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1 Introduction 

The global population is growing steadily and worldwide technologization is in full swing. 

The massively growing energy demands necessitate environment-friendly alternatives for 

conventional energy sources as well as ecological solutions for everyday life. Renewable 

energies, sustainable mobility and highly-efficient lighting technologies are thus of great 

importance in current research. Advanced functional materials with wide-ranging unique 

optical and electronic properties are fundamental to promote technical progress of such 

major innovations. Among these, semiconductors are of particular importance for a large 

variety of devices, e.g. computer processors, data storage media, mobile phones, light 

emitting diodes (LEDs) or photovoltaics. While the former are substantial for the 

advancing digitalization, LEDs and photovoltaics play a significant role in promoting the 

energy revolution. Moreover, such materials are essential for the evolution of 

photocatalytical hydrogen production providing renewable energy sources without 

collateral formation of greenhouse gases.[1-2] The increasing scarcity of industrially 

important elements like gallium or indium further necessitates the search for earth-

abundant semiconductors with similar electronic and optical properties as well-suited 

alternatives for commonly used materials.[3] Regarding this wide range of applications, the 

exploration of new functional materials is an important aspect in solid-state chemistry 

enabling development of innovative and novel devices that can promote a sustainable 

future. 

Semiconductors can be generally defined as solids with electronic conductivity ranging 

between that of conductors and insulators. Valence and conduction bands closest to the 

Fermi level are separated by a band gap in which electronic states are not existent due to 

the quantization of energy. Electrons can be excited from valence to the conduction band 

for example through thermal excitation or light. Both excited electrons and generated 

holes contribute to electrical conduction when a voltage is applied. The conductivity 

increases with temperature as additional electrons are thermally promoted to the 

conduction band. The charge carrier concentration can be greatly increased by 

introducing dopants into the material, namely donors that have more valence electrons (n-

doping) and acceptors which have less valence electrons (p-doping) compared to the 

replaced atoms. The creation of heterojunctions between p- and n-doped materials results 

in formation of regions depleted of charge carriers which allows current to flow solely in 

one direction (Figure 1). This arrangement is the fundament of virtually all modern 
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semiconductor devices, e.g. transistors within integrated circuits, photodiodes for solar 

cells as well as light-emitting or laser diodes. 

 

 

Figure 1. Schematic drawing of p-n junction between positively (p) and negatively (n) doped 

semiconducting material. Electrons of the n-region diffuse to the p-region, recombine with holes 

and vice versa leaving behind positively and negatively charged ions in the n- and p-regions, 

respectively. A space charge region near the p-n interface is formed which is depleted of charge 

carriers. The built-in potential is opposed to the diffusion of electrons and holes resulting in an 

equilibrium state. 

At present, silicon represents the technologically most important semiconductor that is 

indispensable for the fabrication of integrated circuits implemented in various computer 

components as well as photovoltaics and liquid crystal displays. Similarly, germanium is 

partially used for photovoltaic cells, transistors and infrared optics. Materials with covalent 

character and valence electron concentration of four are structurally related to group 14 

elements which is referred to as the Grimm-Sommerfeld rule.[4] Numerous binary 

semiconductors can be derived from this correlation, e.g. SiC, III-V semiconductors like 

GaN, GaAs or InP and II-VI semiconductors like ZnO, ZnS or CdTe. These compounds 

typically crystallize in wurtzite or sphalerite type structures and are mostly employed for 

optoelectronic applications. In particular gallium nitride is considered to be one of the most 

important semiconductors after silicon. GaN is a direct-gap semiconductor with excellent 

chemical and thermal stability as well as small electron and moderate hole effective 



1 Introduction 

3 
 

masses.[5] GaN and respective solid solutions (Al,Ga,In)N are of great industrial 

importance for highly efficient ultraviolet or blue LEDs and laser diodes covering band 

gaps between ~0.7 to 6.2 eV.[6] In particular the direct band gap of (Ga,In)N allows 

significantly increased efficiencies compared to formerly used SiC which exhibits an 

unfavorable indirect band gap. Within a p-n diode of Ga1-xInxN, voltage in forward direction 

enables electrons and holes to continually recombine which is accompanied by emission 

of photons. Their wavelengths correlate with the band gap of the adjustable Ga1-xInxN 

composition. In 2014, the Nobel prize in physics was awarded to Isamu Akasaki, Hiroshi 

Amano and Shuji Nakamura for their development of highly efficient blue LEDs based on 

GaN.[7] The major challenge included the achievement of p-doping which was hampered 

by present impurities as well as by passivation of the dopant Mg with hydrogen. Irradiation 

of p-doped GaN employing a low-energy electron beam partially activated the acceptors 

by dissociation of hydrogen complexes. Nakamura showed that a similar effect can be 

achieved by thermal annealing of p-GaN. In this way, manufacturing of the first blue 

Ga1-xInxN LED was achieved that paved the way to highly efficient white light sources and 

thus revolutionized optoelectronic technologies. 

Phosphor-based conversion of ultraviolet or blue-emitting LEDs emerged as most efficient 

way to produce white light enabling a huge variety of lighting applications. Here, 

luminescent materials with specific emission characteristics are coated on Ga1-xInxN 

LEDs, while mixing of complementary colors results in the generation of white light. 

Numerous rare-earth doped nitrides and oxonitrides, in particular (oxo)nitridosilicates and 

-aluminates, are excellently suitable as phosphors and industrially employed in pcLEDs.[8-

11] These materials ideally feature wide band gaps in the range of 4.5 - 6 eV, where 

parameters like thermal luminescence behavior, photoionization and electronic states of 

dopants have to be considered.[12-15] A fraction of the irradiated light is transformed to 

longer wavelengths which is specified by the Stokes shift. This conversion is based on 

electronic transitions within activator ions, e.g. Eu2+ or Ce3+, which are incorporated in the 

host lattice of the phosphor. Different phosphors with specific emission maxima and 

bandwidths are matched in a manner to achieve high luminous efficacies, i.e. an adaption 

of emission to the eye sensitivity curve, as well as an eminent color rendition within the 

visible spectral range.[11] 

Next to the above mentioned application fields, nitride and oxonitride materials further 

attracted great interest for numerous other uses as well. For instance, several lithium 

containing nitrides feature promising ion conductivity characteristics for application in 

batteries, while oxonitride perovskites proved to be potential catalysts for photocatalytical 
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water splitting.[16-18] Moreover, materials like Si3N4 or SiAlONs emerged as industrially 

important ceramics due to their high mechanical strength as well as their high wear and 

oxidation resistances at high temperatures.[19-22] The diversity of intriguing optical, thermal, 

chemical, mechanical and electronic properties arises from the large structural variety of 

nitride compounds. Manifold structural possibilities occur due to the high structural 

flexibility of nitrogen within nitrides (feasible coordination modes N[1],N[2],N[3] and N[4]) 

which also results in highly variable degrees of condensation.[23] With regard to previous 

findings and theoretical calculations in the field of nitrides, it can be expected that 

innumerable unprecedented nitride materials still await their discovery.[3,9,23-28] The 

advance of synthetic approaches and techniques represents the key enabling access to 

novel functional nitride compounds. Commonly, nitrides are synthesized by direct nitriding 

of metals, alloys or hydrides under nitrogen atmosphere, carbothermal reduction or solid-

state metathesis reactions mostly at high temperatures in the range of 1300 - 2300 K. On 

the other hand, the ammonothermal method represents a highly promising technique 

which employs rather moderate temperatures with high-pressurized ammonia as reaction 

medium.[29] Here, the starting materials and respective mineralizers are placed into high-

pressure autoclaves and dissolved in supercritical ammonia typically forming ternary or 

multinary amide or imide species. The high reactivity of supercritical ammonia and 

emerging intermediates facilitates the synthesis of nitrides with limited thermal stability 

and further promotes the discovery of compounds which are difficult to access by 

conventional methods.  

In analogy to the hydrothermal growth of oxides, the ammonothermal approach is highly 

promising for the crystal growth of nitride materials as well. Both ammonia and water are 

polar and protic, albeit water exhibits a higher dielectric constant and dipole moment 

compared to liquid ammonia.[30] Solubilities of ionic solids within the latter are thus 

generally lower, though they can be significantly increased using high-pressurized 

supercritical ammonia leading to higher relative permittivities.[29] Several concepts like 

mineralizers, chemical transport, intermediates and crystal growth mechanisms can thus 

be derived from hydrothermal processes, yet require appropriate modification for the 

ammonothermal synthesis of nitrides. Crystal growth is commonly achieved by dissolution 

and recrystallization based transport reactions applying specific temperature gradients 

along the autoclave body. During the last decade, the ammonothermal method attracted 

great attention as it proved to be ideally suitable for the growth of bulk GaN single 

crystals. The prevalent lack of economic growth techniques forced the use of foreign 

substrates for GaN-based devices, most commonly sapphire or SiC, where numerous 

defects are created owing to the lattice mismatch which further leads to efficiency losses. 
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Native substrates can be fabricated from bulk GaN crystals that enable devices with 

significantly higher performances and are thus is of great industrial relevance.[31-32] For 

ammonothermal crystal growth, the nutrient, commonly polycrystalline GaN, is dissolved 

in the presence of mineralizers under formation of well-soluble complex species. To this 

end, alkali metal amides or ammonium halides are usually employed as ammonobasic or 

-acidic mineralizers, respectively. The formed intermediate species are transported to the 

seed crystal by convection, while chemical equilibrium of GaN recrystallization is adjusted 

via the applied temperature gradient. Intermediates have a major impact on solubilities, 

mass transport, growth rates, growth faces as well as predominant growth directions and 

are thus essential to elucidate and optimize crystal growth of nitrides. In recent years, 

several possible intermediate species were discovered depending on the type of 

mineralizer and applied growth conditions, such as Li[Ga(NH2)4], Na2[Ga(NH2)4]NH2, 

Ba[Ga(NH2)4]2 or [Ga(NH3)6]I3∙NH3.
[33-35] Moreover, it has recently been demonstrated that 

reactions of RbNH2 or CsNH2 with Ga metal lead to liquids that are completely miscible 

with liquid ammonia.[36] A proposed reaction mechanism for chemical transport of GaN is 

illustrated in Figure 2. 

 

Figure 2. Proposed chemical equilibria of GaN dissolution and recrystallization in supercritical 

ammonia involving formation of M2[Ga(NH2)4] by dissolution of GaN with alkali metal amides MNH2 

as ammonobasic mineralizers (top) and possible formation mechanism of Ga-containing complex 

species for M = Cs (bottom).
[36-37]

 

Baffle plates centred within the autoclave are employed which regulate mass transport 

and limit heat transfer between dissolution and growth zones. In this way, crystal growth 

can be effectively controlled, while the formation of defects is minimized by providing 
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constant temperatures close to the seed. Numerous other interacting parameters have to 

be considered for an effective crystal growth, most notably the type and concentration of 

mineralizer, fluid temperature, pressure, autoclave and baffle geometry, fluid convection, 

type of nutrient and seeds as well as oxygen or metal impurities.[29,38] Within the last 

decade, fundamental advances of ammonothermal GaN growth were achieved meanwhile 

attaining bulk crystals with excellent quality and diameters up to 50 mm.[39-42] Greatly 

improved growth rates along with excellent scalability via simultaneous growth on multiple 

seeds promote the industrial significance of the ammonothermal method. Notably, the 

GaN substrate market is estimated to grow by 75% within the next five years.[43] The major 

part of commercial GaN still originates from hydride vapor phase epitaxy (HVPE) growth, 

though it is expected that ammonothermal GaN will supersede epitaxial growth techniques 

within the next few years. 

In comparison to the broad spectrum of hydrothermal research and its commercial 

application fields, the ammonothermal method is still much less explored. While currently 

most efforts are focused on the growth of GaN, only very few studies addressed the 

ammonothermal synthesis of other binary as well as ternary and multinary nitrides as yet 

(cf. Figure 3). During the second half of the 20th century, pioneering work in this field was 

conducted by Herbert Jacobs and coworkers, though prevalently focusing on crystal 

growth of amides, imides and ammoniates.[29,44] After Jacobs' retirement, ammonothermal 

research was virtually limited to GaN and explorative ammonothermal studies have been 

reported very rarely. In 2011, the interdisciplinary research group Ammono-FOR was 

found to re-establish the highly promising ammonothermal technology.[45] From technical 

point of view, syntheses in supercritical ammonia are quite challenging due to the high 

demands on autoclave materials and high-pressure facilities. Besides, commercially 

available autoclaves barely provide the required parameters for syntheses of well-

crystalline nitrides in supercritical ammonia. Within the established research group, new 

autoclave technologies have been projected to be developed for explorative 

ammonothermal syntheses of nitrides and investigations on crystallization processes. 

Furthermore, growth techniques for nitrides are scarce since these are commonly not 

meltable at ambient pressure. Considering recent progress of bulk GaN crystal growth the 

ammonothermal method can be regarded as the most promising approach among 

feasible vapor phase, flux and solution based growth methods. Next to the utilization as 

substrates, large nitride single crystals would be of high interest for detailed investigation 

of physical and material properties as well as for optical applications such as nonlinear 

optics (NLO).[23] 



1 Introduction 

7 
 

 

 

Figure 3. Number of publications per year referred to the ammonothermal synthesis of GaN (blue 

columns), other binary nitrides (green columns) and ternary / multinary nitrides or oxonitrides (red 

columns) based on SciFinder and Web of Science.
[46-47]

 

The first objective of this thesis covers the evaluation of interacting parameters, 

customization of newly developed autoclave systems and the improvement of their design 

to efficiently obtain access to ternary and multinary nitrides using the ammonothermal 

method. In close cooperation with the chair of process technology and machinery at 

University of Erlangen-Nuremberg, high-pressure autoclaves have been developed using 

new nickel-based superalloys which meet extreme material demands featuring eminent 

chemical stability against supercritical ammonia solutions as well as high yield and tensile 

strengths at maximized process temperatures of up to 1100 K. In this way, the potential of 

ammonothermal syntheses has been greatly improved promoting the formation of highly 

crystalline ternary and multinary nitrides from supercritical ammonia solutions. Major steps 

for this objective included the systematic exploration of suitable reaction conditions, 

investigation of different mineralizer systems as well as probing highly reactive precursor 

species under ammonothermal reaction conditions.  

On that basis, first systematic syntheses of Grimm-Sommerfeld analogous ternary nitrides 

from ammonothermal solution became possible during this thesis. This class of materials 

is of high current interest due to their structural analogy to (Al,Ga,In)N, the increased 

prospects for band-gap engineering and the earth-abundance of the constituting 

elements.[3,48-50] However, these semiconductors have rarely been studied so far and 
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experimental optical properties on bulk samples are virtually unexplored. In this work, 

detailed examination of mineralizers and synthesis parameters as well as optical 

properties of Grimm-Sommerfeld analogous nitride semiconductors will be presented. In 

addition, a proof of concept for possible dissolution and recrystallization based crystal 

growth processes is demonstrated employing in situ X-ray imaging techniques within a 

custom-built high-pressure optical cell. Moreover, it will be shown that the newly 

developed high-temperature autoclaves enable access to novel nitrides as well. For the 

first time, syntheses of novel multinary nitridosilicates and -germanates employing an 

ammonothermal approach have been accomplished. Highly reactive intermetallic 

precursors in combination with ammonobasic mineralizers at increased reaction 

temperatures up to 1070 K proved to be the key to synthesis of these new functional 

nitride materials. 

The introducing minireview will first give a detailed overview on recent progress of the 

ammonothermal synthesis of nitrides, further presents different synthesis strategies and 

includes the latest developments of autoclave technologies. Moreover, challenges and 

future perspectives for the crystal growth of nitride materials and the discovery of novel 

nitrides are discussed. The following chapters cover the ammonothermal synthesis of 

addressed ternary and multinary functional nitride materials, detailed characterization of 

structural, optical and electronic properties in question as well as their great potential for 

wide-ranging optoelectronic applications. 
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Abstract. Nitrides represent an intriguing class of functional materials with a broad range 

of application fields. Within the past decade, the ammonothermal method became 

increasingly attractive for the synthesis and crystal growth of nitride materials. The 

ammonothermal approach proved to be eminently suitable for the growth of bulk III‐nitride 

semiconductors like GaN, and furthermore provided access to numerous ternary and 

multinary nitrides and oxonitrides with promising optical and electronic properties. In this 

minireview, we will shed light on the latest research findings covering the synthesis of 

nitrides by this method. An overview of synthesis strategies for binary, ternary, and 

multinary nitrides and oxonitrides, as well as their properties and potential applications will 

be given. The recent development of autoclave technologies for syntheses at high 

temperatures and pressures, in situ methods for investigations of crystallization 

processes, and solubility measurements by ultrasonic velocity experiments is briefly 

reviewed as well. In conclusion, challenges and future perspectives regarding the 

synthesis and crystal growth of novel nitrides, as well as the advancement of autoclave 

techniques are discussed. 

 

2.1 Introduction 

Solvothermal techniques are widely used for synthesis and crystal growth of various 

inorganic compounds. Probably the best‐known example is the hydrothermal method, 

which is primarily used for the synthesis of oxides. For instance, over 3000 tons of bulk 

quartz crystals, an important source material for piezoelectronics, are industrially 

produced each year.[1] The term ―hydrothermal‖ was first used by the British geologist 

Roderick Murchison to describe the natural formation of minerals in the earth's crust at 

elevated temperatures and pressures.[2] Already in the 1840s, the first hydrothermal 

experiments on the crystallization of silicates, carbonates, and quartz were conducted by 

Wöhler, Bunsen, and Schafhäutl, which rapidly initiated further research efforts in this 

field.[3,4] During the first half of the 20th century, systematic investigations on numerous 

hydrothermal systems, as well as the development of new autoclave technologies 

promoted the discovery of numerous novel inorganic compounds and the 

commercialization of hydrothermal crystal growth processes.[5,6]  

Until then, non‐aqueous solutions were only rarely studied at elevated temperatures and 

pressures. For instance, ammonia features similar physical properties compared to water, 

even though it is less protic, less polar, and has a lower relative permittivity.[7] Numerous 

amides and ammoniates were obtained from liquid ammonia solutions and several 
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ammonobasic and ‐acidic systems were thoroughly investigated at the beginning of the 

last century. However, crystallization was often hampered by the comparably low 

solubilities of many inorganic solids in liquid ammonia. To overcome this issue, Jacobs 

and co‐workers initiated the first syntheses in supercritical ammonia during the 1960s, 

benefiting from the earlier developments in the field of hydrothermal syntheses.[8] In 

analogy to the latter, they used the term ―ammonothermal‖ to describe these reactions. 

During the following years, they prevalently investigated the behavior of alkali, alkaline 

earth, and rare earth metals in supercritical ammonia. This new approach made numerous 

novel compounds accessible and enabled crystal growth of amides and nitrides by 

convection‐driven transport reactions.[9] With the first ammonothermal synthesis of gallium 

nitride reported in 1995 by Dwiliński, Jacobs and co‐workers, this route increasingly 

gained interest, since only few very specialized and expensive methods for the growth of 

bulk GaN crystals are available as yet.[10] Researchers started to examine mineralizer 

systems, intermediates, solution equilibria, and solubilities to gain insight into 

crystallization processes within the crystal growth of GaN. Meanwhile, growth rates 

beyond 300 μm day−1 in different crystallographic directions were achieved.[11,12] Bulk GaN 

crystals are of particular interest for the fabrication of substrates, which enable 

homoepitaxial growth of GaN layers for optoelectronic devices (―GaN‐on‐GaN‖). Using this 

concept, semiconductor performances can be strongly increased due to the significantly 

lower defect concentrations in comparison to the prevailing heteroepitaxial‐based 

devices.[13,14]  

In recent years, the ammonothermal method was rediscovered as a powerful tool for the 

synthesis of ternary and multinary nitrides and oxonitrides as well. For instance, several 

II‐IV‐N2 nitride semiconductors with similar optical and electronic properties compared to 

(Al,Ga)N, as well as luminescent materials for phosphor‐converted light emitting diodes 

(pc‐LEDs) and oxonitrides as potential photocatalysts were obtained from syntheses in 

supercritical ammonia.[15-18] The latest research findings on ammonothermal syntheses 

reveal a great potential for the crystal growth of ternary nitride semiconductors, as well as 

for the discovery of novel multinary nitrides and oxonitrides, which will be further 

discussed in this minireview. 
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2.2 Ammonothermal synthesis of nitrides 

Nitrides comprise a huge class of compounds with large structural variety and manifold 

applications fields.[19-23] Common synthesis routes for nitrides include high‐temperature 

approaches like direct nitriding of metals, alloys, or hydrides in nitrogen atmosphere, 

carbothermal reduction, or solid‐state metathesis reactions. In contrast to these 

approaches, ammonothermal syntheses are solution‐based reactions at comparatively 

low temperatures. Jacobs initially developed this method to obtain well‐crystallized amides 

for X‐ray structure analyses, as well as deuteroamides for neutron diffraction.[9] It was 

observed that various binary and ternary nitrides can likewise be synthesized in 

supercritical ammonia, particularly at elevated reaction temperatures. During the last 

decade, even quaternary and multinary nitrides and oxonitrides were obtained from 

supercritical ammonia solution. The ammonothermal technique further attracted great 

attention for the crystal growth of GaN, eminently contributing to the recent progress of 

advanced autoclave technologies. These developments will be presented in the following 

sections. 

2.2.1 Binary nitrides 

In this section, we will briefly summarize the most important findings covering the 

ammonothermal synthesis of binary nitrides, which provide fundamental concepts for 

current and future ammonothermal research. Recent developments regarding the crystal 

growth of GaN, as well as the latest study on the ammonothermal crystallization of InN will 

be reviewed. More detailed synthesis parameters of binary nitrides are given in a recent 

general review on the chemistry of ammonothermal synthesis.[24]  

 

2.2.1.1 Overview 

The first nitride obtained by ammonothermal synthesis, α‐Be3N2, was reported in 1966.[8] 

In comparison to the conventional ammonolysis reaction in an ammonia flow, synthesis 

temperatures could be considerably lowered from 1270 to 670 K, applying an ammonia 

pressure of 20 MPa. α‐Be3N2 was obtained as polycrystalline powder and crystallizes in 

the anti‐bixbyite structure type, also referred to as the C‐sesquioxide type. The first 

ammonothermal growth of single crystalline nitrides, LaN and EuN, was accomplished 

within studies on rare earth metals in ammonobasic and ‐acidic systems.[9,25] KNH2 was 

used as an ammonobasic mineralizer, leading to the formation of intermediates like 
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K3[La(NH2)6] or KEu(NH2)3. Two different mechanisms for the crystal growth were 

proposed: chemical transport reactions along a temperature gradient within the autoclave, 

where ternary intermediates act as transporting agents, or the growth from a KNH2 melt, 

both in supercritical ammonia.[9] Further rare earth metal nitrides (LnN, Ln=Y, Ce, Sm, Gd) 

were obtained as microcrystalline powders during systematic investigations on novel 

ternary amides.[26-29] YN and GdN were synthesized in an ammonoacidic environment with 

NH4I as mineralizer, whereas in situ formed ammonobasic amides of Cs and K were used 

for the preparation of CeN and SmN, respectively. 

Jacobs and co‐workers also investigated the crystallization of 3d‐element nitrides. 

η‐Mn3N2 can be directly synthesized from Mn in supercritical ammonia at 670–870 K and 

600 MPa.[30] The addition of 2–3 mol % of K, Rb, or I2 facilitates the crystal growth by 

formation of well‐soluble intermediates M2[Mn(NH2)4] (M=K, Rb) or [Mn(NH3)6]I2 and 

subsequent conversion to η‐Mn3N2. Using I2, growth occurs in the cold zone of the 

autoclave along a temperature gradient from 870 to 570 K, whereas retrograde solubility 

was observed for K and Rb with chemical transport from 470 to 670 K. On the other hand, 

crystals of Cu3N can be grown in an ammononeutral environment at 620–850 K and 600 

MPa.[31] [Cu(NH3)4](NO3)2 and Cu are used as starting materials, which comproportionate 

to [Cu(NH3)3](NO3). Crystals of up to 1 mm3 in size were observed in the hot zone of the 

autoclave. Single crystal X‐ray diffraction confirmed the anti‐ReO3 type of structure of 

Cu3N. The authors also showed that Cu3N is stabilized by the resulting N2 pressure from 

the nitrate decomposition. Whereas Cu3N decomposes at 820 K and 800 MPa in pure 

supercritical NH3, it is preserved by addition of NH4NO3. Further transition element nitrides 

were obtained by ammonothermal synthesis as well, namely γ′‐Fe4N, θ‐Mn6N5+x, ϵ‐Mn4N, 

and Ni3N. γ′‐Fe4N crystallizes in a perovskite‐like structure, whereas θ‐Mn6N5+x, ϵ‐Mn4N 

and Ni3N can be classified as interstitial nitrides.[32-35]  

 

2.2.1.2 Group 13 nitrides 

Current research in the field of ammonothermal syntheses is primarily focused on the 

crystal growth of GaN, one of the most important semiconductor materials used in laser 

diodes, light emitting diodes, or field‐effect transistors.[36,37] Only a very few specialized 

methods for the growth of bulk GaN crystals are available. Conventional methods like 

zone melting or the Czochralski process are not applicable for crystal growth, since GaN 

is not meltable at ambient pressure, and decomposes into Ga and N2 above 1300 K.[38] 

Melting of GaN can be achieved at high pressures above 6 GPa and temperatures of 
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2500 K which is not practicable for bulk crystal growth processes.[39] Hence, growth 

technologies using vapor phase, flux, and solution based methods were developed, for 

example, ammonothermal synthesis, hydride vapor phase epitaxy (HVPE), and sodium 

flux growth.[40] The former is of particular interest in current research because of its 

excellent scalability and the feasible simultaneous growth of multiple crystals during one 

run; analogous to the hydrothermal growth of quartz. 

Ammonothermal crystal growth of GaN can be conducted in ammonobasic or ‐acidic 

environments. Ammonobasic syntheses of GaN are typically performed using alkali metal 

amides MNH2 (M=Li, Na, K, Rb, Cs) as mineralizers, with NaNH2 and KNH2 being the best 

studied systems to date. Recently, the first syntheses of GaN with Sr(NH2)2 and Ba(NH2)2 

were reported as well.[41] Growth proceeds from the cold to the hot zone within the 

autoclave due to the retrograde solubility of GaN observed for basic systems. On the 

other hand, ammonium halides NH4X (X=F, Cl, Br, I), as well as GaI3 or ZnCl2, can be 

employed for ammonoacidic crystal growth.[42-46] Both cubic and hexagonal GaN can be 

obtained depending on mineralizer and temperature.[47] While the solubility is commonly of 

regular type, retrograde solubility was observed at higher growth temperatures above 925 

K for NH4Cl. Syntheses of microcrystalline GaN powders in neutral environment were 

reported using LiCl, NaI, or KI, which are sometimes also added as co‐mineralizers in 

combination with alkali metal amides.[40]  

Evaluation of optimum growth conditions is challenging, due to varying experimental 

setups in different groups and numerous interacting parameters affecting crystal growth, 

for example, mineralizer concentration, type of nutrient and seeds, fluid temperature, 

temperature gradient, pressure, autoclave and baffle geometry, as well as oxygen or 

metal impurities. Next to these, the growth direction is a further fundamental parameter 

with regard to the desired crystal face polarity of GaN. For instance, strong piezoelectric 

and spontaneous polarizations occur in polar directions which limit device efficiencies.[40,48] 

These issues can be eliminated by growth on semipolar or nonpolar substrates, which in 

turn reduce or eliminate undesirable polarization effects. Different polar, nonpolar, and 

semipolar growth directions reported for ammonothermal syntheses[49-51] are illustrated in 

Figure 1. 
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Figure 1. Selected growth directions reported for ammonothermal crystal growth of GaN (Ga black, 

N red, planes: turquoise). 

During the last decade, a considerable increase of growth rates was achieved. In 2006, 

rates in the range of 10–50 μm day−1 were reported,[7] which could be improved to several 

hundreds of μm per day in different crystallographic directions.[49,52-54] Ehrentraut and 

co‐workers reached growth rates up to 40 μm per hour in the m‐direction using internally 

heated capsule‐based reactors at comparable high temperatures up to 1020 K and 

pressures up to 600 MPa.[11] Saito et al. recently reported on growth rates >1000 μm day−1 

employing Pt‐lined autoclaves and ammonium halides as mineralizers.[55] Bulk crystals 

with 50 mm in diameter have also been demonstrated by different research groups.[56-59] 

Selected high‐quality bulk GaN crystals grown by the ammonothermal method are shown 

in Figure 2. 

To further optimize the crystal growth process, knowledge on intermediates and 

solubilities is fundamental. In recent years, several possible intermediate compounds for 

ammonobasic and ‐acidic systems were isolated.[60-63] Such intermediates act as 

transporting agents for GaN from dissolution to the growth zone, where dissolution and 

complexing equilibria are controlled through the applied temperature gradient. Numerical 

simulations additionally help to visualize fluid, mass, and heat flow of the 

convection‐driven chemical transport reaction.[64-67] The kind of intermediate species 

affects solubility and growth rates of GaN and can further have an impact on N‐ or 

Ga‐face growth, as well as the predominant growth directions.[68-70]  
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Figure 2. a) Photograph of a ≈25 mm m‐plane GaN crystal grown in ammonobasic environment. 

Reproduced with permission from ref. [71], Copyright AIP Publishing 2009. b) Photograph of a ≈35 

mm ammonoacidic m‐plane GaN crystal. Reproduced with permission from ref. [58], Copyright 

SPIE 2015. c) Photograph of a ≈50 mm c‐plane GaN crystal grown in ammonoacidic environment. 

Reproduced with permission from ref. [72], Copyright Elsevier 2014. 

On the other hand, temperature and pressure‐dependent solubility data for nutrient and 

intermediates are important for the choice of mineralizer, growth temperature, and 

temperature gradient. Solubilities are commonly determined gravimetrically by measuring 

the mass change of the starting material. Advanced in situ autoclave systems were 

developed for quantification of solubilities by X‐ray imaging or ultrasonic velocity 

measurements (see Section 3). The key benefit of in situ methods is the determination of 

dissolution kinetics, which allows one to distinguish between saturation of the solution and 

dissolution based on mass transport. Besides, the dissolution rate can be directly 

monitored at varying temperatures. In situ data are available for NaNH2, NH4F, and NH4Cl 

so far,[73,74] whereas gravimetrical measurements were reported for NaNH2, KNH2, and 

NH4X (X=Cl, Br, I) as mineralizers.[68,75-78] Higher solubilities of GaN in acidic solutions 

were ascertained, according to present data, which coincide with the generally higher 

growth rates in acidic systems. Notably, different experimental parameters, as well as the 

evolution of Ga sinks and sources during the runs have to be considered, which can result 

in significant deviations of the evaluated solubilities.[75]  

Impurities and defects in bulk GaN crystals represent another important aspect in current 

research. Suihkonen et al. studied and reviewed the formation and concentration of 

defects in ammonothermal GaN.[79,80] Impurities can be mainly ascribed to oxygen 

originating from nutrient and mineralizer, as well as transition metals from autoclave 

materials. Gallium vacancies and inclusions of hydrogen were also detected in both 

ammonobasic and ‐acidic grown crystals resulting in increased sub‐band‐gap 

absorption.[80-82] These point defects strongly affect electronic and optical properties of 
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GaN and cause lattice strain, which can even lead to cracking of the wafers. Transition 

element impurities are strongly reduced using liner systems or capsules, whereas oxygen 

getters can be employed to lower the oxygen concentration in GaN crystals. Feasible liner 

materials were examined for both basic and ‐acidic systems (see also Section 3.1). For 

instance, nearly transition metal free (<1×1017 cm−3) GaN was obtained by implementing 

non‐hermetically sealed silver or molybdenum capsules in the growth environment. 

Growth rates were even improved with Ag capsules, while Mo reduced the oxygen 

concentration in comparison to the source material and was thus proposed as possible 

oxygen getter. The transparency of bulk GaN can also be tuned by compensation of 

oxygen donors with Mg acceptors as recently examined for various spectral ranges.[83] 

Although previous developments provided ammonothermal GaN substrates with low 

dislocation densities and reduced impurity concentrations, additional studies will be 

necessary to further decrease the overall quantity of point defects. 

Only few reports on the ammonothermal crystallization of other group 13 nitrides are 

available as yet. BN was obtained from boron and LiNH2 or KNH2 at 820 K and 100–500 

MPa.[84] However, elemental boron still occurred as a side phase even after a reaction 

time of 21 days, which indicates a very low reactivity in basic supercritical ammonia. 

Polycrystalline AlN was synthesized in both ammonoacidic and ‐basic environment using 

NH4Cl or KNH2 as mineralizers.[85,86] Solid solutions (Al,Ga)N were also successfully 

formed starting from Al/Ga alloys and NH4Cl.[87] Whereas acidic syntheses only yielded 

nanocrystalline products so far, the growth of AlN on GaN seeds up to 1.5 mm in 

thickness was reported with KN3 as mineralizer.[88]  

In an earlier study, the possible ammonothermal synthesis of InN, from metallic indium 

with KNH2 at 720 K, was stated but not described in any detail.[7] Successful crystallization 

and characterization of InN was recently reported using InCl3 and KNH2 as starting 

materials.[89,90] InN was obtained at 630–770 K and 190–280 MPa employing a ratio InCl3 : 

KNH2 of 1:3. The presence of an ammononeutral environment was suggested, 

considering the stoichiometric formation of KCl. Plate‐like crystals up to 2 μm in diameter 

and rod‐shaped crystals up to 5 μm in length were observed. Selected InN crystals are 

depicted in Figure 3. The successful ammonothermal synthesis of InN provides new 

opportunities for the crystal growth of (Ga,In)N solid solutions. It should be noted that 

indium metal reacts with nickel‐based superalloys, forming intermetallics like In3Ni2 along 

the grain boundaries, which can lead to severe damage of the autoclave.[91] For this 

reason, ceramic BN‐ and Si3N4‐liners were used for the ammonothermal reactions. 

Experimental band gaps of InN are somewhat contradictory in the literature ranging from 
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0.6 to 1.9 eV, which can be ascribed to various interacting factors, for example, oxygen 

impurities, dopant concentrations, the Moss–Burstein effect, as well as respective 

evaluation methods.[92] Photoluminescence spectra of ammonothermal InN indicated an 

optical band gap of ≈1.8 eV.[90] 

 

 

Figure 3. Scanning electron microscopy (SEM) images of InN crystals obtained by 

ammonothermal synthesis. Reproduced courtesy of J. Hertrampf.
[90]

 

2.2.2 Ternary nitrides 

The first ammonothermal syntheses of ternary nitrides were initiated by Jacobs and 

co‐workers within systematic studies on alkali metal nitrides. They particularly investigated 

reactions of alkali amide melts with nitrides like Ta3N5, P3N5, and Si3N4. To improve the 

crystallinity of the products, synthesis temperatures had to be increased which in turn 

required high ammonia pressures to inhibit decomposition of the amides. Crystallization of 

the tantalum nitrides MTaN2 (M=Na, K, Rb, Cs) was conducted between 673 and 1073 K 

and pressures up to 600 MPa (see Table 1). Ta3N5, Ta2O5, TaCl5, or NH4TaF6 and an 

excess of alkali metal amides MNH2 (M=Na, K, Rb, Cs) were used as starting materials.[93] 

Microcrystalline products were obtained, whereas single crystals of NaTaN2 up to 30 μm 

in diameter were observed within syntheses of oxonitride perovskites.[18] The latter 

crystallizes in the α‐NaFeO2 type, whereas KTaN2, RbTaN2, and CsTaN2 form a 

β‐cristobalite like structure with K, Rb, and Cs occupied in all voids 12‐fold coordinated by 

N. NaTaN2 is chemically very stable, while the hydrolysis sensitivity increases from KTaN2 

to CsTaN2. On the other hand, reactions of Ta3N5 with Li, Li3N, or LiNH2 result in the 

mixed valence tantalum nitride Li2Ta3N5. Phase‐pure products were obtained by 

ammonothermal synthesis at pressures of 600 MPa.[94] Li2Ta3N5 crystallizes in a NaCl 
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superstructure with an ordered distribution of Li and Ta. The presence of Ta−Ta bonds 

was suggested with regard to the small interatomic distances, coinciding with reduced 

Ta3+ or Ta4+ ions next to Ta5+. 

Table 1. Ternary nitrides obtained by ammonothermal synthesis 

 

Further, the behavior of silicon in ammonobasic and ‐acidic environments was examined. 

Jacobs et al. reported on the crystallization of a sodium nitridosilicate NaSi2N3, which is 

formed as polycrystalline powder by reaction of Si and excess NaNH2 in supercritical 

Compound 
Starting 

Material(s) 
Mineralizer 

Temp.  

[K] 

Pressure 

[MPa] 

Duration 

[h] 
Lit. 

MTaN2 (M 

= Na, K, 

Rb, Cs) 

Ta3N5, 

Ta2O5, TaCl5 

or NH4TaF6 

MNH2 (M = 

Na, K, Rb, 

Cs) 

673 - 

1073 
≤ 600 

[a]
 

120 - 

600 
[93]

 

Li2Ta3N5 Ta3N5 LiNH2 823 600 120 
[94]

 

K3P6N11 P3N5 KNH2 773 600 168 
[95]

 

LiSi2N3 Si LiN3 
970 - 

1070 
100 - 170 100 

[96]
 

LiGe2N3 Ge3N4 Li 900 150 - 230 100 
[96]

 

NaSi2N3 Si NaNH2 923 600 120 
[97]

 

MgSiN2 Mg + Si KN3 1070 100 - 170 125 
[96]

 

MgGeN2 Mg + Ge NaN3 870 150 - 230 120 
[96]

 

MnSiN2 Mn + Si KN3 1070 100 - 170 125 
[96]

 

MnGeN2 Mn + Ge NaN3 870 150 - 230 120 
[96]

 

ZnSiN2 Zn + Si 
LiN3, NaN3 

or KN3 

870 - 

1070 
100 - 150 100 

[15]
 

ZnGeN2 Zn + Ge 
LiN3, NaN3 

or KN3 
870 150 - 230 95 

[15]
 

[a] 
applied pressure dependent on synthesis temperature 
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ammonia.[97] NaSi2N3 crystallizes in a wurtzite‐derived superstructure in space group 

Cmc21. Reactions of Si with KNH2 at 770–870 K and 600 MPa resulted in the formation of 

imidonitrides K3Si6N5(NH)6 and Si2N2NH.[98] K3Si6N5(NH)6 single crystals with a diameter of 

300 μm were grown within 72 h, which indicates an adequate solubility of Si in 

ammonobasic KNH2 solution. Si2N2NH was also obtained in acidic environment at 670 K 

and 200 MPa with NH4Cl as mineralizer.[99] NaSi2N3 is structurally related to Si2N2NH, 

which is a defect variant of the wurtzite structure type with hydrogen bonded to the 

bridging twofold coordinated N atoms. Analogous attempted syntheses of MSiN2 for M=K, 

Rb, Cs were not successful so far and resulted in unidentified products with low 

crystallinity.[97,99] Earlier studies in the system Li/Si indicated the formation of 

nanocrystalline LiSi2N3 in reactions of high surface area Si3N4 (HSA‐Si3N4) with LiNH2 at 

570–670 K.[100] Well‐crystalline products were obtained from Si and excess LiN3 at higher 

reaction temperatures of 970 K, whereas Li2SiN2 was observed as second phase at 1070 

K.[96] LiGe2N3 is isotypic to LiSi2N3 and can be synthesized from Ge3N4 with an excess of 

Li metal.[96] 

The ammonolysis of P3N5 at 823 K and 600 MPa NH3 results in microcrystalline 

phosphorus(V) nitride imide HPN2. The latter is isoelectronic to SiO2 and exhibits a 

distorted β‐cristobalite‐like structure. Deuterium positions in DPN2, obtained from P3N5 

and ND3, were determined from synchrotron and neutron diffraction data.[101] Reactions of 

P3N5 with MNH2 (M=Na, Rb, Cs) at 670–870 K yielded single crystals of imides and 

imidonitrides Na10[P4(NH)6N4](NH2)6⋅0.5 NH3, Rb8[P4N6(NH)4](NH2)2 and 

Cs5[P(NH)4](NH2)2.
[102-104] The former two compounds contain adamantane‐like anions, 

with structural analogy to the lithium nitridophosphate Li10P4N10.
[105-107] On the other hand, 

K3P6N11 represents the sole ammonothermally synthesized nitridophosphate so far, and 

can be obtained from P3N5 and KNH2 at 773 K and 600 MPa NH3 as microcrystalline 

powder.[95] The anionic P‐N framework is analogous to the Si‐N framework in the above 

mentioned K3Si6N5(NH)6, forming corner‐sharing PN4 tetrahedra, which can be separated 

in three symmetry equivalent chains along [1 0 0], [0 1 0], and [0 0 1] (Figure 4).[108] K+ 

occupies the voids of the three‐dimensional network with K(1) 8‐fold and K(2) 9‐fold 

coordinated by N. 
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Figure 4. Crystal structure of K3P6N11 viewed along [100] showing K atoms in gray and symmetry 

equivalent chains of PN4 tetrahedra along [100] (purple), [010] (light blue) and [001] (dark blue). 

Recently, we reported on the first ammonothermal synthesis of II‐IV‐N2 nitrides with II=Mg, 

Mn, Zn and IV=Si, Ge. These materials are obtained by reaction of the respective 

elements with alkali metal azides NaN3 or KN3 as ammonobasic mineralizers. We 

observed that MSiN2 (M=Mg, Mn, Zn) require high reaction temperatures of 1070 K to 

obtain well‐crystalline products. On the other hand, lower temperatures are sufficient for 

MGeN2, which in contrast are thermally less stable under specified ammonothermal 

conditions. The initial formation of intermediates and subsequent conversion to the 

nitrides at increasing reaction temperatures proved to be beneficial to obtain phase‐pure 

products. Pressures above 100 MPa supported the crystallization process of these 

nitrides. Crystals were primarily in the nm to μm range, but exhibit well‐defined faces as 

shown in Figure 5.[15,96]  
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Figure 5. SEM images of ZnSiN2 (a) and ZnGeN2 crystals (b).
[15]

 

Dissolution of ZnGeN2 in ammonobasic supercritical ammonia was observed by in situ 

X‐ray imaging, which exemplarily demonstrates a possible dissolution–recrystallization 

based mechanism of crystal growth. These findings are fundamental for the development 

of an ammonothermal growth process for ternary nitrides. Stated II‐IV‐N2 compounds 

crystallize in a superstructure of hexagonal GaN with space group Pna21. Group‐subgroup 

relations of III‐N, II‐IV‐N2, and I‐IV2‐N3 are illustrated in Figure 6. 

 

 

Figure 6. Group-subgroup relations of III-N, II-IV-N2 and I-IV2-N3 type structures.
[96]

 

Ternary II‐IV‐N2 and I‐IV2‐N3 materials are of particular interest as possible 

next‐generation semiconductors, due to their promising optical and electronic properties, 

the increased prospects for band‐gap engineering compared to GaN, as well as the 

earth‐abundance of the constituting elements.[96,109,110] Reported experimental band gaps 

for Grimm–Sommerfeld analogous nitrides are summarized in Figure 7. Similar lattice 
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parameters facilitate growth on GaN substrates, as well as formation of hybrid structures. 

For instance, spontaneous polarization differences of Zn‐IV‐nitrides are significantly 

smaller compared to (Al,Ga,In)N, which could suppress polarization fields in polar growth 

directions.[111] Besides, interesting luminescence properties for MgSiN2:Mn2+ were 

ascertained, while Mn‐IV‐N2 materials could be attractive for spintronic applications.[112,113] 

However, this class of materials is still at an early stage of development and physical 

properties were scarcely investigated so far. The ammonothermal method could be well 

suitable for growth of larger single crystals, to facilitate detailed characterization of their 

optical and electronic properties. 

 

 

Figure 7. Band gap range of (Al,Ga,In)N solid solutions (gray) and experimental band gaps of 

Grimm-Sommerfeld analogous nitrides evaluated from UV-VIS spectroscopy (diffuse reflectance: 

blue, transmittance: green, absorption: pink), photoluminescence spectra (red) and X-ray 

absorption near-edge structure / X-ray emission spectroscopy (XANES / XES, orange). 

[15,96,112,114-126]
 

Another synthetic approach involves the ammonothermal synthesis of precursors and 

subsequent annealing at high temperatures, which was reported for M2Si5N8:Eu2+ (M=Sr, 

Ba). Dissolution of the starting materials in supercritical ammonia provides thorough 

mixing on an atomic level, and the formation of highly reactive amide or imide species. In 

this way, the synthesis temperature was considerably lowered compared to common 

high‐temperature processes. Besides, uniformly shaped spherical particles with narrow 
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particle size distribution were obtained, which is favorable for luminescence applications 

of M2Si5N8:Eu2+.[127,128] 

Overall, the ammonothermal method has been shown to be well suitable for the synthesis 

of ternary nitrides. In particular, compounds crystallizing in α‐NaFeO2 or 

β‐cristobalite‐analogous structures, as well as NaCl or wurtzite superstructures, were 

found to be stable in the examined systems. Other structures were observed for 

nitridophosphates (K3P6N11) and also detected at higher reaction temperatures (Li2SiN2), 

or as a byproduct with CsN3 as mineralizer (Ca16Si17N34, Section 2.3).[16,96] All reported 

ternary nitrides were synthesized in an ammonobasic environment. Possible 

intermediates include binary and ternary amides containing monovalent and/or bivalent 

cations, as well as imides or imidonitrides of Si or P. [24,98,102-104 The formation of Ta or Ge 

intermediate species in supercritical ammonia has not been examined as yet. In addition, 

quantitative solubility data are virtually unknown, which hampers a controlled crystal 

growth of ternary nitrides. Crystal sizes in the range of up to 7 μm for ZnSiN2 and 30 μm 

for NaTaN2 were achieved so far. Converging solubilities of respective intermediates could 

be accomplished using new precursor compounds, which in turn would facilitate crystal 

growth by chemical transport reactions. On the other hand, growth from alkali metal amide 

melts or other flux agents within high‐pressurized ammonia, as similarly proposed for 

lanthanide nitrides, might be feasible as well (Section 2.1.1). 

2.2.3 Quaternary and multinary nitrides 

During the last decade, the ammonothermal method was likewise employed for the 

synthesis of quaternary and multinary nitrides. In 2007, Li et al. reported on the 

ammonothermal synthesis of CaAlSiN3:Eu2+, an industrially important red phosphor for 

pc‐LEDs.[129] CaAlSiN3:Eu2+ crystallizes in a superstructure of the wurtzite type with space 

group Cmc21 (Figure 8). Syntheses were conducted using intermetallic CaAlSi:Eu as 

starting material and NaNH2 as mineralizer (see Table 2). The effect of temperature, 

pressure, and mineralizer concentration on crystallinity and luminescence properties was 

thoroughly investigated.[130,131] Initial formation of CaAlSiN3 was observed between 770–

870 K, albeit with poor crystallinity according to the powder X‐ray diffraction data. The 

same holds for reactions in an ammonia flow, leading to very blurred and undefined 

reflections in the powder X‐ray diffraction pattern. Crystallinity was considerably improved 

by employing higher reaction temperatures up to 1070 K. Here, the starting materials were 

first converted to reactive intermediates at 670 K, which were then slowly transformed to 
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the nitride with increasing temperature. This two‐step approach is favorable since amides 

are preferably formed at lower temperatures and ammonia significantly decomposes at 

temperatures above 900 K at pressures in the order of 100 MPa. An average crystal size 

of ≈30–70 nm was estimated for CaAlSiN3 using the Scherrer equation, while a few 

needle‐shaped crystals with up to ≈600 nm in length were also observed by scanning 

electron microscopy. Crystallinity as well as photoluminescence efficiency revealed 

significant differences for varying pressures and mineralizer ratios. On the one hand, solid 

solutions with homeotypic NaSi2N3 according to NaxCa1−xAl1−xSi1+xN3 are formed, 

dependent on mineralizer concentrations, which also affects the emission efficiencies. On 

the other hand, decomposition of intermediates could be promoted at reduced pressures, 

which decreased the observed Ca deficiency in the products. An atomic ratio Na:Ca 

between 2:1 and 5:1, as well as a pressure above 15 MPa, resulted in well‐crystalline 

products, while pressures between 60 and 100 MPa yielded the highest 

photoluminescence intensity. 

Table 2.  Quaternary and multinary nitrides obtained by ammonothermal synthesis 

 

Compound 
Starting 
Material 

Mineralizer 
Temp. 

[K] 
Pressure 

[MPa] 
Duration 

[h] 
Lit. 

CaAlSiN3:Eu
2+

 CaAlSi:Eu NaNH2 
773 - 
1073 

0.1 - 100 20 - 92 
[129-131]

 

CaAlSiN3:Eu
2+

 
Ca, Al, Si, 

Eu 
NaN3 850 100 - 200 240 - 720 

[132]
 

CaAlSiN3:Li
+
,Ce

3+
 

CaAlSi: 
(Li,Ce) 

NaNH2 or 
Ca 

1073 100 30 - 33 
[133]

 

SrAlSiN3:Eu
2+

 SrAlSi:Eu 
NaNH2 or 

Sr 
1073 100 30 

[17,134]
 

SrAlSiN3:Na
+
,Ce

3+
 

SrAlSi: 
(Na,Ce) 

Sr 1073 100 30 
[135]

 

CaGaSiN3 / 
CaGaSiN3:Eu

2+
 

CaGaSi / 
CaGaSi:Eu 

LiN3 or 
NaN3 

1070 50 - 150 140 - 270 
[16,136]

 

Ca1-xLixAl1-xGe1+xN3 
(x ≈ 0.2) 

Ca3Al2Ge2 Li 925 185 95 
[137]
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Figure 8. Left: Crystal structure of M
II
M

III
M

IV
N3 (cf. table 2) along [001] with M

II
 dark red, M

III 
/ M

IV
 

green, N pink. Right: Coordination of M
II
 and M

III
 / M

IV
 with nitrogen. 

Synthesis of CaAlSiN3 starting from the elements Ca, Al, Si and Eu was reported as 

well.[132] However, greatly prolonged reaction times are required for the nitride formation. 

The use of an intermetallic precursor provides a better mixing of intermediates on an 

atomic level and therefore facilitates the conversion to CaAlSiN3. Low heating rates 

ensure a controlled nucleation and growth of the nitride by slow decomposition of the 

intermediates with increasing temperatures. An ammonia ratio of ≈13 % was calculated for 

970 K and 100 MPa[138] and can be expected to be in the same order of magnitude, even 

though the internal temperature within the autoclave is not specified and the chemical 

equilibrium of ammonia decomposition is not necessarily reached within the reaction time 

(cf. Section 3). Nevertheless, much higher pressures would be required to enable 

dissolution‐based processes, which in turn could facilitate the crystal growth of quaternary 

nitrides. 

Isotypic SrAlSiN3:Eu2+ can be synthesized using an analogous route. Increased 

crystallinity and photoluminescence efficiency was achieved by using Sr instead of NaNH2 

as mineralizer, which can be attributed to a significant reduction of the Sr deficiency 

observed in ammonothermally formed SrAlSiN3. The increased Sr concentration in the 

system resulted in bar‐ and plate‐like crystals, whereas rather needle‐shaped crystals 

were obtained with NaNH2.
[17,134] Phase‐pure samples of SrAlSiN3 were only attained by 

ammonothermal synthesis, as well as by high‐pressure nitridation using a hot isostatic 

press (HIP).[139] Compared to the former, reported HIP syntheses yielded larger crystallites 
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with less defects and lower oxygen impurities. These differences also result in diverging 

photoluminescence properties of these materials, in particular a blueshift of the emission 

maximum for the ammonothermally obtained sample. The ammonothermal approach thus 

still requires further optimization, albeit a significant reduction of the synthesis temperature 

by ≈1100 K was achieved. 

We recently reported on the ammonothermal synthesis of isotypic CaGaSiN3:Eu2+ which 

represents the first nitridosilicate containing GaN4 tetrahedra within the anionic framework. 

The intermetallic CaGaSi:Eu and LiN3 or NaN3 were employed as starting materials. The 

use of KN3 or CsN3 as mineralizers resulted in Ca16Si17N34 and GaN which indicates that 

LiSi2N3 or NaSi2N3, which are formed under similar conditions, might act as intermediates 

or crystallization seeds during these reactions. Crystals with up to 2 μm in length were 

obtained at 1070 K and 150 MPa (Figure 9), whereas rather poorly crystalline CaGaSiN3 

was formed at lower temperatures of 870 K or pressures below 100 MPa.[16] The crystal 

structure can be regarded as a superstructure of GaN; the formation of CaGaSiN3 could 

thus underlie a similar mechanism within ammonothermal synthesis. Interestingly, the 

formation of CaGaSiN3 is favored despite prevailing reaction conditions for the synthesis 

of GaN. This could be of particular interest for crystal growth strategies of further ordered 

superstructure compounds based on GaN. Eu2+ doped samples of CaGaSiN3 show red 

luminescence by irradiation with blue light, with an emission maximum of 620 nm, which is 

in the same order as that of SrAlSiN3:Eu2+ obtained from HIP synthesis. Optical and 

electronic properties were examined by first‐principles DFT calculations and compared to 

those of CaAlSiN3.
[136] The optical band gap of CaGaSiN3 was estimated to be ≈3.2 eV by 

diffuse reflectance measurements and is thus considerably lower compared to CaAlSiN3 

(≈4.9 eV).[140]  

Next to these nitridosilicates, we also reported on the novel nitridogermanate 

Ca1−xLixAl1−xGe1+xN3 (x ≈0.2). This nitride was obtained from Ca3Al2Ge2 and Li as 

mineralizer, and can be regarded as a solid solution of LiGe2N3 and hypothetical 

CaAlGeN3. Ordering phenomena were investigated by scanning transmission electron 

microscopy high‐angle annular dark‐field (STEM‐HAADF) imaging taking possible ordered 

structure models into account. The determined crystal structure was confirmed by 

Z‐contrast imaging and is analogous to CaAlSiN3 with Al/Ge disordered on Wyckoff site 8b 

and Ca/Li disordered on Wyckoff site 4a.[137] Well‐defined crystals with up to 15 μm in 

length were observed, whereas the described nitridosilicates were found to be rather 

nanocrystalline. This indicates that Ge or its respective intermediates might possess 

higher solubilities in the supercritical fluid than Si‐containing species. It was shown that 
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the ammonothermal approach represents a promising alternative to the common NaN3 

route for the synthesis of nitridogermanates.[23] The structural analogy to ternary nitrides 

like LiSi2N3 and LiGe2N3 further provides the opportunity for band gap engineering within 

these systems (Section 2.2). 

 

 

Figure 9. a) STEM dark-field image of CaGaSiN3:Eu
2+

 single crystals. b) SEM image of 

Ca1-xLixAl1-xGe1+xN3 (x ≈ 0.2).
[16,137]

 

In summary, the above described systems offer a wide variability by cation substitutions 

and formation of solid solutions. Wurtzite‐related nitridosilicates and ‐germanates seem to 

be preferably formed in the stated temperature and pressure ranges. However, the use of 

mineralizers like KN3 or CsN3 already indicated the possible formation of other 

nitridosilicates like Ca16Si17N34 as well. Noteworthy, diverging solubilities and chemical 

reactivities of incorporated elements and respective intermediates have to be considered 

for ammonothermal synthesis of quaternary nitrides. Well‐soluble species are partially 

transported to the colder peripheral parts of the autoclave, while hardly soluble 

compounds remain in the hot zone. In order to limit such transport, syntheses of 

mentioned nitrides were carried out in autoclaves with comparable small internal volumes 

of 5–10 mL. Considering the mole fraction of mineralizer, it can be assumed that alkali 

amide melts are present which could additionally confine chemical transport and promote 

crystal growth of the nitrides. 

The ammonothermal approach proved to be particularly suitable for the synthesis of 

nitrides which are difficult to access by other methods. High temperatures of 2170 K with 
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nitrogen pressures of 190 MPa are required for an alternative synthesis of SrAlSiN3, 

whereas CaGaSiN3 and Ca1−xLixAl1−xGe1+xN3 (x<1) were only obtained by the 

ammonothermal method as yet. Rather moderate temperatures for the ammonothermal 

synthesis of nitrides are sufficient, compared to other common routes, owing to the high 

reactivity of supercritical ammonia and respective intermediates. In particular synthesis of 

nitridogallates and ‐germanates is often hampered by their limited thermal stabilities. In 

this regard, the ammonothermal method could enable the discovery of further nitrides with 

unprecedented elemental compositions, as already demonstrated for CaGaSiN3 and 

Ca1−xLixAl1−xGe1+xN3. New autoclave technologies will be necessary to accomplish even 

higher pressures at 1070 K or above. In this way, dissolution and recrystallization based 

processes could be facilitated, and thus promote crystal growth of quaternary and 

multinary nitrides (see Section 3). 

2.2.4 Oxonitrides 

Oxonitrides comprise a further very intriguing class of compounds. For instance, various 

rare earth doped oxonitridosilicates possess excellent photoluminescence properties for 

possible application in light emitting diodes, whereas several novel oxonitridophosphates 

with unprecedented crystal structures were reported in recent years.[141-144] Inclusion of 

oxygen containing precursors in ammonothermal syntheses enables access to oxonitride 

materials as well. Previous studies focused on synthesis of oxonitrides with compositions 

LnTaON2 (Ln=La, Pr, Nd, Sm, Ce, Gd), LaNbON2, and BaTaO2N which all crystallize in 

the perovskite structure type (see Table 3). Watanabe et al. reported on the 

ammonothermal synthesis of LaTaON2, where oxygen originated from impurities in the 

starting materials and autoclave walls. In other reports, NaOH was added as oxygen 

source and co‐mineralizer. An alloy of La and Ta was used to accomplish a better mixing 

of the elements. Well‐defined cube‐shaped crystals were observed in the product. 

Reaction time and temperature did not significantly affect the crystal size or shape of 

LaTaON2. Recent investigations on LnTaON2 with Ln=La, Pr, Nd, Sm, Ce, Gd indicate 

that higher pressures could promote the crystal growth of oxonitrides, where sharp‐edged 

crystals with up to 15 μm in size were observed.[18] SEM images of selected single crystals 

are shown in Figure 10. 
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Table 3. Oxonitrides obtained by ammonothermal synthesis 

 

 

 

Figure 10. SEM images of a) LaTaON2, b) CeTaON2, c) PrTaON2, d) NdTaON2, e) SmTaON2, 

f) GdTaON2.
[18]

 

This class of materials is of particular interest for photocatalytic water splitting. LaNbON2 

from ammonothermal synthesis showed marginal hydrogen evolution when doped with Sr 

or Ti. Higher rates were observed for BaTaO2N, which can be synthesized from Ba3N2 and 

Compound 
Starting 
Material 

Mineralizer 
Temp. 

[K] 
Pressure 

[MPa] 
Duration 

[h] 
Lit. 

LaTaON2 LaTa 
[a]

 NaNH2 773 - 1073 100 15 - 75 
[145]

 

LnTaON2 
(Ln = La, Pr, 

Nd, Sm) 

La, Pr, Nd or 
Sm + Ta 

NaN3 + 
NaOH 

870 ≤ 300 110 
[18]

 

LnTaON2 
(Ln = Ce, Gd) 

Ce or Gd + 
Ta 

NaN3 + 
NaOH 

1070 ≤ 150 110 
[18]

 

LaNbON2 La2Nb 
[a]

 
NaNH2 + 

NaOH 
1073 100 33 

[146]
 

BaTaO2N 
Ba3N2 + 
TaON 

NaNH2 + 
NaOH 

823 - 973 100 20 
[147]

 

[a]
 nominal alloy composition
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TaON with mineralizers NaNH2 and NaOH. Several parameters have to be addressed for 

an effective solar energy conversion, for example, photostability, positions of valance and 

conduction bands, crystallinity, morphology of the materials, and the type of 

co‐catalyst.[148] In particular the control of morphology, crystallinity, defects, and particle 

size could be accomplished by a solution‐based ammonothermal approach. For instance, 

the ammonothermal post‐treatment of Ge3N4 and Ta3N5 effectively increased their 

photocatalytical activities, which was attributed to a decrease of defects in these 

nitrides.[149,150] Notably, hydrothermally synthesized NaTaO3 showed far higher catalytic 

activity compared to conventional syntheses, which was attributed to high surface area, 

small particle size, and high crystallinity of the product.[151,152] Even though numerous 

studies addressed this field of research, photocatalyst efficiencies still require significant 

improvements to become economically attractive. 

The deliberate inclusion of oxygen in ammonothermal processes strongly extends the 

potential of this method. While previous work is limited to perovskite oxonitrides, 

numerous new materials might be accessible within other systems as well. For instance, 

partial substitution of N by O in nitrido(alumino)silicates leads to the manifold class of 

Si(Al)ONs. Moreover, the linkage of (Al,Ga,In)N crystal growth to well‐studied 

hydrothermal processes could pave the way to new semiconductors and photocatalysts 

such as ZnAlON or ZnGaON.[153,154]  

 

2.3 Advance of autoclave technologies 

2.3.1 Autoclaves and liner concepts 

Autoclave materials for ammonothermal syntheses require high chemical stability against 

supercritical ammonia solutions, as well as high tensile strength, yield strength, and 

ductility at process temperatures. Nickel‐based superalloys proved to be well‐suited for 

ammonothermal reactors and components. Material properties of such alloys can be 

tailored by modulation of chemical compositions, as well as by thermal treatment of the 

raw material using post‐fabrication processes like precipitation hardening. Typically 

employed materials in different research groups include Inconel 625, Inconel 718, René 

41, as well as Haynes 282 alloy.[16,155-157 Exemplarily, autoclaves with upper temperature 

limits of 900 K at 300 MPa or 1100 K at 150–170 MPa were constructed, dependent on 

the respective material specifications and the autoclave design (Figure 11). Most of these 

materials are applicable for syntheses in ammonobasic environment, whereas severe 
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corrosion can occur with acidic mineralizers.[158,159] Liners or capsules are used to prevent 

corrosion of the autoclaves and to avoid incorporation of transition metals into the 

products. Recently, numerous materials were screened in terms of their chemical stability, 

using pure NH3, NaNH2, or NH4Cl.[155] Another study investigated the behavior of NH4X 

(X=F, Cl, I) solutions on diverse metallic samples.[160] Several materials were found to be 

applicable as liner materials, such as molybdenum for pure supercritical NH3, NaNH2, 

NH4F, and NH4Cl solutions, as well as silver for supercritical NH3, NaNH2, and NH4F 

solutions. Non‐hermetically sealed capsules made of silver or molybdenum were probed 

for ammonobasic growth of GaN, resulting in nearly transition metal free (<1×1017 cm−3) 

crystals. Another approach implements liner‐free titanium‐zirconium‐molybdenum (TZM) 

alloy autoclaves for acidic growth runs.[161] These autoclaves are designed for 

temperatures up to 925 K at pressures up to 150 MPa, and afford growth of GaN 

crystallites with negligible transition metal impurities as well. 

 

 

Figure 11. Autoclave made of Haynes 282 alloy with flange construction for explorative 

ammonothermal syntheses up to 1070 K and 170 MPa. The assembled head part consists of hand 

valve, pressure transmitter and safety head with integrated rupture disc. 

Crystal growth of GaN is commonly performed at ≈800–900 K and 100–300 MPa, with an 

applied temperature gradient of ≈30–100 K. On the other hand, many ternary and 

quaternary nitrides were found to preferentially crystallize around the current upper 

temperature limit of ≈1100 K for common autoclave setups. From a thermodynamic point 
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of view, the ammonia equilibrium is strongly shifted to its decomposition products N2 and 

H2 even at the pressure limit of high‐temperature autoclaves. Thereby, crystal growth is 

hampered due to insufficient quantity of solvent. Other effects of high nitrogen and 

hydrogen ratios are still unknown, though the latter can be expected to establish a 

reductive atmosphere within the autoclave. 

Higher pressure inhibits the dissociation of ammonia, enables dissolution–recrystallization 

processes at high temperatures, and further increases solubility of ionic species. Very few 

materials could provide higher temperatures and pressures compared to the reported 

ones, for example, cobalt‐based superalloys. However, such materials have not been 

examined with regard to long‐term stability using supercritical ammonia and still require 

further investigations. Other concepts implement internal heaters, a thick ceramic inner 

shell, and an outer shell made of steel to circumvent material limitations of conventional 

reactors.[11,57] The low thermal conductivity of the ceramic retains the steel temperature 

below 470 K, where its high creep resistance is maintained. The reported vessel design 

sustains high pressures of up to 600 MPa at temperatures of 1025 K. Concepts from other 

high‐pressure technologies like piston‐cylinder or belt apparatus can be considered as 

well and have already been applied for hydrothermal processes.[5,6] An analogous setup 

for ammonothermal syntheses with considerable inner volume was developed employing 

sealed capsules placed in a high‐pressure cell.[162] This alternative autoclave design was 

successfully tested for GaN crystal growth, and enables temperatures up to 1270 K with 

pressures up to 2 GPa. Using such techniques, novel autoclaves suitable for 

solution‐based crystal growth of ternary and multinary nitrides at high temperatures could 

be designed. Besides, new nitrides might be accessible by extension of attainable 

parameter limits. Chemical stabilities of nitrides under ammonothermal conditions could 

additionally be increased by confining the reductive hydrogen atmosphere. Noteworthy, 

decomposition of ammonia is favored in the presence of catalysts, and the chemical 

equilibrium is not necessarily reached within the reaction time. Recent in situ Raman 

spectroscopy studies showed that ammonia decomposition is kinetically inhibited to some 

extent within common Inconel 718 autoclaves (Section 3.2.2).[163] Reduced decomposition 

of ammonia was also observed with silver capsules as the growth environment since 

silver is a poor catalyst for that process.[52] Pressure loss due to hydrogen diffusion 

through the autoclave walls is frequently observed at elevated temperatures, which was 

also restrained in experiments with silver capsules. 

 



2 Ammonothermal Synthesis of Nitrides: Recent  
Developments and Future Perspectives 

 

38 
 

2.3.2 In situ autoclave technologies 

Investigations of chemo‐physical processes are fundamental to gain a deeper 

understanding of crystal growth in ammonothermal reactions. However, only little is known 

about the formation of intermediates, solution equilibria, and mass transport in 

supercritical ammonia. Direct insights into the autoclave chamber during running reactions 

help to illuminate crystallization mechanisms and to optimize technological processes. In 

situ X‐ray techniques can be used to monitor dissolution and growth of crystals, and to 

determine solubilities of nitrides. Fundamental data on chemical reactions and solution 

equilibria can be obtained from spectroscopic in situ analyses. Besides, ultrasonic velocity 

measurements were recently employed for concentration determination of mineralizers or 

other dissolved species. 

 

2.3.2.1 In situ X-ray imaging 

High‐pressure optical cells for in situ investigations are equipped with specially designed 

windows to provide improved X‐ray transmission (see Figure 12). Sapphire was 

successfully applied as a window material for temperatures up to 925 K and pressures up 

to 300 MPa using NaNH2, NH4F, or NH4Cl as mineralizers. 

 

 

Figure 12. Schematic view of optical cell for in situ X‐ray imaging and in situ Raman experiments. 

a) Sapphire windows, b) mount for windows, c) crystal mount, d) thermocouple, e) filling tube, f) 

beam path. 
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Other materials with improved X‐ray transparency were also investigated as potential 

window or coating materials, identifying diamond as a material compatible with various 

mineralizers, and boron carbide as an excellent window material for experiments with 

Na‐based mineralizers.[164]  

For solubility measurements, crystals are clamped between two bolts of an Inconel 718 

mount (gold‐coated for acidic reactions) with an attached Inconel 718 fixing spring. The 

size of the crystal is monitored by 2D X‐ray visualization probing different crystallographic 

directions (Figure 13). The dissolved volume over reaction time gives information about 

initiating dissolution as well as dissolution kinetics.[73,74] Hence, it is possible to 

differentiate between reaching the saturation point and dissolution by mass transport. 

Pressed pellets of powder samples can be used for dissolution monitoring as well. In this 

way, dissolvability of ZnGeN2 was ascertained, which is a first fundamental step towards 

crystal growth of ternary nitride materials.[15]  

 

 

Figure 13. GaN crystal within Inconel 718 mount (0 h) and GaN dissolution over time at 815 K and 

240–275 MPa (12–84 h) with NaN3 as mineralizer monitored by in situ X‐ray imaging. Reproduced 

with permission from ref. [74], Copyright Elsevier 2017. 

2.3.2.2 In situ spectroscopy 

The described optical cell can be employed for in situ spectroscopic studies as well. 

Raman spectra of supercritical ammonia solutions can be recorded using a backscattering 

setup where a laser beam is deflected on a dichroic mirror and focused into the optical 

cell. The backscattered light is detected in an angle of 0° and collected by a spectrometer. 

In this way, the formation of hydrogen and nitrogen, as well as possible intermediate 

compounds, can be monitored. A recent study showed that ammonia decomposition is 

restrained in common Inconel 718 autoclaves, which was attributed to passivation layers 

on the autoclave walls partially shielding the catalytically active metal surface. Besides, in 

situ formation of NaNH2 from NaN3 was monitored by Raman and UV/Vis spectroscopy. 
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The investigations indicate that degradation of dissolved NaN3 to Na, and subsequent 

formation of NaNH2, proceeds between 600 and 650 K.[163] Future studies could further 

give information about dissolved intermediates, as well as their formation and degradation 

conditions. 

 

2.3.2.3 In situ ultrasonic velocity measurements 

The velocity of ultrasonic waves passing through solutions is dependent on the kind of 

solvent, temperature, and pressure, as well as the concentration of dissolved species. For 

instance, the solubility of specific mineralizers can be determined in situ by measuring the 

ultrasonic velocity for different concentrations. The ultrasonic velocity remains constant as 

soon as the saturation point is reached. First indicative experiments have been reported 

for NaN3 solutions in liquid ammonia up to 385 K.[165] A conventional Inconel 718 

autoclave is employed, with an attached ultrasonic sensor at the outer wall for both 

generating and receiving the ultrasonic signals. The applicability for supercritical ammonia 

has been demonstrated as well, although the authors indicated that measurements for 

supercritical solutions are still in progress. Such investigations could provide accurate 

solubility data for different mineralizers, as well as further dissolved species under 

ammonothermal reaction conditions. 

 

2.4 Future challenges and perspectives 

During the last decade, the ammonothermal crystal growth of GaN has taken a major step 

forward, with significantly increased growth rates in different crystallographic directions, as 

well as improved crystal qualities. Meanwhile, ammonothermal GaN with superior crystal 

quality compared to HVPE GaN was demonstrated, however with generally higher 

concentrations of gallium vacancy complexes. Such complexes form deep levels in the 

band gap and cause increased sub‐band‐gap absorption, though the effect on device 

performances is still unclear. Exploring and confining the formation of point defects will be 

an important issue in future research. Besides, knowledge on crystallization and growth 

mechanisms is still fragmentary. Further data on solubilities, intermediates, and solution 

equilibria are required to effectively optimize growth rates of GaN. In situ X‐ray and 

spectroscopic technologies are currently at an early stage of development, though, they 

will help to illuminate occurring crystallization processes, and can additionally provide 

fundamental data for the potential ammonothermal growth of (Al,Ga,In)N solid solutions. 
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While most current GaN devices are based on foreign substrates, their performances 

could be significantly increased using homoepitaxial processes. However, the price of 

sapphire or silicon carbide is still orders of magnitude lower compared to GaN substrates. 

The latter are thus preferred for specialized applications like high‐performance laser 

diodes and not yet cost‐effective for a broad range of devices. Maximum growth rates are 

limited by solubilities, transport rates and surface kinetics, though, ammonothermal growth 

processes offer excellent scalability growing on multiple seeds simultaneously. In this 

context, fundamental progress has already been made by different companies, in 

particular Ammono (Ammono‐GaN), Soraa (scalable compact rapid ammonothermal, 

SCoRA™), and Mitsubishi (supercritical acidic ammonia technology, SCAAT™).[58,166,167] A 

considerable price reduction of ammonothermal GaN wafers could be accomplished by 

means of a commercial‐scale manufacturing with significantly increased output volume. 

The ammonothermal method further provided access to numerous ternary and multinary 

nitrides and thus accelerates fundamental solid‐state chemistry. Recent studies showed 

that wurtzite‐derived ternary and quaternary nitrides are preferably formed under 

ammonothermal conditions. Many of the reported compounds are merely difficult to 

access by other synthetic methods. In particular Grimm–Sommerfeld analogous II‐IV‐N2 

and I‐IV2‐N3 nitrides are of high interest as possible next‐generation semiconductor 

materials, as they are predominantly composed of earth‐abundant elements and offer a 

wide range of attainable band gaps. However, this class of compounds is still at an early 

stage of development and reported crystal sizes are merely in the low μm range. Larger 

single crystals could facilitate the precise characterization of optical and electronic 

properties. Besides, ammonothermal growth on GaN substrates could be promising to 

open up new application fields as well. The development of growth processes will be 

challenging due to the diverging solubilities of included elements. The exemplary 

dissolvability of ZnGeN2 in ammonobasic supercritical ammonia has been demonstrated 

by in situ X‐ray imaging, which is a first important step for a possible dissolution–

recrystallization based growth process. In situ measurements are also beneficial to 

illuminate interaction of intermediates and their influence on crystallization and growth 

mechanisms. For instance, in situ spectroscopic methods can be used for identification of 

dissolved species, as well as their formation and degradation conditions, as indicated in 

recent investigations.[90] The use of new precursors, mineralizers or co‐solvents with high 

relative permittivities could help to increase the solubility of Si or Ge containing species 

and to promote crystal growth of these nitrides. Apart from that, significantly higher 

pressures will be required to facilitate solution‐based growth at temperatures of 1000 K 
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and beyond. The same holds for reported quaternary nitridosilicates, which are partially 

affected by lower crystallinity compared to common high‐temperature methods. 

The increase of synthesis temperature and pressure can be accomplished by means of 

new autoclave materials or internally heated capsule‐based autoclave systems as 

described above. Exceeding the degradation temperature of amides within 

ammonothermal syntheses could afford crystal growth of other promising nitride materials 

as well. For instance, Zn3N2 represents an intriguing narrow‐gap semiconductor material 

featuring small carrier effective masses and high carrier mobility.[109,168] Supposable 

intermediates in ammonobasic and ‐acidic systems were already reported, while its 

ammonothermal synthesis was assumed to require considerably higher process 

temperatures.[169,170] Moreover, new element combinations and mineralizer systems, along 

with an extension of parameter limits, could promote the discovery of novel multinary 

nitride materials as our recent studies already demonstrated. Explorative ammonothermal 

investigations are particularly promising for nitrides that are difficult to access by 

conventional high‐temperature methods, as well as nitrides with limited thermal stability. 

On the other hand, the deliberate inclusion of oxygen within the starting materials, as well 

as an interlinking with hydrothermal approaches are promising strategies for the discovery 

of new oxonitride materials with unprecedented physical properties. 

 

2.5 Conclusions 

In the last few years, intriguing findings and discoveries have been made within 

ammonothermal research. Growth rates and quality of GaN were significantly improved 

and the access to ternary and multinary nitrides and oxonitrides with promising optical and 

electronic properties was achieved. New high‐temperature autoclaves were developed to 

extend the maximum parameter limits, which enabled the synthesis of novel nitride 

materials. Further, new in situ technologies provided fundamental insights into dissolution 

and crystallization processes. 

While native substrates are state of the art for virtually all commercial semiconductors, 

evolution of bulk GaN is still in progress. It can be expected that ammonothermal 

synthesis will supersede other growth techniques in the near future. The first light emitting 

diodes based on native ammonothermal GaN substrates, with very high efficiency, are 

already available on the market, yet still in the highly‐priced segment. Upscaling 

comparable to hydrothermal growth of quartz could significantly decrease their production 

costs. Besides, further knowledge on solubilities, intermediates, and crystallization 
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mechanisms are beneficial to effectively optimize growth rates and to examine and reduce 

occurring point defects. 

With regard to the ammonothermal synthesis of ternary nitrides, Grimm–Sommerfeld 

analogous II‐IV‐N2 and I‐IV2‐N3 materials are of particular interest as they feature similar 

optical and electronic properties compared to (Al,Ga,In)N, and offer a wide range of 

attainable band gaps. Besides, they are predominantly composed of earth‐abundant 

elements whereas elements like indium are becoming increasingly scarce. Further ternary 

zinc nitrides were recently screened regarding their band gaps and electronic properties, 

with the possible inclusion of divalent cations like Mg2+ or Mn2+ additionally increasing their 

variability.[96,109] In this way, design and tailoring of new materials with desired physical 

properties can be achieved using the ammonothermal approach as an explorative tool for 

their synthesis. 

The deliberate inclusion of oxygen within the starting material further provided access to 

highly crystalline oxonitride perovskites. Such perovskites could be promising 

photocatalyst materials for water splitting, but still require additional research efforts and 

optimization. Ammonothermal syntheses also exhibit great potential for the exploratory 

discovery and crystal growth of novel nitride or oxonitride materials with intriguing optical 

and electronic properties as recently demonstrated for CaGaSiN3 and 

Ca1−xLixAl1−xGe1+xN3. The further extension of current parameter limits could unleash the 

full potential of this method and thereby pave the way to new innovative functional 

materials. 
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Abstract. In this contribution, first synthesis of 

semiconducting ZnSiN2 and ZnGeN2 from 

solution is reported with supercritical ammonia 

as solvent and KNH2 as ammonobasic 

mineralizer. The reactions were conducted in 

custom-built high-pressure autoclaves made of 

nickel-based superalloy. The nitrides were 

characterized by powder X-ray diffraction and 

their crystal structures were refined by the 

Rietveld method. ZnSiN2 (a = 5.24637(4), b = 6.28025(5), c = 5.02228(4) Å, Z = 4, Rwp = 

0.0556) and isotypic ZnGeN2 (a = 5.46677(10), b = 6.44640(12), c = 5.19080(10) Å,  

Z = 4, Rwp = 0.0494) crystallize in the orthorhombic space group Pna21 (no. 33). The 

morphology and elemental composition of the nitrides were examined by electron 

microscopy and energy-dispersive X-ray spectroscopy (EDX). Well-defined single crystals 

with a diameter up to 7 μm were grown by ammonothermal synthesis at temperatures 

between 870 and 1070 K and pressures up to 230 MPa. Optical properties have been 

analyzed with diffuse reflectance measurements. The band gaps of ZnSiN2 and ZnGeN2 

were determined to be 3.7 and 3.2 eV at room temperature, respectively. In situ X-ray 

measurements were performed to exemplarily investigate the crystallization mechanism of 
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ZnGeN2. Dissolution in ammonobasic supercritical ammonia between 570 and 670 K was 

observed which is quite promising for the crystal growth of ternary nitrides under 

ammonothermal conditions. 

 

3.1 Introduction 

Gallium nitride and respective solid solutions (Al,Ga,In)N represent one of the most 

important materials for optoelectronic semiconductor devices. The development of new 

semiconducting materials is a key aspect of current research due to the rapidly growing 

market, the increasing number of application fields, and in addition the scarcity of 

elements like gallium and indium. Recently, various ternary zinc nitrides have been 

screened in terms of electronic structure, dopability, and stability using first-principle 

calculations.[1] In particular, the Grimm–Sommerfeld analogous compounds 

Zn(Si,Ge,Sn)N2 feature similar structural, optical, and electronic properties to 

(Al,Ga,In)N.[2,3] Promising superior properties have been predicted as well, such as similar 

spontaneous polarization parameters which could diminish the issue of polarization fields 

in heterostructures.[3,4] The ternary zinc nitrides also offer excellent band gap tunability 

and additional substitution sites, which enable a further modification of the electronic band 

structure. Besides, they are comprised of earth-abundant elements and feature high 

chemical and thermal stability. 

About 25 years ago, Endo et al. demonstrated the synthesis of ZnSiN2 and ZnGeN2 using 

a high-pressure belt-type apparatus.[5] Powder samples were synthesized starting from 

the binary nitrides at pressures up to 6.5 GPa and temperatures between 1300 and 1900 

K. With the exploration of the semiconducting properties, these compounds attracted 

increasing interest, which promoted the development of new epitaxy processes. Thin films 

of ZnMN2 (M = Si, Ge, Sn) can be deposited on specific substrates by metalorganic vapor 

phase epitaxy (MOVPE) or molecular beam epitaxy (MBE) techniques.[6-8] However, no 

synthetic approach for the growth of bulk single crystals of these ternary nitrides have 

been developed as yet. 

Ammonothermal syntheses comprise solvothermal reactions using supercritical ammonia 

as the solvent. In analogy to the well-studied hydrothermal crystal growth of quartz, single 

crystals of binary nitrides like AlN and GaN can be grown from solution by convection-

driven chemical transport reactions.[9] The autoclaves are sectioned in dissolution and 

growth zones applying specific temperature gradients. Specially designed baffle plates are 

used to reach a constant temperature around the crystallization seed and to control the 
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convection flow of the supercritical fluid. Mineralizers like alkali metal amides or 

ammonium halides are added to increase the solubility of the starting materials and to 

form intermediates, which also act as transporting agents. 

Semiconductor performance can be extensively increased using single crystalline GaN 

wafers for homoepitaxial growth processes instead of conventional substrates like 

sapphire.[10] Meanwhile, GaN growth rates over 300 μm per day in different 

crystallographic directions and single crystals with more than 50 mm in diameter have 

been demonstrated by the ammonothermal method.[11-13] Ternary and quaternary nitrides 

can be synthesized ammonothermally as well, such as NaSi2N3, K3P6N11, and 

CaGaSiN3.
[14-16] While the optimization of AlN and GaN growth processes is still an 

important aspect in current research, the ammonothermal crystal growth of ternary nitrides 

has not been reported in literature so far. In addition, only little is known about occurring 

intermediates and their solubilities under ammonothermal reaction conditions. 

In this contribution, we report on the ammonothermal synthesis, as well as on the 

structural and optical characterization, of the ternary zinc nitrides ZnSiN2 and ZnGeN2. 

Specially designed autoclaves equipped with sapphire windows were used to investigate 

the dissolution behavior and kinetics by in situ X-ray imaging. 

 

3.2 Results and Discussion 

3.2.1 Synthesis 

ZnSiN2 and ZnGeN2 were synthesized by the ammonothermal method under 

ammonobasic conditions. Different mineralizers were found to be suitable for the 

synthesis, notably MNH2 with M = Li, Na, and K. The alkali metal amides were formed in 

situ using the respective azides MN3. The latter were preferred as they exhibit long-term 

stability towards oxygen and moisture. The decomposition of the azides at elevated 

temperatures and the subsequent reaction of the alkali metal with ammonia leads to the 

formation of MNH2. Our experiments showed that the best crystallinity of the nitrides is 

obtained using KNH2 as the mineralizer. Since KNH2 exhibits the highest solubility of the 

investigated mineralizers, we assume that a higher basicity of the supercritical ammonia 

solution might support crystal growth.[17] The reactions were conducted in two steps taking 

the preferential formation of amides at lower temperatures and the significant 

decomposition of ammonia beyond 850 K into account:[18,19] Reactive intermediate 

compounds were formed at 570–670 K which were gradually decomposed to the nitrides 
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at temperatures up to 1070 K. After the reaction, the residual mineralizer and zinc 

intermediates were removed by washing the product with water and 1 M HCl. ZnSiN2 and 

ZnGeN2 were obtained as pale beige and light yellow powders, respectively. We observed 

that pressures above 100 MPa were necessary to obtain well-crystallized products, which 

can be explained with higher NH3 mole fractions and better solubilities of ionic compounds 

with increasing pressures.[19,20] Zn was used in 25 % excess due to a higher expected 

solubility of Zn(NH2)2 and ternary zinc amides in comparison to Si, Ge, or respective 

intermediates. Amorphous side-phases were detected when employing 1:1 mixtures of 

Zn:Si/Ge, which can be attributed to unreacted Si/Ge-containing intermediates. With 

regard to ZnSiN2, only small particles in the range up to 50 nm were obtained at 870 K, 

while well-defined crystals with diameters beyond 5 μm could be grown at 1070 K (see 

electron microscopy section). On the other hand, lower temperatures were sufficient for 

the synthesis of well-crystalline ZnGeN2. We ascertained that ZnGeN2 decomposed at 

reaction temperatures above 950 K. While the majority of the crystals were in the range of 

200 nm, several crystals up to 1 μm in diameter were observed as well. The lower 

average crystal size compared to ZnSiN2 can be attributed to slower growth kinetics at 

870 K. Due to the well-defined morphology of the crystals, a growth mechanism from 

solution is likely. The growth of significantly larger crystals could then be performed using 

crystallization seeds and transport reactions with specific temperature gradients. To 

corroborate a dissolution–recrystallization based mechanism, we performed dissolution 

experiments in analogy to the formation of intermediates during the ammonothermal 

crystal growth of GaN (see section dissolution monitoring by in situ X-ray imaging). 

3.2.2 Powder X-ray diffraction (PXRD) 

Indexing of the PXRD patterns indicated that both ZnSiN2 and ZnGeN2 crystallize with 

orthorhombic metrics. Systematic absences suggest space group Pna21 which coincides 

with the investigations of Endo et al.[5] Rietveld refinement was carried out using Wyckoff 

positions and atomic coordinates from the literature as starting values.[5] No side-phases 

were detected in the powder X-ray diffraction patterns (see Figure 1). The crystallographic 

data obtained from Rietveld refinement are represented in Table 1, atomic coordinates are 

listed in Tables S1 and S2 (see the Supporting Information). 
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Figure 1. Rietveld refinement of ZnSiN2 (top) and ZnGeN2 (bottom) with experimental data (black 

lines, Cu-Kα1 radiation, λ = 1.540596 Å), calculated patterns (red lines), difference profiles (gray 

lines) and positions of Bragg reflections (blue bars). 

In ZnMN2 (M = Si, Ge), Zn and M are tetrahedrally coordinated by N. The ZnN4 and MN4 

tetrahedra are corner-sharing forming a three-dimensional network with a degree of 

condensation (i.e., the atomic ratio (Zn,M) : N) of κ = 1 (see Figure 2). The crystal 

structure is isotypic to β-NaFeO2 and represents a 2×√3 superstructure of the wurtzite 

structure type.[21] For ZnGeN2, some other studies proposed a disordered wurtzite-type 

structure with hexagonal space group P63mc which is apparently dependent on the 

synthesis method and reaction conditions.[22] Recently, it was also shown that the degree 

of ordering can be increased by annealing disordered phases at 1120 K.[23] In comparison 

to wurtzite-type ZnGeN2, peak splitting was observed in the PXRD, which is consistent 

with the described orthorhombic structure. The expected (1 1 0) and (0 1 1) superstructure 

reflections were identified in the diffraction pattern,23 albeit these are very weak due to the 

similar scattering factors of Zn and Ge. 
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Table 1. Crystallographic data of ZnSiN2 and ZnGeN2 obtained from Rietveld refinement 

Formula ZnSiN2 ZnGeN2 

Crystal system orthorhombic 

Space group Pna21 (no. 33) 

a [Å] 5.24637(4) 5.46677(10) 

b [Å] 6.28025(5) 6.44640(12) 

c [Å] 5.02228(4) 5.19080(10) 

Cell volume [Å
3
] 165.477(2) 182.929(6) 

Density [g·cm
-3

] 4.8764 6.0279 

Formula units per cell 4 

T [K] 293(2) 

Diffractometer STOE STADI P 

Radiation [Å] Cu-Kα1 (λ = 1.540596 Å) 

2θ range [°] 5.0 ≤ 2θ ≤ 101.5 

Profile function fundamental parameters model 

Background function Shifted Chebyshev 

Data points 6432 6365 

Number of reflections 102 110 

Refined parameters 53 50 

R values 

Rp = 0.0419 Rp = 0.0387 

Rwp = 0.0556 Rwp = 0.0494 

RBragg = 0.0198 RBragg = 0.0150 

GoF 2.433 2.539 

 

 

Interatomic Zn−N and Si−N distances in ZnSiN2 are between 2.04–2.08 Å and 1.70–1.79 

Å, while the Zn−N and Ge−N distances in ZnGeN2 range from 2.01–2.07 Å and 1.85–1.93 

Å, respectively. The calculated distances from Rietveld refinement are comparable to 

earlier reported values.[5] 
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Temperature-programmed powder X-ray diffraction (TP-PXRD) up to 1270 K was 

performed to investigate the thermal stability of ZnSiN2 and ZnGeN2 as well as possible 

changes in the crystal structure (see Figures S1 and S2 in the Supporting Information). 

According to the diffraction patterns, ZnSiN2 is stable up to temperatures beyond 1270 K, 

while ZnGeN2 decomposes between 1170 and 1220 K. Both compounds retain the above 

described orthorhombic crystal structure in the specified temperature range.  

 

 

Figure 2. Crystal structure of ZnMN2 (M = Si, Ge) viewed along [001]. The ZnN4 tetrahedra are 

depicted in blue, the MN4 tetrahedra in orange. 

3.2.3 Scanning/transmission electron microscopy (SEM/TEM) 

SEM images show that individual crystals of ZnSiN2 up to 7 μm in diameter were grown 

during the reactions, while the majority exhibits a size around 1 μm (see Figure 3 a and b). 

On the other hand, the crystals of ZnGeN2 are in the range up to 1 μm due to the lower 

feasible reaction temperatures (see Figure 3 c and d). The well-shaped morphology 

indicates a solution-based growth mechanism of the crystals, which is quite promising for 

potential growth processes of bulk single crystals of ternary nitrides. 
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Figure 3. SEM images of ZnSiN2 (a, b) crystals. SEM (c) and TEM (d) images of ZnGeN2 crystals. 

The EDX data coincide with the composition of ZnSiN2 and ZnGeN2 within the 

measurement accuracy (see Table 2). The residual mineralizer was almost entirely 

removed from the product. Small oxygen and chloride impurities most likely arise from the 

washing treatment with H2O and 1 M HCl.  

Table 2. SEM EDX measurements of ZnSiN2 and ZnGeN2 in atom %; mean values of five 

crystallites 

ZnSiN2 
Zn Si N O K Cl 

21.3 22.1 53.4 3.0 0.1 0 

ZnGeN2 
Zn Ge N O K Cl 

24.4 26.7 45.2 3.3 0.2 0.1 

 

3.2.4 UV/Vis spectroscopy 

Diffuse reflectance spectra were measured to investigate the optical properties of the 

synthesized materials. The reflectance (R) spectra were first converted to pseudo-

absorption through the Kubelka–Munk function F(R) = (1−R)2/2R.[24] Tauc plots were then 

used to determine the optical band gaps by drawing a tangent at the inflection points (see 
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Figure 4).[25] While ZnGeN2 is a direct band gap semiconductor, calculations for ZnSiN2 

predict an indirect band gap (Uv–Γc) which is ≈0.2 eV smaller in comparison to the direct 

gap (Γv–Γc).
21 The observed absorption in the spectrum was primarily attributed to the 

direct transition with regard to the minor difference between the direct and indirect band 

gap, which also coincides with optical measurements of ZnSiN2 from the literature.[26] The 

evaluated band gaps are 3.7 and 3.2 eV for ZnSiN2 and ZnGeN2, respectively. 

Numerous diverging values for the band gaps have been reported for ternary zinc nitrides. 

Calculations for ZnGeN2 yielded values between 1.57 and 3.99 eV, while indirect and 

direct band gaps of ZnSiN2 range from 3.23 to 6.01 eV and 3.45 to 6.26 eV, 

respectively.[1,21,27] These discrepancies can be ascribed to different approximation 

methods which partially lead to considerable under- or overestimation of the band gaps. 

On the other hand, the experimentally determined band gaps reveal significant differences 

as well. Reported values for ZnGeN2 and ZnSiN2 range from 2.7 to 3.5 eV and 3.6 to 4.5 

eV, respectively.[5,26,28-30] This divergence can have various reasons such as differing 

synthesis conditions, measuring methods, defect and impurity concentrations, or the 

degree of ordering. Yet, the diffuse reflectance measurements of ammonothermally 

synthesized ZnSiN2 and ZnGeN2 are in the same range as the other referred experimental 

band gaps. 

 

 

Figure 4. Diffuse reflectance measurements of ZnSiN2 (a), ZnGeN2 (b), and respective  

Tauc plots (c, d). 
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3.2.5 Dissolution monitoring by in situ X-ray imaging 

Crystal growth by solvothermal methods is commonly carried out utilizing temperature-

dependent reversible dissolution and crystallization of the materials. Commonly, a 

temperature gradient is applied to obtain dissolution and growth zones, which enable 

chemical transport of the materials. To evaluate the pressure and temperature range for 

dissolution, orienting dissolution experiments with ZnGeN2 were performed and monitored 

by in situ X-ray imaging. Temperature and pressure over time for this experiment are 

shown in Figure 5. The term ―internal temperature‖ refers to the temperatures measured 

inside the autoclave close to the inner wall of the reaction chamber whereas ′external 

temperature′ refers to the temperature in the heating sleeve that was used to heat the 

autoclave. Selected in situ X-ray images are shown in Figure 6. As it can be seen from the 

first images (0:00 h and 7:29 h), the ZnGeN2 pellet is well visible and yields a contrast that 

is comparable to GaN (GaN images for comparison and considerations regarding contrast 

can be seen in our previous in situ investigations).[31,32] 

 

Figure 5. Experimental parameters (T, p) of ZnGeN2 dissolution experiment with in situ X-ray 

imaging. 
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Figure 6. X-ray images showing the dissolution of the ZnGeN2 pellet. 

The reference image in the beginning of the experiment (0:00 h) was taken before 

reaching the critical point of the solvent. In this image, the phase boundary can thus still 

be seen since X-ray transmission decreases with increasing density. The third image 

shown in Figure 6 represents the first image showing a visible geometry change of the 

pellet (8:28 h, 570 K, 100 MPa). Since a geometry change could be caused not only by 

dissolution but also by mechanical disintegration of the powder particles, changes of X-ray 

absorption were analyzed for both the pellet and the surrounding fluid. Profile lines as 

depicted in Figure 7 give quantitative insight into the changes of X-ray transmission both 

with respect to different areas within one image and with respect to changes from one 

measurement to another. 

In Figure 7, the six selected images showing subsequent dissolution of the pellet are 

analyzed using profile lines. As expected, the areas of the supercritical fluid (before onset 

of ZnGeN2 dissolution, 7:29 h) show an intermediate transmission between that of the gas 

and liquid phases of the subcritical fluid (0:00 h). The profile lines indicate that the length 

of the radiographed path through ZnGeN2 becomes shorter due to dissolution, that is, the 

transmitted intensity in the areas of the pellet parts increases as the pellet dissolves. 

Noteworthy, the transmitted intensity in the areas of the fluid decreases as the pellet 

dissolves. This indicates that the geometry change of the pellet coincides with increased 

absorption of the fluid which can be attributed to dissolved species containing elements 

that are heavier than those originally present in the fluid. Zn and Ge possess the highest 

atomic weight of the expectable elements in the fluid and they have atomic numbers on 

average identical to Ga. Comparable changes of the X-ray absorption of the fluid have 

been observed in dissolution experiments with bulk GaN crystals as well in which the 

mechanical disintegration of the sample can be excluded. This further supports that 

intermediate species containing Zn, Ge, or both are present in the fluid after dissolution of 

ZnGeN2. The partial dissolution of ZnGeN2 was monitored both below the specified 
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synthesis temperatures and within a short reaction time which is very promising for 

possible reversible transport reactions with applied dissolution and growth zones. 

 

 

Figure 7. Profile lines extracted from the grayscale values of the X-ray images corresponding to 

the transmitted X-ray intensity. The inset shows the position of the profile line within the image 

using the first image showing dissolution of the pellet as an example. 

To support the specified in situ measurements, we additionally performed dissolution 

experiments with regular high-pressure autoclaves used for synthesis. We observed that 

ZnGeN2 dissolves at 670 K and 240 MPa using a 2 mol % NaNH2 in NH3 solution. Powder 

X-ray diffraction revealed unknown reflections next to NaNH2, which can be attributed to 

the formation of intermediate compounds. Moreover, no characteristic reflections of 

ZnGeN2 were detectable in the diffraction pattern. The product of this reaction completely 

dissolved in 1 M HCl, which also verifies that ZnGeN2 formed reactive intermediates under 

the specified reaction conditions. Such compounds play the key role as transporting 

agents for ammonothermal crystal growth processes. Several alkali metal amidozincates 

have been identified so far, such as Li4[Zn(NH2)4](NH2)2, Na2[Zn(NH2)4]⋅0.5NH3, and 

K2[Zn(NH2)4].
33-35 While only few compounds in the MNH2–Si–NH3 system were obtained 
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from supercritical ammonia, namely Si2N2NH, K3Si6N5(NH)6, and MSi2N3 (M = Li, Na),[14,36-

38] no supposable Ge-containing intermediates have been reported in literature as yet. 

 

3.3 Conclusions 

The synthesis of the ternary nitrides ZnSiN2 and ZnGeN2 was performed by the 

ammonothermal method using custom-built high-pressure autoclaves. Different 

ammonobasic mineralizers were probed, where the employment of KNH2 yielded the best 

crystallinity of the products. Powder X-ray diffraction showed that the nitrides crystallize in 

an ordered wurtzite-derived superstructure with space group Pna21. Temperature-

programmed PXRD indicated a pronounced thermal stability of at least 1270 K for ZnSiN2 

and up to 1220 K for ZnGeN2 with retention of the orthorhombic crystal structure. 

Respective band gaps of 3.7 and 3.2 eV for ZnSiN2 and ZnGeN2 were determined using 

diffuse reflectance measurements. 

The well-defined morphology of the products indicates a solution-based growth 

mechanism, which is very promising for future crystal growth experiments. To corroborate 

a dissolution and recrystallization based mechanism analogous to the crystal growth of 

GaN, the dissolution of ZnGeN2 in ammonobasic supercritical ammonia was monitored by 

in situ X-ray visualization. Partial dissolution of a ZnGeN2 pellet was ascertained within a 

short reaction time by evaluating the transmitted X-ray intensity. Additional experiments 

verified a complete dissolution of ZnGeN2 in a 2 mol % NaNH2 in NH3 solution after 75 h at 

670 K. These findings demonstrate the feasibility of a dissolution and recrystallization 

based crystal growth by convection-driven transport reactions in analogy to GaN. The 

identification of intermediates as well as the determination of solubilities in dependence of 

pressure, temperature gradient and mineralizer will be essential for the development of 

ammonothermal growth strategies. Further development of Raman and X-ray diffraction in 

situ techniques will help to gain a better understanding of the crystallization processes. 

The synthesis of solid solutions Zn(Si,Ge,Sn)N2, the insertion of dopants, as well as their 

influence on the optical and electronic properties will be of further interest in future 

studies. Notably, our results are very promising for potential ammonothermal syntheses of 

novel earth-abundant nitride semiconductor materials. 
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3.4 Experimental Section 

The autoclaves were filled and sealed within Ar-filled glove boxes (Unilab, MBraun, 

Garching, O2 <1 ppm, H2O <1 ppm) to rigorously exclude oxygen and moisture during 

syntheses. A vacuum line (≤0.1 Pa) with connected argon and ammonia supply was used 

for the condensation procedure. Ar (Air Liquide, 99.999 %) and NH3 (Air Liquide, 

99.999 %) were passed through gas purification cartridges (MicroTorr FT400-902 and 

MC400-702FV, SAES Pure Gas Inc., San Luis Obispo, CA, USA) to obtain a purity level 

of <1 ppbV H2O, O2 and CO2. 

3.4.1 Ammonothermal synthesis 

Syntheses in supercritical ammonia were performed in custom-built autoclaves made of 

nickel-based superalloys Inconel® 718 (max. 900 K, 300 MPa) or Haynes® 282® (max. 

1100 K, 170 MPa). The autoclave body is sealed with a flange construction using silver-

coated metal-C-rings (GFD seals) made of Inconel® 718 as sealing gaskets. The hand 

valve (SITEC), pressure transmitter (HBM P2VA1/5000 bar), and safety head with 

integrated bursting disc (SITEC) are connected to the autoclave lid through high-pressure 

pipes. For the synthesis of ZnSiN2, Si (Alfa Aesar, 99.99 %) was first ball-milled under 

argon for 10 h using a planetary ball mill (Retsch PM 400). Zn (10 mmol, Alfa Aesar, 

99.9 %), Si (8 mmol) and KN3 (20 mmol, Sigma–Aldrich, 99.9 %) were then mixed and 

placed into a Mo-Liner, which was transferred into a Haynes 282 autoclave. For the 

synthesis of ZnGeN2, Ge (smart-elements, 99.99 %) was ground for 15 min with an 

oscillating mixer mill (Specac Specamill). Zn (20 mmol, Alfa Aesar, 99.9 %), Ge (16 mmol) 

and KN3 (50 mmol, Sigma–Aldrich, 99.9 %) were then mixed and directly placed into an 

Inconel 718 autoclave. The autoclaves were closed under argon, evacuated and cooled 

with ethanol/liquid nitrogen to 198 K. Ammonia was condensed into the autoclaves 

through a pressure regulating valve. For the synthesis of ZnSiN2, the autoclave body was 

heated in a custom-built vertical tube furnace (Loba, HTM Reetz) to 570 K with a rate of 3 

K min−1, kept at this temperature for 15 h, heated to 1070 K with a rate of 1 K min−1, and 

held for further 75 h. The pressure was kept between 100 MPa and 150 MPa during the 

heating periods and was appropriately reduced if necessary. For the synthesis of ZnGeN2, 

the autoclave body was heated to 570 K with a rate of 3 K min−1, kept at this temperature 

for 15 h, heated to 870 K with a rate of 2 K min−1, and held for further 75 h. The pressure 

was kept between 150 MPa and 230 MPa. The autoclaves were cooled down to room 

temperature by switching off the furnace. The products were washed with water and 1 M 



3 Ammonothermal Synthesis of Earth-abundant Nitride Semiconductors ZnSiN2 

and ZnGeN2 and Dissolution Monitoring by In Situ X-ray Imaging 

67 
 

HCl to remove residual mineralizer and intermediates. The obtained powders were dried 

at 350 K in air. Analogous reactions at up to 870 K were performed with LiN3 and NaN3 as 

mineralizer. 

3.4.2 Powder X-ray diffraction 

Samples were filled in glass capillaries (0.3 mm diameter, Hilgenberg GmbH) for XRD 

measurements in modified Debye–Scherrer geometry. The diffraction patterns were 

recorded with a Stoe STADI P diffractometer (Cu  , λ = 1.540596 Å, Ge(1 1 1) 

monochromator, Mythen 1 K detector). Temperature-programmed powder X-ray diffraction 

was performed on a Stoe STADI P diffractometer (Mo-K  , λ = 0.70930 Å, Ge(1 1 1) 

monochromator, image plate position sensitive detector) equipped with a high-

temperature graphite furnace. The diffraction patterns were recorded in segments of 50 K 

up to 1270 K with a heating rate of 5 K min−1. 

Indexing and Rietveld refinement were performed with TOPAS-Academic software.[39] The 

fundamental parameters model with direct convolution of source emission profiles, axial 

instrument contributions, crystallite size, and microstrain effects was used for the peak 

shape function.[40] Capillary absorption correction (inner diameter 0.28 mm) was carried 

out using the calculated absorption coefficient. 

Further details on the crystal structure investigations may be obtained from the 

Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax: 

+49–7247-808-666; email:crysdata@fiz-karlsruhe.de, https://www.fiz-karlsruhe.de/en/ 

leistungen/kristallographie/kristallstrukturdepot/order-form-request-for-deposited-

data.html), on quoting the depository numbers CSD-432701 and CSD-432702. 

3.4.3 Electron microscopy 

The morphology and chemical composition of the samples was examined with a FEI 

Helios G3 UC scanning electron microscope (SEM; field emission gun, acceleration 

voltage 30 kV) equipped with an energy-dispersive X-ray (EDX) detector for elemental 

analyses. The samples were placed on an adhesive carbon pad and coated with a 

conductive carbon film using a high-vacuum sputter coater (BAL-TEC MED 020, Bal Tec 

AG). Transmission electron microscopy (TEM) was performed on a FEI Titan Themis 60–

300 with X-FEG, monochromator, Cs-corrector and windowless, 4-quadrant Super-X 

EDX-detector. The powder was sonicated in absolute ethanol for 30 min, drop cast on 
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copper finder grids with holey carbon film (S166-2, Plano GmbH, Germany), and 

transferred into the microscope on a double-tilt holder. 

3.4.4 UV/VIS spectroscopy 

Diffuse reflectance measurements were conducted at room temperature using a Jasco V-

650 UV/VIS spectrophotometer equipped with Czerny–Turner mount, photomultiplier tube 

detector, and deuterium (190–350 nm)/halogen (330–900 nm) lamps as light sources. 

3.4.5 Dissolution monitoring by in situ X-ray imaging 

For monitoring the dissolution of ZnGeN2, pellets of ammonothermally synthesized 

ZnGeN2 were placed within the field of view of the autoclave used for in situ X-ray imaging 

experiments (optical cell). Polycrystalline ZnGeN2 was cold pressed to a pellet (4 mm in 

diameter) using a manual hydraulic press with an applied pressure of 10 kN. The setup for 

dissolution experiments with in situ X-ray monitoring was identical to the one described in 

a previous publication,[31] except for the following modifications. An unlined Inconel® 718 

autoclave (12.3 mL internal volume) was used since NaN3 was applied as mineralizer and 

no adjustments to the fill level were performed during the experiment. A cylinder-shaped 

pellet produced from powder was used instead of a bulk cuboid-shaped single crystal. The 

fill level was adjusted to about 55 % with an initial weight of 0.4549 g NaN3 (7 mmol). A 

series of five X-ray images was recorded approximately once an hour. These five images 

were averaged in order to reduce noise. The profile lines were extracted from the 

averaged images by selecting a vertical stripe of 10 pixels (at the position indicated by the 

red bar in the inset in Figure 7) and averaging these 10 profile lines. 

For the complementary dissolution experiments, ammonothermally synthesized ZnGeN2 

(1 mmol) was mixed with NaN3 (50 mmol) and placed into an autoclave. NH3 (≈60 mL at 

198 K, 2.6 mol) was condensed into the autoclave resulting in a mineralizer concentration 

of about 2 mol %. The autoclave was heated in a vertical tube furnace to 670 K and kept 

at this temperature for 75 h. A maximum pressure of 240 MPa was attained during the 

reaction. To confirm a complete conversion of ZnGeN2 to intermediates, the colorless 

product was slowly poured in an isopropanol/H2O (80:20) solution. In this way, a 

controlled decomposition of the amides was achieved. The formed colorless precipitate 

entirely dissolved in 1 M HCl. 
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Abstract. Grimm–Sommerfeld analogous 

nitrides MgSiN2, MgGeN2, MnSiN2, 

MnGeN2, LiSi2N3 and LiGe2N3 (generally 

classified as II-IV-N2 and I-IV2-N3) are 

promising semiconductor materials with 

great potential for application in 

(opto)electronics or photovoltaics. A new 

synthetic approach for these nitride 

materials was developed using 

supercritical ammonia as both solvent and 

nitride-forming agent. Syntheses were conducted in custom-built high-pressure autoclaves 

with alkali metal amides LiNH2, NaNH2 or KNH2 as ammonobasic mineralizers, which 

accomplish an adequate solubility of the starting materials and promote the formation of 

reactive intermediate species. The reactions were performed at temperatures between 

870 and 1070 K and pressures up to 230 MPa. All studied compounds crystallize in 

wurtzite-derived superstructures with orthorhombic space groups Pna21 (II-IV-N2) and 

Cmc21 (I-IV2-N3), respectively, which was confirmed by powder X-ray diffraction. Optical 

bandgaps were estimated from diffuse reflectance spectra using the Kubelka–Munk 

function (MgSiN2: 4.8 eV, MgGeN2: 3.2 eV, MnSiN2: 3.5 eV, MnGeN2: 2.5 eV,  
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LiSi2N3: 4.4 eV, LiGe2N3: 3.9 eV). Complementary DFT calculations were carried out to 

gain insight into the electronic band structures of these materials and to corroborate the 

optical measurements. 

 

4.1 Introduction 

Prospecting new semiconducting materials is an important issue in current research to 

meet the rapid development and high demands of modern electronic technologies. At 

present, gallium nitride and its solid solutions (Al,Ga,In)N (III-N) represent the most 

important nitride semiconductors for numerous applications, for example, light-emitting 

diodes, laser diodes or field-effect transistors.[1,2] In recent decades, a large number of 

new ternary nitrides were discovered, with many of them recently gaining increasing 

attention due to their promising optical and electronic properties.[3] In particular, ternary 

nitrides with structural relationships to group 13 nitrides are good candidates as next-

generation semiconductor materials as they feature similar ranges of bandgaps and 

increased prospects for bandgap engineering. Furthermore, implied ternary nitrides are 

generally composed of earth-abundant elements, whereas metals like gallium or indium 

are becoming increasingly scarce. Zn-IV-nitrides (IV = Si, Ge, Sn) are currently the most 

prominent examples for such Grimm–Sommerfeld analogous compounds showing good 

bandgap tunability and small carrier effective masses.[3-6] Besides this, isotypic MgSiN2 is 

also well-studied in terms of its electronic band structure, the photoluminescence of Mn2+ 

doped or rare-earth-doped materials as well as its ceramic properties.[7-10] On the other 

hand, further II-IV-N2 compounds as well as wurtzite-related I-IV2-N3 nitrides have scarcely 

been investigated with regard to their optical and electronic properties so far. Previous 

experimental studies are mainly limited to the photoluminescence and ion conductivity of 

LiSi2N3, magnetic and optical properties of MnSiN2 as well as the formation and optical 

tuning of MgxMn1−xSiN2 solid solutions.[11-16] Experimental analyses of optical parameters 

of the respective germanium compounds MgGeN2, MnGeN2 and LiGe2N3 have so far not 

been reported. 

Common synthetic methods for Mg-IV-N2, Mn-IV-N2 and Li-IV2-N3 nitrides include high-

temperature techniques under N2 atmosphere, ammonolysis and vapor–liquid–solid (VLS) 

deposition.[15,17-19] In this contribution, we present an ammonothermal approach for bulk 

synthesis of these compounds using highly pressurized ammonia as the reaction medium. 

The ammonothermal technique is widely used for the crystal growth of binary nitrides like 

GaN,[20] whereas very few ternary nitrides were synthesized by this method so far. 

Recently, we described solution-based syntheses of ZnSiN2 and ZnGeN2 using 
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ammonobasic supercritical ammonia.[21] In the present study, we report on synthesis and 

optical characterization of the ternary nitride semiconductors MgSiN2, MgGeN2, MnSiN2, 

MnGeN2, LiSi2N3 and LiGe2N3. The products were analyzed by powder X-ray diffraction, 

bandgaps were evaluated using diffuse reflectance spectroscopy and electronic structure 

was determined by DFT calculations based on the Korringa–Kohn–Rostoker (KKR) 

Green's function method. 

 

4.2 Results and Discussion 

4.2.1 Synthesis 

The ternary nitrides MgSiN2, MgGeN2, MnSiN2, MnGeN2, LiSi2N3 and LiGe2N3 were 

synthesized by the ammonothermal method using custom-built high-pressure autoclaves. 

Ammonobasic mineralizers MNH2 (M = Li, Na, K) were added to increase solubility of the 

starting materials. The alkali metal amides were obtained in situ starting from the azides 

because of the available purity and chemical stability of the latter. In analogy to the 

synthesis of Zn-IV-nitrides,[21] KNH2 was preferred for syntheses of MgSiN2 and MnSiN2, 

while phase-pure samples of MgGeN2 and MnGeN2 were only obtained with NaNH2 as the 

mineralizer. Mg/Mn were used in 20 % excess and Li in 50 % excess to facilitate complete 

conversion of the intermediates to the nitrides (see Experimental Section). Residual alkali 

or alkaline earth metal amides were easily washed out after the reactions (see below). 

The syntheses of II-IV-N2 were carried out in two temperature steps, since intermediate 

species like amides or imides are preferentially formed at temperatures below 700 K.[22] In 

case of the Li-IV2-N3 compounds, the autoclaves were directly heated to the final desired 

temperature. Otherwise, a nearly complete transport of LiNH2 into the colder peripheral 

parts of the vessels was observed. Lower heating rates were applied for the synthesis of 

LiSi2N3, taking the considerable decomposition of NH3 at temperatures above 850 K into 

account.[23] All Si-containing products were synthesized at up to 1070 K with an 

autogenous pressure of 170 MPa. Phase-pure LiSi2N3 was obtained at 970 K, while 

Li2SiN2 was detected as a side-phase at 1070 K.[24] Besides, synthesis of LiGe2N3 was 

only successful starting from Ge3N4 instead of Ge. Since the Ge compounds are thermally 

less stable than the Si compounds, the former were synthesized at lower temperatures up 

to 900 K and a pressure of 230 MPa. Residual intermediates and mineralizer were 

dissolved in 5 M HCl (MgSiN2, MnSiN2, LiSi2N3), EtOH (MgGeN2, LiGe2N3) or H2O 

(MnGeN2). The respective solvent was selected taking the chemical stability of the 

products and the formation of side-phases during the purification process into account. 
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Crystal sizes of the obtained nitrides are in the range of 100 nm to 1 μm as shown in 

scanning electron microscopy (SEM) images (Figure S1). 

4.2.2 Powder X-ray diffraction and crystal structures 

The purified products were analyzed by powder X-ray diffraction (see Figure 1). Wyckoff 

positions and atomic coordinates for Rietveld refinement were taken from literature.[17,25-27] 

The obtained crystallographic data are listed in Table 1, refined atomic coordinates and 

displacement parameters are given in Tables S1–S6 (see the Supporting Information). All 

referred compounds crystallize in orthorhombic symmetry. The crystal structures of both 

II-IV-N2 and I-IV2-N3 can be derived from the wurtzite structure type (space group P63mc); 

ordering of the tetrahedrally coordinated cations results in space groups Pna21 and 

Cmc21, respectively. 

 

 

Figure 1. Rietveld refinements of MgSiN2 (a), MgGeN2 (b), MnSiN2 (c), MnGeN2 (d), LiSi2N3 (e) and 

LiGe2N3 (f) with experimental data (black lines, Mo-Kα1 radiation, λ = 0.70930 Å), calculated 

patterns (red lines), difference profiles (gray lines) and positions of Bragg reflections (blue bars). 
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Table 1. Crystallographic data of Mg-IV-N2, Mn-IV-N2 and Li-IV2-N3 (IV = Si, Ge) obtained by 

Rietveld refinement 

Formula MgSiN2 MgGeN2 MnSiN2 MnGeN2 LiSi2N3 LiGe2N3 

Crystal system orthorhombic 

Space group Pna21 Pna21 Pna21 Pna21 Cmc21 Cmc21 

a [Å] 5.2825(2) 5.5018(2) 5.2679(1) 5.4974(2) 9.2135(2) 9.5570(4) 

b [Å] 6.4593(2) 6.6254(3) 6.5125(1) 6.6639(2) 5.2980(1) 5.5198(2) 

c [Å] 4.9862(2) 5.1835(3) 5.0742(1) 5.2508(1) 4.7800(1) 5.0486(1) 

Cell volume [Å
3
] 170.132(9) 188.949(15) 174.082(6) 192.359(9) 233.324(9) 266.326(15) 

Density [g·cm
-3

] 3.1391 4.3916 4.2367 5.3715 2.9929 4.8429 

Formula units 

[cell] 
4 

T [K] 293(2) 

Diffractometer STOE STADI P 

Radiation [Å] Mo-Kα1 (λ = 0.70930 Å) 

2θ range [°] 5.0 ≤ 2θ ≤ 50 

Profile function fundamental parameters model 

Background 

function 
Shifted Chebyshev 

Data points 3001 

Number of 

reflections 
143 183 170 187 125 143 

Refined 

parameters 
56 50 35 51 33 54 

R values 

Rp =  

0.0331 

Rp =  

0.0430 

Rp =  

0.0338 

Rp =  

0.0480 

Rp =  

0.0658 

Rp =  

0.0349 

Rwp = 

0.0417 

Rwp = 

0.0578 

Rwp = 

0.0434 

Rwp = 

0.0632 

Rwp = 

0.0877 

Rwp = 

0.0453 

RBragg = 

0.0193 

RBragg = 

0.0394 

RBragg = 

0.0177 

RBragg = 

0.0135 

RBragg = 

0.0211 

RBragg = 

0.0212 

Goodness of fit 1.240 1.991 1.686 1.035 0.935 1.946 

 

Crystal structures and group–subgroup relationships are illustrated in Figure 2. The three-

dimensional networks are built up of corner-sharing cation-centered tetrahedra forming 

sechser-rings along [001]. As expected, a slight tilting and distortion of the tetrahedra in 

II-IV-N2 and I-IV2-N3 compared to the hypothetical superstructures based on III-N can be 
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observed. Calculated lattice parameters and interatomic distances from Rietveld 

refinement are in the same range as earlier reported values.[17-25-27] 

 

 

Figure 2. Group–subgroup relations of the wurtzite structure type (P63mc) and wurtzite 

superstructures of I-IV2-N3 (Cmc21) and II-IV-N2 (Pna21) compounds viewed along [001]. GaN4 (III-

N) and MN4 (M = Si, Ge in I-IV2-N3 and II-IV-N2) tetrahedra are depicted in blue, M′N4 tetrahedra 

(M′ = Li, Mg or Mn) in green. Wyckoff positions of GaN were taken from literature.
[28]

 

In addition, thermal stabilities of the synthesized nitrides were analyzed by temperature-

programmed powder X-ray diffraction (TP-XRD). Degradation initiates at 770 K for 

MgGeN2, 920 K for MnSiN2 and between 1000–1200 K for the other nitrides as indicated 

by emerging reflections of the decomposition products (see Figure S2–S7 in the 

Supporting Information). 

4.2.3 UV/Vis reflectance spectroscopy 

Diffuse reflectance of the purified powder samples was measured to investigate the 

optical properties of the materials. The recorded spectra show broad absorption bands 

between 200–400 nm (MgSiN2, MnSiN2, LiSi2N3) and 300–500 nm (MgGeN2, MnGeN2, 

LiGe2N3), see Figure S8 in the Supporting Information. Pseudo-absorption spectra were 
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calculated using the Kubelka–Munk function F(R) = (1−R)2/2 R (R = reflectance).[29] The 

optical bandgaps were determined using Tauc plots hν versus (F(R)⋅hν)1/n with n = 1/2 for 

direct allowed transitions (Figure 3 and Table 2).[30] The observed absorption bands in the 

spectra were primarily attributed to direct transitions due to the similarity of direct and 

indirect bandgaps in the materials (section DFT calculations). 

 

 

Figure 3. Tauc plots of MgSiN2 (a), MgGeN2 (b), MnSiN2 (c), MnGeN2 (d), LiSi2N3 (e) and  

LiGe2N3 (f). 

Table 2. Evaluated optical bandgaps of Mg-IV-N2, Mn-IV-N2 and Li-IV2-N3 (IV = Si, Ge) from Tauc 

plots [eV] at room temperature 

MgSiN2 MnSiN2 LiSi2N3 MgGeN2 MnGeN2 LiGe2N3 

4.8 3.5 4.4 3.2 2.5 3.9 
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Apart from MgSiN2, material properties of these nitrides have scarcely been investigated 

so far. Optical measurements were only reported for the respective Si nitrides MgSiN2, 

MnSiN2 and LiSi2N3. The evaluated bandgap of MgSiN2 coincides well with previously 

determined values in the literature, ranging from 4.8 to 5.6 eV.[10,31] A deviation of ≈0.8 eV 

in comparison to other reported data was observed for MnSiN2 and LiSi2N3 which can be 

attributed to different evaluation techniques for the bandgaps as well as different synthetic 

methods.[16,32] To some extent, variances can also arise from crystallographic defects 

within the materials. MgGeN2, MnGeN2 and LiGe2N3 exhibit smaller optical bandgaps in 

comparison to the respective Si nitrides, which is consistent with comparable systems.[3] 

Notably, sub-bandgap absorption was observed for MnSiN2 and MnGeN2 which was 

previously attributed to spin-forbidden d–d-transitions and associated selection rule 

relaxations.[15,16] This also explains the tails observed in the Tauc plots as well as the red 

and brown colors of the products (see Experimental section), which is in line with previous 

studies.[15,19] 

4.2.4 DFT calculations 

In order to corroborate the experimental data, DFT calculations were carried out. Plots of 

the total and atom resolved density of states (DOS) are shown in Figure 4 for MnSiN2 and 

MnGeN2 (for specific bandgap region see Figure S9, supporting information) and in Figure 

S10 for Mg-IV-N2 and Li-IV2-N3 (IV = Si, Ge). Excluding temperature effects, MnSiN2 and 

MnGeN2 exhibit spin polarization which is in agreement with previous calculations.[33] The 

spin polarization seen in Figure 4 a–b arises from the Mn atoms, in particular their 5d 

states. For Mn total magnetic moment values of 4.49 μB and 4.45 μB are obtained for 

MnSiN2 and MnGeN2, respectively. 

 

 

Figure 4. Total and atom resolved DOS of MnSiN2 (a) and MnGeN2 (b) within the SPRKKR 

formalism. 



4 Ammonothermal Synthesis and Optical Properties of Ternary Nitride 
Semiconductors Mg-IV-N2, Mn-IV-N2 and Li-IV2-N3 (IV = Si, Ge) 

79 
 

In order to estimate the optical absorption, the joint density of states (JDOS) was 

subsequently calculated for each compound as depicted in Figure 5 a–f in line with 

previous works[34] and was further validated by additional optical calculations within linear 

response formalism. Eg was then determined by means of a linear fit of the first steep 

ascend of the JDOS. Its values agree well with the evaluated optical bandgap from 

experimental data with merely minor deviations (Tables 2 and 3). 

 

 

Figure 5. Calculated JDOS of MgSiN2 (a), MgGeN2 (b), MnSiN2 (c), MnGeN2 (d), LiSi2N3 (e) and 

LiGe2N3 (f) within the SPRKKR formalism. Extrapolated linear fits are used to evaluate Eg. 
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Table 3. Electronic (El.) and optical (Opt.) bandgaps (eV) for Mg-IV-N2, Mn-IV-N2 (spin up ↑ /  

spin down ↓) and Li-IV2-N3 (IV = Si, Ge) as calculated by SPRKKR formalism (EV-GGA) 

 

 

Due to the spin polarization of MnSiN2 and MnGeN2 their JDOS was calculated for both 

the spin up and spin down channel. Early absorption (1–2 eV) in the total JDOS would 

mainly represent Mn-3d–3d transitions that are deemed forbidden due to dipole selection 

rules. However, selection rule relaxations can induce absorption in this energy range to 

some extent.[15,16] Hence, Eg can be estimated from a mean value of the spin up and down 

JDOS. This appears to be a reasonable approximation for the optical bandgap in line with 

the experimental absorption starting at around 2 eV for both Mn compounds while the 

strong incline in absorption can likely be attributed to N 2p to Mn 3d transitions. Electronic 

bandgaps were determined from the Bloch spectral functions depicted in Figure 6 a–h. 

Mg-IV-N2 and Li-IV2-N3 (IV = Si, Ge) exhibit direct and indirect bandgaps of very similar 

magnitude, while Mn-IV-N2 reveal both direct and indirect gaps with respect to their spin 

channels. 

Up to now, bandgap calculations referred to these nitrides were reported for MgSiN2, 

MgGeN2 and LiSi2N3. Estimated bandgaps range from 3.8 to 6.3 eV for MgSiN2,
[10,25,35-40] 

2.9 to 5.4 eV for MgGeN2
[25,35-37,41] and 5.0 to 5.6 eV for LiSi2N3.

[13,42] The large 

discrepancies result from different calculation methods which can lead to a significant 

under- or overestimation of the bandgaps. In general, the applied SPRKKR formalism 

seems to provide reasonable values with regard to the experimental data. 

 

 MgSiN2 MnSiN2 LiSi2N3 MgGeN2 MnGeN2 LiGe2N3 

El. 4.2 0.6
 ↑
  1.0

 ↓
 5.6 3.0 0.1

 ↑
  1.0

 ↓
 3.6 

Opt. 4.8 2.2
 ↑
  2.8

 ↓
 4.9 3.6 1.4

 ↑
  2.8

 ↓
 3.8 
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Figure 6. Bloch spectral functions of MgSiN2 (a), MgGeN2 (b), MnSiN2 (↑c/↓d), MnGeN2 (↑e/↓f), 

LiSi2N3 (g) and LiGe2N3 (h) as calculated by SPRKKR formalism (EV-GGA). ↑ and ↓ indicate spin 

up and down channels, respectively. 
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4.3 Conclusions 

We developed a new synthetic approach for the ternary nitrides Mg-IV-N2, Mn-IV-N2 and 

Li-IV2-N3 (IV = Si, Ge) implementing solutions of supercritical ammonia (pcrit = 11.3 MPa, 

Tcrit=405.5 K)[43] with alkali metal amides as ammonobasic mineralizers. Custom-built high-

pressure autoclaves made of nickel-based superalloys Inconel 718 (max. 900 K, 300 

MPa) and Haynes alloy 282 (max. 1100 K, 170 MPa) provided the required temperature 

and pressure for the formation of these materials. Evaluation of observed absorption 

bands in diffuse reflectance spectra resulted in a range of bandgaps between 2.5 eV 

(MnGeN2) and 4.8 eV (MgSiN2). Band structures and the type of band transitions were 

calculated by DFT, which corroborated the estimated optical bandgaps, further providing 

new insights into electronic and optical properties of the materials in question. Calculated 

Bloch spectral functions show bandgaps similar in magnitude to the optical bandgaps with 

direct bandgaps for the majority of discussed compounds. MnSiN2 and MnGeN2 exhibit 

much lower electronic bandgaps than estimated from experimental and calculated optical 

bandgaps however with low transition probabilities as indicated by DOS and JDOS 

calculations. 

Up to now, only few reports on ammonothermal synthesis of ternary and multinary nitrides 

can be found in literature. Syntheses in supercritical ammonia are still challenging due to 

the high demands on autoclave materials and high-pressure facilities. However, recent 

achievements in this research field are very intriguing for future studies.[21,34,44,45] With 

regard to the structural relationship of III-N, II-IV-N2 and I-IV2-N3 nitrides, bandgap 

engineering and further tuning of optical properties by formation of solid solutions is very 

promising. Even more attainable compositions for wurtzite-derived superstructures have 

been proposed by Parthé and Baur.[46-48] For instance, the thermodynamic stability of 

wurtzite-related quaternary nitride semiconductors like LiAlGe2N4 and LiGaGe2N4 was 

recently predicted as well.[49] On the basis of our latest studies, the ammonothermal 

approach is thus very promising for the discovery and design of novel and innovative next-

generation semiconductors. 

 

4.4 Experimental Section 

The autoclaves were loaded and sealed in Ar-filled glove boxes (Unilab, MBraun, 

Garching, O2<1 ppm, H2O<1 ppm) to avoid oxygen and moisture contamination of the 

starting materials. A vacuum line (≤0.1 Pa) with connected argon and ammonia supply 

was used for the condensation procedure. Ar (Air Liquide, 99.999 %) and NH3 (Air Liquide, 
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99.999 %) were passed through gas purification cartridges (Micro torr FT400-902 and 

MC400-702FV, SAES Pure Gas Inc., San Luis Obispo, CA, USA) providing a purity level 

of <1 ppbV H2O, O2 and CO2. 

Custom-built autoclaves manufactured from nickel-based superalloys Inconel 718 (max. 

900 K, 300 MPa, 10 mL/97 mL) or Haynes 282 (max. 1100 K, 170 MPa, 10 mL) were used 

for ammonothermal syntheses. The autoclave body and lid is sealed via flange joints 

using silver-coated Inconel 718 metal-C-rings (GFD seals) as sealing gaskets. The hand 

valve (SITEC), pressure transmitter (HBM P2VA1/5000 bar) and safety head with 

integrated bursting disc (SITEC) are connected to the autoclave lid via 3/8′′ high-pressure 

tubing connections. 

4.4.1 Synthesis of MgSiN2, MnSiN2 and LiSi2N3 

To facilitate a complete conversion to intermediate compounds, Si (Alfa Aesar, 99.9 %) 

was ball-milled under argon for 10 h using a planetary ball mill (Retsch PM 400). Mg (10 

mmol, Alfa Aesar, 99.8 %), Si (8 mmol) and KN3 (25 mmol, Sigma–Aldrich, 99.9 %), Mn 

(10 mmol, Alfa Aesar, 99.95 %), Si (8 mmol) and KN3 (25 mmol) or LiN3 (5 mmol, 

synthesized according to the procedure of Fair et al.)[50] and Si (5 mmol) were placed in 

Mo liners, respectively. The Mo liners were transferred into Haynes 282 autoclaves. The 

autoclaves were closed under argon, evacuated and cooled with ethanol/liquid nitrogen to 

198 K. Ammonia was condensed into the autoclaves via a pressure regulating valve. For 

the synthesis of MgSiN2 and MnSiN2, the autoclave body was heated in a custom-built 

vertical tube furnace (Loba, HTM Reetz) to 570 K with a rate of 3 K min−1, held at this 

temperature for 15 h, heated to 1070 K with a rate of 1 K min−1 and held for further 100 h. 

For the synthesis of LiSi2N3, the autoclave body was heated to 970 K with a rate of 1.5 

K min−1 and maintained at this temperature for 100 h. The pressure was kept between 100 

MPa and 170 MPa during the heating periods and was appropriately reduced if necessary. 

The autoclaves were cooled down to room temperature by switching off the furnace. The 

products were washed with H2O and 5 M HCl to remove the residual mineralizer and 

intermediates and dried at 350 K in air. MgSiN2 and LiSi2N3 where obtained as white 

powders and MnSiN2 as red powder, respectively. 

4.4.2 Synthesis of MgGeN2, MnGeN2 and LiGe2N3 

Ge (smart-elements, 99.99 %) was ground for 15 min with an oscillating mixer mill 

(Specac Specamill) prior to the syntheses. Mg (20 mmol, Alfa Aesar, 99.8 %), Ge (16 
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mmol) and NaN3 (50 mmol, Sigma–Aldrich, 99.5 %), Mn (20 mmol, Alfa Aesar, 99.95 %), 

Ge (16 mmol) and NaN3 (50 mmol) or Li (25 mmol, Alfa Aesar, 99 %) and Ge3N4 (3 mmol, 

ABCR, 99.9 %) were directly placed into Inconel 718 autoclaves, respectively. The 

autoclaves were closed under argon, evacuated and cooled with ethanol/liquid nitrogen to 

198 K. Ammonia was condensed into the autoclaves via a pressure regulating valve. For 

the synthesis of MgGeN2 and MnGeN2, the autoclave body (97 mL internal volume) was 

heated in a custom-built vertical tube furnace (Loba, HTM Reetz) to 670 K with a rate of 3 

K min−1, kept at this temperature for 15 h, heated to 870 K with a rate of 2 K min−1 and held 

for further 100 h. For the synthesis of LiGe2N3, the autoclave body (10 mL internal volume) 

was heated to 900 K with a rate of 3 K min−1 and maintained at this temperature for 100 h. 

The pressure was kept between 150 MPa and 230 MPa during the heating periods and 

was appropriately reduced if necessary. The autoclaves were cooled down to room 

temperature by switching off the furnace. The products were washed with EtOH (MgGeN2, 

LiGe2N3) or H2O (MnGeN2) to remove the residual mineralizer and intermediates and dried 

at 350 K in air. MgGeN2, MnGeN2 and LiGe2N3 where obtained as beige, light brown and 

white powders, respectively. 

4.4.3 Powder X-ray diffraction 

The products were finely ground and loaded in glass capillaries (0.3 mm diameter, 0.01 

mm wall thickness, Hilgenberg GmbH). XRD measurements were performed using a Stoe 

STADI P diffractometer (Mo Kα1, λ = 0.70930 Å, Ge(111) monochromator, Mythen 1 K 

detector) in modified Debye–Scherrer geometry. Temperature-programmed powder X-ray 

diffraction was conducted on a Stoe STADI P diffractometer (Mo Kα1, λ = 0.70930 Å, 

Ge(111) monochromator, image plate position sensitive detector) which is equipped with a 

high-temperature graphite furnace. The diffraction patterns were recorded in segments of 

50 K up to 1270 K with a heating rate of 5 K min−1. 

TOPAS-Academic Software was used for Rietveld refinement applying the fundamental 

parameters model with direct convolution of source emission profiles, axial instrument 

contributions, crystallite size and microstrain effects for the peak shape function.[51,52] 

Capillary absorption correction (inner diameter 0.28 mm) was performed with the 

calculated absorption coefficient. 

Further details on the crystal structure investigations may be obtained from the 

Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (E-mail: 

crysdata@fiz-karlsruhe.de), on quoting the depository numbers CSD-433631 (MgSiN2), 
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CSD-433632 (MgGeN2), CSD-433633 (MnSiN2), CSD-433634 (MnGeN2), CSD-433635 

(LiSi2N3) and CSD-433636 (LiGe2N3). 

4.4.4 Scanning electron microscopy (SEM) 

The crystal morphology of the products was investigated using a FEI Helios G3 UC 

scanning electron microscope (SEM; field emission gun, acceleration voltage 30 kV). The 

purified products were placed on an adhesive carbon pad and subsequently coated with a 

conductive carbon film using a high-vacuum sputtercoater (BAL-TEC MED 020, Bal Tec 

AG). 

4.4.5 UV/Vis spectroscopy 

A Jasco V-650 UV/Vis spectrophotometer equipped with Czerny–Turner mount, 

photomultiplier tube detector and deuterium (190–350 nm)/halogen (330–900 nm) lamps 

as light sources was used for diffuse reflectance measurements. The intensity artifacts at 

330 nm arising from the deuterium—halogen lamp switch were corrected for a reliable 

determination of the bandgap. 

4.4.6 DFT calculations 

Bloch spectral functions and DOS calculations were conducted based on Rietveld 

refinements of the experimental structures as shown in Table 2 within the fully relativistic 

Korringa–Kohn–Rostoker (KKR) Green's function method as implemented in the Munich 

SPRKKR package.[53,54] The Brillouin zone was sampled with k-meshes of 12×10×13 (II-

IV-N2) and 12×12×11 (Li-IV2-N3) respectively. An angular momentum expansion of l = 3 

was used for all calculations. Electronic convergence was achieved based on the local 

density approximation (LDA) of Vosko, Wilk, and Nusair and further by the EV-GGA 

(Engel Vosko) in order to compare the electronic bandgaps to the experimental 

measurements.[55,56] For the Li-IV2-N3 phases k-dependent convergence parameters for 

the structure constant matrix had to be set manually to values of ETA = 2.0, RMAX = 2.5 

and GMAX = 2.5 in order to achieve reasonable results. 

 



4 Ammonothermal Synthesis and Optical Properties of Ternary Nitride 
Semiconductors Mg-IV-N2, Mn-IV-N2 and Li-IV2-N3 (IV = Si, Ge) 

 

86 
 

4.5 References 

[1] S. P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C.-C. Pan, C.-C. Yen, S. 

Tanaka, Y. Zhao, N. Pfaff, R. Farrell, M. Iza, S. Keller, U. Mishra, J. S. Speck, S. 

Nakamura, Acta Mater. 2013, 61, 945-951. 

[2] K. Shinohara, D. C. Regan, Y. Tang, A. L. Corrion, D. F. Brown, J. C. Wong, J. F. 

Robinson, H. H. Fung, A. Schmitz, T. C. Oh, S. J. Kim, P. S. Chen, R. G. Nagele, A. 

D. Margomenos, M. Micovic, IEEE Trans. Electron Dev. 2013, 60, 2982-2996. 

[3] Y. Hinuma, T. Hatakeyama, Y. Kumagai, L. A. Burton, H. Sato, Y. Muraba, S. 

Iimura, H. Hiramatsu, I. Tanaka, H. Hosono, F. Oba, Nat. Commun. 2016, 7:11962. 

[4] P. Narang, S. Chen, N. C. Coronel, S. Gul, J. Yano, L.-W. Wang, N. S. Lewis, H. A. 

Atwater, Adv. Mater. 2014, 26, 1235-1241. 

[5] P. C. Quayle, K. He, J. Shan, K. Kash, MRS Commun. 2013, 3, 135-138. 

[6] A. D. Martinez, A. N. Fioretti, E. S. Toberer, A. C. Tamboli, J. Mater. Chem. A 2017, 

5, 11418-11435. 

[7] R. J. Bruls, A. A. Kudyba-Jansen, P. Gerharts, H. T. Hintzen, R. Metselaar, J. Mater. 

Sci. Mater. Electron. 2002, 13, 63-75. 

[8] C. Kulshreshtha, J. H. Kwak, Y.-J. Park, K.-S. Sohn, Opt. Lett. 2009, 34, 794-796. 

[9] J. B. Quirk, M. Råsander, C. M. McGilvery, R. Palgrave, M. A. Moram, Appl. Phys. 

Lett. 2014, 105, 112108. 

[10] T. de Boer, T. D. Boyko, C. Braun, W. Schnick, A. Moewes, Phys. Status Solidi RRL 

2015, 9, 250-254. 

[11] H. Yamane, S. Kikkawa, M. Koizumi, Solid State Ion. 1987, 25, 183-191. 

[12] E. Narimatsu, Y. Yamamoto, T. Nishimura, N. Hirosaki, J. Ceram. Soc. Jpn. 2010, 

118, 837-841. 

[13] Y. Q. Li, N. Hirosaki, R. J. Xie, T. Takeka, M. Mitomo, J. Solid State Chem. 2009, 

182, 301-311. 

[14] Q. Wu, Y. Li, X. Wang, Z. Zhao, C. Wang, H. Li, A. Mao, Y. Wang, RSC Adv. 2014, 

4, 39030-39036. 

[15] S. Esmaeilzadeh, U. Hålenius, M. Valldor, Chem. Mater. 2006, 18, 2713-2718. 

[16] C. J. Duan, A. C. A. Delsing, H. T. Hintzen, J. Lumin. 2009, 129, 645-649. 

[17] M. Orth, W. Schnick, Z. Anorg. Allg. Chem. 1999, 625, 1426-1428. 

[18] Z. Lenčéš, K. Hirao, Y. Yamauchi, S. Kanzaki, J. Am. Ceram. Soc. 2003, 86, 1088-

1093. 

[19] J. Guyader, M. Maunaye, J. Lang, C. R. Acad. Sci. Ser. C 1971, 272, 311-313. 



4 Ammonothermal Synthesis and Optical Properties of Ternary Nitride 
Semiconductors Mg-IV-N2, Mn-IV-N2 and Li-IV2-N3 (IV = Si, Ge) 

87 
 

[20] G. Dhanaraj, K. Byrappa, V. Prasad, M. Dudley, Springer Handbook of Crystal 

Growth 2010, Springer Berlin Heidelberg, Germany. 

[21] J. Häusler, S. Schimmel, P. Wellmann, W. Schnick, Chem. Eur. J. 2017, 23, 12275 - 

12282. 

[22] T. Richter, R. Niewa, Inorganics 2014, 2, 29-78. 

[23] S. Pimputkar, S. Nakamura, The Journal of Supercritical Fluids 2016, 107, 17-30. 

[24] S. Pagano, M. Zeuner, S. Hug, W. Schnick, Eur. J. Inorg. Chem. 2009, 2009, 1579-

1584. 

[25] Y. H. Jung, L. C. Tang, M. H. Lee, J. Phys.: Condens. Matter 2001, 13, 10417. 

[26] M. Maunaye, R. Marchand, J. Guyader, Y. Laurent, J. Lang, Bull. Soc. Fr. Miner. 

Cristallogr. 1971, 94, 561-564. 

[27] J. David, J. P. Charlot, J. Lang, Rev. Chim. Miner. 1974, 11, 405-413. 

[28] W. Paszkowicz, S. Podsiadło, R. Minikayev, J. Alloys Compd. 2004, 382, 100-106. 

[29] R. López, R. Gómez, J. Sol-Gel Sci. Technol. 2012, 61, 1-7. 

[30] J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi B 1966, 15, 627-637. 

[31] C. M. Fang, R. A. d. Groot, R. J. Bruls, H. T. Hintzen, G. d. With, J. Phys.: Condens. 

Matter 1999, 11, 4833-4842. 

[32] F. Liang, L. Tian, H. Zhang, F. Liang, S. Liu, R. Cheng, S. Zhang, RSC Adv. 2016, 

6, 68615-68618. 

[33] D. Naveh, L. Kronik, Phys. Status Solidi B 2006, 243, 2159-2163. 

[34] R. Niklaus, J. Minar, J. Häusler, W. Schnick, PCCP 2017, 19, 9292-9299. 

[35] A. P. Jaroenjittichai, W. R. L. Lambrecht, Phys. Rev. B 2016, 94, 125201. 

[36] Y. M. Basalaev, P. V. Demushin, J. Struct. Chem. 2010, 51, 1191-1194. 

[37] T. Misaki, X. Wu, A. Wakahara, A. Yoshida, Proc. Int. Workshop on Nitride 

Semiconductors, IPAP Conf. Series 1 2000, 685-688. 

[38] M. Råsander, M. A. Moram, Mater. Res. Express 2016, 3, 085902. 

[39] C. M. Fang, H. T. Hintzen, G. de With Appl. Phys. A 2004, 78, 717-719. 

[40] H. M. Huang, S. J. Luo, K. L. Yao, J. Supercond. Nov. Magn. 2014, 27, 257-261. 

[41] L. C. Tang, Y. C. Chang, J. Y. Huang, C. S. Chang, Proc. SPIE Vol. 7056, Photonic 

Fiber and Crystal Devices: Advances in Materials and Innovations in Device 

Applications II 2008, 7056, 705605. 

[42] H. Zhang, J. Ren, L. Wu, J. Zhang, J. Solid State Chem. 2017, 245, 184-189. 

[43] E. Brunner, J. Chem. Thermodyn. 1988, 20, 273-297. 

[44] J. Häusler, L. Neudert, M. Mallmann, R. Niklaus, A.-C. L. Kimmel, N. S. A. Alt, E. 

Schlücker, O. Oeckler, W. Schnick, Chem. Eur. J. 2017, 23, 2583-2590. 

[45] N. Cordes, W. Schnick, Chem. Eur. J. 2017, 23, 11410-11415. 



4 Ammonothermal Synthesis and Optical Properties of Ternary Nitride 
Semiconductors Mg-IV-N2, Mn-IV-N2 and Li-IV2-N3 (IV = Si, Ge) 

 

88 
 

[46] E. Parthé, Z. Kristallogr. Cryst. Mater. 1964, 119, 204. 

[47] T. J. McLarnan, W. H. Baur, J. Solid State Chem. 1982, 42, 283-299. 

[48] W. H. Baur, T. J. McLarnan, J. Solid State Chem. 1982, 42, 300-321. 

[49] Z.-H. Cai, P. Narang, H. A. Atwater, S. Chen, C.-G. Duan, Z.-Q. Zhu, J.-H. Chu, 

Chem. Mater. 2015, 27, 7757-7764. 

[50] H. D. Fair, R. F. Walker, Energetic Materials, Physics and Chemistry of Inorganic 

Azides, 1st ed., Springer, New York 1977. 

[51] A. Coelho, TOPAS Academic, Version 4.1, Coelho Software, Brisbane (Australia), 

2007. 

[52] R. W. Cheary, A. A. Coelho, J. P. Cline, J. Res. Natl. Inst. Stand. Technol. 2004, 

109, 1-25. 

[53] H. Ebert, D. Ködderitzsch, J. Minár, Rep. Prog. Phys. 2011, 74, 096501. 

[54] H. Ebert et al., The Munich SPR-KKR Package, Version 7.7, http://olymp.cup.uni-

muenchen.de/ak/ebert/SPRKKR, 2012. 

[55] S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200-1211. 

[56] E. Engel, S. H. Vosko, Phys. Rev. B 1993, 47, 13164-13174. 

 

 

 



5 Ammonothermal Synthesis of Novel Nitrides: Case Study on CaGaSiN3 

89 
 

5 Ammonothermal Synthesis of Novel Nitrides: Case Study on 

CaGaSiN3 

 

published in:  Chem. Eur. J. 2017, 23, 2583–2590. 

authors:   Jonas Häusler, Lukas Neudert, Mathias Mallmann, Robin Niklaus,  

    Anna-Carina L. Kimmel, Nicolas S. A. Alt, Eberhard Schlücker, 

    Oliver Oeckler, and Wolfgang Schnick 

DOI:    10.1002/chem.201605344 

    Copyright © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 

    http://onlinelibrary.wiley.com/doi/10.1002/chem.201605344/abstract 

 

 

Abstract. The first gallium-containing 

nitridosilicate CaGaSiN3 was synthesized 

in newly developed high-pressure 

autoclaves using supercritical ammonia as 

solvent and nitriding agent. The reaction 

was conducted in an ammonobasic 

environment starting from intermetallic 

CaGaSi with NaN3 as a mineralizer. At 770 

K, intermediate compounds were obtained, 

which were subsequently converted to the crystalline nitride at temperatures up to 1070 K 

(70–150 MPa). The impact of other mineralizers (e.g., LiN3, KN3, and CsN3) on the product 

formation was investigated as well. The crystal structure of CaGaSiN3 was analyzed by 

powder X-ray diffraction and refined by the Rietveld method. The structural results were 

further corroborated by transmission electron microscopy, 29Si MAS-NMR, and first-

principle DFT calculations. CaGaSiN3 crystallizes in the orthorhombic space group Cmc21 

(no. 36) with lattice parameters a = 9.8855(11), b = 5.6595(1), c = 5.0810(1) Å, (Z = 4,  

Rwp = 0.0326), and is isostructural with CaAlSiN3 (CASN). Eu2+ doped samples exhibit red 

luminescence with an emission maximum of 620 nm and FWHM of 90 nm.  
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Thus, CaGaSiN3:Eu2+ also represents an interesting candidate as a red-emitting material 

in phosphor-converted light-emitting diodes (pc-LEDs). In addition to the already known 

substitution of alkaline-earth metals in (Ca,Sr)AlSiN3:Eu2+, inclusion of Ga is a further and 

promising perspective for luminescence tuning of widely used red-emitting CASN type 

materials. 

 

5.1 Introduction 

In analogy to hydrothermal processes, the ammonothermal method comprises solution-

based reactions using supercritical ammonia as the solvent. A wide range of inorganic 

compounds can be synthesized by this technique, notably amides, imides, and 

ammoniates, preferably at temperatures up to 800 K, and nitrides at higher temperatures 

up to more than 1000 K.[1] The solubility of many metals and ionic compounds can be 

strongly increased by employing high pressures and ammonobasic or -acidic mineralizers 

like alkali metal amides or ammonium halides. The ammonothermal method is therefore 

well-suited for the growth of single crystals from solution. 

In the 1960s, Jacobs and co-workers investigated the behavior of various chemical 

elements in supercritical ammonia. In this way, many new multinary amide and imide 

compounds were synthesized.[2] Even single crystals of binary nitrides (e.g., Be3N2, LaN, 

Cu3N) could be grown by chemical transport reactions during ammonothermal 

syntheses.[3-5] The pioneering work of Jacobs laid the foundation for today's research on 

the ammonothermal crystal growth of group 13 nitrides. The interest in the 

ammonothermal technique has strongly increased in the last few years, as it emerged as 

a powerful alternative for the industrial growth of high-quality bulk GaN crystals.[6] Starting 

from polycrystalline GaN in ammonobasic or -acidic environment, the growth process is 

conducted by convection-driven chemical transport reactions maintaining specific 

temperature gradients in the autoclaves. High growth rates of up to 40 μm h−1 in the m-

direction were reported by employing NH4F as the mineralizer.[7] The crystals are 

processed for the fabrication of wafers that can be used as substrates for semiconductor 

devices. 

It has been shown that ternary nitrides can be synthesized ammonothermally as well, for 

example LiSi2N3, NaSi2N3 and K3P6N11, using ammonobasic mineralizers at pressures 

between 100–600 MPa and temperatures up to 870 K.[8-10] Moreover, Watanabe et al. 

demonstrated the synthesis of CaAlSiN3:Eu2+ (CASN) and SrAlSiN3:Eu2+ (SASN), the first 

quaternary nitrides obtained by this method.[11,12] These nitrides are industrially used red-
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emitting luminescent materials for phosphor-converted light-emitting diodes (pc-LEDs) 

with an emission maximum between 650 nm (CASN) and 610 nm (SASN).[13,14] Studies on 

substitutions of the p-block elements Al or Si in CASN or SASN with the heavier homologs 

Ga and Ge have not been mentioned in the literature as yet. 

Only a few reports about explorative ammonothermal syntheses of nitrides were published 

since Jacob's research studies, even though the technique has proven to be promising, 

especially for the synthesis of hardly accessible compounds. To unleash its full potential, 

we developed new high-temperature autoclaves that are applicable for pressures up to 

170 MPa and temperatures of 1100 K (see Figure 1). In this contribution, we report the 

ammonothermal synthesis of the first nitridogallosilicate CaGaSiN3 in an ammonobasic 

environment. Its crystal structure was analyzed by powder X-ray diffraction. Indexing and 

Rietveld refinement results were confirmed by electron diffraction, 29Si solid-state NMR, 

and first-principles DFT calculations. Additionally the luminescence characteristics of Eu2+-

doped CaGaSiN3 were investigated and revealed interesting properties for possible 

applications as red-emitting phosphor in pc-LEDs. 

 

 

Figure 1. Top: Autoclave made of nickel-based superalloy for ammonothermal syntheses. Bottom: 

Left: Cross-sectional drawing of autoclave with assembled head part. Right: Flange construction 

and sealing concept. 
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5.2 Results and Discussion 

5.2.1 Synthesis 

The new compound CaGaSiN3:Eu2+ was synthesized by the ammonothermal method 

using custom-built autoclaves. NaN3 was used as a mineralizer because of its stability 

with respect to oxygen and moisture and availability in high purity. NaN3 forms NaNH2 in 

situ by reaction with supercritical ammonia at elevated temperatures.[6] NaNH2 is the 

actual basic mineralizer which increases the solubility of the starting materials by forming 

intermediate compounds like amides, imides, or ammoniates. The first heating step was 

conducted to convert the intermetallic precursor CaGaSi:Eu to intermediates such as 

NaCa(NH2)3, NaGa(NH2)4, Si2N2NH, and amorphous species, which are formed at 

temperatures around 770 K.[15-17] These compounds are slowly decomposed during the 

subsequent heating step between 770 and 1070 K leading to controlled formation of 

CaGaSiN3:Eu2+. The use of an intermetallic precursor facilitates this conversion because 

of a better mixing of intermediates on a molecular level. The product was further annealed 

at 1070 K under slow reduction of the pressure to support decomposition of the remaining 

intermediates and to increase its crystallinity. The residual mineralizer and crystalline 

intermediates were easily removed by washing the product with water and 1 M HCl. 

Analogous reactions with LiN3 as the mineralizer yielded GaN as a side-phase next to 

CaGaSiN3:Eu2+. Because LiNH2 exhibits a very low solubility in ammonia, the formation of 

intermediates is expected to be slower compared to NaNH2.
[18] This might facilitate the 

formation of GaN, as Si is not sufficiently converted to reactive intermediates. On the 

other hand, the ternary nitride Ca16Si17N34
[19], in addition to GaN, was obtained by 

reactions with alkali azides KN3 and CsN3, which can presumably be attributed to the 

formation of different intermediates; ternary amides MCa(NH2)3 (M = Na, K, Cs) or 

MGa(NH2)4 (M = Li, Na, K) are formed in reactions of alkali amides with Ca or Ga, 

whereas syntheses with Si lead to imidonitrides Si2N2NH and K3Si6N5(NH)6 or nitrides 

LiSi2N3 and NaSi2N3.
[8,9,17,20] NaN3 was therefore assessed as the most suitable 

mineralizer for the ammonothermal synthesis of CaGaSiN3. We also discovered that 

ammonothermal reactions at 870 K or pressures below 100 MPa resulted in formation of 

CaGaSiN3 with poor crystallinity. Accordingly, the employment of high temperatures and 

pressures was found to be crucial for the synthesis of crystalline CaGaSiN3. 
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5.2.2 Crystal structure analysis 

Powder X-ray diffraction (PXRD) under inert conditions showed the occurrence of NaNH2, 

NaCa(NH2)3, and amorphous byphases in addition to CaGaSiN3:Eu2+. After purification, 

CaGaSiN3:Eu2+ was the only crystalline phase in the product. The reflections were 

indexed with an orthorhombic unit cell; systematic absences indicated the space group 

Cmc21. Wyckoff positions and coordinates of isotypic CaAlSiN3 were taken as starting 

values for the Rietveld refinement.[21] Displacement parameters and occupancy factors 

could not be refined to reasonable values because of crystallite size broadening and 

overlapping of reflections in the X-ray diffraction pattern. Therefore, the displacement 

parameters were fixed at reasonable values and full occupancy of the crystallographic 

sites with the ideal composition Ca0.99Eu0.01GaSiN3 was assumed. The PXRD data are 

represented in Figure 2 and Table 1; Wyckoff positions and atomic coordinates are listed 

in Table S1 (see the Supporting Information). A marked background in the powder 

patterns hints at amorphous side-phases. Presumably, these arise from polymerized 

amide or imide compounds, which remained stable in the reaction mixture. Additional 

temperature-dependent PXRD measurements (see Figure S2 in the Supporting 

Information) show that CaGaSiN3 is stable up to ≈820 K and retains orthorhombic metrics 

in this temperature range. 

 

 

Figure 2. Rietveld refinement of X-ray powder diffraction pattern of CaGaSiN3:Eu
2+

 with 

experimental data (black line), calculated pattern (red line), difference profile (gray line), and 

positions of Bragg reflections (black bars). 

 



5 Ammonothermal Synthesis of Novel Nitrides: Case Study on CaGaSiN3 

 

94 
 

Table 1. Crystallographic data of CaGaSiN3:Eu
2+

 obtained by Rietveld refinement 

Formula Ca0.99Eu0.01GaSiN3 

Crystal system orthorhombic 

Space group Cmc21 (no. 36) 

a [Å] 9.8855(11) 

b [Å] 5.6595(6) 

c [Å] 5.0810(4) 

Cell volume [Å
3
] 284.26(5) 

Formula units [cell] 4 

Density [g·cm
-3

] 4.230 

T [K] 295(2) 

Diffractometer STOE STADI P 

Radiation [Å] Mo-Kα1 (λ = 0.70930 Å) 

θ range [°] 2.0 ≤ 2θ ≤ 50.0 

Data points 3283 

Total number of reflections 166 

Refined parameters 29 

Background function Shifted Chebyshev 

R values 

Rp = 0.0248 

Rwp = 0.0326 

Goodness of fit 1.518 

 

 

CaGaSiN3 crystallizes in space group Cmc21 (no. 36), which is a maximal non-isomorphic 

subgroup of P63mc (no. 186). Its crystal structure can be regarded as a strongly distorted 

superstructure variant of the wurtzite structure type (space group P63mc) and is isotypic 

with CaAlSiN3. In analogy with the latter, Ga and Si are disordered on Wyckoff site 8b and 

are tetrahedrally coordinated by nitrogen. The (Ga/Si)N4 tetrahedra share vertices, 

forming a network of six-membered rings extending in (001) (see Figure 3). Ca occupies 
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the 4b site and is coordinated by five nitrogen atoms. Intermetallic CaGaSi, which 

crystallizes in the AlB2 structure type, is structurally unrelated to CaGaSiN3. CaGaSi 

exhibits a disordered Ga/Si site as well, but it remains unclear if this could favor Ga/Si 

disorder in CaGaSiN3. 

 

Figure 3. Top: Crystal structure of CaGaSiN3:Eu
2+

 viewed along [001] with (Ga/Si)N4 tetrahedra 

depicted in blue, Ca
2+

 in red. Bottom: Coordination of Ga/Si (left) and Ca (right) with nitrogen. 

The ionic radii of Al and Ga in nitride compounds are 41 and 48 pm, respectively.[22] As 

expected, substitution of Al by Ga leads to an increased cell volume, which is about 3 % 

larger in comparison to ammonothermally synthesized CaAlSiN3.
[23] Traces of sodium 

originating from the mineralizer might be incorporated into the structure, as also discussed 

below in the electron microscopy section. A solid-solution of CaGaSiN3 and NaSi2N3 

according to NaxCa1−xGa1−xSi1+xN3 is presumably formed, as these compounds are 

isostructural and exhibit similar lattice parameters. NaSi2N3 can be synthesized by 

reaction of Si with NaNH2 under similar ammonothermal conditions.[9] During our 

systematic investigations we found that reactions with LiN3 as mineralizer yielded 

CaGaSiN3 with reduced cell parameters, which corroborates the formation of solid 

solutions of MxCa1−xGa1−xSi1+xN3 (M = Li, Na). Therefore, the lattice parameter of the ideal 

composition of CaGaSiN3 might slightly deviate from the obtained data. 
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The reflections in the powder pattern of ammonothermally synthesized CaGaSiN3 are 

affected by crystallite size broadening. The average crystal size was refined to a value of 

about 20 nm (Gaussian convolution),[24] which is in the same order of magnitude as 

reported values for ammonothermally synthesized CaAlSiN3.
[23] Microstrain probably 

contributes to peak broadening as well, as the crystal size observed by transmission 

electron microscopy deviates from this value (see electron microscopy analyses). 

The (Ga/Si)−N interatomic distances range between 1.701 and 1.943 Å, which reveals a 

marked distortion of the (Ga/Si)N4 tetrahedra. Ca is coordinated by five N atoms with 

distances between 2.317 and 2.714 Å. Similar values are observed in comparable nitrides: 

Typical Si−N and Ga−N bond lengths range from 1.60 to 1.80 Å in nitridosilicates and from 

1.92 to 2.06 Å in nitridogallates, respectively.[9,25-29] The Ca−N distances in CaAlSiN3:Eu2+ 

are between 2.32 and 2.69 Å,[21] and on average slightly shorter than in CaGaSiN3:Eu2+. 

The Ca−Ca distances amount to 3.31 Å and are therefore similar to those in other calcium 

nitridosilicates like CaSiN2 (3.05–3.30 Å) and CaAlSiN3 (3.27 Å).[21,30] 

5.2.3 Electron microscopy 

SEM images show that CaGaSiN3 forms plate- and needle-shaped crystallites with typical 

diameters from 0.05–0.1 μm (see Figure S1 in the Supporting Information). The 

morphology is similar to that of ammonothermally synthesized CaAlSiN3.
[23] TEM 

investigations were performed to obtain information about the crystallite sizes, chemical 

composition on the nanometer scale, and to confirm the orthorhombic metrics. Despite 

sample preparation using ultrasonic methods, the majority of the CaGaSiN3:Eu2+ 

crystallites form agglomerates (see Figure 4 left). A few separated crystals were suitable 

for EDX analysis and selected area electron diffraction (SAED). CaGaSiN3 is stable in the 

electron beam. The diameter of the crystals varies between 10 and 100 nm; the length 

between 0.5 and 2 μm (see Figure 4 right). EDX measurements on different microcrystals 

showed an atomic ratio of the heavy atoms approximately matching the sum formula 

CaGaSiN3 (see Table 2). Small amounts of Na up to 5 atom % were detected in several 

crystals, which points to a possible formation of solid solutions between CaGaSiN3 and 

NaSi2N3 as discussed above. The small amount of oxygen detected might arise from 

surface hydrolysis caused by the washing treatment or from partial substitutions of Ca/N 

by Na/O maintaining charge neutrality. 
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Figure 4. STEM dark-field images of representative crystals of CaGaSiN3:Eu
2+

; (a) agglomerates 

and (b) separated crystals. 

Table 2. TEM EDX measurements of CaGaSiN3 microcrystals in atom %, mean values with 

standard deviations 

 Ca Ga Na Si N O 

K1 13 22 2 21 38 4 

K2 13 20 3 21 39 6 

K3 11 18 4 20 44 3 

K4 14 21 1 21 39 3 

K5 14 18 4 20 38 7 

K6 15 17 4 20 40 4 

K7 16 17 5 19 40 5 

average 14(1) 19(2) 3(1) 20(1) 40(2) 5(1) 

 

 

Electron diffraction (see Figure 5) confirmed the orthorhombic metrics of CaGaSiN3. 

Lattice parameters a = 9.9 Å, b = 5.7 Å, and c = 5.1 Å were determined from SAED 

patterns along [100] and [010]. SAED patterns or Fourier transformed HRTEM images 

along various zone axes of different crystals of CaGaSiN3:Eu2+ exhibited no additional 

reflections. Although short-range ordering of Ga and Si may be possible, there is no 

evidence for a superstructure. 
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Figure 5. SAED patterns of a microcrystal of CaGaSiN3:Eu
2+

; left: for [010] zone axis, right: SAED 

tilt series, experimental patterns and tilt angles (top) and simulated data based on structure model 

from powder X-ray data (bottom), selected reflections labeled with indices. 

5.2.4 Solid-state NMR spectroscopy 

29Si MAS-NMR spectra were recorded to corroborate the previous analyses. The 29Si 

spectrum exhibits one signal at −50.7 ppm (see Figure 6), which is in accordance with one 

crystallographic site of Si in the structure. The chemical shift of SiN4-tetrahedra in nitrides 

is commonly between −40 and −60 ppm.[31-35] Signals around −50 ppm have been 

detected for isostructural CaAlSiN3, which coincides very well with the measurement.[36] 

 

 

Figure 6. 
29

Si MAS-NMR spectrum of CaGaSiN3:Eu
2+

 with one signal at −50.7 ppm. 
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5.2.5 Luminescence 

Red luminescence is observed when samples of CaGaSiN3:Eu2+ are irradiated with UV 

light. A broadband excitation was observed with a maximum of about 470 nm (see Figure 

7). The phosphor can therefore be efficiently excited by a blue (Ga,In)N-based LED. The 

emission spectrum shows a maximum of 620 nm with full width at half-maximum (FWHM) 

of 90 nm. The luminescence is originating from the 4f6(7F)5d1→4f7(8S7/2) transition in Eu2+. 

In comparison to CaAlSiN3:Eu2+ (λmax = 650 nm),[13] the increased bond lengths lead to a 

less distinctive crystal field splitting of the 5d-states. Therefore, the Stokes shift of the 

excitation light is smaller and in the same order of isostructural SrAlSiN3:Eu2+.[37] 

 

 

Figure 7. Excitation (blue) and emission spectrum (red) of CaGaSiN3:Eu
2+

 (1 mol % Eu) with 

λexc = 450 nm. 

5.2.6 DFT calculations 

To explain the Ga/Si disorder, crystallographically ordered structure models were 

constructed for the ab initio calculations. The Niggli-reduced cell includes two tetrahedrally 

coordinated Ga and Si atoms, respectively. Six structure models are obtained by 

arranging the Ga and Si atoms in an ordered manner, three of which are different from a 

crystallographic point of view (see Figure 8).[38] The calculated lattice constants and total 

energies are listed in Table 3. 
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Figure 8. Ordered structure models for first-principles DFT calculations. 

Table 3. Lattice parameters and total energies of CaGaSiN3 for three different ordered structure 

models calculated by the generalized gradient approximation (GGA) 

Lattice parameter [Å] Model A Model B Model C 

a 10.063 10.080 9.987 

b 5.794 5.785 5.746 

c 5.137 5.136 5.224 

Total energies 
[eV / formula unit] 

-41.132 -41.140 -40.885 

 

 

As usual, the cell parameters approximated are overestimated by generalized gradient 

approximations (GGA); the values determined by Rietveld refinement are expectedly 

lower. Comparing theoretical and experimental data, the observed deviation of 1–2 % is in 

the same range as for CaAlSiN3.
[39,40] Incorporation of traces of sodium could additionally 
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lead to slightly decreased cell parameters. Whereas total energies of model A and B are 

quite similar, the structure of model C seems to be less stable. This might arise from the 

fact that two GaN4-tetrahedra are connected by a twofold-coordinated N (N[2]) atom, 

which seems to be less favorable, as already stated for respective AlN4-tetrahedra in 

CaAlSiN3.
[38] The overall similarity of total energies corroborates the disorder of Ga and Si 

on the 8b site. 

 

5.3 Conclusion 

CaGaSiN3:Eu2+ was synthesized by the ammonothermal method starting from 

intermetallic precursor CaGaSi:Eu in an ammonobasic environment employing NaN3 as a 

mineralizer. Rietveld refinement showed that CaGaSiN3:Eu2+ crystallizes in space group 

Cmc21 as a distorted superstructure variant of the wurtzite structure type. Though 

nanocrystals are preferentially formed during the reaction, TEM investigations revealed 

that a minority of crystals with up to 2 μm in length were formed. Electron diffraction 

patterns suggest that the size of the coherently scattering domains in the CaGaSiN3:Eu2+ 

microcrystal is in the range of nm. Cation ordering could be possible due to symmetry 

reduction without additional reflections; however, no evidence for such ordering was 

observed. TEM investigations confirm chemical composition and orthorhombic metrics of 

CaGaSiN3:Eu2+. The magnitude of the determined lattice parameters was further verified 

by ab initio DFT calculations. 

The crystal size, morphology, and X-ray diffraction patterns are similar to those of 

ammonothermally synthesized CaAlSiN3. Different alkali metal azides were probed as 

mineralizers, where NaN3 proved to be the best choice, with no detectable crystalline side-

phases in the product. Some evidence of possible incorporation of Na was observed in 

the product, which coincides with analogous syntheses of CaAlSiN3.
[23] 

It was also shown that the formation of CaGaSiN3 is favored despite prevailing reaction 

conditions for the ammonothermal crystal growth of GaN. The use of an intermetallic 

precursor facilitates the conversion to the nitride because of a better mixing of the 

intermediates on a molecular level. Furthermore, it was found that CaGaSiN3:Eu2+ is best 

accessible with LiN3 and NaN3 as mineralizer. Employment of KN3 and CsN3 leads to 

formation of K and Cs amides or imides, which behave differently compared with Li and 

Na. Additionally, no ternary K or Cs nitridosilicates are known so far, whereas the nitrides 

LiSi2N3 and NaSi2N3 might act as precursors and crystallization seeds. 
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In addition, promising photoluminescence characteristics for the application in phosphor-

converted LEDs were ascertained. Solid solutions with CaAlSiN3:Eu2+, but also with other 

wurtzite derivatives, establish numerous substitution options in this structure type. For 

instance, recent studies on LixCa1−xAl1−xSi1+xN3 demonstrated either a slight blue- or strong 

redshift of the emission maximum dependent on the degree of cation cosubstitution.[41] 

With regard to CaGaSiN3:Eu2+ and respective solid solutions, new luminescence tuning 

opportunities are opened up in the CASN and SASN system. 

This study demonstrates that the ammonothermal technique is a powerful tool for the 

synthesis of novel multinary nitrides. With the development of new high-temperature 

autoclaves, the synthetic potential of this method is strongly extended. Notably, the 

formation of wurtzite derivatives seems to be favored in particular, which might be 

promising for the crystal growth of new semiconductors like Zn2PN3 or analogous 

substitutional compounds.[42] 

 

5.4 Experimental Section 

Unless otherwise stated, all manipulations were performed in flame-dried Schlenk-type 

glassware connected to a vacuum line (≤0.1 Pa) or in Ar-filled glove boxes (Unilab, 

MBraun, Garching, O2<1 ppm, H2O<1 ppm) to rigorously exclude oxygen and moisture 

during syntheses. Argon (Air Liquide, 99.999 %) was purified by passage through columns 

filled with KOH (Merck, ≥85 %), silica gel (Merck), dried molecular sieve (Fluka, 3 Å), 

P4O10 (Roth, ≥99 %) and titanium sponge (Johnson Matthey, 99.5 %) at 970 K. Ammonia 

(Air Liquide, 99.999 %) was passed through a gas purification cartridge (Micro torr 

MC400-702FV, SAES Pure Gas Inc., San Luis Obispo, CA, USA) to obtain a purity level 

of <1 ppbV H2O, O2, and CO2. 

5.4.1 Preparation of starting materials 

The precursor CaGaSi:Eu (1 %) was prepared according to the reported procedure of 

Czybulka et al.[43] Stoichiometric amounts of Ca (Sigma–Aldrich, 99.99 %), Ga (smart 

elements, 99.999 %), Si (Alfa Aesar, 99.99 %) and 1 % Eu as dopant (smart elements, 

99.99 %) were placed in a tantalum ampule, which was sealed in a water-cooled arc 

furnace under argon atmosphere. The tantalum ampule was then placed in a silica tube, 

which was evacuated and inserted in a tube furnace. The ampule was heated to 1300 K at 

a rate of 5 K min−1, kept at this temperature for 48 h and then cooled to room temperature 
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at a rate of 0.5 K min−1. The product was thoroughly ground in an agate mortar and stored 

under argon. 

5.4.2 Ammonothermal synthesis 

Syntheses in supercritical ammonia were carried out in custom-built autoclaves made of 

nickel-based superalloy (Haynes® 282®), sustaining a maximum pressure of 170 MPa at 

1100 K. The autoclave body (10 mL internal volume) is connected to the head part, 

consisting of hand valve (SITEC), pressure transmitter (HBM P2VA1/5000 bar), and safety 

head with integrated bursting disc (SITEC). Silver-coated metal C-rings (GFD seals) made 

of Inconel 718 were used as sealing gaskets. CaGaSi:Eu (5 mmol) and NaN3 (10 mmol, 

Acros, 99 %) were placed in a tantalum liner, which was then transferred into the 

autoclave. The assembled autoclave was evacuated and cooled with ethanol/liquid 

nitrogen to 198 K. Subsequently, purified ammonia was directly condensed into the 

autoclave through a pressure regulating valve. The autoclave body was heated in a 

custom-built vertical tube furnace (Loba, HTM Reetz) to 770 K with a rate of 3 K min−1, 

kept at this temperature for 20 h, heated to 1070 K with a rate of 0.05 K min−1, and held for 

a further 150 h. The pressure was always kept between 100 and 150 MPa during the 

heating periods and was appropriately reduced if necessary. At 1070 K, the attained 

pressure of 103 MPa was slowly reduced to 70 MPa over 150 h. The autoclave was then 

cooled down to room temperature by switching off the furnace. The product was washed 

with water and 1 M HCl to remove residual mineralizer and intermediates. The obtained 

pale orange powder was dried at 350 K in air. 

Analogous reactions were performed with LiN3, KN3, and CsN3 to investigate the influence 

of the mineralizer. 

5.4.3 Powder X-ray diffraction 

For the XRD measurements, the samples were filled in glass capillaries (0.3 mm diameter, 

Hilgenberg GmbH). Diffraction patterns were recorded using a Stoe STADI P 

diffractometer (CuKα1 radiation, Ge(111) monochromator, Mythen 1 K detector) in modified 

Debye–Scherrer geometry. Indexing and Rietveld refinement were carried out with the 

TOPAS package.[24] 
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Further details on the crystal structure investigations may be obtained from the 

Fachinformationszentrum Karlsruhe, 76344 Eggenstein- Leopoldshafen, Germany (fax: 

+49–7247-808-666; e-mail: crysdata@fiz-karlsruhe.de, http://www.fiz-karlsruhe.de/ 

request_for_deposited_data.html), on quoting the depository number CSD-432259. 

5.4.4 Electron microscopy 

The morphology of the powder was examined with a JEOL JSM 6500 F scanning electron 

microscope (SEM; field emission gun, acceleration voltage 20 kV) equipped with an 

energy-dispersive X-ray spectroscopy (EDX) detector (Oxford Instruments, IncaEnergy) 

for elemental analyses. Transmission electron microscopy (TEM) was done on a FEI Titan 

Themis 60–300 with X-FEG, monochromator, Cs-corrector, and windowless, 4-quadrant 

Super-X EDX-detector. The TEM was operated at 300 kV and the images were recorded 

using a 4k×4k FEI Ceta CMOS camera. Microcrystals of CaGaSiN3:Eu2+ were ground in 

absolute ethanol and sonicated for 60 min. These were subsequently drop-cast on copper 

finder grids with holey carbon film (S166-2, Plano GmbH, Germany) and transferred into 

the microscope on a double-tilt holder. Samples for scanning transmission electron 

microscopy (STEM) were plasma cleaned for 20 s. For the evaluation of the TEM data, 

the following software was used: Digital Micrograph,[44] JEMS, and ProcessDiffraction7[45] 

for indexing and simulation of SAED patterns, and ES Vision[46] for EDX spectra. 

5.4.5 Solid-state MAS-NMR spectroscopy 

29Si solid-state MAS-NMR experiments were carried out on a Bruker 500 Advance III FT 

spectrometer equipped with a commercial 4 mm triple-resonance MAS-NMR probe at a 

magnetic field of 11.74 T. The measurements were performed on Eu2+-doped samples in 

ZrO2 rotors at a 29Si resonance frequency of 99.4 MHz. Si(CH3)4 (1 %) in CDCl3 was used 

as reference. 

5.4.6 Luminescence 

An in-house-built spectrofluorimeter equipped with a 150 W Xe lamp, two 500 mm 

Czerny–Turner monochromators, 1800 l mm−1 lattices and 250/500 nm lamps was used 

for excitation measurements. The emission spectrum was recorded with an Ocean Optics 

USB4000 fiber spectrometer using an Avantes AvaLight LED with a wavelength of 450 nm 

as light source and a Thorlabs LongPass-Filter with 495 nm. 
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5.4.7 DFT calculations 

First-principles DFT calculations were conducted using the Vienna ab initio simulation 

package (VASP).[47-50] The generalized gradient approximation of Perdew, Burke, and 

Ernzerhof (PBE-GGA) with the projector-augmented-wave function (PAW) was 

applied.[51,52] An (8×10×10) k-point mesh was generated with the method of Monkhorst 

and Pack using a plane-wave cut-off of 535 eV.[53] Optimized atom coordinates, lattice 

parameters and total energies were calculated through relaxation of the structure. The 

convergence criteria of total energy and residual atomic forces were set to 1×10−7 eV per 

unit cell and 4×10−3 eV Å−1, respectively. 
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Abstract. The new nitridoalumogermanate 

Ca1-xLixAl1-xGe1+xN3 (x ≈ 0.2) was synthesized 

from supercritical ammonia at 925 K and 185 

MPa starting from the intermetallic precursor 

Ca3Al2Ge2 and Li as mineralizer. The crystal 

structure was refined by the Rietveld method; 

Ca1-xLixAl1-xGe1+xN3 with x ≈ 0.2 [a = 9.9822(5), 

b = 5.7763(2), c = 5.1484(1) Å, Z = 4, Rwp = 

0.0492] crystallizes in orthorhombic space 

group Cmc21 (no. 36). Needle-shaped crystals with up to 15 µm in length were detected 

by scanning electron microscopy. Possible cation ordering was analyzed by transmission 

electron microscopy. No superstructure reflections were observed in electron diffraction 

patterns and the structure model was confirmed by Z-contrast imaging. The composition 

was verified by energy-dispersive X-ray spectroscopy on single crystals and inductively 

coupled plasma optical emission spectrometry. Optical properties were studied by diffuse 

reflectance spectroscopy, showing a broad absorption band between 250 and 300 nm. 

The optical band gap was estimated to be 4.3 eV at room temperature using the Tauc 

method. 
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6.1 Introduction 

During the last two decades, the compound class of nitrides gained increasing importance 

for numerous technological applications. For instance, gallium nitride emerged as one of 

the most important semiconductors for optoelectronics, while various rare-earth doped 

nitridosilicates and -aluminates proved to be excellent luminescent materials for light-

emitting diodes.[1-3] On the other hand, only a small number of nitridogermanates has been 

discovered so far and their physical properties were only rarely investigated. However, 

recent calculations predicted promising optical and electronic properties for several 

nitridogermanates as well.[4,5] Since these nitrides are thermally less stable than 

nitridosilicates, conventional high-temperature approaches are not applicable for their 

syntheses. The common access to nitridogermanates is based on the sodium azide route 

employing sodium as a flux and NaN3 as a nitrogen source.[6] High diffusion rates at 

relatively low temperatures of around 1000 K as well as an increased solubility of nitrogen 

in liquid sodium in the presence of alkaline earth metals promote the formation of these 

nitrides. In this way, several new ternary and quaternary nitridogermanates have been 

synthesized in recent years, such as Sr5Ge2N6, M[Mg3GeN4] (M = Sr, Ba) and 

Ca2[Mg5GeN6].
[7-10] Nitridosilicates and -gallates like Ba4Mg[Si2N6], Ba5Si2N6 and 

Ba[Mg2Ga2N4] are accessible by this route as well.[11-13] While corner- or edge-sharing 

GeN4 tetrahedra constitute the common structural entities in nitridogermanates, other 

Ge-N compounds contain structural motifs like Zintl anions Ge4– (e.g. Sr11Ge4N6), Ge2– 

chains (e.g. Sr3Ge2N2) or dumbbell-shaped (GeN2)
4– anions (e.g. Ca2GeN2).

[14-16] 

The ammonothermal method represents a further promising low-temperature approach for 

the synthesis of nitrides. While most inorganic compounds are rather hardly soluble in 

liquid ammonia, the solubility of ionic solids is strongly increased using high-pressurized 

supercritical ammonia due to the increasing relative permittivity with increasing density. In 

addition, the applied mineralizers, commonly alkali metal amides MNH2 (M = Li–Cs), act 

as complexing agents forming species like ternary amides, imides or ammoniates by 

reaction with the starting materials and ammonia.[17] Such intermediates provide 

significantly improved solubilities in supercritical ammonia as well. These benefits are 

fundamental for the synthesis of nitrides from solution and for crystal growth processes by 

convection-driven transport reactions. While this method is prevalently used for the growth 

of bulk single crystals of GaN, syntheses of ternary and quaternary nitrides such as 

Zn-IV-N2 (IV = Si, Ge), K3P6N11 or CaGaSiN3 have been reported as well.[18-21] Elements, 

alloys or nitrides are mixed with mineralizers and placed into special high-pressure 

autoclaves. A specific amount of ammonia is condensed into the vessel, which is then 
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closed and heated in a tube furnace. Amides or imides are preferentially formed below 

700 K and also act as reactive intermediates, while most nitrides are obtained at elevated 

temperatures up to 1100 K. 

Here we report on a new low-temperature synthesis approach for nitridogermanates using 

the ammonothermal method. While all currently known nitridogermanates are comprised 

of alkali and/or alkaline earth metals and germanium as cations, we also present the first 

nitridoalumogermanate, which contains corner-sharing AlN4 and GeN4 tetrahedra. 

 

6.2 Results and Discussion 

6.2.1 Synthesis 

The intermetallic phase Ca3Al2Ge2 was used as starting material and Li was applied as 

mineralizer for ammonothermal synthesis. With respect to the composition of 

Ca1–xLixAl1–xGe1+xN3 calcium is included in excess since we have observed that calcium-

containing intermediates were transported to the colder zone of the autoclave to some 

extent during analogous reactions. To facilitate a complete conversion of the starting 

materials to intermediates, Li was also used in excess. Li dissolves in liquid ammonia and 

forms LiNH2 at elevated temperatures.[22] The synthesis of Ca1–xLixAl1–xGe1+xN3 (x ≈ 0.2) 

was carried out in two temperature steps, i.e. the formation of intermediates at 625 K and 

the conversion of the latter to the nitride at 925 K. We observed that the nitride degraded 

at an elevated reaction temperature of ≈ 975 K. An increased formation of hydrogen at 

higher temperatures could promote the decomposition due to the reducing atmosphere. 

Ca1–xLixAl1–xGe1+xN3 is slightly moisture-sensitive and dissolves in water entirely. For this 

reason, 100 % ethanol and 100 % acetic acid were chosen as solvents for the purification. 

In order to completely remove residual intermediates, mineralizer and formed side-phases 

by washing, multiple ultrasonication steps were performed. 

6.2.2 Crystal Structure Analysis 

Powder X-ray diffraction data indicated that the untreated product contained Ca(NH2)2 and 

the mineralizer LiNH2 as side-phases. Indexing of the diffraction patterns after purification 

indicated orthorhombic metrics; systematic absences suggested space group Cmc21. 

Atomic coordinates of isotypic CaGaSiN3 were used as starting values for the Rietveld 

refinement.[21] No side-phases were detected in the powder X-ray diffraction pattern (see 
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Figure 1). Crystallographic data and atomic coordinates from Rietveld refinement are 

listed in Table 1 and Table 2, respectively. 

Table 1. Crystallographic data of Ca1–xLixAl1–xGe1+xN3 obtained by Rietveld refinement 

Formula Ca0.8Li0.2Al0.8Ge1.2N3 

Crystal system orthorhombic 

Space group Cmc21 (no. 36) 

Lattice parameters /Å 

a = 9.9822(5) 

b = 5.7763(2) 

c = 5.1484(1) 

Cell volume /Å
3
 296.86(2) 

Formula units / cell 4 

Density /g·cm
-3

 4.120 

T / K 295(2) 

Diffractometer STOE STADI P 

Radiation /Å Mo-Kα1 (λ = 0.70930 Å) 

θ range /° 2.0 ≤ 2θ ≤ 50.0 

Data points 3283 

Total number of reflections 153 

Refined parameters 
55 (thereof 14 for 
background) 

Background function shifted Chebyshev  

Constraints 6 

R values 

Rp = 0.0365 

Rwp = 0.0492 

RBragg = 0.00835 

Goodness of fit 2.056 



6 Ammonothermal Synthesis and Crystal Structure of the 
Nitridoalumogermanate Ca1-xLixAl1-xGe1+xN3 (x ≈ 0.2) 

 

113 
 

 

Figure 1. Rietveld refinement of Ca1–xLixAl1–xGe1+xN3 (x = 0.2) with experimental data (black line, 

Mo-Kα1 radiation, λ = 0.70930 Å), calculated patterns (red line), difference profiles (gray line) and 

positions of Bragg reflections (blue bars). 

Table 2. Wyckoff positions and atomic coordinates of Ca1–xLixAl1–xGe1+xN3 obtained by Rietveld 

refinement, standard deviations in parentheses 

 

 

Ca1–xLixAl1–xGe1+xN3 can be described as a solid solution of CaAlGeN3 and LiGe2N3, in 

analogy to the previously described isostructural nitridosilicate Ca1–xLixAl1–xSi1+xN3, which 

is a solid solution of CaAlSiN3 and LiSi2N3.
[23] Li/Ca and Al/Ge are disordered on Wyckoff 

positions 4a and 8b, respectively. Further cation ordering was ruled out by selected area 

electron diffraction (SAED) and scanning transmission electron microscopy high-angle 

Atom 
Wyckoff 

site 
x y z Ueq SOF 

Li / Ca 4a 0 0.3161(7) 0.3911(10) 0.0086(2) 
0.197(4) / 
0.803(4) 

Al / Ge 8b 0.1706(3) 0.1598(4) 0.9246(5) 0.0086(2) 
0.401(2) / 
0.599(2) 

N1 8b 0.2083(8) 0.1406(21) 0.2832(10) 0.0086(2) 1 

N2 4a 0 0.2738(15) 0.8723(16) 0.0086(2) 1 
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annular dark-field imaging (STEM-HAADF), see section on transmission electron 

microscopy. Refinement of the site occupancy factors resulted in an occupancy of about 

20 % Li / 80 % Ca and 40 % Al / 60 % Ge, corresponding to x ≈ 0.2. This composition is in 

accordance with elemental analyses (see section below). Li/Ca are coordinated by five 

nitrogen atoms (2x N1, 3x N2) with bond lengths between 2.37 and 2.68 Å, while Al/Ge 

are tetrahedrally coordinated (3x N1, 1x N2) with distances between 1.82 and 1.92 Å. 

These bond lengths are in a similar range as in comparable nitridogermanates, e.g. 

Ca4GeN4, Ca7[GeN4]N2 and Ca2Mg5GeN6.
[10,16,24] On the other hand, N1 is connected to 

three and N2 to two Al/Ge atoms, respectively. (Al/Ge)N4 tetrahedra share corners to form 

a three-dimensionally extended network of sechser rings (Figure 2). The embedded 

counterions Li+ and Ca2+ compensate the negative charge of the anionic framework. 

 

 

Figure 2. Crystal structure of Ca1–xLixAl1–xGe1+xN3 viewed along [001] with (Al/Ge)N4 tetrahedra 

depicted in light blue, Ca
2+

/Li
+
 in yellow and nitrogen in blue. 
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Temperature-programmed X-ray diffraction patterns up to 1270 K show that 

Ca1-xLixAl1-xGe1+xN3 retains orthorhombic metrics up to ≈ 1000 K and degrades at higher 

temperatures as indicated by its vanishing reflections and emerging ones of 

decomposition products (see Figure S1 in the Supporting Information). 

6.2.3 Elemental Analyses 

The elemental composition of single crystals was determined by energy-dispersive X-ray 

spectroscopy (EDX). Additionally, inductively coupled plasma optical emission 

spectrometry (ICP-OES) was carried out to evaluate the Li content in the purified product. 

An atomic ratio of Ca/Al/Ge/N = 1.00(9):1.01(8):1.62(7):1.62(17) was determined by EDX 

which is consistent with the chemical formula Ca0.8Li0.2Al0.8Ge1.2N3 derived from Rietveld 

refinement. Low nitrogen values within TEM-EDX may arise from defective surfaces of 

measured single crystals. No oxygen impurities were detected in these measurements. 

ICP data (Ca: 18.2 wt.-%, Li: 0.6 wt.-%, Al: 12.5 wt.-%, Ge: 48.2 wt.-%; atomic ratio 

Ca/Li/Al/Ge = 0.805:0.153:0.820:1.180) are in good agreement with calculated values for 

x = 0.2 in Ca1–xLixAl1–xGe1+xN3 (Ca: 17.4 wt.-%, Li: 0.75 wt.-%, Al: 11.7 wt.-%, Ge: 47.3 

wt.-%, N: 22.8 wt.-%). Nitrogen was not determined by ICP since the sample had to be 

dissolved in nitric acid for analysis. 

6.2.4 Scanning Electron Microscopy (SEM) 

SEM images of the purified product show needle-shaped crystals, similar to the 

morphology of ammonothermally synthesized MAlSiN3:Eu2+ (M = Ca, Sr) and 

CaGaSiN3:Eu2+.[21,25,26] However, considerably larger crystals with up to 15 µm in length 

grew (Figure 3 and Figure S2 in the Supporting Information), while crystallites of the 

reported nitridosilicates are rather in the nm range. This might be attributed to a higher 

solubility of Ge or respective intermediates in supercritical ammonia compared to silicon, 

or the use of LiNH2 as mineralizer. 
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Figure 3. SEM secondary electron (SE) image of Ca1–xLixAl1–xGe1+xN3. 

6.2.5 Transmission Electron Microscopy (TEM) 

Possible ordering of Al and Ge was analyzed by SAED and high resolution STEM-

HAADF. SAED patterns did not show any superstructure reflections and comparison with 

simulated SAED patterns confirms the structure model of Ca1–xLixAl1–xGe1+xN3. (Figure S3 

in the Supporting Information). STEM-HAADF along [110] is suitable to differentiate 

between Ca, Al and Ge columns by Z-contrast imaging. Intensity deviations of different 

atom columns in line-scans are expected to show ordering of Al and Ge atoms, if present 

(Figure 4). The intensities were compared to three different structure models of 

Ca1-xLixAl1-xGe1+xN3 in translationengleiche subgroups (Cm11, C1c1 and C1121) of Cmc21 

(Figure 5). In all models, Al and Ge columns would be clearly separated in projections 

along [110], resulting in three different intensities along the line scan (Al weak, Ca 

intermediate and Ge strong). The absence of such intensity distributions confirms the 

absence of cation ordering in the structure model of Ca1–xLixAl1–xGe1+xN3. 
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Figure 4. Fourier filtered STEM-HAADF image along zone axis [110]: brighter contrast 

corresponds to Al/Ge (purple) atom columns and darker contrast to Ca/Li (yellow) columns; area of 

linescan (red box) and corresponding intensities (bottom). 
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Figure 5. Ca1–xLixAl1–xGe1+xN3 in space group Cmc21 (top) and hypothetical ordered models in Cc 

(bottom left), Cm (bottom middle) and C21 (bottom right). Structure projections in different space 

groups in direction ≈ [110]. Atom sites: Ca (yellow), Li (red), Al/Ge (purple), Al (turquoise) and Ge 

(lilac). 

6.2.6 UV/Vis Spectroscopy 

The diffuse reflectance spectrum of Ca1–xLixAl1–xGe1+xN3 shows an absorption band in the 

UV region between 250 and 300 nm (Figure 6). The Kubelka–Munk function  

F(R) = (1 – R)2/2R (R = reflectance) was applied to convert the diffuse reflectance to a 

pseudo-absorption spectrum.[27] The band gap was then determined using the Tauc 

equation (hνα)1/n = A(hν – Eg), where α denotes the absorption coefficient, A a proportional 

constant, Eg the band gap and n the nature of the sample transition (direct or indirect band 

gap).[28] An extensive linear region in the Tauc plot for n = 1/2 is observed, thus 

suggesting a direct band gap. The point of intersection of the aligned tangent and the 

horizontal axis yields an estimated optical band gap of 4.3 eV (see Figure 6). 
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Figure 6. Diffuse reflectance spectrum (left) and Tauc plot [F(R)·hν]
2
 (right) of Ca1–xLixAl1–xGe1+xN3 

(x ≈ 0.2). 

 

6.3 Conclusions 

Ammonothermal synthesis afforded the new nitridoalumogermanate Ca1–xLixAl1–xGe1+xN3 

with x ≈ 0.2, which can be described as a solid solution of LiGe2N3 and hypothetical 

CaAlGeN3. The crystal structure can be regarded as a distorted superstructure of the 

wurtzite type with orthorhombic space group Cmc21. Ordering of the Ca/Li or Al/Ge atoms 

was ruled out by SAED and STEM-HAADF. SAED patterns are in accordance with 

simulated ones and show no superstructure reflections. STEM-HAADF images confirmed 

the structural model and indicated no ordering either. 

Syntheses of nitridogermanates are challenging due to their limited thermal stability in 

comparison to nitridosilicates. While virtually all known nitridogermanates have been 

synthesized employing the sodium azide route, the ammonothermal method proved to be 

a promising new approach as well. Inclusion of AlN4 tetrahedra extends the diversity of 

possible structural units in nitridogermanates. Needle-shaped crystals with a diameter up 

to 15 µm were obtained at comparatively low temperature of 925 K. The well-defined 

morphology of the crystals indicates growth from solution, which is fundamental for future 

research on the ammonothermal crystal growth of quaternary and multinary nitrides. 

While few compositions for MIIMIIIMIVN3-type structures have been reported,[21,29,30] solid 

solutions with MIMIV
2N3 nitrides additionally increase their variability. The formation of solid 

solutions as well as controlling their specific compositions will be addressed in future 

studies. Likewise, the feasibility of further wurtzite-derived nitridogermanates with 
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interesting optical and electronic properties has recently been predicted as well.[5] In this 

way, manifold perspectives for band-gap engineering of nitrides are opened up, which 

pave the way for the design of new semiconductor materials. 

 

6.4 Experimental Section 

All operations were carried out in flame-dried Schlenk-type glassware connected to a 

vacuum line (≤ 0.1 Pa) with argon and ammonia supply or in Ar-filled glove boxes (Unilab, 

MBraun, Garching, O2 < 1 ppm, H2O < 1 ppm) to exclude oxygen and moisture during 

syntheses. Gas purification cartridges (Micro Torr FT400-902 and MC400-702FV, SAES 

Pure Gas Inc., San Luis Obispo, CA, USA) were used for further purification of Ar (Air 

Liquide, 99.999 %) and NH3 (Air Liquide, 99.999 %) providing a purity level of < 1 ppb 

H2O, O2 and CO2. 

6.4.1 Preparation of Ca3Al2Ge2 

Stoichiometric amounts of Ca (Sigma–Aldrich, 99.99 %), Al (Acros, 99.97 %) and Ge 

(smart-elements, 99.99 %) were placed in a tantalum ampule, which was sealed by arc 

melting under argon atmosphere. The ampule was placed in a fused silica tube, which 

was evacuated and inserted in a tube furnace. The ampule was then heated to 1325 K at 

a rate of 5 K/min, kept at this temperature for 50 h and cooled to room temperature with a 

rate of 0.5 K/min. The product was ground in an agate mortar and stored under argon. 

6.4.2 Ammonothermal Synthesis 

Custom-built autoclaves (10 mL internal volume) made of nickel-based superalloy 

(Haynes® 282®) were used for ammonothermal syntheses.[21] Ca3Al2Ge2 (1 mmol) and Li 

(20 mmol, Alfa, 99 %) were placed in a niobium liner, which was then transferred into the 

autoclave. A sealing gasket (silver-coated Inconel 718 metal-C-rings, GFD seals) was 

inserted and the autoclave was assembled by tightening the screws of the flange 

connection. The head part, consisting of hand valve (SITEC), pressure transmitter (HBM 

P2VA1/5000 bar) and safety head with integrated bursting disc (SITEC), was connected 

to the autoclave lid via high-pressure pipes. The autoclave was evacuated and cooled 

with ethanol/liquid nitrogen to 198 K. Subsequently, ammonia was condensed into the 

autoclave via a pressure regulating valve. The autoclave body was heated in a custom-
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built vertical tube furnace (type Loba, HTM Reetz) to 625 K with a rate of 3 K/min, kept at 

this temperature for 15 h, heated to 925 K with a rate of 1 K/min and held for further 75 h. 

The autoclave lid was heated to 625 K with a rate of 3 K/min using a separate heating 

zone and kept at this temperature during the remaining synthesis procedure. A maximum 

pressure of 135 MPa at 625 K and 185 MPa at 925 K was reached. During the heating 

period from 625 K to 925 K, the pressure was kept between 120 and 185 MPa and 

appropriately reduced when necessary. At the end of the synthesis, the autoclave was 

cooled to room temperature by switching off the furnace. The obtained product was 

suspended and purified in 100 % ethanol by ultrasonication for 30 min. The suspension 

was centrifuged for 10 min at 4000 rpm and the supernatant solution was disposed. This 

procedure was repeated with 100 % ethanol and three more times using 100 % acetic 

acid. After the last purification step, the microcrystalline beige-colored product was dried 

under vacuum and then stored under argon. 

6.4.3 Powder X-ray Diffraction 

The products were filled in glass capillaries (0.3 mm diameter, Hilgenberg GmbH). A Stoe 

STADI P diffractometer [Mo-Kα1 radiation, Ge(111) monochromator, Mythen 1K detector, 

modified Debye–Scherrer geometry] was used for the PXRD measurements. Indexing and 

Rietveld refinement were carried out with the TOPAS package.[31] The peak shape 

function was described using fundamental parameters with direct convolution of source 

emission profiles, axial instrument contributions, crystallite size and microstrain effects.[32] 

Preferred orientation of the crystallites was described using spherical harmonics of fourth 

order.[33] Displacement parameters of N1 and N2 featured untypical standard deviations 

and were thus refined to one common value for all atoms. Site occupancy factors were 

refined in accordance with the composition of the solid solution Ca1–xLixAl1–xGe1+xN3. 

Temperature-programmed powder X-ray diffraction patterns were recorded using a Stoe 

STADI P diffractometer [Mo-Kα1, λ = 0.70930 Å, Ge(111) monochromator, image-plate 

position-sensitive detector] equipped with a high-temperature graphite furnace. 

Measurements were conducted in steps of 50 K up to 1270 K with a heating rate of 5 

K/min. 

Further details on the crystal structure investigations may be obtained from the 

Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax: 

+49-7247-808-666; E-mail: crysdata@fiz-karlsruhe.de), on quoting the depository number 

CSD-433751. 
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6.4.4 Scanning Electron Microscopy (SEM) 

A FEI Helios G3 UC scanning electron microscope (field emission gun, acceleration 

voltage 30 kV) equipped with an energy-dispersive X-ray (EDX) detector for elemental 

analyses was used to investigate the morphology and chemical composition of the 

products. The samples were placed on an adhesive carbon pad and coated with a 

conductive carbon film using a high-vacuum sputter coater (BAL-TEC MED 020, Bal Tec 

AG). 

6.4.5 Transmission Electron Microscopy 

For sample preparation, crystals of Ca1–xLixAl1–xGe1+xN3 (x ≈ 0.2) were ground in absolute 

ethanol and drop-cast on copper grids covered with holey carbon film (S166-2, Plano 

GmbH, Germany). The grids were mounted on a double-tilt holder and transferred into a 

Cs DCOR probe corrected Titan Themis 300 (FEI, USA) TEM equipped with X-FEG, post-

column filter (Enfinium ER-799), US1000XP/FT camera system (Gatan, Germany) and a 

windowless, 4-quadrant Super-X EDX detector. TEM images were recorded using a 

4k × 4k FEI Ceta CMOS camera. The microscope was operated at 300 kV accelerating 

voltage for SAED and STEM-HAADF (convergence angle of 16.6 mrad, 50 µm aperture, 

detector inner half angle 63 mrad for 100 mm camera length). For evaluation of the TEM 

data, the following software was used: Digital Micrograph (Fourier filtering of STEM 

images), ProcessDiffraction7 (geometric calculations for SAED), JEMS (SAED 

simulations), and ES Vision (EDX spectra).[34-38] Given EDX data are averaged values of 

three single crystals. 

6.4.6 ICP-OES 

For quantitative elemental analysis, inductively coupled plasma optical emission 

spectrometry (ICP-OES) was conducted using a Varian Vista RL ICP-OES spectrometer. 

The sample was dissolved in HNO3/HCl and hydrofluoric acid. 

6.4.7 UV/Vis Spectroscopy 

Diffuse reflectance measurements between 200 and 800 nm were carried out at room 

temperature using a Jasco V-650 UV/Vis spectrophotometer (Czerny-Turner mount, 

photomultiplier tube detector) equipped with deuterium (190 - 350 nm) and halogen (330 -
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900 nm) lamps as light sources. The deuterium-halogen lamp switch at 330 nm was 

corrected for a reliable determination of the band gap. 
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7 New perspectives for the ammonothermal synthesis and 

growth of ternary nitrides 

Within the previous chapters, fundamental advances covering the ammonothermal 

synthesis of ternary and multinary nitrides were presented which strongly emphasize the 

high potential of this method. Significant findings that emerged within these systematic 

studies and have not yet been addressed will be briefly discussed in the following 

sections.  

 

7.1 Ammonoacidic synthesis of ZnGeN2 

Up to now, reported ammonothermal syntheses of ternary nitrides were solely performed 

in ammonobasic environment. In chapter 3, synthesis of ZnSiN2 and ZnGeN2 was 

presented employing LiNH2, NaNH2 or KNH2 as ammonobasic mineralizers. In this 

section, first ammonoacidic synthesis of the ternary nitride ZnGeN2 will be demonstrated. 

7.1.1 Experimental 

Ammonoacidic syntheses of ZnGeN2 and powder X-ray diffraction analyses were 

performed analogous to experiments described in section 3.4. To prevent severe 

corrosion of the autoclave walls, custom-built liners made of hot-pressed sintered Si3N4 

(FCT Ingenieurkeramik GmbH) were used.[1] Zn (4.5 mmol, Alfa Aesar, 99.9%), Ge3N4 

(1 mmol, Sigma-Aldrich, 99.99%) and NH4F (22.5 mmol, Merck, 98%) were mixed and 

placed into the liner which was closed with a Si3N4 lid and then transferred into an Inconel 

718 autoclave. The autoclave was closed, evacuated and cooled with ethanol / liquid 

nitrogen to 198 K. Ammonia was condensed into the autoclave via a pressure regulating 

valve. The autoclave body was heated to 870 K with a rate of 3.2 K / min and kept at this 

temperature for 195 h. A maximum pressure of 195 MPa was reached. The product was 

washed with 1 M HCl to remove residual mineralizer and intermediates and then dried at 

350 K in air. ZnGeN2 was obtained as beige polycrystalline powder. 
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7.1.2 Results and Discussion 

ZnGeN2 was successfully synthesized under ammonoacidic reaction conditions using 

ammonium fluoride as mineralizer. While ternary amides typically occur within 

ammonobasic syntheses of nitrides, recent studies on the aimed crystallization of Zn3N2 

showed that fluoride ammoniates like ZnF2(NH3)2 and ZnF2(NH3)3 are formed during 

ammonoacidic reactions with NH4F.[2] On the other hand, potential Ge containing 

intermediates have not been identified as yet. According to powder X-ray diffraction 

(Figure 1), the crystallinity is slightly lower compared to presented ammonobasic 

syntheses as indicated by broadened reflections, though this was likewise observed in 

analogous ammonobasic syntheses of ZnGeN2 using Si3N4 liners. The thick wall could 

have an isolating effect lowering the reaction temperature and further affects convection 

within the autoclave. Recently, several other potential materials were screened with 

regard to their suitability as liners for ammonoacidic reactions. Next to Si3N4, molybdenum 

was suggested for NH4F und NH4Cl solutions, while silver was only suitable for syntheses 

with NH4F.[1,3-4] The effect of different liner materials as well as employment of further 

ammonium halides as acidic mineralizers will be highly interesting for future studies. 

The presented experiments demonstrate the first ammonoacidic synthesis of a ternary 

nitride and thus open up a wide range of new opportunities within ammonothermal 

research. With regard to the highly efficient crystal growth of GaN employing NH4F as 

mineralizer, new perspectives for the development of growth processes for ternary 

nitrides, the formation of solid solutions as well as for possible p- and n-doping of GaN are 

established.[5-6] 

 

 

Figure 1. Rietveld refinement of ZnGeN2 with experimental data (black line, Cu-Kα1 radiation,  

λ = 1.540596 Å), calculated pattern (red line), difference profile (blue line) and positions of Bragg 

reflections (green bars).  
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7.2 Ammonothermal growth of the ternary nitridotantalate KTaN2 

Presented results in previous chapters showed that crystallites in the µm range with well-

defined morphology can be grown through ammonothermal reactions. However, growth of 

larger nitride crystals is hampered by low solubilities of Si or Ge containing species as well 

as the decomposition of ammonia at elevated temperatures. To promote crystal growth of 

addressed ternary and multinary nitrides, significantly higher pressures will be required for 

these reactions which in turn increase respective solubilities of ionic solids and inhibit 

ammonia decomposition at high reaction temperatures.[7-8] A proof of concept for crystal 

growth of the ternary nitridotantalate KTaN2 will be demonstrated in the following. 

7.2.1 Experimental  

Growth of KTaN2 single crystals was serendipitously observed during exploratory 

ammonothermal syntheses of ZnSiN2. Synthesis, powder X-ray diffraction and scanning 

electron microscopy analyses were performed analogous to experiments described in 

section 3.4. Zn (7.5 mmol, Alfa Aesar, 99.9%), Si (7.5 mmol, Alfa Aesar, 99.99%) and KN3 

(15 mmol, Sigma-Aldrich, 99.9%) were mixed and placed into a tantalum liner (WHS 

Sondermetalle) which was transferred into a Haynes 282 autoclave. The autoclave was 

closed under argon, evacuated and cooled with ethanol / liquid nitrogen to 198 K. 

Ammonia was condensed into the autoclave via a pressure regulating valve. The 

autoclave body was heated to 670 K with a rate of 3 K / min, kept at this temperature for 

20 h, heated to 1070 K with a rate of 0.05 K / min and held for further 140 h. The pressure 

was kept between 25 and 155 MPa during the heating periods. The product was washed 

with water to remove residual mineralizer and intermediates and then dried at 350 K in air. 

Green crystals were observed at the outer wall of the liner. 

7.2.2 Results and Discussion 

Powder X-ray analyses indicated that the targeted product ZnSiN2 was slightly 

contaminated with KTaN2 which emerged from the employed tantalum liner (Figure 2). At 

the outer wall of the liner, octahedron-shaped large crystals of KTaN2 with diameters up to 

100 µm and excellent crystal morphology were discovered (Figure 3, table 1). In contrast, 

only microcrystalline KTaN2 was obtained in previous ammonothermal studies.[9] The well-

defined crystals suggest growth proceeding from solution which is promoted by 

convection-driven chemical transport of the mineralizer KNH2. The increasing temperature 

and the accompanying ammonia decomposition results in continuous supersaturation 
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during the heating periods. It can be assumed that the low applied heating rates of 3 K / h 

supported growth of isolated single crystals as supersaturation of the solution is kept very 

low. The tantalum liner apparently serves as substrate that further promotes the growth of 

well-defined single crystals. These results show that crystal growth of ternary nitrides from 

ammonothermal synthesis can be accomplished, while aspects like solubilities, 

supersaturation of supercritical ammonia solutions and chemical transport have to be 

taken into account. 

 

Figure 2. Rietveld refinement of obtained product with experimental data (black line, Cu-Kα1 

radiation, λ = 1.540596 Å), calculated pattern (red line) and difference profile (blue line). Positions 

of Bragg reflections are represented with green bars for ZnSiN2 and pink bars for KTaN2. 

 

 

Figure 3. Scanning electron microscopy (SEM) image of KTaN2. 
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Table 1. SEM EDX measurement of KTaN2 single crystal in atom %. Little oxygen impurities 

presumably arise from the washing treatment 

K Ta N O 

17.3 17.1 57.4 8.2 

 

 

7.3 Ammonothermal synthesis of the rare earth nitridosilicate Eu2SiN3 

Previous studies on the ammonothermal synthesis of nitridosilicates and -germanates are 

limited to main group elements, while rare earth metals have only been addressed with 

regard to amides, binary nitrides and dopants for luminescent materials.[7,10-11] Within this 

section, ammonothermal synthesis of the ternary rare earth nitridosilicate Eu2SiN3 will be 

presented. 

7.3.1 Experimental 

Eu2SiN3 was obtained within explorative ammonothermal syntheses of rare earth metal 

nitrides. Syntheses and powder X-ray diffraction were performed analogous to 

experiments described in section 5.4. The intermetallic precursor EuGaSi was 

synthesized from Eu (8.0 mmol, smart-elements, 99.99%), Ga (8.0 mmol, smart-elements, 

99.999%) and Si (8.0 mmol, Alfa Aesar, 99.99%). The elements were placed into a 

tantalum ampule, heated to 1300 K at a rate of 5 K / min, kept at this temperature for 48 h 

and cooled down to room temperature with a rate of 0.5 K / min. EuGaSi (2.5 mmol) and 

NaN3 (7.5 mmol, Acros, 99%) were transferred into a tantalum liner (WHS Sondermetalle) 

which was placed in a Haynes 282 autoclave. The autoclave was closed under argon, 

evacuated and cooled with ethanol / liquid nitrogen to 198 K. Ammonia was condensed 

into the autoclave via a pressure regulating valve. The autoclave body was heated to 

770 K with a rate of 1 K / min, kept at this temperature for 20 h, heated to 1070 K with a 

rate of 1 K / min and held for further 5 h. The pressure was kept between 110 and 

160 MPa during the heating periods. A black product with colorless plate-like crystals was 

obtained. 
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7.3.2 Results and Discussion 

Reaction of intermetallic EuGaSi with NaN3 under ammonothermal conditions yields the 

mixed valence europium nitridosilicate Eu2SiN3 next to GaN, NaNH2 and minor 

unidentified side-phases (Figure 4). Eu2SiN3 is commonly obtained from europium metal 

and silicon diimide Si(NH)2 at 1170 K in lithium flux.[12] Previous reactions in the Eu / 

NaNH2 system at lower temperatures yielded divalent Eu2+ species like Na2Eu3(NH2)8, 

whereas employment of KNH2 enables the formation of both Eu2+ and Eu3+ containing 

amides as well as crystal growth of EuN.[13-14] At 1070 K, no intermediate species were 

observed, while the mixed valence nitride Eu2SiN3 is preferably formed instead of possible 

wurtzite-type nitrides like NaSi2N3 or as yet unknown EuGaSiN3. Eu2SiN3 crystallizes in 

orthorhombic space group Cmca (no. 64) containing one-dimensional infinite 

nonbranched zweier chains of corner-sharing SiN4 tetrahedra, where europium is 

coordinated in a distorted pentagonal bipyramidal manner by nitrogen (Figure 5).[12] Plate-

like crystals of Eu2SiN3 with up to 10 µm in length were observed by scanning electron 

microscopy (Figure 6, table 2). Apparently, growth rates are significantly higher compared 

to other nitridosilicates obtained from ammonothermal synthesis, in particular with regard 

to the short applied reaction time.[11,15-16] These findings open up numerous new 

opportunities for the discovery of novel rare earth nitrides and are thus highly promising 

for future ammonothermal studies within these systems. 

 

 

Figure 4. Rietveld refinement of obtained product with experimental data (black line, Mo-Kα1 

radiation, λ = 0.70930 Å), calculated pattern (red line) and difference profile (blue line). Positions of 

Bragg reflections are represented with violet bars for Eu2SiN3 (51.8 wt%), green bars for NaNH2 

(26.6 wt%) and pink bars for GaN (21.6 wt%). 
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Figure 5. Crystal structure of Eu2SiN3 viewed along 100 (a), 010 (b) and 001 (c) with corner-

sharing SiN4 tetrahedra depicted in blue, Eu
2+

 in red and Eu
3+

 in orange. 

  

 

Figure 6. Scanning electron microscopy (SEM) image of Eu2SiN3. 
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Table 2. SEM EDX measurement of Eu2SiN3 crystals coated with decomposition products of 

NaNH2 and intermediates in air, in atom % 

Eu Si N Na O Ga 

12.7 8.5 40.7 10.6 26.9 0.6 

 

 

7.4 Conclusion 

In this chapter, new fundamental aspects for the ammonothermal synthesis and crystal 

growth of ternary nitrides were presented. The ammonoacidic approach greatly expands 

the synthetic potential of ammonothermal syntheses and establishes a virtually 

unexplored field within ammonothermal research. Moreover, the feasibility for crystal 

growth of ternary nitrides with excellent crystal morphology was demonstrated including 

KTaN2 single crystals with up to 100 µm in diameter. Development of new autoclave 

systems could enable significantly higher pressures which in turn would strongly promote 

the growth of ternary nitrides. The extension of syntheses to rare earth elements further 

entailed promising perspectives for the discovery of new nitride materials as well. 

Therefore, an excellent fundament for future explorative ammonothermal studies and the 

development of growth processes for ternary nitrides was created. 
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8 Conclusion and Outlook 

Prevailing synthesis methods for nitrides involve high-temperature or high-pressure 

techniques based on solid-state or metathesis reactions frequently with the aid of flux and 

nitriding agents. These procedures are suitable for synthesis of microcrystalline nitride 

powders, whereas growth of larger crystals is mostly hampered owing to the insufficient 

diffusion and fusibility of nitrides within these reactions. Moreover, nitrides with low 

thermal stability are difficult to access using these approaches which thereby impedes 

their discovery. In contrast, the ammonothermal method comprises solution-based 

reactions at rather moderate temperatures and is thus particularly promising for nitrides 

with limited thermal stability as well as crystal growth from solution employing well-soluble 

intermediates as transporting agents. Here, supercritical ammonia is used as reaction 

medium which provides enhanced solubilities of starting materials, high diffusivity of 

dissolved intermediates, low viscosity as well as near zero surface tension.[1-3] While 

hydrothermal syntheses are renowned for their great potential regarding crystal growth of 

inorganic materials and their scalable processes, the ammonothermal method is still on an 

early stage of development. 

At present, ammonothermal research is primarily focused on the growth of gallium nitride 

and the enhancement of crystal qualities. Prior to this thesis, only very few examples of 

other nitrides from ammonothermal syntheses were available in literature. This thesis 

aimed to establish the ammonothermal method as powerful explorative tool for the 

synthesis of ternary and multinary nitrides. Experiments within autoclaves commonly used 

for GaN crystal growth revealed that these reactors barely provide the required 

parameters for the ammonothermal synthesis of other nitrides and rather lead to products 

with low crystallinity. Based on these preliminary studies, new high-pressure autoclaves 

made of superalloy Haynes 282 were developed that feature high tensile strength, yield 

strength and ductility at elevated process temperatures. In this way, maximum 

temperature and pressure limits could be significantly extended which proved to be the 

key to access highly crystalline ternary nitride semiconductors as well as novel multinary 

nitrides employing an ammonothermal approach. 

Within this work, systematic syntheses of Grimm-Sommerfeld analogous ternary nitride 

semiconductors MgSiN2, MgGeN2, MnSiN2, MnGeN2, ZnSiN2, ZnGeN2, LiSi2N3 and 

LiGe2N3 (generally classified as II-IV-N2 and I-IV2-N3 nitrides) from ammonobasic 

supercritical ammonia solutions were presented. The ammonothermal method proved to 
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be an excellent synthetic approach for this class of materials and enabled the preparation 

of pure products without observable side-phases within PXRD analyses. Experimental 

optical investigations included in chapters 3 and 4 demonstrate that a wide range of band 

gaps can be covered with these compounds. Noteworthy, the massively growing demand 

in GaN based semiconductors necessitates the search for earth-abundant materials as 

well-suited alternatives. The determined variability of optical and electronic properties 

coupled with a remarkable band gap tunability and high thermal stability makes these 

II-IV-N2 and I-IV2-N3 nitrides very promising to replace currently used semiconductors 

based on scarce elements like gallium or indium. Superior properties compared to group 

13 nitrides have already been ascertained, e.g. similar spontaneous polarization 

parameters of Zn(Si,Ge,Sn)N2 which could suppress polarization fields in 

heterostructures.[4] Moreover, these materials feature promising optical properties for solar 

energy-conversion systems like photovoltaics or photocatalytical water splitting and further 

possess low carrier effective masses which is highly interesting for potential uses within 

power electronics.[5-7] II-IV-N2 and I-IV2-N3 nitrides thus represent an intriguing class of 

semiconductors which could enable the development of new innovative devices. Still, 

most available data on these materials are based on theoretical calculations, while optical 

and electronic properties are virtually unexplored from an experimental point of view. 

Based on presented results in this work, detailed experimental investigation of further 

semiconductor characteristics can be performed on single crystals, e.g. charge carrier 

mobilities, concentrations and lifetimes as well as impurity and defect concentrations. In 

this regard, examination of suitable dopants for II-IV-N2 and I-IV2-N3 nitrides within these 

bulk materials will be of great interest for future studies as well. Notably, the wide 

variability of these wurtzite-type superstructures provides numerous opportunities to 

implement p- and n-type conductivity, for instance by doping with monovalent or trivalent 

cations within II-IV-N2 materials, respectively.[8] 

Furthermore, novel multinary nitrides were discovered employing highly reactive 

intermetallic precursors and ammonobasic mineralizers as starting materials. On the one 

hand, the first nitridogallosilicate CaGaSiN3 was prepared containing corner-sharing GaN4 

and SiN4 tetrahedra within its three-dimensional framework. While nitridosilicates 

commonly require synthesis temperatures above 1300 K, stabilities of nitridogallates are 

quite limited concerning thermal decomposition.[9-11] Same holds for the gallium-containing 

nitridosilicate CaGaSiN3 which decomposes below 1000 K at ambient pressure as 

established by high-temperature powder X-ray diffraction. Conventional high-temperature 

approaches are thus not applicable for the synthesis of such nitrides, while comparably 

moderate temperatures are sufficient for ammonothermal syntheses owing to the high 
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reactivity of supercritical ammonia and occurring intermediates. Besides, high pressures 

could additionally stabilize such potentially metastable compounds during these reactions. 

Apart from this, Eu2+ doped samples of CaGaSiN3 show promising luminescence 

characteristics shifting the emission maximum from 650 to 620 nm compared to the 

industrially important red phosphor CaAlSiN3:Eu2+ (CASN). As the blue-shift reduces 

losses in the infrared region of emission within phosphor-converted LEDs, inclusion of Ga 

is a promising alternative for luminescence tuning of CASN-type materials. 

On the other hand, the first nitridoalumogermanate Ca1-xLixAl1-xGe1+xN3 was synthesized 

whose anionic framework is built up of corner-sharing AlN4  and GeN4 tetrahedra. While 

access to nitridogermanates is virtually limited to the sodium azide route,[11] the 

ammonothermal method proved to be a new highly promising approach for the discovery 

of novel nitridogermanates. Well-defined single crystals with diameters of up to 15 µm 

were obtained within short reaction periods which indicates remarkable growth rates from 

supercritical ammonia solution. While the exceptional thermodynamic stability of AlN and 

GaN often hampers syntheses of nitridoaluminates and -gallates and limits feasible 

synthetic approaches, it was shown that multinary Al- and Ga-containing nitrides can be 

accessed despite prevailing reaction conditions for the formation of the respective 

binaries.[12] These findings thus offer great potential for the discovery of further multinary 

nitridoaluminates and -gallates from ammonothermal syntheses. 

Within this thesis, the number of ammonothermally accessible ternary and multinary 

nitrides was more than doubled revealing the high potential of explorative ammonothermal 

syntheses at elevated reaction temperatures and pressures. As nitrides crystallizing in 

wurtzite-derived superstructures seem to be preferably formed under ammonothermal 

reaction conditions, several other promising wurtzite-type nitride or oxonitride 

semiconductors could be readily accessible, such as ZnTiN2, Zn3WN4 or ZnAlON.[7] 

According to considerations of Parthé, further compositions for fully condensed tetrahedral 

structures might be well feasible taking respective valence electron concentrations (VEC) 

into account, e.g. MIIMIII
2M

IVN4, MII
2M

IIIMVN4 or MIMIIIMIV
2N4.

[13-14] For instance, the 

thermodynamic stability of quaternary nitride semiconductors LiAlGe2N4 and LiGaGe2N4 

was recently predicted, while synthetic access to these materials was not accomplished 

so far.[15] As demonstrated for the rare earth nitridosilicate Eu2SiN3, inclusion of heavier 

countercations within these anionic frameworks or employment of other mineralizer 

systems is highly promising and further extends the structural variety of accessible 

nitrides. Moreover, Jacobs and coworkers already demonstrated the possible 

ammonothermal access to nitridophosphates, while reported crystal growth of 
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imidonitrides Rb8[P4N6(NH)4](NH2)2 and Cs5[P(NH)4](NH2)2 indicates the occurrence of 

well-soluble phosphorus containing intermediate species.[16-18] Taking advantage of the 

extended temperature regime, ammonothermal syntheses could thereby facilitate the 

discovery of novel nitridophosphates and further enable growth of macroscopic single 

crystals via convection-driven transport reactions. 

Using newly developed high-temperature autoclaves, typical attainable crystal sizes of 

ternary and multinary nitrides were significantly increased compared to previous 

ammonothermal studies.[19-21] Exemplarily, single crystals of the nitridotantalate KTaN2 

with up to 100 µm in diameter and excellent crystal morphology were grown via controlled 

supersaturation of the present solution. Yet, growth rates are mostly limited by solubilities 

of starting materials and occurring intermediates. The ammonia equilibrium is significantly 

shifted to its decomposition products N2 and H2 at synthesis temperatures above 900 K 

which further hampers dissolution and diffusion of intermediate species. To this end, 

considerably higher pressures beyond 500 MPa will be required to inhibit ammonia 

decomposition and to enhance solubilities through an increased relative permittivity.[12,22-23] 

Dissolvabilities would be additionally improved by an increased density of supercritical 

ammonia thus promoting solution-based crystal growth of addressed nitrides. Presented 

in situ X-ray imaging experiments already provided a proof of principle for possible 

dissolution and recrystallization based growth of ternary nitrides. As conventional 

autoclave systems sustaining even higher pressures at temperatures of 1100 K are hardly 

feasible owing to materials limitations, alternative concepts including internally heated 

capsule based systems or techniques related to other high-pressure technologies have to 

be considered.[24-26] 

Future experiments should cover the identification of dissolved intermediates as well as 

investigation of their formation and degradation conditions. With regard to strongly 

diverging solubilities of included elements and intermediate species, estimation of the 

latter is indispensable to enable controlled crystal growth. In situ Raman and UV-VIS 

spectroscopy can give information on the type of dissolved species, while in situ ultrasonic 

velocity measurements were recently developed to determine concentrations of dissolved 

mineralizer or intermediates.[27-28] The advancement of in situ technologies will thus be 

essential to gain a deeper understanding of occurring crystallization processes and to 

develop sophisticated growth techniques for nitrides. In this regard, the use of well soluble 

and highly reactive precursors as well as the extension to new mineralizer systems could 

significantly promote attainable growth rates. Notably, first demonstrated synthesis of a 

ternary nitride from ammonoacidic environment opens up vast new opportunities in 
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ammonothermal research. In particular with regard to the outstanding growth rates of GaN 

employing ammonium halides as mineralizers, the ammonoacidic regime is very 

promising to strongly enhance solubilities of the starting materials and occurring 

intermediates.[2,24,29] With respect to presented results in this work and the wide range of 

still unexplored fields within ammonothermal research, this re-established synthesis 

technique provides innumerable opportunities for the discovery of new functional nitride 

materials. 

 

Final Remarks 

The here reported findings represent fundamental advances in preparative solid-state 

chemistry and put forth new highly promising perspectives for the exploratory discovery of 

novel nitrides. The development and enhancement of new high-pressure autoclaves along 

with systematic explorations of mineralizers, precursors and synthesis parameters 

strongly extended the synthetic potential of the ammonothermal method. Within this 

thesis, ammonothermal syntheses emerged as powerful approach for the preparation of 

functional ternary and multinary nitrides, thus perfectly complement its high-temperature 

and high-pressure counterparts, and further revealed great potential for solution-based 

crystal growth of ternary and multinary nitride materials. 
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9 Summary 

1. Ammonothermal Synthesis of Nitrides: Recent Developments and Future 

Perspectives 

Jonas Häusler, and Wolfgang Schnick 

Chem. Eur. J. 2018, DOI: 10.1002/chem.201800115 

 

This minireview illuminates the latest 

research findings covering the 

ammonothermal synthesis of nitrides and 

discusses future perspectives for the 

exploratory discovery of new functional 

materials. Within the last decade, growth 

rates and crystal quality of ammonothermal 

GaN were significantly improved enabling 

the development of optoelectronic devices 

with strongly increased semiconductor 

performances. Several years after the pioneering work of Jacobs and coworkers, the 

ammonothermal method was likewise rediscovered as versatile synthetic tool for the 

preparation and crystal growth of ternary and multinary nitride materials. New 

autoclave technologies enabled access to earth-abundant nitride semiconductors as 

well as novel nitrides with intriguing optical and electronic properties. The article 

further outlines synthesis strategies employing different precursors and mineralizers 

and describes future challenges for the crystal growth of nitride materials. Recently 

developed in situ technologies, which give fundamental insights into crystallization 

processes and allow solubility measurements of dissolved species, are briefly 

reviewed as well. 
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2. Ammonothermal Synthesis of Earth-abundant Nitride Semiconductors  

ZnSiN2 and ZnGeN2 and Dissolution Monitoring by In Situ X-ray Imaging 

Jonas Häusler, Saskia Schimmel, Peter Wellmann, and Wolfgang Schnick 

Chem. Eur. J. 2017, 23, 12275-12282. 

 

The first syntheses of ZnSiN2 and 

ZnGeN2 from solution are presented 

employing supercritical ammonia as 

solvent and nitriding agent. Different 

ammonobasic mineralizers MNH2 (M = 

Li, Na or K) were used to increase 

solubilities of the starting materials 

promoting the formation of reactive 

intermediate species. In this way, 

phase-pure and highly crystalline products were obtained which are ideally suited for 

analyses of materials properties. Band gaps of ZnSiN2 (3.7 eV) and ZnGeN2 

(3.2 eV) were determined by diffuse reflectance spectroscopy using the Kubelka-

Munk function and corresponding Tauc plots. These Grimm-Sommerfeld analogous 

nitrides are of particular interest as next-generation semiconductor materials with 

regard to their promising optical and electronic properties as well as the earth-

abundance of constituting elements. Further, in situ X-ray imaging experiments were 

carried out using specially designed high-pressure autoclaves equipped with 

sapphire windows to investigate the underlying mechanism of crystal growth. 

Dissolvability of ZnGeN2 in basic supercritical ammonia was ascertained which 

emphasizes the feasibility of dissolution and recrystallization based crystal growth 

processes analogous to group 13 nitrides. 

 

3. Ammonothermal Synthesis and Optical Properties of Ternary Nitride 

Semiconductors Mg-IV-N2, Mn-IV-N2 and Li-IV2-N3 (IV = Si, Ge) 

Jonas Häusler, Robin Niklaus, Ján Minár, and Wolfgang Schnick 

Chem. Eur. J. 2018, 24, 1686-1693. 

 

A new ammonothermal approach was developed for the synthesis of ternary nitride 

semiconductors MgSiN2, MgGeN2, MnSiN2, MnGeN2, LiSi2N3 and LiGe2N3 

employing custom-built high-pressure autoclaves. These Grimm-Sommerfeld 
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analogous nitrides are structurally related to industrially important group 13 nitrides 

(Al,Ga,In)N and potentially feature similar or even superior physical properties. 

However, material properties of these compounds are virtually unexplored and 

experimental data are scarcely available as yet. In this contribution, optical 

properties of MgSiN2, MgGeN2, MnSiN2, 

MnGeN2, LiSi2N3 and LiGe2N3 were 

examined experimentally and the results 

were further corroborated by DFT 

calculations. Besides, Bloch spectral 

functions were calculated using the 

SPRKKR formalism providing insights into 

electronic properties of these materials. 

The reported results demonstrate that 

these nitrides offer a wide range of attainable band gaps with manifold opportunities 

for band gap engineering and are thus very attractive for the design of new 

semiconductor materials. 

 

4. Ammonothermal Synthesis of Novel Nitrides: Case Study on CaGaSiN3 

Jonas Häusler, Lukas Neudert, Mathias Mallmann, Robin Niklaus,  

Anna-Carina L. Kimmel, Nicolas S. A. Alt, Eberhard Schlücker, Oliver Oeckler,  

and Wolfgang Schnick 

Chem. Eur. J. 2017, 23, 2583-2590. 

 

For the synthesis of CaGaSiN3, new 

high-temperature autoclaves were 

developed which can be operated at 

pressures up to 170 MPa at a 

temperature of 1100 K. CaGaSiN3 was 

synthesized from intermetallic CaGaSi 

and ammonobasic mineralizers LiNH2 or 

NaNH2 employing supercritical ammonia 

as the solvent.  CaGaSiN3 crystallizes in a wurtzite-derived superstructure in space 

group Cmc21 (a = 9.8855(11), b = 5.6595(1), c = 5.0810(1) Å, Z = 4) which was 

confirmed by powder X-ray diffraction and selected area electron diffraction (SAED). 

The structural results were further corroborated by 29Si MAS-NMR and first-principle 



9 Summary 

 

144 
 

DFT calculations. CaGaSiN3 represents the first nitride comprising (Ga,Si)N4-

tetrahedra in its anionic framework. Eu2+ doped samples show red luminescence 

with an emission maximum of 620 nm when irradiated with UV light. Hence, the 

discovery of CaGaSiN3:Eu2+ opens up new tuning opportunities of phosphors based 

on industrially important (Ca,Sr)AlSiN3:Eu2+ (SCASN) type materials. The presented 

results demonstrate that the increase of parameter limits strongly extends the 

synthetic potential of the ammonothermal method further enabling the discovery of 

novel multinary nitrides. 

 

5. Ammonothermal Synthesis and Crystal Structure of the 

Nitridoalumogermanate Ca1-xLixAl1-xGe1+xN3 (x ≈ 0.2) 

Jonas Häusler, Lucien Eisenburger, Oliver Oeckler, and Wolfgang Schnick 

Eur. J. Inorg. Chem. 2018, 2018, 759-764. 

 

The first nitridoalumogermanate 

Ca1-xLixAl1-xGe1+xN3 (x ≈ 0.2) was 

synthesized by the ammonothermal 

method from intermetallic Ca3Al2Ge2 

employing Li as mineralizer. Its crystal 

structure was analyzed by powder X-

ray diffraction, possible ordering 

phenomena were examined using 

selected area electron diffraction 

(SAED) and scanning transmission electron microscopy high-angle annular dark-

field imaging (STEM-HAADF). Ca1-xLixAl1-xGe1+xN3 (x ≈ 0.2) crystallizes in 

orthorhombic space group Cmc21 (a = 9.9822(5), b = 5.7763(2), c = 5.1484(1) Å, 

Z = 4) and can be regarded as a solid solution of LiGe2N3 and hypothetical 

CaAlGeN3. Needle-shaped crystals with up to 15 µm in length and well-defined 

morphology were obtained at a comparatively low temperature of 925 K. Besides, 

the band gap of Ca1-xLixAl1-xGe1+xN3 (x ≈ 0.2) was determined to be 4.3 eV at room 

temperature by diffuse reflectance spectroscopy. This study showed that the 

ammonothermal method represents a new promising approach for the synthesis of 

nitridogermanates with unprecedented elemental compositions. In addition, the 

investigations indicate that optical properties of quaternary MIIMIIIMIVN3-type 

materials can be tuned by formation of solid solutions with MIMIV
2N3 nitrides. 

 



9 Summary 

 

145 
 

6. New perspectives for the ammonothermal synthesis and growth of ternary 

nitrides 

This chapter covers new important 

aspects for the ammonothermal synthesis 

and crystal growth of nitrides. The first 

ammonoacidic synthesis of a ternary 

nitride is demonstrated which entails a 

new virtually unexplored field within 

ammonothermal research. Ammonium 

fluoride was used as mineralizer for the 

ammonoacidic synthesis of ZnGeN2, 

where custom-built liners made of hot-pressed Si3N4 prevented the formation of 

corrosion-induced byproducts. Moreover, a proof of concept for crystal growth of the 

ternary nitridotantalate KTaN2 is presented attaining octahedron-shaped single 

crystals with up to 100 µm in diameter and excellent crystal morphology. Here, 

crystal growth is achieved via chemical transport of the mineralizer KNH2 along with 

controlled supersaturation of the supercritical ammonia solution. These results are 

particularly promising for the development of crystal growth processes for ternary 

and multinary nitrides. Successful synthesis of the rare earth nitridosilicate Eu2SiN3 

further extends the structural variety of accessible nitrides thus providing an 

excellent basis for future explorative ammonothermal studies. 
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10 Appendix 

10.1 Supporting Information for Chapter 3 

 

Jonas Häusler, Saskia Schimmel, Peter Wellmann, and Wolfgang Schnick 

Chem. Eur. J. 2017, 23, 12275 - 12282. 

 

Table S1. Wyckoff positions and atomic coordinates of ZnSiN2 obtained by Rietveld refinement, 

standard deviations in parentheses 

Atom Wyckoff x y z SOF Uiso (Å
2
) 

Zn 4a 0.4170(1) 0.1242(3) 0.0000(6) 1 0.0211(8) 

Si 4a 0.0724(2) 0.1248(6) 0.5043(9) 1 0.0141(9) 

N1 4a 0.0588(6) 0.0930(8) 0.1513(5) 1 0.0080(15) 

N2 4a 0.1118(5) 0.6536(8) 0.0877(6) 1 0.0127(16) 

 

Table S2. Wyckoff positions and atomic coordinates of ZnGeN2 obtained by Rietveld refinement, 

standard deviations in parentheses 

Atom Wyckoff x y z SOF Uiso (Å
2
) 

§
 

Zn 4a 0.4183(7) 0.1173(5) 0.018(3) 1 0.0255(2) 

Ge 4a 0.0773(6) 0.1236(5) 0.515(3) 1 0.0255(2) 

N1 4a 0.070(3) 0.118(3) 0.148(5) 1 0.0255(2) 

N2 4a 0.099(3) 0.641(3) 0.121(3) 1 0.0255(2) 

§ Isotropic displacement parameters were refined to one common value for all four sites due to crystallite size induced 

overlapping of reflections 
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Figure S1. Temperature-programmed powder X-ray diffraction pattern of ZnSiN2. 

 

Figure S2. Temperature-programmed powder X-ray diffraction pattern of ZnGeN2. 
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10.2 Supporting Information for Chapter 4 

 

Jonas Häusler, Robin Niklaus, Ján Minár, and Wolfgang Schnick 

Chem. Eur. J. 2018, 24, 1686-1693. 

 

 

Figure S1. Scanning electron microscopy (SEM) images of MgSiN2 (a), MgGeN2 (b), MnSiN2 (c), 

MnGeN2 (d), LiSi2N3 (e) and LiGe2N3 (f). 
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Table S1. Wyckoff positions and atomic coordinates of MgSiN2 obtained from Rietveld refinement, 

standard deviations in parentheses 

Atom Wyckoff x y z SOF Uiso (Å
2
) 

Mg 4a 0.0861(5) 0.6192(7) 0.9945(13) 1 0.0061(3) 

Si 4a 0.0689(4) 0.1246(6) 0.0063(11) 1 0.0061(3) 

N1 4a 0.0530(15) 0.0894(12) 0.3634(18) 1 0.0061(3) 

N2 4a 0.1059(12) 0.6581(10) 0.4213(18) 1 0.0061(3) 

 

Table S2. Wyckoff positions and atomic coordinates of MgGeN2 obtained from Rietveld refinement, 

standard deviations in parentheses 

Atom Wyckoff x y z SOF Uiso (Å
2
) 

Mg 4a 0.0781(10) 0.6238(21) 0.0061(70) 1 0.0130(4) 

Ge 4a 0.0745(3) 0.1255(7) 0.0063(25) 1 0.0130(4) 

N1 4a 0.0860(25) 0.1462(23) 0.3917(29) 1 0.0130(4) 

N2 4a 0.0849(26) 0.6521(23) 0.3988(18) 1 0.0130(4) 

 

Table S3. Wyckoff positions and atomic coordinates of MnSiN2 obtained from Rietveld refinement, 

standard deviations in parentheses 

Atom Wyckoff x y z SOF Uiso (Å
2
) 

Mn 4a 0.0767(2) 0.6233(4) 0.9966(8) 1 0.0027(2) 

Si 4a 0.0686(4) 0.1235(8) 0.9949(15) 1 0.0027(2) 

N1 4a 0.1151(8) 0.6600(10) 0.4165(13) 1 0.0027(2) 

N2 4a 0.0526(10) 0.0885(11) 0.3489(8) 1 0.0027(2) 
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Table S4. Wyckoff positions and atomic coordinates of MnGeN2 obtained from Rietveld refinement, 

standard deviations in parentheses 

Atom Wyckoff x y z SOF Uiso (Å
2
) 

Mn 4a 0.0786(6) 0.6245(16) 0.9867(24) 1 0.0101(3) 

Ge 4a 0.0721(4)  0.1255(11) 0.9889(26) 1 0.0101(3) 

N1 4a 0.0628(25)  0.1031(31) 0.3529(37) 1 0.0101(3) 

N2 4a 0.1064(22)  0.6258(38) 0.3933(24) 1 0.0101(3) 

 

Table S5. Wyckoff positions and atomic coordinates of LiSi2N3 obtained from Rietveld refinement, 

standard deviations in parentheses 

Atom Wyckoff x y z SOF Uiso (Å
2
) 

Li 4a 0 0.3500(31) 0.9945(29) 1 0.0037(3) 

Si 8b 0.1662(2) 0.8369(4) 0.0251(36) 1 0.0037(3) 

N1 8b 0.1978(5) 0.8617(12) 0.3899(6) 1 0.0037(3) 

N2 4a 0 0.2743(11) 0.4488(11) 1 0.0037(3) 

 

Table S6. Wyckoff positions and atomic coordinates of LiGe2N3 obtained from Rietveld refinement, 

standard deviations in parentheses 

Atom Wyckoff x y z SOF Uiso (Å
2
) 

Li 4a 0   0.336(9) 0.979(32) 1 0.0087(3) 

Ge 8b 0.1657(3)  0.8280(5) 0.9795(1) 1 0.0087(3) 

N1 8b 0.1883(13)  0.8216(33) 0.3452(14) 1 0.0087(3) 

N2 4a 0  0.2940(30) 0.3873(18) 1 0.0087(3) 
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Figure S2. Temperature-programmed powder X-ray diffraction pattern of MgSiN2. 

 

Figure S3. Temperature-programmed powder X-ray diffraction pattern of MgGeN2. 
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Figure S4. Temperature-programmed powder X-ray diffraction pattern of MnSiN2. 

 

Figure S5. Temperature-programmed powder X-ray diffraction pattern of MnGeN2. 
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Figure S6. Temperature-programmed powder X-ray diffraction pattern of LiSi2N3. 

 

Figure S7. Temperature-programmed powder X-ray diffraction pattern of LiGe2N3. 
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Figure S8. Diffuse reflectance spectra of MgSiN2 (a), MgGeN2 (b), MnSiN2 (c), MnGeN2 (d), 

LiSi2N3 (e) and LiGe2N3 (f). 
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Figure S9. Enlarged section of total and atom resolved DOS of MnSiN2 (a) and MnGeN2 (b) within 

the SPRKKR formalism. 

 

Figure S10. Total and atom resolved DOS of MgSiN2 (a), MgGeN2 (b), LiSi2N3 (c) and LiGe2N3 (d) 

within the SPRKKR formalism. 
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10.3 Supporting Information for Chapter 5 

 

Jonas Häusler, Lukas Neudert, Mathias Mallmann, Robin Niklaus,  

Anna-Carina L. Kimmel, Nicolas S. A. Alt, Eberhard Schlücker, Oliver Oeckler,  

and Wolfgang Schnick 

Chem. Eur. J. 2017, 23, 2583–2590. 

 

Table S1. Wyckoff positions and atomic coordinates of CaGaSiN3:Eu
2+

 obtained by Rietveld 

refinement, standard deviations in parentheses 

Atom Wyckoff x y z SOF Biso (Å
2
) 

§
 

Ca 4a 0 0.313(2) 0.473(8) 0.99 1 

Eu 4a 0 0.313(2) 0.473(8) 0.01 1 

Ga 8b 0.171(1) 0.161(1) 0.014(8) 0.5 1 

Si 8b 0.171(1) 0.161(1) 0.014(8) 0.5 1 

N1 8b 0.200(2) 0.114(4) 0.388(8) 1 1 

N2 4a 0 0.234(5) 0 1 1 

§
 Isotropic displacement parameters were fixed during the Rietveld refinement 
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Figure S1. SEM image of plate- and needle-shaped crystallites of CaGaSiN3. 

 

Figure S2. Temperature-dependent powder X-ray diffraction pattern. 
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10.4 Supporting Information for Chapter 6 

 

Jonas Häusler, Lucien Eisenburger, Oliver Oeckler, and Wolfgang Schnick 

Eur. J. Inorg. Chem. 2018, 2018, 759-764. 

 

 

 

Figure S1. Temperature-programmed powder X-ray diffraction pattern of Ca1-xLixAl1-xGe1+xN3 

(x ≈ 0.2). 
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Figure S2. Scanning electron microscopy (SEM) secondary electron (SE) images of 

Ca1-xLixAl1-xGe1+xN3. 



10 Appendix 

 

161 
 

 

Figure S3. SAED patterns of Ca1-xLixAl1-xGe1+xN3 with corresponding simulated patterns. Yellow 

reflections in simulations correspond to kinematically forbidden reflections. 
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11 Publications 

11.1 List of publications within this thesis 

 

1. Ammonothermal Synthesis of Nitrides: Recent Developments and Future 

Perspectives 

Jonas Häusler, and Wolfgang Schnick 

Chem. Eur. J. 2018, DOI: 10.1002/chem.201800115 

 

Conceptualization of this review-type article, literature screening, writing of the 

manuscript and creation of graphical material was carried out by Jonas Häusler. 

Wolfgang Schnick revised the manuscript and supervised the research project. 

 

 

2. Ammonothermal Synthesis of Earth-abundant Nitride Semiconductors  

ZnSiN2 and ZnGeN2 and Dissolution Monitoring by In Situ X-ray Imaging 

Jonas Häusler, Saskia Schimmel, Peter Wellmann, and Wolfgang Schnick 

Chem. Eur. J. 2017, 23, 12275-12282. 

 

For this contribution, ammonothermal syntheses, structure elucidation from powder 

X-ray diffraction data, Rietveld refinements, diffuse reflectance spectroscopy, band 

gap determination, literature research, writing of the main part of the manuscript, 

supporting dissolution experiments and sample preparation for in situ experiments 

were carried out by Jonas Häusler. In situ X-ray imaging, evaluation and discussion 

of the obtained data was done by Saskia Schimmel. Graphical material was created 

by Jonas Häusler and Saskia Schimmel. Peter Wellmann supervised the in situ 

experiments and Wolfgang Schnick directed and supervised the research project. All 

authors revised the manuscript. 
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3. Ammonothermal Synthesis and Optical Properties of Ternary Nitride 

Semiconductors Mg-IV-N2, Mn-IV-N2 and Li-IV2-N3 (IV = Si, Ge) 

Jonas Häusler, Robin Niklaus, Ján Minár, and Wolfgang Schnick 

Chem. Eur. J. 2018, 24, 1686-1693. 

 

Literature screening, writing of the main part of the manuscript, sample synthesis, 

powder X-ray diffraction analyses, Rietveld refinements, spectroscopic 

measurements and band gap determination were carried out by Jonas Häusler. DFT 

calculations and evaluation of the data were done by Robin Niklaus under the 

supervision of Ján Minár. Graphical material was created by Jonas Häusler and 

Robin Niklaus. Wolfgang Schnick directed and supervised the work. All authors 

revised the manuscript. 

 

 

4. Ammonothermal Synthesis of Novel Nitrides: Case Study on CaGaSiN3 

Jonas Häusler, Lukas Neudert, Mathias Mallmann, Robin Niklaus,  

Anna-Carina L. Kimmel, Nicolas S. A. Alt, Eberhard Schlücker, Oliver Oeckler,  

and Wolfgang Schnick 
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For this article, literature research, writing of the major part of the manuscript, 

powder X-ray diffraction analyses, Rietveld refinements, luminescence 

measurements and evaluation of NMR data were carried out by Jonas Häusler. 

Sample syntheses and synthesis optimization was performed by Jonas Häusler and 

Mathias Mallmann. TEM investigations were carried out by Lukas Neudert under the 

supervision of Oliver Oeckler. Elucidation of the TEM data was performed by Lukas 

Neudert and Oliver Oeckler. Construction of ordered structure models and DFT 

calculations were done by Robin Niklaus. In close collaboration, Anna-Carina L. 

Kimmel developed new high-temperature autoclaves for syntheses up to 1070 K 

under the supervision of Nicolas S. A. Alt and Eberhard Schlücker. Wolfgang 

Schnick directed and supervised the research project. All authors revised the 

manuscript. 
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Jonas Häusler, Lucien Eisenburger, Oliver Oeckler, and Wolfgang Schnick 

Eur. J. Inorg. Chem. 2018, 2018, 759-764. 

 

For this publication, preparation of intermetallic precursors, ammonothermal 

syntheses, powder X-ray diffraction analyses, Rietveld refinements, diffuse 

reflectance spectroscopy, writing the main part of the manuscript and literature 

research was performed by Jonas Häusler. TEM investigations were carried out by 

Lucien Eisenburger under the supervision of Oliver Oeckler. Elucidation of the TEM 

data was done by Lucien Eisenburger and Oliver Oeckler. Graphical material was 

created by Jonas Häusler and Lucien Eisenburger. Wolfgang Schnick directed and 

supervised the research project. All authors revised the manuscript. 
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Ramona Hoffmann, Sonja Matich, Christina Scheu 

Solid State Sci. 2013, 26, 23-30. 

 

 

11.3 Conference Contributions 

 

1. Ammonothermal method and metathesis reactions for the synthesis of binary 

and multinary nitrides (talk) 

Jonas Häusler, and Wolfgang Schnick 

1. Obergurgl-Seminar für Festkörperchemie, Obergurgl (Austria), January 28 - 31, 

2014. 

 

2. New insights into the ammonothermal synthesis of ternary and quaternary 

nitrides (poster presentation) 

David Schmidl, Jonas Häusler, and Wolfgang Schnick 

Undergraduate Research Conference on Molecular Sciences (URCUP), Kloster 

Irsee (Germany), July 2 - 3, 2016. 
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3. Band Gap and Electronic Structure of Zn(Ge,Si)N2: Probing Defects Using 

XEOL (poster presentation) 

Tristan de Boer, Philipp Strobel, Jonas Häusler, Wolfgang Schnick, and Alexander 

Moewes 

Advanced Light Source (ALS) User Meeting, Berkeley, California (USA),  

October 2 - 4, 2017. 

 

4. Cation disorder in Ca1-xLixAl1-xGe1+xN3 (x ≈ 0.2) by STEM-HAADF (talk) 

Lucien Eisenburger, Jonas Häusler, Wolfgang Schnick, and Oliver Oeckler 

26th Annual Meeting of the German Crystallographic Society (DGK), Essen, 

Germany, March 5 - 8, 2018. 
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11.4 Deposited Crystallographic Data 

Crystallographic data (CIF) of investigated compounds were deposited at the 

Fachinformationszentrum (FIZ) Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany 

(fax: +49-7247-808-666, e-mail: crysdata@fizkarlsruhe.de) and are available on quoting 

the following CSD depository numbers. 

 

 
Compound CSD-Number 

 
ZnSiN2 CSD-432701 

 
ZnGeN2 CSD-432702 

 
MgSiN2 CSD-433631 

 
MgGeN2 CSD-433632 

 
MnSiN2 CSD-433633 

 
MnGeN2 CSD-433634 

 
LiSi2N3 CSD-433635 

 
LiGe2N3 CSD-433636 

 
CaGaSiN3:Eu2+ CSD-432259 

 
Ca1-xLixAl1-xGe1+xN3 (x ≈ 0.2) CSD-433751 

 

 

 


