
The EMU-SDMS

Raphael Winkelmann

München 2017

The EMU-SDMS

Raphael Winkelmann

1. Dokumentation

Dissertation

zur Erlangung des Doktorgrades der Philosophie

am Department II der Fakultät 13

(Sprach- und Literaturwissenschaften)

der Ludwig-Maximilians-Universität München

vorgelegt von

Raphael Winkelmann

aus München

München, den 23. März 2017

Erstgutachter: Prof. Dr. Jonathan Harrington

Zweitgutachter: PD Dr. Florian Schiel

Tag der mündlichen Prüfung: 17. Juli 2017

Acknowledgements

This body of work would not have been possible if it were not for a fairly large
group of people that have been invested in developing and improving this software
suite as well as trying to keep me sane throughout the development process.

First and foremost, I would like to thank my supervisor Jonathan Harrington
for giving me the opportunity to work on this exciting project and for giving me
the freedom to explore various technical solutions and keeping an open mind about
pushing his original EMU concept(s) in various new directions.

I thank Florian Schiel for his technical oversight and his eagerness to support
and help out during the development of the EMU-SDMS. I want to especially
thank him for being a exceptionally bad software tester (i.e., an excellent software
tester, because every time he touches software it seems to break), which lead to
the discovery of many bugs and inconsistencies.

Many thanks to Christoph Draxler for being an invaluable source of information
for annotation data modeling, database systems and front-end usability design.
Many relational back-end problems would not have been solved as easily and as
quickly and the EMU-webApp would look and behave differently were it not for his
input.

I am also extremely grateful to Klaus Jänsch. Not only does he keep the
entire IPS infrastructure running but he has been an invaluable contributor to the
EMU-SDMS. Thank you for writing (and fighting with) the first drafts and internal
data models of emuR and sharing my griefs with R as a programing language. I
also thank him for being an encyclopedia in all this IT and for graciously sharing
that knowledge with me!

Thanks to Markus, Georg and Nina! Not only for contributing to the code base
and teaching me new things but also for sometimes being more excited about new
features of the EMU Speech Database Management System (EMU-SDMS) than
me. That definitely helped to keep me motivated!

I am grateful to Lasse, Steve, Tina and Michel for all their contributions to the
legacy system and their input and advice on the new EMU-SDMS. I especially
want to thank Lasse for showing me the ins and outs of the legacy system and
guiding me through C code that would not have been as accessible to me if it were

viii

not for his help.
Further, I would like to thank all the EMU users for their feedback, usability

tests (sometimes on very early alpha releases) and feature requests. Without their
critical input this project would not have been possible.

To Uwe for his guidance, trust and friendship and for being the reason that I
went into this profession in the first place. To all my past and present office mates
and to the group of people at the IPS that have become more than just colleagues
(you know who you are ;-)): you guys are the reason I am still in this profession!
A special thanks to Manfred for keeping me sane with many a late night “Frust
Halbe” and for sharing the load during the final stages of our PhDs.

I thank all my band mates for giving me a platform for my creative and emo-
tional outlet.

My undying gratitude goes to my family for their never ending unconditional
support. I will never be able to thank you enough!

To my partner Jessica and our four legged son: what to say? This and many
many other things would not have been possible without you!

Contents

Acknowledgements vii

Installing the EMU-SDMS xx

I Overview and tutorial 1

1 An overview of the EMU-SDMS 2
1.1 The evolution of the EMU-SDMS 3
1.2 EMU-SDMS: System architecture and default workflow 5
1.3 EMU-SDMS: Is it something for you? 7

2 A tutorial on how to use the EMU-SDMS 9
2.1 Converting the TextGrid collection 12
2.2 Loading and inspecting the database 14

2.2.1 Overview . 14
2.2.2 Database annotation and visual inspection 15

2.3 Querying and autobuilding the annotation structure 16
2.3.1 Autobuilding . 19
2.3.2 Querying the hierarchical annotations 23

2.4 Signal extraction and exploration 25
2.5 Vowel height as a function of word types (content vs. function):

evaluation and statistical analysis 29
2.6 Conclusion . 34

II Main components and concepts 36

3 Annotation Structure Modeling 37
3.1 Per database annotation structure definition 41
3.2 Parallel labels and multiple attributes 43

CONTENTS x

3.3 Metadata strategy using single bundle root nodes 45
3.4 Conclusion . 46

4 The emuDB Format 47
4.1 Database design . 49
4.2 Creating an emuDB . 50

4.2.1 Creating an emuDB from scratch 50
4.2.2 Loading and editing an empty database 51
4.2.3 Level definitions . 52
4.2.4 Link definitions . 57
4.2.5 File handling . 58
4.2.6 SSFF track definitions . 61
4.2.7 Configuring the EMU-webApp and annotating the emuDB . . . 62

4.3 Conclusion . 62

5 The query system 64
5.1 emuRsegs: The resulting object of a query 66
5.2 EQL: The EMU Query Language version 2 67

5.2.1 Simple queries . 67
5.2.2 Combining simple queries 69
5.2.3 Position queries . 73
5.2.4 Count queries . 75
5.2.5 More complex queries . 76
5.2.6 Deducing time . 77
5.2.7 Requery . 78

5.3 Discussion . 80

6 Signal data extraction 82
6.1 Extracting pre-defined tracks . 84
6.2 Adding new tracks . 86
6.3 Calculating tracks on-the-fly . 87
6.4 The resulting object: trackdata vs.

emuRtrackdata . 88
6.5 Conclusion . 91

7 The R package wrassp 92
7.1 Introduction . 92
7.2 File I/0 and the AsspDataObj . 95
7.3 Signal processing . 99

7.3.1 The wrasspOutputInfos object 99
7.3.2 Formants and their bandwidths 100

CONTENTS xi

7.3.3 Fundamental frequency contour 102
7.3.4 RMS energy contour . 103

7.4 Logging wrassp’s function calls . 105
7.5 Using wrassp in the EMU-SDMS 106
7.6 Storing data in the SSFF file format 108
7.7 Conclusion . 111

8 The EMU-webApp 112
8.1 Main layout . 113
8.2 General usage . 113

8.2.1 Annotating levels containing time information 115
8.2.2 Working with hierarchical annotations 118

8.3 Configuring the EMU-webApp . 121
8.3.1 Basic configurations using emuR 121
8.3.2 Signal canvas and level canvas order 123
8.3.3 Advanced configurations made by editing the

DBconfig.json . 125
8.3.4 2D canvas . 128

8.4 Conclusion . 131

III Main emuR function and object index 132

9 emuR - package functions 133
9.1 Import and conversion routines . 133

9.1.1 Legacy EMU databases . 134
9.1.2 TextGrid collections . 134
9.1.3 BPF collections . 135
9.1.4 txt collections . 136

9.2 emuDB interaction and configuration routines 137
9.3 EMU-webApp configuration routines 138
9.4 Data extraction routines . 138
9.5 Central objects . 139
9.6 Export routines . 140
9.7 Conclusion . 142

IV Implementation 144

10 Implementation of the query system 145
10.1 Query expression parser . 148

CONTENTS xii

10.2 Redundant links . 150

11 wrassp implementation 154
11.1 The libassp port . 154

12 EMU-webApp implementation 158
12.1 Communication protocol . 159
12.2 URL parameters . 160

12.2.1 Websocket server parameters 160
12.2.2 Label file preview parameters 160

Appendices 162

A Use cases 163
A.1 Use case 1 . 164
A.2 Use case 2 . 165
A.3 Use case 3 . 167
A.4 Use case 4 . 170

B File Formats 176
B.1 File descriptions . 176

B.1.1 DBconfig.json . 176
B.1.2 annot.json . 185
B.1.3 The SSFF file format . 186

B.2 Example files . 189
B.2.1 bundleList.json . 189
B.2.2 bndl.json . 190

C The EMU-webApp-websocket-protocol Version 2.0 191
C.1 Protocol overview . 191
C.2 Protocol commands . 191

C.2.1 GETPROTOCOL . 191
C.2.2 GETDOUSERMANAGEMENT . 193
C.2.3 LOGONUSER . 194
C.2.4 GETGLOBALDBCONFIG . 194
C.2.5 GETBUNDLELIST . 195
C.2.6 GETBUNDLE . 196
C.2.7 SAVEBUNDLE . 197
C.2.8 DISCONNECTWARNING . 197
C.2.9 Error handling . 198

CONTENTS xiii

D EQL EBNF 199
D.1 Terminal symbols of EQL2 (operators) and their meaning 199
D.2 Terminal symbols of EQL2 (brackets) and their meanings. 200
D.3 Terminal symbols of EQL2 (functions) and their meanings. 200
D.4 Formal description of EMU Query Language Version 2 200
D.5 Restrictions . 202

E EQL: further examples 203
E.1 Simple equality, inequality, matching and non-matching queries (single-

argument) . 203
E.2 Sequence queries using the -> sequence operator 205

E.2.1 Subsequent sequence queries using nesting of the -> se-
quence operator . 206

E.3 Conjunction operator & . 207
E.4 Domination operator ˆ (hierarchical queries) 208

E.4.1 Simple domination . 209
E.4.2 Multiple domination . 210

E.5 Position . 210
E.5.1 Simple usage of Start(), End() and Medial() 210
E.5.2 Position and boolean & . 212
E.5.3 Position and boolean ˆ . 212

E.6 Count . 213
E.6.1 Count and boolean & . 213
E.6.2 Count and ˆ . 214

E.7 Combinations . 215
E.7.1 ˆ and -> (domination and sequence) 215
E.7.2 ˆ and -> and & (domination and sequence and boolean &) . 216

E.8 A few more questions and answers 217
E.9 Differences to the legacy EMU query language 219

E.9.1 Function call syntax . 219
E.9.2 Empty result . 219
E.9.3 The result modifier hash tag # 219
E.9.4 Interpretation of the hash tag # in conjunction operator queries220
E.9.5 legacy EMU . 220

E.10 Bugs in legacy EMU function emu.query() 221
E.10.1 Alternative labels in inequality queries 221
E.10.2 legacy EMU . 221
E.10.3 emuR . 222
E.10.4 Errors caused by missing or superfluous blanks or parentheses222
E.10.5 Order of result segment list 222
E.10.6 Additional features . 223

Inhaltsverzeichnis xiv

F wrassp 224
F.1 Using Praat’s signal processing routines in the EMU-SDMS 224

Disclosure of pre-published data 227

Zusammenfassung 229

List of Figures

1.1 Schematic architecture of the EMU-SDMS 6
1.2 Example of a hybrid annotation combining time-based (Phonetic

level) and hierarchical (Phoneme, Syllable, Text levels including the
inter-level links) annotations . 7

2.1 TextGrid annotation of the emuR demoData/TextGrid collection/

msajc003.wav / .TextGrid file pair containing the tiers (from top
to bottom): Utterance, Intonational, Intermediate, Word, Accent,
Text, Syllable, Phoneme, Phonetic, Tone, Foot. 13

2.2 Screenshot of EMU-webApp displaying msajc003 bundle of myFirst
emuDB. 17

2.3 Example of a hierarchical annotation of the content (==C) word
violently belonging to the msajc012 bundle of the myFirst demo
emuDB . 19

2.4 Schematic annotation structure of the emuDB after calling the auto-
build function in R Example 2.3.2. 21

2.5 Screenshot of EMU-webApp displaying the autobuilt hierarchy of the
myFirst emuDB. 24

2.6 dplot() plots of F1 trajectories. The left plot displays all trajec-
tories while the right plot displays the ensemble average of all @
vowels. 28

2.7 95% ellipses for F2 x F1 data extracted from the temporal midpoint
of the vowel segments . 30

2.8 Ensemble averages of F1 contours of all tokens of the central 60%
of vowels grouped by word type (function (F) vs. content (W)). . . 31

2.9 Boxplot produced using ggplot2 to visualize the difference in F1
depending on whether the vowel occurs in content (C) or function
(F) word . 33

2.10 Plots of density distributions of vowels in content words (left plot)
and vowels in function words (right plot) in R Example 2.5.3. . . . 35

LIST OF FIGURES xvi

3.1 A: a purely time-aligned annotation; B: a purely timeless, symbolic
annotation; C: a time-aligned hierarchical annotation. 39

3.2 A: a schematic representation of the hierarchical structure of an
emuDB that corresponds to the annotation depicted in 3.1C; B: ex-
ample of a more complex, intersecting hierarchical structure. 42

3.3 Schematic representation of annotation structure modeling differ-
ence between A: linearly linked levels and B: an annotation struc-
ture using multiple attributes. 44

3.4 Hierarchical annotation displaying single bundle root node meta-
data strategy where the label of the primary attribute definition
(bundle) is empty, gender encodes the speaker’s gender, COB en-
codes the speakers city of birth and age encodes the speaker’s age
in the form of a string. 45

4.1 Schematic emuDB file and directory structure. 49
4.2 A schematic representation of the simple hierarchical structure of

the fromScratch created by the add linkDefinition() function
call in R Example 4.2.9. 58

5.1 Simple partial hierarchy of an annotation of the word amongst in
the msajc003 bundle in the ae demo emuDB. 65

5.2 Partial hierarchy depicting all annotation items that are dominated
by the strong syllable (S) of the Syllable level (inside dashed box).
Items marked green belong to the Phoneme level, items marked
orange belong to the Phonetic level and the purple dashed box in-
dicates the set of items that are dominated by S. 72

5.3 Illustration of what is returned by the Start(), Medial() and
End() functions depending if they are set to A: TRUE (green) or
B: FALSE (orange). 74

5.4 Partial hierarchy depicting a Syllable containing one Phoneme and
Phonetic item (green) and a Syllable containing five Phoneme and
six Phonetic items (orange). 75

5.5 Three-step (query → requery hier → requery seq) requery proce-
dure, its single query counterpart and their color coded movements
within the annotation hierarchy. 79

6.1 Segment of speech with overlaid annotations and time parallel de-
rived signal data contour. 83

7.1 Oscillogram generated from samples stored in the audio track of
the object au . 98

LIST OF FIGURES xvii

7.2 Matrix plot of formant values stored in the fm track of fmBwVals

object . 102
7.3 Plot of fundamental frequency values stored in the F0 track of

f0vals object . 104
7.4 Plot of RMS values stored in rms track of the rmsvals object . . . 105
7.5 A single cycle sine wave consisting of 16000 samples 109

8.1 Screenshot of EMU-webApp displaying the ae demo database with
overlaid areas of the main screen of the web application (see text). . 114

8.2 Screenshot of segment level as displayed by the EMU-webApp with
superimposed mouse cursor displaying the automatic boundary pre-
selection of closest boundary (boundary marked blue). 115

8.3 Screenshot of two levels as displayed by the EMU-webApp, where the
lower level is preselected (i.e., marked in a darker shade of gray). . . 116

8.4 Screenshot of level as displayed by the EMU-webApp, where the /@/
segment is currently preselected as it is marked yellow. 116

8.5 Screenshot of segment level with three attribute definitions. The
radio buttons that switch between the parallel labels are highlighted
by a red square. 117

8.6 Screenshot of the hierarchy modal window level displaying a path
through the hierarchy of the ae emuDB in its horizontal form. 119

8.7 Screenshot of top of hierarchy modal window of the EMU-webApp in
which the area marked 1 shows the drop-down menus for selecting
the parallel label for each level and area 2 marks the hierarchy path
drop-down menu. 119

8.8 Screenshot of the hierarchy modal window of the EMU-webApp dis-
playing an annotation item’s context menu. 120

8.9 Screenshot of the hierarchy modal window of the EMU-webApp dis-
playing an annotation item’s context menu. 122

8.10 Screenshot of signal and level canvases displays of the EMU-webApp

after the changes made in R Examples 8.3.4 and 8.3.6. 126
8.11 Screenshot of signal canvases display of the EMU-webApp after the

changes made in R Examples 8.3.4 and 8.3.6. 127
8.12 Screenshot of signal canvases area of the EMU-webApp displaying for-

mant contours that are overlaid on the spectrogram and frequency-
aligned. 127

8.13 Screenshot of 2D canvas of the EMU-webApp displaying two-dimensional
electromagnetic articulography (EMA) data. 128

8.14 Screenshot of 2D canvas of the EMU-webApp displaying electropalattography
(EPG) palate traces. 130

Abbildungsverzeichnis xviii

9.1 Relationship between various key functions in emuR and their out-
put. Figure is an updated version of Figure 5.7 in Harrington (2010) 141

9.2 TextGrid annotation generated by the export TextGridCollection()

function containing the tiers (from top to bottom): Text, Syllable,
Phonetic. 143

10.1 Schematic architecture of emuDB interaction functions of the emuR

package. Orange paths show examples of functions interacting with
the files of the emuDB, while green paths show functions accessing
the relational annotation structure. Actions like saving a changed
annotation using the EMU-webApp first save the annot.json to disk
then update the relational annotation structure. 146

10.2 Example of how the query expression parser parses and evaluates
an EMU Query Language (EQL) expression and merges the result
according to the respective EQL operators. 149

10.3 Schematic of hierarchy graph ae; A: legacy redundant strategy vs.
A: cleaner non-redundant strategy. 153

A.1 F1 by F2 distribution for I, o:, u:, V and @. 167
A.2 Time-normalized first spectral moment trajectories color coded by

sibilant class . 172
A.3 Time-normalized first spectral moment ensemble average trajecto-

ries per sibilant class . 173
A.4 Boxplots of the first spectral moments grouped by their sibilant class175

B.1 Schematic representation of the data block of the msajc003.fms file
of R Example B.1.1. 189

C.1 Schematic of the EMU-webApp-websocket-protocol. 192

List of Tables

5.1 EQL V2: examples of simple and complex query strings using RegEx
operators including their function descriptions. 69

9.1 Overview of the emuDB interaction routines provided by emuR. . . . 138
9.2 Overview of the EMU-webApp configuration functions provided by

emuR. 138
9.3 Overview of the data extraction functions provided by emuR. 139
9.4 Overview of the central objects of the emuR package. 140

12.1 Main EMU-webApp protocol commands. 159

Installing the EMU-SDMS

• R

• Download the R programming language from www.cran.r-project.org

• Install the R programming language by executing the downloaded file
and following the on-screen instructions.

• emuR

• Start up R.

• Enter install.packages("emuR") after the > prompt to install the
package. (You will only need to repeat this if package updates become
available.)

• As the wrassp package is a dependency of the emuR package, it does
not have to be installed separately.

• EMU-webApp (prerequisite)

• The only thing needed to use the EMU-webApp is a current HTML5 com-
patible browser (Chrome/Firefox/Safari/Opera/...). However, as most
of the development and testing is done using Chrome we recommend
using it, as it is by far the best tested browser.

Version disclaimer

This document describes the following versions of the software components:

• wrassp

• Package version: 0.1.6

• Git tag name: v0.1.6 (on master branch)

• emuR

http://www.cran.r-project.org

xxi

• Package version: 1.0.0

• Git tag name: v1.0.0 (on master branch)

• EMU-webApp

• Version: 0.1.12

• Git SHA1: 7b044a9f9fe19f2eb6d03ec6ec3f20d5b1d25db2

As the development of the EMU Speech Database Management System is still
ongoing, be sure you have the correct documentation to go with the version you
are using.

For developers and people interested in the source code

The information on how to install and/or access the source code of the devel-
oper version including the possibility of accessing the versions described in this
document (via the Git tag names mentioned above) is given below.

• wrassp

• Source code is available here: https://github.com/IPS-LMU/wrassp/

• Install developer version in R: install.packages("devtools");
library("devtools"); install github("IPS-LMU/wrassp")

• Bug reports: https://github.com/IPS-LMU/wrassp/issues

• emuR

• Source code is available here: https://github.com/IPS-LMU/emuR/

• Install developer version in R: install.packages("devtools");
library("devtools"); install github("IPS-LMU/emuR")

• Bug reports: https://github.com/IPS-LMU/emuR/issues

• EMU-webApp

• Source code is available here: https://github.com/IPS-LMU/EMU-webApp/

• Bug reports: https://github.com/IPS-LMU/EMU-webApp/issues

The data carrier that accompanies this documentation contains a cloned version
of all three Git repositories of the software components described here.

https://github.com/IPS-LMU/wrassp/
https://github.com/IPS-LMU/wrassp/issues
https://github.com/IPS-LMU/emuR/
https://github.com/IPS-LMU/emuR/issues
https://github.com/IPS-LMU/EMU-webApp/
https://github.com/IPS-LMU/EMU-webApp/issues

Part I

Overview and tutorial

Chapter 1

An overview of the EMU-SDMS*.

The EMU Speech Database Management System (EMU-SDMS) is a collection
of software tools which aims to be as close to an all-in-one solution for generating,
manipulating, querying, analyzing and managing speech databases as possible. It
was developed to fill the void in the landscape of software tools for the speech
sciences by providing an integrated system that is centered around the R language
and environment for statistical computing and graphics (R Core Team, 2016). This
manual contains the documentation for the three software components wrassp,
emuR and the EMU-webApp. In addition, it provides an in-depth description of
the emuDB database format which is also considered an integral part of the new
system. These four components comprise the EMU-SDMS and benefit the speech
sciences and spoken language research by providing an integrated system to answer
research questions such as: Given an annotated speech database, is the vowel height
of the vowel i: (measured by its correlate, the first formant frequency) influenced
by whether it appears in a strong or weak syllable?

*Sections of this chapter have been published in Winkelmann et al. (2017)

1.1 The evolution of the EMU-SDMS 3

This manual is targeted at new EMU-SDMS users as well as users familiar with
the legacy EMU system. In addition, it is aimed at people who are interested in the
technical details such as data structures/formats and implementation strategies,
be it for reimplementation purposes or simply for a better understanding of the
inner workings of the new system. To accommodate these different target groups,
after initially giving an overview of the system, this manual presents a usage
tutorial that walks the user through the entire process of answering a research
question. This tutorial will start with a set of .wav audio and Praat .TextGrid

(Boersma and Weenink, 2016) annotation files and end with a statistical analysis to
address the hypothesis posed by the research question. The following Part II of this
documentation is separated into six chapters that give an in-depth explanation of
the various components that comprise the EMU-SDMS and integral concepts of the
new system. These chapters provide a tutorial-like overview by providing multiple
examples. To give the reader a synopsis of the main functions and central objects
that are provided by EMU-SDMS’s main R package emuR, an overview of these
functions is presented in Part III. Part IV focuses on the actual implementation
of the components and is geared towards people interested in the technical details.
Further examples and file format descriptions are available in various appendices.
This structure enables the novice EMU-SDMS user to simply skip the technical
details and still get an in-depth overview of how to work with the new system and
discover what it is capable of.

A prerequisite that is presumed throughout this document is the reader’s
familiarity with basic terminology in the speech sciences (e.g., familiarity with
the international phonetic alphabet (IPA) and how speech is annotated at a
coarse and fine grained level). Further, we assume the reader has a grasp of
the basic concepts of the R language and environment for statistical computing
and graphics. For readers new to R, there are multiple, freely available R tu-
torials online (e.g., https://en.wikibooks.org/wiki/Statistical_Analysis:
_an_Introduction_using_R/R_basics). R also has a set of very detailed manu-
als and tutorials that come preinstalled with R. To be able to access R’s own “An
Introduction to R” introduction, simply type help.start() into the R console
and click on the link to the tutorial.

1.1 The evolution of the EMU-SDMS

The EMU-SDMS has a number of predecessors that have been continuously devel-
oped over a number of years (e.g., Harrington et al., 1993; Cassidy and Harrington,
1996, 2001; Bombien et al., 2006; Harrington, 2010; John, 2012). The components
presented here are the completely rewritten and newly designed, next incarnation
of the EMU system, which we will refer to as the EMU Speech Database Manage-

https://en.wikibooks.org/wiki/Statistical_Analysis:_an_Introduction_using_R/R_basics
https://en.wikibooks.org/wiki/Statistical_Analysis:_an_Introduction_using_R/R_basics

1.1 The evolution of the EMU-SDMS 4

ment System (EMU-SDMS). The EMU-SDMS keeps most of the core concepts of
the previous system, which we will refer to as the legacy system, in place while
improving on things like usability, maintainability, scalability, stability, speed and
more. We feel the redesign and reimplementation elevates the system into a modern
set of speech and language tools that enables a workflow adapted to the challenges
confronting speech scientists and the ever growing size of speech databases. The
redesign has enabled us to implement several components of the new EMU-SDMS
so that they can be used independently of the EMU-SDMS for tasks such as web-
based collaborative annotation efforts and performing speech signal processing in
a statistical programming environment. Nevertheless, the main goal of the re-
design and reimplementation was to provide a modern set of tools that reduces
the complexity of the tool chain needed to answer spoken language research ques-
tions down to a few interoperable tools. The tools the EMU-SDMS provides are
designed to streamline the process of obtaining usable data, all from within an
environment that can also be used to analyze, visualize and statistically evaluate
the data.

Upon developing the new system, rather than starting completely from scratch
it seemed more appropriate to partially reuse the concepts of the legacy system
in order to achieve our goals. A major observation at the time was that the R
language and environment for statistical computing and graphics (R Core Team,
2016) was gaining more and more traction for statistical and data visualization
purposes in the speech and spoken language research community. However, R was
mostly only used towards the end of the data analysis chain where data usually was
pre-converted into a comma-separated values or equivalent file format by the user
using other tools to calculate, extract and pre-process the data. While designing
the new EMU-SDMS, we brought R to the front of the tool chain to the point just
beyond data acquisition. This allows the entire data annotation, data extraction
and analysis process to be completed in R, while keeping the key user require-
ments in mind. Due to personal experiences gained by using the legacy system for
research puposes and in various undergraduate courses (course material usually
based on Harrington, 2010), we learned that the key user requirements were data
and database portability, a simple installation process, a simplified/streamlined
user experience and cross-platform availability. Supplying all of EMU-SDMS’s
core functionality in the form of R packages that do not rely on external software
at runtime seemed to meet all of these requirements.

As the early incarnations of the legacy EMU system and its predecessors were
conceived either at a time that predated the R system or during the infancy of R’s
package ecosystem, the legacy system was implemented as a modular yet composite
standalone program with a communication and data exchange interface to the
R/Splus systems (see Cassidy and Harrington, 2001, Section 3 for details). Recent

1.2 EMU-SDMS: System architecture and default workflow 5

developments in the package ecosystem of R such as the availability of the DBI

package (R Special Interest Group on Databases (R-SIG-DB) et al., 2016) and the
related packages RSQLite and RPostgreSQL (Wickham et al., 2014; Conway et al.,
2016), as well as the jsonlite package (Ooms, 2014) and the httpuv package
(RStudio and Inc., 2015), have made R an attractive sole target platform for the
EMU-SDMS. These and other packages provide additional functional power that
enabled the EMU-SDMS’s core functionality to be implemented in the form of
R packages. The availability of certain R packages had a large impact on the
architectural design decisions that we made for the new system.

R Example 1.1.1 shows the simple installation process which we were able to
achieve due to the R package infrastructure. Compared to the legacy EMU and
other systems, the installation process of the entire system has been reduced to a
single R command. Throughout this documentation we will try to highlight how
the EMU-SDMS is also able to meet the rest of the above key user requirements.

R Example 1.1.1

install the entire EMU-SDMS

by installing the emuR package

install.packages("emuR")

It is worth noting that throughout this manual R Example code snippets will
be given in the form of R Example 1.1.1. These examples represent working R
code that allow the reader to follow along in a hands-on manor and give a feel for
what it is like working with the new EMU-SDMS.

1.2 EMU-SDMS: System architecture and de-

fault workflow

As was previously mentioned, the new EMU-SDMS is made up of four main com-
ponents. The components are the emuDB format; the R packages wrassp and emuR;
and the web application, the EMU-webApp, which is EMU-SDMS’s new graphical
user interface (GUI) component. An overview of the EMU-SDMS’s architecture
and the components’ relationships within the system is shown in Figure 1.1. In
Figure 1.1, the emuR package plays a central role as it is the only component that
interacts with all of the other components of the EMU-SDMS. It performs file
and DB handling for the files that comprise an emuDB (see Chapter 3); it uses the
wrassp package for signal processing purposes (see Chapter 7); and it can serve
emuDBs to the EMU-webApp (see Chapter 8).

1.2 EMU-SDMS: System architecture and default workflow 6

EMU-webApp

wrassp emuR

files comprising emuDB

Signal proc. file/DB handling

websocket connection

Signal proc.

Figure 1.1: Schematic architecture of the EMU-SDMS

Although the system is made of four main components, the user largely only
interacts directly with the EMU-webApp and the emuR package. A summary of the
default workflow illustrating theses interactions can be seen below:

1. Load database into current R session (load emuDB()).

2. Database annotation / visual inspection (serve()). This opens up the
EMU-webApp in the system’s default browser.

3. Query database (query()). This is optionally followed by requery hier()

or requery seq() as necessary (see Chapter 5 for details).

4. Get trackdata (e.g. formant values) for the result of a query (get trackdata()).

5. Prepare data.

6. Visually inspect data.

7. Carry out further analysis and statistical processing.

Initially the user creates a reference to an emuDB by loading it into their current
R session using the load emuDB() function (see step 1). This database reference
can then be used to either serve (serve()) the database to the EMU-webApp or
query (query()) the annotations of the emuDB (see steps 2 and 3). The result
of a query can then be used to either perform one or more so-called requeries or
extract signal values that correspond to the result of a query() or requery() (see
step 4). Finally, the signal data can undergo further preparation (e.g., correction
of outliers) and visual inspection before further analysis and statistical processing
is carried out (see steps 5, 6 and 7). Although the R packages provided by the
EMU-SDMS do provide functions for steps 4, 5 and 6, it is worth noting that the

1.3 EMU-SDMS: Is it something for you? 7

f r E n z

P
ho

n
et
ic

f r E n z

P
ho

n
em

e

S

S
yl
la
bl
e

friends

T
ex
t

Figure 1.2: Example of a hybrid annotation combining time-based (Phonetic level)
and hierarchical (Phoneme, Syllable, Text levels including the inter-level links)
annotations.

plethora of R packages that the R package ecosystem provides can and should be
used to perform these duties. The resulting objects of most of the above functions
are derived matrix or data.frame objects which can be used as inputs for hundreds
if not thousands of other R functions.

1.3 EMU-SDMS: Is it something for you?

Besides providing a fully integrated system, the EMU-SDMS has several unique
features that set it apart from other current, widely used systems (e.g., Boersma
and Weenink, 2016; Wittenburg et al., 2006; Fromont and Hay, 2012; Rose et al.,
2006; McAuliffe and Sonderegger, 2016). To our knowledge, the EMU-SDMS is
the only system that allows the user to model their annotation structures based on
a hybrid model of time-based annotations (such as those offered by Praat’s tier-
based annotation mechanics) and hierarchical timeless annotations. An example
of such a hybrid annotation structure is displayed in Figure 1.2. These hybrid
annotations benefit the user in multiple ways, as they reduce data redundancy
and explicitly allow relationships to be expressed across annotation levels (see
Chapter 3 for further information on hierarchical annotations and Chapter 5 on
how to query these annotation structures).

Further, to our knowledge, the EMU-SDMS is the first system that makes

1.3 EMU-SDMS: Is it something for you? 8

use of a web application as its primary GUI for annotating speech. This unique
approach enables the GUI component to be used in multiple ways. It can be used
as a stand-alone annotation tool, connected to a loaded emuDB via emuR’s serve()
function and used to communicate to other servers. This enables it to be used as
a collaborative annotation tool. An in-depth explanation of how this component
can be used in these three scenarios is given in Chapter 8.

As demonstrated in the default workflow of Section 1.2, an additional unique
feature provided by EMU-SDMS is the ability to use the result of a query to
extract derived (e.g., formants and RMS values) and complementary signals (e.g.,
electromagnetic articulography (EMA) data) that match the segments of a query.
This, for example, aids the user in answering questions related to derived speech
signals such as: Is the vowel height of the vowel i: (measured by its correlate,
the first formant frequency) influenced by whether it appears in a strong or weak
syllable?. Chapter 2 gives a complete walk-through of how to go about answering
this question using the tools provided by the EMU-SDMS.

The features provided by the EMU-SDMS make it an all-in-one speech database
management solution that is centered around R. It enriches the R platform by
providing specialized speech signal processing, speech database management, data
extraction and speech annotation capabilities. By achieving this without relying
on any external software sources except the web browser, the EMU-SDMS sig-
nificantly reduces the number of tools the speech and spoken language researcher
has to deal with and helps to simplify answering research questions. As the only
prerequisite for using the EMU-SDMS is a basic familiarity with the R platform,
if the above features would improve your workflow, the EMU-SDMS is indeed for
you.

Chapter 2

A tutorial on how to use the
EMU-SDMS*

audio speech data
(non-optional)

complementary data
(optional)

annotations
(optional)

import routines

export routines

annotate

query
annot.

extr. signal data

analyze

visualize

Using the tools provided by the EMU-SDMS, this tutorial chapter gives a
practical step-by-step guide to answering the question: Given an annotated speech
database, is the vowel height of the vowel @ (measured by its correlate, the first
formant frequency) influenced by whether it appears in a content or function word?
The tutorial only skims over many of the concepts and functions provided by the

*Some examples of this chapter are adapted versions of examples of the emuR intro vignette.

10

EMU-SDMS. In-depth explanations of the various functionalities are given in later
chapters of this documentation.

As the EMU-SDMS is not concerned with the raw data acquisition, other tools
such as SpeechRecorder by Draxler and Jänsch (2004) are first used to record
speech. However, once audio speech recordings are available, the system provides
multiple conversion routines for converting existing collections of files to the new
emuDB format described in Chapter 4 and importing them into the new EMU
system. The current import routines provided by the emuR package are:

• convert TextGridCollection() - Convert TextGrid collections (.wav and
.TextGrid files) to the emuDB format,

• convert BPFCollection() - Convert BAS Partitur Format (BPF) collec-
tions (.wav and .par files) to the emuDB format,

• convert txtCollection() - Convert plain text file collections format (.wav
and .txt files) to the emuDB format,

• convert legacyEmuDB() - Convert the legacy EMU database format to the
emuDB format and

• create emuDB() followed by add link/levelDefinition and
import mediaFiles() - Creating emuDBs from scratch with only audio files
present.

The emuR package comes with a set of example files and small databases
that are used throughout the emuR documentation, including the functions help
pages. These can be accessed by typing help(functionName) or the short form
?functionName. R Example 2.0.1 illustrates how to create this demo data in
a user-specified directory. Throughout the examples of this documentation the
directory that is provided by the base R function tempdir() will be used, as
this is available on every platform supported by R (see ?tempdir for further de-
tails). As can be inferred from the list.dirs() output in R Example 2.0.1, the
emuR demoData directory contains a separate directory containing example data
for each of the import routines. Additionally, it contains a directory containing
an emuDB called ae (the directories name is ae emuDB, where emuDB is the default
suffix given to directories containing a emuDB; see Chapter 4).

R Example 2.0.1

load the package

library(emuR)

11

create demo data in directory provided by the tempdir() function

(of course other directory paths may be chosen)

create_emuRdemoData(dir = tempdir())

create path to demo data directory, which is

called "emuR_demoData"

demoDataDir = file.path(tempdir(), "emuR_demoData")

show demo data directories

list.dirs(demoDataDir, recursive = F, full.names = F)

[1] "ae_emuDB" "BPF_collection"

[3] "legacy_ae" "TextGrid_collection"

[5] "txt_collection"

This tutorial will start by converting a TextGrid collection containing seven
annotated single-sentence utterances of a single male speaker to the emuDB format1.
In the EMU-SDMS, a file collection such as a TextGrid collection refers to a set
of file pairs where two types of files with different file extentions are present (e.g.,
.ext1 and .ext2). It is vital that file pairs have the same basenames (e.g., A.ext1
and A.ext2 where A represents the basename) in order for the conversion functions
to be able to pair up files that belong together. As other speech software tools
also encourage such file pairs (e.g., Kisler et al., 2015) this is a common collection
format in the speech sciences. R Example 2.0.2 shows such a file collection that
is part of emuR’s demo data. Figure 2.1 shows the content of an annotation as
displayed by Praat’s "Draw visible sound and Textgrid..." procedure.

R Example 2.0.2

create path to TextGrid collection

tgColDir = file.path(demoDataDir, "TextGrid_collection")

show content of TextGrid_collection directory

list.files(tgColDir)

[1] "msajc003.TextGrid" "msajc003.wav"

[3] "msajc010.TextGrid" "msajc010.wav"

[5] "msajc012.TextGrid" "msajc012.wav"

[7] "msajc015.TextGrid" "msajc015.wav"

1The other input routines are covered in the Section 9.1.

2.1 Converting the TextGrid collection 12

[9] "msajc022.TextGrid" "msajc022.wav"

[11] "msajc023.TextGrid" "msajc023.wav"

[13] "msajc057.TextGrid" "msajc057.wav"

2.1 Converting the TextGrid collection

The convert TextGridCollection() function converts a TextGrid collection to
the emuDB format. A precondition that all .TextGrid files have to fulfill is that
they must all contain the same tiers. If this is not the case, yet there is an
equal tier subset that is contained in all the TextGrid files, this equal subset may
be chosen. For example, if all .TextGrid files contain only the tier Phonetic:

IntervalTier the conversion will work. However, if a single .TextGrid of the
collection has the additional tier Tone: TextTier the conversion will fail. In
this case the conversion could be made to work by specifying the equal subset
(e.g., equalSubset = c("Phonetic")) and passing it on to the tierNames func-
tion argument convert TextGridCollection(..., tierNames = equalSubset,

...). As can be seen in Figure 2.1, the TextGrid files provided by the demo data
contain eleven tiers. To reduce the complexity of the annotations for this tutorial
we will only convert the tiers Word (content: C vs. function: F word annota-
tions), Syllable (strong: S vs. weak: W syllable annotations), Phoneme (phoneme
level annotations) and Phonetic (phonetic annotations using Speech Assessment
Methods Phonetic Alphabet (SAMPA) symbols - Wells et al. (1997)) using the
tierNames parameter. This conversion can be seen in R Example 2.1.1.

R Example 2.1.1

convert TextGrid collection to the emuDB format

convert_TextGridCollection(dir = tgColDir,

dbName = "myFirst",

targetDir = tempdir(),

tierNames = c("Word", "Syllable",

"Phoneme", "Phonetic"))

The above call to convert TextGridCollection() creates a new emuDB di-
rectory in the tempdir() directory called myFirst emuDB. This emuDB contains
annotation files that contain the same Word, Syllable, Phoneme and Phonetic seg-
ment tiers as the original .TextGrid files as well as copies of the original (.wav)
audio files. For further details about the structure of an emuDB, see Chapter 4 of
this document.

2.1 Converting the TextGrid collection 13

L%

L- L-

C F C F F C C

S W S W W W S

amongst her friends she was considered beautiful

W S S S W W W S W S W W

V m V N s t @: f r E n z S i: w@ z k @n s I d @ d_b j u: d@ f @ l

V m V N s t H @: f r E n z S i: w@ z k H@n s I d @ db j u:dH@ f @ l

H* H* L- H* H* L-L%

F F F F F

Time (s)
0 2.904

msajc003

Figure 2.1: TextGrid annotation of the emuR demoData/TextGrid collection/

msajc003.wav / .TextGrid file pair containing the tiers (from top to bottom):
Utterance, Intonational, Intermediate, Word, Accent, Text, Syllable, Phoneme,
Phonetic, Tone, Foot.

2.2 Loading and inspecting the database 14

2.2 Loading and inspecting the database

As mentioned in Section 1.2, the first step when working with an emuDB is to load
it into the current R session. R Example 2.2.1 shows how to load the converted
TextGrid collection into R using the load emuDB() function.

R Example 2.2.1

get path to emuDB called "myFirst"

that was created by convert_TextGridCollection()

path2directory = file.path(tempdir(), "myFirst_emuDB")

load emuDB into current R session

dbHandle = load_emuDB(path2directory, verbose = FALSE)

2.2.1 Overview

Now the myFirst emuDB is loaded into R, an overview of the current status and
configuration of the database can be displayed using the summary() function as
shown in R Example 2.2.2.

R Example 2.2.2

show summary

summary(dbHandle)

Name: myFirst

UUID: 99a206b4-3d15-4a5c-bf58-ef30a365f180

Directory: /private/var/folders/yk/8z9tn7kx6hbcg_9n4c1sld9800...

Session count: 1

Bundle count: 7

Annotation item count: 664

Label count: 664

Link count: 0

##

Database configuration:

##

SSFF track definitions:

NULL

##

Level definitions:

2.2 Loading and inspecting the database 15

name type nrOfAttrDefs attrDefNames

1 Word SEGMENT 1 Word;

2 Syllable SEGMENT 1 Syllable;

3 Phoneme SEGMENT 1 Phoneme;

4 Phonetic SEGMENT 1 Phonetic;

##

Link definitions:

NULL

The extensive output of summary() is split into a top and bottom half, where
the top half focuses on general information about the database (name, directory,
annotation item count, etc.) and the bottom half displays information about the
various Simple Signal File Format (SSFF) track, level and link definitions of the
emuDB. The summary information about the level definitions shows, for instance,
that the myFirst database has a Word level of type SEGMENT and therefore contains
annotation items that have a start time and a segment duration. It is worth noting
that information about the SSFF track, level and link definitions corresponds
to the output of the list ssffTrackDefinitions(), list levelDefinitions()

and list linkDefinitions() functions.

2.2.2 Database annotation and visual inspection

The EMU-SDMS has a unique approach to annotating and visually inspecting
databases, as it utilizes a web application called the EMU-webApp to act as its GUI.
To be able to communicate with the web application the emuR package provides
the serve() function which is used in R Example 2.2.3.

R Example 2.2.3

serve myFirst emuDB to the EMU-webApp

serve(dbHandle)

Executing this command will block the R console, automatically open up the
system’s default browser and display the following message in the R console:

Navigate your browser to the EMU-webApp URL:

http://ips-lmu.github.io/EMU-webApp/ (should happen autom...

Server connection URL:

ws://localhost:17890

To stop the server press the 'clear' button in the

EMU-webApp or close/reload the webApp in your browser.

2.3 Querying and autobuilding the annotation structure 16

The EMU-webApp, which is now connected to the database via the serve() func-
tion, can be used to visually inspect and annotate the emuDB. Figure 2.2 displays
a screenshot of what the EMU-webApp looks like after automatically connecting to
the server. As the EMU-webApp is a very feature-rich software annotation tool, this
documentation has a whole chapter (see Chapter 8) on how to use it, what it is
capable of and how to configure it. Further, the web application provides its own
documentation which can be accessed by clicking the EMU icon in the top right
hand corner of the application’s top menu bar. To close the connection and free
up the blocked R console, simply click the clear button in the top menu bar of
the EMU-webApp.

2.3 Querying and autobuilding the annotation

structure

An integral step in the default workflow of the EMU-SDMS is querying the an-
notations of a database. The emuR package implements a query() function to
accomplish this task. This function evaluates an EMU Query Language (EQL)
expression and extracts the annotation items from the database that match a
query expression. As Chapter 5 gives a detailed description of the query mechan-
ics provided by emuR, this tutorial will only use a very small, hopefully easy to
understand subset of the EQL.

The output of the summary() command in R Example 2.2.2 and the screenshot
in Figure 2.2 show that the myFirst emuDB contains four levels of annotations. R
Example 2.3.1 shows four separate queries that query various segments on each
of the available levels. The query expressions all use the matching operator ==

which returns annotation items whose labels match those specified to the right of
the operator and that belong to the level specified to the left of the operator (i.e.,
LEVEL == LABEL; see Chapter 5 for a detailed description).

R Example 2.3.1

query all segments containing the label

"C" (== content word) of the "Word" level

sl_text = query(emuDBhandle = dbHandle,

query = "Word == C")

query all segments containing the label

"S" (== strong syllable) of the "Syllable" level

sl_syl = query(emuDBhandle = dbHandle,

query = "Syllable == S")

2.3 Querying and autobuilding the annotation structure 17

F
ig

u
re

2.
2:

S
cr

ee
n
sh

ot
of

E
M
U
-
w
e
b
A
p
p

d
is

p
la

y
in

g
m
s
a
j
c
0
0
3

b
u
n
d
le

of
m

yF
ir

st
e
m
u
D
B
.

2.3 Querying and autobuilding the annotation structure 18

query all segments containing the label

"f" on the "Phoneme" level

sl_phoneme = query(dbHandle,

query = "Phoneme == f")

query all segments containing the label

"n" of the "Phonetic" level

sl_phonetic = query(dbHandle,

query = "Phonetic == n")

show class vector of query result

class(sl_phonetic)

[1] "emuRsegs" "emusegs" "data.frame"

show first entry of sl_phonetic

head(sl_phonetic, n = 1)

segment list from database: myFirst

query was: Phonetic == n...

labels start end session bundle level

1 n 1031.925 1195.925 0000 msajc003 Phonetic

type

1 SEGMENT

show summary of sl_phonetic

summary(sl_phonetic)

segment list from database: myFirst

query was: Phonetic == n

with 12 segments

##

Segment distribution:

##

n

12

As demonstrated in R Example 2.3.1, the result of a query is an emuRsegs

object, which is a super-class of the common data.frame. This object is often
referred to as a segment list, or “seglist”. A segment list carries information about
the extracted annotation items such as the extracted labels, the start and end

2.3 Querying and autobuilding the annotation structure 19

v ai @ l @ n t H l i:

P
ho

n
et
ic

v ai @ l @ n t l i:

P
ho

n
em

e

S W W W

S
yl
la
bl
e

C

W
or
d

Figure 2.3: Example of a hierarchical annotation of the content (==C) word
violently belonging to the msajc012 bundle of the myFirst demo emuDB.

times of the segments, the sessions and bundles the items are from and the levels
they belong to. An in-depth description of the information contained in a segment
list is given in Section 5.1. R Example 2.3.1 shows that the summary() function
can also be applied to a segment list object to get an overview of what is contained
within it. This can be especially useful when dealing with larger segment lists.

2.3.1 Autobuilding

The simple queries illustrated above query segments from a single level that match
a certain label. However, the EMU-SDMS offers a mechanism for performing inter-
level queries such as: Query all Phonetic items that contain the label “n” and are
part of a content word. For such queries to be possible, the EMU-SDMS offers
very sophisticated annotation structure modeling capabilities, which are described
in Chapter 3. For the sake of this tutorial we will focus on converting the flat
segment level annotation structure displayed in Figure 2.2 to a hierarchical form
as displayed in Figure 2.3, where only the Phonetic level carries time information
and the annotation items on the other levels are explicitly linked to each other to
form a hierarchical annotation structure.

As it is a very laborious task to manually link annotation items together using
the EMU-webApp and the hierarchical information is already implicitly contained
in the time information of the segments and events of each level, we will now

2.3 Querying and autobuilding the annotation structure 20

use a function provided by the emuR package to build these hierarchical struc-
tures using this information called autobuild linkFromTimes(). R Example
2.3.2 shows the calls to this function which autobuild the hierarchical annotations
in the myFirst database. As a general rule for autobuilding hierarchical anno-
tation structures, a good strategy is to start the autobuilding process beginning
with coarser grained annotation levels (i.e., the Word/Syllable level pair in our
example) and work down to finer grained annotations (i.e., the Syllable/Phoneme
and Phoneme/Phonetic level pairs in our example). To build hierachical annota-
tion structures we need link definitions, which together with the level definitions
define the annotation structure for the entire database (see Chapter 3 for fur-
ther details). The autobuild linkFromTimes() calls in R Example 2.3.2 use the
newLinkDefType parameter, which if defined automatically adds a link definition
to the database.

R Example 2.3.2

invoke autobuild function

for "Word" and "Syllable" levels

autobuild_linkFromTimes(dbHandle,

superlevelName = "Word",

sublevelName = "Syllable",

convertSuperlevel = TRUE,

newLinkDefType = "ONE_TO_MANY")

invoke autobuild function

for "Syllable" and "Phoneme" levels

autobuild_linkFromTimes(dbHandle,

superlevelName = "Syllable",

sublevelName = "Phoneme",

convertSuperlevel = TRUE,

newLinkDefType = "ONE_TO_MANY")

invoke autobuild function

for "Phoneme" and "Phonetic" levels

autobuild_linkFromTimes(dbHandle,

superlevelName = "Phoneme",

sublevelName = "Phonetic",

convertSuperlevel = TRUE,

newLinkDefType = "MANY_TO_MANY")

As the autobuild linkFromTimes() function automatically creates backup

2.3 Querying and autobuilding the annotation structure 21

Word (ITEM)

Syllable (ITEM)

Phoneme (ITEM)

Phonetic (SEGMENT)

ONE TO MANY

MANY TO MANY

Figure 2.4: Schematic annotation structure of the emuDB after calling the autobuild
function in R Example 2.3.2.

levels to avoid the accidental loss of boundary or event time information, R Exam-
ple 2.3.3 shows how these backup levels can be removed to clean up the database.
However, using the remove levelDefinition() function with its force parame-
ter set to TRUE is a very invasive action. Usually this would not be recommended,
but for this tutorial we are keeping everything as clean as possible.

R Example 2.3.3

list level definitions

as this reveals the "-autobuildBackup" levels

added by the autobuild_linkFromTimes() calls

list_levelDefinitions(dbHandle)

name type nrOfAttrDefs

1 Word ITEM 1

2 Syllable ITEM 1

3 Phoneme ITEM 1

4 Phonetic SEGMENT 1

5 Word-autobuildBackup SEGMENT 1

6 Syllable-autobuildBackup SEGMENT 1

7 Phoneme-autobuildBackup SEGMENT 1

attrDefNames

1 Word;

2 Syllable;

3 Phoneme;

4 Phonetic;

5 Word-autobuildBackup;

6 Syllable-autobuildBackup;

7 Phoneme-autobuildBackup;

2.3 Querying and autobuilding the annotation structure 22

remove the levels containing the "-autobuildBackup"

suffix

remove_levelDefinition(dbHandle,

name = "Word-autobuildBackup",

force = TRUE,

verbose = FALSE)

remove_levelDefinition(dbHandle,

name = "Syllable-autobuildBackup",

force = TRUE,

verbose = FALSE)

remove_levelDefinition(dbHandle,

name = "Phoneme-autobuildBackup",

force = TRUE,

verbose = FALSE)

list level definitions

list_levelDefinitions(dbHandle)

name type nrOfAttrDefs attrDefNames

1 Word ITEM 1 Word;

2 Syllable ITEM 1 Syllable;

3 Phoneme ITEM 1 Phoneme;

4 Phonetic SEGMENT 1 Phonetic;

list level definitions

which were added by the autobuild functions

list_linkDefinitions(dbHandle)

type superlevelName sublevelName

1 ONE_TO_MANY Word Syllable

2 ONE_TO_MANY Syllable Phoneme

3 MANY_TO_MANY Phoneme Phonetic

As can be seen by the output of list levelDefinitions() and
list linkDefinitions() in R Example 2.3.2, the annotation structure of the
myFirst emuDB now matches that displayed in Figure 2.4. Using the serve()

function to open the emuDB in the EMU-webApp followed by clicking on the show

hierarchy button in the top menu (and rotating the hierarchy by 90 degrees by
clicking the rotate by 90 degrees button) will result in a view similar to the

2.3 Querying and autobuilding the annotation structure 23

screenshot of Figure 2.5.

2.3.2 Querying the hierarchical annotations

Having this hierarchical annotation structure now allows us to formulate a query
that helps answer the originally stated question: Given an annotated speech database,
is the vowel height of the vowel @ (measured by its correlate, the first formant
frequency) influenced by whether it appears in a content or function word?. R
Example 2.3.4 shows how all the @ vowels in the myFirst database are queried.

R Example 2.3.4

query annotation items containing

the labels @ on the Phonetic level

sl_vowels = query(dbHandle, "Phonetic == @")

show first entry of sl_vowels

head(sl_vowels, n = 1)

segment list from database: myFirst

query was: Phonetic == @...

labels start end session bundle level

1 @ 1506.175 1548.425 0000 msajc003 Phonetic

type

1 SEGMENT

As the type of word (content vs. function) for each @ vowel that was just
extracted is also needed, we can use the requery functionality of the EMU-SDMS
(see Chapter 5) to retrieve the word type for each @ vowel. A requery essentially
moves through a hierarchical annotation (vertically or horizontally) starting from
the segments that are passed into the requery function. R Example 2.3.5 illustrates
the usage of the hierarchical requery function, requery hier(), to retrieve the
appropriate annotation items from the Word level.

R Example 2.3.5

hierarchical requery starting from the items in sl_vowels

and moving up to the "Word" level

sl_wordType = requery_hier(dbHandle,

seglist = sl_vowels,

level = "Word",

2.3 Querying and autobuilding the annotation structure 24

F
ig

u
re

2.
5:

S
cr

ee
n
sh

ot
of

E
M
U
-
w
e
b
A
p
p

d
is

p
la

y
in

g
th

e
au

to
b
u
il
t

h
ie

ra
rc

h
y

of
th

e
m

yF
ir

st
e
m
u
D
B
.

2.4 Signal extraction and exploration 25

calcTimes = FALSE)

show first entry of sl_wordType

head(sl_wordType, n = 1)

segment list from database: myFirst

query was: FROM REQUERY...

labels start end session bundle level type

1 F NA NA 0000 msajc003 Word ITEM

show that sl_vowel and sl_wordType have the

same number of row entries

nrow(sl_vowels) == nrow(sl_wordType)

[1] TRUE

As can be seen by the nrow() comparison in R Example 2.3.5, the segment
list returned by the requery hier() function has the same number of rows as the
original sl vowels segment list. This is important, as each row of both segment
lists line up and allow us to infer which segment belongs to which word type (e.g.,
vowel sl vowels[5,] belongs to the word type sl wordType[5,]).

2.4 Signal extraction and exploration

Now that the vowel and word type information including the vowel start and
end time information has been extracted from the database, this information can
be used to extract signal data that matches these segments. Using the emuR

function get trackdata() we can calculate the formant values in real time using
the formant estimation function, forest(), provided by the wrassp package (see
Chapter 7 for details). R Example 2.4.1 shows the usage of this function.

R Example 2.4.1

get formant values for the vowel segments

td_vowels = get_trackdata(dbHandle,

seglist = sl_vowels,

onTheFlyFunctionName = "forest",

verbose = F)

show class vector

class(td_vowels)

2.4 Signal extraction and exploration 26

[1] "trackdata"

show dimensions

dim(td_vowels)

[1] 28 4

display all values for fifth segment

td_vowels[5,]

trackdata from track: fm

index:

left right

1 12

ftime:

start end

[1,] 2447.5 2502.5

data:

T1 T2 T3 T4

2447.5 303 1031 2266 3366

2452.5 289 967 2250 3413

2457.5 296 905 2273 3503

2462.5 321 885 2357 3506

2467.5 316 889 2397 3475

2472.5 306 863 2348 3548

2477.5 314 832 2339 3611

2482.5 325 795 2342 3622

2487.5 339 760 2322 3681

2492.5 335 746 2316 3665

2497.5 341 734 2306 3688

2502.5 361 733 2304 3692

As can be seen by the call to the class() function, the resulting object is
of the type trackdata and has 28 entries. This corresponds to the number of
rows contained in the segment lists extracted above (i.e., nrow(sl vowels)). This
indicates that this object contains data for each of the segments that correspond
to each of the row entries of the segment lists (i.e., td vowels[5,] are the formant
values belonging to sl vowels[5,]). As the columns T1, T2, T3, T4 of the printed
output of td vowels[5,] suggest, the forest function estimates four formant
values. We will only be concerned with the first (column T1) and second (column
T2). R Example 2.4.2 shows a call to emuR’s dplot() function which produces

2.4 Signal extraction and exploration 27

the plot displayed in Figure 2.6. The first call to the dplot() function plots
all 28 first formant trajectories (achieved by indexing the first column i.e., T1:
x = td vowels[, 1]). To clean up the cluttered left plot, the second call to
the dplot() function additionally uses the average parameter to plot only the
ensemble averages of all @ vowels and time-normalizes the trajectories (normalise
= TRUE) to an interval between 0 and 1.

R Example 2.4.2

two plots next to each other

formantNr = 1

par(mfrow = c(1,2))

dplot(x = td_vowels[, formantNr],

labs = sl_vowels$labels,

xlab = "Duration (ms)",

ylab = paste0("F", formantNr, " (Hz)"))

dplot(x = td_vowels[, 1],

labs = sl_vowels$labels,

normalise = TRUE,

average = TRUE,

xlab = "Normalized time",

ylab = paste0("F", formantNr, " (Hz)"))

back to single plot

par(mfrow = c(1,1))

Figure 2.6 gives an overview of the first formant trajectories of the @ vowels.
For the purpose of data exploration and to get an idea of where the individual vowel
classes lie on the F2 x F1 plane, which indirectly provides information about vowel
height and tongue position, R Example 2.4.3 makes use of the eplot() function.
This produces Figure 2.7. To be able to use the eplot() function, the td vowels

object first has to be modified, as it contains entire formant trajectories but two
dimensional data is needed to be able to display it on the F2 x F1 plain. This can,
for example, be achieved by only extracting temporal mid-point formant values for
each vowel using the get trackdata() function utilizing its cut parameter. R Ex-
ample 2.4.3 shows an alternative approach using the dcut() function to essentially
cut the formant trajectories to a specified proportional segment. By using only
the left.time = 0.5 (and not specifying right.time) only the formant values

2.4 Signal extraction and exploration 28

@

Duration (ms)

F
1
(H

z)

0 50 100 150

0
20
0

40
0

60
0

80
0

@

Normalized time

F
1
(H

z)

0.0 0.4 0.8

0
20
0

40
0

60
0

80
0

Figure 2.6: dplot() plots of F1 trajectories. The left plot displays all trajectories
while the right plot displays the ensemble average of all @ vowels.

2.5 Vowel height as a function of word types (content vs. function):
evaluation and statistical analysis 29

that are closest to the temporal mid-point are cut from the trajectories.

R Example 2.4.3

cut formant trajectories at temporal mid-point

td_vowels_midpoint = dcut(td_vowels,

left.time = 0.5,

prop = TRUE)

show dimensions of td_vowels_midpoint

dim(td_vowels_midpoint)

generate plot

eplot(x = td_vowels_midpoint[,1:2],

labs = sl_vowels$labels,

dopoints = TRUE,

formant = TRUE,

xlab="F2 (Hz)",

ylab = "F1 (Hz)"

)

Figure 2.7 displays the first two formants extracted at the temporal midpoint of
every @ vowel in sl vowels. These formants are plotted on the F2 x F1 plane, and
their 95% ellipsis distribution is also shown. Although not necessarily applicable
to the question posed at the beginning of this tutorial, the data exploration using
the dplot() and eplot() functions can be very helpful tools for providing an
overview of the data at hand.

2.5 Vowel height as a function of word types

(content vs. function): evaluation and sta-

tistical analysis

The above data exploration only dealt with the actual @ vowels and disregarded
the syllable type they occurred in. However, the question in the introduction
of this chapter focuses on whether the @ vowel occurs in a content (labeled C)
or function (labeled F) word. For data inspection purposes, R Example 2.5.1
initially extracts the central 60% (left.time = 0.2 and right.time = 0.8) of
the formant trajectories from td vowels using dcut() and displays them using
dplot(). It should be noted that the call to dplot() uses the labels of the
sl wordType object as opposed to those of sl vowels. This causes the dplot()

2.5 Vowel height as a function of word types (content vs. function):
evaluation and statistical analysis 30

@@
@ @ @@
@

@

@ @
@

@

@

@@

@

@ @

@ @

@
@

@

@
@

@
@

@

1600 1400 1200 1000 800

60
0

40
0

20
0

0

F2 (Hz)

F
1
(H

z)

Figure 2.7: 95% ellipses for F2 x F1 data extracted from the temporal midpoint
of the vowel segments.

2.5 Vowel height as a function of word types (content vs. function):
evaluation and statistical analysis 31

F
C

Normalized time

F
1
(H

z)

0.0 0.2 0.4 0.6 0.8 1.0

0
40
0

80
0

Figure 2.8: Ensemble averages of F1 contours of all tokens of the central 60% of
vowels grouped by word type (function (F) vs. content (W)).

functions to group the trajectories by their word type as opposed to their vowel
labels as displayed in Figure 2.8.

R Example 2.5.1

extract central 60% from formant trajectories

td_vowelsMidSec = dcut(td_vowels,

left.time = 0.2,

right.time = 0.8,

prop = TRUE)

plot first formant trajectories

formantNr = 1

dplot(x = td_vowelsMidSec[, formantNr],

labs = sl_wordType$labels,

normalise = TRUE,

average = TRUE,

xlab = "Normalized time",

ylab = paste("F", formantNr, " (Hz)"))

As can be seen in Figure 2.8, there seems to be a distinction in F1 trajectory
height between vowels in content and function words. R Example 2.5.2 shows the

2.5 Vowel height as a function of word types (content vs. function):
evaluation and statistical analysis 32

code to produce a boxplot using the ggplot2 package to further visually inspect
the data (see Figure 2.9 for the plot produced by R Example 2.5.2).

R Example 2.5.2

formantNr = 1

use trapply to calculate the means of the 60%

formant trajectories

td_vowelsMidSec_mean = trapply(td_vowelsMidSec[, formantNr],

fun = mean,

simplify = T)

create new data frame that contains the mean

values and the corresponding labels

df = data.frame(wordType = sl_wordType$labels,

meanF1 = td_vowelsMidSec_mean)

load library

library(ggplot2)

create boxplot using ggplot

ggplot(df, aes(wordType, meanF1)) +

geom_boxplot() +

labs(x = "Word type", y = paste0("mean F", formantNr, " (Hz)"))

To confirm or reject this, R Example 2.5.3 presents a very simple statistical
analysis of the F1 mean values of the 60% mid-section formant trajectories2. First,
a Shapiro-Wilk test for normality of the distributions of the F1 means for both
word types is carried out. As only one type is normally distributed, a Wilcoxon
rank sum test is performed. The density distributions (commented out plot()

function calls in R Example 2.5.3) are displayed in Figure 2.10.

R Example 2.5.3

calculate density for vowels in function words

distrF = density(df[df$wordType == "F",]$meanF1)

uncomment to visualize distribution

plot(distrF)

2It is worth noting that the sample size in this toy example is quite small. This obviously
influences the outcome of the simple statistical analysis that is performed here.

2.5 Vowel height as a function of word types (content vs. function):
evaluation and statistical analysis 33

200

400

600

C F

Word type

m
ea
n
F
1
(H

z)

Figure 2.9: Boxplot produced using ggplot2 to visualize the difference in F1
depending on whether the vowel occurs in content (C) or function (F) word.

check that vowels in function

words are normally distributed

shapiro.test(df[df$wordType == "F",]$meanF1)

##

Shapiro-Wilk normality test

##

data: df[df$wordType == "F",]$meanF1

W = 0.98687, p-value = 0.9887

p-value > 0.05 implying that the distribution

of the data ARE NOT significantly different from

normal distribution -> we CAN assume normality

calculate density for vowels in content words

distrC = density(df[df$wordType == "C",]$meanF1)

uncomment to visualize distribution

plot(distrC)

check that vowels in content

2.6 Conclusion 34

words are normally distributed:

shapiro.test(df[df$wordType == "C",]$meanF1)

##

Shapiro-Wilk normality test

##

data: df[df$wordType == "C",]$meanF1

W = 0.66506, p-value = 1.506e-05

p-value < 0.05 implying that the distribution

of the data ARE significantly different from

normal distribution -> we CAN NOT assume normality

(this somewhat unexpected result is probably

due to the small sample size used in this toy example)

-> use Wilcoxon rank sum test

perform Wilcoxon rank sum test to establish

whether vowel F1 depends on word type

wilcox.test(meanF1 ~ wordType, data = df)

##

Wilcoxon rank sum test

##

data: meanF1 by wordType

W = 121, p-value = 0.03752

alternative hypothesis: true location shift is not equal to 0

As shown by the result of wilcox.test() in R Example 2.5.3, word type (C
vs. F) has a significant influence on the vowel’s F1 (W=121, p<0.05). Hence, the
answer to the initially proposed question: Given an annotated speech database, is
vowel height of the vowel @ (measured by its correlate, the first formant frequency)
influenced by whether it appears in a content or function word? is yes!

2.6 Conclusion

The tutorial given in this chapter gave an overview of what it is like working with
the EMU-SDMS to try to solve a research question. As many of the concepts
were only briefly explained, it is worth noting that explicit explanations of the
various components and integral concepts are given in following chapters. Further,
additional use cases that have been taken from the emuR intro vignette can be

2.6 Conclusion 35

0 200 400 600 800

0.
00
0

0.
00
6

N = 20 Bandwidth = 17.22

D
en
si
ty

0 200 400 600 800

0.
00
0

0.
00
6

N = 8 Bandwidth = 37.11

D
en
si
ty

Figure 2.10: Plots of density distributions of vowels in content words (left plot)
and vowels in function words (right plot) in R Example 2.5.3.

found in Appendix A. These use cases act as templates for various types of research
questions and will hopefully aid the user in finding a solution similar to what she
or he wishes to achieve.

Part II

Main components and concepts

Chapter 3

Annotation Structure Modeling*

What is up with trees
growing downwards?

X

X

XX

XXXX

XXXXXX

The EMU-SDMS facilitates annotation structure modeling that surpasses that
available in many other commonly used systems. This chapter provides an in-depth
explanation of the annotation structure modeling capabilities the EMU-SDMS of-
fers. One of the most common approaches for creating time-aligned annotations
has been to differentiate between events that occur at a specific point in time but
have no duration and segments that start at a point in time and have a duration.
These annotation items are then grouped into time-ordered sets that are often
referred to as tiers. As certain research questions benefit from different granu-
larities of annotation, the timeline is often used to relate implicitly items from
multiple tiers to each other as shown in Figure 3.1A. While sufficient for single
or unrelated tier annotations, we feel this type of representation is not suitable
for more complex annotation structures, as it results in unnecessary, redundant

*Sections of this chapter where previously published in Winkelmann et al. (2017).

38

data and data sets that are often difficult to analyze. This is because there are
no explicit relationships between annotation items, and it is often necessary to
introduce error tolerance values to analyze slightly misaligned time values to find
relationships iteratively over multiple levels. The main reason for the prevalence
of this sub-optimal strategy is largely because the available software tools (e.g.,
Praat by Boersma and Weenink, 2016) do not permit any other forms of anno-
tations. These widely used annotation tools often only permit the creation and
manipulation of segment and event tiers which in turn has forced users to model
their annotation structures on these building blocks alone.

Linguists who deal with speech and language on a purely symbolic level tend to
be more familiar with a different type of annotation structure modeling. They often
model their structures in the form of a vertically oriented, directed acyclic graph
that, but for a few exceptions that are needed for things like elision modeling (e.g.,
the /I/ elision that may occur between the canonical representation of the word
family /fæmIli/ and its phonetic representation [fæmli]), loosely adheres to the
formal definition of a tree in the graph-theoretical sense (Knuth, 1968) as depicted
in Figure 3.1B. While this form of modeling explicitly defines relationships between
annotation items (represented by dashed lines in Figure 3.1B), it lacks the ability
to map these items to the timeline and therefore the matching speech signal.

To our knowledge, the legacy EMU system (Cassidy and Harrington, 2001) and
its predecessors (e.g., Harrington et al., 1993) were the first to fuse pragmatically
purely time-aligned and symbolic tree-like annotations. This was achieved by pro-
viding software tools that allowed for these types of annotation structures to be
generated, queried and evaluated. In practice, each annotation item had its own
unique identifier within the annotation. These unique IDs could then be used to
reference each individual item and link them together using dominance relations
to form the hierarchical annotation structure. On the one hand, this dominance
relation implies the temporal inclusion of the linked sub-level items and was par-
tially predicated on the no-crossing constraint as described in Coleman and Local
(1991). This constraint does not permit the crossing of dominance relationships
with respect to their sequential ordering (see also Section 4.2 of Cassidy and Har-
rington, 2001). Since the dominance relations imply temporal inclusion, events can
only be children in a parent-child relationship. To allow for timeless annotation
items, a further timeless level type was used to complement the segment and event
type levels used for time-aligned annotations. Each level of annotation items was
stored as an ordered set to ensure the sequential integrity of both the time-aligned
and timeless item levels. The legacy system also reduced data redundancy by al-
lowing parallel annotations to be defined in the form of linearly linked levels for
any given level (e.g., a segment level bearing SAMPA annotations as well as IPA
UTF-8 annotations).

39

v ai @ l @ n t H l i:

P
ho
n
et
ic

v ai @ l @ n t l i:

P
ho
n
em

e

S W W W

S
yl
la
bl
e

violently

T
ex
t

A

v ai @ l @ n t H l i:

P
ho
n
et
ic

v ai @ l @ n t l i:

P
ho
n
em

e

S W W W

S
yl
la
bl
e

violently

T
ex
t

B

v ai @ l @ n t H l i:

P
ho
n
et
ic

v ai @ l @ n t l i:

P
ho
n
em

e
S W W W

S
yl
la
bl
e

violently

T
ex
t

C

Figure 3.1: A: a purely time-aligned annotation; B: a purely timeless, symbolic
annotation; C: a time-aligned hierarchical annotation.

40

The new EMU-SDMS has adopted some concepts of the legacy system in that
levels of type SEGMENT and EVENT contain annotation items with labels and time
information, similar to the tiers known from other software tools such as Praat,
while levels of type ITEM are timeless and contain annotation items with labels
only. SEGMENT and EVENT levels differ in that units at the SEGMENTs level have a
start time and a duration, while units at the EVENT level contain a single time point
only. Additionally, every annotation item is able to contain multiple labels and
has a unique identifier which is used to link items across levels. These building
blocks provide the user with a general purpose annotation modeling tool that
allows complex annotation structures to be modeled that best represent the data.
An example of a time-aligned hierarchical annotation is depicted in Figure 3.1C,
which essentially combines the annotation of Figure 3.1B with the most granular
time-bearing level (i.e. the “Phonetic” level) of Figure 3.1A.

In accordance with other approaches (among others see Bird and Liberman,
2001; Zipser and Romary, 2010; Ide and Romary, 2004), the EMU-SDMS anno-
tation structure can be viewed as a graph that consists of three types of nodes
(EVENTs, SEGMENTs, ITEMs) and two types of relations (dominance and sequence)
which are directed, transitive and indicate the dominance and sequential relation-
ships between nodes of the graph. As was shown in a pseudo-code example that
converted an Annotation Graph (Bird and Liberman, 2001) into the legacy EMU
annotation format in Cassidy and Harrington (2001), these formats can be viewed
as conceptually equivalent sub- or super-set representations of each other. This
has also been shown by developments of meta models with independent data repre-
sentation such as Salt (Zipser and Romary, 2010), which enable abstract internal
representations to be derived that can be exported to equal-set or super-set for-
mats without the loss of information. We therefore believe that the decision as to
which data format serializations are used by a given application should be guided
by the choice of technology and the target audience or research field. This is con-
sistent with the views of the committee for the Linguistic Annotation Framework
(LAF) who explicitly state in the ISO CD 24612 (LAF) document (ISO, 2012);

Although the LAF pivot format may be used in any context, it is
assumed that users will represent annotations using their own formats,
which can then be transduced to the LAF pivot format for the purposes
of exchange, merging and comparison.

The transduction of an EMU annotation into a format such as the LAF pivot
format is a simple process, as they share many of the same concepts and are well
defined formats.

3.1 Per database annotation structure definition 41

3.1 Per database annotation structure definition

Unlike other systems, the EMU-SDMS requires the user to define the annotation
structure formally for all annotations within a database. Much as document type
definitions (DTD) or XML schema definitions (XSD) describe the syntactically
valid elements in an Extensible Markup Language (XML) document, the database
configuration file of an emuDB defines the valid annotation levels and therefore
the type of items that are allowed to be present in a database. Unlike DTDs
or XSDs, the configuration file can also define semantic relationships between
annotation levels which fall outside the scope of traditional, syntactically oriented
schema definitions and validation. This global definition of an annotation structure
has numerous benefits for the data integrity of the database, as the EMU-SDMS
can perform consistency checks and prevent malformed as well as semantically
void annotation structures1. Because of these formal definitions, the EMU system
generally distinguishes between the actual representations of a structural element
which are contained within the database and their formal definitions. An example
of an actual representation, that is a subset of the actual annotation, would be
a level contained in an annotation file that contains SEGMENTs that annotate a
recording. The corresponding formal definition would be a level definition entry in
the database’s configuration file, which specifies and validates the level’s existence
within the database.

As mentioned above, the actual annotation files of an emuDB contain the anno-
tation items as well as their hierarchical linking information. To be able to check
the validity of a connection between two items, the user specifies which links are
permitted for the entire database just as for the level definitions. The permitted
hierarchical relationships in an emuDB are expressed through link definitions be-
tween level definitions as part of the database configuration. There are three types
of valid hierarchical relationships between levels: ONE TO MANY, MANY TO MANY and
ONE TO ONE. These link definitions specify the permitted relationships between in-
stances of annotation items of one level and those of another. The structure of
the hierarchy that corresponds to the annotation depicted in Figure 3.1C can be
seen in Figure 3.2A. The structure in Figure 3.2A is a typical example of an EMU
hierarchy where only the Phonetic level of type SEGMENT contains time information
and the others are timeless as they are of the type ITEM. The top three levels, Text,
Syllable and Phoneme, have a ONE TO MANY relationship specifying that a single
item in the parent level may have a dominance relationship with multiple items in
the child level. In this example, the relationship between Phoneme and Phonetic is
MANY TO MANY: this type of relationship can be used to represent schwa elision and

1Although the consistency is ensured by the EMU-SDMS while annotation editing operations
are performed, currently no actual consistency checks are performed while loading or saving an
annotation. However, we plan to add this functionality in future releases.

3.1 Per database annotation structure definition 42

subsequent sonorant syllabification, as when the final syllable of sudden is d@n at
the Phoneme level but dn at the Phonetic level. Figure 3.2B displays an example of
a more complex, intersecting hierarchical structure definition where Abercrombian
feet (Abercombie, 1967) are incorporated into the Tones and Break Indices (ToBI)
(Beckman and Ayers, 1997) prosodic hierarchy by allowing an intonational phrase
to be made up of one or more feet (for further details see Harrington, 2010, page
98).

A

Text (ITEM)

Syllable (ITEM)

Phoneme (ITEM)

Phonetic (SEGMENT)

B

Intonational (ITEM)

Intermediate (ITEM)

Word&Accent&Text (ITEM)Foot (ITEM)

Syllable (ITEM)

Phoneme (ITEM) Tone (EVENT)

Phonetic (SEGMENT)

ONE TO MANY

MANY TO MANY

ONE TO MANY

MANY TO MANY

Figure 3.2: A: a schematic representation of the hierarchical structure of an emuDB

that corresponds to the annotation depicted in 3.1C; B: example of a more com-
plex, intersecting hierarchical structure.

Based on our experience, the explicit definition of the annotation structure
for every database which was also integral to the legacy system addresses the
excessively expressive nature of annotational modeling systems mentioned in Bird
and Liberman (2001). Although, in theory, infinitely large hierarchies can be
defined for a database, users of the legacy system typically chose to use only

3.2 Parallel labels and multiple attributes 43

moderately complex annotation structures. The largest hierarchy definitions we
have encountered spanned up to fifteen levels while the average amount of levels
was between three and five. This self-restriction is largely due to the primary
focus of speech and spoken language domain-specific annotations, as the number
of annotation levels between chunks of speech above the word level (intonational
phrases/sentences/turns/etc.) and the lower levels (phonetic segmentation/EMA
gestural landmark annotation/tone annotation/etc.) is a finite set.

3.2 Parallel labels and multiple attributes

The legacy EMU system made a distinction between linearly and non-linearly
linked inter-level links. Linearly linked levels were used to describe, enrich or
supplement another level. For example, a level called Category might have been
included as a separate level from Word for marking words’ grammatical category
memberships (thus each word might be marked as one of adjective, noun, verb,
etc.), or information about whether or not a syllable is stressed might be included
on a separate Stress tier (description taken from Harrington, 2010, page 77). Us-
ing ONE TO ONE link definitions to define a relationship between two levels, it is
still possible to model linearly linked levels in the new EMU-SDMS. However,
an additional, cleaner concept that reduces the extra level overhead has been im-
plemented that allows every annotation item to carry multiple attributes (i.e.,
labels). Further, using this construct reduces the number of levels, items and
links and therefore the hierarchical complexity of an annotation. The generic term
“attribute” (vs. “label”) was chosen to have the flexibility of adding attributes
that are not of the type STRING (i.e., labels) to the annotation modeling capa-
bilities of the EMU-SDMS in future versions. Figure 3.3 shows the annotation
structure modeling difference between linearly linked levels (see Figure 3.3A) and
an annotation structure using multiple attributes (see Figure 3.3B). Figure 3.3A
shows three separate levels (Word, Accent and Text) that have a ONE TO ONE rela-
tionship. Each of their annotation items is linked to exactly one annotation item
in the child level (e.g., A1-A3). Figure 3.3B shows a single level that has three
attribute definitions (Word, Accent and Text) and each annotation item contains
three attributes (e.g., A1-A3).

It is worth noting that every level definition must have an attribute defini-
tion which matches its level name. This primary attribute definition must also
be present in every annotation item belonging to a level. As emuR’s database
interaction functions, such as add levelDefinition(), and the EMU-webApp au-
tomatically perform the necessary actions this should only be of interest to (semi-
)advanced users wishing to automatically generate the annot.json format.

3.2 Parallel labels and multiple attributes 44

A

Word (ITEM)

Accent (ITEM)

Text (ITEM)

A1

A2

A3

B1

B2

B3

C1

C2

C3

B

Word
&Accent
&Text

(ITEM)

A1
&A2
&A3

B1
&B2
&B3

C1
&C2
&C3

ONE TO ONE

Figure 3.3: Schematic representation of annotation structure modeling difference
between A: linearly linked levels and B: an annotation structure using multiple
attributes.

3.3 Metadata strategy using single bundle root nodes 45

3.3 Metadata strategy using single bundle root

nodes

As the legacy EMU system and the new EMU-SDMS do not have an explicit
method for storing metadata associated with bundles2, over the years an annota-
tion structure convention has been developed to combat this issue. The convention
is to use a generic top level (often simply called bundle) that contains a single an-
notation item in every annotation file. Using the multiple attribute annotation
structure modeling capability of the EMU-SDMS, this single annotation item can
hold any meta data associated with the bundle. Additionally linking the item
to all the annotation items of its child level effectively makes it a parent to every
item of the hierarchy. This linking information can later be exploited to query only
bundles with matching meta data (see Chapter 5 for details). Figure 3.4 displays
a hierarchical annotation where the top level (bundle) contains information about
the speaker’s gender, the city of birth (COB) and age.

bundle
&gender
&COB
&age(ITEM):

msajc003
&F
&Munich
&23

Syllable(ITEM): ... W S ...

Phoneme(ITEM): V m V N s t

Phonetic(SEGMENT): V m V N s t h

Figure 3.4: Hierarchical annotation displaying single bundle root node metadata
strategy where the label of the primary attribute definition (bundle) is empty,
gender encodes the speaker’s gender, COB encodes the speakers city of birth and
age encodes the speaker’s age in the form of a string.

2Future versions of emuR may allow meta.json files containing meta information in the form
of key-value pairs to be placed in either the emuDB, the ses or the bndl directories.

3.4 Conclusion 46

3.4 Conclusion

The annotation structure modeling capabilities of the EMU-SDMS surpass those
of many other commonly used systems. They do so by not only allowing the
use of levels containing time information (levels of type SEGMENT and EVENT) but
also timeless levels (levels of type ITEM). Additionally, they allow users to define
hierarchical annotation structures by allowing explicit links to be implemented
from one level’s items to those of another. Although it is not obligatory to use them
in the EMU-SDMS, we feel the usage of hierarchical annotations allow for complex
rich data modeling and are often cleaner representations of the annotations at
hand.

Chapter 4

The emuDB Format*

Our baby!

This chapter describes the emuDB format, which is the new database format
of the EMU-SDMS, and shows how to create and interact with this format.
The emuDB format is meant as a simple, general purpose way of storing speech
databases that may contain complex, rich, hierarchical annotations as well as de-
rived and complementary speech data. These different components will be de-
scribed throughout this chapter, and examples will show how to generate and
manipulate them. On designing the new EMU system, considerable effort went
into designing an appropriate database format. We needed a format that was stan-
dardized, well structured, easy to maintain, easy to produce, easy to manipulate
and portable.

We decided on the JavaScript Object Notation (JSON) file format1 as our pri-
mary data source for several reasons. It is simple, standardized, widely-used and

1JSON schema files available here https://github.com/IPS-LMU/EMU-webApp/tree/

master/dist/schemaFiles

*Sections of this chapter where published in Winkelmann et al. (2017) and some examples
taken from the emuDB vignette of the emuR package.

https://github.com/IPS-LMU/EMU-webApp/tree/master/dist/schemaFiles
https://github.com/IPS-LMU/EMU-webApp/tree/master/dist/schemaFiles

48

text-based as well as machine and human readable. In addition, this portable
text format allows expert users to (semi-) automatically process and/or generate
annotations. Other tools such as the BAS Webservices (Kisler et al., 2012) and
SpeechRecorder (Draxler and Jänsch, 2004) have already taken advantage of be-
ing able to produce such annotations. Using database back-end options such as
relational or graph databases of either the SQL or NoSQL variety as the primary
data source for annotations would not directly permit other tools to produce an-
notations because intermediary exchange file formats would have to be defined to
permit this functionality with these back-ends. Our choice of the JSON format
was also guided by the decision to incorporate web technologies as part of the
EMU-SDMS for which the JSON format is the de facto standard (see Chapter 8).
Further, as the default encoding of the JSON format is UTF-8 the EMU-SDMS
fully supports the Unicode character set for any user-defined string within an
emuDB (e.g. level names and labels)2.

We chose to use the widely adopted Waveform Audio File Format (WAVE, or
more commonly known as WAV due to its filename extension) as our primary me-
dia/audio format. Although some components of the EMU-SDMS, notably the
wrassp package, can handle various other media/audio formats (see
?wrassp::AsspFileFormats for details) this is the only audio file format currently
supported by every component of the EMU-SDMS. Nevertheless, the wrassp pack-
age can be utilized to convert files from one of it’s other supported file formats to
the WAV format 3. Future releases of the EMU-SDMS might include the support
of other media/audio formats.

In contrast to other systems, including the legacy EMU system, we chose to
fully standardize the on-disk structure of speech databases with which the system
is capable of working. This provides a standardized and structured way of storing
speech databases while providing the necessary amount of freedom and separability
to accommodate multiple types of data. Further, this standardization enables
fast parsing and simplification of file-based error tracking and simplifies database
subset and merging operations as well as database portability. An overview of all
database interaction functions is given in Section 9.2.

2According to the JSON specification (see https://json.org/) the only characters that have
to be escaped within a JSON string are: ” (as this marks the start/end of a string), \(as this is
the escape character) or control-characters (\b = backspace, \f = form feed, \n = new line, \r =
carriage return, \t = tab). Unicode characters in their hexadecimal form using the \u followed
by for-hex-digits may also be used.

3However, if things like resampeling are required we suggest using other tools such as the
freely available Sound eXchange (SoX) command line tool (see http://sox.sourceforge.net/)
to perform these operation

https://json.org/
http://sox.sourceforge.net/

4.1 Database design 49

4.1 Database design

An emuDB consists of a set of files and directories that adhere to a certain struc-
ture and naming convention (see Figure 4.1). The database root directory must
include a single DBconfig.json file that contains the configuration options of the
database such as its level definitions, how these levels are linked in the database
hierarchy and how the data is to be displayed by the graphical user interface. A
detailed description of the DBconfig.json file is given in Appendix B.1.1. The
database root directory also contains arbitrarily named session directories (except
for the obligatory ses suffix). These session directories can be used to group the
recordings of a database in a logical manner. Sessions can be used, for example,
to group all recordings from speaker AAA into a session called AAA ses.

exampleDB emuDB/

exampleDB DBconfig.json
exampleDB emuDBcache.sqlite
0001 ses/
0002 ses/

bundle1 bndl/
bundle2 bndl/

bundle2.wav
bundle2 annot.json
bundle2.fms
bundle2.f0
. . .

bundle3 bndl/
. . .

0003 ses/
. . .

Figure 4.1: Schematic emuDB file and directory structure.

Each session directory can contain any number of bndl directories (e.g.,
rec1 bndl rec2 bndl ... rec9 bndl). All files belonging to a recording (i.e., all
files describing the same timeline) are stored in the same bundle directory. This
includes the actual recording (.wav) and can contain optional derived or sup-
plementary signal files in the SSFF file format (Cassidy, 2013) such as formants
(.fms) or the fundamental frequency (.f0), both of which can be calculated using
the wrassp package (see Chapter 7). Each bundle directory contains the anno-
tation file (annot.json) of that bundle (i.e., the annotations and the hierarchi-
cal linking information; see Appendix B.1.2 for a detailed description of the file
format). JSON schema files for all the JSON files types used have been devel-
oped to ensure the syntactic integrity of the database (see https://github.com/

IPS-LMU/EMU-webApp/tree/master/dist/schemaFiles). All files within a bun-

https://github.com/IPS-LMU/EMU-webApp/tree/master/dist/schemaFiles
https://github.com/IPS-LMU/EMU-webApp/tree/master/dist/schemaFiles

4.2 Creating an emuDB 50

dle that are associated with that bundle must have the same basename as the
bndl directory prefix. For example, the signal file in bundle rec1 bndl must

have the name rec1.wav to be recognized as belonging to the bundle. The op-
tional emuDBcache.sqlite file in the root directory (see Figure 4.1) contains the
relational cache representation of the annotations of the emuDB (see Chapter 10
for further details). All files in an emuDB directory that do not follow the above
naming conventions will simply be ignored by the database interaction functions
of the emuR package.

4.2 Creating an emuDB

The two main strategies for creating emuDBs are either to convert existing databases
or file collections to the new format or to create new databases from scratch where
only .wav audio files are present. Chapter 2 gave an example of how to create an
emuDB from an existing TextGrid file collection and other conversion routines are
covered in Section 9.1. In this chapter we will focus on creating an emuDB from
scratch with nothing more than a set of .wav audio files present.

4.2.1 Creating an emuDB from scratch

R Example 4.2.1 shows how an empty emuDB is created in the directory provided
by R’s tempdir() function. As can be seen by the output of the list.files()

function, create emuDB() creates a directory containing a DBconfig.json file
only.

R Example 4.2.1

load package

library(emuR, warn.conflicts = F)

create emuDB called "fromScratch"

create_emuDB(name = "fromScratch",

targetDir = tempdir(),

verbose = F)

generate path to the empty fromScratch created above

dbPath = file.path(tempdir(), "fromScratch_emuDB")

show content of empty fromScratch emuDB

list.files(dbPath)

4.2 Creating an emuDB 51

[1] "fromScratch_DBconfig.json"

4.2.2 Loading and editing an empty database

The initial step in manipulating and generally interacting with a database is to
load the database into the current R session. R Example 4.2.2 shows how to load
the fromScratch database and shows the empty configuration by displaying the
output of the summary() function.

R Example 4.2.2

load database

dbHandle = load_emuDB(dbPath, verbose = F)

show summary of dbHandle

summary(dbHandle)

Name: fromScratch

UUID: 6f2778d0-0116-405a-9d9c-a468c842f3aa

Directory: /private/var/folders/yk/8z9tn7kx6hbcg_9n4c1sld9800...

Session count: 0

Bundle count: 0

Annotation item count: 0

Label count: 0

Link count: 0

##

Database configuration:

##

SSFF track definitions:

NULL

##

Level definitions:

NULL

##

Link definitions:

NULL

show class vector of dbHandle

class(dbHandle)

[1] "emuDBhandle"

4.2 Creating an emuDB 52

As can be seen in R Example 4.2.2, the class of a loaded emuDB is emuDBhandle.
A emuDBhandle object is used to reference a loaded emuDB in the database inter-
action functions of the emuR package. In this chapter we will show how to use this
emuDBhandle object to perform database manipulation operations. Most of the
emuDB manipulation functions follow the following function prefix naming conven-
tion:

• add XXX add a new instance of XXX / set XXX set the current instance of
XXX,

• list XXX list the current instances of XXX / get XXX get the current instance
of XXX,

• remove XXX remove existing instances of XXX.

4.2.3 Level definitions

Unlike other systems, the EMU-SDMS requires the user to formally define the
annotation structure for the entire database. An essential structural element of
any emuDB are its levels. A level is a more general term for what is often referred
to as a tier. It is more general in the sense that people usually expect tiers to
contain time information. Levels can either contain time information if they are
of the type EVENT or of the type SEGMENT but are timeless if they are of the type
ITEM (see Chapter 3 for further details). It is also worth noting that an emuDB

distinguishes between the definition of an annotation structure element and the
actual annotations. The definition of an annotation structure element such as a
level definition is merely an entry in the DBconfig.json file which specifies that
this level is allowed to be present in the annot.json files. The levels that are
present in an annot.json file, on the other hand, have to adhere to the definitions
in the DBconfig.json.

As the fromScratch database (already loaded) does not contain any annotation
structural element definitions, R Example 4.2.3 shows how a new level definition
called Phonetic of type SEGMENT is added to the emuDB.

R Example 4.2.3

show no level definitions

are present

list_levelDefinitions(dbHandle)

NULL

4.2 Creating an emuDB 53

add level defintion

add_levelDefinition(dbHandle,

name = "Phonetic",

type = "SEGMENT")

show newly added level definition

list_levelDefinitions(dbHandle)

name type nrOfAttrDefs attrDefNames

1 Phonetic SEGMENT 1 Phonetic;

R Example 4.2.4 shows how a further level definition is added that will contain
the orthographic word transcriptions for the words uttered in our recordings. This
level will be of the type ITEM, meaning that elements contained within the level
are sequentially ordered but do not contain any time information.

R Example 4.2.4

add level definition

add_levelDefinition(dbHandle,

name = "Word",

type = "ITEM")

list newly added level definition

list_levelDefinitions(dbHandle)

name type nrOfAttrDefs attrDefNames

1 Phonetic SEGMENT 1 Phonetic;

2 Word ITEM 1 Word;

The function remove levelDefinition() can also be used to remove unwanted
level definitions. However, as we wish to further use the levels Phonetic and Word,
we will not make use of this function here.

Attribute definitions

Each level definition can contain multiple attributes, the most common, and cur-
rently only supported attribute being a label (of type STRING). Thus it is possible
to have multiple parallel labels (i.e., attribute definitions) in a single level. This
means that a single annotation item instance can contain multiple labels while
sharing other properties such as the start and duration information. This can be

4.2 Creating an emuDB 54

useful when modeling certain types of data. An example of this would be the
Phonetic level created above. It is often the case that databases contain both the
phonetic transcript using IPA UTF-8 symbols as well as a transcript using SAMPA
symbols. To avoid redundant time information, both of these annotations can be
stored on the same Phonetic level using multiple attribute definitions (i.e., parallel
labels). R Example 4.2.5 shows the current attribute definitions of the Phonetic
level.

R Example 4.2.5

list attribute definitions of 'Phonetic' level

list_attributeDefinitions(dbHandle,

levelName = "Phonetic")

name level type hasLabelGroups hasLegalLabels

1 Phonetic Phonetic STRING FALSE FALSE

Even though no attribute definition has been added to the Phonetic level, it
already contains an attribute definition that has the same name as its level. This
attribute definition represents the obligatory primary attribute of that level. As
every level must contain an attribute definition that has the same name as its level,
it is automatically added by the add levelDefinition() function. To follow the
above example, R Example 4.2.6 adds a further attribute definition to the Phonetic
level that contains the SAMPA versions of our annotations.

R Example 4.2.6

add

add_attributeDefinition(dbHandle,

levelName = "Phonetic",

name = "SAMPA")

NULL

list attribute definitions of 'Phonetic' level

list_attributeDefinitions(dbHandle,

levelName = "Phonetic")

name level type hasLabelGroups hasLegalLabels

1 Phonetic Phonetic STRING FALSE FALSE

2 SAMPA Phonetic STRING FALSE FALSE

4.2 Creating an emuDB 55

Legal labels

As can be inferred from the columns hasLabelGroups and hasLegalLabels of the
output of the above list attributeDefinitions() function, attribute definitions
can also contain two further optional fields. The legalLabels field contains an
array of strings that specifies the labels that are legal (i.e., allowed or valid) for
the given attribute definition. As the EMU-webApp does not allow the annotator
to enter any labels that are not specified in this array, this is a simple way of
assuring that a level has a consistent label set. R Example 4.2.7 shows how the
set legalLabels and get legalLabels functions can be used to specify a legal
label set for the primary Word attribute definition of the Word level.

R Example 4.2.7

define allowed word labels

wordLabels = c("amongst", "any", "are",

"always", "and", "attracts")

show empty legal labels

for "Word" attribute definition

get_legalLabels(dbHandle,

levelName = "Word",

attributeDefinitionName = "Word")

[1] NA

set legal labels values

for "Word" attribute definition

set_legalLabels(dbHandle,

levelName = "Word",

attributeDefinitionName = "Word",

legalLabels = wordLabels)

show recently added legal labels

for "Word" attribute definition

get_legalLabels(dbHandle,

levelName = "Word",

attributeDefinitionName = "Word")

[1] "amongst" "any" "are" "always" "and"

[6] "attracts"

4.2 Creating an emuDB 56

Label groups

A further optional field is the labelGroups field. It contains specifications of
groups of labels that can be referenced by a name given to the group while querying
the emuDB. R Example 4.2.8 shows how the add attrDefLabelGroup() function
is used to add two label groups to the Phonetic attribute definition. One of the
groups is used to reference a subset of longVowels and the other to reference a
subset of shortVowels on the Phonetic level.

R Example 4.2.8

add long vowels label group

add_attrDefLabelGroup(dbHandle,

levelName = "Phonetic",

attributeDefinitionName = "Phonetic",

labelGroupName = "longVowels",

labelGroupValues = c("i:", "u:"))

add short vowels label group

add_attrDefLabelGroup(dbHandle,

levelName = "Phonetic",

attributeDefinitionName = "Phonetic",

labelGroupName = "shortVowels",

labelGroupValues = c("i", "u", "@"))

list current label groups

list_attrDefLabelGroups(dbHandle,

levelName = "Phonetic",

attributeDefinitionName = "Phonetic")

name values

1 longVowels i:; u:

2 shortVowels i; u; @

query all short vowels

Note the result of this query

is empty as no annotations are present

in the 'fromScratch' emuDB

query(dbHandle, "Phonetic == shortVowels")

segment list from database: fromScratch

4.2 Creating an emuDB 57

query was: Phonetic == shortVowels...

[1] labels start end session bundle level type

<0 rows> (or 0-length row.names)

For users who are familiar with or transitioning from the legacy EMU system, it
is worth noting that the label groups correspond to the unfavorably named Legal

Labels entries of the GTemplate Editor (i.e., legal entries in the .tpl file) of the
legacy system. In the new system the legalLabels entries specify the legal or
allowed label values of attribute definitions while the labelGroups specify groups
of labels that can be referenced by the names given to the groups while performing
queries.

A new feature of the EMU-SDMS is the possibility of defining label groups for
the entire emuDB as opposed to a single attribute definition (see ?add labelGroups

for further details). This avoids the redundant definition of label groups that
should span multiple attribute definitions (e.g., a longVowels subset that is to be
queried on a level called Phonetic 1 as well as a level called Phonetic 2).

4.2.4 Link definitions

An essential and very powerful conceptual and structural element of any emuDB

is its hierarchy. Using hierarchical structures is highly recommended but not a
must. Hierarchical annotations allow for complex, rich data modeling and are
often cleaner representations of the annotations at hand. As Chapter 3 contains
in-depth explanations of the annotation modeling capabilities of the EMU-SDMS
and Chapter 5 shows how these structures can be queried using emuR’s query me-
chanics, this chapter will omit an explanation of hierarchical annotation structures.
R Example 4.2.9 shows how a ONE TO MANY relationship between the Word and
Phonetic in the form of a link definition is added to an emuDB.

R Example 4.2.9

show that currently no link definitions

are present

list_linkDefinitions(dbHandle)

NULL

add new "ONE_TO_MANY" link definition

between "Word" and "Phonetic" levels

add_linkDefinition(dbHandle,

type = "ONE_TO_MANY",

4.2 Creating an emuDB 58

superlevelName = "Word",

sublevelName = "Phonetic")

show newly added link definition

list_linkDefinitions(dbHandle)

type superlevelName sublevelName

1 ONE_TO_MANY Word Phonetic

A schematic of the simple hierarchical structure of the fromScratch created by
R Example 4.2.9 is displayed in Figure 4.2.

Word (ITEM)

Phonetic (SEGMENT)

MANY TO MANY

Figure 4.2: A schematic representation of the simple hierarchical structure of the
fromScratch created by the add linkDefinition() function call in R Example
4.2.9.

4.2.5 File handling

The previous sections of this chapter defined the simple structure of the from-
Scratch emuDB. An essential element that is still missing from the emuDB is the ac-
tual audio speech data4. R Example 4.2.10 shows how the import mediaFiles()

function can be used to import audio files, referred to as media files in the context
of an emuDB, into the fromScratch emuDB.

R Example 4.2.10

get the path to directory containing .wav files

wavDir = file.path(tempdir(), "emuR_demoData", "txt_collection")

Import media files into emuDB session called fromWavFiles.

Note that the txt_collection directory also contains .txt files.

These are simply ignored by the import_mediaFiles() function.

import_mediaFiles(dbHandle,

4As the EMU-webApp currently only supports mono 16 Bit .wav audio files, we currently
recommend using this format only.

4.2 Creating an emuDB 59

dir = wavDir,

targetSessionName = "fromWavFiles",

verbose = F)

list session

list_sessions(dbHandle)

name

1 fromWavFiles

list bundles

list_bundles(dbHandle)

session name

1 fromWavFiles msajc003

2 fromWavFiles msajc010

3 fromWavFiles msajc012

4 fromWavFiles msajc015

5 fromWavFiles msajc022

6 fromWavFiles msajc023

7 fromWavFiles msajc057

show first two files in the emuDB

library(tibble) # convert to tibble only to prettify output

as_tibble(head(list_files(dbHandle), n = 2))

A tibble: 2 x 4

session bundle file absolute_file_path

* <chr> <chr> <chr> <chr>

1 fromWavFiles msajc003 msajc0~ /private/var/folders/yk/8z~

2 fromWavFiles msajc003 msajc0~ /private/var/folders/yk/8z~

The import mediaFiles() call in R Example 4.2.10 added a new session called
fromWavFiles to the fromScratch emuDB containing a new bundle for each of the
imported media files. The annotations of every bundle, despite containing empty
levels, adhere to the structure specified above. This means that every annot.json

file created contains an empty Word and Phonetic level array and the links array
is also empty.

The emuR package also provides a mechanism for adding files to preexisting
bundle directories, as this can be quite tedious to perform manually due to the
nested directory structure of an emuDB. R Example 4.2.11 shows how preexisting

4.2 Creating an emuDB 60

.zcr files that are produced by wrassp’s zcrana() function can be added to the
preexisting session and bundle structure. As the directory referenced by wavDir

does not contain any .zcr files, R Example 4.2.11 first creates them and then adds
them to the emuDB (see Chapter 7 for further details).

R Example 4.2.11

load wrassp package

library(wrassp)

list all wav files in wavDir

wavFilePaths = list.files(wavDir,

pattern = ".*.wav",

full.names = TRUE)

calculate zero-crossing-rate files

using zcrana function of wrassp package

zcrana(listOfFiles = wavFilePaths,

verbose = FALSE)

[1] 7

add zcr files to emuDB

add_files(dbHandle,

dir = wavDir,

fileExtension = "zcr",

targetSessionName = "fromWavFiles")

show first three files in emuDB (convert to tibble only

to prettify output)

as_tibble(head(list_files(dbHandle), n = 3))

A tibble: 3 x 4

session bundle file absolute_file_path

* <chr> <chr> <chr> <chr>

1 fromWavFiles msajc003 msajc0~ /private/var/folders/yk/8z~

2 fromWavFiles msajc003 msajc0~ /private/var/folders/yk/8z~

3 fromWavFiles msajc003 msajc0~ /private/var/folders/yk/8z~

4.2 Creating an emuDB 61

4.2.6 SSFF track definitions

A further important structural element of any emuDB is use of the so-called SSFF
tracks, which are often simply referred to as tracks. These SSFF tracks reference
data that is stored in the Simple Signal File Format (SSFF) (see Appendix B.1.3
for a detailed description of the file format) within the bndl directories. The two
main types of data are:

• complementary data that was acquired during the recording such as by EMA
or electropalattography (EPG); or

• derived data, that is data that was calculated from the original audio signal
such as formant values and their bandwidths or the short-term Root Mean
Square amplitude of the signal.

As Section 7.5 covers how the SSFF file output of a wrassp function can be
added to an emuDB, an explanation will be omitted here. R Example 4.2.12 shows
how the .zcr files added in R Example 4.2.11 can be added as an SSFF track
definition (see Chapter 7 for further details).

R Example 4.2.12

show that no SSFF track definitions

are present

list_ssffTrackDefinitions(dbHandle)

NULL

add SSFF track definition to emuDB

add_ssffTrackDefinition(dbHandle,

name = "zeroCrossing",

columnName = "zcr",

fileExtension = "zcr")

show newly added SSFF track definition

list_ssffTrackDefinitions(dbHandle)

name columnName fileExtension

1 zeroCrossing zcr zcr

4.3 Conclusion 62

4.2.7 Configuring the EMU-webApp and annotating the emuDB

As previously mentioned, the current fromScratch emuDB contains only empty lev-
els. In order to start annotating the database, the EMU-webApp has to be configured
to display the desired information. Although the configuration of the EMU-webApp

is stored in the DBconfig.json file and is therefore a part of the emuDB format,
here we will omit an explanation of the extensive possibilities of configuring the
web application (see Chapter 8 for an in-depth explanation). R Example 4.2.13
shows how the Phonetic level is added to the level canvases order array of the
default perspective.

R Example 4.2.13

show empty level canvases order

get_levelCanvasesOrder(dbHandle, perspectiveName = "default")

NULL

set level canvases order to display "Phonetic" level

set_levelCanvasesOrder(dbHandle,

perspectiveName = "default",

order = c("Phonetic"))

show newly added level canvases order

get_levelCanvasesOrder(dbHandle, perspectiveName = "default")

[1] "Phonetic"

As a final step before beginning the annotation process, the fromScratch emuDB

has to be served to the EMU-webApp for annotation and visualization purposes. R
Example 4.2.14 shows how this can be achieved using the serve() function.

R Example 4.2.14

serve "fromScratch" emuDB to the EMU-webApp

serve(dbHandle)

4.3 Conclusion

This chapter introduced the elements that comprise the new emuDB format and
provided a practical overview of the essential database interaction functions pro-
vided by the emuR package. We feel the emuDB format provides a general purpose,

4.3 Conclusion 63

flexible approach to storing speech databases with the added benefit of being able
to directly manipulate and analyse these databases using the tools provided by
the EMU-SDMS.

Chapter 5

The query system

What? Who?
Where?
When? Why?

This chapter describes the newly implemented query system of the emuR pack-
age. When developing the new emuR package it was essential that it had a query
mechanism allowing users to query a database’s annotations in a simple manner.
The EMU Query Language (EQL) of the EMU-SDMS arose out of years of devel-
oping and improving upon the query language of the legacy system (e.g., Cassidy
and Harrington, 2001; Harrington, 2010; John, 2012). As a result, today we have
an expressive, powerful, yet simple to learn and domain-specific query language.
The EQL defines a user interface by allowing the user to formulate a formal lan-
guage expression in the form of a query string. The evaluation of a query string
results in a set of annotation items or, alternatively, a sequence of items of a single
annotation level in the emuDB from which time information, if applicable (see Sec-
tion 5.2.6), has been deduced from the time-bearing sub-level. An example of this
is a simple query that extracts all strong syllables (i.e., syllable annotation items
containing the label S on the Syllable level) from a set of hierarchical annota-
tions (see Figure 5.1 for an example of a hierarchical annotation). The respective
EQL query string "Syllable == S" results in a set of segments containing the

65

annotation label S. Due to the temporal inclusion constraint of the domination
relationship, the start and end times of the queried segments are derived from the
respective items of the Phonetic level (i.e., the m and H nodes in Figure 5.1),
as this is the time-bearing sub-level. The EQL described here allows users to
query the complex hierarchical annotation structures in their entirety as they are
described in Chapter 3.

Text(ITEM): amongst

Syllable(ITEM): W S

Phoneme(ITEM): V m V N s t

Phonetic(SEGMENT): V m V N s t h

Figure 5.1: Simple partial hierarchy of an annotation of the word amongst in the
msajc003 bundle in the ae demo emuDB.

R Example 5.0.1 shows how to create the demo data that is provided by the
emuR package followed by loading an example emuDB called ae into the current R
session. This database will be used in all the examples throughout this chapter.

R Example 5.0.1

load package

library(emuR)

create demo data in directory

provided by tempdir()

create_emuRdemoData(dir = tempdir())

create path to demo database

path2ae = file.path(tempdir(), "emuR_demoData", "ae_emuDB")

load database

ae = load_emuDB(path2ae, verbose = F)

5.1 emuRsegs: The resulting object of a query 66

5.1 emuRsegs: The resulting object of a query

In emuR the result of a query or requery (see Section 5.2.7) is a pre-specified
object which is a superclass of the common data.frame. R Example 5.1.1 shows
the result of a slightly expanded version of the above query ("Syllable == S"),
which additionally uses the dominates operator (i.e., the ^ operator; for further
information see Section 5.2.2) to reduce the queried annotations to the partial
hierarchy depicted in Figure 5.1 in the ae demo emuDB. In this example, the classes
of the resulting object including its printed output are displayed. The class vector
of a resulting emuRsegs object also contains the legacy EMU system’s emusegs

class, which indicates that this object is fully backwards compatible with the
legacy class and the methods available for it (see Harrington, 2010, for details).
The printed output provides information about which database was queried and
what the query was as well as information about the labels, start and end times (in
milliseconds), session, bundle, level and type information. The call to colnames()

shows that the resulting object has additional columns, which are ignored by the
print() function. This somewhat hidden information is used to store information
about what the exact items or sequence of items were retrieved from the emuDB.
This information is needed to know which items to start from in a requery (see
Section 5.2.7) and is also the reason why an emuRsegs object should be viewed
as a reference of sequences of annotation items that belong to a single level in all
annotation files of an emuDB.

R Example 5.1.1

query database

sl = query(ae, "[Syllable == S ^ Text == amongst]")

show class vector

class(sl)

[1] "emuRsegs" "emusegs" "data.frame"

show sl object

sl

segment list from database: ae

query was: [Syllable == S ^ Text == amongst]...

labels start end session bundle level type

1 S 256.925 674.175 0000 msajc003 Syllable ITEM

show all (incl. hidden) column names

colnames(sl)

5.2 EQL: The EMU Query Language version 2 67

[1] "labels" "start"

[3] "end" "utts"

[5] "db_uuid" "session"

[7] "bundle" "start_item_id"

[9] "end_item_id" "level"

[11] "start_item_seq_idx" "end_item_seq_idx"

[13] "type" "sample_start"

[15] "sample_end" "sample_rate"

5.2 EQL: The EMU Query Language version 2

The EQL user interface was retained from the legacy system because it was suf-
ficiently flexible and expressive enough to meet the query needs in most types of
speech science research. The EQL parser implemented in emuR is based on the
Extended Backus-Naur Form (EBNF) (Garshol, 2003) formal language definition
of John (2012), which defines the symbols and the relationship of those symbols to
each other on which this language is built (see adapted version of entire EBNF in
Appendix D). Here we will describe the various terms and components that com-
prise the slightly adapted version 2 of the EQL. It is worth noting that the new
query mechanism uses a relational back-end to handle the various query operations
(see Chapter 10 for details). This means that expert users, who are proficient in
Structured Query Language (SQL) may also query this relational back-end di-
rectly. However, we feel the EQL provides a simple abstraction layer which is
sufficient for most speech and spoken language research.

5.2.1 Simple queries

The most basic form of an EQL query is a simple equality, inequality, matching or
non-matching query, two of which are displayed in R Example 5.2.1. The syntax of
a simple query term is [L OPERATOR A], where L specifies a level (or alternatively
the name of a parallel attribute definition); OPERATOR is one of == (equality), !=
(inequality), =~ (matching) or !~ (non-matching); and A is an expression specifying
the labels of the annotation items of L 1. The second query in R Example 5.2.1
queries an event level. The result of querying an event level contains the same

1The examples and syntax descriptions used in this chapter have been adapted from examples
by Cassidy and Harrington (2001) and Harrington and Cassidy (2002) and were largely extracted
from the EQL vignette of the emuR package. All of the examples were adapted to work with the
supplied ae emuDB.

5.2 EQL: The EMU Query Language version 2 68

information as that of a segment level query except that the derived end times
have the value zero.

R Example 5.2.1

query all annotation items containing

the label "m" on the "Phonetic" level

sl = query(ae, "Phonetic == m")

query all items NOT containing the

label "H*" on the "Tone" level

sl = query(ae, "Tone != H*")

show first entry of sl

head(sl, n = 1)

event list from database: ae

query was: Tone != H*...

labels start end session bundle level type

1 L- 1107 0 0000 msajc003 Tone EVENT

R Example 5.2.1 queries two levels that contain time information: a segment
level and an event level. As described in Chapter 3, annotations in the EMU-SDMS
may also contain levels that do not contain time information. R Example 5.2.2
shows a query that queries annotation items on a level that does not contain time
information (the Syllable level) to show that the result contains deduced time
information from the time-bearing sub-level.

R Example 5.2.2

query all annotation items containing

the label S on the Syllable level

sl = query(ae, "Syllable == S")

show first entry of sl

head(sl, n = 1)

segment list from database: ae

query was: Syllable == S...

labels start end session bundle level type

1 S 256.925 674.175 0000 msajc003 Syllable ITEM

5.2 EQL: The EMU Query Language version 2 69

Queries using regular expressions

The slightly expanded version 2 of the EQL, which comes with the emuR pack-
age, introduces regular expression operators (=~ and !~). These allow users to
formulate regular expressions for more expressive and precise pattern matching
of annotations. A minimal set of examples displaying the new regular expression
operators is shown in Table 5.1.

Query Function

"Phonetic =~ ’[AIOUEV]’" A disjunction of annotations using a
RegEx character class

"Word =~ a.*" All words beginning with a
"Word !~ .*st" All words not ending in st
"[Phonetic == n ^ #Syllable =~ .*]" All syllables that dominate an n segment

of the Phonetic level

Table 5.1: EQL V2: examples of simple and complex query strings using RegEx
operators including their function descriptions.

5.2.2 Combining simple queries

The EQL contains three operators that can be used to combine the simple query
terms described above as well as position queries which we will describe below.
These three operators are the sequence operator, ->; the conjunction operator,
&; and the domination operator, ^, which is used to perform hierarchical queries.
These three types of queries are described below. To start with, we describe the two
types of queries that query more complex annotation structures on the same level
(sequence and conjunction queries). This is followed by a description of domination
queries that query hierarchically linked annotation structures, sometimes spanning
multiple annotation levels.

Sequence queries

The syntax of a query string using the -> sequence operator is [L == A -> L ==

B] where annotation item A on level L precedes item B on level L. For a sequence
query to work, both arguments must be on the same level. Alternatively parallel
attribute definitions of the same level may also be chosen (see Chapter 3 for further
details). An example of a query string using the sequence operator is displayed in
R Example 5.2.3. All rows in the resulting segment list have the start time of @,
the end time of n and their labels are @->n, where the -> substring denotes the
sequence.

5.2 EQL: The EMU Query Language version 2 70

R Example 5.2.3

query all sequences of items on the "Phonetic" level

in which an item containing the label "@" is followed by

an item containing the label "n"

sl = query(ae, "[Phonetic == @ -> Phonetic == n]")

show first entry of sl

head(sl, n = 1)

segment list from database: ae

query was: [Phonetic == @ -> Phonetic == n]...

labels start end session bundle level

1 @->n 1715.425 1791.425 0000 msajc003 Phonetic

type

1 SEGMENT

Result modifier

Because users are often interested in just one element of a compound query such
as sequence queries (e.g., the @s in a @->n sequences), the EQL offers a so-called
result modifier symbol, #. This symbol may be placed in front of any simple query
component of a multi component query as depicted in R Example 5.2.4. Placing
the hashtag in front of either the left or the right simple query term will result
in segment lists that contains only the annotation items of the simple query term
that have the hashtag in front of it. Only one result modifier may be used per
query.

R Example 5.2.4

query the "@"s in "@->n" sequences

sl = query(ae, "[#Phonetic == @ -> Phonetic == n]")

show first entry of sl

head(sl, n = 1)

segment list from database: ae

query was: [#Phonetic == @ -> Phonetic == n]...

labels start end session bundle level

1 @ 1715.425 1741.425 0000 msajc003 Phonetic

type

5.2 EQL: The EMU Query Language version 2 71

1 SEGMENT

query the "n"s in a "@->n" sequences

sl = query(ae, "[Phonetic == @ -> #Phonetic == n]")

show first entry of sl

head(sl, n = 1)

segment list from database: ae

query was: [Phonetic == @ -> #Phonetic == n]...

labels start end session bundle level

1 n 1741.425 1791.425 0000 msajc003 Phonetic

type

1 SEGMENT

Conjunction queries

The syntax of a query string using the conjunction operator can schematically
be written as: [L a1 == A & L a2 == B & L a3 == C & L a4 == D & ... &

L an == N], where annotation items on level L have the label A and also have
the parallel labels B, C, D, ..., N (see Chapter 3 for more information about parallel
labels). By analogy with the sequence operator, all simple query statements must
refer to the same level (i.e., only parallel attributes definitions of the same level
indicated by the a1 - an may to be chosen). Hence, the conjunction operator
is used to combine query conditions on the same level. Using the conjunction
operator is useful for two reasons:

• It combines different attributes of the same level: [Text == always & Accent

== S] where Text and Accent are additional attributes of level Word ; and

• It combines a simple query with a function query (see Position Queries Sec-
tion 5.2.3): [Phonetic == l & Start(Word, Phonetic) == 1].

An example of a query string using the conjunction operator is displayed in R
Example 5.2.5.

R Example 5.2.5

query all words with the orthographic transcription "always"

that also have a strong word accent ("S")

query(ae, "[Text == always & Accent == S]")

5.2 EQL: The EMU Query Language version 2 72

segment list from database: ae

query was: [Text == always & Accent == S]...

labels start end session bundle level type

1 always 775.475 1280.175 0000 msajc022 Text ITEM

R Example 5.2.5 does not make use of the result modifier symbol. However,
only the annotation items of the left simple query term (Text == always) are
returned. This behavior is true for all EQL operators that combine simple query
terms except for the sequence operator. As it is more explicit to use the result
modifier to express the desired result, we recommend using the result modifier
where possible. The more explicit variant of the above query which yields the
same result is "[#Text == always & Word == C]".

Domination/hierarchical queries

Compared to sequence and conjunction queries, a domination query using the op-
erator ^ is not bound to a single level. Instead, it allows users to query annotation
items that are directly or indirectly linked over one or more levels. Queries using
the domination operator are often referred to as hierarchical queries as they pro-
vide the ability to query the hierarchical annotations in a vertical or inter-level
manner. Figure 5.2 shows the same partial hierarchy as Figure 5.1 but highlights
the annotational items that are dominated by the strong syllable (S) of the Syllable
level. Such linked hierarchical sub-structures can be queried using hierarchical/-
domination queries.

Text(ITEM): amongst

Syllable(ITEM): W S

Phoneme(ITEM): V m V N s t

Phonetic(SEGMENT): V m V N s t h

Figure 5.2: Partial hierarchy depicting all annotation items that are dominated
by the strong syllable (S) of the Syllable level (inside dashed box). Items marked
green belong to the Phoneme level, items marked orange belong to the Phonetic
level and the purple dashed box indicates the set of items that are dominated by
S.

A schematic representation of a simple domination query string that retrieves
all annotation items A of level L1 that are dominated by items B in level L2 (i.e.,

5.2 EQL: The EMU Query Language version 2 73

items that are directly or indirectly linked) is [L1 == A ^ L2 == B]. Although
the domination relationship is directed the domination operator is not. This means
that either items in L1 dominate items in L2 or items in L2 dominate items in L1.
Note that link definitions that specify the validity of the domination have to be
present in the emuDB configuration for this to work (see Chapter 4 for details). An
example of a query string using the domination operator is displayed in R Example
5.2.6.

R Example 5.2.6

query all "p" phoneme items that belong

to / are dominated by a strong syllable ("S")

sl = query(ae, "[Phoneme == p ^ Syllable == S]")

show first entry of sl

head(sl, n = 1)

segment list from database: ae

query was: [Phoneme == p ^ Syllable == S]...

labels start end session bundle level type

1 p 558.575 639.575 0000 msajc015 Phoneme ITEM

As with the conjunction query, if no result modifier is present, a dominates
query returns the annotation items of the left simple query term. Hence, the more
explicit variant of the above query is "[#Phoneme == p ^ Syllable == S]".

5.2.3 Position queries

The EQL has three function terms that specify where in a domination relationship
a child level annotation item is allowed to occur. The three function terms are
Start(), End() and Medial(). A schematic representation of a query string
representing a simple usage of the Start(), End() and Medial() function would
be: POSFCT(L1, L2) == TRUE. In this representation POSFCT is a placeholder for
one of the three functions, at which level L1 must dominate level L2. Where L1

does indeed dominate L2, the corresponding item from level L2 is returned. If the
expression is set to FALSE (i.e., POSFCT(L1, L2) == FALSE), all the items that do
not match the condition of L2 are returned. An illustration of what is returned
by each of the position functions depending on if they are set to TRUE or FALSE

is depicted in Figure 5.3, while R Example 5.2.7 shows an example query using a
position query term.

5.2 EQL: The EMU Query Language version 2 74

A

Syllable(ITEM): S

Phoneme(ITEM): m V N s t

"[Start(Syllable, Phoneme) == TRUE]"

"[Medial(Syllable, Phoneme) == TRUE]"

"[End(Syllable, Phoneme) == TRUE]"

B

Syllable(ITEM): S

Phoneme(ITEM): m V N s t

"[Medial(Syllable, Phoneme) == FALSE]"

"[End(Syllable, Phoneme) == FALSE]"

"[Start(Syllable, Phoneme) == FALSE]"

Figure 5.3: Illustration of what is returned by the Start(), Medial() and End()

functions depending if they are set to A: TRUE (green) or B: FALSE (orange).

5.2 EQL: The EMU Query Language version 2 75

R Example 5.2.7

query all phoneme items that occur

at the start of a syllable

sl = query(ae, "[Start(Syllable, Phoneme) == TRUE]")

show first entry of sl

head(sl, n = 1)

segment list from database: ae

query was: [Start(Syllable, Phoneme) == TRUE]...

labels start end session bundle level type

1 V 187.425 256.925 0000 msajc003 Phoneme ITEM

5.2.4 Count queries

A further query component of the EQL are so-called count queries. They allow the
user to specify how many child nodes a parent annotation item is allowed to have.
Figure 5.4 displays two syllables, one containing one phoneme and one phonetic
annotation item, the other containing five phoneme and six phonetic items. Using
EQL’s Num() function it is possible to specify which of the two syllables should be
retrieved, depending on the number of phonemic or phonetic elements to which
it is directly or indirectly linked. R Example 5.2.8 shows a query that queries all
syllables that contain five phonemes.

Syllable(ITEM): W S

Phoneme(ITEM): V m V N s t

Phonetic(SEGMENT): V m V N s t h

• Syllable containing one Phoneme and Phonetic item
• Syllable containing five Phoneme and six Phonetic items

Figure 5.4: Partial hierarchy depicting a Syllable containing one Phoneme and
Phonetic item (green) and a Syllable containing five Phoneme and six Phonetic
items (orange).

A schematic representation of a query string utilizing the count mechanism
would be [Num(L1, L2) == N], where L1 contains N annotation items in L2. For

5.2 EQL: The EMU Query Language version 2 76

this type of query to work L1 has to dominate L2 (i.e., be a parent level to L2). As
the query matches a number (N), it is also possible to use the operators > (more
than), < (less than) and != (not equal to). The resulting segment list contains
items of L1.

R Example 5.2.8

retrieve all syllables that contain five phonemes

query(ae, "[Num(Syllable, Phoneme) == 5]")

segment list from database: ae

query was: [Num(Syllable, Phoneme) == 5]...

labels start end session bundle level type

1 S 256.925 674.175 0000 msajc003 Syllable ITEM

2 S 739.925 1289.425 0000 msajc003 Syllable ITEM

3 W 2228.475 2753.975 0000 msajc010 Syllable ITEM

4 S 1890.275 2469.525 0000 msajc022 Syllable ITEM

5 S 1964.425 2554.175 0000 msajc023 Syllable ITEM

5.2.5 More complex queries

By using the correct bracketing, all of the above query components can be com-
bined to formulate more complex queries that can be used to answer questions such
as: Which occurrences of the word “his” follow three-syllable words which contain
a schwa (@) in the first syllable? Such multi-part questions can usually be broken
down into several sub-queries. These sub-queries can then be recombined to for-
mulate the complex query. The steps to answering the above multi-part question
are:

1. Which occurrences of the word “his” ...: [Text == his]

2. ... three-syllable words ...: [Num(Text, Syllable) == 3]

3. ... contain a schwa (@) in the first syllable ...: [Phoneme == @ ^ Start(Word,

Syllable) == 1]

4. All three can be combined by saying 2 dominates 3 ([2 ^ 3]) and these are
followed by 1 ([2 ^3] -> 1])

The combine query is depicted in R Example 5.2.9. This complex query demon-
strates the expressive power of the query mechanism that the EMU-SDMS pro-
vides.

5.2 EQL: The EMU Query Language version 2 77

R Example 5.2.9

perform complex query

Note that the use of paste0() is optional, as

it is only used for formatting purposes

query(ae, paste0("[[[Num(Text, Syllable) == 3] ",

"^ [Phoneme == @ ^ Start(Word, Syllable) == 1]] ",

"-> #Text = his]"))

segment list from database: ae

query was: [[[Num(Text, Syllable) == 3] ^ [Phoneme == @ ^ Sta...

labels start end session bundle level type

1 his 2693.675 2780.725 0000 msajc015 Text ITEM

As mastering these complex compound queries can require some practice, sev-
eral simple as well as more complex examples that combine the various EQL com-
ponents described above are available in Appendix E. These examples provide
practical examples to help users find queries suited to their needs.

5.2.6 Deducing time

The default behavior of the legacy EMU system was to automatically deduce time
information for queries of levels that do not contain time information. This was
achieved by searching for the time-bearing sub-level and calculating the start and
end times from the left-most and right-most annotation items which where directly
or indirectly linked to the retrieved parent item. This upward purculation of time
information is also the default behavior of the new EMU-SDMS. However, a new
feature has been added to the query engine which allows the calculation of time to
be switched off for a given query using the calcTimes parameter of the query()

function. This is beneficial in two ways: for one, levels that do not have a time-
bearing sub-level may be queried and secondly, the execution time of queries can
be greatly improved. The performance increase becomes evident when performing
queries on large data sets on one of the top levels of the hierarchy (e.g., Utterance
or Intonational in the ae emuDB). When deducing time information for annotation
items that contain large portions of the hierarchy, the query engine has to walk
down large partial hierarchies to find the left-most and right-most items on the
time-bearing sub-level. This can be a computationally expensive operation and
is often unnecessary, especially during data exploration. R Example 5.2.10 shows
the usage of this parameter by querying all of the items of the Intonational level
and displaying the NA values for start and end times in the resulting segment list.
It is worth noting that the missing time information excluded during the original

5.2 EQL: The EMU Query Language version 2 78

query can be retrieved at a later point in time by performing a hierarchical requery
(see Section 5.2.7) on the same level.

R Example 5.2.10

query all intonational items

sl = query(ae, "Intonational =~ .*", calcTimes = F)

show first entry of sl

head(sl, n = 1)

segment list from database: ae

query was: Intonational =~ .*...

labels start end session bundle level type

1 L% NA NA 0000 msajc003 Intonational ITEM

5.2.7 Requery

A popular feature of the legacy system was the ability to use the result of a query to
perform an additional query, called a requery, starting from the resulting items of
a query. The requery functionality was used to move either sequentially (horizon-
tally) or hierarchically (vertically) through the hierarchical annotation structure.
Although this feature technically does not extend the querying functionality (it
is possible to formulate EQL queries that yield the same results as a query fol-
lowed by 1 : n requeries), requeries benefit the user by breaking down the task of
formulating long query terms into multiple, simpler queries. Compared with the
legacy system, this feature is implemented in the emuR package in a more robust
way, as unique item IDs are present in the result of a query, eliminating the need
for searching the starting segments based on their time information. Examples of
queries and their results within a hierarchical annotation based on a hierarchical
and sequential requery as well as their EQL equivalents are illustrated in Figure
5.5.

R Example 5.2.11 illustrates how the same results of the sequential query
[#Phonetic =~.* -> Phonetic == n] can be achieved using the requery seq()

function. Further, it shows how the requery hier() function can be used to move
vertically through the annotation structure by starting at the Syllable level and
retrieving all the Phonetic items for the query result.

5.2 EQL: The EMU Query Language version 2 79

Text(ITEM): amongst

Syllable(ITEM): W S

Phoneme(ITEM): V m V N s t

Phonetic(SEGMENT): V m V N s t h

sl1 = query(emuDBhandle, query = "Phonetic == t")

sl2 = requery hier(emuDBhandle, sl1, level = "Syllable")

sl3 = requery seq(emuDBhandle, sl2, offset = -1)

vs.

sl3 = query(emuDBhandle, query = "[#Syllable =~ .* ->

[Syllable =~ .* ^ Phonetic == t]]")

Figure 5.5: Three-step (query → requery hier → requery seq) requery procedure,
its single query counterpart and their color coded movements within the annotation
hierarchy.

R Example 5.2.11

########################

requery_seq()

query all "n" phonetic items

sl_n = query(ae, "Phonetic == n")

sequential requery (left shift result by 1 (== offset of -1))

and hence retrieve all phonetic items directly preceeding

all "n" phonetic items

sl_precn = requery_seq(ae, seglist = sl_n, offset = -1)

show first entry of sl_precn

head(sl_precn, n = 1)

segment list from database: ae

query was: FROM REQUERY...

labels start end session bundle level type

1 E 949.925 1031.925 0000 msajc003 Phonetic SEGMENT

########################

5.3 Discussion 80

requery_hier()

query all strong syllables (S)

sl_s = query(ae, "Syllable == S")

hierarchical requery

sl_phonetic = requery_hier(ae, seglist = sl_s,

level = "Phonetic")

show first entry of sl_phonetic

head(sl_phonetic, n = 1)

segment list from database: ae

query was: FROM REQUERY...

labels start end session bundle

1 m->V->N->s->t->H 256.925 674.175 0000 msajc003

level type

1 Phonetic SEGMENT

5.3 Discussion

This chapter gave an overview of the abilities of the query system of the EMU-SDMS.
We feel the EQL is an expressive, powerful, yet simple to learn and domain-
specific query language that allows users to adequately query complex annotation
structures. Further, the query system provided by the EMU-SDMS surpasses the
querying capabilities of most commonly used systems. As the result of a query is
a superclass of the common data.frame object, these results can easily be further
processed using various R functions (e.g., to remove unwanted segments). Further,
the results of queries can be used as input to the get trackdata() function (see
Chapter 6) which makes the query system a vital part in the default workflow
described in Chapter 1.

Although the query mechanism of the EMU-SDMS covers most linguistic an-
notation query needs (including co-occurrence and domination relationship child
position queries), it has limitations due to its domain-specific nature, its simplic-
ity and its predefined result type. Performing more general queries such as: What
is the average age of the male speakers in the database who are taller than 1.8
meters? is not directly possible using the EQL. Even if the gender, height and
age parameters are available as part of the database’s annotations (e.g., using the
single bundle root node metadata strategy described in Chapter 3) they would be

5.3 Discussion 81

encoded as strings, which do not permit direct calculations or numerical compar-
isons. However, it is possible to answer these types of questions using a multi-step
approach. One could, for example, extract all height items and convert the strings
into numbers to filter the items containing a label that is greater than 1.8. These
filtered items could then be used to perform two requeries to extract all male
speakers and their age labels. These age labels could once again be converted into
numbers to calculate their average. Although not as elegant as other languages,
we have found that most questions that arise as part of studies working with spo-
ken language database can be answered using such a multi-step process including
some data manipulation in R, provided the necessary information is encoded in the
database. Additionally, from the viewpoint of a speech scientist, we feel that the
intuitiveness of an EQL expression (e.g., a query to extract the sibilant items
for the question asked in the introduction: "Phonetic == s|z|S|Z") exceeds
that of a comparable general purpose query language (e.g. a semantically sim-
ilar SQL statement: SELECT desired columns FROM items AS i, labels AS l

WHERE i.unique bundle item id = l.uniq bundle item id AND l.label = ‘s’

OR l.label = ‘z’ OR l.label = ‘s’ OR l.label = ‘S’ OR l.label = ‘Z’).
This difference becomes even more apparent with more complex EQL statements,
which can have very long, complicated and sometimes multi-expression SQL coun-
terparts.

A problem which the EMU-SDMS does not explicitly address is the problem
of cross-corpus searches. Different emuDBs may have varying annotation structures
with varying semantics regarding the names or labels given to objects or annotation
items in the databases. This means that it is very likely that a complex query
formulated for a certain emuDB will fail when used to query other databases. If,
however, the user either finds a query that works on every emuDB or adapts the
query to extract the items she/he is interested in, a cross-corpus comparison is
simple. As the result of a query and the corresponding data extraction routines
are the same, regardless of database they where extracted from, these results are
easily comparable. However, it is worth noting that the EMU-SDMS is completely
indifferent to the semantics of labels and level names, which means it is the user’s
responsibility to check if a comparison between databases is justifiable (e.g., are all
segments containing the label “@” of the level “Phonetic” in all emuDBs annotating
the same type of phoneme?).

Chapter 6

Signal data extraction*

Is there any signal
data down here?

As mentioned in the default workflow of Chapter 1, after querying the symbolic
annotation structure and dereferencing its time information, the result is a set
of items with associated time stamps. It was necessary that the emuR package
contain a mechanism for extracting signal data corresponding to this set of items.
As illustrated in Chapter 7, wrassp provides the R ecosystem with signal data
file handling capabilities as well as numerous signal processing routines. emuR can
use this functionality to either obtain pre-stored signal data or calculate derived
signal data that correspond to the result of a query. Figure 6.1A shows a snippet
of speech with overlaid annotations where the resulting SEGMENT of an example
query (e.g., "Phonetic == ai") is highlighted in yellow. Figure 6.1B displays a
time parallel derived signal data contour as would be returned by one of wrassp’s
file handling or signal processing routines. The yellow segment in Figure 6.1B
marks the corresponding samples that belong to the ai segment of Figure 6.1A.

*Parts of this chapter have been published in Winkelmann et al. (2017).

83

v ai @ l @ n t H l i:

P
h
on

et
ic

A

d
er

iv
ed

si
gn

al
d
at

a
co

n
to

u
r

B

Figure 6.1: Segment of speech with overlaid annotations and time parallel derived
signal data contour.

6.1 Extracting pre-defined tracks 84

R Example 6.0.1 shows how to create the demo data that will be used through-
out this chapter.

R Example 6.0.1

load the package

library(emuR)

create demo data in directory provided by the tempdir() function

create_emuRdemoData(dir = tempdir())

get the path to a emuDB called "ae" that is part of the demo data

path2directory = file.path(tempdir(), "emuR_demoData", "ae_emuDB")

load emuDB into current R session

ae = load_emuDB(path2directory)

6.1 Extracting pre-defined tracks

To access data that are stored in files, the user has to define tracks for a database
that point to sequences of samples in files that match a user-specified file extension.
The user-defined name of such a track can then be used to reference the track
in the signal data extraction process. Internally, emuR uses wrassp to read the
appropriate files from disk, extract the sample sequences that match the result of
a query and return values to the user for further inspection and evaluation. R
Example 6.1.1 shows how a signal track that is already defined in the ae demo
database can be extracted for all annotation items on the Phonetic level containing
the label ai.

R Example 6.1.1

list currently available tracks

list_ssffTrackDefinitions(ae)

name columnName fileExtension

1 dft dft dft

2 fm fm fms

query all "ai" phonetic segments

ai_segs = query(ae, "Phonetic == ai")

6.1 Extracting pre-defined tracks 85

get "fm" track data for these segments

Note that verbose is set to FALSE

only to avoid a progress bar

being printed in this document.

ai_td_fm = get_trackdata(ae,

seglist = ai_segs,

ssffTrackName = "fm",

verbose = FALSE)

show summary of ai_td_fm

summary(ai_td_fm)

Emu track data from 6 segments

##

Data is 4 dimensional from track fm

Mean data length is 30.5 samples

Being able to access data that is stored in files is important for two main
reasons. Firstly, it is possible to generate files using external programs such as
VoiceSauce (Shue et al., 2011), which can export its calculated output to the
general purpose SSFF file format. This file mechanism is also used to access data
produced by EMA, EPG or many other forms of signal data recordings. Secondly,
it is possible to track, save and access manipulated data such as formant values that
have been manually corrected. It is also worth noting that the get trackdata()

function has a predefined track which is always available without it having to
be defined. The name of this track is MEDIAFILE SAMPLES which references the
actual samples of the audio files of the database. R Example 6.1.2 shows how this
predefined track can be used to access the audio samples belonging to the segments
in ai segs.

R Example 6.1.2

get media file samples

ai_td_mfs = get_trackdata(ae,

seglist = ai_segs,

ssffTrackName = "MEDIAFILE_SAMPLES",

verbose = FALSE)

show summary of ai_td_fm

summary(ai_td_mfs)

6.2 Adding new tracks 86

Emu track data from 6 segments

##

Data is 1 dimensional from track MEDIAFILE_SAMPLES

Mean data length is 3064.333 samples

6.2 Adding new tracks

As described in detail in Section 7.5, the signal processing routines provided by the
wrassp package can be used to produce SSFF files containing various derived signal
data (e.g., formants, fundamental frequency, etc.). R Example 6.2.1 shows how the
add ssffTrackDefinition() can be used to add a new track to the ae emuDB.
Using the onTheFlyFunctionName parameter, the add ssffTrackDefinition()

function automatically executes the wrassp signal processing function ksvF0

(onTheFlyFunctionName = "ksvF0") and stores the results in SSFF files in the
bundle directories.

R Example 6.2.1

add new track and calculate

.f0 files on-the-fly using wrassp::ksvF0()

add_ssffTrackDefinition(ae,

name = "F0",

onTheFlyFunctionName = "ksvF0",

verbose = FALSE)

show newly added track

list_ssffTrackDefinitions(ae)

name columnName fileExtension

1 dft dft dft

2 fm fm fms

3 F0 F0 f0

show newly added files

library(tibble) # convert to tibble only to prettify output

as_tibble(list_files(ae, fileExtension = "f0"))

A tibble: 7 x 4

session bundle file absolute_file_path

6.3 Calculating tracks on-the-fly 87

* <chr> <chr> <chr> <chr>

1 0000 msajc003 msajc003.f0 /private/var/folders/yk/8z9~

2 0000 msajc010 msajc010.f0 /private/var/folders/yk/8z9~

3 0000 msajc012 msajc012.f0 /private/var/folders/yk/8z9~

4 0000 msajc015 msajc015.f0 /private/var/folders/yk/8z9~

5 0000 msajc022 msajc022.f0 /private/var/folders/yk/8z9~

6 0000 msajc023 msajc023.f0 /private/var/folders/yk/8z9~

7 0000 msajc057 msajc057.f0 /private/var/folders/yk/8z9~

extract newly added trackdata

ai_td = get_trackdata(ae,

seglist = ai_segs,

ssffTrackName = "F0",

verbose = FALSE)

show summary of ai_td

summary(ai_td)

Emu track data from 6 segments

##

Data is 1 dimensional from track F0

Mean data length is 30.5 samples

6.3 Calculating tracks on-the-fly

With the wrassp package, we were able to implement a new form of signal data
extraction which was not available in the legacy system. The user is now able
to select one of the signal processing routines provided by wrassp and pass it
on to the signal data extraction function. The signal data extraction function
can then apply this wrassp function to each audio file as part of the signal data
extraction process. This means that the user can quickly manipulate function
parameters and evaluate the result without having to store to disk the files that
would usually be generated by the various parameter experiments. In many cases
this new functionality eliminates the need for defining a track definition for the
entire database for temporary data analysis purposes. R Example 6.3.1 shows how
the onTheFlyFunctionName parameter of the get trackdata() function is used.

6.4 The resulting object: trackdata vs.
emuRtrackdata 88

R Example 6.3.1

ai_td_pit = get_trackdata(ae,

seglist = ai_segs,

onTheFlyFunctionName = "mhsF0",

verbose = FALSE)

show summary of ai_td

summary(ai_td_pit)

Emu track data from 6 segments

##

Data is 1 dimensional from track pitch

Mean data length is 30.5 samples

6.4 The resulting object: trackdata vs.

emuRtrackdata

The default resulting object of a call to get trackdata() is of class trackdata (see
R Example 6.4.1). The emuR package provides multiple routines such as dcut(),
trapply() and dplot() for processing and visually inspecting objects of this type
(see Harrington, 2010, and Section 2.4 for examples of how these can be used).

R Example 6.4.1

show class vector of ai_td_pit

class(ai_td_pit)

[1] "trackdata"

As the trackdata object is a fairly complex nested matrix object with internal
reference matrices, which can be cumbersome to work with, the emuR package
introduces a new equivalent object type called emuRtrackdata that essentially
is a flat data.frame object. This object type can be retrieved by setting the
resultType parameter of the get trackdata() function to emuRtrackdata. R
Example 6.4.2 shows how this can be achieved.

6.4 The resulting object: trackdata vs.
emuRtrackdata 89

R Example 6.4.2

ai_emuRtd_pit = get_trackdata(ae,

seglist = ai_segs,

onTheFlyFunctionName = "mhsF0",

resultType = "emuRtrackdata",

verbose = FALSE)

show first row (convert to tibble only to prettify output)

as_tibble(ai_emuRtd_pit[1,])

A tibble: 1 x 21

sl_rowIdx labels start end utts db_uuid session bundle

* <int> <chr> <dbl> <dbl> <chr> <chr> <chr> <chr>

1 1 ai 863 1016 0000~ 0fc618~ 0000 msajc~

... with 13 more variables: start_item_id <int>,

end_item_id <int>, level <chr>,

start_item_seq_idx <int>, end_item_seq_idx <int>,

type <chr>, sample_start <int>, sample_end <int>,

sample_rate <int>, times_orig <dbl>, times_rel <dbl>,

times_norm <dbl>, T1 <dbl>

show relative time values of the first segment

(relative time values always start at 0 for every segment)

ai_emuRtd_pit[ai_emuRtd_pit$sl_rowIdx == 1,]$times_rel

[1] 0 5 10 15 20 25 30 35 40 45 50 55 60 65

[15] 70 75 80 85 90 95 100 105 110 115 120 125 130 135

[29] 140 145

show original time values of the first segment

(absolute time values always start at the original

time stamp for that sample within the track)

ai_emuRtd_pit[ai_emuRtd_pit$sl_rowIdx == 1,]$times_orig

[1] 867.5 872.5 877.5 882.5 887.5 892.5 897.5 902.5

[9] 907.5 912.5 917.5 922.5 927.5 932.5 937.5 942.5

[17] 947.5 952.5 957.5 962.5 967.5 972.5 977.5 982.5

[25] 987.5 992.5 997.5 1002.5 1007.5 1012.5

As can be seen by the first row output of R Example 6.4.2, the

6.4 The resulting object: trackdata vs.
emuRtrackdata 90

emuRtrackdata object is an amalgamation of both a segment list and a trackdata

object. The first sl rowIdx column of the ai emuRtd pit object indicates the
row index of the segment list the current row belongs to, the times rel and
times orig columns represent the relative time and the original time of the sam-
ples contained in the current row (see R Example 6.4.2) and T1 (to Tn in n
dimensional trackdata) contains the actual signal sample values. It is also worth
noting that the emuR package provides a function called create emuRtrackdata(),
which allows users to create emuRtrackdata from a segment list and a trackdata

object. This is beneficial as it allows trackdata objects to be processed using
functions provided by the emuR package (e.g., dcut() and trapply()) and then
converts them into a standardized data.frame object for further processing (e.g.,
using R packages such as lme4 or ggplot2 which were implemented to use with
data.frame objects). R Example 6.4.3 shows how the create emuRtrackdata()

function is used.

R Example 6.4.3

create emuRtrackdata object

ai_emuRtd_pit = create_emuRtrackdata(sl = ai_segs,

td = ai_td_pit)

show first row and

selected columns of ai_emuRtd_pit

ai_emuRtd_pit[1,]

sl_rowIdx labels start end session bundle

1 1 ai 862.875 1015.825 0000 msajc010

level type times_orig times_rel times_norm T1

1 Phonetic SEGMENT 867.5 0 0 134.7854

The general question remains as to when to use the trackdata and when
to use the emuRtrackdata object and what the benefit of each class is. The
trackdata object has a number of associated class functions (e.g. trapply(),
dcut(), dcut() and eplot()) that ease data manipulation and visualization. Fur-
ther, it avoids data redundancy and therefore has a smaller memory footprint than
the emuRtrackdata object (this is usually negligible on current systems); however,
this makes it rather difficult to work with. The emuRtrackdata object is intended
as a long term replacement for the trackdata object as it contains all of the infor-
mation of the corresponding trackdata object as well as its associated segment list.
As is often the case with tabular data, the emuRtrackdata object carries certain
redundant information (e.g. segment start and end times). However, the benefit

6.5 Conclusion 91

of having a data.frame object that contains all the information needed to process
the data is the ability to replace package specific functions (e.g. trapply() etc.)
with standardized data.frame processing and visualization procedures that can
be applied to any data.frame object independent of the package that generated it.
Therefore, the knowledge that is necessary to process an emuRtrackdata object
can be transferred to/from other packages which is not the case for trackdata

object. Future releases of the emuR package as well as this manual will contain
various examples of how to replace the functionality of the package-specific func-
tions mentioned above with equivalent data manipulation and visualization using
the dplyr as well as the ggplot2 packages.

6.5 Conclusion

This chapter introduced the signal data extraction mechanics of the emuR package.
The combination of the get trackdata() function and the file handling and sig-
nal processing abilities of the wrassp package (see Chapter 7 for further details)
provide the user with a flexible system for extracting derived or complementary
signal data belonging to their queried annotation items.

Chapter 7

The R package wrassp*

Doesn’t a forest()

ususally have trees?

7.1 Introduction

This chapter gives an overview and introduction to the wrassp package. The
wrassp package is a wrapper for R around Michel Scheffers’ libassp (Advanced
Speech Signal Processor). The libassp library and therefore the wrassp package
provide functionality for handling speech signal files in most common audio formats
and for performing signal analyses common in the phonetic and speech sciences.
As such, wrassp fills a gap in the R package landscape as, to our knowledge, no
previous packages provided this specialized functionality. The currently available
signal processing functions provided by wrassp are:

*Some examples of this chapter are adapted version of examples given in the wrassp intro

vignette of the wrassp package.

http://libassp.sourceforge.net/

7.1 Introduction 93

• acfana(): Analysis of short-term autocorrelation function

• afdiff(): Computes the first difference of the signal

• affilter(): Filters the audio signal (e.g., low-pass and high-pass)

• cepstrum(): Short-term cepstral analysis

• cssSpectrum(): Cepstral smoothed version of dftSpectrum()

• dftSpectrum(): Short-term DFT spectral analysis

• forest(): Formant estimation

• ksvF0(): F0 analysis of the signal

• lpsSpectrum(): Linear predictive smoothed version of dftSpectrum()

• mhsF0(): Pitch analysis of the speech signal using Michel Scheffers’ Modified
Harmonic Sieve algorithm

• rfcana(): Linear prediction analysis

• rmsana(): Analysis of short-term Root Mean Square amplitude

• zcrana(): Analysis of the averages of the short-term positive and negative
zero-crossing rates

The available file handling functions are:

• read.AsspDataObj(): read a SSFF or audio file into an AsspDataObj, which
is the in-memory equivalent of the SSFF or audio file.

• write.AsspDataObj(): write an AsspDataObj to file (usually SSFF or audio
file formats).

See R’s help() function for a comprehensive list of every function and object
provided by the wrassp package is required (see R Example 7.1.1).

R Example 7.1.1

help(package="wrassp")

7.1 Introduction 94

As the wrassp package can be used independently of the EMU-SDMS this
chapter largely focuses on using it as an independent component. However, Section
7.5 provides an overview of how the package is integrated into the EMU-SDMS.
Further, although the wrassp package has its own set of example audio files
(which can be accessed in the directory provided by system.file(‘extdata’,

package=‘wrassp’)), this chapter will use the audio and SSFF files that are part
of the ae emuDB of the demo data provided by the emuR package. This is done
primarily to provide an overview of what it is like using wrassp to work on files
in an emuDB. R Example 7.1.2 shows how to generate this demo data followed by
a listing of the files contained in a directory of a single bundle called msajc003
(see Chapter 4 for information about the emuDB format). The output of the call
to list.files() shows four files where the .dft and .fms files are in the SSFF
file format (see Appendix B.1.3 for further details). The annot.json file contains
the annotation information, and the .wav file is one of the audio files that will be
used in various signal processing examples in this chapter.

R Example 7.1.2

load the emuR package

library(emuR)

create demo data in directory

provided by tempdir()

create_emuRdemoData(dir = tempdir())

create path to demo database

path2ae = file.path(tempdir(), "emuR_demoData", "ae_emuDB")

create path to bundle in database

path2bndl = file.path(path2ae, "0000_ses", "msajc003_bndl")

list files in bundle directory

list.files(path2bndl)

[1] "msajc003_annot.json" "msajc003.dft"

[3] "msajc003.fms" "msajc003.wav"

7.2 File I/0 and the AsspDataObj 95

7.2 File I/0 and the AsspDataObj

One of the aims of wrassp is to provide mechanisms for handling speech-related
files such as audio files and derived and complementary signal files. To have an
in-memory object that can hold these file types in a uniform way the wrassp

package provides the AsspDataObj data type. R Example 7.2.1 shows how the
read.AsspDataObj() can be used to import a .wav audio file.

R Example 7.2.1

load the wrassp package

library(wrassp)

create path to wav file

path2wav = file.path(path2bndl, "msajc003.wav")

read audio file

au = read.AsspDataObj(path2wav)

show class

class(au)

[1] "AsspDataObj"

show print() output of object

print(au)

Assp Data Object of file /var/folders/yk/8z9tn7kx6hbcg_9n4c1....

Format: WAVE (binary)

58089 records at 20000 Hz

Duration: 2.904450 s

Number of tracks: 1

audio (1 fields)

As can be seen in R Example 7.2.1, the resulting au object is of the class
AsspDataObj. The output of print provides additional information about the
object, such as its sampling rate, duration, data type and data structure informa-
tion. Since the file we loaded is audio only, the object contains exactly one track.
Further, since it is a mono file, this track only has a single field. We will later
encounter different types of data with more than one track and multiple fields per
track. R Example 7.2.2 shows function calls that extract the various attributes
from the object (e.g., duration, sampling rate and the number of records).

7.2 File I/0 and the AsspDataObj 96

R Example 7.2.2

show duration

dur.AsspDataObj(au)

[1] 2.90445

show sampling rate

rate.AsspDataObj(au)

[1] 20000

show number of records/samples

numRecs.AsspDataObj(au)

[1] 58089

shorten filePath attribute

to 10 chars only to prettify output

attr(au, "filePath") = paste0(substr(attr(au, "filePath"),

start = 1,

stop = 45), "...")

show additional attributes

attributes(au)

$names

[1] "audio"

##

$trackFormats

[1] "INT16"

##

$sampleRate

[1] 20000

##

$filePath

[1] "/var/folders/yk/8z9tn7kx6hbcg_9n4c1sld980000g..."

##

$origFreq

[1] 0

##

$startTime

[1] 0

7.2 File I/0 and the AsspDataObj 97

##

$startRecord

[1] 1

##

$endRecord

[1] 58089

##

$class

[1] "AsspDataObj"

##

$fileInfo

[1] 21 2

The sample values belonging to a trackdata objects tracks are also stored within
an AsspDataObj object. As mentioned above, the currently loaded object contains
a single mono audio track. Accessing the data belonging to this track, in the form
of a matrix, can be achieved using the track’s name in combination with the $

notation known from R’s common named list object. Each matrix has the same
number of rows as the track has records and as many columns as the track has
fields. R Example 7.2.3 shows how the audio track can be accessed.

R Example 7.2.3

show track names

tracks.AsspDataObj(au)

[1] "audio"

or an alternative way to show track names

names(au)

[1] "audio"

show dimensions of audio attribute

dim(au$audio)

[1] 58089 1

show first sample value of audio attribute

head(au$audio, n = 1)

[,1]

[1,] 64

7.2 File I/0 and the AsspDataObj 98

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1
00
00

0
10
00
0

time (s)

A
u
d
io

sa
m
p
le
s
(I
N
T
16
)

Figure 7.1: Oscillogram generated from samples stored in the audio track of the
object au.

This data can, for example, be used to generate an oscillogram of the audio file
as shown in R Example 7.2.4, which produces Figure 7.1.

R Example 7.2.4

calculate sample time of every 10th sample

samplesIdx = seq(0, numRecs.AsspDataObj(au) - 1, 10)

samplesTime = samplesIdx / rate.AsspDataObj(au)

extract every 10th sample using window() function

samples = window(au$audio, deltat=10)

plot samples stored in audio attribute

(only plot every 10th sample to accelerate plotting)

plot(samplesTime,

samples,

type = "l",

xlab = "time (s)",

ylab = "Audio samples (INT16)")

The export counterpart to read.AsspDataObj() function is
write.AsspDataObj(). It is used to store in-memory AsspDataObj objects to
disk and is particularly useful for converting other formats to or storing data in

7.3 Signal processing 99

the SSFF file format as described in Section 7.6. To show how this function can
be used to write a slightly altered version of the au object to a file, R Example
7.2.5 initially multiplies all the sample values of au$audio by a factor of 0.5. The
resulting AsspDataObj is then written to an audio file in a temporary directory
provided by R’s tempdir() function.

R Example 7.2.5

manipulate the audio samples

au$audio = au$audio * 0.5

write to file in directory

provided by tempdir()

write.AsspDataObj(au, file.path(tempdir(), 'newau.wav'))

7.3 Signal processing

As mentioned in the introduction to this chapter, the wrassp package is capable
of more than just the mere importing and exporting of specific signal file for-
mats. This section will focus on demonstrating three of wrassp’s signal processing
functions that calculate formant values, their corresponding bandwidths, the fun-
damental frequency contour and the RMS energy contour. Section 7.3.2 and 7.3.3
demonstrates signal processing to the audio file saved under path2wav, while Sec-
tion 7.3.4 adresses processing all the audio files belonging to the ae emuDB.

7.3.1 The wrasspOutputInfos object

The wrassp package comes with the wrasspOutputInfos object, which provides
information about the various signal processing functions provided by the pack-
age. The wrasspOutputInfos object stores meta information associated with the
different signal processing functions wrassp provides. R Example 7.3.1 shows the
names of the wrasspOutputInfos object which correspond to the function names
listed in the introduction of this chapter.

R Example 7.3.1

show all function names

names(wrasspOutputInfos)

[1] "acfana" "afdiff" "affilter" "cepstrum"

[5] "cssSpectrum" "dftSpectrum" "ksvF0" "mhsF0"

7.3 Signal processing 100

[9] "forest" "lpsSpectrum" "rfcana" "rmsana"

[13] "zcrana"

This object can be useful to get additional information about a specific wrassp
function. It contains information about the default file extension ($ext), the
tracks produced ($tracks) and the output file type ($outputType). R Example
7.3.2 shows this information for the forest() function.

R Example 7.3.2

show output info of forest function

wrasspOutputInfos$forest

$ext

[1] "fms"

##

$tracks

[1] "fm" "bw"

##

$outputType

[1] "SSFF"

The examples that follow will make use of this wrasspOutputInfos object
mainly to acquire the default file extensions given by a specific wrassp signal
processing function.

7.3.2 Formants and their bandwidths

The already mentioned forest() is wrassp’s formant estimation function. The
default behavior of this formant tracker is to calculate the first four formants and
their bandwidths. R Example 7.3.3 shows the usage of this function. As the
default behavior of every signal processing function provided by wrassp is to store
its result to a file, the toFile parameter of forest() is set to FALSE to prevent
this behavior. This results in the same AsspDataObj object as when exporting the
result to file and then importing the file into R using read.AsspDataObj(), but
circumvents the disk reading/writing overhead.

R Example 7.3.3

calculate formants and corresponding bandwidth values

fmBwVals = forest(path2wav, toFile=F)

7.3 Signal processing 101

show class vector

class(fmBwVals)

[1] "AsspDataObj"

show track names

tracks.AsspDataObj(fmBwVals)

[1] "fm" "bw"

show dimensions of "fm" track

dim(fmBwVals$fm)

[1] 581 4

check dimensions of tracks are the same

all(dim(fmBwVals$fm) == dim(fmBwVals$bw))

[1] TRUE

As can be seen in R Example 7.3.3, the object resulting from the forest()

function is an object of class AsspDataObj with the tracks "fm" (formants) and
"bw" (formant bandwidths), where both track matrices have four columns (cor-
responding to F1, F2, F3 and F4 in the "fm" track and F1bandwidth, F2bandwidth,
F3bandwidth and F4bandwidth in the "bw" track) and 581 rows. To visualize the cal-
culated formant values, R Example 7.3.4 shows how R’s matplot() function can
be used to produce Figure 7.2.

R Example 7.3.4

plot the formant values

matplot(seq(0, numRecs.AsspDataObj(fmBwVals) - 1)

/ rate.AsspDataObj(fmBwVals)

+ attr(fmBwVals, "startTime"),

fmBwVals$fm,

type = "l",

xlab = "time (s)",

ylab = "Formant frequency (Hz)")

add legend

startFormant = 1

7.3 Signal processing 102

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
20
00

40
00

time (s)

F
or
m
an

t
fr
eq
u
en
cy

(H
z)

F1
F2
F3
F4

Figure 7.2: Matrix plot of formant values stored in the fm track of fmBwVals

object.

endFormant = 4

legend("topright",

legend = paste0("F", startFormant:endFormant),

col = startFormant:endFormant,

lty = startFormant:endFormant,

bg = "white")

7.3.3 Fundamental frequency contour

The wrassp package includes two fundamental frequency estimation functions
called ksvF0() and mhsF0(). R Example 7.3.5 shows the usage of the ksvF0()

function, this time not utilizing the toFile parameter but rather to show an alter-
native procedure, reading the resulting SSFF file produced by it. It is worth noting
that every signal processing function provided by wrassp creates a result file in the
same directory as the audio file it was processing (except if the outputDirectory

parameter is set otherwise). The default extension given by the ksvF0() is stored
in wrasspOutputInfos$ksvF0$ext, which is used in R Example 7.3.5 to create
the newly generated file’s path.

7.3 Signal processing 103

R Example 7.3.5

calculate the fundamental frequency contour

ksvF0(path2wav)

create path to newly generated file

path2f0file = file.path(path2bndl,

paste0("msajc003.",

wrasspOutputInfos$ksvF0$ext))

read file from disk

f0vals = read.AsspDataObj(path2f0file)

By analogy with to the formant estimation example, R Example 7.3.6 shows
how the plot() function can be used to visualize this data as in Figure 7.3.

R Example 7.3.6

plot the fundamental frequency contour

plot(seq(0,numRecs.AsspDataObj(f0vals) - 1)

/ rate.AsspDataObj(f0vals) +

attr(f0vals, "startTime"),

f0vals$F0,

type = "l",

xlab = "time (s)",

ylab = "F0 frequency (Hz)")

7.3.4 RMS energy contour

The wrassp function for calculating the short-term Root Mean Square (RMS)
amplitude of the signal is called rmsana(). As its usage is analogous to the above
examples, here we will focus on using it to calculate the RMS values for all the audio
files of the ae emuDB. R Example 7.3.7 initially uses the list.files() function to
aquire the file paths for every .wav file in the ae emuDB. As every signal processing
function accepts one or multiple file paths, these file paths can simply be passed
in as the main argument to the rmsana() function. As all of wrassp’s signal
processing functions place their generated files in the same directory as the audio
file they process, the rmsana() function will automatically place every .rms into
the correct bundle directory.

7.3 Signal processing 104

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
50

10
0

time (s)

F
0
fr
eq
u
en
cy

(H
z)

Figure 7.3: Plot of fundamental frequency values stored in the F0 track of f0vals
object.

R Example 7.3.7

list all .wav files in the ae emuDB

paths2wavFiles = list.files(path2ae, pattern = ".*wav$",

recursive = TRUE, full.names = TRUE)

calculate the RMS energy values for all .wav files

rmsana(paths2wavFiles)

list new .rms files using

wrasspOutputInfos->rmsana->ext

rmsFPs = list.files(path2ae,

pattern = paste0(".*",

wrasspOutputInfos$rmsana$ext),

recursive = TRUE,

full.names = TRUE)

read first RMS file

rmsvals = read.AsspDataObj(rmsFPs[1])

R Example 7.3.8 shows how the plot() function can be used to visualize this
data as in Figure 7.4.

7.4 Logging wrassp’s function calls 105

0.0 0.5 1.0 1.5 2.0 2.5 3.0

40
60

time (s)

R
M
S
en
er
gy

(d
B
)

Figure 7.4: Plot of RMS values stored in rms track of the rmsvals object.

R Example 7.3.8

plot the RMS energy contour

plot(seq(0, numRecs.AsspDataObj(rmsvals) - 1)

/ rate.AsspDataObj(rmsvals)

+ attr(rmsvals, "startTime"),

rmsvals$rms,

type = "l",

xlab = "time (s)",

ylab = "RMS energy (dB)")

7.4 Logging wrassp’s function calls

As it can be extremely important to keep track of information about how certain
files are created and calculated, every signal processing function provided by the
wrassp package comes with the ability to log its function calls to a specified log file.
R Example 7.4.1 shows a call to the ksvF0() function where a single parameter was
changed from its default value (windowShift = 10). The content of the created log
files (shown by the call to readLines()) contains the function name, time stamp,
parameters that were altered and processed file path information. It is worth
noting that a log file can be reused for multiple function calls as the log function
does not overwrite an existing file but merely appends new log information to it.

7.5 Using wrassp in the EMU-SDMS 106

R Example 7.4.1

create path to log file in root dir of ae emuDB

path2logFile = file.path(path2ae, "wrassp.log")

calculate the fundamental frequency contour

ksvF0(path2wav, windowShift = 10,

forceToLog = T, optLogFilePath = path2logFile)

[1] 1

display content of log file (first 8 lines)

readLines(path2logFile)[1:8]

[1] ""

[2] "##################################"

[3] "##################################"

[4] "######## ksvF0 performed ########"

[5] "Timestamp: 2018-04-17 17:10:36 "

[6] "windowShift : 10 "

[7] "forceToLog : T "

[8] " => on files:"

7.5 Using wrassp in the EMU-SDMS

As shown in Section 7.3.4, the wrassp signal processing functions can be used
to calculate SSFF files and place them into the appropriate bundle directories.
The only thing that has to be done to make an emuDB aware of these files is to
add an SSFF track definition to the emuDB as shown in R Example 7.5.1. Once
added, this SSFF track can be referenced via the ssffTrackName parameter of
the get trackdata() function as shown in various examples throughout this doc-
umentation. It is worth noting that this strategy is not necessarily relevant for
applying the same signal processing to an entire emuDB, as this can be achieved us-
ing the on-the-fly add ssffTrackDefinition() method described in R Example
7.5.2. However, it becomes necessary if certain bundles are to be processed using
deviating function parameters. This can, for example, be relevant when setting
the minimum and maximum frequencies that are to be considered while estimat-
ing the fundamental frequencies (e.g., the maxF and minF of ksvfF0()) for female
versus male speakers.

7.5 Using wrassp in the EMU-SDMS 107

R Example 7.5.1

load emuDB

ae = load_emuDB(path2ae)

add SSFF track defintion

that references the .rms files

calculated above

(i.e. no new files are calculated and added to the emuDB)

ext = wrasspOutputInfos$rmsana$ext

colName = wrasspOutputInfos$rmsana$tracks[1]

add_ssffTrackDefinition(ae,

name = "rms",

fileExtension = ext,

columnName = colName)

A further way to utilize wrassp’s signal processing functions as part of the
EMU-SDMS is via the onTheFlyFunctionName and onTheFlyParams parameters
of the add ssffTrackDefinition() and get trackdata() functions. Using the
onTheFlyFunctionName parameter in the add ssffTrackDefinition() function
automatically calculates the SSFF files while also adding the SSFF track definition.
Using this parameter with the get trackdata() function calls the given wrassp

function with the toFile parameter set to FALSE and extracts the matching seg-
ments and places them in the resulting trackdata or emuRtrackdata object. In
many cases, this avoids the necessity of having SSFF track definitions in the emuDB.
In both functions, the optional onTheFlyParams parameter can be used to specify
the parameters that are passed into the signal processing function. R Example
7.5.2 shows how R’s formals() function can be used to get all the parameters
of wrassp’s short-term positive and negative Zero Crossing-Rate (ZCR) analysis
function zrcana(). It then changes the default window size parameter to a new
value and passes the parameters object into the add ssffTrackDefinition() and
get trackdata() functions.

R Example 7.5.2

get all parameters of zcrana

zcranaParams = formals("zcrana")

show names of parameters

names(zcranaParams)

[1] "listOfFiles" "optLogFilePath" "beginTime"

7.6 Storing data in the SSFF file format 108

[4] "centerTime" "endTime" "windowShift"

[7] "windowSize" "toFile" "explicitExt"

[10] "outputDirectory" "forceToLog" "verbose"

change window size from the default

value of 25 ms to 50 ms

zcranaParams$windowSize = 50

to have a segment list to work with

query all Phonetic 'n' segments

sl = query(ae, "Phonetic == n")

get trackdata calculating ZCR values on-the-fly

using the above parameters. Note that no files

are generated.

td = get_trackdata(ae, sl,

onTheFlyFunctionName = "zcrana",

onTheFlyParams = zcranaParams,

verbose = FALSE)

add SSFF track definition. Note that

this time files are generated.

add_ssffTrackDefinition(ae,

name = "zcr",

onTheFlyFunctionName = "zcrana",

onTheFlyParams = zcranaParams,

verbose = FALSE)

7.6 Storing data in the SSFF file format

One of the benefits gained by having the AsspDataObj in-memory object is that
these objects can be constructed from scratch in R, as they are basically simple
list objects. This means, for example, that any set of n-dimensional samples over
time can be placed in a AsspDataObj and then stored as an SSFF file using the
write.AsspDataObj() function. To show how this can be done, R Example 7.6.1
creates an arbitrary data sample in the form of a single cycle sine wave between 0
and 2 ∗ pi that is made up of 16000 samples and displays it in Figure 7.5.

7.6 Storing data in the SSFF file format 109

0 1 2 3 4 5 6

-1
.0

0.
0

1.
0

x from 0 to 2*pi

Figure 7.5: A single cycle sine wave consisting of 16000 samples.

R Example 7.6.1

x = seq(0, 2 * pi, length.out = 16000)

sineWave = sin(x)

plot(x, sineWave, type = 'l',
xlab = "x from 0 to 2*pi",

ylab = "")

Assuming a sample rate of 16 kHz sineWave would result in a sine wave with
a frequency of 1 Hz and a duration of one second. R Example 7.6.2 shows how a
AsspDataObj can be created from scratch and the data in sineWave placed into
one of its tracks. It then goes on to write the AsspDataObj object to an SSFF file.

R Example 7.6.2

create empty list object

ado = list()

add sample rate attribute

attr(ado, "sampleRate") = 16000

add start time attribute

attr(ado, "startTime") = 0

7.6 Storing data in the SSFF file format 110

add start record attribute

attr(ado, "startRecord") = as.integer(1)

add end record attribute

attr(ado, "endRecord") = as.integer(length(sineWave))

set class of ado

class(ado) = "AsspDataObj"

show available file formats

AsspFileFormats

RAW ASP_A ASP_B XASSP IPDS_M IPDS_S AIFF

1 2 3 4 5 6 7

AIFC CSL CSRE ESPS ILS KTH SWELL

8 9 10 11 12 13 13

SNACK SFS SND AU NIST SPHERE PRAAT_S

13 14 15 15 16 16 17

PRAAT_L PRAAT_B SSFF WAVE WAVE_X XLABEL YORK

18 19 20 21 22 24 25

UWM

26

set file format to SSFF

NOTE: assignment of "SSFF" also possible

AsspFileFormat(ado) = as.integer(20)

set data format (1 == 'ascii' and 2 == 'binary')
AsspDataFormat(ado) = as.integer(2)

set track format specifiers

(available track formats for numbers

that match their C equivalent are:

"UINT8"; "INT8"; "UINT16"; "INT16";

"UINT24"; "INT24"; "UINT32"; "INT32";

"UINT64"; "INT64"; "REAL32"; "REAL64");

attr(ado, "trackFormats") = c("REAL32")

add track

ado = addTrack(ado, "sine", sineWave, "REAL32")

7.7 Conclusion 111

write AsspDataObj object to file

write.AsspDataObj(dobj = ado,

file = file.path(tempdir(), "example.sine"))

NULL

Although somewhat of a generic example, R Example 7.6.2 shows how to gen-
erate an AsspDataObj from scratch. This approach can, for example, be used
to read in signal data produced by other software or signal data acquisition de-
vices. Hence, this approach can be used to import many forms of data into the
EMU-SDMS. Appendix F.1 shows an example of how this approach can be used
to take advantage of Praat’s signal processing capabilities and integrate its output
into the EMU-SDMS.

7.7 Conclusion

The wrassp packages enriches the R package landscape by providing functionality
for handling speech signal files in most common audio formats and for performing
signal analyses common in the phonetic and speech sciences. The EMU-SDMS
utilizes the functionality that the wrassp package provides by allowing the user
to calculate signals that match the segments of a segment list. This can either
be done in real time or by extracting the signals from files. Hence, the wrassp

package is an integral part of the EMU-SDMS but can also be used as a standalone
package if so desired.

Chapter 8

The EMU-webApp*

It all looks the same
to me!

/ / / . . .

The EMU-SDMS has a unique approach to its graphical user interface (GUI)
in that it utilizes a web application as its primary GUI. This is known as the
EMU-webApp (Winkelmann and Raess, 2015). The EMU-webApp is a fully fledged
browser-based labeling and correction tool that offers a multitude of labeling and
visualization features. These features include unlimited undo/redo, formant cor-
rection capabilities, the ability to snap a preselected boundary to the nearest
top/bottom boundary, snap a preselected boundary to the nearest zero crossing,
and many more. The web application is able to render everything directly in the
user’s browser, including the calculation and rendering of the spectrogram, as it is
written entirely using HTML, CSS and JavaScript. This means it can also be used
as a standalone labeling application, as it does not require any server-side calcu-
lations or rendering. Further, it is designed to interact with any websocket server

*Sections of this chapter have been published in (Winkelmann and Raess, 2015) and some
descriptions where taken from the EMU-webApp’s own manual.

8.1 Main layout 113

that implements the EMU-webApp websocket protocol (see Section 12.1). This en-
ables it to be used as a labeling tool for collaborative annotation efforts. Also,
as the EMU-webApp is cached in the user’s browser on the first visit, it does not
require any internet connectivity to be able to access the web application unless
the user explicitly clears the browser’s cache. The URL of the current live version
of the EMU-webApp is: http://ips-lmu.github.io/EMU-webApp/.

8.1 Main layout

The main screen of the EMU-webApp can be split into five areas. Figure 8.1 shows
a screenshot of the EMU-webApp’s main screen displaying these five areas while
displaying a bundle of the ae demo database. This database is served to the
EMU-webApp by invoking the serve() command as shown in R Example 8.1.1.
The left side bar (area marked 1 in Figure 8.1) represents the bundle list side
bar which, if connected to a database, displays the currently available bundles
grouped by their sessions. The top and bottom menu bars (areas marked 2 and
5 in Figure 8.1) display the currently available menu options, where the bottom
menu bar contains the audio navigation and playback controls and also includes
a scrollable mini map of the oscillogram. Area 3 of Figure 8.1 displays the signal
canvas area currently displaying the oscillogram and the spectrogram. Other signal
contours such as formant frequency contours and fundamental frequency contours
are also displayed in this area. Area 4 of Figure 8.1 displays the area in which
levels containing time information are displayed. It is worth noting that the main
screen of the EMU-webApp does not display any levels that do not contain time
information. The hierarchical annotation can be displayed and edited by clicking
the show hierarchy button in the top menu bar (see Figure 8.6 for an example
of how the hierarchy is displayed).

R Example 8.1.1

serve ae emuDB to EMU-webApp

serve(ae)

8.2 General usage

This section introduces the labeling mechanics and general labeling workflow of
the EMU-webApp. The EMU-webApp makes heavy use of keyboard shortcuts. Is is
worth noting that most of the keyboard shortcuts are centered around the WASD

keys, which are the navigation shortcut keys (W to zoom in; S to zoom out; A to

http://ips-lmu.github.io/EMU-webApp/

8.2 General usage 114

F
ig

u
re

8.
1:

S
cr

ee
n
sh

ot
of

E
M
U
-
w
e
b
A
p
p

d
is

p
la

y
in

g
th

e
ae

d
em

o
d
at

ab
as

e
w

it
h

ov
er

la
id

ar
ea

s
of

th
e

m
ai

n
sc

re
en

of
th

e
w

eb
ap

p
li
ca

ti
on

(s
ee

te
x
t)

.

8.2 General usage 115

move left and D to move right). For a full list of the available keyboard shortcuts
see the EMU-webApp’s own manual, which can be accessed by clicking the EMU
icon on the right hand side of the top menu bar (area 2 in Figure 8.1).

8.2.1 Annotating levels containing time information

Boundaries and events

The EMU-webApp has slightly different labeling mechanics compared with other
annotation software. Compared to the usual click and drag of segment boundaries
and event markers, the web application continuously tracks the movement of the
mouse in levels containing time information, highlighting the boundary or event
marker that is closest to it by coloring it blue. Figure 8.2 displays this automatic
boundary preselection.

Figure 8.2: Screenshot of segment level as displayed by the EMU-webApp with
superimposed mouse cursor displaying the automatic boundary preselection of
closest boundary (boundary marked blue).

Once a boundary or event is preselected, the user can perform various actions
with it. She or he can, for example, grab a preselected boundary or event by
holding down the SHIFT key and moving it to the desired position, or delete the
current boundary or event by hitting the BACKSPACE key. Other actions that can
be performed on preselected boundaries or events are:

• snap to closest boundary or event in level above (Keyboard Shortcut t),

• snap to closest boundary or event in level below (Keyboard Shortcut b), and

• snap to nearest zero crossing (Keyboard Shortcut x).

To add a new boundary or event to a level the user initially has to select the
desired level she or he wishes to edit. This is achieved either by using the up
and down cursor keys or by single-left-clicking on the desired level. The current
preselected level is marked in a darker shade of gray, as is displayed in Figure 8.3.

To add a boundary to the currently selected level one first has to select a point
in time either in the spectrogram or the oscillogram by single-left-clicking on the

8.2 General usage 116

Figure 8.3: Screenshot of two levels as displayed by the EMU-webApp, where the
lower level is preselected (i.e., marked in a darker shade of gray).

desired location. Hitting the enter/return key adds a new boundary or event to
the preselected level at the selected time point. Selecting a stretch of time in the
spectrogram or the oscillogram (left-click-and-drag) and hitting enter will add a
segment (not a boundary) to a preselected segment level.

Segments and events

The EMU-webApp also allows segments and events to be preselected by single-left-
clicking the desired item. The web application colors the preselected segments and
events yellow to indicate their pre-selection as displayed in Figure 8.4.

Figure 8.4: Screenshot of level as displayed by the EMU-webApp, where the /@/
segment is currently preselected as it is marked yellow.

As with preselected boundaries or events the user can now perform multiple
actions with these preselected items. She or he can, for example, edit the item’s
label by hitting the enter/return key (which can also be achieved by double-left-
clicking the item). Other actions that can be performed on preselected items are:

• Select next item in level (keyboard shortcut TAB),

• Select previous item in level (keyboard shortcut SHIFT plus TAB),

• Add time to selected item(s) end (keyboard shortcut +),

• Add time to selected item(s) start (keyboard shortcut SHIFT plus +),

8.2 General usage 117

• Remove time to selected item(s) end (keyboard shortcut -),

• Remove time to selected item(s) start (keyboard shortcut SHIFT plus -), and

• Move selected item(s) (hold down ALT Key and drag to desired position).

By right-clicking adjacent segment or events (keyboard shortcut SHIFT plus
left or right cursor keys), it is possible to select multiple items at once.

Parallel labels in segments and events

If a level containing time information has multiple attribute definitions (i.e., mul-
tiple parallel labels per segment or event) the EMU-webApp automatically displays
radio buttons underneath that level (see red square in Figure 8.5) that allow the
user to switch between the parallel labels. Figure 8.5 displays a segment level with
three attribute definitions.

Figure 8.5: Screenshot of segment level with three attribute definitions. The radio
buttons that switch between the parallel labels are highlighted by a red square.

Legal labels

As mentioned in Section 4.2.3, an array of so-called legal labels can be defined
for every level or, more specifically, for each attribute definition. The EMU-webApp

enforces these legal labels by not allowing any other labels to be entered in the
label editing text fields. If an illegal label is entered, the text field will turn red
and the EMU-webApp will not permit this label to be saved.

8.2 General usage 118

8.2.2 Working with hierarchical annotations1

Viewing the hierarchy

As mentioned in Section 8.1, pressing the show hierarchy button (keyboard
shortcut h) in the top menu bar opens the hierarchy view modal window2. As
with most modal windows in the EMU-webApp, it can be closed by clicking on the
close button, clicking the X circle icon in the top right hand corner of the modal
or by hitting the ESCAPE key. By default, the hierarchy modal window displays
a horizontal version of the hierarchy for a spatially economical visualization. As
most people are more familiar with a vertical hierarchical annotation display, the
hierarchy can be rotated by hitting the rotate by 90° button (keyboard short-
cut r). Zooming in and out of the hierarchy can be achieved by using the mouse
wheel, and moving through the hierarchy in time can be achieved by holding down
the left mouse button and dragging the hierarchy in the desired direction. Fig-
ure 8.6 shows the hierarchy modal window displaying the hierarchical annotation
of a single path (Utterance ->Intonational ->Intermediate ->Word ->Syllable -
>Phoneme ->Phonetic) through a multi-path hierarchy of the ae emuDB in its
horizontal form.

Selecting a path through the hierarchy

As more complex databases have multiple hierarchical paths through their hierar-
chical annotation structure (see Figure 3.2 for an example of a multi-dimensional
hierarchical annotation structure), the hierarchy modal offers a drop-down menu to
choose the current path to be displayed. Area 2 in Figure 8.7 marks the hierarchy
path drop-down menu of the hierarchy modal.

It is worth noting that only non-partial paths can be selected in the hierarchy
path drop-down menu.

Selecting parallel labels in timeless levels

As timeless levels may also contain multiple parallel labels, the hierarchy path
modal window provides a drop-down menu for each level to select which label or
attribute definition is to be displayed. Area 1 of Figure 8.7 displays these drop-
down menus.

1This section is an updated version of the The level hierarchy section of the General Usage
chapter that is part of the EMU-webApp own brief manual by Markus Jochim.

2The term modal window is used in user interface design to refer to pop-up windows that
force the user to interact with the window before returning back to the main application.

8.2 General usage 119

Figure 8.6: Screenshot of the hierarchy modal window level displaying a path
through the hierarchy of the ae emuDB in its horizontal form.

Figure 8.7: Screenshot of top of hierarchy modal window of the EMU-webApp in
which the area marked 1 shows the drop-down menus for selecting the parallel
label for each level and area 2 marks the hierarchy path drop-down menu.

8.2 General usage 120

Adding a new item

The hierarchy modal window provides two methods for adding new annotation
items to a level. This can either be achieved by pressing the blue and white +
button next to the level’s name (which appends a new item to the end of the level)
or by preselecting an annotation item (by hovering the mouse over it) and hitting
either the n (insert new item before preselected item) or the m key (insert new item
after preselected item).

Modifying an annotation item

An item’s context menu3 is opened by single-left-clicking its node. The resulting
context menu displays a text area in which the label of the annotation item can
be edited, a play button to play the audio section associated with the item and a
collapse arrow button allowing the user to collapse the sub-tree beneath the current
item. Collapsing a sub-tree can be useful for masking parts of the hierarchy while
editing. A screenshot of the context menu is displayed in Figure 8.8.

Figure 8.8: Screenshot of the hierarchy modal window of the EMU-webApp display-
ing an annotation item’s context menu.

Adding a new link

Adding a new link between two items can be achieved by hovering the mouse over
one of the two items, holding down the SHIFT key and moving the mouse cursor
to the other item. A green dashed line indicates that the link to be added is valid,
while a red dashed line indicates it is not. A link’s validity is dependent on the
database’s configuration (i.e., if there is a link definition present and the type of
link definition) as well as the non-crossing constraint (Coleman and Local, 1991)
that essentially implies that links are not allowed to cross each other. If the link

3The term context menu is used in user interface design to refer to a pop-up menu or pop-up
area that provides additional information for the current state (i.e., the current item).

8.3 Configuring the EMU-webApp 121

is valid (i.e., a green dashed line is present), releasing the SHIFT key will add the
link to the annotation.

Deleting an annotation item or a link

Items and links are deleted by initially preselecting them by hovering the mouse
cursor over them. The preselected items are marked blue and preselected links
yellow. A preselected link is removed by hitting BACKSPACE and a preselected item
is deleted by hitting the y key. Deleting an item will also delete all links leading
to and from it.

8.3 Configuring the EMU-webApp

This section will give an overview of how the EMU-webApp can be configured.
The configuration of the EMU-webApp is stored in the EMUwebAppConfig section
of the DBconfig.json of an emuDB (see Appendix B.1.1 for details). This means
that the EMU-webApp can be configured separately for every emuDB. Although it
can be necessary for some advanced configuration options to manually edit the
DBconfig.json using a text editor (see Section 8.3.3), the most common config-

uration operations can be achieved using functions provided by the emuR package
(see Section 8.3.1).

A central concept for configuring the EMU-webApp are so-called perspectives.
Essentially, a perspective is an independent configuration of how the EMU-webApp
displays a certain set of data. Having multiple perspectives allows the user to
switch between different views of the data. This can be especially useful when deal-
ing with complex annotations where only showing certain elements for certain la-
beling tasks can be beneficial. Figure 8.9 displays a screenshot of the perspectives
side bar menu of the EMU-webApp which displays the three perspectives of the
ae emuDB. The default perspective displays both the Phonetic and the Tone levels
where as the Phonetic-only and the Tone-only only display these levels individu-
ally.

8.3.1 Basic configurations using emuR

R Example 8.3.1 shows how to create and load the demo data that will be used
throughout the rest of this chapter.

R Example 8.3.1

load package

library(emuR)

8.3 Configuring the EMU-webApp 122

Figure 8.9: Screenshot of the hierarchy modal window of the EMU-webApp display-
ing an annotation item’s context menu.

create demo data in directory provided by tempdir()

create_emuRdemoData(dir = tempdir())

create path to demo database

path2ae = file.path(tempdir(), "emuR_demoData", "ae_emuDB")

load database

ae = load_emuDB(path2ae, verbose = F)

As mentioned above, the EMU-webApp subdivides different ways to look at an
emuDB into so-called perspectives. Users can switch between these perspectives
in the web application. They contain, for example, information on what levels are
displayed, which SSFF tracks are drawn. R Example 8.3.2 shows how the current
perspectives can be listed using the list perspectives() function.

R Example 8.3.2

list perspectives of ae emuDB

list_perspectives(ae)

8.3 Configuring the EMU-webApp 123

name signalCanvasesOrder levelCanvasesOrder

1 default OSCI; SPEC Phonetic; Tone

2 Phonetic-only OSCI; SPEC Phonetic

3 Tone-only OSCI; SPEC Tone

As it is sometimes necessary to add new or remove existing perspectives to or
from a database, R Example 8.3.3 shows how this can be achieved using emuR’s
add/remove perspective() functions.

R Example 8.3.3

add new perspective to ae emuDB

add_perspective(ae,

name = "tmpPersp")

show added perspective

list_perspectives(ae)

name signalCanvasesOrder levelCanvasesOrder

1 default OSCI; SPEC Phonetic; Tone

2 Phonetic-only OSCI; SPEC Phonetic

3 Tone-only OSCI; SPEC Tone

4 tmpPersp OSCI; SPEC

remove newly added perspective

remove_perspective(ae,

name = "tmpPersp")

8.3.2 Signal canvas and level canvas order

As mentioned above, R Example 8.3.2 shows that the ae emuDB contains three
perspectives. The first perspective (default) displays the oscillogram (OSCI) fol-
lowed by the spectrogram (SPEC) in the signal canvas area (area 3 of Figure 8.1)
and the Phonetic and Tone levels in the level canvas area (area 4 of Figure 8.1).
It is worth noting that OSCI (oscillogram) and SPEC (spectrogram) are prede-
fined signal tracks that are always available. This is indicated by the capital
letters indicating that they are predefined constants. R Example 8.3.4 shows
how the order of the signal canvases and level canvases can be changed using the
get/set signalCanvasesOrder() and get/set levelCanvasesOrder().

8.3 Configuring the EMU-webApp 124

R Example 8.3.4

get order vector of signal canvases of default perspective

sco = get_signalCanvasesOrder(ae,

perspectiveName = "default")

show sco vector

sco

[1] "OSCI" "SPEC"

reverse sco order

using R's rev() function

scor = rev(sco)

set order vector of signal canvases of default perspective

set_signalCanvasesOrder(ae,

perspectiveName = "default",

order = scor)

set order vector of level canvases of default perspective

to only display the "Tone" level

set_levelCanvasesOrder(ae,

perspectiveName = "default",

order = c("Tone"))

list perspectives of ae emuDB

to show changes

list_perspectives(ae)

name signalCanvasesOrder levelCanvasesOrder

1 default SPEC; OSCI Tone

2 Phonetic-only OSCI; SPEC Phonetic

3 Tone-only OSCI; SPEC Tone

After the changes made in R Example 8.3.4, the default perspective will show
the spectrogram above the oscillogram in the signal canvas area and only the Tone
level in the level canvas area. Only levels with time information are allowed to be
displayed in the level canvas area, and the set levelCanvasesOrder() will print
an error if a level of type ITEM is added (see R Example 8.3.5).

8.3 Configuring the EMU-webApp 125

R Example 8.3.5

set level canvas order where a

level is passed into the order parameter

that is not of type EVENT or SEGMENT

set_levelCanvasesOrder(ae,

perspectiveName = "default",

order = c("Syllable"))

Error in set levelCanvasesOrder(ae, perspectiveName = "default",

order = c("Syllable")): levelDefinition with name ’Syllable’ is not

of type ’SEGMENT’ or ’EVENT’

The same mechanism used above can also be used to display any SSFF track
that is defined for the database by referencing its name. R Example 8.3.6 shows
how the existing SSFF track called fm (containing formant values calculated by
wrassp’s forest() function) can be added to the signal canvas area.

R Example 8.3.6

show currently available SSFF tracks

list_ssffTrackDefinitions(ae)

name columnName fileExtension

1 dft dft dft

2 fm fm fms

re-set order vector of signal canvases of default perspective

by appending the fm track

set_signalCanvasesOrder(ae,

perspectiveName = "default",

order = c(scor, "fm"))

A screenshot of the current display of the default perspective can be seen in
Figure 8.10.

8.3.3 Advanced configurations made by editing the
DBconfig.json

Although the above configuration options cover the most common use cases, the
EMU-webApp offers multiple other configuration options that are currently not con-
figurable via functions provided by emuR. These advanced configuration options

8.3 Configuring the EMU-webApp 126

Figure 8.10: Screenshot of signal and level canvases displays of the EMU-webApp

after the changes made in R Examples 8.3.4 and 8.3.6.

can currently only be achieved by manually editing the DBconfig.json file us-
ing a text editor. As even the colors used in the EMU-webApp and every key-
board shortcut can be reconfigured, here we will focus on the more common ad-
vanced configuration options. A full list of the available configuration fields of the
EMUwebAppConfig section of the DBconfig.json including their meaning, can be
found in Appendix B.1.1.

Overlaying signal canvases

To save space it can be beneficial to overlay one or more signal tracks onto other
signal canvases. This can be achieved by manually editing the assign array of
the EMUwebAppConfig:perspectives[persp idx]:signalCanvases field in the
DBconfig.json. Listing 8.1 shows an example configuration that overlays the fm

track on the oscillogram where the OSCI string can be replaced by any other entry
in the EMUwebAppConfig:perspectives[persp idx]:signalCanvases:order ar-
ray. Figure 8.11 displays a screenshot of such an overlay.

Listing 8.1: Overlay configuration of fm track over OSCI

...

"assign": [{
"signalCanvasName": "OSCI",

"ssffTrackName": "fm"

}],
...

Frequency-aligned formant contours spectrogram overlay

The current mechanism for laying frequency-aligned formant contours over the
spectrogram is to give the formant track the predefined name FORMANTS. If

8.3 Configuring the EMU-webApp 127

Figure 8.11: Screenshot of signal canvases display of the EMU-webApp after the
changes made in R Examples 8.3.4 and 8.3.6.

the formant track is called FORMANTS and it is assigned to be laid over the
spectrogram (see Listing 8.2) the EMU-webApp will frequency-align the contours to
the current minimum and maximum spectrogram frequencies (see Figure 8.12).

Listing 8.2: Overlay configuration of FORMANTS track over SPEC

...

"assign": [{
"signalCanvasName": "SPEC",

"ssffTrackName": "FORMANTS"

}],
...

Figure 8.12: Screenshot of signal canvases area of the EMU-webApp displaying for-
mant contours that are overlaid on the spectrogram and frequency-aligned.

Correcting formants

The above configuration of the frequency-aligned formant contours will automat-
ically allow the FORMANTS track to be manually corrected. Formants can be
corrected by hitting the appropriate number key (1 = first formant, 2 = second for-
mant, ...). Similar to boundaries and events, the mouse cursor will automatically
be tracked in the SPEC canvas and the nearest formant value preselected. Holding
down the SHIFT key moves the current formant value to the mouse position, hence
allowing the contour to be redrawn and corrected.

8.3 Configuring the EMU-webApp 128

8.3.4 2D canvas

The EMU-webApp has an additional canvas which can be configured to display two-
dimensional data. Figure 8.13 shows a screenshot of the 2D canvas, which is placed
in the bottom right hand corner of the level canvas area of the web application.
The screenshot shows data representing EMA sensor positions on the mid sagittal
plane. Listings 8.3 shows how the 2D canvas can be configured. Essentially, every
drawn dot is configured by assigning a column in an SSFF track that specifies the
X values and an additional column that specifies the Y values.

Figure 8.13: Screenshot of 2D canvas of the EMU-webApp displaying two-
dimensional EMA data.

Listing 8.3: Configuration of the 2D canvas to display EMA data.

...

"twoDimCanvases": {
"order": ["DOTS"],

"twoDimDrawingDefinitions": [{
"name": "DOTS",

"dots": [{
"name": "tt",

"xSsffTrack": "tt_posy",

"xContourNr": 0,

"ySsffTrack": "tt_posz",

8.3 Configuring the EMU-webApp 129

"yContourNr": 0,

"color": "rgb(255,0,0)"

},
...

"connectLines": [{
"fromDot": "tt",

"toDot": "tm",

"color": "rgb(0,0,0)"

},
...

EPG

The 2D canvas of the EMU-webApp can also be configured to display EPG data
as displayed in Figure 8.14. The SSFF file containing the EPG data has to be
formated in a specific way. The format is a set of eight bytes per point in time,
where each byte represents a row of electrodes on the artificial palate. Each binary
bit value per byte indicates whether one of the eight sensors is activated or not (i.e.,
tongue contact was measured). If data in this format and an SSFF track with the
predefined name EPG referencing the SSFF files are present, the 2D canvas can be
configured to display this data by adding the EPG to the twoDimCanvases:order

array as shown in Listing 8.4.

Listing 8.4: Configuration of the 2D canvas to display EPG data

"twoDimCanvases": {
"order": ["EPG"]

}

EMA gestural landmark recognition

The EMU-webApp can also be configured to semi-automatically detect gestural land-
marks of EMA contours. The functions implemented in the EMU-webApp are based
on various Matlab scripts by Phil Hoole. For a description of which gestural land-
marks are detected and how these are detected, see Bombien (2011) page 61 ff.

Compared to the above configurations, configuring the EMU-webApp to semi-
automatically detect gestural landmarks of EMA contours is done as part of the
level definition’s configuration entries of the DBconfig.json. Listing 8.5 shows
the anagestConfig entry, which configures the tongueTipGestures event level for
this purpose. Within the web application this level has to be preselected by the
user and a region containing a gesture in the SSFF track selected (left click and

8.3 Configuring the EMU-webApp 130

Figure 8.14: Screenshot of 2D canvas of the EMU-webApp displaying EPG palate
traces.

drag). Hitting the ENTER/RETURN key then executes the semi-automatic gestural
landmark recognition functions. If multiple candidates are recognized for certain
landmarks, the user will be prompted to select the appropriate landmark.

Listing 8.5: EMA gestural landmark recognition configuration for the
tongueTipGestures event level.

...

"levelDefinitions": [{
{

"name": "tongueTipGestures",

"type": "EVENT",

"attributeDefinitions": [{
"name": "tongueTipGestures",

"type": "STRING"

}],
"anagestConfig": {

"verticalPosSsffTrackName": "tt_posz",

"velocitySsffTrackName": "t_tipTV",

"autoLinkLevelName": "ORT",

"multiplicationFactor": 1,

"threshold": 0.2,

8.4 Conclusion 131

"gestureOnOffsetLabels": ["gon", "goff"]

,

"maxVelocityOnOffsetLabels": ["von", "

voff"],

"constrictionPlateauBeginEndLabels": ["

pon", "poff"],

"maxConstrictionLabel": "mon"

}
...

The user will be prompted to select an annotation item of the level specified in
anagestConfig:autoLinkLevelName once the gestural landmarks are recognized.
The EMU-webApp then automatically links all gestural landmark events to that
item.

8.4 Conclusion

This chapter provided an overview of the EMU-webApp by showing the main layout
and configuration options and how its labeling mechanics work. To our knowledge,
the EMU-webApp is the first client-side web-based annotation tool that is this feature
rich. Being completely web-based not only allows it to be used within the context
of the EMU-SDMS but also allows it to connect to any web server that implements
the EMU-webApp-websocket-protocol (see Appendix C for details). This feature
is currently being utilized, for example, by the IPS-EMUprot-nodeWSserver.js

server side software package (see
https://github.com/IPS-LMU/IPS-EMUprot-nodeWSserver), which allows emuDBs
to be served to any number of clients for collaborative annotation efforts. Further,
by using the URL Parameters (see Chapter 12 for details) the web application
can also be used to display annotation data that is hosted on any web server 4.
Because of these features, we feel the EMU-webApp is a valuable contribution to the
speech and spoken language software tool landscape.

4See the BAS CLARIN Repository for a further example of an application using the
EMU-webApp-websocket-protocol to display repository data in the EMU-webApp. See the BAS
Web Services for an example of an application that creates links that utilize the URL parameters.

https://github.com/IPS-LMU/IPS-EMUprot-nodeWSserver
http://hdl.handle.net/11858/00-1779-0000-0006-BF00-E
http://hdl.handle.net/11858/00-1779-0000-0028-421B-4
http://hdl.handle.net/11858/00-1779-0000-0028-421B-4

Part III

Main emuR function and object
index

Chapter 9

emuR - package functions

This chapter gives an overview of the essential functions and central objects pro-
vided by the emuR package. It is not meant as a comprehensive list of every
function and object provided by emuR, but rather tries to group the essential func-
tions into meaningful categories for easier navigation. The categories presented in
this chapter are:

• Import and conversion routines (Section 9.1),

• emuDB interaction and configuration routines (Section 9.2),

• EMU-webApp configuration routines (Section 9.3),

• Data extraction routines (Section 9.4),

• Central objects in emuR (Section 9.5), and

• Export routines (Section 9.6).

If a comprehensive list of every function and object provided by the emuR

package is required, R’s help() function (see R Example 9.0.1) can be used.

R Example 9.0.1

help(package="emuR")

9.1 Import and conversion routines

As most people that are starting to use the EMU-SDMS will probably already have
some form of annotated data, we will first show how to convert existing data to the
emuDB format. For a guide to creating an emuDB from scratch and for information
about this format see Chapter 4.

9.1 Import and conversion routines 134

9.1.1 Legacy EMU databases

For people transitioning to emuR from the legacy EMU system, emuR provides a
function for converting existing legacy EMU databases to the new emuDB format.
R Example 9.1.1 shows how to convert a legacy database that is part of the demo
data provided by the emuR package.

R Example 9.1.1

load the package

library(emuR)

create demo data in directory provided by the tempdir() function

create_emuRdemoData(dir = tempdir())

get the path to a .tpl file of

a legacy EMU database that is part of the demo data

tplPath = file.path(tempdir(),

"emuR_demoData",

"legacy_ae",

"ae.tpl")

convert this legacy EMU database to the emuDB format

convert_legacyEmuDB(emuTplPath = tplPath, targetDir = tempdir())

This will create a new emuDB in a temporary directory, provided by R’s tempdir()
function, containing all the information specified in the .tpl file. The name of the
new emuDB is the same as the basename of the .tpl file from which it was gen-
erated. In other words, if the template file of the legacy EMU database has path
A and the directory to which the converted database is to be written has path B,
then convert legacyEmuDB(emuTplPath = "A", targetdir = "B") will create
an emuDB directory in B from the information stored in A.

9.1.2 TextGrid collections

A further function provided is the convert TextGridCollection() function. This
function converts an existing .TextGrid and .wav file collection to the emuDB for-
mat. In order to pair the correct files together the .TextGrid files and the .wav

files must have the same name (i.e., file name without extension). A further
restriction is that the tiers contained within all the .TextGrid files have to be
equal in name and type (equal subsets can be chosen using the tierNames argu-
ment of the function). For example, if all .TextGrid files contain the tiers Syl:

9.1 Import and conversion routines 135

IntervalTier, Phonetic: IntervalTier and Tone: TextTier the conversion
will work. However, if a single .TextGrid of the collection has the additional tier
Word: IntervalTier the conversion will fail, although it can be made to work by
specifying the equal tier subset equalSubset = c(‘Syl’, ‘Phonetic’, ‘Tone’)

and passing it into the function argument convert TextGridCollection(...,

tierNames = equalSubset, ...). R Example 9.1.2 shows how to convert a
TextGrid collection to the emuDB format.

R Example 9.1.2

get the path to a directory containing

.wav & .TextGrid files that is part of the demo data

path2directory = file.path(tempdir(),

"emuR_demoData",

"TextGrid_collection")

convert this TextGridCollection to the emuDB format

convert_TextGridCollection(path2directory, dbName = "myTGcolDB",

targetDir = tempdir())

R Example 9.1.2 will create a new emuDB in the directory tempdir() called
myTGcolDB. The emuDB will contain all the tier information from the .TextGrid

files but will not contain hierarchical information, as .TextGrid files do not contain
any linking information. It is worth noting that it is possible to semi-automatically
generate links between time-bearing levels using the autobuild linkFromTimes()

function. An example of this was given in Chapter 2. R Example 9.1.2 cre-
ates a new emuDB in the directory tempdir() called myTGcolDB. The emuDB con-
tains all the tier information from the .TextGrid files no hierarchical information,
as .TextGrid files do not contain any linking information. Further, it is pos-
sible to semi-automatically generate links between time-bearing levels using the
autobuild linkFromTimes() function. An example of this was given in Chapter
2.

9.1.3 BPF collections

Similar to the convert TextGridCollection() function, the emuR package also
provides a function for converting file collections consisting of BAS Partitur Format
(BPF) and .wav files to the emuDB format. R Example 9.1.3 shows how this can
be achieved.

9.1 Import and conversion routines 136

R Example 9.1.3

get the path to a directory containing

.wav & .par files that is part of the demo data

path2directory = file.path(tempdir(),

"emuR_demoData",

"BPF_collection")

convert this BPFCollection to the emuDB format

convert_BPFCollection(path2directory, dbName = 'myBPF-DB',
targetDir = tempdir(), verbose = F)

As the BPF format also permits annotation items to be linked to one another,
this conversion function can optionally preserve this hierarchical information by
specifying the refLevel argument.

9.1.4 txt collections

A further conversion routine provided by the emuR package is the
convert txtCollection() function. As with other file collection conversion func-
tions, it converts file pair collections but this time consisting of plain text .txt and
.wav files to the emuDB format. Compared to other conversion routines it behaves
slightly differently, as unformatted plain text files do not contain any time infor-
mation. It therefore places all the annotations of a single .txt file into a single
timeless annotation item on a level of type ITEM called bundle.

R Example 9.1.4

get the path to a directory containing .wav & .par

files that is part of the demo data

path2directory = file.path(tempdir(),

"emuR_demoData",

"txt_collection")

convert this txtCollection to the emuDB format

convert_txtCollection(sourceDir = path2directory,

dbName = "txtCol",

targetDir = tempdir(),

attributeDefinitionName = "transcription",

verbose = F)

9.2 emuDB interaction and configuration routines 137

Using this conversion routine creates a bare-bone, single route node emuDB

which either can be further manually annotated or automatically hierarchically
annotated using the runBASwebservice *1 functions of emuR. It is worth noting
that these functions are already part of the emuR package; however, they are still
considered to have a beta status which is why they are omitted from this doc-
umentation. In future versions of this documentation a section or chapter will
be dedicated to using the BAS Webservices (Kisler et al., 2012) to automatically
generate a hierarchical annotation structure for an entire emuDB.

9.2 emuDB interaction and configuration routines

This section provides a tabular overview of all the emuDB interaction routines
provided by the emuR package and also provides a short description of each function
or group of functions.

Function(s) Description

add/list/remove attrDefLabelGroup() Add / list / remove label group to / of /
from attributeDefinition of emuDB

add/list/remove labelGroup() Add / list / remove global label group
to / of / from emuDB

add/list/remove levelDefinition() Add / list / remove level definition to /
of / from emuDB

add/list/remove linkDefinition() Add / list / remove link definition to /
of / from emuDB

add/list/

remove ssffTrackDefinition()

Add / list / remove SSFF track
definition to / of / from emuDB

add/list/rename/

remove attributeDefinition()

Add / list / rename / remove attribute
definition to / of / from emuDB

add files() Add files to emuDB

autobuild linkFromTimes() Autobuild links between two levels using
their time information emuDB

create emuDB() Create empty emuDB

duplicate level() Duplicate level
import mediaFiles() Import media files to emuDB

list bundles() List bundles of emuDB
list files() List files of emuDB
list sessions() List sessions of emuDB
load emuDB() Load emuDB

1Functions contributed by Nina Pörner.

9.4 Data extraction routines 138

Function(s) Description

replace itemLabels() Replace item labels
set/get/remove legalLabels() Set / get / remove legal labels of

attribute definition of emuDB
rename emuDB() Rename emuDB

Table 9.1: Overview of the emuDB interaction routines
provided by emuR.

9.3 EMU-webApp configuration routines

This section provides a tabular overview of all the EMU-webApp configuration rou-
tines provided by the emuR package and also provides a short description of each
function or group of functions. See Chapter 8 for examples of how to use these
functions.

Function(s) Description

add/list/remove perspective() Add / list / remove perspective to / of /
from emuDB

set/get levelCanvasesOrder() Set / get level canvases order for
EMU-webApp of emuDB

set/get signalCanvasesOrder() Set / get signal canvases order for
EMU-webApp of emuDB

Table 9.2: Overview of the EMU-webApp configuration
functions provided by emuR.

It is worth noting that the legal labels configuration of the emuDB configuration
will also affect how the EMU-webApp behaves, as it will not permit any other labels
to be entered except those defined as legal labels.

9.4 Data extraction routines

This section provides a tabular overview of all the data extraction routines provided
by the emuR package and also provides a short description of each function or group
of functions. See Chapter 5 and Chapter 6 for multiple examples of how the various
data extraction routines can be used.

9.5 Central objects 139

Function(s) Description

query() Query emuDB

requery hier() Requery hierarchical context of a
segment list in an emuDB

requery seq() Requery sequential context of segment
list in an emuDB

get trackdata() Get trackdata from loaded emuDB

Table 9.3: Overview of the data extraction functions pro-
vided by emuR.

An overview of how the various data extraction functions in the emuR package
interact is displayed in Figure 9.1. It is an updated version of a figure presented in
Harrington (2010) on page 121 that additionally shows the output type of various
post-processing functions (e.g., dcut()).

9.5 Central objects

This section provides a tabular overview of the central objects provided by the
emuR package and also provides a short description of each object. See Chapter 5
and 6 for examples of functions returning these objects and how they can be used.

Object Description

emuRsegs A emuR segment list is a list of segment
descriptions. Each segment descriptions
describes a sequence of annotation
items. The list is usually a result of an
emuDB query using the query()

function.
trackdata A track data object is the result of

get trackdata() and usually contains
the extracted signal data tracks
belonging to segments of a segment list.

9.6 Export routines 140

Object Description

emuRtrackdata A emuR track data object is the result of
get trackdata() if the resultType

parameter is set to emuRtrackdata or
the result of an explicit call to
create emuRtrackdata. Compared to
the trackdata object it is a sub-class of
a data.table/data.frame which is
meant to ease integration with other
packages for further processing. It can
be viewed as an amalgamation of an
emuRsegs and a trackdata object as it
contains the information stored in both
objects (see also
?create emuRtrackdata()).

Table 9.4: Overview of the central objects of the emuR

package.

9.6 Export routines

Although associated with data loss, the emuR package provides an export routine
to the common TextGrid collection format called export TextGridCollection().
While exporting is sometimes unavoidable, it is essential that users are aware that
exporting to other formats which do not support or only partially support hierar-
chical annotations structures will lead to the loss of the explicit linking information.
Although the autobuild linkFromTimes() can partially recreate some of the hi-
erarchical structure, it is advised that the export routine be used with extreme
caution. R Example 9.6.1 shows how export TextGridCollection() can be used
to export the levels Text, Syllable and Phonetic of the ae demo emuDB to a TextGrid
collection. Figure 9.2 show the content of the created msajc003.TextGrid file as
displayed by Praat’s "Draw visible sound and Textgrid..." procedure.

R Example 9.6.1

get the path to "ae" emuDB

path2ae = file.path(tempdir(), "emuR_demoData", "ae_emuDB")

load "ae" emuDB

9.6 Export routines 141

get trackdata()

emuDB
Signals Annotations

query()

Segment listTrackdata

dcut() dur() label()dur()
requery seq()/
requery hier()

Duration (vec-
tor)

Values (vector
or matrix) at
one time point

Annotations
(vector)

either
either

or

or

Figure 9.1: Relationship between various key functions in emuR and their output.
Figure is an updated version of Figure 5.7 in Harrington (2010)

on page 121.

9.7 Conclusion 142

ae = load_emuDB(path2ae)

export the levels "Text", "Syllable"

and "Phonetic" to a TextGrid collection

export_TextGridCollection(ae,

targetDir = tempdir(),

attributeDefinitionNames = c("Text",

"Syllable",

"Phonetic"))

Depending on user requirements, additional export routines might be added to
the emuR in the future.

9.7 Conclusion

This chapter provided an overview of the essential functions and central objects,
grouped into meaningful categories, provided by the emuR package. It is meant as
a quick reference for the user to quickly find functions she or he is interested in.

9.7 Conclusion 143

amongst her friends she wasconsidered->beautiful

W S S S W W W S W->S W W

V m V N s t H@: f r E n z S i:w@z kH@n s Id@ db j u:dH@ f @ l

Time (s)
0 2.904

msajc003

Figure 9.2: TextGrid annotation generated by the export TextGridCollection()

function containing the tiers (from top to bottom): Text, Syllable, Phonetic.

Part IV

Implementation

Chapter 10

Implementation of the query
system*

Compatibly with other query languages, the EQL defines the user a front-end
interface and infers the query’s results from its semantics. However, a query lan-
guage does not define any data structures or specify how the query engine is to be
implemented. As mentioned in Chapter 1, a major user requirement was database
portability, simple package installation, tolerable run times over complex queries,
and a system that did not rely on external software at runtime. The only available
back-end implementation that met those needs and was also available as an R
package at the time was (R)SQLite (Hipp and Kennedy, 2007; Wickham et al.,
2014). As (R)SQLite is a relational database management system, emuR’s query
system could not be implemented so as to use directly the primary data sources
of an emuDB, that is, the JSON files described in Chapter 4. A syncing mechanism
that maps the primary data sources to a relational form for querying purposes had
to be implemented. This relational form is referred to as the emuDBcache in the
context of an emuDB. The data sources are synchronized while an emuDB is being
loaded and when changes are made to the annotation files. To address load time
issues, we implemented a file check-sum mechanism which only reloads and syn-
chronizes annotation files that have a changed MD5-sum (Rivest, 1992). Figure
10.1 is a schematic representation of how the various emuDB interaction functions
interact with either the file representation or the relational cache.

Despite the disadvantages of cache invalidation problems, there are several
advantages to having an object relational mapping between the JSON-based an-
notation structure of an emuDB and a relation table representation. One is that
the user still has full access to the files within the directory structure of the emuDB.
This means that external tools can be used to script, manipulate or simply interact

*Sections of this chapter have been published in Winkelmann et al. (2017).

146

emuR: emuDB interaction funcs

load emuDB()

emuDBhandle

get trackdata()

add linkDefinition()

...

requery hier()

query()

exampleDB emuDB

exampleDB DBconfig.json
0002 ses/

bundle2 bndl/
bundle2.wav
. . .

relational annot. struct.

items table

. . . item id . . .

labels table

. . . item id label . . .

links table

. . . from id to id . . .

. . .sy
n
ch

ro
n
iz

e

Figure 10.1: Schematic architecture of emuDB interaction functions of the emuR

package. Orange paths show examples of functions interacting with the files of
the emuDB, while green paths show functions accessing the relational annotation
structure. Actions like saving a changed annotation using the EMU-webApp first
save the annot.json to disk then update the relational annotation structure.

147

with these files. This would not be the case if the files were stored in databases in a
way that requires (semi-)advanced programming knowledge that might be beyond
the capabilities of many users. Moreover, we can provide expert users with the
option of using other relational database engines such as PostgreSQL, including all
their performance-tweaking abilities, as their relational cache. This is especially
valuable for handling very large speech databases.

The relational form of the annotation structure is split into six tables in the
relational database to avoid data redundancy. The six tables are:

1. emu db: containing emuDB information (columns: uuid, name),

uuid name
0fc618dc-8980-414d-8c7a-144a649ce199 ae

2. session: containing session information (columns: db uuid, name),

db uuid name
0fc618dc-8980-414d-8c7a-144a649ce199 0000

.

3. bundle: containing bundle information (columns: db uuid, session, name,
annotates, sample rate, md5 annot json),

db uuid ses. . . name annotates sample r. . . md5 an. . .
0fc61. . . 0000 msajc003 msajc003.wav 20000 785c7. . .

.

4. items: containing all annotation items of emuDB (columns: db uuid, session,
bundle, item id, level, type, seq idx, sample rate, sample point,
sample start, sample dur),

db uuid session bundle item id level type
0fc61. . . 0000 msajc003 147 Phonetic SEGMENT

.

seq idx sample rate sample point sample start sample dur
1 20000 NA 3749 1389

.

5. labels: containing all labels belonging to all items (columns: db uuid,
session, bundle, item id, label idx, name, label), and

db uuid session bundle item id label idx name label
0fc61. . . 0000 msajc003 147 1 Phonetic V

. .

10.1 Query expression parser 148

6. links: containing all links between annotation items of emuDB (columns:
db uuid, session, bundle, from id, to id, label).

db uuid session bundle from id to id label
0fc61. . . 0000 msajc003 8 7 NA

.

While performing a query the engine uses an aggregate key to address every
annotation item and its labels (db uuid, session, bundle, item id) and a simi-
lar aggregate key to dereference the links (db uuid, session, bundle, from id /
to id) which connect items. As the records in relational tables are not intrinsi-
cally ordered a further aggregate key is used to address the annotation item via
its index and level (uuid, session, bundle, level / seq idx). This is used, for
example, during sequential queries to provide an ordering of the individual an-
notation items. It is worth noting that a plethora of other tables are created at
query time to store various temporary results of a query. However, these tables
are created as temporary tables during the query and are deleted on completion
which means they are not permanently stored in the emuDBcache.

10.1 Query expression parser

The query engine parses an EQL query expression while simultaneously executing
partial query expressions. This ad-hoc string evaluation parsing strategy is dif-
ferent from multiple other query systems which incorporate a query planner stage
to pre-parse and optimize the query execution stage (e.g., Hipp and Kennedy,
2007; Conway et al., 2016). Although no pre-optimization can be performed, this
strategy simplifies the execution of a query as it follows a constant heuristic evalua-
tion strategy. This section describes this heuristic evaluation and parsing strategy
based on the EQL expression [[Syllable == W -> Syllable == W] ^[Phoneme

== @ -> #Phoneme == s]].
The main strategy of the query expression parser is to recursively parse and

split an EQL expression into left and right sub-expressions until a so-called Simple
Query (SQ) term is found and can be executed (see EBNF in Appendix D for more
information on the elements comprising the EQL). This is done by determining the
operator which is the first to be evaluated on the current expression. This operator
is determined by the sub-expression grouping provided by the bracketing. Each
sub-expression is then considered to be a fully valid EQL expression and once
again parsed. Figure 10.2, which is split into seven stages (marked S1-S7), shows
the example EQL expression being parsed (S1-S3) and the resulting items being
merged to meet the requirements of the individual operator (S4-S6) of the original
query. S1 to S3 show the splitting operator character (e.g., -> in purple) which

10.1 Query expression parser 149

splits the expression into a left (green) and right (orange) sub-expression.

[[Syllable == W -> Syllable == W] ^ [Phoneme == @ -> #Phoneme == s]]

[Syllable == W -> Syllable == W]

Syllable == W Syllable == W

[Phoneme == @ -> #Phoneme == s]

Phoneme == @ #Phoneme == s

W items ->W items ˆ@ items ->s items

@ ->ssequence of items

s items@ items

W ->W sequence of items

W itemsW items

#s itemsconvert queryResultToEmuRsegs()

S1

S2

S3

S4

S5

S6

S7

execute SQ

execute SQ

execute SQ

execute SQ

insert

update

update

p
ar

se
q
u
er

y
m

er
ge

re
su

lt
s

Figure 10.2: Example of how the query expression parser parses and evaluates an
EQL expression and merges the result according to the respective EQL operators.

The result modifier symbol (#) is noteworthy for its extra treatment by the
query engine as it places an exact copy of the items marked by it into its own
intermediary result storage (see #s items node on S7 in Figure 10.2). After per-
forming the database operations necessary to do the various merging operation
which are performed on the intermediary results, this storage is updated by re-
moving items from it that are no longer present due to the merging operation. As a
final step, the query engine evaluates if there are items present in the intermediary
result storage created by the presence of the result modifier symbol. If so, these
items are used to create an emuRsegs object by deriving the time information and
extracting the necessary information from the intermediate result storage. If no
items are present in the result modifier storage, the query engine uses the items
provided by the final merging procedure in S3 instead (which is not the case in
the example used in Figure 10.2).

A detailed description of how this query expression parser functions is pre-

10.2 Redundant links 150

sented in a pseudo code representation in Algorithms 1 and 21. For simplicity, this
representation ignores the treatment of the result modifier symbol (#) and focuses
on the parsing and evaluation strategy of the query expression parser. As stated
previously, the presence of the result modifier before an SQ triggers the query en-
gine to place a copy of the result of that SQ into an additional result table, which
is then updated throughout the rest of the query. The starting point for every
query is the query() function (see line 64 in Algorithm 2). This function places
the filtered items, links and labels entries that are relevant for the current query
into temporary tables. Depending on which query terms and operators are found,
the EQL query engine uses the various sub-routines displayed in Algorithms 1 and
2 to parse and evaluate the EQL expression.

10.2 Redundant links

A noteworthy difference between the legacy and the new EMU system is how
hierarchies are stored. The legacy system stored the linking information of a hier-
archy in so-called hierarchical label files, which were plain text files that used the
.hlb extensions. Within the label files this information was stored in space/blank
separated lines:

111 139 140 141 173 174 175 185

112 142 143 176 177

113 144 145 146 178 179 180

114 147

115 148

116 149,

where the first number (green) of each line was the parent’s ID and the fol-
lowing numbers (orange) indicated the annotation items the parent was linked to.
However, it was not just links to the items on the child level that were stored in
each line. Rather, a link to all children of all levels below the parent level was
stored for each parent item. This was likely due to performance benefits in pars-
ing and mapping onto the internal structures used by the legacy query engine.
A schematic representation of this form of linking is displayed in Figure 10.3A.
As these redundant links are prone to errors while updating the data model and
lead to a convoluted annotation structure models (see excessive use of dashed
lines in Figure 10.3A), we chose to eliminate them and opted for the cleaner, non-
redundant representation displayed in Figure 10.3B. Although this led to a more

1The R code that implements this pseudo code can be found here: https://github.com/

IPS-LMU/emuR/blob/master/R/emuR-query.database.R.

https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R

10.2 Redundant links 151

Algorithm 1 Pseudo Code for Query Engine Algorithm - Part 1

1: function query DbEqlFUNCQ(query)
2: place all parent level items into tmp table
3: place all child level items into tmp table
4: query DbHier(parentItemsTable, childItemsTable)
5: if Start End or Medial query then
6: extract parent items and place in tmp result table
7: else
8: extract child items and place in tmp result table
9: end if

10: end function
11: function query DbEqlLABELQ(query)
12: splitLabels← split labels at |
13: for all splitLabels do
14: if operator is ==, = or ! = then
15: extract items that contain labels which are equal or unequal to label
16: else if operator is = or ! ∼ then
17: extract items that contain labels that match or don′t match RegEx
18: end if
19: merge results in tmp table
20: end for
21: end function
22: function query DbEqlSQ(query)
23: if query contains round brackets then
24: query DbEqlFUNCQ(query)
25: else
26: query DbEqlLABELQ(query)
27: end if
28: end function
29: function query DbEqlCONJQ(query)
30: splitItems← split query at &
31: for all splitItems do
32: query DbEqlSQ(splitItems)
33: merge results in tmp table
34: end for
35: end function
36: function query DbHier(leftTable, rightTable)
37: hp← extract hier. paths conn. leftTable and rightTable level names
38: for all child and parent level pairs in hp do
39: connect child and parent items using links table
40: reduce to min seq. idx (left side of trapeze)
41: and to max seq. idx (right side of trapeze)
42: end for
43: end function

10.2 Redundant links 152

Algorithm 2 Pseudo Code for Query Engine Algorithm - Part 2

44: function query DbEqlInBracket(query)
45: qTrim← remove outer square brackets
46: leftQuery, rightQuery ← split qTrim at cur. operator
47: query databaseWithEql(leftQuery) . recursive part of query
48: query databaseWithEql(rightQuery) . recursive part of query
49: if cur. operator is domintation operator then
50: query DbHier(leftQueryResultTable, rightQueryResultTable)
51: else if cur. operator is seq. operator then
52: find seq. of leftQueryResultTable and rightQueryResultTable items
53: else
54: query databaseWithEql(qTrim)
55: end if
56: end function
57: function query DbWithEql(query)
58: if query isn′t wrapped in brackets then
59: query DbEqlCONJQ(query)
60: else
61: query DbEqlInBracket(query)
62: end if
63: end function
64: function query(query, sesPattern, bndlPattern)
65: filter items in relational tables by sesPattern
66: filter items in relational tables by bndlPattern
67: query DbWithEql(query)
68: seglist← convert queryResultToEmuRsegs(tmpResultTableName)
69: return seglist
70: end function

10.2 Redundant links 153

complex query parser engine for hierarchical queries and functions, we feel it is a
cleaner, more accurate and more robust data representation.

A
Intonational (ITEM)

Intermediate (ITEM)

Word&Accent&Text (ITEM)Foot (ITEM)

Syllable (ITEM)

Phoneme (ITEM) Tone (EVENT)

Phonetic (SEGMENT)

B
Intonational (ITEM)

Intermediate (ITEM)

Word&Accent&Text (ITEM)Foot (ITEM)

Syllable (ITEM)

Phoneme (ITEM) Tone (EVENT)

Phonetic (SEGMENT)

Figure 10.3: Schematic of hierarchy graph ae; A: legacy redundant strategy vs.
A: cleaner non-redundant strategy.

Chapter 11

wrassp implementation

The libassp was originally written by Michel Scheffers as a C library which could
be linked against or compiled into separate executable signal processing command
line tools. To extend the legacy EMU system, the libassp it was integrated into it
by using the Tcl Extension Architecture (TEA) to create a native extension to the
Tcl programming language. The bulk of this work was done by Lasse Bombien in
collaboration with Michel Scheffers. Lasse Bombien also implemented the tkassp

user interface module as part of the legacy EMU system to allow the user full access
to the functionality of the libassp from a GUI. The wrassp R package was written
by Lasse Bombien and Raphael Winkelmann based on a similar approach as the
tclassp port using the TEA. Since the libassp was put under the GPL version
3 (see https://www.gnu.org/licenses/gpl-3.0.en.html) by Michel Scheffers,
the wrassp also carries this license.

11.1 The libassp port

Here, we briefly describe our strategy for porting the libassp to R. The port of
the libassp to the R eco-system was achieved using the foreign language interface
provided by the R system as is described in the R Extensions manual (see https://
cran.r-project.org/doc/manuals/r-release/R-exts.htmlWriting). To port
the various signal processing routines provided by the libassp and to avoid code
redundancy a single C function called performAssp() was created. This function
acts as a C wrapper function interface to libassp’s internal functions and handles
the data conversion between libassp’s internal and R’s data structures. However,
to provide the user with a clear and concise Application Programming Interface
(API) we chose to implement separate R functions for every signal processing
function. This also allowed us to formulate more concise manual entries for each of
the signal processing function provided by wrassp. R Example 11.1.1 is a pseudo-

https://www.gnu.org/licenses/gpl-3.0.en.html
https://cran.r-project.org/doc/manuals/r-release/R-exts.htmlWriting
https://cran.r-project.org/doc/manuals/r-release/R-exts.htmlWriting

11.1 The libassp port 155

code example of the layout of each signal processing function wrassp provides.

R Example 11.1.1

##' roxygen2 documentation for genericWrasspFun

genericWrasspSigProcFun = function(listOfFiles,

...,

forceToLog = useWrasspLogger){

###########################

perform parameter checks

if (is.null(listOfFiles)) {
stop(paste("listOfFiles is NULL! ..."))

}
...

call performAssp

externalRes = invisible(.External("performAssp", listOfFiles,

fname = "forest", ...))

############################

write options to options log file

if (forceToLog){
optionsGivenAsArgs = as.list(match.call(

expand.dots = TRUE))

wrassp.logger(optionsGivenAsArgs[[1]],

optionsGivenAsArgs[-1],

optLogFilePath, listOfFiles)

}

return(externalRes)

}

To provide access to the file handling capabilities of the libassp, we im-
plemented two C interface functions called getDObj2() (where 2 is simply used
as a function version marker) and writeDObj(). These functions use libassp’s
asspFOpen(), asspFFill(), asspFWrite() and asspFClose() function to read
and write files supported by the libassp from and to files on disk into R. The
public API functions read.AsspDataObj() and write.AsspDataObj() are the R
wrapper functions around getDObj2() and writeDObj().

11.1 The libassp port 156

To be able to access some of libassp’s internal variables further wrapper
functions were implemented. It was necessary to have access to these variables to
be able to perform adequate parameter checks in various functions. R Example
11.1.2 shows these functions.

R Example 11.1.2

load the wrassp package

library(wrassp)

show AsspWindowTypes

AsspWindowTypes()

[1] "RECTANGLE" "PARABOLA" "COS" "HANN"

[5] "COS_4" "HAMMING" "BLACKMAN" "BLACK_X"

[9] "BLACK_M3" "BLACK_M4" "NUTTAL_3" "NUTTAL_4"

[13] "KAISER2_0" "KAISER3_0" "KAISER4_0"

show wrasspOutputInfos

AsspLpTypes()

[1] "ARF" "LAR" "LPC" "RFC"

show wrasspOutputInfos

AsspSpectTypes()

[1] "DFT" "LPS" "CSS" "CEP"

The wrassp package provides two R objects that contain useful information re-
garding the supported file format types (AsspFileFormats) and the output created
by the various signal processing functions. R Example 11.1.3 shows the content of
these two objects.

R Example 11.1.3

show AsspFileFormats

AsspFileFormats

RAW ASP_A ASP_B XASSP IPDS_M IPDS_S AIFF

1 2 3 4 5 6 7

AIFC CSL CSRE ESPS ILS KTH SWELL

8 9 10 11 12 13 13

11.1 The libassp port 157

SNACK SFS SND AU NIST SPHERE PRAAT_S

13 14 15 15 16 16 17

PRAAT_L PRAAT_B SSFF WAVE WAVE_X XLABEL YORK

18 19 20 21 22 24 25

UWM

26

show first element of wrasspOutputInfos

wrasspOutputInfos[[1]]

$ext

[1] "acf"

##

$tracks

[1] "acf"

##

$outputType

[1] "SSFF"

As a final remark, it is worth noting that porting the C library libassp to R
enables the functions provided by the wrassp package to run at near native speeds
on every platform supported by R and avoids almost any interpreter overhead.

Chapter 12

EMU-webApp implementation

Here, we briefly describe our strategy for implementing the EMU-webApp. The EMU-
webApp is written entirely in HTML, Javascript and CSS. To ease testing and to
enable easy integration and extendability we chose to use the AngularJS Javascript
framework (Google, 2014). Most of the components of the EMU-webApp (e.g., the
spectrogram display) are implemented as so-called Angular directives. This means
that, apart from dependencies on data service classes that have to be made avail-
able, these components are reusable and can be integrated into other web appli-
cations. The EMU-webApp makes extensive use of Angular data bindings to keep
the display and the various data services in sync with each other. It is also worth
noting that we chose to use the SASS (see http://sass-lang.com/) preprocessor
to compile .sass files to CSS. This enabled us to use things like mixins, variables
and inheritance for a more concise stylesheet management and generation.

The main reason we chose the JSON file format as the main file type for
the EMU-SDMS is because we wanted a web application as the main GUI of
the new system. Using JSON files enables the EMU-webApp to directly use the
annotation and configuration files that are part of an emuDB without manipulating
or reformatting the data.

The rest of this chapter will focus on the communication protocol and the URL
parameters provided by the EMU-webApp. These should be of special interest to
developers as they describe how to communicate with the web application and
how to use the web application to display data that is hosted on other http web
servers.

http://sass-lang.com/

12.1 Communication protocol 159

12.1 Communication protocol1

A large benefit gained by choosing the browser as the user interface is the ability
to easily interact with a server using standard web protocols, such as http, https or
websockets. In order to standardize the data exchange with a server, we have de-
veloped a simple request-response communication protocol on top of the websocket
standard. This decision was strongly guided by the availability of the httpuv R
package (RStudio and Inc., 2015). Our protocol defines a set of JSON objects for
both the requests and responses. A subset of the request-response actions, most
of them triggered by the client after connection, are displayed in Table 12.1.

Protocol Command Comments

GETPROTOCOL Check if the server implements the correct protocol
GETDOUSERMANAGEMENT See if the server handles user management (if yes, then this

prompts a login dialog → LOGONUSER)
GETGLOBALDBCONFIG Request the configuration file for the current connection
GETBUNDLELIST Request the list of available bundles for current connection
GETBUNDLE Request data belonging to a specific bundle name
SAVEBUNDLE Save data belonging to a specific bundle name

Table 12.1: Main EMU-webApp protocol commands.

This protocol definition makes collaborative annotation efforts possible, as de-
velopers can easily implement servers for communicating with the EMU-webApp.
Using this protocol allows a database to be hosted by a single server anywhere
on the globe that then can be made available to a theoretically infinite number
of users working on separate accounts logging individual annotations, time and
date of changes and other activities such as comments added to problematic cases.
Tasks can be allocated to and unlocked for each individual user by the project
leader. As such, user management in collaborative projects is substantially simpli-
fied and trackable compared with other currently available software for annotation.

The emuR package implements this websocket protocol as part of the serve()

function utilizing the httpuv package. Further example implementations of this
websocket protocol are provided as part of the source code repository of the
EMU-webApp (see
https://github.com/IPS-LMU/EMU-webApp/tree/master/exampleServers). A
in-depth description of the protocol which includes descriptions of each request
and response JSON object can be found in Appendix C.

1This section has been published in Winkelmann and Raess (2015).

https://github.com/IPS-LMU/EMU-webApp/tree/master/exampleServers

12.2 URL parameters 160

12.2 URL parameters

The EMU-webApp currently implements several URL parameters (see https://en.

wikipedia.org/wiki/Query_string for more information) as part of its URL
query string. This section describes the currently implemented parameters and
gives some accompanying examples.

12.2.1 Websocket server parameters

The current URL parameters that affect the websocket server connection are:

• serverUrl=URL is a URL pointing to a websocket server that implements
the EMU-webApp websocket protocol, and

• autoConnect=true / false automatically connects to a websocket server
URL specified in the serverUrl parameter. If the serverUrl parameter is
not set the web application defaults to the entry in its
default emuwebappConfig.json.

Examples

• auto connect to local wsServer: http://ips-lmu.github.io/EMU-webApp/
?autoConnect=true&serverUrl=ws:%2F%2Flocalhost:17890

12.2.2 Label file preview parameters

The current URL parameters for using the EMU-webApp to visualize files that are
hosted on other http servers are:

• audioGetUrl=URL GET URL that will respond with .wav file,

• labelGetUrl=URL GET URL that will respond with label/annotation file,

• DBconfigGetURL=URL GET URL that will respond with DBconfig.json

file, and

• labelType=TEXTGRID / annotJSON specifies the type of annotation file.

This mechanism is, for example, currently being used by the WebMAUS web-
services of the BASWebServices (see https://clarin.phonetik.uni-muenchen.

de/BASWebServices) to provide a preview of the automatically segmented speech
files.

https://en.wikipedia.org/wiki/Query_string
https://en.wikipedia.org/wiki/Query_string
http://ips-lmu.github.io/EMU-webApp/?autoConnect=true&serverUrl=ws:%2F%2Flocalhost:17890
http://ips-lmu.github.io/EMU-webApp/?autoConnect=true&serverUrl=ws:%2F%2Flocalhost:17890
https://clarin.phonetik.uni-muenchen.de/BASWebServices
https://clarin.phonetik.uni-muenchen.de/BASWebServices

12.2 URL parameters 161

Examples

• TextGrid example: http://ips-lmu.github.io/EMU-webApp/?audioGetUrl=
https://raw.githubusercontent.com/IPS-LMU/EMU-webApp/master/app/

testData/oldFormat/msajc003/msajc003.wav&labelGetUrl=https://raw.

githubusercontent.com/IPS-LMU/EMU-webApp/master/app/testData/oldFormat/

msajc003/msajc003.TextGrid&labelType=TEXTGRID

• annotJSON example: http://ips-lmu.github.io/EMU-webApp/?audioGetUrl=
https://raw.githubusercontent.com/IPS-LMU/EMU-webApp/master/app/

testData/newFormat/ae/0000_ses/msajc003_bndl/msajc003.wav&labelGetUrl=

https://raw.githubusercontent.com/IPS-LMU/EMU-webApp/master/app/

testData/newFormat/ae/0000_ses/msajc003_bndl/msajc003_annot.json&

labelType=annotJSON

http://ips-lmu.github.io/EMU-webApp/?audioGetUrl=https://raw.githubusercontent.com/IPS-LMU/EMU-webApp/master/app/testData/oldFormat/msajc003/msajc003.wav&labelGetUrl=https://raw.githubusercontent.com/IPS-LMU/EMU-webApp/master/app/testData/oldFormat/msajc003/msajc003.TextGrid&labelType=TEXTGRID
http://ips-lmu.github.io/EMU-webApp/?audioGetUrl=https://raw.githubusercontent.com/IPS-LMU/EMU-webApp/master/app/testData/oldFormat/msajc003/msajc003.wav&labelGetUrl=https://raw.githubusercontent.com/IPS-LMU/EMU-webApp/master/app/testData/oldFormat/msajc003/msajc003.TextGrid&labelType=TEXTGRID
http://ips-lmu.github.io/EMU-webApp/?audioGetUrl=https://raw.githubusercontent.com/IPS-LMU/EMU-webApp/master/app/testData/oldFormat/msajc003/msajc003.wav&labelGetUrl=https://raw.githubusercontent.com/IPS-LMU/EMU-webApp/master/app/testData/oldFormat/msajc003/msajc003.TextGrid&labelType=TEXTGRID
http://ips-lmu.github.io/EMU-webApp/?audioGetUrl=https://raw.githubusercontent.com/IPS-LMU/EMU-webApp/master/app/testData/oldFormat/msajc003/msajc003.wav&labelGetUrl=https://raw.githubusercontent.com/IPS-LMU/EMU-webApp/master/app/testData/oldFormat/msajc003/msajc003.TextGrid&labelType=TEXTGRID
http://ips-lmu.github.io/EMU-webApp/?audioGetUrl=https://raw.githubusercontent.com/IPS-LMU/EMU-webApp/master/app/testData/oldFormat/msajc003/msajc003.wav&labelGetUrl=https://raw.githubusercontent.com/IPS-LMU/EMU-webApp/master/app/testData/oldFormat/msajc003/msajc003.TextGrid&labelType=TEXTGRID
http://ips-lmu.github.io/EMU-webApp/?audioGetUrl=https://raw.githubusercontent.com/IPS-LMU/EMU-webApp/master/app/testData/newFormat/ae/0000_ses/msajc003_bndl/msajc003.wav&labelGetUrl=https://raw.githubusercontent.com/IPS-LMU/EMU-webApp/master/app/testData/newFormat/ae/0000_ses/msajc003_bndl/msajc003_annot.json&labelType=annotJSON
http://ips-lmu.github.io/EMU-webApp/?audioGetUrl=https://raw.githubusercontent.com/IPS-LMU/EMU-webApp/master/app/testData/newFormat/ae/0000_ses/msajc003_bndl/msajc003.wav&labelGetUrl=https://raw.githubusercontent.com/IPS-LMU/EMU-webApp/master/app/testData/newFormat/ae/0000_ses/msajc003_bndl/msajc003_annot.json&labelType=annotJSON
http://ips-lmu.github.io/EMU-webApp/?audioGetUrl=https://raw.githubusercontent.com/IPS-LMU/EMU-webApp/master/app/testData/newFormat/ae/0000_ses/msajc003_bndl/msajc003.wav&labelGetUrl=https://raw.githubusercontent.com/IPS-LMU/EMU-webApp/master/app/testData/newFormat/ae/0000_ses/msajc003_bndl/msajc003_annot.json&labelType=annotJSON
http://ips-lmu.github.io/EMU-webApp/?audioGetUrl=https://raw.githubusercontent.com/IPS-LMU/EMU-webApp/master/app/testData/newFormat/ae/0000_ses/msajc003_bndl/msajc003.wav&labelGetUrl=https://raw.githubusercontent.com/IPS-LMU/EMU-webApp/master/app/testData/newFormat/ae/0000_ses/msajc003_bndl/msajc003_annot.json&labelType=annotJSON
http://ips-lmu.github.io/EMU-webApp/?audioGetUrl=https://raw.githubusercontent.com/IPS-LMU/EMU-webApp/master/app/testData/newFormat/ae/0000_ses/msajc003_bndl/msajc003.wav&labelGetUrl=https://raw.githubusercontent.com/IPS-LMU/EMU-webApp/master/app/testData/newFormat/ae/0000_ses/msajc003_bndl/msajc003_annot.json&labelType=annotJSON
http://ips-lmu.github.io/EMU-webApp/?audioGetUrl=https://raw.githubusercontent.com/IPS-LMU/EMU-webApp/master/app/testData/newFormat/ae/0000_ses/msajc003_bndl/msajc003.wav&labelGetUrl=https://raw.githubusercontent.com/IPS-LMU/EMU-webApp/master/app/testData/newFormat/ae/0000_ses/msajc003_bndl/msajc003_annot.json&labelType=annotJSON

Appendices

Appendix A

Use cases

To add to the tutorial of Chapter 2, this chapter will present a few short use
cases extracted and updated from the emuR intro vignette. These use cases are
meant as practical guides to answering research questions and are to be viewed as
generic template procedures that can be altered and applied to similar research
questions. They are meant to give practical examples of what it is like working
with the EMU-SDMS to answer research questions common in speech and spoken
language research. Every use case will start off by asking a question about the ae
demo database and will continue by walking through the process of answering this
question by using the mechanics the emuR package provides. The four questions
this chapter will address are:

• Section A.1: What is the average length of all n phonetic segments in the ae
emuDB?

• Section A.2: What does the F1 and F2 distribution of all phonetic segments
that contain the labels I, o:, u:, V or @ look like?

• Section A.3: What words do the phonetic segments that carry the labels s,
z, S or Z in the ae emuDB occur in and what is their phonetic context?

• Section A.4: Do the phonetic segments that carry the labels s, z, S or Z in
the ae emuDB differ with respect to their first spectral moment?

R Example A.0.1 shows how the emuR demo data used in this chapter is created.

R Example A.0.1

load the package

library(emuR)

A.1 Use case 1 164

create demo data in directory provided by the tempdir() function

create_emuRdemoData(dir = tempdir())

get the path to emuDB called 'ae' that is part of the demo data

path2directory = file.path(tempdir(), "emuR_demoData", "ae_emuDB")

load emuDB into current R session

ae = load_emuDB(path2directory)

A.1 What is the average length of all n phonetic

segments in the ae emuDB?

The first thing that has to be done to address this fairly simple question is to
query the database for all n segments. This can be achieved using the query()

function as shown in R Example A.1.1.

R Example A.1.1

query segments

sl = query(ae, query = "Phonetic == n")

show first row of sl

head(sl, n = 1)

segment list from database: ae

query was: Phonetic == n...

labels start end session bundle level

1 n 1031.925 1195.925 0000 msajc003 Phonetic

type

1 SEGMENT

The second argument of the query() contains a string that represents an EQL
statement. This fairly simple EQL statement consists of ==, which is the equality
operator of the EQL, and on the right hand side of the operator the label n that
we are looking for.

The query() function returns an object of the class emuRsegs that is a super-
class of the well known data.frame. The various columns of this object should be
fairly self-explanatory: labels displays the extracted labels, start and end are

A.2 Use case 2 165

the start time and end times in milliseconds of each segment and so on. We can
now use the information in this object to calculate the mean durations of these
segments as shown in R Example A.1.2.

R Example A.1.2

calculate durations

d = dur(sl)

calculate mean

mean(d)

[1] 67.05833

A.2 What does the F1 and F2 distribution of all

phonetic segments that contain the labels I,

o:, u:, V or @ look like?

Once again we will initially query the emuDB to retrieve the segments we are inter-
ested in as shown in R Example A.2.1.

R Example A.2.1

query emuDB

sl = query(ae, query = "Phonetic == I|o:|u:|V|@")

Now that the necessary segment information has been extracted, the
get trackdata() function can be used to calculate the formant values for these
segments as displayed in R Example A.2.2.

R Example A.2.2

get formant values for these segments

td = get_trackdata(ae, sl,

onTheFlyFunctionName = "forest",

resultType = "emuRtrackdata")

In this example, the get trackdata() function uses a formant estimation func-
tion called forest() to calculate the formant values in real time. This signal

A.2 Use case 2 166

processing function is part of the wrassp package, which is used by the emuR pack-
age to perform signal processing duties with the get trackdata() command (see
Chapter 7 for details).

If the resultType parameter is set to emuRtrackdata in the call to
get trackdata(), an object of the class emuRtrackdata is returned. The class
vector of the td object is displayed in R Example A.2.3.

R Example A.2.3

show class vector of td

class(td)

[1] "emuRtrackdata" "data.frame"

show first line of td

head(td, n = 1)

sl_rowIdx labels start end session bundle

1 1 V 187.425 256.925 0000 msajc003

level type times_orig times_rel times_norm T1 T2

1 Phonetic SEGMENT 187.5 0 0 0 1293

T3 T4

1 2424 3429

As the emuRtrackdata class is a superclass to the common data.table and
data.frame classes, packages like ggplot2 can be used to visualize our F1 and F2
distribution as shown in R Example A.2.4 (see Figure A.1 for the resulting plot).

R Example A.2.4

load package

library(ggplot2)

scatter plot of F1 and F2 values using ggplot

ggplot(td, aes(x=T2, y=T1, label=td$labels)) +

geom_text(aes(colour=factor(labels))) +

scale_y_reverse() + scale_x_reverse() +

labs(x = "F2(Hz)", y = "F1(Hz)") +

guides(colour=FALSE)

A.3 Use case 3 167

V

VV
VVVV

V
V

V
VV
VVV

V
V
VVVVV

V
V
VVVV

VV
V

@@@@@
@@@@

@@@@@IIIIIIII
I I
@@@@@@@@@@

@@
@@

u:u:u:u: u:u:u:u:u:u:u:u:u:u:
u: @@@@@@

@@@@@ @ @ @@@@@@@@@@
I I II

IIIIIIIII
I
I IIIIIIIII I III

u:u:u:u:u:u:u:u:u:u:u: u:u:

u:u:u:u:u:u: u: u:u:u:u:u:u:u:u:u:u:u:
@@@@@@
@@
@@@@@@@@@@

@@
@IIIIIIIII

I I
I

@@@@
@
@@@

@@
@@@@@@@@

@@I
I
III I I I I I II I I

IIIIIIIIIIIIII I I
I

o:
o:
o:
o:o:o:

o:o:
@@@@@@@@

@@

III I I I I I I I I
I I @@@@@@@@@@

@@@@

@@@
@@@
@@@@@@@
@
@
@

@

@

@
@

@@@
@@@

@@@@
@@
@@

IIIII IIII
II

@ @@@@

IIIIII

I
I I I II I II

II
@@

@@@
@@@
@@
@

@@@@
@@@@@@

@@

I IIIIIIII IIIII
@@@@@@@@@@@@@@@

@ @@
@
@@@@@@@@@@

o:o:o:o:o:o:o:o:o:o:o:
o:o:o:o:o:o:o:o:o:o:o:o:

I

IIIII

@
@

@

@ @@

IIIIIIIIIIII
I

I
I
I

IIIIIIIIII
I
I

u:u:u:u:u:u:u:u: u:u:u:u:u:u:u:u:
@@@@@@

@@@

@@
@
@

@@@

@

o:o:o:o:o:o:o:o:o:o:o:o:o:o:o:o:o:o:
o:
o:
o:
o:o:

VV
V
VV
V
V
VVVVVV

V

V

V

V

V

@@@@
@

@
@@@@@

@@@
@@
@@
@
@@@@@@
@
@ @@

@

@
@@@@@
@
@

@@
@@
@
@
@

@@@@@@@@@@@@0

200

400

600

800
100015002000

F2(Hz)

F
1(
H
z)

Figure A.1: F1 by F2 distribution for I, o:, u:, V and @.

A.3 What words do the phonetic segments that

carry the labels s, z, S or Z in the ae emuDB

occur in and what is their phonetic context?

As with the previous use cases, the initial step is to query the database to extract
the relevant segments as shown in R Example A.3.1.

R Example A.3.1

query segments

sibil = query(ae,"Phonetic==s|z|S|Z")

show first element of sibil

head(sibil, n = 1)

segment list from database: ae

query was: Phonetic==s|z|S|Z...

labels start end session bundle level type

1 s 483.425 566.925 0000 msajc003 Phonetic SEGMENT

The requery hier() function can now be used to perform a hierarchical re-
query using the set resulting from the initial query. This requery follows the

A.3 Use case 3 168

hierarchical links of the annotations in the database to find the linked annotation
items on a different level. R Example A.3.2 shows how this can achieved.

R Example A.3.2

perform requery

words = requery_hier(ae, sibil, level = "Word")

show first element of words

head(words, n = 1)

segment list from database: ae

query was: FROM REQUERY...

labels start end session bundle level type

1 C 187.425 674.175 0000 msajc003 Word ITEM

As seen in R Example A.3.2, the result is not quite what one would expect
as it does not contain the orthographic word transcriptions but a classification of
the words into content words (C) and function words (F). Calling the summary()

function on the emuDBhandle object ae would show that the Words level has mul-
tiple attribute definitions indicating that each annotation item in the Words level
has multiple parallel labels defined for it. R Example A.3.3 shows an additional
requery that queries the Text attribute definition instead.

R Example A.3.3

perform requery

words = requery_hier(ae, sibil, level = "Text")

show first element of words

head(words, n = 1)

segment list from database: ae

query was: FROM REQUERY...

labels start end session bundle level type

1 amongst 187.425 674.175 0000 msajc003 Text ITEM

As seen in R Example A.3.3, the first segment in sibil occurred in the word
amongst, which starts at 187.475 ms and ends at 674.225 ms. It is worth noting
that this two-step querying procedure (query() followed by requery hier()) can
also be completed in a single hierarchical query using the dominance operator (ˆ).

A.3 Use case 3 169

As we have answered the first part of the question, R Example A.3.4 will
extract the context to the left of the extracted sibilants by using the requery seq()

function.

R Example A.3.4

get left context by off setting the

annotation items in sibil one unit to the left

leftContext = requery_seq(ae, sibil, offset = -1)

show first element of leftContext

head(leftContext, n = 1)

segment list from database: ae

query was: FROM REQUERY...

labels start end session bundle level type

1 N 426.675 483.425 0000 msajc003 Phonetic SEGMENT

R Example A.3.5 attempts to extract the right context in the same manner as
R Example A.3.4, but in this case we encounter a problem.

R Example A.3.5

get right context by off-setting the

annotation items in sibil one unit to the right

rightContext = requery_seq(ae, sibil, offset = 1)

Error in requery seq(ae, sibil, offset = 1): 4 of the requested

sequence(s) is/are out of boundaries.

Set parameter ’ignoreOutOfBounds=TRUE’ to get residual result segments

that lie within the bounds.

As can be seen by the error message in R Example A.3.5, four of the sibilants
occur at the very end of the recording and therefore have no phonetic post-context.
The remaining post-contexts can be retrieved by setting the ignoreOutOfBounds

argument to TRUE as displayed in R Example A.3.6.

R Example A.3.6

rightContext = requery_seq(ae, sibil,

offset = 1,

ignoreOutOfBounds = TRUE)

A.4 Use case 4 170

Warning in requery seq(ae, sibil, offset = 1, ignoreOutOfBounds =

TRUE): Length of requery segment list (28) differs from input list (32)!

These segments where lost while deriving their time (no)

show first element of rightContext

head(rightContext, n = 1)

segment list from database: ae

query was: FROM REQUERY...

labels start end session bundle level type

1 t 566.925 596.675 0000 msajc003 Phonetic SEGMENT

However, the resulting rightContext and the original sibil objects are not
aligned any more. It is therefore dangerous to use this option by default, as one
often relies on the rows in multiple emuRsegs objects that were created from each
other by using either requery hier() or requery seq() to be aligned with each
other (i.e., that the same row index implicitly indicates a relationship).

A.4 Do the phonetic segments labeled s, z, S or

Z in the ae emuDB differ with respect to their

first spectral moment?1

Once again, the segments of interest are queried first. R Example A.4.1 shows
how this can be achieved, this time using the new regular expression operand of
the EQL (see Chapter 5 for details).

R Example A.4.1

sibil = query(ae,"Phonetic =~ '[szSZ]'")

R Example A.4.2 shows how the get trackdata() function can be used to
calculate the Discrete Fourier Transform values for the extracted segments.

R Example A.4.2

dftTd = get_trackdata(ae,

seglist = sibil,

onTheFlyFunctionName = 'dftSpectrum')

1The original version of this use case was written by Florian Schiel as part of the emuR intro

vignette that is part of the emuR package.

A.4 Use case 4 171

As the resultType parameter was not explicitly set, an object of the class
trackdata is returned. This object, just like an object of the class emuRtrackdata,
contains the extracted trackdata information. Compared to the emuRtrackdata

class, however, the object is not “flat” and in the form of a data.table or
data.frame but has a more nested structure (see ?trackdata for more details).

Since we want to analyze sibilant spectral data we will now reduce the spectral
range of the data to 1000 - 10000 Hz. This is due to the fact that there is a lot
of unwanted noise in the lower bands that is irrelevant for the problem at hand
and can even skew the end results. To achieve this we can use a property of a
trackdata object that also carries the class spectral, which means that it is
indexed using frequencies. R Example A.4.3 shows how to use this feature to
extract the relevant spectral frequencies of the trackdata object.

R Example A.4.3

dftTdRelFreq = dftTd[, 1000:10000]

R Example A.4.4 shows how the fapply() function can be used to apply the
moments() function to all elements of dftTdRelFreq.

R Example A.4.4

dftTdRelFreqMom = fapply(dftTdRelFreq, moments, minval = T)

The resulting dftTdRelFreqMom object is once again a trackdata object of
the same length as the dftTdRelFreq trackdata object. It contains the first four
spectral moments as shown in R Example A.4.5.

R Example A.4.5

show first row of data belonging

to first element of dftTdRelFreqMom

dftTdRelFreqMom[1]$data[1,]

[1] 5.335375e+03 6.469573e+06 6.097490e-02 -1.103308e+00

The information stored in the dftTdRelFreqMom and sibil objects can now be
used to plot a time-normalized version of the first spectral moment trajectories,
color coded by sibilant class, using emuR’s dplot() function. R Example A.4.6
shows the R code that produces Figure A.2.

A.4 Use case 4 172

s
z
S
Z

Normalized Time [%]

1s
t
sp
ec
tr
al

m
om

en
t
[H

z]

0.0 0.2 0.4 0.6 0.8 1.0

45
00

55
00

65
00

75
00

Figure A.2: Time-normalized first spectral moment trajectories color coded by
sibilant class.

R Example A.4.6

dplot(dftTdRelFreqMom[, 1],

sibil$labels,

normalise = TRUE,

xlab = "Normalized Time [%]",

ylab = "1st spectral moment [Hz]")

As one might expect, the first spectral moment (the center of gravity) is sig-
nificantly lower for postalveolar S and Z (green and blue lines) than for alveolar
s and z (black and red lines).

R Example A.4.7 shows how to create an alternative plot (see Figure A.3) that
averages the trajectories into ensemble averages per sibilant class by setting the

A.4 Use case 4 173

s
z
S
Z

Normalized Time [%]

1s
t
sp
ec
tr
al

m
om

en
t
[H

z]

0.0 0.2 0.4 0.6 0.8 1.0

45
00

50
00

55
00

60
00

Figure A.3: Time-normalized first spectral moment ensemble average trajectories
per sibilant class.

average parameter of dplot() to TRUE.

R Example A.4.7

dplot(dftTdRelFreqMom[,1],

sibil$labels,

normalise = TRUE,

average = TRUE,

xlab = "Normalized Time [%]",

ylab = "1st spectral moment [Hz]")

As can be seen from the previous two plots (Figure A.2 and A.3), transitions
to and from a sort of steady state around the temporal midpoint of the sibilants

A.4 Use case 4 174

are clearly visible. To focus on this steady state part of the sibilant we will now
extract those spectral moments that fall between the proportional timepoints 0.2
and 0.8 of each segment (i.e., the central 60%) using the dcut() function as is
shown in R Example A.4.8.

R Example A.4.8

cut out the middle 60% portion

dftTdRelFreqMomMid = dcut(dftTdRelFreqMom,

left.time = 0.2,

right.time = 0.8,

prop = T)

Finally, R Example A.4.9 shows how to calculate the averages of these trajec-
tories using the trapply() function.

R Example A.4.9

meanFirstMoments = trapply(dftTdRelFreqMomMid[,1],

fun = mean,

simplify = T)

As the resulting meanFirstMoments vector has the same length as the initial
sibil segment list, we can now easily visualize these values in the form of a
boxplot. R Example A.4.10 shows the R code that produces Figure A.4.

R Example A.4.10

boxplot(meanFirstMoments ~ sibil$labels,

xlab = "Sibilant class labels",

ylab = "First spectral moment values [Hz]")

As final remark, it is worth noting that using the emuRtrackdata resultType

(not the trackdata resultType) of get trackdata() function we could have per-
formed a comparable analysis by utilizing packages such as dplyr for data.table
or data.frame manipulation and lattice or ggplot2 for data visualisation.

A.4 Use case 4 175

s S z Z

52
00

56
00

60
00

Sibilant class labels

F
ir
st

sp
ec
tr
al

m
om

en
t
va
lu
es

[H
z]

Figure A.4: Boxplots of the first spectral moments grouped by their sibilant class.

Appendix B

File Formats

B.1 File descriptions

B.1.1 DBconfig.json

The DBconfig.json file contains the configuration options of the database. Peo-
ple familiar with the legacy EMU system will recognize this as the replacement
file for the legacy template (.tpl) file. By convention, variables or strings written
entirely in capital letters indicate a constant variable that usually has a special
meaning. This is also the case with strings like this found in the DBconfig.json

("STRING", "ITEM" ,"SEGMENT", "EVENT", "OSCI", . . .).
The DBconfig.json file contains the following fields:

• "name" specifies the name of the database

• "UUID" a unique ID given to each database

• "mediafileExtension" the main mediafileExtension (currently only uncom-
pressed .wav files are supported in every component of the EMU system.
This is also the recommended audio format for the EMU-SDMS.)

• "ssffTrackDefinitions" an array of definitions defining the SSFF tracks
of the database. Each ssffTrackDefinition consists of:

• "name" the name of the ssffTrackDefinition

• "columnName" the name of the column of the matching SSFF file. For
more information on the columns the various functions of the wrassp

produce, see the track fields of the wrasspOutputInfos object that is
part of the wrassp package. Further, although the SSFF is a binary
file format, it has a plain text header. This means that if you open a

B.1 File descriptions 177

SSFF file in the text editor of your choice, you will be able to see the
columns contained within it. Another way of accessing column infor-
mation about a specific SSFF file is to use the wrassp function res =

read.AsspDataObj('/path/2/SSFF/file') to read the file from the
file system. names(res) will then give you the names of the columns
present in this file. In the context of the SSFF, we use the term “col-
umn”, while in the context of the EMU system we use either “track”
or “SSFF track”. Both refer to the same data.

• "fileExtention" the file extension of the matching SSFF file. See
also ?wrasspOutputInfos for the default extensions produced by the
wrassp functions.

• "levelDefinitions" array of definitions defining the levels of the database.
Each "levelDefinitions" consists of:

• "name" The name of the levelDefinition.

• "type" Specifies the type of level (either "ITEM" | "EVENT" |
"SEGMENT").

• "attributeDefinitions" an array of definitions defining the attributes
of the level. Each attributeDefinition consists of:

• "name" The name of the "attributeDefinition".

• "type" Specifies the type of the attribute (currently only "STRING"

permitted)

• "labelGroups" An (optional) array containing label group defi-
nitions. These can be used as a shorthand notation for querying
certain groups of labels and comprise the following:

• "name" The name of the label group. This will be the value
used in a query to refer to this group.

• "values" An array of strings representing the labels.

• "legalLabels" An (optional) array of strings specifying which la-
bels are valid or legal for this attribute definition.

• "anagestConfig" If specified (optional), this will convert the level into
a special type of level for labeling articulatory data. This will also serve
as a marker for the EMU-webApp to treat this level differently. This
optional field may only be set for levels of the type "EVENT".

• "verticalPosSsffTrackName" The name of the SSFF track con-
taining the vertical position data.

B.1 File descriptions 178

• "velocitySsffTrackName" The name of the SSFF track contain-
ing the velocity data.

• "autoLinkLevelName" The name of the level to which created
events will be linked.

• "multiplicationFactor" The factor to multiply with (either -1 |
1).

• "threshold" A value between 0 and 1 defining the absolute thresh-
old.

• "gestureOnOffsetLabels" An array containing two strings that
specify the on- and offset labels.

• "maxVelocityOnOffsetLabels" An array containing two strings
that specify the on- and offset labels.

• "constrictionPlateauBeginEndLabels" An array containing two
strings that specify the begin- and end labels.

• "maxConstrictionLabel" A string specifying the maximum con-
striction label.

• "linkDefinitions" An array of the definitions defining the links between
levels of the database. The combination of all link definitions specifies the
hierarchy of the database. Each linkDefinition consists of:

• "type" Specifies the type of link (either "ONE TO MANY" | "MANY TO MANY"

| "ONE TO ONE").

• "superlevelName" Specifies the name of the super-level.

• "sublevelName" Specifies the name of the sub-level.

• "labelGroups" An (optional) array containing label group definitions. These
can be used as a shorthand notation for querying certain groups of la-
bels. Compared to the "labelGroups", which can be defined within an
attributeDefinition, the labelGroups defined here are globally defined
for the entire database as follows:

• "name" The name of the label group.

• "values" An array of strings containing labels.

• "EMUwebAppConfig" Specifies the configuration options intended for the
EMU-webApp (i.e., how the database is to be displayed). This field can contain
all the configurations options that are specified in the EMU-webApp’s con-
figuration schema (see https://github.com/IPS-LMU/EMU-webApp/tree/

master/dist/schemaFiles). The "EMUwebAppConfig" contains the follow-
ing fields:

https://github.com/IPS-LMU/EMU-webApp/tree/master/dist/schemaFiles
https://github.com/IPS-LMU/EMU-webApp/tree/master/dist/schemaFiles

B.1 File descriptions 179

• "main" Main behavior options:

• "autoConnect": Auto connect to the "serverUrl" on the initial
load of the webApp to automatically load a database (mainly used
for development).

• "serverUrl": The default server URL that is displayed in the con-
nect modal window (and used if "autoConnect" is set to true).
The default: "ws://localhost:17890" points to the server started
by the serve() function of the emuR package.

• "serverTimeoutInterval": The maximum amount of time the
EMU-webApp waits (in milliseconds) for the server to respond.

• "comMode": Specifies the communication mode the EMU-webApp is
in. Currently the only option that is available is "WS" (websocket).

• "catchMouseForKeyBinding": Check if mouse has to be in labeler
for key bindings to work.

• "keyMappings" Keyboard shortcut definitions. For the sake of brevity,
not every key-code is shown (see schema: https://github.com/IPS-LMU/
EMU-webApp/blob/master/dist/schemaFiles/emuwebappConfigSchema.

json for extensive list).

• "toggleSideBarLeft" integer value that represents the key-code
that toggles the left side bar (== bundleList side bar)

• "toggleSideBarRight" integer value that represents the key-code
that toggles the right side bar (== perspective side bar)

• . . .

• "spectrogramSettings" Specifies the default settings of the spectro-
gram. The possible settings are:

• "windowSizeInSecs" Specifies the window size in seconds.

• "rangeFrom" Specifies the lowest frequency (in Hz) that will be
displayed by the spectrogram.

• "rangeTo" Specifies the highest frequency (in Hz) that will be dis-
played by the spectrogram.

• "dynamicRange" Specifies the dynamic rang for maximum decibel
dynamic range.

• "window" Specifies the window type ("BARTLETT" | "BARTLETTHANN"
| "BLACKMAN" | "COSINE" | "GAUSS" | "HAMMING" | "HANN" | "LANCZOS"
| "RECTANGULAR" | "TRIANGULAR").

• "preEmphasisFilterFactor" Specifies the preemphasis factor (in
formula: s’(k) = s(k) - preEmphasisFilterFactor * s(k-1)).

https://github.com/IPS-LMU/EMU-webApp/blob/master/dist/schemaFiles/emuwebappConfigSchema.json
https://github.com/IPS-LMU/EMU-webApp/blob/master/dist/schemaFiles/emuwebappConfigSchema.json
https://github.com/IPS-LMU/EMU-webApp/blob/master/dist/schemaFiles/emuwebappConfigSchema.json

B.1 File descriptions 180

• "transparency" Specifies the transparency of the spectrogram (in-
teger from 0 to 255).

• "drawHeatMapColors" (optional) Defines whether the spectrogram
should be drawn using heat-map colors (either true or false)

• "heatMapColorAnchors" (optional) Specifies the heat-map color
anchors (array of the form [[255, 0, 0], [0, 255, 0], [0, 0, 255]])

• "perspectives" An array containing perspective configurations. Each
"perspective" consists of:

• "name" Name of the perspective.

• "signalCanvases" Configuration options for the signalCanvases.

• "order" An array specifying the order in which the SSFF tracks
are to be displayed. Note that the SSFF track names “OSCI”
and “SPEC” are always available in addition to the SSFF track
defined in the database.

• "assign" An array of configuration options that assign one
SSFF track to another, effectively creating a visual overlay of
one track over another. Each array element consists of:

• "signalCanvasName" The name of the signal specified in the
"order" array.

• "ssffTrackName" The name of the SSFF track to overlay
onto "signalCanvasName".

• "minMaxValLims" An array of configuration options to limit
the y-axis range that is displayed for a specified SSFF track.

• "ssffTrackName": A name specifying which ssffTrack should
be limited.

• "minVal": The minimum value which defines the lower y-axis
limit.

• "contourLims" An array containing contour limit values that
specify an index range that is to be displayed. As a track or
column can contain multi-dimensional data (e.g. four formant
values per time stamp, 256 DFT values per time stamp, etc.) it
is possible to specify an index range that specifies which values
should be displayed (e.g., display formant 2 through 4).

• "ssffTrackName" A name specifying which ssffTrack should
be limited.

• "minContourIdx" The minimum contour index to display
(starts at index 0).

• "maxContourIdx" The maximum contour index to display.

B.1 File descriptions 181

• "contourColors" An array to specify colors of individual con-
tours. This overrides the default of automatically calculating
distinct colors for each contour.

• "ssffTrackName" The name of the ssffTrackName for which
colors are defined.

• "colors" An array of RGB strings (e.g. ["rgb(238,130,238)",
"rgb(127,255,212)"]) that specify the color of the contour
(first value = first contour color and so on).

• "levelCanvases" Configuration options for the levelCanvases:

• "order" An array specifying the order in which the levels are
to be displayed. Note that only levels of the type EVENT or
SEGMENT can be displayed as levelCanvases.

• "twoDimCanvases" Configuration options for the 2D canvas.

• "order" An array specifying the order in which the levels are
to be displayed. Note that currently only a single
twoDimDrawingDefinition can be displayed so this array can
currently only contain a single element.

• "twoDimDrawingDefinitions" An array containing two dimen-
sional drawing definitions. Each two dimensional drawing defi-
nition consists of:

• "dots" An array containing dot definitions. Each dot defini-
tion consist of:

• "name" The name of the dot.

• "xSsffTrack" The ssffTrackName of the track that con-
tains the x axis values.

• "xContourNr" The contour number of the track that con-
tains the x-axis values.

• "ySsffTrack" The ssffTrackName of the track that con-
tains the y-axis values.

• "yContourNr" The contour number of the track that con-
tains the y-axis values.

• "color" The RGB color string specifying the color given
to dot.

• "connectLines" An array specifying which of the dots spec-
ified in the "dots" definition array should be connected by a
line.

• "fromDot" The dot from which the line should start.

• "toDot" The dot at which the line should end.

B.1 File descriptions 182

• "color" The RGB string defining the color of the line.

• "staticDots" An array containing static dot definitions:

• "name" The name of the static dots.

• "xNameCoordinate" An x-coordinate specifying the loca-
tion at which name should be drawn.

• "yNameCoordinate" y-coordinate specifying the location
at which name should be drawn.

• "xCoordinates" An array of x-coordinates (e.g. [300,

300, 900, 900, 300]).

• "yCoordinates" An array of y-coordinates (e.g. [880,

2540, 2540, 880, 880]).

• "connect" A boolean value that specifies whether or not
to connect the static dots with lines.

• "color" An RGB string specifying the color of static dots.

• "staticContours" An array containing static contour defi-
nitions:

• "name" The name of static contour.

• "xSsffTrack" The ssffTrackName of the track that con-
tains the x-axis values.

• "xContourNr" The contour number of the track that con-
tains the x-axis values.

• "ySsffTrack" The ssffTrackName of the track that con-
tains the y-axis values.

• "yContourNr" The contour number of the track that con-
tains the y-axis values.

• "connect" A boolean value that specifies whether or not
to connect the static dots with lines.

• "color" An RGB string specifying color of the static con-
tour.

• "labelCanvasConfig" Configuration options for the label canvases:

• "addTimeMode" The mode in which time to boundaries is added
and subtracted ("absolute" or "relative").

• "addTimeValue": The amount of samples added to or subtracted
from boundaries.

• "newSegmentName" The value given to the default label if a new
SEGMENT is added (default is “” == empty string).

B.1 File descriptions 183

• "newEventName" The value given to the default label if a new
EVENT is added (default is “” == empty string).

• "restrictions":

• "playback" A boolean value specifying whether to allow audio
playback.

• "correctionTool" A boolean value specifying whether correction
tools are available.

• "editItemSize" A boolean value specifying whether to allow the
size of a SEGMENT or EVENT to be changed (i.e., move boundaries).

• "editItemName" A boolean value specifying whether to allow the
label of an ITEM to be changed.

• "deleteItemBoundary" A boolean value specifying whether to al-
low the deletion of boundaries.

• "deleteItem" A boolean value specifying whether to allow the
deletion of entire ITEMs

• "deleteLevel" A boolean value specifying whether to allow the
deletion of entire levels.

• "addItem" A boolean value specifying whether to allow new ITEMs
to be added.

• "drawCrossHairs" A boolean value specifying whether to draw the
cross hairs on signal canvases.

• "drawSampleNrs" A boolean value specifying whether to draw the
sample numbers in the OSCI canvas if zoomed in close enough to
see samples (mainly for debugging and development purposes).

• "drawZeroLine" A boolean value specifying whether to draw the
zero value line in OSCI canvas.

• "bundleComments" A boolean value specifying whether to allow the
annotator to add comments to bundles she or he has annotated. A
bundle comment field will show up in the bundle list side bar for
each bundle if this is set to true. Note that the server has to
support saving these comments, which the serve() function of the
emuR package does not.

• "bundleFinishedEditing" A boolean value specifying whether to
allow the annotator to mark when she or he has finished annotating
a bundle. A finished editing toggle button will show up in the
bundle list side bar for each bundle if this is set to true. Note
that the server has to support saving these comments which the
serve() function of the emuR package does not.

B.1 File descriptions 184

• "showPerspectivesSidebar" A boolean value specifying whether
to show the perspectives side bar.

• "activeButtons" Specifies which top- or bottom-menu buttons should
be displayed by the EMU-webApp.

• "addLevelSeg" A boolean value specifying whether to show the
add SEGMENT level button in the top menu bar.

• "addLevelEvent" A boolean value specifying whether to show the
add EVENT level button in the top menu bar.

• "renameSelLevel" A boolean value specifying whether to allow
the user to rename the currently selected level.

• "downloadTextGrid" A boolean value specifying whether to allow
the user to download the current annotation as a .TextGrid file by
displaying a download TextGrid button in the top menu bar.

• "downloadAnnotation" A boolean value specifying whether to al-
low the user to download the current annotation as an annot.json

file by displaying a download annotJSON button in the top menu
bar.

• "specSettings" A boolean value specifying whether to display the
spec. settings button in the top menu bar.

• "connect" A boolean value specifying whether to display the connect
button in the top menu bar.

• "clear" A boolean value specifying whether to display the clear

button in the top menu bar.

• "deleteSingleLevel" A boolean value specifying whether to allow
the user to delete a level containing time information.

• "resizeSingleLevel" A boolean value specifying whether to allow
the user to resize a level.

• "saveSingleLevel" A boolean value specifying whether to allow
the user to download a single level in the ESPS/waves+ format.

• "resizeSignalCanvas" A boolean value specifying whether to al-
low the user to resize the signalCanvases ("OSCI", "SPEC", . . .).

• "openDemoDB" A boolean value specifying whether to show the
open demoDB button.

• "saveBundle" A boolean value specifying whether to show the save
button in bundle list side bar for each bundle.

• "openMenu" A boolean value specifying whether open bundle list
side bar button is displayed.

B.1 File descriptions 185

• "showHierarchy" A boolean value specifying whether to display
the show hierarchy button.

• "demoDBs" An array of strings specifying which demoDBs to display in the
open demo drop-down menu. Currently available demo databases are ["ae",
"ema", "epgdorsal"].

B.1.2 annot.json

The annot.json files contain the actual annotation information as well as the
hierarchical linking information. Legacy EMU users should note that all the in-
formation that used to be split into several ESPS/waves+ label files and a .hlb

file is now contained in this single file.
The annot.json file contains the following fields:

• "name" Specifies the name of the annotation file (has to be equal to the
bundle directory prefix as well as the annot.json prefix).

• "annotates" Specifies the (relative) media file path that this annot.json

file annotates.

• "sampleRate" Specifies the sample rate of the annotation (should be the
same as the sample rate of the file listed in "annotates").

• "levels" Contains an array of level annotation informations. Each element
consists of:

• "name" Specifies the name of the level.

• "items" An array containing the annotation items of the level.

• "id" The unique ID of the item (only unique within an annot.json

file or bundle, not globally for the emuDB).

• "sampleStart" Contains start sample value of SEGMENT item.

• "sampleDur" Contains sample duration value of SEGMENT item.
Note that the EMU-webApp does not support overlapping SEGMENTs
or SEGMENT sequences containing gaps. This infers that each sample
is explicitly and unambiguously associated with a single SEGMENT.
This means that the sampleStart value of a following SEGMENT

has to be sampleStart + sampleDur + 1 of the previous SEGMENT.
When converting the sample values to time values, the start time
value is calculated with the formula start = sampleStart

sampleRate
− 0.5

sampleRate

and the end time value with the formula end = sampleStart+sampleDur
sampleRate

+

B.1 File descriptions 186

0.5
sampleRate

. This is done to have gapless time values for successive
SEGMENTs. To avoid a negative time value when dealing with the
first sample of an audio file (sampleStart value of 0), the start

time value is simply set to 0 in this case. The start and end time
value calculation is performed by both the query engine of emuR

if the calcTimes parameter is set to TRUE and the EMU-webApp to
display the time information in the signal canvases.

• "samplePoint" Contains sample point values of EVENT items. When
calculating the start time values for EVENTs the following formula
is used: start = samplePoint

sampleRate

• "labels" An array containing labels that belong to this item. Each
element consists of:

• "name" Specifies the attributeDefinition that this label is
for.

• "value" Specifies the label value.

• "links" An array containing links between two items. These links have
to adhere to the links specified in linkDefinitions of the corresponding
emuDB. Each link consists of:

• "fromID" The ID value of the item to link from (i.e., item in super-
level).

• "toID" The ID value of item to link to (i.e., item in sub-level).

B.1.3 The SSFF file format

The SSFF file format is a binary file format which has a plain text header. This
means that the header is human-readable and can be viewed with any text editor
including common UNIX command line tools such as less or cat. Within R it is
possible to view the header by using R’s readLines() function as displayed in R
Example B.1.1.

R Example B.1.1

load the emuR and wrassp packages

library(emuR, warn.conflicts = FALSE)

library(wrassp)

create demo data in directory

provided by tempdir()

B.1 File descriptions 187

create_emuRdemoData(dir = tempdir())

create path to demo database

path2ae = file.path(tempdir(), "emuR_demoData", "ae_emuDB")

create path to bundle in database

path2bndl = file.path(path2ae, "0000_ses", "msajc003_bndl")

create path to .fms file

path2fmsFile = file.path(path2bndl,

paste0("msajc003.",

wrasspOutputInfos$forest$ext))

read in first 8 lines of .fms file.

Note that the header length may vary in other SSFF files.

readLines(path2fmsFile, n = 8)

[1] "SSFF -- (c) SHLRC"

[2] "Machine IBM-PC"

[3] "Record_Freq 200.0"

[4] "Start_Time 0.0025"

[5] "Column fm SHORT 4"

[6] "Column bw SHORT 4"

[7] "Original_Freq DOUBLE 20000.0"

[8] "-----------------"

The general line item structure of the plain text head of an SSFF file can be
described as follows:

• SSFF -- (c) SHLRC (required line): File type marker.

• Machine IBM-PC (required line): System architecture of the machine that
generated the file. This is mainly used to specify the endianness of the
data block (see below). Machine IBM-PC indicates little-endian and Machine

SPARC indicates big-endian. To date, we have not encountered other machine
types.

• Record Freq SR (required line): Sample rate of current file in Hz. If, for
example, SR is 200.0 (see R Example B.1.1) then the sample rate is 200 Hz.

• Start Time ST (required line): Time of first sample block in data block in
seconds. This often deviates from 0.0 as wrassp’s windowed signal processing

B.1 File descriptions 188

functions start with the first window centered around windowShift / 2. If
the windowShift parameter’s default value is 5 ms, the start time ST of the
first sample block will be 0.0025 sec (see R Example B.1.1).

• Column CN CDT CDL (required line(s)): A Column line entry contains four
space-separated values, where Column is the initial key word value. The
second value, CN (fm in R Example B.1.1), specifies the name for the column;
the third, CDT (SHORT in R Example B.1.1), indicates the column’s data type;
and the fourth, CDL (4 in R Example B.1.1), is the column’s data length in
bytes. As can be seen in R Example B.1.1, it is quite common for SSFF files
to have multiple column entries. The sequence of these entries is relevant,
as it specifies the sequence of the data in the binary data block (see below).

• NAME DT DV (optional line(s)): Optional single value definitions that have
a NAME, a data type DT and a data value DV (see Original Freq DOUBLE

20000.0 in R Example B.1.1 specifying the original sample rate of the audio
file the .fms file was generated from).

• Comment CHAR string of variable length (optional line(s)): The Comment
CHAR allows for comment strings to be added to the header.

• ----------------- (required line): marks the end of the plain text header.

The binary data block of the SSFF file format stores its data in a so-called
interleaved fashion. This means it does not store the binary data belonging to
every column in a separate data block. Rather, it interleaves the columns to
form sample blocks that occur at the same point in time. Figure B.1 displays a
sequence of short integer values where the subscript text indicates the index in
the sequence. This sequence represents a schematic representation of the data
block of the .fms file of R Example B.1.1. The first four INT161−4 (green) blocks
represent the first four INT16 formant values that belong to the fm column and the
next four INT165−8 (orange) represent the first four bandwidth values belonging
to the bm column. Therefore, the dashed square marks the first sample block (i.e.,
the first eight F1, F2, F3 and F4; and F1bandwidth, F2bandwidth, F3bandwidth and
F4bandwidth values) that occur at the time specified by the Start Time 0.0025

header entry. The time of all subsequent sample blocks of eight INT16 values (e.g.,
INT169−16) can be calculated as follows: 0.0025 (== Start Time) + 1 / 200.0

(== Record Freq) * sample block index.

B.2 Example files 189

INT161 INT162 INT163 INT164 INT165 INT166 INT167 INT168 INT169

INT1610 INT1611 INT1612 INT1613 INT1614 INT1615 INT1616 INT1617 INT1618

INT1619 INT1620 INT1621 INT1622 INT1623 INT1624 INT1625 INT1626 ...

• samples of first column

• samples of second column

first sample block

Figure B.1: Schematic representation of the data block of the msajc003.fms file
of R Example B.1.1.

B.2 Example files

B.2.1 bundleList.json

Compared to the DBconfig.json and annot.json files, the bndl.json for-
mat is not part of the emuDB database specification. Rather, it is part of the
EMU-webApp-websocket-protocol and is used as a standardized format to trans-
port information about all the available bundles to the EMU-webApp. It is not
meant as an on-disk file format but rather should be generated on-demand by the
server implementing the EMU-webApp-websocket-protocol. A schematic example
of a bndl.json file is displayed in Listing B.1.

Listing B.1: Schematic example of a bundleList.json file

[

{
"name": "msajc003",

"session": "0000",

"finishedEditing": false,

"comment": "",

"timeAnchors": [

{
"sample_start": 1000,

"sample_end": 2000

}, ...

]

},

B.2 Example files 190

{
"name": "msajc010",

"session": "0000",

"finishedEditing": false,

"comment": ""

}
]

B.2.2 bndl.json

Compared to the DBconfig.json and annot.json files, the bndl.json format is
not part of the emuDB database specification. Rather, it is part of the EMU-webApp-
websocket-protocol and is used as a standardized format to transport all the
data belonging to a single bundle to the EMU-webApp. It is not meant as an on-
disk file format by rather should generated on-demand by the server implementing
the EMU-webApp-websocket-protocol. A schematic example of a bndl.json file
is displayed in Listing B.2.

Listing B.2: Schematic example of a bndl.json file

{
"ssffFiles": [

{
"fileExtension": "fms",

"encoding": "BASE64",

"data": "U1N..."

}
],

"mediaFile": {
"encoding": "BASE64",

"data": "Ukl ..."

},
"annotation": contentOfAnnot.json

}

contentOfAnnot.json in Listing B.2 refers to the content of a annot.json

file.

Appendix C

The
EMU-webApp-websocket-protocol

Version 2.0*

This chapter describes the EMU-webApp-websocket-protocol in its current ver-
sion.

C.1 Protocol overview

The EMU-webApp-websocket-protocol consists of a set of request-response JSON
files that control the interaction between the client (the EMU-webApp) and a server
supporting the protocol. A graph depicting the protocol is shown in the Figure
C.1.

C.2 Protocol commands

C.2.1 GETPROTOCOL

Initial request to see if client and server speak the same protocol.

*This appendix chapter is an updated version of a similar description that is part of the
EMU-webApp manual.

C.2 Protocol commands 192

disconnected state

GETPROTOCOL

GETDOUSERMANAGEMENT

GETGLOBALDBCONFIG

LOGONUSER

GETBUNDLELIST

connected state

GETBUNDLE

SAVEBUNDLESAVECONFIG

DISCONNECTWARNING

no
yes

Figure C.1: Schematic of the EMU-webApp-websocket-protocol.

• Request:

Listing C.1: Sent JSON file

{
'type ': 'GETPROTOCOL ',
'callbackID ': 'xxxxxxxx -xxxx -4xxx -yxxx -xxxxxxxxxxxx '

}

C.2 Protocol commands 193

• Response:

Listing C.2: Sent JSON file

{
'callbackID ': request.callbackID,

'data ': {
'protocol ': 'EMU -webApp -websocket -protocol ',
'version ': '0.0.2'

},
'status ': {

'type ': 'SUCCESS ',
'message ': ''

}
}

C.2.2 GETDOUSERMANAGEMENT

Ask server if it wishes to perform user management (will toggle user login modal
window if data is YES).

• Request:

Listing C.3: Sent JSON file

{
'type ': 'GETDOUSERMANAGEMENT ',
'callbackID ': 'xxxxxxxx -xxxx -4xxx -yxxx -xxxxxxxxxxxx '

}

• Response:

Listing C.4: Sent JSON file

{
'callbackID ': request.callbackID,

'data ': 'NO '
'status ': {

'type ': 'SUCCESS ',
'message ': ''

}
}

C.2 Protocol commands 194

C.2.3 LOGONUSER

Ask server to log user on. Username and password are sent to server (please only
use wss to avoid password being sent in plain text!). This protocol command is
sent by the user login modal window.

• Request:

Listing C.5: Sent JSON file

{
'type ': 'LOGONUSER ',
'data ': {

'userName ': 'smith ',
'pwd ':'mySecretPwd '

},
'callbackID ': 'xxxxxxxx -xxxx -4xxx -yxxx -xxxxxxxxxxxx '

}

• Response:

Listing C.6: Sent JSON file

{
'callbackID ': request.callbackID,

'data ': 'BADUSERNAME ' | 'BADPASSWORD ' | 'LOGGEDON '
'status ': {

'type ': 'SUCCESS ',
'message ': ''

}
}

C.2.4 GETGLOBALDBCONFIG

Request the DBconfig.json file.

• Request:

C.2 Protocol commands 195

Listing C.7: Sent JSON file

{
'type ': 'GETGLOBALDBCONFIG ',
'callbackID ': 'xxxxxxxx -xxxx -4xxx -yxxx -xxxxxxxxxxxx '

}

• Response:

Listing C.8: Sent JSON file

{
'callbackID ': request.callbackID,

'data ': configData,

'status ': {
'type ': 'SUCCESS ',
'message ': ''

}
}

In the above Listing, configData represents the Javascript object that is the
DBconfig.json file of the respective database.

C.2.5 GETBUNDLELIST

Next a bundleList.json is requested containing the available bundles. The
information contained in this file is what is displayed in the bundle list side bar.
An example of a bundleList.json file is shown in Appendix B.2.1.

• Request:

Listing C.9: Sent JSON file

{
'type ': 'GETBUNDLELIST ',
'callbackID ': 'xxxxxxxx -xxxx -4xxx -yxxx -xxxxxxxxxxxx '

}

• Response:

C.2 Protocol commands 196

Listing C.10: Sent JSON file

{
'callbackID ': request.callbackID,

'data ': bundleList,

'status ': {
'type ': 'SUCCESS ',
'message ': ''

}
}

C.2.6 GETBUNDLE

After receiving the bundleList.json file by default, the first bundle in the file
is requested in the form of a bndl.json file. This request is also sent when the
user clicks a bundle in the bundle list side bar of the EMU-webApp.

• Request:

Listing C.11: Sent JSON file

{
'type ': 'GETBUNDLE ',
'name ': 'msajc003',
'session ': '0000',
'callbackID ': 'xxxxxxxx -xxxx -4xxx -yxxx -xxxxxxxxxxxx '

}

• Response:

Listing C.12: Sent JSON file

{
'callbackID ': request.callbackID,

'data ': bundleData,

'status ': {
'type ': 'SUCCESS ',
'message ': ''

}
}

C.2 Protocol commands 197

In the Listing above bundleData is the Javascript object containing all SSFF
files (encoded as a base64 strings) and audio (encoded as a base64 string) and
annot.json that are associated with this bundle. An example of bndl.json is

given in Appendix B.2.2.

C.2.7 SAVEBUNDLE

This function should be called if the user saves a loaded bundle (by pushing the
save button in the bundle list side bar).

• Request:

Listing C.13: Sent JSON file

{
'type ': 'SAVEBUNDLE ',
'data ': bundleData,

'callbackID ': 'xxxxxxxx -xxxx -4xxx -yxxx -xxxxxxxxxxxx '
}

In the Listing above bundleData is a Javascript object that corresponds to
a bndl.json file. As currently only annotations and formant tracks can be al-
tered by the EMU-webApp, only the annot.json and formant track SSFF file (if
applicable) are sent to the server to be saved.

• Response:

Listing C.14: Sent JSON file

{
'callbackID ': request.callbackID,

'status ': {
'type ': 'SUCCESS ',
'message ': ''

}
}

C.2.8 DISCONNECTWARNING

Function that tells the server that it is about to disconnect. This is currently
needed because the httpuv R package cannot listen to the websocket’s own “close”
event.

C.2 Protocol commands 198

• Request:

Listing C.15: Sent JSON file

{
'type ': 'DISCONNECTWARNING '
'callbackID ': 'xxxxxxxx -xxxx -4xxx -yxxx -xxxxxxxxxxxx '

}

• Response:

Listing C.16: Sent JSON file

{
'callbackID ': request.callbackID,

'status ': {
'type ': 'SUCCESS ',
'message ': ''

}
}

C.2.9 Error handling

If an error occurs with any of the request types above, a response should still be
sent to the client. The status of this response should be set to ERROR and an error
message should be given in the message field. This message will then be displayed
by the EMU-webApp.

• ERROR response:

Listing C.17: Sent JSON file

{
'callbackID ': request.callbackID,

'status ': {
'type ': 'ERROR ',
'message ': 'An error occured trying to read a file

from disk. Please make sure: /path/to/file exists

or check the config ...

}
}

Appendix D

EQL EBNF*

This chapter presents the Extended Backus-Naur Form (EBNF) (Garshol, 2003)
that describes version 2 of the EQL. As the original EBNF adapted from John
(2012) was written in German, some of the abbreviation terms were translated
into English abbreviations (e.g., DOMA is the abbreviation for the German term
Dominanzabfrage and the newly translated DOMQ is the abbreviation for the En-
glish term domination query).

D.1 Terminal symbols of EQL2 (operators) and

their meaning

The terminal symbols described below are listed in descending order by their bind-
ing priority.

Symbol Meaning

Result modifier (projection)
, Parameter list separator
== Equality (new in version 2 of the EQL; added for cleaner syntax)
= Equality (optional; for backwards compatibility)
!= Inequality
=~ Regular expression matching
!~ Regular expression non-matching
> Greater than
>= Equal to or greater than
< Less than

*The EBNF presented here is an updated version of the EBNF of the EQL vignette.

D.4 Formal description of EMU Query Language Version 2 200

Symbol Meaning

>= Equal to or less than
| Alternatives separator
& Conjunction of equal rank
^ Dominance conjunction
-> Sequence operator

D.2 Terminal symbols of EQL2 (brackets) and

their meanings.

Symbol Meaning

' Quotes literal string
(Function parameter list opening bracket
) Function parameter list closing bracket
[Sequence or dominance-enclosing opening bracket
] Sequence or dominance-enclosing closing bracket

D.3 Terminal symbols of EQL2 (functions) and

their meanings.

Symbol Meaning

Start Start
Medial Medial
End Final
Num Count

D.4 Formal description of EMU Query Language

Version 2

EBNF term Abbreviation Conditions

EQL = CONJQ | SEQQ | DOMQ; EMU Query
Language

D.4 Formal description of EMU Query Language Version 2 201

EBNF term Abbreviation Conditions

DOMQ = "[", (CONJQ | DOMQ |
SEQQ), "^", (CONJQ | DOMQ |
SEQQ), "]";

dominance
query

levels must be
hierarchically
associated

SEQQ = "[", (CONJQ | SEQQ |
DOMQ), "->", (CONJQ | SEQQ |
DOMQ), "]";

sequential
query

levels must be
linearly associated

CONJQ = { "[" }, SQ, { "&", SQ

}, { "]" };
conjunction
query

levels must be
linearly associated

SQ = LABELQ | FUNCQ; simple query
LABELQ = ["#"], LEVEL, ("="

| "==" | "!=" | "=~" | "!~"),

LABELALTERNATIVES;

label query

FUNCQ = POSQ | NUMQ; function query
POSQ = POSFCT, "(", LEVEL,

",", LEVEL, ")", "=", "0" |
"1";

position query levels must be
hierarchically
associated; second
level determines
semantics

NUMQ = "Num", "(", LEVEL, ",",

LEVEL, ")", COP, INTPN;

number query levels must be
hierarchically
associated; first level
determines semantics

LABELALTERNATIVES = LABEL , {
"|", LABEL };

label
alternatives

LABEL = LABELING | ("'",
LABELING, "'");

label levels must be part
of the database
structure; LABELING
is an arbitrary
character string or a
label group class
configured in the
emuDB; result
modifier # may only
occur once

POSFCT = "Start" | "Medial" |
"End";

position
function

D.5 Restrictions 202

EBNF term Abbreviation Conditions

COP = "=" | "==" | "!=" | ">" |
"<" | "<=" | ">=";

comparison
operator

INTPN = "0" | INTP; integer positive
with null

INTP = DIGIT-"0", { DIGIT }; integer positive

DIGIT = "0" | "1" | "2" | "3" |
"4" | "5" | "6" | "7" | "8" |
"9";

digit

INFO: The LABELING term used in the LABEL EBNF term can represent any
character string that is present in the annotation. As this can be any combination
of Unicode characters, we chose not to explicitly list them as part of the EBNF.

D.5 Restrictions

A query may only contain a single result modifier # (hashtag).

Appendix E

EQL: further examples

Below are examples of query strings that have been adapted from Cassidy and
Harrington (2001) and Harrington and Cassidy (2002) and which are displayed as
questions and answers. All examples use the ae demo emuDB, which is provided
by the emuR package, and were extracted from the EQL vignette of the emuR pack-
age. Descriptions (some of them duplicates of those in Chapter 5) of the various
syntaxes and query components are also included for easier reading. R Example
E.0.1 shows how to access the ae demo emuDB.

R Example E.0.1

load the package

library(emuR)

create demo data in directory provided by the tempdir() function

create_emuRdemoData(dir = tempdir())

get the path to emuDB called 'ae' that is part of the demo data

path2directory = file.path(tempdir(), "emuR_demoData", "ae_emuDB")

load emuDB into current R session

ae = load_emuDB(path2directory)

E.1 Simple equality, inequality, matching and non-

matching queries (single-argument)

The syntax of a simple, equality, inequality, matching and non-matching query is
[L OPERATOR A] where L specifies a level (or alternatively the name of a parallel

E.1 Simple equality, inequality, matching and non-matching queries
(single-argument) 204

attribute definition), OPERATOR is one of the following operators: == (equality); !=
(inequality); =~ (matching) or !~ (non-matching), and A is an expression specifying
the labels of the annotation items of L.

Example questions and answers:

• Q: What is the query to retrieve all items containing the label “m” in the
“Phonetic” level?

• A:

query(emuDBhandle = ae,

query = "[Phonetic == m]")

• Q: What is the query to retrieve all items containing the label “m” or “n” in
the “Phonetic” level?

• A:

query(emuDBhandle = ae,

query = "[Phonetic == m | n]")

• Q: What is the query to retrieve all items that do not contain the label “m”
or “n”?

• A:

query(emuDBhandle = ae,

query = "[Phonetic != m | n]")

• Q: What is the query to retrieve all items in the “Syllable” level?

• A:

query(emuDBhandle = ae,

query = "[Syllable =~ .*]")

• Q: What is the query to retrieve all items that begin with “a” in the “Text”
level?

• A:

E.2 Sequence queries using the -> sequence operator 205

query(ae, "[Text =~ a.*]")

• Q: What is the query to retrieve all items that do not begin with “a” in the
“Text” level?

• A:

query(ae, "[Text !~ a.*]")

The above examples use three operators that are new to the EQL as of version
2. One is the == equal operator, which has the same meaning as the = operator
of the EQL version 1 (which is also still available) while providing a cleaner,
more precise syntax. The other two are =~ and !~, which are the new matching
and non-matching regular expression operators. Further, it is worth noting that
the use of parentheses, blanks or characters that represent operands used by the
EQL (see EBNF in Appendix D) as part of a label matching string (the string
on the right hand side of one of the operands mentioned above), must be placed
in additional single quotation marks to escape these characters. For example,
searching for the items containing the labels O ’ on the Phonetic level could not
be written as "[Phonetic == O ’]" but would have to be written as "[Phonetic
== 'O ’']". Reversing the order of single vs. double quotation marks is currently
not supported, that is '[Phonetic == ‘‘O ’’’]' will currently not work. Hence,
to avoid this issue only double quotation marks for the outer wrapping of the query
string should be used.

E.2 Sequence queries using the -> sequence op-

erator

The syntax of a query string using the -> sequence operator is [L == A -> L ==

B], where item A on level L precedes item B on level L. For a sequential query to
work both arguments must be on the same level (alternatively, parallel attribute
definitions of the same level may also be chosen).

Example Q & A’s:

• Q: What is the query to retrieve all sequences of items containing the label
“@” followed by items containing the label “n” on the “Phonetic” level?

• A:

E.2 Sequence queries using the -> sequence operator 206

NOTE: all row entries in the resulting

segment list have the start time of "@", the

end time of "n", and their labels will be "@->n"

query(ae, "[Phonetic == @ -> Phonetic == n]")

• Q: Same as the question above but this time we are only interested in the
items containing the label “@” in the sequences.

• A:

NOTE: all row entries in the resulting

segment list have the start time of "@", the

end time of "@" and their labels will also be "@"

query(ae, "[#Phonetic == @ -> Phonetic == n]")

• Q: Same as the first question but this time we are only interested in the items
containing the label “n”.

• A:

NOTE: all row entries in the resulting

segment list have the start time of "n", the

end time of "n" and their labels will also be "n"

query(ae, "[Phonetic == @ -> #Phonetic == n]")

E.2.1 Subsequent sequence queries using nesting of the ->
sequence operator

The general strategy for constructing a query string that retrieves subsequent
sequences of labels is to nest multiple sequences while paying close attention to the
correct placement of the parentheses. An abstract version of such a query string for
the subsequent sequence of arguments A1, A2, A3 and A4 would be: [[[[A1 -> A2]

-> A3] -> A4] -> A5] where each argument (e.g. A1) represents an equality,
inequality, matching or non-matching expression on the same level (alternatively,
parallel attribute definitions of the same level may also be chosen).

Example questions and answers:

• Q: What is the query to retrieve all sequences of items containing the labels
“@”, “n” and “s” on the “Phonetic” level?

E.3 Conjunction operator & 207

• A:

query(ae, "[[Phonetic == @ -> Phonetic == n] -> Phonetic == s]")

• Q: What is the query to retrieve all sequences of items containing the labels
“to”, “offer” and “any” on the “Text” level?

• A:

query(ae, "[[Text == to -> Text == offer] -> Text == any]")

• Q: What is the query to retrieve all sequences of items containing labels
“offer” followed by two arbitrary labels followed by “resistance”?

• A:

NOTE: usage of paste0() is optional

as it is only used for formating purposes

query(ae, paste0("[[[Text == offer -> Text => .*] ",

"-> Text => .*] -> Text == resistance]"))

As the EQL1 did not have a regular expression operator, users often resorted
to using queries such as [Phonetic != XXX] (where XXX is a label that was not
part of the label set of the Phonetic level) to match every label on the Phonetic

level. Although this is still possible in the EQL2, we strongly recommend using
regular expressions as they provide a much clearer and more precise syntax and
are less error-prone.

E.3 Conjunction operator &

The syntax of a query string using the conjunction operator can schematically
be written as: [L == A & L a2 == B & L a3 == C & L a4 == D & ... & L an

== N], where items on level L have the label A (technically belonging to the first
attribute of that level, i.e., L a1, which per default has the same name as its
level) also have the attributes B, C, D, . . . , N. As with the sequence operator all
expressions must be on the same level (i.e., parallel attribute definitions of the
same level indicated by the a2 - an may to be chosen).

The conjunction operator is used to combine query conditions on the same
level. This makes sense in two cases:

E.4 Domination operator ˆ (hierarchical queries) 208

1. when to combining different attributes of the same level: "[Phonetic == l

& sonorant == T]" when Sonorant is an additional attribute of level Pho-
netic;

2. when combining a basic query with a function (see sections Position and
Count below): "[phonetic == l & Start(word, phonetic) == 1]".

Example questions and answers:

• Q: What is the query to retrieve all items containing the label “always” in
the “Text” attribute definition which also have the label “C” on a parallel
attribute definition called “Word”?

• A:

query(ae, "[Text == always & Word == C]")

• Q: What is the query to retrieve all items of the attribute definition “Text”
of the level “Word” that were also labeled as function words (labeled “F” in
the “Word” level)?

• A:

query(ae, "[Text =~ .* & Word == F]")

• Q: What is the query to retrieve all items of the attribute definition “Text”
of the level “Word” that were also labeled as content words (labeled “C” in
the “Word” level) and as accented (labeled “S” in the attribute definition
“Accent” of the same level)?

• A:

query(ae, "[Text =~ .* & Word == C & Accent == S]")

E.4 Domination operator ˆ (hierarchical queries)

A schematic representation of a simple domination query string that retrieves all
items containing label A of level L1 that are dominated by (i.e., are directly or
indirectly linked to) items containing the label B in level L2 is [L1 == A ^ L2

== B]. The domination operator is not directional, meaning that either items in
L1 dominate items in L2 or items in L2 dominate items in L1. Note that link
definitions that specify the validity of the domination have to be present in the
emuDB for this to work.

E.4 Domination operator ˆ (hierarchical queries) 209

E.4.1 Simple domination

Example questions and answers:

• Q: What is the query to retrieve all items containing the label “p” in the
“Phoneme” level that occur in strong syllables (i.e., dominated by/linked to
items of the level “Syllable” that contain the label “S”)?

• A:

query(ae, "[Phoneme == p ^ Syllable == S]")

• Q: What is the query to retrieve all syllable items which contain a Phoneme
item labeled “p”?

• A:

query(ae, "[Syllable =~ .* ^ Phoneme == p]")

or

query(ae, "[Phoneme == p ^ #Syllable =~ .*]")

• Q: What is the query to retrieve all syllable items which do not contain a
Phoneme item labeled “k” or “p” or “t”?

• A:

query(ae, "[Syllable =~ .* ^ Phoneme != p | t| k]")

or

query(ae, "[Phoneme != p | t | k ^ #Syllable =~ .*]")

Even though the domination operator is not directional, what you place to
the left and right of the operator does have an impact on the result. If no result
modifier (the hash tag #) is used, the query engine will automatically assume
that the expression to the left of the operator specifies what is to be returned.
This means that the schematic query string [L1 == A ^ L2 == B] is semantically
equal to the query string [#L1 == A ^ L2 == B]. As it is more explicit to mark
the desired result we recommend you always use the result modifier where possible.

E.5 Position 210

E.4.2 Multiple domination

The general strategy when constructing a query string that specifies multiple dom-
ination relations of items is to nest multiple domination expressions while paying
close attention to the correct placement of the parentheses. A dominance relation-
ship sequence or the arguments A1, A2, A3, A4, can therefore be noted as: "[[[[A1
^ A2] ^ A3] ^ A4] ^ A5]" where A1 is dominated by A2 and A3 and so on.

Example questions and answers:

• Q: What is the query to retrieve all items on the “Phonetic” level that are
part of a strong syllable (labeled “S”) and belong to the words “amongst” or
“beautiful”?

• A:

NOTE: usage of R's paste0() function is optional

as it is only used for formatting purposes

query(ae, paste0("[[#Phonetic =~ .* ^ Syllable == S] ",

"^ Text == amongst | beautiful]"))

• Q: The same as the question above but this time we want the “Text” items.

• A:

NOTE: usage of R's paste0() function is optional

as it is only used for formatting purposes

query(ae, paste0("[[Phonetic =~ .* ^ Syllable == S] ",

"^ #Text == amongst | beautiful]"))

E.5 Position

The EQL has three function terms to specify where in a domination relationship a
child level item is allowed to occur. The three function terms are Start(), End()
and Medial().

E.5.1 Simple usage of Start(), End() and Medial()

A schematic representation of a query string representing a simple usage of the
Start(), End() and Medial() function would be: "POSFCT(L1, L2) == 1" or
"POSFCT(L1, L2) == TRUE". In this representation POSFCT is a placeholder for

E.5 Position 211

one of the three functions where the level L1 must dominate level L2. The == 1 /
== TRUE part of the query string indicates that if a match is found (match is TRUE
or == 1), the according item of level L2 is returned. If this expression is set to ==

0 / == FALSE (FALSE), all the items that do not match the condition of L2 will be
returned. A visualization of what is returned by the various options of the three
functions is displayed in Figure 5.4.

As using 1 and 0 for TRUE and FALSE is not that intuitive to many R users,
the EQL version 2 optionally allows for the values TRUE/T and FALSE/F to be used
instead of 1 and 0. This syntax should be more familiar to most R users.

Example questions and answers:

• Q: What is the query to retrieve all word-initial syllables?

• A:

query(ae, "[Start(Word, Syllable) == TRUE]")

• Q: What is the query to retrieve all word-initial phonemes?

• A:

query(ae, "[Start(Word, Phoneme) == TRUE]")

• Q: What is the query to retrieve all non-word-initial syllables?

• A:

query(ae, "[Start(Word, Syllable) == FALSE]")

• Q: What is the query to retrieve all word-final syllables?

• A:

query(ae, "[End(Word, Syllable) == TRUE]")

• Q: What is the query to retrieve all word-medial syllables?

• A:

E.5 Position 212

query(ae, "[Medial(Word, Syllable) == TRUE]")

E.5.2 Position and boolean &

The syntax for combining a position function with the boolean operator is [L ==

E & Start(L, L2) == TRUE], where item E on level L occurs at the beginning of
item L. Once again, L has to dominate L2 (optionally, parallel attribute definitions
of the same level may also be chosen).

Example questions and answers:

• Q: What is the query to retrieve all “n” Phoneme items at the beginning of
a syllable?

• A:

query(ae, "[Phoneme == n & Start(Syllable, Phoneme) == 1]")

• Q: What is the query to retrieve all word-final “m” Phoneme items?

• A:

query(ae, "[Phoneme == m & End(Word, Phoneme) == 1]")

• Q: What is the query to retrieve all non-word-final “S” syllables?

• A:

query(ae, "[Syllable == S & End(Word, Syllable) == 0]")

E.5.3 Position and boolean ˆ

The syntax for combining a position function with the boolean hierarchical op-
erator is [L == E ^ Start(L1, L2) == 1], where level L and level L2 refer to
different levels where either L dominates L2, or L2 dominates L.

Example questions and answers:

• Q: What is the query to retrieve all “p” Phoneme items which occur in the
first syllable of the word?

• A:

E.6 Count 213

query(ae, "[Phoneme == p ^ Start(Word, Syllable) == 1]")

• Q: What is the query to retrieve all phonemes which do not occur in the last
syllable of the word?

• A:

query(ae, "[Phoneme =~ .* ^ End(Word, Syllable) == 0]")

E.6 Count

A schematic representation of a query string using the count mechanism looks like
[Num(L1, L2) == N], where L1 contains N items in L2. For this type of query
to work, L1 has to dominate L2. As the query matches a number (N), it is also
possible to use the operators > (more than), < (less than) and != (not equal).
The resulting segment list contains items of L1.

Example questions and answers:

• Q: What is the query to retrieve all words that contain four syllables?

• A:

query(ae, "[Num(Word, Syllable) == 4]")

• Q: What is the query to retrieve all syllables that contain more than six
phonemes?

• A:

query(ae, "[Num(Syllable, Phoneme) > 6]")

E.6.1 Count and boolean &

A schematic representation of a query string combining the count and the boolean
operators looks like [L == E & Num(L1, L2) == N], where items E on level L

are dominated by L1 and L1 contains N L2 items. Further, L1 dominates L2 on
the condition that L and L1 (not L2) refer to the same level (parallel attribute
definitions of the same level may also be chosen).

Example questions and answers:

E.6 Count 214

• Q: What is the query to retrieve the “Text” of all words which consist of
more than five phonemes?

• A:

query(ae, "[Text =~ .* & Num(Text, Phoneme) > 5]")

or

query(ae, "[Text =~ .* & Num(Word, Phoneme) > 5]")

• Q: What is the query to retrieve all strong syllables that contain five phonemes?

• A:

query(ae, "[Syllable == S & Num(Syllable, Phoneme) == 5]")

E.6.2 Count and ˆ

A schematic representation of a query string combining the count and the boolean
operators is [L == E ^ Num(L1, L2) == N] where items E on level L are domi-
nated by L1 and L1 contains N L2 items. Further, L1 dominates L2 on the condition
that L and L1 do not refer to the same level.

Example questions and answers:

• Q: What is the query to retrieve all “m” phonemes in three-syllable words?

• A:

query(ae, "[Phoneme == m ^ Num(Word, Syllable) == 3]")

• Q: What is the query to retrieve all “W” syllables in words of three syllables
or less?

• A:

query(ae, "[Syllable = W ^ Num(Word, Syllable) <= 3]")

• Q: What is the query to retrieve all words containing syllables which contain
four phonemes?

• A:

E.7 Combinations 215

query(ae, "[Text =~ .* ^ Num(Syllable, Phoneme) == 4]")

E.7 Combinations

E.7.1 ˆ and -> (domination and sequence)

A schematic representation of a query string combining the domination and the
sequence operators is [[A1 ^ A2] -> A3], where A1 and A3 refer to the same
level (parallel attribute definitions of the same level may also be chosen).

Example questions and answers:

• Q: What is the query to retrieve all “m” preceding “p” when “m” is part of
an “S” syllable?

• A:

query(ae, "[[Phoneme == m -> Phoneme =~ p] ^ Syllable == S]")

• Q: What is the query to retrieve all “s” preceding “t” when “t” is part of a
“W” syllable?

• A:

query(ae, "[Phoneme == s -> [Phoneme == t ^ Syllable == W]]")

• Q: What is the query to retrieve all “S” syllables, containing an “s” phoneme
and preceding an “S” syllable?

• A:

query(ae, "[[#Syllable == S ^ Phoneme == s] -> Syllable == S]")

• Q: Same question as above but this time we want all “s” items where “s” is
part of a “S” syllable and the “S” syllable precedes another “S” syllable.

• A: "[[Phoneme == s ^ Syllable == S] -> Syllable == S]" would cause
an error as Phoneme == s and Syllable == S are not on the same level.
Therefore, the correct answer is:

E.7 Combinations 216

query(ae, "[[Syllable == S ^ #Phoneme == s] -> Syllable == S]")

E.7.2 ˆ and -> and & (domination and sequence and boolean
&)

Example questions and answers:

• Q: What is the query to retrieve the “Text” of all words beginning with a
“@” on the “Phoneme” level?

• A:

NOTE: usage of paste0() is optional

as it is only used for formatting purposes

query(ae, paste0("[Text =~ .* ^ Phoneme == @ ",

"& Start(Text, Phoneme) == 1]"))

• Q: What is the query to retrieve all word-initial “m” items in a “S” syllable
preceding “o:”?

• A:

NOTE: usage of paste0() is optional

as it is only used for formatting purposes

query(ae, paste0("[[Phoneme == m & Start(Word, Phoneme) == 1 ",

"-> Phoneme == o:] ^ Syllable == S]"))

• Q: Same question as the question above, but this time we want the “Text”
items.

• A:

NOTE: usage of paste0() is optional

as it is only used for formatting purposes

query(ae, paste0("[[[Phoneme == m & Start(Word, Phoneme) == 1 ",

"-> Phoneme == o:] ^ Syllable == S] ",

"^ #Text =~ .*]"))

E.8 A few more questions and answers 217

E.8 A few more questions and answers (because

practice makes perfect)

• Q: What is the query to retrieve all “m” or “n” phonemes which occur in the
word-medial position?

• A:

query(ae, "[Phoneme == m | n & Medial(Word, Phoneme) == 1]")

• Q: What is the query to retrieve all “H” phonetic segments followed by an
arbitrary segment and then by either “I” or “U”?

• A:

NOTE: usage of paste0() is optional

as it is only used for formatting purposes

query(ae, paste0("[[Phonetic == H -> Phonetic =~ .*] ",

"-> Phonetic == I | U]"))

• Q: What is the query to retrieve all syllables which do not occur in word-
medial positions?

• A:

query(ae, "[Syllable =~ .* & Medial(Word, Syllable) == 0]")

• Q: What is the query to retrieve the “Text” items of all words containing two
syllables?

• A:

query(ae, "[Text =~ .* & Num(Text, Syllable) == 2]")

• Q: What is the query to retrieve the “Text” items of all accented words
following “the”?

• A:

E.8 A few more questions and answers 218

query(ae, "[Text == the -> #Text =~ .* & Accent == S]")

• Q: What is the query to retrieve all “S” (strong) syllables consisting of five
phonemes?

• A:

query(ae, "[Syllable = S ^ Num(Word, Phoneme) == 5]")

• Q: What is the query to retrieve all “W” (weak) syllables containing a “@”
phoneme?

• A:

query(ae, "[Syllable == W ^ Phoneme == @]")

• Q: What is the query to retrieve all Phonetic items belonging to a “W” (weak)
syllable?

• A:

query(ae,"[Phonetic =~ .* ^ #Syllable == W]")

• Q: What is the query to retrieve “W” (weak) syllables in word-final position
occurring in three-syllable words?

• A:

NOTE: usage of paste0() is optional

as it is only used for formatting purposes

query(ae, paste0("[Syllable == W & End(Word, Syllable) == 1 ",

"^ Num(Word, Syllable) == 3]"))

• Q: What is the query to retrieve all phonemes dominating “H” Phonetic
items at the beginning of a syllable and occurring in accented (“S”) words?

• A:

E.9 Differences to the legacy EMU query language 219

NOTE: usage of paste0() is optional

as it is only used for formatting purposes

query(ae, paste0("[[[Phoneme =~ .* ^ Phonetic == H] ",

"^ Start(Word, Syllable) == 1] ^ Accent == S]"))

E.9 Differences to the legacy EMU query lan-

guage

In this section summarizes the major changes concerning the query mechanics of
emuR compared to the legacy R package emu Version 4.2. This section is mainly
aimed at users transitioning to emuR from the legacy system.

E.9.1 Function call syntax

In emuR it is necessary to load an emuDB into the current R session before being able
to use the query() function. This is achieved using the load emuDB() function.
This was not necessary using the legacy emu.query() function.

E.9.2 Empty result

The query function of emuR returns an empty segment list (row count is zero) if
the query does not match any items. If the legacy EMU function emu.query()

did not find any matches it, returned an error with the message:

Can't find the query results in emu.query: there may have

been a problem with the query command.

E.9.3 The result modifier hash tag #

Compared to the legacy EMU system, which allowed multiple occurrences of the
hash tag # to be present in a query string, the query() function only allows a
single result modifier. This ensures that only consistent result sets are returned
(i.e., all items belong to a single level). However, if multiple result sets in one
segment list are desired, this can easily be achieved by concatenating the result
sets of separate queries using the rbind() function.

E.9 Differences to the legacy EMU query language 220

E.9.4 Interpretation of the hash tag # in conjunction op-
erator queries

E.9.5 legacy EMU

emu.query(template = "andosl",

pattern = "*",

query = "[Text=spring & #Accent=S]")}

yielded:

moving data from Tcl to R

Read 1 records

segment list from database: andosl

query was: [Text=spring & #Accent=S]

labels start end utts

1 spring 2288.959 2704.466 msajc094

and

emu.query(template = "andosl",

pattern = "*",

query = "[#Text=spring & #Accent=S]")

yielded the identical:

moving data from Tcl to R

Read 1 records

segment list from database: andosl

query was: [#Text=spring & #Accent=S]

labels start end utts

1 spring 2288.959 2704.466 msajc094

Hence, the hash tag # had no effect.

emuR

query(emuDBhandle = andosl,

query = "[Text == spring & #Accent == S]",

resultType = "emusegs")

E.10 Bugs in legacy EMU function emu.query() 221

segment list from database: andosl

query was: [Text=spring & #Accent=S]

labels start end utts

1 S 2288.975 2704.475 0000:msajc094

Returns the same item but with the label of the hashed attribute definition
name. The second legacy example is not a valid emuR query (two hash tags) and
will return an error message.

query(dbName = "andosl",

query = "[#Text == spring & #Accent == S]")

Error in query.database.eql.KONJA(dbConfig, qTrim) :

Only one hashtag allowed in linear query term: #Text=spring & #Accent=S

E.10 Bugs in legacy EMU function emu.query()

E.10.1 Alternative labels in inequality queries

Example:

E.10.2 legacy EMU

It appears that the OR operator | was mistakenly ignored when used in conjunction
with the inequality operator !=:

emu.query(template = "ae",

pattern = "*",

query = "[Text != beautiful | futile ^ Phoneme = u:]")

yielded:

moving data from Tcl to R

Read 4 records

segment list from database: ae

query was: [Text!=beautiful|futile ^ Phoneme=u:]

labels start end utts

1 new 475.802 666.743 msajc057

E.10 Bugs in legacy EMU function emu.query() 222

2 futile 571.999 1091.000 msajc010

3 to 1091.000 1222.389 msajc010

4 beautiful 2033.739 2604.489 msajc003

E.10.3 emuR

The query engine of the emuR package respects the presence of the OR operator in
such queries:

query(emuDBhandle = ae,

query = "[Text != beautiful | futile ^ Phoneme == u:]",

resultType = "emusegs")

segment list from database: ae

query was: [Text!=beautiful|futile ^ Phoneme=u:]

labels start end utts

1 to 1091.025 1222.375 0000:msajc010

2 new 475.825 666.725 0000:msajc057

E.10.4 Errors caused by missing or superfluous blanks or
parentheses

Some queries in the legacy EMU system required blanks around certain operators
to be present or absent as well as parentheses to be present or absent. If this was
not the case the legacy query engine sometimes returned cryptic errors, sometimes
crashing the current R session. The query engine of the emuR package is much
more robust against missing or superfluous blanks or parentheses.

E.10.5 Order of result segment list

To our knowledge, the order of a segment list in the legacy EMU system was
never predictable or explicitly defined. In the new system, if the result type of
the query() function is set to "emuRsegs" the resulting list is ordered by UUID,
session, bundle and sample start position. If the parameter calcTimes is set
to FALSE it is ordered by UUID, session, bundle, level, seq idx. If it is set to
"emusegs" the resulting list is ordered by the fields utts and start.

E.10 Bugs in legacy EMU function emu.query() 223

E.10.6 Additional features

• The query mechanics of emuR accepts the double equal character string ==

(recommended) as well as the single = equal character string as an equal
operator.

• The EQL2 is capable of querying labels by matching regular expressions us-
ing the =~ (matching) and !~ (non-matching) operators. It is worth not-
ing that the regular expression pattern is always meant to consume the
entire label string i.e. wrapping the RegEx in "^RegEx$" is not neces-
sary. If substring matching is desired this must be formulated explicitly
(e.g. ".*substring.*")

• For example: query("andosl", "Text =~ .*tz.*")

Appendix F

wrassp

F.1 Using Praat’s signal processing routines in

the EMU-SDMS

R Example F.1.1 shows how generating an AsspDataObj from scratch can be used
in a function to place data from other sources into SSFF files. In this case it uses
the PraatR R package (see http://www.aaronalbin.com/praatr/index.html)
to execute Praat’s "To Formant (burg)..." function to then store the data to
a comma separated file using "Down to Table...". The generated table is then
read into R and the appropriate columns are placed into tracks of a AsspDataObj

object. The PraatToFormants2AsspDataObj can be viewed as a template function
as it can easily be adapted to use other functions provided by Praat or even other
external tools.

R Example F.1.1

###################################

uncomment and execute the next

two lines to install PraatR

library(devtools)

install_github('usagi5886/PraatR')
library(PraatR)

library(wrassp)

library(tools)

PraatToFormants2AsspDataObj <- function(path,

command =

"To Formant (burg)...",

http://www.aaronalbin.com/praatr/index.html

F.1 Using Praat’s signal processing routines in the EMU-SDMS 225

arguments = list(0.0,

5, 5500,

0.025, 50),

columnNames = c("fm", "bw")){

tmp1FileName = "tmp.ooTextFile"

tmp2FileName = "tmp.table"

tmp1FilePath = file.path(tempdir(), tmp1FileName)

tmp2FilePath = file.path(tempdir(), tmp2FileName)

remove tmp files if they already exist

unlink(file.path(tempdir(), tmp1FileName))

unlink(file.path(tempdir(), tmp2FileName))

generate ooTextFile

praat(command = command,

input=path,

arguments = arguments,

output = tmp1FilePath)

convert to Table

praat("Down to Table...",

input = tmp1FilePath,

arguments = list(F, T, 6, F, 3, T, 3, T),

output = tmp2FilePath,

filetype="comma-separated")

get vals

df = read.csv(tmp2FilePath, stringsAsFactors=FALSE)

df[df == '--undefined--'] = 0

fmVals = df[,c(3, 5, 7, 9, 11)]

fmVals = sapply(colnames(fmVals), function(x){
as.integer(fmVals[,x])

})
colnames(fmVals) = NULL

bwVals = data.matrix(df[,c(4, 6, 8, 10, 12)])

bwVals = sapply(colnames(bwVals), function(x){
as.integer(bwVals[,x])

F.1 Using Praat’s signal processing routines in the EMU-SDMS 226

})
colnames(bwVals) = NULL

get start time

startTime = df[1,1]

create AsspDataObj

ado = list()

attr(ado, "trackFormats") =c("INT16", "INT16")

if(arguments[[1]] == 0){
sR = 1 / (0.25 * arguments[[4]])

}else{
sR = 1 / arguments[[1]]

}

attr(ado, "sampleRate") = sR

tmpObj = read.AsspDataObj(path)

attr(ado, "origFreq") = attr(tmpObj, "sampleRate")

attr(ado, "startTime") = startTime

attr(ado, "startRecord") = as.integer(1)

attr(ado, "endRecord") = as.integer(nrow(fmVals))

class(ado) = "AsspDataObj"

AsspFileFormat(ado) <- "SSFF"

AsspDataFormat(ado) <- as.integer(2)

ado = addTrack(ado, columnNames[1], fmVals, "INT16")

ado = addTrack(ado, columnNames[2], bwVals, "INT16")

return(ado)

}

F.1 Using Praat’s signal processing routines in the EMU-SDMS 227

##

Use of function on 'ae' emuDB

library(emuR)

create demo data in tempdir()

create_emuRdemoData(tempdir())

create path to demo database

path2ae = file.path(tempdir(), "emuR_demoData", "ae_emuDB")

list all .wav files in the ae emuDB

paths2wavFiles = list.files(path2ae, pattern = "*.wav$",

recursive = TRUE, full.names = TRUE)

loop through files

for(fp in paths2wavFiles){
ado = PraatToFormants2AsspDataObj(fp)

newPath = paste0(file_path_sans_ext(fp), '.praatFms')
print(paste0(fp, ' -> ', newPath)) # uncomment for simple log

write.AsspDataObj(ado, file = newPath)

}

load emuDB

ae = load_emuDB(path2ae, verbose = FALSE)

add SSFF track definition

add_ssffTrackDefinition(ae,

name = "praatFms",

columnName = "fm",

fileExtension = "praatFms")

test query + get_trackdata

sl = query(ae, "Phonetic == n")

td = get_trackdata(ae, sl, ssffTrackName = "praatFms", verbose = F)

Disclosure of pre-published data

For full disclosure, the author of this thesis has been among the authors of the fol-
lowing works: Winkelmann et al. (2017); Winkelmann and Raess (2014); Winkel-
mann (2015); Reichel et al. (2009); Reichel and Winkelmann (2010); Winkelmann
and Jänsch (2015)

Zusammenfassung

Diese Dokumentation beschreibt die neu entwickelte EMU Speech Database Ma-
nagement System (EMU-SDMS) Softwaresuite, welche es Sprach- und Sprechwis-
senschaftlern ermöglicht, Sprachdatenbanken innerhalb der Statistiksoftwareum-
gebung R (R Core Team, 2016) zu bearbeiten und zu analysieren ohne dabei
weitere externe Softwarekomponenten verwenden zu müssen. Eines der Hauptziele
der Neuentwicklung war, eine Softwarelösung zu implementieren, welche die Not-
wendigkeit, mit einer Vielzahl an nicht interoperablen Tools arbeiten zu müssen,
auf eine sehr begrenzte Anzahl von interoperablen Tools zu reduzieren. Da es in
den letzten Jahren den deutlichen Trend unter Sprach- und Sprechwissenschaft-
lern gab, R für statistische Analysen zu verwenden, bot es sich an, EMU-SDMS
vollständig in R zu integrieren. Dies ermöglicht es, Sprachdatenbanken innerhalb
derselben Umgebung zu erstellen, zu annotieren, zu manipulieren und zu analysie-
ren (einschließlich der statistischen Analyse).

Das EMU-SDMS besteht aus drei Softwarekomponenten: emuR, wrassp und der
GUI Komponente EMU-webApp. Bei den Komponenten emuR sowie wrassp handelt
es sich um R Pakete, welche sich über den normalen R Paket Installationsme-
chanismus (install.packages(ëmuR")) installieren lassen. Die GUI Komponente
EMU-webApp wurde als Web-Applikation implementiert, wodurch sie in jedem mo-
dernen, HTML5 kompatiblen Browser läuft und nicht explizit installiert werden
muss. Eine weitere Komponente des neuen EMU Systems ist das neue Datenbank-
format emuDB. Die Neuentwicklung des emuDB Formats war vonnöten, da bisherige
Formate den Ansprüchen des EMU Systems an Dateistrukturierung und Annotati-
onsstrukturmodellierung nicht genügten. Bei dem neuen Format handelt es sich um
ein standardisiertes, dateibasiertes Format, welches als allgemeines und flexibles
Speicherformat für Sprachkorpora verwendet werden kann.

Die vorliegende Arbeit ist in vier Teile untergliedert: Überblick inklusive Tuto-
rial (Teil I); Zentrale Konzepte und Hauptkomponenten (Teil II); Hauptfunktionen
und zentrale Objekte des emuR Pakets (Teil III); Implementierung (Teil IV). Der
erste Teil verschafft dem Benutzer einen Überblick über die Fähigkeiten des neuen
Systems. Des Weiteren skizziert es die EMU-SDMS Arbeitsweise mit Sprachdaten-
banken und beschreibt die Alleinstellungsmerkmale des neuen Systems. Um den

Zusammenfassung 230

Benutzer kurz und pragmatisch in das neue System einzuführen, widmet sich das
nächste Kapitel des ersten Teils der Forschungsfrage: “Gegeben eine entsprechend
annotierte Sprachdatenbank ist vorhanden. Wie beeinflusst der Silbentyp (starke
vs. schwache Silben) die Vokalhöhe (gemessen anhand des ersten Formanten)?”.
Die Beantwortung dieser Frage wird inklusive Datenexploration, Datenaufberei-
tung und einer einfachen statistischen Analyse durchexerziert und entspricht damit
einer praktischen Einführung in das neue System.

Der zweite Teil beinhaltet sechs Kapitel, wobei sich drei dieser Kapitel den
zentralen Konzepten des neuen Systems widmen: Der Annotationsstrukturmodel-
lierung (Kapitel 3), der Abfrage von Annotationsstrukturen (Kapitel 5) und der
Signalextraktion für abgefragte Segmente (Kapitel 6). Die drei weiteren Kapitel
beinhalten detaillierte Beschreibungen des emuDB Formats (Kapitel 4), des wrassp
Pakets (Kapitel 7) und der EMU-webApp (Kapitel 8). Alle Kapitel des zweiten Teils
geben mittels einer Vielzahl an praktischen Beispielen einen tieferen Einblick in
die zentralen Konzepte und die Umgangs- und Arbeitsweise mit den einzelnen
Komponenten.

Der dritte Teil der vorliegenden Arbeit dient dem Benutzer als Nachschlag-
werk der wichtigsten Funktionen und Objekte des emuR Pakets. Da das emuR Pa-
ket eine zentrale Komponente des EMU-SDMS darstellt, gibt es dem Benutzer
die Möglichkeit, schnell die relevanten Funktions- oder Objektbeschreibungen zu
finden. Um die Navigation zu erleichtern, ist dieser Teil in konzeptuell zusam-
menhängende Themenbereiche gegliedert.

Die ersten drei Teile der vorliegenden Arbeit richten sind vor allem an den Be-
nutzer der EMU-SDMS in der praktischen Arbeit. Der vierte Teil gibt darüberhinaus
einen tieferen Einblick in die technischen Implementationsdetails. Die drei Kapitel
dieses Teils beschreiben die Implementationsstrategie der Query-Engine (Kapitel
10), des wrassp Pakets (Kapitel 11) und der EMU-webApp (Kapitel 12). Diverse
Anhänge liefern unter anderem weitere Beispiele und Dateiformatbeschreibungen.

Das EMU-SDMS bietet eine Vielzahl an Möglichkeiten in R mit Sprachdaten-
banken zu arbeiten. Zusammenfassend dient die vorliegende Arbeit als Anleitung
und Dokumentation zu diesem neuen Softwaretoolset.

Bibliography

Abercombie, D. (1967). Elements of general phonetics. Aldine Pub. Company.

Beckman, M. E. and Ayers, G. (1997). Guidelines for ToBI labelling. The OSU
Research Foundation, 3.

Bird, S. and Liberman, M. (2001). A formal framework for linguistic annotation.
Speech communication, 33(1):23–60.

Boersma, P. and Weenink, D. (2016). Praat: doing phonetics by computer (Version
6.0.19). http://www.fon.hum.uva.nl/praat/.

Bombien, L. (2011). Segmental and prosodic aspects in the production of consonant
clusters: On the goodness of clusters. PhD thesis, München, Univ., Diss., 2011.

Bombien, L., Cassidy, S., Harrington, J., John, T., and Palethorpe, S. (2006).
Recent developments in the Emu speech database system. In Proc. 11th SST
Conference Auckland, pages 313–316.

Cassidy, S. (2013). The Emu Speech Database System Manual: Chapter 9. Simple
Signal File Format. http://emu.sourceforge.net/manual/chap.ssff.html.

Cassidy, S. and Harrington, J. (1996). Emu: An enhanced hierarchical speech
data management system. In Proceedings of the Sixth Australian International
Conference on Speech Science and Technology, pages 361–366.

Cassidy, S. and Harrington, J. (2001). Multi-level annotation in the Emu speech
database management system. Speech Communication, 33(1):61–77.

Coleman, J. and Local, J. (1991). The “no crossing constraint” in autosegmental
phonology. Linguistics and Philosophy, 14(3):295–338.

Conway, J., Eddelbuettel, D., Nishiyama, T., Prayaga, S. K., and Tiffin, N. (2016).
RPostgreSQL: R interface to the PostgreSQL database system. R package version
0.4-1 package version 0.4-1.

http://www.fon.hum.uva.nl/praat/
http://emu.sourceforge.net/manual/chap.ssff.html

BIBLIOGRAPHY 232

Draxler, C. and Jänsch, K. (2004). SpeechRecorder - a Universal Platform In-
dependent Multi-Channel Audio Recording Software. In Proc. of the IV. In-
ternational Conference on Language Resources and Evaluation, pages 559–562,
Lisbon, Portugal.

Fromont, R. and Hay, J. (2012). LaBB-CAT: An annotation store. In Australasian
Language Technology Association Workshop 2012, volume 113. Citeseer.

Garshol, L. M. (2003). BNF and EBNF: What are they and how do they work.
acedida pela última vez em, 16.

Google (2014). AngularJS. http://angularjs.org/.

Harrington, J. (2010). Phonetic analysis of speech corpora. John Wiley & Sons.

Harrington, J. and Cassidy, S. (2002). The emu-query language (anhang).

Harrington, J., Cassidy, S., Fletcher, J., and Mc Veigh, A. (1993). The mu+ system
for corpus based speech research. Computer Speech & Language, 7(4):305–331.

Hipp, D. R. and Kennedy, D. (2007). Sqlite. https://www.sqlite.org/.

Ide, N. and Romary, L. (2004). International standard for a linguistic annotation
framework. Natural language engineering, 10(3-4):211–225.

ISO (2012). Language resource management — Linguistic annotation framework
(laf). ISO 24612:2012, International Organization for Standardization, Geneva,
Switzerland.

John, T. (2012). Emu speech database system. PhD thesis, Ludwig Maximilian
University of Munich.

Kisler, T., Schiel, F., Reichel, U. D., and Draxler, C. (2015). Phonetic/linguistic
web services at BAS. ISCA.

Kisler, T., Schiel, F., and Sloetjes, H. (2012). Signal processing via web services:
the use case WebMAUS. In Proceedings Digital Humanities 2012, Hamburg,
Germany, pages 30–34, Hamburg.

Knuth, D. E. (1968). The Art of Computer Programming Vol. 1, Fundamental
Algorithms. Addison-Wesley, Reading, MA, 9:364–369.

McAuliffe, M. and Sonderegger, M. (2016). Speech Corpus Tools (SCT). http:

//speech-corpus-tools.readthedocs.io/.

http://angularjs.org/
https://www.sqlite.org/
http://speech-corpus-tools.readthedocs.io/
http://speech-corpus-tools.readthedocs.io/

BIBLIOGRAPHY 233

Ooms, J. (2014). The jsonlite package: A practical and consistent mapping be-
tween json data and r objects. arXiv:1403.2805 [stat.CO].

R Core Team (2016). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.

R Special Interest Group on Databases (R-SIG-DB), Wickham, H., and Müller,
K. (2016). DBI: R Database Interface. R package version 0.4.

Reichel, U. D., Kleber, F., and Winkelmann, R. (2009). Modelling similarity
perception of intonation. In Proc. 10th Interspeech, pages 1711–1714, Brighton.

Reichel, U. D. and Winkelmann, R. (2010). Removing micromelody from funda-
mental frequency contours. In Proc. 5th Speech Prosody Conference, Chicago.
100923:1-4.

Rivest, R. (1992). The md5 message-digest algorithm. https://tools.ietf.org/
html/rfc1321.

Rose, Y., MacWhinney, B., Byrne, R., Hedlund, G., Maddocks, K., O’Brien, P.,
and Wareham, T. (2006). Introducing phon: A software solution for the study of
phonological acquisition. In Proceedings of the... Annual Boston University Con-
ference on Language Development. Boston University Conference on Language
Development, volume 2006, page 489. NIH Public Access.

RStudio and Inc. (2015). httpuv: HTTP and WebSocket Server Library. R package
version 1.3.3.

Shue, Y.-L., P., K., C., V., and K., Y. (2011). VoiceSauce: A program for voice
analysis. In Proceedings of the ICPhS, volume XVII, pages 1846–1849.

Wells, J. C. et al. (1997). Sampa computer readable phonetic alphabet. Handbook
of standards and resources for spoken language systems, 4.

Wickham, H., James, D. A., and Falcon, S. (2014). RSQLite: SQLite Interface
for R. R package version 1.0.0.

Winkelmann, R. (2015). Managing speech databases with emuR and the EMU-
webApp. In Proceedings of the Sixteenth Annual Conference of the International
Speech Communication Association, volume 1, pages 2611–2612.

Winkelmann, R., Harrington, J., and Jänsch, K. (2017). EMU-SDMS: Advanced
speech database management and analysis in R. Computer Speech & Language,
pages –.

https://tools.ietf.org/html/rfc1321
https://tools.ietf.org/html/rfc1321

BIBLIOGRAPHY 234

Winkelmann, R. and Jänsch, K. (2015). The new R library for the Emu Speech
Database System. https://github.com/IPS-LMU/emuR.

Winkelmann, R. and Raess, G. (2014). Introducing a Web Application for La-
beling, Visualizing Speech and Correcting Derived Speech Signals. In Calzolari
(Conference Chair), N., Choukri, K., Declerck, T., Loftsson, H., Maegaard,
B., Mariani, J., Moreno, A., Odijk, J., and Piperidis, S., editors, Proceed-
ings of the Ninth International Conference on Language Resources and Evalua-
tion (LREC’14), Reykjavik, Iceland. European Language Resources Association
(ELRA).

Winkelmann, R. and Raess, G. (2015). EMU-webApp. http://ips-lmu.github.
io/EMU-webApp/.

Wittenburg, P., Brugman, H., Russel, A., Klassmann, A., and Sloetjes, H. (2006).
Elan: a professional framework for multimodality research. In Proceedings of
LREC, volume 2006.

Zipser, F. and Romary, L. (2010). A model oriented approach to the mapping of
annotation formats using standards. In Workshop on Language Resource and
Language Technology Standards, LREC 2010, La Valette, Malta.

https://github.com/IPS-LMU/emuR
http://ips-lmu.github.io/EMU-webApp/
http://ips-lmu.github.io/EMU-webApp/

	Acknowledgements
	Installing the EMU-SDMS
	I Overview and tutorial
	An overview of the EMU-SDMS
	The evolution of the EMU-SDMS
	EMU-SDMS: System architecture and default workflow
	EMU-SDMS: Is it something for you?

	A tutorial on how to use the EMU-SDMS
	Converting the TextGrid collection
	Loading and inspecting the database
	Overview
	Database annotation and visual inspection

	Querying and autobuilding the annotation structure
	Autobuilding
	Querying the hierarchical annotations

	Signal extraction and exploration
	Vowel height as a function of word types (content vs. function): evaluation and statistical analysis
	Conclusion

	II Main components and concepts
	Annotation Structure Modeling
	Per database annotation structure definition
	Parallel labels and multiple attributes
	Metadata strategy using single bundle root nodes
	Conclusion

	The emuDB Format
	Database design
	Creating an emuDB
	Creating an emuDB from scratch
	Loading and editing an empty database
	Level definitions
	Link definitions
	File handling
	SSFF track definitions
	Configuring the EMU-webApp and annotating the emuDB

	Conclusion

	The query system
	emuRsegs: The resulting object of a query
	EQL: The EMU Query Language version 2
	Simple queries
	Combining simple queries
	Position queries
	Count queries
	More complex queries
	Deducing time
	Requery

	Discussion

	Signal data extraction
	Extracting pre-defined tracks
	Adding new tracks
	Calculating tracks on-the-fly
	The resulting object: trackdata vs. emuRtrackdata
	Conclusion

	The R package wrassp
	Introduction
	File I/0 and the AsspDataObj
	Signal processing
	The wrasspOutputInfos object
	Formants and their bandwidths
	Fundamental frequency contour
	RMS energy contour

	Logging wrassp's function calls
	Using wrassp in the EMU-SDMS
	Storing data in the SSFF file format
	Conclusion

	The EMU-webApp
	Main layout
	General usage
	Annotating levels containing time information
	Working with hierarchical annotationsThis section is an updated version of the The level hierarchy section of the General Usage chapter that is part of the EMU-webApp own brief manual by Markus Jochim.

	Configuring the EMU-webApp
	Basic configurations using emuR
	Signal canvas and level canvas order
	Advanced configurations made by editing the _DBconfig.json
	2D canvas

	Conclusion

	III Main emuR function and object index
	emuR - package functions
	Import and conversion routines
	Legacy EMU databases
	TextGrid collections
	BPF collections
	txt collections

	emuDB interaction and configuration routines
	EMU-webApp configuration routines
	Data extraction routines
	Central objects
	Export routines
	Conclusion

	IV Implementation
	Implementation of the query system
	Query expression parser
	Redundant links

	wrassp implementation
	The libassp port

	EMU-webApp implementation
	Communication protocolThis section has been published in winkelmann:2015d.
	URL parameters
	Websocket server parameters
	Label file preview parameters

	Appendices
	Use cases
	Use case 1
	Use case 2
	Use case 3
	Use case 4

	File Formats
	File descriptions
	_DBconfig.json
	_annot.json
	The SSFF file format

	Example files
	_bundleList.json
	_bndl.json

	The EMU-webApp-websocket-protocol Version 2.0
	Protocol overview
	Protocol commands
	GETPROTOCOL
	GETDOUSERMANAGEMENT
	LOGONUSER
	GETGLOBALDBCONFIG
	GETBUNDLELIST
	GETBUNDLE
	SAVEBUNDLE
	DISCONNECTWARNING
	Error handling

	EQL EBNF
	Terminal symbols of EQL2 (operators) and their meaning
	Terminal symbols of EQL2 (brackets) and their meanings.
	Terminal symbols of EQL2 (functions) and their meanings.
	Formal description of EMU Query Language Version 2
	Restrictions

	EQL: further examples
	Simple equality, inequality, matching and non-matching queries (single-argument)
	Sequence queries using the -> sequence operator
	Subsequent sequence queries using nesting of the -> sequence operator

	Conjunction operator &
	Domination operator ^ (hierarchical queries)
	Simple domination
	Multiple domination

	Position
	Simple usage of Start(), End() and Medial()
	Position and boolean &
	Position and boolean ^

	Count
	Count and boolean &
	Count and ^

	Combinations
	^ and -> (domination and sequence)
	^ and -> and & (domination and sequence and boolean &)

	A few more questions and answers
	Differences to the legacy EMU query language
	Function call syntax
	Empty result
	The result modifier hash tag #
	Interpretation of the hash tag # in conjunction operator queries
	legacy EMU

	Bugs in legacy EMU function emu.query()
	Alternative labels in inequality queries
	legacy EMU
	emuR
	Errors caused by missing or superfluous blanks or parentheses
	Order of result segment list
	Additional features

	wrassp
	Using Praat's signal processing routines in the EMU-SDMS

	Disclosure of pre-published data
	Zusammenfassung

