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Summary 

The indigenous gut microbiota exerts many beneficial tasks for the host including nutrient 

degradation, development of a functional immune system as well as protection from enteric 

infections and is therefore indispensable for health. Upon disturbances such as antibiotic intake, 

fluctuations in microbial diversity and density (dysbiosis) can occur, which renders the host more 

susceptible to infections with enteric pathogens like Salmonella enterica serovar Typhimurium (S. 

Tm). S. Tm induces severe gut inflammation which is accompanied by pathogen overgrowth 

(‘blooming’) and massive dysbiosis. Dysbiosis observed in human patients which is also a hallmark of 

inflammatory bowel diseases is generally characterized by Enterobacteriaceae overgrowth. Recently, 

first insights into the underlying mechanisms have been obtained: On the one hand, anaerobic 

electron acceptors, ethanolamine and iron selectively foster pathogen growth. On the other hand, 

the microbiota can experience collateral damage by the antimicrobial defense reaction, e.g. 

neutrophils which infiltrate the gut lumen in response to Salmonella-induced inflammation. Yet, it is 

still unclear which of these mechanisms is more important for the induction of dysbiosis and 

pathogen ‘blooming’: the altered nutritional environment or differential killing by the inflammatory 

immune response. Furthermore, it has remained elusive, how the environment of an inflamed gut 

impacts on individual species of a normal microbiota. Due to the high complexity of the gut 

microbiota, it is difficult to address functions of individual bacteria in host-pathogen-microbiota 

interactions. Therefore, gnotobiotic mouse models with reduced microbial complexity are needed. 

Thus, our group has established a novel gnotobiotic mouse model termed the Oligo-Mouse-

Microbiota (Oligo-MM12) which is based on 12 murine bacterial isolates. Interestingly, the Oligo-

MM12 consortium covers 5 eubacterial main phyla (Firmicutes, Bacteroidetes, Actinobacteria, 

Verrucomicrobia and Proteobacteria) and was able to confer colonization resistance against an 

avirulent Salmonella strain. Preliminary work that was conducted before I joined the group included 

isolation and characterization of the Oligo-MM12 strains, the establishment of strain-specific 

fluorescence in situ hybridization (FISH) probes as well as stable association of germfree C57BL/6J 

mice with the Oligo-MM12 consortium. 

One major aim of my doctoral thesis was to establish strain-specific quantitative real-time PCR 

(qPCR) assays that allow for quantification of individual Oligo-MM12 bacteria as well as pathogens 

and other gut commensals. In addition, the course of wildtype Salmonella infection in the Oligo-

MM12 model as well as the influence of nutrients provided by an inflammatory milieu on Salmonella 

‘blooming’ and concomitant microbiota shifts (dysbiosis) should be investigated. Furthermore, the 

importance of infiltrating neutrophils during Salmonella-induced dysbiosis should be assessed. In 

addition, it was aimed to compare the effect of infections with S. Tm, Clostridium difficile (C. difficile), 
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Citrobacter rodentium (C. rodentium) and T-cell-induced colitis on individual microbiota species using 

the Oligo-MM12 model.  

Using qPCR assays, I could show that the Oligo-MM12 once administered orally, colonized the gut of 

germfree mice and was additionally vertically transmitted across filial generations which enables 

breeding of mice stably associated with the Oligo-MM12. Furthermore community composition across 

animal facilities was similar, which is a pre-requisite for comparable host-microbe interaction studies. 

Remarkably, wildtype S. Tm (S. TmWT) infection induced severe colitis at day 4 post infection in Oligo-

MM12 mice. Colitis was accompanied by Salmonella ‘blooming’ and drastic dysbiosis. Interestingly, 

the Oligo-MM12 strains showed different abundance upon S. Tm induced colitis. Individual members 

of the phyla Bacteroidetes, Verrucomicrobia and Proteobacteria were drastically reduced, whereas 

Firmicutes strains were less affected by S. Tm induced inflammation and some strains even seemed 

to benefit from colitis. Especially Enterococcus faecalis KB1 thrived in the inflamed gut. The 

performance of Oligo-MM12 strains positively correlated with the presence of genes for sporulation, 

iron acquisition, anaerobic respiration and ethanolamine utilization in their genome sequences. 

Infection experiments with S. Tm mutants deficient in siderophore production, anaerobic nitrate and 

tetrathionate respiration as well as ethanolamine utilization underlined a particular importance of 

anaerobic respiration and ethanolamine utilization for S. Tm overgrowth and concomitant microbiota 

shifts. Antibody mediated depletion of neutrophils favored dysbiosis. This suggests that neutrophils 

may not play a role in inducing dysbiosis and Salmonella ‘blooming’.  

We additionally compared other colitis models with S. Tm-induced colitis. Interestingly in contrast to 

S. Tm infection, infection with C. rodentium and T-cell-induced colitis only caused mild inflammation 

and no or just moderate changes in Oligo-MM12 composition. However, after infection with C. 

difficile dysbiosis and pathogen ‘blooming’ was apparent. Remarkably, C. difficile-induced 

inflammation caused similar shifts in Oligo-MM12 composition compared to S. Tm.  

In conclusion, these data suggest that the Oligo-MM12 is not damaged by neutrophils but 

outcompeted by S. Tm which profits from an inflammatory milieu and its associated nutritional 

environment – especially, from anaerobic electron acceptors and ethanolamine. Furthermore, 

individual Oligo-MM12 species behaved differently in the presence of severe colitis. Genes involved in 

sporulation, anaerobic respiration, ethanolamine utilization and iron acquisition might contribute to 

survival during harsh conditions present in the inflamed gut. Interestingly, upon infection with 

different enteric pathogens and T-cell-induced colitis, there were parallels between microbiota shifts, 

indicating a conserved pattern of dysbiosis during gut inflammation. These findings could contribute 
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to the identification of general biomarkers for dysbiosis and the development of novel therapeutic 

concepts for Salmonellosis and inflammation-induced dysbiosis. 
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Zusammenfassung 

Die indigene Darm-Mikrobiota ist für die Gesundheit von großer Bedeutung: Sie unterstützt die 

Verdauung, trägt zur Entwicklung eines funktionalen Immunsystems bei und schützt vor 

Darminfektionen. Antibiotikatherapien oder andere exogene Störungen verändern die Diversität und 

Dichte der Darmbakterienzusammensetzung substanziell (Dysbiose). Infolgedessen wird der 

Organismus anfälliger für Infektionen mit darmpathogenen Erregern wie zum Beispiel Salmonella 

enterica serovar Typhimurium (S. Tm). S. Tm verursacht eine schwere Darmentzündung, die mit 

einem übermäßigen Salmonellenwachstum (‘blooming‘) und Dysbiose einhergeht. Dysbiose, die in 

Patienten auftritt und auch ein Kennzeichen für chronisch-entzündliche Darmerkrankungen darstellt, 

ist hauptsächlich charakterisiert durch ein Überhandnehmen von Bakterien der Familie 

Enterobacteriaceae. Es konnte bisher gezeigt werden, dass einerseits Mechanismen wie die 

anaerobe Atmung, die Verwertung von Ethanolamin, sowie Eisenaufnahme ein sogenanntes 

Salmonella-‘blooming‘ begünstigen. Andererseits könnte die Darm-Mikrobiota von neutrophilen 

Granulozyten, die während einer Salmonellen-vermittelten Darmentzündung in das Darmlumen 

emigrieren, stark geschädigt werden. Bis heute ist nicht abschließend geklärt, was für das 

Überhandnehmen eines Erregers und die damit verbundene Dysbiose entscheidender ist: Nährstoffe, 

die gehäuft in einem Entzündungsmilieu vorkommen und das selektive Wachstum von Erregern 

begünstigen oder das Töten von kommensalen Darmbakterien, welches von Effektoren des 

Immunsystems vermittelt wird. 

Außerdem ist bis heute wenig darüber bekannt, wie sich eine Darmentzündung auf einzelne Arten 

einer gesunden Darm-Mikrobiota auswirkt. Aufgrund der hohen Komplexität der 

Darmbakterienzusammensetzung ist es äußerst schwierig, genaue Erkenntnisse über die 

Interaktionen der einzelnen Bakterien mit ihrem Wirt und einem Erreger zu gewinnen. Aus diesem 

Grund werden sogenannte gnotobiotische Tiermodelle verwendet, die eine definierte und weniger 

komplexe Darmbakterienzusammensetzung aufweisen. Unsere Arbeitsgruppe hat daher die Oligo-

Mouse-Microbiota (Oligo-MM12) etabliert. Dieses neue gnotobiotische Mausmodell basiert auf 12 

Bakterien, die aus Mäusen isoliert wurden. Bemerkenswerterweise repräsentieren die Oligo-MM12 

Stämme 5 eubakterielle Hauptphyla (Firmicutes, Bacteroidetes, Actinobacteria, Verrucomicrobia und 

Proteobacteria). Es konnte gezeigt werden, dass die Oligo-MM12 eine Kolonisierungsresistenz 

gegenüber einem avirulenten Salmonellenstamm vermittelt. Zu Beginn meiner Arbeit waren die 

Oligo-MM12 Stämme bereits isoliert und charakterisiert, spezifische Sonden für die Fluoreszenz in situ 

Hybridisierung (FISH) etabliert, sowie keimfreie C57BL/6J Mäuse mit dem Oligo-MM12 Konsortium 

assoziiert. 



Zusammenfassung 

xxi 

 

Ziel meiner Doktorarbeit war es, ein auf quantitativer real-time PCR (qPCR) basierendes Verfahren 

zur Detektion einzelner Oligo-MM12 Stämme, anderer Erreger und weiterer kommensalen 

Darmbakterien zu etablieren. Des Weiteren sollte untersucht werden, wie sich eine Infektion mit S. 

Tm auf die Oligo-MM12 auswirkt und welchen Einfluss Nährstoffe, die während einer 

Darmentzündung vorherrschen, auf Salmonella-‘blooming‘ und Dysbiose haben. Auch der Beitrag 

von neutrophilen Granulozyten zur Salmonella-induzierten Dysbiose sollte erforscht werden. Ein 

weiteres Ziel der Arbeit war es, die Auswirkung von Infektionen mit S. Tm, Clostridium difficile (C. 

difficile), Citrobacter rodentium (C. rodentium) und T-Zell induzierter Kolitis auf einzelne Arten der 

Oligo-MM12 zu untersuchen.  

Ich konnte zeigen, dass die Oligo-MM12 nach einmaliger Verabreichung den Darm von keimfreien 

Mäusen besiedelt und nach erfolgreicher Besiedlung vertikal über viele Filialgenerationen übertragen 

wird, was die Zucht von stabil kolonisierten Oligo-MM12 Mäusen ermöglicht. Außerdem war die 

Oligo-MM12 Zusammensetzung in verschiedenen Tierhaltungen sehr ähnlich, was eine Voraussetzung 

für die Vergleichbarkeit verschiedener Studien ist.  

Die Infektion von Oligo-MM12 Mäusen mit einem Wildtyp Salmonellenstamm führte an Tag 4 nach 

der Infektion zu einer schweren Darmentzündung. Bemerkenswerterweise, war dafür keine 

Antibiotikavorbehandlung, die eine mögliche darmbakterienvermittelte Kolonisierungsresistenz 

brechen könnte, erforderlich. Die Kolitis wurde von einem drastischen Überwachsen von Salmonella 

und Dysbiose begleitet, wobei Oligo-MM12 Stämme, die zu den Phyla Bacteroidetes, Verrucomicrobia 

und Proteobacteria gehören, stark abnahmen, Firmicutes hingegen weniger beeinträchtigt waren 

und Stämme wie Enterococcus faecalis von der Entzündung sogar profitierten. Des Weiteren fanden 

wir heraus, dass das Überleben einzelner Oligo-MM12 Stämme mit dem Vorhandensein von 

Fitnessgenen korreliert, welche zur Sporulation, anaeroben Atmung und Ethanolaminverwertung 

beitragen. Infektionsexperimente mit Salmonellenstämme, die außerstande waren Siderophore zu 

bilden, Nitrat und Tetrathionat zu veratmen oder Ethanolamin zu verwerten, brachten die 

Erkenntnis, dass gerade anaerobe Atmung und Ethanolamin essentiell für Salmonella-‘blooming‘ und 

die Induktion der Dysbiose sind. Außerdem, begünstigt die Antikörper-basierte Depletion von 

neutrophilen Granulozyten die Entstehung von Dysbiose, was darauf schließen lässt, dass neutrophile 

Granulozyten eher vor Salmonella-induzierter Dysbiose schützen. 

Zudem haben wir andere Kolitis-Modelle mit Salmonella-induzierter Kolitis verglichen. Im Gegensatz 

zur S. Tm-Infektion, verursachte eine, durch die Infektion mit C. rodentium und T-Zell-induzierte 

Kolitis in Oligo-MM12 Mäusen eine milde Darmentzündung, welche nur zu einer geringen 

Abweichung der Darmbakterienzusammensetzung führte. Eine durch eine C. difficile-Infektion 
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verursachte Kolitis rief dagegen ähnliche Veränderungen wie Salmonella in der Oligo-MM12 

Zusammensetzung hervor. 

Auf Basis meiner Arbeit konnte festgestellt werden, dass kommensale Darmbakterien während einer 

S. Tm-induzierten Kolitis von neutrophilen Granulozyten nicht direkt getötet werden. Vielmehr wird 

die Darm-Mikrobiota von S. Tm aus dem Feld geschlagen, da S. Tm besonders von Stoffen wie Nitrat, 

Tetrathionat und Ethanolamin, die in einem Entzündungsmilieu vorkommen, profitiert und die 

Mikrobiota überwächst. Gene, die in kommensalen Bakterien vorkommen und wichtig für 

Sporulation, anaerobe Atmung, Ethanolaminverwertung und Eisenaufnahme sind, begünstigen 

möglicherweise das Überleben der Darmbakterien im entzündeten Darm. Interessanterweise 

konnten Parallelen zwischen Veränderungen in der Darmbakterienzusammensetzung aufgrund von 

Infektionen mit verschiedenen darmpathogenen Erregern und einer T-Zell-induzierten Kolitis 

festgestellt werden, was auf ein konserviertes Muster von Dysbiose während einer Darmentzündung 

schließen lässt. Diese Erkenntnisse könnten dazu beitragen generelle Biomarker für Dysbiose zu 

finden und neue Therapiekonzepte für die Behandlung der Salmonellose und Dysbiose zu entwickeln. 
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1. Introduction 

1.1 Elucidation of gut microbiota functions using gnotobiotic mouse models 

1.1.1 General functions of a healthy gut microbiota 

The intestinal tract of humans and other mammalians is colonized by a highly diverse and complex 

bacterial community, the microbiota. The bacteria increase in diversity and abundance along the 

digestive tract (Hooper and Macpherson 2010) and reach an enormously amount of 1012 cells per 

gram of large intestinal content (Marchesi and Shanahan 2007). Several thousands of years of co-

evolution and symbiosis attributed the gut microbes special tasks that are essential for human health 

and wellbeing. Besides influencing gut motility as well as shaping the gut architecture by reducing 

cecal size and supporting microvilli formation (Falk et al. 1998), the gut microbiota contributes to the 

development of a functional immune system (Hooper et al. 2012). For example, commensals trigger 

production of secretory immunoglobulin A (Macpherson and Uhr 2004) and antimicrobial peptides 

via activation of Paneth cells (Vaishnava et al. 2008), induction of regulatory T-cells (Atarashi et al. 

2013) and differentiation of TH17 cells (Atarashi et al. 2008). Furthermore, commensal bacteria 

protect against food allergen sensitization (Stefka et al. 2014). A disturbed microbiota was associated 

with allergic diseases and obesity (Baothman et al. 2016, Simonyte et al. 2016). 

In addition to the educative effects on the immune system, the metabolic activity of the gut 

microbiota contributes to nutrition of the host (Nicholson et al. 2012). Microbiota produces 

metabolites such as vitamins (Said 2011), amino acids (Zheng et al. 2011) and carbohydrates (Flint et 

al. 2012). Moreover, the microbiota catabolizes complex, nutrient derived fibers and long-chained 

sugars into simple sugars as well as short-chain fatty acids (SCFAs) like butyrate (Donohoe et al. 

2014), acetate and propionate (Caspari and Macy 1983). Butyrate has been shown to be the primary 

energy source of colonocytes (Donohoe et al. 2012). Consumption of butyrate by colonocytes 

renders the epithelium hypoxic, which strengthens barrier function (Kelly et al. 2015) as well as 

favors growth of obligate anaerobic bacteria such as Clostridia (Rivera-Chávez et al. 2016). The 

microbiota also provides protection against bacterial infection (Buffie and Pamer 2013, Stecher et al. 

2013). This protective effect is termed colonization resistance (CR) and is on the one hand mediated 

by occupation of vacant niches, competition for nutrients or by production of inhibitory and toxic 

substances as well as immune stimulation. Taken together, the microbiota fulfills essential and highly 

versatile tasks including the protection from pathogens. However, under certain circumstances 

pathogens manage to break CR and induce disease. 
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1.1.2 Composition of the gut microbiota: from health to dysbiosis and disease 

A balanced microbial community in the healthy gut is basically characterized by domination of 

anaerobic bacteria such as members of the phyla Bacteroidetes and Firmicutes, whereas 

Proteobacteria, Actinobacteria and Verrucomicrobia are less abundant (Eckburg et al. 2005, Ley et al. 

2005). Interestingly, the microbial composition between man and mice is similar at the phylum level. 

However, there are differences at the genus level: humans are preferentially colonized by Prevotella, 

Faecalibacterium and Ruminococcus, whereas the microbiota of mice is enriched in Lactobacillus, 

Alistipes, Turicibacter and Mucispirillum (Krych et al. 2013, Nguyen et al. 2015). 

Exogenic factors like antibiotics (Maurice et al. 2013) as well as changes in diet (Agus et al. 2016) can 

disturb this equilibrium and induce shifts in microbial composition termed dysbiosis which are 

paralleled by reduction of bacterial diversity (Dethlefsen et al. 2008) and are associated with 

increased susceptibility to infections with enteric pathogens (Ubeda and Pamer 2012). In addition, 

chronic inflammation as well as acute infections could be also linked to dysbiosis. Interestingly, 

dysbiosis observed in irritable bowel syndrome (Kerckhoffs et al. 2011, Carroll et al. 2012) and IBD 

(Crohn’s disease and Ulcerative colitis) (Baumgart et al. 2007, Frank et al. 2007) as well as after 

antibiotic treatment (Spees et al. 2013), chemically induced colitis (Lupp et al. 2007) or infection with 

enteric pathogens (Stecher et al. 2007, Barman et al. 2008) was commonly characterized by a drastic 

increase of Proteobacteria (‘blooming’), whereas abundance of Bacteroidetes and Firmicutes was 

decreased (Winter and Bäumler 2014).  

1.1.3 Analysis tools 

Dysbiosis associated with diseases is primarily discovered in cohorts of patients by investigating 

microbial composition in fecal samples (Table 1, samples from humans). In order to recapitulate and 

study the importance of certain microbes in human diseases, germfree mice can be further 

associated with selective patient-derived bacterial consortia (Faith et al. 2010, Goodman et al. 2011, 

Faith et al. 2014). So called gnotobiotic (Greek: gnotos ‘known’ and bios: ‘life’) mice are then used for 

more specific and targeted microbiota analyses (Clavel et al. 2016). So far, there is no standardized 

microbiota for gnotobiotic mice that can be shared between research facilities. An investigation 

conducted by Rausch and colleagues revealed that the microbiota composition of laboratory mice 

differs between animal facilities (Rausch et al. 2016). Hence, results obtained by different 

investigations might be biased by differences in base line microbiota composition observed between 

different animal facilities. 

To date, most microbiota analyses are based on 16S rRNA gene sequencing using next generation 

sequencing (NGS) techniques and reference data bases which enable assigning certain reads to 
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published 16S rRNA gene sequences and thereby determine bacteria. In addition, strain-specific 

quantitative real-time PCR (qPCR) can be used to quantify and detect bacteria (Ganesh et al. 2013).  

1.1.4 Defined microbial consortia for gnotobiotic mouse models 

Since the gut microbiota is highly complex harboring up to 1000 different species (Marchesi and 

Shanahan 2007), it is challenging to mechanistically investigate host-microbe as well as microbe-

microbe interactions in the intestine. Thus, animal models with reduced microbiota complexity 

ranging from one or two community members to intermediate complexity emerged in the past few 

years (Freter and Abrams 1972, Klaasen et al. 1991, Bry et al. 1996, Dewhirst et al. 1999, Mahowald 

et al. 2009, Becker et al. 2011, McNulty et al. 2011). The advantage of such gnotobiotic animal 

models is that the microbiota harbors known bacterial strains that can be composed according to the 

basic of the scientific problem investigated (Yi and Li 2012, Clavel et al. 2016). These models have 

mostly been based on bacteria isolated from humans (humanized microbiota model). Although 

humanized animal models may manifest as valuable research tools for studding disease associated 

host-microbe interactions (Turnbaugh et al. 2009, Faith et al. 2011), the successful colonization of 

human bacterial isolates to animals is dependent on genetic background (Wos-Oxley et al. 2012) and 

might not reflect true mutualistic microbiota-host effects developed by long-term co-evolution 

between host-specific bacteria and their host. It has been shown that humanized animal models do 

not recapitulate several aspects of gut physiology and immune maturation compared to association 

with indigenous microbiota (Chung et al. 2012). This problem can be overcome by using germfree 

mice associated with murine bacterial isolates. The microbiota from mice and humans is highly 

comparable at the phylum level, however there are marked differences in lower taxonomical levels 

(Ley et al. 2005, Oh et al. 2010) and functional categories (Xiao et al. 2015). In the past, a consortium 

of mouse-gut-derived bacteria termed the Altered Schaedler Flora (ASF) that consisted of 8 murine 

bacterial isolates has been widely used (Dewhirst et al. 1999, Geuking et al. 2011, Natividad et al. 

2013, Collins et al. 2014). Unfortunately, this consortium is not available in public strain collections.  

1.1.5 The Oligo-Mouse-Microbiota 

We have recently developed a novel consortium based on 12 murine isolates, termed the Oligo-

mouse-microbiota (Oligo-MM12) that confers partial colonization resistance against an avirulent S. 

Tm strain (Brugiroux et al. 2016). It was aimed to create a defined consortium of gut commensals 

that resembles the microbiota of conventional mice at the phylum level (Figure 1). By using a 

genome-informed design based on comparative (meta)genome analysis, we added additional 

bacteria which increased CR against S. Tm. We thereby show that the Oligo-MM12 is a basic model 

microbiota that can be reduced or expanded by additional bacteria in order to investigate host-

microbe or microbe-microbe interactions during enteric infection and other diseases.  
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Linnenbrink and co-workers analyzed microbiota compositions of wild mice and showed that 

Bacteroidetes, Firmicutes, Deferribacteres and Proteobacteria were the dominating phyla in the 

mouse gut (Linnenbrink et al. 2013). Remarkably, the 12 mouse-adapted Oligo-MM12 strains cover a 

spectrum of 5 eubacterial phyla identified by Linnenbrink and colleagues (Firmicutes, Bacteroidetes, 

Actinobacteria, Verrucomicrobia and Proteobacteria but not Deferribacteres). All Oligo-MM12 strains 

were deposited in the German type culture collection (DSMZ) and are publically available. To this 

end, protocols for cryopreservation as well as FISH probes for individual Oigo-MM12 were established 

and the genome of each Oligo-MM12 strain is available. 

 

Figure 1: Phylogenetic placement and representation of the Oligo-MM
12

 strains in conventional mice. The 

16S rRNA sequences of the 12 Oligo-MM strains (red) as well as the 8 strains of the Altered Schaedler Flora 

(blue; ASF356, ASF360, ASF361, ASF457, ASF492, ASF500, ASF502 and ASF519) (Dewhirst et al. 1999) were 

compared against a set of 865 full-length high quality 16S rRNA gene sequences from 2 types of conventional 
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unmanipulated SPF mice (Stecher et al. 2007). All sequences were aligned against the SILVA database version 

111 NR (Quast et al. 2013) using MEGABLAST (version 2.2.28+) on a 97 % identity level, yielding 47 different 

taxonomic identities. The best hit of each of the 47 taxonomies from the database was used for the generation 

of a multiple sequence alignment using Infernal. A phylogenetic tree was generated using fasttree (Price et al. 

2009). The number of sequences per taxonomic identity in the conventional mice is indicated (e.g. mice=20). 

The Oligo-MM
12

 strains represent 10 of the 19 bacterial families (and candidate families), detected in this CON 

microbiota. Families represented only in CON mice include the Desulfovibirionaceae, Desulfonatronaceae (both 

δ-Proteobacteria), Deferribacteraceae (Deferribacteres phylum), Porphyromonadaceae, Rikenellaceae, 

Prevotellaceae (Bacteroidetes phylum), Peptococcacaceae and Anaeroplasmataceae (Firmicutes phylum). It 

should be noted that ASF457 is a representative of the Deferribacteraceae and ASF519 is a representative of 

the Porphyromonadaceae. Oligo-MM
12

 and the ASF
8
 consortia together cover 12 of the 19 abundant families in 

this CON microbiota. Figure and figure legend taken from (Brugiroux et al. 2016). 

 

1.2 Salmonella enterica serovar Typhimurium pathogenesis and disease 

1.2.1 Pathogenesis of Salmonella enterica serovar Typhimurium is dependent on type 3 

secretion systems 

S. Tm is a facultative anaerobic, non-spore-forming, Gram-negative food-borne pathogen belonging 

to the class of Gamma-Proteobacteria and is among the most clinically important serotypes that 

causes salmonellosis in humans with millions of infections every year worldwide (WHO 2013 (Mead 

et al. 1999, Flockhart et al. 2016). The infection is usually self-limiting, however in very young, old or 

immunocompromised patients the S. Tm infection can become life-treating with several thousands of 

deaths per year (WHO 2013 (Schulte and Hensel 2016).  

After oral uptake, S. Tm has to overcome host clearances such as stomach acid, the indigenous 

microbiota which provides colonization resistance (CR) as well as the mucus layer by using flagella 

and chemotaxis (Stecher et al. 2004). Upon reaching the epithelium, S. Tm adheres to polarized 

epithelial cells using a giant non fimbrial adhesin SiiE encoded on Salmonella pathogenicity island 4 

(SPI-4). Expression of SPI-4 genes is co-regulated with expression of SPI-1 invasion genes (Gerlach et 

al. 2007). SPI-1 encodes a type 3 secretion system (T3SS-1) that injects effector proteins into the host 

cell (Kaiser et al. 2012). Secretion of T3SS-1 effector proteins is essential for bacterial uptake into 

epithelial cells that is associated with rearrangement of the action cytoskeleton (Patel and Galán 

2005) and induction of an inflammatory response (Hapfelmeier et al. 2004). In addition to T3SS-1 

mediated invasion, S. Tm can also be taken up by dendritic cells which shuttle S. Tm across the 

epithelial barrier (Figure 2) (Rescigno et al. 2001). Once inside a host cell, S. Tm is surrounded by a 

vacuole made of plasma membrane, the so called Salmonella-containing vacuole (SCV) (Portillo et al. 

1992) where S. Tm survives and replicates. In order to switch to this intracellular live style, S. Tm 

makes use of a second type 3 secretion system (T3SS-2). T3SS-2 effector protein secretion induces 

inhibited fusion of SCV with lysosomes in macrophages (Uchiya et al. 1999), intracellular replication, 

enhancement of inflammation and systemic dissemination (Hapfelmeier and Hardt 2005). SPI-1 and 2 
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T3SSs additionally contribute to long-term infection and spread (Lawley et al. 2006). Moreover, S. Tm 

is able to form non-replicative, antibiotic resistant persister cells which reside within SCVs in 

macrophages. These persister cells might serve as a reservoir for relapsing infection (Helaine et al. 

2014). After reaching an abundance of 108 bacteria per gram feces, S. Tm is effectively transmitted to 

the next host via the oral fecal route (Lawley et al. 2008). Transmission is additionally controlled be 

the indigenous microbiota.  

It is worth mentioning, that most mechanistic studies of S. Tm infection have been done in the 

streptomycin pre-treated S. Tm infection model (Barthel et al. 2003), where the microbiota is 

manipulated by antibiotic treatment prior to infection (Stecher et al. 2007). In this model, antibiotic-

induced dysbiosis renders mice susceptible to S. Tm induced colitis that is dependent on functional 

T3SSs (Hapfelmeier et al. 2005). Although the streptomycin pre-treated mouse model is excellent for 

mechanistic studies regarding host-pathogen interaction, it is not adequate for studying all aspects of 

microbiota-pathogen interactions since microbiota composition is influenced by antibiotic treatment. 

Therefore, in order to obtain unbiased insights into microbiota-pathogen interactions at the single 

species level, the gnotobiotic Oligo-MM12 model was used in this study.  

1.2.2 S. Tm invades the gut ecosystem and induces inflammation 

As already outlined before in section 1.2.1, S. Tm has to break CR of the indigenous microbiota in 

order to successfully colonize and infect the host. Ferreyra and colleagues proposed that during 

infection there are five stages of microbiota-pathogen interaction: At stage 1, the healthy and 

complex microbiota mediates CR by occupying niches. Upon changes in bacterial diversity and 

density (moderate dysbiosis) that can be induced by disturbances such as antibiotics or changes in 

diet, the pathogen can colonize (stage 2). At stage 3, the pathogen expands and benefits from 

available nutrients (expansion phase). Stage 4 is characterized by pathogen outgrowth (‘blooming’ 

phase) that is accompanied by inflammation and massive dysbiosis. After clearing the pathogen in 

stage 5 the microbiota recovers from dysbiosis (resilience) (Ferreyra et al. 2014). The first 4 stages of 

ecosystem invasion are visualized in Figure 2. 

CR which is mediated by niche occupation, competition for nutrients, by direct inhibition using 

antimicrobial peptides or T6SS mediated killing (Russell et al. 2014) and by stimulation of the 

immune defense can be overcome by the application of antibiotics (Barthel et al. 2003). It could be 

recently shown that antibiotic treatment facilitates S. Tm infection by depletion of Clostridia which is 

followed by a decrease in butyrate concentration and increased oxygenation of the epithelium. This 

oxygenation promotes S. Tm growth in a cytochrome oxidase dependent manner in early stages of 

infection (Rivera-Chávez et al. 2016). Furthermore, after antibiotic treatment, S. Tm as well as 
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Clostridium difficile (another enteric pathogen) profit from microbiota-liberated mucosal 

carbohydrates like fucose and sialic acid (Ng et al. 2013). Antibiotic treatment also increases luminal 

galactarate and glucarate concentrations by leading to increased oxygenation of galactose and 

glucose, sugars selectively consumed by Salmonella (Faber et al. 2016). In addition, hydrogen that is 

produced by the unperturbed indigenous microbiota (Maier et al. 2013) boosts S. Tm growth and 

ecosystem invasion of S. Tm in early stages of infection. This effect was absent after antibiotic 

treatment, showing a link between specific metabolites provided by the microbiota and pathogen 

adaptation. Gnotobiotic mice used in this study were based on a low complex type of microbiota 

(LCM mice) (Stecher et al. 2010). Besides taking advantage of sugars, oxygenation and hydrogen 

during early stages of infection (stages 2 and 3), S. Tm induces gut inflammation via T3SS activity 

which creates an inflammatory milieu and is accompanied by Salmonella ‘blooms’ during later stages 

of infection (stage 4). S. Tm induced colitis causes dysbiosis (Stecher et al. 2007) and is characterized 

by infiltrating neutrophils (Loetscher et al. 2012). However, until now the impact of severe S. Tm 

induced gut inflammation on single species of the gut microbiota remains elusive. 

1.2.3 S. Tm profits from an inflammatory gut milieu and outcompetes the indigenous 

microbiota 

S. Tm induces acute gut inflammation by invading epithelial cells and survival in mucosal 

macrophages (Winter et al. 2010) which is followed by dramatic changes in microbiota composition 

as well as Salmonella ‘blooms’. It has been shown that S. Tm thrives in the inflamed gut by profiting 

from the inflammatory milieu. In contrast to anaerobic commensals, S. Tm is able to use anaerobic 

electron acceptors that are generated during respiratory burst mediated by neutrophils attracted to 

the site of infection (Winter et al. 2010, Lopez et al. 2012). The most important anaerobic electron 

acceptors are tetrathionate (S4O6
2-) and nitrate (NO3

-). Toxic hydrogen sulfide (H2S) produced by the 

microbiota is converted into thiosulfate (S2O3
2-) by the mucosa (Levitt et al. 1999, Furne et al. 2001). 

During intestinal inflammation which is accompanied by neutrophil infiltration and the presence of 

reactive oxygen species, S2O3
2- is further oxidized to tetrathionate (S4O6

2-) (Winter et al. 2010). 

Nitrate forms from NO that is generated by iNOS which further reacts with reactive oxygen species 

such as superoxide O2- produced by neutrophils (PHOX dependent) or by the epithelium (Winter et 

al. 2013) to peroxynitrite (ONOO-) which can isomerize to nitrate (NO3
-) (Szabó et al. 2007). S. Tm 

even actively seeks for energetically favorable regions were anaerobic electron acceptors or 

glycoconjugates are present using flagella-mediated motility and chemotaxis (Stecher et al. 2008, 

Rivera-Chávez et al. 2013). Ethanolamine that is liberated from dying epithelial and is selectively used 

by Salmonella serves as energy source for tetrathionate respiration (Thiennimitr et al. 2011).  
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In addition to respiratory burst, antimicrobial peptides are released upon S. Tm infection. Infection of 

macrophages induces IL-23 expression which leads to T-cell dependent induction of IL-17 and IL-22 

(Godinez et al. 2009). T-cell dependent cytokine production is essential for recruitment of 

neutrophils (Godinez et al. 2008) and for secretion of antimicrobials like lipacalin-2 (LCN-2). LCN-2 

that is secreted by epithelial cells and neutrophils hampers iron uptake by sequestering bacterial 

siderophores like enterochelin (Flo et al. 2004, Berger et al. 2006, Raffatellu et al. 2009). 

Siderophores are needed for iron scavenging which is an essential micronutrient. Free iron 

concentrations in the host is restricted by iron-binding proteins like transferrin or ferritin (Andrews 

2000). Besides enterochelin, S. Tm produces salmochelin a glycosylated variant of enterochelin which 

is not bound by LCN-2 (Raffatellu et al. 2009). Thus, salmochelin production provides a fitness 

advantage in the presence of LCN-2. In addition, low dietary iron intake was protective against 

enteric infection in a mouse model (Kortman et al. 2015). S. Tm is also resistant to host-mediated 

zinc sequestration by neutrophil dependent secretion of calprotectin (Liu et al. 2012). This resistance 

is conferred by expression of a high affinity zinc transporter (ZnuABC). Furthermore, S. Tm resists 

RegIIIβ, an antimicrobial peptide which is induced in enteric S. Tm infection and kills commensal gut 

bacteria while paving the way for Salmonella (Stelter et al. 2011). Moreover, sialic acid catabolism 

favors S. Tm outgrowth and dysbiosis during inflammation (Huang et al. 2015).  

However, the inflammatory host response is not only beneficial for S. Tm. On the one hand, immune 

defense that was thought to limit pathogen-invasion can actually promote infection by providing a 

growth advantage over the gut microbiota. On the other hand, during S. Tm infection granulocytes 

(mostly neutrophils) impose a tight bottleneck on the gut luminal pathogen population (Maier et al. 

2014). Transmigrated granulocytes kill up to 99.999% of the luminal Salmonella population and only 

a subpopulation of Salmonella survives and thrives later in the inflamed gut, profiting from the 

inflammatory milieu. Until now it is unknown how infiltrating neutrophils impact on commensal 

bacteria and which nutritional factor of an inflammatory milieu (Figure 2) contributes most to S. Tm 

‘blooming’ and dysbiosis.  
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Figure 2: S. Tm ecosystem invasion and infection. A healthy and complex microbiota confers colonization 

resistance (CR) and protects from infection (stage 1). Upon disturbances of the microbiota (dysbiosis) induced 

by e.g. antibiotics, S. Tm colonizes the gut (stage 2). S. Tm profits from microbiota derived hydrogen (H2), 

increased oxygenation, and sugars and expands in the already inflamed gut (stages 2 and 3). At stage 4, S. Tm 

induces systemic infection and severe inflammation including recruitment of dendritic cells (DC), macrophages 

(Mɸ) and neutrophils which is accompanied by S. Tm ‘blooming’ and massive dysbiosis. During this late stage of 

infection, S. Tm profits from nitrate (NO3
-
) and tetrathionate (S4O6

2-
) respiration as well as from ethanolamine 

(EA) derived from dying epithelial cells.  

 

1.3 Interactions of other enteric pathogens and the gut microbiota 

1.3.1 Citrobacter rodentium, a model for human enteropathogenic Escherichia coli 

infection 

Enteropathogenic Escherichia coli (EPEC) is an important pathogen inducing diarrheal disease in 

infants causing illness and morbidity (Nataro and Kaper 1998, Kotloff et al. 2013). EPEC has been 

shown to adhere to epithelial cells using bundle-forming pili (BFP) (Cleary et al. 2004). This adherence 

is further strengthened by T3SS mediated translocation of translocated intimin receptor (Tir) to the 

mammalian cell which induces formation of ‘attaching and effacing’ lesions (Kenny et al. 1997). In 

order to model EPEC induced pathology in humans which is a bad mouse-colonizer, mouse models of 

EPEC induced pathology are based on infections with Citrobacter rodentium (C. rodentium). 

Interestingly, C. rodentium causes transmissible colon hyperplasia in mice (Luperchio and Schauer 

2001). The pathogenesis is comparable to EPEC infection in humans. It is characterized by intimate 

attachment of the pathogen to enterocytes, pedestral formation and effacement of microvilli 
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(‘attaching and effacing’ lesion) (Mallick et al. 2012). In mice, C. rodentium infection causes colitis 

and induces microbiota shifts mainly characterized by increased abundance of facultative anaerobic 

bacteria belonging to the Enterobacteriaceae family (Lupp et al. 2007). Interestingly, commensal 

lactobacilli protect against C. rodentium infection (Vong et al. 2015). Furthermore, viable bacteria in 

fermented dairy products reduced colonic crypt hyperplasia upon C. rodentium infection by 

stabilizing the abundance of Ruminococcus and Turicibacter (Collins et al. 2014). This indicates that 

the microbiota plays a role in protection against C. rodentium infection. 16S rRNA amplicon 

sequencing of the microbiota revealed that C. rodentium infection is associated with changes in 

mucosally adherent as well as luminal microbiota. In particular, increased abundance of 

Proteobacteria, Deferribacteres and Clostridia as well as decreased abundance of Lactobacillus were 

observed (Hoffmann et al. 2009). However, data how C. rodentium alters microbial composition at 

the single species level are lacking (Table 1). 

1.3.2 Clostridium difficile, a leading cause of antibiotic associated diarrhea (AAD) 

Nosocomially acquired infections with Clostridium difficile (C. difficile) are associated with antibiotic 

therapy and have become a major health concern worldwide (Rupnik et al. 2009). While a healthy 

gut microbiota provides CR against C. difficile infection, antibiotic therapy increases the risk of 

acquiring C. difficile infection and disease (Britton and Young 2014). Especially C. difficile ribotype 027 

spreads rapidly. This ribotype is linked to increased severity of disease and mortality (Valiente et al. 

2014). Persistent infection correlates with a dysbiotic microbiota (Ananthakrishnan 2011). 

Interestingly, transfer of fecal samples from healthy donors ameliorated disease in patients (van 

Nood et al. 2013), indicating the beneficial potential of a healthy microbiota. Pathology of C. difficile 

depends on expression of different toxins such as toxin A (tcdA) and toxin B (tcdB) which are 

glycosyltransferases that inactivate Rho, Rac as well as Cdc42 involved in actin polymerization and 

regulation of the cell cycle (Voth and Ballard 2005). It was speculated that ribotype 027 produces 

more toxin A and B because it lacks tcdC which is a negative regulator of these toxins (Warny et al. 

2005) and thereby increases virulence. However, this is controversial since Aitken and colleagues 

could not confirm hyper-virulence of ribotype 027 (Aitken et al. 2015). Besides toxin A and toxin B, C. 

difficile ribotypes can additionally express a binary toxin (CDT) which exerts actin-specific ADP-

ribosyltransferase activity and is encoded by cdtA (enzymatic domain) and cdtB (binding domain) 

(Stubbs et al. 2000). CDT which is expressed by two-third of the C. difficile strains including ribotype 

027 is thought to further aggravate C. difficile-induced disease (Barbut et al. 2005, McEllistrem et al. 

2005, Valiente et al. 2014). Toxins are only produced by vegetative cells, not by spores (Lawley et al. 

2009), underlining the importance of spore germination for pathogenesis. Germination is dependent 

on bile acids (Sorg and Sonenshein 2010) which is modulated by the microbiota (Narushima et al. 
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2006, Ridlon et al. 2006). Manipulation of the microbiota with broad-spectrum antibiotics reduces 

abundance of Lachnospiraceae and Ruminococcaceae which correlates with decreased 

concentrations of secondary bile acids in the gut. Secondary bile acid producers like Clostridium 

scindens increased CR against C. difficile infection (Buffie et al. 2015, Theriot et al. 2016). 

Furthermore, cohort studies conducted with patients that had received fecal microbiota 

transplantation revealed that protective microbial taxa belong to the Bacteroides spp., 

Parabacteroides spp., Alistipes, Ruminococcaceae, Clostridium cluster IV and XIVa (Faecalibacterium 

prausnitzii, Roseburia intestinalis, Eubacterium rectale), Lachnospiraceae, Peptostreptococcaceae 

and Verrucomicrobiaceae and negatively correlate with C. difficile colonization. In contrast, the 

abundance of Lactobacillus spp., Streptococcaceae, Enterobacteriaceae, Enterococcus spp., 

Salmonella spp., Sutterella spp. and Verrucomicrobia correlates positively with C. difficile 

colonization (Seekatz and Young 2014). 

1.4 Dysbiosis and inflammatory bowel diseases 

Inflammatory bowel diseases (IBD) include Crohn’s disease (CD) and Ulcerative Colitis (UC). 

Especially, IBD are emerging in countries of the western world. IBD are characterized by barrier 

disruption, chronic inflammation and dysbiosis (Vivinus-Nébot et al. 2014, Ridler 2016, Willing et al. 

2016). The incidence of IBD has been further associated with genetic predisposition and western diet 

rich in fat and sugars (Agus et al. 2016). Furthermore, the epithelial barrier, innate and adaptive 

immunity, environmental factors and the microbiota apparently play a key role in the pathogenesis 

of IBD (Xavier and Podolsky 2007).  

Compositional microbiota analysis of samples obtained from inflamed guts revealed that Bacteroides 

spp. and Fusobacteria are increased in CD patients, whereas Proteobacteria and Firmicutes are 

increased in UC patients (Forbes et al. 2016). In addition, butyrate-producing bacteria like Blautia 

faecis, Roseburia inulinivorans, Ruminococcus torques, Clostridium lavalense, Bacteroides uniformis 

and Faecalibacterium prausnitzii are reduced and bacteria belonging to the genera Actinomyces and 

Bifidobacterium are enriched in CD patients (Takahashi et al. 2016). Patients suffering from UC 

display reduced diversity of Clostridium cluster IV and decreased abundance of bacteria involved in 

butyrate and propionate metabolism like Ruminococcus bromii, Eubacterium rectale, Roseburia spp., 

and Akkermansia spp.. In contrast, increased abundance of Fusobacterium spp., Peptostreptococcus 

spp., Helicobacter spp., Campylobacter spp. and C. difficile is observed in patients suffering from UC 

(Rajilic-Stojanovic et al. 2013). However, until now it remains elusive whether dysbiosis observed 

during IBD is cause or consequence of the disease (Buttó and Haller 2016). Interestingly, some 

microbiota members protect the host from colitis. For example Bacteroides thetaiotaomicron as well 
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as B. fragilis have evolved beneficial immune modulatory properties (Hoffmann et al. 2015, Chu et al. 

2016) and Faecalibacterium prausnitzii mediates anti-inflammatory activity (Sokol et al. 2008). 

1.5 Common changes in microbiota composition upon enteric infection and 

inflammatory bowel diseases 

In the past years, it has become evident that IBD as well as pathogen induced inflammation are 

accompanied by microbiota shifts and decreased bacterial diversity. Shifts have in common that the 

abundance of obligate anaerobic bacteria is decreased. This gives way to overgrowth of facultative 

anaerobic bacteria (Winter and Bäumler 2014). Thus, shifts were mainly characterized by 

Enterobacteriaceae (Proteobacteria) ‘blooms’ (Lupp et al. 2007, Stecher et al. 2007, Seekatz and 

Young 2014) and reduced abundance of butyrate producing bacteria such as Blautia faecis, Roseburia 

inulinivorans, Ruminococcus torques, Clostridium lavalense, Bacteroides uniformis, Faecalibacterium 

prausnitzii, Ruminococcus bromii, Eubacterium rectale and Roseburia spp (Rajilic-Stojanovic et al. 

2013, Takahashi et al. 2016). However, studies conducted so far were mostly done in different animal 

models or are obtained from human patients (Table 1). In order to investigate parallels and 

mechanisms of dysbiosis induced by infections or chronic inflammation, it is key to make use of 

standardized and highly defined microbial minimal consortia with strain-specific analysis tools. In this 

thesis, we compare dysbiosis induced by infection or chronic inflammation using gnotobiotic mice 

associated with the Oligo-MM12. 

Table 1: Changes in microbiota composition upon enteric infection and inflammatory bowel 

diseases 

Pathology Enriched or positively 

correlated bac. taxa 

Depleted or negatively 

correlated bac. taxa 

Organism / 

analysis method 

Reference 

S. Tm infection Proteobacteria, 

Enterococcus spp., 

Salmonella 

Bacteroidales, 

Firmicutes, Verrucomicrobia, 

Deferribacteres, 

Lactobacillus spp., 

Clostridium spp., Bacteroides 

spp. 

C57BL/6J mice (strep. 

pre-treated mouse) / 

16S rRNA sequencing 

and culturing 

(Stecher et al. 

2007) 

S. Tm infection Enterococcus spp., 

Salmonella 

Bacteroidetes, Firmicutes, 

Barnesiella spp. 

129/SvJ mice (no 

antibiotic prior to 

infection) / 16S rRNA 

sequencing 

(Kaiser et al. 

2013) 

S. Tm infection Salmonella  Anaerostipes caccae, 

Bifidobacterium longum, 

Blautia producta, Bacteroides 

thetaiotaomicron, 

Clostridium ramosum, E. coli, 

C. butyricum, Akkermansia 

muciniphila 

C3H mice (human 

bacteria SIHUMI) / 

strain-specific qPCR 

(Ganesh et al. 

2013) 

S. Tm infection Catenibacterium, 

Xylanibacter 

Prevotella Swine / 16S rRNA 

sequencing and qPCR 

(Bearson et al. 

2013) 

S. Tm infection Clostridium perfringens, 

Salmonella 

Eubacterium rectale, 

Clostridium coccoides, 

FvB mice (no 

antibiotic prior to 

(Barman et al. 

2008) 
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Pathology Enriched or positively 

correlated bac. taxa 

Depleted or negatively 

correlated bac. taxa 

Organism / 

analysis method 

Reference 

Lactobacillus spp., 

Bacteroides spp. 

infection) / qPCR 

C. rodentium 

infection 

Enterobacteriales  Bacteroidales, Clostridiales  C57BL/6J mice / 16S 

rRNA sequencing 

(Lupp et al. 

2007) 

C. rodentium 

infection 

Deferribacteres, 

Proteobacteria  

Lactobacillaceae C57BL/6J mice / 16S 

rRNA sequencing 

(Hoffmann et 

al. 2009) 

C. difficile 

infection 

Ruminococcus gnavus, 

Klebsiella pneumoniae 

Bifidobacterium longum Human infants / 

TTGE* + 16S rRNA 

sequencing 

(Rousseau et 

al. 2011) 

C. difficile 

infection 

 Ruminococcaceae, 

Lachnospiraceae 

Human / 16S rRNA 

sequencing 

(Antharam et 

al. 2013) 

C. difficile 

infection 

Firmicutes, Proteobacteria, 

Actinobacteria 

Bacteroidetes Human / microarray 

+ 16S rRNA 

sequencing 

(Manges et al. 

2010) 

C. difficile 

infection 

Lactobacillus spp., 

Streptococcaceae, 

Enterobacteriaceae, 

Enterococcus spp., 

Salmonella spp., Sutterella 

spp., Verrucomicrobia 

Bacteroides spp., 

Parabacteroides spp., 

Alistipes, Ruminococcaceae, 

Clostridium cluster IV and 

XIVa (Faecalibacterium 

prausnitzii, Roseburia 

intestinalis, Eubacterium 

rectale), Lachnospiraceae, 

Peptostreptococcaceae, 

Verrucomicrobiaceae 

Human (after fecal 

transplantation). 

(Seekatz and 

Young 2014) 

CD  Bacteroidetes, Fusobacteria  Human / 16S rRNA 

sequencing 

(Forbes et al. 

2016) 

CD Actinomyces, 

Bifidobacterium 

Bacteroides, Eubacterium, 

Faecalibacterium 

Ruminococcus (Blautia faecis, 

Roseburia inulinivorans, 

Ruminococcus torques, 

Clostridium lavalense, 

Bacteroides uniformis and 

Faecalibacterium prausnitzii) 

butyrate producer 

Human / 16S rRNA 

sequencing 

(Takahashi et 

al. 2016) 

UC Proteobacteria, Firmicutes  Human / 16S rRNA 

sequencing 

(Forbes et al. 

2016) 

UC Fusobacterium spp., 

Peptostreptococcus spp., 

Helicobacter spp., 

Campylobacter spp., C. 

difficile 

Ruminococcus bromii, 

Eubacterium rectale, 

Roseburia spp., and 

Akkermansia spp., 

Clostridium cluster IV 

Human / 

phylogenetic 

microarray 

(Rajilic-

Stojanovic et 

al. 2013) 

 

IBD Alphaproteobacteria; 

Actinobacteria (Actinomyces 

oxydans); 

Gammaproteobacteria; 

Betaproteobacteria 

(Pseudomonas spp.), 

Firmicutes, Bacilli (B. 

lichenifromis) 

 

Firmicutes, Lachnospiraceae 

(Clostridium spp.); 

Bacteroidetes, 

Bacteroidales (B. 

thetaiotaomicron, Alistipes 

spp.)  

 

Human / qPCR (Frank et al. 

2007) 

S. Tm: Salmonella Typhimurium, C. rodentium: Citrobacter rodentium, C. difficile: Clostridium difficile, CD: 

Crohn’s disease, UC: ulcerative colitis, IBD: inflammatory bowel disease, Strep.: streptomycin, *TTGR: PCR-

temporal temperature gradient gel electrophoresis, bac.: bacterial  
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1.6 Aims of the study 

The composition of the gut microbiota is highly complex and several aspects of host-pathogen-

microbiota interactions still remain elusive. In order to investigate mechanisms underlining such 

interactions, we established a novel mouse derived bacterial consortium termed the Oligo-mouse-

microbiota (Oligo-MM12) that is constituted of 12 bacterial isolates which cover the main eubacterial 

phyla (Brugiroux et al. 2016).  

(1) The first aim of my thesis was to establish strain-specific qPCR assays that allow for absolute 

quantification of the 12 individual Oligo-MM strains. In addition for specific research question, qPCR 

assays should be also extended to quantification of 7 ASF strains, Salmonella Typhimurium, 

Citrobacter rodentium, Helicobacter typhlonius, Clostridium difficile, Clostridium scindens, Escherichia 

coli, Streptococcus danieliae and Staphylococcus xylosus in complex consortia. qPCR was chosen 

because it is a fast, affordable and sensitive method for absolute quantification of individual bacterial 

species. This method shall then be employed to monitor bacterial colonization in gnotobiotic mice 

over time, analyze vertical transmission, microbial stability over generations, changes in microbial 

composition upon exposure to different diet and compare Oligo-MM12 composition between 

different animal facilities. 

S. Tm induces acute gut inflammation engaging effector protein secretion via type 3 secretion 

systems which is followed by dramatic changes in microbiota composition (dysbiosis) as well as 

Salmonella overgrowth (‘blooming’). Recently, first insights into the underlying mechanisms have 

been obtained: On the one hand, anaerobic electron acceptors like nitrate and tetrathionate, 

ethanolamine and iron are selectively used by the pathogen conferring a fitness advantage over the 

indigenous microbiota. On the other hand, the microbiota might experience collateral damage by 

neutrophils which infiltrate the gut lumen in response to Salmonella-induced inflammation. 

However, it is still unclear which of these mechanisms is more important for the induction of 

pathogen ‘blooming’ and concomitant dysbiosis: the altered nutritional environment or differential 

killing by the inflammatory immune response. Furthermore, it has remained elusive how the 

environment of an inflamed gut impacts on individual species of a normal microbiota, which 

properties are important for survival in the inflamed gut and whether or how the microbiota is able 

to recover from inflammation induced dysbiosis (resilience).  

(2) The second aim was to study the course of S. Tm infection in the gnotobiotic Oligo-MM12 model. 

Furthermore, the influence and importance of single nutrients provided by an inflammatory milieu as 

well as long-term infection should be investigated using strain-specific qPCR assays as well as S. Tm 

strains deficient in nitrate and tetrathionate respiration, ethanolamine utilization, siderophore 



Introduction 

15 

 

production and functional type 3 secretion systems (T3SSs). Functional genomic analysis of Oligo-

MM12 genome sequences should be performed to identify genes of commensals characteristic for 

survival in the inflamed gut. In addition, besides the influence of an inflammatory milieu, I aimed to 

investigate the role of neutrophils in dysbiosis during Salmonella-induced inflammation by antibody-

mediated depletion of neutrophils and mice deficient in extravasation of neutrophils.  

Pathogen infection as well as chronic inflammation correlates with decreased abundance of obligate 

anaerobic bacteria and increased abundance of Proteobacteria. However, data showing the fate of 

individual bacteria during dysbiosis at the species level are lacking so far. Studies have been 

performed in different animal models or are patient-derived and employ different analysis tools 

(Table 1). Thus, I wanted to identify differences and common effects between infections with 

different pathogens and chronic inflammation on the gut microbiota using the same model 

microbiota and analysis tools. 

(3) My third aim was to compare the influence of infections with S. Tm, C. rodentium, C. difficile as 

well as T-cell-induced colitis on individual microbiota species using the defined Oligo-MM12 model 

and strain-specific qPCR assays. 
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2. Material and Methods 

2.1 Strains and plasmids 

2.1.1 Strains 

Table 2: Mouse derived bacterial strains constituting the Oligo-Mouse-Microbiota (Oligo-MM12) 

Strain 

ID 
Taxonomy at species level DSM No. Isolated by Publication 

YL2 
Bifidobacterium longum  

subsp. animalis 
26074 Yvonne Loetscher (Brugiroux et al. 2016) 

YL27 ‘Muribaculum intestinale’ 28989 Yvonne Loetscher (Brugiroux et al. 2016) 

YL31 Flavonifractor plautii 26117 Yvonne Loetscher (Brugiroux et al. 2016) 

YL32 Clostridium clostridioforme 26114 Yvonne Loetscher (Brugiroux et al. 2016) 

YL44 Akkermansia muciniphila 26127 Yvonne Loetscher (Brugiroux et al. 2016) 

YL45 ‘Turicimonas caecimuris’ 26109 Yvonne Loetscher (Brugiroux et al. 2016) 

YL58 Blautia coccoides 26115 Yvonne Loetscher (Brugiroux et al. 2016) 

I46 Clostridium innocuum 26113 Ricco Robbiani (Brugiroux et al. 2016) 

I48 ‘Bacteroides caecimuris’ 26085 Ricco Robbiani (Brugiroux et al. 2016) 

I49 Lactobacillus reuteri 32035 Ricco Robbiani (Brugiroux et al. 2016) 

KB1 Enterococcus faecalis 32036 Sandrine Brugiroux (Brugiroux et al. 2016) 

KB18 ‘Acutalibacter muris’ 26090 Sandrine Brugiroux (Brugiroux et al. 2016) 

 

Table 3: Salmonella, E. coli and Yersinia enterocolitica strains 

Strains strain ID Genotype Reference 

S.Tm
WT

 SB300 S. Tm strain S1344 
(Hoiseth and Stocker 

1981) 

S.Tm
Avir

 M557 ΔinvG; sseD::aphT (Hapfelmeier et al. 2004) 

S.Tm
SPI-1

 SB161 ΔinvG (Kaniga et al. 1994) 

S.Tm
SPI-2

 M556 sseD::aphT (Hapfelmeier et al. 2004) 

MBE1 MBE1 narZ::cat This study 

MBE2 MBE2 narG::cat This study 

MBE3 MBE3 napA::aphT This study 

MBE4 MBE4 
narZ::cat (P22-phage lysate of 

MBE1 on SB300) 
This study 

MBE5 MBE5 ΔnarZ This study 
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Strains strain ID Genotype Reference 

MBE6 MBE6 ΔnarZ; narG::cat This study 

S.Tm
Ni.

 MBE7 ΔnarZ; narG::cat; napA::aphT This study 

S.Tm
Ni. + Te.

 MBE8 
ΔnarZ; narG::cat; napA::aphT; 

ttrS::tet 
This study 

MBE9 MBE9 entA::cat This study 

S.Tm
EntA

 MBE10 
entA::cat (P22-phage lysate of 

MBE9 on SB300) 
This study 

MBE11 MBE11 eutC::aphT This study 

S.Tm
EA

 MBE12 
eutC::aphT (P22-phage lysate 

of MBE11 on SB300) 
This study 

E.coli DH5α   Invitrogen 

HB 1852S WA-CS    (Stojiljkovic et al. 1999) 

WA-TS   ybtA::aphT (Pelludat 1999) 

Clostridium difficile DH196  (Studer et al. 2016) 

Citrobacter rodentium DBS100  

(Schauer and Falkow 

1993, Schauer et al. 

1995) 

Helicobacter typhlonius CCUG48335T  (Brasseit et al. 2016) 

 

2.1.2 Plasmids 

Table 4: Plasmids used for λ red and Flp recombination 

Plasmid Function Genotype Reference 

pKD3 
Harbors a chloramphenicol resistance gene 

(cat) 

cat with FRT sites, 

Amp
R
 

(Datsenko and Wanner 

2000) 

pKD4 Harbors a kanamycin resistance gene (aphT) 
aphT with FRT sites, 

Amp
R
 

(Datsenko and Wanner 

2000) 

pKD46 
Harbors 2,154 nt (31088–33241) of phage λ, 

enzymes for recombinaction 

araC, ParaB γ, β and 

exo, repA101
ts, 

Amp
R
 

(Datsenko and Wanner 

2000) 

pCP20 Harbors FLP-recombinase 
FLP

+
, λ cI857

+
, λ pR 

Rep
ts

, Amp
R
, Cm

R
 

(Cherepanov and 

Wackernagel 1995) 
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Table 5: Plasmids harboring 16S rRNA full length gene sequences 

Plasmid Backbone Taxonomy and strain ID Digest* Reference 

pM1411 pSB-Bluescript Clostridium spp. ASF356 NotI (Brugiroux et al. 2016) 

pM1412 pSB-Bluescript Lactobacillus intestinalis ASF360 NotI (Brugiroux et al. 2016) 

pM1413 pSB-Bluescript Lactobacillus murinus ASF361 NotI (Brugiroux et al. 2016) 

pM1414 pSB-Bluescript Mucispirillum schaedleri ASF457 NotI (Brugiroux et al. 2016) 

pM1417 pSB-Bluescript Parabacteroides goldsteinii ASF519 NotI (Brugiroux et al. 2016) 

pM1452 pCR2.1-topo Bifidobacterium longum subsp. animalis YL2 HindIII (Brugiroux et al. 2016) 

pM1456 pCR2.1-topo Flavonifractor plautii YL31 HindIII (Brugiroux et al. 2016) 

pM1457 pCR2.1-topo Clostridium clostridioforme YL32 HindIII (Brugiroux et al. 2016) 

pM1459 pCR2.1-topo Akkermansia muciniphila YL44 HindIII (Brugiroux et al. 2016) 

pM1460 pCR2.1-topo ‘Turicimonas caecimuris’ YL45 NcoI (Brugiroux et al. 2016) 

pSAB3 pJET1.2 ‘Muribaculum intestinale’ YL27 NotI (Brugiroux et al. 2016) 

pSAB4 pJET1.2 Blautia coccoides YL58 HindIII (Brugiroux et al. 2016) 

pSAB6 pJET1.2 Clostridium innocuum I46 NotI (Brugiroux et al. 2016) 

pSAB7 pJET1.2 ‘Bacteroides caecimuris’ I48 HindIII (Brugiroux et al. 2016) 

pSAB8 pJET1.2 Lactobacillus reuteri I49 HindIII (Brugiroux et al. 2016) 

pSAB9 pJET1.2 Enterococcus faecalis KB1 NotI (Brugiroux et al. 2016) 

pSAB10 pJET1.2 Clostridium spp. ASF502/SB2 NotI (Brugiroux et al. 2016) 

pSAB12 pJET1.2 ‘Acutalibacter muris’ KB18 HindIII (Brugiroux et al. 2016) 

pSAB13 pJET1.2 Pseudoflavonifactor spp. ASF500 NotI (Brugiroux et al. 2016) 

pMB1 pJET1.2 Salmonella Typhimurium HindIII This study 

pMB2 pJET1.2 Citrobacter rodentium DBS100 NotI This study 

pMB4 pJET1.2 Helicobacter typhlonius CCUG48335T NotI This study 

pMB5 pJET1.2 Clostridium difficile DH196 NotI This study 

pMB6 pJET1.2 Clostridium scindens ATCC35704 NotI This study 

*The indicated restriction enzymes were used to linearize vectors that contain strain-specific 16S rRNA gene 

sequences. 
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2.2 Buffers, media and Oligonucleotides 

2.2.1 Buffers and media 

Buffers and media were made up in desalted water (dH2O), autoclaved at 121°C and 1 bar for 20 min 

-if not indicated differently- and prepared according to the following recipes: 

Table 6: Luria-Bertani (LB) medium 

Components Per liter medium 

NaCl 5 g 

Yeast extract  5 g 

Tryptone  10 g 

All components were dissolved in dH2O. 

Table 7: LB agar 

Components Per liter medium 

NaCl 5 g 

Yeast extract  5 g 

Tryptone  10 g 

Agar 15 g 

All components were dissolved in dH2O. 

Table 8: LB 0.3 M NaCl 

Components Per liter medium 

NaCl 17.53 g 

Yeast extract  5 g 

Tryptone  10 g 

All components were dissolved in dH2O. 

Table 9: Peptone-glycerol broth 

Components Per liter broth 

Peptone  20 g 

Glycerol 50 ml 

All components were dissolved in dH2O. 
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Table 10: M9 medium 

Components Final concentration 

Na2HPO4 · 2H2O  40 mM 

KH2PO4  20 mM 

NaCl  9 mM 

NH4Cl  2 g/l 

D-glucose  2 g/l 

MgSO4  1 mM 

CaCl2  100 μM 

Thiamine  10 mg/ml 

Histidine  500 mg/l 

Optional NaNO3 20 mM 

All components were dissolved in dH2O. 

Table 11: Mucin broth 

Components Per liter medium 

Type II porcine mucin  2.5 g 

Morpholino propanesulfonic acid (MOPS) 

Sodium 
9.25 g 

MgSO4 0.265 g 

Optional: NaNO3 or Na2O6S4 · 2H2O 40 mM 

Trace elements (1,000x) 1 ml 

Trace elements  Final concentration 

CaCl2 · 2H2O 0.3 mM 

ZnSO4 · 7H2O 0.1 mM 

FeSO4 · 7H2O 0.045 mM 

Na2SeO3 0.2 mM 

Na2MoO4 · 2H2O 0.2 mM 

MnSO4 · H2O 2 mM 

CuSO4 · 5H2O 0.1 mM 

CoCl2 · 6H2O 3 mM 

NiSO4 · 6H2O 0.1 mM 

All components were dissolved in dH2O. The 1,000x trace element stock was autoclaved separately. 

 

 



Material and Methods 

21 

 

Table 12: Akkermansia medium (AAM) without mucin 

Components Per liter medium 

Brain Heart Infusion  18.5 g 

Trypticase soy broth 15 g 

Yeast extract 5 g 

K2HPO4 2.5 g 

Hemin 1 mg 

Glucose 0.5 g 

Autoclave and add the following components under sterile 

conditions: 

Na2CO3 (5% stock solution)
¤
 0.4 g 

Cysteine hydrochloride
#
 0.5 g 

Menadione
#
 0.5 g 

Complement inactivated FCS
#
 3 % 

All components but hemin, that was resuspended in ethanol p.a. and supplemented with NaOH until dissolved 

and menadione, which was resuspended in ethanol p.a. were dissolved in dH2O. 
¤ 

Autoclaved. 
# 

Sterile filtered. 

The following Tables 13 - 17 list ingredients needed for the preparation of Chromazurol S (CAS) agar: 

Table 13: CAS stock solution A 

Components Per 60ml 

Chromazurol S 60.5 mg 

1 mM FeCl3 · 6H2O dissolved in 10 

mM HCl 
10 ml 

Chromazurol S was dissolved in 50 ml of dH2O and subsequently 10 ml of FeCl3 solution were added. 

Table 14: CAS stock solution B 

Component Per 40 ml 

Hexadecyltrimethylammonium 

bromide (HDTMA) 
72.9 mg 

HDTMA was dissolved in 40 ml of dH2O and subsequently solution A was added under constant stirring. 

Solution B was finally autoclaved. 

Table 15: 10x LB medium 

Components Per 200 ml 

Tryptone 20 g 

Yeast extract 10 g 

NaCl 10 g 

Components were dissolved in 200 ml of dH2O and autoclaved. 
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Table 16: 10x MM9 

Components Per 200 ml 

KH2PO4 0.6 g 

NH4Cl 2 g 

Components were dissolved in 200 ml of dH2O. 

Table 17: PIPES agar 

Components Per 850 ml 

dH2O 500 ml 

10x MM9 100 ml 

Agar 15 g 

1,4-Piperazinediethanesulfonic acid 

(PIPES)  
31.1 g 

PIPES was added under constant stirring, the pH was adjusted to 6.8 using NaOH pellets and dH2O was added 

ad 850 ml. The solution was subsequently autoclaved and allowed to cool down to 50°C. The following already 

sterile watery solutions were then added: 30 ml of 10x LB (autoclaved), 10 ml of 20% glucose (sterile filtered), 2 

ml of 1 M MgSO4 (sterile filtered), 2 ml of 1 M Na2SO4 (autoclaved), 1 ml of 0.1 M CaCl2 and 100 ml of CAS stock 

solution A + B. The CAS agar was finally poured in petri dishes. 

Table 18: 10x phosphate Buffered Saline (PBS) 

Components Per liter buffer 

NaCl 80 g 

KCl 2 g 

Na2HPO4 unhydrated 6.1 g 

KH2PO4 2.4 g 

All components were dissolved in dH2O. 

Table 19: TE Buffer 

Components Final concentration 

Tris 10 mM 

EDTA 1 mM 

All components were dissolved in ddH20 (Ampuwa). pH was adjusted to 8.0 with HCl. 
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Table 20: 4% Paraformaldehyde (PFA) 

Components Per liter buffer 

ddH2O 300 ml 

PFA 40 g 

1 M NaOH 100 µl 

10x PBS in ddH2O, pH 7.4 100 ml 

Components were heated up to 60 °C and stirred vigorously until PFA is dissolved. DdH2O (Ampuwa) was filled 

up to 1 l and pH was adjusted. Buffer was sterile filtered and stored at -20 °C. 

Table 21: TFB1 buffer 

Components Volume 

Potassium acetate 0.29 g 

MnCl2 · 4H2O 2 g 

1 M RbCl 10 ml 

1 M CaCl2 1 ml 

Glycerol 87% 17.2 ml 

ddH2O (Ampuwa) Ad 100 ml 

pH was adjusted to 7.0 and filter sterilized. 

Table 22: TFB2 buffer 

Components Volume 

1 M NaMOPS pH 7.0 1 ml 

1 M RbCl 1 ml 

1 M CaCl2 7.5 ml 

Glycerol 87% 17.5 ml 

ddH2O (Ampuwa) Ad 100 ml 

pH was adjusted to 7.0 and filter sterilized. 

Table 23: 50x TAE buffer 

Components Per 5 l buffer 

Tris 1,210 g 

Glacial acetic acid 285.5 ml 

0.5 M EDTA pH 8.0 500 ml 

dH2O ad 5 l 
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Table 24: 10x loading dye 

Components Final concentration 

Sucrose 40% 

Bromphenol blue 0.25% 

Xylene Cyanol 0.25% 

 

Table 25: SOC medium 

Components Per 250 ml medium 

Tryptone 5 g 

Yeast extract 1.25 g 

NaCl 0.125 g 

250 mM KCl 2.5 ml 

Ad 250 ml with ddH2O (Ampuwa), adjust pH to 7.0 with 5 M NaOH 

and autoclave. 

1 M glucose (sterile filtered) 5 ml 

 

Table 26: 20% glycerol-palladium solution 

Components Per 50 ml solution 

100% glycerol 10 ml 

Palladium crystals Tip of spatula 

ddH20 40 ml 

After autoclaving, the warm solution (60°C) was imported in the anaerobic tent. 

Table 27: Lysis buffer for DNA extraction (Stool kit, Qiagen) 

Components Final concentration 

Tris 20 mM 

EDTA 2 mM 

Triton X 100 1% 

Adjust pH to 8.0 with HCl, autoclave and add: 

Lysozyme 20 mg/ml 

Components were dissolved in ddH2O (Ampuwa) 
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Table 28: Extraction buffer for DNA extraction (Turnbaugh/Ubeda) 

Components Final concentration 

Tris  200 mM 

NaCl 200 mM 

EDTA 20 mM 

Components were dissolved in ddH20 (Ampuwa). pH was adjusted to 8.0 using HCl and the solution was finally 

autoclaved. 

Table 29: PBT 

Components Per 200 ml 

BSA fraction V 200 mg 

TM 10 tergitol 200 µl 

1x PBS ad 200 ml 

Solution was sterile filtered. 
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2.2.2 Oligonucleotides 

Table 30: Oligonucleotides and hydrolysis probes for qPCR 

Primers and corresponding 

probe 

(targeted strain) 

Sequence 5’ - 3’ Tm°C GC% 
Length 

(bp) 

Ampl. 

(bp) 

Isol46_Exonucl.2_fwd CGGATCGTAAAGCTCTGTTGTAAG 58 45.8 24  

Isol46_Exonucl.3_rev GCTACCGTCACTCCCATAGCA 59 57.1 21  

Probe3_Isol46 

(Clostridium innocuum I46) 
FAM-AAGAACGGCTCATAGAGG-BHQ1 70 50.0 18 68 

Isol49_Exonucl._fwd GCACTGGCTCAACTGATTGATG 59.0 50.0 22  

Isol49_Exonucl._rev CCGCCACTCACTGGTGATC 59.0 63.2 19  

Probe_Isol49 

(Lactobacillus reuteri I49) 
HEX-CTTGCACCTGATTGACGA-BHQ1 69.0 50.0 18 64 

YL58_Exonucl._fwd GAAGAGCAAGTCTGATGTGAAAGG 58.0 45.8 24  

YL58_Exonucl._rev CGGCACTCTAGAAAAACAGTTTCC 59.0 45.8 24  

Probe_YL58 

(Blautia coccoides YL58) 
FAM-TAACCCCAGGACTGCAT-BHQ1 69.0 52.9 17 74 

YL27_Exonucl.2_fwd TCAAGTCAGCGGTAAAAATTCG 58.0 40.9 22  

YL27_Exonucl.2_rev CCCACTCAAGAACATCAGTTTCAA 59.0 41.7 24  

Probe2_YL27 

‘Muribaculum intestinale’ YL27) 
HEX-CAACCCCGTCGTGCC-BHQ1 70.0 73.3 15 67 

YL31_Exonucl.2_fwd AGGCGGGATTGCAAGTCA 59.0 55.6 18  

YL31_Exonucl.3_rev CCAGCACTCAAGAACTACAGTTTCA 59.0 44.0 25  

Probe2_YL31 

(Flavonifractor plautii YL31) 
FAM-CAACCTCCAGCCTGC-BHQ1 70.0 66.7 15 80 

YL32_Exonucl.2_fwd AATACCGCATAAGCGCACAGT 58.0 47.6 21  

YL32_Exonucl.2_rev CCATCTCACACCACCAAAGTTTT 59.0 43.5 23  

Probe2_YL32 

(Clostridium clostridioforme YL32) 
HEX-CGCATGGCAGTGTGT-BHQ1 69.0 60.0 15 63 

KB1_Exonucl._fwd CTTCTTTCCTCCCGAGTGCTT 59.0 52.4 21  

KB1_Exonucl._rev CCCCTCTGATGGGTAGGTTACC 60.0 59.1 22  

Probe_KB1 

(Enterococcus faecalis KB1) 
FAM-CACTCAATTGGAAAGAGGAG-BHQ1 70.0 45.0 20 88 

YL2_Exonucl._fwd GGGTGAGTAATGCGTGACCAA 59.0 52.4 21  

YL2_Exonucl._rev CGGAGCATCCGGTATTACCA 59.0 55.0 20  

Probe_YL2 

(Bifidobacterium longum subsp. 

animalis YL2) 

HEX-CGGAATAGCTCCTGGAAA-BHQ1 69.0 50.0 18 77 

KB18_Exonucl.2_fwd TGGCAAGTCAGTAGTGAAATCCA 58.0 43.5 23  

KB18_Exonucl.2_rev TCACTCAAGCTCGACAGTTTCAA 59.0 43.5 23  
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Primers and corresponding 

probe 

(targeted strain) 

Sequence 5’ - 3’ Tm°C GC% 
Length 

(bp) 

Ampl. 

(bp) 

Probe2_KB18 

(‘Acutalibacter muris’ KB18) 
FAM-CTTAACCCATGAACTGC-BHQ1 69.0 47.1 17 69 

YL44_Exonucl._fwd CGGGATAGCCCTGGGAAA 59.0 61.1 18  

YL44_Exonucl._rev GCGCATTGCTGCTTTAATCTTT 60.0 40.9 22  

Probe_YL44 

(Akkermansia muciniphila YL44) 
HEX-TGGGATTAATACCGCATAGTA-BHQ1 69.0 38.1 21 65 

YL45_Exonucl._fwd AGACGGCCTTCGGGTTGTA 59.0 57.9 19  

YL45_Exonucl._rev CGTCATCGTCTATCGGTATTATCAA 58.0 40.0 25  

Probe_YL45 

(‘Turicimonas caecimuris’ YL45) 
FAM-ACCACTTTTGTAGAGAACGA-BHQ1 69.0 40.0 20 73 

Isol48_Exonucl._fwd GGCAGCATGGGAGTTTGCT 60.0 57.9 19  

Isol48_Exonucl._rev TTATCGGCAGGTTGGATACGT 58.0 47.6 21  

Probe_Isol48 

(‘Bacteroides caecimuris’ I48) 
HEX-CAAACTTCCGATGGCGAC-BHQ1 69.0 55.6 18 79 

ASF356_Exonucl.2_fwd CGGCAAGGTAAGCGATATGTG 59.0 52.4 21  

ASF356_Exonucl.2_rev CGCTTTCCTCTCCTGTACTCTAGCT 60.0 52.0 25  

Probe2_ASF356 

(Clostridium spp. ASF356) 

FAM-TAACTTAAGGATAGCATAACGAACT-

BHQ1 
69.0 32.0 25 88 

ASF360_Exonucl.4_fwd TGAGTGCTAAGTGTTGGGAGGTT 59.0 47.8 23  

ASF360_Exonucl.4_rev CGGAGTGCTTAATGCGTTAGCT 60.0 50.0 22  

Probe4_ASF360 

(Lactobacillus intestinalis ASF360) 
FAM-CCGCCTCTCAGTGCT-BHQ1 70.0 66.7 15 63 

ASF361_Exonucl._fwd TCGGATCGTAAAACCCTGTTG 59.0 47.6 21  

ASF361_Exonucl._rev ACCGTCGAAACGTGAACAGTT 58.0 47.6 21  

Probe_ASF361 

(Lactobacillus murinus ASF361) 

HEX-TAGAGAAGAAAGTGCGTGAGAG-

BHQ1 
70.0 45.5 22 66 

ASF457_Exonucl._fwd GACTGGAACAACTTACCGAAAGGT 59.0 45.8 24  

ASF457_Exonucl._rev CAGGTCTCCCCAACTTTTCCT 58.0 52.4 21  

Probe_ASF457 

(Mucispirillum schaedleri ASF457) 
FAM-TAATGCCGGATGAGTTATA-BHQ1 69.0 36.8 19 85 

ASF500_Exonucl._fwd AGGCGGGACTGCAAGTCA 59.0 61.1 18  

ASF500_Exonucl._rev CAAATGCAGGCCACAGGTT 58.0 52.6 19  

Probe_ASF500 

(Pseudoflavonifactor spp. ASF500) 
HEX-ATGTGAAAACCACGGGC-BHQ1 68.0 52.9 17 57 

ASF502_Exonucl.3_fwd GACCCCAGTACCGCATGGTA 59.0 60.0 20  

ASF502_Exonucl.3_rev TCAGACGCGGGCCTATCTTA 59.0 55.0 20  

Probe3_ASF502(SB2) 

(Clostridium spp. ASF502/SB2) 
HEX-AGAGGTAAAAACTGAGGTGGT-BHQ1 69.0 42.9 21 63 

ASF519_Exonucl._fwd TGTGGCTCAACCATAAAATTGC 59.0 40.9 22  
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Primers and corresponding 

probe 

(targeted strain) 

Sequence 5’ - 3’ Tm°C GC% 
Length 

(bp) 

Ampl. 

(bp) 

ASF519_Exonucl._rev GCATTCCGCCTACCTCAAATAT 58.0 45.5 22  

Probe_ASF519 

(Parabacteroides goldsteinii ASF519) 
HEX-TTGAAACTGGTTGACTTGAG-BHQ1 69.0 40.0 20 67 

Salmo_Exonucl._fwd TGGGAAACTGCCTGATGGA 59.0 52.6 19  

Salmo_Exonucl._rev CTTGCGACGTTATGCGGTATT 59.0 47.6 21  

Probe_Salmo 

(Salmonella SL1344) 
FAM-ATAACTACTGGAAACGGTGGC-BHQ1 70.0 47.6 21 67 

C.rod_Exonucl._fwd GGGACCTTCGGGCCTCTT 60.0 66.7 18  

C.rod_Exonucl._rev TCACCAACAAGCTAATCCCATCT 59.0 43.5 23  

Probe_C.rod 

(Citrobacter rodentium DBS100) 
HEX-CCACCGGATGTGCC-BHQ1 70.0 71.4 14 57 

H.typh_Exonucl.2_fwd CAGCTCGGCTGAGCACTCTA 58.0 60.0 20  

H.typh_Exonucl.2_rev GACTTGACGTCGTCCTCACCTT 59.0 54.5 22  

Probe2_H.typhlonius 

(Helicobacter typhlonius 

CCUG48335T) 

HEX-AGACTGCCTTCGTAAGG-BHQ1 68.0 52.9 17 68 

C.diff_Exonucl._fwd TCGGTGCCGCAGCTAAC 58.0 64.7 17  

C.diff_Exonucl._rev AGTTTCACTCTTGCGAGCGTACT 58.0 47.8 23  

Probe_C.difficile 

(Clostridium difficile DH196) 
HEX-CATTAAGTACTCCGCCTGGG-BHQ1 70.0 55.0 20 62 

C.scin_Exonucl._fwd TGCAAGCCAGATGTGAAAGC 59.0 50.0 20  

C.scin_Exonucl._rev AGCCACGCAGTTCCAAATG 58.0 52.6 19  

Probe_C.scindens 

(Clostridium scindens ATCC35704) 
HEX-CTCAACCCCGGGACT-BHQ1 69.0 66.7 15 61 

E.coli_Exonucl._fwd GGACCTTCGGGCCTCTTG 59 66.7 18  

E.coli_Exonucl._rev CCTTTACCCCACCTACTAGCTAATCC 60 50.0 26  

Probe_E.coli(Mt1B1) 

(Escherichia coli Mt1B1) 
FAM-ATCGGATGTGCCCAGAT-BHQ1 69 52.9 17 64 

Strep._Exonucl._fwd CAACTGCATCACTACCAGATGGA 59 47.8 23  

Strep._Exonucl._rev CGCCTAGGTGAGCCTTTACCT 59 57.1 21  

Probe_Strep.daniel. 

(Streptococcus danieliae ERD01G) 
HEX-CTGCGTTGTATTAGCTAGTAG-BHQ1 69 42.9 21 69 

Staph._Exonucl._fwd GGAGCTAATACCGGATAACATTTAGAA 58 37.0 27  

Staph._Exonucl._rev CCATCTATAAGTGATAGCAAAACCATCT 58 35.7 28  

Probe_Staph.xylosus 

(Staphylococcus xylosus 33R13C) 
HEX-CGCATGGTTCTAAAGTG-BHQ1 69 47.1 17 75 

Univ_Exonucl.3_fwd TGCAYGGYYGTCGTCAGC 59.0 63.9 18  

Univ_Exonucl.3_rev CRTCRTCCYCRCCTTCCTC 59.0 63.2 19  
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Primers and corresponding 

probe 

(targeted strain) 

Sequence 5’ - 3’ Tm°C GC% 
Length 

(bp) 

Ampl. 

(bp) 

Probe2_Univ 

(All bacteria but C. difficile) 
HEX-AACGAGCGCAACCC-BHQ1 70.0 64.3 14 143 

Probe3_Univ* 

(All bacteria listed) 
HEX-ARCGAGCGYAACCC-BHQ1 70.0 64.3 14 143 

*For samples including template DNA of C. difficile, the combination of Univ_Exonucl.3_fwd/rev3 + 

Probe3_Univ was used, since Probe2_Univ cannot detect C. difficile; Tm°C: melting temperature in °C, 

determined using Primer Express 3 (MGB protocol, Applied Biosystems, Life Technologies, USA), note: minor 

groove binder (MGB) protocol was chosen; GC%: guanine and cytosine content as percentage of all nucleotides 

constituting the oligo-nucleotide; length: length of the oligo-nucleotide in base pairs; ampl.: amplicon size that 

is amplified by the given primer pair, indicated in base pairs; FAM (6-carboxyfluoresceine); HEX (6-

carboxyhexafluoresceine); BHQ1 (black hole quencher 1).  

Table 31: Primers used for construction of Salmonella mutants  

Designation Sequence 5’ - 3’ Construction of 
Amplicon size 

(bp) 

narZ-fwd-ko 

AATGGTTTAACGCCAAATCGACAGGATGGCGGAAA

ATTTATCGAAGCAGGAGAAATGTCatatgaatatcctcc

ttagtt 

  

narZ-rev-ko 

GGTGTGACAGCCAATACATTTATCGAGATTCAGTAC

CATCCCAACCTGTGAGCGTATTTtgtgtaggctggagctg

cttc 

MBE1 (narZ::cat)  

narZ fwd-check up GCGTCGTAAGCCTAAACA   

narZ rev-check up CCGGTCCAGACGTTTTTA  3948 

narG-fwd-ko 

CTTAGTTAAGCAATGTCGATTTATCAGAGAGCCGTA

AGGTTCCACACAGGAGAAACCCGatatgaatatcctcctt

agtt 

  

narG-rev-ko 

GGTATGACAGCCGATGCACTTATCGAGATTCAGCA

CCATGCCGACTTGTGAACGAATTTtgtgtaggctggagct

gcttc 

MBE2 (narG::cat)  

narG fwd-check up TTCTCACGCCCATTCAGC   

narG rev-check up CCAGACGTTTTTACAGGT  3921 

napA-fwd-ko 

GGCGTACTGGCGGTGTCGCTGGTTTATCACCAGCA

GGATGAGCAAGGTGAGGAAACACCatatgaatatcctc

cttagtt 

 

  

napA-rev-ko 

ACATCACGCAGGAAGCGGCGGCGGCCATTTTGGG

GTTTCGCTGTACGGGACATAACGCGtgtgtaggctgga

gctgcttc  

 

MBE3 (napA::aphT)  

napA fwd-check up ACAATTGAGTCAGTACGC   

napA rev-check up GCTGGCGAAGACATTTTC  2756 

ttrS fwd-check up CGGCTTGTTGTTGATCTAA   

ttrS rev-check up CCCAGACTTTCCAGTAAAA  1873 

entA-fwd-ko 

CTGGCGAAAAACCCGACCATTGACGCCTGGTGGGC

GCTGCTTTCTCGCGGGGTAGAGTAatatgaatatcctcct

tagtt 
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Designation Sequence 5’ - 3’ Construction of 
Amplicon size 

(bp) 

entA-rev-ko 

AGTGTTCTGACTGGTAGCGTTCAATTCATCCAGCGT

TAAATGCCGTTTCCAGATCATCGtgtgtaggctggagctg

cttc 

MBE9 (entA::cat)  

entA fwd-check up GTAAAGTACACGGCGATAT   

entA rev-check up TAAACAATGCCCAGATGCG  932 

eutC-fwd-ko 

GTCTGACCAAACGGGCGGGCGATCCGTCACTGTTC

TTCTGATGACGCGGGGATAACACCatatgaatatcctcc

ttagtt 

  

eutC-rev-ko 

ATCACGCGCATGGCAGTCACTGAAGGTCGAATTAA

ATCTAATGCAGGCATGATGTCTCCtgtgtaggctggagct

gcttc 
MBE11 (eutC::aphT)  

eutC fwd-check up CTGGAAACGATGGGCATTAT   

eutC rev-check up TAATTTAAGTTCCCGCGCAA  1086 

Genes of interest were replaced by either chloramphenicol (cat) or kanamycin (aphT) resistance genes using 

the λ red recombination system (Datsenko and Wanner 2000). PCR products were generated with primers 

harboring a homology region adjacent to the gene of interest (capital letters) and a sequence targeting the 

plasmids pKD3 (cat) and pKD4 (aphT, small letters) (Table 4). Check-up primers were used to verify correct 

insertion of the antibiotic cassette.  

Table 32: Further oligonucleotides used in this study 

Designation Sequence 5’ - 3’ Purpose Reference 

fD1 CGATATCTCTAGAAGAGTTTGATCCTGGCTCAG 
Amplification of bacterial 16S 

rRNA genes 

(Weisburg et al. 

1991) 

fD2 CGATATCTCTAGAAGAGTTTGATCATGGCTCAG 
Amplification of bacterial 16S 

rRNA genes 

(Weisburg et al. 

1991) 

rP1 GATATCGGATCCACGGTTACCTTGTTACGACTT 
Amplification of bacterial 16S 

rRNA genes 
(Weisburg et al. 

1991) 

pJet1-FP ACTACTCGATGAGTTTTCGG 
Amplification of insert in 

pJET1.2 vector 
Fermentas 

pJet1-RP TGAGGTGGTTAGCATAGTTC 
Amplification of insert in 

pJET1.2 vector 
Fermentas 

 

2.3 Chemicals, antibodies and devices 

2.3.1 Chemicals 

Table 33: Chemicals used in this study 

Compound Supplier 

ABTS substrate  Merck (Darmstadt) 

Acetic acid Roth (Karlsruhe) 

Agar BD (Heidelberg) 

Agarose
 

Bio&Sell (Feucht) 
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Compound Supplier 

L-(+)-arabinose Sigma-Aldrich (Munich) 

BD
TM

 CompBeads BD (Franklin Lakes, USA) 

BD FACS
TM

 Lysing Solution BD (Franklin Lakes, USA) 

Brain Heart Infusion Oxoid, Thermo Fisher Scientific biosciences (St. Leon-Rot) 

Bromphenol blue Sigma-Aldrich (Munich) 

Bovine serum albumin (BSA) PAA Laboratories GmbH (Austria) 

BSA fraction V Roth (Karlsruhe) 

CaCl2 Roth (Karlsruhe) 

CaCl2 · 2H2O Merck (Darmstadt) 

Chloroform Roth (Karlsruhe) 

Chromazurol S Roth (Karlsruhe) 

CloneJET
TM

 PCR Cloning kit Fermentas, Thermo Scientific (USA) 

CoCl2 · 6H2O Merck (Darmstadt) 

Columbia agar with sheep blood plus Oxoid, Thermo Fisher Scientific Biosciences (St. Leon-Rot) 

CuSO4 · 5H2O Merck (Darmstadt) 

Cysteine (-L) Hydrochloride Monohydrate Sigma-Aldrich (Munich) 

ddH2O (Ampuwa) Fresenius Kabi (Bad Homburg) 

ddH2O used for qPCR reactions Gibco, Life Technologies (UK) 

dNTPs Fermentas, Thermo Scientific (USA) 

DAPI Roth (Karlsruhe) 

Dipyridyl Sigma-Aldrich (Munich) 

DreamTaq PCR Master Mix (2x) Fermentas, Thermo Scientific (USA) 

DTPA Sigma-Aldrich (Munich) 

EDTA Biomol (Hamburg) 

EGTA Sigma-Aldrich (Munich) 

Eosin Y solution Sigma-Aldrich (Munich) 

Ethanol p.a. Roth (Karlsruhe) 

Ethidium bromide Sigma-Aldrich (Munich) 

FastStart Essential DNA Probes Master Roche (Mannheim) 

FastStart Taq polymerase Roche (Mannheim) 

FCS Biochrom AG (Berlin) 

FeCl3 · 6H2O Merck (Darmstadt) 

FeSO4 · 7H2O Roth (Karlsruhe) 

GeneRuler 1kb DNA Ladder Thermo Fisher Scientific biosciences (St. Leon-Rot) 

GeneRuler DNA ladder mix (100bp) Thermo Fisher Scientific biosciences (St. Leon-Rot) 

D-glucose Roth (Karlsruhe) 

Glycerol  Roth (Karlsruhe) 

HCl Roth (Karlsruhe) 

Hemin Sigma-Aldrich (Munich) 

Hexadecyltrimethylammonium bromide (HDTMA) Sigma-Aldrich (Munich) 
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Compound Supplier 

Histidine Sigma-Aldrich (Munich) 

H2O2 Merck (Darmstadt) 

HRP-streptavidin  IBA (Göttingen) 

K2HPO4 Roth (Karlsruhe) 

KCl Fluka, Sigma-Aldrich (Munich) 

KH2PO4 Roth (Karlsruhe) 

Lipocalin-2 standard R&D Systems (Wiesbaden-Nordenstadt) 

Lysozyme from hen egg Sigma-Aldrich (Munich) 

MacConkey agar Oxoid, Thermo Fisher Scientific Biosciences (St. Leon-Rot) 

Menadione Sigma-Aldrich (Munich) 

MgSO4 Roth (Karlsruhe) 

MnSO4 · H2O Roth (Karlsruhe) 

MnCl2 · 4H2O Merck (Darmstadt) 

Morpholino propanesulfonic acid (MOPS) Sodium Sigma-Aldrich (Munich) 

Type II porcine mucin Sigma-Aldrich (Munich) 

NaCl Roth (Karlsruhe) 

Na2CO3 Merck (Darmstadt) 

Na2HPO4 unhydrated  Roth (Karlsruhe) 

Na2HPO4 · 2H2O Roth (Karlsruhe) 

Na2MoO4 · 2H2O Merck (Darmstadt) 

NaNO2 Sigma-Aldrich (Munich) 

NaNO3 Roth (Karlsruhe) 

NaOH Roth (Karlsruhe) 

NaOH pellets Merck (Darmstadt) 

Na2O6S4 · 2H2O Sigma-Aldrich (Munich) 

Na2SeO3 Sigma-Aldrich (Munich) 

Na2SO4 Merck (Darmstadt) 

NH4Cl Merck (Darmstadt) 

NiSO4 · 6H2O Merck (Darmstadt) 

N-naphThylethylenediamine dihydrochloride 

monomethanolate (NEDD) Sigma-Aldrich (Munich) 

Normal goat serum Biozol (Eching) 

O.C.T. Sakura Finetek (Torrance) 

Palladium chloride Sigma-Aldrich (Munich) 

Paraformaldehyde (PFA) Roth (Karlsruhe) 

Phalloidin Interchim (Mannheim) 

Phenol:chloroform:isoamylalcohol (25:24:1) Roth (Karlsruhe) 

Piperazin Ethansulfonsäure (PIPES) Roth (Karlsruhe)  

Potassium acetate Roth (Karlsruhe) 

Oligonucleotides  Metabion (Martinsried) 
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Compound Supplier 

Peptone Oxoid, Thermo Fisher Scientific Biosciences (St. Leon-Rot) 

Q5
Tm

 Hot Start High-Fidelity polymerase New England BioLabs (Frankfurt am Main) 

RbCl Roth (Karlsruhe) 

Restriction enzymes + buffers Fermentas, Thermo Scientific (USA) 

Rotimount Roth (Karlsruhe) 

Sabouraud dextrose agar Oxoid, Thermo Fisher Scientific Biosciences (St. Leon-Rot) 

Sodium acetate Roth (Karlsruhe) 

Sodium dodecyl sulfate (SDS) Serva (Heidelberg) 

Sucrose Sigma-Aldrich (Munich) 

Sulfanilamide  Merck (Darmstadt) 

SYTOX green Invitrogen, Thermo Fisher Scientific Biosciences (St. Leon-Rot) 

SYTOX red Life Technologies, Thermo Scientific (USA) 

Thiamine hydrochloride Roth (Karlsruhe) 

TM 10 tergitol Chemika (Australia) 

Tris MP Biomedicals (Eschwege) 

Triton Roth (Karlsruhe) 

Trypticase soy broth Oxoid, Thermo Fisher Scientific biosciences (St. Leon-Rot)  

Tryptone  Roth (Karlsruhe) 

Tween Sigma-Aldrich (Munich) 

VCL3 Sigma-Aldrich (Munich) 

Vectashield Enzo life science (UK) 

Vector’s Hämalaun solution Roth (Karlsruhe) 

VirkonS V.P. Produkte (Schlüchtern) 

Xylene Roth (Karlsruhe) 

Xylene Cyanol Sigma-Aldrich (Munich) 

Yeast extract  MP Biomedicals (Eschwege) 

Yeast t-RNA Roche (Mannheim) 

ZnSO4 · 7H2O Merck (Darmstadt) 

 

Table 34: Antibiotics used in this study 

Antibiotic Supplier Final concentration 

Ampicillin Roth (Karlsruhe) 100 µg/ml 

Chloramphenicol Roth (Karlsruhe) 30 µg/ml 

Kanamycin sulfate Roth (Karlsruhe) 30 µg/ml 

Streptomycin sulfate Roth (Karlsruhe) 50 or 100 µg/ml as indicated 

Tetracycline hydrochloride Roth (Karlsruhe) 12.5 µg/ml 
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2.3.2 Antibodies 

Table 35: Antibodies used for lipocalin-2 ELISA (mouse lipocalin-2/NGAL detection kit (R&D, 

DY1857) 

Antibody Origin Supplier 
Final 

concentration 

Lipocalin-2 capture antibody Rat R&D, Part 842440 1:200 

Lipocalin-2 detection antibody (biotinylated) Rat R&D, Part 842441 1:200 

 

Table 36: Antibodies used for depletion of neutrophils and FACS analysis 

Antibody Origin Supplier 
Final amount or 

dilution  

α-mouse G-CSF (clone: # 67604; depletion) Rat R&D Systems 10 µg per mouse  

Rat IgG1 (clone: # 43414, isotype control) Rat R&D Systems 10 µg per mouse  

α- m Ly-6G (clone: 1A8; depletion) Rat BioXCell 150 µg per mouse  

Rat IgG2a (clone: 2A3; isotype control) Rat BioXCell 150 µg per mouse  

α-CD45-PerCP (clone: 30-F11) Rat Biolegend 1:100 

α-CD11b-APC-Cy7 (clone: M1/70) Rat Biolegend 1:200 

α-Ly-6G-Pacific Blue (clone: 1A8) Rat Biolegend 1:200 

α-Ly-6C-FITC (clone: AL-21) Rat BD 1:400 

α-CD3-PE (clone: 17A2) Rat Biolegend 1:200 

α-CD16/CD32 (93) Rat eBioscience 1:100 

 

 

Table 37: Antibodies used for immuno-fluorescence staining of neutrophils 

Antibody Origin Supplier 
Final amount or 

dilution  

Rat-anti CD18 (M18/2) Rat BD 1:300 

Anti-rat Cy3 Goat Jackson (112-165-167) 1:300 

 

2.3.3 Devises and specific materials 

Table 38: Devises and specific materials 

Items Supplier 

ABI 7500 fast Applied Biosystems (Darmstadt) 

Acid washed glass beads (<106 µm) Sigma-Aldrich (Munich) 

Aluminum crimp seals (diam. 11 mm) Supelco (USA) 

Aluminum crimp seals (diam. 20 mm) Supelco (USA) 

Amp for agarose gels (Power Pac) Bio Rad (Munich) 
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Items Supplier 

BioPhotometer Eppendorf (Wesseling-Berzdorf) 

Butyl-rubber stoppers (diam. 11 mm) Supelco (USA) 

Butyl-rubber stoppers (diam. 20 mm) Geo-Mocrobial Technologies (USA) 

Cannulas B. Braun (Melsungen) 

Crimper (diam. 11 mm) VWR (Darmstadt) 

Crimper (diam. 20 mm) VWR (Darmstadt) 

Cryotome Leica Biosystems (Wetzlar) 

Cryo-tubes Thermo Fisher Scientific biosciences (St. Leon-Rot) 

Decrimper (diam. 20 mm) VWR (Darmstadt) 

Dialysis membrane (pore size: 0.025 µm) Merck, Millipore (Darmstadt) 

Diagnostic slides (10 wells, 76 x 25 x 1 mm) Thermo Fisher Scientific biosciences (St. Leon-Rot) 

1.5 ml DNA loBind tubes Eppendorf (Wesseling-Berzdorf) 

Electroporation cuvette (1mm) Peqlab (Erlangen) 

Electroporation device (Micro Pulser) Bio Rad (Munich)  

Epi Centrifuge (5430 R) Eppendorf (Wesseling-Berzdorf) 

FACSCANTO II  BD (Franklin Lakes, USA) 

FACS tubes Hartenstein (Würzburg) 

Filter Millex (0.22 µm) Merck (Darmstadt) 

Filter Millex (0.45 µm) Merck (Darmstadt) 

Gel documentation chamber Bio Rad (Munich) 

Glass slides (cover) Marienfeld Laboratory Glassware (Lauda-Königshofen) 

Gnoto cages Han, Bioscape (Emmendingen) 

Incubator (Heraeus oven) Thermo Fisher Scientific biosciences (St. Leon-Rot) 

Laminar flow (Safe 2020) Thermo Fisher Scientific biosciences (St. Leon-Rot) 

LightCycler480 Multiwell Plate 96, white Roche (Mannheim) 

LightCycler96 Roche (Mannheim) 

40 µm mesh (cell strainer) BD Falcon
TM

 (USA) 

NanoDrop Thermo Fisher Scientific biosciences (St. Leon-Rot) 

NucleoSipn Gel and PCR Clean-up kit Macherey-Nagel (Düren) 

NucleoSipn Plasmid kit Macherey-Nagel (Düren) 

Parafilm BEMIS (USA) 

Peqstar 2x gradient cycler Peqlab (Erlangen) 

Plasmid Plus Midi Kit Qiagen (Hilden) 

Screw cap plastic tubes A. Hartenstein (Würzburg) 

1.5 ml plastic tubes (PCR grade) Eppendorf (Wesseling-Berzdorf) 

2 ml plastic tubes (PCR grade) Eppendorf (Wesseling-Berzdorf) 

15 ml plastic tubes Greiner Bio-One (Frickenhausen) 

50 ml plastic tubes Greiner Bio-One (Frickenhausen) 

Petri dishes Greiner Bio-One (Frickenhausen) 

Qiagen DNA (fast) stool kit Qiagen (Hilden) 
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Items Supplier 

Shaker (Certomat R) B. Braun Biotech international (Melsungen) 

Spectrophotometer (Sunrise) Tecan (Crailsheim) 

Superfrost Plus slides (75 x 25 x 1 mm) A.Hartenstein (Wuerzburg) 

Syringes B. Braun (Melsungen) 

Tissue lyzer Qiagen (Hilden) 

Vortex Scientific industries (USA) 

96-well ELISA plates (Brandplates) Brand (Wertheim) 

96-well plate for standard assays TPP (Trasadingen) 

Wheaton glass serum bottles (1.5 ml) Sigma-Aldrich (Munich) 

Wheaton glass serum bottles (100 ml) Sigma-Aldrich (Munich) 

Zirconia/silica beads (0.1 mm) Roth (Karlsruhe)  

Zirconia-beads (0.7 mm) Roth (Karlsruhe) 

 

2.4 Microbiological methods 

2.4.1 Preparation of bacterial cryo-stocks (S. Tm and E. coli strains) 

One bacterial colony was picked from a LB agar plate containing the appropriate antibiotic and was 

subsequently cultured in 5 ml of LB medium supplemented with the selective antibiotic. The bacterial 

culture was performed in glass tubes and incubated overnight (o/n) at 37°C in a wheel rotor. The 

following day, the o/n culture was transferred to a 15 ml plastic tube and spun down (15 min; 4°C; 

4,000 x g). After the removal of the supernatant, the bacterial cell pellet was resuspended in 1 ml of 

peptone-glycerol broth, transferred into cryo-tubes and stored at -80°C. 

2.4.2 Bacterial culture for in vivo experiments 

S. Tm strains were streaked on LB agar plates containing a selective antibiotic, whereas C. rodentium 

was streaked on MacConkey (Oxoid) plates without antibiotic. 2 - 3 colonies were used to inoculate 

3 ml starter cultures containing either LB medium with 0.3 M NaCl for S. Tm cultures or LB medium 

without supplements for C. rodentium cultures. Starter cultures were incubated for 12 h at 37°C in a 

wheel rotor. 2 ml subcultures in either LB medium with 0.3 M NaCl or regular LB medium were 

subsequently inoculated with 100 µl of the starter cultures and further incubated for 4 h at 37°C in a 

wheel rotor. In order to harvest cells, subcultures were centrifuged (2 min; 4°C; 9,660 x g), the 

supernatant was discarded and the cell pellet was resuspended in the same volume 1x PBS as the 

subculture. 50 µl aliquots of cell suspension were aliquoted in 1.5 ml plastic tubes and stored on ice 

until oral gavage. In order to determine the exact inoculum size, dilutions of the inoculum in sterile 

1x PBS (10-4 and 10-6) were additionally plated on MacConkey agar plates.  
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Clostridium difficile DH196 spores that were used for infection were prepared by Prof. Hapfelmeier’s 

group (Studer et al. 2016). Helicobacter typhlonius CCUG48335T used for the reversible colitis was 

prepared by Prof. Mueller’s group (Brasseit et al. 2016). 

2.4.3 In vitro growth assay of S. Tm strains 

Bacteria from -80°C cryo-stocks were streaked on LB agar plates without antibiotics and grown o/n at 

37°C. 3 individual colonies were used to inoculate aerobic starter cultures containing 5 ml of M9 

medium without antibiotics. Starter cultures were performed in glass tubes and incubated for 12 h at 

37°C in a wheel rotor. Aerobic as well as anaerobic subcultures with a starting OD600 of 0.02 were 

subsequently carried out in 10 ml M9 medium with and without nitrate (20 mM). For testing S. Tm 

strains deficient in ethanolamine utilization, M9 medium was additionally supplemented with 

ethanolamine (5 mM) and tetrathionate (40 mM) as indicated in the experiments. Aerobic 

subcultures were performed in glass Erlenmeyer flaks sealed with aluminum foil, whereas anaerobic 

subcultures were conducted in 100 ml Wheaton glass serum bottles with pre-reduced medium (pre-

reduction for at least 2 days under anoxic conditions: 3% H2, rest N2). The amount of starter culture 

required to meet a final OD600 of 0.02 was spun down (10 min; 4°; 1,677 x g), imported in the 

anaerobic tent, resuspended in pre-reduced medium and used to inoculate anaerobic subcultures. 

The 100 ml culture bottles were plugged with a butyl-rubber stopper, exported, sealed with an 

aluminum crimp seals (diam. 20 mm) using a crimper and gassed (7% H2, 10% CO2, rest N2). Both 

aerobic and anaerobic cultures were incubated at 37°C under constant shaking at 180 rpm. 1 ml 

samples for OD600 measurement and for the determination of nitrate concentrations were taken at 

the indicated time points using a syringe. After the photometric OD600 measurement in plastic 

cuvettes, samples were transferred into 1.5 ml plastic tubes. In order to pellet cells, tubes were 

subsequently centrifuged (5 min; RT; 4,293 x g). The supernatant was transferred to a new 1.5 ml 

plastic tube and stored at -20°C until measurement of nitrate concentrations. 

2.4.4 In vitro competition assay 

S. Tm strains from -80°C cryo-stocks were streaked out on LB plates without antibiotics and 

incubated o/n at 37°C. 3 colonies were picked and resuspended in 100 µl of either LB or M9 medium 

without antibiotic using sterile 1.5 ml plastic tubes. The bacterial suspension was used to inoculate 

starter cultures which were incubated for 12 h at 37°C in a wheel rotor. The starter cultures were 

performed in glass tubes containing 5 ml of either LB or M9 medium without antibiotics. 

Subsequently, co-cultures were prepared in mucin broth as described by (Lopez et al. 2012). Briefly, 

starter cultures of the competing strains were mixed in a 1:1 ratio with a starting OD600 of 0.05 of 

each strain and used to inoculate 14 ml cultures with either plain mucin broth or mucin broth 

containing 40 mM nitrate. For competition assays between S. Tm strains deficient in nitrate 
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respiration and S. Tm strains deficient in nitrate and tetrathionate respiration, the mucin broth was 

additionally supplemented with histidine (500 mg/l) to enhance growth and with tetrathionate (40 

mM). The cultures were incubated in 15 ml plastic tubes and incubated statically for 24 h at 37°C. In 

order to determine CFUs of the strains, 100 µl samples of the 24 h cultures were taken at t=0 h and 

t=24 h, diluted in sterile 1x PBS (down to 10-4 – 10-6) and plated on LB agar plates containing the 

respective selective antibiotics for individual strains (for streptomycin a concentration of 50 µg/ml 

was used, other concentrations as indicated in Table 34).  

2.4.5 Preparation of starter inocula for growth assays of Oligo-MM12 strains 

The cecum of a male C57BL/6J mouse stably associated with the Oligo-MM12 bacteria was aseptically 

dissected under anoxic conditions (anaerobic tent: 3% H2, rest N2) and transferred into a sterile 50 ml 

plastic tube. 20 ml of sterile 1x PBS were added and the bacteria were flushed out of the cecum by 

gently shaking. The bacterial suspension was subsequently filtered through a 40 µm nylon mesh (cell 

strainer) into a sterile 50 ml plastic tube. An equal amount of a 20% glycerol-palladium solution was 

added (final glycerol concentration of 10%) and 1 ml aliquots in 1.5 ml Wheaton glass serum bottles 

were prepared. The bottles were sealed with a butyl-rubber stopper and an aluminum crimp seal as 

well as finally stored at -80°C. All plastic ware and solutions used were already pre-reduced for at 

least 2 days in the anaerobic tent. 

2.4.6 In vitro growth assay of Oligo-MM12 strains 

A 1 ml aliquot of frozen starter inoculum for in vitro growth curves (2.4.5) was thawed in 150 ml of 

pre-warmed 5% VirkonS. The sterile glass bottle was imported in the anaerobic tent, the aluminum 

crimp seal was opened with a screw driver and the butyl-rubber stopper was removed with a sterile 

forceps. Subsequently, 50 µl of bacterial suspension were added to a 100 ml Wheaton glass serum 

bottle filled with 10 ml of anaerobic Akkermansia medium without mucin, and the glass bottle was 

sealed with a butyl-rubber stopper (diam. 20 mm) and exported. Depending on the experiment, the 

medium was also supplemented with nitrate, dipyridyl or DTPA at concentrations indicated in the 

experiments. After the export, the bottles were sealed with aluminum crimp seals and gassed (7% H2, 

10% CO2, rest N2). The cultures were incubated at 37°C under constant shaking and 1 ml samples 

were anaerobically removed at the indicated time points using a 1 ml syringe. 100 µl of the sample 

were used to determine the OD600 and the residual 900 µl were transferred to 2 ml plastic tubes and 

spun down (10 min; RT; 11,000 x g). With increasing OD600, there was less culture volume used for 

pelleting cells (OD600 of 0.350-0.699: 450 µl, OD600 of 0.700-1.049: 300 µl and OD600 above 1.050: 90 

µl). The supernatant was discarded and the bacterial cell pellet was stored at -20°C until extraction of 

genomic DNA (gDNA). All devices, supplements and media used were already reduced for at least 2 

days in the anaerobic tent.  
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2.4.7 Chromazurol S (CAS) agar assay for siderophore production 

Strains from -80°C cryo-stocks were streaked on LB agar plates containing the appropriate antibiotic 

and grown o/n at 37°C (no antibiotics for Yersinia control strains). 2 - 3 individual colonies were 

picked in order to inoculate 5 ml starter cultures containing LB medium without antibiotics. The 

starter cultures were performed in glass tubes and incubated for 12 h at 37°C in a wheel rotor. 1 ml 

of starter culture were spun down (10 min; 4°C; 2,415 x g), the supernatant was discarded and the 

pellet was resuspended in 1 ml of sterile and ice-cold 1x PBS. The bacteria in 1x PBS were diluted to 

an OD600 of 0.1 and 5 µl of diluted bacteria were spotted on CAS agar plates and incubated at 37°C for 

48 h. The diameters of the colony as well as the diameter of the colony + the orange CAS halo were 

measured and the CAS-reactive ring was calculated in mm according to the formula: 0.5 x [(diameter 

of colony + CAS halo) – diameter of colony]. 

2.4.8 Generation of chemo-competent cells 

200 ml of LB medium were inoculated with 10 ml of an o/n culture of E.coli DH5α (1:20) and 

incubated at 37°C under constant shaking at 180 rpm until an OD600 of 0.4 – 0.6 was reached. Cells 

were briefly chilled on ice and centrifuged (10 min; 4°C; 5,000 x g) in 50 ml plastic tubes. The 

supernatant was discarded und the pellets were resuspended in 60 ml of ice-cold TFB1 buffer. After 

10 min incubation on ice, the cells were centrifuged again (10 min; 4°C; 5,000 x g), the supernatant 

was discarded and the pellets were resuspended in 8 ml of ice-cold TFB2 buffer. 200 µl of cell 

suspension were finally aliquoted in pre-cooled 1.5 ml plastic tubes, snap frozen in liquid nitrogen 

and stored at -80°C until usage. 

2.4.9 Generation of electro-competent cells  

50 ml subcultures in LB medium containing appropriate supplements (refer to 2.5.9.2 and 2.5.9.4) 

were incubated at either 30°C or 37°C under constant shaking at 180 rpm until an OD600 of around 

0.5 was reached. Subcultures were subsequently transferred into 50 ml plastic tubes, chilled on ice 

for 10 min and centrifuged (15 min; 4°C; 1,677 x g). The supernatants were discarded and the pellets 

were resuspended in 1 ml of ice-cold 10% glycerol, transferred to 1.5 ml plastic tubes and mixed by 

vortexing. Subsequently, cells were washed 5 times with ice-cold 10% glycerol [centrifugation (1 min; 

4°C; full speed), discarding the supernatant and resuspending the cell pellet again in 1 ml of ice-cold 

10% glycerol]. Finally, the electro-competent cells were resuspended in 80 µl of 10% glycerol and 

directly transferred into pre-cooled electroporation cuvettes. Cells were chilled on ice until 

electroporation. 
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2.5 Molecular biological and biochemical methods 

2.5.1 Agarose gel electrophoresis 

1 – 2% agarose gels supplemented with ethidium bromide (0.1 µl/ml) were prepared in 1x TAE buffer 

and run for 30 min at 100 V. Usually, 10 µl of the DNA sample was mixed with 10x loading dye and 

loaded. The following standards: GeneRuler 1kb DNA ladder or GeneRuler DNA ladder mix (100 bp) 

were used as DNA markers. Gels were visualized under UV light using a gel documentation chamber. 

2.5.2 Lipocalin-2 (LCN-2) ELISA (mouse lipocalin-2/NGAL detection kit (R&D, DY1857)) 

96-well ELISA plates were coated with 50 µl/well of lipocalin-2 capture antibody (Table 35) and 

incubated o/n at 4°C in a humid chamber. After 3 washing steps with washing buffer (0.05% Tween-

20 in 1x PBS), the plates were blocked for 1 h at RT with 50 µl/well of blocking buffer (2% BSA in 1x 

PBS). The plates were washed again 3 times and samples were subsequently added in duplicates (50 

µl/well, undiluted in PBT, 1:20 and 1:200 in 1x PBS). In order to quantify LCN-2 amounts, standard 

curves with a starting concentration of 50 ng/ml of LCN-2 were prepared (duplicates, 1:3 dilutions in 

blocking buffer). The plates were then incubated for 1 h at RT and washed again 6 times. 50 µl/well 

of LCN-2 detection antibody (Table 35) were added and the plates were incubated again for 1 h at RT, 

followed by 6 washing steps. Subsequently, 100 µl/well of HRP-streptavidin (1:1,000 diluted in 1x 

PBS) were added following 1 h of incubation and 6 washing steps. The plates were finally developed 

in the dark for 30 - 45 min using 100 µl/well of ABTS substrate (1 mg ABTS in 10 ml of 0.1 M NaH2PO4, 

pH 4 + 5 µl of H2O2). Finally, the absorbance was measured at 405 nm with a spectrophotometer 

(Tecan, Sunrise). 

2.5.3 Cloning of 16S rRNA full length sequences into pJET1.2 cloning vector 

Plasmids listed in Table 5 have been described previously (Brugiroux et al. 2016) as indicated or were 

constructed as described below (pMB1 + 2, pMB4 - 6): For construction of pMB1 - 5, bacterial 16S 

rRNA full length gene sequences were amplified by polymerase chain reaction (PCR) using DreamTaq 

Master mix with one initial denaturation step at 95°C for 5 min, followed by 35 cycles with one cycle 

consisting of 95°C for 30 sec, 50°C for 30 sec and 72°C for 1 min and one final elongation step at 72°C 

for 10 min. For construction of pMB6, PCR reaction was performed using Q5Tm Hot Start High-Fidelity 

polymerase which has proofreading activity (initial denaturation step at 98°C for 30 sec followed by 

35 cycles with one cycle being 98°C for 10 sec, 50°C for 30 sec and 72°C for 35 sec and one final 

elongation step at 72°C for 2 min). 100 ng of bacterial gDNA was used as template. The gDNAs of S. 

Tm and C. rodentium were provided by B. Stecher, the gDNAs of C. difficile and C. scindens were 

provided by Nicolas Studer (University of Bern) and the gDNA of H. typhlonius was provided by 

Martin Faderl (University of Bern). PCR reactions were performed using a Peqstar 2x gradient cycler 
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using 125 nM of each primer: fD1 and fD2 (250 nM for PCR reaction with Q5 polymerase) as well as 

250 nM of the primer rP1 (500 nM for PCR reaction with Q5 polymerase) (Table 32). The reaction 

volume was 50 µl. 5 µl were loaded on a 1% agarose gel to visualize successful 16S rDNA 

amplification. The residual 45 µl were purified using the NucleoSpin Gel and PCR Clean-up kit 

(Macherey-Nagel) according to the manufacturer’s instructions and subsequently cloned into the 

high-copy expression vector pJET1.2 using the CloneJETTM PCR kit. Briefly, 2 µl of PCR-amplified 16S 

rRNA gene were blunted in a 18 µl reaction using the provided 2x reaction buffer, nuclease free 

water and 1 µl of DNA blunting enzyme. The blunting reaction was performed at 70°C for 5 min. The 

blunted PCR product was then inserted into the pJET1.2 cloning vector using 50 ng of vector and 1 µl 

of the provided T4 DNA ligase. The ligation mix was briefly vortexed and incubated for 30 min at RT. 

The ligation mix was finally transformed into chemo-competent E. coli DH5α as described below 

(2.5.4). 

Correct insertion of a full length 16S rRNA gene was check by PCR using 5 µl of boiled 1:20 diluted 

cultures used for stocking and DreamTaq Master mix (20 µl reaction volume, reaction condition as 

described above). Plasmid DNA of clones harboring 16S rRNA full length sequences was extracted 

using the NucleoSpin plasmid extraction kit (Macherey-Nagel) and finally sequenced using the 

pJet1.2 specific primers pJet1-FP and pJet1-RP (Table 32). Sanger sequencing was performed at 

GATC, Germany. Sequences were analyzed using the software CLC DNA workbench 6.0.2 (CLC bio, 

Denmark). 

2.5.4 Transformation chemo-competent cells  

Plasmids were transformed in chemo-competent DH5α cells (2.4.8). 100 µl of chemo-competent 

DH5α cells were thawed on ice and 5 µl of ligation reaction were added. The cells were gently mixed 

and incubated on ice for 30 min. Hereafter, cells were heat shocked at 37°C for 45 sec and 

immediately cooled on ice for 2 min. 800 µl of LB medium were subsequently added and the cells 

were incubated at 37°C for 1 h under constant shaking at 650 rpm. Cells were then centrifuged (2 

min; RT; 8,117 x g), the supernatant was partially discarded and the cell pellet was resuspended in 

the residual supernatant (50 - 100 µl). In order to select for pJET1.2 positive cells, 50 µl of cell 

suspension were plated on LB agar plates containing ampicillin (100 µg/ml). Positive clones were 

cryo-stocked as described previously (2.4.1) and stored at -80°C.  

2.5.5 Total DNA extraction of fecal and cecal microbiota 

Fecal and cecal DNA was directly extracted from samples stored in 2 ml plastic tubes at -80°C using 

the Qiagen DNA (fast) stool kit. The provided protocol was followed including additional 

modifications. First, samples were thawed and mixed with 150 µl of acid washed glass beads (<106 
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µm), 150 µl of zirconia-beads (0.7 mm) as well as 700 µl of Inhibit Ex buffer. The samples were then 

lyzed for 3 min at 50 Hz in a tissuelyzer, incubated at 95°C for 5 min, lyzed again (50 Hz, 5 min) and 

centrifuged (1 min; RT; 11,300 x g). The supernatant was transferred into a fresh 2 ml plastic tube 

and kept on ice. In order to increase the lysis efficiency of Gram-positive bacteria, the pellets were 

resuspended in 200 µl of sterile and DNA free lysis buffer including lysozyme (Table 27) and 

incubated for 30 min at 37°C. Subsequently, 500 µl of Inhibit Ex buffer were added, following lysis (50 

Hz, 5 min), incubated at 95°C, lyzed (50 Hz ,5 min) again and centrifuged (1 min; RT; 11,300 x g). The 

supernatant was added to the supernatant that was previously harvested and kept on ice. 26 µl of 

proteinase K (provided solution) were pipetted into a fresh 2 ml plastic tube and 700 µl of total 

supernatant as well as 700 µl of AL buffer were added. Samples were vortexed for 15 sec and 

incubated at 70°C for 10 min. Hereafter, samples were briefly centrifuged in order to remove any 

drops from the lid and 700 µl of ethanol (96% p.a.) were added. Samples were then vortexed again, 

briefly centrifuged and loaded onto QIAamp spin columns. The DNA bound to the filter matrix was 

subsequently washed using the buffers AW1 and AW2 and finally eluted in 100 µl of pre-warmed ATE 

buffer (70°C). The DNA concentration was determined by NanoDrop.  

2.5.6 DNA extraction from bacterial cell pellets harvested from in vitro cultures 

gDNA from bacterial cell pellets was extracted as described previously (Turnbaugh et al. 2009, Ubeda 

et al. 2012). The bacterial cell pellet stored in a 2 ml plastic tube at -20°C was resuspended in 500 µl 

of extraction buffer (Table 28), 210 µl of sterile filtered 20% SDS and 500 µl of a 

phenol:chloroform:isoamylalcohol (25:24:1) mixture. 1 ml of zirconica / silica beads (0.1 mm 

diameter) was added. The sample was lyzed at 50 Hz for 4 min in a tissuelyzer at RT and subsequently 

centrifuged (5 min; RT; 11,300 x g). The upper phase was transferred into a fresh 2 ml plastic tube 

and 500 µl of phenol:chloroform:isoamylalcohol (25:24:1) mixture were added. The sample was 

mixed by inversion (2 - 3 times) and centrifuged (5 min; RT; 11,300 x g). The supernatant (~ 500 µl) 

was transferred into a fresh 2 ml tube and 1 ml of ethanol (96% p.a.) + 50 µl of NaAcetat (3M) were 

added and the sample was mixed by inversion (2 - 3 times), subsequently centrifuged (30 min; 4°C; 

13,148 x g) and the supernatant was discarded. The DNA pellet was resuspended in 500 µl of ice-cold 

70% ethanol and mixed again by inversion. After centrifugation (15 min; 4°C; 13,148 x g), the 

supernatant was discarded and the DNA pellet was air-dried (until dry under laminar airflow). The 

DNA pellet was finally resuspended in 50 µl of 10 mM Tris-HCl pH8 and the nucleic acid concentration 

was determined by NanoDrop. 

2.5.7 Colorimetric quantification of nitrite concentrations 

S. Tm culture supernatant processed as detailed in section 2.4.3 and colorimetric quantification of 

nitrite concentrations was performed as described by (Miranda et al. 2001). Briefly, 50 µl of the 
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sample (undiluted, 1:10 as well as 1:100) were transferred in wells of a 96-well plate. 50 µl of 1:1.5 

serial dilutions of a NaNO2 with known concentrations (50 µM down to 7 µM) were used as a 

standard curve. 25 µl of a 1:1 mixture of 2% sulfanilamide in 3 M HCl and 0.1% N-(1-

NaphThyl)ethylenediamine dihydrochloride monomethanolate (NEDD) in ddH2O were added to each 

well. The plate was incubated in the dark at 37°C for 30 min and the absorbance at 540 nm was 

measured using a spectrometer (Tecan, Sunrise).  

2.5.8 Hydrolysis probe based quantitative real-time PCR (qPCR) 

2.5.8.1 Design of specific primers and hydrolysis probes 

16S rRNA full length gene sequences of bacteria used in this study were aligned using CLC DNA 

Workbench 6.0.2 (CLC bio, Denmark) in order to identify hypervariable regions that are unique for 

each strain. Subsequently, specific primers and a hydrolysis probe were designed for each strain 

using the software Primer Express 3 (MGB protocol, Applied Biosystems, Life Technologies, USA; 

Table 30) and checked against the aligned 16S rRNA genes to ensure specificity. In order to enable 

duplex quantitative real-time PCR experiments, the hydrolysis probes were either labeled with 6-

carboxyfluoresceine (FAM) or 6-carboxyhexafluoresceine (HEX) at the 5’ end. Additionally, every 

probe was conjugated with the black hole quencher 1 (BHQ1) at the 3’ end. There was no other 

additional chemical modification which might improve performance of MGB probes. All primers and 

hydrolysis probes were synthesized by Metabion International AG (Germany), delivered freeze dried 

and were either desalted (primers) or HPLC purified (hydrolysis probes). The quality was controlled 

by mass check (primer length: 18 – 28 nt; probe length: 15 – 25 nt.) 

2.5.8.2 Preparation of plasmid DNA for standards curves 

Linearized plasmids harboring full length 16S rRNA gene sequences were used as DNA templates for 

the standard curves used for absolute quantification. E. coli DH5α harboring the respective plasmid 

was grown in LB medium supplemented with ampicillin (50 - 100 ml o/n cultures) and plasmids were 

purified using the Plasmid Plus Midi Kit (QIAGEN) according to the manufacturer’s instructions. 30 µg 

of plasmid DNA were subsequently linearized in 100 µl o/n reactions at 37°C using 10x reaction 

buffers and endonucleases (20 units) to linearize the plasmids that have no recognition site within 

the 16S rRNA full length gene sequence (Table 5). After digesting, plasmids were purified using the 

NucleoSpin Gel and PCR Clean-up kit (Macherey-Nagel) according to the provided protocol. The final 

concentrations of the linearized plasmids were determined by NanoDrop. Agarose gel 

electrophoresis (1% agarose) was performed in order to verify complete linearization of the 

plasmids.  
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2.5.8.3 Determination of 16S rRNA gene copy numbers 

10 ng/µl stocks of each plasmid were prepared and the 16S rRNA gene copy numbers per µl were 

calculated: (i) the number of nucleotides of the plasmid was defined; (ii) the approximate molecular 

mass of the dsDNA was determined according to the formula: (number of nucleotides x 607.4) + 

157.9; (iii) the gene copy numbers/µl of a 10 ng/µl stock were calculated: ((10 x 10-9)/molecular mass 

of dsDNA) x (6.022 x 1023); (iv) 10 fold dilutions were prepared: range: 108 - 10-2 gene copies/µl; the 

DNA was diluted in yeast t-RNA solution (100 ng/µl) and 1.5 ml DNA loBind tubes (Eppendorf) were 

used. The dilutions were stored at -20°C.  

2.5.8.4 qPCR reaction conditions 

qPCR reactions were performed in white LightCycler480 Multiwell Plate 96 plates using the thermo 

cycler LightCycler96 and the FastStart Essential DNA Probes Master reaction kit. The reaction volume 

was 20 µl and the following conditions were applied: (i) an initial denaturation step at 95°C for 10 

min followed by (ii) 45 cycles (95°C for 15 sec and 60°C for 1 min). qPCR reactions were performed 

with 5 ng template DNA as well as with 300 nM of each primer and 250 nM of the corresponding 

probe. The fluorescence for each cycle was recorded after each step.  

Standard curves were run once in triplicates in order to evaluate the performance of the primer / 

probe combinations in mono- and duplexed qPCR reactions (Table 39). In further experiments, 

standard curves were reproduced by the LightCycler96 software 1.1 (Roche, Switzerland) based on 

one single DNA standard with known DNA quantity and the efficiency derived from the standard 

curve that was run initially. DNA samples from feces or cecal content were run in duplicates. The 

quantification cycle (Cq) as well as the baseline were automatically determined by the LightCycler96 

software 1.1 (Roche, Switzerland). 

2.5.8.5 Titration of primers and probes as well as template DNA concentrations 

Different concentrations of forward and reverse primers as well as hydrolysis probes (100 – 500 nM) 

were tested with 2 different amounts of linearized plasmid DNA (2.5 x 106 and 2.5 x 102 16S rRNA 

gene copies). Optimal concentrations of forward and reverse primers (300 nM each) as well as of 

hydrolysis probe (250 nM) were derived from qPCR reaction with YL2_Exonucl._fwd/rev with 

Probe_YL2, YL44_Exonucl._fwd/rev with Probe_YL44, YL45_Exonucl._fwd/rev with Probe_YL45, 

YL58_Exonucl._fwd/rev with Probe_YL58, Isol46_Exonucl._fwd/rev with Probe_Isol46, 

Isol49_Exonucl._fwd/rev with Probe_Isol49, Isol48_Exonucl._fwd/rev with Probe_Isol48. The 

titration of primers and probes was performed using the thermocycler ABI 7500 fast.  

In order to determine the optimal quantity of template DNA, qPCR reactions with 1:2 dilutions of 25 

ng of fecal DNA were performed in triplicates. The 1:2 dilutions of template DNA resulted in parallel 
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amplification curves. 5 ng of template DNA were found to be an optimal quantity that yields results 

within the dynamic range of the qPCR assay (Cq over 15 cycles) and were subsequently used as 

template amount for all further qPCR reactions. This titration experiment was performed with one 

primer / probe combination that targets a strain that is highly abundant in fecal DNA samples 

(‘Bacteroides caecimuris I48’).  

2.5.8.6 Evaluation of qPCR efficiency and establishment of a duplex qPCR assay  

The efficiency of each primer / probe combination was calculated based on the slope of standard 

curves with 1:10 dilutions of linearized plasmids harboring specific 16S rRNA gene sequences (qPCR 

efficiency: (10(-1/slope of standard curve)-1) x 100). DNA amounts for standard curves were titrated down until 

the assay was dynamic: around 3.3 Cqs decrement between 1:10 dilutions and high endpoint 

fluorescence levels. Efficient qPCR reactions were within the range of 90 - 110% efficiency 

(duplication of the DNA amount per qPCR cycle) which guaranteed accurate determination of gene 

copy numbers. Standard curves were performed in mono- and duplex qPCR reactions in order to rule 

out any mutually inhibitory effects between the duplexed primers and probe combinations. For 

duplex reactions, assays with similar qPCR efficiencies and endpoint fluorescence levels were 

combined.  

2.5.8.7 Validation of specificity and determination of the limit of detection 

Besides testing the specificity in silico using the aligned 16S rRNA gene sequences, the strain-

specificity of all primer / probe combinations was additionally investigated with plasmid pools 

harboring all 16S rRNA gene sequences excluding the one that was tested (2.5 x 106 gene copies per 

linearized plasmid per µl).  

The limit of detection of each primer / probe combination was either the LOD95 (amount of template 

DNA that results in a positive signal in 95% of the qPCR runs), the assay specific limit of detection or 

the gene copy number determined from late unspecific amplification using plasmid pools. The 

highest value was set to be the limit of detection. The LOD95 was determined by titrating standard 

curves down to 2.5 x 10-2 gene copies. The percentage of signals that were above threshold was 

subsequently determined for each DNA template quantity. These data were used for a sigmoidal 

curve fit (plot: % positives against DNA template amount; GraphPad Prism 5, GraphPad Software, 

Inc., USA) and the LOD95 was determined by interpolation. If the standard curve went out of the 

dynamic range (clearly less than 3.3 Cqs decrement between 1:10 dilutions and inhibited endpoint 

fluorescence levels) before reaching DNA amounts for the determination of the LOD95, an assay 

specific limit of detection was set.  



Material and Methods 

46 

 

2.5.9 Generation of gene deletion mutants in S. Tm by λ red recombination 

2.5.9.1 Generation of PCR fragments 

For in frame gene deletions, antibiotic-resistance markers were inserted into the chromosome of S. 

Tm applying λ red recombination. The procedure was described by (Datsenko and Wanner 2000). 

Briefly, PCR reactions were performed using the Peqstar 2x gradient cycler, FastStart Taq polymerase 

with 10x MgCL2 reaction buffer, dNTPs (200 µM of each nucleotide), 5 - 50 ng of template DNA and 

oligonucleotides (200 nM each) that amplify an antibiotic-resistance cassette as well as FRT sites for 

gene deletion from one of the following plasmids: pKD3 (cat: chloramphenicol resistance) or pKD4 

(aphT: kanamycin resistance) (Table 4). The primers harbored 5’ extensions (59 bp) that were 

homologous to sequences upstream of the start codon and downstream of the stop codon of the 

gene of interest (Table 31). The total volume of the PCR reaction was 4 x 50 µl and the following 

cycling conditions were used: one initial denaturation step at 95°C for 6 min followed by: (i) five 

cycles with one cycle being 95°C for 30 sec, 55°C for 30 sec and 72°C for 2 min, (ii) 25 cycles with one 

cycle consisting of 95°C for 30 sec, 65°C for 30 sec and 72°C for 2 min and (iii) a final elongation step 

at 72°C for 10 min. PCR products were pooled, visualized on a 1% agarose gel to ensure successful 

amplification of the antibiotic cassette (5 µl loaded) and purified by ethanol precipitation: 1/10 

volume of 3 M NaAcetat (ddH2O solution) as well as 2 volumes of ice-cold ethanol (96% p.a.) were 

added to the pooled PCR product, following centrifugation (15 min; 4°C; 13,148 x g). The supernatant 

was discarded and the pellet was resuspended in 500 µl of ice-cold 70% ethanol and centrifuged 

again (15 min; 4°C; 13,148 x g). After discarding the supernatant, the pellet was subsequently air-

dried at 37°C and resuspended in 22 µl of nuclease free ddH20 (Gibco).  

In order to desalt the DNA, the ethanol precipitated PCR product was dialyzed for 60 min against 

ddH20 (Ampuwa) using petri dishes and a dialysis membrane (pore size: 0.025 µm). The DNA 

concentration was determined by NanoDrop.  

2.5.9.2 Electroporation of electro-competent S. Tm harboring pKD46 

S. TmWT harboring the plasmid pKD46 (Datsenko and Wanner 2000) were streaked on LB agar plates 

containing ampicillin and were incubated o/n at 30°C. 2 - 3 colonies were subsequently used to 

inoculate starter cultures containing 10 ml of LB medium supplemented with ampicillin that were 

incubated o/n at 30°C and 180 rpm. In order to generate electro-competent cells, starter cultures 

were used to inoculate subcultures in LB medium supplemented with 10 mM L-(+)-arabinose and 

ampicillin that were grown at 30°C under constant shaking at 180 rpm. Further steps are detailed in 

section 2.4.9. 
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Subsequently, 80 µl of electro-competent cells were mixed with 5 - 10 µl of the PCR product 

containing the antibiotic cassette as well as the homologous flanking regions and transferred into 

pre-cooled electroporation cuvettes. Electroporation was performed at 1800 V for 5 msec. Cells were 

immediately recovered in 1 ml of pre-warmed (37°C) SOC medium and further incubated at 37°C and 

500 rpm for 1.5 h. Afterwards, 500 µl of the transformed cells were transferred into a new 1.5 ml 

plastic tube and further incubated o/n at RT. The residual 500 µl were reduced to around 50 µl 

(centrifugation and re-suspending in residual supernatant), plated on LB agar plates supplemented 

with the appropriate antibiotic (either chloramphenicol or kanamycin both 30 µg/ml) and incubated 

o/n at 37°C. Clones were re-streaked, cryo-stocked and PCR checked using the Dream Taq mastermix 

and 500 nM of each check-up primer (Table 31). The reaction volume of the PCR was 20 µl and 5 µl of 

boiled cells from o/n cultures that were 1:20 diluted with sterile nuclease free ddH2O (Gibco) were 

directly used as template. The following cycling conditions were applied: (i) 95°C for 5 min, (ii) 35 

cycles with one cycle being 95°C for 30 sec, either 55°C for 30 sec (narZ, narG, entA and eutC) or 56°C 

for 30 sec (napA) and 72°C for either 1 min (eutC), 2 min (entA), 3 min (napA) or 4 min (narZ and 

narG) and (iii) 72°C for 10 min. PCR products were run on a 1% agarose gel in order to confirm 

successful gene replacement. 

2.5.9.3 P22 transduction 

Preparation of P22-phage lysates. 3 ml cultures in either pure LB medium or LB medium containing 5 

mM CaCl2 were inoculated with 3 colonies of the donor strain that was picked from a LB agar plate 

supplemented with appropriate antibiotic. The cultures were grown o/n in glass tubes at 37°C in a 

wheel rotor. 10 µl of P22-phage (Schmieger 1972) lysate were transferred into a sterile 1.5 ml plastic 

tube and 500 µl of the o/n culture of the donor strain were added. The culture containing the P22-

phage lysate was subsequently transferred into a glass tube with aluminum lid and statically 

incubated at 37°C for 15 min. Afterwards, 5 ml of LB medium were added to the glass tube and 

further incubated o/n at 37°C under constant shaking at 180 rpm. The next day, 50 µl of chloroform 

were added to the glass tube following a 30 min incubation at RT. 2 ml of the culture were then 

transferred to a sterile 1.5 ml plastic tube and spun down (10 min; 4°C; 2,415 x g). The supernatant 

was filtered through a sterile 0.45 µm filter into a sterile screw cap plastic tubes and 10 µl of 

chloroform were added. The plastic tube was sealed with parafilm and stored at 8°C. In order to 

ensure sterility, 50 µl of the lysate were plated on a LB agar plate without antibiotics and incubated 

o/n at 37°C.  

P22-transduction. 3 colonies of the acceptor strain from a LB agar plate with appropriate antibiotic 

were used to inoculate cultures containing 3 ml of LB medium supplemented with 5 mM CaCl2. The 

cultures were grown o/n in glass tubes at 37°C on a wheel rotor. 10 µl of the P22-phage lysate of the 
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donor strain were transferred into a sterile 1.5 ml plastic tube, 100 µl of o/n culture of the acceptor 

strain were added and incubated statically for 15 min at 37°C. 900 µl of LB medium supplemented 

with 10 mM EGTA were subsequently added and the tube was incubated under constant shaking 

(550 rpm) for 1 h at 37°C. Finally, the cultures were centrifuged (3 min; RT; 8,117 x g), the 

supernatant was reduced to around 100 µl, the pellet was resuspended in the residual supernatant 

and 50 µl were plated on LB agar plates containing the appropriate antibiotic +/- 10 mM EGTA and 

incubated o/n at 37°C. In order to obtain phage free bacteria, clones were finally picked and re-

streaked for two times before cryo-stocking at -80°C. Successful transduction was confirmed by PCR 

using the same condition as described in section 2.5.9.2 (check-up PCR). 

2.5.9.4 Deletion of antibiotic-resistance markers using the Flp-recombinase  

Strains containing an antibiotic-resistance marker flanked by FRT sites that were generated by λ red 

recombination as described previously (2.5.9) were picked from LB plates containing the appropriate 

antibiotic. 3 colonies were used to inoculate 5 ml starter cultures that were grown o/n in a wheel 

rotor in LB medium containing the appropriate antibiotic. Subsequently, 50 ml subcultures in LB 

medium supplemented with the appropriate antibiotic were inoculated with 500 µl of starter culture 

(1:100 dilution) and grown at 37°C under constant shaking at 180 rpm until an OD600 of around 0.5 

was reached. Further steps of the preparation of electro-competent cells are described in section 

2.4.9. 

Subsequently, electro-competent cells were electroporated with 1 µg of pCP20 harboring the Flp-

recombinase (Table 4). The procedure of electroporation is described in section 2.5.9.2. After 

electroporation, the cells were immediately recovered in 1 ml of pre-warmed LB medium (30°C) and 

incubated at 30°C for 1.5h under constant shaking (500 rpm). The bacteria were then spun down (3 

min; RT; 6,708 x g), resuspended in 100 µl of supernatant and finally plated on LB agar plates 

containing ampicillin. Plates were incubated o/n at 30°C, the permissive temperature for pCP20. The 

next day, clones were re-streaked on LB agar plates and incubated o/n at 43°C, in order to induce 

expression of Flp-recombinase. The antibiotic sensitive strains in which recombination has occurred 

were identified by double picking on LB agar plates with and without the respective antibiotic and 

incubation at 37°C, in order to select for loss of pCP20. In order to confirm the loss of pCP20, the 

antibiotic sensitive strains were double plated again on LB agar plates with and without ampicillin 

(100 µg/ml) and incubated at 37°C. Clones that were ampicillin sensitive were cryo-stocked and 

stored at -80°C. Successful deletion of the antibiotic marker was confirmed by PCR according to the 

protocol described in section 2.5.9.2 (check-up PCR). 
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2.5.9.5 Construction of S. Tm mutants  

Construction of S.TmNi. (MBE7). In order to construct the nitrate respiration deficient S. Tm strain 

that that lacks the three main nitrate reductases (ΔnarZ, narG::cat, napA::aphT) (Lopez et al. 2012), 

the genes narZ, narG and napA were either deleted or in frame replaced by antibiotic resistance 

markers. First, single S. Tm mutant strains were generated (Table 3, MBE1: narZ::cat, MBE2: 

narG::cat and MBE3: napA::aphT) using λ red recombination as described in the previous section 

2.5.9. Briefly, antibiotic resistance genes were PCR amplified from plasmids (Table 4) using the ko-

primers listed in Table 31 and electroporated into S. TmWT harboring pKD46. Effective recombination 

was verified by PCR using the check-up primers and agarose gel electrophoresis (1% agarose). 

Subsequently, the narZ::cat allele from MBE-1 was transduced to S. TmWT by P22 transduction in 

order to create MBE4. Correct insertion was tested by PCR using the primers narZ fwd-check up / 

narZ rev-check up (Table 31). The narZ::cat allele of MBE4 was subsequently deleted using the FLP 

recombinase as described in section 2.5.9.4. The resulting strain MBE5 (ΔnarZ) was check by PCR 

using the primers narZ fwd-check up / narZ rev-check (Table 31). MBE5 was further transduced with 

P22-phage lysate of MBE2 in order to create MBE6 (ΔnarZ, narG::cat). Correct insertion was verified 

by PCR using the oligonucleotides narG fwd-check up / narG rev-check up. Finally, MBE6 was 

transduced with P22-phage lysate from MBE3 in order to construct MBE7 (ΔnarZ, narG::cat, 

napA::aphT). The correct genotype of MBE7 was assessed by PCR using the primers: narZ fwd-check 

up / narZ rev-check up, narG fwd-check up / narG rev-check up and napA fwd-check up / napA rev-

check up. Conditions of check-up PCR reactions are detailed in section 2.5.9.2 (check-up PCR). All 

strains are listed in Table 3. 

Construction of S.TmNi. + Te.
 (MBE8). In order to generate MBE8 that is deficient in nitrate and 

tetrathionate respiration, the ttrS::tet allele from S. Tm stain M961 (Δ sodCI, Δ sodCII, BCB4::tet from 

(Hensel et al. 1999)) was transduced to MBE7 by P22-transuction. The correct genotype of MBE8 

(ΔnarZ, narG::cat, napA::aphT, ttrS::tet) was verified by PCR using the primers: narZ fwd-check up / 

narZ rev-check up, narG fwd-check up / narG rev-check up, napA fwd-check up / napA rev-check up 

and ttrS fwd-check up / ttrS rev-check up. PCR conditions of check-up reactions are detailed in 

section 2.5.9.2 (check-up PCR). 

Construction of S.TmEntA
 (MBE10). MBE10 (S. Tm, entA::cat) that is deficient in siderophore 

production was constructed by P22-transduction of the entA::cat allele from MBE9 to S. TmWT. MBE9 

was generated previously by λ red recombination using pKD3 and the entA-fwd-ko / entA-rev-ko 

knock out primers (Table 31). Correct insertion of the entA::cat allele in MBE9 and MBE10 was 

assessed by PCR using entA fwd-check up / entA rev-check up primers (Table 31). Conditions of 

check-up PCR reactions are detailed in section 2.5.9.2 (check-up PCR). 
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Construction of S.TmEA. (MBE12). In order to construct MBE12 (S. Tm, eutC::aphT) that is deficient in 

ethanolamine utilization (Thiennimitr et al. 2011), eutC of S. TmWT harboring pKD46 was first replaced 

by a kanamycin resistance cassette performing λ red recombination using pKD4 as template and the 

knock out primers: eutC-fwd-ko / eutC-rev-ko. The genotype of the resulting strain MBE11 (S. Tm, 

eutC::aphT) was checked by PCR using the oligonucleotides: eutC fwd-check up / eutC rev-check up 

(Table 31). The allele eutC::aphT from MBE11 was finally P22-transduced to a fresh S. TmWT strain 

and verified by PCR using the primers: eutC fwd-check up / eutC rev-check up (Table 31). Conditions 

of check-up PCR reactions are detailed in section 2.5.9.2 (check-up PCR). 

2.5.10 Immuno-fluorescence staining 

PFA fixed cecum tips were taken form -80°C, cut in 7 µm sections using a cryotome (Leica) and fixed 

on cover glass slides by air-drying for 2 h at RT. Sections were subsequently fixed with 100 µl of 4% 

PFA for 5 min. After 3 washing steps with 1x PBS, sections were blocked with 100 µl of 10% normal 

goat serum in 1x PBS for 60 min at RT. Next, 100 µl of 10% normal goat serum containing 1.67 µg/ml 

of α-CD18 antibody (Table 37) were added and incubated for 60 min at RT. After 3 washing steps 

with 1x PBS, sections were additional stained for 30 min with 100 µl of 10% normal goat serum 

containing the secondary anti rat antibody conjugated with Cy3 (4.17 µg/ml, Table 37), DAPI (1 

µg/ml), SYTOX green (0,5 µM) and Phalloidin (22 pmol/ml). Sections were washed again 3 times with 

1x PBS, dried in the dark and mounted with a glass cover slip, Vectashield and nail varnish. Pictures 

were acquired using the confocal microscope TCS SP5 (Leica). 

2.6 Animal experiments 

2.6.1 Ethics  

All animal experiments performed at the Max von Pettenkofer Institut (MvP) of the Ludwig-

Maximilians-University Munich were reviewed and approved by the government of Oberbayern 

(55.2-1-54-2532-13-15). 

2.6.2 Generation of gnotobiotic Oligo-MM12 mice 

Germfree C57BL/6J mice were associated with the 12 Oligo-MM strains (Table 2) by oral and rectal 

inoculation, Clean Mouse Facility (CMF) of the University of Bern (Brugiroux et al. 2016). Oligo-MM12 

mice, also termed stable Defined Moderately Diverse Microbiota mouse (sDMDMm2) were bred 

under germfree conditions in flexible film isolators (Harlan Laboratories) in order to maintain the 

defined microbiota. Oligo-MM12 mice were also transferred to the gnotobiotic mouse facility of the 

MvP and to the ETHZ where mice were further bred under sterile conditions. Sterility was verified 

monthly by plating cecal content of sentinel mice on MacConkey (Oxoid), sheep blood (Oxoid) and 

Sabouraud dextrose (Oxoid) agar plates.  
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2.6.3 High fat diet and oleic acid supplementation 

Animal experiments and DNA extraction were performed by Sandra Wotzka, ETH Zurich. For high-fat 

diet, standard diet (KLIBA NAFAG, 3437) was switched to high-fat diet (Bio Serv, mouse high-fat diet) 

containing 20.5% protein, 36% fat and 35.7% carbohydrates. Oligo-MM12 mice receiving high-fat diet 

were euthanized 6, 12 and 24 h post diet switch and cecal content was harvested for DNA extraction. 

For oleic acid supplementation, Oligo-MM12 mice receiving standard diet were gavaged two times 

with 200 µl of oleic acid (Sigma) at time points 0 h and 4 h post initial gavage. Mice were sacrificed at 

6, 12 and 24 h post initial oleic acid gavage and cecal content was taken for subsequent DNA 

extraction. Oligo-MM12 mice fed with standard diet served as control. 

2.6.4 Infection of gnotobiotic Oligo-MM12 mice with S. Tm and C. rodentium 

One day prior to infection Oligo-MM12 mice were exported from the isolator in autoclaved 

gnotocages (Han, Bioscape) equipped with sterile ddH2O (Ampuwa), food, bedding and enrichment. 

On the day of infection the laminar flow was disinfected with a sporicidal disinfectant (5% VirkonS, 

30 min incubation). All instruments used (additional cage for handling, gavage needles and forceps in 

metal boxes) were previously enwrapped in tissues, autoclaved and imported under the laminar 

flow. In order to handle and manipulate Oligo-MM12 mice under germfree conditions, infections 

were performed by two persons. Mice were directly handled by person 1 who was equipped with 

sterile cloths and gloves whereas person 2 handled unsterile material and opened the gnotocage. For 

infection, mice were taken out of the gnotocage, placed on the sterile grid of a handling cage and 

subsequently infected by oral gavage with either 5 x 107 CFUs of S. Tm strains or 1 x 108 CFUs of C. 

rodentium DBS100 in 50 µl of sterile 1x PBS using sterile gavage needles and syringes. The mice were 

placed back into the gnotocage that was sealed with Hepa-filter top. The preparation of bacterial 

cultures for in vivo experiments is detailed in section 2.4.2. 

During the experiment, mice were monitored daily for signs of illness or suffering without taken 

them out of the cage because of high risk of contamination. The experiment was terminated 

prematurely, when individual mice showed signs of terminal illness according to a cumulative scoring 

system. At the end of the experiment, mice were euthanized by cervical dislocation. 

2.6.5 Infection of CD18-/- mice with S. Tm 

In order to break microbiota-mediated colonization resistance, CD18-/- mice B6.129S7-Itgb2tm2Bay 

(Scharffetter-Kochanek et al. 1998) which are associated with a specific pathogen free (SPF) 

microbiota were orally gavaged with 25 mg of streptomycin-sulfate in 0.05 ml of dH2O 24 h prior to 

infection with 5 x 107 CFUs of S. TmWT. The preparation of S. TmWT cultures for in vivo experiments is 
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detailed in section 2.4.2. Mice were euthanized at days 1 and 2 post infection by cervical dislocation 

and samples were taken.  

2.6.6 Infection of Oligo-MM12 mice with C. difficile 

Infections with C. difficile were performed by Nicolas Studer in Prof. Hapfelmeier’s group (University 

of Bern). Oligo-MM12 mice were orally inoculated with 1 x 103 spores of C. difficile DH196 (Studer et 

al. 2016) and fecal pellets were collected daily, to determine LCN-2 levels and to perform microbiota 

analysis. The mice were sacrificed at day 3 post infection. LCN-2 levels were measured in Bern. DNA 

of feces and cecal content was extracted by Nicolas Studer as described in section 2.5.5. Fecal DNA 

was sent to the MvP and microbiota analysis was performed by qPCR. 

2.6.7 Reversible colitis model: H. typhlonius infection and CD45RBhi T-cell transfer 

The reversible colitis model was established in Prof. Mueller’s lab (University of Bern) (Brasseit et al. 

2016). Mouse experiments shown in this study were performed by Martin Faderl. Briefly, germfree 

RAG1-/- mice were either cohoused with C57BL/6J Oligo-MM12 mice for 20 days in order to allow 

vertical bacterial transmission or were directly associated with the Oligo-MM12. 14 days prior to the 

adoptive transfer of 250,000 colitogenic CD4+ CD45RBhigh CD25- T-cells isolated from C57BL/6J 

wildtype mice, mice were orally inoculated with 2 x 108 CFUs of H. typhlonius CCUG48335T. In order 

to induce remission from colitis, mice were treated with 250 µg of α-CD4 antibody (or isotype as 

control) in 3 day intervals starting from day 24 post T-cell transfer. Mice were euthanized at day 34 

post T-cell transfer and intestinal content was collected. The DNA of the colon content was extracted 

by Martin Faderl and sent to the MvP for microbiota analysis by qPCR. LCN-2 levels were measured in 

Bern.  

2.6.8 Antibody mediated depletion of neutrophils 

Neutrophils were depleted as described in (Trautwein-Weidner et al. 2014). Briefly, Oliglo-MM12 

mice were treated with one dose of α-m Ly-6G (Table 36, 150 µg) or isotype control (intraperitoneal 

(i.p.)) one day before infection with 5 x 107 CFUs of S. TmWT. In addition, α-mouse G-CSF (Table 36, 10 

µg) or isotype control were daily administered via i.p. injections. 

2.6.9 Monitoring depletion of neutrophils by FACS  

3 - 4 drops of blood were directly collected from the tail vein in 1.5 ml of pre-cooled FACS buffer (1x 

PBS and 1% heat inactivated FCS) and kept on ice until erythrolysis. For lysing the erythrocytes, blood 

samples were centrifuged (2 min; 4°C; 1,677 x g), the supernatant was discarded and the cell pellet 

was resuspended in 1 ml of BD FACSTM Lysing Solution (1:10 diluted in ddH2O, Ampuwa) following 10 

min of incubation in the dark at RT. The blood cells were then centrifuged again (2 min; 4°C; 1,677 x 

g), the supernatant was discarded and the white blood cells were resuspended in FACS buffer (100 µl 
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per staining). Cells were subsequently stained with antibodies listed in Table 36 using the indicated 

dilutions (FC-block (α-CD16/CD32) also included). Antibodies were added and samples were 

incubated for 30 min at 4 °C, following a washing step with 200 µl of FACS buffer and centrifugation 

(5 min; 4°C; 1,677 x g). The supernatant was discarded and cells were resuspended in 200 µl of FACS 

buffer and transferred to FACS tubes. For staining dead cells, SYTOX red (5 nM) was added to the 

samples directly before measurement. In addition, compensation controls were performed with 

single stained BDTM CompBeads (BD) beads. The FACS analysis was performed with the FACSCANTO II 

(BD) and data were recorded using the BD FACSDivaTM software (BD). Data were analyzed by Dr. 

Tamas Dolowschiak using the FlowJo software.  

2.6.10 Collection of mouse tissues 

Sampling of feces during the course of the experiments was performed by two persons under sterile 

conditions as described previously in 2.6.4. Feces and cecal content was collected in sterile 1.5 ml 

plastic tubes. Salmonella loads in feces, cecal content, mesenteric lymphnodes, liver and spleen 

(taken post mortem) were determined by plating appropriate dilutions (undiluted, 1:200 and 

1:40,000) on MacConkey agar plates (Oxoid) containing streptomycin (100 µg/ml). Samples 

containing C. rodentium were plated on MacConkey agar plates without antibiotics. Feces and cecal 

content for DNA extraction were also taken and stored in 2 ml PCR grade plastic tubes at -80°C until 

DNA extraction and subsequent microbiota analysis. Tissues of cecum, colon, small intestine, liver as 

well as spleen were embedded in O.C.T (Sakura, Torrance), subsequently frozen in liquid nitrogen 

and stored at -80°C until histology. Cecal content was also resuspended in PBT for LCN-2 ELISA. 

2.6.11 Hematoxylin eosin (HE) staining and histopathology  

Tissues embedded in O.C.T were directly taken from the -80°C freezer, and 5 µm cross-sections were 

prepared using a cryotome (Leica) and transferred onto Superfrost Plus glass slides. The sections 

were air dried for at least 24 h at RT, fixed in Wollman solution (95% ethanol, 5% acetic acid) for 30 

sec, washed with flowing tap water for 1 min and rinsed with dH2O. Subsequently, the sections were 

incubated in Vector’s Hämalaun solution for 20 min and rinsed again with tap water for 5 min 

(blueing). The slides were hereafter dipped 1 - 2 times in de-staining solution (70% ethanol, 1% HCl), 

washed with flowing tap water for 5 min and rinsed with dH2O, 70% and 90% ethanol. The cross-

sections were then stained with alcoholic eosin y solution for 20 sec and rinsed again with dH2O. The 

cross-sections were then dehydrated in 90% and 100% ethanol as well as xylene and finally mounted 

using coverslips and Rotimount (Roth).  

Histopathology of cecal tissues was performed microscopically with H&E stained cross-sections as 

described previously (Stecher et al. 2007). Briefly, the cecal pathology score is based on formation of 
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submucosal edema (0 - 3), infiltration of polymorphonucelar neutrophils (PMNs) (0 - 4), loss of goblet 

cells (0 - 3) and epithelial damage (0 - 3). The combined pathological score was subsequently 

determined by summing up scores: 0 – 3: no pathological change, 4 – 8: mild inflammation, 9 – 13: 

severe inflammation.  

2.7 Bioinformatics and statistics 

2.7.1 RAST automated gene annotation 

The assembled bacterial genomes were annotated using the RAST (Rapid Annotations 

using Subsystems Technology) online server, an automatic annotation service based on manually 

curated subsystems and on protein families (Aziz et al. 2008). 

2.7.2 Statistics  

CFU data, LCN-2 levels, CAS halo and pathoscores were expressed as median. More than two 

different groups were compared to each other using Kruskal-Wallis test, with Dunn’s multiple 

comparison test. Two groups were compared using the Mann Whitney test (Prism 5; GraphPad 

Software, San Diego, CA, USA).  

The percentage of individual bacteria was expressed as mean +/- standard deviation (SD). Differences 

between groups were compared using a two-way ANOVA, with Bonferroni posttest (Prism 5; 

GraphPad Software, San Diego, CA, USA). Growth curves and data from immune-fluorescence 

microscopy were also shown as mean +/- SD. Differences between multiple samples at one time 

point were compared using 1 way ANOVA with Bonferroni’s multiple comparison test. The difference 

between two groups was compared using unpaired t test (Prism 5; GraphPad Software, San Diego, 

CA, USA). 

To analyze clustering of qPCR data, both a qualitative measure (Pearson) and a quantitative one 

(Bray-Curtis) were used to calculate distance matrices containing dissimilarity values for each 

pairwise comparison. Strength and statistical significance of sample grouping were determined 

applying the nonparametric Adonis method based on the permutational multivariate ANOVA 

(PERMANOVA), together with the parametric significance test PERMDISP, which analyzes 

multivariate homogeneity of group dispersions. The used scripts are available in QIIME (Caporaso et 

al. 2010). 

In all cases, p values < 0.05 were considered as statistically significant. 

Fold changes in absolute abundance were calculated with absolute values that were normalized to a 

million gene copies determined by universal probe. 
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3. Results 

3.1 Establishment of a qPCR assay for specific detection and quantification of 

bacterial strains 

3.1.1 General considerations: SYBR green versus hydrolysis probe based qPCR 

It was initially planned to establish a SYBR green based qPCR assay. This assay relies on two specific 

primers that target variable regions in the bacterial 16s rRNA gene and a fluorescent dye (SYBR 

green) that intercalates into double stranded DNA (dsDNA) and allows quantification of the PCR 

amplicon. First, endpoint PCR reactions were performed in order to investigate and improve primer 

specificity by applying different annealing temperatures and DMSO concentrations. Unfortunately, 

these protocols were not transferrable to the qPCR system because of different reaction conditions 

e.g. the DMSO concentration in the mastermix was unknown in the SYBR green master mix. On top of 

that, pioneering SYBR green qPCR runs proved that most primer pairs performed inefficiently (out of 

the range between 90 - 110% efficiency). Another downside was that primer dimers resulted in false 

positive results because SYBR green intercalates unspecifically in dsDNA. Since bacteria were 

differentiated based on polymorphisms in the 16S rRNA gene which limits positioning of primers, it 

was very likely that the primers formed dimers.  

In order to increase the efficiency and to avoid the issue of primer dimers, a hydrolysis probe based 

qPCR assay for absolute quantification of bacterial strains was established. Therefore new primers 

and fluorescently labeled hydrolysis probes were designed using the software Primer Express 3 

(Applied Biosystems). The hydrolysis probe, a third oligonucleotide that binds within the amplicon, 

further increased specificity. Indeed, this strategy finally resulted in efficient and specific detection of 

bacterial strains in gnotobiotic mice. 

3.1.2 Design of strain-specific primers and hydrolysis probes  

16S rRNA gene sequences of 12 Oligo-MM strains, 7 ASF strains as well Salmonella enterica serovar 

Typhimurium, Citrobacter rodentium (DBS100), Helicobacter typhlonius (CCUG48335T), Clostridium 

difficile (DH196), Clostridium scindens (ATCC35704), Escherichia coli (Mt1B1), Streptococcus danieliae 

(ERD01G) and Staphylococcus xylosus (33R13C) were aligned using CLC DNA Workbench 6.0.2 (CLC 

bio, Denmark) and 9 hypervariable (V) regions were subsequently identified. V regions were localized 

and positioned according to (Chakravorty et al. 2007) with V regions spanning the following 

nucleotide position: V1: 69 - 99, V2: 137 - 242, V3: 433 - 497, V4: 576 - 682, V5: 822 - 879, V6: 986 - 

1043, V7: 1117 - 1173, V8: 1243 - 1294 and V9: 1435 - 1465. The positioning is based on the 16S rRNA 

gene of E. coli published by (Brosius et al. 1978). Strain-specific primers and hydrolysis probes 
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targeted hypervariable regions V1 - V5 and V7 (Table 30, Figure 42). Primers and hydrolysis probes 

were either constructed for experiments shown in this study or for experiments performed in 

collaboration: the qPCR assay for Clostridium scindens (ATCC35704) was designed for infection 

experiments with Clostridium difficile (DH196) performed in collaboration with Prof. Siegfried 

Hapfelmeier and Nicolas Studer. The qPCR assays for the 7 ASF strains as well as Escherichia coli 

(Mt1B1), Streptococcus danieliae (ERD01G) and Staphylococcus xylosus (33R13C) were designed for 

experiments performed in collaboration with Sandrine Brugiroux and Simone Herp. 

3.1.3 Optimization of primer and hydrolysis probe concentrations 

In order to determine suitable concentrations of qPCR primers and hydrolysis probes, 

oligonucleotides were titrated (100 - 500 nM) using two different DNA template amounts (2,500,000 

and 250 gene copies). The lowest primer and probe concentrations enabling early detection (low 

quantification cycle) using high and low DNA template amounts were regarded as optimal and finally 

chosen. Optimal qPCR performance was obtained using 300 nM of each primer and 250 nM of the 

corresponding hydrolysis probe (Figure 3). The titration test was performed with the following 

primer / probe combinations: YL2_Exonucl._fwd/rev with Probe_YL2, YL44_Exonucl._fwd/rev with 

Probe_YL44, YL45_Exonucl._fwd/rev with Probe_YL45, YL58_Exonucl._fwd/rev with Probe_YL58, 

Isol46_Exonucl._fwd/rev with Probe_Isol46, Isol49_Exonucl._fwd/rev with Probe_Isol49, 

Isol48_Exonucl._fwd/rev with Probe_Isol48. The example shown in (Figure 3) is representative for all 

primer and probe titration experiments.  
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Figure 3: Optimization of primer and hydrolysis probe concentrations. Different concentrations (100 - 500 

nM) of (A) forward and reverse primers as well as (B) hydrolysis probes were tested with different amounts of 

linearized plasmid template DNA (250 (red) and 2,500,000 (blue) gene copies). An equimolar concentration of 

forward and reverse primers was applied for qPCR reactions. In order to optimize the primer concentrations, 

the concentration of the probe was kept constant (200 nM) and the primers were titrated. The optimal primer 

concentration was found to be 300 nM. The optimal concentration of the hydrolysis probe (250 nM) was 

identified with qPCR reactions using 300 nM of each primer. qPCR reactions shown in this example were 

performed with the following primer / probe combinations: Isol48_Exonucl._fwd/rev with Probe_Isol48 and 

YL44_Exonucl._fwd/rev with Probe_YL44 and respective template DNA. Dashed lines indicate optimal primer 

and probe concentrations. 
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3.1.4 Multiplexing and qPCR performance  

Duplex qPCR reactions were performed order to increase speed and lower costs of the qPCR assays. 

A duplex qPCR reaction is based on two differently labeled hydrolysis probes (FAM or HEX), targeting 

different strains to be detected within one qPCR reaction. For duplex reactions, primers and probes 

with similar qPCR efficiencies and endpoint fluorescence levels were combined. In addition, in order 

to guarantee detection of low amounts of DNA template, duplex qPCR reactions were performed 

targeting trace amounts of template A in the presents of excessive DNA amounts of template B and 

vice versa (Figure 4C,D). qPCR efficiencies, R2 values, slopes and Y-intercepts listed in Table 39 are all 

derived from standard curves with 10-fold dilutions of template DNA performed in either mono- or 

duplex qPCR reactions (Figure 4A). Plasmid pools were used to determine unspecific amplification. 

Since evaluation of primers and hydrolysis probes was based on plasmid DNA, gDNA was additionally 

applied to verify detection of real strains (Figure 4B).  

 

Figure 4: Example of qPCR performances. (A) A standard curve was performed in triplicates with 10-fold 

dilutions of linearized plasmid ranging from 2,500,000 - 0.025 copies. Amplification curves with a distance of 

around 3.33 cycles were observed between 10-fold dilutions down to 2.5 copies (1 - 7), whereas 0.25 (8) and 

0.025 copies could not be detected by the qPCR assay (ASF502_Exonucl.3_fwd/rev and Probe3_ASF502(SB2)). 

(B) Specificity test with plasmid pools with an equimolar mixture of either all plasmids (pool all; 2,500,000 

copies / strain), or a mixture including all but the DNA of the strain to be tested (pool -) and genomic DNA 

(gDNA). NTC: non template control. (C) and (D) control experiment for duplex assays: The amount of template 

DNA of either assay A or B was kept at 25,000 gene copies whereas the template amount of the duplex partner 

was diluted in 10-fold steps to 2.5 gene copies. 1 - 5: 25,000 - 2.5 gene copies; the standard curves were 

performed in duplicates.  
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Table 39: Performance of primer / probe combinations in mono and duplex qPCR reactions 

qPCR assay partners 

(targeted strain) 

Standard curve (duplex) Standard curve (monoplex) LOD^ 

Sl.
*
 Y-int.

#
 E

§
 R

2$
 Sl. Y-int. E R

2
 

Isol46_Exonucl.2_fwd/._3rev 

Probe3_Isol46  

(Clostridium innocuum I46) 

-3.25 38.73 103% 0.99 -3.48 39.89 94% 1 100 

Isol49_Exonucl._fwd/rev 

Probe_Isol49 

(Lactobacillus reuteri I49) 

-3.41 37.04 96% 1 -3.37 36.59 98% 0.99 306 

YL58_Exonucl._fwd/rev 

Probe_YL58  

(Blautia coccoides YL58) 

-3.60 39.65 90% 0.98 -3.31 38.74 101% 1 113 

YL27_Exonucl.2_fwd/.2_rev 

Probe2_YL27  

(‘Muribaculum intestinale’ 

YL27) 

-3.26 35.16 103% 0.99 -3.25 34.93 103% 0.99 4 

YL31_Exonucl.2_fwd/.3_rev 

Probe2_YL31  

(Flavonifractor plautii YL31) 

-3.47 40.54 94% 1 -3.49 40.82 93% 0.99 4 

(LOD95) 

YL32_Exonucl.2_fwd/.2_rev 

Probe2_YL32  

(Clostridium clostridioforme 

YL32) 

-3.55 35.95 91% 1 -3.47 35.45 94% 0.99 4 

KB18_Exonucl.2_fwd/.2_rev 

Probe2_KB18 

(‘Acutalibacter muris’ KB18) 

-3.24 40.83 104% 0.99 -3.39 41.24 97% 0.99 1 

(LOD95) 

YL44_Exonucl._fwd/rev 

Probe_YL44  

(Akkermansia muciniphila 

YL44) 

-3.27 38.82 102% 0.99 -3.32 39.36 100% 1 10 

KB1_Exonucl._fwd/rev 

Probe_KB1  

(Enterococcus faecalis KB1) 

-3.51 41.41 93% 0.99 -3.49 41.29 93% 1 25 

(as. sp.) 

YL2_Exonucl._fwd/rev 

Probe_YL2  

(Bifidobacterium longum 

subsp. animalis YL2) 

-3.17 40.79 107% 0.98 -3.39 41.81 97% 1 13 

(LOD95) 

YL45_Exonucl._fwd/rev 

Probe_YL45  

(‘Turicimonas caecimuris’ 

YL45) 

-3.39 41.64 97% 0.99 -3.13 40.76 109% 0.99 2 

(LOD95) 

Isol48_Exonucl._fwd/rev 

Probe_Isol48  

(‘Bacteroides caecimuris’ I48) 

-3.48 39.57 94% 0.99 -3.27 38.23 102% 0.99 21 

ASF356_Exonucl.2_fwd/.2_rev 

Probe2_ASF356 

(Clostridium spp. ASF356)  

-3.32 41.16 100% 0.99 -3.21 40.93 105% 0.99 5 

ASF361_Exonucl._fwd/rev 

Probe_ASF361 

(Lactobacillus murinus ASF361) 

-3.58 38.70 90% 1 -3.32 37.78 100% 0.98 11 

ASF457_Exonucl._fwd/rev 

Probe_ASF457 

(Mucispirillum schaedleri 

ASF457)  

-3.12 39.12 109% 1 -3.39 41.05 97% 1 9 

ASF519_Exonucl._fwd/rev 

Probe_ASF519 

(Parabacteroides goldsteinii 

ASF519) 

-3.42 38.38 96% 1 -3.37 38.09 98% 0.99 25 

(as. sp.) 

ASF360_Exonucl.4_fwd/.4_rev 

Probe4_ASF360 

(Lactobacillus intestinalis 

ASF360)  

-3.29 36.78 101% 1 -3.28 37.10 102% 1 25 

(as. sp.) 



Results 

60 

 

qPCR assay partners 

(targeted strain) 

Standard curve (duplex) Standard curve (monoplex) LOD^ 

Sl.
*
 Y-int.

#
 E

§
 R

2$
 Sl. Y-int. E R

2
 

ASF500_Exonucl._fwd/rev 

Probe_ASF500 

(Pseudoflavonifactor spp. 

ASF500) 

-3.36 37.17 99% 0.99 -3.38 37.14 98% 0.99 31 

ASF502_Exonucl.3_fwd/.3_rev 

Probe3_ASF502(SB2) 

(Clostridium spp. ASF502) 

NA NA NA NA -3.58 38.71 90% 0.97 5 

 

Salmo_Exonucl._fwd/rev 

Probe_Salmo 

(Salmonella Typhimurium) 

NA NA NA NA -3.22 37.04 104% 0.99 25 

(as. sp.) 

C.rod_Exonucl._fwd/rev 

Probe_C.rod 

(Citrobacter rodentium) 

NA NA NA NA -3.65 37.06 90% 1 2500 

(as. sp.) 

H.typh_Exonucl.2_fwd/.2_rev 

Probe2_H.typhlonius 

(Helicobacter typhlonius) 

NA NA NA NA -3.34 39.02 99% 0.99 4 

(LOD95) 

C.diff_Exonucl._fwd/rev 

Probe_C.difficile 

(Clostridium difficile) 

NA NA NA NA -3.26 36.52 103% 0.98 25 

(as. sp.) 

E.coli_Exonucl._fwd/rev 

Probe_E.coli(Mt1B1) 

(Escherichia coli) 

NA NA NA NA -3.16 35.83 107% 1 25 

(as. sp.) 

Strep._Exonucl._fwd/rev 

Probe_Strep.daniel. 

(Streptococcus danieliae ) 

NA NA NA NA -3.34 38.68 99% 1 3 

Staph._Exonucl._fwd/rev 

Probe_Staph.xylosus 

(Staphylococcus xylosus) 

NA NA NA NA -3.46 40.98 95% 1 25 

(as. sp.) 

C.scin_Exonucl._fwd/rev 

Probe_C.scindens 

(Clostridium scindens) 

NA NA NA NA -3.45 39.68 95% 1 25 

(as. sp.) 

Univ_Exonucl.3_fwd/rev 

Probe2_Univ.  

(all strains but C.diff.) 

NA NA NA NA -3.36 35.69 99% 1 2500 

Univ_Exonucl.3_fwd/rev 

Probe3_Univ.  

(C.diff. + C.scind. + Oligo-MM) 

NA NA NA NA -3.40 38.97 97% 1 2500 

*Sl.: slope of the standard curve; 
#
Y-int.: Y-intercept of the standard curve; 

§
E: qPCR efficiency; in case qPCR 

efficiency is 100%, the DNA amount will double per qPCR cycle; 
$
R

2
: Regression coefficient (a value of 1 

indicates a perfect fit between the regression line of the standard curve and the data points); the qPCR assays 

were validated with standard curves performing either mono- or duplex qPCR reactions; ^LOD: limit of 

detection that was either (i) the LOD95 (DNA template amount that results in above threshold signals in 95% of 

the qPCR runs, determined with duplex qPCR reactions), (ii) the assay specific limit (as. sp.): until the qPCR 

assay is dynamic (around 3.3 Cqs decrement between 1:10 dilutions and high endpoint fluorescence levels), or 

(iii) if higher, the gene copy number derived from unspecific amplification with pooled plasmid DNA of the 

remaining strains; for the Univ qPCR assay, the LOD is the gene copy number derived from signals of the non 

template control (NTC); NA: not available. 
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3.2 Composition and characteristics of the Oligo-MM
12

 

3.2.1 Selection of strains constituting the Oligo-Mouse-Microbiota (Oligo-MM12) 

12 Bacterial strains that constitute the Oligo-MM (Figure 5; Table 2) were isolated from the intestinal 

content of specific pathogen free (SPF) mice as described in (Brugiroux et al. 2016). Isolation was 

performed by Yvonne Loetscher, Ricco Robbiani and Sandrine Brugiroux. The aim was to establish a 

model microbiota that covers the main bacterial phyla of the intestinal microbiota of laboratory 

mice. Finally, 12 strains that grew reliably after freezing were selected. Remarkably, these 12 strains 

covered 5 main phyla. 6 strains could be assigned to the phylum Firmicutes (‘Acutalibacter muris’ 

KB18, Flavonifractor plautii YL31, Clostridium clostridioforme YL32, Blautia coccoides YL58, 

Clostridium innocuum I46, Lactobacillus reuteri I49 and Enterococcus faecalis KB1), two strains to the 

Bacteroidetes (‘Bacteroides caecimuris’ I48, ‘Muribaculum intestinale’ YL27), one strain to the 

Actinobacteria (Bifidobacterium longum subsp. animalis YL2), one strain to the β-Proteobacteria 

(‘Turicimonas muris’ YL45) and one strain to the Verrucomicrobia (Akkermansia muciniphila YL44) 

(Figure 5). It is worth mentioning that ‘Muribaculum intestinale’ YL27 is a member of a novel family 

(‘Muribaculaceae’) and that the strains KB18 and YL45 are representatives of novel genera within the 

Lachnospiraceae (‘Acutalibacter muris’) and Sutterellaceae (‘Turicimonas muris’), respectively. Strain 

I48 is proposed to be a novel species (‘Bacteroides caecimuris’). Additional information of taxonomic 

classification is detailed in (Brugiroux et al. 2016). Protocols of bacterial culture and cryopreservation 

were established by Sandrine Brugiroux (PhD thesis of Sandrine Brugiroux).  
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Figure 5: 12 strains constituting the Oligo-Mouse-Microbiota (Oligo-MM
12

). Gram-staining and light 

microscopy (100-fold magnification, oil immersion) of individually grown strains in liquid culture is shown 

(Brugiroux et al. 2016). Color code based on phylogeny of Oligo-MM
12

 strains: blue: Actinobacteria, orange: 

Bacteroidetes, red: Proteobacteria, purple: Verrucomicrobia and green: Firmicutes. Representatives of the 

Bacteroidetes, Proteobacteria and Verrucomicrobia phyla (‘Bacteroides caecimuris‘ I48, ‘Muribaculum 

intestinale‘ YL27, ‘Turicimonas caecimuris‘ YL45 and Akkermansia muciniphila YL44) stained Gram-negative. 

Bifidobacterium longum subsp. animalis YL2 (Actinobacteria) as well as Enterococcus faecalis KB1, Lactobacillus 

reuteri I49 and Blautia coccoides YL58 (Firmicutes) appear Gram-positive. In contrast, the other Firmicutes 

strains (Flavonifractor plautii YL31, Clostridium clostridioforme YL32, ‘Acutalibacter muris‘ KB18 and Clostridium 

innocuum I46) are stained Gram-negative or Gram-variable. Scale bar: 10 µm.  

 

3.2.2 The Oligo-MM12 matures and stably colonizes germfree mice 

In order to monitor early colonization of the Oligo-MM12 and its changes in composition over time, 

germfree C57BL/6J AGR2+/- mice which develop a wild type like mucus layer (Bergström et al. 2014) 

were inoculated with a frozen mixture of Oligo-MM12 strains. Feces was taken at the indicated time 

points (Figure 6A) and the microbiota composition was analyzed using strain-specific qPCR. 

Microbiota was clustered in 3 different stages (maturation stage): early: day 1, intermediate: from 

days 2 - 4 post inoculation (p.in.) and stable: after day 6 p.in. (Figure 6; Table 40). Clustering by 
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maturation stage was significant, according to Bray Curtis (p<0.001, Adonis) and Pearson (p<0.001, 

Adonis) correlation with 66% (Bray Curtis) and 78% (Pearson) of variation explained. Additional 

PERMDISP analyses based on Bray Curtis and Pearson distance matrices revealed statistically 

significant differences in microbiota composition between early, intermediate and stable maturation 

stage (Figure 6B,C). The initial early stage at day 1 p.in. was dominated by Akkermansia muciniphila 

YL44 (mean: 64.01% +/- standard deviation: 27.68%), ‘Bacteroides caecimuris‘ I48 (27.38% +/- 

28.42%) and Bifidobacterium longum subsp. animalis YL2 (6.36% +/- 2.69%). The Firmicutes, 

‘Muribaculum intestinale‘ YL27 as well as ‘Turicimonas caecimuris‘ YL45 were less abundant in this 

early stage. The most prevalent strain of the second stage of maturation, the intermediate stage, was 

‘Bacteroides caecimuris‘ I48 (75.70% +/- 8.29%). Its presence was significantly increased compared to 

early stage (p<0.001, two-way ANOVA with Bonferroni posttest). ‘Turicimonas caecimuris‘ YL45 and 

‘Muribaculum intestinale‘ YL27 increased by trend in this stage. The relative abundance of the 

Firmicutes was not altered, only Flavonifractor plautii YL31 slightly increased. Compared to early 

phase, the relative abundance of Akkermansia muciniphila YL44 (13.07% +/- 6.16%) significantly 

decreased (p<0.001, two-way ANOVA with Bonferroni posttest). Remarkably, the abundance of 

Bifidobacterium longum subsp. animalis YL2 dropped down to (1.40% +/- 1.56%) in this intermediate 

stage. From day 7 post inoculation on, the composition of the Oligo-MM12 was considered to be 

stable (Figure 6). The most abundant strains in this stage were ‘Bacteroides caecimuris‘ I48 (57.52% 

+/- 9.31%), Akkermansia muciniphila YL44 (21.97% +/- 8.84%) and ‘Muribaculum intestinale‘ YL27 

(12.85% +/- 3.16%). In comparison to intermediate stage the relative abundance of ‘Bacteroides 

caecimuris‘ I48 decreased, whereas the relative abundance of ‘Muribaculum intestinale‘ YL27 and 

Akkermansia muciniphila YL44 increased (p<0.001, two-way ANOVA with Bonferroni posttest). The 

relative abundance of ‘Turicimonas caecimuris‘ YL45 and the Firmicutes was not changed compared 

to intermediate stage, whereas Bifidobacterium longum subsp. animalis YL2 was hardly detectable in 

stable stage. ‘Acutalibacter muris‘ KB18 was only detectable in the inoculum, and undetectable or 

very close to the limit of detection in fecal DNA samples during all stages of maturation. The relative 

abundance of the Oligo-MM12 strains in all 3 stages of maturation is summarized in (Table 40). 
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Figure 6: Changes in Oligo-MM
12

 community composition over time after inoculation of germfree mice. 

Germfee (GF) C57BL/6J AGR2
+/-

 which exhibit wildtype like mucus layer (Bergström et al. 2014) were orally and 

rectally inoculated with freshly thawed cryostocks containing the Oligo-MM
12

 strains and housed in a germfree 

isolator. (A) Fecal samples were sampled at the indicated time points (GF - day 99 post inoculation), the fecal 

DNA was extracted using a modified protocol for DNA stool kit (Qiagen) and microbiota composition was 

analyzed by qPCR. Microbiota composition is shown as relative abundance and is expressed as % of cumulated 

16S rRNA gene copy numbers (% of total 16S rRNA gene copies). Cluster analysis based on Bray Curtis (B) or 

Pearson (C) distance matrices visualized as PCoA plots. Fecal microbiota samples were grouped by maturation 

stage of the Oligo-MM
12

 in ‘early’ (day 1 post inoculation), ‘intermediate’ (days 2, 3 and 4 post inoculation) and 

‘stable’ (from days 7 post inoculation on) which was significant, according to Bray Curtis (p<0.001, Adonis) and 

Pearson (p<0.001, Adonis) with 66% (Bray Curtis) and 78% (Pearson) of variation explained. PERMDISP analyses 
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based on Bray Curtis and Pearson distance matrices revealed statistically significant differences in microbiota 

composition between early, intermediate and stable (*p<0.05, *** p<0.001). 

 

Table 40: Relative abundance of individual Oligo-MM12 strains at different maturation stages 

Strain 

Mean % of cumulated 16S rRNA gene copy 

numbers (+/- SD) 

Maturation grade 

early intermediate stable 

‘Bacteroides caecimuris’ I48 
27.38  

(28.42) 

75.70
a
  

(8.29) 

57.52
b,c

  

(9.31) 

‘Muribaculum intestinale’ YL27 0* 
2.25  

(3.57) 

12.85
b,c

 

(3.16) 

Akkermansia muciniphila YL44 
64.01  

(27.68) 

13.07
a
 

(6.16) 

21.97
b,c

 

(8.84) 

‘Turicimonas caecimuris’ YL45 
0.89  

(1.02) 

4.74  

(1.23) 

5.26  

(1.36) 

Lactobacillus reuteri I49 
0.02  

(0.02) 

0.05  

(0.03) 

0.01  

(0.02) 

Enterococcus faecalis KB1 
0.50  

(0.20) 

0.07  

(0.05) 

0.001  

(0.003) 

Blautia coccoides YL58 
0.07  

(0.13) 

0.43  

(0.28) 

0.46  

(0.12) 

Clostridium innocuum I46 
0.27  

(0.12) 

0.12  

(0.03) 

0.05  

(0.02) 

Flavonifractor plautii YL31 
0.48  

(0.86) 

1.61  

(0.42) 

0.89  

(0.50) 

Clostridium clostridioforme YL32 
0.02  

(0.02) 

0.53  

(0.33) 

0.96  

(0.44) 

‘Acutalibacter muris’ KB18 0* 
0.01  

(0.03) 

0.02  

(0.05) 

Bifidobacterium longum subsp.  

animalis YL2 

6.36  

(2.69) 

1.40  

(1.56) 

0.01  

(0.02) 

Significant differences between groups are indicated with a for early vs intermediate, b for early vs stable and c 

for intermediate vs stable; p values were less than 0.001, two-way ANOVA with Bonferroni posttest. Values are 

indicated as mean % of cumulated 16S rRNA gene copy numbers +/- standard deviation (SD). Early: n=4, 

intermediate: n=12, stable n=24. *Very low abundant. 
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3.2.3 The Oligo-MM12 is vertically transmitted and remains stable over 6 filial generations 

It was further investigated whether the Oligo-MM12 that stably colonizes mice is vertically 

transmitted from parental mice to offspring and whether the consortium is stable over filial 

generations. By breeding C57BL6/J mice associated with Oligo-MM12 in germfree isolators and 

analyzing fecal DNA by qPCR, it could be shown that the Oligo-MM12 is vertically transmitted after a 

single gavage of Oligo-MM12 strains. Moreover, the composition of the Oligo-MM12 was stable over 

at least 6 filial generations. Bifidobacterium longum subsp. animalis YL2 was not detected in fecal 

samples and ‘Acutalibacter muris‘ KB18 was detectable in samples of the parental (P) and filial 

generation 1 (F2 - F6 below limit of detection; Figure 7; Table 41). Although the composition of the 

microbiota was stable overall, there were statistically significant alterations in relative abundance of 

‘Bacteroides caecimuris‘ I48 and Akkermansia muciniphila YL44 between generations F1 - F4 (Table 

41). Of note, P and F1 generation were housed at the CMF in Bern and F2 – F6 at the gnotobiotic 

facility of the MvP in Munich. 

Cluster analysis was performed on relative abundance of the strains. According to Bray Curtis 

(p<0.001, Adonis) and Pearson (p<0.005, Adonis) distance matrices, grouping of microbiota 

composition by generations was significant, with 65% (Bray Curtis) and 77% (Pearson) of variation 

explained (Figure 7B,C). Non parametric PERMDISP procedure revealed that the Oligo-MM12 

composition of the P generation differed compared to the filial generations (Figure 7B,C). There was 

also a significant difference in microbiota composition between generations F3 and F4 (p<0.05, non 

parametric PERMDISP procedure according to Pearson correlation). However, according to Bray 

Curtis distance there was no statistically significant difference between Oligo-MM12 communities of 

the filial generations, indicating that the Oligo-MM12 remains relatively stable over generations. 
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Figure 7: The Oligo-MM
12

 is vertically transmitted and stable over 6 filial generations. (A) C57BL/6J mice 

associated with the Oligo-MM
12

 consortium were bred in germfree isolators until filial generation 6 (F6). The 

inoculation of the parental generation (P) as well as the breeding of F1 generation took place at the CMF in 

Bern. The generations F2 – F6 were subsequently bred at the gnotobiotic mouse facility of the MvP in Munich. 

Fecal samples were collected, the fecal DNA was extracted and qPCR was performed in order to determine the 

microbiota composition in each generation. Microbiota composition is shown as relative abundance and is 

expressed as % of cumulated 16S rRNA gene copy numbers (% of total 16S rRNA gene copies). Cluster analysis 

based on Bray Curtis (B) or Pearson (C) distance matrices visualized as PCoA plots. Grouping by generations was 

significant, according to Bray Curtis (p<0.001, Adonis) and Pearson (p<0.005, Adonis) with 65% (Bray Curtis) and 

77% (Pearson) of variation explained. PERMDISP analyses based on Bray Curtis and Pearson distance matrices 
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revealed statistically significant differences in microbiota composition between groups, especially between the 

parental and the filial generations (* p<0.05, ** p<0.01, *** p<0.001). 

 

Table 41: Stability of Oligo-MM12 community over consecutive mouse filial generations 

Strain 

Mean % of cumulated 16S rRNA gene copies (+/- SD) 

Generations 

P F1 F2 F3 F4 F6 

‘Bacteroides caecimuris’ I48 
49.09 

(11.00) 

51.38 

(4.67) 

61.96
a
 

(3.87) 

57.38
b
 

(3.04) 

67.17
c
 

(3.16) 

65.23 

(4.19) 

‘Muribaculum intestinale’ YL27 
12.63 

(0.98) 

10.89 

(1.14) 

9.15 

(0.94) 

10.21 

(0.34) 

10.16 

(1.30) 

12.23 

(2.28) 

Akkermansia muciniphila YL44 
28.60 

(11.77) 

28.36 

(4.70) 

21.17
a
 

(3.36) 

23.90
b
 

(2.60) 

16.73
c
 

(2.43) 

15.84 

(2.08) 

‘Turicimonas caecimuris’ YL45 
5.32 

(0.83) 

4.97 

(0.89) 

3.40 

(0.30) 

2.83 

(0.45) 

2.30 

(0.50) 

3.22 

(0.59) 

Lactobacillus reuteri I49 
0.05 

(0.01) 

0.03 

(0.04) 

0.11 

(0.06) 

0.21 

(0.07) 

0.06 

(0.03) 

0.05 

(0.02) 

Enterococcus faecalis KB1 
0.08 

(0.03) 

0.08 

(0.04) 

0.01 

(0.01) 

0.05 

(0.02) 

0.02 

(0.01) 
0* 

Blautia coccoides YL58 
1.03 

(0.11) 

0.77 

(0.11) 

0.45 

(0.16) 

0.86 

(0.24) 

0.73 

(0.11) 

0.53 

(0.07) 

Clostridium innocuum I46 
0.13 

(0.04) 

0.06 

(0.02) 

0.07 

(0.04) 

0.09 

(0.03) 

0.09 

(0.04) 

0.11 

(0.04) 

Flavonifractor plautii YL31 
2.06 

(0.33) 

2.19 

(0.53) 

2.02 

(0.24) 

2.25 

(0.14) 

1.77 

(0.12) 

2.00 

(0.65) 

Clostridium clostridioforme YL32 
0.94 

(0.06) 

1.27 

(0.72) 

1.67 

(0.38) 

2.24 

(0.65) 

0.99 

(0.14) 

0.82 

(0.50) 

‘Acutalibacter muris’ KB18 
0.10 

(0.13) 

0.01 

(0.03) 
DTL DTL DTL DTL 

Bifidobacterium longum subsp.  

animalis YL2 
DTL DTL DTL DTL DTL DTL 

Significant differences between groups are indicated with a for F1 vs F2, b for F2 vs F3 and c for F3 vs F4; p 

values were less than 0.001, except: YL44 F2 vs F3 p<0.05, two-way ANOVA with Bonferroni posttest. There 

were no statistically significant difference in microbiota composition between P and F1 and between F4 and F6. 

Values are expressed as mean % of cumulated 16S rRNA gene copy numbers +/- standard deviation (SD). P: 

n=2, F1: n=5, F2: n=11, F3: n=6, F4: n=6, F6: n=8. DTL: below limit of detection. *Very low abundant. 
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3.2.4 The composition of the Oligo-MM12 is comparable between different animal facilities 

The Oligo-MM12 was designed to be used as a standardized mouse microbiota that can be easily 

distributed and shared between different laboratories, in order to generate isobiotic mice. C57BL6/J 

mice associated with the Oligo-MM12 were generated at the CMF in Bern in 2012 and distributed to 

the Mvp in Munich as well as to the ETHZ and further bred in germfree isolators. To investigate 

differences in microbiota composition between the different facilities, fecal samples were obtained 

and analyzed using the same DNA extraction protocol and strain-specific qPCR (Figure 8). Overall, the 

Oligo-MM12 composition was comparable between the CMF (mice from isolators or individually 

ventilated cages (IVC)), the MvP or the ETHZ. However, statistically significant differences in relative 

abundance of ‘Bacteroides caecimuris‘ I48, ‘Muribaculum intestinale‘ YL27, Akkermansia muciniphila 

YL44 and ‘Turicimonas caecimuris‘ YL45 were observed between animal facilities (Table 42). 

Compared to the Oligo-MM12 composition of mice bred at the MvP, the microbiota composition of 

the CMF-IVC differed the most (Figure 8; Table 42). ‘Bacteroides caecimuris‘ I48 was around 17% less 

abundant in CMF-IVC (p<0.001, two-way ANOVA with Bonferroni posttest), whereas the relative 

abundance of ‘Muribaculum intestinale‘ YL27, Akkermansia muciniphila YL44 and ‘Turicimonas 

caecimuris‘ YL45 was increased (p<0.001, two-way ANOVA with Bonferroni posttest; Table 42; Figure 

8). Bifidobacterium longum subsp. animalis YL2 was not detectable in fecal samples taken in the CMF 

and MvP. Bifidobacterium longum subsp. animalis YL2 could be detected in one sample of the ETHZ, 

but was otherwise under the limit of detection. ‘Acutalibacter muris‘ KB18 was below the limit of 

detection in Oligo-MM12 mice of the MvP. 

In addition, cluster analysis was performed on relative abundance of the strains. According to Bray 

Curtis (p<0.001, Adonis) and Pearson (p<0.001, Adonis) distance matrices, grouping of microbiota 

composition by the different animal facilities was significant, with 53% (Bray Curtis) and 72% 

(Pearson) of variation explained (Figure 8B,C). The Oligo-MM12 compositions of the different facilities 

clustered similarly (Figure 8B,C). However, non parametric PERMDISP procedure according to Bray 

Curtis revealed significant differences (p<0.01) between microbiota compositions of mice bred at the 

MvP and CMF-IVC. Additionally based on Pearson, the Oligo-MM12 composition of the MvP was 

significantly different compared to the Oligo-MM12 compositions of mice bred at the ETHZ and CMF 

(p<0.01, non parametric PERMDISP procedure; Figure 8B,C). There was no statically significant 

difference in microbiota composition between the CMF and ETHZ (Figure 8B,C). 
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Figure 8: Composition of Oligo-MM
12

 between different animal facilities. Fecal sample from mice associated 

with the Oligo-MM
12

 were sampled, the DNA was extracted using the same DNA extraction protocol (modified 

stool kit, Qiagen) and qPCR was performed in order to determine the microbiota composition. (A) Oligo-MM
12

 

composition of mice from different animal facilities. Microbiota composition is shown as relative abundance 

and is expressed as % of cumulated 16S rRNA gene copy numbers (% of total 16S rRNA gene copies). * Limit of 

detection. Cluster analysis based on Bray Curtis (B) or Pearson (C) distance matrices visualized as PCoA plots. 

Fecal microbiota samples were grouped by different animal facilities which was significant, according to Bray 

Curtis (p<0.001, Adonis) and Pearson (p<0.001, Adonis) with 53% (Bray Curtis) and 72% (Pearson) of variation 

explained. PERMDISP analyses based on Bray Curtis and Pearson distance matrices revealed statistically 
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significant differences in microbiota composition especially between the MvP and CMF as well as ETHZ 

(** p<0.01). 

 

Table 42: Oligo-MM12 composition in different animal facilities 

Strain 

Mean % of cumulated 16S rRNA gene copy numbers  

(+/- SD) 

Animal facilities 

CMF MvP CMF-IVC ETHZ 

‘Bacteroides caecimuris’ I48 
50.72 

(5.99) 

62.92
a
 

(4.88) 

45.55
b,d

 

(5.38) 

58.70
c,e,f

 

(9.66) 

‘Muribaculum intestinale’ YL27 
11.39 

(1.32) 

10.34 

(1.81) 

15.39
b,d

 

(3.44) 

13.55
e
 

(2.34) 

Akkermansia muciniphila YL44 
28.42 

(6.15) 

19.46
a
 

(4.11) 

26.82
d
 

(4.76) 

20.57
c,f

 

(6.75) 

‘Turicimonas caecimuris’ YL45 
5.07 

(0.82) 

3.03 

(0.60) 

6.07
d
 

(1.83) 

3.05
f
 

(0.93) 

Lactobacillus reuteri I49 
0.03 

(0.03) 

0.10 

(0.07) 

0.06 

(0.04) 

0.06 

(0.03) 

Enterococcus faecalis KB1 
0.08 

(0.03) 

0.01 

(0.02) 

0.04 

(0.04) 

0.001 

(0.004) 

Blautia coccoides YL58 
0.84 

(0.16) 

0.60 

(0.22) 

1.46 

(0.73) 

0.95 

(0.46) 

Clostridium innocuum I46 
0.08 

(0.04) 

0.09 

(0.04) 

0.13 

(0.06) 

0.33 

(0.44) 

Flavonifractor plautii YL31 
2.15 

(0.46) 

2.01 

(0.38) 

3.12 

(0.87) 

1.69 

(0.75) 

Clostridium clostridioforme YL32 
1.17 

(0.61) 

1.43 

(0.69) 

1.05 

(1.22) 

1.04 

(0.58) 

‘Acutalibacter muris’ KB18 
0.04 

(0.07) 
DTL 

0.33 

(0.22) 

0.06 

(0.09) 

Bifidobacterium longum subsp.  

animalis YL2 
DTL DTL DTL 

0.004 

(0.011) 

Significant differences between groups are indicated with a for CMF vs MvP, b for CMF vs CMF-IVC, c for CMF 

vs ETHZ, d for MvP vs CMF-IVC, e MvP vs ETHZ and f CMF-IVC vs ETHZ; p values were less than 0.001, except: 

YL27 CMF vs CMF-IVC p<0.01, YL27 MvP vs ETHZ p<0.01 and YL45 CMF-IVC vs ETHZ p<0.05, two-way ANOVA 

with Bonferroni posttest. Values are expressed as mean % of cumulated 16S rRNA gene copy numbers +/- 

standard deviation (SD). CMF: n=7, MvP: n=31, CMF-IVC: n=16, ETHZ: n=8. DTL: limit of detection. 
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3.2.5 High-fat diet as well as oleic acid supplementation shift Oligo-MM12 composition 

In this section the influence of high-fat (HF) diet and oleic acid (OA) supplementation on the Oligo-

MM12 composition was investigated. Thus, C57BL/6J mice associated with the Oligo-MM12 were 

either fed with standard diet, HF diet or with a standard diet supplemented with OA. Mice were then 

sacrificed at 6, 12 and 24 h post diet change, cecal content was harvested and DNA was extracted 

using the modified Stool kit (Qiagen). DNA was subsequently sent to the MvP for microbiota analysis 

by qPCR. Animal experiments and DNA extraction were performed by Sandra Wotzka, ETHZ.  

The microbiota composition was comparable between groups 6 h post diet change (Figure 9A). At 

this time point, samples clustered together irrespective of diet fed (Figure 9B). Grouping of 

microbiota composition by different diet and time point was significant, according to Bray Curtis 

(p<0.001, Adonis) and Pearson (p<0.001, Adonis) distance matrices, with 86% (Bray Curtis) and 98% 

(Pearson) of variation explained (Figure 9B,C). Remarkably, starting from 12 h after diet change, the 

Oligo-MM12 composition of the HF and OA group clustered apart from each other (Figure 9B), 

whereas Oligo-MM12 composition of the standard diet group still clustered together with time points 

6 and 24 h. In more detail, the relative abundance of ‘Bacteroides caecimuris‘ I48 decreased 24 h 

after feeding HF or standard diet supplemented with OA compared to standard diet from 62.77% +/- 

2.70% to 26.48% +/- 9.07% and 14.03% +/- 6.80%, respectively (p<0.001, two-way ANOVA with 

Bonferroni posttest; Table 43; Figure 9A). The lower abundance of ‘Bacteroides caecimuris‘ I48 after 

OA supplementation compared to HF was also statistically significant (p<0.001, two-way ANOVA with 

Bonferroni posttest; Table 43). In contrast, compared to standard diet, the relative abundance of 

Akkermansia muciniphila YL44 increased around 35% after feeding HF and 43% after supplementing 

OA (p<0.001, two-way ANOVA with Bonferroni posttest; Table 43; Figure 9A). There was significantly 

more Akkermansia muciniphila YL44 present 24 h after supplementing OA compared to HF diet 

(p<0.05, two-way ANOVA with Bonferroni posttest; Table 43). The number of total bacteria was 

constant during the course of the experiment and independent of diet.  
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Figure 9: Oligo-MM
12

 responds to changes in diet. Oligo-MM
12

 mice were either fed with standard (ST) diet, 

high-fat (HF) or standard diet supplemented with oleic acid (OA). Mice were sacrificed 6, 12 and 24 h after diet 

change and cecal content was harvest for subsequent DNA extraction and microbiota analysis by qPCR. (A) 

Analysis of microbiota composition in cecal content. Microbiota composition is shown as relative abundance 

and expressed as % of cumulated 16S rRNA gene copy numbers (% of total 16S rRNA gene copies). The amount 

of absolute 16S rRNA gene copies (determined by an universal primer / probe combination) is illustrated as 

black dots (right y axis). Cluster analysis based on Bray Curtis (B) or Pearson (C) distance matrices visualized as 

PCoA plots. Microbiota samples were grouped by different diet and time point which was significant, according 

to Bray Curtis (p<0.001, Adonis) and Pearson (p<0.001, Adonis) with 86% (Bray Curtis) and 98% (Pearson) of 

variation explained. 
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Table 43: Influence of high-fat diet and oleic acid supplementation on Oligo-MM12 composition 

Strain 

Mean % of cumulated 16S rRNA gene copy numbers 

(+/- SD) 

different diets (24h post diet change) 

standard high-fat oleic acid 

‘Bacteroides caecimuris’ I48 
62.77 

(2.70) 

26.48
a
 

(9.07) 

14.03
b,c

 

(6.80) 

‘Muribaculum intestinale’ YL27 
8.16 

(1.25) 

7.95 

(1.22) 

12.86 

(2.84) 

Akkermansia muciniphila YL44 
21.27 

(2.43) 

56.61
a
 

(9.93) 

63.80
b,c

 

(8.72) 

‘Turicimonas caecimuris’ YL45 
2.78 

(0.24) 

2.60 

(0.57) 

5.30 

(1.74) 

Lactobacillus reuteri I49 
0.05 

(0.02) 

0.05 

(0.04) 

0.12 

(0.04) 

Enterococcus faecalis KB1 0* 
0.01 

(0.01) 

0.01 

(0.01) 

Blautia coccoides YL58 
0.64 

(0.13) 

0.76 

(0.12) 

0.32 

(0.10) 

Clostridium innocuum I46 
0.06 

(0.01) 

0.09 

(0.02) 

0.12 

(0.07) 

Flavonifractor plautii YL31 
2.06 

(0.50) 

3.01 

(0.64) 

2.54 

(0.95) 

Clostridium clostridioforme YL32 
2.04 

(0.25) 

1.41 

(0.56) 

0.91 

(0.18) 

‘Acutalibacter muris’ KB18 
0.17 

(0.16) 

1.06 

(0.54) 
0* 

Bifidobacterium longum subsp. 

animalis YL2 
0* 

0.003 

(0.005) 
0* 

Significant differences between groups are indicated with a for standard vs high fat, b for standard vs oleic acid 

and c for high-fat vs oleic acid; p values were less than 0.001, except: YL44 high-fat vs oleic acid p<0.05, two-

way ANOVA with Bonferroni posttest. For the calculation of mean % values 24 h post diet change were used. 

Values are expressed as mean % of cumulated 16S rRNA gene copy numbers +/- standard deviation (SD). 

Standard: n=3, high-fat: n=4, oleic acid: n=3. * Very low abundant. 

 

 

 

 

 

 



Results 

75 

 

3.3 The Oligo-MM
12

 is a tool to study inflammation induced dysbiosis 

3.3.1 Infection with wild type S. Typhimurium causes severe colitis and dysbiosis  

Wildtype S. Typhimurium (S. TmWT) induces acute gut inflammation which triggers dysbiosis (Stecher 

et al. 2007). To date, studies investigating Salmonella-induced dysbiosis are based on human derived 

or not well defined murine microbiota, or use antibiotic pre-treated mice where the microbiota is 

already manipulated by antibiotic application before infection (Barthel et al. 2003, Barman et al. 

2008, Ganesh et al. 2013) and might therefore generate biased datasets. In order to establish a new 

model for Salmonella-induced colitis, we address the influence of Salmonella infection on mice 

associated with Oligo-MM12, a well-defined model microbiota consisting of murine bacterial isolates 

without antibiotic treatment prior to infection.  

C57BL/6J mice associated with the Oligo-MM12 consortium were infected with 5 x 107 CFUs of either 

S. TmAvir or S. TmWT without antibiotic treatment prior to infection. On each day post infection (p.i.) 

groups of mice (infection with S. TmAvir: day 1 p.i. n=5, day 2 p.i. n=5, day 3 p.i. n=6, day 4 p.i. n=6; 

infection with S. TmWT: day 1 p.i. n=5, day 2 p.i. n=5, day 3 p.i. n=7, day 4 p.i. n=7) were sacrificed and 

samples were taken for further analyses (Figure 10A). The avirulent Salmonella strain S. TmAvir that 

lacks functional type 3 secretion systems 1 and 2 (ΔinvG; sseD::aphT) was not able to induce colitis 

(Figures 10B; 11B). In stark contrast, mice infected with S. TmWT exhibited colitis starting at day 3 p.i. 

leading to profound colitis observed at day 4 p.i. that was accompanied by severe cecal pathology 

and a lipocalin-2 (LCN-2) peak of approximately 1,900 ng per mg cecal content (Figures 10B; 11B). 

Interestingly, the Oligo-MM12 provided colonization resistance against S. TmAvir and S. TmWT, since 

Salmonella loads were significantly less in cecal content at day 1 p.i. compared to day 3 and day 4 p.i. 

(p<0.05 and p<0.01, Kruskal-Wallis test with Dunn's multiple comparison test; Figure 11A). At day 

1 p.i., S. TmAvir exhibited higher loads in cecum than S. TmWT (p<0.05, Mann Whitney test), whereas S. 

TmWT was significantly more abundant at day 3 p.i. (p<0.01, Mann Whitney test) and increased 

further at day 4 p.i.. S. TmWT caused systemic infection and was already detected in mesenteric 

lymphnodes at day 1 p.i. as well as in liver and spleen as shown previously (Stecher et al. 2007). In 

contrast, S. TmAvir failed to systemically infect C57BL/6J mice associated with the Oligo-MM12 (Figure 

11C-E). Remarkably, shifts in microbiota composition coincided with strong inflammation after 

infection with S. TmWT, whereas S. TmAvir did not induce dysbiosis (Figure 10C). 

Cluster analyses further supported this first observation. Since S. TmWT induced inflammation in 

Oligo-MM12 mice, inflammation was categorized according to inflammation grade and cecal 

pathology: (i) non-inflamed (no colitis, pathoscore: 0 - 3, uninfected – day 2 p.i.), (ii) intermediate 

(moderate colitis, pathoscore: 3 - 9, day 3 p.i.) and (iii) inflamed (profound colitis, pathoscore: > 9, 
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day 4 p.i.) (Figures 10B; 12C,D; 13C,D). Because no pathological changes were apparent after 

infection with S. TmAvir (Figures 10B; 11B), samples were simply grouped by days p.i.. According to 

Bray Curtis (p<0.002, Adonis) and Pearson (p<0.004, Adonis) distance matrices, grouping of 

microbiota composition in cecal content after infection with S. TmAvir by days post infection was 

statistically significant, with 41% (Bray Curtis) and 65% (Pearson) of the variation explained. 

According to both distance matrices, there was no statistically significant difference in overall 

microbiota composition between all 4 days p.i. with S. TmAvir (p>0.05, non parametric PERMDISP 

procedure; Figure 12A,B). After infection with S. TmWT, grouping of microbiota composition by 

inflammation grade was also statistically significant according to Bray Curtis (p<0.001, Adonis) and 

Pearson (p<0.001, Adonis) distance matrices, with 97% (Bray Curtis) and 98% (Pearson) of variation 

explained (Figure 12C,D). There were significant difference between all groups of grades of 

inflammation, according Pearson (p<0.001 and p<0.01, non parametric PERMDISP procedure; Figure 

12D). According to Bray Curtis, the uninflamed group was different compared to intermediate group 

(p<0.001, non parametric PERMDISP procedure; Figure 12C) and there was a statistically significant 

difference between the intermediate and the inflamed group (p<0.01, non parametric PERMDISP 

procedure; Figure 12C).  

The same trend was observed in fecal microbiota composition: Grouping of fecal microbiota 

composition after S. TmAvir infection by days post infection was significant, according to Bray Curtis 

(p<0.001, Adonis) and Pearson (p<0.001, Adonis) distance matrices, with 68% (Bray Curtis) and 93% 

(Pearson) explained. There was no statistically significant difference in overall microbiota 

composition between all 4 days p.i. with S. TmAvir (p>0.05, non parametric PERMDISP procedure 

based on Bray Curtis and Pearson; Figure 13A,B). As it was observed in cecal content, grouping of the 

microbiota composition after infection with S. TmWT by inflammation grade was statistically 

significant according to Bray Curtis (p<0.001, Adonis) and Pearson (p<0.001, Adonis) distance 

matrices, with 98% (Bray Curtis) and 100% (Pearson) of variation explained (Figure 13C,D). There 

were significant differences between all groups of grades of inflammation, according to Pearson 

(p<0.01 and p<0.05, non parametric PERMDISP procedure; Figure 13D). According to Bray Curtis, the 

uninflamed group was different compared to the inflamed group (p<0.01, non parametric PERMDISP 

procedure; Figure 13C) and there was a statistically significant difference between the intermediate 

and the inflamed group (p<0.05, non parametric PERMDISP procedure; Figure 13C). 

Taken together, S. TmAvir was unable to induce inflammation and concomitant dysbiosis, whereas S. 

TmWT induced colitis starting at day 3 p.i.. Inflammation was additionally paralleled with drastic 

changes in microbiota composition at day 4 p.i. with S. TmWT. 
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Figure 10: S. Tm
WT

 causes severe colitis and dysbiosis at day 4 post infection. (A) Experimental set-up: Oligo-

MM
12

 mice were orally infected with 5 x 10
7
 CFUs of either S. Tm

Avir
 or S. Tm

WT
. Animals were euthanized at 

days 1, 2, 3 and 4 p.i. and samples were taken: feces (F), cecal content (Cec). As control, there was also a fecal 

sample taken at d0 before infection. (B) Cecal pathology determined by microscopy of HE stained cecal 

sections. Colitis was observed at d4 p.i. with S. Tm
WT

, whereas infection with S. Tm
Avir

 did not induce colitis. (C) 

Analysis of microbiota composition in cecal content (upper panel) and feces (lower panel). Microbiota 

composition is shown as relative abundance and expressed as % of cumulated 16S rRNA gene copy numbers (% 

of total 16S rRNA gene copies). The amount of absolute 16S rRNA gene copies (determined by an universal 

primer / probe combination) is illustrated as black dots (right y axis). Shifts in microbiota composition and 

drops in total bacteria paralleled with increased colitis following infection with S. Tm
WT

. * limit of detection. 

Statistical analysis of cecal pathology was performed using Kruskal-Wallis test with Dunn’s multiple comparison 

test (*** p<0.001, ** p<0.01).  
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Figure 11: Course of enteric S. Tm infection and systemic dissemination. For experimental set-up refer to 

Figure 10A. Organs were additionally taken at the indicated time points. (A) Salmonella loads in cecal content 

(CFUs S. Tm / g content). (B) Lipolcalin-2 (LCN-2) amount in cecal content measured by ELISA (ng / mg cecal 

content) (C) – (E) Systemic dissemination of Salmonella to mesenteric lymphnodes, liver and spleen (CFUs / 

organ). Statistical analysis between groups was performed using Kruskal-Wallis test with Dunn's multiple 

comparison test. Differences between groups (S. Tm
WT

 vs S. TM
Avir

) at one given time point were compared 

using Mann Whitney test (* p<0.05, ** p<0.01, *** p<0.001). Dashed lines: DTL: limit of detection (mLN: 10 

CFUs, liver: 60 CFUs, spleen: 20 CFUs). 
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Figure 12: Clustering of Oligo-MM
12

 composition in cecal content after infection with either S. Tm
Avir

 or S. 

Tm
WT

. Cluster analysis based on Bray Curtis or Pearson distance matrices visualized as PCoA plots. (A) and (B) 

clustering of Oligo-MM
12

 composition after infection with S. Tm
Avir

. Microbiota samples from cecal content 

were grouped by days post infection since inflammation was absent. Grouping by days p.i. with S. Tm
Avir

 was 

significant, according to Bray Curtis (p<0.002, Adonis) and Pearson (p<0.004, Adonis) with 41% (Bray Curtis) and 

65% (Pearson) of variation explained. PERMDISP analyses based on Bray Curtis and Pearson distance matrices 

revealed no statistically significant differences in microbiota composition in cecal content between days post 

infection with S. Tm
Avir

 (p>0.05). (C) and (D) Oligo-MM
12

 composition after infection with S. Tm
WT

. Since S. Tm
WT

 

caused inflammation, microbiota samples from cecal content were grouped according to inflammation grade 

(non-inflamed: days 1 + 2 p.i., intermediate: day 3 p.i. and inflamed: day 4 p.i.). Grouping by inflammation 

grade after infection with S. Tm
WT

 was significant, according to Bray Curtis (p<0.001, Adonis) and Pearson 
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(p<0.001, Adonis) with 97% (Bray Curtis) and 98% (Pearson) of variation explained. PERMDISP analyses based 

on Bray Curtis and Pearson distance matrices revealed statistically significant differences in microbiota 

composition of cecal content between all 3 inflammation grades (** p<0.01, *** p<0.001, n.s.: not significant). 

 

 

Figure 13: Clustering of Oligo-MM
12

 composition in feces after infection with either S. Tm
Avir

 or S. Tm
WT

. 
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days post infection since inflammation was absent. Grouping by days p.i. with S. Tm
Avir

 was significant, 

according to Bray Curtis (p<0.001, Adonis) and Pearson (p<0.001, Adonis) distance matrices, with 68% (Bray 

Curtis) and 93% (Pearson) of variation explained. PERMDISP analyses based on Bray Curtis and Pearson 

distance matrices revealed no statistically significant differences in fecal microbiota composition between days 

post infection with S. Tm
Avir

 (p>0.05). (C) and (D) Oligo-MM
12

 composition after infection with S. Tm
WT

. Since S. 

Tm
WT

 caused inflammation, fecal microbiota samples were grouped according to inflammation grade (non-

inflamed: uninfected + days 1 + 2 p.i., intermediate: day 3 p.i. and inflamed: day 4 p.i.). Grouping by 

inflammation grade after infection with S. Tm
WT

 was significant, according to Bray Curtis (p<0.001, Adonis) and 

Pearson (p<0.001, Adonis) with 98% (Bray Curtis) and 100% (Pearson) of variation explained. PERMDISP 

analyses based on Bray Curtis and Pearson distance matrices revealed statistically significant differences in 

fecal microbiota composition between all 3 inflammation grades (* p<0.05, ** p<0.01, n.s.: not significant). 

 

3.3.2. Performance of individual Oligo-MM12 strains during S. TmWT induced colitis 

Oligo-MM12 strains might be outcompeted by invading S. TmWT, that selectively uses nutrients such 

as anaerobic electron acceptors or ethanolamine which are present in an inflammatory milieu 

(Winter et al. 2010, Thiennimitr et al. 2011, Lopez et al. 2012). Moreover, individual Oligo-MM12 

strains could be directly killed by neutrophils infiltrating at the site of inflammation (Loetscher et al. 

2012). 

In order to better understand and characterize microbiota shifts observed at day 4 p.i. with S. TmWT, 

fold changes in absolute abundance of Oligo-MM12 strains were calculated (day 1 versus day 4 p.i.). 

Calculations were based on absolute reads per 1 million gene copies determined by universal probe. 

8,000 – 9,000 fold increase of S. TmWT in both cecal content and feces was observed (Figure 14). S. 

TmWT dominated the microbiota at day 4 p.i. (Salmonella ‘blooms’ (Stecher et al. 2012)). Remarkably, 

the individual members of the Oligo-MM12 performed differently in the presence of S. TmWT induced 

inflammation. The Oligo-MM12 strains were grouped in 3 categories according to their decreasing or 

increasing abundance during Salmonella ‘blooms’: (i) depleted, strains that decrease massively; (ii) 

intermediate, bacteria that remained stable during S. TmWT induced colitis and (iii) enriched, strains 

which abundance increased during inflammation. The grouping in the 3 categories was consistent 

between cecal content and feces. Depleted bacteria were mainly Gram-negatives and belonged to 

the phyla Bacteroidetes, Verrucomicrobia and Proteobacteria: ‘Muribaculum intestinale‘ YL27, 

‘Turicimonas caecimuris‘ YL45, Akkermansia muciniphila YL44 and ‘Bacteroides caecimuris‘ I48. The 

Gram-variable Firmicute Clostridium clostridioforme YL32 was also depleted during strong colitis. 

However, the Gram-positive or Gram-variable strains Blautia coccoides YL58, Flavonifractor plautii 

YL31 and Clostridium innocuum I46, that belong to the Firmicutes phylum decreased less and were 

assigned to the intermediate group. One has to mention here, that Blautia coccoides YL58 was 

mostly under the detection limit of the qPCR assay at day 4 p.i. with S. TmWT and that low baseline 

abundance before infection of this strain accounts for lower fold changes between day 1 and day 4 
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p.i. with S. TmWT. Interestingly, Lactobacillus reuteri I49 and Enterococcus faecalis KB1, both Gram-

positive bacteria were increased under inflammatory conditions and were grouped the third category 

(Figure 14). Bifidobacterium longum subsp. animalis YL2 and ‘Acutalibacter muris’ KB18 were below 

the limit of detection of the respective qPCR assay. 

The absolute abundance of the strains after infection with S. TmWT was also in line with relative 

abundance expressed as mean % of cumulated 16S rRNA gene copy numbers. S. TmWT dominated the 

microbiota at day 4 p.i. with a relative abundance of 96.18% +/- 3.09% in cecal content and 97.64% 

+/- 2.14% in feces (Figure 10C; Tables 44; 46). In stark contrast, the S. TmAvir failed to dominate and 

its relative abundance remained below 1% (Tables 45; 47). Looking at the microbiota composition 

during S. TmWT ‘blooms’, there were drastic and statistically significant drops in relative abundance of 

‘Muribaculum intestinale‘ YL27, ‘Bacteroides caecimuris‘ I48 and Akkermansia muciniphila YL44 

between day 1 and day 4 (p<0.001, two-way ANOVA with Bonferroni posttest; Table 44). The relative 

abundance of Clostridium clostridioforme YL32 at day 4 p.i. was also reduced by trend and 

‘Turicimonas caecimuris‘ YL45 was close to the limit of detection (Tables 44; 46). The relative 

abundance of Blautia coccoides YL58, Flavonifractor plautii YL31 and Clostridium innocuum I46 

(intermediate group) was also reduced at day 4 p.i. (Tables 44; 46). Whereas, Lactobacillus reuteri I49 

and Enterococcus faecalis KB1 increased by trend in relative abundance at day 4 p.i. (Tables 44; 46).  

There was already moderate expansion of S. TmWT observed starting at day 3 p.i. (Tables 44; 46). The 

relative abundance of ‘Bacteroides caecimuris‘ I48 in cecal content and feces started to decrease 

from day 3 p.i. on (p<0.001, two-way ANOVA with Bonferroni posttest; Tables 44; 46) but was still 

the dominating strain in cecal content (52.75% +/- 15.21%) and feces (57.94% +/- 7.48%). The relative 

abundance of ‘Muribaculum intestinale‘ YL27 and ‘Turicimonas caecimuris‘ YL45 was quite stable 

between the days 1 - 3 p.i. (Tables 44; 46). Interestingly, the relative abundance of Akkermansia 

muciniphila YL44 increased between day 2 and day 3 p.i. of around 14% in cecal content (p<0.001, 

two-way ANOVA with Bonferroni posttest; Table 44) and 6% in feces (p<0.001, two-way ANOVA with 

Bonferroni posttest; Table 46). An increased relative abundance of Clostridium clostridioforme YL32 

between day 2 and day 3 p.i. was also observed (p<0.05, two-way ANOVA with Bonferroni posttest; 

Table 46). This might indicate that both strains Akkermansia muciniphila YL44 and Clostridium 

clostridioforme YL32 could profit from mild inflammation. The relative abundance of Blautia 

coccoides YL58, Flavonifractor plautii YL31, Clostridium innocuum I46 (intermediate group) as well as 

Lactobacillus reuteri I49 and Enterococcus faecalis KB1 (enriched group) was not significantly altered 

during this early stage of infection (days 1 - 3 p.i; Tables 44; 46). 

Infection with S. TmAvir did not induce dysbiosis at day 4 p.i. and no Salmonella ‘blooms’ were 

observed (Figure 10C). However, there were slight but statistically significant fluctuations in relative 
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abundance of ‘Bacteroides caecimuris‘ I48 and ‘Muribaculum intestinale‘ YL27 during the course of 

infection with S. TmAvir (Tables 45; 47). Fluctuations were also observed in relative abundance of 

Akkermansia muciniphila YL44. It peaked at day 3 p.i. in cecal content and at day 1 p.i. in feces 

(Tables 45; 47).  
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Figure 14: The performance of individual Oligo-MM
12

 members during inflammation. Oligo-MM
12

 mice were 

infected with 5 x 10
7
 CFUs of S. Tm

WT
. The experimental set-up is detailed in Figure 10A (same data used for 

fold-change calculations). Fold-changes in absolute abundance between day 1 and day 4 post infection were 

calculated with absolute values that were normalized to a million gene copies determined by universal probe. 

Bifidobacterium longum  subsp. animalis YL2*

‘Acutalibacter muris‘ KB18*

Clostridium clostridioforme  YL32

Flavonifractor plautii  YL31

Clostridium innocuum  I46

Blautia coccoides YL58

Enterococcus faecalis KB1

Lactobacillus reuteri  I49

‘Turicimonas caecimuris‘ YL45

Akkermansia muciniphila  YL44

‘Muribaculum intestinale‘ YL27

‘Bacteroides caecimuris‘ I48

Bacteroidetes

Verrucomicrobia

Proteobacteria

ActinobacteriaFirmicutes

*Limit of detection

0
2
4
6
8

10

20

40

60

80

100

100

101

102
103

104

105

106

107

1
6
s

rR
N

A
g
e
n
e

c
o
p
ie

s
/

5
n
g

fe
ca

lD
N

A
YL44

I48

YL27

YL45

YL32

YL58

YL31

I46

KB1

I49

S.Tm

-6945

-5811

-5799

-4105

-317

-44

-10

-2

13

14

9032

Enriched

Depleted

YL2 and KB18 below limit of detection

Infected with S.Tm
WT

d1 p.i. d4 p.i.

Fold change
   d1/d4 p.i.

Feces

B

Intermediate

0
2
4
6
8

10

20

40

60

80

100

100
101

102
103

104

105

106

107 1
6
s

rR
N

A
g
e
n
e

c
o
p
ie

s
/

5
n
g

ce
ca

lD
N

A

Infected with S.Tm
WT

YL27

YL45

YL44

YL32

I48

YL58

YL31

I46

I49

KB1

S.Tm

Cecal content

-1366

-1252

-639

-283

-110

-8

-2

-2

12

14

8344

Intermediate

Fold change
   d1/d4 p.i.

A

d1 p.i. d4 p.i.

Depleted

Enriched

YL2 and KB18 below limit of detection%
o
f
to

ta
l 
1
6
S

 r
R

N
A

  
  
  
g
e
n
e
 c

o
p
ie

s
%

o
f
to

ta
l 
1
6
S

 r
R

N
A

  
  
  
g
e
n
e
 c

o
p
ie

s



Results 

85 

 

Fold changes in microbiota composition were determined in (A) cecal content and (B) feces and ranked 

according to decreasing abundance (red: highly decreased, green: less affected or enriched). Bacteria were 

subsequently grouped in 3 categories: depleted: bacteria that were highly depleted during Salmonella 

‘blooms’; intermediate: Oligo-MM
12

 strains that were stable or decreased less during Salmonella induced 

colitis; enriched: strains that were enriched during inflammation. * Limit of detection. 

 

Table 44: Relative abundance of Oligo-MM12 strains in cecal content after infection with S. TmWT 

Strain 

Mean % of cumulated 16S rRNA gene copy numbers 

(+/- SD) 

Days post infection with S. TmWT 

Day 1 Day 2 Day 3 Day 4 

‘Bacteroides caecimuris’ I48 
73.40 

(2.20) 

71.71 

(0.82) 

52.75
a,c

 

(15.21) 

1.15
b,c

 

(1.47) 

‘Muribaculum intestinale’ YL27 
9.24 

(1.48) 

11.94 

(1.88) 

8.36 

(1.46) 

0.01
b,c

 

(0.01) 

Akkermansia muciniphila YL44 
7.05 

(1.91) 

4.79 

(0.80) 

18.88
a,c

 

(4.49) 

0.17
b,c

 

(0.38) 

‘Turicimonas caecimuris’ YL45 
2.50 

(0.52) 

2.33 

(0.81) 

2.14 

(0.61) 
0* 

Lactobacillus reuteri I49 
0.04 

(0.01) 

0.06 

(0.03) 

0.05 

(0.03) 

0.65 

(1.34) 

Enterococcus faecalis KB1 
0.01 

(0.01) 

0.01 

(0.004) 

0.02 

(0.03) 

0.18 

(0.19) 

Blautia coccoides YL58 
1.15 

(0.32) 

0.53 

(0.10) 

0.90 

(0.47) 

0.07 

(0.16) 

Clostridium innocuum I46 
0.11 

(0.03) 

0.08 

(0.02) 

0.08 

(0.05) 

0.01 

(0.02) 

Flavonifractor plautii YL31 
1.75 

(0.24) 

2.20 

(0.26) 

4.39 

(3.38) 

1.50 

(1.28) 

Clostridium clostridioforme YL32 
4.72 

(0.75) 

5.90 

(1.11) 

7.40 

(3.23) 

0.09
b
 

(0.15) 

‘Acutalibacter muris’ KB18 DTL DTL DTL DTL 

Bifidobacterium longum subsp.  

animalis YL2 
DTL DTL DTL DTL 

S. Tm 
0.02 

(0.02) 

0.47 

(0.23) 

5.03
c
 

(7.81) 

96.18
b,c

 

(3.09) 

Significant differences between a day 2 vs day 3, b day 3 vs day 4 and c time point vs day 1 are indicated; p 

values were less than 0.001, except: S. Tm day 1 vs day 3 p<0.05, two-way ANOVA with Bonferroni posttest. 

There were no significant differences between day 1 vs day 2. Values are expressed as mean % of cumulated 

16S rRNA gene copy numbers +/- standard deviation (SD). Day 1 p.i.: n=5, day 2 p.i.: n=5, day 3 p.i.: n=7, day 4 

p.i.: n=7. DTL: limit of detection. * Very low abundant. 
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Table 45: Relative abundance of Oligo-MM12 strains in cecal content after infection with S. TmAvir 

Strain 

Mean % of cumulated 16S rRNA gene copy numbers  

(+/- SD) 

Days post infection with S. TmAvir 

Day 1 Day 2 Day 3 Day 4 

‘Bacteroides caecimuris’ I48 
69.54 

(2.91) 

72.02 

(2.33) 

68.25
b
 

(6.10) 

70.18 

(3.97) 

‘Muribaculum intestinale’ YL27 
10.60 

(1.34) 

13.65
a
 

(1.86) 

11.09 

(0.71) 

10.97 

(2.35) 

Akkermansia muciniphila YL44 
9.06 

(2.38) 

4.96
a
 

(1.06) 

12.51
b,d

 

(5.39) 

9.56
c
 

(2.02) 

‘Turicimonas caecimuris’ YL45 
2.36 

(0.35) 

2.05 

(0.27) 

2.10 

(0.33) 

2.05 

(0.37) 

Lactobacillus reuteri I49 
0.07 

(0.04) 

0.01 

(0.02) 

0.03 

(0.03) 

0.08 

(0.03) 

Enterococcus faecalis KB1 
0.02 

(0.01) 
0* 0* 0* 

Blautia coccoides YL58 
0.74 

(0.09) 

0.52 

(0.07) 

0.52 

(0.08) 

0.60 

(0.18) 

Clostridium innocuum I46 
0.11 

(0.03) 

0.06 

(0.02) 

0.07 

(0.01) 

0.08 

(0.02) 

Flavonifractor plautii YL31 
1.93 

(0.31) 

1.65 

(0.12) 

1.87 

(0.25) 

1.86 

(0.51) 

Clostridium clostridioforme YL32 
5.34 

(0.52) 

4.73 

(0.49) 

3.01 

(1.10) 

3.88 

(0.64) 

‘Acutalibacter muris’ KB18 DTL DTL DTL DTL 

Bifidobacterium longum subsp.  

animalis YL2 
DTL DTL DTL DTL 

S. Tm 
0.22 

(0.17) 

0.34 

(0.12) 

0.55 

(0.14) 

0.74 

(0.12) 

Significant differences between a day 1 vs day 2, b day 2 vs day 3, c day 3 vs day 4 and d time point vs day 1 are 

indicated; p values were less than 0.001, except: YL27 day 1 vs day 2 p<0.05, I48 day 2 vs day 3 p<0.01, YL44 

day 3 vs day 4 p<0.05 and YL44 day 1 vs day 3 p<0.01, two-way ANOVA with Bonferroni posttest. There were 

no significant differences between day 1 vs day 4. Values are expressed as mean % of cumulated 16S rRNA 

gene copy numbers +/- standard deviation (SD). Day 1 p.i.: n=5, day 2 p.i.: n=5, day 3 p.i.: n=6, day 4 p.i.: n=6. 

DTL: limit of detection. * Very low abundant.  
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Table 46: Relative abundance of Oligo-MM12 strains in feces after infection with S. TmWT 

Strain 

Mean % of cumulated 16S rRNA gene copy numbers (+/- SD) 

Days post infection with S. TmWT 

Uninf. Day 1 Day 2 Day 3 Day 4 

‘Bacteroides caecimuris’ I48 
67.17 

(3.16) 

60.69
a
 

(6.31) 

67.44
b
 

(3.03) 

57.94
c,e

 

(7.48) 

0.12
d,e

 

(0.26) 

‘Muribaculum intestinale’ YL27 
10.16 

(1.30) 

10.30 

(1.26) 

11.51 

(1.35) 

10.65 

(2.62) 
0

d,e*
 

Akkermansia muciniphila YL44 
16.73 

(2.43) 

20.92
a
 

(4.58) 

13.55
b,e

 

(3.17) 

19.45
c
 

(4.36) 

0.001
d,e 

(0.004) 

‘Turicimonas caecimuris’ YL45 
2.30 

(0.50) 

2.56 

(0.28) 

2.50 

(0.49) 

2.17 

(0.70) 
DTL 

Lactobacillus reuteri I49 
0.06 

(0.03) 

0.07 

(0.02) 

0.07 

(0.04) 

0.08 

(0.05) 

0.59 

(0.52) 

Enterococcus faecalis KB1 
0.02 

(0.01) 

0.03 

(0.02) 

0.01 

(0.004) 

0.01 

(0.01) 

0.37 

(0.38) 

Blautia coccoides YL58 
0.73 

(0.11) 

1.43 

(0.47) 

0.74 

(0.17) 

0.96 

(0.43) 
DTL 

Clostridium innocuum I46 
0.09 

(0.04) 

0.08 

(0.02) 

0.06 

(0.02) 

0.09 

(0.03) 

0.02 

(0.05) 

Flavonifractor plautii YL31 
1.77 

(0.12) 

2.31 

(0.16) 

2.20 

(0.23) 

2.43 

(0.63) 

0.93 

(1.29) 

Clostridium clostridioforme YL32 
0.99 

(0.14) 

1.59 

(0.55) 

1.48 

(0.61) 

4.54
c,e

 

(2.95) 

0.33
d
 

(0.66) 

‘Acutalibacter muris’ KB18 DTL DTL DTL DTL DTL 

Bifidobacterium longum subsp. 

animalis YL2 
DTL DTL DTL DTL DTL 

S. Tm DTL 
0.02 

(0.02) 

0.44 

(0.10) 

1.67 

(0.67) 

97.64
d,e

 

(2.14) 

Significant differences between a uninf. vs d1, b day 1 vs day 2, c day 2 vs day 3, d day 3 vs day 4 and e time 

point vs uninf. are indicated; p values were less than 0.001, except: YL44 uninf. vs d1 p<0.01, YL32 day 2 vs day 

3 in p<0.05, YL44 uninf. vs day 2 p<0.05 and YL32 uninf. vs day 3 p<0.01, two-way ANOVA with Bonferroni 

posttest. Values are expressed as mean % of cumulated 16S rRNA gene copy numbers +/- standard deviation 

(SD). Uninf.: n=6, day 1 p.i.: n=5, day 2 p.i.: n=5, day 3 p.i.: n=7, day 4 p.i.: n=7; Uninf.: uninfected. DTL: limit of 

detection; * very low abundant. 
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Table 47: Relative abundance of Oligo-MM12 strains in feces after infection with S. TmAvir 

Strain 

Mean % of cumulated 16S rRNA gene copy numbers (+/- SD) 

Days post infection with S. TmAvir 

Uninf. Day 1 Day 2 Day 3 Day 4 

‘Bacteroides caecimuris’ I48 
67.17 

(3.16) 

59.46
a
 

(3.63) 

64.11
b
 

(4.37) 

65.12 

(7.64) 

73.19
c,d

 

(5.43) 

‘Muribaculum intestinale’ YL27 
10.16 

(1.30) 

9.47 

(1.01) 

14.12
b,d

 

(3.09) 

11.08 

(1.91) 

9.36 

(2.31) 

Akkermansia muciniphila YL44 
16.73 

(2.43) 

24.55
a
 

(3.83) 

14.87
b
 

(0.98) 

16.33 

(6.31) 

11.17
c,d

 

(2.66) 

‘Turicimonas caecimuris’ YL45 
2.30 

(0.50) 

1.98 

(0.17) 

2.20 

(0.46) 

2.20 

(0.44) 

2.37 

(0.26) 

Lactobacillus reuteri I49 
0.06 

(0.03) 

0.08 

(0.04) 

0.01 

(0.01) 

0.06 

(0.04) 

0.12 

(0.03) 

Enterococcus faecalis KB1 
0.02 

(0.01) 

0.02 

(0.02) 

0.01 

(0.004) 

0.01 

(0.02) 

0.003 

(0.005) 

Blautia coccoides YL58 
0.73 

(0.11) 

0.93 

(0.34) 

0.61 

(0.29) 

1.16 

(1.21) 

0.79 

(0.19) 

Clostridium innocuum I46 
0.09 

(0.04) 

0.08 

(0.02) 

0.05 

(0.02) 

0.13 

(0.09) 

0.06 

(0.02) 

Flavonifractor plautii YL31 
1.77 

(0.12) 

2.33 

(0.15) 

1.90 

(0.32) 

1.66 

(0.23) 

1.38 

(0.73) 

Clostridium clostridioforme YL32 
0.99 

(0.14) 

0.83 

(0.24) 

1.79 

(1.33) 

1.79 

(0.71) 

1.05 

(0.32) 

‘Acutalibacter muris’ KB18 DTL DTL DTL DTL DTL 

Bifidobacterium longum subsp. 

animalis YL2 
DTL DTL DTL DTL DTL 

S. Tm DTL 
0.26 

(0.26) 

0.33 

(0.07) 

0.47 

(0.15) 

0.52 

(0.11) 

Significant differences between a uninf. vs day 1, b day 1 vs day 2, c day 3 vs day 4 and d time point vs uninf. 

are indicated; p values were less than 0.001, except: YL27 and I48 day 1 vs day 2 p<0.01 as well as YL27 uninf. 

vs day 2 p<0.01, two-way ANOVA with Bonferroni posttest. There were no significant differences between day 

2 vs day 3 and uninf. vs day 3. Values are expressed as mean % of cumulated 16S rRNA gene copy numbers +/- 

standard deviation (SD). Uninf.: n=6, day 1 p.i.: n=5, day 2 p.i.: n=5, day 3 p.i.: n=6, day4 p.i.: n=6; Uninf.: 

uninfected. DTL: limit of detection. 
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3.4 Towards understanding the mechanisms causing shifts in microbiota 

composition 

3.4.1 Influence of Type 3 secretion systems (T3SS) 1 and 2 

3.4.1.1 Both T3SSs are necessary to cause colitis and dysbiosis 

Next, the contribution of T3SS-1 and T3SS-2 that are encoded on the Salmonella pathogenicity 

islands 1 and 2 (SPI-1 and -2), respectively were investigated using Salmonella mutant strains lacking 

either a functional T3SS-1: S. TmSPI-1 (Kaniga et al. 1994) or a functional T3SS-2: S. TmSPI-2 (Hapfelmeier 

et al. 2004). Oligo-MM12 mice were infected with 5 x 107 CFUs of either S. TmSPI-1 or S. TmSPI-2 and 

scarified at day 4 p.i.. Data were subsequently compared to infection experiments with S. TmAvir 

(ΔinvG, sseD::aphT) and S. TmWT shown in Figure 10 (Figures 15; 16; 17). As already shown before, 

infection with S. TmAvir that lacks functional T3SS-1 and 2 did not to induce dysbiosis at day 4 p.i. 

(Figure 10). The same was true for S. TmSPI-1 that is deficient in secreting effector proteins via T3SS-1 

(Figure 15). Interestingly, S. TmSPI-2 that has a functional T3SS-1 but is deficient in T3SS-2 was able to 

induce dysbiosis in 1 out of 5 mice (Figure 15). Again, dysbiosis correlated with cecal pathology 

(Figure 15B) and elevated LCN-2 levels (Figure 16B). Mice infected with S. TmAvir and S. TmSPI-1 showed 

almost no cecal pathology and LCN-2 levels close to the limit of detection, whereas mice infected 

with S. TmSPI-2 already displayed moderate colitis and elevated LCN-2 levels at day 4 p.i.. The animal 

infected with S. TmSPI-2 that exhibited a dysbiotic microbiota even showed profound colitis and high 

LCN-2 levels comparable to mice infected with S. TmWT (Figures 15; 16B). Regarding Salmonella loads 

in cecal content, S. TmSPI-2 loads were significantly higher than compared to S. TmAvir (p<0.05, Kruskal-

Wallis test with Dunn's multiple comparison test; Figure 16A). There was no statistically significant 

difference in colonization of mesenteric lymphnodes, liver or spleen at day 4 p.i. between S. TmSPI-1 

and S. TmSPI-2 (Figure 16C-E). Compared to S. TmAvir, CFUs of S. TmSPI-1 and S. TmSPI-2 in mesenteric 

lymphnodes were increased by trend which was comparable in liver as well as in spleen. Compared 

to S. TmAvir, S. TmWT showed significantly increase in tissue loads at systemic sites (Kruskal-Wallis test 

with Dunn's multiple comparison test; Figure 16C-E). Interestingly, the relative cecum size which is 

also a measure for inflammation (rel. cecal weight negatively correlates with inflammation) of mice 

infected with S. TmSPI-2 was comparable to the relative cecum size of mice infected with S. TmWT 

(Figure 16F), indicating that a functional T3SS-1 is crucial for the induction of inflammation in Oligo-

MM12 mice. In contrast, the relative cecum size of Oligo-MM12 mice infected with either S. TmAvir (no 

T3SS-1 + 2) or S. TmSPI-1 (no T3SS-1) was significantly increased at day 4 p.i. compared to relative 

cecum size of mice infected with S. TmWT (p<0.01, p<0.05, Kruskal-Wallis test with Dunn's multiple 

comparison test; Figure 16F). 
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Figure 15: Salmonella requires functional T3SS-1 and T3SS-2 to induce dysbiosis at day 4 p.i.. (A) Experimental 

set-up: Oligo-MM
12

 mice were orally infected with 5 x 10
7
 CFUs of either S. Tm

Avir
 (ΔinvG, sseD::aphT), S. Tm

SPI-1
 

(ΔinvG), S. Tm
SPI-2

 (sseD::aphT) or with S. Tm
WT

. Data from infections with S. Tm
Avir

 and S. Tm
WT

 originate from 

the previous experiment (Figure 10). Mice were sacrificed at day 4 p.i. and samples were taken for analysis. 

There was also a fecal control sample taken before infection. (B) Cecal pathology determined by evaluation of 

HE stained tissue sections. (C) Analysis of microbiota composition in feces (left) and cecal content (right) at day 

4 p.i. with different Salmonella mutant strains. Microbiota composition is shown as relative abundance and 

expressed as % of cumulated 16S rRNA gene copy numbers (% of total 16S rRNA gene copies). The amount of 

absolute 16S rRNA gene copies (determined by an universal primer / probe combination) is illustrated as black 

dots (the right y axis). * Limit of detection. Statistical analysis of cecal pathology was performed using Kruskal-

Wallis test with Dunn’s multiple comparison test (*** p<0.001, ** p<0.01). # Animal that exhibited dysbiotic 

microbiota after infection with S. Tm
SPI-2

. 
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Figure 16: The contribution of SPI-1 and SPI-2 T3SSs to systemic colonization at day 4 p.i.: For experimental 

set-up refer to Figure 15A. Organs were additionally taken at the indicated time points. (A) Salmonella loads in 

cecal content at day 4 p.i. (CFUs S. Tm / g content). (B) Lipolcalin-2 (LCN-2) amount in cecal content at day 4 p.i. 

measured by ELISA (ng / mg cecal content) (C) – (E) Systemic Salmonella in mesenteric lymphnodes, liver and 

spleen (CFUs per organ). (F) Relative cecum weight at day 4 p.i. expressed as % of body weight. Statistical 

analysis between groups was performed using Kruskal-Wallis test with Dunn's multiple comparison test (* 

p<0.05, ** p<0.01, *** p<0.001). # Animal that exhibited dysbiotic microbiota after infection with S. Tm
SPI-2

. 

Dashed lines: DTL: limit of detection (mLN: 10 CFUs, liver: 60 CFUs, spleen: 20 CFUs). 
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In order to correlate shifts in microbiota composition with the presence of a functional T3SS-1 and 2, 

samples were grouped according to the S. Tm mutant strains (uninf., S. TmAvir, S. TmSPI-1, S. TmSPI-2 and 

S. TmWT, Figure 17) and cluster analysis was performed. Grouping of fecal microbiota composition 

and microbiota composition in cecal content by infection with different Salmonella strains was 

significant, according to Bray Curtis (p<0.001, Adonis) and Pearson (p<0.001, Adonis) distance 

matrices, with 86% (in feces, Bray Curtis and Pearson) as well as 84% (in cecal content, Bray Curtis) 

and 85% (in cecal content, Pearson) of variation explained. As already mentioned, the fecal 

microbiota composition at day 4 p.i. with S. TmWT (functional T3SS-1 + 2) which displayed dysbiosis 

that was characterized by a domination of Salmonella and the presence of some ‘intermediate’ and 

‘enriched’ Oligo-MM12 strains (Figures 10; 14) significantly differed compared to the microbiota 

composition before infection and after infection with S. TmAvir (no functional T3SS-1 and 2, non 

parametric PERMDISP procedure; Figure 17A,B). Interestingly, microbiota composition in cecal 

content after infection with S. TmSPI-1 (no functional T3SS-1) and S. TmAvir was also significantly 

different compared to the microbiota composition at day 4 post infection with S. TmWT (non 

parametric PERMDISP procedure; Figure 17D). 1 out of 5 samples infected with S. TmSPI-2 (functional 

T3SS-1) even clustered together with the dysbiotic microbiota of S. TmWT infected animals (Figure 

17C,D). These data indicate that both, T3SS-1 and T3SS-2 synergistically contribute to Salmonella 

induced dysbiosis and that the T3SS-1 might be of more importance.  

The mean relative abundance of S. TmSPI-1 and S. TmAvir at day 4 p.i. was comparable and less than 1% 

in feces and cecal content, whereas the relative abundance of S. TmSPI-2 was around 20% (Tables 48; 

49). This increase was significant compared to the relative abundance of S. TmSPI-1 and S. TmAvir (two-

way ANOVA with Bonferroni posttest; Tables 48; 49). Besides the increased relative abundance of S. 

TmSPI-2, the relative abundance of ‘Bacteroides caecimuris‘ I48 was decreased (around -20%) post 

infection with S. TmSPI-2 compared to infection with S. TmSPI-1 (p<0.001, two-way ANOVA with 

Bonferroni posttest; Tables 48; 49). The relative abundance of the residual Oligo-MM12 strains was 

comparable at day 4 p.i. with S. TmSPI-1 and S. TmSPI-2. Comparing the Oligo-MM12 composition post 

infection with S. TmSPI-2 and S. TmWT, the relative abundance of ‘Bacteroides caecimuris‘ I48, 

‘Muribaculum intestinale‘ YL27 and Akkermansia muciniphila YL44 was significantly decreased post 

infection with S. TmWT (two-way ANOVA with Bonferroni posttest; Tables 48; 49), again underlining a 

synergistic effect of the both type three secretion systems on the microbiota.  
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Figure 17: Cluster analysis of Oligo-MM
12

 after infection with S. Tm
WT

 and S. Tm mutant strains deficient in 

T3SSs. Cluster analysis is based on Bray Curtis or Pearson distance matrices and visualized as PCoA plots. (A) 

and (B) clustering of fecal Oligo-MM
12

 composition after infection with S. Tm strains. Fecal microbiota samples 

were grouped by infection with different S. Tm strains. Grouping by infection with different S. Tm strains was 

significant, according to Bray Curtis (p<0.001, Adonis) and Pearson (p<0.001, Adonis) with 86% (Bray Curtis, 

Pearson) of variation explained. Additional PERMDISP analyses based on Bray Curtis and Pearson distance 

matrices revealed statistically significant differences in fecal microbiota composition after infection with S. 

Tm
Avir

, S. Tm
WT

 and uninfected samples (** p<0.01, *** p<0.001). (C) and (D) clustering of Oligo-MM
12
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composition after infection with S. Tm strains in cecal content. Microbiota samples from cecal content were 

grouped by infection with different S. Tm strains. Grouping was significant, according to Bray Curtis (p<0.001, 

Adonis) and Pearson (p<0.001, Adonis) with 84% (Bray Curtis) and 85% (Pearson) of variation explained. 

Additional PERMDISP analyses based on Pearson distance matrix revealed statistically significant differences in 

microbiota composition in cecal content after infection with S. Tm
Avir

, S. Tm
SPI-1

 and S. Tm
WT

 (* p<0.05, ** 

p<0.01). 

 

Table 48: Relative abundance of Oligo-MM12 strains in feces at day 4 after infection with different 

S. Tm strains deficient in functional T3SSs. 

Strain 

Mean % of cumulated 16S rRNA gene copy numbers (+/- SD) 

Day 4 post infection with Salmonella mutants (feces) 

Uninf. S. TmAvir S. TmSPI-1 S. TmSPI-2 S. TmWT 

‘Bacteroides caecimuris’ I48 
53.96 

(4.97) 

73.19
a
 

(5.43) 

57.02
d
 

(6.97) 

39.80
b,e,g

 

(22.55) 

0.12
c,f,h,i

 

(0.26) 

‘Muribaculum intestinale’ YL27 
20.53 

(3.23) 

9.36 

(2.31) 

15.84 

(2.21) 

14.14 

(8.09) 
0

c,h,i*
 

Akkermansia muciniphila YL44 
17.27 

(2.85) 

11.17 

(2.66) 

20.00 

(7.35) 

14.68 

(9.37) 

0.001
c,f,h,i 

(0.004) 

‘Turicimonas caecimuris’ YL45 
3.23 

(0.35) 

2.37 

(0.26) 

2.76 

(0.67) 

2.16 

(1.27) 
DTL 

Lactobacillus reuteri I49 
0.09 

(0.02) 

0.12 

(0.03) 

0.02 

(0.02) 

0.45 

(0.83) 

0.59 

(0.52) 

Enterococcus faecalis KB1 
0.002 

(0.01) 

0.003 

(0.01) 
0* 

0.004 

(0.01) 

0.37 

(0.38) 

Blautia coccoides YL58 
1.11 

(0.14) 

0.79 

(0.19) 

0.48 

(0.19) 

0.88 

(0.59) 
DTL 

Clostridium innocuum I46 
0.10 

(0.02) 

0.06 

(0.02) 

0.05 

(0.01) 

0.12 

(0.08) 

0.02 

(0.05) 

Flavonifractor plautii YL31 
2.27 

(0.24) 

1.38 

(0.73) 

2.17 

(0.35) 

2.73 

(0.79) 

0.93 

(1.29) 

Clostridium clostridioforme YL32 
1.44 

(0.37) 

1.05 

(0.32) 

0.93 

(0.12) 

3.92 

(4.24) 

0.33 

(0.66) 

‘Acutalibacter muris’ KB18 DTL DTL DTL DTL DTL 

Bifidobacterium longum subsp.  

animalis YL2 
DTL DTL DTL DTL DTL 

S. Tm DTL 
0.52 

(0.11) 

0.71 

(0.12) 

21.12
b,e,g

 

(41.29) 

97.64
c,f,h,i

 

(2.14) 

Significant differences between a uninf. vs S. Tm
Avir

, b uninf. vs S. Tm
SPI-2

, c uninf. vs S. Tm
WT

, d S. Tm
Avir

 vs S. 

Tm
SPI-1

, e S. Tm
Avir

 vs S. Tm
SPI-2

, f S. Tm
Avir

 vs S. Tm
WT

, g S. Tm
SPI-1

 vs S. Tm
SPI-2

, h S. Tm
SPI-1

 vs S. Tm
WT

 and i S. Tm
SPI-2

 

vs S. Tm
WT

 are indicated; p values were less than 0.001, except: I48 uninf. vs S. Tm
SPI-2

 p<0.01, YL44 S. Tm
Avir

 vs 

S. Tm
WT

 p<0.05 and YL27 S. Tm
SPI-2

 vs S. Tm
WT

 p<0.01, two-way ANOVA with Bonferroni posttest. There were no 

significant differences between uninf. vs S. Tm
SPI-1

. Values are expressed as mean % of cumulated 16S rRNA 

gene copy number +/- standard deviation (SD). S. Tm
SPI-1

: no functional T3SS-1, S. Tm
SPI-2

: no functional T3SS-2 

and S. Tm
Avir

: no functional T3SSs-1 and -2. Uninf.: n=4, S. Tm
Avir

: n=6, S. Tm
SPI-1

: n=5, S. Tm
SPI-2

: n=5, S. Tm
WT

: 

n=7; Uninf.: uninfected; DTL: limit of detection; * very low abundant. 
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Table 49: Relative abundance of Oligo-MM12 strains in cecal content at day 4 after infection with 

different S. Tm strains deficient in functional T3SSs. 

Strain 

Mean % of cumulated 16S rRNA gene copy numbers 

(+/- SD) 

Day 4 post infection with Salmonella mutants  

S. TmAvir S. TmSPI-1 S. TmSPI-2 S. TmWT 

‘Bacteroides caecimuris’ I48 
70.18 

(3.97) 

63.48 

(5.31) 

44.14
a,c

 

(24.94) 

1.15
b,d,e

 

(1.47) 

‘Muribaculum intestinale’ YL27 
10.97 

(2.35) 

16.36 

(2.18) 

11.27 

(6.53) 

0.01
b,d,e

 

(0.01) 

Akkermansia muciniphila YL44 
9.56 

(2.02) 

12.50 

(3.25) 

14.55 

(8.15) 

0.17
d,e

 

(0.38) 

‘Turicimonas caecimuris’ YL45 
2.05 

(0.37) 

2.64 

(0.11) 

1.93 

(1.20) 
0* 

Lactobacillus reuteri I49 
0.08 

(0.03) 

0.01 

(0.004) 

0.07 

(0.07) 

0.65 

(1.34) 

Enterococcus faecalis KB1 0* 0* 0* 
0.18 

(0.19) 

Blautia coccoides YL58 
0.60 

(0.18) 

0.37 

(0.07) 

0.27 

(0.17) 

0.07 

(0.16) 

Clostridium innocuum I46 
0.08 

(0.02) 

0.07 

(0.02) 

0.07 

(0.05) 

0.01 

(0.02) 

Flavonifractor plautii YL31 
1.86 

(0.51) 

1.79 

(0.21) 

2.27 

(0.36) 

1.50 

(1.28) 

Clostridium clostridioforme YL32 
3.88 

(0.64) 

1.94 

(0.11) 

4.01 

(2.58) 

0.09 

(0.15) 

‘Acutalibacter muris’ KB18 DTL DTL DTL DTL 

Bifidobacterium longum subsp. 

animalis YL2 
DTL DTL DTL DTL 

S. Tm 
0.74 

(0.12) 

0.83 

(0.15) 

21.43
a,c

 

(42.44) 

96.18
b,d,e

 

(3.09) 

Significant differences between a S. Tm
Avir

 vs S. Tm
SPI-2

, b S. Tm
Avir

 vs S. Tm
WT

, c S. Tm
SPI-1

 vs S. Tm
SPI-2

, d S. Tm
SPI-1

 

vs S. Tm
WT

 and e S. Tm
SPI-2

 vs S. Tm
WT

 are indicated; p values were less than 0.001, except: YL27 S. Tm
Avir

 vs S. 

Tm
WT

 p<0.05, YL44 S. Tm
SPI-1

 vs S. Tm
WT

 p<0.05 as well as S. Tm
SPI-2

 vs S. Tm
WT

: YL27 p<0.05 and YL44 p<0.01, 

two-way ANOVA with Bonferroni posttest. There were no significant differences between S. Tm
Avir

 vs S. Tm
SPI-1

. 

Values are expressed as mean % of total bacteria +/- the standard deviation (SD). S. Tm
SPI-1

: no T3SS-1, S. Tm
SPI-

2
: no functional T3SS-2 and S. Tm

Avir
: no functional T3SS-1 and -2. S. Tm

Avir
: n=6, S. Tm

SPI-1
: n=5, S. Tm

SPI-2
: n=5, S. 

Tm
WT

: n=7; DTL: limit of detection; * very low abundant. 
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3.4.1.2 The Oligo-MM12 is resilient to infection with S. TmSPI-2 

In order to study the capability of the Oligo-MM12 to recover from inflammation induced dysbiosis 

(resilience), Oligo-MM12 mice were infected with 5 x 107 CFUs of S. TmSPI-2 and fecal samples were 

taken until day 21 p.i. to monitor microbial composition and LCN-2 levels. S. TmSPI-2 was chosen 

because it can induce dysbiosis in a fraction of animals (Figure 15C) and the mice only developed 

moderate colitis (Figure 15B). It could be additionally show previously that mice do not develop 

fulminant systemic infection and that the mice survive long-term infection (Endt et al. 2010). This is 

in stark contrast to S. TmWT which induces severe colitis and systemic infection that is life threatening 

already at day 4 p.i.. As expected, mice did not show signs of disease during the course of infection 

with S. TmSPI-2. S. TmSPI-2 colonized well (108 CFUs per g feces) and was not cleared from the gut until 

day 21 p.i. (Figure 19A). CFUs of S. TmSPI-2 in mesenteric lymphnodes were still elevated at day 21 p.i. 

and comparable to the level observed at day 4 p.i. (Figures 16C; 19B). S. TmSPI-2 was additionally still 

detectable in spleen and liver at day 21 p.i. (Figure 19B) and levels were comparable to day 4 p.i. 

(Figure 16D,E). This indicates that S. TmSPI-2 is not cleared after infection from Oligo-MM12 mice. For 

unknown reasons, fecal LNC-2 levels were elevated before infection. LCN-2 levels decreased during 

the course of infection (Figure 18B). Looking at the microbiota composition, S. TmSPI-2 was not able to 

shift the microbiota composition drastically (Figure 18C). However, according to cluster analyses by 

days post infection, the microbiota clustered differently at day 4 p.i. (Figure 18D,E) which coincided 

with a transient increase of Akkermansia muciniphila YL44 (Figure 18C). The grouping was significant, 

according to Bray Curtis (p<0.001, Adonis) and Pearson (p<0.007, Adonis) distance matrices, with 

76% (Bray Curtis) as well as 92% (Pearson correlation) of variation explained. Further non parametric 

PERMDISP analyses revealed significant differences in microbiota composition between days 4 and 5, 

5 and 6 as well as between days 14 and 21 (according to Bray Curtis; Figure 18D). According to 

Pearson, there was also a significant difference in microbial composition between days 5 and 6, 3 and 

6 as well as between 14 and 21 (non parametric PERMDISP procedure; Figure 18E). Interestingly, 

there was no statistical significant difference in microbial composition between day 21 and the Oligo-

MM12 composition before infection. This indicates the potential of the Oligo-MM12 to fully recover 

from transient S. TmSPI-2 induced dysbiosis. 
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Figure 18: The Oligo-MM
12

 is resilient to long-term infection with S. Tm
SPI-2

. (A) Experimental set-up: Oligo-

MM
12

 mice were infected with 5 x 10
7
 CFUs of S. Tm

SPI-2
 (sseD::aphT) and housed in gnotocages. During the 

course of the experiment feces (F) was taken under sterile conditions (for microbiota analysis and Lipocalin-2 

ELISA) and mice were finally euthanized at day 21 p.i.. There was also a fecal control sample taken at day 0 

before infection (uninf.). (B) Lipolcalin-2 (LCN-2) levels in feces measured by ELISA (ng / mg feces). (C) 

Microbiota composition is shown as relative abundance and expressed as % of cumulated 16S rRNA gene copy 

numbers (% of total 16S rRNA gene copies). The amount of absolute 16S rRNA gene copies (determined by an 

universal primers / probe combination) is illustrated as black dots (right y axis). * Limit of detection. Cluster 
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analysis is based on Bray Curtis (D) or Pearson (E) distance matrices and visualized as PCoA plots. Fecal 

microbiota samples were grouped by days post infection with S. Tm
SPI-2

 which was significant, according to Bray 

Curtis (p<0.001, Adonis) and Pearson (p<0.007, Adonis) with 76% (Bray Curtis) and 92% (Pearson) of variation 

explained. PERMDISP analyses based on Bray Curtis and Pearson distance matrices revealed statistically 

significant differences in fecal microbiota composition between days post infection with S. Tm
SPI-2

 (* p<0.05, ** 

p<0.01). However, there was no statistically significant difference between day 21 p.i. (n=2) and the day before 

infection (n=4). 

 

 

Figure 19: The Oligo-MM
12

 do not clear S. Tm
SPI-2

 until day 21 post infection. The experimental set-up is 

detailed in Figure 18A. (A) Salmonella loads in feces. Feces was sampled at the indicated time points and CFUs / 

g feces were determined by plating. (B) Systemic Salmonella in mesenteric lymphnodes (mLN), liver and spleen 

(CFUs per organ) at day 21 p.i.. (C) Relative cecum weight at day 21 p.i. expressed as % of body weight. Dashed 

lines: DTL: limit of detection (mLN: 10 CFUs, liver: 60 CFUs, spleen: 20 CFUs). 
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3.4.2 Influence of altered environmental conditions during colitis on the microbiota 

3.4.2.1 In vitro testing of Salmonella strains deficient in anaerobic respiration, siderophore 

production and ethanolamine utilization  

3.4.2.1.1 S. TmNi. (ΔnarZ; narG::cat; napA::aphT) is incapable of nitrate respiration 

In order to investigate the importance of nitrate respiration during Salmonella ‘blooms’ in Oligo-

MM12 mice and concomitant microbiota shifts, three genes essential for nitrate respiration narZ, 

narG and napA (Lopez et al. 2012) were deleted in S. Tm. S. Tm possesses three nitrate reductases 

encoded by the narGHI (nitrated reductase A), narZYV (nitrate reductase Z) and napABC (periplasmic 

nitrate reductase) gene clusters. While nitrate reductase Z is constitutively expressed, nitrate 

reductase A (low affinity) and the periplasmic nitrate reductase (high affinity) are expressed under 

anaerobic conditions. Especially, the high affinity periplasmic nitrate reductase is important for 

Salmonella during colitis (Vázquez-Torres and Bäumler 2016). 

Successful replacement of the genes in S. TmNi. by antibiotic resistance markers was verified by PCR 

(data not shown) and the phenotype of S. TmNi. was tested in vitro. Under aerobic conditions, S. TmNi. 

in minimal M9 medium showed similar growth compared to S. TmWT (Figure 20A). This was 

independent of the presence of nitrate (20 mM). None of the two strains reduced nitrate to nitrite 

when oxygen was present. Remarkably, under anaerobic conditions S. TmNi. showed a growth 

disadvantage compared to S. TmWT when nitrate was supplemented to the M9 medium (Figure 20B). 

In contrast to S. TmWT, S. TmNi. failed to reduce nitrate to nitrite under anaerobic conditions (Figure 

20B). S. TmNi. was additionally outcompeted by S. TmWT which grew 5 times better in mucin broth 

supplemented with nitrate (40 mM). There was no competitive advantage in plain mucin broth 

without nitrate (Figure 20C). This indicates that S. TmNi. is unable to respire nitrate and that the 

genetic manipulation of the strain just affected nitrate respiration genes since S. TmNi. grew as good 

as S. TmWT under aerobic conditions. 
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Figure 20: S. TM
Ni.

 is unable to respire nitrate and has a growth disadvantage compared to S. Tm
WT

 in 

medium supplemented with nitrate. (A) and (B) growth curves of S. Tm
WT

 and S. Tm
Ni.

 with and without NO3
-
 

(20 mM) under aerobic (+O2) as well as anaerobic conditions (-O2; 7% H2, 10% CO2, rest N2) are shown. Bacteria 

were grown in M9 minimal medium with glucose. Data for growth curves without NO2
-
 measurement (left 

curves) originate from 3 independent experiments and are shown as the mean +/- standard deviation of n 

experiments (n=3 except: t=6, 8 n=2). N.s.: not significant (p>0.05, 1 way ANOVA with Bonferroni’s multiple 

comparison test at the given time point). Growth curves with NO2
-
 measurement (right curves) show the results 

of one single experiment that is representative for three independent experiments. Samples were taken after 

0, 2, 4, 6 and 8 h as well as over night (o/n). (C) Competitive index: S. Tm
WT

 vs S. Tm
Ni.

. Bacterial o/n starter 
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co-cultures in mucin broth with (S/C MUC + NO3
-
 40 mM) or without NO3

-
 (S/C MUC) as described (Lopez et al. 

2012). Box and whiskers blot (whiskers from min to max). ** p<0.01 (Mann-Whitney U test). 

 

3.4.2.1.2 S. TmNi. + Te. (ΔnarZ; narG::cat; napA::aphT; ttrS::tet) shows impaired growth in anaerobic 

tetrathionate broth 

Besides nitrate, tetrathionate is also an anaerobic electron acceptor used by Salmonella during 

inflammation (Winter et al. 2010). In order to abolish tetrathionate respiration in addition to nitrate 

respiration, ttrS which is part of a two-component regulatory system essential for expression of 

tetrathionate reductase (Hensel et al. 1999) was replaced by a tetracycline resistance cassette. The 

genetic modification of S. TmNi. + Te. was verified by PCR (data not shown) and an in vitro competition 

experiment (S. TmNi. vs S. TmNi. + Te.) in mucin broth with or without tetrathionate (40 mM) was 

performed. In order to enhance the growth of S. TmNi. and S. TmNi. + Te. which are both auxotrophic for 

histidine (SL1344 Salmonella background), the mucin broth was additionally supplement with 

histidine (500 mg/l). When tetrathionate was added, S. TmNi. + Te. was outcompeted by trend and S. 

TmNi. grew 2.5 times better than S. TmNi. + Te. as described previously (Winter et al. 2010). However 

when tetrathionate was absent, both strains grew equally well (Figure 21). This indicates that S. TmNi. 

+ Te. is not able to profit from tetrathionate respiration. 

 

Figure 21: S. Tm
Ni. + Te.

 is outcompeted by S. Tm
Ni.

 in the presence of tetrathionate under anaerobic 

conditions. Competitive index: LB starter cultures of S. Tm
Ni.

 as well as S. Tm
Ni. + Te

 were used to inoculate 24 h 

competition cultures in mucin broth supplemented with histidine (500 mg/l) with or without tetrathionate (40 

mM). Competitive index with or without tetrathionate was not significantly different (p=0.12, Mann Whitney 

test). Data are expressed as the median of 3 experiments. 
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3.4.2.1.3 S. TmEntA (entA::cat) is impaired in siderophore secretion 

Iron is scarce and even more restricted in the inflamed gut e.g. via host mediated LCN-2 production, 

which sequesters siderophores such as enterochelin (Raffatellu et al. 2009). However, Salmonella 

manages to overcome iron-limitation mediated by LCN-2 secretion using a glycosylated derivative of 

enterochelin termed salmochelin that cannot be inactivated by LCN-2 (Raffatellu et al. 2009). In 

order to investigate the role of siderophore mediated iron acquisition, entA which is a 2,3-

dihydroxybenzoic acid (DHB) biosynthetic enzyme involved in the production of salmochelin and 

enterochelin (Caza et al. 2015, Pakarian and Pawelek 2016) was replaced by a chloramphenicol 

resistance cassette. The knock in of the resistance cassette was confirmed by PCR (data not shown) 

and the mutant phenotype was characterized in vitro using Chromazurol S (CAS) agar plates. CAS 

together with Hexadecyltrimethylammonium (HDTMA) complexes ferric iron (Fe3+) (blue color). In 

the presence of siderophores, iron can be sequestered from the complex and the agar turns into an 

orange color. Compared to S. TmWT, S. TmEntA grew equally well in LB starter cultures (Figure 22A) 

indicating no other genetic alteration then entA::cat. When spotted on CAS – agar plates, the halo of 

S. TmEntA
 was smaller than S. TmWT (Figure 22B).  
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Figure 22: S. Tm
EntA

 is unable to acquire iron via siderophore secretion. (A) OD600 of 12h LB starter cultures of 

S. Tm
EntA

 as well as S. Tm
WT

 used for CAS agar assay (n=3; p=0.1, Mann Whitney test). (B) left, CAS agar plate 

with bacterial spots: + cont: positive control (HB 1852S WA-CS), - cont: negative control (WA-TS (ybtA::aphT)), 

S. Tm
WT

 and S. Tm
EntA

. Right, quantification of orange CAS – halo in mm. Experiments were performed with 3 

individual cultures (n=3). Data are shown as the median of 3 experiments.  

 

3.4.2.1.4 S. TmEA
 (eutC::aphT) exhibits reduced growth on ethanolamine under anaerobic 

conditions in the presence of tetrathionate 

Ethanolamine is the preferred energy source of S. Tm during tetrathionate respiration(Price-Carter et 

al. 2001). EutC, which encodes a subunit of ethanolamine ammonia lyase, an enzyme essential for 

ethanolamine utilization (Roof and Roth 1988, Roof and Roth 1989, Thiennimitr et al. 2011) was 

replaced by a kanamycin resistance cassette. The genetic modification in S. TmEA was verified by PCR 

and the mutant phenotype was tested in vitro. S. TmEA and S. TmWT showed the same growth kinetics 

in anaerobic M9 medium containing glucose (Figure 23B). When ethanolamine was the sole electron 

source (no tetrathionate added), S. TmEA as well as S. TmWT almost showed no growth under 

anaerobic conditions. Remarkably, when the electron acceptor tetrathionate was added S. TmWT 

trended to grow better compared to S. TmEA (Figure 23A). This indicates that S. TmEA cannot benefit 

from ethanolamine as good as S. TmWT does.  
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Figure 23: S. Tm
EA

 shows reduced growth compared to S. Tm
WT

 in M9 + ethanolamine (EA) supplemented 

with tetrathionate. (A) OD600 of S. Tm
EA

 and S. Tm
WT

 in anaerobic M9 without glucose (- gluc) containing 5 mM 

ethanolamine with and without tetrathionate (S4O6
2-

, 40 mM, n=4). Difference between the growth of S. Tm
EA

 

and S. Tm
WT

 at 32 h in M9 + ethanolamine supplemented with S4O6
2-

 was not statistically significant (n.s., 

p>0.05, 1 way ANOVA with Bonferroni’s multiple comparison test). (B) OD600 of S. Tm
EA

 and S. Tm
WT

 in 

anaerobic M9 containing glucose (+ gluc) but no ethanolamine or S4O6
2-

 (n=3). Samples were taken after 0, 4, 8, 

24, 28, 32 h. Data are expressed as the mean of n experiments +/- standard deviation. 

 

3.4.2.2 Dysbiosis following Salmonella ‘blooms’ is fueled by anaerobic respiration. 

So far, the contribution of anaerobic respiration, ethanolamine utilization and iron availability to 

Salmonella ‘blooming’ has been investigated using the streptomycin pre-treated colitis mouse model 

(Raffatellu et al. 2009, Winter et al. 2010, Thiennimitr et al. 2011, Lopez et al. 2012). In this this 

study, we verify the observed effects using the Oligo-MM12 that exhibits colitis upon S. Tm infection 

without antibiotic pre-treatment. We further investigate the relative importance of anaerobic 

respiration, ethanolamine utilization and iron availability during different stage of Salmonella 

ecosystem invasion and ‘blooming’ and monitor the performance of individual commensal strains 

during colitis. 

Thus, groups of Oligo-MM12 mice were infected with 5 x 107 CFUs of either S. TmEntA (entA::cat; 

deficient in enterochelin / salmochelin production, n=6), S. TmNi. + Te. (ΔnarZ; narG::cat; napA::aphT; 
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microbiota composition and determine LCN-2 levels as marker for gut inflammation. Mice were 
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sacrificed at day 4 p.i., feces and cecal content were harvested for microbiota analysis, cecal 

pathology was scored and systemic Salmonella loads were determined (Figure 24A). All Salmonella 

strains colonized the gut of Oligo-MM12 mice equally well, only the S. TmEA significantly reduced loads 

at day 3 p.i. compared to S. TmWT (p<0.01, Kruskal-Wallis test with Dunn's multiple comparison test; 

Figure 25A). All mutant strains induced severe colitis by day 4 p.i. (Figure 25B) with high and 

comparable LCN-2 levels (Figure 24B). There was no difference in relative cecum size and systemic 

Salmonella loads at day 4 p.i. (Figure 25C-F) between groups. However, S. TmNi. + Te. exhibited less 

cecal pathology compared to S. TmWT (p<0.001, Kruskal-Wallis test with Dunn's multiple comparison 

test; Figure 25B). Nevertheless, this indicates that all S. Tm mutant strains were able to induce colitis 

at day 4 p.i.. Interestingly, the fecal and cecal microbiota was different after infection with S. TmNi. + 

Te.. No domination of Salmonella (≥ 50% of total microbiota composition) after infection with S. TmNi. 

+ Te. was observed (Figures 24D,E; 26B,C). However, when tetrathionate respiration was still 

functional, 3 out 6 samples were dominated by Salmonella after infection with S. TmNi. (Figures 

24D,E; 26B,C), indicating an additive effect of both systems. Only 2 of 6 samples were dominated by 

S. TmEA underlining the importance of ethanolamine for anaerobic respiration (Figures 24D,E; 26B,C). 

Mice infected with S. TmEntA however showed a similar abundance of samples dominated by 

Salmonella compared to S. TmWT at day 4 p.i. (Figures 24D,E; 26B,C). This demonstrates that iron 

acquisition via siderophores might play a minor role during late stage of infection, whereas anaerobic 

respiration was of major importance. In all samples during late stages of infection, domination by 

Salmonella paralleled with decreased total 16S rRNA copies per 5 ng template DNA (Figure 24C-E).  
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Figure 24: Environmental factors supporting dysbiosis meditated by Salmonella ‘blooms’ during 

inflammation. (A) Experimental set-up: Oligo-MM
12

 were orally infected with 5 x 10
7
 of different Salmonella 

strains: S. Tm
EntA

, S. Tm
Ni. + Te.

, S. Tm
Ni.

 or S. Tm
WT

. Feces (F) for microbiota analysis and LCN-2 ELISA was taken 

before infection and at days 1, 3 and 4 p.i.. Cecal content (Cec) was additionally taken at day 4 p.i.. (B) 

Lipolcalin-2 (LCN-2) levels in feces (days 1 + 3 p.i.) and cecal content (day 4 p.i.) measured by ELISA (ng / mg 
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content). (C) – (E) Analysis of microbiota composition in feces and cecal content at the indicated time points. 

Microbiota composition is shown as relative abundance and expressed as % of cumulated 16S rRNA gene copy 

numbers (% of total 16S rRNA gene copies). The amount of absolute 16S rRNA gene copies (determined by an 

universal primer / probe combination) is illustrated as black dots (right y axis). * Or dashed line: limit of 

detection (DTL). 

 

In order to further entangle the relative contribution of anaerobic respiration, ethanolamine 

utilization and iron acquisition via siderophores to Salmonella ‘blooming’, microbiota samples were 

subsequently clustered by infection with S. Tm strains shown in Figure 24A. At early stages of 

infection (uninfected + day 3 p.i.) grouping of fecal microbiota composition by infection with 

different Salmonella strains was significant, according to Bray Curtis (p<0.002, Adonis) and Pearson 

(p<0.001, Adonis) distance matrices, with 40% as well as 51% of variation explained. At this early 

stage, only S. TmWT managed to dominate the 2 out of 7 samples and constitute ≥ 30% of total 

microbiota composition in 1 sample (Figures 24C; 26A). Non parametric PERMDISP analysis revealed 

that at day 3 p.i., the microbiota composition after infection with S. TmWT was different compared to 

uninfected and also different compared to microbiota composition of mice infected with S. TmEntA, S. 

TmNi. + Te., S. TmNi. and S. TmEA (Figure 26A). At day 3 p.i., there was no significant difference in 

microbiota composition between uninfected samples and samples infected with S. TmEntA, S. TmNi. + 

Te., S. TmNi. and S. TmEA (Figure 26A).  

During late stages of infection (day 4 p.i.), fecal samples and cecal content were analyzed. Grouping 

of fecal microbiota composition by infection with different Salmonella strains was significant, 

according to Bray Curtis (p<0.003, Adonis) and Pearson (p<0.003, Adonis) distance matrices, with 

39% as well as 48% of variation explained (Figure 26B). Grouping of microbiota composition in cecal 

content by infection with different Salmonella strains was also significant, according to Bray Curtis 

(p<0.004, Adonis) and Pearson correlation (p<0.002, Adonis), with 41% as well as 45% of variation 

explained (Figure 26C). Remarkably, the Oligo-MM12 composition after infection with S. TmWT as well 

as S. TmEntA clustered separately (Figure 26B,C). Most of the samples were dominated by S. TmWT or S. 

TmEntA. The percentage of S. TmEntA was ≥ 30% of total microbiota composition at day 4 p.i. for all 

mice (Figure 26B,C), indicating that iron acquisition via siderophores might be negligible for the 

induction of dysbiosis during late stages of infection. The following ranking according to mean % of 

Salmonella observed in feces and cecal content underlines the importance of anaerobic respiration 

and ethanolamine utilization during Salmonella ‘blooming’ and concomitant dysbiosis at day 4 p.i.: S. 

TmWT (78.10% +/- 40.29% in feces and 83.65% +/- 34.48% in cecal content) > S. TmEntA (78.84% +/- 

24.90% in feces and 73.69% +/-25.50% in cecal content) > S. TmNi. (52.99% +/- 48.85 in feces and 

63.71% +/- 43.29% in cecal content) > S. TmEA (36.42% +/- 47.24% in feces and 41.36% +/- 43.58% in 
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cecal content) > S. TmNi. + Te. (3.46% +/- 4.48% in feces and 10.10% +/- 14.35% in cecal content) (Tables 

50; 51).  

Again, Salmonella ‘blooming’ correlated with decreased relative abundance of ‘Bacteroides 

caecimuris‘ I48, ‘Muribaculum intestinale‘ YL27 and Akkermansia muciniphila YL44 with the lowest 

relative abundance observed after infection with S. TmWT and S. TmEntA
 (Tables 50; 51). Remarkably, 

the relative abundance of Clostridium clostridioforme YL32 increased post infection with S. TmEA 

compared to S. TmWT. This difference was statistically significant in cecal content samples (rel. 

abundance of YL32: 21.40% +/- 20.91% p.i. with S. TmEA and 2.65% +/- 4.86% p.i. with S. TmWT; 

p<0.05, two-way ANOVA with Bonferroni posttest; Table 51). Furthermore, according to two-way 

ANOVA with Bonferroni posttest, there were no statistically significant differences in relative 

abundance of individual Oligo-MM12 strains at day 4 p.i. between S. TmEntA vs S. TmWT and S. TmNi. vs 

S. TmEA in feces and between S. TmEntA vs S. TmNi. and S. TmEntA vs S. TmWT in cecal content (Tables 50; 

51), again indicating a lower priority of iron acquisition via siderophores and an additive effect of 

nitrate and tetrathionate respiration at later stages of infection. It is also worth mentioning that in 

this experiment S. TmWT failed to dominate the Oligo-MM12 in 2 out of 8 samples (Figure 24D,E). This 

is in contrast to previous experiments where S. TmWT dominated the Oligo-MM12 in 7 out of 7 mice at 

day 4 p.i. (Figure 10C).  
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Figure 25: Salmonella mutants deficient in siderophore production, anaerobic respiration and ethanolamine 

utilization show similar colonization kinetics and systemic dissemination compared to S. Tm
WT

. For 

experimental set-up refer to Figure 24A. Organs were additionally taken at the indicated time points. (A) 

Salmonella loads in feces and cecal content at days 1, 3 and 4 p.i. (CFUs S. Tm / g content). (B) Cecal pathology 

determined by microscopy of HE stained tissue sections. (C) – (E) Systemic Salmonella in mesenteric 

lymphnodes, liver and spleen (CFUs / organ) at day 4 p.i.. (F) Relative cecum weight at day 4 p.i. expressed as % 

of body weight. Values are indicated as median. Statistical analysis between groups was performed using 

Kruskal-Wallis test with Dunn's multiple comparison test (* p<0.05, ** p<0.01, *** p<0.001). Dashed lines: DTL: 

limit of detection (mLN: 10 CFUs, liver: 60 CFUs, spleen: 20 CFUs). 
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Figure 26: Cluster analysis of Oligo-MM
12

 composition after infection with S. Tm
WT

 and Salmonella strains 

deficient in siderophore production, anaerobic respiration as well as ethanolamine utilization. Cluster 
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analysis is based on Bray Curtis or Pearson distance matrices and visualized as PCoA plots. (A) Clustering of 

fecal Oligo-MM
12

 composition before infection and day 3 post infection with S. Tm strains. Fecal microbiota 

samples were grouped by infection with different S. Tm strains which was significant, according to Bray Curtis 

(p<0.002, Adonis) and Pearson (p<0.001, Adonis) with 40% (Bray Curtis) and 51% (Pearson) of variation 

explained. PERMDISP analyses based on Bray Curtis and Pearson distance matrices revealed statistically 

significant differences in fecal microbiota composition between Oligo-MM
12

 infected with S. Tm
WT

 and all other 

S. Tm strains (* p<0.05, ** p<0.01, *** p<0.001). (B) Clustering of fecal Oligo-MM
12

 composition at day 4 post 

infection with S. Tm strains. Fecal microbiota samples were grouped by infection with different S. Tm strains 

which was significant, according to Bray Curtis (p<0.003, Adonis) and Pearson (p<0.003, Adonis) with 39% (Bray 

Curtis) and 48% (Pearson) of variation explained. PERMDISP analyses based Pearson distance matrix revealed 

statistically significant differences in fecal microbiota composition between Oligo-MM
12

 infected with S. Tm
EntA

, 

S. Tm
Ni.

 and S. Tm
EA

 (* p<0.05). (C) Clustering of Oligo-MM
12

 composition in cecal content at day 4 post 

infection with S. Tm strains. Samples from were grouped by infection with different S. Tm strains which was 

significant, according to Bray Curtis (p<0.004, Adonis) and Pearson (p<0.002, Adonis) with 41% (Bray Curtis) and 

45% (Pearson) of variation explained. PERMDISP analyses based on Bray Curtis and Pearson distance matrices 

revealed statistically significant differences in microbiota composition of cecal content between Oligo-MM
12

 

infected with S. Tm strains (* p<0.05, *** p<0.001). Red square: microbiota is dominated by S. Tm (≥	50%); 

orange square: S. Tm accounts for ≥ 30% of total microbiota composition.  

 

Table 50: Relative abundance of Oligo-MM12 strains after infection with S. Tm mutant strains 

deficient in iron acquisition via siderophores, anaerobic respiration and ethanolamine utilization in 

feces 

Strain 

Mean % of cumulated 16S rRNA gene copy numbers (+/- SD) 

Day 4 post infection with Salmonella mutant strains (feces) 

S. TmEntA S. TmNi. + Te. S. TmNi. S. TmEA S. TmWT 

‘Bacteroides caecimuris’ I48 
3.87 

(8.67) 

53.37
a
 

(22.05) 

26.06
b,d

 

(35.90) 

23.85
e
 

(21.14) 

5.46
f,g

 

(11.65) 

‘Muribaculum intestinale’ YL27 
5.17 

(7.61) 

11.95 

(5.56) 

5.29 

(6.78) 

15.15 

(11.45) 

4.10 

(7.60) 

Akkermansia muciniphila YL44 
7.37 

(10.02) 

24.31 

(13.17) 

12.99 

(22.67) 

10.35 

(8.16) 

5.51 

(14.66) 

‘Turicimonas caecimuris’ YL45 
0.31 

(0.48) 

3.34 

(1.70) 

1.04 

(1.51) 

2.79 

(2.26) 

0.44 

(1.15) 

Lactobacillus reuteri I49 
0.07 

(0.11) 

0.01 

(0.01) 

0.01 

(0.02) 

0.19 

(0.13) 

0.01 

(0.02) 

Enterococcus faecalis KB1 
0.01 

(0.01) 

0.002 

(0.004) 

0.03 

(0.04) 

0.003 

(0.01) 

0.02 

(0.01) 

Blautia coccoides YL58 
0.08 

(0.12) 

0.31 

(0.13) 

0.18 

(0.19) 

0.79 

(0.64) 

0.13 

(0.21) 

Clostridium innocuum I46 
0.06 

(0.10) 

0.07 

(0.03) 

0.06 

(0.07) 

0.15 

(0.12) 

0.04 

(0.08) 

Flavonifractor plautii YL31 
2.69 

(2.81) 

1.05 

(0.35) 

1.02 

(1.05) 

2.07 

(1.79) 

1.50 

(3.20) 

Clostridium clostridioforme YL32 
1.52 

(1.48) 

2.15 

(1.66) 

0.34 

(0.40) 

8.23 

(10.37) 

4.71 

(12.52) 

‘Acutalibacter muris’ KB18 DTL DTL DTL DTL DTL 

Bifidobacterium longum subsp. 

animalis YL2 
DTL DTL DTL DTL DTL 

S. Tm 
78.84 

(24.90) 

3.46
a
 

(4.48) 

52.99
b,d

 

(48.85) 

36.42
c,e

 

(47.24) 

78.10
f,g,h

 

(40.29) 

Significant differences between a S. Tm
EntA

 vs S. Tm
Ni. + Te.

, b S. Tm
EntA

 vs S. Tm
Ni.

, c S. Tm
EntA

 vs S. Tm
EA

, d S. Tm
Ni. + 

Te.
 vs S. Tm

Ni.
, e S. Tm

Ni. + Te.
 vs S. Tm

EA
, f S. Tm

Ni. + Te.
 vs S. Tm

WT
, g S. Tm

Ni.
 vs S. Tm

WT
 and h S. Tm

EA
 vs S. Tm

WT
 are 

indicated; p values were less than 0.001, except: S. Tm
EntA

 vs S. Tm
Ni.

: I48 p<0.05 and S. Tm p<0.01, I48 S. Tm
Ni. + 
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Te.
 vs S. Tm

Ni.
 p<0.01, I48 S. Tm

Ni. + Te.
 vs S. Tm

EA
 p<0.01 and S. Tm

Ni.
 vs S. Tm

WT
: I48 p< 0.05 and S. Tm p<0.01, 

two-way ANOVA with Bonferroni posttest. There were no significant differences between S. Tm
EntA

 vs S. Tm
WT

 

and S. Tm
Ni.

 vs S. Tm
EA

. Values are expressed as mean % of cumulated 16S rRNA gene copy numbers +/- 

standard deviation (SD). S. Tm
EntA

: no siderophore production (n=7), S. Tm
Ni. + Te.

: no nitrate and tetrathionate 

respiration (n=6), S. Tm
Ni.

: no nitrate respiration (n=6), S. Tm
EA

: no ethanolamine utilization (n=6), S. Tm
WT

 

(n=8). DTL: limit of detection. 

Table 51: Relative abundance of Oligo-MM12 strains after infection with S. Tm mutant strains 

deficient in iron acquisition via siderophores, anaerobic respiration and ethanolamine utilization in 

cecal content. 

Strain 

Mean % of cumulated 16S rRNA gene copy numbers (+/- SD) 

Day 4 post infection with Salmonella mutants (cecum) 

S. TmEntA S. TmNi. + Te. S. TmNi. S. TmEA S. TmWT 

‘Bacteroides caecimuris’ I48 
1.94 

(3.19) 

35.23
a
 

(20.48) 

14.17
c
 

(18.27) 

13.61
d
 

(17.17) 

4.41
e
 

(11.66) 

‘Muribaculum intestinale’ YL27 
1.93 

(1.85) 

12.02 

(2.38) 

4.97 

(6.24) 

7.74 

(7.41) 

1.79 

(4.29) 

Akkermansia muciniphila YL44 
6.67 

(11.83) 

26.27
a
 

(6.69) 

9.06 

(12.69) 

10.53 

(7.85) 

5.02
e
 

(11.77) 

‘Turicimonas caecimuris’ YL45 
0.41 

(0.68) 

2.91 

(1.14) 

1.03 

(1.43) 

1.79 

(1.66) 

0.54 

(1.17) 

Lactobacillus reuteri I49 0 
0.04 

(0.07) 
0 

0.14 

(0.13) 

0.01 

(0.02) 

Enterococcus faecalis KB1 
0.07 

(0.14) 

0.002 

(0.004) 

0.01 

(0.01) 

0.02 

(0.04) 

0.02 

(0.03) 

Blautia coccoides YL58 
0.06 

(0.07) 

0.53 

(0.20) 

0.15 

(0.18) 

0.44 

(0.37) 

0.05 

(0.13) 

Clostridium innocuum I46 
0.004 

(0.01) 

0.09 

(0.03) 

0.05 

(0.07) 

0.15 

(0.20) 

0.01 

(0.04) 

Flavonifractor plautii YL31 
9.55 

(11.22) 

4.74 

(4.15) 

4.07 

(5.25) 

2.84 

(3.38) 

1.86 

(3.87) 

Clostridium clostridioforme YL32 
5.69 

(8.67) 

8.07 

(5.35) 

2.79 

(3.16) 

21.40 

(20.91) 

2.65
h
 

(4.86) 

‘Acutalibacter muris’ KB18 DTL DTL DTL DTL DTL 

Bifidobacterium longum subsp. 

animalis YL2 
DTL DTL DTL DTL DTL 

S. Tm 
73.69 

(25.50) 

10.10
a
 

(14.35) 

63.71
c
 

(43.29) 

41.36
b,d,f

 

(43.58) 

83.65
e,g,h

 

(34.48) 

Significant differences between a S. Tm
EntA

 vs S. Tm
Ni. + Te.

, b S. Tm
EntA

 vs S. Tm
EA

, c S. Tm
Ni. + Te.

 vs S. Tm
Ni.

, d S. 

Tm
Ni. + Te.

 vs S. Tm
EA

, e S. Tm
Ni. + Te.

 vs S. Tm
WT

, f S. Tm
Ni.

 vs S. Tm
EA

, g S. Tm
Ni.

 vs S. Tm
WT

 and h S. Tm
EA

 vs S. Tm
WT

 

are indicated; p values were less than 0.001, except: YL44 S. Tm
EntA

 vs S. Tm
Ni.  + Te.

 p<0.05, I48 S. Tm
Ni. + Te.

 vs S. 

Tm
Ni.

 p<0.05, I48 S. Tm
Ni. + Te.

 vs S. Tm
EA

 p<0.05, YL44 S. Tm
Ni. + Te.

 vs S. Tm
WT

 p<0.01, S. Tm S. Tm
Ni.

 vs S.Tm
EA

 

p<0.01, S. Tm S. Tm
Ni.

 vs S. Tm
WT

 p<0.05 and YL32 S. Tm
EA

 vs S. Tm
WT

 p<0.05, two-way ANOVA with Bonferroni 

posttest. There were no significant differences between S. Tm
EntA

 vs S. Tm
Ni.

 and S. Tm
EntA

 vs S. Tm
WT

. Values are 

expressed as mean % of cumulated 16 S rRNA gene copy numbers +/- standard deviation (SD). S. Tm
EntA

: no 

siderophore production (n=7), S. Tm
Ni. + Te.

: no nitrate and tetrathionate respiration (n=6), S. Tm
Ni.

: no nitrate 

respiration (n=6), S.Tm
EA

: no ethanolamine utilization (n=6), S. Tm
WT

 (n=8). DTL: limit of detection. 
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3.4.2.3 The performance of single Oligo-MM12 strains during inflammation correlates with 

the presence of fitness genes 

Next, fold differences in absolute abundance (fold changes) of each Oligo-MM12 strain and 

Salmonella between day 0 (uninfected) and day 4 p.i. with S. TmWT, S. TmEntA, S. TmNi. + Te., S. TmNi. and 

S. TmEA were calculated (Table 53). In this experiment, the Oligo-MM12 strains could be grouped in 

strains that are depleted, intermediate or enriched during severe S. TmWT induced colitis (Figure 14; 

Table 53). In order to obtain more functional information about the performance of individual Oligo-

MM12 strains during S. Tm induced inflammation in the gut, RAST (Rapid Annotations using 

Subsystems Technology) from draft genomes was performed prioritizing the following functional 

groups (subsystems): nitrogen metabolism / nitrate and nitrite ammonification, ethanolamine (EA) 

utilization, iron acquisition, siderophore, dormancy and sporulation (Table 52). Genome mining was 

performed by Debora Garzetti. Remarkably, genomes of the Oligo-MM12 strains that were depleted 

during severe S. TmWT induced inflammation, in particular Akkermansia muciniphila YL44, 

‘Bacteroides caecimuris’ I48, ‘Muribaculum intestinale’ YL27 and ‘Turicimonas caecimuris’ YL45 in 

general did barely harbor the above mentioned subsystems (Tables 52; 53). ‘Turicimonas caecimuris’ 

YL45 harbored putative genes for nitrate respiration and Akkermansia muciniphila YL44 harbored 

genes for siderophores. Clostridium clostridioforme YL32 which is also depleted during severe colitis 

but which was increased upon moderate colitis at day 3 p.i. with S. TmWT (Table 46; Figure 10B,C) 

harbored genes for ferric iron ABC transporters, nitrite reductase and sporulation genes (Tables 52; 

53). In addition, the absolute abundance of Clostridium clostridioforme YL32 between day 0 and day 

4 p.i. with S. TmEntA, S. TmNi. + Te. and S. TmEA even increased (Table 53), suggesting that Clostridium 

clostridioforme YL32 might benefit from inflammation. Oligo-MM12 strains that were assigned to the 

intermediate group (Blautia coccoides YL58, Flavonifractor plautii YL31 and Clostridium innocuum 

I46) all harbored sporulation genes (especially Blautia coccoides YL58 and Flavonifractor plautii YL31) 

and additionally iron utilization genes (Tables 52; 53). The genome of Flavonifractor plautii YL31 

contained also ethanolamine utilization genes and Blautia coccoides YL58 harbored nitrate 

respiration genes. Fold changes of Blautia coccoides YL58, Flavonifractor plautii YL31 and Clostridium 

innocuum I46 between day 0 and day 4 p.i. with S. TmWT
, S. TmEntA, S. TmNi. + Te., S. TmNi. and S. TmEA 

were comparable (Table 53). The two Oligo-MM12 strains that were enriched during colitis 

(Enterococcus faecalis KB1 and Lactobacillus reuteri I49) did almost harbor no sporulation genes. 

Enterococcus faecalis KB1 harbored genes for ethanolamine utilization and siderophores, whereas 

Lactobacillus reuteri I49 harbored genes for nitrate respiration (Tables 52; 53). The absolute 

abundance of Lactobacillus reuteri I49 between day 0 and day 4 p.i. increased slightly p.i. with S. 

TmEntA and S. TmEA and the absolute abundance of Enterococcus faecalis KB1 was increased after 

infections with S. TmWT
, S. TmEntA, S. TmNi. and S. TmEA (Table 53).  
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Taken together, Oligo-MM12 strains that were depleted during severe colitis in general harbored no 

or few genes involved in sporulation, ethanolamine utilization, iron uptake or nitrate respiration. 

Strains that persisted during severe inflammation or decreased moderately (intermediate group) 

especially harbored sporulation genes. There were additionally genes for iron uptake, ethanolamine 

utilization and nitrate respiration in this group. Strains that were enriched during severe colitis 

mostly harbored genes for nitrate respiration, ethanolamine utilization and iron uptake. There were 

almost no genes related to dormancy or sporulation present in this enriched group. 

 

Table 52: Functional groups (subsystems) of the Oligo-MM12 determined by RAST automated 

annotation. 

Subsystem Putative gene 

Oligo-MM12 strains 

Depleted Intermediate Enriched DTL 

YL

44 

I 

48 

YL

27 

YL

45 

YL

32 

YL

58 

YL

31 

I 

46 

KB

1 

I 

49 

KB

18 

YL

2 

Nitrogen 

metabolism 

nitrate and 

nitrite 

ammonific. 

Nitrite reductase probable 

[NAD(P)H] subunit (EC 1.7.1.4) 
    + +       

Nitrate/nitrite transporter    +      +   

Respiratory nitrate reductase 
alpha chain (EC 1.7.99.4) 

   +      +   

Respiratory nitrate reductase 

gamma chain (EC 1.7.99.4) 
   +      +   

Respiratory nitrate reductase 

delta chain (EC 1.7.99.4) 
   +      +   

Respiratory nitrate reductase beta 

chain (EC 1.7.99.4) 
   +      +   

  Cytochrome c552 precursor (EC 

1.7.2.2) 
   +         

  Cytochrome c-type heme lyase 

subunit nrfF, nitrite reductase 
complex assembly 

   +         

  Cytochrome c-type heme lyase 

subunit nrfG, nitrite reductase 
complex assembly 

   +         

  Ferredoxin-type protein NapF 
(periplasmic nitrate reductase) 

   +         

  Ferredoxin-type protein NapG 
(periplasmic nitrate reductase) 

   +         

  Nitrate ABC transporter, ATP-
binding protein 

   +         

  Nitrate/nitrite response regulator 
protein 

   +         

  Nitrate/nitrite sensor protein (EC 

2.7.3.-) 
   +         

  NrfC protein    +         

  NrfD protein    +         

  Periplasmic nitrate reductase 

precursor (EC 1.7.99.4) 
   +         

  Polyferredoxin NapH (periplasmic 

nitrate reductase) 
   +         

EA 

utilization 

Ethanolamine utilization 
polyhedral-body-like protein EutN 

      +  +    

Ethanolamine sensory 
transduction histidine kinase 

      +  +    

Ethanolamine permease       +  +    
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Subsystem Putative gene 

Oligo-MM12 strains 

Depleted Intermediate Enriched DTL 

YL

44 

I 

48 

YL

27 

YL

45 

YL

32 

YL

58 

YL

31 

I 

46 

KB

1 

I 

49 

KB

18 

YL

2 

Ethanolamine two-component 
response regulator 

      +  +    

Ethanolamine utilization protein 
similar to PduL 

      +  +    

ATP:Cob(I)alamin 
adenosyltransferase (EC 2.5.1.17) 

      +      

Ethanolamine utilization protein 
similar to PduA/PduJ 

      +  +    

Ethanolamine utilization protein 
EutA 

      +  +    

Ethanolamine utilization protein 
similar to PduV 

      +  +    

Ethanolamine utilization protein 
EutJ 

      +      

Acetate kinase (EC 2.7.2.1)       +  +    

Ethanolamine ammonia-lyase 
light chain (EC 4.3.1.7) 

      +  +    

Ethanolamine utilization protein 
similar to PduT 

      +      

Ethanolamine ammonia-lyase 
heavy chain (EC 4.3.1.7) 

      +  +    

Ethanolamine utilization 
polyhedral-body-like protein EutL 

      +  +    

Ethanolamine utilization 
polyhedral-body-like protein 
EutM 

        +    

Protein clustered with 
ethanolamine utilization 

        +    

Iron 

acquisition 

Ferric iron ABC transporter, ATP-
binding protein 

    + +  +     

Two-component sensor kinase, 
associated with ferric iron 
transporter 

    +        

Two-component response 
regulator, associated with ferric 

iron transporter, 

    +        

Ferric iron ABC transporter, iron-

binding protein 
    + +  +     

Ferric iron ABC transporter, 

permease protein 
    + +  +     

Sidero-

phore 

Uncharacterized iron compound 

ABC uptake transporter, 
permease protein 

      +      

Iron compound ABC uptake 

transporter substrate-binding 
protein 

+      +  +    

Iron compound ABC uptake 
transporter ATP-binding protein 

+      +  +    

Iron compound ABC uptake 
transporter permease protein 

+      +  +    

Dormancy 

and sporul. 

FIG006789: Stage V sporulation 
protein 

        +  +  

Protein of unknown function 
identified by role in sporulation 
(SpoVG) 

    + + +      

RNA polymerase sporulation 
specific sigma factor SigE 

    + + +      

RNA polymerase sporulation 
specific sigma factor SigF 

    + + +      

RNA polymerase sporulation 
specific sigma factor SigG 

    + + +      

RNA polymerase sporulation 
specific sigma factor SigH 

     +       
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Subsystem Putative gene 

Oligo-MM12 strains 

Depleted Intermediate Enriched DTL 

YL

44 

I 

48 

YL

27 

YL

45 

YL

32 

YL

58 

YL

31 

I 

46 

KB

1 

I 

49 

KB

18 

YL

2 

RNA polymerase sporulation 
specific sigma factor SigK 

    + + +      

Spore cortex-lytic enzyme 
precursor 

          +  

Spore cortex-lytic enzyme, lytic 
transglycosylase SleB 

      +    +  

Spore cortex-lytic enzyme, N-
acetylglucosaminidase SleL (EC 
3.2.1.-) 

      +    +  

Spore germination protein GerKA       +    +  

Spore germination protein GerKB           +  

Spore germination protein GerKC       +    +  

Spore germination protein YpeB       +    +  

Spore maturation protein A     + + + +   +  

Spore maturation protein B     + + + +   +  

Sporulation sigma-E factor 
processing peptidase (SpoIIGA) 

    + + +      

Stage 0 sporulation two-

component response regulator 
(Spo0A) 

    + + +    +  

Stage II sporulation protein D 
(SpoIID) 

    + + +      

Stage II sporulation protein P     + + +      

Stage II sporulation protein 
related to metaloproteases 

(SpoIIQ) 

    + +       

Stage II sporulation protein 

required for processing of pro-
sigma-E (SpoIIR) 

    + + +      

Stage II sporulation serine 
phosphatase for sigma-F 
activation (SpoIIE) 

     + +      

Stage III sporulation protein AA     + + +      

Stage III sporulation protein AB     + + +      

Stage III sporulation protein AC     + + +      

Stage III sporulation protein AD     + + +      

Stage III sporulation protein AE     + + +    +  

Stage III sporulation protein AF     +        

Stage III sporulation protein AG     + + +      

Stage III sporulation protein AH     + + +      

Stage III sporulation protein D     + + +      

Stage IV sporulation pro-sigma-K 
processing enzyme (SpoIVFB) 

      +      

Stage IV sporulation protein A     + + +      

Stage IV sporulation protein B     + + +      

Stage V sporulation protein AA 
(SpoVAA) 

     +       

Stage V sporulation protein AB 

(SpoVAB) 
     +       

Stage V sporulation protein AC 

(SpoVAC) 
    + + +      

Stage V sporulation protein AD 

(SpoVAD) 
    + + +      
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Subsystem Putative gene 

Oligo-MM12 strains 

Depleted Intermediate Enriched DTL 

YL

44 

I 

48 

YL

27 

YL

45 

YL

32 

YL

58 

YL

31 

I 

46 

KB

1 

I 

49 

KB

18 

YL

2 

Stage V sporulation protein AE 
(SpoVAE) 

    + + +      

Stage V sporulation protein AF 
(SpoVAF) 

    +        

Stage V sporulation protein B     + + +    +  

Stage V sporulation protein T, 

AbrB family transcriptional 
regulator (SpoVT) 

    + + +      

 

Table 53: Fold difference in absolute abundance (fold change) of Oligo-MM12 strains between d0 

(uninfected) vs d4 p.i. with different Salmonella strains 

Strain 

Fold change d0 vs d4 p.i. Putative genes for: 

S. Tm
WT

 S. Tm
EntA

 S.Tm
Ni.+Te.

 S. Tm
Ni.

 S. Tm
EA

 
Iron 

AC 
Nitrate EA Spor. 

YL44 -76 -2 2 -2 -3 + - - - 

I48 -943 -40 1 -3 -5 - - - - 

YL27 -2043 -43 1 -2 -2 - - - - 

YL45 -1398 -121 -1 -3 -2 - +++ - - 

YL32 -245 2 3 -3 3 ++ + - +++ 

          

YL58 -11 -6 -2 -2 -2 + + - +++ 

YL31 -37 2 -1 -1 -1 ++ - +++ +++ 

I46 -3 -1 -1 -1 -2 + - - + 

          

KB1 18 14 -1 14 2 + - +++ + 

I49 -1 2 -5 -2 2 - ++ - - 

          

KB18 DTL DTL DTL DTL DTL - - - +++ 

YL2 DTL DTL DTL DTL DTL - - - - 

S. Tm 208,819 190,248 3,065 96,323 4,727     

Fold changes between day 0 (uninfected) and day 4 p.i. were calculated with absolute 16S rRNA gene copy 

numbers per 5 ng template DNA determined by qPCR that were normalized to a million gene copies 

determined by universal probe. Oligo-MM
12

 strains were group as in Figure 14 in depleted, intermediate and 

enriched after infection with S. Tm
WT

. + ≤ 3 putative genes (Table 52), ++ 4 - 5 putative genes (Table 52) and 

+++ more than 5 putative genes (Table 52). Iron AC: iron acquisition, Nitrate: nitrate respiration, EA: 

ethanolamine utilization, Spor.: sporulation, DTL: limit of detection. 

 

 

 

 



Results 

118 

 

3.4.3 Influence of innate immune system on microbiota composition during colitis 

3.4.3.1 Depletion of neutrophils does not prevent dysbiosis and Salmonella ‘blooming’ 

Neutrophil infiltration is a hallmark of Salmonella-induced colitis (Loetscher et al. 2012). In order to 

assess whether neutrophils are involved in dysbiosis upon Salmonella-induced colitis, neutrophils 

were depleted using α-Ly6G and α-G-CSF antibodies and mice were infected with S. TmWT (Figure 

29A). Antibody mediated depletion was confirmed by FACS analysis gating on CD45+, SYTOX-, CD3-, 

CD11b+, Ly-6G+, Ly-6C-intermediate cells (Figure 27) and immuno-fluorescence microscopy (Figure 

28). Besides the control mice (treated with isotype control), only mice with confirmed neutrophil 

depletion were included in the analysis (46% of mice in depleted group).  

Before infection as well as at day 3 p.i. with S. TmWT, Oligo-MM12 compositions were comparable 

between mice that had received isotype or depletion antibodies (Figure 29C,D,E). Remarkably, 

depletion of neutrophils favored Salmonella ‘blooming’ at day 4 p.i.. 4 out of 6 samples were 

dominated by Salmonella and inflammation was also increased (Figure 29B,C), whereas the Oligo-

MM12 from mice that had received isotype antibodies (neutrophils still present) were protected. 

Domination of Salmonella coincided with decreased amounts of overall bacteria (Figure 29C). 

Dysbiosis observed at day 4 p.i. correlated well with cluster analysis where fecal microbiota of 

antibody-depleted mice clustered separately (Figure 29D,E). Grouping of fecal microbiota 

composition by treatment with different antibodies and days post infection was significant, according 

to Bray Curtis (p<0.002, Adonis) and Pearson (p<0.001, Adonis) distance matrices, with 63% (Bray 

Curtis) as well as 70% (Pearson) of variation explained. LCN-2 levels were highly elevated at day 4 p.i. 

in mice that had received either isotype or depletion antibodies. Interestingly, depletion of 

neutrophils increased LCN-2 levels compared to control at day 4 p.i. by trend (Figure 29B). This trend 

was also observed in CD18-/- mice (deficient in extravasation of neutrophils) associated with a SPF 

microbiota that were infected with S. TmWT (day 1 p.i.) after streptomycin treatment (Figure 31B).  

Antibody mediated depletion of neutrophils did not change the abundance of S. TmWT in feces and 

cecal content during the course of infection (Figure 30A). However, CD18-/- mice showed significantly 

more Salmonella in cecal content compared to CD18+/- mice at day 1 p.i. with S. TmWT (p<0.05, 

Kruskal-Wallis test with Dunn’s multiple comparison test; Figure 31A). Systemic Salmonella loads in 

mesenteric lymphnodes were higher after antibody mediated depletion of neutrophils at day 4 p.i. 

(p<0.01, Kruskal-Wallis test with Dunn’s multiple comparison test; Figure 30B). However, systemic 

Salmonella loads in liver and spleen in antibody depleted and CD18-/- mice were not significantly 

different. There was a tendency that the absence of neutrophils favors Salmonella expansion in these 

organs (Figures 30; 31). Taken together, this data suggest that neutrophils play a protective role 
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against systemic Salmonella infection and do not contribute to Salmonella-induced dysbiosis and 

‘blooming’. 

 

Figure 27: Confirmation of neutrophil depletion by FACS. Successful depletion of neutrophils was confirmed 

by FACS gating on CD45
+
, SYTOX

-
, CD3

-
, CD11b

+
, Ly-6G

+
, Ly-6C-intermediate (Ly-6G

int
) cells. Left, example for 

isotype control; right, example for successful neutrophil depletion.  
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Figure 28: Quantification of neutrophils at the epithelium and in the gut lumen by immuno-fluorescence 

microscopy. CD18-positive neutrophils at the epithelium (A) and in the lumen (B) were antibody-stained and 

quantified by counting neutrophils present in 245 x 245 µm squares. Data are expressed as the mean. 

Statistical analysis was performed using unpaired t test (*** p<0.001). Iso.: isotype control group; Dpl.: 

neutrophil-depleted group. 
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Figure 29: Neutrophils protect Oligo-MM
12

 from S. Tm induced dysbiosis. (A) Experimental set-up: Oligo-MM
12

 

were treated with one dose of α-Ly6G antibody (150 µg) or isotype control one day before infection with S. 

Tm
WT

 (5 x 10
7
 CFUs). In addition, α-G-CSF antibody (10 µg) or isotype control were daily administered starting 

from day -1 until day 3 p.i. with S. Tm
WT

. All antibodies were given via the intraperitoneal route. (B) Lipocalin-2 
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levels in feces and cecal content (ng / mg content; * p<0.05, ** p<0.01, Kruskal-Wallis test with Dunn's multiple 

comparison test). (C) Analysis of microbiota composition in feces. Microbiota composition is shown as relative 

abundance and expressed as % of cumulated 16S rRNA gene copy numbers (% of total 16S rRNA gene copies). 

The amount of absolute 16S rRNA gene copies (determined by an universal primer / probe combination) is 

illustrated as black dots (right y axis). Cluster analysis is based on Bray Curtis (D) or Pearson (E) distance 

matrices and visualized as PCoA plots. Fecal microbiota samples were grouped by infection with S. Tm
WT

 and 

antibody mediated depletion of neutrophils (or isotype control) which was significant, according to Bray Curtis 

(p<0.002, Adonis,) and Pearson (p<0.001, Adonis,) with 63% (Bray Curtis) and 70% (Pearson) of variation 

explained. PERMDISP analyses based on Pearson distance matrices revealed statistically significant differences 

in fecal microbiota composition between day 3 and day 4 p.i. in the control group and there was also a 

difference between day 4 p.i. control group and day 3 p.i. depleted group (* p<0.05, ** p<0.01). 
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Figure 30: Influence of neutrophil depletion on the course of Salmonella infection and pathogenesis. For 

experimental set-up refer to (Figure 29A). (A) Salmonella loads in feces (F) and cecal content (cec) at days 1, 2, 

3 and 4 p.i. (CFUs S. Tm / g content). Statistical analysis between multiple groups was performed using Kruskal-

Wallis test with Dunn's multiple comparison test (* p<0.05, ** p<0.01). (B) – (D) Systemic Salmonella loads in 

mesenteric lymphnodes, liver and spleen at day 4 p.i. (CFUs / organ). (F) Relative cecum weight at day 4 p.i. 

expressed as % of body weight. Statistical analysis between two groups was performed using Mann Whitney 

test (* p<0.05, ** p<0.01). Dashed lines: DTL: limit of detection (mLN: 10 CFUs, liver: 60 CFUs, spleen: 20 CFUs). 
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Figure 31: CD18
-/-

 mice display elevated Salmonella loads in the cecum at day 1 post infection with S. Tm. 

C57BL/6J WT (blue), C57BL/6J CD18
+/-

 (orange) and C57BL/6J CD18
-/-

 (brown) mice were pre-treated with one 

single dose of streptomycin (50 µl of 0.5 g/ml stock by oral gavage) and were infected one day later with 5 x 10
7
 

CFUs of S. Tm
WT

. At day 1 and day 2 post infection (p.i.) mice were euthanized and samples were prepared. (A) 

S. Tm
WT

 loads in the cecum (CFUs / g content). (B) Lipocalin-2 levels (ng / mg cecal content). (C) – (E) 

Transmigration of S. Tm
WT

 into mesenteric lymphnodes, liver and spleen (CFUs / organ). (F) Relative cecum 

weight at day 4 p.i. expressed as % of body weight. *p<0.05, Kruskal-Wallis test with Dunn’s multiple 

comparison test. Dashed lines: DTL: limit of detection (mLN: 10 CFUs, liver: 60 CFUs, spleen: 20 CFUs). 

 

Cecum

105

106

107

108

109

1010

d1 p.i. d2 p.i.

*

C
F

U
s
/g

c
e

c
a

lc
o

n
te

n
t

Lipocalin-2 in cecal content

100

1000

10000

100000

d1 p.i. d2 p.i.

L
ip

o
c
a

lin
-2

(n
g

/
m

g
)

Mesenteric lymphnodes

100

101

102

103

104

105

106

DTL

d1 p.i. d2 p.i.

C
F

U
s
/m

L
N

Liver

100

101

102

103

104

105

106

DTL

d1 p.i. d2 p.i.

C
F

U
s
/li

v
e

r

Spleen

100

101

102

103

104

105

106

DTL

d1 p.i. d2 p.i.

C
F

U
s
/s

p
le

e
n

Rel. cecum weight

0

2

4

6

8

d1 p.i. d2 p.i.

a
s

%
 o

f 
b

o
d

y
w

e
ig

h
t

WT CD18+/- CD18-/-

A B

C D

E F



Results 

125 

 

3.5 Comparing the influence of infections with other enteric pathogens and T-cell-

induced colitis on Oligo-MM
12

 composition. 

In order to compare dysbiosis and the performance of individual commensal strains upon infection 

with S. Tm, Citrobacter rodentium and Clostridium difficile as well as T-cell-induced colitis, we used 

gnotobiotic C57BL/6J mice associated with the Oligo-MM12 and aimed to identify unbiased and 

general aspects of dysbiosis induced by gut inflammation.  

3.5.1 Citrobacter rodentium infection does not lead to dysbiosis in Oligo-MM12 mice 

For infection, 8 Oligo-MM12 mice were distributed in 3 gnotocages (2 x n=3 and 1 x n=2) and orally 

infected with 1 x 108 CFUs of Citrobacter rodentium DBS100 (C. rodentium) in a one day interval. This 

procedure was performed, in order to avoid daily opening of gnotocages for sampling of feces. Feces 

was taken at the indicated time points for microbiota analysis, determination of C. rodentium CFUs 

and for LCN-2 quantification until mice were sacrificed at day 42 p.i.. C. rodentium colonized 

efficiently already at day 1 p.i. with 3.14 x 107 CFUs peaking at day 11 p.i. with 1.26 x 108 CFUs in 

feces. After day 11 p.i., C. rodentium loads started to decline until plateauing from day 19 p.i. on with 

8.15 x 106 CFUs, where they remained until day 42 p.i. (Figure 32A). The colonization with C. 

rodentium correlated with increased fecal LCN-2 levels starting from day 7 p.i. on. LCN-2 levels 

peaked around day 15 and day 16 p.i. and decreased afterwards. This is in line with a previous study 

showing highest colitis at day 14 p.i. (Gustafsson et al. 2013). From day 23 p.i. on, LCN-2 levels were 

below or close to the detection limit, indicating resolution of intestinal inflammation (Figure 32B). C. 

rodentium induced around 4 times less LCN-2 at day 15 p.i. (around 500 ng/mg feces) compared to S. 

TmWT at day 4 p.i. (Figure 11B). Moreover, C. rodentium infection failed to induce dysbiosis during the 

course of the experiment. C. rodentium levels were less than 1% of total microbiota (Figure 32C). The 

relative cecum weight at day 42 post infection with C. rodentium was comparable to the relative 

cecum weight at day 4 p.i. with S. TmAvir (Figure 16F), indicating no pathological changes (Figure 33D). 

There were low levels of C. rodentium found in mesenteric lymph nodes, liver or spleen tissues at day 

42 p.i. (Figure 33A-C). 
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Figure 32: Course of Citrobacter rodentium infection in Oligo-MM
12

 mice. 8 Oligo-MM
12

 mice were distributed 

in 3 sterile gnotocages (2 x n=3, 1 x n=2) and infected with 1 x 10
8
 CFUs of C. rodentium (DBS 100) in a 1 day 

interval. Feces was sampled at the indicated time point in order to determine C. rodentium loads, to analyze 

microbiota composition and to determine LCN-2 levels. (A) C. rodentium loads in feces day 0 – day 38 p.i. and 

cecal content day 42 p.i. (CFUs S. Tm / g content). Mice from different gnotocages are colored differently. (B) 

Lipolcalin-2 (LCN-2) amount in feces day 0 - day 37 p.i. and cecal content day 42 p.i. measured by ELISA (ng / mg 

content). (C) Analysis of fecal microbiota composition. Microbiota composition is shown as relative abundance 

and expressed as % of cumulated 16S rRNA gene copy numbers (% of total 16S rRNA gene copies). The amount 
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of absolute 16S rRNA gene copies (determined by an universal primer / probe combination) is illustrated as 

black dots (right y axis). * Limit of detection (DTL). 

 

 

Figure 33: Systemic Citrobacter rodentium loads at day 42 p.i.. (A) – (C) Systemic C. rodentium loads in 

mesenteric lymphnodes, liver and spleen (CFUs / organ) determined at day 42 p.i.. (D) Relative cecum weight at 

day 42 p.i. expressed as % of body weight. Dashed lines: DTL: limit of detection (mLN: 10 CFUs, liver: 60 CFUs, 

spleen: 20 CFUs). 
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3.5.2 Clostridium difficile infection shifts Oligo-MM12 composition at day 3 p.i. 

All infections with Clostridium difficile DH196 (C. difficile) were performed by Nicolas Studer of Prof. 

Hapfelmeier`s group (University of Bern). Feces or cecal content were taken at the indicated time 

points (Figure 34) and DNA was extracted by Nicolas Studer using the modified stool kit from Qiagen. 

Plating of intestinal contents as well as LCN-2 ELISA was also performed by Nicolas Studer. The 

extracted intestinal DNA was subsequently sent to Munich and the microbiota was analyzed by qPCR.  

Briefly, Oligo-MM12 mice were orally infected with 103 of C. difficile DH196 spores in 100 µl of sterile 

PBS and samples were taken at the indicated time points (Figure 35). C. difficile colonized Oligo-MM12 

mice starting from day 1 p.i. (1.61 x 105 CFUs) on with 4.29 x 107 CFUs at day 3 p.i. (Figure 34A). 

Colonization with C. difficile also paralleled with elevated LCN-2 levels (Figure 34B). Looking at the 

microbiota composition, C. difficile shifted the Oligo-MM12 composition at day 3 p.i. and dominated 2 

out of 5 samples (Figure 35A). Shifts were mainly characterized by decreased relative abundance of 

‘Bacteroides caecimuris‘ I48 and ‘Muribaculum intestinale‘ YL27 and increased relative abundance of 

Firmicutes strains especially Clostridium innocuum I46 and Akkermansia muciniphila YL44 (Figure 

35A). Cluster analysis was additionally performed. Grouping of microbiota composition by days and 

infection was significant, according to Bray Curtis (p<0.001, Adonis) and Pearson (p<0.001, Adonis) 

distance matrices, with 66% as well as 76% of variation explained. The Oligo-MM12 composition of 

samples from uninfected mice as well as infected mice clustered together until day 1 p.i. (Figure 

35B,C). At day 3 p.i. with C. difficile, the Oligo-MM12 composition clustered significantly different 

(Non parametric PERMDISP procedure; Figure 35B,C). Further details of microbiota composition are 

shown in section 3.5.4. 
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Figure 34: Clostridium difficile loads and Lipocalin-2 levels in Oligo-MM
12

 mice. (A) C. difficile loads in feces 

(uninfected and day 1 p.i.) and in cecal content (day 3 p.i.; CFUs / g content). (B) Lipolcalin-2 (LCN-2) amount in 

feces (uninfected and day 1 p.i.) and in cecal content (day 3 p.i.) measured by ELISA (ng / g content). DTL: limit 

of detection. 
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Figure 35: Clostridium difficile shifts Oligo-MM
12

 composition at day 3 p.i.: Oligo-MM
12

 mice were infected 

with 1 x 10
3
 spores of C. difficile DH196 and kept in individually ventilated cages during the course of the 

experiment. In order to analyze microbiota composition, feces was taken before infection as well as at day 

1p.i.. Cecal content was additionally harvested at day 3 p.i.. (A) Analysis of microbiota composition in feces and 

cecal content. Microbiota composition is shown as relative abundance and expressed as % of cumulated 16S 

rRNA gene copy numbers (% of total 16S rRNA gene copies). The amount of absolute 16S rRNA gene copies 

(determined by an universal primer / probe combination) is illustrated as black dots (right y axis). Clustering of 
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Oligo-MM
12

 composition in feces and cecal content after oral infection with 1 x 10
3
 CFUs of C. difficile DH196 

spores is based on Bray Curtis (B) or Pearson (C) distance matrices and visualized as PCoA plots. Microbiota 

samples were grouped by infection with C. difficile or uninfected and days p.i. which was significant, according 

to Bray Curtis (p<0.001, Adonis) and Pearson (p<0.001, Adonis) with 66% (Bray Curtis) and 76% (Pearson) of 

variation explained. PERMDISP analyses based on Bray Curtis and Pearson distance matrices revealed 

statistically significant differences in fecal microbiota composition especially between day 3 p.i. with C. difficile 

and earlier time points (* p<0.05, ** p<0.01, *** p<0.001). 

 

3.5.3 Reversible, T-cell-induced colitis in RAG1-/- mice associated with the Oligo-MM12 and 

Helicobacter typhlonius induced mild microbiota shifts 

The reversible colitis model (Brasseit et al. 2016) was established in the laboratory of Prof. Mueller 

(University of Bern) and all mouse experiments shown here were conducted by Martin Faderl. Briefly, 

RAG1-/- Oligo-MM12 mice that were either generated by cohousing germfree RAG-/- with Oligo-MM12 

donor mice or by direct association of germfree RAG1-/- with the Oligo-MM12 consortium were 

gavaged with 2 x 108 CFUs of Helicobacter typhlonius CCUG48335T (H. typhlonius). 14 days later 

colitogenic CD45RBhi T-cells or PBS were adoptively transferred. In order to induce remission of 

colitis, mice were treated with α–CD4 antibodies (or isotype control) in 3 days intervals starting from 

day 24 post t-cell transfer. Mice were euthanized at day 34 post T-cell transfer and samples were 

prepared (Figure 36). Fecal DNA was extracted by Martin Faderl using the modified stool kit (Qiagen) 

and samples were sent to Munich for microbiota analysis by qPCR. LCN-2 levels were also 

determined in Bern.  

At day 34 post T-cell transfer, RAG-/- Oligo-MM12 mice associated with H. typhlonius showed elevated 

LCN-2 levels after treatment with α–CD4 antibodies or isotype, whereas mice which were only 

associated with H. typhlonius missing CD45RBhi T-cells (PBS group) were uninflamed (Figure 37). 

Antibody mediated CD4+ T-cell depletion had no significant effect on LCN-2 levels and Inflammation. 

Inflammation correlated with moderate shifts in Oligo-MM12 composition observed in the CD45RBhi + 

α–CD4 antibody or isotype control groups. However, shifts were very mild and characterized by 

increasing relative abundance of Clostridium innocuum I46 and Enterococcus faecalis KB1 (Figure 

38A). Grouping of microbiota composition by treatment (PBS, CD45RBhi + α–CD4 antibody, CD45RBhi 

+ isotype) was not significant, according to both Bray Curtis (p=0.091, Adonis) and Pearson 

correlation (p=0.201, Adonis), with only 12% as well as 14% of variation explained. There was no 

statistically significant difference between groups (p>0.05, Non parametric PERMDISP procedure; 

Figure 38B,C). This further indicates that microbiota shifts observed in this model were rather subtle. 
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Figure 36: Reversible colitis model: germfree RAG1
-/-

 mice were either cohoused with C57BL/6J Oligo-MM
12

 

mice for 20 days in order to allow vertical bacterial transmission or were directly associated with the Oligo-

MM
12 

(not shown in scheme). 14 days prior to the adoptive transfer of colitogenic CD45RB
hi

 T-cells or PBS 

(control), mice were orally (p.o.) inoculated with 2 x 10
8
 CFUs of H. typhlonius CCUG48335T (H. typh.). In order 

to induce remission of colitis, mice were treated with α-CD4 antibody (or isotype control) in 3 days intervals 

starting from day 24 post T-cell transfer. Mice were euthanized at day 34 post T-cell transfer and intestinal 

content was collected. 

 

 

Figure 37: Lipocalin-2 amounts in RAG
-/-

 Oligo-MM
12

 mice transferred with CD45RB
hi

 T-cells or PBS control 

with α-CD4 antibody or isotype treatment. Lipocalin-2 (LCN-2) levels in feces at day 34 post T-cell transfer 

measured by ELISA (ng / g feces). DTL: limit of detection. Statistical analysis between groups was performed 

using Kruskal-Wallis test with Dunn's multiple comparison test (* p<0.05, ** p<0.01). 
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Figure 38: Oligo-MM
12

 composition slightly shifts during colitis in RAG1
-/-

 Oligo-MM
12

 mice associated with 

Helicobacter typhlonius and colitogenic T-cells. For experimental set-up refer to Figure 36. (A) Analysis of fecal 

microbiota composition at day 34 post T-cell transfer. Microbiota composition is shown as relative abundance 

and expressed as % of cumulated 16S rRNA gene copy numbers (% of total 16S rRNA gene copies). The amount 

of absolute 16S rRNA gene copies (determined by an universal primer / probe combination) is illustrated as 

black dots (right y axis). LCN-2 levels are indicated as white dots (ng / g feces, 2
nd

 right y-axis). The limit of 

detection (DTL) of the LCN-2 ELISA is marked as white line. Cluster analysis of Oligo-MM
12

 composition in 

intestinal content after infection with H. typhlonius and transfer of colitogenic T-cell as well as α-CD4 antibody 

(or isotype control) is based on Bray Curtis (B) or Pearson (C) distance matrices and visualized as PCoA plots. 

Microbiota samples were grouped by treatment (PBS, CD45RB
hi

 + α–CD4 antibody, CD45RB
hi

 + isotype) which 

was not significant, according to both Bray Curtis (p=0.091, Adonis) and Pearson (p=0.201, Adonis) distance 

matrices, with only 12% as well as 14% of variation explained. PERMDISP analyses based on Bray Curtis and 
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Pearson distance matrices revealed no statistically significant differences in Oligo-MM
12

 composition after 

different treatments (p>0.05). 

 

3.5.4 Comparison of the impact of infections with S. Tm, C. rodentium and C. difficile as 

well as T-cell-induced colitis on the Oligo-MM12 composition 

Next, the impact of infections with different enteric pathogens and T-cell-induced colitis on Oligo-

MM12 composition was compared. All laboratories used C57BL/6J mice stably associated with the 

Oligo-MM12 consortium. Baseline compositions of uninfected mice between labs slightly differed 

(non parametric PERMDISP procedure; Figure 39B,C). At baseline, there was already H. typhlonius 

present in Oligo-MM12 mice used for the reversible colitis model. However, Oligo-MM12 composition 

was similar between laboratories, since the Oligo-MM12 composition grouped by infection and days 

post infection clustered together. Only the Oligo-MM12 composition of mice housed in the MvP 

(Munich) clustered separately (Figure 39B,C). Grouping of microbiota composition by infection with 

different pathogens and days post infection was significant, according to both Bray Curtis (p<0.001, 

Adonis) and Pearson (p<0.001, Adonis) distance matrices, with 84% as well as 89% of variation 

explained. Oligo-MM12 composition after infections with C. rodentium at day 15 and day 16 p.i., S. 

TmWT at day 3 p.i. as well as after H. typhlonius infection with consecutive CD45RBhi T-cell transfer 

plus α-CD4 or isotype antibody were still comparable to their respective baseline microbiota 

composition. Interestingly, only S. Tm and C. difficile were able to ‘bloom’ and dominate the 

microbiota at day 4 and day 3 p.i., respectively (Figure 39). Oligo-MM12 composition at day 4 p.i. with 

S. TmWT as well as at day 3 p.i. with C. difficile clustered apart from each other and differed also 

significantly compared to baseline microbiota and Oligo-MM12 compositions after infection with C. 

rodentium and after T-cell-induced colitis (non parametric PERMDISP procedure; Figure 39B,C).  

Domination of Salmonella with 97.64% +/- 2.14% (mean % +/- SD) and C. difficile with 38.77% +/- 

32.58% of total microbiota was accompanied by drastically decreased fold changes in absolute 

abundance as well as relative abundance of ‘Bacteroides caecimuris‘ I48 and ‘Muribaculum 

intestinale‘ YL27 between non-inflamed (baseline) and inflamed (Tables 54; 55). On the Contrary, 

both strains were still at the baseline level post infection with C. rodentium or H. typhlonius together 

with CD45RBhi T-cell transfer (Table 54). C. rodentium only constituted 0.05% +/- 0.09% and H. 

typhlonius 0.87% +/- 1.56% of total microbiota (Table 55). In contrast to infection with S. TmWT at day 

4 p.i., Akkermansia muciniphila YL44 was not decreased and seemed even to profit from infection 

with C. difficile at day 3 p.i. (Figure 39A). The abundance of ‘Turicimonas caecimuris‘ YL45 and 

Clostridium clostridioforme YL32 was decreased after infection with S. TmWT and C. difficile but 

remained unchanged after infection with C. rodentium and slightly increased after H. typhlonius 
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infection together with CD45RBhi T-cell transfer (Table 54). The abundance of Blautia coccoides YL58 

and Flavonifractor plautii YL31, strains that stay constant during inflammation (Figure 14) was rather 

unchanged after infection with C. difficile, C. rodentium or H. typhlonius together with CD45RBhi T-cell 

transfer (Table 54). Remarkably, compared to baseline the abundance of Clostridium innocuum I46 

was increased after infection with C. difficile and H. typhlonius together with CD45RBhi T-cell transfer 

representing 3.30% +/- 3.03% as well as 4.29% +/- 5.38% of total microbiota composition (Tables 54; 

55; Figure 39A). This increase was absent after infection with Salmonella or C. rodentium. 

Enterococcus faecalis KB1 and Lactobacillus reuteri I49, also increased after Salmonella induced 

inflammation (Figure 14) and benefited from infection with C. difficile and H. typhlonius together 

with CD45RBhi T-cell transfer (KB1: both, I49 only C. difficile; Table 54; Figure 39A). Additionally, 

‘Acutalibacter muris‘ KB18 was detected in samples from Prof. Hapfelmeier’s (Bern H) and Prof. 

Mueller’s (Bern M) laboratories. The abundance of KB18 was decreased after infection with C. 

difficile and H. typhlonius together with CD45RBhi T-cell transfer (Table 54).  

Taken together, S. Tm and C. difficile were able to induce severe dysbiosis characterized by 

decreasing abundance of Gram-negatives and an expansion of Enterococcus faecalis KB1 and 

Lactobacillus reuteri I49. S. Tm even dominated the microbiota with 97.64% of total microbiota 

composition. In stark contrast, C. rodentium failed to shift the Oligo-MM12 composition and H. 

typhlonius together with CD45RBhi T-cell transfer induced moderate microbiota shifts. C. difficile as 

well as H. typhlonius together with CD45RBhi T-cell transfer facilitated the growth of Clostridium 

innocuum I46. In addition, C. difficile infection might also be important for the expansion of 

Akkermansia muciniphila YL44. 
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Figure 39: Comparison of the impact of infections with S. Tm, C. difficile and C. rodentium as well as colitis 

induced by colitogenic T-cells on the Oligo-MM
12

 composition. (A) Analysis of microbiota composition in 
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intestinal content (feces: Munich, Bern M, Bern H baseline; cecal content: Bern H day 3 p.i.). Microbiota 

composition is shown as relative abundance and expressed as % of cumulated 16S rRNA gene copy numbers (% 

of total 16S rRNA gene copies). Baseline Oligo-MM
12

 compositions in the laboratories of Prof. Stecher (MvP, 

Munich), Prof. Hapfelmeier (Bern H) and Prof. Mueller (Bern M) before CD45RB
hi

 T-cell transfer were compared 

to the Oligo-MM
12

 composition after infection with different enteric pathogens or CD45RB
hi

 T-cell transfer as 

indicated. Cluster analysis of Oligo-MM
12

 composition in intestinal content after infection with different 

pathogens is based on Bray Curtis (B) or Pearson (C) distance matrices and visualized as PCoA plots. Microbiota 

samples were grouped by infection with different pathogens and days post infection which was significant, 

according to both Bray Curtis (p<0.001, Adonis) and Pearson (p<0.001, Adonis) distance matrices, with 84% as 

well as 89% of variation explained. PERMDISP analyses based on Bray Curtis and Pearson distance matrices 

revealed statistically significant differences in Oligo-MM
12

 composition especially after infection with S. Tm
WT

 

(day 4 p.i.), C. difficile (C. diff., day 3p.i.) and other pathogens and time points (* p<0.05, ** p<0.01, *** 

p<0.001). 

 

Table 54: Fold difference in absolute abundance (fold change) of individual Oligo-MM12 strains 

observed after infection with different enteric pathogens and T-cell-induced colitis 

Strain 

Infection 

S. Tm
WT

 

(F d1 vs F d4) 

C. difficile 

(F d1 vs Cec d3) 

H. typh.+CD45RB
hi 

(uninfl. vs infl.) 

C. rodentium 

(F d1 vs Fd 15+16) 

Akkermansia muciniphila YL44 -6,945 1 -1 -1 

‘Bacteroides caecimuris’ I48 -5,811 -154 1 1 

‘Muribaculum intestinale’ YL27 -5,799 -168 -1 -2 

‘Turicimonas caecimuris’ YL45 -4,105 -49 -1 -1 

Clostridium clostridioforme YL32 -317 -14 2 1 

     

Blautia coccoides YL58 -44 1 -1 -1 

Flavonifractor plautii YL31 -10 -4 -1 -2 

Clostridium innocuum I46 -2 13 3 -1 

     

Enterococcus faecalis KB1 13 25 5 1 

Lactobacillus reuteri I49 14 4 1 1 

     

‘Acutalibacter muris’ KB18 DTL -474 -172 DTL 

Bifidobacterium longum subsp. 

animalis YL2 
DTL 19 DTL DTL 

     

S. Tm
WT

 9,032 - - - 

C. difficile - 41,783 - - 

H. typhlonius - - -1 - 

C. rodentium - - - -1 

Fold changes between different time points post infection as indicated in brackets were calculated with 

absolute values that were normalized to a million gene copies determined by universal probe. Bacteria were 

grouped in categories as in Figure 14: bacteria that were depleted by pathogen induced inflammation (YL44, 

I48, YL27, YL45 and YL32); Oligo-MM
12

 strains that coped better with colitis (YL58, YL31 and I46); strains that 

were enriched during inflammation (KB1 and I49); strains that were hardly detected by qPCR (KB18 and YL2) 

and pathogens. DTL: limit of detection. 
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Table 55: Relative abundance of Oligo-MM12 strains in intestinal content after infection with 

different enteric pathogens and T-cell-induced colitis 

Strain 

mean % of cumulated 16 S rRNA gene copy numbers  

(+/- SD) 

Inflammation induced by infection with 

S. Tm C. difficile H. typh. + 

CD45RBhi/Iso 

C. rodentium 

‘Bacteroides caecimuris’ I48 
0.12 

(0.26) 

0.81 

(1.05) 

40.44
b,d

 

(11.95) 

70.11
c,e,f

 

(2.98) 

‘Muribaculum intestinale’ YL27 0* 
0.26 

(0.40) 

9.29 

(5.91) 

13.68
c,e

 

(1.65) 

Akkermansia muciniphila YL44 
0.001 

(0.004) 

38.15
a
 

(38.15) 

29.73
b
 

(6.83) 

6.29
e,f

 

(1.24) 

‘Turicimonas caecimuris’ YL45 DTL 
1.45 

(2.70) 

5.96 

(1.40) 

3.71 

(0.84) 

Lactobacillus reuteri I49 
0.59 

(0.52) 

0.85 

(1.70) 

0.88 

(2.50) 

0.06 

(0.03) 

Enterococcus faecalis KB1 
0.37 

(0.38) 

1.39 

(0.96) 

2.51 

(8.18) 
0* 

Blautia coccoides YL58 DTL 
5.94 

(7.52) 

2.58 

(3.01) 

1.02 

(0.15) 

Clostridium innocuum I46 
0.02 

(0.05) 

3.30 

(3.03) 

4.29 

(5.38) 

0.12 

(0.04) 

Flavonifractor plautii YL31 
0.93 

(1.29) 

8.55 

(16.46) 

2.34 

(0.67) 

2.01 

(0.54) 

Clostridium clostridioforme YL32 
0.33 

(0.66) 

0.21 

(0.32) 

1.10 

(0.94) 

2.95 

(1.49) 

‘Acutalibacter muris’ KB18 DTL 
0.08 

(0.17) 

0.01 

(0.04) 
DTL 

Bifidobacterium longum subsp. 

animalis YL2 
DTL 

0.23 

(0.48) 
DTL DTL 

Pathogen 
97.64 

(2.14) 

38.77
a
 

(32.58) 

0.87
b,d

 

(1.56) 

0.05
c,e

 

(0.09) 

Oligo-MM
12

 after infections with S. Tm
WT

, H. typhlonius (H. typh.) + CD45RB
hi

 + isotype antibody and C. 

rodentium (C. rod.) was analyzed using fecal DNA. DNA from cecal content was used to determine the Oligo-

MM
12

 composition after infection with C. difficile (C. diff.). Significant differences between a S. Tm vs C. diff., b 

S. Tm vs H. typh., c S. Tm vs C. rod., d C. diff. vs H. typh., e C. diff. vs C. rod. and f H. typh. vs C. rod. are 

indicated; p values were less than 0.001, except: YL27 S. Tm vs C. rod. p<0.01 and YL27 C. diff. vs C. rod. p<0.05, 

two-way ANOVA with Bonferroni posttest. Values are expressed as mean % of cumulated 16 S rRNA gene copy 

numbers +/- standard deviation (SD). The microbiota was analyzed at the following days post infection: S. Tm: 

day 4 p.i. (n=7), C. difficile day 3 p.i. (n=5), H. typhlonius + CD45RB
hi

 + isotype control antibody: day 34 p.i. 

(n=11) and C. rodentium: days 15 + 16 p.i. (n=6). * Very low abundant. DTL: limit of detection. 

 

 

 

 

 



Discussion 

139 

 

4. Discussion 

4.1 The Oligo-MM
12

, a novel consortium of gut commensals applicable for studies of 

host-microbe interactions 

Since the gut microbiota is highly complex, different gnotobiotic animal models have been developed 

in the past years ranging from low complexity with only one or two gut commensals to more complex 

communities (Freter and Abrams 1972, Klaasen et al. 1991, Bry et al. 1996, Dewhirst et al. 1999, 

Mahowald et al. 2009, Becker et al. 2011, McNulty et al. 2011) which enabled host-microbe 

interaction studies. These models microbiota were either collections of bacterial isolates from 

humans or were based on murine bacterial isolates, like the Altered Schaedler Flora (ASF). One has to 

take into account that phenotypes observed in animals associated with human bacteria (humanized 

animal models) might be biased because mutualistic microbiota-host effects mediated by long-term 

co-evolution between host-specific bacteria and host are missing and that different genetic 

backgrounds between humans and mice might additionally impact on bacterial colonization (Wos-

Oxley et al. 2012). Therefore, gnotobiotic mice associated with murine bacterial isolates, like the ASF 

would be more suitable for host-microbe interaction studies. However, the ASF is currently not 

available in public strain collections due to intellectual property rights.  

To this end, we have established a novel and highly defined model microbiota that consists of 12 

murine bacterial isolates, termed the Oligo-Mouse-Microbiota (Oligo-MM12) which can be easily 

applied to germfree mice and stably colonizes over filial generations. Remarkably, the bacterial 

consortium covers representatives of 5 eubacterial phyla including a novel family (‘Muribaculaceae’), 

genera (‘Acutalibacter muris’ and ‘Turicimonas muris’) and species (‘Bacteroides caecimuris‘ I48). 

Since the Oligo-MM12 strains grow reliably after freezing, the microbiota can be shipped and shared 

between different research facilities and can be therefore used as platform for comparable host-

microbe interaction studies. Moreover, the Oligo-MM12 strains are also included in the Mouse 

Intestinal Bacterial Collection (miBC) and are available to the research community (Lagkouvardos et 

al. 2016). Strain-specific FISH was additionally established. Moreover, the genome of each Oligo-

MM12 strain has been sequenced which enables correlations of phenotypes with gene functions. In 

addition, I have established strain-specific qPCR assays for quantification of individual Oligo-MM12 

strains making the Oligo-MM12 a valuable and versatile research tool for fast and affordable 

investigations.  
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4.1.1 Strain-specific quantitative real-time PCR enables reliable, fast and affordable 

quantification of individual Oligo-MM12 strains 

Strain-specific qPCR assays targeting hypervariable regions of the 16S rRNA gene (Figures 42) are 

now available for all Oligo-MM12 strains and enable fast microbiota analyses. In the past years, strain 

identification based on hypervariable regions of the 16S rRNA gene has become a method of choice 

since culturing of anaerobic gut commensals is challenging (Brown et al. 2013) and not suitable for 

determination of relative microbiota composition. In addition, powerful next generation 16S rRNA 

gene amplicon sequencing (NGAS) techniques were developed which enable strain identification in 

samples of unknown constitution. However, NGAS are biased by PCR errors, variable regions 

targeted, analysis pipelines used and depend on quality as well as completeness of reference 

databases such as SILVA or greengenes (Hiergeist et al. 2015), http://greengenes.lbl.gov/, 

https://www.arb-silva.de/). Therefore, novel species which are not yet included in a reference data 

base might not be detected or mistakenly attributed to wrong taxa. Thus, the novel Oliog-MM12 

strains ‘Acutalibacter muris’ KB18, ‘Muribaculum intestinale’ YL27 and ‘Bacteroides caecimuris‘ I48 

were assigned to Ruminococcaceae; Incertae Sedis (KB18), Bacteroidales; Incertae Sedis (YL27) and 

Bacteroides (I48) using SILVA data base (PhD thesis of Sandrine Brugiroux). In addition, the sensitivity 

of NGAS is relatively low. We obtained 10,000 sequencing reads per gram of intestinal content (1011 

bacteria per gram intestinal content) which translates into a detection limits of 107 CFUs per gram of 

intestinal content.  

Therefore, highly strain-specific, hydrolysis probe based qPCR assays were designed in this study 

which enable quantification of individual community members. Initial attempts to establish a SYBR 

green based qPCR protocol operating with only to specific primers were not successful because qPCR 

specificity and efficiency were not acceptable. The major problem was the design of strain-specific 

primer sets that target a short hypervariable region of the 16S rRNA gene and perform efficiently. 

Nevertheless, SYBR green based qPCR was used previously in other models (Barman et al. 2008, 

Ganesh et al. 2013). A third oligonucleotide, the hydrolysis probe together with new primers 

designed using the software Primer Express 3 (Applied Bio), finally increased strain-specificity and 

improved qPCR efficiency. Compared to NGAS, qPCR is affordable, faster, doesn’t depend on 

bioinformatical analysis tools and detects bacterial strains down to an abundance of 104 – 105 

CFUs / g intestinal content (Brugiroux et al. 2016) which is 100 – 1,000 times more sensitive 

compared to NGAS. However, like NGAS, qPCR is biased by the DNA extraction method which can 

yield different Gram-negative / Gram-positive ratios according to the lysis efficiency of the DNA 

extraction method (data not shown) and doesn’t allow to detect contaminations because it enables 

only detection of specifically targeted bacteria. One has to take into account that both methods, 
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NGAS and qPCR, are biased concerning the 16S rRNA gene copy number per genome. Since bacteria 

have different copy numbers of 16S rRNA gene operons, the actual abundance of individual 

commensals might be miss-calculated. For this reasons, one should consider normalizing the 16S 

rRNA gene copy numbers per amount of 16S rRNA operon numbers present in the genome or 

additionally using DNA and 16S rRNA gene independent methods, in order to verify NGAS or qPCR 

results. Strain-specific FISH that targets ribosomal rRNA would be an option. Nevertheless, strain-

specific qPCR is a valuable method for studying changes in bacterial composition upon different 

treatments or disturbances. 

4.1.2 The Oligo-MM12 as a tool to study kinetics of microbiota maturation as well as shifts 

in microbial composition and phenotypes upon changes in diet 

We studied colonization kinetics of the Oligo-MM12 once administered orally in germfree mice 

(Figure 6). Interestingly, we observed 3 maturation stages (early, intermediate and stable). The 

microbiota adopted a stable composition after 7 days post inoculation. At the early stage (day 1 post 

inoculation), the microbiota was dominated by Akkermansia muciniphila YL44, ‘Bacteroides 

caecimuris‘ I48 and Bifidobacterium longum subsp. animalis YL2 and relative abundance of 

Enterococcus faecalis KB1 was also elevated (Figure 6; Table 40). At this stage, these specific Oligo-

MM12 strains might profit from direct access to the host mucus which might be especially 

metabolized by Akkermansia muciniphila YL44 (Derrien et al. 2004). In addition, oxygen that might be 

present in the gut of germfree mice lacking microbiota derived butyrate which renders the 

epithelium hypoxic (Rivera-Chávez et al. 2016) might promote growth of Enterococcus faecalis KB1. 

Enterococcus faecalis KB1 has been shown to expand in aerobic liquid culture (data shown in MD 

thesis of Patrick Schiller). Oxygen might be additionally tolerated by Bifidobacterium longum subsp. 

animalis YL2 (Andriantsoanirina et al. 2013). Along this line, Martin and co-workers also identified 

Bifidobacterium species as early colonizers of the infant gut (Martin et al. 2016). Obligate anaerobic 

members, e.g. ‘Bacteroides caecimuris‘ I48 might thrive later when oxygen is consumed. During early 

colonization, accessibility of dietary nutrients plays a role during microbiota maturation. It could be 

shown that the abundance of Bacteroidetes and Bifidobacterium was predominant in infants after 

weaning and transition to table foods (Fallani et al. 2011, Koenig et al. 2011) and later also 

abundance of Firmicutes such as Clostridium spp. increased (Bergström et al. 2014). Thus, the 

maturation of the Oligo-MM12 partially resembles the maturation of the human microbiota.  

During the intermediate stage (days 2 - 4 post inoculation), there was a peak in relative abundance of 

‘Bacteroides caecimuris‘ I48 and also relative abundance of ‘Turicimonas caecimuris‘ YL45, 

‘Muribaculum intestinale‘ YL27 and Flavonifractor plautii YL31 increased by trend. The relative 

abundance of Akkermansia muciniphila YL44 and Bifidobacterium longum subsp. animalis YL2 
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dropped compared to the early stage (Figure 6; Table 40). A further decrease in oxygen 

concentration and altered mucus structure and composition upon bacterial colonization might be the 

reasons for this microbiota shift. The mucus layer is divided in a tight inner layer which serves a 

barrier and a loose outer layer which is colonized by bacteria (Johansson et al. 2008). Interestingly, 

Johansson and colleagues further observed that colonization of germfree mice with conventional 

microbiota led to the development of a tight inner and a loose outer mucus layer which coincided 

with increased abundance of Bacteroidetes and decreased abundance of Firmicutes in the distal 

colon during early colonization (Johansson et al. 2015), suggesting that new niches for intestinal 

commensals become available during the maturation of the mucus layer.  

From day 7 post inoculation on, the Oligo-MM12 composition stabilized. At this stage, Bifidobacterium 

longum subsp. animalis YL2 and Enterococcus faecalis KB1 were hardly detectable (limit of detection: 

13 and 25 16S rRNA gene copy number per 5 ng template DNA, respectively). ‘Muribaculum 

intestinale‘ YL27 and Akkermansia muciniphila YL44 expanded and the relative abundance of 

‘Bacteroides caecimuris‘ I48 was reduced, but ‘Bacteroides caecimuris‘ I48 was still the dominating 

species. The relative abundance of other Firmicutes and ‘Turicimonas caecimuris‘ YL45 was 

comparable to intermediate stage (Figure 6; Table 40). Remarkably, ‘Acutalibacter muris‘ KB18 was 

only detected in the inoculum indicating that this strain was outcompeted by the residual Oligo-

MM12 commensals at least under housing conditions in our facility. According to qPCR based 

microbiota analyses, 10 out of 12 Oligo-MM12 strains were detected when the microbiota has fully 

matured. Bifidobacterium longum subsp. animalis YL2 and ‘Acutalibacter muris‘ KB18 (limit of 

detection: 1 16S rRNA gene copy number per 5 ng template DNA) were below the limit of detection 

of the respective qPCR assay during the stable stage.  

Since this characteristic maturation kinetic of the microbiota was observed after colonizing germfree 

mice with the Oligo-MM12 consortium, this model could be further used to conduct mechanistic 

studies of microbe-host or microbe-microbe interactions during early colonization of a germfree 

host. On the one hand the structure and composition of the mucus layer (Johansson et al. 2015), 

direct microbe-microbe interactions and increased oxygenation (Rivera-Chávez et al. 2016) might 

shape microbial composition during early colonization. On the other hand also the maturation of the 

host immune system during colonization including secretion of antimicrobial peptides and IgA, 

cytokine production as well as induction of certain T- and B-cells might be involved in shaping the 

microbiota composition (Macpherson and Uhr 2004, Cash et al. 2006, Atarashi et al. 2008, Vaishnava 

et al. 2008, Sonnenberg et al. 2012, Atarashi et al. 2013). Transcriptomics of the host epithelium and 

RNAseq of the Oilig-MM12 during early colonization could shed more light on host-microbe 

interaction during early colonization. 
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Moreover, we switched standard diet to high-fat (HF) diet and supplemented oleic acid (OA) and 

monitored to Oligo-MM12 composition at 6, 12, 24 h post diet change. HF and OA increased relative 

abundance of Akkermansia muciniphila YL44 and lowered abundance of ‘Bacteroides caecimuris‘ I48 

compared to standard diet (Figure 9; Table 43). This is in line with a previous study in mice were HF 

and high sugar (HS) diet also increased relative abundance of Firmicutes and Verrucomicrobia as well 

as decreased abundance of Bacteroidetes (Carmody et al. 2015). A study conducted with 

malnourished and healthy children revealed that HF diet caused also a decrease in Bacteroidetes and 

an increase in Proteobacteria (E. coli and Klebsiella spp.) in human infants (Monira et al. 2011). In 

addition, Microbiome analysis of obese individuals revealed decreased abundance of Bacteroidetes, 

Bifidobacterium and butyrate producing Firmicutes as well as higher abundance of Actinobacteria 

and Lactobacillus spp. (Duncan et al. 2008, Armougom et al. 2009, Turnbaugh et al. 2009, Million et 

al. 2012). This change in microbiota composition might be attributed to a lower content of non-

digestible carbohydrate (fiber) in HF / HS diet, which is usually fermented by commensals in the 

lower gastro-intestinal tract (Walker et al. 2011). 

Interestingly, the presence of Akkermansia renders the host more susceptible to infection with S. Tm 

(Ganesh et al. 2013). However, parallels between different diets, changes in microbiota composition 

and susceptibility to enteric infection need to be studied elsewhere in more detail. 

4.1.3 The Oligo-MM12 that is stable over several generations and between animal facilities 

is a robust model microbiota for the research community 

By breeding mice associated with the Oligo-MM12 under germfree conditions, we showed that the 

microbiota is vertically transmitted from parental (P) to filial (F) generations. Remarkably, the Oligo-

MM12 composition was stable over at least 6 generations (Figure 7). Bifidobacterium longum subsp. 

animalis YL2 was not detected in any generation and ‘Acutalibacter muris‘ KB18 could be only 

detected at low levels in fecal samples from the P and F1 generation (Table 41). According to cluster 

analysis, especially the Oligo-MM12 composition of the P generation was different compared to that 

of the F generations (Figure 7B,C). Here, it is worth mentioning that the Oligo-MM12 mice were 

generated at the CMF in Bern (generations P and F1) and later distributed to the MvP in Munich 

(generations F2 – F6) and also to the ETHZ. Thus, different housing conditions and chow might be the 

reason for the slight differences in overall microbiota composition observed between the parental 

and filial generations as described previously (Rausch et al. 2016). There were additional fluctuations 

of relative abundance of ‘Bacteroides caecimuris‘ I48 and Akkermansia muciniphila YL44 between the 

generations F1 – F4 (Table 41). However, these differences in microbial composition were subtle and 

thus the overall Oligo-MM12 composition was considered as robust over 6 generations. 
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The Oligo-MM12 was designed as a reductionist model for host-microbe interaction studies that is 

available to a broad research community. So far, the Oligo-MM12 is already established at different 

animal facilities. Therefore, we next wanted to investigate the influence of different housing 

conditions on the overall Oligo-MM12 composition, because a similar microbiota composition 

between animal facilities is a prerequisite for comparability of data. Thus, microbiota composition of 

Oligo-MM12 mice housed at the CMF in Bern (either in isolators or in individually ventilated cages 

(IVC)), in the ETHZ and the MvP in Munich were compared in this study (Figure 8). All qPCR based 

microbiota analyses were conducted by one person in order to minimize variability and to attribute 

subtle changes in microbial composition to different housing conditions. There were only minor 

differences in relative abundance of individual Oligo-MM12 strains of mice housed at the CMF and 

ETHZ (Table 42) and overall, β-analysis revealed that samples from different facilities were in one 

cluster (Figure 8C). In contrast, the overall Oligo-MM12 composition of mice housed at the MvP 

clustered slightly apart from samples of mice housed at the CMF and ETHZ (Figure 8D,C). 

Interestingly, ‘Acutalibacter muris‘ KB18 was only detected in mice housed at the CMF and ETHZ. 

These differences might be attributed to differences in chow used in the different housing facilities 

(MvP: ssniff; CMF and ETHZ: KLIBA NAFAG). Nevertheless, since overall Oligo-MM12 composition was 

highly similar between housing facilities, we conclude that the Oligo-MM12 is a highly defined and 

stable model microbiota that can be used to obtain reproducible analyses between different 

research facilities.  

4.2 The influence of Salmonella-induced gut inflammation on the indigenous 

microbiota in the Olgio-MM
12

 model 

S. Tm invades the gut ecosystem in a stepwise manner. It has been postulated that there are several 

stages of gut ecosystem invasion until S. Tm induces full blown disease (Figure 2) (Ferreyra et al. 

2014): first S. Tm has to break CR that is conferred by the indigenous microbiota. This initial step can 

be facilitated by antibiotic intake (Barthel et al. 2003, Ng et al. 2013, Rivera-Chávez et al. 2016). Once 

CR is broken the pathogen expands in the gut, it induces inflammation and outcompetes the resident 

microbiota by profiting from the nutritional environment of an inflammatory gut milieu and escapes 

host defense mechanisms (Raffatellu et al. 2009, Winter et al. 2010, Thiennimitr et al. 2011, Lopez et 

al. 2012). However, until now it is unclear which mechanisms underlying ecosystem invasion and 

Salmonella ‘blooming’ is the most important and how gut inflammation impacts on individual 

commensal species of a healthy gut microbiota.  

Here, mechanisms underlying Salmonella-induced ‘blooming’ and the impact of inflammation on 

individual commensal bacteria were investigated using the novel Oligo-MM12 consortium. To our 
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knowledge this is the first study that prioritizes the importance of anaerobic respiration, iron 

acquisition via siderophores and ethanolamine utilization by S. Tm during ‘blooms’ and concomitant 

dysbiosis using a defined gnotobiotic mouse model. Until now, it remains further elusive how 

infiltrating neutrophils, which might directly kill commensals and S. Tm, impact on the microbiota 

during Salmonella-induced colitis. Therefore, we compared the contribution of an altered nutritional 

environment of an inflammatory gut milieu and potential neutrophil-mediated killing of commensals 

to Salmonella-‘blooms’ and concomitant microbiota shifts. Furthermore, data how gut inflammation 

impacts on individual bacterial species are scarce. Here we performed detailed analyses how single 

Oiligo-MM12 commensals ‘perform’ during severe Salmonella-induced colitis and correlate survival 

with putative fitness genes of the commensals including sporulation, iron acquisition, anaerobic 

respiration and ethanolamine utilization.  

We show that the Oilgo-MM12 serve as excellent tool to study this questions. S. Tm expands in Oligo-

MM12 mice and induces severe colitis accompanied by systemic infection and drastic microbiota 

shifts by days 3 - 4 p.i. without antibiotic pre-treatment (Figures 10; 11). Interestingly, the Oligo-

MM12 mediates CR during early stages of infection (day 1 p.i.). However, after 2 days, S. Tm can 

further expand and finally ‘blooms’ at day 4 p.i.. Because of this step-wise infection process, Oligo-

MM12 mice manifest as ideal model to mechanistically study different stages of pathogen-mediated 

ecosystem invasion (Figure 40). The Oligo-MM12 is composed of defined murine isolates which 

guarantees long-term co-evolution between mouse commensals and the murine host. Other 

Salmonella colitis models rely on antibiotic pre-treatment prior to infection which breaks CR 

mediated by the microbiota (Barthel et al. 2003), are not well defined (Barman et al. 2008) or are 

based on a humanized microbiota (Ganesh et al. 2013). These model might be excellent for studying 

the impact of Salmonella infection on the host, however since the Oligo-MM12 is not antibiotic pre-

treated and well defined our model might be more suitable for studying microbe-pathogen and 

microbe-microbe interaction during S. Tm induced colitis. 
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Figure 40: The Oligo-MM
12

 is a useful tool to study Salmonella ecosystem invasion. Mice associated with the 

Oligo-MM
12

 were infected with 5 x 10
7
 CFUs of S. Tm without antibiotic pre-treatment before infection. The 

microbiota confers colonization resistance (CR) at early stages of infection (day 1 p.i.). S. Tm starts to expand 

from day 2 p.i. on and induces already mild inflammation and slight changes in microbial composition at day 3 

p.i. (pathogen expansion). Remarkably, S. Tm dominates the microbiota at day 4 p.i. and induces severe colitis 

accompanied by massive dysbiosis and overall decrease in total bacteria (right y axis). This is not observed upon 

infection with an avirulent S. Tm strain. Since the microbiota composition is not disrupted by antibiotics, this 

model is excellent for studying the impact of S. Tm ecosystem invasion on individual commensals of the gut 

microbiota in a defined setting. 
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4.2.1 Profiling the performance of Oligo-MM12 strains in the presence of Salmonella-

induced gut inflammation during ecosystem invasion 

To our knowledge, this is the first study that shows the impact of gradual Salmonella-ecosystem 

invasion that is accompanied by inflammation on individual species of a normal gut microbiota using 

a gnotobiotic mouse model based on a highly defined consortium consisting of mouse-adapted 

bacterial strains.  

Upon infection with S. TmWT, Oligo-MM12 mice exhibited severe colitis at day 4 p.i.. Inflammation 

onset was already observed at day 3 p.i. (Figures 10; 11). Induction of colitis was dependent on 

functional Type 3 secretion systems (T3SS) because infection with an avirulent Salmonella strain S. 

TmAvir which is deficient in functional T3SS-1 and 2 failed to induce colitis in this model (Figures 10B; 

11B). Although T3SS-1 and 2 synergistically contribute to inflammation and Salmonella ‘blooming’, 

T3SS-1 seems to be of major importance (Figures 15; 16; 17). This observation is in line with previous 

S. Tm infection experiments conducted with streptomycin pre-treated C57BL/6J mice (Hapfelmeier et 

al. 2005) and FvB mice (Barman et al. 2008). Exacerbating inflammation was categorized in 3 stages 

according to inflammation grade and cecal pathology: non-inflamed (no colitis, pathoscore: 0 - 3, 

uninfected - day 2 p.i.), intermediate (moderate colitis, pathoscore: 3 - 9; day 3 p.i.) and inflamed 

(profound colitis, pathoscore: > 9; day 4 p.i.) (Figure 10B). Cluster analyses revealed that the Oligo-

MM12 composition in feces and cecal content differed at all stages of infection with S. TmWT (Figures 

12C,D; 13C,D).  

S. TmWT started to expand at day 3 p.i. (Figure 10C; Tables 44; 46). Since no antibiotics were applied 

prior to infection, this pathogen expansion might be fueled by microbiota derived hydrogen as shown 

previously (Maier et al. 2013). This hypothesis could be investigated by infecting Oligo-MM12 mice 

with Salmonella strains deficient in hydrogenases and additional monitoring of S. TmWT expansion at 

day 3 p.i. Co-infection experiments with a hydrogenase mutant S. Tm strain and S. TmWT could 

additionally be performed. Pathogen expansion was accompanied by increased cecal pathology 

(Figure 10B) and moderate changes in microbiota composition (Figures 10C; 12C,D; 13C,D). This 

change was characterized by decreased relative abundance of ‘Bacteroides caecimuris‘ I48 as well as 

increased relative abundance of Akkermansia muciniphila YL44 and Clostridium clostridioforme YL32 

(Tables 44; 46). One could hypothesize that reduced amounts of ‘Bacteroides caecimuris‘ I48 could 

increase the accessibility to host mucus structures which might favor growth of Akkermansia 

muciniphila YL44 (Derrien et al. 2004).  

Interestingly, Akkermansia muciniphila has been shown to further promote Salmonella pathology by 

affecting the mucosal barrier disturbing host-mucus homoeostasis (Ganesh et al. 2013) which might 
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be an additional early microbiota dependent mechanism (besides microbiota derived hydrogen) that 

primes Salmonella ‘blooming’. Additional S. Tm infection experiments with Olgio-MM11 mice lacking 

Akkermansia muciniphila YL44 could strengthen this hypothesis. Remarkably, compared to standard 

diet, HF diet and OA supplementation increased relative abundance of Akkermansia muciniphila YL44 

whereas relative abundance of ‘Bacteroides caecimuris‘ I48 was decreased (Figure 9). Therefore, 

these changes in nutrition might render to host more susceptible to Salmonella infection. This 

hypothesis is currently further investigated in the laboratory of Prof. Hardt (ETH, Zurich). The relative 

abundance of Clostridium clostridioforme YL32 in feces was also increased at day 3 p.i. with S. TmWT 

(Table 46). It could be demonstrated that a Clostridium clostridioforme strain was able to attach to 

and invade colonic epithelium cells which was followed by the induction of pro-inflammatory 

cytokines (Ohkusa et al. 2009). This induction of pro-inflammatory cytokines may further promote 

inflammation and thereby fuel Salmonella growth. This data suggest that during early stages of 

infection, S. Tm induces an inflammatory tone in the gut by favoring the growth of potentially 

colitogenic members of the indigenous microbiota. This increased inflammatory tone precedes 

pathogen ‘blooming’ and concomitant collateral damage of the microbiota. 

At day 4 p.i. with S. TmWT, full blown colitis and Salmonella ‘blooms’ were apparent (Figure 10). 

Absolute abundance of Salmonella increased around 8,000 – 9,000 fold in feces and cecal content 

(Figure 14). S. TmWT dominated the microbiota during this late stage of infection (more than 96% of 

total bacteria in feces and cecal content) which correlated with severe dysbiosis and decreased 

abundance of bacteria in the gut measured as total 16S rRNA gene copy numbers (Figure 10; Table 

44; 46). This decrease in overall bacteria upon S. Tm induced inflammation was also observed 

previously (Stecher et al. 2007). It has to be mentioned here, that the number of total bacteria was 

determined using an universal primer / probe combination targeting all Oligo-MM12 strains and 

Salmonella. Besides bacterial DNA, DNA recovered from the inflamed gut contains variable fractions 

of eukaryotic DNA extracted from shed epithelial cells (Sellin et al. 2014) and infiltrating neutrophils 

(Loetscher et al. 2012). Eukaryotic DNA cannot be distinguished from bacterial DNA. Therefore, less 

bacterial template DNA is applied for the qPCR assay which might mistakenly lead to 

underestimation of bacterial 16S rRNA gene copy numbers. Nevertheless, individual members of the 

Oligo-MM12 performed differently in the presence of S. TmWT-induced gut inflammation. Oligo-MM12 

strains were subsequently grouped in 3 categories, according to their increasing or decreasing 

abundance during Salmonella-induced colitis: depleted, intermediate and enriched (Figure 14). 

Especially absolute and relative abundance of Gram-negative strains belonging to the phyla 

Bacteroidetes, Proteobacteria and Verrucomicrobia: ‘Bacteroides caecimuris‘ I48, ‘Muribaculum 

intestinale‘ YL27, ‘Turicimonas caecimuris‘ YL45 and Akkermansia muciniphila YL44 as well as of the 

Gram-variable Firmicute Clostridium clostridioforme YL32 were highly reduced during full blown 
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S. Tm-induced colitis (Figure 14; Tables 44; 46). The strains that were assigned to the intermediate 

group: Blautia coccoides YL58, Flavonifractor plautii YL31 and Clostridium innocuum I46 belonged to 

the phylum Firmicutes and stained Gram-positive or Gram-variable. These strains could be more 

resistant to inflammation as relative and absolute abundance were less reduced during colitis (Figure 

14; Tables 44; 46). Remarkably, absolute abundance of Lactobacillus reuteri I49 and Enterococcus 

faecalis KB1, both Gram-positive Firmicutes increased during S. Tm-induced gut inflammation (Figure 

14). Bifidobacterium longum subsp. animalis YL2 and ‘Acutalibacter muris’ KB18 were below limit of 

detection of the respective qPCR assay even before onset of colitis. These strains might therefore by 

outcompeted by the residual Oligo-MM12 strains under MvP housing conditions.  

Interestingly, most observations are in line with previous studies based on streptomycin pre-treated 

mice, 129/SVJ mice, humanized C3H mice or FvB mice (Table 1) showing decreased abundance of 

Bacteroides spp., Verrucomicrobia (Akkermansia muciniphila), Firmicutes, Barnesiella spp. and 

Clostridium spp. as well as increased abundance of Salmonella and Enterococcus spp. (Stecher et al. 

2007, Barman et al. 2008, Ganesh et al. 2013, Kaiser et al. 2013) during Salmonella-induces colitis. 

However, in contrast to studies based on streptomycin pre-treated C57BL/6J mice performing 

competition experiments with Lactobacillus reuteri (L. reuteri RRRif) and wildtype Salmonella (Stecher 

et al. 2007) and on FvB mice (Barman et al. 2008) which report decreased abundance of Lactobacillus 

spp. upon Salmonella infection, the Oligo-MM12 strain Lactobacillus reuteri I49 increased during S. 

Tm-induced colitis.  

Lactobacillus reuteri strains can exert immune modulatory properties which contribute to 

suppression of inflammation. Therefore, L. reuteri is used as probiotic for treating inflammatory 

diseases (Thomas et al. 2016). Our observation that Lactobacillus reuteri I49 expands during 

pathogen induced inflammation further supports the applicability of L. reuteri as probiotic strain 

during inflammatory disease since this bacterium seems to withstand harsh inflammatory conditions. 

However, how Lactobacillus reuteri I49 exactly impacts on S. Tm-induced gut inflammation needs to 

be assessed experimentally. In addition to the Oligo-MM12, Oligo-MM11 mice lacking Lactobacillus 

reuteri I49 should be infected with S. TmWT and pro-inflammatory cytokine and LCN-2 levels as well as 

colitis scores should be compared between groups. These experiments might reveal possible immune 

modulatory effects of this strain. 

Enterococcus faecalis which, also seems to be adapted to inflammation, is on the one hand able to 

stimulate local mucosal immunity (Castro et al. 2016). On the other hand, Enterococcus faecalis is 

associated with disease, induction of pro-inflammatory cytokines (Diederich et al. 2016) and with the 

development of chronic intestinal inflammation which is accompanied by tissue damage caused by 

metalloprotease activity (Steck et al. 2011). Moreover, Enterococcus faecalis is able to form biofilms 
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which might render this strain more resistant to inflammation (Fabretti et al. 2006). Enterococcus 

faecalis can also be an opportunistic pathogen (Pham et al. 2014). Upon enteric infection with C. 

rodentium of Il22ra1
tm1a/tm1a mice, commensal Enterococcus faecalis aggravated disease and caused 

systemic infection. This was dependent on fucosylation and on the diversity of anaerobic commensal 

symbionts that protected from Enterococcus faecalis out-growth, underlining the importance of a 

well-balanced microbiota which keeps opportunistic pathogens in check. Likewise, Enterococcus 

faecalis KB1 could also boost Salmonella pathology in the Oligo-MM12 model. This hypothesis could 

be tested with S. Tm infection of Oigo-MM11 mice lacking Enterococcus faecalis. Possible systemic 

Enterococcus faecalis levels as well as inflammation induced pathology should be compared between 

Oligo-MM12 and Oligo-MM11.  

Blautia coccoides YL58, Flavonifractor plautii YL31 and Clostridium innocuum I46 didn’t seem to 

benefit from severe colitis observed at day 4 p.i. with S. TmWT but decreased moderately in absolute 

and relative abundance. Interestingly, a previous study conducted by Tuovinen and colleagues 

showed that Blautia coccoides was able to induce TNF-alpha and IL-10 expression (Tuovinen et al. 

2013), indicating both an inflammatory and anti-inflammatory potential of this strain. Flavonifractor 

plautii has been shown to be involved in conversion of catechins a flavonoid subclass which is 

(together with its metabolites) beneficial for healthy (Kutschera et al. 2011). Clostridium innocuum is 

resistant to bile acids and was associated with the microbiota of an chronically inflamed gut 

(Wohlgemuth et al. 2011). This indicates that Blautia coccoides YL58 and Clostridium innocuum I46 

might contribute to inflammation.  

Absolute and relative abundance of ‘Bacteroides caecimuris‘ I48, ‘Muribaculum intestinale‘ YL27, 

‘Turicimonas caecimuris‘ YL45, Akkermansia muciniphila YL44 and Clostridium clostridioforme YL32 

decreased tremendously during full blown Salmonella-induced colitis. Since ‘Bacteroides caecimuris‘ 

I48, ‘Muribaculum intestinale‘ YL27 and ‘Turicimonas caecimuris‘ YL45 are novel species, so far 

knowledge about these bacterial strains is scarce. However, Ubeda and co-workers identified a 

protective effect of species belonging to the Barnesiella genus against vancomycin resistant 

Enterococcus infection (Ubeda et al. 2013). Since ‘Muribaculum intestinale‘ YL27 highly resembles 

Barnesiella, this Oligo-MM12 strain might be engaged in suppressing enterococcal ‘blooms’ during 

homoeostasis. Interestingly, Akkermansia muciniphila YL44 and Clostridium clostridioforme YL32 

which might have prepared the way for Salmonella-ecosystem invasion on earlier time points of 

infection were massively reduced during severe colitis at day 4 p.i.. 

In contrast, a Salmonella strain lacking functional T3SS-1 and 2 (S. TmAvir) was unable to induce colitis 

and concomitant dysbiosis during the course of infection in Oligo-MM12 mice (Figures 10; 11). This is 

in line with previous observations (Stecher et al. 2007). According to cluster analyses, there was no 
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difference in overall Oligo-MM12 composition in feces and cecal content at different days post 

infection with S. TmAvir (Figures 12A,B; 13A,B). However, there were minor but significant changes in 

relative abundance of Akkermansia muciniphila YL44 and ‘Bacteroides caecimuris‘ I48 in feces and 

cecal content. Especially, Akkermansia muciniphila YL44 was increased in cecal content at day 3 p.i. 

with S. TmAvir, whereas relative abundance of ‘Bacteroides caecimuris‘ I48 decreased (Tables 45; 47). 

This could be an effect mediated by the presence of Salmonella or could just simply be microbiota 

variations observed between different experiments since fluctuations in relative abundance of 

Akkermansia muciniphila YL44 and ‘Bacteroides caecimuris‘ I48 were also observed in studies of 

Oligo-MM12 stability over generations (Figure 7; Table 41). 

4.2.2 Performance of Oligo-MM12 strains in a colitic environment correlates with the 

presence fitness genes 

We hypothesized that the performance of individual Oligo-MM12 strains is dependent on certain 

fitness genes that were previously shown to enable survival or even provide Salmonella a benefit 

during colitis. Therefore, we mined annotated draft genomes of the Oligo-MM12 strains (Table 52). 

The analysis focused on putative genes that encompass anaerobic respiration (nitrogen metabolism / 

nitrate, nitrite ammonification), ethanolamine utilization, iron acquisition and siderophore 

production. These factors are important for pathogen expansion in an inflammatory milieu 

(Raffatellu et al. 2009, Winter et al. 2010, Thiennimitr et al. 2011, Lopez et al. 2012) and might 

therefore also contribute to survival of certain gut commensals. The presence of dormancy and 

sporulation genes was also investigated.  

Indeed, the performance of individual microbiota members in a colitic environment correlates with 

the presence of fitness genes, since Oligo-MM12 strains which were depleted during colitis hardly 

harbor any of the above motioned putative fitness genes and strains that seemed to benefit from 

colitis are potentially able to acquire iron via siderophores, utilize ethanolamine and respire 

anaerobically (Tables 52; 53). Previous studies showing ‘blooms’ of Enterobacteriaceae and 

Enterococcus species during gut inflammation or antibiotic induced perturbation of the microbiota 

are in line with our data (Stecher et al. 2010, Ubeda et al. 2010, Taur et al. 2012). We further extend 

these studies by confirming the presence of putative fitness genes in commensal bacteria other than 

Enterobacteriaceae which were already shown to be able to perform nitrate respiration and utilize 

ethanolamine (Bertin et al. 2011, Rendon et al. 2015).  

Moreover, we correlated the presence of sporulation genes with increased capability of resistance 

and therefore hypothesized that the potential of undergoing sporulation is an essential mechanism 

for the recovery from dysbiosis (resilience), since sporulation increases tolerance against stress such 
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as heat and hydrogen peroxide (Moeller et al. 2012). We therefore investigated the potential of the 

Oligo-MM12 to recover from Salmonella-induced dysbiosis using a Salmonella strain deficient in a 

functional T3SS-2 (S. TmSPI-2, Figure 18). In contrast to S. TmWT, S. TmSPI-2 doesn’t induce life 

threatening systemic infection (Endt et al. 2010). In addition, a previous experiment showed that in 

contrast to a Salmonella strain lacking functional T3SS-1 (S. TmSPI-1), S. TmSPI-2 is able to induce 

dysbiosis (Figures 15; 17) and that S. TmSPI-2 induced inflammation is milder compared to 

inflammation induced by S. TmWT (Figures 15B; 16B). Therefore, S. TmSPI-2 was used for a long-term 

infection of Oligo-MM12 mice. One has to mention that for unknown reasons LCN-2 levels were 

already elevated before infection with S. TmSPI-2 in this long-term experiment. Elevated LCN-2 levels 

could be attributed to increased stress which mice might suffer during export from the isolator and 

handling before infection. However, this could not be confirmed by respective control experiments 

(data not shown). Nevertheless, S. TmSPI-2 colonized Oligo-MM12 mice and was not outcompeted by 

the microbiota until day 21 p.i. (Figure 19A). According to cluster analyses, the Oligo-MM12 

composition was changed at day 4 p.i. (Figure 18D,E). Differences were mainly characterized by 

increased relative abundance of Salmonella and Akkermansia muciniphila YL44 (Figure 18C). 

However, major shifts in β-diversity were not observed. The minor shift in microbial composition was 

reverted back to that before infection (resilience). Unfortunately, the Oligo-MM12 shifts were only 

mild and the effect of spore forming and germination on resilience could not be further investigated 

using S. TmSPI-2. However, this experiment underlined the emergence of Akkermansia muciniphila 

YL44 in Salmonella-induced dysbiosis. 

Next, we wanted to experientially test that whether commensal bacteria profit from nitrate and iron 

limitation. Since we were not able to genetically modify any of the Oligo-MM12 strains, we performed 

an in vitro batch cultures in rich anaerobic medium without mucin using Oligo-MM12 bacteria 

recovered from cecal content. We simulated iron starvation during anti-microbial immune response 

by adding different concentrations of either dipyridyl or diethylenetriaminepentaacetic acid (DTPA). 

Anaerobic batch cultures supplemented with 10 mM of nitrate were additionally performed. 

Interestingly, iron starvation mediated by the application of 300 µM of dipyripyl which binds Fe2+ 

promoted outgrowth of Enterococcus faecalis KB1 and inhibited the growth of the residual Oligo-

MM12 strains at time point 8h post inoculation. In the presence of 100 µM of DTPA which sequesters 

Fe3+, Enterococcus faecalis KB1 growth was also promoted and additionally Clostridium innocuum I46 

and ‘Turicimonas caecimuris‘ YL45 were more abundant under this condition. In contrast to iron 

starvation, additional nitrate had no obvious effect on the Oligo-MM12 composition after 8h (data 

shown in MD thesis of Patrick Schiller), indicating that the Oligo-MM12 strains might be unable to 

respire nitrate during Salmonella-induced colitis. However, iron limitation might confer an additional 

fitness advantage especially to Enterococcus faecalis KB1 (likewise Salmonella) over the residual 
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microbiota. The importance of ethanolamine utilization and anaerobic tetrathionate respiration were 

not yet investigated using in vitro cultures.  

4.2.3 Investigating the contribution of anaerobic respiration, ethanolamine utilization and 

iron acquisition via siderophores to Salmonella ‘blooming’ and concomitant dysbiosis 

In order to investigate and to prioritize the effects of iron acquisition via siderophores, nitrate and 

tetrathionate respiration as well as ethanolamine utilization on Salmonella ‘blooms’ and concomitant 

dysbiosis, single infections of Oligo-MM12 mice with either S. TmWT, S. TmEntA, S. TmNi. + Te., S. TmNi. or S. 

TmEA were performed (Figure 24). To our knowledge, this is the first study that investigates the 

contribution of nutritional factors present in an inflammatory milieu to pathogen outgrowth and 

displacement of the indigenous microbiota during early Salmonella expansion phase and later 

pathogen ‘blooming’ using one defined gnotobiotic mouse model with mouse adapted strains. 

Interestingly, none of the Salmonella mutant strains induced dysbiosis at day 3 p.i., whereas S. TmWT 

already dominated 29% of the samples (≥ 50% of total microbiota composition, Figure 24C). This 

indicates that during early time points of infection anaerobic respiration, ethanolamine utilization 

and iron acquisition via siderophores synergistically contribute to early Salmonella ‘blooming’. 

Especially, ethanolamine might be important for early gut colonization since S. TmEA
 shows less CFUs 

at day 3 p.i. in feces compared to S. TmWT (Figure 25A). However, at day 4 p.i., nitrate and 

tetrathionate additively contribute the most to Salmonella blooms and concomitant dysbiosis. 

Ethanolamine utilization is also important during late stages of infection. However, iron acquisition 

via siderophores seems to be negligible for the induction of dysbiosis in this model (Figure 24D,E; 

Tables 50; 51). To this end, the importance of nutritional factors during severe Salmonella-induced 

colitis can be ranked as follows: nitrate and tetrathionate respiration > ethanolamine utilization > 

iron acquisition via siderophores. 

Ethanolamine is generated by breaking down phosphatidylethanolamine which is part of the 

mammalian as well as the bacterial cell membrane engaging phosphodiesterases (Proulx and Fung 

1969, Randle et al. 1969, Ansell et al. 1973, Larson et al. 1983). Thus, ethanolamine is an abundant 

nutrient in the gut that can serve as carbon and nitrogen source (Roof and Roth 1988). However, 

ethanolamine utilization is quite costly, since a micro-compartment containing toxic by-products and 

enzymes needed for ethanolamine utilization such as ethanolamine ammonia lyase encoded by 

eutBC (big and small subunits) which converts ethanolamine into acetaldehyde and ammonia 

(nitrogen source) in the presence of cobalamin, alcohol dehydrogenase encode by eutG which 

converts acetaldehyde to ethanol (carbon source) or aldehyde oxidoreductase encoded by eutE 

which converts acetaldehyde to acetyl-CoA (Krebs cycle) is established (Roof and Roth 1988, Roof 

and Roth 1989, Stojiljkovic et al. 1995, Garsin 2010). Thus, we believe that ethanolamine utilization is 
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only available for a subset of gut bacteria. Previous investigations showed the presence of genes 

needed for ethanolamine utilization in Actinobacteria spp., Proteobacteria, Enterobacteriaceae and 

Firmicutes like Enterococcus faecalis (Del Papa and Perego 2008, Fox et al. 2009, Tsoy et al. 2009), 

which is in line with our observation that Enterococcus faecalis KB1 and Flavonifractor plautii YL31 

are the only Oligo-MM12 strains which harbor genes for ethanolamine utilization (Tables 52; 53). 

Thus, this nutrient might selectively be consumed by Salmonella and possibly also by Enterococcus 

faecalis KB1 and Flavonifractor plautii YL31 during pathogen expansion when inflammation is not yet 

full blown and anaerobic electron acceptors might not yet be available. Interestingly, compared to S. 

TmWT, the relative abundance of Clostridium clostridioforme YL32 was increased in cecal content after 

infection with S. TmEA (Table 51). This observation is interesting, since relative abundance of 

Clostridium clostridioforme YL32 was also elevated at day 3 p.i. with S. TmWT (Table 46). Clostridium 

clostridioforme YL32 might benefit from ethanolamine during pathogen expansion and during late 

stages of infection with S. TmEA since unconsumed ethanolamine might still be available. However, 

we could not find putative functional genes for ethanolamine utilization by RAST automated genome 

annotation. An Additional in vitro culture assay could provide further evidence whether Clostridium 

clostridioforme YL32 is able to use ethanolamine. 

As a consequence of the antimicrobial immune response during Salmonella-induced colitis, nitrate 

and tetrathionate become available (Levitt et al. 1999, Furne et al. 2001, Szabó et al. 2007, Winter et 

al. 2010, Winter et al. 2013) and now further promote pathogen ‘blooming’ and dysbiosis at late 

stages of infection. The contribution of both anaerobic electron acceptors to Salmonella-induced 

disease was so important that a Salmonella strain lacking nitrate and tetrathionate respiration 

exhibited less cecal pathology compared to wildtype (Figure 25B). 

Iron is an essential micronutrient and important for replication of pathogens. Thus, the iron 

availability is tightly regulated by the host and free iron is scarce because it is bound to heme, or iron 

binding proteins such as transferrin, ferritin and lactoferrin (Birgegård and Caro 1984, Andrews 2000, 

Diaz-Ochoa et al. 2014). Therefore, bacteria evolved siderophores which have a high affinity to ferric 

iron (Fe3+) sequestering iron from host iron binding proteins (Neilands 1995, Griffiths 1999). Upon 

infection, the host can additionally limit iron availability by up regulation of the iron regulating 

hormone hepcidin which inactivates the iron exporter ferroportin and by secretion of the 

siderophore sequestering antimicrobial protein LCN-2 (Goetz et al. 2002, Flo et al. 2004, Nemeth et 

al. 2004, Armitage et al. 2011, Correnti and Strong 2012). In this study we investigated the 

contribution of siderophore production on Salmonella ‘blooming’ and the induction of dysbiosis. 

Interestingly, impaired acquisition of ferric iron via siderophores (enterochelin and salmochelin 

which is resistant to LCN-2 sequestration (Raffatellu et al. 2009)) did not obviously contribute to 
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Salmonella ‘blooms’ and dysbiosis (Figures 24; 26). However, other iron uptake mechanisms might be 

important. Thus, Bacteria could directly uptake ferrous iron (Fe2+) via Feo proteins. This mechanism 

might be important during early Salmonella ecosystem invasion when oxygenation is low and 

unbound iron can be found in contrast to the inflamed gut (Andrews et al. 2003, Diaz-Ochoa et al. 

2014). In addition, since Salmonella-induced colitis coincides with tissue damage (Figure 25B), 

Salmonella might also acquire iron from heme (Braun and Hantke 2011).  

It also needs to be mentioned here that in this set of experiment S. TmWT failed to dominate the 

microbiota in 2 out of 8 samples (Figure 24D,E) which is in contrast to previous experiments where S. 

TmWT was the dominating species in 100% of the samples (Figure 10C). Possible reasons for this 

effect could be that the Oligo-MM12 strains somehow evolved to a consortium that provides 

enhanced CR against S. TmWT infection or mice diversified despite germfree housing by accumulating 

environmental bacteria which might contribute to this increased CR. 16S rRNA gene amplicon 

sequencing using broad-range primers could give a hint for the presence of possible contaminants in 

the Oligo-MM12 consortium. New bacterial strains might be discovered which can protect from 

Salmonella-induced dysbiosis. 

4.2.4 ‘Nutrient-’ versus ‘killing-hypothesis’, the role of infiltrating neutrophils for 

Salmonella ‘blooming’ and dysbiosis 

So far, it is not understood whether pathogen-induced dysbiosis is caused indirectly by commensals 

being outcompeted by a pathogen which profits from the nutritional environment of an 

inflammatory milieu (‘nutrient-hypothesis’) or directly by host immune response mediated killing 

(‘killing-hypothesis’). 

Neutrophil infiltration in the inflamed gut lumen is a hallmark of Salmonella-induced colitis 

(Loetscher et al. 2012). It was hypothesized that neutrophils directly mediate killing of commensal 

gut microbes and thereby promote Salmonella ‘blooming’ and dysbiosis. In order to investigate this, 

neutrophils of Oligo-MM12 mice were directly depleted using antibodies against a neutrophil epitope 

(α-Ly6G) as well as antibodies against granulocyte-colony stimulating factor (α-G-CSF) (Trautwein-

Weidner et al. 2014) and additionally infected with S. TmWT (Figure 29A). It was quite surprising that 

the control mice exhibited by trend less LCN-2 levels compared to neutrophil-depleted mice. 

However, LCN-2 levels were elevated in both groups (Figure 29B). Salmonella loads in spleen and 

liver were increased by trend after antibody mediated depletion of neutrophils and also after S. TmWT 

infection of streptomycin pre-treated CD18-/- mice which are deficient in extravasation of neutrophils 

(Figures 30C,D; 31D,E). There were significantly higher Salmonella loads in mesenteric lymphnodes 

after antibody mediated depletion of neutrophils and S. TmWT additionally better colonized the guts 
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of streptomycin pre-treated CD18-/- mices (Figures 30B; 31A). The protective effect conferred by 

neutrophils is in line with a study previously conducted by Maier and co-workers which shows that 

neutrophils impose a tight bottle neck on Salmonella by NADPH-oxidase mediated killing of invading 

Salmonella (Maier et al. 2014).  

Interestingly, none of the microbiota samples from the isotype control group was dominated by 

Salmonella, whereas Salmonella ‘blooming’ was apparent in 4 out of 6 samples in neutrophil 

depleted Oligo-MM12 mice (Figure 29C). This indicates that, at least in this experimental setting, 

neutrophil depletion did not protect from Salmonella-induced dysbiosis and ‘blooms’. This is in stark 

contrast to our assumption that neutrophils might pave the way for Salmonella by directly killing 

other commensals or facilitating the production of anaerobic electron acceptors. To our knowledge, 

this study provides first evidence that neutrophils protect commensal gut microbes from pathogen 

‘blooming’ and dysbiosis and other mechanisms such as the altered nutritional environment or 

possible also increased oxygenation (Rivera-Chávez et al. 2016) are more important. This data 

strengthen the ‘nutrient-hypothesis’ rather than the ‘killing-hypothesis’. 

However, the absence of Salmonella ‘blooms’ and dysbiosis in isotype control (Figure 29C) mice was 

unexpected and in stark contrast to previous experiments where Salmonella dominated the 

microbiota (Figure 10C). Interestingly, such Salmonella ‘blooms’ were already absent in some mice 

infected with S. TmWT that served as controls for infection experiment with Salmonella mutant strains 

(Figure 24D,E). As consequence, we are setting up new Oligo-MM12 mice and are planning to repeat 

the neutrophil depletion experiment using this new Oligo-MM12 generation. Nevertheless, these 

experiments demonstrate that upon depletion of neutrophils a microbiota loses its ability to protect 

from Salmonella ‘blooms’ and concomitant dysbiosis. In other words, Salmonella ‘blooming’ and 

concomitant shifts in microbial composition might not be mediated by neutrophil-mediated killing of 

competing gut commensals. In fact, Salmonella benefits even more from an inflammatory milieu by 

selectively using anaerobic electron acceptors as well as ethanolamine and thereby outcompetes the 

indigenous microbiota during colitis (Figure 41). 
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Figure 41: Performance of single Oligo-MM
12

 strains during S. Tm induced colitis as well as known 

mechanisms underlining S. Tm ‘blooms’ and dysbiosis. A homeostatic Oligo-MM
12

 provides colonization 

resistance (CR) against S. Tm until day 1 p.i.. However, S. Tm already starts to expand at day 2 p.i. which 

increases the inflammatory tone at day 3 p.i.. This increased inflammatory tone coincides with increased 

relative abundance of Akkermansia muciniphila YL44 and Clostridium clostridioforme YL32. During pathogen 

expansion S. Tm might especially benefit from ethanolamine (EA) utilization. At later stages of infection (day 4 

p.i.), S. Tm induces severe gut inflammation and ‘blooms’. This was mainly powered by nitrate (NO3
-
) and 

tetrathionate (S4O6
2-

) respiration as well as EA utilization. Interestingly, infiltrating neutrophils counteract 

Salmonella ‘blooming’ and seem to protect the microbiota from dysbiosis. When neutrophils fail to keep S. Tm 

in check, Salmonella ‘blooming’ and dysbiosis is apparent during late stages of infection. S. Tm induced 

dysbiosis of the Oligo-MM
12

 is characterized by an increased relative abundance of Enterococcus faecalis KB1 
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and Lactobacillus reuteri I49; stable or moderately decreased relative abundance of Blautia coccoides YL58, 

Flavonifractor plautii YL31 and Clostridium innocuum I46 as well as massively decreased relative abundance of 

‘Bacteroides caecimuris‘ I48, ‘Muribaculum intestinale‘ YL27, ‘Turicimonas caecimuris‘ YL45, Akkermansia 

muciniphila YL44 and Clostridium clostridioforme YL32. Bifidobacterium longum subsp. animalis YL2 and 

‘Acutalibacter muris‘ KB18 were already below the limit of detection of the specific qPCR assay in healthy Oligo-

MM
12

. 

 

4.3 Parallels between dysbiosis induced by enteric pathogens and chronic gut 

inflammation 

In this thesis, dysbiosis induced by infections with S. Tm, C. rodentium and C. difficile was compared 

to colitis induced by infection with H. typhlonius in a colitogenic CD45RBhi T-cell transfer model using 

the Oligo-MM12 as model for all experiments. These sets of experiments were conducted in 

collaboration with Prof. Hapfelmeier and Nicolas Studer (University of Bern) who performed infection 

experiments with C. difficile (Studer et al. 2016) as well as Prof. Mueller and Martin Faderl (University 

of Bern) who established the T-cell dependent colitis model that is based on the Oligo-MM12 (Brasseit 

et al. 2016).  

S. Tm and C. difficile were able to thrive in the inflamed gut and induced dysbiosis which was mainly 

characterized by decreased abundance of Gram-negative bacteria like ‘Bacteroides caecimuris‘ I48 

and ‘Muribaculum intestinale‘ YL27. Interestingly, the expansion of Enterococcus faecalis KB1 and 

Lactobacillus reuteri I49 was observed after infection with both enteric pathogens (Figure 39A). The 

inflammatory milieu created by infection with S. Tm and C. difficile might enhance growth of these 

Oligo-MM12 strains. Enterococcus faecalis was previously shown to harbor genes for ethanolamine 

utilization (Del Papa and Perego 2008) and might additionally acquire iron (Table 52). Besides 

Enterococcus faecalis KB1, Lactobacillus reuteri I49 might also withstand increased oxygenation 

during inflammation (Ianniello et al. 2015, Rivera-Chávez et al. 2016). Our data additionally suggest 

that Lactobacillus reuteri I49 might profit from nitrate respiration (Table 52). Inflammation induced 

by S. Tm and C. difficile coincided with reduced absolute abundance of total 16S rRNA gene copy 

numbers, indicating decreased abundance of gut microbes possibly meditated by outcompeting of 

commensals by the pathogens as observed previously (Stecher et al. 2007). Interestingly, infection 

with C. difficile led to increased relative abundance of Akkermansia muciniphila YL44 at day 3 p.i. 

which has been also observed at day 3 p.i. with S. Tm (Figures 10C; 35A; Table 46). Akkermansia 

muciniphila was previously shown to aggravate Salmonella infection by interfering with the mucus 

barrier and might benefit from mucin which might be more accessible during inflammation (Derrien 

et al. 2004, Ganesh et al. 2013).  
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Shifts in microbiota composition after C. difficile infection are in line with studies based on 

microbiota samples from human patient which observed increased abundance of Verrucomicrobia, 

Lactobacillus spp. and Enterococcus spp. as well as decreased abundance of Bacteroides spp. (Table 

1) (Manges et al. 2010, Seekatz and Young 2014), underlining the translational potential of Oligo-

MM12 derived data. Pathogenesis and out-growth of C. difficile in Oligo-MM12 mice might depend on 

bile acid metabolism, since secondary bile acids were able to inhibit spore germination (Theriot et al. 

2016). An unpublished investigation conducted by Studer and co-workers showed that mice 

colonized with Oligo-MM12 almost completely lack secondary bile acids. By adding Clostridium 

scindens, a secondary bile acid producer, to the Oligo-MM12 consortium, concentrations of secondary 

bile acids increased which paralleled with increased resistance against C. difficile induced disease 

(Studer et al. 2016). This in line with a previous study showing the protective effect of C. scindens by 

secondary bile acid production (Buffie et al. 2015). 

H. typhlonius infection of Rag-/- mice, associated with the Oilgo-MM12, together with transfer of 

colitogenic CD45RBhi T-cells induced inflammation (Figure 37; 38A). Remission of colitis was 

additionally mediated by the application of α-CD4 antibodies targeting colitogenic T-cells (Figure 36). 

However, colitis only induced slight shifts in Oligo-MM12 composition and the absolute abundance of 

gut bacteria was unchanged (Figure 38A). Especially, relative abundance of Clostridium innocuum I46 

and Enterococcus faecalis KB1 was increased after T-cell-induced colitis (Figure 38A; Table 55). 

Increased abundance of Clostridium innocuum I46 was also observed after infection with C. difficile 

(Figure 35A). Clostridium innocuum I46 which has been previously shown to be associated with an 

inflamed gut (Wohlgemuth et al. 2011) was additionally more resistant to S. Tm induced colitis and 

might play a central role in the pathogenesis of C. difficile, Salmonella and CD45RBhi T-cell-induced 

colitis by enhancing the inflammatory tone in the gut. Infection experiments with Oligo-MM11 mice 

without Clostridium innocuum I46 might shed more light on the importance of this commensal for 

pathogenesis. Spore formation might be a mechanism for sustained viability of Clostridium innocuum 

I46 during inflammation (Table 52). Microbiota changes during IBD have been characterized by 

decreased abundance of butyrate producing bacteria (Table 1) (Rajilic-Stojanovic et al. 2013, 

Takahashi et al. 2016). It might therefore be interesting to measure concentrations of short chain 

fatty (SCFA) like butyrate after onset of colitis in Oligo-MM12 mice. Decreased butyrate 

concentrations might lead to increased epithelial oxygenation (Rivera-Chávez et al. 2016) and favor 

not only pathogen growth but might also sustain expansion of aerotolerant commensals and inhibit 

obligate anaerobes. Therefore, aerotolerant Oligo-MM12 strains need to be identified and correlated 

with concentrations of butyrate during colitis and depletion in S. Tm-induced colitis. So far, aerobic 

batch cultures revealed that especially Enterococcus faecalis KB1 is able to grow in the presence of 

oxygen and outcompetes the residual Oligo-MM12 strains (data shown in MD thesis of Patrick 
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Schiller). The determination of SCFA concentrations might be also relevant in mice infected with 

other enteric pathogens. 

Infection of Oligo-MM12 mice with C. rodentium did not induce shifts in microbial composition, 

despite, C. rodentium infection induced inflammation, measured by LCN-2 levels (4 times less as after 

infection with S. Tm) between days 7 and 23 p.i. (Figure 32). LCN-2 levels declined after 23 days p.i. 

and C. rodentium was not outcompeted by the Oilgo-MM12. It seems that C. rodentium can be 

controlled by the Oligo-MM12 and possibly also by the immune response. Indeed, the microbiota has 

been previously shown to clear C. rodentium (Kamada et al. 2012). In this study C. rodentium was 

cleared in mice associated with a normal SPF microbiota by 21 p.i., whereas infection persisted in 

germfree mice. In addition, secretory IgA might be also involved in keeping C. rodentium in check 

(Endt et al. 2010). It would be interesting to investigate if single Oligo-MM12 strains alone or special 

consortia contribute to CR against C. rodentium. Moreover, it could be assessed weather CR is 

mediated by direct microbiota-pathogen interactions or indirectly by competition for nutrients or 

secretion of antimicrobial substances. According to Vong and colleagues, lactobacilli confer 

protection against C. rodentium (Vong et al. 2015). Thus, Lactobacillus reuteri I49 might be involved 

in providing CR against this enteric pathogen. C. rodentium induces EPEC like pathology in mice 

(Luperchio and Schauer 2001). However, since dysbiosis was not observed, correlations of C. 

rodentium / EPEC gut ecosystem invasion and microbiota shifts could not be performed. 

Collectively, this data suggest that key species among the Oligo-MM12 are positively or negatively 

correlated with inflammation caused by infection with different enteric pathogens and CD45RBhi T-

cell-induced colitis. Especially, ‘Bacteroides caecimuris‘ I48 and ‘Muribaculum intestinale‘ YL27, both 

belonging to the phylum Bacteroidetes, decreased during S. Tm and C. difficile-induced inflammation. 

In contrast, Enterococcus faecalis KB1 and Lactobacillus reuteri I49 benefited from colitis in all colitis 

models. Moreover, Akkermansia muciniphila YL44 expanded after early infection with S. Tm and 

infection with C. difficile. Relative abundance of Clostridium innocuum I46 was additionally increased 

after infection with C. difficile or T-cell-induced colitis. This increased abundance of key species might 

serve as future biomarker for inflammatory diseases. Furthermore, anti-inflammatory commensals 

can be explored and extended to potential therapeutics. Further investigations are needed if and 

how these increased key species impact on pathogenesis of enteric pathogens and chronic gut 

inflammation. 
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Figure 42: Strain-specific primer and hydrolysis probes targeting hypervariable regions of the 16S rRNA gene. 

27 16S rRNA gene sequences were aligned using the software CLC DNA Workbench 6.0.2 (CLC bio, Denmark) 

and hypervariable (V) regions were identified according to (Chakravorty et al. 2007). (A) V1 nucleotides: 69 – 

99, (B) and (C) V2 nucleotides: 137 – 242, (D) V3 nucleotides: 433 – 497, (E) V4 nucleotides: 576 – 682, (F) V5 

nucleotides: 822 – 879, (G) V7 nucleotides: 1117 – 1173, (H) homologous regions around V7. Primers and 

hydrolysis probes were designed to match strain-specific sequences with high variability and low consensus 
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between strains. For designing the universal primer / probe combination, a region with maximum homology 

was chosen. The binding sites of forward and reverse primers are marked in gray or white and black, 

respectively. The binding site of the hydrolysis probes is highlighted in pink. 
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