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It doesn’t make a difference how beautiful your guess is,
it doesn’t matter how smart it is who made the guess, or what their name is,

if it disagrees with experiment, it’s wrong.

—R. P. Feynman





Zusammenfassung

Wachstum, soziale Interaktion und stochastische Schwankungen prägen, neben natürlicher Selektion, das Leben
von Bakterien. Populationen verbreiten sich durch Wachstum, und ihre interne Dynamik wird von sozialen In-
teraktionen gesteuert, während Stochastizität den Prozess durchzieht—sei es in Form demographischer Schwan-
kungen, als unvorhersehbare Umweltveränderungen oder als Variationen im Prozess der Populationsbildung.

Meine Dissertation konzentriert sich darauf, wie das Zusammenwirken dieser Faktoren das evolutionäre
Schicksal bakterieller Populationen bestimmt und wie man mit Hilfe der Mathematik ihre jeweiligen Rollen
entwirren kann. Teil I der Arbeit handelt von der Entwicklung präziser mathematischer Modelle zur Beschrei-
bung des Wachstums und der sozialen Dynamik einer konkreten bakteriellen Population; Teil II behandelt
die Verkettung von umweltbedingtem Zufall und demographischen Schwankungen in einer rein theoretischen
Population.

Die Ergebnisse meiner Forschung zeigen, dass Umwelt und soziale Kräfte die Evolution einer Population
bestimmen. Gleichzeitig hebt diese Arbeit hervor, wie wichtig es ist, biologische Spezifizitäten zu identifizieren
und miteinzubeziehen, wenn es um die Modellierung spezifischer bakterieller Systeme geht.

Teil I: Stochastizität und soziale Interaktionen in bakteriellem Wachstum
mit Matthias Lechner, Felix Becker, Heinrich Jung und Erwin Frey
In diesem Teil der Arbeit haben wir bakterielles Wachstum in einer Kombination von Theorie und Experiment
in Angriff genommen.

Das erste Projekt, Genetic drift during exponential growth, analysiert die Entwicklung kleiner, gemischter
Populationen, deren Bakterien weder um Ressourcen kämpfen, noch soziale Interaktionen haben. Damit werden
Wachstum und stochastische Schwankungen als einzige Einflüsse auf die Population isoliert. Wir wenden ein
Urnenmodell an und beweisen, dass Wachstum die genetische Vielfalt der Population schützt und die Wirkung
demographischer Schwankungen

”
einfrieren“ lässt.

Im Folgeprojekt, Public-good-mediated social interactions during competitive bacterial growth, ziehen wir eine
Population in Betracht, in der Bakterien ein öffentliches Gut austauschen, und analysieren die Wirkung solcher
Interaktionen auf Wachstum und Ökologie. Anstatt den traditionellen spieltheoretischen Standpunkt einzuneh-
men, quantifizieren wir die Kernaspekte der Interaktion in Experimenten und fassen sie in einem theoretischen
Modell zusammen. Das Modell sagt vorher, dass eine höhere Produktion öffentliches Gutes nur zeitlich begrenzt
für die Population von Vorteil ist. Die Dauer und das Mass dieses Vorteils, sowie seine Konsequenzen auf die
Überlebenschance der Kooperation in der Population, hängen von der spezifischen Biochemie des öffentliches
Gutes, insbesondere von seiner Akkumulation, ab.

Teil II: Zusammenwirkung von Umwelt- und Demographiebedingtem Zufall
mit Mauro Mobilia und Erwin Frey
In diesem Projekt analysieren wir auf rein theoretischer Ebene die Zusammenwirkung verschiedener Rausch-
quellen. Wir erarbeiten ein Modell, in dem Ressourcen zufällig zwischen Überfluss und Mangel wechseln, was die
Wachstumdynamik steuert, und damit die Größe demographischer Schwankungen. Unser wichtigstes Ergebnis
ist die Entwicklung eines Ansatzes, um die nichtlineare Kombination von internem und extrinsichem Rauschen
zu behandeln. Mit Hilfe dieses Ansatzes entdecken wir, dass die Verteilung von Populationsgrößen verschiedene
Formen annimmt, die von der Frequenz der Umweltveränderung bestimmt werden. Insbesondere eine häufig
wechselnde Umwelt erzeugt einen stabilen Zustand, der sich im Rahmen der deterministischen Dynamik sonst
nicht ergibt. Wir ermitteln auch die Fixierungseigenschaften der Population, vor allem die Überlebenschancen
eines durch Selektion benachteiligen Bakterienstammes. Mit einer effektiven Theorie wenden wir unseren Ansatz
auch auf den Austausch eines öffentlichen Gutes an.



ii Zusammenfassung

Unsere Ergebnisse zeigen eine komplexe Zusammenwirkung von internen und extrinsischen Rauschquellen,
Wachstum und sozialen Interaktionen, die die Evolution prägt. Im konkreten Fall der Evolution von Kooperation
unterstützen diese Wirkungen das Überleben von Kooperatoren, zumindest für einen beschränkten Zeitraum.



Summary

Growth, social interactions, and stochastic fluctuations shape the course of bacterial life, alongside natural
selection. Populations propagate through growth, and social interactions guide the internal dynamics, while
stochasticity always runs through the process—be it via demographic fluctuations, unpredictable environmental
changes, or variability in how populations form. My thesis focuses on how these evolutionary factors intertwine
to determine the fate of bacterial populations, using mathematical tools to unravel their roles. Part I of the
thesis deals with the development of rigorous mathematical models to describe the growth and social dynamics
of a real bacterial population; Part II addresses the combination of environmental noise and demographic
fluctuations (with and without social interactions) in a theoretical population. The results of my research show
that environmental and social forces shape the evolution of a population. At the same time, this work highlights
the importance of identifying and including biological details to accurately model specific bacterial systems.

Part I: Stochasticity and social interactions in bacterial growth
with Matthias Lechner, Felix Becker, Heinrich Jung, and Erwin Frey
In this part of the research, we approach bacterial growth using a combination of theory and experiments.

During a first research project, Genetic drift during exponential growth, we analyzed the development of
small, mixed populations in which bacteria neither competed nor had social interactions. In this setting, the
population is only subject to growth and stochastic fluctuations. Using an urn model, we proved that growth
maintains genetic diversity in the population, freezing the effect of demographic fluctuations (see Chapter 1).

In the subsequent project, Public-good-mediated social interactions during competitive bacterial growth, we
considered a population in which bacteria exchanged a public good, and studied the effects of such social
interaction on growth and ecology. Instead of taking the traditional game-theoretical viewpoint, we quantified
the interaction features experimentally, and condensed them in a theoretical model. This model predicts that
producing more public good benefits a population only for limited times. How advantageous production is,
the duration of the advantage, and the consequences on the survival of the cooperative trait in the population
depend on the specific biochemistry of the public good itself—particularly its accumulation (see Chapter 2).

Part II: Combined effects of environmental and demographic noise
with Mauro Mobilia and Erwin Frey
In this project, we theoretically investigated the combined action of different noise sources. We formulated a
model in which available resources switched stochastically between abundance and scarcity, driving changes
in population size, which in turn tuned the amplitude of demographic fluctuations. Our central result is the
development of an approach to treat the highly nonlinear combination of intrinsic and extrinsic noise. Using this
approach, we found that the distribution of population sizes assumes different forms, depending on the rate of
the environmental switching. In particular, frequently-changing environments give rise to a stable state, absent
from the deterministic dynamics. We also described the fixation properties of the population, particularly the
survival probability of a selectively disfavored strain. Using an effective theory, we also applied the approach to
a public good interaction (see Chapter 3).

The results show an intricate interplay between intrinsic and extrinsic noise sources, growth, and social
interactions, which shapes evolution. In the concrete example of the evolution of cooperation, we fond that
these effects tend to aid the survival of cooperators, at least for some time.



iv Summary

Overview of the projects

1. Genetic drift during exponential growth

Project description This project analyzes the relation between exponential growth, typical of bacteria, and
demographic fluctuations. A mixed population’s composition evolves as a random walk, guided by inherently
stochastic birth and death events—an effect known as genetic drift. Because strain extinction is irreversible,
all but one strain eventually go extinct. Genetic drift, then, inexorably leads to loss of diversity in mixed
populations.

We considered mixed populations consisting of two strains of Pseudomonas putida, starting from small,
stochastic number of cells of each type. With appropriate choice of growth medium, and by considering only the
exponential phase, we ensured that strains would have no social interaction, selective differences, or significant
competition for resources. Therefore, growth and genetic drift alone acted on the population composition.
Mathematically, we modeled the process as a Pólya urn: the urn contains marbles of two colors; at each step,
one is extracted at random, then placed back, alongside another one of the same color. Using this model, we
simulated the development of the distribution of population compositions, and compared the final outcome to
that of experiments.

We found that growth progressively slows genetic drift by weakening demographic fluctuations. Eventually,
fluctuations become inconsequential, and genetic drift stops completely. The distribution of population compo-
sitions, we observed, rapidly “freezes” to a steady state, that persists for the rest of growth. As a result, growth
maintains long-term genetic diversity in the population.

This project contributes two main results to the thesis. First, it singles out the tension between growth
and genetic drift, two of the evolutionary factors at the center of the work. Second, developing this approach
established a path to rigorously translate measurements on bacterial systems into mathematical models, which
is the thread running across the first part of my thesis.

Related publications This project resulted in the publication of the paper “Non-Selective Evolution of
Growing Populations”, PLoS ONE 10(8), e0134300 (2015), reprinted at the end of Chapter 1 (from page 13).

Contributors This research was realized in collaboration with the lab of Prof. Dr. Heinrich Jung at the
LMU department of microbiology. In the publication, I share first author contribution, together with Matthias
Lechner (Frey group), with whom I developed the theoretical analysis, and Felix Becker (Jung group), who
carried out the experiments. Other authors are Heinrich Jung and Erwin Frey.

https://doi.org/10.1371/journal.pone.0134300
https://doi.org/10.1371/journal.pone.0134300
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2. Public-good-mediated social interactions during competitive bacterial growth

Project description In this project, we focused on the interaction between the growth of a bacterial popula-
tion and the social dynamics within it. The production and exchange of public goods is a well-known example
of bacterial social interaction, the subject of many studies in biology and game theory. The effect of public
goods has ramifications on both growth and competition among populations.

As opposed to the previous project, here we considered a setting in which bacteria compete for limited
resources. Most importantly, we introduced an interaction between individuals: one strain pays a metabolic
cost (thus growing slower) to provide a public good that promotes growth of all individuals. We considered
two strains of Pseudomonas putida as a model system: one is a constitutive public good producer, the other
a non-producer. Then we studied the growth of an ensemble of populations, starting from stochastic initial
mixtures of the two strains.

Instead of forcing a game-theoretical framework upon our system, we experimentally quantified the inter-
action parameters and translated them into a mathematical model. The social dynamics shared some general
features with public good games, but the specific biochemistry of the molecule involved (in particular the fact
that it accumulates) differentiated this system from traditional formulations. Numerically solving the equations
of our model with stochastic initial conditions, we predicted the development of an ensemble of populations,
and validated the results experimentally.

We showed that, at early stages of growth, producer-rich populations have more public good and grow faster,
causing the overall fraction of producers across the ensemble to increase. The accumulation of the public good
in the medium, combined with its saturating benefit, eventually erase this advantage, decreasing the producer
fraction. These aspects of the public good not only play a part in the dynamics, but they are also necessary for
the model to accurately replicate the experimental results.

To the broader goals of the thesis, this project addressed directly the combination of growth dynamics and
social interactions in a real bacterial population. The cornerstone of our approach was rigorous mathematical
modeling of the social interaction. Thanks to it, we identified the key features of the public good, and their
impact on growth and on the internal evolution of the population.

Related publications This project resulted in the publication of the paper “Interactions mediated by a
public good transiently increase cooperativity in growing Pseudomonas putida metapopulations”, Sci Rep 8,
4093 (2018), reprinted at the end of Chapter 2 (from page 46)

Contributors This research was realized in collaboration with the lab of Prof. Dr. Heinrich Jung at the
LMU department of microbiology. In the publications, I share first author contribution with Felix Becker (Jung
group), who carried out the experiments. Other authors are Matthias Lechner (Frey group), Erwin Frey, and
Heinrich Jung.

https://doi.org/10.1038/s41598-018-22306-9
https://doi.org/10.1038/s41598-018-22306-9
https://doi.org/10.1038/s41598-018-22306-9
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3. Evolution in stochastic environments

Project description In this project we analyzed how randomly changing environments interact with the
intrinsic stochasticity and social dynamics of a population. Unpredictable conditions are the norm rather than
the exception for bacteria, and play extremely important roles in evolution. An individual’s fitness, for example,
may depend on environmental conditions; but sudden changes in the environment can also lead to sharp declines
in population size.

We considered a population composed of two strains (one of which with a slight selective advantage),
competing for limited resources that switched randomly between a state of abundance and one of scarcity.
Abundant resources lead to larger populations, scarce resources to smaller ones. Because the population size
tunes the amplitude of demographic fluctuations, our model couples the environmental noise to the internal one
of the population.

We studied the intertwined effects of environmental and demographic noise on population size and fixation
probabilities by analytical and simulation means, considering two social scenarios. In the pure competition
scenario, strains simply competed for the finite resources. In the public good scenario, the slow strain provided
a public good, which enhanced growth.

Our results showed that the environmental and demographic noise interact in a complex, but predictable
manner. In particular, we showed that the distribution of population sizes undergoes noise-induced transitions,
driven by the changing environment. Explicitly combining the effects of the two noise sources, we described
the steady state distribution of population sizes. Additionally, we leveraged time scale separations to describe
the fixation properties of the system. Thereby we found that the selectively disadvantaged strain survives with
remarkably higher probability in this case than it would in a constant environment. We also developed an
effective approach, allowing us to extend some results of the pure competition scenario to the more complex
public good case.

This part of the thesis delves deeper in the mathematical details of the model, moving away from the
description of a specific biological system. As a result, it becomes possible to analyze in great detail the combined
action of demographic fluctuations, growth, and social interactions, even with the additional stochasticity from
the environment.

Related publications The results of this project are collected in the paper “Evolution of a Fluctuating
Population in a Randomly Switching Environment”, Phys Rev Lett 119, 158301 (2017), reprinted at the end
of Chapter 3 (from page 81), as well as in the manuscript “Eco-Evolutionary Dynamics of a Population with
Randomly Switching Carrying Capacity”, currently submitted for publication, whose most recent version is
reprinted from page 99.

Contributors This research was realized in collaboration with Prof. Mauro Mobilia of the University of
Leeds. I appear as first author in both of the related publications. Other authors are Erwin Frey and Mauro
Mobilia.

doi:10.1103/PhysRevLett.119.158301
doi:10.1103/PhysRevLett.119.158301
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Introduction

Evolution is more than a cut-throat, individualistic competition between isolated players. In fact, a number of
factors enter the process beside sheer Darwinian selection. For example, because natural populations evolve by
single, stochastic births and deaths, the fitness of a single does not guarantee long survival or plentiful offspring:
it merely increases its likelihood. Survival is a game of chance, and fitness can only nudge probabilities around.
The environment plays a fundamental role too, setting the boundary conditions for the population. The types
and amounts of resources, space, and predators, for example, can favor some individuals over others and
determine the strength of selection. Finally, single individuals, as well as entire communities, can improve their
survival chances through social interactions. A bee is much more likely to survive as part of a hive, a lion is
more successful as member of a pride, people live better in cities than isolated in the wild. But sociality is
not a prerogative of humans and animals. Far from being a collection of singles, a bacterial colony presents
convoluted social networks.

Background and motivation

Bacterial cooperation Cooperation constitutes an intriguing example of such social interaction. A cooper-
ating organism makes an investment in terms of energy or resources to provide a benefit to its entire community
[1–6], for example better access to oxygen [7], nutrients [8], or protection from antibiotics [9]. One of the best-
known examples is siderophore production in Pseudomonas [10–15]. These bacteria often live in environments
where iron is not readily available. In these conditions, they secrete a molecule called pyoverdine, which binds
to this useful element in the environment. By absorbing pyoverdine-iron complexes, bacteria obtain iron and
enhance their growth. Since pyoverdine is released outside the cell, however, producers let any member of the
population take advantage of it.

Synthesizing pyoverdine diverts resources away from replication [10–12]: producers pay for their cooperation
by growing slower. At the same time, if the benefit truly goes to the entire community, it makes producers
vulnerable to exploitation: a non-producing neighbor still reaps the benefit while saving the cost. As a result,
individuals face the so-called “Dilemma of Cooperation”: renounce some payoff for the common good or act
in one’s own interest? Acting selfishly and exploiting the labor of producing bacteria gives a clear selective
advantage, therefore evolutionary theory dictates that producers should eventually die out.

Yet, cooperative behaviors run through the entire tree of life: from human communities to microbes. How
they emerged and spread is one of the most challenging questions in evolutionary biology. Countless studies
addressed it using game theory [4, 16–19], as well as experiments [11, 20, 21] and evolutionary arguments
[1, 5, 22, 23]. These researches identified several mechanisms that promote cooperation, from the structure of
populations [20, 24] to the punishment of those who do not cooperate [25, 26].

Changing environments Unpredictable environments are the rule rather than the exception in nature. This
is especially the case for bacteria: their small habitats offer little inertia to physical and chemical changes, so
temperature, pH, and water content can fluctuate widely within short times [27, 28]. Even relatively sheltered
bacteria, such as those living inside of animals (including humans) experience ever-changing amounts of nutri-
ents, plus their host continually douses them in hormones and other chemicals. Some of these factors change
fairly regularly—for example because of daily habits and natural circadian rhythms—but the overall result is
unpredictable.

When environmental conditions change, selection may favor different traits [29–34]. But the way conditions
vary—abruptly or gradually, predictably or stochastically, frequently or rarely—also affects bacterial evolution
[35, 36]. Finally, catastrophic downturns in environmental conditions can lead to sharp, abrupt declines in
population size, also known as population bottlenecks. The gene pool that results from the bottleneck can
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deviate a lot from the one that entered it: very fit individuals, for example, could have died out by chance, or
rare mutations could end up over-represented. This is the gene pool of the population when it grows again,
so bottlenecks play a very important role in evolution [37–43]. Altogether, changing environments impact a
population well beyond their selective effect.

Environmental conditions, social interaction, growth, selection, and stochastic effects all tightly intertwine
in affecting evolution. Social interactions, and particularly cooperation, can strengthen communities, resulting
in a population-level selection on top of the traditional individual-level one [44–49]. Growth and population
dynamics can change which strains are selectively favored [50] and the outcome of social interactions, especially
in combination with demographic fluctuations [51–56]. The presence or absence of resources in the environment
can determine population sizes, which in turn directly tune the weight of selection and demographic fluctuations
[37, 57, 58]. The smaller the population, in fact, the more each single stochastic birth or death affects the
population, reducing the role of selection. Pseudomonas populations provide a prime example of all these
factors coming together: their public good works by tweaking the environmental conditions (in this case, iron
availability) and promoting growth, while always subject to stochastic effects, like demographic fluctuations.

Goals and significance of this thesis

Understanding bacterial growth, sociobiology, and ecology is an important and useful task for several reasons.
First, bacteria reproduce extremely quickly. This allows to observe within days or months long-term evolutionary
processes, that occur over decades if not millennia in animals. Investigating bacteria, then, we can peer into
the mechanisms of evolution. Secondly, bacterial communities, such as the human microbiome, are increasingly
recognized as an important part of our lives. The more is known about the bacteria we host, the more we can
understand their impact. Finally, understanding how bacterial communities grow and evolve can help develop
alternative therapies to antibiotics, countering the current spread of resistant bacterial strain.

My research addresses the following overarching question:

How do stochastic effects, population growth, and social interactions intertwine to determine the evolutionary
fate of a bacterial population?

To address it, I investigated the action of several combinations of these factors in real bacterial populations as
well as purely theoretical models. Part I of the thesis focuses on studies of real bacterial populations, combining
theoretical modeling and experiments. The research in Chapter 1 isolates the tension between growth and
demographic fluctuations. Chapter 2 concerns the rigorous quantification of a social interaction mediated by
a public good in an ensemble of Pseudomonas populations, examining its relation with population dynamics.
Part II (comprising the sole Chapter 3), instead, explores the interplay between demographic fluctuations, social
interactions, and environmental noise from a theoretical standpoint.



Part I

Stochasticity and social interactions in
bacterial growth





Chapter 1

Genetic drift during exponential
growth

Chapter abstract Non-selective effects play an important role in evolution. Stochastic fluctuations due to
individual birth and death events, for example, cause random changes in population composition, called genetic
drift. In the long run, a population subject to genetic drift will always fixate, that is, all but one of its component
strains will go extinct. As a result, the population becomes homogeneous: genetic diversity is lost. Although this
is a well-studied phenomenon in populations of constant size, the effects of genetic drift in growing populations
remain unclear. Studying the growth of a mixed population composed of two selectively neutral strain, one can
examine directly the tension between individual-based growth and genetic drift. In this chapter, I present results
indicating that growth counteracts genetic drift, even stopping it altogether. This has important evolutionary
consequences: by arresting drift, growth preserves genetic diversity. Using the mathematical theory of Pólya
urns and experiments, it can be demonstrated that growth “freezes” this effect, maintaining long-term genetic
diversity. Furthermore, it was possible to predict the steady-state distribution of compositions of an ensemble
of growing populations, and confirmed this prediction with experiments.

Contribution to the overarching question The work presented in this chapter directly addresses how
growth and stochastic fluctuations combine in a real bacterial population. The analysis is rooted in a rigorous
mathematical description of a bacterial system, establishing an approach that will be useful in Chapter 2 as
well. This allows for otherwise impossible insights in the dynamics, without losing touch with experimental
reality.
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1.1 Background

1.1.1 Genetic drift

Directed selection is probably the best-known factor in evolution, but not the only one. All modern under-
standings of the evolutionary process place a significant weight also on non-selective effects. One of the most
common and perhaps most important is genetic drift : the change in gene frequency in a population caused by
demographic fluctuations.

Growing bacterial populations are always finite, and evolve by discrete replication and death events of
individual cells, which are stochastic by nature. Consider a population of size N composed of NA genetically
identical individuals, call it strain A, and of NB = N − NA individuals of strain B. The fraction x = NA/N
of A-individuals in the population increases slightly every time one reproduces (or a B dies), and decreases
every time one dies (or B reproduces). These discrete, stochastic birth and death events thus determine a
random walk for the fraction x between 0 and 1; if no mutations are present (thus individuals cannot switch
between strains), the boundaries are absorbing. As a result, they constitute the only stable states for x. In
other words, genetic drift leads to fixation of one strain—the population is homogeneous and only composed
of individuals of that strain. Importantly, neither strain is inherently favored by drift, which simply pushes for
fixation, regardless of which individuals survive. In this sense, genetic drift is non-selective, in stark contrast
with directed (or Darwinian) selection forces that favor the survival of a specific strain.

If the population has constant size and no selection acting on it, drift alone determines its fate. The
probability P (x; t) that a fraction x of the population is of strain A at time t obeys then the following diffusion
equation [57, 59]

∂

∂t
P (x, t) =

1

2N

∂2

∂x2
[x(1− x)P (x, t)] . (1.1)

Under these conditions, the probability of having x not at the boundaries (that is, coexistence of the strains)
decreases exponentially in time. This result was obtained theoretically by Kimura [59] and verified in a number
of experiments (see, for example, Figure 1.2 [60]). The distribution takes approximately a U-shape; in the long
run, only the peaks at x = 0 and x = 1 remain. The height of each peak reflects the fixation probability of the
corresponding strain.

The diffusion constant in eq. (1.1) is proportional to the inverse of population size N , indicating that
fluctuations become more important the smaller the population. Intuitively, if each strain was represented by
just one individual, a single death event would suffice for fixation. The more individuals in the population,
then, the less each stochastic birth and death changes their relative abundance.

1.1.2 The Pólya urn model

Kimura’s solution only holds for constant population size. In some cases, one can use an effective population
size approach to describe the fixation properties of the system [61]. However, exponential growth is not one of
these. Elementarily described, bacterial reproduction proceeds as follows: one individual is selected at random
for reproduction, and an exact copy of it is added to the population. If, instead of cells in a population we
consider marbles in an urn, the problem is equivalent to the classic Pólya urn model [62]. This is a popular model
across disciplines, from auto-catalytic chemical reactions [63, 64], to how opinions can emerge and self-organize
in stock markets [65].

In its most basic formulation, presented by Eggenberger and Pólya [62], (see [64] for a more recent review),
sketched in Figure 1.3, this model describes an urn containing N marbles of two colors, for example NA yellow
and NB blue ones. At each step, we draw a marble at random, then place it back, alongside another one of the
same color. The urn thus grows in size at each step. Each marble is equally likely to be drawn, therefore the
probability of extracting a marble of a certain color is equal to the relative abundance of marbles of that color
in the urn, for example,

Prob{extract yellow} =
NA

NA +NB
. (1.2)

Every extraction adds a marble to the extracted color to the urn, thus increasing the chance of drawing
further marbles of that same color in the future. Therefore, the Pólya urn is a self-reinforcing (or auto-catalytic)
process [63, 64]. One could intuitively expect this positive feedback to amplify each small initial fluctuation. As
more and more marbles of the same color are drawn, it becomes more and more likely to extract that color, and
eventually the urn would come arbitrarily close to being homogeneous. In biological terms, this corresponds to
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Figure 1.1: Graphical abstract of the project. (a) How non-selective bacterial reproduction resembles a Pólya
urn. In both cases, each iteration adds to the population an identical copy of an individual and all individuals
are equally likely to be picked for reproduction. (b) Sketch of the experimental and theoretical procedures.
On the experimental side (left), separate cultures of the two strains are mixed, diluted, and used to inoculate
the wells of a well-plate. The proportions of the mixture determine the average population composition x̄0, the
dilution factor determines the average population size N̄0. Once inoculated, the populations grow exponentially
for 11 hours. On the theoretical side (right), well plates are initialized with Poisson-distributed numbers of
individuals of each strain, with averages N̄0x̄0 and N̄0(1− x̄0). The populations then grow in Pólya-urn steps,
separated by exponentially-distributed waiting times. (c) Cartoon of the competing forces of genetic drift and
population growth on the compositions distribution. Drift pushes to broaden it, growth to keep it constant.
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Figure 1.2: Genetic drift leads to fixation in a fixed-size population (from Ref. [60]). With the passing
generations (left to right), the distribution of population compositions progressively broadens. As more and
more populations fixate, the bulk of the distribution fades and the peaks at the boundaries rise. The results
agree with Kimura’s theoretical solution.

Figure 1.3: Cartoon a Pólya urn step. A marble is drawn from the urn and placed back, together with an exact
copy of itself. Each marble has equal probability of being extracted, so the probability of picking, for example,
a yellow one is equal to the relative abundance of yellow marbles. The urn increases in size at each step.
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an almost-fixated population, analogous to the result of genetic drift. At the same time, however, the increasing
number of marbles decreases the impact of individual fluctuations. Each added marble changes the proportions
in the urn less than the previous one.

Furthermore, the probability of extracting a specific sequence of marbles only depends on how many yellow
and blue marbles the sequence contains. Iterating the extraction process, the probability of extracting a specific
sequence S of ∆N marbles, ∆A of which yellow (starting from an urn of NA yellow and NB marbles) can be
easily computed to be

P (S|NA, NB) =
Γ(NA + ∆A)

Γ(NA)

Γ(NB + ∆N −∆A)

Γ(NB)

Γ(NA +NB)

Γ(NA +NB + ∆N)
, (1.3)

where Γ(n) = (n− 1)! is the Euler Gamma function. Equivalently, all paths with the same starting and ending
points have are equally probable. The Pólya urn is therefore also called an exchangeable process [64].

Moreover, it has been proven that the sequence of marble proportions x in the urn converges with probability
1 to some limit value x∗. This value, however, is a random variable [63, 64]. In other words, starting a Pólya
process multiple times with the same number of marbles and the same composition x, it will converge every
time to some limit composition x∗ but, in general, to a different one every time. In the limit case of starting
with NA = NB = 1, for example, the urn is equally likely to end anywhere between 0 and 1 (extremes excluded)
[64, 65].

To find the limit distribution, consider extracting a large number ∆N of marbles. Of these, ∆A will be
yellow. Clearly, there are

(
∆N
∆A

)
equivalent paths for this result, and their probability is given by equation 1.3.

Using the definition of the Beta function B(m,n) = Γ(m)Γ(n)/Γ(m+ n), the probability of the urn ending up
with NA + ∆A yellow marbles is finally

p(NA + ∆A|NA, NB ,∆N) =

(
∆N

∆A

)
B(NA + ∆A,NB + ∆N −∆A)

B(NA, NB)
. (1.4)

This distribution is called beta-binomial distribution [63].

1.2 Growth “freezes” genetic drift

To isolate growth and genetic drift in our system, we needed to eliminate all interactions between cells, as well
as any selection. To this end, we cultivated mixed bacterial populations in a medium that granted both strains
the same growth rate; we also limited our analysis to the exponential growth phase, when death events and
competition for resources are negligible. The other main feature of our system was the small initial populations,
resulting in a high variability in initial conditions.

This relatively uncomplicated biological setting allowed for a very rigorous mathematical description, which
was key to our work. The core of our approach, in fact, was the close cross-talk between theoretical and
experimental side.

Research question: How does exponential growth affect genetic drift?

As reported in the publication (reprinted in Section 1.3), we addressed the question using analytical calcu-
lations and stochastic simulations, validated by experiments. The model, in addition allowed us to peer into
parts of the dynamics unaccessible to experiment. Thus we proved that:

Exponential growth stops genetic drift and maintains genetic diversity in the population.

1.2.1 Theoretical model for stochastic, non-selective growth

We considered a large number of populations (about 104), grouped in “virtual well-plates” of 120 each, corre-
sponding to many replicates of the experimental setting. Each well was initialized with a random number A0

of individuals of strain A, and B0 of strain B. A0 was Poisson-distributed with mean N̄0x̄0 (B0 was chosen
analogously, with mean N̄0(1 − x̄0)). This procedure generates populations of average size N̄0 and with an
average fraction of A-individuals x̄0, replicating the experimental conditions.

We modeled growth as iterations of the Pólya urn, with every reproduction event corresponding to an
extraction event for the urn. We also set the waiting times between urn extractions to be random and sampled
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from an exponential distribution with parameter N . With this procedure, also called Poissonization [66, 67],
the total urn size grows stochastically, with average 〈N〉 ∝ et. As a result, the number NA of individuals of
type A evolves following the master equation

d

dt
P (NA, t) = (NA − 1)P (NA − 1, t)−NAP (NA, t) , (1.5)

and analogously for the number NB of B-individuals.
We simulated the evolution of several “virtual well plates” at once by solving eq. (1.5) using the Gillespie

algorithm [68, 69]. After growth, we computed the distribution of the fraction x of A-individuals in simulations
and compared it directly to the results of the experiments, see Figure 1.4.
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Figure 1.4: Comparison between experimental and theoretical results Solid lines represent the average histogram
obtained following the theoretical procedure for multiple sets of 120 populations; shaded areas indicate the 68%,
95%, and 99% confidence intervals around these results; blue bars are the result of one experimental run with
120 wells. Theoretical results agree well with their experimental counterparts. (a) Initial size N0 (average
N̄0 = 2.55); (b) Initial composition (average x̄0 = 0.45); (c) Final composition (initial parameters N̄0 = 2.9,
x̄0 = 0.32) (d) Final composition (initial parameters N̄0 = 14.5, x̄0 = 0.52). Adapted from Ref [70].

1.2.2 Saturating behavior of distribution moments

Our simulations show that the distribution of population compositions x = NA/(NA+NB) effectively “freezes”
to a steady state. Figure 1.5 and the Supplementary Video show that the distribution initially broadens but,
within a few generations, it reaches a stable steady state. Demographic fluctuations, which initially had a major
impact on the distribution, rapidly lose importance. Moreover, we notice that the number of fixated populations
(black bins at the boundaries of the plot) never increases in time. The only fixations ever present are from
populations that started fixated. So the decreasing amplitude of fluctuations is stronger than the self-reinforcing
positive feedback.

Quantitatively speaking, we showed that mean, variance, and skewness of the distribution of x saturate in
time. We proved this using the generating function

F (a; t) =
∑

NA

aNAP (NA; t) , (1.6)

From the master equation (1.5), we obtain that F (a; t) obeys

d

dt
F (a; t) = (a2 − a)

∂F (a; t)

∂a
. (1.7)

https://doi.org/10.1371/journal.pone.0134300.s001
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Figure 1.5: Time series for the simulated distribution of the population composition x (parameter values
N̄0 = 10, x̄0 = 0.33). The distribution initially broadens, then freezes to a steady state. The fraction of fixated
populations (black bins) remains constant during the process, as expected for a Pólya urn, and in contrast to
expectations from genetic drift (see Figure 1.2). The inset shows the time course of mean, standard deviation
and skewness of the distribution (symbols denote numerical simulations, solid lines theoretical predictions). The
mean x remains constant throughout the evolution; standard deviation and skewness saturate to limit values,
confirming the freezing of the distribution. (reprinted from Ref. [70])

By solving this equation we can obtain the time evolution for the first three moments of P (NA; t) (and analo-
gously for P (NB ; t)). It is then a matter of algebra to compute, for example, mean and variance of x. Specifically,
we obtained that 〈x〉 ≡ x̄0: the average composition of populations is constant—as expected in the absence of
selection. The variance, instead changes in time: to leading order in NA, NB ,

Var(x) =
2− e−t
N̄0

x̄0(1− x̄0) , (1.8)

so Var(x) grows to a limit value. This reflects the initial broadening of the distribution, due to genetic drift,
followed by the freezing to a steady state. Similarly, we observe an increase in skewness (see the Supplementary
Information to the publication), which reflects the self-reinforcing nature of the Pólya process, also followed by
saturation, confirming the distribution freezing.

1.2.3 Limit values of distribution

In the previous section, the general master equation (1.5) allowed us to compute approximate values for mean
and variance of the distribution of x. However, exploiting the properties of Pólya urns and beta-binomial
distributions, we can also derive the exact steady-state distribution of x, as well as the long-time limits of its
mean and average. Thus we can confirm and complement the approximate results of the previous section.

First, we can infer the probability P (∆A|A0, B0,∆N) of adding ∆A new A-individuals, given that the
population grows by ∆N overall (from initial conditions A0, B0). This is given by the beta-binomial distribution
in equation (1.4). Consequently, we can compute the probability P (x) that the fraction of A individuals is exactly
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x as
P (x) =

∑

A0,B0

P (A0)P (B0)P (∆A = x(A0 +B0 + ∆N)|A0, B0,∆N) . (1.9)

Though this sum lacks a closed analytical form, it can be performed numerically.
Leveraging the properties of beta-binomial distributions, we also obtained exact, closed-form expressions for

the average and variance of x. Specifically, we calculated that 〈x〉 ≡ x̄0 and, in the limit ∆N →∞,

Var(x)→ x̄0(1− x̄0)
2

N̄0
, (1.10)

(to leading order in N̄0), which also correspond to the t→∞ limits of the quantities obtained in the previous
section.

1.2.4 Consequences and outlook

Our research indicates that growth counteracts the effect of demographic fluctuations within each population,
maintaining strain coexistence. This behavior radically departs from the known results at constant population
size (see, for example, Refs. [57–59]), but also in some growing populations, such as colony range expansion
experiments [71]. In this setting, in fact, competition for limited space reduces the effects of growth, tipping
the balance back towards genetic drift.

Moreover, the results of this chapter show that, by leading to broad distributions of x, growth ensures genetic
variability between populations. In particular, this means that a non-selective growth phase could lead to an
ensemble of large populations with the typical compositional variability of small ones. Such high variability
between populations is a key component of population-level competition [44, 46]. Therefore, non-selective
growth phases could play an important role in cyclic metapopulations. In this scenario, in fact, small initial
sizes and high variability have profound and far-reaching consequences on evolution, see Refs. [53–56], as well
as Chapter 2.
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Abstract
Non-selective effects, like genetic drift, are an important factor in modern conceptions of

evolution, and have been extensively studied for constant population sizes (Kimura, 1955;

Otto andWhitlock, 1997). Here, we consider non-selective evolution in the case of growing

populations that are of small size and have varying trait compositions (e.g. after a population

bottleneck). We find that, in these conditions, populations never fixate to a trait, but tend to a

random limit composition, and that the distribution of compositions “freezes” to a steady

state. This final state is crucially influenced by the initial conditions. We obtain these findings

from a combined theoretical and experimental approach, using multiple mixed subpopula-

tions of two Pseudomonas putida strains in non-selective growth conditions (Matthijs et al,

2009) as model system. The experimental results for the population dynamics match the

theoretical predictions based on the Pólya urn model (Eggenberger and Pólya, 1923) for all

analyzed parameter regimes. In summary, we show that exponential growth stops genetic

drift. This result contrasts with previous theoretical analyses of non-selective evolution (e.g.

genetic drift), which investigated how traits spread and eventually take over populations (fix-

ate) (Kimura, 1955; Otto and Whitlock, 1997). Moreover, our work highlights how deeply

growth influences non-selective evolution, and how it plays a key role in maintaining genetic

variability. Consequently, it is of particular importance in life-cycles models (Melbinger et al,

2010; Cremer et al, 2011; Cremer et al, 2012) of periodically shrinking and expanding

populations.

Introduction
Stochastic effects play an important role in population dynamics [8–11], particularly when
competition between individuals is non-selective. Most previous theoretical analyses have stud-
ied how a non-selectively evolving trait can spread and eventually replace all other variants
(fixate) under conditions in which the population size remains constant [2, 12, 13]. However,
both natural and laboratory populations frequently experience exponential growth. Here we
show that genetic diversity in growing populations is maintained despite demographic noise,
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and reaches a stationary but random limit. We used a well-controlled model system in which
well-mixed co-cultures of a wild-type Pseudomonas putida strain and an isogenic mutant were
grown under non-selective conditions. Multiple subpopulations were generated, each contain-
ing a random number of individuals of each strain. Depending on the average initial popula-
tion size and the strain ratio, we observed distinct stationary probability distributions for their
genetic composition. Moreover, we showed that the dynamics of growing populations can be
mapped to Pólya urn models [4], permitting the observed maintenance of genetic diversity to
be understood as the random limit property of a fair game between individual strains. General-
izing the Pólya urn model to include the effects of random initial sampling and exponential
growth allowed us to predict the evolution of the composition distribution. Using numerical
and analytical methods we found that the distribution broadens at first but quickly “freezes” to
a stationary distribution, which agrees with the experimental findings. Our results provide new
insights into the role of demographic noise in growing populations.

Results and Discussion
Evolutionary dynamics is driven by the complex interplay between selective and non-selective
(or neutral) effects. The paradigm of non-selective evolution originates from the seminal work
of Kimura [1], in which he solved the Wright-Fisher model, thus showing that non-selective
effects—and specifically genetic drift—can have a determinant role in evolution. His results
sparked an ongoing debate about the nature and potency of randomness as a fundamental evo-
lutionary force [13–15]. For very small populations genetic drift is generally considered an
important factor [13], as the theory successfully predicts the outcomes of neutral evolution
experiments [9, 16].

In most theoretical analyses, constant (or effectively constant) population sizes are assumed,
and the role of population growth is neglected. Bacterial populations, however, often undergo
rapid growth—especially when they are small. For example, as few as 10 individuals of some
highly virulent pathogens (e.g. enterohemorrhagic Escherichia coli or Shigella dysenteriae) suf-
fice to initiate a deadly infection in a human host [17, 18]. Another case of small, growing pop-
ulations are water-borne bacteria that feed on phytoplankton products. Due to nutrient
limitation in open water, these bacteria typically live in small populations in close proximity to
the planktonic organism [19]. During spring blooms, the phytoplankton releases more organic
material, boosting the bacterial growth rate [19–21]. In nature, such small populations often
form by adventitious dispersal from a larger reservoir population [22]. A typical example is the
spreading of pathogens from host to host. This random “sampling” from a reservoir yields
small populations whose genetic compositions differ from that of the reservoir (a phenomenon
known as the founder effect [23]). Recent studies also showed that the combination of popula-
tion growth and stochastic fluctuations can have a major impact on the evolution [5–7, 24] and
genetics [25] of small populations.

To probe how population growth shapes genetic diversity, we used a well-characterized
microbial model system, namely the soil bacterium Pseudomonas putida KT2440 [3, 29, 27].
The wild-type strain KT2440 produces pyoverdine, an iron-scavenging molecule that supports
growth when iron becomes scarce in the environment. Here we consider co-cultures of two
genetically distinct strains: the wild-type, pyoverdine-producing strain KT2440 (strain A) and
the mutant non-producer strain 3E2 (strain B). We set up conditions of non-selective competi-
tion between these strains by using an iron-replete medium (casamino acids, supplemented
with 200 μM FeCl3). In this medium, production of pyoverdine is effectively repressed [27],
such that both strains have the same growth rate and neither has an advantage (see S2 Table).
Producer (KT2440 wild type) and non-producer (3E2) strains were first mixed and diluted to
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yield Poisson dilution conditions. Then we initiated a large number of subpopulations from
this reservoir by pipetting aliquots of the cell suspension into the wells of a 96-well plate,
thereby generating a large ensemble of subpopulations with a random distribution of initial cell
number N0 and producer fraction x0 (Fig 1). Use of shaken liquid cultures ensured homoge-
neous well-mixed conditions for all cells in the same well (access to nutrients, oxygen, etc.),
and exponential growth was observed in all cases (see S2 Fig).

This experimental setting is well described within the mathematical framework of a Pólya
urn model. Consider each bacterium in the population as a marble in an urn, and its genotype
as the color of the marble (e.g. red for strain A, and blue for strain B). Population growth results
from single reproduction events in which an individual randomly divides. This is mathemati-
cally equivalent to a stochastic event in which a marble is chosen at random from the urn and
put back, together with another one of the same color. This random process, introduced by
Eggenberger and Pólya [4], exhibits several important properties [28–31]. It is self-reinforcing:
each time a marble is extracted, another one of the same color is added, increasing the likeli-
hood of extracting a marble of that color again. In the context of bacterial populations, this
means that every birth event for one strain makes it more likely that further birth events of that
same strain will occur in the future. Note, however, that fixation, i.e., complete loss of one type

Fig 1. Schematic depiction of urn sampling and growth. (a) Schematic illustration of the random initial
conditions. An infinite reservoir contains a diluted mixture of bacteria, a fraction �x0 of which are of strain A. We
draw small volumes of liquid from the reservoir containing small, random numbers of individuals, which
conform to a Poisson distribution with mean (determined by the dilution of the reservoir population). A certain
fraction of this initial population is of strain A. The mean value of this fraction is equal to �x0. We use these
individuals to initiate populations in the wells of a microtiter plate, so that each population starts with a random
sizeN0 and a random fraction of A-individuals x0. (b) Illustration of the Pólya urn model. If a bacterial
population is represented as an urn, each individual as a marble and each bacterial strain as a color, this urn
model captures the essentials of bacterial reproduction in our populations. At each iteration, a marble is
drawn at random and returned to the urn, together with another one of the same color. The probability of
extracting a marble of either color is determined solely by its relative abundance, making the process non-
selective (since no strain has inherent advantages, see S2 Table). The rate of growth in population size can
be rendered exponential (see S2 Fig) by letting the waiting time between successive iterations be
exponentially distributed (also known as Poissonization).

doi:10.1371/journal.pone.0134300.g001
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of marble from the population, cannot occur, simply because in the Pólya urn model marbles
are neither removed nor do they change their color. This fully reflects the experimental condi-
tions: During exponential growth, rates of cell death are negligible, and within the observation
time mutations will be extremely rare, given the population sizes considered. The bacteria in
each well reproduce randomly at a per-capita (average) rate μ. To translate this to the urn
model, drawing of a marble is assumed to be a stochastic Poisson process, with a “per-marble”
rate μ (a procedure known as Poissonization or embedding [32, 33]). Mathematically, the
growth process in then described by a Master Equation: The time evolution for the probability
P(NA, t) of finding NA individuals of strain A at time t reads

d
dt

PðNA; tÞ ¼ ðNA � 1ÞPðNA � 1; tÞ � NAPðNA; tÞ ; ð1Þ

where we have set the growth rate to μ = 1 in order to fix the time scale (for an introduction to
the mathematical concepts see, e.g., [34]); the corresponding Master equation for individuals of
strain B is of identical form. To study the composition of the populations, we use the more con-
venient quantities N = NA + NB (total size) and x = NA/N (fraction of individuals of strain A).

To start the experiment, we inoculated the wells of 96-well-plates by drawing small volumes
of diluted liquid bacterial culture from a large reservoir (Fig 1(a)). Each volume contains a ran-
dom number of bacteria whose mean value is controlled by the dilution of the reservoir. The
fraction of bacteria of strain A (wild type) in that volume is also random, with its mean value
�x0 given by the fraction of strain A in the reservoir. In the mathematical formulation, this setup
corresponds to stochastic initial conditions for the Pólya urn model: the initial population size
N0 for each well is given by a Poisson distribution with mean �N 0, and each individual is
assigned to strain A or B with probability �x0 and 1� �x0), respectively. This procedure is also
equivalent to treating the initial numbers of A- and B-individuals as independent, Poisson-
distributed random variables with mean values �N 0�x0 and �N 0ð1� �x0Þ), respectively [6].

Fig 2 shows a time series of the histogram for the composition x of all subpopulations con-
sidered, as obtained from a stochastic simulation of the Master Eq (1) for a given random initial
condition (with �N 0 ¼ 10 and �x0 ¼ 0:33). Surprisingly, the distribution first broadens, but then
quickly “freezes” to a steady state (see S1 Video). This is genuinely different from Kimura“s
result for populations with constant size [1] (or similar results with effectively constant size
[2]) where the balance between stochastic birth and death events leads to genetic drift, and
thereby eventually to the extinction of one of the two strains. In contrast, for a growing popula-
tion, death events are negligible, and therefore there is no fixation of the population during
growth. Instead, fixation arises as a direct consequence of the initial sampling process, as can
be seen from the heights of the black bins in the histogram (at x = 0 and x = 1), which remain
constant over time (Fig 2). During growth, the composition of each subpopulation, instead of
drifting to fixation at either x = 0 or x = 1, reaches a stationary limit value x�, where it remains
thereafter [35]. This limit value is random: starting several subpopulations (urns) from the
exact same initial composition of strain A and B (blue and red marbles), each reaches a limit,
but in general these limits differ from one another. Once all of the subpopulations in an ensem-
ble reach their limit, the distribution of the population composition freezes to a steady state,
which is equal to the probability distribution of x�. Similar random limit properties appear in
other fields, with lock-in in economics as the best-known example [30].

The inset in Fig 2 shows approximate solutions for the time evolution of mean, standard
deviation, and skewness of the composition x, which we obtained by analytically solving the
Master Eq (1) (see S2 Text). The analytical results agree well with their numerical counterparts.
In particular, the mean value remains constant over time, as it must for a non-selective process.

Non-Selective Evolution of Growing Populations

PLOS ONE | DOI:10.1371/journal.pone.0134300 August 14, 2015 4 / 13



For the time evolution of the variance, which is a measure for the spread of a distribution, we
obtain to leading order in population size

Varpoi½x�ðtÞ ¼
2� e�t

�N 0

�x0ð1� �x0Þ : ð2Þ

The broadening and freezing of the distribution is reflected in the exponential decay term of
the variance. Note that the skewness increases as well, because growth is self-reinforcing (see
inset in Fig 2). To further test the validity of the stochastic simulations, we also calculated the
limit values of the average and variance after extended periods of evolution exactly, and found
that they match the numerical solutions of the Master Equation perfectly (see S1 Text).

We tested these theoretical predictions using P. putida as a bacterial model system. We
mixed the wild-type and mutant strains in order to obtain different initial fractions �x0. The
degree of dilution of the mixture determines the average initial cell number �N 0, with which we
inoculated 120 wells per experiment (96-well plate format). In order to compare the experi-
mental data with our model, we set up simulations that matched the experimental configura-
tion by initializing �N 0 and �x0 with the same values as measured in the experiments. We
simulated the time evolution of about 104 populations, grouped in “virtual plates” of 120 wells
each. Every virtual plate produced a histogram like the one we obtained from experiments. We
then generated an average histogram of the virtual plates and used its values to compute the

Fig 2. Time series for the simulated distribution of the population composition x. The distribution
initially broadens, then freezes to a steady state (see S1 Video). The fraction of populations that have x = 0 or
x = 1 (indicated by the black bins) remains constant during the time evolution, as expected for a Pólya urn
process, and in contrast to expectations from genetic drift (see S1 Table). In each well the population follows
a stochastic path and reaches a (random) limit composition, and the distribution freezes only when all
populations reached their limit. The parameter values used in the simulation are �N0 ¼ 10 and �x0 ¼ 0:33 The
inset shows the mean, standard deviation and skewness as a function of the number of generations, with
symbols denoting numerical simulations, and the solid lines corresponding to the theoretical prediction of Eq
(2) (and also those in S2 Text). Analytical and numerical values agree. The mean hxi remains constant
throughout the evolution, as expected for a non-selective process; standard deviation and skewness saturate
to limit values, confirming the freezing of the distribution.

doi:10.1371/journal.pone.0134300.g002
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binomial confidence intervals [36] for the count in each bin, and compared those with the
experimental distribution.

Fig 3(a) shows a representative experimental histogram of the initial population sizes N0 for
strong dilution with �N 0 ¼ 2:55. It is well approximated by a Poisson distribution, and agrees
with the simulation results within statistical errors (blue line and shaded gray areas in Fig 3(a)).
Fig 3(b) shows the probability distribution of the corresponding initial compositions x0 of the
populations, where again theoretical and experimental values agree well within statistical error.
Note also that in every well the composition x0 must be a simple fraction; this means that only
a few numerical values are possible for small initial population sizes N0. This small-number
effect explains why the distribution of x0 in Fig 3(b) is so ragged. The distribution becomes
much smoother for larger initial population sizes (see S3 Fig). Taken together, these results for
the distribution of initial population size and composition confirm that the inoculation of the
individual wells is a stochastic sampling process with Poissonian statistics.

Next, we were interested in how the composition of the bacterial population would evolve
under non-selective (neutral) growth conditions. To this end we let the 120 populations grow
for an 11-hour period, during which they remained in exponential growth phase (see S2 Fig).
Then we measured the population size N(t) in each well by counting colony-forming units, and
x(t) by counting the pyoverdine-producing colonies (see Materials and Methods). Fig 4 shows
the final outcome for four different initial conditions, i.e. combinations of the initial average
population size �N 0 and composition �x0. We first wanted to know what determines the number
of wells that contain only individuals of either strain A or strain B, i.e. that are fixated. To this
end we compared the experimentally observed values with the corresponding predictions from
the numerical simulations of the Pólya urn model (Fig 4). Since both results agree within statis-
tical error, we conclude that fixation of a population is a consequence of the initial sampling
process and is not due to fixation during population growth (see also S1 Table). This is espe-
cially obvious for small average initial population size or compositions close to x = 0 or x = 1,
where a large fraction of the wells contains cells of strain A or B only (Fig 4(a) and 4(d)). Next
we wished to learn how the final distribution of the population composition (i.e. the random
limits, x�) depends on the initial average composition �x0. For �x0 ¼ 0:5, we observed both by
experiment and theoretically that the initial distribution significantly broadened (by a factor

Fig 3. Initial distributions for population sizeN0 and composition x0 (parameter values �N0 ¼ 2:55,
�x0 ¼ 0:45). The experimental distributions (bars) for N0 (panel (a)) and x0 (panel (b)) are measured from
120-well ensembles. The average �N0 and �x0 calculated from the measured values determine the parameters
for the simulated distributions. The theoretical average distribution (solid blue line) is the average of the same
distributions generated for 84 sets of 120 wells. Using that average we calculate theWilson binomial
confidence intervals (gray areas) for 68% (between dashed lines), 95% (between dotted lines) and 99.73%
confidence. The measured and simulated distributions agree well within statistical error, confirming our
assumption that individuals of strain A and B in the experiments start Poisson-distributed with mean �N0

�x0 and
�N0ð1� �x0Þ, respectively. The ragged distribution of x0 derives from a small-number effect, and disappears at
larger values of N0 (see main text, and also S3 Fig).

doi:10.1371/journal.pone.0134300.g003
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) but remained symmetrical (Fig 4(c) and S1 Fig). In contrast, starting from distributions
with average values below or above 0.5 caused the final distribution to broaden and also
become skewed towards smaller or larger values of x, respectively (Fig 4(b) and 4(d)). More-
over, we found quantitative agreement between experiment and numerical simulations within
statistical errors in all analyzed parameter regimes (see blue lines and shaded areas in Fig 4):
most experimental histograms fall within the first confidence interval of the prediction (darkest
gray areas, between dashed lines), and almost all fall within the 99.73% confidence interval.

Taken together, our combined theoretical and experimental analysis gives a coherent pic-
ture of evolution during non-selective (exponential) growth. We have shown, experimentally
and by analogy with the Pólya urn model, that for each well-mixed population the composition
of the population reaches a random stationary limit, and, unlike populations with constant
size, generally does not fixate. For a large ensemble of populations, this implies that the proba-
bility distribution for the population composition converges to limit distributions (Figs 2 and
4), which are nothing like Kimura“s result for constant-sized populations. Our result is also
quite different from that obtained in range expansion experiments [37] or other settings featur-
ing population growth without death on two-dimensional substrates. There, monoclonal sec-
toring patterns arise as a consequence of random genetic drift, which drives population
differentiation along the expanding fronts of bacterial colonies, unlike our well-mixed popula-
tions that freeze to coexistence.

Our study also shows that, in a growing population with stochastic initial conditions, demo-
graphic noise has two possible sources: the initial sampling process by which subpopulations
are formed, and the subsequent growth process. The initial average population size �N 0 sets

Fig 4. Steady-state distributions of population composition x for different initial conditions. The
experimental distribution (bars) is the result of growth on 120 independent wells. We use the measured
average x0 andN0 from the experiments to initialize the simulations of several 120-well ensembles. After
growth, we compute the histogram for each of these ensembles and obtain the average theoretical
distribution (blue line). Using the values from this distribution, we compute the three confidence intervals
(shaded gray areas) for each bin for 68% (between dashed lines), 95% (between dotted lines) and 99.73%
confidence. The two sets of data match: most experimental data agree with the first prediction confidence
region, practically all with the second one. The limit distributions are clearly different from the initial ones (see
S1 Fig). The importance of growth in changing the distributions depends on the initial size N0 (see main text,
and S1 Fig). Parameter values: �N0 ¼ 2:9, �x0 ¼ 0:32 (panel (a)); �N0 ¼ 18:4, �x0 ¼ 0:22 (panel (b)); �N0 ¼ 19:6,
�x0 ¼ 0:52 (panel (c)); �N0 ¼ 14:5, �x0 ¼ 0:71 (panel (d)).

doi:10.1371/journal.pone.0134300.g004
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their relative weight (see S3 Text and S1 Fig). For very small �N 0, of the order of one or two indi-
viduals, the formation process already determines the final composition distribution: most
populations start off fixated, many with just a single founder individual, and the composition
of each well remains the same during growth. For very large �N 0, of the order of a few hundreds,
the sampling process is again central: the composition distribution changes very little before
freezing, and growth generates only a very limited amount of variation. In these two limiting
regimes, neglecting stochastic effects during growth leaves the evolutionary outcome practically
unchanged. In contrast, for small founder colonies such as those typically found during popu-
lation bottlenecks [18, 19, 38] ( �N 0 � 10), population growth is responsible for the major part
of the variation observed in the final distribution.

Moreover, our results reveal that a growing population reaches a random limit composition
much faster than genetic drift leads to fixation in populations of constant size. Typical fixation
times for genetic drift increase logarithmically with the population size [11], while the time
scale for freezing is independent of population size. This has important consequences for the
role of stochastic effects when a population passes from exponential growth phase to stationary
phase, in which growth rate and death rate are equal. Then, the composition of the population
shows both freezing and fixation, albeit at quite distinct times because the relevant time scales
differ markedly. During growth the composition distribution quickly freezes, as described
above. Once the population reaches its stationary size, it slowly drifts to fixation, following
Kimura-like dynamics.

We also believe that our results have a broad range of applications since growing populations
are ubiquitous in nature. For example, experimental studies of P. aeruginosa [22, 39] have
shown that typical life cycles pass through different steps with regularly occurring dispersal
events being followed by the formation of new colonies. As initial colony sizes are typically
small, such dispersal events coincide with population bottlenecks and subsequent exponential
growth. During these phases of the life cycle, population dynamics is often selectively neutral
and hence falls within the framework of the present work. The degree of diversity generated dur-
ing these population bottlenecks has been shown to be crucial for some proposed mechanisms
for the evolution of cooperation under selective pressure [5–7, 40–42]. Our analysis quantifies
the ensuing degree of diversity and points to the relative importance of sampling versus growth
for long-term behavior of the reservoirs. This may have important consequences for the degree
of genetic diversity observed in natural populations with life-cycle structures [38].

Materials and Methods

Strains and cultivation conditions
The P. putida strains KT2440 (wild type) and 3E2 (mutant with defective pyoverdine synthesis)
[3] were used as pyoverdine producers and non-producers, respectively. Cells were grown in
casamino acid medium (CAA) containing per liter: 5 g casamino acids, 0.8445 g K2HPO4,
0.1404g MgSO4•(H2O) [3]. The CAA medium was supplemented with 200 μM FeCl3
(CAA-Fe) to suppress pyoverdine production (see S2 Table). Overnight cultures of the individ-
ual strains in CAA-Fe medium were adjusted to an OD600 of 1, diluted 10

-2 fold, mixed to yield
the desired producer fraction, and further diluted to create Poisson distribution conditions.
Producer/non-producer co-cultures were started by inoculating the central 60 wells of two
96-well plates thereby adjusting the average initial cell number �N 0 to values between 2 and 25
cells/150 μL. Wells at the border of the plates were filled with water to minimize evaporation
from central wells. For non-selective growth, co-cultures were grown in CAA-Fe medium shak-
ing at 30°C for given periods of time. Due to the random distribution of initial cell number N0

and producer faction x0 in the 120 wells, each experiment was unique. An experiment was
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limited to 120 wells to allow initiation of the analysis of the subpopulations in the individual
wells without uncontrolled changes of growth parameters during analysis. The experiment
duration was set to 11h to allow evolution to act for a significant number of generations (see S1
Table), while leaving bacteria in exponential growth phase (see S2 Fig)

Determination of growth parameters
Cell numbers N0 and N(t) were determined by counting the colony forming units (cfu) of indi-
vidual wells. For this purpose 100μL aliquots of the individual wells were plated on cetrimide
[43] or King’s B agar (contains per liter: 20 g peptone, 10 g glycerol, 1.965 g K2HPO4(3H2O),
0.842 g MgSO4(H2O) [44]. Producer fractions x0 and x(t) were determined based on the capa-
bility of cells to produce the green fluorescent pyoverdine either by direct counting of fluores-
cent and non-fluorescent colonies on the plates or after growth in iron-limited CAA medium.
The fraction of dead cells was determined by life/dead staining with propidium iodide [45],
and was always<0.02 of the total cell number under the experimental conditions.

Simulation of growing populations
We performed simulations of 10080 wells using a Gillespie algorithm [46]. The initial numbers
of “cells” per well were drawn at random from a Poisson distribution with a mean value of �N 0

measured in the corresponding experiment. The strain assigned to every individual in each
well was determined by the outcome of a Bernoulli trial (i.e., coin-flip-like process) and the
probability of assignment to strain A was set to the value of �x0 measured in the experiment.
After initialization, wells were grouped into 84 virtual 120-well “plates”, and a random waiting
time was selected for each well, drawn from an exponential distribution with the population
size as parameter. The Gillespie algorithm was run until the average size across all wells
matched the average size measured at the end of the growth experiments, or until a specified
time had elapsed (see S2 Fig).

Supporting Information
S1 Video. Time evolution of composition distribution. The distribution of compositions x
first broadens due to demographic noise, but soon “freezes” to a steady state. The steady state

form is maintained as long as the populations grow. Parameter values are �N0 ¼ 10, �x0 ¼ 0:33

(as for Fig 2).
(MP4)

S1 Text. Exact calculations for steady-state composition distribution and moments. Using
the theory of Pólya urns, we calculate exactly the steady state values of: (i) the distribution of
population compositions x, (ii) its mean value, and (iii) its variance.
(PDF)

S2 Text. Approximate calculations for the time evolution of the distribution moments.We
use the Master equation of the growth process (Eq (1)) to determine the time evolution of vari-
ance and skewness of the composition distribution. These values are used in Eq (2) and Fig 2.
(PDF)

S1 Fig. Initial and steady state distributions, relative entropy. Panels (a),(b),(c): Initial and

final distributions of x for three regimes of �N0. When �N0 is very small or very large (panels (a)
and (b)), the evolutionary fate of the population is largely determined by the initial population
sampling. Therefore, the initial distribution (red bars) and the steady-state one (green bars)

look qualitatively very similar. For intermediate values of �N0, however, population growth
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becomes more important, and the distributions look very different. The amount of composi-
tion values the population can access through growth can be quantified looking at the “unpre-
dictability” of the steady-state composition, once the initial one is known: the more
unpredictable, the more are made accessible by growth. Mathematically, the measure for this is
called conditional entropy: the higher the entropy, the more unpredictable the outcome. Panel

(d) shows the conditional entropy as function of �N0. Indeed, very small or very large initial
populations experience little to no additional noise from growth, while in populations with

intermediate values of �N0 (�N0 ’ 15) growth is a major source of demographic noise. (Parame-

ter values: �N0 ¼ 2 (a), �N0 ¼ 2000 (b), �N0 ¼ 20 (c); �x0 ¼ 0:25 in all panels)
(TIF)

S3 Text. Comparison of initial and steady-state distributions of x, and entropy of the
steady state distribution conditioned on the initial one.We use conditional entropy to ana-
lyze the impact of growth on the distribution of compositions x. The results are also depicted
in S1(d) Fig
(PDF)

S2 Fig. Growth curve of a mixed population. The population consists of pyoverdine producer
(P. putida KT2440) and non-producer (P. putida 3E2) under non-selective (iron replete) con-
ditions. Individual precultures of the strains were mixed and diluted in iron replete medium to

yield �N0 ¼ 4 (in 150 μL), and �x0 ¼ 0:5. Cells were grown aerobically at 30°C for 24 hours. The
dots represent the mean N(t) of three independent replications, the bars the corresponding
standard deviation. After a lag phase of about 2 hours, the cells start to grow exponentially and
reach the stationary phase after about 14 h of growth. For the non-selective growth experi-
ments used to test the predictions of the Pólya urn model, cells were grown for 11.5 h to ensure
exponential growth conditions.
(TIF)

S3 Fig. Additional initial conditions measurements. The experimental distributions (bars)
are measured from 120-well ensembles, the average N0 and x0 from those sets the parameters
for the simulated distributions. The theoretical average distribution (solid line) is the average
of the same distributions generated for 84 sets of 120 wells. Using that average we calculate
three Wilson binomial confidence intervals (gray areas). Experiments and theory agree within
statistical error: the distribution of sizes (panels (a) and (c)) follows a Poisson distribution. The

raggedness of the distribution of x for at small �N0 (see panel (b) and Fig 3(b) in main text) is
due to a small size effect: since xmust be a simple fraction, when N0 is small only a few values

are available (see main text). This effect disappears for average initial sizes �N0 ’ 10 (see panel

(d)). Parameter values: �N0 ¼ 5:75, �x0 ¼ 0:43 (a) and (b); �N0 ¼ 26:49, �x0 ¼ 0:45 (c) and (d).
(TIF)

S1 Table. Comparison between results from our experiments and those in [9].While experi-
ments for constant-sized populations of Drosophila observe significant fixations within the
first tens of generations, we instead observe freezing of the probability distribution for the pop-
ulation composition, without any fixation.
(PDF)

S2 Table. Comparison of growth and pyoverdine production per cell of P. putida KT2440
and 3E2. Separate cultures of producer (P. putida KT2440) and non-producer (P. putida 3E2)
were grown in iron-limiting (no addition of FeCl3) and iron-replete medium (addition of
200 μM FeCl3) at 30°C. The cell density was measured at 600 nm, and specific growth rates
were calculated from density values of the exponential phase. The pyoverdine production was
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determined by fluorescence emission measurements (excitation 400 nm, emission at 460 nm).
The pyoverdine production per cell represents the ratio of pyoverdine fluorescence and optical
density measured after 24 h of growth. The values in the table are averages over a minimum of
five experiments, with the corresponding standard deviation. The fluorescence value for the
non-producing mutant in iron-limiting medium is 0 because the culture failed to grow.
(PDF)
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Video: Time evolution of composition distribution.

https://vimeo.com/108884249
The distribution of compositions x first broadens due to demographic noise, but soon “freezes” to a steady

state. The steady state form is maintained as long as the populations grow. Parameter values are N̄0 = 10,
x̄0 = 0.33 (as for Fig. 2).

Exact calculations for steady-state composition distribution and moments.

Calculation of probability distribution.

Each population in the ensemble is initialized with A0 individuals of type A and B0 of type B. In the
general case, A0 and B0 are independent random variables for each population with distributions P (A0) and
P (B0). All populations evolve for ∆N reproduction events, of which a random amount ∆A generate new
A-individuals. From the mathematical literature [35], it is well-known that ∆A follows a beta-binomial, with
A0, B0 and ∆N as parameters. The fraction of A-individuals x, then follows the probability

P (x) =
∑

A0,B0

P (A0)P (B0)P (∆A = x(A0 +B0 + ∆N)−A0|A0, B0,∆N) , (3)

where the sums run over all allowed values of their respective indices. P (∆A = k|A0, B0,∆N) is the
probability of ∆A being equal to k, given the values of A0, B0 and ∆N . The sum may easily be performed
numerically. For the moments of the distribution there are, however, also closed-form analytic expressions.

Exact calculation of asymptotic moment values

Let 〈·〉0 be the average over the initial conditions, 〈·〉∆A be an average over ∆A, and 〈·〉 be an average over
both quantities. From the properties of the beta-binomial distribution we know that, for a given initial
condition, we have

〈∆A〉∆A =
∆NA0

A0 +B0
, (4)

Var[∆A] =
∆NA0B0(A0 +B0 + ∆N)

(A0 +B0)2(A0 +B0 + 1)
. (5)

For the mean of 〈x〉, one obtains

〈x〉 (4)
= 〈x0〉0 = x̄0 .

Hence, the average composition is exactly conserved throughout the time evolution of the populations. In
other words, the stochastic process is a martingale.
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For the variance we obtain

Var[x] =

〈(
A0 + ∆A

A0 +B0 + ∆N

)2
〉
− 〈x0〉20 (6)

=

〈
A2

0 + 2A0 〈∆A〉∆A + Var[∆A] + 〈∆A〉2∆A

(A0 +B0 + ∆N)2

〉

0

− 〈x0〉20 (7)

(4)
=

〈(
A0

A0 +B0

)2

+
Var[∆A]

(A0 +B0 + ∆N)2

〉

0

− 〈x0〉20 (8)

(5)
= Var[x0] +

〈
∆NA0B0

(A0 +B0)2(A0 +B0 + ∆N)2(A0 +B0 + 1)

〉

0

(9)

= Var[x0] + 〈x0(1− x0)〉0
〈

1

N0 + 1

∆N

N0 + ∆N

〉

0

. (10)

For long times (i.e., ∆N � 1), ∆N +N0 ' ∆N and (10) reduces to

Var[x]→ Var[x0] +

〈
1

N0 + 1

〉

0

〈x0(1− x0)〉0 . (11)

The argument up to here is completely independent of the particular choice of initial conditions. If the initial
distribution is known, we may even make the value of the variance more explicit. In particular, consider the
distribution we obtain from experiments: in each well, N0 is Poisson-distributed with mean N̄0. Then one
gets 〈

1

N0 + 1

〉

0

=
1− e−N̄0

N̄0
. (12)

Within each well of (random) size N0 there is an initial random number A0 of A-individuals, which follows a
Binomial distribution with parameters N0 and x̄0. For this choice of distribution, it is possible that N0 = 0,
which would lead to an undetermined value of x0 = A0/N0, and therefore also for the average 〈x0〉. We can
solve this problem by redefining x0:

x0 :=

{
x̄0 , N0 = 0
A0
N0

, otherwise
(13)

so that x0 and its average have definite values, and 〈x0〉0 = x̄0. With this we can compute the second
moment of x0:

〈x2
0〉0 =

∞∑

N0=1

e−N̄0
N̄N0

0

N0!





N0∑

A0=0

(
N0

A0

)
x̄A0

0 (1− x̄0)N0−A0
A2

0

N2
0



+ x̄2

0e−N̄0 . (14)

The sum inside the braces can be solved using exponential and binomial series and yields

〈x2
0〉0 = x̄2

0 + x̄0(1− x̄0)e−N̄0

∞∑

N0=1

N̄N0
0

N0!N0
. (15)

The remaining series is an exponential integral (Ei), and therefore

Var[x0] = x̄0(1− x̄0)e−N̄0
[
Ei(N̄0)− γ − ln(N̄0)

]
=: x̄0(1− x̄0)ϕ(N̄0) , (16)

where we defined ϕ(N̄0) := e−N̄0
[
Ei(N̄0)− γ − ln(N̄0)

]
. Then the variance of x reads

Var[x] = Var[x0] +
1− e−N̄0

N̄0
〈x0(1− x0)〉 (17)

= x̄0(1− x̄0)

[
ϕ(N̄0) +

1− e−N̄0

N̄0

(
1− ϕ(N̄0)

)
]
. (18)
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For large N̄0, through an asymptotic expansion [47],

Ei ' 1

N̄0
eN̄0

N̄0−1∑

m=0

m!N̄−m0 − 1

3

√
2π

N̄0
, (19)

ϕ(N̄0) can be approximated by

ϕ(N̄0) ' 1

N̄0

N̄0−1∑

m=0

m!N̄−m0 − e−N̄0

[
1

3

√
2π

N̄0
− γ − ln(N̄0)

]
. (20)

To leading order in N̄0, then, the variance of x becomes

Var[x] = x̄0(1− x̄0)
2

N̄0
,

in perfect agreement with our approximate results based on Master equations (Eq. (2) in main text, see also
below).

Approximate calculations for the time evolution of the distribution mo-
ments

Using the Master Equation for the number of individuals of each strain (1), we are able to obtain the time
evolution of the first three moments of the distribution of x. Equation (1) is sometimes called “Simple Growth
Equation” and can be exactly solved (see, for example, [38]) using generating functions like

F (a, t) :=
∑

NA

aNA P (NA, t). (21)

To approximate the time evolution of the first three moments of x, however, we do not need the full
solution, but only the first three moments of NA and NB. To this end, we insert the Master Equation (Eq.
(1) in main text) in the definition of the generating function to get the time derivative for F (a, t):

d

dt
F (a, t) =

(
−a+ a2

)
∂aF (a, t). (22)

To obtain the time evolution of the nth moment, we apply the nth derivative with respect to a on both sides
of equation (22), and solve for the corresponding moment. For the first three moments, the solution is

〈NA〉 = etK1 , (23)

〈N2
A〉 = et(et − 1)K1 + e2tK2 , (24)

〈N3
A〉 = et

(
−3et + 2e2t + 1

)
K1 + 3e2t

(
et − 1

)
K2 + e3tK3 . (25)

K1,K2,K3 are integration constants, which depend on the initial conditions. We consider the case of Poisson
initial conditions. This means that the initial number of A is Poisson-distributed with mean value N̄A,0,

〈NA(t = 0)〉 !
= N̄A,0 , (26)

and, since for the Poisson distribution the variance equals the mean, we get
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VarNA(t = 0)
!

= N̄A,0 . (27)

Employing these conditions in the solutions of the differential equations we found in Eq. (23) and (24), we
get

〈NA〉 = etN̄A,0 , (28)
VarNA = et(2et − 1)N̄A,0. (29)

By the known properties of the Poisson distribution, the skewness of our initial distribution equals to
1/
√
N̄A,0. Using Eqs. (25), (28), and the definition of the skewness, we obtain the general time evolu-

tion of the skewness

v(NA) =
N̄A,0

(
6e2t − 6et + 1

)
et

(
N̄A,0 (2et − 1) et

)3/2
. (30)

For NB, the calculations are analogous. Note also that all calculations were exact so far.
With the moments of NA and NB we can find the (approximate) time evolution of variance and skewness

of x = NA/(NA + NB). For the mean of x we have already seen in the exact calculation (see Eq. (6)) that
it does not change with time, and hence its time evolution is already known.

To calculate the time evolution of the variance of x, we consider x as a function of NA and NB:

x(NA, NB) =
NA

NA +NB
. (31)

Using the time independence of the mean (〈x(NA, NB)〉 = x(〈NA〉, 〈NB〉)), a bivariate Taylor expansion
around (〈NA〉, 〈NB〉), and the time evolution of the moments, Eqs. (28) and (30), we get for the variance of
x:

Varx = 〈[x(NA, NB)− 〈x(NA, NB)〉]2〉 (32)

=
〈

[x(NA, NB)− x(〈NA〉, 〈NB〉)]2
〉

(33)

= 〈[x′NA
(〈NA〉, 〈NB〉)(NA − 〈NA〉)+ (34)

+ x′NB
(〈NA〉, 〈NB〉)(NB − 〈NB〉) +O

(
N−2

A , N−2
B

)
]2〉 (35)

=
〈NB〉2
〈N〉4 VarNA +

〈NA〉2
〈N〉4 VarNB +O

(
N−2

A , N−2
B

)
(36)

=
(2− e−t)
N4

0

NB,0NA,0 (NA,0 +NB,0) +O
(
N−2

A , N−2
B

)
(37)

=
2− e−t

N̄0
x̄0(1− x̄0) (38)

−→
t→∞

2

N̄0
x̄0(1− x̄0) (39)

From this we obtained Eq. (2) in main text. For infinite times the approximate result for the variance
matches the exact one of Eq. (11).

The skewness of the x distribution is calculated analogously:
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v(x) =

〈(
x(NA, NB)− x(〈NA〉, 〈NB〉)√

Varx

)3
〉

(40)

=
x0e
−2t
(
12x2

0e
2t − 12x2

0e
t + 2x2

0

)

N2
0

(
x0
N0

(−2x0et + x0 + 2et − 1) e−t
)1.5

+
x0e
−2t
(
−18x0e

2t + 18x0e
t − 3x0 + 6e2t − 6et + 1

)

N2
0

(
x0
N0

(−2x0et + x0 + 2et − 1) e−t
)1.5 +O

(
N−2

A , N−2
B

)
. (41)

Comparison of initial and steady-state distributions of x, and entropy of
the steady state distribution conditioned on the initial one.

Figure 5: Initial and steady state distributions, relative entropy. Panels (a),(b),(c): Initial and
final distributions of x for three regimes of N̄0. When N̄0 is very small or very large (panels (a) and (b)),
the evolutionary fate of the population is largely determined by the initial population sampling. Therefore,
the initial distribution (red bars) and the steady-state one (green bars) look qualitatively very similar. For
intermediate values of N̄0, however, population growth becomes more important, and the distributions look
very different. The amount of composition values the population can access through growth can be quantified
looking at the “unpredictability” of the steady-state composition, once the initial one is known: the more
unpredictable, the more are made accessible by growth. Mathematically, the measure for this is called
conditional entropy : the higher the entropy, the more unpredictable the outcome. Panel (d) shows the
conditional entropy as function of N̄0. Indeed, very small or very large initial populations experience little to
no additional noise from growth, while in populations with intermediate values of N̄0 (N̄0 ' 15) growth is a
major source of demographic noise. (Parameter values: N̄0 = 2 (a), N̄0 = 2000 (b), N̄0 = 20 (c); x̄0 = 0.25
in all panels)
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We simulate an ensemble of populations starting from Poisson initial conditions, and track their time
evolution until the x distribution freezes. Once it freezes, we can build a joint histogram of initial and final
compositions, which approximates the joint distribution Pjoint(x0, xf ). From Pjoint we can obtain the initial
and final distributions as its marginal distributions, integrating over all values of xf and x0, respectively.
The joint information (Shannon) entropy is defined as [48]

Hjoint(x0, xf ) = −
∫ 1

0
dx0dxfPjoint(x0, xf ) log(Pjoint(x0, xf )) . (42)

The marginal entropies H(x0) and H(xf ) are defined, analogously, through integrals only of P (x0) over x0,
and P (xf ) over xf , respectively. The conditional entropy of the final distribution given the initial is defined
as

H(xf |x0) = Hjoint(x0, xf )−H(x0) . (43)

It measures the amount of information necessary to describe the final distribution, once all information
about the distribution of x0 is known. Therefore, H(xf |x0) provides a measure of how entropic (or “noisy”)
growth itself is [49]—or, in other words, how many different final compositions are possible given the initial
condition. Figure 5(d) shows H(xf |x0) from repeated simulations, all with the same initial distribution
form, the same x̄0, but different N̄0. For very small N̄0 (of the order of one or two individuals) the group
formation almost completely determines the fate of populations: most populations start fixated, many with
just a single founder individual, and the composition of each well remains the same during growth. The
path followed by x in each population during time is a straight line, as the compositions stay constant.
Therefore, x for different populations follow in time paths that do not cross or “mix”. Growth produces very
little demographic noise, and its conditional entropy tends to zero. For very large N̄0 (of the order of a few
hundreds), the group sampling is again central to determine the final distribution. Very large populations,
in fact, all start with similar compositions (according to the Law of Large Numbers), and their compositions
are difficult to change, as each individual event has little impact. The composition distribution changes
very little before freezing; time evolution paths of different populations “mix” very little. Entropy in this
regime saturates for increasing initial sizes, and is rather low. Between the small size regime (where paths
do not “mix”) and the large size regime (where size limits “mixing”), we find a window where populations are
small enough to significantly change their composition, but also large enough to not start fixated. This is
the region where the conditional entropy peaks, and growth is the most important in determining the final
distribution.

Intuitively, the difference in variance between initial and final distribution could provide an alternative
measure of the noise introduced by growth. However, of all x distributions between 0 and 1 with fixed
x̄0, the one with maximal variance is the one for which x is only 0 or 1, i.e., when all populations start
off fixated. In this case, the compositions never change during growth and the variance stays constant.
Moreover, independently on the choice of initial distribution, the difference between initial and steady-state
variance decreases for increasing N̄0 (see Eq.(11)). Therefore, all considerations on noise sources based on
variance would indicate that growth matters more when initial populations are smaller, in contrast with our
observations.

Drosophila P.Putida
# of populations 107 120
Initial pop. size 16 ∼ 10
Max. # of generations 19 16
Pop. size Constant Growing
Outcome Increasing number of fixations No fixation, freezing

Table 1: Comparison between results from our experiments and those in [9].While experiments for
constant-sized populations of Drosophila observe significant fixations within the first tens of generations, we
instead observe freezing of the probability distribution for the population composition, without any fixation.
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Figure 6: Growth curve of a mixed population. The population consists of pyoverdine producer (P.
putida KT2440) and non-producer (P. putida 3E2) under non-selective (iron replete) conditions. Individual
precultures of the strains were mixed and diluted in iron replete medium to yield N̄0 = 4 (in 150 µL), and
x̄0 = 0.5. Cells were grown aerobically at 30°C for 24 hours. The dots represent the mean N(t) of three
independent replications, the bars the corresponding standard deviation. After a lag phase of about 2 hours,
the cells start to grow exponentially and reach the stationary phase after about 14 h of growth. For the
non-selective growth experiments used to test the predictions of the Pólya urn model, cells were grown for
11.5 h to ensure exponential growth conditions.

Specific growth rate (h−1) Fluorescence per cell (a.u.)
Iron conc. (µM) KT2440 3E2 KT2440 3E2

0 0.058±0.006 no growth 244.00 ± 21.3 0 ± 0
200 0.152±0.026 0.146±0.017 1.56 ± 0.27 0.93 ± 0.10

Table 2: Comparison of growth and pyoverdine production per cell of P. putida KT2440 and 3E2.
Separate cultures of producer (P. putida KT2440) and non-producer (P. putida 3E2) were grown in iron-
limiting (no addition of FeCl3) and iron-replete medium (addition of 200 µM FeCl3) at 30°C. The cell density
was measured at 600 nm, and specific growth rates were calculated from density values of the exponential
phase. The pyoverdine production was determined by fluorescence emission measurements (excitation 400
nm, emission at 460 nm). The pyoverdine production per cell represents the ratio of pyoverdine fluorescence
and optical density measured after 24 h of growth. The values in the table are averages over a minimum of
five experiments, with the corresponding standard deviation. The fluorescence value for the non-producing
mutant in iron-limiting medium is 0 because the culture failed to grow.

7



Figure 7: Additional initial conditions measurements. The experimental distributions (bars) are mea-
sured from 120-well ensembles, the average N0 and x0 from those sets the parameters for the simulated
distributions. The theoretical average distribution (solid line) is the average of the same distributions gen-
erated for 84 sets of 120 wells. Using that average we calculate three Wilson binomial confidence intervals
(gray areas). Experiments and theory agree within statistical error: the distribution of sizes (panels (a) and
(c)) follows a Poisson distribution. The raggedness of the distribution of x for at small N̄0 (see panel (b)
and Fig. 3(b) in main text) is due to a small size effect: since x must be a simple fraction, when N0 is small
only a few values are available (see main text). This effect disappears for average initial sizes N̄0 ' 10 (see
panel (d)). Parameter values: N̄0 = 5.75, x̄0 = 0.43 (a) and (b); N̄0 = 26.49, x̄0 = 0.45 (c) and (d).
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Chapter 2

Public-good-mediated social
interactions during competitive
bacterial growth

Chapter abstract The work in this chapter focuses on how growth, compositional variability, and social
interactions intertwine to determine bacterial growth and evolution. The chapter considers a setting in which
diverse, mixed populations grow while individuals exchange a public good. The substance—in this case, the iron-
scavenging molecule pyoverdine—is synthesized by some individuals, then shared across the whole population.
Theoretical approaches to this and similar social interactions typically frame them in terms of game theory
and leave implicit the details of the public good biochemistry. In this chapter, I present results indicating how
some of these details can be of great importance in population and evolutionary dynamics. In the specific case
considered, pyoverdine accumulates in the environment, providing gradually diminishing benefits, and making
the contribution of producers superfluous. Details such as this shape the experimental results but would be
lost in a game-theoretical approach. The adopted systems biology standpoint, instead, directly quantifies the
bacterial interaction, costs and benefits of the public good as well as how individuals interact with it. The
results guide a rigorous mathematical description of the population. The predictions of this model, for sensible
parameter choices, agree very well with experiments.

Contribution to overarching question This chapter addresses the combination of social interactions and
growth in a bacterial population. The rigorous mathematical modeling adopted allows to peer into the specific
effects of the public good, highlighting its importance.
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Figure 2.1: Graphical abstract of the project. (a) Sketch of the bacterial interaction: Producers secrete
pyoverdine, which binds to iron in the medium. All cells (regardless of their strain) absorb the complex into
their periplasm, where it is separated: iron is transported inside the cell, whereas pyoverdine is secreted back
in the environment. (b) Sketch of the growth experiment: Pure cultures are mixed in stochastic proportions
to inoculate the wells of a well-plate. This ensures that each well contains a stochastic fraction of producers.
Populations containing more producers (blue) benefit from their more abundant pyoverdine and grow faster. (c)
Road map to a model: We directly quantify the main parameters of the interaction, such as costs and benefits
of pyoverdine. A single parameter (the synthesis rate of pyoverdine) is left as a fit. At given intervals, we take
samples from each well and merge them in order to measure average population size and global producer fraction.
(d) Sketch of the Simpson paradox (adapted from Ref. [51]): Producer fractions within each population (blue
portions of the left pie charts) always decrease; however, as long as more producing populations grow larger
(larger pies), the global producer fraction across the ensemble (right pie chart) may increase.
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Figure 2.2: Cartoon example of Simpson’s paradox in a growing population. Two populations start (left) with
the exact same size, but different fraction of producers (blue dots). Observing again at a later time (right),
although the local fraction producers decreases within each group, the global fraction increased from 〈x〉 = 0.5
to about 0.52. This is due to the larger size of the producer-rich population (top row).

2.1 Background: Cooperation, growth, and Simpson’s paradox

The emergence and establishment of cooperation is a central problem in evolutionary theory, as outlined in
the Introduction. On the one hand, cooperative behaviors, such as the production of public goods, benefit the
population as a whole, for example accelerating growth. On the other hand, producers of a public good suffer
a disadvantage. In the case of bacteria, they pay a metabolic cost to produce the public good, thus growing
slower. So, in deterministic populations of constant size, producers go extinct, unless some further mechanism
fosters their survival [4, 18].

Growth radically changes the situation, especially if we consider an ensemble of several populations (also
called a metapopulation). Within each population, producers grow on average slower than non-producers,
because of the metabolic cost of producing the public good. For each population i, let Nf,i be the number of
non-producers (or free-riders) and Nc,i the number of producers (or cooperators), who pay a metabolic cost
s to provide the public good, which increases the population global growth rate according to some function
g(Nc,i) ≥ 0. In the deterministic limit, Nc,i and Nf,i then obey the differential equations:

Ṅc,i = g(Nc,i)Nc,i(1− s) (2.1)

Ṅf,i = g(Nc,i)Nf,i . (2.2)

With the simple change of variables Nc,i +Nf,i = Ni, Nc,i/Ni = xi, we get

Ṅi = g(xi)(1− sxi) (2.3)

ẋi = −sxi(1− xi)g(xi) . (2.4)

Clearly, the local fraction of producers xi within each population always decreases, reflecting the selective
disadvantage of producers.

However, populations with higher xi also grow faster, because they benefit from more abundant public
goods. This introduces a population-level competition, which contrasts the selection between strains [44–48].
In this context, the global fraction of producers across the whole metapopulation is an interesting observable.
This quantity expresses what fraction of the total individuals in the metapopulation are producers. It is defined
as

〈x〉 =

∑
iNc,i∑

iNc,i +Nf,i
=

∑
i xiNi∑
iNi

, (2.5)

where the sum runs over all the populations in the ensemble. Interestingly, although the local producer fraction
always decreases, the global one 〈x〉 does not have to.

This phenomenon has been connected with the Simpson’s paradox [51–55, 72, 73]: a trend appearing in
samples of different size may disappear or reverse when combining the samples [72, 74]. In our case, the
trend of decreasing producer fractions that appears when sampling populations separately can be inverted by
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combining them in the ensemble-wide global average 〈x〉 of eq. 2.5. It is also in principle possible to identify
the conditions that lead to the apparently paradoxical result. The so-called Price equation [75, 76], for example,
shows mathematically that an increase in 〈x〉 can appear when the covariance between local x and the growth
rate is high enough. More recently, a combined theoretical-experimental work [51] showed how this kind of
increase could lead to the establishment of cooperative behaviors across a metapopulation. Further theoretical
analyses also proved that, barring some effect to sustain it (such as fixation), this increase can only be transient
[53–55].
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Figure 2.3: Time course of the average population size and global producer (or cooperator) fraction (from Ref.
[54]). Black lines represent deterministic solutions, colored lines represent stochastic simulations. Panel (b), in
particular, shows that the Simpson-related increase is transient, and that its amplitude decreases with initial
size, if all populations start with the same composition.

This increase feeds on the variability of population compositions. If all populations started with the same
size and composition, in fact, they would (deterministically speaking) have the same growth rate and the effect
does not appear. For 〈x〉 to increase, populations need either start with different compositions, or with small
size, as in Figure 2.3b [53]. When the variability is reduced—for example by increasing initial size, as shown in
Figure 2.3b—so is the increase in 〈x〉.

2.2 Accumulating public goods shape social interactions in growing
populations

Studies on public good exchange typically leave the social interaction implicit, either bundled in game-theoretical
payoff structures [2–5, 16] or in inclusive fitness models [20, 23, 77–79]. This way, these approaches overlook
many biological details of the interaction, which could reduce their ability to describe actual biological systems.

Research question: How do public good features affect social interaction and growth dynamics?

As reported in the publication reprinted in Section 2.3, we quantitatively characterized the social interaction
between bacteria and summarized it in a mathematical model, whose results agree with those of experiments.
Thus, our research shows that

Public goods mediate the bacterial social interaction and facilitate growth; their specific
biochemical properties shape the population dynamics

2.2.1 Experimental and theoretical approach

This project centered around using a well-defined bacterial system, which we could characterize in detail. We
considered siderophore production in Pseudomonas [10, 11, 13, 14, 24] as our model system. To this end, we
grew well-mixed P.putida populations composed of a constitutive public good producer strain (KP1) and a non-
producing one (3E2 [10]). Because wild-type cells strictly regulate the production of pyoverdine, they can express
both the non-producer and the producer phenotype, depending on the conditions. The constitutive producer
mutant KP1, instead, always synthesizes pyoverdine, ensuring a well-defined interaction. The populations
were initialized as stochastic mixtures of the two strains, then cultivated in shaken, nutrient-rich medium,
supplemented with a molecule that binds to iron, so that cells cannot directly access it. Pyoverdine has a higher
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Figure 2.4: Characterization of the social impact of pyoverdine (PVD). (a) Production cost. In an environment
with available iron (solid symbols), non-producer cells (strain 3E2) grow as fast as the wild-type (WT), and faster
than producers. Under extreme iron limitation, PVD is needed for growth: producers (and the wild-type) grow,
whereas non-producers are unable to. (b) Growth benefit from pyoverdine. Green dots represent the growth
rate µ of non-producer cultures, with added pyoverdine. The solid gray line represents the growth rate calculated
using equation (2.6) (with fitted maximal growth rate µmax = 0.878 and saturation concentration psat = 0.8.
(c) Sharing and excludability. In mixed populations, and under extreme iron limitation, producers (KP1, blue
line) and non-producers (3E2, orange line) start growth together. Since non-producers need pyoverdine to grow
(see panel b), we conclude that pyoverdine is equally shared between the strains: it is non-excludable. (d)
Durability of pyoverdine. Fluorescence of PVD in growth medium, with and without non-producer bacteria.
PVD does not degrade spontaneously or through interaction with bacteria. Reprinted from Ref. [80].

binding affinity to iron, so it is able to scavenge the trapped ions, making them accessible to cells again; a
population with more producer has more pyoverdine, and grows faster. All in all, with this experimental setup
we obtained a well-defined bacterial system, with characterizable interaction and controlled conditions.

2.2.2 Pyoverdine acts as an accumulating public

We laid the foundation for our theoretical model by quantitatively characterizing the social interaction between
producer and non-producer cells. This is also a key biological result of this research. We quantified four aspects
of the public good interaction, exposed in Figure 2.4:

1. Cost: how much synthesizing the pyoverdine slows the growth of producers
We measured the cost by growing producer and non-producer cells, separately, in iron-rich medium. In
these conditions also non-producers could grow, while constitutive producers synthesized unnecessary
pyoverdine. By comparing growth rates, we could estimate that the synthesis of pyoverdine slows down
the growth of producers by 3-10%, depending on the culture conditions (see Figure 2.4a)

2. Benefit: or how does the population-wide growth rate depend on the presence of the public good
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The benefit of pyoverdine could be measured by growing non-producers alone in iron-depleted medium,
in which cells need pyoverdine to grow. We supplemented the medium with different concentrations
of pyoverdine and measured the growth rate of non-producer cells. We found that the rate increases
almost linearly with the concentration of added pyoverdine, then sharply levels off when the concentration
approaches 1µM. Figure 2.4b shows these data, as well as the results from our theoretical modeling of the
impact of pyoverdine on growth (see Section 2.2.3).

3. Whether pyoverdine is an excludable good
A good is dubbed excludable if producers are able to prevent non-producers from accessing it. To mea-
sure this property, we cultivated producers and non-producers together in iron-depleted conditions, then
measured when each strain would start growing. We observed that, after an initial lag phase, both strain
would initiate growth essentially at the same time, as shown in Figure 2.4c. Since pyoverdine is absolutely
necessary for growth in these conditions, this means that both strains have equal access to it. In other
words, pyoverdine acts as a non-excludable good.

4. Whether pyoverdine is a rivalrous good
A good is called rivalrous when individuals have to compete for access to limited amounts of it. Pseu-
domonas cells are known to recycle pyoverdine after use [81, 82]. This already suggests that pyoverdine
should be non-rivalrous: though one cell uses it, it will soon re-secrete it, so it does not impede the access
of others. In other words, cells do not compete for access to limited pyoverdine, as they do for nutrients
or space. To measure this feature, we analyzed how the fluorescence of pyoverdine changed during a long
time. As Figure 2.4d shows, pyoverdine is fluorescent for at least ∼ 48 hours (much longer than the
duration of our experiments), meaning that, for all practical purposes, it does not spontaneously degrade.
Moreover, a similar measurement in presence of non-producer cells showed that pyoverdine was stable in
these conditions too. Therefore, while bacteria interact with pyoverdine, they do not appear to damage
or degrade it.

Taken together, our measurements show that pyoverdine behaves as a proper public good (non-excludable, non-
rivalrous) [16], and that its producers incur a constant cost. Moreover, due to its very long lifetime, pyoverdine
accumulates in the environment once produced.

2.2.3 Modeling the interaction

We built a mathematical model of the interaction based on the experimental measurements presented in the
previous section. Such model must take into account the development of the abundance of each strain, as well as
the pyoverdine availability and its effect on growth. To determine how pyoverdine concentration affects growth
rate, we assumed that: (i) pyoverdine molecules find and bind an iron atom as soon as they are released; (ii)
cells absorb the bound pyoverdine-iron complex at a constant rate; (iii) cells try as much as possible to maintain
their internal iron concentration constant; (iv) up to some saturation concentration, iron is the only factor
limiting growth. From these common sense assumptions, we obtain that given a concentration p of pyoverdine,
the population’s growth rate µ is given by

µ(p) = µmax min

(
p

psat
, 1

)
. (2.6)

psat represents the concentration at which iron availability stops being growth-limiting. Eq. (2.6) reflects the
linear dependence of µ(p) on the pyoverdine concentration p we observed in experiments (see Figure 2.4b).

With this function set, we could study the deterministic equations of motion for the amount of producer cells
Nc and non-producers Nf in a population, as well as the pyoverdine concentration p. Cells grow exponentially,
with pyoverdine-dependent rate µ(p); producers grow slower by a factor 1− s because of the cost of production.
When the population exhausts the resources in the environment (determined by a carrying capacity K), cells
end growth by entering a dormant state. Finally, producers synthesize pyoverdine at a constant per-capita rate
σ. The equations then take the form

Ṅc = Ncµ(p)(1− s)
(

1− Nc +Nf
K

)
,

Ṅf = Nfµ(p)

(
1− Nc +Nf

K

)
, (2.7)

ṗ = σNc .
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To better understand the dynamics, we considered the rescaled variables n := (Nc+Nf )/K (how big the pop-
ulation is, compared to the maximal size the environment allows), x := Nc/(Nc+Nf ) (the fraction of producers
in the population), and v := p/psat (how far the pyoverdine concentration is from saturation concentration).
We also rescaled time by the maximal growth rate µmax = µ(psat) and redefined µ(v) = min(v, 1). Finally,
we defined an accumulation parameter α := σK/(psatµmax), which expresses how fast pyoverdine accumulates,
compared to population growth. High α corresponds to very fast production, rapidly leading to high pyoverdine
concentration; low α means cells reproduce much faster than they synthesize pyoverdine, which limits growth
for long times. Altogether the theoretical population followed these rescaled equations:

ṅ = nµ(v)(1− sx)(1− n) ,

ẋ = −sµ(v)x(1− x)(1− n) , (2.8)

v̇ = αnx .

Experimental population started with ∼ O(103) individuals and grew to a final size of ∼ O(106), justifying
such deterministic description.

2.2.4 Transient increase in producer fraction

To replicate the experimental conditions, we initialized a large ensemble of populations with the same size
n0 (because experimental populations were large), given by the typical ratio of initial size and final yield
in experiments. Within each population, the producer fraction x0 was stochastic, sampled from the same
distribution as in experiments.

With these initial conditions, we solved equations (2.8) numerically, recording the size n and the global
fraction of cooperators 〈x〉. For several choices of parameter values, 〈x〉 initially increases, peaks to a value
〈x〉max before decreasing, and finally saturating to its long-term value. The observed increase, therefore, is only
transient. Figure 2.5a shows such a typical trajectory of 〈x〉. As the Supplementary Video of the publication
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Figure 2.5: Results on the increase in global producer fraction. (a) Time course of the global producer fraction
〈x〉 in simulations (parameter values: α = 200, s = 0.05, n0 = 10−3). Solving eqs. (2.8) numerically, we observe
first an increase in the global producer fraction, which peaks at a value 〈x〉max, then decreases (typically below its
initial value) and eventually saturates to a long-term value. (b) Magnitude of the maximum producer increase
∆〈x〉 as function of pyoverdine accumulation α and production cost s. Increasing the production cost (horizontal
axis) burdens producers, thus curtailing the increase. The main advantage of producer populations is rooted
in their faster growth. Higher accumulation of pyoverdine α (vertical axis), however, makes the public good
benefit saturate faster, reducing the marginal benefit of pyoverdine, and also letting low-producer populations
start growth sooner. Both effects contribute to reduce the amplitude of the increase.

shows, producing populations initially grow much faster. This positive correlation between producer fraction
and growth rate drives the increase in global producer fraction. In time, however, pyoverdine accumulates,

https://figshare.com/s/0dd2feff83fa3d984659
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meaning that populations with few producers also accrue enough of it to start growing, while in those with
more producers the benefit from pyoverdine saturates. Eventually, producer-rich populations enter the dormant
phase, and non-producing ones catch up with their size.

The amplitude of the increase ∆〈x〉 = 〈x〉max− 〈x〉0 depends on the cost s and the accumulation parameter
α, as shown in Figure 2.5. Clearly, a higher s—so a heavier burden on producers—leads to less of an increase
in global producer fraction. Higher accumulation parameter α also reduces ∆〈x〉. For α → 0, in fact, the
pyoverdine production time scale is much slower than that of population growth. Scarce pyoverdine strictly
limits growth for several generations, during which only producer-rich populations can grow appreciably. Benefit
saturation also occurs very late, therefore more producing populations have a growth advantage for very long
times, and lead to a high increase in producer fraction. When α → ∞, on the other hand, production and
accumulation of pyoverdine occur faster than cell replication. A few producers thus suffice to rapidly accumulate
enough public good to saturate the benefit. More producing populations only briefly have an advantage, and
the resulting increase is lower. As Figure 2.6 shows, the simulation results matched experimental ones, with
appropriate choices of parameters (in particular, we need to fit α to fix the global time scale and match the
measured exponential growth rate).

Figure 2.6: Comparison of theory and experiments Solid lines represent numerical solutions of equations (2.8)
for different values of the production cost s (darker shades indicate higher values, s ∈ {0.03, 0.05, 0.07}). The
accumulation parameter α is the result of a fit (here, α = 200). Dots of different colors indicate the results of
different independent experimental runs. Error bars are the standard deviations of three to five replicates of
the experiment. The population size n is rescaled to the final yield (or carrying capacity). Reprinted from Ref.
[80].

2.2.5 Consequences and outlook

Sociobiology studies tend to rely on preconceived notions about the interactions [11, 13, 14, 78, 79, 83, 84].
However, as the research presented in this chapter shows, biochemical details—such as public good recycling
and accumulation—affects growth and long-term population dynamics.

Accumulation, in particular, has far-reaching consequences on the possibility of sustaining the observed
increase in producer fraction. In fact, even if producers could “cut their losses” and stop production when some
threshold concentration is reached, the benefit from more abundant pyoverdine would eventually vanish. The
public good, in fact, gradually accumulates also in populations with few producers, allowing them to eventually
reach the same size and pyoverdine concentrations of more producing ones. Therefore, any population-level
advantage from such an accumulating public good is bound to vanish in time.

Perhaps the most interesting avenue of further research is, then, a rigorous modeling of the regulatory
network, showing in detail the impact of pyoverdine and iron concentrations on synthesis, but also on cell
metabolism. For this work, in fact, we employed a constitutive producer strain, but wild-type Pseudomonads (for
example P.putida KT2440) strictly regulate production. This complex gene network involves central metabolic
regulators and even genes of unknown function [10, 85]. Pyoverdine concentrations, thus, could affect growth
rates beyond iron availability, potentially providing further benefits to producer strains.
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Interactions mediated by 
a public good transiently 
increase cooperativity in 
growing Pseudomonas putida 
metapopulations
Felix Becker1, Karl Wienand2, Matthias Lechner2, Erwin Frey  2 & Heinrich Jung  1

Bacterial communities have rich social lives. A well-established interaction involves the exchange 
of a public good in Pseudomonas populations, where the iron-scavenging compound pyoverdine, 
synthesized by some cells, is shared with the rest. Pyoverdine thus mediates interactions between 
producers and non-producers and can constitute a public good. This interaction is often used to test 
game theoretical predictions on the “social dilemma” of producers. Such an approach, however, 
underestimates the impact of specific properties of the public good, for example consequences of its 
accumulation in the environment. Here, we experimentally quantify costs and benefits of pyoverdine 
production in a specific environment, and build a model of population dynamics that explicitly accounts 
for the changing significance of accumulating pyoverdine as chemical mediator of social interactions. 
The model predicts that, in an ensemble of growing populations (metapopulation) with different initial 
producer fractions (and consequently pyoverdine contents), the global producer fraction initially 
increases. Because the benefit of pyoverdine declines at saturating concentrations, the increase need 
only be transient. Confirmed by experiments on metapopulations, our results show how a changing 
benefit of a public good can shape social interactions in a bacterial population.

Bacteria have complex social lives: they communicate with each other and with other organisms, form tight 
communities in biofilms, exhibit division of labor, compete, and cooperate1–7. They also produce and exchange 
public goods. Public goods are chemical substances that are synthesized by some individuals (known as producers 
or cooperators) and are then shared evenly among the whole population, including cells that did not contribute to 
their production8–10. Such social interactions can also influence population dynamics, as exemplified in the con-
text of metapopulations11–17. Metapopulations consist of several subpopulations. The subpopulations may grow 
independently for a time, then merge into a single pool that later splits again, restarting the cycle. This ecological 
system, which mimics some bacterial life-cycles18,19, also dramatically impacts the population’s internal dynam-
ics. To mathematically analyze the effects of social interactions, they can be framed in terms of game theoretical 
models20–24 –for instance, the prisoner’s dilemma, in the case of the exchange of public goods25–28 –or formulated 
in terms of inclusive fitness models29–31. These approaches underestimate the impact on the social interaction of 
specific properties and mechanisms of action of the public good in question, mostly to simplify the mathematical 
description. Previous investigations have shown that, for example, phenomena like public good diffusion32–34, 
interference of different public goods with each other35, the regulatory nature of public good production36, or 
its function in inter-species competition37 may affect strain competition. The shortcomings of game-theoretical 
models in studying the evolution of cooperation can be overcome by systems biology modeling approaches34,38,39.

1Microbiology, Department Biology 1, Ludwig-Maximilians-Universität Munich, Grosshaderner Strasse 2-4, D-
82152 Martinsried, Germany. 2Arnold-Sommerfeld-Center for Theoretical Physics and Center for Nanoscience, 
Ludwig-Maximilians-Universität, Theresienstrasse 37, D-80333, Munich, Germany. Felix Becker and Karl Wienand 
contributed equally to this work. Correspondence and requests for materials should be addressed to E.F. (email: 
frey@lmu.de) or H.J. (email: hjung@lmu.de)

Received: 21 November 2017

Accepted: 21 February 2018

Published: xx xx xxxx

OPEN



www.nature.com/scientificreports/

2Scientific REPORTS |  (2018) 8:4093  | DOI:10.1038/s41598-018-22306-9

In this work, we directly quantify a social interaction mediated by a public good. Thus, we adopt a sys-
tems biology approach, rather than a more reductive game-theoretical one. We focus on the dissemination of 
iron-scavenging pyoverdine (PVD) in a metapopulation of fluorescent Pseudomonas putida, and study how its 
biological function determines the population dynamics.

In this well-established, native model system, cells secrete PVD into the environment to facilitate iron 
uptake when the metal becomes scarce29,40–44. PVD binds to ferric iron and is then actively transported into 
the periplasm. There, the iron is reduced, released and transported across the plasma membrane, while PVD is 
secreted back into the environment44–46. Figure 1 outlines the PVD-mediated interaction between producer and 
non-producer cells and the metapopulation set-up we use to study its effects on population dynamics.

In the following, we show, both experimentally and in computer simulations, that the global fraction of pro-
ducer cells across a metapopulation increases during growth, but only transiently. This effect hinges on the specif-
ics of PVD biochemistry, which elude a game-theoretical analysis. Thus, our study shows that the specific features 
of the public good considered are the key determinant of the outcome of the social interaction. Our experiments 
employ a well-defined system, with a constitutive producer and a non-producer strain. The simulations use a 
mathematical model based on quantitative measurements of PVD’s costs and benefits, as well as its behavior as 
an accumulating public good. For appropriate values of the parameters, the theoretical results match those of 
experiments with P. putida metapopulations.

Results
Characterization of the model system. To investigate the social role of public goods, we chose the soil 
bacterium P. putida KT2440 as a model system. This is a well-defined system in which, as sketched in Fig. 1a, a 
single public good mediates all cell-cell interactions. P. putida KT2440 synthesizes a single type of siderophore 
– a pyoverdine (PVD) molecule47 –and does not produce 2-heptyl-3-hydroxy-4-quinolone or other known quo-
rum-sensing molecules that might otherwise interfere with the social interaction48–50.

Wild-type P. putida KT2440 controls PVD production through a complex regulatory network. As shown 
in Fig. 2a, the central element of the network is the ferric uptake regulator (Fur) protein, which binds iron and, 
among other things, down-regulates expression of the iron starvation sigma factor pfrI51–53, which in turn directs 
the transcription of PVD synthesis genes. As a consequence, siderophore production continually adapts to the 
availability of iron47,52. This regulation, however, obscures the costs of PVD production, as it also affects other pro-
cesses. We therefore circumvented it by generating a P. putida strain, called KP1, which constitutively produces 

Figure 1. Outline of PVD-mediated interactions and experimental setting. (a) Outline of the social interaction. 
Producers (blue) secrete pyoverdine (PVD, green) into the environment, where it binds iron (red). The resulting 
Fe-PVD complex is transported into the periplasm of both producers and non-producers. Iron is reduced and 
incorporated into cells, while PVD is transported back into the environment to scavenge additional ferric 
ions44–46. (b) Metapopulation growth setting. We initiate a metapopulation by mixing producers and non-
producers in random proportions and inoculating the individual populations, which grow independently. At 
given time points t, we take samples from each population, and merge them to determine the average 
population size and the global producer fraction of the metapopulation.
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PVD. KP1 carries a copy of the pfrI gene controlled by the constitutive promoter PA1/04/03
54 at the attTn7 site in the 

KT2440 genome. As the non-producer, we used strain 3E2, which carries an inactivated non-ribosomal peptide 
synthetase gene (pp4220) that inhibits PVD synthesis47. The two strains were otherwise isogenic.

We characterized producer (KP1) and non-producer (3E2) strains by measuring their average per-cell PVD 
production under different iron availabilities, and comparing the results with those for the wild type (strain 
KT2440). We cultivated all three strains, separately, in KB medium and KB supplemented with 100 µM FeCl3 (for 
short, KB/100 μM FeCl3), as well as in the same two media supplemented with the chelator dipyridyl (DP, 1 mM) 
to reduce iron availability. Using atom absorption spectroscopy, we determined an iron concentration in KB of 
about 8 µM. Figure 2b shows the average amount of PVD produced per cell after 8 h of growth (close to the end 
of exponential growth). The wild type partially represses production of PVD under moderate iron availability 
(KB, dark gray bars), and ceases synthesis altogether under high iron availability (KB/100 μM FeCl3, black bars). 
Addition of DP reduces iron availability and stimulates PVD production in both media (Fig. 2b, white bars: 
KB/1 mM DP, light gray bars: KB). In contrast, KP1 produces large amounts of PVD under all tested growth 
conditions, and thus represents a constitutive PVD producer. The yield depends on conditions, probably because 
the regulated copy of pfrI is still present in the genome. 3E2, finally, never synthesizes PVD, regardless of the con-
ditions, and is a true non-producer, as previously reported47.

Quantifying the social role of pyoverdine. Having established how each strain behaves, we quantified 
the impact of PVD on population dynamics. Specifically, we wanted to determine the metabolic load of PVD 
production, its impact on growth, its stability, and how evenly it is shared with other cells.

We assessed the impact of PVD production on growth by comparing the growth rates of strains KP1 and 
3E2 under iron-rich conditions (KB). As shown in Fig. 2b, neither 3E2 nor the wild-type produces substantial 
amounts of PVD under these conditions, and the solid symbols in Fig. 3a show that both strains grow at about the 
same rate. KP1, on the other hand, produces PVD and grows more slowly. The data in Supplementary Table S1 
allow us to quantify this difference in growth rate. Depending on the conditions, KP1’s growth rate is 3–10% 
lower than that of strain 3E2. For example, the difference is minimized (1.03-fold) when the medium is replaced 
(in a 24-well plate format) every hour, whereas the largest difference (1.10-fold) is observed in batch cultures 
(96-well plate format). This suggests that factors other than iron level per se, such as nutrients and oxygen availa-
bility, modify the metabolic impact of PVD production.

The empty symbols in Fig. 3a illustrate the growth of the strains under extreme iron limitation (KB/1 mM DP). 
In these conditions, PVD is indispensable for iron uptake, and only producing strains – KP1 and the wild-type 
– can grow at all. Less restrictive conditions (KB/100 μM FeCl3 and KB/100 μM FeCl3/1 mM DP) produce 

Figure 2. Characterization of the strains. (a) Sketch of each strain’s regulatory system. In the wild-type P. putida 
KT2440 (gray), the ferric uptake regulator Fur binds iron and represses the expression of the pfrI gene necessary 
for PVD synthesis. The constitutive producer strain KP1 (blue) carries an additional copy of the pfrI gene 
controlled by a constitutive promoter. The non-producer strain 3E2 (orange) has an inactivated non-ribosomal 
peptide synthetase gene, which prevents PVD synthesis. (b) Average PVD production per cell by the wild-type 
and strains KP1 and 3E2 after 8 h of cultivation. The darker the columns, the more abundant is the iron in the 
medium. Dark gray columns represent moderate iron availability conditions (KB medium without additions); 
white columns represent extreme iron limitation (KB/1 mM DP); black columns represent iron-replete 
conditions (KB/100 µM FeCl3); light gray columns represent iron-limiting conditions (KB/100 µM FeCl3/1 mM 
DP). KP1 produces PVD under all conditions (albeit with different yields), 3E2 never produces the siderophore, 
and the wild-type adapts its rate of synthesis to iron availability.
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qualitatively similar results (see Supplementary Fig. S1). 3E2, if cultivated alone, cannot grow unless the medium 
is supplemented with PVD isolated from a producer culture. Figure 3b shows the maximal growth rate of 3E2 
under these conditions as a function of the concentration of added PVD. For values lower than about 1 μM, the 
growth rate increases almost linearly with PVD concentration, then sharply levels off. Higher PVD concentra-
tions do not further stimulate growth – which is consistent with observations of iron saturation in other bacterial 
systems55,56.

This saturating behavior, we argue, stems directly from PVD’s ability to bind iron and make it available to cells. 
Because PVD has an extremely high affinity for iron [1024 M−1 for Fe3+ at pH 757, we can assume that each PVD 
molecule immediately binds an iron ion. Therefore, the PVD concentration p is equivalent to that of PVD-Fe 
complexes, and represents the concentration of iron accessible to cells (this may not hold if the level of PVD 
exceeds that of the iron available, but we expect this extreme case to arise only after the exponential growth phase 
in our setting, if ever). Each cell, then, incorporates iron ions at a constant rate k ·p which is proportional to the 
PVD concentration p. Moreover, cells try to maintain a constant internal iron concentration Fein and reproduce 
at a PVD-dependent rate µ p( ) when growth is limited by iron availability. If we also assume that the cell volume 
just before division is twice the volume V(0) of a newborn cell, we find that the growth rate is proportional to p 
(see Supplementary Note):

µ = .p k
Fe V

p( )
(0) (1)in

Figure 3. Characterization of the social impact of pyoverdine (PVD) in terms of costs (a), benefits (b), degree 
of sharing among cells (c) and stability (d). (a) In an environment with available iron (KB, solid symbols), non-
producer cells (strain 3E2) grows as fast as the wild-type (WT), and faster than the producer (strain KP1). 
Under extreme iron limitation (KB /1 mM DP, empty symbols), PVD is needed for growth: KP1 and WT grow, 
whereas 3E2 does not (mean values and standard deviations were calculated from six measurements). (b) Green 
dots represent the growth rate µ of 3E2 cultures, measured under extreme iron limitation (KB/1 mM DP) in the 
presence of the indicated concentrations of added PVD (error bars are standard deviation over four replicates). 
The solid gray line represents the growth rate calculated using equation (2) (maximal growth rate µmax and the 
saturation concentration psat fitted to the experimental data: µ = .0 878max , psat = 0.8). (c) Early growth of 
KP1–3E2 co-cultures (initial fraction of KP1 = 0.33) under extreme iron limitation (KB/1 mM DP). Shown are 
mean and SD of eight independent experiments. Since 3E2 needs PVD to grow (see panel b), this result 
indicates that PVD is shared between the strains. (d) Stability of PVD (2 µM) in KB medium and in the presence 
of the non-producer 3E2. The fluorescence emission was recorded at 460 nm (excitation 400 nm).
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For PVD concentrations above 1 μM, however, some other factor limits growth. Cells cannot further increase 
µ p( ), regardless of the PVD concentration, and the benefit of PVD saturates. In summary, there is a limit PVD 
concentration psat (~1 μM), below which the growth rate is proportional to the PVD concentration, following 
equation (1). Above psat, the growth rate is a constant µmax, whose value depends on the culture conditions. In 
mathematical terms,

µ µ

µ

µ
=
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≥ .

p min p
p
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The gray curve in Fig. 3b shows the function described in equation (2). Fitting the values for the parameters 
psat and µmax, the curve closely resembles the experimental results, validating our argument.

A central question in determining the social role of PVD is whether cells share the molecule with other cells, 
and thus also its benefit, or keep it to themselves. In other words, to what extent is PVD a public good? Fig. 3c 
shows the early stages of growth of a mixed population of KP1 and 3E2 (initial fraction of KP1 = 0.33) under 
extreme iron limitation (KB/1 mM DP). After a lag phase of about 2 h, both strains begin to grow. Since 3E2 needs 
PVD to grow in these conditions (see above and Supplementary Fig. S1), we conclude that both strains receive the 
benefit at the same time, and neither has preferential access to it. In our experiments, then, PVD behaves as a truly 
public good. Consequently, populations that start with a higher producer fraction x0 have more PVD available, 
and grow faster than populations with low x0 values (as shown in Supplementary Figs S1 and S2).

PVD is also very stable. Figure 3d shows the fluorescence yield of PVD over 48 h in KB medium alone (green 
line). The value fluctuates around a constant average, indicating that PVD does not spontaneously degrade – at 
least not appreciably – within the time scales of our experiments. The orange line in Fig. 3d represents a similar 
measurement, but in the presence of non-producer cells. In this case also, fluorescence does not appreciably 
decay, so cells do not seem to consume PVD during the interaction. This also means that, provided producers are 
present, the public good accumulates in the environment once its synthesis has been triggered.

Taken together, these observations characterize the social interaction as follows: (i) Constitutive producers 
grow more slowly than non-producers (given equal PVD availability); (ii) PVD acts as a public good, which is 
homogeneously shared among cells; (iii) once produced, PVD persists: it is chemically and functionally stable, 
and cells recycle it rather than consuming it; (iv) the public good drives the population dynamics, since PVD is 
necessary for access to the iron required for growth.

Modeling social and growth dynamics. Based on the experimental results presented in the previous 
section, we formulated a set of equations to describe the development of a single, well-mixed population of c 
producers and f  non-producers. The population dynamics follows a logistic growth, where the function µ p( ) 
from equation (2) determines the per-capita growth rate. For our experimental setup, we estimate cells to incor-
porate only a minimal fraction of the available iron (<3%, see Supplementary Note), so the assumptions of equa-
tion (2) hold (and some other resource determines the carrying capacity K . Although KP1 synthesizes PVD at 
condition-dependent rates, we adopt a simplified description and model synthesis as occurring at a constant rate 
σ. The produced PVD does not decay but accumulates in the medium. Finally, the costs of PVD synthesis slow 
down the growth of producers by a factor − s1  (where <s 1), compared to non-producers. All in all, assuming 
the interaction between cells and PVD is fast, the dynamics can be summarized in the following equations:
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This set of equations mathematically describes the experimental facts, in terms of measurable quantities. It is also 
different from a traditional game theoretical formulation, which would require us to somehow define a payoff function.

To better highlight the key factors of the population dynamics, we rescale the variables in equations (3). First, 
we measure population size in terms of the fraction of resources used up, i.e., = +n c f K: ( )/ . This definition 
means that K  determines the scale of population sizes, while n takes values between 0 and 1: as n approaches 1, the 
resources become depleted, and cells enter a dormant state14. Second, we consider the fraction = +x c c f: /( ) of 
producers within each population, rather than their absolute number. Third, we measure the amount of PVD in 
units of the saturation concentration, =v p p: / sat (and define µ =v min v( ) ( , 1)). Finally, measuring time in units 
of the minimal doubling time µ1/ max, equations (3) become

µ

µ

α

= − −

= − − −

=

dn
dt

n n sx v

dx
dt

sx x n v

dv
dt

nx

(1 )(1 ) ( ),

(1 )(1 ) ( ),

,
(4)



www.nature.com/scientificreports/

6Scientific REPORTS |  (2018) 8:4093  | DOI:10.1038/s41598-018-22306-9

where α = σ
µ

: K
psat max

 is a dimensionless parameter. This parameter represents the rate at which PVD benefit satura-
tion sets in. Keeping other factors constant, the benefit saturates sooner if production is faster (higher σ) and/or 
the number of total producers increases (higher K  and thus larger populations). Conversely, if the saturating PVD 
concentration is higher (higher psat), or cell reproduction is faster (higher µmax), populations can reach higher 
densities before the benefit saturates. Generally speaking, the lower α, the more advantageous producers are for 
their population. For α → 0 for example, the reproduction time scale is shorter than that of public good produc-
tion. Therefore, the relatively scarce PVD strictly limits growth, PVD saturation occurs only after many genera-
tions, and producer-rich populations outgrow producer-poor communities for longer. At the other extreme, 
α → ∞ means that cells produce PVD much faster than they grow. In this case, a handful of producers suffices to 
quickly reach saturation levels of PVD. Whether they include few or many producers, all populations grow at the 
same rate, which negates the advantage of higher producer fractions.

We can also use equations (4) to describe a metapopulation of M independent populations. To simulate this 
scenario, we solve equations (4) numerically for an ensemble of stochastic initial conditions (using =M 104). We 
generate a stochastic distribution of initial producer fractions x0 – depicted in Fig. 4b – as implemented in the 
experiments (see Fig. 5a and Materials and Methods). Because the experiments described here deal with relatively 
large populations (starting with around 103–104 individuals, and expanding to between 106 and 107 cells), stochas-
ticity in the initial size is low, and we initialize all populations in the simulated ensemble with the same size 

= −n 100
3. Once the populations are formed, the choice of s and α completely determines the population 

dynamics.

Figure 4. Simulation results for the growth of a metapopulation. The time course of the global producer 
fraction x  (a) is computed by numerically solving equations (4) for a given distribution of stochastic initial 
compositions (b) (parameter values: α = 200, s = 0.05, initial size = −n 100

3). The producer fraction initially 
increases as populations with more producers begin to expand earlier (see also Supplementary Movie S1). After 
reaching a maximum value xmax, the global producer fraction decreases. (c) The maximal magnitude of the 
increase Δ = −x x x(0)max  decreases with stronger growth reduction s (s between 0.01 and 0.9, other 
parameters identical to panel (a): for low s it is comparable to the initial producer fraction, while very low 
producer growth precludes any increase at all.
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During the simulations, we record the average size = ∑ =n n
M i

M
i

1
1  and the global producer fraction x  across the 

metapopulation

= ∑
∑ +

x
c

c f( )
,

(5)
i i

i i i

where ni and xi are the size and producer fraction of each population i, respectively. Note that this global fraction 
of public-good producers (i.e., the percentage of producer cells in the metapopulation) follows a different trajec-
tory from the local one xi (the fraction of producers actually present in each of the component subpopulations). 
Specifically, while the latter always decreases – because producers grow more slowly than non-producers – the 
former can, in some cases, increase.

How x  changes in time within a metapopulation, according to equations (4) (with α = = . = −s n200, 0 05, 10 3 
is shown in Fig. 4a, and compositions sampled from the distribution in Fig. 4b, with average .x(0) 0 33); 
Supplementary Movie S1 shows the same data, together with the evolution of the joint distribution of sizes ni and 
compositions xi. During early stages of growth, the more producers a population has, the quicker it accrues PVD, 
and the faster it grows. Populations with higher producer fractions rapidly increase their share in the metapopu-
lation, driving up the global producer fraction x . As time passes, populations with fewer producers also accumu-
late enough PVD to grow significantly (while the few with no producers never grow). Meanwhile, producer-rich 
populations have depleted their resources and end growth. As a result, the rate of increase of x  first slows, then 
reaches a maximum xmax and decreases again. Finally, once all populations have entered the dormant state, the 
global producer fraction stabilizes. Its ultimate value depends on the production cost s and, because all popula-
tions grow to the same size, it is lower or equal to the initial x(0).

The overall time course of x  and n depends crucially on the choice of parameters, which reflect the features of the 
bacterial strains, as well as the cultivation conditions. Figure 4c, for example, shows how changing the growth reduction 
s affects the magnitude of the increase in global producer fraction ∆ = −x x x(0)max  (for α = 200 and the initial 
conditions shown in Fig. 4b). It is intuitively clear that a slower producer growth would yield a smaller increase. As the 
figure shows, we can find a region of extreme reduction ( > .s 0 4, which is unlikely to appear in natural systems), which 
cannot be offset by the benefit from the public good, thus producing no increase whatsoever in producer fraction. For 
lower values (roughly between 0.1 and 0.4), ∆x  is positive, and increases as s is lowered. Finally, for low s (below 0.1), 
∆x  increases further, reaching values comparable with x(0), implying that the global producer fraction x  almost dou-
bles during growth, albeit transiently. The specific values of s at which different results occur depend on the choice of α 
and of the x0 distribution. Nevertheless, the qualitative behavior of ∆x  remains the same.

The model thus provides insights into this public-good-mediated social interaction, and implies that it leads 
to a transient, but potentially very significant, increase in producer fraction. In the following section, we show 
that these predictions are in good agreement with experiments on competitive growth of mixed populations of 
producers and non-producers.

Comparison between experimental and theoretical results. We grew mixed populations composed 
of producers KP1 and non-producers 3E2 under extreme iron limitation (KB/1 mM DP), in which PVD is indis-
pensable for iron uptake and growth (see Supplementary Fig. S1). The metapopulation consisted of a 96-well plate 

Figure 5. Experimental results for the growth of a mixed metapopulation. (a) Sample distribution of initial 
producer fractions in a 96-well plate. (b) Time course of the development of the total cell number N t( ) and 
global producer fraction x t( ) for a metapopulation grown under extreme iron limitation (KB/1 mM DP) in a 96-
well plate shaken at 30 °C. At given time intervals, samples are taken from the wells, merged: N t( ) is 
determined by counting cfu and x t( ) is assessed based on the (green) color of colonies. Error bars are the result 
of three to five determinations of the respective parameter at the given time point. After a lag phase, populations 
begin to grow exponentially. During this phase, the global producer fraction transiently increases, dips sharply, 
then stabilizes to its final value.
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(so the metapopulation size is M  = 96), and each well was inoculated with about 104 cells. Producers and 
non-producers in each well were mixed in stochastic proportions, sampled from the distributions shown in 
Figs 4b and 5a, which were derived from the weighted average of three dice rolls (see Materials and Methods). 
These initial conditions mimic the characteristic variability of small populations. The mean initial producer frac-
tion was .x(0) 0 33. As outlined in Fig. 1b, at given time points t, samples were taken from each well, merged, 
and their average cell number = ∑ +=N t c f( )

M i
M

i i
1

1  and mean global producer fraction x t( ) were determined. 
Figure 5 shows the results of a representative experiment. On average, populations start growing after a lag phase 
of about 2 h and enter stationary phase after around 8 h. The global producer fraction x  initially increases, up to a 
maximum .x 0 5max . After sharply dipping to .x 0 2min , it levels off to values around 0.2–0.3, and remains 
constant for at least 24 h. These results qualitatively agree with those obtained by solving equations (4) for an 
analogous metapopulation (see previous section and Fig. 4).

The only qualitative departure from the simulation results is that x  drops towards the end of growth phase 
( t 6 h) in the experiments. Notably, however, this also corresponds to an acceleration in population growth. 
Most probably, this stems from a change in the metabolic state of cells, which is not captured by the simplified 
description encoded in the equations (4).

We can also directly compare theoretical and experimental results. As initial conditions for the simulations, 
we sample the values of x0 from the same distribution as in the experiments, and set = −n 100

3, which we esti-
mated by dividing the mean minimum size from experiments (taken at the end of the lag phase, so as to eliminate 
the slight population decay) by the final yield. To set s, we considered that KP1 grows at a rate that is between 1.03 
and 1.10 times lower than that for 3E2 (as determined previously), which corresponds to a range for s of between 
0.03 and 0.09. Since the rate of approach to saturation α reflects several complex processes, we opted to fit it.

The data from four separate experiments (colored dots) and simulations for three possible values of s and an 
appropriate saturation rate, α = 200 (solid lines) are shown in Fig. 6. To meaningfully compare the two sets of 
data, we also need to fix the global time scale of simulations, which is done by fitting the slope of the exponential 
phase in Fig. 6a. The increase in the global producer fraction observed in simulations agrees very well with exper-
iment (Fig. 6b): x  grows to a maximum .x 0 5max  over similar periods, then decreases, and stabilizes to similar 
values.

Besides the aforementioned end-of-growth discrepancy – which seems to be due to behaviors well beyond the 
scope of our simplified mathematical description – experimental and theoretical results match.

Discussion
In this work, we showed that social interactions mediated by a public good result in a transient increase in the 
global fraction of producers in a growing bacterial metapopulation. By combining theoretical modeling and 
experiments, we were able to quantitatively describe an exchange interaction involving a public good in a bacte-
rial metapopulation.

We selected as our model system the native production of the iron-chelating siderophore pyoverdine (PVD) in 
P. putida KT2440 under iron limitation41,47. We characterized a constitutive producer (KP1) and a non-producer 
strain (3E2), and determined the growth rate reduction due to producing PVD. Under the chosen conditions, 
PVD is essential for iron acquisition and growth. We demonstrated that populations that produce more PVD 
grow faster than those with less (under otherwise identical conditions), though the magnitude of the benefit 

Figure 6. Comparison of simulation and experimental results for the population size (a) and global producer 
fraction (b) in a metapopulation. Solid lines represent numerical solutions of equations (4) for different values 
of the growth rate reduction s, and in (b) darker shades indicate higher values ( ∈ . . .s {0 03, 0 05, 0 07}). Dots of 
different colors indicate the results of different independent experimental runs. Error bars are the result of three 
to five determinations of the respective parameter at the given time point in one experiment. The population 
size n is rescaled to the final yield (or carrying capacity). The stochastic initial compositions are sampled from 
the distribution in Fig. 4b. For appropriate values of the parameters (determined from fitting of the growth 
curve in (a)), theoretical and experimental result agree.
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progressively diminishes as PVD accumulates, and eventually vanishes when the available iron ceases to limit 
growth. Based on these experimental facts, we constructed a set of differential equations that describes the growth 
of mixed populations of PVD producers and non-producers. Solving these equations for a large metapopulation, 
we found that, at first, the more producers (and thus more PVD) are present in the sub-populations, the faster 
they grow. This generates a positive covariance between composition and growth rate, which drives the global 
producer fraction up, in accordance with the Price equation15,17,58. As PVD accumulates, however, the benefit to 
cells eventually saturates, reducing the advantage enjoyed by these producer-rich populations; meanwhile, popu-
lations containing fewer producers begin to grow and ultimately catch up with the initially faster ones. Therefore, 
the increase in the global fraction of producers is transient, both in simulations and in experiments.

Previous experimental studies related similar phenomena to the so-called Simpson’s paradox11,12. However, 
they considered an artificial bacterial system, in which both the need for the public good and its production 
mechanism had been designed specifically for the experiments. In contrast, we employed a native system and 
quantified its social interactions, particularly the function and biochemical properties of the public good. Our 
analysis also shows that, without mechanisms to sustain it, the Simpson-related increase can only be transient. 
This conclusion is also compatible with previous qualitative predictions13–16, based on game theory models with 
implicit public goods. However, in contrast to our experiments, these studies predict that the producer fraction 
should peak at the end, instead of the mid-point of exponential growth. This indicates that simple cost-benefit 
considerations do not suffice to describe the social interaction. Inclusive fitness models have been used to 
describe an analogous scenario in wild-type P. aeruginosa, reaching qualitative conclusions compatible with our 
results29,30. Similarly to game-theoretical approaches, however, they remain mainly conceptual59. Our systems 
biology approach, instead, provides a simple description, with testable quantitative predictions, as well as impor-
tant insights into the social interaction.

In metapopulation settings, diffusion, dispersal, and mobility affect public good interactions30,60. Besides these 
factors, our results highlight the potential role of the timing of dispersal. Some studies already pointed to dispersal 
timing, by considering a metapopulation that periodically splits into groups and merging these again to reform 
the pool. After several cycles, the metapopulation might develop stable coexistence of the strains13–16, or even 
have the producers fixate11,12. Testing this process, however, requires Poisson dilution conditions which implicate 
very low initial densities of producer cells. As a consequence, large fractions of cells die under iron-limiting con-
ditions before physiologically effective PVD concentrations are reached. Therefore, a repetitive scenario of group 
formation and merging is experimentally not feasible for our well mixed cultivation conditions. In principle, 
introduction of a non-selective growth phase may rescue such a scenario61.

An interesting next step will be to include regulatory aspects in our system. Like many other bacteria, the 
wild-type P. putida KT2440 continually senses changes in environmental conditions, and uses this information 
to tune production of the public good62–64. By employing constitutive producer strains, we shifted the focus more 
on the social role of PVD itself, while replicating a potential earlier stage of evolution (if PVD production evolved 
before regulation). Our model also indicates that a cost-saving strategy such as down-regulation of PVD produc-
tion as a consequence of PVD accumulation is not sufficient to prevent the long-term decline of the global frac-
tion of producers, because all populations with producers eventually accumulate the same PVD concentration. So 
accounting for regulation, which has been shown to also impact growth65, will also necessarily involve elaborate 
production curves63 and cost-saving strategies66. Ultimately, adaptive production raises complex questions about 
how cells shape the ecological and environmental conditions in which they interact67.

Another possible extension would be to allow privatized use of the public good. Privatized use of sidero-
phores, in particular, has been shown to introduce fascinating social dynamics into intra- and inter-species com-
petition35,68–70. Limited diffusion and private use have important social consequences32,33. Indeed, several studies 
have intensely debated under what conditions the secreted siderophores actually behave as public goods42,71–73. In 
our conditions, however, populations seem to behave as well-mixed, with negligible privatization.

Taken together, our work uses a simplified setting to highlight the determinant role of public goods in social 
interactions and population dynamics. For example, we showed the profound consequences of the public good’s 
accumulation and saturating benefits, which simple game-theoretical considerations would fail to describe. Our 
approach could clearly be extended to investigate the fundamental principles underlying different interactions 
and bacterial systems. Thereby it should stimulate more mechanistic analyses of bacterial social interactions and 
their impact on population development.

Materials and Methods
Strains and growth conditions. Escherichia coli DH5α [F- ϕ80d lacZ ΔM15 Δ(lacZYA-argF) U169 deoR 
recA1 endA1 hsd R17(rk−, mk+) phoA supE44 λ- thi-1 gyrA96 relA1] was used as the carrier for plasmids. 
Pseudomonas putida KT2440 and the derived strain 3E2 (non-producer)47 were employed as PVD producer 
(wild-type) and non-producer, respectively. E. coli strains were grown in lysogeny broth (LB) at 37 °C, and P. 
putida strains were grown at 30 °C in King’s medium B (KB)74. KB medium was supplemented with 100 µM FeCl3 
and/or 1 mM of the iron chelator 2,2′-dipyridyl (DP) where indicated. Solid media were LB or KB with 1.5% agar.

Generation of the constitutive PVD producer strain KP1. A P. putida strain that constitutively pro-
duces PVD was generated by placing a copy of the pfrI gene under the control of the constitutive promoter 
PA1/04/03

54. For this purpose, PA1/04/03 and the pfrI gene were amplified by PCR from the plasmid miniTn7(Gm)
PA1/04/03ecfp-a75 and the P. putida genome, respectively, cloned into plasmid pUC18R6K-mini-Tn7T-Gm, and 
inserted at the attTn7 site in P. putida KT2440 following a mini-Tn7 protocol for Pseudomonas76. The resulting P. 
putida strain KP1 was verified by PCR amplification of corresponding genome regions and sequencing. All oligo-
nucleotide primers used for strain generations and verification are listed in Supplementary Table S2.
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Quantitative analysis of PVD production. Pre-cultures of the respective strains were grown in 
iron-replete medium (KB/200 µM FeCl3) at 30 °C for 18 h. The pre-cultures were used to inoculate the appropriate 
media for the growth of the cultures used in experiments ( =N 100

7 cells mL−1). Experiments were performed in 
24-well plates (2 mL culture/well). The plates were shaken at 300 rpm at 30 °C. At given time points samples were 
taken and the optical density at 600 nm was measured. Subsequently, cells were removed by centrifugation, and 
the relative PVD content was determined by measuring the fluorescence emission at 460 nm (excitation 400 nm). 
PVD production was analyzed under iron limitation (KB/1 mM DP; KB/100 µM FeCl3/1 mM DP) and iron replete 
conditions (KB; KB/100 µM FeCl3). Each individual experiment was performed with three parallel replicates. A 
minimum of three independent experiments were conducted per condition.

Growth characteristics of strains under different environmental conditions. Pre-cultures of the 
respective strains were grown in iron-replete medium as described above for the analysis of PVD production, and 
used to inoculate the appropriate media for growth of the cultures used in experiments ( =N 100

7 cells mL−1). 
Experiments were performed in 96-well plates (150 µL culture/well). The plates were shaken at 300 rpm at 30 °C. 
Growth was followed by measuring the optical density at 600 nm using a microplate reader (Infinite® M200 from 
Tecan Trading AG). The measurement was controlled and monitored with the i-control™ Software from Tecan 
Trading AG (30 °C, shaking at 280 rpm, 880 s per cycle, minimum 80 cycles). Each condition was implemented in 
six replicates per experiment, including medium blanks. For low cell numbers (e.g., =N 100

4 cells 150 µL−1), 
growth was analyzed by determining colony forming units (cfu) over time (threefold per time point). The specific 
growth rate µ represents a quantitative measure of growth in the exponential phase and was calculated using the 
following equation: µ = −

−
N N
t t

ln( )
2 1
t t2 1 .

Quantitative assessment of the benefit of PVD. The benefit conferred by PVD was quantified under 
iron-limiting conditions (KB/1 mM DP) with the non-producer strain 3E2. PVD was isolated according to a 
previously described protocol77 and added to the medium at concentrations of between 0 and 20 µM. Growth was 
monitored via optical density measurement, and the specific growth rate µ was calculated as described in the 
previous paragraph. Each individual experiment was performed with four parallel repeats per PVD concentra-
tion, and three independent experiments of this type were conducted per PVD concentration.

Determination of PVD sharing in mixed culture. Cells were grown in KB/1 mM DP (initial producer 
frequency .x(0) 0 33, =N 100

4 cells/150 µL, 96-well plate format) at 30 °C. Colony forming units (cfu) were 
determined at given time points (five replicates per time point), and producer and non-producer cells were dis-
criminated by colony color and size. Three independent experiments were performed, each yielding similar results.

Stability of PVD in KB medium with and without bacteria. Medium without cells and medium con-
taining about 107 cells mL−1 of the non-producer were supplemented with 2 µM PVD and incubated at 30 °C for 
48 h. At given time points samples were taken, and the relative PVD contents of medium and of the supernatant 
of medium with cells were determined by measuring the fluorescence emission of PVD at 460 nm (excitation 
400 nm).

Competitive growth experiments. To analyze the impact of the initial producer frequencies x0 on 
growth, strains KP1 and 3E2 were mixed in KB/1 mM DP (96-well plate, =N 100

4 cells 150 µL−1, ∈ .x {0, 0 1,0
. . . . .0 2, 0 3, 0 5, 0 75, 1 0}). Total cell numbers were determined at the end of the lag phase and after 8 h of shak-

ing at 30 °C by counting cfu. For each condition, a minimum of three individual experiments were performed. To 
analyze the development of the total cell number N t( ) and global producer frequency x t( ) in metapopulations, a 
random distribution of the initial producer frequency x0 was established by rolling three dices. The values of each 
triplet were weighted (lowest 2/3, middle 2/9 and highest 1/9) and rounded to yield sixteen different values from 
0 to 15 that are equivalent to sixteen different initial producer frequencies x0 ranging from 0 to 1.0 and result in 
an initial average global cooperator fraction x(0) of about 0.33. Cells were grown in KB/1 mM DP (96-well plate, 

=N 100
4 cells 150 µL−1) at 30 °C while shaking at 300 rpm. At given time points aliquots of each well were merged 

and N t( ) was determined by counting cfu. The global producer frequency x t( ) was obtained based on differences 
in the color and size of the colonies of KP1 and 3E2 on KB agar plates (minimum three replicates per time point).

Stochastic initial conditions and ensemble averages. We generate all triplets of the integers between 
0 and 5 to simulate the results of a sequence of (simultaneous) throws of three dice. Since the weights in the exper-
imental procedure are assigned based on the order of the rolled values, we order the “rolled” values within each 
triplet from lowest to highest. This results in a table of all possible 3-dice rolls, which we can use directly to gen-
erate the initial conditions and simulate equations (4). To speed up calculations, however, we remove duplicate 
triplets: for example, 113, 131, 311 are different triplets before sorting, but are the same after. Once we remove the 
duplicate combinations, we assign the appropriate probability to them, i.e. the number of ways to produce them 
before sorting divided by the total number of triplets. With a minimal combinatorics, one can compute the total 
number of triplets ( =6 2163 ), and the multiplicities of triplets: those with three equal values have only one way to 
appear before sorting; those with two equal values have three; those with all different values have six.

To simulate the time evolution of n and x, we generate the initial composition x0 for each triplet, using the 
weighted average described above. After setting n0, α, and s, the temporal evolution of the average x  and n in 
ensembles of populations can be computed by solving equations (4) for each of the allowed values of x0 and 
weighting it using the relative probability, computed as described above.
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Data Availability. The data that support the findings of this study are available from the corresponding 
authors upon reasonable request.
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Supplementary Information 

Notes 

Derivation of the growth rate 𝝁(𝒑) 

Assume a cell is born with an internal iron concentration 𝐹𝑒in(0) and a volume 𝑉(0). Let 𝑝 be 
the concentration of PVD-Fe complexes (which we take to be the same as that of PVD; see 
text). Each cell, then, incorporates iron ions at a constant rate 𝑘𝑝 that is proportional to the 
concentration of PVD. So at time 𝑡 after its birth, the cell has accumulated 𝑘𝑝𝑡 iron ions. Its 
internal iron concentration 𝐹𝑒in(𝑡), then, is 𝐹𝑒in(0)𝑉(0) (that is, the number of iron atoms at 
birth), plus the iron it has collected, all divided by the volume birth 𝑉(𝑡) it has reached: 

𝐹𝑒in(𝑡) =  !"in(!)!(!)!!"#
!(!)

   .  

Because cells try to maintain iron concentration homeostasis, we can consider 𝐹𝑒in to be 
constant. Moreover, as long as iron is the limiting factor for growth, the growth rate 𝜇(𝑝) 
depends only on the PVD concentration. 

On average, cells divide at time 𝑡! = 1/𝜇(𝑝), given that growth is logistic. Moreover, at 
the moment of division, the cell has attained twice the volume of its future daughters: 
𝑉(𝑡!) = 2𝑉(0). With these substitutions in the above equation, and minimal algebra, we 
obtain equation (2). 

Estimation of iron incorporated into cells 

The iron content of a bacterial cell ranges from ~10! to 10! atoms per cell1,2. In our 
experimental setup, cells reach a maximum density of 2×10! cells per 150 µL at the end of 
the exponential growth phase accumulating in total 2×10!" to 2×10!" iron atoms. We 
determined the iron concentration of our KB preparation by atomic absorption spectroscopy 
and found a concentration of ~8 µM (corresponding to ~7.2×10!" iron atoms per 150 µL KB 
medium). Using these numbers we calculated that ~0.28 to 2.8% of the total iron of KB is 
incorporated into cells by the end of the exponential growth phase. 
 

Impact of simple regulation 

Our conclusions are robust (at least qualitatively) against simple cost-saving strategies. 
More specifically, PVD accumulation makes it so that stopping synthesis to save costs is not 
sufficient to prevent the long-term decline of the global fraction of producers, as we prove in 



the following. 

Let the synthesis rate 𝜎 and the production cost 𝑠 in equation (3) depend on the 
pyoverdine concentration 𝑝. As a general form of cost-saving regulation, we consider that 
producers cease to synthesize PVD when its concentration reaches some threshold 𝑝!: 
𝜎(𝑝!) = 0. After synthesis stops, there producers incur no further cost and thus grow at the 
same rate as non-producers: 𝑠(𝑝!) = 0. If a population has any amount of producers (that is, 
if 𝑥! ≠ 0), at least some PVD is produced and, because it accumulates, its concentration 
steadily grows until it reaches 𝑝!. In the long run, then, all populations with 𝑥! ≠ 0 end up 
with the same PVD concentration (namely 𝑝!). 

As in our analysis, producer-rich populations grow faster for a limited time, then less 
producing ones catch up. Concurrently, the producer fraction within each population declines 
(during production) or stays constant (when production stops). This tension engenders a 
"Simpson's paradox" setting much like the one we presented in the case of constitutive 
production. Furthermore, because all populations reach the same ultimate size, the final value 
of 𝑥 is simply the average of the producer fraction 𝑥 in each population. These values are 
lower than the respective 𝑥!, because of the cost of production. 
References 
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Figure S1. Growth of P. putida KT2440 and the derived strains KP1 and 3E2 under iron 
replete and limiting conditions.  Cells were grown in KB supplemented with iron (KB/100 
µM FeCl3, full symbols) and in KB with iron chelator DP (KB/100 µM FeCl3/1 mM DP, 
empty symbols). When iron is more available, PVD is not needed for growth, 3E2 and WT 
grow about at the same rate, and KP1 grows slower. Under iron limitation, producing strains 
(KP1 and WT) benefit from production and grow much faster than non-producing 3E2. The 
experiment was performed as described in the legend of Fig. 3a. 
  



 
Figure S2. Impact of the initial producer fraction x0 on the growth of mixed populations 
under iron limiting conditions. (a) Impact of the initial producer fraction x0 on the growth 
yield. Strains KP1 and 3E2 were grown in mixed culture under iron-limiting conditions (KB/1 
mM DP, 𝑁! about 10! cells/150 µL, 96-well plate format) with the given initial producer 
frequencies 𝑥!. Total cell numbers were determined by counting cfu at the beginning of the 
experiment (black columns) and after 8 h of incubation (weight columns). For each condition, 
minimum three individual experiments were performed. (b) Impact of the initial producer 
fraction 𝑥! on the specific growth rate 𝜇. Mixed cultures of strains KP1 and 3E2 with 𝑥! 
values between 0 (=100% 3E2) and 1 (=100% KP1) were incubated in shaking 96-well 
microtiter plates at 30oC (𝑁! = 10! cells mL-1). Growth was analyzed by measuring the 
optical density at 600 nm using a Tecan microplate reader. 𝜇 was determined for each 
condition from the exponential phase of the resulting growth curves. All growth parameters 
represent the means of five growth experiments. Deviations were <10% of the mean value. 

 
 

 
Figure S3. Distribution of initial compositions 𝑥! in three replicates of the experiment. 
Although specific values differ, the overall features of the distribution remains the same. Most 
populations start mixed, with 𝑥! between 0.1 and 0.5. When at all present, populations with 
all producers or no producers are very rare. 
 



Table S1. Specific growth rate of P. putida KT2440 (WT), the non-producer 
(3E2), and the constitutive PVD producer (KP1) under iron-rich and iron-
limiting conditions. 
Growth 
medium 

µWT 
(h-1) 

µ3E2 
(h-1) 

µKP1 
(h-1) µ3E2/µKP1 

KB
a
 0.797 0.776 0.736 1.054 

KB/100 µM 
FeCl3

a
 

0.766 0.749 0.692 1.082 

KB/DP
a
 0.489 0.004 0.588 0.007 

KB/100 µM 
FeCl3/DP

a
 

0.657 0.030 0.610 0.049 

KB/100 µM 
FeCl3

b
 

1.237 1.238 1.201 1.031 

KB/100 µM 
FeCl3

c
 

n.d. 1.182 1.077 1.097 

aThe specific growth rate 𝜇 was calculated from the growth curves shown in Fig 1C. Cells 
were grown in shaking 96-well microtiter plates at 30oC (𝑁! = 10!cells mL-1). Growth was 
analyzed by measuring the optical density at 600 nm using a Tecan microplate reader. 
bCells were grown in shaking 24-well microtiter plates at 30oC (𝑁! = 10!cells mL-1). Every 
hour 50% of the culture was replaced with fresh medium. Growth was analyzed by measuring 
the optical density at 600 nm using a 1-mL cuvette (d=1 cm). 
cCells were grown in shaking 96-well microtiter plates at 30oC (𝑁! = 10!cells mL-1). Growth 
was analyzed by determination of colony forming units, cfu. 

All growth parameters represent the mean of five to fifteen growth experiments. Deviations 
were <10% of the mean value.  



Table S2. Oligonucleotides used in this investigation 
Name Sequence (5'...3') 

  Generation of P. putida KP1 
 PA1_04_03 bw kpn AAATAGGGGGGTACCCGCACATTTCCC 

PA1_04_03 mod2 TTCCGCCATGCTTAATTTCTCCTCTTT 
pfrI start mod2 AAATTAAGCATGGCGGAACAACTATCC 
pfrI end mod2 TGCGGCGTTGGATCCGCTGCGAGTTATTGGCCG 

  Sequencing insert on plasmid 
 mini Tn7 reverse MCS TTGCATTACAGTTTACGAACCGAAC 

  Sequencing Tn7 insertion on genome 
 checkdown primer trans GTCTTATTACGTGGCCGTGC 

Primer TN7R as CCACGCCCCTCTTTAATACG 
tn7left s TTTGTCATTTTTAATTTTCG 
checkup primer trans GCAGGAGCCGATGAGACAGA 

 

Movie S1. Temporal evolution of 𝑥 in a metapopulation. The evolution of 𝑥 was obtained by 
solving equations (4) together with the evolution of the joint distribution of sizes 𝑛! and 
compositions 𝑥!. 
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Part II

Combined effects of environmental and
demographic noise





Chapter 3

Evolution in stochastic environments

Chapter abstract The environment in which a population lives determines much of its evolution. Changing
environmental conditions can affect evolution as a selective factor—modifying which traits selection favors—
but it has non-selective aspects, too. This chapter, for example, focuses on how stochastic growth conditions
affect population size and growth. Consider an environment in which resources randomly switch between a
state of abundance and one of scarcity. Abundant resources lead populations to grow, and reduce the relative
weight of demographic noise; scarce resources, instead, make the population shrink, increasing the relative
weight of fluctuations. Thus extrinsic noise from the environment becomes coupled to the intrinsic noise in
the population. Analytics and simulations allow a description of how this interaction affects the steady state
distribution of population size and the fixation properties of the population. The analysis focuses in particular
on the survival probability of a slow-growing strain (such as a public good producer) in a pure competition case
(when the public good provides no benefit), as well as in the public good case (in which the public good fosters
growth). In both cases, a noise-induced transition occurs in the steady state distribution of population size. We
also showed that the switching environment largely amplifies demographic fluctuations, increasing the survival
probability of the slow strain. Although the public good reduces this fixation probability, there are regimes in
which it leads to an overall increase in the amount of producers.

Contribution to overarching question The work presented in this chapter takes a step back from biological
realism, in exchange for much finer control on the forces involved. Thereby the analysis unveils the rich
intertwining of environment, growth, demographic fluctuations, and social interactions.
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Figure 3.1: Graphical abstract of the project. (a) Cartoon of the coupled noise model. Under abundant
resources (high carrying capacity), the population grows, reducing the amplitude of demographic fluctuations.
Under scarce resources (low carrying capacity), the population decays, increasing the amplitude of demographic
fluctuations. The environment switches stochastically between the two states at rate ν. (b) Internal dynamics
of the population. Individuals of each strain reproduce stochastically at a strain-specific per-capita rate Γ+.
All individuals have the same per-capita death rate Γ−. (c) Modeling of the noise sources. We model the
effect of the changing environmental conditions (environmental noise) using a piecewise deterministic Markov
process. To describe the effect of the stochastic birth-death dynamics, we used the Moran model or a linear
noise approximation. Combining the two results, we described the overall properties of the population.
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3.1 Background

3.1.1 Fitness-dependent Moran model

The fitness-dependent Moran model [57, 86], sketched in Figure 3.2, describes the evolution of a mixed popu-
lation of constant size N . Individuals reproduce at a per-capita rate, depending on their fitness, creating exact
copies of themselves, which replace another individual chosen at random. The Moran model then has constant
size: to each birth corresponds a death, and the population always eventually fixates, because of genetic drift.

Figure 3.2: Cartoon of the Moran model. At each step, one individual is picked for reproduction, with a
probability that depends on its fitness. Another individual is picked to die, with uniform probability. In the
long run, the population always fixates to one or the other strain.

Consider a population of only two strains: Nc “cooperators” and Nd = N −Nc “defectors”. The selection
parameter s� 1 expresses the difference of their with fitnesses: fc = 1− s and fd = 1, with average 〈f(Nc)〉 =
Nc/Nfc + (1−Nc/N) = 1− sNc/N . The number of cooperators in the population changes with rates

Γ+(Nc) =
1− s
〈f(Nc)〉

(
Nc
N

)(
1− Nc

N

)

Γ−(Nc) =
1

〈f(Nc)〉

(
Nc
N

)(
1− Nc

N

)
. (3.1)

Γ+(Nc) is the probability of picking a cooperator for reproduction and a defector for death, Γ−(Nc) is the
opposite. The probability P (Nc, t) of having Nc cooperators at time t then follows the master equation

d

dt
P (Nc, t) = Γ+(Nc − 1)P (Nc − 1, t) + Γ−(Nc + 1)P (Nc + 1, t) +

−
(
(Γ+(Nc) + Γ−(Nc))P (Nc, t)

)
. (3.2)

From (3.2) we can obtain a Fokker-Planck equation (through a Kramers-Moyal expansion), from which to
compute the fixation probability of cooperators φ and the mean fixation time T (see, for example, Refs. [57, 58]
for the calculation details). Specifically, calling x0 = Nc(t = 0)/N the initial fraction of cooperators in the
population, we obtain

φ|N =
e−Ns(1−x0) − e−Ns

1− e−Ns
. (3.3)

The fixation probability of cooperators φ|N decreases exponentially with size. Indeed, because selection
disfavors cooperators, the only road to fixation they have is demographic fluctuations, which decrease in intensity
the larger populations are (see also Section 1.1.1). In other words, the smaller a population, the higher its
demographic noise, and the less selection drives the evolution [58].

3.1.2 Linear noise approximation

While deterministic equations can describe the average development of a population, individual birth and
death events cause stochastic fluctuations around it. The linear noise approximation (also known as system
size expansion or van Kampen expansion) provides a way to describe these deviations. Refs. [87, 88] present
detailed derivations.
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Consider the quantity X of scale Ω � 1. It evolves by discrete, stochastic steps ∆X � Ω, with transition
rates T (∆X,X). The probability P (X, t) of having a value X at time t thus obeys the generic master equation

∂

∂t
P (X, t) =

∫
d∆X [T (∆X,X −∆X)P (X −∆X, t)− T (∆X,X)P (X, t)] . (3.4)

Calling α(X) =
∫
d∆X∆XT (∆X,X) and β(X) =

∫
d∆X(∆X)2T (∆X,X), a simple Kramers-Moyal ex-

pansion transforms the master equation (3.4) into the Fokker-Planck equation

∂

∂t
P (X, t) = − ∂

∂X
[α(X)P (X, t)] +

1

2

∂2

∂X2
[β(X)P (X, t)] . (3.5)

The central assumption of the linear noise approximation is that X, on average, follows some deterministic
trajectory, on top of which the discrete evolution steps cause stochastic fluctuations of order

√
Ω. Therefore, we

make the Ansatz X(t) = Ωψ(t) +
√

Ωξ. ψ(t) describes the deterministic trajectory of X, whereas the random
variable ξ expresses the intrinsic noise, causing the stochastic fluctuations, and is associated with the probability
distribution π(ξ, t) = P (Ωψ +

√
Ωξ, t).

Defining ᾱ(ψ) = α(Ωψ)
Ω (and analogously β̄(ψ)), we get ψ̇ = ᾱ(ψ), which is the known deterministic part of

the development of X. To describe the fluctuations distribution π(ξ, t), apply the chain rule to the left hand
side of eq. (3.5) and use ∂

∂X = 1√
Ω
∂
∂ξ to get

∂

∂t
π(ξ, t) = − ∂

∂ξ

[√
Ω

(
ᾱ(ψ +

ξ√
Ω

)− ᾱ(ψ)

)
π(ξ, t)

]
+

1

2

∂2

∂ξ2

[
β̄(ψ +

ξ√
Ω

)π(ξ, t)

]
. (3.6)

Finally, since ξ �
√

Ω, a Taylor expansion of ᾱ and β̄ gives the following Fokker-Planck equation for the
fluctuations distribution π(ξ, t):

∂

∂t
π(ξ, t) = −ᾱ′(ψ)

∂

∂ξ
[ξπ(ξ, t)] +

1

2
β̄(ψ)

∂2

∂ξ2
[π(ξ, t)] . (3.7)

Solving this equation, we can determine the distribution of X around its deterministically expected behavior.

3.1.3 Dichotomous Markov Noise

As the name might suggest, the Dichotomous Markov Noise ξ(t) is a two-valued, stochastic, Markov process.
Specifically, ξ instantaneously switches from a value A+ to A− at a constant rate ν+ and back to A+ at rate
ν−. Thus, the probability P±(t) that, at time t, ξ is at A± obeys the master equation

d

dt
P±(t) = ν∓P∓(t)− ν±P±(t) , (3.8)

with stationary solution P± = ν∓/(ν+ + ν−).
Consider, in particular, the symmetric version of the process: ν+ = ν− =: ν, A+ = −A−. In this case, the

stationary average is 〈ξ(t)〉 = 0 and the autocorrelation function is

〈ξ(t)ξ(t′)〉 ∝ e−2ν|t−t′| . (3.9)

The finite autocorrelation time τc = 1/(2ν) means that such noise is colored, and thus adds a fundamental time
scale to the system.

The Dichotomous Markov Noise is a relatively simple process, but it often suffices to study the effects of
finite noise correlations. Moreover, the Dichotomous Markov Noise can be treated analytically (see Refs. [89, 90]
and also references therein); while its homogeneous rates, finite support, and discrete state space make for a
simple implementation. At the same time, the associated dynamics, and the interactions between time scales
can create interesting effects, such as noise induced transitions (see following section).

3.1.4 Solving dichotomous flows and noise-induced transitions

Introducing noise source in a system can bring about macroscopically observable states that are not present in
the noiseless system. The appearance of these new states is called a noise-induced transition [90].



3.2 Coupled fluctuations shape the evolution of populations 73

Consider for example a quantity y(t) which obeys the following dichotomous flow [89]:

ẏ(t) = f (y(t)) + h (y(t)) ξ(t) , (3.10)

where f(y) and h(y) are deterministic functions, and ξ(t) is some Dichotomous Markov Noise with states A± and
transition rates ν±. This is also called a piecewise deterministic Markov process, since y evolves deterministically
between the stochastic switches of ξ. The probability P±(y, t) of a value y and ξ = A± at time t can be proven
to follow the master equation [90]

∂

∂t
P±(y, t) = − ∂

∂y
[(f(y) +A±h(y))P±(y, t)] + ν∓P∓(y, t)− ν±P±(y, t) . (3.11)

In the case that ξ(t) is symmetric (ν+ = ν− = ν), with A+ = −A− = 1, we can then derive the following
equations for p(y, t) := P+(y, t) + P−(y, t) and q(y, t) = P+(y, t)− P−(y, t):

∂

∂t
p(y, t) = − ∂

∂y
[f(y)p(y, t) + h(y)q(y, t)] (3.12)

∂

∂t
q(y, t) = − ∂

∂y
[f(y)q(y, t) + h(y)p(y, t)]− 2νq(y, t) . (3.13)

Using these equations, one can find the stationary distribution p∗(y, t) of values of y (averaged over ξ) (see
Ref.[90] for details):

p∗(y, t) ∝ h(y)

h2(y)− f2(y)
exp

[
2ν

∫ y

dy′
f(y′)

h2(y′)− f2(y′)

]
. (3.14)

This distribution has a finite support, with boundaries y± given by the solutions of f(y±) = ±h(y±) [90].
The peaks of p∗ are in general independent of the fixed points of the deterministic dynamics. As a result,

the system may end up spending long times in the vicinity of points that are not deterministic fixed points.
The stochastic switching, in this case, produces a macroscopic behavior that would not be observable otherwise,
and a noise-induced transition occurs.

3.2 Coupled fluctuations shape the evolution of populations

Unpredictable environments are an important part of many natural settings, especially for bacteria. This
project focused on the coupled effect of this noise source and demographic fluctuations. Specifically, we let
the abundance of resources in the environment fluctuate, thus affecting the population size, which tunes the
amplitude of demographic noise.

Research question: How do environmental and demographic fluctuations intertwine to
determine the development of population?

The effects we consider span several distinct time scales: environmental change, population growth (and
decay), and internal fixation. By leveraging the separation between these time scales, we were able to analyze
the effects of the different noise sources separately, then combine them. As reported in the publication reprinted
in Section 3.3, and in the manuscript in Section 3.4, this allowed us to conclude that

Fluctuating environments shape population size distributions and promote the survival of
slow-growing strains.

3.2.1 The coupled noise model

We consider a population of fluctuating size N(t), composed of NF individuals of a strain F , and NS of a
slower-growing strain S, corresponding to a fraction x(t) = NS(t)/N(t).

We assume F -individuals have fitness fF = 1, and S-individuals have a lower fS = (1− s). s� 1 represents
the selective disadvantage of the slower strain—for example the metabolic cost of public good production (see
Section 2.2.3). The average fitness is 〈f〉 = xfS + (1 − x)fF = 1 − sx. Moreover, a global fitness g(x) acts on
the population as a whole [53–56], taking into account the effect on growth of the internal social interaction.
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Both strains compete for limited resources, encoded in a finite carrying capacity K, which regulates the death
rate. Altogether, birth and death events for strain α ∈ {S, F} occur stochastically, with per-capita rates

Γ+
α = g(x)

fα
〈f〉 ,

Γ−α =
N(t)

K
. (3.15)

In our research we focused on two main scenarios for the social dynamics inside the population:

1. A pure competition scenario: g(x) = 1. In this case, individuals have no real interaction, instead they
simply compete for limited resources. The global growth rate is independent of the relative abundance of
strains;

2. A public good scenario, for which g(x) = 1 + bx. In this case, the slow strain provides a public good that
accelerates growth. A parameter b defines the benefit from the public good. The more S-individuals in
the population, the faster the global growth rate.

In the deterministic limit (with neither environmental nor demographic noise), this dynamics is reflected by
the equations

Ṅ = N

(
g(x)− N

K

)
,

ẋ = −sg(x)
x(1− x)

1− sx . (3.16)

When g = 1 (pure competition case), the deterministic dynamics of N and x are decoupled. The time scales
of the two variables are actually sharply separated: N typically changes in times of order 1, while x moves
at a much slower 1/s. Indeed, the distribution of N equilibrates much faster than that of x. This time scale
separation will become very useful for our analysis.

The environmental noise acts by changing the abundance of resources in time: K = K(t). Specifically,
resources switch abruptly between a state of scarcity K = K− � 1 and one of abundance K = K+ > K−,
following a Dichotomous Markov Noise ξ(t) ∈ {−1, 1} with ν+ = ν− = ν. Therefore we can write

K(t) =
K+ +K−

2
+ ξ(t)

K+ −K−
2

. (3.17)

With a little algebra, we can see that the effect of this environmental noise is to make the population obey a
piecewise deterministic Markov process defined through:

ẋ = −sg(x)
x(1− x)

1− sx ,

Ṅ = N

(
g(x)− N

K + ξ
N(K+ −K)

KK+

)
, (3.18)

where K = 2K+K−/(K+ +K−) is the harmonic mean of K+ and K−. In other words—if we only consider the
effect of environmental noise—K switches between the values K±, and between switching events, N grows or
decays deterministically following the appropriate logistic growth.

When considering also demographic fluctuations (internal noise), their magnitude will be coupled to the
environmental noise: The environmental switching drives the change in population size, which in turn tunes the
amplitude of demographic fluctuations.

3.2.2 Stationary distribution of population size

In the pure competition scenario (b = 0), or after fixation (x ∈ {0, 1}), N and x dynamics decouple. Using the
properties of dichotomous flows (see Section 3.1.4 and Refs. [90, 91]), we can describe the effect of environmental
noise on the population size in this situation. The probability p(N, ξ; t) of the size being N while the environment
is in the state ξ = ±1 at time t obeys the master equation

∂

∂t
p(N, ξ, t) = − ∂

∂N

[
N

(
1 + q − N

K

)
p(N, ξ, t)

]
− ν [p(N, ξ, t)− p(N,−ξ, t)] , (3.19)
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where q is either equal to b (when x = 1 in the public good scenario) or equal to 0 (in the pure competition
case or when fixation to x = 0). From eq. (3.19), we obtained the joint distribution p∗ν,q(N, ξ) (see manuscript
in Section 3.4), as well as the stationary distribution of the population size

p∗ν,q(N) =
Zν,q
N2

[
(K+(1 + q)−N) (N −K−(1 + q))

N2

] ν
1+q−1

, (3.20)

where Zν,q is a normalization constant. Dashed blue lines in Figure 3.3 represent the predictions of this equation
for several values of ν in the pure competition case. They capture well the main features of the distributions
measured in simulations (green shaded areas).
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Figure 3.3: Distribution of population sizes at different switching rates (ν = 0.01 in panel (a), ν = 0.1 in panel
(b), ν = 1 in panel (c), ν = 10 in panel (d), K± = (100, 400) in all). Green shaded areas denote the results
of simulations. Only considering the environmental noise (eq. (3.20), blue dashed lines) allows to capture the
main features of the distribution, such as number and position of peaks, identifying the noise-induced transition.
For a complete description of the distribution, we need to include demographic fluctuations with a linear noise
approximation of eq. (3.22, gray solid lines).

By its very construction, however, eq. (3.20) only accounts for the effect of environmental noise, so it cannot
be expected to fully predict the size distribution. For example, while the support of p∗ν,q is only the interval
(K−(1+q),K+(1+q)), demographic fluctuations take real populations above or below those values. As a result,
size distributions in simulations are smoother and have broader peaks than predicted using dichotomous flows
(see shaded areas in Figure 3.3). To describe these fluctuations, we use a linear noise approximation [87, 88, 92]
(see Section 3.1.2, and also the manuscript in Section 3.4). Call n(t) the deterministic term of N and η(t) the
fluctuating part, scaled by a large parameter Ω (for example, Ω ∼ 1/2(K+ + K−)). Notice that, differently
from the traditional linear noise approximation, in this case the “deterministic part” is actually driven by the
environmental noise.

Combining the results from the linear noise approximation and the dichotomous flow, we obtain the equation
of motion for the joint distribution π(n, η, ξ; t) [92]:

∂

∂t
π(n, η, ξ; t) = − ∂

∂η

[
η

(
1 + q − 2

n

k±

)
π(n, η, ξ; t)

]
+
n

2

(
1 + q +

n

k±

)
∂2

∂η2
π(n, η, ξ; t) +

− ∂

∂n

[
n

(
1 + q − n

k±

)
π(n, η, ξ; t)

]
− ν [π(n, η, ξ; t)− π(n, η,−ξ; t)] .

(3.21)

The first two terms correspond to the traditional Fokker-Planck equation for the fluctuations in the linear noise
approximation, while the last two describe the dichotomous flow. We also write π∗(n, η, ξ) = π∗(η|n, ξ)p∗ν,q(n, ξ)
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and assume that, given a value for n, fluctuations are independent of the environmental state [92]: π∗(η|n, ξ =
1) = π∗(η|n, ξ = −1) =: π∗(η|n). Thereby we can determine that a Gaussian distribution of mean 0 and
variance n is a solution of eq.(3.21). With this we can compute the full distribution of population sizes P ∗ν,q(N).
In essence, the probability of having a size N is given by the sum of the probabilities of getting to N through
all possible combinations of deterministic behaviors and demographic fluctuations, summed over all possible
environmental states:

P ∗ν,q(N) = Z
∑

ξ=±1

∫ ∫
dndη π∗(η|n)p∗ν,q(n, ξ)δ

(
N − Ωn−

√
Ωη
)
, (3.22)

where Z is the normalization constant. As Figure 3.3 shows, eq. (3.22) predicts almost exactly the distribution
of population sizes measured in simulations.

The same approach applies to obtain the stationary distributions for b > 0. From eq. (3.22) we can obtain
the size distributions conditioned on fixation to S (taking q = b) and on fixation to F (taking b = 0). Measuring
the fixation probability of the slow strain (or using the effective theory presented in Section 3.2.5), we can
combine the two conditional distributions to obtain the marginal P ∗ν , see Figure 3.5(c,d) (see also Manuscript
in Section 3.4).

3.2.3 Noise-induced transition in population size distributions

Equation (3.20) highlights an important consequence of the environmental noise: if the exponent is negative,
the distribution is bimodal, U-shaped, with singularities at K = K±(1 + q); when the exponent is positive,
the distribution becomes unimodal, with a single peak around K(1 + q). So in each social scenario different
distribution shapes arise.

Pure competition scenario: two regimes In the pure competition scenario, the transition point is ν ' 1
and the regimes can be intuitively interpreted by looking at equation (3.18):

(1) One peak for ν > 1 (see Figure 3.3 (d)). In this case, the environment changes faster than the typical
population growth timescale. For ν � 1, in particular, the noise term in equation (3.18) self-averages to
〈ξ〉 = 0. This transforms the dynamics to a new logistic growth with carrying capacity K. As a result,
populations fluctuate around K and produce a unimodal distribution.

(2) Two peaks for ν < 1 (see Figure 3.3 (a,b)). In this case, the environmental switching is infrequent, so N has
time to reach the appropriate carrying capacity following each change. Most likely, then, the population
size fluctuates around the current carrying capacity, producing the observed bimodal distribution.

It is important to note that, without noise, the dynamics only has stable fixed points at N = K±; the fixed
point at N = K appearing for high ν is only present with noise. The transition we observe at ν ∼ 1, therefore,
is a veritable noise-induced transition.

Public good case: three regimes In the public good case, after fixation, we observe a more articulate
dynamics. In fact, now we must set q = 0 if the population fixates to strain F and q = b if it fixates to S. So
the transition point is different depending on the surviving strain: following a fixation to F , then, the regime
changes at ν ' 1, while for an S-fixation, it changes around ν ' 1/(1 + b). As a result, the overall (marginal)
size distribution has three regimes:

(1) Two peaks for ν > 1 + b, when both conditional distributions (conditioned to S- and F -fixation) are
unimodal.

(2) Three peaks for 1 < ν < 1 + b, when the S-conditional distribution is bimodal and the F -conditional one
is unimodal.

(3) Four peaks for ν < 1 when both conditional distributions are bimodal.
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3.2.4 Fixation properties in the pure competition scenario

Without demographic fluctuations, fixations are impossible. So, to study the fixation properties of the popula-
tion, we must combine environmental and internal noise. In this case, we account for demographic fluctuations
using the fitness-dependent Moran model [57, 86] (see Section 3.1.1). Having constant size, this model is com-
pletely unaffected by the type of environmental change we consider, but maintains all the internal stochasticity.

We began by considering the pure competition scenario (b = 0, and g(x) ≡ 1), in which the deterministic
dynamics of N and x are decoupled. Moreover, different noise sources drive their dynamics: N responds to
environmental noise, x to internal fluctuations. Fixations also typically occur after a time of order 1/s; by then,
not only N has reached its equilibrium distribution but it also has sampled much of it. We can then compute
the fixation probability φ of the slow strain by averaging the result from the Moran model over the equilibrium
size distribution. Thus we combine the two noise sources.

Accounting for the environmental noise, however, requires an additional step. Consider, for example the
case s � ν < 1: the population size switches between carrying capacities ν/s � 1 times (on average) before
fixation. As a result, the fixation properties “feel” the effect of both conditions, as if the environmental noise
self-averaged. When considering fixations, then, whether an environment changes “frequently” or “infrequently”
depends on the relation between its autocorrelation time scale 1/ν and the fixation time scale 1/s. We estimate
the fixation probability for the slow strain by averaging the fixed-size value φ|N over an equilibrium distribution
of N with the rescaling ν → ν/s:

φ(ν) '
∫ K+

K−

dNp∗ν/s(N)φ|N . (3.23)

This accounts for the average number of environmental changes experienced by the population before fixation,
and relates the environmental time scale directly to the one of fixations. In the limits ν → 0 and ν → ∞, the
system reduces to a logistic growth and eq. (3.23) yields the correct results: φ(0) = 1/2(φ|K− + φ|K+

) and
φ(ν → ∞) → φ|K. As Figure 3.4 shows, the formula in eq. (3.23) also correctly predicts the nontrivial
dependence of fixation probabilities on the environmental switching rate across a vast range of ν and s. In fact,
the predicted values (solid lines) follow the smooth transition between the “slow environment” (ν � s) and
“fast environment” regimes (ν � s).
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Figure 3.4: Fixation probability and average population size as function of the switching rate ν, for s = 0.02
(◦, blue) and s = 0.07 (�, orange), solid lines denote the predictions of eq. (3.23), symbols the results of
simulations (other parameters: K+ = 450, K− = 50, x0 = 0.5). (a) The fixation probability φ of the slow
strain may increase or decrease with ν, depending on the strength of selection. (b) The average population sizes
collapse on the curve (solid line) obtained by averaging N over eq. (3.20). Although the average population size
always decreases in ν, this does not automatically translate into an increased fixation probability. Reprinted
from Ref. [93].

Interestingly, one would expect smaller average populations to be related to larger fluctuations and thus
yield higher probability for the slow strain to fixate. However, Figure 3.4 shows this is not always the case:
while the average size 〈N〉∗ is monotonically decreasing in ν (and independent of s), the fixation probability
does not always increase correspondingly. In fact, φ(ν) is increasing for low s and decreasing for high s. This
suggests more complex effects at play than what can be captured only considering average population sizes
(see Section 2.2 of the publication’s Supplemental Material for details). Finally, note that for all values of ν,
φ(ν) > φ|〈K〉: the slow strain has a much higher probability of fixating than it would in a constant environment
with the same average carrying capacity.
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Figure 3.5: Results of the effective approach (a) φ(ν), for b = 0.2, s = 0.01 (�, blue); b = 0.2, s = 0.05 (◦,
red); b = 2, s = 0.05 (0.05,2)(∇ green), solid lines are predictions from eq. (3.24). Both increasing b and
increasing s reduce the probability for the slow strain to fixate. (b) Average population size 〈N〉 as function of
ν for (s, b) = (0.025, 2) (�, orange), (0.05, 2) (∇, blue), (0.025, 8) (�, red). Solid lines are obtained averaging N
over the appropriate versions eq. (3.20), then combining these conditional results via eq. (3.24). (c),(d) Size
distributions for ν = 0.1 (panel c), ν = 20 (panel d). Theoretical predictions (gray lines) are obtained combining
the results of eq. (3.22) using the fixation probability from eq. (3.24). In all panels (K+,K−, x0) = (450, 50, 0.5).

3.2.5 An effective approach to fixations in the public good scenario

In the public good scenario (b > 0), even the deterministic dynamics of N and x are coupled. This clearly
breaks the time scale separation we relied upon to calculate the fixation properties in the pure competition
case.

So, to calculate an approximate fixation probability, we adopted an effective approach. We know that, after
fixation, the equilibrium distribution of N is given by eq. (3.20), with an appropriate choice of q (q = 0 if the
fast strain F survived, q = b if the slow strain S did). Before fixation occurs, the population size necessarily
behaves in an intermediate way between being fully S and fully F . We chose to summarize this behavior as
interpolating between the two extremes, and used the corresponding distribution to compute a parametrized
fixation probability, analogous to that of eq. (3.23):

φqeff(ν) =

∫ K+(1+qeff)

K−(1+qeff)

dNpν/s,qeff(N)φ|N . (3.24)

To determine the appropriate value of qeff, we fit the result of this equation to the fixation probability in
simulations for ν � 1 + b. With this choice, the environmental noise is in the self-averaging regime, further
reducing the complexity.

With this heuristic procedure, we obtained a value of qeff, which we then used to predict the fixation
probability of the slow strain for all values of ν. This approach accurately predicted φ across a vast range of
environmental switching rates and for several values of s and b, see Figure 3.5. The fixation probability of
eq. (3.24), combined with the known conditional stationary size distributions, allows us to predict the average
size 〈N〉 and the full marginal distribution of N , see Figure 3.5. Eq. (3.24) thus effectively summarizes the
complicated intertwining of environmental noise, demographic fluctuations, and social interactions.

3.2.6 Duplicitous role of the public good

The public good accelerates growth and increases the carrying capacity. This also implies that the more benefit
it provides (i.e., higher b), the larger the population becomes. As the Moran model suggests, this reduces the
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probability that the slow strain fixates. Figure 3.6(a) shows that the fixation probability φ actually decreases
exponentially in b. So, while the public good is beneficial for the population as a whole, it represents an
additional burden to the survival of cooperators.
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Figure 3.6: Public good benefit and expected increase in cooperators (a) The fixation probability of cooperators
φ decays exponentially with b, because of the larger population size. Parameter values: s = 0.025, ν = 0.002
(�, green); 0.02 (∇, orange); 0.2 (◦, red); 2 (�, blue). (b) Larger b yields to lower fixation probability, but also
larger benefit when cooperators do survive. Therefore the expected number of cooperators increases, compared
to the b = 0 case (∆C > 0), as long as b is less than a critical value bc. (c) For constant ν (here, ν ∼ 0.44),
∆C(b) increases less for higher s. Lines denote the prediction of ∆C obtained using the effective approach of
Section 3.2.5. Parameter values: s = 0.02 (◦, blue), s = 0.03 (�, red), s = 0.05 (�, green). (d) Critical value
of the benefit bc as function of the switching rate ν. Simulations (symbols) and prediction from the effective
theory agree reasonably well. Parameter values: s = 0.02 (◦, blue), s = 0.03 (�, red), s = 0.05 (�, green).

However, the higher the benefit, the larger the size difference between the few populations that fixate to S
and the others. In other words, b decreases the probability that cooperators survive, but increases the reward
when they do. Therefore, the fixation probability may not be the best metric for the success of the slow strain.

We considered how b affects the average number of cooperators in the population. Specifically, we looked for
values leading to an increase in the expected number of slow individuals ∆C(b) = 〈N |x = 1〉|b− 〈N |x = 1〉|b=0.
As Figure 3.6(b,c) show, if b is lower than some value bc, then ∆C > 0: on average, there are more cooperators
in the population than there would be without benefit. Increasing b beyond this threshold value, however,
makes the probability that the slow strain fixates overwhelmingly small. The value of bc depends on the other
parameters of the model. As Figure 3.6(d) shows, combining our results on the stationary size distribution
(Section 3.2.2) and the effective approach (Section 3.2.5) we can get a numerical prediction of how it changes
with, for example, ν.

3.2.7 Consequences and outlook

Our results point to very rich interplay between environmental noise and demographic fluctuations. Because
bacterial population were the primary inspiration for the model, an interesting prospect would be to see an
experimental realization of the system. Microbial populations, from soil bacteria to the human microbiome, live
in constantly changing conditions and variable resources. Experimental realizations of our model could validate
our results or expose mechanisms bacteria use to counteract the effects of the variable environment.
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Environment plays a fundamental role in the competition for resources, and hence in the evolution of
populations. Here, we study a well-mixed, finite population consisting of two strains competing for the
limited resources provided by an environment that randomly switches between states of abundance and
scarcity. Assuming that one strain grows slightly faster than the other, we consider two scenarios—one of
pure resource competition, and one in which one strain provides a public good—and investigate how
environmental randomness (external noise) coupled to demographic (internal) noise determines the
population’s fixation properties and size distribution. By analytical means and simulations, we show that
these coupled sources of noise can significantly enhance the fixation probability of the slower-growing
species. We also show that the population size distribution can be unimodal, bimodal, or multimodal and
undergoes noise-induced transitions between these regimes when the rate of switching matches the
population’s growth rate.
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Natural populations face ever-changing environmental
conditions, which influence their evolutionary fate. For
instance, the abundance of nutrients, the presence of toxins,
or external factors like temperature and pH often influence
the evolution of species [1,2]. Several mechanisms have
been suggested for a population to cope with fluctuating
environments, such as phenotypic heterogeneity, bet hedg-
ing, and storing thegains realized during goodperiods [3–7].
The impact of random environmental changes (external
noise) on fitness variability has been studied in population
genetics, predator-prey systems, aswell as in game-theoretic
and relatedmodels [8–19]. Demographic fluctuations (inter-
nal noise), arising in finite populations, are responsible
for fixation—when one species takes over the population
[20,21], and determine the population’s internal composi-
tion. Internal noise is stronger in small populations and
becomes negligible in large ones. The dynamics of the
population composition is often coupled with the evolution
of its size [22–26]. This may result in a coupling of
environmental and internal noise, with external randomness
affecting the population size, which in turn modulates
demographic fluctuations. The interdependence of external
and internal noise is especially relevant to microbial com-
munities, which can experience sudden, extreme environ-
mental changes [27–31]. These may lead to population
bottlenecks: new colonies or biofilms formed from only
few individuals, thus prone to fluctuations. This mechanism
leads to feedback loops between social interactions and
environment, and to population dynamics of great evolu-
tionary relevance [27–29]. For instance, recent experiments
on Pseudomonas fluorescens showed that the formation
and sudden collapse of biofilms promotes the evolution of
cooperative behaviors [30,31].

Most studies, however, treat environmental and internal
noise independently [8–19]. Moreover, environmental ran-
domness is often modeled with white noise [8,9,16],
although the correlation time is finite in realistic settings.
Here, we develop an approach to study the coupled effect of
environmental and internal noise on the evolution of a two-
species population in a stochastic environment: We assume
that the carrying capacity randomly switches between two
values, following a dichotomous noise [32,33]. A distinctive
feature of this model is the coupling of internal and
environmental noise (Fig. 1): Demographic fluctuations
depend on the population size that varies following the
switching environment. We first consider a scenario with
pure resource competition, in which the dynamics of the
population composition and its size are only linked by
demographic fluctuations. Then, we investigate a public
good scenario in which interspecies social interactions

FIG. 1. Cartoon of the model: Coupled evolution of the
population size and its composition, consisting of strains S (open
circle) and F (filled circle), subject to a stochastically switching
carrying capacity KðtÞ ∈ fK−; Kþg; see Eq. (3). K switches
with rate ν from K− to Kþ, leading to population growth and
decreasing demographic fluctuations (internal noise). When K
switches (with rate ν) fromKþ toK−, the population size declines
and demographic fluctuations increase.
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explicitly couple the composition and ecological (size)
dynamics. Using analytical and computational means, we
showhowenvironmental and internal noise can significantly
influence the population’s fixation properties. Moreover,
we show that external noise induces a transition between
different regimes of the population size distribution.
We consider a well-mixed population of finite and time-

fluctuating size NðtÞ ¼ NSðtÞ þ NFðtÞ consisting of two
strains. At time t, NSðtÞ individuals are of a slow-growing
strain S, corresponding to a fraction x ¼ NS=N of the
population, and NF are of a fast-growing species F.
Individuals of strain α ∈ fS; Fg reproduce with a per-capita
rate Tþ

α ¼ fα=f̄ [23,24], where fα is the fitness of strain α
and f̄ ¼ xfS þ ð1 − xÞfF is the average fitness. Here
fF ¼ 1 and fS ¼ 1 − s, where 0 < s ≪ 1 denotes the weak
selection intensity that disadvantages the strain S [20]. The
population size growth often depends on its composition;
e.g., one strainmay produce a public good. This is accounted
for by multiplying the birth rates Tþ

α by a “global fitness”
gðxÞ [22–24]. Here, we focus on two important cases:
(i) pure resource competition: gðxÞ ¼ 1, in this setting x
andN are only coupled by fluctuations; and (ii) public good:
gðxÞ ¼ 1þ bx, corresponding to an explicit coupling of x
and N, where x represents the fraction of “cooperators”
producing a public good and enhances the population
growth rate through the benefit 0 < b ∼Oð1Þ. Both strains
compete for limited resources which constrains the pop-
ulation size as encoded by the death rate T−

α ¼ N=K. We
consider that in the presence of environmental randomness,
K fluctuates stochastically. The population thus follows a
multivariate birth-death process [34,35] in which, at each
time increment, an individual at random reproduces [with
per-capita rate gðxÞTþ

α ], or dies (with per-capita rate T−
α ), or

the carrying capacity changes state (with rate ν). The ensuing
master equation fully describes the stochastic population
dynamics, whose main features are the distribution of N
and the probability that S or F fixates by taking over the
population, but is difficult to solve [35]. Upon ignoring any
form of noise, the population size N and composition x
evolve deterministically according to [23,24,36]

_N ¼ N

�
gðxÞ − N

K

�
; ð1Þ

_x ¼ −sgðxÞ xð1 − xÞ
1 − sx

; ð2Þ

where the dot signifies the time derivative. Here, we study
the population dynamics subject to a randomly switching
carrying capacity (environmental noise) and to stochastic
birth and death events (internal noise). We therefore have to
account for these sources of noise.
To model environmental randomness, we let the

carrying capacity KðtÞ switch stochastically between a
state of abundant resources (K ¼ Kþ) and one of scarcity
(K ¼ K− < Kþ). Figure 1 illustrates this stochastic

environment and its impact on the population. We consider
that environmental switching occurs continuously at rate ν,
according to a dichotomous Markov noise ξðtÞ∈f−1;þ1g
with zero-mean, hξðtÞi ¼ 0 (h·i denotes the ensemble aver-
age), and autocorrelations hξðtÞξðt0Þi¼expð−2νjt−t0jÞ,
where 1=ð2νÞ is the finite correlation time [32,33]. Hence,
the carrying capacity obeys

KðtÞ ¼ 1

2
½ðKþ þ K−Þ þ ξðtÞðKþ − K−Þ�; ð3Þ

with average hKi ¼ ðKþ þ K−Þ=2. If this is the sole source
of noise (no internal noise), the evolution obeys a piecewise
deterministic Markov process (PDMP) [18,19,39,40],
defined by Eq. (2) and

_N ¼ N

�
gðxÞ − N

K
þ ξ

NðKþ −KÞ
KKþ

�
; ð4Þ

where K ¼ 2KþK−=ðKþ þ K−Þ is the harmonic mean of
Kþ andK−. Equation (4) is obtained from Eqs. (1) and (3) as
shown in the Supplemental Material [36]. Hence, environ-
mental randomness alone yields a multiplicative noise ∝
ξðKþ − K−ÞN2 in Eq. (4). Demographic fluctuations being
ignored, x obeys Eq. (2), which is decoupled from N, and
evolves on a time scale∼1=s; see supporting videos [37] and
Supplemental Material [36].
Internal noise arises in finite populations when birth

and death events occur randomly, and is responsible for
fixation. If demographic fluctuations are the only source of
noise (say K is constant), the fixation probability ϕ of the
strain S can be computed from a fitness-dependent Moran
process [20,21,41,42] with the same strain-specific fit-
nesses as in our model, and constant size N ¼ K [43].
Given an initial fraction x0 of S individuals, this probability
in a population of constant size N is ϕðx0ÞjN ¼
ðe−Nsð1−x0Þ − e−NsÞ=ð1 − e−NsÞ [44,45]. Hence, the fixation
probability of the slow strain is exponentially small in
large size populations. Since the fixation probability clearly
depends on x0, for notational simplicity we henceforth
write ϕ≡ ϕðx0Þ and ϕjN ≡ ϕðx0ÞjN .
Below, we investigate the joint effect of environmental

and internal noise on the population dynamics. In particu-
lar, since extreme environmental changes can occur more or
less rapidly in microbial communities [27–31], we study
the influence of the switching rate ν on the species fixation
probability and the distribution of N.
(i) The pure resource competition scenario.—When

g ¼ 1, both species simply compete for limited resources.
By the competitive exclusion principle [46], F always
prevails in the deterministic limit. In this case, the rate
equations (1), (2) are decoupled. However, demographic
fluctuations, which drive to fixation, scale with the popula-
tion size: the stochastic dynamics of x is thus coupled with
that of N; see Fig. 1. While x relaxes on a slow time scale
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t ∼ 1=s,N reaches a quasistationary state in a time t ¼ Oð1Þ,
see supporting videos [37] and Supplemental Material [36].
Equation (4) is associated with a PDMP whose marginal
(unconditioned of ξ ¼ �1) stationary probability density
function (PDF) is [32,36]

p�
νðNÞ ¼ Zν

N2

�ðKþ − NÞðN − K−Þ
N2

�
ν−1

; ð5Þ

where Zν is the normalization constant and the PDF has
support ½K−; Kþ�. Although this PDF only accounts for
environmental noise, it captures the main features of the
quasistationary distribution of the population size (N-QSD)
of the fullmodelwhenK− ≫ 1 [47]. Since x andN evolve on
different time scales, the PDF (5) can be combined with ϕjN
to determine the fixation probability. For this, we rescale the
switching rate, ν → ν=s, to map environmental changes onto
the internal dynamics’ relaxation time scale, where ν=s is
the average number of switches occurring while x relaxes.
Indeed, when ν ≫ s (fast switching), many switches occur
prior to fixation and the environmental noise self-averages,
whereas when ν ≪ s (slow switching) the population is
likely to experience solely the carrying capacity Kþ or K−
before one species fixates. The fitness-dependent Moran
process gives the fixation probability in those limits. When
ν → ∞, there is self-averaging with ξ → hξi ¼ 0 in (4) that
becomes the logistic equation (1) with K ¼ K, yielding
ϕ ¼ ϕjK.When ν → 0,K is equally likely to remain atKþ or
K− until fixation occurs, yielding ϕ ¼ ðϕjKþ þ ϕjK−

Þ=2.
Based on these physical considerations, fully detailed in
the Supplemental Material [36], we propose to assume the
following expression for the S fixation probability when
0 < s ≪ 1 and K− ≫ 1:

ϕ≃
Z

Kþ

K−

�
e−Nsð1−x0Þ − e−Ns

1 − e−Ns

�
p�
ν=sðNÞdN: ð6Þ

By averaging the effect of internal noise, given by ϕjN, over
the external-noise-induced PDFp�

ν=s, Eq. (6) accounts for the
fact thatN evolvesmuch faster than x relaxes. The expression
(6) reproduces the expected results in the two limiting
regimes ν ≫ s and 0 < ν ≪ s. Moreover, Eq. (6) accurately
predicts the stochastic simulation results over a broad range
of ν values, capturing the nontrivial ν dependence of ϕ, see
Fig. 2(a). We find that ϕ can increase or decrease with ν [36]
and, importantly, environmental noise can significantly
enhance the S fixation probability in all regimes: ϕ is always
greater than ϕjhKi obtained in a nonrandom environment
with N ¼ hKi [36].
We have verified that the mean fixation time scales as

Oð1=sÞ [36]. Hence, after a time t≳ 1=s, either species
likely fixated and, while the population then only consists of
S or F, its size keeps fluctuating, see supporting videos [37]
and Supplemental Material [36]. Since demographic fluc-
tuations have a marginal influence on the N-QSD when
K− ≫ 1, the PDF p�

ν captures its main long-time features;

see Fig. 3. For example, the long-time average population
size hNi� is well described by the average over Eq. (5):
hNi� ≃ RKþ

K−
Np�

νðNÞdN, which is independent of s and x0;
see Fig. 2(b). The histograms of Fig. 3 show that the
environmental noise causes a noise-induced transition of
the N-QSD at about ν ¼ 1 [32]. The transition, predicted
by p�

ν, separates regimes in which environmental change
is faster or slower than the population’s growth rate. For
ν > 1, fast switching results in a unimodal N-QSD, see
Figs. 3(a), 3(b), whereas for ν < 1, the environment changes
slowly and the N-QSD is bimodal, see Figs. 3(c), 3(d) and
Ref. [36]. The fast decay and slower growth ofN, character-
istic of a logistic dynamics, lead the population size to dwell
longer about K− than about Kþ. As captured by p�

ν, this
results in right-tailed distributions in Fig. 3. Since Eq. (5)
only accounts for external noise, it cannot reproduce some
features caused by demographic fluctuations, such as the
N-QSD not being strictly confined within the support of p�

ν

FIG. 2. (a) ϕ vs ν for ðKþ; K−; x0Þ ¼ ð450; 50; 1=2Þ, with s ¼
0.02 (open circle, blue/black) and s ¼ 0.07 (diamond, orange/
gray). Symbols are from simulations (104 runs). Solid lines are
from Eq. (6); dashed and dotted lines show ϕ when ν=s → ∞
(dashed) and 0, see text. (b) hNi� vs ν. Symbols are from
simulations (104 runs) with s ¼ 0.02 (open circle) and s ¼ 0.07
(diamond); they collapse on the curve (solid line) obtained by
averaging N over (5); see text.

FIG. 3. Histograms of population size (N-QSD) and from p�
ν,

for ν ¼ 20 (a), ν ¼ 2 (b), ν ¼ 0.2 (c), and ν ¼ 0.02. (d) Solid
lines result from simulations (105 samples, after t≳ 1=s). Dashed
lines are the corresponding histograms from Eq. (5). Dotted lines
show N ¼ K in (a), and N ¼ K� in (b)–(d). Parameters are
ðKþ; K−; s; x0Þ ¼ ð450; 50; 0.02; 0.5Þ.
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[35,36]. However, as Fig. 2 shows, these deviations only
marginally affect hNi� and ϕ.
(ii) The public good scenario.—The above approach can

be generalized to cover cases where internal and ecological
dynamics are explicitly coupled. As an application, we
consider a public good scenario in which S is a “co-
operative” strain benefiting the population by enhancing
the global fitness gðxÞ ¼ 1þ bx (b > 0) and the carrying
capacities, see below. The dynamics of x and N are now
coupled, breaking the time scale separation: N becomes a
fast variable, enslaved to the slowly varying x, see videos 6
and 7 in Ref. [37] and Supplemental Material [36]. After
fixation, x ∈ f0; 1g and the N-QSD can be obtained as for
b ¼ 0. When F fixates (x ¼ 0), the N distribution is
described by p�

ν (5). If S fixates (x ¼ 1), the population
size distribution is captured by p�

ν;b, obtained by substitut-
ing K� → ð1þ bÞK� and ν → ν=ð1þ bÞ in Eq. (5).
Hence, p�

ν and p�
ν;b are the PDFs conditioned to fixation

ofF and S (but unconditioned of ξ), respectively. To address
the dynamics before fixation, we approximately account for
the correlations betweenN and x by introducing an effective
(constant) parameter 0 ≤ q ≤ b. We then set gðxÞ ¼ 1þ q
in Eq. (4), resulting in a PDMP, decoupled from x, for the
size of an effective population whose marginal PDF, p�

ν;q

(see Eq. (S2) in [36]), interpolates between p�
ν and p�

ν;b. As
for b ¼ 0, when 0 < s ≪ 1 and K− ≫ 1, the S fixation
probability in this effective population is [36]

ϕq ¼
Z ð1þqÞKþ

ð1þqÞK−

�
e−Nsð1−x0Þ − e−Ns

1 − e−Ns

�
p�
ν=s;qðNÞdN: ð7Þ

To determine the effective value of q for given ðK�; s; bÞ,
we consider the limit ν ≫ 1, where the environmental
noise self-averages, and match the prediction of Eq. (7)
with the fixation probability obtained in simulations [36].
As Fig. 4(a) shows, with suitable q, Eq. (7) reproduces the
simulation resultsϕq ≃ ϕ for a broad range of ν and different
values of b.
After t≳ 1=s, fixation has typically occurred and the

population size distributions (when K− ≫ 1) are well
described by p�

ν;b (S fixation) and p�
ν (F fixation). With

these conditional PDFs and ϕq, the long-time average
population size reads

hNi� ≃ ϕq

Z ð1þbÞKþ

ð1þbÞK−

Np�
ν;bðNÞdN þ ~ϕq

Z
Kþ

K−

Np�
νðNÞdN;

ð8Þ
with ~ϕq ¼ 1 − ϕq. Figure 4(b) shows that Eq. (8) agrees
well with simulation results, but cannot capture the
behavior at very low ν (ϕq being inferred at ν ≫ 1). The
conditional N-QSD and conditional PDFs p�

ν and p�
ν;b

present unimodal and bimodal regimes. Specifically, after S
fixation, N’s growth rate is 1þ b and the associated PDF
p�
ν;b undergoes a noise-induced transition at ν ¼ 1þ b.

Similarly, the N’s growth rate when F fixates is 1, and p�
ν

undergoes a transition at ν ¼ 1. Since the marginal size
distribution is the sum of the conditional distributions
weighted by the fixation probability, it is characterized
by several regimes and transitions. These properties are
well captured by combining p�

ν;b and p
�
ν weighted by ϕq, as

shown in Fig. 4. When ν > 1þ b, the switching rate
exceeds the population’s growth rate, and both conditional
PDFs are unimodal with different peaks, yielding a bimodal
marginal distribution; see Fig. 4(c). For 1 < ν < 1þ b,
p�
ν;b is bimodal and p�

ν is unimodal. When ν is below the
population’s growth rate (ν < 1), both conditional PDFs are
bimodal. As a result, the marginal size distribution has three
peaks when 1 < ν < 1þ b and four peaks when ν < 1; see
Fig. 4(d). As for b ¼ 0, the influence of demographic
fluctuations on the N-QSD is to cause slight deviations
from the PDF predictions, particularly at low ν [36].
Motivated by the evolution of microbial communities in

volatile environments, we have analyzed the dynamics of a
two-species population subject to a randomly switching
carrying capacity (dichotomous noise). A distinctive feature
of our model is the coupling of the environmental and
internal noise: demographic fluctuations depend on the
population size, which in turn changes with the varying
carrying capacity (environmental noise). By analytical and
computational means, we have studied the coupled effect
of environmental and internal noise on the population’s
ecological and fixation properties. Our analytical approach
is based on a time scale separation, arising under weak

FIG. 4. (a) ϕ vs ν for ðs; bÞ ¼ ð0.01; 0.2Þ (diamond, blue/gray),
(0.05,0.2)(open circle, red/black), (0.05,2)(downward triangle,
green/dark gray). Solid lines are from Eq. (7). In all panels
ðKþ; K−; x0Þ ¼ ð450; 50; 0.5Þ. (b) hNi� vs ν for ðs; bÞ ¼
ð0.025; 2Þ (square, orange/gray), (0.05,2) (downward triangle,
blue/dark gray), (0.025,8) (diamond, red/black). Solid lines
are from Eq. (8). (c),(d) Size distributions for ν ¼ 20 (c) and
ν ¼ 0.02 (d), with b ¼ 2 and s ¼ 0.02. Solid and dashed lines
are, respectively, histograms from simulations (105 replicas, after
99% fixation [36]) and obtained from p�

ν;b and p
�
ν weighted by ϕq,

see text.
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selection, between the ecological and internal dynamics.We
have also combined the properties of suitable stochastic
processes governed solely by internal fluctuations on one
hand, and only by environmental noise on the other hand. In
the case of pure resource competition (no explicit coupling
between internal and ecological dynamics), we have deter-
mined the population size distribution, characterized by
various regimes, and found that the average size decreases
with the switching rate. Assuming a suitable expression for
the fixation probability and using stochastic simulations, we
have investigated how environmental randomness affects
the strains’ fixation properties and found that it can signifi-
cantly enhance the fixation probability of the disadvantaged
strain. As an application, we have considered a public good
scenario in which internal and ecological dynamics are
explicitly coupled.We have thus devised an effective theory
that has allowed us to probe the effects of environmental
switching and public good benefit on the fixation probability
and population composition. We have characterized the
population size distribution and the noise-induced transi-
tions between their unimodal (fast switching), bimodal, and
multimodal forms, arising when the switching rate matches
that of the population growth. Our findings show that
coupled environmental and demographic noise can signifi-
cantly influence the population dynamics by greatly affect-
ing its fixation properties and therefore its composition. This
is particularly relevant to microbial communities, which
often feature connected internal and ecological evolution.

E. F. acknowledges funding by the Deutsche
Forschungsgemeinschaft, Priority Programme 1617
“Phenotypic heterogeneity and sociobiology of bacterial
populations,” Grant No. FR 850/11-1,2, and the German
Excellence Initiative via the program “Nanosystems Initiative
Munich” (NIM). M.M. is grateful for the support of the
Alexander von Humboldt Foundation, Grant No. GBR/
1119205 STP, and for the hospitality of the University of
Munich.

*M.Mobilia@leeds.ac.uk
[1] C. R. Morley, J. A. Trofymow, D. C. Coleman, and C.

Cambardella, Microbiol. Ecol. 9, 329 (1983).
[2] C. A. Fux, J. W. Costerton, P. S. Stewart, and P. Stoodley,

Trends Microbiol. 13, 34 (2005).
[3] P. L. Chesson and R. R. Warner, Am. Nat. 117, 923 (1981).
[4] E. Kussell, R. Kishony, N. Q. Balaban, and S. Leibler,

Genetics 169, 1807 (2005).
[5] M. Acer, J. Mettetal, and A. van Oudenaarden, Nat. Genet.

40, 471 (2008).
[6] H. Beaumont, J. Gallie, C. Kost, G. Ferguson, and P. Rainey,

Nature (London) 462, 90 (2009).
[7] P. Visco, R. J. Allen, S. N. Majumdar, and M. R. Evans,

Biophys. J. 98, 1099 (2010).
[8] R. M. May, Stability and Complexity in Model Ecosystems

(Princeton University Press, Princeton, NJ, 1973).
[9] S. Karlin and B. Levikson, Theor. Popul. Biol. 6, 383 (1974).

[10] E. Kussell and S. Leibler, Science 309, 2075 (2005).
[11] M.Assaf, E. Roberts, Z. Luthey-Schulten, andN.Goldenfeld,

Phys. Rev. Lett. 111, 058102 (2013).
[12] Q. He, M.Mobilia, and U. C. Täuber, Phys. Rev. E 82,

051909 (2010).
[13] U. Dobramysl and U. C. Täuber, Phys. Rev. Lett. 110,

048105 (2013).
[14] M. Assaf, M. Mobilia, and E. Roberts, Phys. Rev. Lett. 111,

238101 (2013).
[15] P. Ashcroft, P. M. Altrock, and T. Galla, J. R. Soc. Interface

11, 20140663 (2014).
[16] A. Melbinger and M. Vergassola, Sci. Rep. 5, 15211

(2015).
[17] M. Danino, N. M. Shnerb, S. Azaele, W. E. Kunin, and

D. A. Kessler, J. Theor. Biol. 409, 155 (2016).
[18] P. G. Hufton, Y. T. Lin, T. Galla, and A. J. McKane, Phys.

Rev. E 93, 052119 (2016).
[19] J. Hidalgo, S. Suweis, and A. Maritan, J. Theor. Biol. 413, 1

(2017).
[20] J. F. Crow and M. Kimura, An Introduction to Population

Genetics Theory (Blackburn Press, New Jersey, 2009).
[21] W. J. Ewens, Mathematical Population Genetics (Springer,

New York, 2004).
[22] J. Roughgarden, Theory of Population Genetics and Evolu-

tionary Ecology: An Introduction (Macmillan, New York,
1979).

[23] A. Melbinger, J. Cremer, and E. Frey, Phys. Rev. Lett. 105,
178101 (2010).

[24] J. Cremer, A. Melbinger, and E. Frey, Phys. Rev. E 84,
051921 (2011).

[25] A. Melbinger, J. Cremer, and E. Frey, J. R. Soc. Interface 12,
20150171 (2015).

[26] J. S. Chuang, O. Rivoire, and S. Leibler, Science 323, 272
(2009).

[27] L. M.Wahl, P. J. Gerrish, and I. Saika-Voivod, Genetics 162,
961 (2002).

[28] K. Wienand, M. Lechner, F. Becker, H. Jung, and E. Frey,
PLoS One 10, e0134300 (2015).

[29] Z. Patwas and L. M. Wahl, Evolution 64, 1166 (2009).
[30] M. A. Brockhurst, A. Buckling, and A. Gardner, Curr. Biol.

17, 761 (2007).
[31] M. A. Brockhurst, PLoS One 2, e634 (2007).
[32] W. Horsthemke and R. Lefever, Noise-Induced Transitions

(Springer, Berlin, 2006).
[33] I. Bena, Int. J. Mod. Phys. B 20, 2825 (2006).
[34] C. W. Gardiner, Handbook of Stochastic Methods (Springer,

New York, 2002).
[35] K. Wienand, E. Frey, and M. Mobilia (to be published).
[36] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.119.158301 for the
derivation of Eqs. (1), (2), (4), (6), and (7), mean fixation
time results, complements to Figs. 3 and 4, and for the
description of the supporting videos of Ref. [37]. The
Supplemental Material includes Ref. [38].

[37] K. Wienand, E. Frey, and M. Mobilia, figshare. Supporting
videos are electronically available at the following URL:
https://doi.org/10.6084/m9.figshare.5082712.

[38] D. T. Gillespie, J. Comput. Phys. 22, 403 (1976).
[39] K. Kitahara, W. Horsthemke, and R. Lefever, Phys. Lett.

70A, 377 (1979).

PRL 119, 158301 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

13 OCTOBER 2017

158301-5



[40] M. H. A. Davis, J. R. Stat. Soc. Ser. B 46, 353 (1984).
[41] P. A. P. Moran, The Statistical Processes of Evolutionary

Theory (Clarendon, Oxford, 1962).
[42] T. Antal and I. Scheuring, Bull. Math. Biol. 68, 1923 (2006).
[43] S. P. Otto and M. C. Whitlock, Genetics 146, 723 (1997).
[44] R. A. Blythe and A. J. McKane, J. Stat. Mech. (2007)

P07018.

[45] J. Cremer, T. Reichenbach, and E. Frey, New J. Phys. 11,
093029 (2009).

[46] G. Hardin, Science 131, 1292 (1960).
[47] A finite population unavoidably collapses into ðN;xÞ¼ ð0;0Þ.

This phenomenon, unobservable when K− ≫ 1, occurs after
lingering in a quasistationary state well described by the
N-QSD and p�

ν.

PRL 119, 158301 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

13 OCTOBER 2017

158301-6



Supplemental Material for

Evolution of a Fluctuating Population in a Randomly Switching Environment

Karl Wienand∗, Erwin Frey∗, and Mauro Mobilia†

In this Supplemental Material, we provide some technical details and supplementary information in support of the
results discussed in the main text, as well as additional ones concerning the population’s mean fixation time and its
long-time distribution. We also comment the content of electronically available Videos [1] that illustrate the population
dynamics in the pure resource competition and public good scenarios. In what follows, unless otherwise stated, the
notation is the same as in the main text and the equations and figures refer to those therein. (As in the main text, unless
stated otherwise, below we tacitly assume x0 = 1/2.)

1 Derivation of Equations (1,2) and (4)

As explained in the main text, the population dynamics is governed by multivariate birth-death process in which at
each time increment an individual of species α ∈ {S, F} is picked for reproduction, Nα → Nα + 1, with transition
rate T +

α = T+
α Nα = g(x)fαNα/f̄ or death, Nα → Nα − 1, with transition rate T −

α = T−
α Nα = (N/K)Nα, or the

carrying capacity is switched, K+ ↔ K−, with rate ν. When internal noise is neglected, N and x evolve according to
the mean-field rate equations

Ṅ =
∑

α=S,F

(T +
α − T −

α ) = N

(
g(x)− N

K

)
,

ẋ =
T +
S − T −

S

N
− x

Ṅ

N
= −sg(x)

x(1 − x)

1− sx
,

where we have used fF = 1, fS = 1 − s and f̄ = 1 − sx. These equations coincide with (1) and (2) and, when the
carrying capacity K is constant, they provide a suitable description of the ecological and evolutionary (composition).
The deterministic description of the population dynamics in terms of (1) and (2) is valid only in the absence of internal
and external noise.
When the carrying capacity randomly switches according to K(t) = 1

2 [(K+ +K−) + ξ(t)(K+ −K−)], where ξ ∈
{−1,+1} is the dichotomous noise defined in the main text, the equation for N becomes the following stochastic
differential equation obtained by substituting K(t) into (1) and using ξ2 = 1:

Ṅ = N

(
g(x)− 2N

K+ +K− + ξ(t)(K+ −K−)

)
= N

(
g(x)− N

2K+K−
[K+ +K− − ξ(t)(K+ −K−)]

)

= N

(
g(x)− N

K + ξN

{
K+ +K−
2K+K−

− 2K−
2K+K−

})
= N

(
g(x)− N

K + ξ
N(K+ −K)

KK+

)
,

where K = 2K+K−/(K+ + K−). This stochastic differential equation coincides with (4) and, together with (2),
defines a piecewise deterministic Markov process (PDMP) [2, 3, 4] describing the population dynamics when the sole
form of randomness is the random switching of the carrying capacity (internal noise is neglected).

2 Fixation probability under random switching: Arguments underpinning formula (6) and (7) and their prop-
erties

We have studied the fixation probability φ that, starting with a fraction x0 of individuals of the slow type S, the
entire population eventually consists of N(t) individuals of species S. The fixation of species F occurs with the
complementary probability φ̃ = 1 − φ. We have investigated the joint effect of external (dichotomous) and internal
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(demographic) noise on these fixation probabilities with help of Eqs. (6) and (7) when K− ≫ 1, 0 < s ≪ 1 and
ν > 0, and by comparing the predictions of these formula with the results of stochastic simulations carried out using
the Gillespie algorithm [5] which exactly simulates the master equation.

2.1 Physical arguments underpinning formula (6) and (7) and their corroboration

Formula (6) and (7) are assumed forms for the fixation probability φ of the slow species S when 0 < s ≪ 1 and
K− ≫ 1. These expressions are based on a series of physical considerations that are fully corroborated by stochastic
simulations of the underlying individual-based population dynamics. At its core, the rationale behind (6) is rooted in
the timescale separation between N and x and on scaling arguments. For the sake of concreteness, here we first focus
on the case of pure resource competition (b = 0) and present the physical arguments underpinning Eq. (6):

- The condition 0 < s ≪ 1 ensures that there is a timescale separation between the evolutionary and ecological
dynamics. In fact, as shown in the Videos 1-3 [1], x evolves on a much slower timescale than N when 0 <
s ≪ 1: x relaxes in a time of order 1/s while N is at quasi-stationarity after a time of order 1. The condition
K− ≫ 1 ensures that the evolution of the population size is chiefly driven by random switching and is well
described by the PDMP (4) that neglects the effects of demographic noise that are marginal when K− ≫ 1 (see
also Sec. 3 below).

- Due to the timescale separation, when fixation occurs, typically after a time of order 1/s (see Fig. S3), N can be
considered to be in the stationary state of the PDMP (4) whose probability density function (PDF) has support
[K−,K+].

- The evolution of x is much slower than the dynamics of N . The population size is therefore able to span much of
its quasi-stationary distribution before fixation. This suggests to (approximately) compute φ by averaging φ|N ,
which is the S fixation probability in a fitness-dependent Moran model of constant population size N (see main
text), over the stationary PDF of the underlying PDMP that captures the main features of long-time dynamics of
N .

- Since x evolves on a timescale 1/s times slower than N , when 1/ν (mean time between two switches) is much
shorter than x’s relaxation time, the population composition changes by 1/N while N has already typically
experienced many switches. Hence, when ν ≫ s, the external noise self averages on the timescale of the
relaxation of x even if N experiences large excursions (e.g., from N ≈ K± to N ≈ K∓ as in the case of
Fig. 3(c)): Hence, x changes by 1/N while the population size N appears to fluctuate about a characteristic
value. It is therefore necessary to rescale the switching rate ν → ν/s in averaging φ|N over the stationary PDF
of Eq. (4) in order to compute the fixation probability φ. The rescaling ν → ν/s reflects the fact that K(t)
experiences on average ν/s switches prior to fixation (while x relaxes). In other words, this means that in this
context the extent to which the environmental noise self-averages relative to the typical relaxation time of x
determines whether the environment changes “fast” or “slowly”.

- With this rescaling, we obtain Eq. (6): φ ≃
∫ K+

K−
φ|N p∗ν/s(N)dN , where the integral over N spans [K−,K+]

which is the support of p∗ν/s(N) given by Eq. (5). In Eq. (6), φ|N accounts for internal noise in a population of
size N while p∗ν/s(N) captures the effect of the environmental noise on the (quasi-)stationarity distribution of
N in terms of the PDMP (4).

- In the fast and slow switching regimes, the fixation probability φ can be computed directly from the properties
of the fitness-dependent Moran model. In fact, when ν → ∞ (very fast switching), the dichotomous noise
self-averages (ξ → 〈ξ〉 = 0 in Eq. (4)) and the population readily attains the the effective size N ≃ K ≫ 1.
The internal evolution thus mirrors that of a population of constant size K obeying a fitness-dependent Moran
process [6, 7, 8]. In this case, if the initial fraction of S individuals is x0, we have φ

ν→∞−−−−→ φ(∞) = φ|K =
(e−Ks(1−x0)−e−Ks)/(1−e−Ks) [7], see main text. Similarly, when ν → 0 (very slow switching), the population
is equally likely to be locked in either of the environmental state ξ = −1 (where N = K−) or ξ = +1 (where
N = K+) and from the properties of the fitness-dependent Moran model in this case the fixation probability is
φ

ν→0−−−→ φ(0) = (φ|K− + φ|K+)/2.
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- The stationary PDF p∗ν/s(N) in Eq. (6) accounts for the fact that when ν > s there are typically many switches
prior to fixation, and environmental noise essentially self-averages when ν ≫ s and a large number of switches
occur. In fact, Eq. (6) correctly reproduces the fixation probability under fast and slow switching: it predicts
φ ≃ φ(∞) when ν/s ≫ 1 and φ ≃ φ(0) when ν/s ≪ 1, see Figs. 2(a) and S1.

- The stationary PDF p∗ν/s(N) is unimodal with a peak at N ≈ K when ν > s, and is bimodal with peaks about
N = K± when ν < s, see Fig. 3 and Videos 4 and 5. This suggests that in the regime of intermediate switching
rate, shown as shaded areas in Fig. S1, the fixation probability interpolates between φ(0) and φ(∞), and we
expect thatφ ≈ φ(∞) over a broad range of values of ν since s ≪ 1 and ν/s ≫ 1 is always satisfied when ν is
of order 1.
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Figure S1: (Color online). Fixation probability φ as function of ν for different values of s in the pure competition
case (b = 0). Here, (K+,K−) = (450, 50). Symbols denote the results of stochastic simulations for different
values of s: s = 0.01 (�, red/ dark gray), s = 0.02 (◦, blue/black), s = 0.07 (⋄, orange/gray) and s = 0.1 (▽,
green/light gray), from top to bottom. Solid lines denote the corresponding predictions of Eq. (6) and dashed lines
represent the predictions of

∫K+

K−
φ|N p∗ν(N)dN , obtained by averaging φ|N over (5) without rescaling the switching

rate ν, see text. The rescaling of the switching rate into ν/s in Eq. (6) reveals that φ is a scaling function of ν/s. In
fact, without rescaling the switching rate, the predictions (dashed lines) agree with stochastic simulations only in the
regimes of very large ν (fast switching) or very low ν (slow switching); whereas the predictions of Eq. (6) agree with
simulations over four orders of magnitude. Hence, Eq. (6) with the average over the PDF (5) with rescaled switching
rate ν → ν/s provides accurate predictions in the intermediate switching regime that separates the slow (ν/s ≪ 1)
and fast (ν/s ≫ 1) switching regimes, see text.

At this point, it is worth emphasizing that the assumed form Eq.(6) has been proposed without making any use of fitting
parameters and does not rely on any input from stochastic simulations, but only on the basis of the above physical
considerations. Stochastic simulations have been used to validate the form of (6) by corroborating its predictions. In
fact, a pragmatic and efficient way to assess the validity/accuracy of (6) is to systematically compare its predictions
with results of extensive stochastic simulations of system’s dynamics based on the Gillespie algorithm (typically
sampling over 104 to 105 realizations). The form of Eq. (6) and the above considerations are thus supported by the
following evidence:

- As shown in the supporting Videos 1-3 [1], stochastic simulations fully confirm that x always evolves much
slower than N when s ≪ 1, and that a timescale separation occurs when b = 0. Figs 2-4, as well as the
supporting Videos 4-5 also confirm that about the time of fixation (and after fixation has occurred), the evolution
of N is well described by the underlying PDMP when K− ≫ 1. In fact, except for the population collapse
arising after an enormous, unobservable time, demographic noise has only a marginal effect on the (quasi-
)stationary distribution of N .

- Stochastic simulations mirroring the predictions of the system’s master equation fully confirm that Eq. (6)
correctly predicts the expected behavior at fast and slow switching rate, with φ ≃ φ(∞) when ν/s ≫ 1 and
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φ ≃ φ(0) when ν/s ≪ 1. Furthermore, stochastic simulations show that the predictions of Eq. (6) correctly
reproduces the nontrivial ν-dependence of φ, see Figs. 2(a) and S1, and agree remarkably well with simulation
results also in the regime of intermediate switching rate.

The remarkable agreement between the predictions of Eq.(6) and stochastic simulations results has been con-
firmed for different values of s (namely s = 0.01, 0.02, 0.07, 0.1), and in all cases we have found an agreement
within a few percent. More specifically, by a systematic comparison with simulations, we have estimated the
mean square displacement of the predictions of Eq. (6) from the simulation results to be within 1.5% to 9% for
the results of Fig. S1, with an accuracy that increases when s is lowered: In the tested datasets, the mean error
ranges from about 1.5% when s = 0.01 to about 9% when s = 0.1 and (K−,K+) = (50, 450) [11]. The fact
that the accuracy of (6) improves when s is lowered stems from the fact that Eq. (6) is built on assuming a
timescale separation between N and x, which is the more pronounced the lower s.

- Gillespie stochastic simulations confirm that rescaling ν → ν/s is necessary to correctly predict the fixation
probability on a broad spectrum of ν/s values. This is illustrated in Fig. S1. When we compare the predictions
of Eq. (6), obtained by averaging over the PDF (5) with the rescaled switching rate ν/s, against stochastic sim-
ulations for different values of s we find an excellent agreement over the entire range of ν values (spanning four
orders of magnitude, from ν ∼ 10−3 to ν ∼ 10) On the other hand, the predictions of

∫ K+

K−
φ|N p∗ν(N)dN , in

which the switching rate has not been rescaled, are shown to be at odds with the results of stochastic simulations
when 0.01 . ν . 1 which includes intermediate switching regime (the agreement is restricted to a limited range
of very large/small values of ν/s corresponding to the very fast/slow switching regimes).

In summary, the results reported in Figs. 2(a) and S1 show that the predictions of Eq. (6) are in excellent agreement
with the outcome of the system’s Gillespie simulations (mirroring the dynamics described by the master equation) over
a broad range of values of ν/s values. This confirms that Eq. (6) is indeed a good assumed expression (or, by a slight
abuse of language, a suitable “Ansatz”) for the actual fixation probability. The difference between the predictions of
(6) and the corresponding simulation results can be estimated numerically, but for the purpose of our discussion here,
it suffices to notice that an agreement within a few percent is found over the broad range of ν/s values tested. Further
technical details about the accuracy of (6) will be investigated elsewhere [11].

The physical considerations leading to Eq. (6) when b = 0 also lead to Eq. (7) in the public good scenario with
b > 0. However, since Eqs. (2) and (4) for N and x are coupled in this case, we use a constant effective parameter
q ≥ 0 in our analysis. As explained in the main text (see also below), this parameter is determined by matching
simulation results. In fact, when b > 0, the effective parameter q is introduced by considering the auxiliary stochastic
differential equation obtained by substituting g = 1 + q in Eq. (4), see Sec. 1, which yields

Ṅ

N
= 1 + q − N

K
= 1 + q − N

K + ξ
N(K+ −K)

KK+
. (S1)

This equation is decoupled from the rate equation (2) for x and corresponds to a PDMP [2, 4], describing how the size
of an effective population evolves under the sole effect of the environmental noise. This PDMP is characterized by a
probability p±ν,q(N, t) = pν,q(N, ξ = ±1, t) to be in state {N, ξ} at time t for q given, where

∂

∂t
p±ν,q(N, t) = − ∂

∂N

[
N

(
1 + q − N

K

)
p±ν,q(N, t)

]
− ν[p∓ν,q(N, t)− p±ν,q(N, t)].

By assuming that the probability current is zero at N = (1 + q)K± (natural boundary conditions [4]) and ν > 0,
the stationary marginal probability density function p∗ν,q(N) = limt→∞(p+ν,q(N, t) + p−ν,q(N, t)) of (S1) is given
by [2, 4, 9]

p∗ν,q(N) =
Zν,q

N2

[{(1 + q)K+ −N} {N − (1 + q)K−}
N2

] ν
1+q−1

, (S2)

where Zν,q is the normalization constant, (1 + q)K± are the effective carrying capacities, whose harmonic mean is
(1 + q)K, and [(1 + q)K−, (1 + q)K+] is the support of p∗ν,q .
To determine the parameter 0 ≤ q ≤ b, we consider the limit ν → ∞. In such a regime, the environmental noise
switches very rapidly and self-averages, and Eq. (S1) is thus characterized by an effective population size N =
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(1 + q)K. The corresponding fixation probability of species S is thus φ|(1+q)K. We then vary q in order to match
φ|(1+q)K with the fixation probability obtained in our simulations for ν ≫ 1 [10].
In the realm of this effective theory, we can use this q to determine p∗ν,q(N) given by (S2). Then, as we did to obtain
Eq.(6), an expression φq fixation probability of S is obtained by averaging φ|N over (S2) with a rescaled switching
rate ν → ν/s. This yields Eq. (7) for φq whose expression has been used in Figs. 4(b)-4(d) in lieu of φ, see also Sec. 4
below. It is worth noting that in the realm of this effective theory, the parameter q accounts for the correlations of the
dynamics of x and N .
By setting q = b > 0 in (S2), we can obtain the (marginal) PDF p∗ν,b(N) conditioned to the fixation of species
S (but unconditioned of whether ξ = ±1) in the public good scenario. Similarly, by setting q = 0 in (S2), we
obtain p∗ν,0(N) = p∗ν(N) which coincides with (5) and is the marginal PDF conditioned to the fixation of F (but
unconditioned of ξ = ±1) in the public good scenario and the marginal PDF in the pure resource scenario. In the latter
case, p∗ν(N) is used to obtain the expression (6) for the fixation probability φ.

2.2 Properties of formula (6) and (7)

It is worth noting that formula (6) and (7) explicitly reflect the coupling between internal and external noise.

As discussed above, Eq. (6) provides an excellent approximation of the fixation probability of S for all the values
of ν > 0, when K− ≫ 1. Moreover, it captures the fact that external and internal noise can jointly significantly
enhance the fixation probability of the slow type with the respect to its counterpart in a population of constant size
〈K〉 = (K++K−)/2 ≫ 1 subject to non-random environment, where this probability is exponentially small (φ|〈K〉 ≈
e−〈K〉s/2 when x0 = 1/2 and 〈K〉s ≫ 1). This is also true in the limit ν → 0 where the population is as likely to
be subject to a carrying capacity smaller or larger than 〈K〉, which generally greatly increases the fixation probability
of S with respect to the case where N = 〈K〉 even if there may be no switches prior to fixation. For instance, in
Fig. 2(a) we find that φ ≈ 0.20 − 0.30 when s = 0.02 while φ|〈K〉=250 ≈ 0.08, and for s = 0.07 we have obtained
φ ≈ 0.05− 0.07 while φ|〈K〉=250 ≈ 0.002.

Fig. 4(a) shows that expression (7) of φq is very close to φ when ν/s ≫ 1 (high switching rate) and K− ≫ 1, but
slightly deviates from it when ν/s ≪ 1. This stems from the fact that the effective theory underpinning (7) builds on
the value of q inferred at high switching rate.

Remarkably, both (6) and (7) are able to capture the nontrivial dependence of φ on the switching rate ν, see Figs. 2(a),
S1 and 4(a): φ increases with ν when φ(∞) > φ(0) and decreases when φ(∞) < φ(0). The former situation arises
under sufficiently low selection pressure, whereas the latter scenario occurs above a certain selection intensity. The
intuitive explanation for this is that ν ≈ 0 corresponds to a high-volatility-high-reward setting, in which S is equally
likely to end up in an environment with relatively high demographic noise (K = K−), where its fixation probability is
high, or in one (K = K+) with low noise and lower fixation probability. When ν ≫ 1, on the other hand, the species
S is in a low-volatility-low-reward setting: it faces an almost constant population size (N ≈ K). When the selection
intensity s is increased, it becomes increasingly less favorable for S to be in the low-volatility-low-reward setting,
and thus φ(∞) < φ(0) and thus φ decreases with ν. In the case of Fig. 2(a), we can explicitly determine the critical
selection pressure sc below which φ(∞) > φ(0). When K+ ≫ K− ≫ 1, we have K = 2K−(1 +O(K−/K+)) and
therefore φ(∞) ≃ (e−K−s − e−2K−s)/(1 − e−2K−s) while φ(0) ≃ (e−K−s/2 − e−K−s)/[2(1 − e−K−s)]. Hence,
the condition φ(∞) > φ(0) for φ to increase with ν leads to 2y2/(1 + y2) > y/(1 + y), where y = e−K−s/2.
Therefore, φ is an increasing function of ν/s when y2 + 2y − 1 > 0, i.e. if y = e−K−s/2 >

√
2 − 1, while φ

decreases with ν if e−K−s/2 <
√
2 − 1. The critical selection pressure is thus defined by e−K−sc/2 =

√
2 − 1. For

(K+,K−, s) = (450, 50, 0.02), we find sc ≈ 0.035. Hence, s = 0.02 < sc and s = 0.07 > sc. Therefore, φ
increases with ν when s = 0.02, and it decreases with ν when s = 0.07, as reported in Figs. 2(a) and S1.

Finally, we note that while (7) is useful to obtain an approximation of φ and its dependence on ν and s, it is unable
to capture its dependence on the public good parameter b > 0. However, we know that the typical population size
increases with b when x ≈ 1 and S is close to fixation, and therefore the intensity of the demographic fluctuations is
reduced by increasing b. Based on the properties of the Moran process, we thus expect φ to decay exponentially with
b [11], which is confirmed by Fig. S2.
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Figure S2: (Color online). φ as function of b for ν = (0.002, 0.02, 0.2, 2) (top to bottom) and (s,K+,K−) =
(0.025, 450, 50) in log scale. Straight lines show 0.3e−0.35b and 0.175e−0.75b as eyeguides.

3 Mean fixation time

We have also investigated the mean fixation time T (x0), which is the unconditional mean time until the fixation of
either species S or F starting from a initial fraction x0 of individuals of type S in the population.
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Figure S3: (Color online). (a) T (x0) = T vs. ν in the pure competition case b = 0 with s = 0.02 (◦, blue/black) and
s = 0.07 (⋄, orange/gray). Symbols are simulation results for T , solid lines are from (S3), dashed and dotted lines
show T |K and (T |K− + T |K+)/2, respectively. (b) T vs. ν in the public good scenario with b = 0.2 (⋄, blue/gray for
s = 0.01; ◦, red/black for s = 0.05) and b = 2, s = 0.05 (▽, green/dark gray). (K+,K−, x0) = (450, 50, 1/2) in
both panels.

3.1 Mean fixation time when b = 0

In the case b = 0, N evolves independently of which species has fixated the population, see Videos 1-3 [1]. This allows
us to proceed just as we did with (6) for the fixation probability, and estimate the mean fixation time by Tν/s. This
quantity is obtained by averaging the unconditional mean fixation time T (x0)|N [7, 8] obtained in a Moran process
for a population of constant size N over p∗ν/s(N) given by (5) with a rescaled switching rate ν → ν/s. This yields

Tν/s =

∫ K+

K−

T (x0)|N p∗ν/s(N) dN , (S3)
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where T (x0)|N ∼ O(1/s) when e1/s ≫ K−. As Figure S3(a) shows, this expression agrees well with the leading
contribution T (x0) ≃ Tν/s ∼ O(1/s) when x0 is well separated from the absorbing boundaries. The scaling of the
mean fixation time in the presence of EN is therefore the same as T (x0)|N = T |N [7, 8]. The main effect of the EN
is to affect the subleading prefactor of T [11]: as shown in Fig. S3 (a) and captured by (S3), the mean fixation time
decreases when ν increases. This stems from the fact that 〈N〉∗ decreases with ν, see Fig. 2(b). In the case of pure
resource competition, our theory is therefore able to correctly predict that the mean fixation time always scales as 1/s
but is shortened when the switching rate is increased.

3.2 Mean fixation time when b > 0

In the public good scenario (b > 0), the mean fixation time still scales as T (x0) ∼ O(1/s) and decreases with the
environmental switching rate ν, as shown in S3(b). This is because the average population size also decreases with ν
(see Fig. 3). In this case, however the fixation of the S type happens in larger populations (and, hence, after longer
times) than the fixation of F , see Videos 6-7 [1]. As a result, to accurately compute T (x0), it is necessary to determine
the two conditional mean fixation times (which are equal only when b = 0) [11]. Clearly, this cannot be achieved by
assuming a timescale separation between N and x, and is beyond the reach of our effective theory.

4 Population size quasi-stationary distribution: additional discussion and results

In this section, we provide additional discussion and results about the population size distribution after the occurrence
of fixation. An important common feature of the b = 0 and b > 0 scenarios is that long-time population size
distribution is well described by p∗ν (5) when b = 0, and by combining the conditional PDFs p∗ν and p∗ν,b (S2) with φ
when b > 0, as explained in the main text.

4.1 Noise-induced transitions

The quasi-stationary population size distributions are thus characterized by different regimes in which they are uni-
modal, bimodal, or even multimodal, see Figs. 3, 4 and S4. The transitions between these various regimes are called
“noise-induced transitions” because they are solely caused by the environmental noise [4, 9]. In fact, if the carrying
capacity in (S1) was oscillating periodically (deterministically), the corresponding PDF would always be bimodal: the
transition to the unimodal regime is only possible for randomly fluctuating K [9].

4.2 Simulation and prediction of the population size steady state distribution

To assess the theoretical predictions for the long-time population size distribution inferred from (5) and (S2), we have
generated 105 replicas that we let run until 99% of them reached fixation. The outcome has then been binned to
generate the histograms shown as solid lines in Figs. 3, 4(c,d) and in Fig.S4.
In the pure competition case (b = 0), see Fig. 3, these simulation results are compared with p∗ν(N) (5) multiplied by
the number of replicas. (In this case, N evolves independently of x, therefore it is not necessary to wait until 99% of
fixation has occurred, see Videos 4-5 [1]. We have proceeded in this way for consistency with the case b > 0).
In the public good scenario (b > 0), see Figs. 4(c,d) and S4, we have waited until fixation had occurred in almost
all replicas (99% of them) to collect the data to build the histograms that correctly reflect the quasi-stationary state
distributions of the population size (now depending on x), see Videos 8-10 [1]. Via our effective theory, we have
computed the fixation probability of the strain S and F . Multiplying these values by 105 (number of samples), we
have obtained the expected number of replicas to fixate to S and to F . By multiplying these numbers by p∗ν (5) and p∗ν,b
(S2) we obtain the histograms associated with the conditional probability distributions (unconditioned of ξ = ±1).
These are shown by dotted lines in Fig. S4 and their sum gives the histogram of the marginal distribution (orange
dashed lines in Fig S4), which can be directly compared with the histogram from the simulations.

4.3 Long-time population size distribution in the public good scenario (b > 0)

To understand the properties of the quasi-stationary marginal population size distribution when b > 0, it is useful to
notice that when S fixates (x = 1), the relevant conditional PDF (unconditioned of ξ = ±1) is p∗ν,b which is unimodal
and peaked at N = (1+b)K when ν > 1+b, while it is bimodal with peaks at N = (1+b)K± if ν < 1+b. Similarly,
p∗ν is the PDF conditioned to fixation of F (but unconditioned of ξ = ±1): it is unimodal and peaked at N ≈ K if
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Figure S4: (Color online). Long-time population size distributions for ν = 20 (a), ν = 1.2 (b), ν = 0.2 (c), and
ν = 0.02 (d) with (K+,K−, x0, s, b) = (450, 50, 0.5, 0.02, 2) similar to Fig. 4(c,d) but now showing also the results
obtained from the S-conditional (dotted, yellow/light gray) and F -conditional (dotted, blue/dark gray) PDFs. The
histogram of the marginal PDF (dashed) is the sum of the S/F -conditional histograms weighted by φq (7), see text.

ν > 1, whereas it is bimodal with peaks at N ≈ K± when ν < 1. The sum of the conditional PDFs weighted by
φq yields the marginal PDF (unconditioned of ξ = ±1 and of whether S or F fixates) that, depending on ν and b, is
either bimodal or multimodal. Therefore, as shown in Figs. 4(c,d) and S4 as well as in Videos 8-10 [1], the marginal
quasi-stationary population size distribution is characterized by

- two peaks at about N = K and N = (1 + b)K when ν > 1 + p, see Video 8.

- three peaks located about N = K and N = (1 + b)K± when 1 < ν < 1 + p, see Video 9.

- four peaks located around N = (1 + b)K± and N = K± when ν < 1, see Video 10.

The peaks at N = (1 + b)K± and N = (1 + b)K stem from the fixation of S and thus are less marked than those at
N ≈ K± and N ≈ K which result from the more likely fixation of F .

4.4 Figure 4(c, d) revisited

In Fig. 4(c,d), we report the histograms of the stationary marginal population distribution at ν = 20 and ν = 0.02 with
b = 2. For the sake of completeness, in Fig. S4 we also consider the intermediate switching rates ν = 1.2 and ν = 0.2,
and show the conditional PDFs p∗ν and p∗ν,b. The marginal PDF is obtained as the sum of p∗ν and p∗ν,b weighted by φq

and 1− φq given by (7).

4.5 Deviations from the PDF predictions

We have seen that coupled internal and environmental noise greatly influences the population fixation probability (aptly
described by Eqs.(6) and (7)), and therefore significantly influences the population internal composition (evolutionary
dynamics), and in turn also its ecological dynamics when b > 0 (internal and ecological dynamics being then explicitly
coupled). We have also seen that once fixation has occurred, the population size quasi-stationary distribution is well
described by the stationary (conditional) PDFs (5) and (S2) of underlying PDMP that are able to predict when the
long-time population size distributions are unimodal, bimodal or multimodal and the location of the peaks, as shown
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by Figs. 3, 4 and S4.
However, Eqs. (5) and (S2) ignore the effects of demographic fluctuations on the population size distribution. In
fact, demographic fluctuations are responsible for the population size quasi-stationary distributions obtained from the
simulations not to be strictly confined within the support of the PDFs (5) and (S2), especially at low ν, as can be
seen in Figs. 3, 4 and S4. As clearly visible in the supporting Videos [1], these deviations appear because, due to
demographic noise, the population fluctuates around the fixed points N = K± and N = (1 + b)K±, see Video 10.
The small deviations from the PDMP predictions have limited influence on quantity such as the average population
size 〈N〉∗, see main text, and their intensity depends on the values of K± (high values of K± typically yield broader
peaks) [11].

5 Supporting videos

The dynamics of the models and our findings are illustrated by a series of videos available electronically [1].

5.1 Videos 1-5: b = 0

Videos 1-5 illustrate the population dynamics in the pure resource competition scenario for the parameters (s,K+,K−, x0) =
(0.02, 450, 50, 0.5) and different switching rates.

• Video 1 shows the sample paths N(t) (left) and x(t) (right) of five replicas for ν = 20. We clearly notice a
timescale separation: the population size quickly starts to endlessly fluctuate about N ≈ K = 90 while x(t)
evolves much more slowly, with fixation occurring in time t ∼ O(1/s).

• Video 2 shows similar paths for ν = 0.01 (and a sped-up animation). We again see the timescale separation
between N(t) and x(t). However, in the long run N(t) endlessly jumps between N ≈ K− and N ≈ K+.
Moreover, the video shows how the behavior of the population size is unaffected by changes in x: N relaxes at
a faster timescale and maintains the same behavior also after fixation (of either species).

• Video 3: N(t) and x(t) sample paths as in Videos 1 and 2 but for very slow switching rate ν = 0.0001 ≪
s = 0.02. In all but one replicas, the population evolves subject to the carrying capacity K− or K+, randomly
allocated initially with same probability, without experiencing any switches and N(t) fluctuates about K+ or
K− In only one realization, after a long time (at t ≈ 750), the carrying capacity switches and the population
jumps from K+ to K−. The video also illustrates that S fixation is more likely when the population is subject
to K = K− than to K = K+: both the purple and pink samples ending at x = 1 correspond to a population of
size N(t) ≈ K−.

• Video 4 shows the histograms of the population size (left) and of the fraction of S individuals (right) for a slow-
switching environment (ν = 0.2). We notice that the population size distribution readily attains a right-tailed,
bimodal shape with peaks about N = K±, and is independent of the distribution of x (internal dynamics). On
the other hand, the histogram of x evolves slowly and is eventually characterized by asymmetric peaks at x = 0
and x = 1 corresponding to the fixation probability of F and S, respectively.

• Video 5: as in Video 3, but for a fast-switching environment (ν = 20). The population size histogram rapidly
becomes bell-shaped and centered about N = K. It reaches this form much before fixation typically occurs,
and is independent of the distribution of x (internal dynamics). The histogram of x has the same properties as
in Video 3.

5.2 Videos 6-10: b > 0

Movies 6-8 illustrate the internal and ecological dynamics in the public good scenario, b > 0, for the parameters
(s,K+,K−, b, x0) = (0.02, 450, 50, 2, 0.5) and different switching rates. In this scenario, the fast N dynamics is
enslaved to the slower evolution of x. The population size distribution is characterized by peaks that slowly emerge as
occurrences of S and F fixation accumulate (right panels).

• Video 6 shows sample paths of N and x for five realizations with ν = 20, as in Video 1. The population size
and composition are correlated: the population size attains large values when x dwells about 1, while N is
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much smaller when x ≪ 1 (for example, the green replica is almost always larger than the purple one). As
the species fixate, the sample paths for N separate into two distinct sets: those associated with the fixation of
S (x = 1) fluctuate about N ≈ K = 90, while the paths associated to x = 0 (fixation of F ) fluctuate around
N ≈ (1 + b)K = 270.

• Video 7 shows similar sample paths for ν = 2. In addition to showing the correlation between N and x,
the video illustrates how populations with a high fraction of S (x ≈ 1) experience random switching with an
effectively reduced switching rate. For example, in the purple sample paths, which readily attains x ≈ 1, N
evolves by large abrupt jumps, in agreement with the properties of the S-conditional PDF p∗ν,2, see (S2).

• Video 8 shows the histograms of N and x for fast switching (ν = 20). The histogram of the population size
(left) has first a right-tailed bell shape. As fixation occurrences build up, the distribution gradually splits into
asymmetric peaks about K = 90 and (1+b)K = 270. The histogram of x is characterized by slowly-developing
asymmetric peaks at x = 0 and x = 1.

• Video 9 shows the histograms of N and x for intermediate switching (ν = 1.2). Similarly to Video 7, the
histogram of N changes from having first a right-tailed bell shape to its eventual quasi-stationary form. In
this case, the quasi-stationary state is characterized by three asymmetric peaks, located at about K = 90 and
(1 + b)K− = 150, and about (1 + b)K+ = 1350, that slowly develop as fixation occurrences pile up (right
panel).

• Video 10 shows the histograms of N and x for slow switching ν = 0.2. Initially, the histogram of N develops
as in Videos 7 and 8, but now the quasi-stationary state is characterized by four slowly-developing asymmetric
peaks, located at about K− = 50, (1 + b)K− = 150, and about K+ = 450 and (1 + b)K+ = 1350.
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Environmental variability greatly influences the eco-evolutionary dynamics of a population, i.e. it affects how
its size and composition evolve. Here, we study a well-mixed population of finite and fluctuating size whose
growth is limited by a randomly switching carrying capacity. This models the environmental fluctuations be-
tween states of resources abundance and scarcity. The population consists of two strains, one slightly faster than
the other, competing under two scenarios: one in which competition is solely for resources, and one in which the
slow (“cooperating”) strain produces a public good. We investigate how the coupling of demographic and envi-
ronmental (external) noise affects the population’s eco-evolutionary dynamics. By analytical and computational
means, we study the correlations between the population size and its composition, and discuss the cooperation
dilemma arising in the “eco-evolutionary game” of public good production in a fluctuating environment. We
determine in which conditions it is best to cooperate and produce a public good; when cooperating is beneficial
but outcompeted by the non-producing strain, and when the public good production is detrimental for coopera-
tors. By generalizing the linear noise approximation to populations of varying size, we also analyze the coupled
effects of demographic and environmental noise on the size distribution.

Keywords: population dynamics, evolution, ecology, fluctuations, cooperation dilemma, public goods

I. INTRODUCTION

The fate of populations is affected by a number of endlessly
changing environmental conditions such as the presence of
toxins, resources abundance, temperature, light, etc. [1, 2].
In the absence of detailed knowledge of how external factors
vary, they are modeled as external noise (EN) shaping the ran-
domly changing environment in which species evolve. The
impact of fluctuating environments on population dynamics
has been studied in a number of systems [3–14], and several
evolutionary responses to exogenous changes have been stud-
ied [15–20]. In finite populations, internal noise is another
important form of randomness, yielding demographic fluctu-
ations of stronger intensity in small populations than in large
ones. Internal noise (IN) is responsible for fixation [21, 22]
(when one species takes over and others are wiped out) and
thus plays an important role in the evolution of a population’s
composition. Ecological and evolutionary dynamics are often
coupled, through an interdependent evolution of the popula-
tion size and composition [23–25, 27–29]. As a consequence,
environmental variability may affect the population size and
hence the demographic fluctuations intensity, thus coupling
EN and IN. The interdependence of environmental noise and
demographic fluctuations is particularly relevant for microbial
communities, whose properties greatly depend on the popula-
tion size and the environment [1, 2]. These populations of-
ten experience sudden, extreme environmental changes, lead-
ing to population bottlenecks, which shrink colony size and
make it more prone to fluctuations [30–33]. The coupling
between the different forms of randomness therefore gener-
ates feedback loops between socio-biological interactions and
the environment [30, 31, 34], which results in fascinating eco-

∗Electronic address: m.mobilia@leeds.ac.uk

evolutionary phenomena such as cooperative behavior. For in-
stance, experiments on Pseudomonas fluorescens showed that
the formation and sudden collapse of biofilms promotes the
evolution of cooperation [32, 33, 35]. In most studies, how-
ever, EN and IN are treated as uncoupled [4–14].

Recently, we studied a fluctuating population—consisting
of a fast strain competing with a slow (cooperating) species,
that can produce a public good—evolving under a randomly
switching carrying capacity [36]. In this model, demographic
fluctuations are coupled to EN, resulting in a significant influ-
ence on the species fixation probability and leads to noise-
induced transitions of the population size. Here, we study
in detail the eco-evolutionary dynamics of the model of Ref.
[36], and introduce new theoretical concepts to characterize
the emergence of cooperation in populations of varying size
in a fluctuating environment. We indeed show that the popula-
tion size and its composition are correlated. A social dilemma
of sorts arises: the public good production increases the over-
all expected population size, and lowers the survival probabil-
ity of cooperators. We measure the evolutionary success of a
species in terms of its expected long-term number of individu-
als, and determine the circumstances under which public good
production is detrimental or beneficial to cooperators, and find
the conditions in which it is best to cooperate. We also gener-
alize the linear noise approximation to populations of fluctu-
ating size and analyze the joint effect of coupled demographic
and environmental noise on the population size distribution.

The next two sections establish our approach: In Section
II, we introduce our stochastic model; in Section III, we out-
line the properties of the fitness-dependent Moran model and
piecewise deterministic Markov processes associated with the
model, and review how to combine these to compute the
species fixation probability. In the following two sections,
we present our main results: Section IV is dedicated to the
correlations between the population size and its composition,
and to the discussion of the emergence of cooperative behav-
ior along with an “eco-evolutionary game” in a population of
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FIG. 1: (a) Cartoon of the eco-evolutionary dynamics of the model: the population consists of strains S (◦) and F (•), subject to K(t) ∈
{K−,K+} that randomly switches, see (4). After each switch, N and x change: following a K− to K+ switch, N increases and the intensity
of the IN decreases; the opposite occurs following a K+ to K− switch. (b) Typical random switching of K(t) according to (4). (c) Sample
path of N(t) (gray, dashed line )and x(t) (blue, solid line), corresponding to the switching portrayed in (b). We notice that x evolves much
slower than N , see text. Parameters are (s, ν,K+,K−, b) = (0.02, 0.1, 450, 50, 0).

fluctuation size; in Section V, we study the population size
distribution within a linear noise approximation. Our con-
clusions are presented in Sec. VI. Additional information is
provided in the Supplementary Material (SM) below and in
[37].

II. MODEL

Following our recent work [36], we consider a well-mixed
population of fluctuating size N(t) = NS(t) + NF (t), con-
sisting of NS individuals of species S and NF of species, or
strain, F [38]. The fast-growing strain F has fitness fF = 1,
whereas the slow-growing strain S has a slightly lower fitness
fS = 1− s, with 0 < s≪ 1. Therefore, at time t the fraction
of S individuals in the population is x(t) = NS(t)/N(t) and
the average population fitness is f̄ = xfS + (1 − x)fF =
1− sx = 1+O(1). Here, the evolution of the population size
N(t) is coupled to the internal composition x(t) by a global
growth rate g(x), and its growth is limited by a logistic death
rate N/K(t) [23–25, 36]. The carrying capacity K(t) is a
measure of the population size that can be supported, and is
assumed to vary in time. We specifically focus on two im-
portant forms of global growth rates: (i) the pure resource
competition scenario g(x) = 1, in which x andN are coupled
only through fluctuations; and (ii) the public good scenario
in which g(x) = 1 + bx, corresponding to a situation where
S individuals are “cooperators” [23–26] producing a public
good (PG) that enhances the population growth rate through
the benefit parameter 0 < b = O(1). In this case, N and
x are coupled, leading to explicit “eco-evolutionary dynam-
ics” [27].

The population size and composition therefore change ac-
cording to the continuous-time birth-death process [23, 36,
37]

NS/F
T+
S/F−−−→ NS/F + 1 and NS/F

T−
S/F−−−→ NS/F − 1, (1)

with transition rates

T+
S/F = g(x)

fS/F

f̄
NS/F and T−

S/F =
N

K(t)
NS/F . (2)

We model environmental randomness by letting the car-
rying capacity K(t) randomly switch between K+ (abun-
dant resources) and K− < K+ (scarce resources), see figure
1(a,b). We assume that K switches at rate ν, according to a
time-continuous dichotomous Markov noise (DMN) [39–41]
ξ(t) ∈ {−1,+1} (or random telegraph noise):

ξ
ν−→ −ξ , (3)

with zero-mean 〈ξ(t)〉 = 0 and autocorrelation 〈ξ(t)ξ(t′)〉 =
exp(−2ν|t − t′|) (〈·〉 denotes the ensemble average over the
environmental noise). This is a colored noise with a finite
correlation time 1/(2ν) [39–44], see Sec. 1 in SM [37]. As a
result, the fluctuating carrying capacity reads

K(t) =
1

2
[(K+ +K−) + ξ(t)(K+ −K−)] , (4)

and endlessly switches between K+ and K− with constant
average 〈K〉 = (K+ +K−)/2.

The population evolves according to the multivariate
stochastic process defined by equation (1)-(4), which obeys
the master equation

dP ( ~N, ξ, t)

dt
= (E−

S − 1)[T+
S P (

~N, ξ, t)]

+ (E−
F − 1)[T+

F P (
~N, ξ, t)]

+ (E+
S − 1)[T−

S P (
~N, ξ, t)]]

+ (E+
F − 1)[T−

F P (
~N, ξ, t)]

+ ν[P ( ~N,−ξ, t)− P ( ~N, ξ, t)], (5)

where ~N = (NS , NF ), E±
S/F are shift operators such

that E±
SG(NS , NF , ξ, t) = G(NS ± 1, NF , ξ, t) for any

G(NS , NF , ξ, t), and similarly for E±
F .
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Equation (5) fully describes the stochastic eco-evolutionary
dynamics of the population, and can be simulated exactly (see
Sec. 2 in SM [37]). Simulation results, see figure 1(c) and
Ref. [45], reveal that generallyN(t) evolves much faster than
the population composition. We consider K+ > K− ≫ 1
to ensure that, after a transient, N(t) is at quasi-stationarity
where it is characterized by its quasi-stationary distribution
(N -QSD). The latter eventually collapses after a time that di-
verges with the system size [46, 47], a phenomenon that can
be disregarded for our purposes. Below we study the eco-
evolutionary dynamics in terms of the random variables N
and x, focusing on the fixation properties of the population
and its quasi-stationary distribution.

It is useful to start our analysis by considering the mean-
field approximation which ignores all noise (say K = 〈K〉).
In this case, the population size N and composition x evolve
deterministically according to [23, 24, 36, 48]

Ṅ =
∑

α=S,F

T+
α − T−

α = N

(
g(x)− N

K

)
, (6)

ẋ =
∑

α=S,F

T+
α − T−

α

N
− x

Ṅ

N
= −sg(x)x(1 − x)

1− sx
, (7)

where the dot signifies the time derivative. Equation (7) pre-
dicts that x relaxes on a timescale t ∼ 1/s≫ 1 and eventually
vanishes while, according to equation (6),N(t) equilibrates to
N(t) = O(K) in a time t = O(1).

III. PIECEWISE-DETERMINISTIC MARKOV PROCESS,
MORAN MODEL & FIXATION PROBABILITIES

In this section, we review the effects of environmental and
demographic noise separately, and compound them to find the
fixation probabilities that characterize the population compo-
sition.

A. Environmental noise & Piecewise-deterministic Markov
process

If the population is only subject to external noise (EN), it
follows the bivariate piecewise-deterministic Markov process
(PDMP), see, e.g, Refs. [12, 13, 49], defined by (7) and

Ṅ = N

{
g(x)− N

K + ξN

(
1

K − 1

K+

)}
, (8)

where K = 2K+K−/(K+ + K−) is the harmonic mean of
K+ and K− [36]. Equation (8) is a stochastic differential
equation with multiplicative DMN ξ of amplitude N2(K+ −
K−)/(2K+K−) [37]; it reduces to the deterministic limit (6)
when the EN is removed (i.e. K+ = K−).

Although the process is only subject to EN, the global
growth rate g(x) couples the evolutionary and ecological dy-
namics. To simplify the analysis, we introduce an effective

parameter q ≥ 0 (see Section III C 2) and assume a constant
g ≡ 1 + q [36], obtaining the single-variate effective PDMP

Ṅ = F(N, ξ) =

{
F+(N) if ξ = 1

F−(N) if ξ = −1,
(9)

with F±(N) ≡ N

[
1 + q − N

K±

]
, (10)

describing the evolution of a population of size N(t) subject
only to EN. According to (9) and (10), each environmental
state ξ has a fixed point

N∗(ξ) =

{
N∗

+ = (1 + q)K+ if ξ = 1

N∗
− = (1 + q)K− if ξ = −1,

(11)

After t = O(1), the PDMP is at stationarity, characterized by
a stationary probability function (PDF) p∗ν,q(N, ξ) (derived in
the SM [37]). Central for our purposes are the features of the
marginal stationary PDF p∗ν,q(N) = p∗ν,q(N, ξ)+p

∗
ν,q(N,−ξ),

giving the probability density of N regardless of the environ-
mental state ξ:

p∗ν,q(N) =
Zν
N2

[
(N∗

+ −N)(N −N∗
−)

N2

] ν
1+q−1

, (12)

with normalization constant Zν . Depending on the sign of
the exponent, the distribution may be unimodal or bimodal
[36], but has always support [N∗

−, N
∗
+], on which F+ ≥ 0 and

F− ≤ 0.

B. Internal noise & Fitness-dependent Moran process

Internal noise stems from the inherent stochasticity of indi-
vidual birth and death events in the population; it ultimately
causes fixation (one strain takes over the whole population),
and hence determines the long-term population composition.
When internal and ecological dynamics are coupled, which
strain fixates has consequences on the population size, mak-
ing fixations particularly important.

If internal noise is the only source of randomness (constant
K), we can study its effects using the fitness-dependent Moran
model [21, 22, 26, 50, 51], with constant sizeN ≡ K [52]. To
keep the population size constant, at each birth corresponds a
death. Therefore, x increases by 1/N if an S individual is
born and an F dies (SF → SS at rate T̃+

S = T+
S T

−
F /N ), and

decreases by 1/N if an F individual is born, replacing a dead
S (SF → FF at rate T̃−

S = T−
S T

+
F /N ), with

T̃+
S =

1− s

1− sx
g(x)(1 − x)xN, T̃−

S =
1

1− sx
g(x)(1 − x)xN ,

whose mean-field equation is (7). For an initial fraction x0 of
S individuals, in the framework of the Fokker-Planck equa-
tion, the fixation probability of S is [21, 22, 26] (see also Sec-
tion XI.A in SM [37])

φ(x0)|N =
e−Ns(1−x0) − e−Ns

1− e−Ns
. (13)
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The fixation probability of S, thus becomes exponentially
smaller the larger the population (of constant) size and the
selection s; and, notably is independent of g. In the following
we assume x0 = 1/2 and drop the initial condition for nota-
tional simplicity: φ|N ≡ φ(x0)|N and φ ≡ φ(x0). Clearly,
the fixation probability of F is φ̃|N = 1− φ|N .

C. Fixation under switching carrying capacity

The strain S unavoidably goes extinct in the deterministic
limit, see equation (7), but has an exponentially vanishing sur-
vival probability whenK is constant, see equation (13). How-
ever, when the carrying capacity switches, the population un-
dergoes “bottlenecks” that can enhance this probability [36]
and alter the long-term average population size.

1. Fixation probabilities in the pure competition scenario (b = 0)

When b = 0, both species compete for the same finite re-
sources, with a slight selective advantage to F . Therefore, N
and x are solely coupled by demographic fluctuations. After a
time t = O(1), N attains its quasi-stationarity where it is dis-
tributed according to its N -QSD [45], that is well described
by the PDF of equation (12) with q = 0. Instead, x relaxes
on a slower timescale t ∼ 1/s ≫ 1, meanwhile experiencing
an average of O(ν/s) environmental switches. We can thus
exploit this timescale separation and compute φ by averaging
φ|N over the PDF p∗ν/s ≡ p∗ν/s,0, with the rescaled switching
rate ν → ν/s [36]:

φ ≃
∫ K+

K−

φ|N p∗ν/s(N) dN. (14)

When ν ≫ s, p∗ν/s is sharply peaked at N ≃ K, and has two
sharp peaks at N ≃ K± when ν ≪ s. Equation (14) captures
the limiting behavior φ ν→∞−−−−→ φ|K resulting from the self-
average of the EN (since ξ(t) ν→∞−−−−→ 〈ξ(t)〉 = 0), as well as
φ

ν→0−−−→ (φ|K− + φ|K+)/2 in the regime of rare switching
(ν → 0) when the environment almost never changes prior
to fixation [36]. As shown in figure 2 and detailed in Section
X of the SM [37], equation (14) reproduces the simulation
result for the fixation probability of S within a few percent
over a broad range of ν values. While S remains less likely to
fixate than F , its fixation probability is much higher than in a
constant environment (φ≫ φ|〈K〉): environmental variability
considerably offsets the evolutionary bias favoring F .

2. Fixation in the public good scenario, b > 0

In the public good scenario, g(x) = 1 + bx with 0 < b =
O(1), S individuals act as public good producers (coopera-
tors). The higher x, in fact, the higher the reproduction rate of
both strains, see equations (2). However, since S bears alone
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FIG. 2: (a) φ vs. ν in the case b = 0: for s = 0.02 (�, cyan)
and s = 0.05 (◦, red). (b) q(b) vs. b for s = 0.02 (cyan) and
s = 0.05 (yellow), see text. (c) φ vs. ν in the case b > 0: for
(s, b) = (0.02, 0.2) (blue, ◦), (0.02, 2) (green, �), (0.05, 0.2) (or-
ange, ⋄), (0.05, 2) (red, ∇). Symbols are φ from simulations (104

runs) and solid lines show φq from equation (15). In all panels, other
parameters are (K+,K−, x0) = (450, 50, 0.5).

the metabolic cost for cooperating, it grows slower than F
and, deterministically, x decreases.

When b > 0, N and x are explicitly coupled, and they
do not evolve on separate timescales: N is a fast variable,
enslaved to the slow-varying x [45]. To determine the fixation
probability, in Ref. [36] we devised an effective approach,
based on suitably choosing the parameter q (0 ≤ q ≤ b) and
setting g(x) ≡ 1 + q in equation (8). This decouples N and
x in an effective population whose size distribution, at quasi-
stationarity and for any ν, is well described by the PDF (12).
Within this effective theory approach, the fixation probability
of S is thus determined similarly to the case b = 0:

φq =

∫ N∗
+

N∗
−

φ|N p∗ν/s,q(N) dN . (15)

As above, this expression simplifies in the limiting regimes
ν → ∞, 0. When ν ≫ 1, φq

ν→∞−−−−→ φ
(∞)
q = φ|(1+q)K
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and φq
ν→0−−−→ φ

(0)
q = (φ|N∗

− + φ|N∗
+
)/2. We determined the

effective parameter q = q(b) for given (K±, s, b) by matching
the prediction of φ(∞)

q with the results of simulations (see [36]
and SM [37]). Figure 2(b) shows that q(b) increases almost
linearly with b, and depends weakly on s. Clearly, q(0) = 0
when b = 0, and equation (15) thus reverts to (14).

Figure 2(c) shows that the effective approach captures the
effects of the coupling between N and x for several choices
of b and s, over a broad range of ν. As detailed in the SM
[37], the predictions of equation (15) agree within a few per-
cent with simulation results when s ≪ 1, while the accuracy
deteriorates as s and b increase, therefore lowering φ. In fact,
increasing b yields higher q(b), which results in effectively in-
creasing the carrying capacity K± → (1 + q(b))K±. In the
ν → ∞, 0 limits, this is equivalent to rescaling the selection
intensity as s → (1 + q(b))s, as inferred from φ

(∞,0)
q and

equation (13). Therefore φ decays (approximately) exponen-
tially with b, as shown by figure 3(a).

IV. CORRELATIONS & COOPERATION IN THE
ECO-EVOLUTIONARY GAME

When the slow strain S produces a public good (PG), the
long-time eco-evolutionary dynamics is characterized by cor-
relations between the population size and its composition. In
this section, we analyze these long-term effects by character-
izing the correlations first, then considering the ensuing “eco-
evolutionary game”.

To this end, it is useful to consider the average population
size 〈N〉∗ν,b for given ν and b, after a time t ≫ 1/s, when
the population is at quasi-stationarity and consists of only S
or F individuals, see Section XI.B in SM [37]. Within the
PDMP approximation—that is, approximating the evolution
ofN by the PDMP (9), see Section XII.A of SM [37]—we can
compute the quasi-stationary average ofN using p∗ν,q given by
eq. (12) to (see also Sec. V A):

〈N〉∗ν,b = (1 + b)φb〈N〉∗ ν
1+b ,0

+ φ̃b〈N〉∗ν,0 > 〈N〉∗ν,0, (16)

where 〈N〉∗ν,0 is the population long-time average in the ab-
sence of PG production, φb denotes the fixation probability of
S for a public good parameter b, and φ̃b = 1 − φb. As figure
3(b) shows, equation (16) predicts that the long-term popula-
tion size increases with b, and decreases with ν (keeping other
parameters constant), in agreement with simulation results.

A. Correlations between ecological & evolutionary dynamics

Equation (16) also highlights how fixation probabilities af-
fect the long-term average population size. When b > 0, there
are nontrivial correlations between population size and com-
position. Prior to fixation, these are accounted by our effective
approach q(b) (see section III C 2). Here, we investigate their
effect after fixation using the rescaled connected correlation
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FIG. 3: (a) φq vs b in lin-log scale for s = 0.02, ν = 0.1 (orange,
◦) and ν = 10 (cyan, ∇); s = 0.05, ν = 10 (yellow, �). Lines
are from (15) and markers are from simulations. (b) 〈N〉∗ν,b vs. ν
for b = 0 (cyan, squares), b = 0.2 (blue, circles) and b = 2 (green,
triangles) and s = 0.02. Solid lines are from (16); empty symbols
are from simulations; filled symbols are from (27) within the linear
noise approximation. Dashed lines indicate the predictions of (15) in
the regimes ν → ∞, 0, see [37]. Parameters are (K+,K−, x0) =
(450, 50, 0.5).

function

Cν,b(t) =
〈(N(t)− 〈N(t)〉) (x(t)− 〈x(t)〉)〉

〈N(t)〉〈x(t)〉 . (17)

When 〈N(t)x(t)〉 = 〈N(t)〉〈x(t)〉, i.e. in absence of correla-
tions, Cν,b(t) vanishes. At quasi-stationary, 〈N(t)〉 → 〈N〉∗ν,b
and 〈x(t)〉 → φb. Within the PDMP approximation, using
eq. (16) and φb ≃ φq , equation (17) becomes

C∗
ν,b =

〈Nx〉∗ν,b
〈N〉∗ν,bφb

− 1 ≃
φ̃q

[
(1 + b)〈N〉∗ν

1+b ,0
− 〈N〉∗ν,0

]

(1 + b)φq〈N〉∗ν
1+b ,0

+ φ̃q〈N〉∗ν,0
. (18)

Since 〈N〉∗ν,0 is decreasing in ν (see figure 3(a)), this long-
term correlation is always positive for b ≥ 0, and vanishes
only for b = 0.

As shown in figure 4, C∗
ν,b grows approximately linearly

with b and is non-monotonic in ν with a maximum for ν =
O(1); all features that equation (18) captures well. The ν-
dependence of C∗

ν,b stems from the fact that φb increases or
decreases with ν, depending on the value of s, see figure 2(c)
[36]. In the limiting regimes ν → ∞, 0, equation (18) simpli-
fies and yields C∗

ν,b ≃ b[1 − (1 + b)φ
(∞,0)
q(b) ] [37]. Therefore,
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FIG. 4: (a) C∗
ν,b vs b for s = 0.05 and ν ≃ 1 (cyan, ⋄), ν = 0.1

(yellow, ∇); s = 0.02 and ν = 1 (red, �), and ν = 0.1 (orange,
◦). (b) C∗

ν,b vs ν for b = 2 and s = 0.05 (red, ∇), s = 0.02 (green,
△); b = 0.2 and s = 0.05 (orange, ⋄), s = 0.02 (blue, ◦). In all
panels, the parameters are (K+,K−, x0) = (450, 50, 0.5). Symbols
are results from simulations and solid lines are from equation (18);
dashed lines in panel (b) denote the analytical predictions of Cν,b in
the limits ν ≪ s and ν ≫ 1, see text.

in these the limiting regimes C∗
ν,b increases in s, and scales as

O(b), as shown by figure 4(b).
These results show that, when species S provides a PG,

there are long-term correlations between ecological and evo-
lutionary variables: the population size is shaped by its com-
position. The correlations between N and x are maximal in
the intermediate switching regime where ν = O(1) is compa-
rable to the growth rate of N , and are weaker in the limiting
switching regimes, on which we devised the effective theory
of section III C 2.

B. When is cooperation beneficial? In which conditions is it
best to cooperate?

In the long run, the PG provides a benefit to the whole popu-
lation, as the overall average size increases. On the other hand,
producing a PG burdens S in the short term by exponentially
reducing its fixation probability, as figure 3(b) shows. This
eco-evolutionary game resembles a “social dilemma” [26]:
cooperators pay a cost in terms of reduced fixation probability
to provide a benefit to the entire population whose long-term
average size increases, see equation (16). Here, we measure
the success of each strain in terms of the expected population

size after fixation. We thus use the PDMP approximations
and simulations to investigate the relative abundance of each
species at quasi-stationarity (see also SM [37]).

The average number of F individuals at quasi-stationarity,
given a switching rate ν and PG parameter b is

〈NF 〉∗ν,b = 〈N |x = 0〉∗ν,b = (1− φb)〈N〉∗ν,0,

i.e. the average population size conditioned to F fixation.
Similarly, the average number of cooperators S at quasi-
stationarity is

〈NS〉∗ν,b = 〈N |x = 1〉∗ν,b = (1 + b)φb〈N〉∗ν/(1+b),0.

We measure the expected payoff provided by the PG as the
difference between the expected number of individuals of a
strain at quasi-stationarity when b > 0 relative to the case
b = 0. Hence, the expected payoff to F is

∆Fν,b ≡ 〈NF 〉∗ν,b − 〈NF 〉∗ν,0 = (φ0 − φb)〈N〉∗ν,0 > 0. (19)

Since φ0 > φb, see figure 3(b), this quantity is positive and
increases with b. This means that, as in the classical coop-
eration dilemma, the “freeriding” strain F benefits more the
higher the level of cooperation. However, this does not rule
out the possibility that, in certain circumstances, the PG pro-
duction can be either beneficial or detrimental to S, and even
permits S to be better off than F . In fact, the expected payoff
for cooperators reads

∆Sν,b ≡ 〈NS〉∗ν,b − 〈NS〉∗ν,0
= (1 + b)φb〈N〉∗ν

1+b ,0
− φ0〈N〉∗ν,0, (20)

and clearly varies nontrivially with ν and b. Unless ∆Sν,b >
0, the PG is actually detrimental for cooperators: the expected
number of S individuals is lower than it would be without PG.
The PG benefits cooperators only if the increase in the average
population size offsets the decrease in fixation probability, i.e.
if

(1 + b)
〈N〉∗ ν

1+b ,0

〈N〉∗ν,0
>
φ0
φb

In figure 5, we show that ∆Sν,b is non-monotonic in b, gener-
ating a maximum at an optimal value b∗(ν, s), which defines
the conditions where PG production is the most rewarding for
cooperators. Moreover, we observe a definite critical thresh-
old bc(ν, s), below which producing a PG benefits coopera-
tors.

Using our effective theory, φ ≃ φq(b), and the PDMP ap-
proximation, the expected payoff of S (S21) reads

∆Sν,b = (1 + b)φq(b)

∫ K+

K−

Np∗ν
1+b

(N) dN

− φ0

∫ K+

K−

Np∗ν(N) dN . (21)

Results in figure 5 show that equation (21) approximates well
the simulation results over a broad range of parameters. The
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FIG. 5: (a) ∆Sb,ν vs. b for s = 0.02 and switching rates ν = 10
(cyan, ∇), ν = 1 (red, �), ν = 0.1 (orange, ◦). Predictions from
equation (21) (solid) are compared to simulation results (symbols).
We find ∆Sν,b > 0 when 0 < b < bc(ν, s) with an optimal payoff
for S when b = b∗(ν, s), e.g. (bc, b

∗) ≈ (4.9, 2.1) at ν = 1. (b)
∆Sb,ν vs. b with ν ≃ 0.44, for s = 0.02 (blue, ∇), s = 0.03 (red,
⋄), and s = 0.05 (green, ◦). Solid lines are from equation (21) and
symbols are simulation results (see SM [37]). (c) Expected payoffs
∆Sb,ν and ∆Fb,ν vs. b obtained from equation (21). Dashed lines
show the values of b∗, β and bc. In all panels, the parameters are
(K+,K−, x0) = (450, 50, 0.5).

root and the maximum of equation (21) provides (approxi-
mate) predictions for bc and b∗, see figures 6 and S6(a) [37].
These figures reveal that bc and b∗ depend non-monotonically
on ν and vary greatly with s, both behaviors well-captured by
the theory. Figures 5 and S6(b) [37] also show that the max-
imal payoff for S can be significantly higher than that of F ,
especially when the selection s is low.

In order to discuss the eco-evolutionary game, it is useful
to determine the value b = β(ν, s) of equal expected payoff,
i.e. such that which ∆Sν,β = ∆Fν,β , see figure 5(c). From
equations (S22)-(21), we find that when β(ν, s) is the solution
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FIG. 6: (a) bc vs ν. Symbols are results from simulations and solid
lines are from equation (21) for s = 0.02 (blue), s = 0.03 (orange),
and s = 0.05 (green). (b) Heatmap of (∆Sν,b − ∆Fν,b)/〈N〉∗ν,0,
from equation (21) for s = 0.02. The gray dotted line shows b =
bc(ν, s), the dashed line b = β(ν, s) and the solid line b = b∗(ν, s).
In the blue area (phases (i) and (ii)), b > β and F is better off than
S (∆Fν,b > ∆Sν,b). PG production is detrimental for S in phase (i)
where b > bc and ∆Sν,b < 0; beneficial for S (∆Sν,b > 0) in phase
(ii) where β < b < bc, but more beneficial for F (higher expected
payoff). In the red/pink area of region (iii), b < β and S is better
off than F (∆Sν,b > ∆Fν,b). Colored dots correspond to “gaps”
in the numerical data (see [37]). Parameters are (K+,K−, x0) =
(450, 50, 0.5).

of

1

1 + β

(
2φ0
φq(β)

− 1

)
=

〈N〉∗ ν
1+β ,0

〈N〉∗ν,0
=

∫K+

K−
Np∗ ν

1+β
dN

∫K+

K−
Np∗ν dN

. (22)

So β is a nontrivial function of ν and s, as as shown in figure
6(b).

The eco-evolutionary game is characterized by three
phases:

(i) When b > bc, the PG production is detrimental for S.
The cost of cooperation outweighs its benefits and the
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expected payoff for S is negative (∆Sν,b < 0). The PG
thus benefits only F .

(ii) When β < b < bc, the PG production benefits S, but
benefits F more (0 < ∆Sν,b < ∆Fν,b).

(iii) When 0 < b < β, S reaps a higher expected payoff than
F (∆Sν,b > ∆Fν,b > 0). In this case, the benefit of the
PG outweigh its cost, and its production is favored.

Therefore, species F effectively exploits S in phases (i) and
(ii), but is at a disadvantage in phase (iii). Since the expected
payoff to S is positive in regions (ii) and (iii), we say that co-
operation to produce a public good with benefit parameter b
is beneficial when 0 < b < bc(ν, s), and advantageous for
0 < b < β(ν, s). Given a set of parameters (b, ν, s), PG pro-
duction is the best strategy if two conditions are met: (a) the
expected payoff of S is higher than that of F , which is satis-
fied in phase (iii); (b) b yields the maximum possible payoff
for S, i.e., b = b∗. Hence, In an environment switching at rate
ν and under a selection intensity s, the best conditions to co-
operate for the public good production is when the PG benefit
parameter satisfies b = b∗(ν, s) < β(ν, s), represented by the
solid gray line in phase (iii) of figure 6(b).

This eco-evolutionary game thus provides a way out of
the cooperation dilemma arising prior to fixation. Further-
more, it exemplifies the evolutionary role of the fluctuating
environment. In fact, although freeriders have a constant
growth-rate advantage over cooperators, this selective bias can
be efficiently balanced by environmental variability, allowing
even cooperators to possibly be more successful than freerid-
ers [37]

V. LINEAR-NOISE AND PDMP APPROXIMATIONS TO
THE POPULATION QSD

After t≫ 1/s, one strain likely fixated, so the population is
at quasi-stationarity, with its composition fixed [36]. Yet, the
population size still fluctuates and N(t) is distributed accord-
ing to its quasi-stationary distribution. When K− ≫ 1, the
population size is always large and, in the first instance, demo-
graphic fluctuations are negligible compared to environmental
noise, and eq. (9) characterizes well the long-term behavior of
N(t).

A. Linear-noise approximation about the PDMP predictions

Throughout this work (and in [36]), we have shown that
the PDMP approximation p∗PDMP(N) = φp∗ν,b(N)+ φ̃p∗ν(N)
reproduces many characteristics of the quasi-stationary size
distribution (N -QSD). However, as p∗ν and p∗ν,b only account
for the external noise (EN), they cannot reproduce the com-
plete N -QSD, which is also subject to internal noise (IN).
Here, we use the linear noise approximation (LNA) about the
PDMP predictions to account for the joint effect of the two
noise sources, IN and EN, on the N -QSD.

The LNA is widely employed to quantify the effect of weak
demographic fluctuations in the absence of external noise, and
has recently been used to study the joint effect of decoupled
internal and external noise [12]. Here, we show how to gen-
eralize the LNA to the case where the population size fluctu-
ates and demographic fluctuations are coupled to the external
noise.

For our analysis, we assume that K+ & K− ≫ 1, so that
〈K〉 is large and of the same order as K± (see Section XIII
in SM [37] for details). It is convenient to work with the con-
tinuous random variable n = N/Ω, where Ω = 〈K〉 ≫ 1
is the system’s “large parameter”. The auxiliary Markovian
process {n(t), ξ(t)} that we consider for the LNA is defined

by n T +

−→ n + Ω−1, n
T −
−→ n − Ω−1 and ξ ν−→ −ξ, where

the transition rates T ± are given by equations (S26) in the
SM [37]. We also introduce ψ = limΩ→∞N/Ω = O(1),
which obeys a PDMP defined by equation (S29) [37], and the
random variable η(t), capturing the fluctuations of n about ψ,
according to

n(t) = ψ(t) +
η(t)√
Ω
, (23)

We are interested in the (quasi-)stationary joint prob-
ability density π∗

ν,q(η, ψ, ξ) of the process {n(t), ξ(t)}.
This probability can be decomposed into π∗

ν,q(η, ψ, ξ) =
π∗(η|ψ, ξ)π∗

ν,q(ψ, ξ), where π∗
ν,q(ψ, ξ) = Ωp∗ν,q(Ωψ, ξ) is

the stationary joint PDF of the PDMP governing ψ’s dy-
namics and is readily obtained from the PDF of equation
(9). The probability density π∗(η|ψ, ξ) accounts for the de-
mographic fluctuations about ψ in the environmental state ξ.
Following Ref. [12], we assume that the demographic fluc-
tuations are approximately the same in both environmental
states, i.e. π∗

ν,q(η|ψ, ξ) ≃ π∗
ν,q(η|ψ,−ξ), and simply de-

note π∗
ν,q(η|ψ) ≡ π∗

ν,q(η|ψ, ξ). This assumption is reasonable
when K+ and K− are of the same order, and yields

π∗
ν,q(η, ψ, ξ) ≃ π∗(η|ψ)π∗

ν,q(ψ, ξ). (24)

With this approximation, the quasi-stationary marginal LNA
probability density of {n(t)} is

π∗
ν,q(n) =

∑

ξ=±1

∫ ∫
dψdη π∗(η|ψ)

× π∗
ν,q(ψ, ξ) δ

(
n− ψ − η√

Ω

)
, (25)

where π∗(η|ψ) = exp{−η2/(2ψ)}/√2πψ (see SM [37]
for details), and the Dirac delta ensures that (23) is satis-
fied. Calling p∗LNA,ν,0(N) = π∗

ν,0(n)/Ω and p∗LNA,ν,b(N) =

π∗
ν,b(n)/Ω, explicitly given by eqs. (S35) and (S36) in SM

[37], the LNA quasi-stationary probability density reads

p∗LNA(N) = φp∗LNA,ν,b(N) + φ̃p∗LNA,ν,0(N). (26)

Within the LNA, the quasi-stationary average population
size is obtained by averagingN over p∗LNA(N):

〈N〉∗LNA,ν,b =

∫ ∞

0

Np∗LNA(N) dN , (27)
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FIG. 7: Histograms of the population size distribution (N -QSD)
when b = 0 (shaded area) compared with the predictions of the LNA
(solid), from equation (S35) of the SM [37], and with the PDMP
predictions (dashed), from p∗ν,0, for different switching rates: (a)
ν = 0.01, (b) ν = 0.1, (c) ν = 1, (d) ν = 10, see text. Param-
eters are (K+,K−, s, x0) = (400, 100, 0.02, 0.5). Here, K = 160.

where, it is worth noting, the integral is no longer restricted to
a finite support. As figure 3(b) shows, 〈N〉∗LNA,ν,b is as good
an approximation of simulation results as its PDMP counter-
part 〈N〉∗ν,b from equation (16). As done in Section IV, it
is thus convenient to compute the averages of N using the
PDMP approximation, i.e. by averaging over p∗PDMP(N) as
in eq. (16). However, as elaborated below, equation (26) gives
an excellent characterization of the full N -QSD, well beyond
the scope of the PDMP approximation.

B. LNA, N -QSD, and noise-induced transitions

1. Pure resource competition scenario, b = 0

In the pure resource competition scenario (b = 0),
p∗LNA,0(N) = π∗

0(n)/Ω provides an excellent approximation
of the N -QSD in all switching regimes, as shown in figure
7. In particular, p∗LNA,0 captures the noise-induced transition
arising about ν = 1 [36, 39, 40]: When ν < 1, the switching
rate is lower than the population growth rate, and the N -QSD
and p∗LNA,0 are both bimodal, with peaks at N ≈ K±, see
figure 7 (a,b). When ν > 1, the switching rate exceeds the
population growth rate, and the N -QSD and p∗LNA,0 are thus
unimodal, with a peak at N ≈ K, see Figure 7(c,d).

Figure 7 also shows that p∗LNA,0(N) accurately predicts the
peaks, their width and intensity, and the skewness of the N -
QSD, whereas the PDMP predictions from equation (12) only
captures the position of the peaks. This demonstrates how
demographic fluctuations, aptly accounted for by the LNA,
cause the discrepancies between the N -QSD and p∗ν .
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FIG. 8: Histograms of the population size distribution (N -QSD)
when b = 2 (shaded area) compared with the predictions of the LNA
(solid), from eq. (26) and equations (S35) and (S36) in SM [37], and
with the PDMP predictions (dashed) based on eq. (12), with q = b
(when x = 1) and q = 0 (when x = 0), for different switching
rates: (a) ν = 0.01, (b) ν = 0.1, (c) ν = 1, (d) ν = 10. Parameters
are (K+,K−, s, b, x0) = (400, 100, 0.02, 2, 0.5). For the analytical
results, we have used the expression (15) for φ(b) ≃ φq(b).

2. Public-good scenario, b > 0

The LNA expression (26) also provides an excellent ap-
proximation of the N -QSD in all switching regimes for the
public good scenario (b > 0), see figure 8. In particular, p∗LNA

captures the noise-induced transitions arising about ν = 1
and ν = 1 + b [36]: When ν < 1, both conditional popula-
tion distributions (for fixations to S or F ) are bimodal, with
different peaks. N -QSD and p∗LNA thus have four peaks at
N ≈ K± and N ≈ (1 + b)K±, see figure 8(a,b). When
1 < ν < 1 + b, the S-conditional distribution is bimodal,
whereas the F -conditional distribution is unimodal. The N -
QSD and p∗LNA thus have three peaks at N ≈ (1 + b)K±
and N ≈ K, see figure 8(c). Finally, when ν > 1 + b,
both conditional distributions are unimodal, but with differ-
ent peaks. Hence, the N -QSD and p∗LNA are bimodal with
peaks at N ≈ K and N ≈ (1 + b)K, see figure 8(d)

As figure 8 shows, p∗LNA(N) provides a faithful character-
ization of the N -QSD also when b > 0. This reiterates that
the discrepancies with the PDMP approximation stem from
demographic fluctuations. We also notice that the accuracy of
the LNA slightly deteriorates near the lower-intensity peaks
at high N and low ν (see figure 8(a)). These correspond to
rare events, usually beyond the scope of the LNA. Moreover,
in those regimes, some assumptions made in the derivation—
e.g. equation (24)— reach the limit of their validity, see SM
[37].
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VI. CONCLUSION

We have studied the eco-evolutionary dynamics of a pop-
ulation subject to a randomly switching carrying capacity in
which one strain has a slight selective advantage over an-
other. In a model inspired by microbial communities evolv-
ing in fluctuating environments, we have considered two
scenarios—one of pure resource competition (no interaction
between strains) and one in which the slow (cooperating)
strain produces a public good—and investigated the coupled
effect of demographic and environmental noise.

We have developed an analytical procedure to determine the
fixation probabilities, exploiting a time scale separation and an
effective theory. Fixation probabilities characterize the popu-
lation composition, which is correlated with evolution of the
population size. As a result, the production of public goods
gives rise to an eco-evolutionary game: On the one hand, pro-
ducing the public good lowers the survival/fixation probability
of cooperators; on the other hand, it also increases their pop-
ulation size. A social dilemma of sorts therefore ensues and,
in a fluctuating environment, it is a priori not intuitively clear
whether there are circumstances under which it is beneficial
to produce a public good and what these conditions may be.
Since we consider the eco-evolutionary game in a population
whose composition is fixed but whose size fluctuates, we have
proposed to measure the evolutionary benefit of the public
good in terms of the long-term expected number of individu-
als of each strain. We have thus determined, both analytically
and with simulations, the circumstances under which coop-
eration is beneficial or detrimental to public good producers,
as well as the conditions under which it is the optimal strat-
egy. The analysis of the “eco-evolutionary game” shows that
in a fluctuating population the evolutionary success of a strain
goes beyond having a growth-rate advantage and a higher fix-
ation probability. In fact, the rate of switching, along with the
selection intensity, also determine when one species is more
successful than another and, in some circumstances, this al-

lows a slow/cooperating strain to outcompete a fast/freeriding
strain.

We have also improved on the characterization of the
population size distribution by generalizing the linear noise
approximation to populations of fluctuating size, thus ac-
counting for demographic fluctuations about the predictions
of the underlying piecewise deterministic Markov process.
While we have found that the linear noise and the piecewise-
deterministic Markov process approximations describe the av-
erage population size equally well, only the former fully char-
acterizes the population size distribution. In fact, the linear
noise approach accounts for the joint effect of environmen-
tal and demographic noise and has allowed us to capture the
width and skewness of the population size distribution.

This study shows that coupled environmental and demo-
graphic noise can greatly influence how the composition and
size of a population evolve. In particular, social interactions
between strains—such as public good production—can lead
to intricate eco-evolutionary dynamics, which potentially sup-
port cooperation. This sheds light on phenomena that are par-
ticularly relevant to microbial communities, which often fea-
ture coupled internal and ecological evolution.

Acknowledgments

KW is grateful to the University of Leeds for the hospital-
ity during the final stage of this work. EF and KW acknowl-
edge funding by the Deutsche Forschungsgemeinschaft, Pri-
ority Programme 1617 “Phenotypic heterogeneity and socio-
biology of bacterial populations”, grant FR 850/11-1,2, and
the German Excellence Initiative via the program “Nanosys-
tems Initiative Munich” (NIM). MM is grateful for the sup-
port of the Alexander von Humboldt Foundation (Grant No.
GBR/1119205 STP) and for the hospitality of the University
of Munich during the initial phase of this collaboration.

[1] Morley C R, Trofymow J A, Coleman D C, Cambardella
C. 1983 Effects of freeze-thaw stress on bacterial popula-
tions in soil microcosms. Microbiol. Ecol. 9, 329-340. (doi:
10.1007/BF02019022)

[2] Fux C A, Costerton J W, Stewart P S, Stoodley P. 2005 Survival
strategies of infectious biofilms. Trends Microbiol. 13, 34-40.
(doi: 10.1016/j.tim.2004.11.010)

[3] May R M.1973 Stability and complexity in model ecosystems.
Princeton, USA: Princeton University Press.

[4] Karlin S, Levikson B. 1974 Temporal fluctuations in selection
intensities: Case of small population size T. Pop. Biol. 74, 383-
412. (doi: 10.1016/0040-5809(74)90017-3)

[5] Kussell E, Leibler S. 2005 Phenotypic Diversity, Population
Growth, and Information in Fluctuating Environments Science
309, 2075-2078. (doi: 10.1126/science.1114383)

[6] Assaf M, Roberts E, Luthey-Schulten Z, Goldenfeld N.
2013 Extrinsic Noise Driven Phenotype Switching in a Self-
Regulating Gene. Phys. Rev. Lett. 111, 058102 (2013). (doi:
10.1103/PhysRevLett.111.058102)
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Supplementary Material for

Eco-Evolutionary Dynamics of a Population with Randomly Switching Carrying
Capacity

In this Supplementary Material, we provide comments concerning the dichotomous noise, notes on the methodology and data
avalability, the derivation of the probability densities of the piecewise-deterministic Markov process (PDMP), complementary
results about the mean fixation times, as well as additional discussions about the PDMP approximation and the emergence of
cooperation in the eco-evolutionary game, and additional technical details concerning the stationary properties of the under-
lying piecewise-deterministic Markov processes, and the linear noise approximation to the population size’s quasi-stationary
distribution.

In what follows, unless stated otherwise, the notation is the same as in the main text and the equations and figures refer to
those therein. (As in the main text, unless explicitly mentioned otherwise, below we tacitly assume x0 = 1/2.)

VII. RELATIONSHIP BETWEEN DICHOTOMOUS MARKOV NOISE AND OTHER FORMS OF ENVIRONMENTAL NOISE

It is worth outlining some of the similarities and differences between the dichotomous Markov Noise (DMN) and the Ornstein-
Uhlenbeck process (OUP) that is also commonly used to model environmental noise, see e.g. [9]. Both are colored noise with
exponential auto-correlation functions, see Sec. II in the main text and Refs. [39, 40]. However, while the Ornstein-Uhlenbeck
Process is a Gaussian and unbounded process, the DMN is, in general, neither. In fact, the piecewise-deterministic Markov
process (PDMP) [49]

Ṅ = N

(
1 + q − N

K

)
+∆ξ, (S1)

with the DMN ξ, becomes a diffusive process with Gaussian white noise and diffusion constant D = ∆2/ν only in the limit of
∆ → ∞, ν → ∞ and 0 < D <∞, see, e.g., Refs. [39–41]. The PDMP that we consider in this work has the form:

Ṅ = F(N, ξ) =

{
F+(N) if ξ = 1

F−(N) if ξ = −1
with F±(N) ≡ N

[
1 + q − N

K±

]
,

which corresponds to equation (S1) with ∆ = (K+ −K−)/(2K+K−). Since K+ > K− ≫ 1, the Gaussian white noise limit
is unphysical, and the PDMP that we consider in this work is therefore never diffusive.

It is also worth noting that, being bounded, the DMN has the great advantage of guaranteeing that the fluctuating carrying
capacity K(t) = [(K+ + K−) + ξ(t)(K+ − K−)]/2 remains always finite and positive, which would not be the case if ξ(t)
was given by an OUP. Furthermore, the DMN can be considered a discrete-step approximation [39, 40] of the OUP, but is more
mathematically tractable and easier to simulate.

VIII. NOTES ON METHODOLOGY & DATA AVAILABILITY

Source code for all simulations, resulting data and the Mathematica notebook [53] used for calculations and figures are
available electronically [37].
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A. Stochastic simulations

Using Gillespie’s stochastic simulation algorithm (SSA) [54], we have simulated exactly the dynamics described by the
master equation (5). To efficiently ensure that quasi-stationarity was reached [47], we have run individual-based simulations
until fixation occurred in 99% of the realizations (for ν & s), or until time reaches t = 10/ν (when ν ≪ s). We have simulated
ensembles of 104 realizations of the system, except to determine the various population size distributions (for which we used a
larger sample of 105 realizations) and when using “high values” of s (i.e. for s = O(1) as in figure S2). In this case, an even
larger sample of 106 realizations was needed to accurately estimate the fixation probability of S.

B. Numerical limitations on effective parameter q(b) approach

To obtain the parameter q(b) used in the formula (15) for φq , we first recorded the fixation probability from SSA results with
constant K = K, b ∈ {0.1k : k ∈ N, k ≤ 100}, and s ∈ {0.02, 0.05} (106 runs each). For each combination of parameters, we
computed q(b) by matching the fixation probability φ|(1+q)K of the fitness-dependent Moran model, see equation (13), with the
corresponding fixation probability obtained in the SSA result.

The values of q(b) have then been used to compute φq according to equation (15) for several values of ν, as shown in figure
3(b). Due to numerical instabilities in the evaluation of stationary distribution p∗ν,q in Mathematica [53], numerical evaluations
of φq occasionally “failed” or produced outliers. Data corresponding to these occasional issues were omitted (without statistical
consequences) from our dataset. This has sometimes led to some gaps in the lines of the analytical predictions (see e.g. the
green curve in figure 3 (b)). Furthermore, q(b) has only been determined for a discrete set of b values, which limits the resolution
in determining bc and b∗. Specifically, since the spacing between the values used for b was 0.1, neither b∗ nor bc has been
determined with an accuracy higher than 0.1. The combination of limited resolution and outliers causes the jaggedness observed
in figure S6(a) for the graph of b∗ obtained by looking for the maximum of equation (21).

C. Data availability: Mathematica notebook & Linear noise approximation figures 7 and 8

The direct numerical evaluation of equations (S35) and (S36), used to generate the figures 7 and 8, is commented in the
accompanying Mathematica notebook [37].

IX. JOINT AND MARGINAL STATIONARY PDFS OF THE AUXILIARY PDMP (9)

In the main text, we have frequently used of the marginal stationary probability density function (PDF) of the single-variate
PDMP (9) that reads

p∗ν,q(N) =
Zν
N2

[
(N∗

+ −N)(N −N∗
−)

N2

] ν
1+q−1

,

given by eq. (12) in the main text.
In this section, we outline the derivation of this PDF, as well as that of the joint stationary probability density p∗ν,q(N, ξ) of

N and ξ. For notational simplicity, in the remainder of this section, we write pν,q = p and p∗ν,q = p∗. It follows from the
Chapman-Kolmogorov equation, that p(N, ξ) obeys the master-like equation [39]

∂tp(N, ξ, t) = −∂N [F(N, ξ)p(N, ξ, t)]− ν [p(N, ξ, t)− p(N,−ξ, t)] , (S2)

which can conveniently be rewritten as ∂tp(N, ξ, t) = −∂NJ(N, ξ, t) in terms of the probability current [12]

J(N, ξ, t) = F(N, ξ)p(N, ξ, t) + ν

∫ N

N∗
−

dN ′ [p(N ′, ξ, t)− p(N ′,−ξ, t)] . (S3)

The first term on the right-hand-side (RHS) of (S3) accounts for the probability flowing outside [N∗
−, N ] (Liouvillian flow),

whereas the second accounts for the random switching. At stationarity, limt→∞ p(N, ξ, t) = p∗(N, ξ) and limt→∞ J(N, ξ, t) =
J∗(N, ξ), with ∂tp∗(N, ξ) = −∂NJ∗(N, ξ) = 0, which implies ∂N (J∗(N, ξ) + J∗(N,−ξ)) = 0. With the (natural) zero-
current boundary conditions at N∗

± [39], i.e. J∗(N, ξ) = 0, we find a simple relationship between the PDFs in each of the
environmental states:

p∗(N, ξ) = −
(F(N,−ξ)

F(N, ξ)

)
p∗(N,−ξ). (S4)
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With this relation, ∂NJ∗(N,−ξ) = 0 gives

0 = ∂N [F(N,−ξ)p∗(N,−ξ)] + ν

[
1

F(N,−ξ) +
1

F(N, ξ)

]
(F(N,−ξ)p∗(N,−ξ)) .

Combined with equation (S4), this readily yields p∗(N, ξ) ∝ ±g(N)/F(N, ξ), where

g(N) = exp

[
−ν

∫ N

dm

{
1

F−(m)
+

1

F+(m)

}]
=

[
(N∗

+ −N)(N −N∗
−)

N2

] ν
1+q

, (S5)

and F± are defined by eq. (10). The joint stationary PDF giving the probability density ofN in each environmental state is thus
explicitly given by

p∗(N, ξ) =
Z

ξF(N, ξ)
g(N) =

Z
ξF(N, ξ)

[
(N∗

+ −N)(N −N∗
−)

N2

] ν
1+q

, (S6)

where Z is the normalization constant. In figure S1, we compare the predictions of the joint PDF p∗(N, ξ) with the histograms
of the population size obtained from SSA results, verifying that the PDMP description aptly reproduces the location and number
of peaks that characterize the quasi-stationary distribution of N (see also [36, 48]).

100 200 300 400 500

500

1000

1500

2000

0

co
u
n
t

pop. size

(a)

100 200 300 400 500

500

1000

1500

2000

0

co
u
n
t

pop. size

(b)

0

500

1000

1500

2000

co
u
n
t

100 200 300 400 500
pop. size

(c)

100 200 300

250

500

750

1000

0
pop. size

co
u
n
t

(d)

FIG. S1: Histograms of population size (N -QSD) and from the joint PDMP PDF (S6) when b = 0, for (a) ν = 0.01, (b) ν = 0.1, (c) ν = 1,
and (d) ν = 10. Shaded areas correspond to SSA results for ξ = +1 (purple) and ξ = −1 (cyan); dashed and dotted lines are from (S6) with
ξ = +1 and ξ = −1, respectively. Parameters are (K+,K−, s, x0, b) = (400, 100, 0.02, 0.5, 0)

The marginal stationary PDF p∗(N) = p∗(N, ξ) + p∗(N,−ξ) is thus p∗(N) ∝ [(1/F+(N)) − (1/F−(N))] g(N), which
yields the explicit expression (12).

It is also useful to notice that, at stationarity, the probability that the PDMP (9) is in the environmental state ξ, given a
population size N is given by [12]

p∗(ξ|N) =
−ξF(−ξ,N)∑
ξ=±1 ξF(ξ,N)

. (S7)



15

X. ASSESSMENT OF ACCURACY OF FORMULAS FOR THE FIXATION PROBABILITY

A central point of our analysis is the formula to compute the fixation probability of S (see section III.C.1), φ, with the formula
(14) which reads [36]

φ ≃
∫ K+

K−

(
e−Ns(1−x0) − e−Ns

1− e−Ns

)
p∗ν/s(N) dN, when b = 0 (no public good production). (S8)

When s = O(1), the assumption of a timescale separation between N and x that underpins the derivation of equation (S8) is no
longer valid. As a consequence, the relative deviations between the predictions of eq. (14) and the SSA results for φ increase
with s, as shown in figure S2. To quantify the accuracy of equation (S8), we have compared its predictions with the simulation
results of 106 realizations obtained for different values of ν and s spanning between 0 and 0.25, recording the SSA fixation
probability φsim. For each combination of parameters (different colors in Figure S2), we determined the theoretical prediction
φth from eq. (S8) and the percentage deviation between it and the simulation result ∆φ = 100|φth − φsim|/φsim. As figure S2
shows, theoretical results reproduce simulations for small s, with relative deviations below 10%. Discrepancies increase more
and more as the selection intensity is increased towards s = O(1) (when s > 0.1, in figure S2). The approximation underpinning
(S8) is therefore valid in the regime s ≪ 1, which is the regime of weak selection pressure on which we focus (see main text),
and deteriorates as s approaches s = O(1).
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FIG. S2: (a) φ vs. s when b = 0, with ν = 0.1 (◦, yellow), ν = 1 (∇, green), ν = 10 (⋄, blue). (b) Accuracy of formula as function of s with
b = 0, measured as the relative deviations from simulation results for φ with the same ν as in (b), see text for details. In both panels, symbols
are from simulations (106 runs in (a)) and solid lines are from eq. (14). Other parameters are (K+,K−, x0) = (450, 50, 0.5)

Within the regime s ≪ 1, we have similarly assessed the accuracy of equation (14) for different switching rates ν. We
simulated 104 realizations of the system, for different values of s, and 100 values ν between 0.001 and 10 and computed the
percentage deviation ∆φ(ν) as explained above. Dots in figure S3(a) are thus based on φsim obtained by sampling 104 SSA
realizations; they represent the value of ∆φ(ν) recorded at each value of ν, with different colors signaling different values of
s (red for 0.05, cyan for 0.02). The dots scatter uniformly, indicating no systematic trend in the deviation. For s = 0.02, we
observe deviations between 0 and 8% when s = 0.02, with an average (solid line) of 2% and standard deviation (shaded area)
≈ 2%; for s = 0.05 (red), deviations are between 0 and 13%, with average 4% and standard deviation 2.5%.

For the case with public good production, we have used an effective approach and obtained the following expression (15) for
the fixation probability of S (see section III.C.2) which, with eq. (13), reads [36]:

φq =

∫ (1+q)K+

(1+q)K−

(
e−Ns(1−x0) − e−Ns

1− e−Ns

)
p∗ν/s,q(N) dN , when b > 0 (public good production). (S9)

This also builds on a timescale separation between an effective population size and x. Besides the breakdown of the timescale
separation when s = O(1), the accuracy of the approximation φ ≃ φq deteriorates for higher values of b and/or s, because the
fixation of S then becomes increasingly unlikely, see figure 3(a), which limits the accuracy with which q(b) is determined and
hence the predictions of equation (15).

Figure S3(b) shows the results for the percentage deviation of the predictions of equation (S9), using the appropriate values
of the effective parameter q(b) (excluding a few outliers), and φsim obtained from 104 SSA realizations. For s = 0.02, b = 0.2
(blue), ∆φ is between 0 and 8%, with average 3% and a standard deviation of 2%. For s = 0.05, b = 2 (red), we observe
larger and more scattered ∆φ between 0 and 28%, with average 12% and standard deviation 7%. While a deterioration of the
approximation when s and b are increased can explain the increase in the average ∆φ, higher values of s and b also cause lower
fixation probabilities for S, see figure 3(a). The corresponding values of φ are small which results in noisier values of φsim and
∆φ, as shown by red data in figure S3.
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FIG. S3: (a) Percentage deviation ∆φ between simulation and theory vs. ν, for b = 0 with s = 0.02 (cyan) and s = 0.05 (⋄, red). Dots
represent the percentage distance between prediction and simulated value for each ν, solid lines denote the average of the dots, shaded areas
the standard deviation around the average. (b) Same as in panel (a) but for (s, b) = (0.02, 0.2) (blue) and (0.05, 2) (red). Other parameters
are (K+,K−, x0) = (450, 50, 0.5).

Overall, the above analyis confirms that our approach is able to predict the fixation probability φ in the regime of weak
selection intensity (0 < s ≪ 1), both when b = 0 and 0 < b = O(1), with a remarkable accuracy of a few percent over a vast
range of values ν.

XI. FIXATION IN THE FITNESS-DEPENDENT MORAN PROCESS & MEAN FIXATION TIME UNDER SWITCHING
CARRYING CAPACITY

A. Fixation in the fitness-dependent Moran process

To study the fixation properties of the system, we have used the properties of the fitness-dependent Moran Process (fdMP)
outlined in section III.B of the main text [21, 22, 51, 55]. In a population of large but finite and constant size N , the fixation
properties under weak selection of the fdMP can be inferred from the backward Fokker-Planck equation associated with the
generator [21, 22, 26, 55–57]

G(x)|N = g(x)
x(1 − x)

N

[
−Ns d

dx
+

d2

dx2

]
, where g(x) = 1 + bx. (S10)

For an initial fraction x0 of S individuals, the fixation probability φ(x0)|N of S obeys G(x)|Nφ(x)|N = 0, with φ(1)|N = 1
and φ(0)|N = 0 (absorbing boundaries at x = 0, 1). Yielding the result

φ(x0)|N =
e−Ns(1−x0) − e−Ns

1− e−Ns
,

given as equation (13) in the main text.
The generator (S10) can also be used to study when fixation occurs in the fdMP in the realm of the diffusion approximation

[21, 22, 26, 55]. Quantities of particular interest, are the unconditional mean fixation time (MFT)— which is the average time to
reach any of the absorbing states, here either x = 0 or x = 1—as well as the conditional MFTs—the mean time to reach a specific
absorbing boundary. The unconditional MFT is obtained by solving G(x0)|N T (x0)|N = −1 subject to T (0)|N = T (1)|N =
0 [21, 26, 56]. The conditional MFT to reach x = 1 is denoted by T S(x0)|N , while TF (x0)|N is the (conditional) MFT
conditioned to reach x = 0. The MFTs and the fixation probabilities are related by T (x)|N = φT S(x0)|N + (1− φ)TF (x0)|N .
Explicit, but unwieldy, expressions for the MFTs in the fdMP can be obtained [21, 26, 55, 56], e.g. the unconditional MFT in
the case b = 0 reads

T (1/2)|N =
1

s

{
(1− 2φ(1/2)|N)(log(Ns) + γ) + e−

Ns
2 Ei

(
Ns

2

)
− e

Ns
2 Ei

(
−Ns

2

)

+ eNsφ(1/2)|NEi(−Ns)− e−Ns(1− φ(1/2)|N )Ei(Ns)

}
, (S11)
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FIG. S4: (a) MFT T |N vs. s for the fdMP, given by T |N = φ|NTS|N + (1 − φ|N)TF |N . In the case b = 0 (blue), this corresponds to
equation (S12). (b) TS|N vs. s for the fdMP, from the solution of the appropriate equation associated with the generator (S10). (c) TF |N vs.
s for the fdMP, obtained as TS . The population in the fdMP is of constant size N = 100 and the effect of the public good parameter b is to
reduce the relaxation time of x, and thus to lower all the MFTs with respect to the case b = 0. However, the MFTs always scale as O(1/s) to
leading order when s ≪ 1. In all panels, and b = 0 (blue), b = 0.2 (pink), b = 2 (yellow), x0 = 0.5.

where γ ≈ 0.577... is the Euler-Mascheroni constant, and Ei(z) =
∫∞
−z dz

e−z

z is the exponential integral. Hence, in the regime
where s≪ 1, withNs≫ 1, and s lnN ≪ 1 (with x0 is sufficiently separated from x = 0, 1), T (x0)|N ∼ (lnN)/s [21, 22, 55],
with a subleading prefactor ∼ lnN . The conditional MFTs exhibit the same behavior T S/F (x0) ∼ T (x0) = O(1/s) to leading
order when s ≪ 1, see figure S4. A similar behavior also holds when b > 0 and s ≪ 1, with a subleading prefactor that then
depends (weakly) on the public good parameter b = O(1), specifically T (x0)|N ∼ (ln (N −O(b)))/s, as confirmed by figure
S4. The public good parameter b, in fact, reduces the relaxation time of x, see equation (7), which results in a weak reduction
of the unconditional and MFTs with respect to the case with b = 0, see also figure S4(b,c). The most relevant point for our
purposes, is the fact that the unconditional MFT of the fdMP scales as O(1/s) to leading order when s ≪ 1, and so do the
conditional MFTs, in both cases b = 0 and b > 0.

B. Mean fixation times for switching carrying capacity

In a population subject to a randomly switching carrying capacity, with no public good production, the size and growth rate
are independent of the composition. As explained in Ref. [36, 48], when b = 0, the conditional and unconditional MFTs admit
the same scaling to leading order when s ≪ 1, i.e. T S/F (x0) ∼ T (x0) = O(1/s), and we can use the approach outlined in
Section III.C.1, to compute [48]

T (x0) ≃
∫ K+

K−

T (x0)|Np∗ν/s(N) dN. (S12)

Figure S5(a) shows that the predictions of this formula (blue line) agree extremely well with SSA results (⋄). This confirms
that under weak selection and b = 0, the unconditional MFT scales as in the fdMP, i.e. T (x0) = O(1/s) when s ≪ 1. This
implies that after t & 1/s fixation is likely to have occurred, and that the population size is at quasi-stationarity when t ≫ 1/s.
Quite remarkably, we also notice in figure S5(a) that even when s = O(1) there is a good agreement between the predictions of
eq. (S12) and SSA results.

In the case b > 0, the evolution of the population size and its composition are coupled. As discussed in the main text, S is
less likely to fixate when b is increased, and the population size at fixation depends on which species takes over (the population
size is typically larger when S fixates). On the other hand, according to eq. (7), increasing b reduces the relaxation time of
x. Since these two effects balance each other, we expect the effect of b > 0 to be even weaker in the switching environment
than in the fdMP with constant population size. Having seen that b has a weak effect on the MFTs, we thus anticipate that the
MFTs with a switching carrying capacity exhibit a similar behavior as those of the fdMP. To verify this picture this and figure
out on which timescale fixation occurs when b > 0, we have considered the fixation of S and F separately by studying their
conditional MFTs [48]. For this, we can attempt to generalize the approach used in the case b = 0 and consider the averages
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FIG. S5: (a) MFT T vs s. Symbols are from simulations (104 realizations) and the solid line shows T (x0) given by eq. (S12) in the case
b = 0. (b) TS vs s. Solid lines are the results of equation (S13) . (c) TF vs s. The solid line is the result of equation (S14). In all panels,
ν = 0.1 and b = 0 (blue, ⋄), b = 0.2 (pink, ◦), b = 2 (yellow, △), other parameters are (K−,K+, x0) = (50, 450, 0.5).

over the conditional stationary PDFs p∗ν/s,b(N) and p∗ν/s(N) obtained from (12) with q = b and q = 0, i.e.

T S(x0) ≃
∫ (1+b)K+

(1+b)K−

T S(x0)|Np∗ν/s,b(N)dN , (S13)

TF (x0) ≃
∫ K+

K−

TF (x0)|Np∗ν/s(N)dN , (S14)

T (x0) ≃ φq(b)T
S(x0) + (1− φq(b))T

F (x0) , (S15)

where T S/F (x0)|N are the conditional MFTs of the fdMP with b > 0. A clear limitation of formula (S13) and (S14) stems from
the fact that p∗ν/s,b(N) and p∗ν/s(N) are good approximation of the N -QSD in the quasi-stationary state that typically reached
after t ≫ 1/s, see Ref. [45], i.e. well after fixation has occurred. As a consequence, p∗ν/s,b(N) and p∗ν/s(N) overestimate the
population size when fixation occurs, and formula (S13) and (S14) therefore overestimate the actual conditional MFTs when
b > 0. However, since the population size and the parameter b only yield subleading contributions to the MFTs of the fdMP when
s ≪ 1, we expect that formula (S13)-(S15) are still able to capture how the MFTs scale to leading order under weak selection
intensity. The comparison of SSA results for the MFTs with b > 0 reported in figure S5, and their comparison with those of
figure (S4) confirm this picture. Since the b-dependence of the MFTs in figure (S4) is clearly subleading, we can simplify the
evaluation of (S13) by setting g ≡ 1 + b (and similarly g ≡ 1 in (S14)). As shown in figure (S5)(b), this does not affect the
leading behavior of T S .

Figures S5(b,c) show that the simplified formula (S13) and (S14) indeed correctly predict that the conditional MFTs scale as
O(1/s) when s ≪ 1, even if they indeed overstimate the SSA results for T S and TF . Hence, equation (S15) predicts that to
leading order the uncoditional MFT scales as O(1/s), which is in good agreement with the SSA results reported in figure S5(a).
As s and b increase, the fixation of S becomes less likely and thus T (x0) ≃ TF (x0), as shown by figures S5(a) and (c). We
notice that SSA results reported in figure S5 confirm that the MFTs with randomly switching carrying capacity depend even
more weakly on the public good parameter b than in the fdMP where N is constant N .

We therefore conclude that, under weak selection s ≪ 1, and with b = O(1), the MFTs in the case b > 0 scale as O(1/s).
This means that fixation in the public good scenario (b > 0) is likely to have occurred when t & 1/s and the population size is
most probably at quasi-stationarity when t≫ 1/s, as in the case b = 0. These results also that, to leading order in 1/s, the MFTs
here scale as in the absence of external noise. Hence, while environmental noise has a significant effect on the fixation probability
(see Section III.C in the main text), its effect on the MFTs is much less important, as captured by the formula (S13)-(S15).

XII. SUPPLEMENTARY INFORMATION ON THE PDMP APPROXIMATION AND THE “ECO-EVOLUTIONARY GAME”

A. PDMP approximation and average number of individuals

The analysis of the correlations between population size and its composition (Section IV.A), and that of the “eco-evolutionary
game” (Section IV.B), relies largely on properties of the average population size at quasi-stationarity given by

〈N〉∗ν,b = (1 + b)φb〈N〉∗ν,b + (1− φb)〈N〉∗ν,0 , (S16)
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where φb is the fixation probability of species S under a public good parameter b, within what in the main text is referred to as
the “PDMP approximation”. This approximation consists of averaging the population size N over the marginal PDF (12) of the
PDMP (9).

To derive equation (S16), we first notice that 〈N〉∗ν,b consists of the average population size conditioned to the fixation of F
and S, i.e. 〈N〉∗ν,b = 〈NF 〉∗ν,b + 〈NS〉∗ν,b. The fixation of F occurs with probability φ̃b = 1− φb, and results in a global growth
rate g = 1, yielding

〈NF 〉∗ν,b = 〈N |x = 0〉∗ν,b = φ̃b〈N〉∗ν,0 = φ̃b

∫ K+

K−

Np∗ν(N)dN, (S17)

where 〈N〉∗ν,0 is the quasi-stationary average population size when b = 0 and the integration is over p∗ν ≡ p∗ν,0 given by eq. (12).
Similarly, the fixation of S occurs with probability φb, after which g = 1 + b, yielding

〈NS〉∗ν,b = 〈N |x = 1〉∗ν,b = φb〈N〉∗ν,b = φb

∫ (1+b)K+

(1+b)K−

Np∗ν,b(N)dN = (1 + b)φb〈N〉∗ ν
1+b ,0

. (S18)

The last equality is obtained by performing the change of variable N → N/(1 + b) and allows us to express 〈N〉∗ν,b in terms of
the average when b = 0. Putting everything together, we obtain eq. (16):

〈N〉∗ν,b = (1 + b)φb〈N〉∗ ν
1+b ,0

+ (1 − φb)〈N〉∗ν,0

≃ (1 + b)φq(b)

∫ K+

K−

Np∗ν
1+b

(N) dN + (1 − φq(b))

∫ K+

K−

Np∗ν(N) dN, (S19)

where in the last line we have used the approximation φb ≃ φq(b) given by equation (15). Figure 3(b) shows that predictions of
〈N〉∗ν,b obtained with this approach are as close to simulation results as their counterparts obtained by averaging over the PDF
obtained within the linear noise approximation of Section V (see also Section XIII below). It is clear from (15) that 〈N〉∗ν,b is an
increasing function of b since 〈N〉∗ν,0 is a decreasing function of ν [60].

In Section IV, we have often considered the limiting regimes of very fast/slow switching, ν → ∞, 0, in which the analytical
formula greatly simplify. To obtain these simplified expressions, it suffices to notice that

∫ K+

K−

Np∗ν(N)dN =

{
K when ν → ∞
〈K〉 when ν → 0

Hence, when ν ≫ 1, we have 〈NF 〉∗ν,b → (1 − φb)K and 〈NS〉∗ν,b → (1 + b)φbK. Similarly, when ν ≪ s, we have
〈NF 〉∗ν,b → (1−φb)〈K〉 and 〈NS〉∗ν,b → (1+ b)φb〈K〉. Hence, from (16) and using φ ≃ φq(b) we obtain the average population
size in the limiting regimes:

〈N〉∗ν,b =
{
(1 + bφq(b))K when ν → ∞
(1 + bφq(b))〈K〉 when ν → 0.

(S20)

The limiting behavior reported as dashed lines in figures 3(b) and 4(b) can readily be obtained from equations (S20).

B. Best conditions for cooperation in the eco-evolutionary game

A finite well-mixed population of constant size is the natural setting of evolutionary game theory (EGT). The notion of
evolutionary stability is central to EGT since an evolutionary stable strategy, when adopted by a population, cannot be invaded
and replaced by an alternative strategy. For a population with two possible strategies, one is evolutionary stable if it satisfies
the so-called invasion and replacement conditions [58, 59]. As a result, the sole fact that one strategy has a higher fitness than
another does not guarantee that it is evolutionary stable since an individual of the other type may have a better chance to fixate
the population.

For the model considered here, in a finite and static population, the strain F has always a higher fitness than S, and the
fixation probability of S vanishes exponentially with the population size, see equation (13). In a finite and static population, F
is therefore evolutionary stable, and in this sense always superior to S.

The situation is radically different in the eco-evolutionary game considered here since the population continues to evolve in
a fluctuating environment even after fixation, and the notions of non-invadibility / non-replacement are no longer suitable to
measure the species evolutionary success:
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FIG. S6: (a) Optimal public good benefit parameter for the cooperating b∗ vs ν for s = 0.02 (blue), s = 0.03 (orange), and s = 0.05 (green).
Symbols are results from simulations and solid lines are from (21) (b) ∆Sν,b∗/〈N〉∗ν,0 vs. ν, obtained gives the highest payoff received by S
by producing the public good at optimal value b = b∗(ν, s) obtained from (21) for s = 0.02 (blue), s = 0.03 (orange), s = 0.05 (green), see
below and main text. Other parameters are (K+,K−, x0) = (450, 50, 0.5).

As discussed in Section IV.B of the main text, even if S has always a lower fitness and a lesser chance to fixate than F , its
occasional fixation can prove very rewarding since it allows cooperators to establish a large community of S individuals (of a
size that can be significantly larger than the size of an average community of F individuals). We have therefore proposed to
measure the success of S and F in this eco-evolutionary game by computing the difference between the expected long-term
number of individuals ∆Sν,b and ∆Fν,b, compared to the b = 0 case. ∆Sν,b and ∆Fν,b thus serve as expected payoffs in our
eco-evolutionary game. In the PDMP approximation, we can use our effective approach (see section III.C.2) and equations (S17)
and (S18), to obtain

∆Sν,b = (1 + b)φq(b)

∫ K+

K−

Np∗ν
1+b

(N) dN − φ0

∫ K+

K−

Np∗ν(N) dN (S21)

∆Fν,b = (φ0 − φq(b))

∫ K+

K−

Np∗ν(N) dN , (S22)

Where p∗ν(N) is given by equation (12) with b = 0.
As shown by figure 5, ∆Sν,b is non-monotonic in b and has a maximum for b = b∗. This is then the optimal value of b for the

cooperating strain S (given s, ν, K±). Figure S6(a) shows the dependence of the optimal value b∗ = b∗(ν, s) on ν, for different
intensities of the selection pressure s. Clearly, b∗ = b∗(ν, s) exhibits a complex, non-monotonic, dependence on ν and decreases
when s increases, in a similar fashion to bc (see main text). In figure S6(a), symbols are from simulations and the lines have been
obtained from evaluating the maximum of equation (S21).

Figure S6(b) shows ∆Sν,b∗/〈N〉∗ν,0: the optimal payoff for cooperators divided by the long-time average population at b = 0.
In other words, it shows how much bigger is, on average, the best-performing cooperating population, compared to the average
population at b = 0. For sufficiently low s, e.g. for s = 0.02 (blue), the public good can make the average number of S
individuals be up to 12%− 25% larger than the average population at b = 0 (∆Sν,b∗/〈N〉∗ν,0 ≈ 0.12− 0.25 across all values of
ν). Figure S6(b) corresponds to results at quasi-stationarity, i.e. after fixation has occurred (with a smaller probability for S than
F ) and therefore shows the actual long-term eco-evolutionary payoff for cooperation: In the optimal conditions, the S strain can
gain a significant benefit from the production of a public good.

As discussed in Section IV.B of the main text, there are conditions under which S receives a higher expected payoff than F in
the sense that ∆Sν,b > ∆Fν,b. When this happens, cooperating is not only beneficial but is also advantageous for S. We have
considered that for given parameters (ν, s), it is best to cooperate for the production of a public good with benefit parameter b
when the following two conditions are satisfied: (a) ∆Sν,b > ∆Fν,b; (b) b = b∗(ν, s) < β(ν, s). These conditions ensure (a)
that S receives a higher payoff than F , and (b) that S receives the maximum payoff under the switching rate ν and selection
strength s. On the other hand, species F always outperforms S when b > β(ν, s) since it then receives a higher expected payoff
than S, with ∆Fν,b that is an increasing function of b for all values of ν and s, see figure 5(c).

As shown in figure 6(b) the phases (ii), (0 < ∆Sν,b < ∆Fν,b) and (iii) (∆Sν,b > ∆Fν,b) are separated by the value b = β(ν, s)
at which ∆Sν,β = ∆Fν,β , defined as by the solution of

1

1 + β

(
2φ0
φq(β)

− 1

)
=

∫K+

K−
Np∗ ν

1+β
dN

∫ K+

K−
Np∗ν dN

. (S23)
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It is noteworthy that in the limiting switching regimes ν ≫ 1 and ν ≪ s, this equation greatly simplifies. In fact, using (S20),
equation (S23) becomes (1 + β/2)φβ = φ0 when ν ≫ 1 and ν ≪ s. Hence, the corresponding payoffs along b = β(ν, s)
are ∆Sν,β = ∆Fν,β = (φ0 − φβ)K = βφβK/2 when ν ≫ 1 and ∆Sν,β = ∆Fν,β = βφβ〈K〉/2 when ν ≪ s, yielding
∆Sν,β/〈N〉∗ν,0 = ∆Fν,β/〈N〉∗ν,0 = βφβ/2 in both limiting regimes. It is however important to remember that φβ ≃ φq(β)
depends nontrivially on ν and s, and can be either an increasing or decreasing function of ν, see figures 2(a) and 3(a).

While the choice made here on how to measure the success of S and F is arguably the most natural, we could have also
considered other variants. For instance, we could have considered that the best conditions to cooperate for the production of the
public good would be: S should receive a higher payoff than F , condition (a) as above, and, S should maximize the difference
of payoffs ∆Sν,b−∆Fν,b (instead of condition (b)). This would lead to an optimal value of the public good benefit b̃ that would
generally differ from b∗ especially at low switching rate (see figure 5(c)). While this alternative definition of the optimal payoff
for S would lead to quantitative differences with the results reported in figure 6(b), the main qualitative features discussed here
and in section IV.B would remain the same.

XIII. EFFECT OF INTERNAL AND ENVIRONMENTAL NOISE ON POPULATION SIZE DISTRIBUTION – LINEAR NOISE
APPROXIMATION ABOUT THE PDMP PREDICTIONS

The PDMP approximation of the N -QSD can reproduce the number and location of its peaks, but fails to capture the width
of the distribution about the peaks and its accurate skewness, see, e.g., figure S1. In this section, we derive the linear noise
approximation (LNA) of theN -QSD used in Section V to account for the demographic fluctuations about the PDMP predictions
[12].

After the fixation of species S, NS = N and NF = 0, and the transition rates of the birth-death process become T+
S =

(1 + b)N , T−
S = N2/K(t), and T±

F = 0. Similarly, after species F ’s fixation, NF = N and NS = 0, the transition rates
(3) become T+

F = N , T−
F = N2/K(t), with T±

S = 0. To deal simultaneously with the ecological dynamics arising after the

fixation of either species, it is convenient to define the auxiliary stochastic logistic processN T+

−−→ N+1 and N
T−
−−→ N −1,

with dichotomous Markov noise ξ ∈ {−1,+1} and randomly switching carrying capacity defined by equations (3) and (4). This
stochastic process is defined by the transition rates:

T+ = (1 + q)N, T− =
N2

K(t)
= N2

[
1

K − ξ

(
1

K − 1

K+

)]
, with q =

{
b after fixation of S
0 after fixation of F .

(S24)

As explained in section V.B of the main text, it is convenient to work with the continuous Markov process {n(t), ξ(t)} defined
by

n
T +

−→ n+Ω−1, n
T −
−→ n− Ω−1, with ξ ν−→ −ξ, (S25)

and

ψ ≡ lim
Ω→∞

N/Ω, κ ≡ K/Ω and kξ ≡
{
k+ = K+/Ω if ξ = 1

k− = K−/Ω if ξ = −1.

We thus have

T +(ψ, ξ) = (1 + q)ψ and T −(ψ, ξ) = ψ2
{
κ−1 − ξ(κ−1 − k−1

+ )
}
. (S26)

It is also useful to define vξ, associated with the deterministic flows of {n(t), ξ(t)}, and uξ associated with the diffusive flows:

vξ(ψ) ≡ T + − T − =
F(Ωψ, ξ)

Ω
=
ψ

kξ

(
ψ∗
ξ − ψ

)
, and uξ(ψ) ≡ T + + T − =

ψ

kξ

(
ψ∗
ξ + ψ

)
, (S27)

with ψ∗
ξ = (1 + q)kξ. It is worth noting that vξ(ψ) > 0 when ξ = +1 and vξ(ψ) < 0 when ξ = −1.

When the environment is static (K± = K), with kξ = k, vξ = v and uξ = u, the LNA consists of performing a van Kampen
system size expansion of the underlying master equation, which yields the Fokker-Planck equation (FPE) for the probability
density π(η, t) [56, 57]:

∂tπ(η, t) = −∂η [ηv′(ψ)π(η, t)] +
u

2
∂2ηπ(η, t), (S28)

where v′ = dv/dψ and π(η, t) is the PDF of the fluctuations {η(t)} about the mean-field trajectory ψ̇ = v(ψ).
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Here, the environment varies stochastically: it randomly switches between two states. The process {n(t), ξ(t)} is thus ana-
lyzed in terms of a “pseudo-Fokker-Planck equation” which consists of an FPE, accounting for the internal noise, supplemented
by terms arising from environmental stochasticity via the PDMP

ψ̇ = vξ(ψ) , (S29)

that is equivalent to (9) and whose joint PDF is readily obtained from (S6): π∗
ν,q(ψ, ξ) = Ωp∗(Ωψ, ξ). Within the LNA,

to account for the weak fluctuations about ψ up to linear order in η, we obtain the following pseudo-FPE for the joint PDF
πν,q(ψ, η, ξ, t) ≡ π(ψ, η, ξ) of the process (S1) [12, 39]:

∂tπ(ψ, η, ξ) = −∂η
[
ηv′ξ(ψ)π(φ, η, ξ)

]
+
uξ
2
∂2ηπ(ψ, η, ξ)

− ∂ψ [vξ(ψ)π(ψ, η, ξ)] − ν [π(ψ, η, ξ) − π(ψ, η,−ξ)] , (S30)

where, for notational simplicity, in this section we drop the time dependence and the ν, q subscripts in the PDFs by writing
π(η, ξ) and π(ψ, η, ξ) instead of πν,q(η, ξ, t) and πq(ψ, η, ξ, t), etc. On the RHS of eq. (S30), the first line corresponds to a
usual FPE with a drift term −∂η [. . . ] and a diffusion coefficient uξ, while in the second line one recognizes the Liouvillian
contribution −∂ψ [vξ(ψ)π(ψ, η, ξ)] and terms from random switching.

To determine the Gaussian probability density π∗(η|ψ, ξ) characterizing the demographic fluctuations η about ψ(t), we notice
that π(ψ, η, ξ) = π(η|ψ, ξ)π(ψ, ξ). As explained in the main text, we then assume that demographic fluctuations about ψ
are the same in each environmental state ξ = ±1, and write π(η|ψ, ξ) = π(η|ψ) [12]. With this assumption, we can set set
∂t(π

∗(η, ψ, ξ) + π∗(η, ψ,−ξ)) = 0 and use equation (S30) to obtain

0 = −
[
π∗(ξ|ψ)v′ξ(ψ) + π∗(−ξ|ψ)v′−ξ(ψ)

]
∂η [ηπ

∗(η|ψ)] + 1

2
[π∗(ξ|ψ)uξ(ψ) + π∗(−ξ|ψ)u−ξ(ψ)] ∂2ηπ∗(η|ψ), (S31)

where we have also used π∗(ψ, ξ) = π∗(ψ)π∗(ξ|ψ) and the zero-current boundary condition
∑

ξ vξπ
∗(ψ, ξ) = 0. At the

PDMP level, equation (S7) expresses the probability of being in the environmental state ξ given that the populationhas size N .
Hence, upon substituting π∗(ξ|ψ) = −ξv−ξ/(

∑
ξ=±1 ξvξ), equation (S31) yields the stationary probability density π∗(η|ψ) of

an Ornstein-Uhlenbeck process [56, 57]. In other words, π∗(η|ψ) is a Gaussian with zero mean and variance

u−(ψ)v+(ψ) − u+(ψ)v−(ψ)
v−(ψ)v′+(ψ) − v+(ψ)v′−(ψ)

= ψ, (S32)

where we have used (S27), and the subscripts ± refer to ξ = ±1. With eq. (S32), we find the Gaussian probability density of the
fluctuations about ψ:

π∗(η|ψ) = e−
η2

2ψ

√
2πψ

. (S33)

Within the LNA, see eq. (25), the marginal quasi-stationary PDF of the process {N(t), ξ(t)} defined by (S24) therefore is

p∗LNA,q(N) =
π∗(n)
Ω

=
∑

ξ=±1

∫ ∫
dψdη π∗(η|ψ)π∗(ψ, ξ) δ

(
n− ψ − η√

Ω

)
. (S34)

Upon substituting (S33) and π∗(ψ, ξ) = Ωp∗ν,q(Ωψ, ξ) obtained from (S6), into (S34), we obtain the LNA-PDF of the process
{N(t), ξ(t)}. When b = 0, the marginal LNA-PDF p∗LNA,0(N) in the case of the pure resource competition is obtained from
π∗(n) with q = 0 and reads

p∗LNA,0(N) ∝
∫

dη e−η
2/[2(n−η/

√
Ω)]

(
n− η√

Ω

)3/2 (
k+ −

(
n− η√

Ω

))




{
k+ −

(
n− η√

Ω

)}{(
n− η√

Ω

)
− k−

}

(
n− η√

Ω

)2




ν

+

∫
dη e−η

2/[2(n−η/
√
Ω)]

(
n− η√

Ω

)3/2 ((
n− η√

Ω

)
− k−

)




{
k+ −

(
n− η√

Ω

)}{(
n− η√

Ω

)
− k−

}

(
n− η√

Ω

)2




ν

, (S35)

where n = N/Ω, k± = K±/Ω and the proportional factor is the normalization constant. In the public good scenario, b > 0, the
F -conditional LNA-PDF is p∗LNA,0(N) while PDF conditioned on fixation of species S (but unconditioned on ξ) is proportional
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to π∗(n) with q = b, i.e. it is given by

p∗LNA,b(N) ∝
∫

dη e−η
2/[2(n−η/

√
Ω)]

(
n− η√

Ω

)3/2 (
ψ∗
+ −

(
n− η√

Ω

))




{
ψ∗
+ −

(
n− η√

Ω

)}{(
n− η√

Ω

)
− ψ∗

−
}

(
n− η√

Ω

)2




ν
1+b

+

∫
dη e−η

2/[2(n−η/
√
Ω)]

(
n− η√

Ω

)3/2 ((
n− η√

Ω

)
− ψ∗

−
)




{
ψ∗
+ −

(
n− η√

Ω

)}{(
n− η√

Ω

)
− ψ∗

−
}

(
n− η√

Ω

)2




ν
1+b

, (S36)

where ψ∗
+ = (1 + b)k+ and ψ∗

− = (1 + b)k−.

The comparison between the LNA-PDFs and the N−QSD is shown in figure 7 and 8, where a remarkable agreement is found
when b = 0 and b > 0. However, as mentioned in the main text, some small deviations are observed in figure 8(a), at low
switching rate, near the peak of small intensity when b > 0. The possible reasons for these small deviations are multiple: When
ν ≪ 1, the population near the peaks of weak intensity is of size N ≈ (1 + b)K±, and the assumption π(η|ψ, ξ) ≃ π(η|ψ,−ξ)
on which our LNA analysis is based may not be necessary valid since the fluctuations in the state ξ = −1 (with N ≈ (1+ b)K−
and b = 2) may be noticeably stronger than those in the state ξ = +1 (whereN ≈ (1+b)K+). Furthermore, the peak in question
is associated with the fixation of species S for b = 2 in a population of rather large size ≈ (1 + b)K+, an event which occurs
with a small probability that may be beyond the reach of the LNA. Moreover, the effective theory yielding the approximation
φ ≃ φq is based on the behavior at high switching rate and may be less accurate when ν ≪ 1 than in the regimes of intermediate
and fast switching.





Conclusions

My thesis aimed at investigating the role of stochastic effects, social interaction, and growth in bacterial popu-
lations. The results show that these factors have deep and complex effects on the evolution of the population,
and interplay intricately with each other. Population growth dampens the impact of demographic fluctuations,
and the way social interactions, such as the exchange of public goods, tweak the environmental conditions,
thus changing population growth. Stochastic aspects, meanwhile, hover around all facets of the problem.
Unpredictable environments, for example, drive or stunt growth; demographic fluctuations change the inter-
nal composition of the population; and compositional variability coupled with public good dynamics affects
population-level competition.

The first part—Stochasticity and social interactions in bacterial growth—brings to the fore the extreme com-
plexity of bacterial systems. Plenty of theoretical models capture some aspect of the evolution of bacteria, but
often take biological details for granted. As my research shows, these details do matter when it comes to de-
scribing specific bacterial systems. Their rigorous, quantitative modeling, although challenging, is possible, and
reveals otherwise inaccessible aspects of the dynamics. The second part—Combined effects of environmental and
demographic noise—highlights the diverse roles the environment plays in evolution. Environmental conditions
do more than just directing the arrow of natural selection, and their effects run deeper than simply tuning of
the relative weight of fluctuations. My results show how we can mathematically untangle these manifold effects.

More broadly, this work taught me a few lessons about theoretical modeling and biological systems. Ore is
just how many forces are at work in evolution—in this specific case, the evolution of cooperation. My thesis
shows rich interactions, despite only investigating the role of demographic fluctuations and competition between
populations. The question of the emergence of cooperation is often treated by packing all complexity into few
parameters or simplified two-player games. Although these approaches can give great insight into the broad
principles of the problem, they have limitations that need to be reckoned with when it comes to real bacterial
systems. The most glaring example my work presents is the study of a specific public good interaction. The
traditional ways to phrase the problem—inclusive fitness and the prisoner’s dilemma—completely neglect the
intrinsic many-player nature of the interaction, as well as the potential accumulation of the public good. As
I show, relevant details must be identified, quantified, and included in a model of an actual bacterial system,
especially when aiming at quantitative results.

Perhaps the most important lesson concerns the fundamental difficulty of using bacteria as model systems.
Thanks to their fast reproduction, relative simplicity, and almost “programmability”, bacteria represent the
best option to model the evolution of cooperation and similar problems. Yet, they are not automatons. They
will try and take any action to survive whenever they are tasked with anything less than advantageous. Bacteria
do not do what they are told: they do what they can to survive. A theoretical framework may therefore describe
a social interaction in one bacterial species and not in an other, and specific adaptations need to be addressed
when extrapolating to general principles.

Including more biological details is also the most interesting possible development to this part of my work.
Particularly in Chapter 2, we considered a simplified interaction, involving a mutant constitutive producer
(which always synthesizes the public good). Wild-type Pseudomonas, however, evolved complex regulatory
networks whereby the public good abundance influences further production, as well as the cell’s metabolism.
This certainly affects the growth dynamics of individuals and of the population as a whole. As for the second,
more theoretical part of my research, its natural continuation involves experimentally testing the effects of
unpredictable environmental conditions. It would be interesting to investigate the effect of changing different
aspects of the environment (for example, resources abundance, temperature, or presence of antibiotics). Would
cells develop mechanisms to actively cope with the changing environment? How would the conditions affect
their social interactions?

In a broader context (and at much larger scale), my research represents a small step in a larger journey
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to understand the inner workings of bacterial colonies, as well as their relation to their environment. Studies
in this field will eventually trace paths in some at the most important frontiers of modern biomedicine. For
example, the study of the microbiome, whose increasingly recognized importance led it to be considered akin to
an additional organ. This new “organ” can only be studied once we understand the complex social structures
at its foundations. Manipulating bacterial societies can also help in the search for alternatives to antibiotics.
Acting to unravel the social fabric of a population could prove more effective (and less prone to the evolution of
resistance) than showering microbes with drugs. My work highlights how powerful the combination of biology
and physics can be in solving these extremely complex, but vital, puzzles.
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