
Enhancing Representation Learning with Tensor

Decompositions for Knowledge Graphs and High

Dimensional Sequence Modeling

Yinchong Yang

München 2017

Enhancing Representation Learning with Tensor

Decompositions for Knowledge Graphs and High

Dimensional Sequence Modeling

Yinchong Yang

Dissertation

an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig–Maximilians–Universität

München

vorgelegt von

Yinchong Yang

aus Dalian, Liaoning, China VR

München, den 20.12.2017

Erstgutachter: Prof. Dr. Volker Tresp

Zweitgutachter: Prof. Dr. Gunnar Rätsch

Drittgutachter: Prof. Dr. Bertram Müller-Myhsok

Tag der mündlichen Prüfung: 27.03.2018

Formular 3.2

Name, Vorname

Eidesstattliche Versicherung(Siehe Promotionsordnung vom 12.07.11, § 8, Abs. 2 Pkt. .5.)
Hiermit erkläre ich an Eidesstatt, dass die Dissertation von mirselbstständig, ohne unerlaubte Beihilfe angefertigt ist.

Ort, Datum Unterschrift Doktorand/in
Yang, Yinchong

München, 17.04.2018

vi

Contents

1 Introduction 1

1.1 Representation Learning . 1

1.1.1 Motivation . 1

1.1.2 Terminology and Notations . 4

1.1.3 A Framework for Representation Learning 5

1.2 Representation Learning in Knowledge Graphs 8

1.2.1 Introduction . 8

1.2.2 Relational Learning Based on Tensor Decomposition 9

1.2.3 Relational Learning and Representation Learning 11

1.2.4 Representation Learning from Known Facts 12

1.2.4.1 Algorithms and Applications in Modeling Knowledge Graphs 14

1.3 Representation Learning in High Dimensional Sequential Data 16

1.3.1 Introduction . 16

1.3.2 Recurrent Neural Networks . 18

1.3.2.1 Application in Sequential EHR for Decision Support . . . 20

1.3.3 Tensor-Train Layer . 21

1.3.4 Embedding Tensor-Train Layer into RNNs 25

1.3.4.1 Application in Video Classification 27

1.3.4.2 Application in Sequential EHR for Survival Prediction . . 28

2 Representation Mapping: Algorithms and Applications 31

2.1 Introduction . 32

2.2 Factorization Models with Closed-Form Mappings 33

2.3 General Models and Training Algorithms 34

2.4 Experiments . 40

2.5 Related Works . 44

viii CONTENTS

2.6 Conclusions . 45

2.7 References . 46

3 RNNs in Sequential EHR for Predictive Decision Support 47

3.1 Introduction . 48

3.2 Related Works . 49

3.3 Metastatic Breast Cancer Data . 50

3.4 A Predictive Model of Therapy Decisions 51

3.5 Experiments . 53

3.6 Conclusion . 56

3.7 References . 57

4 Tensor-Train RNNs for Video Classification 59

4.1 Introduction . 60

4.2 Related Works . 61

4.3 Tensor-Train RNN . 62

4.4 Experiments . 64

4.5 Conclusions and Future Work . 67

4.6 References . 68

5 Tensor-Train RNNs in Modeling Sequential EHR for Survival Prediction 71

5.1 Introduction . 72

5.2 Related Works . 73

5.3 Cohort . 74

5.4 Methods . 76

5.5 Experiments . 78

5.6 Conclusion and Future Works . 81

5.7 References . 82

6 Summary of Contributions 85

A A Numerical Example of User-Item Matrix Decomposition 89

A.1 User-Item Matrix Decomposition . 89

A.2 Derivation of Latent Representations for a New User 90

B Forward Pass Algorithm in Tensor-Train Layer 95

CONTENTS ix

C Gradients in Tensor-Train Layer 97

D Tensor-Train RNNs: A Simulation Study 99

Bibliography 107

x CONTENTS

Abstract

The capability of processing and digesting raw data is one of the key features of a human-

like artificial intelligence system. For instance, real-time machine translation should be

able to process and understand spoken natural language, and autonomous driving relies on

the comprehension of visual inputs. Representation learning is a class of machine learning

techniques that autonomously learn to derive latent features from raw data. These new

features are expected to represent the data instances in a vector space that facilitates the

machine learning task. This thesis studies two specific data situations that require efficient

representation learning: knowledge graph data and high dimensional sequences.

In the first part of this thesis, we first review multiple relational learning models based

on tensor decomposition for knowledge graphs. We point out that relational learning is in

fact a means of learning representations through one-hot mapping of entities. Furthermore,

we generalize this mapping function to consume a feature vector that encodes all known

facts about each entity. It enables the relational model to derive the latent representation

instantly for a new entity, without having to re-train the tensor decomposition.

In the second part, we focus on learning representations from high dimensional se-

quential data. Sequential data often pose the challenge that they are of variable lengths.

Electronic health records, for instance, could consist of clinical event data that have been

collected at subsequent time steps. But each patient may have a medical history of variable

length. We apply recurrent neural networks to produce fixed-size latent representations

from the raw feature sequences of various lengths. By exposing a prediction model to these

learned representations instead of the raw features, we can predict the therapy prescriptions

more accurately as a means of clinical decision support. We further propose Tensor-Train

recurrent neural networks. We give a detailed introduction to the technique of tensorizing

and decomposing large weight matrices into a few smaller tensors. We demonstrate the

specific algorithms to perform the forward-pass and the back-propagation in this setting.

Then we apply this approach to the input-to-hidden weight matrix in recurrent neural net-

works. This novel architecture can process extremely high dimensional sequential features

such as video data. The model also provides a promising solution to processing sequential

features with high sparsity. This is, for instance, the case with electronic health records,

since they are often of categorical nature and have to be binary-coded. We incorporate

a statistical survival model with this representation learning model, which shows superior

prediction quality.

CONTENTS xi

Zusammenfassung

Repräsentations-Lernen ist ein Teilgebiet des maschinellen Lernens, welches sich mit dem

autonomen Erlernen von latenten Attributen aus den Rohdaten befasst. Es wird davon

ausgegangen, dass diese neu erlernten Attribute die Datenpunkte in einem neuen Vektor-

raum repräsentieren, in welchen die eigentliche Aufgabe des maschinellen Lernens leichter

zu lösen ist. Die Fähigkeit, rohe Daten-Attribute verarbeiten zu können, gehört zu den

Kerneigenschaften einer menschenähnlichen künstlichen Intelligenz. Maschinelle Überset-

zung in Echtzeit basiert beispielsweise auf dem maschinellen Verständnis gesprochener

Sprache, wohingegen autonomes Fahren teilweise auf visuellen Eingaben basiert. Das ef-

fiziente Erlernen von guten Repräsentationen ist dadurch möglich, dass sich die Kapazität

der Datensammlung und Datenspeicherung in den letzten Jahren enorm verbessert hat.

Einerseits erlaubt das zunehmende Datenvolumen das Training von größeren und aus-

drucksstärkeren Modellen des maschinellen Lernens. Andererseits führen Daten in anwach-

sender Vielfalt auch dazu, Methoden des Repräsentations-Lernens für spezifische Datenfor-

mate zu entwickeln. Diese Arbeit beschäftigt sich mit zwei solchen speziellen Datensitua-

tionen, welche nach effizientem Repräsentations-Lernen verlangen: Wissensgraphen-Daten

und hochdimensionale sequenzielle Daten.

Im ersten Teil dieser Arbeit geben wir einen Überblick über mehrere gängige Modelle

basierend auf Tensor-Faktorisierung für das Lernen von Relationen aus Wissensgraphen.

Wir zeigen, dass bei diesen Modellen die Relationen dadurch modelliert werden, indem

man eine latente Repräsentation für jede Entität durch einen indizierenden One-Hot-Vektor

codiert. Diese Codierung lässt sich dann aber erweitern um einen Attributvektor, der alle

relationalen Informationen einer Entität beinhaltet. Somit kann man latente Repräsenta-

tion für neue Entitäten ableiten, ohne die Faktorisierung neu berechnen zu müssen.

Im zweiten Teil der Arbeit fokussieren wir uns auf das Repräsentations-Lernen aus

hochdimensionalen Sequenzen. Sequentielle Daten stellen oft die Herausforderung dar,

dass die Sequenzen von unterschiedlicher Länge sein können. Klinische Gesundheitsdaten

bestehen beispielsweise aus wiederholten Messungen zu subsequenten Zeitpunkten, aber

wie viele Messungen an einem Patienten vorgenommen worden ist, variiert stark vom

Patient zu Patient. Wir setzen rekurrente neuronale Netze ein, um einen Repräsenta-

tionsvektor von fester Größe aus der Sequenz variabler Länge zu erlernen. Ein darauf

basierendes Vorhersage-Modell soll die Therapie-Entscheidungen zum Zweck der klinischen

Entscheidungsuntersützung prognostizieren. Des Weiteren entwickeln wir das Tensor-Train

xii CONTENTS

rekurrente neuronale Netzwerk. Wir geben eine detaillierte Einführung und Ableitung der

Tensorisierung und Faktorisierung beliebiger Gewichts-Matrizen. Wir stellen auch die Al-

gorithmen sowohl für den Forward-Pass als auch für die Back-Propagation dar. Wir setzen

diese Technik ein, um die Input-zu-Hidden Gewichts-Matrix in rekurrenten neuronalen

Netzwerken auf mehrere kleinere Tensoren zu komprimieren. Dadurch ist ein rekurrentes

neuronales Netzwerk in der Lage, extrem hochdimensionale Sequenzen wie z.B. Video-

Daten zu verarbeiten. Auch im Falle von klinischen Daten bietet diese neue Architektur

eine Lösung dafür, dass die kategorialen Attribute durch Binärkodierung hohe Sparsität

aufweisen. Ein statistisches Überlebensdauer-Model, welches die erlernte Repräsentation

als Eingabe konsumiert, zeigt auch verbesserte Vorhersage.

CONTENTS xiii

Acknowledgements

This PhD work would not have been possible without the contribution and support of

many people.

First of all, my utmost and deepest gratitude goes to my supervisor and mentor, Prof.

Dr. Volker Tresp. Volker provided me with an excellent platform to undertake my research

at LMU and Siemens AG, and gave me the great opportunity to participate in the BMWi

project of Klinische Datenintelligenz. He introduced me to relational learning and the

Tensor-Train model, which form the two pillars of this very work. He always encourages

me to be innovative and to think big, and never hesitates to share his own insights to

any topic I would like to discuss with him. I also deeply appreciate his effort in helping

me prepare all the publications. I would like to thank Dr. Ulli Waltinger, head of the

research group of Machine Intelligence at Siemens, for providing me with the first-class

infrastructure for my research work. And I am really grateful for his offering me the

opportunity to work in his group in the future. I am very honored that Prof. Dr. Gunnar

Rätsch and Prof. Dr. Bertram Müller-Myhsok agreed to be external examiners of my

thesis. I want to thank them for their most constructive and enlightening comments to

this work.

More than three years ago, it were Dr. Fabian Scheipl at Institute for Statistics, LMU

Munich, and Marco Schreyer at PwC Germany, Stuttgart, who recommended me to further

my academic training in pursuing a PhD. Now I do feel that I owe them my thanks for

helping me make the right decision.

I feel very fortunate to have been working with my colleagues Dr. Denis Krompaß,

Cristóbal Esteban and Stephan Baier in the last three years. Especially at the beginning

of my PhD, Denis has been like a second supervisor and mentor to me, giving me advices on

a variety of both technical and administrative topics. He was also extremely supportive and

helpful during my work on the Tensor-Train RNN paper, by offering me a lot of assistance

and suggestions. Cristóbal’s outstanding work in machine learning with healthcare data has

greatly inspired my own and I would like to thank him for sharing with me his valuable

experience. The path to a PhD is not an easy one. It is as important to have these

wonderful advisers as to have fellow students, with whom one can exchange information,

encouragement and congratulation. I’m grateful that I could work with Stephan in this

way for the last years, and many thanks for his reading and comments on the German

abstract of this work. I have also thankfully received a lot of help and advice from Dr.

xiv CONTENTS

Sigurd Spieckermann and Yi Huang at Siemens.

Last but not least, I would like to thank my parents for being understanding and

supportive throughout the years that I spend overseas. Very special thanks go to Juliette

for her proofreading and correction of the entire thesis, for her invaluable friendship for

almost two decades, and for her introducing me to so many new dimensions in life.

List of Publications and Declaration

of Authorship

• Yinchong Yang, Cristóbal Esteban, and Volker Tresp. Embedding mapping ap-

proaches for tensor factorization and knowledge graph modelling. In Harald Sack, Eva

Blomqvist, Mathieu d’Aquin, Chiara Ghidini, Simone Paolo Ponzetto, and Christoph

Lange, editors, The Semantic Web. Latest Advances and New Domains: 13th Inter-

national Conference, ESWC 2016, Heraklion, Crete, Greece, May 29 – June 2, 2016,

Proceedings, pages 199–213. Springer International Publishing, 2016

I conceived of the original research contributions and performed all implementa-

tions and evaluations. I wrote the initial draft of the manuscript and did most

of the subsequent corrections. I regularly discussed this work with the co-author,

Cristóbal Esteban, and my supervisor, Volker Tresp, who also assisted me in

improving the manuscript.

This published work serves as Chapter 2.

• Yinchong Yang, Peter A. Fasching, and Volker Tresp. Predictive modeling of therapy

decisions in metastatic breast cancer with recurrent neural network encoder and

multinomial hierarchical regression decoder. In Proceedings of the IEEE International

Conference on Healthcare Informatics (ICHI), Park City, Utah, USA, 23–26 Aug

2017. IEEE

I conceived of the original research contributions and performed all implementa-

tions and evaluations. I wrote the initial draft of the manuscript and did most

of the subsequent corrections. I regularly discussed this work with the co-author,

Peter A. Fasching, and my supervisor, Volker Tresp, who also assisted me in

improving the manuscript.

xvi CONTENTS

This published work serves as Chapter 3.

• Yinchong Yang, Denis Krompass, and Volker Tresp. Tensor-train recurrent neural

networks for video classification. In Proceedings of the 34th International Conference

on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages

3891–3900, International Convention Centre, Sydney, Australia, 06–11 Aug 2017.

JMLR

I conceived of the original research contributions and performed all implementa-

tions and evaluations. I wrote the initial draft of the manuscript and did most

of the subsequent corrections. I regularly discussed this work with the co-author,

Denis Krompaß, and my supervisor, Volker Tresp, who also assisted me in im-

proving the manuscript.

This published work serves as Chapter 4.

• Yinchong Yang, Peter A. Fasching, and Volker Tresp. Modeling progression free

survival in breast cancer with tensorized recurrent neural networks and accelerated

failure time model. In Machine Learning for Healthcare 2017, volume 68 of Proceed-

ings of Machine Learning Research, Northeastern University, Boston, USA, 18–19

Aug 2017. JMLR

I conceived of the original research contributions and performed all implementa-

tions and evaluations. I wrote the initial draft of the manuscript and did most

of the subsequent corrections. I regularly discussed this work with the co-author,

Peter A. Fasching, and my supervisor, Volker Tresp, who also assisted me in

improving the manuscript.

This published work serves as Chapter 5.

Chapter 1

Introduction

1.1 Representation Learning

1.1.1 Motivation

One of the ultimate goals of artificial intelligence is the creation of computer agents that

can undertake specific tasks, such as prediction and control, which would otherwise require

human intelligence [65, 91, 89]. Earlier attempts in this field, such as symbolic approaches

[80], involved the representation of human knowledge as theorems and facts and apply-

ing logical inference rules. The most successful instances of this class of approaches are

probably the expert systems studied during the 70s and 80s [69]. Expert systems turned

out difficult to maintain and incapable of autonomous learning from new data [29, 91].

Statistical learning [109] and soft computing [21], on the contrary, have been contributing

more and more to the realization of a self learning agent. Instead of consulting human

experts and hard-coding their knowledge into a computer system, one solely presents the

agent data samples that define the task it is expected to undertake. For example, by

processing enough images of handwritten digits and the corresponding labels, an agent

learns the mapping pattern between the digit and the label, and can then predict labels for

new handwritten digits. That is to say, instead of being programmed to do so, the agent

learns to induce abstract –though sometimes not necessarily interpretable– rules from the

data [16]. These rules are expressed as hierarchies of mathematical operations [10]. The

designing and training of such an agent are major tasks in machine learning. It is often

initialized with close to no prior knowledge and has to learn from its own errors.

In recent years, the noticeable improvement of computer hardware techniques have

2 1. Introduction

enabled the collection and processing of ever larger amounts of data, which greatly con-

tributed to the remarkable advances in machine learning [71].

Within the field of machine learning, especially the data-intensive and data-driven

methods are profiting even more from the improving data techniques. Among these ap-

proaches, artificial neural networks are probably the most successful and representative

examples [11]. They exploit modern hardware techniques in two directions: on one side,

the computation power of modern processing units is evolving. In addition, GPU [97] and

TPU [105] are also being applied for more efficient algebraic operations. The modeling

power, i.e., the expressiveness of a neural network, is often closely related to its com-

plexity [10]. To this end, the advances in computation power allow for training larger

and more complicated neural networks. On the other side, the storage capacity has been

booming drastically, enabling the training of neural networks with data samples in ever

larger volume. This is often crucial for neural networks, because more complex networks

with more parameters require more data samples to train [11]. Furthermore, the growing

storage capacity has been encouraging the exploitation of data formats in larger vari-

ety. In addition to the structured data in traditional table form, less structured data

such as images, voices and videos are now also serving as training data. Obviously, the

ability to process and digest these raw data is a key feature for human-like artificial in-

telligence. For instance, real-time machine translation depends on understanding natural

spoken language[102, 25, 24]; autonomous driving is largely based on visual sensory input

in vehicles [13, 78, 22]; clinical decision support systems integrate all available information

sources of a patient [38, 26, 116], from laboratory analysis to radiology images [23, 70, 112].

These raw data formats, being potentially noisy, high dimensional, sparse and of vari-

able sizes, also pose novel challenges to designing machine learning models. Earlier ap-

proaches in handling such raw data rely on consulting domain human knowledge to design

and hard code features that are to be extracted from raw data. For instance, one calculates

histograms [15] and wavelets from image data [2], optical flow [101, 18] and trajectories

[111, 72] from video data. For natural language data, the n-grams are often quite popular

choices [17, 57]. The extraction is performed as a pre-processing step and once extracted,

these features remain constant to serve as direct input to machine learning models. The

hand-designed features enjoy the advantage of being well interpretable, but are sometimes

not scalable to larger data volumes or new characteristics in data. They are also prone to

over-specification [62] and can in fact never outperform human knowledge. The latest re-

search developments suggest to integrate this pre-processing step into the machine learning

1.1 Representation Learning 3

model itself. In other words, a machine learning model should learn to extract from the

raw data latent but more exploratory features to facilitate its own predictive task, being

typically regression and classification [11]. These features are also known as (latent) repre-

sentations, because they represent the data instances now in a latent space. They are also

dynamic instead of fixed during training of the prediction model. Such a mapping from

raw features to the latent representation can be realized efficiently by multiple layers of

neural networks. They are proven to be universal approximators [49, 48, 30], and they can

be trained jointly with the prediction model, applying back propagation in a supervised

and end-to-end fashion. In contrast to hand-designed feature extraction, these learned

representations are task specific and only in rare cases human interpretable. However, in a

wide variety of AI tasks varying from object recognition [28, 90, 32] to playing the Go game

[95, 96], these deep neural networks outperform approaches using hand designed features.

They are also adaptable to novel characteristics in the data, and they can largely profit

from the growing volume and variety of data being collected nowadays.

One could draw an interesting analogy in the development of artificial intelligence:

machine learning adapts to improving hardware capacity better than expert systems be-

cause the former can learn the reasoning rules –though less interpretable– automatically

from data samples; while an expert system relies completely on the hard coding of human

knowledge and fails to profit from the exploding data volume. In machine learning, latest

representation learning approaches focuses on learning latent representations –though less

interpretable– automatically from raw data, instead of utilizing hand designed represen-

tations. In the last decades, the trend of development in AI seems to be decreasing the

involvement of human knowledge, and increasing the volume and variety of data that an

AI system can access and learn from. In other words, one does not tell an AI agent how

to carry out a task. Instead, one tells it what to do. And with the improving hardware

capacity and growing data volume, the AI agent can be expected to figure out how by

itself.

This work focuses on two specific data situations that heavily rely on efficient represen-

tation learning, namely knowledge graph data and high dimensional sequential data. The

remainder of this work is structured as follows: In subsection 1.1.3 we first define a generic

framework to define machine learning models that consists of autonomous representation

learning.

Section 1.2 addresses the task of modeling knowledge graph data. We first introduce

the data situation in Subsection 1.2.1 and then review multiple popular relational learning

4 1. Introduction

models in Subsection 1.2.2. In Subsection 1.2.3, we elaborate the relation between these

relational learning models and representation learning within the generic framework. Based

on this insight, we propose in Subsection 1.2.4 a new relational learning concept to learn

the mapping from known facts to the latent representations. Paragraph 1.2.4.1 gives a

brief introduction to our published work [114].

In section 1.3 we study the second data situation of high dimensional sequential data.

The major challenge as well as some classical solutions are first discussed in Subsection

1.3.1. Then, Subsection 1.3.2 reviews the latest recurrent neural network models, which

provide another solution in handling sequential data. Paragraph 1.3.2.1 serves as a brief

introduction to our published work of [116], applying recurrent neural networks to process

patient history data. Furthermore, we tackle the challenge that sequential data could

also be of high dimensionality and sparsity. We propose a novel recurrent neural network

architecture integrating Tensor-Train decomposition in Subsection 1.3.4. In Paragraph

1.3.4.1, we give a brief introduction to our published work on applying this model on video

data as high dimensional sequences, and in Paragraph 1.3.4.2 we introduce our work of

[115], which applies the same model on health data.

The Sections 2, 3, 4 and 5 consist of our published works, respectively.

Section 6 is a summary of our work. It highlights the major contributions and gives

our interpretation of the research results.

The appendices include a numerical example to illustrate relational learning and repre-

sentation mapping . For the Tensor-Train recurrent networks, we provide more technical

details such as a forward pass algorithm and the gradients calculation, as well as simulation

studies to verify the implementation.

1.1.2 Terminology and Notations

For the rest of the work, a data instance refers to what is usually understood as data point

or a single data sample in a typical machine learning setting. It could be, for instance,

a single row-vector in a design matrix, a matrix representing a black and white image, a

three-way tensor storing an RGB image, and a sequence of words that build a sentence,

etc. We use the term feature instead of, e.g., variable or predictor. By our convention, the

term recurrent neural network (RNN) refers to the class of models instead of the specific

architecture of Elman (Eq. 1.13).

We denote a vector with bold lower case x, and a component of it with xi. Equivalently,

(xi)
p
i=1 also stands for a vector x of size p. A matrix is represented with bold upper case

1.1 Representation Learning 5

X, while a tensor of more than 2 modes is represented with a calligraphic bold capital X .

xi stands for the i-th row in matrix X. X ∈ RM×N denotes a two-mode matrix X as well

as X ∈ R(m1·m2)×(n1·n2) does. To avoid too many subscripts, we use round brackets in case

multiple indices are needed, such as X(i, j) and X (i, •, •). Denoting an identity matrix of

size N×N as EN , the i-th row, eNi , yields then a one-hot vector. Specifically in the context

of SVD, we use a single integer r to refer to the first r columns of each factor matrix of

U r and V r. A superscript in rectangle brackets as in x
[t]
i denotes a time-stamped vector.

We use square brackets [•, •, ...] to denote the concatenation operation; and ×n stands for

the n-mode product as defined in [58]. The parameter set of a function is denoted as its

subscript as fΘ(·).

1.1.3 A Framework for Representation Learning

Definition 1. A predictive machine learning model that is based on latent representation

can be decomposed into two sub-models: a representation model ξ(·) with a parameter set

Φ, and a prediction model η(·) with a parameter set Θ:

ŷ = ηΘ(z), with z = ξΦ(x). (1.1)

x denotes the raw feature input, which could take any form such as a vector, a matrix,

a tensor, or even a sequence of them. We use the notation of a vector for the sake of

simplicity, and also because the latter two formats can always be transformed into a vector.

The representation model ξΦ(·) transforms each raw input into a new latent vector z. This

latent representation of the raw input is expected to facilitate the parameterized prediction

model ηΘ(·) consuming z [11].

In earlier attempts in handling complex data features, the function ξΦ(·) could be

hand-designed, exploiting domain specific knowledge of human [8, 62]. These features

are extracted from the raw data as a pre-processing step, and are typically denser in

information while lower in dimensionality. Once extracted, they remain constant during

the training of the prediction model ηΘ(·). These procedures could be time-consuming and

fail to scale to larger and novel data situations. More importantly, these hand-designed

features are strictly limited by human knowledge.

There are also more generic classical approaches to generate representations. The well-

known SVD, for instance, can be utilized to extract a smaller number r of orthogonal

factors that are linear combinations of the raw data features: X ≈ U rDrV
T
r ⇒ U r =

6 1. Introduction

XV rDr, where each row U r(i) can be interpreted as the latent representation of raw data

instance X(i). Applying the framework in Def. 1, it is easy to see that the latent vector

z corresponds to U(i) = ξ{V r,Dr}(X(i)). That is to say, the representation model ξΘ is a

linear function with parameters V r and Dr. In case that ηΘ(·) is a linear regression, this

whole setting becomes the Principal Component Regression (PCR) [52, 50]. To this end,

PCR can be seen as a simple and intuitive form of enhancing predictive modeling using

representation learning. However, the principal components can also serve as input to a

subsequent logistic regression [64] or other prediction models.

Another more recent approach to extract generic latent representation is the autoen-

coder [110], whose simplest form is a two-layered feed-forward neural network: x̂ =

Wz + c, with z = ρ(V x + b) with the target being identical to the input. The model

learns to first represent each input x as z, and then attempts to reconstruct x as x̂ from

z. The function ξΦ(·) is instantiated by the network with parameters {V , b}.
The representations generated by, e.g., an SVD and an autoencoder are identified by

exploring the inner characteristics of the data features. One attempts to represent the

complete features using only a few relevant factors while neglecting the less relevant ones.

Therefore such methods are often also referred to as dimension reduction. These represen-

tations may remain constant, or they can function as initialization of the parameters and

be adjusted while training ηΘ(·) [66, 110].

Recent developments in machine learning, however, encourage the training of both

the representation and prediction models jointly. In many cases, the pre-training of the

representation model is either unnecessary or impossible. That is to say, both sets of

parameters Θ and Φ in Def. 1 are optimized jointly w.r.t. one cost function:

arg min
Θ,Φ

cost(y, ŷ | Θ,Φ) with ŷ = ηΘ(ξΦ(x)). (1.2)

The representation function ξΦ(·) is enforced to be responsive to the predictive task. SVD

and autoencoder, on the contrary, explores the inner structure of input feature x, without

any information regarding the prediction task.

Neural networks, especially those of deeper architectures, can be quite efficient for

generating latent and dynamic representation. First, a feed-forward neural network, being

a universal approximator, could theoretically mimic any continuous mapping functions

[31, 48, 30]. Second, deep neural networks prove to generate latent representations of

increasing abstraction levels [11]. The prediction model is therefore only exposed to the

last and most abstract representation.

1.1 Representation Learning 7

Furthermore, depending on various forms of the raw data, one could design more specific

neural network architectures and they outperform many models based on hand-designed

features. Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) are

two of the most successful examples of this class of representation models.

A CNN [68] is based on the convolution operation. It assumes a spatially local cor-

relation in the input feature space, and defines a corresponding connectivity pattern of

the neurons. By re-using the same set of the locally connected weights convolving across

the input features, CNNs can efficiently handle input feature with less weights in com-

parison with fully-connected networks. The most successful use cases are found in image

classification, using multiple convolution layers with pooling and sub-sampling [61, 103].

RNNs, on the other hand, specialize in processing sequential data. One of the most

popular variants is the Elman architecture [36], which has inspired many developments that

followed. The core idea is to re-use the same weight matrix W to map the feature vector

x[t] at each time step to a hidden state z[t]. Each hidden state is then augmented with a

mapping from the hidden state of the proceeding time step: z[t] = ρ(Wx[t] +Uz[t−1] + b).

A predictive model often consumes z[t] as input, which is expected to represent the entire

history of {x[≤t]} by the recurrent definition. However, due to the exploding and vanishing

gradient problem [46, 12], this recurrent architecture may fail to learn long-term depen-

dencies by error back-propagation from data. Long Short-Term Memory (LSTM) network

[47, 40] provides a solution by introducing gating mechanisms into the calculation of the

hidden state. A more lightweight version of LSTM, the Gated Recurrent Units (GRU),

have proven to be equally powerful in storing input pattern over a long period of time.

These RNNs nowadays provide the building blocks for sequence modeling tasks such as

language modeling [54, 74], machine translation [6, 102] and reinforcement learning [113, 7].

The training of these deep architectures of neural networks with back propagation could

be challenging, and would not have been feasible, if a variety of advanced training tech-

niques hadn’t been developed as well. They include regularizations [44, 98], optimizations

[55, 43] and activations [79, 56].

There are a few known limitations of representation learning with neural networks

[62]. First, the fact that the representation model responds to the predictive task also

implies that these latent representations are task specific. Multi-task and transfer learning

attempts to study this issue by defining multiple predictive models that share the same

latent representation as input [19]. Second, in comparison to the hand-designed features,

8 1. Introduction

the representation generated by neural networks are often not directly interpretable. Only

in rare cases could one assign semantic interpretation to the single components in the latent

representation [3, 118, 88].

1.2 Representation Learning in Knowledge Graphs

In this section, we first give a brief introduction to the special data situation in knowledge

graph modeling. We further present a few examples of important relational learning models

based on tensor decomposition, and demonstrate their connections to representation learn-

ing. We introduce a novel representation learning technique, which enables decomposition

models to derive latent representations for new entities without being retrained.

1.2.1 Introduction

A Knowledge Graph (KG) is a graph structured data base that stores known facts about

relations between entities [82]. The RDF standard [67] represents a fact as a triple of

three types of entities: <subject, predicate, object>. For instance, the fact that

George Lucas is the director of Star Wars IV could be stored as a triple <George Lucas,

isDirectorOf, StarWars IV>. This standard is widely applied by a number of large scale

KGs, such as Yago [100] and DBpedia [5]. Since these KGs are often incomplete, one of

the most studied tasks is to predict the probability that an unknown fact involving known

entities is true. This task is also referred to as link prediction or KG completion [82].

In Fig. 1.1 is an exemplary KG. There are three subjects: George Lucas, Star Wars IV

and Raiders Of The Lost Ark and the last two are also observed to be objects. Three

probable types of relations are isDirectorOf, isWriterOf and isOfGenre. The corre-

sponding triple store consists of 7 facts in total as listed in Fig. 1.1. The KG is demon-

strated in three different formats: as a graph, as a tensor and as a triple store.

In statistical relational learning [62], one stores a collective of known fact triples as a

three-way adjacency tensor such as in Fig. 1.1. Each entry in the tensor is assigned the

value 1 if the fact it represents is known to be true. Otherwise the entry has value 0. A

special case of such a tensor is a user-item matrix, where there is only one type of predicate,

i.e., purchasing.

Decomposing such a three-way tensor yields a lower dimensional representation vector

for each entity. These representation vectors are often expected to reveal the underlying

1.2 Representation Learning in Knowledge Graphs 9

George_Lucas Star_Wars_IV

Raiders_Of_
The_Lost_Ark

isDirectorOf

isWriterOf

isWriterOf

Action Adventure

Science_Fiction

isOfGenre

isOfGenre

isOfGenre

isOfGenre

isOfGenre

The graph format:

The triple store format:
<George Lucas, isDirectorOf, Start Wars IV>

<George Lucas, isWriterOf, Start Wars IV>

<George Lucas, isWriterOf, Raiders of The Lost Ark>

<Start Wars IV, isOfGenre, Scienc Fiction>

<Start Wars IV, isOfGenre, Action>

<Start Wars IV, isOfGenre, Adventure>

<Raiders of The Lost Ark, isOfGenre, Action>

<Raiders of The Lost Ark, isOfGenre, Adventure>

The tensor format:

Star Wars IV

George Lucas

isDirectorOf

Figure 1.1: A Knowledge Graph example three formats: Left: as directed graph. Bottom

right: as triple store. Top right: as binary tensor, where we only annotate the first triple

for illustrative purposes.

characteristics of the entities in this latent space, e.g. the similarity between entities. If one

reconstructs the tensor using the derived latent representations, the value at a position that

indexes an unknown fact can be interpreted as the probability or confidence that this fact

is true. In Appendix A.1 we provide a numerical example to illustrate the decomposition

and reconstruction, i.e., the prediction of a user-item matrix.

Common choices of decomposition models are, for instance, HOSVD [58], CP/PARAFAC,

Tucker [107], RESCAL [83] and multiway neural networks [34]. In the following, we review

a number of the most representative decomposition models and, more importantly, reveal

their relationship to representation learning.

1.2.2 Relational Learning Based on Tensor Decomposition

Now we provide a formal definition of probabilistic relational learning applying tensor

decomposition. For the sake of generality, we consider relations consisting of three entities,

including a subject, a predicate and an object. Consequently, it requires a database in

three-way adjacency tensor form.

Definition 2 (Relational Learning with Tensor Decomposition). Given I subjects, J pred-

icates and K objects, the target tensor is thus of shape Y ∈ RI×J×K. One decomposes Y

10 1. Introduction

as

P(Y(i, j, k) = 1) ∼ D(πi,j,k)

with πi,j,k = fΘ(ai, bj, ck) ∀i ∈ [1, I], j ∈ [1, J], k ∈ [1, K]

and A ∈ RI×rA ,B ∈ RJ×rB ,C ∈ RK×rC .

(1.3)

The distribution assumption D could be, e.g., Gaussian distribution in case of CP

and Tucker, or Bernoulli distribution in case of multiway neural networks. The hyper-

parameters rA, rB and rC are often termed as the ranks of the decomposition. They define

the dimensions of the latent vector representing each entity, and thus the complexity of

the model. In case of, e.g., CP, Tucker and RESCAL, all three ranks are restricted to be

the same; which may be relaxed for multi-way neural network.

Under a proper distribution assumption, the probabilistic tensor decomposition model

learns two things from the data. First, it learns a representation vector for each of the sub-

jects, predicates and objects, which form the matrices A, B and C, respectively. Second,

it learns a parameter set Θ in the function f(·, ·, ·) that joins the representation vectors to

reconstruct the target tensor. Different decomposition models vary in their definition of

the function f(·, ·, ·):
The CP/PARAFAC [53] decomposes of a three-mode tensor as:

f(ai, bj, ck) = (ai ◦ bj)Tck (1.4)

where the parameter set of function f is empty: Θ = Ø.

In case of decomposing Y using Tucker [107], the function f(·, ·, ·) defines joining ai,

bj and ck with the core tensor Θ = G as parameter

fG(ai, bj, ck) = G ×1 a
T
i ×2 b

T
j ×3 c

T
k . (1.5)

RESCAL [83] is a special case of two-way Tucker [20]. It enforces an entity to be

represented by one representation vector, regardless of whether it functions as subject or

object in a relation triple. In Fig 1.1, for instance, the entity Star Wars IV is observed to

be an object with predicate isDirectorOf, as well as a subject with predicate isOfGenre.

In order to apply this constraint, one could query the representation vector for subject and

object from the same matrix A:

fG(aiS , bj,aiO) = G ×1 a
T
iS
×2 b

T
j ×3 a

T
iO
, (1.6)

where we use iS and iO to denote the indices of the subject and object, respectively.

1.2 Representation Learning in Knowledge Graphs 11

A multi-way neural network concatenates the latent representations to serve as input

to a neural network with one hidden layer.

f{w,V}(ai, bj, ck) = σ(wTσ(V [ai, bj, ck])). (1.7)

In contrast to the previous linear models, a multi-way neural networks consists of non-

linearity and is often trained with back propagation.

For large KGs, the tensor could be extremely large and sparse. It is therefore compu-

tational costly to train the decomposition of the entire tensor, including both known and

unknown facts. However, training only on the known triples could easily lead to over-fitting

[81]. In this case, the model would typically predict positive values for all probable triples.

As a solution, one could apply parameter regularization to the decomposition model [59].

This is closely related to the concept of low-rank reconstruction of, e.g., SVD and CP,

where one removes the less relevant factor columns to prevent a perfect reconstruction,

i.e., over-fitting. Alternatively, one could sample a small proportion of unknown triples

and include them into the training set [63], under the assumption that they are false facts.

1.2.3 Relational Learning and Representation Learning

Theorem 1. A relational learning model based on tensor decomposition in Def 2 is an

instance of the generic model framework in Def. 1. Specifically, the latent representation

vectors ai, bj and ck are outputs of representation models defined by:

ai = gA(eIi) = ATeIi ,

bi = gB(eJj) = BTeJj ,

ci = gC(eKk) = CTeKk ,

(1.8)

where the matrices A, B and C are identical with those in Def. 2

Taking the subject in Eq. 1.8 for example, eIi ∈ {0, 1}I , being the i-th row in an

identity matrix EI , is a one-hot vector. One one hand, the function gA defines a simple

feed-forward layer, whose parameter A ∈ RI×rA is often interpreted as a look-up table.

By multiplying with eIi , only the i-th row in the matrix, namely ai is selected. Here the

function gA(·) is an instance of ξ(·) defined in Eq. 1.1. The one-hot vectors eIi , e
J
j , e

K
k are

raw input features that index the entities. On the other hand, the prediction model defined

by function f(·, ·, ·) instantiates η(·) in Eq. 1.1. During training, the representation model

12 1. Introduction

defined by g(·) and the prediction model by f(·, ·, ·) are adapted jointly to reconstruct the

tensor.

The one-hot vector only indicates the entity of interest and selects the corresponding

row in the look-up matrix. This function is sufficient –and in fact efficient– for a simple

decomposition model. It does not, however, relates the entity to its features. There are

two possible sources of entity features that can be included into the relational modeling.

First, in some cases, additional features may be available in the data, such as personal

information of the users or production information on the items. These entity features

may serve as the input to the mapping function g(·) [39]. Second, even in absence of such

additional information, the feature available on each entity is in fact the collective of facts

that describe its known relations to other entities. In the following section we elaborate

the second case and propose to learn representations from these known facts.

1.2.4 Representation Learning from Known Facts

The slices of Y(i, •, •), Y(•, j, •), and Y(•, •, k), namely the i-th, j-th and k-th slices from

the tensor, consist of all known facts about entity i as subject, j as predicate and k as

object, respectively. Therefore, we propose to extract latent representations from these

entity features.

Definition 3 (Representation Mapping).

ai = gMA
(vec(Y(i, •, •))) = MAvec(Y(i, •, •)), with MA ∈ RrA×(J ·K)

bj = gMB
(vec(Y(•, j, •))) = MBvec(Y(•, j, •)), with MB ∈ RrB×(I·K)

ck = gMC
(vec(Y(•, •, k))) = MCvec(Y(•, •, k)), with MC ∈ RrC×(I·J).

(1.9)

As the notation suggests, we apply the same g(·) functions in Eq. 1.8, which again

defines a feed-forward layer but with different weights. And instead of one-hot vectors, it

now takes as inputs the vectorized slices Y(i, •, •), Y(•, j, •) and Y(•, •, k). The latent

representations, ai, bj and ck are joined with the same function f(·, ·, ·) as in Def. 2. In

Fig. 1.2 we compare the standard decomposition model with one which learns the latent

representation vectors from known facts. The major difference is that we replace the one-

hot vector with the tensor slice that stores all known facts about the entity’s relation to

other entities.

The most obvious advantage of this new representation model is that, if one observes a

new entity with some known relations to existing entities in the database, one can instantly

1.2 Representation Learning in Knowledge Graphs 13

f

f

vec(Y(i, •, •)) vec(Y(•, j, •)) vec(Y(•, •, k))

MA MB MC

ei ej ek

A B C

ai bj ck

ai bj ck

P(Y(i, j, k) = 1)

P(Y(i, j, k) = 1)

Figure 1.2: A comparison between two representation models in the context of tensor

decomposition task. Top: corresponding to Eq. 1.8, each representation vector is generated

as one row selected from the respective look-up matrices by a one-hot vector. Bottom:

corresponding to Eq. 1.9, it takes as input a vectorized slice from the tensor itself.

derive the latent representation of this entity. Imagine a web shopping portal and a new

customer who has just registered and purchased a few items. One would like to derive the

customer’s latent representation as soon as possible, in order to predict which other items

the customer might be interested in. But in order to derive this single latent representation,

one would need to add the new relational information into the database and inevitably

retrain the decomposition model. However, such a single user with a few items is not

likely to update the representation of other users or those of the items significantly, while

retraining the decomposition could often be computational costly.

Our representation model in Def. 3 provides an efficient way to derive the latent

representation of any new entity. The functions gMA
(·), gMB

(·) and gMC
(·) directly map

from known facts to latent representations, giving us a good approximation of the latent

14 1. Introduction

representation that would have been learned if one would retrain the model.

The input to function g(·) might in fact also include other entity attributes. Taking

shopping portal as example, these might include age, gender, location etc. of the registered

user. Also item attributes can be exploited to enable immediate recommendations to the

potential users. This approach provides a solution to the well-known cold-start problem in

recommendation system [39].

There are two technical challenges in learning mapping from known facts. Taking

subject for example, the size of the input vector is J · K, namely the product of the

number of predicates and objectives, which could be huge for large knowledge graphs.

Furthermore, the number of known relations involving subject i could be relatively small,

making Y(i, •, •) very sparse as well.

In section A.2 we proceed with the numerical example of user item matrix. We also

prove this concept of representation mapping by introducing new entities.

1.2.4.1 Algorithms and Applications in Modeling Knowledge Graphs

Our published work, [114], proposes three different algorithms that learn to map from

known facts to latent representation.

1. The first and most intuitive one is to fit a linear regression from the known facts to the

learned latent representation after the tensor decomposition. This linear regression

is independent of and thus compatible with any decomposition model.

2. We further proposed to integrate the regression fitting into the decomposition model

in a every efficient way. We show that after each iteration of training the decomposi-

tion model, the representation vectors only need to be multiplied with a static matrix

to satisfy the linear relation with the known facts. This algorithm is equivalent to

optimizing two loss functions at the same time: one for the decomposition model and

one for the linear regression.

3. As the third approach, we show that any decomposition model can be formulated

as a feed-forward neural network. In other words, not only the multi-way neural

networks, but also linear models such as CP and Tucker, can be trained with back

propagation. This aspect greatly facilitates the representation mapping, because the

linear regression becomes an additional linear layer. Such a model is end-to-end

trainable with only one cost function. In this case, it is even unnecessary to store

1.2 Representation Learning in Knowledge Graphs 15

the latent representations anymore, since the mapping is stored in form of the first

layer of weight matrices.

We conduct experiments on three real-world data sets. In the first data set, we apply

a decomposition of a user-item matrix of movies [42]. We simulate scenarios of new user

and new items by masking different proportions known facts of these entities. Then we

attempt to produce corresponding recommendations for both new users and new items.

All three algorithms are exposed to these incomplete information, and map them into the

latent space. Then we measure the quantity that the relational model can recover from

the masked information. The 3rd algorithm turns out to outperform the most popular

baseline model even with only half of the known facts.

Our second experiment has a similar setting, while using a subset of Freebase [14] data

as a three-way tensor. We mask 20% of known facts and attempt to recover these with

our model. As an upper bound we retrained the decomposition. The 3rd algorithm, the

multiway neural network in combination with an additional linear layer, performs only

1.6% worse in AUROC and 9.1% worse in AUPRC compared with the upper bound. But

note that in the latter case it usually takes a few seconds to perform the prediction, instead

of multiple hours in case of retraining.

In the last experiment we focus on the quality and interpretability of the mapped

representation. We compare the representations that are mapped from known facts to

those that are learned with the recalculated decomposition. In the data set, we exploit the

fact that the latent representations are promised to show strong column-wise correlation

with a ground-truth matrix. We can confirm that, even when the representations are

mapped instead of learned in the decomposition, their correlation with the ground-truth

matrix is equally significant. Please note that in [114] we used the term embedding mapping

instead of representation mapping.

16 1. Introduction

1.3 Representation Learning in High Dimensional Se-

quential Data

In this section we study the second data situation that requires efficient representation

learning: high dimensional sequential data. Sequential –or longitudinal– data are the

outcomes of measuring the same features repeatedly at consecutive time steps. In electronic

health record (EHR) data, for instance, patients with chronic diseases could be asked to

regularly undergo a set of medical tests, which form a sequence of multidimensional feature

vectors. Natural language data can also be handled as sequences. In each sentence, the

feature space is a pre-defined vocabulary. The observed value at each time step is a single

word represented by a one-hot vector, which is then mapped into a word representation

(more often referred to as embedding in NLP literature) in the same fashion as Eq. 1.8.

One major challenge with this data situation is that the sequences could be of variable

lengths. In other words, the data instances have different input feature spaces, which

makes it impossible to learn a direct mapping from the features to the target of modeling.

Furthermore, the features observed at each time step could potentially also be of high

dimensionality. Since they are repeated measurements on the same instance, applying

conventional dimensional reduction techniques on each time step would violate the i.i.d.

assumption. To this end, we also propose a novel architecture specialized in handling high

dimensional sequential data.

1.3.1 Introduction

We denote multidimensional sequential data with an ordered set of time-stamped vectors

as:

{x[t]
i }Ti

t=1, with xi ∈ Rp. (1.10)

At each time step t, one observes a feature vector x
[t]
i on instance i. The notation Ti

indicates that the length of the sequence may vary for each data instance.

In order to perform predictive modeling based on these features, one requires techniques

that extract fixed-size representation from the sequence. Simpler methods in representing

these data may include information aggregation. A generic function to aggregate all time

1.3 Representation Learning in High Dimensional Sequential Data 17

steps up to time step Ti could be written as

s̃
[t]
i =

Ti∑

t=1

ω[t]x
[t]
i ∈ Rp, (1.11)

where ω is a weighting parameter. In case of ω[t] = 1 and 1
Ti

the function defines a sum and

average aggregation, respectively. Alternatively, ω[t] = d(t, Ti) defines a weighting depen-

dent on the distance d between each t and the current time step [119]. The bag-of-words

solution in language modeling is a well-known instance of this model class. It represents

a sentence or a paragraph by counting the frequency of each word in a vocabulary. One

limitation of such an approach is that it disregards the order in which theses events appear.

In language modeling, however, the order may encode the grammar information crucial in

understanding the sentence.

[119, 37] apply this method also on clinical events data. Such an aggregation represents

the number of multiple events that have been observed on each patient.

Another approach observes a fixed-size moving window of past ∆ time steps as input

features [9]:

s̃
[t]
i = [st−∆

i , ..., st−2
i , st−1

i , sti],

with s
[t]
i = g(x

[t]
i) ∀t,

(1.12)

where g again denotes a fully connected layer with probable non-linear activation. Com-

pared to aggregation, the moving-window solution takes into account the order of events

within the window by the concatenating operation. However, a small size of the window

limits the model’s capacity to capture long-term dependency. A large ∆ would result in a

very large representation s̃
[t]
i . The representations generated from shorter sequences would

thus contain large proportion of null information due to vacant inputs.

To conclude, an aggregation approach is invariant to the sequence length but neglects

the order of events; while the moving window technique considers the order but is dependent

on the sequence size in the window. Recurrent neural networks can join the advantages

of both techniques, being capable of modeling long-term dependencies while taking into

account the order in the sequence. They have gained much attention due to their success in

modeling sequential data, from natural language data to reinforcement learning [41]. Also

in medical domain, they have shown promising results and outperform more traditional

methods in handling sequential data [38, 26].

18 1. Introduction

1.3.2 Recurrent Neural Networks

One of the most popular RNN architectures is proposed by [36]:

h
[t]
i = ρ(Wx

[t]
i +Uh

[t−1]
i + b) ∈ Rr. (1.13)

In this setting, h
[t]
i denotes the so-called hidden state of the RNN, which consists of two

additive terms. The first one is a mapping of the current input feature at t with a weight

matrix W , while the second term is a mapping from the last hidden state at t− 1 using a

weight matrix U . ρ(·) denotes a non-linear activation function, such as tanh and sigmoid.

An RNN of this architecture could overcome the limitations of aggregation and moving

window techniques, respectively. First, the hidden state is dependent on all previous inputs

in a Markov fashion. The model is thus invariant to the number of the previous time steps.

Second, by processing from t = 0 through t − 1, the order in which these input vectors

occur can be also taken into account by the representation h
[t]
i of a reasonable size. Another

important aspect in RNNs is the fact that the same weight matrices W and U are reused

at each time step. This enables the model to generalize to new time steps and to recognize

the same input pattern when it re-occurs in the same sequence [11].

Though proven to be Turing complete with a finite size of the hidden state [94], such a

simple architecture turns out to suffer from difficulties in learning long-term dependencies

from data, due to the phenomenon of vanishing and exploding gradients [45, 46, 87].

To solve this problem, two major improvements on the Elman architecture have been

proposed: Def. 4 describes the Long Short-Term Memory (LSTM) network, and Def. 5

the Gated Recurrent Unit. Both are now established state-of-the-art RNN models. They

introduce gating mechanisms into the calculation of the hidden state, and have proven to

be equally powerful in storing input pattern over a long period of time. [51], for instance,

provides an empirical study in interpreting the gates in LSTM.

Definition 4 (Long Short-Term Memory [47, 40]).

k[t] = σ(W kx[t] +U kh[t−1] + bk)

f [t] = σ(W fx[t] +U fh[t−1] + bf)

o[t] = σ(W ox[t] +U oh[t−1] + bo)

g[t] = tanh(W gx[t] +U gh[t−1] + bg)

c[t] = f [t] ◦ c[t−1] + k[t] ◦ g[t]

h[t] = o[t] ◦ tanh(c[t]).

(1.14)

1.3 Representation Learning in High Dimensional Sequential Data 19

x
[1]
i x

[2]
i x

[3]
i

h
[1]
i h

[2]
i h

[3]
i

ŷ
[1]
i ŷ

[2]
i ŷ

[3]
i

x
[1]
i x

[2]
i x

[3]
i

h
[1]
i h

[2]
i h

[3]
i

ŷi

Figure 1.3: Illustration of two variants to utilize RNN as a representation model. In the left

variant, the same prediction model is built on top of each time step’s latent representation.

In the right variant, only the last hidden state is exposed as input to the prediction model.

Definition 5 (Gated Recurrent Unit [27]).

r[t] = σ(W rx[t] +U rh[t−1] + br)

z[t] = σ(W zx[t] +U zh[t−1] + bz)

d[t] = tanh(W dx[t] +U d(r[t] ◦ h[t−1]))

h[t] = (1− z[t]) ◦ h[t−1] + z[t] ◦ d[t].

(1.15)

RNNs are applied as a representation model that generates as output the hidden states.

It is expected that a hidden state is dependent on information of all previous time steps.

There are two typical ways to deploy a prediction model on top of an RNN. One could build

a predictive model, say ŷ
[t]
i = ρ(V h

[t]
i) at each time step t, as is illustrated on the left side

in Fig. 1.3. A well-known example of this setting is language modeling [75, 54], where one

attempts to predict the probability of a next word given all previous ones. Alternatively,

the predictive task could be performed based only on the last hidden state: ŷi = ρ(V h
[Ti]
i).

In this case, the last hidden state h
[Ti]
i is expected to have summarized information in the

whole sequence, as is illustrated on the right side in Fig. 1.3. The predictive task could

be, for instance, assigning a score or a class to the sequence. Examples are for instance

a sentiment value to a sentence [4]; [60] performs classification tasks on sequences of 2D

features that record pen coordinates, and sequences of spoken speech stored in 13 channels.

20 1. Introduction

1.3.2.1 Application in Sequential EHR for Decision Support

In our published work, [116], we attempt to integrate patients’ medical history as sequen-

tial features into a model that predicts individual therapy decisions. We extract thousands

of patient cases defined with patient ID and a time step where a therapy decision was

due. The challenging fact is that the patient cases all have a medical history of different

lengths. They vary from 0 to 35 and are on average 4.1. At each time step we observe a

feature vector of the shape 189, which consists of 6 types of clinical event features such as

local recurrences, metastasis, therapies, etc. We use LSTM and GRU to encode these mul-

tidimensional sequences into one fixed-size latent representation. Following [38], we also

include a representation vector learned from static patient features, such as demographic

information and primary tumor, etc. Both representations are concatenated to serve as

input to the decoder, which is a generalized version of multinomial hierarchical regression

[108]. This hierarchical predictive model mimics the decision procedure of the physicians

and generates predictions of therapy predictions. For comparison, we also implement a

baseline representation model which is an aggregation function of the sequential features;

and a baseline decoder which is a one-layered logistic regression. Our experiments demon-

strate that the RNN model offers more significant contribution to modeling the decisions.

Compared with the baseline, a combination of GRU with a logistic regression is already

capable of doubling the prediction quality in term of AUPRC, while the hierarchical de-

coder further improves it by a smaller margin of 8.3%. This demonstrates that the RNN

can extract from the medical history information that are more relevant for the therapy

prescriptions.

A comparison between patients is also a useful feature in a decision support system. For

each test patient, if one could provide a list of similar patients in the database, and show

that these patients have received therapies similar to the prediction for this test patient, this

would give the user, namely the physician, much confidence in interpreting the prediction.

However, such a comparison is not trivial in the input space –since each patient has a

different input space. We show that one can instead compare patients in the latent space

learned by the RNN model. We use a k-NN classifier exposed to learned representations,

and compare its predictions with those which are generated with the hierarchical and

logistic regression. Training patient cases, which are identified as similar in the latent

space by the k-NN classifier, turn out to have received similar therapies as our model

predicts.

1.3 Representation Learning in High Dimensional Sequential Data 21

1.3.3 Tensor-Train Layer

The challenge that the sequential features could also be of high dimensionality has not yet

been well addressed in recent works on RNNs. One probable reason is that most of the

successful works apply RNNs to model natural language data through word embeddings

[73, 76]. The size of the embeddings is a hyper-parameter free to tune and obviously, no one

is tempted to choose a word embedding size that the RNN model cannot handle. However,

in other data situations such as sensor and video data, the sequential features could be of

much larger dimensionality that cannot be tuned.

Furthermore, we argue that high dimensionality is a concept relative to the information

content. A feature vector that has a high sparsity, or contains a high proportion of redun-

dant information, could also be seen as high dimensional. It leads to over-parameterization

of the weights, i.e., a large proportion of weights cannot be sufficiently adjusted during the

training.

For non-sequential features, many dimension reduction techniques are available, such

as SVD and random projection. These methods cannot be applied directly on the feature

vector at each different time step without violating the i.i.d. assumption. The state-of-the-

art solution borrows the idea of word embedding. It learns a mapping from each feature

vector x
[t]
i to a lower dimensional space similar to Eq. 1.12. But instead of concatenating

the low dimensional representations, one feeds them to an RNN model. This approach is,

for instance, successfully applied in [38, 26] to handle the high dimensional patient features.

However, it introduces one more layer of weights that could potentially also be large. In

contrast to word embedding layers, where only one indexing operation is necessary to query

a row in the weight matrix, one would have to calculate the complete matrix multiplication.

To this end, we propose a novel solution to the high dimensionality and/or high sparsity

and redundancy in sequential data, by integrating a Tensor-Train layer [85] into RNN

architectures.

The Tensor-Train Decomposition

Tensor-Train is a tensor decomposition model being able to scale to arbitrary number of

orders.

Definition 6 (Tensor-Train Decomposition [86]). The target d-way tensor A ∈ Rp1×p2×...×pd

22 1. Introduction

G1

l1

G2

l2

G3

l3

Gd−1

ld−1

Gd

ld

· · ·

Figure 1.4: Illustration of Tensor-Train decomposition. One queries the lk-th slice from

the k-th core tensor Gk. The slices are then joined by inner product.

is to be decomposed as

Â(l1, l2, ..., ld) = G1(l1) · G2(l2) · ... · Gd(ld)

where Gk ∈ Rpk×rk−1×rk , lk ∈ [1, pk] ∀k ∈ [1, d] and r0 = rd = 1,
(1.16)

namely into a set of so-called core tensors Gk for k = 1, 2, ..., d.

Each entry A(l1, l2, ..., ld) is decomposed by a train of multiplication of the lk-th slice

from the core tensor Gk (as is illustrated in Fig 1.4). The (rk)dk=1 denotes the ranks of

decomposition. The first and last ranks, r0 and rd, are restricted to be 1, so that the train

of multiplications produces an scalar. In comparison with, e.g., CP and Tucker where

each latent representation has only one rank, it has for k = 1 to d − 1 two ranks: rk−1

and rk in Tensor-Train configuration. This allows for multiplication of joining a latent

representations in a train. It easy to see that, as the tensor grows in its number of order

d, one only needs to include more core tensors.

The Tensor-Train Layer

[85] proposes that the weight matrix in a fully connected layer can be reshaped into a high

order tensor and then decomposed using Tensor-Train.

The usual way to denote the feed-forward pass based on the weight matrix W is

formulated as

ŷ(j) =
M∑

i=1

W (j, i) · x(i) + b(j)

with x ∈ RM ,y ∈ RN ,∀j ∈ [1, N],W ∈ RN×M .

(1.17)

1.3 Representation Learning in High Dimensional Sequential Data 23

The fact that the weights are often stored in a 2-way matrix W is to facilitate the matrix

notation convenience of ŷ = Wx+ b.

In contrast, we propose in Eq. 1.18 an equivalent but different way to write the layer,

which is instead to facilitate the derivation of Tensor-Train layer:

ŷ(j) =
M∑

i=1

w∗(l) · x(i) + b(j)

with w∗ = vec(W) ∈ RN ·M with l = j ·M + i.

(1.18)

The weight matrix is reshaped into a vector of length N ·M . The reshaped weight vector,

w∗, consists of N blocks of vectors of length M . Since there exists a bijection between l

and (j, i) as in Eq. 1.17, we can use l to query the weights. To calculate the j-th output,

one queries the j-th block, and calculates the grand sum of its Hadamard product with

input x. The difference to Eq. 1.17 is that we query the corresponding weights as a block

in a vector, instead of querying them as a row in a matrix. This formulation is illustrated

in the upper graphic in Fig. 1.5.

We generalize this formulation now to two dimensional cases. When the input and

output are 2 way matrices instead of 1 way vectors, namely X ∈ Rm1×m2 , Ŷ ∈ Rn1×n2 ,

the forward pass would correspondingly be

Ŷ (j1, j2) =

m1∑

i1=1

m2∑

i2=1

W ∗(l1, l2) ·X(i1, i2)

with l1 = j1 ·m1 + i1, l2 = j2 ·m2 + i2,W
∗ ∈ R(m1·n1)×(m2×n2),

(1.19)

which is illustrated in the lower graphic in Fig. 1.5. The weights are thus stored in a 2 way

matrix consisting of n1 × n2 2D blocks of size m1 ×m2. Analogous to Eq. 1.18, in order

to calculate the entry (j1, j2) in the output Ŷ , one queries the (j1, j2)-th block in W ∗.

The input, output and the weights can be thus generalized into d-way tensors:

Theorem 2. Let X ∈ Rm1×m2×...×md and Ŷ ∈ Rn1×n2×...×nd be the input and output

tensors, respectively. And the weights are also stored in a d-way tensor of

W ∈ R(m1·n1)×(m2·n2)×...×(md·nd).

The forward pass takes the form of

Ŷ(j1, j2, ..., jd) =

m1∑

i1=1

m2∑

i2=1

...

md∑

id=1

W(l1, l2, ..., ld) ·X (i1, i2, ..., id) + B(j1, j2, ..., jd)

with lk = mk · jk + ik ∀k ∈ [1, d].

(1.20)

24 1. Introduction

Note that in Theorem 2, as well as in Eq. 1.18 and Eq. 1.19, the index lk is a function

of indices jk and ik, which is omitted for a more concise notation.

Theorem 2 suggests that the mapping from a d-way tensor to another d-way tensor can

be realized by a third d-way weight tensor. Even if the input and output are not d-way

tensors, one could always reshape them to be such. The purpose is to decompose d-way

weight tensor with Tensor-Train as defined in Eq. 1.16. This gives us the definition of

Tensor-Train layer:

Definition 7 (Tensor-Train Layer [85]). In a fully-connected layer ŷ = Wx + b with

x ∈ RM and ŷ ∈ RN , if N and M can be factorized into two arrays of the same length,

namely N = n1 × n2 × ... × nd and M = m1 × m2 × ... × md, they can be reshaped

into two d-way tensors respectively. The d-way tensor of weight can be decomposed using

Tensor-Train, namely

Ŷ(j1, j2, ..., jd) =

m1∑

i1=1

m2∑

i2=1

...

md∑

id=1

G1(l1) · G2(l2) · ... · Gd(ld) ·X (i1, i2, ..., id) + B(j1, j2, ..., jd),

(1.21)

We denote such a layer with ŷ = TTL(x|W , b), or ŷ = TTL(x|W) in absence of the

bias.

The calculation of a Tensor-Train layer can be implemented as a computation graph

in frameworks such as in Theano [104] and TensorFlow [1]. In Appendix B, we provide

pseudo-codes of the forward pass algorithm. The Tensor-Train layer can be trained using

back propagation, which requires the gradient information w.r.t. each slice in each core

tensor.

Theorem 3. The Jacobian matrix w.r.t. a slice in a core tensor, i.e., Gk(lk) ∈ Rrk−1×rk

in a Tensor-Train layer is:

∂Ŷ(j1, j2, ..., jd)

∂Gk(lk)
=

m1∑

i1=1

m2∑

i2=1

...

md∑

id=1

∏

k∗>k

Gk∗(lk∗) ·X (i1, i2, ..., id) ·
∏

k∗<k

Gk∗(lk∗) (1.22)

In Appendix C we also provide the proof and an illustrative numerical example.

The most essential idea of Tensor-Train layer is, therefore, to reconstruct the full weight

matrix, which is expected to be large, using a relatively much smaller number of parameters,

namely the core tensors {Gk}dk=1. The Tensor-Train decomposition of the corresponding

d-way weight tensor requires only
∑d

k=1 mknkrk−1rk parameters instead of
∏d

k=1 mknk. It is

1.3 Representation Learning in High Dimensional Sequential Data 25

recommended to factorize the number of features M into a sequence of numbers of similar

orders of magnitude. Should it not be the case or, should M be a prime number, one could

add a few zero columns to the input feature vector.

The tensorization and decomposition of a layer enables it to efficiently consume high

dimensional input features. However, caution has to be taken that the approximate re-

construction of the full weight matrix poses certain constraint on the expressiveness of the

layer. Such constraint can be tuned by the rank parameters {rk}dk=0. However, a too large

rank can of course lead to larger core tensors and therefore longer training time. Therefore,

the tensorization of the large weight matrices is especially effective, if one expects sparsity

and redundancy in the input. This is the case with, e.g. feature maps generated by con-

volutional layers and raw pixel values [85], as well as binary coding of categorical features

[115]. In these cases, the Tensor-Train layer can perform high dimensional mappings with

fewer parameters. On the other hand, restricting the expressiveness may also realize some

kind of regularization. Like CP and Tucker, Tensor-Train is also a low-rank decomposition

of the target tensor. We therefore speculate that, in reconstructing the full weight matrix

with low-rank core tensors, one could –to some extent– remove the over-parameterization

effect.

1.3.4 Embedding Tensor-Train Layer into RNNs

It is straightforward to decompose the weight matrix mapping from input to hidden state

in Elman RNN with Tensor-Train. In case of LSTM, there are four matrices W k, W f ,

W g and W o in Eq. 1.14 to be decomposed.

In the implementation of plain LSTM, it is often more efficient to calculate

Wx[t] = [W k,W f ,W g,W o]x[t], (1.23)

namely the multiplication of input with the concatenation of these four matrices. By

exploiting the parallel power of modern processing units, one could perform the four mul-

tiplications simultaneously, decreasing the run time by increasing the memory usage.

Therefore, we propose to decompose the concatenated matrix W instead of each of the

four matrices. The simplest way is to multiply an arbitrary nk in (nk)dk=1 by the factor of

4. In case of GRU in Eq. 1.15, the factor is 3 because of the 3 gate weights of W r, W z and

W d. Applying Def 7 and the corresponding notation TTL(·|·), we present Tensor-Train

LSTM and Tensor-Train GRU as follows.

26 1. Introduction

Definition 8 (Tensor-Train Long Short-Term Memory).

k[t] = σ(vk,[t] +U kh[t−1] + bk)

f [t] = σ(vf,[t] +U fh[t−1] + bf)

o[t] = σ(vo,[t] +U oh[t−1] + bo)

g[t] = tanh(vg,[t] +U gh[t−1] + bg)

c[t] = f [t] ◦ c[t−1] + k[t] ◦ g[t]

h[t] = o[t] ◦ tanh(c[t]).

with [vk,[t],vf,[t],vo,[t],vg,[t]] = TTL(x[t] | [W k,W f ,W g,W o]).

(1.24)

Definition 9 (Tensor-Train Gated Recurrent Unit).

r[t] = σ(vr,[t] +U rh[t−1] + br)

z[t] = σ(vz,[t] +U zh[t−1] + bz)

d[t] = tanh(vd,[t] +U d(r[t] ◦ h[t−1]))

h[t] = (1− z[t]) ◦ h[t−1] + z[t] ◦ d[t]

with [vr,[t],vz,[t],vd,[t]] = TTL(x[t] | [W r,W z,W d]).

(1.25)

Applying Tensor-Train decomposition on the concatenated weight matrices further re-

duces the number of parameters, because it is easy to see that

d∑

k=1

mknkrk−1rk + (c− 1)(m1n1r0r1) < c ·
d∑

k=1

mknkrk−1rk, (1.26)

where c is the number of gates necessary. c = 4 in case of LSTM and c = 3 for GRU.

As a numerical example, assume an input of dimension 160×120×3, which is a typical

size of a video frame as in [117], and a hidden state of size 256. A fully-connected layer

would contain 14,745,600 weights. If we apply Tensor-Train decomposition with factorizing

the input size to be 8×20×20×18, the hidden state size to be 4×4×4×4 and a rank of 4,

one would need 11,904 parameters in total for all 4 separate weight matrices in LSTM. But

if the 4 weight matrices are concatenated and jointly decomposed, one only needs 2,976

parameters.

In contrast to a related and independent work [106], we assume that the hidden state is

of much smaller dimensionality and therefore see no necessity in decomposing the transition

matrices U ’s.

1.3 Representation Learning in High Dimensional Sequential Data 27

1.3.4.1 Application in Video Classification

In our published work, [117], we demonstrate the prowess of Tensor-Train RNNs in mod-

eling video data. Video data can be seen as sequences of images, which are 3 way tensor

of x-pixels, y-pixels and 3 RGB channels. Although neural networks, especially the deeper

convolutional ones, have been showing promising performances in processing image data,

a direct transfer of these models to video data remains a challenging task. Training deep

CNN from scratch on each frame of image could result in extremely heavy computation.

Applying pre-trained CNNs [93, 33] is prone to over-specification, because one could not

always assume that the object patterns in a video to be similar with –if not the same as–

those in the data used for pre-training. Furthermore, since the video is expected to also

contain temporal patterns among images, one would need recurrent models to join the

representation learned from each frame. This could be even more challenging, especially

for longer sequences, to jointly train RNN and CNN at the same time.

We propose to apply Tensor-Train RNNs on video data mainly based on two consid-

erations: First, [85] already demonstrates that Tensor-Train layers can consume efficiently

RGB pixels in image classification tasks. Second, we exploit the fact that video data con-

tain large amount of redundant pixels on each frame. We show that Tensor-Train RNNs

can map the raw pixels into the hidden state using a much smaller number of core-tensors.

These hidden states, i.e., the latent representation of each frame, are joined as in LSTM

and GRU.

The experiments, conducted on three real-world benchmark video data sets, all develop

the same conclusion: Compared with plain GRU and LSTM, decomposing the weight ma-

trix mapping from input to hidden layer reduces the number of parameters by up to 4

orders of magnitude, while significantly improving the prediction accuracy. The probable

reason is that the huge number of parameters are simply under-trained with the data sam-

ples. In comparison with state-of-the-art works, our implementations always demonstrate

second highest accuracy scores in total, and the highest scores considering only neural

network based models.

Tensor-Train RNNs provide an efficient building block whenever high dimensional se-

quences with potentially redundant information are expected. In field such as NLP, RNNs

have been rather successful in handling the sequential aspect of the data and have inspired

quite a number of promising architectures such as attention mechanism, stacked RNNs,

deep RNNs, etc. Tensor-Train RNNs thus enable transferring all these successful archi-

tectures into new fields where RNNs have failed earlier, and open up a large number of

28 1. Introduction

possibilities for future researches.

1.3.4.2 Application in Sequential EHR for Survival Prediction

In our published work, [115], we include survival analysis into the framework of repre-

sentation learning model. First, a Tensor-Train RNN encodes the medical history of a

patient case into a latent representation. Second, the prediction model is instantiated as

an Accelerated Failure Time (AFT) model with Log-Normal distribution assumption in a

similar fashion to generalized regression. This model architecture aims at predicting the

Progression-Free-Survival (PFS) time in days, by taking into account the sequential and

static features of each individual patient. In contrast to [116], we extract here different pa-

tient cases, namely situations where a progression –either local recurrence or metastasis– is

observed at the next known time step. With Tensor-Train RNNs we focus on the challenge

of sequential features that are not only high dimensional, but also sparse due to binary

coding of categorical features.

As weak baselines, we apply traditional survival analysis models such as Cox-Regression

and plain AFT model exposed to aggregated sequential and static features. These models

produce sub-optimal predictions, possibly due to the fact that the aggregation of sequential

features cannot represent the data in an effective way. Further weak baseline models

are plain LSTM and GRU that directly consume the sparse sequences as in [116]. We

also implement state-of-the-art solutions handling high-dimensional sequential features, by

reducing the input size with a simple feed-forward layer [26, 38]. This solution functions

as our strong baseline model.

We measure the prediction quality using Median Average Error on the original scale of

the output, and the R2 coefficient on the log scale. Our proposed model outperforms the

strong baseline models by a margin of 2.9%, while requiring on average only 4.0% as many

parameters as the strong baseline models. This factor is reduced to 1.2% in comparison

with plain RNNs.

We show that the framework of representation learning of Def. 1 may combine the

strengths of representation learning and the classical generalized regression models (GRM).

Deep neural networks are proven to be promising in generating representation from less

structured data features. The GRMs, on the other hand, are more careful and flexible in

the distribution assumption of the target variable. We show that it is possible to expose

GRM to the latent representation produced by deep neural networks, and train the entire

model end-to-end.

1.3 Representation Learning in High Dimensional Sequential Data 29

…

…

…

…

…

…

Ŷ (j1, j2)

ŷ(j)

X

xT

m1 m1 m1

m2

m2

m2

·n1

·n2

M M M M

×N

M · j

m1 · j1

m2 · j2

Figure 1.5: Special cases of Theorem 2 with d = 1 (upper) and d = 2 (lower). Assume

a fully connected layer y(j) = W (j)x. Upper: as Eq. 1.18 suggests, we reshape the

weight matrix into a vector, and we need an index l = M · j + i to query the j-th block of

corresponding weights vector to perform the forward pass. Lower: as Eq. 1.19, we reshape

x and y into matrices, and we need indices of (l1 = m1 · j1 + i1, l2 = m2 · j2 + i2) to query

the block of weights –this time yielding a matrix. The blue arrow denotes the grand sum

of the Hadamard product. This novel perspective of seeing a fully-connected layer forms

the derivation of the Tensor-Train layer, where an arbitrary d might be chosen.

30 1. Introduction

Chapter 2

Representation Mapping: Algorithms

and Applications

Embedding Mapping Approaches for Tensor
Factorization and Knowledge Graph Modelling

Yinchong Yang2(B), Cristóbal Esteban1,2, and Volker Tresp1,2

1 Siemens AG, Corporate Technology, Munich, Germany
2 Ludwig-Maximilians-Universität München, Munich, Germany

yinchong.yang@hotmail.com

Abstract. Latent embedding models are the basis of state-of-the art
statistical solutions for modelling Knowledge Graphs and Recommender
Systems. However, to be able to perform predictions for new entities and
relation types, such models have to be retrained completely to derive the
new latent embeddings. This could be a potential limitation when fast
predictions for new entities and relation types are required. In this paper
we propose approaches that can map new entities and new relation types
into the existing latent embedding space without the need for retraining.
Our proposed models are based on the observable —even incomplete—
features of a new entity, e.g. a subset of observed links to other known
entities. We show that these mapping approaches are efficient and are
applicable to a wide variety of existing factorization models, including
nonlinear models. We report performance results on multiple real-world
datasets and evaluate the performances from different aspects.

1 Introduction

Latent embedding models, aka factorization models, have proven to be power-
ful approaches for modelling Knowledge Graphs (KG) as described in [17,18].
A special case is Collaborative Filtering (CF) where latent embedding models
have shown state-of-the-art performance [16]. The common key aspect of these
models is that an observed link between multiple entities can be modelled as the
interaction between their latent embedding vectors. Multi-linear models such as
CP/PARAFAC [14] and Tucker [22] as well as RESCAL [19] are typical examples
of models that use latent embeddings. Nonlinear Neural Network-based embed-
ding models are derived in [8,20]. For a more detailed review of these works
please see [18].

The latent embedding vectors can be used in several ways. For example, it
has been shown that distances between entities in the latent space are more
compact and meaningful than in the original observable feature space. Also, in
entity resolution, entities close to each other in the latent space can sometimes
be interpreted as duplicates [7]. Finally, it has been shown that unknown links
between known entities can be predicted based on interactions of their latent
embeddings [18].

c© Springer International Publishing Switzerland 2016
H. Sack et al. (Eds.): ESWC 2016, LNCS 9678, pp. 199–213, 2016.
DOI: 10.1007/978-3-319-34129-3 13

200 Y. Yang et al.

A drawback of latent embedding models is that they need to be retrained
when new entities are appended to the database. For large-scale databases
and/or situations where the system is expected to perform immediate opera-
tions, such as entity resolution or link prediction on the new entities, this would
be very costly and factorization models would find only limited applications.

In this paper, we propose a new class of approaches to handle new entities
and new relation types by mapping them into the latent space learned by the
factorization model. We emphasize that such mapping models can be learned in
conjunction with the training of the factorization model. To map a new entity
into the latent space we only require the observable features of the entity. In
a KG, for instance, such observable features form a binary vector or matrix,
representing the existence of links between this a entity and a subset of known
entities in the database.

The rest of the paper is organized as follows: In Sect. 2 we give a brief review
of selected embedding-based factorization models and illustrate the concept of
an embedding mapping. We show that for certain specific factorization models
there exist embedding mappings in closed form. In Sect. 3, we propose a general
framework that describes a variety of factorization models on a more abstract
level and derive a framework defining the mapping models and elaborate three
options for training. In Sect. 4 we present experimental results on real-world
datasets. Section 5 discusses related work and Sect. 6 contains conclusions and
an outlook for further works.

Notations: A matrix A is represented as a bold capital letter and a multidi-
mensional tensor X by a calligraphic bold capital letter. By default we assume a
3-dimensional tensor. In some applications the dimensions correspond to entities
and relation types, which we sometimes treat as generalized entities. A matrix
with indexing superscript as A(l) denotes the latent embedding matrix for enti-
ties of the l-th dimension of a matrix or tensor. The matrix derived by unfolding
a tensor w.r.t. dimension l is noted using subscripts as X(l). Note that unfolding
a matrix w.r.t. first and second dimension is equivalent to the matrix itself and
its transpose, respectively. X† stands for the Moore-Penrose pseudoinverse. A
vector is denoted with bold small letters such as xi,• and refers to the i-th row
in a corresponding matrix X. We refer to a set using either a simple capital
Greek letter such as Θ or —if we focus on the elements— using curly brack-
ets as {A(l)}L

l=1. The concatenation operation is noted with squared brackets
[•, ..., •]+.

2 Factorization Models with Closed-Form Mappings

In this section we review a few well-studied factorization models that are based
on latent embeddings and motivate our problem setting of mapping new entities
into the latent embedding space.

Matrix Cases: First we review the Singular Value Decomposition (SVD) as
a latent embedding model: For an SVD in form of X = UDV T we interpret

Embedding Mapping Approaches 201

the matrix U to consist of latent embedding vectors in rows, for each entity
represented in the first dimension of X. The matrix X is constructed by a linear
combination of the embeddings U with weights defined as rows of (DV T)T .

Then we consider U = X(DV T)†, which is an inverse-relation, to be a
mapping function from X to the latent embedding in U . It is generally assumed
that this mapping relation also holds for a new observation which is not present
in X, i.e.

uT
new = xT

new(DV T)† (1)

given that D and V are regarded as constant. We can generalize these rela-
tionships to Matrix Factorization(MF) X = ABT as used in [16]. The latent
embeddings are now rows of A and the weights as rows of B. The mapping
function now is

aT
new = xT

new(BT)†. (2)

In both cases (SVD and MF), instead of a complete recalculation of the factor-
ization to derive the corresponding latent embedding vector, we simply need to
apply a linear map to xnew, where the map is derived from the pseudo-inverse
operation.

Tensor Cases: Following the notation in [15], we describe the CP/PARAFAC
model [14] as well as its more general form, the Tucker decomposition [22], as
X ≈ G ×1 A×2 B ×3 C. A row in each of the three matrices, i.e., ai,•, bj,•, ck,•,
stores the latent embedding of the i-, j- and k-th entity, respectively, in the
corresponding dimensions of X ; and the core tensor G specifies the linear inter-
action between each triple of embedding vectors to derive the entry xi,j,k. In the
special case of CP, G takes the form of a hyper-diagonal tensor. By rewriting
the model as X(1) = AG(1)(C ⊗ B)T we could also interpret A as a latent
embedding matrix and G(1)(C ⊗B)T as the linear weights. Inverting this linear
relation we can obtain a mapping of the form

aT
new = xT

new(G(1)(C ⊗ B)T)†. (3)

Such closed-form mappings cannot be derived in at least two cases: Firstly,
for non-linear factorization models such as Multiway Neural Network (mwNN)
[8], Neural Tensor Networks [20] and TransE [3]; secondly for models with shared
embeddings such as RESCAL [19]. We derive solutions for those two cases in
the next section. In the experimental part of this paper, we implement and test
(logistic) MF to model data in matrix form and CP, RESCAL and mwNN for
tensor data. A brief summary of the model architectures can be found in Table 1.
To obtain proper probabilistic models, we introduce a natural parameter η for
each entry x in the matrix or tensor.

3 General Models and Training Algorithms

In this section we introduce a generic framework describing factorization and
Embedding Mapping (abbreviately termed ‘Emma’). We also propose three

202 Y. Yang et al.

Table 1. A summary of selected factorization models within the scope of this paper. sig
denotes the sigmoid or logistic function sig(x) = 1

1+exp(−x)
; N and B denote Gaussian

and Bernoulli distributions, respectively. We denote with MLP a standard three layered
perceptron.

Model Distr. assumption Natural parameter

MF xi,j ∼ N (ηi,j , σ) η̂i,j =
∑R

r=1 a
(1)
i,r · a

(2)
j,r

Logistic MF xi,j ∼ B(sig(ηi,j))

CP xi,j,k ∼ N (ηi,j,k, σ) η̂i,j,k =
∑R

r=1 a
(1)
i,r · a

(2)
j,r · a

(3)
k,r

RESCAL xi,j,k ∼ N (ηi,j,k, σ) η̂i,j,k =
∑P

p

∑P
p′ wp,p′,k · a

(1)
i,p · a

(1)

j,p′

mwNN xi,j,k ∼ B(sig(ηi,j)) η̂i,j,k = MLP ([a
(1)
i,• , a

(2)
j,• , a

(3)
k,•]+)

novel approaches to train the mapping models. For the sake of generality we
shall refer to matrices also as tensors.

3.1 General Models

The Factorization Model defines the interaction between latent embeddings
to construct the tensor as

Ĥ = f
(
{A(l)}L

l=1; Θ
)

with

Ĥ ∈ Rn1×...×nL ,A(l) ∈ Rnl×pl .
(4)

Here, the L-dimensional tensor H contains the natural parameters η. The matri-
ces in set {A(l)}L

l=1 store the latent embeddings in their rows. The tensor is
reconstructed with operations defined by a parameterized function f(•; Θ).

For instance, in case of CP factorization, the function f specifies the linear
combination of rows in each embedding matrix without additional parameters
(Θ = ∅); and for mwNN, Θ consists of the weights in an NN model whose
architecture is defined as part of f .

The Factorization Cost Function: We define the factorization cost function
cF and its regularized version cp

F as

cF = dF (X , Ĥ) = dF (X , f({A(l)}L
l=1; Θ)) (5)

cp
F = cF +

L∑

l=1

γ(A(l)) + ρ(Θ). (6)

During training the cost function is optimized w.r.t. the parameters in Θ and
embeddings in the A(l)’s. An example for the differentiable distance measure dF

is the Frobenius Norm. For binary tensors, the cross-entropy loss is more suitable.
In Eq. (6) we included a regularization function γ(•) for the latent embeddings
and a second one ρ(•) for the model parameters.

Embedding Mapping Approaches 203

The Mapping Model defines a function g(•; Ψl) that maps each row in the
tensor unfolding X(l) to the corresponding row in the learned embedding matrix

A(l) as

Â(l) = g
(
X(l); Ψl

)
∀l ∈ [1, ..., L] with

X(l) ∈ Rnl×
∏

l′ �=l nl′ .
(7)

Note that in the input of the mapping function, each arbitrary row i in X(l),
is identical to the vectorized i-th hyper-slice of the tensor and consists of all
available information about the i-th entity. For a KG, for instance, this could
be the vector indicating the existence of relations between entity i and all other
entities for all relation types. The function g(•) defines the architecture of the
mapping model and Ψl consists of all parameters.

The Mapping Cost Function: We define the mapping cost function as

cM =

L∑

l=1

dM (A(l), Â(l)) =

L∑

l=1

dM (A(l), g(X(l); Ψl)) (8)

cp
M = cM +

L∑

l=1

ρ(Ψl). (9)

Optimizing the mapping cost function involves adjusting Ψl for each l with a
given g(•) so that the distance between the learned embedding A(l) from factor-

ization and mapped embedding Â(l) from the corresponding tensor unfoldings
is minimized.

The Compact Model: Since the latent embeddings, e.g., the A(l)’s, are also
adjustable parameters, we could write a more compact model by plugging Eq. (7)
into Eq. (4) and obtain

Ĥ = f
({

g
(
X(l); Ψl

)}L

l=1
; Θ

)
. (10)

Analogously, combining cost functions of the factorization model —Eqs. (5) and
(6)— and those of the mapping model —Eqs. (8) and (9)— we obtain:

The Compact Cost Function as:

c = dF (X , Ĥ) = dF

(
X , f

({
g

(
X(l); Ψl

)}L

l=1
; Θ

))
(11)

cp = c + ρ(Θ) +

L∑

l=1

ρ(Ψl), (12)

where A(l)’s are not explicitly defined but could be derived from g(X(l); Ψl).
It should be noted that the tensor X occurs both at the output and the input

(as unfoldings) of the cost function. More specifically, for a tensor X of three
dimensions, the factorization and mapping models as a whole actually model

204 Y. Yang et al.

Fig. 1. Illustration of the Compact Model in case of a tensor: We model the each entry
xi,j,k over the natural parameter ηi,j,k based on the three slices of the tensor indexed
by i, j and k, respectively.

each entry xi,j,k based on the i-th, j-th and k-th slices of 1st, 2nd and the 3rd
dimension of the tensor, respectively, whereby the xi,j,k is the intersection of all
these three slices. This aspect is illustrated in Fig. 1.

The factorization problem defined in Eq. (4) could be solved using a variety
of well studied factorization models that optimize Eq. (5). In the following we
focus on solving the mapping problem in Eq. (7) and the compact modelling
problem in Eq. (10). Within the scope of this paper we specifically assume that

the function g(•; Ψl) represents a linear relation between A(l) and X(l) that can
be modelled by a matrix Ψl = {M l}, i.e.

Â(l) = X(l)M l ∀l ∈ [1, ..., L]. (13)

3.2 Training Approaches

Post Embedding Mapping: The most intuitive way to perform an Emma is
to solve Eqs. (4) and (7) sequentially: Given that a certain factorization model

has already derived the latent embeddings A(l), we could consider the mapping
from X(l) to the embedding to be a linear system of nl equations as suggested in
Eq. (7). Since one is interested in small dimensions for the latent embeddings, i.e.
pl <

∏
l′ �=l nl′ , the system is overdetermined and can be approximately solved

using Least-Square (LS) methods. Specifically: M̂ l = (XT
(l)X(l))

†XT
(l)A

(l).
It is easy to see that the inverting methods of Eqs. (1), (2) and (3) intro-

duced in Sect. 2 are special cases of this LS estimation. For instance, with MF
model X = ABT , the general LS estimation could be described as Â = XMA

with MA = (XT X)†XTA. Plugging in the information of the model defini-
tion, we obtain MA = (BATABT)†ABTA = (BT)†, which is the same as
the inverting operation in Eq. (2). An apparently desirable feature of this Post
Mapping approach is its simplicity. It is applicable for any known factorization
model and does not affect the factorizing process, since this approach assumes
the learned embeddings as fixed. In the following we shall refer to this approach
as Emma-Post.

Embedding Mapping Learning with Hatting Algorithm: Alternatively,
one could also integrate the Emma learning into the factorization learning

Embedding Mapping Approaches 205

Algorithm 1. Hatting Algorithm Framework

for all l ∈ [1, ..., L] do:
U (l) ← (XT

(l)X (l) − λI)†XT
(l)

H (l) ← X (l)U
(l)

end for
for each epoch t in learning factorization do:

{A(l)}L
l=1, Θ ← update w.r.t. cp

F

Absolute Updating: or Stochastic Updating with Late-Starting:

for l ∈ [1, ..., L] do:

A(l) ← H (l)A(l)

end for

if t > τ then:
for l ∈ [1, ..., L] do:

π(l) = 1 − max(0, R2(A(l), H (l)A(l)))
A(l) ← H (l)A(l) with probability π(l)

end for
end if

end for
return:

{A(l)}L
l=1 as latent embeddings;

{M (l) = U (l)A(l)}L
l=1 as Emma matrices.

process: Instead of solving the LS problem after the factorization learning is
completed, we suggest to fit the LS solution against the current latent embed-
ding after each epoch of the factorization learning. Specifically, after each epoch
of the factorization learning, we solve the LS problem based on the current
embeddings and replace these with their LS estimates to satisfy the criterion of
Eq. (8). In terms of notation, we replace A(l) with Â(l) = H(l)A(l) i.e. we ‘hat’
the embedding matrix with the Hat-Matrix as in linear regression [13]. In the
next epoch, the factorization algorithm proceeds from the LS estimates of the
embeddings. In addition, to avoid collinearity and overfitting, it is also advisable
to add a ridge regularization term to the Hat Matrix. We formulate this inte-
grated Emma as an algorithmic framework in Algorithm 1 with the left-sided
option termed Absolute Updating.

There are two major advantages of this algorithmic framework: Firstly, the
LS updates are efficient to calculate since the Hat Matrix is only calculated
once prior to the iterative factorization learning, during which one only needs to
perform in each epoch one matrix multiplication for each dimension for the sake
of LS-updating. Secondly, any factorization algorithm can be easily extended
with this LS update as long as it is performed in a iterated manner, such as
when using ALS or gradient based approaches.

Based on our experiments we also propose following practical adjustments of
the algorithm:

i. Late Starting Strategy: Since the embeddings are usually initialized ran-
domly by many algorithms, it is not necessary in such cases to perform LS
updates during early epochs. It is advisable to start LS updates, for instance,
when the embeddings are updated in smaller magnitudes i.e. where the cost

206 Y. Yang et al.

function is locally flat. One could measure the gradient changes in each epoch or
simply define a τ > 1 to be the first iteration where the LS update commences.

ii. Stochastic Update: We suggest monitoring the quality of the linear map-
ping in terms of R2, the Coefficient of Determination. As long as R2 is small,
it is always assumed to be necessary to further perform LS update. But as the
training proceeds, R2 often tends to get larger and converges to 1. In such cases
it may again be unnecessary to perform an LS update in each iteration and one
could save some runtime. Since the R2 typically lies within (0, 1) but could also
be negative based on our definition, we define a coefficient π = 1 − max(0, R2)
to be interpreted as the probability or necessity to perform an LS update. Both
improvements are taken into account in the right-sided option Stochastic Updat-
ing with Late-Starting of Algorithm 1. In the following we shall refer to this
approach as Emma-Hatting.

Embedding Mapping Learning with Back-Propagation: It is easy to
see that, in combination with Multi-way Neural Networks, the linear mapping
between tensor unfoldings and the latent embeddings could also be considered
as one more linear activated layer of the network. To this end the Hatting Algo-
rithm could be replaced with the usual Error Back-Propagation. This aspect
also applies to other factorization models as long as such a model can be for-
mulated as an NN. In such cases the latent embeddings become the first hidden
layer and the tensor unfoldings become the input layer. For such models the
latent embeddings are not explicitly learned but are derived from the product
of the input vector and the mapping matrices. This aspect corresponds to the
compact model described in Eq. (10) and is illustrated in Fig. 2. Similar illus-
trations could also be found in [18] for RESCAL and the mwNN. Note that for
MF and RESCAL there are no parameters other than the mapping matrices to
be learned; while the mwNN also learns the weights following the embedding
vectors. In the following we shall refer to this approach as Emma-BP.

In summary, the Emma-Post approach optimizes the cost functions in
Eqs. (5) and (8) consecutively and separately. Therefore the two error terms

of dF (X , Ĥ) and dM (A(l), Â(l)) are —though minimized to a certain extent—
always present. The Emma-Hatting approach also considers these two cost func-
tions. But the LS estimates are calculated more than once and the LS error
term —in the long run— is expected to be smaller than that derived from
Emma-Post. However, because of this LS update within the factorization algo-
rithm, the gradient approach may become unpredictable with respect to whether
the optima identified with LS correction are better than those without the LS
update. The stochastic Hatting Algorithm, from this point of view, could be
considered as a compromise between the post mapping and the absolute hat-
ting approach. On the one hand it still regulates the factorization algorithm to
satisfy the cost function Eq. (8); on the other hand it allows the factorization
algorithm to minimize the cost function of Eq. (5) continuously as long as the
error of Eq. (8) is relatively small. In other words, this approach enables better
factorization quality by tolerating some acceptable mapping error. By omitting

Embedding Mapping Approaches 207

Fig. 2. Illustrating the Compact Model as NNs in 3-D case. Here the rows indexed
by i, j and k in the tensor unfoldings X (1), X (2) and X (3) correspond to the three
coloured slices in Fig. 1, respectively. Note that for RESCAL there are only two map-
ping matrices instead of three since the entity embeddings are shared between subject
and object. (Color figure online)

the explicit mapping error, the Emma-BP approach models the factorization and
mapping as a whole only in terms of the factorization error of Eq. (11).

4 Experiments

In this section we present experiments on three real-world datasets and evaluate
the results from two different aspects. First we evaluate our models on a user-
item matrix and a KG dataset (both binary) in terms of prediction quality. Then,
with another tensor dataset of real values, we focus on the interpretability of the
mapped embeddings. The models were implemented in Keras [6] and its backend
Theano [1].

4.1 Movielens Data

Data: The Movielens-100K [12] dataset is a user-item matrix containing 100000
ratings from 943 users on 1682 movies. The fact that a rating was performed on
an item is encoded as a 1, otherwise we use a 0. Such binary-item matrix could
be considered as a special case of a KG with two types of entities and one type
of relation.

Task: The major task of a conventional recommender system is to predict the
probability of a known user being interested in an known item, as long as event
has not been observed in the past. (In terms of a KG this is equivalent to link
prediction for one relation between two entities.) In contrast, we intend to predict
the probabilities for a new user being interested in known items; or vice versa:
for a new item to be of interest for known users.

Settings: First, we sample 20% of users to hold out for test and train our models
using the remaining 80% with embedding sizes of 20 and 50. In the test phase,

208 Y. Yang et al.

we mask a sequence of proportions [0, 0.1, 0.2, 0.3, 0.4, 0.5] of all watched movies
of each test user and predict a distribution over all known movies, especially the
masked ones. We measure the quality of each prediction in terms of NDCG@k [5].
Further we transpose the user-movie matrix and conduct the same experiment,
i.e., we add new movies to the database and try to recommend each movie
to the most likely user. Other than [11], we test a logistic MF combined with
Emma-Post, Emma-Hatting and Emma-BP. As baseline model we perform a
most-popular prediction: we calculate the frequencies of each movie for all users
in the training set and interpret these as constant recommendation scores for
a new user and a new movie, respectively. We repeat this process 5 times with
different and mutually exclusive training and test samples in order to derive
prediction stability in terms of mean and standard deviations.

Results: The results of the experiments are presented in Fig. 3. The mean and
standard deviation of the NDCG@k scores of the three mapping techniques are
visualized in corresponding colors. The horizontal axis represents the proportion
of masked entries in the test set; the mean and standard deviation of baseline
predictions are demonstrated as the horizontal line and the gray bars.

The performances of the models suggest different trends for new-user and
new-movie cases. For new users, the predictions made by logistic MF with Emma-
Hatting are suboptimal and may even drop below the baseline for larger masking
proportions. Emma-Post and Emma-BP offer better and comparable prediction
qualities, though the latter remains advantageous even as the masking proportion
becomes quite large. Emma-Post, however, cannot even beat the baseline for
new appended movies, while Emma-BP perform noticeably well for all possible
masking proportions.

4.2 Knowledge Graph Data

Data: In following experiments we test our models on the Freebase dataset [2]
as prepared in [17]. We sample entities that contain at least 500 known relations
forming a binary tensor of shape 39 × 115 × 115.

Task: Similar to recommender systems, the conventional link prediction in KGs
is performed for each triple of known entities and relations [21]. With our Emma
models we intend to predict the existence of links between known and new
entities, given some observed but incomplete information about this new entity.
More specifically, for an existing KG modelled with a binary tensor X ∈ RI×I×K

we assume a further binary tensor Z ∈ RI′×I×K storing a subset of true links
between I ′ new entities and the I known ones. Our task here shall be to predict
the unobserved links in Z based on factorization and mapping models trained
only on X .

Settings: In order to also estimate the model’s stability we perform a 20%−80%
Cross-Validation on the data by splitting the entity set into 5 mutually exclusive
groups. In each test set we mask and try to recover 20% of known links for each
entity with two approaches: (1) We map the entities with masked links into

Embedding Mapping Approaches 209

Fig. 3. Evaluation of prediction for new users and movies. The horizontal line and grey
bar represent the baseline recommendation and its standard deviation. (Color figure
online)

the latent space obtained by the Emma-Post, Emma-Hatting and Emma-BP
models that have been trained with the corresponding training set and predict
the masked links with the same models; (2) we train a RESCAL and a mwNN
model on training and test sets, simulating a retraining scenario, and predict the
masked links in the conventional way such as in [17]. In both cases we generate
negative samples according to the Local-Closed-World-Assumption [17].

Results: In Table 2 we report the prediction quality of AUROC and AUPRC
using models of RESCAL and mwNN in combination with all three Emma
approaches as well as from retraining. In general, mwNN outperforms RESCAL
in terms of larger means and smaller standard deviations in almost all cases,
which could also be supported by the results reported in [17]. In predicting
for new entities, mwNN combined with Emma-BP yields the best mean values.
Especially in terms of AUPRC the advantage could be as large as 33% com-
pared to second best result produced by RESCAL+Emma-Hatting for R = 10
and 44% compared with RESCAL+Emma-BP for R = 30. The minimal stan-
dard deviations are achieved in 5/8 cases by Emma-Post, though it almost always
produces worst mean values in combination with any factorization models. As

210 Y. Yang et al.

Table 2. Prediction Qualities of RESCAL and mwNN in combination with all three
mapping approaches on a FreeBase dataset.

expected, retraining always offers better predictions than Emma approaches.
But do note that a prediction with an Emma model does not cost any run
time; while a retraining process for one or multiple entities would demand a
comparable amount of time as training an Emma model from scratch. Interpret-
ing the retraining predictions as upper bound, it should also be noted that the
combination of mwNN and Emma-BP achieves in most cases results relatively
close to those of retraining. We speculate that such canonical model-algorithm
combination might enjoy numerical advantage.

4.3 Amino Acid Data

With previous experiments we have shown that Emma models are able to pre-
dict links between every known entity and a newly appended entity based on
incomplete information. With the following experiment we also show that Emma
models can map a new entity into the latent space with high interpretability —
here in terms of correlation coefficients.

Data: The Amino Acid Dataset [4] contains a three-way tensor X ∈ R5×51×201

and a matrix Y ∈ R5×3. The latter one describes the proportion of 3 types of
amino acid mixed according to 5 different recipes. The corresponding 5 samples
are then measured by fluorescence with excitation 250–300 nm, emission 250–
450 nm on a spectrofluorometer and the measurements are recorded in the tensor
X . With a CP factorization producing matrices of dimensions A(1) ∈ R5×3,
A(2) ∈ R201×3 and A(3) ∈ R61×3 it is expected that each column in A(1) would
strongly correlate with one column in the recipe matrix Y . Note that the order
of the columns in A(1) is arbitrary and may not correspond to the column in Y
at the same position. For more details please refer to [4].

Task: The latent embeddings learned from this data set are expected to be
interpretable in terms of correlations with known recipes. If a new entity is
correctly mapped into the latent space, its mapped embedding(s) along with
other learned embeddings would also correlate with the corresponding column

Embedding Mapping Approaches 211

in the recipe matrix. Here we assume the information observed on the new entity
to be complete and do not perform any masking.

Settings: We remove each slice Xi,•,•, i ∈ [1, 5] (corresponding to a certain
recipe) from the tensor and calculate CP factorizations with Emma-Post and
Emma-Hatting based on the rest of the data. The slice held out is then mapped
to the 3-D latent space with mapping matrix and appended to the learned embed-
dings of the other slices. We then calculate the mean of its column-wise Pearson
correlation coefficients with Y . Further we conducted the same experiment with
two slices removed at a time.

Results: With the first leaving-one-out experiment setting we derive accordingly
5 averaged correlations and for the second leaving-two-out setting we have 5!

3!·2! =
10 values. We report that the means and standard deviations of the correlation
coefficients derived from Emma-Post and Emma-Hatting to be both 0.999 ±
0.001. As for leaving-two-out experiments, Emma-Post achieves 0.991 ± 0.007
and Emma-Hatting yields the same mean value but a larger standard deviation
of 0.015. To this end we conclude that both mapping approaches can map one
or two new slices into the latent space in a way that its embedding(s) —along
with other embeddings learned from factorization— correlates column-wise with
the recipe matrix Y with a high correlation score. As expected, in leaving-two-
out experiments the correlation coefficients decrease slightly due to the smaller
training set. Note that once again Emma-Post seems to produce smaller standard
deviations just as the KG experiments.

5 Related Works

[10] introduced a method to map user attributes (referred to as ‘content informa-
tion’ in the context of content filtering) into the latent embedding space to solve
cold-start problem for new entities. Despite the fact that we are not considering
the cold-start problem and do not require content information, this model still
shares a few aspects with ours: (1) In both approaches, the codomain of the
mapping function is the latent space learned by factorization models with the
purpose of finding latent embeddings for new entities; (2) both approaches use
modular learning that can be combined with a variety of existing factorization
models. An important difference is the domain of the mapping function. In our
case it is the observable feature space of an entity, while in [10], it is the user
attribute space. It would be interesting, though, to combine our models with
such content information: In the first step, one could perform content filtering
to produce some first recommendations. Secondly, one could interpret these rec-
ommendations as incomplete and enrich them using Emma models by mapping
them into the latent space and perform link predictions.

Our proposed Emma-BP model shares the idea of learning the factorization
jointly with an implicit latent embeddings with the Temporal Latent Embedding
(TLEM) Model [9], where a concatenated NN is trained with observable features
as inputs, which are mapped to some implicit latent features. In TLEM one

212 Y. Yang et al.

intends to model the consecutive effect of a sequence of events on the next one;
while we are interested in the collaborative effect among entities.

6 Conclusions

The major contribution of this paper is to propose three approaches for map-
ping new entities into the latent embedding space learned by a wide variety of
factorization models.

Our approaches are not based on retraining while obtaining comparable
quality to model retraining. Our framework describes factorization and map-
ping problems on an abstract level, which could inspire the development of fur-
ther mapping approaches. During our experiments we also realized the model’s
restrictions in practice: Due to the unfolding operations in the mapping model,
the dimensions of the model inputs increase quadratically with the dimensions of
the tensor. For instance, in our KG experiment in Sect. 4 with a tensor of shape
39×115×115, the mapping model requires inputs of dimensions 4485, 4485 and
13225, respectively. As part of future work, we will explore different approaches
for dimensionality reduction. In addition, we plan to study non-linear extensions
to Emma as well as the application to recurrent NNs.

References

1. Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G.,
Turian, J., Warde-Farley, D., Bengio, Y.: Theano: a CPU and GPU math expression
compiler. In: Proceedings of the SciPy (2010)

2. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collabo-
ratively created graph database. In: ACM SIGMOD (2008)

3. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: NIPS (2013)

4. Bro, R.: Multi-way analysis in the food industry: models, algorithms, and applica-
tions. Ph.D. thesis, Københavns Universitet (1998)

5. Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N.,
Hullender, G.: Learning to rank using gradient descent. In: Proceedings of the
22nd International Conference on Machine Learning, pp. 89–96. ACM (2005)

6. Chollet, F.: Keras: deep learning library for theano and tensorflow (2015). https://
github.com/fchollet/keras

7. Culotta, A., McCallum, A.: Joint deduplication of multiple record types in rela-
tional data. In: ACM Information and Knowledge Management (2005)

8. Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann,
T., Sun, S., Zhang, W.: Knowledge vault: a web-scale approach to probabilistic
knowledge fusion. In: ACM SIGKDD (2014)

9. Esteban, C., Schmidt, D., Krompaß, D., Tresp, V.: Predicting sequences of clinical
events by using a personalized temporal latent embedding model. In: ICHI (2015)

10. Gantner, Z., Drumond, L., Freudenthaler, C., Rendle, S., Schmidt-Thieme, L.:
Learning attribute-to-feature mappings for cold-start recommendations. In: ICDM
(2010)

Embedding Mapping Approaches 213

11. Gantner, Z., Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: Mymedialite: a
free recommender system library. In: ACM Conference on Recommender Systems
(2011)

12. Herlocker, J.L., Konstan, J.A., Borchers, A., Riedl, J.: An algorithmic framework
for performing collaborative filtering. In: ACM SIGIR (1999)

13. Hoaglin, D.C., Welsch, R.E.: The hat matrix in regression and anova. Am. Stat.
32(1), 17–22 (1978)

14. Kiers, H.A.: Towards a standardized notation and terminology in multiway analy-
sis. J. Chemometr. 14(3), 105–122 (2000)

15. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev.
51, 455–500 (2009)

16. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer 42(8), 30–37 (2009)

17. Krompaß, D., Baier, S., Tresp, V.: Type-constrained representation learning in
knowledge graphs. In: ISWC (2015)

18. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine
learning for knowledge graphs. Proc. IEEE 104(1), 11–33 (2016)

19. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on
multi-relational data. In: ICML (2011)

20. Socher, R., Chen, D., Manning, C.D., Ng, A.: Reasoning with neural tensor net-
works for knowledge base completion. In: NIPS (2013)

21. Taskar, B., Wong, M.F., Abbeel, P., Koller, D.: Link prediction in relational data.
In: NIPS (2003)

22. Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychome-
trika 31(3), 279–311 (1966)

Chapter 3

RNNs in Sequential EHR for

Predictive Decision Support

Predictive Modeling of Therapy Decisions in Metastatic Breast Cancer with
Recurrent Neural Network Encoder and Multinomial Hierarchical Regression

Decoder

Yinchong Yang, Volker Tresp
Ludwig-Maximilians-Universität München

Siemens AG, Corporate Technology, Munich
{yinchong.yang, volker.tresp}@siemens.com

Peter A. Fasching
Department of Gynecology and Obstetrics,

University Hospital Erlangen
peter.fasching@uk-erlangen.de

Abstract—The increasing availability of novel health-related
data sources —e.g., from molecular analysis, health Apps
and electronic health records— might eventually overwhelm
the physician, and the community is investigating analytics
approaches that might be useful to support clinical decisions.
In particular, the success of the latest developments in Deep
Learning has demonstrated that machine learning models are
capable of handling —and actually profiting from— high
dimensional and possibly sequential data. In this work, we
propose an encoder-decoder network approach to model the
physician’s therapy decisions. Our approach also provides
physicians with a list of similar historical patient cases to
support the recommended decisions. By using a combination
of a Recurrent Neural Network Encoder and a Multinomial
Hierarchical Regression Decoder, we specifically tackle two
common challenges in modeling clinical data: First, the issue
of handling episodic data of variable lengths and, second,
the need to represent hierarchical decision procedures. We
conduct experiments on a large real-world dataset collected
from thousands of metastatic breast cancer patients and show
that our model outperforms more traditional approaches.

1. Introduction

With the introduction of the Electronic Health Records
(EHR), a large amount of digital information has become
available in clinics. This is expected to encourage more
personal and precise healthcare services and improve patients
experience [1, 2]. On the other hand, it also requires the
physicians to consult a large variety and volume of data in or-
der to perform diagnosis and treatment decisions, such as the
patients’ background information, medical images, genetic
profiles and the patients’ entire medical history. The decision
making process, therefore, could become increasingly com-
plex in connection with the growing amounts of information
collected on each patient. Machine learning based Clinical
Decision Support (CDS) systems could provide a solution
to such data challenges [3, 4, 5]. These systems are able
to actually profit from the large amount of data in high
dimensional space. For instance, the latest success of Deep

Figure 1. The concept of a machine learning based CDS system.
Application Scenario

Training Scenario

Patient Data

Physician

Machine
Learning Model

Therapy
Decision

Input

Input Predict

Prescribe

A
p

p
ro

xi
m

at
e

C
o

n
su

lt

Historical
Patient Data

Historical
Therapy
Decision

Input Adjust

Deviation

Agree

OK

Alert

Learning models lies in their ability to generate more abstract
and informative latent features from the high dimensional
raw features, which turns out to largely facilitate predictive
modeling.

There are multiple ways that a machine learning model
may impact the decision process of a physician, for instance,
by predicting the possible outcome of each decision. [5]
provides physicians with endpoint predictions of patients
with kidney failure. Based on the predicted probabilities of
kidney rejection, kidney loss and death within the next 6
and 12 months, the physician is more informed to select
the correct medication. This class of approaches, however,
might be limited when i) not yet enough endpoints are
labeled in the training data and ii) confounder effect is
presumed in the data situation [6]. Therefore, in this work we
explore another approach to machine learning base decision
support by directly predicting the physicians’ decisions.
More specifically, a machine learning model would calculate
the probability of each decision conditioned on the patient
information. From the viewpoint of the physicians, these
probabilities can be interpreted as recommendation scores.
We illustrate this conceptual framework in Fig. 1. When
properly trained, the machine learning model can be expected

to generate recommendations which –to a certain extend–
agree with the prescriptions actually prescribed by the
committee of physician in the study. In cases where the
physician faces a great number of possible decisions, the
recommendations would narrow down the size of prescription
candidates. On the other hand, the machine learning model
would also implicitly detect anomalous prescriptions, by
checking whether the actual prescriptions are among the top-
n ranked recommendations made by the machine learning
model. Such a system relies on the predictive power of the
machine learning model, which can be trained using historical
data. During training, the model attempts to predict historical
decisions based on the corresponding patient data and the
actually documented decisions can adjust the model so that
it can improve its predictions throughout the training epochs.

Our study is based on a large and up-to-date data set
consisting of almost three thousand metastatic breast cancer
patients in Germany. This dataset includes the patients’
background information, the primary tumor record, etc.,
as well as the development of the cancer such as local
recurrence and metastasis. Included in the dataset are also all
the prescribed treatments each patient obtained throughout
time. Since the physicians make their therapy decisions —
often at a tumor board— after studying all available patient
information, we assume that a machine learning model can
also be trained to map the patient features to the therapy
decisions.

There are two major challenges in the data situation.
Firstly, the patients in the dataset do not share a time axis
and do not visit clinics regularly. On some patients, no more
data was ever recorded after a surgery; while others revisited
the clinics repeatedly for years due to local recurrences
and metastasis. Consequently, the patients have a medical
history of variable length, making it challenging to construct
a common input feature space for all patients. Secondly,
the therapy decisions that we attempt to model are of a
hierarchical structure. For instance, the physician first has to
decide for a radiotherapy before further specifying whether
it should be a curative or a palliative one, and whether it
should be a Brachytherapy or a percutaneous type.

To address these two issues we propose a neural network
architecture that instantiates the Encoder-Decoder Framework
by [7]. Specifically, we encode the patients’ medical histories
of variable lengths into one fixed-size representation vector
using Recurrent Neural Networks (RNN), and deploy on top
of that a hierarchical regression model, which functions as
a decoder that predicts the therapy decisions. We conduct
experiments on the dataset with multiple choices of encoders
and decoders, as well as different hyper-parameter settings,
and identify their contribution to the modeling quality.
Furthermore, we show that with our model architecture,
one could also provide physicians with a list of similar
historical patient cases to support our prediction, making
it more realistic to deploy such decision support system in
clinics.

The rest of the paper is organized as follows. In Section 2
we discuss multiple related works that inspired the design of
our model. In Section 3 we describe our data situation, includ-

ing the study background and data processing approaches.
In Section 4 we first briefly introduce two specific RNN
models that serve as our encoder network, and then propose
a hierarchical prediction model as our decoder. In Section 5
we present our experimental results and Section 6 wraps up
our present work and give a outlook for future directions.

2. Related Work

Handling sequential EHR data. Due to the sequential
nature of EHR data, there have recently been multiple
promising works studying clinical events as sequential data.
Many of them are inspired by works in natural language
modeling, since sentences can be easily modeled as sequence
of signals. [4] adjusted a language model based on the sliding
window technique in [8], taking into account a fixed number
of events in the past. This model was extended in [5] by
replacing the sliding window with RNNs, which improved
the predictions for prescriptions decision and endpoints. [9]
also applied LSTM-RNN to perform diagnosis prediction
based on sequential input. And a related approach with RNNs
can also be found in [3] to predict diagnosis and medication
prescriptions at the same time throughout time. Such RNN
application was further augmented with neural attention
mechanism in [10], which did not only show promising
results but also improved the interpretability of the model.

RNNs for sequence classification/regression. The
RNN models in these works were implemented in a many-
to-many fashion. That is to say, at each time step the RNN
is supposed to generate a prediction as output. The reason is
that in their data all patients share the same aligned time axis
and regularly visit the clinics. In our work, on the other hand,
there are neither regular visits nor shared time axis. To this
end we implemented many-to-one RNN models that consume
a sequential input and generates only one output. This setting
can be found in a variety of sequence classification/regression
tasks. [11] used such RNN architectures to classify spoken
words and handwriting as sequences. RNNs have been also
applied to classify the sentiment of a sentence such as in the
IMDB reviews dataset [12]. The applications of the RNNs in
the many-to-one fashion can also be seen as the encoding of a
sequence of variable length into one fixed-size representation
[7], which is then decoded to perform prediction as decoding.

Hierarchical classification/regression model. Rather
than a simple classification task where all classes are on
the same level, the therapy decisions turn out to be more
complicated. For instance, the decision of a Brachytherapy
is only observed when the physician decides to prescribe
a radiotherapy in the first place. In order to model such
a decision procedure as realistic as possible, we extend
a hierarchical response model in [13] and deploy it as
decoder on top of RNNs. [14] also proposed a quite similar
architecture to factorize a large softmax layer into a hierarchy.
The purpose was to accelerate the calculation of the softmax,
which in natural language processing often has the size of
the entire vocabulary.

3. Metastatic Breast Cancer Data

In this section we first briefly introduce the classical
breast cancer therapies and then give an overview of our
data situation.

3.1. Metastatic Breast Cancer Treatments

Breast cancer is the one of the most frequent malignant
cancers in the Western world. In Germany, for instance,
approximately 70,000 women suffer from breast cancer each
year with around 30% mortality rate [15, 16]. In many of
these cases, it is the metastasis of the cancer cells to vital
organs that actually causes the patient’s death. There are three
classes of classical treatments of metastatic breast cancer:
radiotherapy, systemic therapy and surgery. Typically, as soon
as a patient is diagnosed with breast cancer, a surgery to
remove the primary tumor would be the first option. In order
to prevent local recurrence and metastasis, the patient would
receive radiotherapies and/or systemic therapies after the
surgery. If, however, local recurrences and/or metastasis are
later diagnosed, the patient might undergo a further surgery,
succeeded by radiotherapies and/or systemic therapies. This
process can be repeated till either i) no more recurrence or
metastasis can be identified or ii) the metastasis is observed
in vital organs and surgery is no longer an option. In the
latter case, radiotherapies and/or systemic therapies would
become the major treatments. Latest discoveries in genetics
have brought about novel systemic therapies that exploit
specific biological characteristics of the cancer cell. Since
these special characteristics are mostly not present in healthy
cells, these targeted therapies have proven to be more efficient
with less severe adverse effect.

3.2. Data Description and Processing

The majority of the dataset was provided by the PRAEG-
NANT study network [17], which has been recruiting patients
of metastatic breast cancer since 2014. The original data are
warehoused in the secuTrial R© database. After exporting and
pre-processing, we could extract information on 2,869 valid
patients.

There are two classes of patient information that are
potentially relevant for modeling the therapy decisions: First
the static information includes 1) basic patient properties,
2) information on the primary tumor and 3) information on
the history of metastasis before entering the study. In total
we observe 26 features of binary, categorical or real types.
We performed dummy-coding on the former both cases and
could extract for each patient i a static feature vector denoted
with mi ∈ R118. We summarize the features in Tab. 1.

The sequential information includes data on 4) local
recurrences, 5) metastasis 6) clinical visits 7) radiotherapies,
8) systemic therapies and 9) surgeries. These are time-
stamped clinical events observed on each patient throughout
time, and at each time step there can be more than one type
of events recorded. All these sequential features are of binary
or categorical nature and are also dummy-coded, yielding

Table 1. OVERVIEW OF ALL STATIC FEATURES.

Static features Feature names and dimensions

1) Basic

Age 1
Height 1
HRT (Hormone Replacement Therapy) 5
parity 9
Mother BC 3
Sister BC 6
Menstruation 1

2) Primary
Tumor

Type 3
Total eval. of the malignancy 8
Total eval. of axilla 4
TAST eval. of the malignancy 8
TAST eval. of axilla 4
Mammography eval. of the malignancy 8
Mammography eval. of axilla 4
Ultrasound eval. of the malignancy 8
Ultrasound eval. of axilla 4
MRI eval. of the malignancy 8
MRI eval. of axilla 8
Metastasis staging 4
Ever neoadjuvant therapy 4
Ever surgery 4

3) History of
metastasis

Lungs 1
Liver 1
Bones 1
Brain 1
Other 10

Total 26 118

for patient i at time step t a feature vector x[t]
i ∈ {0, 1}189.

We denote the whole sequence of events for this patient i
up to time Ti using a set of {x[t]

i }Ti
t=1. We summarize the

sequential features in Tab. 2.
Since we attempt to model the therapy decisions concern-

ing radiotherapies (item 7), systemic therapies (item 8)1 and
surgeries (item 9), we extract from the medical history of
each patient all possible sub-sequences where the last event
consists of one of the three therapies. Therefore in each of
these sub-sequences, the last event serves as the target that
the model is expected to predict based on all previous events
and the static information. Obviously, instead of the entire
vector x[t]

i we only need the subset of the vector concerning
the therapies and denote this with y ∈ {0, 1}39. Finally the
training/test samples are constructed as

{mi, {x[t]
i }

t∗i−1
t=1 } → y

[t∗i]
i ⊆ x[t∗i]

i , (1)

for each possible time step t∗i where one of the therapies is
observed. We illustrate this approach of data processing in
Fig. 2.

From the 2,869 patients we could extract in total 16,314
sequences (i.e. 5.7 sequence per patient on average). The
length of the sequence before a therapy prescription varies
from 0 to 35 and is on average 4.1.

Every time a physician is supposed to prescribe a
treatment, she/he is first supposed to choose one of the
three therapy categories of radiotherapy, systemic therapy
and surgery. For each chosen therapy category the physician

1. Except the fourth feature ”Reason of termination”, which we do not
deem predictable but would serve well as input feature.

Table 2. OVERVIEW OF ALL SEQUENTIAL FEATURES, THEREOF 7), 8)
AND 9) ARE THERAPIES THAT WE ATTEMPT TO PREDICT.

Sequential features Feature names and dimensions
4) Local

Recurrences
Location 4
Type 3

5) Metastasis
Evaluation

Total 6
Lungs 9
Liver 9
Bones 9
Brain 9
Lymph 9
Skin 9
Ovum 9
Soft tissue 8
Kidney 8
Pleural cavity 8
Thorax 8
Muscle 8
Periosteum 8
Other 8

6) Visits Therapy situation 12
ECOG Life status 6

7) Radiation Type 3
Intention 3

8) Systemic

Type 6
Intention 13
Ref. to an surgery 4
Reason of termination 6

9) Surgery Type 10
Total 26 189

will then decide the therapy features. For radiotherapy there
are two 3-dimensional multinomial distributed features: the
radiotherapy intention being either curative, palliative or un-
known; and the radiotherapy’s type being either percutaneous,
Brachytherapy or others. For systemic therapy there are
three multinomial distributed features. The first one describes
6 types of systemic therapy such as antihormone therapy,
chemotherapy, anti-HER2 therapy etc.; the second feature
documents the therapy’s intention, namely an argument based
on the 13 different stagings of the cancer; the third four-
dimensional feature records whether the therapy prescription
is related to a surgery or is unknown. The last category is
composed of 10 Bernoulli distributed variables that describe
the surgery, such as breast conservation surgery, mastectomy,
etc.. Detailed information of the feature values can be found
in Tab. 3.

4. A Predictive Model of Therapy Decisions

In this section we provide an introduction to the two core
ingredients of our proposed model: the many-to-one RNNs
and a Multinomial Hierarchical Regression model. Eventually,
both will be joined to form the complete predictive model.

4.1. Recurrent Neural Network as Encoder

Recurrent Neural Networks, especially the more advanced
variants of Gated Recurrent Units (GRU) [18], presented
in Eq. (2), and Long Short-Term Memory (LSTM) [19,
20] as in Eq. (3) have proven to be powerful in modeling

Figure 2. Illustration of generating training and test sequences from the
medical history of a patient. From a complete sequence of clinical events,
we extract all possible sub-sequences that end with one or multiple therapies,
in this case at t1i , t2i and t3i . At each time step, if a specific event is not
observed, its corresponding features are zero-padded, yielding a common
feature space at each time step.

Time

A sequence of
clinical events:

Local recurrence

Metastasis

Clinical Visit

Radiotherapy

Systemic Therapy

Surgery

Three extracted
sub-sequences:

Padded sequence of
feature vectors:

Static Features

multidimensional sequential data such as sensory and natural
language data [21, 22].

GRU:

r[t] = σ(W rx[t] +U rh[t−1] + br)

z[t] = σ(W zx[t] +Uzh[t−1] + bz)

d[t] = tanh(W dx[t] +Ud(r[t] ◦ h[t−1]))

h[t] = (1− z[t]) ◦ h[t−1] + z[t] ◦ d[t],

(2)

LSTM:

k[t] = σ(W kx[t] +Ukh[t−1] + bk)

f [t] = σ(W fx[t] +Ufh[t−1] + bf)

o[t] = σ(W ox[t] +Uoh[t−1] + bo)

g[t] = tanh(W gx[t] +Ugh[t−1] + bg)

c[t] = f [t] ◦ c[t−1] + k[t] ◦ g[t]

h[t] = o[t] ◦ tanh(c[t]).

(3)

Both models generate for each time stamped input x[t] a
hidden state h[t] that depends on both the current input x[t]

and the last representation h[t−1].
If one has a sequence of targets {y[t]}Tt=1 with the same

length as {x[t]}Tt=1 (a many-to-many model) such as in [3, 5],
one could build a prediction model on top of every hidden
state: ŷ[t] = φ(h[t]) ∀t. On the other hand, one could also

Table 3. THE MODELING TARGET: THERAPY CATEGORIES, THERAPY
FEATURES AND FEATURE VALUES.

Therapy category Therapy feature Feature value

7) Radiation

Intention
Curative
Palliative
unknown

Type
percutaneous radiation
Brachytherapy
Other radiotherapies

8) Systemic

Type

Anti-hormone therapy
Chemotherapy
Anti-HER2 therapy
Other anti-body therapy
Bone specific therapy
Other therapies

Intention

CM0/First treatment.
CM0/Treatment of local recc.
1st line met
2nd line met
3rd line met
4th line met
5th line met
6th line met
7th line met
8th line met
9th line met
not filled
unknown

Ref. to surgery

Neoadjuvant
Adjuvant
No surgery
Unknown

9) Surgery Type

Breast-Conserving Therapy
Mastectomy
Excision
Trial Sampling
Diagnostic Sampling
Sentinel-Node-Biopsy
Skin Sparing Mastectomy
Port-Implantation
Paracentesis
Reconstruction

have a many-to-one model with only one target y for the
whole input sequence of {x[t]}Tt=1. In such case a prediction
model consumes the last hidden state, which recurrently
depends on all its predecessors, in form of ŷ = φ(h[T]).

Interestingly, [7] proposed a Encoder-Decoder-
Framework for machine translation, which involves both
of these variants. First a many-to-one RNN encodes a
sentence of the source language into its last hidden state
vector, which is interpreted as the representation for the
entire sentence. The second one is a many-to-many RNN. It
consumes the last hidden state of the encoder as its first
hidden state and generates a sentence of the target language.
We illustrate this model using a simple example in Fig. 3.

In their work the many-to-one RNN was proven capa-
ble of learning a fixed-size representation from the entire
input sequence of variable length, which is an appealing
characteristics for our data situation as well. In our data,
each patient case has a medical history of variable length,
and the number of clinical events observed before a therapy
prescription varies between 0 and 35. With such an encoder

Figure 3. The Encoder-Decoder-Framework for Machine Translation by
[7]. The encoder RNN outputs only its last hidden state when it sees the
end-of-sentence symbol. At the same time, the decoder RNN consumes
this hidden state as its initial one and generates the first word. The decoder
keeps generating words till it generates the end-of-sentence symbol.

‘clinical’ ‘decision’ ‘support’ ‘<EOS>’ ‘klinische’ ‘Entscheidungs-
unterstützung’

‘<EOS>’
‘Entscheidungs-
unterstützung’

‘klinische’

RNN
Encoder

RNN
Decoder

Source
language:

Target
language:

RNN we could extract from such sequential input a more
abstract and compact vector representing the entire history
of the patient up to a specific time step. For the sake of
simplicity, we denote such a many-to-one RNN (either GRU
or LSTM) using a function ω:

h
[t∗]
i = ω({x[t]

i }t
∗
t=1), (4)

where h[t∗]
i is the last hidden state.

In order to also take into account the static features
such as patient information and primary tumor, we follow
[5] and concatenate the output of the RNN with the latent
representation of the static features.

z
[t∗]
i = (h

[t∗]
i , qi) with qi = ψ(HTmi), (5)

where H is a usual trainable weight matrix and ψ denotes
a non-linear activation function. Therefore, the vector z[t

∗]
i

represents the static patient information as well as the medical
history of patient i up to time step t∗. Such a vector functions
as an abstract patient profile that represents all relevant
clinical information in a latent vector space, where patients
with similar background information and medical history
could be encouraged to be placed in a specific neighborhood.
This very characteristic of the latent vector space is key to
the latest success of Deep Learning, in that it facilitates the
classification and regression models built on top of it.

4.2. Hierarchical Response Model as Decoder

We attempt to model the therapies in a similar fashion
as the physicians’ prediction procedure. A physician first
has to choose one therapy category, and then to specify for
the chosen category its features. We propose a Multinomial
Hierarchical Regression (MHR) to model this procedure.

In the first step we model the probability that each of
the three therapy categories is chosen at time step t∗ for

patient i using a multinomial variable C [t∗]
i with a softmax

activation:

P(C [t∗]
i = k | mi, {x[t]

i }t
∗
t=1) =

exp
(
(z

[t∗]
i)Tγk

)

∑
∀k′ exp

(
(z

[t∗]
i)Tγk′

) ,

(6)

where z[t
∗]

i , as defined in Eq. (5), is the latent representation
for the patient up to this time step and γk serves as the
category-specific parameter vector.

Then in the second step, given a specific therapy category
k, we denote the number of therapy features in this category
with Lk and model the lk-th multinomial distributed feature
variable Fk,lk , whose conditional probability can be modeled
with

P(F [t∗]
i,k,lk

= r | C [t∗]
i = k,mi, {x[t]

i }t
∗
t=1) =

=
exp

(
(z

[t∗]
i)Tβk,lk,r

)

∑
∀r′ exp

(
(z

[t∗]
i)Tβk,lk,r′

) ,
(7)

if k=1 or k=2, i.e. in case of radiotherapy or systemic
therapy where therapy features in each category are multiple
multinomial distributed. Therefore one would need the
softmax function to model the probabilities that the therapy
feature takes one specific value r. We denote the parameter
vector βk,lk,r with three levels of subscripts: k suggests the
category of the therapy, lk selects one specific multinomial
feature from this category, and r denotes the r-th possible
outcome of this feature. For instance, we would use β1,2,3

to denote the parameters corresponding to the hierarchy
of radiotherapy / type / other_radiotherapy,
implying that the type of the radiotherapy is of other kinds
(3rd column, 6th row in Tab. 3).

If the therapy category suggests the surgery, i.e. k=3,
whose features consist of Lk=10 Bernoulli variable, we
would have instead of Eq. (7) the following formulation:

P(F [t∗]
i,k,lk

= r | C [t∗]
i = k,mi, {x[t]

i }t
∗
t=1)

=σ
(
(z

[t∗]
i)Tβk,lk,r

)
,

(8)

with r = 1 in all cases, because a Bernoulli variable has an
one-dimensional outcome.

The product of Eq. (6) and (7) as well as that of Eq. (6)
and (8) yields the joint probability of both therapy feature
and category as

P(F [t∗]
i,k,lk

= r ∧ C [t∗]
i = k | mi, {x[t]

i }t
∗
t=1). (9)

But due to the fact that

P(F [t∗]
i,k,lk

= r ∧ C [t∗]
i 6= k | mi, {x[t]

i }t
∗
t=1) = 0, (10)

in all cases, this joint probability of Eq. (9) is equal to

P(F [t∗]
i,k,lk

= r|mi, {x[t]
i }t

∗
t=1), (11)

applying the law of total probability, yielding the marginal
prediction and allowing us to perform the optimization

Figure 4. A simplified illustration of deriving the marginal probability of the
therapy feature. From the vector z representing a patient one calculates the
category probability and the feature probability conditioned on the category.
Then product of the two yields the joint probability of feature and category.
Combined with the joint probability of feature and non-category, which is
always 0, one would get the marginal probability of the feature.

P(C=k) P(Fk=r|C=k)

P(Fk=r ᴧ C=k) P(Fk=r ᴧ C≠k)=0

P(Fk=r)

z

+

•

against the target vector. The calculation with these proba-
bilities is illustrated in Fig. 4. A same design can also be
found in [14], where they factorize a large softmax layer
into such a tree-like hierarchy.

In [13] a very similar approach is referred to as the
Multinomial Model with Hierarchically Structured Response.
The major difference lies in the fact that in [13] only one
multinomial response on the second level is linked with each
category on the first level. This is apparently not sufficient
for our data situation where multiple multinomial therapy
features fall into each therapy category. Therefore we extend
this model and allow for multiple of such links.

Finally we illustrate the complete model architecture
in Fig. 5. There the RNN encoder outputs its last hidden
state that represents the whole sequence and is concatenated
with the latent representation mapped from the static patient
information. This concatenated vector forms the input to
the hierarchical model, which in the first step calculates the
therapy category probabilities and in the second step the
therapy feature probabilities conditioned on corresponding
category. These two levels of probabilities are multiplied,
giving the joint probabilities of category and feature, which
are equivalent to marginal feature probabilities as proven in
Eq. (10).

5. Experiment

We evaluate our encoder-decoder model from two aspects.
First we assess the prediction quality and then demonstrate
that our model can be exploited to identify similar historical
patient cases in a very efficient way.

5.1. Modeling of Therapy Decisions

In order to take into account the prediction stability, we
conduct cross-validation by splitting the 2,869 patients into 5
disjoint sets, and then query their corresponding sequences to
form the training and test sets. In contrast to performing the
splitting on the level of sequences, this approach guarantees

Figure 5. Our proposed model architecture. The radiotherapy features consist of two 3D multinomial variables (red-colored). The systemic therapies consist
of on 4D, one 16D and one 3D multinomial variables (orange-colored). The surgery feature consists of 10 Bernoulli variables (purple-colored).

Nonlinear Mapping RNN Encoder

Static Information Sequential Information

Patient Representation

P(C=k)

P(Fk=r|C=k)

P(Fk=r ᴧ C=k)= P(Fk=r)

Multinomial Hierarchical Regression Decoder

A Multinomial Variable Multiple Bernoulli Variables

that the model only predicts for completely new patients
whose information was never –not even partially– present
during training, making the experiments more challenging
and realistic. For the rest of this section we report the aver-
age performances of cross-validations, for all experimental
settings including baseline models.

With respect to the sizes of qi that represents the static
information and h[t∗]

i that represents the medical history, we
conduct experiments with two settings. In a smaller setting
we define qi ∈ R64 and h[t∗]

i ∈ R128 and present the results
in Tab. 5, while Tab. 6 provides experimental results with a
larger setting of qi ∈ R128 and h[t∗]

i ∈ R256.
Further hyper-parameters are set as follows: the output of

h
[t∗]
i in RNN is activated with tanh. We apply 0.25 Dropout

[23] for weights in RNNs and 0.001 Ridge penalization
for the MHR and logistic decoders. Each model instance is
trained with Adam [24] step rule for a maximum of 1000
iterations with early stopping mechanism.

We present two classes of evaluation metrics. First,
column-wise average Area Under ROC (AUROC) and Area
Under Precision-Recall-Curve (AUPRC), which are well-
known metrics applied to measure the classification quality,
should indicate the models’ capability to assign patients
to the correct therapy features. Secondly, we report multi-
label ranking-based metrics of Coverage Error (CE) [25] and
Label Ranking Average Precision (LRAP) [26] in the scikit-
learn library [27]. In contrast to precision and recall based
metrics, they are calculated row-wise and thus evaluate for
each patient how many recommended therapies were actually
prescribed. LRAP ranges between 0 and 1 just as AUROC
and AUPRC. CE describes how many steps one has to go in
a ranked list of recommendations till one covers all ground
truth labels. In our case, the average number of labels in each
patient case is 4.4 and the total number of possible labels

is 39. The CE shall therefore be ideally 4.4, suggesting a
perfect prediction, and be 39 in worst case scenario (Tab. 4).

Table 4. RESULTS OF EXPERIMENTS WITH TWO WEAK BASELINES:
RANDOM PREDICTION AND CONSTANT MOST POPULAR PREDICTION.

Weak Baselines AUROC AUPRC CE LRAP
Random 49.7% 9.4% 38.2 11.2%

Most Popular 50.0% 21.3% 13.9 38.6%

We experiment with three encoders and two decoders.
The baseline encoder is a simple Feed-Forward Layer

(FFL) consuming the raw sequential information that is
aggregated with respect to time. Then the aggregated feature
vector is concatenated with the static feature vector for
each patient case. Such aggregation can be interpreted as
a hand-engineered feature processing, where each feature
represents the total number of observed feature values. It also
corresponds to the bag-of-words approach [28] in Natural
Language modeling, this approach completely neglects the
order in which the feature values are observed. As a more
advanced solution we apply GRU and LSTM as RNN
encoders as introduced in Section 4.1, which are expected to
capture the information regarding the events order as well.

The baseline decoder is a single-layered logistic regres-
sion, which is a popular choice in multi-class multi-label
classification tasks in machine learning. Please note that this
approach does not fully satisfy the distribution assumption
of the target. For instance, a therapy feature variable is
multinomially distributed, implying the mutual exclusiveness
of the probable outcomes of the feature values and this aspect
cannot be taken into account with a flat logistic regression.
Such mutual exclusiveness has to be taken into account
especially in clinical data. For instance a physician is only
supposed to prescribe one medication from a class of related
medications. Since our proposed MHR model, presented in

Sec. 4.2, is mathematically solid from this perspective, it is
interesting to see it actually outperforms a more popular but
less accurate alternative.

We conduct experiments applying all possible combina-
tions of encoders and decoders, to identify i) which combi-
nation yields the best prediction performance and ii) which
encoder contributes the most to the model performances
given the same decoder, and vice versa.

Table 5. AVERAGE RESULTS OF EXPERIMENTS WITH DIFFERENT
ENCODERS AND DECODERS, WITH qi ∈ R128 AND h

[t∗]
i ∈ R256

Encoder Decoder AUROC AUPRC CE LRAP

FFL Logistic 69.4% 13.4% 12.61 48.6%
MHR 70.3% 13.9% 11.79 49.3%

GRU Logistic 81.8% 28.8% 8.57 61.3%
MHR 82.1% 31.2% 8.26 62.3%

LSTM Logistic 79.6% 24.7% 9.47 57.9%
MHR 81.9% 30.2% 8.53 61.4%

Table 6. AVERAGE RESULTS OF EXPERIMENTS WITH DIFFERENT
ENCODERS AND DECODERS, WITH qi ∈ R64 AND h

[t∗]
i ∈ R128

Encoder Decoder AUROC AUPRC CE LRAP

FFL Logistic 69.8% 13.4% 12.83 48.3%
MHR 70.2% 13.9% 11.83 49.2%

GRU Logistic 80.0% 26.2% 9.28 59.0%
MHR 81.3% 28.2% 8.71 61.3%

LSTM Logistic 78.7% 23.0% 9.93 56.4%
MHR 80.6% 26.7% 9.12 59.5%

Comparing Tab. 5 with 6 one could observe that, with a
larger size for the representation vector, the prediction quality
can be improved in almost all cases. With both parameter
settings the combination of GRU encoder and the hierarchical
decoder yields the best quality scores.

It is to note that both decoders on top of the baseline
FFL encoder show suboptimal results compared with those
on top of RNN encoders, i.e., GRU and LSTM encoders
significantly boost the prediction quality even with a mere
logistic regression as decoder. On the other hand, the MHR
model further improves the prediction quality in comparison
with a flat logistic regression. This suggests that the RNN
encoders contribute a larger proportion to the prediction
quality, while the multinomial hierarchical decoder alone
does not improve the model to a significant extent without a
decent encoder model. One could draw the conclusion that
the encoded representation of a patient case plays a central
role in this model. In total, the prediction best quality is
provided by GRU encoder and MHR decoder.

5.2. Identification of Similar Patient Cases

In a realistic application scenario in a clinic, it is as
important to provide physicians with recommended therapies
as to provide a list of similar patient cases. If the set of
similar patient cases have received therapies similar to the
recommended ones, it will support these recommendations
and encourage the physician to interpret the recommendations

with more confidence. But due to the fact that patients have
medical histories of variable lengths, it is nontrivial to apply
common distance metrics directly on the patient features
to quantify the similarity. For instance, it is impossible
to mathematically directly calculate the distance between
a patient having undergone a breast conservation surgery
and another patient with one mastectomy followed by three
successive radiotherapies, although it might be obvious for
a physician to tell the difference/similarity.

To this end, we propose that the derived latent vector of
z
[t∗]
i , representing the patient i’s profile up to time t∗, can

be exploited to identify similar patient cases, since all such
vectors have the same dimension.

Using a trained encoder network, we map all training
patient cases and the a test case into the latent feature
space and define there a k-NN model. The k training cases
neighboring the test case can therefore provide a prediction
for the test case. This approach reusing trained representation
is closely related to the so-called transfer learning [29], where
one exploits the latent representations learned for one task
for new tasks. In our case, however, we have the same task
solved by a new predictive model that consumes the learned
representations.

If the k-NN model is able to identify patient cases having
received therapies that agree with the recommended ones,
then the latent vectors correctly represent such similarity.

We report the results of such k-NN models that is applied
on latent representations originally learned with GRU and
LSTM encoder combined with logistic and hierarchical
decoder in Tab. 7 and 8 for the two parameter settings of
the latent vector sizes, respectively. Please note that an RNN
encoder converges to different weight parameters combined
with different decoders. Therefore, although we only apply
the encoder network, it is necessary to differentiate between
the two decoder cases. The k is here set to be 30. We realize
that a smaller k would hurt the prediction quality and a
larger k does not further improve the model.

Table 7. RESULTS OF EXPERIMENTS WITH k-NN ON TOP OF THE LATENT
REPRESENTATIONS DERIVED BY DIFFERENT MODEL ARCHITECTURE

SETTINGS, WITH qi ∈ R128 AND h
[t∗]
i ∈ R256 .

orig. Encoder orig.Decoder AUROC AUPRC CE LRAP

GRU Logistic 78.7% 30.0% 9.69 63.0%
MHR 79.3% 32.2% 9.82 63.2%

LSTM Logistic 78.6% 28.7% 9.80 62.7%
MHR 79.0% 32.2% 9.83 63.3 %

Table 8. RESULTS OF EXPERIMENTS WITH kNN ON TOP OF THE LATENT
REPRESENTATIONS DERIVED BY DIFFERENT MODEL ARCHITECTURE

SETTINGS, WITH qi ∈ R64 AND h
[t∗]
i ∈ R128

orig. Encoder orig.Decoder AUROC AUPRC CE LRAP

GRU Logistic 78.1% 28.6% 9.75 62.9%
MHR 79.1% 29.8% 9.71 63.3%

LSTM Logistic 78.3% 28.5% 9.78 62.5%
MHR 79.1% 30.2% 9.69 63.2%

One could observe that the k-NN performances are in
total quite close to those reported in Tab. 5 and 6.

Figure 6. The distance matrix between a sample of 100 decisions predicted
by i) the encoder-decoder model and ii) the k-NN model based on the
latent representations with four different encoder-decoder settings. Top-left:
GRU+sigmoid; top-right: GRU+hierarchical; bottom-left: LSTM+sigmoid;
bottom-right: LSTM+hierarchical.

However, if we build the same k-NN classifier on top of
the raw features aggregated in time and concatenated with
the static features, the prediction quality is observed to be
much worse: The AUROC and AUPRC decrease to 75.2%
and 23.3%, respectively, while the CE and LRAP to 11.61
and 56.8%, respectively. This suggests that the RNN encoder
is capable of generating more dense and informative latent
features for each patient case.

In order to compare the concrete decision made by the
original encoder-decoder model and the k-NN model on each
specific patient case, we calculate the Euclidean distances
between the predictions made by i) the encoder-decoder
model and ii) the k-NN model based on the same encoder
and decoder setting for each patient case. We visualize in Fig.
6 the distance matrices as heat map. One could observe that
the diagonal entries, which represent prediction distances
between the complete model and the k-NN model for the
same patient cases, are systematically lower in value.

To this end, we argue that the latent vectors can represent
a patient case with medical history of variable length in a
unified vector space, where the topological characteristics
of patients are well preserved. This additional feature of
our encoder-decoder model enables the identification of
similar patient cases, which can support and supplement
the predictive recommendations.

6. Conclusion

We have proposed an Encoder-Decoder network that
predicts physicians’ therapy decisions as well as provides
a list of similar patient cases. The model consists of an
RNN encoder that learns an abstract representation of the
patient profile, and a hierarchical regression that decodes
the latent representation into therapy predictions. Such a
predictive model can serve to support clinical decisions, to
detect anomalous prescriptions and to support physician by
searching for similar historical cases.

We have conducted experiments on a large real-world
dataset collected from almost three thousands of metastatic
breast cancer patients. The experimental results demonstrate
that the RNN encoder greatly improves the modeling quality
compared with plain feed-forward models that consume
aggregated sequential features. The hierarchical regression
model also outperforms a flat logistic regression as a decoder.
We have also shown that our model is capable of providing
lists of similar patient cases, although it is nontrivial to
measure distance among patients, when they all have medical
histories of variable lengths.

The generic contribution of this work consists of follow-
ing aspects:

• We transfer the popular Encoder-Decoder architecture
from NLP to the clinical domain;

• We propose a hierarchical classifier that mimics the
actual multi-step decision procedure;

• We empirically prove that the latent vector represent-
ing each patient case produced by RNN encoders in
general facilitates the prediction with k-NN, logistic
regression and MHR;

• We showed that such latent representations can be
exploited to identify similar patients with higher
quality than with aggregated sequential features.

Encouraged by the success of the RNN models in
handling sequential data, one interesting and realistic im-
provement of the model would be to integrate attention
mechanisms [30, 31] into the RNN encoder. The model
would, for instance, be able to identify which historical
event has contributed most to the decision, which could
further improve the model’s interpretability and encourage
its application in clinics.

References

[1] V. Tresp, M. Overhage, M. Bundschus, S. Rabizadeh,
P. Fasching, and S. Yu, “Going digital: A survey on dig-
italization and large scale data analytics in healthcare,”
arXiv preprint arXiv:1606.08075, 2016.

[2] R. Rahman and C. K. Reddy, “Electronic health records:
a survey,” Healthcare Data Analytics, vol. 36, p. 21,
2015.

[3] E. Choi, M. T. Bahadori, and J. Sun, “Doctor ai:
Predicting clinical events via recurrent neural networks,”
arXiv preprint arXiv:1511.05942, 2015.

[4] C. Esteban, D. Schmidt, D. Krompaß, and V. Tresp,
“Predicting sequences of clinical events by using a
personalized temporal latent embedding model,” in
Healthcare Informatics (ICHI), 2015 International Con-
ference on. IEEE, 2015, pp. 130–139.

[5] C. Esteban, O. Staeck, Y. Yang, and V. Tresp, “Predict-
ing clinical events by combining static and dynamic
information using recurrent neural networks,” arXiv
preprint arXiv:1602.02685, 2016.

[6] M. A. Brookhart, T. Stürmer, R. J. Glynn, J. Rassen,
and S. Schneeweiss, “Confounding control in healthcare
database research: challenges and potential approaches,”
Medical care, vol. 48, no. 6 0, p. S114, 2010.

[7] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to
sequence learning with neural networks,” in Advances
in neural information processing systems, 2014, pp.
3104–3112.

[8] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin,
“A neural probabilistic language model,” journal of
machine learning research, vol. 3, no. Feb, pp. 1137–
1155, 2003.

[9] Z. C. Lipton, D. C. Kale, C. Elkan, and R. Wetzell,
“Learning to diagnose with lstm recurrent neural net-
works,” arXiv preprint arXiv:1511.03677, 2015.

[10] E. Choi, M. T. Bahadori, J. Sun, J. Kulas, A. Schuetz,
and W. Stewart, “Retain: An interpretable predictive
model for healthcare using reverse time attention mech-
anism,” in Advances in Neural Information Processing
Systems, 2016, pp. 3504–3512.

[11] J. Koutnik, K. Greff, F. Gomez, and J. Schmidhuber, “A
clockwork rnn,” arXiv preprint arXiv:1402.3511, 2014.

[12] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y.
Ng, and C. Potts, “Learning word vectors for sentiment
analysis,” in Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Human
Language Technologies-Volume 1. Association for
Computational Linguistics, 2011, pp. 142–150.

[13] G. Tutz, Regression for Categorical Data:, ser. Cam-
bridge Series in Statistical and Probabilistic Mathemat-
ics. Cambridge University Press, 2011.

[14] F. Morin and Y. Bengio, “Hierarchical probabilistic
neural network language model.” in Aistats, vol. 5.
Citeseer, 2005, pp. 246–252.

[15] P. Kaatsch, C. Spix, S. Hentschel, A. Katalinic,
S. Luttmann, C. Stegmaier, S. Caspritz, J. Cernaj,
A. Ernst, J. Folkerts et al., “Krebs in deutschland
2009/2010,” 2013.

[16] C. Rauh and W. Matthias, “Interdisziplinäre s3-leitlinie
für die diagnostik, therapie und nachsorge des mam-
makarzinoms,” 2008.

[17] P. Fasching, S. Brucker, T. Fehm, F. Overkamp,
W. Janni, M. Wallwiener, P. Hadji, E. Belleville,
L. Häberle, F. Taran, D. Luftner, M. Lux, J. Ettl,
V. Muller, H. Tesch, D. Wallwiener, and A. Schneeweiss,
“Biomarkers in patients with metastatic breast cancer
and the praegnant study network,” Geburtshilfe
Frauenheilkunde, vol. 75, no. 01, pp. 41–50, 2015.
[Online]. Available: http://www.praegnant.org/

[18] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empir-
ical evaluation of gated recurrent neural networks on
sequence modeling,” arXiv preprint arXiv:1412.3555,
2014.

[19] S. Hochreiter and J. Schmidhuber, “Long short-term
memory,” Neural computation, vol. 9, no. 8, pp. 1735–
1780, 1997.

[20] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning
to forget: Continual prediction with lstm,” Neural
computation, vol. 12, no. 10, pp. 2451–2471, 2000.

[21] Y. Kim, Y. Jernite, D. Sontag, and A. M. Rush,
“Character-aware neural language models,” arXiv
preprint arXiv:1508.06615, 2015.

[22] T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and
S. Khudanpur, “Recurrent neural network based lan-
guage model.” in Interspeech, vol. 2, 2010, p. 3.

[23] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever,
and R. Salakhutdinov, “Dropout: a simple way to
prevent neural networks from overfitting.” Journal of
Machine Learning Research, vol. 15, no. 1, pp. 1929–
1958, 2014.

[24] D. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

[25] G. Tsoumakas, I. Katakis, and I. Vlahavas, “Mining
multi-label data,” in Data mining and knowledge dis-
covery handbook. Springer, 2009, pp. 667–685.

[26] G. Madjarov, D. Kocev, D. Gjorgjevikj, and S. Džeroski,
“An extensive experimental comparison of methods for
multi-label learning,” Pattern Recognition, vol. 45, no. 9,
pp. 3084–3104, 2012.

[27] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay, “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830,
2011.

[28] Z. S. Harris, “Distributional structure,” Word, vol. 10,
no. 2-3, pp. 146–162, 1954.

[29] S. J. Pan and Q. Yang, “A survey on transfer learning,”
IEEE Transactions on knowledge and data engineering,
vol. 22, no. 10, pp. 1345–1359, 2010.

[30] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and
Y. Bengio, “Attention-based models for speech recog-
nition,” in Advances in Neural Information Processing
Systems, 2015, pp. 577–585.

[31] V. Mnih, N. Heess, A. Graves et al., “Recurrent models
of visual attention,” in Advances in neural information
processing systems, 2014, pp. 2204–2212.

58 3. RNNs in Sequential EHR for Predictive Decision Support

Chapter 4

Tensor-Train RNNs for Video

Classification

Tensor-Train Recurrent Neural Networks for Video Classification

Yinchong Yang 1 2 Denis Krompass 2 Volker Tresp 1 2

Abstract
The Recurrent Neural Networks and their vari-
ants have shown promising performances in se-
quence modeling tasks such as Natural Language
Processing. These models, however, turn out to
be impractical and difficult to train when exposed
to very high-dimensional inputs due to the large
input-to-hidden weight matrix. This may have
prevented RNNs’ large-scale application in tasks
that involve very high input dimensions such as
video modeling; current approaches reduce the
input dimensions using various feature extrac-
tors. To address this challenge, we propose a
new, more general and efficient approach by fac-
torizing the input-to-hidden weight matrix using
Tensor-Train decomposition which is trained si-
multaneously with the weights themselves. We
test our model on classification tasks using mul-
tiple real-world video datasets and achieve com-
petitive performances with state-of-the-art mod-
els, even though our model architecture is or-
ders of magnitude less complex. We believe
that the proposed approach provides a novel and
fundamental building block for modeling high-
dimensional sequential data with RNN architec-
tures and opens up many possibilities to transfer
the expressive and advanced architectures from
other domains such as NLP to modeling high-
dimensional sequential data.

1. Introduction
Nowadays, the Recurrent Neural Network (RNN), espe-
cially its more advanced variants such as the LSTM and
the GRU, belong to the most successful machine learning
approaches when it comes to sequence modeling. Espe-
cially in Natural Language Processing (NLP), great im-
provements have been achieved by exploiting these Neu-

1Ludwig Maximilian University of Munich, Germany
2Siemens AG, Corporate Technology, Germany. Correspondence
to: Yinchong Yang <yinchong.yang@siemens.com>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

ral Network architectures. This success motivates efforts
to also apply these RNNs to video data, since a video clip
could be seen as a sequence of image frames. However,
plain RNN models turn out to be impractical and difficult to
train directly on video data due to the fact that each image
frame typically forms a relatively high-dimensional input,
which makes the weight matrix mapping from the input to
the hidden layer in RNNs extremely large. For instance,
in case of an RGB video clip with a frame size of say
160×120×3, the input vector for the RNN would already
be 57, 600 at each time step. In this case, even a small hid-
den layer consisting of only 100 hidden nodes would lead
to 5,760,000 free parameters, only considering the input-
to-hidden mapping in the model.

In order to circumvent this problem, state-of-the-art ap-
proaches often involve pre-processing each frame using
Convolution Neural Networks (CNN), a Neural Network
model proven to be most successful in image modeling.
The CNNs do not only reduce the input dimension, but
can also generate more compact and informative represen-
tations that serve as input to the RNN. Intuitive and tempt-
ing as it is, training such a model from scratch in an end-
to-end fashion turns out to be impractical for large video
datasets. Thus, many current works following this concept
focus on the CNN part and reduce the size of RNN in term
of sequence length (Donahue et al., 2015; Srivastava et al.,
2015), while other works exploit pre-trained deep CNNs as
pre-processor to generate static features as input to RNNs
(Yue-Hei Ng et al., 2015; Donahue et al., 2015; Sharma
et al., 2015). The former approach neglects the capabil-
ity of RNNs to handle sequences of variable lengths and
therefore does not scale to larger, more realistic video data.
The second approach might suffer from suboptimal weight
parameters by not being trained end-to-end (Fernando &
Gould, 2016). Furthermore, since these CNNs are pre-
trained on existing image datasets, it remains unclear how
well the CNNs can generalize to video frames that could be
of totally different nature from the image training sets.

Alternative approaches were earlier applied to generate im-
age representations using dimension reductions such as
PCA (Zhang et al., 1997; Kambhatla & Leen, 1997; Ye
et al., 2004) and Random Projection (Bingham & Mannila,
2001). Classifiers were built on such features to perform
object and face recognition tasks. These models, however,

Tensor-Train Recurrent Neural Networks for Video Classification

are often restricted to be linear and cannot be trained jointly
with the classifier.

In this work, we pursue a new direction where the RNN
is exposed to the raw pixels on each frame without any
CNN being involved. At each time step, the RNN first
maps the large pixel input to a latent vector in a typically
much lower dimensional space. Recurrently, each latent
vector is then enriched by its predecessor at the last time
step with a hidden-to-hidden mapping. In this way, the
RNN is expected to capture the inter-frame transition pat-
terns to extract the representation for the entire sequence of
frames, analogous to RNNs generating a sentence represen-
tation based on word embeddings in NLP (Sutskever et al.,
2014). In comparison with other mapping techniques, a di-
rect input-to-hidden mapping in an RNN has several advan-
tages. First it is much simpler to train than deep CNNs in an
end-to-end fashion. Secondly it is exposed to the complete
pixel input without the linear limitation as PCA and Ran-
dom Projection. Thirdly and most importantly, since the
input-to-hidden and hidden-to-hidden mappings are trained
jointly, the RNN is expected to capture the correlation be-
tween spatial and temporal patterns.

To address the issue of having too large of a weight ma-
trix for the input-to-hidden mapping in RNN models, we
propose to factorize the matrix with the Tensor-Train de-
composition (Oseledets, 2011). In (Novikov et al., 2015)
the Tensor-Train has been applied to factorize a fully-
connected feed-forward layer that can consume image pix-
els as well as latent features. We conducted experiments
on three large-scale video datasets that are popular bench-
marks in the community, and give empirical proof that the
proposed approach makes very simple RNN architectures
competitive with the state-of-the-art models, even though
they are of several orders of magnitude lower complexity.

The rest of the paper is organized as follows: In Section
2 we summarize the state-of-the-art works, especially in
video classification using Neural Network models and the
tensorization of weight matrices. In Section 3 we first in-
troduce the Tensor-Train model and then provide a detailed
derivation of our proposed Tensor-Train RNNs. In Section
4 we present our experimental results on three large scale
video datasets. Finally, Section 5 serves as a wrap-up of
our current contribution and provides an outlook of future
work.

Notation We index an entry in a d-dimensional ten-
sor A ∈ Rp1×p2×...×pd using round parentheses such as
A(l1, l2, ..., ld) ∈ R and A(l1) ∈ Rp2×p3×...×pd , when
we only write the first index. Similarly, we also use
A(l1, l2) ∈ Rp3×p4×...×pd to refer to the sub-tensor speci-
fied by two indices l1 and l2.

2. Related Works
The current approaches to model video data are closely re-
lated to models for image data. A large majority of these
works use deep CNNs to process each frame as image,
and aggregate the CNN outputs. (Karpathy et al., 2014)
proposes multiple fusion techniques such as Early, Late
and Slow Fusions, covering different aspects of the video.
This approach, however, does not fully take the order of
frames into account. (Yue-Hei Ng et al., 2015) and (Fer-
nando & Gould, 2016) apply global pooling of frame-wise
CNNs, before feeding the aggregated information to the fi-
nal classifier. An intuitive and appealing idea is to fuse
these frame-wise spatial representations learned by CNNs
using RNNs. The major challenge, however, is the com-
putation complexity; and for this reason multiple compro-
mises in the model design have to be made: (Srivastava
et al., 2015) restricts the length of the sequences to be 16,
while (Sharma et al., 2015) and (Donahue et al., 2015)
use pre-trained CNNs. (Xingjian et al., 2015) proposed a
more compact solution that applies convolutional layers as
input-to-hidden and hidden-to-hidden mapping in LSTM.
However, they did not show its performance on large-scale
video data. (Simonyan & Zisserman, 2014) applied two
stacked CNNs, one for spatial features and the other for
temporal ones, and fused the outcomes of both using av-
eraging and a Support-Vector Machine as classifier. This
approach is further enhanced with Residual Networks in
(Feichtenhofer et al., 2016). To the best of our knowledge,
there has been no published work on applying pure RNN
models to video classification or related tasks.

The Tensor-Train was first introduced by (Oseledets, 2011)
as a tensor factorization model with the advantage of being
capable of scaling to an arbitrary number of dimensions.
(Novikov et al., 2015) showed that one could reshape a
fully connected layer into a high-dimensional tensor and
then factorize this tensor using Tensor-Train. This was ap-
plied to compress very large weight matrices in deep Neu-
ral Networks where the entire model was trained end-to-
end. In these experiments they compressed fully connected
layers on top of convolution layers, and also proved that a
Tensor-Train Layer can directly consume pixels of image
data such as CIFAR-10, achieving the best result among all
known non-convolutional models. Then in (Garipov et al.,
2016) it was shown that even the convolutional layers them-
selves can be compressed with Tensor-Train Layers. Actu-
ally, in an earlier work by (Lebedev et al., 2014) a similar
approach had also been introduced, but their CP factoriza-
tion is calculated in a pre-processing step and is only fine
tuned with error back propagation as a post processing step.

(Koutnik et al., 2014) performed two sequence classifica-
tion tasks using multiple RNN architectures of relatively
low dimensionality: The first task was to classify spoken

Tensor-Train Recurrent Neural Networks for Video Classification

words where the input sequence had a dimension of 13
channels. In the second task, RNNs were trained to clas-
sify handwriting based on the time-stamped 4D spatial fea-
tures. RNNs have been also applied to classify the sen-
timent of a sentence such as in the IMDB reviews dataset
(Maas et al., 2011). In this case, the word embeddings form
the input to RNN models and they may have a dimension of
a few hundreds. The sequence classification model can be
seen as a special case of the Encoder-Decoder-Framework
(Sutskever et al., 2014) in the sense that a classifier decodes
the learned representation for the entire sequence into a
probabilistic distribution over all classes.

3. Tensor-Train RNN
In this section, we first give an introduction to the core in-
gredient of our proposed approach, i.e., the Tensor-Train
Factorization, and then use this to formulate a so-called
Tensor-Train Layer (Novikov et al., 2015) which replaces
the weight matrix mapping from the input vector to the hid-
den layer in RNN models. We emphasize that such a layer
is learned end-to-end, together with the rest of the RNN in
a very efficient way.

3.1. Tensor-Train Factorization

A Tensor-Train Factorization (TTF) is a tensor factoriza-
tion model that can scale to an arbitrary number of dimen-
sions. Assuming a d-dimensional target tensor of the form
A ∈ Rp1×p2×...×pd , it can be factorized in form of:

Â(l1, l2, ..., ld)
TTF
= G1(l1) G2(l2) ... Gd(ld) (1)

where

Gk ∈ Rpk×rk−1×rk , lk ∈ [1, pk] ∀k ∈ [1, d]

and r0 = rd = 1.
(2)

As Eq. 1 suggests, each entry in the target tensor is rep-
resented as a sequence of matrix multiplications. The
set of tensors {Gk}dk=1 are usually called core-tensors.
The complexity of the TTF is determined by the ranks
[r0, r1, ..., rd]. We demonstrate this calculation also in Fig.
1. Please note that the dimensions and core-tensors are in-
dexed from 1 to d while the rank index starts from 0; also
note that the first and last ranks are both restricted to be 1,
which implies that the first and last core tensors can be seen
as matrices so that the outcome of the chain of multiplica-
tions in Eq. 1 is always a scalar.

If one imposes the constraint that each integer pk as in Eq.
(1) can be factorized as pk = mk · nk ∀k ∈ [1, d], and con-
sequently reshapes each Gk into G∗k ∈ Rmk×nk×rk−1×rk ,
then each index lk in Eq. (1) and (2) can be uniquely rep-

rk-1

pk

rk

...

l1
l2

l3

ld-1

ld

Figure 1: Tensor-Train Factorization Model: To reconstruct
one entry in the target tensor, one performs a sequence of
vector-matrix-vector multiplications, yielding a scalar.

resented with two indices (ik, jk), i.e.

ik = b lk
nk
c, jk = lk − nkb

lk
nk
c, (3)

so that Gk(lk) = G∗k(ik, jk) ∈ Rrk−1×rk . (4)

Correspondingly, the factorization for the tensor A ∈
R(m1·n1)×(m2·n2)×...×(md·nd) can be rewritten equiva-
lently to Eq.(1):

Â((i1, j1), (i2, j2), ..., (id, jd))

TTF
= G∗1(i1, j1) G∗2(i2, j2) ... G∗d(id, jd).

(5)

This double index trick (Novikov et al., 2015) enables the
factorizing of weight matrices in a feed-forward layer as
described next.

3.2. Tensor-Train Factorization of a Feed-Forward
Layer

Here we factorize the weight matrix W of a fully-
connected feed-forward layer denoted in ŷ = Wx+ b.

First we rewrite this layer in an equivalent way with scalars
as:

ŷ(j) =
M∑

i=1

W (i, j) · x(i) + b(j)

∀j ∈ [1, N] and with x ∈ RM , y ∈ RN .

(6)

Then, if we assume that M =
∏d

k=1mk, N =∏d
k=1 nk i.e. both M and N can be factorized into

two integer arrays of the same length, then we can re-
shape the input vector x and the output vector ŷ into
two tensors with the same number of dimensions: X ∈
Rm1×m2×...×md ,Y ∈ Rn1×n2×...×nd , and the mapping
function Rm1×m2×...×md → Rn1×n2×...×nd can be writ-
ten as:

Ŷ(j1, j2, ..., jd)

=

m1∑

i1=1

m2∑

i2=1

...

md∑

id=1

W((i1, j1), (i2, j2), ..., (id, jd))·

X (i1, i2, ..., id) +B(j1, j2, ..., jd).

(7)

Tensor-Train Recurrent Neural Networks for Video Classification

Note that Eq. (6) can be seen as a special case of Eq. (7)
with d = 1. The d-dimensional double-indexed tensor of
weights W in Eq.(7) can be replaced by its TTF represen-
tation:

Ŵ((i1, j1), (i2, j2), ..., (id, jd))

TTF
= G∗1(i1, j1) G∗2(i2, j2) ... G∗d(id, jd).

(8)

Now instead of explicitly storing the full tensor W of size∏d
k=1mk·nk =M ·N , we only store its TT-format, i.e., the

set of low-rank core tensors {Gk}dk=1 of size
∑d

k=1mk ·
nk · rk−1 · rk, which can approximately reconstruct W .

The forward pass complexity (Novikov et al., 2015) for one
scalar in the output vector indexed by (j1, j2, ..., jd) turns
out to beO(d ·m̃ · r̃2). Since one needs an iteration through
all such tuples, yielding O(ñd), the total complexity for
one Feed-Forward-Pass can be expressed as O(d · m̃ · r̃2 ·
ñd), where m̃ = maxk∈[1,d]mk, ñ = maxk∈[1,d] nk, r̃ =
maxk∈[1,d] rk. This, however, would be O(M · N) for a
fully-connected layer.

One could also compute the compression rate as the ratio
between the number of weights in a fully connected layer
and that in its compressed form as:

r =

∑d
k=1mknkrk−1rk∏d

k=1mknk
. (9)

For instance, an RGB frame of size 160 × 120 × 3 implies
an input vector of length 57,600. With a hidden layer of
size, say, 256 one would need a weight matrix consisting
of 14,745,600 free parameters. On the other hand, a TTL
that factorizes the input dimension with 8×20×20×18 is
able to represent this matrix using 2,976 parameters with
a TT-rank of 4, or 4,520 parameters with a TT-rank of 5
(Tab. 1), yielding compression rates of 2.0e-4 and 3.1e-4,
respectively.

For the rest of the paper, we term a fully-connected layer
in form of ŷ = Wx + b, whose weight matrix W is fac-
torized with TTF, a Tensor-Train Layer (TTL) and use the
notation

ŷ = TTL(W , b,x), or TTL(W ,x) (10)

where in the second case no bias is required. Please also
note that, in contrast to (Lebedev et al., 2014) where the
weight tensor is firstly factorized using non-linear Least-
Square method and then fine-tuned with Back-Propagation,
the TTL is always trained end-to-end. For details on the
gradients calculations please refer to Section 5 in (Novikov
et al., 2015).

3.3. Tensor-Train RNN

In this work we investigate the challenge of modeling high-
dimensional sequential data with RNNs. For this reason,

we factorize the matrix mapping from the input to the hid-
den layer with a TTL. For an Simple RNN (SRNN), which
is also known as the Elman Network, this mapping is re-
alized as a vector-matrix multiplication, whilst in case of
LSTM and GRU, we consider the matrices that map from
the input vector to the gating units:

TT-GRU:

r[t] = σ(TTL(W r,x[t]) +U rh[t−1] + br)

z[t] = σ(TTL(W z,x[t]) +Uzh[t−1] + bz)

d[t] = tanh(TTL(W d,x[t]) +Ud(r[t] ◦ h[t−1]))

h[t] = (1− z[t]) ◦ h[t−1] + z[t] ◦ d[t],

(11)

TT-LSTM:

k[t] = σ(TTL(W k,x[t]) +Ukh[t−1] + bk)

f [t] = σ(TTL(W f ,x[t]) +Ufh[t−1] + bf)

o[t] = σ(TTL(W o,x[t]) +Uoh[t−1] + bo)

g[t] = tanh(TTL(W g,x[t]) +Ugh[t−1] + bg)

c[t] = f [t] ◦ c[t−1] + k[t] ◦ g[t]

h[t] = o[t] ◦ tanh(c[t]).

(12)

One can see that LSTM and GRU require 4 and 3 TTLs,
respectively, one for each of the gating units. Instead of
calculating these TTLs successively (which we call vanilla
TT-LSTM and vanilla TT-GRU), we increase n1 —the first
1 of the factors that form the output size N =

∏d
k=1 nk

in a TTL— by a factor of 4 or 3, and concatenate all the
gates as one output tensor, thus parallelizing the computa-
tion. This trick, inspired by the implementation of standard
LSTM and GRU in (Chollet, 2015), can further reduce the
number of parameters, where the concatenation is actually
participating in the tensorization. The compression rate for
the input-to-hidden weight matrix W now becomes

r∗ =

∑d
k=1mknkrk−1rk + (c− 1)(m1n1r0r1)

c ·∏d
k=1mknk

(13)

where c = 4 in case of LSTM and 3 in case of GRU,

and one can show that r∗ is always smaller than r as in Eq.
9. For the former numerical example of a input frame size
160×120×3, a vanilla TT-LSTM would simply require 4
times as many parameters as a TTL, which would be 11,904
for rank 4 and 18,080 for rank 5. Applying this trick would,
however, yield only 3,360 and 5,000 parameters for both
ranks, respectively. We cover other possible settings of this
numerical example in Tab. 1.

Finally to construct the classification model, we denote
the i-th sequence of variable length Ti as a set of vectors

1Though in theory one could of course choose any nk.

Tensor-Train Recurrent Neural Networks for Video Classification

Table 1: A numerical example of compressing with TT-RNNs. Assuming that an input dimension of 160×120×3 is
factorized as 8 × 20 × 20 × 18 and the hidden layer as 4× 4× 4× 4 = 256, depending on the TT-ranks we calculate the
number of parameters necessary for a Fully-Connected (FC) layer, a TTL which is equivalent to TT-SRNN , TT-LSTM and
TT-GRU in their respective vanilla and parallelized form. For comparison, typical CNNs for preprocessing images such as
AlexNet (Krizhevsky et al., 2012; Han et al., 2015) or GoogLeNet (Szegedy et al., 2015) consist of over 61 and 6 million
parameters, respectively.

FC TT-ranks TTL vanilla TT-LSTM TT-LSTM vanilla TT-GRU TT-GRU

14,745,600
3 1,752 7,008 2,040 5,256 1,944
4 2,976 11,904 3,360 8,928 3,232
5 4,520 18,080 5,000 13,560 4,840

{x[t]
i }Ti

t=1 with x
[t]
i ∈ RM∀t. For video data each x

[t]
i

would be an RGB frame of 3 dimensions. For the sake of
simplicity we denote an RNN model, either with or without
TTL, with a function f(·):

h
[Ti]
i = f({x[t]

i }Ti
t=1), where h

[Ti]
i ∈ RN , (14)

which outputs the last hidden layer vector h
[Ti]
i out of a

sequential input of variable length. This vector can be in-
terpreted as a latent representation of the whole sequence,
on top of which a parameterized classifier φ(·) with either
softmax or logistic activation produces the distribution over
all J classes:

P(yi = 1|{x[t]
i }Ti

t=1) = φ(h
[Ti]
i)

= φ(f(x
[t]
i }Ti

t=1)) ∈ [0, 1]J ,
(15)

The model is also illustrated in Fig. 2:

4. Experiments
In the following, we present our experiments conducted on
three large video datasets. These empirical results demon-
strate that the integration of the Tensor-Train Layer in plain
RNN architectures such as a tensorized LSTM or GRU
boosts the classification quality of these models tremen-
dously when directly exposed to high-dimensional input
data, such as video data. In addition, even though the plain
architectures are of very simple nature and very low com-
plexity opposed to the state-of-the-art solutions on these
datasets, it turns out that the integration of the Tensor-Train
Layer alone makes these simple networks very competitive
to the state-of-the-art, reaching second best results in all
cases.

UCF11 Data (Liu et al., 2009)
We first conduct experiments on the UCF11 – earlier
known as the YouTube Action Dataset. It contains in to-
tal 1600 video clips belonging to 11 classes that summa-
rize the human action visible in each video clip such as
basketball shooting, biking, diving etc.. These videos orig-
inate from YouTube and have natural background (’in the

wild’) and a resolution of 320 × 240. We generate a se-
quence of RGB frames of size 160 × 120 from each clip at
an fps(frame per second) of 24, corresponding to the stan-
dard value in film and television production. The lengths of
frame sequences vary therefore between 204 to 1492 with
an average of 483.7.

Figure 3: Two samples of frame sequences from the UCF11
dataset. The two rows belong to the classes of basketball
shooting and volleyball spiking, respectively.

For both the TT-GRUs and TT-LSTMs the input dimension
at each time step is 160 × 120 × 3 = 57600 which is fac-
torized as 8 × 20 × 20 × 18, the hidden layer is chosen to
be 4 × 4 × 4 × 4 = 256 and the Tensor-Train ranks are
[1, 4, 4, 4, 1]. A fully-connected layer for such a mapping
would have required 14,745,600 parameters to learn, while
the input-to-hidden layer in TT-GRU and TT-LSTM consist
of only 3,360 and 3,232, respectively.

As the first baseline model we sample 6 random frames in
ascending order. The model is a simple Multilayer Percep-
tron (MLP) with two layers of weight matrices, the first of
which being a TTL. The input is the concatenation of all
6 flattened frames and the hidden layer is of the same size
as the hidden layer in TT-RNNs. We term this model as
Tensor-Train Multilayer Perceptron (TT-MLP) for the rest
of the paper. As the second baseline model we use plain
GRUs and LSTMs that have the same size of hidden layer
as their TT pendants. We follow (Liu et al., 2013) and per-
form for each experimental setting a 5-fold cross validation
with mutual exclusive data splits. The mean and standard
deviation of the prediction accuracy scores are reported in
Tab. 2.

Tensor-Train Recurrent Neural Networks for Video Classification

 Fully-Connected Weights TTL-Weights

x[0] x[1] x[2] x[3] x[4] x[5]

Softmax/Sigmoid Classifier for y

h[0] h[1] h[2] h[3] h[4] h[5]

 Representation for the car Representation for the getting-out action

Figure 2: Architecture of the proposed model based on TT-RNN (For illustrative purposes we only show 6 frames): A
softmax or sigmoid classifier built on the last hidden layer of a TT-RNN. We hypothesize that the RNN can be encouraged
to aggregate the representations of different shots together and produce a global representation for the whole sequence.

Table 2: Experimental Results on UCF11 Dataset. We re-
port i) the accuracy score, ii) the number of parameters in-
volved in the input-to-hidden mapping in respective models
and iii) the average runtime of each training epoch. The
models were trained on a Quad core Intel R©Xeon R©E7-
4850 v2 2.30GHz Processor to a maximum of 100 epochs

Accuracy # Parameters Runtime
TT-MLP 0.427 ± 0.045 7,680 902s
GRU 0.488 ± 0.033 44,236,800 7,056s
LSTM 0.492 ± 0.026 58,982,400 8,892s
TT-GRU 0.813 ± 0.011 3,232 1,872s
TT-LSTM 0.796 ± 0.035 3,360 2,160s

The standard LSTM and GRU do not show large improve-
ments compared with the TT-MLP model. The TT-LSTM
and TT-GRU, however, do not only compress the weight
matrix from over 40 millions to 3 thousands, but also sig-
nificantly improve the classification accuracy. It seems
that plain LSTM and GRU are not adequate to model
such high-dimensional sequential data because of the large
weight matrix from input to hidden layer. Compared to
some latest state-of-the-art performances in Tab. 3, our
model —simple as it is— shows accuracy scores second to
(Sharma et al., 2015), which uses pre-trained GoogLeNet
CNNs plus 3-fold stacked LSTM with attention mecha-
nism. Please note that a GoogLeNet CNN alone consists of
over 6 million parameters (Szegedy et al., 2015). In term of
runtime, the plain GRU and LSTM took on average more
than 8 and 10 days to train, respectively; while the TT-
GRU and TT-LSTM both approximately 2 days. Therefore
please note the TTL reduces the training time by a factor of
4 to 5 on these commodity hardwares.

Table 3: State-of-the-art results on the UCF11 Dataset, in
comparison with our best model. Please note that there was
an update of the data set on 31th December 2011. We there-
fore only consider works posterior to this date.

Original: (Liu et al., 2009) 0.712
(Liu et al., 2013) 0.761
(Hasan & Roy-Chowdhury, 2014) 0.690
(Sharma et al., 2015) 0.850
Our best model (TT-GRU) 0.813

Hollywood2 Data (Marszałek et al., 2009)
The Hollywood2 dataset contains video clips from 69
movies, from which 33 movies serve as training set and
36 movies as test set. From these movies 823 training clips
and 884 test clips are generated and each clip is assigned
one or multiple of 12 action labels such as answering the
phone, driving a car, eating or fighting a person. This data
set is much more realistic and challenging since the same
action could be performed in totally different style in front
of different background in different movies. Furthermore,
there are often montages, camera movements and zooming
within a single clip.

The original frame sizes of the videos vary, but based on
the majority of the clips we generate frames of size 234
× 100, which corresponds to the Anamorphic Format, at
fps of 12. The length of training sequences varies from 29
to 1079 with an average of 134.8; while the length of test
sequences varies from 30 to 1496 frames with an average
of 143.3.

The input dimension at each time step, being 234× 100×
3 = 70200, is factorized as 10× 18× 13× 30. The hidden
layer is still 4 × 4 × 4 × 4 = 256 and the Tensor-Train
ranks are [1, 4, 4, 4, 1]. Since each clip might have more

Tensor-Train Recurrent Neural Networks for Video Classification

Figure 4: Two samples of frame sequences from the Holly-
wood2 dataset. The first sequence (row 1 and 2) belongs to
the class of sitting down; the second sequence (row 3 and
4) has two labels: running and fighting person.

than one label (multi-class multi-label problem) we imple-
ment a logistic activated classifier for each class on top of
the last hidden layer. Following (Marszałek et al., 2009) we
measure the performances using Mean Average Precision
across all classes, which corresponds to the Area-Under-
Precision-Recall-Curve.

As before we conduct experiments on this dataset using the
plain LSTM, GRU and their respective TT modifications.
The results are presented in in Tab. 4 and state-of-the-art in
Tab. 5.

Table 4: Experimental Results on Hollywood2 Dataset. We
report i) the Mean Average Precision score, ii) the num-
ber of parameters involved in the input-to-hidden mapping
in respective models and iii) the average runtime of each
training epoch. The models were trained on an NVIDIA
Tesla K40c Processor to a maximum of 500 epochs.

MAP # Parameters Runtime
TT-MLP 0.103 4,352 16s
GRU 0.249 53,913,600 106s
LSTM 0.108 71,884,800 179s
TT-GRU 0.537 2,944 96s
TT-LSTM 0.546 3,104 102s

(Fernando et al., 2015) and (Jain et al., 2013) use im-
proved trajectory features with Fisher encoding (Wang &
Schmid, 2013) and Histogram of Optical Flow (HOF) fea-
tures (Laptev et al., 2008), respectively, and achieve so
far the best score. (Sharma et al., 2015) and (Fernando
& Gould, 2016) provide best scores achieved with Neu-
ral Network models but only the latter applies end-to-
end training. To this end, the TT-LSTM model provides
the second best score in general and the best score with
Neural Network models, even though it merely replaces
the input-to-hidden mapping with a TTL. Please note the
large difference between the plain LSTM/GRU and the TT-

LSTM/GRU, which highlights the significant performance
improvements the Tensor-Train Layer contributes to the
RNN models.

It is also to note that, although the plain LSTM and GRU
consist of up to approximately 23K as many parameters as
their TT modifications do, the training time does not reflect
such discrepancy due to the good parallelization power of
GPUs. However, the obvious difference in their training
qualities confirms that training larger models may require
larger amounts of data. In such cases, powerful hardwares
are no guarantee for successful training.

Table 5: State-of-the-art Results on Hollywood2 Dataset,
in comparison with our best model.

Original: (Marszałek et al., 2009) 0.326
(Le et al., 2011) 0.533
(Jain et al., 2013) 0.542
(Sharma et al., 2015) 0.439
(Fernando et al., 2015) 0.720
(Fernando & Gould, 2016) 0.406
Our best model (TT-LSTM) 0.546

Youtube Celebrities Face Data (Kim et al., 2008)
This dataset consists of 1910 Youtube video clips of 47
prominent individuals such as movie stars and politicians.
In the simplest cases, where the face of the subject is visi-
ble as a long take, a mere frame level classification would
suffice. The major challenge, however, is posed by the fact
that some videos involve zooming and/or changing the an-
gle of view. In such cases a single frame may not provide
enough information for the classification task and we be-
lieve it is advantageous to apply RNN models that can ag-
gregate frame level information over time.

Figure 5: Two samples of frame sequences from the
Youtube Celebrities Face dataset. The two rows belong to
the classes of Al Pacino and Emma Thompson.

The original frame sizes of the videos vary but based on
the majority of the clips we generate frames of size 160
× 120 at fps of 12. The retrieved sequences have lengths
varying from 2 to 85 with an average of 39.9. The input
dimension at each time step is 160 × 120 × 3 = 57600
which is factorized as 4× 20× 20× 36, the hidden layer is
again 4× 4× 4× 4 = 256 and the Tensor-Train ranks are

Tensor-Train Recurrent Neural Networks for Video Classification

[1, 4, 4, 4, 1].

Table 6: Experimental Results on Youtube Celebrities Face
Dataset. We report i) the Accuracy score, ii) the number of
parameters involved in the input-to-hidden mapping in re-
spective models and iii) the average runtime of each train-
ing epoch. The models were trained on an NVIDIA Tesla
K40c Processor to a maximum of 100 epochs.

Accuracy # Parameters Runtime
TT-MLP 0.512 ± 0.057 3,520 14s
GRU 0.342 ± 0.023 38,880,000 212s
LSTM 0.332 ± 0.033 51,840,000 253s
TT-GRU 0.800 ± 0.018 3,328 72s
TT-LSTM 0.755 ± 0.033 3,392 81s

As expected, the baseline of TT-MLP model tends to per-
form well on the simpler video clips where the position
of the face remains less changed over time, and can even
outperform the plain GRU and LSTM. The TT-GRU and
TT-LSTM, on the other hand, provide accuracy very close
to the best state-of-the-art model (Tab. 7) using Mean Se-
quence Sparse Representation-based Classification (Ortiz
et al., 2013) as feature extraction.

Table 7: State-of-the-art Results on Youtube Celebrities
Face Dataset, in comparison with our best model.

Original: (Kim et al., 2008) 0.712
(Harandi et al., 2013) 0.739
(Ortiz et al., 2013) 0.808
(Faraki et al., 2016) 0.728
Our best model (TT-GRU) 0.800

Experimental Settings
We applied 0.25 Dropout (Srivastava et al., 2014) for both
input-to-hidden and hidden-to-hidden mappings in plain
GRU and LSTM as well as their respective TT modifica-
tions; and 0.01 ridge regularization for the single-layered
classifier. The models were implemented in Theano
(Bastien et al., 2012) and deployed in Keras (Chollet,
2015). We used the Adam (Kingma & Ba, 2014) step rule
for the updates with an initial learning rate 0.001.

5. Conclusions and Future Work
We proposed to integrate Tensor-Train Layers into Recur-
rent Neural Network models including LSTM and GRU,
which enables them to be trained end-to-end on high-
dimensional sequential data. We tested such integration
on three large-scale realistic video datasets. In comparison
to the plain RNNs, which performed very poorly on these
video datasets, we could empirically show that the integra-
tion of the Tensor-Train Layer alone significantly improves

the modeling performances. In contrast to related works
that heavily rely on deep and large CNNs, one advantage of
our classification model is that it is simple and lightweight,
reducing the number of free parameters from tens of mil-
lions to thousands. This would make it possible to train
and deploy such models on commodity hardware and mo-
bile devices. On the other hand, with significantly less free
parameters, such tensorized models can be expected to be
trained with much less labeled data, which are quite expen-
sive in the video domain.

More importantly, we believe that our approach opens up
a large number of possibilities to model high-dimensional
sequential data such as videos using RNNs directly. In spite
of its success in modeling other sequential data such as nat-
ural language, music data etc., RNNs have not been applied
to video data in a fully end-to-end fashion, presumably due
to the large input-to-hidden weight mapping. With TT-
RNNs that can directly consume video clips on the pixel
level, many RNN-based architectures that are successful in
other applications, such as NLP, can be transferred to mod-
eling video data: one could implement an RNN autoen-
coder that can learn video representations similar to (Sri-
vastava et al., 2015), an Encoder-Decoder Network (Cho
et al., 2014) that can generate captions for videos similar
to (Donahue et al., 2015), or an attention-based model that
can learn on which frame to allocate the attention in order
to improve the classification.

We believe that the TT-RNN provides a fundamental build-
ing block that would enable the transfer of techniques from
fields, where RNNs have been very successful, to fields
that deal with very high-dimensional sequence data –where
RNNs have failed in the past.

The source codes of our TT-RNN implementations and all
the experiments in Sec. 4 are publicly available at https:
//github.com/Tuyki/TT_RNN. In addition, we also
provide codes of unit tests, simulation studies as well as
experiments performed on the HMDB51 dataset (Kuehne
et al., 2011).

References
Bastien, Frédéric, Lamblin, Pascal, Pascanu, Razvan,

Bergstra, James, Goodfellow, Ian J., Bergeron, Arnaud,
Bouchard, Nicolas, and Bengio, Yoshua. Theano: new
features and speed improvements. Deep Learning and
Unsupervised Feature Learning NIPS 2012 Workshop,
2012.

Bingham, Ella and Mannila, Heikki. Random projection in
dimensionality reduction: applications to image and text
data. In Proceedings of the seventh ACM SIGKDD inter-
national conference on Knowledge discovery and data
mining, pp. 245–250. ACM, 2001.

Tensor-Train Recurrent Neural Networks for Video Classification

Cho, Kyunghyun, Van Merriënboer, Bart, Bahdanau,
Dzmitry, and Bengio, Yoshua. On the properties of neu-
ral machine translation: Encoder-decoder approaches.
arXiv preprint arXiv:1409.1259, 2014.

Chollet, François. Keras: Deep learning library for
theano and tensorflow. https://github.com/
fchollet/keras, 2015.

Donahue, Jeffrey, Anne Hendricks, Lisa, Guadarrama,
Sergio, Rohrbach, Marcus, Venugopalan, Subhashini,
Saenko, Kate, and Darrell, Trevor. Long-term recur-
rent convolutional networks for visual recognition and
description. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 2625–
2634, 2015.

Faraki, Masoud, Harandi, Mehrtash T, and Porikli, Fatih.
Image set classification by symmetric positive semi-
definite matrices. In Applications of Computer Vision
(WACV), 2016 IEEE Winter Conference on, pp. 1–8.
IEEE, 2016.

Feichtenhofer, Christoph, Pinz, Axel, and Wildes, Richard.
Spatiotemporal residual networks for video action recog-
nition. In Advances in Neural Information Processing
Systems, pp. 3468–3476, 2016.

Fernando, Basura and Gould, Stephen. Learning end-to-
end video classification with rank-pooling. In Proc.
of the International Conference on Machine Learning
(ICML), 2016.

Fernando, Basura, Gavves, Efstratios, Oramas, Jose M,
Ghodrati, Amir, and Tuytelaars, Tinne. Modeling video
evolution for action recognition. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 5378–5387, 2015.

Garipov, Timur, Podoprikhin, Dmitry, Novikov, Alexander,
and Vetrov, Dmitry. Ultimate tensorization: compress-
ing convolutional and fc layers alike. arXiv preprint
arXiv:1611.03214, 2016.

Han, Song, Pool, Jeff, Tran, John, and Dally, William.
Learning both weights and connections for efficient neu-
ral network. In Advances in Neural Information Process-
ing Systems, pp. 1135–1143, 2015.

Harandi, Mehrtash, Sanderson, Conrad, Shen, Chunhua,
and Lovell, Brian C. Dictionary learning and sparse
coding on grassmann manifolds: An extrinsic solution.
In Proceedings of the IEEE International Conference on
Computer Vision, pp. 3120–3127, 2013.

Hasan, Mahmudul and Roy-Chowdhury, Amit K. Incre-
mental activity modeling and recognition in streaming
videos. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 796–803,
2014.

Jain, Mihir, Jegou, Herve, and Bouthemy, Patrick. Better
exploiting motion for better action recognition. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 2555–2562, 2013.

Kambhatla, Nandakishore and Leen, Todd K. Dimension
reduction by local principal component analysis. Neural
computation, 9(7):1493–1516, 1997.

Karpathy, Andrej, Toderici, George, Shetty, Sanketh, Le-
ung, Thomas, Sukthankar, Rahul, and Fei-Fei, Li. Large-
scale video classification with convolutional neural net-
works. In Proceedings of the IEEE conference on Com-
puter Vision and Pattern Recognition, pp. 1725–1732,
2014.

Kim, Minyoung, Kumar, Sanjiv, Pavlovic, Vladimir, and
Rowley, Henry. Face tracking and recognition with
visual constraints in real-world videos. In Computer
Vision and Pattern Recognition, 2008. CVPR 2008.
IEEE Conference on, pp. 1–8. IEEE, 2008. URL
http://seqam.rutgers.edu/site/index.
php?option=com_content&view=article&
id=64&Itemid=80.

Kingma, Diederik and Ba, Jimmy. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Koutnik, Jan, Greff, Klaus, Gomez, Faustino, and Schmid-
huber, Juergen. A clockwork rnn. arXiv preprint
arXiv:1402.3511, 2014.

Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E.
Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing
systems, pp. 1097–1105, 2012.

Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., and Serre,
T. HMDB: a large video database for human motion
recognition. In Proceedings of the International Confer-
ence on Computer Vision (ICCV), 2011.

Laptev, Ivan, Marszalek, Marcin, Schmid, Cordelia, and
Rozenfeld, Benjamin. Learning realistic human actions
from movies. In Computer Vision and Pattern Recogni-
tion, 2008. CVPR 2008. IEEE Conference on, pp. 1–8.
IEEE, 2008.

Le, Quoc V, Zou, Will Y, Yeung, Serena Y, and Ng, An-
drew Y. Learning hierarchical invariant spatio-temporal
features for action recognition with independent sub-
space analysis. In Computer Vision and Pattern Recogni-
tion (CVPR), 2011 IEEE Conference on, pp. 3361–3368.
IEEE, 2011.

Tensor-Train Recurrent Neural Networks for Video Classification

Lebedev, Vadim, Ganin, Yaroslav, Rakhuba, Maksim,
Oseledets, Ivan, and Lempitsky, Victor. Speeding-
up convolutional neural networks using fine-tuned cp-
decomposition. arXiv preprint arXiv:1412.6553, 2014.

Liu, Dianting, Shyu, Mei-Ling, and Zhao, Guiru. Spatial-
temporal motion information integration for action de-
tection and recognition in non-static background. In In-
formation Reuse and Integration (IRI), 2013 IEEE 14th
International Conference on, pp. 626–633. IEEE, 2013.

Liu, Jingen, Luo, Jiebo, and Shah, Mubarak. Recog-
nizing realistic actions from videos “in the wild”. In
Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on, pp. 1996–2003. IEEE,
2009. URL http://crcv.ucf.edu/data/UCF_
YouTube_Action.php.

Maas, Andrew L, Daly, Raymond E, Pham, Peter T, Huang,
Dan, Ng, Andrew Y, and Potts, Christopher. Learning
word vectors for sentiment analysis. In Proceedings of
the 49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technologies-
Volume 1, pp. 142–150. Association for Computational
Linguistics, 2011.

Marszałek, Marcin, Laptev, Ivan, and Schmid, Cordelia.
Actions in context. In IEEE Conference on Computer Vi-
sion & Pattern Recognition, 2009. URL http://www.
di.ens.fr/˜laptev/actions/hollywood2/.

Novikov, Alexander, Podoprikhin, Dmitrii, Osokin, Anton,
and Vetrov, Dmitry P. Tensorizing neural networks. In
Advances in Neural Information Processing Systems, pp.
442–450, 2015.

Ortiz, Enrique G, Wright, Alan, and Shah, Mubarak. Face
recognition in movie trailers via mean sequence sparse
representation-based classification. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3531–3538, 2013.

Oseledets, Ivan V. Tensor-train decomposition. SIAM Jour-
nal on Scientific Computing, 33(5):2295–2317, 2011.

Sharma, Shikhar, Kiros, Ryan, and Salakhutdinov, Ruslan.
Action recognition using visual attention. arXiv preprint
arXiv:1511.04119, 2015.

Simonyan, Karen and Zisserman, Andrew. Two-stream
convolutional networks for action recognition in videos.
In Advances in Neural Information Processing Systems,
pp. 568–576, 2014.

Srivastava, Nitish, Hinton, Geoffrey E, Krizhevsky, Alex,
Sutskever, Ilya, and Salakhutdinov, Ruslan. Dropout:
a simple way to prevent neural networks from overfit-
ting. Journal of Machine Learning Research, 15(1):
1929–1958, 2014.

Srivastava, Nitish, Mansimov, Elman, and Salakhutdinov,
Ruslan. Unsupervised learning of video representations
using lstms. CoRR, abs/1502.04681, 2, 2015.

Sutskever, Ilya, Vinyals, Oriol, and Le, Quoc V. Se-
quence to sequence learning with neural networks. In
Advances in neural information processing systems, pp.
3104–3112, 2014.

Szegedy, Christian, Liu, Wei, Jia, Yangqing, Sermanet,
Pierre, Reed, Scott, Anguelov, Dragomir, Erhan, Du-
mitru, Vanhoucke, Vincent, and Rabinovich, Andrew.
Going deeper with convolutions. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1–9, 2015.

Wang, Heng and Schmid, Cordelia. Action recognition
with improved trajectories. In Proceedings of the IEEE
International Conference on Computer Vision, pp. 3551–
3558, 2013.

Xingjian, SHI, Chen, Zhourong, Wang, Hao, Yeung, Dit-
Yan, Wong, Wai-Kin, and Woo, Wang-chun. Convolu-
tional lstm network: A machine learning approach for
precipitation nowcasting. In Advances in neural infor-
mation processing systems, pp. 802–810, 2015.

Ye, Jieping, Janardan, Ravi, and Li, Qi. Gpca: an efficient
dimension reduction scheme for image compression and
retrieval. In Proceedings of the tenth ACM SIGKDD
international conference on Knowledge discovery and
data mining, pp. 354–363. ACM, 2004.

Yue-Hei Ng, Joe, Hausknecht, Matthew, Vijaya-
narasimhan, Sudheendra, Vinyals, Oriol, Monga,
Rajat, and Toderici, George. Beyond short snippets:
Deep networks for video classification. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4694–4702, 2015.

Zhang, Jun, Yan, Yong, and Lades, Martin. Face recogni-
tion: eigenface, elastic matching, and neural nets. Pro-
ceedings of the IEEE, 85(9):1423–1435, 1997.

70 4. Tensor-Train RNNs for Video Classification

Chapter 5

Tensor-Train RNNs in Modeling

Sequential EHR for Survival

Prediction

Proceedings of Machine Learning for Healthcare 2017 JMLR W&C Track Volume 68

Modeling Progression Free Survival in Breast Cancer
with Tensorized Recurrent Neural Networks

and Accelerated Failure Time Models

Yinchong Yang yinchong.yang@siemens.com
Ludwig Maximilians University Munich
Siemens AG, Corporate Technology, Munich

Peter A. Fasching peter.fasching@uk-erlangen.de
Department of Gynecology and Obstetrics,
University Hospital Erlangen, Erlangen

Volker Tresp volker.tresp@siemens.com

Ludwig Maximilians University Munich

Siemens AG, Corporate Technology, Munich

Abstract

In this work we attempt to predict the progression-free survival time of metastatic breast
cancer patients by combining state-of-the-art deep learning approaches with traditional
survival analysis models. In order to tackle the challenge of sequential clinical records
being both high-dimensional and sparse, we propose to apply a tensorized recurrent neural
network architecture to extract a latent representation from the entire patient history. We
use this as the input to an Accelerated Failure Time model that predicts the survival time.
Our experiments, conducted on a large real-world clinical dataset, demonstrate that the
tensorized recurrent neural network largely reduces the number of weight parameters and
the training time. It also achieves modest improvements in prediction, in comparison with
state-of-the-art recurrent neural network models enhanced with event embeddings.

1. Introduction

With the increasing availability of Electronic Health Records (EHR) data in clinics, there
is a growing interest in predicting treatment prescription and individual patient outcome
by extracting information from these data using advanced analytics approaches. Especially
the latest success of deep learning in image and natural language processing has encour-
aged the application of these state-of-the-art techniques in modeling clinical data as well.
Convolutional Neural Networks (CNNs), particularly the deeper architectures with multiple
layers, turn out to be capable of not only handling natural images (Krizhevsky et al., 2012;
Simonyan and Zisserman, 2014; Szegedy et al., 2015), but also medical imaging data for,
e.g., segmentation and captioning (Kayalibay et al., 2017; Shin et al., 2016; Kisilev et al.,
2011). On the other hand, due to the fact that natural language and medical records share
the same sequential nature, Recurrent Neural Networks (RNNs), which have proven to be
powerful in language modeling (Kim et al., 2015; Mikolov, 2012) and machine translation
(Sutskever et al., 2014; Cho et al., 2014), are more frequently applied to medical event
data to predict, e.g., medication prescription and patient endpoints, with promising per-

c©2017.

formances (Choi et al., 2016, 2015). The major advantage of RNNs in handling medical
records lies in their ability to handle sequential inputs of variable lengths in a more generic
way than sliding window approaches (Bengio et al., 2003; Esteban et al., 2015).

In language modeling, the input to the RNN model is typically a word (or even character)
embedding in form of a dense and real vector that represents the word in a latent space.
The embedding idea has inspired its application on medical event data such as Choi et al.
(2015); Esteban et al. (2016); Choi et al. (2016); the reason is that the sequential medical
records are often of categorical type and, after binary-coding, the derived feature vector can
become very sparse in a high dimensional space. Choi et al. (2015) terms such type of input
features as a multi-hot vector and show that they are suboptimal to serve as direct inputs to
plain RNN models. The embedding layer, though reducing the size of the input-to-hidden
weight matrix in an RNN model, still requires parameters determined by the dimension of
the raw multi-hot input and the embedding size.

To handle the high dimensional multi-hot sequential input, we propose in this work a
simpler, more efficient and direct approach by factorizing the input-to-hidden weight matrix
in an RNN model based on tensor factorization. Novikov et al. (2015) first proposed to per-
form Tensor-Train Factorization (Oseledets, 2011) on weight matrices in Neural Networks to
tackle the challenge of input redundancy, such as in fully-connected layers following a convo-
lutional one, or simple feed-forward layers that consume raw pixel data. This tensorization
is proven to be highly efficient and can significantly reduce the over-parameterization in
the weights without sacrificing much of the model expressiveness. Following their work, we
argue that the same challenge of redundant information in high dimensional and sequen-
tial multi-hot vectors can be addressed in a similar way by integrating the Tensor-Train
factorization into RNNs, with the nice property that the factorization is learned efficiently,
together with the rest of the RNN, in an end-to-end fashion.

We conduct experiments on a large real-world dataset consisting of thousands of metastatic
breast cancer patients from Germany. We attempt to predict for each patient her/his
Progression-Free Survival time based on her/his medical history of variable length and
background information, using an Accelerated Failure Time (AFT) model in combination
with the RNN models. The former (Wei, 1992) has always been a promising tool for survival
analysis, especially if one wants to directly model the individual survival time instead of the
hazard. Gore et al. (1984) and Bradburn et al. (2003), for instance, have demonstrated the
application of AFT in modeling progression-free survival in case of breast and lung cancer,
respectively.

The rest of the paper is organized as follows: in Sec. 2 we give an overview of related
works that have inspired our own; in Sec. 3 we provide an introduction to our cohort and
data situation; in Sec. 4 we present the novel techniques of our model in detail and provide
experimental results in Sec. 5. Finally, Sec. 6 provides a conclusion and an outlook on
future works.

2. Related Work

Handling sequential EHR data. Due to the sequential nature of EHR data, there
have been recently multiple promising works studying clinical events as sequential data.
Many of them were inspired by works in natural language modeling, since sentences can

be easily modeled as sequences of signals. Esteban et al. (2015) adjusted a language model
based on the sliding window technique in Bengio et al. (2003), taking into account a fixed
number of events in the past. This model was extended in Esteban et al. (2016) by replacing
the sliding window with RNNs, which improved the predictions for prescriptions decision
and endpoints. Lipton et al. (2015) applied LSTM to perform diagnosis prediction based
on sequential input. A related approach with RNNs can also be found in Choi et al. (2015)
to predict diagnosis and medication prescriptions. This RNN implementation was further
augmented with neural attention mechanism in Choi et al. (2016), which did not only show
promising performances but also improved the interpretability of the model.

RNN for sequence classification and regression. The RNN models in these
works were implemented in a many-to-many fashion. That is to say, at each time step
the RNN generates a prediction as output, since the target in these works is provided at
every time step. In our work, on the other hand, cancer progression is not expected to be
observed regularly. Consequently, we implement many-to-one RNN models that consume a
sequence of input vectors, and generate only one output vector. This setting can be found
in a variety of sequence classification/regression tasks. Koutnik et al. (2014) used such RNN
architectures to classify spoken words and handwriting as sequences. RNNs have also been
applied to classify the sentiment of sentences such as in the IMDB reviews dataset (Maas
et al., 2011). The application of RNNs in the many-to-one fashion can also be seen as to
encode a sequence of variable length into one fixed-size representation (Sutskever et al.,
2014) and then to perform prediction as decoding based on this representation.

Tensor-Train Factorization and Tensor-Train Layer. The Tensor-Train Fac-
torization (TTF) was first introduced by Oseledets (2011) as a tensor factorization model
with the advantage of being capable of scaling the factorization to an arbitrary number of
dimensions. Novikov et al. (2015) showed that one could reshape a fully connected layer
into a high dimensional tensor, which is to be factorized using TTF, and referred to it as a
Tensor-Train Layer (TTL). This idea was applied to compress very large weight matrices in
deep Neural Networks where the entire model was trained end-to-end. In these experiments
they compressed fully connected layers on top of convolutional layers, and also proved that
a Tensor-Train layer can directly consume pixels of image data such as CIFAR-10, achieving
the best result among all known non-convolutional layers. Then in Garipov et al. (2016)
it was shown that even the convolutional layers themselves can be compressed with TTLs.
Yang et al. (2017) first applied TTF to the input-to-hidden layer in RNN variants. They
showed that such modification not only reduced the number of weight parameters in orders
of magnitude, but also could boost prediction accuracy in classification of real-world video
clips, which typically involve extremely large input dimensions.

3. Cohort

3.1 Data Extraction

In Germany, approximately 70,000 women suffer from breast cancer and the mortality is
approximately 33% every year (Kaatsch et al., 2013; Rauh and Matthias, 2008). In many of
these cases, it is the progression, especially the metastasis of the cancer cells to vital organs,
that actually causes the patient’s death. Our dataset, provided by the PRAEGNANT
study network (Fasching et al., 2015), was collected on patients suffering from metastatic

breast cancer and warehoused in the secuTrial R©, which is a relational database system.
After querying and pre-processing, we could retrieve information on 4,357 valid patient
cases, which we define as a patient-time pair, i.e., at that specific time a metastasis and/or
recurrence is observed on that patient. The first patient was recruited in 2014 and the
currently last patient in 2016, but their earliest medical records date back to 1961.

3.2 Feature Processing

There are two classes of patient information that are potentially relevant for modeling the
PFS time:

First, the static information includes 1) basic patient information, 2) information on the
primary tumor and 3) history of metastasis before entering the study. In total we observe
26 features of binary, categorical or real types. We perform binary-coding on the former
both cases and could extract for each patient case i a static feature vector denoted with
mi ∈ R118.

The sequential information includes 4) local recurrences, 5) metastasis 6) clinical visits
7) radiotherapies, 8) systemic therapies and 9) surgeries. These are time-stamped clinical
events observed on each patient throughout time. In total we have 26 sequential features of
binary or categorical nature. Binary-coded, they yield for a patient case i at time step t a

feature vector x
[t]
i ∈ {0, 1}196. We denote the whole sequence of events for this patient case

i up to her/his last observation at Ti before progression (in form of either local recurrences

or metastasis) using a set of {x[t]
i }Tit=1. The length of the sequences vary from 1 to 35 and

is on average 7.54.

Due to the binary-coding, each mi and x
[t]
i yield on average sparsities of 0.88 and 0.97,

respectively, for each i and t.

3.3 Distribution of the Target Variable

We denote the number of days till the next recorded progression using zi, and assume it to
be a realization of a random variable Zi to serve as the target variable of our model.

In total, we attempt to model the distribution of PFS time as Generalized Regression
Model (GRM):

Zi
i.i.d.∼ F(Θi) where Θi = g−1(η

[Ti]
i). (1)

where Zi is a variable independently conditioned on some features that represent the patient
case, where g−1 is analogous to the inverse link function in GRMs and maps the time

dependent input η
[Ti]
i to the set of distribution parameters Θi.

We would assume Zi to be Log-Normal distributed and specify Eq. (1) to be:

Zi
i.i.d.∼ logN (µi, σi) with µi = g−1(η

[Ti]
i) = g−1

(
f
(
mi, {x[t]

i }Tit=1

))
. (2)

In the section that follows we elaborate in detail the construction of the function f ,
which maps the static and sequential features of a patient case into a latent representation

η
[Ti]
i to serve as the input to the AFT model, a special case of GRM.

4. Methods

In this section, we first give an introduction to the Tensor-Train Layer; we then use this to
replace the weight matrix mapping from the input vector to hidden state in RNN models.
Thereafter, we briefly review the Accelerated Failure Time model that consumes the latent
patient representation produced by the Tensor-Train RNN.

4.1 Tensor-Train Recurrent Neural Networks

Tensor-Train Factorization of a Feed-Forward Layer Novikov et al. (2015) showed
that the weight matrix W of a fully-connected feed-forward layer ŷ = Wx + b can be
factorized using Tensor-Train (Oseledets, 2011), where the factorization and the weights
are learned simultaneously. This modification is especially effective, if the layer is exposed
to high-dimensional input with redundant information, such as pixel input and feature maps
produced by convolutional layers. In this work, we show that the challenge of multi-hot
representation of sequential EHR data can also be handled using TTL by integrating it into
RNNs.

A fully-connected feed-forward layer, in form of:

ŷ(j) =
M∑

i=1

W (i, j) · x(i) + b(j), ∀j ∈ [1, N] with x ∈ RM , y ∈ RN , (3)

can be equivalently rewritten as

Ŷ(j1, j2, ..., jd) =

m1∑

i1=1

m2∑

i2=1

...

md∑

id=1

W((i1, j1), (i2, j2), ..., (id, jd)) ·X (i1, i2, ..., id)

+ B(j1, j2, ..., jd),

(4)

so long as the input and output dimensions can be factorized as M =
∏d
k=1mk, N =∏d

k=1 nk. Therefore, the vectors x and y are reshaped into two tensors with the same num-
ber of dimensions: X ∈ Rm1×m2×...×md ,Y ∈ Rn1×n2×...×nd , respectively, and the mapping
function becomes Rm1×m2×...×md → Rn1×n2×...×nd . Though mathematically equivalent, Eq.
4 represents a more general description of Eq. 3 and, more importantly, provides a high
dimensional weight tensor of W that can be factorized using TTF:

Ŵ((i1, j1), (i2, j2), ..., (id, jd))
TTF
= G∗

1(i1, j1, ; , ;) G∗
2(i2, j2, ; , ;) ... G∗

d(id, jd, ; , ;), (5)

where a G∗
k ∈ Rmk×nk×rk−1×rk is termed as a core tensor, specified by ranks rk for k ∈ [0, d].

Now instead of explicitly storing the full tensor W of size
∏d
k=1mk · nk = M ·N , we only

store its TT-format, i.e., the set of low-rank core tensors {G∗
k}dk=1 which can approximately

reconstruct W .

For the rest of the paper, we denote a fully-connected layer of ŷ = Wx + b, whose
weight matrix W is factorized with TTF as ŷ = TTL(W , b,x), or TTL(W ,x), if no bias
is required.

Tensor-Train RNN In this work we investigate the challenge of modeling high dimen-
sional sequential data with RNNs. For this reason, we factorize the matrix mapping from

the input to the hidden state with a TTL as in Yang et al. (2017). More specifically, in
case of LSTM, a particular form of RNN by Hochreiter and Schmidhuber (1997); Gers et al.
(2000) and GRU, another variant by Chung et al. (2014), we TT-factorize the matrices that
map from the input vector to the gating units as in Eq. (6):

TT-GRU:

r[t] = sig(TTL(W r,x[t]) +U rh[t−1] + br)

z[t] = sig(TTL(W z,x[t]) +Uzh[t−1] + bz)

d[t] = tanh(TTL(W d,x[t]) +Ud(r[t] ◦ h[t−1]))

h[t] = (1− z[t]) ◦ h[t−1] + z[t] ◦ d[t],

TT-LSTM:

k[t] = sig(TTL(W k,x[t]) +Ukh[t−1] + bk)

f [t] = sig(TTL(W f ,x[t]) +Ufh[t−1] + bf)

o[t] = sig(TTL(W o,x[t]) +Uoh[t−1] + bo)

g[t] = tanh(TTL(W g,x[t]) +Ugh[t−1] + bg)

c[t] = f [t] ◦ c[t−1] + k[t] ◦ g[t]

h[t] = o[t] ◦ tanh(c[t]).

(6)

For the sake of simplicity, we denote a many-to-one RNN (either with or without Tensor-

Train, either GRU or LSTM) using a function ω: h
[Ti]
i = ω({x[t]

i }Tit=1), where h
[Ti]
i is the

last hidden state as in Eq. (6).
In order to also take into account the static features (Esteban et al., 2016) such as patient

background and primary tumor, we concatenate the last hidden state of the RNN with the

latent representation of the static features as η
[Ti]
i = [h

[Ti]
i , qi] with qi = ψ(Vmi), where

V is a standard trainable weight matrix and ψ denotes a non-linear activation function.
Finally, we have specified the function f with respect to Eq. (2) as:

g(µi) = η
[Ti]
i = f

(
mi, {x[t]

i }Tit=1

)
=
[
ψ(Vmi), ω({x[t]

i }Tit=1)
]
. (7)

The vector η
[Ti]
i represents the static patient information as well as the medical history

of patient i up to time step Ti. In the context of GRM-like models, η
[Ti]
i would be the raw

covariates, while in our case, it is a more abstract latent representation generated from a
variety of raw and potentially less structured features. This point of view provides us with
an interface between representation learning and the GRM models.

The vector η
[Ti]
i also functions as an abstract patient profile that represents all rele-

vant clinical information in a latent vector space, where patients with similar background
information and medical history would be placed in a specific neighborhood. This very
characteristics of the latent vector space is key to the latest success of deep or representa-
tion learning, because it facilitates the classification and regression models built on top of
it, which is, in our case, an AFT model that is presented as follows.

4.2 Accelerated Failure Time Model

The AFT model is a GRM-like parametric regression that attempts to capture the influence
that the features in ηi have on a variable Zi, which describes the survival time till an event
is observed:

Yi = ηTi β +Ri, with Yi = log(Zi), (8)

where β is the weight vector and Ri
i.i.d.∼ DR is the residual whose distribution can be

specified by DR. Common choices for DR are Normal, Extreme Value and Logistic distri-
butions. The variable Z would correspondingly be Log-Normal, Weibull/Exponential and

Log-Logistic distributed, respectively. As Eq. (8) suggests, an AFT model assumes that the
covariates have a multiplicative effect on the survival time, ’accelerating’ —either positively
or negatively— the baseline time till which the event of interest occurs. To see that one
only has to rewrite Eq. (8) as Zi = Z0 exp

(
ηTi β

)
with Z0 = exp (Ri), so that the baseline

survival time Z0 is accelerated to a factor of exp{ηTi β}. In other words, if one covariate j
increases by a factor of δ, the failure time is to be accelerated by a factor of exp{δβj}, so
long as all other covariates remain the same. The Proportional Hazard Cox Regression, on
the other hand, assumes such a multiplicative effect over the hazard.

We are specifically assuming that the target variable Zi follows a Log-Normal distribu-

tion and that, implicitly, the residuals are normal distributed, i.e., Ri
i.i.d.∼ N (0, σi). One

could therefore plug Eq. (8) into the normal distribution assumption and have
log(Zi)−ηT

i β
σi

i.i.d.∼
N (0, 1), which allows us to perform training with the Mean Squared Logarithmic Error.

5. Experiments

5.1 Experimental Details and Evaluation Approach

We conduct 5-fold cross-validations by splitting the dataset into proportions of 0.8 / 0.2
disjoint subsets for training / test tasks. We train our models with 0.25 dropout (Srivastava
et al., 2014) rate for the weights in (TT-)RNNs, and 0.025 ridge-penalization in feed-forward
layers, with the Adam (Kingma and Ba, 2014) step rule for 200 epochs. Since the dimension
of 196 can be represented with prime factors 22 × 72, we experiment two different settings
of [7, 28] and [4, 7, 7] to factorized the input dimension. The corresponding factorizations
of the RNN output’s dimension are [8, 8] and [4, 4, 4], respectively. In the first case, the
Tensor-Train-Factorization becomes equivalent to a two mode PARAFAC/CP (Kolda and
Bader, 2009) model, and we therefore denote GRU and LSTM with this setting as CP-GRU
and CP-LSTM, respectively, for the sake of simplicity. We also experiment two different
TT-ranks of 4 and 6. All models are trained with objective function of Mean Squared
Logarithmic Error (Chollet, 2015). We set the size of the non-linear mapping of the static
feature qi to be 128.

Since the target Z follows a Log-Normal instead of Normal distribution, it is not ap-
propriate to measure the results in term of Mean Squared Error (MSE) as is with usual
regression models. We therefore report the more robust metric of Median Absolute Error
(MAE) defined as MAE = mediani(|zi − ẑi|). Even on the logarithmic scale of Y , MSE
is not a reliable metric in this case either, since the Squared Error of a yi = log zi would
increase in Z exponentially as yi increases. In other words, two similar Squared Errors on
the logarithmic scale Y might imply totally different errors in Z. We therefore report the

coefficient of determination as R2 = 1−
∑

i(yi−ŷi)2∑
i(yi−ȳ)2

on the logarithmic scale of Y .

All our models are implemented in Theano (Bastien et al., 2012) and deployed in Keras
(Chollet, 2015). The experiments were conducted on a NVIDIA Tesla K40c Processor.

5.2 Prediction of Progression-Free Survival

As weak baselines we first report the performance of standard Cox and AFT Regression
using the R package survival(Therneau, 2015; Terry M. Therneau and Patricia M. Gramb-

Model TT-Rank MAE R2 Time(sec.) #Parameters

GRU - 156.7 ± 6.6 0.295 ± 0.018 3,598 74,880
LSTM - 159.5 ± 13.7 0.274 ± 0.014 5,956 99,840

Emb.+GRU - 136.2 ± 14.8 0.635 ± 0.009 4,957 24,832
Emb.+LSTM - 136.8 ± 11.9 0.633 ± 0.014 6,170 28,928

CP-GRU
4 135.6 ± 10.0 0.630 ± 0.018 1,689 1,568
6 136.8 ± 9.3 0.623 ± 0.015 1,773 2,352

TT-GRU
4 136.5 ± 9.4 0.632 ± 0.020 1,940 752
6 136.2 ± 11.4 0.634 ± 0.019 2,178 1,464

CP-LSTM
4 135.2 ± 8.4 0.637 ± 0.018 3,390 1,792
6 133.7 ± 10.7 0.625 ± 0.023 3,530 2,688

TT-LSTM
4 140.0 ± 10.4 0.645± 0.025 3,729 816
6 132.9 ± 9.9 0.630 ± 0.017 4,050 1,560

Table 1: Experimental results: average MAE, R2, average training time, the number of all
parameters responsible for mapping the raw input to the hidden state in RNNs.

sch, 2000). The Cox Regression (in term of median survival estimate in the package) yields
an average MAE score over the cross-validation of 214.5 and the AFT 208.7. The input to
both models are the raw features aggregated w.r.t time axis. Such aggregation is also ap-
plied in Esteban et al. (2015) and is proven to be a reasonable alternative solution to handle
time stamped features, since each entry represents the number of feature values observed
up to a specific time step, though ignoring the order in which the events were observed.

We apply two further classes of baseline models: First, we expose GRU and LSTM di-
rectly to the raw sequential features and then, secondly, we add a tanh activated embedding
layer of size 64, between the raw input feature and the RNNs, following the state-of-the-art
of Choi et al. (2015). The corresponding results are presented in the first four rows in
Tab. 1. Compared to aggregated sequential features, RNNs are indeed able to generate
representations that facilitate the AFT model on top of them, reducing the MAE from over
200 to ca. 150. The embedding layers as input to RNNs turn out to yield even better
results of 136, with less parameters but longer training time. This confirms the point made
in Choi et al. (2015) that such input features of both high dimensionality and sparsity are
suboptimal input to RNNs.

In further experiments we test our TT-GRU, TT-LSTM, CP-GRU and CP-LSTM imple-
mentations with different TT-ranks. Though exposed to the raw features, these tensorized
RNNs yield prediction quality comparable with –and sometimes even better than– the state-
of-the-art embedding technique and require on average ca. 40% of the training time and
2%−10% of parameters. Compared with plain RNNs, they merely require 1% to 3% of the
parameters.

In contrast to Novikov et al. (2015) where tensorization slightly decreased the prediction
quality, we actually observe on average a modest improvement with TT-RNNs. For instance,
the MAE is improved from 136.2 to 135.6 in case of GRU and from 136.8 to 132.9 in case of
LSTM. Such MAE measures around 135 implies that these model can provide a prediction
of PFS time with an accuracy of plus-minus four months time for the non-extreme patient
cases.

F0 Weibull Exponential Log-Logistic Log-Normal

p-value 3.7e-4 ≤2.2e-16 ≤2.2e-16 0.064

Table 2: Two-sided Kolmogorov-Smirnov Tests of the distribution of the residual under the
H0 of variable distributions F0.

Please note that in an RNN model, the input-to-hidden weight matrix becomes over-
parameterized if the input feature turns out to be highly sparse and/or to consist of high
proportion of redundant information. In earlier works, this challenge is tackled using an
explicit embedding layer that transforms the raw feature into a more compact input vector
to the RNNs. The TT-RNNs, on the other hand, provide an alternative solution that
directly tackles the over-parameterization in the weight matrix, in that the full-sized weight
matrix is constructed using a much smaller number of ’meta’ weights, i.e., the core tensors
in the Tensor-Train model.

Secondly, comparing different TT-settings, it is trivial that a higher TT-rank requires
more parameters and longer training time. Compared with the CP-factorization of 196 =
7× 28, the real TT-factorization of 196 = 4× 7× 7 of the weight matrix leads to a smaller
number of parameters, but the difference in training time is less extreme. This can be
explained with Eq. (5), which demonstrates that the number of core tensors also influences
the computation complexity. More specifically, the multiplication among core tensors is
strictly successive in k = 1, 2, ..., d and cannot be parallelized in CPUs or GPUs. In other
words, a chain of multiplication of small core tensors might, in extreme cases, take even
longer to compute than the multiplication of two large matrices.

In order to verify the Log-Normal distribution assumption, we conduct Kolmogorov-
Smirnov-Tests as in R Core Team (2016) on the modeling residuals. We report in Tab.
2 the p-values corresponding to alternative distribution assumptions. The hypothesis of
Weibull-, Exponential and Log-Logistic-distribution can be therefore rejected with rather
high significance. Since we cannot reject the Log-Normal distribution assumption even
with the largest common significant level of 5%, our assumption of Zi to be Log-Normal
distributed in Eq. (1) can be verified.

5.3 Estimation of Individual Survival and Hazard Functions

Beside the PFS time, the AFT model also allows us to calculate individual survival and
hazard functions for each patient case. The individual survival and hazard function can be
derived from Eq. (8) and takes the form of:

S(Zi = z|ηi) = 1− Φ

(
log(z)− ηTi β

σi

)
, (9)

λ(Zi = z|ηi) = − ∂

∂z
Si(z|ηi) =

φ(
log(z)−ηT

i β
σi

)
(

1− Φ
(

log(z)−ηT
i β

σi

))
zσi

, (10)

where Φ and φ are the cumulative distribution function and probability density function of
a standard normal distribution, respectively. Here σi can be estimated using

σi ≈ σ̂i = Vi∗∼datatrain
(
log(Zi∗)− ηTi∗β

) 1
2 , (11)

Figure 1: A prototype App for patient data querying and PFS prediction, implemented with R
Shiny Chang et al. (2015), illustrated with information of a patient from our test set.

under the conditional i.i.d. assumption in Eq. (1). In a realistic application scenario in
clinics, providing the individual hazard function is as important as providing physicians
with a prediction of the PFS time. For the clinic we have developed a prototype interface
(Fig. 1) to predict the PFS time and individual hazard function as well as to query patient
information. For illustrative purposes, we calculate hazard function for a patient from test
set so that, for comparison, we also mark the ground truth PFS.

6. Conclusion and Future Works

We have first applied tensorized RNNs to handle high dimensional sequential inputs in
form of medical history data; Second, we showed that one can join deep/Representation
Learning with GRM-like models in a Encoder-Decoder fashion (Sutskever et al., 2014),
where the RNN encoder produces better representative input for the GRM-like decoder.
Our empirical results demonstrate that the tensorized RNNs greatly reduce the number
of parameters and the training time of the model, while retaining –if not improving– the
prediction quality compared to the state-of-the-art embedding technique. We also showed
that when applying an AFT model on top of RNNs, one could calculate the PFS time
as well as provide physicians with individual survival and hazard functions, improving
the usability of our model in realistic scenarios. In the future we would like to integrate
attention mechanisms as Choi et al. (2016) into the TT-RNNs, in order to improve the
model’s interpretability. This would enables the physician to trace back to event(s) that have
contributed most to the prediction. In this work we implicitly reshape our multi-hot input
solely for computational convenience. We find it therefore necessary to explore possibilities
to perform the reshaping in accordance with the actual input structure. Furthermore it
seems also appealing to include other distribution assumptions for the AFT model.

References

Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian J. Goodfellow,
Arnaud Bergeron, Nicolas Bouchard, and Yoshua Bengio. Theano: new features and
speed improvements. Deep Learning and Unsupervised Feature Learning NIPS 2012
Workshop, 2012.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural proba-
bilistic language model. journal of machine learning research, 3(Feb):1137–1155, 2003.

Mike J Bradburn, Taane G Clark, SB Love, and DG Altman. Survival analysis part ii:
multivariate data analysis-an introduction to concepts and methods. The British Journal
of Cancer, 89(3):431, 2003.

Winston Chang, Joe Cheng, J Allaire, Yihui Xie, and Jonathan McPherson. Shiny: web
application framework for r. R package version 0.11, 1, 2015.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using
rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078,
2014.

Edward Choi, Mohammad Taha Bahadori, and Jimeng Sun. Doctor ai: Predicting clinical
events via recurrent neural networks. arXiv preprint arXiv:1511.05942, 2015.

Edward Choi, Mohammad Taha Bahadori, Jimeng Sun, Joshua Kulas, Andy Schuetz, and
Walter Stewart. Retain: An interpretable predictive model for healthcare using reverse
time attention mechanism. In Advances in Neural Information Processing Systems, pages
3504–3512, 2016.

François Chollet. Keras: Deep learning library for theano and tensorflow. https://github.
com/fchollet/keras, 2015.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical
evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555, 2014.

Cristóbal Esteban, Danilo Schmidt, Denis Krompaß, and Volker Tresp. Predicting sequences
of clinical events by using a personalized temporal latent embedding model. In Healthcare
Informatics (ICHI), 2015 International Conference on, pages 130–139. IEEE, 2015.

Cristóbal Esteban, Oliver Staeck, Yinchong Yang, and Volker Tresp. Predicting clinical
events by combining static and dynamic information using recurrent neural networks.
arXiv preprint arXiv:1602.02685, 2016.

P.A. Fasching, S.Y. Brucker, T.N. Fehm, F. Overkamp, W. Janni, M. Wallwiener, P. Hadji,
E. Belleville, L. Häberle, F.A. Taran, D. Luftner, M.P. Lux, J. Ettl, V. Muller, H. Tesch,
D. Wallwiener, and A. Schneeweiss. Biomarkers in patients with metastatic breast cancer
and the praegnant study network. Geburtshilfe Frauenheilkunde, 75(01):41–50, 2015.

Timur Garipov, Dmitry Podoprikhin, Alexander Novikov, and Dmitry Vetrov. Ulti-
mate tensorization: compressing convolutional and fc layers alike. arXiv preprint
arXiv:1611.03214, 2016.

Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Continual
prediction with lstm. Neural computation, 12(10):2451–2471, 2000.

Sheila M Gore, Stuart J Pocock, and Gillian R Kerr. Regression models and non-
proportional hazards in the analysis of breast cancer survival. Applied Statistics, pages
176–195, 1984.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

Peter Kaatsch, Claudia Spix, Stefan Hentschel, Alexander Katalinic, Sabine Luttmann,
Christa Stegmaier, Sandra Caspritz, Josef Cernaj, Anke Ernst, Juliane Folkerts, et al.
Krebs in deutschland 2009/2010. 2013.

Baris Kayalibay, Grady Jensen, and Patrick van der Smagt. Cnn-based segmentation of
medical imaging data. arXiv preprint arXiv:1701.03056, 2017.

Yoon Kim, Yacine Jernite, David Sontag, and Alexander M Rush. Character-aware neural
language models. arXiv preprint arXiv:1508.06615, 2015.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Pavel Kisilev, Eli Sason, Ella Barkan, and Sharbell Hashoul. Medical image captioning:
learning to describe medical image findings using multi-task-loss cnn. 2011.

Tamara G. Kolda and Brett W. Bader. Tensor Decompositions and Applications. SIAM
Review, 2009.

Jan Koutnik, Klaus Greff, Faustino Gomez, and Juergen Schmidhuber. A clockwork rnn.
arXiv preprint arXiv:1402.3511, 2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems,
pages 1097–1105, 2012.

Zachary C Lipton, David C Kale, Charles Elkan, and Randall Wetzell. Learning to diagnose
with lstm recurrent neural networks. arXiv preprint arXiv:1511.03677, 2015.

Andrew L Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christo-
pher Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th
Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies-Volume 1, pages 142–150. Association for Computational Linguistics, 2011.

Tomas Mikolov. Statistical language models based on neural networks. 2012.

Alexander Novikov, Dmitrii Podoprikhin, Anton Osokin, and Dmitry P Vetrov. Tensorizing
neural networks. In Advances in Neural Information Processing Systems, pages 442–450,
2015.

Ivan V Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing, 33
(5):2295–2317, 2011.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2016. URL https://www.R-project.org/.

Claudia Rauh and W Matthias. Interdisziplinäre s3-leitlinie für die diagnostik, therapie
und nachsorge des mammakarzinoms. 2008.

Hoo-Chang Shin, Holger R Roth, Mingchen Gao, Le Lu, Ziyue Xu, Isabella Nogues, Jianhua
Yao, Daniel Mollura, and Ronald M Summers. Deep convolutional neural networks for
computer-aided detection: Cnn architectures, dataset characteristics and transfer learn-
ing. IEEE transactions on medical imaging, 35(5):1285–1298, 2016.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: a simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15(1):1929–1958, 2014.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural
networks. In Advances in neural information processing systems, pages 3104–3112, 2014.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 1–9, 2015.

Terry M. Therneau and Patricia M. Grambsch. Modeling Survival Data: Extending the Cox
Model. Springer, New York, 2000. ISBN 0-387-98784-3.

Terry M Therneau. A Package for Survival Analysis in S, 2015. URL https://CRAN.

R-project.org/package=survival. version 2.38.

Lee-Jen Wei. The accelerated failure time model: a useful alternative to the cox regression
model in survival analysis. Statistics in medicine, 11(14-15):1871–1879, 1992.

Yinchong Yang, Denis Krompass, and Volker Tresp. Tensor-train recurrent neural networks
for video classification. In Proc. of the International Conference on Machine Learning
(ICML), 2017.

Chapter 6

Summary of Contributions

Representation learning in knowledge graphs:

- Tensor decomposition as a neural network

In relational learning in knowledge graphs, tensor decomposition is proven to be the state-

of-the-art approach. It learns latent vectors that represent entities, as well as a function

to join the representation vectors to reconstruct the tensor. This approach can predict

the probability of any unknown fact that involves known entities. It cannot, however,

produce representation vectors for new entities without retraining the decomposition model

completely.

We developed in [114] a novel mapping function that derives the latent representation

of the new entities based on all available facts that involve this new entity, even when only

a small fraction of such information is available. Such a mapping can be learned end-to-

end in conjunction with the decomposition in a very efficient way using back propagation.

We used a feed-forward neural network as the reconstruction function and a binary vector

indicating all available facts about the new entity as inputs. In comparison with latent

representations derived from complete retraining that would take up to multiple hours,

our method showed 0.015 of decline in AUROC, but required only a few seconds of run

time. This approach is also a generic one in the sense that one could as well include

additional attributes on the entities into the input vector to solve the cold-start problem

in recommendation systems.

Representation learning for high dimensional sequence modeling:

- Tensorized and decomposed neural networks

Sequential data also pose a considerable challenge to predictive machine learning, especially

86 6. Summary of Contributions

when the sequences are of variable lengths. Specifically, in our work, we have patient data

consisting of clinical events, such as cancer progression and therapy prescriptions. Each

patient has a different time line and a variable number of clinical events. In other words,

these patients do not share common input feature space.

Inspired by the success of recurrent neural networks in in natural language processing,

such as sentiment analysis and machine translation, we apply them to generate fixed-

size latent representation from these sequences of patient features. These latent vectors

represent all patients in a common feature space and form the input to the prediction

model of either classification or regression.

In [116], we proposed to apply the multinomial hierarchical regression model as the

prediction model. Such a regression model mimics the hierarchical decision procedure

and predicts the therapy prescription for each patient. Subsequently, these predictions

are presented to the physicians as therapy recommendations. In comparison with our

strong baseline model that aggregated the sequential features, the recurrent neural network

encoders boosted the prediction quality by 16.5% in AUROC and 110.4% in AUPRC. We

also showed that these latent representations did not only facilitate a regression model to

consume sequential features, but also provide a means to compare patients in the latent

space. Please note that this would have been infeasible w.r.t. the raw features since there is

no common input feature space. Our machine learning model is thus capable of generating

a list of similar patients to support each therapy prediction, and the identified similar

patients proved to have received similar therapies.

We further studied the fact that these patient features are not only sequential, but

also of high dimensionality and high sparsity, due to the fact that the original categorical

features, such as medications and therapies, have to be binary coded.

In [117], we introduced a novel and generic solution, performing Tensor-Train decom-

position [85] on the input-to-hidden layer in recurrent neural networks (GRU and LSTM).

We applied these models on video data, because they can be handled as sequences of image

frames. Plain GRU and LSTM are difficult to train on such data because of the extremely

large weight matrix mapping from input to hidden state. The introduced Tensor-Train

GRU and tensor-train LSTM, on the other hand, achieved 66.6% more accuracy, while

using weights of size 5 orders of magnitude smaller. Even in comparison with state-of-the-

art deep neural network solutions on the same datasets, our model was still 4 orders of

magnitude smaller while being only 0.04 lower in accuracy.

In [115], we then applied these tensor-train recurrent neural networks on the patient

87

features. By exposing the fixed-size latent representation to the accelerated failure time

model, it predicts the progression-free survival time for each patient and derives the indi-

vidual survival function, based on the patient’s entire medical history. The Tensor-Train

RNNs used only a fraction of 0.01 of the weight parameters necessary in the plain mod-

els, reduced the training time to 29.7%, and improved the prediction quality by 15.4%.

We also elaborated another advantage of learning representation: in cases where the raw

features are unstructured and thus challenging for classical generalized regression models,

deep learning models could be exploited to generate more informative features that are of

much smaller dimensionality.

In Tab. 6.1, we summarize the models studied in this work. Following the framework

defined in Def. 1 we decompose each model into a representation part and a prediction

part. In comparison with the standard relational model based on tensor decomposition

(first row), our proposed representation mapping model (second row) defines a new kind

of input to the representation model g, namely the slices from the target tensor Y itself,

instead of one-hot vectors. We also modify standard RNN models by decomposing the

input-to-hidden weight matrix W into a set of core tensors {Gk}dk=1. The hidden state

of RNN models are then fed to prediction models depending on the various predictive

task. Logistic regression and multinomial hierarchical regression, for instance, serves to

predict therapy decisions. We also use logistic regression to predict the class of video clips.

Accelerated Failure Time models is also exposed to the latent representation generated by

(Tensor-Train) RNNs to perform survival modeling.

88 6. Summary of Contributions

R
aw

In
p
u

t
R

ep
re

se
n
ta

ti
on

M
o
d

el
R

ep
re

se
n
ta

ti
on

P
re

d
ic

ti
o
n

M
o
d

el
S

ec
ti

o
n

F
ra

m
ew

or
k

E
q
.

1.
1

x
ξ(
·)

Φ
z

η Θ
(·)

1

R
el

at
io

n
al

L
ea

rn
in

g
{e

I i
,e

J j
,e

K k
}

g
(·)

{A
,B

,C
}

{a
i,
b
j
,c

k
}

C
P

,
T

u
ck

er
,

m
u

lt
iw

ay
N

N
,

et
c.

1
.2

.2

R
ep

re
se

n
ta

ti
on

M
ap

p
in

g

Y
(i
,•
,•

),

Y
(•
,j
,•

),

Y
(•
,•
,k

)

{M
A
,M

B
,M

C
}

1
.2

.4

P
la

in
R

N
N

{x
[t

]
i
}T

i
t=

1

R
N

N
1.

13
,

L
S

T
M

1.
14

,

G
R

U
1.

15

W
,U

,

{W
,U

,b
}{

k
,f
,o
,g
} ,

{W
,U

,b
}{

r,
z
,d
}

h
[T

i
]

i

L
R

,
M

H
R

1
.3

.2

T
T

-R
N

N
T

T
-L

S
T

M
1.

24
,

T
T

-G
R

U
1.

25

{{
G k
}d k

=
1
,U

,b
}{

k
,f
,o
,g
} ,

{{
G k
}d k

=
1
,U

,b
}{

r,
z
,d
}

L
R

,
A

F
T

1
.3

.4

T
ab

le
6.

1:
A

su
m

m
ar

y
of

al
l

re
p
re

se
n
ta

ti
on

le
ar

n
in

g
m

o
d
el

s
in

th
is

w
or

k
.

T
h
e

fi
rs

t
ro

w
d
es

cr
ib

es
ou

r
p
ro

p
os

ed
fr

am
ew

or
k

to
d
ec

om
p

os
e

an
y

p
re

d
ic

ti
ve

m
o
d
el

in
to

a
re

p
re

se
n
ta

ti
on

p
ar

t
an

d
a

p
re

d
ic

ti
on

p
ar

t.
W

e
h
av

e
sh

ow
n

th
at

a
re

la
ti

on
al

le
ar

n
in

g
m

o
d
el

(2
n
d

ro
w

)
is

in
fa

ct
an

in
st

an
ce

of
th

e
fr

am
ew

or
k

in
th

e
se

n
se

th
at

th
e

la
te

n
t

re
p
re

se
n
ta

ti
on

s
ar

e
ge

n
er

at
ed

b
y

a
fu

n
ct

io
n
g

of
on

e-
h
ot

en
co

d
in

g
ve

ct
or

s
as

in
p
u
t.

W
e

re
p
la

ce
th

e
on

e-
h
ot

ve
ct

or
s

w
it

h
th

e
co

rr
es

p
on

d
in

g
te

n
so

r

sl
ic

es
to

d
er

iv
e

th
e

re
p
re

se
n
ta

ti
on

m
ap

p
in

g
m

o
d
el

in
th

e
3r

d
ro

w
.

C
om

p
ar

in
g

th
e

4t
h

an
d

th
e

5t
h

ro
w

on
e

co
u
ld

se
e

th
at

w
e

d
ec

om
p

os
e

th
e

in
p
u
t-

to
-h

id
d
en

w
ei

gh
t

m
at

ri
x

of
R

N
N

s
in

to
a

tr
ai

n
of

co
re

te
n
so

rs
.

T
h
es

e
R

N
N

s
ge

n
er

at
e

la
te

n
t

re
p
re

se
n
ta

ti
on

s
fo

r
an

y
su

cc
ee

d
in

g
p
re

d
ic

ti
on

m
o
d
el

.

Appendix A

A Numerical Example of User-Item

Matrix Decomposition

A.1 User-Item Matrix Decomposition

A special case of KG is a user-item matrix, which forms the data basis for collaborative

filtering in recommender systems [99, 35]. There exists only one type of predicate that

is purchasing. Based on all items a user has purchased, the system would predict the

probabilities that the user might purchase other items. It can therefore recommend to

the user items that show high probabilities. This is identical to predicting the existence

of an unknown fact. Here we provide a numerical example similar to [59] in Tab. A.1a,

which records the purchasing of five movies by four individuals. For illustrative purpose,

we design a fictive and strong pattern that the first two users tend to appreciate musical

movies, while the rest of the users enjoy science fictions.

We decompose the matrix using SVD and denote this with X = UDV T . We visualize

the leading two dimensions of U and V in Fig. A.1, respectively. It is easy to see that the

2D vectors represent the users and films in a way that agrees with our designed patterns.

The two users interested in science fiction are positioned closer to each other than to the

users who enjoy musicals; while the representations of the movies also hint their genres.

In Tab. A.1b, we present the reconstruction of the user-item matrix with these two

dimensions, namely X̂ = U 2D2V
T
2 .

The most interesting cases are where the reconstruction deviates most from the original

user-item matrix: the original matrix indicates that Dominic has not yet seen Star Wars,

although he is expected to be science fiction fan based on his latent representation. The

90 A. A Numerical Example of User-Item Matrix Decomposition

X
Mary

Poppins

The Sound

of Music

Blade

Runner
Star Wars Alien

Amelia 1 1 0 0 1

Barbara 1 1 0 0 0

Charles 0 1 1 1 1

Dominic 0 0 1 0 1

(a) The original user-item matrix.

X̂
Mary

Poppins

The Sound

of Music

Blade

Runner
Star Wars Alien

Amelia 1.0 1.2 0.2 0.2 0.7

Barbara 1.0 0.9 -0.2 0.0 0.2

Charles 0.2 0.8 1.1 0.6 1.3

Dominic -0.2 0.2 0.8 0.4 0.8

(b) Reconstruction of the user-item matrix with SVD r = 2.

Table A.1: A numerical example: a user-time matrix is a special case of a KG with one

type of predicate being purchasing. A recommender system therefore corresponds to the

link prediction task in context of a KG.

reconstruction, however, produces a value of 0.4 for this fact, which is for Dominic the

second largest value. Therefore the recommender system would suggest Dominic to watch

Star Wars, given that he has not yet done so.

In order to generalize this approach to model threefold relations, decomposition ap-

proaches of three-mode tensors have to be applied.

A.2 Derivation of Latent Representations for a New

User

We continue the numerical example with the user-item matrix, in order to illustrate the

advantage of learning representation mapping. We assume a new user Edward, who has

only purchased Star Wars. His vector of known facts is thus xnew = (0, 0, 0, 1, 0). We

derive the latent representation for Edward using uT
new = xT

newV 2D2 and plot it in the

same 2D space (left plot in Fig. A.2).

A.2 Derivation of Latent Representations for a New User 91

1.0 0.8 0.6 0.4 0.2 0.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Amelia

Barbara

Charles
Dominic

1.0 0.8 0.6 0.4 0.2 0.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Mary Poppins

The Sound of Music

Blade Runner

Star WarsAlien

Figure A.1: Visualizing latent factors of SVD. Left: U 2, the leading both factors that

represent the users. Right: V 2, the leading both factors that represent the movies.

We can see that based only on this one known fact, the model is already able to place

Edward in a closer neighborhood with Charles and Dominic than with Amelia and Barbara.

For comparison, the right plot in Fig. A.2 visualizes the latent representation derived by

re-calculating the SVD. It demonstrates relatively small difference to the results without

re-calculating.

We further reconstruct x̂T
new = uT

newD2V
T
2 to show that such a model can also make

rational recommendations to new users based on very few known facts.

In Tab. A.2, it is easy to see that the recommendation scores produced by mapping

from known facts agree with scores by re-calculating the SVD but only with less confidence.

In this numerical example, the difference in computational complexity between mapping

and re-calculating is apparently insignificant. However, for larger and especially three-way

tensors, retraining a decomposition matrix could be much more costly than just mapping

from known facts. For simple linear models such as SVD and CP, the representation

92 A. A Numerical Example of User-Item Matrix Decomposition

1.0 0.8 0.6 0.4 0.2 0.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Amelia

Barbara

Charles
Dominic

Edward

1.0 0.8 0.6 0.4 0.2 0.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Amelia

Barbara

Charles Dominic

Edward

Figure A.2: Right: visualizing the latent representation of each user. The one for Edward

is derived using direct mapping from xnew. Left: Latent representations of all users that

are derived by re-training the decomposition.

mapping function is free-of-charge, because it is simply the inverse of the decomposition.

This is, however, not the case for non-linear models such as multi-way neural network or

models that reuse representation such as RESCAL.

A.2 Derivation of Latent Representations for a New User 93

X̂new
Mary

Poppins

The Sound

of Music

Blade

Runner
Star Wars Alien

Mapping -0.1 0.0 0.2 0.1 0.2

Re-calculating -0.1 0.0 0.3 0.2 0.3

Table A.2: Comparison of two reconstructions of a new user vector.

94 A. A Numerical Example of User-Item Matrix Decomposition

Appendix B

Forward Pass Algorithm in

Tensor-Train Layer

The feed forward pass of a Tensor-Train layer can be formulated as the following algorithm.

Algorithm 1 The Calculation of a Tensor-Train Layer [85, 84]

Input: X ∈ RS×M , (mk)dk=1, (nk)dk=1, (rk)dk=0;

Output: Y ∈ RS×N ;

Initialize:

{Gk}dk=1 with Gk ∈ Rmk×nk×rk−1×rk ;

b ∈ RN ;

Z := X

for k = 1 to d do

Z := Z.reshape(S ·∏d
k′=1
k′ 6=k

mk′ , mk · rk−1);

G∗k := Gk.reshape(mk · rk−1, rk · nk);

Z := Z ·G∗k
end for

Y := Z

for s = 1 to S do

Y (s) = Y (s) + b

end for

The scalar S is the number of data instances, i.e. the batch size. The reshape operator is

based on the C-like row-major order.

96 B. Forward Pass Algorithm in Tensor-Train Layer

Appendix C

Gradients in Tensor-Train Layer

Recall the forward pass of a Tensor-Train layer:

Ŷ(j1, j2, ..., jd) =

m1∑

i1=1

m2∑

i2=1

...

md∑

id=1

G1(l1) · G2(l2) · ... · Gd(ld) ·X (i1, i2, ..., id) + B(j1, j2, ..., jd).

(C.1)

We attempt to update all necessary parameters that are responsible for mapping

(i1, i2, ..., id) → (j1, j2, ..., jd). The objective function is defined as the error between the

output of a forward pass and the actual target:

E(Y(j1, j2, ..., jd), Ŷ(j1, j2, ..., jd)), (C.2)

which is, for the sake of simplicity, shortened as E in this context.

Proof 1 (of Theorem 3). The partial derivative w.r.t a slice of an arbitrary core tensor is

derived using the chain rule:

∂E

∂Gk(lk)
=

∂E

∂Ŷ(j1, j2, ..., jd)

∂Ŷ(j1, j2, ..., jd)

Gk(lk)
(C.3)

For an arbitrary lk, we apply again the chain rule on the second term on the right side:

∂Ŷ(j1, j2, ..., jd)

∂Gk(lk)
=
∂Ŷ(j1, j2, ..., jd)

∂Hd−1(ld−1)
·

d−1∏

k∗=k+1

∂Hk∗(lk∗)

∂Hk∗−1(lk∗−1)
· ∂Hk(lk)

∂Gk(lk)
(C.4)

=
∏

k∗>k

Gk∗(lk∗) ·X (i1, i2, ..., id) ·
∏

k∗<k

Gk∗(lk∗), (C.5)

applying a set of ancillary variables {Hk}dk=1,Hk ∈ R(mk·nk)×rk :

Hk(lk) = G1(l1) · G2(l2) · ... · Gk(lk) ·X (i1, i2, ..., ik) ∈ Rrk . (C.6)

98 C. Gradients in Tensor-Train Layer

Note that we apply the numerator layout convention, namely ∂Ŷ(j1,j2,...,jd)
Gk(lk)

:= ∂Ŷ(j1,j2,...,jd)
Gk(lk)T

∈
Rrk×rk−1 . This allows for applying the chain rule from left to right, which is more intuitive

than denominator layout with right-to-left chain rule.

When, for instance, d = 4, the partial derivatives w.r.t. all core tensors are as follows.

∂Y(j1, j2, j3, j4)

∂G4(l4)
= X (i1, i2, i3, i4) · G1(l1) · G2(l2) · G3(l3) (C.7)

∂Y(j1, j2, j3, j4)

∂G3(l3)
=
∂Y(j1, j2, j3, j4)

∂H3(l3)
· ∂H3(l3)

∂G3(l3)
(C.8)

= G4(l4) ·X (i1, i2, i3, i4) · G1(l1) · G2(l2) (C.9)

∂Y(j1, j2, j3, j4)

∂G2(l2)
=
∂Y(j1, j2, j3, j4)

∂H3(l3)
· ∂H3(l3)

∂H2(l2)
· ∂H2(l2)

∂G2(l2)
(C.10)

= G3(l3) · G4(l4) ·X (i1, i2, i3, i4) · G1(l1) (C.11)

∂Y(j1, j2, j3, j4)

∂G1(l1)
=
∂Y(j1, j2, j3, j4)

∂H3(l3)
· ∂H3(l3)

∂H2(l2)
· ∂H2(l2)

∂H1(l1)
· ∂H1(l1)

∂G1(l1)
(C.12)

= G2(l2) · G3(l3) · G4(l4) ·X (i1, i2, i3, i4) (C.13)

Appendix D

Tensor-Train RNNs: A Simulation

Study

In order to verify the implementation of Tensor-Train RNNs, we perform experiments

of sequence classification. We sample MNIST [68] images to form sequences of variable

lengths. If there exists one or multiple 0’s in the sequence, the sequence is assigned the

label of 1 and otherwise 0. This forms a standard sequence classification task that involves

eventually long-term dependency, since a 0 may appear early at the beginning of the

sequence. First we evaluate the classification quality on the test data set. Second, we apply

Layer-wise Relevance Propagation [4, 92, 77] (LRP) to verify the classification. Obviously,

if the sequence is correctly classified, then the time step that is a 0 would have a significant

positive contribution to the classification in term of relevance scores. In Tab. D.1 we

report the average and standard deviation of 5 runs of experiments. In each run of the

experiment, we generate 10,000 sequences for training and 1,000 for test. A sequence has

at maximum 32 MNIST digits. The plain LSTM model has a hidden size of size 64. The

Tensor-Train LSTM factorizes the input dimension of 28×28 as 7×7×16, and the output

dimension as 4 × 4 × 4. The TT ranks are [1, 4, 4, 1]. We evaluate the prediction of both

models using accuracy score. Since the relevance scores may range in R, we use AUROC

as evaluation metric. For the Tensor-Train layer in the TT-LSTM, we reconstruct the full

weight matrix W from the core tensors applying Eq. 1.16 to calculate the relevance scores.

One could draw the conclusion from Tab. D.1 that the TT-LSTM performs equally

well in term of accuracy, requiring only approximately 0.5% of weight parameters as in

plain LSTM. However, the relevance scores have become slightly worse. In Fig. D.1 we

visualize three random sequences that are correctly classified.

100 D. Tensor-Train RNNs: A Simulation Study

Model Prediction accuracy LRP AUROC No. weights

LSTM 0.972± 0.001 0.987± 0.003 200,704

TT-LSTM 0.970± 0.006 0.955± 0.017 1,152

Table D.1: Evaluation of prediction and relevance recognition by LSTM and TT-LSTM

on MNIST sequence data.

One could see here that the relevance scores of TT-LSTM are less stable than those

of plain LSTM, probably due to the fact that the weights are in fact reconstruction from

the core tensors. In the first two sequences one could see that both models can store the

deciding pattern for the classification task over a long period of time, since the zeros at the

beginning of both sequences have received high relevance scores. Another interesting fact

one would notice is that the 8th digit in the third sequence is mistakenly recognized by

both LSTM and TT-LSTM as a 0, although the digit is a 6 that looks like a 0. This is a

empirical proof that both models are capable of identifying the positive correlation between

a circle-like pattern in the sequence and the label of the sequence, only by processing enough

training data that define this correlation.

101

0.0

0.2

0.4

0.6

0.8

LR
P

LSTM
TT-LSTM

0.0

0.2

0.4

0.6

0.8

LR
P

LSTM
TT-LSTM

0.00

0.25

0.50

0.75

1.00

1.25

1.50

LR
P

LSTM
TT-LSTM

0.0

0.2

0.4

0.6

0.8

LR
P

LSTM
TT-LSTM

0.1

0.0

0.1

0.2

0.3

LR
P

LSTM
TT-LSTM

0.0

0.2

0.4

0.6

0.8

LR
P

LSTM
TT-LSTM

Figure D.1: Relevance scores calculated with LRP for each digit in artificial sequences.

102 D. Tensor-Train RNNs: A Simulation Study

List of Figures

1.1 A Knowledge Graph example in graph, triples store, and tensor formats . . 9

1.2 Comparison between two representation models in tensor decomposition task. 13

1.3 Illustration of two variants to utilize RNN as a representation model. . . . 19

1.4 Illustration of Tensor-Train decomposition. 22

1.5 Special cases of Theorem 2 with d = 1 and d = 2 29

A.1 Visualizing latent factors of SVD . 91

A.2 Comparison of latent mapped and decomposed representations 92

D.1 LRP of MNIST sequences . 101

104 LIST OF FIGURES

List of Tables

6.1 A summary of all representation learning models in this work. 88

A.1 A numerical example applying SVD on a user-item matrix. 90

A.2 Comparison of two reconstructions of a new user vector. 93

D.1 Evaluation of prediction and relevance recognition by LSTM and TT-LSTM

on MNIST sequence data. 100

106 LIST OF TABLES

Bibliography

[1] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale

machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467,

2016.

[2] Marc Antonini, Michel Barlaud, Pierre Mathieu, and Ingrid Daubechies. Image coding

using wavelet transform. IEEE Transactions on image processing, 1(2):205–220, 1992.

[3] Relja Arandjelović and Andrew Zisserman. Look, listen and learn. arXiv preprint

arXiv:1705.08168, 2017.

[4] Leila Arras, Grégoire Montavon, Klaus-Robert Müller, and Wojciech Samek. Explaining re-

current neural network predictions in sentiment analysis. arXiv preprint arXiv:1706.07206,

2017.

[5] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and

Zachary Ives. Dbpedia: A nucleus for a web of open data. The semantic web, pages

722–735, 2007.

[6] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by

jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[7] Bram Bakker. Reinforcement learning with long short-term memory. In Advances in neural

information processing systems, pages 1475–1482, 2002.

[8] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review

and new perspectives. IEEE transactions on pattern analysis and machine intelligence,

35(8):1798–1828, 2013.

[9] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural proba-

bilistic language model. Journal of machine learning research, 3(Feb):1137–1155, 2003.

108 BIBLIOGRAPHY

[10] Yoshua Bengio et al. Learning deep architectures for ai. Foundations and trends R© in

Machine Learning, 2(1):1–127, 2009.

[11] Yoshua Bengio, Ian J Goodfellow, and Aaron Courville. Deep learning. Nature, 521:436–

444, 2015.

[12] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with

gradient descent is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.

[13] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp,

Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al. End

to end learning for self-driving cars. arXiv preprint arXiv:1604.07316, 2016.

[14] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase:

a collaboratively created graph database for structuring human knowledge. In Proceedings

of the 2008 ACM SIGMOD international conference on Management of data, pages 1247–

1250. AcM, 2008.

[15] Roger D Boyle and Richard C Thomas. Computer vision: A first course. Blackwell Scientific

Publications, Ltd., 1988.

[16] Leo Breiman et al. Statistical modeling: The two cultures (with comments and a rejoinder

by the author). Statistical science, 16(3):199–231, 2001.

[17] Peter F Brown, Peter V Desouza, Robert L Mercer, Vincent J Della Pietra, and Jenifer C

Lai. Class-based n-gram models of natural language. Computational linguistics, 18(4):467–

479, 1992.

[18] Thomas Brox and Jitendra Malik. Large displacement optical flow: descriptor matching in

variational motion estimation. IEEE transactions on pattern analysis and machine intelli-

gence, 33(3):500–513, 2011.

[19] R Caruna. Multitask learning: A knowledge-based source of inductive bias. In Machine

Learning: Proceedings of the Tenth International Conference, pages 41–48, 1993.

[20] Eva Ceulemans and Iven Van Mechelen. Tucker2 hierarchical classes analysis. Psychome-

trika, 69(3):375–399, 2004.

[21] Devendra K Chaturvedi. Soft computing: techniques and its applications in electrical engi-

neering, volume 103. Springer, 2008.

BIBLIOGRAPHY 109

[22] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. Deepdriving: Learning affor-

dance for direct perception in autonomous driving. In Proceedings of the IEEE International

Conference on Computer Vision, pages 2722–2730, 2015.

[23] Jie-Zhi Cheng, Dong Ni, Yi-Hong Chou, Jing Qin, Chui-Mei Tiu, Yeun-Chung Chang,

Chiun-Sheng Huang, Dinggang Shen, and Chung-Ming Chen. Computer-aided diagnosis

with deep learning architecture: applications to breast lesions in us images and pulmonary

nodules in ct scans. Scientific reports, 6:24454, 2016.

[24] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On

the properties of neural machine translation: Encoder-decoder approaches. arXiv preprint

arXiv:1409.1259, 2014.

[25] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi

Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using

rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078,

2014.

[26] Edward Choi, Mohammad Taha Bahadori, Andy Schuetz, Walter F Stewart, and Jimeng

Sun. Doctor ai: Predicting clinical events via recurrent neural networks. In Machine

Learning for Healthcare Conference, pages 301–318, 2016.

[27] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical

evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint

arXiv:1412.3555, 2014.

[28] Dan CireşAn, Ueli Meier, Jonathan Masci, and Jürgen Schmidhuber. Multi-column deep

neural network for traffic sign classification. Neural Networks, 32:333–338, 2012.

[29] Daniel Crevier. AI: The tumultuous history of the search for artificial intelligence. Basic

Books, 1993.

[30] Balázs Csanád Csáji. Approximation with artificial neural networks. Faculty of Sciences,

Etvs Lornd University, Hungary, 24:48, 2001.

[31] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics

of Control, Signals, and Systems (MCSS), 2(4):303–314, 1989.

[32] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-

scale hierarchical image database. In Computer Vision and Pattern Recognition, 2009.

CVPR 2009. IEEE Conference on, pages 248–255. IEEE, 2009.

110 BIBLIOGRAPHY

[33] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini

Venugopalan, Kate Saenko, and Trevor Darrell. Long-term recurrent convolutional networks

for visual recognition and description. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 2625–2634, 2015.

[34] Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Murphy,

Thomas Strohmann, Shaohua Sun, and Wei Zhang. Knowledge vault: A web-scale approach

to probabilistic knowledge fusion. In Proceedings of the 20th ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 601–610. ACM, 2014.

[35] Michael D Ekstrand, John T Riedl, Joseph A Konstan, et al. Collaborative filtering recom-

mender systems. Foundations and Trends R© in Human–Computer Interaction, 4(2):81–173,

2011.

[36] Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

[37] Cristóbal Esteban, Danilo Schmidt, Denis Krompaß, and Volker Tresp. Predicting sequences

of clinical events by using a personalized temporal latent embedding model. In Healthcare

Informatics (ICHI), 2015 International Conference on, pages 130–139. IEEE, 2015.

[38] Cristóbal Esteban, Oliver Staeck, Stephan Baier, Yinchong Yang, and Volker Tresp. Pre-

dicting clinical events by combining static and dynamic information using recurrent neural

networks. In Healthcare Informatics (ICHI), 2016 IEEE International Conference on, pages

93–101. IEEE, 2016.

[39] Zeno Gantner, Lucas Drumond, Christoph Freudenthaler, Steffen Rendle, and Lars

Schmidt-Thieme. Learning attribute-to-feature mappings for cold-start recommendations.

In Data Mining (ICDM), 2010 IEEE 10th International Conference on, pages 176–185.

IEEE, 2010.

[40] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Continual

prediction with lstm. 1999.

[41] Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka

Grabska-Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho,

John Agapiou, et al. Hybrid computing using a neural network with dynamic external

memory. Nature, 538(7626):471–476, 2016.

[42] Jonathan L Herlocker, Joseph A Konstan, Al Borchers, and John Riedl. An algorithmic

framework for performing collaborative filtering. In Proceedings of the 22nd annual inter-

national ACM SIGIR conference on Research and development in information retrieval,

pages 230–237. ACM, 1999.

BIBLIOGRAPHY 111

[43] G Hinton, N Srivastava, and K Swersky. Rmsprop: Divide the gradient by a running

average of its recent magnitude. Neural networks for machine learning, Coursera lecture

6e, 2012.

[44] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R

Salakhutdinov. Improving neural networks by preventing co-adaptation of feature detectors.

arXiv preprint arXiv:1207.0580, 2012.

[45] Sepp Hochreiter. Untersuchungen zu dynamischen neuronalen netzen. Diploma, Technische

Universität München, 91, 1991.

[46] Sepp Hochreiter. The vanishing gradient problem during learning recurrent neural nets and

problem solutions. International Journal of Uncertainty, Fuzziness and Knowledge-Based

Systems, 6(02):107–116, 1998.

[47] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,

9(8):1735–1780, 1997.

[48] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural net-

works, 4(2):251–257, 1991.

[49] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks

are universal approximators. Neural networks, 2(5):359–366, 1989.

[50] JNR Jeffers. Two case studies in the application of principal component analysis. Applied

Statistics, pages 225–236, 1967.

[51] Andrej Karpathy, Justin Johnson, and Li Fei-Fei. Visualizing and understanding recurrent

networks. arXiv preprint arXiv:1506.02078, 2015.

[52] MG Kendall. A course in multivariate statistics, 1957.

[53] Henk AL Kiers. Towards a standardized notation and terminology in multiway analysis.

Journal of chemometrics, 14(3):105–122, 2000.

[54] Yoon Kim, Yacine Jernite, David Sontag, and Alexander M Rush. Character-aware neural

language models. In AAAI, pages 2741–2749, 2016.

[55] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980, 2014.

[56] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-

normalizing neural networks. arXiv preprint arXiv:1706.02515, 2017.

112 BIBLIOGRAPHY

[57] Reinhard Kneser and Hermann Ney. Improved backing-off for m-gram language model-

ing. In Acoustics, Speech, and Signal Processing, 1995. ICASSP-95., 1995 International

Conference on, volume 1, pages 181–184. IEEE, 1995.

[58] Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM

review, 51(3):455–500, 2009.

[59] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for rec-

ommender systems. Computer, 42(8), 2009.

[60] Jan Koutnik, Klaus Greff, Faustino Gomez, and Juergen Schmidhuber. A clockwork rnn.

In Eric P. Xing and Tony Jebara, editors, Proceedings of the 31st International Conference

on Machine Learning, volume 32 of Proceedings of Machine Learning Research, pages 1863–

1871, Bejing, China, 22–24 Jun 2014. PMLR.

[61] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep

convolutional neural networks. In Advances in neural information processing systems, pages

1097–1105, 2012.

[62] Denis Krompaß. Exploiting prior knowledge and latent variable representations for the

statistical modeling and probabilistic querying of large knowledge graphs. November 2015.

[63] Denis Krompaß, Stephan Baier, and Volker Tresp. Type-constrained representation learning

in knowledge graphs. In International Semantic Web Conference, pages 640–655. Springer,

2015.

[64] Denis Krompaß, Cristóbal Esteban, Volker Tresp, Martin Sedlmayr, and Thomas Gans-

landt. Exploiting latent embeddings of nominal clinical data for predicting hospital read-

mission. KI-Künstliche Intelligenz, 29(2):153–159, 2015.

[65] Ray Kurzweil, Robert Richter, Ray Kurzweil, and Martin L Schneider. The age of intelligent

machines, volume 579. MIT press Cambridge, 1990.

[66] Hugo Larochelle, Yoshua Bengio, Jérôme Louradour, and Pascal Lamblin. Exploring strate-

gies for training deep neural networks. Journal of Machine Learning Research, 10(Jan):1–40,

2009.

[67] Ora Lassila, Ralph R Swick, et al. Resource description framework (rdf) model and syntax

specification. 1998.

[68] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

BIBLIOGRAPHY 113

[69] Philip Leith. The rise and fall of the legal expert system. European Journal of Law and

Technology, 1(1):179–201, 2010.

[70] Daniel Lévy and Arzav Jain. Breast mass classification from mammograms using deep

convolutional neural networks. arXiv preprint arXiv:1612.00542, 2016.

[71] Alexandra L’Heureux, Katarina Grolinger, Hany F ElYamany, and Miriam Capretz. Ma-

chine learning with big data: Challenges and approaches. IEEE Access, 2017.

[72] Pyry Matikainen, Martial Hebert, and Rahul Sukthankar. Trajectons: Action recognition

through the motion analysis of tracked features. In Computer Vision Workshops (ICCV

Workshops), 2009 IEEE 12th International Conference on, pages 514–521. IEEE, 2009.

[73] Grégoire Mesnil, Xiaodong He, Li Deng, and Yoshua Bengio. Investigation of recurrent-

neural-network architectures and learning methods for spoken language understanding. In

Interspeech, pages 3771–3775, 2013.

[74] Tomas Mikolov. Statistical Language Models Based Neural Networks. PhD thesis, Brno

University of Technology, 2012.

[75] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khudanpur.

Recurrent neural network based language model. In Interspeech, volume 2, page 3, 2010.

[76] Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous

space word representations. In hlt-Naacl, volume 13, pages 746–751, 2013.

[77] Grégoire Montavon, Sebastian Lapuschkin, Alexander Binder, Wojciech Samek, and Klaus-

Robert Müller. Explaining nonlinear classification decisions with deep taylor decomposition.

Pattern Recognition, pages 211–222, 2017.

[78] Urs Muller, Jan Ben, Eric Cosatto, Beat Flepp, and Yann L Cun. Off-road obstacle avoid-

ance through end-to-end learning. In Advances in neural information processing systems,

pages 739–746, 2006.

[79] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann

machines. In Proceedings of the 27th international conference on machine learning (ICML-

10), pages 807–814, 2010.

[80] Allen Newell and Herbert A Simon. Computer science as empirical inquiry: Symbols and

search. Communications of the ACM, 19(3):113–126, 1976.

[81] Maximilian Nickel. Tensor factorization for relational learning. August 2013.

114 BIBLIOGRAPHY

[82] Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. A review of

relational machine learning for knowledge graphs. Proceedings of the IEEE, 104(1):11–33,

2016.

[83] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model for collective

learning on multi-relational data. In Proceedings of the 28th international conference on

machine learning (ICML-11), pages 809–816, 2011.

[84] Alexander Novikov. Tensornet. https://github.com/Bihaqo/TensorNet, 2015.

[85] Alexander Novikov, Dmitrii Podoprikhin, Anton Osokin, and Dmitry P Vetrov. Tensorizing

neural networks. In Advances in Neural Information Processing Systems, pages 442–450,

2015.

[86] Ivan V Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing,

33(5):2295–2317, 2011.

[87] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent

neural networks. In International Conference on Machine Learning, pages 1310–1318, 2013.

[88] Paulo E Rauber, Samuel G Fadel, Alexandre X Falcao, and Alexandru C Telea. Visualizing

the hidden activity of artificial neural networks. IEEE transactions on visualization and

computer graphics, 23(1):101–110, 2017.

[89] Elaine Rich and Kevin Knight. Artificial intelligence. McGraw-Hill, New, 1991.

[90] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhi-

heng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large

scale visual recognition challenge. International Journal of Computer Vision, 115(3):211–

252, 2015.

[91] S Russell. Artificial intelligence: A modern approach author: Stuart russell, peter norvig,

publisher: Prentice hall pa. 2009.

[92] Wojciech Samek, Thomas Wiegand, and Klaus-Robert Müller. Explainable artificial intel-

ligence: Understanding, visualizing and interpreting deep learning models. arXiv preprint

arXiv:1708.08296, 2017.

[93] Shikhar Sharma, Ryan Kiros, and Ruslan Salakhutdinov. Action recognition using visual

attention. arXiv preprint arXiv:1511.04119, 2015.

[94] Hava T Siegelmann and Eduardo D Sontag. On the computational power of neural nets.

Journal of computer and system sciences, 50(1):132–150, 1995.

https://github.com/Bihaqo/TensorNet

BIBLIOGRAPHY 115

[95] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van

Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanc-

tot, et al. Mastering the game of go with deep neural networks and tree search. Nature,

529(7587):484–489, 2016.

[96] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,

Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mas-

tering the game of go without human knowledge. Nature, 550(7676):354–359, 2017.

[97] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale

image recognition. arXiv preprint arXiv:1409.1556, 2014.

[98] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-

dinov. Dropout: a simple way to prevent neural networks from overfitting. Journal of

machine learning research, 15(1):1929–1958, 2014.

[99] Xiaoyuan Su and Taghi M Khoshgoftaar. A survey of collaborative filtering techniques.

Advances in artificial intelligence, 2009:4, 2009.

[100] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of semantic

knowledge. In Proceedings of the 16th international conference on World Wide Web, pages

697–706. ACM, 2007.

[101] Deqing Sun, Stefan Roth, and Michael J Black. A quantitative analysis of current prac-

tices in optical flow estimation and the principles behind them. International Journal of

Computer Vision, 106(2):115–137, 2014.

[102] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural

networks. In Advances in neural information processing systems, pages 3104–3112, 2014.

[103] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper

with convolutions. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 1–9, 2015.

[104] Theano Development Team. Theano: A Python framework for fast computation of math-

ematical expressions. arXiv e-prints, abs/1605.02688, 2016.

[105] Gregory Michael Thorson, Christopher Aaron Clark, and Dan Luu. Vector computation

unit in a neural network processor, December 22 2016. US Patent App. 15/389,288.

116 BIBLIOGRAPHY

[106] Andros Tjandra, Sakriani Sakti, and Satoshi Nakamura. Compressing recurrent neural

network with tensor train. arXiv preprint arXiv:1705.08052, 2017.

[107] Ledyard R Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika,

31(3):279–311, 1966.

[108] Gerhard Tutz. Regression for categorical data, volume 34. Cambridge University Press,

2011.

[109] Vladimir Vapnik. The nature of statistical learning theory. Springer science & business

media, 2013.

[110] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting

and composing robust features with denoising autoencoders. In Proceedings of the 25th

international conference on Machine learning, pages 1096–1103. ACM, 2008.

[111] Heng Wang, Alexander Kläser, Cordelia Schmid, and Cheng-Lin Liu. Action recognition

by dense trajectories. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE

Conference on, pages 3169–3176. IEEE, 2011.

[112] Jinhua Wang, Xi Yang, Hongmin Cai, Wanchang Tan, Cangzheng Jin, and Li Li. Dis-

crimination of breast cancer with microcalcifications on mammography by deep learning.

Scientific reports, 6:27327, 2016.

[113] Daan Wierstra, Alexander Förster, Jan Peters, and Jürgen Schmidhuber. Recurrent policy

gradients. Logic Journal of the IGPL, 18(5):620–634, 2010.

[114] Yinchong Yang, Cristóbal Esteban, and Volker Tresp. Embedding mapping approaches

for tensor factorization and knowledge graph modelling. In Harald Sack, Eva Blomqvist,

Mathieu d’Aquin, Chiara Ghidini, Simone Paolo Ponzetto, and Christoph Lange, editors,

The Semantic Web. Latest Advances and New Domains: 13th International Conference,

ESWC 2016, Heraklion, Crete, Greece, May 29 – June 2, 2016, Proceedings, pages 199–

213. Springer International Publishing, 2016.

[115] Yinchong Yang, Peter A. Fasching, and Volker Tresp. Modeling progression free survival in

breast cancer with tensorized recurrent neural networks and accelerated failure time model.

In Machine Learning for Healthcare 2017, volume 68 of Proceedings of Machine Learning

Research, Northeastern University, Boston, USA, 18–19 Aug 2017. JMLR.

[116] Yinchong Yang, Peter A. Fasching, and Volker Tresp. Predictive modeling of therapy de-

cisions in metastatic breast cancer with recurrent neural network encoder and multinomial

BIBLIOGRAPHY 117

hierarchical regression decoder. In Proceedings of the IEEE International Conference on

Healthcare Informatics (ICHI), Park City, Utah, USA, 23–26 Aug 2017. IEEE.

[117] Yinchong Yang, Denis Krompass, and Volker Tresp. Tensor-train recurrent neural net-

works for video classification. In Proceedings of the 34th International Conference on Ma-

chine Learning, volume 70 of Proceedings of Machine Learning Research, pages 3891–3900,

International Convention Centre, Sydney, Australia, 06–11 Aug 2017. JMLR.

[118] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks.

In European conference on computer vision, pages 818–833. Springer, 2014.

[119] Jing Zhao. Temporal weighting of clinical events in electronic health records for pharma-

covigilance. In Bioinformatics and Biomedicine (BIBM), 2015 IEEE International Con-

ference on, pages 375–381. IEEE, 2015.

	Introduction
	Representation Learning
	Motivation
	Terminology and Notations
	A Framework for Representation Learning

	Representation Learning in Knowledge Graphs
	Introduction
	Relational Learning Based on Tensor Decomposition
	Relational Learning and Representation Learning
	Representation Learning from Known Facts
	Algorithms and Applications in Modeling Knowledge Graphs

	Representation Learning in High Dimensional Sequential Data
	Introduction
	Recurrent Neural Networks
	Application in Sequential EHR for Decision Support

	Tensor-Train Layer
	Embedding Tensor-Train Layer into RNNs
	Application in Video Classification
	Application in Sequential EHR for Survival Prediction

	Representation Mapping: Algorithms and Applications
	Introduction
	Factorization Models with Closed-Form Mappings
	General Models and Training Algorithms
	Experiments
	Related Works
	Conclusions
	References

	RNNs in Sequential EHR for Predictive Decision Support
	Introduction
	Related Works
	Metastatic Breast Cancer Data
	A Predictive Model of Therapy Decisions
	Experiments
	Conclusion
	References

	Tensor-Train RNNs for Video Classification
	Introduction
	Related Works
	Tensor-Train RNN
	Experiments
	Conclusions and Future Work
	References

	Tensor-Train RNNs in Modeling Sequential EHR for Survival Prediction
	Introduction
	Related Works
	Cohort
	Methods
	Experiments
	Conclusion and Future Works
	References

	Summary of Contributions
	A Numerical Example of User-Item Matrix Decomposition
	User-Item Matrix Decomposition
	Derivation of Latent Representations for a New User

	Forward Pass Algorithm in Tensor-Train Layer
	Gradients in Tensor-Train Layer
	Tensor-Train RNNs: A Simulation Study
	Bibliography

