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Summary  

Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder among the 

elderly. Amyloid-β is thought to be one of the causative factors for AD, which is produced 

by BACE1 (Beta-secretase) initiated sequential proteolytic cleavage of APP. BACE1 

inhibition is one of the promising therapeutic approaches for AD. Currently, several 

BACE1 inhibitors are undergoing Phase 2/3 clinical trials. However, prolonged BACE1 

inhibition interferes structural and functional synaptic plasticity in mice, most likely due to 

the interrupted metabolism of BACE1 substrates. Seizure protein 6 (SEZ6) is 

predominantly cleaved by BACE1. Furthermore, Sez6 null mice share some phenotype 

with BACE1-inhibited mice including reduced dendritic spine density in cortex and 

diminished performance in hippocampal-dependent behavioral tests.  

In order to shed more light on the function of SEZ6, we analyzed the dendritic spine 

structure and synaptic plasticity in constitutive (Sez6-/-:GFP-M) and conditional 

(Sez6cKO/cKO:SlickV) Sez6 KO mice. In vivo two photon microscopy data showed that lack 

of SEZ6 induces a dose dependent alteration of dendritic spine density and morphology 

in adult mice. To rule out developmental deficits and identify which SEZ6 proteolytic 

fragments are involved we monitored spine density in Sez6cKO/cKO:SlickV mice. The 

tamoxifen-inducible recombinase CreERT2 and eYFP are co-expressed in a small subset 

of neurons in SlickV mice. By applying tamoxifen, Sez6 was knockout specifically in eYFP 

positive neurons in adult mice. It caused a small but significant spine density reduction. 

Electrophysiological field recordings in hippocampus CA1 region showed that SEZ6 is 
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involved in synaptic transmission and LTP mainly due to post-synaptic mechanism. To 

study the dendritic spine plasticity in Sez6-/-:GFP-M mice, we repeatedly imaged the 

apical tufts of layer V pyramidal neurons in the cerebral cortex in both normal condition 

and environmental enrichment condition by intravital two-photon microscopy. Sez6-/- mice 

does not show alerted dendritic spine plasticity in base line condition, but they have 

deficits in conditions that boost spine plasticity like environmental enrichment.  

Then, we investigated whether SEZ6 is involved in BACE1-inhibition-induced synaptic 

alteration. We applied a diet mixed with NB-360 to Sez6-/-:GFP-M and Sez6cKO/cKO:SlickV 

mice. NB-360 is a novel blood-brain barrier penetrable BACE1 inhibitor. Immunoblotting 

analysis showed that NB-360 strongly suppressed SEZ6 and APP cleavage similar to 

Bace1 knockout. To study the impact of long-term pharmacological inhibition of BACE1 

in Sez6-/-:GFP-M mice, we repeatedly imaged the apical tufts of layer V pyramidal 

neurons in the cerebral cortex for 7 weeks using intravital two-photon microscopy. 

Although 3-week treatment of NB-360 caused a significant but reversible reduction of 

density of total dendritic spines, persistent spines (persisting ⩾ 7 days) and new gained 

spines in control mice, the same treatment did not affect dendritic spine dynamics in Sez6-

/-:GFP-M mice. To rule out developmental deficits, we monitored spine dynamics upon 

NB-360 treatment in Sez6cKO/cKO:SlickV mice. Chronic NB-360 treatment did not alter 

spine plasticity in the neurons lacking cell-autonomous SEZ6. Finally, 

electrophysiological field recordings in hippocampal CA1 region showed that LTP is 

reduced in chronic NB-360 treated WT mice and vehicle treated Sez6-/- mice, but NB-360 

treatment did not interfere with LTP in Sez6-/- mice.  
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Our data suggest that SEZ6 has a pivotal role in maintaining normal dendritic spine 

structure and function. Furthermore, SEZ6 is involved in BACE1-inhibitor-induced 

structural and functional synaptic alterations.  
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INTRODUCTION  

1. Alzheimer’s disease 

Alzheimer's disease (AD) is the most prevalent neurodegenerative disease. The first case 

of Alzheimer's disease was reported by German psychiatrist Dr. Alois Alzheimer in 1906 

at the 37th meeting of the Society of Southwest German Psychiatrists (Caselli et al., 2006; 

Reiman, 2006; Selkoe, 2001). Alzheimer's disease is named after him. AD is the cause 

of 60% to 70% of cases of dementia (Prince et al., 2015). It is a progressive age-related 

disease which develops over several years. There is no effective medical treatment or 

preventive approach available for patients until now.  

The typical clinical symptoms of AD are gradual loss of memory and cognitive ability. It is 

due to the destruction of nerve cells and neural connections which leads to atrophy of the 

cerebral cortex and hippocampus and an enlargement of ventricles (Götz et al., 2001; 

Hardy and Selkoe, 2002; Selkoe and Hardy, 2016; Serrano-Pozo et al., 2011). Three 

disease progression stages can generally be distinguished. This disease begins with mild 

cognitive impairment, like the episodic memory dysfunction, which is common in most 

Alzheimer's patients. In the middle stage, cognitive abilities such as orientation, language, 

problem solving, and spatial perception are reduced. In the severe stage, AD patients 

almost lost all cognitive abilities, and they are mentally and physically dependent on their 

caretaker (Jucker et al., 2006; Tarawneh and Holtzman, 2012). 
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Neuritic plaques and neurofibrillary tangles (NFTs) are the two typical neuropathological 

hallmarks of AD (Figure 1) (Hardy and Selkoe, 2002; Selkoe and Hardy, 2016). Neuritic 

plaques are formed by misfolded Amyloid-β peptide (Aβ). Aβ peptide is 36-43 amino acids 

long. The common theory is certain misfolding Aβ molecules served as seeds which 

induce misfolding of other Aβ molecules and oligomerize. These Aβ continually form Aβ 

fiber like a chain reaction akin to a prion infection (McLaurin et al., 2000; Takahashi et al., 

2017; Wetzel et al., 2007). NFTs are formed by aggregated insoluble 

hyperphosphorylated tau protein. In physiological condition, Tau is a highly soluble 

microtubule-associated protein. In human, Tau proteins have six isoforms from 352-441 

amino acids. All the six isoforms can be hyperphosphorylated and present in NFTs (Iqbal 

et al., 2016; Ma et al., 2017). Tangles are also found in numerous of other diseases known 

as tauopathies (Iqbal et al., 2016). Both Neuritic plaques and NFTs are visible in light 

microscopy using various staining techniques, e.g. silver, Congo red and Thioflavin S 

(Figure 1). 
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Figure 1: The histopathological characteristics of the first Alzheimer's patient 

(A) The brain autopsies of the first Alzheimer's disease patient, Auguste Deter. Preserved 
in Center for Neuropathology and Prion Research at the Ludwig-Maximilians-University 
Munich. (B-D) Microimages of Bielschowsky’s silver staining. (B) The over view image of 
two pathological hall mark of Alzheimer's disease. (C-D) Enlarged image of neuritic 
plaques and neurofibrillary tangles. (Kindly provide by Prof. Dr. h.c. Hans Kretzschmar 
and Dr. Burgold) 
 

1.1. The amyloid cascade hypothesis 

The exact cause for AD is not yet clear. In 1991, the amyloid cascade hypothesis 

synthesized the knowledges from histopathological and genetic studies and proposed 

that deposition of the Aβ peptide in the human brain is the initiative and crucial step 

leading to AD (Hardy and Allsop, 1991; Karran et al., 2011).  

Aβ is the sequential proteolytic cleavage product of amyloid precursor protein (APP), a 

type-I trans-membrane protein. The N-terminus of APP is within the lumen/extracellular 

space and the C-terminus is within the cytosol. APP is proteolytically processed at several 
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different subcellular sites, for example Golgi apparatus and transport vesicles. APP can 

be processed by many secretases including α-secretase (A Disintegrin and 

metalloproteinase domain-containing protein 10, ADAM10), β-secretase (beta-site 

amyloid precursor protein cleaving enzyme 1, BACE1), γ-secretase complex and recently 

discovered η-secretase (e.g. membrane-type 5 matrix metalloproteinase, MT5-MMP) 

(Figure 2A). APP processing can be classified into non-amyloidogenic pathway (Figure 

2B), amyloidogenic pathway (Figure 2C) and η-secretase pathway (Figure 2D-E) (Haass, 

2004; Willem et al., 2015).  

The non-amyloidogenic pathway is considered as the physiologically normal pathway 

which prevents Aβ generation (Haass et al., 1992, 1993). In this pathway, APP is first 

cleaved by α-secretase in the approximately middle of the Aβ region, releasing a large 

part of the ectodomain (sAPPα) into the lumen or extracellular space. The subsequent γ-

secretase complex processing of the trans-membrane C-terminal fragment (CTFα or c83) 

generates nontoxic P3 fragment and APP intracellular fragment (AICD) (Figure 2B).  

In the amyloidogenic processing of APP, which leads to generation of the toxic Aβ, is 

dependent on consecutive action of BACE1 and γ-secretase complex. Shedding by 

BACE1, APP generates another large part of the ectodomain (sAPPβ) and APP C-

terminal fragment (CTFβ or c99). Then the γ-secretase complex performs intramembrane 

proteolysis within the biological membrane releasing Aβ and AICD. (Figure 2C).  

The η-secretase pathway is reported recently as a new physiological APP processing 

pathway (Willem et al., 2015). The initiating enzyme of η-secretase pathway is 
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membrane-bound matrix metalloproteinases (e.g. MT5-MMP). CTF-η, the third type of 

large ectodomain fragment, is generated after MT5-MMP proteolysis. CTF-η is continually 

processed by α- and β-secretase and releasing Aη-α and Aη-β, respectively (Figure 2D-

E). 

 

Figure 2: Schematic representation of amyloid precursor protein sequential 
cleavage 

(A) APP is a type I trans-membrane protein. It can be processed by α-, β-, γ- and η-
secretases. (B) In the non-amyloidogenic pathway, APP is first cleaved by α-secretases 
and released sAPPα into the extracellular space. The subsequent γ-secretase processing 
of the trans-membrane C-terminal fragment (CTFα, c83) generates nontoxic P3 fragment 
and APP intracellular fragment (AICD). (C) The amyloidogenic processing of APP is 
independent on β-secretases, resulting sAPPβ and CTFβ (c99). The toxic β-amyloid 
peptide (Aβ) is released by γ-secretases. (D-E) In the recent reported η-secretase 
pathway, APP is processed by η-secretase follow by α- and β-secretases and releasing 
Aη-α and Aη-β, respectively. 
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2. BACE1  

BACE1 is a typical transmembrane aspartic protease with a luminal active site which 

sheds the ectodomain of membrane proteins (Yan et al., 1999). It is mainly expressed in 

the central nervous system (CNS), including the neocortex and hippocampus. BACE1 

has more than 35 substrates, including APP, SEZ6, and CHL1 (Kuhn et al., 2012; Pigoni 

et al., 2016; Vassar et al., 1999; Yan et al., 1999; Zhou et al., 2012). Under physiological 

condition, BACE1 substrates are processed in acidic compartments, such as trans-Golgi 

network and endosome, where BACE1 displays its maximum proteolytic activity 

(Kalvodova et al., 2005; Vassar et al., 2014).  

BACE1 is the sole enzyme for initiating Aβ generation, and it is the rate limiting enzyme 

of the amyloidogenic pathway (Ghosh and Osswald, 2014; Sinha and Lieberburg, 1999; 

Vassar, 2016; Vassar et al., 1999). Knockout of Bace1 almost completely abolishes Aβ 

production in transgenic APP mouse models (Roberds et al., 2001; Vassar et al., 1999). 

The value of BACE1 as therapeutic target is further supported by the finding that the 

Icelandic mutation, APPAla673Thr, which suppresses APP cleavage by BACE1, results 

roughly in a 20-40% reduction of Aβ and protects against AD (Jonsson et al., 2012).  

The transportation of BACE1 within neurites is via trafficking vesicles. For the anterograde 

axonal transport, BACE1 is co-transferred together with APP regulating by calsyntenin-1 

and Rab11 (Buggia-Prévot et al., 2014; Steuble et al., 2012). Under physiological 

conditions, APP is cleaved by BACE1 in these vesicles (Del Prete et al., 2014). The 

retrograde trafficking of BACE1 is regulated by Vps35 in both axons and dendrites (Wang 



-10-	

 

et al., 2012). A recent report using fluorescence labeled technique demonstrated that 

BACE1 is located at both pre- and post-synaptic compartments within neurons (Das et 

al., 2016), indicating BACE1 has important function in the synapse. BACE1 also 

accumulates at amyloid plaque in axonal dystrophies in both AD mouse models and 

patients (Blazquez-Llorca et al., 2017; Kandalepas et al., 2013). It might directly facilitate 

the local generation of Aβ; hence further promoting the amyloid deposition. 

2.1. BACE1 inhibitor 

In the past decades, both academia and industry invested a lot of resources for 

developing BACE1 inhibitors. The 1st generation of BACE1 inhibitors are peptidomimetic 

molecules (Kandalepas and Vassar, 2014; Sinha et al., 1999). These peptide-based 

molecules mimic the β-site of APP and replaces it with a non-cleavable amide (Vassar, 

2016). Although peptide-based BACE1 inhibitors strongly inhibit BACE1 in vitro, they do 

not have the properties to in vivo application, e.g. oral bioavailability, long serum half-life, 

or blood-brain barrier (BBB) penetrable. The 2nd generation of BACE1 inhibitors are 

developed based on the X-ray crystal structure of BACE1 (Durham and Shepherd, 2006; 

Hong et al., 2002). These inhibitors are small molecular weight chemical compounds 

which can be applied orally and are plasma membrane and BBB penetrable. However, 

the concentrations in the brain are still low (Vassar, 2014, 2016). The 3rd generation of 

BACE1 inhibitors exhibit satisfactory brain concentration and strong inhibition of BACE1 

proteolytic activity. Several of the 3rd generation BACE1 inhibitors are in different phases 

of clinical trials. Some of these compounds showed promising results in phase 1 trials, 
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which did not show severe reveal adverse effects and very effectively reduce Aβ reduction 

in a dosage-dependent manner. Currently, at least 6 of them are being tested in phase 

2/3 trials (Table 1). 
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 Table 1: O
ngoing B

A
C

E1 inhibitors in clinical trials 

C
om

pound 
com

pany 
C

linical 
trial stage 

N
C

T 
num

ber 
D

osages 
A

β R
eduction 

# 
Patient 
population 

Expected 
com

pletion 
years 

C
N

P520 
N

ovartis 
Am

gen, 
Phase 2/3 

02565511 
03131453 

50m
g 

15/50m
g 

-60%
 (10m

g) 
-80%

 (35m
g) 

Asym
ptom

atic 
at-risk patients 
(APO

E4) 

2023 
2024 

A
ZD

3293 
(LY3314814) 

Eli Lilly, 
AstraZeneca 

Phase 2/3 

02783573 
02972658 
02245737 
03019549 

  
20/50m

g 
 

-50%
 (15m

g) 
-80%

 (50m
g) 

Early and m
ild 

AD
 

2021 
2020 
2019 
2017 

LY3202626 
Eli Lilly 

Phase 2 
02791191 

 
-50%

 (1m
g) 

M
ild AD

 
2019 

Elenbecestat 
(E2609) 

Eisai, 
Biogen 

Phase 2/3 
02322021 
03036280 
02956486 

  50m
g 

-50%
 (5m

g) 
-80%

 (50m
g) 

Early AD
 

2020 
2020 
2020 

JN
J-

54861911 
Janssen 

Phase 2/3 
02569398 
02406027 

5/25m
g 

5/10/25m
g 

-50%
 (5m

g) 
-80%

 (25m
g) 

Asym
ptom

atic 
at-risk patients 
and Early AD

 

2023 
2022 

M
K

-8931 
M

erck 
Phase 2/3 
Phase 3 

01739348 
01953601 

12/40/60m
g 

12/40m
g 

-32%
 (10m

g) 
-80%

 (40m
g) 

Prodrom
al AD

 
2017* 
2021 

N
C

T num
bers refer to the study codes in the C

linicalTrials.gov database 
# D

ata from
 pre-clinical hum

an studies or phase 1 studies. 
* Term

inated at A
pril 2017 
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2.2. BACE1 has physiological functions at the synapse  

BACE1 has many physiological substrates, indicating it is involved in various functions. 

The knockout of Bace1 leads to a number of physiological and behavioral deficits in mice, 

including increased astrogenesis and decreased number of mature neurons (Hu et al., 

2013), impaired axon myelination during development (Hu et al., 2006), axon guidance 

errors in the olfactory bulb and hippocampus (Hitt et al., 2012; Rajapaksha et al., 2011), 

impaired remyelination in injured sciatic nerves in the adult mice (Hu et al., 2015), reduced 

number of muscle spindles resulting in a swaying walking pattern (Cheret et al., 2013), 

as well as decreased anxiety (Laird et al., 2005). Most likely, BACE1 is involved in these 

physiological functions via its substrates. In the last decade, more than 35 BACE1 

substrates have been identified (Dislich et al., 2015; Kuhn et al., 2012; Zhou et al., 2012). 

Among those substrates, some of them are located at the synapse which are known to 

be of critical importance for synaptic function and plasticity (Table 2).  
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 Table 2: B
A

C
E1 substrates involved in synaptic plasticity 

B
A

C
E1 

cleavage  
N

am
e 

Localization 
Phenotypes / Functions 

R
ef. 

H
igh 

S
eizure protein gene 

6 (S
E

Z
6) 

D
endrite, D

endritic 
spine 

A
bnorm

al dendritic arborization, 
reduced dendritic spine density, 
synaptic transm

ission and LT
P

 

(G
unnersen et al., 

2007; Zhu et al., 
2018) 

 
A

m
yloid precursor-

like protein 1 
(A

P
LP

1) 

P
re- and post-

synapse 
R

educed synaptogenesis, dendritic 
spine density  

(S
chilling et al., 

2017) 

 
C

lose hom
ologue of 

L1 (C
H

L1)  
A

xon, P
resynaptic 

boutons 
A

xon guidance defects 
(C

ao et al., 2012; 
R

ajapaksha et al., 
2011) 

 
N

euroligin 4 
(N

LG
N

4) 
G

lycinergic post-
synapses 

A
ffects synaptic transm

ission 
(H

oon et al., 2011) 

 
N

euroligin 2 
(N

LG
N

2) 
Inhibitory synapses 

A
ffects synaptic transm

ission 
(N

guyen et al., 
2016) 

 
C

ontactin 2 
A

xon, P
resynaptic 

boutons 
A

xon guidance defects 
(G

autam
 et al., 

2014) 
 

A
m

yloid precursor 
protein (A

P
P

) 
P

re- and post-
synapse 

Increased prim
ary dendrites, Im

paired 
dendritic spine m

orphology, density and 
dynam

ic 

(W
eyer et al., 

2014) 

Low
 

N
euroligin 1 

(N
LG

N
1) 

D
endritic spine of 

excitatory synapses 
R

educed N
M

D
A

R
-m

ediated synaptic 
transm

ission and LT
P

 
(Jiang et al., 2017; 
S

ong et al., 1999) 

? 
N

euregulin 1 (N
R

G
1) 

A
xon, P

resynaptic 
boutons 

H
yperactivity, hypom

yelination, reduced 
dendritic spine density 

(H
u et al., 2010; 

S
avonenko et al., 

2008) 



-15-	

 

2.2.1. BACE1 and synaptic structures 

A synapse is a junction formed between two neurons, which transmits electrical or 

chemical signals from one to the other. The postsynaptic compartment of excitatory 

synapses, the dendritic spine, is a plastic structure that can change its shape within 

minutes or present over longer spans of weeks to months, which is termed structural 

plasticity (Fu and Zuo, 2011; Lendvai et al., 2000; Yang et al., 2009). Increased spine 

formation and stabilization is associated with learning and memory (Yang et al., 2009). 

Impairments of synaptic structure and plasticity is thought to be one of the most important 

mechanisms for memory loss in dementia (Herms and Dorostkar, 2016).  

As mentioned above, BACE1 is located at pre-synaptic terminals, especially enriched in 

mossy fiber terminals (Hitt et al., 2012; Kandalepas et al., 2013). In Bace1-/- mice, the 

mossy fiber terminals have normal ultrastructure (Kandalepas et al., 2013), however the 

infrapyramidal bundle of mossy fibers is significantly shorter indicating a potential 

alteration in axonal outgrowth (Gautam et al., 2014; Hitt et al., 2012). The abnormal 

axonal growth might be due to reduced β-cleavage of contactin-2, a cell adhesion 

molecule, since contactin-2 plays an important role in regulating axon guidance and path 

finding (Furley et al., 1990; Gautam et al., 2014). Abnormal axonal growth cone collapse 

has been seen in both Bace1-/- or BACE1 inhibitor treated mice (Barão et al., 2015; Cao 

et al., 2012; Rajapaksha et al., 2011). The altered function of the neural cell adhesion 

molecule close homolog of L1 (CHL1) has been supposed to be involved in this process, 

too (Naus et al., 2004). Cleavage of CHL1 by BACE1 generates N-terminal fragment 
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(CHL1-NTFβ) (Kuhn et al., 2012), which is critical for growth cone collapse in thalamic 

neurons since CHL1-NTFβ interacts with semaphorin 3A (Sema3A) (Barão et al., 2015). 

BACE1 is also located within dendritic spines. The density and plasticity of dendritic 

spines in Bace1-/- and Bace1+/- mice as well as WT mice treated with BACE1 inhibitors 

has been studied by various groups (Devi and Ohno, 2015; Filser et al., 2015; Sadleir et 

al., 2015; Zhu et al., 2018; Zou et al., 2016). The total spine density is significantly reduced 

in the CA1 region of Bace1-/- mice (Savonenko et al., 2008). Moreover, the proportion of 

mushroom spines is also significantly lower. This is concurrent with the reduction of 

PSD95 (post-synaptic density protein 95) density (Savonenko et al., 2008). These 

changes might be the consequences of an altered BACE1-dependent NRG1 (neuregulin-

1) signaling. Indeed, NRG1 accumulation is known to cause a reduction in dendritic spine 

density by altering the interaction between ErbB4 (receptor tyrosine-protein kinase erbB-

4) and PSD95 (Hu et al., 2006; Willem et al., 2006). Dendritic spine plasticity has not yet 

been studied in Bace1-/- mice. However, in adult Bace1+/- mice, there is no evidence 

showing that dendritic spine plasticity is impaired under enriched environment condition, 

a method for boosting spine turnover (Zou et al., 2016). 

Given that the BACE1 protein level is highest during early postnatal development in mice 

(Willem et al., 2006), developmental deficit might cause certain structural changes at 

synapses indirectly. Especially, observations in constitutive knock-out mice are based on 

life-long absents of BACE1 protein in the brain were compensation may mask the effect 

of an acute loss of BACE1 function at the synapse. Therefore, it is necessary to validate 
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the effects of BACE1 inhibition during adulthood, as some side effects may limit its clinical 

application. 

Several non-peptidic BACE1 inhibitors of different structures like SCH1682496 

(Merck/Schering-Plough Pharmaceuticals, North Wales, Pennsylvania) (Stamford et al., 

2012), LY2811376 (Eli Lilly and Company, Indianapolis, Indiana) (May et al., 2011) and 

β-Secretase Inhibitor IV (Stachel et al., 2004) have been developed within the last 

decade. All of these inhibitors strongly suppress Aβ production in mice (Filser et al., 2015; 

Kamikubo et al., 2017; May et al., 2011) and human (60). Using in vivo sequential 

microscopy, the effect of these inhibitors on individual dendritic spines has been studied 

in GFP-M mice. Administration of SCH1682496 (16 days, 100 mg/kg/day) or LY2811376 

(16 days, 100 mg/kg/day) was found to reduce the overall density of dendritic spines, and 

lower the formation rate of new gained spines in GFP-M mice (Figure 3) (Filser et al., 

2015). These impairments were not seen at lower doses (SCH1682496 or LY2811376, 

30mg/kg/day) (Filser et al., 2015). Similar findings were obtained in cultured brain slices 

after β-Secretase inhibitor IV treatment (Kamikubo et al., 2017). The treatment was found 

to decrease the protein level of PSD95 during 3-17 days in vitro (DIV) (Kamikubo et al., 

2017). Therefore, BACE1 proteolytic activity is important for maintaining the normal 

synaptic formation and maturation processes. 
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Figure 3: BACE1 inhibitor alters dendritic spine plasticity in adult GFP-M mice 

(A) the layer V cortical neurons were labeled with eGFP in GFP-M mice. Their apical 
dendrites were imaged for 45 days. BACE1 inhibitor SCH1682496 was applied to mice 
from day 10 and over 16 days (every 12 hours). Two dosage, 30 mg/kg and 100mg/kg, 
were used. White arrowheads: stable spines. green arrowheads: new gained spines. 
magenta arrowheads: lost spines. Scale bar: 10 μm. (B) Quantification of relative spine 
density, new gained and lost spines. 4-5 animals per group,10 dendrites per animal. Error 
bars represent S.E.M. One-way analysis of variance. ** p<0.01; *** p<0.001; (Filser et al., 
2015). 

 

2.2.2. BACE1 and synaptic function 

Structural alterations of synapses are considered as an indicator for functional changes. 

But how is BACE1 involved in neuronal function is not yet fully clear. Bace1-/- mice do not 

show any alterations in basal synaptic transmission under low stimulation intensity in 
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hippocampus CA1 (Figure 4A) (Filser et al., 2015; Laird et al., 2005). However, when 

using higher stimulation intensities, the slope of the stimulus-response response curve 

was significantly lower compared to controls (Filser et al., 2015). In line with knockout 

mouse model, various BACE1 inhibitors (SCH1682496 and LY2811376 and C3) were 

able to decrease the slope of the stimulus-response curve over a wide range of intensities 

in both mice and rat, indicating the weakening of synaptic transmission upon BACE1 

inhibition (Filser et al., 2015; Kamikubo et al., 2017). 

BACE1 regulates the surface expression of voltage-gated sodium channels, the key 

player for generating action potentials, by cleaving the β-subunits (Navβ2) (Wong et al., 

2005). However, controversy observations have been obtained in Bace1-/- mice: Hitt et 

al. reported that the expression level of NaV1.2 is not altered in CA3 pyramidal neurons 

of Bace1-/- mice (Hitt et al., 2010). Hu et al. , however, showed that the expression level 

of NaV1.2 is strongly increased (Hu et al., 2010). Using whole cell recordings, Dominguez 

et al. showed that Na+ current densities are lower in cortical pyramidal neurons of Bace1-

/- mice (P23-30) (Dominguez et al., 2005), but Kim at al. reported that Na+ current 

densities in CA1 neurons is reduced in BACE1 overexpression mice (Kim et al., 2007). 

Hu et al. data support the notion that Na+ currents are significantly greater in hippocampal 

pyramidal neurons of Bace1-/- mice (P21-30) (Hu et al., 2010). These data suggest that 

BACE1 might affect neuronal activity by regulating the surface expression and function 

of voltage-gated sodium channels. 
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Hippocampal LTP (long-term potentiation) and LTD (depression) are the two commonly 

used paradigms of studying synaptic plasticity. Both LTP and LTD are activity-dependent 

strengthening or weakening in the efficacy of synapses, respectively (Lynch, 2004). 

These synaptic modifications are supposed to share the same cellular mechanisms that 

underlay learning and memory (Llinás et al., 1997; Nicoll, 2017). LTD seems not to be 

significantly altered in Bace1-/- mice: It is not altered in Schaffer collateral-CA1 pathway 

(Laird et al., 2005) and in mossy fiber-CA3 pathway a slight enlargement has been 

described (Wang et al., 2008). However, in LTP the situation is different: Using theta-

burst stimulation (TBS) protocol, Bace1-/- mice show a slight but not significant LTP 

reduction in Schaffer collateral-CA1 pathway (Laird et al., 2005). This attenuation is more 

noticeable by using high frequency stimulation (HFS) protocol (Figure 4B) (Filser et al., 

2015). The mossy fiber LTP is also impaired in Bace1-/- mice (Wang et al., 2014). 

Interestingly, activation of α7nAChR (α7 nicotinic acetylcholine receptor) by nicotine has 

been shown to restore LTP in Bace1-/- mice (Wang et al., 2010). Since α7nAChR is 

involved in NMDA receptor dependent hippocampal LTP by regulating astrocytic release 

of D-serine, the NMDA receptor co-agonist (Papouin et al., 2017), it would be interesting 

to study whether BACE1 regulates D-serine homeostasis. Impaired LTP also has been 

observed in chronic strong BACE1 inhibition in WT mouse (Filser et al., 2015; Zhu et al., 

2018). Even pre-exposure to a single oral dose of SCH1682496 attenuates LTP (Willem 

et al., 2015). Intriguingly, LTP attenuation after BACE1 inhibition is clearly dose depended 

(Figure 4B) (Filser et al., 2015). Moreover, Bace1+/- mice have a normal Schaffer 

collateral-CA1 LTP (Giusti-Rodríguez et al., 2011; Wang et al., 2014). This indicates that 

synaptic deficits can be avoided if the dosage of BACE1 inhibitor does not reduce its 
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function by more than 50%. Consistent with reduced LTP, Bace1-/- and BACE1 inhibited 

mice, show deficits in hippocampus-dependent cognitive and emotional memory tests, 

but Bace1+/- mice behave normally (Dominguez et al., 2005; Filser et al., 2015; Kimura et 

al., 2010; Ohno et al., 2004, 2007; Savonenko et al., 2008; Weber et al., 2017).  

 

Figure 4: BACE1 inhibitor SCH1682496 attenuates synaptic transmission and long-
term potentiation in CA1 neurons 

(A) stimulus-response relationship graphs from WT mice treated with vehicle or 100 
mg/kg of SCH1682496 and vehicle treated Bace1-/- mice. (B) Summary plots of fEPSP 
slope changes during baseline recording and after induction of long-term potentiation 
from WT mice treated with vehicle, 30 or 100 mg/kg of SCH1682496. This figure is 
adapted from Filser et al. (2015). 

 

Paired-pulse facilitation (PPF) is a sensitive measurement of pre-synaptic vesicular 

release probability (Manabe et al., 1993). This approach was applied to understand how 

BACE1 affects synaptic transmission and LTP. Although the ultrastructure of mossy fiber 

terminals is normal in Bace1-/- mice, it has a significant increased PPF ratio mossy fibers-

CA3 pathway (Kandalepas et al., 2013; Wang et al., 2008). The increased PPF occurs 

specifically at synapses of mossy fiber-CA3 pyramidal neuron. The PPF at mossy fiber-
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CA3 interneurons synapses is normal (Wang et al., 2014). A significantly enlarged PPF 

ratio is also seen in Schaffer collateral-CA1 pathway (Laird et al., 2005). PPF ratio 

remains normal in Bace1+/- mice (Giusti-Rodríguez et al., 2011; Wang et al., 2014). These 

results indicate that complete knockout of Bace1 induces a deficit in pre-synaptic function. 

These results agree with the fact that expression of post-synaptic marker PSD-95, but not 

pre-synaptic marker synaptophysin, changes upon the treatment with the BACE-inhibitor 

IV (Kamikubo et al., 2017). 

The functions of BACE1 in maintaining dendritic spine structure, synaptic transmission, 

as well as both short-term and long-term plasticity cannot be ignored (Table 3). However, 

all on-target side effects, which are seen in Bace1-/- and mice treated with high dose of 

BACE1 inhibitor, are largely prevented in Bace1+/- mice (50% reduction in BACE1 protein 

level) or low dose treatment. Therefore, the careful adjustment of the dosage of certain 

BACE1 inhibitor might be crucial for the success of these compounds in the treatment of 

AD. 

 



-23-	

 Table 3: Consequences of genetically knockout B
ace1 and pharm

acologically inhibits B
A

C
E1 on synapses 

 
 

B
ace1

-/- 
B

ace1
+/- 

B
A

C
E1 

inhibition 
R

ef. 

Synaptic 
structure 

Pre-synaptic 
term

inals 
N

orm
al in 

m
ossy fiber 

term
inals 

 
 

(K
andalepas et al., 2013) 

Spine D
ensity 

R
educed in 

C
A

1 
 

R
educed in 

cortical L5 
pyram

idal 
neurons 

(Filser et al., 2015; S
avonenko et 

al., 2008; Zhu et al., 2018) 

Spine Plasticity 
 

N
orm

al adaptive 
plasticity in 
cortical L5 
neurons 

Im
paired in 

cortical L5 
pyram

idal 
neurons 

(Filser et al., 2015; Zhu et al., 
2018; Zou et al., 2016) 

Synaptic 
function 

B
asal synaptic 

transm
ission 

R
educed in 

C
A

1 
N

orm
al in C

A
1 

R
educed in C

A
1 

(Filser et al., 2015; G
iusti-

R
odríguez et al., 2011; K

am
ikubo 

et al., 2017) 

Pre-synaptic 
function 

Increased in 
C

A
1 &

 C
A

3 
N

orm
al in C

A
1 &

 
C

A
3 

N
orm

al in C
A

1 
(G

iusti-R
odríguez et al., 2011; 

K
andalepas et al., 2013; W

ang et 
al., 2008, 2014; Zhu et al., 2018) 

LTP 
R

educed in 
C

A
1 &

 C
A

3 
N

orm
al in C

A
1 &

 
C

A
3 

R
educed in C

A
1 

(Filser et al., 2015; G
iusti-

R
odríguez et al., 2011; K

am
ikubo 

et al., 2017; W
ang et al., 2014; 

Zhu et al., 2018) 

LTD 
N

orm
al in 

C
A

1; 
S

light deficits 
in C

A
3 

 
 

(Laird et al., 2005; W
ang et al., 

2008) 



-24-	

 

2.3. Long-term inhibition of BACE1 in AD mouse models 

The effects of knocking out Bace1 in AD mouse model are promising. Homozygous 

knockout of Bace1 mice almost completely abolishes the generation of toxic Aβ peptides 

and amyloid plaques formation in various AD mice models (McConlogue et al., 2007; 

Roberds et al., 2001; Sadleir et al., 2015). Even partially reduction of BACE1 protein in 

AD mice model (5XFAD:Bace1+/-) could significantly reduce the Aβ production and plaque 

load in female animals (Devi and Ohno, 2015; Sadleir et al., 2015). 

2.3.1. BACE1 inhibition on Aβ induced impaired spine plasticity  

Amyloid plaque deposition is the main pathological hallmark of Alzheimer's disease 

(Hardy and Selkoe, 2002). During the formation of amyloid plaques, dendritic spine 

density reduces in vicinity of Aβ deposition in various of AD mouse models, including 

APP/PS1, Tg2576 and AppNL-G-F mice (Bittner et al., 2012; Dorostkar et al., 2014; Saito 

et al., 2014). In areas in far distance to plaques the density of dendritic spines is not 

changed (Bittner et al., 2012; Dorostkar et al., 2014). The reduced spine density is mainly 

due to loss of spine (Bittner et al., 2012). It might due to strongly increased synaptic 

pruning via over activated microglia induced by complement protein-related pathway 

(Hong et al., 2016a). Aβ recruits complement C1q complex and C3 to synapses, and C3 

mediates synapse elimination by phagocytic glia cells (Hong et al., 2016a). It is 

reasonable to speculate that lowering Aβ by BACE1 inhibition could rescue spine loss at 

plaques in AD mouse models.  
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2.3.2. Functional effect of BACE1 inhibition on AD pathophysiology 

One of the typical electrophysiological consequences of accumulated Aβ is impaired 

synaptic plasticity in a dose dependent manner (Puzzo et al., 2008; Rammes et al., 2017). 

PPF is normal in APP/PS1 mice and APPV717I transgenic mice(Chong et al., 2011; 

Gengler et al., 2010; Viana da Silva et al., 2016), and slightly increased in 3xTgAD mice 

(Davis et al., 2014). Several AD mouse models display an attenuated hippocampal LTP 

alteration started from 6-12 month of age (Gengler et al., 2010; Kimura and Ohno, 2009; 

Ma et al., 2013; Oddo et al., 2003; Roder et al., 2003; Volianskis et al., 2010). Although 

half reduction of BACE1 protein level in 5XFAD mice did not rescue the basal synaptic 

transmission deficits, it rescues the LTP deficit (Kimura et al., 2010). Hippocampus-

dependent fear conditioning task further confirmed that 5XFAD:Bace1+/- mice are rescued 

completely back to wild-type levels (Kimura et al., 2010). Similar effects are reproducible 

using BACE1 inhibitor. Application of BACE1 inhibitor LY2886721 over 3-days (0.2 

nmol/day, Eli Lilly and Company, Indianapolis, Indiana) rescues the in vivo LTP reduction 

in McGill-Thy1-APP-TG rats (Qi et al., 2014).  

3. Seizure protein 6 

SEZ6 (Seizure protein 6), also known as brain specific receptor-like protein C, is first 

reported by Shimizu-Nishikawa and colleagues (Shimizu-Nishikawa et al., 1995a). The 

Sez6 mRNA expression is increased in cultured mice cortical neurons after acute 

Pentylenetetrazol (PTZ) treatment induced bursting activity (Shimizu-Nishikawa et al., 

1995a, 1995b). In mice, knockout of Sez6 does not show increased or decreased 
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sensitivity to PTZ induced clonic seizure (Gunnersen et al., 2007). Further study 

demonstrated that the expression of SEZ6 is regulated by neuronal activity (Rampon et 

al., 2000).  

 

Figure 5: SEZ6 expression level in different age 

Upper: SEZ6 mRNA is about 4 Kb, it is detectable from embryonic day 13 in mouse 
neocortex. Lower: SEZ6 protein level. (Adapted from Kim et al., 2002 and Osaki et al., 
2011) 

 

SEZ6 is a typical type I trans-membrane protein expressed exclusively in cortical and 

hippocampal pyramidal neurons. The expression of SEZ6 starts from embryonic day 13 

and its protein level decreased during postnatal development (Figure 5) (Kim et al., 2002). 

SEZ6 is expressed prominently in deep cortical layers, hippocampal CA1 and the striatum 

(Figure 6) (Osaki et al., 2011). In young mice, SEZ6 is located in the somatodendritic 

compartment, specifically in the dendritic plasma membrane, synaptosomes and 

recycling endosomes (Carrodus et al., 2014; Gunnersen et al., 2007; Mitsui et al., 2013; 
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Shimizu-Nishikawa et al., 1995b). In adult mice, SEZ6 is mainly detecable in the soma of 

pyamidal neurons.  

 

Figure 6: SEZ6 distribution in mouse cortex and hippocampus 

SEZ6 is expressed by neurons. SEZ6 locates in both neurites and soma in young mice. 
In adult mice, SEZ6 is mainly located in the soma of neurons. (A-C) Cerebral cortex; (D-
F) Hippocampus; (A, D) P0; (B, E) P14; (C, F) Adult. I, II/III, IV, V, VI: Cortex layer I, II/III, 
IV, V, VI; cc: corpus callosum; CA1: Cornu Ammonis 1; CA2: Cornu Ammonis 2; CA3: 
Cornu Ammonis 3; DG: dentate gyrus. Bar, 200 μm. (Adapted from Osaki et al., 2011). 

 

3.1. The structural of SEZ6 

The SEZ6 ectodomain has several predicted sub-domains, including 3 CUB (complement 

C3b/C4b binding site) domains and 5 SCR (Short Consensus Repeat) domains (Figure 
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7). These sub-domains are commonly known as protein-protein interaction domains 

which are also found in a variety of cell surface receptors. SCR domain is also known as 

complement control protein module, it exists in a wide variety of complement and 

adhesion proteins, for example complement protein C2 (Krishnan et al., 2009). CUB 

domains are involved in a diverse range of functions, including complement activation. 

These domains imply that SEZ6 might interact with other extracellular or cell-surface 

proteins, and it might have a functional link with complement proteins.  

 

Figure 7: Schematic diagram of microdomains of SEZ6 

SEZ6 has 3 CUB (Complement C1r/C1s, Uegf, Bmp1) domains and 5 SCR (Short 
Consensus Repeats) domains. 

 

3.2. Proteolytic processing of SEZ6 

The full length SEZ6 is exclusively and initially cleaved by BACE1 (Kuhn et al., 2012; 

Pigoni et al., 2016). Similar to the other substrates, BACE1 cuts SEZ6 at the 

juxtamembrane domain between leucine-906 and aspartate-907 (Pigoni et al., 2016), 
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generating a secreted soluble SEZ6 (sSEZ6) fragment and SEZ6 C-terminal 

transmembrane fragment (SEZ6-CTF) (Kuhn et al., 2012; Pigoni et al., 2016). Like other 

substrates, e.g. contactin-2 and CHL1 (close homolog of L1), BACE1 is a negative 

regulator of SEZ6 cell surface level in neurons, indicating BACE1 may be deeply involved 

in the regulation of SEZ6 functions. Then, SEZ6-CTF subsequently cleaved by γ-

secretase, which leads to release of another SEZ6 intracellular domain (SEZ6-ICD) 

(Pigoni et al., 2016). The sSEZ6 is secreted to extracellular matrix, because it is 

detectable in medium and CSF (cerebrospinal fluid) of murine and human (Khoonsari et 

al., 2016; Pigoni et al., 2016).  

 

Figure 8: Schematic diagram of processing of SEZ6 by BACE1 and γ-secreatase 

SEZ6 is a type I trans-membrane protein. SEZ6 is cleaved by BACE1, generating soluble 
SEZ6 and its c-terminal fragments (SEZ6-CTF). γ-secretase subsequently cuts SEZ6-
CTF releasing SEZ6 intracellular domain (SEZ6-ICD). 
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3.3. Function of SEZ6 

SEZ6 has important roles in dendritic development, regulating excitatory synaptic 

connectivity, motor coordination and spatial memory. Knockout Sez6 induces some 

specific deficits in mice. First, knock out Sez6 induces morphological changes in neurons. 

Sez6-/- mice show an increased numbers of short neurites but decreased total neurite 

length (Gunnersen et al., 2007). Results from primary cultured cortical neurons showed 

that full length SEZ6 and soluble SEZ6 have opposite function in regulating neurites 

outgrowth. sSEZ6 strongly increased neurites number, whereas full length SEZ6 slightly 

but significantly decreased neurites number (Gunnersen et al., 2007). Then, the dendritic 

spine density and reduced PSD95 puncta are reduced in somatosensory cortex of 5- to 

7-week-old Sez6-/- mice (Gunnersen et al., 2007). This reduction impairs the connectivity 

between pyramidal neurons from layer II/III to layer V (Gunnersen et al., 2007). Finally, 

these deficits lead to an altered behavior in many tests. For example: 1) Sez6-/- mice 

cover less distance in locomotor tests; 2) Sez6-/- mice spend more time on the open arms 

of the plus maze and in the novel arm of the Y-maze compared with their WT 

counterparts; 3) in the Morris water maze test, Sez6-/- mice perform as normal as WT in 

spatial learning of the hidden platform position, but did not display a preference for the 

target quadrant in probe trials (Gunnersen et al., 2007). 

Two independent groups reported that Sez6 genetically links to febrile seizures and 

epilepsy in human (Mulley et al., 2011; Yu et al., 2007). Furthermore, using whole-exome 

sequencing, mutated Sez6 may be one of the candidates to be involved in the etiology of 
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severe intellectual disability and childhood onset schizophrenia, two severe 

neurodevelopmental disorders of unknown etiology. Three amino acids in SEZ6 (Thr229, 

Thr230 and Thr231) are deleted in childhood onset schizophrenia patients (Ambalavanan 

et al., 2016). One missense mutation is identified in SEZ6 (Arg657Gln) from severe 

intellectual disability patients (Gilissen et al., 2014). Both diseases are diagnosed in 

children, suggesting SEZ6 may have important function in neuronal development.  
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MATERIAL AND METHODS 

1. Animals and housing conditions 

In these experiments, the used mice lines are listed in Table 4. All mice were hold under 

pathogen-free conditions in the animal facility of ZNP (Zentrum für Neuropathologie und 

Prionforschung) of the LMU (Ludwig-Maximilians-Universität München). The room 

temperature was kept at 21 ± 1°C. Mice were group housed up to a maximum of 5 mice 

per cage. All animals had access to food and water ad libitum and were maintained on a 

12h light: 12h dark cycle. Health condition of each animal was checked every day with 

recorded body weight. All animal experimental procedures and protocols were followed 

the regulations of LMU and approved by the government of Upper. 

Table 4: list of mice line 

Mouse line  Origin Ref. 

C57BL/6J  Charles River Laboratories 
(Sulzfeld, Germany)  

Bace1-/- B6.129-Bace1tm1Pcw/J Jackson Laboratory (Bar 
Harbor, Maine) (Cai et al., 2001) 

APP-/- B6.129S7-Apptm1Dbo/J Prof. Dr. Ulrike C. Müller 
(University of Heidelberg) 

(Zheng et al., 
1995) 

SlickV 
B6;SJL-Tg(Thy1-

cre/ERT2,-
EYFP)VGfng/J 

Jackson Laboratory (Bar 
Harbor, Maine) 

(Young et al., 
2008) 

GFP-M Tg(Thy1-eGFP)MJrs Jackson Laboratory (Bar 
Harbor, Maine) 

(Feng et al., 
2000) 

Sez6-/- Sez6-tm1.1Sest Dr. Jenny Gunnersen 
(University of Melbourne) 

(Gunnersen et 
al., 2007) 

Sez6LoxP/LoxP  Dr. Jenny Gunnersen 
(University of Melbourne) 

(Gunnersen et 
al., 2007) 

Sez6-/-: 
GFP-M  In house (ZNP)  

Sez6LoxP/LoxP: 
SlickV  In house (ZNP)  
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2. Chemical compound and administration 

BACE1 inhibitor NB-360 was kindly provided by Dr. Ulf Neumann and Dr. Derya R. 

Shimshek (Novartis Institutes for BioMedical Research; Basel, Switzerland) (Neumann et 

al., 2015). The structural formula of NB-360 is showed in Figure 9. NB-360 was mixed in 

mice food in the final concentration of 250 mg/kg. 

 

Figure 9: Structural formula of NB-360 

Tamoxifen (Sigma-Aldrich) was used to induce single cell genetic modification in 

Sez6LoxP/LoxP:SlickV mice. Tamoxifen was dissolved in a mixture of ethanol and corn oil 

(1:10 ethanol: corn oil) at the final concentration of 20 mg/ml. The application of tamoxifen 

was performed by oral gavage. The tamoxifen was given to mice at 0.25 mg per body 

weight (Ochs et al., 2015). The structural formula of tamoxifen is showed in Figure 10. 

 

Figure 10: Structural formula of tamoxifen 
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3. Genotyping 

The Genotypes of all mice lines were determined by polymerase chain reaction (PCR). A 

small piece of tissue was obtained from each mouse. Invisorb® DNA Tissue HTS 96 Kit/C 

(Stratec molecular) was used for DNA extraction. In brief, 400 μl of Lysis Buffer G was 

incubated with mouse tissue overnight under 52°C shaking condition, follow by 1700g 

centrifugation for 10 mins. The supernatant was transferred into collection plate and mix 

with 200 μl binding buffer A, follow by 1700 g centrifugation for 5 mins. After discarded 

the filtrated, the pellet was washed in 550 μl washing buffer, followed by twice 5 mins 

centrifugation at 1700 g. Finally, 100 μl of warmed (52°C) elution buffer was used to 

collects the DNA extraction.  

The extracted DNA was used for PCR to identify the genotypes of each animal. The 

primers are listed in Table 5. The formulation of PCR solution is listed in Table 6. The 

PCR solution was placed in a thermocycler. The PCR program is listed in Table 7. PCR 

products were analyzed by gel electrophoresis. The samples were loaded to 1.5% 

agarose gel with SYBR® gold nucleic acid gel stain. The agarose gel was immerged into 

TAE running buffer. DNA migration was driven by 120-195 V electric fields for 60-90 

minutes. A photograph of the gel was taken under UV light source for documentation. 

 

  



-35-	

 

Table 5: Primers for Genotypes 

 Primer Sequence 

Bace1-/- 
Forward CGGGAA ATGGAA AGGCTACTCC 

Reverse TGGATGTGGAATGTGTGCGAG 
AGGCAGCTTTGTGGAGATGGTG 

APP-/- Forward GAGACGAGGACGCTCAGTCCTAGGG 
Reverse ATCACCTGGTTCTAATCAGAGGCCC 

SlickV Forward TCTGAGTGGCAAAGGACCTTAGG 
Reverse CGCTGAACTTGTGGCCGTTTACG 

GFP-M Forward TCTGAGTGGCAAAGGACCTTAG 
Reverse TGAACTTGTGGCCGTTTACG 

Sez6-/- Forward CGTATGGCATCTGTGACCTG 
GTAACCTTCGGGCTCCATCCTC 

Reverse GAACTTCCATTGCTAGGAAACAGAC 

Sez6LoxP/LoxP Forward CGTATGGCATCTGTGACCTG 
GTAACCTTCGGGCTCCATCCTC 

Reverse GAACTTCCATTGCTAGGAAACAGAC 

 

Table 6: PCR solution 

Items Volume 
Onetaq hotstart quickload 12.5 μl 

Forward primer 0.5 μl 
Reverse primer 0.5 μl 
Template DNA 0.5 μl 
Distilled water 10 μl 

 

Table 7: PCR program 

Step Temperature (°C) Time (s) 
1 94 180 
2 94 30 
3 60 60 
4 68 20 
5 68 120 
6 10 ∞ 

Step 2-4: repeat for 35 times. 
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4. Protein Extraction and Immunoblotting 

Mouse brains were harvested and separated to left and right cerebral hemispheres. Both 

hemispheres were snap freezing by liquid nitrogen and stored at -80°C. The membrane 

protein and soluble protein were extracted from brain tissues and separated using DEA 

buffer (50 mM NaCl, 0.2% diethylamine, pH = 10) and RIPA buffer (20 mM Tris-HCl, pH 

= 7.5, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% NP-40, 0.5% sodium deoxycholate, 

0.05% Triton X-100) with freshly supplemented protease inhibitors (P8340, Sigma-

Aldrich). Using the BCA method, concentrations of total protein were measured. 

Protein samples were mixed with Laemmli sample buffer supplemented with 2-

mercaptoethanol and separated by SDS-PAGE. The electrophoresis of SEZ6 were 

performed in Tris-glycine gels with Tris-buffer (25 mM Tris, 190 mM glycine) and 

transferred onto polyvinylidene difluoride membranes (Amersham Hybond P 0.45 PVDF, 

GE Healthcare Life Science). APP C-terminal fragment (APP-CTF) was separated using 

Tricine Protein Gels (10-20%, Novex, Thermo Fisher Scientific) in Tris-tricine buffer 

(Novex, Thermo Fisher Scientific), followed by transferred onto nitrocellulose membranes 

(GE Healthcare Life Science). Both nitrocellulose and PVDF membranes were incubated 

for 1 h at room temperature with I-Block solution (0.2% I-BlockTM Thermo Fisher 

Scientific, 0.1% Tween 20 in PBS). Followed by overnight incubation with primary 

antibodies respectively (anti-SEZ6 antibody was provided by Dr. Gunnersen; anti-sAPPβ 

antibody: 18957 IBL; anti-β-CTF antibody: Y188, Abcam; in diluted I-Block solution) at 

4°C. After 3 times washing by TBS-T buffer (140 mM NaCl, 2.68 mM KCl, 24.76 mM Tris, 
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0.3% Triton X-100, pH = 7.6), membranes were incubated with HRP-conjugated 

secondary antibody. Bound antibodies were visualized by using enhanced 

chemiluminescence (Thermo Fisher Scientific). Immunoblotting were performed on a 

LAS-4000 image reader and Multi-Gauge V 3.0 software were used for quantification 

analysis. 

5. Cranial window implantation 

Both genders were used in this experiment. At 2-month of age, the cranial window 

implantation surgery was performed. The surgery protocol was reported previously 

(Fuhrmann et al., 2007; Holtmaat et al., 2009). In brief, after anesthesia by intraperitoneal 

injection of the mixture of ketamine (130 mg/kg b.w. WDT/Bayer Health Care) and 

xylazine (10 mg/kg b.w. WDT/Bayer Health Care), mouse was fixed on the 

stereotaxic surgical setup (Figure 11A). Dexamethasone (6 mg/kg b.w. of Sigma) was 

applied by intraperitoneal injection to prevent development of cerebral edema. The mouse 

skull was exposed and cleaned by scalpel, then the piece of skull which was marked 

(Figure 11B). After carefully taking out the skull, the mice cerebral cortex was exposed 

(Figure 11C&D). A piece of coverslip was quickly fixed on top of cortex together with a 

metal bar by dental cement (Figure 11E). After surgery, the mice were put in a warm box 

for palinesthesia (Figure 11F). They received Carprofen (7.5 mg/kg b.w. Pfizer) and 

Cefotaxime (5 mg/kg b.w. Pharmore). The mice were singly housed for the 4-week 

recovery period with continuous postoperative observation. 
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Figure 11: mouse cranial window implantation surgery 

(A) A mouse was anesthetized and fixed on stereotaxic setup. (B) The skull was exposed, 
and a 4-mm diameter circle was marked. (C) A piece of the skull has been removed. (D) 
A 4-mm diameter cranial window. (E) The cranial window was covered by coverslip which 
is fixed to skull by dental cement. (F) After a few days of recovery, the mouse was healthy. 
C-D Scale bars: 1 mm. A, E & F Scale bars: 20 mm. (Kindly provide by Dr. Rodrigues) 

6. Two-Photon in vivo imaging 

Our main focused region is the layer V pyramidal neurons in the cerebral cortex. The 

apical dendrites of these neurons are labeled by eGFP and eYFP in GFP-M and SlickV 

mice respectively. Using LSM 7MP microscope (Carl Zeiss), we repeatedly imaged these 

apical dendrites. In general, mouse with cranial window was anaesthetized by isoflurane 

(1% in 95% O2, 5% CO2) and fixed under the microscope. Their body temperature was 

maintained by self-regulating heating pad (Fine Science Tools GmbH) and each image 

session was lasted less than 90 mins. All images were acquired through a water-
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immersion objective (20x, NA=1.0; Carl Zeiss) with 920 nm wavelength femtosecond 

laser which is generated from Mai Tai DeepSee laser generator (Spectra Physics). Two 

types of images were acquired from each animal: (1) overview images which is 424 × 424 

pixel per image frame (0.83 µm/pixel) with 3 μm axial resolution; (2) dendritic images 

which is 512 × 256 pixels per image frame (0.138 µm/pixel) with 1 μm axial resolution.  

 

Figure 12: Two-Photon imaging 

(A) A photograph of the mouse head with cranial window. The metal bar is used to fix the 
mouse under the 2P microscope. (B) Stereomicroscopic image of the brain surface. (C) 
Wide-field and (D) 2-photon micrograph of the apical dendrites of layer V pyramidal 
neurons in cortex of GFP-M mouse. (Kindly provide by Finn Peters) 
 

7. Immunohistochemistry and confocal imaging 

Mouse was deeply anesthetized by intraperitoneal injection of mixture of ketamine (130 

mg/kg b.w. WDT/Bayer Health Care) and xylazine (10 mg/kg b.w. WDT/Bayer Health 

Care). Then the animal was placed on the perfusion stage and exposed the peritoneal 

cavity. After exposure of hart, a 25-gauge needle, which is attached to a peristaltic pump 

via silicon tubing, was incised into the left ventricle. After turning on peristaltic pump at a 

rate of 7 ml/min, an incision on right atrium was quickly made to allow drainage. 15 ml of 

phosphate-buffered saline (PBS) followed by 10 ml of 4% formalin solution was used for 
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each animal. Then the mouse brains were dissected with post-fixation for 24 hours in 4% 

formalin. The fixed brains were sliced by vibratome (VT1000S, Leica) into 50 μm coronal 

sections. The immunohistochemistry protocol is list in Table 8. 

Table 8: immunohistochemistry protocol. 

Step Solution Company Time 
Permeabilization 1% Triton X-100 Sigma-Aldrich 2-hours 

Blocking 10% normal goat serum Sigma-Aldrich 2-hours 
Antibody 1:500 anti-GFP Alexa 488  Thermo Fisher 4-hours 
Washing PBS Sigma-Aldrich 5 × 10 min 
Mounting Fluorescence conserving media Dako  

 

8. Hippocampal slice preparation and electrophysiological recordings 

After treated with BACE1 inhibitor or EE, WT and Sez6-/- mice were anesthetized with 

isoflurane (1% in 95% O2, 5% CO2). Then they were euthanatized by cervical dislocation. 

Their brains were quickly harvest and transferred into ice-cold carbogenated (95% of O2 

and 5% of CO2) cutting solution (Table 9). Then 350 μm sagittal sections were performed 

to fresh obtained mouse brain by vibratome (VT1200S, Leica). The brain slices rest in 

35°C artificial cerebrospinal fluid (aCSF) (Table 9) for 30 mins and another 60 mins at 

room temperature (21 - 22°C). 

We tested field excitatory postsynaptic potentials (fEPSPs) in Schaffer collaterals-CA1 

synapse. The recording electrodes were homemade glass microelectrode (1-3 MΩ) 

produced by P-97 puller (Sutter Instrument). After filled with aCSF, the recording 

electrodes was placed in the CA1 stratum radiatum. Two platinum/iridium concentric 
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stimulation electrodes (PI2CEA3, Life Science) were placed at both side of recording 

electrodes (Figure 13). The field potentials were amplified 100× using an EXT-10C 

amplifier (National Instruments) and digitized with BNC-2090A (National Instruments).  

Table 9: Solutions for hippocampal slice preparation and electrophysiological 
recordings 

Chemical compound Cutting solution Artificial cerebrospinal fluid 
NaCl 125 mM 125 mM 
KCl 2.5 mM 2.5 mM 

NaH2PO4 1.25 mM 1.25 mM 
NaHCO3 25 mM 25 mM 
MgCl2 6 mM 1 mM 
CaCl2 0.5 mM 2 mM 

D-glucose 25 mM 25 mM 
 
 

 

Figure 13: Schematic drawing of mouse hippocampal slices 

Schaffer collaterals-CA1 pathway is axons projection from CA3 to CA1. The stimulation 
is performed in an antegrade or retrograde manner by two stimulation electrodes that 
were positioned in the stratum radiatum. CA1: Cornu Ammonis 1; CA3: Cornu Ammonis 
3. (Kratzer et al., 2012). 

For paired pulse facilitation (PPF), two stimulations with interval 50, 75, 100, 150, 200, 

400, 800 and 1200ms were given to hippocampus slices. For Input-output curves, the 

stimulation intensity was increased stepwise from 0 v to 30 v. For the long-term 

potentiation (LTP), the stimulation intensities were adjusted to 50% of maximum 
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amplitude, and the stimulation frequency of each stimulation electrodes was set to every 

15 s (0.033 Hz). Once reaching stable stimulation-response states, the Schaffer-

collaterals were tetanized by 1 second of high frequency stimulation (HFS, 100Hz). Follow 

by 60 mins continuously recordings. Data were analyzed using the WinLTP 2.10 program. 

9. Environmental enrichment  

Environmental enrichment (EE) housing condition is a group (3-6) of mice in 48cm × 48cm 

× 48cm cage with 2 running wheels, one ladder, one tunnel and multiple hanging toys 

which were changed or reposition 3 times per week (Figure 14). Same gender mice from 

same litter were placed into EE housing conditions from 2-month-old or 3-month-old for 

6-7 weeks. Both genders of animals were use in this experiment. The aggressive mice 

were removed from EE housing. Standard cages were 30 × 15 × 20 cm without wheels 

or toys. 

 

Figure 14: Environmental enrichment housing condition 

Photograph of Environmental enrichment housing condition (left) and standard housing 
(right) (Zou et al., 2016). 
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10. Images, data processing and statistics  

Dendritic spines were counted manually. For confocal micrographs, CA1 were counted in 

z-stacks by manually scrolling through the images. Because the z-plane resolution was 

low in two-photon micrographs, the dendritic spines of cortical neurons were restricted to 

laterally protruding spines. The dendritic spines dynamic analysis protocol was described 

before (Holtmaat et al., 2009). In brief, dendritic spines without changing location between 

consecutive imaging sessions (acceptable range < 1 µm) were defined as persistent 

spines. Newly emerged spines were defined as gained spine. Spines which were 

disappeared were defined as lost spines. For GFP-M mice, 8-10 dendrites were analyzed 

per mouse; for SlickV mice, 2-6 dendrites were analyzed per mouse.  

GraphPad Prism (GraphPad Software, USA) was used for Statistical analyses. Data were 

presented as mean ± SEM. Statistical significances were determined by comparing 

means of different groups using two-tailed Student’s t-text, one-way or two-way ANOVA, 

as specified in the figure legends. Bonferroni post-hoc tests were used to compare the 

different groups. 
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RESULTS  

Part 1  

SEZ6 and dendritic spine plasticity  

1. SEZ6 and dendritic plasticity under basal condition 

1.1. SEZ6 regulates dendritic spine density and morphology 

To study the function of SEZ6 on dendritic spine density and plasticity, we first analyzed 

the dendritic spine densities of adult Sez6-/-:GFP-M and Sez6+/-:GFP-M mice. 

Sez6+/+:GFP-M mice were served as control. We imaged layer I dendritic tufts of cortical 

layer V pyramidal neurons in these mice using in vivo two-photon microscopy. In line with 

previses report, the dendritic spine densities of Sez6-/- mice were reduced (Figure 15A) 

(Gunnersen et al., 2007). Furthermore, we demonstrated that SEZ6 was involved in 

dendritic spine density reduction in a dose dependent manner (Figure 15A). 

Then, we classified all the spines into 3 categories (e.g. stubby, thin and mushroom 

spines) based on their morphology (Harris and Kater, 1994; Harris et al., 1992). We also 

calculated the number of dendritic filopodia (Figure 15B). Dendritic filopodia are hair-like 

transient structures which do not have bulbous head as dendritic spines. These structures 

may receive synaptic input. The newly formed spine is likely developed along the filopodia 

(Fiala et al., 1998; Hayashi and Majewska, 2005). As shown in Figure 15B, all of 3 types 
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of spines are significantly reduced in Sez6-/-:GFP-M mice. The densities of filopodia were 

normal in both Sez6-/-:GFP-M and Sez6+/-:GFP-M mice, suggesting the formation rate of 

new gain spine may not affected (Figure 15B). 

 

 

Figure 15: Dendritic spine density and morphology is altered in Sez6-/- mice 

(A) Lack of SEZ6 alters dendritic spine density in apical dendrites of layer V pyramidal 
neurons in a dose depended manner. (B) Quantification of dendritic spine sub-type shows 
that stubby, thin and mushroom spines are reduced in Sez6-/- mice. The density of 
dendritic filopodia is normal. Animals per group: n=5. Two-tail Student’s t-test, p<0.05 (*). 
Error bars represent S.E.M. 

 

1.2. Knockout of Sez6 in adult mice decreases dendritic spine density 

The expression level of SEZ6 is high during early development, indicating it has important 

function for neuronal development. To exclude developmental deficits, as well as further 

study the impact of lack of SEZ6 in mature neurons, we used the conditional Sez6 

knockout mice, Sez6LoxP/LoxP:SlickV mice. In Sez6LoxP/LoxP mice, Sez6 exon 1 was inserted 
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with two flanked LoxP sequences (Figure 16A) (Gunnersen et al., 2007), which can be 

cleaved by activated Cre DNA-recombinase. SlickV mice express a modified Cre 

recombinase, CreERT2, in a small subset of enhanced yellow fluorescent protein (eYFP) 

positive neurons in cortex and hippocampus (Figure 16A,B) (Young et al., 2008). CreERT2 

is a ligand-dependent Cre recombinases which is only activated (nuclear translocated) by 

administration of tamoxifen to the animal (Feil et al., 2009; Ochs et al., 2015). Any 

alteration on eYFP and CreER(T2) positive neurons are mainly due to the cell 

autonomous knockout of Sez6. This cell specific gene editing occurs only in a small 

subset of neurons, the majority of neighboring eYFP and CreER(T2) negative neurons 

are not affected by tamoxifen treatment (Feil et al., 2009; Ochs et al., 2015; Young et al., 

2008). 

 

 

Figure 16: Sez6LoxP/LoxP:SlickV mice 

(A) Schematic diagram of tamoxifen activated CreER(T2) gene recombinases induced 
Sez6 knockout in Sez6LoxP/LoxP:SlickV mice. (B) Enhanced yellow fluorescent protein 
(eYFP) expression pattern in Sez6LoxP/LoxP:SliceV mice. 
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By applying tamoxifen to Sez6LoxP/LoxP:SlickV mice, we generated Sez6cKO/cKO:SlickV 

mice. We performed in vivo two-photon microscopy to layer I dendritic tufts of cerebral 

cortex layer V pyramidal neurons in adult Sez6cKO/cKO:SlickV mice (Figure 17A). As shown 

in Figure 17B, the dendritic spine densities of cortical layer V neurons are significantly 

reduced (Figure 17B). Then we investigated apical and basal dendrites of hippocampal 

CA1 eYFP and CreERT2 positive neurons after tamoxifen application using confocal 

microscopy (Figure 17C). Compared to vehicle control, the spine densities of both apical 

and basal dendrites showed a notable reduction in Sez6cKO/cKO:SlickV mice (Figure 17D). 

As mention before, alteration in the extracellular environment is unlikely because the gene 

editing occurs only in a very small neuronal population. Therefore, we concluded that lack 

of SEZ6 induced dendritic spine deficits in a cell autonomous manner. 
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Figure 17: Knockout of Sez6 impairs dendritic spine density in adult mice 

(A) The apical dendrites from layer V cortical neurons were labeled by enhanced yellow 
fluorescent protein (eYFP). Micrographs of dendrites are acquired by sequential imaging 
by in vivo two-photon microscopy. Tamoxifen (0.25 mg/g b.w. in a mixture of 1:10 ethanol: 
corn oil) or vehicle treatment started at day 8 and continued for 5 days (highlighted in 
pink). Scale bar: 10μm. (B) Knockout of Sez6 impairs dendritic spine density in mature 
layer V cortical neurons. Top: absolute values; two-way ANOVA F(4,40)=4.21, interaction 
p<0.01, Genotype p<0.001, Days p<0.001. Bottom: The absolute values were normalized 
to the average of the first two timepoints. Two-way ANOVA F(4,40)= 4.69, interaction 
p<0.01, Genotype p<0.01, Days p=0.11. Tam: tamoxifen; Veh: vehicle. Animals per 
group: n=6. p<0.01(**). Error bars represent S.E.M. (C) The apical and basal dendrites of 
CA1 pyramidal neurons from Sez6-cKO mice and control were imaged by confocal 
microscopy. Scale bar: 5μm. (D) the dendritic spine density is reduced in Sez6-cKO CA1 
neurons. Animals per group: n=3. Two-tail Student’s t-test, p<0.05(*). Error bars represent 
S.E.M. 
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1.3. Sez6-/- mice have normal spine plasticity under base line condition 

Dendritic spine plasticity is another important physiological feature. Therefore, it is 

reasonable to speculate that the dendritic spine plasticity might also regulated by SEZ6. 

To test this hypothesis, we repeatedly imaged Sez6-/-:GFP-M and Sez6+/-:GFP-M mice 

every 7 days over 4 weeks using in vivo two-photon microscopy. Then we analyzed the 

total dendritic spine density (Figure 18A), the fractions of new gained spines (Figure 18B) 

and lost spines (Figure 18C), as well as the spine turn-over rate (TOR) (Figure 18D). To 

our surprise, the fractions of new gained spines and lost spines, as well as spine TOR did 

not show obvious difference in both Sez6+/-:GFP-M and Sez6-/-:GFP-M mice compare 

with WT controls (Figure 18B-D). These results demonstrated that SEZ6 has important 

function in regulating dendritic spine density, but the spine plasticity remains unaffected. 
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Figure 18: Dendritic spine plasticity is normal in Sez6-/- mice 

(A) Quantitative analysis of the dendritic spine density over time in Sez6-/-:GFP-M, Sez6+/-

:GFP-M and Sez6+/+:GFP-M mice. Two-way ANOVA F(4,12)=0.32, interaction p=0.92, 
Genotype p=0.12, Days p<0.01; (B) Quantitative analysis of the new gained spines. Two-
way ANOVA F(4,12)=0.97, interaction p=0.46, Genotype p=0.97, Days p=0.16; (C) 
Quantitative analysis of the lost spines. Two-way ANOVA F(4,12)=0.63, interaction 
p=0.65, Genotype p=0.83, Days p=0.34. (D) Quantitative analysis of the spines turn-over 
rate (TOR). Two-way ANOVA F(4,12)=0.68, interaction p=0.62, Genotype p=0.91, Days 
p=0.07. Error bars represent S.E.M. 
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1.4. Sez6 knockout mice have impaired synaptic plasticity 

Next, we investigated the role of SEZ6 in functional synaptic plasticity in hippocampal 

Schaffer collaterals-CA1 pathway by analysing PPF (paired-pulse facilitation), stimulus-

response relationship and LTP (long-term potentiation) (Figure 19).  

In the PPF test, we used stimulation intervals from 35 ms to 1200 ms. The results showed 

that Sez6-/- brain slices only have a minor elevation at 35 ms stimulation interval. For the 

longer intervals, Sez6-/- brain slices do not have differences compared to WT controls, 

suggesting SEZ6 is not involved into pre-synaptic plasticity (Figure 19A).  

Then, we investigated the stimulus-response relationship by gradually increased 

stimulation intensity. Sez6-/- brain slices showed a significant reduction in synaptic 

transmission (Figure 19B).  

Finally, we performed LTP measurement. After 10 minutes of baseline recordings, the 

Schaffer collaterals were tetanized by high-frequency stimulation (HFS; 100 pulses/s), 

followed by a continuous recording for 50 minutes. HFS caused a pronounced post-

tetanic potentiation in WT mice, but the magnitude of LTP in Sez6-/- brain slices were 

significantly reduced (Figure 19C, D). Our findings suggest that SEZ6 regulates synaptic 

transmission and LTP mainly in the post-synaptic compartments. 
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Figure 19: SEZ6 regulates synaptic plasticity 

SEZ6 is involved in synaptic function. (A) The Paired-pulse ratio in hippocampal slices of 
Sez6-/- brain slices have no different compare to WT control. Two-way ANOVA 
F(8,104)=1.46, interaction p=0.18, Genotype p=0.20, Days p<0.001. (B) Sez6-/- mice 
have a significant reduction in stimulus-response relationship test. Two-way ANOVA 
F(6,114)=11.02, interaction p<0.001, Genotype p<0.001, Days p<0.01. Bonferroni post-
test p<0.05 (*); p<0.01(**). (C) Representative traces of evoked field excitatory 
postsynaptic potential (fEPSP) acquired from Sez6-/- brain slices. LTP was induced by 
high-frequency stimulation (HFS) at Schaffer collaterals. Sez6-/- brain slices presented a 
notable impairment in LTP. (D) Summary graph of LTP magnitudes calculated 40 to 50 
minutes after HFS from graphs in panels (C). Two-tail Student’s t-test, p<0.05(*). Animals 
per group: n=7-9. Error bars represent S.E.M.  
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2. Adaptive plasticity of dendritic spine is impaired in Sez6-/- mice 

2.1. Environmental enrichment does not alter spine plasticity in Sez6-/- mice 

Environmental enrichment (EE) is a combination of enriched social interactions and 

housing conditions, including enhanced opportunities for cognitive, sensory, and motor 

stimulation. EE provides a larger number of learning opportunities than standard housing 

conditions (Leuner and Gould, 2010; van Praag et al., 2000). Increased environmental 

complexity has been shown to have a beneficial effect on many aspects of brain structure, 

including increased neurogenesis, synaptogenesis and a strongly increase in dendritic 

spine dynamics (Barnea and Nottebohm, 1994; Globus et al., 1973; Jung and Herms, 

2014). Although spine density is reduced in Sez6-/- mice, the spine dynamics is normal 

under base line condition. Interestingly SEZ6 is upregulated under EE condition (Rampon 

et al., 2000), suggesting SEZ6 may be involved in adaptive synaptic alterations within the 

adult mouse brain. To investigate whether lack of SEZ6 has a functional consequence in 

neural circuit remodeling in the adult brain, we applied EE stimulation to Sez6-/-:GFP-M 

mice. WT (Sez6+/+:GFP-M) mice served as control. After two imaging timepoint, both 

Sez6-/-:GFP-M and WT mice were exposed to EE over 6 weeks. The spine densities and 

dynamics were continuity monitored using in vivo two-photon microscopy. 

In agreement with earlier reports (Jung and Herms, 2014; Zou et al., 2016) a steady 

increased of both mean and normalized spine densities were seen in WT mice under EE 

condition (Figure 20A&B filled circles). In sharp contrast, both mean and normalized spine 

densities were not altered by EE in Sez6-/-:GFP-M mice (Figure 20A&B open circles). This 
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increased spine density in WT mice is mainly due to an enhanced fraction of new gained 

spines and stable spines (Figure 20C&D filled circles). There is a notable increase in new 

gained spine in WT mice at first timepoint after EE, which remains unaffected in Sez6-/-

:GFP-M mice (Figure 20C). The number of lost spines is not altered in both knockout and 

WT mice (Figure 20E). The survival of pre-existing spine is a bit lower in Sez6-/-:GFP-M 

mice compare to WT control, but it does not reach to statistical significant (Figure 20F). 

Collectively, these data demonstrate an essential role of SEZ6 in regulating adaptive 

remodeling in the adult mice brain.  
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Figure 20: Dendritic spines adaptive plasticity is impaired in Sez6-/- mice 

Adaptive plasticity of dendritic spines is impaired in Sez6-/- mice. Weekly imaging of GFP-
labeled apical dendrites of layer V pyramidal neurons was performed since day 0. 
Enriched environment (EE) stimulation stars from day 8. Quantifications of mean (A) Two-
way ANOVA F(7,49)=5.58, interaction p<0.001) and relative (B) F(7,49)=4.10, interaction 
p<0.01) spine density, fraction of new gained spine (C) Two-tail Student’s t-test, WT d7 
Vs. d14, p=0.05 (#); Sez6-/- d7 Vs. d14 p=0.48), stable spine (D; ANOVA F(6,42)=2.07, 
interaction p=0.07), lost spines (E) F(6,42)=2.44, interaction p<0.05) and survival of pre-
existing spine (F). Bonferroni post-test p<0.05 (*); p<0.01(**). Error bars represent S.E.M. 
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2.2. Hippocampal synaptic plasticity is not affected by environmental enrichment 

in Sez6-/- mice 

We have shown that the activity-induced structural spine plasticity is disturbed in Sez6-/- 

mice. To further examine if damaged spine plasticity on dendrites has functional 

consequences, we housed Sez6-/- mice and their WT littermates under EE condition over 

6 weeks and monitored the LTP on hippocampal Schaffer collaterals-CA1 pathway. EE 

enhanced hippocampal-CA1 LTP in WT control mice (Cui et al., 2006; Huang et al., 2007; 

Kempermann et al., 1997; van Praag et al., 2000). But LTP did not increase due to 

enriched environment in Sez6-/- mice.  

 

Figure 21: SEZ6 is a key factor underlineing environmental enrichment induced 
LTP increase 

(A) Prolonged exposure to an enriched environment (EE) enhances hippocampal LTP in 
WT mice. (B) Quantifications of (A). (C) Prolonged exposure to an EE does not alter 
hippocampal LTP in Sez6-/- mice. (D) Quantifications of (C). Two-tail Student’s t-test, 
p<0.05 (*). Error bars represent S.E.M. 
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Part 2  

BACE1 Inhibition Impairs Synaptic Plasticity via SZE6 

1. NB-360 strongly suppresses proteolytic activity of BACE1 

NB-360 is a novel 3rd generation BACE1 inhibitor developed by Novartis Pharma AG 

(Basel, Switzerland). NB-360 has small molecule weight, and does cross the blood-brain-

barrier efficiently (the molecular structure is illustrated at Figure 9) (Neumann et al., 2015). 

In this study, NB-360 was mixed in the mouse food pellets. The advantage of this 

approach is minimizing the stress to experimental animals caused by repeated drug 

administration. It might also reach to a more stable inhibitory effect because mice 

consistently consume these food pellets. By monitoring the weight of the food, we 

calculated that each mouse consumed 4.6 ± 0.1 g food pellets per day (N = 44) in average 

which is corresponding to a daily oral dose of 20 μM/kg/day. The body weight and health 

conditions are monitored on daily basis. During and after NB-360 treatment, we did not 

observe any impairment, expect hair depigmentation alteration (Figure 22). It is due to 

that NB-360 inhibits BACE2 which has been reported important for melanogenesis (Filser 

et al., 2015; Neumann et al., 2015; Rochin et al., 2013; Shimshek et al., 2016).  
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Figure 22: Chronic treatment of NB-360 induces hair depigmentation in mice 

Mice was treated with NB-360 (right) or vehicle (left) for 21 days. NB-360 caused hair 
depigmentation in mice. 

 

We first verified the inhibitory effect of NB-360. After administration of NB-360 or vehicle 

over 3 weeks, the mice cerebrums were harvested. The samples were homogenized and 

separated to soluble fractions and membrane extracts for immunoblotting. We analysed 

the protein levels of known BACE1 substrates: flSez6 (full length Sez6) and its cleavage 

product sSez6 (soluble Sez6), as well as the cleavage product of APP, sAPPβ (soluble 

APP beta) and β-CTF (C-terminal fragment of APP) (Kuhn et al., 2012; Pigoni et al., 

2016). Samples from Bace1-/- (Bace1 knockout) mice served as positive controls. 

Samples from APP-/- (APP knockout) mice were used for verifying the specificity of sAPPβ 

and β-CTF antibodies (Figure 23). The signal intensity of each immunoblot was analysed 
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using the Multi-Gauge software and normalized to the value of control (C57BL/6 vehicle) 

group. The results showed that after NB-360 treatment flSez6 was significantly increased, 

whereas the cleavage products sSez6, sAPPβ and β-CTF were significantly decreased. 

Bace1-/- vehicle condition showed similar results. In summary, we confirmed that NB-360 

is a potent BACE1 inhibitor.  

 
Figure 23: NB360 strongly inhibits BACE1 proteolytic activity 

C57BL/6J mice were applied with food pellets which contains 0.25g/kg of NB-360 or 
vehicle for 21 days. Bace1-/- and APP-/- mice were applied vehicle food pellets 21 days. 
Mice whole brain homogenates were separated to soluble fractions and membrane 
extracts for immunoblotting. Actin and Calnexin were used as loading controls. Animals 
per group: n=4. (A) Both membrane extracts and soluble fractions were probed by anti-
Sez6 antibody. Base on different fractions, full length membrane attached SEZ6 and 
soluble SEZ6 were separated. (B) Quantitative analysis of the signal intensity of full length 
and soluble SEZ6. One-way ANOVA, full length Sez6: F(2,9)=15.70 p<0.01, soluble 
Sez6: F(2,9)=67.86 p<0.001. Both membrane extracts and soluble fractions were probed 
by anti-sAPPβ (18957, IBL) and anti-β-CTF (Y188, Abcam) antibodies. APP-/- mice was 
used to antibody validation. (D) Quantitative analysis of the signal intensity of sAPPβ and 
β-CTF. One-way ANOVA, sAPPβ: F(2,9)=44,62 p<0.001, APP β-CTF: F(2,9)=44.05 
p<0.001. Bonferroni’s test was used for post-hoc analysis. p<0.05(*), p<0.001(***). Error 
bars represent S.E.M. 
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2. BACE1 inhibition affects dendritic spine plasticity via SEZ6  

2.1. Effect of BACE1 inhibition in Sez6-/- mice 

Previously, Filser and colleagues demonstrated that strong BACE1 inhibition by two 

structurally different inhibitors, SCH1682496 (Merck & Co) and LY2811376 (Eli Lilly and 

Company), impairs dendritic spine plasticity (Filser et al., 2015). Here, we verified whether 

NB-360 has similar impacts on spine plasticity. Using chronic in vivo two-photon 

microscopy, we imaged layer I dendritic tufts of cortical layer V pyramidal neurons in 

inhibitor treated WT control (Sez6+/+:GFP-M) mice (Figure 24A upper line). The mice were 

repeatedly imaged every 7 days. The first two timepoints were considered as baseline 

recordings, and then NB-360 was applied to mice from day 8 till day 28 (3 weeks) as 

highlighted in grey (Figure 24). We also recorded three more timepoints as post treatment 

recovery period. In line with previous data, NB-360 administration reduced total spine 

density in control mice (Figure 24B, upper filled circles). Then we set the total dendritic 

spine density of two pre-treatment time-points as 100% for each animal, and normalized 

the rest of timepoints in ordered to emphasize the effects of inhibitor treatment (Figure 

24B, lower). Our data also showed that NB-360 reduced the density of the persistent 

spines (present for ≥ 7 days), as well as newly gained spines in control mice (Figure 24C-

D). Shortly after withdrawing NB-360, the deficits were gradually recovered. Since all 

three different BACE1 inhibitors (SCH1682496, LY2811376 and NB-360) impair spine 

density, it is likely an on-target side effect.  
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As a protease, BACE1 most likely regulates dendritic spine plasticity via it substrates. 

Sez6-/- mice showed similar deficit as BACE1 inhibitor-treated mice, like reduced dendritic 

spine density and spatial memory deficit. Therefore, we hypothesized that BACE1-

inhibition influences spine dynamic may via SEZ6 protein. To investigate this hypothesis, 

we applied NB-360 to Sez6-/-:GFP-M mice and traced the spine density and dynamic as 

described in control mice (Figure 24A lower line). During base line condition, the dendritic 

spine density in Sez6-/-:GFP-M mice were 15.9 ± 9.4% lower compared to control mice. 

In contrast to control mice, NB-360 did not affect total spine density in Sez6-/-:GFP-M mice 

(Figure 24B, open circles). It is noteworthy that, NB-360 administration decreased the 

total dendritic spine density by 15.6 ± 8.9% in control mice, reaching a similar density as 

in Sez6-/-:GFP-M mice (Figure 24B). The spine dynamic was also analyzed in Sez6-/-

:GFP-M mice. The results showed that the structural plasticity is not affected by BACE1 

inhibitor treatment (Figure 24C-E). In summary, NB-360 alters spine density and plasticity 

in control mice but not in Sez6-/-:GFP-M mice, suggesting BACE1 mediated shedding of 

SEZ6 plays an important role in maintaining dendritic spine density under physiological 

conditions.  
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Figure 24: NB-360 alters dendritic spine plasticity via SEZ6 

(A) Images of apical dendrites of layer 5 neurons in layer 1 cerebral cortex. These apical 
dendrites were labelled by eGFP. The same dendrites were imaged every 7 days using 
in vivo 2-photon microscopy. BACE1 inhibitor (NB-360) treatment was applied from day 
8 till day 29. The treatment period is highlighted in gray. Vehicle was given to mice before 
and after NB-360 treatment period. Persistent spines (present ≥ 7 days): white 
arrowheads. Gained spines: green arrowheads. Lost spines: red arrowheads. Scale bar: 
10μm. (B-E) Quantitative analysis of the denticity of total spine (B), persistent spines (C), 
gained spines (D) lost spines (E) from Sez6+/+:GFP-M and Sez6-/-:GFP-M mice. (B Top) 
Absolut value, Two-way ANOVA F(7,77)=15.16, interaction p<0.001. (B Bottom) The 
normalized value relative to the average of the first two times points. Two-way ANOVA 
F(7,77)=12.28, interaction p<0.001. (C) Two-way ANOVA F(6,66)=13.75, interaction 
p<0.001. (D) Two-way ANOVA F(6,66)=4.75, interaction p<0.001. (E) Two-way ANOVA 
F(6,66)=6.74, interaction p<0.001. Animals per group: n=6-7. p<0.001(***). Error bars 
represent S.E.M.  
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2.2. Effect of BACE1 inhibition in Sez6cKO/cKO mice 

We have demonstrated that knockout Sez6 at adult stage impairs dendritic spine density. 

The protein levels of both BACE1 and SEZ6 are highest during early postnatal period in 

mice (Kim et al., 2002; Osaki et al., 2011; Willem et al., 2006). This indicates that they 

have important function for neuronal development. Then we wonder whether NB-360 

does not influence dendritic spine density and plasticity in Sez6-/- mice is due to 

developmental deficit or compensate effect occurred during development stage. To 

investigate this hypothesis, we again employed the Sez6cKO/cKO:SlickV mice. In this 

experiment, Tamoxifen was applied to 3-month-old mice for 5 consecutive days. Then, 9 

days was given to mice for recovery (as highlighted in purple) (Figure 25). Same method 

was performed to Sez6cKO/cKO:SlickV mice which is repeatedly imaging the layer I dendritic 

tufts of cortical layer V pyramidal neurons (Figure 25A). Sez6LoxP/LoxP:SlickV mice, which 

is without Tamoxifen treatment, served as control. After baseline recordings, NB-360 was 

applied to mice from day 8 till day 28 (3 weeks) as highlighted in grey (Figure 25), follow 

by recording of post treatment recovery period.  

Similar to GFP-M mice, BACE1 inhibitor administration impaired total spine density in 

control (Sez6LoxP/LoxP:SlickV) mice (Figure 25B, upper, filled circles). Then we set the total 

dendritic spine density of two pre-treatment time-points as 100% for each mouse, and 

normalized the rest of timepoints in order to emphasize the effects of inhibitor treatment 

(Figure 25B, lower, filled circles). NB-360 also affected spine dynamic, like reducing the 

density of the persistent spines (present for ≥ 7 days) (Figure 25C filled circles) and newly 
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gained spines (Figure 25D), as well as increasing lost spines (Figure 25E filled circles). 

Shortly after withdrawal NB-360, the deficits were gradually recovered. Similar as Sez6-/- 

mice, BACE1 inhibition did not alter total spine density and spine dynamic (fraction of 

persistent, new gained and lost spines) in Sez6cKO neurons (Figure 25B-E, open circles). 

Since SlickV mice have a very sparse and weak eYFP labeling, the total number of 

analyzed dendrites is lower compared to GFP-M mice (2-6 vs 8-10, respectively), 

resulting a high statistical variation. Therefore, a trend of reduced fraction of new gained 

spines did not reach statistical significance (p=0.19). Nevertheless, NB-360 treatment 

impairs the impaired total spine density and dynamic in both control mice (Sez6+/+:GFP-

M and Sez6LoxP/LoxP:SlickV). NB-360 treatment does not alter spine density and dynamic 

in both constitutive and conditional Sez6 knockout mice (Sez6-/-:GFP-M and 

Sez6cKO/cKO:SlickV). These data further support the hypothesis that SEZ6 mediates 

BACE1-inhibition-induced spine alterations. 
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Figure 25: NB-360 does not alter dendritic spine plasticity in Sez6cKO/cKO neurons 

(A) Images of apical dendrites of layer 5 neurons in layer 1 cerebral cortex. These apical 
dendrites were labeled by eYFP. The same dendrites were imaged every 7 days using in 
vivo 2-photon microscopy. Tamoxifen was applied to Sez6LoxP/LoxP:SlickV and 
Sez6cKO/cKO:SlickV mice from day -12 till day -8. Tamoxifen treatment period is highlighted 
in purple. BACE1 inhibitor (NB-360) treatment was applied from day 8 till day 29. NB-360 
treatment period is highlighted in gray. Vehicle was given to mice before and after NB-
360 treatment period. Persistent spines (present ≥ 7 days): white arrowheads. Gained 
spines: green arrowheads. Lost spines: red arrowheads. Scale bar: 10μm. (B-E) 
Quantitative analysis of the denticity of total spine (B), persistent spines (C), gained 
spines (D) lost spines (E) from Sez6LoxP/LoxP:SlickV and Sez6cKO/cKO:SlickV mice. (B Top) 
Absolut value, Two-way ANOVA F(7,70)=3.58, interaction p<0.01. (B Bottom) The 
normalized value relative to the average of the first two times points. Two-way ANOVA 
F(7,63)=4.16, interaction p<0.01. (C) Two-way ANOVA F(6,60)=2.71, interaction p<0.05. 
(D) Two-way ANOVA F(6,60)=1.52, interaction p=0.19. (E) Two-way ANOVA 
F(6,60)=2.73, interaction p<0.05. Animals per group: n=6. p<0.05(*), p<0.01(**). Error 
bars represent S.E.M.  
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3. Chronic application of NB-360 does not alter synaptic plasticity Sez6-/- mice 

Structural alterations of synapses are usually considered as an indicator for functional 

changes. We have demonstrated that NB-360 interferes spine plasticity via SEZ6. To 

investigate whether NB-360 impairs synaptic plasticity and whether it involves SEZ6 too, 

the WT mice (C57BL/6J) and Sez6-/- mice were applied with NB-360 or vehicle for 3 

weeks. At the last day of treatment, the mice were sacrificed, their brains were harvest 

and acutely sliced in 350 µm thick hippocampal slices for field recordings. The synaptic 

plasticity was test in hippocampus Schaffer collateral - CA1 pathway. After 20 min of 

baseline recordings, high frequency stimulation (HFS; 100 pulses/s) was used to induce 

hippocampal long-term potentiation (LTP) in Sez6-/- mice and WT mice, followed by 60 

min of continuous recording (Figure 26 A-B). HFS caused a notable post-tetanic 

potentiation in vehicle-treated WT mice. We also showed that NB-360 impairs LTP in WT 

mice (Figure 26C). Although the LTP is low in the CA1 synapse of Sez6-/- mice, NB-360 

treatment did not alter LTP (Figure 26C). Our results suggest that BACE1 inhibition 

induces synaptic plasticity deficits might involve SEZ6.  

Additionally, we investigated whether NB-360 induced LTP impairment is due to pre-

synaptic mechanisms. The pre-synaptic terminal is relatively normal in Sez6-/- mice, 

however BACE1 is enriched in pre-synaptic terminals. If NB-360 would induce pre-

synaptic alteration, it might be evidence which against SEZ6 involve in BACE1 inhibition 

induces synaptic plasticity deficits. To test this hypothesis, we monitored paired-pulse 

facilitation (PPF) at Schaffer collateral - CA1 synapses using two different inter-stimulus 
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intervals (ISIs), 35 ms and 50 ms. The results show that NB-360 treatment did not affect 

PPF in either WT or Sez6-/- mice (Figure 26D). Our findings showed that there is no 

obvious pre-synaptic alteration, implying that the LTP changes are most likely due to post-

synaptic alterations.  

 

Figure 26: NB-360 does not alter LTP in Sez6-/- mice 

(A) the LTP in WT brain slices was impaired by chronic treatment of NB-360. (B) Same 
treatment does influence LTP in Sez6-/- brain slices. Representative traces of evoked is 
shown respectively. Schaffer collaterals-CA1 pathway was tetanized using high-
frequency stimulation (HFS). red lines: fEPSP before stimulation; black lines: fEPSP after 
stimulation. (C) Quantitative analysis of the LTP magnitudes which is averaged from 50 - 
60 min. Two-way ANOVA F(1,24)=9.57, interaction p<0.01. Bonferroni’s post hoc test: 
p<0.01**, p<0.001***). Animals per group: n=7. (D) The paired-pulse facilitation was 
analyzed using 2 different intervals (35ms and 50ms) in NB-360 or vehicle treated WT 
and Sez6-/- mice. 35 ms: Two-way ANOVA F(1,23)=3.753, interaction p=0.07. 50 ms: 
Two-way ANOVA F(1,23)=1.917, interaction p=0.18. Animals per group: n=5-8. Error 
bars represent S.E.M. 
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DISCUSSION 

1. SEZ6 regulates dendritic spine density and plasticity 

Previous studies show that SEZ6 involves in many neuronal activities, including 

regulation of neurite development, dendritic spine density (Gunnersen et al., 2007). SEZ6 

is also proposed to be involved in the etiology of several neurodevelopmental disorders 

(Ambalavanan et al., 2016; Gilissen et al., 2014; Mulley et al., 2011; Yu et al., 2007). Here 

we confirmed that the dendritic spine density is decreased in conventional Sez6 knockout 

(Sez6-/-) mice. Then we show that SEZ6 regulates spine density in a dose depend 

manner, it means that the expression level is critical for the function of SEZ6. It also 

indicates that the proteinase (BACE1) which regulating the cell surface level of SEZ6, 

might influence spine density or dynamic via SEZ6 (Munro et al., 2016; Pigoni et al., 

2016). 

Sez6-/- mice show alterations in neurite branching during the development. Moreover, 

Sez6 knockdown in neurons caused altered calcium activity (Anderson et al., 2012; 

Gunnersen et al., 2007). The SEZ6 expression level is high during early postnatal stage 

(Kim et al., 2002; Osaki et al., 2011). To rule out developmental deficits, we used 

conditional knockout (Sez6cKO/cKO) mice, in which Sez6 gene deletion occurred only in the 

small subset of eYFP/CreERT2 positive neurons in adulthood. In these neurons, dendritic 

spine density is reduced similar to the situation in constitutive Sez6-/- neurons, indicating 

that SEZ6 is not only critical for neuronal development but also important for maintaining 
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the normal dendritic spine density in adult mice. In Sez6cKO/cKO mice, the spine density 

reduction in cortical neuron was smaller than that seen in Sez6-/- mice, which may be 

attributed to a general increase of the dendritic spine stability in adulthood (Grutzendler 

et al., 2002; Zuo et al., 2005). Using Sez6cKO/cKO mice, we can further pinpoint which SEZ6 

proteolytic fragments are involved. As mention before, SEZ6 is cut by BACE1, and the 

sSEZ6 is secreted to extracellular matrix. In Sez6cKO/cKO mice, the small subset eYFP 

positive Sez6cKO neurons lack cell-autonomous Sez6. These neurons were exposed to a 

relatively normal extracellular environment, since the proportion of Sez6cKO neurons is 

really low (Young et al., 2008). The soluble Sez6 levels is normal in the surrounding 

neuropil. In this context, the sSEZ6 is not actively involved in dendritic spine density 

regulation. Since the SEZ6-CTF will be further processed by γ-secretase (Pigoni et al., 

2016), it is not yet clear whether flSEZ6 or SEZ6-ICD is the critical player of regulating 

dendritic spine density. 

We classified the dendritic protrusions base on their morphology (Figure 27) (Risher et 

al., 2014). The difference in spine shape may represent the different maturation states 

(Berry and Nedivi, 2017). Mushroom shaped spines and thin spines have similar shape. 

Both of them have large bulbous head, but Mushroom spines have relative narrow neck 

and thin spines have a long neck. Stubby spines are lack a distinctive head and neck 

configuration. Filopodia are the smallest hair-like structures protruding from dendrites, 

often described as immature spines (Berry and Nedivi, 2017). However, whether spines 

with different sizes serve distinct functions is not yet clear. In Sez6-/- mice, the densities 
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of stubby, thin and mushroom spines decrease. However, filopodia do not show changes. 

It might be indicated that the maturation of new spines is not impaired.  

 

 

Figure 27: Schematic diagram of spine morphological categories 

Base on their morphology, dendritic protrusions has been group into 4 types. Mushroom 
shaped spine has a large bulbous head and a relative narrow neck. Thin spines have 
similar shape, but smaller head and long neck. Stubby spine is lack of a distinctive head 
and neck. Filopodia are the thinnest hair-like structures (Risher et al., 2014). 

 

Then we tested whether SEZ6 involved into regulating spine plasticity. It is also known as 

structural plasticity which is the consequence of structural changes in the number and 

shape of dendritic spines (Fu and Zuo, 2011). New spine formation is the structural base 

of memory consolidation (van der Zee, 2015) and reduced spine density is commonly 

seen in neurodegenerative diseases (Berry and Nedivi, 2017; Bittner et al., 2012; 

Hoffmann et al., 2013; Zou et al., 2016). To our surprised in standard housing condition, 

the fractions of new gained and lost spines do not show any changes compared to WT 

control. Then the enriched environmental (EE) condition was applied to Sez6-/- mice. EE 
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is an experimental setting in which is housing in an environment with complex of cognitive, 

motor and social stimulation. It is commonly used to boost dendritic spine turnover. Some 

spine density reduction and synaptic functional deficits were about to be recused by EE 

(Morelli et al., 2014). Consistent with our previous finding, the dendritic spine density 

increased in control mice shortly after entering EE cages (Jung and Herms, 2014). Since 

the expression of SEZ6 is highly dependent on the neuronal activity and Sez6 mRNA 

level significantly increased in neuronal cortex and naïve mouse after EE (Anderson et 

al., 2012; Rampon et al., 2000), indicating that any activity induced alteration might 

affected. Indeed, Sez6-/- mice started to show impaired dendritic spine plasticity in EE 

condition which is the spine density and new gained spine do not increase as control 

mice. 

Dendritic spines are the excitatory postsynaptic compartments, which receive and 

integrate information from pre-synaptic inputs (Yuste and Bonhoeffer, 2001). To correlate 

the intravital microscopic findings with electrophysiological functional properties, we 

performed hippocampal field recordings using age-matched WT and Sez6-/- mice, as well 

as EE stimulated Sez6-/- mice and controls. We tested the Schaffer collateral-CA1 

pathway. Since SEZ6 is mainly located in the somatodendritic compartment of neurons, 

which is in line with our findings that pre-synaptic function was not affected by the lack of 

SEZ6. But Sez6-/- mice showed impaired synaptic transmission, which might be the 

consequence of reduced dendritic spine density. Deceased LTP is also shown in Sez6-/- 

mice, which is consistent with defects in hippocampus-dependent memory (Gunnersen 

et al., 2007). EE improves a variety of hippocampal-dependent functions compared to 
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standard housing. We observed that LTP is significantly increased in WT control mice, 

but not in Sez6-/- mice after EE stimulation. Since hippocampal dendrites undergo 

spinogenesis after LTP induction (Nägerl et al., 2004, 2007), the observed LTP deficit in 

Sez6-/- mice may due to an impaired activity dependent dendritic spine plasticity. In 

addition, SEZ6 involves into neuronal activity in an NMDA-receptor dependent manner 

(Havik et al., 2007; Shimizu-Nishikawa et al., 1995a), which may also explain that SEZ6 

is functionally involved in LTP maintenance.  

In summary, we provide several new insights into the physiological roles of SEZ6 in the 

adult brain in this study. 1) we showed that SEZ6 involved into regulating dendritic spine 

density in a dose dependent manner; 2) SEZ6 involved into regulating the maturation of 

new spines; 3) SEZ6 involved into regulating synaptic functional plasticity; 4) SEZ6 

involved in regulating dendritic spine plasticity in complex stimulation condition. 

2. BACE1 inhibition impairs synaptic structure and function via SEZ6  

As the most common form of senile dementia, AD is a significant challenge to healthcare 

systems worldwide. Currently, the promising potential therapeutic strategies are: 1) 

prevention of Aβ production by inhibiting or modulating the amyloid cascade enzymes, 

BACE1 and γ-secretase complex with small molecules (Huang and Mucke, 2012; 

Neumann et al., 2015; Yuan et al., 2013); 2) enhancing clearance of Aβ or amyloid 

plaques by immunotherapies (Doody et al., 2014; Salloway et al., 2014); 3) prevention of 

Aβ aggregation (Ryan et al., 2015). Unfortunately, the outcomes of γ-secretase inhibitor 

trials were disappointing because too many important signaling cascades, including 
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Notch signaling, are affected by chronic inhibition of the γ-secretase complex (Bittner et 

al., 2009; De Strooper, 2014). Immunotherapy studies have shown only marginal disease 

modification, although it has been reported that Aβ antibody treatment benefits a subset 

of patients in the early stages of disease progression (Reardon, 2015). BACE1 is another 

very attractive therapeutic target, mainly because 1) it initiates the amyloidogenic cascade 

(Lin et al., 2000), 2) Bace1 knockout mice are viable and fertile (Cai et al., 2001), 3) the 

pathological hallmarks of AD, such as high Aβ load, plaque deposition and 

electrophysiological dysfunction, are largely prevented in BACE1 null APP transgenic 

mice (Luo et al., 2001; Ohno et al., 2004), and 4) BACE1 activity can be blocked by small 

molecules (May et al., 2011; Neumann et al., 2015; Stamford et al., 2012). Several 

BACE1 inhibitors are currently in AD clinical trials (Godyń et al., 2016; May et al., 2011). 

However, BACE1 inhibition interferes structural and functional synaptic plasticity in mice 

(Filser et al., 2015). This may be due to inhibition of BACE1 processing of several its 

physiological substrates, which would then lead to on-target side effects. 

Although BACE1 has many substrates, We hypothesized that BACE1-inhibition-induced 

structural and functional synaptic alterations could be due to disruption of the SEZ6 

function for the following reasons: SEZ6 is predominantly processed by BACE1 (Kuhn et 

al., 2012) and Sez6 null mice display certain similar deficits compared to BACE1 inhibited 

(Filser et al., 2015) or knockout mice (Laird et al., 2005), including reduced cortical neuron 

dendritic spine density and diminished performance in hippocampal-dependent 

behavioral tests (Gunnersen et al., 2007). 



-74-	

 

We used chronic intravital microscopy and electrophysiological field recordings to study 

NB-360 treated WT and Sez6 knockout mice. NB-360 blocked BACE1 activity almost 

completely, similar to the effects of high-doses of BACE1 inhibitors SCH1682496 and 

LY2811376 (Filser et al., 2015; May et al., 2011; Stamford et al., 2012). We also observed 

that NB-360 interfered with structural and functional synaptic plasticity in WT mice. Since 

three structurally different BACE1 inhibitors (NB-360, SCH1682496 and LY2811376) 

influenced dendritic spine plasticity and hippocampal LTP in a similar way, off-target 

effects are rather unlikely (Filser et al., 2015; Killick et al., 2015). Unlike in WT mice, both 

dendritic spine density and plasticity were not affected by chronic NB-360 treatment 

suggesting that SEZ6 is involved in BACE1-inhibition-induced spine alterations. However, 

Sez6-/- mice show developmental deficits like neurite branching alterations during 

development and Sez6 knockdown neurons show altered calcium activity (Anderson et 

al., 2012; Gunnersen et al., 2007). To rule out developmental deficits, we applied NB-360 

to conditional knockout (Sez6cKO/cKO) mice. NB-360 treatment did not alter dendritic spine 

plasticity in Sez6cKO neurons. Thus, we conclude that cell autonomous membrane-bound 

SEZ6 protein contributes to this structural synaptic alteration. Taken together, these data 

indicate that BACE1-inhibition-induced structural plasticity is via SEZ6. 

BACE1 is a negative regulator of SEZ6 cell surface level (Pigoni et al., 2016). The detail 

mechanism of accumulated SEZ6 affects dendritic spine density and plasticity is not yet 

clear. SEZ6 contains 7 protein-protein interaction domains: 5 short consensus repeat 

(SCR) domains and 2 complement subcomponent C1r, C1s/sea urchin embryonic growth 

factor Uegf/bone morphogenetic protein 1 (CUB) domains (Gunnersen et al., 2007). Both 
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of SCR and CUB domains are considered to associate with complement proteins (Bork 

and Beckmann, 1993; Mizukami et al., 2016). It is known that complement signal 

cascaded is an important inducer for synaptic pruning in both physiological condition and 

AD cases (151-153). Full-length SEZ6 accumulated at the cell membrane of post-synaptic 

compartment upon BACE1 inhibition (Gunnersen et al., 2007; Zhu et al., 2018). It is 

interesting to study whether accumulated SEZ6 would induce synaptic pruning by 

recruiting complement protein to synapses. 

Dendritic spines are the excitatory postsynaptic compartments, which receive and 

integrate information from pre-synaptic inputs (Yuste and Bonhoeffer, 2001). In order to 

correlate the intravital microscopic findings with electrophysiological functional properties, 

we performed hippocampal field recordings using brain slices from 3-week NB-360 

treated age-matched WT and Sez6-/- mice, as well as vehicle treated controls. Sez6-/- 

mice showed impaired Schaffer collateral-CA1 LTP, which is consistent with previous 

data. Chronic BACE1 inhibition does not attenuate this further, indicating that SEZ6 is 

involved in BACE1-inhibition-induced reduction in synaptic plasticity. Since hippocampal 

dendrites undergo spinogenesis after LTP induction (Nägerl et al., 2004, 2007), the 

observed LTP attenuation may be due to an impaired dendritic spine plasticity, consistent 

with the overall decrease in spine density, smaller EPSCs seen in Sez6-/- mice 

(Gunnersen et al., 2007) and the reduced spine density observed in BACE1 inhibitor-

treated WT mice. In addition, Sez6 mRNA levels are increased after strong neuronal 

activity (Shimizu-Nishikawa et al., 1995a) and this was shown to occur in an NMDA-

receptor dependent manner (Havik et al., 2007), which may imply that SEZ6 is 
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functionally involved in LTP maintenance. SEZ6 is mainly located in the dendritic and 

somatic compartment of neurons (Gunnersen et al., 2007), which is in line with our 

findings that pre-synaptic function was not affected by the lack of SEZ6. Surprisingly, pre-

synaptic deficits were not observed in NB-360 treated WT mice, although BACE1 

accumulates in pre-synaptic terminals (Hitt et al., 2012; Kandalepas et al., 2013) and 

Bace1 knockout mouse neurons display a severe pre-synaptic dysfunction at the mossy 

fiber terminals (Wang et al., 2008, 2014). This may due to differences in the 

developmental trajectory of gene knockout-induced phenotypes compared to inhibitor 

treatment of adult mice and/or due to the different brain regions studied.  

Other indirect consequences of BACE1 inhibition on synaptic plasticity have to be 

considered. Willem and colleagues reported a novel APP cleavage pathway, which 

involved MT-MMP to generate Aη-α/β. After BACE1 inhibition, the Aη-α significantly 

elevated due to more MT-MMP cleavage products go through the anti-amyloidogenic 

pathway. By acutely applying Aη-α in bath they observed a significant attenuation of 

hippocampal LTP, as well as reduced neuronal activity (Willem et al., 2015). However, 

another APP metabolites soluble APP alpha (sAPPα) also accumulates upon BACE1 

inhibition (Fukumoto et al., 2010; Neumann et al., 2015), sAPPα has considerable 

neuroprotective and neurotrophic functions, including rescuing LTP deficits in the AD 

mouse (Fol et al., 2015). The precise mechanism of how sAPPα and Aη-α influences 

synaptic plasticity is not yet clear. Further studies are needed to clarify how APP cleavage 

products affect functional synaptic plasticity in physiological levels, and under 

pharmacological BACE1 inhibition.  
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BACE1 inhibitors prevent amyloid plaque formation AD models which strongly support 

the notion that BACE1 inhibitor treatments can be considered as a promising therapeutic 

approach for AD. But synaptic deficits which are observed upon strong BACE1 inhibition 

in WT mice may limit the usage of BACE1 inhibitors as a therapeutic approach for AD. It 

does not mean that we need to move on from BACE1 inhibition treatment. BACE1 

inhibition induced synaptic deficits are only observed in condition of strongly suppressed 

the BACE1 proteolytic activity (Filser et al., 2015; Savonenko et al., 2008; Wang et al., 

2014). Therefore, identifying the optimal dosage, which could balance BACE1 inhibition, 

induced synaptic deficits and Aβ induced impairments, is urgent. Establishing a reliable 

and appropriate method such identifying a few reliable biomarkers might be the most 

feasible approach. BACE1 CSF levels has been showed strong correlations to Aβ level, 

and it has been considered as biomarker for AD (Ewers et al., 2008, 2011; Holsinger et 

al., 2004; Pera et al., 2013; Shen et al., 2017; Timmers et al., 2017). But it may not 

represent whether the fundamental synaptic function is impaired by inhibitor treatment. 

Ore data suggested that the optimal dosing in order to avoid synaptic side effects could 

be potentially achieved by monitoring the levels of SEZ6 cleavage products in the CSF 

on an individual basis, because 1) BACE1 derived SEZ6 cleavage products can be 

measured in body fluids (Khoonsari et al., 2016; Maccarrone et al., 2013; Pigoni et al., 

2016), 2) SEZ6 is closely related to the structure and function of synapses and 3) BACE1-

inhibition induced synaptic impairment is via altered process of SEZ6. Future studies are 

expected to provide more knowledge regarding the biological functions of BACE1 and 

safety of BACE1 inhibition approach in mouse models and AD patients. 
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°C degree celcius 
μg microgram 
μl microliter 
μl micrometer 

Aβ amyloid beta 
AD Alzheimer's disease 

ANOVA analysis of variance 
APP amyloid precurser protein 

BACE1 Beta-site amyloid precursor protein cleaving enzyme 1 
CA1 Cornu Ammonis 1 
CA3 Cornu Ammonis 3 

dpi days post-injection 
CNS central nervous system 
e.g. lat. exempli gratia; for example 

eGFP enhanced greed 
et al. and others 

ER endoplasmatic reticulum 
FAD familial Alzheimer's disease 
Fig. Figure 

g gram 
h hour 

Hz Hertz 
kDa kilodalton 
KO knock out 

LTD long-term depression 
LTP long-term potentiation 

M molar 
mg milligram 
min minute 

ml milliliter 
mm millimeter 
mM millimolar 
MW molecular weight 

NaCl sodium chloride 
NaHCO3 sodium bicarbonate 

NGS normal goat serum 
nm nanometer 

NMDA N-methyl-D-aspartate 
P p-value 

PBS phosphate buffered saline 
PCR polymerase chain reaction 
PFA paraformaldehyde 
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ROI region of interest 
PSD Post-synaptic density 
rpm revolutions per minute 

s second 
SD standard deviation 

SEM standard error of the mean 
t time 

Ti:Sa lasing medium; sapphire crystal, doped with titanium ions 
Tab. Table 

tg transgene 
Thy1 thymus cell antigen 1 
TOR turnover ratio 

WT wild type 
YFP yellow fluorescence protein 
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