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1.Abbreviations  

A Adenine 

AA Amino acid 

ABLV Australian bat lyssavirus 

ARAV Aravan virus 

BBLV Bokeloh bat lyssavirus 

C Cytosine 

CDC Centers for Disease Control and Prevention 

CNS Central nervous system 

DNA Deoxyribonucleic acid 

dRIT Direct rapid immunohistochemical test 

DUVV Duvenhage virus 

EBLV-1 European bat lyssavirus 1 

EBLV-2 European bat lyssavirus 2 

f.p. Footpad 

FAO Food and Agriculture Organization of the United Nations 

FAT Fluorescence antibody test 

FITC Fluorophore conjugated 

FLI Friedrich-Loeffler-Institut 

G Guanine 

GARC Global Alliance for Rabies Control 

GBLV Gannoruwa bat lyssavirus 

Gln Glutamine 

His Histidine 

i.m. Intramuscular 

i.n. Intranasal 

ICTV International Committee on Taxonomy of Viruses 

IFN Interferon 

IGR Intergenic region 

IKOV Ikoma virus 

indels Insertions and deletions 
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IRKV Irkut virus 

kb Kilobase 

KHUV Khujand virus 

LBV Lagos bat virus 

LFD Lateral flow device 

LLEBV Lleida bat lyssavirus 

MIT Mouse inoculation test 

MOKV Mokola virus 

mRNA Messenger ribonucleic acid 

N Any base 

nAchR Nicotinic acetylcholine receptor 

NASBA Nucleic acid sequence based amplification 

NCAM Neuronal cell adhesion molecule 

nm Nanometre 

nt Nucleotide 

OIE World Organization for Animal Health 

p75NTR Low affinity nerve growth factor 

PEP Post-exposure prophylaxis 

RABV Rabies virus 

RNA Ribonucleic acid 

RNase Ribonuclease 

RNP Ribonucleoprotein 

RTCIT Rabies tissue culture infection test 

RT-LAMP Reverse transcription loop mediated isothermal amplification 

RT-PCR Reverse transcription polymerase chain reaction 

s.c. Subcutaneous 

SHIBV Shimoni bat virus 

STAT Signal transducer and activator of transcription 

T Thymine 

TIS Transcription initiation signal 

TTS Transcription termination signal 

UTR Untranslated region 
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W Adenine or Thymine 

WCBV West Caucasian bat virus 

WHO World Health Organization 

Y Cytosine or Thymine 
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2.Introduction 

Rabies, caused by lyssaviruses, is a zoonotic disease responsible for an estimated 59000 

human deaths per year and is classified as a neglected zoonotic disease by the World Health 

Organization (WHO). Since rabies is almost always fatal once clinical signs develop, 

preventive vaccination of risk groups or prompt application of post exposure prophylaxis is 

of utmost importance. In most of Europe, rabies has been eliminated in terrestrial animals, 

but is still present in bats. In order to understand bat rabies epidemiology, dynamics and 

possible emergence, bat rabies surveillance is performed in parts of Europe including 

Germany and five bat lyssaviruses have been detected so far. European bat lyssavirus 1 

(EBLV-1) was identified as the main cause of bat rabies in Europe. For this lyssavirus, spill-

over infections in other mammals including humans have been recorded.  

Rabies in terrestrial mammals is caused by rabies virus (RABV). Dogs are the main source for 

human infection, with dog-mediated human rabies being endemic especially in Asia and 

Africa. Unfortunately, rabies surveillance, as the basis for control and elimination, is 

hampered for various reasons including challenges in rabies diagnosis. For this reason 

alternative test methods for rabies diagnosis in the form of point of care tests, were 

developed, e.g. lateral flow devices (LFDs).  

This thesis focuses on aspects of lyssavirus surveillance and pathogenicity in order to clarify 

further the potential impact of bat lyssaviruses on human health in Europe. As for the latter, 

the pathogenicity of EBLV-1 isolates with certain genetic variations was assessed. Also, 

previously established enhanced passive bat rabies surveillance in Germany was continued. 

Furthermore, to facilitate and strengthen surveillance efforts particularly in the developing 

world, commercially available LFDs for rabies diagnosis were evaluated. 
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3.Literature review 

3.1. History of rabies with focus on Europe 

The over 4200 years old Eshnunna code contains the first known record of a disease 

resembling rabies (Baer et al., 1996). In the next 1500 years there is hardly any mention of 

rabies, followed by a period (ca. 5th BC to 5th AC) with many records, describing the 

symptoms, transmission, preventive measures, as well as suggesting cures (Neville, 2004). 

Progress concerning rabies was only made in the 19th century with first pathogenesis 

studies (Jackson, 2013) and subsequent development of the first rabies vaccine by Louis 

Pasteur. Pasteur discovered that through repeated inoculation of desiccated nerve tissue 

from rabid animals, rabies infection could be prevented. The first person who successfully 

received the vaccine was a boy named Joseph Meister, who had been severely bitten two 

days earlier by a rabid dog (Suzor and Pasteur, 1887). This so called nerve tissue vaccine was 

further enhanced to reduce unwanted side effects and used in many countries for several 

decades (Jackson, 2013). 

A vaccine for dogs was developed in the early 1920´s (Baer, 1975a). Previously, the only 

control measures for elimination of dog rabies were veterinary control measures, e.g. dog 

movement restriction, muzzling and elimination of stray dogs, leading to successful 

elimination in some countries, i.e. Prussia, Denmark, Norway and Sweden (Tarantola, 2017). 

Mass vaccination of dogs resulted in elimination of dog-mediated rabies in most of Europe 

by the mid of the last century. Great progress was also made in the Americas, resulting in the 

disappearance of dog-mediated rabies in many countries (Vigilato et al., 2013, Velasco-Villa 

et al., 2017).  

Parallel to the control of the disease in dogs, terrestrial rabies in wildlife, i.e. foxes, came 

into focus as a source of rabies infections. In Europe, fox mediated rabies emerged in the 

1940´s and spread across most of the continent within a few decades, representing new 

challenges in rabies control (Müller and Freuling, 2011). These were met in the 1970´s with 

the development of orally applicable vaccines and corresponding baits, and the 

implementation of oral rabies vaccination, which led to the elimination of terrestrial rabies 

in Western and Central Europe (Müller et al., 2012). 
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Although the association of rabies with dogs has been known for millennia, it was only much 

later recognized that bats also transmit rabies. In 1930´s an outbreak of rabies occurred and 

vampire bats were identified as the source of infection (Baer, 1975b, Pawan, 1936).  

In Europe, the first bat rabies case was discovered in 1954 in Hamburg, Germany, when a 

boy was bitten by a bat, which subsequently tested positive for rabies. The child received 

post exposure treatment and survived (Mohr, 1957). Between 1954 and 1989 a total of 4705 

bats were tested for rabies in Europe of which 379 were positive for rabies (Kappeler, 1989). 

Serotyping of bat rabies isolates in Europe showed that they did not belong to the known 

classical rabies virus (RABV), but were similar to Duvenhage virus (Fekadu et al., 1988a, 

Schneider et al., 1985). In 1988, a distinction between Duvenhage virus and European 

lyssaviruses was made (Dietzschold et al., 1988), followed by their separation into two 

serotypes/biotypes, EBL1 and EBL2 (now called EBLV-1 and EBLV-2) (King et al., 1990, Hirose 

et al., 1990, Bourhy et al., 1992). The discovery of other bat lyssaviruses in Europe followed, 

i.e. West Caucasian bat lyssavirus in 2002, Bokeloh bat lyssavirus in 2010 and Lleida bat 

lyssavirus in 2013 (Freuling et al., 2011, Arechiga Ceballos et al., 2013, Botvinkin et al., 2003). 

3.2. Lyssaviruses 

The word lyssa is of ancient Greek origin and translates as madness (Baer, 1975b). It is 

suggested that its root is either lysis (loosing – loss of rational faculties), lykos (wolf) or lud 

(violent) (Jackson, 2013, Neville, 2004). A lyssavirus infection results in rabies, a zoonotic 

disease, which is almost always fatal once clinical signs develop (Taylor and Nel, 2015). 

3.2.1. Virus Taxonomy 

The term “lyssaviruses” comprises all viruses of the Genus Lyssavirus, which belongs to the 

family Rhabdoviridae of the order Mononegavirales. Originally, lyssaviruses were separated 

into serotypes or genotypes. Following taxonomic guidelines, lyssaviruses were then 

classified into species according to species demarcation criteria that include homology of the 

viral genomes (King et al., 2012). Currently, the genus Lyssavirus comprises 16 species, of 

which 14 are officially recognized by the International Committee on Taxonomy of Viruses 
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(ICTV) (King et al., 2012). Two lyssaviruses, i.e. Lleida bat lyssavirus (LLEBV) and Gannoruwa 

bat lyssavirus (GBLV), although approved by the executive committee still await ratification 

from the ICTV (Table 1) (International Committee on Taxonomy of Viruses 2017). 

Furthermore, two isolations of a novel lyssavirus were made from Japanese house bats 

(Pipistrellus abramus) in Taiwan in November 2016 and April 2017, although this virus does 

not have an assigned name yet (Shu-min, 2016, Chatterjee, 2017). 

Lyssaviruses can be further divided into two phylogroups, based on their phylogenetic, 

immunologic and pathogenic properties (Badrane et al., 2001). Phylogroup 1 comprises most 

lyssavirus species, i.e. RABV, EBLV-1, EBLV-2, BBLV, ABLV, GBLV, IRKV, ARAV, KHUV and 

DUVV, whereas phylogroup 2 includes three African lyssavirus species, i.e. LBV, MOKV and 

SHIBV (Table 1) (Kuzmin et al., 2005, Kuzmin et al., 2010, Badrane et al., 2001). IKOV, WCBV 

and LLEBV do not belong to either phylogroup and it has not been determined yet if they 

group together in a third phylogroup, or if a fourth phylogroup comprising IKOV and LLEBV 

should be established (Table 1) (Arechiga Ceballos et al., 2013, Banyard et al., 2014a). This 

separation into different phylogroups is very important, as there is no cross neutralization 

between viruses of the different groups. Therefore, commercial rabies vaccines, which are 

based on RABV, elicit protection against lyssaviruses of phylogroup 1, but do not reliably 

protect against lyssaviruses of the other phylogroups (Fekadu et al., 1988b, Badrane et al., 

2001, Malerczyk et al., 2014, Brookes et al., 2005, Malerczyk et al., 2009). 
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Table1: Members of the genus lyssavirus (modified from Gunawardena et al., 2016, Banyard 

et al., 2014a), including phylogroup, reservoir and distribution. GBLV and LLEBV have no 

assigned species name, since they have not yet been approved by the ICTV. Asterisks 

indicate that the reservoir has not been confirmed, due to the limited number of isolations 

of the respective lyssaviruses. 
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3.2.2. Virus structure and viral genome 

As a member of the Rhabdoviridae, lyssavirus virions are rod- or bullet-shaped (rhabdos – 

rod) and measure between 100-250nm in length with a diameter of roughly 80 nm 

(Matsumoto, 1962, Davies et al., 1963).  

The ribonucleoprotein (RNP) comprises the viral genomic ribonucleic acid (RNA) 

encapsidated by the nucleoprotein, while the viral RNA-dependent RNA-polymerase and the 

phosphoprotein are associated with the RNP, forming together the core structure of the 

virion (Davis et al., 2015). The RNP is surrounded by a host derived membrane with the 

matrix protein forming a bridge between the virus membrane and the core (Mebatsion et 

al., 1999). The surface of the virus particle is covered by glycoprotein homotrimers, the only 

surface protein of the virus (Gaudin et al., 1992). 

Figure 1: Structure of the lyssavirus type species RABV depicted as schematic illustration and 

electron microscopic pictures. G: glycoprotein; L: RNA-polymerase; M: matrix protein; N: 

nucleoprotein; P: phosphoprotein. (© Friedrich-Loeffler-Institut Insel Riems, Dr. H. Granzow, 

M. Jörn)  
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3.2.2.1. Viral RNA 

The lyssavirus genome consists of a ca. 12 kilobases (kb) long single stranded negative sense 

RNA (Marston et al., 2007). It carries the genes for the five virus proteins in a strictly 

conserved order (3´ – nucleoprotein gene – phosphoprotein gene – matrix protein gene – 

glycoprotein gene – RNA-polymerase gene – 5´) (Tordo et al., 1986a). The genes are 

separated by intergenic regions. At the termini of the genomic RNA noncoding leader and 

trailer sequences are present (Wunner and Conzelmann, 2013). The length of the intergenic 

regions (IGR) are 2 nucleotides (nts) between the nucleoprotein gene and the 

phosphoprotein gene, 5nts between the phosphoprotein gene and the matrix protein gene 

as well as between the matrix protein gene and the glycoprotein gene and 19nts to 24nts 

between the glycoprotein gene and the RNA-polymerase gene. Exceptions are the IGRs of 

MOKV and WBCV between the matrix protein gene and the glycoprotein gene, and between 

the glycoprotein gene and the RNA-polymerase gene, which are significantly longer 

(Marston et al., 2007). The lengths of the IGRs influence downstream transcription (Finke et 

al., 2000). Each gene starts with a transcription initiation signal (TIS) (5´-AACAYYNCT-3´; A: 

Adenine, C: Cytosine, T: Thymine, Y: C or T, N: any base) and ends with a transcription 

termination polyadenylation signal (TTS) (5´-WGAAAAAAA-3´; W: A or T, G: Guanine) 

respectively (Marston et al., 2007). The length of the untranslated regions (UTRs), 

comprising the regions between the TIS and the start codon for translation and between the 

stop codon and the TTS, vary. The 3`-UTRs of the virus genes are shorter (20-30nts) 

compared to the 5´-UTRs (100-500nts) (Wunner and Conzelmann, 2013). The 5`-UTR of the 

glycoprotein gene, also called pseudogene, is particularly long and believed to be the 

remnant of a former 6th gene (Tordo et al., 1986b).  

3.2.2.2. Viral proteins 

The nucleoprotein is the most conserved lyssavirus protein. The high conservation of the 

amino acid (AA) sequence is most likely due to its function in encapsidation of the viral RNA, 

for which interaction sites need to be conserved. Through the formation of the RNP, the 

nucleoprotein protects the viral genome from host ribonucleases (RNases) (Albertini et al., 

2011). Serotyping of lyssavirus isolates and subsequent division in serotypes/biotypes was 
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routinely performed with monoclonal anti-nucleoprotein antibodies (Schneider, 1982, 

Dietzschold et al., 1988, King and Crick, 1988, Bourhy et al., 1992, Hirose et al., 1990). Since 

demarcation of lyssaviruses switched to genotypes and species based on nucleotide 

sequences, the corresponding nucleoprotein gene is now preferably used for sequence 

comparisons (Nadin-Davis and Real, 2011). Furthermore, due to the conserved AA sequence 

of nucleoprotein and its abundance in host cells as the first transcribed protein, anti-

nucleoprotein antibodies are commonly used in lyssavirus antigen detection assays (OIE, 

2012). The phosphoprotein is, in contrast to the nucleoprotein, the least conserved of the 

lyssavirus proteins (Marston 2007). The phosphoprotein is dimeric and has multiple 

functions in RNA replication, virus assembly and as an interferon antagonist. As a non-

catalytic cofactor of the viral polymerase, the phosphoprotein stabilizes the former and 

places the phosphoprotein – RNA-polymerase complex on the viral RNA (Wunner and 

Conzelmann, 2013). Furthermore, the phosphoprotein prevents the aggregation and 

nonspecific binding of newly synthesized nucleoprotein to cellular RNA, by acting as a 

chaperone (Liu et al., 2004, Yang et al., 1998) . The phosphoprotein is also a major interferon 

(IFN) antagonist, by interfering with gene expression of IFN, and STAT protein signalling 

caused by IFN (Rieder and Conzelmann, 2011). The matrix protein plays an important role in 

virus assembly and budding. It is responsible for the bullet shaped structure of the virion, by 

condensing the RNP into its helical structure. Attachment of the core structure to 

glycoprotein in the host membrane is also mediated by the matrix protein, therefore the 

matrix protein is essential for budding of virus particles (Mebatsion et al., 1999). 

Furthermore, the matrix protein inhibits transcription and promotes RNA replication, 

regulating the balance between the two processes (Finke et al., 2003). On the host side, the 

matrix protein can inhibit RNA translation and induces apoptosis (Gholami et al., 2008, 

Komarova et al., 2007, Kassis et al., 2004).  

The glycoprotein is probably the most extensively analysed protein since it is an important 

pathogenicity determinant as well as an immunogen (Wunner and Conzelmann, 2013). It is a 

transmembrane protein and consists of a carboxyl-terminal domain (endodomain), a 

transmembrane domain and an ectodomain as well as an amino-terminal 19AA signal 

peptide, which is cleaved of and acts as a membrane insertion signal during protein 

maturation (Anilionis et al., 1981). As the only viral surface protein glycoprotein enables 

attachment of virus particles to host cell membranes by binding to specific host cell 
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receptors. After endocytosis of the virus particle, the glycoprotein mediates pH dependent 

fusion of virus and endosomal membrane (Gaudin et al., 1993). Furthermore, it facilitates 

retrograde axonal transport (Mazarakis et al., 2001). The glycoprotein is glycosylated at one 

or more sites in the ectodomain, with one glycosylation site known to be conserved in at 

least seven lyssavirus species (Badrane et al., 2001). Glycosylation is essential for the 

intracellular transport of glycoprotein and important for its antigenicity (Shakineshleman et 

al., 1992). Similar to matrix protein, glycoprotein can also induce apoptosis of the host cell 

(Prehaud et al., 2003, Faber et al., 2002, Morimoto et al., 1999). 

The RNA-dependent RNA-polymerase is by far the largest of the lyssavirus proteins. It forms 

the enzymatic component of the polymerase complex and is essential for transcription and 

replication (Wunner and Conzelmann, 2013). No efficient in vitro system exists for RABV 

messenger RNA (mRNA) synthesis, but the RABV RNA-polymerase displays great sequence 

similarity to the RNA-polymerase of another member of the Rhabdoviridae, Vesicular 

stomatitis virus (VSV) (Villarreal and Holland, 1974, Kawai, 1977, Tordo et al., 1988). 

Therefore, it is presumed that the functions of the two RNA-polymerases are similar and 

most of the functions of RABV RNA-polymerase were determined by studying VSV RNA-

polymerase. The RNA-polymerase initiates transcription of the virus genome, is responsible 

for nucleotide polymerization and has furthermore important enzymatic functions in mRNA 

capping, methylation and 3´-polyadenylation. RNA-polymerase also displays protein kinase 

activity and is responsible for phosphorylation of phosphoprotein in transcriptional 

activation (Banerjee, 1987). Recently the catalytic activity of the RNA-polymerase in mRNA 

capping was shown for rabies virus (Ogino et al., 2016). 

 

3.2.3. Replication cycle 

Lyssavirus infection starts with glycoprotein mediated attachment of the virus to the host 

cell. Various host cell receptors are known to play a role in virus attachment. These include 

the nicotinic acetylcholine receptor (nAchR), the neuronal cell adhesion molecule (NCAM) 

and the low affinity nerve growth factor (p75NTR), although none of these receptors were 

proven to be essential for virus infection (Lentz et al., 1982, Reagan and Wunner, 1985, 

Thoulouze et al., 1998, Tuffereau et al., 1998, Jackson and Park, 1999). Following attachment 
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the virus particle is engulfed into lysosomes and the core structure of the virus particle is 

released by fusion of the virus envelope with the endosomal membrane. This fusion process 

is triggered by a low pH within the endosome (Superti et al., 1984). Transcription and 

replication probably takes place within inclusion bodies, in neuronal cells termed Negri 

bodies, in the cytoplasm of the host cell (Lahaye et al., 2009). RNA transcription is initiated 

by the polymerase at the 3´-end of the genome, starting at the TIS and terminated at the TTS 

where the polymerase stutters to and fro for polyadenylation (Barr et al., 1997). Afterwards 

it dissociates from the template RNA and re-associates at the next TIS. Re-association of the 

polymerase does not always occur, its likelihood depending on the length of the IGR (Finke 

et al., 2000). Therefore, the lyssavirus genes downstream of the viral genome are less 

frequently transcribed, resulting in a negative transcription gradient (Banerjee, 1987). High 

levels of matrix protein modulate the switch from RNA transcription to replication (Finke et 

al., 2003). In the replication mode, full-length positive-sense RNA antigenomes are produced 

by the polymerase, which then act as templates for new full-length negative-sense RNA 

production (Banerjee, 1987). The RNP, associated with phosphoprotein and RNA-polymerase 

form new core structures of the virions, which are then tightly condensed into their helical 

structures by matrix protein (Mebatsion et al., 1999). Budding of the virus particles is 

facilitated by the interaction of matrix protein with glycoprotein, which is inserted into the 

host cell membrane following maturation in the endoplasmic reticulum (Schnell et al., 2010). 

3.3. Rabies disease 

The Latin word rabies is probably derived from the old Sanskrit word rabhas (“to do 

violence”), whereas the German word “Tollwut” originated from Indo-Germanic Dhvar (to 

damage) and middle German wuot (rage) (Baer, 1975b). Rabies is responsible for an 

estimated 59000 human deaths per year and is classified by the WHO as a neglected 

zoonotic disease (Hampson et al., 2015, WHO, 2013b). In 2015, the United Nations drafted 

an agenda with the goal to end neglected tropical diseases by 2030 (United Nations, 2016). 

Three month later a joint collaboration of the WHO, the OIE, the Food and Agriculture 

Organization of the United Nations (FAO) and the Global Alliance for Rabies Control (GARC) 
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developed a global framework for the elimination of dog-mediated human rabies by 2030 

(WHO & OIE, 2016). 

3.3.1. Pathogenesis 

Lyssaviruses are transmitted through the inoculation of virus containing saliva via bites or 

scratches of the infected animals (Fekadu et al., 1982). It is believed that prior to 

neuroinvasion lyssaviruses replicate in the muscle at the site of inoculation. This is supported 

by the ability of lyssaviruses to replicate in denerved muscle tissue in vivo and to bind to 

nAchRs at the postsynaptic membranes (Lafon, 2005, Charlton et al., 1997, Charlton and 

Casey, 1981, Murphy et al., 1973a). This replication step is not mandatory and immediate 

infection of neurons following inoculation can occur (Shankar et al., 1991, Coulon et al., 

1989). Neuroinvasion starts with the infection of primary motor neurons at the presynaptic 

membranes via NCAM, p75NTR or other unknown receptors (Lafon, 2005). Once inside the 

neuron, virus particles reach the neuronal cell body via retrograde axonal transport along 

the microtubular motor network, where replication takes place (Ceccaldi et al., 1989, 

Bijlenga and Heaney, 1978). Afterwards transportation and budding from another synapse 

occur, resulting in the distribution of the virus in the central nervous system (CNS) (Ugolini, 

2011). At the same time the virus undergoes a centrifugal spread along neurons to the 

peripheral organs (Jackson et al., 1999, Murphy et al., 1973b). In the salivary glands, budding 

of virus particles from mucogenic acinar cells occurs, followed by shedding of the virus with 

the saliva (Dierks et al., 1969, Fekadu et al., 1982). Lyssavirus infection results in 

encephalomyelitis, although only little histopathological changes are observed (Yan et al., 

2001, Murphy, 1977). 

3.3.2. Clinical picture 

For human rabies, disease progression can be divided into five stages according to 

symptoms, i.e. the incubation period, the prodrome, the acute neurological phase, coma and 

death (Hemachudha et al., 2002). The incubation periods following exposure are usually 

between one and two months. Very long incubation periods of up to several years following 
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a bite have also been observed, rendering the connection of bite history to subsequent 

clinical symptoms difficult (Hemachudha et al., 2002, Smith et al., 1991, Rupprecht et al., 

2002). The incubation period ends with the prodromal phase, where first unspecific clinical 

symptoms appear, e.g. fever or local symptoms like burning, numbness, tingling or itching 

(Hemachudha, 1994). The acute neurological phase can manifest either as furious 

(encephalitic) rabies or as paralytic rabies (Hemachudha et al., 2002). The three symptoms 

characteristic for furious rabies are fluctuating consciousness, phobic spasms and signs of 

autonomic dysfunctions including piloerection and hypersalivation (Hemachudha, 1994). 

Roughly a third of the rabies patients develop paralytic rabies, which usually starts with 

weakness in the bitten extremity, progressing to other parts of the body (Hemachudha, 

1994). Here, phobic spasms are observed in roughly half of the patients. The patients then 

lapse into a coma and subsequently die, in most cases due to circulatory insufficiency, 

manifesting as arrhythmia or hypotension (Hemachudha, 1994). The average survival time, 

after the onset of clinical symptoms, is two weeks and shorter for patients with furious 

rabies than for patients with paralytic rabies (Hemachudha et al., 2002, Mitrabhakdi et al., 

2005). 

Similar to humans the initial clinical signs in animals are often unspecific and include 

lethargy, diarrhoea and vomiting. This is followed by a rapid deterioration, where 

behavioural changes in the form of tameness up to aggressiveness, parasthesiasis and 

autonomic dysfunctions, e.g. hypersalivation, can occur. Other neurologic dysfunctions 

include tremors, seizures, paresis and paralysis. Death is caused most likely by severe 

autonomic dysfunctions (Hanlon, 2013). 

3.3.3. Pathogenicity 

Although rabies disease almost always results in death once clinical signs develop, not every 

lyssavirus infection leads to the development of clinical signs (Taylor and Nel, 2015). 

Especially bats seem to be able to clear the virus before it reaches the CNS and develop 

neutralizing antibodies (Kuzmin and Rupprecht, 2015). The pathogenicity of lyssavirus 

isolates depends on various factors, including the inoculation dose, inoculation route, as well 

as the animal species, age and immune status (Banyard et al., 2014b, Coulon et al., 1994, 
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Jackson and Fu, 2013). Furthermore, pathogenicity depends on the lyssavirus species and 

the respective isolate (Kgaladi et al., 2013, Badrane et al., 2001, Cunha et al., 2010, Perrin et 

al., 1996). Differences in the pathogenicity of isolates belonging to one lyssaviruses species 

were found for LBV and RABV, and are most likely linked to genetic differences of the 

respective isolates (Kgaladi et al., 2013, Cunha et al., 2010, Markotter et al., 2009a). Sites in 

the genome or the respective protein that have an influence on the properties of a virus, so 

called pathogenicity determining sites, have been identified for RABV with the help of 

reverse genetics (Virojanapirom et al., 2016, Tuffereau et al., 1989, Rieder et al., 2011). They 

include not only amino acid exchanges in the respective proteins but also nucleotide 

exchanges in UTRs and IGRs (Finke et al., 2000, Conzelmann et al., 1990, Virojanapirom et 

al., 2016). Unfortunately, not many reverse genetic systems exist for other lyssaviruses, and 

knowledge about pathogenicity determinants in field virus isolates is poor (Orbanz and 

Finke, 2010, Nolden et al., 2016). 

3.3.4. Vaccination and post exposure prophylaxis 

Vaccination against rabies is the foremost tool for preventing, controlling and eliminating 

the disease in terrestrial mammals and humans. In human medicine parenteral vaccination 

against rabies is recommended for certain risk groups, e.g. laboratory workers, veterinarians, 

animal handlers and bat conservationists (WHO, 2013a). Post-exposure prophylaxis (PEP) 

after contact with a rabid or rabies suspected animal includes local wound treatment, 

vaccination and administration of rabies immunoglobulin. The extent of PEP, especially 

concerning immunoglobulin administration, should be assessed for every case and depends 

on several factors (WHO, 2013b), including the epidemiological situation, the clinical 

features and vaccination status of the animal, the severity of the exposure, and the 

vaccination history of the patient (WHO, 2013a). There is no treatment proven to prevent 

death once clinical signs develop and reports of patients surviving rabies are very rare 

(Rupprecht et al., 2017). 

Two vaccination strategies for terrestrial mammals exist, which are parenteral vaccination 

with inactivated or live recombinant vectored RABV vaccines and oral vaccination with live 

attenuated RABV vaccines (WHO, 2013a). Parenteral vaccination is performed for domestic 
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animals and is the main tool for the control and elimination of dog rabies (Fooks et al., 

2014). Oral vaccination, performed in terrestrial wildlife populations, can successfully control 

and eliminate rabies, as exemplified by the elimination of fox rabies in most of Europe 

(Freuling et al., 2013a). Due to the residual pathogenicity of oral vaccines, sporadic vaccine 

induced rabies cases have occurred (Vuta et al., 2016, Robardet et al., 2016, Hostnik et al., 

2014, Müller et al., 2009, Fehiner-Gardiner et al., 2008). 

3.4. Rabies epidemiology 

3.4.1. Terrestrial rabies 

Terrestrial rabies, i.e. RABV in non-bat reservoirs, is endemic on all continents, except 

Australia and Antarctica and has been eliminated in Western and Central Europe (Müller et 

al., 2015, Sparkes et al., 2016, Nel and Markotter, 2007). The last rabies case in terrestrial 

wildlife in Germany was reported in 2006, and in 2008 Germany self-declared a “rabies free” 

status according to the standards by the World Organization for Animal Health (OIE), which 

is defined as freedom of rabies caused by RABV (OIE, 2013). 

The causative agent of terrestrial rabies is RABV and although all mammals are potentially 

susceptible to rabies, not all can serve as a reservoir for RABV. Next to the host species being 

highly susceptible, virus evolutionary factors, e.g. efficient and balanced replication and 

excretion and modification of host behaviour, as well as certain ecological factors, i.e. host 

density, social structure and population size must be met for independent transmission 

cycles to occur within a species (Mollentze et al., 2014).  

Known terrestrial reservoirs of RABV belong to the order Carnivora and include dogs (Canis 

lupus familiaris), red foxes (Vulpes vulpes), grey foxes (Urocyon cinereoargenteus), arctic 

foxes (Vulpes lagopus), bat-eared foxes (Otocyon megalotis), raccoon dogs (Nyctereutes 

procyonoides), raccoons (Procyon lotor), skunks (Mephitidae), Indian mongoose (Herpestes 

auropunctatus), jackals (Canis aureus, C. adustus, C. mesomelas) and Chinese ferret badgers 

(Melogale moschata) (WHO, 2013a). The most important reservoir for human infection is 

the dog, as 99% of human rabies cases are transmitted by rabid dogs (WHO, 2013a). 

Although elimination of dog rabies is feasible and was successful in Europe, Japan, parts of 
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Asia, North and most of South America, it still poses a problem in many parts of Asia and 

Africa (Coleman et al., 2004, WHO, 2013a). Asia has the highest rabies burden with India 

alone accounting for over 35 % of human rabies deaths (Hampson et al., 2015, Banyard et 

al., 2013). This is followed by Africa where ca. 36.4% of human rabies deaths occur. Asia and 

Africa also account for 95% of the estimated 3.7 million disability-adjusted life years, a 

measure for the years annually lost to rabies due to disease or premature death (Hampson 

et al., 2015). 

3.4.2. Bat rabies 

With ~1300 known species (Racey, 2015), bats (Chiroptera) are the second largest 

mammalian order after rodents (Burland and Wilmer, 2001). Bat speciation is performed 

either using morphological features or through phylogenetic analyses of host genes, though 

the first is challenging when dealing with cryptic species (Burland and Wilmer, 2001). With a 

quarter of all bat species threatened, many are protected, including all 53 bat species 

present in Europe (Racey, 2015, Lina, 2016, UNEP/EUROBATS, 1994). Although bats have 

certain characteristics which are presumed to make them special reservoirs for viruses, i.e. 

capability of flight, high roost densities, torpor and hibernation, long life spans and 

echolocation (Calisher et al., 2006), there is no clear indication that bats harbour a greater 

number of zoonotic viruses compared to other animal groups (Olival et al., 2015). 

Interestingly, the first virus discovered in bats was RABV and most lyssaviruses were found in 

bats or are known to have bats as their reservoir, which is why these animals are believed to 

be the ancestral hosts of all lyssaviruses (Banyard et al., 2011, Rupprecht et al., 2017). Within 

bats lyssaviruses display a restricted geographical distribution. This results in the conundrum 

that RABV is the only lyssavirus present in bats in the new world, while in the old world 

RABV has only been found in terrestrial mammals and other lyssavirus species are present in 

bats (Banyard et al., 2014a, Rupprecht et al., 2017). RABV is also responsible for most spill-

over infections of rabies from bats into terrestrial mammals and humans, and is the only 

lyssavirus where sustained spill-overs from bats into other mammals are known to have 

occurred (Badrane and Tordo, 2001, Kuzmin et al., 2012, Velasco-Villa et al., 2005, Daoust et 
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al., 1996, Leslie et al., 2006). Spill-over infections of other bat lyssaviruses are rare and have 

only been described sporadically (Johnson et al., 2010).  

3.4.2.1. Bat rabies in Europe 

Rabies is a notifiable disease in almost all European countries and monitored in the scope of 

surveillance programs, but less than half of these include bat rabies surveillance (Müller et 

al., 2016). Two forms of rabies surveillance exist: (i) Passive surveillance comprises the 

sampling of sick, rabies suspected or dead bats and bats which had contact to humans or 

domestic animals via bites or scratches. (ii) Active surveillance on the other hand describes 

the monitoring of lyssaviruses in free living bats, either through the detection of antibodies 

against lyssaviruses in serum samples or the detection of lyssavirus RNA or antigen in saliva 

samples (Med Vet Net Working Group, 2005). Despite great efforts, detection of virus RNA in 

oral swabs from European bats was rare and interpretation as well as comparison of 

serological results from different studies proves challenging due to cross neutralization of 

phlyogroup 1 lyssaviruses as well as the non-standardized serological test procedures 

(Freuling et al., 2009a, Schatz et al., 2014a). Thus, it was recommended to focus on passive 

bat rabies surveillance (Schatz et al., 2013b, Schatz et al., 2014a).  

A total of ca. 1123 bat rabies cases in Europe have been reported to the WHO Rabies Bulletin 

Europe in the scope of passive bat rabies surveillance between 1977 and 2015 (Anonymous, 

2017). In most cases EBLV-1 was identified as the causative agent (Schatz et al., 2013a). Two 

bat species serve as reservoir for this lyssavirus, i.e. the Serotine bat (Eptesicus serotinus) 

and the Isabelline serotine bat (Eptesicus isabellinus) (Vazquez-Moron et al., 2008, Montano-

Hirose et al., 1990). Furthermore, EBLV-1 can be divided into two genetic distinct 

sublineages. While EBLV-1a is present in an area between France, the Netherlands and 

Russia, EBLV-1b is present rather in western parts of Europe between Spain and Poland 

(Amengual et al., 1997, Davis et al., 2005). A third genetic sublineage comprising isolates 

from the Isabelline serotine bat from the Iberian Peninsula has been proposed (Vazquez-

Moron et al., 2011). Furthermore, additional variation in the genome, in the form of 

insertions and deletions (indels) in the UTRs of EBLV-1 isolates were found (Freuling et al., 

2012, Johnson et al., 2007). Single EBLV-1 infections of other bat species were recorded for 
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the common pipistrelle bat (Pipistrellus pipistrellus), the common noctule bat (Nyctalus 

noctula), the Nathusius' pipistrelle bat (Pipistrellus nathusii), the brown long-eared bat 

(Plecotus auritus) and the Barbastelle bat (Barbastella barbastellus) (Müller et al., 2007, 

Schatz et al., 2014a) as well as for a Natterer's bat (Myotis nattereri), a common bent-winged 

bat (Miniopterus schreibersii), a mouse-eared bat (Myotis myotis) and a greater horseshoed 

bat (Rhinolophus ferrumequinum) (Serra-Cobo et al., 2002). Additionally, EBLV-1 infections of 

Egyptian fruit bats (Rousettus agypticatus) in a colony from a Danish zoo have been reported 

(Rønsholt et al., 1998). Spill-over infections in terrestrial mammals, including two human 

rabies cases caused by EBLV-1, also occurred. These comprised EBLV-1 infections in sheep in 

Denmark, cats in France and a stone marten in Germany (Müller et al., 2004, Dacheux et al., 

2009, Tjornehoj et al., 2006). The first presumed spill-over of EBLV-1 to a human occurred in 

1977 in the Ukraine, where a small girl was bitten by a bat of unknown species (Fooks et al., 

2003a). The second human rabies case caused by EBLV-1 occurred in Russia in 1985, when a 

girl was bitten by a bat and died approximately one month later after developing rabies like 

symptoms (Selimov et al., 1989).  

The second lyssavirus present in Europe is EBLV-2 with 21 confirmed cases in bats until 2012 

(Schatz et al., 2013a). The majority of EBLV-2 cases were isolated from Daubenton's bats 

(Myotis daubentonii). In the Netherlands, EBLV-2 was isolated from five Pond bats (Myotis 

dasycneme), the only bat species from which EBLV-2 was isolated there (Schatz et al., 2013a, 

van der Poel et al., 2005). Two genetic lineages, EBLV-2a and EBLV-2b, exist for EBLV-2, 

although the phylogenetic support is weaker compared to EBLV-1. Due to limited data no 

correlation of the lineages with certain bat species can be established (Amengual et al., 

1997, McElhinney et al., 2013). Two human rabies cases caused by EBLV-2 have been 

recorded 1985 in Finland (Lumio et al., 1986) and 2002 in Scotland (Fooks et al., 2003b).  

Since the discovery of BBLV in 2010 in Germany, two additional cases were detected in 2012 

in Hemilly, France and Bavaria, Germany (Picard-Meyer et al., 2013, Freuling et al., 2013b, 

Freuling et al., 2011). All cases were found in Natterer's bats (Myotis nattereri), which is 

presumed to be the reservoir for BBLV (Banyard et al., 2014a).  

Single isolations of two additional lyssavirus species were detected in Common bent-winged 

bats (Miniopterus schreibersii) in Europe. WCBV was isolated in 2002 in the European 

Caucasus and LLEBV in 2012 in Spain (Botvinkin et al., 2003, Arechiga Ceballos et al., 2013, 
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Kuzmin et al., 2005). These lyssaviruses do not belong to phylogroup 1 (Banyard et al., 

2014a). 

3.4.2.2. Passive bat rabies surveillance in Germany 

In Germany passive bat rabies surveillance can be divided further into routine surveillance 

and enhanced passive bat rabies surveillance. Routine surveillance is performed by the 

regional veterinary laboratories of the sixteen federal states and was initiated in 1982 as 

beforehand bats were tested only sporadically for rabies (Müller et al., 2007). A presumed 

bat mediated human rabies case in Denmark further sparked surveillance efforts, as before 

bat rabies surveillance was only thought to be of interest for scientific reasons (Seidler et al., 

1987). In the scope of routine surveillance only bats with symptoms suggestive of rabies or 

where human contact in form of bites and scratches has occurred are examined (Müller et 

al., 2007). Approximately 2076 bats were tested for bat rabies during routine surveillance 

until 2015 (Anonymous) with 272 detected rabies cases (Anonymous, 2017). The majority of 

cases were caused by EBLV-1, but one case of EBLV-2 as well as the first case of BBLV in 2010 

were also detected during routine surveillance (Schatz et al., 2014a).  

In 1998, an additional enhanced passive bat rabies surveillance study was initiated, where 

dead found bats from bat collections, not suspected of rabies, were included (Schatz et al., 

2014a). Until June 2013 a total of 5478 bats were investigated, with the most frequently 

submitted bat species being the common pipistrelle bat and the common noctule bat. Fifty-

six bat rabies cases were found during enhanced passive bat rabies surveillance, and in 52 

cases EBLV-1 and in three cases EBLV-2 were identified as the causative agents (Schatz et al, 

2014). The resulting prevalence of bat rabies during enhanced passive bat rabies surveillance 

was much lower compared to routine surveillance and more likely represents the true 

prevalence of bat rabies in Germany (Schatz et al, 2014). 
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Figure 2: Surveillance efforts and geographical distribution of reported bat rabies cases in 

Germany until 2014. A) Bats sampled during routine surveillance which tested negative (blue 

dots) and positive (red dots) for bat rabies. B) Bats sampled during enhanced passive 

surveillance which tested negative (blue dots) and positive (red dots) for bat rabies. A) + B) 

Red and green circles mark cases of EBLV-2 and BBLV respectively. C) Bat rabies cases caused 

by EBLV-1a (red dots) and EBLV-1b (blue dots). D) Bat rabies cases caused by EBLV-2 (red 

dots) and BBLV (stars). (© Friedrich-Loeffler-Institut Insel Riems) 
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3.5. Rabies diagnosis 

Rabies diagnosis in animals is preferably made post mortem from brain material and ideally 

different brain regions, i.e. brain stem, Ammon´s horn, cortex, cerebellum and thalamus, are 

tested (Müller, 2017, OIE, 2012). Ante mortem diagnosis should only be performed in human 

suspect rabies cases, and comprises the testing of preferentially saliva and head skin 

biopsies at different time points (Crepin et al., 1998, WHO, 2013a). Since virus shedding in 

saliva is intermittent and skin biopsies not always positive, these tests can only confirm but 

not exclude rabies (WHO, 2013a). Due to late seroconversion, serology is rarely used for 

ante-mortem diagnosis but mostly for epidemiological studies and the assessment of 

seroconversion following vaccination (OIE, 2012). 

3.5.1. Standard diagnostic tests 

The gold standard for rabies diagnosis is the fluorescence antibody test (FAT), due to 

accuracy and speed, which is recommended by the WHO and OIE (OIE, 2012). Virus antigen 

is detected in brain smears fixed on slides, by staining them with fluorophore-conjugated 

(FITC) anti-rabies antibodies. The slides are evaluated under a fluorescence microscope, 

which emits ultraviolet light, causing the fluorophore to emit a light signal. This can be seen 

as green fluorescence (Dean et al., 1996, Goldwasser and Kissling, 1958). If the FAT result is 

inconclusive or in cases of human exposure further tests are recommended (OIE, 2012). The 

rabies tissue culture infection test (RTCIT) has replaced the mouse inoculation test (MIT), 

which is no longer recommended due to ethical reasons (Müller et al., 2016). In the RTCIT 

virus is isolated in mouse neuroblastoma cell culture from brain suspensions, thus only 

viable virus can be detected (Webster and Casey, 1996, Rudd and Trimarchi, 1989). Although 

not yet recommended by the WHO as a diagnostic test, reverse transcription polymerase 

chain reaction (RT-PCR) is increasingly used in rabies diagnosis, e.g. for the verification of 

FAT results (Müller, 2017, WHO, 2013a, Dacheux et al., 2010, Fooks et al., 2009). Next to a 

high sensitivity, RT-PCR has the additional advantage that identification of the lyssavirus 

species in the scope of multiplex RT-PCR or sequencing of PCR products is possible 

(Woldehiwet, 2005). 
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3.5.2. Challenges in rabies diagnosis 

Sample acquisition and transport to the laboratory are the first steps for diagnosing rabies 

and already pose difficulties. To obtain brain samples, the skull needs to be opened, which 

should be performed by well-trained technicians, with precautionary measures taken to 

avoid accidental exposure or cross contamination. To circumvent these challenges, 

alternative sampling methods were developed where brain material is obtained by insertion 

of a straw or syringe either via the occipital foramen or following trepanation of the eye 

socket (Montano-Hirose et al., 1991, Barrat and Halek, 1986). Immediately after removal, 

sample material should ideally be frozen and in this condition transported to a laboratory 

(OIE, 2012). In order to preserve sample material for testing without freezing, storage in 

Formalin or 50% Glycerol is possible, although these preservation techniques present some 

disadvantages. Since Formalin inactivates the virus, virus isolation is no longer possible and 

FAT as well as PCR display decreased sensitivity. Although Glycerol does not inactivate the 

virus, it only protects the sample from putrefaction and virus inactivation due to high 

temperatures still occurs and it is recommended by the OIE to store Glycerol samples in a 

refrigerator (OIE, 2012, Barrat, 1996). The implementation of standard diagnostic tests for 

rabies is also challenging for developing countries. The FAT for example needs expensive 

FITC anti-rabies antibodies and a fluorescence microscope for evaluation. Furthermore, 

evaluation should only be performed by trained staff (Duong et al., 2016, Woldehiwet, 2005, 

Banyard et al., 2013). Similar to FAT, RTCIT also requires a fluorescence microscope and 

trained staff, as well as an established cell culture system and adequate biosafety (Duong et 

al., 2016, Webster and Casey, 1996). Expensive equipment is also needed for RT-PCR and 

without appropriate standardization and quality control false positive as well as false 

negative results can occur (Duong et al., 2016, OIE, 2012, Notomi et al., 2000). 

These problems are especially apparent in developing countries in Asia and Africa, where 

dog rabies still poses a major human health threat (Fooks et al., 2009, Banyard et al., 2013). 

Coupled with lack of awareness of the general public, weak capacity for field investigation of 

rabies cases, poor infrastructure, poor veterinary and health capacity as well as their 

insufficient cooperation, and inadequate reporting systems, the result is inadequate rabies 

surveillance (Townsend et al., 2013, Banyard et al., 2013). In fact, insufficient surveillance 

leads to an underestimation of the situation, therefore attracting little attention from policy 
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makers, resulting in a cycle of neglect (Cleaveland et al., 2014). Furthermore, surveillance is 

crucial for canine rabies elimination programs, since it provides data on the progress and 

cost effectiveness, enabling sustainable implementation (Townsend et al., 2013). 

3.5.3. Alternative diagnostic tests 

To overcome some of the challenges in rabies diagnosis, alternative test methods have been 

developed. The direct rapid immunohistochemical test (dRIT) was developed by the Centers 

for Disease Control and Prevention (CDC) as an alternative to FAT (Lembo et al., 2006). In 

dRIT rabies antigen is detected with biotinylated anti-N antibodies. Biotin catalyses the 

formation of a red precipitate which can be observed using a conventional light microscope 

(Coetzer et al., 2014a). The evaluation of the test with a light microscope is the biggest 

advantage of dRIT compared to FAT. Other advantages are easier interpretation of test 

results and reduced costs compared to FAT (Fooks et al., 2009, Coetzer et al., 2014a). The 

dRIT was evaluated in several studies and showed sensitivities between 83% and 100% 

depending on the antibodies used and was able to detect other lyssaviruses apart from 

RABV, i.e. MOKV, LBV and DUVV (Coetzer et al., 2014a, Coetzer et al., 2014b, Lembo et al., 

2006, Madhusudana et al., 2012). 

Novel approaches for the rapid amplification and detection of lyssavirus RNA are reverse 

transcription loop mediated isothermal amplification (RT-LAMP) and nucleic acid sequence 

based amplification (NASBA), where amplification occurs at a constant temperature, 

eliminating the need for a high precision thermal cycler (Notomi et al., 2000, Compton, 

1991). NASBA allows direct isothermal amplification of RNA (Compton, 1991). Gene 

amplification occurs at a relatively low temperature of 40°C, which is advantageous for the 

in situ detection of viral RNA, due to less cell damage compared to RT-PCR (Sugiyama et al., 

2003). RNA amplification requires three enzymes, which are the T7 RNA polymerase, the 

avian myeloblastosis virus reverse transcriptase and RNase H (Guatelli et al., 1990). Two 

studies assessed NASBA techniques for the detection of RABV RNA, with mixed results 

(Wacharapluesadee et al., 2011, Wacharapluesadee and Hemachudha, 2001). In rabies 

diagnosis, NASBA was used for the ante mortem diagnosis of rabies in humans 

(Wacharapluesadee and Hemachudha, 2010). Isothermal amplification of deoxyribonucleic 
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acid (DNA) during RT-LAMP requires a higher temperature of 65°C compared to NASBA. As, 

similar to RT-PCR, direct amplification of virus RNA with LAMP is not possible, a reverse 

transcription step has to be included. RT-LAMP displays very high specificities, which can 

have a negative effect on the sensitivities of the assays (Ito et al., 2014). Indeed two RT-

LAMP assays developed for rabies diagnosis displayed reduced sensitivity due to sequence 

variation of the RABV isolates (Saitou et al., 2010, Boldbaatar et al., 2009). For the 

development of a RT-LAMP assay to detect RABV isolates of two African lineages, two primer 

sets, 12 primers in total, were needed (Hayman et al., 2011). Therefore, the development of 

a RT-LAMP able to detect a broad spectrum of RABV isolates is challenging. 

Another test, developed as a point of care test for the detection of antigen is the lateral flow 

device (LFD), also called lateral flow assay, rapid immunodiagnostic test or rapid 

immunochromatographic strip test (O’Farrell, 2013, Kang et al., 2007, Mak et al., 2016) . The 

test principle is based on fluid migration along a membrane. A sample is added to the 

sample area of a test strip from where it migrates along the strip, the antigen in the sample 

reacting with conjugated and fixed antibodies, resulting in the development of lines visible 

to the naked eye (O’Farrell, 2013). Since the test allows a one-step analysis, it is easy to 

perform. Furthermore, the test can be stored at room temperature and does not need any 

additional equipment and chemicals. Therefore, it has potential for field use. Coupled with 

being rapid and cost effective it is applied in many areas, e.g. environmental science, human 

and animal health (Ngom et al., 2010, Posthuma-Trumpie et al., 2009). LFDs require small 

sample volumes. These result subsequently in small quantities of analyte, which can lower 

the sensitivity of the test. On the other hand, small sample volumes can be advantageous, 

when not much material is available, as long as sensitivities are adequate. Due to test 

components and manufacturing processes the tests can display variable sensitivity and test 

reproducibility (O’Farrell, 2013). For rabies diagnosis one commercially available LFD, 

produced by Bionote, has been evaluated in several studies reporting sensitivities between 

88% and 100% (Table 3). 
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Table 3: Summary of studies evaluating Bionote LFD and respective results.             
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4.Objectives 

Assessment of EBLV-1 pathogenicity: 

Five lyssavirus species circulate in Europe, with EBLV-1 being responsible for most bat rabies 

cases, including spill-over infections in other mammals including humans. The pathogenicity 

of EBLV-1 has so far only been assessed in studies using single isolates as representatives. 

Since these studies were all designed differently no comparison can be made between the 

different isolates used. As there are genetic differences between EBLV-1 isolates and it is 

known for other lyssaviruses that genetic variation can influence the pathogenicity, one aim 

of this thesis was to assess the pathogenic properties of EBLV-1 isolates with genetic 

differences using the same experimental design. 

Enhanced passive bat rabies surveillance in Germany: 

In Germany three bat lyssavirus species have been detected, which present a human health 

threat. To better understand the epidemiology and dynamics of bat rabies in Germany, 

enhanced passive bat rabies surveillance was performed until 2014. This surveillance was 

continued to keep up to date with the situation also with respect of the discovery of novel 

lyssaviruses in Germany in 2010 and Spain in 2013.  

LFDs as a tool for rabies surveillance in developing countries: 

Terrestrial rabies caused by RABV, especially dog-mediated rabies, is responsible for most 

human rabies cases. Dog-mediated human rabies is still prevalent in many regions but 

foremost in developing countries in Asia and Africa. To establish efficient rabies control 

measures, adequate rabies surveillance is required, which is difficult due to the nature of 

standard diagnostic tests for rabies. To circumvent this problem other test methods were 

developed, including LFDs. So far only one commercially available LFD has been evaluated, 

although several products are on the market, without anything known regarding their 

performance. Therefore, the performance of several commercially available LFDs was 

assessed. 
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5.Results 
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section. References and abbreviations from the manuscript are not included in the relevant 

sections at the beginning and the end of this document. The corresponding supplement 

material has been added directly following the reference section of this publication. 

 

 

  



Results 
 

 
35 

 

 

 



Results 
 

 
36 

 

 

 



Results 
 

 
37 

 

 

 



Results 
 

 
38 

 

 

 



Results 
 

 
39 

 

 

 



Results 
 

 
40 

 

 

 



Results 

41 



Results 

42 



Results 

43 



Results 

44 



Results 
 

 
45 

 

 

 



Results 
 

 
46 

 

 

 



Results 
 

 
47 

 

 

 



Results 
 

 
48 

 

 

 



Results 
 

 
49 

 

 

 



Results 
 

 
50 

 

 

 



Results 
 

 
51 

 

 

 



Results 

52 



Results 

53 

Supplementary Table 1: Clinical score sheet of the mice, ranging from zero up to four. 

Score Symptoms 

0  healthy

1 

 ruffled fur

 hunched back

 hypermetria in inoculated limb

 wobbly gait in inoculated limb

 calm

2 

 ruffled fur

 hunched back

 slow movements

 wobbly gait both hind limbs

 jumpy

 tame

3 

 paralysis or spasms in hind limbs

 agressiveness

 biting of objects and other mice

 automutilation

 circular movements

4  death
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Supplementary Figure 1: a) two step and b) one step replication kinetics of the isolates 

used in the study. 
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Supplementary Figure 2: Survival curves of the mice following i.c. inoculation. 
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Supplementary Figure 3: Percentage seroconversion for the different inoculation routes 

following inoculation a) with EBLV-1 isolates and b) with RABV isolates. Percentage of 

seroconverted mice for the individual isolates can be seen following i.m. inoculation with 

c) high doses and d) low doses. 
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Supplementary Table 2: The 28 potentially significant amino acid exchanges in the proteins 

of the EBLV-1 isolates and their frequency in other EBLV-1 as well as in RABV isolates. 
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Supplementary Table 3: Summary of known pathogenicity determining sites and the 

protein sequences found in the RABV as well as in the EBLV-1 isolates used in this study. 
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Supplementary Table 4: Summary of previous pathogenicity studies with EBLV-1 as well as 

details to their experimental design. 13454* is identical to 13454_EBLV-1a_ref used in this 

study. 
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The manuscript is presented in the form accepted for publication and has its own content 

and reference sections. References and abbreviations from the manuscript are not included 

in the relevant sections at the beginning and the end of this document. 

Figures and tables are numbered individually within the manuscript and correspond to the 

published form. 
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Abstract 

In 2010, a novel lyssavirus named Bokeloh bat lyssavirus (BBLV) was isolated from a 

Natterer’s bat (Myotis nattereri) in Germany. Two further viruses were isolated in the same 

country and in France in recent years, all from the same bat species and all found in 

moribund or dead bats. Here we report the description and the full-length genome sequence 

of five additional BBLV isolates from Germany (n=4) and France (n=1). Interestingly, all of 

them were isolated from the Natterer’s bat, except one from Germany, which was found in a 

common Pipistrelle bat (Pipistrellus pipistrellus), a widespread and abundant bat species in 

Europe. The latter represents the first case of transmission of BBLV to another bat species. 

Phylogenetic analysis clearly demonstrated the presence of two different lineages among 

this lyssavirus species: lineages A and B. The spatial distribution of these two lineages 

remains puzzling, as both of them comprised isolates from France and Germany; although 

clustering of isolates was observed on a regional scale, especially in Germany. Phylogenetic 

analysis based on the mitochondrial cytochrome b (CYTB) gene from positive Natterer’s bat 

did not suggest a circulation of the respective BBLV sublineages in specific Natterer’s bat 

subspecies, as all of them were shown to belong to the Myotis nattereri sensu stricto 

clade/subspecies and were closely related (German and French positive bats). At the bat 

host level, we demonstrated that the distribution of BBLV at the late stage of the disease 

seems large and massive, as viral RNA was detected in many different organs.  
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1. Introduction 

1.1. Rabies and bats 

Rabies is an acute, progressive incurable viral encephalitis that is transmitted following bites 

or scratches by infected mammals. Whilst the name rabies is derived from the Latin name 

for ‘madness’, the old Greeks derived the word lyssa, from lud or "violent"; this root is used 

in the name of the genus Lyssavirus (Jackson, 2013). Lyssaviruses, the causative agents of 

rabies, are negative single strand RNA viruses of the Rhabdoviridae family, and alongside 

with the Bornaviridae, Filoviridae, Paramyxoviridae, Pneumoviridae, Mymonaviridae, 

Nyamiviridae and Sunviridae forms the order Mononegavirales (Afonso et al., 2016). They 

are currently classified into 14 officially recognized (ICTV, 2015) and two yet unassigned 

species (Arechiga Ceballos et al., 2013; Gunawardena et al., 2016). All lyssaviruses appear or 

are suspected to follow a rabies like pathogenesis (Davis et al., 2015). With the advent of 

novel molecular techniques, the Rhabdoviridae family was extended (Dietzgen et al., 2017). 

In this chapter we summarize the current situation in the genus Lyssavirus and with Bokeloh 

bat lyssavirus (BBLV) provide a recent example how the genus diversifies.  

While rabies caused by the archetypical rabies virus (RABV, belonging to Rabies lyssavirus 

species) has been known for millennia (Jackson, 2013), causing tens of thousands of human 

deaths per year (Hampson et al., 2015), the association of rabies with bats (Chiroptera) was 

first demonstrated in the New World in the early 20th Century (Pawan, 1936). Since the 

appearance of first descriptions of RABV in bats in the Americas, other divergent lyssavirus 

species have been detected in a wide range of chiropteran hosts, and bats are the 

recognized reservoirs for the majority of lyssaviruses (Banyard et al., 2013). Furthermore, 

there is strong ecological as well as phylogenetic support that bat derived viruses have 

evolved long before those RABV of terrestrial carnivore origin (Badrane and Tordo, 2001; 

Troupin et al., 2016). However, the evolutionary history of lyssaviruses within bats is 

unresolved. For instance, the absence of non-RABV lyssaviruses in bats in the Americas, and 

the diversity of bat lyssaviruses elsewhere in the Old World remain enigmatic and may 

indicate an ancient co-evolution and dispersal of lyssaviruses and their reservoir hosts, i.e. 

primarily bats (Rupprecht et al., 2017). 
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1.2. Bat rabies in the Americas 

Rabies in bats in the Americas is in some aspects different to the Old World. As introduced 

before, the sole causative agents are exclusively variants of classical RABV. However, rabies 

virus is found in many species of bat in the Americas (Banyard et al., 2013; Constantine, 

2009; Sodre et al., 2010), and it was demonstrated that particular bat species are associated 

with specific RABV variants (Hughes et al., 2005; Streicker et al., 2010; Velasco-Villa et al., 

2006). Among bats, cross-species transmissions (CSTs) seem to be related to the relative 

genetic distance of the host (Streicker et al., 2010). Also, bat RABV variants caused a 

historical sustained CST in raccoons (Velasco-Villa et al., 2008), and more recent CST in 

striped skunks (Mephitis mephitis), red foxes (Vulpes vulpes) and gray foxes (Urocyon 

cinereoargenteus) (Daoust et al., 1996; Kuzmin et al., 2012; Leslie et al., 2006). A bat rabies 

variant was also responsible for rabies cases in white-nosed coati (Nasua narica) (Arechiga-

Ceballos et al., 2010).  

In Latin America, besides insectivorous and frugivorous bat species, the common vampire 

bat (Desmodus rotundus), one of three blood-feeding or hematophagous bats found 

exclusively in this region, acts as a reservoir for rabies (Johnson et al., 2014). This behaviour 

facilitates virus transmission not only to livestock, particularly cattle (Arellano-Sota, 1988; 

Johnson et al., 2014), but also causes human cases, particularly in remote areas with limited 

access to medical intervention (Condori-Condori et al., 2013; Meynard et al., 2012; Stoner-

Duncan et al., 2014; Streicker et al., 2012). 

1.3. Bat rabies in Asia and Australia 

Rabies in bats in the Asian part of Russia were described already in the 1970s. However, 

tracing back of these early isolates could not confirm the presence of bat associated 

lyssaviruses (Kuzmin et al., 2006a). The first well documented and verified isolation of a 

lyssavirus from a bat occurred in 1991, when a novel lyssavirus, named Aravan virus (ARAV) 

was isolated from a lesser mouse-eared bat (Myotis blythii) in Kyrghyzstan. The discovery of 

Khujand virus (KHUV) in a whiskered bat (Myotis mystacinus) followed in 2001 (Kuzmin et al., 

2003). One year later another novel lyssavirus virus, Irkut virus (IRKV) was discovered in the 

Irkutsk province of Russia, when a bat caught indoors died approximately 10 days later after 
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developing clinical signs (Botvinkin et al., 2003). IRKV is insofar distinctive from the other 

Asian lyssaviruses as further cases were reported in China in a greater tubenosed bat 

(Murina leucogaster) (Liu et al., 2013), as well as a human rabies case in 2007 in the Russian 

Far East (Leonova et al., 2009). Most recently, Gannoruwa bat lyssavirus (GBLV) was isolated 

from Indian flying foxes (Pteropus medius) in Sri Lanka, after 62 grounded and dead found 

bats were tested for the presence of lyssaviruses (Gunawardena et al., 2016). Further 

surveillance and search for bat pathogens including lyssaviruses will likely expand the 

diversity and range of bat-associated lyssaviruses in Asia. In fact, serological surveys of bats 

indicate the presence of lyssaviruses in several countries in Southeast Asia, i.e. the 

Philippines (Arguin et al., 2002), Cambodia (Reynes et al., 2004), Thailand (Lumlertdacha et 

al., 2005), Bangladesh (Kuzmin et al., 2006b), China (Jiang et al., 2010) and Vietnam (Nguyen 

et al., 2014).  

Australian bat lyssavirus (ABLV) was initially discovered in the brain of a black flying fox 

(Pteropus alecto) and is predominantly associated with fruit eating bat species (Fraser et al., 

1996; Weir et al., 2014). Interestingly, ABLV infection has only been confirmed by virus 

isolation in one insectivorous species, the yellow-bellied sheath-tailed bat (Saccolaimus 

flaviventris). Genetically, ABLV is also delineated into two lineages associated with either 

fruit bats or insectivorous bats, respectively (Barrat, 2004). ABLV infection caused three 

known human cases in Queensland, Australia (Johnson et al., 2010), and spill-over infections 

were identified in two horses with neurological disease (Annand and Reid, 2014). 

1.4. Bat rabies in Africa 

Of note, the first indication of the circulation of lyssaviruses other than RABV was 

demonstrated by early virological investigations in Africa (Boulger and Porterfield, 1958; 

Shope et al., 1970), and the virus isolated from a straw-coloured fruit bat (Eidolon helvum) in 

Nigeria in 1956 was named Lagos bat virus (LBV). LBV infections were reported from several 

African countries, including detections in other bat species, dogs, cats and one water 

mongoose (Markotter et al., 2006; Sabeta et al., 2007). Analysis of the virus phylogeny 

suggests the existence of four major LBV genetic lineages. The genetic distances between 

some lineages is greater than those established as a demarcation criterion for individual 

lyssavirus species (Markotter et al., 2008). Serosurveys revealed a high seroprevalence of 

antibodies against LBV, and thus indicated the circulation of LBV in various fruit bat species 
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across parts of Africa (Dzikwi et al., 2010; Freuling et al., 2015; Hayman et al., 2008; Hayman 

et al., 2012; Kalemba et al., 2017; Kuzmin et al., 2008a). 

Closely related to LBV is Shimoni bat virus (SHIBV), which was isolated from a dead 

Commerson’s leaf-nosed bat (Hipposideros commersoni) during a search for bat associated 

pathogens in Kenya (Kuzmin et al., 2010). Comparative serological surveys in Rousettus 

aegyptiacus bats and Hipposideros commersoni bats in sympatric roosts in Kenya suggested 

that H. commersoni is a primary host species of SHIBV (Kuzmin et al., 2011). 

Duvenhage virus (DUVV) was isolated in 1970 in South Africa following the death of a human 

that was bitten by an insectivorous bat (Meredith et al., 1971). Sporadically, DUVV was 

reported from insectivorous bats in Southern Africa (Paweska et al., 2006; Weyer et al., 

2011) and caused two additional fatal human infections in South Africa (Paweska et al., 

2006) and in the Netherlands (following a contamination in Kenya)(Van Thiel et al., 2008). 

1.5. Bat rabies in Europe 

In Europe, the first rabid bat was diagnosed in 1954 in Germany (Mohr, 1957). Other and 

only sporadic reports indicated the presence of bat associated rabies in Europe until the 

1980s (Müller et al., 2007), when two human rabies cases due to bat contact sparked 

surveillance efforts in many European countries (Johnson et al., 2010). From 1977 until 2016, 

bat rabies was confirmed in 1180 cases during bat rabies surveillance activities across 

Europe (Source: Rabies Bulletin Europe database, found at: http://www.who-rabies-

bulletin.org/ accessed May 2017). A recent study evaluating all available data on bat rabies 

surveillance across Europe concluded that bat rabies surveillance is not evenly conducted 

(Schatz et al., 2013). Therefore, while cases detected in bats indicate the circulation among 

bats in that region, the absence of evidence is not the evidence of absence.  

Molecular characterization initially demonstrated that viruses isolated from European bats 

and human cases belong to two genetically diverse lyssaviruses, European bat lyssavirus type 

1 (EBLV-1) and European bat lyssavirus type 2 (EBLV-2), belonging to European bat 1 

lyssavirus and European bat 2 lyssavirus species, respectively (Amengual et al., 1997; Bourhy 

et al., 1993; Davis et al., 2005). While serotine bats (Eptesicus serotinus and E. isabellinus) 

are considered the primary reservoir hosts for EBLV-1, rabies cases in Daubenton’s bats 

(Myotis daubentonii) and pond bats (Myotis dasycneme) were genetically characterized as 
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EBLV-2 (Banyard et al., 2013). Besides the European bat lyssaviruses, two other unrelated 

bat lyssaviruses were also isolated from common bent-winged bats (Miniopterus 

schreibersii) in the Caucasus region (West Caucasian bat lyssavirus –WCBV- belonging to 

West Caucasian bat lyssavirus species, (Kuzmin et al., 2008b)) and in Spain (Lleida bat 

lyssavirus, LLEBV, (Arechiga Ceballos et al., 2013) belonging to the Lleida bat lyssavirus 

species), respectively.  

In contrast to the Americas, CSTs are relatively rare in Europe. However, EBLV-1 CSTs have 

been documented in a number of occasions, including in a Dutch colony of captive Egyptian 

fruit bats (Rousettus aegyptiacus) (Wellenberg et al., 2002). Also, EBLV-1 has been detected 

in sheep from Denmark (Ronsholt, 2002), in a stone marten (Martes foina) in Germany 

(Müller et al., 2004) and two domestic cats in France (Dacheux et al., 2009).  

Sporadic human rabies cases following a bat bite have been described in Europe. In 1977, 

the first human rabies case associated with a bat bite in Europe was reported in the Ukraine 

(Kuzmin et al., 2006a). Another confirmed case in Russia that has been characterized was 

transmitted from a bat and occurred in 1985 (Selimov et al., 1989). The virus responsible for 

this infection was isolated and shown to be EBLV-1 (Amengual et al., 1997). 

A Swiss biologist who had multiple bat bites died in Finland in 1985. Rabies as a diagnosis 

was confirmed by laboratory tests and EBLV-2 was isolated for the first time (Lumio et al., 

1986). The second confirmed human rabies case with this lyssavirus was a 56-year-old bat 

conservationist from Angus, Scotland who died in November 2002 (Fooks et al., 2003). In all 

cases, the individual infected had a history of close contact with bats and none had received 

vaccination against rabies. 

 

2. BBLV - a novel bat lyssavirus isolated first in Germany 

In 2010, another novel lyssavirus named Bokeloh bat lyssavirus (BBLV) was isolated from a 

Natterer’s bat (Myotis nattereri) in Germany. The presence of lyssavirus antigens in the 

diseased bat was confirmed using fluorescence antibody test and immunohistochemistry 

with standard rabies biologics (Freuling et al., 2011). Two further viruses were isolated in 
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Germany and in France, respectively, 2 years later, all from the same bat species and all 

found in moribund or dead bats (Freuling et al., 2013; Picard-Meyer et al., 2013). 

Animal experimental studies demonstrated that BBLV was pathogenic for mice via 

intracranial and intramuscular inoculation routes, causing fatal encephalitis irrespective of 

the isolate used (Nolden et al., 2014). As typical to lyssaviruses during infection BBLV formed 

intracytoplasmic inclusions, detected by staining with FITC-conjugated anti-nucleocapsid 

monoclonal antibodies. Kaplan-Meyer survival plots were significantly different to EBLV-2 

and similar to EBLV-1, although BBLV is on a genetic level more closely related to the former 

(Nolden et al., 2014). The distinction between BBLV and other lyssavirus species was also 

evident in the antigenic patterns in reactions with anti-nucleocapsid monoclonal antibodies. 

This difference was supported by antigenic cartography where BBLV was separated from all 

characterized lyssaviruses, but related to phylogroup I viruses (Nolden et al., 2014). While 

the genome organization and sequence relationships are consistent with the classification as 

a lyssavirus, BBLV nucleotide sequences demonstrate 80% and 79% identity to the sequence 

of the most similar viruses KHUV and EBLV-2, respectively. Altogether, genetic distance, 

phylogenetic reconstructions, antigenic patterns and ecologic features were sufficiently 

different to existing lyssavirus species, and the creation of the Bokeloh bat lyssavirus species 

was approved (ICTV, 2015). 

2.1. The Natterer’s bat – the presumed primary host of BBLV 

For better understanding of virus-host interactions, i.e. between BBLV and the Natterer's 

bat, knowledge on their ecological and phylogenetic characteristics are essential. M. 

nattereri (Kuhl, 1818), synonym Myotis escalerae (Cabrera, 1904), is a middle-sized, crevice-

dwelling, nocturnal, insectivorous European bat species of the Western Palearctic belonging 

to the genus Myotis, subfamily Myotinae, chiropteran family Vespertilionidae of the 

suborder Vespertilioniformes. This bat was first described by the German naturalist and 

zoologist Heinrich Kuhl in 1818, who named it in honour of his Austrian colleague Johann 

Natterer (Beolens et al., 2009). Ancestors of M. nattereri can be traced back millions of years 

ago till the Pliocene (Sigé and Legendre, 1983). Paleontological evidence suggests an 

evolutionary segregation and subsequent development and adaptation of several subspecies 

at the beginning of the Holocene-Pleistocene (Horacek and Hanak, 1983; Hutterer et al., 

2012). Its geographic range extends throughout most of Europe, from the Atlantic Ocean 
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and the Mediterranean basin up to latitude of 60 degree north (Sweden, Finland) into 

western Russia, and Ukraine (Figure 1). Populations of M. nattereri also occur in western and 

south-western Asia Minor, the Caucasus region, the coastal regions of the Near East, the 

Kopetdag Mountains (Turkmenia, Iran) and northern Kazakhstan. Its historic range included 

Norway, in which for reasons unknown it is no longer found anymore. Presumably, 

Natterer’s bats do not occur on the islands of Sardinia, Malta and Kreta (Hutson et al., 2008; 

Topal, 2011). It can also be found in the western Atlas and coastal zones north-west Africa, 

although few records from north Africa indicate that the population is likely to be relatively 

small (Hutson et al., 2008). 

 

 

Fig. 1. Geographic origin of the BBLV isolates (left) in combination with the range (right in 

yellow) of the presumed reservoir species, the Natterer’s bat (Myotis nattereri). The case 

associated with a pipistrelle bat (Pipistrellus pipistrellus) is indicated (diamond). Also, the 

delineation into the two genetic lineages A (red) and B (blue) is shown in the left box. Source 

for the range data: Myotis nattereri In: IUCN 2012. IUCN Red List of Threatened Species. 

Version 2012.1. http://www.iucnredlist.org. Downloaded on 30 April 2017. 

 

 

Although M. nattereri occurs in various habitats from sea level up to an altitude of about 

2,000 meters, in the middle European inland it is predominantly found in open countryside 

with scattered broad-leaved woodland and close to water bodies such as tree-lined river 
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corridors (Smith, 2001) (http://www.eurobats.org). Natterer’s bats are generally considered 

a sedentary species (Schober and Grimmberger, 1998). In general, roost switching seems to 

be very common among M. nattereri, especially in summer times (Smith, 2001) with 

transboundary migration flows in border areas of European countries. Bat banding data from 

12 European countries reveal that migration distances between maternity, swarming and 

hibernation roosts usually vary according to region and climatic conditions (Hutterer et al., 

2005). While in southern Europe due to the moderate climate during winter times 

populations of Natterer’s bats are believed not to be forced to move from one roost to 

another (DePaz et al., 1986), migration distances between those roost sites of their northern 

conspecifics are reported to range between 14 and 90 km, on average (Topal, 2011). 

However, there is increasing evidence that this species is at least facultative migrant 

suggesting that this bat species is more a regional migrant than a true sedentary species 

(Hutterer et al., 2005). Based on registered one-way flights and return flights from winter to 

summer roost and between winter, summer and swarming sites some individuals are known 

to have covered longer distances. In Germany, long distance records (return flight from 

wintering roost) of 157 km (Haensel, 2004) and up to 266 km and even 327 km in a male and 

female for one-way flights, respectively, have been described. These unusual long 

movements are believed to be dispersal flights (Steffens et al., 2005).  

In the course of history, for the Natterer’s bat species, several subspecies and other 

potentially related species have been identified and proposed (for review see (Topal, 2011)). 

However, differentiating closely related species from another can represent a challenge 

(Padial et al., 2010; Shaffer and Thomson, 2007), because traditional taxonomy based on 

morphological characteristics can be misleading by the presence of phenotypic 

plesiomorphism or adaptative convergence (Salicini et al., 2011). With the advent of 

sophisticated genetic tools, molecular phylogenetics have been widely used to survey 

biological diversity of mammals, in particular Chiroptera, with results shedding new light on 

molecular systematics and taxonomy of species and their biogeography. In fact, the genetic 

biodiversity of the Natterer’s bat seems to be much more complex and is still not fully 

understood. Recent phylogenetic analysis based on nuclear and mitochondrial microsatellite 

loci revealed new phylogenetic relationships within the M. nattereri species complex (also 

referred to as M. nattereri sensu lato) and among closely related species (Puechmaille et al., 

2012). Evidence is mounting that there is much higher genetic variation in the M. nattereri 
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species complex than previously thought. M. nattereri in the Western Mediterranean, 

France and Germany, for example, was shown to be a paraphyletic group that is composed 

of well-differentiated lineages across regions, which have a narrower geographic distribution 

with potentially overlapping contact zones (Halczok et al., 2017; Ibanez et al., 2006; 

Puechmaille et al., 2012; Salicini et al., 2011). These lineages match clades partially described 

previously, e.g. M. nattereri sensu stricto, M. escalerae, clade A corresponding to Myotis sp. 

A and clade B corresponding to Myotis sp. B (Garcia-Mudarra et al., 2009; Ibanez et al., 2006; 

Mayer et al., 2007). According to the unified species concept which is proposing separately 

evolving metapopulation lineages as the only necessary property of species (De Queiroz, 

2007) some of these novel phylogenetic M. nattereri lineages could be considered as new 

cryptic species (Puechmaille et al., 2012; Salicini et al., 2011; Salicini et al., 2013). More 

research is needed however, to further substantiate these observations. 

 

3. Further investigation the presence of BBLV in bats in Germany and in France 

3.1. Bat lyssavirus surveillance 

In both countries, France and Germany, rabies surveillance in bats is based on a passive 

surveillance system. In Germany, due to the federal structure, animal disease detection 

including routine bat rabies surveillance is performed at regional veterinary laboratories 

focussing on clinically suspect animals and especially those with human contact. 

Furthermore, in order to increase submission numbers an enhanced passive surveillance was 

initiated in 1998 (Schatz et al., 2014), whereby dead bats from different sources and 

collections, e.g. conservation agencies, universities, private collections or museums were 

acquired. The submitting bat handlers morphologically delineated all submitted bats into 

species using phenotypical features (Dietz and von Helversen, 2004). In France, all bats 

associated with human contact are submitted for analysis to the National Reference Center 

for Rabies (NRC-R), at Institut Pasteur, Paris, whereas dead found bats without human 

contact are investigated by the National Reference Laboratory for Rabies, Anses-Malzeville. 
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3.2. Postmortem diagnosis of rabies in bats 

Similar to other rabies suspected animals, the postmortem diagnosis of rabies in bats is 

based on standard virological techniques. With the advent of molecular diagnostics, the 

rapid detection, confirmation, and differentiation of bat rabies isolates became possible and 

is additionally applied. (Box 1). 

Box 1. Rabies diagnostics 

Postmortem rabies diagnosis of bats is usually performed on brain samples using the 

fluorescent antibody test (FAT) as described (Dean et al., 1996). In brief, brain smears are 

fixed on slides and stained with fluorescein isothiocyanate (FITC) conjugates (Bio-Rad, 

Marnes-la-Coquette, France and SIFIN, Berlin, Germany). All FAT results in France and 

positive or questionable results in Germany are confirmed by the rabies tissue culture 

infection test (RTCIT) using mouse neuroblastoma cell lines (Neuro-2a, ATCC CCL-131 or 

MNA 42/13, FLI Cat. No.0229, respectively), essentially as described (Bourhy et al., 1989; 

Webster and Casey, 1996). RTCIT was performed using clarified brain suspension and 

homogenates from various other organs where available (Table 2). 

Viral RNA detection: RNA isolation in France was performed following manufacturer’s 

recommendations, from the brain suspensions or directly from organs following a 

digestion step (Dacheux et al., 2008), after immersion into 1mL of TriReagent or 0.8 mL of 

TriReagent LS (Molecular Research Center) respectively. Diluted RNA (1:10, in nuclease-

free water) was subjected to real-time RT-PCR (RT-qPCR) as previously described (Dacheux 

et al., 2016). In short, two RT-qPCRs were performed. The first was a probe-based 

(TaqMan) RT-qPCR for detecting the RABV species (pan-RABV RT-qPCR) and in the second 

RT-qPCR an intercalating dye (SYBR Green) was used for the detection of other lyssavirus 

species (pan-lyssa RT-qPCR). Furthermore, two conventional hemi-nested RT-PCRs 

targeting the nucleoprotein and the polymerase genes were performed as described 

(Dacheux et al., 2008; Davis et al., 2005), followed by Sanger sequencing of the respective 

amplicons for genotyping. In Germany 250 µl of the brain and organ homogenates were 

immersed into 750 µl of peqGOLD TriFast (peqlab) and RNA extraction was performed 

according to manufacturer’s instructions. The resulting RNA was eluted in 20 µl of 

nuclease-free water and subjected to multiplex R14 RT-qPCR as described elsewhere 

(Fischer et al., 2014) using the AgPath-IDTM One-Step RT-PCR Kit (Applied-Biosystems). 
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3.3. Characterization of positive specimens 

Historically, lyssaviruses were delineated based on reaction patterns of anti-nucleocapsid 

monoclonal antibodies (Schneider et al., 1985). The initial BBLV isolate was also subject to 

typing, confirming the antigenic distinction between BBLV and other lyssavirus species 

(Freuling et al., 2011). Furthermore, sequence comparisons allow for the inference of 

phylogenetic relationships and have been applied for lyssaviruses, including BBLV (Freuling 

et al., 2011; Picard-Meyer et al., 2013). Besides classical Sanger sequencing for bat species 

verification, next-generation sequencing (NGS) was applied to obtain full-length genome 

sequences of all available BBLVs (Box 2). 

Box 2. Sequencing 

For high quality full-length genome sequencing of the BBLV isolates the protocol described 

by (Nolden 2016) can be applied. Briefly, extracted RNA is transcribed into cDNA using the 

cDNA synthesis system kit (Roche) together with random hexamer primers (Roche). 

Subsequently, either Illumina or Ion Torrent compatible libraries are generated using the 

respective adapters. After size-selection, libraries are quantified and sequenced either on 

an Illumina MiSeq (Illumina) or Ion Torrent PGM (Life Technologies) instrument using 

MiSeq reagent kit v3 (Illumina) and HiQ-View chemistry (Life Technologies), respectively. 

Application of an iterative mapping and de-novo assembly approach using 454 Sequencing 

Systems Software [version 3.0; Roche] generates reliable BBLV consensus sequences from 

each isolate. Subsequently, the consensus sequences are annotated for instance using the 

Geneious software package (Kearse et al., 2012).  

An alternative sequencing protocol was described (Dacheux et al., 2010; Joffret et al., 

2013). Here, total RNA is reverse transcribed using Superscript III reverse transcriptase 

with random hexamers (Invitrogen) and amplified using QuantiTect Whole Transcriptome 

kit (Qiagen). Amplified cDNA is fragmented and libraries are prepared using KAPA Library 

Preparation Kit (Kapa Biosystems). The resulting libraries are subsequently sequenced on 

Illumina MiSeq running in 325 nt single-end modus. The obtained sequencing reads are 

pre-processed to remove low quality or artificial bases using AlienTrimmer (Criscuolo and 

Brisse, 2013) as implemented in Galaxy (Goecks et al., 2010). To obtain viral genome 

sequences, trimmed reads are mapped along appropriate reference sequences using CLC 

Genomics Assembly Cell (CLC bio) as implemented in Galaxy. Annotation of the derived 
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consensus sequence is performed using Sequencher 5.2.4 software (Gene Codes 

Corporation). 

For bat species determination partial or full cytochrome b (CYTB) sequences are used. 

These are usually obtained by Sanger sequencing essentially as described previously 

(Bickham et al., 2004; Schatz et al., 2014). To this end, wing membrane samples or brain 

material are used which are lysed overnight. Alternatively, CYTB-DNA is extracted from a 

patagium biopsy using the using DNeasy Blood and Tissue kit (Qiagen). CYTB-DNA is then 

amplified using specific primer pairs (CytB Uni fw and CytB Uni rev or LGL-765- F and LGL-

766-R). The obtained PCR fragments are seperated in a 1% agarose gel stained with 

ethidium bromide, purified using the QIAquick Gel Extraction Kit (Qiagen) and sequenced.  

Regardless of the protocol used, sequences are made publicly available by submission to 

one of the INSDC (International Nucleotide Sequence Database Collaboration) databases. 

From these databases, the sequences can be retrieved using their individual accessions 

(see for instance table 1). Alternatively, at the European Nucleotide Archive (part of the 

INSDC) sequences can combined into studies and be retrieved using a single study 

accession (see for instance PRJEB20392 for a number of BBLV and related CYTB 

sequences). 

 

3.4. Confirmation of further cases of BBLV 

In Germany, from 1998 until 2016 a total of 5591 bats were tested in the frame of enhanced 

passive surveillance, with the most frequently submitted bat species being the common 

pipistrelle bat (Pipistrellus pipistrellus) and the noctule bat (Nyctalus noctula). Of all samples, 

67 tested positive for lyssavirus antigen representing primarily EBLV-1 isolated from its 

reservoir host, the serotine bat. Also, a few infections in other bat species i.e., the common 

pipistrelle bat, the Nathusius’ pipistrelle bat (Pipistrellus nathusii) and the brown long-eared 

bat (Plecotus auritus) were found as reported before (Schatz et al., 2014). During the same 

period, five cases of BBLV infection were observed in Natterer’s bats (M. nattereri, Table 1, 

Fig. 1) and an additional case of BBLV infection was observed in the common pipistrelle bat, 

representing the first case of BBLV in a species other than a Natterer’s bat. The bat was 

initially found injured during daytime in December 2015 and was taken to a regional bat 

conservationist for rehabilitation and eventual return to the wild, but died 3 days later 
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without clear signs of a disease. The bat was subject of sampling in the frame of 

retrospective bat lyssavirus surveillance, and initial fluorescent antibody test results were 

corroborated by real-time RT-PCR specific for BBLV.  

In France during a 28-year period (from 1989 to 2016), a total of 546 dead bat specimens 

suspected of human exposure were received at the NRC-R for rabies diagnosis. Of those, 17 

were confirmed to be rabid after postmortem diagnosis and found to be infected by EBLV-1, 

with 4 EBLV subtype a and 12 EBLV subtype b. All of them were serotine bats (E. serotinus), 

except for one in 2005 which was identified as a common pipistrelle bat (P. pipistrellus) and 

for which viral RNA (EBLV-1b) and viral antigens by ELISA were detected (data from the NRC-

R). In 2013, a case of BBLV infection was diagnosed in a Natterer’s bat (M. nattereri) in La 

Bridoire (Table 1, Fig. 1). It represented the second case of BBLV infection in France in a 

Natterer’s bat, the first one being detected in 2012 (Picard-Meyer et al., 2013). Similar to the 

German BBLV isolates, all these isolates were detected using classical techniques for the 

post-mortem diagnosis of rabies. 

3.5. Virus distribution in BBLV infected bats 

Different tissue samples were tested for virus isolation by RTCIT and for viral RNA detection 

by RT-qPCR from BBLV infected bat specimens. Viable virus was isolated from all tested 

organs from the bat from Kronach (39608) and in 5/8 organs of the common pipistrelle bat 

from Elze (39068) (Table 2). In contrast, virus isolation was successful in four out of ten 

organs from the bat from Ebermannstadt (42052). Similarly to virus isolation, lyssavirus RNA 

was detected by RT-qPCR in all tested organs in the bat from Kronach (39607) and Elze 

(39068), and in 8/10 tested organs for bats from Ebermannstadt (42052) (Table 2). For the 

BBLV positive bat from La Bridoire (13001FRA), virus could only be isolated from brain and 

lyssavirus RNA were detected in brain and kidney (Table 2). 
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Table 1: Details on BBLV isolates including e.g. host, clinical signs and accession numbers. 
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Table 2: Virological investigations on tissue samples for different bats infected with BBLV 

(RT-PCR/RTCIT); n.a. = not analyzed 

 

3.6.Sequence and phylogenetic analyses 

Full-length genome sequences were obtained using NGS for the five new BBLV isolates (Box 

2) and were analyzed together with the three sequences already available (Table 1). 

Phylogenetic analysis of these eight genomes showed a differentiation of BBLV sequences 

into two lineages. Lineage A included BBLV isolates 21961, 39068, and 41021 from lower 

Saxony, Germany and the isolate KC169985 from Hemilly, France, whereas lineage B 

included BBLV isolates 29008, 39607, and 42052 from Bavaria, Germany and the isolate 

13001FRA from La Bridoire, France (Figs. 1-3). Nucleotide identity within lineage A was 

above 98.8% and within lineage B above 96.8%. The heterogeneity of 3.2% in lineage B is 

primarily caused by the genetically divergent isolate 13001FRA from La Bridoire, France, 

whereas the BBLV isolates from Bavaria (29008, 39608, and 42052) have a nucleotide 

identity of above 99.2%. The same applies to lineage A with the BBLV isolates from lower 

Saxony (21961, 39068, and 41021) having a nucleotide identity above 99.7%. Nucleotide 

Organ Isolate 

 
39068 

(Elze) 

39608 

(Kronach) 

13001FRA 

(La Bridoire) 

42052 

(Ebermannstadt) 

Brain +/+ +/+ +/+ +/+ 

Tongue +/+ +/+ -/- +/+ 

Kidney +/- +/+ +/- +/- 

Pectoral muscle +/+ +/+ -/- +/+ 

Lung +/+ +/+ -/- +/- 

Heart +/+ +/+ -/- +/- 

Liver +/- +/+ n.a. +/- 

Spleen +/- +/+ n.a. -/- 

Salivary gland n.a. +/+ n.a. -/+ 

Bladder n.a. +/+ n.a. n.a. 

Intestine n.a. n.a. -/- +/- 
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identities between the two lineages varied between 92.7% and 93.2%, depending on the 

isolates. 

 

 

 

Fig. 2. Phylogenetic relationship of BBLV isolates from available full-length genome 

sequences using Maximum Likelihood method. Following an alignment with MAFFT (Katoh 

and Standley, 2013), the genetic distances were calculated using GTR+G as the optimal 

substitution model with 1000 bootstrap replications as implemented in MEGA6 (Tamura et 

al., 2013). The tree is drawn to scale, with branch lengths measured in the number of 

substitutions per site. BBLV can be differentiated into two lineages: lineage A included BBLV 

isolates 21961, 39068, and 41021 from lower Saxony, Germany and the isolate from Hemilly, 

France, whereas lineage B included BBLV isolates 29008, 39608, and 42052 from Bavaria, 

Germany and the isolate 13001FRA from La Bridoire, France. 
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4.Discussion 

Since its first and recent discovery in 2010 in Bokeloh, Germany, five additional cases of 

BBLV were found in Germany and two in France. In contrast, most other recently discovered 

lyssaviruses from insectivorous bats, i.e. ARAV, KHUV, West Caucasian bat virus (WCBV), 

SHIBV and LLEBV, have all been detected only once (Banyard et al., 2013). Diagnostically, as 

with other lyssaviruses, all BBLV isolates have been detected by techniques used for the 

postmortem diagnosis of rabies, based on antinucleocapsid antibodies conjugated with 

fluorescent dyes. Evidently, modern molecular tools offer advantages, e.g. increased speed, 

sensitivity, and possibilities for genetic characterization (Fischer et al., 2012; Fooks et al., 

2012). Specifically, RT-qPCRs dedicated to large spectrum detection of lyssaviruses are now 

available and suitable for the diagnosis of emerging lyssaviruses such as BBLV (Dacheux et 

al., 2016). In addition, multiplex RT-qPCRs have improved the differentiation of bat rabies 

into the individual bat lyssavirus species (Fischer et al., 2014). Also, it was demonstrated 

before that undirected molecular detection methods were useful in identifying novel BBLV 

cases. The bat brain from the BBLV case from Lichtenfels, Germany (29008) was subjected to 

microarray analysis and in parallel to next generation sequencing (Freuling et al., 2013). 

Similarly, the brain sample of the bat infected with the French isolate 13001FRA was tested 

using a novel high-density resequencing microarray (called VirID), based on the two previous 

versions of the PathogenID microarray (Dacheux et al., 2010), and was successfully detected 

(data not shown). As for the previous versions, this detection was possible with the presence 

of conserved nucleotide region in the polymerase genes of prototype viruses comprising 

seven species of lyssavirus (namely RABV, LBV, MOKV, DUVV, EBLV-1, EBLV-2 and ABLV) and 

an artificial consensus sequence based on all of these species. 
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Fig. 3. Phylogenetic relationship of all lyssavirus species representatives and all BBLV isolates 

inferred using the Maximum Likelihood method based on the GTR model. A discrete Gamma 

distribution was used to model evolutionary rate differences among sites. The tree is drawn 

to scale, with branch lengths measured in the number of substitutions per site, and 

bootstrap values (1000 replication) shown next to the branches. Evolutionary analyses were 

conducted in MEGA6 (Tamura et al., 2013). Virus species’ associations to phylogroups I and II 

are also indicated. 

Phylogenetic analysis performed on the full-length genome sequences of all BBLV isolates 

known to date clearly demonstrated the presence of two different lineages among this 

lyssavirus species: lineages A and B, with nucleotide identities between them above 92%. 
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The spatial distribution of these two lineages is puzzling, as both lineages comprise isolates 

from France and Germany. However, on a regional scale all isolates from Bavaria cluster 

closely together, and the same can be observed for the isolates from Lower Saxony, while 

the French viruses appear more distinct (Figs. 1 and 2). 

At the bat host level, the distribution of BBLV lyssavirus at the late stage of the disease 

seems large and massive, because viral RNA and infectious virus were detected in several 

tissues and organs, including tongue, kidney, pectoral muscle, lung, heart, liver, spleen, 

salivary glands, bladder and intestine, confirming earlier studies in one bat from Lichtenfels, 

Germany (Freuling et al., 2013). This large distribution was found for Natterer’s bats as well 

as for the common pipistrelle bat. An exception was observed with the French bat, for which 

the presence of viral RNA was observed only in kidney and brain. This is probably the 

consequence of the poor general condition of this bat carcass. 

The sudden emergence of BBLV is somewhat puzzling as surveillance activities across Europe 

and particularly in Germany and in France have not much changed in the last few years. In 

fact, in Europe, more than 1,000 bat rabies cases have been reported, and no significant 

changes in reported numbers have been observed in recent years (Fig. 4).  

 

 

Fig. 4. Graph showing the annual number of bat rabies cases in Europe as reported to the 

database of the WHO Rabies Bulletin Europe. The years in which BBLV was detected are 

highlighted and the number of BBLV cases per year are indicated. 
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Although surveillance efforts were further encouraged by the Eurobats agreement in 2006 

(Anon, 2006), bat rabies surveillance in Europe remained heterogeneous (Schatz et al., 

2013). This may have contributed to the fact that all BBLV isolates were discovered in France 

and Germany, two countries in which continuous bat rabies surveillance has been performed 

for decades (Picard-Meyer et al., 2014; Schatz et al., 2014). However, heterogeneous 

surveillance on a spatial level does not explain the number of novel cases of BBLV observed. 

Also, there is no indication that bat rabies cases in Natterer’s bats were found in the past 

that had not been characterized (Brass, 1994; Kappeler, 1989; Schatz et al., 2013). 

In Germany, besides routine surveillance targeting suspect animals and public health related 

incidents, in 1998 enhanced passive surveillance was started to include bats, which would 

otherwise be missed for lyssavirus surveillance. In total, the combined surveillance efforts 

resulted in sampling of 8,310 bats, with the most submitted bat species being the common 

pipistrelle. Although the pipistrelle bat is not considered as a primary host for any known bat 

lyssavirus species, three lyssavirus infections were discovered in this bat species. One was a 

case of EBLV-1 infection as described before (Schatz et al., 2014). A similar infection of EBLV-

1 in common pipistrelle bat was observed in France (data from the NRC-R). The other was 

the case of BBLV in a common pipistrelle from Elze described here. The latter represents the 

first evidence of BBLV in another bat species apart from the Natterer’s bat. All other cases of 

BBLV were discovered in Natterer’s bats, leading to the assumption that this bat species is 

the primary host for BBLV. When material was available, bats species were determined by 

partial CYTB gene sequencing, since bat species determination due to morphological 

features can be challenging, especially when dealing with cryptic species. Also, when 

carcasses arrive in the laboratory, they may be incomplete or in a state of degradation, thus 

making it difficult to verify the bat species. Indeed, the Natterer’s bat from Ebermannstadt, 

Germany was initially thought to be a Daubenton’s bat and only phylogenetic analysis of 

partial CYTB sequence revealed that it was in fact a Natterer’s bat (Fig. 5). Besides bat 

speciation, the combined molecular analysis of both host and virus is also essential for 

drawing further epidemiological conclusions, as exemplified for RABV in arctic foxes from 

Greenland (Hanke et al., 2016). 

As indicated previously, full-length analyses demonstrated that two distinct lineages of BBLV 

circulate among European Natterer’s bats. On the host side, recent phylogenetic analyses 
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revealed a much higher genetic variation in the M. nattereri species complex than previously 

thought. In Central Europe, M. nattereri was shown to be a paraphyletic group that is 

composed of four well-differentiated lineages, i.e. M. nattereri sensu stricto, M. nattereri 

escalerae, M. nattereri sp. A, and M. nattereri sp. B. (Halczok et al., 2017; Ibanez et al., 2006; 

Puechmaille et al., 2012; Salicini et al., 2011; Salicini et al., 2013). All Natterer’s bats found 

positive for BBLV belong to the subspecies M. nattereri sensu stricto (Fig. 5), which is not 

surprising, as this subspecies is known to occur in Germany and France (Salicini et al., 2011; 

Salicini et al., 2013). However, the distinct two lineages of BBLV do not seem to be related to 

a circulation in specific Natterer’s bat subspecies. 

In a recent study correlating genetic distances of Natterer’s bats and their associated 

astroviruses, identical astrovirus haplotypes were not shared between different sampling 

regions suggesting that astroviruses are mostly transmitted among host colonies at regional 

scale. The fact that some virus haplotypes found in several different regions had high genetic 

similarity implied that occasional transmission across regions occurred (Halczok et al., 2017). 

However, against the background that this bat species is a regional migrant species (Hutterer 

et al., 2005), the same can be assumed for BBLV, where the respective outliers could be a 

result of yet not documented long-distance migration. Evidently, for BBLV this analysis is 

restricted to the available dataset and further isolations may support this delineation. 

Interestingly, the same observation was made with EBLV-1 in serotine bats where almost 

identical nucleotide sequences from within certain geographical regions of the Netherlands 

and Germany indicate genomic stability during the transmission cycle of these virus variants 

but with occasional geographic spread or intermixing (Freuling et al., 2012; Poel et al., 2005). 

However, on a European scale there seems to be no clear correlation between migration 

behaviour of lyssavirus reservoir species and the phylogeographical clustering of virus 

isolates. For EBLV-1, the primary host serotine bat is a rather sedentary species, which is not 

reflected in the clustering of isolates (Davis et al., 2005). On the other hand, the Daubenton’s 

bat as the reservoir for EBLV-2 can migrate over larger distances. However, sequence 

analysis for EBLV-2 revealed a strong geographical clustering (Jakava-Viljanen et al., 2010). 

Further research, including and combining host biology, migration data, as well as molecular 

characterization of host and virus is essential to understand transmission dynamics and gain 

further insights into the epidemiology of bat-virus interaction. This may contribute to predict 

virus spread and establish risk assessments for virus transmission to humans. 



Results 
 

 
90 

 

Fig. 5. Phylogenetic relationship of partial CYTB sequences (484 nt) of bats found positive for 

BBLV and representatives of Myotis nattereri clades (Salicini et al., 2011; Salicini et al., 2013). 

While the bat from Elze (Lower Saxony) was identified as a common pipistrelle bat 

(Pipistrellus pipistrellus), all other bats found positive for BBLV were closely related and 

classified as Natterer’s bats (Myotis nattereri), and more precisely belong to the Myotis 

nattereri sensu stricto clade/subspecies. Phylogenetic analysis was inferred by using the 

Maximum Likelihood method based on the Hasegawa-Kishino-Yano model (HKY) with 

invariant sites (G) conducted in MEGA6 (Tamura et al., 2013). The tree is drawn to scale, 

with branch lengths measured in the number of substitutions per site, and bootstrap values 

(1000 replication) shown next to the branches. 

 

 

BBLV was shown to be as pathogenic in mice as EBLV-1 (Nolden et al., 2014) and it can be 

assumed that BBLV infections in humans potentially lead to an encephalitis eventually 

causing death. Therefore, BBLV alongside with the other known bat lyssaviruses in Europe 
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represents a low but undeniable public health threat. Unlike other remote regions in the 

world where people do not get into close contacts with bats, in Europe research and species 

conservation programs require the handling of bats by bat workers. While in the eastern 

parts of Germany the cumulative number of bat handlings from 2000-2010 for serotine bats 

were 1,260, those for M. daubentonii and M. dasycneme were 22,245 and 1086, 

respectively, with 37,140 by far the most handlings were recorded for the Natterer’s bat (Bat 

Marking Centre, Dresden). This underlines the importance of adequate prophylaxis for bat 

handlers. In addition, accidental exposure to bats could occur for individuals other than bat 

handlers. For example in 2015, a total of 128 patients consulted an antirabic clinic (ARC) in 

France after being exposed to a bat in France metropolitan, representing 2.6% of the total 

number of patients consulting such clinic (n=8,336) (data from NRC-R, available at (Pasteur, 

2017)). Some of these patients could be exposed to laboratory confirmed rabid bats, as it 

was the case for the two children who were in contact with the BBLV infected bat from La 

Bridoire, France. Considering the relatedness of BBLV to other members of the phylogroup I 

lyssaviruses (Figure 3) it appears likely that persons who received rabies prophylaxis will be 

protected. In fact, a recent study showed that available human inactivated vaccines elicit an 

antibody response that cross-neutralizes BBLV and therefore, are considered to confer 

protection against BBLV and other European bat lyssaviruses (Malerczyk et al., 2014; Nolden 

et al., 2014). Similarly, serum samples from French patients preventively vaccinated against 

rabies were analysed for the potency of neutralization against the CVS rabies strain (used as 

the reference virus) and 13001FRA isolate adapted to cell-culture. Seroneutralization of 

BBLV was observed, but with a 5.8-fold decrease compared to CVS (Fig. 6). In any case, as 

there are currently no other vaccines available (Evans et al., 2012), consistent preventive 

vaccination of all persons working with bats and PEP of all persons exposed to bats should be 

given priority as recommended in France (Haut Conseil de la santé publique, 2013; Lafeuille 

et al., 2005) and Germany (Delere et al., 2011).  
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Fig. 6. Comparison of seroneutralization against RABV (CVS) and BBLV (13001FRA) with 37 

sera of patients vaccinated against rabies using a modified RFFIT (Feyssaguet et al., 2007). 

The dilution value to obtain a 50% viral inhibition is visualized as box-plots, with the first, 

third quartiles are indicated at the bottom, and top of the box, respectively, and the median 

is indicated with the band. The neutralizing activity was found to be significantly lower 

(paired Student t test, p value < 0.05) against BBLV (mean value = 157, standard deviation = 

137) compared to CVS (mean value = 907, standard deviation = 623), with a 5.8 fold 

decrease in the titre dilution. 

 

 

Despite the recent discovery of a novel bat lyssavirus, lyssaviruses have been characterized 

in only a small proportion of recognized species (Banyard et al., 2013). Future surveillance of 

bat-associated pathogens using highly sensitive and novel high-throughput technologies, e.g. 

NGS (Dacheux et al., 2014) or pan viral microarrays, will likely increase the number of 

detected pathogens including novel lyssavirus species. This may also lead to further 

discoveries of BBLV in countries along the distribution of the Natterer’s bat. 
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Supplementary Table 1: Diagnostic results of archived field samples tested in 2008 using 

the Bionote LFD (Cat.No.:RG 18-01; Lot NO.:1801029)

 

FAT and the LFDs were only regarded positive (+) or negative (-) without scoring the intensity 

 

  

Lab-ID species year Origin
Viral 

species
Lineage Material FAT-Result Bionote

148 Fox 1998 Germany RABV Cosmopolitan (WE) brain  + +

149 Fox 1998 Germany RABV Cosmopolitan (WE) brain  + +

150 Fox 1998 Germany RABV Cosmopolitan (WE) brain  + +

151 Fox 1998 Germany RABV Cosmopolitan (WE) brain  + +

152 Fox 1998 Germany RABV Cosmopolitan (WE) brain  + +

153 Fox 1998 Germany RABV Cosmopolitan (WE) brain  + -

154 Fox 1998 Germany RABV Cosmopolitan (WE) brain  + +

155 Fox 1998 Germany RABV Cosmopolitan (WE) brain  + +

156 Fox 1998 Germany RABV Cosmopolitan (WE) brain  + -

280 Fox 1998 Germany RABV Cosmopolitan (WE) brain  + +

281 Fox 1998 Germany RABV Cosmopolitan (WE) brain  + +

282 Sheep 1998 Germany RABV Cosmopolitan (WE) brain  + -

284 Fox 1998 Germany RABV Cosmopolitan (WE) brain  + +

285 Fox 1998 Germany RABV Cosmopolitan (WE) brain  + +

286 Fox 1998 Germany RABV Cosmopolitan (WE) brain  + +

287 Fox 1998 Germany RABV Cosmopolitan (WE) brain  + +

288 Fox 1998 Germany RABV Cosmopolitan (WE) brain  + +

289 Marten 1998 Germany RABV Cosmopolitan (WE) brain  + +

290 Fox 1998 Germany RABV Cosmopolitan (WE) brain  + +

291 Fox 1998 Germany RABV Cosmopolitan (WE) brain  + +

292 Fox 1998 Germany RABV Cosmopolitan (WE) brain  + +

293 Fox 1998 Germany RABV Cosmopolitan (WE) brain  + +

904 Dog 1998 Germany RABV Cosmopolitan (WE) brain  + +

1390 Fox 1998 Germany RABV Cosmopolitan (WE) brain  + -

1391 Fox 1998 Germany RABV Cosmopolitan (WE) brain  + -

1392 Fox 1998 Germany RABV Cosmopolitan (WE) brain  + -

5989 Dog 2002 Aserbaijan RABV Cosmopolitan (WE) brain  + +

16854 Fox 2007 Kosovo RABV Cosmopolitan (WE) brain  + +

16862 Fox 2007 Kosovo RABV Cosmopolitan (WE) brain  + +

17039 Fox 2007 experimental RABV Cosmopolitan brain  + +

17040 Fox 2007 experimental RABV Cosmopolitan brain  + +

6214 Ferret 2002 experimental EBLV-1 - brain  + +

6215 Ferret 2002 experimental EBLV-1 - brain  + +

6216 Ferret 2002 experimental EBLV-1 - brain  + +

6217 Ferret 2002 experimental EBLV-1 - brain  + +

10280 Sheep 2004 experimental EBLV-1 - brain  + +

10282 Sheep 2004 experimental EBLV-1 - brain  + +

10285 Sheep 2004 experimental EBLV-1 - brain  + +

10271 Sheep 2004 experimental EBLV-2 - brain  + +

10274 Sheep 2004 experimental EBLV-2 - brain  + +

10277 Sheep 2004 experimental EBLV-2 - brain  + +
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Supplementary Table 2: Diagnostic results of archived field samples tested in Italy using 

the Bionote LFD (Lot NO.: 1801077, 1801081) 

 

 

ID number Animal species Origin Viral species Lineage FAT result
RIDT 

result
RTCIT RT-PCR

303/2010 badger Italy RABV Cosmopolitan (WE) pos neg pos pos

450/2010 cat Italy RABV Cosmopolitan (WE) pos neg pos pos

527/2010 roe deer Italy RABV Cosmopolitan (WE) pos pos pos pos

836/2010 equine Italy RABV Cosmopolitan (WE) pos neg pos pos

1546/2010 cat Italy RABV Cosmopolitan (WE) pos pos pos pos

2174/2010 red fox Italy RABV Cosmopolitan (WE) pos neg pos pos

2176/2010 red fox Italy RABV Cosmopolitan (WE) pos neg pos pos

2177/2010 red fox Italy RABV Cosmopolitan (WE) pos pos pos pos

2418/2010 roe deer Italy RABV Cosmopolitan (WE) pos pos pos pos

2944/2010 red fox Italy RABV Cosmopolitan (WE) pos pos pos pos

3144/2010 stone marten Italy RABV Cosmopolitan (WE) pos neg pos pos

6944/2009 red fox Italy RABV Cosmopolitan (WE) pos neg* pos pos

7024/2009 red fox Italy RABV Cosmopolitan (WE) pos neg pos pos

117/1996 human (ex-dog) Italy (ex-Nepal) RABV Arctic-like 1 pos neg* pos pos

3570/2011 human (ex-dog) Italy (ex-India) RABV Arctic-like 1 pos neg* neg pos

1920/2005 dog Mauritania RABV Africa 2 pos neg pos pos

2019/2006 dog Mauritania RABV Africa 2 pos neg pos pos

2029/2007 dog Mauritania RABV Africa 2 pos neg pos pos

2049/2007 goat Mauritania RABV Africa 2 pos neg pos pos

1916/2005 goat Mauritania RABV Africa 2 pos neg pos pos

2871/2009 bovine Botswana RABV Cosmopolitan (Africa 1) pos neg* pos pos

4125/2009 bovine Botswana RABV Cosmopolitan (Africa 1) pos neg pos pos

3580/2009 dog Botswana RABV Cosmopolitan (Africa 1) pos pos pos pos

3416/2009 goat Botswana RABV Cosmopolitan (Africa 1) pos pos pos pos

5980/2009 dog Botswana RABV Cosmopolitan (Africa 1) pos pos pos pos

6665/2009 honey badger Botswana RABV Cosmopolitan (Africa 3) pos neg* pos pos

251/2007 dog Niger RABV Africa 2 pos neg pos pos

252/2007 dog Niger RABV Africa 2 pos neg pos pos

246/2007 dog Niger RABV Africa 2 pos neg pos pos

247/2007 dog Niger RABV Africa 2 pos neg pos pos

137/2007 dog Burkina Faso RABV Africa 2 pos neg pos pos

70/2007 dog Burkina Faso RABV Africa 2 pos neg pos pos

20/2007 dog Burkina Faso RABV Africa 2 pos pos pos pos

19/2007 dog Burkina Faso RABV Africa 2 pos neg pos pos

21/2007 dog Burkina Faso RABV Africa 2 pos neg pos pos

37/2007 dog Burkina Faso RABV Africa 2 pos pos pos pos

144/2007 dog Burkina Faso RABV Africa 2 pos neg pos pos

124/2007 dog Burkina Faso RABV Africa 2 pos pos pos pos

36/2007 dog Burkina Faso RABV Africa 2 pos neg pos pos

139/2007 dog Burkina Faso RABV Africa 2 pos pos pos pos

49/2007 dog Burkina Faso RABV Africa 2 pos neg pos pos

28/2007 dog Burkina Faso RABV Africa 2 pos neg pos pos

4314/1993 badger Italy RABV Cosmopolitan (WE) pos neg n.e. pos

786/1993 chamois Italy RABV Cosmopolitan (WE) pos neg n.e. pos

629/1993 cat Italy RABV Cosmopolitan (WE) pos neg n.e. pos

4313/1993 marten Italy RABV Cosmopolitan (WE) pos neg n.e. pos

4241/1993 red fox Italy RABV Cosmopolitan (WE) pos neg n.e. pos

EURL PT2012/1 (Ariana 1991 ) dog Tunisia RABV Cosmopolitan (Africa 1) pos neg pos pos

EURL PT2012/2 (EBL2-VLA P3 ) mouse (ex M. daubentonii) UK EBLV-2 pos neg pos pos

EURL PT2012/3 (201020958 ) mouse (ex dog) Spain RABV Cosmopolitan (Africa 1) pos pos pos pos

EURL PT2012/7 (GS7) red fox France RABV Cosmopolitan (WE) pos neg pos pos

EURL PT2012/8 (GS7) red fox France RABV Cosmopolitan (WE) pos neg pos pos

EURL PT2012/9 (R75) mouse (ex E. serotinus) Spain EBLV-1 pos neg pos pos

351/2010 bovine Brazil RABV American indigenous pos neg* n.e. pos

299/2010 bovine Brazil RABV American indigenous pos neg n.e. pos

134/2010 bovine Brazil RABV American indigenous pos neg n.e. pos

451/2010 bovine Brazil RABV American indigenous pos neg n.e. pos

87/2010 bovine Brazil RABV American indigenous pos neg n.e. pos

227/2010 bovine Brazil RABV American indigenous pos neg n.e. pos

251/2010 bovine Brazil RABV American indigenous pos neg n.e. pos

211/2010 bovine Brazil RABV American indigenous pos neg n.e. pos

9/2010 bovine Brazil RABV American indigenous pos neg n.e. pos

77/2010 bovine Brazil RABV American indigenous pos pos n.e. pos
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*Samples resulted positive when tested with a different protocol which skipped the first 

dilution step 

 

  

ID number Animal species Origin Viral species Lineage FAT result
RIDT 

result
RTCIT RT-PCR

158/2011 bovine Brazil RABV American indigenous pos neg n.e. pos

125/2011 bovine Brazil RABV American indigenous pos neg n.e. pos

285/2011 bovine Brazil RABV American indigenous pos neg n.e. pos

218/2011 bovine Brazil RABV American indigenous pos neg n.e. pos

101/2011 equine Brazil RABV American indigenous pos neg n.e. pos

283/2011 bovine Brazil RABV American indigenous pos neg n.e. pos

303/2011 bovine Brazil RABV American indigenous pos pos n.e. pos

62/2011 bovine Brazil RABV American indigenous pos neg n.e. pos

320/2011 bovine Brazil RABV American indigenous pos neg n.e. pos

196/2011 bovine Brazil RABV American indigenous pos neg n.e. pos

144/2011 bovine Brazil RABV American indigenous pos neg n.e. pos

5B1/2011 kinkajou Brazil RABV American indigenous pos neg* pos pos

343/2011 equine Brazil RABV American indigenous pos neg* n.e. pos
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Supplementary Table 3: Comparison of two batches of BioGen LFD (Batch 1: Lot NO: 

AI191301, Batch 2: Lot NO: AI191402) using archived field samples (MP=mouse brain) 
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Supplementary Table 4: Comparison of between results obtained with sample set III in the 

laboratories at Onderstepoort (SA) and Friedrich-Loeffler-Institut (FLI) 
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Supplementary Table 5: Results of tissue culture supernatant tested in 2008 using the 

Bionote LFD (Cat.No.:RG 18-01; Lot NO.:1801029) 

 

 

 

  

Virus 
Titre 

(TCID50/ml) 
Undiluted 1:10 1:100 1:1000 1:10000 1:100000 1:1000000 

CVS 10
6.5

 

 

+ - - - - - - 

         

EBLV-1 10
6.2

 + + - - - - - 

         

         

EBLV-2  10
4.2

 + - - - - - - 
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6.Discussion 

Rabies still poses a human health threat almost worldwide. The greatest burden is carried by 

Asia and Africa, where dog-mediated rabies is responsible for the majority of human deaths 

caused by rabies (WHO, 2013a). Rabies surveillance in these regions is hampered by 

challenges in rabies diagnosis (Banyard et al., 2013). Lyssaviruses also circulate in bat 

populations and have been detected in many areas of the World including Europe (Schatz et 

al., 2013a). Although bat rabies surveillance in parts of Europe give an insight into the 

epidemiology of bat lyssaviruses, little is known about the transmission and maintenance of 

lyssaviruses in bat colonies (Freuling et al., 2009a). Previous surveillance revealed that EBLV-

1 is the most common lyssavirus present in Europe and that there is genomic variation 

within this lyssavirus species in the form of sublineages and indels (Freuling et al., 2012, 

Johnson et al., 2007, Amengual et al., 1997). Human deaths due to bat mediated rabies in 

Europe have been reported and therefore it is important to monitor the epidemiological 

situation (Fooks et al., 2003a). Furthermore, investigation of the respective lyssaviruses, e.g. 

their pathogenicity, is important to assess their zoonotic potential. 

 

Assessment of EBLV-1 pathogenicity: 

The low spill-over rate of EBLV-1 from bats to animals and humans compared to RABV, 

where spill-over infections occur more frequently, presents a conundrum (Johnson et al., 

2010, Kuzmin et al., 2012, Schatz et al., 2014a). Possible explanations include differences in 

host densities and contact rates of the reservoirs with terrestrial animals and humans, as 

well as the properties of the viruses (Freuling et al., 2009a). Pathogenicity studies in various 

animal species indicate that their susceptibility to EBLV-1 may be limited, however the 

results were obtained using single isolates (Cliquet et al., 2009, Brookes et al., 2007, 

Tjornehoj et al., 2006, Vos et al., 2004b, Vos et al., 2004a). Previously the pathogenicity of 

LBV was underestimated, based on limited data for only one isolate that indicated an 

apathogenic phenotype, following peripheral inoculation (Badrane et al., 2001). However, 

later investigations with other LBV isolates showed that this was not true (Markotter et al., 

2008). 
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Therefore, in order to assess the impact of natural genetic variation on EBLV-1 

pathogenicity, selected isolates were compared under standardised conditions in a mouse 

model. The results demonstrate that differences between the EBLV-1 isolates exist, 

regarding their pathogenicity as well as their incubation periods. These results need to be 

considered for the interpretation of previous studies, including studies where the 

pathogenicity of different lyssaviruses was compared. In previous experimental studies, all 

lyssaviruses present in Germany were shown to be pathogenic. EBLV-1 displayed higher 

mortalities in mice and ferrets following peripheral inoculation compared to EBLV-2, while 

the pathogenicity of EBLV-1 in mice was comparable to BBLV (Vos et al., 2004a, Nolden et 

al., 2014). The EBLV-1 isolate used by Vos et al. is identical to the EBLV-1 isolate 

13454_EBLV-1a, while in the study by Nolden et al. another EBLV-1 isolate was investigated, 

but under the same experimental conditions as in this thesis. This second EBLV-1 isolate 

displayed comparable pathogenicity to isolate 5782_EBLV-1a_del (Nolden et al., 2014). The 

other seven EBLV-1 isolates investigated in this thesis were less pathogenic, with 100% 

survival rates after intramuscular (i.m.) inoculation with low doses. This suggests, that at 

least for this animal model, i.e. 3 week old Balb/c mice, EBLV-2 and BBLV are in fact more 

pathogenic than EBLV-1. Interestingly isolate 13454_EBLV-1_ref, less pathogenic than EBLV-

2 in Balb/c mice, displayed higher mortalities in mice and ferrets following peripheral 

inoculation (Vos et al., 2004a). However, different EBLV-2 isolates might have been used in 

the two investigations and there might be differences in the pathogenicity of the isolates. 

Therefore, investigation of these and other EBLV-2 and BBLV isolates under the same 

experimental conditions are warranted. Furthermore, different animal models were used in 

those studies, i.e. Balb/c mice, CD1-mice and ferrets (Nolden et al., 2014, Vos et al., 2004a), 

and it is known that the pathogenicity of lyssaviruses depends on the animal species 

(Jackson and Fu, 2013). Since in this thesis, a very sensitive model, i.e. not fully 

immunocompetent mice, was used to detect even slight differences in the properties of the 

isolates, it is unclear whether these differences also apply to other animal species, including 

the natural reservoir for EBLV-1. Therefore, these results can provide only an indication how 

these viruses might behave in their reservoirs or in humans. Two studies assessed the 

pathogenicity of EBLV-1 in bats, i.e. in the serotine bat, as the reservoir species, and the big 

brown bat (Eptesicus fuscus), a bat species related to the serotine bat. In both studies, 

following peripheral inoculation with EBLV-1 mortalities were below 57% depending on 
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inoculation route and dose (Freuling et al., 2009b, Franka et al., 2008). To determine if the 

EBLV-1 isolates would also display differences in pathogenicity, when inoculated into their 

reservoir host, further studies are warranted, but difficult to implement due to the protected 

status of European bats (UNEP/EUROBATS, 1994).  

A correlation between the inoculation route, the clinical signs as well as the virus distribution 

in the brain was observed, with the virus distribution in different brain regions, as well as the 

clinical signs being dependent upon the inoculation route. Although previous studies 

examined distribution of EBLV-1, EBLV-2 and RABV in different brain regions, the viruses 

were always inoculated into the left hind footpad. Thus the impact of the inoculation route 

on virus distribution was not assessed (Hicks et al., 2009, Healy et al., 2013). In these studies, 

virus antigen was most frequently observed in the pons and rostral medulla, followed by the 

cortex 3, hypothalamus and thalamus (Hicks et al., 2009). The highest quantity of virus 

antigen was present in the pons and rostral Medulla (Healy et al., 2013). No difference 

between the lyssavirus species could be observed (Hicks et al., 2009, Healy et al., 2013). 

These results are concordant to the results presented here, as following i.m. inoculation the 

medulla contained most virus antigen and no difference in virus distribution between the 

RABV isolate and the EBLV-1 isolates could be observed. The high antigen content in the 

medulla following intranasal (i.n.) inoculation could be due to the development of clinical 

signs at a later stage of infection. Another possibility would be that the virus following i.n. 

inoculation does not just spread via the olfactory nerve, but also via sensory neurons of the 

ophthalmic nerve and subsequent trigeminal nerve as described previously (Lafay et al., 

1991, Hronovsky and Benda, 1969a). In one study, following i.n. inoculation with EBLV-2 and 

RABV, virus was detected in the lung, stomach and tongue, indicating that the inoculum gets 

swallowed and aspirated, which could result in multiple routes of entry (Johnson et al., 

2006). Although the inoculum used in this thesis was considerably smaller (10µl compared to 

30µl), the possibility of another entry route cannot be entirely ruled out (Johnson et al., 

2006).  

While a number of i.m. infected mice developed antibodies, there was a complete absence 

of seroconversion following i.n. inoculation. Although this had been described previously in 

tested survivors of a mouse study after inoculation with EBLV-2 and RABV, survivors of a 

study where guinea pigs were infected via aerosol with a RABV strain developed antibodies 
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(Hronovsky and Benda, 1969b, Johnson et al., 2006). The absence of antibodies supports the 

theory, that after i.n. inoculation the virus directly enters the nervous system via olfactory or 

sensory neurons, without inducing an immune response. Generally no correlation between 

survival and seroconversion of the mice was observed following i.m. inoculation with EBLV-1, 

which is concordant with previous results, where even after four subsequent multiple 

peripheral exposures of mice to EBLV-1, EBLV-2 and RABV over a period of ca. 3 months 

seroconversion in survivors did not always occur (Banyard et al., 2014b). Similar 

observations were also made in bats as the reservoir hosts of lyssaviruses. Following s.c. 

infection of big brown bats and serotine bats with EBLV-1, seroconversion of all or none of 

the infected animals was observed, respectively (Franka et al., 2008, Freuling et al., 2009b). 

Furthermore, antibody titres in bats seem to drop within a year, as demonstrated in studies 

using ABLV and RABV (McColl et al., 2002, Turmelle et al., 2010). 

The results suggest, that seroconversion after exposure to lyssaviruses does not always 

occur in mice and bats, and that in the latter antibody titres tend to drop relatively soon 

following infection, although the animals are still protected (Turmelle et al., 2010). This 

needs to be taken into consideration for the interpretation of serological results during 

active surveillance studies in bats (Banyard et al., 2011). The seroprevalence of lyssavirus 

antibodies in bats in Europe varies (Schatz et al., 2013a). Estimating the prevalence of bat 

lyssaviruses in Europe from these serologic results is difficult, considering that there is 

evidence, that seroconversion following exposure to lyssaviruses does not always occur and 

is not of long duration. Coupled with afore mentioned difficulties, i.e. non-standardized 

serological test procedures and cross-neutralization of phylogroup 1 lyssaviruses, active 

surveillance can provide only limited information (Freuling et al., 2009a, Schatz et al., 

2014a). 

 

Enhanced passive bat rabies surveillance in Germany: 

Passive bat rabies surveillance is the method of choice to obtain information on bat rabies 

epidemiology (Freuling et al., 2009a, Schatz et al., 2014a). The continued isolation of EBLV-1, 

EBLV-2 and BBLV shows that routine surveillance as well as enhanced passive bat rabies 

surveillance contribute to the understanding of the epidemiology of bat lyssaviruses in 
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Germany. Although the majority of bat rabies cases were detected during routine 

surveillance, enhanced passive bat rabies surveillance provides additional information, 

through the detection of bat rabies cases which would otherwise be missed, and also gives a 

better estimate of the true prevalence of bat lyssaviruses in Germany. For example the spill-

over case of BBLV in the common pipistrelle in 2015, described in this thesis, was only 

detected during enhanced passive bat rabies surveillance. The discovery of two further BBLV 

cases within a year doubled the number of BBLV cases detected in Germany. This sudden 

emergence of BBLV represents somewhat of a mystery. BBLV seems to be as or even higher 

pathogenic than EBLV-1, at least in the mouse model used here. As human spill-over cases 

have been described for EBLV-1 (Fooks et al., 2003a, Selimov et al., 1989), the zoonotic 

potential of BBLV should also not be underestimated. BBLV RNA was present in various 

organs of the BBLV infected bats, suggesting wide-spread virus distribution at the host level. 

Similar observations were made in naturally EBLV-1 infected serotine bats, EBLV-2 infected 

Daubenton's bats and RABV infected non-hematophagous bats (Schatz et al., 2014b, 

Allendorf et al., 2012). Interestingly, in an EBLV-1 spill-over case of a Nathusius' pipistrelle 

bat, virus RNA was only detected in the heart and replication competent virus could be 

isolated only from the brain (Schatz et al., 2014b). In comparison, BBLV RNA was detected in 

all tested organs and viable virus in 5 out of 8 organs of the common pipistrelle bat. These 

results indicate that lyssavirus distribution from the central nervous system to various 

peripheral organs is apparently common for natural infected bats. Virus was isolated from 

the salivary glands of two investigated bats and since the presence of viable virus in the 

salivary glands is of outmost importance for onward transmission, this supports the potential 

of BBLV to cause spill-over infections.  

The pathogenicity of BBLV has been investigated using two isolates (21961-Bokeloh, 29008-

Lichtenfels) with a nucleotide identity of 92.9%, which cluster into the two separate 

sublineages A and B proposed here. No difference in the pathogenicity of the BBLV isolates, 

was observed (Nolden et al., 2014) although one AA exchange (His523Gln) in the 

glycoprotein is present in a potential pathogenicity determining site (Babault et al., 2011, 

Prehaud et al., 2010). This AA exchange is so far only present in BBLV isolates from Lower 

Saxony. No other AA exchanges were observed in known pathogenicity determining sites of 

the BBLV isolates (For references see S4 table, EBLV-1 paper). Overall the data obtained so 

far provide no indication that BBLV isolates differ in their pathogenicity, although the same 
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was true for EBLV-1 where differences in the pathogenicity of isolates were discovered. 

Here, continuing surveillance for BBLV and investigation of novel isolates is of importance. 

Passive bat rabies surveillance is also important for determining the diversity and evolution 

of lyssavirus isolates by genetic analyses and in vitro and in vivo studies. By isolation and 

archiving of isolates, these are available for further investigations, e.g. determination of the 

impact of genetic variation on the pathogenicity as described in the previous section. The 

results of such investigations provide important information for the assessment of the 

human health threat posed by endemic lyssaviruses. Bat rabies control is not feasible in 

Europe and has so far only been performed for RABV in Vampire bats in America (Kuzmin 

and Rupprecht, 2015). These programs focus of on the reduction or elimination of vampire 

bat populations through culling, but there are strong indications that these measures are 

counterproductive and in the long term result in a dispersal of the bats and reduction in 

seroprevalence (Johnson et al., 2014). Population reduction in European bats would be 

ineffective and is due to their protected status not an option (Kuzmin and Rupprecht, 2015). 

 

LFDs as a tool for rabies surveillance in developing countries: 

Control of dog-mediated rabies and subsequent elimination has already been performed 

successfully. This could greatly reduce the number of human rabies cases, as rabid dogs 

present the main source for human infection (Müller et al., 2012). However, in developing 

countries in Asia and Africa, which are most affected, diagnosing rabies is challenging 

(Banyard et al., 2013). Therefore, LFDs as an alternative diagnostic tool for rabies were 

developed and six commercially available LFDs were evaluated in this thesis.  

Unfortunately, the performance of the LFDs was not satisfactory, as test agreement of the 

LFDs, with the gold standard FAT, for experimentally infected animals and archived field 

samples were low (Kappa < 0.37). Only for field samples from South Africa test agreement 

between four of the LFDs and FAT was good to perfect (Kappa 0.72-1.00). Overall, 

investigated LFDs displayed insufficient sensitivities and reproducibility. These are known 

weaknesses of traditionally designed LFDs and can be caused by the materials incorporated 

in the LFD, their treatment and the final assembly of the test strip (O’Farrell, 2013). For 

example the nitrocellulose membrane and its treatment, as well as the conjugate pad 
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material and the many processing steps required for conjugate application can have a 

notable impact on the reproducibility of LFDs (O’Farrell, 2013, Posthuma-Trumpie et al., 

2009). There was no information regarding composition, the treatment of the components, 

and the antibodies used of the investigated LFDs, except for the Bionote LFD (Kang et al., 

2007).  

In other studies, evaluating the Bionote test, sensitivities and specificities of 85%-100% and 

93%-100% were observed respectively (Table 3). In the results presented here, a discrepancy 

in the sensitivities of the Bionote test was also seen between and within batches, 

considering the different sample sets, previous testing at the Friedrich-Loeffler-Institute (FLI) 

and the results from Italy. Although there are differences between the published studies, i.e. 

different samples and batches of the test used and test implementation and evaluation by 

different individuals, the simplicity of the test system should enable it to function 

independently from these factors. After all, the simple nature of the LFDs should be one of 

their strengths (O'Farrell, 2015).  

A very interesting feature of the LFDs first demonstrated here and later confirmed in 

another study (Lechenne et al., 2016), is that RNA can be stored in the used test strips for a 

longer period of time, i.e. six weeks. As test strips can be considered no longer infectious one 

hour after use, they could be sent to a laboratory for lyssavirus characterisation using RT-

PCR or sequencing. However, cooperation with a laboratory containing the necessary 

facilities is mandatory and results are not immediately available. An alternative would be a 

multiplex LFD which is able to differentiate between the lyssavirus species. As multiplexing 

on one test strip provides several challenges, separate strips with specific antibodies for the 

different lyssaviruses might be a solution (Li and Macdonald, 2016). This would on the other 

hand increase the cost for testing, as more LFDs are needed for rabies diagnosis. As there 

are often difficulties with the funding of rabies surveillance in developing countries, a single 

LFD with a broad reacting antibody for the detection of preferably all lyssaviruses might be 

the better option. In these regions the focus is on dog rabies surveillance and elimination, 

since most human rabies cases are dog-mediated. As more than 99% of rabies cases in 

terrestrial mammals are caused by RABV, the identification of the lyssavirus species is not a 

necessity for rabies elimination in these animals. One region where a multiplex LFD might be 

appropriate would be Africa, where phylogroup 2 lyssaviruses, i.e. MOKV and LBV, are 
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endemic. Since for both lyssaviruses infections of companion animals, i.e. cats and dogs, 

have been reported (Sabeta et al., 2007, Markotter et al., 2006), a LFD which is able to 

differentiate between phylogroups 1 and 2 would be useful, especially if a human exposure 

has occurred. 

Publication of the data presented here, resulted in an echo of the media, including a press 

release by the journal Public Library of Science Neglected Tropical Diseases (PLOS NTDs), 

which was picked up by other news agencies, i.e. ScienceDaily, Labmedica, Scimex, 

EurekAlert and the New York Times (McNeil Jr., 2016, Labmedica International staff writers, 

2016, PLOS Neglected Tropical Diseases, 2016, PLOS, 2016b, PLOS, 2016a). Furthermore, in a 

search for continued availability of LFDs used in this study in May 2017 only four out of the 

six LFDs were found, with two (Creative diagnostics, Biogen) apparently no longer available. 

An extended search for other commercially available LFDs using the keywords “rapid rabies 

test” resulted in the discovery of thirteen additional LFDs now commercially available 

(Appendix Table 1). However, there is hardly any information regarding their composition 

with sometimes confusing descriptions, e.g. what sample to use, if the tests aim at the 

detection of rabies antigen or antibodies, or mention of other infectious agents indicating 

copy and paste of the test description (see Table 4, No. 2, 4, 13). Still, the number of tests 

available highlight the interest in and need for a rapid test system for rabies diagnosis and 

prove that LFDs in general are promising candidates for field diagnosis of rabies. 

As mentioned previously, the development of a functional, i.e. sensitive, specific and 

reliable, LFD would greatly improve rabies surveillance and subsequent elimination in 

developing countries, but test development is only the first step. As far as information is 

provided within the manufacturer’s instruction, apart from Bionote, three further LFDs were 

developed for rabies diagnosis, which were never commercialized and can therefore not be 

acquired by countries in need (Ahmed et al., 2012, Kasempimolporn et al., 2011, Nishizono 

et al., 2008). Therefore, besides test development and extensive validation, collaboration 

with a company is important to make the test commercially available. 
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Conclusion: 

Rabies presents a human health threat which, although the elimination of dog-mediated 

rabies would reduce it immensely, can never be erased due to the presence of bat 

lyssaviruses. Since bat rabies elimination is not feasible for various reasons, monitoring bat 

lyssaviruses in the scope of preferably passive surveillance is the only option. This enables a 

regular assessment of bat lyssaviruses epidemiology and the resulting possible human health 

threat, and is therefore extensively performed in Germany. Furthermore, assessing the 

properties of the viruses themselves is of importance to identify and quantify possible 

sources and risks of transmission and infection. Elimination of dog-mediated human rabies is 

aimed to be achieved by 2030, but beforehand several major challenges, e.g. concerning 

rabies diagnosis, need to be overcome. 
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7.Summary 

Rabies, a zoonotic disease known since ancient times, is caused by lyssaviruses and almost 

always fatal once clinical signs develop. Although most of Europe, including Germany, is free 

of terrestrial rabies, bat rabies is still present. Surveillance in Europe showed that most bat 

rabies cases are caused by European bat lyssavirus 1 (EBLV-1). For this virus spill-over 

infections in various terrestrial mammals including humans have been described. Two 

genetic sublineages of EBLV-1 exist and a third one has been proposed. Furthermore, 

insertions and deletions were found in the genomes of selected isolates. Since it was proven 

for other lyssaviruses that genetic variation can have an impact on the pathogenicity of the 

respective isolates, it was investigated if the same is true for EBLV-1. Differences in the 

pathogenicity of investigated isolates were discovered after intranasal and intramuscular 

inoculation, although at the moment it is impossible to determine the exact cause. Upon 

comparison of the different inoculation routes, i.e. intracranial, intramuscular and intranasal, 

differences in the clinical signs of the mice as well as in the virus distribution within the brain 

were discovered.  

The isolates used in the pathogenicity study were obtained in the scope of passive 

surveillance, providing another example of the benefit of such programs. Furthermore, 

surveillance is important to assess the potential human health threat of endemic bat rabies 

by providing epidemiological data. Passive surveillance led to the detection of 362 bat rabies 

cases in Germany until 2016. The majority were caused by EBLV-1, but five cases of 

European bat lyssavirus 2 (EBLV-2) and six cases of Bokeloh bat lyssavirus (BBLV) were also 

discovered, including in 2015 the first case of BBLV in another bat species apart from its 

presumed reservoir host the Natterer's bat. Interestingly within the same year two 

additional cases of BBLV were found in Germany, doubling the number of BBLV cases there 

from three to six. Eight BBLV isolates were so far detected altogether and a division of the 

isolates into two genetic lineages A and B was possible. At the host level there is a massive 

distribution of virus to the peripheral organs. This sudden emergence of BBLV, despite 

similar surveillance intensity over the past years, is puzzling. 

The majority of human rabies cases are caused by rabid dogs and occur prominently in Asia 

and Africa, resulting in an estimated 59000 human deaths per year. In these regions rabies 
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surveillance is hindered by several factors including challenges in rabies diagnosis. Therefore, 

alternative test methods to the standard diagnostic tests for rabies were developed, 

including Lateral flow devices (LFDs), which have potential for field use. However, the 

comparison of six commercially available LFDs performed here revealed that the tests have 

major deficits regarding their sensitivity and reproducibility.  
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8.Zusammenfassung 

Die Tollwut ist eine zoonotische Erkrankung, die durch Lyssaviren verursacht wird, welche 

mit dem Auftreten klinischer Symptome fast immer tödlich endet. Obwohl große Teile 

Europas inklusive Deutschland frei von terrestrischer Tollwut sind, spielt die 

Fledermaustollwut in diesen Gebieten eine wichtige Rolle. Die 

Fledermaustollwutüberwachung in Europa hat gezeigt, dass das Europäische 

Fledermaustollwutvirus 1 (EBLV-1) für die meisten Fälle verantwortlich ist. Vereinzelte 

Infektionen anderer Tierarten und des Menschen wurden beschrieben. Während für EBLV-1 

zwei genetisch unterschiedliche Entwicklungslinien anerkannt sind, ist eine dritte derzeit 

noch in Diskussion. Bei einigen wenigen EBLV-1 Isolaten wurden bislang einzigartige 

Insertionen und Deletionen in bestimmten Bereichen des Genoms beschrieben. Wie für 

andere Lyssaviren bereits gezeigt wurde, können genetische Variationen die Pathogenität 

beeinflussen. Daher bestand ein wesentlicher Teil dieser Arbeit darin, herauszufinden, ob 

dies auch bei derartigen EBLV-1 Isolaten zutrifft. Unterschiede in der Pathogenität der 

untersuchten Isolate wurden nach intranasaler und intramuskulärer Inokulation von Mäusen 

gefunden. Allerdings ist unklar, welcher dieser genetischen Unterschiede dafür 

verantwortlich ist. Beim Vergleich der unterschiedlichen Inokulationsrouten, d.h. 

intrakranial, intramuskulär und intranasal, wurden Unterschiede im klinischen Bild der 

inokulierten Mäuse sowie der Virusverteilung im Gehirn gefunden.  

Die für die Pathogenitätsstudie verwendeten EBLV-1 Isolate wurden im Rahmen der passiven 

Fledermaustollwutüberwachung gefunden und stellen damit ein Beispiel für den Nutzen 

solcher Programme dar. Darüber hinaus ist die Überwachung und anschließende 

Auswertung epidemiologischer Daten eine wichtige Voraussetzung für die Risikobewertung 

hinsichtlich einer potentiellen Gefährdung des Menschen durch endemische 

Fledermaustollwut. Im Rahmen der passiven Überwachung wurden bis zum Jahr 2016 

insgesamt 362 Fledermaustollwutfälle in Deutschland diagnostiziert. Während EBLV-1 für 

den Großteil dieser Fälle verantwortlich war, entfielen fünf Fälle auf das Europäische 

Fledermaustollwutvirus 2 (EBLV-2) und sechs Fälle auf das Bokeloh Fledermaustollwutvirus 

(BBLV). Einer dieser durch BBLV verursachten Tollwutfälle wurde 2015 in einer anderen 

Fledermausart als dem vermuteten Reservoir, der Fransenfledermaus, gefunden. 

Interessanterweise trat innerhalb eines Jahres eine unerwartete Häufung von BBLV Fällen 
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auf. Insgesamt sind bislang acht BBLV-Isolate nachgewiesen worden, welche in zwei 

unterschiedliche Entwicklungslinien, A und B, eingeteilt werden können. 

Tollwütige Hunde sind für die überwältigende Mehrheit der schätzungsweise 59000 

humanen Tollwutfälle in Asien und Afrika verantwortlich. In diesen Regionen wird die 

Tollwutüberwachung stark durch gesundheitspolitische und infrastrukturelle Probleme, aber 

auch fehlende technische Ausrüstung und Engpässe in der Tollwutdiagnostik beeinflusst. Aus 

diesem Grund wurden Point-of-care Tests, wie z.B. Lateral flow devices (LFD), als alternative 

Verfahren zu standardisierten diagnostischen Tollwuttestmethoden entwickelt, die jedoch 

bislang nicht ausreichend validiert sind. Die vergleichende Evaluierung sechs kommerziell 

erhältlicher Tollwut-LFDs ergab, dass diese Tests große Defizite hinsichtlich ihrer Sensitivität 

und Reproduzierbarkeit aufweisen. 
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10.Appendix 

Appendix Table 1: Summary of other rapid rabies test for the detection of rabies virus 

antigen. 

 

 

No. Name Country Source 

1 
Dianotech Rapid 

Rabies Ag Test Card 
China http://www.lyncmed.com/product/997.htm  

2 
Raysonbio Rabies 

Virus Antigen Rapid 
Test Kit 

China 
http://www.globalsources.com/si/AS/Jiangsu-
Rayson/6008850358162/pdtl/Rabies-Virus-RV-
Antigen-Rapid-Test-Kit/1132150614.htm  

3 
Rohi Biotechnology 

Rabies Virus Ag Rapid 
Test 

China 

http://rohibio.en.alibaba.com/product/603873
45482-
802442170/Manufacturer_of_Rabies_Virus_A
g_Rapid_Test_with_ISO_certification.html  

4 
Finder Canine Rabies 
Virus (RBV) Antigen 

Test Strip 
China 

http://www-finderbio-com-
en.sell.ecer.com/pz6e0794a-canine-rabies-
virus-rbv-antigen-test-strip-colloidal-gold.html 

5 
Intas Rabies Antigen 

Rapid Test Kit 
India 

http://www.weiku.com/products/14615294/R
abies_Antigen_Rapid_Test_Kit.html 

6 
Diavetra Rabies 

antigen test 
India 

http://www.toboc.com/images/pdf/764982.p
df 

7 
LilliTest Rapid Rabies 

Ag Test Kit 
England 

http://diagnostics.lillidale.co.uk/wp-
content/uploads/2016/08/LilliTest-Rabies-Ag-
Test-Kit.pdf  

8 
Swissavans rabies 

antigen test Kit 
Switzerland 

http://www.swissavans.com/domains/swissav
ans_com/data/free_docs/RapidTests_PI_de.pd
f 

9 
InterMedical Rapid 

Test Device Rabies Ag 
Italy 

http://www.intermedical.it/en/products/veter
inary/ 

10 MINITEST Rabies Ag kit  
Austria/ 
France 

http://biomedica.eval3.css4you.at/fileadmin/d
ata/VetRapidTests_2011-
06_AT_CZ_HU_PL.pdf 

11 
Reagen rabies virus 

antigen rapid Test Kit 
USA 

http://www.bio-
equip.cn/enshow1equip.asp?equipid=58335&
division=2535  

12 
Medigen Rabies Ag 

Test Kit  
USA 

http://www.stallionpublishers.com/publicatio
ns/1122/p/medigen_one_step_rapid_test_kitv
2.pdf 

13 
Abgenome Ag Rapid 
Canine Rabies Virus 

Test Kit  
unknown 

https://www.dhgate.com/store/product/crv-
ag-rapid-canine-rabies-virus-test-
one/255686682.html  

http://www.lyncmed.com/product/997.htm
http://www.globalsources.com/si/AS/Jiangsu-Rayson/6008850358162/pdtl/Rabies-Virus-RV-Antigen-Rapid-Test-Kit/1132150614.htm
http://www.globalsources.com/si/AS/Jiangsu-Rayson/6008850358162/pdtl/Rabies-Virus-RV-Antigen-Rapid-Test-Kit/1132150614.htm
http://www.globalsources.com/si/AS/Jiangsu-Rayson/6008850358162/pdtl/Rabies-Virus-RV-Antigen-Rapid-Test-Kit/1132150614.htm
http://rohibio.en.alibaba.com/product/60387345482-802442170/Manufacturer_of_Rabies_Virus_Ag_Rapid_Test_with_ISO_certification.html
http://rohibio.en.alibaba.com/product/60387345482-802442170/Manufacturer_of_Rabies_Virus_Ag_Rapid_Test_with_ISO_certification.html
http://rohibio.en.alibaba.com/product/60387345482-802442170/Manufacturer_of_Rabies_Virus_Ag_Rapid_Test_with_ISO_certification.html
http://rohibio.en.alibaba.com/product/60387345482-802442170/Manufacturer_of_Rabies_Virus_Ag_Rapid_Test_with_ISO_certification.html
http://www-finderbio-com-en.sell.ecer.com/pz6e0794a-canine-rabies-virus-rbv-antigen-test-strip-colloidal-gold.html
http://www-finderbio-com-en.sell.ecer.com/pz6e0794a-canine-rabies-virus-rbv-antigen-test-strip-colloidal-gold.html
http://www-finderbio-com-en.sell.ecer.com/pz6e0794a-canine-rabies-virus-rbv-antigen-test-strip-colloidal-gold.html
http://www.weiku.com/products/14615294/Rabies_Antigen_Rapid_Test_Kit.html
http://www.weiku.com/products/14615294/Rabies_Antigen_Rapid_Test_Kit.html
http://www.toboc.com/images/pdf/764982.pdf
http://www.toboc.com/images/pdf/764982.pdf
http://diagnostics.lillidale.co.uk/wp-content/uploads/2016/08/LilliTest-Rabies-Ag-Test-Kit.pdf
http://diagnostics.lillidale.co.uk/wp-content/uploads/2016/08/LilliTest-Rabies-Ag-Test-Kit.pdf
http://diagnostics.lillidale.co.uk/wp-content/uploads/2016/08/LilliTest-Rabies-Ag-Test-Kit.pdf
http://www.swissavans.com/domains/swissavans_com/data/free_docs/RapidTests_PI_de.pdf
http://www.swissavans.com/domains/swissavans_com/data/free_docs/RapidTests_PI_de.pdf
http://www.swissavans.com/domains/swissavans_com/data/free_docs/RapidTests_PI_de.pdf
http://www.intermedical.it/en/products/veterinary/
http://www.intermedical.it/en/products/veterinary/
http://biomedica.eval3.css4you.at/fileadmin/data/VetRapidTests_2011-06_AT_CZ_HU_PL.pdf
http://biomedica.eval3.css4you.at/fileadmin/data/VetRapidTests_2011-06_AT_CZ_HU_PL.pdf
http://biomedica.eval3.css4you.at/fileadmin/data/VetRapidTests_2011-06_AT_CZ_HU_PL.pdf
http://www.bio-equip.cn/enshow1equip.asp?equipid=58335&division=2535
http://www.bio-equip.cn/enshow1equip.asp?equipid=58335&division=2535
http://www.bio-equip.cn/enshow1equip.asp?equipid=58335&division=2535
http://www.stallionpublishers.com/publications/1122/p/medigen_one_step_rapid_test_kitv2.pdf
http://www.stallionpublishers.com/publications/1122/p/medigen_one_step_rapid_test_kitv2.pdf
http://www.stallionpublishers.com/publications/1122/p/medigen_one_step_rapid_test_kitv2.pdf
https://www.dhgate.com/store/product/crv-ag-rapid-canine-rabies-virus-test-one/255686682.html
https://www.dhgate.com/store/product/crv-ag-rapid-canine-rabies-virus-test-one/255686682.html
https://www.dhgate.com/store/product/crv-ag-rapid-canine-rabies-virus-test-one/255686682.html
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