have shown how to recover the standard results under the RWA.

These approximated analytical results can be compared against other analytical or nu-
merical approaches, e.g., to results from numerical evolution of a two photon wavepacket
under the polaron transformed Hamiltonian in the subspace of two excitations. Further-
more, our analytical results should be compared with simulations based on other numerical
methods able to evolve the two-photon wavepacket under the full polaron Hamiltonian.
Numerical simulations using Matrix Product States are currently being carried out. Apart
from numerical simulations, there is at least one more way of checking our results against
other (exact) analytical results, e.g., at the Toulouse point (α = 0.5). Even though this
coupling strength is above the point until which we expect good results (α . 0.25), it can
give a rough idea on the validity of the approximations. In the single excitation subspace
there is a qualitative agreement between the two results [120], and this result extends to
the two excitation subspace at low energies.

Motivated by the results for the ultrastrong coupling of a single quantum emitter to the
waveguide, one can extend the methods to the coupling of two and even more emitters.
In this case, one first has to find the variational parameters that minimize the ground
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state energy. This is possible analytically for up to two emitters, but for more than two
this is only possible numerically. Even though this limits the applications, it can already
give insight into collective decay processes and interactions between quantum emitters
mediated through the waveguide.
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Figure 3.4: The left and middle panel compare the numerical and analytical results for the correlated part
of the scattering, |ψcorr

k1,k2
|2. In the right panel we compare the results for the spectrum 〈Nk〉. The blue

line denotes the distribution of the initial state, the orange dots are for the full scattered result ψk1,k2 and
the red and green line show only the correlated part ψcorr

k1,k2
and the good agreement between the numerics

(red) and the analytical prediction (green). The first three plots are for the same gaussian distribution
s = 0.1, µ1 = µ2 = 0.9∆, x1, x2 = −0.2L for different coupling strengths a α = 0.02, b α = 0.1, and c
α = 0.2. d In the last plot we have used the same parameters as in (b) but with a smaller width s = 0.01.

88 | Chapter 3: Photon Scattering in the Ultrastrong Coupling Regime



Appendix

3.A Remarks on the Single Excitation Green’s Function

We have calculated the Green’s function for one excitation from the T-matrix by using
the relation [204]

G(1) = G(0) +G(0)T (1)G(0), (3.45)

which yields for the elements G
(1)
O1O2

= 〈vac|O1G
(1)O†2|vac〉 the functions

G
(1)
bb (ω) =

1− Σ(ω)/δ0

h(ω)
, (3.46a)

G
(1)
bAk

(ω) =
1

h(ω)

δ0fk
ω − ωk

= G
(1)
Akb

(ω), (3.46b)

G
(1)
ApAk

(ω) =
δpk

ω − ωk
+

δ0fp
ω − ωp

χ(ω)

h(ω)

δ0fk
ω − ωk

, (3.46c)

G
(1)
bF (ω) =

Σ(ω)/δ0

h(ω)
= G

(1)
Fb(ω), (3.46d)

G
(1)
FF (ω) =

(ω − ∆̃)Σ(ω)/δ2
0

h(ω)
. (3.46e)

These results can also be found by applying the LSZ reduction formula [207].

First of all, we note that for using the Green’s Functions for the two photon scattering,
one needs an extension to negative momenta. For this, one calculates the self-energy Σ(ω)
in that regime. Both for the linear dispersion relation in the continuum and the modulus
sine dispersion relation, we find for large cutoffs ωc

Σ(ω) =
2α∆̃2

(ω + ∆̃)2

(
ω ln

ω

∆̃
− ω − ∆̃− iπω

)
, for ω > 0, (3.47a)

Σ(ω) =
2α∆̃2

(ω + ∆̃)2

(
ω ln
−ω
∆̃
− ω − ∆̃

)
, for ω < 0, (3.47b)

with Σ(0) = −2α∆̃ and Σ(−∆̃) = −α∆̃.

Furthermore, we note that the Green’s functions don’t have a pole along the real axis
for α < 0.5. Along the positive real axis (or in general within the band if we consider a hard
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Figure 3.5: Plot of the relevant Green’s functions G
(1)
bb , G

(1)
bF , and G

(1)
FF for α = 0.2 in the continuum model

with linear dispersion. The solid line depicts the real part and the dotted line the imaginary part, which
vanishes outside the band, that is for ω < 0 for our continuum case.

ultraviolet cutoff ωc) this is obvious because the self-energy has a non-zero imaginary part.
To prove this statement outside of the band, one can use general results for the Green’s
function, i.e. it is monotonically increasing with ω and furthermore G(ω → ±∞) = ±∞.
Therefore only the value at the edges of the band matter. In the continuum limit with
linear dispersion, we are therefore interested in G(1)(0). The most relevant part to look
at is the denominator h(ω). At the origin it attains the value h(0) = −(1 − α)∆̃, which
is negative for α < 1 and therefore G(1) has no pole along the real axis. This behavior is
also obvious from plots of these functions as seen in Figure 3.5.

3.B Calculation of the Energy Bubble

This section is concerned with the calculation of the energy bubble, which is given by

Π(2)(z) = −i

∫ ∞
0

dt 〈vac| ~O2(t) ~O†2|vac〉e−izt. (3.48)

By applying Wick’s theorem on the four-point correlators, 〈vac| ~O†2(t) ~O2|vac〉, we ob-
tain the product of two two-point correlators, which can be expressed in terms of the
single excitation Green’s function. As an example we calculate one element of Π(2)(z), in
particular,

Π
(2)
11 (z+) = −i

∫ ∞
0

dτ〈vac|b2(τ)b†2|0〉eizτ

= −2i

∫ ∞
0

dτ

∫ ∞
−∞

dω

2π

∫ ∞
−∞

dω′

2π
iG

(1)
bb (ω+)e−iωτ · iG(1)

bb (ω′+)e−iω′τ · eiz+τ

= 2i

∫ ∞
−∞

dω

2π
G

(1)
bb (ω)G

(1)
bb (z − ω) = 2i(G

(1)
bb ∗G

(1)
bb )(z), (3.49)

where we have introduced the convolution (f∗g)(E) =
∫∞
−∞

dω
2π f(ω)g(E−ω). The reduction

to the convolution can be obtained by applying the Residue theorem and carefully paying
attention to the poles of h(ω), which are all below the real axis, and of (z − ω − ω′ + iη)−1,
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which comes from the time integral. The full self-energy bubble is a three-by-three matrix
with the elements

Π(2) = i

 2G
(1)
bb ∗G

(1)
bb 2G

(1)
bb ∗G

(1)
bF 2G

(1)
bF ∗G

(1)
bF

2G
(1)
bb ∗G

(1)
Fb G

(1)
bb ∗G

(1)
FF +G

(1)
bF ∗G

(1)
bF 2G

(1)
bF ∗G

(1)
FF

2G
(1)
Fb ∗G

(1)
Fb 2G

(1)
Fb ∗G

(1)
FF 2G

(1)
FF ∗G

(1)
FF

 , (3.50)

where we have left out the dependence on the frequency for a more compact notation. As
these expressions don’t give an intuitive picture of the functions, we provide plots of them
in Figure 3.6. Note, that the interesting parts of the functions are around the resonance
at E ∼ 2∆̃.
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Figure 3.6: Plot of the elements of the self-energy bubble Π(2) for α = 0.1 in the continuum model with
linear dispersion. The solid line plots the real part and the dotted line the imaginary part. All functions
go to zero at large frequencies, outside of the plotted range for some elements.
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3.C Energy Conservation

This section is concerned with the energy conservation originating in the time dependence
of the relation 〈vac| ~O2(t)|ψi〉 = ~wie

−iEit. To prove this, we first use

〈vac|b(t)A†k|vac〉 =i

∫ ∞
−∞

dω

2π
G

(1)
bAk

(ω+)e−iωt =
δ0fk
h(ωk)

e−iωkt ≡ βke−iωkt, (3.51a)

〈vac|F (t)A†k|vac〉 =i

∫
dω

2π
G

(1)
FAk

(ω+)e−iωt =
(ωk − ∆̃)fk
h(ωk)

e−iωkt ≡ αke−iωkt. (3.51b)

These results can be found by the same considerations as in Appendix 3.B. The next step
is applying Wick’s theorem to reduce the correlator of four operators to a product of two

correlators, which is possible because
[
b(t), A†k

]
∈ C. For example for the first element we

obtain

〈vac|b(t)b(t)A†k1
A†k2
|vac〉 = 〈vac|b(t)b(t)A†k1

A†k2
|vac〉+ 〈vac|b(t)b(t)A†k1

A†k2
|vac〉

= 2〈vac|b(t)A†k1
|vac〉 · 〈vac|b(t)A†k2

|vac〉 = 2βk1βk2e−iEit (3.52)

where Ei = ωk1 + ωk2 is the total energy. The other elements follow analogously and we
obtain

~wi =

 2βk1βk2

αk1βk2 + βk1αk2

2αk1αk2

 =

 2

(Ei − 2∆̃)/δ0
1

2δ2
0
(Ei − 2∆̃)2 − 1

2δ2
0
ε2i


︸ ︷︷ ︸

≡~vi

δ0fk1

h(ωk1)

δ0fk2

h(ωk2)
, (3.53)

where εi = ωk1 − ωk2 . An analogous result holds for ~wf .

3.D Remarks on Numerical Methods

Concerning the numerics, we have mixed the discrete case and the continuum case during
the calculation and need to pay attention that they always agree with each other. The
gaussian wavepacket is given by

φk1,k2 =
1

2N

(
e−

(ω1−µ1)2

2s
−iω1x1e−

(ω2−µ2)2

2s
−iω2x2 + ω1 ↔ ω2

)
, (3.54)

where the normalization in the continuum model with linear dispersion is given by

N 2 =

∫
dω1

2π

∫
dω2

2π

1

4

∣∣∣e− (ω1−µ1)2

2s
−iω1x1e−

(ω2−µ2)2

2s
−iω2x2 + ω1 ↔ ω2

∣∣∣2
=

1

(2π)2

πs

2

(
1 + e−

µ2
−+s2x2

−
2s

)
, (3.55)

where µ− = µ1 − µ2 and x− = x1 − x2.
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Another simplification is to note that the gaussian wavepackets can be written as a
product of the sum E = ω1 +ω2 and difference frequency ε = ω1−ω2. Note, that then the
parameter range needs to be restricted to ε ∈ [−E,E]. A short calculation shows that

φk1,k2 =
1

N φ+(E)φ−(ε) =
1

N e−
(E−µ+)2

4s
−iEx+/2

(
e−

(ε−µ−)2

4s
−iεx−/2 + ε→ −ε

)
. (3.56)

The last simplification is a separation of the correlated part into different terms. For

this, we note, that by writing ~vf/i = ~ν − ε2
f/i

2δ2
0
ê3 with ê3 = (0, 0, 1) one can separate

~v†f T
(2)(E)~vi =

[
c1(E)− 1

2δ2
0

(
e2

f + e2
i

)
c2(E) +

1

4δ4
0

e2
f e

2
i c3(E)

]
, (3.57)

where the scalars are given by the matrix products c1(E) = ~ν†T(2)(E)~ν, c2(E) = ê3T
(2)(E)~ν

and c3(E) = ê3T
(2)(E)ê3. The correlated part of the state is then given by

ψcorr
p1,p2

= −i
∑
k1,k2

2πδ(Ef − Ei)S
corr
p1p2;k1k2

φk1,k2

= −i δ0fp1

h(ωp1)

δ0fp2

h(ωp2)

1

N φ+(E)

×
[(
c1(E)− e2

f

2δ2
0

c2(E)

)
I1(E) +

(
e2

f

2δ2
0

c3(E)− c2(E)

)
I2(E)

]
, (3.58)

where the integrals over the gaussians are given by

I1(E) =2

∫ E

−E

dε

2π

δ0f(E+ε
2 )

h(E+ε
2 )

δ0f(E−ε2 )

h(E−ε2 )
φ−(ε), (3.59a)

I2(E) =2

∫ E

−E

dε

2π

δ0f(E+ε
2 )

h(E+ε
2 )

δ0f(E−ε2 )

h(E−ε2 )

ε2

2δ2
0

φ−(ε). (3.59b)
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