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1. SUMMARY 

Recent developments in antibody-based immunotherapy, especially targeting immune 

checkpoints, have revolutionized cancer treatment. Immune checkpoints are inhibitory 

pathways responsible for dampening the immune response in order to ensure self-

tolerance under physiological conditions. In cancer cells, however, immune checkpoints 

are often utilized as a mechanism to escape the immune system. Numerous studies have 

demonstrated that blocking immune checkpoints restores potent anti-tumor immune 

responses and ultimately leads to the elimination of cancer cells. Accordingly, several 

monoclonal antibodies (mAbs) targeting immune checkpoint receptors are currently in the 

market. 

The CD47-SIRPα myeloid-specific immune checkpoint controls the immune response by 

negatively regulating phagocytosis. SIRPα, expressed on phagocytic cells, triggers a 

negative signal upon binding to CD47, ubiquitously expressed on healthy cells and 

overexpressed on several cancer types. Hence, the blockade of the CD47-SIRPα signaling 

pathway constitutes a promising approach to mediate phagocytosis of tumor cells. This 

blockade, however, may also induce unwanted toxicity to healthy cells, which also 

express CD47. In order to reduce systemic toxicity while promoting the elimination of 

tumor cells, the blockade of the CD47-SIRPα immune checkpoint should be restricted to 

cancer cells. 

Acute myeloid leukemia (AML) is a severe hematological cancer with a five year 

survival rate of 25%. Furthermore, while immunotherapies are already in clinical use for 

other hematological diseases, chemotherapy remains the first-line treatment for AML. 

This indicates an urgent need for the development of new and effective approaches that 

offer a better prognosis to AML patients. In order to provide a novel therapeutic strategy, 

we generated local inhibitory checkpoint molecules, which are antibody derivatives that 

deliver the benefits of blocking the CD47-SIRPα immune checkpoint to AML cells. The 

disruption of the myeloid-specific immune checkpoint is achieved by the endogenous 

SIRPα domain, which is genetically fused to an antibody fragment targeting the AML 

antigen CD33. Since the physiologically low affinity of SIRPα to CD47 prevents it from 

targeting CD47 by itself, the binding of the local inhibitory checkpoint molecules is 

dictated by the high affinity CD33-binding domain. Consequently, the anti-tumor effects 

of these molecules are confined to CD33-expressing AML cells.  
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In order to investigate the best strategy to block the CD47-SIRPα immune checkpoint on 

AML cells, three different local inhibitory checkpoint molecules were created: local 

inhibitory checkpoint mAbs (licMABs), single-arm licMABs (licMABs
single

) and local 

inhibitory checkpoint antibody derivatives (liCADs). All three formats bind CD33 with 

high affinity, disrupt the CD47-SIRPα axis by the endogenous SIRPα domain and 

activate immune effector cells. They diverge, however, in the binding valency to CD33 

and the immune effector cell-activating domain. LicMABs target CD33 with both 

antibody arms, while licMABs
single

 and liCADs target CD33 monovalently. Moreover, 

licMABs and licMABs
single

 activate effector cells by an IgG1 Fc domain and liCADs 

contain a single chain variable fragment (scFv) activating uniquely CD16. The in vitro 

evaluation of these molecules confirmed the preferential binding to CD33-expressing 

cells even in the presence of a large antigen sink created by CD47 expressed on healthy 

cells. In addition, all local inhibitory checkpoint molecules induced Natural Killer (NK) 

cell-mediated lysis of AML cells and licMABs and licMABs
single

, but not liCADs, 

enhanced phagocytosis of AML cell lines and primary, patient-derived AML cells. 

Importantly, we determined that the expression levels of CD47 on primary AML cells 

influence the outcome of licMAB-mediated phagocytosis. 

In summary, this work establishes licMABs as a promising strategy to block the CD47-

SIRPα immune checkpoint on high CD47-expressing AML cells. Furthermore, the 

marginal binding of these molecules to CD47 on healthy cells ensures a highly specific 

immune response and lowers the risk of unwanted side effects. 
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2. INTRODUCTION 

2.1. Cancer immunotherapy 

Cancer immunotherapy harnesses certain components of the host’s immune system to 

fight tumors. By inducing or potentiating anti-tumor immune effector functions, its main 

goal is to overcome the immunosuppressive environment created by cancer cells, thus 

leading to tumor cell clearance and long-term disease-free survival of cancer patients. 

Together with surgery, chemotherapy, radiation and targeted therapy, the rapidly 

advancing field of cancer immunotherapy can currently be considered as the fifth pillar of 

cancer treatment.
1
 

The first evidence of cancer immunotherapy was the Coley‘s toxin, which dates to the 

19
th

 century.
2
 William Coley, a surgeon at the Hospital for the Ruptured and Crippled in 

New York, realized that patients suffering from metastatic sarcoma and with a 

concomitant infection of Streptococcus pyogenes achieved tumor remission. Based on 

that observation, Coley injected heat-inactivated bacteria and bacterial lysates into 

patients with inoperable cancers.
2, 3

 Coley’s toxin achieved a remarkable clinical success, 

but its use was abandoned due to severe side effects and lack of suitable explanations. 

Little happened in the field until some decades later, when the era of modern immunology 

began with the discovery of the interferon, the first cancer vaccine and the initial 

characterization of the innate and the adaptive branches of the immune system.
4-10

 In 

addition to this, the development of the serum therapy by Emil von Behring, the posterior 

work of Paul Ehlrich and ultimately the establishment of the hybridoma technology by 

César Milstein and Georges J. F. Köhler lead to the discovery of monoclonal antibodies 

(mAbs), which are one of the main players of cancer immunotherapy.
11-15

 Lastly, at the 

end of the 20
th

 century, evidences supporting anti-tumor immune responses, tumor-

specific immune surveillance and tumor immune escape shaped the actual understanding 

of cancer immunology.
16, 17

  

It is currently accepted that tumors result from a combination of genetic and epigenetic 

changes that facilitate an abnormal proliferation of any cell in the body, thus becoming 

immortal and outgrowing healthy cells.
18

 Throughout this process, new antigens 

denominated neo-antigens arise, which allows the immune system to selectively detect 

and eliminate tumor cells.
19

 Nevertheless, cancer cells develop mechanisms to evade 

immune recognition and gain immune tolerance. The upregulation of immune 
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checkpoints, for instance, is one of these mechanisms commonly used by cancer cells.
20

 

Therefore, present efforts in cancer immunotherapy are focused on eliminating cancer 

cells by restoring anti-tumor immune responses.  

2.1.1. Monoclonal antibodies 

The function of antibodies was envisioned by Paul Ehrlich, who proposed the concept of 

the magic bullet in 1900.
21

 With this idea, Ehrlich described the ability of a compound to 

precisely bind and destroy its intended target without harming healthy tissues, just like a 

bullet fired from a gun to hit a specific object. Further studies confirmed the presence of 

such compounds in the blood and their importance in protection from bacterial and viral 

infections. Their origin, however, was unclear until plasma cells, responsible of 

producing antibodies, were identified by Astrig Fagraeus in 1947.
22

 

The following milestone in the history of antibodies was the determination of their 

structure, revealed by enzymatic digestion and crystallographic analyses (Figure 1).
23-26

 

Antibodies, also called immunoglobulins, are 150 kDa molecules composed by two 

identical light chains (LC, 25 kDa) and two identical heavy chains (HC, 50 kDa) 

connected by disulfide bonds. There are five classes of HC (IgG, IgM, IgA, IgD and IgE), 

which define the isotype of the antibody and its biological functions.
27

 All of them 

contain one variable domain (VH), one constant domain (CH1), a hinge region and two 

other constant domains (CH2 and CH3). In addition, a CH4 domain is present for IgM and 

IgE. Subclasses are defined for IgG (IgG1, IgG2a/b, IgG3 and IgG4) and IgA (IgA1 and 

IgA2), being IgG1 the isotype most commonly used for cancer immunotherapy. 

Regarding the LC, two types are described: kappa (κ) and lambda (λ), both composed by 

one variable (VL) and one constant (CL) domain. Each antibody domain folds into a 

distinctive 3D structure termed the immunoglobulin-fold (Ig-fold). It consists of two β-

sheets packed together and linked by a disulfide bond, resembling a barrel-shaped 

structure. The two β-sheets of the variable domains are composed of four and five strands. 

In the constant domains, the β-sheets are formed by three and four strands.  

Functionally, an antibody can be divided into the antigen-binding fragment (Fab) and the 

fragment crystallizable (Fc). The Fab region is composed by the VL-CL and the VH-CH1 

domains and confers the specificity to the target antigen. The VL and the VH domains 

contain the complementary-determining regions (CDRs), which are stretches of high 

variability embodied between frameworks (FRs) and define the antigen-binding site.
28
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According to the Kabat numbering scheme, the amino acids 24-34, 50-56 and 89-97 

constitute the three CDRs of the VL and the amino acids 31-35, 50-65 and 95-102 

determine the three CDRs of the VH. The Fc region, consisting of the CH2 and CH3 

domains, binds to Fc receptors (FcRs) expressed on immune cells and triggers immune 

activation. There are four types of FcRs, classified according to the antibody isotype that 

they recognize. Fc-gamma receptors (FcγRs) and the neonatal Fc receptor (FcnR) bind to 

IgG antibodies, Fc-alpha receptors (FcαRs) to IgA and Fc-epsilon receptors (FcεRs) to 

IgE.
29

  

 

Figure 1. Crystal structure of a human IgG antibody 

Human IgG antibodies consist of two heavy chains (red and green) and two light chains (blue and orange) 

stabilized by disulfide bonds (black lines). It can be divided into antigen-binding fragment (Fab), 

responsible for targeting specific antigens and fragment crytallizable (Fc), responsible for interacting with 

Fc-gamma receptors and mediate immune responses. Single domains are indicated. Figure adapted from 

PDB ID 1IGT.
30

 

Despite antibodies were already considered as very promising tools, difficulties in 

obtaining single antibodies of known specificity largely restricted the progression in the 

field. The development of the hybridoma technology, a method used for the production of 

antibodies with homogeneous antigen-binding (so-called monoclonal Abs, mAbs), solved 

this limitation.
13-15

 Hybridomas were initially obtained by fusing antibody-expressing B 

cells from an immunized mouse to immortal myeloma cells, thus generating a cell line 

producing murine mAbs. These murine antibodies, however, were typically immunogenic 
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to humans and created graft-versus-host responses. Immunogenicity was overcome by the 

advent of advanced molecular cloning techniques, which facilitated the development of 

humanized antibodies by the engraftment of murine CDRs onto a human antibody 

framework.
31

 The establishment of these two tools advanced the biomedical research and 

rapidly led to an arsenal of mAbs for many diseases. Muronomab, a murine mAb 

targeting CD3, was the first mAb to achieve market approval by the US Food and Drug 

Administration (FDA) and CAMPATH-1H, targeting CD52, was the first clinical 

antibody to be fully humanized.
32, 33

 

Upon binding to the target tumor antigen, mAbs trigger potent tumor-specific immune 

responses. The type of immune response that IgG1 mAbs induce depends on binding to 

either the complement system or FcγRs (Figure 2). The complement component 1q (C1q) 

binds with high affinity to the Fc domain of two or more IgG1 mAbs opsonizing a tumor 

cell. This triggers the complement cascade, which ultimately leads to the formation of the 

membrane attack complex (MAC) on the target cell membrane, resulting in tumor cell 

lysis (Figure 2A). On the other hand, by binding to FcγRs, IgG1 mAbs trigger 

mechanisms mediated by innate immune cells. There are several types of FcγRs: 

CD16A/B (FcγRIIIA/B), CD32A/B (FcγRII) and CD64 (FcγRI). Except for CD32B, 

which transduces inhibitory signals through immunoreceptor tyrosine-based inhibitory 

motifs (ITIMs), all others contain immunoreceptor tyrosine-based activation motifs 

(ITAMs) and transduce activating signals to immune cells. CD16A, primary expressed on 

Natural Killer (NK) cells, is required for antibody-dependent cellular cytotoxicity 

(ADCC), and CD32A and CD64, expressed on macrophages, dendritic cells (DCs) and 

neutrophils, mediate antibody-dependent cellular phagocytosis (ADCP). During ADCC, 

NK cells degranulate and secrete perforin and granzymes that induce tumor cell lysis 

(Figure 2B); and if ADCP is mediated, tumor cells are engulfed and degraded in 

lysosomal compartments (Figure 2C). In addition, peptides derived from lysosomal 

degradation or lysis of tumor cells can be presented by DCs on either major 

histocompatibility complex (MHC) class II molecules and activate CD4
+
 T cells or on 

MHC class I molecules and prime CD8
+
 cytotoxic T cells, both leading to an induction of 

adaptive immune responses (Figure 2D).
34

 Importantly, the relevance of the explained 

anti-tumor effects mediated by IgG1 mAbs has been clinically validated.
35, 36
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Figure 2. Effector functions of IgG1 antibodies 

Binding of IgG1 antibodies to antigens expressed on tumor cells can induce four effector mechanisms that 

ultimately lead to the destruction of the tumor cell: (A) complement activation, (B) antibody-dependent 

cellular cytotoxicity, (C) antibody-dependent cellular phagocytosis and (D) tumor antigen cross-

presentation and T cell activation. 

2.1.2. Engineering of antibodies 

Currently, more than 70 mAbs are approved by the FDA and the European Medicines 

Agency (EMA) for the treatment of cancer and other diseases. The clinical and 

commercial success of these drugs encouraged the development of the next generation of 

antibody-based therapeutics including antibody-drug conjugates (ADCs), bispecific 

antibodies (bsAbs) and antibody-derivatives (Figure 3). 

ADCs combine the beneficial effects of mAbs and the potency of chemotherapy. By 

attaching a toxin to an antibody, ADCs become highly selective and cytotoxic drugs for 

cancer therapy (Figure 3B).
37

 Two main types of cytotoxic payloads are used in ADCs: 

microtubule inhibitors and deoxyribonucleic acid (DNA)-damaging components. For 

tumor-specific delivery and to reduce off-tumor effects, the mAb is designed to target an 

antigen predominantly expressed on tumor cells, with minimal shedding and with 

receptor-mediated endocytosis. Regarding the isotype, most ADCs are either IgG1 and 
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retain the ability to induce immune effector functions or IgG4, which does not 

significantly activate immune cells and therefore rely on the delivery of the drug to the 

tumor cell. The type of linker connecting the toxin to the mAb greatly influences the 

efficacy of the ADC. It should be stable until reaching the targeted tumor cell and, once 

internalized, capable of releasing the cytotoxic payload. The first ADC that received fast-

track FDA approval in 2000 was gemtuzumab ozogamicin (GO, Mylotarg, Pfizer), an 

ADC targeting CD33. However, it was voluntarily withdrawn from the market in 2010 

due to safety-related concerns and lack of clinical benefit. Despite this, the approval of 

two new toxin-coupled mAbs in 2013 and the re-approval of GO in 2017 re-validated the 

potential of ADCs as immunotherapeutic agents.
38

  

BsAbs retain the specificities of two different antibodies in one molecule and therefore 

are able to simultaneously bind to two target antigens (Figure 3C). Several approaches to 

force HC heterodimerization are now available, but the knobs-into-holes technology was 

the first one to be established.
39

 In this technology, a bulky amino acid in the CH3 domain 

of one HC is replaced by smaller one (Y407T), and the opposite exchange is performed in 

the other HC (T366Y) to enable the correct HC pairing. Other options to achieve HC 

heterodimerization include IgG/IgA hybrid CH3 domains and electrostatic steering 

effects.
40, 41

 These approaches, however, are limited by the random pairing of the LCs. 

Some strategies to circumvent this problem are the use of a common light chain that 

allows binding to both antigens and the CrossMab technology, which exchanges the CH1 

and the CL domain of one HC-LC complex to constrain the correct pairing.
42

 One 

advantage of bsAbs over mAbs is the increased binding specificity, achieved by 

interacting with two antigens on one cell. Moreover, bsAbs can also be used to bring 

targets to close proximity in order to support protein complex formation on one cell, or to 

trigger contacts between two different cells. For example, bsAbs targeting a tumor 

antigen and an immune cell, such as T cells via CD3, induce T cell-mediated killing of 

cancer cells. Similarly to ADCs, the Fc domain of the bsAbs can be functional and induce 

NK cell- and macrophage-mediated anti-tumor responses or silenced if such effects are 

not desired. Catumaxomab, targeting EpCAM and CD3, was the first bsAb to receive 

FDA approval in 2014 and several more are currently being investigated in clinical trials. 

Antibody-derivatives are usually based on single domains of conventional mAbs. The 

main element is the single-chain fragment variable (scFv), which consist on the VL and 

the VH domains of a mAb connected by a flexible linker (Figure 3D). Similarly to bsAbs, 
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the specificity can be increased by fusing two or more scFv domains, obtaining tandem 

scFvs (two scFvs) and single chain triplebodies (sctbs, three scFvs), among others.
43, 44

 

The most known approach is the bispecific T cell engager (BiTE) molecule. BiTEs are 

composed of two scFvs, one activating T cells by targeting CD3 and the other 

recognizing a tumor antigen. Blinatumomab, a BiTE targeting CD19 fast-track approved 

in 2014, obtained the upgrade to full FDA approval in 2017 due to successful clinical 

results.
45

 Motivated by the promising activity of BiTEs, this strategy was transferred to 

NK cells by exchanging the CD3-targeting scFv by a CD16-targeting scFv, and the new 

molecule was termed BiKE (bispecific NK cell engager).
46

 The major advantage of 

antibody-derivatives and specifically tandem scFvs, with respect to conventional mAbs, is 

their smaller size (around 50 to 70 kDa), which may facilitate the formation of tighter 

cytolytic synapses and the penetration into solid tumors, thus achieving better anti-tumor 

effects. Their smaller size, however, is also a disadvantage since these molecules are 

susceptible to renal clearance and therefore have very short serum half-life. 

In addition to the formats described above, more sophisticated technologies have been 

developed during the last years, giving rise to a huge array of antibody-based 

therapeutics. Obtained by exploiting the modular architecture of antibodies, each novel 

format harvests different properties regarding binding valency and specificity, effector 

function and half-life. Mostly being pre-clinically evaluated, it seems likely that new 

antibody-based drugs will emerge in clinical studies over the coming years, which will 

broaden the actual view of cancer immunotherapy. 

 

Figure 3. Second generation of antibody-based cancer therapeutics 

(A) Conventional antibodies have been engineered to develop several antibody-based therapies. (B) 

Antibody-drug conjugates deliver a toxin into the tumor cell by binding to an internalizing tumor antigen. 

(C) Bispecific antibodies, obtained by technologies ensuring the correct pairing of all antibody chains, are 

able to simultaneously bind to two antigens. (D) Antibody-derivatives, of smaller molecular weight, are 

based on single chain fragment variable (scFv) domains and target two or more antigens simultaneously. 
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2.2. Immune checkpoint-blocking antibodies 

An adequate and specific immune response is ensured by a balance of stimulatory and 

inhibitory signals into the immune cells. Stimulatory signals induce immune responses 

against bacteria, viruses and foreign and harmful substances. In contrast, inhibitory 

signals, also known as immune checkpoints, maintain self-tolerance and modulate the 

immune attack to reduce collateral tissue damage.
47

 These inhibitory pathways, however, 

are exploited by tumor cells to evade the immune system. More specifically, by 

upregulating immune checkpoint receptors, cancer cells are able to dampen the immune 

response. Thus, antagonists of immune checkpoints, such as immune checkpoint-blocking 

antibodies, are able to neutralize inhibitory signals and therefore restore and potentiate 

anti-tumor immune responses.  

Over the past decade, the use of immune checkpoint inhibitors led to very promising pre-

clinical and clinical results and has revolutionized the field of cancer immunotherapy. 

Since T cells were the first immune cell type described to play a major role in tumor 

clearance and immune surveillance, initial studies were focused on restoring adaptive 

immune responses.
48, 49

 Cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), an 

inhibitory receptor regulating T cell responses during the priming phase, was the first 

immune checkpoint to be described and utilized as a therapeutic target. CTLA-4 is the 

counterbalance receptor of CD28, a stimulatory receptor also expressed on T cells. Both 

trigger opposite signals to T cells by binding to B7, expressed on antigen-presenting 

cells.
50

 Furthermore, CTLA-4 is required for regulatory T cells in order to maintain their 

immunosuppressive function.
51

 Consequently, blocking CTLA-4 with mAbs not only 

promotes the binding of B7 to CD28 leading to T cell activation, but also inactivates the 

pro-tumorigenic functions of regulatory T cells. Ipilimumab, an IgG1 mAb targeting 

CTLA-4, was the first immune checkpoint inhibitor to be approved by the FDA in 2011 

for the treatment of advanced melanoma. Its administration, alone or in combination with 

other anti-tumor drugs, significantly improved the overall survival of patients.
52

 However, 

immune-related adverse events due to non-specific T cell activation occurred in 10-15% 

of the patients, which outlines the need for more specific therapies. 

Another well-studied immune checkpoint receptor negatively regulating T cell activation 

is programmed cell death 1 (PD-1). PD-1, expressed on T cells, interacts with 

programmed cell death ligand 1 (PD-L1), which is upregulated in tumor cells as an 
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immune escape mechanism.
53-55

 Upon binding to PD-L1, PD-1 triggers a negative signal 

into T cells inducing T cell exhaustion and dysfunction. Accordingly, the blockade of the 

interaction between PD-1 and PD-L1 reverses the dysfunctional state of T cells and 

reestablishes anti-tumor T cell responses. There are two blocking mAbs targeting PD-1 

(pembrolizumab and nivolumab) and three PD-L1 inhibitors (atezolizumab, avelumab 

and durvalumab) currently approved by the FDA, and several more candidates under 

clinical development. These agents extended the overall and disease-free survival of a 

significant minority of patients, but as for CTLA-4 inhibitors, adverse events were 

observed due to off-tumor toxicities.
56

 

Despite the unquestionable clinical efficacy of immune checkpoint-blocking mAbs, new 

strategies are being explored in order to improve clinical outcomes by reducing immune-

related adverse events and broadening the responsive patient subset. On one hand, studies 

based on predictive biomarkers, load of neo-antigens and inflammatory gene signatures 

are being performed in order to clarify patient responses.
57-59

 On the other, immune 

checkpoint-blocking antibodies are being evaluated in combination with other anti-tumor 

therapeutics to induce more specific and efficient anti-tumor responses. For instance, 

combining the blockade of the PD-1 axis and a BiTE molecule targeting CD33 

significantly increased the lysis of AML cells with respect to the single agents in vitro.
60

 

Furthermore, another approach approved by the FDA in 2015 was the combination of two 

immune checkpoint-blocking mAbs, one targeting PD-1 and the other CTLA-4, which 

improved the overall survival of advanced melanoma patients with respect to 

monotherapies.
61

  

All in all, the blockade of the CTLA-4 and the PD-1 signaling pathways was the 

cornerstone for the field of immune checkpoint-based cancer therapies, which is expected 

to expand with the development of new and more powerful strategies including novel 

immune checkpoint inhibitors and optimal combinations. 

2.2.1. The “don’t eat me” immune checkpoint 

The encouraging results obtained with CTLA-4 and PD-1 inhibitors promoted the 

investigation of additional immune checkpoints that could potentially be targeted in 

cancer immunotherapy. One of the recently described immune checkpoints is the CD47-

SIRPα myeloid-specific immune checkpoint, which negatively regulates phagocytosis in 

macrophages and other myeloid cells. Also known as the “don’t eat me” immune 
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checkpoint, the CD47-SIRPα axis was initially described as the pathway responsible for 

maintaining homeostasis of red blood cells (RBCs).
62

 More specifically, CD47 was 

recognized as a marker of self by experiments in which CD47-negative RBCs were 

cleared much faster than CD47-expressing RBCs by macrophages of immunocompetent 

mice. This was followed by the identification of SIRPα as the receptor of CD47 and a 

negative regulator of macrophage-mediated phagocytosis of RBCs.
63-65

 

The cluster of differentiation 47 (CD47), also known as integrin-associated protein (IAP), 

is a surface glycoprotein that contains a single extracellular Ig-like domain resembling the 

antibody variable domain (so-called V-set domain), five transmembrane domains and a 

short cytoplasmic tail, which is subject to alternative splicing.
66, 67

 CD47 is ubiquitously 

expressed on all cells in the body and its expression varies depending on the immune 

status or disease. Since expressing CD47 protects the cell from clearance by 

phagocytosis, long-lived memory T cells and circulating hematopoietic stem cells (HSC), 

among others, present high levels of CD47.
68, 69

 Similarly, CD47 has been described to be 

upregulated in cancer cells, including several types of leukemia and solid malignancies, 

as an escape mechanism.
70-74

 

Signal regulatory protein alpha (SIRPα), expressed on all myeloid cells, is one of the five 

members of the SIRP family of immunoreceptors, which also includes SIRPβ1, SIRPβ2, 

SIRPγ and SIRPδ.
75, 76

 SIRPα, also known as CD172a and SHSP-1, is the most studied 

member and the best conserved among different species. It is composed of three 

extracellular Ig-like domains, a transmembrane domain and a cytoplasmic tail. Regarding 

the three extracellular domains, the domain located at the N-terminus is responsible of 

interacting with CD47 and presents a V-set structure, whereas the other two domains 

resemble the structure of antibody constant regions (C1-set domain).
76, 77

 SIRPβ1 and 

SIRPγ have a high degree of homology with the extracellular fragment of SIRPα, and 

SIRPγ, but not SIRPβ1, is able to interact with CD47.
78

 Due to the lack of the 

cytoplasmic domain of SIRPγ, its binding to CD47 is proposed to trigger a unidirectional 

signaling via CD47 possibly involved in transendothelial migration of T cells.
79, 80

 On the 

contrary, engagement of SIRPα by CD47 triggers the phosphorylation of the tyrosine 

residues at the ITIM motifs in the cytoplasmic tail of SIRPα. This recruits and activates 

Src homology region 2-domain-containing phosphatases 1 and 2 (SHP-1 and SHP-2), 

which dephosphorylate a variety of proximal substrates, thus regulating downstream 

signaling pathways and ultimately inhibiting the phagocytic function. One of the 
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substrates dephosphorylated, for instance, is the motor protein myosin IIA, which controls 

the rearrangement of the actin cytoskeleton required for phagocytosis (Figure 4A).
67, 81-83

  

It is important to note that CD47 interacts not only with SIRPα and SIRPγ, but also with 

other ligands, such as thrombospondin-1 (TSP-1), an extracellular matrix protein 

expressed on the stroma of various tumors.
84

 The contact between CD47 and TSP-1 

restricts tumor growth and therefore the blockade of this interaction enhances 

angiogenesis.
85, 86

 Thus, contrary to SIRPα, TSP-1 triggers anti-tumor mechanisms by 

binding to CD47. Importantly, it was described that CD47-TSP-1 interaction and CD47-

SIRPα binding are mutually exclusive.
84

 This, and the fact TSP-1 and SIRPα induce 

opposite tumor responses, raises some concerns on how to best tackle CD47 as a target 

for cancer immunotherapy. 

2.2.2. Strategies targeting the CD47-SIRPα innate immune checkpoint 

The anti-tumor effects resulted from the blockade of the CD47-SIRPα innate immune 

checkpoint were initially reported using the well-known CD47-targeting antibody B6H12, 

a mouse IgG1 mAb that blocks CD47 interactions with SIRPα.
70

 Evaluated in many 

studies, B6H12 successfully induced macrophage-mediated elimination of hematopoietic 

and solid tumors in vitro as well as in vivo (Figure 4B, left).
70, 71, 87, 88

 Since the murine 

IgG1 isotype is considered to be equivalent to the human IgG4 isotype, which does not 

mediate significant effector functions, the anti-tumor effects of B6H12 were attributed to 

the disruption of the CD47-SIRPα axis.
89

 However, subsequent studies with Fab 

fragments of B6H12 proved that the original murine IgG1 mAb was also triggering Fc-

dependent effector functions.
90

 These results indicated that, in addition to the blockade of 

the CD47-SIRPα axis, a pro-phagocytic stimulus mediated by the Fc domain of an 

antibody was required in order to obtain an effective tumor cell clearance. Further 

investigations with an engineered high affinity SIRPα variant (SIRPα CV1), not able to 

promote tumor cell lysis neither in vitro nor in vivo, supported this idea (Figure 4B, right). 

91
 In addition to this, the observation that CD47-blocking agents successfully synergized 

with tumor antigen-targeting antibodies and lead to an increased anti-tumor activity than 

the single components, motivated the view of CD47-blocking molecules as an adjuvant 

therapy (Figure 4C, left).
70, 71

  

A major drawback of CD47-targeting agents is the ubiquitous expression of CD47, which 

may not only act as an antigen sink, but also cause on-target/off-tumor toxicities. Even if 
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this potential risk will be clarified with the ongoing clinical evaluation of CD47-blocking 

candidates, pre-clinical studies of SIRPα CV1 and Hu5F9-G4, a CD47-targeting human 

IgG4 mAb, already reported different levels of hematotoxicities in non-human 

primates.
91, 92

 In order to tackle this problem, more sophisticated fusion proteins have 

been developed. These include bsAbs targeting CD47 and a tumor antigen, such as CD20 

or CD19 for B cell lymphoma, and mesothelin for pancreatic cancer (Figure 4C, right).
93, 

94
 Interestingly, the affinity of the CD47-binding arm of these molecules was reduced in 

order to guide the binding to the tumor antigen-expressing cells and, accordingly, all 

bsAbs contained a functional Fc domain. The combination of the blockade of the CD47-

SIRPα axis, the ability to induce Fc-mediated immune responses and the tumor specificity 

provided by the tumor-antigen binding arm led to very promising results in vitro and in 

xenograft mouse models. 

In vivo studies with CD47-targeting agents demonstrated remarkable efficacy with 

significant reductions of tumor growth and extensions of survival for an impressive 

diversity of cancers.
70, 71, 87, 88, 95-98

 However, most of these experiments were performed 

using NOD/SCID or NOD/SCID/GAMMA (NSG) mice engrafted with human tumor 

cells. While these mouse models have been widely utilized for pre-clinical evaluation of 

many anti-tumor agents, they present some characteristics that may influence the effect of 

CD47-targeting drugs. First, NOD/SCID and NSG mice are immunocompromised mouse 

models that lack the adaptive immune system and this might oversimplify the immune 

response. Furthermore, the SIRPα expressed on cells from NOD mice has an affinity of 

0.08 µM for human CD47, whereas human SIRPα has an affinity of 0.6 µM.
99

 This 7-fold 

stronger binding of NOD SIRPα to human CD47 possibly emphasizes the CD47-SIRPα 

axis in these models and therefore a disruption of it may result in stronger effects. Lastly, 

as most of the CD47-targeting agents are not cross-reactive to murine CD47, they bypass 

the antigen sink created by the ubiquitously expressed murine CD47 and potential side 

effects cannot be detected. In order to have a more accurate evaluation of CD47-targeting 

therapeutics, mouse strains that do not derive from the NOD brand, like the BALB/c 

strain, which expresses the wildtype murine SIRPα with a 5.2 µM affinity to human 

CD47, should be used.
99

 However, human engraftment in such a mouse strain is less 

efficient than in the NOD strain and it limits the evaluation of therapeutic drugs for 

human cancers. Interestingly, the low engraftment rate in BALB/c mice is mainly 

attributed to the affinity of wildtype murine SIRPα to human CD47, since a higher CD47-
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SIRPα affinity promotes xenogeneic engraftment.
100

 A new mouse model, so-called 

MISTRG, was generated in order to improve the engraftment of human cells.
101, 102

 

MISTRG is a BALB/c-derived humanized mouse model knocked-in with genes encoding 

for human cytokines and, most importantly, bearing a BAC-transgene encoding for 

human SIRPα. As these characteristics lead to a better human cell engraftment, MISTRG 

mice are currently the best candidates to investigate more precisely the effects of CD47-

targeting agents for cancer immunotherapy. 

Approaches to target CD47 to disrupt the CD47-SIRPα interaction have been focus on 

describing macrophage-mediated effects. This is due to the direct involvement of the 

CD47-SIRPα axis in regulating phagocytosis and the lack of adaptive immune responses 

of the utilized mouse models. Notably, recent reports using immunocompetent mice have 

described that the blockade of CD47 not only potentiates phagocytosis of targeted tumor 

cells, but also triggers a T cell-mediated immune response. On one side, by inhibiting the 

CD47-SIRPα interaction, macrophages were shown to activate CD8
+
 T cells and decrease 

priming of CD4
+
 T cells, thus stimulating tumor-specific T cell responses.

103
 On the 

other, the blockade of CD47 led to activation of primary DCs, but not macrophages, 

through stimulator of interferon genes (STING)-mediated DNA sensing followed by the 

cross-priming of CD8
+
 T cells against tumor antigens (Figure 4E).

104-106
 Despite the two 

described mechanisms by which a CD47-dependent T cell response is induced differ, 

these studies support the participation of the CD47-SIRPα innate immune checkpoint in 

the stimulation of adaptive immune responses. 

Besides targeting CD47, another option to disrupt this immune checkpoint is to target 

SIRPα. Two different approaches have been so far investigated: mAbs against SIRPα and 

high affinity versions of the extracellular domain of CD47 (so-called velcro-CD47).
107-109

 

Both strategies were evaluated in combination with tumor-opsonizing mAbs and 

efficiently enhanced ADCC and ADCP effects in vitro (Figure 4D). Furthermore, for 

hematological cancers, it has been described that engaging either CD47 or SIRPα with 

blocking mAbs eliminated tumor cells by promoting caspase-dependent or –independent 

apoptotic cell death.
110-113

 

Accumulating evidences suggest the blockade of the CD47-SIRPα innate immune 

checkpoint as a promising strategy for cancer immunotherapy. Therapeutics targeting this 

axis, such as Hu5F9-G4 and SIRPα-Fc fusions, recently entered early phases of clinical 
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trials for solid and hematological malignancies, being investigated either as a 

monotherapy or in combination with tumor-opsonizing mAbs or other immune 

checkpoints inhibitors.
114

 First clinical results are expected to provide a better 

understanding of the potential efficacy as well as toxicity of high affinity CD47-targeting 

agents. Nevertheless, novel strategies to confine the benefits of the blockade of the CD47-

SIRPα immune checkpoint to tumor cells to avoid systemic side effects are being under 

pre-clinical evaluation. 
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Figure 4. The CD47-SIRPα innate immune checkpoint as a target for cancer immunotherapy 

(A) Tumor cells escape the immune attack by upregulating CD47, which binds to SIRPα expressed on 

myeloid cells. Upon binding, tyrosine residues of the ITIM motifs in the cytoplasmic tail of SIRPα are 

phosphorylated and SHP-1 and SHP-2 phosphatases (SHP-1/2) are recruited. SHP-1/2 dephosphorylate 

several substrates and ultimately lead to the inhibition of tumor cell-phagocytosis. V, V-set domain; C1, 

C1-set domain. (B) One of the mechanisms to disrupt the CD47-SIRPα immune checkpoint is to engage 

CD47 with either CD47-blocking mAb (left) or high affinity SIRPα variants, such as SIRPα CV1 (right), 

both not triggering active immune responses. (C) These CD47-blocking agents have been combined with 

tumor-opsonizing mAbs in order to induce an activating signal through FcγRs and obtain a more potent 

tumor-specific immune response. This has been achieved either by combination therapy (left) or by 

generating bsAbs targeting CD47 and a tumor antigen (right). (D) Targeting SIRPα by either blocking 

mAbs (left) or high affinity CD47 variants (velcro-CD47, right), is another approach to disrupt the CD47-

SIRPα immune checkpoint. (E) In addition to the explained macrophage-mediated immune responses, 

disrupting the CD47-SIRPα axis in DCs triggers DC’s activation and cytosolic DNA sensing through the 

STING pathway. This leads to tumor-antigen cross-presentation to CD8
+
 T cells and a T cell-mediated 

tumor lysis. 

2.3. Acute Myeloid Leukemia 

Acute myeloid leukemia (AML) is a hematological disorder that arises from an abnormal 

expansion of myeloid stem cell clones and subclones in the bone marrow and the 

peripheral blood.
115

 It is the most common type of acute leukemia, with approximately 

18,000 individuals in Europe and 20,000 in the United States diagnosed every year. 
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Additionally, AML is a very aggressive leukemia, presenting an overall five years 

survival rate of 25% and being fatal within months if untreated.
116

 The median age of 

AML patients at initial diagnosis is 67 years and one third of the patients are older than 

75 years, but an age of 60 years or older is associated with poor outcomes.
117, 118

 

Etiologically, AML can be originated de novo, derived from previous myeloid 

proliferative disorders or caused by prior exposure to chemotherapy.
119

 The advent of 

next generation sequencing improved the understanding of AML and led to a better 

classification and risk stratification of the patients. Moreover, it shed some light on the 

clonal evolution during treatment, the development of resistance mechanisms and the 

causes of relapse.
115, 120

 It has become evident that AML is not a homogenous disease, but 

rather an assembly of many genetically unique subtypes in one patient. An average of 

thirteen mutations have been identified to occur in each AML patient, eight of them being 

random (or passenger) and five of them recurrent (or driver).
121

 Importantly, these 

mutations influence the prognosis and the treatment of the patients.
121

 For instance, 

NPM1 mutations with monocytic morphology and intact FLT3 predict favorable overall 

survival, while DNMT3A mutations are associated with a poor prognosis.
116, 122

 These 

factors are taken into account in the current classification system, which was described by 

the World Health Organization (WHO) and replaced the old French-American-British 

(FAB) classification. There are seven AML subtypes according to the WHO: (1) AML 

with recurrent genetic abnormalities and with NPM1 and CEBPA gene mutations, (2) 

AML with myelodysplasia-related changes, (3) AML with therapy-related myeloid 

neoplasms, (4) AML not otherwise specified, (5) myeloid sarcoma, (6) myeloid 

proliferation related to down syndrome and (7) blastic plasmocytoid dendritic cell 

neoplasm.
123

  

Nevertheless, despite recent developments in the understanding, the diagnosis and the 

classification of AML, the treatment of this disease did not improve over the last decades 

and the prognosis remains grim. 

2.3.1. Current treatments for AML patients 

Since 1970s, the first-line treatment for AML patients with a good performance status is 

induction chemotherapy.
117

 The goal of induction chemotherapy is that AML patients 

achieve complete remission (CR), which is defined as less than 5% blast in the bone 

marrow and less than 1,000 neutrophils and 100,000 platelets per µl of peripheral 



INTRODUCTION 

 

19 

 

blood.
124

 Patients that achieve CR after the first chemotherapy cycle, which are 65-73% 

of the patients younger than 60 years and 38-62% of the patients older than 60 years, 

proceed to consolidation therapy.
116

 Patients with a poor performance status, not eligible 

for induction therapy, receive lower doses of chemotherapy as a palliative measure or best 

supportive care. 

Consolidation therapy is administered in order to eradicate the so-called minimal residual 

disease (MRD) and prevent relapse. MRD is caused by leukemic cells that resisted 

induction chemotherapy. These resistant leukemic cells, also known as AML leukemic 

stem cells (LSC), are believed to continue proliferating and cause the return of the disease 

or relapse. Depending on the individual risk of the patient, consolidation therapy consists 

of either chemotherapy, allogeneic hematopoietic stem cell transplantation (allo-SCT) or 

a combination of both.
116, 125, 126

 Allo-SCT is the most effective long-term treatment for 

AML and results in cure for 30-40% of the treated patients in first CR. However, co-

morbidities, failure to achieve CR and the lack of suitable donors reduce the number of 

patients suitable for allo-SCT to 25-35%.
127

  

Despite consolidation therapy, AML LSC may not be fully eliminated and patients may 

require a second cycle of induction chemotherapy to achieve a second CR. After the first 

relapse, the five year survival rate is only 11%, indicating that the second CR is 

accomplished by a minority of the patients.
128

 Hence, there is an urgent need to develop 

novel immunotherapies in order to eliminate MRD and prevent relapse of AML patients. 

2.3.2. Immunotherapy in AML 

Most of the advances in immunotherapy to treat hematological malignancies have been 

made for B-cell lymphomas, such as acute lymphoblastic leukemia (ALL). In contrast to 

AML, conventional mAbs (e.g. rituximab) and BiTEs (e.g. blinatumomab) are already 

considered first-line treatment for ALL.
129, 130

 Hope is high that the clinical efficacy of 

these agents will be translated into AML, but most of the immunotherapeutic strategies 

for AML are still under development.
131

 

One disadvantage of immunotherapy for AML is the broad expression pattern of its 

antigens. Whereas ALL antigens present a more restricted expression, AML antigens can 

also be expressed on healthy immature myeloid cells. Nonetheless, several AML antigens 

have been identified as potential targets for immunotherapeutic agents.
132

 Amongst them, 
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CD33 and CD123 are the most commonly targeted antigens in AML.
133

 CD33, a member 

of the sialic acid immunoglobulin like lectins (siglecs), is expressed on HSCs, particularly 

on early stages of myeloid differentiation. Importantly, expression levels are significantly 

increased in AML blasts and AML LSCs, identifying CD33 as a promising tumor 

antigen.
134

 CD33 consists of two Ig-like extracellular domains with V-set and C2-set 

structures, a transmembrane region and a cytoplasmic tail.
135, 136

 The cytoplasmic tail 

contains two ITIM motifs, which upon extracellular engagement of CD33 are 

phosphorylated and recruit SHP-1 and SHP-2. These phosphatases dephosphorylate 

CD33 as negative feedback loop and may also negatively regulate nearby receptors.
137

 

Furthermore, suppressor of cytokine signaling 3 (SOCS3) binds to phosphorylated CD33, 

thus competing with SHP-1 and SHP-2 and recruiting the ECS E3 ubiquitin ligase 

complex. This induces the ubiquitination of several residues of the cytoplasmic tail and 

leads to CD33 internalization and proteasomal degradation.
138

 The function of CD33 

remains not fully understood, but it has been described to negatively regulate 

inflammatory and immune responses.
139, 140

 

Over the last three decades, several attempts have been made to use CD33 as a 

therapeutic target in AML. The most known CD33-targeting agent is GO, an IgG4 mAb 

conjugated to calicheamicin that utilizes the internalization capabilities of CD33 to 

deliver a drug inside the cell. As mentioned before, GO received accelerated FDA 

approval in 2000, but it was voluntarily withdrawn from the market in 2010 due to safety 

concerns and lack of clinical efficacy.
141, 142

 In 2017, however, the re-evaluation of GO in 

clinical trials re-gained the FDA approval with a new dosage and administration 

schedule.
143

 Furthermore, a next generation CD33-targeting ADC, SGN-CD33A, was 

developed and entered clinical trials.
144

 Besides ADCs, conventional mAbs targeting 

CD33 have also been clinically tested. Lintuzumab (SGN-33), a CD33-specific IgG1 

mAb, showed a very promising anti-tumor activity in pre-clinical studies. However, 

clinical tests resulted in very little benefits for AML patients and this led to the 

termination of the clinical trials in 2010.
145, 146

 An Fc-engineered αCD33 mAb, BI 

836858, with increased binding for FcγRII, was created as an improved strategy and is 

being evaluated in phase I clinical trials.
147, 148

 Other immunotherapeutic agents targeting 

CD33 in clinical development are bispecific constructs, such as BiTEs and BiKEs. 

AMG 330, a CD33-specific BiTE, entered clinical trials addressing safety and efficacy in 

2015 after very promising pre-clinical results.
134, 149

 Similarly, a CD33-targeting BiKE 
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induced potent NK cell-mediated cytotoxicity of AML cells in vitro and it is expected to 

enter clinical trials in the near future.
46, 150

 In addition, CD33-directed chimeric antigen 

receptor (CAR) T cells, which reduced the burden of human AML cells in in vivo studies 

with immunodeficient mice, are also being tested in a clinical setting.
151

 

Besides targeting tumor antigens, immune checkpoint inhibitors are also under 

investigation for the treatment of AML. Previous studies described CD47 to be 

upregulated on AML cells and LSCs and to be associated with a poor prognosis, 

supporting the blockade of the CD47-SIRPα axis as a strategy for immunotherapy of 

AML.
70, 152, 153

 Moreover, the CD47-blocking mAb B6H12 mediated phagocytosis of 

AML cells in vitro and inhibited the engraftment of AML LSC in vivo.
70

 In mice 

engrafted with AML LSCs, the administration of B6H12 resulted in the clearance of 

tumor cells through macrophage-mediated phagocytosis. These successful pre-clinical 

results led to the evaluation in clinical trials of two mAbs targeting CD47, Hu5F9-G4 and 

CC-90002. The ubiquitous expression of CD47 and the hematotoxicities caused by 

CD47-targeting agents in in vivo studies, however, raise some concerns on the potential 

toxicity of these checkpoint inhibitors. In order to achieve effective anti-tumor responses 

while minimizing the risk of side effects, the blockade of the CD47-SIRPα immune 

checkpoint should be restricted to AML cells. This confinement can be obtained, for 

example, with a high affinity tumor-specific mAb that guides the blockade of the immune 

checkpoints to tumor antigen-expressing cells. Accordingly, single molecules that 

combine AML antigen-targeting and the blockade of the CD47-SIRPα axis constitute a 

very promising and potentially safe approach to mediate the elimination of AML cells.
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3. AIM OF THE THESIS 

Despite recent advances in the understanding of AML, most of the patients still relapse 

and ultimately succumb to the disease. Hence, novel immunotherapies are required to 

lower relapse rates and offer a better prognosis to AML patients. The blockade of 

immune checkpoints has become one of the most promising approaches to induce anti-

tumor responses. However, immune checkpoint inhibitors also revealed immune related 

adverse events due to on-target/off-leukemia toxicities. 

As an improved strategy for the treatment of AML, this work aimed at exploiting the 

benefits of blocking the CD47-SIRPα myeloid-specific immune checkpoint to promote 

the clearance of AML cells, while lowering side effects. The specific blockade of the 

CD47-SIRPα axis on AML cells was achieved by engrafting the endogenous N-terminal 

domain of SIRPα, which has a physiologically low affinity for CD47, to a mAb or 

derivative thereof targeting the AML antigen CD33. In contrast to the high affinity CD47 

inhibitors, the SIRPα domain is unable to effectively bind to CD47-expressing cells by 

itself. The binding to tumor cells is therefore facilitated by the high affinity binding to 

CD33. As a consequence, SIRPα-αCD33 molecules should only bind and disrupt the anti-

phagocytic CD47-SIRPα immune checkpoint on CD33-expressing AML cells. 

In order to find an optimized approach, three antibody formats were generated: local 

inhibitory checkpoint mAbs (licMABs), single-arm licMABs (licMABs
single

) and local 

inhibitory checkpoint antibody derivatives (liCADs). All local inhibitory molecules bind 

to the AML antigen CD33 with high affinity, block the CD47-SIRPα immune checkpoint 

with the endogenous SIRPα domain and activate immune effector cells. Nevertheless, 

licMABs, licMABs
single 

and liCADs differ on the binding valency and the nature of the 

immune cell-activating domain, which has an impact on their efficacy. The most 

promising candidate was selected based on tumor-specificity and capability to enhance 

the elimination of AML cell lines and primary AML cells via ADCC and ADCP 

mechanisms in vitro. 
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4. RESULTS 

4.1. Cloning and expression of local inhibitory checkpoint molecules 

During this work, three types of molecules, local inhibitory checkpoint monoclonal 

antibodies (licMAB), single-arm licMABs (licMABs
single

) and local inhibitory checkpoint 

antibody derivatives (liCADs) were designed, generated and characterized. All molecules 

target the AML antigen CD33, recruit immune effector cells via interactions with FcγRs 

and inhibit the CD47-SIRPα axis by blocking CD47 antigens expressed on tumor cells. 

However, the molecular architecture of these proteins differs, thus allowing the 

evaluation of various antibody formats in the same AML context. 

4.1.1. Local inhibitory checkpoint monoclonal antibodies (licMABs) 

LicMABs are IgG1 mAbs that bind to CD33 and contain either one or two SIRPα 

domains (here denominated as SIRPα-αCD33 or 2xSIRPα-αCD33, respectively). The 

SIRPα domain, located at the N-terminus of the light chain, is designed to interact with 

CD47 on CD33
+
 AML cells and therefore locally block the CD47-SIRPα myeloid-

specific immune checkpoint. In order to investigate the benefits of the SIRPα domain of 

licMABs, a conventional αCD33 mAb was produced. The following DNA vectors were 

cloned for expression and purification of licMABs and αCD33 mAb (Figure 5). All 

vectors contain the IgKappa leader sequence, which facilitates the secretion of the protein 

in the cell culture media. 

 

Figure 5. Schematic view of local inhibitory checkpoint monoclonal antibodies (licMABs) and 

encoding DNA vectors 
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LicMABs were purified from Expi293F cells by protein A chromatography. To obtain the 

αCD33 mAb, the SIRPα domain was cleaved by PreScission protease. Size exclusion 

chromatography (SEC) with a Superdex 200 GL column was performed as a second 

purification step (Figure 6A-C). The single SEC peak obtained for all the molecules 

demonstrated the absence of significant aggregations, degradations or contaminations. 

The purity of the purified molecules was further evaluated by sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) analysis (Figure 6D). As depicted on 

the SDS-PAGE, heavy and light chains of licMABs and mAb were expressed 

equimolarly and corresponded to the computed masses. Moreover, αCD33 mAb, SIRPα-

αCD33 licMAB and 2xSIRPα-αCD33 licMAB were purified in high quantities, with 

yields of 31.0, 83.5 and 67.5 mg/L of culture medium, respectively.  

Taken together, these results show that αCD33 mAb, SIRPα-αCD33 licMAB and 

2xSIRPα-αCD33 licMAB can be produced in monomeric species and with high yields. 

 

Figure 6. Purification of local inhibitory checkpoint monoclonal antibodies (licMABs) 

Size exclusion chromatography of (A) αCD33 mAb, (B) SIRPα-αCD33 licMAB and (C) 2xSIRPα-αCD33 

licMAB performed with a Superdex 200 increase 10/300 GL column after protein A purification. Retention 

volume at which the protein was eluted is indicated. (D) SDS-PAGE analysis of purified (1) αCD33 mAb, 

(2) SIRPα-αCD33 licMAB and (3) 2xSIRPα-αCD33 licMAB under reducing conditions. Computed masses 

of each antibody chain are indicated.  
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4.1.2. Single-arm local inhibitory checkpoint monoclonal antibodies (licMABs
single

) 

LicMABs
single

 were derived from licMABs and kindly provided by Dr. Anna Kaufmann. 

The single-arm molecules target CD33 with one Fab fragment. The second Fab fragment 

was replaced by the endogenous SIRPα domain. MAb
single

, a control molecule that does 

not contain the endogenous SIRPα domain, was as well generated. In order to assure the 

correct paring of the two distinct heavy chains, charged mutations were inserted at the 

CH3 domain, thus obtaining a positively and a negatively charged HC (HC
K392D, K409D

 and 

HC
E356K, D399K

, respectively).
41

 Therefore, three vectors were transfected to Expi293F 

cells to obtain licMABs
single

 and mAb
single

 (Figure 7). 

 

Figure 7. Schematic view of single-arm local inhibitory checkpoint monoclonal antibodies 

(licMABs
single

) and encoding DNA vectors 

Since the vector pFUSE2-CL-PreSc-33, encoding for the LC, was used to express 

mAb
single

 and licMABs
single

, the purification of these molecules required protein A 

chromatography and PreScission protease treatment. A final SEC showed the presence of 

monomeric peaks corresponding to retention volumes of 13.85, 12.90 and 12.24 for 

αCD33 mAb
single

, SIRPα-αCD33 and 2xSIRPα-αCD33 licMAB
single

, respectively
 
(Figure 

8A-C). A second peak at retention volume 16.17 was obtained for mAb
single

, which could 

be attributed to degradations or impurities. No degradations were observed on SEC of 

licMABs
single

, but aggregation peaks were present, presumably due to the incorrect pairing 

of the distinct heavy chains. SDS-PAGE analysis confirmed the absence of 

contaminations and degradations on the collected samples (Figure 8D). Three different 
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bands were observed for all the purified molecules, corresponding to the HC
E356K, D399K

, 

the HC
K392D, K409D

 and the LC, all in agreement with the computed masses.  

 

Figure 8. Purification of single-arm local inhibitory checkpoint monoclonal antibodies (licMABs
single

) 

Size exclusion chromatography of (A) αCD33 mAb
single

, (B) SIRPα-αCD33 licMAB
single

 and (C) 2xSIRPα-

αCD33 licMAB
single

 performed with a Superdex 200 increase 10/300 GL column after protein A 

purification and PreScission protease treatment. Retention volumes of monomeric peaks, aggregations and 

degradations are indicated. (D) SDS-PAGE analysis of purified (1) αCD33 mAb
single

, (2) SIRPα-αCD33 

licMAB
single

 and (3) 2xSIRPα-αCD33 licMAB
single

 under reducing conditions. Computed masses of each 

antibody chain are displayed.  

To sum up, the yield of mAb
single 

and licMABs
single 

was lower than mAb and licMABs due 

to the protein loss in aggregations and degradations. Nevertheless, monomeric species of 

mAb
single

 and licMABs
single

 could be obtained and were used for further experiments. 

4.1.3. Local inhibitory checkpoint antibody derivatives (liCADs) 

LiCADs are single polypeptide molecules based on the BiKE format (Figure 9).
46

 These 

molecules, cloned into the pExpreS2-1 vector, consist of two scFvs against CD16 and 

CD33 connected by a (G4S)4 linker. The third domain of liCADs, located N-terminally 

and preceding a (G4S)4 linker, is the extracellular endogenous SIRPα domain. Similarly to 
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licMABs and licMABs
single

, liCADs target the AML antigen CD33 and simultaneously 

inhibit the CD47-SIRPα axis. On the contrary, liCADs lack the Fc domain and therefore 

activate effector cells by a scFv targeting the FcγRIII (CD16). In addition, a His6-tag was 

fused C-terminal of the construct for purification reasons.  

 

Figure 9. Schematic view of local inhibitory checkpoint antibody derivatives (liCADs) and encoding 

DNA vectors 

LiCADs and the control molecule αCD33 BiKE were purified from Schneider S2 cells by 

nickel-nitrilotriacetic acid (Ni-NTA) affinity chromatography and anion exchange 

chromatography, kindly performed by Dr. Nadine Magauer and Saskia Schmitt. To 

ensure protein quality, an analytical SEC was executed (Figure 10A-C). SEC 

chromatograms showed very little aggregation peaks for αCD33 BiKE and liCADs, 

indicating that these proteins were mainly present in its monomeric form. Purity was 

further confirmed by SDS-PAGE analysis, where no aggregation or degradation was 

visible (Figure 10D). Furthermore, protein bands on the SDS-PAGE corresponded to the 

computed masses of BiKE and liCADs.  

Overall, the integrity and purity of liCADs and αCD33 BiKE demonstrated by SEC and 

SDS-PAGE analysis qualified these molecules for further studies. 
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Figure 10. Purification of local inhibitory checkpoint antibody derivatives (liCADs) 

Analytical size exclusion chromatography of (A) αCD33 BiKE, (B) SIRPα-αCD33 liCAD and (C) 

2xSIRPα-αCD33 liCAD performed with a Superdex 200 increase 5/150 GL column. Retention volume of 

monomeric peaks is displayed. (D) SDS-PAGE analysis of purified (1) αCD33 BiKE, (2) SIRPα-αCD33 

liCAD and (3) 2xSIRPα-αCD33 liCAD under reducing conditions. Computed masses of each antibody 

chain are indicated.  

4.2. Biochemical characterization of local inhibitory checkpoint molecules 

4.2.1. Thermal stability 

In order to study the stability of the local inhibitory checkpoint molecules, fluorescence 

thermal shift assays were performed (Figure 11, data kindly provided by Saskia Schmitt). 

Of all antibody formats, licMABs displayed the highest melting points (Figure 11A). The 

melting temperatures of licMABs
single

 were similar than licMABs, suggesting that the 

pairing of the positively and negatively charged HC does not significantly influence the 

thermal stability (Figure 11B). However, the SIRPα domains have a slight impact on the 

thermal stability of licMABs and licMABs
single

. 

In comparison to licMABs and licMABs
single

, the recorded melting points of liCADs were 

lower (Figure 11C and D). This is explained by the fact that Fab fragments are the 

domains most sensitive to heat treatment within a full mAb.
154

 Since liCADs consists of 
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scFvs, it is expected that the melting temperature of these is lower than licMABs and 

licMABs
single

. Nevertheless, it is important to note that the melting points of all local 

inhibitory checkpoint molecules were higher than 37°C, demonstrating the stability of 

licMABs, licMABs
single

 and liCADs at body temperature. 

 

Figure 11. Thermal stability of local inhibitory checkpoint molecules  

Melting curves of (A) licMABs, (B) licMABs
single

 and (C) liCADs were determined by fluorescence 

thermal shift assays. RFU, relative fluorescence units. (D) Measured melting temperatures of each 

molecule. 

4.2.2. Binding of local inhibitory checkpoint molecules to tumor cells 

Local inhibitory checkpoint molecules were designed to bind to the AML antigen CD33 

and locally inhibit the CD47-SIRPα axis on tumor cells. In order to characterize the 

ability of local inhibitory checkpoint molecules to bind to CD33 and CD47 antigens, four 

different cell lines were used. MOLM-13, a CD33- and CD47-expressing AML cell line 

derived from the peripheral blood of a patient with AML at relapse, was the main cell line 

used throughout this thesis. The SEM cell line was established from the peripheral blood 
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of a patient with ALL at relapse. Since SEM cells express CD47 but not CD33, this cell 

line was used to study the interaction of licMABs, licMABs
single 

and liCADs to CD47 

independent of CD33. Moreover, Flp-IN
TM

-CHO cells were stably transfected with CD33 

and CD47 to obtain single positive cell lines, here designated as CHO_CD33 and 

CHO_CD47.  

Preceding the binding studies, CD33 and CD47 antigens expressed on the above 

mentioned cell lines were quantified by calibrated flow cytometry (Table 1). MOLM-13 

cells express around 50 thousand CD33 surface molecules and around 9 thousand CD47, 

which is in agreement with previous studies.
69, 149, 155

 CD33 is expressed 4.4-fold higher 

on CHO_CD33 cells than on MOLM-13 cells and CD47 expression is 3.3-fold higher on 

SEM cells and 68.8-fold higher on CHO_CD47 cells than on MOLM-13 cells. 

Table 1. Quantification of CD33 and CD47 surface antigens expression on cell lines (number of 

surface antigens per cell) 

Cell line CD33 CD47 

MOLM-13 53.1x10
3
 ± 2.8x10

3
 8.6 x10

3
 ± 1.3x10

3
 

SEM negative 28.7x10
3
 ± 5.3x10

3
 

CHO_CD33 232.0x10
3
 ± 31.6x10

3
 negative 

CHO_CD47 negative 600.3x10
3
 ± 73.9x10

3
 

 

Flow cytometry-based binding studies of local inhibitory checkpoint molecules revealed 

that all molecules comparably bind to MOLM-13 cells (Figure 12). Due to the elevated 

amount of CD33 and CD47 antigens expressed on CHO_CD33 and CHO_CD47 cells, 

these cell lines were used to assess the capability of the binding domains to interact with 

CD33 and CD47 (Figure 12A). The staining intensity of both licMABs to CHO_CD47 

cells was comparable and extremely high due to the elevated surface expression of CD47 

on these cells. Since SEM cells express CD47 to a similar level than human RBCs, 

binding studies with the SEM cell line were performed in order to characterize the SIRPα 

domain.
156

 Notably, binding to SEM cells correlated with the quantity of SIRPα domains 

on the molecules and was detected for local inhibitory checkpoint molecules containing at 

least two SIRPα domains, such as SIRPα-αCD33 licMAB, 2xSIRPα-αCD33 licMAB and 

2xSIRPα-αCD33 licMAB
single 

(Figure 12B). A less prominent binding was determined by 
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2xSIRPα-αCD33 liCAD and no binding was perceived for molecules with a single SIRPα 

domain (SIRPα-αCD33 licMAB
single

 and SIRPα-αCD33 liCAD). 

 

Figure 12. Binding analysis of local inhibitory checkpoint molecules to cell lines 

(A) Exemplary histograms of mAb and licMABs binding to MOLM-13, SEM, CHO_CD33 and 

CHO_CD47 cells. Binding was detected by flow cytometry with a FITC-conjugated secondary antibody. 

Grey line shows unspecific staining of the secondary antibody to the corresponding cells. (B) Binding of all 

local inhibitory checkpoint molecules on MOLM-13 and SEM cells. Experiments with MOLM-13 and 

SEM were carried out separately. Median fluorescence intensity (MFI) ratio of specific antibody staining 

with respect to the unspecific staining is displayed. 

After describing the ability of local inhibitory checkpoint molecules to bind to CD33
+ 

MOLM-13 cells, a quantitative characterization of the binding strength of licMABs, 

licMABs
single 

and liCADs was performed. To this end, MOLM-13 cells were incubated 
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with increasing concentrations of local inhibitory checkpoint molecules and the binding 

avidity of the molecules was analyzed by calibrated flow cytometry (Figure 13). 

All local inhibitory checkpoint molecules comparably bound to MOLM-13 cells, 

obtaining half maximum binding values in the low nM range, which is in agreement with 

other CD33-binding agents.
144, 147, 149

 The stronger binding to MOLM-13 cells was 

described for αCD33 mAb and αCD33 mAb
single

, followed by single or double SIRPα 

licMABs and licMABs
single

 (Figure 13A and B). LiCADs, however, bound to MOLM-13 

cells with a lower binding strength, obtaining half maximal binding values between 15 

and 30 nM (Figure 13C). Interestingly, the avidity of licMABs for MOLM-13 cells 

slightly decreased with the addition of SIRPα domains. This effect, not observed for 

licMABs
single 

and liCADs, suggested that the location of the SIRPα domain at the N-

terminus of the light chain may disturb the CD33-binding site.  

In conclusion, all local inhibitory checkpoint molecules bound to MOLM-13 with high 

affinity and weakly interacted with CD47. Moreover, the binding strength was minimally 

influenced by the presence of SIRPα domains or its interaction with CD47. 

 

Figure 13. Binding curves of local inhibitory checkpoint molecules on MOLM-13 cells  

Binding curves of (A) licMABs, (B) licMABs
single

 and (C) liCADs on MOLM-13 cells were analyzed by 

calibrated flow cytometry. Mean values of three to four independent experiments and standard error of the 

mean (SEM, error bars) are depicted. (D) KD values, as an avidity measurement, were determined. 
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4.2.3. Local inhibition of the CD47-SIRPα innate immune checkpoint 

The possible interaction of the SIRPα domain of local inhibitory checkpoint molecules to 

CD47 on healthy cells independently of binding to CD33 is a matter of concern. As a 

“don’t eat me” molecule, CD47 is expressed on most of the cells of our body and is 

responsible of maintaining self-tolerance. Therefore, if CD47 on healthy cells would be 

engaged by the SIRPα domain of local inhibitory checkpoint molecules, self-tolerance 

would be interrupted and unwanted adverse effects could occur. In particular RBCs, 

which express CD47 and are abundant and accessible in the bloodstream, constitute a 

potential site of on-target toxicity and antigen sink. Previous studies of high affinity 

CD47-targeting agents showed on-target toxicity in rodents and non-human primates.
91, 92

 

Furthermore, a therapeutic molecule able to overcome the antigen sink by not binding to 

CD47 on healthy cells would require a lower dose and hence the production costs would 

be reduced. 

Because of the naturally occurring low affinity of SIRPα to CD47, we hypothesized that 

the SIRPα domain of licMABs, licMABs
singles

 and liCADs interacts with CD47 on 

antigen-expressing tumor cells and not on healthy cells. Specifically, we reasoned that the 

distinction between healthy and tumor cells, and the binding to the latest, is conducted by 

the high affinity CD33-binding domain. 

In order to characterize the preferential binding of local checkpoint inhibitory molecules 

to tumor cells, a competition assay with MOLM-13 cells and RBCs was performed. 

PKH26-labelled MOLM-13 cells were co-incubated with excess of RBCs and either 

αCD33 mAb, SIRPα-αCD33 licMAB, 2xSIRPα-αCD33 licMAB or a high affinity 

αCD47 mAb (B6H12). Local inhibitory checkpoint molecules were detected by 

secondary staining using flow cytometry and the percentage of MOLM-13 cells 

(PKH26
+
) and RBCs (PKH26

-
) from the antibody-bound compartment was determined 

(Figure 14). 

Importantly, a favorable binding to MOLM-13 cells was observed for the αCD33 mAb 

and licMABs in the presence of 5-, 10- or 20-fold excess of RBCs, indicating that 

licMABs guide its binding through the high affinity CD33-binding site (Figure 14A). On 

the other hand, the high affinity αCD47 mAb, used as a control molecule, bound to RBCs 

in all conditions. We also evaluated the preferred binding of licMABs
single

 and liCADs in 

a mixture of MOLM-13 cells and 20-fold excess of RBCs. Similarly to licMABs, 
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licMABs
single

 and liCADs preferentially bound to MOLM-13 cells (Figure 14B). A 

minimal binding to RBCs, however, was detected uniquely by licMABs and correlated 

with the quantity of SIRPα domains.  

 

Figure 14. Preferential binding of local inhibitory checkpoint molecules  

(A) Binding preferences of licMABs, αCD33 mAb and αCD47 mAb (clone B6H12) were evaluated in a 

mixture of MOLM-13 and 5-, 10- or 20-fold excess of RBCs. (B) LicMABs, licMABs
single

 and liCADs 

were co-incubated with MOLM-13 cells and 20-fold excess of RBCs and analyzed for binding by flow 

cytometry. On both graphs, percentage of MOLM-13 or RBCs within the antibody-bound compartment is 

plotted. 
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Next, the ability of the SIRPα domain of local inhibitory checkpoint molecules to block 

CD47 on cells co-expressing CD33 was investigated. To this end, MOLM-13 cells were 

initially incubated with licMABs, licMABs
single

, liCADs, control molecules or PBS. The 

accessibility of CD47 was subsequently measured with a FITC-conjugated αCD47 mAb 

(clone B6H12) by flow cytometry and the median fluorescence intensity (MFI) ratio of 

the FITC mAb with respect to unstained cells was displayed (Figure 15). An MFI ratio 

lower than 1.5 indicated that CD47 was completely blocked by the investigated molecule 

and an MFI ratio higher than 1.5 showed certain accessibility of CD47. CD47’s 

accessibility was reduced when incubated with the CD33-targeting licMABs, 

licMABs
single

 and liCADs, which demonstrates that the SIRPα domain occupied CD47. 

Moreover, the blockade of CD47 correlated with the quantity of SIRPα domains on the 

CD33-binding local inhibitory checkpoint molecules. Due to the lack of SIRPα domains, 

αCD33 mAb, mAb
single

 and BiKE did not block CD47, thus achieving a staining intensity 

comparable to the incubation with PBS. Importantly, CD47 was similarly accessible by 

either the endogenous low affinity SIRPα domain or other local inhibitory checkpoint 

molecules that target CD19, an antigen not expressed on MOLM-13 cells. This suggests 

that the blockade of CD47 on MOLM-13 cells by local inhibitory checkpoint molecules is 

dependent on the binding to CD33, which induces an avidity effect for the naturally weak 

interaction between SIRPα and CD47. Contrarily, the complete blockade of CD47 was 

observed for the high affinity binders SIRPα CV1 and αCD47 mAb (CC2C6), which 

displayed MFI ratios lower than 1.5. 

Taken together, all local inhibitory checkpoint molecules preferentially bind to the CD33
+ 

CD47
+
 AML cell line MOLM-13 even in the excess of CD33

- 
CD47

+
 RBCs. These 

results confirm that local inhibitory checkpoint molecules bind through the high affinity 

CD33-binding site while not interacting with CD47 on healthy cells. Moreover, we 

showed that CD47 is blocked on MOLM-13 only by the SIRPα domain of CD33-

targeting local inhibitory checkpoint molecules. These results further support the idea that 

by combining a high affinity CD33-targeting domain and a low affinity SIRPα domain, 

the blockade of the CD47-SIRPα signaling pathway can be restricted to CD33
+ 

AML 

cells. Based on that, local inhibitory checkpoint molecules not only present lower on-

target toxicity than high affinity CD47-targeting agents, but also escape the antigen sink 

created by CD33
- 
CD47

+ 
healthy cells.  
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Figure 15. Blockade of CD47 on MOLM-13 cells by the SIRPα domain of local inhibitory checkpoint 

molecules 

CD33- and CD19-targeting local inhibitory checkpoint molecules and control molecules were incubated 

with MOLM-13 and accessible CD47 molecules were detected by FITC-αCD47 mAb staining by flow 

cytometry. MFI ratio of FITC-αCD47 staining with respect to the unstained condition is displayed. 

4.2.4. CD33-dependent internalization of local inhibitory checkpoint molecules 

It has been reported that CD33 internalizes upon bivalent binding of mAbs.
157

 As 

internalization of licMABs, which also target CD33 bivalently, would lessen the 

recruitment and activation of immune effector cells, the uptake of these molecules was 

evaluated. To this end, MOLM-13 cells were incubated with local inhibitory checkpoint 

molecules at 37°C and internalization was studied by flow cytometry and confocal 

microscopy (Figure 16). 

First, time-dependent internalization of αCD33 mAb and licMABs was assessed (Figure 

16A). All three molecules displayed a similar internalization rate, increasing over time 

and reaching an internalization of around 60% after 120 min. These results were further 

confirmed by confocal microscopy using directly labeled licMABs or mAb (Figure 16B). 

For samples incubated at 4°C, a clear membrane-bound staining was visible. Incubation at 

37°C, however, showed a re-localization of the molecules to intracellular sites increasing 

over time until intracellular signal was not detectable presumably due to degradation of 

the molecules or bleaching of the coupled dye in low pH lysosomal compartments. 
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Figure 16. Time-dependent internalization of CD33 upon incubation with licMABs 

(A) Time-dependent internalization of mAb and licMABs on MOLM-13 cells assessed by flow cytometry. 

(B) Representative confocal microscopy images of MOLM-13 cells incubated with directly labeled 

licMABs or mAb for 30, 60 or 120 min at 37°C or for 120 min at 4°C. Scale bar = 10 µm. 

Since whether monovalent target of CD33 reduces its internalization is a discussed topic 

in the field, the internalization of licMABs after 120 min was compared to licMABs
single 

and liCADs (Figure 17).
158, 159

 In our hands, monovalent targeting of CD33 by 

licMABs
single

 did not diminish CD33-dependent endocytosis. Interestingly, internalization 

was reduced by liCADs, particularly 2xSIRPα-αCD33 liCAD and αCD33 BiKE. The 

reason for the lower uptake rate of these molecules, however, remains unclear and further 

assays would need to be performed in order to understand the biology of CD33-dependent 

internalization.  
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In summary, CD33-dependent internalization was minimized by 2xSIRPα-αCD33 liCAD 

but licMABs and licMABs
single

 mediated CD33 endocytosis. This indicates that other 

mechanisms, in addition to the mono- or bivalent targeting of CD33, can be involved in 

this process. 

 

Figure 17. CD33-dependent internalization of local inhibitory checkpoint molecules  

Internalization of licMABs, licMABs
single

 and liCADs after incubation with MOLM-13 cells for 120 min 

and detected by flow cytometry.  

4.2.5. Binding of local inhibitory checkpoint molecules to effector cells 

Despite the different binding valency of licMABs, licMABs
single 

and liCADs to CD33, 

these molecules also diverge on the effector cell-activating domain. LicMABs and 

licMABs
single

 contain an IgG1 Fc domain, which is recognized by all FcγRs, whereas 

liCADs uniquely bind to CD16 through a scFv. Moreover, the IgG1 Fc region was shown 

to have a low affinity for CD16 and the αCD16 scFv was described to bind to CD16 with 

high affinity.
160-162

 SEC was kindly performed by Saskia Schmitt in order to further 

characterize the interaction between CD16 and either the Fc domain or the αCD16 scFv 

(Figure 18). 

Initially, single SEC chromatograms of SIRPα-αCD33 licMAB, SIRPα-αCD33 liCAD 

and the extracellular domain of CD16, which was recombinantly expressed by Alexandra 

Schele, were obtained. Next, interactions were studied by loading the mixed samples. An 

interaction between the licMAB and CD16 was not detectable, presumably due to the low 

affinity of the Fc domain for CD16 (Figure 18A). Nonetheless, the high binding affinity 
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of liCADs to CD16 was confirmed by the SEC peak corresponding to the formation of a 

complex of higher molecular weight (Figure 18B). The complex formation between the 

extracellular domain of CD16 and the liCAD, but not with the licMAB, was further 

visualized by SDS-PAGE analysis (Figure 18C). Taken together, our results are in 

agreement with the aforementioned previous studies, which demonstrate a low affinity of 

the Fc domain to CD16 and a high affinity of αCD16 scFv to CD16. 

 

Figure 18. Interaction between licMABs or liCADs and the extracellular domain of CD16 by size 

exclusion chromatography 

Binding studies of (A) licMABs and (B) liCADs with the recombinantly expressed extracellular domain of 

CD16 (CD16ex) by SEC on an S200 increase 5/150 GL column. (C) SDS-PAGE analysis of SEC peak 

fractions of single components (1) CD16ex, (2) licMAB and (3) liCAD and the co-incubated proteins (4) 

licMAB + CD16ex and (5) liCAD + CD16ex.  
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4.3. Functional characterization of local inhibitory checkpoint molecules 

4.3.1. Antibody-dependent cellular cytotoxicity in AML cell lines 

Antibody-dependent cellular cytotoxicity (ADCC) is one of the immune effector 

functions mediated by IgG1 mAbs. Furthermore, several clinically approved mAbs were 

shown to function throughout this mechanism.
163, 164

 During this process, the Fc domain 

of mAbs is recognized by CD16A expressed on NK cells and this triggers NK cell 

activation, which ultimately leads to NK cell degranulation and target cell lysis. Since 

licMABs and licMABs
single

 were engineered from an IgG1 mAb and liCADs as well 

recognize CD16, their ability to induce ADCC was investigated. To this end, freshly 

isolated NK cells were incubated with Calcein-AM-labeled MOLM-13 or SEM cells and 

local inhibitory checkpoint molecules and cell lysis was correlated with the Calcein-AM 

released in the supernatant (Figure 19). 

Importantly, CD33-targeting licMABs, licMABs
single

 and liCADs efficiently stimulated 

cytotoxicity of MOLM-13 cells with a maximum specific lysis of around 40% and EC50 

values in the low pM range (Figure 19A-C). This rather low maximal specific lysis of 

MOLM-13 cells is consistent with other studies using this cell line.
165, 166

 In order to study 

the ADCC effects of local inhibitory checkpoint molecules independent of the tumor 

antigen targeting, licMABs, licMABs
single 

and liCADs targeting CD19, a B-cell 

lymphoma antigen not expressed on MOLM-13 cells, were used. The CD19-targeting 

molecules did not induce significant killing of MOLM-13. This indicates not only that 

licMABs, licMABs
single

 and liCADs induce specific lysis of cells that express the target 

antigen but also that the SIRPα domain does not target CD47 by itself. This idea was 

further supported by the results obtained with the SEM cell line, which expressed the 

CD19 antigen but not CD33 (Figure 19D). CD19-targeting mAb and licMABs induced 

specific killing of SEM cells, achieving a maximum specific lysis of 65% at 

concentrations of 1 nM. On the contrary, CD33-targeting licMABs did not stimulate 

cytotoxicity of SEM cells. Only the 2xSIRPα-αCD33 licMABs promoted a minor ADCC 

effect on SEM cells, suggesting that increased SIRPα quantities may function as CD47-

targeting agents. 
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Figure 19. Specific NK cell-mediated tumor lysis induced by local inhibitory checkpoint molecules  

CD33- and CD19-targeting licMABs, licMABs
single

 and liCADs were incubated with NK cells and (A) 

MOLM-13 or (B) SEM cells for 4 h and specific target cell lysis was measured. Mean specific lysis of 4 

independent experiments and the SEM values (error bars) were plotted as a dose-response curve. 

As it was shown, CD33-targeting licMABs induce specific lysis of CD33-expressing 

AML cells. The surface antigen CD33, however, is also expressed on healthy cells from 

the myeloid lineage. Therefore, CD33-expressing healthy cells may as well be a potential 

target for licMABs.
135

 Nevertheless, previous studies demonstrate that CD33 expression 

is much higher on AML cells than on healthy cells, thus identifying CD33 as a validated 

AML antigen.
134

 In order to evaluate whether licMABs preferentially bind and induce 

anti-tumor effects to high CD33-expressing AML cells with respect to low CD33-

expressing cells, ADCC assays with a 1:1 mixed population of MOLM-13 and OCI-

AML3 cells were performed (Figure 20). OCI-AML3 cells express lower levels of CD33 

(MFI ratio = 3.55) than MOLM-13 cells (MFI ratio = 28.71) and therefore exemplify the 

healthy CD33-expressing cells.  
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CD33-targeting licMABs and mAb at both 10 nM and EC50 value concentrations 

favorably induced ADCC of MOLM-13 cells in the presence of OCI-AML3 cells (Figure 

20A and B). These results suggest that local inhibitory checkpoint molecules 

preferentially induce killing of high CD33-expressing cells, such as AML cells.  

In conclusion, CD33-targeting licMABs, licMABs
single

 and liCADs activate NK cells 

upon antigen binding, thus triggering specific lysis of CD33
+
 tumor cells. Furthermore, 

the activity of local inhibitory checkpoint molecules is directed by the high affinity 

binding to the tumor antigen and the SIRPα domain does not induce elimination of tumor 

antigen-negative healthy cells. 

 

Figure 20. Preferential killing of high CD33-expressing cells by licMABs 

Preferential NK cell-mediated lysis of MOLM-13 cells (high CD33 expression) and OCI-AML3 cells (low 

CD33 expression) in ADCC induced by (A) 10 nM or (B) EC50 concentrations of CD33-targeting mAb and 

licMABs. 

4.3.2. Antibody-dependent cellular cytotoxicity in AML patient samples 

After evaluating local inhibitory checkpoint molecules for their capacity to induce NK 

cell-mediated killing of AML cell lines, the cytotoxicity of these molecules in primary, 

patient-derived AML cells was analyzed and data was kindly provided by Dr. Christina 

Krupka from the Subklewe laboratory. Due to the high heterogeneity of AML patients, 

nine independent assays using AML cells from nine donors were performed. However, 

the limited available amounts of patient material narrowed the evaluation to licMABs. In 

order to perform the assay, primary AML cells were incubated with freshly isolated NK 
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cells and 10 nM licMABs or mAb ex vivo in a non-autologous setting. Cytotoxicity was 

analyzed by flow cytometry (Figure 21). 

Elimination of primary, patient-derived AML cells was promoted by αCD33 mAb, 

SIRPα-αCD33 licMAB and 2xSIRPα-αCD33 licMAB. Even if there was certain variation 

between the different primary AML cells, which demonstrates the inter-patient 

heterogeneity, licMABs stimulated significantly higher lysis than the αCD33 mAb. This 

is presumably due to the avidity binding of the SIRPα domains on licMABs. Notably, 

five out of nine patients benefited from the single SIRPα domain and seven out of nine 

benefited from the 2xSIRPα domain.  

Taken together, these results demonstrate that licMABs induce higher lysis of primary, 

patient-derived AML cells than conventional αCD33 mAbs. 

 

Figure 21. Cytotoxicity of primary, patient-derived AML cells induced by licMABs  

Lysis of primary AML cells derived from 9 independent AML patients promoted by 10 nM αCD33 mAb, 

SIRPα-αCD33 licMAB and 2xSIRPα-αCD33 licMAB. Percentage of CD33- or CD123-expressing cells 

after licMAB treatment with respect to untreated samples was determined by flow cytometry. 

4.3.3. Antibody-dependent cellular phagocytosis in AML cell lines 

The main goal of this thesis was to generate novel therapeutic molecules that target AML 

cells and actively promote their elimination by phagocytosis. Previous work identified 

two requirements in order to promote active phagocytosis: the induction of a pro-

phagocytic signal triggered by FcγRs and the disruption of the CD47-SIRPα anti-

phagocytic immune checkpoint.
91

 Therefore, all local inhibitory checkpoint molecules 
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engage FcγRs by either the Fc domain or the αCD16 scFv and prevent the CD47 anti-

phagocytic signal by the engrafted endogenous SIRPα domain. Thus, we hypothesized 

that licMABs, licMABs
single

 and liCADs trigger active phagocytosis of CD33-expressing 

AML cells. 

In order to evaluate the capacity of local inhibitory checkpoint molecules to induce active 

phagocytosis, an ADCP assay was established in our laboratory. Initially, an imaging 

flow cytometry-based phagocytosis assay was developed using the αCD33 mAb and 

licMABs (Figure 22). For that, monocytes were isolated from peripheral blood of healthy 

donors, stained with PKH67, differentiated to macrophages and co-incubated with 

PKH26-labelled MOLM-13 cells and increasing concentrations of licMABs and αCD33 

mAb. Phagocytic events were defined as single cells positive for PKH67 and PKH26, 

indicating that macrophages engulfed MOLM-13 cells (Figure 22A). Therefore, the use 

of an imaging flow cytometer was of high value in order to distinguish real phagocytic 

events from doublets of macrophages and MOLM-13 cells, which would as well lead to 

the detection of the two dyes by conventional flow cytometry.  

Importantly, SIRPα-αCD33 licMAB and 2xSIRPα-αCD33 licMAB improved 

phagocytosis of MOLM-13 cells with respect to the αCD33 mAb in all the evaluated 

concentrations (Figure 22B). SIRPα-αCD33 licMAB promoted the highest phagocytosis 

rate at concentrations up to 0.1 nM and 2xSIRPα-αCD33 licMAB from 1 to 100 nM. 

These results suggest that the SIRPα domain of licMABs is able to interact with CD47 on 

MOLM-13 cells and inhibit the anti-phagocytic signal. 
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Figure 22. Development of the phagocytosis assay by imaging flow cytometry 

(A) Exemplary images of phagocytic events by imagining flow cytometry. (B) Concentration-dependent 

phagocytosis of MOLM-13 cells induced by αCD33 mAb and licMABs. 

Once the ADCP assay was robust, all local inhibitory molecules were subsequently 

evaluated by conventional flow cytometry for their potential to induce phagocytosis of 

MOLM-13 at a concentration of 10 nM (Figure 23). Moreover, in order to characterize 

donor-derived macrophages, the expression of their surface antigens was detected. In 

general, CD33 and CD16 were poorly expressed, CD47 expression was high and CD32 

and CD64 displayed a broad distribution (Figure 23A). Interestingly, donor-derived 

macrophages could be separated in two different populations according to the expression 

levels of SIRPα. We defined the SIRPα expression as high (SIRPα
high

) for MFI values 

higher than 50 and intermediate (SIRPα
int

) for MFI values lower than 50. Since high 

SIRPα-expressing macrophages were recently described to display a suppressed 

phagocytic activity, the following phagocytosis assays were performed using SIRPα
int

 

macrophages.
167
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Despite the variation between the single assays, licMABs and licMABs
single

 successfully 

enhanced ADCP of MOLM-13 cells in comparison to αCD33 mAb and mAb
single 

(Figure 

23B). The local inhibitory checkpoint molecule with a higher mean phagocytosis rate was 

SIRPα-αCD33 licMAB
single

, followed by 2xSIRPα-αCD33 licMAB
single

 and single and 

double SIRPα licMABs. LiCADs, however, promoted a rather low phagocytosis of 

MOLM-13 cells, which is consistent with the low CD16 expression on macrophages.  

 

Figure 23. Phagocytosis of MOLM-13 cells mediated by local inhibitory checkpoint molecules  

(A) Analysis of surface antigens expressed on donor-derived macrophages. Two distinct populations, high 

SIRPα (SIRPα
high

, MFI ratio > 50) and intermediate SIRPα (SIRPα
int

 MFI ratio < 50) were described. 

(B) Phagocytosis of MOLM-13 cells by SIRPα
int

 macrophages mediated by 10 nM of local inhibitory 

checkpoint molecules. 

In summary, the ADCP assay was successfully established and demonstrated that by 

combining the pro-phagocytic Fc-mediated stimulus and the disruption of the CD47-

SIRPα immune checkpoint, licMABs and licMABs
single

 are able to enhance active 
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phagocytosis of MOLM-13 cells with respect to the control molecules by donor-derived 

SIRPα
int

 macrophages. 

4.3.4. Antibody-dependent cellular phagocytosis in AML patient samples 

The ability of licMABs and licMABs
single

 to promote active phagocytosis was further 

investigated using primary, patient-derived AML cells as target cells and results were 

kindly provided by Dr. Jan-Hendrik Kozik from the Subklewe laboratory (Figure 24). 

Due to the lack of efficacy of liCADs in stimulating phagocytosis of MOLM-13 cells, 

these molecules were not tested with primary AML samples.  

The response upon application of licMABs and licMABs
single

 was very heterogeneous 

within the evaluated AML patient samples, inducing active phagocytosis in seven out of 

thirteen experiments. Based on that, we divided the samples in responsive and resistant, 

defining “responsive” as these samples with at least one evaluated condition promoting a 

two-fold increase in relative phagocytosis with respect to the untreated condition (Figure 

24A). Concerning the responsive subset, SIRPα-αCD33 and 2xSIRPα-αCD33 licMABs 

promoted a higher phagocytosis of primary, patient-derived AML cells than the αCD33 

mAb and the CD47-blocking mAb (Figure 24B). Specifically, the SIRPα-αCD33 licMAB 

stimulated the highest mean phagocytosis of all local inhibitory molecules. The 

phagocytosis induced by licMABs
single

 was higher than the αCD33 mAb
single

, but lower 

with respect to licMABs, which may be explained by the avidity effects of licMABs.  

The results obtained with primary, patient-derived AML cells further suggest that the 

SIRPα domain of licMABs inhibits the CD47-SIRPα axis and that the Fc domain engages 

FcγRs, thus ultimately potentiating phagocytosis of target cells.  
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Figure 24. Phagocytosis of primary, patient-derived AML cells induced by licMABs and licMABs
single

 

(A) Relative phagocytosis of primary AML cells derived from thirteen patients. A responsive pair was 

defined as the assay in which a double-fold increase in phagocytosis was achieved by any of the conditions 

with respect to the untreated sample. A resistant pair did not achieve a double-fold increase in phagocytosis 

in any of the evaluated conditions. (B) Relative phagocytosis achieved by the responsive subset. 

Next, the expression of surface antigens on primary, patient-derived AML cells and 

donor-derived macrophages was determined by flow cytometry in order to shed light on 

the susceptibility of primary AML cells for phagocytosis by licMABs (Figure 25A-B). As 
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CD33 is an AML antigen, its expression was higher on primary AML cells than on 

macrophages. In contrast, all FcγRs as well as SIRPα, were expressed on donor-derived 

macrophages and low expressed, if at all, on AML cells. CD47 was expressed on both 

cell types but showed a heterogeneous distribution for distinct primary, patient-derived 

AML samples. Nonetheless, no conclusions could be drawn with respect to the expression 

of surface antigens and the susceptibility of primary AML cells for licMABs- and 

liMABs
single

-mediated phagocytosis.  

We therefore proceed to calculate the relative expression of surface antigens on primary, 

patient-derived AML cells with respect to donor-deriver macrophages (Figure 25C). 

Strikingly, we found that the relative expression of CD47, but no other analyzed marker, 

significantly influenced the outcome of the ADCP assays. A stronger CD47 expression on 

primary AML cells with regards to macrophages resulted in an increased phagocytosis of 

AML cells by licMABs. Accordingly, licMABs were not effective in experiments with 

higher CD47 expression on macrophages with respect to AML cells. A slight dependence, 

though not significant, could be observed for CD64 and SIRPα antigens, which may act 

as decoy receptors for licMABs on AML cells.  

Taken together, our results reflect the heterogeneity and complexity of primary, patient-

derived AML cells and demonstrate that licMABs and licMABs
single

 successfully mediate 

active phagocytosis of primary, patient-derived AML cells. Furthermore, CD47 

expression on primary AML cells relative to donor-derived macrophages seems to 

determine the efficacy of licMAB-mediated phagocytosis. Therefore, a screening of 

CD47 expression levels on AML patients would be required previous to the application of 

licMABs or licMABs
single

. 
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Figure 25. Surface antigen expression on donor-derived macrophages and primary AML cells 

Expression levels of CD33, CD16, CD32, CD64, CD47 and SIRPα on (A) donor-derived macrophages and 

(B) primary AML cells. (C) Relative antigen expression on primary AML cells and macrophages of 

responsive and resistant subsets for each evaluated antigen. Statistical significance was calculated with the 

Mann-Whitney test. 
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5. DISCUSSION 

5.1. Local blockade of the CD47-SIRPα innate immune checkpoint 

The main goal of this thesis was to develop novel immunotherapeutic molecules that 

bring the benefits of blocking the CD47-SIRPα myeloid-specific immune checkpoint to 

AML cells and not endanger healthy cells. CD47 is responsible for ensuring the 

maintenance of self-tolerance by negatively regulating phagocytosis through binding to 

its receptor SIRPα.
76

 This mechanism, however, is also utilized by cancer cells to escape 

the attack of the immune system. Accordingly, the blockade of the CD47-SIRPα immune 

checkpoint by CD47- or SIRPα-targeting agents induces macrophage-mediated 

elimination of tumors cells and constitutes a promising strategy for the treatment of 

AML.
70, 72, 92, 98, 168

  

The blockade of the CD47-SIRPα immune checkpoint, however, also represents a risk for 

healthy cells as CD47 is ubiquitously expressed on many cells of the body. Despite the 

results of ongoing clinical trials will clarify the safety of CD47 inhibitors for humans, on-

target/off-leukemia toxicities have been observed on pre-clinical evaluations of these 

agents. Studies that described the CD47-SIRPα interaction on RBCs already reported that 

the use of a high affinity mAb targeting SIRPα mediated the elimination of wild-type 

RBCs.
62

 Another work showed that the administration of a high affinity SIRPα CV1 

variant fused to a human IgG4 Fc domain resulted in the development of chronic anemia 

in mice and in a substantial drop in RBC counts in cynomologous monkeys.
91

 

Furthermore, a dose-dependent anemia due to erythrophagocytosis was observed after the 

injection of Hu5F9-G4 in cynomologous monkeys.
92

 Overall, these evidences suggest that 

the systemic blockade of the CD47-SIRPα signaling pathway may cause toxicities to 

healthy cells, leading to unwanted side effects.  

In order to confine the blockade of the CD47-SIRPα immune checkpoint to AML cells, 

we fused the endogenous low affinity SIRPα domain to a mAb or derivative thereof 

targeting CD33, a surface antigen highly expressed on AML cells. We showed that 

licMABs, licMABs
single

 and liCADs, containing one or two SIRPα domains, preferentially 

bind to CD33-expressing AML cells even in the presence of a 20-fold excess of RBCs. 

Most importantly, by studying the accessibility of CD47, we demonstrated that the SIRPα 

domain of local inhibitory checkpoint molecules blocks CD47 on cells that 

simultaneously express CD33 and not on cells negative for the target antigen. 
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Accordingly, licMABs, licMABs
single

 and liCADs are expected to reduce on-target/off-

leukemia toxicities and be advantageous over other high affinity CD47 inhibitors. In 

addition, by binding through the high affinity CD33-targeting domain, local inhibitory 

checkpoint molecules also overcome the antigen sink created by CD47 expressed on 

healthy cells. This would result in a lower therapeutic dose and consequently in a 

reduction of the production costs. 

Different strategies have been investigated in order to restrict the blockade of the CD47-

SIRPα immune checkpoint to tumor cells. These include the generation of bispecific 

antibodies binding to CD47 and a tumor antigen. A dual-variable-domain 

immunoglobulin (DVD-Ig) was created to bind CD20 and CD47 simultaneously, being 

the variable domains recognizing CD47 in the middle position and therefore displaying 

reduced affinity.
93

 Interestingly, CD20-CD47 DVD-Ig not only recapitulated the anti-

tumor effects of the combination of two mAbs targeting CD20 and CD47, but also 

preferentially bound to CD20-expressing cells with respect to RBCs, thus potentially 

reducing the unwanted side effects of combination therapies. Based on that, it is expected 

that licMABs, licMABs
single

 and liCADs are superior to the combination of mAbs 

targeting CD33 and CD47.  

SIRPabodies also confine the blockade of the CD47-SIRPα immune checkpoint to CD20-

expressing cancer cells.
169

 Similarly to the evaluated licMABs, SIRPabodies are IgG1 

mAbs targeting CD20 with the endogenous SIRPα domain engrafted either at the C-

terminus or at the N-terminus of the heavy chain. SIRPabodies overpass the antigen sink 

created by RBCs and, most importantly, do not cause toxicities in cynomologous 

monkeys. Studies with these molecules resulted in an extended survival and reduced 

tumor burden in xenografted mouse models, which further encourages the use of the 

SIRPα domain as a low affinity CD47-blocking agent. The optimal position of the SIRPα 

domain in an antibody scaffold, however, needs to be further investigated. An N-terminal 

fusion retains the native structure of SIRPα but may compromise the CDRs of the 

parental antibody. Alternatively, a C-terminal fusion of SIRPα may not interfere with the 

CDRs but can presumably impact the binding to CD47. 

Taken together, the engraftment of the endogenous N-terminal SIRPα domain onto an 

antibody targeting CD33 was demonstrated to be a promising approach to locally restrict 

the effects of blocking the CD47-SIRPα immune checkpoint to AML cells. 
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5.2. Advantages and limitations of liCADs  

As already speculated for CD33-targeting BiKEs, the low molecular weight of liCADs 

would likely facilitate their infiltration into the bone marrow, which would be beneficial 

for targeting AML LSC.
150

 Thus, the liCAD format is very promising for immunotherapy 

of AML and specially for eliminating AML cells responsible for relapse. 

By targeting CD16 with high affinity, liCADs induced potent NK cell-mediated 

cytotoxicity of AML cells. This is based on the fact that CD16 is the main FcγR 

expressed on NK cells and is indispensable for ADCC.
170, 171

 The specificity for CD16 of 

liCADs, however, made these molecules unable to induce phagocytosis of AML cells. 

This is due to the low CD16 expression on macrophages, as described in this and previous 

studies.
172

 Consequently, the enhancement of phagocytosis by blocking the CD47-SIRPα 

immune checkpoint could not be evaluated in the liCAD format.  

In order to be able to investigate the potential of liCADs to induce phagocytosis, the 

specificity of the effector cell-activating domain could be exchanged. CD32A is an 

activating FcγR expressed on macrophages and described to trigger phagocytosis.
173-175

 

Thus, we anticipate that a SIRPα-αCD32A-αCD33 liCAD would promote phagocytosis 

of AML cells. Importantly, CD32A is also described to be expressed and functional on 

NK cells of around 45% of the individuals.
176, 177

 This suggests that a SIRPα-αCD32A-

αCD33 liCAD could also mediate ADCC by CD32A
+
 NK cells. Hence, in order to obtain 

an improved anti-tumor immune response, the αCD16 scFv of liCADs could be replaced 

by high affinity scFv targeting the receptor CD32A. This idea is further supported by fact 

that mAbs engineered to preferentially bind CD32A were described promote improved 

ADCC and ADCP effects than conventional mAbs.
178, 179

 

In summary, the engagement of CD16 by liCADs demonstrated successful NK cell-

dependent elimination of AML cells but impeded the investigation of liCAD-mediated 

phagocytosis. Nevertheless, the liCAD format presents some advantages over licMABs 

and licMABs
single

 and therefore these molecules should be re-evaluated after substituting 

the CD16 scFv for a CD32A scFv. 

5.3. LicMABs and licMABs
single

 enhance phagocytosis of AML cells  

LicMABs and licMABs
single

 successfully enhanced the phagocytosis of AML cell lines 

and primary, patient-derived AML cells. These results are in agreement with studies 
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showing that the combination of a pro-phagocytic stimulus mediated by the Fc domain of 

an antibody and the blockade of the CD47-SIRPα immune checkpoint stimulates active 

phagocytosis.
71, 93, 169

  

Interestingly, we reported that the expression levels of CD47 on macrophages and 

primary AML patient samples dictate the outcome of licMABs-mediated phagocytosis. In 

other words, patients with a high CD47 expression are more likely to benefit from 

licMABs. Accordingly, the determination of the expression levels of CD47 on AML 

patients should be evaluated prior to the administration of licMABs. It is important to 

note that we and others found CD47 overexpressed on AML cells with respect to normal 

cells, which suggests that licMABs are effective for a majority of patients.
70, 152

 Despite 

CD47 expressed on AML cells, CD47 on macrophages also plays an important role in 

determining licMAB-mediated phagocytosis. Therefore, in order to better understand the 

anti-tumor effect of licMABs, a phagocytosis assay in an autologous setting should be 

performed. A limitation for this is that AML cells and macrophages derive from a 

common myeloid progenitor, which impedes the isolation of both cell types from one 

patient sample. Thus, an autologous ADCP assay would require healthy macrophages 

from an AML patient currently cured and previously stored AML cells from the same 

patient. The limited amount of patient material and the low survival rates of AML 

patients, however, highly restrict the performance of such assay. A second limitation is 

that cured AML patients most probably received an allo-SCT.
116

 In this case, the 

transplanted immune system develops healthy macrophages that are no longer considered 

as autologous with respect to the AML cells. Moreover, that AML cells belong to the 

same hematopoietic lineage as macrophages may also impact the outcome of ADCP due 

to the expression of myeloid markers on AML cells, such as FcγRs and SIRPα.
180

 Since 

these may act as decoy receptors for local inhibitory checkpoint molecules, licMABs may 

promote stronger anti-tumor effects with tumor types not derived from the myeloid 

lineage. In summary, the influence of CD47 expression levels on licMAB-mediated 

phagocytosis needs to be further investigated. 

In addition to the stimulation of macrophage-mediated phagocytosis, licMABs and 

licMABs
single

 are also expected to mediate tumor elimination by adaptive immune 

responses. One study showed that a mAb targeting SIRPα promoted the activation of 

macrophages, and neutrophils in mice bearing a human Burkitt’s lymphoma, thus limiting 

the tumor growth and achieving tumor elimination.
109

 CD47-blocking mAbs were as well 
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reported to stimulate adaptive immune responses in vitro and in vivo.
103

 Furthermore, 

nanobodies targeting CD47 were not able to control melanoma growth, but when 

combined with a PD-L1-blocking mAb, which restores T cell functions, anti-tumor 

responses were improved.
181

 These evidences already suggested that the blockade of the 

CD47-SIRPα immune checkpoint contributes to the generation of adaptive immune 

responses, but further clarification was provided by Liu, Xu and co-workers. They 

described that DCs, and not macrophages, are involved in activating tumor-specific CD8
+
 

T cells upon disruption of the CD47-SIRPα axis.
105, 106

 Specifically, the treatment of DCs 

with a CD47 inhibitor prevented the cytosolic clearance of tumor mitochondrial DNA 

(mtDNA) that presumably entered through exosomes. Tumor mtDNA was then 

recognized by cyclic GMP-AMP synthase (cGAS), which activated the cGAS-STING 

signaling pathway. This stimulated the production of type I interferons and ultimately led 

to the cross-priming of CD8
+
 T cells.

106
 Based on these results, we speculate that the 

blockade of the CD47-SIRPα immune checkpoint by licMABs and licMABs
single

 also 

results in the activation of neutrophils, DCs and CD8
+
 T cells.  

Taken together, the novel immunotherapeutic molecules licMABs and licMABs
single

 

enhance the phagocytosis of primary, patient-derived AML cells by locally disrupting the 

CD47-SIRPα immune checkpoint and might also induce tumor-specific T cell activation. 

Consequently, the application of licMABs and licMABs
single

 may lead to the stimulation 

of a complete anti-tumor immune response that involves both innate and adaptive effector 

functions. 

5.4. Other determinants of macrophage-mediated phagocytosis 

Several efforts have been focused on describing novel surface molecules that may play a 

role in phagocytosis, and the field further speculates on the presence of other 

phagocytosis-regulating mechanisms not yet described.
182

 Thus, despite expression levels 

of CD47, other factors may influence licMABs and licMABs
single

-mediated phagocytosis. 

The role of calreticulin in macrophage-mediated phagocytosis was discovered after the 

observation that a CD47-blocking mAb was not inducing phagocytosis of certain healthy 

cells. Calreticulin was described as a cell surface antigen that interacts with the low 

density lipoprotein-receptor related protein (LRP). LRP, expressed on phagocytic cells, 

delivers a pro-phagocytic stimulus upon binding to calreticulin.
183

 Since calreticulin 

expression occurs after DNA damage, it is absent on healthy cells and this protects them 
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from being phagocytosed when coated with CD47-specific mAbs.
183, 184

 Apoptotic and 

tumor cells, on the contrary, express calreticulin, which acts as an “eat me” signal and 

potentiates the elimination of these cells through phagocytosis. It is suggested that the 

upregulation of CD47 on tumor cells is a mechanism to compensate for calreticulin 

expression and enable phagocytosis escape. Hence, mAbs targeting CD47 block the 

“don’t eat me” signal on healthy and tumor cells, but only tumor cells are phagocytosed 

due to calreticulin expression. In agreement with this, a mAb blocking the binding of 

calreticulin to LRP completely abrogated the phagocytosis of tumor cells induced by a 

CD47-blocking mAb. It is also suggested that calreticulin expression substitutes the pro-

phagocytic signal triggered by the IgG1 Fc domain and facilitates the stimulation of 

phagocytosis by IgG4 CD47-blocking mAbs. Calreticulin expression, however, was only 

observed on non-Hodgkin lymphoma, bladder cancer and neuroblastoma and further 

evaluations are required to consider it a common tumor antigen. Interestingly, calreticulin 

was also described to be upregulated on circulating neutrophils, which provides an 

explanation for the neutropenia seen in in vivo studies evaluating CD47 inhibitors.
69, 185

  

An unrelated investigation found that mAbs targeting CD47 induced phagocytosis of 

hematological cancers but not solid tumors.
186

 This was explained by the presence of the 

hematopoietic receptor SLAMF7, a member of the signaling lymphocytic activation 

molecule family, on tumor cells susceptible for CD47-mediated phagocytosis. SLAM7 

was initially described as a homotypic receptor involved in regulating natural cytotoxicity 

of NK cells against cognate cellular and viral ligands.
187

 However, downregulation of 

SLAMF7 on macrophages resulted in defective phagocytosis, which identified SLAMF7 

as a pro-phagocytic stimulus.
186

 SLAMF7 was shown to interact with Mac-1, also 

expressed on macrophages, and mediate the signaling cascade through phosphorylation of 

ITAMs motifs.
188, 189

 Accordingly, mAbs against SLAMF7 inhibited phagocytosis in the 

presence of αCD47 mAbs.
186

 This indicated that SLAMF7 expression on both 

macrophages and target cells is crucial in order to enhance phagocytosis by blocking the 

CD47-SIRPα immune checkpoint. Similarly to calreticulin expression, an increased 

expression of SLAMF7 on tumor cells makes them more sensible to immunotherapies 

targeting the CD47-SIRPα axis. Interestingly, SLAMF7 expression was lower in AML 

with respect to chronic lymphocytic leukemia, myelodysplastic syndrome, multiple 

myeloma and B cell lymphomas, suggesting that AML cells may be less susceptible to 

CD47 inhibitors than other types of leukemia. 
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Lastly, MHC class I was as well elucidated as a regulator of macrophage-mediated 

phagocytosis.
190

 MHC class I molecules are ubiquitously expressed on most of the cells 

and are known to play a role in controlling the activation of NK and T cells.
191, 192

 The 

role of MHC class I on macrophage-mediated phagocytosis was further investigated after 

the evaluation of the αCD47 mAb Hu5F9-G4.
92

 While Hu5F9-G4 stimulated 

phagocytosis in most of the tested tumor cell lines, some were resistant to phagocytosis 

independently of the cancer type and expression levels of CD47. By comparing surface 

antigens, the authors found MHC class I molecules expressed on cell lines refractory to 

Hu5F9-G4-mediated phagocytosis and absent on responsive cell lines.
190

 MHC class I 

was described to negatively regulate phagocytosis by interacting with the leukocyte 

immunoglobulin-like receptor subfamily B member 1 (LILRB1), expressed on a major 

subset of macrophages.
193

 Hence, mAbs targeting LILRB1 enhanced the phagocytosis of 

MHC class I-expressing tumor cells in vitro and in vivo and, most importantly, 

potentiated the anti-tumor immune responses induced by CD47-blocking mAbs.
190

 

In summary, besides CD47, MHC class I molecules have been described to negatively 

regulate phagocytosis and calreticulin and SLAMF7 to be pro-phagocytic signals on 

tumor cells. The characterization of such antigens on primary, patient-derived AML cells 

may therefore contribute to the understanding of the anti-tumor effects mediated by 

licMABs. Moreover, the investigation of surface antigens differentially expressed on 

responsive/refractory primary AML cells could lead to the discovery of novel surface 

receptors involved in the regulation of phagocytosis.  

5.5. CD33-dependent internalization 

The endocytosis of CD33 was initially described to occur upon engagement by 

conventional mAbs. This mechanism was exploited by ADCs, such as GO, to deliver a 

toxin inside CD33-expressing tumor cells.
194

 Accordingly, we reported that licMABs also 

induced CD33-dependent internalization. However, as licMABs rely on activating 

immune cells to mediate anti-tumor effects, the internalization of these molecules may 

mask their potential as immunotherapies.  

The signaling cascade that ultimately triggers CD33 internalization is well described. It 

involves the phosphorylation of ITIM motifs and the recruitment of several proteins with 

SH2 domains, such as the ECS E3 ubiquitin ligase complex.
158

 Nevertheless, the precise 

mechanism that initiates this process remains unknown. One study noted that CD33 could 
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be detected on the surface of tumor cells after the incubation with AMG 330, which 

targets CD33 with one scFv.
149

 This suggested that, contrary to conventional mAbs, 

monovalent targeting does not induce CD33 internalization. Based on that observation, 

we generated licMABs
single

 and liCADs, which bind to CD33 with either a Fab or a scFv 

domain and therefore should not mediate CD33-dependent internalization. The evaluation 

of licMABs
single

 and SIRPα-αCD33 liCAD, however, demonstrated that these molecules 

internalize to a degree similar to licMABs. This proposed that other factors, besides the 

binding valency to CD33, influence internalization.  

Reports on the internalization of CD19 indicated that the expression of Fc receptors, and 

specially CD32, may be involved in this mechanism.
195, 196

 It was suggested that mAbs 

simultaneously bind to CD19 and to CD32 and that this forms a three-component 

complex that increases the endocytosis of CD19. The isotype of the antibody targeting 

CD19, in addition, also modulated the amount of internalization. It is therefore possible 

that licMABs
single

 trigger internalization of CD33 by also binding to CD32 with their Fc 

domain. However, there is no evidence consistent with the endocytosis of CD33 by 

SIRPα-αCD33 liCAD, which suggests that further investigations are required to fully 

understand CD33 internalization mechanisms. 

Notwithstanding these limitations, the anti-tumor effects mediated by licMABs, 

licMABs
single

 and liCADs demonstrate that the internalization of these molecules does not 

significantly hamper their efficacy. 

5.6. Comparative analysis of licMABs, licMABs
single

 and liCADs 

All evaluated local inhibitory checkpoint molecules bind to CD33, disrupt the CD47-

SIRPα immune checkpoint and activate immune effector cells. However, they differ on 

the binding valency to CD33 and CD47 and on the nature of the effector cell-activating 

domain, and these differences determine the potency of the mediated anti-tumor immune 

responses (Figure 26).  

The minimal binding of local inhibitory molecules to RBCs was influenced by the 

amount of SIRPα domains. The local inhibitory checkpoint molecule containing four 

SIRPα domains, 2xSIRPα-αCD33 licMAB, showed the highest binding to RBCs. This 

suggests that 2xSIRPα-αCD33 licMAB potentially presents the highest risk to mediate 

on-target/off-leukemia effects. Nevertheless, the engagement of RBCs was negligible 
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compared to the high affinity mAb targeting CD47, indicating that unwanted toxicity to 

healthy cells is still reduced. Furthermore, studies on CD47’s accessibility showed that 

the four SIRPα domains achieved the best blockade of CD47 on MOLM-13 cells. Local 

inhibitory molecules containing two SIRPα domains, SIRPα-αCD33 licMAB, 2xSIRPα-

αCD33 licMAB
single

 and 2xSIRPα-αCD33 liCAD, bound to RBCs marginally and still 

occupied CD47. Amongst them, 2xSIRPα-αCD33 liCAD showed the smallest binding to 

RBCs, thus being advantageous over SIRPα-αCD33 licMAB and 2xSIRPα-αCD33 

licMAB
single

. Lastly, local inhibitory checkpoint molecules with one SIRPα domain, such 

as SIRPα-αCD33 licMAB
single

 and liCAD did not engage RBCs and blocked CD47 on 

MOLM-13 cells to a lower degree.  

Taken together, these results indicate that the blockade of CD47 can be modulated by the 

amount of SIRPα domains. Moreover, we demonstrate that one SIRPα domain is already 

able to disrupt the CD47-SIRPα axis and, most importantly, that the preferential binding 

to CD33-expressing cells is not disturbed by the presence of several SIRPα domains. 

The functional evaluation of local inhibitory checkpoint molecules showed that the high 

affinity of liCADs for CD16 was favorable in inducing ADCC of tumor cells. Thus, 

liCADs facilitated the most potent NK-cell mediated lysis of AML cell lines. SIRPα-

αCD33 licMAB also triggered potent cytotoxicity of tumor cells. However, ADCC effects 

were slightly reduced by 2xSIRPα-αCD33 licMAB, presumably due to the lower affinity 

of the double SIRPα molecule. Similarly, licMABs
single

, which engaged NK cells by the 

Fc domain and bound CD33 with one Fab fragment, triggered mild NK cell-mediated 

cytotoxicity to tumor cells. 

On the other hand, the high affinity αCD16 scFv of liCADs was disadvantageous in 

promoting phagocytosis of tumor cells, which is explained by the lack of CD16 

expression on macrophages. By engaging all FcγRs through the Fc domain, licMABs and 

licMABs
single

 successfully mediated comparable levels of phagocytosis of AML cell lines 

independently of the quantity of SIRPα domains. Phagocytosis of primary, patient-

derived AML samples was also effectively induced by licMABs and licMABs
single

, being 

SIRPα-αCD33 licMAB the molecule that induced the strongest phagocytosis. 
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Figure 26. Comparison of anti-tumor effects induced by local inhibitory checkpoint molecules  

Evaluation of licMABs, licMABs
single

 and liCADs regarding specific tumor-antigen binding, capacity to 

induce NK cell-mediated lysis of AML cell lines and ability to mediate phagocytosis of AML cell lines and 

primary, patient-derived AML cells. n.d., not determined. 

Overall, within the evaluated local inhibitory checkpoint molecules, SIRPα-αCD33 

licMAB induced the most potent anti-tumor effects based on preferential tumor binding 

and ability to eliminate tumor cells via ADCC and phagocytosis mechanisms. Hence, 

licMABs are the molecules of choice to conduct in vivo experiments in order to finalize 

the pre-clinical evaluation and translate this work into a clinical setting. 
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6. MATERIALS AND METHODS 

6.1. Materials 

Unless otherwise stated, all chemicals were purchased from Carl Roth, Merck, or Sigma-

Aldrich. Restriction enzymes were obtained from Fermentas or New England Biolabs and 

primers from Metabion.  

6.1.1. E. coli strain, cell lines and media 

The E. coli strain XL1 Blue, purchased from Stratagen, was made chemically competent 

as previously described and used for cloning.
197

 XL1 Blue were cultured in lysogeny 

broth (LB) media (10 g/L tryptone, 5 g/L yeast extract, 5 g/L NaCl, 1.3 ml/L NaOH) and 

plated in LB agar (LB-Lennox media with 15 g/L agar). 

The MOLM-13 cell line was purchased from the Deutsche Sammlung von 

Mikroorganismen und Zellkulturen (DSMZ) and cultured in RPMI 1640 + GlutaMAX 

(Gibco, Thermo Fisher Scientific) supplemented with 20% fetal bovine serum (FBS, 

Gibco, Thermo Fisher Scientific). SEM cells, obtained from American Type Culture 

Collection (ATCC), and the OCI-AML3 cell line, which was a kind gift from Prof. 

Marion Subklewe, was cultured in RPMI 1640 + GlutaMAX supplemented with 10% 

FBS. Schneider 2 cells were purchased from ExpreS
2
ion Biotechnologies and cultured 

with Ex-CELL® 420 (Sigma-Aldrich) and Flp-IN
TM

-CHO were obtained from Thermo 

Fisher Scientific and cultured in Ham’s F-12 media (Thermo Fisher Scientific) 

supplemented with 10% FBS. Flp-IN
TM

-CHO cells were stably transfected with CD33 

and CD47 (here designated as CHO_CD33 and CHO_CD47) by Monika Herrmann and 

Dr. Nadine Magauer, respectively, and were subsequently cultured in Ham’s F-12 

supplemented with 10% FBS and 500 µg/mL hygromycin B Gold (InvivoGen). Expi293F 

cells, purchased from Thermo Fisher Scientific, were cultured in Expi293 medium. All 

cell lines were grown until the recommended cell density and passaged twice a week. 

6.1.2. Healthy donors’ and AML patients’ material 

Peripheral blood or bone marrow samples were collected from healthy donors and AML 

patients after written informed consent in accordance with the Declaration of Helsinki and 

approval by the Institutional Review Board of Ludwig-Maximilians-University. 

Peripheral blood from healthy donors was the source of RBCs, peripheral blood 
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mononuclear cells (PBMCs), NK cells and monocytes. The characteristics of AML 

patient material used for ADCC and for ADCP assays are displayed in Table 2 and Table 

3, respectively. 

Table 2. Characteristics of AML patients’ material used for NK cell-mediated ADCC assays  

PT Gender 
Disease 

Phase 
Material 

NPM1 

mut. 

FLT3-

ITD 
Karyotype 

ELN 

genetic 

group 

CD33 

MFI 

ratio 

CD47 

MFI 

ratio 

1 F ID BM + - normal favorable 111.8 47.1 

2 F ID BM + + normal 
interme-

diate I 
110.0 76.3 

3 M ID PB - + 47, xy, +8 
interme-

diate II 
73.0 95.2 

4 M Relapse BM - - complex adverse 52.3 34.5 

5 M ID BM - - normal 
interme-

diate I 
54.2 58.2 

6 M ID BM - - normal 
interme-

diate I 
12.6 75.9 

7 F Relapse BM - + 
46,xx; 

t(5,11) 

interme-

diate II 
90.0 27.1 

8 M ID PB - - 

46,xx; 

der(16)t(1;1

6)(q12;q21) 

interme-

diate II 
37.0 31.7 

9 F ID BM + + n.a. n.a. n.a. n.a. 

 

Table 3. Characteristics of AML patients’ material used for phagocytosis assays 

PT Gender 
Disease 

Phase 
Material 

NPM1 

mut. 

FLT3-

ITD 
Karyotype 

ELN 

genetic 

group 

CD33 

MFI 

ratio 

CD47 

MFI 

ratio 

1 n.a. ID BM + + 46,XX[20] 
interme-

diate I 
16.66 20.19 

2 F ID PB n.a. n.a. n.a. n.a. 21.67 11.92 

3 F ID BM + - 

46,XX,t(11;

19)(q23;p13

.3)[14]/46,X

X[2] 

favorable 8.30 10.51 

4 F ID BM + - 46,XX[20]  favorable 20.42 68.71 

5 F ID BM + - 46,XX[20]  favorable 13.14 53.14 

6 F ID BM - - 

46,XX,t(11;

19)(q23;p13

.3)[14]/46,X

X[2] 

adverse 7.19 5.16 
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7 F ID BM - + 46,XX[22]  
interme-

diate I 
17.79 40.08 

8 M ID BM - + 

47,XY,r(8)(

?),+der(8),d

el(15)(q22q
26)[21]  

adverse 9.71 12.49 

9 M ID PB + - 46,XX[24]  favorable 29.79 14.96 

10 M ID PB + - 
47,XY,+X[

21] 

interme-

diate I 
10.95 28.70 

11 F ID PB - + 46,XX[20] 
interme-

diate I 
26.54 23.91 

12 F ID PB - - 

46,XX;t(6;

11)(q27,q2

3)[14] 

adverse 22.82 32.33 

13 M ID PB - - 

46,XY,t(1;2

1)(p36;q22)

[24]/46,XY[
2] 

n.a. 1.58 17.01 

 

6.2. Molecular biology methods 

Conventional cloning methods were executed according to standard protocols and 

commercial kits and enzymes were used following the manufacturer’s instructions.
198

 

Briefly, insert of interest was amplified by polymerase chain reaction (PCR) with the 

respective restriction sites. PCR products were separated by agarose gel electrophoresis, 

the desired DNA band was cut out and DNA was extracted from the agarose gel using the 

NucleoSpin Gel and PCR clean-up kit (Macherey-Nagel). Isolated insert and backbone 

vector were digested with restriction enzymes, ligated and transformed into E. coli XL1-

Blue. Next, plasmid DNA of E. coli clones was prepared using the NucleoSpin Plasmid 

Easy Pure kit (Macherey-Nagel) or the NucleoBond® Xtra Maxi kit (Macherey-Nagel). 

All constructs were verified by DNA sequencing by Eurofins MWG Operon.  

6.2.1. Molecular cloning  

In order to generate licMABs, the commercial vectors pFUSE2-CLIg-hk and pFUSE-

CHIg-hG1 (InvivoGen) were used. The αCD33 VL and αCD33 VH domains (clone 

hP67.6) were engrafted into the respective vectors to create pFUSE-CH-33 and pFUSE2-

CL-33. The N-terminal Ig-like domain of SIRPα (residues 1-120) was cloned into the 

αCD33 LC vector followed by a (G4S)4 linker to create the pFUSE2-CL-SIRP-33. 

Moreover, a preScission protease site was inserted between the SIRPα and the αCD33 VL 
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domains to create a cleavable SIRPα tag (pFUSE2-CL-PreSc-33). An additional SIRPα 

domain was cloned into the N-terminus of pFUSE2-CL-SIRP-33, thus creating the 

pFUSE2-CL-2xSIRP-33 vector. LicMABs
single

 were generated from licMABs by 

exchanging one αCD33 Fab fragment for the endogenous extracellular domain of SIRPα. 

In order to ensure correct pairing of the two distinct heavy chains, charged mutations 

were inserted, obtaining a negatively charged HC (with mutations K392D and K409D) 

and a positively charged HC (E456K and D399K).
41

 The plasmids encoding for liCADs, 

cloned into the pExpreS2-1 vector (ExpreS
2
ion Biotechnologies), were obtained from Dr. 

Nadine Magauer and Saskia Schmitt. The amino acid sequences of each domain are 

specified in Table 4. 

Table 4. Amino acid sequences of the SIRPα domain and the antigen-binding sites recognizing CD16 

and CD33 

Domain Sequence 

SIRPα 

EEELQVIQPDKSVLVAAGETATLRCTATSLIPVGPIQWFRGAGP

GRELIYNQKEGHFPRVTTVSDLTKRNNMDFSIRIGNITPADAGT

YYCVKFRKGSPDDVEFKSGAGTELSVRAKPS 

αCD16 scFv  

(VH-(G4S)4-VL) 

VTLKESGPGILQPSQTLSLTCSFSGFSLRTSGMGVGWIRQPSGK

GLEWLAHIWWDDDKRYNPALKSRLTISKDTSSNQVFLKIASV

DTADTATYYCAQINPAWFAYWGQGTLVTVSAGGGGSGGGGS

GGGGSGGGGSGGGGSDTVLTQSPASLAVSLGQRATISCKASQS

VDFDGDSFMNWYQQKPGQPPKLLIYTTSNLESGIPARFSASGS

GTDFTLNIHPVEEEDTATYYCQQSNEDPYTFGGGTKLEIK 

αCD33 scFv 

(VL-(G4S)4-VH) 

DIQLTQSPSTLSASVGDRVTITCRASESLDNYGIRFLTWFQQKP

GKAPKLLMYAASNQGSGVPSRFSGSGSGTEFTLTISSLQPDDFA

TYYCQQTKEVPWSFGQGTKVEVKGGGGSGGGGSGGGGSGGG

GSEVQLVQSGAEVKKPGSSVKVSCKASGYTITDSNIHWVRQAP

GQSLEWIGYIYPYNGGTDYNQKFKNRATLTVDNPTNTAYMEL

SSLRSEDTAFYYCVNGNPWLAYWGQGTLVTVSS 

αCD33 VH 

EVQLVQSGAEVKKPGSSVKVSCKASGYTITDSNIHWVRQAPG

QSLEWIGYIYPYNGGTDYNQKFKNRATLTVDNPTNTAYMELS

SLRSEDTAFYYCVNGNPWLAYWGQGTLVTVSS 

αCD33 VL 

DIQLTQSPSTLSASVGDRVTITCRASESLDNYGIRFLTWFQQKP

GKAPKLLMYAASNQGSGVPSRFSGSGSGTEFTLTISSLQPDDFA

TYYCQQTKEVPWSFGQGTKVEVK 

 

6.2.2. Transformation of E. coli 

For transformation, 10 µl of ligated plasmid was mixed with 100 µl of chemically 

competent XL1-Blue and incubated for 15 min on ice. Cells were then heat shocked for 
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45 sec at 42°C followed by a second incubation of 2 min on ice. Subsequently, 600 µl of 

LB were added and cells were incubated at 37°C for 1 h and constant shaking. Cells were 

plated on a LB agar plate supplemented with 25 µg/ml blasticidine (InvivoGen) or 

zeocine (Thermo Fisher Scientific) for LC or HC vectors, respectively, and placed in a 

37°C incubator over night. Colonies were picked and grown over night in 5 ml LB 

medium containing the corresponding antibiotic at 37°C and with constant shaking. 

Plasmid DNA was prepared from grown cultures as previously mentioned. 

6.3. Protein biochemistry methods 

6.3.1. Expression and purification of licMABs and licMABs
single

 

In order to obtain licMABs and licMABs
single

, the corresponding vectors were co-

transfected into Expi293F cells using the ExpiFectamine
TM

 293 transfection kit (Thermo 

Fisher Scientific) following the manufacturer’s instructions. For the generation of 

licMABs, heavy and light chain of licMABs and mAb were transfected in a 1 to 4 ratio. 

For licMABs
single

, positively charged HC, negatively charged HC and LC were 

transfected in a 1 to 1 to 3 ratio.  

Five days after transfection, licMABs were purified by protein A affinity 

chromatography. Cell culture supernatants were collected by centrifugation at 500 RCF 

for 10 min. 250 µl of nProtein A sepharose 4FF beads (GE Healthcare), previously 

washed with PBS (8 g/L NaCl, 0.2 g/L KCl, 1.44 g/L Na2HPO4x2H2O, 0.2 g/L KH2PO4, 

pH 7.4) were added and incubated over night at 4°C on a rotating wheel. Beads were 

collected by centrifugation at 500 RCF for 5 min and loaded into a Bio-Spin® 

chromatography column (Thermo Fisher Scientific). Washing steps were performed with 

4 column volumes of protein A binding buffer (50 mM Tris-HCl pH 7.0) and licMABs 

were eluted from the beads by 5 to 6 column volumes of protein A elution buffers (0.1 M 

citrate pH 3.0). Elution fractions were neutralized with protein A neutralization buffer (1 

M Tris-HCl pH 9.0). Purified proteins were evaluated by SDS-PAGE and fractions 

containing licMABs were pooled and dialyzed against PBS. 

After dialysis, proteins were concentrated using Amicon spin concentrators (Merck 

Millipore) and SEC with a Superdex 200 GL increase column (GE Healthcare) was 

performed. SEC fractions that contained licMABs were pooled and proteins were 

visualized by SDS-PAGE (Expedeon) and comassie stain (50% (v/v) ethanol, 7% (v/v) 
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acetic acid, 0.2% (w/v) Coomassie Brilliant Blue R250). Protein concentration was 

measured with a spectrophotometer (Nanodrop ND-100, Peqlab Biotechnologies GmbH) 

and samples were aliquoted, shock frozen in liquid nitrogen and subsequently stored at -

80°C. 

In addition to the procedures described above, CD33-targeting mAb, mAb
single

 and 

licMABs
single

 were treated with PreScission Protease in order to cleave the SIRPα tag. 

Subsequently, a second protein A affinity chromatography was performed to purify the 

SIRPα-free molecules. 

6.3.2. Expression and purification of liCADs 

Briefly, pExpreS2-1vectors encoding for liCAD sequences were transfected into 

Schneider 2 cells using Lipofectamine® 200 (Thermo Fisher Scientific) according to 

manufacturer’s protocol. Next, stable cell lines expressing liCADs were grown in EX-

CELL® 420 medium supplemented with 10% FBS and 2 mg/ml zeocin for 26 days. For 

liCAD expression, cells were cultured in medium without FBS for 4 to 5 days. Cell 

culture supernatants were harvested and liCADs, containing a histidine-tag, were purified 

by Ni-NTA affinity chromatography (Qiagen) using wash (20 mM Tris, 10 mM 

immidazol, 300 mM NaCl, pH 9.0) and elution buffers (20 mM Tris, 200 mM immidazol, 

300 mM NaCl, pH 9.0). Next, liCADs were dialyzed into a low salt buffer and an anion-

exchange chromatography with a MonoQ 5/50 GL column (GE Healthcare) was 

performed. After an additional SEC, purified proteins were visualized by SDS-PAGE. 

SEC fractions were then pooled, measured, aliquoted, shock frozen in liquid nitrogen and 

stored at -80°C. 

6.3.3. Fluorescence thermal shift assay 

Fluorescence thermal shift assays were used to determine the stability of licMABs, 

licMABs
single

 and liCADs. 10 µg of licMABs, licMABs
single

 or liCADs were diluted in 

PBS and 1x SYPRO orange (Thermo Fisher Scientific) in a total volume of 25 µl and 

analyzed in a real-time PCR machine. The melting curve was measured using a gradient 

from 5°C to 100°C and one scan per 0.5°C.  
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6.4. Binding and interaction studies 

6.4.1. Binding studies by flow cytometry 

Unless otherwise stated, flow cytometry assays were performed using a Guava easyCyte 

6HT instrument (Merck Millipore) and data was analyzed and plotted with GuavaSoft 

software version 3.1.1 (Merck Millipore). Binding analyses were carried out with cell 

lines expressing the desired antigens. Molecules were used in saturating concentrations of 

15 ng/µl with an incubation time of 30 min at 4°C in FACS buffer (1% FBS, 1 mM 

EDTA in PBS). Cells were washed and incubated with the labeled secondary antibody, 

being FITC-αhuman IgG Fc (clone ET901, BioLegend) for licMABs and licMABs
single

 

and Alexa Fluor 488-αHis (polyclonal, Qiagen) for liCADs, for 30 min at 4°C. A second 

wash was performed before the stained cells were analyzed. 

6.4.2. Quantitative determination of cell surface antigens 

The QIFIKIT (DAKO) was used, according to the manufacturer’s instructions, to 

describe the number of surface antigens expressed on the cell surface.
199

 Briefly, MOLM-

13, SEM, CHO_CD33 or CHO_CD47 were incubated with saturating concentrations of 

unconjugated αhuman CD33 (clone P67.7, BioLegend) or αhuman CD47 (clone CC2C6, 

BioLegend) mAbs for 30 min at 4°C. After washing with FACS buffer, both QIFIKIT 

calibration beads and cells were incubated with saturating concentrations of the provided 

secondary antibody and analyzed by flow cytometry. The quantification of surface 

antigens was obtained by interpolating the MFI values of the samples to the calibration 

curve. 

6.4.3. CD47-blocking assay 

CD47-blocking assays were performed in order to study the binding of the SIRPα domain 

within the local inhibitory checkpoint molecules to CD47. To this end, MOLM-13 cells 

were incubated with saturating concentrations of licMABs, licMABs
single

, liCADs or 

control molecules, such as an αCD47 mAb (clone CC2C6, BioLegend), the extracellular 

SIRPα domain and the high affinity SIRPα variant (SIRPα CV1), for 30 min on ice. This 

was followed by a washing step with FACS buffer and a second staining with a FITC-

conjugated αCD47 mAb (clone B6H12, BioLegend). Data was displayed as MFI ratio of 

the conjugated antibody targeting CD47 with respect to the unstained population. 
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6.4.4. KD determination 

Equilibrium binding constants (KD, as an avidity measurement) of licMABs, 

licMABs
single

 and liCADs on MOLM-13 cells were studied by calibrated flow 

cytometry.
200

 MOLM-13 cells were incubated with local inhibitory checkpoint molecules 

in a concentration range of 0.01 to 5 µg/ml, for 30 min and at 4°C. Cells were 

subsequently stained with the corresponding secondary antibody. For evaluation, the 

maximum MFI was set to 100% and all data points were normalized accordingly. The 

data was fitted with a non-linear regression curve using a one-site specific binding model.  

6.4.5. Internalization assay by flow cytometry 

To study the CD33-dependent internalization of the local inhibitory checkpoint molecules 

by flow cytometry, 0.1x10
6
 MOLM-13 cells were incubated with 15 ng/µl of protein for 

30, 60, and/or 120 min at 37°C. For control conditions, the molecules were incubated for 

120 min on ice-cold water. After incubation with local inhibitory checkpoint molecules, 

MOLM-13 were washed with ice-cold FACS buffer and stained with the corresponding 

secondary antibodies. Internalization rate was calculated as follows: 

Internalization (%)=
(MFI

4°C
-MFIbackground)- (MFI

37°C
-MFIbackground)

(MFI
4°C

-MFIbackground)
 x 100 

6.4.6. Internalization assay by confocal microscopy 

The internalization of licMABs on MOLM-13 cells was confirmed by confocal 

microscopy. To this end, licMABs were directly labeled with Alexa Fluor 488 using an 

Antibody Labeling Kit (Thermo Fisher Scientific) and following the manufacturer’s 

instructions. MOLM-13 cells were seeded on a poly-L-lysine (Sigma-Aldrich) coated 96 

well plate. 15 ng/µl of directly labeled licMABs or mAb were added and cells were 

incubated either at 37°C for 30, 60 and 120 min or on ice-cold water for 120 min. Cells 

were fixed and permeabilized using a fixation and permeabilization solution (20 mM 

PIPES pH 6.8, 4% formaldehyde, 0.2% Triton X-100, 10 mM EGTA, 1 mM MgCl2) at 

room temperature for 10 min, followed by incubation in blocking solution (3% Milk, 

0.05% Tween-20 in PBS). After washing the cells three times with 0.05% Tween-20 in 

PBS, cells were stored in PBS until examination on a fully automated Zeiss inverted 

microscope (Leica) equipped with a MS-2000 stage (Applied Scientific Instrumentation), 

a CSU-X1 spinning disk confocal head (Yokogawa) and a LaserStack Launch with 
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selectable laser (Intelligent Imaging Innovations). Images were acquired using a 

CoolSnap HQ camera (Roper Scientific), a 63 x oil objective and the Slidebook software 

version 6.0 (Intelligent Imaging Innovations) and processed with Adobe Photoshop CS4 

(Adobe Systems). 

6.4.7. Size exclusion chromatography analysis 

SEC techniques were used in order to study the interaction between CD16 scFv and the 

extracellular domain of CD16. SIRPα-αCD33 licMAB, SIRPα-αCD33 liCAD and the 

extracellular domain of CD16 were independently loaded on a Superdex 200 increase 

5/150 GL column. Next, SIRPα-αCD33 licMAB or SIRPα-αCD33 liCAD were mixed 

with equimolar amounts of the extracellular domain of CD16 and the complexes were 

loaded into the same chromatography column. Complex formation was confirmed by 

visualization on an SDS-PAGE. 

6.5. Functional assays 

6.5.1. Red blood cells competition assay 

To obtain RBCs, peripheral blood was centrifuged at 1000 RCF and subsequently washed 

three times with RBC’s wash buffer (21 mM Tris, 4.7 mM KCl, 2 mM CaCl, 140.5 mM 

NaCl, 1.2 mM MgSO4, 5.5 mM glucose, 0.5% bovine serum albumin, pH 7.4) as 

previously described.
201

 MOLM-13 cells were stained with the membrane dye PKH26 

(Sigma-Aldrich) according to the manufacturer’s protocol. PKH26-labeled MOLM-13 

cells were then centrifuged, washed with RPMI 1640 + GlutaMAX and mixed with a 5-, 

10-, or 20-fold excess of RBCs. Cells were incubated with 15 ng/µl of licMABs, 

licMABs
single

 or liCADs for 30 min at 4°C. Next, FITC- or Alexa Fluor 488-conjugated 

secondary antibody was added and cells were measured by flow cytometry. For data 

evaluation, the percentage of MOLM-13 cells (PKH26
+
) or RBCs (PKH26

-
) within the 

antibody-bound cells was determined. 

6.5.2. Antibody-dependent cellular cytotoxicity (ADCC) 

NK cells were obtained from PBMCs, which were isolated from peripheral blood of 

healthy donors by Biocoll density gradient (Biochrom). Briefly, peripheral blood was 

diluted 50% in PBS and the mixture was carefully pipetted onto the Biocoll solution 

without disturbing the Biocoll layer. A subsequent centrifugation step was performed at 
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500 RCF for 30 min at room temperature and without acceleration and deceleration to 

allow the separation of PBMCs. After centrifugation, the PBMCs were collected and 

washed twice with RPMI 1640 + GlutaMAX or PBS. NK cells were subsequently 

isolated using the human NK cell isolation kit (MACS Miltenyi Biotech) according to 

manufacturer’s instructions.  

As target cells, MOLM-13 or SEM cells were labeled with 16.6 µg/ml Calcein-AM 

(Thermo Fisher Scientific) for 30 min at 37°C according to the manufacturer’s protocol. 

Target and effector cells were mixed in a 1 to 2 ratio in RPMI 1640 + GlutaMAX 

supplemented with 10% FBS. LicMABs, licMABs
single

 or liCADs were added at final 

concentrations ranging from 0. 1 pM to 10 nM and incubated for 4 h at 37°C. 

Background and maximum lysis were included as control conditions. To obtain the 

maximum specific lysis, Calcein-AM-labeled cells were incubated with 2.5% Triton X-

100. Background was determined by co-incubating Calcein-AM-labeled cells and NK 

cells. After 4 h incubation, cells were centrifuged at 600 RCF for 4 min and supernatant 

was transferred to a black 96 well plate. Fluorescence intensity of Calcein-AM released 

on the media was measured with an Infinite M100 plate reader (Tecan) and specific lysis 

was calculated as follows: 

Specific lysis (%)= 
FluorescenceSample-FluorescenceSpontaneous lysis

FluorescenceMaximum lysis-FluorescenceBackground

 x 100 

Averaged specific lysis of duplicates was plotted according to a dose-response curve and 

fitted with the integrated four parameter non-linear model. 

To assess the preferential killing of licMABs, an ADCC assay was performed with a 1 to 

1 mixture of MOLM-13 and OCI-AML3 cells, as target cells, and NK cells as effector 

cells. Two assays, with either MOLM-13 or OCI-AML3 cells being Calcein-AM-

labelled, were executed in parallel. Preferential killing was evaluated using protein 

concentrations of 10 nM or the previously described EC50 value. 

6.5.3. Antibody-dependent cellular cytotoxicity of primary AML cells 

Ex vivo expanded primary AML cells of 9 different patients were co-cultured in a long-

term culture system with freshly isolated NK cells, at an effector to target cell ratio of 5 to 

1, and 10 nM of licMABs at 37°C and for 24 h.
60, 134

 Cells were then harvested, stained 
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for CD16 (clone B73.1), CD56 (clone HCD 56), CD33 (clone WM53) and in concrete 

cases CD123 (clone 6H6, all antibodies from BioLegend) and analyzed by flow 

cytometry with a BD LSR II (Becton Dickinson). LicMAB-mediated cellular cytotoxicity 

was determined by the percentage of residual CD33- or CD123-expressing cells in treated 

cultures with respect to controls. 

6.5.4. Antibody-dependent cellular phagocytosis (ADCP) 

Monocytes were freshly isolated from PBMCs using the human CD14 MicroBeads Kit 

(MACS Miltenyi Biotech) and following the manufacturer’s instructions. Isolated 

monocytes were stained with PKH67 dye (Sigma-Aldrich) as described in the 

manufacturer’s protocol and differentiated to macrophages in X-VIVO 15 media (Lonza) 

supplemented with 10% autologous serum and 20 ng/ml Macrophage Colony-Stimulating 

Factor (M-CSF, R&D Systems). After 72 h, fresh media containing autologous serum and 

M-CSF was added to the wells and phagocytosis assay was performed on day 5 or 6. 

Macrophages were washed twice with X-VIVO medium and kept in 200 µl of X-VIVO 

medium per well. MOLM-13 cells were labeled with PKH26 dye and 100 µl of X-VIVO 

media containing PKH26-labeled MOLM-13 cells were added to the macrophage wells. 

Local inhibitory checkpoint molecules in final concentration from 0.01 to 100 nM were 

subsequently added to the mixture. As positive control, MOLM-13 cells were substituted 

by polybead® Carboxylate Red-Dyed Microspheres of 6 µm (Ploysciences). Cells were 

incubated at 37°C for 2 h, except for the negative control, which was incubated 2 h at 

4°C. After incubation, non-adherent cells were harvested and adherent macrophages were 

washed with ice-cold PBS and detached using StemPro® Accutase® (Thermo Fisher 

Scientific) at 37°C for 10 min followed by PBS wash. Cells were centrifuged at 500 RCF 

for 5 min, resuspended in FACS buffer containing 1% Formaldehyde (Invitrogen) and 

stored at 4°C until analyzed.  

Samples were measured by flow cytometry using either an ImageStream®X Mark II 

(Merck Millipore) or a SH800 (Sony) instrument and analyzed with IDEAS® and 

INSPIRE® software (Merck Millipore), SH800 version 2.1.1. (Sony) or Flowing software 

version 2.5.1 (Perttu Terho, Cell Imaging Core of the Turku Centre for Biotechnology). 

Single PKH67
+
 and PKH26

+
 cells were considered as phagocytic events, the maximum 

phagocytosis value was set to 100% and all data points were normalized accordingly. 
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6.5.5. Antibody-dependent cellular phagocytosis of primary AML cells 

ADCP experiments were performed with primary cells from 13 AML patients. Monocytes 

were isolated from peripheral blood and differentiated to macrophages over 6 days in 

RPMI 1640 medium supplemented with 50 ng/ml M-CSF, 10% AB human serum, 1% 

Penicillin-Streptomycin and 1% HEPES. On the day of the assay, primary, patient-derived 

AML cells were thawed and stained with pHrodo Red SE dye (Thermo Fisher) according 

to the manufacturer’s protocol. Phagocytosis assay was performed as described above and 

analyzed with a LSRII flow cytometer (BD). The relative phagocytosis rate was calculated 

based on double-positive cells (PKH67
+
 and pHrodo Red SE

+
) relative to macrophages 

(PKH67
+
 and pHrodo Red SE

-
). Unstained macrophages and AML cells were characterized 

by staining with the following antibodies: APC-αCD16 (clone 3G8), APC-αCD32 (clone 

6C4), PE-αCD33 (clone WM58), APC-αCD64 (clone 10.1), APC-αCD47 (clone B6H12), 

PE-αSIRPα (clone SE5A5, all from BioLegend) and the respective isotype controls. 

6.6. Plotting and statistical analysis 

Unless otherwise stated, data was analyzed and plotted with GraphPad Prism version 6.00 

(GraphPad Software). Error bars indicate the standard error of the mean (SEM). 

Statistical differences on cytotoxicity studies with primary, patient-derived AML samples 

were assessed by the Wilcoxon test and on phagocytosis assays with one-way ANOVA 

with Dunnett’s multiple comparisons test. Differences in antigen expression were 

calculated with the Mann-Whitney U test. Statistical significance was considered for p-

value < 0.05 (*), < 0.01 (**), < 0.001 (***) and < 0.0001 (****). 
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8. LIST OF ABBREVIATIONS 

Acronym Definition 

ADC Antibody-drug conjugate 

ALL Acute lymphoblastic leukemia 

Allo-SCT Allogenic hematopoietic stem cell transplantation 

AML Acute myeloid leukemia 

ATCC American Type Culture Collection 

BiKE Bispecific Natural Killer cell engager 

BiTE Bispecific T cell engager 

BM  Bone marrow 

bsAb Bispecific antibody 

CAR T cell Chimeric antigen receptor T cells 

CD Cluster of differentiation 

CDR Complementary-determining region 

cGAS Cyclic GMP-AMP synthase 

CH Constant domains of heavy chain 

CH1 Constant 1 domain of heavy chain 

CH2 Constant 2 domain of heavy chain 

CH3 Constant 3 domain of heavy chain 

CH4 Constant 4 domain of heavy chain 

CL Constant domain of light chain 

CR Complete remission 

CTLA-4 Cytotoxic T-lymphocyte-associated antigen 4 

DNA Deoxyribonucleic acid 

DSMZ Deutsche Sammlung von Mikroorganismen und Zellkulturen 

ELN  European Leukemia Net 

EMA European Medicines Agency 

F Female 

FAB French-American-British 

Fab Antigen-binding fragment 

FBS Fetal bovine serum 

Fc Fragment crystallizable 

FcnR Neonatal Fc receptor 

FcR Fc receptor 

FcαR Fc-alpha receptor 

FcγR Fc-gamma receptor 

FcεR Fc-epsilon receptor 

FDA US Food and Drug Administration 

FR Frameworks 

HC Heavy chain 

https://en.wikipedia.org/wiki/Fragment_crystallizable_region
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HD Healthy donor 

HSC Hematopoietic stem cell 

IAP Integrin-associated protein 

ID Initial Diagnosis 

Ig Immunoglobulin 

Ig-fold Immunoglobulin-fold 

IgK IgKappa leader sequence 

IgSF Immunoglobulin superfamily 

ITAM Immunoreceptor tyrosine-based activation motif 

ITIM Immunoreceptor tyrosine-based inhibitory motif 

LB Lysogeny Broth 

LC Light Chain 

liCAD Local inhibitory checkpoint antibody derivative 

licMAB Local inhibitory checkpoint monoclonal antibody 

licMAB
single

 Single-arm local inhibitory checkpoint monoclonal antibody 

LILRB1 Leukocyte immunoglobulin-like receptor subfamily B member 1 

LRP Low density lipoprotein-receptor related protein 

LSC Leukemic stem cells 

M Male 

mAb 

mAb
single

 

Monoclonal antibody 

Single-arm monoclonal antibody 

M-CSF Macrophage Colony-Stimulating Factor 

MFI Median fluorescence intensity 

MHC Major histocompatibility complex 

MRD Minimal residual disease 

mtDNA Mitochondrial DNA 

Mut Mutation 

n.a. Not available 

NK 

Ni-NTA 

Natural Killer 

Nickel-nitrilotriacetic acid 

NSG NOD/SCID/GAMMA mice 

PB Peripheral blood 

PBMC Peripheral blood mononuclear cell 

PCR Polymerase chain reaction 

PD-1 Programmed cell death 1  

PD-L1 Programmed cell death ligand 1 

PT Patient 

RBC Red blood cell 

scFv Single chain fragment variable 

sctb Single chain triplebody 

SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis 
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SEC Size exclusion chromatography 

SEM Standard error of the mean 

Siglecs Sialic acid immunoglobulin like lectins 

SIRPα Signal regulatory protein alpha 

SLAMF7 Signaling lymphocytic activation molecule 7 

SOCS3 Suppressor of cytokine signaling 3 

STING Stimulator of interferon genes 

Tm
 

Melting temperature 

TSP-1 Thrombospondin-1 

VH Variable domain of heavy chain 

VL Variable domain of light chain 

WHO World Health Organization 
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