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1 Einleitung 

Herzinfarkt und Schlaganfall sind Todesursache Nummer 1 in der westlichen Welt 

(WHO 2016) und meist Folge einer akuten Komplikation im Rahmen einer Athero- 

sklerose: durch Erosion oder Ruptur atherosklerotischer Plaques kann es zum 

kompletten oder partiellen Gefäßverschluss durch arterielle Thrombusbildung 

(Atherothrombose) mit einer Durchblutungsstörung des nachfolgenden Gewebes 

kommen. Thrombozyten (Tz) sind Vermittler der primären Hämostase nach Ge-

fäßverletzung und in dieser Funktion an der Ausbildung eines arteriellen Throm-

bus wesentlich beteiligt. Warum es immer wieder zu überschießenden thromboti-

schen Reaktionen mit Verschluss des kompletten arteriellen Lumens und womög-

lich letalen Folgen kommt, bleibt trotz intensiver Forschung weiterhin unklar.  

Diskutiert wird, ob es Lipoproteine wie LDL und HDL sind, welche neben ihrer all-

gemein anerkannten Rolle bei der Entwicklung der Atherosklerose, durch Interak-

tion mit Tz möglicherweise auch an der Ausbildung einer Atherothrombose direkt 

beteiligt sind. Nach Ruptur atherosklerotischer Plaques gelangen lokal große 

Mengen an nativen und modifizierten Lipoproteinen in die Blutbahn, wo sie mit Tz 

interagieren können. Dabei wird nativem LDL (natLDL) und milde oxidiertem LDL 

(moxLDL) eine Tz-sensibilisierende und HDL eine eher Tz-hemmende Wirkung 

zugesprochen. Aber auch systemisch könnten native und modifizierte Lipoproteine 

die Atherothrombose beeinflussen. So könnten in der Blutbahn natLDL und oxi-

diertes LDL Tz voraktivieren und deren Reagibilität auf andere Stimuli beeinflus-

sen. 

Die vorliegende Arbeit ist die erste, die die Wirkung der Lipoproteine LDL, moxLDL 

und HDL auf die Tz-Aggregation im Blut differenziert untersucht.  
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2 Stand der Forschung 

2.1 Thrombozyten 

2.1.1 Morphologie und Funktion 

Physiologische Hauptfunktion von Tz ist ihre Beteiligung an der Hämostase nach 

Verletzung eines Gefäßes. Pathophysiologisch spielen sie eine zentrale Rolle bei 

der arteriellen Thrombusbildung ausgehend von einer Ruptur oder Erosion athero-

sklerotischer Plaques. Überdies findet in den letzten Jahren ihre Bedeutung für 

Entstehung und Aufrechterhaltung von Entzündungsprozessen immer mehr Be-

achtung.  

Tz entstehen durch Abschnürung aus den Megakaryozyten des Knochenmarks 

(Malara A 2012). Pro Mikroliter Blut finden sich 150’000 bis 300’000 Tz mit einer 

Lebenszeit von ca. 7 Tagen. Der Abbau erfolgt über das retikulohistiozytäre Sy-

stem von Milz, Lunge und Leber. In der Milz ist ein Drittel der Tz gespeichert und 

steht für den ständigen Ersatz zur Verfügung. Tz besitzen keinen Zellkern, und 

außer mitochondrialer DNA keine Erbinformation. Die Fähigkeit zur Proteinsynthe-

se ist aus diesem Grund begrenzt. Proteine und Gewebshormone, welche Tz für 

Ihre Funktion benötigen,  sind in den für Tz charakteristischen Granula gespei-

chert, von denen es drei verschiedene Arten gibt: α-Granula, elektronendichte 

Granula und Lysosomen. Während der Aktivierung der Tz kommt es zur Entlee-

rung der Granula, der sogenannten Sekretion.  

Dabei enthalten die elektronendichten Granula vor allem niedermolekulare Sub-

stanzen wie ADP, ATP, Serotonin und Ca2+. Die α-Granula enthalten diverse Pro-

teine, welche unterschiedliche biologische Funktionen steuern. Dazu gehören Ad-

häsionsmoleküle wie Fibrinogen, von-Willebrand-Faktor (vWF), P-Selectin, der 

Fibrinogenrezeptor Glykoprotein IIb-IIIa sowie Wachstumsfaktoren wie der plate-

let-derived growth factor (PDGF), transforming growth factor β (TGF-β) und die 

Entzündungsmediatoren Interleukin-1 und CD40L. Lysosomen dienen dem Abbau 

von Proteinen und enthalten entsprechende Enzyme (Gawaz M 2001, Thon JM 

2012). 
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2.1.2 Mechanismen der Plättchenaktivierung 

2.1.2.1 Adhäsion 

Die Adhäsion der Tz an freiliegende Matrixproteine eines Gefäßdefekts  be-

schreibt den ersten Schritt der primären Hämostase.  

Bis dahin ruhende Plättchen werden initial von subendothelialen extrazellulären 

Matrixstrukturen aus dem Blutstrom  abgefangen (tethering), haften  zunächst 

transient (rolling) und schließlich fest an der verletzten Gefäßwand. Dieses Abfan-

gen und Anheften kann unter hohen Scherraten von mehr als 1000s-1, wie sie in 

der arteriellen Zirkulation vorhanden sind, geschehen. Die Bindung muss also eine 

hohe Affinität und Stabilität aufweisen sowie äußerst schnell erfolgen. Verantwort-

lich für die initiale transiente Adhäsion ist der vWF im Blut, welcher von Endothel-

zellen gebildet wird, und bei hohen Scherraten seine Konformation ändert. Er bin-

det dann fest an exponiertes Kollagen und anschließend mit hoher Affinität an das 

Glykoprotein Ib des vWF-Rezeptors der Tz. Die große Bedeutung des vWFs für 

die Blutstillung spiegelt sich wider bei Patienten, welche unter einem funktionellen 

Defekt des vWF, der von-Willebrand-Krankheit, oder des GPIb Rezeptors, dem 

Bernard-Soulier-Syndrom, leiden (Nurden AT 1999). 

Die transiente Tz-Adhäsion wird anschließend stabilisiert durch Bindung von  wei-

teren thrombozytären Membranrezeptoren vor allem an Kollagen, aber auch an 

Fibronectin und Laminin.  

Voraussetzung für das Fortschreiten der primären Hämostase ist die Aktivierung 

der Tz. Unter physiologischen Bedingungen wird die Aktivierung ausgelöst durch 

den oben erwähnten Kontakt der Plättchen mit Bestandteilen der subendothelialen 

Matrix nach Verletzung der Gefäßwand. Vor allem die Bindung von Kollagen an 

die Kollagenrezeptoren Glykoprotein VI und das Integrin α1β2 löst Aktivierung, 

Gestaltwandel und Sekretion der adhärierenden Plättchen aus. 

Neben den exponierten Matrixproteinen entfalten im Plasma lösliche Agonisten 

wie ADP, Thrombin und Thromboxan A2 (TxA2), eine sowohl para- als auch auto-

krine Wirkung auf Tz und induzieren Formveränderung und Aktivierung. ADP wird 

von Erythrozyten und aus den dichten Granula aktivierter Tz freigesetzt. Auf der 
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Oberfläche aktivierter Tz kann sich der Prothrombinasekomplex formieren und 

Thrombin aus Prothrombin abspalten, welches neben der Aktivierung von Tz auch 

für die Bildung von Fibrin (sekundäre Hämostase) verantwortlich ist. TxA2, aus 

Arachidonsäure gebildet, wird ebenfalls von aktivierten Tz freigesetzt (Gawaz M 

2001, Freissmuth M 2012). 

 

2.1.2.2 Gestaltwandel und Sekretion 

Ruhende Tz besitzen eine diskoide Form. Durch die Aktivierung kommt es zum 

Gestaltwandel. Zunächst nehmen die Tz eine runde Gestalt an, und produzieren 

schließlich Ausläufer, sogenannte Pseudopodien, welche beweglich sind und sich 

verlängern aber auch wieder zurückziehen können. Grundlage für den Gestalt-

wandel ist eine rasche Umorganisation des thrombozytären Zytoskeletts: In den 

Pseudopodien reichern sich Microtubuli an, die Bildung von Actomyosin sorgt für 

ihre Kontraktilität. Tz können sich auf diese Weise flach ausbreiten und ihre Ober-

fläche stark vergrößern, wodurch ein Gefäßdefekt effektiv abgedeckt werden kann 

(Aslan JE 2012).  

Nach sehr starker Stimulation entleeren Tz parallel zum Gestaltwandel den Inhalt 

ihrer Granula. Dieser Schritt stellt die maximale Aktivierung der Tz dar. Zuerst 

werden dichte und α-Granula ausgeschüttet. Es kommt zu einem positiven Feed-

back-Effekt und die Aktivierung der Plättchen selber wird verstärkt (Golebiewska 

EM 2015). Außerdem werden noch ruhende Plättchen in der Umgebung aktiviert. 

Sie heften sich an das bereits vorhandene Plättchenaggregat und sorgen für des-

sen weitere Stabilisierung. Schließlich werden die lysosomalen Enzyme sezerniert 

(Siess W 1989), welche eine Auflockerung der Gefäßwand bewirken und das 

Fortschreiten atherosklerotischer Prozesse begünstigen können (Gawaz M 1999). 

Nach der Ausschüttung der Granula ist die Reaktionsfähigkeit der Tz sehr be-

grenzt und die zweite irreversible Phase der Aggregation wird eingeleitet. 
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2.1.2.3 Aggregation 

Die Tz-Aggregation ist die Adhäsion von zwei oder mehr Plättchen. Möglich wird 

Aggregation erst durch die oben beschriebene Aktivierung von Plättchen. Es wer-

den zwei Phasen der Aggregation unterschieden, eine reversible und eine irrever-

sible. Während der noch reversiblen, primären Phase sind die Plättchen unterein-

ander durch lockere Fibrinogenbrücken verbunden (Phillips DR 1988). Wenn eine 

weitere Aktivierung ausbleibt, können sich diese Aggregate wieder auflösen 

(Pötzsch B 2010).  

Voraussetzung für die Bildung von Fibrinogenbrücken ist die Aktivierung des 

GPIIb-IIIa Komplexes (Plow EF 1989), der vor allem als Fibrinogenrezeptor dient, 

und auch als Integrin αIIbß3 bezeichnet wird. Für die Aktivierung des Fibrinogenre-

zeptors und dessen Bindung an Fibrinogen sind zweiwertige Kationen wie Ca2+ 

und Mg2+ notwendige Kofaktoren.  

Fibrinogenrezeptoren sind auf ruhenden Plättchen vorhanden, sie befinden sich 

jedoch in einem Zustand, welcher verhindert, dass Fibrinogen gebunden werden 

kann. Im Zuge der Aktivierung kommt es zu einer Konformationsänderung des 

Rezeptors, wodurch die Bindung von Fibrinogen möglich wird. Zusätzlich wird die 

Oberflächendichte dieses Rezeptors durch Rekrutierung aus den α-Granula er-

höht. 

Fibrinogen ist ein Dimer aus jeweils 3 Ketten, der Alpha-, Beta- und Gamma-Kette, 

welche sich alle im Zentrum des Moleküls, der E-Domäne, treffen. Bestimmte 

Aminosäuresequenzen, der RGD-Bereich auf der Alpha-Kette und der Dodeca-

peptid-Bereich auf der Gamma-Kette,  binden an spezifische Regionen des Inte-

grins αIIbß3. Die Hemmung dieser Aminosäuresequenzen kann die Aggregation 

komplett unterbinden (Phillips DR 1988, Plow EF 1989). Das Integrin αIIbß3 ist au-

ßerdem in der Lage, vWF sowie Fibronectin zu binden (Ruggeri ZM 2002). 

 

2.1.2.4 Sekundäre Hämostase 

Als sekundäre Hämostase wird die nach Aktivierung der Tz erfolgende plasmati-

sche Blutgerinnung bezeichnet. Sie dauert etwa 6 bis 10min und führt zu einer 
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dauerhaften Blutstillung. Nach einer Gefäßverletzung kommt es zur Exposition von 

tissue factor (TF), welcher auf den meisten Zellen exprimiert wird, die normaler-

weise nicht direkt mit Blut in Kontakt kommen, wie Fibroblasten und glatte Muskel-

zellen. Basierend auf im Blut gelösten Gerinnungsfaktoren wird daraufhin eine 

Kaskade proteolytischer Prozesse gestartet, die sogenannte Koagulationskaska-

de, welche zur Bildung von Thrombin führt. Thrombin spaltet aus löslichem Fibri-

nogen Fibrinmonomere ab, die sich auf dem vorhandenen Aggregat aus Tz abla-

gern und spontan polymerisieren. Die kovalente Quervernetzung der Fibrinfäden 

durch Faktor XIIIa stabilisiert das Molekül mechanisch, der primäre hämostatische 

Pfropf aus Tz wird gefestigt.  

Ebenfalls durch den Einfluss von Thrombin kommt es zur Kontraktion des Aktin-

Myosin-Skeletts der Tz, und damit zu einem Zug am Fibrinnetz. Blutserum wird 

ausgepresst,  die Wundränder zusammengezogen  und der  Thrombus dadurch 

dauerhaft stabilisiert. 

Primäre und sekundäre Hämostase sind funktionell eng miteinander verknüpfte 

Systeme und beschleunigen bzw. verstärken sich gegenseitig (Gawaz M 2001, 

Freissmuth M 2012). 

 

2.1.3 Plättchen und Atherothrombose 

Tz sind nicht nur von entscheidender Bedeutung für die Blutstillung nach Gefäß-

verletzung, sondern spielen eine zentrale Rolle bei der intraluminalen Thrombose 

nach Ruptur oder Erosion atherosklerotischer Plaques, der Atherothrombose. Mit 

der Bildung eines intra-arteriellen Thrombus tritt eine akute Komplikationen der 

Atherosklerose auf, die in Herzinfarkt und Schlaganfall resultieren kann. Laut 

WHO (WHO Fact Sheet 2016) stellt diese Komplikation die häufigste Todesursa-

che in der westlichen Welt dar. Die Gabe von Plättchenhemmern und Antikoagu-

lantien ist daher gängige Therapie  zur Thromboseprävention bei kardiovaskulären 

Erkrankungen (Vandvik PO 2012).  

Die Ruptur einer atheromatösen Plaque wird als Hauptursache für die Thrombus-

bildung in Koronar- und Zerebralarterien betrachtet (Ruggeri ZM 2002). Durch die 
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Ruptur kommt Material aus dem Inneren des Plaques, welches sich von Bestand-

teilen der gesunden Intima unterscheidet, in Kontakt mit zirkulierenden Blutplätt-

chen und sorgt für eine überschießende Plättchenreaktion (Ruggeri ZM 2002, Cor-

ti R 2002). Dabei sind es vor allem Kollagene vom Typ I und III, welche über Bin-

dung an Glykoprotein VI die Blutplättchen aktivieren (van Zanten GH 1994, Penz 

S 2005, Reininger AJ 2010). In den Plaques ist auch TF enthalten (Fernandez-

Ortiz A 1994, Marmur JD 1996), welcher ähnlich wie bei einer „normalen“ Gefäß-

verletzung über die Aktivierung von Koagulationsfaktoren im Blut die Bildung von 

Thrombin stimuliert, was schließlich zur Fibrinbildung führt (Toschi V 1997, Badi-

mon JJ 1999, Reininger AJ 2010).  

 

2.2 Lipoproteine 

2.2.1 Struktur der Lipoproteine 

Lipoproteine sind hochmolekulare, wasserlösliche Komplexe aus Lipiden und Pro-

teinen und stellen die Transportform von Lipiden im Blut dar. Ihre Einteilung erfolgt 

nach ihrer Dichte in Chylomikronen, VLDL, ILDL, LDL und HDL (Very, Intermedia-

te, Low und High Density Lipoprotein). Cholesterinester und Triglyceride bilden 

den Kern, während freies Cholesterin und Phospholipide eine bipolare, den Kern 

umhüllende Membran in Form eines Monolayer bilden. In diesem Monolayer sind 

pro LDL-Molekül genau eine, pro HDL-Molekül auch mehrere Peptidketten einge-

bettet, welche als Apolipoproteine bezeichnet werden. Die größte pathophysiologi-

sche Relevanz haben LDL und HDL, welche in dieser Arbeit untersucht wurden.  

LDL entsteht aus VLDL und besteht zu 75% aus Lipiden und 25% aus dem Apoli-

poprotein B100 (Apo-B100). HDL sind die kleinsten Lipoproteinpartikel mit der 

größten Dichte. Sie sind mit verschiedenen Apolipoproteinen assoziiert, welche 

hauptsächlich in der Leber synthetisiert werden und als strukturelles Gerüst oder 

Ligand für Membranrezeptoren fungieren. So findet sich stets Apolipoprotein A 

(Apo-A), das neben seiner strukturgebenden Funktion die Aufnahme von freiem 

Cholesterin vermittelt (Frank PG 2000) und das kleinere Apo-E, welches eine gro-

ße Affinität zum LDL Rezeptor hat (Getz GS 2009). Seltener und hauptsächlich in 
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nüchternem Zustand mit HDL assoziiert sind die verschiedenen Apo-Cs, welche 

wichtig für die Funktion der Lipoproteinlipase sind (Mahley RW 1984). In geringer 

Menge vorhanden und daher bisher kaum im Fokus der Atheroskleroseforschung 

ist  Apo-D, welches untypischer Weise von Gewebezellen produziert wird und sich 

auch strukturell von den übrigen Lipoproteinen unterscheidet (Perdomo G 2009).  

 

2.2.2 Funktion und Wirkung von HDL und LDL 

2.2.2.1 LDL 

LDL dient dem Transport von Cholesterin in die peripheren Zellen. Über das Apo-

B100 bindet LDL an den membranständigen LDL-Rezeptor, welcher auf nahezu 

allen Körperzellen vorhanden ist. Das so gewonnene Cholesterin steht den Zellen 

zum Aufbau ihrer Plasmamembran oder für die Bildung von Hormonen sowie Gal-

lensalzen zur Verfügung. Ist der Bedarf der Zelle an Cholesterin gedeckt, wird die 

Expression des LDL-Rezeptors gehemmt und es wird kein LDL mehr in die Zelle 

aufgenommen.  

Anders verhält es sich mit oxidativ modifiziertem LDL. Es wird von Endothelzellen 

und Makrophagen sowie glatten Muskelzellen völlig ungehemmt aufgenommen. 

Mit Lipiden vollgestopft werden die Makrophagen als Schaumzellen bezeichnet. 

Sie finden sich schon im frühen Stadium der atherosklerotischen Läsion, den so-

genannten Fettstreifen (Ross R 1999). Anschließend kommt es zu einer Entzün-

dungsreaktion, in deren Verlauf fibröse Plaques mit einem Kern aus nekrotischem 

Material und  Lipiden entstehen. Schreiten die Entzündungsprozessen voran, wer-

den die Plaques schließlich instabil (Amento EP 1991, Galis ZS 1994, Libby P 

2002) und können rupturieren, wodurch die Gefahr besteht, dass über die oben 

beschriebenen Mechanismen eine Thrombose ausgelöst wird.  

Für die Aufnahme des oxidativ modifizierten LDL ist nicht der klassische LDL-

Rezeptor verantwortlich, sondern Scavenger Rezeptoren, welche keinerlei Regu-

lationsmechanismen zeigen (Brown MS 1990).  Einer der bekanntesten ist CD36. 

Es handelt sich um einen Scavenger Rezeptor der Klasse B, der auf Makropha-

gen, aber ebenso auf einer Vielzahl anderer menschlicher Zellen, wie Endothelzel-
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len und Tz  vorkommt (Febbraio M 2001, Park YM 2014). Ein weiterer ist Lox-1 

(lectin-like oxidized low-density lipoprotein receptor-1), welcher ursprünglich als 

Hauptrezeptor für oxidiertes LDL auf Endothelzellen identifiziert wurde (Sawamura 

T 1997). Er findet sich auch auf Makrophagen und glatten Muskelzellen (Moriwaki 

H 1998, Draude G 1999). Außerdem  wird er von Tz exprimiert und zwar abhängig 

von deren Aktivierung  (Chen M 2001). Ein Scavenger Rezeptor der Klasse A, SR-

A, wurde ursprünglich auf  Makrophagen identifiziert (Suzuki H 1997), findet sich 

aber auch auf Tz, wo er eine Rolle bei der Aktivierung durch oxidiertes LDL zu 

spielen scheint (Korporaal SJ 2007).  

 Im Zusammenhang mit ihrer Bedeutung für die Wirkung von oxidiertem LDL auf 

Tz wird auf CD36, Lox-1 und SR-A in Kapitel 2.3.3 näher eingegangen.  

Außer in atherosklerotischen Läsionen kommen modifizierte Lipoproteine offenbar 

auch in der Blutzirkulation vor. Das Vorhandensein von Antikörpern gegen oxidier-

tes LDL im Blut lässt diesen Zusammenhang vermuten (Yla-Herttuala S 1994, Vi-

rella G 2004, Crisby M 2009). Im Rahmen von Untersuchungen an Patienten mit 

koronarer Herzkrankheit wurde Malondialdehyd (MDA) - modifiziertes LDL aus 

Plasma und Serum isoliert (Holvoet P 1998, Tanaga K 2002, Lopes-Virella MF 

2012). In der Zirkulation von Patienten mit Krankheiten wie Diabetes mellitus oder 

Hypercholesterinämie, welche mit einem erhöhten Risiko für Herzkreislaufkrank-

heiten einhergehen, aber auch in der Zirkulation gesunder Individuen findet sich 

elektronegatives LDL (eLDL) (Sánchez-Quesada JL 2004). Mit eLDL wird eine 

kleine LDL Fraktion bezeichnet, welche durch verschiedene Mechanismen modifi-

ziert wurde und deren Gemeinsamkeit eine erhöhte negative Ladung ist (Estruch 

M 2013). eLDL scheint eine proinflammatorische Wirkung ähnlich der von oxidier-

tem LDL zu haben (Chan HC 2013).  

Jüngere Studien zeigen Mechanismen, wie LDL in der Zirkulation oxidiert werden 

könnte. Stimulierte Tz können über Aktivierung der NADPH-Oxidase-2 natives 

LDL oxidieren und einen positiven Feedback Mechanismus in Bezug auf die weite-

re Aktivierung von TZ in Gang bringen (Carnevale R 2014). Eine andere Studie 

zeigt, dass Peroxidasen, welche an LDL binden, in der Zirkulation vorkommen und 

eine Oxidation von LDL bewirken können (Yang Y 2016).   
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2.2.2.2 HDL 

Im Vergleich mit LDL wird dem HDL eine gefäßprotektive Wirkung zugeschrieben. 

In großen epidemiologischen Studien konnten niedriges Herzinfarktrisiko und ho-

her HDL Spiegel assoziiert werden (Castelli WP 1988, Barter P 2007, Lewington S 

2007). Ob es einen ursächlichen Zusammenhang gibt, bleibt jedoch unklar.  

Die anti-atherogenen Eigenschaften von HDL werden vor allem mit seiner Funkti-

on beim Rücktransport von Cholesterin aus der Peripherie zur Leber begründet, 

dem sogenannten reversen Cholesterintransport (Lewis GF 2005). HDL absorbiert 

über das Apo-A1 überschüssiges Cholesterin von peripheren Zellen, wie Ma-

krophagen und Endothelzellen. Das absorbierte Cholesterin wird durch die Leci-

thin-Cholesterin-Acyltransferase (LCAT) verestert und bildet den hydrophoben 

Kern der HDL Partikel. Kofaktor für die LCAT ist wieder das Apo-A1. So bekom-

men die ursprünglich diskoiden HDL eine runde Form und werden zu sphärischen, 

reifen HDL. Die reifen HDL bestehen zu ca. 50% aus Proteinen und 50% aus Lipi-

den (Dahlen GH 1986, Frank PG 2000). Sie geben Ihre Cholesterinester über den 

Scavenger Rezeptor B1, Hauptrezeptor für HDL auf diversen menschlichen Zellen 

(Acton S 1996, Krieger M 1999), in der Leber ab, bzw. werden als Holopartikel 

über einen noch unbekannten Weg internalisiert oder übertragen Cholesterinester 

im Austausch gegen Triglyceride an Apo-B-haltige Lipoproteine, also VLDL und 

LDL (Renz H 2003). 

Neben dem reversen Cholesterin Transport werden HDL noch weitere positive 

Eigenschaften im Bezug auf Atherosklerose und ihre Folgeerkrankungen zuge-

sprochen. So fungiert es als Oxidationsschutz für natives LDL, indem es Hydro-

peroxide von LDL aufnimmt (Parthasarathy S 1990, Barter PJ 2004). Außerdem ist 

HDL assoziiert mit Paraoxonase 1 (PON-1) (Sorenson RC 1999), einem Enzym, 

das eine Vielzahl antioxidativer und entgiftender Eigenschaften besitzt und in vitro 

Lipidperoxidation verhindert (Litvinov D 2012, Karlsson H 2015). Zudem  fördert 

HDL die Vasorelaxation (Nofer JR 2004) und stimuliert offenbar die Produktion 

anti-inflammatorischer Proteine in Endothelzellen (Pan B 2016).  

Auf der anderen Seite gibt es auch Berichte, dass Apo-A1 durch oxidative Schädi-

gung seine protektiven Eigenschaften verliert und selbst proinflammatorisch wirkt 
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(Navab M 2004). Außerdem finden sich in atherosklerotischen Plaques neben 

Apo-B typischerweise mit HDL assoziierte Apolipoproteine wie Apo-A und Apo-E 

(Guyton JR 1996). 

 

2.2.3 Modifikation von LDL 

Sowohl die Fettsäuren als auch der Proteinanteil der Low Densitiy Lipoproteine 

können oxidativ modifiziert werden.   

Substrat der  Fettsäure-Oxidation (Lipidperoxidation) sind ein- oder mehrfach un-

gesättigte Fettsäuren. Zur Initiierung einer nicht-enzymatischen Autooxidation 

werden Radikale benötigt, z.B. Sauerstoffradikale, welche von aktivierten Ma-

krophagen, Endothelzellen und glatten Muskelzellen über den NADPH-Oxidase 

Signalweg oder Myeloperoxidase (MPO)-vermittelt generiert werden. So entsteht 

zunächst ein Lipidradikal, und unter Aufnahme von molekularem Sauerstoff  

kommt es zur Ausbildung eines Lipid-Peroxylradikals. Peroxylradikale können 

aber auch enzymatisch, Lipoxygenase vermittelt, entstehen. Es werden zunächst 

Lipidhydroperoxide gebildet, welche durch Schwermetallkationen zu Radikalen 

reduziert werden. In vitro sind dies z.B. Kupferionen (Cu2+), in vivo vor allem 

zweiwertiges Eisen (Fe2+). Es kommt zur Kettenreaktion: Lipidperoxyl-Radikale 

reagieren nun wiederum mit einer neuen ungesättigten Fettsäure, wobei wieder 

ein Lipidradikal und ein Lipidhydroperoxid  entstehen. Die Hydroperoxide werden 

schließlich zu Aldehyden abgebaut (Siess W 2006). Das Ausmaß der Lipoprotein-

Oxidation kann über die Bestimmung der Menge dieser Aldehyde beurteilt werden.  

Während der Oxidation der Lipide entstehen unter anderem biologisch aktive Sub-

stanzen wie eine bestimmte Klasse oxidierter Phosphatidylcholine (Podrez EA 

2002) oder Lysophosphatidsäure (LPA) (Siess W 1999), deren Wirkung in Bezug 

auf Tz in den Kapiteln 2.3.2. und 2.3.3 beschrieben wird.  

Bei weiter fortschreitender Oxidation wird zusätzlich zu den Lipiden auch der Pro-

teinmantel, das Apo-B100 oxidiert und dabei fragmentiert. Aldehyde binden an 

freie Aminosäure-Seitenketten des Proteins, und neutralisieren deren positive La-

dung.  Dieser Verlust an positiver Ladung scheint die Ursache für die Erkennung 
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des Lipoproteins durch den Scavenger Rezeptor zu sein (Steinbrecher UP 1987). 

Zu erkennen ist dieser Oxidationsschritt an der Erhöhung der elektrophoretischen 

Mobilität des Proteins (Naseem KM 1997). 

In vitro kann bei der Oxidation der Lipoproteinen eine sogenannte „Lag Time“ 

beobachtet werden, eine zeitliche Verzögerung, bevor die Kettenreaktion richtig in 

Gang kommt. Diese ist dadurch bedingt, dass zunächst alle vorhandenen Antioxi-

dantien verbraucht werden müssen (Esterbauer H 1992, Karten B 1997). Es gibt 

zahlreiche natürliche Antioxidantien wie z.B. α- und γ-Tocopherol (Vitamin E) so-

wie Carotene in LDL (Esterbauer H 1990, Esterbauer H 1992, Hevonoja T 2000, 

Sanchez-Quesada JL 2004, Benitez S 2004, Siess W 2006). Pro LDL Partikel fin-

den sich durchschnittlich 6 Moleküle α-Tocopherol (Esterbauer H 1995). 

 

2.3 Lipoproteine und Thrombozyten 

Es wird diskutiert, dass Lipoproteine, neben ihrem allgemein anerkannten Einfluss 

auf die Entstehung der Atherosklerose, prothrombotisch wirken, indem sie Tz vor-

aktivieren und dadurch die Tz-Reagibilität auf andere Stimuli erhöhen. Die Tz- 

Voraktivierung könnte  die überschießende Thrombusbildung erklären,  welche 

immer wieder  nach Plaque-Rupturen beobachtet wird: der Thrombus kann so 

ausgedehnt sein, dass er das arterielle Lumen zu verschließen vermag. Der Typ 

der Lipoproteine, LDL oder HDL, sowie der Grad der Lipoprotein-Oxidation schei-

nen dabei eine wesentliche Rolle zu spielen (Naseem KM 1997, Steinberg 1997).  

Ob native und oxidativ modifizierte LDL oder HDL Einfluss auf die Reaktion von Tz 

haben, wurde in vielen Studien untersucht und ist Thema der folgenden Abschnit-

te. 

Natives LDL (natLDL) und natives HDL (natHDL) sind als Transportvehikel für 

Cholesterin und Triglyceride physiologischer Bestandteil des Blutplasmas, und 

kommen hier mit Tz in Berührung. Dass sich auch oxidiertes LDL (oxLDL) in der 

Zirkulation findet, wo es mit Tz interagieren könnte, scheint mittlerweile ebenfalls 

gesichert (siehe Kapitel 2.2.2.1). 
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2.3.1 Natives LDL 

Auf die Frage, ob natLDL eine Wirkung auf Tz hat, gibt es unterschiedliche Beob-

achtungen. 

Bei Kontakt von nativem LDL mit gewaschenen Tz konnte im Aggregometer kein 

Gestaltwandel festgestellt werden (Weidtmann A 1996, Zangl KJ 2003). Allerdings 

wurde in Gegenwart unterschwelliger Konzentrationen anderer Agonisten wie ADP 

nach Zugabe physiologischer Konzentrationen von nativem LDL zu einer Suspen-

sion gewaschener Tz eine Aggregation beobachtet, was auf eine Sensibilisierung 

der Blutplättchen durch natives LDL schließen lässt (Weidtmann A 1995). Dage-

gen konnten Tornvall et al keine Wirkung von natLDL auf die ADP und Kollagen 

induzierte Aggregation isolierter Tz im Aggregometer feststellen (Tornvall P 1999). 

Naseem et al beobachteten nach 1-minütiger Vorinkubation von gewaschenen Tz 

mit nativem LDL sogar eine dosis-abhängige Hemmung der durch Thrombin und 

ADP induzierten Aggregation (Naseem KM 1997). 

Korporaal et al konnten Rezeptor und Signalweg, welche für eine Sensibilisierung 

isolierter Tz durch Inkubation mit natLDL verantwortlich sind, identifizieren. Als 

Rezeptor wurde ApoER2’ ermittelt, eine Spleiß-Variante des ApoER2. Letzterer ist 

Mitglied der LDL-Rezeptor Familie, zu seinen Liganden zählt unter anderem das 

Apo-E, welches in Chylomikronen, IDL und HDL vorkommt, während das Apo-

B100 in LDL Ligand von ApoER2’ ist. Die Aktivierung erfolgt über Kontakt mit der 

sogenannten B-Site, einer spezifischen Domäne auf  dem Apo-B100 (Korporaal 

SJ 2004). Über den Rezeptor ApoER2’ wird die fokale Adhäsionskinase (FAK) 

aktiviert (Hackeng CM 1999, Relou IAM 2003-2). Dieses Enzym ist Ausgangs-

punkt für die Phosphorylierung zahlreicher weiterer Signalmoleküle, welche im 

Stande sind, mitogen-activated protein (MAP) - Kinasen zu aktivieren (Schaller M 

2001). Nach Aktivierung der MAP-Kinase p38MAPK kommt es zur Phosphorylie-

rung und Aktivierung der Phospholipase A2 (PLA2), zur Freisetzung von Arachi-

donsäure und Bildung von Thromboxan A2. Die Folge ist eine erhöhte Tz-

Reaktionsbereitschaft  nach Stimulation durch Thrombin, Kollagen und ADP, und 

daraus resultierend eine erhöhte Aggregation und Sekretion (Korporaal SJ 2004). 

Allerdings ist die voraktivierende Wirkung von natLDL nur vorübergehend. Nach 
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10-20min erreicht das p38MAPK Enzym wieder denselben Zustand wie in ruhen-

den Plättchen. Ursache ist offenbar die Bindung von natLDL, ebenfalls über des-

sen B-Site in Apo-B100, an den Rezeptor PECAM-1 (Platelet endothelial cell ad-

hesion molecule-1). In der Folge kommt es über Aktivierung der Ser/Thr Phos-

phatasen PP1/PP2A zu einer Dephosphorylierung der p38MAPK (Relou IAM 

2003-1). Die Verfasser dieser Studie vermuten hier einen Mechanismus zum 

Schutz vor Plättchenaktivierung durch zirkulierendes natLDL.   

Im Plättchenreichen Plasma (PRP) konnte hingegen kein stimulierender  Effekt 

beobachtet werden: weder die Zugabe von natLDL zu Citrat-PRP noch die Vorin-

kubation von PRP mit natLDL und Stimulation durch ADP oder Kollagen hatte eine 

Änderung der Lichttransmission im Aggregometer zur Folge (Bröijersén A 1993, 

Naseem1997, Tornvall P 1999). In einer der Studien wurde allerdings nach 30-

minütiger Vorinkubation mit natLDL eine dosisabhängige Hemmung der durch 

Thrombin und ADP induzierten Aggregation beobachtet (Naseem KM 1997).   

Physiologische Bedingungen nachahmend, inkubierten Bröijersén et al Heparin- 

antikoaguliertes Blut für 20min mit drei unterschiedlichen Konzentrationen von 

LDL (0,5-1mg/ml). Nach Stimulation durch ADP wurde per „In-Vitro-Filtragometrie“ 

eine signifikante und dosisabhängige Erhöhung der Aggregabilität beobachtet 

(Bröijersén A 1993). Ähnliche Ergebnisse erzielten Tornvall et al. Nach 

10minütiger Vorinkubation von Citrat-antikoaguliertem Blut mit 1,25mg/ml natLDL 

beobachteten sie im Impedanz-Aggregometer eine signifikante Steigerung der 

ADP induzierten Tz Aggregation (Tornvall P 1999).  

 

2.3.2 Milde oxidiertes LDL 

Milde oxidiertes LDL (moxLDL) zeigt keine Modifikationen des Proteins und nur 

eine geringe Oxidation der ungesättigten Fettsäuren des Phospholipidmantels. In 

vitro wird diese Art der LDL Modifikation in den meisten Studien, wie auch in der 

vorliegenden Arbeit, durch 24stündige Inkubation von natLDL mit zweiwertigen 

Kupferionen als Katalysatoren nach der Methode von Esterbauer et al hergestellt 

(Esterbauer H 1990). Andere Arbeitsgruppen lassen LDL durch längere Lagerung 
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an der Luft spontan oxidieren und nennen das dem moxLDL sehr ähnliche Produkt 

minimally modified LDL (mmLDL) (Berliner JA 1990, Naseem KM 1997).  

MoxLDL ist im Vergleich zu natLDL in seiner Wirkung auf Tz die reaktivere Form 

des LDL, was in verschiedenen Studien eindeutig gezeigt werden konnte (Weidt-

mann A 1995, Naseem KM 1997, Siess W 2000, Baumann-Siemons J 2000, 

Zangl KJ 2003). Dabei ist die aktive Substanz in moxLDL offenbar Lysophospha-

tidsäure (LPA) (Siess W 1999). LPA entsteht während der Oxidation von LDL, wie 

genau, ist noch unklar. Milde Oxidation von nativem LDL erhöhte den durch-

schnittlichen Gehalt von biologisch aktiver LPA um das 8fache. Dabei ist hervor-

zuheben, dass LPA auch im lipidreichen Kern atherosklerotischer Plaques ange-

reichert ist (Siess W 1999). Es handelt sich hier genau um die Region, welche be-

sonders anfällig für eine Ruptur ist und ihren Inhalt entsprechend in die Blutzirkula-

tion entleert.  

Außer während der milden Oxidation von LDL wird LPA von aktivierten Tz und 

diversen anderen Zellen gebildet (Moolenaar WH 1995). LPA findet sich in Kon-

zentrationen von 100-500nM im Plasma (Bjerve KS 1974, Baker DL 2002, Sano Y 

2002) und in etwa 10fach höherer Konzentration im Serum (Saulnier-Blache JS 

2000, Baker DL 2001, Sano Y 2002), eine Beobachtung, die nahelegt, dass LPA 

im Zusammenhang mit der Koagulation und Aktivierung von Tz gebildet wird.  

LPA ist ein einfaches Glycerophospholipid, bestehend aus Glycerin als Grundge-

rüst, einer Phosphatgruppe und einer in Länge und Sättigungsgrad variierenden 

Fettsäure. Der Typ der Fettsäure sowie dessen Bindung an Position C1 (Ether- 

oder Ester-Bindung) determinieren die strukturelle und funktionelle Variabilität der 

verschiedenen LPA-Spezies. LPA bindet an spezifische G-Protein gekoppelte Re-

zeptoren, von denen bisher 5 Subtypen, die Rezeptoren LPAR1 bis LPAR5, be-

schrieben wurden (Choi JW 2010). Dabei gibt es deutliche Hinweise darauf, dass 

es vor allem der LPAR5 ist, über den LPA Tz aktiviert (Williams JR 2009, Khando-

ga AL 2011) 

Bei ihren Versuchen mit LPA beobachteten Haserück et al, dass die Zugabe von 

geringen LPA Konzentrationen (>1µM) zu Hirudin-antikoaguliertem Blut Tz-

Gestaltwandel und Aggregation auslösen können. LPA stimulierte außerdem P-
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Selectin vermittelt, die Tz-Monozyten-Aggregatbildung im Blut. Bei der LPA indu-

zierten Aktivierung von Tz im Blut spielen ADP Rezeptoren  offenbar eine wesent-

liche Rolle. Die aggregationsfördernde Wirkung von LPA konnte durch Antagoni-

sten der beiden ADP Rezeptoren P2Y1 und P2Y12  komplett gehemmt werden 

(Haserück 2007). 

In den Untersuchungen zur Wirkung von moxLDL und LPA auf Tz spielt es eine 

wesentliche  Rolle, ob isolierte Tz oder PRP verwendet wurde.  

In einer Studie von Naseem et al zeigten isolierte Tz eine zwar kleine primäre aber 

signifikante Aggregation nach Kontakt mit milde oxidiertem LDL und Zugabe von 

Fibrinogen allein. Diese Wirkung war ab einer Konzentration von 0,5mg/ml zu 

beobachten. Nach Vorinkubation von gewaschenen Tz mit moxLDL von nur 1min 

und Stimulation durch unterschwellige Konzentrationen ADP konnte eine irreversi-

ble Antwort beobachtete werden (Naseem KM 1997).  

Weidtmann et al beobachteten abhängig von der Art der Präparation gewaschener 

TZ schon ab 0,4mg/ml moxLDL einen Gestaltwandel, und eine maximale irrever-

sible Tz-Aggregation sowie Sekretion aus den dichten Granula (Weidtmann A 

1995). Zwei weitere Studien bestätigten diese Ergebnisse (Baumann-Siemons J 

2000, Zangl KJ 2003). Weidtmann et al zeigten außerdem, dass die durch 

moxLDL induzierte Aggregation der Tz, nicht aber der Gestaltwandel, über die 

Aktivierung der Phospholipase A2, Freisetzung von Arachidonsäure aus Phospho-

lipiden der Tz-Membran und Bildung von Thromboxan A2 vermittelt wird.,  

In Citrat-antikoaguliertem PRP fand keine spontane Reaktion durch Zugabe von 

moxLDL statt, nach Inkubation mit moxLDL und Stimulation durch ADP fand sich 

jedoch eine gesteigerte Antwort ähnlich der in gewaschenen Tz (Naseem KM 

1997). Im Gegensatz dazu konnten Tornvall et al auch nach Stimulation mit ADP 

keine signifikant gesteigerte Reaktion im Citrat-antikoagulierten PRP nach Inkuba-

tion mit moxLDL feststellen.  

Im Blut (ebenfalls Citrat-antikoaguliert) beobachtete die selbe Arbeitsgruppe aller-

dings eine signifikante Steigerung der Tz Aggregation (Tornvall P 1999).  
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2.3.3 Oxidiertes LDL 

In der Mehrzahl der Studien konnte ein aktivierender Effekt von oxidiertem LDL 

(oxLDL) auf isolierte Tz und Tz im PRP beobachtet werden. Nur zwei Studien fan-

den ein anderes Ergebnis: Tornvall et al konnten keinen Effekt nach Inkubation mit 

oxLDL auf die ADP oder Kollagen induzierte Aggregation isolierter Tz oder Tz im 

Citrat-antikoagulierten PRP im Aggregometer messen (Tornvall P 1999), und in 

der Studie von Naseem et al zeigte oxLDL nach Inkubation eine hemmende Wir-

kung auf die ADP induzierte Aggregation isolierter Tz und Tz in Citrat-

antikoaguliertem PRP, gemessen im Aggregometer. Erklärt wurde diese Beobach-

tung in der letztgenannten Studie mit reaktiven Aldehyden, wie 4-Hydroxynonenal, 

welche bei der Lipidperoxidation entstehen und eine hemmende Wirkung auf Tz 

haben (Naseem KM 1997). 

Bei der Tz-aktivierenden Wirkung von oxLDL scheint das in Abschnitt 2.2.2.1 er-

wähnte Membranprotein CD36 eine herausragende Rolle zu spielen. 

Podrez et al konnten mit Hilfe radioaktiver Markierung der verwendeten Lipopro-

teine zeigen, dass oxLDL über CD36 an isolierte humane Tz bindet. Außerdem 

zeigten sie per Durchflusszytometrie, dass diese Interaktion zu P-Selectin-

Expression und Konformationsänderung des Fibrinogen-Rezeptors führt (Podrez 

EA 2007). Als aktive Substanz identifizierten sie verschiedene oxidierte Phospha-

tidylcholine (oxPCCD36), welche z.B. während der MPO-vermittelten Oxidation von 

LDL entstehen, aber auch in vitro, bei der Oxidation von LDL mit Kupferionen   

(Podrez EA 2002).  

In isolierten Tz kam es durch Inkubation mit oxLDL zum Gestaltwandel. Wraith et 

al konnten den Signalweg identifizieren, der nach Bindung von oxLDL an CD36 

zur Bildung des für den Gestaltwandel erforderlichen Actomyosinkomplexes  führt 

(Wraith KS 2013).  

Über oxLDL/CD36 aktivierte, isolierte Tz zeigten eine gesteigerte Oberflächenex-

position von CD40L, einem Marker für entzündliche Reaktionen, hervorgerufen 

durch eine erhöhte Produktion an reactive oxygen spezies (ROS) in Tz (Assinger 

A 2010). ROS hemmten zudem den cGMP Signalweg in isolierten Tz. Dieser Si-

gnalweg führt zu einer Abnahme der Tz Adhäsion und Aggregation. Wird er ge-
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hemmt, kommt es folglich zu einer Steigerung der Thrombin, Kollagen und ADP 

induzierten Tz Aggregation (Magwenzi S 2015).  

Im Zusammenhang mit der Aktivierung von Tz durch oxLDL scheint neben CD36 

auch noch der Scavenger Rezeptor A (SR-A) eine wesentliche Rolle zu spielen. 

Um die Wirkung von oxLDL auf isolierte Tz zu unterbinden, müssen beide Rezep-

toren blockiert sein. Intrazellulär kommt es bei beiden Rezeptoren über die Aktivie-

rung von p38MAPK und PLA2 letztlich zur Bildung von Thromboxan A2, ähnlich 

wie bei der Aktivierung durch natLDL, nur wesentlich stärker (Korporaal SJ 2007).  

Bei der Wirkung von oxLDL auf bereits aktivierte Tz im PRP spielt der Lox-1-

Rezeptor (siehe Kapitel 2.2.2.1) eine wesentliche Rolle. Seine Expression auf der 

Tz-Oberfläche steigt um das 1,5-2fache nach Stimulation durch ADP (Chen M 

2001). Die Ergebnisse der Studie von Marwali et al legen zudem nahe, dass eine 

Aktivierung von Lox-1 einen Einfluss auf die Bindung von Fibrinogen hat und damit 

an der Aggregation von Tz beteiligt ist (Marwali MR 2007).  

Unter dem Einfluss von verschiedenen Entzündungsmediatoren kommt es zur Bil-

dung von Plättchen-Neutrophilen-Aggregaten (PNA) (von Hundelshausen P 2007, 

Totani L 2010), und gegenseitiger Stimulation (Lievens D 2010, Drechsler M 2010, 

Lievens D 2011). Auch oxLDL allein vermag die Bildung von PNAs im mit Leuko-

zyten angereicherten Blut über die Stimulation von thrombozytärem P-Selectin 

anzuregen. Offenbar vermittelt über die Zell-Zell Interaktionen der PNAs, da unab-

hängig von löslichen Mediatoren, kommt es in der Folge zum gesteigerten Durch-

tritt von Neutrophilen durch das Endothel, was  fortschreitende endzündliche Pro-

zesse begünstigen kann (Badrnya S 2012). Eine Stimulation von Tz im Citrat-

antikoagulierten Blut durch Inkubation mit oxLDL beobachteten auch Tornvall et al. 

10minütige Inkubation von Blut mit oxLDL steigerte die ADP induzierte Tz Aggre-

gation im Impedanz-Aggregometer signifikant (Tornvall P 1999).  

 

2.3.4 Natives HDL 

Der Großteil der Studien zeigt eine hemmende Wirkung von nativem HDL 

(natHDL) auf die Tz Funktion. In einer frühen Studie konnte bereits gezeigt wer-
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den, dass die Thromboxan A2 Produktion von TZ  während spontaner Gerinnung 

von Blut unter dem Einfluss von natHDL gehemmt wird  (Beitz A 1990).  

In gewaschenen Tz hemmt eine Inkubation mit natHDL die Thrombin und ADP 

induzierte Aggregation (Nofer JR 1998, Assinger A 2008). Plausible Erklärung da-

für könnte einerseits der Effekt von HDL auf die thrombozytäre Fibrinogen-Bindung 

sein: die Anzahl der an Tz gebundenen Fibrinogen Moleküle sank nach 5minütiger 

Inkubation gewaschener Tz mit HDL und Stimulation durch Thrombin signifikant 

(Nofer JR 1998), andererseits ging auch die ADP-induzierte P-Selectin Expression 

der isolierten Tz unter dem Einfluss von HDL signifikant zurück (Assinger A 2008). 

In einer anderen Studie wurde der hemmende Effekt von HDL auf die Aggregation 

isolierter Tz in Zusammenhang mit einem Anstieg der NO-Synthase Aktivität in 

den Tz gebracht (Chen LY 1994).  

Inkubation mit natHDL hemmt offensichtlich die auch durch oxLDL bereits hervor-

gerufene Aktivierung von Tz: Badrnya et al konnten zeigen, dass die oxLDL-

induzierte intrazelluläre ROS Bildung in gewaschenen Tz (siehe Kapitel 2.3.3) ge-

hemmt und die Expression von CD40L durch Inkubation mit HDL zurückging. Die 

durch oxLDL angeregte Bildung von PNAs in mit Leukozyten angereichertem Blut 

ging durch Inkubation mit natHDL wieder zurück (Badrnya S 2013).  

Im Gegensatz zu diesen Ergebnissen beobachteten Valiyaveettil et al im Aggrega-

tionsversuch mit gewaschenen Tz keinen signifikant hemmenden Effekt von nati-

vem HDL. Eine Thrombin induzierte Tz Aggregation wurde hier nicht signifikant 

durch Inkubation mit natHDL beeinträchtigt. Bei höheren Konzentrationen von 

natHDL war zwar auch der hemmende Effekt größer, eine Signifikanz wurde den-

noch nicht erreicht.  Die Verfasser der Studie betonen, dass eine potentielle Oxi-

dation von HDL sorgfältig vermieden wurde (Valiyaveettil M 2008).  

Der Hauptrezeptor für HDL, SR-B1, befindet sich auch auf der Oberfläche von Tz. 

Imachi et al beobachteten eine negative Korrelation zwischen der Menge an ex-

primiertem Sr-B1 und der ADP induzierten Aggregation gewaschener Tz (Imachi H 

2003). Bei in vivo Versuchen mit Mäusen konnte die hemmende Wirkung des nati-

ven HDL auf die Tz-Funktion bestätigt und in einen Zusammenhang mit dem Re-

zeptor SR-B1 gebracht werden. Korporaal et al verglichen die Zeit bis zum throm-
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botischen Verschluss der Karotisarterie nach Applikation von FeCl3 an die Arteri-

enwand von SR-B1 -/- Mäusen  mit Wildtyp  Mäusen (Korporaal SJ 2011). Der 

Verschluss der Arterie entstand bei den Knockout Mäusen  doppelt so schnell wie 

beim Wildtyp. Die Forschungsgruppe zeigte mit Hilfe der Durchflusszytometrie, 

dass Tz von SR-B1 -/- Mäusen im Vergleich zu den Tz des Wildtyps in einem akti-

vierten Zustand zirkulieren: auf der Oberfläche der TZ von SR-B1 -/- Mäusen  

stieg der Anteil an Integrin αIIbß3 in der aktiven, Fibrinogen-bindenden Konformati-

on und auch die Menge an P-Selectin nahm signifikant zu, beides Anzeichen einer 

Tz-Aktivierung und mögliche Erklärung für die höhere Thromboseanfälligkeit bei 

Fehlen des SR-B1 Rezeptors (Korporaal SJ 2011).  
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3 Fragestellung 

Bei der Erforschung kardiovaskulärer Erkrankungen ist die Interaktion zwischen Tz 

und Lipoproteinen im Blutkreislauf von Bedeutung. Außer HDL und LDL befindet 

sich auch oxidativ modifiziertes LDL in der Zirkulation und könnte  einen direkten 

Einfluss auf Tz  ausüben. Bei der Oxidation der Lipoproteine entstehende Lipide 

wie Lysophosphatidsäure (LPA) könnten dabei die aktiven Substanzen darstellen   

In der vorliegenden Arbeit wurde untersucht, wie Tz im Blut reagieren, wenn sie 

über unterschiedlich lange Zeitperioden von 1min bis 90min mit erhöhten Konzen-

trationen von LDL, HDL und oxidativ modifiziertem LDL bzw. Oxidationsprodukten 

wie LPA inkubiert werden. Dabei sollten insbesondere die Fragen beantwortet 

werden, ob sich der Tz-aktivierende Einfluss von nativem und milde oxidiertem 

LDL unterscheidet, ob LPA eine Tz-aktivierende Komponente von moxLDL dar-

stellt und ob HDL den zu erwartenden hemmenden Effekt zeigt.  

 .   
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4 Material und Methoden 

4.1 Materialien 

4.1.1 Geräte 

Aggregometer  Lumi-Aggregometer (Chronolog, Havertown, PA) 
Kanal-LABOR®-Aggregometer, Fresenius AG 
(Bad Homburg, Deutschland) 

 
Impedanzaggregometer  Multiplate® (Dynabyte Medical,  

München,Germany) 
Durchflusszytometer FACScan, Becton Dickin-
son (Heidelberg, Deutschland) 
 

Ultrazentrifuge Ultrazentrifuge L7-55 Beckman Coulter GmbH 
Sinsheim, Deutschland 

 
Zentrifuge    Biofuge pico und Megafuge 1.0RS, 

Heraeus Sepatech (Osterode, Deutschland) 
 
Neubauer-Zählkammer  Paul Marienfeld GmbH & Co. KG  

(Lauda-Königshofen) 
 
Spectrophotometer   Bio-Rad SmartSpec 3000  
 
Wasserbad    GFL GmbH (Burgwedel, Deutschland) 
 
Lichtmikroskop   D-65323, Leitz (Wetzlar, Deutschland) 
 

4.1.2 Puffer 

BSA Puffer     150 mM NaCl 
     10mM Hepes 

0,25mM Bovines Serumalbumin (BSA) 
 
PBS  Dulbecco’s Phosphate buffered Saline  

(Sigma-Aldrich Taufkirchen, Germany) 
 

Puffer B (pH 6,2)   20 mM HEPES 
2,9 mM KCl 
1 mM MgCl2 x 6 H2O 
0,36 mM NaH2PO4 
138 mM NaCl 
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Puffer C (pH 7,4)     20 mM HEPES 
2,9 mM KCl 
1 mM MgCl2 x 6 H2O 
0,36 mM NaH2PO4 
138 mM NaCl 

 
Dichtegradient 1     Dichte: 1,080g/l 

Aqua destillata 
1g/l EDTA 
120g/l NaCl 

 
Dichtegradient 2     Dichte: 1,050g/l 

Aqua destillata 
1g/l EDTA 
74g/l NaCl 

 
Dichtegradient 3     Dichte: 1,000g/l 

Aqua destillata 
1g/l EDTA 

 
Dialysepuffer      150 mM NaCl, 

1 mM EDTA, 0,05% (w/v) 
 

4.1.3 Chemikalien und Reagenzien 

Acetylsalicylsäure     Sigma-Aldrich  
(Taufkirchen, Deutschland) 

 
ADP 50704, Trinity Biotech Company 

(Lemgo,Deutschland) 
 
Apyrase  Adenosindi-/triphosphatase  

(A-7511, Sigma-Aldrich  
(Taufkirchen, Deutschland) 

 
BD FACS Lysing Solution     (Erythrolyselösung) 

BD Biosciences  
(Bedford, MA, USA) 

(Erythrolyselösung) 
 
BSA - Bovines Serumalbumin    Thermo Fisher Scientific 
 
BSA - fettsäurefrei A-7511, Sigma-Aldrich  

(Taufkirchen, Deutschland) 
 
BHT: Butyliertes Hydroxytoluen    Sigma-Aldrich  

(Taufkirchen, Deutschland) 
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Cholesterin FS Reagenz     Diagnostic Systems GmbH 
 
Citrat, Trinatriumsalz     Sigma-Aldrich  

(Taufkirchen, Deutschland) 
 
(±)-epinephrine      Sigma-Aldrich  

(Taufkirchen, Deutschland) 
 
Ethylendiamintetraacetat (EDTA)   Sigma-Aldrich  

(Taufkirchen, Deutschland) 
 

Glucose       Sigma-Aldrich  
(Taufkirchen, Deutschland) 

 
HEPES  4-(2-Hydroxyethyl)-1-

piperazinethansulfonsäure 
 
Kaliumbromid     Sigma-Aldrich  

(Taufkirchen, Deutschland) 
 
Kollagenreagens (Horm®)  Nycomed Pharma (Unterschleiss-

heim, Deutschland) 
 
Kupfersulfat CuSO 4    Sigma-Aldrich  

(Taufkirchen, Deutschland) 
 
Lysophosphatidsäure (LPA)   1-Palmitoyl-sn-glycero-3phosphate; 
       Alexis Corp. (San Diego, CA, USA) 
 
LPA5 Rezeptor Antagonist PGM029615; Takeda Cambridge 

Ltd  (Cambridge, England) 
 
Malondialdehyd  Sigma-Aldrich  

(Taufkirchen, Deutschland) 
 
Pierce™ BCA Protein Assay Kit    Thermo Fisher Scientific 
 
Refludan® Lepirudin,     Pharmion Ltd.  

(Marburg, Deutschland) 
 
Thiobarbitursäure     Sigma-Aldrich  

(Taufkirchen, Deutschland) 
 
TRAP-6 (PAR-1 agonist)     Bachem Distribution  

(Weil am Rhein) 
 
Trichloressigsäure     Sigma-Aldrich  

(Taufkirchen, Deutschland) 
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Zitronensäure     Merck (Darmstadt) 
 

4.1.4 Antikörper 

PE Mouse Anti-Human CD41a   BD Biosciences  
(Bedford, MA, USA) 

monoklonales anti-CD41a Mäuse IgG1, 
PE-gebunden 
 
FITC Mouse Anti-Human PAC-1   BD Biosciences  

(Bedford, MA, USA) 
monoklonales anti-αIIbβ3  Mäuse  IgM    
FITC gebunden 
 
Mouse anti Human CD62P antibody  Bio-Rad AbD Serotec GmbH 
monoklonales anti-P-Selectin Mäuse IgG1 
FITC-gebunden 
 

4.1.5 Verbrauchsmaterialien 

Butterflykanülen (20-Gauge)     Intermedica GmbH  
(Mainz, Deutschland) 

 
THROMBO-PLUS®-Röhrchen    Sarstedt (Nümbrecht, Deutschland) 
 
Entsalzungssäulen                               EconoPac 10 DG Desalting Col-

umns, Fa.BioRad 
 
Konzentratoren  Pierce™ Protein Concentrator PES, 

100K und 30K Molecular Weight 
Cut-Off, 5-20ml Thermo Fisher Sci-
entific 

 
Lumi-aggregomter cuvettes, 450µl   Chronolog, Havertown, PA 
 
Lumi-aggregometer     Chronolog, Havertown, PA 
disposable siliconized stir bars 
 
Multiplate®-test cells     Dynabyte Medical  

(München, Deutschland) 
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4.2 Methode 

4.2.1 Blutgewinnung 

Blut wurde aus der Vena cubitalis gesunder, 20-40jähriger Probanden gewonnen, 

welche während der letzten 2 Wochen keinerlei Medikamente eingenommen hat-

ten. Eine schriftliche Einverständniserklärung der Probanden in Übereinstimmung 

mit dem Helsinki Protokoll wurde vor der Blutentnahme eingeholt.  

Die Blutabnahme erfolgte mittels einer 20 Gauge Butterfly-Kanüle in eine, je nach 

benötigter Menge, 20 oder 50ml Plastikspritze. In der Spritze war bereits eine dem 

Versuchsansatz entsprechendes Antikoagulans (1/10 des Blutvolumens)  vorge-

legt. Die ersten 3ml Blut wurden stets verworfen, um eine Verunreinigung des Blu-

tes durch Gewebsthromboplastin zu verhindern.  

Für die Multiplate- und FACS - Versuche im Blut wurde rekombinantes Hirudin in 

0,9% NaCl gelöst, die finale Konzentration im Blut betrug 200U/ml. Zur Herstellung 

von PPP, PRP oder einer Suspension von gewaschenen Tz wurde eine 3,8%ige 

Trinatriumzitratlösung als Antikoagulanz verwendet. 

 

4.2.2 Herstellung von Thrombozyten Suspensionen 

4.2.2.1 Herstellung von PRP und PPP 

Direkt im Anschluss an die Blutabnahme wurde das Trinatriumzitrat-

antikoagulierte Blut in 50ml Polypropylenröhrchen  überführt und für 20min bei RT 

mit 160 x g (ohne Bremse) zentrifugiert. Aus dem Überstand konnte das PRP mit 

einer Polypropylenpipette aspiriert werden. Die Zählung der Tz erfolgte wie unter 

4.2.2.3 beschrieben.  

Für die Gewinnung von plättchenarmen Plasma (PPP) wurde das PRP nochmals 

für 10min bei 1000g (mit Bremse) zentrifugiert und der Überstand, der das PPP 

enthielt,  vorsichtig abpipettiert. 
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4.2.2.2 Herstellung einer Suspension  gewaschener Thrombozyten 

PRP wurde mit Acetylsalizylsäure (ASS, 1mM) und Apyrase (ADPase-Aktivität 0,5 

U/l) versetzt, für 15min bei 37°C inkubiert und anschließend mit Zitronensäure 

(9mM) und EDTA (5mM) versehen. Nach einem weiteren Zentrifugationsschritt bei 

800g für 20min bildete sich auf dem Boden des Röhrchens ein Tz-Pellet. Der 

Überstand wurde verworfen und das Pellet in auf 37°C erwärmten Waschpuffer B 

vorsichtig resuspendiert. Puffer B enthielt zusätzlich Apyrase (f.c. 0,3U/ml) und 

war auf einen sauren pH-Wert von 6,2 eingestellt. Tz wurden in dieser Suspensi-

on, wie unter 4.2.2.3 beschrieben, ausgezählt.  

Die Tz-Suspension wurde abermals für 20min bei 800g zentrifugiert, der Über-

stand verworfen und das entstandene Pellet mit Puffer C resuspendiert, welcher 

ebenfalls auf 37°C vorgewärmt wurde und Apyrase in einer finalen Konzentration 

von 0,3U/ml enthielt. Um eine Lösung mit der gewünschten Tz Konzentration von 

500000/µl zu erhalten, wird die verwendete Menge an Puffer C nach folgender 

Formel ermittelt:   

 
 

Die fertige Suspension wurde mit Glukose in einer finalen Konzentration von 5mM 

versetzt und für mindesten 30min bei RT ruhen gelassen, um eventuelle Vorakti-

vierungen und Desensibilisierungen abklingen zu lassen. Die Aggregationsversu-

che mit gewaschenen Tz wurden bis 4h nach Blutabnahme durchgeführt. 

4.2.2.3 Zählung Thrombozyten 

Für die Zählung der TZ wurden 10µl der Proben entnommen, in ein Sarstedt-

Röhrchen mit 2ml THROMBO-PLUS®-Puffer pipettiert und geschwenkt. Ein Trop-

fen der Suspension wurde in eine Neubauer-Zählkammer gegeben. Nach 5min 

konnten 5 Felder mit Hilfe des Lichtmikroskops Leitz D-65323 gemäß Hersteller-

angaben ausgezählt werden.  
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4.2.3 Gewinnung und Modifikatin von LDL 

4.2.3.1 Gewinnung von LDL und HDL 

EDTA-Blut (50-60ml) wurde wie unter 4.2.1 beschrieben entnommen und in An-

lehnung an das Verfahren von Schulz et al (Schulz T 1995) weiter verarbeitet. Das 

Blut wurde sofort nach Entnahme bei 4000rpm und 10°C für 30min zentrifugiert, 

das Plasma mit einer Pipette entnommen und mit Kaliumbromid (KBr 3,45mM f.c.) 

auf eine Dichte von 1,41g/ml eingestellt. Anschließend wurden jeweils 4ml Plasma 

in ein Ultrazentrifugen-Röhrchen der Fa. Beckmann pipettiert und mit dem folgen-

den dreistufigen Dichtegradienten überschichtet: 

Dichtegradient 1: 1,080 g/ml: 3,5ml  

Dichtegradient 2: 1,050 g/ml: 3ml  

Dichtegradient 3: 1,000 g/ml: 3ml.  

Jeder Dichtegradient bestand aus destilliertem Wasser und enthielt die für die Ein-

stellung der Dichte benötigte Menge an NaCl sowie 1mg/ml EDTA als Oxidations-

schutz. Pro Zentrifugationsschritt konnten 6 Röhrchen, also insgesamt 24ml Plas-

ma, eingesetzt werden.  
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Foto 1: Lipoproteinauftrennung 

Zentrifugenröhrchen nach 24-stündiger Ultrazentrifugation und erfolgreicher Auftrennung der Lipo-
proteine  

 

Nach 22-24h Ultrazentrifugation in einem Beckmann Ti 50.2 Rotor bei 256.000xg 

waren die im Blut enthaltenen Lipoproteine durch die Dichtegradienten separiert 

und konnten von der Oberfläche aus mit einer Pipette vorsichtig aspiriert werden. 

Dabei wurden die ersten beiden Schichten, VLDL und Dichtegradient 1, sowie die 

beiden letzten Schichten, Dichtegradient 3 und Restplasma, verworfen. Bis zur 

Weiterverarbeitung wurden LDL und HDL mit Stickstoff überschichtet, bei Dunkel-

heit und 4°C für maximal 1 Woche in 15ml Sarstedt Röhrchen gelagert. Für einen 

Versuch wurden die Lipoproteine  von 4 verschiedenen Spendern gepoolt.  
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4.2.3.2 Entfernung der Salze, Bestimmung der Proteinmenge und des Cho-
lesterins sowie Konzentration der Lipoproteine 

Die exakte Bestimmung der Proteinkonzentration von HDL und LDL erfolgte nach 

der Methode von Smith et al (Smith PK 1985), bei der Kupferionen durch Proteine 

reduziert und einen farbigen Komplex mit BCA (Bicinchoninic Acid) bilden. Dieser 

Komplex ist wasserlöslich, seine Menge verhält sich linear zur Proteinkonzentrati-

on und er kann photometrisch im Fotometer bei 562nm Wellenlänge gemessen 

werden. Wir verwendeten das Bio-Rad SmartSpec 3000 Spectrophotometer. Die 

Eichkurve wurde mit bovinem Serumalbumin (BSA) erstellt. Die benötigten Sub-

stanzen und die Vorgaben für die Verdünnungen zur Erstellung der Eichkurve 

stammten von der Firma Thermoscientific (Pierce™ BCA Protein Assay Kit, Ther-

moscientific). Die Proteinmenge des durch die Ultrazentrifugation separierten LDL 

betrug zwischen 1,2-1,5mg/ml, die des HDL 2,7-3,1mg/ml.  

Vor den Experimenten wurden zur Entfernung von KBr, NaCl und EDTA aus den 

Lipoproteinlösungen diese (2,5ml) auf Entsalzungs-Säulen (EconoPac 10 DG De-

salting Columns, Fa. BioRad) aufgetragen, und mit PBS (3,5ml) eluiert. Die Säulen 

enthalten eine Polyacrylamidgel-Matrix, welche gewährleistet, dass Substanzen 

mit einem Molekulargewicht von >6000 Dalton in den Poren des Gels zurück-

gehalten werden und Substanzen <6000Dalton ausgeschlossen werden.  

Die nun nicht mehr durch EDTA vor Oxidation geschützten Lipoproteinlösungen 

wurden sofort aufkonzentriert. Dafür wurden Konzentratoren der Firma Thermo 

Fisher Scientific™ mit der Porengröße 100K MWCO (Molecular Weight Cut-Off) 

für LDL und 30K MWCO für HDL verwendet. Durch 60-90minütige Zentrifugation 

bei 4000g wurde LDL auf eine finale Konzentration von 16- 20mg/ml und HDL auf 

8-10mg/ml eingeengt. Bis zur weiteren Verwendung wurden die Lipoproteine wie-

der mit Stickstoff überschichtet, bei Dunkelheit und 4°C für maximal 36h in 15ml 

Sarstedt Röhrchen gelagert.  

Im Plasma, welches zur Gewinnung von LDL und HDL sowie für die Tz-

Aggregationsversuche im Blut verwendet wurde, wurden Gesamt-, LDL- und HDL-

Cholesterin (HDL-C) sowie Triglyzeride bestimmt. Diese lagen bei den gesunden, 

jungen Probanden erwartungsgemäß in einem im ähnlichen Bereich:  
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Tabelle 1: Plasmalipidprofile der Probanden  

(MW+/-SD; n=8) 

 

Die Bestimmung erfolgte mit einem enzymatischen photometrischen Test von 

Deeg et al (Deeg P 1983). Dabei werden die Cholesterinester zunächst enzyma-

tisch hydrolisiert und oxidiert. Durch die Wirkung von Peroxidase entsteht schließ-

lich Chinonimin, ein violetter Farbstoff, welcher  bei einer Wellenlänge von 500nm 

absorbiert und photometrisch gemessen wird. Das verwendete Reagenz stammte 

von der Firma DiaSys (Diagnostic Systems GmbH). 

4.2.3.3 Herstellung von moxLDL  

In den Versuchen wurde milde oxidiertes LDL (moxLDL) verwendet. Das native, 

entsalzte und aufkonzentrierte LDL wurde gemäß Protokoll von A. Weidtmann mit 

Kupfersulfat (CuSO4) versetzt. Bei einer LDL Konzentration von 20mg/ml wurde 

CuSO4 in einer finalen Konzentration von 640µM eingesetzt, bei einer geringeren 

LDL Konzentration entsprechend weniger. Die Substanzen wurden gut durch-

mischt und in einem 50ml Sarstedt Tube in horizontaler Lage über 24h bei 37°C 

im Wärmeschrank inkubiert. Nach Ablauf der 24h hatte sich das LDL deutlich ver-

ändert: von ursprünglich klar und orange war die Färbung zu opaque und gelb 

übergegangen.  

Die Bestimmung des Ausmaßes der Lipidperoxidation erfolgte über die Messung 

der Thiobarbitursäure-reaktiven Substanzen (TBARS), nach Wallin et al (Wallin B 

1993). Dabei handelt es sich um Malondialdehyd und andere Aldehyde, welche 
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durch Oxidation der ungesättigten Fettsäuren in den Lipoproteinen entstehen. 

Durch die Reaktion mit Thiobarbitursäure entsteht ein violetter Farbstoff, welcher 

photometrisch bestimmt werden kann.  

50µg LDL Protein wurden durch Zugabe zu 1ml 20% Trichloressigsäure und 0,1% 

Butylhydroxytoluol (BHT) ausgefällt. Thiobarbitursäure (1%, in NaOH gelöst) wur-

de hinzu pipettiert, der Ansatz geschüttelt und im Wasserbad bei 90-95°C für 

40min erhitzt, wobei eine violette Färbung entstand. Nach 10minütiger Zentrifuga-

tion bei 800g und 20°C wurde der Überstand vorsichtig aspiriert und seine Absorp-

tion bei 532nm im Photometer (Bio-Rad SmartSpec 3000 Spectrophotometer) be-

stimmt. Die Eichkurve wurde mit Malondialdehyd erstellt. Das in den Versuchen 

verwendete moxLDL wies einen Gehalt von 10 +/-2 nmol TBARS/mg Protein 

(MW+/-SD; n=11) auf. Das verwendete natLDL wies mit einem Gehalt von    

0,38+/-0,16nmol TBARS/mg Protein nur Spuren einer Oxidation auf. 

 

 

Tabelle 2: Gehalt an TBARS in moxLDL und natLDL 

Ermittlung der Lipidperoxidation durch Bestimmung der TBARS im Photometer bei einer Wellen-
länge von 532nm nach Wallin et al (Wallin B 1993). Als Standard diente Malondialdehyd.  

 

4.2.4 Gewinnung Plaque  

Die in unseren Versuchen verwendeten Plaques stammten von Patienten, welche 

auf Grund einer Karotisstenose  eine gefäßchirurgische Operation durchführen 
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lassen mussten. Das schriftliche Einverständnis der Patienten zur Entnahme der 

Proben und die Genehmigung der Ethikkommission der LMU München lagen vor 

dem Durchführen des Eingriffs vor.  

Bei der Operation wurde die atherosklerotische Läsion „en bloc“  entnommen; Me-

dia, Adventitia sowie gesunde Intima wurden geschont (Brandl R 1997). Nach 

Entnahme wurde die zentrale atheromatöse Plaqueregion mit fibröser Kappe und 

lipidreichem, nekrotischem Kern sorgfältig von den angrenzenden Bereichen, wie 

der distal gelegenen Plaqueschulterregion, dem Übergang zwischen gesunder 

Intima und der eigentlichen Läsion, und einer proximal der Läsion situierten Regi-

on mit diffuser Verdickung der Intima getrennt (Brandl R 1997). Ein Teil der Probe 

wurde sodann histomorphologisch untersucht, ein anderer Teil wurde in flüssigem 

Stickstoff schockgefroren und bis zu Weiterverarbeitung bei -80°C gelagert.  

Die Weiterverarbeitung erfolgte unter sterilen Bedingungen. Die Plaqueproben 

wurden langsam auf Eis aufgetaut, abgewogen, mit einem scharfen Skalpell zer-

kleinert und per Glaspotter in einem zylindrischem Glaspistill in Puffer (150 mM 

NaCl, 1 mM EDTA)  homogenisiert (pH 7,4). Es wurde eine Endkonzentration von 

100mg/ml Feuchtgewicht eingestellt. Bis zur Weiterverwendung wurde die Die 

Plaquesuspension in 100µl Portionen aufgeteilt, in flüssigem Stickstoff schockge-

froren und bei -80°C gelagert. Nochmaliges  Einfrieren und Wiederauftauen wurde 

vermieden.  

 

4.2.5 Vorbereitung von LPA und LPA5 Rezeptor Antagonist PGM029615   

LPA wurde in einer Lösung aus 80% Ethanol und 20% H2O bei -20°C gelagert. 

Für die Versuche wurden hiervon 100µl mit N2 abgedampft und das verbleibende 

Sediment mit der gleichen Menge an BSA-Puffer resuspendiert, wodurch man ei-

ne 1mM Lösung erhielt.  

Der pharmakologische LPA5 Rezeptor Antagonisten PGM029615 wurde genauso 

wie LPA gelagert, jedoch wurden 33,3µl dieser Lösung mit 200µl BSA-Puffer re-

suspendiert, um eine 1mM Lösung zu erhalten. Für die weitere Verwendung wur-

de diese nochmals mit BSA-Puffer auf eine Konzentration von 0,1mM verdünnt.  
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4.2.6 Experimente 

4.2.6.1 Bestimmung der Thrombozyten-Aggregation im Blut 

Die Tz-Aggregation im Blut wurde mit der von Toth et al beschriebenen Multiplate 

Analyse bestimmt (Toth O 2006). Es wurden zwei Mutiplate®-Geräte der Firma 

Dynabite verwendet.  

In nicht aktiviertem Zustand zirkulieren Tz im Blut, werden sie jedoch durch Agoni-

sten stimuliert, kommt es zur Adhäsion und Aggregation. Diese Tatsache wird bei 

der Multiplate Analyse genutzt. In der Messzelle des Mutiplate®-Geräts adhärieren 

die aktivierten Tz an einer Sensoroberfläche, einem Elektrodenpaar aus Anode 

und Kathode, und der elektrische Widerstand, die Impedanz, steigt. Dieser Wider-

stand wird bestimmt und stellt ein Maß für die Plättchenaggregation dar. Die Ände-

rung des Widerstandes, also die zunehmende Aggregation, wird fortlaufend vom 

Mutiplate®-Gerät aufgezeichnet und als Kurve gegen die Zeit aufgetragen. Die 

Fläche unter der Kurve (Area under the Curve = AUC) wird schließlich bestimmt 

und in Aggregationseinheiten (AU*min), als Maß bezogen auf die Zeit, angegeben. 

Die Aggregationsversuche mit Blut im Mutiplate®-Gerät wurden zwischen 30min 

und 3h nach Blutentnahme durchgeführt.  

Wenn nicht anders angegeben, wurde Hirudin-antikoaguliertes Blut zu gleichen 

Teilen mit 0,9% NaCl-Lösung vermischt und in der Multiplate®-Einwegmesszelle 

bei 37°C für meist 10min vorinkubiert. Danach  wurde ein magnetischer Polytetra-

flurethylen–beschichteter Rührstab hinzugegeben und die Probe bei 800 rpm für 

3min gerührt. Anschließend wurden die Tz-Stimuli (LPA, Adrenalin, atheromatöses 

Plaquematerial, Kollagen und ADP) zugegeben und die Veränderung der elektri-

schen Impedanz während 5min aufgezeichnet.  

Bei den Versuchen zur Wirkung von moxLDL auf die Tz Funktion nach Inkubation, 

dargestellt in Abb. 5, setzte sich das pro Messzelle benötigte Volumen von 600µl 

folgendermaßen zusammen: Die für jeden Einzelversuch benötigte Menge von 

absolut 2,4mg natLDL und moxLDL bzw. 1,2mg HDL, jeweils gelöst in PBS, wurde 

durch Zugabe von 0,9% NaCl-Lösung auf  ein Volumen von 300µl gebracht und 

mit 300µl Hirudin-antikoaguliertem Blut gemischt. Die jeweilige Kontrolle beinhalte-

te die gleiche Zusammensetzung aus Hirudinblut und PBS/NaCl bzw. DG2/NaCl. 
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Das Mengenverhältnis von PBS, LDL, HDL und DG2 zu NaCl variierte zwischen 

den verschiedenen Versuchen, da nicht immer die exakt gleiche Konzentration bei 

der Einengung von LDL und HDL erreicht wurde.  

Die so vorbereiteten Proben wurden für insgesamt 60min vorinkubiert, davon 

57min bei 37°C im Wasserbad. Die Proben wurden alle 10min vorsichtig ge-

schwenkt. Für die letzten 3min Inkubationszeit wurden die Proben in die Messzelle 

des Mutiplate®-Geräts pipettiert. Anschließend wurden der Rührer und die Agoni-

sten Kollagen, ADP, Plaque oder Trap hinzugefügt und die Messung gestartet.  

4.2.6.2 Versuche zum Gestaltwandel und zur Aggregation 

Die Experimente zum Gestaltwandel und der Aggregation von Tz in PRP und in 

Suspensionen isolierter Tz wurden in einem Lumi-Aggregometer (Chronolog, Ha-

vertown, PA) nach der turbidimetrischen Methode von Born (Born GV 1963) 

durchgeführt. Dabei wird die Lichttransmission durch die verwendete Lösung unter 

ständigem Rühren bei 1100rpm und 37°C  im Vergleich zur Lichttransmission ei-

ner entsprechende Referenzlösung gemessen und fortlaufend aufgezeichnet. Re-

ferenzlösung für PRP war PPP, als Referenz für gewaschene Tz wurde eine plätt-

chenarme Suspension aus 300µl Tz-Suspension und 100µL Puffer C verwendet.  

In unseren Versuchen wurden jeweils 400µl der untersuchten Suspension nach 

vorheriger Inkubation bei 37°C in einer Küvette im Aggregometer platziert. Je nach 

Versuchsanordnung wurde die Basallinie während 0,5min aufgezeichnet, danach 

wurden 1 bis 3 Agonisten im Abstand von jeweils 1 bis 2min hinzugefügt.   

Nach Stimulation  kommt es zunächst zum Gestaltwandel, die Lichttransmission 

nimmt ab. Bei stärkerer Stimulation aggregieren anschließend die Tz und die 

Lichttransmission nimmt zu.  Je nach Grad der Aktivierung ist die Aggregation re-

versibel oder irreversibel.  

4.2.6.3 Bestimmung der Thrombozyten Aktivierung nach Inkubation 

Die Messung der P-Selectin-Expression und der aktivierten GPIIb/IIIa-Rezeptoren 

auf Tz im Blut erfolgte mittels Durchflusszytometrie im BD FACS-Calibur-Gerät der 

Firma Becton Dickinson (Heidelberg, Deutschland).  
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Die Methode der Durchflusszytometrie ermöglicht die Analyse von Zellen, welche 

einzeln in einem Flüssigkeitsstrom an einem Laserstrahl vorbeifließen. Dabei kön-

nen mehrere Parameter gleichzeitig erfasst werden. Zum einen kann durch die 

Beurteilung der Lichtstreuung eine Aussage über den Zelltyp gemacht werden. So 

erlaubt die Auswertung der Streuung im flachen Winkel nach vorne, der soge-

nannte Forward-Scatter (FSC), eine Aussage über die Größe der Zelle, während 

die Streuung im rechten Winkel, der sogenannte Side-scatter (SSC), von Granula, 

welche in den Zellen eingelagert sind, verursacht wird. Zum anderen kann über 

die Messung von Fluoreszenz ein Nachweis über die Expression bestimmter 

Oberflächenmoleküle erbracht werden. Dabei werden spezifische Antikörper ver-

wendet, welche an fluoreszierende Farbstoffe gekoppelt sind. Das entstehende 

Fluoreszenzsignal wird vom selben Detektor empfangen wie das Streulicht.  

In den Versuchen wurde der Zelltyp (Tz) durch CD41a Antikörper (erkennt GPIIb 

auf der Tz-Oberfläche) identifiziert. Um eine Aussage über die Tz-Aktivierung zu 

machen, wurde die P-Selectin-Expression mit Hilfe von CD62 Antikörper und die 

Detektion der aktiven Konformation des Fibrinogen-Rezeptors mittels des PAC-1 

Antikörpers gemessen.  

Die Blutabnahme erfolgte wie in Abschnitt 4.2.1 beschrieben. Es wurde Hirudin-

antikoaguliertes Blut verwendet. Jeweils 400µl Hirudinblut wurden in der Aggrega-

tionsküvette eines 2-Kanal-Labor-Aggregometers (Fresenius) mit Albumin (Kon-

trolle), LPA (20µM), Kollagen (0,3µg/ml) oder Plaque (1,25mg Feuchtgewicht/ml) 

im Thermoblock bei 37°C für 13min ohne Rühren  inkubiert.  Anschließend wurden 

die Proben (100µl) mit jeweils 15µl PE-konjugiertem (rot fluoreszierend) anti-

CD41a Antikörper und FITC-konjugiertem (grün fluoreszierend) PAC-1 bzw. CD62 

Antikörper während 15min bei Raumtemperatur (RT) in der Dunkelheit inkubiert. 

Danach wurden die Proben in Eppendorf-Gefäße pipettiert, in denen bereits 1ml 

Erythrolyselösung (BD FACS Lysing Solution) vorgelegt war, und für 15min bei RT 

stehen gelassen. Die auf diese Weise markierten und lysierten Proben wurden für 

8min bei 800g und RT zentrifugiert, der Überstand verworfen und das zurückblei-

bende Zellpellet mit BD CellFIX während 15min bei Dunkelheit und RT resuspen-

diert. Es folgte die Auswertung im Durchflusszytometer.  
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4.2.7 Statistik 

Die Ergebnisse wurden als Mittelwert ± Standardabweichung (MW±SD) angege-

ben, n entspricht der Anzahl der Experimente. Für die statistische Analyse wurde 

der gepaarte und der ungepaarte zweiseitige T-Test und die 2-Faktoren-Varianz-

Analyse verwendet. Ergebnisse wurden als signifikant betrachtet, wenn p<0,05 

war. 
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5 Ergebnisse 

5.1 Sensibilisierung und Desensibilisierung der Thrombozyten-
aggregation durch LPA  

LPA wirkt in nM-Konzentrationen direkt auf gewaschene Tz, in µM-

Konzentrationen auf Tz im Blut und ist eine Tz-aktivierende Substanz von moxLDL 

(Siess W 1999, Essler M 2000, Haserück N 2007). Eine Vorinkubation der Tz mit 

LPA desensibilisiert die Tz auf eine nachfolgende  Stimulation mit LPA (homologe 

Desensibilisierung) (Gueguen G 1999, Haserück N 2007). 

Es wurde  daher die Wirkung einer Vorinkubation von Blut mit LPA auf die nach-

folgende spontane und Stimulus-induzierte Aggregation von Tz im Blut mittels 

MEA gemessen. Hirudin-antikoaguliertes Blut wurde für 10min bei Raumtempera-

tur mit Kontroll-Puffer oder LPA (20µM) vorinkubiert.  

.  

5.1.1 Vorinkubation mit LPA hemmt die LPA - induzierte Thrombozytenag-
gregation im Blut 

Nach Vorinkubation mit Albumin-Puffer und anschließendser Stimulation mit LPA 

kam es zu einer Tz-Aggregation, die durch Vorinkubation mit LPA komplett ge-

hemmt werden konnte (Abb. 1a rechts). Es fand hier wie erwartet eine homologe 

Desensitisierung statt: die LPA Rezeptoren der Tz im Blut wurden durch die Inku-

bation desensibilisiert und reagierten daher nicht mehr auf die 2. Zugabe von LPA. 

Nach Vorinkubation mit LPA war die Spontanaggregation im Vergleich zur Albu-

min-Kontrolle nicht signifikant erhöht (Abb.1a links).  

Wurde LPA zusammen mit Adrenalin (Epi), beides schwache Tz-Stimuli, zum Blut 

pipettiert, kam es zu einer synergistischen Tz-Aggregation. Auch hier ließ sich die 

Wirkung von LPA durch Vorinkubation mit LPA im Sinne einer homologen Desen-

sitisierung komplett hemmen (Abb. 1b).  
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Abb. 1 a + b: Homologe Desensibilisierung der Thrombozytenaggregation durch LPA 

Hirudin-antikoaguliertes Blut (0.3ml) wurde zu gleichen Teilen mit 0.9% NaCl-Lösung gemischt und 
für 10min mit  albuminhaltigem Kontrollpuffer (12µl) oder LPA (20µM) bei Raumtemperatur vorin-
kubiert. Anschließend wurden die Proben für 5min bei 37°C unter Rühren des Blutes ohne Stimu-
lus (Kontrolle), mit LPA (20µM) alleine (Abb. 1a), oder mit LPA (20µM) und Epi (10µM) (Abb. 1b) 
inkubiert. Die kumulative Plättchenaggregation (AU*min) wurde mittels Impedanzaggregometrie im 
Multiplate®-Gerät nach 5min gemessen. Die Werte sind  die MW±SD aus n=10 Experimenten.     
*p < 0,05, **p < 0,01, ***p < 0,005 
 

5.1.2 Vorinkubation mit LPA sensibilisiert die Thrombozytenaggregation 
induziert durch Plaque, Kollagen oder ADP im Blut 

Nach Stimulation mit Plaque, Kollagen oder ADP wurde eine deutliche Tz Aggre-

gation beobachtet. Diese Aggregation wurde durch Vorinkubation mit LPA für alle 

3 Stimuli signifikant erhöht. Die Vorinkubation mit LPA führt offensichtlich zu einer 

Voraktivierung der Tz, die wiederum zu einer gesteigerten Antwort auf Stimulation 

durch andere Agonisten wie Kollagen, Plaque und ADP führt.  
LPA akkumuliert im lipidreichen Kern atherosklerotischer Plaques und könnte bei 

der Plaque-induzierten Tz-Aggregation im Blut beteiligt sein. Nach der deutlichen 

Hemmung der LPA-induzierten Aggregation durch die LPA-Vorinkubation  

(Abb. 1a) wäre eher eine Verringerung statt einer Erhöhung der Plaque-

induzierten Aggregation (Abb. 1c) zu erwarten gewesen. Offensichtlich ist der vor-

aktivierende Effekt von LPA auf die Tz induziert durch andere Plaque-Bestandteile 

größer als der desensibilisierende Effekt auf die Wirkung der im Plaque enthalte-

nen LPA.  
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Abb. 1c: Heterologe Sensibilisierung der Thrombozytenaggregation durch LPA 

Hirudin-antikoaguliertes Blut wurde wie in Legende zu Abb.1a beschrieben mit albuminhaltigem 
Kontrollpuffer (12µl) oder LPA (20µM) für 10min bei Raumtemperatur vorinkubiert. Die Proben 
wurden anschließend ohne Stimulus (Kontrolle), mit LPA (20µM), Plaquematerial (1,25mg Feucht-
gewicht/ml), Kollagen (0,3µg/ml) oder ADP (5µM) inkubiert, und die kumulative Plättchenaggrega-
tion (AU*min) mittels Impedanzaggregometrie im Multiplate®-Gerät nach 5min bestimmt. Die Werte 
sind MW±SD aus n Experimenten: n=14 für Kontrolle, LPA, ADP; n=15 für Plaque, n=11 für Kolla-
gen. **p < 0,01, ****p < 0,001 
 
 

5.2 Bedeutung der Inkubationszeit für die Wirkung von LPA 

Eine Vorinkubation mit LPA führte zu einer heterologen Sensibilisierung der Tz. 

Mit den folgenden Versuchen sollte Klarheit darüber gewonnen werden, ob die 

Dauer der Inkubationszeit die Sensibilisierung der Tz durch LPA beeinflusste 

(Abb. 2), und ob sich diese Sensibilisierung als im Durchflusszytometer darstellba-

re Aktivierung der Tz nachweisen lässt (Abb. 3).   
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5.2.1 Dauer der Inkubationszeit hat keinen Einfluss auf die Sensibilisierung 
der Thrombozytenaggregation durch LPA  

Blut wurde mit 20µM LPA oder Kontroll-Puffer für 1, 5, 30, 60 oder 90min bei 37°C 

vorinkubiert. Die Aggregation wurde anschließend im MEA gemessen.  

Die Vorinkubation des Blutes mit LPA für 1 bis 90min zeigte keine Wirkung auf die 

durch den Start des Rührens des Blutes induzierte Spontanaggregation im Ver-

gleich zur Kontrolle (Vorinkubation mit Albumin).  

5minütige und 30minütige Vorinkubation mit LPA ergab eine signifikante Sensibili-

sierung der Kollagen induzierten Tz Aggregation im Vergleich zur Vorinkubation 

mit Puffer, welche nach 60- und 90minütiger Vorinkubation nicht mehr beobachtet 

werden konnte. Die Tz-Aggregabilität auf Kollagen nahm nach 90min Vorinkubati-

on mit und ohne LPA ab (Abb. 2b).  

Die Plaque induzierte TZ Aggregation wurde signifikant durch Vorinkubation mit 

LPA für alle verwendeten Vorinkubationszeiten sensibilisiert. Lediglich bei der kur-

zen Vorinkubation von 1min ereichte die Sensibilisierung keine Signifikanz, ver-

mutlich, weil die Einwirkzeit von LPA auf die Tz zu kurz war. Anders als bei Inku-

bation mit Kollagen, war bei Stimulation mit Plaque die Tz-Aggregation mit und 

ohne LPA Vorinkubation unabhängig von der Dauer der Vorinkubation konstant 

(Abb. 2c).  

Vor allem bei Stimulation mit Plaque (Abb. 2c) lässt sich bereits visuell erkennen, 

dass der Unterschied zwischen Vorbehandlung mit Puffer oder LPA für alle Zeiten 

gleich und auch statistisch auf gleichem Niveau ist. Dies lässt sich sowohl für Pla-

que als auch für Kollagen außerdem statistisch belegen. Für beide Agonisten ist 

der Faktor Vorbehandlung (mit oder ohne LPA) signifikant, die Dauer der Vorbe-

handlung hingegen nicht. Daher kann geschlussfolgert werden, dass für die beo-

bachtete Steigerung der Kollagen und Plaque induzierten TZ Aggregation lediglich 

die Vorinkubation mit LPA eine Rolle spielt, nicht aber die Dauer.  
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Abb. 2a-2c: Einfluss der Inkubationszeit auf die Sensibilisierung der Thrombozytenaggrega-
tion durch LPA  

Hirudin-antikoaguliertes Blut (0,3ml) wurde zu gleichen Teilen mit 0.9% NaCl-Lösung gemischt und 
für 1, 5, 30, 60 und 90min mit albuminhaltigem Kontrollpuffer (12µl) oder LPA (20µM) bei 37°C 
vorinkubiert. Jede Probe befand sich in einem separaten Eppendorfgefäß und wurde entsprechend 
der Inkubationszeit alle 10min vorsichtig geschwenkt. Anschließend wurden die Proben in MEA 
Küvetten überführt, für weitere 3min bei 37°C ohne Rühren und für 5min bei 37°C unter Rühren 
des Blutes ohne Stimulus (Kontrolle), mit Kollagen (0,3µg/ml) oder Plaquematerial (1,25mg 
Feuchtgewicht/ml) inkubiert. Die kumulative Plättchenaggregation (AU*min) wurde mittels Impe-
danzaggregometrie im Multiplate®-Gerät während 5min gemessen. Die Werte sind die MW±SD 
aus n=4 Experimenten. * p < 0,05 
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5.2.2 Die LPA Vorinkubation bewirkt eine Thrombozytenaktivierung 

Die Spontanaggregation nach Vorinkubation von Blut mit LPA war nicht erhöht 

(Abb. 1a, 2a). Trotzdem wäre es möglich, dass LPA die Tz voraktivieren, was die 

anschließend erhöhte Aggregation auf andere Tz-Stimuli (Abb. 1c; Abb. 2b,c) er-

klären könnte. Die Voraktivierung der Tz durch LPA wurde gemessen  anhand der 

Aktivierung des GPIIb/IIIa-Komplexes (Fibrinogenrezeptor) und der Sekretion der 

α-Granula. Dafür wurde Blut mit  Albumin (Kontrolle), LPA, bzw. Kollagen oder 

Plaque (als Positivkontrolle) bei 37°C für 13min inkubiert und die aktivierten 

GPIIb/IIIa-Rezeptoren sowie die P-Selectin-Expression auf den Tz mittels Durch-

flusszytometrie bestimmt.  

Nach Inkubation mit LPA zeigten die Tz im Vergleich zur Kontrolle eine Erhöhung 

der P-Selectin Expression (Abb. 3a) und der aktiven Konformation des Fibrinogen-

Rezeptors (Abb. 3b). Interessanterweise war die Stimulation nach Inkubation mit 

Kollagen und Plaque  geringer als nach LPA. Wesentlich deutlicher fiel die Stimu-

lation nach Inkubation mit einer hohen Konzentration Kollagen aus. Die Vorinkuba-

tion mit LPA führte offenbar zu einer Voraktivierung der Tz, welche möglicherwei-

se Grund für die gesteigerte Aggregation bei Kontakt mit anderen Agonisten führt.   
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a) P-Selectin Expression    

 

   b)  aktivierter Fibrinogen-Rezeptor       

 

 

Abb. 3: LPA induziert eine Aktivierung der Thrombozyten  

Jeweils 400µl Hirudin-antikoaguliertes Blut wurden mit Albumin (Kontrolle), LPA (20µM), Kollagen 
(0,3µg bzw. 5µg/ml) oder Plaque (1,25mg Feuchtgewicht/ml) bei 37°C für 13min lang vorinkubiert. 
Anschließend wurden die Proben mit anti-CD41a Antikörper und PAC-1 bzw. CD62 Antikörper 
inkubiert. Die Expression des aktivierten  Fibrinogen-Rezeptors und von P-Selectin auf der Plätt-
chenoberfläche wurde mittels Durchflusszytometrie bestimmt. Die Werte sind in Prozent der ge-
messenen Tz (=100 %) angegeben  und stellen die MW±SD aus n=4 Experimenten dar. 
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5.3 Einfluss von Lipoproteinen auf Thrombozyten im Blut 

Aufgrund des Vorhandenseins von Lipoproteinen  im Blut besteht die Möglichkeit, 

dass diese die Tz-Aggregabilität  beeinflussen (siehe Kapitel 2.2.1). Das Ziel der 

folgenden Versuche war es herausfinden, ob ein Langzeitkontakt  erhöhter Kon-

zentrationen der Lipoproteine natLDL, moxLDL und HDL mit Tz im Blut ein verän-

dertes Ansprechen von Tz auf Tz-Stimuli  bewirkt. Die Ergebnisse wurden mit der 

Wirkung nach einer plötzlichen Exposition von Tz mit LDL und moxLDL verglichen, 

wie sie nach Plaque-Ruptur auftreten kann. In vitro wurde diese Situation durch 

eine Kurzzeit-Inkubation von 3min simuliert.  

 

5.3.1 Einfluss der Inkubationszeit auf die Reaktionsfähigkeit der Thrombo-
zyten im Blut (in Kontrollen) 

Möglicherweise verändert sich die Reaktivität von Tz während einer längeren In-

kubationszeit. Um zu sehen, ob diese Veränderung einen signifikanten Einfluss 

auf den Unterschied der Tz Aggregation nach Kurz- oder Langzeitinkubation hat, 

wurde die Agonisten-induzierte Aggregation nach einer 3minütigen und einer 

60minütigen Inkubation im MEA gemessen und verglichen (Abb. 4). 

Für alle verwendeten Agonisten fiel die Aggregation der TZ nach 60min Inkubation 

etwas geringer aus. Sie war aber niemals signifikant gehemmt im Vergleich zur 

Aggregation nach 3minütiger Inkubation. Es konnte daher für die folgenden Ver-

suche ausgeschlossen werden, dass die Reaktionsfähigkeit der Tz im Blut durch 

eine Langzeitinkubation von 60min signifikant beeinflusst wird. 
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Abb. 4: Vergleich der Thrombozytenaggregation nach Kurz- und Langzeitinkubation des 
Blutes bei 37°C 

Hirudin-antikoaguliertes Blut (0.3ml) wurde zu gleichen Teilen mit 0.9% NaCl-Lösung gemischt und 
für 3min bzw. 60min bei 37°C vorinkubiert. Anschließend wurden die Proben für 5min bei 37°C 
unter Rühren des Blutes ohne Stimulus (Kontrolle) oder mit Kollagen (0,3µg/ml), ADP (5µM), Pla-
quematerial (1,25mg Feuchtgewicht/ml) oder TRAP (5µM) inkubiert. Die kumulative Plättchenag-
gregation (AU*min) wurde mittels Impedanzaggregometrie im Multiplate®-Gerät nach 5min gemes-
sen. Die Werte sind MW±SD aus n=6 Experimenten.  
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5.3.2 MoxLDL hemmt die Kollagen- und ADP-induzierte Thrombozytenag-
gregation im Blut nach Langzeitinkubation   

Zunächst wurde die Langzeitwirkung der Lipoproteine LDL, moxLDL und HDL auf 

Tz getestet. Blut wurde für 60min mit natLDL, moxLDL, HDL oder Kontrollpuffer 

inkubiert. Als Kontrollpuffer wurde sowohl PBS,  in welchem natLDL, moxLDL und 

HDL gelöst waren, als auch Dichtegradient 2 (DG2) verwendet. DG2 separiert 

während der Ultrazentrifugation LDL und HDL, die Einstellung seiner Dichte von 

1,05g/ml erfolgt mit NaCl (siehe Kapitel 4.2.3.1). Anschließend wurden die Proben 

mit den Agonisten Kollagen, Plaque, ADP und TRAP stimuliert und die Aggregati-

on im MEA gemessen (Abb. 5 a-d). Bei der Kontrollmessung ohne Stimulus lag 

die Aggregation, ausgedrückt in Aggregationseinheiten AU*min, für die mit Kon-

trollpuffer, natLDL, moxLDL und HDL vorinkubierten Proben bei 0 (Ergebnisse 

nicht dargestellt).  

Kollagen, als starker Tz-Stimulus, induzierte eine deutliche Aggregation (Abb. 5a). 

Dabei unterschied sich die Aggregation der mit natLDL und HDL vorinkubierten Tz 

nicht signifikant von der Aggregation der Tz, welche mit Kontrollpuffer inkubiert 

worden waren, während die Kollagen induzierte Aggregation von Tz, welche 

60min mit moxLDL inkubiert worden waren, signifikant gehemmt war.  

Das Ergebnis bei der ADP induzierten Tz Aggregation war vergleichbar, wenn 

auch die Aggregation insgesamt etwas niedriger war (Abb. 5b). Auch die durch 

ADP induzierte Tz Aggregation wurde durch Inkubation mit moxLDL im Vergleich 

zur Kontrolle signifikant gehemmt, während die Vorinkubation mit natLDL und HDL 

keinen Einfluss hatte.   

Auch die durch Plaque (Abb. 5c) induzierte Aggregation zeigte eine Verminderung 

durch moxLDL (wenn auch nicht signifikant).  Die durch TRAP (Abb. 5d) induzierte 

Aggregation zeigte interessanterweise eine Erhöhung nach HDL Vorinkubation, 

welche jedoch nicht signifikant war.   
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Abb. 5: Agonisten-induzierte Thrombozytenaggregation nach Langzeitinkubation mit 
natLDL, moxLDL, oder HDL 

Zu Hirudin-antikoaguliertem Blut (0,3ml) wurde PBS, Dichtegradienten-Puffer 2 (DG2), natLDL 
(4mg/ml f.c.), moxLDL (4mg/ml f.c.) oder HDL (2mg/ml f.c.) gegeben und mit 0.9% NaCl-Lösung 
auf 0.6ml aufgefüllt (siehe Kapitel 4.2.5.1). Die Proben wurden für 60min bei 37°C vorinkubiert und 
währenddessen regelmäßig gemischt. Anschließend wurden die Proben in MEA Küvetten überführt 
und für 5min bei 37°C unter Rühren des Blutes mit Kollagen (0,3µg/ml), Plaquematerial (1,25mg 
Feuchtgewicht/ml), ADP (5µM) oder TRAP (5µM) im Multiplate®-Gerät  inkubiert. Die kumulative 
Plättchenaggregation (AU*min) wurde nach 5min gemessen. Die Werte sind MW±SD aus n Expe-
rimenten: n=11 für  Kollagen, n=6 für ADP, n=6 für Plaque, n=7 für TRAP.   

*p < 0,05,  **p < 0,01 
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5.3.3 Wirkung von Langzeitinkubation mit natLDL, moxLDL und HDL auf 
Thrombozyten im PRP  

Nach der überraschend hemmenden Wirkung einer Langzeitinkubation von Blut 

mit moxLDL auf die Tz-Aggregation wurde untersucht, ob sich dieser Effekt auch 

im PRP beobachten lässt. PRP wurde zuvor, analog zu den Versuchen in Abb. 5, 

für 1h mit PBS (Kontrolle), natLDL, moxLDL oder HDL bei 37°C inkubiert. An-

schließend wurden die Proben mit Kollagen oder ADP stimuliert und Gestaltwan-

del und Aggregation im Lumi-Aggregometer gemessen (Abb. 6 und 7).  

 

5.3.3.1 MoxLDL hemmt die Kollagen-induzierte Thrombozytenaggregation 
und den Gestaltwandel im PRP nach Langzeitinkubation   

Die Vorinkubation von PRP mit natLDL oder HDL (Abb. 6b,d) für 1 Stunde und 

Stimulation mit Kollagen führte zu einem maximalen Gestaltwandel. Die in der 

Kontrolle (Vorinkubation mit PBS) beobachtete irreversible Aggregation (Abb. 6a) 

blieb jedoch aus. Eine Vorinkubation mit moxLDL dagegen führte zu einer kom-

pletten Hemmung  von TZ-Gestaltwandel und -Aggregation (Abb. 6c). 
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Abb. 6: Wirkung von Langzeitinkubation mit natLDL, moxLDL und HDL auf die Kollagen 
stimulierte Tz-Aggregation im PRP 

Citrat PRP (0,4ml) wurde mit jeweils 20µl PBS (Kontrolle), natLDL (4mg/ml), moxLDL (4mg/ml) 
oder HDL (2mg/ml) für 1h bei 37°C vorinkubiert. Anschließend wurden die Proben in eine Aggre-
gometerküvetten überführt, 1min lang bei 1000rpm und 37°C im Aggregometer gerührt und mit 
Kollagen (1µg/ml) stimuliert. Der thrombozytäre Gestaltwandel und die Aggregation wurden über 
die Änderung der Lichttransmission gemessen und aufgezeichnet. Das Experiment ist repräsenta-
tiv für 5 andere mit gleichen Ergebnissen.  
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5.3.3.2 MoxLDL hemmt die ADP-induzierte Thrombozytenaggregation im 
PRP nach Langzeitinkubation   

Die ADP- induzierte irreversible Tz-Aggregation im PRP wurde durch die 1-

stündige Vorinkubation bei 37°C mit natLDL, moxLDL und HDL in eine reversible 

Aggregation überführt. Die Hemmung von Gestaltwandel und Aggregation durch 

moxLDL war im Vergleich zu natLDL und HDL am deutlichsten (Abb. 7c), jedoch 

weniger ausgeprägt als in Versuch 5.3.3.1 nach Stimulation mit Kollagen (Abb.6c).  
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Abb. 7: Wirkung von Langzeitinkubation mit natLDL, moxLDL und HDL auf die ADP stimu-
lierte Thrombozytenaggregation im PRP 

Citrat PRP (0,4ml) wurde wie in Legende zu Abb. 6 beschrieben mit PBS, natLDL, moxLDL und 
HDL vorinkubiert und in eine Aggregometerküvette überführt. Anschließend wurde mit ADP (5µM) 
stimuliert. Der thrombozytäre Gestaltwandel und die Aggregation wurden über die Änderung der 
Lichttransmission gemessen und aufgezeichnet.  Das Experiment ist repräsentativ für 4 andere mit 
gleichen Ergebnissen.  
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5.3.4 MoxLDL hemmt die durch Kollagen induzierte Thrombozyten-
Aggregation im Blut nach Kurz- und Langzeitinkubation  

Die Langzeitinkubation von Blut mit moxLDL für 60min bewirkte eine signifikante 

Hemmung der Kollagen induzierten Tz Aggregation (Abb. 5), natLDL und HDL 

hatten jedoch keinen Einfluss.  

Um zu untersuchen, ob sich die Effekte der Lipoproteine auf die Tz nach  einer 

kurzen Einwirkung eventuell unterscheiden, wurde Blut mit natLDL, moxLDL, HDL 

oder Puffer für 3min bzw. zum Vergleich für 60min inkubiert. Anschließend wurde 

die Kollagen- stimulierte Tz Aggregation im MEA gemessen (Abb. 8).  

Interessanterweise zeigte die 3minütige Kurzzeit-Inkubation von Blut mit natLDL 

im Vergleich zur PBS- und DG2-Kontrolle, eine geringe (12% bzw. 11%), jedoch 

signifikante Steigerung der Kollagen-induzierten Tz Aggregation. Nach 60min In-

kubation war kein Effekt zu beobachten. Offenbar nahm die sensibilisierende Wir-

kung von natLDL im Verlauf der Inkubationszeit ab.  

Inkubation mit moxLDL bewirkte immer eine Hemmung: Die Kollagen induzierte Tz 

Aggregation war sowohl nach 3 als auch nach 60minütiger Inkubation von Blut mit 

moxLDL im Vergleich zur Kontrolle (Inkubation mit PBS und Inkubation mit DG2) 

signifikant gehemmt. Die Dauer der Inkubation war offenbar nicht ursächlich für 

die beobachtete Hemmung in Abb. 5.   

Die Tz Aggregation nach Inkubation mit HDL unterschied sich weder nach 3 noch 

nach 60min Inkubation von der Kontrolle.  

Insgesamt war die Aggregation nach 60min bei allen Proben im Vergleich zur 

3minütigen Inkubation sichtbar geringer, und könnte mit einem zwar im Diagramm 

sichtbaren aber nicht signifikanten Rückgang der Reaktionsfähigkeit der Tz nach 

60min zu begründen sein, der schon in Abb. 4 beobachtet worden war.  
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Abb. 8: Vergleich der Thrombozytenaggregation stimuliert durch Kollagen nach Kurz- und 
Langzeitinkubation mit den Lipoproteinen natLDL, HDL und moxLDL 

Hirudin-antikoaguliertes Blut (0,3ml) wurde wie in der Legende zu Abb. 5 gemischt und für 3 bzw. 
60min bei 37°C inkubiert. Anschließend  wurden die Proben mit Kollagen (0,3µg/ml) versetzt. Die 
kumulative Plättchenaggregation (AU*min) wurde mittels Impedanzaggregometrie im Multiplate®-
Gerät nach 10min gemessen. Die Werte sind MW±SD aus n=6 Experimenten. * p < 0,05 
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5.3.5 Langzeitinkubation mit Lipoproteinen verändert die Anzahl der 
Thrombozyten im Blut nicht 

Die starke Abnahme der Kollagen-stimulierten Tz-Aggregation nach 1-stündiger 

Inkubation des Blutes mit moxLDL könnte durch einen Abfall der Tz-Zahl, hervor-

gerufen durch Aggregation oder Schädigung, bedingt sein. Um dies zu untersu-

chen, wurde die Tz-Konzentration nach Kurz- und Langzeit-Inkubation des Blutes 

mit den Lipoproteinen bestimmt. Die Zahl der Tz verringerte sich während der ein-

stündigen Inkubation  gering und war sowohl nach PBS, als auch nach natLDL, 

moxLDL und HDL Inkubation zu beobachten (Abb. 9). Die beobachtete Hemmung 

der Tz-Aggregation durch moxLDL ist daher nicht mit einem Abfall der Tz-

Konzentration zu erklären.  

 

 

 

Abb. 9: Darstellung der veränderten Thrombozytenanzahl nach 60min Inkubation  

Von den Proben aus Versuch 3.4 (Abb.8) wurden im Anschluss an die Inkubation und vor Stimula-
tion durch Kollagen jeweils 10µl entnommen, in 2ml THROMBO-PLUS®-Puffer überführt und die 
Blutplättchenzahl in einer Neubauer-Zählkammer mit Hilfe des Lichtmikroskops Leitz D-65323 be-
stimmt (siehe Kapitel 4.2.2.3). Das Diagramm zeigt die Tz-Zahlen nach 60min in Prozent im Ver-
hältnis zu den Zahlen nach 3min, welche als 100% gesetzt wurden. Die Werte sind die MW±SD 
aus n=4 Experimenten.   
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5.3.6 Die Hemmung der Kollagen-induzierten Thrombozytenaggregation 
durch moxLDL ist dosisabhängig   

Für die bisherigen Versuche wurden große Konzentrationen an Lipoproteinen ein-

gesetzt. Im folgenden wurde untersucht, ob sich der Einfluss von moxLDL bereits 

bei geringen Konzentrationen zeigt (Abb. 10). Der Versuchsaufbau war der gleiche 

wie in Versuch 5.3.2 (Abb. 5), nur fand die einstündige Inkubation mit steigenden 

Mengen an moxLDL und Kontrollpuffer statt. Es zeigte sich deutlich, dass der Ein-

fluss der Vorinkubation mit moxLDL auf die Kollagen-induzierte Tz Aggregation 

dosisabhängig war: mit zunehmender Dosis an moxLDL stieg auch der hemmen-

de Effekt auf die Tz Aggregation.  

 

 

 
 

 

Abb. 10: Dosisabhängigkeit des Effekts von moxLDL nach Langzeitinkubation auf die Kolla-
gen induzierte Thrombozytenaggregation  

Hirudin-antikoaguliertes Blut (0,3ml) wurde mit PBS (Kontrolle) oder moxLDL in aufsteigender Kon-
zentration (0.5, 1, 2, 4mg/ml) und  0.9% NaCl-Lösung (genaue Zusammensetzung analog zu Ver-
such  Abb. 5) gemischt. Die Proben wurden für 60min bei 37°C inkubiert und anschließend mit 
Kollagen (0,3µg/ml) versetzt. Die kumulative Plättchenaggregation (AU*min) wurde mittels Impe-
danzaggregometrie im Multiplate®-Gerät nach 5min gemessen. Die Werte sind MW±SD (% der 
PBS Kontrolle) aus n=5 Experimenten. **p<0,01, ***p<0,001 
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5.3.7 Langzeitinkubation mit CuSO4 beeinflusst nicht die Thrombozytenag-
gregation im Blut 

Für die Herstellung von moxLDL wurde natLDL mit Kupfersulfat versetzt (siehe 

Kapitel 4.2.3.3). Mit der folgenden Versuchsreihe sollte geklärt werden, ob das 

noch im moxLDL enthaltene Kupfersulfat Ursache für die beobachtete Hemmung 

der TZ Aggregation sein könnte.  

Dafür wurde Blut mit der gleichen Konzentration an Kupfersulfat, welche nach ei-

ner moxLDL Zugabe von 4mg/ml zu Blut enthalten war, vorinkubiert.  

 Nach 60min Inkubation mit PBS allein wurde für alle verwendeten Agonisten, im 

Vergleich zur Kontrolle, eine deutliche Tz Aggregation gemessen. Diese wurde 

durch Inkubation mit CuSO4 nicht signifikant verändert (Abb. 11).  

In den Proben noch vorhandenes Kupfersulfat ist also nicht Grund für die Hem-

mung der Kollagen induzierten Tz Aggregation nach Inkubation mit moxLDL.  
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Abb. 11: Wirkung von Kupfersulfat auf die Thrombozytenaggregation bei Langzeitinkubati-
on  

Hirudin-antikoaguliertes Blut (0,3ml) wurde zu gleichen Teilen mit PBS-Puffer (Kontrolle) oder  
CuSO4 (128µM f.c. in PBS) gemischt. Die Proben wurden für 60min bei 37°C inkubiert und an-
schließend wie in Abb. 5 mit Kollagen (0,3µg/ml), Plaquematerial (1,25mg Feuchtgewicht/ml), ADP 
(5µM) oder TRAP (5µM) versetzt. Die kumulative Plättchenaggregation (AU*min) wurde mittels 
Impedanzaggregometrie im Multiplate®-Gerät nach 10min gemessen. Die Werte sind MW±SD aus 
n=5 Experimenten. 
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5.3.8 Keine Voraktivierung von Thrombozyten durch moxLDL während der 
Inkubationszeit 

Die Inkubation mit LPA führte zu einer Sensibilisierung der Kollagen, Plaque und 

ADP induzierten Tz Aggregation (Abb. 2), im Durchflusszytometer konnte eine 

Voraktivierung durch LPA festgestellt werden (Abb. 3). Da LPA eine Tz-

aktivierende Substanz in moxLDL ist, wäre es denkbar, dass es auch am Anfang 

einer Inkubation mit moxLDL zu eine Aktivierung der Tz kommt. Diese anfängliche 

Aktivierung könnte dann eine eingeschränkte Reaktionsfähigkeit der Tz nach 1h 

zur Folge haben, und der Grund für die beobachtete Hemmung der Kollagen- in-

duzierten Tz Aggregation sein.  

Um dies zu untersuchen, wurde Blut mit moxLDL und natLDL versetzt und die Ag-

gregation kontinuierlich während 20min im MEA aufgezeichnet. Die Stimulation mit 

moxLDL unterschied sich nicht von der Kontrolle (Stimulation mit Puffer) (Abb. 

12a-b). Die Aggregation nach Inkubation mit natLDL war  interessanterweise we-

sentlich geringer (Abb. 12c).  

Die durch Adrenalin stimulierte Aggregation war etwa doppelt so hoch (Abb. 12d) 

wie die Kontrolle mit PBS-Puffer (Abb. 12a). Durch zusätzliche Gabe von natLDL 

oder moxLDL konnte diese Aggregation nicht gesteigert werden (Abb. 12e,f). Eine 

Sensibilisierung der Tz im Blut durch natLDL oder moxLDL war während der 

20minütigen Messung demnach nicht erkennbar. 
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Abb. 12: Aufzeichnung der Agonisten-induzierten Thrombozytenaggregation im Blut wäh-
rend 20min  

Hirudin-antikoaguliertes Blut (jeweils 0,3ml) wurde zunächst für 3min in MEA Küvetten vorinkubiert. 
Dann wurden die Proben für die Versuche, die in Diagramm 12a) bis 12c) dargestellt sind, mit je-
weils 0,3ml PBS-Puffer, natLDL (4mg/ml f.c.) oder moxLDL (4mg/ml f.c.) in 0.9% NaCl-Lösung 
gemischt (genaue Zusammensetzung analog zu Versuch  Abb. 5) und unter Rühren die Aggregati-
on bis zu 20min gemessen. Für die Versuche in Abb. 12d) bis 12f) wurde den Proben zusätzlich 
noch Epi (10µM) hinzugefügt. Die kumulative Plättchenaggregation (AU*min) wurde mittels Impe-
danzaggregometrie im Multiplate®-Gerät gemessen und die Werte nach 5, 10, 15 und 20min no-
tiert. Dargestellt sind die Werte aus n=2 Experimenten, die Raute zeigt den Mittelwert 
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5.4 LPA - wirksamer Bestandteil in moxLDL? 

LPA bewirkte eine Sensibilisierung der Tz im Blut, unabhängig von der Inkubati-

onszeit zwischen 1min und 90min (Abb. 1 und Abb. 2). MoxLDL zeigte diesen Ef-

fekt nicht. Im Gegenteil, auf die Kollagen und ADP induzierte Tz Aggregation im 

Blut übte Inkubation mit moxLDL eine  hemmende Wirkung aus. Diese Beobach-

tung überraschte, da LPA in früheren Studien als aktive Substanz in moxLDL iden-

tifiziert wurde.  

In den folgenden Versuchen wurden LPA Rezeptor Antagonisten verwendet, um 

das Vorhandensein und die Wirksamkeit von LPA in moxLDL zu untersuchen.  

 

5.4.1 Ein pharmakologischer LPA5- Rezeptorantagonist hemmt komplett 
den durch LPA und moxLDL induzierten Gestaltwandel in Suspensio-
nen isolierter Thrombozyten 

Isolierte Tz wurden mit moxLDL und LPA versetzt, der thrombozytäre Gestaltwan-

del im Aggregometer gemessen und aufgezeichnet (Abb. 13a-c). Durch vorherige 

Gabe eines LPA5-Rezeptor-Antagonisten konnte dieser GW für die verwendeten 

Substanzen komplett gehemmt werden (Abb. 13d-e). LPA ist also offensichtlich 

nicht nur Bestandteil von moxLDL, sondern ist in Suspensionen gewaschener Tz 

die für die Aggregation verantwortliche Substanz.  
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Abb. 13: Wirkung des LPA5 Rezeptor Antagonisten PGM029615 auf den  durch moxLDL, 
oxLDL und LPA induzierten Gestaltwandel isolierter Thrombozyten 

Abb. 13a), b), c): Eine Suspension gewaschener Tz wurde 1min lang bei 1000rpm und 37°C im 
Aggregometer zur Erstellung der Baseline gerührt, bevor moxLDL (200µg/ml), oxLDL (100µg/ml) 
und LPA (100nM) hinzugegeben wurden). Zur Erzielung eines maximalen Gestaltwandel (GW) 
wurde als 2. Agonist ADP (0,25µM) verwendet. Das Experiment ist repräsentativ für 2 andere mit 
gleichen Ergebnissen 

Abb. 13d), e), f): Wie unter a)-c) beschrieben wurden isolierte Tz im Aggregometer inkubiert. Nach 
1min wurde der LPA5 Rezeptor Antagonisten PGM029615 hinzugegeben und die Suspension für 
weitere 30sec gerührt. Anschließend wurden analog zu a)-c) moxLDL, oxLDL und LPA hinzugege-
ben. Zur Erzielung eines maximalen GW wurde als 2. Agonist ADP (0,25µM) verwendet. Der 
thrombozytäre Gestaltwandel und die Aggregation wurden während der gesamten Dauer des Ver-
suchs  über die Änderung der Lichttransmission gemessen und aufgezeichnet.  
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5.4.2 MoxLDL hemmt die Wirkung von LPA auf Thrombozyten im PRP  

PRP wurde mit Albumin-Puffer (Kontrolle), natLDL und moxLDL für 1min im Ag-

gregometer unter Rühren inkubiert und anschließend mit LPA versetzt. Durch die 

Gabe von LPA wurde ein thrombozytärer GW beobachtet (Abb. 14a). Während 

Inkubation mit natLDL keine Wirkung auf den LPA induzierten GW zeigte        

(Abb. 14b), reduzierte die Inkubation mit moxLDL den  durch LPA induzierten 

thrombozytären GW (Abb. 14c). Auch dieses Ergebnis deutet auf das Vorhanden-

sein und die Wirksamkeit von LPA in moxLDL hin. Bei der beobachteten Hem-

mung  könnte es sich demnach um eine homologe Desensibilisierung des in 

moxLDL enthaltenen LPA handeln, wie sie bereits in Versuch im Kapitel 1.1   

(Abb. 1b) gezeigt wurde. 
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Abb. 14: Einfluss von moxLDL und 
natLDL auf den durch LPA induzierten 
Gestaltwandel von Thrombozyten im 
PRP  

14 a) bis c):  Citrat PRP (0,3µl) wurde für 
1 bis 1,5min bei 1000rpm und 37°C im 
Aggregometer zur Erstellung der Baseli-
ne gerührt, bevor jeweils 100µl Albumin-
Puffer, natLDL (3mg/ml f.c.) oder 
moxLDL (3mg/ml f.c.) hinzugegeben 
wurden. Die Suspension wurde für weite-
re 2min gerührt und anschließend mit 
5µM LPA versetzt.  

Der thrombozytäre Gestaltwandel und 
die Aggregation wurden während der 
gesamten Dauer des Versuchs  über die 
Änderung der Lichttransmission gemes-
sen und aufgezeichnet.  

Das Experiment ist repräsentativ für 2 
andere mit gleichen Ergebnisse.  
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6 Diskussion 

6.1 Methode 

Die meisten Studien, die sich mit der Wirkung von Lipoproteinen befassten, ver-

wendeten isolierte TZ. Gegenüber Blut oder plättchenreichem Plasma (PRP) wur-

den dabei Effekte von Plasmabestandteilen, welche die Interaktion von Lipoprotei-

nen mit Tz unter Umständen im Sinne einer Tz-Aktivierung oder -Hemmung beein-

flussen, ausgeschlossen. Bei der Wirkung im Organismus spielen letztlich jedoch 

alle Blutbestandteile eine Rolle. Aus diesem Grunde und um ein physiologisches 

Millieu zu schaffen, wurden die meisten der Versuche für diese Arbeit in vitro mit 

Blut durchgeführt.  

Die verwendete hohe Konzentration von 4mg/ml LDL-Protein stellt eine Menge 

dar, welche bei Patienten mit unbehandelter familiärer Cholesterinämie gefunden 

wird (Lind S 2004, Raal FJ 2012, Al-Hinai AT 2013). Einem hohen HDL-

Cholesterin-Wert >60mg/dl (NCEP 2002) wird eine gefäßprotektive Wirkung zuge-

schrieben. Daher wurde für die Versuche in dieser Arbeit eine leicht erhöhte Kon-

zentration von 2mg/ml HDL Protein eingesetzt, was einem HDL-Cholesterin von 

ca. 80mg/dl entspricht.  

Natives LDL und HDL sind physiologische Blutbestandteile und haben daher stän-

dig Kontakt mit Tz. Nach Plaque-Ruptur kommt es zu einer plötzlichen Exposition 

von Tz auch gegenüber oxidativ-modifiziertem LDL (Siess W 2006). Darüber hin-

aus lassen verschiedene Studien vermuten, dass sich oxidativ modifiziertes LDL 

auch über einen längeren Zeitraum in der Blutzirkulation befinden kann (Yla-

Herttuala S 1994, Holvoet P 1998, Tanaga K 2002, Virella G 2004, Crisby M 2009, 

Lopes-Virella MF 2012) und daher auch über längere Zeit auf Tz einwirken könnte. 

Um diese Situation in vitro zu simulieren, wurde eine lange Inkubationszeit von 1h 

bei 37°C gewählt.  Kürzere Inkubationszeiten von wenigen Minuten bei 37°C dien-

ten als In-vitro-Modell einer plötzlichen Exposition von LDL oder  oxidativ-

modifiziertem LDL gegenüber Tz in zirkulierendem Blut, wie sie nach Plaque-

Ruptur auftreten kann. 
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6.2 Wirkung von nativem LDL auf Thrombozyten im Blut 

Eine Kurzzeitinkubation (3min) von Blut mit natLDL (4mg/ml) bewirkte in der vor-

liegenden Arbeit eine Sensibilisierung von Tz auf die Kollagen-induzierte Aggrega-

tion. Die Steigerung war gering, jedoch signifikant (Abb. 8). In früheren Studien mit 

Suspensionen isolierter Tz wurde gefunden, dass die Bindung von natLDL an den 

thrombozytären LDL-Rezeptor ApoER2’ einen Signalweg stimuliert, welcher über 

Phosphorylierung der FAK und Aktivierung von MAP-Kinasen zu einer erhöhten 

Tz Reaktionsbereitschaft auf ADP, Thrombin und Kollagen führt (Korporaal SJ 

2004, Relou IAM 2003, Hackeng CM 1999).  

Im Gegensatz dazu wird in den meisten Studien nach kurzer Vorinkubation von 

PRP mit natLDL kein Effekt auf die ADP oder Kollagen induzierte Tz Aggregation 

beobachtet (Bröijersen A 1993, Naseem KM 1997, Tornvall P 1999). In einer die-

ser Studien wird nach 30minütiger Vorinkubation sogar eine Hemmung der ADP 

und Thrombin induzierten Aggregation beobachtet (Naseem KM 1997). 

Eine Steigerung der Aggregabilität der Tz fanden auch Studien, die die Wirkung 

von natLDL auf Tz im Blut testeten (Bröijersen A 1993, Tornvall P 1999). Bei Bröi-

jersen et al  wurde die ADP (0,1-0,3µM) induzierte Tz Aggregabilität, gemessen 

per Filtragometrie, durch 20minütige Vorinkubation mit 0,5mg/ml bis 1mg/ml 

natLDL dosisabhängig gesteigert. Ganz ähnlich waren die Beobachtungen von 

Tornvall et al. Hier bewirkte 10minütige Vorinkubation mit 1,25mg/ml natLDL eine 

signifikante Steigerung der ADP induzierten Tz Aggregation, gemessen im Impe-

danz-Aggregometer.  

Anders fiel das Ergebnis nach längerer Vorinkubation aus. Nach 1stündiger Inku-

bation mit 4mg/ml natLDL wurde in der vorliegenden Arbeit keine Wirkung auf die 

Kollagen-, ADP-, Plaque- oder TRAP-induzierte Tz-Aggregation im Blut beobach-

tet (Abb. 5, Abb. 8).  

Eine mögliche Erklärung für diese Beobachtung liefern die Ergebnisse der Studie 

von Korporaal et al. Der oben beschriebene Effekt, bei dem es über den spezifi-

schen LDL-Rezeptor ApoER2’ zu einer erhöhten Reaktionsbereitschaft der Tz 

nach Inkubation mit natLDL kommt (Korporaal SJ 2004), war nur vorübergehend 

und nach 10-20min wieder verschwunden. Grund dafür war die Bindung von 
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natLDL an einen weiteren Rezeptor, PECAM-1, welcher Start einer Signalkaskade 

ist, an deren Ende die ursprüngliche Aktivierung durch Dephosphorylierung der 

p38MAP-Kinase wieder rückgängig gemacht wird (Relou IAM 2003-1, siehe Kapi-

tel 2.3.1). Dies wurde als Schutzmechanismus vor Plättchenaktivierung durch zir-

kulierendes LDL betrachtet und könnte auch der Grund sein, dass in den Versu-

chen im Rahmen dieser Arbeit nach 3minütiger Inkubation mit natLDL eine gestei-

gerte Kollagen induzierten Tz Aggregation im Blut zu sehen war, nach 1 Stunde 

aber kein Effekt mehr beobachtet werden konnte (Abb. 8).  

 

6.3 Wirkung von Lysophosphatidsäure auf Thrombozyten im 
Blut 

Nach Vorinkubation des Blutes mit Albumin-Puffer und anschließender Stimulation 

mit LPA unter Rühren wurde eine Tz-Aggregation beobachtet (Abb. 1a links), was 

frühere Ergebnisse mit einer anderen Messung der Tz-Aggregation im Blut bestä-

tigt (Haserück N 2007). Bei gleichzeitiger Gabe von LPA und Epi kam es zu einer 

synergistischen Tz-Aggregation (Abb. 1b). In einer früheren Studie war bereits die 

synergistische Wirkung von LPA und ADP bei gleichzeitiger Gabe auf die Tz Ag-

gregation im Blut beobachtet worden (Haserück N 2007). 

Eine Vorinkubation des Blutes mit LPA bewirkte offensichtlich eine Voraktivierung 

der Tz, die zu einer erhöhten Reaktionsbereitschaft nach Stimulation durch weite-

re Tz-Agonisten führt: LPA hatte eine sensibilisierende Wirkung auf die anschlie-

ßende Tz-Aggregation induziert durch Plaque, Kollagen und ADP (Abb. 1c), und 

zwar für unterschiedliche lange Inkubationszeiten zwischen 1min und 90min (Abb. 

2b-c).  

Die Aktivierung der Tz nach Inkubation mit LPA konnte mittels Durchflusszytome-

trie anhand der aktiven Konformation des GPIIb/IIIa-Komplexes (Fibrinogenrezep-

tor) sowie der gesteigerten P-Selectin Expression, als  Folge der Sekretion der α-

Granula, gezeigt werden. Diese Aktivierung könnte also Ursache für eine gestei-

gerte TZ Aggregation nach Stimulation durch weitere Agonisten wie Kollagen und 

ADP sein. 
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Die Plaque induzierte Tz- Aggregation wurde ebenfalls durch Vorinkubation mit 

LPA sensibilisiert, die Dauer der Inkubation hatte keinen Effekt. Diese Beobach-

tung überraschte zunächst, da LPA auch eine Tz-aktivierende Substanz in Pla-

ques ist (Siess W 1999, Rother E 2003) und die LPA Rezeptoren der Tz durch 

Vorinkubation des Blutes mit LPA desensibilisiert wurden (Abb.1a rechts). Ent-

sprechend war hier eine Hemmung erwartet worden. Eine mögliche Erklärung für 

die überraschende Beobachtung könnten andere, in Plaque enthaltene und Tz 

stimulierende Komponenten wie Kollagen, Proteoglykane, Hyaluronsäure und 

vWF liefern (van Zanten GH 1994, Lafont A 2003; Kolodgie FD 2004, Penz S 

2005). Der voraktivierende Effekt von LPA auf Tz könnte die Wirkung dieser Tz-

stimulierenden Komponenten sensibilisiert haben.  

Überraschenderweise zeigte eine Vorinkubation des Blutes mit LPA weder für eine 

kurze noch für eine lange Inkubationsdauer eine von der Kontrolle signifikant er-

höhte Spontanaggregation (Abb. 1a, 2a). 

. 

6.4 Wirkung von milde oxidiertem LDL auf Thrombozyten im Blut 

MoxLDL hatte einen hemmenden Effekt auf die Tz-Funktion im Blut. Damit stehen 

die Ergebnisse dieser Arbeit im Gegensatz zu den meisten anderen Studien, die 

eine aktivierende Wirkung von moxLDL aber auch oxLDL auf isolierte Tz, Tz im 

PRP und im Blut beobachteten (siehe Kapitel 2.3.2 und 2.3.3: Weidtmann A 1995, 

Naseem KM 1997, Baumann-Simmons J 2000, Zangl KJ 2003, Podrez EA 2007, 

Korporaal SJ 2007, Assinger A 2010, Badrnya S 2012, Wraith KS 2013, Magwenzi 

S 2015).  

Die Wirkung von moxLDL auf isolierte Tz lässt sich offenbar auf LPA zurückfüh-

ren, welche in moxLDL als aktive Substanz identifiziert wurde (Siess W 1999, Ess-

ler M 2000). Auch in der vorliegenden Arbeit konnte bestätigt werden, dass LPA 

Bestandteil in moxLDL ist und in einer Suspension isolierter Tz die wirksame 

Komponente darstellt: Der durch moxLDL induzierte Gestaltwandel gewaschener 

Tz konnte durch Vorinkubation mit einem pharmakologischen LPA5 Antagonisten 

komplett gehemmt werden (Abb. 13a). Ähnlich vermochte die 1minütige Vorinku-
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bation von moxLDL und PRP die stimulierende Wirkung von LPA auf Tz im PRP 

deutlich zu hemmen (Abb.14c). Vermutlich desensibilisierte die im moxLDL enthal-

tene LPA die entsprechenden Rezeptoren auf den Tz, so dass die folgende Gabe 

von LPA, im Vergleich zur Kontrolle, nur noch eine eingeschränkte Wirkung zeigte. 

Der Mechanismus entspräche der in Abb.1a gezeigten homologen Desensibilisie-

rung. 

Auf Grund dieser Beobachtungen war zu erwarten gewesen, dass die Wirkung 

von moxLDL auf Tz im Blut der Tz-sensibilisierenden Wirkung von LPA ähnelt. 

Doch entgegen den Erwartungen konnte mit moxLDL kein aktivierender oder sen-

sibilisierender Effekt auf Tz im Blut gezeigt werden. Die alleinige Gabe von 

moxLDL bewirkte, anders als alleinige Gabe von LPA (Abb. 1a), keine Erhöhung 

der Spontanaggregation (Abb. 12b). Auch die gleichzeitige Gabe von moxLDL und 

Epi mit Messung der Aggregation bis zu 20min zeigte keinerlei Synergismus (Abb. 

12) wie LPA und Epi (Abb. 1b). Es ist daher unwahrscheinlich, dass moxLDL wie 

LPA während einer frühen Phase der 60minütigen Inkubationszeit  eine Tz-

Sekretion wie z.B. eine P-Selectin Expression der Tz im Blut bewirkt.   

Anders als LPA hemmte die Vorinkubation mit moxLDL die Kollagen (0,3µg/ml) 

und ADP (5µM) induzierte Tz Aggregation im Blut signifikant. Der Effekt war in 

einem Bereich von 0,5-4mg/ml moxLDL dosis-abhängig und unabhängig von der 

Inkubationsdauer. Er wurde sowohl nach einer kurzen Vorinkubation von 3min als 

auch nach langer Vorinkubation von 60min beobachtet (Abb. 5+8). Eine geringere 

Anzahl an Tz in den mit moxLDL inkubierten Proben konnte weder im Vergleich zu 

den Proben, welche mit Puffer, HDL oder natLDL inkubiert worden waren, gefun-

den werden, noch konnte ein signifikanter Abfall der Tz Zahl nach 60minütiger In-

kubation beobachtet werden (Abb. 9). Ein solcher Rückgang der Tz Zahl z.B. 

durch eine mox-LDL induzierte Tz-Schädigung oder frühe Tz-Aktivierung, kommt 

als Erklärung für die beobachtete Hemmung der Tz-Aggregation demnach nicht in 

Frage.  

Auch im PRP wurde eine Hemmung der Kollagen- und ADP-induzierten Tz-

Aktivierung durch 60minütige Inkubation mit 4mg/ml moxLDL, im Vergleich zu 

natLDL und HDL, beobachtet (Abb. 6c; Abb. 7c). In Diskrepanz zu den Ergebnis-
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sen der Versuche dieser Arbeit wurde in früheren Studien, die allerdings mit iso-

lierten Tz durchgeführt wurden, teilweise schon ab Konzentrationen von 0,2mg/ml 

ein Gestaltwandel (Zangl KJ 2003) und ab 0,4mg/ml eine irreversible Tz-

Aggregation im Aggregometer beobachtet (Weidtmann A 1995).  

Eine interessante Beobachtung wurde in der Studie von Naseem et al gemacht. 

Im PRP bewirkte eine 1minütige Inkubation mit moxLDL in Konzentrationen zwi-

schen 0,25 und 0,75mg/ml eine signifikante Potenzierung der  ADP (1µM)- stimu-

lierten Aggregation (Naseem KM 1997). Bei einer Konzentration von 1mg/ml 

moxLDL ging die Potenzierung aber deutlich zurück und war nicht mehr signifi-

kant. Bei Tornvall et al hatte 10minütige Vorinkubation von PRP mit 1,25mg/ml 

moxLDL ebenfalls keine Wirkung auf eine nachfolgende Stimulation mit ADP 

(Tornvall P 1999). Diese Beobachtungen könnten ein Hinweis darauf sein, dass 

die in den Versuchen für diese Arbeit verwendeten hohen Konzentrationen zumin-

dest im PRP der Grund für eine Hemmung sein könnten. Im Blut konnte diese 

Vermutung durch den Versuch in Abb. 10 allerdings entkräftet werden, da hier 

schon geringe Konzentrationen ab 0,5mg/ml zu einer Hemmung der Kollagen in-

duzierten Tz Aggregation führten.  

In der Studie von Tornvall et al wurde der Einfluss von moxLDL auf die Reaktions-

fähigkeit von Tz im Blut, ähnlich wie in dieser Arbeit, per Impedanz-Aggregometrie 

gemessen. Die Versuche lieferten jedoch gegenteilige Ergebnisse: Nach 

10minütiger Inkubation von Blut mit 1,25mg/ml moxLDL und Stimulation durch 

ADP konnte eine signifikante Steigerung beobachtet werden (10min Ink, 

1,25mg/ml moxLDL, ADP). Eine Ursache könnte in der unterschiedlichen Art der 

LDL-Oxidation liegen. Bei Tornvall et al wurde gering konzentriertes LDL 

(0,6mg/ml)  für kurze Zeit (135-180min) mit Kupfersulfat oxidiert. Dabei wurden 

zwar ähnlich geringe Werte an MDA wie in dieser Arbeit gemessen, (5,1 bzw. 7 

nM/mg Protein im Vergleich zu 10,5nM/mg Protein in der vorliegenden  Arbeit), 

jedoch wurde auch eine elektrophoretische Mobilität des LDL ermittelt, welche bei 

moxLDL nicht bestehen sollte und ein Zeichen dafür ist, dass das modifizierte LDL 

über Scavenger Rezeptoren und nicht mehr nur über LPA Rezeptor erkannt wird 

und damit eher im Bereich der oxidierten LDL einzuordnen ist (siehe nächster Ab-

satz).  
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Die Mehrheit der Studien, welche mit modifiziertem LDL arbeiteten, verwendeten 

oxidiertes LDL als Agonist. Die genaue Grenze, ab wann es sich nicht mehr um 

milde oxidiertes sondern um oxidiertes LDL handelt, ist nicht definiert. Wie bereits 

erwähnt (siehe Kapitel 2.2.3) werden bei der Lipoprotein Oxidation zunächst die 

Lipide oxidiert und erst bei weiter voranschreitender Oxidation auch das Protein. 

Als Zeichen einer milden Oxidation wird z.B. die Erkennung des moxLDL über 

LPA Rezeptoren angegeben (Zangl KJ 2003). Als Hinweis auf eine stärkere Oxi-

dation, welche neben den Lipiden auch den Proteinanteil des LDL betrifft, gilt die 

Erhöhung der elektrophoretischen Mobilität (Naseem KM 1997) und die Erken-

nung durch Scavenger Rezeptoren (Steinbrecher UP 1987). Eine Unterscheidung 

des Oxidationszustandes kann außerdem über die Menge der gemessenen 

TBARS getroffen werden.  

Korporaal et al vermuteten, dass bei der Wirkung von milde (partially) oxidiertem 

LDL auf Tz vier Rezeptoren relevant sind, die typisch für drei, im moxLDL enthal-

tene, verschiedene Modifikationsformen des LDL sind: natLDL wirkt über den 

ApoER2`, LPA (als charakteristischer Bestandteil von moxLDL) über den LPA-

Rezeptor und oxLDL über CD36 und SR-A (Korporaal SJ 2007). Aus diesem 

Grund wurden bei der Interpretation der Ergebnisse dieser Arbeit auch Studien 

hinzugezogen, welche oxidiertes LDL verwendeten.  

Auch diese Studien kamen mehrheitlich zu dem Ergebnis, dass oxLDL eine sensi-

bilisierende Wirkung auf Tz ausübt.  

Nur eine frühe Studie fand eine hemmende Wirkung von oxLDL (0,25-1mg/ml) auf 

isolierte Tz und Tz in PRP (Naseem KM 1997) ähnlich der, die in den Experimen-

ten für diese Arbeit mit moxLDL im Blut beobachtet wurden. Mit zunehmender 

Konzentration von oxLDL stieg in der Studie von Naseem et al auch die Hemmung 

der ADP induzierten Tz Aggregation. Als Erklärung nannten die Verfasser die Tz 

hemmende Wirkung von reaktiven Aldehyden wie 4-Hydroxynonenal. Diese Ver-

mutung konnte kürzlich bestätigt werden (Ravi S 2016) und könnte in den Versu-

chen für diese Arbeit als Erklärung  für die beobachtete Hemmung von Tz im Blut 

herangezogen werden. Allerdings sollte dann der hemmende Einfluss von reakti-

ven Aldehyden auch in Suspensionen isolierter Tz sichtbar sein. Hier hatte 
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moxLDL, über seinen Inhaltsstoff LPA, sowohl in den Versuchen für diese Arbeit 

(Abb. 13a) als auch in früheren Studien, wie bereits oben erwähnt, eine eindeutig 

aktivierende Wirkung (Weidtmann A 1995, Baumann-Simmons J 2000, Zangl KJ 

2003).  

Podrez et al beschrieben eine Klasse modifizierter Phosphatidylcholine (oxPCcd36) 

als aktive Substanz in oxLDL, deren sensibilisierende Wirkung über einen klassi-

schen Scavenger Rezeptor, CD36, vermittelt wird. P-Selectin Expression und Kon-

formationsänderung des Fibrinogen-Rezeptors durch oxLDL bzw. oxPCcd36 als 

Zeichen für die Aktivierung der Tz konnten an isolierten Tz nachgewiesen werden 

(Podrez EA 2002 und 2007). Eine frühe Aktivierung der Tz durch moxLDL könnte 

auch eine Erklärung dafür liefern, dass es nach einer Vorinkubation von 60min zu 

einer Hemmung der Kollagen und ADP induzierten Tz Aggregation kommt. Es 

fand sich allerdings in den Versuchen für diese Arbeit, wie oben ausgeführt, eine 

solche frühe Tz-Aktivierung durch moxLDL nicht (Abb. 12).  

Interessant ist die von Badrnya et al beobachtete Interferenz der Wirkung von HDL 

auf die oxLDL induzierte Aktivierung von Tz (Badrnya S 2013) welche die moxLDL 

Ergebnisse dieser Arbeit zumindest teilweise erklären könnte. Die Autoren beo-

bachteten, dass eine 5minütige Inkubation von isolierten Tz mit 0,2-0,4mg/ml 

natHDL die durch  oxLDL (10-150µg/ml) induzierte Bildung von ROS in Tz und 

Expression von Oberflächen-CD40L auf Tz signifikant hemmte. Im Blut vermochte 

eine 5minütige Inkubation mit 200µg/ml HDL die oxLDL (100µg/ml) induzierte Bil-

dung von Plättchen-Neutrophilen-Aggregaten (PNAs) signifikant zu hemmen. Im 

für diese Arbeit verwendeten Versuchsaufbau wurde Blut von gesunden Individu-

en verwendet, die einen Gehalt von durchschnittlich 54+/-6  mg/dl HDL-

Cholesterin im Blut hatten, was einer Menge von ca. 1,25mg/ml HDL Protein ent-

spricht. Dieses HDL war natürlich während der 1stündigen Inkubationszeit mit 

4mg/ml moxLDL ebenfalls anwesend und wäre zumindest eine Erklärung für eine 

ausbleibende sensibilisierende Wirkung von moxLDL auf die Tz Aggregation. Eine 

Erklärung für die beobachtete Hemmung liefert der beschriebene Einfluss von 

HDL allerdings nicht.  
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Badrnya et al verwendeten für die Modifikation von LDL Hypochlorit, ein Verfah-

ren, bei dem ausschließlich Proteine modifiziert werden und die Lipidoxidation in 

etwa der von nativem LDL entspricht (Volf I 2000). Bei der in der vorliegenden Ar-

beit gewählten Oxidationsmethode (nach Esterbauer) steht eine milde Modifikation 

der Lipide im Vordergrund, während  eine Modifikation der Proteine weitgehend 

vermieden wird (Weidtmann A 1995). Die Wirkung, die Badrnya et al mit hyp-

moxLDL beobachtete, deckt sich jedoch mit anderen Studien, bei denen LDL 

durch den Zusatz von Kupfer- oder Eisenionen oxidiert wurde (Badrnya S 2013).  

 

6.5 Wirkung von HDL auf Thrombozyten im Blut  

Natives HDL hatte in den Versuchen im Rahmen dieser Arbeit weder nach Kurz- 

noch nach Langzeitinkubation eine Wirkung auf Tz im Blut. Auch im PRP konnte in 

den Versuchen für diese Arbeit keine hemmende Wirkung auf die Kollagen und 

ADP-induzierte Tz Aggregation durch Inkubation mit HDL beobachtet werden, die 

sich von der Wirkung von nativem LDL unterschied (Abb. 6d und 7d). In der Litera-

tur finden sich jedoch einige Studien, welche zeigen, dass die Inkubation mit phy-

siologischen Mengen an HDL auf gewaschene Tz eine hemmende Wirkung aus-

übt (Chen LY 1994, Nofer JR 1998, Assinger A 2008). Allerdings widerspricht eine 

Arbeit bei gleichem Versuchsaufbau, Verwendung von 0,2-1mg/ml HDL, 2min In-

kubation, anschließender Stimulation durch 0,1U/ml Thrombin und Messung im 

Aggregometer, diesen Ergebnissen. Eine signifikante Hemmung findet sich laut 

den Autoren dieser Studie  erst mit oxHDL (Valiyaveettil M 2008).  

Offenbar spielt die thrombozytäre Expression  des HDL Rezeptors eine große Rol-

le bei der beobachteten, hemmenden Wirkung von HDL. Die Studie von Imachi et 

al läßt einen Zusammenhang zwischen der Menge an exprimiertem SR-B1 auf Tz 

und einer hemmenden Wirkung von HDL auf die Tz Aggregation vermuten. Starke 

Expression von SR-B1 korrelierte mit geringer Tz Aggregation (Imachi H 2003). 

Offenbar ist nicht die Menge an HDL, sondern die Menge an exprimiertem Rezep-

tor der entscheidende Faktor für die Wirkung von HDL. Dies könnte eine Erklärung 

dafür sein, warum in den Versuchen für diese Arbeit trotz überhöhter Menge an 

HDL kein Effekt auf die Tz Aggregation beobachtet werden konnte, da die throm-
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bozytäre HDL-Rezeptordichte möglicherweise bei den untersuchten Blutspendern 

niedrig war.  
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7 Zusammenfassung 

Tz spielen eine zentrale Rolle bei der intraluminalen Thrombose infolge einer Rup-

tur oder Erosion atherosklerotischer Plaques, der Atherothrombose. In diesem 

Zusammenhang wird diskutiert, ob Lipoproteine bei diesem Prozess von Bedeu-

tung sein könnten. LDL und moxLDL, die nach Plaqueruptur freigelegt werden 

oder möglicherweise im Blutkreislauf in erhöhter Konzentration vorhanden sind, 

könnten prothrombotisch wirken, indem sie Tz voraktivieren und dadurch die Sen-

sibilität der Tz auf andere Agonisten erhöhen. HDL könnte die gegenteilige Wir-

kung haben. Eine verstärkte Tz-Aktivierung durch LDL und moxLDL und eine ver-

minderte Hemmung durch HDL könnte die überschießende Thrombusbildung er-

klären, welche immer wieder nach Plaqueruptur oder -erosion beobachtet wird und 

so ausgedehnt sein kann, dass ein ganzes Gefäß verschlossen wird.  

Während bisherige Studien zu diesem Thema vor allem isolierte Tz verwendeten, 

wurde in der vorliegenden Arbeit der Einfluss von natLDL, moxLDL und HDL auf 

Tz im Blut untersucht, um möglichst physiologische Bedingungen zu gewährlei-

sten. Bezüglich der Wirkung von moxLDL auf die Tz-Aktivierung ist die vorliegen-

de Arbeit die erste, welche mit Blut durchgeführt wurde.  

Kurzzeitinkubation mit natLDL zeigte eine geringe, jedoch signifikante sensibilisie-

rende Wirkung auf Tz im Blut bei nachfolgender Stimulation mit Kollagen und be-

stätigt damit Ergebnisse früherer Studien, welche mit isolierten Tz durchgeführt 

wurden (Weidtmann A 1995, Hackeng CM 1999, Relou IAM 2003-2, Korporaal SJ 

2004). Nach einstündiger Inkubation von natLDL mit Blut wurde hingegen kein 

Effekt mehr auf die Tz-Funktion beobachtet. Eine ähnliche Beobachtung wurde in 

einer Studie mit natLDL und isolierten Tz gemacht. Nach 10-20min verschwand 

der zunächst aktivierende Effekt von natLDL auf isolierte Tz wieder. Die Arbeits-

gruppe interpretierte dies als Schutzmechanismus vor Plättchenaktivierung durch 

zirkulierendes LDL (Relou IAM 2003-1).  

NatHDL hatte in den Versuchen im Rahmen dieser Arbeit weder nach Kurz- noch 

nach Langzeitinkubation eine Wirkung auf Tz im Blut oder im PRP. In der Literatur 

finden sich einige Studien, welche eine hemmende Wirkung von Inkubation mit 
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physiologischen HDL-Konzentrationen auf isolierte Tz zeigen (Chen LY 1994, No-

fer JR 1998, Assinger A 2008), allerdings auch eine Arbeit, die bei gleichem Ver-

suchsaufbau wie die vorher genannten keine Wirkung von HDL beobachtete (Va-

liyaveettil M 2008). 

Das überraschende Ergebnis der vorliegenden Arbeit ist die hemmende Wirkung 

von moxLDL auf die Tz-Aggregation im Blut. Dieses Resultat steht im Gegensatz 

zu allen anderen Arbeiten zu diesem Thema.  

MoxLDL hatte in früheren Studien eine aktivierende Wirkung auf isolierte Tz 

(Weidtmann A 1995, Naseem KM 1997, Zangl KJ 2003). Die aktivierende Wirkung 

auf isolierte Tz konnte auf LPA zurückgeführt werden, welche als die wesentliche 

Tz-aktivierende Substanz in moxLDL identifiziert wurde (Siess W 1999, Essler M 

2000). Die sensibilisierende Wirkung von LPA auf Tz im Blut, wie auch die Rolle 

von LPA als aktive Komponente in moxLDL bei dessen Wirkung auf isolierte Tz 

und Tz im PRP, konnte in der vorliegenden Arbeit bestätigt werden. Auf dieser 

Grundlage war eine ähnliche, sensibilisierende Wirkung von moxLDL auf Tz im 

Blut erwartet worden.  

Doch anders als LPA und anders als in früheren Versuchen mit isolierten Tz 

hemmte die Vorinkubation mit moxLDL die durch Kollagen und ADP induzierte Tz-

Aggregation im Blut und im PRP. Die Ergebnisse der Dosis-Wirkungs-Kurven und 

der Vergleich von Kurz- und Langzeitinkubation zeigten, dass die hemmende Wir-

kung von moxLDL auf Tz im Blut schon bei geringen Konzentrationen (0,5mg/ml) 

beobachtet werden konnte, und unabhängig von der Länge der Vorinkubationszeit 

war. 

Auch wenn keine Erklärung für die Tz-hemmende Wirkung von moxLDL gefunden 

werden konnte (ausgeschlossen werden konnten mögliche Tz-toxische Wirkungen 

von moxLDL), so ist die Beobachtung sicher auf die Verwendung von Blut in den 

Experimenten der vorliegenden Arbeit zurückzuführen. Offenbar hemmen Plas-

mabestandteile wie andere Lipoproteine und Plasmaproteine die aktivierende Wir-

kung von moxLDL im Blut. Die Versuche von Badrnya et al mit HDL, welches die 

oxLDL induzierte Sensibilisierung isolierter Tz hemmte, deuten in diese Richtung 

(Badrnya S 2012). Haserück et al beobachteten, dass die für eine Tz Aggregation 
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benötigte Konzentration an LPA in isolierten Tz im nM-Bereich und im Blut im µM-

Bereich liegt. Sie erklärten dies mit Plasmaproteinen wie Albumin, welche LPA im 

Blut binden (Haserück N 2007). 

Die Ergebnisse der vorliegenden Arbeit lassen demnach vermuten, dass die Wir-

kungen, welche in zahlreichen Arbeiten für HDL und oxidativ modifiziertes LDL in 

isolierten Tz beschrieben wurden, in vivo keine Rolle spielen (HDL) oder völlig an-

ders sind (moxLDL). Es ist aufgrund der Ergebnisse unwahrscheinlich, dass 

moxLDL, entweder nach Plaqueruptur freigelegt oder im Blutkreislauf vorhanden, 

prothrombotisch wirkt. 
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nach Langzeitinkubation mit natLDL, moxLDL, oder HDL  S. 49 
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Abb. 6:  Wirkung von Langzeitinkubation mit  
natLDL, moxLDL und HDL auf die Kollagen  
stimulierte Thrombozytenaggregation im PRP    S. 51 
 

Abb. 7:  Wirkung von Langzeitinkubation mit natLDL,  
moxLDL und HDL auf die ADP stimulierte  
Thrombozytenaggregation im PRP     S. 53 

 
Abb. 8:  Vergleich der Thrombozytenaggregation nach  

Kurz- und Langzeitinkubation stimuliert durch Kollagen  
mit den Lipoproteinen natLDL, HDL und moxLDL   S.55 
 

Abb. 9:  Darstellung der veränderten Thrombozyten- 
anzahl nach 60min Inkubation      S. 56 

 
Abb. 10 Dosisabhängigkeit des Effekts von moxLDL 

nach Langzeitinkubation auf die Kollagen  
induzierte Thrombozytenaggregation     S. 57 

 
Abb. 11:  Wirkung von Kupfersulfat auf die Thrombozyten- 

aggregation bei Langzeitinkubation     S. 59 
 
Abb. 12:  Aufzeichnung der Agonisten-induzierten  

Thrombozytenaggregationim Blut während 20min   S. 61 
 
Abb. 13: Wirkung des LPA5 Rezeptor Antagonisten PGM029615 

auf den durch moxLDL, oxLDL und LPA  
induzierten Gestaltwandel isolierter Thrombozyten   S. 63 

 
Abb. 14:  Einfluss von moxLDL und natLDL auf den durch LPA  

induzierten Gestaltwandel von Thrombozyten im PRP  S. 65 
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9.4  Abkürzungen 

 

A 

Abb.   Abbildung 

ADP   Adenosindiphosphat 

AK   Antikörper 

Apo   Apolipoprotein 

ASS   Acetylsalicylsäure (Aspirin®) 

ATP   Adenosintriphosphat 

AU   Aggregation Unit 

AUC   Fläche unter der Aggregationskurve (area under the curve) 

(Multiplate®-System) 

 

B 

BSA   Rinderserumalbumin (bovine serum albumin) 

BCA  Bicinchoninsäure (bicinchoninic acid) 

BTH  Butylhydroxytoluol 

 

C  

Ca2+   Kalzium 

CD  Cluster of Differentiation 

Cu2+    Kupfer 

CuSO4 Kupfersulfat 
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D  

DG   Dichtegradient 

 

E  

EDTA   Ethylendiamintetraacetat 

eLDL  elektronegatives LDL 

Epi  Adrenalin (epinephrine) 

 

F  

FACS   fluoreszenzaktivierte Zellsortierung (fluorescence activated cell 

sorting) 

Fe2+   Eisen 

FeCl3  Eisenchlorid 

 

G  

GW  Gestaltwandel 

 

H  

HEPES  4-(2-Hydroxyethyl)-1-piperazinethansulfonsäure 

H2O2   Wasserstoffperoxid 

HDL  High Density Lipoprotein 

HDL-C HDL-Cholesterin 

 

I 

ILDL  Intermediate Low Density Lipoprotein 
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K 

KBr  Kaliumbromid 

KCl   Kaliumchlorid 

 

L 

LCAT  Lecithin-Cholesterin-Acyltransferase 

LDL   Low Density Lipoprotein 

LPA   Lysophosphatidsäure 

LOX-1  lectin-like oxidized low-density lipoprotein receptor-1 

 

M 

Mg2+   Magnesium 

MgCl2   Magnesiumchlorid 

moxHDL  milde oxidiertes High Density Lipoprotein 

moxLDL milde oxidiertes Low Density Lipoprotein 

MW   Mittelwert 

MDA  Malondialdehyd 

MPO  Myeloperoxidase 

MAP   Mitogen activated protein 

MLC  Myosin Light Chain  

MLCP  Myosin Light Chain Phosphatase 

 

N 

NaCl   Natriumchlorid 

NADPH Nicotinsäureamid-Adenin-Dinukleotid-Phosphat 
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NaOH  Natriumhydroxid 

natHDL natives HDL 

natLDL natives LDL 

NOX2  NAD Phosphat Oxidase 2 

 

O 

O.D.   optische Dichte bei einer Wellenlänge von x nm 

 

P  

PAC-1 Antikörper zur Markierung der aktivierten Konformation des Fibrino-

gen-Rezeptors auf Tz 

PBS   Phosphat-gepufferte Saline (phosphate buffered saline) 

PDGF  Platelet derived growth factor 

PECAM Platelet endothelial cell adhesion molecule  

PLA2  Phospholipase A2 

PNA  Plättchen Neutrophilen Aggregate 

PON-1 Paraoxonase-1 

PPP   plättchenarmes Plasma (platelet-poor plasma) 

PRP   plättchenreiches Plasma (platelet-rich plasma) 

 

R  

RT   Raumtemperatur 

ROS  reactive oxygen spezies 
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S  

SD   Standard Deviation Standardabweichung 

SRA  Scavenger Receptor Klasse A 

SRB  Scavenger Receptor Klasse B 

 

T 

Tz  Thrombozyten 

Tab.   Tabelle 

TF   tissue factor (Gewebethromboplastin) 

Tris-(hydroxymethyl)-aminomethan 

TGF-ß  Transforming Growth Factor ß 

TXA2  Thromboxan A2 

TBARS Thiobarbitursäure-reaktive Substanzen 

TRAP  thrombin receptor activating peptide 

 

V    

vWF   von Willebrand Faktor 

VLDL  Very Low Density Lipoprotein 

 

W   

WHO  World Health Organisation  
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9.5  Einheiten 

°C   Grad Celsius 

cm   Zentimeter 

g   Gramm 

h   Stunde 

k  tausend 

kDa   Kilodalton 

l   Liter 

M   molar (= mol/l) 

µg   Mikrogramm 

µl   Mikroliter 

µm   Mikrometer 

µM   Mikromolar 

mM  Millimolar 

mA   Milliamper 

mg   Milligramm 

ml   Milliliter 

mm   Millimeter 

mM   Millimolar 

min   Minute 

MWCO  Molecular Weight cut-off 

ng   Nanogramm 

nm   Nanometer 

pH  pH-Wert 

% (v/v)  Volumenprozent (Volumen pro Volumen) 
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% (w/v)  Gewichtsprozent (Gewicht pro Volumen) 

rpm   Umdrehungen pro Minute (revolutions per minute) 

s, bzw. sek.  Sekunden 

U   Unit 

UV   ultraviolet 

x g   Vielfaches der Erdbeschleunigung 
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