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Figures 

Figure 1: Here, a schematic description of the therapeutic cassette pEMTAR.bi-RANTES.tk including 

the selection gene is shown. The LTR sequences were part of the viral system facilitating an 

insertion of the gene, which was embedded between both LTR sequences. The HSV-TK gene 

was under the control of an inducible promoter, called RANTES. This RANTES promoter 

generally is inducible with pro-inflammatory cytokines e.g. TNFα and IFNγ. The HA-tag was 

attached to the kinase, which allowed a detection with accordant antibodies for measurement 

through flow cytometry. The enzyme PAC deactivated the cytoxin puromycin by acetylation. This 

enzyme was expressed continuously because it was under the control of a constitutive promoter 

(pPGK) allowing a selection by puromycin during cultivation. The WPRE sequence enhanced the 

stability of the transcribed transgene increasing proten expression [278]. ................................... 34 

Figure 2: This flow chart presents the comparison approach of the human and the porcine-derived cell 

therapy products. Both species cells derived from the bone marrow and were produced in the 

same way. After the first detachment, the cells were split into a naïve line and into a line that was 

transduced with the HSV-TK vecotor. Testing was performed on several different steps of the 

MSC product. In vivo studies were performed with porcine MSCs only. ...................................... 53 

Figure 3: Before the first media change, no adherent cells were visible (A) since erythrocytes 

completely masked the plastic surface. The succesive media changes reduced the amount of 

suspension cells dramatically until only adherent cells remained in the cultivation flask. Here, 

stromal cells (B) built up adherent colonies that showed a circular proliferation with a high cell 

density at the inner part. Within days, the colonies grew up until they got in touch with each 

other. Not later than 14 days, the cells were split and scattered for further proliferation. Scale bar: 

(A) 100 µm and (B) 500 µm. ......................................................................................................... 54 

Figure 4: Porcine (A, batch: Porcine 0) and Human MSCs from donor 1 (B, batch: Human 1) in low-

density seed showed fibroblast-like morphology. Microscopy showed that human MSCs tended 

to be larger than their porcine counterparts and were slightly more spindle-shaped. After 

seeding, both species showed nearly complete adherence in less than 2 h. Scale bar: 250 µm. 55 

Figure 5: The human donor 2 (A, batch: Human 3) and donor 3 (B, batch: Human 5) were comparable 

in morphology to donor 1 and the porcine MSCs. Comparing donor 2 to the other human donors, 

a more flattened and enlarged size was visible. Scale bar: 250 µm. ........................................... 55 

Figure 6: In general, porcine and human MSCs showed a similar set of surface markers (also viability). 

The criteria of the ISCT were fulfilled. In contrast to CD90, CD105 was significantly less 

presented on porcine MSCs, which was further evaluated in Figure 7. CD45+, a typical 

haematopoietic marker, was not present on both species. HLA-DR was found on human MSCs 
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(see Figure 8) but not on porcine MSCs. More comparison stainings could not be performed due 

to the lack of commercially available antibodies for porcine cells. Statistics: two-way ANOVA. .. 57 

Figure 7: In contrast to other positive MSC markers like CD90 (A), a small sub-population of CD105 

negative porcine MSCs (B) could be observed (see arrow). The porcine MSCs showed a single 

population overlapping with the isotype control. A second population of positive cells could be 

discriminated. ................................................................................................................................ 58 

Figure 8: The presence of TNFα and IFNγ induced no up-regulation of HLA-DR on porcine MSCs in 

contrast to human MSCs. MSCs of both species were cultivated w/wo pro-inflammatory 

cytokines and stained for HLA-DR. The naïve and genetically modified batches were grouped. 

Porcine MSCs did not show any HLA-DR presentation on their surface whether stimulated or not. 

Human MSCs increased HLA-DR presentation under stimulation significantly. Statistics: two-way 

ANOVA. ........................................................................................................................................ 60 

Figure 9: Both porcine (A) and human (B) MSCs showed an adipogenic lineage potential. Defined 

stimulation media induced the cell differentiation. After 10 d, first fat vacuoles were observed. Not 

earlier than 14 d after the start of differentiation, the cells were washed and stained. The reddish 

colour of the droplets was caused by the red oil, which was used to detect the fat vacuoles more 

easily. The same commercial differentiation media were used for both species (the used media 

were indicated for human MSCs only). The human donors generally showed more lipid vacuoles 

than the pig (see Table 15). The human batch 1 (C) showed a significantly higher sensitivity for 

differentiation because the appearance large fat vacuoles was observable. In addition, small 

vacuoles lined up in a row (see arrows) at the edge of nearly all cells. (D) Appropriate controls 

showed no red oil staining although very small vacuoles could be observed in some sections. 

Scale bar: 250 µm for (A,B,C) and 25 µm for (D) (all sections had the same optical 

magnification). ............................................................................................................................... 62 

Figure 10: Both species (porcine (A), human (B)) showed strong calcium enrichment. No signifcant 

difference between the batches and species could be observed. The porcine MSCs were 

equivalent to the human MSCs in their osteogenic potential with the human stimulation media. (C 

porcine, D human) Controls for both species showed no calcium enrichment if cultivated with the 

accordant standard media. Scale bar: 250 µm. ............................................................................ 63 

Figure 11: The mean population doubling time (PDT) of porcine and human MSCs was comparable. 

The mean PDT of the porcine batches was 62 h and while it was 58 h for the human batches. 

Obviously, a donor dependency could be observed indicating different doubling times for each 

donor. The porcine batches showed a similar population doubling time. Both batches of each 

donor showed similar population doubling times varying fron 30 h to 100 h. Statistics: two-tailed, 

unpaired t-test. .............................................................................................................................. 65 
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Figure 12: Successful transduction was identified by flow cytometry measuring a second population 

(B) in contrast to a single population of naïve cells (A). (A) Naïve cells showed a typical negative 

population in the SS / flourescence plot. (B) The heterogeneous cell population of transduced 

and naïve cells showed a partial shift creating a diffuse second population. Isotype-controlled 

gating showed more than 46% cells expressing the transgene. .................................................. 67 

Figure 13: (A) Transducing MSCs with the same vector/cell ratio and the same method led to 

comparable mean transgene rates in both species. The human batches 2 and 6 had slightly 

reduced insertion rates, whereas Human 4 was quite similar to Porcine 4. (B) If only the method 

of transduction was changed (same vector / cell ratio), the insertion rate varied significantly. 

Method B showed the highest efficiency while method A and C did not show any statistical 

relevant changes. Statistics: (A) ordinary One-Way ANOVA and (B) ordinary Two-Way ANOVA.

 ...................................................................................................................................................... 68 

Figure 14: (A) The selection by puromycin killed most of the adherent cells visible as detached, 

spheric units. (B) As soon as the selection medium was depleted and a standard medium was 

given into the culture, the MSCs started to proliferate again, indicated by small, not flattened 

cells. Scale bar: 250 µm. .............................................................................................................. 69 

Figure 15: (A) Naïve porcine cells showed a typical population distribution in the flourescence / SS 

depiction. (B) After transduction and selection without RANTES activation, background 

expression of the not induced promoter was detectable (37%). Here, the cells distributed on both 

sides of the gate. (C) If pro-inflammatory cytokines were given into the medium, a single 

population of porcine HSV-TK expressing cells was identified. ................................................... 70 

Figure 16: Stimulation of the human RANTES promoter with pro-inflammatory cytokines led to 

increased HSV-TK expression in both species. Although the RANTES promoter was isolated 

from human cells, it showed functionality in porcine MSCs. Slight background expression was 

detectable in both species in comparison to naïve cells as the negative control. Statistics: paired 

t-test for columns A/B and C/D and Welch´s test (unpaired t-test, non-equal stdv) for the 

comparison of porcine to human batches. .................................................................................... 71 

Figure 17: Porcine (A) and human MSCs (B-D) expressing HSV-TK showed a higher sensitivity to 

GCV than their naïve counterpart. Increasing the GCV concentration in a logarithmic scale 

showed an earlier effect on transduced MSCs, decreasing the amount of living cells. The cell line 

HT1080 and the porcine cell line K67 did show a GCV sensitivity profile (E) like naïve MSCs. 

Statistics: nonlinear regression (dose response inhibition), goodness of fit for each figure A-E: 
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Figure 18: The EC50 (half-maximal effectivity of GCV) of all non-transduced MSCs and cell lines were 

more than 100-fold lower than HSV-TK expressing cells. The porcine cells showed sensitivity 
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differences of nearly 1000-fold. Statistics: standard deviation bases on the 95% confidence 

interval of the nonlinear regression. .............................................................................................. 74 

Figure 19: (A) Naïve porcine MSCs did not react with massive apoptosis if GCV was added to the 

medium. The naïve cells showed good adherence and only occasional deatchment was visible 

although GCV was present. (B) The treatment of HSV-TK expressing MSCs with GCV led to a 

massive accumulation of cells and cell debris in the supernatant, which could be seen on day 

five. (C) Depleting the medium only occasionally showed adherent cells. Scale bar: 250 µm. ... 76 

Figure 20: The treatment (pro-inflammatory cytokines + GCV) of HSV-TK expressing cells showed 

significant reduction in cell proliferation in contrast to also treated naïve cells. All groups were 

additionally cultivated without treatment as negative control. At the end of the assay, the cell 

counts of the treated groups were normalized to the negative control and the reduction was 

calculated. Both species showed a comparable percentage of killed cells during treatment for 

HSV-TK expressing and naïve cells. Statistics: paired t-test for columns Porcine 1 / Porcine 2-4 

(HSV-TK) and Human 1,3,5 / Human 2,4,6 (HSV-TK) and Welch´s test (unpaired t-test, non-

equal stdv) for the comparison of porcine to human batches. ...................................................... 77 

Figure 21: GCV-treated, HSV-TK expressing porcine MSCs in contrast to non-treated MSCs: 

Morphological changes correlated with different stages of apoptosis. (A) Non-treated MSCs were 

characterized by one population in the FS / SS plot. (B) If this population was stained for 7-AAD 

and Annexin-V, a slight drift to Annexin-V positive cells was observable. Very small amounts of 

cells were 7-AAD positive indicating dead cells. (C) Since no further populations were visible, the 

gating showed no cells. (D) Treatment of HSV-TK expressing cells generated a second, smaller 

but more granular population in the FS / SS plot. (E) Staining with 7-AAD and Annexin-V for cells 

gated on the “normal population“ showed mainly Annexin-V positive cells and a smaller Annexin-

V and 7-AAD negative population indicating living cells. 7-AAD cells were increased if compared 

to the amount of 7-AAD in (B). (F) Gating on the smaller and more granular population (here 

“shrunken population“) showed that nearly all cells were 7-AAD and Annexin-V positive. A 

smaller sub-population was Annexin-V positive only. ................................................................... 78 

Figure 22: Porcine and human HSV-TK expressing MSCs became smaller and more granular if they 

were treated with pro-inflammatory cytokines and GCV. In this figure, the distributions of the cells 

in the FS / SS are summarized for all batches after treatment following the gating strategy of 

Figure 21. Naïve cells of both species primarily showed a normal morphology in the FS / SS with 

more than 80% in the “normal population” gate in spite of the treatment. HSV-TK expressing 

MSCs showed a change to more granular and smaller cells. Human HSV-TK MSCs showed 

about 30% of shrunken cells but porcine HSV-TK MSCs showed up to 70% of shrunken cells. 

Statistics: two-way ANOVA; following comparisons did not show a significant difference: Porcine 

1 and Human 1,3,5 for normal and shrunken population (p=0.34 and p=0.56); Human 1,3,5 and 
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significant. (B) HSV-TK expressing cells showed also a statistically significant shift to 7-AAD. All 

batches were treated the same way as described in section 7.5. Here, only Annexin-V positive 
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axis. All HSV-TK expressing batches were treated over five days. The amount of killed cells of 
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the species, the killing efficacy correlated with the growing speed of a population. Statistics: 
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Table 1: This overview represents the nomenclature and properties of human and porcine MSCs in the 

generation of the cell products. The human donors were chosen based on a thorough medical 

anamnesis following the accordant laws (actual, german tissue and transplantation law). The 

pig´s cells isolation was performed by members of the Lehrstuhl für Biotechnologie der Nutztiere 

from the Technische Universtiät München. The mini-pig derives from an isogenetic inbreed. This 

animal is isogenetic to the pigs that were used during the biodistribution study (see 7.7). .......... 28 

Table 2: Description of the cultivation media. Bio-1 was used for human MSCs. This media does not 

contain FBS but platelet lysate that is based on a patent, referenced in 4.1. All other media, also 

for porcine MSCs, had FBS as an ingredient. The recipe for the porcine MSCs cultivation media 

is based on personal communication with the working group of Prof. Angelika Schnieke of the 

Technische Universität München leading the “Chair of Livestock Biotechnology”. ...................... 32 
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1  Introduction 

1.1 Multipotent Mesenchymal Stromal Cells (MSCs) 

Friedenstein et al. described multipotent stromal or mesenchymal stem cells for the first 

time in 1968 [1]. These are non-haematopoietic, multipotent cells that were isolated from 

the bone marrow and could easily be cultured due to their plastic adherence. Friedenstein 

et al. could show that these cells support the haematopoiesis and are able to differentiate 

into osteogenic cells [2]. 

More than 45 years of research on MSCs have been performed since discovery. In spite of 

all efforts, the clear identity and all in vivo functions are still unclear [3]. The “International 

Society of Cell Therapy” (ISCT) defined the nomenclature and essential properties of MSCs 

to harmonize controversies and to get a uniform understanding. The three criteria: plastic 

adherence, differentiation potential and defined surface proteins gave an important but 

minimalistic basis [4, 5]. The heterogeneity of the population [6], the pro- or anti-

inflammatory switching phenotype [7, 8] and the numerous tissues from which so-called 

MSCs were derived [9] are still questionable and cannot be answered by the ISCT criteria 

alone. Also regulatory authorities understand the inconsistencies of MSC-based medicinal 

products as an important question [10]. Unlike HSCs, the MSC role in the bone marrow 

stem cell niche is still under investigation and it seems that they are strong supporters of the 

HSC niche [11]. The proof of a highly primitive stem cell character – as it is shown for 

HSC´s bone marrow re-population in irradiated mice [12-14] – could not be performed yet 

since defining accurate assays is complex although transplantation of so called “heterotopic 

ossicles” could be performed [15]. 

Despite the biological questions in the field of MSCs, the enormous therapeutic potency of 

these cells becomes obvious when treating Graft-versus-host disease (GvHD) [16] or 

osteogenesis imperfecta [17]. In 2012, Prochymal® was the first approved MSC-based drug 

showing a benefit treating pediatric patients suffering from advanced GvHD [18, 19]. Many 

successful applications and treatments of inflammatory diseases like Crohn´s [20], joint 

diseases [21] or other autoimmune diseases [22] underlined the immunomodulatory and 

regenerative capability of MSCs. Moreover, the constant increase of clinical trials, which are 

listed on www.clinicaltrials.gov with the term “mesenchymal stem cell”, is raising hope to 

patient’s needs.  

http://www.clinicaltrials.gov/
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Even if many therapeutic applications are promising, it is a path of trial and tribulation [23-

25]. Many cornerstones are still unknown and clinical setbacks have to be overcome. The 

hallmark of MSCs, a real stem cell defining set of surface proteins and the control of their 

variable properties are still milestones in this field [26]. 
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1.2 The Identity of MSCs and Their Heterogeneity 

First, these cells were called non-hematopoietic, “osteogenic cells” and later on the term 

“stromal stem cells” was established [2, 27]. Arnold Caplan broadened the concept to 

“mesenchymal stem cells” [28]. Because of many controversies and a little accordance in 

the nomenclature, the ISCT suggested “multipotent mesenchymal stromal cells” in 2005, 

excluding the word “stem” since the real stem cell character could not be shown yet [4]. 

One year later, the ISCT also demanded a by now generally accepted, valid set of 

requirements, which ex vivo expanded MSCs have to fulfill. Firstly, the cells must adhere to 

plastic. A simple seeding of the bone marrow or other tissue shows colony forming units 

(CFUs). Secondly, defined media with stimulating cytokines and drugs can induce a 

differentiation into adipocytes, osteocytes and chondrocytes [5, 29]. After a defined 

incubation time with an e.g. adipocyte stimulation media, fat vacuoles are observed in the 

cells and are easily stained with lipophilic dyes. Even if these assays show the multipotency 

of MSCs, there is still criticism regarding functional proofs of the differentiated cells [30]. 

The most valuable and last assay of the ISCT proposal is the verification of certain surface 

proteins discriminating MSCs from hematopoietic cells. While CD90 (Thy-1), CD73 (ecto 5` 

nucleotidase) and CD105 (endoglin) are typical positive marker, other proteins like CD45 

(pan-leukocyte marker), CD34 (primitive hematopoietic progenitor), CD14 and CD11β 

(monocytes and macrophages) CD79α and CD19 (B-lymphocyte marker) must not be 

identified in vitro. Appropriate flow cytometry can easily recognize an MSC population by 

suitable antibody staining [5].  

Following the fundamental requirements of a medicinal product from a pharmaceutical point 

of view, the active substance must be described by identity, purity and content. The minimal 

criteria are helpful to describe MSCs, but recent publications show that these are not 

sufficient because the pharmacological activity of MSCs is highly variable and does not 

mandatorily correlate to known markers [31-33]. Therefore, the hidebound check for the 

previously defined surface proteins to determine e.g. the purity of the active substance may 

raise false-positive results, as these markers may not present the desired phenotype [34]. 

The preparation of MSCs by adherent culture is a source of heterogeneity since the donor, 

the chosen tissue, purification steps, culture media, cytokines, passaging and expansion 

time have great impact on the phenotype of the cells without losing the ISCT prerequisites 

[6, 35]. Therefore, accurate potency assays for the intended indication characterizing the 

wanted properties rightly are heavily needed [36, 37] since describing the identity is 

obviously a tough task.  
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MSCs react on IFN stimulation by expressing immunomodulatory cytokines and presenting 

MHC-II on their surface. Additionally, MSCs are able to switch from their mostly observed 

anti-inflammatory to a pro-inflammatory phenotype expressing different interferons (IFNs) 

[31, 38, 39]. This can be induced by an anti-inflammatory milieu [39, 40]. Nonetheless, 

transient markers which correlate with the actual phenotype are lacking and hence the 

phenotype of MSCs has to be described mostly by functional assays e.g. a T-cell 

proliferation assay [41]. This ex vivo change of the phenotype is described in 1.3. 

Apart from the phenotype, the heterogeneity of the isolated, adherent cells [42, 43] requires 

a unique stem cell marker which may identify the “true” stem cell sub-population. Great 

efforts are made screening for the most potent subset of cells. SSEA-3 (stage-specific 

embryonic antigen-3) [44] and CD146 (cell surface glycoprotein MUC18) [45] are auspicious 

markers that were found on MSCs sub-populations [46]. Especially CD146 showed a good 

CFU-F enrichment after sorting [42]. Other markers like CD349 (frizzled-9) [47], GD2 (a 

neural ganglioside) [48] or CD49f (a6-integrin) [49] correlate with better CFU-F enrichment 

or a more effective differentiation. But all these markers are also presented on other cell 

types too and are therefore helpful, but not unique. Additionally, the subset of positive 

markers differs from tissue to tissue from which MSCs are derived [46]. 

Unless a sole marker correlating to a stem cell-like sub-population was identified by 

accurate functional assays, it makes sense to follow the ISCT recommendations and to call 

the adherent cells “multipotent mesenchymal stromal cells” and to exclude the term “stem”. 

MSC is hence a concept, which describes the whole population of all adherent cells from an 

isolation fulfilling the minimal ISCT criteria [4, 5]. 
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1.3 MSCs Change their in vivo Phenotype by ex vivo Manipulation 

The in vivo phenotype of MSCs is still not fully understood [3]. Often, these cells are directly 

linked to pericytes [50, 51] or fibroblasts [34, 52, 53] since they share many similarities. 

Especially pericytes are in the focus because they are able to beneficially stimulate their 

tissue site with a panel of cytokines. There is increasing evidence that MSCs remain also in 

a perivascular niche [50] and are activated if the tissue site is injured [54]. Studies in animal 

models underline the vascular thesis since the CFU-F of MSCs and the blood vascular 

density seem to correlate [55]. 

MSCs are highly affected by ex vivo expansion [35]. On one hand, it is difficult to 

understand how the used protocols impact the MSCs and leads to unwelcomed stimulation. 

On the other hand, MSCs may be understood as a platform, ready to be conditioned for 

treating a chosen indication. Several studies investigated the impact of elemental culture 

manipulations: hypoxic conditions, addition of pro- or anti-inflammatory cytokines and the 

mechanical interaction with 2D- or 3D-layer. These culture conditions led to different profiles 

and amounts of secreted cytokines, reviewed by Madrigal et al. [32]. 

MSCs cultured under hypoxia express several growth factors like vascular endothelial 

growth factor (VEGF), fibroblast growth factor 2 (FGF-2), hepatocyte growth factor (HGF) 

and insuline like growth factor 1 (IGF-1) in dependence of NF-kappa β. These growth 

factors support angiogenesis, anti-apoptosis and may maintain the stem cell character of 

MSCs [56-58] as well as the immunomodulatory capacities mediated by increased 

expression of indolamine 2,3 deoxygenase (IDO) [59]. This modulated phenotype is also in 

vivo significant and may lead to better neuronal regeneration after brain injury [60] or 

reduces the effects of diabetic cardiomyopathy [61]. In general, hypoxic condition is a potent 

manipulation to enhance regenerative effects of MSCs [60]. 

It is well described that human, but also canine and murine MSCs are HLA-DR positive [62] 

and show MHC-II on their surface and an increase of IDO expression if stimulated with IFNγ 

and TNFα [63-65]. These cytokines are potent inducers to generate an anti-inflammatory 

phenotype [31], which can be proofed by the T-cell proliferation assay [41]. IDO, as well as 

prostaglandine-2 (PGE-2), transforming growth factor β (TGF-β) and galectin-9 (Gal-9) are 

prominent anti-inflammatory markers [66-68] and are essential for the anti-inflammatory 

potency.  

GvHD is a life-threatening disease and is often successfully treated with MSCs. These 

treatments are well studied [16, 18, 19, 69, 70]. Increasing the potency on these indications 
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with pre-stimulation may promise better efficacy [71] in these critical, inflammatory 

indications. 

Beside the chemical-biological milieu, the mechanistic interaction of MSCs with their 

environment may have great impact, too. 3D-culture systems mimic the stem cell niche 

more than standard 2D monolayers do. These spheroid cultures stimulate the secretion of 

trophic factors. For example, TNF-stimulated gene 6 protein (TSG-6), an anti-inflammatory 

protein, is only expressed in 3D culture flasks, which may vary the treatment outcome [72]. 

Although, the diversity of culture systems will differently impact the cells properties, 

spheroids in general seems to promote an anti-inflammatory phenotype [73, 74]. 
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1.4 A Drug-Delivery System: Pharmacokinetics of MSCs 

The pharmaceutical industry regularly designs new drugs following the “Rule of Five” to 

enhance a good systemic absorption after oral intake [75]. These drug properties are 

investigated in extensive studies on absorption, distribution, metabolism and elimination 

(ADME) [76]. New to this field, biopharmaceutical products gain also center stage in ADME 

evaluations [77].  

The pharmacokinetics of small molecule drugs is passive, controlled by the biology of the 

body and its biochemical processes. This fact challenges the pharmaceutical industry for 

appropriate design of small molecules because little alterations on the chemical compound 

may have great impact on the drugs pharmacological profile [75, 78]. Beside vaccines, 

antibodies are the first generation of biologicals, which found their way into clinical 

pharmacy. Therapeutic antibodies show a great field of usage in cancer therapy as drug 

delivery systems e.g. Adcetris® or as agents acting directly against the tumor e.g. Erbitux®. 

Nevertheless, antibodies follow the rules of passive diffusion gradients as well as small 

molecules and only increase their therapeutic efficacy by their high specificity to target 

structures. In contrast to these classical medicinal product groups, many research groups 

promise a new class of pharmacokinetics for cells, especially for MSCs: directed targeting 

respectively the so-called homing.  

Successful clinical results treating osteogenesis imperfecta showed the therapeutic potency 

of the bone marrow and its cells in the early 2000s [17, 79]. Good clinical response of 

MSCs-treated children indicated an engraftment of the donor cells into the patients’ bone 

after intravenous administration. This basic proof of concept – the feasibility of treatment 

with MSCs by intravascular application– facilitated many new clinical approaches and 

applications for other indications suitable for MSC treatment e.g. GvHD [80], cancer (MSCs 

as drug-delivery system) [81-83] or regenerative indications [84]. Systemic transplantation 

of MSCs seemed to be performed quite easily. Since then, many in vivo studies have been 

performed to examine the pharmacokinetics of MSCs, summarized in several reviews [85-

88].  

Beside the therapeutic success, the method of detection is a major hurdle to track MSCs in 

vivo and to define the biodistribution of MSCs. Approaches range from labeling with 

radioactive systems, fluorescent vital dyes, contrast agents, reporter genes or cell-specific 

DNA markers (microsatellites) [89-93]. Some of the detection systems can only be used for 
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short time-intervals or do not distinguish between living and dead cells. This makes the 

evaluation of the generated data difficult.  

In spite of the tracking method challenges, it is well understood that intravenous 

administered MSCs mainly residue in the lungs´ vascular system for the first hours after 

administration [72, 94, 95]. It is still a matter of debate whether the cells´ size or surface 

proteins regulate this interaction. The average diameter of MSCs is about 16-53 µm 

dependent on tissue origin, culture conditions, passage and several other factors [96].  

HSCs are about 4 - 12 µm large. Therefore, obstructive processes in the pulmonary 

capillaries (<10 µm diameter [97]) are probable. Preclinical studies proofed a pulmonary 

first-pass effect after systemic infusion in small and large animal models [72, 92, 98, 99]. 

This effect might be reduced if a vasodilation is performed by administration of nitroprusside 

[100] underlining the importance of the cells´ size and the steric interaction. 

In spite of these steric issues, it is evident that surface molecules of MSCs also interact with 

endothelial cells. Although CXCR4, a prominent homing receptor, is absent on culture-

expanded MSCs [101, 102] (and is only broadly present after induction [103]), adhesion 

molecules like vascular cell adhesion molecule (VCAM-1) are involved in endothelial 

interaction [101]. VCAM-1 and the surface protein very late antigen-4 (VLA-4) are immanent 

for the firm adhesion of MSCs to the endothelium [104]. Studies on different enzyme 

treatment during harvesting show the important role of the adhesion markers. Different 

enzymes used for detachment alter the lung clearance significantly [105]. This was also 

underlined by results indicating a correlation between the whole surface profile and its 

markers and lung clearance [106]. In contrast to intravenous administration, intra-arterial 

applications avoid the first-pass effect in the lungs and show an increased uptake in 

inflammatory sites [107] and therapeutic efficacy [108, 109]. But, intra-arterial infusions are 

more complex to be handled in a clinical setting. 

After the first hours to days in the lungs vascular system, MSCs relocate throughout the 

body. Here, inflamed tissues seem to attract the - mostly immunosuppressive - cells [89, 

110]. Tumors and their immunological microenvironment are highly complex and seem to 

be an attractive target for MSCs [111-114]. The physiological role of stromal cells as e.g. 

tumor-associated fibroblasts is still unclear although there is evidence that MSC can inhibit 

or contribute to growth of solid tumors dependent on the preclinical setting. It is obvious that 

MSCs play a role in the tumor microenvironment. Niess et al. evaluated these contradictory 

reports in a review [115]. This involvement of MSCs in the tumor stroma led to therapeutic 

approaches bringing a suicide gene next to the tumor cells. Several authors examined this 
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MSC based drug-delivery system [116-118]. The efficiency of homing (and the efficacy of 

the therapeutic suicide gene) is still challenging this therapeutic approach. 

Preclinical models with myocardial infarction allow a good insight into the MSC homing. 

Here, MSCs have been observed to accumulate at ischemic sites [119, 120]. Interestingly, 

transgenic mice expressing CCR2 in cardiac muscle cells have a significant higher 

recruiting rate of MSCs [121]. But, it is still unclear if MSCs are temporarily or constantly 

incorporated into the cardiac tissue. 

More cues than evidences have been shown for kidney diseases. Although the therapeutic 

usability of MSCs in kidney indications was proofed, the mechanisms beyond that are not 

yet understood [122]. The fact that also MSC derived microvesicles showed therapeutic 

effects in an acute kidney injury mouse model [123] as well as MSCs themselves [124, 125] 

queries direct correlations between pharmacodynamics and pharmacokinetics and therefore 

the homing of MSCs into the site. 

Gholamrezanezhad et al. provided evidence of the biodistribution in humans by 

measurement of radioactive 111In-oxine labeled MSCs [110]. Here, the cells passaged the 

lung successfully. Hours to days later, the MSCs migrated into the liver of patients with liver 

cirrhosis. Cells could also be detected in the spleen. Intriguingly, a recruitment of cells into 

the injured liver of mice could not be shown [126] underlining the difficulty of translational 

studies. 

The work of Horwitz and colleagues [17, 79] indicated a successful engraftment of MSCs 

into the bone marrow of children with osteogenesis imperfect as referenced before (see 

1.1). In contrast to these data, it is evident that donor MSCs do not generally engraft in 

allogeneic hosts [127-129]. Especially long-time culture can reduce the homing capacities of 

MSCs dramatically [130]. 

Besides the fact that MSCs show an accumulation at inflamed sites, the ratio of homing 

MSCs vs. infused MSCs is still hard to determine. The methodological limits often reduce 

the meaningfulness of quantitative assessments. Descriptive data are mostly relative to the 

accordant methodological controls only allowing vague statements. Systemically infused 

MSCs show both migration to the pathological site [110, 121, 131] and distribution 

throughout other organs [89, 93, 132]. Absolute cell numbers are seldom stated in 

publications. 

The possibility of using cryopreserved MSCs for clinical trials is very popular since planning 

and therefore costs may be reduced. At any given moment, the medicinal product may be 
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freshly thawed just before administration. But, cryopreservation also alters the physiological 

activity and cellular structure and therefore the biodistribution. Galipeau et al. published 

disillusioning results of cryopreserved MSCs in contrast to living MSCs regarding desired 

pharmacokinetics [133] and good pharmacodynamics [134, 135] suggesting to use cultured 

MSCs for immunosuppressive indications. Several working groups got aware of this 

challenge and tried to optimize their cryopreservation and thawing protocols to improve cell 

viability and function for their MSC based products [136-138]. The pro of cryopreservation to 

save costs and the con of reduced migration capabilities and therefore therapeutic efficacy 

of MSCs should be carefully weighed and possibly answered by appropriate dosing.  
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1.5 Therapeutic Gene Modification of Stem Cells and Usage of 

Inducible Promoters 

In general, gene modification can be separated into an in vivo and an ex vivo approach. The 

in vivo way is the direct administration of gene modifying particles into the body. Ex vivo 

approaches include a cultivation step of the target cells outside the body. During this phase, 

the gene modification of the cells is performed before they will be given back to the patient. 

In contrast to germ cells (e.g. sperms, eggs), stem cells (e.g. HSC, MSC) are also a 

possible target of gene therapy from a regulatory point of view.  

Both approaches, in vivo and ex vivo have proven their usability treating difficult diseases 

despite setbacks in the past. Trials like the CUPID study (Calcium Up-Regulation by 

Percutaneous Administration of Gene Therapy in Cardiac Disease) showed a safe 

application of adeno-associated virus carrying a therapeutic gene for heart failure in a 

phase 2b clinical trial [139, 140]. Ex vivo approaches did surely dominate the treatment of 

monogenic diseases. Severe diseases like the severe combined immunodeficiency (SCID) 

[141] or Wiskott-Aldrich syndrome [142] were successfully treated in the past and become 

to be first line therapy [143]. The increasing number of gene therapy clinical trials is 

impressive: before 2000, overall 484 studies were initiated. Since beginning of 2000, 1729 

studies were recorded with more than 60% treating cancer. The second largest group build 

up the monogenic diseases (10%) followed by cardiovascular and infectious diseases (each 

7%) [144].  

Although adenoviral vectors or naked DNA are often used as delivery system, they are not 

integrating into the DNA and therefore do not show a stable expression. For stable 

expression, integrating vector systems e.g. gamma-retroviral or lentiviral vectors are 

prevalent. Lentiviral vectors integrate more safely into dividing and non-dividing cells but are 

more complex to manufacture than gamma-retroviral vectors and are therefore more 

expensive for clinical usage [144]. In addition, gamma-retroviral vectors have the tendency 

to integrate into transcriptional start sites in contrast to lentiviral vector, which obviously 

choose safer sites [145] [146]. This implies a potential higher risk for insertional 

mutagenesis for gamma-retroviral delivery systems. Especially, if high vector copy number 

in the target population is achieved, the possibility of a clonogenic outgrowth raises. A small 

vector copy numbers leads to high insertions rates in a very small fraction of a transduced 

population. [147, 148] [149]. But, risk mitigation by controlled transduction conditions and an 

appropriate vector system is realizable. Known titers of vector supernatant and a defined 

cell count allow constant transduction processing. Also, the development of better vectors 
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e.g. self-inactivating vectors (SIN) that have weaker enhancers (LTR regions) [150, 151] or 

targeted gene editing system e.g. nucleases like ZFN or TALENs [152] can increase the 

safety and reduce the risk of Insertional mutagenesis. The therapeutic approach itself can 

also lead to a higher safety profile e.g. suicide gene therapy systems. Cells with transgene 

integration after exposure to a viral vector will be killed due to the suicide gene system 

[153]. Here, sponsors of these kinds of studies potentially have more safety arguments that 

may answer regulatory demands better.  

Promoters used for gene therapy are mainly divided into two groups: constitutive and 

inducible promoters. Constitutive promoters allow a constant expression independent of the 

cells status. They often derive from eukaryotic cells (e.g. elongation factor-1 (EFS), 

eukaryotic translation elongation factor 1 alpha 1 (EF1alpha) or phosphoglycerate kinase 1 

(PGK)) or can be isolated from viruses (e.g. cytomegalovirus (CMV) or simian vacuolating 

virus 40 (SV40)). Viral derived promoters often show very high expression rate in the 

beginning but become quickly silenced in eukaryotic cells due to inherent mechanisms 

against infections. In contrast, EFS, EF1alpha or PGK do not show the same level of 

expression but are less silenced and therefor allow a more stable expression over time 

[154, 155].  

Inducible promoters either increase expression if certain cytokines are present (e.g. 

RANTES (regulated upon activation, normal T-cell expressed and secreted) promoter) [156] 

or are activated if the cell differentiates e.g. Tie2-expressing monocytes [157]. In contrast to 

other systems like “Tet-On” promoter, which react very tightly on the presence of 

tetracycline [158, 159], the RANTES promoter reacts on different pro-inflammatory signals 

[156, 160]. 

The advantage of inducible promoter is the selective activation of the therapeutic gene in a 

defined environment or in a defined status of the cell. Especially pharmacological highly 

active agents that typically show large side effects can be introduced reasonably by cell-

based delivery systems. A controlled, tissue-specific expression of the active protein or an 

enzyme, which regulates the translation of a prodrug, can reduce adverse effects [161]. 
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1.6 The Suicide Gene “Herpes Simplex Virus Thymidine Kinase” 

and Apoptosis of Cells 

GCV (Cymeven®) is authorized as standard treatment of cytomegalovirus infections and 

therefore widely used. GCV acts as a competitive inhibitor of deoxyguanosine triphosphate 

inhibiting viral DNA synthesis after intracellular activation and leading to cell death if 

incorporated into the genome DNA [162-165]. Besides that, the HSV-TK / GCV system has 

been established as a suicide gene therapy approach in clinical trials. After insertion of 

HSV-TK into the target cells by retro- or adenoviral vectors, GCV is administered 

intravenously days later. HSV-TK expressing cells translate GCV into its toxic counterpart 

and induce cell death by DNA damage [166-169]. Tested in vitro and in vivo, many 

therapeutic approaches aimed to treat difficult diseases e.g. glioblastoma [170, 171]. 

Although the safety and the proof of concept of direct viral transfection of the pathological 

tissue could be shown, the results were not as satisfactory as desired. This raised the idea 

of cell-based drug delivery systems e.g. MSCs [172, 173] to increase the efficacy at the 

desired site. Gap junctions between migrated MSCs and the target cell mediate the transfer 

of activated cytostatic agents (“bystander effect”) like phosphorylated GCV [174-176] and 

initiate the apoptotic cascade in MSCs and tumor cells [177-180]. The amount of 

intercellular connections is critical for the desired therapeutic effect [181]. The execution of 

apoptosis itself is led by mitochondrial perturbation [182] after previous rise of p53 and can 

be inhibited by accordant resistance mechanisms of the tumor cells [183, 184]. Additional 

apoptosis inducing signals strongly enhance the initiation of the cell death e.g. TNF or 

TRAIL [185]. 

During apoptosis, the cell passes through different membrane alterations and morphological 

changes. These changes can be accordantly identified and quantified by flow cytometry 

[186-189]. Especially, the differentiation between necrotic and apoptotic cells can be made 

by single cell measurement. Staining of Phosphatidylserine (PS) can be measured as direct 

indicator for the stage of apoptosis. PS is normally arranged asymmetrically on the bilayer 

membrane by ATP-dependent flippases and orientated to the inner site. During apoptosis, a 

mega-channel opening of the mitochondrion leads to an irreversible loss of the cells vital 

function: the production of ATP. This “point of no return” represents the commitment of 

apoptosis of the cell [190-192]. Also the activity of the ATP-dependent flippases stops, 

allowing PS to turn to the outer site of the bilayer. If exposed on the surface, it serves as 

“eat-me” signal of apoptotic cells for phagocytic cells [193-195] (PS has also other function 

e.g. regulating the blood coagulation on thrombocytes [196]). 
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These PS lipids on the membrane surface can be stained with Annexin-V conjugates in 

dependency of calcium and easily measured by flow cytometry [197, 198]. In later stages of 

apoptosis, the cells membrane also becomes permeable for DNA dyes like 7-AAD. This 

combination allows the differentiation between earlier and later stages of apoptosis in a cell 

population and differentiate necrotic from apoptotic cells [199, 200]. 

In spite of the surface changes, apoptosis induces a cytoplasmic volume condensation. This 

shrinkage is due to volume-regulatory chloride and potassium channels, which have altered 

activities during apoptosis resulting in more granular and smaller cells. At the end, the 

apoptotic process leads to the death and a total integrity loss sets all remaining, intracellular 

structure free [201-203]. 
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1.7 The Pig and its Role as Large Animal Model (LAM) for 

Preclinical Studies 

Regulatory Authorities demand toxicological studies in non-rodent mammals before entering 

clinical trials [204]. Ethical aspects regarding preclinical studies with non-rodent mammals 

e.g. the pig are therefore first to address before these trials may be performed [205]. Any 

concerns should be discussed seriously. A thorough literature research should be done to 

evaluate the most compliant animal model with the best chances to generate valid data. 

Then, a risk-benefit analysis for the planned studies should be the basis for any preclinical 

testing. In sum, the design of preclinical studies should follow the 3R-principle by Russell 

and Burch described in 1959: “replacement, reduction and refinement” as it was laid down 

in European law [206].  

Compared with other large animal models like horses or non-human primates, pigs have a 

little reproduction time and grow very fast in their first year after birth. Already after six 

months, they are sexually matured and a new generation of pigs is available after four 

months of pregnancy. In the field of gene and cell therapy, a lot of working groups prefer the 

pig, particularly the mini-pig, since it shows physiological and anatomical comparability with 

humans [207-211]. Regulatory authorities demand toxicological data for medicinal products 

before clinical trials may be initiated. Regarding large animal models, the pig with his high 

comparability makes it to a well-reputed animal for toxicological testing [212-214]. 

Also surgical interventions were often tried for the first time in the swine to develop new 

therapy options. Still, medical training is frequently performed on pigs. The close 

physiological relation is also found in the field of medicinal products: porcine insulin was 

used regularly for diabetes patients (e.g. Insulin Hypurin Porcine®) and cardiac valves from 

the pig are still an option as biological alternative to synthetic imitations [215]. 

In spite of surgical indications, the research in the swine and its biology made significant 

advances over the last decades: the whole genome of pigs is known [144], induced 

pluripotent stem cells are available [216-218], transgenic animals have been developed and 

somatic cell cloning to replicate identical animals is possible [219-221]. As all animal 

models, every species has its own model history for its typical field of diseases. Pigs are 

often related to cardiovascular or metabolic diseases and many trials have been performed 

to treat e.g. ischaemic diseases of the heart on a cell-based approach [222]. Furthermore, 

the spectrum of genetically modified pig models for human diseases becomes constantly 

wider [223, 224] e.g.: models for skin inflammatory diseases [225], diabetes [226], severe 
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combined immunodeficiency (SCID) [227], cystic fibrosis [228] and further indications like 

alzheimer´s disease, retinitis pigmentosa or spinal muscular atrophy are available as listed 

by Prather et al. [229]. Altogether, the pig is an attractive model for preclinical studies [211, 

213, 214] although the cost per animal is obviously significant higher than e.g. per mouse. 

In contrast to rodents, the reproduction time of several months makes strategic planning 

more difficult since the flexibility to design preclinical studies and the time needed to 

generate new data is longer. 

At the end, it should be mentioned that the public sees less ethical concerns on preclinical 

testing with pigs than with e.g. non-human primates or dogs.  
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1.8 Modelling human MSCs: Porcine MSCs (in contrast to rodent 

MSCs) 

The immunological barrier of a healthy animal is a major hurdle for preclinical testing of 

ATMPs. If the human cell therapy product is administered into animals, immunological 

reactions may vary preclinical results in an undesired manner. Homologous MSCs offers an 

alternative, avoiding any immunological effects. Still, poor cell characterization of the animal 

species may lead to false results since they could show other pharmacokinetics and -

dynamics than expected as for their human counterpart. It is hard to define accurate models 

and homologous products [230].  

The good characterization of the animals’ cells is a major key to perform relevant preclinical 

studies and to overweigh potential arguments that these cells are not the “original” cells. 

Moreover, the characterization and applicability of animal MSCs must be shown sufficiently 

to convince the regulatory authorities approving the initiation of clinical trials [212, 230]. 

These circumstances are often complicated by poor literature for homologous cell products 

since publication mostly concentrate on preclinical experiments and not on the cells 

characterization. Nevertheless, several working groups did characterization work for porcine 

MSCs as follows. 

Like human MSCs, porcine MSC were already isolated from different tissues e.g. bone-

marrow [231-234], umbilical cord blood [235, 236], endometrium [237], skin [238-240] or 

adipose tissue [241, 242]. Comparison analyses between theses origins regarding 

proliferation, differentiation, functional properties or molecule markers showed significant 

differences and potential influence on preclinical study outcomes might be relevant [243-

245] – as it is for human MSCs [46, 246-248]. In pigs, the adipose tissue offers easy 

isolation practices since they naturally gain weight easily [249]. The identification of porcine 

MSCs is equivalent to human MSCs following the ISCT criteria for different markers e.g. 

CD70+, CD90+, CD105+, CD45- [5]. The scarce availability of commercial, porcine specific 

antibodies unfortunately limits the characterization of surface markers to smaller panels. 

Beside the plastic adherence, the trilineage differentiation of porcine MSCs is essential for 

defining MSCs. This could be also shown well for porcine MSCs [235, 240, 243, 250, 251]. 

But, the differentiation potential is highly affected by the used protocol and tissue origin, 

which makes comparison hard between different working groups regarding differentiation 

efficacy [251], also summarized by Barthi et al. [252]. 
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In preclinical studies, the pig is well known for its suitability in cardiovascular disease 

modelling. Mostly pigs and their cells generated great value in cell-based therapy 

approaches for ischaemic infarcts, extensively reviewed by van der Spoel et al. [222]. 

Although dog and sheep participated in this development, studies with pigs constitute the 

majority. Porcine MSCs proofed their preclinical value also in other indications with 

therapeutic need such as liver failure [249, 253], skin regeneration [254, 255] or 

osteochondral defects [255, 256]. Also, pharmacokinetics studies in the pig showed great 

significance [99]. 

Even though there are good evidences for high comparability of other mammals, 

inconsistencies between the results of clinical trials and preclinical studies with MSCs 

occurred [257]. Comparison studies on the immunomodulatory properties of MSCs from 

different species showed varieties, e.g.: IDO synthesis in human und monkey MSCs 

increases if they are stimulated with pro-inflammatory cytokines. Mice MSCs mainly react 

with an increased expression of inducible nitric oxide synthase (iNOS) to mediate an anti-

inflammatory effect [258]. IDO and prostaglandin E2 play a major role for the 

immunosuppressive properties of human MSCs [259]. Connected to that, it could be shown 

that antibacterial properties of human MSCs, which are mediated by an increase of IDO, are 

not present in murine MSCs [260]. Furthermore, there are evidences that murine MSCs 

have other intracellular pathways to react on cytokine stimulation [63]. 

Rodent MSCs also differ in the expression of surface proteins like CD90 and CD73 in 

dependency of passage and tissue [261]. This observation was also made for human MSCs 

from different origin. Although all markers suggested by the ISCT were present, the 

expression rate differed significantly [262]. Interestingly, the presence or absence of CD105 

directly correlates with functional properties of this sub-population in murine MSCs [263].  

Beside functional properties and presence/absence of surface markers, murine MSCs show 

spontaneous transformation into malignant cells. This expansion phase can endure several 

weeks. Transformations were already observed during cultivation passage three or four 

[264-267]. Subsequent in vivo experiments showed the malignant potential of these murine 

cells [268]. Chromosomal stability of MSC culture is essential to meet the specifications and 

cell dosages as defined in clinical protocols of more than 0.5x106°cells/kg bodyweight [69, 

81]. It is probable that this critically affects preclinical studies and their value for clinical 

trials.  

Spontaneous transformation of human MSCs is still in an open discussion although there 

are several cues indicating no spontaneous transformation of human MSCs. There are data 
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negating malignancy [269] and showing a cultivation until senescence of human MSCs 

[270]. Working groups describing an occurrence of high proliferating, spheroid-forming cells 

[271, 272] had to contradict themselves since this cell line was a contaminant during long 

time culture in the laboratory [273, 274]. Until now, no reports are available describing 

results of long-time cultivated porcine MSCs regarding possible transformation.  

It is quite obvious that porcine MSCs show high potential to be a feasible cell model system 

in contrast to murine MSCs. Availability of transgenic and disease-modelling pigs as well as 

the high comparability of the pigs´ physiology to humans underlines this usability for 

modelling cell-based therapeutics. 
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2 Aim of This Work 

Mesenchymal Stem Cells are the basis for a new class of cell therapy products and offer 

novel opportunities to treat difficult diseases. These MSC-based drugs are regulatory called 

“Advanced Therapy Medicinal Products” (ATMPs) and have to be tested in preclinical 

studies before they may enter clinical trials. These studies have to give proof of a safe and 

efficient drug product in vitro and in vivo. Especially, safety should also be shown in large 

animal models [204]. 

Testing the clinical human-based product in animals may lead to undesired immunological 

reactions, which are not representing the clinical setting correctly. The option of immune-

compromised or -deficient rodents may mitigate these reactions, but significantly changes 

the model system and interactions between the immune system and the cell-based 

therapeutic. Testing the animal-based cell product of a chosen species in the species itself 

requires sufficiently characterized cells because they possibly do not correctly represent the 

“human” product [275]. In addition, the costs and the dependency of human bone marrow 

donors complicate the preclinical testing program. 

The miniature pig is known to be highly comparable to humans in regard to anatomy and 

physiology – especially in contrast to other small or large mammalians. It is therefore a very 

attractive model for preclinical drug testing. Although the usefulness is highly indicated, no 

systematic characterization to proof the suitability of this cell model platform for an MSC-

based suicide gene therapeutic was done before.  

The aim of this work was to show that porcine MSCs represent a good model system for the 

characterization and manufacturing of a cell therapy product. Here, the HSV-TK system is 

described for the first time in porcine MSCs in parallel with the product for a clinical trial [81]. 

This question of comparability was evaluated in three in vitro and one in vivo part discussing 

the model product only: 

1. Characterization of adherent cells as MSCs 

2. Controlled insertion of therapeutic suicide gene and proof of functionality 

3. Characterization of the therapeutic effect 

4. Experimental in vivo investigation on pharmacokinetics 
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3 Summary 

Model cells in syngeneic animals are a potential alternative in the field of preclinical 

development of ATMPs (Advanced Therapy Medicinal Products) because they do not 

trigger any immune response. But these model cells have to mimic the human derived 

counterpart sufficiently. To assure this, a previous characterization of the model cells is 

required to allow a translation of these results into clinical trials.  

In the present work, porcine MSCs (Mesenchymal Stromal Cells) expressing HSV-TK 

(Herpes Simplex Virus Thymidine Kinase) are described and compared to human MSCs, 

which are engineered for a human cell therapy product [81]. It was the aim of this work to 

show that the porcine HSV-TK MSCs cells are comparable and therefore useful for 

preclinical development of an equivalent human cell-based therapeutic. This goal was 

systematically pursued comparing the human MSCs with the pig-derived model MSCs 

during production and testing of the generated batches. The suicide gene therapy concept 

was also investigated and subsequently characterized in vitro comparing both species. 

Consecutive in vivo studies in the mini-pig were performed in an experimental approach 

with porcine MSCs. 

It could be shown that porcine MSCs share nearly all properties with human MSCs 

regarding identity as they match the specifications of the International Society for Cellular 

Therapy. The plastic adherence and the fibroblast-like morphology could be clearly shown. 

The general presence of CD90 and CD105 and the absence of CD45 were similar with 

human MSCs. A sub-population of CD105 negative porcine MSCs was observed that was 

not described for human MSC but for murine MSCs before. HLA-DR (Human Leukocyte 

Antigen – antigen D Related) expression could not be shown whether the cells were 

induced with cytokines or not. The differentiation into adipogenic and osteogenic cells was 

successful using commercial available differentiation media that were compiled for human 

MSCs. A similar population doubling time could be shown, too, although the human derived 

batches highly varied. The examined MSCs of human and porcine origin showed many 

similarities although slight differences in the surface marker were observed, as it is also 

known for other animal-derived MSCs. 

The successful transduction with the same retroviral vector enabled the expression of the 

HSV-TK gene that was also used for human MSCs. The resulting vector-copy numbers 

were comparable after a successful selection. The inducible RANTES (Regulated upon 

Activation, Normal T cell Expressed and Secreted) promoter isolated from human cells was 
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inducible in both species and showed comparable up-regulations. It could be clearly shown 

that HSV-TK expressing cells are multiple fold higher sensitive to GCV (Ganciclovir) than 

naïve cells. Here, the porcine MSCs were even more sensitive. Resulting apoptosis due to 

activated GCV was comparable and could be well described by appropriate Annexin-V and 

7-AAD (7-Aminoactinomycin) staining. Cell count reduction occurred also in co-cultured cell 

lines that did not express HSV-TK. It could be proven throughout all species arrangements 

of HSV-TK expressing MSCs that the targeted cell lines undergo apoptosis. As control for 

these apoptosis experiments, naïve MSCs were used. Interestingly, in one setting also 

naïve human MSCs showed anti-proliferative effects on the porcine-derived cell line. 

The following experimental in vivo studies with mini-pigs confirmed the expectation that 

intravenously (i.v.) infused MSCs show extra-ordinary pharmacokinetics. Before the cells 

were systematically available, a delay could be observed. MSCs interact with the epithelium 

of the lungs vascular system before they enter the peripheral arterial bloodstream. This first-

pass effect of i.v. administered MSCs is well described in the literature. This phenomenon 

was not reproducible in a second animal. Here, a severe pneumonia was identified. The 

well-known migration of MSCs to pro-inflammatory tissues could have led to an enduring 

engraftment in the lung. Remaining MSCs in the bloodstream probably undercut the 

detection limit of the assay. 

Altogether, this work shows the usability of porcine MSCs as a model system for a clinical 

cell therapy product in vitro and also in vivo. It could be proven that porcine MSCs are 

modeling human MSCs beside minor differences.  
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4 Abbreviations & Units 

4.1 Abbreviations 

7-AAD  7-Aminoactinomycin D 

ADME  absorption, distribution, metabolism, elimination 

ANOVA  Analysis of Variance  

ATMP  advanced therapy medicinal product 

BALT Bronchus-associated lymphoid tissue 

Bio-1 Expansion Medium for CD34-Negative Stem Cells (Patent, 
US201101834141 A1) 

CCR2  C-C chemokine receptor type 2 

CD   Cluster of Diferentiation 

CFU   colony forming units 

CT   cycle threshold 

DMEM  Dulbecco's Modified Eagle Medium 

EC50   half maximal effective concentration 

ECD   phycoerythrin-Texas Red conjugate 

EDTA   ethylenediaminetetraacetic acid 

EFS   elongation factor short 

EMA   European Medicines Agency 

FBS   fetal bovine serum 

FFPE   formalin-fixed paraffin-embedded 

FGF-2  fibroblast growth factor 2 

FITC   fluorescein isothiocyanate 

FS   forward scatter 

(e)GFP  (enhanced) green fluorescent protein 

HEPES  4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HT1080  human, fibrosarcoma cell line 

HSV-TK  herpes simplex virus thymidine kinase 

ICH   International Council for Harmonisation 

iNOS   inducible nitric oxide synthase 

ISCT   International Society of Cellular Therapy 

K67   Neo3-14/K67/1.1+cMyc; immortalized porcine cell line 

LAM   large animal model 

LTR   long terminal repeats 
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LSM   lymphocyte separation media 

MFI   mean fluorescence intensity 

MGH   Massachusetts General Hospital 

MHC   major histocompatibility complex 

MNC   mononuclear cells 

MOI   Multiplicity of Infection 

MSC   multipotent mesenchymal stromal cell 

MTT   3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

NADH  nicotinamide adenine dinucleotide 

NADPH  nicotinamide adenine dinucleotide phosphate 

NEAA  Non-Essential Amino Acids 

PAC   puromycin N-acetyl-transferase 

PBS   phosphate-buffered saline 

PC7   phycoerythrin cyanine dye 7 

PCR   polymerase chain reaction 

hPGK   human phosphoglycerate kinase  

PE   phycoerythrin 

PI   propidiumiodide 

PLL   poly-L-lysine 

PS   phosphatidylserine 

RANTES  regulated upon activation, normal T-cell expressed and secreted 

real-time PCR real-time polymerase chain reaction 

SCG   Single Copy Gene 

SCID   severe combined immunodeficiency 

SS   side scatter 

STDV   standard deviation 

ST CTRL  staining control 

TD   transduced / transduction 

TC treated  Tissue Culture treated 

TRAIL  TNF-related apoptosis-inducing ligand 

TRIS   Tris(hydroxymethyl)-aminomethan 

qPCR   see real-time PCR 

VCAM-1  vascular cell adhesion molecule 1 

VCN   vector copy number (mean transgenes per cell) 

w/wo   with or without 

WPRE  Woodchuck Hepatitis Virus Posttranscriptional Regulatory Element 
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4.2 Units 

°C   degrees Celsius 

%   percentage 

cm   centimeter 

cm2   square centimeter 

CT value  quantity of PCR doublings before detection of significant flourescence 

d   days 

h   hours 

L   liter 

mL   milliliter 

min   minutes 

M   molar 

µg   microgram 

µL   microliter 

µm   micrometer 

µM   micro molar 

nm   nano meter 

g   standard acceleration due to gravity 

sec   seconds 
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5 Material 

5.1 Consumables / Liquids (Media, Solutions, Kits, Chemicals) 

Solutions, Media and Chemicals Manufacturer 

  

2-Propanol 99.9% Carl Roth 

10% Formalin, neutral buffered Sigma Aldrich 

10cm dishes, TC-treated Corning 

96-well flat clear bottom black polystyrene plates Greiner Bio One 

Alizarin Red S Sigma Aldrich 

BacT/ALERT SA, Standard Aerobic bioMérieux 

BacT/ALERT SN, Standard Anaerobic bioMérieux 

Blood & Tissue Kit Quiagen 

CellSTACK (1, 2 or 5 layer), TC-treated Corning 

CellTiter 96® Non-Radioactive Cell Proliferation Assay Promega 

Centrifugation Tubes / Falcons (1.5°mL, 2°mL, 15°mL, 50°mL) Eppendorf / Corning 

Culture Flasks (25°cm², 75°cm², 175°cm², 225°cm²), TC-treated Corning  

Culture well plates (6-, 12-, 24-, 48-, 96-wells), TC-treated Corning 

Cytofix/Cytoperm Fixation and Permeabilization Solution BD Biosciences 

Deionized Water Laboratory Water System 

Discovery DAB Map Detection Kit Roche Diagnostics 

DMEM Biochrom 

FACS buffer (1% FBS, 99% PBS) 

FBS 

see FBS and PBS 

Biochrom 

HEPES Buffer Solution [1M] Gibco 

Mayer’s Hematoxylin Sigma Aldrich 

Non-essential amino acids Gibco 

Red Oil Sigma Aldrich 

PBS Dulbecco Biochrom 

Perm/Wash Buffer BD Biosciences 

Pipet Tips (10µL, 20µL, 100µL, 200µL, 1000µL) Greiner Bio One 

Pipets (Serological, 2°mL, 5°mL, 25°mL, 50°mL) Corning 

PLL 0,01% Sigma Aldrich 

Puromycin Sigma-Aldrich 

StemMACS AdipoDiff Media, human Miltenyi Biotec 

StemMACS OsteoDiff Media, human Miltenyi Biotec 

Trypan Blue Sigma Aldrich 
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5.2 Equipment and Software 

Equipment / Software Manufacturer 

  

Balance EW 600 2M 

BX51 microscope Leica 

Centrifuge Heraeus Fresco 21 Thermo Fisher Scientific 

Centrifuge Eppendorf Centrifuge 5810R 

CO2-Incubator (#1) Sanyo MCO-20AIC 

CO2-Incubator (#2) ThermoScientific Heaerus BBD6220 

Counting Chamber C-Chip Disposable Hemocytometer NanoEnTek 

DMI6000B microscope Leica 

DNA / RNA safety working bench DNA/RNA UV-Cleaner UVC/T-M-AR Biosan 

Flow Cytometry Cytomics FC 500 Beckman-Coulter 

Kaluza Beckman-Coulter 

Infinite 200 PRO microplate reader Tecan 

Laminar Flow Working Bench Herasafe HS15 Heraeus 

Las X Leica 

Lightcycler 480 II Roche 

Mr. Frost Freezing Container Thermo Fischer Scientific 

NanoPhotometer Implen 

Pipets Eppendorf 

Pipetboy Integra 

Waterbath Memmert WNB 14 

5.3 Cell Lines 

Cell Line Description Supplier 

   

HT1080 Human Fibrosarcoma cells ATCC 

K67 Neo3-14/K67/1.1+cMyc; immortalized 

porcine cell line; generated originally from a 

pMSC (Pietrain Landrace Pig) [276] 

Technical University of Munich 

(Working Group, Prof. Dr. Schnieke, 

Anja Saalfrank, Chair of Livestock 

Biotechnology) 

 

5.4 Antibodies 

Antibodies are listed within the accordant Methods.  
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6 Methods 

6.1 Isolation of Adherent, Mononuclear Cells from Bone Marrow 

 Donor characterization 6.1.1

The following table shows all specifications and characteristics of the human and porcine 

donors from whom MSCs were isolated. A batch nomenclature was introduced to 

differentiate gene-modified batches from naïve batches. 

Table 1: This overview represents the nomenclature and properties of human and porcine MSCs in the 

generation of the cell products. The human donors were chosen based on a thorough medical anamnesis 

following the accordant laws (actual, german tissue and transplantation law). The pig´s cells isolation was 

performed by members of the Lehrstuhl für Biotechnologie der Nutztiere from the Technische Universtiät 

München. The mini-pig derives from an isogenetic inbreed. This animal is isogenetic to the pigs that were used 

during the biodistribution study (see 7.7). 

Species 
(Mini-) Pig 

Sus scrofa domesticus 

Human 

Homo sapiens 

Tissue 
Bone marrow 

Both Femur and tibia 

Bone marrow 

Iliac crest 

Volume 
Unspecified 

(whole marrow taken) 
Each 75-100 mL 

Method Of 

Harvesting 

Narcotization and necrospy, then 

Flush and Scrape out 
Aspiration under short-time anaesthesia 

Donor 1 1 2 3 

Gender Male Male Female Female 

Age 3 months 31 years 32 years 20 years 

Health Status 
no clinical observations by 

veterinarian 

according to german law: healthy; based on blood, urine, 

serum measurements and medical anamnesis, also free of 

relevant infectious markers  

(e.g. CMV, HIV,  hepatitis virus, etc.) 

Batch 

Nomenclature 

Porcine 

1 

Porcine 

2 

Porcine 

3 

Porcine 

4 

Human 

1 

Human 

2 

Human 

3 

Human 

4 

Human 

4 

Human 

5 

Transduction 

Method 
n.a. A B C n.a. C n.a. C n.a. C 

Selection No Yes No Yes No Yes No Yes 

Cryo-

preservation 
Yes 
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 Isolation of human MSCs 6.1.2

Aspirates the bone marrow were collected from volunteers in accordance to the regulatory 

demands. A physician performed the aspiration under standard clinical and aseptic 

conditions. Volunteers received a short-time anaesthesia and the needle was brought into 

the iliac crest aspirating a bone-marrow volume of 75-100 mL by several punctures. The 

marrow was transported in sterile containers to the laboratory. 

The cultivation started in less than 24 h after extraction. The bone marrows of the human 

donors were seeded without any previous purification or manipulation steps. Therefore, a 

cell stack system was used and the bone marrow was suspended in >150 μL/cm2 Bio-1 

medium, cultured under 5% CO2, 37°C temperature and more than 90% humidity. New 

adhesion after trypsinization takes minutes to hours. Because of that, the bone marrow and 

medium containing supernatant was completely changed with a delay of at least 48 h to 

allow enough time for adherence, but not later than 96°h to assure a sufficient nutrition. 

These colonies could be observed and were split by trypsinization and EDTA within 

14 days, counted (see 6.2.4) with a Neubauer Zählkammer, and seeded again. 

 Isolation of porcine MSCs 6.1.3

Bone marrow was isolated from the femur and tibia of both hind legs of a three months old 

male MGH miniature pig. Prior to isolation, the equipment was disinfected with 80% ethanol. 

The epiphyses of the bones were opened with a saw and bone marrow was flushed with 

25 mL of pre-warmed Hank`s salt solution supplemented with 1000 U/mL heparin. Several 

25 mL samples of aspirate were layered over 25 mL lymphocyte separation medium (LSM-

1077) and centrifuged at 1000× g for 20 min with slow acceleration and deceleration. The 

mononuclear cell fraction was collected from the interphase, transferred to another 

centrifuge tube and washed with 35 mL Hank`s salt solution. After centrifugation at 600× g 

for 10 min, the cell pellet was suspended in porcine MSC culture medium (Advanced 

DMEM, 2mM GlutaMAX®, 1x NEAA, 10% FCS, 5 ng/mL FGF-2, 0.1 mM 2-

mercaptoethanol) supplemented with 100 µg/mL Penicillin/Streptomycin and 100 µg/mL 

Amphotericin B, plated into five 150 cm2 flasks and incubated at 37°C with 5%°CO2 in 

humidified atmosphere. After 24 h, cells were washed twice with PBS and medium replaced 

to remove all non-adherent cells (e.g. hematopoietic cells). 

For the first three days medium was supplemented with antibiotics and antimycotics and 

changed daily. After three days half of the cells were cultured without antibiotics and 
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antimycotics, the rest of the cells after five days. Seven days after isolation, cells were split 

(1:3 or 1:5 depending on confluence; passage 1) using Accutase® and cultured in MSC 

medium without antibiotics and antimycotics for a further three days and then 

cryopreserved. 

The isolation of the porcine MSCs was perfomed by personnel of the Lehrstuhl für 

Biotechnologie der Nutztiere of the Technische Universität München. 
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6.2 In Vitro Cultivation 

 General 6.2.1

All working steps with open flasks and tubes were performed under sterile conditions. A 

laminar flow working bench was used to handle all cell culture experiments. All cells were 

cultured under 5% CO2, humidity of more than 90% and 37±1 °C conditions. Necessary 

equipment was disinfected properly with ethanol. Plastic or other consumable materials 

were sterilized before usage (see 5.1).  

 Thawing of cells 6.2.2

Cryopreservation vials were taken out of the vapor phase of liquid nitrogen and brought into 

a water bath (37°C) for at least two min until no ice crystals could be seen anymore. After 

proper disinfection, the vials were transferred into the laminar flow of a working bench. The 

tube was opened, re-suspended and diluted with the cultivation media for at least 10:1 in a 

50 mL tube before given into a cell culture flask. A sufficient dilution of the DMSO was 

necessary to mitigate possible cell proliferation inhibitions by DMSO (see 6.4.2). The next 

working day, the cells attached completely and the whole media was change to delete the 

DMSO.  

 Standard in vitro cultivation and detachment of cells 6.2.3

Half of the medium was changed every two to four days of a cell culture flask depending on 

the confluency. If the cells were nearly 70-90% confluent, they were detached from the 

plastic surface by using an EDTA and trypsin containing solution. After a washing step with 

PBS, the suspension was given into the flask. The cell culture flask was then put into the 

incubator for three to ten min, if the cells have not detached meanwhile. Then, at least the 

same amount of medium was added to stop the trypsination process. The cell suspension 

was aspirated and given into an appropriate tube (1.0 mL – 50 mL tube). The culture flask 

was additionally washed with PBS to assure a quantitative transfer of all cells in to the tube. 

After a centrifugation of 5 min with 300 g, the supernatant was deleted and the cell pellet 

was suspended in PBS. After cell count determination (see 6.2.4), the cells were seeded 

into a medium containing cell culture flask with a determined ratio of cells/cm² depending on 

the type of cell between 500 to 5000 cells/cm². 
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 Table 2: Description of the cultivation media. Bio-1 was used for human MSCs. This media does not contain 

FBS but platelet lysate that is based on a patent, referenced in 4.1. All other media, also for porcine MSCs, had 

FBS as an ingredient. The recipe for the porcine MSCs cultivation media is based on personal communication 

with the working group of Prof. Angelika Schnieke of the Technische Universität München leading the “Chair of 

Livestock Biotechnology”. 

Cells Cultivation Media 

Porcine MSCs 
88% Advanced DMEM 

10% FBS 

1% Non-Essential Amino Acids 

1% Glutamax 
Porcine Cell Lines 

Human MSCs 100% Bio-1 (see Abbreviations: 3) 

Bio-M: 

87% DMEM 

10% FBS 

2.5% HEPES 

Human Cell Lines 

89% DMEM 

10% FBS 

1% Glutamax 

 Cell count determination 6.2.4

The cells are suspended in an appropriate amount of PBS after detachment and washing 

(see 6.2.3.). After distribution of the cells by several slight inversions of the tube, 50 µL of 

the suspension was taken and given into 50 µL trypan blue. 10 µL of this suspension was 

given into a Neubauer Zählkammer, counted and the cell concentration per mL calculated. 

Based on this calculation, new cell seeding were performed. Where needed, the cell count 

determination was performed more than once to facilitate a higher assurance and less 

variance of the result. 

 Isolation of single cell line clone (after transduction with a GFP gene) 6.2.5

If an isolation of a population by a selection agent (e.g. puromycin) could not be performed, 

a single cell seeding was pipetted to generate a new population out of one cell. The cells 

were detached (see 6.2.3) and washed. The cell suspension was counted with a Neubauer 

Zählkammer (see 6.2.4) and seeded into at least one 96-well plate with a cell density of 

0.1cells/well (theoretically calculated value). It was statistically assumed that in every tenth 

well one cell clone would exist. This single cell proliferated to a colony, which was detached 

and seeded (see 6.2.3 and 6.2.4) into a new flask as soon as the colony was detectable by 

microscopy. If a second colony or no colony was detected in a well, the cells of this well 

were discarded. An appropriate population was expanded until a sufficient amount of cells 

was available to measure for e.g. GFP by flow cytometry. Based on this measurement, the 
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desired cell clone was chosen, expanded and cryopreserved (see 6.2.3) for further 

experiments. 

 Calculation of the population doubling time 6.2.6

The doubling time of a cell population was calculated based on following formula: 

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐷𝑜𝑢𝑏𝑙𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 [ℎ] =
𝑑𝑎𝑦𝑠 𝑓𝑟𝑜𝑚 𝑃0 𝑡𝑜 𝑐𝑟𝑦𝑜 ∗ 24

(
𝐿𝑜𝑔10 (

𝑐𝑒𝑙𝑙 𝑐𝑜𝑢𝑛𝑡𝑐𝑟𝑦𝑜

𝑐𝑒𝑙𝑙 𝑐𝑜𝑢𝑛𝑡𝑃0
)

𝐿𝑜𝑔10 (2)
)
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6.3 Insertion of Genes 

Cells were transduced with SIN-gamma retroviral vectors to tag them (e.g. GFP) or express 

functional genes (e.g. HSV-TK). The HSV-TK vector backbone (see Figure 1) and producer 

cell line based on the work of an external working group [277]. Both, the self-produced and 

externally manufactured vector supernatant were stored at -80 °C. To thaw the viral 

solution, the tubes were thawed at 37 °C in a water bath until no more small ice crystals 

were visible. Then the tubes were put under the laminar flow of a working bench. As soon 

as no more ice crystals could be observed, the solutions were mixed gently with a 

micropipette.  

 

Figure 1: Here, a schematic description of the therapeutic cassette pEMTAR.bi-RANTES.tk including the 

selection gene is shown. The LTR sequences were part of the viral system facilitating an insertion of the gene, 

which was embedded between both LTR sequences. The HSV-TK gene was under the control of an inducible 

promoter, called RANTES. This RANTES promoter generally is inducible with pro-inflammatory cytokines e.g. 

TNFα and IFNγ. The HA-tag was attached to the kinase, which allowed a detection with accordant antibodies for 

measurement through flow cytometry. The enzyme PAC deactivated the cytoxin puromycin by acetylation. This 

enzyme was expressed continuously because it was under the control of a constitutive promoter (pPGK) 

allowing a selection by puromycin during cultivation. The WPRE sequence enhanced the stability of the 

transcribed transgene increasing proten expression [278]. 

Since the viral vector load and the cell count were known, a ratio of 3 (three viral vector 

particles / one cell: MOI = 3) was chosen. For the production of all batches a ratio of three 

viral vectors to one cell was chosen to maintain comparable transduction conditions. The 

cell lines were transduced with a higher viral load per cell to facilitate an easy recognition 

while measured by flow cytometry. Following transduction methods were performed: 

 Transduction by direct seeding (Method A) 6.3.1

This virus solution was mixed with 0.01% PLL with a 100:1 ratio (99 parts virus solution and 

1 part PLL solution). The cells were added to the virus / PLL solution and mixed gently to 

selection cassette therapeutic cassette enhancing sequence 
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generate a homogenous suspension. If the suspension volume for seeding was less than 

125 µL/cm2, PBS was added to ensure a sufficient distribution of the volume over the whole 

culture flasks surface. The seeding density was determined to result in a confluence of 20-

30%.  

 Transduction on PLL plates (Method B) 6.3.2

A solution of PLL 0.01% is given into 6-well pates and centrifuged for 30 min at 4 °C and 

2000x g. Afterwards, the supernatant was deleted and the plates were washed with PBS. 

The PLL adhered at the plastic and these molecules charged the plastic surface positive. 

The negative charged virus particles attached at the surface and interacted with the cell 

surface. The seeding density was determined to result in a confluence of 20-30%. 

 Transduction in suspension (Method C) 6.3.3

This virus solution was mixed with 0.01% PLL before a defined amount of cells was added. 

Over three hours, this transduction mix was inversed every 15 min to assure a good 

distribution of the cell-vector mix. Afterwards, the mix was diluted with the appropriate 

serum containing culture medium and seeded into the culture flasks. The seeding density 

was determined to result in a confluence of 20-30%. 
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6.4 Selection, Expansion and Cryopreservation of Cells 

 Selection 6.4.1

Cells transduced with the pEMTAR.bi-RANTES.tk vector were selected using puromycin not 

earlier than 48 h after transduction. Half of the medium was deleted and medium with a 

concentration of 6 µg/mL was added, resulting in a final concentration of 3 µg/mL. Two days 

later, half of the medium was deleted and fresh medium with 3 µg/mL puromycin was added 

again to continue the selection process. Not earlier than five days after the start of the 

selection, the whole medium was changed to delete dead cells, cell debris and remaining 

puromycin. Afterwards, the cells were cultured in a standard medium to allow proliferation of 

the selected population as described before (see 6.2). 

 Expansion and cryopreservation 6.4.2

The expansion procedure after selection was carried out in accordance to 6.2 until the 

desired cell count was reached. The following detachment was performed as described 

before (see 6.2.3). After washing, the cell count was determined and the cells were 

suspended in a concentration of between 5 to 10×106 cells/mL in the accordant 

cryopreservation medium (see Table 3). 

Table 3: Description of the cryopreservation media used for different types of cells [279]. 10% DMSO was 

used for all cell types to reduce the amount of crystallization during the freezing process. Hydroxyethyl starch 

served as the cryoprotective supplemental protecting the cell surface [280]. 

Cells Cryopreservation Media 

Porcine MSCs 

45% hydroxyethyl starch 

45% porcine serum 

10% dimethyl sulfoxide 

Human MSCs 

45% hydroxyethyl starch 

45% human albumin 

10% dimethyl sulfoxide 

Cell Lines 
90% fetal bovine serum 

10% dimethyl sulfoxide 

 
Aliquots of 1.5 mL were pipetted and transferred into the freezing containers (“Mr. Frosty”). 

Then, the freezing containers were put into a freezer with a temperature of minus 80°C. 

These containers controlled the temperature reduction in a time dependent manner lowering 

the temperature by one degree Celsius per minute. As a consequence, the temperature 

reduction from room temperature (about +20 °C) to -80 °C lasted 100 min. Afterwards, the 

vials were transferred into the vapor phase of liquid nitrogen tanks at -196°C.  
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6.5 Differentiation into Osteocytes and Adipocytes and Staining 

Commercial differentiation media compiled for human MSCs (see 5.1) were used for 

porcine and human MSCs following the manufacturer instructions. In short, the cells were 

seeded into 12-well plates and cultured under standard conditions (see 6.2) until 100% 

confluence. Then, the medium was deleted and the differentiation medium was added. The 

differentiation itself took 14 to 21 days. Half of the medium was changed every 2-3 days. At 

the end, the supernatant was deleted; the culture flasks were washed with PBS twice. Then, 

the staining was as described in 6.5.1 and 6.5.2. Accordant controls cultivated using a 

standard medium were stained, too. 

 Staining of osteocytes and analysis 6.5.1

The staining of osteocytes was done utilizing a fixation with a neutral buffered 10% formalin 

solution at room temperature. After an incubation time of 30-45 min, the formalin 

supernatant was deleted and the wells were washed twice with deionized water. A freshly 

prepared alizarin red solution (2.0 g/mL) was given into the wells for 30-45 min. Afterwards, 

the cells were washed again with deionized water for two times. PBS was added to assure 

that the preparation does not run dry. A microscopic analysis was performed and 

representative photos were taken of sections of ~750 µm × 1000 µm. 

 Staining of adipocytes and analysis 6.5.2

To stain adipocytes, the cells were fixed with a neutral buffered 10% formalin solution for 

30-45 min at room temperature. Then, the formalin was deleted and the cells were washed 

with non-sterile water two times. An additional fixation was done with 60% isopropanol for 

3 -5 min at room temperature. A freshly prepared Red Oil solution was added and incubated 

for 5 - 10 min at room temperature. After washing with PBS twice, Mayer's Hematoxylin 

Solution was given into the wells for 1 - 5 min at room temperature and the wells were 

washed with non-sterile water twice. PBS was added to assure that the preparation does 

not run dry. A microscopic analysis was performed and representative photos were taken. 

All adipogenic cells were counted in three representative sections of ~750 µm × 1000 µm. 
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6.6 Measurements by Flow Cytometry 

 Identification of surface markers 6.6.1

MSCs have a determined set of proteins, which are presented on their surface. These can 

be identified by accurate staining and flow cytometry measurements. For this, the cells were 

detached as described before (see 6.2), washed twice with PBS and counted (see 6.2.4). 

Multiple 100 µL PBS aliquots with a cell concentration of 1×106 - 2×106 cells/mL were 

generated as needed. The accordant antibody was added to the cell suspension and mixed. 

After an incubation time of 20 min at room temperature, the cells were washed with PBS 

two times again. Then, the cells were measured. If needed, accurate compensation was 

performed. At least 10,000 events were measured per analysis. Isotype controls for each 

antibody and fluorophore were used to set appropriate gates for the measurement. 

The antibodies listed in Table 4 were used for porcine MSCs. The antibodies listed in Table 

5 were used for human MSCs.  

Table 4: The staining of porcine MSCs for flow cytometry measurement was performed with the 

following fluorophore-conjugated antibodies and 7-AAD. All stainings were performed as single stains to 

reduce compensational work. All antibodies were generated from murine cell lines as declared by the 

manufacturer. 

Mix Antigen Dye Isotype Volume [µL] Company 

1 

(Isotype 

Control) 

N/A 

7-AAD N/A 15 Beckman-Coulter 

APC IgG1 20 BD Bioscience 

FITC IgG1 20 Beckman-Coulter 

PE IgG1 20 Beckman-Coulter 

PE IgG2a 20 BD Bioscience 

2 CD45 FITC IgG1 10 AbD Serotec 

3 CD90 APC IgG1 10 BD Bioscience 

4 CD29 PE IgG1 20 Abcam 

5 CD44 APC IgG1 10 Novus Biologicals 

6 CD105 PE IgG2a 20 Novus Biologicals 

7 HLA-DR PE IgG2a 10 Novus Biologicals 

 

  



Methods 

 
 

 

 39 

Table 5: The staining of human MSCs for flow cytometry measurement was performed with the following 

fluorophore-conjugated antibodies and 7-AAD. The stainings were done by multiple stainings per tube, so 

called master mixes. All antibodies were generated from murine cell lines. Accurate compensation was done as 

needed. 

Mix Antigen Dye Isotype Volume [µL] Company 

1 

(Isotype 

Control) 

N/A 

FITC IgG1 22 

Beckman-Coulter 

PE IgG1 22 

PE IgG2a 22 

PE IgG3 11 

ECD IgG1 11 

PC7 IgG1 11 

2 

CD90 FITC IgG1 22 

CD73 PE IgG1 22 BD Pharmingen 

CD34 PC7 IgG1 11 

Beckman-Coulter 

3 

CD235a FITC IgG1 22 

CD105 PE IgG3 22 

CD45 ECD IgG1 11 

4 

CD3 FITC IgG1 22 

CD14 PE IgG2a 22 

CD19 PC7 IgG1 11 

5 
CD41 FITC IgG1 22 

CD61 PC7 IgG1 11 

6 N/A 7-AAD N/A 20 

7 HLA-DR ECD IgG1 11 

 Intracellular staining of the HA-tag 6.6.2

The insertion of the suicide gene HSV-TK was performed under controlled conditions as 

described before (see 6.3). The rate of transduced cells per population was quantified by 

HA-tag staining and measurement by flow cytometry. TNFα and IFNγ were added in a final 

concentration of 3 ng/mL each that induced the RANTES promoter and increased the HSV-

TK expression. Not earlier than 48°h after the transduction or completion of the selection 

(see 6.4), the cells were detached (see 6.2) and the cell count was determined (see 6.2.4). 

After washing twice with PBS, cells were fixed with Cytofix/Cytoperm® for 20-30 min at 

+4 C. Afterwards, the cells were washed twice with Perm/Wash Buffer® to enhance the 

permeability of the membrane for intracellular staining. While being protected from light, the 

antibodies were added and incubated for 30 min at +4 °C. Then, the cells were washed 

twice with PBS and suspended in FACS buffer before they were measured by flow 

cytometry. 

The same assay was performed make sure whether the puromycin selection was 

completed or not. 
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Table 6: The staining of the HA-tag for flow cytometry measurement was performed with the following 

fluorophore-conjugated antibodies. The antibody was generated from a murine cell line as declared by the 

manufacturer.  

Mix Antigen Dye Isotype Volume [µL] Company 

1  

(Isotype Control) 
N/A PE IgG1 11 Beckman-Coulter 

2 HA PE IgG1 11 Miltenyi 

 Differentiation of apoptotic and dead cells in a single or several cell 6.6.3

populations 

To determine the amount of apoptotic and dead cells in a population, all adherent and non-

adherent cells were saved for preparation. First, the supernatant was transferred into a tube 

to save all non-adherent cells. In a next step, the adherent cells were detached following 

6.2.3 and transferred into the same tube. 7-AAD was added and – protected from light - 

incubated for 10 min at room temperature. Then, the cells were centrifuged at 600 g for 

5 min, the supernatant was deleted and the cell pellet was suspended in a 200 µL Annexin-

V binding buffer® (Ca²+ enriched saline, isotonic buffer). This Ca²+ enriched buffer mediated 

a proper binding of Annexin-V to phosphatidylserine. 5 µL of Annexin-V were added to the 

suspension and incubated for 10 min at room temperature, protected from light. 400 µL 

binding buffer were added to this solution (for dilution only) and directly measured by flow 

cytometry. Since 7-AAD and PE-Cy7 have an overlap in their emission spectrums, accurate 

compensation was performed to avoid false-positive signals.  

Table 7: The staining of apoptotic and dead cells was performed utilizing Annexin-V and the dye 7-AAD. 

These markers / dyes allow a distinction of apoptotic and necrotic cells. Mediated by Ca
2+

, Annexin-V binds 

phosphatidylserine on the cell´s surface if presented. Apoptotic cells can not be stained with 7-AAD since these 

cells still have an intact lipid bilayer.  

Mix 
Target 

molecule/structure 
Agent Dye Volume [µL] Company 

1 

Phosphatidylserine Ca
2+

 enhanced Annexin-V PE-Cy7 5 eBioscience 

Intercalation into double-

stranded DNA 
7-AAD 20 Miltenyi 

 

The morphological alterations of cells undergoing apoptosis were also considered in the 

gating strategy. Due to condensation effects, the MSCs appeared smaller and more 

granular resulting in a population shift in the FS/SS scatter. Accurate settings were 

evaluated and the gating strategy allowed a measurement of this shift (see Figure 21).  
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In 6.7.3, MSCs were co-cultured with cell lines, which were transduced with a GFP 

expressing gene according to 6.3. This GFP-tag allowed the differentiation between cell 

lines and MSCs during the flow cytometry measurements. This was done for all bystander 

killing assays. 
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6.7 Treatment of Cell Populations with GCV 

 Titration of cell sensitivity to GCV by using the MTT-assay 6.7.1

HSV-TK expressing cells are more sensitive to GCV than naïve cells. To provide proof of a 

functional expressed protein, the increased sensitivity was quantified by an MTT (3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) staining assay. 

MTT is a water-soluble, yellow dye (tetrazolium salt), which is converted into the purple 

formazan by reductive compounds of viable cells. This conversion occurs if reduction 

equivalents are available e.g. NADH or NADPH. These molecules are produced during 

glycolysis of viable cells. Formazan shows a characteristic absorption spectrum between 

500 nm and 600 nm and a maximal emission at about 630 nm. Here, the absorption was 

measured at 570 nm.  

On day 1, cells were detached and counted as described before (see 6.2.3 and 6.2.4). 

Then, the cells were seeded into 5 wells of a 96-well plate (0.32 cm² per well) in accordance 

to Table 10. The cell lines HT1080 and K67 were seeded with a cell density of 

7500 cells/cm². On day 2, the pro-inflammatory cytokines TNFα and IFNγ were given into 

the media in a concentration of 3ng/µL each. GCV was added in a serial dilution as shown 

in Table 8. On day 3 and 4, half of the medium was changed and GCV was added to the 

medium to maintain the desired concentration. 

Table 8: GCV was given into a serial dilution and added to the media to quantify the GCV sensitivity. All 

cells were treated following the same GCV dilutions.  

Dilution Step GCV concentration [µM] 

A 

(Negative Control) 
0 

B 0.001 

C 0.01 

D 0.1 

E 0.5 

F 5 

G 50 

H 200 

I 2000 

J  

(Positive Control) 
16000 
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Table 9: Each cell line and each batch of MSCs was measured for GCV sensitivity in a 96-well plate. Five 

parallel cultures were generated to take the assay variance into account. The accordant GCV concentrations are 

listed in Table 8. A staining control (st ctrl) without any cells was performed to consider staining artefacts. PBS 

was given in the outer rows and columns to reduce evaporation effects. 

PBS PBS PBS PBS PBS PBS PBS PBS PBS PBS PBS PBS 

PBS A 1 B 1 C 1 D 1 E 1 F 1 G 1 H 1 I 1 J 1 PBS 

PBS A 2 B 2 C 2 D 2 E 2 F 2 G 2 H 2 I 2 J 2 PBS 

PBS A 3 B 3 C 3 D 3 E 3 F 3 G 3 H 3 I 3 J 3 PBS 

PBS A 4 B 4 C 4 D 4 E 4 F 4 G 4 H 4 I 4 J 4 PBS 

PBS A 5 B 5 C 5 D 5 E 5 F 5 G 5 H 5 I 5 J 5 PBS 

PBS St ctrl St ctrl St ctrl St ctrl St ctrl St ctrl St ctrl St ctrl St ctrl St ctrl PBS 

PBS PBS PBS PBS PBS PBS PBS PBS PBS PBS PBS PBS 

 

On day 5, the controls were checked to show that no more adherent cells in column “J” 

were visible (positive control) and that attached cells were visible in column “A” (negative 

control) (see Table 9). The staining was performed in accordance to the kit´s 

manufacturer´s instructions, adding 15 µL of MTT-containing dye solution and 100 µL 

cultivation media after the deletion of the supernatant. After 4 h of incubation, the “stop 

solution” was given into the wells and the solution was thoroughly mixed by pipetting up and 

down. The measurement was performed by photometric absorption at 570 nm in reference 

to the absorption at 650 nm. An additional staining control was performed to exclude any 

artificial staining errors. The mean absorption value of column “J” was used for 

normalization: 0% viable cells. Column “A” was used to normalize to 100% viable cells. The 

EC50 value was calculated using the Graph Pad Prism® software. 

 Mono-cultivation: characterization of apoptosis under the treatment with GCV 6.7.2

Activated GCV leads to the apoptosis of a cell. To characterize both species in their 

apoptotic pathway, all human and porcine batches of MSCs were seeded, treated with GCV 

and measured by flow cytometry (see 6.7.3 for flow cytometry measurements).  

On day 1, the cells were detached and counted as described before (see 6.2.3 and 6.2.4). 

The cells were seeded in 12-well plates (4 cm2) in triplicates. The confluency was less than 

15-25% to assure enough plastic surface for proliferation. The used seeding densities are 

presented in Table 10. The amount of cells seeded per batch differed since the size of the 

MSCs depended on species, donor and passage. An additional visual check was done 24 h 

± 4 after seeding to assure that the confluency was not higher than 30% and that the cells 
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successfully adhered. HEPES was additionally given into the medium (in a final 

concentration of 2.5%) for a sufficient pH buffering because GCV shows alkaline attributes. 

Table 10: To characterize the apoptotic pathway under the treatment with GCV, the cells were to reach a 

confluency of less than 25%. Because the size of a cell also depends on its origin, species and “in vitro age”, 

different cell seedings were chosen. 

Species / Batch Cells Seeded [cells/cm²) 

Human 1 

1000-3000 

Human 2 (HSV-TK) 

Human 3 

Human 4 (HSV-TK) 

Human 5 

Human 6 (HSV-TK) 

Porcine 1 

4000-5000 
Porcine 2 (HSV-TK) 

Porcine 3 (HSV-TK) 

Porcine (HSV-TK) 

 

On day 3, TNFα and IFNγ were added to the medium with a concentration of 3 ng/mL each 

to induce the expression of HSV-TK (RANTES activation). Then, GCV was added in a final 

concentration of 25 µM (this concentration was on the results from 6.7.1 as shown in 7.4.3). 

On day 4 and 5, half of the medium was changed and GCV was added to maintain a 

concentration of 25 µM. Next, the supernatant was saved; the cells were detached, 

counted, (see 6.2.4) stained and measured in accordance to the previously described 

procedure (see 6.6). 

 Co-cultivation: proof of the bystander effect 6.7.3

All batches were co-cultivated with the porcine (K67) and the human cell line (HT1080) to 

evaluate the bystander effect (see 1.6). Except for day 1, the assay was performed in 

exactly the same way as described in 6.7.2. The MSCs and the cell line were equally 

seeded into the 12-well plates. Following Table 10, half of the described cell count was 

used for each cell line and the accordant MSC batch. All following steps were performed as 

described before (see 6.7.2).  

The MSCs and the cell lines were discriminated by GFP (see 6.6.3). Bio-M was used for the 

cultivation of human MSCs instead of Bio-1 to enable the proliferation of the cell lines. 

HEPES was additionally given into the medium (in a final concentration of 2.5%) for a 

sufficient pH buffering because GCV shows alkaline attributes.  
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6.8 Isolation and Quantification of DNA 

 Isolation of DNA from cells and photometric quantification 6.8.1

The DNA isolation was performed with a commercial kit (Quiagen Blood & Tissue Kit) 

according to the manufacturer’s instructions. In short: the cells were lysed, protein and RNA 

were digested, and the DNA was precipitated with ethanol. Then, the DNA was washed with 

an ethanol containing saline buffer before it was eluted with TRIS buffer in at least 50 µL.  

If the DNA of porcine blood samples was to be isolated, an additional lysis step was 

performed. The 10x RBC Lysis Buffer was diluted to the working concentration (1x) and 

750 µL of blood were mixed with 15 mL lysis buffer to lyse erythrocytes and thrombocytes. 

After an incubation time of 10-15 min, a centrifugation was performed with 350 g for 5 min. 

Then, the supernatant was aspirated and discarded before the cells were suspended in 

PBS. Finally, the DNA was isolated following the protocol described above. 

The whole DNA-containing solution was unspecifically quantified by photometric 

determination. A volume of 4 µL was sampled and given onto the photometric unit of the 

photometer. The absorption at 260 and 280 nm was measured. In general, an extinction of 

1 at 260nm correlates to approximately 50 µg/mL DNA. Any absorption at 280 nm 

represents possible protein contamination. The quotient of both extinctions indicates a high 

contamination if the value is <1.8. If the quotient was less than 1.8, another precipitation, 

washing und elution procedure was conducted.  

If the concentration of the eluted DNA was >150 ng/µL, the solution was diluted with TRIS 

buffered water to ≤150 ng/µL. 

 Quantification of genomic DNA or a sequence of interest by real-time PCR 6.8.2

To quantify a defined sequence of DNA in a sample, real-time PCR was performed thereby 

amplifying the targeted sequence. Single copy genes were chosen with appropriate primers 

to determine the amount of genomic porcine and human DNA (see Table 11).  

Standards containing a determined amount of genomic DNA of a species were 

logarithmically diluted and amplified by real-time PCR. The measured cycle threshold (CT) 

values represented the quantity of amplification cycles before the fluorescent signal was 

detected. This fluorescent signal was generated by a probe (specific amplicon 
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complementary fluorescent reporter dyes) that was hydrolyzed during amplification or by 

double- strand-intercalating dyes (e.g. SYBR green).  

This value was put into correlation to the absolute number of sequence copies before 

amplification by the logarithmic transition of the CT values and the known number of 

sequences. Following formula was used for the linear regression: 

𝑦 = −𝑚 ∗ 𝑥 + 𝑛 

Table 11: Single-copy genes or a defined sequence of interest allowed the quantification of DNA by 

specific real-time PCR. Because photometric measurements unspecifically measuree the whole DNA in a 

sample, the defined quantification of a DNA or a sequence of interest was performed by real-time PCR [281]. To 

measure the insertion rate into a population, the therapeutic gene was quantified by the amplification of the 

transgene enhancer WPRE [278], which generally is not present in naïve cells. 

Species / Origin Pig Human Woodchuck hepatitis B virus 

Single-Copy Gene / 

Sequence of Interest 
Zar1  Factor VII WPRE 

Genome Weight [pg] 6.0 6.5 N/A 

Primer forward 5´-ACGATGCAG 

CGTCTTATTCC-3´ 

5´-GCCAAGCAA 

GGCACTATCTC-3´ 

5´-TCATGCTAT 

TGCTTCCCGTA-3´ 

Primer reverse 5´-TCATACAGG 

CAAGGGGAAAG-3´ 

5´-GGCTGTGCC 

GAAGTAGATTC-3´ 

5´-AAAGAGACA 

GCAACCAGGATTT-3´ 

Probe 5´-AAACAAACCCAG 

GTTCAGGAACCCTG-3´ 

5´-AGGACCTCC 

GCCAGGGTTCA-3´ 

UPL Probe ® #63 (sequence 

not known) 

 

The primers and probes, respectively dyes, were used in the following mixes as shown in 

Table 12. 
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Table 12: The following master mixes were used for the quantification of single copy genes or the 

transgene sequence WPRE. All mixes were tested with different concentration of primers and probes / dyes to 

optimize the amplification and the robustness of the result. 

Master Mix Species / Gene Primer / Substance / Dilution volume [µL] 

#1 
Pig: 

Zar1 

PCR-Grade H2O 4,2 

Primer: Pig Zar1 for 300nM 0,3 

Primer: Pig Zar1 rev 300nM 0,3 

Probe Pig Zar1 200nm 0,2 

Probes Master 480 (FAM) (Roche) 10 

Sample 5 

Sum 20 

 

#2 
Human: 

Factor VII 

PCR-grade H2O 4,25 

Primer: human FVII for: [300nm]  0,3 

Primer: human FVII rev: [300nm] 0,3 

Probe human FVII [2x] 0,15 

Probes Master 480 (FAM) (Roche) 10,0 

Sample 5 

Sum 20 

 

#3 

Therapeutic 

Gene: 

HSV-TK 

(WPRE) 

PCR-Grade H2O 4,1 

Primer: WPRE for 300nM  0,3 

Primer: WPRE rev 300nM 0,3 

Probe: UPL #63 150nM (Roche) 0,3 

Probes Master 480 (FAM) (Roche) 10 

Sample 5 

Sum 20 

 

The ratio of WPRE sequences to the amount of cells result in the vector copy number 

(VCN). A successful selection of population must show a VCN ≥1. 

 Determination of the mean retroviral vector insertion rate of a population 6.8.3

The transgene HSV-TK was inserted into the MSCs by retroviral vectors carrying a WPRE 

sequence. To determine the mean insertion rate into a cell population, the cells were 

analyzed after transduction (see 6.3) and selection (see 6.4.1) by real-time PCR. After the 

preparation procedure as described before (see 6.8.2), the DNA-containing samples were 

measured by amplification with the master mixes #1 (for porcine MSCs) or #2 (for human 
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MSCs) and additionally with master mix #3 (WPRE sequence). Based on the standard 

curve, the generated CT values were used to calculate the quantity of DNA copies before 

amplification. The quotient of the transgene copies and the single-copy genes resulted in 

the mean transduction ratio: the vector copy number of a population. 
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6.9 In Vivo studies and Histopathological Staining 

 Infusion of MSCs into pigs, clinical observation and pathology 6.9.1

A veterinarian, a member of the Institut für Molekulare Tierzucht und Biotechnologie der 

Ludwig-Maximilians-Universität München, was responsible for the animals involved in the 

study. She performed all surgical interventions and observed the mini-pigs for clinical 

relevant symptoms. The competent regulatory authority allowed the animal trial in 

accordance to the Tierschutzgesetz. 

HSV-TK expressing porcine MSCs were manufactured in accordance to the protocol 

described in Figure 2 and were verified for all identity criteria checked in 7.2. The batches 

were stored in 2 mL cryopreservation vials containing 10x106cells/mL in the vapor phase of 

liquid nitrogen. The absence of mycoplasma and sterility was tested to assure the safety of 

the product. 

On the day of infusion, the vials were transported from the laboratory in a dry shipper to the 

study site and were thawed in a 37°C water bath. The thawed cells were counted with 

trypan blue and prepared for infusion under aseptic conditions. The filled syringes were 

transported to the stables. Before the cell were infused, the animals were narcotized and a 

catheter was implanted into the jugularis vein by surgery. This catheter was used for the 

infusion of the cells only. The wound was stitched up and the access was thoroughly pasted 

at the neck with an accordant catheter expansion. In addition, an intravenous access to an 

ear vein was established with a short catheter for blood aspiration only (see Figure 29). This 

configuration of the catheters was intentionally set up to prevent a sampling of just infused 

cells. Before the cells could reach the ear vein, the cells had to distribute throughout the 

whole bloodstream and including the passaging of the lungs. 

Blood samples were saved in EDTA-containing tubes at ambient temperature, which were 

transported to the laboratory the same day. The DNA isolation of the MNCs was performed 

as described before (see 6.8.1) 

At the end of the in-life phase, the veterinarian necropsied the animal by previous 

anesthesia and following euthanasia. Veterinary Pathologists of the Institut für 

Tierpathologie of the Ludwig-Maximilians-Universität München performed the pathological 

investigation. Tissue preservation and IHC staining was performed as described in 6.9.2. 
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 Immunohistochemistry (IHC) on porcine tissues 6.9.2

During the pathological investigation, squarish tissue samples of 3-5 mm size were 

generated and embedded in formalin for 3-7 days. Afterwards, the samples were fixed in 

paraffin. The blocks were sent to the external laboratory (Indivumed) for 

immunohistochemical analysis and were stained following the established protocol. In short, 

the formalin-fixed paraffin-embedded tissue (FFPE) tissue samples were sliced into 3 μm 

sections and mounted on positively charged glass slides. The FFPE slides were 

deparaffinized and immunostained with the rabbit monoclonal antibody Anti-HA (clone 

C29F4, Cell Signaling Technology). Positive Control runs were performed in each run as 

well as an accordant isotype control of the neighbored tissue slice as negative control. As 

second negative control, naïve porcine tissue was stained using the Anti-HA antibody to 

identify potential artefacts. 

Afterwards, the slides were manually washed using hot water supplemented with detergent, 

followed by tap water and dH2O. For dehydration, the slides were transferred to an 

ascending ethanol series (2x 80%, 2x 96%, 2x abs. EtOH; 1-3 min each). After dehydration, 

the slides were transferred to xylene (3x 2 min) and embedded in Pertex®. Finally, the 

stained sections were analyzed by microscopy for positively stained cells and manually 

counted.  

6.10 Statistical Analysis of Results 

For statistical analysis and plotting of graphs, the software Graph Pad Prism 7® was used. 

All statistical results stated in this work based on calculation of the Graph Pad Prism 

software.  

If normal distribution was assumed, the D`Agostino & Pearson normality test, Shapiro-Wilk 

normality test or Kolmogorow-Smirnow normality test was performed. The student´s paired 

t-test was performed, if two data sets were compared by their mean and they derived from 

the same population. Unpaired t-test was performed for data sets that did not derive from 

the same population but were compared by their mean and had the same variance. Welch's 

unequal variances t-test was performed for data sets that did not have the same variance 

and therefore did not derived from the same population.  

An Analysis of Variance (ANOVA) was performed in a so called “one-way” or “two-way”. 

The One-Way ANOVA (Tukey´s or Dunnett´s multiple comparison test) was performed for 
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comparison of more than two data sets to one control and to identify if any statistical 

difference from any of these data sets to the control could be observed. Two-Way ANOVA 

(Tukey´s or Sidak´s multiple comparison test) compared all data sets to each other and 

aimed to identify any significant differences between any sets of data. Linear Regression 

was performed based on the normality tests that were described above.  

Differences of two normal distributed data sets were described as statistical significant or 

not following Table 13. 

Table 13: This overview summarizes the difference between data sets that were entitled as statistically 

significant or not. If the assumed normal distribution of two data sets differed for more than 95% from each 

other, the difference was assessed to be significant. If the statistical differences of the distributed values were 

even 99% or higher, it was described with the accordant symbol to underline this difference. 

p value described as symbol 

p >0.05 Not significant ns 

p <0.05 and >0.01 Significant * 

p <0.01 and >0.001 Significant ** 

p <0.001 and >0.0001 Significant *** 

p <0.0001 and >0.00001 Significant **** 

 



Results 

 
 

 

 

 52 

7 Results 

7.1 Strategy and Batch Production 

Testing homologous, preclinical cell therapy products requires sufficiently characterized 

cells from the chosen species. Therefore, good in vitro characterizations have to be 

completed before in vivo experiments are ethically reasonable and generate valid results 

allowing a translation to the human setting.  

Following strategy was pursued: Bone marrow was aspirated out of the iliac crest from three 

human donors. The mini-pig´s cells were taken by scraping out the marrow of both femur 

and tibia after necropsy of one mini-pig. The MGH mini-pig in question (Massachusetts 

General Hospital mini-pig) derived from an isogeneic brood animal [282]. The generated cell 

populations were described as “Porcine 1 (naïve)” and “Human 1, 3 and 5 (naïve)” (see 

Table 1). The three ISCT requirements: plastic adherence (and fibroblast-like morphology), 

differentiation potential and a defined set of surface proteins should be confirmed in both 

species. In addition, a typical characteristic of human MSCs was investigated: showing 

HLA-DR on the surface, especially after pro-inflammatory cytokine induction. The 

population doubling time was also assessed. 

A suicide gene was inserted with the same SIN-γ-retroviral vector into both species’ cells. 

Three HSV-TK expressing, porcine batches were generated (“Porcine 2, 3 and 4”) as well 

as one HSV-TK expressing human batch from each donor (“Human 2, 4, and 6”). The 

transduction rate was determined as well as the mean transgene insertion rate of a 

puromycin-selected population. The functionality of the human-derived promoters in the 

porcine MSC was quantified in comparison to human MSCs. The functionality of the gene 

was quantified by an MTT assay evaluating the GCV sensitivity. A characterization of the 

apoptotic cell death was performed by flow cytometry regarding morphological and surface 

changes after GCV treatment. The therapeutic effect was assessed by in vitro co-cultivation 

of HSV-TK expressing MSCs with cell lines and the addition of GCV. Finally, experimental 

in vivo studies were performed. Porcine MSCs were intravenously administered to evaluate 

the biodistribution of the cells in the mini-pig´s bloodstream and representative tissues.  

Figure 2 shows the performed strategy in a flow chart. 
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Figure 2: This flow chart presents the comparison approach of the human and the porcine-derived cell 

therapy products. Both species cells derived from the bone marrow and were produced in the same way. After 

the first detachment, the cells were split into a naïve line and into a line that was transduced with the HSV-TK 

vecotor. Testing was performed on several different steps of the MSC product. In vivo studies were performed 

with porcine MSCs only. 
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7.2 Adherent Bone-Marrow MNCs from the Pig are MSCs 

 Porcine and human MSCs were plastic adherent and showed similar 7.2.1

morphology 

The isolation process is the most critical production step in the eyes of many working 

groups and crucial for the amount and quality of MSCs as described before. To mitigate 

non-desired effects on the MSC properties, the same isolation protocol was used for all 

human donors. The freshly aspirated marrow was cultivated in less than 24 h. After initiating 

the cultivation, the culture media showed a reddish colour due to the massive presence of 

erythrocytes. 

Figure 3: Before the first media change, no adherent cells were visible (A) since erythrocytes completely 

masked the plastic surface. The succesive media changes reduced the amount of suspension cells 

dramatically until only adherent cells remained in the cultivation flask. Here, stromal cells (B) built up adherent 

colonies that showed a circular proliferation with a high cell density at the inner part. Within days, the colonies 

grew up until they got in touch with each other. Not later than 14 days, the cells were split and scattered for 

further proliferation. Scale bar: (A) 100 µm and (B) 500 µm. 

In the first hours of seeding, MSCs started to adhere. The supernatant was changed every 

2-4 days to assure sufficient amounts of nutrients in the media e.g. glucose. Although the 

erythrocytes were diluted step-by-step and finally not present in culture anymore, no 

obvious cell colonies could be detected by visually screening during the first week of 

cultivation.  

A B 
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Figure 4: Porcine (A, batch: Porcine 0) and Human MSCs from donor 1 (B, batch: Human 1) in low-

density seed showed fibroblast-like morphology. Microscopy showed that human MSCs tended to be larger 

than their porcine counterparts and were slightly more spindle-shaped. After seeding, both species showed 

nearly complete adherence in less than 2 h. Scale bar: 250 µm. 

After 6-12 days, proliferating colonies could be observed. These colonies were typically 

confluent in the middle and looser at the outer edge. Not later than 14 days, the colonies 

were split. 

Figure 5: The human donor 2 (A, batch: Human 3) and donor 3 (B, batch: Human 5) were comparable in 

morphology to donor 1 and the porcine MSCs. Comparing donor 2 to the other human donors, a more 

flattened and enlarged size was visible. Scale bar: 250 µm. 

The cells showed a fibroblast-like morphology and strong adherence to the plastic since 

slight movement of the culture flasks did not lead to any detachment. Partially, these cells 

were more flattened or showed single thin and long forms. The morphology of porcine and 

A B 

A B 
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human MSCs was quite comparable. All batches of both species showed good adherence 

and spindle-shaped morphologies, especially donor 1 and 3. Donor 2 was noticeable 

regarding the more flattened morphology and the relatively large and broad cells.  

 Surface markers of both species were nearly identical 7.2.2

A single surface marker identifying the MSC population has not been described yet. The 

ISCT demands a check for CD90, CD73 and CD105 and for several hematopoietic cell 

markers to exclude possible impurities. The isolation by adherence eliminates 

hematopoietic cells normally after regular media changes (as described before, see 7.2.1) 

since hematopoietic cells out of the marrow do not show sustained adherence during 

cultivation.  

All batches (listed in Table 1) were stained with a panel of antibodies to check their surface 

profile (see 6.6). Therefore, the cells were cultivated for at least 48 h before detachment 

and stained with an accurate isotype control and the accordant antibody. Measurement was 

done by flow cytometry. If needed, accurate compensation was done.  
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Figure 6: In general, porcine and human MSCs showed a similar set of surface markers (also viability). 

The criteria of the ISCT were fulfilled. In contrast to CD90, CD105 was significantly less presented on porcine 

MSCs, which was further evaluated in Figure 7. CD45+, a typical haematopoietic marker, was not present on 

both species. HLA-DR was found on human MSCs (see Figure 8) but not on porcine MSCs. More comparison 

stainings could not be performed due to the lack of commercially available antibodies for porcine cells. Statistics: 

two-way ANOVA. 

The positive markers CD90 and CD105 showed strong expression in both species in 

contrast to the pan-leukocyte marker CD45, which was not measurable in any species. 

HLA-DR could be detected on human MSCs but not on porcine MSCs. The presentation of 

this surface protein was quite different between the human donors (see also Figure 8) 

resulting in high standard deviations between the batches. Interestingly, a small sub-

population of CD105 negative porcine cells showing no expression could be identified. 

Further negative sub-populations could not be observed for any other surface marker. 
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Figure 7: In contrast to other positive MSC markers like CD90 (A), a small sub-population of CD105 

negative porcine MSCs (B) could be observed (see arrow). The porcine MSCs showed a single population 

overlapping with the isotype control. A second population of positive cells could be discriminated. 

Beyond the markers that were available for both species, an additional panel of antibodies 

was tested  (Table 14) to assure the MSC surface profile based on publications and known 

markers for other cell types (see 1.2 and 8.1 for more details). 
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Table 14: Here, a detailed list of all measured, present and absent marker of both species is shown (as 

well as viability in the measured populations). For porcine cells, the variety of commercially available 

antibodies was very low in contrast to human MSCs. Most of the markers were described before (see 1.2). 

Hematopoietic markers e.g. CD45 and CD34 were absent for both species (CD34 could only be measured for 

human MSCs). Statistics: With the exception of batch Porcine 1, all groups are described by their mean value 

and standard deviation. 

Viability / 

Surface Marker 

Porcine 1  

[%] 

Porcine 2-4  

(HSV-TK)  

[%] 

Human 1,3,5 

[%] 

Human 2,4,6 

(HSV-TK) 

[%] 

Dead Cells 2,1 2.4±1.8 3.2±2.1 2.5±1.5 

CD44+ 98.0 99.6±0.4 N/A N/A 

CD90+ 98.5 99.2±0.3 99.1±0.5 99.1±0.1 

CD105+ 91.9 91.7±6.3 99.0±0.2 98.6±0.9 

CD29+ 98.5 99.3±0.1 N/A N/A 

CD45+ 1.9 0.4±0.5 0.5±0.5 1.5±1.3 

CD34+ N/A N/A 0.3±0.3 1.6±2.8 

HLA-DR+  

(MHC II) 
0.2 1.0±0.4 24.5±9.6 20.1±10.3 

CD73+ 

N/A N/A 

98.8±0.4 98.8±0.7 

CD235a+ 1.0±0.7 0,3±0.4 

CD3+ 0.5±0.4 0.1±0.1 

CD14+ 0.3±0.3 1.2±2.1 

CD19+ 1.0±0.9 0.4±0.4 

CD41+ 5.9±5.0 1.4±0.7 

CD61+ 95.8±4.7 96.4±3.2 

 

 HLA-DR presentation on human MSCs was inducible – not in porcine MSCs 7.2.3

Although the ISCT suggests that MSCs are HLA-DR negative, several publications 

demonstrated the inducible HLA-DR presentation on MSCs (see 1.3). This presentation can 

be induced by addition of pro-inflammatory cytokines and was investigated in addition to the 

ISCT criteria. 

All porcine and human batches were tested for HLA-DR presentation on their cell surface 

with or without stimulation. Cells were seeded in confluence of 10-20% and stimulated with 

IFNγ and TNFα. HLA-DR presentation was measured by flow cytometry.  
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Figure 8: The presence of TNFα and IFNγ induced no up-regulation of HLA-DR on porcine MSCs in 

contrast to human MSCs. MSCs of both species were cultivated w/wo pro-inflammatory cytokines and stained 

for HLA-DR. The naïve and genetically modified batches were grouped. Porcine MSCs did not show any HLA-

DR presentation on their surface whether stimulated or not. Human MSCs increased HLA-DR presentation 

under stimulation significantly. Statistics: two-way ANOVA. 

Figure 8 shows that it was possible to identify HLA-DR on human MSCs in contrast to 

porcine MSCs. All batches of human MSCs showed a HLA-DR presentation whether 

without stimulation (20%) or significantly increased with stimulation (86%). Porcine MSCs 

did not show any reaction. 

 Porcine MSCs differentiated with human stimulation media  7.2.4

The third ISCT criterion is the successful proof of the differentiation potential of the cells. It 

is well-described that MSCs are able to build up lipid vacuoles or to enrich calcium as 

indicators for an adipogenic or osteogenic differentiation (see 1.1). 

The differentiation of the porcine MSCs was conducted with the same protocol that was 

used for human MSCs. Over 14-21 d of induction, the same stimulation media were utilized. 

The cells were stained for liquid, lipophilic droplets with red oil and for enrichment of calcium 

with alizarin red. In addition, control cells were cultured with standard media (6.5 for method 

description).  

It was possible to differentiate porcine MSCs as well as human MSCs following the same 

protocol. All batches cultivated with standard media showed no differentiation. The visual 
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analysis showed differences in the amount of differentiated cells between the lots and 

species. The porcine MSCs were less sensitive than their human counterparts for adipocyte 

stimulation. If the porcine cells were additionally transduced, selected and hence longer 

expanded (Porc1-3 TD), the amount of lipophilic droplets was additionally decreased (see 

Table 15). 
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Figure 9: Both porcine (A) and human (B) MSCs showed an adipogenic lineage potential. Defined 

stimulation media induced the cell differentiation. After 10 d, first fat vacuoles were observed. Not earlier than 

14 d after the start of differentiation, the cells were washed and stained. The reddish colour of the droplets was 

caused by the red oil, which was used to detect the fat vacuoles more easily. The same commercial 

differentiation media were used for both species (the used media were indicated for human MSCs only). The 

human donors generally showed more lipid vacuoles than the pig (see Table 15). The human batch 1 (C) 

showed a significantly higher sensitivity for differentiation because the appearance large fat vacuoles was 

observable. In addition, small vacuoles lined up in a row (see arrows) at the edge of nearly all cells. (D) 

Appropriate controls showed no red oil staining although very small vacuoles could be observed in some 

sections. Scale bar: 250 µm for (A,B,C) and 25 µm for (D) (all sections had the same optical magnification). 

The osteogenic lineage potential was nearly identical in all species and batches and no 

differences could be observed. The homogeneous distribution of calcium enrichments on 

the cells was stained with alizarin red, which enhanced a strong color of the complexed 

Ca2+ Ions. 

A B 

C D 
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Figure 10: Both species (porcine (A), human (B)) showed strong calcium enrichment. No signifcant 

difference between the batches and species could be observed. The porcine MSCs were equivalent to the human 

MSCs in their osteogenic potential with the human stimulation media. (C porcine, D human) Controls for both 

species showed no calcium enrichment if cultivated with the accordant standard media. Scale bar: 250 µm.  

The visual rating of the differentiated cells is shown in Table 15. For adipogenic 

differentiation, three representative sections (approximately 750 µm × 1000 µm) were 

chosen and the amounts of cells that showed fatty vacuoles were counted. This was 

performed three times for each staining.  

 

A B 

C D 
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Table 15: Overview of differentiation potential of both species. All batches were differentiated following the 

same protocol. After differentiation, the populations were fixed, stained and representative sections (~750 µm × 

1000 µm) were counted for differentiated cells. All batches kept their differentitation potential whether 

transduced or not. If the cells were cultured with standard media, no signs of differentation could be observed. 

The porcine cells could be differentiated following the same protocol and same differentiation media designed 

for human MSCs. After the induction time, porcine MSCs generally showed less adipogenic potential than 

human MSCs. Only donor 2 (Human 3 / 4) was as weak as the porcine MSCs. Coloration: red ≥25, orange 15-

25, yellow ≤15. 

Batch 
Cultivation time before 

differentiation start [d] 

Adipogenic 

Stimulation 
Osteogenic 

Stimulation 

Standard 

Culture Media 

(Control) #1 #2 #3 

Porcine 1 10 6 10 8 + 

No 

differentiation. 

Porcine 2 (HSV-TK) 32 7 9 6 + 

Porcine 3 (HSV-TK) 26 6 5 7 + 

Porcine 4 (HSV-TK) 37 4 7 4 + 

Human 1 13 29 32 21 + 

Human 2 (HSV-TK) 23 22 25 19 + 

Human 3 14 24 22 28 + 

Human 4 (HSV-TK) 35 21 24 18 + 

Human 5 20 24 25 21 + 

Human 6 (HSV-TK) 34 26 23 20 + 
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 Doubling time of porcine MSCs was comparable to human MSCs 7.2.5

Based on the cell counts after the first passage and just before cryopreservation, the 

population doubling time for each batch was calculated (see 6.2.6) as an additional 

parameter for comparison.  

Figure 11: The mean population doubling time (PDT) of porcine and human MSCs was comparable. The 

mean PDT of the porcine batches was 62 h and while it was 58 h for the human batches. Obviously, a donor 

dependency could be observed indicating different doubling times for each donor. The porcine batches showed 

a similar population doubling time. Both batches of each donor showed similar population doubling times varying 

fron 30 h to 100 h. Statistics: two-tailed, unpaired t-test. 

Both species showed a mean doubling time of 60 h (mean PDT of porcine batches: 62 h 

and mean PDT of human batches: 58 h). But the doubling time for the human batches 

varied heavily from 30 h to 100 h. If both batches of each donor are depicted, a clustering 

can be observed. It is obvious that the time needed for the production of one batch is 

strongly dependent on the proliferation speed of the donor´s cells. 
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7.3 Insertion of the Therapeutic Gene into Porcine MSCs was 

Controllable and Comparable to Human MSCs 

A SIN-γ-retroviral vector inserted the suicide gene HSV-TK (see Figure 1 for schematic 

description of the inserted transgene). After transduction, the cells were selected using the 

also inserted transgene PAC (regulated by the constitutive promoter PGK). Then, the HSV-

TK expressing population was expanded to generate the desired cell count (see 6.3). 

 Same vector / cell ratios lead to comparable transduction rates 7.3.1

After the first detachment of the freshly procured MSCs, the transduction process was 

started. For this, the SIN-gamma retroviral supernatant with a determined load of viral 

particles was used. 

Based on the titer and the cell count just before transduction, the viral supernatant was 

mixed with the cells suspended in a PLL containing serum-free medium and seeded into 

culture flasks (method A). The chosen viral particle load per cell was three (MOI = 3). The 

other methods B and C differed in the methodological approach (see 6.3 for detailed 

description). 
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Figure 12: Successful transduction was identified by flow cytometry measuring a second population (B) 

in contrast to a single population of naïve cells (A). (A) Naïve cells showed a typical negative population in 

the SS / flourescence plot. (B) The heterogeneous cell population of transduced and naïve cells showed a partial 

shift creating a diffuse second population. Isotype-controlled gating showed more than 46% cells expressing the 

transgene. 

Pro-inflammatory cytokines stimulated the RANTES-regulated transgene cassette to 

increase the HSV-TK expression (see 7.4.2 for induction of RANTES in porcine 

environment). The heterogeneous population of naïve and transduced cells was stained 

with an anti-HA antibody and quantified by flow cytometry (see Table 16). 

Table 16: Different transduction methods led to different transduction rates although the vector / cell 

ratio was equal. Method C and A showed transduction rates that obivoulsy did not differ as much as method B. 

Statistics: none, descriptive only. 

Transduction Rate Porcine 4 Porcine 3 Porcine 2 Human 2 Human 4 Human 6 

Viral Particle / Cell 

Ratio (MOI) 
3 

Transduction Method A B C 

Fraction of  

Transduced Cells [%] 
5 46 3 7 11 3 

 

Method C showed comparable results in regard to transduction rate (see Table 16) and 

VCN (see Figure 13 (A)). If the cells were transduced in suspension (method A), there was 

a slight increase from 3% to 5% in porcine MSCs. If the viral supernatant was centrifuged 

onto PLL containing culture flasks, there was an increase up to 42% (method B). 

The vector copy number was determined by real-time PCR (see 6.8.3) after the selection of 

the transduced population (see Figure 13). 
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Figure 13: (A) Transducing MSCs with the same vector/cell ratio and the same method led to comparable 

mean transgene rates in both species. The human batches 2 and 6 had slightly reduced insertion rates, 

whereas Human 4 was quite similar to Porcine 4. (B) If only the method of transduction was changed (same 

vector / cell ratio), the insertion rate varied significantly. Method B showed the highest efficiency while method A 

and C did not show any statistical relevant changes. Statistics: (A) ordinary One-Way ANOVA and (B) ordinary 

Two-Way ANOVA. 

Method C showed no significant difference for both species in all human batches (VCN = 

1.4; 1.7; 1.4) and porcine batch 4 (VCN = 1.8). But method B (VCN = 4.2) differed 

significantly from method A (VCN = 1.4) and C (VCN = 1.7), enabling higher transduction 

rates although the amount of viral vector supernatant was not increased (see Figure 13 (B)). 
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7.4 Human-derived Promoters worked comparably in Porcine 

MSCs 

 Proof of functional human PGK promoters in porcine MSCs 7.4.1

The constitutive PGK promoter is required to work constantly and has to express the PAC 

resistance gene correctly for a successful selection of not-transduced cells. This system 

also has to be functional in the foreign porcine cell if a model system is to be applicable. 

Puromycin was given into the cultivation medium obviously killing the not-transduced 

population (see Figure 14). After 24 to 48 h, the selection process started since the 

accumulation of spherical cells in the supernatant could be observed. The majority of cells 

was depleted from the plastic surface and only small numbers of adherent were still visible 

(see Figure 14). Five days later, the medium was completely changed and all non-adherent 

cells were depleted. Now, the remaining cells started to proliferate again in the standard 

medium without the selection agent puromycin and a cell growth could be observed clearly. 

Figure 14: (A) The selection by puromycin killed most of the adherent cells visible as detached, spheric 

units. (B) As soon as the selection medium was depleted and a standard medium was given into the culture, the 

MSCs started to proliferate again, indicated by small, not flattened cells. Scale bar: 250 µm.  

Proliferating cells were identified by a small, less flattened and less fibroblast-like 

morphology, showing a fast increase in the number of cells in the surrounding area the 

following days (Figure 14 B).  
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The selection procedure was verified by flow cytometry as shown in Figure 15. HA-tag 

staining was performed and measured as described before (see 6.6.2).  

Figure 15: (A) Naïve porcine cells showed a typical population distribution in the flourescence / SS 

depiction. (B) After transduction and selection without RANTES activation, background expression of the not 

induced promoter was detectable (37%). Here, the cells distributed on both sides of the gate. (C) If pro-

inflammatory cytokines were given into the medium, a single population of porcine HSV-TK expressing cells was 

identified. 

No second population could be observed during measurement indicating a complete 

selection process (see Figure 15 (C)). The corresponding control of naïve cells (A) was 

clearly definable in contrast to positive cells (C). Without any pro-inflammatory activation, 

the population drifted slightly into the positive gate and could almost not be defined against 

the control (B). It can be concluded that the selection was sufficiently effective and 

transduced cells were resistant because the PGK-regulated PAC resistance gene was 

successfully expressed. 
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 Up-Regulation of RANTES in porcine MSCs was feasible 7.4.2

Since RANTES is an inducible promoter, an up-regulation in porcine MSCs should be 

possible. Therefore, the naïve and HSV-TK expressing batches were stained with / without 

a previous pro-inflammatory stimulation and measured by flow cytometry. The geometric 

mean of the fluorescence-emitting population was normalized to the corresponding naïve 

cells of the batch.  

Figure 16: Stimulation of the human RANTES promoter with pro-inflammatory cytokines led to increased 

HSV-TK expression in both species. Although the RANTES promoter was isolated from human cells, it 

showed functionality in porcine MSCs. Slight background expression was detectable in both species in 

comparison to naïve cells as the negative control. Statistics: paired t-test for columns A/B and C/D and Welch´s 

test (unpaired t-test, non-equal stdv) for the comparison of porcine to human batches. 

Background expression without any pro-inflammatory activation could be measured for 

porcine MSCs (0.4-fold increased expression) as well as for human MSCs (0.3-fold 

increased expression). Although the RANTES promoter was isolated from human cells, it 

also worked in the porcine MSC with inflammatory activation (1.4 fold increased 

expression). The up-regulation in human MSCs (2.2 fold increased expression) was even 

stronger compared to porcine MSCs although it showed a larger variance. 

 Porcine HSV-TK expressing cells showed higher sensitivity to ganciclovir 7.4.3

GCV is a prodrug and highly activated by viral kinases. HSV-TK expressing cells should be 

more sensitive to GCV than naïve cells (as described before 1.6). The HSV-TK expressing 
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cell should become apoptotic under treatment with GCV, which then leads to cell death if 

the enzyme is working properly. 

To determine the GCV sensitivity of naïve and HSV-TK expressing batches, the cells were 

seeded in 96-well plates and exposed to different, logarithmically distributed GCV 

concentrations. After five days, the substrate tetrazolium dye MTT (see 6.7.1) was given 

into the medium. The more living cells were available, the more formazan was synthesized. 

After a defined incubation time, photometric measurement allowed the quantification of and 

a comparison between the naïve and HSV-TK expressing batches. All batches and the cell 

lines HT1080 and K67 were quantified for their GCV sensitivity represented in the amount 

of absorption by formazan. 
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Figure 17: Porcine (A) and human MSCs (B-D) expressing HSV-TK showed a higher sensitivity to GCV 

than their naïve counterpart. Increasing the GCV concentration in a logarithmic scale showed an earlier effect 

on transduced MSCs, decreasing the amount of living cells. The cell line HT1080 and the porcine cell line K67 

did show a GCV sensitivity profile (E) like naïve MSCs. Statistics: nonlinear regression (dose response 

inhibition), goodness of fit for each figure A-E: R>0.9.  

To determine the sensitivity, the half-maximal efficacy concentration (EC50) was calculated 

based on the approximation for a dose response inhibition (see Figure 17). The response 

curves showed that HSV-TK expressing MSCs were more sensitive to GCV than their naïve 

counterpart and naïve cell lines. The resulting EC50 values are shown in Figure 19. 
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Figure 18: The EC50 (half-maximal effectivity of GCV) of all non-transduced MSCs and cell lines were 

more than 100-fold lower than HSV-TK expressing cells. The porcine cells showed sensitivity differences of 

nearly 1000-fold. Statistics: standard deviation bases on the 95% confidence interval of the nonlinear regression.  

The EC50 value of HSV-TK expressing porcine MSCs lay between 0.2 µM and 0.7 µM, 

whereas the naïve batch was measured with more than 500 µM GCV, which represents a 

sensitivity that was 1000-fold higher. The naïve human batches showed differences in the 

GCV sensitivity between 67 µM and 1400 µM while the transduced batches were in the 

range of 0.5 µM to 1.1 µM – a more than 100-fold higher sensitivity. The cell lines were only 

slightly more sensitive than the naïve batches with 109 µM to 163 µM GCV. 
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7.5 Porcine MSCs showed the same Mode of Action under GCV 

Treatment 

In 7.4 it was successfully shown that the insertion of the transgene was successful and 

quantifiable. Also, the functionality of the selection cassette PGK-PAC and the inducible 

RANTES promoter could be shown. In this section (7.5), the apoptosis as an effect pathway 

due to the treatment is to be characterized and compared between the species. 

 Activated GCV initiated the apoptotic cascade in both species in a comparable 7.5.1

manner 

As introduced before (see 1.6), there are several kinds of cell death that could end the cells’ 

life cycles: necrosis, autophagy, mitotic catastrophe and apoptosis. In contrast to others, 

apoptosis is a self-regulated cell death initiated by internal (e.g. DNA damage) or external 

signals (e.g. FAS activation). The apoptotic death of a cell is complex and the process is 

characterized by different changes: morphological alteration into spherical and granular 

cells, detachment, appearance of phosphatidylserine (PS) on the surface and loss of the 

cells’ integrity making it possible for dyes to get into the cell and stain the DNA (e.g. 7-AAD).  

Here, the characterization of the apoptotic pathway initiated by GCV in human and porcine 

HSV-TK expressing MSCs was investigated. All batches were seeded and treated with pro-

inflammatory cytokines on day two and GCV on day two, three and four. GCV was added in 

a concentration of 25 µM. This value was chosen based on the results generated in 7.4.3. 

The highest sensitivity to GCV showed the batch Human 5 with an EC50 value 64 µM. 

Therefore, the chosen concentration was less than half the EC50 value of Human 5. 

On day five, the cells were harvested and stained with Annexin-V as apoptotic marker as 

well as 7-AAD as dead marker. The cells were counted and analyzed regarding 

morphological and membrane surface changes through flow cytometry.  
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Figure 19: (A) Naïve porcine MSCs did not react with massive apoptosis if GCV was added to the 

medium. The naïve cells showed good adherence and only occasional deatchment was visible although GCV 

was present. (B) The treatment of HSV-TK expressing MSCs with GCV led to a massive accumulation of cells 

and cell debris in the supernatant, which could be seen on day five. (C) Depleting the medium only occasionally 

showed adherent cells. Scale bar: 250 µm. 

Throughout the treatment, the visual analysis showed no effects on naïve MSCs because 

only single cells were in the supernatant. In contrast, the majority of HSV-TK expressing 

cells detached already one day after the start of the treatment. A massive congregation of 

cells and cell debris could be observed, which accumulated in the supernatant. Depleting 

these cells by changing the cultivation medium showed that nearly no adherent cells were 

on the surface. Some cells still attached to the plastic although they partially showed signs 

of apoptosis due to their spherical morphology. 

To determine the inhibitory effects of the pro-inflammatory cytokines and GCV, cell counts 

were performed after five days of cultivation and three days of treatment. The treated naïve 
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and HSV-TK expressing cells were compared to their non-treated controls considering the 

proliferation capacity over five days. The cell count differences between standard cultured 

cells and treated cells were calculated and are shown in Figure 20.  

Figure 20: The treatment (pro-inflammatory cytokines + GCV) of HSV-TK expressing cells showed 

significant reduction in cell proliferation in contrast to also treated naïve cells. All groups were additionally 

cultivated without treatment as negative control. At the end of the assay, the cell counts of the treated groups 

were normalized to the negative control and the reduction was calculated. Both species showed a comparable 

percentage of killed cells during treatment for HSV-TK expressing and naïve cells. Statistics: paired t-test for 

columns Porcine 1 / Porcine 2-4 (HSV-TK) and Human 1,3,5 / Human 2,4,6 (HSV-TK) and Welch´s test 

(unpaired t-test, non-equal stdv) for the comparison of porcine to human batches. 

The cell count reduction of porcine (-3.34 fold) and human (-2.75) HSV-TK expressing 

MSCs did not differ significantly and was therefore comparable. In both species, the 

reduction of HSV-TK expressing cells is significantly higher than their naïve counterpart 

(porcine: -0.74 and human: -0.6). The alterations by apoptosis are characterized by a 

reduction of the cell´s size, a change of its surface profile and a loss of the cell´s integrity. 

As shown in Figure 19, the death of cells corresponded with a small and spherical 

morphology and the loss of adherence to the plastic surface. To give a clear proof of an 

apoptotic pathway for porcine MSCs, the cells were analyzed through flow cytometry. For 

this, all batches were seeded, cultured and treated with GCV as described before (see 

6.7.2). On day five, the supernatant and the cells were harvested, stained with Annexin-V 

and 7-AAD and measured by flow cytometry. 
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Figure 21: GCV-treated, HSV-TK expressing porcine MSCs in contrast to non-treated MSCs: 

Morphological changes correlated with different stages of apoptosis. (A) Non-treated MSCs were 

characterized by one population in the FS / SS plot. (B) If this population was stained for 7-AAD and Annexin-V, 

a slight drift to Annexin-V positive cells was observable. Very small amounts of cells were 7-AAD positive 

indicating dead cells. (C) Since no further populations were visible, the gating showed no cells. (D) Treatment of 

HSV-TK expressing cells generated a second, smaller but more granular population in the FS / SS plot. (E) 

Staining with 7-AAD and Annexin-V for cells gated on the “normal population“ showed mainly Annexin-V positive 

cells and a smaller Annexin-V and 7-AAD negative population indicating living cells. 7-AAD cells were increased 

if compared to the amount of 7-AAD in (B). (F) Gating on the smaller and more granular population (here 

“shrunken population“) showed that nearly all cells were 7-AAD and Annexin-V positive. A smaller sub-

population was Annexin-V positive only. 

Figure 21 shows that morphological changes correlated with different stages of apoptosis. 

One population in the FS / SS plot, a small amount of Annexin-V positive and a very small 

amount of 7-AAD cells characterized non-treated MSCs. If these HSV-TK expressing cells 

C) 
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were treated with GCV after promoter induction, a significant change in the morphology 

could be seen. The cells started to become smaller and showed more granularity. These 

shrunken cells were positive for Annexin-V and 7-AAD, which is typical for late-apoptotic 

cells. In contrast to necrosis, a population with Annexin-V positive and 7-AAD negative cells 

indicated an apoptotic pathway. 

Figure 22: Porcine and human HSV-TK expressing MSCs became smaller and more granular if they were 

treated with pro-inflammatory cytokines and GCV. In this figure, the distributions of the cells in the FS / SS 

are summarized for all batches after treatment following the gating strategy of Figure 21. Naïve cells of both 

species primarily showed a normal morphology in the FS / SS with more than 80% in the “normal population” 

gate in spite of the treatment. HSV-TK expressing MSCs showed a change to more granular and smaller cells. 

Human HSV-TK MSCs showed about 30% of shrunken cells but porcine HSV-TK MSCs showed up to 70% of 

shrunken cells. Statistics: two-way ANOVA; following comparisons did not show a significant difference: Porcine 

1 and Human 1,3,5 for normal and shrunken population (p=0.34 and p=0.56); Human 1,3,5 and Human 2,4,6 for 

shrunken population (p=0.05). All other comparisons did show a significant difference (p<0.05). 

Figure 22 describes the drift in the morphology induced by GCV treatment for all batches. 

93% of porcine and 82% of human naïve cells showed no change in morphology despite of 

the treatment. The amount of shrunken cells was 5% for porcine and 14% for human naïve 

cells. If the treated cells expressed HSV-TK, the percentage in the “shrunken population” 

gate increased: human MSCs showed 31%, porcine MSCs even 74% of shrunken cells. 

Besides cell count reduction and morphological change, the surface profile changed during 

apoptosis. These observations were quantified for Annexin-V and for 7-AAD in Figure 23. 
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Figure 23: (A) Annexin-V stains phosphatidylserine as apoptotic marker and was significantly higher 

presented on HSV-TK expressing MSCs under treatment. All naïve and HSV-TK expressing batches were 

cultured with or without treatment on day three, four and five. On day five, the cells were detached and stained 

with Annexin-V. In contrast to naïve cells under treatment, the increase in Annexin-V for all HSV-TK expressing 

batches was significant. If naïve cells were treated, they showed a trend to be more Annexin-V positive although 

this was not statistically significant. (B) HSV-TK expressing cells showed also a statistically significant shift to 7-

AAD. All batches were treated the same way as described in section 7.5. Here, only Annexin-V positive cells 

were gated for 7-AAD following the described gating strategy (see Figure 21). This increase was statistically 

significant only in porcine cells. Human MSCs expressing HSV-TK showed the tendency to be more 7-AAD 

positive, which cannot be confirmed statistically (p=0.23). Statistics: two-way ANOVA. 

All batches were cultured in standard media and compared to cultivation in standard media 

with treatment (see Figure 23). There were no significant differences between treated or 

non-treated naïve cells in both species. If HSV-TK MSCs were treated, a significant up-

regulation of phosphatidylserine could be detected. Non-treated HSV-TK MSCs served as 

control. 

The amount of 7-AAD as well as Annexin-V positive cells increased under treatment. 

Porcine HSV-TK expressing MSCs differed significantly from the corresponding control of 

naïve cells showing more dead cells than under standard treatment. Human HSV-TK 

expressing MSCs did not show a significant increase (p=0.23).  
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 Population doubling time correlated with the efficacy of HSV-TK induced cell 7.5.2

death 

It was examined whether the population doubling time correlated with the amount of killed 

cells or not. Therefore, the same protocol as described before (see 6.7.2) was used and the 

proliferation during the assay was calculated based on two cell counts: at the beginning and 

the end of the assay. The amount of killed cells was normalized to the amount of living cells 

in the corresponding control culture without any treatment. The normalization was 

necessary to facilitate a comparison because all batches had highly varying population 

doubling times. Figure 24 shows that a correlation between the proliferation speed and the 

amount of killed cells was probable (R2=0.92). 

 

Figure 24: The growth speed of a population correlated with the reduction of cells due to GCV-initiated 

apoptosis. All HSV-TK expressing batches were counted before seeding and after cultivation in the standard 

medium (after harvest). This growth is described by percentage in the horizontal axis. All HSV-TK expressing 

batches were treated over five days. The amount of killed cells of each batch was normalized to the seeded cells 

cultivated in the standard medium. Irrespective of the species, the killing efficacy correlated with the growing 

speed of a population. Statistics: linear regression, R
2
=0.92. 
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7.6 Proof of a Therapeutic Effect in vitro for Porcine MSCs 

The most important aim of providing a valid model system is furnishing proof of a 

comparable potency. The therapeutic effect - the bystander killing with activated GCV - 

must initiate the apoptosis in MSCs as well as in the target tumor cells in both species. 

 Inter species killing: porcine and human HSV-TK MSCs killed human cell line 7.6.1

(HT1080) and porcine cell line (K67) 

The most critical parameter in this suicide gene system is the killing of the target cells. The 

intended bystander killing was realized in vitro by co-cultivation of HSV-TK MSCs and the 

target cell line following the protocol as described in 6.7.3. In short, cells were seeded 

equally and treated with pro-inflammatory cytokines and GCV. After detachment, the cells 

were counted in accordance to 6.2.4. All cells were stained with Annexin-V and 7-AAD and 

measured by flow cytometry. The GFP expression of the cell lines allowed discrimination 

between the cell lines and MSCs during flow cytometry.  
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Figure 25: Porcine and human HSV-TK MSCs reduced the amount of the porcine and the human cell line 

during co-cultivation and treatment. (A) If HT1080 were co-cultivated with naïve cells, no significant shifts 

could be observed between porcine and human cells. But there were less HT1080 cells present in the 

population if cultivated with porcine cells. The killing of HT1080 cells by both species was comparable. (B) K67, 

the porcine cell line, was killed by both species with the same efficacy. In contrast to naïve porcine MSCs, the 

naïve human cells also showed anti-proliferating effects: the batch Human 5 and, partially, Human 1 showed an 

inhibition of the proliferation since less than 50% K67 cells were left after treatment although no HSV-TK 

expressing cells were present. This effect was species-specific as no similar observations could be made if co-

cultivated with naïve porcine MSCs. Statistics: ordinary one-way ANOVA for each graph, referring to first column 

in graph A and to second column in graph B. 

HSV-TK expressing MSCs of both species killed the human HT1080 and the porcine cell 

line K67 in a comparable manner (see Figure 25). Human and porcine naïve cells did not 

show a significant difference in the amount of HT1080 cells during co-cultivation. Batches 

that expressed HSV-TK killed significantly more cells than their naïve counterparts. Here, 

both species showed the same mean of 22% remaining cells of the cell line HT1080.  

The amount of K67 cells was highly varying if co-cultured with naïve human cells. Measured 

values ranged from 21% to 76%. In presence of porcine naïve cells, the percentage of K67 

was 59%. This effect was annihilated if HSV-TK expressing MSCs were present. Then, the 

percentage share of K67 was reduced to less than 20% for both species. Here, porcine 

HSV-TK MSCs were able to kill the human and porcine cell line HT1080 and K67 in a 

comparable manner during co-cultivation.  
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 Both species induced the apoptotic cascade in co-cultivated cell lines 7.6.2

The Killing of cells is the main goal of a suicide gene system. If the cytostatic agent induced 

cell death in the neighboring cells, an apoptotic pathway should be traceable. Therefore, the 

cells´ apoptotic reaction as described in 7.5.1 was examined.  

Figure 26: MSCs of both species induced the apoptotic cascade in HT1080 as shown by a simultaneos 

increase of Annexin-V and 7-AAD. (A) Naïve porcine or human MSCs did not induce any significant increase 

of Annexin-V or 7-AAD in HT1080 cells. HT1080 cells in mono-cultivation served as control. HSV-TK expressing 

human and porcine MSCs raised the mean percentage of Annexin-V positive HT1080 to 93% respectively 88%. 

(B) Also, the amount of 7-AAD positive cells increased in the presence of HSV-TK expressing MSCs. Human 

HSV-TK expressing MSCs did not induce a statistically significant increase (p=0.06). Porcine HSV-TK 

expressing MSCs caused an accumulation of 7-AAD positive cells of 40%. Statistics: two-way ANOVA.  

Following the five day protocol as described before (see 6.7.3), all batches were co-

cultivated with each cell line.  

The presence of HSV-TK MSCs of both species caused a high increase of Annexin-V 

positive cells in contrast to naïve cells (see Figure 26). If naïve cells were co-cultivated, less 

than 15% of all HT1080 cells were positive for Annexin-V. The bystander effect induced 

more than 85% of all cells to be positive for Annexin-V. The same observations were also 

true for 7-AAD. Although the human batches 2, 4 and 6 did not increase the amount of 7-

AAD positive cells significantly (p=0.06), the porcine batches 2-4 were able to raise 7-AAD 
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positive HT1080 to 40%. This was significant in contrast to porcine naïve cells. HT1080 

showed an apoptotic character if treated while HSV-TK expressing MSCs were present. 

Figure 27: As well as HT1080, K67 cells were killed by in an apoptotic mode of action by both species. 

(A) Annexin-V was significantly increased for HSV-TK expressing, porcine and human MSCs. But also naïve 

human MSCs showed an increase of Annexin-V positive K67 cells in contrast to naïve porcine MSCs. This effect 

differed significantly from HSV-TK expressing human MSCs. (B) 7-AAD was increased, too, although it was 

overall lower than observed for HT1080. Statistics: two-way ANOVA. 

In the case of K67 (see Figure 27), the results differed from those with HT1080 co-

cultivation (see Figure 26). Basically, the target cell line in mono-cultivation or co-cultured 

with porcine naïve cells showed about 20% of Annexin-V positive K67 if GCV was added. 

Human naïve cells raised this percentage share significantly to 47%. If the treatment was 

done while HSV-TK expressing cells were present, the Annexin-V positive percentage 

share was additionally increased to 79% for both species.  

These results could not be observed for 7-AAD on a statistical basis. Here, human naïve 

cells did not induce a significant increase from mono-cultivation K67 (3% 7-AAD positive) to 

K67 co-cultivated with human naïve cells (7% 7-AAD positive). A relevant increase could be 

observed if HSV-TK expressing MSCs were present: the human batches 2, 4 and 6 showed 

13% and the porcine batches 2-4 16% of 7-AAD positive cells. As well as HT1080, the 

porcine cell line K67 showed the same mode of action following the apoptotic cascade. 
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7.7 Experimental in vivo Studies: Biodistribution of intravenously 

infused MSCs in the Mini-Pig 

The systematic in vitro comparison of porcine and human MSCs was used to allow an in 

vivo approach to assess the biodistribution of the cells in the mini-pig. After administration of 

a determined amount of cells, blood and tissue samples were collected. The DNA of 

peripheral MNCs were isolated and analyzed by real-time PCR. Furthermore, an 

immunohistochemically analysis of representative tissues should be done. 

 Freshly thawed MSCs were stable for 90 min in the cryopreservation medium 7.7.1

All used batches for the in vivo studies were cryopreserved after having been produced 

successfully as described before (see Figure 2). Before the cells were administered, they 

had to be thawed, counted, formulated and filled into the syringe under aseptic conditions. 

Afterwards, the cells were transported to the pigs and infused. This preparation needed time 

and the thawed cells were exposed to the DMSO-containing cryopreservation medium at 

ambient temperature. Due to the DMSO in the medium and the lack of nutrition and plastic 

adherence, the cells became impaired over time. The procedure described here is also 

relevant for a setting in clinical trials with human cell-based products. 

To assure that most of the administered cells were functional, a kinetic considering possible 

impairment was performed. For this, one vial of each batch was thawed, counted and left in 

the accordant cryopreservation medium at ambient temperature (see Table 3). Every 

30 min, a defined amount of cells was sampled and seeded with an equal confluence of 

20±10%. The latest seed-out was performed 180 min after thawing. After four days, all 

batches were harvested and counted (see Figure 28). This approach was chosen to 

simulate the protocol of thawing and preparing the MSCs for infusion at the study site.  
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Figure 28: Porcine MSCs (A) and Human MSCs (B) showed no significant reduction in proliferation if 

they stayed in the cryopreservation medium for 120 min (A) or respectively 90 min (B) after thawing. On 

day one, one vial of each batch was thawed and left for 180 min in the cryropreservation medium. A defined 

amount of cells was sowed out in triplicates every 30 min. After four days, all wells were harvested and counted. 

(A) Porcine MSCs showed a significantly reduced amount of cells, if the cells were left for 150 min. Human 

MSCs already showed a significant difference after 120 min in contrast to the same amount of cells, which were 

sowed out immediately after thawing. Statistics: one-way ANOVA (all data were compared to point in time 

0 min). 

Porcine MSCs did not show any impairment if they were left in the medium for 90 min. After 

120 min, a slight trend could be observed although it was not statistically significant 

(p=0.71). After 150 min the harvest differed from the harvest at 0 min which indicated 

impairment. The harvest at 180 min confirmed the previous result. Human MSCs seemed to 

be more sensitive to the lack of nutrition, adherence and the exposure to DMSO. After 

90 min, the cell yield became lower (p=0.21) and differed significantly after 120 min. 

Following harvests confirmed this impairment with even lower yields. 

During the in vivo studies, all infusions were performed in less than 90 min (animal #1: 

62 min and animal #2: 51 min). 

 Intravenously infused MSCs were detectable in the peripheral blood stream 7.7.2

The aim of the in vivo studies was to perform a protocol in accordance to ethical and 

scientific demands. Therefore, the protocol was designed in close collaboration with the 

responsible veterinarian. Due to the limited stability of the cells (see Figure 28), the 

narcotization and surgery of the animal were performed simultaneously with the preparation 

of the cells. 
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Table 17: This table shows all relevant facts about the pigs and the cells used for the biodistribution 

study. Two clinically healthy mini-pigs were chosen for the study. Two intravenous catheters were implanted 

into each pig to seperately inject the cells into the jugularis vein and aspirate blood samples from the ear vein 

(see Figure 29). After positive results were generated in the first animal (see Figure 30), the amount of blood 

samples was increased and the second animal´s life-time was expanded to five days. After three, respectively 

five days, the pigs were euthanized and necropsied at the Institut für Tierpathologie der Ludwig-Maximilians-

Universität München.  

Animal Gender 
Weight 

[kg] 

Infused 

Cells 

Quality 

check 

Amount 

of cells 

Injected 

[×10
6
] 

Dosage: 

MSCs /kg 

Bodyweight 

[×10
6
 / kg] 

Day of necropsy 

after 

Cell Infusion [d] 

#1 

male 

82 
HSV-TK 

expressing, 

isogenetic, 

porcine 

MSCs 

fulfilling 

ISCT  

criteria 

(see 7.2) 

422 5,1 3 

#2 58 343 5,9 5 

 

All cells were infused in less than 90 min after thawing. The infusion lasted one to three min 

and the catheter was washed with PBS to reduce cell residues in the tube. All details are 

listed in Table 17.  

Immediately after the completion of the infusion, the first blood sample was taken followed 

by sequential aspirations in the first hour. The next aspiration was performed 6 h after the 

infusion. 
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Figure 29: (A) Blood samples were aspirated through a peripheral venous catheter, which was implanted 

into an ear vein (see arrow). (B) The cells were infused into the jugularis vein by a catheter that was fixed at 

the nape to reduce possible damage by the pigs´ movement after waking up. (C) A sleep-inducing drug was 

injected to allow the correct placement of the intravenous access and to reduce the stress for the animal. The 

sleeping agent´s activity lasted for about two to four hours until the pigs woke up again. This immobilization 

allowed for a simplified blood sampling during the first hour of infusion. From day two on, the blood sample 

counts were deliberately low. Otherwise, the stress for the animals would have been too high. On day three, 

respectively five, the animals were euthanized in the Institut für Tierpathologie der Ludwig-Maximilians-

Universität München and pathologically examined.  

The blood was directly aspirated into vacutainers, stored at room temperature and brought 

back to the laboratory on the same day. The Isolation of DNA was performed in accordance 

to the isolation protocol of blood samples, in short: lysis of thrombo- and erythrozytes with a 

hypotonic buffer, centrifugation of mononuclear cells and the start of DNA isolation with 

accordant solutions (following protocols 6.8). The eluted DNA was solved in TRIS-buffered 

water. Samples of these DNA-containing solutions were amplified by real-time PCR.  

The resulting CT-value was regressed to a defined amount of DNA copies (considering a 

standard curve). This number of copies correlated with an extrapolated value of MSCs per 

mL blood. This extrapolation considered the following aspects: blood sample size, real-time 

PCR sample size and DNA loss due to the isolation and washing procedure. Also, the real-

time PCR method had a specified sensitivity resulting in a defined detection limit of 

approximately 5-10 copies. The amounts of cells identified in the blood of both pigs are 

described in Figure 30 and Figure 31.  
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Figure 30; Pig 1: Intravenously administered cells could be detected in the peripheral blood stream by 

accurate isolation and quantification through real-time PCR. Pig 1 received a dosage of 5.1x10
6
 MSCs / kg 

bodyweight. Blood samples were aspirated at different points in time before and after injection. The detection 

limit of the method was 450 MSCs per mL due to the preparation of the sample for measurement. Assuming an 

even distribution of all cells in the blood stream, the maximal expectation would be about 22,000 MSCs per mL 

blood (supposing 6% blood volume / bodyweight). MSCs could be identified at 2 min and 6 min after infusion. In 

the following minutes to hours, infrequent signals could be detected. In the end, a strong signal could be 

identified after 30 h. Statistics: none, descriptive only; three analysis (each consisting of five measurement) are 

depicted. 

Figure 31, Pig 2: In contrast to pig 1, no significant consistent signals could be detected in the 

peripheral blood. Pig 2 received a dosage of 5.9 × 10
6
 MSCs / bodyweight. Although the dosage was 

increased, only signals next or under the detection limit were identified. At no point in time the measured signals 

were higher than the detection limit. Statistics: none, descriptive only; three analysis (each consisting of five 

measurement) are depicted. 
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Immediately before and after infusion, no signals were detected in pig 1. After 2 min, MSCs 

could be identified. This signal was confirmed at 6 min, 20 min and 6 h, although there were 

less MSCs present in the sample. 30 h after infusion, a single strong signal could be 

identified which was not confirmed at 48 h.  

In contrast to these results, no consistent signals above the detection limit could be 

detected in pig 2 although the dosage per kg bodyweight for this pig was increased. As a 

consequence of the results from pig 1, it was possible to manage more blood sample points 

in collaboration with the veterinarian at around 30 h: at 29 h and at 31 h. Also the life-time of 

the animal was expanded from three days to five days to see if the MSC presence from pig 

1 at 30 h would occur to a later point in time in pig 2. No signals could be detected on day 3, 

4 or 5. 

 Pathological report showed pneumonia in pig 2 7.7.3

On day three, respectively day five, the animals were narcotized in the stable and brought 

to the Institut für Tierpathologie der Ludwig-Maximilians-Universität München. In the 

institute of veterinarian pathology, the last blood sample was taken before the pigs were put 

down to sleep. The weight of the pigs was measured and the dissection was performed. 

Table 18: At the end of the life-time, both animals were necropsied for histo-pathological examination. 

The main anatomical and histological findings and the final pathological expertise are described in the table. Pig 

1 showed a pericarditis and pig 2 showed a high-grade pneumonia and a chronic gastritis. During the study, no 

clinical observations by the responsible veterinarian (member of the Institut für Molekulare Tierzucht und 

Biotechnologie der Ludwig-Maximilians-Universität München) were noticeable. The pathological and histological 

assessment was performed by members of the Institut für Tierpathologie der Ludwig-Maximilians-Universität 

München. 

Mini-

Pig 

Clinical 

Observation 

Anatomical / 

Pathological 

Observations 

Histological  

Findings 

Final Pathological 

Expertise 

#1 
No clinical 

observations 

-well-fed 

-calcification of 

the aorta 

-Pericarditis 

- heart: Pericarditis 

- lung: weak binding of the bronchus-associated 

lymphoid tissue (BALT); light lympho-cellular infiltration  

-spleen: multi-focal proof of eosinophilic granulocytes 

-lymph nodes: slight hyperplasia 

-liver: no findings 

-Fibrotic Epi- and 

Pericarditis 
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Mini-

Pig 

Clinical 

Observation 

Anatomical / 

Pathological 

Observations 

Histological  

Findings 

Final Pathological 

Expertise 

#2 
No clinical 

observations 
-well-fed 

-lung: moderate, interstitial pneumonia with high-grade 

activation of BALT 

-stomach: high-grade, chronic follicular gastritis 

-lymph nodes: moderate hyperplasia 

-liver: slight lympho-cellular infiltrations 

-kidneys: slight lympho-cellular infiltrations 

-Interstitial 

Pneumonia 

-Chronic Gastritis 

 

Besides the observations during the dissection, tissue samples were fixed in formalin and 

embedded in paraffin. A pathologist analyzed these sections. A confirmed pericarditis was 

identified in pig 1 as well as slight inflammatory findings regarding lymph nodes, spleen and 

lung. Pig 2 showed an interstitial pneumonia and also a chronic gastritis. This inflammatory 

process is also reflected in the hyperplasia of the lymph nodes. 

 Immunohistochemically analysis showed MSCs in lung and spleen 7.7.4

The generated tissue samples of lung, liver and spleen were analyzed by 

immunohistochemically staining. The workup and the staining of the tissues are described 

in 6.9.2. In short, the FFPE tissue blocks were sliced into several sections, deparaffinized, 

stained with an Anti-HA antibody or an appropriate isotype control and fixed before 

microscopy. The sections were visually analyzed and the brownish-red stained cells (HA-

tag positive) MSCs were counted.  
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Figure 32: Anti HA-tag immunohistochemistry detected HSV-TK expressing MSCs in spleen (A; animal 1) 

and lung (B, animal 2); identifiable by a brownish colour (see arrow). Lung, spleen and liver of both animals 

were sent into an external laboratory for immunohistochemical examination. Several histo-pathological sections 

were analyzed to detect any MSCs in the tissues in question (see Table 19). In addition, three tissue samples of 

a mini-pig that received no MSCs were sent as control, too. As a second negative control, all stainings were 

compared to an appropriate antibody isotype (C, D). 

The recognition of MSCs was simple due to the brownish-red colour. Appropriate isotype 

control from directly neighboured slices showed no MSCs as well as no artefact staining 

proven by MSC-free tissue sections. 
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Table 19: The immunohistochemical analysis of lung, spleen and liver showed MSCs in both animals. 

Several sections were analyzed before MSC-positive slices were identified. The number of sections represents 

the count which was positive for MSCs. Pig 1 showed MSCs in lung and spleen. Pig 2 showed MSCs in the lung 

only.  

Animal 

Lung Spleen Liver 

MSCs 

 in total  

Number of 

Sections 

MSCs 

 in total 

Number of 

Sections 

MSCs 

 in total 

Number of 

Sections 

Pig 1 4 2 1 1 0 1 

Pig 2 4 2 0 1 0 2 

Pig 3 

(Control, 

no MSCs infused) 

0 1 0 1 0 1 

 

In Table 19, the number of MSCs identified by histological staining is shown. The amount of 

MSCs in the tissue was relatively small because in two sections of pig 1 four HA-tag 

positive cells could be identified. In two sections of pig 2, four MSCs were identified. 

Additionally in pig 1, one MSC was identified in the spleen. In all other sections, no MSCs 

could be found. Figure 32 shows the detection of MSCs in the tissue. The appropriate 

isotype control of the directly neighboured slice is shown, too.  
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8 Discussion 

8.1 The Identity of Humans´ and Pigs´ MSCs – Comparing Apples 

and Oranges? 

The current ISCT approach is not sufficient to determine a defined MSC sub-population with 

the same properties in one population [33]. Secondly, the differences between the tissues 

from which MSCs are isolated and varying cultivation protocols complicate the comparability 

of MSCs generated in different laboratories, or companies [283]. Adding a new species to 

this field – the pig – further increases complexity. Nevertheless, the need for large animal 

models is high since pharmacokinetic and pharmacodynamic questions have to be 

answered to satisfy regulatory [204, 230, 275] and scientific demands [211-213, 220]. For 

that reason, the general approach of this work was to generate as few differences as 

possible between both species while setting up the methods and assays for the isolation, 

the manufacturing of the MSC batches and the evaluation of their therapeutic efficacy in 

vitro (see Figure 2). This was supposed to have the best comparability testing of both 

species regarding the cell therapy product. 

The isolation procedure from the marrow only differed regarding the method of withdrawal 

and the aspirated volume. The iliac crest of the human donors was punctuated while the 

pigs´ femur and tibia were scraped out directly after narcotization. The marrow volume 

procured from each human donor was not larger than 100 mL. The pig´s marrow volume 

was not determined as the whole bone marrow was scraped out. Obviously, a higher 

volume of marrow increases the probability of more progenitor cells being cultivated, in turn 

leading to a higher cell count. Since the volumes of cultivated marrow were different, a 

comparison at this point could not yet be made. Although the amount of marrow was not the 

focus of this work, this objective can be critical for the cell count of a finalized cell drug 

product as marrow aspiration is still a challenge [284, 285]. 

Both marrows were cultivated in 2D culture flasks with serum containing media. The media 

differed because the patented Bio-1 (containing human plasma and platelet lysate) was 

used for human MSCs, while for porcine MSCs on the other hand, a medium containing 

fetal bovine serum was used. Even though both isolations were conducted from bone 
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marrow and cultivated in the same manner, the different sera (platelet lysate / FCS) might 

have a possible impact [286, 287]. As described before, the immunological properties and 

proliferation speed of MSCs are highly affected by present cytokines [31, 40]. That is why 

the population-doubling time was hardly comparable due to the fact that the MCSs were 

cultured in different media (see Figure 11). Also the fact that the marrow of the pigs was 

taken after they were narcotized may have an influence on the cell quality since the 

cessation of oxygen supply may have a negative impact. Thus, well-founded statements 

about the comparability of the population-doubling speed can´t be made easily. 

Nevertheless, it was possible to observer that batches of the same donor had a comparable 

population-doubling time while the doubling times of batches procured from different donors 

seemed to vary Figure 11. Whether this was caused by different used Bio-1 media batches, 

different properties of the donated cells or the quality of the aspirated marrow can´t be 

determined. As different Bio-1 batches were used at different stages of the cultivation 

process for all donor cells, it is likely that this effect is a result of the donors´ cell biology or 

the marrow quality. Moreover, the aspiration technique of the physician can also lead to 

significant variations in the amount of progenitor cells available for seed-out [288]. 

The microscopy observations (as shown in Figure 3, Figure 4 and Figure 5) confirmed the 

expectations of adherent, fibroblast-like cells as MSCs [5]. This could be shown for both 

species without significant differences in a subjective visual evaluation. However, the 

batches Human 3 and 4 that were derived from one donor showed a more flattened 

morphology. This conspicuous size and altered form correlated with a low population-

doubling time (see Figure 11) – an observation already described in other publications 

regarding senescence and ageing [289, 290]. Following this correlation, proliferating cells 

are easily recognized as small, more granular cells, as shown in Figure 14 B. 

Currently, isolating MSC by adherence is the standard procedure because no sole marker 

has been identified yet [31-33], which could be used for cell sorting. The insufficient set of 

surface markers and the ability of the MSCs to show adipogenic or osteogenic properties, 

which are also common in other cell types, weaken the importance of the ISCT approach 

(see chapters 1.1 and 1.2 for a more detailed explanation). Nevertheless, the ISCT 

demands currently are the best practice to identify MSCs in donor tissue. That is why the 

identification of the porcine adherent cells as MSCs was done in the same manner as it is 

described for human MSCs. The same set of antibodies carrying defined fluorophores was 

used for the identification of MSC markers on porcine and human MSCs (see Figure 6). 
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Due to commercial limitations, the choice of antibodies available for staining porcine MSCs 

was relatively small. Anyways, it was possible to obtain relevant antibodies for the 

determination of CD45, CD105 or CD90. Since CD45 is a pan-leukocyte marker, no 

hematopoietic markers were expected in the adherent culture. This could be confirmed for 

both species. Small percentages of positive cells could be observed as a byproduct of the 

flow cytometry method. The presence of non-adherent cells (e.g. monocytes that are 

CD45+) was highly improbable after several trypsin detachments and medium changes. It 

can be concluded that no other cells than MSCs were cultivated for both species. 

Although the whole population of porcine cells was positive for the described marker, a sub-

population did not show CD105. This phenomenon has already been described for murine 

MSCs [263], but, to my best knowledge, not for porcine MSCs (no publications were found). 

Murine, CD105 negative MSCs show functional changes regarding their immunoregulatory 

properties [263]. Immunological properties were not in the focus of this work, so further 

investigation could correlate this partially absent marker on porcine MSCs with 

immunoregulatory changes. However, this drift in the surface profile also confirms the 

heterogeneity of porcine MSCs ex vivo. Comparing the extent of this phenomenon with 

murine MSCs, porcine MSCs (8% negative for CD105, see Figure 7) seem to be more 

similar to humans, since this drift is stronger in murine MSCs (30-40% negative for CD105, 

[263]). The lack of CD105 could potentially indicate other cell functions that were not in the 

focus of this work. It could also be argued, that this was only caused by the ex vivo 

cultivation and is not inherent in in vivo porcine MSCs in the light of the fact that ex vivo 

cultivation can highly affect MSC populations [32, 35]. 

Others of the expressed markers tested for MSCs are described in the relevant publications 

(porcine MSCs: CD29, CD44: [231, 233, 251] and human MSCs: CD73, CD235a [3, 5, 46]). 

Other available markers were tested to assure the absence of those on MSCs. They were 

provided in Table 14 for information only. Although these confirmed the established surface 

profile, CD61 was also found on human MSCs. This is a typical thrombocytes marker in 

combination with CD41. But, CD41 could not be shown on MSCs. In addition, thrombocytes 

are quite small with 2–3 µm and would be apparent in the FS/SS during flow cytometry as 

an extra population. This could not be confirmed. In addition, microscopy showed no further 

cells (see Figure 4 and Figure 5), eliminating the possibility of any thrombocytes being 

present. 
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HLA-DR (MHC-II complex) is expressed in antigen-presenting cells like macrophages, 

dendritic cells or B-lymphocytes. MSCs are described to be HLA-DR negative [5]. Pro-

inflammatory cytokines like IFN-γ on the other hand may induct a HLA-DR presentation 

(see Figure 8 and [64]. This can also be initiated by a high cell density (see 1.3 and [63]). 

Although confluence of more than 80% was mitigated during the assay run, it cannot be 

excluded that this parameter potentially had an influence on the results due to partial 

confluence. On porcine MSCs, no HLA-DR could be identified, whether stimulated with IFN-

γ or not. As a positive control, porcine blood was stained successfully with the anti HLA-DR 

antibody proving its functionality (data not shown). Interestingly, in contrast to murine [63] or 

canine MSCs [62], the absence of MHC-II complexes seems to apply for porcine MSCs. 

HLA-DR presence on human MSCs showed high variances (see Figure 8). As potential 

reasons for this, it is very likely that the donor variety and confluence could have impacted 

the outcome. The total absence of HLA-DR on porcine MSCs is interesting and a significant 

difference between human and porcine MSCs. 

The differentiation of porcine and human MSCs into adipogenic and osteogenic cells could 

be proven (Figure 9 and Figure 10). A numeral comparison based on visual sections was 

performed (see Table 15). Interestingly, a differentiation medium that was formulated for 

human MSCs also showed a successful differentiation in porcine cells. In contrast, 

commercial companies often offer extra murine differentiation media. It was not further 

investigated during the course of this work if murine media are able to induce any 

differentiation in porcine MSCs. Despite the same strength of differentiation into the 

osteogenic lineage for both species (see Figure 10), adipogenic cells were quite different 

(see Figure 9). Comparisons are hard to make, for the reason that the medium was not 

designed for porcine MSCs – otherwise, another medium would not allow any comparisons 

to human MSCs. The fact that porcine MSCs also showed an adipogenic differentiation 

potential caused by the human-conditioned medium was a good proof of comparability at 

this point. An improvement of the differentiation potential due to better differentiation media 

would surely result in more adipogenic cells but not enhance the understanding of the 

comparability. In the end, the ISCT criterion for adipogenic differentiation potential was 

fulfilled – by a medium that was designed for human MSCs.  

The fundamental comparability regarding identity is difficult. The inherent heterogeneity [33] 

of human MSCs does not define a clear, singular identification. This lack of knowledge 

affects the identification of porcine MSCs, too. The insufficient description of human MSCs 
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renders an assessment of the porcine MSCs and their comparability more difficult. Albeit, 

the origin of the cells (bone marrow), the isolation procedure by adherence and the fulfilled 

ISCT criteria are strong arguments to define the porcine cells as MSCs. The absence of 

HLA-DR in accordance to the ISCT can also be confirmed for porcine MSCs. Recent 

publications underlined the inducibility and presence of HLA-DR on human MSCs [63], 

which could not be shown for porcine MSCs. As described before, this was already 

established for canine MSCs [62]. The sub-population of CD105 negative cells is also part 

of the discussion regarding the surface profile of porcine MSCs. Since the description of 

markers on porcine MSC is sparse [234, 291, 292], it is unclear whether other groups will 

confirm these findings or show diverging results. In spite of these controversies considering 

HLA-DR and CD105, porcine MSCs comply with all other characteristics of human MSCs. 
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8.2 Controllability of Gene-Modification Realizable in Porcine MSCs 

comparable to Human MSCs 

The controllability of gene modification is highly important for the safety of a gene-modified 

cell therapy product. Insertional mutagenesis may induce a clonogenic proliferation that can 

lead to cancer [293, 294]. Therefore, the safety of gene-modification is generally based on 

two major factors: the choice of the inserting viral particle and the insertion rate per cell. 

Here, a SIN-gamma retroviral vector introduced a suicide gene into the human cell therapy 

product.  

In contrast to murine MSCs, the same type of retroviral vector could be used for human and 

porcine MSCs because the used GALV (gibbon ape leukemia virus) can infect human, 

simian but also porcine and other mammalian cells [295]. Murine MSCs normally are 

resistant to GALV-carried infections [296]. If the infection of murine cells had been in the 

focus of this work, the production of another viral supernatant would have been necessary 

(e.g. MLV envelope (murine leukemia virus) [297]). From a regulatory point of view, a critical 

raw material would have been changed potentially altering the product properties. Here, 

comparison studies would be necessary to give proof of the comparability. From a scientific 

point of view, the determination of the viral supernatant titer would be different. Both would 

have complicated any meaningful comparisons. 

For these reasons, using porcine MSCs instead of murine MSCs can be advantageous, 

because it opens the possibility of employing the same retroviral vector, thereby reducing 

the differences to the human cell therapy product. Considering GMP production, this is 

clearly a very strong argument from an economical, scientific and regulatory perspective for 

all preclinical and following clinical studies. The development of only one gene delivery 

system saves costs as well as being no potential cause for differences in the scientific 

results in the preclinical phase in vitro and in vivo. Finally, the transfer of preclinical results 

onto clinical study design is easier. 

In this work, porcine MSCs were transduced with the same virus particle / cell ratio as 

human MSCs. The successful transduction was proven and quantified by flow cytometry 

and real-time PCR. The transduction rate determination by flow cytometry took the whole 

population into account. The resulting single values cannot be compared on a statistical 

basis (see Table 16) but they represent strong values due to their methodological approach 
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on a single-cell-based analysis evaluating a whole cell population. The porcine batch 2 was 

transduced in the same manner as the human batches 2,4 and 6 showing transduction 

rates in the range of 3 to 11%. This is consistent with the real-time PCR measurements. 

Here, the values did not show any significant differences between the species after 

transduction for this method – still, slight drifts with p values <0.2 suggest that there could 

be differences (see Figure 13 and Table 13).  

The transduction process itself is influenced by many variables. Although the same batch of 

vector supernatant was used, all cell transductions were performed on different days after 

isolation from the tissue due to the expansion procedure. The thawing of the supernatant, 

cell counting and cell preparation, timing, the mixing of the supernatant with the cells and 

the seeding are many work steps that had impact on the transduction efficiency. In addition, 

a SIN-gamma retroviral vector only infects dividing cells. The fact that the cell division rate, 

respectively population-doubling time in all batches highly varied (see Figure 11) led to 

additional variances. Confirming these reservations, the mean insertion rate and the 

transduction efficacy were highest for batch Human 4, although the population-doubling 

time was the slowest during the whole production. It stands to reason that the whole 

transduction approach is more important than the single aspect of a cell division rate. 

Method optimization to increase transduction efficiency is an ongoing challenge in the field 

of cell-based gene therapy [298-300]. This argument is supported by the fact that method B 

showed the highest transduction efficiency even though the MOI stayed the same. The 

methods were basically the same but were manipulated during the joining of viral 

supernatant and cells. Method A, the method with the lowest transduction efficacy (3%), 

was the simple dispersing of cells and virus. If the viral supernatant was centrifuged on PLL-

containing plates and the cells were seeded into these wells (method B), the percentage of 

transduced cells multiplied (46%). This was accomplished despite using the same virus / 

cell ratio. These results show that the way through which virus and cells are joined affects 

the transduction efficiency more than the numerical virus / cell ratio.  

The results also show that the porcine MSCs are comparable to human MSCs regarding 

their transduction efficiency. Using the same retroviral supernatant simplifies many 

questions. The fact that the change of the method and not a change of the species showed 

significant differences might help to establish robust transduction processes – also when 

utilizing porcine MSCs as model cells.  
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8.3 Functionality of Human-Derived Promoter and Therapeutic 

Gene in Porcine MSCs 

Tissue-specific promoters are attractive for cell-based gene therapy (see detailed in chapter 

1.5) – here, the RANTES promoter was used as an inducible control unit [156]. If MSCs 

home to the site of the tumor stroma, present pro-inflammatory cytokines activate the 

promoter. The translation of the prodrug would then take place next to the cancer cells. This 

approach reduces systemic toxic effects of cytostatic agents because these drugs are only 

locally activated. The also inserted PGK promoter served as a constitutive promoter 

expressing the puromycin resistance gene (for transgene cassette see Figure 1 and Figure 

33).  

Due to the fact that the PGK promoter is constitutive, no effects related to different MSC 

species had to be expected [155]. This assumption was confirmed by the observations 

made in this work. As shown in Figure 14 and Figure 15, the selection of transgene-

expressing cells was successfully proving a functional PGK cassette in MSCs of both 

species. The absence of any second population in the flow cytometry measurements 

affirmed the full selection of non-transduced cells. 

To compare the in vitro efficacy of the therapeutic gene (see 7.6), a functionality of the 

RANTES promoter in the porcine cell had to be demonstrated before, as shown in Figure 

16. Although the results are quite clear showing an increase of expression after induction, a 

high variance of the human batches could be observed. This variance could be a result of 

the varying cell morphology regarding size and granularity (as shown in Figure 4 and Figure 

5) during flow cytometry measurement. The cells` morphology depends on the donor as 

well as different “in vitro ages” of the cell populations [289, 301, 302]. These effects have 

influence on the auto fluorescence and may lead to higher or lower emission signals [303]. 

In addition, the staining procedure can bring up differences because there are several 

washing and preparation steps necessary before measurement (see 6.6). Interestingly, the 

difference between induced and not induced porcine cells was statistically significant. These 

data did not include any donor variance since, as mentioned before, one isogeneic pig was 

used as the donor animal. This may underline the effect of different donors and potentially 

help to explain the high variance. In fact, an up-regulation of the RANTES activity could be 

seen and it is plausible to assume that RANTES worked correctly in both species. 
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HSV-TK was already used as a suicide gene for the treatment of oncological diseases with 

a bad prognosis (see detailed in 1.6) over 20 years ago. The presence of HSV-TK strongly 

increased the sensitivity to GCV as shown in Figure 17. The EC50 values were summed up 

in Figure 18. The cell lines K67 and HT1080 showed low sensitivities to GCV like naïve 

MSCs. The amount of living cells after treatment was determined by consumption of 

reductive elements like NADH that facilitated the chemical reaction of MTT to formazan. 

Dependent on the activity of glycolysis and the following citrate acid cycle, reductive 

elements are build up. The generated values based on the optical density values (OD 

values) after normalization as shown in Figure 17. During development and establishment 

of the assay it was observed, that the OD values for living MSCs - especially human MSCs - 

were lower than for cell lines and also porcine MSCs. These results suggested that 

differences between a well of dead cells and a well of living cells would be quite small (in 

the case of human MSCs). The OD values were in a range from e.g. 0.03 to 0.16 for human 

MSCs (Human 2) and for porcine MSCs from 0.15 to 0.81 (Porcine 3). The cell lines 

showed OD values from 0.02 to 2.02 e.g. HT1080. Small OD values implicate more 

variance in the assay since the difference between measured values is smaller. This fact is 

also reflected by the R-values for the goodness of fit; exemplary: Human 2: 0.94; Porcine 3: 

0.99 and HT1080: 0.98. The variance for humans is higher and therefore the goodness of fit 

smaller. In Figure 17, these differences in the goodness of fit can also be visually 

recognized for e.g. the human naïve cells. The half-effective GCV concentrations are 

depicted in Figure 18. This figure visualizes the differences of the GCV sensitivity on a 

logarithmic scale in a descriptive manner. The variance of the assay weakens the 

quantitative meaningfulness although the R-values are still quite high.  

Nevertheless, the increased sensitivity was substantial higher of all HSV-TK expressing 

MSCs, including the porcine cells. The correct expression of HSV-TK and the increased 

sensitivity could be clearly proven for both species.  
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8.4 Programmed Cell Death by GCV– Do Both Species Go the 

Same Way? 

Apoptosis is complex - as described before, countless intrinsic as well as extrinsic pathways 

may lead to programmed death [191, 304, 305]. In contrast to regulated apoptosis, 

accidental damage can harm the cells´ integrity and immediately lead to irreparable damage 

and cell death (necrosis). In the past few years, the differences between apoptosis, necrosis 

and autophagy became more and more indistinct because the pathways regulate each 

other by cross-talking [304, 305]. Nevertheless, the basic steps of a cell´s apoptotic process 

are relatively well-defined. The cell shows a condensation (decrease of size and increase of 

granularity) and the mitochondria lose their ATP production due to a mega-channel 

opening. This ATP loss can be observed by phosphatidylserine (PS) presentation on the 

surface and ends with the cell death thereby losing all cellular structure (generation of cell 

debris) and generation of countless apoptotic bodies (see detailed in 1.6). 

In this work, the successful killing of cells by GCV could be easily observed by microscopy 

(see Figure 19) as well as by trypan blue cell counting (see Figure 20). Also naïve cells 

showed a cell count reduction after five days. This could be confirmed for both species. The 

accordant assay was performed over five days and included the addition of pro-

inflammatory cytokines. Especially IFNγ is well known to have antiproliferative effects on 

many cell types [306, 307]. In addition, GCV is also marginally translated in unmodified cells 

and leads to the inhibition of the cell´s replication process. Finally, the seeding and harvest 

always include cell losses. These reasons may have caused the loss of cells despite the 

five days of cultivation. Therefore, the cell loss was not normalized against the seeding of 

the HSV-TK cells but rather against non-treated cells, which represented a more 

appropriate control. The observed killing was still statistically significant. Interestingly, the 

cell loss of HSV-TK expressing porcine and human MSCs is quite comparable indicating 

that the GCV affects both species in a similar strength. 

The assumption of an apoptotic pathway was confirmed by flow cytometry. A protocol was 

developed that considered morphological aspects as well as the apoptosis and death of a 

cell (see Figure 21). It could be observed that both species showed a condensation and the 

majority of cells became granular (see Figure 22) compared to untreated cells. Both species 

showed statistically significant changes during treatment (except of the human shrunken 

population: p=0.05). These clear observations were made possible through the successful 
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staining with Annexin-V and 7-AAD. Both species showed an increase of PS presentation 

and loss of cell integrity (see Figure 23).  

Furthermore, the results revealed a clear indication that the addition of cytokines and GCV 

does not lead to a considerable increase of dead naïve cells in vitro. Only the presence of 

HSV-TK and its massive translation of GCV inflicted a cell DNA damage that led to the cell 

death by apoptosis. Porcine MSCs correlated with the expectations made during the 

observation of human MSCs. It could even be said that if the changes in the cells´ 

morphology as well as the amount of 7-AAD positive cells are compared in detail, porcine 

MSCs represented the apoptotic characteristics more clearly. 

It is difficult to find out why these changes are more distinct in porcine cells. The five-day 

cultivation protocol that was used for all apoptosis characterization assays included a flow 

cytometry measurement on day five. Although apoptosis is an ongoing process, the 

measurement assesses the cell population status at a singular point of time only. It is 

conceivable that the chosen timeframe did not show the peak of apoptosis in the human cell 

population [187, 189, 303]. For this reason, the possibility that this “peak of apoptosis” was 

later or earlier and was missed in this assay setup exists. It is also thinkable that the results 

would have shifted if the flow cytometry measurement had been done on day four or six. 

Since the accordant clinical trial [81] was designed to have a treatment with GCV on days 

three, four and five after MSC infusion on day one, it made sense to evaluate the cell killing 

on day five. 

Of course the cells of both species were treated following the same protocol to allow valid 

comparisons. However, one parameter had to be considered and was adapted: the seeded 

cell density. As shown before (see Figure 11, Figure 4 and Figure 5) the cell size highly 

varied throughout the species and donors. An equal seeding of all batches and species 

would not have considered the resulting confluency. Especially for the batches Human 3 

and 4, the whole plastic surface would have been covered with cells if the same amount of 

cells as for Porcine 1-4 had been seeded. This was actually observed during development 

of the assay. The assumption that the GCV killing efficacy is dependent on cell´s replication 

speed and therefore on the growth of a population was strongly indicated (see Figure 24). If 

no surface is available for growth, no replication will happen and no apoptosis will occur 

after GCV incorporation. This is why the cell density after seeding and not the cell count 

was constant throughout the assays. This makes comparisons between the species and 
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batches more meaningful although the correct setup of the assay was more complex. 

Counting cells is more easily than a visual assessment on the confluency from a 

methodological point of view. 

The observed correlation of the growth of a population and its killing rate (see Figure 24) 

makes sense in regard to the mode of action of GCV. Any correlation between VCN and 

killing efficacy could not be made within the scope of this work although there are 

publications that mention an increased efficacy with higher VCN for the HSV-TK system 

[308]. This publication clearly shows that more HSV-TK leads to more activated GCV and 

therefore to more killing efficacy. But potential “growth effects” are not addressed. 

Furthermore, it is unclear which effects the chosen promoter might have had. Higher 

expression rates by e.g. viral constitutive promoters (or other [155]) may negate the 

necessity of further gene copies. Here, an enzyme kinetic of the expressed gene would help 

to understand the amount of enzymes necessary to allow a sufficient translation of GCV. A 

single increase of the copy number per cell is apparently only one parameter of many. In 

general, the presented results confirm the apoptosis as a reaction on present and activated 

GCV. MSCs of both species show the same behavior under GCV treatment and the killing 

rate of a population correlates with its proliferation speed (see Figure 24).  

As described before, the therapeutic approach of the suicide gene HSV-TK is based on the 

bystander effect (see detailed in 1.6). Although it was not in the focus of this work, latest 

publications raise the questions to what extent gap junctions or other biological systems are 

responsible for the transport of cytostatic agents like GCV between cells. Extracellular 

vesicles e.g. exosomes seem to play an important role in inter-cellular communication as 

well as in the transport of agents, proteins or other substances [309-311]. However, while 

establishing the assay it could be observed that a killing effect on the target cell lines was 

nonexistent if the cells were seeded in low confluence of less than 10% resulting in nearly 

no cell-cell contacts. Confluences of 10-25% were chosen to assure sufficient empty 

surface for cell proliferation as well as cell-cell connections. 

A human and a porcine cell line were examined to find out whether neighbored HSV-TK 

expressing MSCs from both species kill the cell lines or not. The already described “five-day 

protocol” was used to maintain consistency with previously performed assays and with the 

clinical trial design. The cell lines could be differentiated from the MSCs by their GFP 

expression (see 6.7.3). Figure 25 clearly demonstrates that the cell count of both cell lines 
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was reduced significantly by HSV-TK expressing batches of both species. A transport of the 

activated GCV to the target cell line was facilitated independent of the species because the 

effect did not differ between porcine and human MSCs underlining the comparability.  

One interesting observation occurred in column one of Figure 25 (B). The resulting cell 

count of the K67 cell line highly varied and was lower than expected although the naïve 

human cells were used as control for the HSV-TK expressing human MSCs. This was 

observed for the combination of human naïve MSCs and the porcine cell line K67. Overall, 

there were fewer cells than observed in the other control (see second column of Figure 25 

(B). Depending on the donor, the resulting cell counts grouped around a lower or higher 

level. This is why the donor-separated depiction was only chosen here. This anti-

proliferative effect of the human naïve MSCs was negated as soon as HSV-TK expressing 

MSCs were present.  

Obviously, human naïve MSCs inhibited the proliferation of the cell line. It could be 

excluded that this happened due to a limitation of space. Microscopy rather showed cells in 

the supernatant and enough surface space for expansion. The possibility of the medium 

itself being the cause can also be disregarded because all cells were growing well in the 

used media. It can be assumed that the MSCs secreted cytokines that had an anti-

proliferative effect on the K67 cell line. MSCs are known to secrete a large panel of trophic 

factors and immunological active cytokines [312-314] and thus can show anti-proliferative 

effects on tumor cell lines [315, 316]. These cytokines could have had anti-proliferative 

effects on the K67 cell line. Because the cell line was originally generated from an MSC 

which was isolated from a Pietrain Landrasse pig [276], it is open for discussion if this cell 

line is even more sensitive to cytokines or not [317]. Whether soluble factors are 

responsible for the inhibition of the proliferation or not was not proven within the scope of 

this work. However, it can be assumed that the secreted cytokines of the human MSCs 

were responsible for the reduction. 

Figure 26 and Figure 27 show the successful induction of apoptosis in the target cell lines 

HT1080 and K67 by co-cultivated porcine and human HSV-TK expressing MSCs. In Figure 

26 (A), HT1080 cells showed a very large increase of PS presentation if HSV-TK 

expressing MSC of both species were co-cultivated. Interestingly, a slight increase of 

Annexin-V positive cells could be seen if naïve human MSCs were co-cultured – an 

observation that wasn´t true for naïve porcine cells. It could potentially indicate the anti-
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proliferating effects of the naïve human MSCs that were observed before (see Figure 25 

(B)), although this increase was not statistically significant. The amount of 7-AAD positive 

HT1080 cells was generally lower than the amount of Annexin-V positive HT1080 cells. This 

was in accordance to earlier observations made for apoptotic MSCs (see Figure 23), which 

suggests that the cell lines also underwent GCV-induced apoptosis. 

The anti-proliferative effects of naïve human MSCs on the cell line K67 (see Figure 25) 

could be confirmed as shown in Figure 27 (A). Annexin-V positive K67 are not only 

significantly increased if co-cultured with HSV-TK expressing MSCs of both species, but the 

amount of apoptotic cells was also significantly increased by naïve human MSCs . This 

result confirms the assumed effects on the cell count: naïve human MSCs have an anti-

proliferating effect on the cell line K67. The 7-AAD staining of K67 generally showed lower 

percentages. The increase of 7-AAD positive cells however was comparable for porcine and 

human HSV-TK MSCs on a low level and therefore shows the successful induction of 

apoptosis in K67.  

The low 7-AAD values could compromise the usefulness of performing a staining to 

determine the dead cells. It could be presumed that more 7-AAD dead cells were detected 

because a suicide gene system was used. The fact that the cells undergo apoptosis and 

loose all cellular structure in the end makes it hard to identify these cells in the flow 

cytometry. Here, the manual cell count has more significance because only the remaining 

cells are taken into account and the cell number reduction can be calculated. As described 

before, the measurement by flow cytometry was only a single point of time measurement on 

one day. This “snippet” on day five was probably too late to capture more apoptotic HT1080 

cells. It is thinkable that most of the cells died before the flow cytometry measurement. 

Furthermore, it can be assumed that the secretion of soluble factors enhanced the apoptotic 

process and possibly reduced the time before the cells´ integrity was lost. Finally, it can be 

said that the remaining amount of HT1080 was comparable between porcine and human 

MSCs whether expressing HSV-TK or not (see Figure 25).  

The characterization of the GCV-induced apoptosis is important to generate an 

understanding to what extent the suicide of the neighbored cell lines is induced in a 

comparable manner. A model cell should fulfill the expectations to show comparable effects. 

Here, the suitability of porcine MSCs as apoptosis-inducing bystander cell could be shown 

clearly. The observed additional effects of naïve human MSCs on the K67 cell line have to 
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be considered separately. Similar observations for porcine MSCs were not made and can 

raise questions on the different secretome of porcine and human MSCs. The result that 

HSV-TK expressing MSCs of both species showed the same efficacy in vitro and induced 

apoptosis in a similar manner is a strong argument for porcine MSCs as a model cell in 

apoptosis-inducing approaches.   
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8.5 Infusion of MSCs into Mini-Pigs indicate Lung-Passage 

Dependent Delay  

All batches used for the in vivo studies were stored and transported in the vapor phase of 

liquid nitrogen. Before infusion, the cells were thawed, pooled, counted, filled into the 

syringe for administration and transported from the laboratory to the stables. During the 

whole preparation time, the cells were in suspension in the DMSO-containing medium (see 

Table 3), which could have had a negative impact on the cells´ biological functionality 

because MSCs pursue adherence and DMSO is a surface-active agent [318, 319]. In 

general, it is important to know whether functional and living cells or impaired cells are 

infused in in vivo studies. Here, it was unclear how long they would survive in the 

cryopreservation medium after thawing without a significant reduction of their functional 

activity. This risk of a methodological error due to non-functional cells should be mitigated. 

A growth kinetics assay (Figure 28) indicated possible impairments as described before 

(see 7.7.1). A significant decrease of proliferation was not shown for porcine MSCs until 

150 min. All infusions were performed in less than 90 min hence no impact was expected.  

The human MSCs were compared with the porcine MSCs and obviously showed an earlier 

decrease of the proliferation capacity than their porcine counterpart. A significant reduction 

in the proliferation capacities after 120 min was observable. Furthermore, a decreased 

functionality was indicated after 90 min although the differences were not statistically 

significant (p=0.21). It could not be clearly concluded if this observation was only related to 

the species or caused by other factors. Negative post-thaw effects can be caused by 

several parameters. First, the cryopreservation medium differed between human and 

porcine cells. Both media used 45% hydroxyethyl starch solution and 10% DMSO. For 

porcine MSCs, porcine serum and for human MSCs, a defined human albumin solution was 

used. In contrast to pure albumin, sera are a very heterogeneous and in general a more 

nutritious composition. It is quite likely that this medium could have enhanced the cell 

viability because more nutritional ingredients were available. Secondly, a thawing and 

seeding protocol naturally includes potential variabilities. The cryopreservation vial with the 

MSCs was put into the 37°C water bath and thawed until no more ice crystals could be 

seen. This can result in slightly varying thawing times. The following re-suspension may 

also lead to potential cell damage because the surface-active DMSO may strengthen the 

effect of shear forces. Finally, the status of the cells before cryopreservation is sure to 
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influence the result which is influenced by the last medium change before cryopreservation, 

confluency, the in vitro age of the population, passage etc. This is why – on the one hand -  

the generated results were a good indication for the subsequent in vivo studies but on the 

other hand it is highly probable that other working groups or companies come to other 

conclusions due to their specific cell therapy product and their chosen cryopreservation 

procedures [279]. Considering the effects of DMSO, a single publication of Mock et al. 

implicated even better results for porcine MSCs after thawing if the DMSO concentration is 

reduced to 5% [320]. This was taken into consideration during this work because a further 

change in the cryopreservation medium would have reduced the value of the comparison 

studies additionally. Appropriate cryopreservation and thawing is a critical topic in the field 

of the clinical application of MSCs [133, 319, 321]. Special attention was paid to the usage 

of identical equipment and medium, due to the many possibilities of influencing the results 

of the growth kinetics assay without intention. 

In contrast to mice or other rodents, the manipulation of a large animal model to allow e.g. 

the aspiration of a blood sample is difficult to be put into practice. The development of an 

ethically acceptable and scientifically reasonable in vivo testing protocol in collaboration 

with the responsible veterinarian was a major challenge. For blood sampling, a permanent 

catheter was necessary because a kinetic of the cells in the bloodstream had be measured. 

The fast blood coagulation of the pigs’ blood and knowledge of the tendency to shy 

behavior (based on expertise and experience of the responsible veterinarian) of the 50 to 

100 kg heavy mini-pigs impeded stress-free treatment. It was decided to reduce the stress 

of the animals and to narcotize them for two to three hours. During the sleeping phase, the 

catheters were implanted as described before (see 6.9.1 and 7.7.2) to allow the blood 

sample collection for the planned kinetics. Most of the samples were taken during the first 

hour of the pigs´ sleep (see Figure 30 Figure 31). The number of the following blood 

samplings was minimized to reduce the stressful procedure for the animal as far as possible 

because the pigs were awake. 

The choice of an appropriate method to detect the cells in a tissue or blood sample is 

continuously discussed by different working groups [89-93]. Here, three arguments led to 

the choice of real-time PCR as the tracking method for this work. Firstly, an already well-

characterized protocol was established to determine the vector copy number of a 

transduced porcine cell population. Secondly, real-time PCR has a very high sensitivity and 

specifity in general allowing the detection of single DNA sequences. Thirdly, this approach 
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did not need any alterations of the cell product itself. As described before (see 1.4), other 

tracking methods needs major alterations of the cell e.g. transduction with a marker gene 

(like GFP or luciferase), an iron particles loading or a marking with radioactive substances. 

The use of magnetic resonance or X-ray imaging would have allowed full in vivo studies but 

would also have increased the costs. Additionally, both methods were not available on-site. 

A disadvantage of the real-time PCR method is that a differentiation between viable and 

dead cells is not possible because only DNA sequences are measured. Furthermore, the 

blood sample volume for DNA isolation was limited to 750 µL and the real-time PCR 

measurements could be performed with only 5 µL of the isolated DNA solution containing 

not more than 100 µg/µL of DNA. This methodical limitation made it necessary to perform 

multiple analyses consisting of five measurements each (see Figure 30 and Figure 31).  

During the planning of the in vivo studies, it was assumed that signals around the detection 

limit of the method would occur. Spiking experiments with transduced cells in porcine blood 

revealed that at least five copies per reaction well were necessary to generate a valid result. 

This value was extrapolated to 1mL of blood and the calculation showed that at least 450 

MSCs in one sample were necessary to be detected by real-time PCR. The loss during 

preparation of the sample, isolation of the DNA as well as the very sample size used per 

reaction well (5µL) required this number of cells. 

Figure 30 shows the recovered MSCs in the blood per mL in the first animal and Figure 31 

in the second animal. From a “convential” pharmacokinetics point of view, intravenous bolus 

injections of small chemicals are distributed throughout the whole bloodstream after a few 

seconds. Here, the intravenously infused MSCs could not be found in the blood stream 

directly after infusion. It was already described in detail why the fact that the cells were not 

immediately available in the peripheral blood makes sense (see 1.4). A delayed distribution 

is to be expected because the sizes of the infused agents (small molecule vs. cell) 

obviously differed significantly.  

In pig 1, a relatively strong signal could be identified in after 2 min. This signal became 

weaker, but it was – relatively - consistent the next few hours. After 36 h, an extra-ordinary 

recovery was observed. This result was next to the maximum of MSCs that was to be 

expected if an even distribution throughout the bloodstream was assumed. Afterwards, the 

signals became as weak as before and were next to the detection limit.  
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The special pharmacokinetics of MSCs – a delay in the systemic distribution - is an often 

described phenomenon. MSCs are temporarily located in the lung´s vascular system before 

they enter the peripheral bloodstream. Here, the results generated in this work are exactly 

in accordance with the publications that discuss the biodistribution of MSCs in most rodents 

and humans [85, 88, 94, 99, 100, 105, 106]. It is open for discussion whether the high signal 

after 36 h was also caused by MSCs that were locally enriched at the catheter or not. The 

fact that the following measurement after 48 h did not show any MSCs anymore weakens 

this potential assumption. Furthermore three single analyses consisting of five 

measurements were performed for each sample to increase the reliability of the results. 

After 48 h, the last blood sample was taken and the animal was necropsied. Tissue samples 

were frozen on dry ice as well as put into formalin for further analyses. The protocol was 

intentionally designed to have a 48 h in-life phase after the intravenous infusion to increase 

the probability of detecting MSCs in the saved tissues, which is going to be discussed later 

in this chapter. If the tissue samples had been taken to a later point of time, it could have 

been assumed that the MSCs wouldn´t be identifiable anymore in the prominent tissues e.g. 

the lung.  

Based on the proven feasibility of the protocol and the positive results of pig 1, the study 

design of the second pig was extended to potentially allow more insight into the 

pharmacokinetics. Two additional samples were added around the 36 h point of time and 

the in-life phase was prolonged for two days. For this study, unexpected results were 

generated observing nearly no MSCs in the blood (see Figure 31). Minor signals next to the 

detection limits probable indicated MSCs in the bloodstream. However, there was no result 

that showed all signals above the detection limit. Several investigations were performed to 

find causes for this possible methodological error. But spiking experiments confirmed the 

validity of the method showing that the transgene DNA could be recovered in the samples 

of pig 2. It had to be concluded that if MSCs were present, there were less than 450 cells 

per mL blood because all samples were practically negative. The following report of a 

veterinarian of the Institut für Tierpathologie der Ludwig-Maximilians-Universität München 

identified a distinct pulmonary infection in contrast to the first animal (see Table 18). This 

may explain that the amount of MSCs available in the bloodstream undercut the detection 

limit because MSCs are well known to remain in pro-inflammatory tissue environment [87, 

91, 93, 322]. These inflammatory processes could have additionally caused an increased 

retention in the lung.  
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To further confirm the results of the in-house real-time PCR measurements, histological 

slices were sent to an external laboratory for immunohistochemical staining. The 

expectations of finding several MSCs in one tissue slice were low because only pieces of a 

few grams of the apex of the lung were sent. The whole lung of one mini-pig in the study 

had a weight of ca. 500 g.  

The procured pieces were cut into smaller slices. To prevent false-positive results, the 

tissue of a third “MSC-free” mini-pig was treated the same way. A second control with 

antibody isotypes was performed on the directly neighbored slices to identify staining 

artifacts in the tissue (see Figure 32). Table 19 summarizes the results. Both pigs that 

received intravenous infusion showed cells positive for HA-tag staining in the lung. The 

prevalence of MSCs to accumulate in the lung could be confirmed in both pigs although the 

identified amount of MSCs ultimately was low. Other tissues were negative except for the 

spleen of animal 1 because a single signal could be identified. The recovery of MSCs in the 

spleen was already published as described before (see detailed in 1.4) and is therefore not 

in conflict with the results of this work.  

Altogether the results generated in the mini-pigs are in accordance to publications on 

MSCs´ biodistribution. However, only two pigs were used in these studies. A low number of 

animals naturally accompanies large animal studies. In general, the generation time large of 

animals and their small number of offspring limits these studies in contrast to studies using 

rodents. In addition, isogeneic MGH mini-pigs were part of the study and therefore previous 

nuclear transfers had to be performed, which naturally have a failure rate and challenges 

the planning. Even though there were just two animals, the results of both animals fulfilled 

the expectations of MSCs pharmacokinetics and are not in conflict with published results. 

Finally, the feasibility of the mini-pig as a useful and beneficial model animal for 

assessments of the biodistribution of MSCs could be shown. 
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8.6 Conclusions and Outlook 

The aim of this work was to show that the pig and its MSCs are a useful model system for a 

therapeutic MSC-based product. Here, porcine HSV-TK expressing MSCs are described for 

the first time. To prove the validity of this model system, the cells of both species were 

systematically characterized comparing the identity, the controlled insertion of the suicide 

gene, the functional proof of the transgene cassettes and the apoptosis caused by GCV as 

well as the bystander killing of cell lines. The conclusions of all in vitro assays are 

summarized in the following Table 20.  

Table 20: This overview concludes all in vitro tested parameters and the generated results within this 

work. For both species, all tested parameters were assessed against each other. Porcine MSCs showed to be a 

well-usabe platform for human MSCs because they had many similarties regarding identification, production and 

therapeutic efficacy in vitro. Most of the in vitro generated results showed the comparability of both species.  

Parameter Human MSCs Porcine MSCs 
Compar

able? 

Remarks / Conclusion 

Population 

Doubling Time 

(PDT) 

highly varying from donor to 

donor, intra-donor variation 

low 

only one donor available, 

batches equal 
+ 

mean PDT similar, more pig 

donors helpful, batch 

production time probably 

similar 

Morphology 
fibroblast-like, one donor 

more flattened 
fibroblast-like ++ 

typical morphology for both 

species 

Differentiation 
adipogenic and osteogenic 

line successful 

adipogenic and osteogenic 

line successful, adipogenic 

differentiation weaker 

++ 
same medium induces 

differentiation 

Surface 

Marker 

confirming ISCT suggestion, 

HLA-DR present and 

inducible 

confirming ISCT suggestion, 

but CD105 negative sub-

population and HLA-DR not 

present 

+ 

two main surface marker 

show (partial) changes in 

expression, may limit 

meaningfulness 

Gene 

modification 

successful insertion, 

selection and therapeutic 

cassette functional 

successful insertion, selection 

and therapeutic cassette 

functional 

++ 

same retroviral vectors 

inserts therapeutic gene in a 

comparable manner with 

same VCN; selection 

feasible, RANTES inducible 

GCV 

sensitivity / 

Cell Count 

Reduction 

HSV-TK expressing cells 

show increased sensitivity 

and higher cell count 

decreases  

HSV-TK expressing cells show 

increased sensitivity and 

higher cell count decreases 

++ 
porcine MSCs are even more 

sensitive to GCV 

Apoptosis  

significant increase of 

Annexin-V and 7-AAD if 

HSV-TK expressing 

significant increase of 

Annexin-V and 7-AAD if HSV-

TK expressing 

++ 
porcine MSCs show stronger 

apoptotic behavior 
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Parameter Human MSCs Porcine MSCs 
Compar

able? 

Remarks / Conclusion 

Bystander 

Killing  

significant decrease of cells, 

also anti-proliferating effects 

of naïve cells 

significant decrease of cells + 

human MSCs have negative 

proliferation effects on 

porcine cell line 

Bystander 

Induction of 

Apoptosis 

successful induction of 

apoptotic cascade in both 

cell lines 

successful induction of 

apoptotic cascade in both cell 

lines 

++ 

porcine and human MSCs 

can induce apoptosis in both 

species 

 

The results of these assays showed that nearly all measured parameters are comparable 

for porcine and human MSCs. The only differences between both species occurred during 

the measurement of the surface markers and the bystander killing assays. It could be 

observed that there was a porcine MSC sub-population lacking CD105, that porcine MSCs 

generally do not show HLA-DR on their surface and that naïve human MSCs showed anti-

proliferative effects on the porcine cell line K67. Although these results show differences 

between the species, they are not conflicting existing results. Previously mentioned 

publications underline the variability of murine MSCs in regard to CD105 [263]. The anti-

proliferating effects of human MSCs [315, 316] as well as the presence of HLA-DR were 

already controversially discussed [62-64]. In that respect, the results observed for porcine 

MSCs seem to complement existing descriptions and are not in conflict with these. 

The subsequent in vivo studies underlined the usefulness of the mini-pig. Here, it could be 

shown that intravenously administered MSCs were detectable in the bloodstream and that 

the porcine MSCs showed the “MSC-typical” pharmacokinetics profile. Although there were 

only two animals involved in the study, the time-dependent retention in the lungs before the 

cells distributed throughout the body could be clearly observed. The measurements of the 

second animal showed no signals above the detection limit. The identified severe 

pneumonia was a strong indication that MSCs potentially homed to the pro-inflammatory 

environment in the lung reducing the amount of MSCs in the peripheral bloodstream. The 

knowledge about the pharmacokinetics profile is essential for any medicinal product – also 

for ATMPs [76, 77]. As examined in mice before [100], the easier and faster passaging of 

the lung could increase the homing and the efficiency of the MSCs´ therapeutic effects. The 

pig and its anatomy and physiology regarding lungs size, structure and weight are more 

comparable to humans [209, 211, 323]. Therefore, these animals may promise more 

valuable insight into the biodistribution than rodents. 
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Nevertheless, during the early phases of the development of a potential cell product, mice 

or rats have a clear advantage over LAMs: lower costs, faster reproduction cycles, low 

dosages (fewer cells needed) and more animals per study group make statistically relevant 

studies easier. In addition, established immune-deficient rodents are available to test the 

human-based “original” product that enhances proof of concept studies. Immune-deficient 

LAMs are rarely found, although it was shown that e.g. SCID pigs are realizable [227].  

LAMs could be more helpful in a second phase of the development after the proof of 

concept was shown in rodents. Then, the product may be tested under more serious and 

more challenging conditions simulating the clinical setting. To allow studies in LAMs, 

questions asking for the right dosage, potential toxic effects and appropriate treatment 

schemes have to be answered. These are the same questions that have to be addressed 

when clinical trials with humans are initiated. It is obvious that the treatment schemes and 

dosages of a 0.02 kg mouse are less comparable to humans than those of a 75 kg pig. The 

assumed dosages extrapolated from rodents to LAMs could be tested on these before 

humans are treated.  

Another consequence is the fact that the increased dosage for LAMs requires an up-scaling 

of the production, which might be understood as a disadvantage at first glance. The need of 

higher dosages for LAMs as well as humans requires further efforts in the development of 

e.g. bio-reactors [324-326], as reviewed by de Soure et al. [327]. Because of the versatile 

and sensitive biology of cells, especially of MSCs, this up-scaling may have an impact on 

the cells biology. The earlier cell alterations can be characterized before humans are 

treated, the lower the risk that clinical trials fail. Thorough established potency assays may 

help to clarify whether new manufacturing methods have a significant impact or not [36, 41, 

328, 329].  

The complexity of cell therapeutics challenges all working groups and companies facing the 

development of an ATMP. Heterogeneous and versatile biological functions of cells meet 

regulatory expectations that were shaped by the classical, chemical compounds. The 

European Medicines Agency is still struggling to establish adequate GMP-guidelines for 

ATMPs and is still not in agreement about the necessary prerequisites [330]. The small 

number of ATMPs authorized for the market in the EU shows that (genetically modified) 

cells as a medicinal product are still a new therapeutic form, which is underlined by the fact 
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that merey three gene therapy medicinal products and three somatic cell therapy products 

were authorized as of the beginning of 2017 [331]). 

The pig is not only interesting for toxicological testing. The increase in available disease 

models e.g. SCID [227], diabetes [226], neurodegenerative diseases [332] or adenomatous 

polyposis coli (APC) [333] resulting in cancer offers better testing of new therapeutic 

approaches. During this work, the treatment of pigs carrying this APC gene defect that 

develops intestinal tumors was evaluated. However, the successful gene defect led to 

multiple neoplasms. Homing MSCs would have been distributed throughout all neoplasms 

limiting the anti-proliferative effect of the therapy. In addition, these pigs were not mini-pigs 

as they were landrace pigs with a weight of approximately 200kg. The required dosage 

would have been much higher in contrast to 58kg and 82kg heavy mini-pigs. Further 

adjustment of the model´s disease progress could increase the usability of these disease 

models. Still, the local implantation of tumor developing cells is a potential alternative. 

For future cell therapeutics, the mini-pig and its MSCs represent a useful model system. 

The cost-intensive human MSCs may be replaced by porcine MSCs for defined 

development phases. The high comparability to humans, the possibility to perform 

toxicological testing without undesired immunological interactions and the compliance to 

regulatory demands [204] supports this conclusion. They can support or even lead the 

preclinical development of a functional MSC-based ATMP. 
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Figure 33: Construct #65 was used as plasmid for the clinical grad vector carrying the therapeutic gene 

HSV-TK under the control of the Rantes promoter. HSV-TK was fused with HA to allow an identification of 

the enzyme by flow cytometry mediated by antibodies. The selection gene for degrading the antibiotic puromycin 

is controlled under the constitutive promoter hPGK that shows continous expression. The WPRE enhances the 

mRNA stability of the transcripted gene. 

Figure 34: The eGFP containing plasmid was used to tag the cell lines HT1080 and K67. The GFP signal 

was used during flow cytometry analysis to distinguish cell lines and MSCs. The expression of GFP was under 

control of the EFS, a constitutive, promoter.  


