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Introductory Summary

1. Thelung

The lung is the primary organ for gas exchange. Every day, we in- and exhale roughly 10 000
liters of air, with a constant oxygen supply being the key to many physiological processes of
the human body and its survival. The lung is separated in a left and a right lung, containing
two and three lung lobes, respectively. It comprises a total area of about 130m? (Weibel et al.

1993), which is roughly comparable to half the size of a tennis court.

The lung has a very delicate architecture and is built by trachea, bronchi, bronchioles and most
distally the alveoli, which represent the units responsible for the gas exchange in the lung. In
total, the lung consists of roughly 400 million alveoli (Ochs et al. 2004). Overall, the lung
contains at least 27 different cell types, including epithelial, endothelial, mesenchymal and

immune cells (Figure 1) (Cardoso and Whitsett 2008, Franks et al. 2008).
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Fig. 1: Schematic representation of the lung tree and the corresponding (epithelial) cells in these areas

(Berube et al. 2010)



2. Chronic lung diseases

Chronic lung diseases are one of the leading causes of death worldwide (World-Health-
Organization 2007, Lozano et al. 2012). These diseases are usually highly complex and
numerous factors can influence disease initiation and progression, including effects induced
by genetic variants or environmental insults (Ramsey and Hobbs 2006, Dela Cruz et al. 2011,

Ley and Collard 2013).

Currently, for most of the chronic lung diseases no treatment stopping or reversing the
disease exists and the available therapies aim at symptomatic relief improving the patients’
quality of life (Edmondson and Davies 2016, Barnes 2017, Liu et al. 2017). Therefore, there is
a big unmet medical demand for therapeutic options, mainly because the underlying disease
pathomechanisms or the interplay with other co-morbidities (e.g. cardio-vascular diseases)
are only incompletely understood (Corlateanu et al. 2016, King and Nathan 2017,

Margaritopoulos et al. 2017).

2.1. Idiopathic Pulmonary fibrosis (IPF)

IPF is a disease of the elderly, as patients are typically above 50 years of age at the time of
diagnosis (Raghu et al. 2006, Garcia 2011). It is a progressive and devastating disease, which
leads to irreversible changes of the lung architecture due to a dysfunctional wound repair
(Strieter 2008, Betensley et al. 2016). This results in a continuous loss of breathing capacity
(gas exchange), leading to reduced lung function and ultimately to the death of the patient.
From the time of disease diagnosis, patients have a median survival of 3-5 years (Ley et al.
2011). Overall, the progression of the disease is highly variable. Although a number of
molecular biomarkers have been found and linked to IPF, none of these is so far in clinical use
to determine disease progression or therapy efficacy (Crestani 2013, Jenkins et al. 2015,
Tzouvelekis et al. 2016, Guiot et al. 2017). IPF has a prevalence of 14 to 27.9 or 1.25to 23 cases
per 100 000 population and an incidence of 6.8 to 8.8 or 0.22 to 7.4 cases per 100 000
population in the USA and Europe, respectively (Nalysnyk et al. 2012). There are a number of
potential risk factors contributing to disease development, including cigarette smoke,
gastroesophageal reflux, microbiological agents like viruses of the human hepatitis virus

family, and environmental exposures to metal or wood dust. Next to those, also a number of



potential genetic risk factors have been identified (Raghu et al. 2011). So far, therapeutic
options are limited. Recently, two drugs have been approved in Japan, Europe and the USA,
namely Pirfenidone (Esbrit®) and Nintedanib (Ofev®). Both drugs decelerate the loss of lung
function compared to placebo-treated patients (King et al. 2014, Richeldi et al. 2014).
Recently, it was shown that both Pirfenidone and Nintedanib have potential pro-survival
effects (Fisher et al. 2017, Fleetwood et al. 2017, Nathan et al. 2017). Nevertheless, this
requires further investigation in regard to follow-up time and a bigger cohort. Additionally,
Pirfenidone and Nintedanib are only recommended for the treatment of mild-to-moderate
IPF patients, leaving late-stage patients without approved pharmaceutical therapeutic
options. Therefore, the only remaining treatment for end stage disease in IPF still is lung
transplantation (Raghu et al. 2015). The amount of available donor lungs, however, is very
restricted and only a certain percentage of IPF patients qualify for this option (Kreider and
Kotloff 2009, Chaney et al. 2014, Kistler et al. 2014). It is thus of utter importance to develop
new therapeutic options. Although still not fully elucidated, a number of pathophysiological
mechanisms underlying disease development have been identified (King et al. 2011). They are
summarized as hallmark features of the disease and include alveolar type (AT) Il cell
dysfunction, enhanced myofibroblast activation and proliferation, and increased
parenchymal extracellular matrix (ECM) production (Todd et al. 2012, Moore and Herzog

2013, Camelo et al. 2014).

2.1.1. Pathophysiological features of IPF

IPF is a subgroup of interstitial lung diseases (ILD) with unknown disease cause. The diagnosis
is based on the guidelines formulated by the American Thoracic Society (ATS), the European
Respiratory Society (ERS), the Japanese Respiratory Society (JRS) and the Latin American
Thoracic Association (ALAT) (Raghu, Rochwerg et al. 2015). Overall, diagnosis of IPF requires
the exclusion of known causes of ILD and either a usual interstitial pneumonia (UIP) pattern
on high resolution computer tomography (HRCT) (if the patient is not subjected to a surgical
biopsy) or a specific combination of HRCT and surgical lung biopsy pattern (if the patient is

subjected to the biopsy) (Raghu, Collard et al. 2011).

IPF is best described by its excessive scar tissue formation, which is initially found in the lower
lung lobes (King et al. 2000). Normally, scar formation is required for the repair of injured

tissue and is self-limiting (Beers and Morrisey 2011). However, in the case of IPF, scar



formation is a progressive feature of the disease, resulting in formation of disease-specific
honeycomb structures, with so-called active fibroblast foci in close proximity (Selman and
Pardo 2002, Kottmann et al. 2009, King, Pardo et al. 2011). Fibroblast foci are believed to be
centers of high fibroblast activity, including fibroblast proliferation, activation towards
myofibroblasts and subsequently enhanced and progressive ECM production, which
contributes to the progressive formation of scar tissue and ultimately the progression of the
disease (King, Pardo et al. 2011, Jones et al. 2016). Additionally, it was shown that an
important cell type in the initiation and progression of lung fibrosis are the alveolar epithelial
cells, namely the ATI and ATII cells (Sisson et al. 2010, Yang et al. 2013, Kulkarni et al. 2016).
ATII cells have several functions, including the secretion of factors to maintain the alveolar
structure (Castranova et al. 1988). Moreover, ATl cells also function as progenitor cells to ATI
cells (Adamson and Bowden 1975), which are responsible for the gas exchange (Ward and
Nicholas 1984). One of the recently highlighted risk factors for the development of IPF is the
repetitive injury of the alveolar epithelium, leading to alterations in the phenotype and
increased cell death of epithelial cells (King, Pardo et al. 2011, Camelo, Dunmore et al. 2014).
In contrast to normal wound repair, a process that requires a tightly controlled interplay with
the underlying mesenchymal cells (Crosby and Waters 2010, Akram et al. 2013), the damage
is not appropriately repaired and thus can lead to the initiation of pro-fibrotic processes and
subsequently fibrotic changes (Prasad et al. 2014, Chambers and Mercer 2015). Moreover,
additional cell types of the lung have been reported to be involved in the initiation and
progression of lung fibrosis, including endothelial cells and cells of the immune system. It was
shown that also the endothelium is subjected to repetitive injury (Malli et al. 2013, Balestro
et al. 2016, Hoyne et al. 2017). Moreover, the number of endothelial precursor cells is
decreased in IPF patients (De Biasi et al. 2015), which in combination with the repetitive
injuries results in an insufficient repair of the damaged sites and an endothelial leakage. This
is accompanied by the secretion of fibrosis-associated factors like plasminogen activator
inhibitor 1 (PAI1) or fibronectin 1 (FN1), but also soluble factors increasing the recruitment of
immune cells (Leach et al. 2013). Usually, immune cells are recruited to sites of injury to
remove excess of tissue debris and to kill potentially invading pathogens (Kulkarni et al. 2016,
Wynn and Vannella 2016). However, they also secrete factors that stimulate further influx of

inflammatory cells and toxic mediators that are harmful to the surrounding tissue. If this
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process is not properly controlled, it exacerbates the injury, finally leading to progressive scar

formation (Bringardner et al. 2008, Bagnato and Harari 2015, Byrne et al. 2016).

Besides the increased ECM formation and the continuous loss of respiratory capacity, about
5-10% of IPF patients suffer from so called acute exacerbations (AEs), which are defined as
respiratory deteriorations leading to worsening of dyspnea in a time frame of less than 30
days for unidentifiable causes (Johannson and Collard 2013, Papiris et al. 2015, Collard et al.
2016). The AEs result in a drastic reduction in lung function and quality of life (Molyneaux et
al. 2014). AE are often accompanied by prolonged hospitalization and an increased risk of
death of up to 50% within the following 3 months after AE (Judge et al. 2012, Mura et al.
2012).

2.1.2. Pathomechanisms in IPF

Numerous factors are involved in the disease initiation and progression. Smoking, mechanic
stress, environmental challenges to the lung like air pollution and the reactivation of various
pathways involved in the lung development are shown to contribute to the disease
(Baumgartner et al. 1997, Selman et al. 2008, Selman and Pardo 2014). Additionally, the
repetitive injury to the endothelium and epithelium and its insufficient repair also play an
important role in the disease onset (Magro et al. 2006, Strieter and Mehrad 2009, Elshazly et
al. 2013). The repair processes are impaired in part due to an impaired crosstalk of different
cell types in the lung that potentially lead to the induction and progression of the disease
(Selman and Pardo 2002, Chapman 2011). Moreover, it has been shown recently, that
senescence, a cellular mechanism that is associated with aging, can also contribute to the

pathogenesis of IPF (Chilosi et al. 2013, Schafer et al. 2017).

2.1.2.1. Pathways deregulated in IPF
A number of signaling pathways, including transforming growth factor B (TGFB) 1, tumor
necrosis factor a (TNFa) and wingless/intl (WNT) signaling, are deregulated in IPF (Konigshoff
et al. 2008, Selman, Pardo et al. 2008, Fernandez and Eickelberg 2012). TGFB1-mediated
signaling is the best-studied pathway in respect to lung fibrosis. TGFB1 has pleiotropic
functions, including its involvement in embryogenesis, anti-inflammatory modulations and
wound repair, but is also involved in numerous fibrogenic diseases and in cancer development

(Kitisin et al. 2007, Wu and Hill 2009, Finnson et al. 2013, Meng et al. 2016). It was shown that
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TGFB1-induced signaling contributes to the development and progression of lung fibrosis and
is potentially a main driver of the disease. The overexpression of TGFB1 results in the
development of lung fibrosis, whereas treatment antagonizing TGFB1 signaling reduces the
fibrotic burden in animal models (Giri et al. 1993, Sime et al. 1997, Varga and Pasche 2008).
TGFB1 is a member of the TGF superfamily, which in total comprises 23 family members. As
for TGFB1, it can induce intracellular signaling through at least three different TGFP receptors
(TGFBR), namely TGFBR1-3, which are ubiquitously expressed. TGFB1 is expressed in a non-
active form and requires activation prior to inducing signaling (Weiss and Attisano 2013). This
can be achieved through different mechanisms, like physical processes (e.g. stretch or
acidification), proteolytic cleavage by different enzymes (e.g. matrix-metalloproteases
(MMPs) or plasmin) or the interaction with cell surface molecules (e.g. integrins or
thrombospondin) (Shi et al. 2011, Horiguchi et al. 2012). Upon binding of TGFB1 to its
receptor, it mainly induces the phosphorylation and subsequent activation of Sma/Mothers
against decapentaplegic (SMAD) 2 and 3, which in turn bind to the co-regulator SMADA4. This
complex next translocates to the nucleus and induces target gene expression (Weiss and
Attisano 2013). Specifically, it was shown that TGFB1 can inhibit proliferation and induce
apoptosis or epithelial-to-mesenchymal transition (EMT) in lung epithelial cells (Khalil et al.
1994, Kasai et al. 2005). On the other hand, TGFB1 also influences lung mesenchymal cells,
upregulating production of ECM proteins as well as inducing cell proliferation, in part via
upregulating fibroblast growth factor 2 (FGF2) and platelet-derived growth factor (PDGF) (Fine
and Goldstein 1987, Allen and Spiteri 2002, Xiao et al. 2012).

Another feature of IPF is a persistent inflammation. TNFa, a cytokine highly involved in
inflammatory processes, is upregulated in IPF (Piguet et al. 1993, Kapanci et al. 1995). TNFa
signals through the TNF receptor 1 and 2, inducing a range of different downstream cascades.
The canonical pathway includes the activation of nuclear factor kappa B (NF-kB), which in turn
translocates to the nucleus and, by interaction with cofactors such as p300 or cAMP response
element-binding protein (CREB)-binding protein (CBP), induces the expression of mainly pro-
inflammatory cytokines (Leong and Karsan 2000, Wajant et al. 2003, Bradley 2008). In the
context of lung fibrosis, it was shown that blocking TNFa-induced signaling resulted in reduced
fibrosis burden in an animal model. In this regard, overexpression of TNFa specifically in the

lung resulted in the opposite effect, worsening the progression of lung fibrosis, which was
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accompanied by increased ECM deposition (Piguet and Vesin 1994, Miyazaki et al. 1995, Sime
et al. 1998). This underlines the involvement of TNFa in disease progression. A clinical trial
was performed in human IPF patients using an inhibitor of TNFa, Etanercept (Raghu et al.
2008). However, despite positive results in animal models, the study was terminated as
Etanercept did not show efficacy in IPF patients. Nevertheless, secondary analysis of the study
data revealed a trend of improvement for IPF patients, though this effect was non-significant

(Raghu, Brown et al. 2008).

It was also shown that developmental pathways crucial for lung morphogenesis are
reactivated in IPF patients (Selman et al. 2006, Konigshoff, Balsara et al. 2008, Selman, Pardo
et al. 2008, Bolanos et al. 2012). These pathways include Notch, Sonic Hedgehog (SHH) and
WNT signaling. In particular, the WNT signaling pathway is important in a number of
developmental processes during embryogenesis, including lung branching (Mucenski et al.
2003, De Langhe and Reynolds 2008). This is underlined by different studies using knockout
mouse models of WNT pathway components showing that mice displayed an impaired lung
organogenesis, which in some cases was embryonically lethal (Shu et al. 2002, Mucenski, Wert
et al. 2003, Okubo and Hogan 2004). WNT signaling is subdivided into the canonical pathway,
which signals through the activation of the cytosolic effector B-catenin, and the non-canonical
pathways WNT/Planar cell polarity and WNT/Ca?* signaling, which do not require the
activation of B-catenin. As for IPF, it was shown that canonical WNT signaling is increased and
contributes to a number of cell functions that are involved in the development and

progression of lung fibrosis (Chilosi et al. 2003, Konigshoff, Balsara et al. 2008).

2.1.2.2. Senescence in IPF
IPF is a disease of the elderly. Aging is characterized by a number of hallmark features,
including cellular senescence (Lopez-Otin et al. 2013). One of the features of senescence is
the stable cell cycle arrest, which can be of advantage to protect against cancer development,
but also detrimental when it comes to tissue repair (Campisi and d'Adda di Fagagna 2007). In
contrast to quiescent cells that can resume proliferation upon reactivation of appropriate

signaling cascades, senescent cells do not undergo mitotic processes or apoptosis.

It was recently shown that cellular senescence contributes to the pathogenesis of IPF

(Minagawa et al. 2011, Yanai et al. 2015). Along with this, it was reported that lung epithelial
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cells as well as lung fibroblasts undergo senescent changes in animal models of lung fibrosis
and in patients suffering from IPF. Moreover, when comparing the amount of senescent cells
in young and aged mice, 7% and 19% of senescent cells were found, respectively, showing an
increased level of senescence due to aging (Wang et al. 2009). Along with this, aged mice are
more susceptible to bleomycin-induced lung fibrosis (Stout-Delgado et al. 2016). With
increasing age, the alveolar epithelium is challenged constantly by external insults like
pathogens, which lead to microdamages and subsequently requires continuous repair of the
affected sites. However, as more progenitor cells become senescent and are restricted in their
proliferation and differentiation capacity, the wound repair is compromised, leading to
incorrect repair mechanisms that can ultimately lead to the development of lung fibrosis
(Plataki et al. 2005, Chilosi, Carloni et al. 2013). Moreover, senescence is also accompanied by
the secretion of a variety of soluble mediators, which are called the “Senescence-Associated
Secretory Phenotype” (SASP) (Campisi and d'Adda di Fagagna 2007). The SASP comprises,
among other factors, pro-inflammatory cytokines like interleukin (IL) 6 as well as
metalloproteinases like MMP7, which are shown to be upregulated in the disease of IPF and
contribute to its progression (Zuo et al. 2002, Rosas et al. 2008, Zhou et al. 2010). Senescence
can be induced e.g. by DNA damage or the insufficient repair of DNA telomeres or by
overexpression of oncogenes (Campisi and d'Adda di Fagagna 2007, Campisi 2013). These
features contribute to IPF, as e.g. fibroblasts secrete reactive oxygen species (ROS) (Waghray
et al. 2005), which in turn damage the DNA of epithelial cells, driving these cells into
senescence. Additionally, shortened telomeres, which contribute to cellular senescence, have

been found in IPF patients compared to healthy, age-matched controls (Armanios 2009).

Recently, it has been shown that blocking senescence reduces fibrotic burden upon bleomycin
challenge, underlining the importance of this cellular mechanism to disease pathogenesis

(Schafer, White et al. 2017).

2.1.2.3. Genetic risk factors
A number of mutations in different genes have been attributed to an increased risk to develop
IPF. These genes include telomerase RNA component (TERC) and telomerase reverse
transcriptase (TERT), which are part of the telomerase machinery (Coghlan et al. 2014).
Mutations of these genes were first observed in a subset of patients with familial pulmonary

fibrosis (FPF) (Armanios et al. 2007), which were later also found in rare cases of spontaneous
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IPF (Alder et al. 2008). Due to the mutations in TERT or TERC, telomere shortening can occur
as found in several cell types in IPF patients (Alder, Chen et al. 2008, Naikawadi et al. 2016).
It was reported that e.g. ATIl cells undergo early apoptosis due to shortened telomeres and
misfunction of enzymes like TERT leads to a further decrease in lung regeneration capacity
upon injury, worsening the progression of IPF (Alder et al. 2015). Moreover, TGFB1 was shown
to contribute to telomere shortening, further contributing to ATIIl cell apoptosis via the
mechanism of DNA damage (Chen et al. 2015). In addition to apoptosis, it has been shown in
IPF that shortened telomeres can induce cellular senescence in affected cells (Schafer, White

et al. 2017).

Other genes, in which mutations or polymorphisms were found to increase the risk of IPF
development, include surfactant protein C (SPC), surfactant protein A (SPA) and Toll
interacting protein (TOLLIP) or Mucin 5B (MUCS5B), respectively (Wang et al. 2009, Crossno et
al. 2010, Noth et al. 2013, Peljto et al. 2015). Mutations in SPC and or SPA can result in an
aberrant accumulation of both proteins in the alveolar space. As these proteins are involved
in alveolar stability and host defense, respectively, misexpression comprises their functions,
leading to an accumulation of these proteins in the endoplasmatic reticulum (ER) and
subsequently ER stress and unfolded protein response (UPR) in ATII cells (Bridges et al. 2006,
Mulugeta et al. 2007, Wang, Kuan et al. 2009). This in turn contributes to increased apoptosis
of ATII cells. Additionally, it was shown that a single nucleotide polymorphism (SNP) in the
promoter of the MUC5B gene, associated with higher gene expression, predisposes to IPF
development (38% of IPF patients, 34% of familial pulmonary fibrosis, 9% in healthy controls)
(Seibold et al. 2011). MUC5B is a component of the mucus, which is required for pathogen
clearance. Due to the increased expression of MUC5B, it is possible that the mucus transport
is impaired leading to its accumulation in the bronchoalveolar regions and a subsequent
chronic inflammation and injury (Peljto, Selman et al. 2015). Another component of the
immune system that is associated with IPF is TOLLIP. It is an integral part of the toll-like
receptor (TLR) signaling cascade and thereby also contributes to the host defense. A number
of polymorphisms were found in the TOLLIP region in IPF patients, which correlated with
increased disease and mortality risk. However, one polymorphism within the TOLLIP gene was
identified to be protective against IPF development (Noth, Zhang et al. 2013). Taken together,

this shows that the expression or function of a number of components of the immune system
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is deranged and thereby contribute to the disease.

2.1.2.4. Impaired epithelial-mesenchymal crosstalk in IPF
In IPF, a number of different cell types are shown to contribute to the pathogenesis of the
disease. Especially two distinct cell populations contribute to the pathogenesis of IPF, namely
the epithelial and the mesenchymal cells. The interaction of both is required for a functional
equilibrium within the lung and in case of an injury, for a sufficient but controlled repair of
the damaged site (Hogan et al. 2014). Their interaction appears quite natural, because of their
close proximity in the lung. As for the pathogenesis of IPF, the repetitive injury that the ATI
and ATl cells are challenged with, results in an increased apoptosis of these cells which in turn
results in an influx of underlying mesenchymal cells undergoing activation and increasing ECM
production (Camelo, Dunmore et al. 2014). This results in further destruction of epithelial
cells, which contributes to a vicious cycle and the progression of IPF (Camelo, Dunmore et al.

2014).

In addition to the above mentioned repetitive injury, other causes exist for epithelial cell
death. Polymorphisms in genes like MUC5B or mutations in SPC, both associated with
increased IPF risk, have been shown to affect epithelial survival, leading to increased
apoptosis and finally to a damaged epithelium (Wolters et al. 2014). Moreover, surviving ATI
and ATII cells were shown to alter their phenotype and thereby contribute e.g. to the pool of
SASP secretion (Yang, Wheeler et al. 2013, Schafer, White et al. 2017). It was shown in several
mouse models that by either inducing or preventing alveolar epithelial cell apoptosis,
development of lung fibrosis could be either augmented or reduced, respectively (Kuwano et
al. 1999, Thannickal and Horowitz 2006). This means that restoring the epithelial cell function
in turn prevents mesenchymal cell-mediated accumulation of ECM. These findings underline
the importance of the epithelial cells and the integrity of the epithelial cell barrier in the

development of lung fibrosis.

Areas of fibroblast foci, the active sites of lung fibrosis, are often lined by ATI and ATII cells.
Importantly, fibroblasts can affect the epithelial cells in a paracrine fashion. As mentioned
above, fibroblasts potentially further contribute to alveolar cell apoptosis and thereby initiate
a vicious cycle. Lung fibroblasts in response to TGFB1 stimulation secrete ROS as well as

Angiotensin Il (ANGII) (Wang et al. 1999, Waghray, Cui et al. 2005). It was shown that both,
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ANGII and ROS, induce alveolar epithelial cell apoptosis. In an in vivo mouse model,
antagonizing ANGII reduced levels of epithelial cell apoptosis in response to bleomycin
challenge compared to control animals (Li et al. 2007). Similarly, administration of superoxide
dismutase, an antioxidant, resulted in reduced fibrosis burden in the bleomycin model

(Tanaka et al. 2010).

It was shown in various in vitro assays that epithelial cells can stimulate the differentiation
and proliferation of fibroblasts in a paracrine fashion (Yang, Wheeler et al. 2013, Yang et al.
2014). This in turn leads to an increased fibroblast pool and ECM production, which further
drives progression of lung fibrosis. Epithelial cells were shown to secrete soluble mediators
like TGFB1 (which requires additional activation also induced by epithelial cells), connective
tissue growth factor (CTGF/CCN2), WNT1-inducible signaling protein 1 (WISP1/CCN4), or SHH
(Pan et al. 2001, Bhaskaran et al. 2007, Konigshoff et al. 2009). TGFB1, as described above,
has numerous effects on various cell types, including lung fibroblasts. In summary, TGFp1
upregulates the production of ECM components like collagens and fibronectin, as well as
induces fibroblast proliferation and resistance against apoptosis (Raghu et al. 1989, Xiao, Du
et al. 2012). Additionally, the matricellular proteins CTGF/CCN2 and WISP1/CCN4 were shown
to influence cell behavior either directly by binding to integrins, or by facilitating the binding
and action of other mediators. Similar to TGFB1, both CTGF/CCN2 and WISP1/CCN4 were
shown to upregulate the production of ECM components by lung fibroblasts (Konigshoff,
Kramer et al. 2009, Lin et al. 2013). Moreover, it was demonstrated that the presence of
CTGF/CCN2 is required for full activity induced by TGFB1. In CTGF/CCN2-deficient fibroblasts,
TGFB1-induced aSMA and collagen (Col) 1al levels were reduced. Similar effects as for TGFp1,
CTGF/CCN2 and WISP1/CCN4 were also reported for SHH (Sakai and Tager 2013).

3. WNT1-Inducible Signaling Protein 1 (WISP1)/CCN4

WISP1/CCN4 is a member of the CyR61/CCN1-CTGF/CCN2-NOV1/CCN3 (CCN) family
(Brigstock 2003). Additional members of this protein family are WISP2/CCN5 and
WISP3/CCN6. These matricellular proteins are integrated into the ECM and exhibit
signaling/signaling-modulating rather than structural functions (Chen and Lau 2009). Proteins
of the CCN family have been described to influence physiological processes like cell growth,
differentiation and survival. Due to potential misregulation of their expression, they are also

implicated in a vast array of pathophysiological processes including fibrosis, cancer and
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metabolic diseases (Shimo et al. 2006, Jun and Lau 2011, Murahovschi et al. 2015, Kurundkar
etal. 2016).

3.1. WISP1/CCN4 structure

The human WISP1 is located on chromosome 8 (8q24.1 — q24.3), giving rise to mRNA that
codes for a protein of 376 amino acids with a predicted molecular mass of 40 kDa. Human and
mouse WISP1 protein share 84% identical sequence. Besides the full-length variant of
WISP1/CCN4, there is a splice variant lacking the third of five exons (Tanaka et al. 2001). It
was originally identified in scirrhous gastric carcinoma cells and subsequently validated in
different other cell types, including mesenchymal cells and various cancer cells (Cervello et al.

2004, Yanagita et al. 2007).

As mentioned above, all members of the CCN family were grouped due to their similarities in
the protein structure (Perbal 2004). As shown in figure 2, all members contain a N-terminal
export signal peptide, followed by 4 conserved units (Brigstock 2003, Perbal 2004). The only
exception is WISP2/CCN5, which lacks the C-terminal domain. Each of the different four
conserved units has unique properties (Chen and Lau 2009). Following the N-terminal export
signal peptide, there is the Insulin-like Growth Factor Binding (IGFBP) domain, which function,
though not fully understood, is involved in IGF binding. The second domain, the Von-
Willebrand Factor C repeat (VWC), is potentially required to facilitate binding to different
growth factors like TGFB1 and BMPs and thereby alters their respective signaling. The third
domain is the Thrombospondin repeat-1 (TSP-1) domain, which is suggested to be required
for binding of the CCNs to the ECM and, furthermore, this domain is potentially involved in
cell adhesion. The C-Terminal (CT) domain contains a cysteine knot, which is probably
required for dimerization of CCNs to form homo- or heterodimers, or even oligomers.
Moreover, due to its structure, it might be involved in ECM binding as well as in cell adhesion

in concert with the TSP-1 domain.

18



sk IGFBEP VWC linker TSP CT

centicYre (-l (—{a)
CCN2/CTGF (-l - (—-le)
cenamov (- (e—-a)
conaisP1 (-] 4 H )
WISP1v S H )
WISP1vx T

wisP1aex3-4 (-l
conswisP2 (-l - (n—"
conewisP3 (-l (e

Fig. 2: Schematic overview of the structure of the CCN family proteins (Sakai and Tager 2013).

3.2. WISP1/CCN4 regulation and function

WISP1/CCN4 was originally discovered in a cancer cell line overexpressing WNT1, which gave
the basis for its name (WNT1-inducible signaling protein 1) (Pennica et al. 1998). Moreover, it
was shown that WNT3a, but not WNT4, is able to induce WISP1 expression, suggesting that
WISP1/CCN4 is a downstream target gene of canonical WNT signaling (Pennica, Swanson et
al. 1998, Berendsen et al. 2011). Additionally, the pro-fibrotic cytokines TGFB1 and TNFa were
shown to induce WISP1/CCN4 expression in various cell types (Venkatachalam et al. 2009,
Jian et al. 2014). Interestingly, it was shown that TGFB1 can induce WISP1/CCN4 in lung
fibroblasts, a mechanism that is dependent on the miRNA-92a (Berschneider et al. 2014). This
implies that WISP1 is a common downstream target of several pro-fibrotic pathways involved

in lung fibrosis.

WISP1/CCN4 is involved in different physiological but also pathophysiological processes,
ranging from angiogenesis, osteogenesis and wound repair to formation of cancer and fibrotic

disorders (Berschneider and Konigshoff 2011, Maiese 2014).

Konigshoff and colleagues showed that WISP1/CCN4 is upregulated in both experimental lung
fibrosis as well as in IPF patients. Blocking WISP1/CCN4 in mice in the bleomycin-induced lung
fibrosis model decreased fibrotic burden, accompanied by a decrease in a number of ECM
marker genes, an improvement in lung function and most importantly, increased survival of
these animals compared to the control group (Konigshoff, Kramer et al. 2009). Further in vitro

studies showed that WISP1/CCN4 increases the proliferative capacity of ATII cells, but also
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their capacity to undergo EMT. Moreover, WISP1/CCN4 treatment also affected mesenchymal
cells, leading to an increased expression of ECM proteins Collal and FN1 (Konigshoff, Kramer
et al. 2009). Of note, it was also shown that WISP1 is upregulated in models of liver fibrosis,
and neutralization of WISP1/CCN4 using a specific antibody against WISP1/CCN4 led to a
reduction in liver fibrosis development, which was accompanied by reductions in TNFa, IL6

and p65 expression (Li et al. 2015).

Moreover, WISP1/CCN4 is also described to contribute to the development of other lung
diseases, such as lung cancer, ventilator-induced lung injury (VILI), asthma and acute lung
injury (ALI) (Li et al. 2012, Chen et al. 2016). WISP1/CCN4 is upregulated in lung cancer and
polymorphisms in WISP1/CCN4 can predict cancer susceptibility and moreover, the
effectiveness of chemotherapy (Soon et al. 2003, Chen et al. 2014, Chen et al. 2015).
Mechanistically, WISP1/CCN4 contributes to the motility of cancer cells, explaining why
especially patients with increased WISP1/CCN4 levels more frequently suffer from metastatic
lesions compared to patients with primary tumors. In VILI, WISP1/CCN4 was shown to
increase the alveolar capillary permeability and contribute to an increased TNFa release by
macrophages (Li, Li et al. 2012). The latter effect is also observed in ALI, in which increased
WISP1/CCN4 contributes to disease pathogenesis (Chen, Ding et al. 2016). However, it is also
important to note that in a different model of ALI, WISP1/CCN4 had beneficial functions and
was required for sufficient repair and restoration of the alveolar epithelium (Lawson and

Blackwell 2013).

Therefore, although not entirely understood in a mechanistic way, it is becoming increasingly
clear that WISP1/CCN4 has a function in inflammatory and remodeling processes of the lung.
Moreover, the regulation of WISP1/CCN4 is of particular importance, as an imbalance appears
to promote pathophysiological processes, whereas a controlled regulation seems to be

required for appropriate repair mechanisms within the lung.
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4. Hypotheses and Objectives

IPF is a progressive, fibrotic lung disease, characterized by the deregulation of a number of
different hallmark features. One of those features is a deranged epithelial-mesenchymal
cellular crosstalk mediated by a number of factors, including WISP1/CCN4, a secreted
matricellular protein shown to influence cells like ATII cells and lung fibroblasts. Moreover,
other secreted factors like interleukins and MMPs were found to be upregulated in the
pathogenesis of IPF, with some being summarized in the so-called SASP, the secretome of
senescent cells. In line with this, it was recently shown that cellular senescene is increased in
IPF patients, however, its contribution to IPF is so far not clear and is being disscussed
controversially. A third hallmark feature of IPF is the reactivation of a number of
developmental pathways, including WNT/B-catenin, TGFB1 and TNFa signaling. These
pathways are implicated in different processes, which contribute to the progression of lung
fibrosis. However, as these signaling pathways not only have pathological implications in
disease progression, but also exhibit physiological properties required for normal cell and
tissue functions, therapeutic targeting either did not show efficacy or resulted in offside
effects negatively affecting the patients. Therefore, identifying shared downstream targets of
these signaling pathways, which contribute to the development and progression of IPF, will
provide potential valuable therapeutic targets. Moreover, understanding the role of cellular
senescence and components of the SASP in IPF will potentially reveal additional targets in
regard to single components of the SASP or the SASP as a whole in the search of a therapeutic

strategy to cure IPF.

We hypothesized that WISP1/CCN4 is a common downstream target of several pro-fibrotic
pathways and contributes to the development and progression of IPF. Moreover, we
hypothesized that WISP1/CCN4 is a component of the SASP. As it was shown that the removal
of senescent cells is live-prolonging in mice, we hypothesized that cellular senescence has
detrimental functions in lung fibrosis, which at least in part is mediated through WISP1/CCN4,

and removal of senescent cells will improve lung and pulmonary cell functions.

The aims of this study were to A) analyze the regulation of WISP1/CCN4 in the context of lung
fibrosis in vitro and in vivo, B) investigate the functions induced by WISP1/CCN4 on lung

fibroblasts in vitro, C) characterize which cells are affected by cellular senescence in lung
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fibrosis, and D) study the effect of the depletion of senescent cells on epithelial cell function

in vitro as well as in 3D lung tissue cultures (3D LTCs) ex vivo in the context of lung fibrosis.
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5. Summary

IPF is a devastating fibrotic lung disease. The median survival of IPF patients is about 3-5 years,
which is due to limited therapeutic options. Recently, two drugs (Nintedanib and Pirfenidone)
have been approved for the treatment of mild-to-moderate IPF, however, these drugs only
slow down the progression of the disease but neither halt nor reverse disease pathogenesis.
A number of hallmark features have been described in the pathogensis of IPF including ATII
cell dysfunction, (myo)fibroblast activation and proliferation as well as an increased ECM
production. However, the processes involved in the initation and progression of IPF are still
incompletely understood, which contributes to the limitation of available therapeutic options.
In the first publication (Klee et al. 2016) we could show that WISP1/CCN4 is a common
downstream target of TGFB1- and TNFa-mediated signaling. Both pro-fibrotic cytokines
induce WISP1/CCN4 mainly via NF-kB. Furthermore, we could show that WISP1/CCN4 is
required for the expression of NF-kB-dependent downstream targets of TGFB1 and TNFa.
Here, especially the expression of IL6 was dependent on the presence of WISP1/CCN4.
Additionally, we could show that the WISP1/CCN4 was required for fibroblast proliferation, a
process that was in part mediated via the WISP1/CCN4-dependent IL6 expression.

In the second publication (Lehmann M et al. 2017) we analyzed the effect of cellular
senescence in the context of IPF. We could show that senescence-associated markers are
upregulated in epithelial cells of IPF patients as well as in experimental lung fibrosis.
Furthermore, we could show that ATII cells derived from bleomycin-instilled mice exhibited
an upregulation of SASP components and additionally, showed an increase in WISP1
secretion. Importantly, the clearance of senescent cells using the senolytic drugs dasatinib
and quercetin resulted in a reduction of mesenchymal marker expression as well as a decrease
in SASP component production in isolated murine ATII cells as well as in 3D LTCs. Two
components found to be downregulated were WISP1/CCN4 and IL6. This shows that
WISP1/CCN4 is a potential component of the SASP, and additionally, that the secretion of IL6
by ATl cells as well as in the 3D LTCs potentially depends on the presence of WISP1. Moreover,
the treatment with the senolytic drugs dasatinib and quercetin increased epithelial marker

expression in both systems.

Taken together, we could show that WISP1/CCN4 contributes to IPF via an upregulation of

phLF proliferation. Moreover, clearance of senescent cells downregulated fibrosis-associated
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markers, while it increases epithelial marker expression and potentially restores physiological

epithelial cell functions.
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6. Contribution

First publication (Klee et al. Sci Rep, 2016)

In vitro transfection of the WISP1 promoter construct and luciferase activity measurements
(Fig 1B); in vitro treatment of phLFs with TGFB1 (Fig 2 A-E, 4 A-D, Suppl Fig 2 A/B), TNFa (Fig 3
A-E, Fig 4 A/B/E/F, Suppl Fig 2 C/D, Suppl Fig 3 A/B) and IL6 (Fig 5 A, Fig 6 A/B, Suppl Fig 4 A);
gPCR (Fig 2 A-D, Fig 3 A-D, Fig 4 A/C/E, Suppl Fig 1 A/B, Suppl Fig 2 A-D, Suppl Fig 3 A, Suppl
Fig 4 A/B, Suppl Fig 5 A/B); WISP1 ELISA (Fig 2 E, Fig 3 E, Fig 4 B) and IL6 ELISA (Fig 4 D/F);
Multiplex ELISA (Suppl Tab 1 and 2); siRNA transfection (Fig 4 A-F, Fig. 5 B-F; Fig 6 A, Suppl. Fig
2 A-D, Suppl Fig 4 B/C); Western Blot (Fig 5 C); immunoflourescence staining (Fig 5 D); in vitro
experiments with neutralizing antibody (Fig 5 G, Fig 6 B); WST-1 assay (Fig. 5 A/E/F/G, Fig 6
A/B, Suppl Fig 4 C, Suppl Fig 5 C); in vitro treatment of phLF with pharmacological inhibitors
(Suppl Fig 1 A/B, Suppl Fig 5 A-C); analysis of microarray (Suppl Fig 6 A/B); design of the

experiments, preparation and editing of the figures and manuscript.

Second publication (Lehmann et al. Eur Respir J, 2017)

ELISA for murine IL6, WISP1 and SPC (Fig 5C/D/E) as well as human WISP1 (Fig 7C); animal
model of bleomycin-induced lung fibrosis, orotracheal instillation of the mice with bleomycin

(Fig 4, Fig 5, Fig 7).
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WISP1 mediates IL-6-dependent
proliferation in primary human lung
fibroblasts

S.Klee'?, M. Lehmann'2, D. E. Wagner?, H. A. Baarsma’? & M. Koénigshoffl:

OPEN

Received: 17 August 2015

Accepted: 20 November 2015

Published: 12 February 2016 Idlop?thlc_pulmc{n?ry fibrosis (IPF) is a progressive and_fatal interstitial lung disease. IPF is ch.a_ractenzed
by epithelial cell injury and reprogramming, increases in (myo)fibroblasts, and altered deposition of
extracellular matrix. The Wntl-inducible signaling protein 1 (WISP1) is involved in impaired epithelial-
mesenchymal crosstalk in pulmonary fibrosis. Here, we aimed to further investigate WISP1 regulation
and function in primary human lung fibroblasts (phLFs). We demonstrate that WISP1 is directly
upregulated by Transforming growth factor 31 (TGF31) and Tumor necrosis factor o (TNFa) in phLFs,
using a luciferase-based reporter system. WISP1 mRNA and protein secretion increased in a time- and
concentration-dependent manner by TGF31 and TNFa in phLFs, as analysed by qPCR and ELISA,
respectively. Notably, WISP1 is required for TGF31- and TNFa-dependent induction of interleukin
6 (IL-6), a mechanism that is conserved in IPF phLFs. The siRNA-mediated WISP1 knockdown led
to a significant IL-6 reduction after TGF31 or TNFo stimulation. Furthermore, siRNA-mediated
downregulation or antibody-mediated neutralization of WISP1 reduced phLFs proliferation, a process
that was in part rescued by IL-6. Taken together, these results strongly indicate that WISP1-induced IL-6
expression contributes to the pro-proliferative effect on fibroblasts, which is likely orchestrated by a
variety of profibrotic mediators, including Wnts, TGF31 and TNFo..

Idiopathic pulmonary fibrosis (IPF) is a devastating and progressive interstitial lung disease with a median sur-
vival of 3 to 5 years and limited therapeutic options'2. Recently, two drugs (Pirfenidone and Nintedanib) have
been approved for the treatment of mild/moderate IPE, both of which significantly reduce lung function decline
in IPF patients®*. Therapies halting or reversing the disease progression are lacking and thus a more in-depth
understanding of pathomechanisms driving IPF is needed. Histopathological features of IPF include alveolar epi-
thelial cell injury and hyperplasia, (myo)fibroblast proliferation and differentiation, along with increased extra-
cellular matrix (ECM) production and deposition>>®. Fibroblast foci are a key histologic characteristic of IPF and
a major site of fibroblast proliferation’. As such, IPF is likely driven by impaired epithelial and mesenchymal cell
communication. The Wntl-inducible signaling protein 1 (WISP1) is a member of the CCN (CyR61, CTGE NOV)
family of matricellular proteins, which have been reported to be critically involved in epithelial-mesenchymal
crosstalk®®. WISP1 has been implicated in lung and airway remodeling'*~'2. Moreover, WISP1 is highly upregu-
lated in patients with IPF as well as in experimental lung fibrosis'*~'>. Importantly, neutralizing antibodies against
WISP1 attenuated the development of bleomycin-induced pulmonary fibrosis in vivo, thus demonstrating the
potential of WISP1 as a therapeutic target for IPF'3.

Other cytokines involved in disturbed cellular crosstalk in IPF are Transforming growth factor 31 (TGF31)
and Tumor necrosis factor o (TNFa). Both cytokines are highly upregulated in IPF and alter ECM production,
survival and proliferation of distinct cell types in the lung, including alveolar epithelial cells and lung fibro-
blasts>!6. Consistently, knockout mice for TGF31, TNFa or components of their respective downstream signaling
pathways attenuated development of experimental lung fibrosis'®!’.

We have recently reported that IPF fibroblasts display increased WISP1 levels and that miRNAs regulate
WISP1 expression in TGF31-primed fibroblasts'®. Here we aimed to further elucidate the upstream regulation of
WISP1 in a profibrotic environment as well as its downstream functions in primary human lung fibroblasts. We
demonstrate that WISP1 is directly upregulated by both TGF31 and TNF« in primary human lung fibroblasts

1Comprehensive Pneumology Center, Helmholtz Zentrum Minchen, Munich, Germany. 2Member of the Ludwig-
Maximilians-Universitat, University Hospital Grosshadern and the German Center of Lung Research (DZL),
NuRbaumstrafe 20, 80336 Munich, Germany. Correspondence and requests for materials should be addressed to
M.K. (email: melanie.koenigshoff@helmholtz-muenchen.de)
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Figure 1. The WISP1 promoter region contains potential binding sites for transcription factors activated
by profibrotic cytokines. (A) In silico analysis of the WISP1 promoter (2.5kb upstream of the WISP1
transcription start site (T'SS)) revealed potential binding sites for SMAD, TCE, LEF and NF-kB. (B) A reporter
construct containing the WISP1 2.5kb promoter region was transfected into primary human lung fibroblasts
(phLFs). phLFs were treated with 100 ng/ml Wnt3a, 2 ng/ml TGFB1 or 10 ng/ml TNFa for 24 hours followed
by measurement of luciferase activity. Wnt3a, TGF31 and TNFa all significantly induced luciferase activity as
compared to unstimulated conditions (n =4, *p < 0.05, 1-way ANOVA followed by Neuman-Keuls multiple
comparison test).

and that the presence of WISP1 is required for TGFp1- and TNFa-induced interleukin 6 (IL-6) production.
Moreover, we show that WISP1-induced IL-6 contributes to increased fibroblast proliferation.

Results

WISP1 is a common downstream target of profibrotic signaling mediators. The matricellular
protein WISP1 has recently been reported to be increased in IPF-derived lung fibroblasts'®. Here, we addressed
the question whether WISP1 expression is regulated by specific profibrotic mediators in primary human lung
fibroblasts (phLFs). In silico analysis of a region of a total of 2.5kb upstream of the WISP1 transcription starting
site (here called WISP1 promoter region) revealed potential binding sites for transcription factors like T-cell
factor (TCF) and lymphoid enhancer factor (LEF), SMADs, as well as nuclear factor kappa B (NF-k B), which are
activated by canonical Wnt, TGF31 and TNFa signaling, respectively (Fig. 1A). In order to verify these potential
mediators, we transfected phLFs with either a luciferase-based reporter plasmid containing the 2.5kb WISP1
promoter element or a control plasmid and subsequently treated the phLFs with TGF31, TNFa, or Wnt3a. Wnt3a
has been reported to exhibit profibrotic effects in the lung'® and was further used as a positive control, since
WISP1 has been described to be 3-catenin dependent**!?. As shown in Fig. 1B, treatment with all three profi-
brotic cytokines induced a significant increase in luciferase activity, indicating that in addition to Wnt3a, TGF@1
and TNFa directly induce WISP1 in phLFs.

TGFB1 induces WISP1 expression and secretion in primary human lung fibroblasts. TGEFB1 s
the main profibrotic cytokine active in IPE. It is involved in numerous processes including proliferation and ECM
production by fibroblasts as well as epithelial cell reprogramming, which altogether ultimately drive lung fibrosis
progression. We have recently shown that miRNAs regulate WISP1 expression in a TGF31-driven environment'>.
Here, we investigated the dynamics of WISP1 regulation by TGF31 in more detail. The induction of WISPI expres-
sion by TGF@1 was time- and concentration-dependent (Fig. 2A,C; 24hours: 1.92 4 0.23 fold over control; 2 ng/ml
TGF31: 3.14 £ 0.64 fold over control). Notably, the induction of WISPI was similar to the induction of SERPINE]
(Fig. 2B,D), a direct target gene of TGFQ 1. Next, we investigated the effect of TGF31 on WISP1 protein levels, and
found significantly increased WISP1 secretion in phLFs as early as 24 hours upon TGFB1 stimulation (Fig. 2E;
24hours: control vs. 2ng/ml TGF31: 24.02 £ 5.88 pg/ml vs. 75.52 &= 1.98 pg/ml; 48 hours: control vs. 2 ng/ml
TGF31:19.52 4+ 1.38 pg/ml vs. 45.87 £+ 7.63 pg/ml). Thus, TGEB1 induces WISP1 mRNA expression and secretion
in a time- and concentration-dependent manner in phLFs.

WISP1 is regulated by TNFa in primary human lung fibroblasts. TNFa is a multi-faceted cytokine
with numerous functions and is associated with lung fibrosis?>?!, Our promoter studies suggested that WISP1 is a

SCIENTIFICREPORTS | 6:20547 | DOI: 10.1038/srep20547 2
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Figure 2. TGF31 induces WISP1 in primary human lung fibroblasts (phLFs). phLFs were treated with
TGFB1 (2ng/ml) for 8, 24 and 48 hours and the expression of (A) WISPI and (B) SERPINEI were analysed
using RT-qPCR. The phLFs were treated with TGF31 concentrations ranging from 0.5 to 10 ng/ml and the
expression of (C) WISPI and (D) SERPINE]1 were analysed using RT-qPCR at 24 hours. WISPI was significantly
upregulated using 2 ng/ml at 24 hours while SERPINE] was upregulated at 8 hours and at all further timepoints.
(E) phLFs were treated with TGF31 (2 ng/ml) for 24 and 48 hours and WISP1 secretion was significantly
upregulated as measured by ELISA (n= 3-6; *p < 0.05; **p < 0.01; ***p < 0.001; 1-way ANOVA followed by
Neuman-Keuls multiple comparison test; compared to respective control).

direct target of TNFa (Fig. 1). Next, we investigated the dynamics of WISP1 regulation by TNFo in more detail.
We found that TNFo induced WISPI mRNA expression as early as 8 hours upon stimulation with a near-maximal
induction of WISPI at 10 ng/ml (Fig. 3A,C; 8 hours: 4.61 & 0.68 fold over control; 10 ng/ml: 3.41 + 0.43 fold over
control) accompanied by a similar trend of induction of the known TNFa target gene IL-8 (Fig. 3B,D). Moreover,
enhanced WISP1 protein secretion was observed at 24 and 48 hours upon TNF« stimulation (Fig. 3E; control vs.
10 ng/ml TNFa at 24 hours: 20.47 4= 3.66 pg/ml vs. 35.02 & 3.63 pg/ml; control vs. 10 ng/ml TNFa at 48 hours:
20.99 £ 3.81 pg/ml vs. 44.7 &= 5.4 pg/ml).

We next sought to explore common downstream mechanisms by which TGF31 and TNFa might exert their
effects to upregulate WISPI expression. We found that TGF31- and TNFa-mediated induction of WISP1 was
primarily NF-xB-dependent as shown by a significant reduction of WISPI in the presence of the IKK3 inhibitor
(SC-514; Suppl. Fig. 1), but independent of extracellular signal-related kinase (MEK1/2; inhibitor: U0126) or
c-Jun N-terminal kinase 1/2 (JNK1/2; inhibitor: SP600125), respectively.

WISP1 is required for IL-6 expression by the profibrotic cytokines TGF31 and TNFo.  Since both
TGFB1 and TNFa induced WISP1 in phLFs, we next asked the question if WISP1 in turn is involved in TGF@1-
or TNFa-dependent cellular signaling and function. We analysed interleukin 6 (IL-6), which is induced by both
TGEFB1 and TNF« in various cell types, e.g. via NF-kB?-2%, [L-6 is a pro-inflammatory and pro-fibrotic cytokine
reported to be involved in the pathogenesis of IPF*>?¢. To address the question if WISP1 is involved in IL-6
induction in primary human lung fibroblasts, we used an siRNA-based approach to downregulate WISP1 prior
to stimulation with TGFB1 (2 ng/ml) or TNFa (10 ng/ml), respectively. WISPI was effectively downregulated
upon specific siRNA knockdown by 86.2 & 2.4% after 24 h in the unstimulated condition and importantly, also in
the presence of TGF31- or TNFa-stimulation (Fig. 4A, baseline: —86.2 +2.4%, TGF(31: —85.6 &+ 3.7%, TNF:
—93.6 4+ 0.5%; compared to siCtrl). We further validated the knockdown on protein level by analysing WISP1
secretion and found a strong reduction in WISP1 secretion upon siRNA-mediated knockdown in the presence of
either TGF31 or TNFa (Fig. 4B; siCtrl + TGF31 vs. siWISP1 + TGFB1: 37.02 & 1.75 pg/ml vs. 7.62 £ 0.45 pg/ml;
siCtrl + TNFa vs. siWISP1 4+ TNFa: 59.46 & 10.82 pg/ml vs. 12.82 + 2.45 pg/ml). We next examined the
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Figure 3. TNFo induces WISP1 in primary human lung fibroblasts (phLFs). The treatment of phLFs with
TNFa (10 ng/ml) for 8, 24 and 48 hours was followed by the analysis of the expression of (A) WISPI and (B) IL8
using RT-qPCR. (C,D) phLFs were treated with TNFa concentrations from 10 to 100 ng/ml and the expression
of WISPI and IL8 was analysed using RT-qPCR. WISPI and IL8 were significantly increased after 8 hours of
TNFa stimulation with 10 ng/ml (E) WISP1 secretion by phLFs after treatment with TNFa (10 ng/ml) for 24
and 48 hours was significantly increased as measured by ELISA (n= 3-4; *p < 0.05; **p < 0.01; **p < 0.001;
1-way ANOVA followed by Neuman-Keuls multiple comparison test; compared to respective control).

induction of IL-6 production by phLFs upon TGF31 or TNF« stimulation in the presence and absence of
WISP1. Both TGF31 and TNFa« treatments led to a significant upregulation of IL6 expression in phLFs after
24 and 48 hours of stimulation (Tig. 4C,E; TGF@1 at 48 hours: 1.81 + 0.36 fold over control; TNF« at 48 hours:
5.04 £ 1.29 fold over control). In the absence of WISP1, however, IL-6 expression and secretion was significantly
lower compared to the TGF31- or TNFa-treated cells transfected with control siRNA (Fig. 4C,E, respectively;
siCtrl + TGF(31 vs. siWISP1 + TGF31: IL6 mRNA 1.81 + 0.36 fold over control vs. 0.81 + 0.1 fold over control;
siCtrl + TNFa vs. siWISP1 4+ TNFa: IL6 mRNA 5.04 + 1.29 fold over control vs. 2.78 4 0.81 fold over control).
Importantly, these results were validated on the protein level by analysing IL-6 secretion (Fig. 4D,F, respec-
tively; siCtrl + TGE31 vs. siWISP1 4+ TGIB1 at 48 h: 2.09 4 0.21 ng/ml vs. 0.46 & 0.09 ng/ml; siCtrl + TNT o vs.
siWISP1 + TNFa at 48 h: 5.13 £ 0.06 ng/ml vs. 3.69 & 0.44 ng/ml). Importantly, we found similar results in phLFs
derived from IPF patients, suggesting that the same mechanisms of WISP1 induction as well as WISP1-dependent
IL6 expression are present in IPF-derived phLFs (Suppl. Fig. 2). Notably, WISP1 specifically affected IL-6 produc-
tion in phLFs, while the induction of IL8 by TNFq, as well as other cytokines, such as monocyte chemoattractant
protein-1 (MCP-1) and interferon ~ (IFN~) were not affected by the loss of WISP1 as measured by a multiplex
ELISA (Suppl. Fig. 3A,B and Suppl. Tables 1 and 2).

Loss of WISP1 reduces proliferation of primary human lung fibroblasts.  IL-6 has been reported to
exhibit pro-proliferative effects on lung fibroblasts*”?. In support of these findings, stimulating phLFs with IL-6 led
to a concentration-dependent increase in cell proliferation (Fig. 5A), however, this effect was not mediated by an
increase in WISP1 following IL-6 treatment since IL-6 did not induce WISP1 expression in phLFs (Suppl. Fig. 4A).
As WISP1-depleted cells produced less IL-6 and WISP1 has been shown to be pro-proliferative in non-lung cells®
as well as in lung alveolar epithelial type II (ATII) cells in vitro'3, we investigated the effect of WISP1 on the pro-
liferation of phLFs. Indeed, siRNA-mediated knockdown of WISP1 resulted in a significantly reduced number
of phLFs and reduced expression of cyclin D1 as analysed by Western Blotting (Fig. 5B,C). Moreover, we found
decreased immunofluorescent staining of Proliferating-Cell-Nuclear-Antigen (PCNA; Fig. 5D). In addition, we
observed significantly reduced metabolic activity of phLFs in a WST-1 assay due to loss of WISP1 (Fig. 5E, reduc-
tion by 18.7 £ 3.5%, Suppl. Fig. 4B,C) and reduced cell numbers compared to control siRNA transfected cells
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Figure 4. Loss of WISP1 results in reduced expression of TGF31- and TNFa-induced IL-6 in phLFs.

phLFs were transfected with control (siCtrl) or WISP1-targeting (siWISP1) siRNAs and subsequently treated
with TGF31 (2ng/ml) or TNFa (10 ng/ml) for (A,B) 24hours or (C-F) 24 and 48 hours. WISPI (A) mRNA

was analysed by RT-qPCR and (B) secretion was measured by ELISA. siRNA treatment against WISPI results

in significant loss of WISP1 at baseline and in the presence of TGF@31 and TNFa treatment. IL-6 levels were
analysed at 24 and 48 hours of 2ng/ml TGF31 or 10 ng/ml TNF« treatment and (C,E) IL-6 mRNA was analysed
by RT-qPCR and (D,F) IL-6 secretion was measured by ELISA. Loss of WISP1 results in loss of IL-6 induction
even in the presence of TGF31 or TNFa treatment (n = 4; **p < 0.05; **p < 0.01; ******p < 0.001; 1-way
ANOVA followed by Neuman-Keuls multiple comparison test).

(Fig. 5F; reduction by 22.9 & 2.8%). Moreover, using either a neutralizing antibody targeting WISP1 (Fig. 5G)
or an IKKJ inhibitor (SC-514) that downregulates IL6 expression (Suppl. Fig. 5A,B), we further corroborated
our results and observed a significantly decreased metabolic activity of phLFs upon a WISP1 treatment (Fig. 5G;
reduction by 9.2 & 2.4%) as well as upon NF-kB inhibition (Suppl. Fig. 5C; reduction by 23.5+ 2.4%). Taken
together, our data strongly indicate that WISP1 exhibits pro-proliferative effects on phLFs. To this end, we further
found that WISPI expression levels in IPF tissue negatively correlated with lung function measurement parame-
ters (%DL¢ and %FVC), which also have been shown to correlate to the number of fibroblast foci in IPF? (Suppl.
Fig. 6A,B).

WISP1-induced IL-6 expression contributes to primary human lung fibroblast prolifera-
tion. Given our findings that the presence of WISP1 is required for the induction of IL-6 by TGF31 and TNF«
and that IL-6 is able to induce proliferation in phLFs, we next hypothesized that the reduced proliferation of
phLFs in the absence of WISP1 might be a result of reduced IL-6 levels. To address this question, we either trans-
fected phLFs with siRNAs (siWISP1 and respective control) or treated cells with a neutralizing « WISP1 antibody
and subsequently treated the cells with IL-6 (10 ng/ml; Fig. 6A,B). Notably, cells lacking WISP1 showed a signif-
icantly higher increase in the proliferative response to IL-6 compared to siCtrl transfected cells (Fig. 6A; 16.8%
vs. 6.3%). Consistently, the decrease in WST1 by WISP1 siRNA was in part restored by IL-6 (Fig. 6A; untreated
vs. IL-6 treated: —17.34 £ 3.5% vs. —12.32 4 4.12%), indicating a partial rescue of the proliferation defect by
IL-6 in cells lacking WISP1. Additionally, cells treated with the « WISP1 antibody and subsequently with IL-6
showed fully restored proliferation capacity compared to cells treated with an IgG control (Fig. 6B; untreated vs.
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Figure 5. Loss of WISP1 decreases proliferation of phLFs. (A) The phLFs showed a dose-dependent increase
in proliferation with different concentrations of IL-6 as measured by WST-1. (B-F) phLFs transfected with
control (siCtrl) or WISP1-targeting (siWISP1) siRNA had decreased proliferation. (B) Representative bright
field images of siCtrl and siWISP1 transfected cells (magnification: 100x). (C) Representative Western Blot

of cyclin D1 levels in phLFs after 24 and 48 hours of treatment with siWISP1 and (D) immunofluorescence
staining of PCNA (green) and DAPI (blue; magnification: 100 <) shows qualitative decreases in cell number and
PCNA staining. Decreased proliferation in siWISP1 conditions was measured by (E) WST-1 assay and (F) cell
count. (G) Additionally, phLFs were treated with a neutralizing « WISP1 antibody and decreased proliferation
was observed by WST-1 assay (n=3-7; *p < 0.05; **p < 0.01; A: 1-way ANOVA followed by Neuman-Keuls
multiple comparison test; E-G: Student’s T-test).

IL-6 treated: —9.2 & 2.4% vs. 0 £ 1.8%). Taken together, these results strongly indicate that WISP1-induced IL-6
expression significantly contributes to the pro-proliferative fibroblast function, which is likely orchestrated by a
variety of profibrotic mediators, including Wnts, TGF31 and TNFa (Fig. 7).

Discussion

IPF is a chronic lung disease with poor outcome prediction'2 Two recently approved drugs have been shown to
reduce the progression of lung function decline in mild to moderate IPE, however, they have not been reported to
halt or reverse pathological changes in lung architecture and lung function®*. Thus, further understanding of the
pathomechanisms involved in IPF development and progression is required to develop more effective therapeutic
strategies. TNFa and TGF31 are highly upregulated in IPF and targeting profibrotic mediators induced down-
stream of TGF31 and TNF« represents a promising therapeutic approach for IPF>". Here, we show that both
TGF31 and TNFa induce WISP1 expression and secretion in primary human lung fibroblasts. The WISP1 pro-
moter contains transcription factor binding sites for TCF/LEF, SMADs, as well as NF-k B and our initial promoter
studies indicate a direct control of WISPI expression by Wnt3a, TGF@1, and TNFa. WISP1 is upregulated in IPF
and has been shown to be an epithelial cell-derived mediator of impaired epithelial-to-mesenchymal crosstalk.
Of note, neutralizing WISP1 led to a reduction of experimentally induced lung fibrosis'®>. WISP1 has further been
described as a target gene of canonical Wnt signaling™®, a developmental pathway reactivated in IPF*! and inhi-
bition of which has been shown to prevent and reverse fibrotic changes in the murine lung®*3. We have recently
reported that WISP1 is increased in IPF fibroblasts'®. Here, we revealed a novel mechanism by which WISP1
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Figure 6. WISP1 increases proliferation of phLFs in part via IL-6. The phLFs were either (A) transfected
with siCtrl or siWISP1 or (B) pre-incubated with a neutralizing « WISP1 antibody and treated with or without
IL-6 (10 ng/ml). Metabolic activity of the phLFs was measured by WST-1 conversion and statistically significant
increases were observed following IL-6 treatment demonstrating that IL-6 induction is, in part, responsible for
mediating the pro-proliferative effects of WISP1 (n=7; *p < 0.05; Student’s T-test).

Figure 7. Proposed schematic model. (A) The profibrotic cytokines TGF31 and TNFa can induce

WISP1 presumably via NF-xB in phLFs, which results in WISP1-dependent IL-6 production and increased
proliferation of phLFs. (B) In the absence of WISP1, decreased IL-6 levels lead to reduced fibroblast
proliferation. Our working hypothesis is that WISP1 controls IL-6 expression via a positive feedback on NF-k B.

contributes to profibrotic cellular fibroblast function and thus underline the potential of WISP1 as a therapeutic
target for IPE.

IPF is characterized by increased fibroblast proliferation and accumulation along with ECM production. Thus,
altering fibroblast function is of main interest as a potential therapeutic strategy in IPE. Pulmonary WISP1 has
been shown to be highly expressed by alveolar epithelial type II (ATII) cells. Immunohistochemical analysis of
WISP1 in IPF tissue specimen revealed only a weak staining in lung fibroblasts/interstitium of the lung®®. Our
in vitro data using primary human lung fibroblasts indicate that fibroblasts are an additional source for WISP1.
While comparative analysis of human alveolar epithelial cells and phLFs revealed that the amount of WISP1
secreted by ATII cells in vitro exceeds the secretion by fibroblasts by about 25 fold (data not shown), it is likely that
fibroblast-derived WISP1 might directly act on surrounding cells in the microenvironment of a fibroblast focus.

IL-6 is a well-described inducer of lung fibroblast proliferation. Here, we found that WISP1 is required for
TGF31- and TNFa-dependent induction of IL-6 in lung fibroblasts. We have recently described a link between
Wnt/B-catenin signaling and interleukin secretion in pulmonary fibrosis'®. Induction of Wnt/3-catenin signaling
by Wnt3a in alveolar epithelial cells in vitro and in vivo resulted in a significant increase in IL-6. Moreover, IL-6
was shown to be upregulated in the bronchial alveolar lavage fluid (BALF) of IPF patients and in experimental
lung fibrosis'®?. In this context, it has also been shown that a mutation of the IL-6 receptor subunit gp130, by
which signal transduction downstream of gp130 is solely directed through signal transducer and activator of
transcription 3 (STAT3) but no longer via ERK/MAPK signaling, led to a worsened fibrotic lung phenotype in
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mice upon bleomycin challenge. Interestingly, loss of IL-6 in gp130 mutated mice resulted in protection against
bleomycin-induced lung fibrosis, indicating that IL-6 itself is necessary for fibrosis development in this model*.
Altogether these data support the notion that WISP1 and IL-6 are inter-connected critical mediators contributing
to IPF pathogenesis.

We further analysed functional effects of WISP1 and found that depletion of WISP1 by two independent
approaches resulted in decreased fibroblast proliferation, thus further corroborating a pro-proliferative role of
WISP13>-38, In support of these findings, we demonstrate that treatment of WISP1-deficient or WISP1-neutralized
phLFs with IL-6, in part, rescued the effect on fibroblast proliferation. These data suggest that WISP1 increases
proliferation of human lung fibroblasts via IL-6 induction (Fig. 7). It is also important to note that in our exper-
imental setup IL-6 was not able to fully rescue fibroblast proliferation upon loss of WISP1 by siRNA mediated
knockdown in vitro. Thus, it is likely that WISP1 potentially affects additional pro-proliferative factors. Some
of these, such as IL-8, were included in our multiplex ELISA and were not affected by the loss of WISP1. Other
cytokines belonging to the IL-6 interleukin subfamily, which includes IL-11, IL-31, Oncostatin M and Leukemia
inhibitory factor (LIF) have been described as pro-proliferative®®, however, they were not tested in our multiplex
ELISA approach. Though there are no reports yet, linking WISP1 to any of these latter cytokines, one of these
cytokines or a combination thereof might be responsible for the additional effect of WISP1 knockdown on prolif-
eration. Future studies are needed to address these open questions.

We found that TGF31 and TNFa mainly induced WISP1 expression in phLFs via NF-«B pathway. Notably,
the presence of WISP1 is required for IL6 expression, which is also an NF-k B-driven target gene and induced by
both TGF31 and TNFa. As such, we hypothesize that WISP1 has a positive feedback function on NF-k B-driven
genes. WISP1 is a member of the CCN family, which also includes Cysteine-rich angiogenic inducer 61 (Cyr61),
Connective tissue growth factor (CTGF) and Nephroblastoma overexpressed protein (NOV). These family mem-
bers have been shown to induce downstream effects via NF-k B in different cell types**-*2. In line with these
findings, WISP1 was previously described to activate NF-k B in synovial fibroblasts**. These data strongly support
our findings and suggest that WISP1 has a potential positive feedback function on IL-6 through the activation of
NEF-k B in primary human lung fibroblasts.

Currently, it is unknown, which cell-surface molecules are required for WISP1-mediated signaling in phLFs.
However, CCN family members are known to signal through integrins**. Integrins are versatile cell surface
receptors that, through various combinations of their alpha and beta subunits, can regulate a variety of differ-
ent responses in a cell-specific manner®. Importantly, integrins play a role in the pathogenesis of IPF, both by
functioning as receptors and by activating molecules like TGF31%. For example, integrin o3¢ has been shown
to be important for TGF31 activation on lung epithelial cells, and 34, knockout animals or o34 neutralization
attenuated pulmonary fibrosis development**. WISP1 has been reported to signal through 35 in synovial fibro-
blasts*?, an integrin heterodimer that is also expressed on lung fibroblasts* and thus represents a potential integ-
rin involved in WISP1-induced IL-6 production in lung fibroblasts.

Taken together, our data show that WISP1 is a common downstream target of major pro-fibrotic factors,
TGF31 and TNFq, in primary human lung fibroblasts. Moreover, WISP1 exerts its profibrotic functions through
IL-6-dependent induction of fibroblast proliferation. These data further underline the importance of WISP1 in
the progression of lung fibrosis and strengthen the potential benefit of an anti-WISP1 therapy in IPF patients.

Materials and Methods
Reagents. Recombinant TGF31 (human; 240-B/CF), recombinant TNFa (human, 210-TA/CF) and recom-
binant IL-6 (206-IL/CF) were purchased at R&D systems (Abingdon, UK).

Cell culture. Primary human lung fibroblasts (phLTs) isolation was performed as previously described?.
The phLFs were cultured in Dulbecco’s Modified Eagle’s medium/Nutrient mixture F12 medium (DMEM/F12)
containing 20% (v/v) fetal calf serum (FCS), 100 mg/1 streptomycin and 100 U/ml penicillin. Cells were synchro-
nized before stimulation by culturing them for 24 hours in corresponding starvation medium supplemented with
0.1% (v/v) FCS and antibiotics. Cell stimulations were performed in fresh medium with identical composition as
medium for cell synchronization. Cells were incubated at 37 °C, 5% CO,. For inhibitor studies, phLFs were seeded
in 6 well-plates with a total of 2 x 10° cells/well. 24 hours after seeding, cells were synchronized for 24 hours. Cells
were pre-treated with different inhibitors for 1 hour (SB431542 - 10uM; SC-514 - 50 pM; U0126 - 3pM; SP600125
- 10 pM; 7-Z-Oxozeaneol — 500 nM) and subsequently treated with TGF31 (2 ng/ml) or TNFa (10 ng/ml)
for 24 hours. For analysis of the time-dependent induction of WISP1, phLFs were seeded in 6 well-plates in a
total of 2 x 10° cells/well. 24 hours after seeding, cells were synchronized for 24 hours. Cells were subsequently
treated with TGF31 (2ng/ml) or TNFa (10 ng/ml) and treated for 8 to 48 hours. Supernatants were taken at 24
and 48 hours for WISP1 ELISA measurements. Cells were washed with cold PBS and thereafter taken for RNA
isolation. To analyse the concentration-dependent induction of WISP1, phLFs were seeded in 6 well-plates with
a total of 2 x 10° cells/well. 24 hours after seeding, cells were synchronized for 24 hours. Cells were subsequently
treated with TGF31 (0.5-10 ng/ml) or TNFa (10-100 ng/ml) and treated for 24 hours. Cells were washed with
cold PBS and thereafter taken for RNA purification. Supernatants were stored at —80 °C until further use.

WISP1 Luciferase promoter studies. The sequence of the WISP1 promoter region (2.5kb from the tran-
scription start site) was obtained from the USCS Genome Bioinformatics database (genome assembly: GRChg38;
location: 133,188,539-133,191,039) and analysed using the Genomatix software version 3.4. The 2.5kb element
of the WISP1 promoter was cloned into the pGL4.10 vector. The phLFs were seeded in a 48 well plate at a den-
sity of 2.5 x 10* cells/well in DMEM/F12 containing 20% (v/v) (FCS), 100 mg/! streptomycin and 100 U/ml
penicillin. Cells were transfected 24 hours after seeding in serum-free Opti-MEM medium (Life Technologies,
Darmstadt, Germany) plus Dulbecco’s Modified Eagle’s medium/Nutrient mixture F12 medium (DMEM/F12)
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containing 20% (v/v) fetal calf serum (FCS), 100 mg/1 streptomycin and 100 U/ml penicillin (ratio 1:3) using
250 ng/ml of the vector construct including the 2.5kb element of the WISP1 promoter region in combination with
Lipofectamine LTX transfection reagent and PLUS reagent (Life Technologies, Darmstadt, Germany). Control
transfections were performed using 250 ng of the pGL4.10 vector construct. The transfection mix was incubated
in Opti-MEM medium for 30 minutes at room temperature. The transfection mix was then added to the wells on
top of the refreshed starvation medium. Cells were transfected for 6 hours and thereafter cells were incubated in
starvation medium overnight. Cells were subsequently stimulated for 24 hours with either Wnt3a (100 ng/ml),
TGF31 (2ng/ml) or TNFa (10 ng/ml) in DMEM/F12 medium supplemented with 0.1% FCS (v/v) and antibiot-
ics. After 24 hours, cells were lysed and cell lysate suspension was used to determine the luciferase activity using
the Berthold Tristar LB941 (luciferase reagent: Bright-Glo™ Luciferase Assay System, Promega, Mannheim,
Germany). Measurements were performed in quadruplicates.

WISP1 siRNA transfection. Primary human fibroblasts were seeded in different well plate formats (6 well:
2 x 10° cells/well; 24 well: 5 x 10* cells/well; 96 well: 5 x 10° cells/well) and transiently transfected with a pool
of specific double-stranded siRNAs targeted against the WISP1 transcript (On-Targetplus siRNA, J-010555-
05, -07, -08; Dharmacon, Lafayette, Colorado, USA). Cells were transfected in serum-free Opti-MEM medium
(Life Technologies, Darmstadt, Germany) plus DMEM/F12 containing 20% (v/v) ECS, 100 mg/1 streptomycin
and 100 U/ml penicillin (ratio 1:3) using 10 nM of siRNA in combination with Lipofectamine RNAiMax trans-
fection reagent (Life Technologies, Darmstadt, Germany). Control transfections were performed using 10 nM
ON-TARGETplus Non-targeting siRNAs (D-001810-10, Dharmacon, Lafayette, Colorado, USA). The siRNAs
were incubated in Opti-MEM medium for 30 minutes at room temperature. The siRNA mix was then added to
the wells and cell suspension was added on top. Cells were transfected overnight. Cells were subsequently stim-
ulated for the indicated time-points with either TGF31 (2 ng/ml) or TNFa (10 ng/ml) in DMEM/F12 medium
supplemented with 0.1% FCS and antibiotics. Supernatants were collected and cells were washed with cold PBS
and thereafter taken for RNA purification. Supernatants were stored at —80 °C until further use.

Treatment of phLFs with neutralizing aWISP1 antibody. Cells were seeded in 96 well format
(5 x 103 cells/well) in Dulbecco’s Modified Bagle’s medium/Nutrient mixture F12 medium (DMEM/F12) con-
taining 20% (v/v) fetal calf serum (FCS), 100 mg/1 streptomycin and 100 U/ml penicillin. After 24 hours cells were
serum-starved (DMEM/F12 medium containing 0.1% FCS and antibiotics) for 24 hours. Prior to treatment, cells
were pre-incubated with the neutralizing « WISP1 antibody (10pg/ml; R&D, AF1627) for 1 hour. Subsequently,
cells were treated with or without 10 ng/ml IL-6 for 48 hours.

Immunofluorescence staining. The phLFs were transfected as described above and cultured for 72hours
on poly-l-lysine-coated cover slips. Cells were fixed with acetone/methanol (1:1), permeabilized with 0.1% Triton
X-100 in 1xPBS for 20 minutes and blocked with 5% (w/vol) bovine serum albumin (Sigma Aldrich) for 30 min-
utes. Cells were subsequently incubated with the respective primary antibody (PCNA, Zymed 18-0110, Vienna,
Austria) at room temperature (RT) for 1 hour in PBS containing 0.1% (w/vol) BSA, followed by incubation with a
fluorescently labeled secondary antibody (anti-mouse Alexa 488, Life Technologies). DAPI staining (Roche) was
used to visualize cell nuclei.

Immunoblotting. Cells were washed twice with phosphate-buffered saline (PBS; PAA Laboratories), lysed
in T-PER lysis buffer (Thermo Fisher Scientific, Waltham, MA, US) supplemented with proteinase inhibitor cock-
tail tablets and PhosSTOP™ (Roche), and lysates were centrifuged at 13 000 rpm at 4 °C. Supernatant was col-
lected and protein concentration was determined using the Quick Start Bradford Dye Reagent according to the
manufacturer’s instructions. 15ug of total protein was separated on SDS-polyacrylamide gels and transferred to
PVDF (Biorad, Hercules, CA, US). Membranes were blocked in 1x Roti®-Block (Roth, Karlsruhe, Germany) in
TRIS-buffered saline containing 0.05% (v/v) Tween (TBST) (Applichem) and incubated with the primary anti-
body (Cyclin D1, 2978 P, New England Biolabs; Ipswich, MA, USA) at 4 °C overnight. The HRP-labeled secondary
antibody (anti-rabbit-HRP antibody; GE Healthcare, Chalfont St Giles, UK) was applied after washing of the
membrane in TBST. Proteins were visualized by autoradiography following incubation with SuperSignal West
Dura Chemiluminescent Substrate (Thermo Fisher Scientific). 3-actin served as loading control and was detected
using a HRP-conjugated 3-actin antibody (Sigma Aldrich).

RNA isolation and reverse transcription real-time polymerase chain reaction. Total RNA
was isolated from cells using the Peglab Total RNA Kit (Peqlab, Erlangen, Germany) according to the manu-
facturer’s instructions. An amount of 1000 ng of RNA was used for cDNA synthesis as previously described!s.
The following primers were used: Wnt1-inducible signaling protein 1 (forward: GGCATGAGGTGGTTCCTG;
reverse: GGAGCTGGGGTAAAGTCCAT), Interleukin 6 (forward: TTCCTGCAGAAAAAGGCAAAGA;
reverse: CTGCGCAGAATGAGATGAGT), Interleukin 8 (forward: CAGGAAGAAACCACCGGAAG;
reverse: AACTGCACCTTCACACAGAG), Serpine 1 (forward: GACATCCTGGAACTGCCCTA; reverse:
GGTCATGTTGCCTTTCCAGT).

WISP1 and Interleukin-6 enzyme-linked immunosorbent assay. Supernatants were taken from
time-dependent TGF31 and TNFa WISP1-inductions or siRNA transfection assays and concentrated for WISP1
measurements by a factor of 5 using Amicon Ultra-0.5 centrifugal filter devices according to the manufacturer’s
instructions (Merck Millipore, Amsterdam, The Netherlands) and the assay was performed according to the man-
ufacturer’s instructions. Samples were then transferred to the WISP1 ELISA plate (DY1627; R&D, Minneapolis,
Minnesota, USA). Samples for IL-6 measurements were diluted 1:10 in dilution buffer prior to transfer to the
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IL-6 ELISA plate (DY206; R&D, Minneapolis, Minnesota, USA) and the assay was performed according to the
manufacturer’s instructions.

WST1-Proliferation assay. Primary human lung fibroblasts were plated at a density of 5 x 10° cells per well
in a 96 wells plate. The next day cells were synchronized for 24 hours using DMEM/F12 medium supplemented
with 0.1% FCS and antibiotics. Cells were stimulated with DMEM/F12 medium with 0.1% (v/v) FCS, DMEM/
F12 medium with 10% (v/v) FCS or, or DMEM/F12 with 10% (v/v) FCS plus IL-6 (0.1-20 ng/ml) for 48 hours.
Subsequently, 10l of WST-1 per 100 ul medium (10% v/v; Cat. No. 11 644 807 001, Roche Diagnostics GmbH,
Mannheim, Germany) was added to each well and incubated for 2 hours. Plates were then measured using the
Tecan Sunrise ELISA Reader at a wave length of 440 nm (reference wave length: 620 nm). Each condition was
measured in triplicates.

Cell counting. Primary human lung fibroblasts were plated at a density of 5 x 10 cells per well in a 24 well
plate. The next day cells were synchronized for 24 hours using DMEM/F12 medium supplemented with 0.1%
FCS and antibiotics. Cells were stimulated with DMEM/F12 medium with 10% (v/v) for 48 hours. Subsequently,
cells were washed with PBS, trypsinized and counted using a Neubauer chamber. Experiments were performed
in duplicates.

Correlation analysis. Data for the analysis were extracted from Lung Genomics Research Consortium
(GSE47460 GPL4680) and correlated to diffusion capacity of the lung for carbon monoxide (DLCO) and the
forced vital capacity (FVC) in human patients as a measure of disease severity. Only normal control patients and
patients with confirmed IPF were used from the dataset.

Statistical analysis. Data represent means & SEM, from 7 independent experiments. Statistical significance
of differences was evaluated by Student’s ¢-test or one-way ANOVA followed by a Newman-Keuls multiple com-
parison test, where appropriate. Correlation was evaluated by using the Pearson test. Differences were considered
to be statistically significant when p < 0.05.
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Supplementary Figure 1: TGFB1- and TNFa induce WISP1 in phLFs via NF-kB. The phLFs were treated for 24 hours with either (A) 2 ng/mI TGFB1 in the

absence or presence of the ALK5 inhibitor SB 431542 (10 uM), the IKKB inhibitor SC-514 (10 uM) or the MEK1/2 inhibitor U126 (3 uM) or (B) with 10 ng/ml
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(n=3; *,# p<0.05; student’s t-test)
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Supplementary Figure 2: WISP1 is required for /L6 induction in phLFs derived from IPF patients. The phLFs were treated for 24 hours with either (A,C) 2
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Supplementary Table 1: The secretion of different cytokines by phLFs was measured after TGFB1 (2 ng/ml) stimulation in vitro for 24 hours using a multiplex

ELISA kit (Bio-Plex Pro™ Human Cytokine 17-plex). (n=4; *,# p<0.05; 1-way ANOVA followed by Neuman-Keuls multiple comparison test)
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Supplementary Table 2: The phLFs were treated with 10ng/ml TNFa for 24 hours in vitro and different cytokines were measured using a multiplex ELISA kit

(Bio-Plex Pro™ Human Cytokine 17-plex) (n=4; *,# p<0.05; 1-way ANOVA followed by Neuman-Keuls multiple comparison test)
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ABSTRACT Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease with poor prognosis
and limited therapeutic options. The incidence of IPF increases with age, and ageing-related
mechanisms such as cellular senescence have been proposed as pathogenic drivers. The lung alveolar
epithelium represents a major site of tissue injury in IPF and senescence of this cell population is
probably detrimental to lung repair. However, the potential pathomechanisms of alveolar epithelial cell
senescence and the impact of senolytic drugs on senescent lung cells and fibrosis remain unknown.
Here we demonstrate that lung epithelial cells exhibit increased P16 and P2I expression as well as
senescence-associated B-galactosidase activity in experimental and human lung fibrosis tissue and
primary cells.

Primary fibrotic mouse alveolar epithelial type (AT)II cells secreted increased amounts of senescence-
associated secretory phenotype (SASP) factors in vitro, as analysed using quantitative PCR, mass
spectrometry and ELISA. Importantly, pharmacological clearance of senescent cells by induction of
apoptosis in fibrotic ATII cells or ex vivo three-dimensional lung tissue cultures reduced SASP factors and
extracellular matrix markers, while increasing alveolar epithelial markers.

These data indicate that alveolar epithelial cell senescence contributes to lung fibrosis development and
that senolytic drugs may be a viable therapeutic option for IPF.

Copyright ©ERS 2017 This ERJ Open article is open access and distributed under the terms of the Creative Commons
Attribution Non-Commercial Licence 4.0.
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Introduction

Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease with a median survival of
2-4 years [1]. Mechanisms involved in disease development and progression include repetitive injury to
the lung epithelium, activation and proliferation of (myo)fibroblasts and altered production of extracellular
matrix, together resulting in the destruction of lung architecture and function [1, 2]. Two drugs
(pirfenidone and nintedanib) have been approved for the treatment of mild/moderate IPF [3, 4]; however,
therapies halting or reversing disease progression are still lacking. Thus, there is a tremendous interest in
deepening our understanding of the pathomechanism(s) underlying IPF in order to identify novel
therapies.

The incidence of IPF increases with age and accumulating evidence strongly suggests ageing as a crucial
contributor to IPF initiation and progression [5]. In support of ageing as one proposed driver of disease
pathogenesis, normal and accelerated-aged mice are more susceptible to experimentally induced fibrosis
[6, 7]. A landmark paper in 2013 described nine hallmarks of ageing [8], and importantly, all nine
hallmarks have been found to contribute to IPF pathogenesis, albeit to a variable degree [5]. Cellular
senescence, representing one of these hallmarks, is characterised by stable cell cycle arrest accompanied by
secretion of mediators, including pro-inflammatory cytokines and metalloproteinases, collectively termed
the “senescence-associated secretory phenotype” (SASP) [9, 10]. While the detrimental effects of
senescence are thought to be a result of stem or progenitor cell depletion or of the SASP components,
senescence has also been described to be beneficial in tumour suppression and wound healing [10-12].

In the lung, as in other organs, the number of senescent cells increases with age [13] and cellular
senescence has been linked to the pathogenesis of chronic lung diseases such as chronic obstructive
pulmonary disease [14, 15] or IPF [16-20]. The contribution of senescent cells to disease onset and
progression remain unclear. Some studies have suggested a link between increased senescence and fibrotic
burden [17, 21, 22], while others report that attenuation of lung fibrosis correlates with lung fibroblast
senescence [23]. In addition to lung fibroblasts, evidence has emerged that alveolar epithelial cells can
become senescent in IPF [16, 20, 24]. However, lung epithelial cell senescence and its potential pathogenic
role in IPF remains largely unexplored. Here, we aimed to investigate whether senescence of this cell
population is detrimental or beneficial to lung repair. We analysed cell senescence in lung tissue and in
primary alveolar epithelial type (AT)II cells derived from human IPF and an experimental model of
murine lung fibrosis. We demonstrate that depletion of senescent epithelial cells in vitro and ex vivo
stabilises the epithelial cell phenotype and decreases fibrotic markers, indicating that senescence of alveolar
epithelial cells may contribute to disease pathogenesis.

Materials and methods

Senescence-associated p-galactosidase staining

Primary mouse (pm) ATII cells or three-dimensional lung tissue cultures (3D-LTCs) were prepared from
PBS- or bleomycin-treated mice, as described previously [25] (online supplementary material) and
cultured in multiwell plates. pmATII cells from PBS- and bleomycin-treated mice express high levels of
prosurfactant protein (proSP)-C as well as the epithelial cell markers E-cadherin, cytokeratin (CK) and
zona occludens (ZO)-1. Fibrotic ATII cells further exhibit co-staining of ZO-1 and proSP-C with
o-smooth muscle actin (figure 3a, online supplementary figure S4B and [26, 27]). Cytochemical staining
for senescence-associated (SA) B-galactosidase was performed using a staining kit (Cell Signaling
Technology, Danvers, MA, USA), according to the manufacturer’s instructions. Images were acquired
using a Zeiss Axiovert40C microscope (Jena, Germany). The percentage of senescent cells was determined
by counting of total and SA-B-galactosidase-positive cells in three random microscopic fields per condition
(100x magnification).

Flow cytometry-based detection of SA-p-galactosidase
Flow cytometry-based detection of SA-B-galactosidase was performed as described previously [28]. Briefly,
pmATII cells from PBS- and bleomycin-treated animals were incubated with bafilomycin Al (100 nM;
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Enzo Life Sciences, Farmingdale, NY, USA) and C;,FDG (20 nM; Life Technologies, Carlsbad, CA, USA)
for 1 and 2 h, respectively, directly after isolation or at day 2 of culture. Cells were washed once and
stained for allophycocyanin-conjugated epithelial cell adhesion molecule (EpCAM) antibody (118214;
BioLegend, San Diego, CA, USA) for 20 min at room temperature, washed once and analysed using a
fluorescence-activated cell sorter (LSRII; BD Bioscience, San Jose, CA, USA). Additional information can
be found in the online supplementary material.

Statistical analysis

Data are presented as mean#sem, from n separate experiments. Statistical significance of differences was
evaluated using t-tests, paired t-tests or one-way ANOVA followed by a Newman-Keuls multiple
comparison test, where appropriate. Correlation was evaluated using Pearson’s test. Differences were
considered to be statistically significant when p<0.05. Additional information can be found in the online
supplementary material.

Results

Senescence marker expression is upregulated in the lung epithelium in IPF

First, we aimed to investigate the occurrence of senescence in our IPF patient cohort. To this end, we
analysed the gene expression of the senescence effector proteins cyclin dependent kinase inhibitor
(CDKN) 2A (P16) and CDKNI1A (P2I) in explanted lung tissue specimens of IPF or donor patients. P16
levels were significantly increased in lung homogenates of IPF patients as compared to donor lung
homogenates (figure la; mean+sp change in threshold cycle (ACt) donor —1.91+0.74 versus IPF 0.74+0.40,
p<0.01), whereas P21 levels remained unchanged. Our cohort matches results extracted from the Lung
Genomics Research Consortium microarray data (GSE47460 and GPL4680) (online supplementary figure
S1A). Furthermore, we found that P16 expression levels in IPF tissue negatively correlated with diffusing
capacity of the lung for carbon monoxide (online supplementary figure SIB), indicating that patients with
higher P16 levels had more severe disease. Furthermore, we observed increased P16 as well as P21 protein
in whole-lung homogenates from IPF patients compared to donor lung tissue, as assessed using Western
blotting (figure 1b).

To identify which cell types express phenotypic markers of senescence in IPF, we next performed
immunohistochemical staining of P16 and P21 on IPF and donor lungs and found that IPF lungs
exhibited intense nuclear and cytoplasmic staining for both P16 and P21 compared to age-matched donor
lungs (figure 1c and d). Co-staining with epithelial cell marker proSP-C, KRT5 or KRT7 revealed that
P16- and P21-positive cells were found in the alveolar epithelium of IPF lungs, largely in proSP-C* KRT7*
ATII cells (figure 1c; arrows), while no or only sporadic staining for P16 and P21 was observed in donor
lungs (figure 1d; arrows). Furthermore, KRT5" KRT7" abnormal basal cells in areas of bronchiolisation
exhibited positive staining for P16 and P21 (online supplementary figure S2A-C), while no or only weak
staining was observed in mesenchymal cells (online supplementary figure S2A-D). In addition, P16 and
P21 staining was observed in proSP-C™ KRT5~ KRT7" epithelial cells of IPF lungs (figure 1c
arrowheads). Notably, P21 (and P16) staining was also found in proSP-C* KRT5" double-positive cells
(figure 1c; dashed arrow; and figure S2B). We further detected increased amounts of YH2A.X (phospho
§139), a marker for DNA double strand breaks and activated DNA damage response, which has been
implicated in cellular senescence, in epithelial cells of IPF patients co-localising with P16 staining (online
supplementary figure S3). In addition, an increase in P16, but not P21 expression was detectable on the
mRNA level in primary human ATII cells isolated from IPF patients compared to non-IPF donors (figure
le). This discrepancy between changes in the P21 protein and gene expression level might be due to
differential post-transcriptional control of P21 protein expression [29, 30]. Collectively, these data suggest
that senescence occurs in the lung epithelium in IPF.

Senescence markers are upregulated in experimental lung fibrosis

Next, we analysed cellular senescence in mice subjected to bleomycin (Bleo)-induced lung fibrosis
(2 Ukg ™" body weight, sacrificed at day 7, 14 or 21 after instillation). Both P16 and P21 were significantly
upregulated on the gene expression level in fibrotic mouse lungs (figure 2a; mean+sp ACt P16: day 14 PBS
—5.66£0.34 versus Bleo —4.33+0.21; P21: day 14 PBS —0.64+0.22 versus Bleo 1.42+0.22; p<0.001). While
P16 was upregulated as early as day 14 post-Bleo instillation, P21 was upregulated earlier at day 7 and
decreased back to baseline by day 21. The different kinetics of P16 and P21 expression were also observed
in a previously published microarray dataset (online supplementary figure S4A) [34], and probably
represent the different kinetics of P16/P21 induction upon DNA damage [35, 36]. P21 protein expression
was significantly increased at day 7 as analysed using Western blotting (figure 2b). Unfortunately, due to
the lack of reliable and specific mouse P16 antibodies, we could not analyse P16 on protein level [11].
Next, we assessed SA-B-galactosidase activity, a widely used surrogate marker for the detection of
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FIGURE 1 Senescence marker expression is upregulated in idiopathic pulmonary fibrosis (IPF) patients.
a) Gene expression of P16 and P21 in lung homogenates of IPF and donor tissue was measured by quantitative
(qJPCR and normalised to HPRT. Data are presented as mean+seM. n=6. Means were compared using unpaired
t-tests. b) Representative and quantitative immunoblot analyses of subpleural lung tissue from patients with
sporadic IPF (n=16) and human donor lungs (n=11] using specific antibodies against P16 and P21, and B-actin
as loading control. Densitometric ratios of the respective protein to B-actin are given as meantsem. Means
were compared using unpaired t-tests. Immunohistochemical staining of serial sections of ¢} IPF or d] donor
lung tissue for prosurfactant protein-C (proSP-C; marker for alveolar epithelial type (AT]Il cells), cytokeratin 5
(KRT5, marker for bronchiolar basal cells), cytokeratin 7 (KRT7, marker for simple epithelial cells) and P16
and P21 protein. ProSP-C* KRT7" ATII cells expressing P16 or P21 are indicated by arrows; proSP-C~ KRT5™
KRT7" epithelial cells expressing P16 or P21 are indicated by arrowheads; proSP-C*™ KRT5" KRT7" epithelial
cells expressing P21 are indicated by dashed arrows. e] Gene expression of P76 and P21 in primary human
ATII cells isolated from IPF and donor tissue was measured using qPCR and normalised to HPRT. Data are
presented as mean+seM. n=4. Means were compared using unpaired t-tests. *: p<0.05; **: p<0.01; ***: p<0.001.
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FIGURE 2 Senescence markers are upregulated in experimental lung fibrosis. Mice were instilled with PBS or bleomycin (Bleo) and sacrificed at
the timepoints indicated. a] Gene expression of P76 and P27 in lung homogenates of mice sacrificed at day 7, 14 or 21 was measured using
quantitative PCR and normalised to Hprt. Change in cycle threshold (ACt) is presented as meantsem; n=3 for PBS and n=5 for Bleo. Statistical
significance was tested using one-way ANOVA followed by Newman-Keuls multiple comparison test. b) Immunoblot of P21 protein in mouse
whole-lung homogenates of mice treated with PBS or Bleo and sacrificed after 7 or 14 days. B-Actin was used as a loading control. Respective
sizes of marker are indicated. Data were quantified and normalised to loading control. Data are presented as meanzsem; n=9. Statistical
significance was tested using one-way ANOVA followed by Newman-Keuls" multiple comparison test. ¢, d) Three-dimensional lung tissue cultures
(3D-LTCs) were obtained from mice instilled with PBS or Bleo and sacrificed at day 14. 3D-LTCs were stained for senescence-associated
B-galactosidase activity and c] macroscopic images and d] microscopic (magnification of 200x or 400x) images were taken. Epithelial cells are
marked by arrows. e] Enrichment of senescence-associated genes [31] in microarray data of i) whole lung [32] (GSE16846), ii) mouse fibroblasts
[33] (GSE42564) or iii) primary mouse [pm] alveolar epithelial type (AT]Il cells [26] of mice with experimental lung fibrosis induced by Bleo. FDR:
false discovery rate; FWER: family-wise error rate. *: p<0.05; ***: p<0.001.
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senescent cells [28], in three-dimensional lung tissue cultures (3D-LTCs) from fibrotic mouse lungs (day
14 post-Bleo). Importantly, increased blue staining, indicating a higher number of senescent cells, was
observed in fibrotic lungs as compared to healthy lungs (figure 2c). The SA-B-galactosidase activity was
predominantly observed in structural cells that morphologically resembled lung epithelial cells (figure 2d;
arrows). To further explore whether senescence is increased and in which cell types senescence occurs in
experimental lung fibrosis, we utilised gene set enrichment analysis [37] of previously published
microarray data sets obtained from whole murine lungs [32], primary murine fibroblasts (pmFb) [33] or
pmATII cells [26] of Bleo- versus PBS-treated mice and compared those to a previously published gene
signature list for senescence [31] (figure 2e). We found a significant enrichment of senescence-associated
genes in fibrotic pmATII cells, but not in whole lung or pmFb from Bleo-treated mouse lungs (figure 2e).
These data demonstrate that senescence-associated genes are enriched in experimental lung fibrosis and
indicate that the lung epithelium is a potential source of senescent cells in the fibrotic lung.

Increased senescence of ATl cells in experimental lung fibrosis

To further analyse whether ATII cells are a major senescent cell type in lung fibrosis, we isolated pmATII
cells from Bleo (fibrotic) and PBS (healthy) mouse lungs (figure 3a and online supplementary figure S4B).
Notably, freshly isolated fibrotic EpCAM" pmATII cells exhibited increased staining for SA-B-galactosidase
activity over control EpCAM" pmATII cells, as analysed using flow cytometry (figure 3b). After 48 h of
culture, fibrotic ATII cells maintained an increase of 2.45+0.45-fold in SA-B-galactosidase staining over
healthy cells (figure 3c). This was further confirmed by conventional light microscopy following in vitro
culture and SA-pB-galactosidase staining (figure 3d). Accordingly, freshly isolated fibrotic pmATII cells
showed increased P16 and P21 transcript levels as well as senescence-associated heterochromatic foci
marked by foci of histone H3 lysine 9 trimethylation (H3K9me3) (figure 3e and online supplementary
figure S4C). Additionally, upregulation of secreted phosphoprotein (Spp) 1 and matrix metalloproteinase
(Mmp) 2, two well-known components of the SASP, was observed (figure 3e). In order to examine
whether P16 and P21 activation translated to increased SASP activity, we performed a proteomic analysis
of the secretome of fibrotic and normal pmATII cells. We identified several SASP components in our
screen and found that 52% of those identified were upregulated >1.5-fold in the fibrotic secretome,
whereas only 10% of detected SASP components were downregulated (figure 3f and g). Among the most
upregulated SASP components were insulin growth factor binding proteins (Igfbp) 3, 4 and 7 and MMP 3,
12 and 14 (figure 3h). Together, these data strongly suggest increased senescence of fibrotic ATII cells
along with increased secretion of SASP factors.

Depletion of senescent cells by senolytic drugs decreases fibrotic markers and increases
epithelial cell marker expression

Whether senescence contributes to or limits pulmonary fibrosis is still an area of active discussion. To
address this point, we used a recently described combination of senolytic drugs, dasatinib (D) and
quercetin (Q) (a tyrosine kinase inhibitor and flavonol combination) to deplete senescent cells from
culture [39-41]. Fibrotic pmATII cells exhibited stable expression of profibrotic markers during culture
(online supplementary figure S5A). Treatment with senolytic compounds reduced total cell numbers and
the percentage of senescent cells (figure 4a and b) and P16 expression level dropped significantly (figure
4c). Importantly, an increase in apoptotic cleaved caspase 3 and annexin V staining was observed in ATII
cells upon senolytic treatment (figure 4d and e). Apoptosis was predominantly induced in senescent cells
(figure 4f), consistent with a depletion of senescent cells induced by senolytic drugs [41].

We next analysed whether senolytic treatment affected SASP factors in pmATII cells. Notably, treatment
with DQ led to a reduction of SASP factors such as MmpI12, Serpinel and Sppl (figure 4g). Senescent cell
depletion further correlated with reduced extracellular matrix components Collagenlal, Collagen5a3 and
Fibronectin (figure 5a and online supplementary figure S5C), which have been suggested to be part of the
SASP [22, 35]. Notably, we found significantly increased mRNA expression of the epithelial cell marker
E-cadherin (Cdhl) as well as functional ATII cell markers, such as Sftpc and Sftpa, while the ATI cell
marker TIa was unaffected (figure 5b and online supplementary figure S5D). In addition, protein
secretion of SP-C was increased upon senolytic treatment (figure 5e) along with increased E-cadherin
protein level (figure 5f). We further analysed interleukin (IL)-6 protein secretion (a major component of
the SASP), and found significantly decreased amounts upon senolytic treatment (figure 5¢; DMSO
3.95+0.81-fold over control versus DQ 1.34+0.65-fold over control). Moreover, transcript level as well as
secretion of the ATII cell-derived fibrotic mediator Wnt-inducible signalling protein (Wisp) 1 [26] were
significantly reduced upon senolytic treatment (online supplementary figure S5C and figure 5d; DMSO
2.10£0.91-fold over control versus DQ 0.71£0.26-fold over control). Together, these data suggest effective
depletion of senescent cells and modulation of their associated SASP. Notably, when treating ATII cells
isolated from PBS-treated lungs, which show reduced senescence as compared to fibrotic ATII cells, with
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FIGURE 3 Senescence markers are upregulated in alveolar epithelial type (ATl cells in experimental lung fibrosis. Mice were instilled with either
PBS or bleomycin (Bleo). At day 14 after instillation, mice were sacrificed and primary mouse (pm]ATIl cells were isolated. a)
Immunofluorescence staining of fibrotic or nonfibrotic pmATIl cells on cover slips for epithelial cell marker expression at day 2 after isolation.
Fluorescent images represent a 400x magnification. b] pmATIl cells were analysed for epithelial cell adhesion molecule (EpCAM) positivity and
senescence-associated (SAJ-B-galactosidase activity by fluorescence-activated cell sorting (FACS] directly after isolation. Representative dot blots
of the EpCAM™ population are shown for PBS and Bleo, as well as quantifications of percentages of senescent cells of the EpCAM" population.
Means were compared to time-matched PBS controls using unpaired t-tests; n=3. c] pmATIl cells (day 2] were analysed for SA-B-galactosidase
activity using FACS. Representative dot blots are shown for PBS and Bleo pmATIl cells incubated with Ci,FDG or respective controls, a
representative histogram comparing PBS and Bleo pmATIIl cells incubated with C1,FDG as well as quantifications of percentages of senescent
cells normalised to respective PBS control. Means were compared to time-matched PBS controls using unpaired t-tests; n=3. d) pmATIl cells (day
2) were stained for SA-B-galactosidase activity and blue cells and total cells were counted. Representative images and quantitative data
normalised to respective PBS controls are shown. Data represent meantsem. Means were compared to time-matched PBS controls using
unpaired t-tests; n=3. e) Gene expression of senescence-associated genes in freshly isolated pmATII cells from PBS- or Bleo-treated mice was
measured using quantitative PCR. Data were normalised to Hprt. Change in threshold cycle (ACt] is presented as meantsem; n=3-4 for PBS and
n=8 for Bleo. Means were compared to time-matched PBS controls using unpaired t-tests. f-h] pmATII cells isolated from PBS- or Bleo-treated
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proteomics. The senescence-associated secretory phenotype (SASP) list [9] was compared to the list of secreted proteins (1.5-fold upregulated or
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supernatant. g] Percentage of detected SASP factors that are upregulated (>1.5-fold) or downregulated (<-1.5-fold) or not changed. h) List of
upregulated SASP components >1.5-fold Bleo/PBS. CK: cytokeratin; Z0: zona occludens; SMA: smooth muscle actin. *: p<0.05; ***: p<0.001.

https://doi.org/10.1183/13993003.02367-2016 7

54



EXPERIMENTAL PULMONARY FIBROSIS | M. LEHMANN ET AL.

P16
al 150~ b] 150 c) 01
E *
= 2 3 m n
8 1001 % g 8 100 % < -2
g g O * E é * DE: %
£ 5 @ 5 [ } o O N
8= 507 — S 2 501 ——F = -4 |:|
3 =
o
u
0 T T 0 T T _6 T T
DMSO DQ DMSO DQ DMSO Da
d] Bleo DMSO Bleo DQ el 4q f] 120+ @ C,FDG*
" Oc,,FDG-
100+
23 P
g g 3 80
+ 8 ©
5 2 L 40
=32 £
v © <
£ 2 40
<2 1] g
20+
T T 0-
DMSO DQ
gl Mmp12 Serpinel Sppl
0 91 67
Kk
3 z z =
z -2 3 81 & O ]
—_ ) E‘j —
s |- . 2] R
€ n € 1S L
o -b1 o b L o O
= = =RVE %
% _8 % 5 O % %
o .I o = o I.-
_10 T T 4 T T 0 T T
DMSO DQ DMSO DQ DMSO DQ

FIGURE 4 Treatment of fibrotic primary mouse (pm)] alveolar epithelial type (AT]II cells with senolytic drugs decreases senescent markers and
increases apoptosis. Mice were instilled with either PBS or bleomycin (Bleo). At day 14 after instillation mice were sacrificed and pmATIl cells
were isolated. Fibrotic pmATII cells were cultured for 48 h in the presence of the senolytic drugs dasatinib (D; 200 nM) and quercetin (Q; 50 pM).
a) The senolytic activity was assessed by cell numbers. Data are presented as normalised to dimethylsulfoxide (DMSQ) control and as meanzsem.
Significance was assessed using paired t-tests; n=3. b) Senescence-associated (SA]-B-galactosidase activity. pmATIl cells were stained for
SA-B-galactosidase activity and blue cells and total cells were counted. Quantitative data are normalised to respective DMSO control. Data are
presented as meantseM. Means were compared to time-matched controls using paired t-tests; n=4. c] Gene expression analysis for the
senescence marker P76. Data were normalised to Hprt level. Data are presented as normalised to DMSO control and as meantsem. Significance
was assessed with paired t-tests; n=6. d] Representative images of immunofluorescence staining for apoptotic marker cleaved caspase 3 and
E-cadherin in fibrotic pmATII cells exposed to DMSO or DQ. Fluorescent images represent a 630x magnification. Scale bars=20 um. e} Fibrotic
ATII cells were exposed to DMSO or DQ and stained for annexin V level and analysed using fluorescence-activated cell sorting (FACS); n=4.
f] Fibrotic ATII cells were exposed to DQ and stained for senescence (C;,FDG), co-stained for annexin V level and analysed using FACS. Data are
presented as meanzsem percentage of total apoptotic cells in the senescent (C1,FDG') and nonsenescent (C1,FDG™) population. Significance was
assessed using unpaired t-tests; n=3. g] Expression of senescence-associated secretory phenotype (SASP] markers in pmATIl cells treated with
senolytic drugs was analysed using quantitative PCR. Data were normalised to Hprt level. Change in threshold cycle (ACt) is presented as mean
tseM. Significance was assessed using paired t-tests; n=6. Spp: secreted phosphoprotein; Mmp: matrix metalloproteinase. *: p<0.05; **: p<0.01;
***, p<0.001.

senolytic drugs, we only observed a slight reduction in cell number, P16 expression and SASP components
accompanied by an increase in epithelial cell markers as compared to control (online supplementary
figure S6).

Finally, we aimed to elucidate whether depletion of senescent cells further modulates fibrotic burden in an
ex vivo model using native lung tissue slice cultures. 3D-LTCs derived from Bleo-treated mouse lungs
exhibit increased expression of fibrotic marker (online supplementary figure S7A), as well as
senescence-associated P16 and P21 expression (figure 6a). Treatment of fibrotic 3D-LTCs with senolytic
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FIGURE 5 Treatment of fibrotic primary mouse (pm)] alveolar epithelial type (AT)II cells with senolytic drugs decreases fibrotic and increases
epithelial cell markers. Mice were instilled with either PBS or bleomycin (Bleo). At day 14 after instillation, mice were sacrificed and pmATII cells
were isolated. Fibrotic pmATIl cells were cultured for 48 h in the presence of senolytic drugs dasatinib (D; 200 nM) and quercetin (Q; 50 pM).
a) Expression of fibrotic markers was analysed using quantitative (qJPCR. Data were normalised to Hprt level. Change in threshold cycle (ACt) is
presented as meanzseM. Significance was assessed using paired t-tests; n=6. b) Expression of epithelial markers was analysed by qPCR. Data
were normalised to Hprt level. ACt is presented as meanzsem. Significance was assessed using paired t-tests; n=6. c) Secretion of interleukin
(IL)-6 was analysed using ELISA. Data are presented as normalised to PBS control treated with dimethylsulfoxide (DMSO] (meantsem).
Significance was assessed using paired t-tests; n=4. d) Secretion of Wnt-inducible signalling protein (WISP)1 in pmATII cells treated with senolytic
drugs was analysed using ELISA. Data are presented as normalised to PBS control treated with DMSO (mean+sem). Significance was assessed
using t-tests; n=4. e) Secretion of surfactant protein-C (SP-C) was analysed using ELISA. Data are presented as normalised to total cell protein
amount. Significance was assessed using paired t-tests; n=4. f] i] E-cadherin expression was assessed using Western blotting. B-actin was used
as a loading control; ii] quantification of E-cadherin Western blot; n=5. Data were normalised to B-actin. *: p<0.05; **: p<0.01; ***: p<0.001.

drugs reduced SA-B-galactosidase staining and PI6 expression (figure 6b and ¢) and increased cleaved
caspase 3 staining (figure 6d). In addition, senolytic treatment reduced expression of the SASP
components Mmpl2, Serpinel and Sppl (figure 6e). Importantly, DQ treatment further reduced fibrotic
markers, such as Collagenlal and Wispl transcript and protein levels (figure 7a, ¢ and e), whereas Sftpc
transcript and protein expression increased compared to time-matched control (figure 7b and d). Notably,
we observed similar trends when treating healthy 3D-LTCs with senolytic drugs, albeit to a lower extent
than in the fibrotic 3D-LTCs (online supplementary figure S8). In summary, senescent cell depletion by
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FIGURE 6 Treatment of fibrotic three-dimensional lung tissue cultures (3D-LTCs) with senolytic drugs
decreases senescence markers and increases apoptosis markers. Mice were instilled with either PBS or
bleomycin (Bleo). At day 14 after instillation mice were sacrificed and 3D-LTCs were generated. a) Gene
expression of senescence markers in 3D-LTCs after 48 h of culture was analysed using quantitative (qJPCR.
Data were normalised to Hprt. Change in threshold cycle (ACt] is presented as meanzsem. Significance was
assessed using unpaired t-tests; n=8. b-e) Fibrotic 3D-LTCs were cultured for 48 h in the presence of
senolytic drugs dasatinib (D; 200 nM] and quercetin (Q; 50 uM). The senolytic activity was assessed using b)
senescence-associated B-galactosidase staining (i) 200x), as well as by c) gene expression analysis for the
senescence marker P76. Data were normalised to Hprt. ACt is presented as meanssem. Significance was
assessed using paired t-tests; n=6. d] Representative images of immunofluorescence staining for the
apoptotic marker cleaved caspase 3. i] Scale bars=50 pm; ii) scale bars=20 um. Epithelial cells are marked by
arrows. e] Gene expression of SASP markers in 3D-LTCs treated with senolytic drugs was analysed using
qPCR. Data were normalised to Hprt. ACt is presented as meanzsem. Significance was assessed using paired
t-tests; n=6. *: p<0.05; **: p< 0.01; ***: p<0.001.
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FIGURE 7 Treatment of fibrotic three-dimensional lung tissue cultures (3D-LTCs) with senolytic drugs decreases fibrotic and increases epithelial
cell markers. Mice were instilled with either PBS or bleomycin (Bleo). At day 14 after instillation mice were sacrificed and 3D-LTCs were
generated. Fibrotic 3D-LTCs were cultured for 48 h in the presence of senolytic drugs dasatinib (D; 200 nM) and quercetin (Q; 50 uM). a) Gene
expression of fibrotic markers in 3D-LTCs treated with senolytic drugs was analysed using quantitative (q)JPCR. Data were normalised to Hprt.
Change in threshold cycle (ACt) is presented as meanzsem. n=6. b) Gene expression of Sftpc in 3D-LTCs treated with senolytic drugs was analysed
using qPCR. Data were normalised to Hprt. ACt is presented as meantseM. n=5. c] Secretion of Wnt-inducible signalling protein (WISP)1 from
3D-LTCs treated with senolytic drugs was analysed using ELISA. Data are presented as normalised to PBS dimethylsulfoxide (DMSO) control
(meanzsem). n=4. d] i) Prosurfactant protein-C (proSP-C) expression was assessed using Western blotting in fibrotic 3D-LTCs. B-actin was used as
a loading control; ii) quantification of proSP-C protein relative to B-actin. n=3. e} i) Secreted collagen | was assessed using Western blotting in
fibrotic 3D-LTCs; ii) quantification of secreted collagen | normalised to supernatant volume. n=7. Significance was assessed using paired t-tests.

*; p<0.05; **: p<0.01; ***: p<0.001.

senolytic drugs reduced fibrotic burden and increased ATII cell markers in primary ATII cells as well as in
ex vivo 3D-LTCs.

Discussion

IPF is a disease of the elderly, and several hallmarks of ageing such as cellular senescence have been linked
to this disease [5]. Recently, Baker et al [42] were able to demonstrate that depletion of naturally
occurring senescent cells extends healthy lifespan and decreases age-induced pathologies in mice.
Nevertheless, there is evidence that senescence might also limit diseases, such as cancer or fibrotic
disorders of the skin or heart [10-12]. Recent reports in lung fibrosis are conflicting, since both a
detrimental role [17, 21, 22, 43] as well as an antifibrotic role [23] have been reported. In this study, we
utilised senolytic drugs on fibrotic lung epithelial cells in vitro and ex vivo in 3D-LTCs and demonstrated
that senolytic treatment attenuates fibrotic mediator expression, while stabilising epithelial cell marker
expression and function. These findings suggest that senescence contributes to development of lung
fibrosis and that treatment of pulmonary fibrosis with senolytic drugs might be beneficial.

Increased senescence has been described for IPF as well as in mouse models of pulmonary fibrosis in both
epithelial cells and (myo)fibroblasts [16-18, 21, 23, 44-46]. Here, we confirm that lung epithelial cells
from experimental and human IPF exhibit increased cellular senescence. Interestingly, we observed cellular
senescence in different subpopulations of human lung epithelial cells, including a population of proSP-C*
KRT5" double-positive cells. These double-positive cells have been described in the mouse as derived from
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a rare undifferentiated epithelial cell population, which is activated upon influenza infection or bleomycin
challenge [47]; however, the origin of these cells as well as the contribution of single cell subpopulations in
the human lung to disease pathogenesis requires further investigation.

Senescent cells secrete several mediators in the SASP that have been shown to directly influence their
surrounding microenvironment. Importantly, we identified fibrotic ATII cells as a potent source of
profibrotic SASP components. In line with this, increased expression of SASP components has been found
in bleomycin-induced lung fibrosis in vivo [22, 44]. Different components of the SASP such as IL-6,
MMP-12 [48], IL-1P [49] or keratinocyte growth factor [50] have been described to induce alveolar
epithelial cell reprogramming, a prominent feature of IPF pathogenesis [2, 51]. Notably, several different
epithelial cell phenotypes can be observed in the fibrotic lung, including cellular senescence [51]. The
distinct phenotypes are most likely determined by 1) cell intrinsic properties that differ in specific (and to
be characterised) subpopulations and 2) extrinsic factors, such as the direct microenvironment.
Components of the SASP have been described to influence cell proliferation [13]. Thus, it may be that the
SASP of senescent fibrotic cells contributes to the hyperproliferative phenotype of some epithelial cells or
to neighbouring fibroblasts. By depleting senescent epithelial cells, we were able to reduce their associated
SASP, which had potent antifibrotic effects and partly restored the normal epithelial cell phenotype. While
our results strongly support the hypothesis that senescent epithelial cells and their SASP contribute to
fibrosis pathogenesis, it will be important to further elucidate specific SASP compositions of different cell
types which might account for distinct outcomes in fibrotic diseases in further studies.

Different mechanisms can lead to the induction of senescence [10]. DNA damage, as well as telomere
shortening, can trigger senescence. Notably, telomere attrition is a driving force in IPF and mutations in
telomerase genes have been found in familial and sporadic cases of IPF [52, 53]. NAIKAWADI et al. [24]
reported that telomere dysfunction in ATII cells, but not mesenchymal cells, led to increased cellular
senescence and lung fibrosis. The same group previously found that alveolar epithelial cell senescence is
regulated by microRNA-34a [16], which has also been reported to regulate senescence of lung fibroblasts
[23]. In addition to DNA damage- or telomere shortening-induced senescence, overexpression of the
canonical WNT mediator B-catenin can result in oncogene-induced senescence and WNT signalling has
further been demonstrated in senescence occurring during embryonic development [54, 55]. Several WNT
ligands, such as WNT3A, have been shown to induce senescence upon prolonged cellular exposure [56].
In line with this, increased WNT/B-catenin activity has been reported in human and experimental lung
fibrosis [26, 56-59]. Here we found that the expression of the WNT target WISP1 was reduced by
senolytic treatment of fibrotic ATII cells, thus suggesting that WISP1 might contribute to the profibrotic
SASP.

Depletion of senescent cells presents a potential therapeutic option for the treatment of several chronic
diseases, including those of the ageing lung. Pharmacological targeting of senescent cells has been recently
developed [39, 41]. Both pharmacological approaches target antiapoptotic pathways that senescent cells are
highly reliant on. Inhibiting these antiapoptotic pathways induces apoptosis in the senescent cells,
however, while the drugs target predominantly senescent cells, other mechanisms cannot be excluded
[39, 41, 60]. Here, we provide evidence that senolytic treatment induces apoptosis in senescent alveolar
epithelial cells, which subsequently led to an attenuation of profibrotic marker expression and increased
epithelial cell function. Concerns that antisenescent therapies might increase the risk of cancer have been
addressed by a study showing that depletion of senescent cells actually reduced tumour burden in
naturally aged animals, rather than increasing it [42].

Why senescent cells exhibit antifibrotic properties in some fibrotic disorders, while appearing to be
detrimental in pulmonary fibrosis is an intriguing question. One explanation might be that distinct cell
types are affected by senescence [10, 20, 35]. In the case of liver, heart and skin fibrosis, where senescence
is thought to be beneficial, myofibroblasts are the major senescent cell type [10-12, 20, 61]. However, in
IPF we and others demonstrate that epithelial cells represent a major cell type that is affected by
senescence [16, 18] and while we did not find fibroblasts to be affected to a large extent, other recent
publications report senescence in fibroblasts in IPF as well [17, 22]. Interestingly, senescence induced by
microRNA-34a in epithelial cells seems to promote fibrosis in aged animals, while it reduces fibrotic
burden when lung fibroblast senescence is induced [23, 43], indicating that epithelial cell senescence is
indeed detrimental, whereas fibroblast senescence is protective. A recent study employed a combination of
senolytic drugs in experimental lung fibrosis in vivo and report a reduction of senescent cells as well as
fibrosis development [22], similar to our findings. However, their work focused primarily on examining
the contribution of senescent fibroblasts using in vitro approaches and they did not examine epithelial cell
behaviour in their model. We demonstrated that both senolytic drugs reduce the senescent cell burden and
attenuated fibrotic marker using an ex vivo model of lung fibrosis in 3D-LTCs. This technique allows the
analysis of tissue-level responses to senolytic drugs in living tissue ex vivo. Moreover, murine 3D-LTCs can
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be applied to extend mechanistic studies, while reducing overall animal experimentation. Notably, we were
able to confirm our in vitro findings with respect to epithelial cell marker expression as well as fibrosis
markers and provide evidence that epithelial cells are also targeted in 3D-LTCs. However, it is most likely
that also other cell types, such as fibroblasts [22] are affected by senolytic treatment in this system. Future
studies using in vivo models targeting specific senescent cell populations are needed to further delineate
senescent cell-specific contribution to the development of pulmonary fibrosis. In addition, it will be
important to further confirm the role of senescent cell types in human lung tissue. To this end, we have
recently developed a model that induces early fibrotic-like changes in human 3D-LTCs from non-IPF
patients [62], which may help us define the potential for as well as the limitations of antisenescent therapy
in the context of lung fibrosis.
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Supplemental Methods

Human samples

Primary human (ph) ATIl cells were isolated from non-IPF (N=4) or IPF (N=4) lung tissue
biopsies from the Comprehensive Pneumology Center cohort of the BioArchive CPC-M at
the University Hospital Grosshadern of the Ludwig Maximilian University. Participants
provided written informed consent to participate in this study, in accordance with approval by
the local ethics committee of the LMU, Germany (Project 333-10, 455-12). Additionally,
formalin-fixed, paraffin-embedded lung tissue samples from 14 patients with sporadic IPF
(mean age + sd: 55.82 + 9.74 years; 5 females, 9 males) and 5 non-diseased control
subjects (organ donors; mean age + sd: 56.60 + 11.46 years; 4 females, 1 male) were
immunohistochemically investigated. All lung tissue samples were collected in frame of the
European IPF registry (eurlPFreg) and provided by the UGMLC Giessen Biobank (member
of the DZL Platform Biobanking). The study protocol was approved by the Ethics Committee

of the Justus-Liebig-University Giessen (No. 111/08 and 58/15).

Animal experiments

Six- to eight-week-old pathogen-free female C57BL/6N mice were obtained from Charles
River and housed in rooms with constant humidity and temperature with 12h light cycles and
free access to water and rodent chow. For the induction of experimental fibrosis, mice were
subjected to intratracheal bleomycin (Bleomycin sulfate, Almirall, Barcelona, Spain, was
dissolved in sterile PBS) instillation using the Micro-Sprayer Aerosolizer, Model IA-1C (Penn-
Century, Wyndmoor, PA), as a single dose of 2 U/kg body weight in 50 ul PBS. Control mice
were treated with 50 ul PBS. Mice were sacrificed at day 7, 14 or day 21 after instillation.
Lungs were used for collection of whole lung tissue, ATII cells or 3D-LTCs. All animal studies
were conducted under strict governmental and international guidelines and approved by the

1
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local government for the administrative region of Upper Bavaria (Project 55.2-1-54-2532-88-

12).

Isolation of primary murine alveolar epithelial cell type Il (pmATIl) cells

The pmATIl cells were isolated from pathogen-free C57BL/6 mice treated with
PBS/Bleomycin and sacrificed at day 14 after instillation as previously described [1, 2] with
slight modifications. In brief, lungs were filled with dispase (BD Bioscience, San Jose, CA,
US) and low gelling temperature agarose (Sigma Aldrich, Saint Louis, MO, USA) before
tissue was minced and the cell suspension was filtered through 100-, 20-, and 10-um nylon
meshes (Sefar, Heiden, Switzerland). Negative selection of fibroblasts was performed by
adherence on non-coated plastic plates. Macrophages and white blood cells were depleted
with CD45 and endothelial cells were depleted with CD31 specific magnetic beads (Miltenyi
Biotec, Bergisch Gladbach, Germany) according to the manufacturer’s instructions. Cell
purity was assessed routinely by analysis of endothelial (CD31), mesenchymal (a-SMA,
CD90), epithelial (EpCAM, panCK and proSP-C), and hematopoietic cell (CD45) markers by

immunofluorescence or flow cytometry.

Isolation of primary human alveolar epithelial type Il (phATIIl) cells

Isolation of phATIl cells was performed as previously described [1, 3], with some
modifications. Briefly, lung tissue was minced and digested with dispase/collagenase
(Roche, Basel, Switzerland) at 37°C for 2 h before filtering through nylon meshes and
centrifugation at 400 g, 4°C for 10 min. Next, the cells were layered onto a discontinuous
Percoll density gradient (1.04—1.09 g/ml) and centrifuged at 300 g for 20 min. The interphase
containing macrophages and alveolar epithelial cells was recovered. Macrophages and white
blood cells were depleted with CD45 specific magnetic beads (Miltenyi Biotec, Bergisch)

according to the manufacturer’s instructions.
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Cell culture

In experiments using pmATII cells were seeded, cultured for 48h, then treated with senolytic
agents Dasatinib (500 nM, Selleck Chemicals, Houston, TX, USA) and Quercetin (50 uM,
Sigma Aldrich, St Louis, MO, USA) or respective DMSO control for 24 or 48 h in DMEM
(Sigma Aldrich) containing 10% FCS (PAA Laboratories, Pasching, Austria), 2 mM I-
glutamine, 100 U-mL-1 penicillin, 100 pg-mL-1 streptomycin (both Life Technologies,
Carlsbad, CA), 3.6 mg/ml glucose (Applichem GmbH, Darmstadt, Germany) and 10 mM
HEPES (PAA Laboratories). Senolytic treatment with ABT263 (10 yM, Cayman Chemical,
Ann Arbor, MI) led to similar results (data not shown). Cells were counted 48 h after
treatment with a Neubauer counting chamber. RNA was isolated isolated and reverse
transcribed as described previously [2] and fibrotic gene expression was measured by
quantitative (q) RT-PCR. Supernatants were collected, centrifuged at 14000 g for 10 min and

stored at -80°C before analysis.

RNA isolation and Reverse Transcription Polymerase Chain Reaction (RT-PCR, qPCR)

Total RNA was extracted using the miRNeasy Mini kit (Qiagen, Hilden, Germany) for human
tissue and Peqlab Total RNA extraction Kit (Peglab, Erlangen, Germany) for mouse samples,
according to the manufacturer’s instructions. cDONAs were generated by reverse transcription
using SuperScriptTM Il (Invitrogen, Carlsbad, CA, USA) and for human tissue with iScript
Advanced kit (BioRad, Hercules, CA, USA). Quantitative (q)RT-PCR was performed using
Light Cycler 480 detection system and SYBR Green (Roche Diagnostics, Mannheim,

Germany). Hypoxanthine phosphoribosyltransferase (HPRT) was used as a reference gene.

Relative gene expression is presented as ACt value (ACt =[Ct Hprt]-[Ct gene of interest]).
Relative change in transcript level upon treatment is expressed as fold change 2*AACt value

(AACt= ACt of treated sample-ACt of control).
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Primers for Col1a1, Fibronectin, Sftpc, Sftpa, T1a, Cdh1 and MMP12 were as previously

reported with HPRT as reference gene [2, 4]. Additional primers were

Gene forward primer reverse primer

hp16 ACCAGAGGCAGTAACCATGC CCTGTAGGACCTTCGGTGAC

hp21 GTCAGTTCCTTGTGGAGCCG TGGGTTCTGACGGACATCCC
mp16 CGGGGACATCAAGACATCGT GCCGGATTTAGCTCTGCTCT

mp21 ACATCTCAGGGCCGAAAACG AAGACACACAGAGTGAGGGC
mSpp1 AGCCAAGGACTAACTACGACC TGGCTATAGGATCTGGGTGC
mMMP2 | ATCCACGGTTTCAGGGTCC ATCGAGACCATGCGGAAGC

mPai1 AGGTCAGGATCGAGGTAAACGAG | GGATCGGTCTATAACCATCTCCGT
mCol5a3 |CCACCACTGTCACGATTGGA GAGTCGTCTGCTCGGTTTCAG
mWisp1 GTCCTGAGGGTGGGCAACAT GGGCGTGTAGTCGTTTCCTCT

Generation and treatment of 3D-LTCs

C57BL6/N mice of 8-12 weeks were instilled with 2 U/kg bleomycin and sacrificed at day 14
after instillation. 3D-LTCs were generated as previously described [4]. Briefly, lungs were
flushed through the heart with sterile sodium chloride solution and filled with low gelling
temperature agarose (2%, A9414; Sigma) in DMEM/Ham’s F12 supplemented with 100
U-mL-1 penicillin, 100 pg-mL-1 streptomycin and 2.5 ug-mL-1 amphotericin B (Sigma
Aldrich). Next, lobes were cut with a vibratome (Hyrax V55; Zeiss, Jena, Germany) to a
thickness of 300 um (speed 10-12 uym-s—1, frequency 80 Hz, amplitude of 1 mm). 3D-LTCs
were treated with senolytic agents Dasatinib (500 nM, Selleck Chemicals, Houston, TX,
USA) and Quercetin (50 uM, Sigma Aldrich) or respective DMSO control for 48 h in sterile
cultivation medium containing 0.1% FCS. RNA was isolated and fibrotic gene expression
was measured by gqRT-PCR. Supernatants were collected, centrifuged at 14000 g for 10 min

and stored at -80°C before analysis.

Western blotting

Cells or pulverized lung tissue were lysed with Tissue Protein Extraction Reagent (T-Per,

Thermo Fisher) containing phosphatase and protease inhibitors (Roche Diagnostics,
4
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Mannheim, Germany). Protein concentration was determined by BCA assay (Pierce, Thermo
Fisher Scientific). Equal amounts of protein were loaded with 4x Laemmli loading buffer (150
mM Tris HCI [pH 6.8], 275 mM SDS, 400 nM dithiothreitol, 3.5% (w/v) glycerol, 0.02%
bromophenol blue) and subjected to electrophoresis in 17% polyacrylamide gels and
transferred to PVDF membranes. Supernatants from treated 3D-LTCs were collected and
stored at -80°C. Samples were normalized to supernatant volume. 200 uL of supernatant
from each sample was concentrated using Nanosep 10K OMEGA columns (Pall Corporation;
Ann Arbor, MI, USA) at 15000 g for 20 min. Formed concentrate was diluted in 60 pL lysis
buffer to form a 3:10 ratio. Western blotting was performed with 6% TRIS-based gels.
Membranes were blocked with 5% non-fat dried milk solution in TRIS-buffered saline
containing 0.01% (v/v) Tween (TBS-T) (Applichem) for 1h and incubated with primary
antibodies (anti p21, MAB88058, Merck Millipore (Billerica, MA, USA); anti B-actin, A3854,
Sigma Aldrich, anti proSP-C, ab40879, Abcam (Cambridge, UK), anti E-Cadherin BD
610181, anti Collagen1, 600-401-103, Rockland (Limerick, PA, USA) at 4°C overnight. Next,
blots were incubated for 1 h at RT with secondary, HRP-conjugated, antibodies (GE-
Healthcare) prior to visualization of the bands using chemiluminescence reagents (Pierce
ECL, Thermo Scientific, Ulm, Germany), recording with ChemiDocTMXRS+ system and

analysis using Image Lab 5.0 software (Biorad, Munich, Germany).

For analysis of protein expression, peripheral lung tissue samples from the lower lobe, from
the subpleural region of the lung was used. Lung homogenates were prepared of shock-
frozen lung tissue samples (size 1 cm®) from IPF patients (N=16; mean age + SD: 50.67 +
12.010 years; 2 females, 14 males) and non-diseased control subjects (organ donors, N=11;
mean age + SD: 49.67 + 7.615 years; 5 females, 5 males, 1 unknown) according to the
protocol previously described [5]. The protein concentration in lung homogenates was

determined according to the Pierce® BCA protein assay from Thermo Scientific.
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For one-dimensional SDS-PAGE, lung homogenates were then diluted (1:3) in 4xSDS-
sample buffer [leading to a final concentration 2% (w/v) SDS, 2.5% (v/v) B-mercaptoethanol,
10% (v/v) glycerol, 12.5 mmol/L tris-HCI [pH 6.8], 0.1% (w/v) bromophenol blue in samples]
and heated for denaturation at 99°C for 15 min. Denaturated proteins from each sample (50
pg/lane) were then separated by 15% Laemmli-SDS-PAGE. Thereafter, the separated
proteins were transferred to a PVDF membrane (Millipore) in a semi-dry blotting chamber
according to the manufacturer's protocol (Bio-Rad, Munich, Germany). Obtained
immunoblots were then blocked by incubating at room temperature for 1 h in blocking buffer
[1 x tris-buffered saline (TBS; 50 mmol/L tris-HCI, pH 7.5, 50 mmol/L NaCl) containing 5%
(w/v) nonfat dried milk and 0.1 % (w/v) tween 20], followed by immunostaining for p16
(ab108349, abcam, diluted 1:250) or p21 (ab109520, abcam, diluted 1:500). Blots were
incubated with primary antibody (diluted in blocking buffer) overnight at 4°C with gentle
shaking. The blots were then washed four times in 1 x TBS containing 0.1 % (w/v) tween 20,
and incubated with horseradish peroxidase-conjugated secondary swine anti-rabbit 19G
(DakoCytomation, Hamburg, Germany; diluted 1:2000 in blocking buffer) for 2 h at rt. After
four washes, blot membranes were developed with the Immobilon Western
Chemiluminescent HRP substrate (Millipore), and emitted signals were detected with a
chemiluminescence imager (Intas ChemoStar, Intas, Goéttingen, Germany). Thereafter, blots
were stripped using "stripping buffer” [2% (w/v) SDS and 50 mmol/L dithiothreitol in tris-
buffered saline (TBS)] under gentle shaking at 55°C for 30 min, followed by reprobing the
blots using antibodies against the loading control protein B-actin (ab8226, abcam, diluted
1:3000).

For quantification, band intensities in acquired TIFF-images were analyzed by densitometric
scanning and quantified using ImagedJ software (Version 1.46r, NIH). The band densities

were normalized to B-actin.
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ELISA

Supernatants were obtained from assays of primary mouse ATII cells or mouse 3D-LTCs,
centrifuged at 14000g for 10 min and only cell-free supernatant was used for the assay.
Samples were then transferred to the respective ELISA plate and the assays were performed
according to the manufacturer's instructions (WISP1 — DY1627, R&D, Minneapolis,
Minnesota, USA; IL6 — DY406, R&D, Minneapolis, Minnesota, USA, SP-C - CSB-E12639m;

Cusabio, Washington D.C., Columbia, USA).

Immunohistochemistry (IHC)

ZytoChem-Plus AP Kit (Fast Red) (Zytomed Systems, Berlin, Germany) was used for
immunohistochemical localization of P16, P21, proSP-C, cytokeratin-5 (KRT5) and a-SMA in
formalin-fixed, paraffin-embedded lung tissue sections from patients with sporadic IPF
(N=14) and organ donors (N=5), according to the manufacturer’s instructions and previous
published work [6]. Human lungs were placed in 4% (w/v) paraformaldehyde after
explantation (fixation was done for 12—24h), and processed for paraffin embedding. Sections
(3 wm) were cut and mounted on positively charged glass slides (Super Frost Plus,
Langenbrinck (Emmendingen, Germany)). Paraffin-embedded tissue sections of normal
donor and IPF lungs were deparaffinized in xylene and rehydrated in graded alcohol.
Antigens were retrieved by cooking the sections for 5 min in 10 mmol/L citrate buffer (pH 6.0)
using microwave irradiation (800 W). Thereafter, sections cooled down for 20 min at RT,
followed by repeated cooking (800 W, 5 min) and cooling (20 min at RT). This procedure was
performed three times. Importantly, the citrate buffer was freshly prepared by mixing 18 mL
100mmol/L citric acid monohydrate and 82 mL 100mmol/L sodium citrate tribasic dihydrate

with 900 mL distilled water.

For immunostaining, the streptavidin-biotin-alkaline phosphatase (AP) method with use of the

ZytoChem-Plus AP Kit (Fast Red) [Zytomed Systems, Berlin, Germany], according to the
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manufacturer’s protocol, was employed. In the following, the primary antibodies used for IHC
are listed, including the sources and dilutions: rabbit polyclonal for human proSP-C (1:750,
Millipore, AB3786), rabbit monoclonal for human cytokeratin-5 [KRT5] (1:200, Abcam,
ab75869), rabbit monoclonal for human cytokeratin-7 [KRT7] (1:200, used from Epitomics,
#2303-1 as well as from Abcam, ab68459), rabbit polyclonal for human smooth muscle actin
[a-SMA] (1:100, Abcam, ab5694), rabbit monoclonal for human p16INK4a (1:75, Abcam,
ab108349), rabbit monoclonal for human p21 (1:100, Abcam, ab109520) and rabbit

monoclonal for gamma H2A.X (phospho-S139) (1:100, Abcam, ab81299).

In general, sections were incubated for 2h at RT with primary antibodies, which were diluted
in PBS containing 2% (w/v) BSA. Control sections were treated with PBS-2%BSA alone to
determine the specificity of the staining. Detection was performed with a polyvalent
secondary biotinylated antibody (rabbit, mouse, rat, guinea pig, provided by the ZytoChem-
Plus AP Kit, 20 min incubation) followed by incubation with AP-conjugated streptavidin (20
min). Sections were then developed with Fast Red substrate solution, and the reaction was
terminated by washing in distilled water. The stained sections were counterstained with
hemalaun (Mayers hemalaun solution, WALDECK Division CHROMA GmbH & CO KG,
Minster, Germany) and mounted in Glycergel (DakoCytomation). Lung tissue sections were
scanned with a scanning device (Nano-Zoomer, Hamamatsu), and examined
histopathologically using the ‘NDP.view2 software” at 100x, 200%, 400x and 800x% original
magnification. IHC for mentioned antibodies was undertaken in 14 IPF- and 5 control-donor

lung samples.

Gene set enrichment analysis (GSEA)

Gene set enrichment analysis (GSEA) for senescence was performed using the GSEA
Desktop Application software package from the Broad Institute [7] on previously published
microarrays for whole mouse lungs of PBS- or bleomycin-treated animals (GSE16846) [8],

fibroblasts isolated from PBS- or bleomycin-treated animals (GSE42564) [9] or isolated ATII
8
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cells [1]. GSEA allows for computationally testing whether a defined set of genes, such as a
list of genes associated with senescence, are significantly enriched in one of two biological
conditions. Pre-ranked gene lists were generated from normalized data for the ATII cells
based on log2 fold change whereas fold change was used for generating the fibroblast pre-
ranked list. For whole lung homogenates, genes were ranked using the built-in Signal2Noise

function. The senescence list was obtained from Fridman et al. [10].

Correlation analysis

Data for the analysis were extracted from Lung Genomics Research Consortium (GSE47460
GPL4680) and correlated to diffusion capacity of the lung for carbon monoxide (%DLco) and
the forced vital capacity (FVC) in human patients as a measure of disease severity. Only
normal control patients and patients with confirmed IPF were used from the dataset. For
expression analysis of P16 or P21, the expression data was extracted from the published

datasets.

Immunofluorescence staining

For immunofluorescence staining experiments, ATIl cells were seeded on poly-I-lysin treated
coverslips. Cells were stopped at day 2 or after 48 h of treatment with senolytic drugs and
fixed with ice-cold acetone-methanol (1:1) for 10 min and washed 3 times with 0.1% BSA in
PBS. Next, cells were permeabilized with 0.1% Triton X-100 solution in PBS for 20 min,
blocked with 5% BSA in PBS for 30 min at room temperature and incubated with primary
antibodies (proSP-C 1:100 (AB3786, Millipore, Darmstadt, Germany), E-Cadherin 1:200
(610181, BD, Franklin Lakes, NJ, USA), Cytokeratin 1:500 (Dako, Glostrup, Denmark),
Cleaved caspase 3 1:150 (9661, Cell Signaling, Danvers, Massachusetts, USA), Histone
H3K9me3 1:500 (8898, Abcam, Cambridge, MA 02139, USA), ZO-1 1:200 (400-2200,

Invitrogen, Waltham, Massachusetts, USA), aSMA 1:500 (AB5228, Sigma Aldrich, St. Louis,
9
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Missouri USA), followed by secondary antibodies, 1 h each. DAPI (Roche, Basel,
Switzerland) staining for 10 min was used to visualize cell nuclei. Next, coverslips were fixed
with 4% PFA for 10 min, mounted with fluorescent mounting medium (Dako, Glostrup,
Denmark) and visualized with an Axio Imager microscope (Zeiss, Oberkochen, Germany) or

confocal microscope (LSM 710; Zeiss, Oberkochen, Germany).

3D-LTCs were fixed with the mixture of acetone-methanol (1:1) for 20 min and punched to a
4 mm diameter. Tissue was blocked for 1h with 5% BSA in PBS and incubated overnight with
primary antibodies in 4°C, followed by incubation with appropriate secondary antibodies for
1h and with DAPI for 5 min. Then tissue was fixed for 30 min with 4% PFA. Staining was

evaluated via confocal microscopy (LSM 710; Zeiss, Oberkochen, Germany).

Secretome analysis

Eight- to ten-week-old, pathogen-free female C57BL/6N mice (Charles River Laboratories,
Sulzfeld, Germany) were used for the isolation of pmATII cells for secretome analysis. Lung
fibrosis was induced in the animals by intratracheal instillation of a single dose of bleomycin
(5 U/kg body weight), dissolved in 80 pl sterile phosphate-buffered saline (PBS). Control
mice were treated with 80 pl PBS. Mice were sacrificed at day 14 after instillation and 3 mice
per treatment were pooled for the isolation of pmATII cells. ATl cells were seeded in 12-well
plates in DMEM media without phenol red and conditioned media (4, 6, and 8 h, respectively)
were harvested either on the first day of culture or after 2 days of culture. (day 2 4 h; day 2 6
h; day 2 8 h; Bleo ATII: n=3; PBS ATIl: n=2). Samples were snap frozen in liquid nitrogen
and subjected to mass spectrometry analysis as previously described [11]. Briefly, proteins in
conditioned media were digested in solution with trypsin and LysC into peptides, which were
analyzed on a Q-Exactive mass spectrometer (Thermo Fischer). Mass spec raw data was
processed using the MaxQuant software [12] and proteins were quantified using the
embedded label free quantification algorithm MaxLFQ [13]. Statistical data analysis was

performed using the Perseus software suite [14].
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Flow cytometry (FCM)-based apoptosis assay in pmATII cells

FCM-based apoptosis assay was performed according to the manufacturer’s
instructions (Annexin V apoptosis kit, eBioscience, San Diego, CA). Briefly, pmATII cells from
PBS- and bleomycin-treated animals (day 2) were incubated with vehicle (DMSO) or
senolytic drugs Dasatinib (500 nM, Selleck Chemicals, Houston, TX, USA) and Quercetin (50
MM, Sigma Aldrich, St Louis, MA, USA) for 48 hours and were subsequently incubated with
Bafilomycin A1 (100 nM, Enzo Life Sciences, Farmingdale, NY; USA) and C,FDG (20 nM,
Life technologies, Carlsbad, CA; USA) for 1 and 2 h, respectively. The cells were harvested
with trypsin/EDTA (Life technologies), washed once with calcium chloride-free and
magnesium chloride-free PBS (Life technologies), and once with the Annexin V-binding
buffer (eBioscience). Cells were incubated with APC-conjugated Annexin V (eBioscience) for
15 min, washed, and resuspended in the binding buffer. Cells without C,,FDG treatment
were further stained with propidium iodide solution (PI, eBioscience). The groups of the cells
stained with Annexin V+PI or Annexin V+C,FDG were analyzed with a FACS LSRII cell

analyzer (BD Bioscience).
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Supplemental Figures

Figure S1: Expression of senescence markers is upregulated in IPF patients.

Gene expression of P16 and P21 in IPF versus donor specimens. N=91 donor, N=122 IPF.
Data extracted from the LGRC GSE47460 GPL4680. Data is presented as mean * s.e.m..
Means were compared using Mann-Whitney U test. (B) Correlation between P16 expression
in the lung and the lung function parameter %predicted DLco (N=194) showed a significantly
negative linear correlation (dashed line = 95% CI; data extracted from LGRC GSE47460

GPL4680).
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Figure S2: Expression and localization of P16 and P21 in IPF lungs.

(A, B) Immunohistochemical staining of serial sections of IPF lung tissue for a-SMA (marker
for myofibroblasts/mesenchymal cells), proSP-C (marker for alveolar epithelial type Il [ATII]
cells), cytokeratin 5 (KRT5, marker for bronchiolar basal cells), cytokeratin 7 (KRT7, marker
for simple epithelia) and P16 protein. KRT5" KRT7" basal cells expressing P16 are indicated
by asterisks; o-SMA expressing mesenchymal cells which revealed no pronounced
expression for P16 are indicated by hashmarks; proSP-C* KRT7"* positive ATIl cells
expressing P16 (B) are indicated by arrows; proSP-C° KRT5 KRT7' epithelial cells
expressing P16 are indicated by arrowheads; proSP-C* KRT5" KRT7" positive epithelial cells
are indicated by dashed arrows. The lung region shown in (A) did not exhibit ATII cells. The
lung region shown in the left panel of (B) exhibited aberrant epithelial structures indicating
KRT5 expressing basal cells (with abnormal superficial localization) in close proximity to
proSP-C expressing ATIl cells, as well as abnormal epithelial cells with co-expression of
KRT5 and proSP-C, which all expressed P16. In contrast, the alveolar airspace shown in the
middle panel of (B) indicated only a sparse amount of P16 expressing ATIl. (C, D)
Immunohistochemical staining of serial sections of IPF lung tissue for a-SMA (marker for
myofibroblasts/mesenchymal cells), proSP-C (marker for alveolar epithelial type II [ATII]
cells), cytokeratin 5 (KRT5, marker for bronchiolar basal cells), cytokeratin 7 (KRT7, marker
for simple epithelia) and P21 protein. KRT5" KRT7" positive basal cells expressing P21 (C)
are indicated by asterisks; a-SMA expressing mesenchymal cells which revealed no
pronounced expression for P21 are indicated by hashmarks; proSP-C* KRT7" positive ATII
cells expressing P21 are indicated by arrows; proSP-C° KRT5 KRT7" epithelial cells
expressing P21 (C) are indicated by arrowheads. The lung region shown in (C) exhibited
aberrant epithelial structures indicating KRT5S expressing bronchiolar basal cells in close
proximity to proSP-C expressing ATII cells, as well as epithelial cells with co-expression of

KRT5 and proSP-C.
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Figure S3: Induction and upregulation of yH2A.X (phospho-S139) in epithelial cells of
IPF lungs.

(A-E) Immunohistochemical staining of serial sections of IPF (A, B, D, E) or donor lung
tissue (C) for proSP-C (marker for alveolar epithelial type Il [ATII] cells), cytokeratin 5 (KRT5,
marker for bronchiolar basal cells), cytokeratin 7 (KRT7, marker for simple epithelia) and
senescence markers YH2A. X (p-S139) and P16. In IPF (A, B, E), proSP-C* KRT7" ATII cells
indicated robust nuclear staining for yH2A.X (p-S139) which co-localized with P16
overexpression (indicated by arrows). The same observations were made in proSP-C” KRT5S
KRT7" epithelial cells of alveolar spaces (indicated by arrowheads), whereas no substantial
immunostaining could be observed in the fibrotic interstitium in IPF lungs (C).

The IPF-lung regions shown in B, D and E exhibited aberrant epithelial structures indicating
KRT5 expressing basal cells (with abnormal superficial localization) in close proximity to
proSP-C expressing ATII cells, which also revealed in part YH2A.X (p-S139) expression in
co-localization with P16 (indicated by asterisks). In addition, proSP-C* KRT5" KRT7" positive
epithelial cells in areas of aberrant re-epithelialization (E) indicated also concomitant
expression of yH2A.X and P16 (indicated by dashed arrows). In general, induction of nuclear
yH2A.X (p-S139) or P16 expression was frequently observed in bronchiolar basal cells in
areas of bronchiolization in IPF (B, D, E), but also in normal bronchioles of IPF lungs (not
shown). In some instances, P16 overexpressing bronchiolar basal cells in IPF lungs did not
indicate pronounced co-expression of yH2A.X (p-S139) (right panel of B, left panel of D).
This phenomenon was also in part observed in proSP-C* KRT7" ATII cells as well as in other
described epithelial cells (not shown). In age-matched normal donor lungs (C), minimal
staining for P16 was observed; and no pronounced immunostaining for yH2A.X (p-S139)

could be detected in any cells of donor lungs.
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Figure S3 (continued)
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Figure S4: Senescent phenotype of ATIl cells after bleomycin challenge. (A) Data for
P16 and P21 was extracted from GSE40151 [15] for PBS/bleomycin timecourse. (B) Mice
were instilled with PBS or Bleomycin. At day 14 after instillation mice were sacrificed and
pmATII cells were isolated. Cells were stained for EpCAM, CD45 and CD31 and analyzed by
FACS. Shown are mean * s.e.m., n=3-6. (C) Representative images of immunofluorescence
staining for senescence associated heterochromatic foci marker H3K9me3 and epithelial cell
marker E-Cadherin in fibrotic and non-fibrotic pmATIl cells at day 2 of culture. Fluorescent

images represent a 630x magnification. Scale bar represents 20 um. Representative of n=2.
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Figure S5: Depletion of senescent cells in fibrotic pmATII cells

Mice were instilled with either PBS or bleomycin (Bleo). At day 14 after instillation mice were
sacrificed and pmATII cells were isolated. (A) Gene expression analysis of fibrotic markers
after 24/48 h of mock treatment was performed by qPCR. Data were normalized to Hprt. ACt
is presented as mean + s.e.m.. Significance was assessed with one-way Anova followed by
Newman-Keuls’s multiple comparison test, n=4. (B-D) Fibrotic pmATII cells were cultured in
the presence of senolytic drugs Dasatinib (D; 200 nM) and Quercetin (Q; 50 uM). After 24
hours, expression of (B) P16 (C) fibrotic markers and (D) epithelial cell markers was
analyzed by gPCR. Data were normalized to Hprt levels. ACt is presented as mean + s.e.m..
Significance was assessed with paired Student’s t-test, n=4. Significance: *p<0.05, **p<0.01;

***1<0.001.
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Figure S6: Depletion of senescent cells in non-fibrotic pmATII cells

Mice were instilled with PBS. At day 14 after instillation mice were sacrificed and pmATII
cells were isolated. Non-fibrotic pmATIl cells were cultured for 48 h in the presence of
senolytic drugs Dasatinib (D; 200 nM) and Quercetin (Q; 50 uM) and assessed for (A) cell
numbers. Data are presented as normalized to DMSO control and as mean * s.e.m.
Significance was assessed with paired Student’s t-test, n=3. (B) P76 expression. Data were
normalized to Hprt levels. ACt is presented as mean * s.e.m, Significance was assessed with
paired Student’s t-test, n=6. (C) Representative images of immunofluorescence staining for
the apoptotic marker cleaved caspase 3 and E-Cadherin. Fluorescent images represent a
630x magnification. The scale bar represents 20 um. (D-F) gPCR analysis of non-fibrotic
pmATII cells treated with senolytic drugs for the expression of (D) SASP markers, (E) fibrotic
markers, (F) epithelial cell markers. Data were normalized to Hprt levels. ACt is presented as
mean * s.e.m. Significance was assessed with paired Student’s t-test, n=6. *p<0.05,

***1<0.001.
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Figure S7: Characterization of fibrotic markers in PBS/Bleo 3D-LTCs.

Mice were instilled with either PBS or bleomycin. At day 14 after instillation mice were
sacrificed and 3D-LTCs were generated. (A) Gene expression of fibrotic markers of 3D-LTCs
after 48 h of culture was analyzed by gPCR. Data were normalized to Hprt. ACt is presented

as mean * s.e.m.. Significance was assessed with Student’s t-test, n=8.
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Figure S8: Depletion of senescent cells in non-fibrotic 3D-LTCs.

Mice were instilled with PBS. At day 14 after instillation mice were sacrificed and 3D-LTCs
were generated. 3D-LTCs were cultured for 48 h in the presence of senolytic drugs Dasatinib
(D; 200 nM) and Quercetin (Q; 50 uM). (A) Representative images of immunofluorescence
staining for apoptotic marker cleaved caspase 3. Fluorescent images represent a 200x
magnification. The scale bar represents 50 ym. (B-D) 3D-LTCs from PBS animals treated
with senolytic drugs were analyzed by qPCR for (B) components of the SASP (C) fibrotic
markers (D) or Sftpc. Data were normalized to Hprt. ACt is presented as mean + s.e.m..
Significance was assessed with paired Student’s t-test, n=6. (E) ProSP-C expression was
assessed by Immunoblot. B-Actin was used as a loading control. Quantification of proSP-C
protein relative to B-Actin. n=3. (F) Secreted Collagen | was assessed by Immunoblot.
Quantification of secreted Collagen | normalized to supernatant volume. Significance was

assessed with paired Student'’s t-test.n=3. Significance: *p<0.05, **p<0.01; ***p<0.001.
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9. Discussion

IPF is a progressive and devastating lung disease. Several hallmark features characterizing the
disease have been identified, including impaired epithelial-mesenchymal crosstalk, increased
myofibroblast activation and ECM production, genetic predispositions as well as, recently
identified, senescence of different cell types in the lung (King, Pardo et al. 2011, Chilosi,
Carloni et al. 2013, Lehmann M, Korfei M et al. 2017, Schafer, White et al. 2017). In the present
work, we have identified a secreted matricellular protein WISP1/CCN4, which is upregulated
in ATII cells as well as in lung fibroblasts, by pro-fibrotic stimuli to increase proliferation of
lung fibroblasts, in part via an IL6-dependent mechanism (Klee, Lehmann et al. 2016).
Moreover, we could show that senescence of ATl cells is highly increased in patients with IPF
as well as in the murine model of bleomycin-induced lung fibrosis. Using murine 3D LTCs and
isolated primary murine ATII cells, we could show that depleting senescent cells reduces the
expression of pro-fibrotic factors including WISP1/CCN4 and upregulates epithelial markers,
indicating that reducing senescence is a potential therapeutic approach in the treatment of

lung fibrosis (Lehmann M, Korfei M et al. 2017).

9.1. Impaired epithelial-mesenchymal crosstalk

A number of potential mechanisms underlying IPF development have been postulated over
the past decades. One of the features of IPF is an impaired epithelial-mesenchymal crosstalk
that, by inducing an uncontrolled repair process of injured lung epithelium, contributes to IPF
development and progression (King et al. 2001, Selman and Pardo 2002, Marchand-Adam et
al. 2003, Noble and Homer 2005, Yang, Velikoff et al. 2014). Upon injury, an interaction
between epithelial and mesenchymal cells is needed for wound closure, a process that is
tightly controlled by the secretion of numerous effector proteins by both cell types in a
paracrine manner (Crosby and Waters 2010, Chapman 2011, Akram, Samad et al. 2013,
Chambers and Mercer 2015, Zheng et al. 2016). After wound repair, cellular processes are
normally reverted to physiological conditions (Crosby and Waters 2010, Peng et al. 2015).
However, the response to injury and the subsequent repair is less efficient and less tightly
controlled with increasing age due to stem cell exhaustion, senescence and impaired
epithelial-mesenchymal crosstalk (Selman and Pardo 2014). We have shown that inducing
lung fibrosis using bleomycin increases the number of senescent ATII cells and augments their

SASP production (Lehmann M, Korfei M et al. 2017). Moreover, it was shown that the
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secretome of fibrotic/senescent ATII cells induces pro-fibrotic changes in mesenchymal cells
leading to an increase in proliferation and ECM production (Selman and Pardo 2004,
Shivshankar et al. 2012, Chilosi, Carloni et al. 2013, Schafer, White et al. 2017). By eliminating
senescent cells using an anti-senescent cocktail of dasatinib and quercetin (DQ) in in vitro
experiments of isolated primary ATII cells or in an ex vivo approach using murine 3D LTCs, the
secretion of SASP components was reduced, which attenuated mesenchymal marker and
increased epithelial marker expression (Lehmann M, Korfei M et al. 2017). Additionally, we
have found that the secretion of WISP1/CCN4, a factor that so far has not been linked to SASP,
is increased by fibrotic/senescent ATII cells. We have shown that WISP1/CCN4 is required for
the proliferation of phLFs (Klee, Lehmann et al. 2016). Therefore, the increased secretion of
WISP1/CCN4 by senescent ATII cells potentially contributes to the increased proliferation of
fibroblasts as found in IPF. Moreover, the presence of WISP1/CCN4 potentiates signaling
induced by TGFB1 and TNFa in phLFs in regard to NF-kB target genes (Klee, Lehmann et al.
2016). Additionally, we show that both TGFB1 and TNFa increase the production and
secretion of WISP1/CCN4 in phLFs. This can further affect the phLFs in an autocrine manner,
e.g. by increasing the production of ECM components, but also could potentiate the
proliferation of ATIl cells in a paracrine manner (Konigshoff, Kramer et al. 2009). Collectively,
fibrotic stimuli change the secretory phenotype of ATIl cells and fibroblasts, which influences

both ATII cells and lung fibroblasts and thereby drives the progression of lung fibrosis.

9.2. Epithelial cell damage and its contribution to IPF

Epithelial cells are the first line of physical barrier in the lung and are continuously facing
environmental challenges, including particles, viruses or bacteria. They are able to maintain a
physiological balance by orchestrating multiple functions like the activation of the innate and
adaptive immune system and induction of wound repair in response to continuous
microinjuries (Chuquimia et al. 2013, Ganesan et al. 2013, Whitsett and Alenghat 2015). These
injuries are continuously repaired by an interplay involving the ATII cells as well as the
underlying mesenchymal and endothelial cells (Martin et al. 2005). Moreover, the repeated
environmental insults lead to ATII cell apoptosis and ATII cells need to be replenished by
progenitor cells (Martin, Hagimoto et al. 2005). However, with aging, an exhaustion of
progenitor cells and increased senescence are observed. They represent known risk factors

for the development of IPF and contribute to reduced ATII cell replenishment (Plataki,
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Koutsopoulos et al. 2005, Chilosi, Carloni et al. 2013). We have shown in in vitro experiments
with ATII cells as well as in ex vivo 3D LTCS experiments using anti-senescence drugs that the
expression of mesenchymal markers was reduced while the expression of epithelial markers
was restored when targeting senescent cells (Lehmann M, Korfei M et al. 2017). This indicates
that by depleting senescent alveolar epithelial cells, a sufficient repair process could be
induced leading to appropriate repair of the epithelial barrier without inducing lung fibrosis.
In line with our findings, it was shown in bleomycin-induced lung fibrosis models that the
inhibition of alveolar apoptosis or deletion of senescent cells reduced the fibrotic phenotype
(Kuwano, Hagimoto et al. 1999, Schafer, White et al. 2017). It was shown that both stem cell
exhaustion as well as increased levels of senescence can lead to changes in ATII cell behavior
towards expression of mesenchymal markers (Chilosi et al. 2010, Perl et al. 2011). Although
not the main source of ECM, ATII cells upregulate mesenchymal marker expression in the
context of lung fibrosis (Kim et al. 2006, Yang, Velikoff et al. 2014), a process by which ATII
cells potentially contribute to the increase in ECM formation. Additionally, changes in the
underlying ECM are in part responsible for an increase of mesenchymal marker expression in
ATII cells. It was shown in in vitro experiments using ATII cells isolated from healthy and IPF
patients, that when cells are grown on Matrigel/collagen, ATII cells maintain their epithelial
phenotype. However, when cells are grown solely on fibronectin, they lose expression of pro-
SPC (ATII cells marker) but increase expression of mesenchymal markers (e.g. vimentin, aSMA
and N-cadherin) (Marmai et al. 2011). This highlights the importance of the underlying ECM

on ATII cell function.

9.3. Proliferation and activation of fibroblasts in IPF

Fibroblasts are the main source of uncontrolled ECM production in patients with IPF. These
cells undergo continuous proliferative cycles, which is mainly observed in the so-called
fibroblast foci. Moreover, these foci are also a place of fibroblast activation, generating
(myo)fibroblasts, which are in turn producing large amounts of ECM components, including
different types of collagens and fibronectin (King, Pardo et al. 2011). We and others have
shown that WISP1/CCN4 is involved in the upregulation of ECM production by lung
(myo)fibroblasts and ATII cells, but also in other cell types, underlining its pro-fibrotic
character (Colston et al. 2007, Konigshoff, Kramer et al. 2009, Venkatachalam, Venkatesan et

al. 2009, Yang et al. 2013). Additionally, we have demonstrated that WISP1/CCN4 is also
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involved in the proliferation of phLFs. WISP1/CCN4 increases phLF proliferation in part via a
mechanism that involves IL6 (Klee, Lehmann et al. 2016). This is in line with previous findings
that show the pro-proliferative effects of WISP1/CCN4 in different cell types (Liu et al. 2013,
Jian, Wang et al. 2014, Brzoska et al. 2015, Chiang et al. 2015). Therefore, WISP1/CCN4
contributes to both an increased pool of fibroblasts as well as an increased production of ECM
components by phLFs. Another important function of WISP1/CCN4 is its potential to reduce
apoptotic signals in different cells, including fibroblasts (Su et al. 2002, Venkatachalam,
Venkatesan et al. 2009, Shang et al. 2012, Wang et al. 2012, Schlegelmilch et al. 2014). It was
shown that the reduction of fibroblast apoptosis contributes to the disease pathogenesis of
IPF (Horowitz et al. 2004, Maher et al. 2010, Sisson et al. 2012). However, how WISP1/CCN4
induces its effects in phLFs has not yet been elucidated. Due to the variety of functions of
WISP1/CCN4 on phLF, it is very likely that the microenvironment for WISP1/CCN4-mediated
signaling is of high importance. It was shown in different cell types that WISP1/CCN4 signals
through different integrins (Ono et al. 2011, Chen, Ding et al. 2016, Jin et al. 2016).
Interestingly, the expression of a number of integrins is upregulated in IPF. These integrins
are involved in processes that contribute to the progression of lung fibrosis e.g. by activating
TGFB1 or mediating signals of pro-fibrotic cytokines like PDGF (Luzina et al. 2009, Todd, Luzina
et al. 2012, Henderson and Sheppard 2013, Lu et al. 2017). These integrins could also be
responsible for the pro-fibrotic and pro-proliferative signal induction mediated by
WISP1/CCN4 in phLFs. As for WISP1/CCN4 in lung fibrosis, the responsible integrins required
for the above-mentioned pro-proliferative and pro-fibrotic functions in lung fibroblasts have
not yet been elucidated. Further studies will unravel these and thereby contribute to an
increased understanding of the disease and the contribution of CCN proteins such as

WISP1/CCN4 to disease pathogenesis.

9.4. ECM (-associated) proteins and their contribution to (lung) fibrosis

The extracellular matrix is not only composed of structure-giving proteins like collagens,
proteoglycans and elastin (White 2015), but also contains numerous proteins that are
continuously embedded and released in the ECM and function as signaling molecules. These
proteins include numerous growth factors like TGFB1, TNFa and PDGFs, but also MMPs or
tissue inhibitor of metalloproteinases (TIMPs) (Bonnans et al. 2014, Hinz 2015, Watson et al.

2016). Dysregulation of these factors is implicated in a vast array of diseases (McAlpine and
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Tansey 2008, Dooley and ten Dijke 2012, Heldin 2013). Importantly, deranged activation of
molecules like TGFB1 and TNFa, as well as a misbalance of MMPs and their respective
inhibitors TIMPs has been shown in IPF (Mukhopadhyay et al. 2006, Fernandez and Eickelberg
2012, Pardo et al. 2016). However, direct targeting of pro-fibrotic factors like TGFB1 or TNFa
so far have not shown any efficacy in patients with IPF, which could be in part due to the fact
that besides contributing to disease pathogenesis, they are involved in many physiological
processes. Therefore, a deeper understanding of downstream processes and common targets
of these and other pro-fibrotic factors like WNTs could help to improve therapy development.
We and others have shown that WISP1/CCN4 is induced by canonical WNT signaling in ATII
cells (Konigshoff, Kramer et al. 2009) and cell types of other origins (Pennica, Swanson et al.
1998, Xu et al. 2000, Blom et al. 2009). Additionally, we have shown here and in a recent
publication from our laboratory that TGFB1 and TNFa induce WISP1/CCN4 in phLFs mainly via
NF-kB (Berschneider, Ellwanger et al. 2014, Klee, Lehmann et al. 2016). Moreover, an increase
of WISP1/CCN4 was shown to be mediated by both cytokines in various other cell types
(Venkatachalam, Venkatesan et al. 2009, Lukowski et al. 2010). Interestingly, it was also
shown that other CCNs can be induced via activation of the NF-kB pathway (Sampath et al.
2001, Cras et al. 2012), indicating a conserved pathway for the induction of the CCN proteins.
In line with this, it was shown in a number of studies that WISP1/CCN4 is involved in immune
responses and contributes to an upregulation of pro-inflammatory cytokines (Hou et al. 2013,
Murahovschi, Pivovarova et al. 2015, Chen, Ding et al. 2016, Tong et al. 2016, Barchetta et al.
2017). It is important to note that not only WISP1/CCN4, but also CyR61/CCN1 and
CTGF/CCN2 are known to participate in inflammatory responses (Sanchez-Lopez et al. 2009,
Bai et al. 2010, Lai et al. 2013, Elliott et al. 2015), as CCNs have a conserved function in
increasing inflammation. In this context, IPF is characterized by increased activation of
inflammatory pathways, which led to a number of clinical investigations on how to potentially
target inflammation in lung fibrosis. A recent clinical trial investigated the effect of Etanercept,
a recombinant soluble TNFa receptor, on the pathogenesis of IPF (Mohler et al. 1993, Kohno
et al. 2007, Raghu, Brown et al. 2008). A beneficial effect of Etanercept was shown in different
diseases such as rheumatoid arthritis and plaque psoriasis (Haraoui and Bykerk 2007, Nguyen
and Koo 2009), however, it failed to show efficacy in IPF patients (Mease et al. 2000, Brandt
et al. 2003, Leonardi et al. 2003, Raghu, Brown et al. 2008). This might be due to various

reasons, including an underpowered study, the drug dose or blockage of potential beneficial
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activities of TNFa. Therefore, it is important to understand the disease in more detail,
especially to elucidate the contribution of inflammatory processes that are upregulated in IPF
(Bringardner, Baran et al. 2008, Balestro, Calabrese et al. 2016), to develop more targeted
approaches to treat the disease. WISP1/CCN4 is a potential candidate for this approach, as it
acts downstream of a number of pro-fibrotic pathways. However, contrary to its pro-fibrotic
role in several fibrotic diseases, WISP1/CCN4 also exerts protective functions in other
diseases. It was shown that WISP1/CCN4 is required for sufficient epithelial cell barrier repair
following injury-induced microdamages in vivo (Maeda et al. 2015). Moreover, although
WISP1/CCN4 is upregulated in liver fibrosis and blockage using a neutralizing antibody
reduced liver fibrosis development (Jian, Wang et al. 2014, Li, Chen et al. 2015), it was shown
that WISP1/CCN4 knockout mice suffer from increased fibrotic burden upon tetrachloride-
induced liver fibrosis (Putter et al. 2015). Therefore, it will be of importance to understand
which levels of WISP1/CCN4, which receptors for WISP1/CCN4 and additionally which
microenvironment are required for a sufficient wound repair but also which domains of

WISP1/CCN4 are responsible for its physiological and pathophysiological functions.

Interestingly, we have shown that the presence of WISP1/CCN4 is required for TGFB1 and
TNFa to induce several NF-kB-dependent cytokines, including IL6 (Klee, Lehmann et al. 2016).
Similarly, effects on NF-kB-mediated signaling by WISP1/CCN4 were shown in different cell
types, suggesting that there is a conserved mechanism of action of WISP1/CCN4 in different
physiological and pathophysiological processes (Venkatachalam, Venkatesan et al. 2009, Hou,
Tang et al. 2013, Wu et al. 2013), making WISP1/CCN4 an interesting target in inflammatory-
related diseases. In this context, it was also shown that CyrR6/CCN1 and CTGF/CCN2 induce
NF-kB-driven target expression (Tan et al. 2009, Liu et al. 2012, Chen et al. 2014, Kim et al.
2015), whereas Nov/CCN3 and WISP2/CCN5 were shown to downregulate NF-kB-mediated
gene expression (Lin et al. 2010, Jeong et al. 2016). CyR61/CCN1 and CTGF/CCN2 are known
to be pro-fibrotic (Ponticos et al. 2009, Grazioli et al. 2015), whereas Nov/CCN3 and
WISP2/CCN5 have anti-fibrotic potential (van Roeyen et al. 2012, Jeong, Lee et al. 2016).
Therefore, induction of NF-kB downstream of WISP1/CCN4, CyR61/CCN1 and CTGF/CCN2
could be one mechanism by which they contribute to fibrotic diseases, whereas Nov/CCN3
and WISP2/CCN5 are downregulating NF-kB-driven transcription and thereby, at least in part,

potentially block fibrosis. Additionally, NOV/CCN3 was shown recently to downregulate the
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production of different pro-fibrotic markers in kidney fibrosis models, to counteract TGFp1
signaling and to reduce levels of CTGF/CCN2 and WISP1/CCN4 (Riser et al. 2010, van Roeyen,
Boor et al. 2012, Abd El Kader et al. 2013). Moreover, a recent study revealed that
WISP2/CCN5 exerts similar effects in the bleomycin model of lung fibrosis in mice (Zhang et
al. 2014). Zhang and colleagues showed that the overexpression of WISP2/CCN5 in lung
fibroblasts derived from IPF patients resulted in downregulation of aSMA and type | collagen.
Moreover, the adenoviral-induced overexpression of WISP2/CCN5 in vivo in the bleomycin
model resulted in a decreased total collagen and TGFf1 levels as compared to the control
mice. These results show that both NOV/CCN3 and WISP2/CCNS5 could potentially be used to
counteract the pro-fibrotic functions of WISP1/CCN4 in lung fibrosis and, furthermore,

underlines the importance of targeting of the specific CCNs in the disease.

While NOV/CCN3 and WISP2/CCN5 block or downregulate TGFB1, it was shown that the
presence of CTGF/CCN2 is required for full activation of TGFB1 target genes in different in
vitro and in vivo models (Lipson et al. 2012). CTGF/CCN2 was shown to upregulate
proliferation and ECM production in lung fibroblasts, similar to the effect observed when
these cells were treated with recombinant WISP1/CCN4 in vitro (Konigshoff, Kramer et al.
2009). Additionally, epithelial cell function is affected by both proteins. Similar to WISP1/CCN4
(Konigshoff, Kramer et al. 2009), it was shown that targeting of CTGF/CCN2, either by a
neutralizing antibody or a small interfering RNA, led to a reduction in the fibrotic burden in
vivo, accompanied by a reduction in ECM component expression (Ponticos, Holmes et al.
2009). Moreover, clinical studies testing the effect of neutralizing CTGF/CCN2 in IPF patients
are ongoing. This underlines the importance of both WISP1/CCN4 and CTGF/CCN2 in the
development and progression of lung fibrosis and, more importantly, indicates that
neutralization could be an effective IPF therapy. Importantly, approaches to neutralize

WISP1/CCN4 in the setting of IPF are ongoing.

WISP1/CCN4 was shown to have positive functions on epithelial cell barrier repair, however,
it also exhibits pro-fibrotic functions. As mentioned above, CCNs, including WISP1/CCN4,
contain a total of four different functional domains. Understanding which of the domains of
WISP1/CCN4 is responsible for its physiological functions and which is involved in the
detrimental processes that lead to lung fibrosis will be of importance. One of those domains,

the von-Willebrand domain, was shown to be required to interact with TGFB1 (Abreu et al.

99



2002). However, the interaction of a different CCNs and TGFB1 results in opposing effects,
e.g. CTGF/CCN2 increases TGFB1-mediated effects (Gressner et al. 2009, Parada et al. 2013),
whereas NOV/CCN3 decreases these effects (Riser, Najmabadi et al. 2010). This suggests that
a regulation of expression of the different CCNs is required to regulate each others” functions
and thereby to control a physiologic state to avoid disease progression. Therefore, specific
targeting of one or more dysregulated CCN members, including WISP1/CCN4, could
potentially restore the physiological balance and reverse pathological changes. Moreover, it
was shown that NOV/CCN3 could downregulate the expression and function of WISP1/CCN4
thereby reducing WISP1/CCN4’s pro-fibrotic functions. Therefore, treatment with NOV/CCN3
might also be an option to limit the detrimental properties of WISP1/CCN4 in IPF. Another
feature shared among the CCNs is a hinge region between the domains 2 and 3, which is a
potential target of post-translational modification (Perbal et al. 1999) and therefore can lead
to changes in the functions of a CCN protein. It was shown that e.g. for NOV/CCN3, a truncated
variant has anti-proliferative functions, whereas the full-length variant has pro-proliferative
functions (Joliot et al. 1992). Similarly, different variants of WISP1/CCN4 have been found.
One of these variants was shown to increase metastatic potential of gastric carcinoma cells
and thereby enhanced the progression of scirrhous gastric cancer, whereas full-length version
of WISP1/CCN4 did not exhibit this potential (Tanaka, Sugimachi et al. 2001). It is thus of
importance to decipher the functions of the different variants of WISP1/CCN4 in the context
of IPF, which further will help to distinguish if a variant found in a patient has pro- or anti-
fibrotic functions and to more specifically target WISP1/CCN4 in total or to neutralize specific
regions/domains of WISP1/CCN4 that are involved in IPF without affecting its potential
beneficial functions in the lung. Additionally, WISP1/CCN4 was shown to contain multiple
glycosylation sites (Pennica, Swanson et al. 1998) (own unpublished data). It is well known
nowadays that changes in the glycosylation pattern of proteins can alter the cell functions,
including cell-cell communication and cell adhesion (Scanlin and Glick 2001, Ohtsubo and
Marth 2006, Marth and Grewal 2008, Dewald et al. 2016) and changes in glycosylation are
linked to IPF (Lu et al. 2014, Westergren-Thorsson et al. 2017). Taken together, changes in the
expression of different variants, the glycosylation pattern of WISP1/CCN4 as well as its time-
and spatial-dependent expression potentially determines its pro- or anti-fibrotic properties.
Future studies aiming at deciphering these details will lead to important insights into how to

specifically target pro- or anti-fibrotic functions of CCNs therapeutically.
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9.5. CCN family and senescence

IPF is a disease of the elderly, as the mean age at diagnosis is 68 years and only few patients
are below 50 years of age (Raghu, Weycker et al. 2006, Garcia 2011). Recently, hallmarks of
aging were described, which contribute to the development and progression of IPF (Lopez-
Otin, Blasco et al. 2013, Meiners et al. 2015, Selman et al. 2016). Cellular senescence
represents one of these features, contributing to aging and playing a significant role in IPF
pathogenesis. Cellular senescence is characterized by the stable growth arrest along with the
secretion of the SASP (Freund et al. 2010). Senescence is important as an anti-tumor
mechanism, however, the chronic presence of senescent cells is the potential reason of age-
related diseases (Campisi 2013). We and others could show that senescence-associated
markers are upregulated in alveolar epithelial cells and lung fibroblasts of IPF patients
(Minagawa, Araya et al. 2011, Hecker et al. 2014, Lehmann M, Korfei M et al. 2017). Moreover,
in vitro experiments revealed that factors secreted by senescent lung epithelial cells can
induce myofibroblast differentiation (Minagawa, Araya et al. 2011). We further found these
markers to be upregulated in whole lung tissue and specifically in ATII cells derived from
bleomycin-instilled mice (Lehmann M, Korfei M et al. 2017). Treatment of either murine 3D
LTCs or isolated ATII cells with drugs depleting senescent cells (dasatinib and quercetin)
resulted in reduction of fibrosis-associated markers like collagens and fibronectin, but also
increased epithelial markers. This suggests that the depletion of senescent (epithelial) cells

could be beneficial in the treatment of lung fibrosis.

The secretion of WISP1/CCN4, though not yet directly associated with the SASP, is highly
upregulated by fibrotic ATII cells (Lehmann M, Korfei M et al. 2017). It was recently shown
that WISP1/CCN4 is involved in the upregulation of ROS (Premat C et al. 2015), one of the
inducers of cellular senescence (Campisi 2013). Therefore, WISP1/CCN4 might be involved in
the induction of senescence, however, this requires further investigation. As described above,
WISP1/CCN4 belongs to the CCN family of total 6 members, with the most well characterized
members being CyR61/CCN1 and CTGF/CCN2. Both CyR61/CCN1 and CTGF/CCN2 have been
described to induce senescence in different cell types in physiological and pathophysiological
processes (Jun and Lau 2010, Capparelli et al. 2012, Kim et al. 2013, Jang et al. 2017).
Interestingly, it was shown that CTGF/CCN2 can contribute to the senescence of lung

epithelial cells. Overexpression of CTGF/CCN2 in HBECs led to a growth arrest accompanied
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by increased expression of senescence marker (senescence-associated B-galactosidase, p16)
(Jang, Chand et al. 2017). Moreover, CTGF/CCN2 was also shown to induce cellular senescence
in skin fibroblasts, by which it reduces the ECM production (Jun and Lau 2017). However, it
was shown that the SASP expressed by lung fibroblasts reduces the proliferation of lung
epithelial cells (Fogarty et al. 2017). Therefore, the potential induction of senescence of lung
fibroblasts by CTGF/CCN2 could be another explanation of how CTGF/CCN2 contributes to

disease progression.

Additionally, the SASP secreted by lung fibroblasts was shown to further increase fibrotic
marker expression including collagens, aSMA and FN1, suggesting an autocrine mechanism
induced by the SASP of lung fibroblasts (Schafer, White et al. 2017). One of the components
of the SASP is TGFB1, a cytokine that, as shown here, can induce WISP1/CCN4 expression in
lung fibroblasts, but also in ATII cells (data not shown). Moreover, another well-established
component of the SASP is IL6, which expression is dependent on the presence of WISP1/CCN4
in lung fibroblasts. Thereby, it is possible that an increased expression of WISP1/CCN4
contributes to a senescent phenotype of both the ATII cells as well as the lung fibroblasts and
thus further impairs crosstalk of epithelial and mesenchymal cells and contributes to a
progression of lung fibrosis. Importantly, we could show that senolytic drugs reduce the
expression of WISP1/CCN4, further indicating its role in the SASP as well as in senescence-

associated signaling.

9.6. New potential therapeutics in IPF treatment

Recently, two drugs were approved for mild-to-moderate IPF, namely Pirfenidone (Esbrit®;
(King, Bradford et al. 2014)) and Nintedanib (OFEV®; (Richeldi, du Bois et al. 2014)). These
drugs were shown to significantly reduce the lung function decline occurring during disease.
Moreover, recently published retrospective studies of the phase 3 clinical trials performed for
approval of both drugs suggest a beneficial effect on prolonged survival of IPF patients
(Richeldi et al. 2016, Fisher, Nathan et al. 2017). However, both drugs show a long profile of
side effects, which lead to either changing of the treatment (from Pirfenidone to Nintedanib
or vice versa) or in about 15-25% of the cases to the discontinuation of the treatments
(Costabel et al. 2014, Milger et al. 2015, Hughes et al. 2016, Galli et al. 2017). Although a

number of factors potentially leading to the development of IPF and their underlying
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molecular mechanisms have been revealed (King, Pardo et al. 2011, Selman and Pardo 2014),

the existing therapies lack efficacy to finally halt or reverse disease progression.

It was shown that fibrotic ATII cells downregulate epithelial markers while increasing the
expression of mesenchymal proteins (Marmai, Sutherland et al. 2011). Here, we show that
targeting senescence in vitro or ex vivo leads to the reduction of pro-fibrotic markers along
with a rescue of epithelial markers (Lehmann M, Korfei M et al. 2017). In a recent report, it
was shown that the depletion of senescent cells prolongs the life span of mice by 20% without
increasing risks for tumorigenesis (Baker et al. 2016). Moreover, it was shown that using a
senolytic cocktail consisting of dasatinib and quercetin in the bleomycin model of lung fibrosis
in mice resulted in an improvement of lung function and an overall physical health (Schafer,
White et al. 2017). Importantly, the safety and efficacy of both dasatinib and quercetin was
shown in different diseases, including lung cancer (Paller et al. 2015, Hahn et al. 2016, Lu et
al. 2016, Kelley et al. 2017, Schuetze et al. 2017). Thus, both drugs represent a potential
therapeutic option for IPF patients. Moreover, as we and others show that epithelial cells
undergo senescent changes which contribute to lung fibrosis, a more targeted approach to
eliminate this particular cell population would be desirable for the treatment of IPF. There are
a number of potential therapeutic options available to target specific cell types. These include
the use of viral vector systems, nanoparticles in combination with integrin-binding molecules
and the recently developed CRISPR-Cas system (Harrop and Carroll 2006, Chen and Chen
2011, Marelli et al. 2013, Donohoue et al. 2017). These methods have been mainly used in
the development of cancer therapies. However, these techniques still require further
investigations as the efficacy of targeting cells still needs improvement as well as the safety
for patients cannot be fully guaranteed yet (Nayerossadat et al. 2012, Shi et al. 2017). Another
approach for direct targeting of senescent epithelial cells could be cell-penetrating peptides
(CPPs), which show high selectivity towards their target cells and thereby limit potential off-
target effects (de Keizer 2017). Recent phase 1 clinical studies have shown the tolerability of
the CPPs (Deloche et al. 2014, Beydoun et al. 2015) and might be an appropriate tool to target
senescent cells and thereby improve pathogenic conditions in IPF. Future studies will show if
the efficacy and specificity of these methods can be improved so they will be viable tools in

the treatment of patients with IPF.
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We additionally show that WISP1/CCN4 is involved in the proliferation of lung fibroblasts and
is acommon downstream target of multiple pro-fibrotic pathways, including TGFB1, TNFa and
WNT signaling (Klee, Lehmann et al. 2016). Therapies directly targeting TGFB1 or TNFa have
been shown to have too many side effects or being ineffective (Raghu, Brown et al. 2008).
Potential reasons for the inefficacy might be that both TGFB1 and TNFa also are important in
various physiological processes, which are also blocked by the treatment. Therefore, targeting
downstream effectors of these pathways appears to be more efficient in treating lung fibrosis.
Recently, the results of an open-label phase 2 clinical trial have been published that
investigated the effects of a neutralizing antibody targeting CTGF/CCN2 (Pamrevlumab)
(Raghu et al. 2016). It was shown that the antibody is safe for use in IPF patients and showed
promising results in regard to changes in FVC and radiographic patterns. Importantly, follow-
up study with 103 IPF patients (phase 2b; PRAISE study, randomized, double-blinded) further
confirmed the anti-fibrotic effects of this treatment, as patients showed a significantly lower
reduction of lung function compared to placebo-treated patients (Gorina et al. 2017).
Furthermore, the effect of Pamrevlumab are comparable to the effects seen for Pirfenidone
and Nintedanib, but Pamrevlumab showed less side effects in these two phase 2 studies
compared to the approved drugs for IPF treatment. These results are encouraging regarding
targeting of WISP1/CCN4, as it shows that ECM-bound molecules can be targeted using an
antibody approach. As we have shown here (Klee, Lehmann et al. 2016) and in previous
publications (Konigshoff, Kramer et al. 2009, Berschneider, Ellwanger et al. 2014),
WISP1/CCN4 contributes to different pro-fibrotic mechanisms connected to lung fibrosis and
targeting WISP1/CCN4 in vivo in a fibrosis mouse model led to an overall improvement of
multiple measures, incl. survival, lung function and lung morphology. Therefore, developing a
human antibody targeting WISP1/CCN4 is a promising strategy in IPF therapy (NIH Grant N°
1R43HL122078-01A1).

The data presented here further deepen our understanding of the pathological mechanisms
of IPF. This knowledge will further contribute to the development of personalized medicine in
the treatment of IPF, which will finally result in improved therapeutic strategies that
ultimately could halt or even reverse the progression of IPF. Further studies will be needed to
identify the challenges and opportunities in targeting senescent cells or WISP1/CCN4 in IPF

and to further develop the presented findings into therapeutical approaches.
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9.7. Limitations and future directions

In the present work, | could show that WISP1/CCN4 is a downstream target of several pro-
fibrotic pathways involved in lung fibrosis, including TGFB1 and TNFa, in primary human lung
fibroblasts. However, if this is a general mechanism still requires further analysis.

| also showed that the expression of IL6 is dependent on the presence of WISP1/CCN4 in
phLFs. Additionally, the removal of senescent cells in in vitro assays of primary mouse ATII
cells reduced the levels of both WISP1/CCN4 and IL6. However, if there is a direct link between
these proteinsin regard to senescence was not subject of investigation in the presented work.
Here, the results suggest that WISP1/CCN4 has an effect on NF-kB-mediated signaling. It will
be of interest to elucidate how WISP1/CCN4 potentially influences NF-kB in regard to its
expression, translocation and activity. Thereby, WISP1/CCN4 could potentially affect the
expression of IL6 and other NF-kB target genes. Moreover, | could not reveal a receptor for
WISP1/CCN4, which will be important for further understanding the mechanisms of
WISP1/CCN4-mediated signaling, especially in regard to therapeutic options. Blocking the
receptor, which WISP1/CCN4 requires for its pro-fibrotic signaling, would offer new treatment
strategies for IPF patients.

Moreover, the results presented in this thesis originate mainly from in vitro and ex vivo
studies. A knockout model of WISP1/CCN4, either general or cell type-specific, could bring
further insides on how WISP1/CCN4 affects signaling in vivo, especially in regard to the
development and progression of lung fibrosis. Future studies of this model will reveal how
WISP1/CCN4 affects different signaling cascades in vivo. Moreover, WISP1/CCN4 is mainly
produced by ATII cells. A cell-type specific knock out model like the SPC-Cre mice offers the
possibility to specifically delete WISP1/CCN4 in ATII cells (by flanking the WISP1/CCN4 gene
with loxP sites). This could help to understand the role of WISP1/CCN4 in these cells on
different aspects, including the effect of WISP1/CCN4 on senescence in ATIl cells and the
effect of ATII cell-derived WISP1/CCN4 on the development of lung fibrosis.
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