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1 NANOPARTICLES AS DRUG DELIVERY SYSTEM 

Since the 1970s nanoparticles are increasingly researched as drug delivery systems. 

One reason is that they have several advantages, such as being able to target 

different organs, e.g. the lymphatic system, the brain, the lung, the liver and the 

spleen, as well as tumours. Furthermore, nanoparticles are capable to carry various 

drugs, including hydrophilic and lipophilic molecules, proteins, nucleic acids, 

vaccines and other biological macromolecules. This specific delivery enables that 

therapeutic effects can be improved at the intended target site and systemic toxic 

side effects can be reduced [1]. Besides this, nanoparticles can protect the drug from 

(bio)degradation and consequently increase its bioavailability [2]. Both 

characteristics may allow a dose reduction. Other important advantage of 

nanoparticles is their ability to create a controlled and sustained release of the drug, 

as well as an enhanced cellular uptake [3-5]. All these points show why there is a 

strong research interest in nanoparticulate drug delivery systems.  

2 MATERIALS FOR NANOPARTICLE PREPARATION 

2.1 SYNTHETIC AND NON-PROTEINEOUS BASE MATERIALS 

A variety of different starting materials is available to prepare nanoparticles for 

pharmaceutical purposes. Generally, these materials should be biocompatible and 

at least partly biodegradable. Nanoparticles may be prepared from synthetic 

polymers, such as polyethylenimine (PEI), poly(lactic-co-glycolic) acid (PLGA), or 

natural polymers, such as polysaccharides or lipids [3, 6-8].  

The polymer PEI was demonstrated to be a potential non-viral gene delivery system 

in vitro and in vivo. Here, nucleic acids were attached to the cationic polymer by 

electrostatic interactions [9, 10]. However, due to a rather high toxicity of the 

material combined with a strong complement activation, the dosing is limited [11, 

12]. Certainly, this could successfully be overcome by structural modifications of the 

polymer, such as PEGylation or introduction of negatively charged residues [12-14]. 
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Nonetheless, due to the lack of biodegradability and subsequent accumulation of the 

polymer when multiple administered, further biodegradable derivatives need to be 

developed [15]. 

On the other hand, PLGA is a widely used starting material for drug delivery systems 

as it is biocompatible, biodegradable and approved by the US Food and Drug 

Administration (FDA). It solely consists of acids, which are part of the human 

metabolism, lactic acid and glycolic acid. Furthermore, by changing the ratio of the 

particular components or the molecular weight, its physical properties, such as 

mechanical strength, swelling behaviour or degradation time frame can be 

controlled. Therefore, it is mostly researched for controlled and sustained delivery 

of small molecules, proteins or nucleic acids [16, 17]. Due to tuneable particle sizes, 

PLGA based nanoparticles can be used to target different parts of the immune 

system, such as antigen presenting cells (APCs) or the lymph nodes. In combination 

with a prolonged release, a more effective immune response can be initiated when 

antigens are applied via PLGA nanoparticles [16]. Nevertheless, when PLGA 

derivatives are degraded, acidic components are released resulting in a 

microclimate pH drop [18, 19]. This may affect sensitive active pharmaceutical 

ingredients, such as proteins or nucleic acids. 

Thirdly, lipids are established materials to prepare nanoparticulate carries for drug 

delivery as they are biodegradable and non-toxic. This class includes, inter alia, solid 

lipid nanoparticles (SLNs) and liposomes. SLNs are composed of lipids that are solid 

at room and body temperature and offer several advantages: great physical stability, 

controlled or sustained drug release, protection of the drug from degradation and 

good physiological tolerability [8]. Their main disadvantage is a possible burst drug 

release due to polymorphic transitions of the lipids during storage [8]. However, this 

could be circumvented by optimal storage conditions, lipid composition and 

addition of emulsifiers [20]. Besides small molecules, SLNs are also used to carry 

macromolecules, such as proteins or nucleic acids [21-23]. However, there is still 

few research regarding vaccination or immunotherapy using SLNs. On the other 

hand, liposomes demonstrate a lipidic nanoparticulate drug delivery system 
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intensively utilised to target the immune system [24]. They offer the possibility to 

incorporate various types of antigens and adjuvants, either into their aqueous core 

or into the phospholipid bilayer. In addition, attachment of the payload onto the 

particle’s surface is possible. Furthermore, due to modifiable features, such as 

particle size, size distribution, lipid composition or charge, different types of 

immune reaction can be stimulated [25]. The excellent potential of liposomes to 

acitvate the immune system is proved by two marketed 

vaccines (Epaxal®, hepatitis A vaccine and Inflexal® V, influenza vaccine) and one 

cancer vaccine (Stimuvax®), which is tested in a phase III clinical trial [26]. 

Moreover, liposomes showed good clinical effects in delivering plasmid DNA to treat 

allergic diseases, such as canine atopic dermatitis, and are able to enhance the 

immunotherapeutic efficacy of cytosine phosphate guanine oligonucleotides 

(CpG ODNs) in the treatment of cancer and infectious diseases [27, 28]. However, to 

prepare effective lipoplexes (liposomes carrying nucleic acids) cationic lipids are 

often required, which are known to be cytotoxic in vitro and in vivo [29]. 

Furthermore, they are less stable against biological and physiological stresses 

compared to polymeric nanoparticles [30]. 

2.2 PROTEINS AS BIODEGRADABLE BASE MATERIALS FOR NANOPARTICLES 

Proteins are intensely studied for the preparation of nanoparticles. Proteins consist 

of different amino acids and therefore, many moieties are available for chemical 

modification (covalent or non-covalent) in the matrix or on the particle surface. 

Altering the particle surface allows attaching bioactives and/or targeted 

delivery [31]. Due to their biodegradability, the accumulation of proteins is unlikely 

to occur and degradation products are usually non-toxic [32].  

Considering multiple dose administrations of protein nanoparticles, possible 

immunogenicity associated with the protein particles should be kept in mind. 

However, there are mechanisms to metabolise natural proteins. Rapid enzymatic 

degradation is expected to decrease the chance of triggering an immune 

response [31]. The long parenteral use of gelatine and albumin nanoparticles 
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support this statement. Particles based on human serum albumin (HSA) have been 

thoroughly researched and their characteristics are well-established [3]. The first 

nanoparticulate product licensed for the use in humans is based on 

HSA (Abraxane®) and was marketed in 2005 [3]. Many in vitro and in vivo studies 

showed that albumin nanoparticles have a high drug loading capacity for a variety 

of active agents (hydrophilic, hydrophobic, proteins, oligonucleotides) [30]. 

Furthermore, they are both biodegradable and biocompatible and capable of 

crossing the blood brain barrier [33]. Although, albumin nanoparticles are 

promising drug carriers and successfully tested in delivering interferon γ (IFN-γ) to 

macrophages, there is only few research on targeting the immune system [34, 35]. 

Particles based on recombinant silk protein have been developed as promising drug 

delivery systems due to their biocompatibility, slow biodegradability, mechanical 

properties, controllable morphology and structure [36]. Further advantage is that 

silk nanoparticles can be prepared by desolvation of the protein without the need of 

organic solvents [37-39]. Moreover, they show a constant drug release and 

promising results as vaccine carriers [40, 41]. However, the recombinant 

production causes high prices for the starting material. 

 

Besides these different synthetic and natural starting materials, this work will 

concentrate on nanoparticles prepared of gelatine. 

2.3  WHY GELATINE NANOPARTICLES? 

Gelatine is a natural polymer obtained from collagen mainly by acidic (Type A, from 

porcine skin, isoelectric point (IEP) pH 9.0) or alkaline (Type B, from bovine ossein 

and skin, IEP pH 5.0) denaturation [42]. Abundant natural sources are an advantage 

over some other proteins and lead to low prices. Besides, gelatine is available from 

recombinant origin (recombinant human gelatine, rHG) [43]. The latter overcomes 

the problem of impurities and inhomogeneity of molar mass [43], as well as the risk 

of immunogenicity of proteins from non-human sources [42].  
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Gelatine has a long history of use in medicine due to its biodegradability, 

biocompatibility, low immunogenicity and high physiological tolerance [4]. The FDA 

classifies gelatine as “Generally Recognised as Safe” (GRAS) in the record of safety 

for food supplement [42]. Gelatine derivatives are intravenously applied as e.g. 

plasma expander (Gelafundin®, Gelafusal®) since the 1950s without serious adverse 

effects [44, 45]. Another successful medicinal use of gelatine is the application as 

patches for vascular seal (Gelsoft®, Gelseal®) [46, 47]. 

Further benefit of gelatine as starting material for nanoparticles is its variety of 

functional groups. This allows different possibilities of surface modification [48, 49], 

cross-linking [42, 50, 51] and marker coupling [52, 53]. In addition, targeting-

ligands [54, 55] as well as various types of drugs [56-58] may be coupled. Mainly, 

the amino acid lysine, providing a primary amino group, is very useful for all these 

modifications.  

Altogether, these characteristics make gelatine nanoparticles (GNPs) a promising 

carrier system for drug delivery. This is supported by the emerging interest in 

gelatine nanoparticles as drug delivery system displayed in an increasing number of 

publications over the last 20 years (Figure I-1). 
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Figure I-1 Number of publications per year regarding gelatine nanoparticles. (Source: Pubmed; 

search criteria: “gelatine nanoparticles” or “gelatin nanoparticles”). 
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3 OLIGODEOXYNUCLEOTIDE-LOADED GELATINE NANOPARTICLES AS APPROACH IN 

IMMUNOMODULATORY THERAPY 

3.1 CPG OLIGODEOXYNUCLEOTIDES AS POTENTIAL THERAPEUTIC OPTION IN ALLERGIC 

DISEASES 

The prevalence of allergic diseases, such as atopic dermatitis, is steadily rising, in 

humans as well as in domestic animals [27, 59, 60]. A prominent example in 

veterinary medicine is canine atopic dermatitis (CAD), a chronic relapsing 

inflammatory and pruritic allergic skin disease similar to human neurodermatitis. 

This multifactorial disease results from a complex interaction between genetic and 

environmental factors and involves a disrupted skin barrier, flare factors, allergic 

sensitisation and cutaneous inflammation. Furthermore, CAD is associated with IgE 

antibodies most commonly directed against environmental allergens, such as house 

dust mites and pollen [61, 62]. The acute reaction is characterised by an increase of 

Th2-derived cytokines, such as IL (Interleukine)-4, IL-5, which are involved in 

activation and degranulation of granulocytes as well as immunoglobulin isotype 

switching to pro-allergic IgE. Furthermore, IgE-coated mast cells degranulate and 

release histamine and proteases when IgEs are crosslinked by antigen. Proteins 

released from granula induce acute and delayed dermal inflammation [61, 63]. The 

acute inflammation is characterised by hyperpermeability of vasculature, whereas 

the delayed inflammation is related to tissue damage caused by pro-inflammatory 

cells. This acute allergic reaction is followed by a chronic phase of CAD, which shows 

Th1-dominant cellular inflammation marked by cytokines, such as pro-

inflammatory tumour necrosis factor α (TNF-α) and INF-γ, which activate 

macrophages [63]. Characteristic acute clinical signs are pruritus, erythrema, 

oedema or excoriations (Figure I-2) [64]. In the chronic phase, symptoms such as 

self-induced alopezia, hyperpigmentation and/or lichenification may additionally 

develop [61]. Furthermore, due to pruritus and subsequent scratching skin lesions 

increase. This is often followed by secondary infections with Malassezia yeasts or 

staphylococci, which exacerbate inflammatory reactions [63].  
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Allergen-specific immunotherapy (ASIT) is the only therapeutic approach, which is 

able to prevent the development of symptoms and modify long-term course of 

CAD [61]. However, for successful treatment, ASIT has to be performed up to a year 

and in some cases life-long therapy is necessary. Despite all efforts, the success rate 

of ASIT may only be between 50-70% [27]. 

Other available treatment options aim to control the symptoms rather than the 

origin of the disease. This includes reduction of the allergen burden, anti-

inflammatory glucocorticoids or immunosuppressive drugs, such as ciclosporin or 

tacrolimus [63]. 

 

Figure I-2 Clinical signs of acute flare of canine atopic dermatitis including erythrema, oedema and 

excoriations taken from [61]. 

A causal therapy approach would include unmethylated cytosine phosphate 

guanosine oligodeoxynucleotides (CpG ODNs) that are recognised by the innate 

immune system via Toll-like receptor (TLR) 9 [65]. The activation cascade following 

CpG ODN recognition is displayed in Figure I-3. Pro-inflammatory cytokines, such as 

INF-α and β, TNF-α or IL-6 are secreted and cellular non-specific defence 

mechanisms are induced. This includes the activation of natural killer cells, as well 
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as differentiation of Th1 effector cells. On the other hand, a humoral immune 

reaction is initiated. This leads to the suppression of allergy-associated IgE secretion 

together with an isotype switch from IgE to IgG [65]. Thus, less allergic reactions 

such as mast cell degranulation can be induced by antigen-binding IgE [65]. 

 

Figure I-3 Representation of the cascade initiated by CpG-mediated TLR 9 activation taken from [65]. 

Furthermore, IL-10 releasing regulatory T (Treg) cells are involved in the cascade 

initiated by TLR 9 activation by CpG ODNs [66]. IL-10 is a beneficial agent in the 

pathophysiology of atopic diseases by modulating mechanisms associated with 

allergies. For instance, IL-10 inhibits the pro-allergic IgG to IgE switch as well as the 

activation of mast cells and dendritic cells. In this way, the production of pro-

inflammatory cytokines, such as TNF-α and IL-6 is reduced [66]. Thus, the pro-

inflammatory Th1 shift can be controlled, too. Recent studies proved the activation 

of Treg and further release of IL-10 as promising therapeutic option in allergies [66, 

67]. 
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In summary, CpG ODNs lead to a shift from a Th2-dependent pro-allergic immune 

response to a Th1-mediated immune response. In the treatment of atopic diseases, 

such as canine atopic dermatitis, this redirection of the immune responses from Th2 

to Th1 is a very promising approach.  

3.2 GELATINE NANOPARTICLES AS DELIVERY SYSTEM FOR CPG ODNS 

When immunomodulating nucleic acids should be applied in vivo, the most 

important technical aspect is to protect them from enzymatic degradation through 

DNases. Therefore, DNAse-resistant synthetic CpG ODNs have been developed. This 

resistance could be achieved by the partial or complete substitution of oxygen of the 

phosphodiester backbone by sulphur, which results in a stable 

phosphorothioate (PTO) backbone [68]. A further approach is the application of 

nanoparticulate drug delivery systems, such as GNPs [68]. 

 

So far, only a few groups investigated the capability of nanoparticles to prevent 

DNase-dependent degradation of CpG ODNs [69]. For instance, a study by Zorzi et al. 

investigated the DNase resistance of plasmid DNA when it was incorporated into 

GNPs [70]. The authors showed stability against DNase I of the GNP-DNA system for 

at least one hour, whereas free DNA was degraded immediately. Moreover, there is 

a lack of studies probing the DNase protection of electrostatically bound CpG ODNs 

onto the surface of GNPs. Nevertheless, various successful in vitro and in vivo studies 

support the assumption that GNPs are able to protect DNA when it is attached to 

their surface [71-79]. 

Additionally, through co-delivery of CpG ODNs with GNPs the cellular uptake may 

be enhanced and an interaction of CpG ODNs with the intracellular target TLR 9 is 

more likely. Due to their sizes between 150 nm and 350 nm, which is similar to those 

of microorganisms, ODN-loaded GNPs are predominantly phagocytised by APCs [5, 

80].  
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In a previous murine in vitro and in vivo study, GNPs have proven to enhance the 

uptake and the immunostimulatory effects of CpG ODNs [71]. In the same study, 

CpG-GNPs were successfully evaluated to induce production of proinflammatory 

cytokines in human primary plasmacytoid dendritic cells and B cells [71]. The 

authors concluded that GNPs are biodegradable and well tolerated drug delivery 

systems for CpG ODNs and strongly increase activation of the immune system. A 

follow up in vivo study in a murine melanoma model confirmed these conclusions 

and showed that CpG-GNPs are superior in activating an antitumoral immune 

response compared to free CpG ODNs [72]. Furthermore, GNPs were able to prevent 

a CpG-mediated destruction of lymphoid follicles [72]. 

A further in vitro study dealing with the investigation of CpG-GNPs in the treatment 

of allergy-derived canine atopic dermatitis demonstrated a significant stronger 

increase in IL-10 production compared to free CpG ODNs [75]. Consequently, GNPs 

again showed their potential to protect nucleic acids from degradation and to 

enhance cellular uptake.  

 

Moreover, CpG-GNPs have a long history in the experimental treatment of recurrent 

airway obstruction (RAO) in horses, an allergic disease similar to human asthma. A 

first in vitro study found the optimal CpG ODN sequence to induce the desired 

immune responses, IL-4 downregulation as well as IL-10 and IFN-γ upregulation in 

equine bronchoalveolar lavage (BAL) cells [74]. Furthermore, the advantage of 

delivering CpG ODNs via GNPs was demonstrated by higher cell viabilities [74]. A 

second study showed that CpG-GNPs can be efficiently nebulised and retained their 

immunostimulatory effects in equine BAL cells [81]. 

These in vitro studies paved the way for several in vivo studies in RAO-affected 

horses and a formulation patent [76-78, 82]. Firstly, five successive inhalations of 

CpG-GNPs led to a significant induction of IL-10 release and a partial remission of 

the clinical signs [76]. This was followed by a double-blinded, placebo-controlled, 

prospective, randomized clinical trial, which showed an potent and prolonged 

clinical effect [78]. This included a decrease in respiratory effort, nasal discharge, 
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tracheal secretion and an increase in arterial oxygen pressure. Furthermore, the 

effect of a co-administration of the relevant allergens was investigated [77]. This 

study revealed that a co-application of the specific allergen is not relevant to initiate 

an appropriate immunomodulatory effect and to improve clinical parameters [77]. 

Currently, the results of a fourth clinical trial are evaluated. This investigation 

combined a dose-response study and a comparison to the standard therapy 

inhalative glucocorticoids to inhaled CpG-GNPs [83].  

 

Besides, different in vitro and in vivo studies showed that GNPs are also capable to 

carry, protect and efficiently deliver other types of nucleic acids, such as plasmid 

DNA, RNA oligonucleotides, NF-κB inhibiting decoy oligodeoxynucleotides or 

double stranded DNA and RNA oligonucleotides [49, 73, 84, 85]. 

 

These positive attributes as well as the previously mentioned biodegradability, 

biocompatibility and physiological tolerance of gelatine make GNPs very attractive 

delivery systems for CpG ODNs.  
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4 AIM OF THE THESIS 

This thesis is based on long successful research and development of GNPs in the field 

of treating allergic diseases and aimed to achieve a further step into 

commercialisation of CpG ODN-loaded GNPs.  

 

The work focusses on the preparation of gelatine nanoparticles with the aim to 

optimise the production process and provide methods for scale-up. For this, a 

straightforward one-step desolvation method was introduced to replace the 

common, but delicate two-step desolvation process. A commercially available 

gelatine type should be found that enables to perform the already described one-

step desolvation without the need of customised gelatine and subsequent large-

scale production of GNPs. Additionally, with regards to future application in 

humans, suitable non-toxic cross-linkers are investigated to substitute the 

standardly used glutaraldehyde (Chapter II). 

 

Furthermore, bearing a future commercial implementation and wide medicinal use 

in mind, this project aimed to develop a storage stable ready-to-use formulation. In 

order to achieve this, freeze-dried ODN-loaded GNPs were further developed, and 

new lyophilisation approaches were investigated, such as controlled nucleation 

prior to freeze-drying or novel amino acid containing formulation compositions. 

Furthermore, MALDI MS was examined as a versatile tool to evaluate ODN 

integrity (Chapter III).  

 

A further requirement for commercialisation and clinical use is an approach to 

sterilise the final drug product. Therefore, this project addressed the goal to 

establish suitable sterilisation processes for GNPs. For plain GNPs, this work 

researched steam sterilisation as an easy and suitable method. On the other hand, 

gamma irradiation was studied as promising sterilisation process for lyophilised 

ODN-loaded GNPs (Chapter IV). 
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In addition, this work concentrates for the first time on in vivo effects of ODN-loaded 

GNPs in the treatment of canine atopic dermatitis. A preliminary study was 

examined to provide the basis for further clinical studies. This study was carried out 

in cooperation with the small animal clinic of the Ludwig-Maximillians-Universität 

München (Chapter V). 

 

Further aim of this project, but not explicitly described in this thesis, was to supply 

different clinical studies in recurrent airway obstruction (RAO) affected horses with 

CpG-loaded GNPs. The first study dealt with the question if a co-application of CpG-

GNPs and specific allergens would further increase the efficacy of the 

treatment [77]. The main outcome of this investigation was that additive allergens 

are not necessary to initiate an efficient improvement of RAO by CpG-GNPs. The 

second study supplied during this project focussed on the determination of a dose 

response relationship and the comparison of CpG-GNP treatment with the standard 

inhalative glucocorticoid therapy [83]. The results are currently under evaluation. 

Both studies were carried out at the equine clinic of the Ludwig-Maximillians-

Universität München. Lastly, lyophilised CpG-GNPs were provided for a future 

clinical trial in racehorses suffering from a mild form of asthma, so called 

inflammatory airway disease (IAD). This study will be conducted at the equine clinic 

of the Freie Universität Berlin.  
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ABSTRACT 

Gelatine nanoparticles (GNPs) are biodegradable and biocompatible drug delivery 

systems with excellent clinical performances. A two-step desolvation is commonly 

used for their preparation, although this methodology has several shortcomings: 

lack of reproducibility, small scales and low yields. A straightforward and more 

consistent GNP preparation approach is presented with focus on the development 

of a one-step desolvation with the use of a commercially available gelatine type. 

Controlled stirring conditions and ultrafiltration are used to achieve large-scale 

production of nanoparticles of up to 2.6 g per batch. Particle size distributions are 

conserved and comparable to those determined for two-step desolvation on small 

scale. Moreover, further approaches are investigated to scale GNP production: an 

increasing contact area between gelatine solution and acetone during common 

desolvation process, as well as the alternative preparation method 

nanoprecipitation. Additionally, a range of cross-linking agents is examined for their 

effectiveness in stabilising GNPs as an alternative to glutaraldehyde. Glyceraldehyde 

demonstrated outstanding properties, which led to high colloidal stability. This 

approach optimises the manufacturing process and the scale-up of the production 

capacity, providing a clear potential for future applications. 
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Gelatine nanoparticles, one-step desolvation, scale-up, cross-linking, AF4 
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1 INTRODUCTION 

Over the past few decades, the frequency of allergic diseases, such as asthma, has 

been steadily increasing in the human population. Today, it is estimated that 300 

million people suffer from asthma worldwide, furthermore by 2025, an 

additional 100 million people will be affected [1]. Evidence also indicates that there 

are an increasing number of domestic animals, which is afflicted with allergic 

pulmonary disorders. For example, recurrent airway obstruction (RAO) is currently 

the most common airway disease in horses [2]. RAO shares many similarities with 

human asthma and is described as a genetically predisposed allergic immune 

response to inhaled environmental allergens [3]. The allergic response leads to the 

development of major clinical signs, such as bronchoconstriction, mucus 

hypersecretion and inflammation of the lower airways [2, 4]. 

Conventional therapies include corticosteroids or β2-sympathomimetics. However, 

these therapeutics only aim to improve symptoms instead of treating the underlying 

disease mechanism. Thus, there is a strong need for novel causal treatment options. 

Cytosine phosphate guanosine oligodeoxynucleotides (CpG ODNs) have been 

identified to redirect the immune response from the pro-allergic Th2 pathway to the 

pro-inflammatory Th1 via the toll-like receptor (TLR) 9 stimulation [5]. The most 

important aspects of applying immunomodulatory ODNs in vivo are their protection 

from enzymatic degradation by DNase and their delivery into cells. Both can be 

achieved by using nanoparticles as delivery systems [6, 7]. Several nanoparticles 

have provided promising results as carrier systems for CpG ODNs, such as 

mesoporous silica nanoparticles (MSN) [8], protamine nanoparticles (“proticles”) 

[9] or gelatine nanoparticles [10-13]. MSN could successfully prevent CpG ODNs 

from degradation and enhance cellular uptake [8]. However, in vitro studies using 

MSN revealed complications, such as formation of reactive oxygen species or 

inhibition of cellular respiration [14]. “Proticles” loaded with CpG ODNs showed the 

ability to prevent an allergen-induced Th2 immune response in mice [9]. 

Nevertheless, protamine may induce severe side effects, such as histamine release 

or anaphylactic reactions [15]. 
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On the other hand, gelatine is one of the most popular biopolymers and widely used 

in pharmaceutical and medical applications due to its biodegradability, 

biocompatibility and its physiological tolerance. Its unfunctionalised amine groups 

allow surface modifications that enable loading of CpG ODNs via electrostatic 

interactions. All of these features make GNPs a very attractive delivery system for 

CpG ODNs.  

An aerosol formulation of cationised GNPs loaded with CpG ODNs (CpG-GNPs) has 

previously been developed to improve the immunotherapy of RAO, and was recently 

applied successfully in several in vivo studies [10-12, 16]. The inhalation of CpG-

GNPs led to a significant improvement of clinical parameters, such as respiratory 

effort, nasal discharge or tracheal secretion in comparison to a placebo [12]. 

However, the co-application of allergens did not further increase the efficacy of this 

treatment [11, 17].  

Besides RAO in horses, CpG-GNPs also showed the first positive results in the 

treatment of allergy-derived canine atopic dermatitis [18, 19]. All these studies 

indicate that CpG-GNPs are very effective for the treatment of allergic diseases and 

provide a promising and innovative strategy beyond the conventional symptomatic 

therapies. 

 

The most common preparation method for GNPs is two-step desolvation [20]. In 

principle, stretched gelatine molecules change their conformation into coiled 

structures due to the controlled addition of acetone to a gelatine solution followed 

by the stabilisation of GNPs with a chemical cross-linker. During the first desolvation 

step, the high molecular weight (HMW) fraction of gelatine is separated from the 

low molecular weight (LMW) fraction by precipitation. In the second desolvation 

step, GNPs are formed. This separation is necessary due to the heterogeneous 

molecular mass distribution of gelatine. Monodisperse GNPs can only be formed 

from the HMW fraction. Without discarding the LMW fraction, the desolvation 

method would lead to the formation of large nanoparticles in a wide size range, 

which are prone to aggregation [20, 21]. The lab-scale preparation of these 
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nanoparticles has become a standard method, although it is susceptible to several 

issues: low particle yields, lack of reproducibility of the first desolvation step, and 

difficult process scale-up.  

Due to the exceptional clinical results of GNPs as carrier systems in the treatment of 

asthmatic horses, GNPs are no longer only a research tool [10, 12]. The present work 

provides an improved and more reproducible process that enables the transfer from 

the conventional bench lab methodology to the large-scale production of GNPs. This 

novel approach is based on preliminary studies by our group led by C. Coester using 

a non-commercial, customised high molecular weight gelatine type A [22-24], which 

allowed to neglect the first irreproducible desolvation step. A previous study by 

Ofokansi and co-workers [25] demonstrated how the commercially available 

gelatine type B 225 bloom could be used in a one-step desolvation. However, this 

procedure involved a complex series of incubation steps and a strong effect of pH on 

particle size was reported. The current study was performed to establish a more 

robust and straightforward one-step desolvation for monodisperse GNPs from a 

commercially available gelatine type A 300 bloom as well as gelatine type B 300 

bloom. 

In addition to the gelatine quality, the process conditions during desolvation are 

crucial parameters for nanoparticle formation [22]. A higher gelatine concentration 

promotes higher inter-molecular interactions and co-aggregation of gelatine during 

desolvation. As a result larger nanoparticles are formed [22]. The pH value strongly 

influences the net charge of gelatine. If the pH of the gelatine solution is similar to 

the isoelectric point (IEP), the overall net charge is insufficient and particle 

aggregation most likely occurs [22, 26]. However, the further away the pH value is 

from the IEP, the more sufficiently charged the particles are and higher 

intermolecular electrostatic repulsion forces prevent aggregation, but the particle 

size and yield decrease. If the pH is too far away from IEP, the net charge is too strong 

to allow desolvation and nanoparticle formation. Moreover, the solvent used for 

desolvation has an influence on particle characteristics. Commonly used solvents 

are acetone and ethanol, where acetone is the preferred desolvation agent due to 
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smaller particle sizes and lower PDI values [26]. Azarmi et al. could show that GNPs 

prepared with ethanol showed particles, which were 100 – 150 nm larger in size 

than GNPs prepared with acetone [26]. 

Two-step desolvation has become the standard preparation process for gelatine 

nanoparticles, but a reliable scale-up method has not yet been established [27]. It is 

known from human serum albumin (HSA) nanoparticles that a higher stirring 

efficiency during desolvation enabled large-scale preparation without a negative 

influence on particle size or size distribution [28]. With a paddle stirrer, a 

homogeneous distribution of the HSA molecules could be ensured, which was not 

achieved sufficiently with a stirring bar due to reduced stirring efficiency in higher 

volumes and irregular hydrodynamics. This principle was transferrable to GNP 

preparation by one-step desolvation. Furthermore, the purification process could be 

enhanced by ultrafiltration. 

Aside from pH value and stirring efficiency, the contact area between gelatine 

solution and desolvation agent was defined as an important process parameter [29]. 

The GNP formation mainly occurs at the surface of the gelatine solution where the 

desolvation agent gets in contact with the gelatine molecules and causes interfacial 

turbulences [30]. By enlarging this area, GNP output should increase, too. The 

present study was conducted to evaluate if expanding this area via spreading the 

tubes, which are used to add acetone, over the whole gelatine solution or using a 

dual syringe pump system could efficiently raise GNP yield.  

A completely different concept to optimise and scale GNP preparation is via 

nanoprecipitation [31]. For this approach two miscible solvents are required. 

Gelatine should be soluble in one of them (typically water) and insoluble in the other 

liquid (“non-solvent”, typically ethanol). The aqueous gelatine solution is slowly 

poured into the “non-solvent” phase containing a stabiliser, such as 

poloxamer 407 [31]. Due to the miscibility of the liquids a violent diffusion is 

observed, which causes the torn of small solvent droplets from the interface. The 

stabilising agent rapidly preserves these droplets until the solvent is completely 

spread and protein coagulation occurs [30]. Khan and Schneider have stated that 
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nanoprecipitation is an advantageous, rapid and easy method that enables the 

preparation of nanoparticles (approximately 200 - 250 nm) with unimodal size 

distribution [31]. The following study was performed to investigate the feasibility of 

nanoprecipitation for GNP scale-up.  

 

Micro- and nanoparticles are commonly prepared through glutaraldehyde cross-

linking of gelatine [32, 33]. Although glutaraldehyde is well established as a cross-

linker, it represents a potential risk to humans and can cause irritations and 

inflammations at low concentrations [34, 35]. It is therefore essential to remove any 

unconsumed glutaraldehyde after particle preparation. As these systems could 

potentially be used for treating human diseases, more suitable and safer cross-

linking agents have to be identified. Alternative cross-linking methods for GNP 

preparation such as genipin [36], transglutaminase [37] or glyceraldehyde [38] have 

previously been investigated. Nonetheless, none of these has successfully 

substituted glutaraldehyde as the standard cross-linking agent. In this study, we 

addressed whether particle stabilisation with genipin or glyceraldehyde could 

generate GNPs with properties comparable to those stabilised with glutaraldehyde.  

 

Due to the increasing biological application of CpG-loaded GNPs, this study aimed to 

simplify the desolvation manufacturing process in order to improve reproducibility, 

as well as the rate of yield. A screening of factors, such as gelatine type, 

concentration, pH value and contact area was performed on small scales. 

Furthermore, nanoprecipitation was examined as a different GNP preparation 

method. To evaluate the effect of alternative cross-linking agents, we studied 

incubation time, cross-linking degree and colloidal stability. 
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2 MATERIALS AND METHODS 

2.1  MATERIALS 

Gelatine type A 300 bloom and gelatine type B 300 bloom were obtained from Gelita 

AG (Eberbach, Germany). Acetone was supplied by Fisher Chemicals 

(Loughborough, UK). Gelatine type A 175 bloom, type A 100 bloom, type B 75 bloom, 

glutaraldehyde (25% solution), glyceraldehyde, 1-Ethyl-3-(3-

dimethylaminopropyl) carbodiimide (EDC), (2-Aminoethyl) trimethylammonium 

chloride hydrochloride (Cholamine), 2,4,6-Trinitrobenzenesulfonic acid (TNBS) and 

poloxamer 407 were purchased from Sigma (Taufkirchen, Germany). Genipin was 

acquired from Wako Chemicals GmbH (Neuss, Germany). Highly purified water 

(HPW), which was produced by a PURELAB Plus device (conductivity < 0.055 

µS/cm, Elga Labwater, Celle, Germany), was used in all experiments. 

2.2  PREPARATION OF GELATINE NANOPARTICLES 

2.2.1 OPTIMISATION OF GELATINE NANOPARTICLE PREPARATION 

Gelatine nanoparticles were prepared either by two-step desolvation [20] or one-

step desolvation [24], as a modification of the common two-step desolvation 

method. In brief, an amount of 750 mg gelatine type A 300 bloom was dissolved in a 

volume of 25 mL of HPW under constant stirring at 50°C. The pH was adjusted to a 

value below the isoelectric point (IEP pH 8 – 9). In case of gelatine type B 300 bloom 

the pH was adjusted to a value above the isoelectric point (IEP pH 4.5 – 5.0). Acetone 

was then added drop-wise to the gelatine solution in order to initiate desolvation 

and nanoparticle formation. With respect to particle stability, a volume of 175 µL 

glutaraldehyde solution was added to cross-link GNPs. The dispersion was stirred 

overnight and purified by two-fold centrifugation (20000*g for 15 min; Sigma 

Laborzentrifugen, Osterode, Germany).  
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Varied gelatine concentrations [2.0%, 3.0%, 4.0% and 5.0% (w/v)] were 

investigated as well as different pH values between 2.5 - 3.0 and 6.0 – 8.0 for gelatine 

type A and B, respectively, at a fixed initial gelatine concentration [3.0% (w/v)]. 

With the aim to scale up the one-step desolvation process, the five-fold 

amount (3.75 g) of gelatine type A 300 bloom was used and GNP preparation was 

performed as mentioned above. 

2.2.2 CATIONISATION OF GELATINE NANOPARTICLES  

Cationisation of GNPs was performed according to the standard protocol [39]. In 

brief, GNP dispersion was diluted with HPW (1-2 mg/mL) and pH was adjusted to a 

value between 4.5 and 5.0. Then, 50 mg of each 1-Ethyl-3-(3-dimethylaminopropyl) 

carbodiimide (EDC) and (2-Aminoethyl) trimethylammonium chloride 

hydrochloride (Cholamine) were added. The reaction mixture was incubated for 

30 min and purified by two-fold centrifugation (16000*g for 15 min; Sigma 

Laborzentrifugen, Osterode, Germany). 

2.2.3 GELATINE NANOPARTICLE PURIFICATION BY ULTRAFILTRATION 

The GNP dispersion was purified via ultrafiltration using a solvent resistant stirred 

cell (Millipore S.A.S., Molsheim, France) with an ultrafiltration disc of regenerated 

cellulose and a molecular weight cut-off of 100’000 kDa (Millipore S.A.S., Molsheim, 

France). To ensure purification from acetone and residual glutaraldehyde, the 

filtration was repeated three times. 

2.2.4 ALTERNATIVE APPROACHES TO INCREASE PARTICLE YIELD 

INCREASING THE CONTACT AREA BETWEEN GELATINE AND ACETONE 

Gelatine nanoparticles were prepared using the standard two-step desolvation 

method [20]. As a modification, the way of adding acetone to induce desolvation, 

was changed. During the second desolvation step the contact area between gelatine 
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and acetone was increased by positioning the two tubes in opposite position. In a 

second experiment, a peristaltic pump using six tubes (MINIPLUS 3, Gilson Inc., 

Middleton, USA) was utilised. During the acetone addition, the tubes were placed 

over the whole area of the gelatine solution. 

DUAL SYRINGE PUMP SYSTEM 

The standard two step desolvation method [20] was modified to adopt the process 

to the dual syringe pump 100 DX system (Teledyne Isco, Lincoln, USA) used for e.g. 

spider silk particle production [40]. The first desolvation step was performed in the 

standard manner, which is necessary to separate the LMW fraction of gelatine. The 

dual syringe pump system was used to perform the second desolvation step. After 

discarding the LMW fraction, the gelatine sediment was redispersed in a volume of 

25 mL of HPW and pH adjusted (pH 2.5 - 3.0). Subsequently, the gelatine solution 

was filled into one of the two syringes (max. filling volume 100 mL). The other 

syringe was filled with 100 mL acetone and both syringes were connected via a T-

shaped mixing element. Both liquids were mixed with a flow rate ratio of 1:3 

(gelatine solution: acetone). Afterwards, GNPs were cross-linked by 

glutaraldehyde (25%). 

NANOPRECIPITATION 

Nanoprecipitation was performed as described by Khan and Schneider [31]. 

Gelatine of different type and bloom number was dissolved in highly purified water 

under stirring and heating (50°C). Afterwards, the gelatine solution was added 

dropwise to an ethanol solution 95% (v/v) that contained poloxamer 407 as a 

stabiliser. Subsequently, formed GNPs were cross-linked by the addition of 

glutaraldehyde (25%). The exact compositions of the solutions are presented in 

Table II-1.  
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Table II-1 Different formulation compositions for preparation of GNPs by nanoprecipitation. 

Formulation 

Composition 

Gelatine type/ 

Bloom number 

Gelatine conc. 

[mg/mL] 

Ratio gelatine 

solution: ethanol 

Conc. Poloxamer 

407 [%] (w/v) 

A A / 175 bloom 25 1:10 7 

B A / 175 bloom 25  1:10 10 

C A / 100 bloom 25  1:10 7 

D A / 100 bloom 25  1:10 10 

E B / 75 bloom 25  1:10 7 

F B / 75 bloom 25  1:10 10 

G B / 75 bloom 20  1:10 10 

 

2.2.5 EVALUATION OF ALTERNATIVE CROSS-LINKING AGENTS 

Plain GNPs were prepared by one-step desolvation according to the aforementioned 

protocol without subsequent cross-linking by glutaraldehyde. To stabilise GNPs, 

either glyceraldehyde or genipin were added. Different pH conditions as well as 

cross-linking agent concentrations were evaluated (Table II-2). After incubation, 

GNPs were purified by two-fold centrifugation and redispersed in HPW. GNPs were 

stored at 4°C and colloidal stability was tested by measuring particle size and PDI 

values over a period of 35 days.  

Table II-2 Concentrations and pH conditions of alternative cross-linking agents. (*referred to volume 

of gelatine solution). 

Gelatine Cross-linking agent pH value 
Conc. cross-linking 

agent [mg/mL] * 

Incubation 

time [h] 

Type A Glyceraldehyde 2.5-3 8-20 20-65 

Type A Genipin 2.5-4.5 10-30 24-48 

Type B Glyceraldehyde 6-7 10-30 19 

Type B Genipin 6 10-30 19 

Scaled batches using glyceraldehyde as cross-linking agent were performed 

following the standard procedure of one-step desolvation with the five-fold amount 

of gelatine (3.75 g) and purification by ultrafiltration. 
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2.3  CHARACTERISATION OF GELATINE BULK MATERIAL BY ASYMMETRIC FLOW FIELD-FLOW 

FRACTIONATION (AF4) 

Characterisation of gelatine bulk material was performed by asymmetric field flow-

field fractionation (AF4). Gelatine type A 300 bloom and gelatine type B 300 bloom 

were analysed. Control samples were standard gelatine type A 175 bloom, the 

sediment, which is obtained by the first desolvation step during two-step 

desolvation, as well as customised gelatine (VP413-2) that possessed less 

than 20% (w/w) peptides < 65 kDa. Measurements were conducted with a Wyatt 

Eclipse 2 system (Wyatt Technology, Dernbach Germany) combined with an 

Agilent 1100 HPLC system (Agilent Technologies, Palo Alto, USA) equipped with UV 

and RI detection and a Wyatt Dawn Eos multi-angle laser light scattering (MALS) 

detector. The refractive index increment dn/dc was set to 0.174 mL/g and the 

second virial coefficient was set to 0. The channel height was 350 μm and a 

regenerated cellulose membrane with 10 kDa molecular weight cut-off was applied. 

Phosphate buffer (2M Na2HPO4 * 2 H2O) pH 6.0 was chosen as running buffer. 

According to Schultes et al. [41] channel flow was set to 1.0 mL/min and a cross flow 

of 0.05 mL/min was applied. The complete measurement period was 20 minutes.  

2.4  CHARACTERISATION OF GELATINE NANOPARTICLES 

2.4.1 PARTICLE SIZE AND ZETA POTENTIAL MEASUREMENTS  

Particle size and polydispersity index (PDI) were determined by dynamic light 

scattering (DLS) using a Zetasizer Nano ZS (Malvern Instruments, Worcestershire, 

UK). Zeta potential measurements were carried out by electrophoretic light 

scattering with the Zetasizer Nano ZS.  

2.4.2 PARTICLE CONCENTRATION 

The particle concentration was obtained via gravimetric determination using a 

UMX2 ultra-microbalance (Mettler Toledo, Greifensee, Switzerland). 



Optimisation of One-Step Desolvation and Scale-Up of GNP Production 

 

 

 
37 

 

2.4.3 DETERMINATION OF CROSS-LINKING DEGREE 

Cross-linking degree of GNPs was determined by TNBS assay. Briefly, an aliquot of 

the GNP dispersion was diluted with HPW to a certain concentration (1 mg GNPs in 

total volume of 250 µL). A volume of 0.25 mL of 0.05% TNBS (v/v) (Sigma Aldrich 

Chemie GmbH, Steinheim, Germany) and 0.25 mL of 4% NaHCO3 (w/v) (pH 8.5, 

Sigma Aldrich Chemie GmbH, Steinheim, Germany) were added. The samples were 

incubated in a Thermomixer (Eppendorf, Hamburg, Germany) for 2 hours under 

constant shaking (500 rpm) at 40°C. A volume of 750 µL of HCl 6M was then added 

to each sample, which were further incubated for 90 min at 60°C under constant 

shaking at 500 rpm. Subsequently, specimens were diluted with HPW for 

photometric determination of the reaction product at 349 nm (Agilent 8453 UV-

visible sprectrophotometer, Agilent Technologies, Santa Clara, CA, USA). Blank 

samples of gelatine (≙ 0% cross-linking) and control samples of gelatine (≙ 100% 

cross-linking) were prepared. The control samples were treated as the specimens 

except that HCl was added prior to the TNBS solution to avoid the reaction between 

TNBS and free amino groups of gelatine. Cross-linking degree was determined by 

the following equation: 

𝐶𝐿 [%] = (1 −
𝐴(𝑠𝑎𝑚𝑝𝑙𝑒) − 𝐴(𝑏𝑙𝑎𝑛𝑘)

𝐴(𝑐𝑜𝑛𝑡𝑟𝑜𝑙) − 𝐴(𝑏𝑙𝑎𝑛𝑘)
) ∗ 100% 

2.4.4 SCANNING ELECTRON MICROSCOPY (SEM) 

Gelatine nanoparticles were freeze dried according to the protocol of 

Zillies et al. [42] and immobilised on an aluminium sample grid. Samples were 

carbon sputtered under vacuum and analysed by a Helios NanoLab G3 UC scanning 

electron microscope (FEI, Hillsboro, Oregon, USA) at 2.0 kV and a working distance 

of 4.0 – 4.2 mm.  
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2.5  STATISTICAL EVALUATION 

Data were analysed for difference in particle yields between standard and scaled 

batches using a paired t-test performed by SigmaPlot 12.5 (Systat Software Inc., 

Erkrath, Germany). 

  



Optimisation of One-Step Desolvation and Scale-Up of GNP Production 

 

 

 
39 

 

3 RESULTS 

The objective of the present study was to optimise the manufacturing procedure for 

gelatine-based nanoparticles with the main focus on method robustness and overall 

particle yield. Here we present an enhanced and scalable gelatine nanoparticle 

preparation process using a commercially available gelatine in combination with a 

paddle stirring system (Figure II-1).  

 

Figure II-1 Schematic representation of the optimised gelatine nanoparticle preparation process and 

scale-up. 

3.1  PREPARATION OF GELATINE NANOPARTICLES BY ONE-STEP DESOLVATION 

3.1.1 EFFECT OF GELATINE CONCENTRATION AND PH VALUE 

TYPE A 300 BLOOM 

As reported in a previous study [22], the initial gelatine concentration and the pH 

value during desolvation with acetone are crucial parameters for nanoparticle 

formation. Here, we screened various gelatine concentrations and a range of pH 

values in order to define optimal conditions required for particle formation during 

one-step desolvation using gelatine type A.  

The different gelatine amounts and their effect on particle size and yields are shown 

in Figure II-2. The particles obtained had diameters between 150 – 300 nm, with a 

uniform size distribution (PDI < 0.15). The gelatine concentration affected the 



Chapter II 

 

 

 
40 

 

particle size, whereby a higher input led to an increase in measured diameter. An 

initial increase in yield was observed with increasing gelatine concentrations; 

however, the percentage decreased with 4% and 5% of gelatine. In comparison to 

the two-step desolvation (yield ca. 1.5%), all batches showed higher particle yields. 

 

Figure II-2 Particle characteristics of GNPs prepared by one-step desolvation. Effect of 

concentrations on size and yield for gelatine type A 300 bloom (particle size: black dots, relative 

particle yield: black triangles) and type B 300 bloom (particle size: white dots, relative particle 

yield: white triangles) compared to two-step desolvation (particle size: dashed line, relative particle 

yield: dotted line). Data is presented as mean ± SD (n=3). 

To ensure that particles were formed with the pH conditions used for two-step 

desolvation, a range of pH 2.5-3.0 was tested during the desolvation process. At any 

value investigated, particles were obtained, which met the required criteria based 

on the results of common two-step desolvation (Figure II-3). This includes particle 

sizes between 150 – 200 nm and PDI values below 0.2. Thus, by using a gelatine type 

with 300 bloom, successful one-step desolvation can be performed without the 

initial drawback of a broad size distribution. 
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Figure II-3 Particle sizes (bars) and PDI values (dots) of GNPs prepared by one-step desolvation of 

gelatine type A 300 bloom at different pH values compared to two-step desolvation (particle 

size: dashed line, upper limit PDI value: dotted line). Data is represented as mean ± SD (n=3): 

TYPE B 300 BLOOM 

In the interest of producing GNPs with alternative particle characteristics, such as a 

negative surface charge, the one-step desolvation process was adapted to gelatine 

type B 300 bloom. Gelatine type B has an IEP of 4.7 – 5.6 [43] and thus leads to the 

formation of negatively charged particles at pH value between 6.0 – 8.0. Again, 

different initial gelatine concentrations [2-5% (w/v)] and pH values beyond the IEP 

were evaluated (pH 4.7 – 5.6). Similar to gelatine type A 300 bloom, the particle 

diameter became larger with increased initial gelatine amount (Figure II-2). No 

effect was observed on the homogeneity of the samples and all GNP batches showed 

uniform size distribution (PDI < 0.15). In contrast to gelatine type A 300 bloom, 

higher initial concentrations of type B resulted in higher particle yields.  

For further experiments, a gelatine concentration of 3% was chosen for both 

gelatine types due to acceptable particle yields combined with adequate particle size 

and PDI value. 
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The evaluation of different pH values during desolvation showed smaller particle 

sizes as well as decreasing particle yields with increasing pH (Figure II-4). The 

further away the pH value was from the IEP, the higher the net charge of the gelatine 

molecules was. This results in stronger intermolecular electrostatic repulsion 

forces, which hinder the inter-molecular co-aggregation and thus particles with 

smaller diameter are formed.  

 

Figure II-4 Particle characteristics of GNPs prepared by one-step desolvation. Particle size (dots) and 

relative particle yield (triangles) of GNPs prepared at different pH values by one-step desolvation 

from gelatine type B 300 bloom compared to two-step desolvation (particle size: dashed line, relative 

particle yield: dotted line). Data is presented as mean ± SD (n=3). 

3.1.2 MEAN MOLECULAR WEIGHT OF GELATINE BASE MATERIAL 

The different types of gelatine starting material were analysed by AF4/MALS to 

determine their molecular weight distributions. The samples suitable for one-step 

desolvation (A 300 bloom and B 300 bloom) were compared to the standard gelatine 

type A 175 bloom, its sediment, as well as customised gelatine VP413-2 with a 

reduced LMW fraction. The aim of this study was to identify a range of molecular 

weights where GNP preparation by one-step desolvation is possible. Compared to 
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the customised gelatine batch VP413-2 (ca. 700 kDa), the standard gelatine A 175 

bloom (ca. 300 kDa) showed a lower mean molecular weight (Figure II-5). The 

molecular weight of the sediment was found to be around 400 – 500 kDa and the 

distribution of the gelatine qualities used for the one-step approach were 

comparable to that of the sediment. This demonstrated that a slight shift to a higher 

mean molecular weight was sufficient to enable one-step desolvation instead of two-

step desolvation.  

 

Figure II-5 Differences in molecular weight distribution of the various gelatine types and the 

sediment: Gelatine type A 175 bloom (A), sediment of gelatine type A 175 bloom after first 

desolvation (B), gelatine type A 300 bloom (C), gelatine type B 300 bloom (D), customised gelatine 

VP413–2 (E). 

3.2  SCALE-UP OF DESOLVATION PROCESS  

In addition to the optimisation of the GNP preparation process, scale-up was a 

central focus of this work. Attempts to maximize the production capacity of the two-

step desolvation have met major obstacles, such as reduced efficiency of the process. 

We were able to successfully enlarge the overall yield of the GNP preparation 

process by combining the one-step desolvation method with a paddle stirrer system 

that provided a tailored mixing intensity and thus more control over the mixing 
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efficiency (Figure II-6). Application of a five-fold initial gelatine amount (type A 300 

bloom) yielded 388.6 ± 53.3 mg per batch as opposed to 50-60 mg achieved with the 

standard batch size for one-step desolvation. Measured particle diameters 

were 185.2 ± 32.6 nm (PDI 0.070 ± 0,050) and therefore met the requirements.  

To increase the particle yield further and also to lower the particle loss during 

purification by centrifugation, ultrafiltration was performed. The purification of 

GNP dispersions using an ultrafiltration cell enabled the preparation of GNPs with a 

particle size of 120.4 nm ± 5.0 nm with a homogeneous size 

distribution (PDI 0.076 ± 0.014). Highly concentrated GNP dispersions were 

achieved with a particle yield of 69 – 83%, referring to 587.5 mg ± 58.4 mg 

GNPs (standard batch size). The combination of the scaled batch size and 

purification with the ultrafiltration cell significantly increased the yield 

to 2627 mg ± 163.8 mg, corresponding to ca. 70% (Figure II-6, p < 0.001). Taken 

together, with a 130-fold overall particle gain compared to two-step desolvation, 

this advanced methodology provides GNPs in high availability with reproducible 

product quality. 

  



Optimisation of One-Step Desolvation and Scale-Up of GNP Production 

 

 

 
45 

 

 

Figure II-6 Particle yields of GNPs prepared by one-step desolvation from gelatine type A 300 bloom. 

Comparison of standard batch size and purification by centrifugation (black bar), scaled batch size 

and purification by centrifugation (light grey striped bar), standard batch size and purification by 

ultrafiltration (dark grey striped bar) and scaled batch size and purification by ultrafiltration (light 

grey chequered bar). Data is presented as mean + SD (n=3). *** p < 0.001. 

3.3  SURFACE PROPERTIES OF GNPS 

The overall surface charge of gelatine nanoparticles prepared by two- or one-step 

desolvation, different preparation process and types of gelatine (A 300 bloom and 

B 300 bloom) were investigated using electrophoretic light scattering (Figure II-7). 

These measurements enabled comparison of the surface properties of the different 

GNP batches from gelatine type A prepared by two-step or one-step desolvation. 

Through cationisation, the zeta potential of the particles can be increased by at 

least 5 mV. Interestingly, the scaled one-step desolvation batches (gelatine type 

A 300 bloom) showed the highest zeta potential before and after cationisation. In 

contrast, GNPs from gelatine type B 300 bloom showed negative surface charge due 

to the pH value beyond the IEP during particle formation. Nevertheless, the standard 

cationisation process generated a permanent positive surface charge on GNPs from 
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gelatine type B, which is comparable to the zeta potential of cationised GNPs from 

gelatine type A. 

 

Figure II-7 Zeta potential of non-cationised (black bars) and cationised (grey striped bars) GNPs 

prepared by two-step desolvation from gelatine type A 175 bloom (TSD A175), one-step desolvation 

from gelatine type A 300 bloom (OSD A300), large scale one-step desolvation from gelatine type A 

300 bloom (OSD SC A300) and one-step desolvation from gelatine type B 300 bloom (OSD B300). 

Data is presented as mean ± SD (n=3). 

3.4  ALTERNATIVE APPROACHES TO INCREASE PARTICLE YIELD IN TWO-STEP DESOLVATION 

3.4.1 INCREASING THE CONTACT AREA BETWEEN GELATINE AND ACETONE 

Besides the importance of gelatine quality and pH value, it was stated that the area 

where acetone is added to the gelatine solution during the second desolvation step 

is crucial [29]. For that reason, two different approaches were conducted to increase 

the contact area between acetone and gelatine solution: Firstly, the two tubes for 

acetone addition were placed in the opposite position or even six tubes were used 

and evenly distributed above the gelatine solution area. Secondly, the contact area 

between the two solutions was maximized by using a dual syringe pump system for 

the second desolvation step. In this technique, the two liquids are filled into two 



Optimisation of One-Step Desolvation and Scale-Up of GNP Production 

 

 

 
47 

 

identical syringes, which are connected via a T-shaped mixing element. The 

precipitation of the nanoparticles occurs in this mixing element. 

Results of these experiments are shown in Figure II-8. Keeping apart the tubes for 

acetone addition had no negative influence on particle characteristics, as particle 

sizes and PDI values did not differ from GNPs prepared by the standard 

method (188.5 ± 25.9 nm vs. 172.2 ± 19.0 nm and 0.077 ± 0.024 vs. 0.079 ± 0.043). 

However, there was no beneficial effect on particle yield (1.3 ± 0.27% 

vs. 1.3 ± 0.35%). By using six tubes and thus further enlarging the contact area, no 

trend to higher particle yields (1.4 ± 0.50%) could be found. Nevertheless, this 

further expansion of contact area correlated with increasing particle 

sizes (207.8 ± 61.2 nm) and PDI values (0.143 ± 0.05), plus broadening of standard 

deviations. Based on these results, it can be assumed that the increase of the acetone 

contact area by a higher number of tubes would be not an option for escalation of 

GNP yields in common two-step desolvation. 

 

The maximisation of the contact area between gelatine solution and acetone by 

using the dual syringe pump system led to 50% higher particle output (2.2 ± 0.52%). 

Furthermore, this method seems to be appropriate for the preparation of GNPs with 

smaller particle sizes (150.1 ± 12.7 nm). Nonetheless, by making use of this benefit 

in production quantity, one needs to accept a reduction in monodispersity of the 

GNPs (PDI 0.143 ± 0.075) compared to the standard method by using a peristaltic 

pump for acetone addition.  
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Figure II-8 Particle characteristics of GNPs prepared by two-step desolvation with either two acetone 

tubes in opposite position, six tubes evenly distributed or using a dual syringe pump (particle 

size: black dots, PDI value: white dots, relative particle yield: white triangles) compared to standard 

two-step desolvation (particle size: dashed line, PDI value dotted line, relative particle 

yield: dashed/dotted line). Data is presented as mean ± SD (n=3). 

3.4.2 NANOPRECIPITATION 

As a completely different approach, nanoprecipitation was investigated as option 

for scaling GNP preparation. Different types of gelatine, gelatine concentrations and 

stabiliser concentrations were screened in order to find appropriate conditions.  

Results are displayed in Figure II-9. Interestingly, original conditions of gelatine type 

B 75 and 7-10% stabiliser as used by Khan and Schneider [31] led to very large and 

inhomogeneous GNPs with particle sizes between 443.4 ± 43.4 nm 

and 649.0 ± 226.8 nm and PDI values between 0.424 ± 0.032 and 0.672 ± 0.155 

(formulation compositions E-G). By using gelatine type A with a similar bloom 

number (100 bloom), hardly any change in particle size could be 

achieved (358 ± 87.4 nm and 443.8 ± 8.76 nm), but PDI values decreased to values 

between 0.298 ± 0.097 and 0.330 ± 0.035 (formulation compositions C-D). The best 

results were achieved with the standard two-step desolvation gelatine type A 175 
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bloom (formulation compositions A-B). Particle sizes ranged 

between 293.0 ± 12.9 nm and 328.7 ± 36.9 nm with corresponding PDI values 

of 0.272 ± 0.049 and 0.355 ± 0.085. Nonetheless, GNP characteristics were still far 

from those prepared by two-step desolvation (see reference lines in Figure II-9). 

However, nanoprecipitation enabled much higher particle yields than two-step 

desolvation. Relative outcomes varied between 13.4 ± 6.5% and 33.9 ± 10.4%.  

 

Figure II-9 Particle characteristics of GNPs prepared by nanoprecipitation (particle size: black dots, 

PDI value: white dots, compared to standard two-step desolvation (particle size: solid line, PDI 

value: dotted line) A: Gelatine A 175, 25 mg/ml, 7% stabiliser;  B: Gelatine A 175, 25 mg/ml, 

10% stabiliser; C: Gelatine A 100, 25 mg/ml, 7% stabiliser; D: Gelatine A 100, 25 mg/ml, 10% 

stabiliser; E: Gelatine B 75, 25 mg/ml, 7% stabiliser; F: Gelatine B 75, 25 mg/ml, 10% stabiliser, G: 

Gelatine B 75, 20 mg/ml, 10% stabiliser. Data is presented as mean ± SD (n=3). 
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3.5  EVALUATION OF ALTERNATIVE CROSS-LINKING AGENTS 

3.5.1 GLYCERALDEHYDE 

Glyceraldehyde is commonly used to increase the mechanical strength of the sclera 

via cross-linking collagen [44]. Here we applied glyceraldehyde for cross-linking of 

gelatine nanoparticles in order to substitute the commonly used glutaraldehyde. 

Glyceraldehyde was evaluated for its ability to cross-link GNPs made from either 

type A 300 bloom or type B 300 bloom. Various conditions, such as concentration of 

cross-linking agent and incubation time, were screened. Table II-3 Results of cross-

linking (CL) GNPs from different types of gelatine (type A 300 bloom and type B 300 

bloom) with glyceraldehyde and genipin (n=3) summarises the parameters that 

were examined for the preparation of stable particles, as well as the resulting 

particle characteristics. An extended cross-linking time of 65 hours was necessary 

to stabilise the nanoparticles from type A 300 bloom, compared to 15 hours 

required for glutaraldehyde. Additionally, particle sizes and PDI values strongly 

increased. Only a glyceraldehyde concentration of 16 mg/mL gave GNPs with 

acceptable characteristics; however, this forfeited the particle yield.  

In comparison to the standard reagent glutaraldehyde, similar particle 

characteristics were achieved when GNPs made from type B 300 bloom were cross-

linked with glyceraldehyde (Table II-3). Stable and monodisperse GNPs in a particle 

size range of 200 – 250 nm with high cross-linking degree and particle yield were 

prepared.  
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Table II-3 Results of cross-linking (CL) GNPs from different types of gelatine (type A 300 bloom and 

type B 300 bloom) with glyceraldehyde and genipin (n=3). 

Gelatin 

Type 
CL agent 

CL agent 

[mg/mL] 

Incuba-

tion [h] 

Particle 

size [nm] 
PDI 

CL 

degree 

[%] 

Yield 

[%] 

Colloidal 

stability 

A300 Glutaraldehyde 1.75 15 ≈ 200 < 0.2 ≈ 85 ≈ 10 yes 

B300 Glutaraldehyde 1.75 15 150 - 200 < 0.15 ≈ 85 ≈ 15 yes 

A300 Glyceraldehyde 16 65 300 - 350 < 0.2 ≈ 40 ≈ 2.5 yes 

B300 Glyceraldehyde 20 19 200 - 250 < 0.1 ≈ 75 ≈ 20  Yes 

A300 Genipin 10 - 30 24 - 48 gelation --- --- --- --- 

B300 Genipin 20 19 280 - 370 < 0.2 ≈ 40 ≈ 15 no 

In scale-up experiments, it could be shown that glyceraldehyde is suitable for large 

scale production of GNPs (Figure II-10). Using a five-fold amount of gelatine to 

produce particles combined with ultrafiltration gave similar particle sizes and PDI 

values to the standard procedure (200-250 nm, PDI < 0.15). A considerable increase 

in particle yield was obtained (2517 mg ± 411.8 mg vs. 112 mg ± 30 mg). 

 

Figure II-10 Preparation of GNPs in large scale using glyceraldehyde. Comparison of particle 

size  (bars), PDI value (white dots) and particle yield (black dots) of a standard batch purified by 

centrifugation or ultrafiltration, and a scaled batch size purified by ultrafiltration. GNPs were 

prepared using gelatine type B 300 bloom. Data is presented as mean ± SD (n=3). 
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3.5.2 GENIPIN 

In addition to glyceraldehyde, the naturally occurring cross-linking agent genipin 

was evaluated for its suitability to stabilise GNPs (Table II-3). In case of gelatine type 

A, no stable GNPs were obtained with the various parameters studied. Incubation of 

GNPs with genipin over a maximum of 48 hours led to gel formation. On the other 

hand, genipin enabled the preparation of monodisperse GNPs based on type B in a 

particle size range between 280 – 370 nm. In comparison to 

glutaraldehyde (ca. 85%) or glyceraldehyde (ca. 75%), these particles showed a 

decrease in the degree of cross-linking (ca. 40%), resulting in reduced colloidal 

stability. Further increase of the genipin concentration or the incubation time led to 

gel formation. Consequently, scale-up experiments with GNPs cross-linked by 

genipin were not performed. 

3.6  EVALUATION OF DIFFERENT TYPES OF GNPS BY SEM 

To visualise the different types of GNPs and analyse their morphology SEM was 

performed. In the micrographs, all GNPs appeared to be smooth particles with a 

spherical shape (Figure II-11). With respect to the size, the particle diameters 

obtained with SEM differed by approximately 100 nm from the sizes recorded with 

DLS. This was expected as the freeze-drying process caused a modest shrinking of 

the particles. Furthermore, in contrast to SEM, which determines the particle 

diameter in a dry state, DLS measures the hydrodynamic radius of a 

nanoparticle [45].  
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Figure II-11 SEM images of GNPs prepared by (A) two-step desolvation using gelatine type A175, (B) 

one-step desolvation using gelatine type A300, (C) one-step desolvation using gelatine type B300. 

These formulations were stabilised with glutaraldehyde. An image of GNPs prepared by (D) one-step 

desolvation using gelatine type B300, in which the particles were stabilised with glyceraldehyde, was 

added for comparison. 
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4 DISCUSSION 

The purpose of this study was to improve the commonly used two-step desolvation 

for GNP preparation and to develop a straightforward and reproducible protocol. 

This, we hoped would allow us to provide a toolbox to establish large-scale 

processes. By eliminating the first unreliable desolvation step, as well as introducing 

new process parameters and purification techniques, we were able to scale the 

procedure from 15-20 mg particle yield with the standard two-step desolvation to a 

maximum output of 2.6 g GNPs with one-step desolvation. Moreover, further 

approaches were investigated for their potential to scale common two-step 

desolvation. This included an enlarged contact area between gelatine and acetone 

as well as nanoprecipitation. Furthermore, two alternative cross-linking agents 

were evaluated to substitute the critical substance glutaraldehyde. 

4.1  PREPARATION OF GELATINE NANOPARTICLES BY ONE-STEP DESOLVATION 

In the interest of circumventing the irreproducible first desolvation step, a one-step 

desolvation method has previously been developed, which uses a customised 

gelatine type A (VP413-2, reduced LMW fraction) [24]. As this gelatine is not 

regularly available, there was a need to establish a one-step desolvation process 

with a standard gelatine. Significant contributions towards achieving this were 

made by Ofokansi et al. [25], who successfully prepared GNPs from gelatine type 

B 225 bloom applying ethanol as the desolvation agent. However, this method was 

accompanied by several incubation steps and a strong effect of pH on particle sizes. 

Despite those efforts, none of the methods has been proven to be feasible. Towards 

this aim, we were able to successfully establish a robust and straightforward one-

step desolvation method with two commercially available gelatine types (type A and 

B 300 bloom).  

To identify optimal conditions, GNP preparations were performed with different 

initial gelatine concentrations. Interestingly, with increasing gelatine 

concentrations, particle sizes of GNPs also increased. This effect has previously been 
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shown by Zwiorek et al. [22], where a higher amount of the gelatine sediment 

resulted in larger nanoparticles during a two-step desolvation. This may be caused 

by a denser packing of gelatine molecules during desolvation, which promotes inter-

molecular interactions and co-aggregation of gelatine, resulting in larger particle 

sizes. However, in our study, all nanoparticles made from both gelatine types 

showed diameters between 143.4–281.7 nm and were therefore acceptable for our 

purposes. The similar sizes and shapes of GNPs prepared by one-step or two-step 

desolvation were additionally verified by SEM. 

Furthermore, particle yields obtained from one-step desolvation were 

significantly (p < 0.001) higher when compared to two-step desolvation. This is 

most likely due to the subjectivity of the first of two desolvation steps, in, which the 

amount of the HMW fraction (sediment) is determined visually and the supernatant 

discarded manually. This led to an uncontrolled loss of starting material and 

extensive between- and within-person variations. By circumventing this step, the 

entire particle preparation can be conducted in a more controlled and reproducible 

manner. A further increase in yield was achieved with gelatine type B. The initial pH 

value of 6 of this solution was found to be optimal for particle preparation and thus 

pH adaption was not required.  

With respect to the optimal pH during particle production, in a solution of type B the 

pH value can be much closer to its IEP compared to type A. Thus, the lower overall 

net charge of the gelatine molecules led to decreased repulsion forces and stronger 

inter-molecular interaction resulting in larger particles with a higher yield. 

Nevertheless, the lower net charge is strong enough to prevent aggregation. This 

hypothesis is supported by the observation of lower particle yields when pH values 

were increased or decreased for gelatine type B and gelatine type A, respectively.  

Due to the highest particle output with the required parameters and morphology, 

an initial gelatine solution of 3.0% (w/v) was chosen to be optimal for one-step 

desolvation with both gelatine qualities.  

The analysis of the fractionation experiment provided insight into the molecular 

weight distribution of several gelatine samples and may help to understand, which 
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properties are required for successful particle formation. Gelatine type A 175 is a 

mixture of HMW and LMW fractions, whereby the relatively high content of the 

latter led to the formation of large particles with a broad size distribution, making it 

unsuitable for one-step desolvation. On the other hand, the customised 

gelatine (VP413-2) with a mean MW of 700 kDa has previously been shown to 

produce particles due to its low LMW fraction (< 20%) [24]. However, the mean MW 

of this gelatine, as measured by Schultes et al. [41], was lower than the mean MW 

determined in our study. This higher mean MW may be explained by self-cross-

linking during storage of VP413-2, a phenomenon known from gelatine 

capsules [46]. Furthermore, Schultes et al. showed a mean MW of the sediment that 

was by one order of magnitude higher than in our measurements. This confirmed 

the issue of batch-to-batch variability of the first desolvation step. Based on their 

findings, they defined a mean molecular weight of ~400 – 500 kDa as the threshold 

for the one-step desolvation [41], which is in the range of the mean MW of gelatine 

type A and B 300 bloom. In conclusion, the HMW fraction included in an overall MW 

of 400 – 500 kDa is sufficient to prepare stable GNPs, whereas the LMW fraction is 

low enough to not affect GNP preparation and colloidal stability. 

Consistent with the results of Ahlers et al. [24], the one-step desolvation with type 

A 300 bloom was successfully performed over the complete pH range used in two-

step desolvation (pH 2.5 – 3.0). On the other hand, type B 300 bloom had an optimal 

pH value of 6.0. Although, GNPs from gelatine type B show an overall negative 

surface charge, we were able to permanently cationise the particles via the standard 

cationisation process. The cationisation reagents react with free carboxyl groups, 

free amine groups as well as glutaraldehyde residues [22]. Zeta potential values 

measured for gelatine type B were comparable to those of type A, indicating that the 

free functional groups on the surface of GNPs from gelatine type B are similar to 

those from type A. GNPs from either gelatine type A or gelatine type B are suitable 

for cationisation and for electrostatic loading of CpG ODNs onto their 

surface (loading efficiency > 95%).  
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4.2 SCALE-UP OF GNP PREPARATION AND ULTRAFILTRATION 

Here, we demonstrated that the large-scale production of GNPs by one-step 

desolvation can be achieved via an increase in stirring intensity to ensure 

homogenous distribution of the gelatine molecules during desolvation. In a similar 

fashion, Wacker et al. [28] showed that a stirring bar and a small paddle 

stirrer (21 x 16 mm) are inappropriate for the preparation of HSA particles due to 

ineffective homogenisation of large volumes of albumin solutions and greater 

variability. By contrast, the usage of a larger paddle stirrer (30 x 25 mm) ensured 

homogeneous protein distribution and allowed scale-up in a reproducible manner.  

Furthermore, by employing ultrafiltration to remove acetone and unreacted 

glutaraldehyde, the high particle loss and the low product outcome seen with 

centrifugation and redispersion could be overcome [47]. Here, we demonstrated an 

efficient way to apply stirred ultrafiltration cells, which are commonly used for 

protein concentration and purification [48]. Through the combination of a pressure-

driven membrane process and gentle stirring, the proportion of particle loss was 

decreased remarkably and, as a result, the yield improved by 60-70%. This study 

reports, for the first time, the possibility for a large-scale production of GNPs in gram 

ranges by linking a maximised one-step desolvation process with ultrafiltration.  

4.3  ALTERNATIVE APPROACHES TO INCREASE PARTICLE YIELD IN TWO-STEP DESOLVATION 

4.3.1 INCREASING THE CONTACT AREA BETWEEN GELATINE AND ACETONE 

Besides the simplification of GNP preparation, it was also followed the approach to 

optimise the standard two-step desolvation to enlarge GNP yield. It was stated that 

an increasing contact area between gelatine solution and desolvation agent could 

result in a higher particle amount [29]. Based on the assumption that GNPs are only 

formed at the liquid-liquid interface due to interfacial turbulences, when acetone 

gets in contact with the gelatine molecules [30], acetone should be added to the 

gelatine solution in a more distributed way. By spreading the acetone over a larger 

area, more gelatine molecules should be desolvated, resulting in an increasing 
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number of particles. An initial approach in this direction was the separation of the 

acetone addition tubes during the second desolvation step. As this did not improve 

in particle yield, the acetone addition area was further increased by six tubes evenly 

distributed above the gelatine solution. However, no increase in GNP amount could 

be observed, but a trend to larger and more inhomogeneous GNPs. This may be 

explained by the fact that a larger amount of gelatine gets in contact with a reduced 

amount of acetone compared to the standard method. This results in a slowed down 

desolvation process and an apparently higher gelatine density. Consequently, inter-

molecular interactions are enhanced and larger and more polydisperse particles can 

be formed, but overall yield does not increase [22]. This could be probably 

circumvented by an accelerated pump rate of acetone. However, this approach was 

not further pursued.  

Instead, a dual syringe pump system was tested, which is an established method for 

the preparation of spider silk particles [40]. This technique allows a maximization 

of contact area between protein solution and desolvation agent, as well as a more 

controllable pump rate and contact time compared to a peristaltic pump. These 

features enabled the preparation of GNPs in a more reproducible size and extended 

particle yield. However, PDI values were still elevated compared to standard 

procedure. This may be due to higher shearing forces in the T-shaped mixing 

element leading to more irregularities. Further optimisation could solve this issue, 

but this technique has not been further pursued due to limited filling volume of the 

syringes of the used system. By using a tailored system, this method could be 

applicable for continuous manufacturing of GNPs combined with one-step 

desolvation.  

4.3.2 NANOPRECIPITATION 

Another concept to facilitate GNP preparation is nanoprecipitation. According to 

Khan and Schneider nanoprecipitation is rapid, easy and straightforward [31]. In 

this technique an aqueous gelatine solution is added dropwise to a desolvating agent 

that contains a stabiliser. Consequently, nanoparticles are formed and stabilised. 
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The main postulated advantage of this preparation method is that only one step is 

necessary to form stable and uniform GNPs. Furthermore, in contrast to desolvation, 

no adaption of the pH value below the isoelectric point is required. 

In the study performed by Khan and Schneider [31] GNPs with a particle size 

of 200 - 300 nm and unimodal size distribution (PDI < 0.15) were prepared via 

nanoprecipitation. These results could not be confirmed in our study. Particle 

formation via nanoprecipitation was principally possible, however particle 

characteristics were not comparable to GNPs prepared by two-step or one-step 

desolvation. GNPs showed considerably larger particle sizes and appreciably higher 

PDI values. The trend to higher particle sizes was already observed by Khan and 

Schneider and explained by the different principles of GNP formation [49]. 

Furthermore, utilising a stabiliser ensures the arrangement of a stable emulsion 

droplet and consequently attachment of the stabilising agent to the GNP 

surface [50]. Due to this shell of molecules, particle sizes may be larger and less 

uniform compared to plain GNPs prepared by desolvation. This statement is 

confirmed by the fact that in a direct comparison, GNPs prepared with 10% 

stabiliser were larger and more polydisperse than those with 7%. However, this is 

in contrast to the findings by Khan and Schneider where 10% stabiliser resulted in 

smaller particles [31]. 

Another explanation for these larger and polydisperse GNPs could be the 

heterogeneity of the used gelatine types. Nanoprecipitation is performed with 

gelatine qualities with a low bloom number and consequently a higher LMW 

fraction. From two-step desolvation, it is known that monodisperse GNPs can only 

be formed from the HMW fraction of gelatine. The LMW fraction would disturb this 

process [20, 21]. This may also have an impact on GNP formation by 

nanoprecipitation. The presumption can be strengthened by the observation that 

increasing bloom numbers, meaning increasing HMW fractions, resulted in more 

adequate GNPs. However, this would also contrast with the assertion of Khan and 

Schneider. They developed the nanoprecipitation method for GNP preparation as a 
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straightforward one-step preparation option. Further experiments should be 

performed to clarify these issues and distinct findings. 

Even though nanoprecipitation resulted in high particle yields, this method was not 

further pursued due to the worse particle characteristics. However, by putting some 

effort into optimisation (e.g. test of gelatine with 300 bloom), this procedure could 

be an alternative for GNP preparation by desolvation.  

4.4  EVALUATION OF ALTERNATIVE CROSS-LINKING AGENTS 

Glutaraldehyde is well known as cross-linking agent for proteineous nanoparticles, 

but presents safety issues for the patient and during manufacture [34]. Due to its 

consumption during manufacturing, and adequate purification of the GNPs, no 

adverse effects have been reported. Nevertheless, there is a need to find an 

alternative cross-linking agent. So far, several groups have studied alternative cross-

linking agents for GNPs such as transglutaminase [37], genipin [36] and 

glyceraldehyde [38], but no alternatives have been found that are sufficiently 

effective under the tested conditions.  

For instance cross-linking with transglutaminase gave monomodal GNPs with a 

particle size of 150 – 200 nm after an incubation of 48 hours [37]. However, high 

costs of the recombinant enzyme and reports indicating potential immunogenicity 

of transglutaminase residuals due to incomplete removal limit its applications [51]. 

Moreover, previous studies showed successful cross-linking of nanoparticles from 

recombinant human gelatine with genipin [36]. Stable GNPs with a uniform size 

distribution and particle sizes between 200 and 300 nm were obtained after a cross-

linking time of 72 hours. In our study, these results could not be reproduced with 

porcine gelatine type A 300, which showed gel-like structures and no particle 

formation. The problem here lies in the low pH necessary for desolvation: The amine 

groups of gelatine are protonated at pH 2.5-3 and are therefore not available for the 

cross-linking reaction. The pH conditions required for gelatine type B, are optimal 

for the genipin reaction resulting in monodisperse GNPs. However, the reduced 

cross-linking degree in comparison to glutaraldehyde (ca. 40% vs. ca. 85%) led to 
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instability of the nanoparticles. This could be explained by the complex reaction 

between genipin and a protein and of several ring-opening steps that must take 

place [52]. Longer cross-linking times and higher genipin concentrations had no 

positive effect on stability, but induced gelation. Consequently, this study indicated 

that genipin is not suitable in large scale GNP production. 

Recent studies with a focus on cross-linking GNPs with glyceraldehyde showed that 

the preparation of stable GNPs was successful only in the presence of a high content 

of Poloxamer 407 [38]. In this study, we were able to demonstrate that 

glyceraldehyde is suitable for GNP cross-linking without the addition of a stabiliser. 

Due to different pH conditions during desolvation and, therefore the number of free 

amines present, gelatine type A and type B required different cross-linking 

durations. Glyceraldehyde seems to be more reactive compared to genipin. This may 

be explained by the possible water elimination and following keto-enol tautomerism 

of glyceraldehyde resulting in reactive malondialdehyde [53]. Nevertheless, only 

gelatine type B gave GNPs that met the required characteristics due to more optimal 

reaction conditions for glyceraldehyde. In addition, glyceraldehyde is also a suitable 

cross-linking agent in large scale productions of GNPs. Although the cross-linking 

degree of type B particles was lower than for GNPs cross-linked with glutaraldehyde 

(ca. 75% vs. ca. 85%), the particles showed adequate colloidal stability over 35 days. 

Furthermore, the particle morphology of GNPs cross-linked by glyceraldehyde 

appeared to be less smooth compared to the GNPs cross-linked by glutaraldehyde, 

which could also be a consequence of the lower cross-linking degree.  
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5 CONCLUSION 

The research presented successfully shows for the first time that GNP preparation 

by one-step desolvation is scalable and that the cross-linking agent glutaraldehyde 

can be substituted without significant effects on physicochemical characteristics of 

the nanoparticles. Providing large amounts of GNPs in a reproducible quality is the 

first step to become a standard drug delivery system in the treatment of RAO in 

horses and potentially in the treatment of various diseases in humans.  
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ABSTRACT 

Oligodeoxynucleotide (ODN)-loaded gelatine nanoparticles (GNPs) have proven 

their outstanding potential in the treatment of allergic diseases, such as equine 

asthma and canine atopic dermatitis, which are appropriate models for the 

corresponding human diseases. To encourage the development of a marketable 

product, long term stability need to be ensured. In this work, freeze-drying options 

to stabilise these nanoparticles were advanced. Firstly, matrix-assisted laser 

desorption/ionisation mass spectrometry time-of-flight (MALDI-TOF) was 

implemented as versatile tool to assess ODN stability. Then, long term storage 

stability of lyophilised ODN-loaded GNPs formulated in sucrose or trehalose could 

be shown. Controlled nucleation was introduced in order to optimise lyophilisation 

processes. Freeze thaw experiments confirmed stability of ODN-loaded GNPs 

following controlled nucleation. In comparison to standard freeze-drying process, 

shortening of the freeze-drying process was achieved, but no further advantages 

were observed. Particle sizes, PDI values, ODN stability, residual moisture and glass 

transition temperature were maintained upon storage. Excipient portfolio was 

enlarged by novel amino acid containing formulations for lyophilisates. Histidine 

emerged as appropriate excipient in stabilising lyophilised ODN-loaded GNPs, 

whereas addition of arginine and glycine revealed to be inadequate at accelerated 

conditions.  

KEYWORDS 

Gelatine nanoparticles, oligodeoxynucleotides, lyophilisation, freeze-drying, 

controlled nucleation, amino acid, MALDI-TOF 

  



Progress in Formulation Development of Freeze-Dried ODN-Loaded GNPs 

 

 

 
71 

 

1 INTRODUCTION 

Gelatine nanoparticles (GNPs) provide an exceptional potential for the application 

as drug delivery systems. In contrast to other polymers, gelatine is an excellent 

starting material for nanoparticles due to its biodegradability, biocompatibility and 

physiological tolerance [1]. Additionally, it is known for its long and successful 

history of clinical use for medical applications [2]. Moreover, gelatine offers 

unfunctionalised amino groups for electrostatic attachment of different kinds of 

active substances, such as cytosine phosphate guanosine oligodeoxynucleotides 

(CpG ODNs). By induction of intracellular TLR 9, ODNs are able to rebalance the 

disrupted homeostasis between Th1 and Th2 immune response in order to combat 

the principle of allergic diseases [3]. GNPs proved their ability to protect ODNs from 

degradation and implant them into cells [4-6]. Recent in vivo studies showed the 

exceptional potential of GNPs as drug delivery system in the treatment of equine 

recurrent airway obstruction (RAO), an allergic airway disruption similar to human 

asthma [7-10]. In several equine studies an improvement of clinical parameters such 

as bronchoconstriction, mucus hypersecretion and inflammation of the lower 

airways was described by inhalative application of ODN-loaded GNPs [7-10]. ODN-

loaded GNPs have also proven to be superior compared to free ODNs or placebo. 

Additionally, in contrast to conventional treatment, this therapy led to a sustained 

effect and causal treatment of the disease [8, 10]. 

Besides these findings, further in vitro and in vivo studies indicated that ODN-loaded 

GNPs are also active in the treatment of canine atopic dermatitis (CAD), an allergy 

driven skin disorder in dogs comparable to human atopic dermatitis [11, 12]. In a 

preliminary canine in vivo study, the subcutaneous application of ODN-loaded GNPs 

showed significant improvement of clinical parameters, such as pruritus or skin 

lessons. These results were confirmed by a decreased serum concentration of pro-

allergic IL-4 [12].  

 

Due to the outstanding success and effectiveness in several kinds of applications of 

ODN-loaded GNPs, there was a strong need to prepare GNPs in large quantities for 
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further clinical studies and future commercialisation. A big step in this direction was 

to achieve a more efficient particle production process. This could already be 

realised by our group by the optimisation of GNP production and subsequent scale-

up of the process [13]. A commercially available gelatine type was found, which 

enabled the conversion and simplification of GNP preparation from a critical two-

step process into an easy and straightforward one-step desolvation process. This 

allowed a more reproducible and homogeneous production process and enabled 

scaling up. Large particle quantities up to a 130-fold increase of the initial particle 

gain using the previous method were accomplished. Furthermore, no limitations for 

a further increase in batch size could be observed. This is an important fact for future 

industrial large-scale productions of GNPs.  

 

Besides scalability, a requirement for the wide use of GNPs in different clinical 

applications and the possibility to enter the market is to provide a storage stable 

product. However, in liquid formulations ODN-loaded GNPs show high tendency to 

aggregate. This leads to a maximal verified storage stability of 48 to 72 hours 

depending on ODN sequence [12, 14]. A first step into stabilisation has already been 

done by Zillies et al. They could show the possibility to freeze-dry NF-κB decoy ODN-

loaded GNPs without any loss in physicochemical quality or biological function [15]. 

In the present work, we could confirm these findings regarding the stability of ODN-

loaded GNPs. Furthermore, we established an additional analytical method for ODN 

integrity evaluation, matrix-assisted laser desorption/ionisation time-of-flight mass 

spectrometry (MALDI-TOF). Moreover, storage stability could be extended to six 

months.  

 

Standard lyophilisation is a versatile procedure to stabilise sensitive drug 

formulations such as proteins or as described here ODN-loaded GNPs. However, it 

is also related to some drawbacks, such as high time- and energy-consumption. 

Therefore, lot of research is carried out to shorten lyophilisation processes. 

Promising approaches include controlled nucleation [16], aggressive freeze-drying 
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[17] or collapse freeze drying [18, 19]. Among the mentioned techniques, controlled 

nucleation is the most advanced and most investigated approach.  

Conventional shelf-ramped freezing induces a stochastic ice nucleation in the 

formulation, leading to different ice crystal growing and consequently high vial-to-

vial variability within one batch. This causes unpredictable sublimation rates and 

great quality differences within the final product [20]. Furthermore, many small ice 

crystals are formed that slow down drying due to high specific surface area, small 

pore size and high dry layer resistance. Via a controlled nucleation, simultaneous 

freezing of all vials can be achieved resulting in uniform and large ice crystals in all 

vials. Consequently, specific surface area and dry layer resistance are reduced. This 

leads to a shortened drying time. Besides economic factors, controlled nucleation is 

also beneficial for an increased batch homogeneity [20, 21]. Different methods to 

achieve a controlled ice nucleation, their effects on product quality and stability are 

intensively studied in the field of therapeutic proteins [16, 21, 22]. It is known from 

protein research that methods controlling ice nucleation can be beneficial in 

stabilising the protein due to reduced ice-water interfaces and thus lower protein 

damage [20, 23]. Still, there is only few research on nanoparticles regarding 

controlled nucleation in freeze-drying. The work of Kasper et al. revealed that in 

principle controlled nucleation in lyophilisation of nanoparticulate polyplexes is 

possible without the loss of particle quality. However, DNA concentration is crucial, 

and high additive concentrations are necessary to stabilise them [24]. Interestingly, 

initial freeze-thaw experiments showed that ODN-loaded GNPs are not sensitive to 

the aforementioned factors. 

This work investigates for the first time the applicability of controlled nucleation in 

lyophilisation of gelatine nanoparticles in order to accelerate the freeze-drying 

procedure without adverse influences on product quality or stability.  

 

Additionally, we could expand the portfolio of possible formulations from 

conventional lyophilisation excipients, such as sugars, to amino acid formulations. 

Amino acids were investigated due to their beneficial features in stabilising proteins 
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during lyophilisation and irradiation-based sterilisation [25-27]. Histidine showed 

a clear benefit in stabilisation of ODN-loaded GNPs. Arginine and glycine also 

stabilised particles by preserving sizes and PDI values. However, ODN integrity was 

affected at accelerated storage temperature. 

 

Summarising, this work opens the way for this innovative medicinal approach 

towards marketable products in human and veterinary application.  
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2 MATERIAL AND METHODS 

2.1 MATERIALS 

Gelatine type A 300 bloom was obtained from Gelita AG (Eberbach, Germany). 

Acetone was supplied by Fisher Chemicals (Loughborough, UK). Glutaraldehyde 

(25% solution), 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride, 

(2-Aminoethyl) trimethylammonium chloride hydrochloride, L-arginine base, L-

histidine base and L-glycine base were acquired from Sigma (Taufkirchen, 

Germany). D-(+)-Sucrose and D-(+)-Trehalose dihydrate were purchased from VWR 

International (Leuven, Belgium). Highly purified water (HPW), which was produced 

by a PURELAB Plus device (conductivity < 0.055 µS/cm, Elga Labwater, Celle, 

Germany), was used in all experiments. Oligodeoxynucleotides (ODNs) were 

synthesized by biomers.net GmbH (Ulm, Germany). 

2.2 PREPARATION OF CATIONISED GELATINE NANOPARTICLES 

GNPs were prepared according to one-step desolvation [13]. In brief, after an 

amount of 750 mg gelatine type A (300 bloom) was dissolved in HPW (3.0% w/v) 

under constant stirring at 50°C, the pH was adjusted to a value between 2.5 and 3.0. 

In order to initiate desolvation and nanoparticle formation, acetone was added 

dropwise. A volume of 175 µL glutaraldehyde solution was added to cross-link 

GNPs. The dispersion was stirred overnight and purified via three-fold 

ultrafiltration using a solvent resistant stirred cell and an ultrafiltration disc of 

regenerated cellulose and a molecular weight cut-off of 100’000 kDa (Millipore 

S.A.S., Molsheim, France).  

Cationisation of GNPs was performed according to the standard protocol [28] with 

some modifications. Briefly, GNP dispersion was diluted with HPW (~ 10 mg/mL) 

and pH was adjusted (4.5 - 5.0). Following, 1000 mg of each 1-Ethyl-3-(3-

dimethylaminopropyl) carbodiimide hydrochloride (EDC) and (2-Aminoethyl) 

trimethylammonium chloride hydrochloride (Cholamine) were added. After 
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incubation for 30 min, the reaction mixture was purified by two-fold centrifugation 

(16000*g for 15 min; Sigma Laborzentrifugen, Osterode, Germany). Finally, 

nanoparticle concentration was determined gravimetrically using a UMX2 ultra-

microbalance (Mettler Toledo, Greifensee, Switzerland). 

2.3 OLIGODEOXYNUCLEOTIDE LOADING OF GELATINE NANOPARTICLES 

ODN loading was performed in solutions of different kind of excipients to prepare 

formulations for lyophilisation. GNP dispersion was diluted to a final concentration 

of 1.5 mg/mL and incubated with 5% (w/w) ODNs for 60 min at 21°C and under 

continuous shaking at 350 rpm (Thermomixer Comfort, Eppendorf AG, Hamburg, 

Germany). The excipient-to-ODN ratios for sugar containing samples were 100:1, 

500:1 and 1333:1. The latter represents an isotonic formulation. The ratio is used to 

identify the samples, e.g. “S500” is a formulation consisting of a sucrose-to-ODN of 

500:1.  

For the stability study, amino acids (L-arginine, L-histidine and L-glycine) were used 

in excipient-to-ODN ratio of 333:1 (one amino acid, representing 2.5% [w/v]), 667:1 

(two amino acids, equally mixed) and 1000:1 (three amino acids, equally mixed). 

Sugar amino acid combinations were based on a sugar-to-ODN ratio of 500:1, amino 

acids were added at a ratio of 333:1. 

2.4 FREEZE-DRYING OF ODN-LOADED GNPS AND STORAGE CONDITIONS FOR STABILITY 

STUDY 

Freeze-drying was performed using a volume of 500 µL in 2R glass vials according 

to the following freeze-drying cycle (Figure III-1) adapted from Zillies et al. [15] 

using an EPSILON 2-6D pilot scale freeze dryer (Martin Christ 

Gefriertrocknungsanlagen GmbH, Osterrode, Germany) and type T thermocouples 

(Newport Electronics, Deckenpfronn, Germany). Upon finishing the cycle, the 

product chamber was vented with nitrogen and samples were stoppered at a 

chamber pressure of 800 mbar. The sealed vials were stored at 2-8°C and 20-25°C 
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for six months, as well as at 40°C for four weeks. Analytics was performed directly 

after freeze-drying and after one, three and six months of storage. 

 

Figure III-1 Freeze-drying cycle with shelf temperature (black dots) and chamber pressure (white 

dots) for lyophilisation of ODN-loaded GNPs for storage stability. 

2.5 FREEZE THAW EXPERIMENTS USING DIFFERENT FREEZING PROTOCOLS 

Freeze thaw experiments were performed in an EPSILON 2-6D pilot scale freeze 

dryer (Martin Christ Gefriertrocknungsanlagen GmbH, Osterrode, Germany) 

equipped with thermocouples (Newport Electronics, Deckenpfronn, Germany) for 

temperature monitoring. The following formulations were investigated in 

triplicates: S100, S500, S1333, T100, T500, T1333 and the corresponding sugar free 

formulation (HPW). A volume of 500 µL of each formulation was filled into 2R vials. 

Vials were positioned in the middle of the shelf and surrounded by two rows of vials 

filled with 5% sucrose solution. All samples were equilibrated at 20°C 

for 15 minutes prior to freezing until a shelf temperature of -45°C. In all freeze thaw 

experiments, samples were kept frozen for 10 hours and subsequently thawed by a 

ramp of 2.5°C/min until 20°C, followed by a hold step at 20°C for 60 minutes. 
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2.5.1 CONVENTIONAL SHELF RAMPED FREEZING  

Conventional shelf ramped freezing was conducted with a shelf ramp rate 

of  -1°C/min or -1.5°C/min until -45°C.  

2.5.2 CONTROLLED NUCLEATION 

Controlled nucleation was performed as described by Geidobler et al. [29]. Shelves 

were cooled at a ramp rate of -1°C/min until -4°C and samples were equilibrated at 

that temperature. As soon as all sample reached the equilibrium temperature, the 

product chamber was depressurized to a vacuum of 3.69 mbar. In order to initiate 

controlled ice nucleation, the vacuum was immediately released by opening the 

drain valves and ice fog was brought from the condenser into the product chamber. 

After ice nucleation, shelf temperature was either kept at -4°C for 15 minutes and 

then cooled to -45°C at-1°C/min (w/ hold time) or directly cooled to -45°C 

at -1°C/min (w/o hold time).   

2.6 FREEZE-DRYING USING CONTROLLED NUCLEATION 

Controlled ice nucleation was performed as previously described by our group [29]. 

The applied process is displayed in Figure III-2. The shelves of the freeze-dryer 

(EPSILON 2-6D, Martin Christ Gefriertrocknungsanlagen GmbH, Osterrode, 

Germany) were cooled until a constant product temperature of -4°C was reached. 

The freeze-dryer was then depressurized to a vacuum of 3.69 mbar and immediately 

brought to atmospheric pressure by opening the drain valves. This induced 

repressurization via the cold condenser and ice fog was released into the product 

chamber initiating ice nucleation. Complete solidification was achieved by ramping 

down to −45°C with a ramp of 1°C/min followed by three hours primary drying 

at -20°C and a chamber pressure of 0.05 mbar. Secondary drying was performed for 

eight hours at 20°C. The product temperatures were monitored via type T 

thermocouples (Newport Electronics, Deckenpfronn, Germany). Stoppering and 

sealing was operated as mentioned above. Storage was executed at 2-8°C and 20-
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25°C for three months, as well as four weeks at 40°C. Analytics were carried out 

directly after freeze-drying, as well as after one month and three months of storage. 

 

Figure III-2 Freeze-drying cycle using controlled nucleation with shelf temperature (black dots) and 

chamber pressure (white dots) for lyophilisation of ODN-loaded GNPs for storage stability. 

2.7 FREEZE-DRYING OF AMINO ACID FORMULATIONS 

Amino acid containing formulations were lyophilised using a more cautious freeze-

drying protocol (Figure III-3) due to very low glass transition temperatures of the 

maximally freeze concentrated solution (Tg’ values, down to -53°C). After freezing 

the samples at -60°C for three hours, the chamber pressure was reduced to 

0.009 mbar. Primary drying was carried out at -40°C for 52 hours, followed by a 

pressure increase to 0.03 mbar and a two-step temperature ramp of 0.1°C/min to 

0°C and then 0.33°C/min to 20°C. Secondary drying was performed at 20°C for ten 

hours. Stoppering, sealing, storage and analytics were conducted analogous to the 

aforementioned processes.  
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Figure III-3 Freeze-drying with shelf temperature (black dots) and chamber pressure (white dots) 

for lyophilisation of amino acid containing ODN-loaded GNPs for storage stability. 

2.8 GELATINE NANOPARTICLE CHARACTERISATION 

Particle size and polydispersity index (PDI) were determined by dynamic light 

scattering (DLS) using a Zetasizer Nano ZS (Malvern Instruments, Worcestershire, 

UK). Zeta potentials were evaluated by electrophoretic light scattering (ELS) in a 

sodium chloride solution of 10 mM (Zetasizer Nano ZS, Malvern Instruments, 

Worcestershire, UK). 

2.9 DETERMINATION OF LOADING EFFICIENCY 

Loading efficiency was indirectly determined by centrifugation and following 

measuring of UV absorbance at 260 nm (Agilent 8453 UV-visible 

spectrophotometer, Agilent Technologies, Santa Clara, California, USA) in the 

supernatant of the ODN-loaded GNPs, a GNP control and an ODN-control [12].  

Loading efficiency was calculated using the following equation:  

Loading efficiency [%] = 1 − (
A (ODN−loaded GNP)−A (GNP control)

A (ODN control)
) 𝑥 100 %.  
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2.10 MATRIX-ASSISTED LASER DESORPTION/IONISATION TIME-OF-FLIGHT MASS 

SPECTROMETRY (MALDI TOF) 

Prior to measurement, the samples were desalted on a 0.025 μm VSWP membrane 

(Merck Millipore, Darmstadt, Germany) and co-crystallised in a 3-hydroxypicolinic 

acid matrix (HPA). Matrix-assisted laser desorption/ionisation time-of-flight 

(MALDI-TOF) mass spectra were recorded on a Autoflex II (Bruker Daltonics, 

Germany) and a AnchorChip®-Target (Bruker MTP var/384) in negative mode.  

2.11 KARL-FISCHER TITRATION 

Coloumetric Karl-Fischer titration using Aqua 40.00 titrator with a headspace 

module (Analytik Jena AG, Halle, Germany) was used to determine residual 

moisture. The lyophilised ODN-loaded GNPs were heated to 100°C. The evaporated 

water was transferred into the titration solution and the water content was 

determined.  

2.12 DYNAMIC SCANNING CALORIMETRY (DSC) 

Glass transition temperatures (Tg) and glass transition temperatures of the 

maximally freeze-concentrated solution (Tg’) were determined using a Mettler DSC 

821e (Mettler Toledo, Columbus, OH, USA). An amount of 1-15 mg lyophilisate was 

weighed into aluminium crucibles. To ascertain Tg values, samples were analysed at 

a heating and cooling rate of 10 K/min from 0 to 150 °C in a first and from -10 to 

150°C in a second cycle against an empty crucible as reference. For measuring of Tg’ 

values samples were heated from -60°C to 20°C. Tg and Tg’ values were evaluated 

from heating scans.  
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2.13 BIOACTIVITY ASSAY IN EQUINE BRONCHOALVEOLAR (BAL) CELLS  

This part of the study was performed in close collaboration with the veterinarian 

Dr. med. vet. John Klier. Equine BAL cells were harvested by Dr. Klier, following 

experiments were conducted either together or by me, depending on the individual 

case. 

 

Bronchoalveolar lavage fluids (50 mL sterile, warm, isotonic NaCl solution 

per 100 kg bodyweight) were taken from two healthy horses and two horses 

affected from RAO. Fluids were immediately centrifuged to collect BAL cells (10 min 

at 1200*g; Sigma Laborzentrifugen, Osterode, Germany). An amount of 2 x 105 cells 

in RPMI medium (Biochrom AG, Berlin, Germany; 10% FCS, 67.8 mg/mL penicillin, 

113 mg/mL streptomycin) was seeded per well in 96 well plates and incubated in 

triplicates with the different formulations for 24 h at 37°C and 5% (v/v) CO2 

atmosphere. Investigated formulations were lyophilised S100, S500, S1333, T100, 

T500 and T1333 after six months storage at 2-8°C or 20-25°C, as well as 

corresponding freshly prepared formulations and corresponding ODN-free 

placebos. Reference samples contained freshly prepared ODN-loaded GNPs in water 

(standard formulation used in previous in vitro and in vivo studies) as well as 

corresponding placebo. 

Following incubation, well plates were centrifuged (10 min at 1000*g; Sigma 

Laborzentrifugen, Osterode, Germany) and supernatants were collected in order to 

analyse cytokine concentrations. Supernatants were either directly investigated or 

stored at -80°C until measurements. 

The cytokine determination was conducted using equine ELISAs (R&D Systems, 

Minneapolis, USA) and included evaluation of IFN-γ, IL-4 and IL-10. ELISAs were 

performed according to the manufacturer’s instructions. Cell viability was tested 

using alamarBlue™ Cell Viability Reagent (Thermo Fisher Scientific, Waltham, 

Massachusetts, USA) according to the manufacturer’s protocol. 
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3 RESULTS AND DISCUSSION 

3.1 CONVENTIONAL LYOPHILISATION 

Excipient selection was based on common knowledge and the findings of 

Zillies et al. [15]. Sugars and sugar alcohols, such as sucrose, trehalose or mannitol 

are widely used lyo- and cryoprotectants or bulking agents for freeze-dried 

biomaterials [30]. Sucrose is known for its ability to stabilise biopharmaceuticals, 

such as proteins [31]. Trehalose is stated to be even superior due to a higher glass 

transition temperature [32]. However, trehalose is high-priced compared to 

sucrose. This may be an issue in large scale production, especially when it comes to 

veterinary use. Mannitol is particularly known for its properties as bulking agent. 

Due to its crystallisation during freeze-drying, it is not suitable to be used as lyo- or 

cryoprotectant for proteins. Therefore, it is often mixed with sucrose to combine the 

features of good stabilisation and appropriate cake performance [33].  

Zillies et al. could show equivalent stabilising properties for freeze-dried placebo 

GNPs of all their chosen excipients. ODN-loaded GNPs were sufficiently preserved 

by sucrose and trehalose, whereas mannitol and a mannitol-sucrose mixture were 

not beneficial [15]. Furthermore, they evaluated a minimal ODN-to-sugar ratio 

of 1:100 as necessary to stabilise ODN-loaded GNPs. Hence, we decided to choose 

sucrose and trehalose at ODN-to-sugar ratios 1:100, 1:500 and 1:1333 (isotonic) for 

our experiments. 

3.1.1 PARTICLE SIZES AND PDI VALUES 

DLS measurements of the rehydrated formulations revealed particle sizes of 

around 200 nm and monodisperse PDI values of around 0.2 (Figure III-4). No 

change in particle sizes or PDI values was observed over six months storage at 2-8°C 

or 20-25°C. Used sugar types and sugar concentrations were shown to be equivalent. 

Furthermore, storage at accelerated conditions (40°C, four weeks) had no impact on 
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particle characteristics (Figure III-4 C and F). This indicates GNPs as a very stable 

drug delivery system and prolongs already stated storage stability [15]. 

However, it can be noted that PDI values may depend on used oligodeoxynucleotide 

batch as the utilisation of different batches led to varying PDI values already before 

freeze-drying (same ODN batch for 2-8°C and 20-25°C, different batch for 40°C). 

 

Figure III-4 Particle sizes (bars) and PDI values (dots) of freeze-dried ODN-loaded GNPs directly after 

lyophilisation (dark grey), after four weeks of storage (light grey striped) and six months of storage 

(dark grey chequered). Sucrose formulations at A: 2-8°C, B: 20-25°C and C: 40°C. Trehalose 

formulations at D: 2-8°C, E: 20-25°C and F:40°C. Results are represented as mean + or ± SD (n=3). 
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Interestingly, after freeze-drying and reconstitution, particle sizes were smaller 

than before. Similar results has already been observed for lyophilised GNPs [15] and 

PCL (Poly(epsilon-caprolactone)) nanocapsules [34]. This has been explained by a 

shrinking of the particles during freeze-drying followed by an incomplete 

rehydration [15]. 

Furthermore, most samples showed a tendency to smaller sizes during storage. This 

is only partly comparable to literature. For ODN-loaded GNPs in sucrose, a reduction 

of particles sizes was ascertained after storage of four weeks, whereas preservation 

or even a slight increase in particle sizes is reported for ODN-loaded GNPs in 

trehalose and other types of nanoparticles [35-38].  

Moreover, particle sizes and PDI values after reconstitution of all lyophilised GNPs 

were stable for 48 hours similar to freshly prepared formulations. This was found 

for samples directly after freeze-drying as well as after six months of storage 

at 2-8°C or 20-25°C. 

3.1.2 LOADING EFFICIENCIES 

It is important to point out that the electrostatic interaction between 

oligodeoxynucleotides and GNPs results a sensitive system of loaded NPs. 

Therefore, it is crucial to evaluate changes in loading efficiency after any kind of 

processing.  

Loading efficiencies remained stable after freeze-drying in all formulations and all 

storage conditions (see annex). This stability of high loading efficiency was 

persistent for 48 h after reconstitution. Consequently, it can be assumed that 

lyophilisation has no impact on the positive charge of GNPs and the electrostatic 

interactions of GNPs and oligodeoxynucleotides are not disturbed by lyophilisation. 

3.1.3 OLIGODEOXYNUCLEOTIDE INTEGRITY 

It should be recognized that the integrity of the oligodeoxynucleotides is one of the 

most important points regarding bioactivity of freeze-dried ODN-loaded GNPs. To 
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evaluate ODN stability after freeze-drying and storage, we used matrix-assisted 

laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF).  

MALDI-TOF is a common method to asses oligodeoxynucleotide identity and quality 

in synthesis, which offers rapid and direct analysis of oligodeoxynucleotides [39]. 

Furthermore, MALDI-TOF can be used to analyse degradation of ODNs [40, 41]. 

Intact ODNs can be identified by a sharp peak at the m/z value of the 

oligodeoxynucleotide’s molecular weight. Following degradation the peak of the 

intact ODN would disappear, whereas peaks of degradation products would 

appear [41]. 

We could show that MALDI-TOF is a suitable method to asses ODN integrity even if 

the ODNs are loaded onto GNPs. GNPs are not ionized by the laser and do not desorb 

from the matrix, whereas laser power is high enough to release electrostatically 

bound ODNs from GNPs. However, high laser power may induce depurination of the 

oligodeoxynucleotide, meaning cleavage of the last base, which can be seen by a 

second small peak on the left side of the main peak [39]. This typical phenomenon 

should not be misinterpreted as a degradation product. A representative spectrum 

is displayed in Figure III-5. 

 

Figure III-5 Representative MALDI-TOF spectrum of investigated oligodeoxynucleotide.  
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Results demonstrate that ODNs are stable during lyophilisation, more precisely 

stress during freezing and drying does not degrade ODNs (Table III-1). Furthermore, 

ODNs were stable for six months during storage at 2-8°C and 20-25°C. In higher 

sugar concentrations (S500, S1333, T500, T1333) they were even resistant for four 

weeks at accelerated conditions (40°C). However, at low sugar concentrations 

(S100 and T100) first signs of a starting degradation of ODNs, such as an increase of 

a small additional peak or low signal intensity, were observed (see annex). Hence, 

for long time storage of ODN-loaded GNPs formulations with higher sugar contents 

are recommended. 

Table III-1 Oligodeoxynucleotide integrity after conventional lyophilisation and subsequent storage. 

ODN integrity is represented with symbols:  stable ODN,  degraded ODN, ± indications for starting 

degradation. 

Formulation 

Conventional lyophilisation 

2-8°C 20-25°C 40°C 

6 months 6 months 4 weeks 

..    S100   ± 

S500    

S1333    

T100   ± 

T500    

T1333    

3.1.4 RESIDUAL MOISTURE AND GLASS TRANSITION TEMPERATURE 

In addition to particle and ODN characteristics, residual moisture as well as glass 

transition temperature of the lyophilised samples are important parameters to 

asses storage stability. High residual moisture values are expected to negatively 

influence nanoparticle stability in freeze-dried samples due to higher mobility 

resulting in particle aggregation [42]. Furthermore, ODN degradation may be more 

likely with increasing water content [42]. The relation between water content and 
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glass transition temperature (Tg) of solids in their amorphous states is well 

known [43]. More water absorption leads to lower Tg values. Evaluation of Tg values 

is crucial for stability predictions, as storage far below the Tg is important to 

preserve the glassy state of the lyophilisates and to reduce molecular mobility [44]. 

Consequently, low residual moisture is essential to ensure Tg values above the 

storage temperature [30]. 

 

Evaluation of residual moisture contents in our lyophilisates revealed low starting 

values (< 1%) that increased upon storage depending on excipient content and 

storage temperature. The higher the sugar content, the less pronounced the relative 

water uptake was, whereas the higher the storage temperature was, the stronger 

the increase of residual moisture. However, values did not reach a critical treshold 

inducing particle aggregation. On the other hand, the increased water content may 

be related to slight ODN degradation starting in S100 and T100 after storage at 40°C.  

Tg values agreed with values from literature and remained stable in the higher sugar 

concentrations (S500, S1333, T500 and T1333). The formulations with the lowest 

amount of sugar (S100 and T100) showed a drop in Tg according to their increasing 

water absorption (for further details see annex). 

 

Taken together, residual moisture values and glass transition temperatures 

developed as expected [15]. Regarding stability, no critical values were exceeded. 

3.1.5 BIOACTIVITY ASSAY OF LYOPHILISED ODN-LOADED GNPS 

Although immunological processes of recurrent airway obstruction (RAO) are still 

controversially discussed, a Th2 derived pathogenesis is mainly presumed as its 

origin [45]. By stimulation of pro-inflammatory Th1 pathways and consequent 

suppression of Th2 activation, CpG ODNs are able to redirect the balance between 

Th1 and Th2 derived immune processes [3]. Furthermore, regulatory T-cells (Treg) 

producing IL-10, which acts as beneficial modulator in allergic diseases, are 

assumed to be activated [3]. These effects have been demonstrated in multiple 
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equine in vitro and in vivo studies addressing RAO therapy by the application of 

ODN-loaded GNPs [7-10, 14]. Thus, IL-4 is used as main marker for Th2 dependent 

processes, whereas IFN-γ reflects Th1 derived immune mechanisms. Lastly, IL-10 is 

considered as indicator for Treg activation.  

 

Formulations were assessed for the bioactivity in equine bronchoalveolar (BAL) 

cells to give further information regarding stability. This particular cell type was 

chosen as the main usage of these formulations would be the inhalative treatment 

of RAO in horses. Based on previous studies, the ability of formulations to stimulate 

the release of key cytokines IFN-γ and IL-10 as well to inhibit the production of IL-4 

were evaluated in BAL cells harvested from healthy and RAO-affected horses [14]. 

 

Results of IFN-γ and IL-10 expression are demonstrated in Figure III-6. Lyophilised 

and subsequently stored ODN-loaded GNPs are able to induce INF-γ release in 

healthy (Figure III-6 A) and RAO-affected horses (Figure III-6 B) similar to freshly 

prepared formulations and the standard formulation in highly purified water 

(HPW). This indicates Th1 stimulation by all formulations. Interestingly, in healthy 

horses freeze-dried formulations stored for six months at 20-25°C even induced 

highest levels of IFN-γ. However, this could be a bias caused by the low number of 

available horses as cell donors and overall high variations in the results of ELISA 

measurements. Nonetheless, the ascertained IFN-γ concentrations are in the same 

range as reported in a previous study [14].  

Additionally, IL-10 concentrations induced by lyophilised or freshly prepared ODN-

loaded GNPs were comparable (Figure III-6 C and D). This reinforces that 

lyophilisation and subsequent storage does not affect bioactivity of the 

formulations. Nevertheless, one should admit that IL-10 levels were 10-fold lower 

than in the previously performed study by Klier et al. [14].  

Values for IL-4 were below the detection limit of the ELISA, whereas values for 

placebo formulations were in a quantifiable range. Hence, one can say that freshly 
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prepared as well as lyophilised formulations decreased IL-4 levels indicating a Th2 

suppression.  

Cell viability after incubation with freshly prepared or lyophilised and stored 

formulations did hardly vary (81.8% ± 9.3% vs. 85.2% ± 9.2%).  

 

Figure III-6 IFN-γ expression in equine BAL cells from healthy (A) and RAO-affected horses (B) or IL-

10 expression in equine BAL cells from healthy (C) and RAO-affected horses (D) after incubation with 

lyophilised ODN-loaded GNPs stored for six months at 2-8°C (black), 20-25°C (light grey) and freshly 

prepared formulations (dark grey). Data is represented as mean + SD, n=3 evaluated in two cell 

cultures each. 

The main assertion of this experiment is that lyophilised and stored ODN-loaded 

GNPs are still able to induce their immunomodulatory effects comparable to freshly 

prepared formulations. This finding is independent of the used excipient, their 

concentration or storage condition. However, due to the very limited number of cell 

donors, measured values should be rated as hints and not as absolute values. 

Nonetheless, the findings of intact ODNs after lyophilisation and storage using 

MALDI-TOF confirm bioactivity of the processed formulations. 
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3.2 CONTROLLED NUCLEATION 

Controlled nucleation was investigated as a possibility to shorten lyophilisation 

process time of ODN-loaded GNPs. Furthermore, in a stability study, controlled 

nucleation was evaluated as a potential tool to increase ODN stability compared to 

conventional lyophilisation. For a direct comparison, same formulation 

compositions were chosen.  

3.2.1 FREEZE THAW EXPERIMENTS 

As already mentioned, controlled nucleation has been reported to show positive 

effects on stability of proteins compared to standard ramp freezing [46, 47]. 

However, Kasper et al. found different results for polyplex formulations [24]. To 

stabilise these PEI/plasmid formulations during controlled nucleation, higher 

cryoprotectant concentrations were necessary compared to standard shelf-ramp 

freezing. In order to investigate the effect of controlled nucleation on ODN-loaded 

GNPs, samples with increasing sucrose or trehalose/ODN ratios were frozen via 

controlled nucleation or via conventional shelf-ramp freezing (-1°C/min 

or -1.5°C/min).  

 

The most divergent product temperature profiles and nucleation temperatures are 

displayed in Figure III-7 and Figure III-8. Using conventional freezing, ice nucleation 

occurred stochastically at random product temperatures (-8.1°C ± 2.0°C 

or -8.7°C ± 3.0°C) as well as at random time points (standard deviation nucleation 

times: ± 4.2 min or ± 5.1 min). In contrast, when the controlled nucleation method 

was applied, ice nucleation occurred simultaneously at a temperature 

of -2.7°C ± 0.2°C and a distinct time point (standard deviation nucleation 

time ± 0 min). This confirms that controlled ice nucleation occurred reliably. 
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Figure III-7 Temperature profiles of shelves (dashed) and formulations (solid) during conventional 

freezing at -1°C/min (dark grey) or at -1.5°C/min (light grey) and during controlled nucleation 

(middle grey). 

 

Figure III-8 Nucleation temperatures of samples frozen by conventional freezing at -1°C/min (left 

bar) or -1.5°C/min (middle bar) and controlled nucleation at a shelf temperature of -4°C (right bar). 

Data is represented as mean - SD (n=3). 
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Particle size and PDI values of ODN-loaded GNPs before and after freeze-thawing 

using different freezing methods is displayed in Figure III-9A. In general, particle 

sizes and PDI values were preserved by the addition of sugars as cryoprotectant, 

whereas an excipient free formulation led to aggregation of the ODN-loaded GNPs. 

This reinforces that the vitrification and particle isolation hypothesis as explanation 

for stabilisation of non-viral gene vectors by cryoprotectants can also be applied to 

ODN-loaded GNPs. Briefly, the vitrification hypothesis states that non-viral gene 

vectors, such as lipoplexes or polyplexes, are stabilised by sugars due to their 

immobilisation in the glassy state. This is combined with the isolation of the 

particles in the freeze concentrated solution by the sugar molecules and consequent 

reduced aggregation [48, 49]. Hence, a certain sugar concentration is necessary to 

achieve sufficient stabilisation.  

 

Hardly any difference between sucrose and trehalose formulations could be 

observed. A higher cryoprotectant concentration had slightly beneficial effect on 

particle sizes after freeze-thawing. A tendency to narrower particle size 

distributions could be observed with increasing sugar concentrations indicating 

better stabilisation, which further supports the particle isolation hypothesis [48, 

49].  
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Figure III-9 Particle sizes (top) and PDI values (bottom) of ODN-loaded GNPs in different 

formulations before freezing (black bar), frozen by conventional freezing at -1°C/min (light grey bar 

upwards striped) or -1.5°C/min (dark grey bar chequered) and frozen by controlled nucleation with 

hold time (light grey bar downwards striped) or w/o hold time (dark grey bar stiped across). Data is 

represented as mean + SD (n=3). 

In contrast to polyplexes, different freezing methods have no impact on particle 

sizes and PDI values of ODN-loaded GNPs. During ice formation, strong electric fields 

are generated due to favoured inclusion of one ionic species into the ice [50, 51]. 
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Among others, this phenomenon is dependent on freezing rate, type of ions as well 

as concentrations [50, 51]. For polyplexes, it was stated that destabilisation during 

freezing is related to this charged ice formation and the fact that polyplexes are 

formed due to electrostatic interactions [24]. Thus, their integrity can be disturbed 

leading to aggregation. This is supported by the observation of lipoplexes being 

more stable during freezing due to hydrophobic interactions in addition to 

electrostatic interactions [24, 49]. Upon these nanoparticle types GNPs are most 

stable, because they are covalently cross-linked. Hence, their stability may be less 

disrupted by electric fields and aggregation is less likely. Furthermore, the used GNP 

formulations did not compose any buffer salts. Accordingly, the formation of electric 

fields at the ice interface is less pronounced. In summary, this enables that even low 

sugar/ODN rations are sufficient to prevent ODN-loaded GNPs from aggregation 

during freezing.  

On the basis of the observations during freeze thawing studies no isothermal 

equilibration step (hold time) after controlled nucleation was applied for the 

following lyophilisation experiments.  

3.2.2 LYOPHILISATION USING CONTROLLED NUCLEATION 

By applying controlled nucleation, the drying time could be shortened by only 7%. 

This could save some time, energy and costs. However, it is questionable if these 

fractional savings are worth implementing a more complex freezing method. 

Regarding particle sizes, PDI values, loading efficiencies, residual moisture values, 

and glass transition temperatures no relevant differences of storage time compared 

to a conventional freeze-drying cycle could be found. Only ODN stability (Table A 3, 

annex) seemed to be slightly enhanced in low concentration sugar formulations at 

elevated temperatures (for further details see annex). In contrast to reports in 

literature, controlled nucleation neither has a positive effect as assumed from 

protein research [23], nor has negative impact on the product as reported for 

polyplexes [24]. 
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3.3 AMINO ACIDS 

The intention of this part of the work was to identify excipients for lyophilisation of 

ODN-loaded GNPs apart from classical sugars. Furthermore, keeping a later 

sterilisation via gamma irradiation in mind, the portfolio of potential stabilising 

excipients should be enlarged. It is known form literature that amino acids can have 

stabilising effects on protein formulations and lyophilisates [25, 26, 52, 53], as wells 

as protective properties to shield against sterilising irradiation [27]. The aim of the 

study was to evaluate if this can be transferred to lyophilisation of ODN-loaded 

GNPs. 

Excipient choice was based either on charge of the amino acid and/or known ability 

to stabilise biomolecules. Positively charged amino acids were chosen in order to 

preserve high loading efficiencies. We know from previous experiments, that ODN-

loaded GNPs are very sensitive to the addition of negatively charged molecules 

leading to tremendous loss in loading efficiency. This is based on interaction of the 

negatively charged molecule and the positively charged GNPs and resulting 

competition of ODNs and excipient. Positively charged excipients do not have this 

strong impact on loading efficiency. From the group of basic amino acids, arginine 

and histidine were selected, as they are known to prevent proteins from aggregation 

and form amorphous cakes after freeze-drying [26, 53, 54].  

Furthermore, a neutral amino acid was chosen. Neutral amino acids result in a 

crystalline state after freeze-drying [26]. Therefore, they are not suitable to stabilise 

biomolecules such as proteins, but can be used as bulking agents [33]. For this study, 

we selected glycine.  

Additionally, we evaluated mixtures of these amino acids, as well as combinations 

of a sugar and an amino acid in order to enhance their potential stabilising effect.  

Pre-experiments revealed the following formulations as promising regarding 

particle sizes and PDI values of ODN-loaded GNPs in the liquid state: His, His + Arg, 

His + Gly, Arg + Gly, Arg + His + Gly, Suc + Gly, Tre + Gly.  
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3.3.1 DRYING TIME 

In order to prevent collapse of the formulations due to very low glass transition 

temperatures of the maximally freeze concentrated solution (Tg’ values as low 

as -53°C), process changes in the lyophilisation cycle were necessary. However, this 

led to a strongly prolonged drying time. Further process development is 

recommended to optimise lyophilisation cycles for the amino acids. 

3.3.2 PARTICLE SIZES AND PDI 

In contrast to sugar formulations, no change in GNP particle sizes before and after 

freeze-drying in pure amino acid formulations was observed. Sugar amino acid 

(glycine) combinations showed smaller particle sizes after lyophilisation and 

rehydration similar to plain sugar formulations. This leads to the suggestion that 

either GNPs formulated in amino acids do not shrink to the same extent as in sugar 

formulations, or sugars are involved in incomplete swelling after rehydration. 

Furthermore, sugar glycine combinations showed clearly higher particle sizes 

(~300 nm before and 280 nm after freeze-drying) than amino acid or sugar 

formulations (~200 nm). PDI values of all formulations were acceptable directly 

after freeze-drying, the chosen amino acids had no impact on particle size 

distribution (Figure III-10). During storage at 2-8°C and 20-25°C particle sizes and 

PDI values remained unchanged for three months in all formulations. At accelerated 

conditions, the particle characteristics of the formulations do neither change, except 

for Arg + Gly. This formulation shows a clear particle aggregation after four weeks 

storage at 40°C.  

Regarding particle characteristics, it can be concluded that amino acids are 

equivalent to sugars in stabilising freeze-dried ODN-loaded GNPs, except for the 

combination of arginine and glycine. The aggregation could be caused by the 

crystallisation of glycine after lyophilisation and subsequent destabilisation of the 

nanoparticles. Amorphous arginine was not able to compensate the negative effects 

of crystalline glycine.  
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Figure III-10 Particle sizes (bars) and PDI values (dots) of freeze-dried ODN-loaded GNPs in amino 

acid containing formulations directly after lyophilisation (dark grey), after four weeks of storage 

(light grey striped) and three months of storage (dark grey chequered). Stored at A: 2-8°C, B: 20-25°C 

and C: 40°C. Results are represented as mean + or ± SD (n=3). 
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3.3.3 LOADING EFFICIENCIES 

Investigation of the loading efficiencies is important and interesting, as charged 

amino acids may have a stronger impact than uncharged sugars. Compared to sugar 

formulations and sugar containing amino acid formulations, pure amino acid 

formulations showed slightly reduced loading efficiencies (annex). This may be 

because of an interaction between positively charged amino acids and negatively 

charged ODNs. Nonetheless, loading efficiencies persisted above 80% and remained 

stable during storage at all conditions. However, His as well as Arg + Gly showed a 

trend to stronger loss in loading efficiency with increasing storage temperature.  

Summarising, amino acids seem to interact with the charged surface of GNPs leading 

to a competitive reduction in ODNs loading efficiency.  

3.3.4 ODN INTEGRITY 

The resistance of ODNs loaded onto GNPs has already been shown for sugar 

formulations in previous sections. The focus of this part was to study if the stability 

is transferrable to amino acid formulations. Results are listed in Table III-2. 

ODN integrity was not affected in amino acid formulation after storage for three 

months at 2-8°C or 20-25°C. However, the MALDI-TOF signal in the Tre + Gly 

combination was low, which may indicate starting ODN degradation even if no 

additional peak was detected.  

At accelerated temperature, only His was adequate to stabilise ODNs. In the other 

formulations, ODNs showed degradation by reduced signal intensity or complete 

degradation by a not detectable signal.  
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Table III-2 Oligodeoxynucleotide integrity after lyophilisation of amino acid containing formulations. 

ODN integrity is represented with symbols:  stable ODN,  degraded ODN, ± indications for starting 

degradation. 

Formulation  2-8°C 20-25°C 40°C 

 3 months 3 months 4 weeks 
.. 

    His     

His + Arg     

His + Gly    ± 

Arg + Gly     

Arg + His + Gly    ± 

Suc + Gly    ± 

Tre + Gly  ± ±  

Several reasons are conceivable for ODN degradation in these formulations and shall 

be discussed: I.) Lower ODN protection because of reduced loading efficiency, II.) 

ODN degradation induced by particle aggregation, III.) pH dependent ODN 

degradation during holding time between rehydration and MALDI-TOF 

measurement and IV.) ODN degradation at elevated temperature by increasing 

residual moisture content.  

I.) No correlation between ODN degradation and loading efficiency was 

found. The only formulation that protected ODNs at 40°C showed the 

lowest loading efficiency, whereas no intact ODN was detectable in the 

formulation with the highest loading efficiency.  

II.) The formulation Arg + Gly showed strong particle aggregation after 

storage at 40°C and was not suitable to stabilise ODNs. However, other 

formulations with degraded ODNs did not tend to aggregate. This implies 

that particle aggregation may be involved in ODN degradation, but not the 

only reason for it.  

III.) ODN stability tests at different pH values between 4.5 and 10.5 revealed 

that ODN degradation after 24 hours was only detectable at pH 10.5, 

whereas the highest pH of the examined formulations was 9.09 (annex). 

Furthermore, there is no correlation between pH and ODN degradation. 
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Regarding pH value, ODN degradation seems to be randomly distributed. 

This leads to the conclusion that a pH driven reaction is not the reason 

for ODN degradation in these formulations.  

IV.) A correlation between ODN degradation at accelerated temperature and 

the residual moisture content was already discussed in the sections 

dealing with sugar formulations. Amino acid formulations indicated 

lower hygroscopicity compared to sugar formulations and more stable Tg 

values (for more information see annex). However, no relation between 

the increase in residual moisture and the extend of ODN degradation was 

observed for the amino acid formulations. This leads to the conclusion 

that in contrast to sugar formulations, residual moisture content is not 

the driving factor of ODN degradation after freeze-drying in the amino 

acid containing formulations. 

 

In summary, it can be stated that amino acids can generally be used as excipients for 

lyophilisation of ODN-loaded GNPs. However, due to low Tg’ values, process time, 

costs and energy consumption are affected. Additionally, except for histidine, the 

investigated amino acids seem to be inferior for long term stability compared to 

standard sugars, such as sucrose and trehalose.  

For glycine, this can be related to its crystalline state after lyophilisation [26]. It is 

well known that crystallising excipients are not able to protect proteins during 

lyophilisation [30]. However, in the field of nanoparticles there is disagreement in 

literature about the effects of crystalline agents, such as glycine or mannitol. On the 

one hand, the particle isolation hypothesis conveys that a spatially separation of the 

particles is sufficient to prevent them from aggregation [49]. This can also be 

achieved by crystalline excipients. On the other hand, e.g. a study on albumin 

nanoparticles showed a reduced stabilisation capacity of mannitol compared to 

amorphous sugars that was attributed to crystallisation [36]. For GNPs, Zillies et al. 

demonstrated that mannitol is sufficient to stabilise unloaded nanoparticles [15]. 

However, for oligonucleotide-loaded GNPs mannitol failed to prevent 
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aggregation [15]. Our study confirms for amino acids that crystallisation of the 

excipients is disadvantageous, at least for ODN-loaded GNPs.  

Negative effects of arginine are further discussed in Chapter IV.  

4 CONCLUSION 

Stability of lyophilised ODN-loaded GNPs was proved for at least six months at 2-8° 

and 20-25°C. MALDI-TOF was found to be a versatile tool to investigate ODN 

integrity. 

Freeze thaw studies using conventional shelf ramped freezing versus controlled 

nucleation showed overall stability of ODN-loaded GNPs to stresses induced during 

freezing.  

Controlled ice nucleation leads to slightly reduced drying time in lyophilisation of 

ODN-loaded GNPs. Nevertheless, no further clear advantages compared to standard 

lyophilisation were noticed. 

Amino acids can be used as excipients in freeze-drying of ODN-loaded GNPs. 

However, ODNs stability during storage is reduced at accelerated temperatures 

compared to sugar based formulations. Amongst the investigated formulations, only 

pure histidine is adequate to completely stabilise ODN-loaded GNPs upon storage.  
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6 ANNEX 

6.1 CONVENTIONAL LYOPHILISATION 

6.1.1 LOADING EFFICIENCIES 

Loading efficiencies related to section 3.1.2 of the main text are listed in Table A 1 

Table A 1 Loading efficiencies of ODN-loaded GNPs before freeze-drying, directly after freeze-drying, 

after six months storage at 2-8°C, after six months storage at 20-25°C and after four weeks storage 

at 40°C. Results are represented as mean ± SD (n=3). 

Formulation 

Loading efficiency [%] 

Before 

lyophilisation 

After 

lyophilisation 

6 months 

2-8°C 

6 months 

20-25°C 

4weeks 

40°C 

      

S100 98.4 ± 0.8 99.4 ± 0.4 100.1 ± 0.1 101.1 ± 0.2 99.8 ± 0.6 

S500 97.9 ± 0.3 99.8 ± 0.3 100.5 ± 0.1 100.8 ± 0.3 101.7 ± 0.4 

S1333 95.1 ± 0.7 94.7± 0.3 97.6 ± 0.3 99.4 ± 0.2 101.8 ± 0.8 

T100 95.6 ± 3.7 97.6 ± 0.8 100.2 ± 0.2 100.9 ± 0.4 101.8 ± 0.6 

T500 96.7 ± 2.2 97.3 ± 0.2 100.6 ± 0.5 100.5 ± 0.5 93.5 ± 0.7 

T1333 92.0 ± 2.6 91.5 ± 3.6 97.5 ± 0.3 92.1 ± 4.9 98.6 ± 0.4 
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6.1.2 ODN INTEGRITY 

A representative MALDI-TOF spectrum of ODNs that show indications for starting degradation is 

displayed in Figure A 1. Related discussion can be found in section 3.1.3 of the main text.  

 

Figure A 1 MALDI-TOF spectrum of ODNs in formulation S100 after storage of four weeks at 40°C. 

Additional peak represents starting degradation of ODNs. 

6.1.3 RESIDUAL MOISTURE AND GLASS TRANSITION 

The following section is a detailed description of the results discussed in section 3.1.4 of the main 

text.  

Initially measured water contents of all lyophilised ODN-loaded GNPs were below or close 

to 1% (Figure A 2). However, upon storage, an increase in residual moisture content of the sucrose 

containing formulations could be observed. This was most pronounced in the low concentration 

samples and hardly detectable in the highest sugar concentration. This finding is in accordance with 

observations of Zillies et al. [1]. They also noticed increasing residual moisture contents upon storage 

of ten weeks. However, they saw no further increase after four weeks. An equilibrium moisture 

content was reached after four weeks of storage. For the S100 formulation we saw a similar steady 

state residual moisture after four weeks of storage. Furthermore, a correlation between storage 

temperature and moisture increase is observed. The lower the storage temperature, the less distinct 

is the increase of residual moisture content.  
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The same trend can be seen in the trehalose formulations (Figure A 2), whereas water sorption was 

not that marked, especially the samples stored at 2-8°C showed hardly increase in residual moisture. 

This is in contrast to previous results that demonstrated slightly higher hygroscopicity of trehalose 

containing freeze-dried GNPs [1]. However, our results are in accordance with other research that 

stated trehalose to be less hygroscopic compared to other sugars [2]. 

It is known from the work of Zillies et al. that aggregation of lyophilised GNPs is initiated at residual 

moisture values of 5% [1]. Below this threshold, no particle aggregation was observed. These 

findings are confirmed by our study, as we did not detect increasing PDI values even in samples with 

high residual moisture of around 3%. However, the starting ODN degradation noticed in the lowest 

concentration sugar formulations at 40°C storage may be related to the increasing water content and 

elevated temperature [3].  

Measured initial Tg values (Figure A 2) of all sucrose (~ 60°C) and trehalose (~ 100°C) formulations 

agree with values from literature [4]. 

Sucrose formulations S500 and S1333 showed stable Tg values upon six months storage independent 

of storage conditions. Only the lowest sucrose concentration demonstrated a decrease of Tg, which 

is stronger the more pronounced is the increase in residual moisture and the higher is the storage 

temperature. The Tg values of samples stored at 2-8°C stayed above 40°C during the complete 

storage duration, whereas Tg values of samples stored at room temperature dropped just below 

40°C. Measured Tg values of S100 samples at 40°C were even below 35°C after four weeks. As this 

value is below the storage temperature, particle aggregation and ODN degradation are more likely. 

This assumption is supported by the observation of starting ODNs depletion in MALDI-TOF spectra. 

However, particle aggregation is not yet induced.  

Similar trends can be noticed for the trehalose formulations (Figure A 2). The higher concentrated 

formulations (T500 and T1333) showed hardly changes in Tg values in all storage conditions, 

whereas T100 samples behaved comparable to S100 samples. Admittedly, Tg remained overall at 

higher values than the sucrose samples and did not fall below storage temperatures. However, the 

formulation with the highest residual moisture and the lowest Tg (T100) also showed first evidence 

of ODN degradation expressed in a very low MALDI-TOF signal. Equally to S100, no GNP aggregation 

was observed.  

These findings regarding residual moistures and Tg values are in accordance with results reported 

by Zillies et al. [1, 5]. 

Taking residual moistures and Tg values into account, it can be stated that for long term stability 

trehalose is superior to sucrose and storage at 2-8°C is recommended for lyophilised ODN-loaded 

GNPs.  



Chapter III 

 

 

 
112 

 

 

Figure A 2 Glass transition temperatures (bars) and residual moisture contents (dots) of freeze-dried 

ODN-loaded GNPs directly after lyophilisation, after four weeks of storage and six months of storage. 

Sucrose formulations at A: 2-8°C, B: 20-25°C and C: 40°C. Trehalose formulations at D: 2-8°C, E: 20-

25°C and F: 40°C. Results are represented as mean + or ± SD (n=2). 
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6.2 CONTROLLED NUCLEATION 

The following sections represent a detailed report about the results regarding controlled nucleation 

given in section3.2.2 of the main text.  

6.2.1 PARTICLE SIZES AND PDI VALUES 

Particle sizes of ODN-loaded GNPs freeze-dried after controlled nucleation (Figure A 3) were 

comparable to conventional lyophilisation. This supports our initial results of GNPs being more 

stable during controlled nucleation than polyplexes. Similar to conventionally freeze-dried ODN-

loaded GNPs, particle sizes were smaller after lyophilisation than before. The hypothesis of no full 

rehydration of GNPs after freeze-drying [5] is again confirmed.  

 

Furthermore, particle sizes remained stable upon storage. This again indicates no damage of the 

nanoparticles during controlled ice nucleation, which would lead to aggregation during storage. 

Beyond this, PDI values did not change during storage, which also indicates that no aggregation 

occurs (Figure A 3).  

 

However, formulation S100 showed increasing particle size and PDI value at accelerated 

temperature indicating starting aggregation. Consequently, similar to conventional lyophilisation, it 

can be stated that trehalose is superior in stabilising ODN-loaded GNPs compared to sucrose. Besides 

this, results of different sugar types and storage conditions were equivalent. 

Hence, the main finding of that part of the study is that controlled nucleation allows only minor 

process shortage and has no negative impact on particle sizes and monodispersity of ODN-loaded 

GNPs.  
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Figure A 3 Particle sizes (bars) and PDI values (dots) of ODN-loaded GNPs freeze-dried via controlled 

nucleation directly after lyophilisation (left bar), after four weeks of storage (middle bar) and three 

months of storage (right bar). Sucrose formulations at A: 2-8°C, B: 20-25°C and C: 40°C. Trehalose 

formulations at D: 2-8°C, E: 20-25°C and F: 40°C. Results are represented as mean + or ± SD (n=3). 

6.2.2 LOADING EFFICIENCIES 

As a further parameter for stability, loading efficiencies were evaluated after freeze-drying and 

storage. As one can see from Table A 2, loading efficiencies remained stable during freeze-drying with 

controlled nucleation and following storage at different conditions. Loading efficiencies behaved 

comparable to those of the conventionally lyophilised samples. The positive net charge of GNPs and 
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their interaction with ODNs was not affected by controlled nucleation, which is independent of sugar 

type or storage temperature. This further shows the superior stability of ODN-loaded GNPs 

compared to ODN-loaded polyplexes [6]. 

Table A 2 Loading efficiencies of ODN-loaded GNPs before freeze-drying, directly after freeze-drying 

using controlled nucleation, after three months storage at 2-8°C, after three months storage at 20-

25°C and after four weeks storage at 40°C. Results are represented as mean + SD (n=3). 

Formulation 

Loading efficiency [%] 

Before 

lyophilisation 

After 

lyophilisation 

3 months 

2-8°C 

3 months 

20-25°C 

4 weeks 

40°C 

S100 98.8 ± 1.9 95.4 ± 0.6 93.0 ± 0.6 92.9 ± 0.5 96.5 ± 6.0 

S500 98.9 ± 3.5 96.5 ± 1.6 93.7 ± 0.6 97.6 ± 0.5 96.2 ± 0.2 

S1333 102.1 ± 2.2 95.5± 0.6 97.1 ± 0.2 98.5 ± 0.6 89.0 ± 0.3 

T100 96.9 ± 3.4 95.5 ± 0.6 92.0 ± 1.2 92.5 ± 0.6 94.8 ± 0.6 

T500 100.7 ± 0.4 97.0 ± 1.0 94.5 ± 0.6 97.9 ± 0.3 93.2 ± 0.6 

T1333 100.3 ± 1.5 101.9 ± 0.7 96.6 ± 0.3 97.0 ± 0.3 98.9 ± 0.3 

6.2.3 ODN INTEGRITY 

The important factor regarding activity of ODN-loaded GNPs is the integrity of the 

oligodeoxynucleotides. Table A 3 depicts that the ODNs were not affected by controlled nucleation 

followed by lyophilisation in all formulations and were stable upon storage at all conditions. In 

contrast to conventional lyophilisation, no ODN degradation in the low excipient containing 

formulations S100 and T100 was apparent at 40°C. Hence, at least for low sugar content 

formulations, freezing via controlled nucleation prior to lyophilisation seems to be advantageous 

regarding ODN integrity. 
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Table A 3 Oligodeoxynucleotide integrity after lyophilisation combined with controlled nucleation. 

ODN integrity is represented with symbols:  stable ODN,  degraded ODN, ± indications for starting 

degradation. 

Formulation 

 Controlled nucleation 

 2-8°C 20-25°C 40°C 

 3 months 3 months 4 weeks 

..     S100     

S500     

S1333     

T100     

T500     

T1333     

6.2.4 RESIDUAL MOISTURE AND GLASS TRANSITION 

In the conventional lyophilisation experiment, ODN degradation was associated with a higher 

residual moisture. To assess this correlation, residual moisture contents of the controlled nucleated 

samples were analysed and discussed in this section. 

Residual moisture values of controlled nucleated (Figure A 4) and conventional frozen samples 

(Figure A 2) hardly differed directly after freeze-drying and at the end of the storage period. 

Intriguingly, residual moistures of the lowest sugar concentrations reached their maximum value 

after three months, whereas in the conventional samples the maximum was already attained after 

four weeks. This suggests a slower water uptake rate of the controlled nucleated samples, which may 

be explained by a lower specific surface area. However, final residual moistures after three months 

were even higher than of the conventionally freeze-dried products after six months. Nonetheless, 

increased water absorption seems not to be critical regarding three months stability at 2-8°C and 20-

25°C, as it did not lead to particle aggregation or ODN degradation. However, for an industrial 

production and long-term storage, methods to control residual moisture contents are highly 

recommended.  

It is important to be careful when comparing ODN stability in S100 and T100 formulations at 

accelerated conditions. In the controlled nucleated samples ODNs is stable for four weeks, but 

residual moisture is obviously lower than in the conventional samples. This supports the 

presumption that ODN degradation at elevated temperature is directly related to the water content 

of the lyophilisates.  
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Figure A 4 Glass transition temperatures (bars) and residual moisture contents (dots) of ODN-loaded 

GNPs freeze-dried via controlled nucleation directly after lyophilisation, after four weeks of storage 

and three months of storage. Sucrose formulations at A: 2-8°C, B: 20-25°C and C: 40°C. Trehalose 

formulations at D: 2-8°C, E: 20-25°C and F: 40°C. Results are represented as mean + or ± SD (n=2). 

Evaluated Tg values (Figure A 4) are in accordance to literature [4] and comparable to Tg values of 

conventionally lyophilised samples (Figure A 2), whereas there can be seen a trend to slightly higher 

initial values. 

Apart from that, Tg values of S500, S1333, T500 and T1333 were stable over the whole storage period 

at storage temperatures of 2-8°C and 20-25°C. Results were comparable to conventional freeze-

drying. Interestingly, at 40°C S500 and T500 showed stronger Tg decrease than the corresponding 
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conventional samples. Tg values of the lowest sugar formulations behaved also comparable to 

conventionally dried samples resulting in a strong decrease associated with a strong increase in 

residual moisture.  

6.3 AMINO ACIDS 

6.3.1 LOADING EFFICIENCIES AND PH VALUES 

Loading efficiencies related to section 3.3.3 of the main text are displayed in Table A 4. 

In section 3.3.4 of the main text pH values of the formulations are discussed. These values are listed 

in Table A 5 

Table A 4 Loading efficiencies of ODN-loaded GNPs in amino acid containing formulations before 

freeze-drying, directly after freeze-drying using controlled nucleation, after three months storage at 

2-8°C, after three months storage at 20-25°C and after four weeks storage at 40°C. Results are 

represented as mean ± SD (n=3). 

Formulation 

Loading efficiency [%] 

Before 

lyophilisation 

After 

lyophilisation 

3 months 

2-8°C 

3 months 

20-25°C 

4 weeks 

40°C 

His 94.6 ± 0.7 81.0 ± 1.0 92.5 ± 0.6 89.7 ± 0.5 83.6 ± 0.6 

His + Arg 94.3 ± 0.6 84.8 ± 0.6 96.1 ± 0.6 90.0 ± 0.6 95.1 ± 0.3 

His + Gly 96.0 ± 1.7 93.9 ± 0.6 94.9 ± 0.7 90.1 ± 0.7 92.9 ± 0.7 

Arg + Gly 93.0 ± 0.5 96.3 ± 0.6 92.1 ± 0.7 87.8 ± 0.3 85.4 ± 0.7 

Arg + His + Gly 93.8 ± 0.6 87.7 ± 0.6 92.3 ± 0.5 88.8 ± 0.9 90.0 ± 0.7 

Suc + Gly 97.2 ± 0.8 99.6 ± 0.6 100.4 ± 0.5 100.7 ± 0.5 97.8 ± 0.7 

Tre+Gly 98.2 ± 0.3 100.2 ± 0.6 101.4 ± 1.6 101.2 ± 1.1 99.1 ± 0.4 
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Table A 5 pH values of all investigated formulations. Results are represented as mean ± SD (n=3). 

Formulation pH value Formulation pH value Formulation pH value 

..      S100 4.33 ± 0.04 Suc + Gly 5.96 ± 0.09 Gly 2.5 6.00 ± 0.04 

S500 4.56 ± 0.08 Suc + His 7.82 ± 0.06 Gly 5.0 5.74 ± 0.05 

S1333 4.51 ± 0.07 Tre + Arg 10.60 ± 0.06 His 7.59 ± 0.04 

T100 4.46 ± 0.11 Tre + Gly 5.98 ± 0.05 Arg + His 9.09 ± 0.03 

T500 4.69 ± 0.17 Tre + His 7.57 ± 0.07 Arg + Gly 9.08 ± 0.06 

T1333 4.52 ± 0.11 Arg 2.5 10.59 ± 0.07 His + Gly 7.38 ± 0.05 

Suc + Arg 10.53 ± 0.06 Arg 5.0 10.77 ± 0.06 Arg + His + Gly 9.02 ± 0.07 

6.3.2 RESIDUAL MOISTURE AND GLASS TRANSITION 

The following section gives further information on residual moisture contents and glass transition 

values mentioned in section 3.3.4 of the main text. 

Freeze-drying of amino acid containing formulation led to residual moisture contents below 1%, 

except for formulation Arg + Gly with a higher residual moisture content of ~1.4% (Figure A 5). This 

high initial water content may have triggered particle aggregation in this formulation during storage 

at 40°C due to higher product mobility.  

Upon storage none of the formulations, independent of storage temperature, exceeds a residual 

moisture content above 2% (Figure A 5). This indicates lower hygroscopicity or a slowed down water 

sorption rate compared to sugar formulations.  

A stable residual moisture content is normally related to a higher product stability. There is evidence 

to suggest that this pertains for the sugar formulations of ODN-loaded GNPs at higher temperature. 

However, it could not be confirmed by our study regarding the amino acids. A starting ODN 

degradation in the amino acid formulations at 40°C was detected, whereas ODN were stable in more 

hygroscopic sugar formulations. Furthermore, there was no relation between the increase in residual 

moisture and the extend of ODN degradation observed. The formulations with the highest water 

content after 4 weeks at 40°C were Arg + His, His + Gly, Arg + His + Gly, but in only one of them no 

ODN signal could be detected. On the other hand, Tre + Gly was overall one of the driest formulations, 

but ODN degradation started already at 2-8°C. 

So far, there is little information on glass transition temperatures of sugar free lyophilised amino 

acids available. For lyophilised arginine a Tg of 42°C was reported by Mattern et al., whereas a Tg 

of 37°C was declared for histidine [7]. This is not consistent with our findings. The measured Tg of 

the ODN-loaded GNP formulation with pure histidine was found to be much higher, 
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at 105°C (Figure A 5). However, Mattern et al. did not comment if they used histidine base or a salt. 

This would be important information, as the counterion may have an influence on glass transition 

temperatures [8, 9].  

Initial Tg values of Suc + Gly were lower than for pure sucrose. This could be expected due to the Tg 

lowering effects of glycine [10]. The same phenomenon was observed for the Tre + Gly and His + Gly 

formulations. A Tg lowering effect can also be supposed for arginine, as the Arg + His formulation 

revealed a clearly lower Tg of 67°C compared to pure histidine. However, the combination of all three 

amino acids did not further lower the Tg value. Nonetheless, the combination of Arg + Gly strongly 

increased the standard deviation (Figure A 5).  

During storage at 2-8°C and 20-25°C, no decrease in Tg could be detected in the amino acid containing 

formulations, except for pure histidine. This is in correlation with the low increase in residual water 

content. Only at accelerated conditions a reduction in Tg was annotated in most of the formulations 

(Figure A 5). 
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Figure A 5 Glass transition temperatures (bars) and residual moisture contents (dots) of freeze-dried 

ODN-loaded GNPs in amino acid containing formulations directly after lyophilisation (left bar), after 

four weeks of storage (middle bar) and three months of storage (right bar). Storage at A: 2-8°C, 

B: 20-25°C and C: 40°C. Results are represented as mean + or ± SD (n=2). 
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ABSTRACT 

Sterilisation is an important prerequisite for drug products applied via the 

parenteral route. Steam sterilisation is the most common method and 

recommended by pharmaceutical authorities for aqueous formulations. This work 

investigated steam sterilisation for its applicability to sterilise gelatine 

nanoparticles (GNPs). GNP dispersions were subjected to different autoclave 

treatments and subsequently analysed for particle sizes, size distributions, particle 

concentrations, cross-linking degrees and protein secondary structures. GNPs 

mostly remained stable during standard steam sterilisation 

conditions (121°C,15 min), whereas harsher conditions led at least partly  to 

degradation. The second part of the study included the investigation of gamma 

irradiation for sterilisation of lyophilised ODN-loaded GNPs. Different excipients, 

such as sugars and amino acids, were analysed for their suitability to stabilise GNPs 

and ODNs during irradiation. Analytics included particle characteristics, size 

distributions, loading efficiencies, and ODN integrity. Gamma irradiation has proven 

to be a versatile sterilisation method for ODN-loaded GNPs. Additionally, sugars 

have shown be superior in stabilising and protecting during gamma irradiation 

compared to amino acids. 

KEYWORDS 

Steam sterilisation, sterilisation, gamma irradiation, MALDI-TOF, gelatine 

nanoparticles 
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1 INTRODUCTION 

Nanoparticles are widely researched as drug delivery systems for different kinds of 

drugs. Amongst a variety of starting materials, such as poly (lactic-co-glycolic) acid 

(PLGA), albumin, chitosan or lipids, gelatine has proven to be very promising. 

Gelatine nanoparticles (GNPs) have been successfully used as carriers for 

immunomodulatory oligodeoxynucleotides (ODNs) in several veterinary clinical 

studies treating allergic diseases, such as equine recurrent airway obstruction or 

canine atopic dermatitis [1-5].  

 

An important critical quality attribute and prerequisite for medicinal application via 

the inhalative and parenteral route is sterility. So far, an aseptic particle production 

and loading process is necessary to ensure appropriate product quality. However, 

working aseptically is always critical due to a lot of potential contamination risks 

caused by inadequate handling, which cannot completely eliminated by validation 

or monitoring [6, 7]. Consequently, aseptic preparation should be circumvented if 

possible in order to ensure reliable patient safety [7]. The most common and safest 

way to achieve a sterile product is steam sterilisation, preferably performed in the 

final product container. The reason for using this approach is a controllable, 

validatable and calculatable sterility assurance level [6]. However, steam 

sterilisation of nanoparticles is challenging due to different stability issues. For 

instance, it is known from literature that the harsh conditions during autoclaving 

induce degradation and hydrolysis of PLGA [8]. This results in the loss of structural 

integrity of the particles. Furthermore, an acidic microclimate emerges due to the 

immediate release of lactic and glycolic acid, which may cause degradation of the 

loaded drug [9]. Information on effects of steam sterilisation on lipidic composites, 

such as solid lipid nanoparticles (SLNs) or liposomes is contradictory. Depending on 

the lipid composition or buffer system, steam sterilisation may be applicable to 

these systems or cause particle aggregation and lipid degradation [10-12]. On the 

other hand, nano- and microparticles prepared from recombinant spider silk 

protein showed excellent resistance during steam sterilisation [13]. Even extended 
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sterilisation conditions, such as prolonged or repeated autoclaving did not 

negatively impact on the spider silk particles.  

First aim of this study was to evaluate the effects of steam sterilisation on gelatine 

nanoparticles. We could show that standard autoclaving conditions (121°C, 15 min) 

can be applied to sterilise GNPs without negative impact on particle properties.  

However, due to thermal sensitivity of oligodeoxynucleotides, steam sterilisation 

after particle production and ODN loading is not advisable [14]. Aside from this, 

particle sizes of GNPs do not allow sterile filtration of the final formulation. Hence, 

even if pre-sterilised GNPs can be provided, an aseptic loading process would be still 

essential to guarantee adequate product quality for parenteral application. 

Accordingly, there is a need to establish a possibility of sterilisation of ODN-loaded 

GNPs. An alternative procedure to sterilise pharmaceutical products accepted by the 

European Pharmacopeia and United States Pharmacopeia is gamma irradiation [15]. 

Gamma irradiation is an advantageous method due to high penetration depth, low 

temperature rise and no accumulation of toxic residues [15]. It has been reported to 

be a versatile method to sterilise polymeric nano- and microparticles. Several 

studies using synthetic (e.g. PLGA) or natural occurring polymers (e.g. casein or 

chitosan) showed the appropriate use of gamma rays without impact on these drug 

delivery systems. However, most of these particles were loaded with small 

molecules instead of biopharmaceuticals. It is known that gamma irradiation can 

cause degradation and functional loss of biomolecules, such as proteins [16, 17]. 

Nonetheless, the addition of protection agents, such as amino acids [18, 19] or 

antioxidants [17], allows successful sterilisation of proteineous products. 

Furthermore, sterilisation of the protein in a dry state, such as lyophilised or spray 

dried, is beneficial to maintain its function [17, 19].  

In the present work, we could show that lyophilised ODN-loaded GNPs can be 

sterilised in their final container by gamma irradiation without any adverse effects 

on particle characteristics or ODN integrity.  

Summarising, this work provides different approaches to sterilise unloaded and 

ODN-loaded GNPs, which is an important step into commercialisation of GNPs.  



Sterilisation of Gelatine Nanoparticles 

 

 

 
129 

 

2 MATERIALS AND METHODS 

2.1 MATERIALS 

Gelatine type A 300 bloom was provided from Gelita AG (Eberbach, Germany). 

Acetone was obtained from Fisher Chemicals (Loughborough, UK). Glutaraldehyde 

(25% solution), 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride, 

(2-Aminoethyl) trimethylammonium chloride hydrochloride, L-arginine base, L-

histidine base, L-glycine base, TNBS (2,4,6-trinitrobenzene sulfonic acid) and 

sodium bicarbonate were supplied by Sigma (Taufkirchen, Germany). D-(+)-Sucrose 

and D-(+)-Trehalose dihydrate were acquired from VWR International (Leuven, 

Belgium). In all experiments highly purified water (HPW) was used, which was 

produced by a PURELAB Plus device (conductivity < 0.055 µS/cm, Elga Labwater, 

Celle, Germany). Oligodeoxynucleotides (ODNs) were synthesized by biomers.net 

GmbH (Ulm, Germany). 

2.2 PREPARATION OF CATIONISED GELATINE NANOPARTICLES 

GNPs were prepared according to one-step desolvation [20]. Briefly, 750 mg 

gelatine type A (300 bloom) was dissolved in 25 mL HPW (3.0% w/v) under 

constant stirring at 50°C. Afterwards, pH was adjusted to a value between 2.5 

and 3.0. Following, acetone was added dropwise to initiate GNP formation. A volume 

of 175 µL glutaraldehyde solution was added to cross-link GNPs. After overnight 

stirring, the dispersion was purified via three-fold ultrafiltration using a solvent 

resistant stirred cell and an ultrafiltration disc of regenerated cellulose and a 

molecular weight cut-off of 100’000 kDa (Millipore S.A.S., Molsheim, France).  

For cationisation, GNP dispersion was diluted with HPW (~ 10 mg/mL) and pH was 

adjusted (4.5 - 5.0). Subsequently, EDC and Cholamine were added. After incubation 

for 30 min, the reaction mixture was purified by two-fold centrifugation (15000*g 

for 60 min; Sigma Laborzentrifugen, Osterode, Germany). Finally, nanoparticle 
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concentration was determined gravimetrically using a UMX2 ultra-microbalance 

(Mettler Toledo, Greifensee, Switzerland). 

2.3 OLIGODEOXYNUCLEOTIDE LOADING OF GELATINE NANOPARTICLES 

For ODN loading, GNP dispersion was diluted with the respective excipient stock 

solution to a final concentration of 1.5 mg/mL and incubated with 5% (w/w) ODNs 

for 60 min at 21°C and under continuous shaking at 350 rpm (Thermomixer 

Comfort, Eppendorf AG, Hamburg, Germany). Sugar containing samples were 

prepared in excipient-to-ODN ratios of 100:1, 500:1 and 1333:1. This ratio is used 

to identify the samples in the following text. Amino acid formulations (L-arginine, L-

histidine and L-glycine) were prepared at an excipient-to-ODN ratio of 333:1 (one 

amino acid, representing 2.5% [w/v]), 667:1 (two amino acids, equally mixed) and 

1000:1 (three amino acids, equally mixed). Sugar amino acid combinations were 

based on a sugar-to-ODN ratio of 500:1, amino acids were added in the ratio 333:1. 

2.4 LYOPHILISATION OF ODN-LOADED GELATINE NANOPARTICLES  

Freeze-drying of ODN-loaded GNPs was performed with a volume of 500 µL in 2R 

glass vials according to the conventional freeze-drying cycle described in chapter III, 

section 2.4 adapted from Zillies et al. [21]. An EPSILON 2-6D pilot scale freeze dryer 

(Martin Christ Gefriertrocknungsanlagen GmbH, Osterrode, Germany) equipped 

with type T thermocouples (Newport Electronics, Deckenpfronn, Germany) for 

temperature monitoring was used. Upon finishing the cycle, the product chamber 

was vented with nitrogen and samples were stoppered at a chamber pressure 

of 800 mbar. 

2.5 STEAM STERILISATION  

GNP dispersions (5 mg/mL) were steam sterilised in glass vials (DIN 2R, closed with 

stoppers and crimped with aluminium caps) using a GTA 50 autoclave (Fritz 
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Gössner, Hamburg, Germany). Samples were autoclaved for 15, 30 and 45 min 

at 121°C or 3 min at 134°C. Repeated sterilisation cycles were performed 

for 2 x 15 min and 3 x 15 at 121°C. Control samples were stored at 2-8°C.  

2.6 STERILISATION BY GAMMA IRRADIATION 

Lyophilised ODN-loaded GNP formulations were sterilised via gamma irradiation by 

a cobalt-60 source and an absorbed dose of 25 kGy (STERIS AST Allershausen GmbH, 

Germany).  

2.7 GELATINE NANOPARTICLE CHARACTERISATION 

Particle yield was determined gravimetrically using a UMX2 ultra-microbalance 

(Mettler Toledo, Greifensee, Switzerland). Particle size and polydispersity 

index (PDI) were ascertained by DLS using a Zetasizer Nano ZS (Malvern 

Instruments, Worcestershire, UK). Derived countrates were calculated from DLS 

measurements using DTS Nano software (Malvern Instruments, Worcestershire, 

UK). 

2.8 DETERMINATION OF LOADING EFFICIENCY 

Loading efficiency was indirectly determined by measuring UV absorbance 

at 260 nm (Agilent 8453 UV-visible spectrophotometer, Agilent Technologies, Santa 

Clara, California, USA) in the supernatant of centrifuged ODN-loaded GNPs, a GNP 

control and an ODN control [5].  Loading efficiency was calculated using the 

following equation:  

Loading efficiency [%] = 1 − (
A (ODN−loaded GNP)−A (GNP control)

A (ODN control)
) 𝑥 100 %.  
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2.9 DETERMINATION OF CROSS-LINKING DEGREE 

TNBS assay was performed to determine cross-linking degrees of GNPs before and 

after steam sterilisation procedures. In brief, the GNP dispersion was diluted with 

water to a concentration of 4 mg/mL. A volume of 0.25 mL GNP dispersion was 

mixed with a volume of 0.25 mL 0.05% TNBS (v/v) and 0.25 mL 

of 4% NaHCO3 (w/v) (pH 8.5). Subsequently, the samples were incubated at 40°C in 

a Thermomixer (Eppendorf, Hamburg, Germany) for 2 hours under constant 

shaking (500 rpm). Afterwards, a volume of 750 µL of HCl 6M was added to each 

sample. Further incubation for 90 min at 60°C under constant shaking at 500 rpm 

followed. After that, samples were diluted with water for photometric 

determination of the reaction product at 349 nm (Agilent 8453 UV-visible 

sprectrophotometer, Agilent Technologies, Santa Clara, CA, USA). Blank samples of 

gelatine (≙ 0% cross-linking) and control samples of gelatine (≙ 100% cross-linking) 

were prepared. Control sample preparation included HCl addition prior to TNBS 

solution to avoid the reaction between TNBS and free amino groups of gelatine. 

Cross-linking degree was calculated by the following equation: 

𝐶𝐿 [%] = (1 −
𝐴(𝑠𝑎𝑚𝑝𝑙𝑒) − 𝐴(𝑏𝑙𝑎𝑛𝑘)

𝐴(𝑐𝑜𝑛𝑡𝑟𝑜𝑙) − 𝐴(𝑏𝑙𝑎𝑛𝑘)
) ∗ 100% 

2.10 SCANNING ELECTRON MICROSCOPY (SEM) 

Gelatine nanoparticles were lyophilised according to the protocol described in 

chapter III, section 2.4 and immobilised on an aluminium sample grid. Following 

carbon sputtering, samples were analysed by a Helios NanoLab G3 UC scanning 

electron microscope (FEI, Hillsboro, Oregon, USA) at 3.0 kV and a working distance 

of 3.2 – 4.2 mm.  
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2.11 DYNAMIC SCANNING CALORIMETRY (DSC) 

Glass transition temperatures (Tg) were analysed using a Mettler DSC 821e (Mettler 

Toledo, Columbus, OH, USA). GNP dispersions were dried overnight in a vacuum 

drying cabinet at 10 mbar and 25°C and weighed into aluminium crucibles. To 

determine Tg values, samples were measured at a heating and cooling rate 

of 10 K/min from 0 to 150°C against an empty crucible as reference.  

2.12 FOURIER TRANSFORM INFRARED SPECTROSCOPY (FT-IR) 

Fourier transform infrared spectroscopy (FT-IR) using the Bruker Tensor 27 FT-IR 

spectrometer (Billerica, USA) was performed to analyse protein secondary 

structure. Particle dispersions were examined by adding 20 µl into a BioATRCell II 

(Harrick Scientific, Pleasantville, USA) at a temperature of 25°C. Each spectrum 

comprises the average of 120 scans at a resolution of 4 cm-1 and was performed in 

triplicate. Data was analysed with the Bruker OPUS software (version 6.5).  

2.13 MATRIX-ASSISTED LASER DESORPTION/IONISATION TIME-OF-FLIGHT MASS 

SPECTROMETRY (MALDI TOF) 

After desalting on a 0.025 μm VSWP membrane (Merck Millipore, Darmstadt, 

Germany), samples were co-crystallised in a 3-hydroxypicolinic acid matrix (HPA). 

Matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass 

spectrometry was performed in negative mode using a Autoflex II (Bruker Daltonics, 

Germany) and a AnchorChip®-Target (Bruker MTP var/384).  
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3 RESULTS AND DISCUSSION 

3.1 STEAM STERILISATION 

Providing a sterile product is essential for the inhalative or parenteral application 

of a drug product. According to the European Medicines Agency, steam sterilisation 

is the method of choice for aqueous formulations [6]. Based on these authority 

requirements, the aim of this study was to evaluate the effects of steam sterilisation 

on gelatine nanoparticles.  

3.1.1 VISUAL INSPECTION 

Visual inspection of the autoclaved samples revealed no change in colour or 

turbidity of GNPs treated at 121°C, but a tremendous change in optical appearance 

of GNPs autoclaved at 134°C (Figure IV-1). These samples became almost clear after 

autoclave treatment. Consequently, it can be assumed that particle integrity was 

damaged during steam sterilisation and GNPs subsequently dissolved.  

 

Figure IV-1 Optical appearance of GNPs after different steam sterilisation procedures. A: Not 

autoclaved reference sample, B: 15 min at 121°C, C: 2x 15 min at 121°C, D: 3x 15 min at 121°C, E: 30 

min at 121°C, F: 45 min at 121°C, G: 3 min at 134°C.  

3.1.2 PARTICLE SIZES AND PDI VALUES 

Particle sizes and PDI values of GNPs after different procedures of steam 

sterilisation were analysed (Figure IV-2). A slight increase in particle sizes was 
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noticed after the standard autoclaving process for 15 minutes at 121°C, whereas 

monomodal size distribution remained stable (PDI < 0.1). This indicates a certain 

swelling of the particles caused by moist heat. Repeated (2-fold or 3-fold) or 

prolonged (30 min or 45 min) sterilisation cycles at 121°C did not further influence 

particle characteristics. However, autoclaving at 134°C and consequent elevated 

pressure of 3 bar resulted in an escalation in particle sizes and PDI values. 

Nonetheless, PDI values were still around 0.2. Based on these results, particle 

aggregation is not likely, but a stronger and more irregular swelling of the GNPs 

compared to standard autoclave treatment.  

 

Figure IV-2 Particle sizes (dots) and PDI values (triangles) of plain GNPs after different steam 

sterilisation procedures (black) and subsequent two weeks storage at 2-8°C (white). Data is 

represented as mean ± SD (n=3). 

All particle sizes and PDI values of GNPs after autoclaving remained stable during 

subsequent storage at 2-8°C for two weeks (Figure IV-2). Furthermore, optical 

appearance did not further change. This implies that no damage occurred, which 

would impact storage stability of steam sterilised GNPs.  
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Findings from DLS measurements can be supported by SEM micrographs (Figure IV-

3). All particles retained their round shape and smooth surface after autoclave 

treatment. However, steam sterilisation at 134°C caused intense swelling of the 

GNPs.  

 

Figure IV-3 SEM micrographs of GNPs after different procedures of steam sterilisation. A: Not 

autoclaved reference sample, B: 15 min at 121°C, C: 2x 15 min at 121°C, D: 3x 15 min at 121°C, E: 30 

min at 121°C, F: 45 min at 121°C, G: 3 min at 134°C. Size bar represents 500 nm in each individual 

image. 

3.1.3 DERIVED COUNT RATES AND CROSS-LINKING DEGREES 

These results demonstrate that steam sterilisation at 134°C had a negative impact 

on GNPs compared to steam sterilisation at 121°C. However, so far, one cannot 

explain the discolouration of the samples. To clarify this phenomenon, the derived 

countrates of the particular DLS measurements were analysed. The derived 

countrate is a theoretic value that describes the respective light scattering without 
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laser attenuation calculated from values obtained by attenuated laser intensity [22]. 

This allows to directly compare the countrates of different samples and 

consequently infer on particle concentrations. Figure IV-4 displays the derived 

countrates of GNPs treated by steam sterilisation. From these data it can be 

concluded that autoclave treatment causes particle damage paired with particle loss 

and particle dissolution. This effect is more pronounced the stronger is the stress 

during steam sterilisation. Interestingly, a repeated autoclaving procedure, 

including multiple heating and cooling steps, is more harmful to GNPs than the 

corresponding prolonged process (e.g. 2x15 min vs. 30 min). Furthermore, steam 

sterilisation at 134°C results in a tremendous loss in derived countrate of ~ 95%. 

Consequently, one can expect an immense decrease in particle concentration, which 

provoked that the particle dispersions became almost clear.  

 

Figure IV-4 Derived countrates in DLS measurements of GNPs before and after different steam 

sterilisation procedures. Data is represented as mean ± SD (n=3). 

The described particle dissolution induced by steam sterilisation was further 

confirmed by evaluation of cross-linking degrees (Figure IV-5). One can deduce a 

reduction in cross-linking degree, which was more pronounced the harsher the 
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sterilisation conditions were. A reduced cross-linking degree signifies an increased 

number of free amino groups in the sample. Consequently, this implies degradation 

of GNPs. Considering these data, it can be presumed that steam sterilisation at 134°C 

led to an almost complete disintegration of GNPs, whereas a large population of 

GNPs withstood autoclave treatment at 121°C.  

 

Figure IV-5 Cross-linking degree of GNPs before and after different steam sterilisation procedures. 

Data is represented as mean + SD (n=3). 

3.1.4 SECONDARY STRUCTURE OF GELATINE NANOPARTICLES 

FT-IR measurements of the samples were performed to analyse effects of steam 

sterilisation on secondary structure of GNPs. Figure IV-6 shows the spectra of the 

amide I band between 1600 cm-1 and 1700-1 and the amide II band 

between 1510 cm-1 and 1580 cm-1 in the second derivative. The large number of 

minima in the region of amide I indicate a combination of different structures in 

GNPs. This includes β-sheet (band at 1695 cm-1, two bands between 1620 

and 1630 cm-1), random coil (band at 1646 cm-1), β-turn (band at 1680 cm-1) 

and 310-helix [23]. On the other hand, amide II region illustrates mainly peaks 
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demonstrating a β-sheet structure (bands at 1515 cm-1, 1534 cm-1, 1552 cm-1, 

1569 cm-1) [24]. After autoclave treatment, intensity changes of the respective 

bands were noticed. However, no shift of the local minima was observed. To 

conclude, although GNPs at least partially degraded during steam sterilisation, no 

drastic changes in secondary structure were detectable by FT-IR.  

 

Figure IV-6 Second derivative of the averaged FT-IR spectra in the amide I and amide II region of 

GNPs after different sterilisation conditions (n=3). 

GNPs are subjected to higher stress during autoclaving at 134°C and a pressure 

of 3 bar than at 121°C and 2 bar, even though the exposure time is shorter. 

Furthermore, data from dynamic scanning calorimetry show a glass transition of 

GNPs at 134.57°C ± 0.96°C. This may also contribute to the degradation of GNPs 

during the hasher steam sterilisation process.  

 

On the other hand, literature showed that steam sterilisation is generally not 

applicable for collagen and collagen derived proteins, such as gelatine, due to 

degradation [25-27]. Gelatine microparticles did not withstand steam sterilisation 

and led to degradation of the particles [26]. However, these microcarriers seemed 
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to have strongly reduced initial cross-linking degrees compared the gelatine 

nanoparticles used in our study. No absolute values were stated, but a ten-fold lower 

amount of glutaraldehyde was used to cross-link the gelatine microparticles 

compared to GNPs. Consequently, besides the applied temperatures, one can 

assume that a high degree of cross-linking is an important prerequisite to enable 

resistance of GNPs against stress during steam sterilisation.  

 

Summarising, steam sterilisation of GNPs under standard conditions of 15 minutes 

at 121°C can be performed. However, one has to keep in mind that this treatment 

already causes slight particle degradation. Consequently, alternative concentration 

determination methods need to be evaluated for steam sterilised GNPs, as common 

gravimetric analysis would lead to false high results due to residual gelatine 

fragments. This could include concentration determination using absorption of UV 

light, turbidity or derived countrates from DLS measurements. However, all these 

methods require calibration curves. On the other hand, a purification method to 

remove gelatine residues from autoclaved GNP dispersions should be developed. 

Furthermore, steam sterilisation can only be applied to plain GNPs or GNPs loaded 

with heat resistant drugs, whereas alterations of drug release characteristic might 

be considered and evaluated.  

3.2 GAMMA IRRADIATION 

From the aforementioned section, it can be ascertained that steam sterilisation of 

GNPs is in principle possible. However, ODN loading would still be necessary to be 

performed under aseptic conditions, due to the heat sensitivity of ODNs [14]. 

Moreover, sterile filtration is not applicable due to particle sizes larger than the pore 

size of a 0.2 µm sterile filter. Therefore, the aim of this part of the study was to 

establish a method to sterilise ODN-loaded GNPs without impact on particle 

attributes and ODN integrity.  

In this section, gamma irradiation is evaluated to be a suitable sterilisation method 

for lyophilised ODN-loaded GNPs. Four different formulation principles were 
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investigated: sugar-based and amino acid-based formulations, as well as 

combinations of a sugar and an amino acid or combinations of different amino acids.  

3.2.1 VISUAL INSPECTION 

The energy introduced into the samples by gamma rays did not change the optical 

appearance of the lyophilisates and did not induce collapse of the cakes. However, a 

colouration of the glass vials was observed. This is a common phenomenon, as glass 

is sensitive to radiation induced coloration due to its amorphous structure [28, 29]. 

This is a reversible metastable change in the glass and has no impact on its physical 

properties or the product [29]. 

3.2.2 PARTICLE SIZES AND PDI VALUES 

Data of DLS measurements reveal that gamma irradiation had hardly any impact on 

particle sizes and PDI values in most of the formulations (Figure IV-7). All sucrose 

concentrations (S100, S500, S1333), the higher trehalose concentrations (T500, 

T1333), pure histidine, most sugar amino acid combinations (Suc + Gly or His, Tre + 

Arg or Gly or His) and the amino acid mixtures (Arg + His, Arg + Gly, His +Gly, Arg + 

His + Gly) stabilised ODN-loaded GNPs.  

On the other hand, pure glycine at low concentration (2.5%) was not adequate to 

prevent ODN-loaded GNPs from aggregation indicated by a strongly increasing 

particle size and PDI value. Furthermore, highly concentrated glycine (5.0%), both 

arginine concentrations (2.5% and 5.0%) as well as the combination of sucrose and 

arginine (Suc + Arg) and low concentrated trehalose (T100) showed higher PDI 

values after sterilisation suggesting aggregation. This leads to the conclusion, that 

glycine and arginine and low amounts of trehalose are not suitable to retain particle 

stability during gamma irradiation.  
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Figure IV-7 Particle sizes (bars) and PDI values (dots) of ODN-loaded GNPs in different lyophilised 

formulations before and after gamma irradiation. A: Pure sugar formulations, B: Sugar amino acid 

combinations, C: pure amino acid formulations, D: amino acid combinations. Data is represented as 

mean + or ± SD (n=3). 

3.2.3 LOADING EFFICIENCIES AND ODN INTEGRITY 

Loading efficiencies remained stable in most formulations indicating no breakage of 

the permanently positive charged side chains of GNPs by radiation (Table IV-1). 

However, a tremendous drop in loading efficiency was recognized in formulation 

Gly 2.5% (from 96.6% to 68.5%). This loss in loading efficiency may be related to 

the strong particle aggregation.  

Investigation of ODN integrity revealed that ODNs endured gamma irradiation in all 

sugar formulations (Table IV-1). Additionally, ODNs are stable in all amino acid 

containing formulations free from arginine. Of all the formulations containing 

arginine only high arginine (5.0%) and its combination with trehalose stabilised the 

ODNs.  
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Table IV-1 ODN integrity after gamma sterilisation and loading efficiencies before and after gamma 

irradiation. ODN integrity is represented with symbols:  stable ODN,  degraded ODN. Loading 

efficiency is represented as mean ± SD (n=3). 

Formulation 
ODN integrity 

after γ-irradiation 

Loading efficiency [%] 

Before γ-

irradiation 

After γ-

irradiation 
.. 

   S100  98.2 ± 0.8 99.8 0.2  

S500  98.6 ± 0.9 102.2 2.2 

S1333  97.4 ± 0.5 93.6 ± 0.1 

T100  98.4 ± 0.6 100.7 ± 0.3 

T500  98.9 ± 0.2 96.6 ± 0.6 

T1333  96.3 ± 0.9 95.2 ± 0.6 

Suc + Arg  100.3 ± 0.4 97.4 ± 2.9 

Suc + Gly  98.1 ± 0.5 90.1 ± 1.0 

Suc + His  96.3 ± 0.4 96.8 ± 0.6 

Tre + Arg  95.4 ± 0.4 92.5 ± 0.4 

Tre + Gly  98.5 ± 0.9 96.0 ± 0.6 

Tre + His  94.5 ± 0.6 89.3 ± 0.6 

Arg 2.5  99.1 ± 0.7 97.9 ± 0.3 

Arg 5.0  91.9 ± 0.9 98.6 ± 0.2 

Gly 2.5  96.6 ± 0.4 68.5 ± 1.2 

Gly 5.0  96.5 ± 0.6 96.2 ± 0.6 

His  95.6 ± 0.9 97.4 ± 0.6  

Arg + His  95.1 ± 0.5 91.3 ± 0.3 

Arg + Gly  93.3 ± 0.8 87.5 ± 6.1 

His + Gly  98.3 ± 0.6 97.3 ± 0.5 

Arg + His + Gly  94.8 ± 0.4 102.0 ± 0.5 

 

This leads to the conclusion that arginine is disadvantageous as excipient for ODN-

loaded GNPs during gamma irradiation. This was not expected as arginine is well 

known to stabilise proteins [30]. On the other hand, destabilising effects of arginine 

have already been noticed in the lyophilisation and storage stability study (see 

Chapter III). We hypothesize that this negative impact of arginine is related to its 
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guanidinium group. This group shows a high affinity to the negatively charged 

backbone of nucleic acids and highest binding capacity to DNA motifs consisting of 

guanine rich residues, which are represented in our ODN [31, 32]. Consequently, the 

arginine binding induces conformational changes in the secondary structure of the 

DNA sequences [31]. Lastly, the change in conformation makes the ODNs more 

susceptible for degradation.  

 

In summary, we could show that gamma irradiation is a suitable method to sterilise 

GNPs. Previously, gamma irradiation has shown to induce disintegration of non-

crosslinked gelatine nanoparticles (~ 300 nm) and subsequent reformation of 

smaller ones (~ 10 nm) in aqueous formulations [33]. In our study, covalent cross-

linking and sterilisation in solid state prevented degeneration of GNPs into smaller 

particles.  

However, gamma irradiation aims to eliminate microorganisms by damaging their 

DNA. Therefore, evaluation of ODN integrity was a critical part of this study. 

Interestingly, we could show for the first time that rather simple lyophilised 

formulations were adequate to stabilise ODNs loaded onto GNPs during gamma 

irradiation. A mixture of two amino acids was sufficient for stabilisation, whereas 

arginine had a negative impact on the stability of ODN-loaded GNPs. On the other 

hand, if histidine was used, one amino acid was sufficient to protect ODNs from 

degradation. This beneficial effect of histidine was already noticed during the 

storage stability study of lyophilised ODN-loaded GNPs (see chapter III, section 3.3). 

Furthermore, the addition of a sugar to a pure amino acid formulation was 

advantageous. Similar observations have already been reported for a spray dried 

influenza vaccine, where the addition of trehalose to an amino acid composition was 

found to be favourable [19]. Surprisingly, pure sugar formulations were also 

appropriate and even superior to amino acids for stabilisation of ODN-loaded GNPs 

during gamma irradiation. This was not expected as it was published that complex 

formulation compositions of five to eight excipients, mostly based on amino acids, 

are necessary provide irradiation stability of a dry biomolecular product [18, 19]. In 
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another study, RNA oligonucleotides encapsulated into spray dried albumin 

nanoparticles were found to be stable upon radiation without any excipients [34]. 

Here the RNA was really entrapped inside the particle matrix, and therefore albumin 

may have acted as protecting agent. Based on this, it can be hypothesised that GNPs 

in general may also have protective features, but in our case ODNs are attached to 

the GNP surface and therefore additional excipients are be necessary to stabilise the 

oligodeoxynucleotides.  

Summarising, it can be assumed that sugars are at least equivalent in protecting 

ODN-loaded nanoparticles from gamma rays compared to amino acids. However, 

long term stability of gamma irradiated ODN-loaded GNPs should be studied to 

provide a final recommendation on excipients.  

4 CONCLUSION 

Steam sterilisation is an acceptable method to sterilise plain GNPs. However, due to 

thermal stress a certain particle degradation was even be detected under standard 

conditions. 

Gamma irradiation is a suitable method to sterilise lyophilised ODN-loaded GNPs, 

whereas sugar formulations were superior to amino acid mixtures and arginine was 

even detrimental in terms of ODN stability.  

Amongst the two investigated sterilisation approaches, gamma irradiation of 

lyophilised GNPs is preferable.  
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ABSTRACT 

Cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs) are a promising 

new immunotherapeutic treatment option for canine atopic dermatitis (AD). The 

aim of this uncontrolled pilot study was to evaluate clinical and immunological 

effects of gelatine nanoparticle (GNP)-bound CpG ODNs (CpG-GNP) on atopic dogs. 

Eighteen dogs with AD were treated for eight (group 1, n=8) or 18 weeks (group 2, 

n=10). Before inclusion and after two, four, six (group 1+2), eight, 12 and 16 weeks 

(group 2) 75 µg CpG ODNs/dog (bound to 1.5 mg GNP) were injected 

subcutaneously. Pruritus was evaluated daily by the owner. Lesions were evaluated 

and serum concentrations and mRNA expressions of interferon-γ, tumour necrosis 

factor-α, transforming growth factor-β, interleukin-10 and interleukin-4 (only 

mRNA expression) were determined at inclusion and after eight (group 1+2) and 18 

weeks (group 2). 

Lesions and pruritus improved significantly from baseline to week eight. Mean 

improvements from baseline to week 18 were 23% and 44% for lesions and pruritus 

respectively, an improvement of ≥50% was seen in 6/9 and 3/6 dogs, respectively. 

Interleukin-4 mRNA expression decreased significantly. The results of this study 

show a clinical improvement of canine AD with CpG GNP comparable to allergen 

immunotherapy. Controlled studies are needed to confirm these findings. 

 

KEYWORDS:  

Allergy, atopy, dogs, immunomodulation, TLR9    
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1 INTRODUCTION 

Canine atopic dermatitis (AD) is an inflammatory allergic skin disease in genetically 

predisposed dogs associated with distinctive clinical signs [1]. The allergy is mostly 

directed against environmental allergens though food allergens might contribute to 

the disease [2, 3]. In most, but not all dogs, IgE antibodies against those allergens 

can be found [4]. 

The pathogenesis of AD is complex and not fully understood [5]. Besides skin barrier 

impairments, alterations of the immune system seem to play a central role in the 

development of the disease [6]. Atopic dogs as well as humans show a tendency to 

T helper type 2 (Th2)-polarized immune reactions [7-10]. However, although a Th2 

phenotype predominates in early stages of inflammation, chronic lesions show a 

more mixed pattern of lymphocytes and cytokines with a slight trend towards Th1-

polarization [8, 9, 11]. Regulatory T cells (Tregs) and the regulatory cytokines 

transforming growth factor (TGF)-β and interleukin (IL)-10 can modulate the 

immune response to allergens by directly and indirectly suppressing T cells. 

Although still not fully understood, there might be a Treg cell deficiency or an 

impairment of Treg function in AD [4, 12, 13]. 

To date, allergen immunotherapy (AIT) is the only causative therapy [14]. However, 

there are certain disadvantages of AIT. For each dog allergens contributing to the 

disease must be identified, and then an individual allergen extract has to be 

formulated. Allergen testing and extracts are costly [15]. Furthermore, there is a 

subset of dogs not showing positive test reactions excluding them from this 

treatment option [4]. In addition, it may take several months before clinical 

improvement is seen and up to half of the patients may fail to respond to AIT [16, 

17]. Thus, an efficacious immunomodulation of AD that does not require allergen 

identification would be desirable.  

Cytosine phosphate guanine oligodeoxynucleotides (CpG ODNs) offer such a new 

immunotherapeutic approach. CpG ODNs are synthetic DNA oligodeoxynucleotides 

containing at least one unmethylated cytosine guanine (CG) dinucleotide with 

certain flanking bases. Unmethylated CG dinucleotides are relatively common in 
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microbial DNA and represent a pathogen-associated molecular pattern (PAMP), 

which is bound by Toll-like receptor (TLR) 9. They initiate various immune 

responses [18-20].  

In humans, stimulation of TLR 9 by CpG ODNs leads to a polarization of the immune 

response to a Th1 phenotype, which suppresses Th2 responses, increases the 

secretion of regulatory cytokines such as IL-10 and suppresses IgE antibody 

production. Furthermore, differentiation of B-cells to plasma cells and isotype 

switching to IgG is promoted [20-22]. In atopic dogs, CpG ODNs also induce a Th1-

biased immune response and increase the expression of IL-10 mRNA in vitro [23-

25]. These effects resemble those observed in the course of AIT [26-28]. 

Adsorption of CpG ODNs onto cationised gelatine nanoparticles (GNPs) protects the 

CpG ODNs from early enzymatic degradation and enhances uptake into target cells, 

thereby increasing and prolonging the immunostimulatory effects of the CpG 

ODNs [23, 29, 30]. Gelatine as a carrier matrix is biocompatible, biodegradable and 

safe [31]. Unloaded GNPs do not show immunostimulatory activity [30]. Repeated 

inhalation of an aerosol formulation of GNP-bound CpG ODNs (CpG-GNPs) increased 

IL-10 and IFN-γ expression, but also reduced clinical parameters of allergic 

inflammation in horses with recurrent airway obstruction [32, 33]. The CpG-GNP 

used in this study increased secretion of IL-10 in vitro in peripheral blood 

mononuclear cells (PBMCs) obtained from atopic dogs [23]. 

The aims of this study were (1) to evaluate the effects of CpG-GNPs on the clinical 

lesions and pruritus of dogs with nonseasonal atopic dermatitis and (2) to examine 

the influence of the treatment on gene expression and serum concentrations of 

selected Th1, Th2 and regulatory cytokines in these dogs. 
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2 MATERIALS AND METHODS 

2.1 STUDY DESIGN  

The study was conducted as an uncontrolled, prospective pilot study in the setting 

of the Clinic of Small Animal Medicine, LMU, Munich, Germany. 

2.2  STUDY DRUG PREPARATION  

ODNs with the sequence 5’-GGTGCATCGATGCAGGGGGG-3’ were provided with a full 

phosphorothioate backbone (Biomers.net, Ulm, Germany). 

The GNPs were prepared using a two-step desolvation method as previously 

described [34]. Nanoparticles were stabilised by cross-linking with glutaraldehyde. 

Cationisation was performed by attaching permanent positive charges from 

quaternary amines to the surface of GNP according to an established protocol [30]. 

Aseptically prepared GNP were then incubated with CpG ODNs in isotonic sorbitol 

solution to a final concentration of 5 mg/mL GNP and 0.25 mg/mL CpG ODNs for 1 h 

at 22°C under gentle shaking using a thermomixer (Eppendorf, Hamburg, Germany). 

The loading efficiency was calculated by photometric determination at a wavelength 

of 260 nm (Agilent 8453 UV-visible spectrophotometer, Agilent Technologies, Santa 

Clara, California, USA) as follows. Samples (CpG-GNPs) and controls of plain GNPs 

and pure CpG ODNs were centrifuged at 14000*g for 30 min (Sigma 4K15 centrifuge, 

Osterode, Germany). The absorbance (A) of the supernatants was then measured 

and the loading efficiency was calculated using the following equation: 

 

Loading efficiency [%] = 1 − (
A (CpG GNP)−A (GNP control)

A (CpG−ODNs control)
) 𝑥 100 %. 

 

A loading efficiency of at least 95% (w/w) was acceptable. Particle size, 

polydispersity index (PDI) and zeta potential were analysed using a Zetasizer ZS 

Nano (Malvern Instruments, Malvern, UK) before and after loading with CpG ODNs. 

The study drug was then stored at 3 to 7 °C for not longer than 72 hours until 
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injection to ensure that particle size, PDI, zeta potential and loading efficiency meet 

the required quality criteria.  

2.3  PATIENT SELECTION 

Eighteen client-owned dogs with non-seasonal AD were included. Atopic dermatitis 

was diagnosed by history, clinical examination and ruling out differential diagnoses 

with appropriate tests and treatments. Within the last month prior to and during the 

study every dog was treated with appropriate flea control products and its diet was 

unchanged for at least two months prior to inclusion and during the trial. Injectable 

depot formulation of glucocorticoids had to be discontinued at least six weeks prior 

to participation, any oral glucocorticoid or other immunosuppressive agent four 

weeks prior. Patients receiving other medication, such as antihistamines or 

shampoo therapy continued this medication unchanged in the last two weeks prior 

to and during the trial. 

Dogs were withdrawn from the study when requiring any form of additional anti-

inflammatory therapy or when showing unacceptable discomfort or adverse effects 

of immunotherapy. Poor owner compliance also led to exclusion. 

2.4  TREATMENT PROTOCOL 

The procedure was approved by the local animal welfare authorities (District 

Government of Upper Bavaria, Field of interest 54, 80534 Munich, Germany; 

reference number 55.2-1-54-2532-122-13, date of approval: 9/18/2013). Prior to 

treatment of each dog, written informed consent was obtained from the owner.  

Recruitment and treatment of patients started in 04/2014 and ended (for reasons 

of time) in 09/2015. The first group of eight dogs (group 1) was treated over a 

period of eight weeks, whereas the following ten dogs (group 2) received 

immunotherapy over a prolonged period of 18 weeks. The study drug (300 µL of the 

final formulation, which corresponds to 75 µg CpG ODNs bound to 1.5 mg GNPs per 

dog) was injected subcutaneously in the area of the popliteal lymph nodes at 
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inclusion and after two, four and six weeks. Patients of group 2 received additional 

injections after eight, 12 and 16 weeks. 

2.5  CLINICAL EVALUATION  

At inclusion and after eight (group 1+2) as well as 18 weeks (group 2) skin lesions 

were evaluated using the validated Canine Atopic Dermatitis Extent and Severity 

Index (CADESI)-03 which evaluates 62 body sites for erythema, lichenification, 

excoriation and alopecia [35]. 

Pruritus was assessed by the dog´s owner on a daily basis using a validated visual 

analogue scale of zero (no pruritus) to ten (extremely severe and continuous 

pruritus) [36, 37]. For each dog individual weekly values of pruritus were calculated 

by forming the arithmetic mean of the scores of week one, eight and 18 (if available), 

respectively.  

Any given medication or treatment as well as any adverse effects had to be recorded 

by the owner. 

2.6  QUANTIFICATION OF SERUM CYTOKINE CONCENTRATIONS 

Blood samples were collected at the beginning of the study and after 

eight (group 1+2) and 18 weeks (group 2). The latter blood samplings were both 

performed two weeks after the last CpG-GNP injection. Serum was obtained by 

centrifuging the clotted blood samples for 5 minutes at 2540*g (centrifuge Universal 

320R, Andreas Hettich, Tuttlingen, Germany) and stored at -80 °C until further 

usage.  

Serum concentrations of IFN-γ, TNF-α, TGF-β and IL-10 were measured using 

Milliplex MAP Canine Cytokine Magnetic Bead Kits (Merck Millipore, Darmstadt, 

Germany) according to manufacturer’s instructions. Quantification was performed 

by the Bio-Plex 200 Reader, Results were calculated using the Bio-Plex Manager 

Software 4.1 (both BioRad, Hercules, California, USA). The sensitivity limits of the 
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assays were 18 ng/L for IFN-γ, 6.1 ng/L for TNF-α, 8.5 ng/L for IL-10 and 11.4 ng/L 

for TGF-β. 

2.7  RELATIVE QUANTIFICATION OF CYTOKINE MRNA 

Blood samples of group 2 were collected in RNAprotect Animal Blood 

Tubes (500 µL) (Qiagen, Hilden, Germany) at the beginning of the study, after eight 

and 18 weeks (two weeks after the last CpG-GNP injection, each) and stored at -20°C 

until further usage.  

Quantitative RT-PCR was performed to assess mRNA expression of IFN- γ, TNF-α, 

IL-4, TGF-β and IL-10. Genes for ribosomal protein L13a (RPL13A) and succinate 

dehydrogenase complex subunit A, flavoprotein (SDHA) were used as reference 

genes [38, 39]. Briefly, mRNA was extracted from the samples using the RNeasy 

Protect Animal Blood Kit (Qiagen, Hilden, Germany) according to the manufacturer’s 

instructions. Samples were evaluated for quality and quantity of mRNA via 

NanoDrop 1000 Spectrophotometer (PEQLAB Biotechnology, Erlangen, Germany). 

Using the QuantiTect Reverse Transcription Kit (Qiagen, Hilden, Germany), mRNA 

was transcribed to cDNA. Real-time PCR was performed on an Applied Biosystems 

7500 Real-Time PCR System (Thermo Fisher Scientific, Waltham, Massachusetts, 

USA) using the QuantiTect SYBR Green PCR Kit and QuantiTect Primer Assays for all 

target and reference genes (both Qiagen, Hilden, Germany). The PCR conditions 

were 95 °C for 15 min and 40 cycles of 94 °C for 15 s, 55 °C for 30 s and 72 °C for 35 s. 

Data were analysed via Applied Biosystems DataAssist Software v3.01 (Thermo 

Fisher Scientific, Waltham, Massachusetts, USA). Results were normalized using 

RPL13A and SDHA as references [40]. 

2.8  STATISTICAL ANALYSIS 

Data for pruritus, CADESI, serum cytokine concentrations and mRNA expressions 

were tested for normality using the D’Agostino-Pearson omnibus normality test.  
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Individual data pairs of CADESI, pruritus and serum cytokine concentrations at the 

beginning and end of the study were compared by Wilcoxon matched-pairs signed-

rank tests. Results of gene expression analysis (2-(∆CT) values) were compared by 

Friedman-tests followed by Dunn’s multiple comparisons tests. Statistical analyses 

were performed using GraphPad Prism 6 software (GraphPad Software, San Diego, 

California, USA). For all comparisons, a P-value < 0.05 was considered significant. 

  



Chapter V 

 

 

 
160 

 

3 RESULTS 

3.1  STUDY POPULATION 

Of the 18 dogs, a total of 15 dogs completed the study (group 1: n=6, group 2: n=9). 

One dog (group 1) was excluded from the study because of severe vomitus after the 

second appointment. The two other dogs (one of group 1 and 2 each) were excluded, 

because clinical signs of AD were severe enough to warrant immunosuppressive 

drugs. The mean age of the patients was 4.7 years (median: 4.8 years). Body weight 

ranged from 8 kg to 49 kg. Ten participating dogs were male (eight of them 

neutered) and eight female (seven of them spayed). Ten breeds were represented in 

this study (two boxers, and one of the following breeds each: Beagle, Doberman 

Pinscher, German Shepherd, French Bulldog, Irish Setter, Jack Russel Terrier, 

Rhodesian Ridgeback, Golden and Labrador Retriever). Seven mixed-breed dogs 

also participated. 

3.2  CONCURRENT MEDICATIONS 

All concurrent medications and treatments were performed according to study 

guidelines, i.e. dosage and frequency of administration remained unchanged. They 

mostly consisted of shampoo therapy, local disinfection and topical and oral 

supplementation of polyunsaturated fatty acids. Only one dog in group 1 received 

an antihistamine (cetirizine) during and before study. 

3.3  CLINICAL PARAMETERS 

Lesions showed a statistically significant improvement in week 8 (P = 0.037). Mean 

CADESI decreased from 21.93 in week 0 to 14.00 in week 8. Although CADESI 

showed further improvement until week 18 (mean CADESI: 11.11), this decrease 

failed to reach statistical significance (Figure V-1 A).  

Mean pruritus in the first study week was 5.58. Pruritus was significantly reduced 

to 4.46 in week 8 (P = 0.008) and 3.19 in week 18 (P = 0.031) (Figure V-1 B). Mean 
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values, standard deviations, confidence intervals and medians of CADESI and 

pruritus at the different time points of the treatment can be found in Table V-1. Mean 

percentage reductions of lesions and pruritus as well as the proportion of dogs 

showing at least 25% and 50% improvement in week 8 and 18 are summarised in 

Table V-2. 

 

Figure V-1 Development of mean CADESI (Canine Atopic Dermatitis Extent and Severity Index) (A) 

and pruritus (B) in dogs with atopic dermatitis treated with gelatine nanoparticle-bound CpG 

oligodeoxynucleotides. *P < 0.05. 

Table V-1 Means, standard deviations (SD), confidence intervals (CI) and medians of CADESI (Canine 

Atopic Dermatitis Extent and Severity Index) and pruritus at different time points of the 

immunotherapy of dogs with atopic dermatitis with gelatine nanoparticle-bound CpG 

oligodeoxynucleotides.   

 
Week Mean Value ± SD 95% CI Median 

CADESI 

0 21.93 ± 21.78 9.87 – 33.99 13 

8 14.00 ± 10.49 8.19 – 19.81 11 

18 11.11 ± 11.12 2.57 – 19.66 4 

Pruritus 

1 5.58 ± 1.43 4.79 – 6.38 5.79 

8 4.46 ± 1.97 3.37 – 5.55 4.43 

18 3.19 ± 1.42 1.7 – 4.68 3 
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Table V-2 Improvement of clinical signs in comparison to baseline values in dogs with atopic 

dermatitis at different time points of immunotherapy with gelatine nanoparticle-bound CpG 

oligodeoxynucleotides. 

 
Clinical 

parameter 

Mean ≥ 25% ≥ 50% 

Improvement in week 8 
CADESI a 23.07% 8/15 dogs 5/15 dogs 

Pruritus 24.11% 7/15 dogs 3/15 dogs 

Improvement in week 18 
CADESI a 22.98% 6/9 dogs 6/9 dogs 

Pruritus 44.01% 4/6 dogs 3/6 dogs 

a CADESI, Canine Atopic Dermatitis Extent and Severity Index 

3.4  SERUM CYTOKINE CONCENTRATIONS 

Concentrations of IFN-γ, TNF-α and IL-10 in most of the blood samples were under 

the detection limits of the assay. TGF-β did not significantly change during the study. 

3.5  EXPRESSION OF CYTOKINE MRNA 

There were no significant changes in mRNA expression of IFN-γ, TNF-α, TGF-β and 

IL-10. In contrast, mRNA expression of IL-4 was decreased 3.08-fold in week 18 

compared to baseline (P = 0.048). The observed changes in expression of all 

measured cytokines are displayed in Figure V-2.  
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Figure V-2 mRNA expression of interferon (IFN)-γ, tumour necrosis factor (TNF)-α, interleukin (IL)-

4, transforming growth factor (TGF)-β and IL-10 in dogs suffering from atopic dermatitis during 

immunotherapy with gelatine nanoparticle-bound CpG oligodeoxynucleotides. Depicted are the 

changes in expression in samples of week 8 and 18 in comparison to the expression in samples 

collected at the beginning of the study (fold changes). 

3.6  ADVERSE EFFECTS 

Nine of 18 dogs experienced at least one adverse event. The observed reactions 

included vomitus (6/18 dogs), diarrhoea (4/18 dogs), swelling of the popliteal 

lymph node (1/18 dogs), and swelling at the injection site (3/18). In two cases 

vomitus was heavy, frequent and associated with diarrhoea. One of those two dogs 

was excluded from the study. The other dog initially showed only mild 

gastrointestinal adverse effects and completed the study, but deteriorated further 

after the end of the study. Both dogs recovered completely after symptomatic 

treatment. In the other affected dogs, gastrointestinal symptoms were mild and 

occurred only occasionally and independent of the injections. The swellings of the 

popliteal lymph nodes and at the injection sites were mild, painless and subsided 

within a few days in all cases. 
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4 DISCUSSION 

In this pilot study, immunotherapy with CpG-GNPs reduced pruritus and lesions of 

canine AD. Studies evaluating the efficiency of AIT found that 52 to 65% of the 

treated dogs show a clinical improvement of at least 50% [16, 17, 41]. In a 

prospective blinded study evaluating allergen immunotherapy, improvement of 

CADESI scores and pruritus of at least 50% was reported in 7/11 dogs (64%) and in 

5/11 dogs (45%), respectively [42]. In our study, immunotherapy with CpG-GNPs, 

performed for 18 weeks, led to a clinical improvement of at least 50% in a similar 

proportion of patients (Table V-2).  

In this study, immunotherapy with CpG-GNPs was only conducted for four months 

while cited studies evaluated the efficacy of AIT after at least 12 months of 

treatment. It may take quite long for clinical signs to improve with AIT [14, 16]. In a 

retrospective study about AIT, 21% of the dogs showed first signs of clinical 

improvement in the first two months of AIT, 45% in the period between two and 

five months and 17% of patients later than five months [41]. Unfortunately, only an 

overall assessment of the owner was given and pruritus and CADESI scores were 

not obtained in that study. If prolonged application of CpG-GNPs results in further 

improvement of symptoms, has to be evaluated in further studies, but the fast 

clinical improvement is rather encouraging. 

The adverse effects observed in the course of the study can be divided into 

gastrointestinal symptoms and local reactions, both of which are reported in 

humans treated with CpG ODNs [43-45]. In humans, systemic adverse events such 

as gastrointestinal reactions generally occurred 12 to 24 hours after application of 

CpG ODNs and subsided after a few days [43, 45]. In the two dogs in our study 

suffering from severe and frequent vomitus and diarrhoea, these signs persisted for 

as late as two weeks after the last injection. It is unclear if they were associated with 

the study medication or not. Occasional vomiting or diarrhoea is extremely common 

in otherwise healthy dogs and often spontaneously resolving [46]. In some human 

patients allergic to red meat, hypersensitivity reactions to small amounts of 

intravenously administered gelatine were observed, even when the regularly 
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consumed red meat only caused overt reactions occasionally [47]. It seems possible, 

that gastrointestinal adverse effects could occur in response to porcine gelatine in 

dogs as well. One of the two dogs expressed similar gastrointestinal reactions after 

administration of Fenistil dragées (Novartis, Basel, Switzerland), which also contain 

gelatine. In all other cases, vomitus and diarrhoea were mild and occurred in time 

intervals, which the owners considered ‘normal‘ for their dogs. The painless and 

temporary local reactions observed in the course of the study are compatible with 

the mechanism of action of CpG ODNs and can be considered as mild adverse 

effects [43].  

Overall, during the immunotherapy with CpG-GNPs adverse reactions were 

observed in 50% of the patients. In AIT, the incidence of adverse events is reported 

to range between 5% and 50% [16, 48, 49]. Increased pruritus after injection of the 

immunotherapy is the most commonly observed adverse effect [14, 48]. Systemic 

reactions have been reported in approximately 1% of the treated dogs [49]. They 

include not only gastrointestinal symptoms, but also weakness, anxiety, 

urticaria/angioedema and severe reactions such as collapse and anaphylaxis [16, 

48, 50]. None of the latter ones could be observed in our study. It is assumed that by 

omitting the allergens in immunotherapy of AD, the risk of potentially life 

threatening anaphylactic reactions can be reduced or even eliminated [51]. 

However, it remains to be seen if the adverse effects seen here (exclusive local 

swellings and gastrointestinal signs) using CpG-GNPs will be confirmed in larger 

placebo-controlled studies. 

The mRNA expression of IL-4 significantly decreased in the course of the study. IL-4 

is known as a key cytokine in allergic inflammation, increasing the differentiation of 

naïve T-cells to Th2-cells, inducing antibody class switching to IgE and stimulating 

the activation of mast cells [52]. Hence a reduction in IL-4 mRNA expression, as 

observed in this study, can be regarded as beneficial in the treatment of atopic dogs. 

This observation is in accordance with a study using liposome-DNA complexes as an 

adjuvant in AIT [53]. In another study, conventional AIT augmented the Th1 to Th2 

cytokine ratio, although by an increase in IFN-γ [28]. 
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In contrast to in vitro studies evaluating the effects of CpG ODNs on the PBMCs of 

atopic dogs [23, 24], neither an increase in Th1 nor in regulatory cytokine serum 

concentration and mRNA expression could be detected. However, apart from TGF-β, 

cytokine concentrations in the serum samples were below the detection threshold, 

thus a thorough evaluation of the immunological effects of CpG-GNP 

immunotherapy on serum cytokines was not possible. As blood samples were 

obtained two weeks after the last injection of CpG-GNPs, effects of CpG ODNs on 

cytokine serum concentrations and mRNA expression may already have diminished 

due to this period of time. 

Limitations of this study include the absence of a control group, the small number of 

treated dogs and the short duration of treatment. As to the authors’ knowledge this 

was the first time CpG-GNPs were administered exclusively to atopic dogs, the 

optimal dosage was unknown. In human medicine, safety of CpG ODNs application 

was assessed over a dose range from 0.0025 mg/kg to 0.81 mg/kg [43]. Since little 

empirical data is available for dogs [54-56], the dosage was chosen at the low end of 

the doses assessed in humans. Immunotherapy with CpG-GNPs administered at a 

higher dosage may have resulted in more pronounced clinical improvement but also 

has the risk of more frequent and severe adverse effects. 

In AIT the same dose of allergen extract is typically used for each dog regardless of 

body weight [14]. The same concept was applied in this study. It cannot be ruled out 

that administration of individually adapted doses may have yielded greater clinical 

improvement as well, although the results of our study do not suggest any 

correlation between body weight and grade of improvement in this limited number 

of dogs. 

The injection site (near the popliteal lymph nodes) was selected to deposit the CpG-

GNPs in close proximity to their target, i.e. immune cells. Injection directly into the 

lymph nodes may also have enhanced clinical improvement. However, at this point 

(long term) safety of intralymphatic CpG-GNP administration in dogs is unknown. 

Performance of intradermal testing or allergen-specific serum IgE testing was not 

mandatory for study participation. However, 5/6 dogs in group 1 and 6/9 dogs in 
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group 2 did receive either one independently of the study. All dogs tested showed 

positive reactions to house dust mite (Dermatophagoides farinae), most of them also 

to other environmental allergens. Since, by definition, IgE antibodies directed 

against environmental allergens must be documented to classify the disease as 

canine atopic dermatitis [1], it cannot be excluded that one or more of the remaining 

five dogs were suffering from atopic-like dermatitis rather than from atopic 

dermatitis. This must be considered another limitation of the study. 

A major downside of the immunotherapy of atopic dogs with CpG-GNPs is that 

gelatine nanoparticle-bound CpG ODNs are not commercially available yet. In 

addition, at the time of the execution of the study, the CpG-GNPs were only stable 

for 72 hours. Recent studies indicate, however, that the stability can be extended to 

six months by lyophilisation, enabling upscaling of the process and therefore better 

availability. 

5 CONCLUSIONS 

Results of the present study suggest that immunotherapy with CpG-GNPs can lead 

to significant clinical improvement of canine atopic dermatitis. Administration over 

a period of 18 weeks reached an efficacy similar to that reported for allergen 

immunotherapy. Additionally, treatment with CpG-GNPs reduced expression of the 

Th2-cytokine IL-4 in atopic dogs. However, these results need to be confirmed in 

controlled, randomised, double-blinded studies. 
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1 SUMMARY OF THE THESIS 

Nanoparticles are intensively researched as drug delivery systems since the 1970s. 

Amongst a variety of starting materials for nanoparticles, gelatine has proven to be 

versatile due to its biodegradability, biocompatibility and low immunogenicity. 

Furthermore, gelatine provides several functional groups, which allow cross-linking 

and surface modifications of gelatine nanoparticles (GNPs) [1].  

 

Besides different small molecules, GNPs were sucessfully investigated for their 

potential as drug delivery system for macromolecules, such as therapeutic proteins 

or nucleic acids [2, 3]. Several studies showed the effective treatment of allergic 

diseases, such as equine recurrent airway obstruction, by cytosine phosphote 

guanosine oligodeoxynucleotides (CpG ODNs) bound to gelatine nanoparticles [4-

7]. Following recognition of the innate immune system via toll-like receptor 9 

(TLR9), CpG ODNs are able to restore the disrupted balance between Th1 and Th2 

immune response in allergy driven diseases [8]. Furthermore, regulatory T cells 

(Treg), which control T helper cell reactions in general, can be activated [8]. GNPs 

are able to protect these sensitive oligodeoxynucleotides from degradation and 

enhance their cellular uptake by antigen presenting cells due to their particle sizes 

similar to microorganisms [9, 10].  

 

The work presented in this thesis focused on the optimisation of the preparation 

process of gelatine nanoparticles, their stabilisation and sterilisation. Moreover, a 

preliminary clinical evaluation of CpG ODN-loaded GNPs in canine atopic dermatitis 

is described.  

 

Chapter I contains the general introduction of the thesis. Different starting 

materials for nanoparticles including gelatine are discussed. GNPs are presented as 

promising drug delivery system for CpG ODNs. Furthermore, the mechanism of 

action of CpG ODNs and their potential as immunomodulatory therapeutic option in 

the allergic diseases are described. Lastly, the aims of the thesis are stated.  



Summary of the Thesis 

 

 

 
177 

 

Chapter II focuses on the optimisation of the GNP preparation process and its scale 

up. The establishment of a more straightforward one-step desolvation process 

compared to the common delicate two-step desolvation process is demonstrated. A 

commercially available high molecular weight gelatine for one-step desolvation was 

found that omitted the need of customised gelatine qualities. Beyond that, the scale 

up of this improved preparation method is shown. Using the improved one-step 

desolvation process, a 130-fold increase of particle gain was available. This opens 

the possibility for further industrial large-scale production of GNPs.  

 

Moreover, alternative methods to scale GNP production are discussed in this 

chapter. This includes enlarging the contact area between gelatine solution and 

desolvation agent during the desolvation process, the use of a dual-syringe pump 

system or the alternative preparation method nanoprecipitation. However, no 

satisfying results could be obtained using these alternative approaches.  

 

Besides the optimisation and scale up of GNP preparation, this chapter also 

describes the investigation of alternative non-toxic cross-linking agents to common 

glutaraldehyde. This includes the sugar derivative glyceraldehyde as well as the 

naturally occurring genipin. Glyceraldehyde could successfully be used as 

alternative to cross-link GNPs, whereas genipin did not result in high cross-linking 

degrees, which would be able to stabilise GNPs.  

 

Matrix-assisted laser desorption/ionisation mass spectrometry (MALDI MS) was 

successfully established as analytical tool to evaluate the integrity of ODNs loaded 

onto GNPs as described in Chapter III. Furthermore, this chapter deals with the 

stabilisation of ODN-loaded GNPs via lyophilisation, which is an important topic due 

to the limited stability of 2-3 days in the liquid state. Long-term stability of 

lyophilised ODN-loaded GNPs for six months at 2-8°C and 20-25°C in sugar-based 

formulations is shown. Particle characteristics, such as particle sizes and PDI values, 
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remained stable upon storage and ODN integrity is not affected. Additionally, 

stability at accelerated storage conditions was shown. 

 

Moreover, controlled nucleation was investigated as potential freezing method 

prior to lyophilisation in order to shorten lyophilisation process and increase batch 

homogeneity. ODN-loaded GNPs resisted the stress induced by freezing via 

controlled nucleation equally to standard ramp freezing, which was shown in 

freeze-thaw studies. However, using controlled nucleation prior to freeze-drying 

has hardly benefits on the drying time and the stability of the product. Contrary to 

expectations from literature, controlled nucleation has neither negative impact on 

ODN-loaded GNPs as reported from polyplexes, nor beneficial effects as known from 

proteins [11, 12].  

 

Additionally, amino acids are discussed as alternative excipients in lyophilisation of 

ODN-loaded GNPs. Histidine offers excellent potential in stabilising ODN-loaded 

GNPs, whereas crystallisation of glycine is unfavourable and initiates particle 

aggregation. Furthermore, in glycine formulations starting ODN degradation was 

detected at accelerated storage temperature. Besides, arginine is even detrimental 

and favours ODN degradation during storage. This may be due to the strong binding 

affinity of its guanidinium group to the negatively charged backbone of the ODNs 

and consequent disruption of the secondary structure of the nucleic acid. This 

change in secondary structure makes the ODNs more vulnerable to degradation.   

 

Sterility is a main prerequisite of parenterally applied drug products. So far, GNP 

preparation and ODN loading were performed under aseptic conditions to avoid 

microbial contamination. However, aseptic working is prone to failure and difficult 

to validate. Therefore, Chapter IV approaches the sterilisation of GNPs. Firstly, 

steam sterilisation is shown to be possible for unloaded GNPs under standard 

conditions (121°C for 15 minutes). However, due to high stresses induced by 

temperature and pressure, a certain degradation of GNPs was noticed indicated by 
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loss in derived countrate during dynamic light scattering (DLS) measurements and 

reduced cross-linking degrees. This was more pronounced when repeated 

sterilisation cycles at 121°C (2fold or 3fold) or extended sterilisation periods (30 

and 45 minutes) were applied. Steam sterilisation for three minutes at 134°C caused 

even almost complete particle dissolution. 

 

Due to heat sensitivity of oligonucleotides, autoclaving of ODN-loaded GNPs is not 

applicable. This still entails an aseptic loading process of GNPs. Consequently, 

gamma irradiation is represented as option to sterilise lyophilised ODN-loaded 

GNPs. A variety of excipients was tested for protecting ODN-loaded GNPs during 

gamma irradiation. Interestingly, simple sugar formulations were most appropriate. 

Particle characteristics and ODN integrity could completely be preserved. Amongst 

the investigated amino acids histidine was comparable to sugars, whereas glycine 

and arginine based formulations did not or less protect ODNs from degradation. 

These observations are in common with our findings from lyophilisation studies.  

 

Canine atopic dermatitis (CAD) is a genetically predisposed allergic skin disease, 

mostly directed against environmental allergens. The immunological process is still 

not fully understood, but early stage Th2 activation followed by a chronic Th1 

mediated immune reaction with Treg dysfunction are discussed [13]. Consequently, 

CpG ODNs are stated to be a promising therapy approach. Chapter V describes the 

successful preliminary clinical evaluation of ODN-loaded GNPs in the treatment of 

canine atopic dermatitis (CAD). After 18 weeks of subcutaneous application of ODN-

loaded GNPs a clinical improvement of pruritus and Canine Atopic Dermatitis Extent 

and Severity Index (CADESI) of up to ≥ 50% were noticed. Furthermore, a significant 

reduction in allergy mediated IL-4 mRNA expression was observed. This study 

opens the way for further promising placebo controlled clinical trials using ODN-

loaded GNPs to cure canine atopic dermatitis.  
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Taking together the conclusions of all chapters, GNP production process was 

successfully optimised and scaled. Different lyophilisation options were evaluated 

to find optimal process conditions and formulation excipients for long term stability 

of ODN-loaded GNPs. MALDI MS was evaluated as a versatile analytical approach to 

study integrity of ODNs loaded onto GNPs. Steam sterilisation and gamma 

irradiation were auspiciously investigated to sterilise unloaded and loaded GNPs. A 

preliminary clinical evaluation proved ODN-loaded GNPs to be a promising 

treatment in canine atopic dermatitis. 
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1 LIST OF ABBREVIATIONS 

AD  ............................................................................................................................. Atopic dermatitis 
AF4  .............................................................................. Asymmetric field flow-field fractionation 
APCs   ........................................................................................................... Antigen presenting cells 
Arg   ......................................................................................................................................... L-Arginine 
ASIT   .......................................................................................... Allergen-specific immunotherapy 
BAL   .............................................................................................................. Bronchoalveolar lavage 
CAD   ............................................................................................................ Canine atopic dermatitis 
CADESI   ................................................. Canine Atopic Dermatitis Extent and Severity Index 
CG   .............................................................................................................................. Cytosine guanine 
Cholamine ....................... (2-Aminoethyl) trimethylammonium chloride hydrochloride  
CL   .......................................................................................................... Cross-linking, Cross-linking 
CpG ODNs   ........................................................ Cytosine phosphate guanine oligonucleotides 
CpG-GNPs  Cytosine phosphate guanine oligodeoxynucleotide loaded gelatine 

nanoparticles 
DLS   ............................................................................................................. Dynamic light scattering 
DNA   ...............................................................................................................Desoxyribonucleic acid 
EDC .......................................................... 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide  
ELS   ................................................................................................ Electrophoretic light scattering 
FDA   ..................................................................... United States Food and Drug Administration 
FT-IR   .......................................................................... Fourier transform infrared spectroscopy 
Gly   ............................................................................................................................................ L-Glycine 
GNPs   .............................................................................................................. Gelatine nanoparticles 
GRAS   ................................................................................................. Generally Recognised as Safe 
His   ......................................................................................................................................... L-Histidine 
HMW   ............................................................................................................. High molecular weight 
HPW   ................................................................................................................ Highly purified water 
HSA   ............................................................................................................... Human serum albumin 
IAD   .................................................................................................... Inflammatory airway disease 
IEP   ............................................................................................................................... Isoelectric point 
IFN-γ   .................................................................................................................................. Interferon γ 
Ig   ................................................................................................................................. Immunoglobulin 
IL   .......................................................................................................................................... Interleukine 
LMW   ............................................................................................................... Low molecular weight 
MALDI MS   .................... Matrix-assisted laser desorption/ionisation mass spectrometry 
MALS   ................................................................................................... Multi-angle light scattering 
MSN   ............................................................................................ Mesoporous silica nanoparticles 
MW   .......................................................................................................................... Molecular weight 
NF-κB   ...................................................................................................................... Nuclear factor κB 
PAMP   ........................................................................... Pathogen-associated molecular pattern 
PBMCs   ................................................................................. Peripheral blood mononuclear cells 
PCL   ........................................................................................................ Poly(epsilon-caprolactone) 
PDI   ...................................................................................................................... Polydispersity index 
PEG   ....................................................................................................................... Polyethylene glycol 
PEI   ............................................................................................................................. Polyethylenimine 
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PLGA  .................................................................................................... Poly(lactic-co-glycolic) acid 
PTO   ......................................................................................................................... Phosphorothioate 
RAO   .................................................................................................. Recurrent airway obstruction 
rHG  .................................................................................................... recombinant human gelatine 
RNA   ........................................................................................................................... Ribonucleic acid 
RPL13A   ..................................................................................................... Ribosomal protein L13a 
RT-PCR   .............................................................................. Real time polymerase chain reaction 
SDHA   .................................................................. Succinate dehydrogenase complex subunit A 
SEM   ................................................................................................. Scanning Electron Microscopy 
SLNs   ........................................................................................................... Solid lipid nanoparticles 
Tg   ....................................................................................................... Glass transition temperature 
Tg’   .......... Glass transition temperature of the maximally freeze-concentrated solution 
TGF   ..................................................................................................... Transforming growth factor 
Th1   ........................................................................................................................ T helper cell type 1 
Th2   ........................................................................................................................ T helper cell type 2 
TLR   ........................................................................................................................... Toll-like receptor 
TNBS   ...................................................................................... 2,4,6-Trinitrobenzenesulfonic acid 
TNF- α   ...................................................................................................... Tumour necrosis factor α 
TOF   .................................................................................................................................. Time of flight 
Treg   ........................................................................................................................ Regulatory T cells 
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