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Abstract 

Huntington’s disease (HD) is a genetically-caused disorder characterized by aggregation of 

polyQ-expanded mutant Huntingtin (mHTT) protein and progressive neurodegeneration in the 

striatum and cortex. HD is associated with motor, cognitive and psychiatric symptoms. In this 

thesis, pathology in R6/2 mice, a mouse model of HD, was assessed using two different 

approaches, in vivo calcium imaging and protein homeostasis (proteostasis) measurements. Both 

approaches center on monitoring cellular states of neurons in specific brain regions throughout 

the course of the disease. 

Studies in mouse models and human patients suggest that disturbance of neuronal function 

in cortex plays an important role in HD. However, longitudinal changes in neuronal activity have 

not been investigated in vivo in an intact animal during the course of the disease. Therefore, in 

the first part of this thesis, cellular activity was assessed in layer 2/3 of the primary motor cortex 

via chronic two-photon calcium imaging using a genetically encoded calcium indicator. We 

observed an increase in neuronal activity that coincided with disease onset. To understand the 

mechanisms behind this, I analysed mass-spectrometry data from cortex of R6/2 mice of three 

different ages and found a reduction in synaptic proteins at disease onset. To further investigate 

this decrease in synaptic proteins, I performed histology on tissue of R6/2 mice and littermates in 

primary motor cortex. I observed that parvalbumin-positive terminals on pyramidal neurons were 

reduced in number and also found a 50 % decrease in the density of somatostatin-positive 

interneurons. This reduction in cell density correlated with a higher aggregate load in these cells 

compared to other interneuron subtypes. Therefore, lack of inhibition could explain the increase 

in aberrant neuronal activity measured. 

Protein folding capacities in a cell are dictated by the cellular proteostasis system. A decline 

in proteostasis and thereby protein folding capacities is believed to occur in neurodegenerative 

disorders, including HD. Nevertheless, functional studies in HD mouse models, measuring 
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folding capacities at different disease stages, are still lacking. Therefore, in the second part of this 

thesis I monitored proteostasis in the R6/2 model. For this I used a proteostasis sensor based on 

the conformationally unstable GFP-tagged firefly luciferase. In primary neurons transfected with 

mHTT the sensor measured a disturbance of proteostasis. I then developed a transgenic mouse 

line expressing the sensor and crossed it to R6/2 mice to measure proteostasis in four brain regions 

at different ages. Contrary to our expectations, I did not see a decline in proteostasis in 

symptomatic mice. Instead, I observed an increase in protein folding capacities at a very young 

age in brain regions less affected by the disease. A proteomic screen revealed a transient 

upregulation of several protein degradation components in these regions. This data suggest that 

these early proteome changes might provide protection against mHTT toxicity in disease-resistant 

brain regions, whereas a failure to upregulate these protein quality control mechanisms might 

contribute to the selective vulnerability of the striatum in HD. 
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1. Introduction 

1.1. Huntington´s disease 

1.1.1. Neurodegeneration 

1.1.1.1. The central nervous system 

The human brain consists of roughly 90 billion neurons. Neurons can be divided into 

projection neurons that innervate other brain regions or other regions of the same brain structure 

over long distances, and interneurons that innervate neurons in close proximity. The brain is 

primarily divided into the cerebrum, the cerebellum, and the brain stem [1].  

The cerebellum is strongest related to fine-tuned motor control but is also known for cognitive 

functions such as attention and language. It is highly gyrified and consists of three cellular layers: 

the granule cell layer, the Purkinje cell layer and the molecular cell layer.  

The cerebrum develops out of the telencephalon, with the dorsal telencephalon becoming the 

cerebral cortex and the ventral telencephalon becoming the basal ganglia. One main structure of 

the basal ganglia is the striatum, which will be discussed below. The cerebral cortex contains the 

hippocampus, which is functionally mostly studied in the context of memory. The hippocampus 

is highly interconnected with other brain regions via the enthorinal cortex (EC) and consists of 

the dentate gyrus and the cornu ammonis regions 1 and 3 (CA1 and CA3). 

For simplicity I will refer to the neocortex as cortex for the rest of this thesis. About 80 % of 

cortical neurons are pyramidal excitatory (glutamatergic) projection neurons [2], [3]. The 

remaining fraction are inhibitory interneurons, which serve to inhibit other cells of the cortex 

through short distance projections. The cortex of mammals is divided into 6 different layers. The 

first layer harbors no pyramidal and only few interneuron cell bodies. Pyramidal cells are present 

in all other layers of the cortex. The cortex is highly interconnected, with most input onto layers 

5 and 6 arising from layer 2/3. Neuronal populations that project to either cortical or subcortical 
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regions are mutually exclusive (reviewed by Shipp [4]). Most subcortically projecting neurons 

are harbored by layers 2/3, 5 and 6. Motor cortex, the main focus of the first part of the thesis, 

does not contain a cortical layer 4. Most projections onto striatum arise from layer 5. In the motor 

cortex, contrary to sensory cortex, some projections also arise from layer 2/3 [5] (Fig. 1-1).  

 

 

Figure 1-1: Cortical connectivity. 

A: In primary motor cortex, pyramidal neurons of layer 5 are the main output from this brain region onto 

striatum. From lower layer 5 intratelencephalic (IT) neurons project onto dopamine receptor 2 (D2)-

expressing medium spiny neurons (MSN) in the striatum (orange), belonging to the indirect pathway. 

Pyramidal tract (PT) pyramidal neurons reside in upper layer 5 and in layer 2/3 and project onto dopamine 

receptor 1 (D1)-expressing MSNs (yellow), belonging to the direct pathway. Layer 2/3 pyramidal neurons 

mainly innervate pyramidal neurons of layer 5. B: The direct pathway is affected later in HD than the 

indirect pathway, leading to the phenomenon of involuntary movement early in disease and lack of 

voluntary movement later in disease. 

 

The cortex connects to the striatum monosynaptically, whereas the striatum connects to the 

cortex in an indirect way via more than one synapse. For this thesis I will focus on the connections 

from cortex to striatum. Cortical projection neurons can be divided into pyramidal tract type (PT) 
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and intratelencephalically (IT) projecting neurons. As part of the pyramidal tract, PT neurons 

target axons down to the brain stem or spinal cord. PT axon collaterals however project, among 

other regions, to the striatum [6]. The IT neurons project within the telencephalon (cortex and 

basal ganglia) [7].  

Striatum, globus pallidus, the ventral pallidum, substantia nigra and the subthalamic nucleus 

all belong to the basal ganglia. The basal ganglia are involved in motivation, reward and working 

memory, but also movement. The striatum consists of the caudate nucleus and putamen (dorsal 

striatum), and the nucleus accumbens (ventral striatum). 95 % of the striatal neurons are 

GABAergic projection neurons, so-called medium spiny neurons (MSNs) [8]. The rest are 

interneurons. The striatum receives two forms of main input, glutamatergic input arising from the 

cortex and dopaminergic input from the substantia nigra. Motor control can be divided into the 

elicitation of movement that is the initiation and execution of movement, which is controlled by 

the direct pathway of movement, and the inhibition of unwanted muscle movement, controlled 

by the indirect pathway. The indirect pathway contains MSNs that express enkephalin and 

dopamine receptor 2 (D2) and project mainly to the external segment of the globus pallidus. The 

direct pathway contains MSNs that express substance P and dopamine receptor 1 (D1) and project 

to the internal segment of the globus pallidus and the substantia nigra [9], [10]. Indirect pathway 

neurons (D2 MSNs) preferentially receive input from IT neurons and direct pathways neurons 

(D1 MSNs) from PT projection neurons ([10], Fig. 1-1).  

1.1.1.2. Degeneration of the nervous system 

Neurodegeneration is the pathological age-dependent degeneration of cells of the central 

nervous system. Prominent examples of neurodegenerative diseases are Alzheimer’s disease 

(AD), Parkinson’s disease (PD), Frontotemporal dementias (FTDs), Amyotrophic lateral 

sclerosis (ALS) and Huntington´s disease (HD). All of these diseases have several features in 

common [11]: Disease onset usually occurs in the second half of life, with the exception of rare 

juvenile cases. One of the typical symptoms is dementia. All of these disorders are currently 

incurable. And interestingly, in all of these, disease-specific proteins misfold and aggregate. 
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These proteins differ between the different diseases, as does the intracellular aggregate location 

and the affected brain regions. For example, in AD, amyloid-β and tau proteins misfold and form 

extracellular and cytoplasmic aggregates, respectively [12, 13]. The most and firstly affected 

regions are the cerebral cortex and the hippocampus. In PD, the protein α-synuclein forms 

cytoplasmic aggregates and the most affected regions are the substantia nigra of the basal ganglia 

and the hypothalamus [14]. The vast majority of cases of all major neurodegenerative disease, 

with the exception of HD, are sporadic. This of course makes modelling of the disease in cellular 

systems or animals very difficult, again with the exception of HD.  

1.1.2. Huntington´s disease 

HD is an autosomal-dominant neurodegenerative disease with a typical onset during the 

fourth decade of life [15]. One of the first detailed descriptions of this disorder was made by 

George Huntington in the year 1872 [16], who referred to it as “chorea”, because of the 

stereotypical dance-like muscle twitchings observed in the disease. HD is caused by an expansion 

of a CAG-repeat in exon 1 of the huntingtin (HTT) gene on chromosome 4, which encodes a poly-

glutamine (polyQ) stretch [17], [18]. Subjects with 36 or less CAG repeats are not affected by the 

disease, whereas 41 or more repeats lead to a full penetrance of the disorder; and subjects with a 

CAG-expansion between 37 and 40 can develop the disease [19], [20]. Symptoms include motor 

deficits [16], cognitive impairments [21], [22], and neuropsychiatric dysfunctions [23], [24]. 

Death typically occurs around 15 – 20 years after diagnosis [24]. The prevalence of HD lies at 5 

– 10 per 100 000 worldwide with highest prevalence seen in people of western European origin 

[15], [25].  

Motor symptoms in HD can be roughly divided into added involuntary motor symptoms, 

such as chorea and dystonia (repetitive muscle contractions), appearing earlier in disease 

progression, and impaired initiation of voluntary movements, such as bradykinesia (deceleration 

of movement) and rigidity, appearing later in disease progression [24]. Motor impairment scoring 

during disease, but not chorea, seems to be a good correlate to post-mortem neuropathology [26]. 

Cognitive decline and dementia are also major symptoms of HD [21], [22] and have been reported 
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to appear earlier than motor symptoms in some cases. Psychiatric symptoms include anxiety, 

irritability, depression, obsessive-compulsive disorders, apathy, and psychosis [23], [24]. 

Increased suicidal inclinations have been reported in HD patients [27], [28]. 

1.1.2.1. CAG-repeat expansion causative for HD 

HD is the most common of nine polyQ-related neurodegenerative disorders. PolyQ repeats 

may also cause dentatorubral-pallidoluysian atrophy (DRPLA), spinal and bulbar muscular 

atrophy and six types of spinocerebellar ataxias (SCA1, 2, 3, 6, 7, and 17) [29], [30]. All of these 

disorders present with protein aggregates and selective neurodegeneration. Nevertheless, the 

CAG-repeat expansions occur in different proteins, and the cells affected most by these disorders 

differ. In all of these disorders CAG-repeat length correlates inversely with age of onset [20], 

[19], [29], [31]. 

CAG repeat numbers in monozygotic twins have been shown to be identical [32]. Because 

HD is genetically caused and because the genetic mutation has a full penetrance in people with 

over 40 CAG-repeats, in affected monozygotic twin pairs both individuals develop the disease. 

However, exact age at disease onset, disease progression and symptomology can differ [33], 

which suggests that progression and symptomology can be environmentally and epigenetically 

influenced. CAG-repeats are unstable in germ lines, especially in sperm cells, which can lead to 

increased CAG-repeat expansions in offspring of mutation carriers [32], [34]. Instability of CAG-

repeat lengths has also been described in somatic cells, for example in striatal neurons of an HD 

mouse model [35] and cortical neurons of HD patients [36], but not in blood cells of HD patients 

[32].  

1.1.2.2. Pathology  

Pathologically, HD leads to drastic brain atrophy, especially of the caudate nucleus and 

putamen. But also other regions, such as the cortex, thalamus and white matter, are affected [37], 

[38], [39]. In general, vulnerability is highest in striatum, followed by the cortex. The 

hippocampus is relatively spared [40], as is the cerebellum [41], [42].  
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The most vulnerable neurons are striatal MSNs [43], [44]. D2 MSNs are more susceptible 

and die prior to D1 MSNs [45]. This could explain the biphasic symptomology of HD, in which 

first additive involuntary movements and in later stages a lack of voluntary movement is 

observed. In line with the loss of striatal GABAergic MSNs, the neurotransmitter GABA is 

reduced in HD patients in the caudate nucleus and the putamen [46]. A loss of GABAergic 

interneurons could also play a role in this reduction, nevertheless striatal interneurons have been 

described to be relatively spared in the disease [43], [44]. Synaptic vesicle fusion proteins, 

specifically SNARE proteins such as SNAP-25, Synaptobrevin 2 and Complexin II, have been 

shown to be downregulated in striatum of HD patients [47], hinting at atrophy of the 

corticostriatal tract. In the caudate nucleus, glucose metabolism is impaired prior to measured 

atrophy [37] and onset of motor symptoms [48]. This could be due to loss of corticostriatal 

synapses, which are regions of high activity and therefore glucose metabolism. Such 

hypometabolism was also observed in the motor cortex [48]. Cortical thinning and cell loss is 

very pronounced in HD patients [38], [49], [50], [39]. In the cortex mainly pyramidal neurons of 

layers 5 and 6 are reduced in number [49]. The neuronal loss is stronger in motor cortex than in 

anterior cingulate cortex in HD patients primarily exhibiting motor symptoms and stronger in the 

anterior cingulate cortex in HD patients primarily exhibiting mood and cognitive changes, hinting 

at a causal effect of cortical cell loss on symptomology [50].  

1.1.2.3. Synaptic dysregulation 

In the striatum of HD patients, synaptophysin, a marker of synaptic terminals is dramatically 

reduced [51]. Postsynaptic D1 and D2 dopamine receptors as well as dopamine transporter 

molecules were found to be reduced in the striatum of HD patients in positron emission 

tomography studies [52]. In the temporal cortex, a reduction of D1 receptors was observed [52]. 

Many synaptic proteins such as postsynaptic density (PSD) protein PSD-95 and PASCIN have 

been reported to interact with normal huntingtin (HTT, [53], [54]). In HD post-mortem tissue, 

glutamate uptake was found to be significantly reduced in prefrontal cortex compared to controls 

and to correlate inversely with CAG-repeat length [55]. Also, the glutamate transporter EAAT2 
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and GABA levels were reduced in the mediofrontal cortex [55], suggesting an alteration in 

synaptic function. Synaptic inhibition is known to be disrupted by mHTT, because mHTT impairs 

the delivery of GABA receptors to synapses [56]. 

1.1.2.4. Aggregates 

PolyQ expansion renders mHTT aggregation-prone [57]. Aggregation proceeds through 

multiple stages, resulting in the formation of mature insoluble inclusion bodies. The first time 

mHTT aggregates were described was in the R6 mouse models for HD [58]. Based on these 

findings, ubiquitinated nuclear mHTT aggregates and ubiquitinated accumulations of mHTT 

were found in dystrophic neurites in HD patient cortex [59]. Most of the times a cell harbors one 

and not more nuclear inclusion bodies (IB) [60], [61], [62]. Nuclear inclusions are mostly seen in 

the caudate nucleus, putamen, globus pallidus and cortex and less so in the thalamus, subthalamic 

nucleus, substantia nigra, amygdala and hippocampus [60], [61]. The number of inclusions in the 

cortex correlates with the CAG-repeat length, whereas this is not true for inclusions in the striatum 

[60], [61]. Some neurons exhibit granular cytoplasmic mHTT staining, which tends to be 

perinuclear [61] or located in neurites [62]. Although glial cells have been described to not exhibit 

nuclear inclusions [61], [62], in a recent report low levels of aggregate burden has been observed 

in oligodendrocytes and astrocytes of HD patients and several HD mouse models [63].  

1.1.3. Huntingtin 

1.1.3.1. Huntingtin and its function 

The protein HTT is expressed ubiquitously, with highest levels in the testes and the nervous 

system [64], [65], [66]. HTT is a cytosolic protein that is mostly expressed in neuronal cells of 

the central nervous system (CNS) [65], where it is localized in the soma and in dendrites [67], 

[65]. The protein is completely soluble, despite its size of 3144 amino acids or 384 kDa [66], 

[68]. Other proteins, among them many transcription factors, have been described to contain 

polyQ-repeats [69]. PolyQ stretches have been proposed to form a polar zipper structure made of 

beta-strands important for transcriptional activity [70] and HTT is known to interact with several 
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proteins through its polyQ stretch [71]. HTT has been reported to be important for proper function 

of several distinct cellular compartments, such as the nucleus, the ER and the Golgi apparatus 

[72] [71]. It associates with vesicle membranes [67] and microtubules [65], [73]. Among other 

functions, HTT is known to control vesicle transport [74], cell division [73] and transcription 

[71].  

Increased expression of wild-type (wt) HTT protects striatal cells in culture from apoptotic 

cell death after starvation and heat stress [75] and from N‐methyl‐D‐aspartic acid (NMDA)-

mediated excitotoxicity [76]. HTT null mice are not viable and die around embryonic day 8.5 

[77], [78], [79], whereas expression of wt (18Q) or mHTT (46 or 72Q) rescues this lethality [80], 

indicating that HTT is essential during embryonic development and that even mHTT can exert 

this function. Male mice expressing mHTT exclusively are not fertile due to decreased sperm 

production [80], showing that HTT plays a role in male fertility, which mHTT cannot fulfill. 

Inactivation of HTT in postmitotic neurons using a Cre/loxP strategy leads to neuronal 

degeneration, motor deficits and increased lethality [81], strikingly demonstrating a role of HTT 

in neuronal function and survival. However, expression of mHTT does not lead to the loss of 

transcription of normal HTT [82], which means that patients have at least one copy of wt HTT, 

contrary to the aforementioned mouse models. Interestingly, homozygosity for the mutation does 

not change disease onset [83], [84]. 

1.1.3.2. Formation and cellular localization of HTT aggregates 

HTT aggregates purified from human tissue consist of polymers, which are probably 

associated through covalent bonds, oligomers of full-length HTT and amino (N)-terminal 

fragments of the protein [59], [85]. HTT aggregates can recruit polyQ-containing proteins, for 

example wt HTT with a non-extended polyQ stretch [86]. HTT is cleaved by cysteine proteases, 

leading to N-terminal fragments, and this proteolysis increases with CAG-repeat length [87]. N-

terminal fragments of mHTT are found in cultured cells and transgenic mice expressing full-

length mHTT as well as in patients [88]. Aggregate formation itself is also dependent on CAG 

repeat length [89]. HTT exon1 peptides can form aggregates that contain amyloid-like fibrils [57]. 
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In cultured cell lines and primary neurons, truncated N-terminal fragments of HTT are more likely 

to form aggregates than full-length HTT [90], [89], [91], [92]. In accordance, cells expressing 

truncated HTT are more susceptible to stress than those expressing full-length HTT [90], [91], 

suggesting that shorter fragments could be the more toxic forms of HTT. Additionally, truncated 

N-terminal fragments form nuclear and perinuclear aggregates, whereas full-length HTT tends to 

form more perinuclear aggregates [91], [92]. Nuclear aggregation seems to be more toxic to cells 

compared to cytoplasmic aggregation, as shown by directed targeting of mHTT in transiently 

transfected neuro-2a cells [93]. In line with this, Gu et al. described the pathology of an HD mouse 

model expressing mHTT excluding the N-terminal 17 amino acids [94]. This region has been 

reported to function as a nuclear export signal [95]. The mouse model lacking this region 

exhibited decreased nuclear export of mHTT fragments and more overt symptoms and pathology 

than the same line expressing intact mHTT [94], suggesting that the presence of mHTT in the 

nucleus is detrimental. Nevertheless, a recent publication argues against this by reporting that in 

immortalized cell lines cytosolic mHTT inclusions impair nucleocytoplasmic transport more than 

nuclear mHTT inclusions [96].  

1.1.3.3. Modes of toxicity 

Many mechanisms of toxicity have been proposed in HD; first of all, a reduction of huntingtin 

function. Although HTT can be protective in neurons and cell lines [75], [76], a conditional loss 

of HTT after embryonic development or heterozygosity for the endogenous protein do not lead 

to HD phenotypes in mice or humans [81]. A loss-of-function of HTT therefore does not seem to 

be a primary cause of HD, leaving the possibility of a gain-of-function toxicity, induced by the 

elongated polyQ stretch. It has been shown that HTT aggregates can induce toxicity. But whether 

these aggregates are causative of the neuronal pathology remains uncertain. In favour of their 

toxicity are studies that describe sequestration and therefore inactivation of vital proteins [97], 

[98], [99], for example impairing the nucleocytoplasmic transport [96], [100], [101]. Also direct 

interference with cellular organelles, for example through interaction with membranes [102] has 

been reported. In this case a good therapeutic approach would be to inhibit aggregate formation. 
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Nevertheless, they could also be a mere byproduct of the toxic events, in which case they would 

not be the best target of intervention. Aggregates could even be a mechanism of protection 

employed by the cell against the toxicity of mHTT. The rate of death of primary neurons 

transfected with mHTT correlates with the length of the mHTT polyQ stretch and the amount of 

mHTT expressed, but the neurons die independently of IB formation. Indeed, IB formation 

increases the chances of survival per neuron [103]. This goes in line with findings that in the 

striatum of HD patients, neuronal populations most afflicted with aggregates are not the cells 

most susceptible to the disease [104]. Also, aggregate load in motor cortex or superior frontal 

gyrus does not correlate with symptoms (motor versus mood) [105], whereas region-specific cell 

loss does correlate with symptoms as described above [50]. If IB were not the toxic agents, 

aggregation could actually be a desired phenomenon, especially, because then monomers and 

oligomers of mHTT would be candidates for the toxicity-causing agents. Indeed, in an HD mouse 

model, proteasome activity was impaired after acute expression of mHTT but reverted to normal 

function after IB had formed and administration of aggregation inhibitors prolonged the 

proteasome impairment [106]. 

1.1.4. Mouse models of Huntington’s disease 

Genetic mouse models of HD can be divided into three categories. 1) Transgenic mice 

expressing exon1 of HTT with a expanded polyQ stretch. 2) Full-length transgenic models. 3) 

Full-length knock-in models. Mice of the first category are the oldest of the genetic models (e.g. 

R6 models, [107]). Although they are criticized for only expressing a truncated form of HTT and 

therefore being less physiological, they not only have been widely studied, but also model HD 

symptomology very well. Also, as reviewed above, N-terminal fragments do occur in HD and 

could be the most toxic species. Last but not least, it has been shown that transgenic mice 

expressing exon1 of HTT with a certain polyQ stretch develop similar phenotypes and depict 

similar molecular alterations as knock-in models [108], [109], [110].  
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1.1.4.1. The R6/2 model 

The R6 models were published by the lab of Gillian Bates [107] and were the first genetic 

models of HD. The R6/2 model was first published carrying 144 CAG repeats, but due to repeat 

instability the CAG stretch has expanded. Mice in our colony carry between 160 and 190 CAG 

repeats. This model exhibits onset of obvious motor symptoms at the age of 8 weeks [107], [111] 

(Fig. 1-2). Earliest motor alterations were detected at 5 weeks of age [111]. At 8 weeks of age 

motor and balance coordination was poorer and the gait less regular compared to wt controls.  

 

Figure 1-2: Time course of pathological alterations in the R6/2 mouse model 

 

At later disease stages, clear resting tremor, stereotypical grooming, and infrequent epileptic 

attacks were observed [111]. R6/2 mice gain weight comparably to their wt littermates until 10 

weeks of age and then lose weight [111]. R6/2 mice also show decreased cognitive performance 

based on several behavioural tests before an age of 8 weeks and therefore before onset of obvious 

motor impairments [112], [113]. Females are infertile and males can breed up to an age of 9 

weeks. At 12 to 15 weeks of age the mice are terminally ill and have to be sacrificed [107]. Based 

on animal well-fare regulations, we always sacrifice animals from our colony at 12 weeks of age. 

R6/2 mice exhibit HTT inclusions [58], which are reminiscent of HD inclusions and possess a 

beta-sheet like structure [114]. Aggregate formation is observed at 3.5 weeks of age in the 

striatum and the cortex [115]. In symptomatic R6/2 mice, striatal MSNs are affected in 

morphology (spine loss) and electrophysiological properties (increased input resistance) [116].  
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1.1.5. Two approaches 

In the scope of this thesis I wanted to study two aspects of HD using the aforementioned 

mouse model R6/2. Both aspects are centered on investigating the cellular state in specific brain 

regions and how the disease context affects this state. Therefore, in both projects, measurements 

are conducted throughout the course of the disease. The first aspect is based on measuring 

neuronal activity in the primary motor cortex and observing how the HD context alters this 

activity. Additionally, I wanted to shed light onto the underlying mechanism of these alterations. 

The second aspect revolves around intracellular protein homeostasis (proteostasis) that I 

monitored using a mouse model that expresses a chaperone-dependent proteostasis sensor. 

Specifically, I wanted to compare cells of different brain regions in models of HD. These two 

approaches tackle different aspects of the disease investigated. Therefore, in the following pages 

I will introduce both projects separately (refer to section 1.2 and 1.3, respectively). 
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1.2. Cortical activity project 

For locomotion, muscles in the limbs have to be activated by motoneurons. These reside in 

the lumbar (lower) and cervical (upper) spinal cord to innervate muscle fibres in the hindlimbs 

and forelimbs, respectively. Although continuous locomotion is generated by central pattern 

generators in the spinal cord [117], for initiation of motion, motoneurons receive excitatory input 

from the brain [118]. The motor cortex is known to be important for elicitation of motor function 

[119]. Several neurodegenerative diseases affect motor functions, for example HD, SCA, PD and 

ALS. Although for all of these diseases, different brain regions are primarily affected (e.g. the 

cerebellum in SCA, substantia nigra in PD), the motor cortex is often disturbed by all of these 

disorders [120], [121]. In HD, the motor cortex is among the most affected regions. Neuronal cell 

loss in motor cortex increases with disease progression [50], suggesting causality. Several studies 

have described impaired cortical inhibition in the motor cortex of HD patients [122], [123], [124] 

and a concomitant increase in excitability [123].  

1.2.1. Interneurons 

Cortical activity is highly influenced by inhibition exerted by GABAergic interneurons onto 

pyramidal cells [125]. Interneurons make up 20 % of all cortical neurons [2] [3]. Interneurons 

receive excitatory input from pyramidal cells that are then again inhibited by the interneurons. 

This cycle is called feedback inhibition. Interneurons also receive long-range excitatory input 

from other cortical or non-cortical areas that also target pyramidal neurons, a mechanism called 

feedforward inhibition [125]. Thus, inhibition of pyramidal cells by interneurons, shapes cortical 

activity in several ways.  

Interneurons have been divided into distinct subpopulations based on specific innervation 

patterns and cellular markers expressed. In the mouse somatosensory cortex, one can divide 

almost all GABAergic interneurons into pavalbumin (PV)-, somatostatin (SST)- and ionotropic 

serotonin receptor 5HT3a (5HT3aR)-positive neurons [126]. PV-positive GABAergic neurons 

comprise ~ 40 % of all interneurons in somatosensory, motor cortex and visual cortex [3], [126], 
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[127]. They can be further divided into basket and chandelier cells, based on the pattern of 

innervation [128]. SST-positive neurons account for ~ 30 % of all interneurons in somatosensory, 

motor and visual cortex [3], [126], [127]. 5HT3aR-positive neurons comprise ~ 30 % of all 

GABAergic neurons in somatosensory cortex [126] and can be further divided into vasoactive 

intestinal peptide (VIP)-positive and negative cells. In visual cortex, VIP-positive cells make up 

17 % of all GABAergic interneurons [127]. calretinin (CR)-positive cells do not seem to make 

up a distinct subclass of interneurons, as they co-express VIP and SST in somatosensory and 

visual cortex [129], [130].  

PV-positive cells innervate other PV-positive interneurons and pyramidal neurons 

perisomatically. SST-positive neurons innervate pyramidal cells and VIP-, PV-positive and other 

smaller subgroups of interneurons (which probably make up the 5HT3aR-positive cell group) on 

more distal dendrites and are therefore much less specific and less effective in their inhibition 

than PV-positive cells. VIP-positive cells exclusively innervate SST-positive interneurons in the 

visual cortex [127]. Among the VIP-, SST- and PV-positive neurons PV-positive neurons most 

strongly inhibit pyramidal cells [127].  

1.2.2. Alterations of cortical functionality in mouse models of 

HD 

Microarray analyses in R6/2 mice and human HD induced pluripotent stem cells (iPSC)-

derived neural cells showed the strongest downregulation of genes belonging to the gene ontology 

(GO) categories of synaptic transmission, neurotransmitter release and calcium ion/calmodulin 

binding [131] [132]. In symptomatic R6/2 mice, cortical pyramidal neurons exhibit decreased 

spine density and decreased extent of arborization [116]. In 12-week old R6/2 mice several 

neurotransmitter receptors are decreased in expression. AMPA-, kainate- and group II 

metabotropic glutamate receptors as well as muscarinic acetylcholine receptors are reduced in the 

striatum and cortex. Dopamine receptors 1 and 2 are already affected at 8 weeks of age [133]. 

Electrophysiological recordings from slice cultures of R6/2 striatum suggested that the 

corticostriatal tract is impaired in this disease model starting at an age of 5 to 7 weeks [134]. 
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These changes might therefore precede postsynaptic alterations in the MSNs. In R6/2 mice, 

cortical neurons have been shown to be more responsive to NMDA receptor activation, which 

could lead to excitotoxicity [135]. GAD67 mRNA is significantly reduced in cortical areas of 

R6/2 mice [136], hinting at a decrease of inhibition in this brain region. An electrophysiological 

study reported decreased inhibition, cellular hyperactivity and excitotoxicity in the cortex of R6/2 

mice [109]. 

1.2.3. Open questions 

Cortical pathology, including a decrease in inhibition and therefore the threat of 

excitotoxicity, plays an important role in HD and has been detected in mouse models of the 

disease. Nevertheless, three features have not been tackled in great depth: Firstly, the increase in 

cellular activity in R6/2 mice has not been shown in awake mice with cellular resolution. This 

means that either cellular resolution was obtained in tissue (most often by electrophysiological 

recordings) or imaging was conducted in awake mice using imaging techniques which do not 

allow for cellular resolution (e.g. [137]). An additional aspect of this is that mice have not been 

behaving during measurements, since most non-cellular resolution techniques do not allow for 

movement. Therefore, coupling cellular activity with behaviour has not been possible. An 

exception to this is the study by Murphy-Nakhnikian et al., in which single neurons were recorded 

from awake, behaving mice [138]. Nevertheless, this study was conducted in the substantia nigra 

and not in the motor cortex. Secondly, single-cell electrophysiological recordings, although 

providing very detailed information, are always restricted to smaller numbers of cells. Larger 

sample sets provide stronger results and the opportunity to assess intra-neuronal differences and 

patterns of activity. Last but not least, monitoring of cellular activity has not been conducted in a 

chronic fashion. However, this would allow a better understanding of the underlying mechanisms, 

since one could then tie the alterations in activity to landmarks in disease progression. This would 

improve our understanding of the underlying mechanism of cortical activity impairments in HD. 
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1.2.4. Aims 

In order to address these open questions, the aim of this project was to measure neuron 

activity in layer 2/3 of primary motor cortex in R6/2 mice during the course of the disease. The 

monitoring of cortical activity was to be conducted by chronically measuring calcium transients 

using a genetically encoded calcium indicator (GCaMP) and two-photon imaging in awake 

behaving mice. The rationale to image from layer 2/3 instead of from layer 5 was technical. 

Although cortical layer 5 is the layer most affected by HD, it is much more difficult to assess with 

two-photon microscopy. Thus, imaging was restricted to layer 2/3. To shed light onto the findings 

made from the imaging experiments, mass-spectrometry data sets of R6/2 mice were to be 

analysed and immunostainings in R6/2 mice conducted. 

1.2.5. Method 

1.2.5.1. Calcium imaging 

During neuronal activity levels of calcium rise in the cell. The first influx of calcium occurs 

due to the opening of voltage-gated and receptor-operated calcium channels on the plasma 

membrane. Here, calcium enters the cell from the extracellular space. Subsequently, calcium-

induced signaling pathways lead to the opening of calcium channels in the ER membrane leading 

to a second influx of calcium into the cytosol from intracellular calcium stores [139]. In calcium 

imaging, this change in calcium levels is measured and taken as an approximation of neuronal 

activity. GCaMPs are sensors that sense these calcium increases and were first published by Nakai 

et al. [140]. They consist of a fragment of the myosin light chain (the target sequence of 

calmodulin), enhanced green fluorescent protein (eGFP) and calmodulin. Upon calcium binding 

to calmodulin, the calmodulin - calcium - myosin composition induces a conformational change 

in the green fluorescent protein (GFP) which leads to higher fluorescent signals [140]. These 

signals can be picked up by fluorescence microscopy and used to measure neuronal activity by 

taking the changes in fluorescence as a proxy for neuronal activity [141], [142]. In this work we 

used an improved version of GCaMP, called GCaMP6s [143]. Genetically encoded calcium 
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indicators can be used in mouse brains for imaging of individual neurons through an implanted 

glass window in the skull [144]. Two-photon imaging, in which two photons are needed to hit the 

fluorophore at the same time to decrease energy per photon [145], decreases laser-induced 

excitotoxicity and increases depth of the tissue reached by the laser.  

1.2.5.2. Advantages of calcium imaging in awake, behaving mice 

In other models of neurodegeneration, cortical alterations have been shown through calcium 

imaging [146] [147]. For example, cellular activity was shown to be altered depending on the 

distance of the cell to Aβ plaques. Electrophysiological studies have provided insights into 

cortical activity alterations in HD mice [148], [109], [149]. Nevertheless, calcium imaging 

provides several unique possibilities: 1) To measure cellular activity of many cells (tens to 

hundreds) at the same time, so that paired firing between two or more cells and in dependence of 

their distance to one another can be analysed, 2) to measure cellular activity during behaviour, 

for example running, and relate it to this behaviour and 3) to image from the same cells over 

several imaging episodes and therefore over a prolonged period of time. Calcium imaging clearly 

provides a unique tool to analyse cellular dysfunction, which in the end is the best correlate of 

brain dysfunction during disease. 

 

1.3. Protein homeostasis project 

1.3.1. Protein homeostasis 

Protein homeostasis (proteostasis) is the equilibrium in which a cell resides with regard to 

the folding state and functionality of its proteome [150]. On the way to properly folded proteins, 

difficulties arise due to protein complexity, mutations or external stressors and the cell harbors 

several mechanisms to deal with unfolded, misfolded, degradation-targeted and aggregated 

proteins. These mechanisms as a whole are called the protein quality control system (PQCS, Fig. 

1-3). The PQCS consists of three main components: 1) Chaperones, proteins that help fold 

refolded and help unfold misfolded proteins. 2) Degradation machinery, such as the ubiquitin-
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proteasome system (UPS) and the autophagy system. 3) Compartment-specific quality systems, 

found for example in mitochondria and the endoplasmic reticulum (ER). 

1.3.1.1. Chaperones 

Many chaperones are termed heat shock proteins (Hsps), because they are upregulated by the 

cell upon stress-inducing conditions such as heat shock (HS) [151], [152], [153]. Nevertheless, 

there are also many constitutively active Hsps (for example Hsc70, constitutively active, versus 

Hsp70, heat induced). Folding of a protein is based on its primary structure and its surrounding 

[151]. Molecular chaperones facilitate proper folding for example by binding to certain peptide 

stretches and therefore masking them to prevent incidental interactions with the rest of the peptide 

chain [151].  

 

 

Figure 1-3: The Protein quality control system 

After synthesis proteins have to be correctly folded. Nevertheless, due to amino acid composition, 

mutations or proteotoxic stress proteins can become misfolded and ultimately aggregate. Therefore, 

chaperones help fold and disaggregate proteins. However, misfolded proteins can also be degraded by the 

ubiquitin-proteasome system. Aggregated proteins can be degraded by autophagy. 
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Adenosine triphosphate (ATP)-dependent chaperones can be divided into four classes: 

Hsp60s, Hsp70s, Hsp90s and Hsp100s [152], [153]. The numbers indicate the molecular weight 

of the subunits. Hsp70s and Hsp90s interact with many co-factors and regulators, whereas Hsp60s 

and Hsp100s work together with very few co-factors. Hsp60s work at early stages of folding after 

protein synthesis, whereas Hsp90s help at late stages of the folding process, thereby, for example, 

regulating signaling pathways [153].  

Hsp100 proteins mainly disaggregate and unfold misfolded and aggregated proteins or 

protein complexes. They form ring structures and can use mechanical processes to unfold 

proteins. Hsp60s are barrels that fold proteins by encapsulating them and thereby providing a 

different folding environment. The Hsp60 class (also-called chaperonins) is divided into two 

groups. The first one is found in bacteria (as GroEL) and in bacteria-originating organelles, 

namely mitochondria and chloroplasts (as Hsp60s). The second group is found in archaea and 

eukaryotes, as the thermosome and TriC, respectively. The Hsp70 family is the most abundant 

chaperone class in the cell. Its most important co-factors are the proteins of the Hsp40 family 

(also termed J proteins). Hsp70s are important for inter-compartmental transport. They provide 

support during folding and re-folding, presumably by stabilizing the intermediate folding state 

[154] and, together with Hsp100s, they can disaggregate aggregated proteins. As for most 

chaperones, there are many different Hsp70s, some cytosolic and some compartment-specific. 

Hsp90s are also highly abundant chaperones that work together with several co-factors, making 

them tunable. They are an important node of several signaling pathways. Hsp90s are for example 

critical for the induction of the heat shock response (HSR) [155], [156]. 

The heat shock response is induced by activation of heat shock factors (HSF) (reviewed by 

Voellmy [157]). There are four HSFs, 1 to 4, of which HSF1 and HSF3 are necessary and 

sufficient for induction of the heat shock response in mammalian and avian cells, respectively 

[157]. In its silenced state HSF1 is bound by Hsp90. For activation it is released from Hsp90, 

trimerises and translocates to the nucleus, where it binds to the heat shock response element 

(HSE). This leads to the expression of heat-induced proteins such as Hsps. [156], [158]. This 

mechanism, termed chaperone titration, implies that proteotoxic stress leads to increased load of 
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unfolded proteins and therefore high demand for chaperones. This in turn leads to Hsp90 releasing 

HSF1, which then mounts the HSR and thereby causes an upregulation of chaperones. 

1.3.1.2. The ubiquitin-proteasome-system 

Degradation of single proteins via the UPS is divided into two steps (Fig. 1-4). First, the 

target is poly-ubiquitinated. During this process ubiquitin (Ub) peptides are conjugated one by 

one to the target protein forming a poly-Ub chain. Then, the target protein is sent to the 

proteasome and degraded by its protease activities. The conjugation of Ub to the target protein is 

carried out by three classes of proteins. First, an E1 ubiquitin-activating enzyme binds an Ub 

peptide, this Ub is then transferred to an E2 ubiquitin-conjugating enzyme to finally be conjugated 

to the target protein by an E3 ubiquitin ligase. In human, more than 1000 different E3 ligases 

exist, suggesting that their specificity is of great importance for correct functioning of the UPS. 

Before the target protein enters the proteasome, the ubiquitin chain is removed by ubiquitin 

peptidases. In order for the poly-Ub to be a degradation signal, a subsequent Ub has to be 

conjugated to a lysine 48 of the prior Ub. Poly-Ub chains conjugated via the lysine 63 deliver a 

different signal [159].  

The proteasome consists of two particles, the 20S core and the 19S regulatory particle. The 

20S core is made up of 4 heptametrical rings that form a barrel structure. These rings are 

composed of α- and β-subunits, the latter of which contains chymotrypsin-, trypsin-, and caspase-

like protease activities. The 19S regulatory particle can bind the 20S core from both sides and 

forms a lid to the 20S barrel structure. For degradation, proteins are encapsulated in the barrel 

structure and the 19S lid binds. 

After degradation of the protein, amino acid chains are released through the other opening of 

the barrel (reviewed by Bedford et al. [160]). That the UPS system is very important to prevent 

neurodegeneration is appreciable through the fact that specific mutations in E3 ligases can cause 

neurodegeneration. For example, a mutation in the E3 ligase Parkin causes early-onset 

Parkinson’s disease (PD, [161]. But also misfolded proteins can influence the proteasome. Ortega 
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et al. reported that non-aggregated mHTT can clog the proteasome and make it non-functional 

[106]. 

 

  

Figure 1-4: The ubiquitin-proteasome system 

Ubiquitin (Ub, red circle) conjugates to an E1 ubiquitin-activating enzyme (dark green oval). This Ub is 

then transferred to an E2 ubiquitin-conjugating enzyme (green oval) to finally be conjugated to the substrate 

(S, grey square) by an E3 ubiquitin ligase (light green oval). Before the target protein enters the proteasome 

(purple complex), the ubiquitin chain is removed by ubiquitin peptidases. 

 

1.3.1.3. Autophagy 

Autophagy is the second degradation system of a cell. Through autophagy, the cell can 

degrade masses of proteins, whole protein complexes (or aggregates) or even organelles such as 

mitochondria (reviewed by Todde et al. [162]). For this, the target to degrade is sent to a 

lysosome. Autophagy can be divided into micro-autophagy, macro-autophagy and chaperone-

mediated autophagy (CMA). The first two forms are not selective and degrade bulks of proteins 

or organelles and protein complexes, whereas CMA leads to selective degradation of single 
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proteins. Autophagy seems to be very important in neuronal cells, since suppression of it causes 

neurodegeneration [163], [164]. 

1.3.2. Proteostasis in neurodegeneration 

It has been reported that cultured neurons mount less of a HSR than glial cells [165]. 

Nevertheless, a recent report from the lab of Gillian Bates demonstrated that upon Hsp90 

inhibition ex vivo striatal neurons as well as glia exhibit an upregulation of HSPs [166]. The first 

time the PQCS was implicated in possibly providing help in neurodegenerative diseases was in 

1998 by the lab of Huda Zoghbi. Cummings et al. found inclusions in neurons from patients of 

spinocerebellar ataxia and in transgenic mice [167].1 These inclusions were not only 

ubiquitinated but also stained positive for proteasome subunits and chaperones. Overexpression 

of chaperones in immortalized cells decreased aggregation of mutant ataxin-1, which is the 

aggregating protein in SCA1 [167]. Since then many attempts have been made to improve burden 

of protein aggregation by inducing the heat shock response or overexpressing chaperones in 

model organisms with modest effects (reviewed by Smith et al.[168]). Manipulation of the PQCS 

is regarded as a promising therapeutic approach.  

1.3.2.1. Protein homeostasis in mouse models of HD 

Crossing R6/2 mice to HSF1-null mice increased aggregate load shown by 

immunofluorescence and filter-trap assay and decreased the life span of the mice suggesting that 

HSF1 is protective against mHTT expression [169]. Administration of a single strong dose of 

Hsp90 inhibitor, which elicited a HSR through activation of HSF1, lead to decreased aggregate 

load and phenotype improvement [170]. HSP upregulation due to Hsp90 inhibitor administration 

was impaired at 8 weeks of age, whereas this was not the case at 4 weeks of age. This impairment 

was not due to altered HSF1 activation or its translocation to the nucleus but due to a decreased 

binding of HSF1 to the DNA [170]. At 12 weeks of age Hsp70 and Hsp40 levels are significantly 

reduced in brains of R6/2 mice [170], hinting at a decreased HSR at this age and perhaps 

decreased proteostasis. Nevertheless, crossing R6/2 mice to Hsp27-overexpressing mice did not 

improve the R6/2 phenotype [171]. Overexpressing Hsp40 by viral delivery led to a decreased 
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aggregate burden, amelioration of the phenotype and extension of life span in R6/2 mice [172], 

showing that improving proteostasis can have a positive effect on neurodegenerative models. 

Overexpression of the DNAJB protein HSJ1a in R6/2 mice reduced aggregation load and 

increased soluble mHTT levels but had only mild effects on the R6/2 neurological phenotype 

[173].  

Although CAG-length correlates inversely with disease onset in HD, a finding which can be 

reproduced in mouse models, it has been shown in mice that over a threshold of 150 CAG repeats 

the phenotype improves and life span increases with increasing CAG-repeat length. A striking 

difference of several weeks of life span increase appeared after a threshold of 320 CAGs [174], 

[175]. Tang et al. conducted microarray analyses of R6/2 mice with either 150 or 300 CAG 

repeats and wt mice as controls to obtain insight into how an increase in CAG repeat length could 

ameliorate the R6/2 phenotype [131]. Downregulation of transcripts in both transgenic models 

was largely comparable whereas upregulation showed clear differences based on CAG-repeat 

length. The R6/2 model with 300 CAG-repeats especially showed an upregulation of genes 

belonging to the GO categories protein folding and ubiquitin-dependent catabolic process [131]. 

This suggests that both aspects are very important for improved health under the proteotoxic 

stress of mHTT expression. So far genetic experiments have given mixed results regarding 

manipulating the PQCS in HD mouse models, so it seems necessary to first precisely describe 

what happens to the PQCS in the course of the disease and which components are mostly 

involved.  

1.3.3. Open questions  

Because HD is a genetic disease caused by one clearly described mutation the cause of the 

disease is clear. Nevertheless, three main questions remain to be answered: 1. Why does disease 

onset occur in the 4th decade of life although the mutation is already present from the beginning 

of life? 2. Why does HD affect some cells more than others if the mutation is present in all cells? 

3. How can the disease be cured or at least treated?  
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1. Why does disease onset occur in the 4th decade of life although the mutation is already 

present from beginning of life? There are two possible explanations: Either mHTT toxicity 

(and/or level) has to accumulate to reach a certain threshold in order to exert its effects or it is 

because with age, the cellular system loses its capacities to deal with the constant level of stress 

exerted by mHTT. Both possibilities are not mutually exclusive. It has been reported that in C. 

elegans aging of the worms led to aggregation of metastable proteins [176], suggesting a decrease 

in cellular defense mechanisms over time. In a beautiful experiment, Yang et al., expressed the 

protein TBP that causes the disease SCA17 with 105 CAG repeats in mice [177]. They expressed 

TBP-105Q for the same duration but starting at three different ages. Older mice exhibited a 

phenotype much earlier than younger mice, showing that age affected how capable the organism 

was to deal with the expression of the mutant protein. These capacities comprise, among others, 

the proper folding of mutant misfolded proteins and their degradation. Therefore, it would be 

useful to measure proteostasis in an HD mouse model throughout its life span. 

2. Why does HD affect some cells more than others if the mutation is present in all cells? The 

answer to this can be divided into two possibilities that are again not mutually exclusive. Either 

the load of mHTT is higher in certain cells or the capacities to deal with the imposed stress are 

lower in certain cells. For example, specific cells could express mHTT with longer polyQ 

stretches due to CAG-repeat instability as proposed by Swami et al. and Kennedy and Shelbourne 

[36] [35]. Higher load of mHTT could also arise due to increased production or decreased 

degradation. The second possibility is that certain cells cope less well with the insult that mHTT 

expression poses onto the system. This could entail better folding of mHTT, but also better 

shielding of vital systems from mHTT. Therefore, comparisons between different cell types 

would be beneficial when observing cellular states in response to mHTT toxicity.  

3. How can the disease be cured or at least treated? For this there are of course many different 

approaches, ranging from genetic correction of the mutation to administration of neurotrophic 

factors that improve the overall health of the cells. Improving the capacities of the PQCS could 

be a promising therapeutic approach. Nevertheless, for this it is utterly important to see whether 

and if so, in which areas and at what time there are deficits in this system.  
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1.3.4. Aims 

To address these open questions, I measured protein folding capacities in the HD mouse 

model R6/2 during the course of the disease in different brain regions for comparison. For this, I 

used the proteostasis sensor firefly luciferase (Fluc) [178]. Several steps had to be executed. First, 

the functionality of Fluc had to be tested in transfected primary neurons. This was to be conducted 

by administration of pharmacological stressors and as a more physiological stress, by expression 

of an aggregating protein. Secondly, a transgenic mouse expressing the sensor had to be 

developed which then had to be crossed with R6/2 mice. In these mice proteostasis capacities 

were to be measured in different brain regions to elucidate whether different cell types deal 

differently with the burden of mHTT. To investigate how proteostasis changes throughout the 

disease, measurements were to be conducted at different time points. Any findings made, were to 

be followed up and potentially explained mechanistically. 

1.3.5. Method 

1.3.5.1. Proteostasis sensors 

Several sensors of the PQCS have been described. There are, for example, redox sensors such 

as RoGFP [179] that can measure the oxidative state of a cell. A sensor that is more specific to 

proteostasis is Ub-G76V-GFP [180] that accumulates in the cell if the proteasome is inhibited, 

which can be visualised by fluorescence microscopy. A mouse expressing Ub-G76V-GFP was 

published by Lindsten et al. in 2003 [181] and has been used in R6/1 mice [106] and a mutant tau 

expressing mouse model [182]. Although it is a great tool and widely used, it bears the 

disadvantage of only measuring the UPS. Sensors, which do not have this disadvantage have been 

published by the lab of Rick Morimoto. They consist of metastable proteins which are mutated 

to become more unstable and therefore more sensitive to a decline in proteostasis. An example is 

paramyosin, which was expressed in C. elegans. Upon increased temperature, mutated 

paramyosin misfolds, aggregates and induces a behavioural phenotype in worms. In the presence 

of a polyQ peptide paramyosin also aggregates at permissive temperatures, suggesting that polyQ 
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induces stress onto the proteostasis system, which the sensor detects [183]. This publication 

nicely demonstrates how the aggregating proteins (here polyQ) can induce stress on the cell that 

influences other metastable and aggregation-prone proteins (here mutated paramyosin). 

Nevertheless, this sensor harbors the disadvantage that an endogenous protein is used as a sensor 

and the lack-of-function of this protein in the overall system induces another stress. A solution 

for this problem is the use of a metastable exogenous protein. Such a sensor will be described in 

the next section. 

1.3.5.2. The Fluc sensor 

The Fluc sensor was published by the lab of Ulrich Hartl in 2011 as a proteostasis sensor 

[178]. Fluc is comprised of the firefly luciferase and tagged with GFP. It is a metastable protein, 

which requires chaperones for proper folding [184], [185]. Gupta et al. mutated the protein further 

to destabilize it and thereby make it more sensitive to stress. From this, a cassette of three different 

Fluc sensor variants arose: the wt version FlucWT, the more sensitive single mutant (sm) FlucSM 

and the most destabilized double mutant (dm) FlucDM. The idea underlying its functionality is 

that proteotoxic stress leads to an abundance of misfolded proteins. More chaperones are needed 

to deal with this increased amount of misfolded proteins. Therefore, less chaperones are available 

for proper folding of Fluc, causing Fluc to be more misfolded and to form inclusions. These 

inclusions can be visualised by fluorescence microscopy based on its GFP tag. Additionally, Fluc 

catalyses a reaction that transforms luciferin into oxyluciferin. This reaction emits light, which 

can be measured in a luminometer. Catalytic activity of Fluc is diminished by defects in its folding 

and can be used to monitor cellular proteostasis. Nevertheless, luciferase activity is not only 

dependent on Fluc’s folding state but of course also on the quantity of Fluc. Therefore, luciferase 

activity has to be normalized to protein quantity, which is measured through immunodetection 

after western blotting. Upon proteotoxic stress Fluc therefore forms bright inclusions and exhibits 

a decrease in its specific activity (Fig. 1-5).  
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Figure 1-5: Readouts of the Fluc sensor  

A: Luciferase catalyzes a reaction involving its substrate luciferin. This catalysis is dependent on the proper 

folding of Fluc. Under proteotoxic stress Fluc is less well folded. Therefore, it can catalyse the reaction 

less efficiently, which then emits less light. This difference in emitted light can be measured using 

luminometers. B: Fluc is GFP tagged, filling the cell, but excluding the nucleus in neurons. Under 

proteotoxic stress, Fluc re-localises, forming inclusions, which can be visualized by fluorescence 

microscopy. 

 

One of its advantages over other sensors is that it does not only measure the UPS system but 

also chaperone availability and therefore gives a more complete readout over proteostasis than 

the aforementioned Ub-GFP sensors. A second advantage is that using the bioluminescence 

readout, Fluc can measure positive and negative changes in proteostasis capacities, because at a 

given time not all Fluc molecules are 100 % correctly folded.  

So far, Fluc has been shown to sense proteotoxic stress applied either pharmacologically or 

by expression of an aggregating protein in immortalized human embryonic kidney (HEK) cells. 

Additionally, it has been shown to react to the proteotoxic stress that aging causes in C. elegans 

[178]. To what extent Fluc can be used in primary neurons or in the mouse is currently unknown. 
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2. Results 

2.1. Cortical activity in R6/2 mice 

2.1.1. Data generation 

The two-photon imaging set-up was built by Johanna Neuner. In total, six R6/2 mice and 

seven wt littermate controls (all female) from three different litters were imaged (Table 2-1). 11 

out of 13 mice were imaged by Johanna Neuner.  

Table 2-1: Imaged mice 

Genotype Batch Mouse ID Genotype Batch Mouse ID 

wt 1 3985 R6/2 1 3726 

wt 1 3974 R6/2 1 3714 

wt 1 3978 R6/2 1 3989 

wt 1 3732 R6/2 1 3977 

wt 2 2 R6/2 2 3 

wt 3 5112* R6/2 2 4 

wt 3 5113*    

* imaged by myself 

 

Two animals were imaged by me and Johanna Neuner, who left the project afterwards. Data 

of all animals was provided to me. First image processing, including motion correction, setting 

of ROIs and extraction of calcium traces, as well as running analyses was conducted by Johanna 

Neuner and was continued by me for the remaining animals. I also repeated running analyses of 

all mice.  
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Figure 2-1: Experimental set-up 

The mouse was head fixed under a two-

photon microscope and free to run on a 

styrofoam ball, which was lying on a 

pressurized air bed. Running behavior was 

detected through a speed sensor and a video 

camera using an infrared lamp. Imaging was 

conducted through a 16x objective and a 

cranial window. 

 

Extensive calcium imaging analyses, including statistical testing of the data, were done by 

Sabine Liebscher (Institute of Clinical Neuroimmunology, LMU). Mass-spectrometry data was 

provided by Fabian Hosp (lab of Matthias Mann, MPI of Biochemistry), including the statistical 

t-test analysis comparing R6/2 and wt mice of different ages. All further analyses of mass-

spectrometry data were conducted by me. For histological studies Julia Boshart provided 

technical assistance. André Wilke and Matthias Fischer helped with processing the tissue and 

counting of neurons. André Wilke helped with keeping the mouse colony.  

2.1.1.1. Chronic two-photon imaging 

Mice were weaned at three weeks of age, surgery (virus injection and cranial window 

implant) was conducted at an age of 3.5 weeks. Subsequently, mice were handled and trained on 

the ball over several days (Fig. 2-1). Imaging started at 6 weeks of age and was conducted twice 

a week until an age of 9.5 weeks. The first imaging session (6 weeks) was not used in further 

analyses, because virus expression and window quality were not yet optimal. Mice were not 

imaged at the age of 9.0 weeks. After the last awake imaging sessions (9.5 weeks), imaging was 

additionally conducted in anesthetized animals (Fig. 2-2 A). For detection of calcium transients, 

GCaMP6s was expressed under the neuron specific synapsin 1 promoter in layer 2/3 of the 

primary motor cortex (Fig. 2-2 B - C).  
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Figure 2-2: Experiment design and time frames 

A: Timeline of the experiment. In grey R6/2 phenotype, in black experimental procedures. B: Schematic 

of a mouse brain, in green area of virus injection. Blowup shows different cortical areas, mHL: motor 

hindlimb, mFL: motor forelimb, sHL: somatosensory hindlimb, sFL: somatosensory forelimb through a 

cranial window. C: Expression of the AAV construct. mRuby2 and GCaMP6s are expressed under the 

neuron-specific synapsin 1 promoter. Expression is targeted to layer 2/3 of the motor cortex (left). Single 

cells express both mRuby2 and GCaMP6s (right). Scale bars: B) 1 mm, C left) 50 µm, C right) 20 µm. 

Figure by Johanna Neuner. 

 

 

 

Figure 2-3: Re-finding of the same cells over all imaging time points.  

Fields of view (FOV) from a wt and a R6/2 mouse over all six imaging time points. Note that both blood 

vessel pattern and cellular pattern are re-identified over all time points (arrows). Scale bar: 100 µm. Figure 

by Johanna Neuner. 
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At each time point cortical activity was measured in two regions of interest per mouse for 15 

min each. Vasculature patterns and the structural marker mRuby2 were used to re-identify the 

same regions of interest over the whole imaging period of three weeks (Fig. 2-3). 

 

 

Figure 2-4: Increased neuronal activity in R6/2 mice from 8.5 weeks of age 

A: Mice were imaged at 9.5 weeks of age under isofluorane anesthesia using two-photon imaging. The 

fraction of active cells was more than twice as high in R6/2 mice than in wt controls (wt: 6 experiments 

(FOV) from 3 mice, R6/2: 4 experiments from 2 mice; Wilcoxon rank-sum test, p = 0.038). B - D: Awake, 

behaving mice were imaged over a period of three weeks using two-photon imaging. B: The fraction of 

active cells ranged around 70%. For the first four imaging time points the fraction of active cells was similar 

in R6/2 and wt littermate controls. At time points 8.5 and 9.5 weeks of age the fraction of active cells in 

R6/2 was higher than in wt controls. 3004 cells from wt and 4156 cells from R6/2 out of 7 and 10 FOV 

from 6 and 5 mice, respectively. Repeated measures ANOVA, Genotype: F(1, 75) = 0.37, p = 0.55; Age: 

F(5, 75) = 3.32, p = 0.009; Interaction F(5, 75) = 3.11, p = 0.013. C - D: In R6/2 the cumulative distribution 

of cell activity plotted as transients/min showed a clear shift towards higher activity for the two time points 

8.5 and 9.5 weeks of age, whereas there was no such shift in wt animals. Repeated measures ANOVA, 

Genotype: F(1, 20995) = 9.95, p = 0.0016; Age: F(5, 20995) = 52.17, p < 0.001; Interaction F(5, 20995) = 

57.93, p < 0.001). Figure by Sabine Liebscher. 
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2.1.2. More cells are active in R6/2 mice at disease onset 

At the age of 9.5 weeks the fraction of active cells (over 0 transients / min) in anesthetized 

R6/2 mice was more than twice as high compared to wt controls (Fig. 2-4 A). In awake animals, 

between 6.5 and 8 weeks, the fraction of active cells was similar between awake R6/2 and wt 

mice. At 8.5 weeks of age, and therefore at disease onset, the fraction of active cells in R6/2 mice 

increased until the end of the imaging period at week 9.5 (Fig 2-4 B). Moreover, neuronal activity 

(transients / min) plotted as cumulative distribution increased at disease onset (8.5 weeks) (Fig. 

2-4 C - D). Increased cellular activity is often due to higher running activity. However, R6/2 mice 

ran less than wt mice at all time points (2-way ANOVA, p-value = 0.0019) and no augmentation 

in running at disease onset was observed in R6/2 mice. Thus, this cannot be the reason for the 

increased cellular activity. At the first imaging time point, fewer neurons were running correlated 

in R6/2 mice compared to wt controls. Additionally, running correlation over time was less stable 

in R6/2 mice and the number of cells correlating with running decreased over time more in the 

transgenic mice than in control animals (data not shown). This suggests that the increased cellular 

activity observed in R6/2 mice at disease onset is aberrant activity. 

2.1.3. Synaptic proteins are downregulated at disease onset in 

proteome of R6/2 mice  

To understand the underlying mechanism of the measured increase in cellular activity, I 

analysed mass-spectrometry data of R6/2 and wt control mice provided to us by Fabian Hosp. 

Specifically, I conducted principal component analysis (PCA) on the soluble cortical proteome 

data of mice aged 5, 8 or 12 weeks of age. Three to four mice per age and genotype were used as 

replicates. No technical replicates were conducted. This analysis revealed that based on protein 

expression profile all wt mice and 5-week old R6/2 mice clustered together (Fig. 2-5 A). The first 

component, which made up 20.6 % of all variance, separated 8- and 12-week old R6/2 mice from 

the rest of the animals and therefore symptomatic animals from those without disease symptoms. 

The first component could therefore represent “age + genotype”.  
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Figure 2-5: Synaptic 

proteins are main drivers of 

sample separation in PCA  

A: PCA of soluble proteome 

separates 8-week old and 12-

week old R6/2 mice from non-

transgenic and 5-week old R6/2 

mice. Component 2 separates two 

of the 12-week old R6/2 mice 

from all other mice, which were 

analysed at a different time point 

and came from our own colony, 

whereas all the other mice came 

from Jackson Laboratory. B: 

Main PCA drivers. Proteins in the 

green frame are upregulated in 

symptomatic R6/2 mice whereas 

the proteins in the red frame are 

downregulated in symptomatic 

R6/2 mice. Synaptic proteins are 

shown in yellow, all other main 

driver proteins in blue. C: 24% of 

the main driver proteins 

downregulated in old R6/2 mice 

were synaptic, this was also the 

annotation most represented. 

Proteins that were the only ones 

in their annotation were grouped 

under the label “others”. 

 

 

The second component, accounting for 10.2 % of all variance, additionally separated two of 

the four 12-week old R6/2 mice from the rest of the mice. All R6/2 and wt control mice used for 

these experiments had been purchased at Jackson Laboratory. Two of the four 12-week old R6/2 

did not show a R6/2 phenotype and had proteome profiles more similar to the wt than to the other 
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R6/2 mice. Therefore, these two mice were replaced by two R6/2 mice from our own colony. 

These two new mice were now separated from the others by the second PCA component. 

Therefore, this component could account for colony, mouse housing conditions (including 

hygienic status) or CAG-repeat length.  

When analysing at the main drivers of the PCA separation (Fig. 2-5 B, red and green box), I 

found that the largest group of the proteins downregulated in R6/2 mice (red box) were synaptic 

proteins (24%, Fig. 2-5 C, Tables A-1 and A-2). For comparison, synaptic proteins made up 7.1% 

of all measured proteins (703 / 9937) and are therefore over-represented among the proteins most 

downregulated in symptomatic mice. The next larger group were mitochondria-related proteins 

(18 %). Proteins, which were the only ones assigned to a given annotation, were grouped under 

the label ‘others’ and made up 21 %. Of the proteins that were most strongly upregulated in 

symptomatic R6/2 mice (green box), none were synaptic proteins.  

Next, I plotted all proteins by fold change regulation and p-value (Fig. 2-6). At 5 weeks of 

age no trend of up- or downregulation of all proteins or specifically synaptic proteins was 

observed (Fig. 2-6 A). At 8 weeks of age, in R6/2 mice clearly more proteins were downregulated 

than upregulated. This was also true for synaptic proteins (Fig. 2-6 B). At 12 weeks of age the 

trend from the 8-weeks old data remained, but was less pronounced (Fig. 2-6 C). To compare 

whether synaptic proteins were equally, less, or more regulated than all proteins, significantly 

regulated proteins or significantly regulated synaptic proteins were plotted as percentage of total 

proteins or of all synaptic proteins (703 and 9937 proteins, respectively) (Fig 2-6 D). While no 

clear up- or downregulation was observed at 5 weeks of age, at 8 weeks most regulated proteins 

were down-regulated, and this trend was greater for synaptic proteins (19%) than for all protein 

(12%), indicating that the synaptic proteins were specifically downregulated and did not just 

follow the trend of all proteins at this age. The same trend was observed at 12 weeks of age, 

though less pronounced than at 8 weeks. 

I then searched for the significantly downregulated synaptic proteins in the insoluble 

proteome data set. I found that only 8 synaptic proteins that had been significantly downregulated 

in the soluble proteome were also significantly regulated in the insoluble proteome (Tables A-4 
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and A-5). Of these 8 proteins only two were upregulated in the insoluble proteome (one at 8 

weeks and one at 12 weeks of age, Fig. 2-6 B – C), and the rest were downregulated. This suggests 

that sequestration of synaptic proteins by mHTT inclusions is not the main reason for 

downregulation of these proteins in the soluble proteome. 

 

  

Figure 2-6: Synaptic proteins are downregulated in R6/2 cortex at 8 weeks of age 

A-C: Volcano plots show proteins of the soluble cortical proteome of 5-, 8- and 12-week old R6/2 mice 

and littermate wt controls. On the x-axis fold change is plotted on a log2 scale. On the y-axis the p-value 

is plotted on a negative log10 scale. P-values higher than 1.3 on this scale lie under 0.05 and are therefore 

considered significant. Proteins regulated more than 2-fold (bigger than 1 on the log 2 scale) are considered 

strongly regulated. All proteins meeting these conditions are plotted in blue, synaptic proteins among these 

are plotted in yellow. A: At 5 weeks of age, a comparable number of proteins are down- and upregulated. 

This is also true for synaptic proteins. B: At 8 weeks of age most regulated proteins are downregulated in 

R6/2. This is also true for synaptic proteins. C: At 12 weeks of age, the same trend as in B) is evident. D: 

Significantly regulated proteins are plotted as percentage of all measured proteins for the two categories: 

all proteins (blue, 9937) or synaptic proteins (yellow, 703). At 8 weeks of age of age approximately 12% 

of all proteins are downregulated whereas almost 20% of all synaptic proteins are downregulated. 
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Figure 2-7: The excitatory postsynaptic marker PSD-95 is reduced in motor cortex of 8-

week old R6/2 mice 

A - B: Example images of excitatory and inhibitory pre-synaptic markers (VGlut1/2 and VGAT, 

respectively) and excitatory and inhibitory postsynaptic markers (PSD-95 and Gephyrin, respectively) in 

layer 2/3 of primary motor cortex of 8-week old R6/2 mice compared to wt littermate controls. C - F: 

Quantification of VGlut1/2–positive punctae (C), VGAT-positive punctae (D), PSD-95-positive punctae 

(E) and Gephyrin-positive punctae (F) in layers 2/3, 5, 6 and all layers taken together per 100 cells, 

quantified using DAPI. Data from three mice per genotype, up to three sections per mouse and one FOV 

per section. Scale bar: A - B) 10µm. One-way ANOVA with TukeyHSD posthoc test.  
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2.1.4. PV-positive terminals on pyramidal cells are reduced in 

R6/2 mice at disease onset 

To test whether the decrease of synaptic proteins in symptomatic R6/2 mice was a 

consequence of reduced synapse numbers, we performed histology on brain tissue of 8-week old 

R6/2 mice and wt controls. We stained for pre- and postsynaptic markers of excitatory and 

inhibitory synapses (VGlut1/2, PSD-95, VGAT, Gephyrin, respectively) and counted the marker-

positive punctae in layers 2/3, 5 and 6 of the primary motor cortex (Fig. 2-7).  

 

 

Figure 2-8: Neither excitatory nor inhibitory synapses are reduced in 8-week old R6/2 

mice 

A – D: Overlay of pre-synaptic and postsynaptic markers of excitatory and inhibitory synapses, in 

primary motor cortex of 8-week old R6/2 mice. A – B: Example images of synaptic staining. Arrows 

indicate examples of counted synapses. A: Excitatory synapses. Overlay of VGlut1/2 (red) and PSD-95 

(green). B: Inhibitory synapses. Overlay of VGAT (red) and Gephyrin (green). C - D: Quantification of 

excitatory (C) and inhibitory (D) synapses. Quantification was conducted automatically using self-

written macros in ImageJ. Briefly, punctae were dilated to induce overlap of otherwise opposing punctae. 

Overlapping pixels were extracted and these punctae counted. Data from four mice per genotype, three 

sections per mouse, one FOV per section. Scale bars: A – B) 3 µm. One-way ANOVA with Tukey’s 

HSD posthoc test. 
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Among the four markers only PSD-95 showed a significant decrease in all layers and 

specifically in layer 2/3 (Fig. 2-7 E). Looking at co-localization of respective pre- and 

postsynaptic markers, no decrease in excitatory or inhibitory synapse numbers was observed (Fig. 

2-8). A decrease in inhibitory input onto pyramidal neurons could have explained the increase in 

cellular activity measured. I hypothesized that a decrease in a specific synapse type could be 

masked when counting all (inhibitory) synapses. Therefore, I assessed the PV-positive punctae 

on pyramidal neuronal nuclei (NeuN)-positive neurons, taken as a proxy of inhibitory synapses 

from PV-positive interneurons onto excitatory pyramidal neurons. I decided for this marker for 

three reasons. First, this marker is present in synapses and at the same time identifies an inhibitory 

cell population, contrary to for example VGlut1, which is not a marker of a specific interneuron 

cell population, or SST, which is not present in synapses.  

 

 

Figure 2-9: PV-positive terminals on pyramidal neurons are reduced in layer 2/3 of 8-

week old R6/2 mice 

A: Example images of PV-positive terminals (red) on NeuN-positive pyramidal neurons (green) from layer 

2/3 of primary motor cortex of 8-week old R6/2 mice compared to wt littermate controls. B: Quantification 

of PV-positive pixels per circumference of NeuN-positive neurons. Data from four wt and five R6/2 mice, 

12-15 cells per mouse. Scale bar: A) 10 µm. Unpaired, two-tailed Student’s t-test. 

 

Secondly, synapses of PV-positive interneurons innervate pyramidal cells perisomatically, 

therefore applying a strong inhibitory drive on their target. Thirdly, they are easily detectable as 

they form a ring around NeuN-positive neurons. I observed a decrease in pixels per circumference 
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of 20 %. This decrease was not evident at 5 weeks of age (Fig. 2-9), which fits to the measured 

increase of neuronal activity at disease onset. 

 

 

together as cells per area in mm2. Note a 50% reduction of SST-positive cells in layers 2/3 and 5. Data 

from three mice per genotype, up to three sections per mouse. Scale bar: A) 150 µm. Unpaired, two-tailed 

Student’s t-test. 

Figure 2-10: SST-positive neurons are 

reduced by 50 % in 8-week old R6/2 mice 

A - C: Example images of primary motor cortex 

stained with DAPI (blue) and against different 

interneuron markers (red) in 8-week old R6/2 

mice. Interneuron markers used are PV (A), SST 

(B) and CR (C). D - F: Quantification of PV-

positive (D), SST-positive (E) and CR-positive 

(F) neurons in layers 2/3, 5, 6 and all layers taken  
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2.1.5. Aggregate load and neuronal pathology correlate 

2.1.5.1. SST-positive interneurons may be reduced in R6/2 mice 

To check whether the decrease in PV-positive terminals was due to a loss of PV-positive 

interneurons, we performed histological stainings on tissue of 8-week old R6/2 mice and counted 

PV-positive interneurons in layers 2/3, 5 and 6 of primary motor cortex (Fig. 2-10). Although 

there was a decrease of 28% in layer 2/3 of R6/2 mice, this was not significant (Unpaired, two-

tailed Students’ t-test, p-value = 0.12). To test whether other interneuron subtypes might be 

affected, I also assessed SST- and CR-positive interneurons (Fig. 2-10 B, E and C, F, 

respectively). These three inhibitory markers label 80 – 90 % of all inhibitory neurons in mouse 

[186]. For SST-positive cells I saw a decrease of over 50 % in layers 2/3 and 5 of R6/2 mice, 

whereas there was no difference between wt and R6/2 mice when assessing CR-positive neurons. 

This decrease could be due to downregulation of SST or due to neuronal loss, both of which can 

be considered to be pathological. 

 

 

 

Figure 2-11: mHTT inclusion 

load correlates with neuronal 

pathology 

A: Example images of different 

interneuron classes (red), bearing 

mHTT IB (green, arrowheads) on 

DAPI staining (blue). B: 

Quantification of interneurons 

with mHTT inclusions as 

percentage of all interneurons of a 

given population. Data from three 

(CR) to four (SST, PV) mice, up to 

three sections per mouse. Scale 

bar: A) 10 µm. One-way ANOVA, 

with a Tukey's HSD posthoc test. 
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2.1.5.2. Neuronal pathology correlates with aggregate burden 

I next assessed whether mHTT inclusion load correlates with loss of particular interneuron 

populations. For this, neurons with mHTT inclusions were counted per cell population in the 

primary motor cortex of 8-week-old mice and depicted as percentage of total cell number in this 

population (Fig. 2-11). Strikingly, in all layers SST-positive neurons had a higher percentage of 

mHTT inclusion bearing cells. When all layers were taken together the percentage of SST-

positive neurons bearing inclusions was significantly higher than for PV-positive neurons (One-

way ANOVA with Tukey’s honest significance difference (HSD) posthoc test, p-value ≤ 0.05). 

This suggests that inclusion load might play a role in the cell population specific 

neurodegeneration observed at 8 weeks of age in R6/2 primary motor cortex. 
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2.2. Protein homeostasis in R6/2 mice 

2.2.1. Data generation 

If not stated otherwise, all data was generated and analysed by me. Data from HD94 mice 

was obtained by Irina Dudanova. Mass-spectrometry data was provided by Fabian Hosp, 

including statistical t-test analysis comparing R6/2 and wt mice and PCA. Further mass-

spectrometry analysis was conducted by me. The transgenic service of the Max Planck Institute 

of Neurobiology carried out the pronuclear injection for the generation of transgenic mouse lines. 

Raphaela Götz, Tammo von Knoblauch and André Wilke helped managing the mouse colony.  

2.2.2. Fluc functions in primary neurons 

2.2.2.1. The HA-epitope does not change reactivity of Fluc in HeLa cells 

The Fluc sensor was originally published bearing a myc-epitope. But to enable the possibility 

of combining it with myc-tagged proteins (for example mHTT(exon1)-constructs), I cloned the 

Fluc constructs with an HA-tag at the carboxyl-terminus. To investigate whether the change of 

the tag might influence the sensor’s reactivity, I transfected HeLa cells with FlucWT-HA, 

FlucSM-HA, FlucDM-HA, FlucWT-myc or GFP-HA as a control. I applied heat shock or 

inhibited the proteasome (Fig. 2-12 A – C). Upon heat shock, Fluc formed a grainy pattern of 

inclusions throughout the cell. This reaction was evident in almost all cells transfected with either 

of the four Fluc variants. GFP did not react to either stress condition. After recovery from the 

heat shock only half of the cells still bore inclusions (Fig. 2-12 A – B). Upon proteasome 

inhibition Fluc formed single inclusions irrespective of the specific Fluc construct (Fig. 2-12 A, 

C). The HA-tag therefore did not seem to alter the reactivity of Fluc to proteotoxic stress. Note 

the increased reaction of Fluc to heat shock compared to MG-132 administration, probably due 

to the greater stress that is caused by heat shock. 
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Figure 2-12: The HA-tag does not influence the reaction of Fluc to proteotoxic stress 

A - C: HeLa cells were transfected with either FlucWT-HA, FlucSM-HA, FlucDM-HA, FlucWT-myc or 

GFP-HA as a control. Stress was induced 48 h after transfection. A: FlucWT-HA and FlucWT-myc react 

to stressors such as heat shock (2h at 43 degrees) and proteasome inhibition (5.0 µM MG-132 for 8h in 

DMSO) by forming a grainy pattern of inclusions throughout the cells or by forming distinct inclusions 
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(arrowheads), respectively. The inclusions formed upon heat shock disappeared after 2 h of recovery. Note 

that in HeLa cells Fluc is seen in the nucleus and cytoplasm. B - C: The percentage of Fluc or GFP positive 

cells that showed inclusion formation was quantified from two independent experiments, 20 cells per 

experiment and condition. Scale bar: A) 20 µm. 

 

2.2.2.2. Fluc expression is not toxic in primary neurons 

To determine whether Fluc expression is toxic in primary neurons, I transfected cortical neurons 

from embryonic day 15.5 (E15.5) CD1 embryos at 3 days in vitro (DIV) with FlucWT-HA, 

FlucSM-HA, and FlucDM-HA or GFP-HA as a control. Of all transfected cells, less than 20 % 

were cleaved caspase 3 positive. This was true for all four constructs and there was no significant 

difference between conditions (Fig. 2-13). These data demonstrate that expression of all three 

Fluc variants under the conditions used is not toxic in primary cortical neurons. 

 

 

Figure 2-13: Fluc expression in 

primary neurons is not toxic 

A-C: Primary cortical neurons of E15.5 

CD1 embryos were transfected with 

FlucWT-HA, FlucSM-HA, and FlucDM-

HA or GFP-HA as a control. At 3+2 DIV 

neurons were stained for cleaved caspase 

3 as a marker for toxicity. A - B: FlucSM-

HA transfected cell (green) stained for 

cleaved caspase 3 (red) and counter- 

stained with DAPI (blue) as an example 

of a healthy (A) and a dying (B) neuron.  

C: Quantification of two FOV per construct from three independent experiments. One-way ANOVA with 

Tukey’s Multiple Comparison post-hoc test. Scale bar: A) 20 µm. 

 

2.2.2.3. Fluc reacts to different stressors in transfected primary neurons 

To investigate, whether Fluc reacts to proteotoxic insults in primary neurons as it does in 

HeLa cells, I transfected primary cortical neurons with FlucWT-HA, FlucSM-HA, and FlucDM-

HA or GFP-HA as a control. At 3+2 DIV I inhibited the proteasome or Hsp90 pharmacologically.  
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Figure 2-14: Fluc reacts to proteasome and Hsp90 inhibition in primary neurons 

A-C: Primary cortical neurons of E15.5 CD1 embryos were transfected with FlucWT-HA, FlucSM-HA, 

FlucDM-HA and GFP-HA as a control. Stresses were induced at 3+2 DIV: proteasome or Hsp90 inhibition 

(5.0 µM MG-132 or 5.0 µM 17-AAG for 4h in DMSO). A: Primary cortical neurons under stress and 

control conditions. Fluc forms inclusions upon both stress conditions. B – C: Quantification of transfected 

cells bearing inclusions shows strong reaction to proteasome and Hsp90 inhibition. Data from three 

independent experiments, 15 cells per experiment. Scale bar: A) 10 µm. Two-way ANOVA with 

Bonferroni multiple comparison posthoc test. 

 

Upon proteasome inhibition, all three Fluc variants reacted to a similar degree: 

Approximately 80 % of all cells showed formation of distinct inclusions (Fig 2-14 A – B). All 

three Fluc variants were found to react to a similar degree in transfected HeLa cells challenged 
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with either heat shock or proteasome inhibition. These results suggest that these stresses are so 

strong that the different sensitivities of the three Fluc variants are masked. Upon Hsp90 inhibition, 

reactivity was more diverse between the three Fluc variants. With this stressor, the different 

sensitivities of the Fluc variants could be distinguished. For the wt, sm and dm types 

approximately 45 %, 55 % or 75 % of all transfected cells showed inclusion formation (Fig. 2-14 

A, C). Interestingly, as compared to transfected HeLa cells, in primary neurons Fluc did not seem 

to be present in the nucleus, hinting at a different cellular machinery between HeLa cells and 

primary neurons. In primary neurons, in most of the cases two perinuclear inclusions were visible, 

which based on location, probably formed at the microtubule-organizing centres (MTOCs). In 

live cell experiments in transfected primary neurons that were challenged with proteasome 

inhibitor, I observed the formation of Fluc inclusions in neurites that over time were retrogradly 

transported to the cell body (Fig. 2-15 A) and fused into bigger inclusions (Fig. 2-15 B). Live cell 

imaging during a recovery period after proteasome inhibition did not show a re-solubilisation 

during the first 20 h (Fig. 2-15 A). 

 

 

Figure 2-15: Retrograde 

transport and fusion of Fluc 

inclusions in neurons 

A - B: Primary cortical neurons of 

E15.5 CD1 embryos were transfected 

with FlucSM-HA. Proteasome was 

inhibited at 3+2 DIV (5.0 µM MG-

132 for 4h in DMSO). Medium was 

then changed to inhibitor-free 

medium and cells incubated for 3h. 

Afterwards, neurons were imaged 

every 30 min. A: An example primary  

cortical neuron exhibiting an inclusion in the neurite that over time is transported retrogradely to the soma 

(arrow head). A representative cell harboring a perinuclear inclusion 20 h after the inhibitor is removed 

from the medium. B) Somatic inclusions (arrows) fuse over time into one perinuclear inclusion (arrow 

head). Scale bars: 5 µm. 

 



Results 

 

60 

 

To test how Fluc reacts to the stressor heat shock, primary cortical neurons were transfected 

with FlucSM-HA. Fluc formed inclusions in 80 % of the cases, either distinct inclusions or a 

grainy pattern of inclusions (Fig. 2-16 B, E), reminiscent of its reaction in HeLa cells (Fig 2-12). 

Compared to the stress of proteasome and Hsp90 inhibition (Fig. 2-16 C – E), heat shock seemed 

to be a stronger insult, since in these two conditions the grainy pattern was only seen in dead 

cells. In opposition to HeLa cells, most of the primary neurons did not survive the recovery phase 

after heat shock, although the heat shock parameters were carefully titrated.  

 

 

Figure 2-16: FlucSM-HA reacts differently to heat shock as compared to proteasome and 

Hsp90 inhibition 

A-E: Primary cortical neurons of E15.5 CD1 embryos were transfected with FlucSM-HA and stresses were 

induced at 3+2 DIV: heat shock (30 min at 43 degrees), proteasome or Hsp90 inhibition (5.0 µM MG-132 

or 5.0 µM 17-AAG for 4h in DMSO). A: A primary cortical neuron under control conditions. B: A primary 

cortical neuron under heat shock condition, note the grainy pattern of Fluc. C - D: Primary cortical neurons 

after proteasome (C) or HSP90 (D) inhibition. Note the formation of two distinct inclusions at a perinuclear 

location. E: Quantification of transfected cells with a grainy pattern (dark green) or inclusion formation 

(bright green) under stress or control conditions reveals that Fluc reacts stronger (higher percentage and 

grainy inclusion pattern formation) to heat shock than to proteasome and Hsp90 inhibition. Data from three 

independent experiments, 15 cells per experiment. Scale bars: A-B) 5 µm, C-D) 20 µm, blowups) 2 µm. 

 

I conclude from these experiments that Fluc reacts clearly to proteotoxic stressors such as 

proteasome or Hsp90 inhibition or heat shock. The three Fluc variants show different sensitivities 

to stress, but their reactivities can reach saturation, homogenizing their responses. Its localization 
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in the cell, exclusion from the nucleus in control conditions, the specific location of its inclusions 

upon stress (two perinuclear inclusions) and the lack of re-solubilisation, hint at a different 

biochemistry of this protein in primary neurons compared to HeLa cells. 

2.2.2.4. Fluc can measure positive and negative changes of proteostasis 

capacities in primary neurons 

The fluorescence-based readout of Fluc, which is based on the formation of inclusions upon 

proteotoxic stress, can only measure decreases in proteostasis capacities. Its second readout, 

which relies on the changed catalytic capacities of Fluc, may be used to measure increases of 

proteostasis capacities. To test this, I transfected primary cortical neurons with FlucSM-HA and 

applied the stressors proteasome and  

 

 

Figure 2-17: Fluc can measure decreased and increased capacities of the PQCS 

A - B: Primary cortical neurons of E15.5 CD1 embryos were transfected with FlucSM-HA. At 3+2 DIV 

Hsp90 or the proteasome were inhibited (5.0 µM 17-AAG or 5.0 µM MG-132 for 4h in DMSO) to decrease 

the capacities of the PQCS. To obtain the opposite effect, Quercetin was added to the medium (20 µM 

Quercetin in DMSO for 24h). Every condition was conducted in replicates, one replicate was used for 

luciferase assay and one for western blotting. A: FlucSM-HA measured a clear decrease in specific activity 

upon Hsp90 and proteasome inhibition and an increase upon Quercetin administration. Specific activity 

was calculated as described in materials and methods. Control conditions (DMSO only) were set to 100 % 

and each stress condition was plotted in relation to control condition. Data from three independent 

experiments. B: FlucGFP-HA detected by immunodetection after SDS-PAGE and western blotting with an 

anti-GFP antibody and tubulin as a loading control. Statistical tests: A) One-column t-test compared to a 

hypothetical value of 100. 
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Hsp90 inhibitor or boosted the UPS by applying Quercetin [187]. I then measured the 

luciferase activity, divided it by the protein levels of Fluc quantified by immunodetection after 

western blotting and normalized it using the normalization formula, as described in Materials and 

Methods. Three independent experiments were quantified per condition. The specific activity, 

which I interpret as an approximation of the folding state of Fluc, was drastically and significantly 

reduced upon proteasome or Hsp90 inhibition (~ 20 and 40 % of DMSO control, respectively, 

Fig. 2-17). In contrast, upon administration of Quercetin specific activity was significantly 

increased to 140 % of the control condition. I conclude from these experiments that Fluc can 

measure positive and negative changes in proteostasis capacities, which is a great advantage of 

this sensor over others (for example Ub-GFP from [180]). 

2.2.3. Fluc senses the presence of an aggregation-prone 

protein in primary neurons 

To determine, whether Fluc can sense changes in proteostasis based on protein aggregates, I 

co-transfected primary cortical neurons with Fluc and a plasmid coding for mCherry (mCh) 

tagged exon1 of mHTT bearing either 97 or 25 CAG repeats (mHTT(exon1)-Q97-mCh and 

control HTT(exon1)-Q25-mCh). As further controls I used two conditions co-expressing either 

Fluc and mCh or GFP and HTT(exon1)-Q97-mCh. In contrast to the previous experiments, I used 

FlucWT-HA. The reason for this was its lower reactivity. mCh levels were always much higher 

than the levels of HTT(exon1)-QX-mCh, and FlucSM-HA with its high sensitivity tended to also 

react to the high levels of simple mCh expression. In the two control conditions and when Fluc 

was co-expressed with non-aggregating HTT, HTT(exon1)-Q25-mCh, Fluc formed inclusions in 

less than 15 % of transfected cells (Fig. 2-18 A, D). Of the cells that contained a mHTT IB, Fluc 

reacted in almost 70 % of the cells and most of the times by forming a grainy pattern (Fig. 2-18 

C, E). This does not only show that Fluc reacts to protein aggregates, but also that the stress 

induced by them is comparable to heat shock and stronger than the Hsp90 or proteasome 

inhibition used before. Strikingly though, Fluc also reacted in a subset of cells (~ 30 %) that 

expressed the aggregation-prone HTT(exon1)-Q97-mCh, but in which mHTT was still diffusely 



Results 

63 

 

distributed in the cell (Fig. 2-18 B, E). This shows that Fluc can not only sense the presence of 

proteotoxic stress caused by the presence of protein inclusions, but also reacts to mere presence 

of an aggregation-prone protein.  

 

 

Figure 2-18: Fluc reacts to presence of mHTT inclusion bodies and the presence of soluble 

aggregation-prone mHTT 

A – D) Primary cortical neurons of E15.5 CD1 embryos were transfected with FlucWT-HA and Htt(exon1)-

Q97-mCh, Htt(exon1)-Q25-mCh or mCh as a control. GFP was co-transfected with Htt(exon1)-Q97-mCh. 

Neurons were fixed after 3+1 DIV. A: Representative image of a neuron co-expressing the non-aggregating 

Htt(exon1)-Q25-mCh and FucWT-HA. Blowup (white box) shows diffuse distribution of Fluc. B: Example 

of a neuron co-expressing the aggregation-prone Htt(exon1)-Q97-mCh without IB and FucSM-HA. 

Blowup (white box) shows inclusion formation of Fluc. C: Representative image of a neuron bearing a 

Htt(exon1)-Q97-mCh IB and co-expressing FucSM-HA. Blowup (white box) shows grainy pattern of Fluc. 

D: Manual quantification of the percentage of cells showing either a grainy pattern (dark green) or inclusion 

formation (bright green) of Fluc. Reaction of Fluc to the presence of Htt(exon1)-Q97-mCh either with or 

without IB formation was significantly increased compared to the condition expressing Htt(exon1)-Q25-

mCh. Data from three (GFP / Htt(exon1)-Q97-mCh, FlucSM-HA / Htt(exon1)-Q25-mCh) to four 

independent experiments (all other conditions), 15 cells per experiment. Statistical test: One-way ANOVA 

with Dunnett’s Multiple Comparison post-hoc test. Scale bars: C) 20 µm, C blowup) 5 µm. 

 

 

 



Results 

 

64 

 

2.2.4. Measurements of protein folding in mice 

2.2.4.1. Fluc does not measure a decrease in proteostasis capacities in 

embryonic brains of R6/2  

In order to test the ability of Fluc to measure proteostasis in neurons of R6/2 mice, I first 

electroporated FlucSM-HA under the pCAGG promoter into the cortex of E15.5 mouse embryos. 

As a proof-of-principle I applied heat shock to electroporated E18.5 wt brains and analysed how 

many Fluc expressing cells contained inclusions. Upon heat shock almost 90 % of all cells 

showed inclusions (Fig. 2-19), with one big inclusion per cell. This showed that in intact brains 

Fluc can measure changes in proteostasis using in utero electroporation (IUE) as means of 

transgene delivery. Nevertheless, there was no significant difference between brains of R6/2 

embryos and controls in the percentage of transfected neurons bearing Fluc inclusions. This 

shows that Fluc does not measure a decrease in proteostasis capacities in E18.5 R6/2 embryos 

using a means of delivery which does allow for measurement of changes in proteostasis upon 

heat shock. 

 

 

Figure 2-19: Fluc reacts to heat 

shock in the intact brain but shows 

no reaction in the R6/2 background  

A – C) FlucSM-HA in the pCAGG vector 

was delivered by in utero electroporation 

into the cortex of E15.5 CD1 or R6/2 mice. 

A - B: Representative images of cells 

expressing FlucSM-HA (green) under 

control condition (A) or after 90 min of 

heat shock at 43 °C (B), the nucleus 

stained with DAPI is denoted with a white  

dotted line. Note the IB forming in the cytosol of this cell marked with an arrowhead. C: Data from two 

(heat shock) to three independent experiments and two FOV per experiment. Statistical test: One-way 

ANOVA with Tukey’s Multiple Comparison post-hoc test. Scale bar: A) 5 µm. 
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2.2.4.2. Generation of a transgenic mouse expressing Fluc 

Next, we generated several transgenic mouse lines expressing Fluc. For this I cloned FlucSM-

HA or FlucWT-HA into the Mo.PrP vector obtained from David R. Borchelt (University of 

Florida) [188] leading to expression of the transgene under the prion protein (PrP) promoter (Fig. 

2-20 A). I chose this promoter because of its strong salt and pepper like expression pattern, which 

is predominant in the CNS [189], and its expression at embryonic stages [190]. The latter would 

allow for the usage of primary neurons from these lines. The Mo.PrP vector has been previously 

used for the generation of neurodegeneration models [190], [189]. Pronuclear injections were 

conducted by the transgenic service of the Max Planck Institute of Neurobiology. 

 

 

Figure 2-20: Generation of a transgenic mouse expressing Fluc 

A: Schematic of the transgene. B: Sagittal section of a 12-week old transgenic mouse from the PrP-

FlucWT1214 line, stained for GFP. Note the high expression in the hippocampus and layer 5 of the cortex. 

C – F: Representative images showing expression of FlucWT-HA in the cerebellum (C), hippocampus (D), 

cortex (E) and striatum (F) stained for GFP (green). C – E: Counterstained for NeuN (red) to mark neurons. 

F: Counterstained for DARPP-32 (red) to label MSNs. Scale bars: B) 2 mm, F) 100 µm (applies to C-F), F 

inset) 30 µm. 
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Figure 2-21: Linearity of the bioluminescence assay and normalization 

A – D) Six different amounts (25 µg, 50 µg, 75 µg, 100 µg, 125 µg, and 150 µg) of five different cortical 

tissue samples (five different colours) of PrPWT1214 mice were used for immunodetection and the 

luciferase assay. 75 µg were set to be 100 %. A – B) Protein quantity and measured luciferase activity is 

plotted in dependence of the known protein quantity used. C) For each sample and each quantity of sample 

used the specific activity is measured by dividing luciferase activity by protein quantity. The five different 

samples are colour-coded. All show a negative slope. D) The average of the five lines in C) is plotted as 

the “measured relation”. The measured relation is then corrected by a shift on the y-axis, so that 100 % of 

used protein quantity equals 100 % specific activity. The resulting relation (“corrected relation”) is plotted 

in blue and the corresponding formula (named “normalization formula”) depicted in the plot. 

 

For the FlucSM-HA construct, seven out of 84 mice were transgenic and two lines showed 

germline transmission and good expression of the transgene (PrPSM 4977 and PrPSM 4983). For 

the FlucWT construct, five out of 103 mice were transgenic and two lines showed germline 

transmission and nice expression of the transgene (PrPWT 1214 and PrPWT 1433). In this thesis 

the transgenic Fluc expressing mouse refers to the FlucWT 1214 line. The line showed expression 

in different brain areas, such as the cerebellum (here specifically in the granule cell layer), the 

hippocampus (mostly in CA1), layer 5 of the cortex and the striatum (in MSNs, but also in 

interneurons) (Fig. 2-20 B – F). Mice from this line are viable, good breeders and show no evident 
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phenotype. I also did not observe any difference in expression between female and male mice. I 

have never seen inclusion formation in tissue of these animals, although I aged them, crossed 

them to R6/2 mice and challenged slice cultures and primary neurons of this line with proteasome 

inhibition and heat shock (data not shown). A reason for this could be lower expression levels 

than needed for visible inclusions to form. Therefore, proteostasis measurements using these 

animals were restricted to the employment of the specific activity assay. 

2.2.4.3. Linearity of the specific activity assay 

Using tissue of the Fluc line I tested whether the specific activity assay harbors technical 

biases. For this I used five cortical samples from different transgenic mice and conducted 

luciferase assays and protein quantity measurements on six different quantities of protein. First I 

asked whether both assays were linear for the used ranges of protein quantity (Fig. 2-21 A – B). 

This was the case for both assays up to 150 µg of protein quantity. Therefore, all experiments 

were conducted with 150 µg or less of protein quantity. Secondly, I wanted to assess whether the 

calculated specific activity was the same for one sample, independent of how much protein was 

used. In line with this hypothesis all six different amounts of protein quantity from the same 

sample should render the same specific activity. However, this was not the case. Instead, a higher 

amount of protein lead to a decreased specific activity measured (Fig. 2-21 C - D). The relation 

between the used protein quantity and the measured specific activity was described by the 

following normalization formula:  

y = - 0.45488 x + 145.488 

I conclude from these experiments that both assays are linear for the amounts of protein used 

in the experiments of this thesis, but that the two assays are not linear to each other. This leads to 

the technical bias that higher levels of proteins used lead to an artificial decrease in specific 

activity measured. If not stated differently, all specific activity measurements mentioned are 

therefore corrected using the normalization formula (refer to Materials and Methods). 
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Figure 2-22: Increased folding capacities in specific brain regions of young R6/2 mice  

A – B) Specific activity was measured from cerebellar, hippocampal, cortical and striatal tissue (colour-

coded) of R6/2 mice and littermate controls at three pre-symptomatic ages (1, 3 and 5 weeks) and two 

symptomatic ages (8 and 12 weeks). For each tissue and age, wt controls were set to 100 % (dotted line) 

and R6/2 mouse values plotted accordingly. Data from four to six mice per genotype and age. A: Before 

normalization, specific activity was increased at 1 week of age in cerebellum and hippocampus and 

decreased at 12 weeks of age in cortex and striatum. B: After normalization specific activity was increased 

at 1 week of age in cerebellum, hippocampus and cortex. Slight increases were also seen at 5 and 8 weeks 

of age in cerebellum and cortex, and in cerebellum only, respectively. Interestingly, the decrease at 12 

weeks was no longer observed. C: At 1 week of age Fluc protein levels showed a trend towards a decrease 

for the cerebellum and hippocampus. Cortex showed an increase in protein quantity, but also a high 

variability between the samples. Interestingly, at 8 and especially at 12 weeks of age, protein quantity was 



Results 

69 

 

increased in R6/2 compared to wt mice. This effect was strongest in cortex and striatum. Statistical test: 

One-column t-test compared to a hypothetical value of 100.  

 

2.2.5. Fluc is better folded in R6/2 than in wt mice in specific 

brain regions at 1 week of age 

To assess proteostasis in R6/2 mice, I crossed the Fluc line to R6/2 mice and measured the 

specific activity of Fluc in four different regions (cerebellum, hippocampus, cortex and striatum) 

at five different time points (1, 2, 5, 8 and 12 weeks of age) from ex vivo tissue of R6/2, Fluc-

positive and wt, Fluc-positive littermate controls. Before using the normalization formula, I 

observed two main differences: First, at 12 weeks of age the specific activity in cortex and 

striatum of R6/2 mice was significantly reduced compared to wt littermate controls. Second, at 1 

week of age the specific activity in cerebellum and hippocampus of R6/2 mice was significantly 

increased compared to wt littermate controls (Fig. 2-22 A). Nevertheless, after using the 

normalization formula the decrease observed at 12 weeks of age was gone, suggesting that this 

decrease was due to the technical bias of the assay. The increase at 1 week of age was still present 

after normalization. Interestingly, the specific activity of the four different brain regions 

negatively correlated with the vulnerability of these regions to HD (Fig. 2-22 B). This increase 

came with a trend towards a decrease in protein levels of Fluc in cerebellum and hippocampus of 

R6/2 mice. At 12 weeks of age, Fluc levels were in general higher in R6/2 mice compared to wt 

mice, but this increase was less pronounced in hippocampus and cerebellum, exactly the two 

regions that, at the earliest age assessed, showed an increase in specific activity (Fig. 2-22 B).  

Firstly, I conclude from these experiments that the correct normalization of the data is very 

important when using this assay in order to avoid generation of false positive data. Secondly, 

proteostasis capacities seem to be upregulated in certain brain regions of very young R6/2 mice 

compared to wt littermate controls. These are also the regions that show less of an increase in 

Fluc levels at later stages and are less vulnerable to HD. 
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Figure 2-23: Slight increase of folding capacities in hippocampal tissue of HD94 mice 

A – D: Specific activity was measured from tissue of HD94 mice crossed to the PrPWT1214 line. A: 

Schematic of the tet-off system in the HD94 mice. The tTA factor is expressed under the control of the 

CamKIIa promoter. tTA can bind to the tet-regulated element (TetO) and thereby induce expression of 

mHTT with 94 glutamines. Doxycycline (blue sphere) inactivates it. Therefore, during administration of 

doxycycline mHTT is not expressed. B: Timeline of experiment. Mice were given doxycycline from 

conception until an age of 8 weeks. Then, the transgene was left to express for one week. Subsequently, 

mice were sacrificed for experiments. C: Specific activity was measured from cerebellar, hippocampal, 

cortical and striatal tissue (colour-coded) of HD94 mice and littermate controls. For each tissue, controls 

were set to 100 % (dotted line) and HD94 mouse values plotted accordingly. Data is from 9 mice per 

genotype. Because the CamkIIa promoter does not expresses in cerebellum and only expresses at low levels 

in striatum, the measurements in these regions are not informative. D: Fluc protein levels per region. 

Statistical test: One-column t-test compared to a hypothetical value of 100. Figure by Irina Dudanova. 
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2.2.5.1. Confirmation of better folding of Fluc in cultures of R6/2 mice and 

tissue of HD94 mice 

To confirm these results in a different mouse model, Irina Dudanova crossed HD94 mice 

[191] to Fluc mice and measured specific activity in the same four brain regions (cerebellum, 

hippocampus, cortex and striatum). The HD94 model is composed of two transgenic lines: the 

CamkII-tTA and the BiTetO lines [191]. The advantage of this model is that it allows precise 

temporal control of mHTT expression. Using the tet-off system, exon1 of mHTT with 94 CAG 

repeats is expressed driven by the CamkIIa promoter. Briefly, the activity of the CamkIIa 

promoter leads to the expression of the tTA transcription factor which can bind to the tet 

responsive element (TetO) and thereby induce expression of mHTT. In the presence of 

doxycycline, tTA is inactivated which inhibits the expression of mHTT (Fig. 2-23 A). In these 

experiments doxycycline was given during embryonic stages to the mother and after birth to the 

mice in their drinking water to prevent mHTT expression. At 8 weeks of age doxycycline 

administration was ceased and mHTT expression allowed for one week, resembling expression 

in R6/2 at the time point when an increase in specific activity was measured. Then, mice were 

sacrificed and specific activity measured (Fig. 2-23 B). Due to the CamkIIa promoter, mHTT was 

not expressed or only expressed at low levels in cerebellum and striatum, respectively. Therefore, 

measurements in this model are only insightful for hippocampus and cortex. In line with my 

findings in young R6/2 mice, specific activity was increased in the hippocampus, but not in cortex 

of HD94 mice compared to controls (single- and non-transgenics).  

To confirm the observation made in young R6/2 mice in a different system, I transfected 

primary cortical and hippocampal cultures from E18.5 R6/2 embryos and wt littermate controls 

with FlucSM-HA and measured the specific activity 8+2 or 8+5 days after transfection (10 or 13 

DIV, respectively). At 13 DIV cortical cultures of R6/2 mice had a small, but not significant 

reduction of proteostasis capacities, which was not seen at 10 DIV (Fig. 2-24 A). At both ages 

Fluc protein levels were significantly increased compared to controls (Fig. 2-24 B). In contrast, 

hippocampal neurons from R6/2 mice had an increased specific activity compared to controls at 
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10 DIV and no increase in Fluc protein levels (Fig. 2-24). This suggests that hippocampal neurons 

of R6/2 mice have increased proteostasis capacities compared to controls, whereas cortical 

neurons lack such capacities and exhibit higher protein levels than controls, either due to more 

protein synthesis or decreased protein degradation. Cortical and hippocampal neurons seem to 

have differing capabilities in dealing with the molecular situation in the R6/2 background.  

 

 

Figure 2-24: Differential 

folding capacities in cortical 

and hippocampal R6/2 

cultures  

A – B: Primary cortical and 

hippocampal neurons of E18.5 

R6/2 and wt littermate control 

embryos were transfected with 

FlucSM-HA. At 8+2 or 8+5 DIV 

(10 and 13 DIV, respectively) spe- 

cific activity was measured. Data from R6/2 cultures are plotted in relation to wt controls, which are set 

to 100 % (dashed line). Data from eight cultures per genotype. A: Specific activity of cortical and 

hippocampal cultures. B: Fluc protein levels. Statistical tests: A) One-column t-test compared to a 

hypothetical value of 100. 

 

2.2.6. Mass-spectrometry analyses reveal transient 

upregulation of specific ubiquitin-related proteins in 

R6/2 mice at young ages 

To understand the mechanism behind the improved proteostasis capacities in young R6/2 

mice, we conducted mass-spectrometry analyses from tissue of 1-week old R6/2 mice and wt 

littermate controls (four mice per genotype). PCA analysis showed that samples from transgenic 

and non-transgenic mice clustered together and that the biggest inter-sample differences were 

based on brain region specific protein regulations (Fig. 2-25).  
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Figure 2-25: PCA of soluble 

proteome from young mice 

shows no difference between 

R6/2 and controls 

A: Soluble proteome was analysed 

by mass-spectrometry of 

cerebellar, hippocampal, cortical 

and striatal tissue (encoded by 

different symbols) of 1-week old 

R6/2 mice (filled symbols) and wt 

littermate controls (non-filled 

symbols). Tissue samples of trans- 

genic and non-transgenic mice of the same brain region cluster together suggesting no strong difference 

in whole proteome based on genotype. Data from 4 mice per genotype. Figure by Fabian Hosp. 

 

Because the biggest changes in proteostasis of young R6/2 mice were seen in cerebellum and 

hippocampus and no changes seen in striatum, I asked which proteins are significantly up-

regulated (p-value under 0.05 and enriched more than two-fold) in cerebellum (Fig. 2-26 A) and 

hippocampus (Fig. 2-26 B) of R6/2 mice that are not significantly regulated in striatum (Fig. 2-

26 C). Out of these proteins I asked which ones could explain in a direct manner the improved 

proteostasis, that is, which are chaperones, autophagy- or ubiquitin-related. I found in total 11 

proteins, of which two were chaperones, one was autophagy-related and eight were ubiquitin-

related (Table 2-2). Of the eight ubiquitin-related candidates, four were upregulated in the 

cerebellum and four in the hippocampus (Fig. 2-26 A – B, Table 2-2). The eight significantly 

upregulated ubiquitin-related proteins were one ubiquitin-conjugating enzyme (cerebellum: 

Ube2f), five ubiquitin ligases (cerebellum: Trim32, Ubr2, hippocampus: Peli2, Herc2, Trim23) 

and two ubiquitin specific peptidases (cerebellum: Usp22, hippocampus: Usp40), as stated also 

in Table 2-2. As a control I then asked how many of the proteins that were significantly 

upregulated in the striatum and not regulated in the cortex or hippocampus were chaperones, 

autophagy- or ubiquitin-related. I only found one chaperone falling into this category (Fig. 2-26 

D). 
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Figure 2-26: Ubiquitin-related proteins are enriched in cerebellar and hippocampal 

tissue of young R6/2 mice. 

A – D: Volcano plots of proteins detected in the soluble proteome of 1-week old R6/2 mice in 

comparison to wt littermate controls. Proteins are plotted as circles based on fold change between mice 

of different genotype (x-axis) and p-value between replicates (y-axis). Dotted line indicates p-value of 

0.05 on a - log10 scale. Yellow circles represent proteins that are significantly enriched by more than 

two fold (1 on a log2 scale) in cerebellar or hippocampal tissue and not significantly regulated in striatum 

of R6/2 mice. Proteostasis components among the selected (yellow) proteins are depicted in blue 

(chaperones), green (autophagy components) and red (ubiquitin-related). Most proteostasis components 

are ubiquitin-related (8 of 11). A: Volcano plot of proteins regulated in the cerebellum. B: Volcano plot 

of proteins regulated in the hippocampus. C: Volcano plot of proteins regulated in the striatum. Selected 

proteins (yellow) are all below the threshold of a p-value of 0.05. D: Proteins significantly upregulated 

in the striatum of R6/2 mice and not significantly regulated in cerebellum and hippocampus (yellow). 

Of these, only one protein is a proteostasis component.  

 

The upregulation of the eight candidates was transient, as analysing a mass-spectrometry data 

set from Fabian Hosp of older R6/2 mice and their littermate controls, showed no upregulation 

of these candidates at 5 and 8 weeks of age. At 12 weeks of age only Trim32 was upregulated 

(Fig. 2-27). 
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Table 2-2: Proteostasis-related candidates, upregulated in the soluble proteome of young 

R6/2 mice 

Protein name Gene name Function Region 

Beclin-1 Becn1 

autophagy-

related Hc 

Heat shock 70 kDa protein 12B Hspa12b chaperone Cb 

Protein unc-45 homolog A Unc45a chaperone Hc 

NEDD8-conjugating enzyme UBE2F Ube2f 

Ubiquitin-

conjugating 

enzyme Cb 

E3 ubiquitin-protein ligase TRIM32 Trim32 

Ubiquitin 

ligase Cb 

E3 ubiquitin-protein ligase UBR2 Ubr2 

Ubiquitin 

ligase Cb 

E3 ubiquitin-protein ligase HERC2 Herc2 

Ubiquitin 

ligase Hc 

E3 ubiquitin-protein ligase pellino homolog 2 Peli2 

Ubiquitin 

ligase Hc 

E3 ubiquitin-protein ligase TRIM23 Trim23 

Ubiquitin 

ligase Hc 

Ubiquitin carboxyl-terminal hydrolase 22, 

Ubiquitin carboxyl-terminal hydrolase 27 

Usp22, 

Usp27 

Ubiquitin 

peptidase Cb 

Ubiquitin carboxyl-terminal hydrolase 40 Usp40 

Ubiquitin 

peptidase Hc 

Cb: Cerebellum; Hc: Hippocampus 
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Figure 2-27: Upregulation of candidates is transient 

A: Heat map of 8 candidates significantly upregulated in hippocampus or cerebellum and not regulated 

in striatum of R6/2 mice. Regulation in different brain regions (cerebellum, hippocampus, cortex and 

striatum) at four different ages (1 week, 5 weeks, 8 weeks and 12 weeks of age). Red indicates significant 

upregulation (twofold or higher, p>0.05), green significant downregulation (twofold or higher, p>0.05) 

and grey no significant regulation. These 8 candidates are only transiently upregulated, as at 5 weeks 

they are not upregulated anymore.  

 

I conclude from these analyses that in the cerebellum and the hippocampus of young R6/2 

mice certain ubiquitin-related candidates but no proteasome components are significantly 

upregulated. In the striatum this upregulation is missing. These candidates could therefore help 

to explain why the cerebellum and hippocampus have an increased folding capacity in R6/2 

animals. These results also support the possibility that the increased folding capacity is not due 

to an increased overall availability of chaperones, but that an improved protein degradation in 

these regions increases the ratio between chaperones and their substrates. This improved 

degradation does not seem to be caused by an upregulation of proteasome components.  

2.2.6.1. Normal proteasome activity in young R6/2 mice  

To exclude the possibility that protein degradation is increased in R6/2 tissue because of more 

efficient proteasomes, I conducted a proteasome activity assay on tissue of 1-week old R6/2 mice 

and wt littermate controls. For this, I incubated the tissue with a Suc-LLVY-AMC, a substrate of 

the chymotrypsin-like protease activity of the proteasome that becomes fluorogenic after 
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cleavage. To exclude cleavage products generated by non-proteasome proteases, I incubated part 

of the reaction with the proteasome inhibitor MG-132 (20 µM, [192]) and calculated the 

difference between the measurements (Fig. 2-28). There was no significant difference in 

chymotrypsin-like proteasome activity between R6/2 and littermate control tissue for any of the 

four regions analysed. Proteasome activity in R6/2 mice does not seem to be changed compared 

to controls.  

 

 

Figure 2-28: Chymotrypsin-like 

proteasome activity is not altered in tissue 

of young R6/2 mice 

A: Chymotrypsin-like activity was measured in 

tissue of 1-week old R6/2 mice and wt littermate 

controls in cerebellum, hippocampus, cortex and 

striatum (colour-coded) by incubating the tissue 

with Suc-LLVY-AMC in presence and absence of  

proteasome inhibitor MG-132. Data from four mice each. Statistical test: One-column t-test compared to 

a hypothetical value of 100. 

 

2.2.6.2. Hippocampal neurons might have a faster protein degradation 

system than cortical neurons 

To test whether UPS-related degradation is actually differently efficient between cortical and 

hippocampal neurons, I transfected neurons of E18.5 wt embryos with mutant carboxypeptidase 

Y (CPY*-mCh) (Fig. 2-29). At 8+2 DIV I inhibited protein synthesis by administration of 

cyclohexamide and subsequently analysed protein quantity before and after protein synthesis 

inhibition. After 30 min, more CPY*-mCh had been degraded in hippocampal neurons compared 

to cortical neurons, suggesting that hippocampal neurons have a better degradation system than 

cortical neurons.  
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Figure 2-29: Degradation of CPY*-mCh is 

faster in hippocampal than in cortical 

cultures  

A – B: Primary cortical and hippocampal neurons of 

E18.5 wt mice transfected with CPY*-mCh. At 8+2 

DIV protein synthesis was inhibited for 30 min 

through incubation with cyclohexamide. 

Subsequently, mCh was recognized by 

immunodetection after western blotting. Data from 

two independent experiments. A: Examples of 

immunodetected CPY*-mCh in cortical and 

hippocampal wt cultures before and after inhibition 

of protein synthesis. B: Quantification of protein 

levels before and after protein synthesis inhibition. 

Time point 0 (before protein synthesis) was set at 

100 % and protein levels after protein synthesis 

inhibition plotted as percent change of time point 0. 
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3. Discussion 

3.1. Functional and molecular alterations in 

motor cortex of R6/2 mice 

3.1.1. Summary 

Chronic two-photon imaging provides the unique opportunity to image not only from many 

cells at a given time point in an awake behaving animal, but also to follow the fate of these cells 

over months. We have shown that at disease onset R6/2 mice exhibit an increase in cellular 

activity in layer 2/3 of motor cortex. This increase is not due to increased running activity, but 

seems to be aberrant. This increase is accompanied by a specific decrease of synaptic proteins in 

cortex of R6/2 mice as shown by mass-spectrometry analyses, which is not due to sequestration 

by insoluble mHTT. These results suggest an impairment in synaptic function at disease onset. I 

did not observe a decrease in numbers of excitatory or inhibitory synapses, but I showed that 

terminals from PV-positive neurons onto excitatory cells were reduced at 8 weeks of age but not 

yet at 5 weeks of age. This finding therefore correlates with the results from mass-spectrometry 

analyses and calcium imaging. Also, I observed a decrease in the numbers of SST-positive 

neurons in the cortex of R6/2 mice. Given that this population bears the highest load of mHTT 

inclusions, loss of cells in this population could be due to their increased vulnerability to mHTT 

toxicity.  

3.1.2. What does the increase in neuronal activity in R6/2 

mice encode? 

What could this increase in overall cellular activity encode? The possible answers can be 

divided into two groups:  
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1) The increased cellular activity encodes a specific behaviour of the mouse, which happens 

or whose activity increases at this specific time point. Examples could be pivoting on the ball or 

shivering, as R6/2 mice do at this age. Running can be excluded, because R6/2 mice did not show 

an increase in this behaviour at the indicated time point. 

2) The increased activity does not code for anything, is therefore aberrant and a consequence 

of deregulated wiring or impaired molecular regulation.  

The first possibility can only be supported by naming the behaviour that is encoded by the 

activity. Firstly, the behaviour and the activity would have to correlate with one another. Ideally, 

the behaviour would have to be elicited or modulated by activating or silencing these neurons 

using pharmacological agents (for example designer receptors exclusively activated by designer 

drugs, DREADDs) or light-induced regulation of cellular activity (optogenetics). Although this 

possibility cannot be proven without finding this unknown behaviour, it can also not be refuted 

completely.  

Spine density and turnover have been assessed in R6/2 mice by chronic (6 to 11 weeks of 

age) structural imaging [193]. R6/2 mice had lower spine densities at all time points. Interestingly, 

the turnover rate was higher in R6/2 and the fraction of persistent spines lower than in wt controls 

throughout the imaging period. This goes in line with the decreased and less stable running 

representation that we observed. It suggests that increased cellular activity could well be aberrant. 

For the remainder of this thesis I will assume that the second possibility is more likely. In this 

case, the increase in cellular activity registered at disease onset would be an aberrant activity, 

based on pathological deregulation of neuronal firing or degeneration of inter-neuronal 

connectivity. Both would be due to molecular alterations, which we tried to assess through mass-

spectrometry and to further support by histology. 

3.1.2.1. Which cell type shows increased activity? 

The identity of the cells that increase their activity is not clear. This is a shortcoming of this 

study. Since we used the calcium indicator GCaMP6s under the synapsin I promoter, the 

measured activity originates from neurons only. Approximately 80 % of all neurons in cortex are 
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excitatory pyramidal neurons [2], [3]. Assuming that the virus used for delivery of the calcium 

indicator does not show a preferred transduction of interneurons over pyramidal cells [194], one 

can assume that 80 % of the activity, and therefore the majority of it, arises from pyramidal 

neurons. The remaining uncertainty could be removed by imaging from specific cell populations, 

such as certain interneurons or from excitatory pyramidal neurons. To accomplish this, one could 

either cross cell population-specific Cre lines with a Cre-dependent reporter line to express a 

fluorescent marker in these specific cells and thus identify them during imaging, or express 

GCaMP under a cell type-specific promoter. In our experiments we cannot be absolutely sure, 

but for the remainder of the discussion I will assume that the increase in activity is attributed to 

more active pyramidal neurons.  

3.1.3. Decrease in synaptic proteins 

An increase in cellular activity can come from either increased activation or from decreased 

inhibition of these cells. Both are received from other cells through synapses. A theoretical third 

possibility is a change in intrinsic electrical properties, which alters the excitability of a cell in 

the absence of any change in inputs. Based on the mass-spectrometry analyses, we know that 

synaptic proteins are significantly downregulated at 8 weeks of age but not yet at 5 weeks of age. 

Not only does this correlate with the time line of the imaging findings, but the group of regulated 

synaptic proteins seems to be a major cellular machinery affected at disease onset (compared to 

other regulated groups such as translation machinery, for example). This hints at a reduced 

functionality of cortical synaptic transmission. 

Nevertheless, it is not clear whether the decrease of synaptic proteins is causative for or a 

consequence of the increased cell activity or both. I found both excitatory as well as inhibitory 

synaptic proteins among the strongest downregulated synaptic proteins. Also, I found the GO 

annotation defining excitatory and inhibitory synaptic proteins not very specific, as many key 

synaptic markers were missing. Therefore, I cannot conclude that one kind of synapses is 

specifically impaired. Histological analyses revealed no decrease in the numbers of excitatory or 

inhibitory synapses. However, I found levels of PSD-95, a scaffolding protein in the PSD of 
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excitatory synapses, to be reduced by 50 % in all layers of the motor cortex. PSD-95 has also 

been reported to be reduced in striatum of models of HD [195]. Although PSD-95 is known to 

interact with HTT [53], its reduction does not seem to be caused by sequestration by mHTT 

inclusions, as the protein was not enriched in the insoluble fraction of R6/2 mice. Its reduction 

suggests that excitatory synapses are at least impaired in their function if not in their number. 

Another finding supporting this, is that CamKIIα and SAPAP3, components of excitatory 

synapses, were not only among the proteins strongest downregulated in the soluble proteome of 

8 week old mice, but were even downregulated in the insoluble fraction of transgenic mice. This 

suggests that levels of CamKIIα and SAPAP3 were so low, that even the amount normally found 

in the insoluble fraction was reduced in R6/2 mice. Also significantly reduced in the insoluble 

fraction of R6/2 mice at 8 weeks of age were the proteins SAPAP2, Synaptopodin and NMDA 

subunit 2A, all proteins found in excitatory synapses. Again, such an impairment could be a cause 

or a consequence of the measured increased activity in R6/2 mice. Indeed, Jarabek et al. [195] 

propose that the downregulation of PSD-95 and other synaptic proteins is a protective mechanism 

against excitotoxicity arising in HD.  

Decreased inhibitory input could lead to an increase in activity of excitatory cells. Indeed, 

decreased inhibition of pyramidal neurons has been observed in 11.5 week old R6/2 mice [109]. 

Although I did not observe a decrease when measuring the number of inhibitory synapses, I did 

observe a decrease in synapses from PV-positive neurons onto pyramidal excitatory cells at 8 

weeks of age but not yet at 5 weeks of age. Because this was a 20 % decrease and PV-positive 

neurons make up 40 % of all inhibitory (GAD67-positive) cells [3] [196] it could well be possible 

that this decrease (it would be 8 % of all inhibitory synapses) was not detectable when assessing 

all inhibitory synapses. Our mass-spectrometry analysis supports this finding, since I found 

Synaptotagmin-2 to be downregulated in the insoluble proteome of 5- and 8-week old R6/2 mice. 

Synaptotagmin-2 has been proposed to be a marker for synapses from PV-positive neurons onto 

pyramidal cells [197]. I analysed these synapses firstly, because they are relaibly detectable by 

staining, contrary to, for example, synapses from SST-positive neurons in which the marker is 

exclusively nuclear in location and therefore does not fill and identify synapses. Secondly, 
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synapses from PV-positive neurons innervate their targets by contacting the soma instead of 

distant dendritic areas, thereby inducing fast and strong inhibition on their target cells. Indeed, 

PV-positive interneurons exert the strongest inhibition on pyramidal cells of all major 

interneurons classes [127]. This decrease in inhibition of excitatory neurons could explain the 

increase in measured cellular activity (Fig. 3-1).  

 

 

Figure 3-1: Proposed model explaining increased cellular activity 

In layer 2/3 of primary motor cortex of wt animals, PV-positive interneurons (green circle) inhibit 

excitatory pyramidal cells (blue triangle), which in turn fire at a given rate (black schematic of an activity 

trace). In R6/2 mice we observed a decrease of PV-positive terminals on pyramidal neurons, which could 

explain the measured increase in cellular activity observed using two-photon calcium imaging. 

 

Indeed, it has been shown that pharmacogenetic inhibition of PV-positive neurons can lead 

to an increase in overall cellular activity measured by calcium imaging [198]. Additionally, it has 

been shown in an HD mouse model that excitatory neurons of layer 2/3 of the motor cortex 

receive less inhibitory input, whereas PV-positive neurons receive less excitatory input [148]. 

Cortical hyperactivity is also induced by selective expression of mHTT in PV-positive neurons 

using the Cre/loxP system [199]. Interestingly, in this experiment PV-positive neurons did not 

die upon expression of mHTT, suggesting that these neurons might be especially resistant to 

toxicity of mHTT. This also fits with our findings that at 8 weeks of age R6/2 mice do not exhibit 

a loss of PV-positive neurons. When assessing the numbers of specific interneuron populations, 
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I found that in R6/2 mice the number of SST-positive neurons was reduced by half. This decrease 

in inhibitory cells that synapse onto excitatory cells could also explain the increase in cellular 

activity. However, SST-positive neurons also inhibit PV-positive neurons [127]. This would lead 

to more activity of PV-positive neurons and therefore more inhibition of excitatory cells, contrary 

to our finding. This discussion displays the complexity of the system studied and the need for 

further thorough investigation of the circuitry in HD model mice to understand the underlying 

mechanisms of the disease. 

3.1.4. Link between aggregate load and neuronal pathology 

I observed that cell population-specific degeneration correlated with aggregate load in 

interneurons. It is appealing to think that cells from certain cell populations die because they bear 

higher mHTT levels which is followed by more aggregate formation. This does not necessarily 

mean a higher level of mHTT expression, but could also be a decreased rate of degradation or 

other, cell type-specific, protective mechanisms to deal with the mHTT load. Further cell 

population-specific transcriptomic and proteomic studies will be required to gain insights into 

these mechanisms. 

Interestingly, only very few of the synaptic proteins that were downregulated at 8 weeks of 

age in the soluble proteome of R6/2 mice were also found in the insoluble proteome and most of 

these were actually also downregulated in the insoluble proteome. First of all, this allows us to 

conclude that the reason for the downregulation of synaptic proteins in the soluble proteome is 

not sequestration by mHTT aggregates. A regulation on the transcriptional level seems likely. 

Transcriptome analysis of human iPSC and mouse model tissue revealed that genes most 

significantly downregulated in HD belonged to the GO term “synaptic transmission” [132]. 

Secondly, the proteins that are both downregulated in the soluble and in the insoluble proteome 

seem to be so drastically decreased in levels that even the amount normally found in the insoluble 

pool is decreased. This finding shows, that toxicity of mHTT comprises more than mere inclusion 

formation and sequestration of important players in the cell.  
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3.1.5. Hyperactivity in HD 

Cellular hyperactivity and excitotoxicity are common findings in HD mouse models. In one 

study [109], electrophysiological recordings were conducted from pyramidal neurons in cortical 

layer 2/3 in slices of three different HD mouse models, the full-length transgenic HD model 

YAC128, the knock-in model CAG140 KI and the R6/2 model. Pyramidal neurons in all three 

models showed an increase in input resistance. This finding could be a consequence of spine loss 

and therefore decreased synaptic input. Spine loss has been described in cortex of R6/2 [193]. 

The loss of synaptic proteins that we observed at 8 weeks of age fits with these findings. Also, 

these findings go in line with the increased activity in cortical layer 2/3 neurons which we 

observed through calcium imaging. Cummings et al. also described increased inhibitory 

postsynaptic currents (IPSCs) in pyramidal neurons of R6/2 mice, and therefore more inhibition, 

until an age of 6 weeks followed by decreased IPSCs at 11.5 weeks of age [109]. This change in 

inhibition could explain the increase in cellular activity observed at disease onset.  

3.1.5.1. Excitotoxicity in HD 

Increased activity of pyramidal neurons in layer 2/3 leads to increased excitation of layer 5 

pyramidal neurons, since their main excitatory inputs are pyramidal neurons of layer 2/3. Thus, I 

would also expect to observe increased activity in layer 5 of motor cortex. However, this would 

have to be shown by calcium imaging of pyramidal neurons from this layer. Layer 5 neurons are 

the main input from cortex to striatum, although some input also arises from layer 2/3, especially 

in the motor cortex [5]. Increased activity in layers 2/3 and 5 could then lead to excitotoxicity in 

striatum. Indeed, it has been shown using magnetic resonance tomography that HD patients 

exhibit higher levels of glutamate in the striatum than healthy individuals [200]. Also, increased 

firing of MSNs in R6/2 mice of 6 to 9 weeks of age has been reported [201]. Treatment of R6/2 

mice with the glutamate release inhibitor riluzole led to an increase in body weight, life span and 

reduction of mHTT inclusion ubiquitination [202], suggesting the negative influence of glutamate 

mediated hyper-excitation in this mouse model. 
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3.1.6. Outlook 

In the future, calcium imaging from specific cell populations would be very revealing. For 

this, specific Cre lines would have to be crossed with a Cre-dependent reporter line that expresses 

a fluorescent marker in a Cre-dependent fashion. Alternatively, one could use a Cre-dependent 

virus to express GCaMP selectively. First of all, imaging should be conducted from interneurons 

and excitatory neurons separately using specific Cre lines such as GAD67-Cre and CamkIIa-Cre. 

This would clearly demonstrate that the increased activity observed arises from excitatory 

neurons only. To dissect the activity pattern of different interneuron populations, one could use 

the lines PV-Cre, SST-Cre and CR-Cre. This approach should be complemented by cell specific 

mass-spectrometry and transcriptome analyses of the different cell populations. For this, the same 

intersectional genetic approach described above could be used. It would be of great interest to 

compare layers 2/3 and layer 5 for both proteomic and transcriptomic as well as for imaging 

analyses. 

In order to then suggest causality between the cellular activity and the R6/2 phenotype one 

could use pharmacological and light-induced activation and silencing of cells to replicate the 

observed cellular activity pattern, but also to influence the phenotype of the R6/2 mice. For 

example, increased activation of PV-positive neurons and thereby increased inhibition of 

excitatory cells could ameliorate the R6/2 phenotype. Last but not least, the main findings would 

have to be replicated in other mouse models, preferentially in a full-length HD model to exclude 

artefacts of the R6/2 model specifically and of exon1 models in general. 
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3.2. Alterations of protein homeostasis in 

R6/2 mice 

3.2.1. Summary 

In summary, I have shown that the Fluc sensor can be used in primary neurons to measure 

proteotoxic stress either induced by pharmacological agents or by the presence of aggregating 

proteins. I have demonstrated that there is no decrease of folding capacities measured with this 

sensor in older R6/2 mice, contrary to current models in the field. Instead, I have measured an 

increase in folding capacities in cerebellum and hippocampus of young R6/2 mice compared to 

controls and reproduced this finding partly in another mouse model and primary neurons. An 

increase in folding capacities at young ages in certain regions could give these regions an 

advantage and explain why they are less vulnerable to the disease at symptomatic stages (Fig. 3-

2).  

 

Figure 3-2: Proposed model explaining how increased folding capacities could influence 

vulnerability of different brain regions to the HD phenotype in R6/2 mice 

In young presymptomatic R6/2 mice (left) folding capacity is increased and specific ubiquitin-related 

proteins components are upregulated in cerebellum and hippocampus compared to wt controls. This finding 

could in part explain why cerebellum and hippocampus are less susceptible to the disease at later stages 

than cortex and striatum, which lack such an increase in folding capacities at young ages. 
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I have found specific UPS-related candidates to be upregulated at this specific age in these 

regions. The increased folding capacities could therefore be due to an increase in degradation of 

proteins, perhaps induced by the need of the cell to degrade high amounts of mHTT. 

3.2.2. Fluc as a proteostasis sensor in primary neurons 

I tested the reactivity of Fluc to external stressors such as heat shock, proteasome and Hsp90 

inhibition. Fluc reacted by forming distinct inclusions or a grainy pattern throughout the cell, 

which I interpreted as a stronger reaction to greater stress. From this I concluded that heat shock 

was a stronger stressor than HSP90 or proteasome inhibition for 4 h. The fact that Fluc formed 

distinct perinuclear inclusions, could indicate that it is stored into aggresomes [203]. This could 

also explain why Fluc did not dissolve after MG-132 administration and subsequent washout for 

24 h, because aggresomes have been described to be “refractory to intracellular proteolysis” 

[203]. Whether Fluc forms aggresomes could be analysed by staining against vimentin, which 

should surround the aggresome and by staining against gamma-tubulin to visualise the MTOC.  

In general, FlucDM-HA expression was very low in primary neurons, which is why for 

subsequent experiments I used either FlucSM-HA or FlucWT-HA. Although I did not test this 

experimentally, the low levels of FlucDM-HA could be due to the high levels of degradation of 

this very metastable and mutated protein. Using the second readout of Fluc, its enzymatic activity, 

I could show that Fluc can measure both decreases as well as increases of proteostasis capacities 

(Hsp90 and proteasome inhibition and UPS boosting by Quercetin administration, respectively). 

This is a clear advantage of this readout over the inclusion formation readout. The assumption 

underlying this readout is that not all Fluc molecules are ever perfectly folded. Of course, it stands 

to reason that a state of 100 % folding of Fluc could be reached in theory, and at this time point 

increases in proteostasis capacities could no longer be measured. Whether such a state can 

actually be reached is unknown and I assume that during all experiments conducted such a state 

was not attained. 
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3.2.2.1. Fluc senses the presence of mHTT in primary neurons 

By co-transfecting mCh tagged mHTT and Fluc I assessed proteotoxic stress induced by 

aggregation-prone proteins and protein aggregates in primary cortical neurons. I could quantify 

that in the majority of cells Fluc reacted to the presence of IB formed in cells expressing mHTT 

with elongated (Q97) poly-glutamine stretches, whereas Fluc almost never reacted to the non-

aggregating HTT with 25 Qs. I would like to emphasize, that Fluc often formed a grainy pattern 

similar to its reaction to heat shock, suggesting that the presence of mHTT inclusions is a strong 

stressor. The formation of distinct inclusions was mostly at a different location than the mHTT 

aggregate and therefore Fluc did not solely form inclusions due to sequestration by mHTT. 

Interestingly, Fluc also reacted significantly more often to the mere presence of aggregation-

prone mHTT with 97 glutamines, which had not yet aggregated, than to the presence of HTT with 

25 glutamines. This suggests that also other forms of aggregation-prone mHTT other than only 

IB can induce a stress onto the cell. This is in line with the many reports that state that oligomers 

of mHTT are actually the more toxic form and not necessarily only the big, insoluble aggregates 

(reviewed [204]). For example, Ortega et al. reported that the proteasome is clogged by mHTT 

only shortly after the start of mHTT expression or if mHTT is not allowed to aggregate [106].  

3.2.3. No decrease in proteostasis capacities in R6/2 mice at 

advanced disease stage 

Contrary to our expectations, I did not observe a decrease of specific activity of Fluc in R6/2 

mice when I crossed R6/2 mice to Fluc sensor mice. A lack of UPS impairment in HD mice has 

been reported in earlier studies, in which R6/2 and HD94 mice were crossed to a sensor mouse 

line that expresses the Ub-GFP sensor to measure UPS capacities [205], [206], [106]. The authors 

reported that there was no reaction of the sensor in aged HD mice, suggesting that there is no 

defect in proteasomal degradation in aged animals of these models that can be measured with this 

sensor. Regarding chaperone dependent folding, studies have measured decreased levels of 

chaperons in HD models [170] or showed amelioration of HD phenotype by upregulation of 

specific chaperones [172], [173]. This is however very different from actually measuring how 
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well the complex cellular system folds a certain metastable protein. Our results provide evidence 

that proteostasis capacities are not reduced in a model of HD.  

3.2.4. Region-specific improvement of proteostasis in young 

R6/2 mice 

When I electroporated Fluc into brains of R6/2 embryos, it did not form inclusions, although 

it did when wt brains were challenged with heat shock. I concluded that at this very young age, 

the cortex of R6/2 mice did not exhibit a decrease in proteostasis capacities. Indeed, when 

crossing the transgenic mice expressing Fluc with R6/2 mice and measuring proteostasis 

capacities in different brain regions at different time points, I observed an increase in specific 

activity of Fluc in the cerebellum, hippocampus and cortex of 1-week old R6/2 mice compared 

to the wt controls. This was not the case in the striatum. In the cerebellum and hippocampus, the 

protein levels of Fluc were slightly reduced compared to controls, suggestive of a stronger 

degradation or reduced expression in these regions in R6/2 mice. This was not the case in cortex. 

Here, the levels were even increased, suggesting that the mechanism in cerebellum and 

hippocampus is different form the one in cortex. To determine whether the PrP promoter is 

influenced by the R6/2 background, I searched in the mass-spectrometry data set of R6/2 mice 

from Fabian Hosp for PrP. It was not significantly regulated in any region of R6/2 mice at the 

time point of 1 and 5 weeks of age, but was significantly downregulated at 8 weeks of age in 

striatum and at 12 weeks of age in hippocampus. This suggests that altered expression due to the 

PrP promoter in the R6/2 background is not the reason for the increased specific activity at 1 

week of age. However, this should be further investigated, for example by performing 

quantitative PCR analysis. The increase in specific activity in hippocampus was in part 

reproduced by crossing the Fluc mice with HD94 mice, in which we induced expression of mHTT 

for 1 week at 8 weeks of age, resembling the expression in 1-week old R6/2 mice. The increased 

specific activity in tissue of R6/2 mice was also reproduced in cultures of hippocampal neurons 

of R6/2 mice. Also here a slight decrease of protein quantity suggested stronger degradation. 
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Cortical neurons in contrast showed no increase in Fluc folding but an increase in Fluc protein 

levels as seen in the ex vivo tissue analyses.  

At 12 weeks of age all four regions showed increased levels of Fluc protein in R6/2 mice, but 

this increase was clearly higher in cortex and striatum than in cerebellum and hippocampus. It is 

appealing to think that the higher degradation rate in early life provides these regions a head-start, 

which in turn causes them to experience less of an increase in Fluc levels, and presumably in 

levels of other metastable proteins, compared to cortex and striatum. The idea, that different 

tissues use different mechanisms to deal with proteotoxic stress is not new. For example, in C. 

elegans, intestine and muscle use different ways of inducing the HSR [207]. To investigate this, 

it would first of all be important to measure mHTT levels at 12 weeks of age comparing these 

different regions. Secondly, assessing causality would be the next big step in this project (refer to 

point 3.2.8).  

3.2.4.1. Upregulation of ubiquitin-related proteins in young R6/2 mice 

Mass-spectrometry analyses confirmed that from the PQCS proteins upregulated in the 

regions which showed improved proteostasis, the majority were ubiquitin-related proteins and 

not chaperones, in contrast to what was expected. In total, I identified 8 proteins related to 

ubiquitination in cerebellum and hippocampus of young R6/2 mice compared to wt controls that 

were not regulated in striatum. I identified no ubiquitin-related protein that was upregulated in 

the striatum. Therefore, the better folding of Fluc could be due to a higher degradation rate 

because of an upregulation of these candidates. That the upregulation of these 8 candidates was 

transient and not visible anymore at 5 weeks of age, matched the transient increase of specific 

activity of Fluc, which was not observed anymore at 3 weeks of age. That the UPS system is very 

important for the degradation of mHTT aggregates has been shown by using the reversible HD94 

model, in which synthesis of mHTT was stopped. Aggregates were then cleared over time by the 

system unless proteasome inhibitor was administered [208]. The fact that the chymotrypsin-like 

activity of the proteasome is not changed in R6/2 animals compared to wt controls is in 

accordance with the lack of upregulated proteasome subunits found in the proteomic analysis. 
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Also, it goes in line with the report by Zhuo et al. who saw no change in proteasome activity 

between HD model mice and wt controls [88]. 

To my knowledge there are no studies on R6/2 mice that looked at protein changes and 

proteostasis alterations at such an early time point, with the exception of a proteomic analysis 

conducted on tissue of 2-week old R6/2 mice [209]. This study, contrary to ours, found many 

changes on whole proteome occurring at this young age, whereas we did not see this at either 1 

week of age nor in the data set of Fabian Hosp at 5 weeks of age. This disparity could be due to 

technical differences or the number of proteins identified. Interestingly though, the authors of this 

study also propose that early changes in protein levels could have a lasting impact on the brain in 

late disease stages.  

3.2.5. Aspects to consider 

3.2.5.1. The transgenic models 

Aspects to consider regarding this study are first of all the use of rodent models to understand 

HD. No model can reproduce all aspects of the HD phenotype, which makes the translation of 

findings in mice to human disease difficult. Experiments in post-mortem human tissue add to the 

current generation of HD-related data. In the future, better non-invasive imaging techniques in 

human patients, proteomics from human post-mortem samples and biomarker development 

would be ideal avenues to explore. Nevertheless, until that point, the use of animal models and 

specifically mouse models is irreplaceable to understand diseases of such complicated systems as 

the brain. 

Secondly, the HD models used in this study are both models that express exon1 of HTT. 

Although spliced forms including mainly exon1 of HTT have been found in patients [210], the 

findings made in this thesis should be reproduced in full-length HD models to assess their 

accuracy beyond exon1-expressing mice.  

Last but not least, the sensor mouse is also a transgenic mouse, which may influence the 

findings of experiments conducted using this tool. Apart from the issue of whether the R6/2 

background influences the activity of the PrP promoter, we do not know where the transgene 
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integrated and therefore how the sensor is specifically influenced by mHTT expression. To our 

advantage, expression was highest in hippocampus and cortex and much lower in cerebellum and 

striatum. However, cerebellum and hippocampus were similar in their proteostasis capacities, as 

were cortex and striatum, suggesting that overall expression levels did not dictate the observed 

result. Nevertheless, differential expression levels in different neurons could therefore influence 

the sensor’s sensitivity. This could be determined by single-cell quantitative PCR. Also, the data 

should be reproduced using a second Fluc line to ensure that the results are independent of the 

specific mouse line used.   

3.2.5.2. Proteostasis, Fluc and autophagy 

A second aspect that should be considered is the lack of data on autophagy. Autophagy has 

been shown to play a big role in HD (reviewed by Nixon [211]). For example, Bauer et al. [212] 

used a construct made of QBP1, which binds elongated but not normal HTT and an Hsc70-

binding motif to target mHTT for chaperone-mediated autophagy. Treatment of R6/2 mice with 

a virus that expresses this construct leads to an amelioration of the phenotype and elongation of 

the life span [212], showing the usefulness of autophagy in dealing with mHTT toxicity. Fluc is 

not degraded by autophagy in cell lines (Dr. Frédéric Frottin, laboratory of Prof. Ulrich Hartl, 

personal communication), however, I have not shown this in neurons. Even without the sensor 

being degraded by autophagy, alterations in this degradation pathway do influence the 

proteostasis network and the sensor should be able to measure this. Cell culture experiments could 

answer these questions. In our mass-spectrometry analyses we only found one autophagy-related 

protein, consistent with a model that this part of the proteostasis machinery might not play a big 

role in the increased folding capacities observed in young R6/2 mice. 

3.2.6. Outlook 

3.2.6.1. Proving causality and elucidating the mechanism 

Future work should first of all determine causality between better folding capacities in 

cerebellum and hippocampus of young wt mice and upregulation of specific ubiquitin-related 
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proteins at this time point in these regions. Current data only shows that both observations are 

correlative to one another. The data of hippocampal neurons degrading CPY*-mCh faster than 

cortical neurons is already a good step in the direction of elucidating the mechanism. It would be 

interesting to see, if this difference is specific to neurons from wt mice or is also seen in R6/2 

neurons. But to assess causality, the best approach would be to improve the proteostasis capacities 

by overexpression of the specific UPS components in cortex and striatum of young R6/2 mice 

and thereby reduce neuropathology in these regions and ultimately ameliorate the disease 

phenotype and increase life span. This improvement however, is not easy to achieve. I observed 

that different UPS-related proteins were upregulated in cerebellum and hippocampus. It could be 

that the specific cocktail of proteins needed is again different in striatum. Also, overexpression 

of four proteins at the same time in vivo is a technical challenge. One could first conduct the 

overexpression in cultured primary neurons, although the appropriate combination of proteins to 

use is not clear. Use of pharmacological methods to increase UPS-related degradation could be a 

solution. Another possibility would be to decrease proteostasis capacities in hippocampal neurons 

of R6/2 mice, by administering a proteasome inhibitor or using RNA interference to knock-down 

certain UPS components and thereby induce a neuropathology comparable to the one found in 

cortex or striatum. Although perhaps easier to perform, this would only provide an indirect 

support of this hypothesis and would be less relevant in terms of therapeutic approach 

development.  

3.2.6.2. Measuring proteostasis in other mouse models and in aging 

First of all, it would be interesting to measure proteostasis capacities in mouse models of 

other neurodegenerative disease such as AD or PD, since these diseases also have been linked to 

impairments in the PQCS (reviewed by McKinnon and Tabrizi [213]). Proteostasis measurements 

would entail crossing the Fluc mouse to mouse models of AD and PD and measuring specific 

activity of Fluc in different brain regions at different time points. Mass-spectrometry and 

transcriptome analyses would shed light onto the possible changes in protein expression that 



Discussion 

95 

 

underlie alterations in Fluc folding. Subsequently, studies in primary neurons and immortalized 

cell lines could help elucidate the mechanisms. 

Secondly, it would be of great interest to measure proteostasis with this transgenic model in 

aging wt mice. It is a long standing belief that proteostasis capacities decrease with aging and this 

has been shown to be the case in C. elegans [176]. In line with this, the proteasome activity has 

been reported to decrease with aging in several brain regions of the mouse [88]. That a good 

proteostasis capacity is indispensable for health in aging was also shown by a study where life 

span and proteostasis were compared between different rodent strains.The authors found that the 

maximum life span potential of different rodents correlates with proteasome activity, HSF1 

upregulation, and autophagy and UPS markers [214]. A recent study compared expression of 

HSPs in old (22 months) and young (3 months) mouse brains and found no significant difference 

[215], suggesting that chaperones are not necessarily the most important players. In the longest-

lived rodent, the naked mole rat, proteomics identified nine proteostasis components, whose 

expression correlated with aging [216]. Among these nine proteins were three autophagy-related 

proteins, two chaperones, one proteasome subunit and four UPS-components, resembling our 

findings in young R6/2 mice. This suggests that components of the proteostasis network, but 

specifically of the UPS are important for a long life. This prompts the question whether the UPS 

system would still be as functional in old as in young animals. Our transgenic model would 

provide the opportunity to measure alterations in proteostasis in a brain region specific way 

during aging of mice.  
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4. Materials and Methods 

4.1. Materials 

4.1.1. Chemicals, reagents and kits 

Chemicals, reagents, enzymes, and kits were purchased at the following companies: Merck, 

Sigma-Aldrich, Roth, VWR, New England Biolabs, Roche, Qiagen and Machery-Nagel. 

4.1.2. Solutions and buffers 

Phosphate-buffered saline (PBS) pH 7.3 

137 mM NaCl 

2.7 mM KCL 

4.3 mM Na2HPO4*7H2O 

1.4 mM KH2PO4 

4.1.2.1. Solutions and buffers for molecular biology 

Master mix for genotyping, 48 µl 

H2O (distilled) 

0.5 µl of each primer (50 pmol) 

5.0 µl 10x Thermo Pol Reaction buffer (New England Biolabs) 

0.4 µl dNTPS-mix (25 mM each, Fermentas) 

0.5 µl Taq Polymerase (New England Biolabs) 

 

50x TRIS-acetate buffer (TAE) 

2 M Tris acetate 

50 mM EDTA 
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Gel loading buffer, 50 ml 

24 ml H2O 

25 ml Glycerol 

1 ml 50x TAE 

0.1 g Orange G 

24 ml H2O 

4.1.2.2. Solutions and buffers for biochemistry 

Lysis buffer 

H2O (distilled) 

50 mM Tris pH 7.5 

150 mM NaCl 

1 % Triton 

Stored at 4 °C. One tablet protease inhibitor was added to 25 ml of buffer prior to use. 

 

Buffer A (for proteasome activity buffer) 

H2O (distilled) 

50 mM Tris-HCl pH 7.4 

5 mM MgCl2 

10 % glycerol 

Stored at 4 °C. 

 

Proteasome activity buffer, 15 ml 

Buffer A 

200 mM ATP (Sigma-Aldrich, freshly dissolved in ultrapure H2O) 

200 mM DTT (Roth, freshly dissolved in ultrapure H2O) 
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SDS PAGE separating gel (10 %), 10 ml for one gel 

4.05 ml H2O 

2.6 ml 1.5M Tris pH 8.8 0.4 % SDS 

3.3 ml Acryl-bis  

50 µl APS 

5 µl TEMED (Sigma) 

 

SDS PAGE stacking gel (4 %), 5ml for one gel 

3.05 ml H2O 

1.3 ml 1.5 M Tris pH 8.8 0.4 % SDS 

0.65 ml Acryl-bis 

50 µl APS 

5 µl TEMED 

 

6x Sample buffer 

0.125 M Tris-HCl pH 6.8 

20 % glycerol 

4 % SDS 

2 % beta-mercaptoethanol 

0.02 % bromphenolblue 

 

5x Electrophoresis buffer (10L) 

154.5 g Tris base 

721 g Glycine 

50 g SDS 

H2O up to 10 L 

 

 



Materials and Methods 

 

100 

 

Protein transfer buffer, 1 L 

3.03 g Tris base 

14.4 g Sodium dodecyl sulfate (SDS) 

200 ml Methanol 

H2O up to 1 L 

 

Protein running buffer (5x, 10 L) 

154.5 g Tris base 

721 g Glycine 

50 g SDS 

H2O up to 10 L  

 

Tris-buffered saline with Tween20 (TBS-T) 

20 mM Tris, pH 7.5 

120 mM NaCl 

0.1 % Tween20 

4.1.2.3. Buffers for immunocytochemistry and immunohistochemistry  

Blocking solution (Immunocytochemistry, ICC) 

PBS 

2 % bovine serum albumin (BSA) 

4 % normal donkey serum (DS, Jackson Immuno Research) 
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Blocking solution (Immunohistochemistry, IHC) 

PBS 

5 % DS 

0.2 % BSA 

0.2 % Lysine 

0.2 % Glycine 

 

Primary antibody solution (IHC) 

PBS 

0.3 % Triton X-100 

2 % BSA 

0.02 % sodium azide (SA) 

 

Secondary antibody solution (IHC) 

PBS 

0.3 % Triton X-100 

3 % DS 

4.1.3. Media 

Luria-Bertani (LB) medium (1 L, pH 7.5) 

10 g Bacto-Tryptone  

5 g Bacto-Yeast extract 

5 g NaCl 

H2O to 1 L, adjust pH 

 

0.05 M Borate buffer pH 8.5 

50 mM Boric acid 

12.5 mM Sodium tetraborate (borax) 
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Medium for cell lines 

DMEM (+ D-Glucose, - Pyruvate, Gibco) 

1 % Penicillin-Streptomycin (Invitrogen) 

1 % L-Glutamine (Invitrogen) 

10 % FBS (HyClone) 

 

Dissection medium 

HBSS (+ CaCl2, +MgCl2, Gibco)  

1 % Penicillin-Streptomycin (Invitrogen) 

7 mM Hepes (Biomol) 

2 mM L-Glutamine (Gibco) 

 

Plating medium (primary neurons) 

Neurobasal medium (- L-Glutamine, Gibco) 

1x B27 supplement (Invitrogen) 

2 mM L-Glutamine (Gibco) 

1 % Penicillin-Streptomycin (Invitrogen) 
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4.1.4. Oligonucleotides and plasmids 

Oligonucleotides were purchased at Metabion, in dried and desalted form, and subsequently 

solubilized in H2O. 

Table 4-1: Oligonucleotides for cloning 

Name Sequence Purpose 

GFP 5’  AAAGCTAGCATGGTGAGCAAGGGCGAG GFP-HA from 

FlucGFP-myc 

Fluc 5’  ATCTCTTTTTCCGTCATCGTCTTTCCG FlucGFP-HA from 

FlucGFP-myc 

FlucWT-HA 3’ 

myc 

AAAGCGGCCGCCTAAGCGTAATCTGGAACA FlucGFP-HA from 

FlucGFP-myc 

FlucWT-HA 5’ 

PrP  

AAAGTCGACATGGAAGACGCCAAAAACATA

AAG 

FlucGFP-HA into 

PrP.Mo.Xho  

FlucWT-HA 3’ 

PrP 

AAAGTCGACCTAAGCGTAATCTGGAACATC

GTATGGGTATGCTGCTGCTTTCTTGTACAGC

TCGTCC 

FlucGFP-HA into 

PrP.Mo.Xho 

FlucWT-HA 5’ 

pCAGG 

CGCCTGGGCCGGATCCATGGAAGACGCCAA

AAACATAAAG 

FlucGFP-HA into 

pCAGG  

FlucWT-HA 3’ 

pCAGG 

GTTGCACTTAACGCGTCTAAGCGTAATCTGG

AACATCG 

FlucGFP-HA into 

pCAGG  
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Table 4-2: Oligonucleotides for genotyping 

Name Sequence Mouse line 

FlucGeno 5´ GTG TCG CTC TGC CTC 

ATA GAA CTG CCT GCG 

TG 

PrPWT1214, PrPWT1433, 

PrPSM4983, PrPSM4978 

FlucGeno 3´ CAT CCT TGT CAA TCA 

AGG CGT TGG TCG CTT 

CCG 

PrPWT1214, PrPWT1433, 

PrPSM4983, PrPSM4978 

R62 forward CCG CTC AGG TTC TGC 

TTT TA 

R6/2 

R62 reverse TGG AAG GAC TTG AGG 

GAC TC 

R6/2 

CamK Tg forward CGC TGT GGG GCA TTT 

TAC TTT AG 

Camk-tTA 

CamK Tg reverse CAT GTC CAG ATC GAA 

ATC GTC 

Camk-tTA 

CamK Control forward CAA ATG TTG CTT GTC 

TGG TG 

Camk-tTA wt allele 

CamK Control reverse GTC AGT CGA GTG CAC 

AGT TT 

Camk-tTA wt allele 

LacZ forward CCA GCT GGC GTA ATA 

GCG 

BiTetO 

LacZ reverse CGC CCG TTG CAC CAC 

AGA TG 

BiTetO 
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Table 4-3: Oligonucleotides for sequencing 

Name Sequence Construct 

firefly CCG GCG CCA TTC TAT CC FlucGFP 

FG4f GTT AAT CAA AGA GGC GAA CTG TG FlucGFP 

FG3f GAC AAT TGC ACT GAT CAT GAA C FlucGFP 

FG4.2f TCT TAC CGG AAA ACT CGA CGC FlucGFP 

FG1r GCA ATA GCA TCA CAA ATT TCA C FlucGFP 

FG2f CCA AAA TGT CGT AAC AAC TGC G FlucGFP 

 

Table 4-4: Plasmids 

ID name backbone resistance source 

ID10 FlucGFP(wt)-myc pCI-neo Amp Frédéric Frottin, Hartl lab 

ID13 FlucGFP(wt)-HA pCI-neo Amp cloned from ID10  

ID14 FlucGFP(dm)-HA pCI-neo Amp cloned from ID12  

ID15 FlucGFP(sm)-HA Mo.PrP.Xho Amp cloned from ID9  

ID77 GFP-HA pCI-neo Amp Cloned  

ID51 Htt-Q25-mCh pcDNA Amp Lisa Vincenz, Hartl lab 

ID52 Htt-Q97-mCh pcDNA Amp Lisa Vincenz, Hartl lab 

ID9 NaN Mo.PrP.Xho Amp 

David R. Borchelt, 

University of Florida 

NaN pCAGG pCAGG Amp Daniel del Toro Ruiz 

NaN FlucGFP(sm)-HA pCAGGs Amp Cloned 
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4.1.5. Antibodies 

Table 4-5: Primary antibodies 

Target Species Dilution  Application Source Catalogue 

number 

Htt (EM48) mouse 1:1000,     

1:200 

ICC, IHC Millipore MAB5374 

GFP rabbit 1:1000,     

1:200 

ICC, IHC Life 

technologies 

A11122 

GFP (JL-8) mouse 1:1000 WB Clontech 632381 

Tubulin mouse 1:1000 WB Covance MMS-435P 

NeuN mouse 1:1000,     

1:500 

ICC, IHC Millipore MAB377 

NeuN rabbit 1:500,        

1:300 

ICC, IHC Cell 

Signaling 

12943 

Cleaved 

Caspase 3 

rabbit 1:500 ICC abcam ab13847 

Darpp-32 goat 1:300 IHC Lifespan 

Biosciences 

LS-C150127 

Neurogranin rabbit 1:500 IHC abcam ab235870 

SST rabbit 1:500 IHC Peninsula 

Laboratories 

International 

T4103.0050 

CR rabbit 1:500 IHC Swant CR-7697 

PV rabbit 1:500 IHC abcam ab11427 

PSD95 mouse 1:500 IHC Sigma P246 
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VGLUT1 guinea-

pig 

1:500 IHC Millipore ab5905 

VGLUT2 guinea-

pig 

1:500 IHC Millipore ab2251 

VGAT rabbit 1:500 IHC Synaptic 

Systems 

131002 

Gephyrin mouse 1:500 IHC Synaptic 

Systems 

147111 

 

All secondary antibodies for immunohisto- or immunocytochemical detection were 

purchased at Jackson Immunoresearch and those for immunodetection after western blotting were 

purchased at GE Healthcare. 

Table 4-6: Secondary antibodies 

Conjugated Target Species Application Dilution 

HRP  mouse / rabbit goat WB 1:5000 

Cy2 / Cy3 / Cy5 mouse / rabbit /  

guinea-pig 

donkey IH 1:300 

Cy2 / Cy3 / Cy5 mouse / rabbit donkey ICC 1:500 

 

4.1.6. Mouse lines 

PrP-FlucSM and PrP-FlucWT mice were generated as described under Point 4.2.7. R6/2 mice 

were obtained from Jackson Laboratory, generated in the lab of Gillian Bates and published 

originally by Mangiarini et al. [107]. CAG repeat length was determined from tail biopsies using 

the services of Laragen, Inc., and only males with CAG repeats under 180 were used for 

breedings. BiTetO mice were generated in the lab of René Hen and published originally by 

Yamamoto et al. [191]. Mice were kindly given to us by Lucas Hen and colleagues. Camk-tTA 
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were obtained by the Jackson Laboratory, generated in the lab of Eric Kandel and originally 

published by Mayford et al. [217]. Mice were housed under SPF conditions with ad libitum access 

to food and water. R6/2, BitetO and CamK-tTA mice were kept in CBAxBl6 background. Fluc 

mice were kept in a Bl6 background. Mice of either sex were used for the experiments.  

 

4.2. Methods 

4.2.1. Molecular biology and immortalized cell culture 

4.2.1.1. Preparation of plasmid DNA 

Cultures of single colonies were grown overnight at 37 °C and 220 rpm in LB medium 

supplemented with 100 µg/ml ampicillin or kanamycin as required. Plasmid DNA was isolated 

using kits by Qiagen (mini-preparation) or Machery-Nagel (maxi-preparation) following 

company protocols. DNA concentration was measured using a nanodrop (peqlab, Nanodrop 

1000) and the software NanoDrop 1000 3.7.1 (Thermo Scientific). 

4.2.1.2. Transformation of competent E.coli by electroporation 

For the transformation 1-4 µl of DNA of maximum 50 ng/ µl concentration was added to 50 

µl of electro-competent cells (Top10 from Thermo Fisher Scientific for transformation after 

ligation or custom-made DH5α for regular transformations) on ice and subsequently transferred 

to a pre-chilled cuvette (Bio-Rad, Gene Pulser Cuvettes, 0.2 cm electrodes). In the electroporation 

chamber (Bio-Rad, Puls Controller) the cuvettes were treated with two pulses of 25 µF. Cells 

were suspended in 200 µl LB medium, transferred to a 14 ml Falcon tube and incubated for 1h at 

37 °C and 220 rpm rotation. Subsequently, they were plated on LB medium plates containing 

ampicillin or kanamycin and left to grow overnight at 37 °C. 

4.2.1.3. Cloning of expression plasmids 

For cloning of DNA into vector backbones, vectors were digested with an appropriate enzyme 

(New England Laboratories) overnight at the temperature indicated by the manufacturer and in 



Materials and Methods 

109 

 

the corresponding buffers at a concentration of at least 4 units per microgram DNA. The next 

morning, an additional 50 % of the enzyme was added and DNA left for digestion for another 2 

h. Correct digestion was checked on an agarose gel after electrophoresis. For amplification of 

DNA fragments intended for cloning, PFU polymerase from Promega was used with the 

corresponding buffers. Vector and insert DNA were purified from agarose gels after 

electrophoresis using a gel extraction kit (Qiagen) and subsequent column purification (Qiagen) 

following the manufacturer’s protocols. Ligation was conducted using T4 DNA ligase (New 

England Biolabs) overnight at 16 °C. For this, 50 ng of vector DNA and the corresponding 

amount of insert was used, based on the ratio of vector to insert length to obtain a stoichiometric 

ratio of 1:1, 1:3, 1:10 and 1:0 as a negative control in a total volume of 20 µl. Subsequently, 2 µl 

of ligase reaction were used for transformation of Top10 electro-competent cells (Thermo Fisher 

Scientific). Alternatively, DNA inserts were cloned into digested vector backbones using the In-

Fusion HD Cloning Kit (Clontech) following manufacturer protocols. 

4.2.1.4. Agarose gel electrophoresis 

Agarose gels were prepared by dissolving agarose in TAE buffer (1 to 2 %, depending on the 

size of DNA fragments to separate) by boiling the suspension for 5 min, cooling it to 

approximately 60 °C and adding Ethidum bromide (Roth) to a concentration of 0.5 µg/ml. 

Subsequently, the solution was poured into a plastic tray and left to cool for polymerization. Gels 

were stored in plastic wrap at 4 °C. DNA was separated based on size by gel electrophoresis, at 

a voltage of 100 – 230 Volts. DNA was visualised by UV light using a Gel Doc XR+ machine 

(Biorad). 

4.2.1.5. Propagation, thawing and transfection of mammalian cells 

HeLa cells were grown at 37 °C with 5 % CO2 in medium for cell lines. Confluent cells were 

washed with pre-warmed PBS and incubated with Trypsin-EDTA (Sigma) for 3 min. 

Subsequently, cells were taken up in the medium by pipette and newly seeded as needed. Hela 

cells were transfected at 70 % confluency with Lipofectamine LTX and PLUS reagent (Life 
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technologies) according to the manufacturer protocol. Transfection medium was replaced by new 

medium for cell lines 3 - 6 h after transfection.  

4.2.2. Mouse work  

4.2.2.1. Generating FlucGFP transgenic mice 

For generation of transgenic mice expressing FlucGFP under the prion promoter, Mo.PrP 

plasmid was obtained from David Borchelt (University of Florida). Mo.PrP plasmid was cleaved 

with SalI. The insert coding for FlucGFP was amplified by PCR adding an HA tag to the 

sequence. The insert was cloned into the linearized vector. DNA was verified for correctness by 

sequencing (Eurofins). The final vector was then amplified by maxi preparation and cleaved with 

NotI, excising the pBluescript vector bone. The linearized vector was extracted from an agarose 

gel using JetSorb gel extraction kit (Genomed) and subsequently filtered using PVDF 0.45 µm 

Ultrafree MC GV filters (Millipore). Purity of the DNA was checked by gel electrophoresis. The 

purified, linearized vector was then given to the transgenic service at a concentration of 50 - 100 

ng/µl. The transgenic service conducted the pronuclear injection and provided us with several 

transgenic mouse lines. Animals obtained from this procedure were validated for transgene 

integration by PCR against FlucGFP of tail biopsies. For the sm construct, seven out of 84 mice 

were transgenic. Out of these transgenic lines, two lines showed germline transmission and good 

expression of the transgene (PrPSM4977 and PrPSM 4983). For the WT construct, five out of 

103 mice mice were transgenic. Out of these transgenic lines, two lines showed germline 

transmission and expression of the transgene (PrPWT1214 and PrPWT 1433). For this thesis, all 

work with the Fluc transgenic mouse was conducted on the PrPWT1214 line. 

4.2.2.2. Doxycycline administration 

HD94 mice and their single-transgenic and non-transgenic littermates were administered 

doxycycline from embryonic day 0 until 8 weeks of age. For this, the mice or, before birth, the 

mother, were given 2 mg/ml doxycycline in the drinking water. To mask the bitter taste of the 



Materials and Methods 

111 

 

antibiotic, it was diluted in 5 % sucrose. Doxycycline solution was kept in dark bottles to prevent 

light exposure and renewed once every week [191].  

4.2.2.3. In utero electroporation 

IUE was perfomed as previously described [218], [219]. Briefly, pregnant Bl6 or R6/2 mice 

carrying E15.5 embryos were anethesized with Buprenorphin, Lidocaine (0.05 mg per kg body 

weight, intraperitoneal injection, 4 mg per kg body weight, subcutaneous injection, respectively) 

and constant administration of isoflurane. The abdomen was opened and the uterus extracted 

carefully. Embryos were injected into the ventricle of the brain with 4 µg/µl DNA in a total 

volume of 1 µl TE buffer. For better visualization 0.02 % FastGreen was added to the DNA mix. 

For the injection, a glass capillary (1.5 x 0.86 x 80 mm, Science Products) was used, which was 

pulled on a micropipette puller (Sutter Instruments, settings: 680 °C, pull = 30, velocity = 125, 

time = 210). Injection was achieved with a Picospritzer III (Intracel) injecting with 30 V, five 

currents of 50 msec duration at 1 sec intervals. The positively charged electrode of an ECM830 

electroporator (Harvard Apparatus) was held to one side of the skull so that the DNA was directed 

to that side. After the procedure, the peritoneal wall and skin were sewed (Mersilk 6-0, Ethicon) 

and the mouse left to recover on a heated pad. The mouse was sacrificed three days later, the 

embryonic brains extracted and fixed in 4 % PFA overnight either directly or after a heat shock 

of 2 h at 43 °C.  

4.2.2.4. Tail DNA preparation and genotyping using PCR 

From each mouse 1 mm of tail was lysed in 100 µl of 50 mM NaOH for 45 min at 95 °C, 

with vortexing every 15 min, and subsequently neutralized by adding 100 µl of 1.5 M Tris-HCl 

pH 8.8. Tail lysates were stored at 4 °C. For genotyping by PCR, DNA solution obtained from 

lysed tails was used. A PCR master mix was prepared on ice (48 µl per sample) and mixed with 

the respective DNA samples (2 µl per sample). 
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Table 4-7: PCR protocols 

Program Mouse 

lines 

Denatu-

ring 

Denaturing  Annealing    Extension 

repeated indicated no. of times 

Exten-

sion 

No. of 

cycles 

FlucGeno PrPWT-

1214 

95 °C 

3:00 

95 °C 

0:30 

69 °C 0:30 72 °C 

1:00 

72 °C 

5:00 

35 

LacZ BiTetO, 

HD94 

95 °C 

5:00 

95 °C 

0:30 

58 °C 0:30 72 °C 

0:30 

72 °C 

5:00 

35 

CamK CamK-

tTA 

95 °C 

3:00 

95 °C 

0:30 

57 °C 1:00 72 °C 

1:00 

72 °C, 

2:00 

35 

R6.2     

part I 

R6/2 95 °C 

2:00 

95 °C 

0:20 

72 °C 0:15         

(-Δ 0.5 °C 

/cycle) 

72 °C 

0:15 

NaN 10 

R6.2     

part II 

R6/2 NaN 94 °C, 

0:15 

60 °C, 0:15 72 °C, 

0:15 

72 °C, 

1:00 

35 

 

4.2.2.5. Transcardial perfusion 

Animals were narcotized with isoflurane (cp-pharma) and subsequently with 

Ketamine/Xylazine (1.6 % ketamine, 0.08 % xylazine in saline, medistar, Bernburg, respectively) 

and transcardially perfused for 6 min at a speed of 1 ml/min with cold PBS and for additional 8 

min with cold 4 % PFA. Subsequently, brains were removed and post-fixed in 4 % PFA for 48 h. 

For future use, brains were stored in PBS at 4 °C. 

4.2.2.6. Dissection of mouse tissue 

Animals were narcotized with isofluorane and subsequently killed by cervical dislocation. 

Brains were removed and cerebellum, hippocampus, cortex and striatum dissected on ice. Tissue 

was snap-frozen in liquid nitrogen and stored for future use at -80 °C. 
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4.2.3. Primary neuronal culture and biochemistry 

4.2.3.1. Primary culture of dissociated mouse cortical and hippocampal 

neurons 

Culture plates or coverslips were coated with 0.1 or 1.0 µg/ml poly-D-lysine (Sigma, 

respectively) for a minimum of 2 h. Plates or coverslips were subsequently washed three times 

for 5 min with PBS and then coated with 5 µg/ml laminin for a minimum of 2 h. Cultures of 

wildtype neurons were performed using E15.5 CD1 embryos. Cultures of R6/2 animals were 

conducted at E18.5. Females were checked for vaginal plugs the morning after mating and 

counted as 0.5 days after pregnancy. Embryos at E15.5 or E18.5 were dissected in dissection 

medium. First, the head was removed and the brain dissected out of the skull. Hemispheres were 

cut off the rest of the brain and the meninges removed with forceps. The cortex and/or 

hippocampus was then dissected. The obtained tissue was washed three times in 2 ml dissection 

medium and then trypsinized in 2 ml Trypsin at 37 °C for the number of min that corresponded 

to the age of the dissected embryo. Trypsin activity was quenched with 5 % FBS in plating 

medium. FBS was removed and the tissue washed three times with 2 ml plating medium. Cells 

were mechanically dissociated in 0.5 ml plating medium by pipetting with a cut 1 ml pipette 30 

times and subsequently with a normal tip 15 times. Dissociated cells were centrifuged in 2.5 ml 

plating medium at 129 g for 5 min and the supernatant discarded. Cells were re-suspended in 0.5 

ml plating medium by pipetting 15 times with a 1 ml pipette and then diluted in 10 ml plating 

medium for counting, which was conducted on 10 µl volume in a Neubauer counting chamber 

(Blaubrand, Brand). Cells were seeded at a density of 100 000 to 120 000 cells per well in a 24-

well plate (0.5 ml volume per well). Half of the medium was changed after 7 days in culture. 

4.2.3.2. Transfection of primary neurons using calcium phosphate 

Transfection of primary neurons was conducted as described by Jiang and Chen [220]. 

Briefly, a transfection mix was prepared by adding DNA into H2O. After mixing by flicking the 

tube, calcium chloride solution was added dropwise and the solution mixed again. Last, HBS 2x 

solution was layered on top of the solution. The solution was then mixed well by flicking and 
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inverting the tube. The transfection mix was left incubating for 45 min at room temperature (RT). 

Neurons were transferred into fresh plating medium and 30 µl of the transfection mix was added 

per 24 well plate well in a dropwise manner. Cells were incubated at 37 °C for 3 h and then 

transferred into plating medium, which had been acidified for at least 30 min at 10 % CO2. After 

30 min neurons were transferred back into their original medium. 

4.2.3.3. Semi-automated quantification of inclusions 

Quantification of proteasome and Hsp90 inhibition was conducted semi-automatically using 

self-written macros in ImageJ (by Daniel del Toro Ruiz). Inclusions were only assessed in the 

cytosol of the cell body excluding nucleus and neurites. An inclusion was counted if its size was 

bigger than 200 x 300 µm, the circularity was between 0.6 and 1.0 and the brightness was higher 

than the mean fluorescence of the whole cell plus four standard deviations. Quantification of heat 

shock was assessed manually. 

4.2.3.4. Luciferase assay 

For the luciferase assay on transfected immortalized cells, cells were grown in 24 well plates 

and transfected upon 70 % confluency. 24 h after transfection cells were split and seeded into 12 

well and 96 well plates (1 ml and 200 µl volume per well, respectively). 48 h after transfection 

30 µl per well of luciferin (Promega E1500) was added into the medium of the 96 well plate. 

Cells grown in 12 well plates were used for protein quantification by western blotting. For the 

luciferase assay on transfected primary neurons, neurons were grown in 6 well plates (2.5 ml 

volume per well). 2 to 5 days after transfection, the medium was removed and 200 µl of fresh 

medium added to the well. Subsequently, 100 µl of luciferin (Promega E1500) was added per 

well. For luciferase assay on frozen tissue 50 – 100 µg of protein from tissue lysates were mixed 

with 100 µl of luciferin (Promega 1501). Luciferase activity was measured for 2 sec in a 

luminometer (Lumat LB 9507, Berthold) 15 min after administration of the substrate in technical 

duplicates.  
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4.2.3.5. Cell and tissue lysis 

Primary neurons and cultured cell lines were lysed by application of 1.5x SDS-containing 

sample buffer, followed by 3 min incubation on ice. DNA was fragmented by repeated pipetting. 

For tissue lysis, tissue was thawed on ice and weighted. 10 µl/mg pre-chilled lysis buffer was 

added and the tissue homogenized for 1 min at maximum speed using a VOS14 (VWR) 

homogenizer. Tissue homogenates were placed on ice for 20 min for protein solubilization and 

the solution subsequently centrifuged at 13000 g for 12 min to remove cell debris. The supernatant 

was transferred to a new pre-chilled Eppendorf tube. Protein concentration was measured by 

Bradford assay following the manufacturer’s protocol (Bio-Rad). Lysates were stored at - 20 or - 

80 °C. 

4.2.3.6. Western blotting and immunodetection 

Tissue lysates were mixed with loading buffer to obtain a 1x solution. Cell or tissue lysates 

were boiled at 95 °C for 5 min and subsequently centrifuged for 15 min at 13 000 g. Proteins 

were separated based on size by SDS-PAGE on 10 % gels running at 80 V for approximately 2 

h. After electrophoresis, gels were incubated for 10 min in transfer buffer. PVDF membranes 

(Immobilon-P) were activated for 10 sec in Methanol, washed for 5 min in H2O and incubated 

for 10 min in transfer buffer. Subsequently, proteins were transferred by semi-dry blotting (Trans-

Blot Turbo Transfer System, Biorad) at maximum 25 V and 2.5 A for 35 min. Transferred protein 

was visualised on the membrane by Ponceau staining through incubation in Ponceau solution for 

5 min and subsequent washing in H2O. Membranes were then blocked with 5 % milk and 5 % 

BSA in TBS-T for at least 30 min, then washed once in TBS-T. Membranes were incubated 

overnight with the primary antibody in 3 % BSA, 0.02 % SA in TBS-T. The next day, membranes 

were washed three times in TBS-T for 10 min per wash and incubated for at least 2 h with 

secondary HRP-conjugated antibody in 3 % milk in TBS-T. After three washes with TBS-T for 

10 min per wash, immunodetection was conducted by incubating the membrane for 1 min in ECL 

solution and detecting the substrate reaction with a peqlab Fusion Fx7.  
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4.2.3.7. Calculation of specific activity 

Values obtained from the luciferase assay were divided by protein quantity measured by 

immunodetection after western blotting. Fold change of protein quantity was introduced as the x-

value in the normalization formula. Therefore the expected fold change of specific activity solely 

based on the protein level difference was calculated. Expected specific activity was subtracted 

from measured specific activity and plotted as the fold change as a percentage. 

4.2.3.8. Proteasome activity assay 

Tissue was lysed in proteasome activity buffer as described under Point 4.2.2.1. 50 µg of 

protein from tissue lysates were incubated with Suc-LLVY-AMC (20 mM, Bachem) for 30 min 

at 37 °C either with or without proteasome inhibitor (20 µM MG-132, AG Scientific) as described 

in Myeku et al. [192]. Samples were excited at 340 nm emission wavelength and measured at 465 

nm in a Tecan plate reader (software RdrOle4). Values of samples incubated with proteasome 

inhibitor were subtracted from values without proteasome inhibition. 

4.2.4. Histology and Immunofluorescence 

4.2.4.1. Embedding and sectioning of tissue 

Fixed tissue was either embedded in albumin or cryo-preserved. For embedding in albumin, 

glutaraldehyde was added 20:1 and the solution was mixed vigorously. The tissue was then 

covered with the solution. Subsequently brains were stored in PBS with 0.02 % SA at 4 °C. For 

cryo-preservation, brains were dehydrated overnight in 30 % sucrose in PBS, embedded in 

Tissue-Tek O.C.T. Compound (Sakura) on dry ice and subsequently stored at -80 °C. Not 

embedded and albumin-embedded tissue was sectioned at a vibratome VT1000S (Leica) into 70 

µm thick sections. Sections were stored in PBS at 4 °C for future use. Cryo-fixed tissue was 

sectioned at a cryostat CM3050S (Leica) into 30 - 40 µm thick sections. Sections were mounted 

onto Superfrost Plus glass-slides (Thermo Scientific) and stored at - 20 °C for future use. 
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4.2.4.2. Immunofluorescence on cells 

Cells were grown on 13 mm coverslips in 24-well plates. After transfection and 

experimentation (specified in the figure legends), cells were washed once with PBS and fixed for 

15 min with 4 % PFA at RT. Subsequently, cells were washed 3 times with PBS and stored in 

PBS at 4 °C. Cells on coverslips were washed once with PBS and then permeabelised in 0.1 % 

Triton X-100 in PBS for 10 min at RT. Triton residues were removed by a wash with PBS for 5 

min. Cells were blocked for 30 min in blocking solution, subsequently transferred to a wet and 

dark plastic chamber and incubated for 1 h with primary antibody in blocking solution. After 

three washes of 5 min with PBS, cells were incubated for 30 min with fluorescently labelled 

secondary antibodies in blocking solution. Coverslips were mounted with DAKO mounting 

medium, dried overnight at RT and stored at 4 °C. 

4.2.4.3. Immunofluorescence on tissue sections 

Sections were washed once with PBS and then permeabilised in 0.5 % Triton X-100 in PBS 

for 30 min at RT. Triton residues were removed by a wash with PBS for 5 min. Sections were 

then blocked for 30 min in blocking solution, subsequently incubated overnight with primary 

antibody in primary antibody solution. After three washes of 10 min with PBS, sections were 

incubated for at least 2 h with fluorescently labelled secondary antibodies in secondary antibody 

solution. Sections were mounted with DAKO mounting medium, dried overnight at RT and stored 

at 4 °C.  

4.2.4.4. Microscopy and image analysis 

All images were acquired using a Leica TCS SP8 scanning confocal microscope equipped 

with a 10 x air objective, a 20 x immersion objective, a 40 x oil objective and a 63 x oil objective. 

Images were processed and analysed using the open-access image analysis software ImageJ 

(https://imagej.net). The use of custom-written macros is stated in the Results section. 

 

https://imagej.net/
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4.2.5. Data analysis 

If not differently indicated, data was processed, analysed and plotted using R in RStudio.  

4.2.5.1. Analysis of mass-spectrometry data 

All mass-spectrometry analyses were conducted by Fabian Hosp in a label-free manner. I was 

given the mass-spectrometry data from Fabian Hosp including statistical analyses using Student’s 

t-test on LFQ intensities [221]. LFQ intensities are globally normalized using a population of 

proteins that are marginally altered between experiments and therefore renders the use of 

housekeeping genes obsolete [221]. This analysis delivers a p-value and expression difference 

(fold change) for every protein at a given age and in given brain region. 

4.2.5.2. Statistical analysis 

Statistical analyses were carried out using R in RStudio, GraphPad Prism and MatLab 

(MathWorks). Two-photon imaging data was statistically analysed by Sabine Liebscher. If not 

stated differently in the figure legends, all data was compared by one-sample or two-sample 

unpaired, two-tailed Student’s T-test. Differences were considered statistically significant when 

the p-value was lower than 0.05, denoted by an asterisk (*). Two or three asterisk denoted a p-

value lower than 0.01 or 0.001, respectively. If not stated differently, data was presented as mean 

± standard error of the mean (SEM). 

4.2.6. Calcium imaging  

4.2.6.1. Virus injection, window preparation and two-photon imaging 

Virus injection, window preparation and two-photon imaging was performed by Johanna 

Neuner. Further information is stated in the figure legends. 

4.2.6.2. Two-photon image data processing 

Images were saved as tagged image file format files and image processing was conducted 

using ImageJ. Briefly, all images of one imaging session and FOV were saved using ImageJ as 

stacked files. Stacks were motion corrected using the “moco” plugin [222]. On average z-
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projections ROIs were manually drawn around cells for one time point and saved as a ROIS mask. 

This ROI mask was moved in x- and y-dimension to fit projections of other time points using the 

plugin “Roi Manager Move Selections” (https://imagej.nih.gov/ij/macros/) and ROIs added based 

on visibility of the cell until all cells visible at at least one time point were included in the ROI 

mask. Cell-specific imaging traces were extracted using the ROI Manager Multi Measure 

function. Overfilled cells were excluded from future analyses.  

4.2.6.3. Running data analysis 

Running analyses were conducted on the camera-acquired images using the software 

EthoVision XT 11 (Noldus Information Technology). Briefly, an area was drawn around the paws 

of the mouse excluding the nose and the Styrofoam ball. Then, mean activity was quantified by 

measuring pixel change in that area. Frame-rate of video-acquisition of calcium imaging and 

imaging of running differed. Therefore, the length of the data vector containing the running 

activity per time was adjusted using the resample function from the scipy.signal library. 

4.2.6.4. Two-photon image data analysis with Matlab 

Two-photon imaging data analysis was conducted by Sabine Liebscher using MatLab from 

MathWorks. Further information is stated in the figure legends. 

  

https://imagej.nih.gov/ij/macros/
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Appendix 

Appendix I: Supplementary tables 

Table A- 1: PCA drivers, downregulated in old R6/2 mice 

Protein name 

 

Gene name 

 

Annotation 

original 

Annotation 

figure 

Down-

regulation 

Voltage-dependent calcium 

channel gamma-3 subunit Cacng3 synaptic synaptic 8w 

Complexin-1 Cplx1 synaptic synaptic 8w, 12w 

Neuromodulin Gap43 synaptic synaptic 8w 

Proline-rich transmembrane 

protein 2 Prrt2 synaptic synaptic 8w 

Syntaxin-1A Stx1a synaptic synaptic 8w, 12w 

Synaptogyrin-1 Syngr1 synaptic synaptic 8w 

Vesicle-associated membrane 

protein 1 Vamp1 synaptic synaptic 8w, 12w 

Vesicle-associated membrane 

protein 2 Vamp2 synaptic synaptic 8w, 12w 

 

A830010 

M20Rik other other 8w 

Alpha-actinin-1 Actn1 cytoskeleton cytoskeleton 12w 

ADP-ribosylation factor 5 Arf5 ribosomes ribosomes 8w, 12w 
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ATP synthase subunit delta, 

mitochondrial Atp5d mitochondria mitochondria 8w 

Brain acid soluble protein 1 Basp1 

trans-

membranal other 8w 

CD81 antigen Cd81 

immune 

system other 8w 

Coiled-coil-helix-coiled-coil-

helix domain-containing 

protein 3, mitochondrial Chchd3 mitochondria mitochondria 8w 

Cytochrome c oxidase 

subunit 7C, mitochondrial Cox7c mitochondria mitochondria 8w, 12w 

Cytochrome b5 type B Cyb5b mitochondria mitochondria 8w 

Acyl-CoA-binding protein Dbi signalling signaling 8w 

ETS-related transcription 

factor Elf-3 Elf3 transcription histone 5w 

Histone H3.3,Histone 

H3.3C,Histone H3 

H3f3a, 

H3f3c histone histone 5w, 8w 

Heat shock factor-binding 

protein 1 Hsbp1 

protein 

homeostasis 

protein 

homeostasis 8w, 12w 

Mitochondrial fission factor Mff mitochondria mitochondria 5w, 8w 

Protein phosphatase 1 

regulatory subunit 11 Ppp1r11 

phosphatase 

inhibitor signaling 12w 

Parathymosin Ptms other other 8w, 12w ## 

Putative RNA-binding 

protein 3 Rbm3 translation ribosomes 8w 

60S ribosomal protein L22 Rpl22 ribosomes ribosomes 5w, 8w 
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Serine incorporator 1 Serinc1 

serine 

transporter other 12w 

14-3-3 protein sigma Sfn 

class-switch 

recombination other not 

Small ubiquitin-related 

modifier 2 Sumo2 

protein 

homeostasis 

protein 

homeostasis 8w 

Thymosin beta-

4,Hematopoietic system 

regulatory peptide Tmsb4x cytoskeleton cytoskeleton 8w 

 Tpm1 cytoskeleton cytoskeleton 8w, 12w 

Ubiquitin-conjugating 

enzyme E2 D3 Ube2d3 

protein 

homeostasis 

protein 

homeostasis 8w 

Cytochrome b-c1 complex 

subunit 6, mitochondrial Uqcrh mitochondria mitochondria 8w, 12w 

14-3-3 protein eta Ywhah 

class-switch 

recombination other 8w, 12w 

## Downregulated in the insoluble fraction at 5 weeks of age. 
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Table A- 2: PCA drivers, upregulated in old R6/2 mice 

Protein names Gene names Annotation  Upregulation 

Brain-specific angiogenesis inhibitor 

1-associated protein 2 Baiap2 cytoskeleton 5w, 8w, 12w 

Chromobox protein homolog 3 Cbx3 

hetero-

chromatin 8w 

CREB-regulated transcription 

coactivator 3 Crtc3 transcription 8w 

H-2 class I histocompatibility antigen, 

D-B alpha chain H2-D1 immune system 8w 

Mannose-P-dolichol utilization defect 

1 protein Mpdu1 saccharides 5w, 8w 

Negative elongation factor D Nelfcd translation 8w 

Origin recognition complex subunit 3 Orc3 histone 8w 

SH3 domain-binding glutamic acid-

rich-like protein 2 Sh3bgrl2 others 8w 

tRNA dimethylallyltransferase, 

mitochondrial Trit1 mitochondria 8w 

Cytochrome b-c1 complex subunit 10 Uqcr11 mitochondria 8w ## 

## Downregulated in the soluble fraction at 5 weeks of age. 

 

All proteins highly regulated (≥ 8-fold enriched, p-value ≤ 0.001), were downregulated in 

R6/2 mice.  
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Table A- 3: Synaptic proteins most significantly regulated in the soluble proteome of R6/2 

mice 

Protein name Gene name 

P-value / fold-change 

0.001 / 8-fold 0.05 / 2-fold 

Neuronal-specific septin-3 3-Sep 8w, 12w 8w, 12w 

V-type proton ATPase subunit G 2 Atp6v1g2 8w, 12w 8w, 12w 

Voltage-dependent L-type calcium channel 

subunit alpha-1C Cacna1c 12w 12w 

Voltage-dependent calcium channel gamma-

8 subunit Cacng8 8w 8w 

Calbindin Calb1 8w 8w, 12w 

Calcium/calmodulin-dependent protein 

kinase II inhibitor 1 Camk2n1 12w 12w 

Cholecystokinin,Cholecystokinin-

33,Cholecystokinin-12,Cholecystokinin-8 Cck 12w 5w, 8w, 12w 

Drebrin-like protein Dbnl 8w 8w 

Dynamin-1-like protein Dnm1l 8w 8w 

DOMON domain-containing protein 

FRRS1L Frrs1l 8w 8w 

Potassium/sodium hyperpolarization-

activated cyclic nucleotide-gated channel 4 Hcn4 12w 12w 

Protein lin-7 homolog B Lin7b 8w 8w 

Pro-neuropeptide Y,Neuropeptide Y,C-

flanking peptide of NPY Npy 12w 12w 

BDNF/NT-3 growth factors receptor Ntrk2 8w 5w, 8w 
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Paralemmin-1 Palm 12w 5w, 12w 

Phosphatidylethanolamine-binding protein 

1,Hippocampal cholinergic neurostimulating 

peptide Pebp1 8w 8w 

Neurabin-2 Ppp1r9b 8w 8w 

Ras-related protein Rab-3D Rab3d 12w 12w 

Synaptosomal-associated protein 25 Snap25 8w, 12w 8w, 12w 

Syntaxin-1A Stx1a 8w, 12w 8w, 12w 

 

Table A- 4: Synaptic proteins significantly upregulated in the insoluble proteome of R6/2 

mice 

Protein name Gene name Upregulation 

Synaptogyrin-3 Syngr3 * 8w  

AP2-associated protein kinase 1 Aak1 12w 

A-kinase anchor protein 9 Akap9 12w 

Sodium/potassium-transporting ATPase subunit alpha-2 Atp1a2 ** 12w 

Serine/threonine-protein kinase BRSK1 Brsk1 12w 

Voltage-dependent calcium channel gamma-8 subunit, 

Voltage-dependent calcium channel gamma subunit Cacng8 12w 

Tyrosine-protein kinase Fyn Fyn 12w 

Glutaminase kidney isoform, mitochondrial Gls 12w 

Kinesin-like protein KIF1A Kif1a 12w 

Kinesin-like protein KIF3A Kif3a 12w 
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Protein kinase C and casein kinase substrate in neurons 

protein 1 Pacsin1 12w 

Profilin-2,Profilin Pfn2 12w 

Ras-related C3 botulinum toxin substrate 1 Rac1 12w 

SLIT-ROBO Rho GTPase-activating protein 2 Srgap2 12w 

Synapsin-2 Syn2 12w 

Synaptopodin Synpo 12w ## 

Vimentin Vim 12w 

14-3-3 protein zeta/delta Ywhaz 12w 

##   Downregulated in the insoluble fraction at 8 weeks of age. 

*    Downregulated in the soluble fraction at 8 weeks of age. 

**  Downregulated in the soluble fraction at 12 weeks of age. 
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Table A- 5: Synaptic proteins significantly downregulated in the insoluble proteome of 

R6/2 mice 

Protein name Gene name Downregulation 

Synaptotagmin-2 Syt2 5w, 8w 

Inositol 1,4,5-trisphosphate receptor type 1 Itpr1 5w  

Septin-5 5-Sep 8w  

Calcium/calmodulin-dependent protein kinase type II 

subunit alpha Camk2a * 8w  

Disks large-associated protein 2 Dlgap2 8w  

Disks large-associated protein 3 Dlgap3 * 8w  

Gamma-aminobutyric acid type B receptor subunit 2 Gabbr2 * 8w  

Glutamate receptor ionotropic, NMDA 2A Grin2a 8w  

BTB/POZ domain-containing protein KCTD16 Kctd16 * 8w  

Myelin basic protein Mbp 8w  

Phosphatase and actin regulator 1,Phosphatase and actin 

regulator Phactr1 * 8w  

Myelin proteolipid protein Plp1 8w  

Synaptopodin Synpo 8w ## 

Synaptotagmin-7 Syt7 * 8w  

Ras-related protein Rab-3A Rab3a 12w 

##  Upregulated in the insoluble fraction at 12 weeks of age. 

 *  Downregulated in the soluble fraction at 8 weeks of age. 

** Downregulated in the soluble fraction at 12 weeks of age. 
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