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Chapter I 

 
Introduction 

 
 
            Visual scenes provide a complex and cluttered input to the visual system, which 

usually consists of a hierarchical organization, which can be defined as a “multilevel 

hierarchical structure of parts and wholes” (Palmer, 1977). For instance, a forest is 

composed of trees, and the trees in turn are composed of parts, e.g. branches, leaves and 

so forth, illustrating that global wholes and local parts are linked by means of some 

relational structure.  

            One of the most enduring issues in vision science concerns the perceptual 

relations between wholes and their parts. The question is whether processing of the 

overall structure precedes and determines the processing of the component parts and their 

properties, or whether the parts are registered first and are then synthesized to form 

higher global-level objects. 

            Traditionally, this classical topic can be traced back to the controversy between 

two schools of perceptual psychology, namely structuralism and Gestalt psychology. The 

structuralists (e.g., Titchener, 1909; Wundt, 1874) were rooted firmly in British 

empiricism, with its emphasis on atomism and associative mechanisms, and were 

influenced by 19th-century physiological view (Wundt, 1874). They held that the basic 

units of perception are independent local sensations and their physiological counterparts, 

specific nerve energies. In this view, every sensory whole must be built up from a 

conglomerate of elementary sensations, and the perception of segregated, organized units 
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corresponding to objects in the physical world is achieved only by associations learned 

through experience. 

            The Gestaltists (e.g., Koffka, 1963; Kohler, 1929, 1971; Wertheimer, 1967), on 

the other hand, argued against both the atomistic assumption and the role of learning in 

perception, but emphasized the primacy of whole units and the organization into a 

complete percept. A basic tenet of the Gestalt view is that a specific sensory whole is 

qualitatively different from the complex that one might predict by considering only its 

parts. The whole quality is not just one more added element or factor, as was proposed by 

Ehrenfels's (1890) “Gestalt Qualität”, nor does it arise (through the agency of any 

auxiliary factor) as a secondary process from the sum of the pieces as such. Instead, it has 

been suggested that “what takes place in each single part already depends upon what the 

whole is” (Wertheimer, 1967). Thus, the quality of a part is determined by the whole in 

which this part is integrated. According to the Gestalt theory, the perception of distinct, 

organized units is not the product of sensory elements tied together by associative 

learning but is, instead, an immediate product of electrical field processes in the brain that 

respond to the entire pattern of stimulation (Wertheimer, 1967). 

            The basic flavor of the structuralist approach has been retained in many current 

models of perception, especially models of pattern and object recognition (see Treisman, 

1986, for an extensive review). Such analytic models assume that objects are identified, 

recognized, and classified by detecting combinations of elementary features.    

            In the last 40 years, the Gestaltist view of perception has nevertheless recaptured 

the interest of cognitive psychologists (e.g., Beck, 1982; Boff, Kaufman, & Thomas, 

1986, Vol. 2; Gopher & Kimchi, 1989; Kubovy & Pomerantz, 1981; Shepp & Ballesteros, 
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1989). This revival includes work on issues such as configural-superiority effects and 

global/local processing. It is also expressed in the growing usage of the term wholistic 

rather than analytic to describe perception (e.g., Uttal, 1988).  

            The distinction between wholistic versus analytic processing is sometimes 

referred to as a distinction between top-down versus bottom-up processing (e.g., Kinchla, 

Solis-Macias, & Hoffman, 1983; Kinchla & Wolfe, 1979). However, the terms top-down 

and bottom-up processing are often used to refer to the distinction between conceptually 

driven processing on the one hand and data-driven processing on the other (e.g., Lindsey 

& Norman, 1977; Rumelhart, 1977). The issue of wholistic/analytic processing is 

orthogonal to this latter usage of the terms top-down and bottom-up. For instance, 

whether the processing of the stimulus starts with an analysis of sensory information (i.e., 

bottom-up processing) or with an internal hypothesis that guides processing (i.e., top-

down processing) does not necessarily imply which stimulus aspects will be processed 

first (see also Kimchi & Palmer, 1982; Navon, 1981b; Pomerantz, 1981; Treisman, 1986).  

            In the following, this chapter introduces some modern attempts to grapple with 

the issue of part-whole relationships: configural-superiority (Pomerantz, Sager, & 

Stoever, 1977) and global precedence (Navon, 1977). I begin with the presentation of the 

emergent feature (EF) hypothesis and the odd-quadrant paradigm, followed by a brief 

review of the empirical findings concerning the boundary conditions of the configural-

superiority effect, its source and its concurrent brain localization. The subsequent section 

then focuses on the global-precedence hypothesis and the global/local paradigm that 

typically employs task, which present single hierarchical objects. I then discuss some 

issues concerning the interpretation of the global precedence effect, and also propose 
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visual search and change-detection variants of hierarchical object processing, and devise 

a novel hierarchical stimulus that has representation fidelity in a continuous feature space. 

I close by briefly considering the implications of these novel approaches for the 

understanding the perception of hierarchical structure and/or part-whole relationships in 

object configurations.  

 

Configural superiority 

            Pomerantz et al. (1977) proposed that Emergent features, or EFs are features that 

are possessed by wholes — groups of parts — but not by any individual part nor by any 

single group of parts. Thus, they emerge when parts combine into wholes. Wholes can 

have fewer or more Gestalt qualities because they possess fewer or more EFs. If a set of 

trees is closely spaced, proximity and similarity lead them to be perceptually grouped into 

a whole forest, and that forest has properties (such as density), which is not possessed by 

any individual tree. If the trees are planted into regularly spaced rows, however, they now 

potentially gain EFs such as collinearity and symmetry that go beyond the mere 

clustering of parts into bunches.  

            Only some EFs give rise to configural superiority effects or CSEs (Pomerantz et 

al., 1977), which can be used as an index to indicate when wholes are perceived before 

parts (i.e., when the forest comes before trees). The easiest test for CSEs starts with 

benchmarking performance in a baseline task of localizing a singleton (or an odd-one-out 

element) in a search display, for example, finding a single letter B in a display that 

otherwise consists of As. Then an identical context stimulus, e.g., the letters C, are added 

to each element so the task is now to locate the sole BC in a field of ACs (see Figure 1A). 

Normally, adding identical, noninformative context hurts performance because it makes 
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the stimuli more similar (in addition to increasing overall processing load and possibly 

introducing masking or crowding). This is the case with these letter stimuli: Participants 

take longer to find the BC in a field of ACs than to find the B in a field of As.  

 

 

Figure 1. Panel A shows a schematic of the odd-quadrant discrimination task. Participants 

see either a part or a whole display (the context display is only presented for illustrative 

purpose). In the example, A, B, and C are placeholders for several possible stimuli. Panel 

B shows a corresponding example of a stimulus set that leads to a reliable configural 

superiority effect, whereas panel C illustrates an example that yields a configural 

inferiority effect (adapted from Pomerantz & Portillo, 2011). 
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            With other parts other than A, B, and C, however, the opposite result can arise, 

which constitutes evidence for configural superiority. If diagonal line segments and an L-

shaped corner are used for A, B, and C so that the diagonals combine with the Ls to form 

arrows and triangles, perceivers are more than twice as fast to spot the target (see Figure 

1B). When these same parts are shifted just slightly in position, however, the CSE is lost 

(see Figure 1C).  

            The key factor in obtaining a CSE appears to be the creation of salient, emergent 

features when the context C is added to the base elements A and B. With the arrows and 

triangles of Figure 1B, those EFs appear to be closure, number of terminators, and type of 

intersection. Some of the strongest, most robust CSEs discovered involve topological EFs 

such as presence versus absence of holes, connectivity, and inside–outside relationships 

(Chen, 2005). (For more CSEs and a new framework called the theory of basic Gestalts, 

see Pomerantz & Portillo, 2011.) However, it remains unknown whether CSEs also exist 

for illusory Gestalts such as Kanizsa figures (Kanizsa, 1979), especially when this kind of 

illusory figures serve as the targets or distractors in a visual search array. So whether it is 

distractor inhibition or target facilitation that drives the CSE remains to be tested.  

 

Global precedence 

            Navon’s (1977) global precedence hypothesis states that processing proceeds 

from global structures towards an analysis of local properties. This hypothesis was 

formulated within a framework that views a visual object as represented by a hierarchical 

network with nested relationships. The globality of a visual property corresponds to the 
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level it occupies within the hierarchy: Properties at the top of the hierarchy are more 

global than those at the bottom, which are in turn more local. Consider a face defined by 

the spatial relationship between facial components (e.g., eyes, nose, mouth), which are, in 

turn, defined by relationships among their subparts. The spatial relationship between the 

components is more global than the specific shapes of the components, and in turn, the 

relationship between the subparts of a component is more global than the specific 

properties of the subparts. The global precedence hypothesis claims that the order of 

processing of an object is from global to local: Global properties of a visual object are 

processed first, followed by analysis of local properties. It has been tested with 

hierarchical patterns, in which larger figures are constructed from smaller figures (first 

introduced by Asch, 1962, and later by Kinchla, 1974, 1977). An example is a set of 

hierarchical letters: large letters constructed from the same set of smaller letters having 

either the same identity as the larger letter or a different identity. Hierarchical patterns 

like these satisfy two conditions, which are critical for testing the global precedence 

hypothesis (Navon, 1977): First, the global and local structures can be equated in terms of 

familiarity, complexity, codability, and identifiability, so that they differ only in their 

level of globality; and second, the two structures can be independent, so that one structure 

cannot be predicted from the other.  

            In a popular paradigm, observers are presented with hierarchical stimuli and are 

required to identify the larger (global) or the smaller (local) letter, in separate blocks of 

trials. Findings of global advantage — faster identification of the global letter than the 

local letter and a disruptive influence from irrelevant global conflicting information on 

local identification (global-to-local interference) — are taken as support for global 
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precedence (e.g., Navon, 1977, Experiment 3). Much subsequent research has 

concentrated on delineating the boundary conditions of the global advantage and 

examined whether its locus is perceptual or postperceptual (for reviews, see Kimchi, 

1992; Navon, 2003). Results indicate that several factors can modulate global precedence, 

including overall size, eccentricity, spatial uncertainty, elements’ sparseness, number of 

elements, relative size of elements, figural goodness, exposure duration, and attention 

allocation (Kimchi, 1992). Research indicates that the global advantage — when it occurs 

— arises at the perceptual level, although the effect can be magnified by postperceptual, 

response-related processes (Miller & Navon, 2002). 

            Overall, a global advantage is usually observed with the typical hierarchical 

stimuli used in the global/local paradigm to the limits of visibility and visual acuity. 

Nonetheless, the fact that a global advantage is obtained only under certain conditions 

suggests that global precedence is not a universal law. Two main issues have been raised 

concerning the interpretation of global advantage. One issue concerns the hierarchical 

patterns that are the cornerstone of the global/local paradigm. Hierarchical patterns 

provide an elegant control for many intervening variables while keeping the hierarchical 

structure transparent, but the local elements of the hierarchical patterns do not really form 

the parts of the whole (Kimchi, 1992; Navon, 2003). Furthermore, it has been argued that 

the local elements in the Navon type of hierarchical patterns function merely as 

placeholders (Pomerantz, 1983) or serve just to define texture (Kimchi & Palmer, 1982; 

Pomerantz, 1983; but see Navon, 2003). If so, the local elements may not be represented 

as figural units, and consequently, faster identification of the global form may be 

accounted for not by its level of globality but by a qualitative difference in identification 
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of a figural unit versus a texture element. However, a study on the microgenesis, i.e., the 

development of global precedence over time (Kimchi, 1998) showed with hierarchical 

stimuli in a primed matching paradigm that the global form was primed at rather brief 

exposures, whereas the local elements were primed only at longer exposures, suggesting 

that the global form is effective already early in the perceptual process, followed by the 

subsequent individuation of the local elements.  

            The second issue is that relative size alone rather than globality could explain the 

global advantage (e.g., Kinchla & Wolfe, 1979; Navon & Norman, 1983). Navon (2003) 

argued that globality is inherently confounded with relative size — it is a fact of nature 

that relative size is “an inherent concomitant of part–whole relationship.” This is indeed 

the case if global properties are properties of a higher-level unit. Yet, if global properties 

depend on the relationship between the elements, as the theoretical motivation for the 

global precedence hypothesis implies (e.g., Navon, 1977, 2003), then the essential 

difference between global properties and component properties is not in their relative size 

but their relative position in the object hierarchy. For example, to distinguish the 

“squareness” from its component vertical and horizontal lines or the “faceness” from its 

facial components based only on their relative sizes would miss the point (Kimchi, 1992).  

            The vast majority of results demonstrate that perceptual processing can proceed 

from global structuring towards analysis of local properties under certain conditions 

(hence, global precedence). Further findings also suggest that there are different kinds of 

wholes with different kinds of parts and part–whole relationships. Consider a face with its 

eyes, nose, and mouth, versus a wall of bricks. Both are complex visual objects — 

wholes — but the eyes, nose, and mouth of a face are its parts, whereas the bricks in the 
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wall are mere constituents. It is therefore possible that global precedence characterizes 

the course of processing of some wholes but not of others. Importantly, most of these 

paradigms have presented observers with single hierarchical objects. Accordingly, 

evidence for global precedence in these configurations usually reflects differences in 

processing between the hierarchical levels of a stimulus that is currently in the focus of 

attention. However, global precedence may also, at least partially, occur for non-attended 

objects (Paquet & Merikle, 1988) at preattentive stages of processing (Mattingley, Davis, 

& Driver, 1997; Conci et al., 2009). With multiple hierarchical stimulus configurations – 

as, for example, in visual search or change detection tasks – the question is not whether 

focal attention is set in accordance with the different hierarchical object levels, but 

whether both the guidance of attention and working memory maintenance of preattentive 

object feature are sensitive to differences between global and local representations. 

            Finally, the type of compound letters (Navon, 1977) and composite shapes 

(Kimchi & Palmer, 1982) often used to examine the global/local structure of visual 

perception cannot be used to probe the fidelity of vWM representations because they only 

allow for discrete changes (e.g., from a triangle to a square at either global or local levels). 

It remains to be seen whether this limitation can be overcome with a novel stimulus that 

permits continuous changes to be implemented at both global and local levels. 

 

Overview of the current study 
 

            The aim of dissertation is to determine attention and memory functions reflect our 

structured visual environment. For instance, computer algorithms have provided a useful 

analogy for thinking about cognition, and in the same manner can object or scene 
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structures provide a useful analogy for thinking about the structured representations of 

attention and visual memory. The dissertation builds on the Gestalt tradition that attention 

and (short-term) memory systems are hierarchically organized: it is a hierarchical process 

with a default global state that explains much of its usual work, but which can be 

observed, retained, and adapted by task demands. The default global state of selection 

and maintenance is well described by an evidence accumulation process operating over 

the visual units by means of attention. Structured representations (global/local) in the 

current attentional state can also be transferred in to subsequent instances, such as in 

cross-trial priming, and the underlying dynamics of attention and implicit short-term 

memory are dissociable or independent from each other. Visual memories can be 

observed through global/local object structure, a maintenance process that tracks the 

structure of a memorandum as it is no longer available in visual space. And the default 

memory state can be controlled and adapted by task demands, which reflects flexible 

maintenance in accordance with the task goals. 

            The experiments presented in the following four chapters of this cumulative 

dissertation describe a series of empirical studies that used reaction time (RT) and 

psychophysical methods along with modeling approaches to investigate how structured 

representations are reflected in higher order cognitive processes.  

            Chapter 2 describes an experimental study that was designed to address how 

grouping by closure in target and distractor objects influences the configural superiority 

effect (CSE, Pomerantz & Portillo, 2011). We employed a visual search task with 

Kanizsa-type figure layouts that contained object parts or corresponding wholes. Our 

results replicated the typical pattern of a CSE, with detection of a configural whole being 
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more efficient than detection of a corresponding part-level target. Moreover, we found in 

two experiments a much more pronounced CSE and enhanced processing of configural 

objects when grouping by closure was presented in distractors rather than in the target. 

This suggests that object integration is not per se modulated by a more efficient 

detectability of a grouped target, but rather that grouping operations primarily affect the 

inhibition of distractor configurations. Additional drift-diffusion model analyses of our 

data revealed that efficient distractor inhibition and closure in particular expedite the rate 

of evidence accumulation. Altogether, these results suggest that the configural superiority 

effect is governed by the inhibition of distractor configurations. 

            Next, Chapter 3 of this thesis presents a set of four experiments, designed to 

address how the global/local structure of objects affects both mechanisms of attentional 

selection and (implicit) short-term memory. To this end, we again employed a visual 

search paradigm with hierarchical Navon letters as targets and nontargets. A series of 

analyses were specifically dedicated to isolate critical stages in global/local object 

processing. Our findings depict a robust global precedence effect that manifested in 

overall faster RTs and shallower RT/set size functions for global, as compared to local, 

target search, showing that the preattentive guidance of attention is biased towards global 

levels. Interestingly, short-term memory as measured via intertrial priming also revealed 

a strong global-level bias, which could be specifically attributed to the allocation of focal 

attention to the target for its identification, that is, a tentative mechanism to match the 

selected object with a memorized target template. We further demonstrate that these 

results cannot be explained by differences in object size and crowding strength between 

global and local targets. Additional experiments addressed the stability of the global 



 17 

precedence effect, showing that long-term environmental contingencies (e.g., given 

prevalent local targets) cannot revert the global bias to effectively search for frequent 

local targets, suggesting that global precedence overall occurs rather automatically. 

Moreover, when varying global/local target prevalence throughout the experiment, 

attentional selection was dynamically adjusted according to the prevailing target level, 

but priming remained stable, indicating that attention and (short-term) memory sources of 

global/local processing are linked yet show dissociable underlying dynamics. 

            Chapter 4, then continues to describe a series of four experiments, designed to 

address how the hierarchical structure of objects is represented in visual working memory. 

We employed a change detection paradigm with hierarchical (global/local) shapes. Our 

findings depict a robust advantage in detecting a global-level change over local-level 

changes. Interestingly, when the similarity between individual objects was systematically 

varied at a global or a local level, performance of both global and local change detections 

declined only for globally similar objects, but not for locally similar objects, 

demonstrating that global ensemble (i.e., summary) representations influence mnemonic 

precision. Moreover, this global precedence effect in memory was found not to be 

modulated by variations of the encoding durations and mostly cannot be explained by 

saliency differences between global and local object levels, suggesting that the effect 

arises primarily during the retention phase, i.e., it is independent from stimulus 

processing. 

            Finally, Chapter 5 reports an experimental study that investigated how 

hierarchical object structure is represented in visual working memory (vWM), and 

whether these structured representations adapt to varying task demands. To this end, we 
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developed a novel hierarchical, textured stimulus with global and local orientations, and 

applied it to both change-detection and continuous-report tasks. Overall, our findings 

revealed a reliable benefit in storing global object levels in vWM. Moreover, we found a 

consistent influence of task demands on these structured representations. Specifically, 

global precedence was reduced when the orientation change magnitudes to be detected (at 

both hierarchical levels) were small as compared to when they were large. Furthermore, 

when observers were asked to report the exact global/local orientation (requiring high 

fidelity at both levels), the emphasis on mnemonic precision actually engendered a 

reversal of global into local precedence – indicating that a local bias can manifest when 

detailed information is required to be retained.  

            In summary, this dissertation poses that structured representations govern 

selective attention and visual working memory, suggesting that both systems are 

hierarchically organized (Brady, Konkle, & Alvarez, 2011; Nie, Müller, & Conci, 2017). 

In this light, issues in selective attention and working memory are seen as that of 

attending and remembering information in hierarchically structured visual environments, 

maintaining relevant objects in a visual scene over an immediate duration, and then later 

selecting and accessing the specific object level in order to perform a given task. This 

dissertation combines the cognitive psychology and computational approaches to explore 

the rules by which hierarchical attention and memory systems operate. It entails 

considering the space of selection and maintenance strategies and how that space is 

constrained by experiments on the default state, structure, and operation principles of 

selective and internal attention. One such constraint is global/local object structure. 

 
 



 19 

References 
 
Asch, S. E. (1962). A problem in the theory of associations. Psychologische Beiträge, 6, 

553–563. 
 
Beck, J. (1982). Textural segmentation. In J. Beck (Ed.), Organization and 

representation in perception (pp 285-317). Hillsdale, NJ: Erlbaum. 
 
Boff, K. R., Kaufman, L., & Thomas, J. P. (Eds.). (1986). Handbook of perception and 

human performance (Vol. 2). New York: Wiley. 
 
Brady, T. F., Konkle, T., & Alvarez, G. A. (2011). A review of visual memory capacity: 

Beyond individual items and toward structured representations. Journal of Vision, 
11(5), 4-4. 

 
Chen, L. (2005). The topological approach to perceptual organization. Visual Cognition, 

12, 553–637. 
 
Conci, M., Böbel, E., Matthias, E., Keller, I., Müller, H. J., & Finke, K. (2009). 

Preattentive surface and contour grouping in Kanizsa figures: Evidence from 
parietal extinction. Neuropsychologia, 47(3), 726-732. 

 
Ehrenfels, C. von. (1890). Ober Gestaltqualitaten [On Gestaltqualitaten]. 

Vieneljahrschrift fuer Wissenchaftliche Philosophic, 14, 249-292. 
 
Gopher, D., & Kimchi, R. (1989). Engineering psychology. Annual Review of 

Psychology, 40, 431-455. 
 
Kanizsa, G. (1979). Organization in vision: Essays on Gestalt psychology. New York, 

NY: Praeger Publishers. 
 
Kimchi, R. (1992). Primacy of wholistic processing and global/local paradigm: A critical 

review. Psychological Bulletin, 112, 24–38. 
 
Kimchi, R. (1998). Uniform connectedness and grouping in the perceptual organization 

of hierarchical patterns. Journal of Experimental Psychology: Human Perception 
and Performance, 24, 1105–1118. 

 
Kimchi, R., & Palmer, S. E. (1982). Form and texture in hierarchically constructed 

patterns. Journal of Experimental Psychology: Human Perception and 
Performance, 8, 521-535. 

 
Kinchla, R. A. (1974). Detecting target elements in multi-element arrays: A confusability 

model. Perception & Psychophysics, 15, 149–158. 
 



 20 

Kinchla, R. A. (1977). The role of structural redundancy in the perception of visual 
targets. Perception & Psychophysics, 22, 19–30. 

 
Kinchla, R. A., Solis-Macias, V, & Hoffman, J. (1983). Attending to different levels of 

structure in a visual image. Perception and Psychophysics, 33,1-10. 
 
Kinchla, R. A, & Wolfe, J. M. (1979). The order of visual processing: "Top down," 

"bottom up" or "middle-out." Perception and Psychophysics, 25, 225-231. 
 
Koffka, K. (1963). Principles of Gestalt psychology. New York: Harcourt, Brace & 

World.  
 
Kohler, W (1929). Gestalt psychology. New York: Liveright. 
 
Kohler, W (1971). Human perception. In M. Henle (Ed. and Trans.), The selected papers 

of Wolfgang Kohler (pp. 142-167). New York: Liveright.  
 
Kubovy, M., & Pomerantz, J. R. (Eds.). (1981). Perceptual organization. Hillsdale, NJ: 

Erlbaum. 
 
Lindsey, P. H., & Norman, D. A. (1977). Human information processing. San Diego, 

CA: Academic Press. 
 
Mattingley, J. B., Davis, G., & Driver, J. (1997). Preattentive filling-in of visual surfaces 

in parietal extinction. Science, 275(5300), 671-674. 
 
Miller, J. and Navon, D. (2002). Global precedence and response activation: evidence 

from LRPs. The Quarterly Journal of Experimental Psychology: A, Human 
Experimental Psychology, 55(1), 289–310. 

 
Navon, D. (1977). Forest before trees: The precedence of global features in visual 

perception. Cognitive Psychology, 9, 353–383. 
 
Navon, D. (1981). The forest revisited: More on global precedence. Psychological 

Research, 43, 1-32. 
 
Navon, D. (2003). What does a compound letter tell the psychologist’s mind? Acta 

Psychologica, 114, 273–309. 
 
Navon, D., & Norman, J. (1983). Does global precedence really depend on visual angle? 

Journal of Experimental Psychology: Human Perception and Performance, 9, 
955–965. 

 
Nie, Q.-Y., Müller, H. J., & Conci, M. (2017). Hierarchical organization in visual 

working memory: From global ensemble to individual object structure. Cognition, 
159, 85-96. 



 21 

 
Paquet, L., & Merikle, P. M. (1988). Global precedence in attended and nonattended 

objects. Journal of Experimental Psychology: Human Perception and 
Performance, 14(1), 89-100. 

 
Pomerantz, J. R. (1981). Perceptual organization in information processing. In M. 

Kubovy & J. R. Pomerantz (Eds.), Perceptual organization (pp. 141-179). 
Hillsdale, NJ: Erlbaum. 

 
Pomerantz, J. R. (1983). Global and local precedence: Selective attention in form and 

motion perception. Journal of Experimental Psychology: General, 112, 516–540. 
 
Pomerantz, J. R., & Portillo, M. C. (2011). Grouping and emergent features in vision: 

Toward a theory of basic Gestalts. Journal of Experimental Psychology: Human 
Perception and Performance, 37, 1331–1349. 

 
Pomerantz, J. R., Sager, L. C., & Stoever, R. J. (1977). Perception of wholes and their 

component parts: Some configural superiority effects. Journal of Experimental 
Psychology: Human Perception and Performance, 3, 422-435. 

 
Shepp, B. E., & Ballesteros, S. (Eds.). (1989). Object perception: Structure & process. 

Hillsdale, NJ: Erlbaum. 
 
Rumelhart, D. E. (1977). Introduction to human information processing. New York: 

Wiley. 
 
Titchener, E. (1909). Experimental psychology of the thought process. New York: 

Macmillan. 
 
Treisman, A. (1986). Properties, parts, and objects. In K.. R. Boff, L. Kaufman, & J. P. 

Thomas (Eds.), Handbook of perception and human performance (Vol. 2, pp. 
35:1-70). New York: Wiley. 

 
Uttal, W R. (1988). On seeing forms. Hillsdale: NJ: Erlbaum. 
 
Wertheimer, M. (1967). Gestalt theory. In W D. Ellis (Ed.), A source book of Gestalt 

psychology (pp. 1-11). New York: Humanities Press. 
 
Wundt, W (1874). Grundzuge der physiologischen psychologie [Principles of 

Physiological Psychology]. Leipzig, Germany: Engelmann. 
 
 

 
 
 
 
 



 22 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Chapter II 

 

 

Inhibition drives configural superiority of illusory Gestalt:  

Combined behavioral and drift-diffusion model evidence  

 

 

 

 

 

 
 



 23 

Abstract 

Illusory Kanizsa figures demonstrate that a perceptually completed whole is more 

than the sum of its composite parts. In the current study, we explored part/whole 

relationships in object completion using the configural superiority effect (CSE) with 

illusory figures (Pomerantz & Portillo, 2011). In particular, we investigated to which 

extent the CSE is modulated by closure in target and distractor configurations. Our results 

demonstrated a typical CSE, with detection of a configural whole being more efficient 

than the detection of a corresponding part-level target. Moreover, the CSE was more 

pronounced when grouped objects were presented in distractors rather than in the target. 

A follow-up experiment systematically manipulated closure in whole target or, 

respectively, distractor configurations. The results revealed the effect of closure to be 

again stronger in distractor, rather than in target configurations, suggesting that closure 

primarily affects the inhibition of distractors, and to a lesser extent the selection of the 

target. In addition, a drift-diffusion model analysis of our data revealed that efficient 

distractor inhibition expedites the rate of evidence accumulation, with closure in 

distractors particularly speeding the drift towards the decision boundary. In sum, our 

findings demonstrate that the CSE in Kanizsa figures derives primarily from the 

inhibition of closed distractor objects, rather than being driven by a conspicuous target 

configuration. Altogether, these results support a fundamental role of inhibition in driving 

configural superiority effects in visual search. 
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Introduction 

Whilst part of what we perceive comes through our sense from the object before us, 

another part (and it may be the larger part) always comes out of our own head.  

 -- William James (1890, p. 103) 

Understanding how the retinal images of our complex visual world are translated 

into integrated and coherent object representations was recognized as a central challenge 

by Gestalt theory (Wertheimer, 1912). A major question in this context is how the visual 

system combines fragments into wholes despite adverse luminance gradients and partial 

occlusions of the underlying scene structure. Solving this problem, by means of 

perceptual organization, is a fundamental function of the visual system. A number of 

‘laws’ have been proposed describing the organizational (‘grouping’) principles based on 

which the visual system structures our environment, including grouping based on 

proximity, closure, and symmetry (Wagemans, Elder, et al., 2012a). 

Empirical research has shown that the laws of grouping as described initially on 

the basis of phenomenological observations are essential for object recognition (Lowe, 

1987). For example, parsing retinal images through mechanisms of perceptual 

organization may result in ordered scene representations where fragments are assigned 

unambiguously to a given object and each object can be segregated from elements that 

belong to other objects and the background. Such structured representations are achieved 

even when distinctive and continuous borders between objects are lacking. For instance, 

‘Kanizsa figures’, such as the Kanisza square depicted in Figure 1C, demonstrate that 

mechanisms of visual completion can give rise to the impression of an illusory object – 

that is, in the example, a relatively bright central square with sharp boundaries emerges 
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that appears to occlude the (adjacent) circular inducer elements (Kanizsa, 1955) – even 

though this percept has no direct physical correspondence in the retinal image (Murray & 

Herrmann, 2013, for a review). Original Gestalt theory claimed that closure, rather than 

just being a cue for grouping, is a major determinant of what constitutes a complete form 

(Koffka, 1935). More recently, Elder and Zucker (1993, 1994) proposed that the most 

important role of closure may be to relate a 1-D contour to a corresponding 2-D shape – 

which was supported by the finding that small changes in closure can yield large changes 

in shape discriminability. In this view, emergent properties of illusory figures may reflect 

the degree to which grouping by closure yields a global form (Wagemans et al., 2012a; 

Kogo, Strecha, Van Gool, & Wagemans, 2010; Kogo & Wagemans, 2013). It should be 

noted that in the example of the Kanizsa square, the closed shape is not part of the actual 

(physical) stimulus arrangement, but is rather attributed to the emergent, illusory square – 

that is, it actually constitutes some form of “implied closure”. Figure 1 illustrates that 

implied closure of the emergent figure can be varied systematically by changing the 

configuration of the pacman inducers. Moreover, along with an increase in closure (from 

Figure 1A to 1C), the emergent shape exhibits a concurrent increase in the extent to 

which precise bounding contours are perceived based on grouping by collinearity. 
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Figure 1. Implied closure in emergent shape configurations. Panels A to C illustrate that a 

systematic (i.e., inward facing) arrangement of pacman inducers can modify the amount 

of closure in the emergent (illusory) figure until a ‘complete’ Kanizsa square (C) is 

rendered. Each stimulus configuration shows an arrangement of inducers (top) together 

with a schematic illustration of the corresponding emergent shape representation (bottom). 

 

            Despite the complex percepts that arise from illusory figures, arguably, such 

integrated objects are nevertheless rendered by preattentive coding mechanisms (Davis & 

Driver, 1994; see also Gurnsey, Humphrey, & Kapitan, 1992). For instance, Davis and 

Driver (1994) used a visual search task with a Kanizsa square as the target and 

comparable configurations (that did not give rise to an illusory figure) as nontargets. 

Davis and Driver found that search for an illusory target figure could be performed 

‘efficiently’, that is, the reaction times (RTs) taken to respond to the presence of the 

target were independent of the number of configurations presented in the search display 

(the ‘display size’). Subsequent studies, by Conci and colleagues (Conci, Gramann, 

Müller, & Elliott, 2006; Conci, Müller, & Elliott, 2007a, 2007b; Conci, Töllner, 

Leszczynski, & Müller, 2011), showed efficient search for illusory figures to primarily 
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rely on grouping by closure; that is, search efficiency, reflecting how readily focal 

attention is allocated to the target, was primarily determined by the degree of closure 

provided in the target and distractor configurations. By contrast, search efficiency was 

found to be unrelated to the contour information, that is, the degree to which emergent 

shapes are constructed on the basis of grouping by collinearity (Conci et al., 2006, 2007a, 

2009; Donnelly, Humphreys, & Riddoch, 1991). Thus, converging evidence from studies 

that employed Kanizsa-type stimuli suggests that closed object configurations are 

particularly effective in guiding search at preattentive stages of processing (Conci et al., 

2011; Conci et al., 2009; Stanley & Rubin, 2005).  

A related paradigm designed to examine the effectiveness of the emergent 

properties of grouping was introduced by Pomerantz and colleagues (Eidels, Townsend, 

& Pomerantz, 2008; Pomerantz, 2003; Pomerantz & Portillo, 2011; Pomerantz & 

Pristach, 1989; Pomerantz, Sager, & Stoever, 1977; Wagemans, Feldman, et al., 2012b). 

Their ‘Configural Superiority Effect’ (CSE) typically shows that RTs to localize a target 

amongst distractors can be significantly faster when ‘irrelevant’ context parts are added 

to an item so as to elicit the percept of a complete figure. Figure 2A illustrates a 

schematic example of the odd-quadrant task typically employed to investigate the CSE. 

Participants are asked to determine which one of four presented elements is different 

(e.g., element B) from the other, homogenous distractors (e.g., element A). Then, an 

additional, ‘task-irrelevant’ context item (e.g., element C) is added to all objects, now 

producing novel stimulus pairs (e.g., BC and AC). While this irrelevant context C does 

not convey any task-relevant information per se, in certain cases, stimuli will group 

together to form a perceptual ‘Gestalt’ – with one such configuration providing salient 
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information as to what constitutes the target, thus producing a CSE (see Figure 2B for a 

typical example). For such configurations, detection (and localization) of the novel, 

composite target becomes significantly easier (relative to the non-composite target), as 

evidenced by faster RTs and increased accuracy.  

 

Figure 2. Panel A shows a schematic of the odd-quadrant discrimination task. Participants 

see either a part or a whole display (the context display is only presented for illustrative 

purpose). In the example, A, B, and C are placeholders for several possible stimuli. Panel 

B shows a corresponding example of a stimulus set that leads to a reliable configural 

superiority effect, whereas panel C illustrates an example that yields a configural 

inferiority effect (adapted from Pomerantz & Portillo, 2011). 
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The CSE has been used to illustrate the major role of perceptual grouping for the 

extraction of basic ‘Gestalts’, or emergent features (Pomerantz & Portillo, 2011). CSEs 

have been reported for a variety of stimulus configurations. In one prototypical case, 

additional pacman inducers were presented that, in this variant, combined to form a non-

square whole (target) amongst Kanizsa square (distractor) configurations, relative to a 

part condition that presented incomplete objects consisting of only two pacman inducers 

(see Figure 3B). In general agreement with the findings from visual search paradigms 

(Davis & Driver, 1994), presentation of whole Kanizsa figures led to a reliable CSE. In 

many other cases, though, adding contextual information dilutes the differences between 

the two elements A and B, making it harder to discern the presence of the composite 

stimulus BC amongst stimuli AC, as compared to discerning stimulus B amongst stimuli 

A alone. Moreover, adding a context may also increase the total processing load, as well 

as increasing the chances of ‘crowding’, or observers may tend to attend to the wrong 

element (Pomerantz et al., 1977). This is referred to as ‘Configural Inferiority Effect’ 

(CIE; see Figure 2C for an example), because the composite (whole) is significantly 

harder to discriminate than the corresponding part elements.   

Consistent with the behavioral evidence on the CSE, a recent fMRI study suggests 

that the ventral visual pathway, in particular the Lateral Occipital Complex (LOC), is 

involved in the configural processing of emergent features (Kubilius, Wagemans, & Op 

de Beeck, 2011). Using a localization task (see Figure 2B), this study showed that 

decoding of neuronal responses in LOC, but not in the primary visual cortex (V1), was 

better able to predict the location of the odd item when processing wholes, whereas area 
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V1 (but not LOC) was a better predictor of the position of the odd element when 

processing parts. This pattern supports the idea that Gestalt configurations may emerge at 

a relatively higher level of visual processing, with the processing of parts and wholes 

being related to distinct areas, or stages, in the visual processing hierarchy.  

The aim of the present study was to further explore the crucial processes that 

determine the CSE. For instance, reliable CSEs have been reported for a variety of 

stimulus configurations, thus providing evidence for the idea that perceptual grouping 

generates emergent features that allow for an efficient extraction of a given target 

configuration. However, these studies have – to our knowledge – not investigated in 

detail whether the detection of a configural target is enhanced because of emergent 

properties of the target (thus facilitating target detection), or due to emergent features in 

distractors (i.e., permitting more efficient distractor suppression). On the basis of these 

considerations, we set out to specifically test and compare how grouping in targets and 

distractors modulates the CSE. 

To this end, Experiment 1 employed a variant of a CSE paradigm presenting 

circular pacman inducer elements that potentially combine to form an illusory Kanizsa 

figure (i.e., Pomerantz & Portillo, 2011). The experiment consisted of two task sessions: 

observers were required to detect either a closed target among open nontargets (Figure 

3A) or an open target among closed nontargets (Figure 3B). Importantly, the target could 

be presented within either a ‘Part’ or a ‘Whole’ display (Figure 3, left and right panels, 

respectively). Comparisons of the two possible target configurations permit us to examine 

whether the CSE with illusory figures can be related to grouping by closure in targets 

and/or distractors (Figures 3A and 3B, respectively). Next, to further disentangle 
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grouping by closure in either targets or distractors, Experiment 2 introduced separate 

experimental parts that independently manipulated the degree of closure in distractors or, 

respectivley, in the target (while keeping the target or, respectively, the distractors 

constant, see Figure 7). This approach allowed examination for the separate, independent 

contributions of closed configurations in targets and distractors.  

Moreover, while previous behavioral studies reported reliable RT effects, it is not 

clear at which functional level of processing the CSE emerges – that is, whether the CSE 

can be related to basic levels of information processing or to higher-level, decisional 

stages. For instance, CSE differences across conditions may reflect differences in the rate 

at which stimulus information is accumulated (the so-called ‘drift rate’), the amount of 

decisional information required to provide a response (i.e., ‘boundary separation’), or 

other nondecisional factors that influence the response, in particular initial sensory 

processing (‘non-decision time’; see Ratcliff & McKoon, 2008). To our knowledge, there 

have been no attempts to model perceptual grouping by means of such a diffusion-type 

modeling approach. Thus, to examine such latent processing stages, we applied a model 

fitting procedure to the behavioral data using the Hierarchical Drift-Diffusion Model 

(HDDM; Wiecki, Sofer, & Frank, 2013), which incorporates an estimation of these 

parameters, in addition to the conventional response latency and accuracy measures. 

To preview our main findings, both experiments consistently revealed that the 

CSE or search for a configural (Kanizsa-type) target are primarily determined by 

grouping by closure in distractors, but not in the target configuration. This suggests that 

closed shapes can be more readily rejected (as a result, the target is detected more 

efficiently). Our modeling results further reveal that this effect of closure in distractors is 
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reflected in the drift rates, that is, faster rates of evidence accumulation to reach a given 

decision when distractor shapes are bound to a coherent (closed) object. In this view, the 

CSE is determined by the inhibition of to-be-rejected distractor configurations. 

 

EXPERIMENT 1 

Experiment 1 investigated object grouping, that is, grouping by closure in target 

and distractor configurations, using a visual search task with Kanizsa-type configurations 

(see Figure 1 for examples, and Pomerantz & Portillo, 2011). The target configuration 

could be presented either as a whole or as a part configuration (see Figure 3, left and right 

panels, respectively). Two conditions presented either a closed target among open 

distractors, or, conversely, an open target among closed distractors (Figure 3, panels A 

and B, respectively). Differences between targets and distractors were kept constant 

across wholes and parts such that a given target would always yield an identical feature 

contrast value relative to the distractors1. On the basis of previous findings, we expected 

faster RTs to whole as compared to part configurations, which would be indicative of a 

CSE (Pomerantz et al., 1977; Pomerantz & Portillo, 2011). 

 

                                                
1 The stimulus set used in both experiments was carefully controlled in terms of the 
similarity relations between target and distractors. Nevertheless, it remains possible that 
some subjective components of similarity (cf., Hout et al., 2016) were not captured by 
our control of the stimulus parameters. 
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Figure 3. Example search displays in Experiment 1. (A) In the closed target condition, a 

closed target was presented among open distractors. (B) In the open target condition, the 

assignment of targets and distractors was reversed. Both open and closed targets 

conditions were presented either as part or as whole displays. Whole displays combined 

the part display with a non-informative context display, to reveal complete configurations 

that typically yield a configural superiority effect. 

 

Methods 

Participants. Fourteen right-handed observers (10 female; age range: 21 to 28 

years; mean age: 23.6 years) with normal or corrected-to-normal visual acuity 

participated in the experiment, receiving course credits or payment of 8 Euro per hour. 

Participants provided written consent to the procedure of the experiment, which was 
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approved by the ethics committee of the Department of Psychology at LMU München, in 

accordance with the Declaration of Helsinki. 

Apparatus and Stimuli. The experiment was conducted on a PC-compatible 

computer (Dell Inc., Texas, USA) using Matlab routines and Psychophysics Toolbox 

extensions (Brainard, 1997; Pelli, 1997). Stimuli were presented on a 22” LCD monitor 

screen placed at a viewing distance of approximately 57 cm. Stimuli were presented in 

light gray (8.5 cd/m2) against a black (0.02 cd/m2) background. On each trial, four 

configurations were placed within the quadrants of the screen, 6° from the screen center. 

Each configuration subtended 2.8° x 2.8° of visual angle and was composed of two or 

four pacman inducers, with a diameter of 0.93° each.  

Configurations could be presented as ‘parts’ or ‘wholes’, presenting two or four 

pacman inducers, respectively. Part configurations presented two pacmen aligned along 

an imaginary diagonal line across the quadrant (see Figure 3, left panels). Left- or 

rightward tilt of the diagonal was chosen randomly for a given trial, though with each 

display presenting all objects in uniform orientation (i.e., for a given display all 

distractors were identical). Whole configurations presented four pacmen arranged in 

square form (see Figure 3, right panels). Configurations with pacman inducers rotated 

such that all indented segments faced the center of the configuration are referred to as 

‘closed’; by contrast, when two pacmen faced outwards, the resulting configurations are 

referred to as ‘open’.  

Within a given trial, only whole or only part configurations were displayed. Two 

types of trials were possible: On target-present trials, one target configuration was 

presented among three distractor configurations, with either a closed target among open 
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distractors, or an open target among closed distractors. On target-absent trials, all four 

configurations on a given trial were identical. Figure 3 presents examples of target-

present displays. The figure illustrates how whole configurations were created by 

combining a given part display with an additional, ‘uninformative’ context display. 

Design. A three-factors within-subjects design was used. The independent 

variables were target presence, configuration, and target closure. Target presence had two 

levels: target present and target absent. For target-present trials, there was always one 

configuration that differed from the other three, whereas for target-absent trials, all four 

configurations were the same. Targets appeared with equal probability at the four 

possible display locations, with target location varying randomly across trials. The 

second variable, configuration, also had two levels: whole and part, denoting whether a 

given display consisted of stimulus arrangements made up of four or two pacman 

inducers, respectively (see Figure 2 and the descriptions above for further details). The 

third variable, target closure, again had two levels: closed and open (see Figure 3A and 

3B, respectively), denoting whether a given target could be grouped to form a closed 

shape or not. Closed targets were presented with open distractors, and open targets with 

closed distractors. 

Procedure. Participants were comfortably seated in a dimly lit, sound-attenuated 

room. The experiment was divided into two consecutive sessions that either presented 

closed or open targets (with order of presentation counterbalanced across observers). 

Each session started with 48 practice trials for participants to become familiar with the 

task. Then, in each session, 256 experimental trials were presented in four blocks of 64 
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trials each, with randomized order of the factors target presence and configuration. There 

were 64 trials for each factorial combination. 

Each trial started with the presentation of a central fixation cross for 500 ms. 

Subsequently, a search display was presented until the observer’s response. Participants 

responded with a speeded target-present versus target-absent response via mouse keys2. 

The response mapping (i.e., left/right-hand responses to target presence/absence) was 

counterbalanced across participants. In case of an erroneous response, feedback was 

provided by an alerting message (a red minus sign) that was presented for 1000 ms in the 

center of the screen. Each trial was separated from the next by an interval of 500 ms, 

presenting a blank screen.  

Results 

Response accuracy. Overall, performance was very accurate, with an average of 

94% correct responses. Figure 4A depicts the accuracy data (percentage of correct 

responses), which were examined by a 2x2x2 repeated-measures analysis of variance 

(ANOVA) with the factors target presence (present, absent), configuration (whole, part), 

and target closure (closed, open). We additionally report the estimated Bayes factor (BF) 

for all significant results, as revealed by a comparable Bayesian ANOVA using JASP 

(Love et al., 2015). The Bayes factor gives the ratio with which the alternative hypothesis 

is favored over the null hypothesis (i.e., larger BFs argue in favor of the alternative 

hypothesis; see Dienes, 2011, for an overview). The accuracy ANOVA revealed the main 

                                                
2 It should be noted that CSE tasks usually employ a quadrant localization task 
(Pomerantz et al., 1977) whereas here we used a detection task. This slight change of the 
paradigm was implemented in order to apply diffusion modeling to the data (which 
requires two response alternatives). However, both types of task are usually highly 
comparable (e.g., Green 1992). 
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effects of both configuration (wholes vs. parts: 95% vs. 92%, F(1,13) = 5.38, p = .037, η2 

= .29, BF = 3.09) and target closure (closed vs. open: 92% vs. 95%, F(1,13) = 18.64, p < 

.001, η2 = .59, BF = 3.22) to be significant. Importantly, the two-way interaction between 

configuration and target closure was also significant, F(1,13) = 11.26, p = .005, η2 = .46, 

BF = 5.51. Post-hoc comparisons revealed a CSE in accuracy: there was a reliable 

difference in response accuracy only for open targets (5.5%; t(13) = 3.8, p = .002, d = 

1.01, BF = 19.7), but not for the closed targets (-0.3%, t(13) = -.47, p = .65, d = -0.13, BF 

= 0.3). Neither the main effect of nor any interactions involving the factor target presence 

were significant (all ps > .4, η2s < .05, BFs < 0.3). This pattern of results suggests that a 

CSE in accuracy was evident only for open targets (among closed distractors), without a 

comparable facilitatory effect for closed targets (among open distractors). Moreover, the 

CSE in accuracy was found to be independent of target presence. 

Reaction times. Mean RTs for each observer were calculated excluding error 

responses and RTs deviating by more than three standard deviations from the mean of 

each condition. 7.7% of all trials, on average, were excluded by this outlier criterion 

(Experiment 2 yielded comparable exclusion rates). Mean RTs were again entered in a 

2x2x2 repeated-measures ANOVA with the factors target presence (present, absent), 

configuration (whole, part), and target closure (closed, open). Figure 4B depicts the RT 

results. The analysis revealed both the main effect of configuration (wholes vs. parts: 

1119 vs. 1325 ms, F(1,13) = 21.82, p < .001, η2 = .62, BF = 3.84×1010) and that of target 

closure (closed vs. open: 1371 vs. 1078 ms, F(1,13) = 48.4, p < .001, η2 = .79, BF = 

3.15×104) to be significant. Moreover, a significant interaction between target closure and 

configuration was again found (F(1,13) = 13.05, p = .003, η2 = .5, BF = 20.28). This 
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interaction was owing to a reliable CSE, of 285 ms, for open targets (presented among 

closed distractors), t(13) = -7.65, p < .001, d = -2.05, BF = 5431.4. By contrast, for closed 

targets (presented among open distractors), the CSE (of 108 ms) was not significant, t(13) 

= -1.48, p = .16, d = -0.4, BF = 0.66. Again, there was no main or interaction effect that 

involved target presence (all ps > .48, η2s < .04, BFs < 0.16), mirroring the pattern in the 

accuracy data. This pattern of results shows, as above, that the CSE was particularly 

pronounced for closed distractors, without any substantial contribution arising from target 

presence and/or target closure. 

 

Figure 4. Mean accuracy (A) and mean RTs (B) in Experiment 1 presented as a function 

of target closure (closed vs. open) for the factorial combinations of configuration (whole, 

part) and target presence (present, absent). The error bars represent ±1 standard error of 

the mean.  

 

Hierarchical Drift-Diffusion Modeling  

In a subsequent step, a drift-diffusion modeling approach was applied to further 

demarcate task-critical stages determining the CSE. We used the Hierarchical Drift-
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Diffusion Modeling approach (HDDM; Wiecki et al., 2013) to (i) apply a model fitting 

procedure and (ii) extract model parameters of the best-fitting model for further analysis. 

Theoretically, the diffusion model specifies decision processes with two possible 

outcomes (e.g., deciding between target presence and absence) as being inherently noisy, 

with information being accumulated over time. It permits the extraction of three 

parameters relating to, respectively: (1) information accumulation, which can be 

interpreted as a general measure of sensivity to the relevant configurations (the ‘drift rate’ 

parameter, v); (2) a decision threshold reflecting the amount of information required to 

trigger the corresponding response (the ‘boundary separation’ parameter, a); and (3) a 

mean ‘non-decision’ time parameter (Ter), which refers to the time taken by the sensory 

encoding of the information plus the time required for executing the motor response 

(Ratcliff & McKoon, 2008). It should be noted that motor responses can be assumed to 

reflect a constant process on all types of trials (as they are issued on every single trial); 

accordingly, potential differences in non-decision times could be taken to reflect 

exclusively the stage(s) of initial sensory processing.  

HDDM constitutes a recently developed hierarchical Bayesian estimation of drift-

diffusion parameters based on the RT distributions of both correct and incorrect 

responses, allowing for a simultaneous extraction of individual and group parameters. 

Fits to individual participants are constrained by the group distribution but can deviate 

from this distribution to a certain extent reflecting individual variability. To compare 

choice RTs in the CSE, eight different models were investigated, where the three 

parameters of interest (v, a, Ter) were either fixed or allowed to vary across the eight 

model variants (Table 1). For each model, there were 20,000 samples generated from the 
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posterior probabilities, where the first 2000 samples were discarded. Of the remaining 

18,000 samples, every fifth sample was saved, resulting in a trace of 3600 samples. The 

best model to describe the data across the eight conditions was selected on the basis of 

the deviance information criterion (DIC; Spiegelhalter, Best, Carlin, & van der Linde, 

2002), reflecting the best trade-off between the quality of fit and model complexity. To 

evaluate model performance, posterior predictives generated by the winning model were 

plotted on top of the observed correct and incorrect RT distributions for each participant. 

Figure 5 represents an example of one representative participant. 

As depicted in Table 1, this model selection procedure showed the best fit when 

all three parameters (drift rate v, boundary separation a, nondecision time Ter) were 

allowed to vary (model 1, printed in bold), corresponding to a full drift-diffusion model. 

Next, each parameter of this best fitting model was then entered into a 2x2x2 repeated-

measures ANOVA with the factors target presence, configuration, and target closure, as 

for the above analyses.  

 

Table 1. Model Selection with HDDM in Experiment 1. A lower value of the deviance 

information criterion (DIC) indicates a better balance between model fit and complexity. 

v = drift rate; a = boundary; Ter = nondecision time. 

Model Free to vary DIC 
1 v, a, Ter 7074.9 
2 v, Ter 7308.8 
3 v, a 7422.5 
4 a, Ter 7555.0 
5 Ter 8009.6 
6 a 8104.4 
7 v 8281.5 
8 Fix all 10766.3 
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First, analysis of the drift rates revealed significant main effects for configuration 

(wholes vs. parts: 2.15 vs. 1.71, F(1,13) = 17.09, p = .001, η2 = .57, BF = 1.61×1014) and 

target closure (closed vs. open: 1.61 vs. 2.27, F(1,13) = 153.4, p < .001, η2 = .92, BF = 

4.6×109). These main effects indicate that the rate of evidence accumulation was faster 

for wholes relative to parts, and for open relative to closed targets. There was also a 

configuration by target closure interaction (F(1,13) = 82.21, p < .001, η2 = .86, BF = 

2.78×107). Post-hoc paired t-tests showed the CSE to be significant only for open targets 

(t(13) = 9.78, p < .001, d = 2.61, BF = 6.42×104; whole vs. part: 2.77 vs. 1.77), but not for 

closed targets (t(13) = -0.88, p = .4, d = -0.24, BF = 0.38; whole vs. part: 1.53 vs. 1.65). 

As can be seen from Figure 6A, a CSE in drift rates was evident in the open, but not in 

the closed, target condition. 

Next, a repeated-measures ANOVA of the decision thresholds revealed only the 

interaction between target presence and target closure to be significant (F(1,13) = 5.06, p 

= .042, η2 = .28, BF = 0.093). Post-hoc paired t-tests showed the main effect of target 

closure to be marginally significant for target absent trials (t(13) = 1.78, p = .099, d = 

0.48, BF = 0.94; open vs. closed: 2.76 vs. 2.54), but not for target present trials (t(13) = -

1.25, p = .23, d = -0.33, BF = 0.52). Thus, open distractor configurations tended to 

require more evidence to be accumulated than closed configurations in order to reach the 

target-absent decision boundary (Figure 6B).  

Finally, a repeated-measures ANOVA of the nondecision times yielded significant 

main effects of both configuration (F(1,13) = 22.23, p < .001, η2 = .63, BF = 2.28×104) 

and target closure (F(1,13) = 34.03, p < .001, η2 = .72, BF = 1.67×105). As can be seen 

from Figure 6C, wholes were encoded faster than the corresponding parts (494 vs. 633 
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ms) and the same was true for closed distractors (open targets) versus open distractors 

(closed targets) (closed vs. open distractors: 500 vs. 627 ms); that is, sensory encoding of 

stimulus information was actually more efficient with both larger amounts of physical 

stimulation and with closed configurations. There were no further significant effects (ps > 

.23, η2s < .11, BFs < 0.6).  

 

Figure 5. Examples of the posterior predictive distribution as extracted from the optimal 

HDDM (blue lines), and the respective empirical normalized RT distributions from one 

representative participant in Experiment 1 (red lines). Each panel depicts the distributions 

for separate conditions in the experiment. Errors have been mirrored along the x-axis to 

display correct and incorrect RT distributions in one plot (positive and negative values, 

respectively). 
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Figure 6. Mean hierarchical drift-diffusion parameters (A: drift rate; B: boundary 

separation; C: nondecision time) in Experiment 1. All parameters are presented as a 

function of target closure (closed vs. open) for the factorial combinations of configuration 

(whole, part) and target presence (present, absent). The error bars represent ±1 standard 

error of the mean.  

 

Discussion 

The results of Experiment 1 replicated previous findings of a CSE with illusory 

figures (Pomerantz et al., 1977; Pomerantz & Portillo, 2011). Overall, wholes were 

detected 180 ms faster than the corresponding parts, demonstrating that a given 

configuration can be processed faster than its constituent elements. Importantly, however, 

this overall pattern was differentially influenced by target closure: a much larger CSE 

manifested with an open target (presented among closed distractors), as compared to a 

closed target (among open distractors; CSEs of 285 [108] ms for open [closed] targets, 

respectively), indicating that the magnitude of the CSE is modulated by the degree of 

closure in distractors. Notably, the fact that a robust CSE was obtained only in the 

condition in which a closed Kanizsa square served as the distractor (but not when the 

target was a closed Kanizsa square, in which case the CSE was not reliable) would 
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suggest that the emergence of the CSE is primarily associated with the suppression of 

(closed) distractors, rather than selection of a (closed) target. Moreover, target-absent 

trials were overall comparable to target present trials, further suggesting that closure is 

primarily modulating the efficient rejection of a given distractor configuration. 

In addition, the drift-diffusion model analysis further identified specific 

processing stages associated with this CSE-related influence of distractors. The parameter 

estimates obtained indicate that the initial visual encoding processes, reflected by the 

nondecision times, were affected by object closure, illustrating that closed configurations 

were encoded more efficiently; however, they were also influenced by the amount of 

visual stimulation provided – as evidenced by the faster processing of wholes as 

compared to the corresponding parts (Figure 6C). A difference between closed and open 

configurations in the CSE was revealed only for subsequent processing stages reflected in 

the drift rates, with faster rates of evidence accumulation for wholes, relative to parts, 

with open targets [and closed distractors], as compared to closed targets [and open 

distractors] (Figure 6A). This pattern mirrors that of the CSE in the RT data (Figure 4B), 

suggesting that efficient rejection of closed distractors can expedite the accumulation of 

decision-critical evidence in favor of target presence. Next, the analysis of the decision 

thresholds (Figure 6B) revealed somewhat larger thresholds to reach an open (vs. closed) 

decision boundary on target-absent trials, but no such difference on target-present trials. 

In sum, the hierarchical drift diffusion modeling disclosed distinctive dynamics at 

different processing stages: initial stimulus encoding was expedited with both larger 

amounts of visual stimulation and closed configurations presented, whereas a difference 

that reflected the (differential) CSE in open and closed targets was manifest at the 
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subsequent stage of evidence accumulation only. Finally, the decision threshold tended to 

be (marginally) higher for closed distractors (but only when there was no target). 

 

EXPERIMENT 2 

Experiment 1 revealed a CSE that was primarily related to the processing (i.e., to 

the rejection) of closed distractors, manifesting in terms of both expedited RTs and the 

speed of evidence accumulation. Experiment 2 was designed to systematically examine 

the independent contribution of grouping by closure to the two (related) processes of 

target detection and distractor rejection. To this end, in Experiment 2, we only presented 

complete (whole) stimulus configurations that varied with regard to the amount of closure 

in either targets or distractors. There were two task sessions: First, in the ‘distractor 

rejection task’, the distractors could be closed or open configurations and the target was 

held constant, presenting a ‘mixed’ configuration that was equally similar to both types of 

distractors (see Figure 7A). Second, in the ‘target detection task’, the target could be 

either a closed or an open configuration, whereas distractors were constant, always 

presenting a mixed configuration (see Figure 7B). Therefore, these two tasks permit us to 

quantify closure (closed vs. open) separately in targets and distractors, and further to 

differentiate its relative contributions to target detection and distractor rejection. On the 

basis of Experiment 1, we expected that this manipulation would engender a more robust 

‘closure effect’ in distractors than in targets.  
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Figure 7. Example search displays in Experiment 2. (A) In the distractor rejection task, 

closure in distractors was varied while keeping the target constant. (B) In the target 

detection task, distractors were constant but the target varied in terms of grouping by 

closure. Note that in all possible displays, the feature contrast between a given target and 

distractor configuration was the same, i.e., targets and distractors differed from each other 

to the same extent.  

 

Methods 

Participants. Fourteen right-handed observers (10 female; age from 20 to 32; 

mean age = 25.6 years) with normal or corrected-to-normal visual acuity participated in 

Experiment 2, receiving course credits or payment of 8 Euro per hour.  
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Apparatus and Stimuli. All methodological details were essentially the same as in 

Experiment 1, except that, in Experiment 2, only whole configurations were presented –

in three variants: they were (i) arranged to form a closed shape (i.e., a Kanizsa square), or 

(ii) depicted a mixed arrangement (with two diagonally opposing pacmen facing inwards 

and the other two pacmen facing outwards), or (iii) could be presented to form an open, 

symmetric shape (with all four pacmen oriented outwards). Figure 1 presents examples of 

the closed, mixed, and open configurations (see also Figure 7 for example displays). As 

in Experiment 1, all distractors in a given search display were identical, homogeneous 

shapes. Note that the open configuration as previously used in Experiment 1 is now, in 

this variant of the task, referred to as ‘mixed’ configuration.  

Design and Procedure. As in Experiment 1, the task in Experiment 2 was to detect 

a target that differed from the other configurations, and to respond with a speeded target-

present or -absent response (with response mappings counterbalanced across observers).  

The experiment consisted of two different halves, presented to observers in 

counterbalanced order: In one half of the experiment, the composition of the distractors 

was varied and the target remained constant throughout – so as to test the efficiency of 

rejecting closed or open distractors. Thus, in this part of the experiment, observers were 

required to detect a ‘mixed’ target among (variably across trials) either ‘open’ or ‘closed’ 

distractors. In the second half of the experiment, in turn, the target was varied and the 

distractors remained constant – to test the efficiency of detecting closed or open targets. 

This part of the experiment always presented ‘mixed’ configurations as distractors and 

observers were required to either detect an ‘open’ or a ‘closed’ target configuration. 

Figure 7 presents examples of closed and open target-present trials for variations of both 
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distractors (Figure 7A) and targets (Figure 7B). In each part of the experiment, target-

present/-absent and closed/open configurations were presented in random order across 

trials. Targets were randomly assigned to one of the four display quadrants. There were 

64 trials for each factorial combination. Each half of the experiment started with one 

practice block of 48 trials and was followed by 4 experimental blocks of 64 trials each.  

 

Results 

In order to directly compare the effects of grouping by closure in the processing 

of distractors and targets, the accuracies (and RTs) of target-present closed distractor 

conditions were subtracted from those in the corresponding open distractor conditions for 

each participant, thus providing a measure of the ‘closure effect’ in distractors (i.e., the 

benefit in accuracy and RTs for closed relative to open distractors). The same subtraction 

procedure was also applied to the closed and open target conditions. For statistical 

analysis, closure effects in targets and distractors were compared in a series of paired t-

tests. Additional one-sample t-tests were employed to further investigate whether the 

obtained closure effects differed significantly from zero. Additional analyses of the mean 

target-present and -absent RTs and response accuracies (i.e., without applying this 

subtraction procedure) are presented in an Appendix. 

Response accuracy. A paired-sample t-test on the closure effect in the percentage 

of correct responses between the experimental halves related to distractor rejection and 

target detection, respectively, revealed no significant difference (6.7% vs. 5.8%, 

respectively; t(13) = -0.21, p = .84, d = -0.06, BF = 0.28; see Figure 8A). Moreover, only 

the closure effect in distractors, but not that in targets, was significantly smaller than zero 
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(t(13) = 2.74, p = .009, d = 0.73, BF = 7.28, and t(13) = 1.53, p = .075, d = 0.41, BF = 

1.27, respectively), suggesting more accurate responses in rejecting closed than open 

distractor configurations, which is consistent with the pattern of the CSE in accuracy as 

obtained in Experiment 1. 

Reaction times. The same analysis procedure for the closure effect as above was 

applied. This analysis showed that the closure effect in distractors was significantly larger 

than that in targets (382 vs. 149 ms; t(13) = 2.63, p = .02, d = 0.7, BF = 3.13; see Figure 

8B), though the effects were significantly larger than zero in both cases (ts(13) > 2.33, ps 

< .02, ds < 0.62, BFs > 3.92). This indicates that closure facilitated both the detection of a 

(closed) target and the rejection of (closed) distractors, with closure in distractors 

yielding larger benefits for search performance – a finding again consistent with the 

results obtained in Experiment 1. 

 

 

Figure 8. Behavioral results from Experiment 2. (A) Mean Closure effect in Accuracy 

(mean accuracies for open minus closed configurations), and (B) mean RT Closure effect 
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(mean RTs for open minus closed configurations) for variations of the distractors and the 

target, respectively. The error bars represent ±1 standard error of the mean.  

 

Hierarchical Drift-Diffusion Modeling 

As in Experiment 1, the HDDM modeling was applied to the data in order to 

identify the effect-critical stages of processing. The initial model-fitting procedure again 

supported a model variant where the three parameters (drift rate v, decision threshold a, 

nondecision time Ter) were all allowed to vary across conditions (see Table 2, model 1, 

printed in bold), thus, optimally predicting the observed RTs. Figure 9 represents an 

example model fit for one representative participant. As for the RTs, to assess the 

magnitude of the closure effect, open minus closed distractor conditions (difference) 

scores for the various parameters as estimated by the best-fitting models were examined 

by statistical analyses.  

 

Table 2. Model Selection with HDDM in Experiment 2. 

Model Free to Vary 
DIC 

Distractor rejection Target detection 
1 v, a, Ter 3581.7 6447.9 
2 v, Ter 3628.7 6628.2 
3 v, a 3730.9 6632.3 
4 a, Ter 3908.7 6673.6 
5 Ter 4083.0 6782.6 
6 a 4073.8 7124.1 
7 v 3895.2 7536.8 
8 Fix all 4772.7 8177.6 

 

First, the closure effect on the drift rates was computed. Note that for drift rates, 

more negative values correspond to a benefit for the closed configuration (whereas 

positive values would denote a cost), that is, the polarity of the effect is reversed for this 
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diffusion parameter (relative to the pattern in RTs). A comparison of the drift rates 

between distractor and target processing revealed a significant difference (-1.03 vs. -0.41; 

t(13) = -2.26, p = .04, d = -0.6, BF = 1.81; see Figure 10A), revealing a benefit of closure 

in the rate of evidence accumulation, which was particularly strong for distractor-related 

processing as compared to a weaker effect for target-related processing. In addition, both 

distractor- and target-related closure effects in drift rates showed a (marginally) 

significant difference from zero (distractor: t(13) = -4.9, p < .001, d = -1.31, BF = 224.5; 

target: t(13) = -1.66, p = .06, d = -0.44, BF = 1.52), indicating that the speed of evidence 

accumulation was overall faster for closed than for open configurations.  

Next, the analysis of the closure effect on the decision thresholds revealed no 

significant results (all ps > .2, ds < 0.22, BFs < 0.36; Figure 10B). This pattern indicates 

that the amount of decisional information required for rejecting closed distractors was 

comparable to that for rejecting open distractors. 

Finally, the closure effect on nondecision times showed no significant difference 

between distractor- and target-related processing (132 vs. 149 ms, respectively; t(13) = -

0.32, p = .75, d = -0.09, BF = 0.28; see Figure 10C), suggesting that the duration of 

stimulus encoding was equivalent for comparisons of closure in distractor and target 

configurations. Both distractor- and target-related closure effects in non-decision times 

were significantly larger than zero (ts(13) > 3.38, ps < .002, ds > 0.9, BFs > 20.4), 

indicating that stimulus encoding of closed objects was more efficient than that of open 

configurations, irrespective of whether targets or distractors were varied. 
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Figure 9. Examples of the posterior predictive distribution as extracted from the optimal 

HDDM (blue lines), and respective empirical normalized RT distributions from one 

representative participant in Experiment 2 (red lines). Each panel depicts the distributions 

for separate (target-present) conditions in the experiment. Errors have been mirrored 

along the x-axis to display correct and incorrect RT distributions in one plot (positive and 

negative values, respectively). 

 

 

Figure 10. Closure effect (open configurations minus closed configurations) for the mean 

hierarchical drift-diffusion parameters (A: drift rate; B: boundary separation; C: 

nondecision time) in Experiment 2 for the distractor rejection and the target detection 

task (comparing the respective target-present trials). The error bars represent ±1 standard 

error of the mean. 
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Discussion 

Experiment 2 revealed a more robust closure effect for distractors as compared to 

targets, replicating the general pattern of effects observed in Experiment 1. However, 

closure nevertheless also influenced the efficiency of target detection, albeit to a smaller 

extent. Overall, participants were more efficient both in rejecting closed distractors and in 

detecting the closed target, possibly because the Kanizsa square combines both closure 

and symmetry, while the open configuration is only symmetric but lacks closure and is, 

thus, less conspicuous. 

The results of the hierarchical drift-diffusion modeling further demonstrated the 

underlying sources of the observed RT effects. Differences in closure between targets and 

distractors were not reflected in nondecision times (Figure 10C) or in the boundary 

separation parameter (Figure 10B). Closed configurations afforded overall more efficient 

sensory encoding than open configurations, but there was no difference when comparing 

target- and distractor-related processing. Moreover, decision thresholds were comparable 

across open and closed configurations. Only the drift rates (Figure 10A) showed a 

differential effect between distractor- and target-related processing, thus mirroring the RT 

pattern (Figure 8D). This means that evidence accumulation was faster to reach the 

decision boundary for closed distractors than for open distractors. The same pattern was 

also observed when comparing closed and open targets, but the respective differences 

were substantially smaller. 

 

General Discussion 



 54 

The current study aimed at elucidating how visual grouping by closure in targets 

and distractors contributes to the emergence of an ‘illusory Gestalt’. To this end, two 

experiments were conducted employing a visual search task that presented variants of 

Kanizsa figures (Kanizsa, 1955), either inducing a ‘part’ or a ‘whole’ configuration with 

variations in grouping by closure. In Experiment 1, we found a robust CSE, that is, 

overall faster responses (by 180 ms) to wholes as compared to parts. Moreover, 

configural superiority was modulated by closure: detection of open targets (among closed 

distractors) showed a larger CSE than detection of closed targets (among open 

distractors; mean CSEs of 285 and 108 ms, respectively), with results being comparable 

for target-present and -absent trials. A diffusion model analysis on these data indicated 

that the observed CSE emerged at the stage of evidence accumulation. That is, a 

difference between closed and open configurations was revealed in the drift rate 

parameter, with faster evidence accumulation for wholes relative to parts with open 

targets (closed distractors), as compared to closed targets (open distractors). This pattern 

shows that the CSE in Experiment 1 primarily derived from processes related to the 

extraction of information to reach a decision. This process of information accumulation 

in turn seems to be particularly related to the suppression of closed, that is, well-grouped 

(distractor) configurations.  

Next, in Experiment 2, we further investigated the role of grouping by closure, 

now systematically varying closure in targets and distractors independently of each other 

(using displays with whole-configurations only). Our analyses were primarily devised to 

compare the effect of closure in both targets and distractors, with closure quantified by 

subtracting search RTs for closed from RTs for open configurations. The results revealed 
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a more robust effect of closure in distractor configurations as compared to targets (382 

and 149 ms, respectively). Moreover, the enhanced closure effect in distractors was again 

reflected in the speed of evidence accumulation (the drift rate parameter). This analysis 

indicates that participants were overall faster to accumulate evidence for closed as 

compared to open configurations, but this benefit of closure was particularly pronounced 

with closure of distractor configurations, as compared to a much smaller effect with 

closure in the target configuration.  

Taken together, the current results significantly extend previous studies on the 

CSE (Pomerantz et al., 1977; Pomerantz & Portillo, 2011) by showing that detection of a 

target configuration is facilitated primarily by the successful inhibition of distractors, 

with a considerably smaller role for target-related processing. While configural target 

processing may modulate search performance (Conci et al., 2011), in fact, we found no 

evidence of a reliable contribution of the target configuration to the CSE in Experiment 1. 

This suggests that configural superiority is not related to the emergence of an integrated 

object that matches a target description, or ‘template’, held in visual short-term memory. 

Such target templates are thought to have a privileged status, top-down biasing visual 

coding processes towards target-defining features (Olivers, Peters, Houtkamp, & 

Roelfsema, 2011). However, the current experiment yielded little evidence that the 

template status of the target is enhanced by object closure. Rather, the effect of the 

grouped configuration was particularly related to the distractors, suggesting that grouping 

by closure permitted more efficient suppression of task-irrelevant distractor 

configurations. One reason for the stronger effect of closure in distractors than in the 

target might simply derive from the fact that, in the typical CSE paradigm, there are more 
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(most often three) distractors as compared to only a single target. In fact, visual search 

experiments show that, as set size increases, grouped distractors usually bring about a 

strong modulation of search efficiency (Conci et al., 2007a, 2007b), suggesting that the 

benefit of grouping in distractors increases as the number of candidate target 

configurations becomes larger (see also below and Humphreys & Müller, 1993). In this 

view, the ‘emergence’ of a configural target thus appears to be a by-product of the 

efficient suppression of a grouped array of distractors.  

The critical stage that determined the observed pattern of the CSE was related to 

processes of evidence accumulation (as evidenced by the modulation of the drift-rate 

parameter), with closure in distractors speeding the rate of evidence accumulation. We 

propose that the emergence of a configural target from its constituent parts derives from 

the inhibition of distractor configurations. From this perspective, changes in the drift rate 

parameter are attributable to attentional control settings engaged in the inhibition of task-

irrelevant objects, which are especially sensitive to the ‘objecthood’ (brought about by 

grouping mechanisms) in distractor arrangements (Kimchi, Yeshurun, & Cohen-

Savransky, 2007). 

The CSE has primarily been explained in terms of the Theory of Basic Gestalts 

(Pomerantz & Portillo, 2011), assuming a major role of perceptual grouping for the 

extraction of basic ‘Gestalts’, or emergent features, and treating such completed objects 

as the building blocks for perceptual organization. At the core of the theory is the 

formation of a Gestalt in a given object configuration, which permits faster and more 

efficient search for emergent features (that arise from the combination of parts into 

wholes on the basis of grouping) as compared to the corresponding basic features (i.e., 
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properties of the parts, such as line orientation or color). Classical models of visual search 

(Treisman & Gelade, 1980; Wolfe, 2007) can usually not account for the CSE, and 

adding a uniform, non-informative context to search items would not normally be 

expected to improve performance (but rather only increase processing load). Context is 

usually added to all search items, but the relative contribution of targets and distractors in 

the build-up of emergent features has, to the best of our knowledge, not been 

investigated. In this regard, the current experiments reveal a preferential contribution of 

Gestalt formation to the CSE in visual search, which arises foremost from the distractors 

and only to a lesser extent from target-related processing.  

Recent evidence suggests that a dedicated brain region in the ventral visual 

pathway, the LOC, may be particularly related to the processing of configurations, that is, 

emergent features (Kubilius et al., 2011). The authors showed that LOC (versus V1) was 

better able to predict the processing of wholes, whereas area V1 (versus LOC) better 

predicted the processing of part configurations. This pattern, showing processing of parts 

and wholes in distinct areas of the visual processing hierarchy, supports the idea that 

Gestalts may emerge only at a relatively high level of visual processing (beyond V1). 

Note that LOC has also been implicated in the processing of objects in general (Grill-

Spector, Kourtzi, & Kanwisher, 2001) and illusory figures in particular (e.g., Bakar, Liu, 

Conci, Elliott, & Ioannides, 2008), for various tasks. In the light of our findings, the 

differences in the neuronal responses in LOC, as revealed by Kubilius et al. (2011), 

would appear to reflect the processing (in particular: the suppression) of distractor 

wholes, rather than the emergence of a configural target, thus resulting in a behavioral 

CSE.  
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In line with studies on the CSE, emergent features in illusory figures have been 

reported to yield efficient visual search performance (Davis & Driver, 1994; Gurnsey et 

al., 1992). Allocation of attention in search for Kanizsa-type figures is promoted, in 

particular, by grouping based on closure, that is, rendering a complete-object 

representation of the whole figure (Conci et al., 2006, 2007a, 2007b) – where implied 

closure is implicated in extracting a crude ‘salient region’ that can effectively guide 

search (for converging behavioral and electrophysiological evidence, see Conci et al., 

2006, 2011; Wiegand et al., 2015). In this regard, the current findings suggest that the 

CSE for illusory figures is primarily related to distractor inhibition rather than target 

facilitation. Consistent with the present findings, a recent event-related potential (ERP) 

study has shown that search for a target Kanizsa figure can integrate information about 

distractors to optimize target selection (Töllner, Conci, & Müller, 2015) – suggesting that 

some form of distractor template drives top-down (distractor) suppression, thus reducing 

the distractors’ impact on selection. In this view, the (relatively) efficient detection of a 

search target would be facilitated by the template-based rejection of grouped distractors 

(Duncan & Humphreys, 1989; see also Humphreys & Müller, 1993, for a computational 

model of template-based inhibition of distractors). For instance, Humphreys and Müller’s 

model assumes that items (distractors, the target) compete to activate their respective 

templates, and in this competitive process, similar items (i.e., distractors of which there 

are multiple instances in the display) have a competitive advantage, that is, their template 

unit tends to cross the threshold first – upon which the whole set of distractors are 

‘rejected’. This is an essential component of the model and it might well account for the 

importance of closure in distractors, if one assumes that closed objects have an advantage 
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in activating the respective template. Thus, these results and theoretical models are in 

accordance with the present findings, which provided evidence for the inhibition of 

closed distractor configurations, rather than facilitation of the corresponding targets, 

being the driving force of the behavioral CSE.  

Distractor inhibition may not only operate at the level of grouped, configural 

objects, but also that of basic features. For instance, a target defined by a simple, salient 

feature discontinuity (e.g., line orientation) in a field of uniform distractors usually leads 

to ‘pop-out’ (e.g., Müller, Heller, & Ziegler, 1995). One idea is that pop-out is the result 

of low-level local ‘iso-feature’ suppression (e.g., Zhaoping & May, 2007), that is, 

inhibitory interactions among nearby detectors coding similar features, impeding the 

distractors’ ability to compete for selection and making the odd-ball (unsuppressed) 

target pop out. Recent ERP evidence suggests that such feature-based attention operates 

primarily via inhibition of distractor features, rather than activation of target features, at 

early stages of processing (Moher, Lakshmanan, Egeth, & Ewen, 2014). In this view, 

efficient detection of a target defined by a feature discontinuity is mediated by the 

suppression of uniform distractors, with potentially comparable mechanisms as described 

here for more complex object configurations. 

Besides having a bearing on configural object processing and the CSE, the current 

results may also be seen as constituting a “search asymmetry” (Treisman & Souther, 

1985; Treisman & Gormican, 1988; see also Wolfe, 2001). In a typical search asymmetry 

experiment, one of two stimuli (e.g., the letters Q and O) serves as target and the other as 

distractors in one condition (e.g., search for the Q amongst O’s), with the target and 

distractor roles reversed in the other condition (e.g., search for the O amongst Q’s). For 
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this example, it has been shown that it is easier to find a target Q among distractor O’s 

than finding a target O among distractor Q’s (Treisman & Souther, 1985). The typical 

explanation for such an asymmetry is that, in the easier search condition, a distinctive 

feature (e.g., the stroke of the letter Q) would enable efficient search, while it is more 

difficult to find a target that is defined by the absence of a distinctive feature (e.g., the 

target O can be differentiated from the Q’s as not having a stroke). The results of 

Experiment 1 obeys a comparable logic: We find more efficient performance when 

searching for an open target among closed distractors than when searching for a closed 

target among open distractors. However, in contrast to standard search asymmetries, this 

difference in performance does not arise because of a distinctive feature in the target 

(e.g., an emergent object that arises from grouping by closure), but rather the asymmetry 

results from the distinctive feature in distractors.  

However, there are alternative explanations of search asymmetries in terms of 

distractor complexity. For instance, Rauschenberger and Yantis (2006) proposed that, in 

the above example (i.e., more efficient search with a Q target and O distractors than with 

the reverse assignment), the search asymmtery is caused not by (the presence vs. absence 

of) a distinctive feature in the target, but rather because O-shaped distractors are less 

complex stimuli than Q-shaped distractors, modulating search efficiency exclusively via 

distractor suppression (which is more efficient with less complex stimuli). Our findings 

lend support to this interpretation: less complex distractors (i.e., closed configurations) 

afford less effortful search than more complex distractors (i.e., open configurations). 

Taken together, the present study points to a more prominent role of illusory 

Gestalt processing in the inhibition of distractors than previously thought, with 
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implications for paradigms that investigate the role of inhibition in attention and 

awareness. For instance, in the perception of figure and ground, the assignment of a 

region in terms of being part of the figure or of the background determines which of the 

two leads to the prevailing percept – namely, the figure, while the other perceptual 

interpretation (of the background) is inhibited (e.g., Driver, Baylis, & Rafal, 1992; 

Roelfsema, 2006; Wagemans et al., 2012a). Moreover, in studies of binocular rivalry, 

where two incompatible stimuli are presented to each eye simultaneously, one of them 

will usually be temporarily suppressed in visual awareness, so as to make the other one 

perceived. Such interocular competition (between rivaling percepts) is solved by means 

of mutual inhibition enabling a single, coherent percept to emerge at any given moment 

in time (Kim & Blake, 2005). Thus, the present findings add to the notion that inhibition 

plays a major role in visual perception, in particular as regards the temporal and spatial 

filtering of the incoming sensory signals (Moors, Wagemans, van Ee, & de-Wit, in press; 

Tong, Meng, & Blake, 2011).  

 

Conclusion 

The present study reveals a major role of distractor inhibition in driving the 

emergence of an illusory Gestalt in Kanizsa figures. Our results show that the CSE is 

more pronounced when an emergent feature (e.g., as defined by closure) characterizes the 

search distractors rather than the target. Behavioral and drift-diffusion model evidence 

indicates that, in visual search, the configural superiority effect engendered by illusory 

figures arises primarily at the stage of evidence accumulation, where decisions are less 
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driven by the conspicuity of the target configurations, but rather by the more effective 

suppression of grouped distractor configurations.  

 

Appendix 

 

Experiment 2 – Additional analyses on the mean RT and accuracy data 

The results of Experiment 2 in the main manuscript present the “closure effect” in 

the [target-present] RT and accuracy data by subtracting the averages of closed 

configurations from the corresponding averages of the open configurations. To 

complement these results, this supplement presents the analyses of both the target–

present and –absent conditions without applying a subtraction procedure.  

 

Distractor rejection task 

Response accuracy. The mean percentage of correct responses from the distractor 

rejection task was calculated for each observer and variable combination. A 2x2 

repeated-measures ANOVA on the percentage of correct responses, with the factors 

target presence (present, absent) and distractor closure (closed, open), revealed only the 

main effect of distractor closure (closed vs. open: 96% vs. 89%, F(1,13) = 9.94, p = .008, 

η2 = .43, BF10 = 177.7) to be significant (Figure S1A). Neither the main effect of target 

presence nor the interaction between target presence and distractor closure was 

significant (all ps > .35, η2s < .07, BFs < 0.38).  

Reaction times. An identical analysis was performed on mean RTs in the 

distractor rejection task (Figure S1A). The analysis again revealed only the main effect of 
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distractor closure (closed vs. open: 744 vs. 1098 ms, F(1,13) = 56.2, p < .001, η2 = .8, 

BF10 = 1.21e+10) to be significant. The main effect of target presence and the interaction 

between target presence and distractor closure were also not significant (all ps > .12, η2s 

< .18, BFs < 0.38), mirroring the pattern in the accuracy data.  

 

 

Figure S1. Behavioral results from Experiment 2. (A) Mean RTs (lines) and accuracies 
(bars) presented as a function of distractor closure for target-present and -absent 
conditions in the distractor rejection task. (B) Mean RTs (lines) and accuracies presented 
as a function of target closure (closed, open, absent) in the target detection task. 
 

Target detection task 

Response accuracy. Mean percentages of correct responses from the target 

detection task were calculated for each observer and condition. An one-way ANOVA on 

the percentage of correct responses, with the factor target closure (closed, open, absent) 

revealed no significant effect (F(2,26) = 1.48, p = .25, η2 = .43, BF10 = 0.57; Figure S1B), 

and all post-hoc pairwise comparisons also showed no significant differences (all ps > 

.15, ds < .41, BFs < 0.7).  
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Reaction times. Mean RTs from the target detection task were analyzed similar to 

the above analysis on accuracies (Figure S1B). The analysis revealed no significant effect 

(F(2,26) < 1, p = .39, η2 = .07, BF10 = 0.34). Notably, post-hoc paired t-tests nevertheless 

showed a significant difference between closed and open targets (closed vs. open: 1500 

vs. 1649 ms, t(13) = -2.33, p = .036, d = -0.62, BF10 = 2.01), but no further significant 

differences (ps > .41, ds < .23, BFs < 0.37).   

 

In sum, the pattern described here is essentially comparable to the outcomes 

presented in the main manuscript. Closed distractor configurations led to fewer errors and 

to faster responses than corresponding open distractor configurations. A comparable, but 

somewhat less reliable benefit was also revealed in the mean RTs for closed (as 

compared to open) target configurations.
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Abstract 

Objects can be represented at multiple hierarchical levels, though typically more 

global levels receive precedence over more local levels. Here, we explored how object 

hierarchy affects the zooming of attention within and across trials using a novel visual 

search task with Navon letters as global/local targets and nontargets. Experiment 1 

revealed search to be more efficient for targets defined at the global level versus 

comparable local-level targets. Moreover, a global precedence effect was also evident in 

cross-trial priming effects: an advantage of level repetitions (vs. changes) occurred only 

for global targets but not for local targets. Experiment 2 demonstrated that this 

differential pattern of performance across global/local object levels does not simply result 

from differences in object size and crowding strength. Then in Experiments 3 and 4, the 

prevalence of global and, respectively, local targets was manipulated to investigate the 

stability of the global/local processing asymmetry. When local targets were presented 

more frequently than global targets (i.e., on 75% of all trials), global precedence was 

overall reduced and priming occurred at both object levels. Furthermore, when 

systematically changing the prevalence of global and local targets over the whole 

experiment, attentional selection exhibited a dynamic adjustment according to the 

prevailing target level, whereas asymmetric object-level priming remained stable. Taken 

together, these results revealed a default (global) attentional state that is tuned to both 

short and long-term environmental contingencies, as global precedence reflects the 

flexible zooming of attention and leads to a stable global bias of object levels in short-

term memory.  
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Introduction 

Our natural environment is complex and must therefore be perceptually structured 

to maximize the processing efficiency of the visual system. Visual structuring is mainly 

accomplished by mechanisms of perceptual organization, integrating fragmentary parts to 

form coherent wholes. Furthermore, natural scenes and objects are normally composed of 

multiple layers, which can be described at multiple, hierarchical levels of perceptual 

organization (e.g., a forest has trees, and the trees have leaves). Thus, objects may be 

represented at different levels in a visual hierarchy, with global representations at the top 

and more local representations towards the bottom (Kimchi, 1992; Wagemans, Elder, et 

al., 2012). Such a hierarchical relationship between parts and wholes has also been 

demonstrated for a variety of composite figures (e.g., Navon, 1977; Pomerantz, Sager, & 

Stoever, 1977). As depicted in Figure 1, such composite figures consist of elements at a 

local level of representation (e.g., the letters “H”, circular “pacmen”, or small squares), 

which are combined to yield a different object at a global level (e.g., the letter “U”, an 

illusory square, or a big triangle). 

 

 

Figure 1. Examples of hierarchical stimulus configurations with global and local levels of 

representation: Navon letter (left), Kanizsa square (middle), hierarchical shape (right). 
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Typically, (more) global object levels receive precedence over (more) local levels, 

indicating that the zooming of attention is set in accordance with the hierarchical 

structure of visual objects (Navon, 1977, 1981, 2003). For instance, in Navon’s basic 

experiment to study global/local object representations, observers were presented with 

hierarchical letter stimuli (Figure 1, left) and asked to identify either the global (whole) or 

the local (component) letters, in separate blocks of trials. These types of configuration 

usually reveal a global advantage: faster identification of the global than the local letters. 

Moreover, conflicting information across levels gives rise to a disruptive influence of 

task-irrelevant global information on local-level identification (global-to-local 

interference), but no interference of irrelevant local information with global identification 

(Navon, 1977). Taken together, the global advantage and the global-to-local interference 

support a general pattern of “global precedence” (e.g., Navon, 1977; Kimchi, 2015): 

global properties of a visual object are processed first, followed by the analysis of local 

details (Kimchi, 1992). The Reverse Hierarchy Theory (RHT) proposed by Hochstein 

and Ahissar (2002) suggests an explanation of global precedence from a 

neurophysiological perspective. RHT assumes that global information is initially 

extracted from a feedforward sweep of information processing by high-level cortical 

mechanisms. Thus, this initial percept represents the global “gist” of the scene, whereas 

local details become available only subsequently via recurrent feedback connections to 

lower-level areas (see also Roelfsema, 2006). This recurrent architecture allows flexible 

processing of local details by operating feedback connections specific to the attentional 

zooming required for a given task (Roelfsema, 2006). Within this framework, the 
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extraction of global object properties at higher levels precedes the processing of local 

details. 

A number of studies have demonstrated reliable global precedence effects using a 

variety of stimulus materials, such as traditional Navon letters, Kanizsa figures, abstract 

hierarchical shapes, faces, and gratings (see Figure 1 for examples, and Dale & Arnell, 

2013, for a comparison of various stimulus types). Importantly, most of these paradigms 

have presented observers with single hierarchical objects. Accordingly, evidence for 

global precedence in these configurations usually reflects differences in processing 

between the hierarchical levels of a stimulus that is currently in the focus of attention. 

However, global precedence may also, at least partially, occur for non-attended objects 

(Paquet & Merikle, 1988) at preattentive stages of processing (Mattingley, Davis, & 

Driver, 1997; Conci et al., 2009). With multiple hierarchical stimulus configurations – as, 

for example, in visual search tasks – the question is not whether focal attention is set in 

accordance with the different hierarchical object levels, but whether the guidance of 

attention by preattentive object information is sensitive to differences between global and 

local representations. 

Concerning this question, visual search studies have shown that detection of a 

global target configuration is more efficient than detection of a local arrangement of 

items (Conci, Müller, & Elliott, 2007a, 2007b; Conci, Töllner, Leszczynski, & Müller, 

2011; Deco & Heinke, 2007; Donnelly, Humphreys, & Riddoch, 1991; Nie, Maurer, 

Müller, & Conci, 2016; Wagemans, Feldman, et al., 2012), while precedence in visual 

search is influenced by various perceptual factors, including the size, number, and density 

of local elements (Enns & Kingstone, 1995). Overall, attentional guidance is based 
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primarily on global object information. For example, in a study of visual search with 

hierarchical Navon letters as target and nontarget stimuli, Deco and Heinke (2007) found 

search for a target configuration to be relatively efficient – in terms of the slopes of the 

functions relating reaction time (RT) to the number of display items – when the 

nontargets were identical to the target at the local level of representation (mean slope 16 

ms/item); by contrast, search was inefficient when the nontargets were identical to the 

target at the global level (mean slope 26 ms/item). These findings illustrate an effect of 

global precedence in visual search, suggesting that information at global and local object 

levels differentially influences search efficiency – that is: attentional guidance. Thus, 

taken together, studies of hierarchical stimulus processing indicate that the prevailing 

global object structure is a major determinant of attentional allocation in visual scenes. 

Another line of recent research has shown that selection history is also a major 

factor to determine attentional guidance in visual search, as evidenced by search studies 

that have examined intertrial “history” effects on search performance (see Kristjánsson & 

Campana, 2010; Krummenacher & Müller, 2012; Lamy & Kristjánsson, 2013, for 

reviews). For example, detection of “pop-out” targets singled out by a specific color or, 

respectively, shape from amongst the nontargets becomes easier on a given trial if the 

current target is defined by the same feature, or in the same feature dimension (Found & 

Müller, 1996; Maljkovic & Nakayama, 1994, 1996; Müller, Heller, & Ziegler, 1995), or 

if the current target appears at the same location (Maljkovic & Nakayama, 1996) as the 

target on the preceding trial(s) – effects that have been attributed to intertrial “priming”. 

Moreover, such effects have also been shown to operate not only at the level of individual 

feature dimensions (e.g., color), but also for entire object representations (Kristjánsson, 
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Ingvarsdöttir, & Teitsdöttir, 2008). Taken together, these results suggest that past 

experience influences the allocation of visual attention, reflecting a kind of top-down bias 

based on some form of (implicit) short-term memory that buffers successful task settings 

and supports predictions of likely upcoming events (Müller, Krummenacher, & Heller, 

2004).  

While global precedence effects indicate that global and local information are 

processed with asymmetric attentional priorities (with a bias towards the global level), 

intertrial priming across hierarchical levels of a given stimulus does not appear to be 

different for global and local object levels. A number of studies have examined level-

repetition effects in the Navon task (Hübner, 2000; Lamb & Yund, 1996, 2000; Lamb, 

London, Pond, & Whitt, 1998; Robertson, 1996; Ward, 1982). These studies, in general, 

revealed a benefit when a target was repeatedly presented at the same level, with priming 

effects across levels remaining comparable even when the target configuration and the 

associated response changed (Filoteo, Friedrich, & Stricker, 2001; Robertson, 1996). 

That is, when selecting relevant information at a global or, respectively, local level of a 

given hierarchical stimulus, there is a performance benefit when the level repeats across 

trials (and, conversely, a cost when the levels switch). However, the magnitude of level 

repetition benefit is usually comparable for both global and local targets and independent 

of stimulus- and response-specific factors – suggesting that object-level priming is an 

automatic bias to sustain the scale of attention from one moment to the next (Robertson, 

1996).  

In the present study, we explored how object structure influences both attentional 

selection and memory-based guidance of visual search. To this end, we employed a 
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visual search task presenting hierarchical Navon letters as target and nontarget stimuli 

(Figure 2A), with observers being required to detect a T-shaped target among L-shaped 

nontargets. Importantly, the target could be represented either at a global (Figure 2B, left 

panel) or at a local level (Figure 2B, right panel), with the target-defining level varying 

randomly across trials. The basic paradigm was initially tested in Experiment 1, where 

comparisons of the two possible target levels permit us to (i) examine whether the global 

precedence effect would be replicable in visual search, that is, in terms of search 

efficiency as assessed by the search RT slopes (i.e., the slopes of the functions relating 

search RT to set size, the number of display items); and (ii) to assess whether effects of 

global precedence would also manifest in the pattern of intertrial priming across global 

and, respectively, local target-object levels. That is, both measures may be related to 

aspects of attentional guidance (search efficiency) and implicit short-term memory 

(priming) within one-and-the-same task. Experiment 2 was then performed to investigate 

whether size differences between stimuli at global and local levels would suffice to 

explain the current pattern of results. In addition, to further elucidate the stability of 

global/local object processing in search, Experiments 3 and 4 investigated how global 

precedence varies with a systematic manipulation of “target prevalence” (e.g., Wolfe & 

Van Wert, 2010), that is, how global precedence is adjusted when a given target level is 

presented more frequently than the other level. 

 

EXPERIMENT 1 

Experiment 1 was performed to investigate hierarchical object processing in a 

visual search task, employing Navon letters as target and nontargets (see Figure 2 for 
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examples, and Deco & Heinke, 2007). The target letter could be represented either at the 

global or the local hierarchical level (i.e., a global target would combine with a local 

nontarget and vice versa). Differences between targets and nontargets were kept constant 

across both object levels, such that global and local targets always exhibited identical 

feature contrasts relative to the nontarget configurations. On the basis of previous 

findings, we expected faster RTs to global as compared to local targets, which would be 

indicative of a global precedence effect (Navon, 1977). 

 

Figure 2. A. Example Navon-letter search display with eight hierarchical objects, 

presenting a global (large) target among L-shaped nontargets. B. Examples of a global 

(left panel), and local (right panel) target configuration (with leftward and rightward T 

orientation, respectively) as used in Experiments 1, 3 and 4. C. In Experiment 2, a large 

target (left panel) was compared to a small target (right panel, again displaying a leftward 

and rightward T orientation, respectively). 

 

Methods 

Participants. Fourteen observers (5 male; age range: 21 to 31 years; mean age = 

26.6 years) with normal or corrected-to-normal visual acuity participated in the 

experiment, receiving course credits or payment of 8 Euro per hour.  
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The sample size was determined a-priori by means of a G*power 3 (Faul, 

Erdfelder, Buchner, & Lang, 2009) power analysis based on predicted effect size. From 

the results of previous studies (Nie et al., 2016), we predicted th effect size to be large (d 

= 0.75, according to Cohen, 1988) for the current experimental design. With 70% power 

given a .05 significance level, the sample size suggested was approximately  14 

observers, which was used for Experiments 1-3. 

Apparatus and Stimuli. The experiment was controlled by an IBM-PC 

compatible computer using Matlab routines and Psychophysics Toolbox extensions 

(Brainard, 1997;  Pelli, 1997). Stimuli were Navon letters (Navon, 1977) presented in 

gray (8.5 cd/m2) against a black (0.02 cd/m2) background on a 17-inch monitor (1024 × 

768 pixels screen zooming). Each stimulus consisted of a large (global) letter that 

subtended 2.6° × 2.6° of visual angle. Large letters were constructed from 9 small 

identical (local) letters, arranged in an invisible 5 by 5 grid. The small letters covered an 

area of 0.4° × 0.4°, with a gap of 0.15° between adjacent local letters. 

Search arrays consisted of 4, 8, or 12 Navon letters (display size). Search displays 

were generated by placing one target configuration and 3, 7, or 11 nontargets randomly 

within the cells of an invisible 8 by 6 matrix (cell size 2.9°). Within each cell, the Navon 

stimuli were randomly jittered horizontally and vertically within a range of ±0.3°. 

Nontargets were global Ls made up of local L-shapes rotated randomly in one of four 

orthogonal orientations. The target was a (global or local) T-shape rotated 90° to either 

the left or the right. Targets could be defined at the global level (i.e., a global T would be 

constructed from 9 local Ls), or at the local level (i.e., 9 local Ts were combined to form 
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a global L). Figure 2A shows an example display and corresponding global and local 

target configurations (Figure 2B). 

Trial Sequence. Each trial started with the presentation of a central fixation cross 

for 500 ms. The fixation cross was followed by the search display, to which observers 

responded with a speeded response via mouse keys. The task was to search for an 

oriented T (either global or local) among L-nontargets and to decide as quickly and 

accurately as possible whether the T was pointing to the left or the right. Displays 

remained on-screen until a response was recorded. In case of an erroneous response, 

feedback was provided by an alerting red minus sign (“–”) presented for 1000 ms at the 

screen center. Successive trials were separated by a 500-ms interval.  

Design and Procedure. A two-factors within-subjects design was used. The 

independent variables were target level and display size. Target level could be either 

global (global T made up of local Ls; Figure 2B, left) or local (local Ts forming a global 

L; Figure 2B, right). Display size had three levels: 4, 8, or 12 Navon letters in a given 

search array.  

At the beginning of the experiment, participants completed 1 block of 60 practice 

trials (generated randomly) to become familiar with the task. The formal experiment then 

presented 540 trials, divided into 9 blocks of 60 trials each. 

 

Results 

Response Accuracy. Mean percent correct responses for each observer and 

variable combination were calculated. Overall, responses were very accurate: 97% 

correct on average. A repeated-measures analysis of variance (ANOVA) of the 
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percentage of correct responses, with the factors target level (global, local) and display 

size (4, 8, 12) revealed the main effect of target level to be significant, F(1,13) = 5.46, p < 

.05, ηp
2 = .3: accuracy was slightly (by 2.1%) higher with global relative to local targets. 

No other effects were significant (all ps > .7). 

 

 

Figure 3. Mean search RTs (left panel) and corresponding intertrial effects (right panel) 

in Experiment 1. RTs are presented as a function of display size for global and local 

target levels (left), and as a function of the global/local target level for repetition and 

switch trials (right). Error bars represent ±1 standard errors of the mean (SEM). 

 

Search RTs. Mean RTs for each observer were calculated excluding error 

responses and RTs deviating by more than three standard deviations from the mean. 4% 

of all trials, on average, were excluded by this outlier criterion (Experiments 2-4 yielded 

comparable exclusion rates). Figure 3 (left panel) presents the mean correct RTs as a 

function of display size, separately for global and local targets. Individual search RTs 

were subjected to a repeated-measures ANOVA with the factors target level and display 

size. This analysis revealed both main effects to be significant: target level, F(1,13) = 

46.1, p < .001, ηp
2 = .78, and display size, F(2,26) = 112.7, p < .001, ηp

2 = .9. Global 



 82 

targets were detected much faster than local targets (mean global precedence effect: 640 

ms), and RTs increased as display size increased (by 1048 ms from display size 4 to 12). 

Moreover, the two-way interaction was significant, F(2,26) = 11.6, p < .001, ηp
2 = .47: 

global targets yielded a smaller increase in search RTs with display size than local targets 

(search slopes were 80 and 133 ms/item for global and local targets, respectively). To 

summarize, global search RTs were much faster overall and exhibited shallower slopes 

than local search RTs, indicating that global search is more efficient.  

Intertrial Effects. To examine whether search for global and local targets is 

influenced by intertrial contingencies, that is, whether performance on the current trial is 

affected by the hierarchical level that defined the target on the previous trial, a further 2 × 

2 repeated-measures ANOVA of the RTs was performed with the factors target level 

(global, local) and previous trial (repetition, switch; coding whether the current target 

level was the same as or different to that on the previous trial); for this analysis, data were 

collapsed across the different display size conditions. The ANOVA revealed both main 

effects to be significant: target level, F(1,13) = 47.3, p < .001, ηp
2 = .78, and intertrial 

transition, F(1,13) = 9.01, p < .01, ηp
2 = .41. The main effect of target level essentially 

mirrored the above finding of global precedence. Moreover, search RTs were shorter (by 

100 ms) when the target level repeated across trials as compared to when it switched. 

Importantly, the two-way interaction, was also significant, F(1,13) = 10.4, p < .008, ηp
2 = 

.44. Post-hoc comparisons revealed the level repetition effect to be reliable only for the 

global target level (155 ms; t(13) = 4.55, p < .02), but not for the local level (-3 ms, t(13) 

= 0.18, p = .86; see Figure 3, right panel). In other words, a level repetition benefit was 

evident only for global targets, without a comparable facilitatory effect for local targets.  
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Intertrial Search Slopes. An additional analysis examined whether the above 

described difference in search efficiency for global and local targets is dependent on 

intertrial transitions, that is: whether the hierarchical level that defined the target on the 

previous trial affects the search slope on the current trial. An effect of object hierarchy on 

the slopes could be taken to be indicative of a preattentive source of the effect 

(influencing attentional guidance), whereas the lack of a slope difference would suggest 

that priming effects arise post-selectively, that is, following attentional allocation to the 

target (Lamy, Carmel, Egeth, & Leber, 2006). To decide between these alternatives, a 2 × 

2 repeated-measures ANOVA was performed on the search slopes with the factors target 

level (global, local) and previous trial (repetition, switch). This analysis revealed only the 

main effect of target level to be significant, F(1,13) = 14.4, p = .002, ηp
2 = .53, with 

shallower slopes for global than for local targets (80 vs. 133 ms/item), mirroring the 

above results. Neither the main effect of previous trial nor the interaction between target 

level and previous trial was significant (all ps > .6). This indicates that priming likely 

occurred subsequent to the allocation of attention. In turn, only the global precedence 

effect affected slopes – indicative of this effect arising from a preattentive source. 

Response Priming. A further analysis was performed to examine whether the 

motor responses executed on successive trials influences the pattern of intertrial priming, 

that is, whether performance on a given (current) trial differs depending on whether the 

response was the same (repeated) or different (switched) relative to the previous trial (see 

also Robertson, 1996). A 2 × 2 repeated-measures ANOVA on mean priming effects 

(mean RTs for level switches minus repetitions), with the factors target level (global, 

local) and response type (repetition, switch), revealed the main effect of target level to be 



 84 

significant, F(1,13) = 11.5, p = .005, ηp
2 = .47, with larger priming for global than for 

local targets (155 vs. -3 ms), mirroring the above results. However, neither the main 

effect of response type nor the interaction between response type and target level was 

significant (all ps > .12), suggesting that the execution of the response did not influence 

the pattern of priming effects. Note that analogous analyses conducted in all subsequent 

experiments also revealed no evidence of response priming contributing to the intertrial 

priming effects. 

 

Discussion 

The results of Experiment 1 replicated previous findings of a global precedence 

effect (Navon, 1977) in visual search with multiple objects (Deco & Heinke, 2007). 

Overall, global targets were detected 640 ms faster than local targets, demonstrating a 

large overall bias of attention towards a global level of representation. In addition, search 

for global and local targets was also differentially influenced by display size (with search 

slopes of 80 [133] ms/item for global [local] targets), indicative of attentional guidance 

being more efficient for global than for local targets.  

The results of the intertrial analyses, examining for priming patterns across 

hierarchical levels, also revealed an RT benefit, of 155 ms, for global target repetitions, 

but no comparable effect for local target repetitions (-3 ms). This novel, asymmetric 

pattern of intertrial effects mirrors the above pattern of global precedence: targets defined 

at the global level enjoy a performance benefit across trials, while there is no comparable 

effect for local target repetitions. Two additional analyses on the intertrial effects were 

performed to identify the critical stage of processing at which priming occurs. The first of 
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these analyses showed that search efficiency (measured in terms of search RT slopes) 

was comparable between object-level repetition and switch trials, suggesting that priming 

occurred only subsequent to the allocation of attention. The second analysis, performed to 

examine the role of response repetitions and switches across trials (response priming), 

likewise revealed no difference between response repetitions and switches, indicating that 

object-level priming (on the current trial) was independent of the response executed on 

the previous trial. Taken together, these results suggest that priming in the current 

experiment occurs subsequent to the allocation of attention to the target (i.e., at a post-

selective processing stage), but prior to response selection. Restated, priming relates to 

some form of top-down bias from (presumably implicit) short-term memory that – across 

trials – selectively facilitates the identification of global (but not of local) targets.  

In summary, the results of Experiment 1 not only replicate previous findings on 

global precedence (e.g., Navon, 1977; Deco & Heinke, 2007), but also show novel 

evidence that the asymmetric bias of attention towards the global level is also evident in 

the pattern of intertrial priming, as illustrated by global priming in particular throughout a 

series of (randomly intermixed global- and local-target) trials. – Next, in Experiment 2, 

we investigated whether this pattern of global precedence could be accounted for by 

object size differences between global and local targets. 

 

EXPERIMENT 2 

Experiment 1 provides evidence that global precedence affects both attentional 

guidance and the pattern of priming across trials – suggesting that the global/local 

structure in a given display influences how attention is allocated on the current and the 
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subsequent trial(s). However, despite perceptual hierarchy, the results revealed in 

Experiment 1 might also be explained by assuming that global targets are simply more 

salient than corresponding local targets. A global target is rendered by a single, large-

scale configuration, whereas the local target consists of many, yet smaller items. Thus, 

the differential search efficiency might simply be attributable to a difference in object 

size and/or the degree of crowding at a given target level, with target salience being more 

influenced by crowding for local than for global targets. Such potential confounds owing 

to object size and/or crowding could alternatively (at least to some extent) account for the 

outcome of Experiment 1 (see also Navon, 1981; Kimchi, 1992). 

Experiment 2 was performed to examine these alternatives, while keeping the 

basic set of stimuli comparable. In Experiment 2, performance for a large, global target 

(identical to the global target in Experiment 1; see Figure 2C, left) was compared to a 

new small target (see Figure 2C, right): a single, local-level “T” shape presented in the 

corner of a given large L-configuration, together with another 8 small distractor L’s in a 

given configuration. Thus, the small target was shorter in the number of local “T”s than 

the local target in Experiment 1 (in terms of task-critical information being provided by 

only 1 of 9 local items in the small target configuration, as compared to 9 of 9 local items 

in the local target configuration of Experiment 1), though with a roughly comparable 

level of crowding strength (determined by the distance of the target to the neighboring 

distractor items). If global precedence is determined primarily by relative object size and 

crowding, then the small target in Experiment 2 should give rise to either a comparable or 

even a larger precedence effect than the local target in Experiment 1.  
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Methods 

            Experiment 2 presented a large target (identical to Experiment 1), which was 

compared to a single, small target (see Figure 2C, left and right panels, respectively). For 

the small target, a single T letter was placed in the corner of a large L-shaped 

configuration among 8, neighboring small L letters. All other experimental parameters 

were the same as in Experiment 1. A new group of fourteen observers (5 female; age 

from 18 to 31 years; mean age = 20.4 years) performed the experiment. All participants 

had normal or corrected-to-normal visual acuity, and received course credits or payment 

of 8 Euro per hour. 

	

Results 

Response Accuracy. Responses were again very accurate, with 99% correct 

overall. A repeated-measures ANOVA on the percentage of correct responses with the 

factors target size (large, small) and display size (4, 8, and 12) revealed the main effect of 

target size to be significant, F(1,13) = 5.76, p = .032, ηp
2 = .31: accuracy was slightly (by 

0.6%) higher with large relative to small targets. No other effects were significant (all ps 

> .5).  
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Figure 4. Mean search RTs (top left panel) and corresponding intertrial effects (top right 

panel) in Experiment 2. RTs are presented as a function of display size for large and 

small target sizes (top left), and as a function of target size for repetition and switch trials 

(top right). The graph in the bottom panel shows the normalized precedence effect in 

Experiment 1 (global vs. local) and Experiment 2 (large vs. small). Error bars represent 

±1 SEM. 

 

Search RTs. Figure 4 (left panel) presents the mean correct RTs as a function of 

display size, separately for large and small targets. A repeated-measures ANOVA of the 

search RTs, with the factors target size and display size, revealed significant main effects 

of target size, F(1,13) = 25.0, p < .001, ηp
2 = .66, and display size, F(2,26) = 308.78, p < 
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.001, ηp
2 = .96. Large targets were detected faster than small targets (mean size-

precedence effect: 445 ms), and RTs increased by 1184 ms from display size 4 to 12. As 

in Experiment 1, the two-way interaction was significant, F(2,26) = 7.38, p = .003, ηp
2 = 

.36, that is, the per-item search rate was faster for large than for small targets (129 vs. 169 

ms/item), though with overall reduced efficiency (i.e., steeper slopes) compared to 

Experiment 1 (80 vs. 133 ms/item), potentially due to inefficient search for the small 

target which impaired the overall search performance in Experiment 2.  

In a subsequent step, a normalized precedence effect was computed 

[RT(local[small])-RT(global[large])/RT(mean)] to take overall group differences in the 

mean RTs into account. The normalized precedence effects were then compared between 

Experiments 1 and 2. An independent-samples t-test revealed a significant difference, 

t(26) = 2.87, p = .008, with the global/local precedence effect being larger in Experiment 

1 (41%) than the large/small precedence effect in Experiment 2 (22%; see Figure 4, 

bottom panel). Thus, search for a large target was more efficient than search for a small 

target in Experiment 2, but the relative size of this difference was greatly reduced, by 

about half, when compared to Experiment 1. 

Intertrial Effects. Next, to examine the pattern of intertrial priming, the RTs 

were subjected to a repeated-measures ANOVA with the factors target size (large, small) 

and previous trial (repetition, switch; i.e., same or different target size on consecutive 

trials). This analysis revealed both main effects to be significant: target size, F(1,13) = 

24.29, p < .001, ηp
2 = .65, and previous trial, F(1,13) = 10.5, p < .01, ηp

2 = .45. The main 

effect of target size mirrors the above difference between large and small targets. In 

addition, search RTs were 138 ms shorter for cross-trial target size repetitions as 
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compared to switches. However, in contrast to Experiment 1, the two-way interaction 

was far from significance, F(1,13) = 0.005, p > . 9, ηp
2 = .00 – that is, there was a size 

repetition benefit, of a comparable magnitude, for both small and large targets (see also 

Figure 4, right panel). 

Intertrial Search Slopes. A follow-up analysis examined whether the object size 

that defined the target on the previous trial affected the search slope on the current trial. 

An effect of object size on the slopes would be indicative of a preattentive source of the 

effect (influencing attentional guidance), whereas lack of a slope difference would 

suggest that priming effects arise following attentional allocation to the target (Lamy et 

al., 2006). A target size target size (large, local) × previous trial (repetition, switch) 

ANOVA on the search slopes revealed only the main effect of target size to be 

significant, F(1,13) = 7.95, p = .015, ηp
2 = .38, with shallower slopes for large than for 

small targets (129 vs. 169 ms/item), mirroring the above results. Neither the main effect 

of previous trial nor the interaction between target size and previous trial was significant 

(both ps > .09) – pointing to a post-selective locus of the symmetric size-based priming 

effects.  

 

Discussion 

An increase in the object size difference between large and small targets in 

Experiment 2 confirmed that size matters in visual search: large targets were detected 

more efficiently than small targets, though – in contrast to Experiment 1 – intertrial 

priming occurred to the same extent for both target sizes. However, the effect of size-

based guidance in Experiment 2 was substantially reduced compared to the difference 



 91 

between hierarchical levels in Experiment 1 (22% vs. 41%, respectively), even though 

the basic display arrangement and the degree of crowding remained the same. In addition, 

the lack of an asymmetry in the pattern of large/small-target intertrial priming in 

Experiment 2 (as compared to a substantial difference between global and local target 

priming in Experiment 1) suggests a qualitative difference between these two search 

variants. The current search task is a size singleton search task, in which priming happens 

whenever a target size repeats (vs. switches; Maljkovic & Nakayama, 1994) along the 

scale of object size, indicating that intertrial priming is size-invariant in size singleton 

search, even though the small target is crowded with nontarget, local items. In this view, 

search defined by a rather strict global/local object hierarchy modulates performance to a 

larger extent than search on the basis of mere variations in object size, with a pattern of 

global precedence being evident in global/local search slopes and the associated priming 

effects (but less so for size-defined targets). This suggests that the global precedence 

effect in Experiment 1 is, at least to a substantial extent, determined by the relational 

structure as given by the representation of a whole versus their component parts, while 

variations in object size with comparable crowding strength as Experiment 1 reveal a 

much smaller influence. 

Next, Experiment 3 was performed to investigate the stability of the global 

precedence effect – that is, whether a global bias could be reversed into a local bias. 

 

EXPERIMENT 3 

Experiment 1 revealed a global precedence effect, manifesting in terms of both 

prioritized attentional guidance and intertrial priming, which cannot readily be accounted 
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for by relative size and/or crowding differences between target types (Experiment 2). 

Experiment 3 was designed to further examine whether the preference for global-level 

processing can be reduced, or even reversed into a bias favoring a finer (local) level. To 

this end, target prevalence was manipulated in Experiment 3 such that local targets were 

more likely to occur than global targets, increasing the behavioral relevance of the local-

level (and decreasing that of the global-level) representation. This could engender a local 

bias, facilitating the processing of local targets.  

 

Methods 

Experiment 3 was essentially identical to Experiment 1, except that target 

prevalence was manipulated, presenting a local target configuration on 75% (and a global 

target on 25%) of all trials. Participants initially completed 1 block of 60 practice trials 

(with 15 [45] trials containing a global [local] target, respectively), followed by 720 

experimental trials (180 [540] global [local] search targets). The experiment was divided 

into 12 blocks of 60 trials each. Fourteen new observers (3 male; age range: 20 to 32 

years; mean age = 27.3 years) with normal or corrected-to-normal visual acuity 

participated in the experiment, receiving course credits or payment of 8 Euro per hour. 

 

Results 

Response Accuracy. Responses were very accurate overall with 98% of correct 

responses. A repeated-measures ANOVA on percent-correct responses with the factors 

target level (global, local) and display size (4, 8, and 12) revealed no significant effects 

(all ps > .17). 
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 Figure 5. Mean search RTs (left panel) and corresponding intertrial effects (right panel) 

in Experiment 3 (with 75% local target prevalence). RTs are presented as a function of 

display size for global and local target levels (left), and as a function of the global/local 

target level for repetition and switch trials (right). Error bars represent ±1 SEM. 

 

Search RTs. Figure 5 (left panel) presents the mean correct RTs as a function of 

display size, separately for global and local targets. A repeated-measures ANOVA of the 

search RTs, with the factors target level and display size, revealed both main effects to be 

significant: target level, F(1,13) = 12.7, p < .01, ηp
2 = .5, and display size, F(2,26) = 

166.6, p < .001, ηp
2 = .93. Global targets were again detected faster than local targets 

(mean global precedence effect: 235 ms), and RTs increased by 940 ms from display size 

4 to 12. Importantly, in contrast to Experiment 1, the two-way interaction was not 

significant, F(2,26) = 1.12, p > .3, ηp
2 = .08, that is, search efficiency in Experiment 3 was 

similar for global and local targets (with slopes of 107 and 120 ms/item, respectively). In 

a subsequent step, the overall global precedence effect was compared between 

Experiments 1 and 2: an independent-samples t-test revealed a significant difference, 

t(26) = 3.18, p < .01, with the global precedence effect being larger in Experiment 1 than 
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in Experiment 2 (640 vs. 235 ms). Thus, global search RTs were still shorter than local 

RTs in Experiment 2, even though the overall global precedence effect was reduced by 

the introduction of a local bias in Experiment 2. Moreover, both target levels exhibited 

comparable slopes, indicative of essentially comparable attentional guidance for global 

and local targets.  

Intertrial Effects. Next, the RTs were subjected to a repeated-measures ANOVA 

with the factors target level (global, local) and previous trial (repetition, switch; i.e., same 

or different target level on consecutive trials) to examine the pattern of intertrial effects. 

This analysis revealed both main effects to be significant: target level, F(1,13) = 21.3, p < 

.001, ηp
2 = .62, and intertrial transition, F(1,13) = 10.5, p < .01, ηp

2 = .45. The main effect 

of target level mirrors the above global precedence effect. In addition, search RTs were 

114 ms shorter for cross-trial target level repetitions as compared to switches. However, 

in contrast to Experiment 1, the two-way interaction was not significant, F(1,13) = 0.8, p 

> .39, ηp
2 = .06,  which means that level repetition benefits occurred for both global and 

local targets to a comparable extent (see also Figure 5, right panel).  

 

Discussion 

Experiment 3 revealed a reliable global precedence effect of 235 ms – despite the 

incentive to search for the local targets. This finding shows that the global attentional bias 

cannot easily be overcome. However, the introduction of a local bias nevertheless had a 

clear effect, as demonstrated by the reduction of global precedence in Experiment 3 as 

compared to Experiment 1. Moreover, there were no significant differences in the search 

slopes between global and local targets, indicating that, when local targets were made 
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prevalent, attentional guidance was as efficient for local as for global search. Overall, this 

pattern of results shows that the availability of the local level representation can be 

increased to a certain extent, without however effectively abolishing the global 

precedence effect. 

The cross-trial contingency analysis once again revealed an RT benefit for global 

target repetitions (as seen in Experiment 1), but this time an effect of comparable size 

also emerged for local target repetitions (whereas there was no benefit at all in 

Experiment 1). Thus, when attention was manipulated to prioritize the local level, 

attentional settings were likely adjusted to a somewhat finer scale, and priming effects 

manifested for both global- and local-level targets.  

Taken together, the results of Experiment 3, while being consistent with those of 

Experiment 1, additionally show that a local bias can effectively reduce (though not 

completely overcome) global precedence, while enabling local-level target priming. – 

Next, in Experiment 4, we investigated whether changes in global precedence can be 

dynamically adjusted via a changing global/local bias. 

 

EXPERIMENT 4 

Experiment 3 yielded a reduced, but nevertheless reliable global precedence effect 

even when a local bias was introduced. Next, in Experiment 3, we further investigated 

whether global precedence can be modulated to adjust to a changing likelihood of 

global/local targets. To this end, target prevalence was manipulated across three phases of 

Experiment 4, by first presenting equally frequent global and local targets (phase 1), 

followed by more frequent local targets (phase 2), and subsequently more frequent global 
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targets (phase 3). This change of target prevalence across the experiment allowed us to 

examine whether attentional guidance and object-level priming can dynamically adjust to 

the prevailing target level.  

 

Methods 

Experiment 4 was essentially identical to previous experiments, except for a fixed 

set size of (always) 12 Navon stimuli. Moreover, target prevalence was manipulated 

across the experiment, presenting equally frequent global (50%) and local (50%) targets 

in phase 1 (as in Experiment 1). Subsequently, local targets were shown more frequently 

(i.e., they were presented on 75% of trials) in phase 2 (similar to Experiment 3). Finally, 

global targets were presented in 75% of all trials in phase 3. Participants initially 

completed 1 block of 60 practice trials (with 30 [30] trials containing a global [local] 

target, respectively), followed by each 360 experimental trials in phase 1 (180 [180] 

global [local] targets), phase 2 (90 [270] global [local] targets), and phase 3 (270 [90] 

global [local] targets). Note that the overall prevalence of global and local targets 

remained equal across the entire experiment. The experiment was divided into 18 blocks 

of 60 trials each. Nineteen new observers (7 male; age range: 19 to 28 years; mean age = 

23.8 years) with normal or corrected-to-normal visual acuity participated in the 

experiment, receiving course credits or payment of 8 Euro per hour. The sample size was 

larger in Experiment 4 because of an additional condition (i.e., experimental phase) that 

each observer completed. 

 

Results 
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Response Accuracy. Responses were once again very accurate overall: 99% 

correct, on average. A repeated-measures ANOVA on percent-correct responses with the 

factors target level (global, local) and phase (1, 2, 3) revealed no significant effects (all ps 

> .15).  

 

 

Figure 6. A. Mean search RTs (left panel) and corresponding priming effects (right 

panel) in Experiment 4 (with variable target prevalence). RTs are presented as a function 

of the experimental phase for global and local target levels (left). The panel on the right 

shows priming effects (i.e., intertrial switches minus repetitions) as a function of phase 

for global and local target levels. Note that global and local targets were equally 

prevalent in phase 1, followed by phase 2 which presented more prevalent local targets 
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(75% of trials), and finally more prevalent global targets (75% of trials) in phase 3. B. 

Left and right panels show the corresponding normalized global precedence effect (GPE) 

for each phase, and the normalized priming effects, respectively. Error bars represent ±1 

SEM. 

 

Search RTs. Figure 6A (left panel) presents the mean correct RTs as a function 

of phase, separately for global and local targets. Search RTs were analyzed by means of a 

2 × 3 repeated-measures ANOVA with the factors target level and phase. This analysis 

revealed both main effects to be significant: target level, F(1,18) = 51.2, p < .001, ηp
2 = 

.74, and phase, F(2,36) = 41.04, p < .001, ηp
2 = .7. Global targets were once again 

detected faster than local targets (mean global precedence effect: 681 ms). The main 

effect of phase was due to an overall reduction in response latencies as the experiment 

progressed (2229, 2049, and 1660 ms in phases 1 to 3, respectively). Moreover, the two-

way interaction was significant, F(2,36) = 14.6, p < .001, ηp
2 = .45, with mean global 

precedence effects of 821, 441, and 674 ms for phases 1, 2, and 3, respectively. That is, 

the global precedence effect became smaller with a local-target bias (p = .001, when 

comparing phases 1 and 2), and larger with a global-target bias (p = .001, when 

comparing phases 2 and 3). Thus, global precedence was modulated according to the 

prevailing global and local bias in each phase. 

Intertrial Effects. Similar to the previous experiments, the intertrial effects were 

examined by a repeated-measures ANOVA of the RTs with the factors target level 

(global, local), previous trial (repetition, switch), and phase (1, 2, and 3). The analysis 

revealed all main effects to be significant: target level, F(1,18) = 55.4, p < .001, ηp
2 = .76, 

intertrial transition, F(1,18) = 20.7, p < .001, ηp
2 = .53, and phase, F(2,36) = 32.5, p < 
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.001, ηp
2 = .64. The main effects of target level and phase mirrored the results of the 

above analysis. The main effect of previous trial again showed (as for the previous 

experiments) that RTs were faster, by 200 ms, for target level repetitions as compared to 

switches across trials. In addition, the target level × phase interaction was significant, 

F(2,36) = 7.8, p = .002, ηp
2 = .3, mirroring the results of the above analysis: a modulation 

of the global precedence effect with a change of the global/local bias. Finally, the target 

level × previous trial interaction was significant, F(1,18) = 4.9, p = .04, ηp
2 = .21, 

reflecting a larger priming effect for global than for local targets (258 vs. 143 ms; see 

also Figure 6A, right panel). This pattern is essentially comparable to the results of 

Experiment 1. No other significant effects were obtained (all ps > .16). Thus, importantly, 

the intertrial effects were not modulated by the change in global/local bias across the 

different phases of Experiment 3 (mean priming effects for global/local targets were 

273/109, 215/111, and 118/32 ms for phases 1, 2, and 3, respectively; the three-way 

interaction between target level, intertrial transition, and experimental phases was not 

significant: F(2,36) = 0.31, p = .74, ηp
2 = .02).  

Normalized Search RTs. Since RTs were overall reduced by 569 ms during the 

course of the experiment, the reported analyses could potentially be confounded by this 

decrease in overall response latencies. To take this into account, a data normalization 

procedure was again applied computing the normalized global precedence effects relative 

to the mean RTs in each phase [RT(local)-RT(global)/RT(mean)] (see Experiment 2). 

These normalized precedence effects were then analyzed by means of a one-way 

ANOVA with the factor phase, which revealed the phase effect to be significant, F(2,36) 

= 22.6, p < .001, ηp
2 = .56. Overall, global targets were detected faster than local targets 
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(mean normalized global precedence effect across phases: 33%), with the main effect of 

phase being due to an overall reduction of global precedence in phase 2 (37%, 21%, and 

41% in phases 1, 2, and 3, respectively). That is, the global precedence effect became 

smaller with a local-target bias (p = .001, when comparing phases 1 and 2), and recovered 

with a global-target bias (p < .001, when comparing phases 2 and 3; p > .44, for 

comparison between phases 1 and 3; see Figure 6B, left panel). This pattern shows that 

global precedence dynamically changed according to the prevailing global/local bias for 

each phase, independently of the overall decrease in RTs.  

Normalized Intertrial Effects. A comparable normalization procedure was 

subsequently also applied to the priming effects relative to the RTs in the global or local 

target condition [RT(level switch)-RT(level repetition)/RT(global, or local)]. These 

normalized intertrial effects were again examined by a repeated-measures ANOVA with 

the factors target level (global, local) and phase (1, 2, and 3). The analysis revealed only 

the main effect of target level to be significant, F(1,18) = 10.2, p = .005, ηp
2 = .36, with 

more marked priming for global than for local targets (12% vs. 3%; see Figure 6B, right 

panel). No other significant effects were obtained (all ps > .25). This pattern of results 

confirms the above results in showing a comparable difference between global- and local-

level priming irrespective of the changes in prevalence throughout the phases of 

Experiment 4. 

 

Discussion 

Experiment 4 again revealed a robust global precedence effect of 681 ms, even 

though target prevalence changed throughout the experiment. This indicates that, by 
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default, attention is strongly biased towards the global object representations. 

Nevertheless, the change of the global/local bias across phases affected the search RTs, 

as demonstrated by a reduction of the global precedence effect (by 380 ms) with a local-

target bias (phase 2), and a subsequent recovery of global precedence (by 233 ms) with a 

global-target bias (phase 3). A near-identical pattern of effects was also found for the 

analysis of normalized RTs, which depicted a global precedence of 37% initially, 

followed by a reduction with the introduction of a local bias (21%) and a recovery with 

the reintroduction of a global bias (41%). This pattern of results demonstrates a robust 

global attentional state, which can however be adjusted dynamically (i.e., across phases).  

While attention was dynamically adjustable, the cross-trial contingency analysis 

yielded no evidence of an analogous adjustment of priming. As in Experiment 1, priming 

was more pronounced for global- than for local-level target repetitions. Also, the overall 

priming effects decreased across the three experimental phases (possibly related to the 

search RTs becoming progressively faster). However, the asymmetric priming pattern did 

not change, that is, there was a constant advantage for global targets despite the changes 

of the global/local bias (and the very same bias remained evident even after the data 

normalization, i.e., after taking into account the relative decrease in RTs across the three 

phases of the experiment). This suggests that priming effects might initially be set in 

phase 1 and are not adjusted afterwards, in the subsequent phases that introduced the bias 

(by changing global- to local-level target prevalence).  

In summary, the results of Experiment 4 show that the settings of global 

precedence can be adjusted in response to dynamic changes of target prevalence, but 



 102 

priming appears to be set initially and seems not to change afterwards with a change of 

the global/local bias. 

  

General Discussion 

The present study aimed to elucidate how the hierarchical representation of visual 

objects influences the zooming of attention and its concurrent effect on processing in 

visual short-term memory (the latter evidenced by intertrial priming). To this end, four 

experiments presented a novel visual search task with hierarchical objects (Navon, 1977). 

Observers were required to detect a target among nontargets, with the target object 

defined at either the global (large-scale) or the local (small-scale) level of representation. 

In Experiment 1, we found a robust global precedence effect, that is, overall faster 

responses to global as compared to local targets (by 640 ms), along with higher search 

efficiencies, that is, shallower search RT/set size slopes for global as compared to local 

targets (80 vs. 133 ms/item). Experiment 2 then showed that a mere difference in object 

size between large and small targets can also lead to substantial variations of search 

guidance; importantly, however,  this size difference was substantially reduced by about 

half when compared to search for a hierarchical object (revealing normalized precedence 

effects of 22% and 41% in Experiments 2 and 1, respectively). Experiment 3, which 

returned to the original, hierarchical search task, was designed to to test the stability of 

global precedence by enhancing the relevance of local target representation. The results 

showed that an increase in local-target prevalence (i.e., relative local-target frequency) 

resulted in a numerically smaller, though nevertheless reliable, global precedence effect 

(of 235 ms). In Experiment 4, the global precedence effect was reliable too, but varied 
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systematically in accordance with changes of target prevalence across three experimental 

phases. Together, these findings extend the literature on the global precedence effect 

(e.g., Navon, 1977; Kimchi, 2015) by showing that global object representation can 

expedite search and enhance search efficiency beyond effects merely attributable to 

differences in object size and/or crowding strength. Moreover, the findings show that 

global precedence is sensitive to environmental statistics, in particular: the frequency of 

local/global target occurrence (see discussion below). 

The global precedence effect is typically obtained in paradigms that present 

displays with single hierarchical objects (Kimchi, 2015). In these task variants, 

differences between global and local object representations reflect differential processing 

of hierarchical object levels of a given stimulus that is currently being attended. 

However, global precedence may also manifest at preattentive stages of processing 

(Mattingley et al., 1997; Conci et al., 2009). With multiple hierarchical stimuli, visual 

search studies have shown that detection of a global configuration is more efficient than 

search for a local item arrangement (Conci et al., 2007a, 2007b; Conci et al., 2011; Deco 

& Heinke, 2007; Donnelly et al., 1991; Nie et al., 2016). In agreement with these 

findings, the current results show that attention is allocated predominantly on the basis of 

the prevailing global object representation, while being less sensitive to local detail.  

Intertrial priming of global/local target levels 

Our findings not only replicate the basic global precedence effect in a novel visual 

search task, but also provide new evidence that global/local object levels have differential 

consequences on selection history. For example, in Experiment 1, there was priming of 

the repeated global target level from one trial to the next. By contrast, there was no 
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reliable priming effect for local target repetitions. This lack of intertrial priming for local-

level repetitions cannot be explained in terms of relative size and/or crowding differences 

between global and local targets, as Experiment 2 (in which crowding strength in the 

small target was similar to the local target in Experiment 1) revealed no asymmetry of 

priming when comparing large versus small targets, suggesting that priming can happen 

along the scale of object size without any biases. In addition, with an increase in local 

target prevalence, priming also manifested for local target repetitions in Experiment 3, 

with effects statistically comparable to priming of the global target level. Finally, in 

Experiment 4, the prevalence of global and local targets was systematically varied across 

three experimental phases (starting with equal frequency in phase 1). As in Experiment 1, 

a more robust priming effect was observed for global than for local target repetitions, 

which did, however, not change with varying target prevalence. In other words, whereas 

the global precedence effect varied systematically with the changes in global/local target 

prevalence across phases, the asymmetric priming effect was unaffected by the changes 

in global/local target prevalence. This indicates that attention and (short-term) memory 

sources of global/local processing are dissociable within one and the same search task.  

Interestingly, global-level priming – the benefit for global targets on global-level 

repeat versus switch trials – appeared to be comparable in magnitude across three 

experiments (155, 159, and 258 ms in Experiments 1, 3, and 4, respectively) and to 

change relatively little with a manipulation of target prevalence across experiments3. By 

contrast, local-level priming showed a much larger variability, being reliable only when 

local targets were consistently more prevalent throughout a longer ‘phase’ of trials (e.g., 

                                                
1In Experiment 4, a somewhat larger priming effect may have occurred because display 
size was constantly at 12 items, rather than varying (as in Experiments 1 to 3). 
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in Experiment 3); also, priming at different size scales appeared to be reliable whenever 

the size-defined target feature repeated (vs. switched) across trials, indicating that 

intertrial priming in size singleton search is size invariant (Experiment 2). Overall, these 

findings suggest that global-level priming operates rather automatically, and that local-

level priming is not engaged by default.  

Experimental studies that investigated the role of priming in visual search mostly 

presented objects that, across trials, varied in their simple-feature or feature-conjunction 

description (see Krummenacher & Müller, 2012; Lamy & Kristjánsson, 2013, for 

reviews). However, priming not only occurs for individual features and their 

conjunctions, but also at the level of complete-object representations (Kristjánsson et al., 

2008), suggesting that separable features of a given target object are combined to form an 

integrated memory representation that may modulate preattentive (Müller et al., 2004) 

and/or postselective (Huang, Holcombe, & Pashler, 2004) stages of visual processing, 

influencing perceptual processing in the following trial episode(s). The current study 

extends these findings by showing that hierarchical levels of a given target object are 

represented asymmetrically in memory: Global object levels lead to effective priming, 

whereas local object levels are – by default – not facilitated to the same extent across 

trials. Several analyses performed on the present data were designed to specify the critical 

stage(s) at which object-level priming occurs. The results showed that the search RT 

slopes were unaffected by level repetitions versus switches, indicating that priming 

derives from processes engaged subsequent to attentional allocation at the target location. 

Moreover, analyses of response priming also revealed no evidence of level repetition 

benefits being enhanced when the required response repeated versus switched. Taken 
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together, this pattern suggests that object-level priming occurred (i) at some postselective 

stage of processing and (ii) prior to the selection (and execution of) a motor response. 

Given this, priming is likely to derive from some form of top-down target template (i.e., 

short-term memory) that – across trials – selectively facilitates the identification of the 

target at a global object level. By contrast, local object levels are not represented with 

comparable consistency across trials (priming of local targets was lower or completely 

absent and showed a reliable facilitation only when local targets were highly prevalent).  

A different line of work also investigated repetitions across levels in the classic 

Navon global/local paradigm, albeit only employing single hierarchical configurations 

presented in isolation (e.g., Hübner, 2000; Lamb & Yund, 1996, 2000; Lamb et al., 1998; 

Robertson, 1996; Ward, 1982). These studies, in general, showed a benefit when a target 

was repeatedly present at the same level – without major differences in priming across 

object levels even when the target configuration or the response changed (Filoteo et al., 

2001; Robertson, 1996). This lack of a global/local asymmetry seems to be at odds with 

the current results. We suggest that the crucial difference between these studies is the 

type of task employed. When attention is already engaged at the location of a hierarchical 

target object (as in the standard Navon task), then both object levels can be represented 

across trials, leading to priming for both global and local levels. However, in a search 

task, attention is typically guided by preattentive object representation, which primarily 

codes for the global object level (e.g., Conci et al., 2007a; Deco & Heinke, 2007). It 

appears that this asymmetry between global and local levels not only affects the zooming 

of attention in search, but also the representation of the corresponding target-critical 

object level across trials. Thus, some form of target template may affect the zooming of 
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attention across trials, and this target representation is, by default, biased towards global 

object representation. 

Target prevalence in hierarchical search 

Our results also show that global precedence changes with the prevailing 

environmental statistics: In Experiment 3, we introduced a consistent local bias, with 

local targets occuring in 75% of all trials. This local target prevalence effectively reduced 

the global precedence effect by about 60% (when compared to Experiment 1) and the 

differences in global/local search efficiency, measured in terms of search RT slopes, 

dramatically disappeared. Despite this large reduction of global precedence, global 

targets were still prioritized in search (i.e., the direction of the precedence effect did not 

reverse to favor local targets in Experiment 3). However, the frequent local targets in 

Experiment 3 did lead to significant local-level priming (comparable in magnitude to 

global-level priming). This pattern suggests that the default state of global precedence 

cannot be effectively reversed to facilitate search for prevalent local targets; rather, local-

level priming occurs in addition to the global-level repetition benefits. Thus, global-level 

repetitions are encoded automatically, whereas local-level repetitions only take effect 

when there is a persistent incentive for task engagement (e.g., a consistent local bias in 

Experiment 3). 

The results from Experiment 4 further suggest that systematic changes of target 

prevalence can lead to concurrent modulations in the size of global precedence during 

search. However, no comparable modulation occurred for the pattern of priming effects, 

which suggests that object-level priming is less dynamic than level-specific search 
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guidance. Rather, priming appears to be primarily determined by initial phase and 

remains stable afterwards with changes of the global/local biases. 

In general, targets tend to be easily missed when they appear infrequently across 

trials (Menneer, Donnelly, Godwin, & Cave, 2010). Search for rare targets is usually 

associated with a shift of the decision criterion, rather than a loss in perceptual sensitivity 

(Wolfe & Van Wert, 2010; Menneer et al., 2010). In addition, with two possible targets, a 

target that is presented with a higher level of prevalence may lead to enhanced 

performance at the expense of the less prevalent target (Godwin, Menneer, Cave, & 

Donnelly, 2010). Conversely, in the current experiments, prevalence modulated the 

efficiency of attentional guidance towards global or local object levels (as reflected in the 

search RT slopes). Target prevalence may thus be considered as engendering a top-down 

bias that influences attentional zooming towards global versus local levels. 

A theoretical account of the default (global) attentional state 

The present results might best be described in terms of a conceptual account of 

the default (global) attentional state within the framework of Reverse Hierarchy Theory 

(RHT, Ahissar & Hochstein, 2004). In this view, visual input is initially transmitted in 

parallel to high levels of processing, which generate a global percept or scene gist that 

guides attention. Local detail, in turn, is only available via recurrent connections that 

provide feedback to lower levels of representation in order to obtain a sufficient degree of 

zooming for extracting finer-grained local object information.  

On the basis of RHT, we assume that attention is set by default towards a global 

level of object representation. Accordingly, initial visual scanning of a given display 

typically operates at a global level. Consequently, a global target is more conspicuous 
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than a local target – which requires attention to be switched from the default global 

“comfort-state” to a local state, requiring a resource-demanding “zooming in” on local 

details (see also Stoffer, 1993). This process of setting attention towards a finer level of 

zooming generates additional costs for a local target, which manifest in terms of both an 

overall global precedence effect and a change in search efficiency (i.e., search RT 

slopes).  

In this view, preattentive search guidance is biased towards a global level, 

whereas a second major influence may derive from post-selective stages of processing, 

that is, a top-down implicit short-term memory that encodes target-related information 

over successive trials. We assume that, across trials, the identification of a target at a 

particular hierarchical level is influenced by some kind of target template that instantiates 

a level-specific, global bias by default (see also Nie, Müller, & Conci, 2017). 

Accordingly, intertrial priming effects would generally be stronger for global than for 

local targets, because a repetition of the global target is supported by a default ‘template’ 

that is normally lacking for local-target repetitions. Only when local-target prevalence is 

high and attentional zooming is consistently biased towards the local level will the 

corresponding (i.e., local-target) template be established and maintained, resulting in 

facilitated local-target identification across successive trials.  

Of note, according to our interpretation, the asymmetric pattern of global/local 

priming revealed in our experiments arises after a particular location has been selected by 

focal attention for local-target identification, that is, subsequent to some global visual 

scanning of the display. This change in hierarchy from global scanning to local 

identification may effectively disrupt the establishment of a local-level template. This 
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could also explain why in tasks that do not require active, global scanning of the display 

prior to target identification – that is, tasks permitting attention to be maintained 

consistently at the same location (e.g., the screen center) – local-level priming effects 

may be comparable in magnitude to the priming of global object level (e.g., Hübner, 

2000; Lamb & Yund, 1996, 2000; Lamb et al., 1998; Robertson, 1996; Ward, 1982).     

The fact that target-template matching during postselective processing is governed 

by a hierarchical bias may simply be a sequential effect of the predominant global 

structure of preattentive visual scanning as suggested by RHT (see above). In this view, 

target-template matching follows the hierarchical structure with which a given target 

(configuration) is compared to the memory representations of possible target objects. 

There is evidence that short-term (and long-term) memory representations are 

hierarchically structured (Brady, Konkle, & Alvarez, 2011; Nie et al., 2017), which in the 

current context would correspond to global and local levels of object representation. 

While global object representations are readily available to be matched with current 

visual input, matching the local detail requires zooming-in to a local level within the 

template representation, and this is associated with a cost that is hard to overcome. 

 

Conclusion 

The present study reveals a functional connection between the representation of 

objects at varying hierarchical levels and the zooming of attention. Selective attention in 

visual search is set by default at a global level, with this setting being adjustable by target 

prevalence. Intertrial priming is also dominated by global object structure, that is: global 

precedence also manifests in terms of an asymmetric pattern of object-level priming at a 
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post-selective stage of attentional processing, where level-specific target templates are 

buffered (and carried over across trial episodes) in some stable form of short-term 

memory. Our findings may be taken to indicate that, by default, attentional selection 

operates at a flexible global level of zooming alongside a stable global bias in the target 

templates of post-selective stimulus analysis, and the extraction of local detail is 

concomitant with a resource-demanding zooming-in of attention, revealing attention and 

(short-term) memory sources of global/local processing are linked yet show dissociable 

underlying dynamics. 
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Abstract 

When remembering a natural scene, both detailed information about specific 

objects and summary representations such as the gist of a scene are encoded. However, 

formal models of change detection that are used to estimate working memory capacity, 

typically assume observers simply encode and maintain memory representations that are 

treated independently from one another without considering the (hierarchical) object or 

scene structure. To overcome this limitation, we present a hierarchical variant of the 

change detection task that attempts to formalize the role of object structure, thus, 

allowing for richer, more graded memory representations. We demonstrate that detection 

of a global-object change precedes local-object changes of hierarchical shapes to a large 

extent. Moreover, when systematically varying object repetitions between individual 

items at a global or a local level, memory performance declines mainly for repeated 

global objects, but not for repeated local objects, which suggests that ensemble (i.e., 

summary) representations are likewise biased towards a global level. In addition, this 

global memory precedence effect is shown to be independent from encoding durations, 

and mostly can not be attributed to differences in saliency or shape discriminability at 

global/local object levels. This pattern of results is suggestive of a global/local difference 

occurring primarily during memory maintenance. Altogether, these findings challenge 

visual-working-memory (vWM) models that propose that a fixed number of objects can 

be remembered regardless of the individual object structure. Instead, our results support a 

hierarchical model that emphasizes the role for structured representations among objects 

in vWM.  
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Introduction 

Visual working memory (vWM) enables cognitive functions to operate 

independently of direct retinal stimulation, with current contents in vWM supporting 

goal-directed behavior. However, in order to maintain a stable representation of the 

world, only a limited amount of sensory information of an individual’s total visual input 

can be represented in vWM (Luck & Vogel, 2013, for a review). Hence, a major focus of 

studies on vWM is to describe the organizational principles by which this limited 

cognitive space can be used efficiently for the internal representation of visual input. 

Much of the work in this regard has followed from Luck and Vogel’s (1997) 

seminal study. They devised a change detection task in which a memory array of colored 

squares (varying across trials from a single square to up to 12 squares) was presented for 

a few hundred milliseconds (ms). Subsequent to a brief blank delay of about 1 second, a 

probe array was presented that contained the same items as the memory array – except 

(on half of the trials) for one object that was displayed in a different color. Observers 

were required to detect the change by giving a yes/no (two-alternative) forced-choice 

response. The results from these experiments indicated that participants had a vWM 

capacity around three to four items (Luck & Vogel, 1997). Moreover, they found that an 

individual’s capacity did not change with the number of features that combined to form a 

given object. For instance, detecting a feature change was equivalent when comparing 

objects determined by conjunctions of four features (and where all of these features could 

potentially change) with objects defined by a single feature only. This observation led 

Luck and colleagues to propose that the capacity of vWM is (relatively) fixed: there are 
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only a limited number of available slots, each one capable of storing a single object 

representation regardless of its complexity (Vogel, Woodman, & Luck, 2001).  

The slot model has been challenged from at least two perspectives, and the 

nature of vWM capacity limits remains a topic of vigorous debate. One open question 

concerns the influence of object complexity. For example, contrary to the findings of 

Vogel et al. (2001), others have shown that vWM capacity declines with increasing 

object complexity (e.g., Alvarez & Cavanagh, 2004). A second challenge arises from the 

notion that, rather than there being a limited number of available slots, vWM capacity 

may depend on a single information-limited cognitive resource. Evidence for this 

alternative view was originally provided by Bays and Husain (2008) using a variation of 

the change detection paradigm. On each trial, a sample array of colored squares was 

presented, followed by a brief delay and a subsequent test probe. The task was to report 

whether the test probe was displaced to the left or the right of the corresponding item in 

the memory array. The results showed that performance remained near-perfect for 

sufficiently large displacements even when presenting rather large set sizes (e.g., a set 

size of 8 objects, Bays & Husain, 2008). Moreover, mnemonic precision declined 

monotonically as a function of memory load – an outcome expected if vWM were 

supported by a limited-capacity resource that requires to be distributed across more 

objects as the memory load increases. In this view, retaining a small number of items can 

be accomplished with relatively high precision; but an increase in the number of to-be-

remembered items leads to a decline in the precision with which items can be 

remembered. This trade-off between quality and quantity of mnemonic representations 
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implies that memory resources can be allocated flexibly among several items stored in 

vWM to maximize mnemonic precision, given the available resources. 

Overall, these findings imply that information limits in vWM are determined 

both by the number and the precision of mnemonic representations (e.g., Luck & Vogel, 

1997; Wilken & Ma, 2004). To accommodate this, slot models have been modified to 

allow for variable representational precision within a slot (Luck & Vogel, 2013; Zhang & 

Luck, 2008). However, one contentious question that remains is how best to explain 

capacity limitations: Is the amount of visual information an individual can retain in vWM 

limited because of a limited number of slots (i.e., caused by an absolute ceiling in 

performance) or because, at some point, resources have been distributed so widely that 

the mnemonic fidelity for any given item becomes too poor for the item to be retrievable? 

Moreover, vWM models as described above tend to focus on how observers encode 

independent features or objects from rather simple arrays of segmented geometric shapes 

without considering the rather complex relational structure that is usually present in the 

natural ambient environment.  

Contrary to the simple stimulus arrays used in most vWM studies, memory for 

real-world scenes has been shown to depend largely on organizational principles, that is, 

mechanisms that impose structure on visual input. For example, when trying to remember 

natural scenes, the gist of that scene (e.g., a statistical summary, or ensemble 

representation) is encoded, in addition to the detailed information about relatively few 

specific objects (Conci & Müller, 2014; Hollingworth & Henderson, 2003; Oliva, 2005). 

Moreover, the gist can be used to guide people’s choice of which specific objects to be 

recalled (Hollingworth & Henderson, 2000). For instance, when trying to retrieve the 
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details of the scene, the gist can lead to recall of objects that are consistent with the scene, 

but were actually not present at all in the memory display (Lampinen, Copeland, & 

Neuschatz, 2001; Miller & Gazzaniga, 1998). Conversely, gist representations seem to 

facilitate the encoding of (semantic) outlier objects: items are more likely to be both 

fixated and encoded into memory when these are semantically inconsistent with the 

background scene (Hollingworth & Henderson, 2000, 2003). Arguably, these findings 

from studies with naturalistic scenes show that observers have a strong tendency to 

structure and organize a given sensory input into some higher-order regularity, that is, 

“compression” of the available information in order to spare the limited cognitive 

resources. These results seem to be strongly linked to studies that investigate the 

relational, or, hierarchical structure in objects (e.g., a global triangle composed of local 

squares, see Kimchi, 1982). For instance, the identification of local-level elements in a 

hierarchical stimulus configuration (e.g., Navon letters) is influenced by representations 

at the global object level (Navon, 1977; Wagemans, Elder, et al., 2012). Moreover, global 

levels of a target object guide attention more efficiently during visual search than local 

object levels, and this global precedence in selecting a target on a given trial is transferred 

to subsequent trials, evidencing a persistent global bias (Conci, Müller, & Elliott, 2007a, 

2007b; Conci, Töllner, Leszczynski, & Müller, 2011; Nie, Müller, & Conci, 2016; 

Wagemans, Feldman, et al., 2012). Thus, an observer’s representation of both real-world 

scenes and simpler displays with geometric objects consists not only of information about 

the individual objects but also includes structural information and a broad, gist-like 

representation of the overall information presented. 
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In fact, it has been shown that perceptual organization also plays a significant role 

in vWM – even for rather simple memory arrays. For instance, when separate objects are 

grouped together into perceptual units (e.g., by means of closure or repetition), this also 

results in better vWM performance, as each unit in the group can be encoded into a 

perceptual Gestalt, thus improving memory capacity (Woodman, Vecera, & Luck, 2003; 

Xu, 2006; Xu & Chun, 2007). Moreover, maximizing the symmetry of an object via 

completion improves vWM performance (Chen, Müller, & Conci, 2016). Together, these 

findings point to the use of organizational principles to optimize the storage of items, so 

as to relieve vWM capacity (see also Jiang, Olson, & Chun, 2000).  

Relatedly, there is mounting psychophysical evidence that even in simple memory 

displays, items are not treated independently (see Brady, Konkle, & Alvarez, 2011, for a 

review). For instance, if a display is changed from mostly dark squares to mostly bright 

squares, then observers notice this change more efficiently than a matched change that 

does not alter the global statistics of the scene (Alvarez & Oliva, 2009; Victor & Conte, 

2004). Moreover, when computing the average visual representation in simple arrays of 

items from a given display, observers discount outlier objects to only represent the 

majority of consistent items (Haberman & Whitney, 2010). Brady and Alvarez (2011) 

reported further evidence suggesting that the representation of “ensemble statistics” 

influences the representation of individual items: Observers are biased in reporting the 

size of an individual item by the mean size of all (or of potentially task-relevant) items in 

a particular display – which they interpreted as reflecting the integration of information 

about the ensemble size of items in the display with information about the size of a 

particular item. However, existing formal models of the architecture and capacity of 
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vWM do not take into account the possibility of such hierarchically structured 

representations, but only consider how many individual items are remembered when 

treated independently (Luck & Vogel, 2013; Ma, Husain, & Bays, 2014).  

In the present study, we developed a hierarchical variant of the change detection 

task to investigate how different object levels (i.e., global or local representations) are 

represented in vWM. Within each trial, multiple hierarchical shapes were presented in a 

memory array, followed by a test probe that appeared after a brief delay. Observers were 

required to memorize all objects and hierarchical levels, and to indicate whether a change 

occurred in the probe item, irrespective of the level  (global or local) where the change 

had occurred. In addition, we manipulated between-object repetition at both hierarchical 

levels, systematically varying the repetition in displays with several hierarchical objects 

presenting similar objects at global or local levels. These variations of repetition 

permitted investigating how repetitions of object identities within a given display 

potentially affect the summary representation that is generated alongside with individual 

item memory. Both hierarchical structure and object repetition are known to provide a 

structural representation and corresponding statistical information about the objects that 

are to be remembered (Kimchi & Palmer, 1982; Alvarez, 2011).  

To anticipate, our results demonstrate a form of hierarchical storage in vWM: The 

remembered object representation of individual items was biased toward the global object 

level, with better memory performance in detecting global as compared to local changes. 

Moreover, object repetitions also affected vWM capacity – with a reduction in 

performance that was evident in particular for globally repeated objects in a given 

display. This suggests that, contrary to existing models of vWM, items are not retrieved 
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as integrated and independent units, but instead, an item’s (reported) representation is 

constructed by combining global and local structure about that specific item with 

information about the set of items at a global level of the available ensemble statistics. 

 

EXPERIMENTS 1A and 1B 

Experiments 1A and 1B were performed to investigate the representation of 

object structure in visual working memory (vWM) using a variant of the change detection 

task with hierarchical shapes. Observers were presented with a memory array that 

contained varying numbers of shapes with a global/local structure. Subsequent to a delay, 

a test probe was presented that could either undergo a change at a global level, at a local 

level, or remain the same (at both levels) compared to the target item at the same location 

in the preceding memory array (see Figure 1 for examples; see also Kimchi & Palmer, 

1982). The key difference between the two experiments was the manipulation of set size, 

that is, the number of items that participants were required to remember. Set sizes were 2, 

4, and 6 in Experiment 1A, and 1, 2, and 3 in Experiment 1B. On the basis of previous 

findings from visual search studies (e.g., Conci, Müller & Elliott, 2007a, 2007b; Nie, 

Maurer, Müller, & Conci, 2016), we expected greater detection sensitivity and higher 

memory capacity for global as compared to local object representations. 
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Figure 1. Example trial sequence in Experiments 1A and 1B. Observers viewed a sample 

display that consisted of a variable number of to-be-memorized hierarchical shapes 

arranged in a circle (top panel). After a brief (blank) delay, a test display was presented 

that either presented a probe item with a change at the global object-level (left panel), a 

change at the local object-level (middle panel), or an unchanged item (right panel). 

 

Methods 

Participants. Two different groups of observers participated in Experiments 1A (N 

= 12; 8 female; age range from 19 to 32 years; mean age = 20.5 years) and 1B (N = 10; 7 

female; age range from 20 to 31 years; mean age = 22.8 years). All participants reported 

normal or corrected-to-normal visual acuity. Participants provided written consent to the 

procedure of the experiment, which was approved by the local ethics committee, in 
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accordance with the Declaration of Helsinki. They received course credits or payment of 

8 Euro per hour for their participation. 

Apparatus and Stimuli. The experiments were conducted with an IBM-PC 

compatible computer using Matlab routines and Psychophysics Toolbox extensions 

(Brainard, 1997;  Pelli, 1997). Stimuli were hierarchical shapes (as in Kimchi & Palmer, 

1982) presented in gray (8.5 cd/m2) against a black (0.02 cd/m2) background on a 17-inch 

monitor screen (1024 × 768 pixels). Each stimulus consisted of a global shape that 

subtended 2.6° × 2.6° of visual angle. Global shapes were constructed from various (13-

25) identical local shapes, arranged in an invisible 5 × 5 grid. Local shapes covered an 

area of 0.4° × 0.4°. There was a 0.15° gap between each neighboring local shape. 

Memory arrays consisted of 2, 4, and 6 hierarchical shapes in Experiment 1A, and 

of 1, 2, and 3 shapes in Experiment 1B. All shapes were presented on an imaginary circle 

of 6° radius, with positions randomly selected from eight equally spaced, fixed locations 

on the circle. Each hierarchical shape was constructed randomly from a predefined set of 

4 distinctive local shapes (squares, diamonds, and up- or downward-pointing triangles), 

thus forming 12 different shape configurations, with the constraint that global and local 

shapes were always different from each other. Target (probe) locations were randomly 

selected on each trial. Figure 1 shows an example display with set size 4, and three 

possible variants of test probes, which illustrate global and local changes, and the no-

change condition (left, middle, and right panels, respectively). 

Trial Sequence. Each trial started with the presentation of a central fixation cross 

for 500 ms. The fixation cross was followed by the memory display presented for 300 

ms; observers were instructed to memorize all presented hierarchical shapes in this 
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(memory) display at both global and local levels. Subsequent to the memory display, 

there was a blank screen for 900 ms, followed by a test probe that was presented at one, 

randomly chosen location from the preceding memory array. The task was to decide 

whether the test probe was the same (at both global and local levels) or different (with a 

change at either the global or local level) relative to the item that had been previously 

presented at the same location in the memory array. The probe item remained on-screen 

until a response was recorded. Participants were instructed to respond as accurately as 

possible without emphasizing response speed. In case of an erroneous response, feedback 

was provided by an alerting red sign (“–”) presented for 1000 ms at the center of the 

screen. Each trial was separated from the next by a 500-ms interval. 

Design and Procedure. A three-factor within-subjects design was used for both 

experiments. The independent variables were change, level, and set size. The first 

variable, change indicated the memory-probe transition and could be either present (50% 

of the trials) or absent (50%). The second variable, level, refers to the hierarchical level at 

which a potential change occurred (global or local). For a global change, the test probe 

differed from the memorized target item (at the same location) only at the global level 

(Figure 1, lower left), whereas for a local change, the test probe differed from the target 

item only at the local level (Figure 1, lower middle). The third variable, set size, had three 

levels and determined the number of items presented in the memory array: 2, 4, and 6 

hierarchical shapes in Experiment 1A and 1, 2, and 3 in Experiment 1B, respectively.  

At the beginning of both experiments, participants completed 1 block of 48 

practice trials generated randomly to familiarize them with the task. The subsequent, 

actual experiment then presented 576 trials, divided into 12 blocks of 48 trials each.  
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Data analysis. In the present experiments (as well as the subsequent ones), vWM 

performance was determined by a signal-detection-theoretic sensitivity measure: d-prime 

(see MacMillan & Creelman, 2004). For Experiments 1A and 1B, we also estimated the 

number of individual objects remembered (at global or local levels) using Cowan’s K 

(Cowan, 2001): K = (H – FA) × N, where K is the number of items stored, H is the hit 

rate, FA is the false alarm rate, and N is the number of items presented. 
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Figure 2. Mean change detection sensitivity, d-prime (A) and corresponding capacity 

estimates, K (B) in Experiment 1, presented as a function of set size for global and local 

changes (solid and dashed lines, respectively). Error bars represent ±1 SEM. Gray (set 

size: 2, 4, and 6) and white (set size: 1, 2, and 3) symbol colors represent values from 

Experiments 1A and 1B, respectively. 
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Results 

Figure 2 shows mean d-primes and corresponding Cowan’s K estimates as a 

function of set size, separately for global and local level changes. Results are combined 

across Experiments 1A (gray symbols) and 1B (white symbols).  

Experiment 1A 

D-prime. Figure 2A (gray symbols) presents the mean d-primes as a function of 

set size, separately for global and local level changes. Individual d-primes were subjected 

to a 2×3 repeated-measures analysis of variance (ANOVA) with the factors level (global, 

local) and set size (2, 4, and 6). This analysis revealed both main effects to be significant: 

level, F(1,11) = 62.1, p < .001, ηp
2 = .85,  and set size, F(2,22) = 97.03, p < .001, ηp

2 = .9. 

Global changes were detected more efficiently than local changes (mean precedence 

effect in d-prime: 0.89), and d-primes decreased (by 1.5, p < .001) as set size increased 

(from 2 to 6). The two-way interaction was not significant, F(2,22) = 2.17, p = .14, ηp
2 = 

.17: global changes yielded a comparable decrease in d-primes across set sizes as local 

changes. To summarize, change detection sensitivity decreased with increasing set size, 

and sensitivity was much greater overall for global than for local changes. In addition, the 

decrease in d-prime across set size was comparable for both object levels, with the global 

precedence in change detection being rather stable across the number of to-be-

remembered items4.  

                                                
4 Even though response speed was not emphasized in the current task instructions, we 
nevertheless performed a comparable analysis on the median response times. The results 
from this analysis mirrored the pattern of the d-prime analysis, revealing significant main 
effects of global precedence and set size but no interaction. A similar pattern of results 
was also obtained in subsequent experiments. Because both accuracy-related measures 
and analyses of response speed yield similar effects, we can safely exclude the possibility 
of a speed-accuracy trade-off in our data.  
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Cowan’s K. A subsequent analysis examined working memory capacity for global 

and local changes, that is, whether memory capacity for the global object level would be 

larger (i.e., indicative of “precedence”) compared to that for the local level. To this end, a 

further 2×3 repeated-measures ANOVA was performed on individual Cowan’s K 

estimates with the factors level (global, local) and set size (2, 4, and 6). This analysis 

revealed a significant main effect of level, F(1,11) = 52.7, p < .001, ηp
2 = .83, but no 

effect of set size, F(2,22) = 0.54, p = .6, ηp
2 = .05. The global object level was associated 

with a higher K estimate than the local level (1.97 vs. 0.47), with overall comparable K 

values across set size. The two-way interaction, was also significant, F(2,22) = 17.6, p < 

.001, ηp
2 = .62. Post-hoc comparisons showed that memory precedence for the global 

object level increased with set sizes larger than 2 (mean precedence in K: 0.46, 1.4, and 

1.59, respectively for set size 2, 4, and 6, all ts(11) > 5, ps < .001). This result shows that, 

while the representation of the global object level has a greater memory capacity 

compared to the local level, the difference between levels becomes more pronounced 

with larger set sizes. 

Experiment 1B 

D-prime. In Experiment 1B, observers were presented with smaller set sizes (1, 2, 

and 3 items) of (global/local) hierarchical shapes. Despite this reduced set size, the results 

replicated those of Experiment 1A (see Figure 2A). Figure 2A (white symbols) presents 

the mean d-primes as a function of set size, separately for global and local changes. A 

2×3 repeated-measures ANOVA of the individual d-primes, with the factors level 

(global, local) and set size (1, 2, and 3), revealed both main effects to be significant: 

level, F(1,9) = 47.5, p < .001, ηp
2 = .84, and set size, F(2,18) = 94.5, p < .001, ηp

2 = .91. 
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Detection sensitivity was again superior for global as compared to local changes (mean 

precedence effect in d-prime: 0.78), and sensitivity decreased (by 2.2) as set size 

increased from 1 to 3 (all ps < .001). Moreover, the two-way interaction was significant, 

F(2,18) = 8.2, p = .003, ηp
2 = .48: the benefit for global (relative to local) changes 

increased with larger memory arrays (mean precedence effects in d-prime were 0.27, 

0.94, and 1.13 for set sizes 1, 2, and 3, respectively). To summarize, global change 

sensitivity was much bigger overall than local change sensitivity, and this difference 

increased with set size, again indicating that change detection operates more efficiently at 

the global object level.  

Cowan’s K. Examination of working memory capacity for global and local 

changes, by means of a level (global, local) × set size (1, 2, 3) ANOVA on the individual 

Cowan’s K estimates, revealed both main effects to be significant: level, F(1,9) = 65.04, 

p < .001, ηp
2 = .88, and set size, F(2,18) = 43.6, p < .001, ηp

2 = .83. Capacity was higher 

for global than for local object levels (Ks of 1.84 and 0.64, respectively), and it increased 

(by 0.35) along larger set size. Moreover, the two-way interaction was significant, 

F(2,18) = 61.7, p < .008, ηp
2 = .87: the global precedence effect was reliable only for set 

sizes 2 and 3 (0.49 and 1.2, respectively; t(9)s > 4.6, ps < .001), but not for set size 1 

(0.04, t(9) < 1, p > .2; see Figure 2B). In other words, with single objects, observers were 

capable of remembering both levels to a comparable extent; but, as set size increased 

from 2 to 3, global object representations were more reliable than local representations 

(with the local level in fact exhibiting a reduction of memory capacity from 2 to 3 to-be-

remembered objects).  
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Discussion 

 Experiment 1 examined how the hierarchical (global/local) representation of 

objects affects vWM performance. Across both Experiments 1A and 1B, change 

detection performance was found to be superior (in terms of d-prime and K scores) at the 

global object level compared to the local level. Also, despite a general decrease in 

performance with increasing memory load, differential performance between object 

levels only emerged with larger set sizes: while change detection of a single object could 

be performed with comparable efficiency at both global and local levels, from set size 2 

onwards, the global level showed a reliable benefit compared to the local level. 

Analysis of the corresponding vWM capacity estimates revealed that observers 

could represent up to about two objects at the global level (see Figure 2B, which shows 

an asymptote at K=2 for the global level). At the local level, by contrast, observers could 

only represent up to one object; and, in fact, with larger set sizes (i.e., 3 or more objects), 

the K estimate for the local level is numerically reduced (see Figure 2B). Thus, when 

combining K values for the global and local levels, our results indicate that the memory 

capacity for hierarchical shapes taken together is at about 2.5 objects.  

 
EXPERIMENT 2 

Experiment 1 yielded a robust global precedence effect in vWM, which was 

evident both in measures of d-prime and in terms of memory capacity K – suggesting that 

the structure of to-be-remembered objects biases memory storage towards global object 

levels. Such a global bias might be related to the initial analysis of scenes in terms of 

their overall “gist” (Hollingworth & Henderson, 2003; Oliva, 2005; see also Conci & 

Müller, 2014). This representation of scene gist might in turn be related to summary 
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statistics that represent sets of objects as a group or ensemble (e.g., of the average size of 

items; Alvarez, 2011; Brady & Alvarez, 2011). In other words, the global bias in vWM 

might, to some extent, be related to the analysis of global scene properties, which 

provides a summary representation of a given memory array. 

To examine how such processes of scene analysis are related to global and local 

levels, in Experiment 2, we performed a change detection experiment with hierarchical 

shapes (essentially as in Experiment 1) but now varying the repetitions between to-be-

remembered objects. Note that feature similarity (e.g., different degrees of redness) has 

been shown to affect object representations in vWM (e.g., Lin & Luck, 2008). 

Experiment 2 always presented a set size of four objects, and repetitions among items 

were manipulated systematically at the global and local levels: In the global repetition 

condition, always two (of the four) global-level objects were identical, and were 

presented alongside with four distinctive local shapes (Figure 4, left panel). By contrast, 

in the local repetition condition, two local-level objects were always identical and were 

presented with four distinctive global shapes (Figure 4, middle panel). Finally, a baseline 

condition presented four different hierarchical objects at both global and local levels 

(Figure 4, right panel). Accordingly, the manipulation of global versus local repetition 

allowed us to examine the relative influence of processing and resolving global and local 

levels of memorized objects.  
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Figure 3. Examples of memory arrays with four hierarchical objects as presented in 

Experiment 2. In the global repetition condition (left), two pairs of globally repeated 

objects were presented, while the local shapes were all distinctive. The local repetition 

condition presented two pairs of locally repeated objects, while in turn the global shapes 

were all different from each other (middle). In the baseline condition (right), all objects 

were different from each other at both the global and local levels. 

 

Methods 

Experiment 2 was essentially identical to the previous experiments, except for a 

fixed set size of (always) 4 hierarchical shapes. Moreover, similarities between items 

were manipulated at three different levels: (i) global repetition, (ii) local repetition, and 

(iii) baseline. In the global and local repetition conditions, always two pairs of repeated 

global or local objects were presented together with four distinctive objects at the 

respectively other (local or global) level. In the baseline condition, there were four 

distinctive objects at both levels (see Figure 3 for examples). All three types of display 

(global repetition, local repetition, and baseline) were presented with equal probability in 

both change and no-change conditions. Participants initially completed 1 block of 48 

practice trials to become familiar with the task. The formal experiment was divided into 
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12 blocks of 48 trials each. Twelve new observers (9 female; age from 21 to 31 years; 

mean age = 24.9 years) with normal or corrected-to-normal visual acuity participated in 

the experiment, receiving course credits or payment of 8 Euro per hour. 

 

 

Figure 4. Mean change detection sensitivity (d-prime) in Experiment 2, presented as a 

function of the repetition level for both global and local changes. Error bars represent ±1 

SEM. 

 

Results 

Figure 4 presents the mean d-primes as a function of the repetition level, 

separately for global and local object changes. Individual d-primes were subjected to a 

2×3 repeated-measures ANOVA with the factors level (global, local) and repetition 

(global, local, and baseline). This analysis revealed both main effects to be significant: 
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level, F(1,11) = 48.2, p < .001, ηp
2 = .81, and repetition, F(2,22) = 4.02, p < .001, ηp

2 = 

.27. Global changes were detected more efficiently than local changes (mean precedence 

effect in d-prime: 1.1), comparable to the findings in Experiment 1. Moreover, post-hoc 

comparisons to decompose the main effect of repetition revealed that the mean d-prime 

(averaged over global- and local-change conditions) was reduced when comparing object 

repetitions for global relative to baseline and global relative to local conditions (mean d-

prime differences were 0.18 and 0.22, respectively, ps < .04). By contrast, there was no 

difference in memory performance when comparing local repetition with baseline (p = 

.99). The two-way interaction was not significant, F(2,22) = 2.5, p = .11, ηp
2 = .19, 

indicating that global object repetition modulated detection of changes to a comparable 

extent at both global and local levels.  

 

Discussion 

Experiment 2 replicated Experiment 1 in showing an overall global bias in vWM. 

In addition, the results revealed an increase in object repetition at the global level to 

reduce mnemonic performance (affecting changes at both object levels in a similar 

manner). With multiple different to-be-memorized hierarchical shapes, observers’ reports 

of a change of a given hierarchical shape displayed a cost deriving from the globally 

repeated objects in the memory array.  

Our finding is compatible with the idea that vWM capacity reduces with 

competition between similar representations (Luck & Vogel, 2013). This notion would 

predict capacity (or, representational precision) to be lower when the to-be-remembered 

items are similar to each other. However, some of the available evidence appears to 
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suggest that similarity-based perceptual grouping results in more accurate mnemonic 

representations, thus facilitating memory performance (Lin & Luck, 2008). It is possible 

that ensembles are represented in two different formats: either as ensemble averages, 

representing the average feature of to-be-remembered objects (as in simple feature 

estimation, see Bronfman, Brezis, Jacobson, & Usher, 2014); or, alternatively, as 

ensemble repetitions, representing the common features of presented objects, which is 

evident with high-order object representations in natural scenes. Accordingly, an 

ensemble may have distinct influences on the representation in vWM. For similar colored 

squares (Lin & Luck, 2008), ensemble averages of homogenous colors will lead to more 

precise mnemonic representation, whereas for globally repeated objects in the current 

experiment, ensemble repetitions likely provide an overall coarse representation of the 

entire display (Cohen, Dennett, & Kanwisher, 2016). Thus, our results suggest that 

ensemble repetitions of hierarchical memory representations interfere with mnemonic 

performance for individual objects. A potential alternative (not mutually exclusive) 

account for the reduction in performance with global object repetitions might be that 

observers were more likely to confuse, or “misbind” the memorized items when these 

were globally repeated (e.g., Bays, Wu, & Husain, 2011, for illusory bindings in vWM), 

illustrating once again the special role of the global scene layout in vWM, which would 

still be consistent with the account of global ensemble coding.  

 

EXPERIMENT 3 

Experiments 1 and 2 suggest that object structure influences vWM, such that more 

accurate information is retained from the global (relative to a local) object representation. 
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One potential reason for this difference in vWM performance, which results in an 

advantage for global relative to local object levels, could simply be related to stimulus 

encoding, that is, processes reflecting basic perceptual processing. Therefore, to ensure 

that observers had sufficient time to encode the stimuli presented, in Experiment 3, we 

varied the duration of the sample array, comparing a 300-ms presentation time of the 

sample display (as used in Experiments 1 and 2) with a longer presentation duration of 

600 ms. Note that both presentation durations are consistent with typical encoding 

durations in standard vWM experiments (see Luck & Vogel, 2013, for a review), whereas 

a much shorter or longer presentation duration might additionally involve the recruitment 

of iconic memory or internal rehearsal of the memorized content (Baddeley, 1986), 

respectively. A previous estimate based on performance in a change detection task 

suggested that the rate of encoding objects into memory occurs at approximately 50 ms 

per item (Vogel, Woodman, & Luck, 2006). Thus, the longer stimulus duration provided 

substantially more time to perceptually encode the stimulus configurations, potentially 

leading to improved local-level detection performance if time were indeed a limiting 

factor. 

Methods 

Experiment 3 presented the baseline condition of Experiment 2 (with a fixed set 

size of four items, presenting distinctive shapes at both global and local levels), but with 

two different encoding durations of the memory array (presenting either a 300-ms or a 

600-ms display duration, randomly intermixed within blocks). Participants initially 

completed 1 block of 48 practice trials, followed by 384 experimental trials. The 

experiment was divided into 8 blocks of 48 trials each. Eleven new observers (8 female; 
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age from 21 to 31 years; mean age = 22.5 years) with normal or corrected-to-normal 

visual acuity participated in the experiment, receiving course credits or payment of 8 

Euro per hour. 

 

 

Figure 5. Mean change detection sensitivity (d-prime) in Experiment 3, presenting global 

and local changes for short and long encoding durations. Error bars represent ±1 SEM. 

 

Results 

Figure 5 presents the mean d-primes as a function of the encoding duration, 

separately for global- and local-level changes. Individual d-primes were subjected to a 

2×2 repeated-measures ANOVA with the factors level (global, local) and encoding 

duration (300, 600 ms). This analysis revealed only a significant main effect of level: 

F(1,10) = 37.5, p < .001, ηp
2 = .79. Global changes were detected more efficiently than 
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local changes (mean precedence effect in d-prime: 1.01). Importantly, however, there 

were no effects involving the factor encoding duration (ps > .14), suggesting that global 

precedence in working memory is not due to encoding limitations that might arise 

because of a too short duration of the presented memory array. 

 

Discussion 

We again replicated a robust global precedence effect in vWM as already seen in 

the previous experiments. Our results also demonstrate that performance was not 

significantly influenced by variations of the encoding duration: Reliable global 

precedence effects in vWM were found with both shorter (300 ms) and longer (600 ms) 

durations of the memory display. Following prolonged exposure of a stimulus array, 

mnemonic representations should be constrained by limits of storage only (Bays, 

Gorgoraptis, Wee, Marshall, & Husain, 2011). Thus, our findings likely indicate that the 

global/local hierarchy primarily reflects limitations in storage capacity, rather than 

limitations in perceiving, that is, encoding of the presented objects. 

 

EXPERIMENT 4 

The present results demonstrate that structural relations in objects are represented 

in vWM, revealing a global precedence effect that might originate from limited 

mnemonic resources. However, a potential alternative explanation to account for these 

results might be that global object representations are to some extent more salient than 

corresponding local object representations. For instance, a global change comprises a 

change to a single, large (global) configuration while all local elements remain constant. 
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Conversely, in the case of a local change, many, small (local) shapes undergo a change 

(and the global configuration remains the same). Thus, differences in the number of the 

depicted changes, differences in relative size and/or the amount of crowding between 

change levels, may provide potential confounds that could alternatively (at least to some 

extent) account for our findings (see also Navon, 1981; Kimchi, 1992).  

Experiment 4 was performed to test whether the detection of changes at global 

and local object levels differs when the changes (at varying levels) occur independently 

of each other. To this end, Experiment 4 essentially repeated the 300-ms presentation 

duration condition of Experiment 3, except that global- and local-change detections were 

now presented in separate sessions, such that participants only needed to memorize one 

task-relevant object level while ignoring the other level in the respective session. If the 

global bias is predominantly related to vWM maintenance of multiple hierarchical levels, 

we would predict that global memory precedence is substantially reduced when only one 

specific object level is relevant, while any residual differences might be taken to reflect 

additional influences that relate to stimulus saliency (e.g., relative size, or crowding). 

 

Methods 

Experiment 4 presented the 300-ms display duration condition of Experiment 3, 

but with global and local changes presented in separate halves of the experiment 

(counterbalanced across participants). A new group of eleven observers (5 female; age 

from 18 to 31 years; mean age = 20.4 years) performed the global and local change-

detection tasks in two separate, consecutive sessions. Each session started with a practice 

block of 24 trials, followed by 96 experimental trials that were divided into 4 blocks of 
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24 trials each. All participants had normal or corrected-to-normal visual acuity, and 

received course credits or payment of 8 Euro per hour.  

 

Figure 6. Mean change detection sensitivity, d-prime (A) in Experiment 4, with global 

and local changes presented in separate halves of the experiment. (B) Global precedence 

effect (global minus local d-primes) in Experiment 3 (300-ms encoding duration, in 

which global and local change trial were mixed within blocks) and in Experiment 4 (with 

global and local change trials presented in separate blocks). Error bars represent ±1 SEM. 
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Results 

Figure 6A presents the d-prime values separately for global and local change 

detections. Paired t test revealed that d-primes for detecting a global change were 

significantly higher than local change detections: 3.06 vs. 2.52, t(10) = 5.48, p < .001, 

indicating that the global object level is still processed with priority even when only one 

hierarchical level is task-relevant during an entire half of the experiment. 

In a next step, individual d-primes were subjected to a 2×2 mixed-design 

ANOVA with the within-subject factor level (global, local) and the between-subject 

factor block type (mixed [Experiment 3], separate [Experiment 4]). In the mixed block 

type, global and local change trials were presented in mixed order within a given block of 

trials (Experiment 3, 300-ms encoding duration), while for the separate block type global 

and local changes were presented in separate blocks (Experiment 4). The results from this 

analysis revealed significant main effects of level: F(1,20) = 73.1, p < .001, ηp
2 = .78 and 

of block type: F(1,20) = 57.1, p < .001, ηp
2 = .74. The main effect of level simply depicts 

the above mentioned global precedence effect (i.e., the difference in d-prime between 

global and local change detections), which was present with both mixed and separate 

presentations. Moreover, mixed, relative to separate, block types led to substantially 

reduced change detection sensitivities (d-primes: 0.98 vs. 2.8, see Figures 5 and 6A, 

respectively). Importantly though, our analysis also revealed a significant level by block 

type interaction, F(1,20) = 8.6, p < .009, ηp
2 = .30, showing that the global precedence 

effect in the current experiment (separate block type) is significantly reduced as 

compared to Experiment 3 (mixed block type; global precedence in d-primes: 0.54 vs. 
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1.11, respectively; see Figure 6B). This finding suggests that global precedence is 

substantially reduced with the number of task-relevant object levels.  

As described above, monitoring only one task-relevant object level in Experiment 

4 (as opposed to both object levels in previous experiments) led to a substantial increase 

in the overall detection sensitivity. However, this overall difference in performance might 

additionally have influenced the size of the global precedence effect. We therefore 

calculated a relative global precedence score that normalizes the difference between 

global and local change detections relative to the default, global level of performance 

(i.e., [global – local]/global d-primes). This relative difference score revealed that global 

precedence in Experiment 4 modulated detection performance by 17.6%, as compared to 

a much larger difference of 72.1% in Experiment 3. 

 

Discussion 

Without having to remember both global and local object levels simultaneously, 

the performance for both global- and local-change detections was found to be 

significantly enhanced. Nevertheless, we still obtained a reliable (but reduced) global 

precedence effect that showed a bias in processing global-level object information. This 

suggests that a small, but yet reliable part of the global precedence effect might be 

attributed to differences in saliency between global and local levels of representation 

(relative global precedence effect of 17.6%). Importantly, however, the larger part of the 

global precedence effect (i.e., 72.1%) appears to be related to hierarchical-level 

differences as they are maintained in vWM. 
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General discussion 

Studies that investigate vWM typically present relatively simple features or 

objects that are assumed to be represented independently of each other. However, recent 

evidence suggests that, rather than representing only individual items, vWM also 

provides a structural representation, that is: ensemble statistics relating to aspects of the 

“gist” of the presented scene (Alvarez, 2011; Brady & Alvarez, 2011; Brady et al., 2011). 

In an attempt to elaborate this notion, the aim of the present study was to investigate how 

hierarchical relations within and across objects are represented in vWM. Our experiments 

yielded four main results, namely: (i) vWM representations are organized in a 

hierarchically structured fashion reflecting the global/local structure of the perceptual 

input; (ii) repetition between items particularly at a global object level gives rise to vWM 

capacity detriments; (iii) global precedence effects in the current change detection 

paradigm primarily reflect the way items are stored during the retention phase; and (iv) 

this global benefit mainly reflects the globality of memory itself, and can only be 

partially attributed to differences in saliency across object levels. 

 

Beyond objects and features: hierarchical representations in vWM  

To explore the hierarchical structure within given object representations in vWM, 

we introduced a change detection task with hierarchical, global/local shapes, in which a 

change occurred either at the global or the local level of a given target object. We found a 

robust pattern of global precedence: Measures of memory performance (d-prime, 

Cowan's K) for the global object level revealed higher sensitivity and larger capacity 

compared to measures for the local level. Importantly, this global memory bias increased 
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significantly with larger set sizes, reaching an asymptote at a K value of approximately 2; 

the corresponding local memory capacity was overall smaller, with a K value of about 1 

that decreased to 0.5 with larger memory arrays. Thus, limited memory resources are 

distributed asymmetrically across object levels: with an increased memory load, the 

global benefit becomes larger. Moreover, the total amount of visual information 

maintained in vWM turned out to be rather stable, with a maximum capacity of around 

K=2.5 items when global and local levels are pooled together (see Hardman & Cowan, 

2015, for a comparable procedure). This is consistent with the view that, overall, there is 

a limited amount of visual information that can be held in vWM (Alvarez & Cavanagh, 

2004; Bays & Husain, 2008; Ma, Husain, & Bays, 2014). Our study extends this idea by 

showing that the distribution of limited memory resources is hierarchically organized 

within a given object, reflecting the inherent, to-be-remembered visual structure.  

            Any measure of memory capacity is meant to estimate its underlying “units”, 

where what exactly counts as the proper unit depends on the structure of the represented 

information. For instance, it has been suggested that objects are represented as separate 

visual features that are stored in independent “channels”, each with their own capacity 

limitation (e.g., color or orientation; Magnussen, Greenlee, & Thomas, 1996), or in terms 

of integrated object representations (Luck & Vogel, 1997; Vogel et al., 2001). Recent 

evidence suggests that there are significant benefits to remembering multiple features of a 

single object compared to the same set of features distributed across multiple objects 

(Fougnie, Asplund, & Marois, 2010; Olson & Jiang, 2002). For instance, it is easier to 

store five different colors and five orientations that define the same five objects than to 

store the same 10 features for separate objects (Fougnie, Cormiea, & Alvarez, 2013). The 
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finding that vWM improves with fewer discrete objects (Olson & Jiang, 2002; Xu, 2002) 

has been taken to suggest that the representations that underlie vWM are object-based 

(Luck & Vogel, 1997; Vogel et al., 2001). According to this notion, vWM can store a 

small, fixed number of objects and integrate multiple features into a single object 

representation. However, there is also evidence showing that vWM representations are, in 

fact, not purely object-based. For instance, having to remember more features engenders 

significant costs in terms of the fidelity of each feature representation (Fougnie et al., 

2010). Moreover, attending to one relevant feature reduces the mnemonic precision of a 

second task-irrelevant feature of the same object, such that memory precision for multiple 

features of an object may vary as a function of the attentional engagement devoted to 

each feature (Shin & Ma, 2016; Swan, Collins, & Wyble, 2016). Such results indicate 

that what counts as the right “unit” in vWM is neither a fully integrated object 

representation nor a collection of independent features. Instead, vWM units appear to 

encompass rather flexible organizational principles. In light of the current results, the 

actual unit in vWM would appear to reflect a hierarchical structure, with the global-level 

representations of this “unit” being prioritized for vWM storage, while less resources are 

assigned to local-level object representations. 

 

Beyond slots vs. resources: hierarchical ensembles in vWM 

To further investigate the relational structure between object representations, we 

tested the role of inter-item repetition in Experiment 2, in which pairs of hierarchical 

objects were similar either at the global or at a local level, compared to a baseline 

condition in which none of the objects were similar to other items at the global/local 
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object levels. While replicating the basic pattern established in Experiment 1, we further 

observed that repetition at the global level interfered with the detection of both global and 

local changes. Local repetition, by contrast, appeared to have no influence (with 

performance comparable to the baseline level).  

            Prominent theories of vWM have proposed that memory limitations arise entirely 

from the availability of some limited resource that is either quantized into slots (Zhang & 

Luck, 2008) or continuously divisible (Alvarez & Cavanagh, 2004; Bays & Husain, 2008; 

Wilken & Ma, 2004). These notions, and the supporting studies, leave open the question 

of how contextual or ensemble representations interact with representations of individual 

items in vWM. A potential account in this regard assumes that the representation of 

ensemble statistics could take up space in memory that could otherwise be used to 

represent information about individual items (Cohen, Dennett, & Kanwisher, 2016). In 

agreement with this view, our findings show that vWM representations are biased 

towards the global level and interference arises in particular among similar global-object 

representations. Restated, a global ensemble representation of the entire display impairs 

(via repetition) both global and local memory representations of individual items, 

illustrating that the different hierarchical object levels of vWM representations are linked 

and dependent on each other, rather than being maintained independently (Fougnie et al., 

2013).  
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Figure 7. Example memory array (A) and a schematic model of hierarchically structured 

representations in vWM, designed to illustrate the interaction between inter-object 

ensemble representations (B) and storage of individual items and their intra-object 

(global/local) relations (C). At an inter-object level (blue arrows), the global display 

characteristics are encoded into an ensemble representation (B). In addition, individual 

items are stored at an intra-object level (C), with separate representations of the global 

and local levels of a given to-be-remembered object (green arrows). The model also 

incorporates inhibitory links between different levels (red, dashed arrows), reflecting the 

reduction of mnemonic precision from the inter- to the intra-object level (e.g., for 

multiple, repeated items), and from the global to local mnemonic representations, to 

account for our finding of a robust global precedence in vWM. 
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A theoretical model of hierarchical working memory            

Recently, a hierarchical feature-bundle model has been proposed with the aim to 

integrate both object- and feature-based effects in vWM (Brady et al., 2011). According 

to this model, each unit of vWM is a hierarchically structured feature bundle, consisting 

of an integrated object representation at the top level and individual features represented 

at a lower level. The main idea of the model is that a unit in vWM is determined by the 

top level representation of an integrated object, while, at the same time, the lower level 

elemental feature of an object can be accessed by means of top-to-bottom decomposition 

within a given bundle.  

In light of the current findings and in general agreement with the feature-bundle 

model, we propose that various levels of representation of a set of items in vWM are 

likewise stored in a hierarchically organized fashion. In a process paralleling how people 

memorize real scenes (Oliva, 2005), observers might represent summary statistics (i.e., 

the “gist”) of the entire memory display in addition to information about each specific 

item. Each item in turn has its own global and local representation, which are also 

maintained in terms of a hierarchically structured representation with global and local 

object levels. This hierarchical storage format within and across individual items would 

permit observers to represent not only the individual identity of the to-be-remembered 

items, but also the structural relations (global/local) across the display layout. However, 

storing the various object levels plus the global ensemble might come at an overall cost, 

which is reflected in the overall low vWM capacity of about 2.5 items (as compared to 

capacity estimates of about 4 with displays that present relatively simple colored squares; 

e.g., Luck & Vogel, 1997).   
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A schematic model to accommodate the various levels of representation is 

depicted in Figure 7 (on the basis of Brady et al., 2011). At an intra-object level, the 

vWM representation of a given individual item consists of two hierarchically structured 

layers, with a global object representation being stored at the top level and the 

corresponding local representation at the bottom level (Figure 7C). In this view, 

representational units in vWM are conceived as being hierarchically structured across 

global/local levels, thus reflecting the global and local object properties of the stimulus 

input. The two layers of the representation are not equal; rather, the global level receives 

a representational bias. Consequently, the global object representation would be available 

at the top-level unit, whereas information concerning the local object would be stored at 

the lower hierarchical level. Critically, the top-level unit receives priority such that the 

majority of the available mnemonic resources are used to maintain the global-level 

representation. By contrast, the subordinate, lower-level representation of local object 

information would receive only a smaller amount, that is, the remaining resources (as 

indicated by the dashed arrow) – in line with the current observation of global precedence 

in change detection. Of note, in the current experiments, an asymmetry in performance 

primarily results from global and local levels reflecting the inherent hierarchical structure 

of a given object. However, comparable differences in processing can also be observed in 

non-hierarchical objects with multiple features where an asymmetry in mnemonic 

performance results from varying levels of attentional engagement (Shin & Ma, 2016; 

Swan et al., 2016).   

Moving beyond individual vWM representations, at an inter-object level, the 

entire display layout is retained in particular with reference to the global object 
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characteristics; as a result, globally similar items are merged into a single ensemble 

representation (Figure 7B). This ensemble representation essentially reflects the observed 

global bias overall, that is, global precedence and repetition effects might both arise from 

the global-level representation – enhancing the global objects but also causing 

interference as revealed by the impaired mnemonic representation of the entire individual 

object (dashed arrow).  

One counterintuitive prediction of the model is that if the objects all had the exact 

same shape at the global level, performance should actually be worse than if there were 

several distinct global shapes presented. This is obviously not a likely experimental 

outcome as the task should be much easier when shapes at a given level are the same. A 

potential explanation might be that for homogeneous global display representations, 

redundant information presented at all item locations obviates the need to encode separate 

units of information from each location, but simply requires memorizing the repeated 

structure overall, thus reducing vWM load. A potential constraint of our schematic model 

therefore is that it can only account for competition between several repeated global 

object representations in heterogeneous displays (as in the example of Figure 7B), which 

leads to an overall impairment of individual (item) memory representation by means of 

ensemble coding.  

In brief, this schematic model extends previous vWM models by taking into 

account the hierarchical relations both within and across objects, thus (to some extent) 

reflecting the typical structures in our natural environment with both representations of 

the overall scene layout and the more detailed object information. In this view, items are 

stored across three layers of representation, from the overall scene layout to the fine, 
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detailed object information at the local level. Importantly, the model encompasses 

interference from top to bottom layers to illustrate the hierarchical organization of visual 

information, which in general assigns priority to the global level.  

 

Conclusion 

The present study reveals a functional connection between the representation of 

objects at varying hierarchical levels and the organization of vWM. Object 

representations in vWM are, by default, biased towards the global level, with the global 

bias existing across varying encoding durations and mainly reflecting the globality of 

memory itself. This suggests that global precedence in change detection primarily 

originates from hierarchically structured representations that are held in vWM. Memory 

performance is also influenced by the ensemble structure of the displays, that is: the 

interference of repetition among objects at the global level manifests in terms of impaired 

mnemonic representations for both global and local object levels. Together, our findings 

challenge models that propose that a fixed number of independent objects can be 

remembered regardless of the presented object structure. Instead, our results support a 

more flexible account that emphasizes the role for hierarchically structured 

representations in vWM. 
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Abstract 

Natural scenes consist of multiple hierarchical levels, though typically more 

global levels are prioritized over more local levels. A global-object benefit has also been 

revealed in visual working memory (vWM), but it is unknown whether such structured 

representations can be adapted flexibly according to task demands. To test the flexibility 

of object structure in vWM, we performed two experiments that presented to-be-

remembered hierarchical configurations with global and local orientation information in 

change-detection (Experiment 1) and continuous-report (Experiment 2) tasks while 

systematically varying the amount of required memory precision. Our results revealed a 

consistent influence of precision demands on the structure of memory: the typical global-

object benefit was reduced and eventually reversed into a local-object benefit with the 

degree to which object details were to be remembered. These findings indicate that 

structured memory representations are flexibly adjusted according to task demands, thus 

challenging accounts that assume fixed representations in vWM.  
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Introduction 

Natural environments consist of cluttered arrays of objects with hierarchical 

structures. For example, a forest has trees, and the trees in turn have branches and leaves, 

illustrating that natural scenes tend to be organized in a hierarchically structured fashion. 

Accordingly, scenes might be represented at varying levels of the visual hierarchy, with 

global representations (e.g., the forest) at the top and more local representations (e.g., 

trees) towards the bottom (Kimchi, 1992). In order to meaningfully interact with such 

hierarchical visual environments, remembering objects in scenes requires registration not 

only of the individual elements, but also of the structural relations among them, that is: 

their part-whole organization. To achieve this, our visual system interprets the visual 

input by integrating (often fragmentary) local elements into global, ‘holistic’ percepts. 

Likewise, there is evidence that visual-working-memory (vWM) representations 

are hierarchically structured, maintaining part-whole relations (see Brady, Konkle, & 

Alvarez, 2011, for a review). For instance, Nie, Müller, and Conci (2017) developed a 

hierarchical variant of the change detection task (Luck & Vogel, 1997) to investigate how 

global/local object levels are represented in vWM. On each trial, a variable number of 

hierarchical shapes (e.g., a global triangle composed of several local squares) were 

presented in a memory array, followed by a test probe that appeared after a brief delay. 

Observers were required to memorize all objects with their respective hierarchical levels, 

and to indicate whether or not the test probe differed (at either the global or the local 

level) from the object at the respective location in the memory array (observers had to 

issue a simple change/no-change [two-alternative forced-choice] response). The results 

revealed that global changes were more efficiently detected than local changes, 
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suggesting that global object levels are prioritized over local levels in vWM, with 

considerably fewer mnemonic resources being devoted to the storage of local as 

compared to global object levels. 

This pattern of global precedence in vWM is in line with a number of studies that 

investigated global/local processing in classic attention tasks (e.g., Navon, 1977; Kimchi, 

1994; Conci, Müller, & Elliott, 2007; Wagemans, Elder, et al., 2012). However, 

prioritization of the global level of to-be-memorized objects may not reflect a rigid bias 

of encoding in vWM; rather, the structure of a given vWM representation might depend 

on the current task goals. For instance, Machizawa, Goh, and Driver (2012) examined 

whether the precision of vWM representations can vary with the expected magnitude of a 

given to-be-detected change. In their study, observers performed a change detection task 

with orientation stimuli, where the color of the to-be-memorized items was informative 

about the magnitude of a to-be-expected orientation change. The results revealed memory 

precision to be higher when observers expected a fine orientation change, as compared to 

a coarse change (at least when the memory load was low), indicating that both the 

number and precision of memorized items can be constrained by top-down task goals. 

However, to the best of our knowledge, there is no evidence of how hierarchically 

structured representations in vWM adapt to changing task demands. One – reasonable – 

hypothesis would be that the more a task requires fine (local) detail to be retained, the 

lower the benefit for the global object level. On this view, there is a trade-off such that 

maintaining finer object details requires a higher proportion of mnemonic resources to be 

devoted to representing the local level, which comes at the expense of resources available 

for representing the global level. The present study was designed to examine for such a 
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task-dependent trade-off in the structure of vWM representations, by using change-

detection (Luck & Vogel, 1997) and continuous-report (Zhang & Luck, 2008) tasks 

applied to hierarchical orientation configurations, where changes in the task would 

systematically alter the degree of the required precision at both global and local levels.    

Of note in this context, the type of compound letters (Navon, 1977) and 

composite shapes (Kimchi & Palmer, 1982) often used to examine the global/local 

structure of visual perception cannot be used to probe the fidelity of vWM 

representations because they only allow for discrete changes (e.g., from a triangle to a 

square at either global or local levels). To overcome this limitation, we developed a 

novel, textured stimulus that permits continuous changes to be implemented at both 

global and local levels, specifically, a global ellipse composed of local oriented lines 

(Figure 1A; see also Kimchi, 1994, for comparable hierarchical stimuli). For these 

configurations, the global orientation is entirely defined by the (boundary contour 

connecting the terminations of the) local oriented lines; and the global and local 

orientations can vary independently of each other in continuous feature space (i.e., both 

can vary independently from -90° to +90°). These orientation stimuli thus possess a 

hierarchical structure that permits the fidelity of their vWM representations to be probed 

at both object levels. 

 

EXPERIMENT 1 

Experiment 1 investigated the flexibility of structured representations in vWM 

using a variant of the change-detection task with hierarchical configurations that depict 

both global and local orientation information (see Figure 1A). In two separate phases of 

the experiment, observers were presented with different magnitudes of change (large/60°, 
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or small/20°). On the basis of previous findings (Nie et al., 2017), we expected greater 

detection accuracy for global than for local orientation changes. In addition, change 

magnitude was predicted to modulate the global benefit, with observers displaying 

stronger global precedence when having to detect large- as compared to small-magnitude 

changes (see above). 

 

Figure 1. Stimuli and example trial sequence in Experiments 1 and 2. (A) Example of a 

hierarchically oriented ellipse with global and local orientations (as indicated by the 
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green and blue arrows, respectively). (B) In Experiment 1, a trial started with a memory 

display containing one or three hierarchical objects of varying global/local orientations. 

After a blank retention interval, a probe display was presented which, on change trials, 

depicted either a small (20°, top panel) or large (60°, bottom panel) change in orientation 

at either a global (top) or a local (bottom) object level. (C) In Experiment 2, the trial 

sequence was essentially the same, except that the probe display contained circular 

placeholders (C, bottom panel), and participants were asked to reproduce either the global 

or the local orientation of the target item in the memory array by clicking on the 

corresponding position of the colored wheel (black arrows). Different colors (blue, green) 

were used to cue the global and local orientation, respectively.  

 

Method 

Participants. Eighteen observers (6 male; age range 19 to 32 years, mean age = 

25.3 years; all reporting normal or corrected-to-normal visual acuity) participated in 

Experiment 1. Participants received course credits or payment of 8 Euro per hour, and 

they provided (prior) written informed consent to the study procedure, which was 

approved by the local ethics committee, in accordance with the Declaration of Helsinki. 

The choice of sample size in the present study was based on previous studies on 

global/local structure in selective attention and visual memory (Nie, Maurer, Müller, & 

Conci, 2016; Nie et al., 2017); we aimed for 75% power to detect an effect size of 

approximately 0.66 with an alpha level of .05, for both experiments.  

Apparatus and Stimuli. The experiment was controlled by a Matlab program, 

using the Psychophysics Toolbox (Brainard, 1997; Pelli, 1997). Stimuli were oriented 

ellipses (0.75° × 2.0° of visual angle in size) composed of oriented lines (thickness: 1 

pixel; 5 lines/°; see Figure 1A), which were presented in white (27.1 cd/m2) against a 
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gray (8.5 cd/m2) background on an LCD monitor screen placed at a viewing distance of 

approximately 57 cm.  

Memory arrays consisted of 1 or 3 hierarchical stimuli presented on an imaginary 

circle of 4° radius around the central fixation. Their positions were randomly selected, the 

only restriction being that neighboring stimuli were separated by at least 2.8° (center-to-

center distance). The test display consisted of a single probed object (which, on trials 

with three to-be-remembered stimuli, was randomly selected from the memory array). 

Figure 1 shows an example display with a set size of 3, and possible variants of test 

probes, which illustrate global and local changes (Figure 1B, top and bottom panels, 

respectively) at two different change magnitudes. 

Trial Sequence. Each trial started with the presentation of a central fixation cross 

(800-1600 ms; randomly jittered), followed by the memory display (300 ms), a blank 

retention interval (900 ms), and then a test probe that presented one item at a randomly 

chosen location from the preceding memory array. The fixation cross was visible 

throughout the entire trial sequence. The task was to decide whether the test probe was 

the same (at both the global and local levels) or different (with a change at either the 

global or the local level) relative to the item that had been previously presented at the 

same location in the memory array. The probe item remained on-screen until a response 

was recorded, or until time-out after 5,000 ms. Participants were instructed to respond as 

accurately as possible (without time pressure). In case of an erroneous or late response, 

feedback was provided by changing the color of the fixation cross to red or blue, 

respectively, for 1000 ms, before the next trial started.  
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Design and Procedure. The experiment was divided into two consecutive phases 

that either presented a variant with a large (60° of memory-probe transition) or one with a 

small (20°) change magnitude, with the order of presentation counterbalanced across 

observers. A three-factors within-subjects design was used for both phases. The 

independent variables were change (present vs. absent), level (global vs. local), and set 

size (1 vs. 3 items). All conditions of this design were equally probable and were 

presented in a random order.  

Participants were comfortably seated in a dimly lit room. Each phase (large vs. 

small changes) started with 24 practice trials for participants to become familiar with the 

task and with the current change magnitude (large, or small), followed by 320 

experimental trials presented in 8 blocks of 40 trials each, resulting in 40 trials for each 

factorial combination. 

 

Results 

Figure 2 shows the mean percentage of change responses (hits and false alarms) 

for large (A) and small (B) change magnitudes as a function of (memory array) set size, 

separately for global- and local-level changes. Individual hit rates were subjected to a 2 

(change magnitude: large, small) × 2 (level: global, local) × 2 (set size: 1, 3) repeated-

measures analysis of variance (ANOVA), which revealed all three main effects to be 

significant: change magnitude, F(1,17) = 86.05, p < .001, ηp
2 = .84; level, F(1,17) = 

238.8, p < .001, ηp
2 = .94; and set size, F(1,17) = 56.23, p < .001, ηp

2 = .77. Large changes 

were detected more accurately than small changes (mean effect of change magnitude on 

accuracy: 0.16); global changes were detected more accurately than local changes (mean 
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precedence effect on accuracy: 0.22); and accuracies decreased overall (by 0.2) from set 

size 1 to set size 3. In addition, the three-way interaction was significant, F(1,17) = 42.96, 

p < .001, ηp
2 = .72. Post-hoc comparisons showed that memory precedence for global 

orientation increased with set size for large changes (global-precedence effect at set sizes 

1 vs. 3: 0.15 vs. 0.3, t(17) = -3.67, p = .002, dz = -0.87, see Figure 2A), whereas it 

decrased for small changes (global-precedence effect at set sizes 1 vs. 3: 0.27 vs. 0.15, 

t(17) = 3.96, p = .001, dz = 0.93, see Figure 2B). No other significant effects were 

obtained, Fs < 1, ps > .36. 

The global-precedence pattern for the large changes effectively mirrors our 

previous findings, demonstrating a large and reliable global benefit that increases with set 

size (Nie et al., 2017). For small changes, by contrast, global precedence decreases with 

increasing memory load. At first glance, the opposite effects of (large vs. small) change 

magnitude on global precedence with increasing set size may appear surprising. 

However, there might be a simple, purely statistical explanation for this: Hit rates were at 

ceiling (96% hits) for global, large changes at set size 15. As a result, the global-

precedence effect for large changes at set size 1 might be curtailed, that is, 

underestimated in this condition. Consequently, had performance not been at ceiling, the 

global-precedence effect for large changes at set size 1 might have been considerably 

larger than that for small changes at set size 1 (where performance was not at ceiling). 

However, when considering only the 3-item displays (thus avoiding the ceiling effect), 

the pattern is very clear: the global-precedence effect is approximately twice as large for 

                                                
5 Note that performance in change-detection tasks hardly ever reaches 100%, owing to 
trial-by-trial fluctuations in attentional engagement (Adam, Mance, Fukuda, & Vogel, 
2015). 
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large as compared to small changes, t(17) = 3.51, p < .004 (Figure 2C) – indicating that 

the bias across hierarchical levels is reduced, shifting towards the local object level when 

finer (orientation) details, at both object levels, need to be remembered. 

 

 

Figure 2. Mean percentage of change responses for large (A) and small (B) changes, and 

corresponding global precedence effects for set size 3 (C) in Experiment 1. Mean hit and 

false alarm rates are presented as a function of set size and change level (panels A and B). 

The global precedence effect on change-detection accuracies (C) is presented separately 

for large and small changes. The error bars represent ±1 SEM.  
  

Discussion 

 Experiment 1 examined how change magnitude would affect hierarchical 

representations in vWM. The results replicated our earlier findings (Nie et al., 2017): 

change-detection performance was revealed to be superior for changes at the global 

relative to changes at the local object level. While the ability to detect a given change 

primarily depends on whether the item that is subject to the change is actually stored in 

memory (Nie et al., 2017; Awh, Barton, & Vogel, 2007), detection of small-magnitude 

changes may additionally depend on whether items are maintained with sufficient fidelity 
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for the difference to be discernible. In line with this prediction, detection accuracy was 

overall lower for small-magnitude changes than for large-magnitude changes. Moreover, 

global precedence was reduced for detecting small- versus large-magnitude changes, 

suggesting that information maintained in vWM can be biased towards the local level 

when object details become task-relevant. Based on this finding, Experiment 2 was 

designed to explore how a further increase in demands for precision would affect global 

precedence in vWM. 

 

EXPERIMENT 2 

The standard change-detection paradigm as used above only allows us to 

quantitatively assess whether or not items were remembered, but it provides little 

information about how well each individual object was actually remembered (Fougnie, 

Asplund, & Marois, 2010). To gain a better idea of the quality of the maintained item 

representations, in Experiment 2, a continuous-report task was employed. Stimuli and 

trial sequence were essentially the same as in Experiment 1, except that the test probe 

was now replaced by a response wheel (see Figure 1C), requiring participants to 

reproduce, as precisely as possible, an orientation of the object at the indicated location in 

the preceding memory array. Different color cues were used to probe the global or local 

orientation of the hierarchical configurations. The observed deviation of the reported 

orientation from the correct orientation constitutes a much finer measure compared to the 

rather coarse change-detection accuracy. Importantly, as maximum precision (i.e., a 0°-

deviation from the correct orientation) is never achieved in continuous-report tasks, 

ceiling performance is not an issue – ensuring a valid measure of the global-precedence 
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effect, even for set size 1. Based on Experiment 1, we expected that the generally high 

demand for precision in the continuous-report paradigm would lead to an even stronger 

vWM bias towards the local object level. 

 

Method 

Experiment 2 was essentially identical to Experiment 1, except that participants 

had to reproduce the exact value of either the global or local orientation on a response 

wheel. The memory display and the subsequent delay were the same as in Experiment 1, 

but the final probe display was replaced by a recall display (Figure 1C). In this display, a 

colored circle (i.e., the response wheel) appeared at the location of the probed vWM 

stimulus (with white, placeholder circles appearing at non-probed locations). For half of 

the participants, a blue probe required the reproduction of the item’s global orientation, 

and a green probe the reproduction of the item’s local orientation. For the other half of 

participants, the color-to-object-level assignments were reversed. Participants responded 

by clicking the appropriate position on the response wheel (e.g., for a perfect response, 

the positions marked by the black arrows in Figure 1C); note that participants were free 

to respond to, on the wheel, either the upper or the lower end of the (oriented) 

lines/ellipses. After providing the response, feedback was given by displaying the correct 

orientation on the wheel for 1 s. Participants initially completed 8 trials with the memory 

items remaining on the screen until a response was issued, in order to understand the task. 

Next, one block of 40 practice trials was presented to familiarize observers with the 

actual memory task. The formal experiment was divided into 15 blocks of 40 trials each. 

Eighteen new observers (9 male; age range 22 to 40 years, mean age = 27.6 years; all 
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with normal or corrected-to-normal visual acuity) participated in the experiment, 

receiving course credits or payment of 8 Euro per hour. 

 

Mixture modeling analysis 

On any given trial, we measured the deviation of the response from the correct 

orientation in degrees, with variations between 0° (perfect memory) and ±90° (poor 

memory, large deviation). In the continuous-report paradigm, the histogram of errors 

produced across trials typically shows that responses are centered at around 0°, but that, 

across all responses, errors are distributed across the entire range provided. The error 

histograms obtained for the four conditions in the current experiment showed a good fit 

by a mixture of two distributions: (a) a Gaussian-like distribution (defined on a circular 

space in terms of a von-Mises distribution), assumed to reflect successful memory 

retrieval with some, variable degree of precision; and (b) a uniform distribution reflecting 

random guessing (Zhang & Luck, 2008). We used Zhang and Luck’s method to separate 

trials in which the orientation – at either the global or the local level – was retrieved with 

some degree of fidelity, and trials in which the orientation of the probed item was 

forgotten. Figure 3 shows an example of a representative participant, where the individual 

responses (as plotted in the histograms) are fitted to a mixture distribution for each 

condition. In addition, Figure 4 provides the overall distributions across participants from 

the mixture-model fitting procedure. 
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Figure 3. Results from one representative participant in Experiment 2. The histograms 

represent the distributions of the response errors (degree of deviation of response from 

target orientation) for set sizes 1 (A) and 3 (B). The green and blue curves show the 

model fits of a mixture model that combines a uniform guessing distribution with a 

Gaussian-like distribution of memory-based responses for the global (green) and local 

(blue) reproductions, respectively.  
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Figure 4. Modeled response-error distributions using the average of the best fitting 

parameter values for each participant for set size 1 (A) and 3 (B), for global (green) and 

local (blue) orientation reproductions. 

 

The fidelity (precision) of a given memory representation was estimated as the 

standard deviation of the von-Mises distribution (σ). Accordingly, the narrower the 

distribution (with a relatively small standard deviation from 0°), the more precise the 

memory representation. The probability of guessing (g) was estimated by the height of 

the uniform distribution. Maximum-likelihood estimation was used to estimate these two 

parameters for each condition with the MemToolbox (Suchow, Brady, Fougnie, & 

Alvarez, 2013). 

 

Results 

Figure 4 presents the distribution of errors in all four experimental conditions. In 

addition, average guessing rate (g) and memory fidelity (σ) parameters for each 

experimental condition are depicted in Figure 5. To determine how g and σ differed 

across experimental conditions, a 2 (level: global, local) × 2 (set size: 1, 3) repeated-

measures ANOVA was performed for each parameter.  

First, the analysis of the guessing rate (g) revealed only the main effect of set size 

to be significant, with lower guess rates for set size 1 as compared to 3 (0.08 vs. 0.5), 

F(1,17) = 98.07, p < .001, ηp
2 = .85. Neither the main effect of level nor the interaction 

between level and set size were significant (ps > .24). As can be seen from Figure 5A, the 

guessing rate did not differ between the two object levels (global and local) at either set 
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size (though there was a ‘hint’ of a local-precedence effect at set size 3, t(17) =  1.13, p = 

.28 , dz = .27). 

Next, the same analysis on memory fidelity (σ) revealed both main effects to be 

significant: level (global vs. local: 21.99 vs. 17.23), F(1,17) = 7.5, p = .014, ηp
2 = .31, and 

set size (1 vs. 3: 15.44 vs. 23.78), F(1,17) = 30.22, p < .001, ηp
2 = .64. The main effect of 

level indicates that mnemonic precision was substantially higher for local relative to 

global orientation, thus depicting a reversal of the typical global benefit, which in 

Experiment 2 actually manifested in terms of a local-precedence effect. In addition, a 

main effect of set size showed that memory precision was reduced for the larger set size. 

The interaction between level and set size was not significant (F(1,17) = .44, p > .5, ηp
2 = 

.025). 

 

Figure 5. Estimated probability of guessing (A) and memory fidelity (standard deviation 

of the von Mises distribution, B) in Experiment 2. Results are depicted as a function of 

set size, separately for global and local object levels. Error bars represent ±1 SEM. 
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Discussion 

Experiment 2 revealed a reliable local – as opposed to the typical global – bias in 

maintaining items in vWM: the general demand for precision associated with having to 

report the orientation (at both object levels) of a stored hierarchical object engendered 

more precise representation of the task-critical object attribute at the local than at the 

global level. In addition, the responses became more random as memory load increased. 

            This finding thus shows that with a change of the task from change detection 

(Experiment 1) to continuous report (Experiment 2), the very same stimuli are 

memorized differently: while a reliable global-precedence effect was obtained in 

Experiment 1, this pattern reversed into a local-precedence effect in Experiment 2. That 

is, in contrast to the pattern typically observed in paradigms using hierarchical stimuli 

(Kimchi, 1992), the observers in the present experiment were actually more precise in 

storing local, as compared to global, task-critical object information. Thus, the results of 

Experiments 1 and 2 taken together reveal a consistent trend: (i) a robust global-

precedence effect for large to-be-detected changes (see also Nie et al., 2017), (ii) a 

considerably reduced global-precedence effect when the to-be-detected changes are 

small, and (iii) a reversal into local precedence when the task requires high precision. 

 

General discussion 

It is commonly thought that vWM is sensitive to the number of integrated objects 

(Luck & Vogel, 1997; Vogel, Woodman, & Luck, 2001). However, recent evidence 

suggests that vWM not only represents individual objects, but also the structural relations 
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within and across memorized objects. For example, vWM for (global/local) hierarchical 

shapes displays separable influences of the objects’ component parts and their respective 

wholes on memory capacity (Nie et al., 2017). The aim of the current study was to 

investigate the flexibility with which global/local structure is represented in vWM. To 

this end, two experiments were performed, which revealed clear modulations of 

mnemonic structure as a function of the required memory precision. 

In Experiment 1, we used a change-detection task presenting hierarchical shapes 

with a global/local orientation, in which a small or large change occurred only at one of 

the two possible levels in a given target object. Overall, we found a robust pattern of 

global precedence: the hit rate (i.e., the rate of correctly detected orientation changes) was 

higher for the global than for the local object level. Importantly, the bias for the global 

object level was weaker when the orientation changes to-be-detected (at both object 

levels) were small rather than large. This indicates that, while the stored representations 

are overall biased towards the global level, this bias is flexible, that is, top-down-

modulable: detecting large-magnitude changes potentially strengthens a default, ‘gist’-

level representation of the overall, global object structure(s) (Brady & Alvarez, 2015; Nie 

et al., 2017). Detecting small-magnitude changes, by contrast, requires a more detailed 

representation of the memorized objects, strengthening the system set for the local object 

level to support the representation of finer details.  

To investigate whether this local bias persists when even more fine-grained detail 

is required to solve the task, a continuous-report paradigm was introduced in Experiment 

2, which required observers to reproduce the exact memorized orientation at (randomly 

across trials) either the global or the local object level. Consistent with the reduction of 
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global precedence with small-magnitude changes in Experiment 1, Experiment 2 actually 

revealed a pattern of local precedence. That is, when the demands for detailed 

representation were (consistently across levels) high, mnemonic precision reversed, with 

enhanced performance for the local relative to the global level. Taken together, these 

findings indicate that, with increasing demands for memorizing fine details, a default bias 

towards the global object level reverts gradually into an advantage for the local level. 

That is, within a given object to be memorized, the distribution of (limited) mnemonic 

resources is adjusted flexibly, in accordance with task demands, among the various levels 

of representation. 

Interestingly, this flexible dynamics with which object hierarchies are represented 

in vWM does not appear to reflect global/local processing as revealed in classic attention 

tasks. Amongst the latter, visual-search studies, for instance, have typically revealed a 

persistent global bias (Kimchi, 1994; Conci, Töllner, Leszczynski, & Müller, 2011; 

Wagemans, Feldman, et al., 2012; Nie et al., 2016), which was little modulated by 

changes in task demands (Navon, 1977; Rauschenberger & Yantis, 2001).  

Recent evidence suggests that change-detection and continuous-report tasks differ 

mainly in their demands for mnemonic precision (Brady et al., 2011; Fougnie et al., 

2010), and vWM resolution may vary as a function of the required detail in change-

detection tasks (Keshvari, Van den Berg, & Ma, 2013). That is, detecting changes of a 

small magnitude requires high-resolution object representations in vWM, whereas large 

changes can be detected with representations of relatively low resolution. In agreement 

with this view, the present findings demonstrate that the pattern of vWM precedence 

adjusts from global to local object levels for the very same stimuli, with demands for 
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mnemonic precision varying both within a task (detection of changes at different 

magnitudes) and across tasks (change detection vs. continuous report) – thus supporting 

accounts that propose flexible allocation of mnemonic resources in vWM (Bays & 

Husain, 2008; Ma, Husain, & Bays, 2014). 

 

 

Figure 6. Flexible resource allocation under varying demands for mnemonic precision: 

As the demands for memory fidelity increase from (A) large-magnitude change detection 

through (B) small-magnitude change detection to (C) precise orientation reproduction, 

the allocation of limited mnemonic resources gradually changes from a default bias 

towards the global object level to a bias towards local object details. 

 

Influential models of vWM assume that memory limits arise entirely from the 

availability of some limited resource that is either quantized into slots (Awh et al., 2007; 

Zhang & Luck, 2008; Luck & Vogel, 2013) or continuously divisible (Alvarez & 

Cavanagh, 2004; Bays & Husain, 2008; Wilken & Ma, 2004; Ma et al., 2014). These 

studies leave open the question of how structural relations relate to object representations 

in vWM. The present findings are, in principle, compatible with an account that proposes 
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a flexible allocation of limited memory resources over hierarchical object levels (see 

Figure 6): Large-magnitude (standard) change-detection tasks make low demands as 

regards memory fidelity; as a result, a default, global memory bias becomes manifest, By 

contrast, higher fidelity representations are needed to detect small-magnitude changes, 

engendering a re-distribution of memory resources away from the global towards the 

local object level(s). Finally, for the precise reproduction of a given feature, the allocation 

of limited resources completely reverses and resources are predominantly deployed to 

represent the local level. In summary, this demand-based model suggests that the 

distribution of limited mnemonic resources among hierarchical object levels is flexible 

and adjusts to top-down requirements for precision.  

 

Conclusion 

            Using standard vWM tasks in combination with hierarchical (orientation) stimuli, 

the present study provides novel evidence for structured memory representations that can 

be adapted in line with the current task demands. The modulation of hierarchical 

representations by requirements for precision points to a degree of flexibility in how 

structured representations are maintained in vWM. That is, hierarchical structure in vWM 

is not fixed; rather, observers can adjust the distribution of limited mnemonic resources 

over to-be-retained global and local object levels, to optimize memory performance in 

accordance with changing environmental demands. 
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VI. Summary and conclusions 
 
            The experimental and computational modeling work reported in this dissertation 

contributes to a better understanding of the structured representations in human attention and 

visual memory. Examining hierarchical stimuli that consist of more than one feature level, I 

established a new structure-based framework that provides novel perspectives for future work. 

Finally, I devised a novel hierarchical stimulus and examined the fidelity of structured 

representations in vWM.  

            Using a visual search variant to test the configural superiority effect (CSE) with 

illusory figures as either the target or distractors, we demonstrate the first evidence that 

distractor inhibition is the major driving force of the CSE. Our results provide a novel view 

to the question of how complete objects are derived from basic feature properties, and we 

demonstrate that inhibitory effects might emerge from a mid-level stage of visual processing, 

for instance, as reflected by faster evidence accumulation.  

            Next, we devised a hierarchical variant of a visual search task with Navon letters 

(Navon, 1977) as the global/local targets and nontargets. Our findings provides a novel 

theoretical perspective, which suggests that differences between hierarchical levels are not 

simply reflecting early visual processing (i.e., mechanisms of perceptual grouping) but also 

relate to a consistent and automatic bias in memory. We believe that our results challenge the 

view advocated by classical global/local paradigms (e.g., Navon, 1977), demonstrating that 

global precedence reflects the resolution of attention, i.e., the level at which we tend to select 

information. Moreover, we show that global biases might emerge at multiple stages of 

processing, for instance, reflecting preattentive and postselective information processing. As 
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such global precedence represents a major property of the visual system that is evident 

throughout the entire object-processing stream. 

            By combining hierarchical shapes with a change detection task, we demonstrate the 

first evidence of hierarchically structured representations in visual working memory. Our 

results challenge models that simply propose a fixed number of units/objects, which are 

supposed to be retained independently of the other, to-be-remembered items. Instead, our 

findings support a more ecologically valid account – which we suggest in terms of a 

hierarchical model that emphasizes both the role of structured representations of objects and 

the scene layout within which they are presented. 

            The stimuli used in the above studies, e.g., Navon letters (Navon, 1977) or 

hierarchical shapes (Kimchi & Palmer, 1982), only allows for discrete change at either a 

global or a local level. We therefore devised a novel hierarchical stimulus that permits 

continuous changes in an orientation feature space. Combining such stimulus with a 

continuous report task, we demonstrate the first evidence that structured representations in 

vWM can dynamically adapt in line with task demands. Our results challenge models that 

propose relatively fixed representation of units/objects in vWM, but support adaptive, 

hierarchical accounts that emphasize both the structured nature of vWM representations and 

adaptive control of representational resolution to optimize mnemonic precision.  

            Overall, the findings in this dissertation provide a novel perspective to the 

prevailing feature- and object-based attention and working memory literature and support 

a new alternative theoretical framework, the hierarchical attention and working memory 

system, in which attention and visual memory are conceptualized as being hierarchically 

organized by local or part-level object representations.  
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VII. Deutsche Zusammenfassung  
 
            Die in dieser Dissertation berichteten experimentellen Arbeiten und computationalen 

Modellierungen tragen zu einem besseren Verständnis bei, wie strukturierte Repräsentationen 

in visuellen Aufmerksamkeits- und Gedächtnismechanismen verankert sind. Indem 

hierarchische Stimulusanordnungen untersucht wurden, die aus mehreren Merkmalsebenen 

bestanden, konnte diesbezüglich ein strukturbasiertes Erklärungsmodel etabliert werden, 

welches neue Perspektiven für zukünftige Arbeiten bietet. Zudem wurden im Rahmen der 

präsentierten Untersuchungen innovative hierarchische Stimuli konzipiert, die es erlauben die 

Genauigkeit einer strukturellen Repräsentation im visuellen Arbeitsgedächtnis zu erfassen.  

            Im Rahmen einer visuellen Suchaufgabe wurde zunächst in Kapitel II der sogenannte 

„configural superiority effect“ (CSE) mit virtuellen Zielreiz- und Distraktorobjekten 

untersucht. Diese Arbeiten zeigen erste Evidenz dafür, dass Distraktorinhibition (und nicht 

etwa die Aktivierung eines Zielreizes) einen der wesentlichen Mechanismen zur Erklärung 

des CSE darstellt. Unsere Ergebnisse offerieren dabei eine neue Sicht auf die Frage wie sich 

integrierte Objekte aus basalen Merkmalseigenschaften ableiten lassen. Wir zeigen außerdem, 

dass inhibitorische Effekte auf einer mittleren Stufe der visuellen Verarbeitung entstehen, wie 

z.B. über die schnelle Akkumulation von Evidenz im Rahmen einer 

„drift/diffusion“ Modellierung dargelegt wurde.  

            In Kapitel III haben wir schließlich eine hierarchische Variante einer Suchaufgabe 

mit Navon-Buchstabenkonfigurationen entwickelt (Navon, 1977), bei der Zielreize und 

Distraktoren auf globalen/lokalen Ebenen repräsentiert sein konnten. Unsere Befunde mit 

diesem Paradigma zeigen eine neue theoretische Perspektive auf, die zeigt dass Unterschiede 
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zwischen hierarchischen Ebenen nicht einfach nur frühe Stufen der visuellen Verarbeitung 

abbilden (z.B. Mechanismen der perzeptuellen Gruppierung) sondern auch eine konsistente 

und automatische Tendenz im Gedächtnis reflektieren. Entsprechend stellen diese Ergebnisse 

die Ideen aus klassischen globalen/lokalen Suchaufgaben (z.B. Navon, 1977) in Frage, 

nämlich, dass die globale Präzedenz im wesentlichen die Auflösung von Aufmerksamkeit 

widerspiegelt, d.h. die Ebene auf der wir Informationen auswählen. Vielmehr zeigen wir, 

dass ein globaler Vorteil auf multiplen Stufen der Verarbeitung entstehen kann, und somit 

sowohl präattentive als auch postselektive Abschnitte betrifft. Entsprechend zeigt sich in den 

Befunden zur globalen Präzedenz eine wesentliche Eigenschaft des visuellen Systems welche 

den gesamten Objektverarbeitungspfad betrifft. 

            In Kapitel IV wurden schließlich hierarchische Formkonfigurationen mit einer 

„change detection“ Aufgabe kombiniert. Wir zeigen dabei erste Evidenz dafür, dass 

hierarchisch strukturierte Repräsentationen im visuellen Arbeitsgedächtnis abgelegt sind. 

Unsere Befunde hinterfragen dabei Modelle die einfach nur annehmen, dass im 

Arbeitsgedächtnis eine festgelegte Anzahl von Einheiten oder Objekten repräsentiert ist, 

welche unabhängig von den anderen, zu erinnernden Einheiten abgespeichert sind. Statt 

dessen deuten unsere Ergebnisse auf einen ökologisch validen Ansatz hin, welcher besagt, 

dass strukturierte Repräsentationen in einem hierarchischen Modell, innerhalb der Szene in 

der die Objekte präsentiert wurden, abgebildet werden. 

            Die in den oben genannten Studien verwendeten Stimuli, z.B. Navon Buchstaben 

(Navon, 1977) oder hierarchische Formen (Kimchi & Palmer, 1982), erlauben es nur eine 

diskrete Änderung auf einer globalen oder lokalen Ebene zu implementieren. Aus diesem 

Grund haben wir in Kapitel V der vorliegenden Dissertation neue Varianten von 

hierarchischen Stimulusanordnungen entwickelt, welche uns erlauben fortlaufende 
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Änderungen von Objektorientierungen zu untersuchen. Die Kombination dieser Stimuli 

mit einer sogenannten „continuous report“ Aufgabe erlaubte es uns zu zeigen, dass 

strukturierte Repräsentationen im Arbeitsgedächtnis mit Bezug auf die spezifische 

Aufgabenstellung dynamisch adaptiert werden können. Unsere Ergebnisse unterstützen 

dabei adaptive und hierarchische Ansätze, die sowohl die strukturierte Repräsentation als 

auch die adaptive Kontrolle von repräsentationaler Auflösung zur Optimierung von 

mnemonischer Präzision vorschlagen.  

            Insgesamt zeigen die Befunde dieser Dissertation eine neue Perspektive zu 

vorherrschenden merkmals- und objektbasierten Ansätzen in Aufmerksamkeits- und 

Arbeitsgedächtnisfunktionen auf. Sie stützen dabei eine alternative Konzeption nach der die 

attentionale und gedächtnisbasierte Verarbeitung von Informationen hierarchisch organisiert 

ist.  
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