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2. Gutachter: Prof. Dr. Ulrich Schollwöck............................................................
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Abstract

An implementation of the single-site density matrix renormalization group (DMRG)
approach for the quantum-chemical application to calculate approximate as well as
exact electronic ground-state energies and wave functions of atoms and molecules
is presented. The algorithm is formulated in terms of the variational and size-
consistent class of wave functions, matrix product states, and their operator ana-
logues, matrix product operators. A procedure to construct quantum-chemical
Hamiltonian operators with long-range Coulomb interactions as matrix product op-
erators is developed. The many-electron Hamiltonian operators are represented as
sums and products of one-electron operators. For the efficient matrix product opera-
tor construction of quantum-chemical Hamiltonians, different basis spaces including
discrete position and momentum space as well as molecular and atomic orbitals are
investigated. Discrete position space yields the best matrix product operator size
scaling, but introduces artificial long-range couplings in the kinetic energy term of
the Hamiltonian which are a consequence of the DMRG algorithm in terms of matrix
product states. The huge amount of discrete space points needed for an accurate
description poses a problem because of the electron-electron interaction. Therefore,
a momentum space or Fourier series expansion of the electron-electron interaction is
shown which makes it possible to compress its matrix product operator representa-
tion. DMRG applied to quantum-chemical Hamiltonians in matrix product operator
form can serve as means to directly (without mean-field treatment in advance) in-
vestigate quantum-chemical problems and find the analytically exact ground-state
solution of small atoms and molecules. The next basis space analyzed in detail is
the atomic orbital basis. The matrix product operator construction and the direct
application of the DMRG method in this basis is examined. A physical compression
scheme based on a singular value decomposition of the electron-electron interaction
in the atomic orbital basis is demonstrated. Furthermore, DMRG calculations in
the atomic orbital basis for certain systems where mean-field theory yields qualita-
tively wrong results and where higher-order approximative correction methods like
truncated configuration interaction and coupled cluster cannot fully capture strong
electron correlation effects are compared to results obtained in the molecular orbital
basis. The comparison shows that atomic orbitals describe the physical situation
well and thus lead to a tremendous reduction of the matrix product state dimension
and the computational effort.
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1 Introduction

In non-relativistic quantum chemistry, atomic and molecular physics, effective one-
electron theories such as mean-field theory have proven to be quite successful in
describing the electronic structure of atoms or molecules around their equilibrium
geometries. By its derivation, mean-field theory however is flawed by the fact that it
can only capture a part of the electron correlation properly. One distinguishes weakly
correlated or dynamically correlated and strongly or statically correlated electron
systems. The latter cannot be described by mean-field theory since the description
by one Slater-determinant—the simplest, physically correct quantum-mechanical
many-body state of a non-interacting electron system fulfilling Pauli’s principle—is
qualitatively wrong. The true many-electron state of a strongly correlated system
must be a linear combination of all possible Slater-determinants. Such a physical
situation can occur in chemistry when for instance bonds of a molecule are stretched.
This results in a variety of equally possible Slater-determinantal states the electrons
can adopt. In the field of quantum chemistry, this is called a multi-reference case
because even the standard approximative quantum-chemical correlation methods
such as the truncated configuration interaction (CI) or truncated coupled cluster
(CC) method (single-reference methods) which are based on mean-field calculations
cannot entirely correct the mean-field theory results (see Sherrill and Schaefer III.
[1999] and Crawford and Schaefer [2000] for reviews on these methods). Higher-order
approximations such as multi-reference configuration interaction and multi-reference
coupled cluster methods or full-configuration interaction or infinite coupled cluster
methods (as described in Szalay et al. [2011], Banerjee and Simons [1981], Sherrill
[1995], and Č́ıžek [1966]) have to be used. But, these approaches for including the full
electron correlation are computationally highly expensive and only feasible for small
quantum-chemical systems. To mention just a few applications, see the articles by,
e.g., Bauschlicher Jr and Taylor [1986], Bauschlicher Jr et al. [1986], Bauschlicher Jr
and Langhoff [1987], van Mourik and van Lenthe [1995], Werner et al. [2008] and Das
et al. [2010]. Therefore, there is still the need for a numerical approach capable by
design to describe the electronic structure of strongly correlated systems in quantum
chemistry and reducing the computational effort.

Since its publication and its introduction to the field of quantum chemistry, the
density matrix renormalization group (DMRG) method [White, 1992, 1993, White
and Martin, 1999] has turned out to be a powerful numerical approach to diagonalize
approximatively—and for certain small systems even exactly—quantum-mechanical
Hamiltonians of strongly correlated systems not truncating physics and reducing
the computational cost at the same time. The focus of this dissertation lies on the
development and investigation of a quantum-chemically applicable DMRG method,
in particular for strongly correlated molecules.

DMRG can be viewed as a mapping of the complicated many-body problem to a
plethora of effective one-body problems which must be solved self-consistently. This
mapping is achieved by a systematic approximation of the interacting many-electron
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1 Introduction

wave function bearing still the correct physics. This approximation is built upon a
decomposition of the interacting many-body wave function expansion coefficients in
terms of a product of matrices whose rank sets the extent of approximation. This
wave function is called a matrix product state (MPS) (for a review, see Schollwöck
[2011]). The operator analogues are called matrix product operators (MPO). These
objects help to introduce the notion of locality to the Hamiltonian which otherwise
contains long-ranged interaction terms and make the effective one-body mapping
more efficient. This has led to the first research project of this dissertation since it
has been unclear at the beginning of this dissertation how a Hamiltonian MPO can
be constructed efficiently for quantum-chemical Hamiltonians in general. During the
development of this work, several different procedures have been published [Keller
et al., 2015, Keller and Reiher, 2016, Hubig et al., 2016], but the construction pre-
sented here for quantum-chemical Hamiltonians which have Coulombic long-range
interactions is different. It is generally applicable and has good MPO-matrix size
scaling as the MPO of the electron-electron interaction term can be systematically
compressed from a size scaling of O(L4) to O(L2Ntrunc), where L is the number of
single-particle states (orbitals) the electrons can possibly occupy and DMRG uses
as local basis states called DMRG sites. Ntrunc is the number of electron-electron
interaction terms kept according to the used compression scheme. Two compres-
sion schemes are shown here: a physical compression scheme based on a singular
value decomposition of the electron-electron interaction decomposing it into the
product of interacting one-particle operators and one based on a momentum space
or Fourier series expansion of the electron-electron interaction. Moreover, the pre-
sented MPO-construction procedure is parallelizable which allows to parallelize the
DMRG algorithm at least locally. That means building the DMRG-typical effective
one-body problems arising from the formulation of the DMRG algorithm in terms of
matrix product states and matrix product operators can be done in parallel, which
makes it possible to tackle larger problems.

Directly resulting from the matrix product operator construction of Hamiltoni-
ans with long-range electron interactions, the question and thus the second project
arises: Which is the best basis to represent the Hamiltonian in? Inspired by Stouden-
mire et al. [2012] for purely one-dimensional systems, a real three-dimensional
quantum-field theoretical formulation of the quantum-chemical Hamiltonian and its
matrix product operator construction on a three-dimensional discrete position space
lattice is developed and analyzed. As it is shown, this makes DMRG directly appli-
cable to quantum-chemical problems without any preceding mean-field calculation
as opposed to common quantum-chemical DMRG implementations.

The idea of a direct DMRG method to solve quantum-chemical problems suf-
fering strong electron correlation and situations where mean-field calculations are
hard to converge has led to the next project of research in this dissertation. The
quantum-chemical Gaussian basis sets (atomic orbitals) are investigated to form the
local basis states for DMRG calculations, which makes mean-field calculations in ad-
vance unnecessary. Similar investigations have been done by Chan and Van Voorhis
[2005] for non-orthogonal orbitals and a resulting non-Hermitian DMRG algorithm.
They have used localized polarized atomic orbitals [Lee and Head-Gordon, 1997]
and showed that these kind of orbitals outperform molecular orbitals regarding the
energy convergence of DMRG. In this thesis, the Cholesky orthogonalized atomic
orbital DMRG approach is developed, which is different with respect to the fact
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that the DMRG algorithm is formulated here completely in terms of matrix product
operators and matrix product states being the basis for a second-generation DMRG
algorithm. It extends the approach by Chan and Van Voorhis [2005] regarding the
use of generic Gaussian atomic orbital basis sets such as the STO-3G [Hehre et al.,
1969] basis set as DMRG sites for linear molecules ranging from a hydrogen chain,
elongated ethine C2H2, and small C2-chains to simple cubic hydrogen. A natural
ordering of these atomic orbitals with respect to the atom position and angular mo-
mentum of the orbitals is suggested and discussed compared to the use of molecular
orbitals canonically sorted according to their orbital energies as suggested by White
and Martin [1999]. Furthermore, the effect of using a larger Gaussian basis set such
as the 6-31G [Hehre et al., 1972] or cc-pVDZ [Dunning Jr, 1989] basis sets is ex-
amined. As already mentioned, a small non-linear system, cubic hydrogen H8, is
studied to see if DMRG in terms of orthonormalized atomic orbitals does well even
though the orbitals must be ordered in a chain-like fashion for DMRG using the
matrix product state representation of the exact many-electron wave function. The
use of atomic orbitals and their natural ordering for DMRG may become crucial
for the simulation of non-linear systems in future projects when addressing the use
of tensor network states [Murg et al., 2010, Marti et al., 2010, Nakatani and Chan,
2013]. Tensor network states (TNS) are the generalization of matrix product states.
Using TNSs in combination with orthonormalized atomic orbitals could help to im-
prove the performance of DMRG further since the actual electron correlation could
better be represented. The atomic orbital ordering would be closer to the chemists’
concept of how molecular bonds emerge (linear combination of atomic orbitals).
Tensor network state techniques are not a subject of this dissertation.

This thesis is organized as follows: In chapters 2 and 3, the reader is introduced
to the physical concepts and the theoretical framework of the present work. Chap-
ter 4 is about the mathematical properties of matrix product states and matrix
product operators. Chapter 5 shows how to construct Hamiltonians with long-range
interaction terms as matrix product operators, in particular the quantum-chemical
Hamiltonian in various basis spaces. In chapter 6, the DMRG algorithm imple-
mented here for matrix product states and matrix product operators is presented.
The two mentioned MPO-compression schemes are explained. Besides, practical
calculations of atomic and molecular systems with the developed discrete real-space
lattice and atomic orbital DMRG approaches are shown and discussed.
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2 Strongly correlated systems and
numerical renormalization

In the following, we first focus on the terms strong correlation and systems with
exponentially large Hilbert space dimensions. In this context, the concepts of dy-
namic and static electron correlation are outlined. Therefore, we shortly introduce
two numerical methods to tackle such systems: the numerical renormalization group
and the density matrix renormalization group, which this thesis is mainly about.
Moreover, since this text aims to be readable for both physicists and chemists, an-
other numerical method named full-configuration interaction, which is well-known
in quantum-chemistry, will shortly be introduced at the end of this chapter to high-
light the similarities of the density matrix renormalization group to this quantum-
chemical method and at the same time its differences.

The density matrix renormalization group (DMRG) was developed by White
[1992, 1993] as an improvement of the numerical renormalization group (NRG)
[Wilson, 1975]. The term “group” refers to a set of transformations to perform
the “renormalization” during the algorithm. DMRG was originally tailored to in-
vestigate one-dimensional quantum lattice models.

In the following, the reader is provided with a short introduction to the above
named numerical methods for strongly correlated systems.

2.1 Strong correlation

Before we continue, one should clarify the notion of strong correlation. As strongly
correlated, one normally defines systems which can no longer be described as an
effective single-particle system. In quantum chemistry, this normally goes under the
name non-dynamic or static electron correlation. One of the most prominent and
successful approaches where one tries to map a system of interacting particles to such
an effective one-particle problem is the mean-field or Hartree-Fock approximation.
The Hartree-Fock approximation can capture the part of correlation which is known
as dynamic electron correlation. As a good reference for the Hartree-Fock approach,
see Szabo and Ostlund [1996], but it will not be subject of this thesis.

Good chemical and physical examples of systems where the applicability of mean-
field approaches breaks down are manifold. On the one hand, there are transition
metal compounds or, on the other hand, systems close to their critical point of a
phase transition of the second kind. These phase transitions are for instance the
transitions from ferromagnetic to paramagnetic or metallic to insulating behavior.
All of these critical phenomena have in common that the characteristic length scale—
the correlation length—diverges. Due to the absence of a characteristic length scale,
Wilson [1975] came up with the idea of real-space renormalization.
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2 Strongly correlated systems and numerical renormalization

εn−2 εn−1 εn εn+1 εn+2

tn−2,n−1 tn−1,n tn,n+1 tn+1,n+2

Figure 2.1: A visualization of a one-dimensional quantum lattice model consisting
of a chain of sites (filled circles). A particle on site n has a kinetic energy
or on-site energy of εn and can hop to its neighboring sites, which is gov-
erned by the hopping terms tn,n+1 and tn−1,n (black lines). Each lattice
site is here coupled to all the other lattice sites via a so far undetermined
interaction term (red dashed lines).

2.2 Quantum lattice models

To get a better understanding of how NRG and DMRG work, one should also briefly
commit oneself to the notion of quantum lattice models. In physics, such models are
for instance to describe bulk effects in solids like the influence of impurities on the
conductivity. They are also suitable to describe phase transitions like ferromagnetic
materials turning to paramagnetic materials or metals becoming insulators [Vojta,
2003, Imada et al., 1998]. The range of applications is huge. Quantum lattice models
can moreover be used to analyze the electronic structure of small molecules [Wilson,
1990, White and Martin, 1999, Chan and Sharma, 2011, Wouters and Van Neck,
2014, Stoudenmire et al., 2012].

What is characteristic for quantum lattice models is the fact that the Hilbert
space dimension of the many-particle wave function to be determined increases ex-
ponentially the more lattice sites one considers. Therefore, it is mostly not feasible
to obtain the exact solution of a quantum lattice model, especially if the num-
ber of lattice sites is infinite. Lattice sites can have several meanings: either they
characterize—in a tight-binding picture—real atomic sites in a crystal, i.e., for ex-
ample the positively charged ions in a metal which form the crystal lattice, or they
just represent a mathematical grid or mesh of points which can have many origins.
One of them could be the discretization of a continuous theory like when dealing
with electrons as quantum fields.

Fig. 2.1 shows a pictorial example of a quantum lattice model where L lattice
sites—whatever meaning they have—are coupled by so-called hopping terms and
every lattice site interacts in a certain way (e.g., Coulomb interaction) with all the
other sites. As already pointed out, the sites of a lattice model need not be real
points in space. They can also be an abstract quantum-mechanical state like an
atomic or a molecular orbital in the field of quantum chemistry. Basically, it can be
any quantum-mechanical state one can think of.

The most famous quantum lattice models are the Hubbard model and the Ising
model, which both have greatly contributed to understand quantum-mechanical
phenomena in condensed matter physics and even to build new methods on top of
them [Hubbard, 1963, Ising, 1925].
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2.3 Brief introduction to the numerical renormalization group

2.3 Brief introduction to the numerical
renormalization group

The numerical renormalization group by Wilson [1975] is a non-perturbative method
and was developed with the goal to find solutions to quantum impurity models,
which are lattice models, such as the Kondo problem. The Kondo model is a model
to describe the physical situation where electrons in metals can scatter at magnetic
impurities (e.g., iron in copper), which results in an increase of resistivity when the
temperature goes to absolute zero [Kondo, 1964].

NRG is a method to investigate so-called quantum impurity models. These are
systems where a small, exactly solvable system—named impurity—is coupled to a
“bath” of continuous states [Bulla et al., 2008]. The key steps during the NRG
procedure are as follows: First of all, the model of an impurity interacting with a
continuous bath is discretized and mapped onto a semi-infinite chain, where the im-
purity system represents the first site. Now in an iterative manner, one diagonalizes
the system step by step starting with the impurity site. In each step, one new site
is added to the system Hamiltonian ĤL (L is the number of sites)

ĤL −→ ĤL+1 , |iL〉 −→ |iL〉 ⊗ |s〉 , (2.1)

which is then again diagonalized. Here, |iL〉 are the many-particle eigenstates of
ĤL and |s〉 represents the states in the Hilbert space at the site L + 1. To avoid
an exponential growth of the Hilbert space dimension when adding new sites to the
system, a truncation or renormalization scheme is introduced such that only the
many-particle eigenstates |iL〉 with the lowest-lying eigenvalues are kept after the
diagonalization of ĤL.

It turned out that, even if this approach was quite successful, it was flawed by its
criterion to truncate the many-particle Hilbert space.

2.4 Key idea of the density matrix renormalization
group

Instead of taking the eigenstates with the corresponding lowest-lying many-particle
eigenvalues, DMRG improved on the criterion to truncate the Hilbert space of the
system to investigate by turning to the eigenbasis of the density matrix.

Considering its basic idea, DMRG is quite similar to the above mentioned numer-
ical renormalization group approach and it can handle almost any one-dimensional
quantum lattice model such as the famous Hubbard model or any lattice model
which originates from discretizing continuous space. What the mathematical struc-
ture of a quantum lattice model looks like will be explained in detail later in this
thesis.

The DMRG algorithm published by White [1992] is based on a blocking procedure
(see Fig. 2.2) where all the one-particle states or—in terms of a lattice—sites of the
underlying system are grouped in two blocks and a single site in the middle (single-
site algorithm). Now, one can assume that the total ground-state wave function has
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2 Strongly correlated systems and numerical renormalization

the form
|ψ〉 =

∑
lnr

Ψln,r |ln〉 |r〉 , (2.2)

where |ln〉 and |r〉 are the many-particle basis states of the left block plus the local
basis |n〉 of the single site in the middle of the chain and the right block, respectively.
In general, the basis |lnr〉 is exponentially large. Therefore, one has to truncate or
renormalize the basis. As truncation, DMRG uses the reduced density operator or
matrix of one of the blocks. The reduced density operator for one of the blocks (for
example for the left block) can be obtained from the quantum-mechanical density
operator

ρ̂ = |ψ〉 〈ψ| (2.3)

=
∑

lnr,l′n′r′

Ψln,rΨ
∗
l′n′,r′ |lnr〉 〈l′n′r′| (2.4)

by tracing out or summing up all the many-particle degrees of freedom of the other
block (the right block in this example)

ρ̂left =
∑

lnr,l′n′r′,r′′

Ψln,rΨ
∗
l′n′,r′ |ln〉 〈r′′|r〉 〈l′n′| 〈r′|r′′〉 . (2.5)

Assuming that the block basis states are orthonormal, one can write

ρ̂left =
∑

ln,l′n′,r

Ψln,rΨ
∗
l′n′,r |ln〉 〈l′n′| (2.6)

and the reduced density matrix of the left block together with the central site reads

ρ̂leftln,l′n′ =
∑
r

Ψln,rΨ
∗
l′n′,r . (2.7)

This reduced density matrix is now diagonalized, but one only keeps the eigenstates
with—up to a given threshold—largest eigenvalues of the reduced density matrix.
The truncated eigenbasis of the reduced density matrix serves as the renormalization
transformation because the ground-state wave function is now projected into this
truncated eigenbasis, which makes sure that the Hilbert space dimension of the wave
function does not grow exponentially with increasing number of sites. In this way,
it is possible to determine the ground-state wave function of a system iteratively.

This section is not meant to describe the DMRG algorithm in full detail as there
are excellent reviews by Schollwöck [2005] and Hallberg [2006]. In this thesis, we
focus on the state-of-the-art formulation of the DMRG approach in terms of new
mathematical objects known as matrix product states and corresponding matrix
product operators [Schollwöck, 2011, McCulloch, 2007, Verstraete and Cirac, 2006].
These objects make it possible to map the seek for a solution of the stationary
many-particle Schrödinger equation [Schrödinger, 1926] in operator-state notation
(Dirac notation)

Ĥ |ψ〉 = E |ψ〉 (2.8)

to a set of effective one-particle Schrödinger equations which are to be solved instead.
In Eq. (2.8), the operator Ĥ is the Hamiltonian—the operator of total energy of a

8



2.5 Bridging quantum chemistry and physics

left block right block

total lattice Hamiltonian

Figure 2.2: Single-site DMRG blocking. The filled circles represent the single-
particle states or sites on which the ground-state wave function of a
system is expanded. The single-particle states are mapped onto a chain
and grouped into a left block (blue) and a right block (red) plus one
single-particle state (black circle) in between. All the single-particle
states can also be seen as sites in the formulation of a quantum lattice
Hamiltonian.

quantum system—and |ψ〉 is the state with energy E a quantum system is in.
We are going to give a thorough introduction to these new classes of wave functions

and operators and how the DMRG algorithm is implemented in terms of these
objects later in this thesis.

2.5 Bridging quantum chemistry and physics

Since this thesis is supposed to be readable for physicists as chemists alike, we
should briefly explain some of the differences and similarities in handling theoretical
problems. In quantum chemistry, basically every calculation is based on a mean-field
or Hartree-Fock calculation which gives a first starting point for further calculations
to solve electronic structure problems.

The Hartree-Fock approach (HF) [Hartree, 1928, Fock, 1930, Hartree and Hartree,
1935] is the attempt to take electron interactions into account but, at the same time,
looking for the simplest possible many-body solution which fulfills every physical re-
quirements like anti-symmetry of the electronic wave function. Such a wave function
refers to the so-called Slater determinant [Slater, 1929] which has the form for a sys-
tem of N electrons

ψHF(x1,x2, . . . ,xN) =
1√
N !

det


ϕ1(x1) ϕ2(x1) · · · ϕN(x1)
ϕ1(x2) ϕ2(x2)

...
. . .

ϕ1(xN) ϕN(xN)

 (2.9)

or in short in bra-ket notation.

|ψHF〉 = |ϕ1ϕ2 · · ·ϕN〉 . (2.10)

The ϕi(xj) denote the ith single-particle state or orbital which is occupied by the
jth electron at position xj. Although this wave function bears all physical proper-
ties, it does not describe the physical reality properly. Therefore, so-called post-HF
or correlation methods which are to improve the results from mean-field calcula-
tions and describe physics correctly were developed. One specific method in the
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2 Strongly correlated systems and numerical renormalization

field of quantum chemistry is the so-called full-configuration interaction method,
which will be now introduced shortly (for introductions on the method, see amongst
others Knowles and Handy [1984], Sherrill [1995], and Sherrill and Schaefer III.
[1999]). Assume the |ϕi〉 form a complete basis set of orthonormal basis states
B = {|ϕi〉 | ||ϕi|| = 1, 〈ϕi|ϕj〉 = δij, i, j = 1, 2, . . .}, then it is clear that the
Hartree-Fock state is just one combination of an infinite large set of possible many-
body states the superposition of which yields the correct exact wave function of a
N -electron system. In quantum-chemical literature, it is commonly written as

|ψ〉 = Ψ0 |ψHF〉+
∑
ia

Ψa
i |ψai 〉+

∑
ij,ab

Ψab
ij |ψabij 〉+ · · · , (2.11)

where Ψ0, Ψa
i , Ψab

ij , etc. are the expansion coefficients of the configuration interac-
tion expansion. One obtains the exact wave function by mathematically exciting
electrons from the HF-state orbitals to other in the HF-state unoccupied orbitals
|ϕi〉 −→ |ϕa〉 (for a pictorial example see Fig. 2.3). Thus, a hierarchy of zero-, one-,
two-particle and so on excitations or configurations emerges. Assuming a complete
basis set of size L� N , Eq. (2.11) can most generally and compactly be written in
the form

|ψ〉 =
∑

n1n2···nL

Ψn1n2···nL |ϕ
n1
1 ϕ

n2
2 · · ·ϕ

nL
L 〉

(
L∑
i=1

ni = N

)
(2.12)

with the constrained that the sum over all ni must equal the particle number N .
The ni ∈ {0; 1} measure if the orbital i is unoccupied (0) or occupied (1) and
thus contributes to the expansion of the wave function or not. Eq. (2.12) shows
the most striking difference of standard quantum-chemical approaches to find a
numerically exact solution to direct methods like DMRG. In contrast to Eq. (2.11),
Eq. (2.12) does not have any reference state except the empty vacuum state. At the
beginning, every many-particle basis state in Eq. (2.12) is assumed to contribute
to the expansion and the numerical method at hand—in the case of this thesis—
DMRG finds the correct expansion coefficients or weights of the exact many-body
wave function.

Eventually, it must be pointed out, even though the density matrix renormaliza-
tion group ansatz is said to be equivalent to the method of full-configuration inter-
action (exact diagonalization of a problem) [Chan and Sharma, 2011, White and
Martin, 1999, Daul et al., 1999], it can be used to diagonalize quantum-mechanical
problems where a full-CI or an exact diagonalization treatment is computationally
too expensive. To illustrate that will be a main part of this thesis.
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2.5 Bridging quantum chemistry and physics

|ψHF〉 |ψ4
2〉 |ψ56

23〉 |ψ456
123〉

Figure 2.3: Visualization of the full-configuration interaction method which serves
as a means in quantum-chemistry to get numerically exact results. One
needs a reference state, normally the HF-state, and constructs all possi-
ble many-body basis states by “exciting” electrons from orbitals which
are occupied in the HF-state (black circles) to unoccupied states (red
circles). The picture shows a hierarchy of zero-, one-, two- and three-
particle excitations.
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3 Theoretical framework

The reader of this chapter is provided with an overview of the theoretical framework
needed to understand the following chapters. This chapter is mainly about the
formalism of second quantization as it can be found in the books by Bruus and
Flensberg [2004], Giuliani and Vignale [2005], or Helgaker et al. [2014]. It is a
theoretical formalism to deal with many-particle systems which is based on whether
a single-particle state is occupied or not. Hence, it also has the name “occupation
number representation”. Second quantization is an operator-based formulation of
quantum mechanics. That means that the physical properties of indistinguishable
particles like Pauli’s principle are encoded in operators instead of the many-body
wave function. In the following, the focus merely lies on the second-quantization
formulation of electronic systems.

3.1 Standard quantum mechanics or first quantization

3.1.1 Single-particle operators and independent-particle states

Consider a generic Hamiltonian describing an electron in a potential V (x) in atomic
units

Ĥ = −1

2
∆ + V (x) (3.1)

where ∆ = d2

dx2
+ d2

dy2
+ d2

dz2
is the Laplace operator. Assume that one is able to find

a solution to the associated Schrödinger equation

Ĥ |ϕn〉 = En |ϕn〉 (3.2)

with |ϕn〉 and En being the nth eigenstate and eigenvalue of Ĥ. The |ϕn〉 form a
complete set of basis states ∑

n

|ϕn〉 〈ϕn| = 1̂ (3.3)∫
d3xϕ∗m(x)ϕn(x) = δmn . (3.4)

1̂ is the identity operator and δmn is the Kronecker-delta symbol. Then, it is clear
that a matrix element of a generic operator in this basis reads

Omn = 〈ϕm|Ô|ϕn〉 (3.5)

= 〈ϕm|1̂Ô|ϕn〉 (3.6)

13



3 Theoretical framework

= 〈ϕm|
∫
d3x |x〉 〈x| Ô |ϕn〉 (3.7)

=

∫
d3xϕ∗m(x)

(
Ôϕn

)
(x) . (3.8)

It was used that the position space is a complete basis as well and that one gets the
wave function by projection onto position space∫

d3x |x〉 〈x| = 1̂ (3.9)

ϕn(x) = 〈x|ϕn〉 . (3.10)

Consequently, an operator can be expressed in terms of its matrix elements

Ô = 1̂Ô1̂ (3.11)

=
∑
mn

|ϕm〉 〈ϕm| Ô |ϕn〉 〈ϕn| (3.12)

=
∑
mn

Omn |ϕm〉 〈ϕn| . (3.13)

The last equation is the so-called first-quantization representation of quantum-
mechanical operators.

Now, consider a system of N independent electrons. The Hamiltonian then be-
comes

ĤN =
N∑
i=1

(
−1

2
∆i + V (xi)

)
. (3.14)

It can be shown that a simple product ansatz |ψNn1n2···nN 〉 = |ϕn1〉 · |ϕn2〉 · · · |ϕnN 〉 is
a solution of the Schrödinger equation

ĤN |ψNn1n2···nN 〉 = EN
n1n2···nN |ψ

N
n1n2···nN 〉 (3.15)

with
EN
n1n2···nN = En1 + En2 + · · ·+ EnN . (3.16)

The solution states |ψNn1n2···nN 〉 lack some important physical property, namely anti-
symmetry. Therefore, one can use the fact that any linear combination of these
states is a solution of the N -particle Schrödinger equation and thus incorporates the
correct physics

|φ〉 =
∑

n1n2···nN

Cn1n2···nN |ψNn1n2···nN 〉 . (3.17)

Anti-symmetry is included in the expansion coefficients Cn1n2···nN . This leads to the
sort of states called Slater determinants [Slater, 1929] written here briefly as

|φ〉 = |ϕ1ϕ2 · · ·ϕN〉 . (3.18)
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3.2 The formalism of second quantization

3.1.2 Two-particle operators and many-particle states

Let us now modify Eq. (3.14) by adding a term which couples two electrons

ĤN =
N∑
i=1

(
−1

2
∆i + V (xi)

)
+

1

2

∑
i 6=j

U(xi,xj) . (3.19)

U(xi,xj) is what one calls a two-particle operator. It can readily be expanded in a
set of complete single-particle basis states

Ûij =
∑
mnpq

umnpq |ϕm〉 |ϕn〉 〈ϕp| 〈ϕq| (3.20)

where

umnpq =

∫
d3xi d

3xj ϕ
∗
m(xi)ϕ

∗
n(xj)U(xi,xj)ϕp(xi)ϕq(xj) . (3.21)

It is not any longer possible to write the solution state of Eq. (3.19) as a linear
combination of products of the single-particle states |ϕ〉. The two-particle operator
introduces correlation between electrons in different orbitals. Since the Slater deter-
minants also form a complete basis set, the most general ansatz is a superposition
of N-particle Slater determinants

|ψ〉 =
∑
k

Ψk |φk〉 (3.22)

or, when we assume that we have a complete set of L � N orbitals, one can also
write

|ψ〉 =
∑

n1n2···nL

Ψn1n2···nLδ
∑
i ni,N

|ϕn1
1 ϕ

n2
2 · · ·ϕ

nL
L 〉 . (3.23)

The ni indicate whether the orbital |ϕi〉 has been taken into the expansion or not,
so whether the orbital is occupied by an electron or not. In the following, the reader
is provided with a short introduction to a many-particle formalism called second
quantization which is wholly built on the electron-orbital occupation.

3.2 The formalism of second quantization

As opposed to most books on the subject of second quantization [Bruus and Flens-
berg, 2004, Giuliani and Vignale, 2005, Helgaker et al., 2014], we take a more heuris-
tic way inspired by quantum field theory [Altland and Simons, 2010]. Electrons
are considered as field excitations in the vacuum and all the physical properties
of identical particles are expressed by operator actions instead of encoded in the
many-particle wave function.

3.2.1 One-particle operators and anti-commutation relations

If one knew the exact electronic density ρ(x) of a system in advance, any one-particle
quantity could be calculated easily. Classically, for a continuously defined observable
O(x) like for instance the electrostatic potential of a point charge, summing up all
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3 Theoretical framework

particle contributions yields

O =

∫
d3xO(x)ρ(x) (3.24)

which is analogous to the quantum-mechanical expectation value of the observable
Ô

〈Ô〉 =

∫
d3xψ∗(x)O(x)ψ(x) . (3.25)

Bearing in mind that any physical observable in quantum mechanics is mathemat-
ically represented by a Hermitian operator, one must recognize that the electronic
density at a point in space needs to be an operator as well and Eq. (3.24) becomes

〈Ô〉 =

∫
d3xO(x)ρ̂(x) (3.26)

=

∫
d3x ψ̂†(x)O(x)ψ̂(x) . (3.27)

The last equation shows the second quantization formulation of quantum mechanics
in position or real space. The name “second quantization” is derived from the fact
that, superficially speaking, not only operator spectra are quantized but also wave
function excitations considering the wave function as an operator itself. It holds

ρ̂(x) = ψ̂†(x)ψ̂(x) (3.28)

N̂ =

∫
d3x ρ̂(x) . (3.29)

N̂ is the particle number operator counting the number of particles in a N-particle
state |ψN〉

N̂ |ψN〉 = N |ψN〉 . (3.30)

The operators ψ̂†(x) and ψ̂(x) are termed field operators and can be viewed as
creators and destructors of particles in a superposition of single-particle states at
the position x in space.

In order to obey Pauli’s exclusion principle, one must require that these operators
fulfill the so-called anti-commutation relations

{ψ̂(x), ψ̂(x′)} = 0 (3.31)

{ψ̂†(x), ψ̂†(x′)} = 0 (3.32)

{ψ̂(x), ψ̂†(x′)} = δ(x− x′) (∀ x,x′ ∈ R3) . (3.33)

The curly brackets mean that

{Â, B̂} = ÂB̂ + B̂Â (3.34)

and δ(x−x′) is the Dirac-δ function. These relations make sure that it is impossible
to create two electrons at the same position in space

ψ̂†(x)ψ̂†(x) = 0 . (3.35)
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3.2 The formalism of second quantization

3.2.2 Two-particle operators

As an example for a two-particle operator, the reader may be referred to the electron-
electron interaction in atomic units

U(x,x′) =
1

|x− x′|
. (3.36)

Classically, the electrostatic interaction energy of two charge distributions is calcu-
lated as follows

U =
1

2

∫
d3x d3x′ U(x,x′)ρ(x)ρ(x′) . (3.37)

The second-quantized analogue is thus

Û =
1

2

∫
d3x d3x′ U(x,x′)ρ̂(x)ρ̂(x′) . (3.38)

However, the last equation is not fully correct because it includes an nonphysical
term where x equals x′. That is why one must subtract this term to have a valid
description of physics

Û =
1

2

∫
d3x d3x′ U(x,x′)

(
ρ̂(x)ρ̂(x′)− δ(x− x′)ψ̂†(x)ψ̂(x′)

)
. (3.39)

Using the anti-commutation relations for electrons, the last expression can be brought
into the form

Û =
1

2

∫
d3x d3x′ U(x,x′)

(
ψ̂†(x)ψ̂(x)ψ̂†(x′)ψ̂(x′)− δ(x− x′)ψ̂†(x)ψ̂(x′)

)
(3.40)

=
1

2

∫
d3x d3x′ U(x,x′)ψ̂†(x)

(
ψ̂(x)ψ̂†(x′)− δ(x− x′)

)
ψ̂(x′) (3.41)

= −1

2

∫
d3x d3x′ U(x,x′)ψ̂†(x)ψ̂†(x′)ψ̂(x)ψ̂(x′) (3.42)

=
1

2

∫
d3x d3x′ U(x,x′)ψ̂†(x)ψ̂†(x′)ψ̂(x′)ψ̂(x) . (3.43)

Therefore, a generic Hamiltonian with electron-electron interaction can be written
in second-quantized form in real space as

Ĥ =

∫
d3x ψ̂†(x) (T (x) + V (x)) ψ̂(x)

+
1

2

∫
d3x d3x′ U(x,x′)ψ̂†(x)ψ̂†(x′)ψ̂(x′)ψ̂(x)

(3.44)

with T (x), V (x) and U(x,x′) being the kinetic energy, external potential, and the
electron-electron interaction.

3.2.3 Change of basis

In some cases, it may be better to work in another basis. Assume the |ϕi〉 form a
complete orthonormal basis set. Then the field operators can be expanded in a set

17



3 Theoretical framework

of new creation and annihilation operators ĉ†i and ĉi

ψ̂†(x) =
∑
i

ϕ∗i (x)ĉ†i (3.45)

ψ̂(x) =
∑
i

ϕi(x)ĉi (3.46)

which fulfill the same anti-commutation relations

{ĉi, ĉj} = 0 (3.47)

{ĉ†i , ĉ
†
j} = 0 (3.48)

{ĉi, ĉ†j} = δij . (3.49)

δij is the Kronecker-δ symbol. In this new generic basis, the Hamiltonian in Eq.
(3.44) attains the shape

Ĥ =
∑
ij

hij ĉ
†
i ĉj +

1

2

∑
ijkl

uijklĉ
†
i ĉ
†
j ĉlĉk (3.50)

where it has been defined

hij =

∫
d3xϕ∗i (x) (T (x) + V (x))ϕj(x) (3.51)

uijkl =

∫
d3x d3x′ ϕ∗i (x)ϕk(x)U(x,x′)ϕ∗j(x

′)ϕl(x
′) . (3.52)

Besides, the particle number operator turns to

N̂ =

∫
d3x ψ̂†(x)ψ̂(x) (3.53)

=
∑
ij

∫
d3xϕ∗i (x)ϕj(x)ĉ†i ĉj (3.54)

=
∑
ij

δij ĉ
†
i ĉj (3.55)

=
∑
i

ĉ†i ĉi (3.56)

where the operator ĉ†i ĉi measures the occupancy ni ∈ {0; 1} (0: unoccupied, 1:
occupied) of the orbital |ϕi〉. That is why this operator is shortly written as

n̂i = ĉ†i ĉi . (3.57)

The orbitals |ϕi〉 are eigenstates of n̂i obeying the eigenvalue equation

n̂i |ϕi〉 = ni |ϕi〉 (3.58)

with eigenvalues ni.
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3.3 Quantum lattice models revisited

3.2.4 Occupation number representation of many-particle states

A key concept of second quantization is that it is not important to know how the
explicit form of the single-particle states looks like—except for the matrix elements.
What matters is if the state |ϕi〉 is occupied by an electron or not. By this means,
it is possible to expand a many-particle state in the so-called occupation number
or Fock space. Consider we have a space of L single-particle states |ϕi〉, then a
many-particle state can be written in terms of occupation numbers nt as

|ψ〉 =
∑

n1n2···nL

Ψn1n2···nL |n1n2 · · ·nL〉 . (3.59)

|n1n2 · · ·nL〉 is termed occupation number or Fock state and indicates which of the
single-particle states |ϕi〉 are occupied by electrons. For instance, in the state |01100〉
the second and third orbital is occupied and the rest is empty. An occupation number
state is a many-particle state and is completely similar to a Slater determinant
because

|01100〉 = ĉ†2ĉ
†
3 |0〉 (3.60)

= −ĉ†3ĉ
†
2 |0〉 . (3.61)

A particular occupation number state can be obtained by creating particles and
putting them into the completely empty or vacuum state |0〉

|n1n2 · · ·nL〉 = ĉ†
n1

1 ĉ†
n2

2 · · · ĉ
†nL
L |0〉 . (3.62)

One can see that an occupation number state fulfills the requirement of anti-symmetry
which an electronic many-body state must fulfill due to the anti-commutation rela-
tions of the creation and annihilation operators.

To conclude, the great advantage and biggest difference of second quantization
or the occupation number representation compared to first quantization is that the
crucial physics of many-electron systems is mathematically encoded in a canonical
operator algebra of anti-commuting creation and annihilation operators all emerging
operators and states can be reduced to.

3.3 Quantum lattice models revisited

In principle, every quantum-mechanical problem formulated in second quantization
can be seen as a quantum lattice model. Take for example the Hamiltonian of a
simple molecule like H2

Ĥ =
∑
ij,σ

hij ĉ
†
iσ ĉjσ +

1

2

∑
ijkl,σσ′

uijklĉ
†
iσ ĉ
†
jσ′ ĉlσ′ ĉkσ (3.63)

in the basis of Hartree-Fock orbitals |ϕi〉. The z-component of the electron-spin had
to be introduced in the last equation (σ ∈ {↑; ↓}). The hij are the matrix elements
of the one-electron part (kinetic energy plus potential of the nuclei) and uijkl is the
electron-electron interaction. Eq. (3.63) can be considered as the Hamiltonian of an
abstract quantum lattice model when the single-particle basis states or orbitals are
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3 Theoretical framework

thought of as lattice sites in an abstract one-dimensional lattice which are occupied
by the electrons of the system. This is how all the quantum-chemical implemen-
tations of the density matrix renormalization group look like. One starts with a
Hartree-Fock calculation and takes the resulting orbitals as lattice sites. So, DMRG
becomes a pure post-Hartree-Fock method.

Yet, there is another way to obtain a lattice model. Take the real-space represen-
tation of Eq. (3.63)

Ĥ =
∑
σ

∫
d3x ψ̂†σ(x)

−1

2
∆ψ̂σ(x) +

∑
σ

∫
d3xV (x)ψ̂†σ(x)ψ̂σ(x)

+
1

2

∑
σσ′

∫
d3x d3x′ U(x,x′)ψ̂†σ(x)ψ̂†σ′(x

′)ψ̂σ′(x
′)ψ̂σ(x)

(3.64)

and discretize it as shown in the reference by Stoudenmire et al. [2012] for a purely
one-dimensional chain of hydrogen atoms where the electrons are only allowed to
move along the chain and not perpendicular to it. That means one introduces a char-
acteristic length δ—and at the same time accuracy measure—the electrons cannot
go below. This length becomes the lattice spacing of an artificial lattice emerging
from discretizing the continuum and changing from integration to summation. In
the limit δ −→ 0, it is valid to cast the last equation of a continuous model into a
lattice model of the shape

Ĥ =
∑
ij,σ

tij ĉ
†
iσ ĉjσ +

∑
i,σ

vin̂iσ +
1

2

∑
ij,σσ′

uij ĉ
†
iσ ĉ
†
jσ′ ĉjσ′ ĉiσ . (3.65)

tij , vi and uij are the discrete versions of the kinetic energy, potential of the nuclei
with charges ZA and positions RA, and the electron-electron interaction

tij =

{
− 1

2δ2
δ|i−j|,1 , i 6= j

3
δ2
, i = j

(3.66)

vi =
∑
A

−ZA
|δi−RA|

(3.67)

uij =
1

δ|i− j|
. (3.68)

The bold-type indices i, j ∈ Z3 are the discrete lattice vectors

x = δi , (3.69)

which holds in the limit of an infinitesimal lattice spacing and infinitely many lattice
sites. The exact details how to discretize a three-dimensional continuous model will
be given later in this thesis. However, the latter ansatz is a good starting point
for numerical simulations because it does not need a pre-Hartree-Fock calculation.
It can be used immediately for a DMRG calculation and contains all the correct
physics but only on a lattice or grid of artificial points.
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4 Calculus of matrix product states
and operators

This chapter is meant to give an overview of the relatively new field of quantum-
mechanical state classes called matrix product states (MPS) as used in [Östlund and
Rommer, 1995, Rommer and Östlund, 1997] and corresponding operators known as
matrix product operators (MPO) which more and more occur in simulations of
quantum-many-body systems. MPSs and MPOs are normally used to reduce the
amount of computer resources needed for a quantum-mechanical simulation. They
make it possible to break the many-body Schrödinger equation down to a system of
effective, easily diagonalizable one-particle Schrödinger equations. So, exponentially
demanding numerical calculations can be facilitated tremendously. For an excellent
review, see Schollwöck [2011].

4.1 Matrix product states

Consider the most general ansatz for a many-particle wave function formulated in
second quantization

|ψ〉 =
∑
n

Ψn |n〉 , (4.1)

where |n〉 = |n1n2 · · ·nL〉 is an occupation number vector or Fock state of length L.
For a given occupation n1, n2, etc. Ψn is a scalar quantity. Now assume we can find
a way to write Ψn as a product of matrices

Ψn = Ψn1n2···nL (4.2)

= Ψn1 Ψn2 · · ·ΨnL . (4.3)

Ψn1 and ΨnL are row and column vectors respectively. This matrix product factor-
ization may for example be achieved by a consecutive singular value (SVD) or QR
decomposition [Gentle, 2012]:

Ψn1n2···nL =
∑
i1

Un1
i1
Si1j1Vj1,n2···nL =

∑
i1

Ψn1
i1

Ψ′i1,n2···nL (SVD) (4.4)

Ψn1n2···nL =
∑
i1

Qn1
i1
Ri1,n2···nL =

∑
i1

Ψn1
i1

Ψ′i1,n2···nL (QR) (4.5)

In the next step, Ψ′ is decomposed and so on. In the end, one obtains

Ψn1n2···nL =
∑

i1i2···iL−1

Ψn1
i1

Ψn2
i1i2
· · ·ΨnL

iL−1
(4.6)
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4 Calculus of matrix product states and operators

and Eq. (4.1) can be rewritten as

|ψ〉 =
∑

n1n2···nL

Ψn1Ψn2 · · ·ΨnL |n1n2 · · ·nL〉 . (4.7)

Eq. (4.7) is called matrix product state due to its matrix product structure. Eq.
(4.7) can in principle always be obtained from Eq. (4.1) by a consecutive matrix
factorization technique as shown above and is thus exact but in practice, it is unfea-
sible because the number of expansion coefficients Ψn1n2···nL increases exponentially
with the number of included single-particle states L. Assuming that the occupation
numbers n1, n2, . . . up to nL can take the values 0 or 1, the Hilbert space dimension
D = dim(H) of the wave function grows like

D(L) = 2L . (4.8)

Eq. (4.7) will only serve as an approximation of Eq. (4.1) in practical cases. Even
though it serves as an approximation, a MPS has two nice features: First, one can
tune the variational freedom of a MPS by adjusting the size of the matrices Ψn

which form the MPS. Secondly, let us assume that for a given n ∈ {0; 1}, all Ψn

are matrices of size M ×M (except for the first and last one which are 1×M and
M × 1), then it is possible to truncate the Hilbert space such that

D(L) = 2L
MPS−→ 2M2L− 4M(M − 1) . (4.9)

4.1.1 Addition of matrix product states

Assume now we have two states |ψ〉 and |φ〉 in MPS form. They can be added and
yield a new MPS

|ψ̃〉 = a |ψ〉+ b |φ〉 (a, b ∈ C) (4.10)

=
∑

n1n2···nL

(aΨn1Ψn2 · · ·ΨnL + bΦn1Φn2 · · ·ΦnL) |n1n2 · · ·nL〉 (4.11)

=
∑

n1n2···nL

(aΨn1 ⊕ bΦn1) (Ψn2 ⊕Φn2) · · · (ΨnL ⊕ΦnL) |n1n2 · · ·nL〉 (4.12)

=
∑

n1n2···nL

Ψ̃n1Ψ̃n2 · · · Ψ̃nL |n1n2 · · ·nL〉 , (4.13)

where ⊕ denotes the direct sum or Kronecker sum. The Kronecker sum of two
M ×M ′ matrices A and B is defined as

A⊕B =

(
A 0
0 B

)
. (4.14)

For two M -dimensional column vectors u and v, it is defined as

u⊕ v =

(
u
v

)
. (4.15)
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4.1 Matrix product states

4.1.2 Scalar product of two matrix product states

Consider two states |ψ〉 and |φ〉 in MPS form, then one can of course also calculate
the scalar product or overlap of these two states, which can be done fairly efficiently
due to the matrix product structure

〈ψ|φ〉 =
∑

m1m2···mL
n1n2···nL

(Ψm1Ψm2 · · ·ΨmL)∗ (Φn1Φn2 · · ·ΦnL) 〈m|n〉 (4.16)

=

(∑
n1

Ψn†1Φn1

)
︸ ︷︷ ︸

=M (1)

(∑
n2

Ψn†2Φn2

)
· · ·

(∑
nL

Ψn†LΦnL

)
(4.17)

=

(∑
n2

Ψn†2M (1)Φn2

)
︸ ︷︷ ︸

=M (2)

· · ·

(∑
nL

Ψn†LΦnL

)
(4.18)

...

=
∑
nL

Ψn†LM (L−1)ΦnL . (4.19)

In this way, one can for instance calculate norms of wave functions in MPS form.

4.1.3 Invariance and normalization of matrix product states

It is often useful to work with normalized matrix product states. A MPS is normal-
ized by orthogonalization of its constituent matrices, which can always be done at
any time due to the fact that a general MPS is invariant under transformations of
the kind

|ψ{X}〉 =
∑

n1n2···nL

Ψn1X1X
−1
1 Ψn2X2 · · ·X−1L−1Ψ

nL |n1n2 · · ·nL〉 (4.20)

=
∑

n1n2···nL

Ψn1Ψn2 · · ·ΨnL |n1n2 · · ·nL〉 (4.21)

= |ψ〉 . (4.22)

As sketched above, a MPS can thus be normalized by a consecutive QR decompo-
sition for example

|ψ〉 =
∑

n1n2···nL

Qn1Qn2 · · ·Ψ′nL . (4.23)

The squared norm of |ψ〉 can now be calculated with what was shown in the last
section

||ψ||2 = 〈ψ|ψ〉 (4.24)

=
∑
nL

Ψ′n
†
LΨ′nL (4.25)
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4 Calculus of matrix product states and operators

Eq. (4.25) results from the fact that∑
n

Qn†Qn = 1 . (4.26)

The normalized MPS then reads

|ψ〉 =
∑

n1n2···nL

Qn1Qn2 · · ·Ψ′nL√∑
mL

Ψ′m
†
LΨ′mL

|n1n2 · · ·nL〉 . (4.27)

Everything shown here can equivalently be obtained when orthogonalizing and nor-
malizing |ψ〉 via a RQ decomposition from the right instead of a QR decomposition
from the left.

4.2 Matrix product operators

The following sections are meant to extend and explain in more detail the concept of
matrix product operators also partly described in Snajberk and Ochsenfeld [2017a,b]
(see the publication list).

The operator analogues of matrix product states are matrix product operators
(MPO). These objects are the key to efficient quantum-mechanical many-body sim-
ulations like the search for the ground-state of a system. The MPO form of an
operator can theoretically be obtained by a consecutive matrix factorization like for
a MPS

Ô =
∑
mn

Omn |m〉 〈n| (4.28)

=
∑
mn

Om1n1Om2n2 · · ·OmLnL |m〉 〈n| . (4.29)

The only difference is that a MPO matrix bears two basis indices m and n instead
of one. This is also not manageable in practical applications because one must know
the whole matrix representation of Ô in an exponentially large basis in advance.
In quantum-mechanical calculations, it is important to find a compact and efficient
representation of the Hamiltonian as a matrix product operator.

4.2.1 Addition, multiplication, and norms of matrix product
operators

As well as matrix product states, MPOs can be added. Consider two operators Â
and B̂ in MPO form, then

Ô = Â+ B̂ (4.30)

=
∑
mn

(Am1n1 ⊕Bm1n1) (Am2n2 ⊕Bm2n2) · · · (AmLnL ⊕BmLnL) |m〉 〈n| (4.31)

=
∑
mn

Om1n1Om2n2 · · ·OmLnL |m〉 〈n| . (4.32)
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4.2 Matrix product operators

MPOs can also be multiplied

Ô = ÂB̂ (4.33)

=
∑
mnn′

(
Am1n′1 ⊗Bn′1n1

)(
Am2n′2 ⊗Bn′2n2

)
· · ·
(
AmLn

′
L ⊗Bn′LnL

)
|m〉 〈n|

(4.34)

=
∑
mn

Om1n1Om2n2 · · ·OmLnL |m〉 〈n| . (4.35)

The symbol ⊗ denotes the Kronecker product which is defined for two M × N
matrices A and B such that

A⊗B =


a11B a12B · · · a1NB
a21B a22B

...
. . .

aM1B aMNB

 . (4.36)

The multiplication of two MPOs hence yields a MPO. The problem for this operation
is that it increases the dimension of the resulting MPO Ô. The size of the operator
matrices increases

Omn =
∑
n′

(
Amn′ ⊗Bn′n

)
, (4.37)

where Omn is a M2×N2 matrix whenA andB are of size M×N . This size increase
is important when it comes to calculating quadratic operators like the variance of
an observable Ô

var(Ô) = 〈Ô2〉 − 〈Ô〉
2
. (4.38)

Norms of matrix product operators can be calculated as straightforwardly as for
MPS using the norm equivalent for operators

||Ô|| =
√

Tr(Ô†Ô) (Frobenius norm) . (4.39)

4.2.2 Construction of matrix product operators and simple
examples

Consider a general, diagonal one-particle operator Ô in second quantization formu-
lation

Ô =
∑
k

εkn̂k , (4.40)

where the index k runs over all single-particle states. n̂k represents the occupation
number operator for the state k and the εk are the eigenvalues of Ô. The goal is
now to bring the operator Ô to MPO form Eq. (4.29). This can best be done by
looking at the matrix elements of Ô

〈m1m2 · · ·mL|Ô|n1n2 · · ·nL〉 =
∑
k

εk 〈m1m2 · · ·mL|n̂k|n1n2 · · ·nL〉 (4.41)

=
∑
k

δm1n1δm2n2 · · · εknkδmknk · · · δmLnL . (4.42)
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4 Calculus of matrix product states and operators

This shows that one can write the matrix of Ô in the occupation number basis as

O =
∑
k

11 ⊗ 12 ⊗ · · · ⊗ εkηk ⊗ · · · ⊗ 1L (4.43)

or as operator

Ô =
∑
k

1̂1 ⊗ 1̂2 ⊗ · · · ⊗ εkη̂k ⊗ · · · 1̂L . (4.44)

The occupation number operator n̂ has been redefined (n̂ −→ η̂) such that it now
acts on a particular single-particle state instead of a whole occupation number or
Fock state

n̂k |n1n2 · · ·nL〉 = |n1〉 ⊗ |n2〉 ⊗ · · · ⊗ η̂k |nk〉 ⊗ · · · ⊗ |nL〉 (4.45)

= |n1〉 ⊗ |n2〉 ⊗ · · · ⊗ nk |nk〉 ⊗ · · · ⊗ |nL〉 . (4.46)

The new redefined local occupation number operator η̂ is defined by its matrix
action. For spin orbitals, this action is

η =

(
0 0
0 1

)
(4.47)

and for spatial orbitals where one assumes four different possible occupation states
|0〉, |↑〉, |↓〉 or |↑↓〉

η =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 2

 . (4.48)

Eq. (4.44) can now be brought into MPO shape

Ô =
(
1̂1 ε1η̂1

)
�
(

1̂2 ε2η̂2
0 1̂2

)
� · · · �

(
εLη̂L
1̂L

)
(4.49)

= Ô1 � Ô2 � · · · � ÔL . (4.50)

The Ôk are here operator-valued matrices. We have also introduced a new symbol �
for clarity of notation. This operation symbol is meant to unite the features of both
the standard matrix product and the tensor product ⊗. Eq. (4.50) is an equivalent
representation of a MPO because

Ô = Ô1 � Ô2 � · · · � ÔL (4.51)

=
∑
mn

〈m|Ô1 � Ô2 � · · · � ÔL|n〉 |m〉 〈n| (4.52)

=
∑
mn

〈m1|Ô1|n1〉 〈m2|Ô2|n2〉 · · · 〈mL|ÔL|nL〉 |m〉 〈n| (4.53)

=
∑
mn

Om1n1Om2n2 · · ·OmLnL |m〉 〈n| . (4.54)

The last equations show the features of the � symbol.
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4.2 Matrix product operators

Now, let us turn to a more complicated example

T̂ =
∑
kl

tklĉ
†
kĉl (4.55)

which can for instance describe the kinetic energy of an electron moving on a real-
space grid. This example is more complicated because one now has to include
the anti-commutativity of electrons into the matrix product operator framework.
However, first of all, one must sort and order the single-particle states or lattice
sites here

T̂ =
∑
k

tkn̂k +
∑
k<l

(
tklĉ

†
kĉl + t∗klĉ

†
l ĉk

)
. (4.56)

One can see that the first sum will lead to a MPO of the form Eq. (4.49) and
the second sum to a MPO which will be discussed in the following. The procedure
is almost the same as sketched above and one has first to look at the matrix ele-
ments of the creation and annihilation operators to see how to construct the MPO
representation. Assume k < l, then

〈m|ĉ†kĉl|n〉 = (−1)nk+···+nl−1 〈· · ·mk · · ·ml · · · | · · ·nk + 1 · · ·nl − 1 · · ·〉 (4.57)

= δm1n1 · · · (−1)nkδmknk+1(−1)nk+1δmk+1nk+1

· · · δmlnl−1 · · · δmLnL .
(4.58)

Thus, we conclude that the operator can be written as

ĉ†kĉl = 1̂1 ⊗ · · · ⊗ ζ̂L
†

k ⊗ f̂k+1 ⊗ · · · ⊗ ζ̂Ll ⊗ · · · ⊗ 1̂L . (4.59)

By redefining the operators’ action, we have to introduce operators which we call
fermionic anti-commutation operators and which are defined by their matrix action

f =

(
1 0
0 −1

)
. (4.60)

The now locally acting creation and annihilation operators ζ̂† and ζ̂ have the form
(for all k)

ζL
†

=

(
0 0
1 0

)
, ζL =

(
0 1
0 0

)
. (4.61)

The superscript L suggests that ζ̂L
†

and ζ̂L annihilate and create from the right to
the left on a chain of points (It is important not to confuse them with the number
of single-particle states or points in the chain L). Basically, the same holds for the
other creation and annihilation operator combination

〈m|ĉ†l ĉk|n〉 = (−1)1+nk+···+nl−1 〈· · ·mk · · ·ml · · · | · · ·nk − 1 · · ·nl + 1 · · ·〉 (4.62)

= δm1n1 · · · (−1)1+nkδmknk−1(−1)nk+1δmk+1nk+1

· · · δmlnl+1 · · · δmLnL .
(4.63)

The slight difference is the additional factor of −1 which leads to another set of
creation and annihilation operators which annihilate and create from the left to the
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4 Calculus of matrix product states and operators

right (superscript R)

ζR
†

=

(
0 0
1 0

)
, ζR =

(
0 1
0 0

)
. (4.64)

It can be recognized that the L- and R-operators are identical for spin orbitals as
single-particle states, however, for spatial orbitals, one must distinguish between
different spin orientations (↑ or ↓) and L and R. The operators must then have the
form

ζL
†

↑ =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 −1 0

 , ζL↑ =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 (4.65)

ζR
†

↑ =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

 , ζR↑ =


0 1 0 0
0 0 0 0
0 0 0 −1
0 0 0 0

 (4.66)

ζL
†

↓ =


0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

 , ζL↓ =


0 0 1 0
0 0 0 −1
0 0 0 0
0 0 0 0

 (4.67)

ζR
†

↓ =


0 0 0 0
0 0 0 0
1 0 0 0
0 −1 0 0

 , ζR↓ =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 . (4.68)

The fermionic anti-commutation operator reads as matrix

f =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 . (4.69)

The entry of −1 in the spin dependent creation and annihilation operator matri-
ces results from the anti-symmetry principle of fermionic wave functions or anti-
commutativity of fermionic creation and annihilation operators for electrons with
spin. The 4 × 4 operators will especially be important in this thesis for the imple-
mentation of the Hamiltonian for quantum-chemical systems.

Now, we nearly have everything to cast Eq. (4.56) into MPO form. However,
one problem remains. It is the term tkl and its conjugate which couple two sites
or single-particle states k and l (The notions “site” and “single-particle state” are
used interchangeably here). Therefore, one must find a way to “decouple” somehow
these states in order to obtain a site-by-site picture of a matrix product operator.
This can be achieved by a matrix factorization like the QR decomposition

tkl =
∑
i

qkiril . (4.70)
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4.3 Application of matrix product operators to matrix product states

Thus, one can write ∑
k<l

tklĉ
†
kĉl =

∑
i,k<l

qkirilĉ
†
kĉl (4.71)

=
∑
i,k<l

(
qkiĉ

†
k

)
(rilĉl) (4.72)

=
∑
i,k<l

q̂
(i)
k r̂

(i)
l (4.73)

=
∑
i

t̂
(i)
MPO (4.74)

which leads to a sum of operators which can be represented as matrix product
operators

t̂
(i)
MPO =

(
1̂1 q1iζ̂

L†
1 0

)
�

1̂2 q2iζ̂
L†
2 0

0 f̂2 ri2ζ̂
L
2

0 0 1̂2

� · · · �
 0

riLζ̂
L
L

1̂L

 (4.75)

= t̂
(i)
1 � t̂

(i)
2 � · · · � t̂

(i)
L . (4.76)

This of course holds for the conjugated part of Eq. (4.56) as well. We conclude that
Eq. (4.56) can be written as a sum of MPOs

T̂ =
L∑
i=0

t̂
(i)
MPO , (4.77)

where the i = 0 MPO refers to the operator containing the sum of occupation
number operators

∑
k tkn̂k. We will come back to the construction of MPOs when

it comes to how to construct and implement quantum-chemical Hamiltonians.

4.3 Application of matrix product operators to matrix
product states

With what has been shown so far, one is also able to apply a MPO to a MPS which
again yields a MPS. Consider we have a MPO Ô of length L

Ô = Ô1 � Ô2 � · · · � ÔL (4.78)

=
∑
mn

Om1n1Om2n2 · · ·OmlnL |m〉 〈n| (4.79)

and a MPS |ψ〉

|ψ〉 = |Ψ1〉 � |Ψ2〉 � · · · � |ΨL〉 (4.80)

=
∑
n

Ψn1Ψn2 · · ·ΨnL |n〉 . (4.81)
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4 Calculus of matrix product states and operators

Here, a similar shorthand notation for MPSs as for MPOs was introduced

|Ψ〉 =
∑
n

Ψn |n〉 . (4.82)

When we apply Ô to |ψ〉, one obtains a new MPS |φ〉

Ô |ψ〉 = Ô1 |Ψ1〉 � Ô2 |Ψ2〉 � · · · � ÔL |ΨL〉 (4.83)

=
∑
mn

(Om1n1 ⊗Ψn1) (Om2n2 ⊗Ψn2) · · · (OmLnL ⊗ΨnL) |m〉 (4.84)

=
∑
m

Φm1Φm2 · · ·ΦmL |m〉 (4.85)

= |Φ1〉 � |Φ2〉 � · · · � |ΦL〉 (4.86)

= |φ〉 . (4.87)

Applying MPOs to MPSs bears the same problem as multiplying two MPOs to-
gether. The size of the resulting state matrices increase by the Kronecker product
of the operator and the old state matrices.

4.3.1 Expectation values

Expectation values of quantum-mechanical observables can readily be calculated
in the MPO-MPS framework since calculating expectation values is nothing but
evaluating the scalar product or overlap of two matrix product states where one of
them is just the product of the observable representing operator Ô and the state
|ψ〉. Assume that |ψ〉 is normalized, then the expectation value of Ô reads [Griffiths,
2013, Messiah, 2014]

〈O〉 = 〈ψ|Ô|ψ〉 . (4.88)

As an example, consider the particle number operator defined in second quantization
as

N̂ =
L∑
k=1

n̂k , (4.89)

where the sum runs over all L single-particle states. It has the following MPO
representation

N̂ =
(
1̂1 η̂1

)
�
(

1̂2 η̂2
0 1̂2

)
� · · · �

(
η̂L
1̂L

)
(4.90)

= N̂1 � N̂2 � · · · � N̂L . (4.91)

The expectation value of this operator can be calculated easily since its operator
matrix size is just 2× 2 except for the first and last one

〈N̂〉 = 〈ψ|N̂ |ψ〉 (4.92)
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=
∑
mLnL

Ψm†L · · ·

(∑
m2n2

Ψm†2

(∑
m1n1

Ψm†1 (Nm1n1 ⊗Ψn1)

)
(Nm2n2 ⊗Ψn2)

)
· · · (NmLnL ⊗ΨnL) .

(4.93)

The last equation exactly corresponds to the efficient evaluation of MPS scalar
products.

4.3.2 Eigenvalue problems

The real strength of working with MPOs and MPSs lies at reducing the formal
degrees of freedom or renormalizing the basis. In quantum-mechanics, it is often
the case that one is interested in finding solutions of eigenvalue problems. The
numerical solution of these problems highly depends on the degrees of freedom a
particular problem consists of. With degrees of freedom, one normally refers to the
Hilbert space or basis a wave function must be expanded in for instance. Consider
again an operator Ô and a state |ψ〉 which fulfill the eigenvalue equation

Ô |ψ〉 = ω |ψ〉 , (4.94)

where ω is the eigenvalue. Ô and |ψ〉 have MPO and MPS form, respectively. A
great feature of MPSs and MPOs is that one is able to trace out or sum up degrees
of freedom whose exact determination and representation do not matter currently

|ψ〉 = |Ψ1〉 � |Ψ2〉 � · · · � |ΨL〉 (4.95)

= |L〉 � |Ψk〉 � |R〉 (4.96)

Ô = Ô1 � Ô2 � · · · � ÔL (4.97)

= P̂ � Ôk � Q̂ . (4.98)

|L〉, |R〉 and P̂ and Q̂ are sets of states and operators which are obtained when
one sums over all local basis states |n〉 and performs the matrix multiplication up
to the kth position

|L〉 =
∑

n1n2···nk−1

Ψn1Ψn2 · · ·Ψnk−1 |n1n2 · · ·nk−1〉 (4.99)

|l〉 =
∑

n1n2···nk−1
l1l2···lk−2

Ψn1
l1

Ψn2
l1l2
· · ·Ψnk−1

lk−2l
|n1n2 · · ·nk−1〉 (4.100)

|R〉 =
∑

nk+1···nL−1nL

Ψnk+1 · · ·ΨnL−1ΨnL |nk+1 · · ·nL−1nL〉 (4.101)

|r〉 =
∑

nk+1···nL−1nL
rk+1···rL−2rL−1

Ψnk+1
rrk+1

· · ·ΨnL−1
rL−2rL−1

ΨnL
rL−1
|nk+1 · · ·nL−1nL〉 (4.102)

P̂ =
∑

m1m2···mk−1
n1n2···nk−1

Om1n1Om2n2 · · ·Omk−1nk−1 |m1m2 · · ·mk−1〉 〈n1n2 · · ·nk−1|

(4.103)
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P̂α =
∑

m1m2···mk−1
n1n2···nk−1
α1α2···αk−2

Om1n1
α1

Om2n2
α1α2
· · ·Omk−1nk−1

αk−2α
|m1m2 · · ·mk−1〉 〈n1n2 · · ·nk−1| (4.104)

Q̂ =
∑

mk+1···mL−1mL
nk+1···nL−1nL

Omk+1nk+1 · · ·OmL−1nL−1OmLnL |mk+1 · · ·mL−1mL〉

× 〈nk+1 · · ·nL−1nL|
(4.105)

Q̂α′ =
∑

mk+1···mL−1mL
nk+1···nL−1nL
αk+1···αL−2αL−1

O
mk+1nk+1

α′αk+1
· · ·OmL−1nL−1

αL−2αL−1
OmLnL
αL−1

|mk+1 · · ·mL−1mL〉

× 〈nk+1 · · ·nL−1nL|

(4.106)

(|l〉 ∈ |L〉, |r〉 ∈ |R〉, P̂α ∈ P̂ , Q̂α′ ∈ Q̂). In the last equations, we changed from
bold type matrix notation to index notation, for instance

Ψn −→ Ψn
l′l (4.107)

Omn −→ Omn
βα . (4.108)

Eq. (4.94) can thus be transformed into an effective eigenvalue equation for the site
k. This is achieved by projecting Eq. (4.94) onto the set of states 〈L′mkR′|

〈L′mkR′|Ô|ψ〉 = 〈L′mkR′|ψ〉 (4.109)

〈L′|P̂ |L〉 〈mk|Ôk|Ψk〉 〈R′|Q̂|R〉 = ω 〈L′|L〉 〈mk|Ψk〉 〈R′|R〉 (4.110)

PL 〈mk|Ôk|Ψk〉QR = ωSL 〈mk|Ψk〉SR . (4.111)

All the expressions in the last equation are tensorial quantities. But it is not imme-
diately obvious how the terms have to be contracted. Fig. 4.1 and Fig. 4.2 make
clear how the tensors above are to be contracted in a pictured way. It also becomes
clear when we change to index notation∑

nklrαα′

PLl′αlO
mknk
αα′ Ψnk

lr QRr′α′r = ω
∑
lr

SLl′lΨ
mk
lr SRr′r (4.112)∑

nklrαα′

〈l′|P̂α|l〉Omknk
αα′ Ψnk

lr 〈r
′|Q̂α′|r〉 = ω

∑
lr

〈l′|l〉 〈r′|r〉Ψmk
lr (4.113)∑

nklr

Omknkl′r′,lrΨnk
lr = ω

∑
lr

Sl′r′,lrΨmk
lr . (4.114)

The last equation turns out to be quite similar to a generalized eigenvalue equation
of the form

A~v = ωB~v . (4.115)

It can be transformed to a standard eigenvalue problem by normalizing the MPS
state as previously shown by a QR decomposition. Then, we get

Sl′r′,lr = 〈l′|l〉 〈r′|r〉 (4.116)

= δl′l δr′r (4.117)

= 1l′r′,lr . (4.118)
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In this way, we obtain ∑
nklr

Omknkl′r′,lrΨnk
lr = ωΨmk

l′r′ (4.119)

or reshaped into matrices and vectors

Ok
~Ψk = ω~Ψk . (4.120)

It was shown here how MPSs and MPOs make it possible to break complicated
many-body eigenvalue problems down to a set of effective one-body problems which
can be solved by diagonalization since the degrees of freedom have been reduced by
projection onto a smaller effective, renormalized basis set. This is crucial for the
DMRG algorithm as it will be pointed out later.
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4 Calculus of matrix product states and operators

Ôk

|Ψk〉

P̂ Q̂

|L〉 |R〉

〈L′| 〈R′|

(a) Left hand side of Eq. (4.111).

|Ψk〉

〈L′| 〈R′|

|L〉 |R〉

(b) Right hand side of Eq. (4.111).

Figure 4.1: Visualization of the contraction scheme in Eq. (4.111). Vertical lines
refer to the contraction over the local single-particle basis states |n〉.
The thick vertical lines are supposed to illustrate that all the single-
particle states up to the site k have to be contracted. Horizontal lines
denote the indices of the operator and state matrices in the MPO and
MPS, respectively. The blue and red rectangles indicate that all the
operator and state matrices have been multiplied out up to the site k to
form new effective block operators and states. The open spot where the
horizontal and the vertical lines are not connected to anything points
out that the resulting quantity is a tensor of rank three.
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4.3 Application of matrix product operators to matrix product states

Ôk

|Ψk〉

PL QR

(a) Left hand side of Eq. (4.111).

|Ψk〉

SL SR

(b) Right hand side of Eq. (4.111).

Figure 4.2: Visualization of the contraction scheme in Eq. (4.111). Vertical lines
refer to the contraction over the local single-particle basis states |n〉.
Horizontal lines denote the indices of the operator and state matrices
in the MPO and MPS, respectively. The large blue and red rectangles
indicate that all the operator and state matrices have been multiplied
out up to the site k and all the single-particle basis states have been
contracted. The open spot where the horizontal and the vertical lines
are open indicates that the resulting quantity is a tensor of rank three.
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5 Matrix product operator
representations of the
quantum-chemical Hamiltonian

While the previous chapters have been mainly about the background known from
literature, the following chapter shows the first main research part of this thesis.
The quantum-chemical Hamiltonian is presented and expressed in various sets of
orbitals. Its matrix product operator representation is discussed with respect to
good computational scaling. For this purpose, the right choice of single-particle
basis states is vital. The problem of finding a suitable matrix product operator
representation is due to the repulsive long-range nature of the electron-electron
interaction which is an intrinsic problem of correlation methods. Moreover, the
scaling of the MPO-representation of the electron-electron interaction with “lattice”
size is discussed. All that can also be found in Snajberk and Ochsenfeld [2017a,b]
(see the list of publications) in a compact form.

5.1 The choice of basis

It is a common fact that the proper choice of basis states is crucial to describe the
correct physics and for the efficient simulation of quantum-many-electron systems. It
is often useful to have a basis which diagonalizes at least a part of the many-electron
problem but this is hard to find in practice. In quantum-chemical simulations, one
mostly relies on orbitals as a starting point which are obtained during a Hartree-
Fock or mean-field calculation |ϕi〉. These orbitals can also be expanded in a set
of basis states, which leads to the so-called linear combination of atomic orbitals
(LCAO)

|ϕi〉 =
∑
ν

cνi |χν〉 . (5.1)

These states are termed “atomic” because the |χν〉 are states which are considered
to be centered around an atom like the eigenstates of a single hydrogen atom in the
description of molecular hydrogen. Taking atomic orbitals as basis states has led to
atomic-orbital-based methods (see, e.g., Kussmann et al. [2013] for a recent review).
These orbitals are typically superpositions of Gaussian functions. In physics, the
most fundamental basis types are the position or real space and momentum space,
i.e., one tries to describe quantum-mechanical processes on a discrete real-space or
momentum-space grid. Discrete states in real and momentum space form a complete
set of basis states themselves.

In the following, it is demonstrated how quantum-chemical Hamiltonians of an
atom or a molecule formulated in second quantization look like for different ba-
sis representations and which of these representations is the most suitable for the
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5 Matrix product operator representations of the quantum-chemical Hamiltonian

construction of a matrix product operator form of the Hamiltonian.

5.2 The quantum-chemical Hamiltonian in different
basis types

The stationary Schrödinger equation (in atomic units) of a quantum-chemical system
normally consists of three parts: the kinetic and interaction potential energy of the
involved nuclei and electrons. Additionally, there is an interaction potential between
the nuclei and the electrons(∑

A

− 1

2M
∆RA

+
1

2

∑
A 6=A′

ZAZA′

|RA −RA′|
+
∑
i

−1

2
∆xi +

1

2

∑
i 6=i′

1

|xi − xi′|

+
∑
iA

−ZA
|xi −RA|

)
ψ(x1,x2, . . . ;R1,R2, . . .) = Eψ(x1,x2, . . . ;R1,R2, . . .) .

(5.2)

ZA and RA represent the charges and positions of the nuclei whereas xi are the
space coordinates of the electrons. E is the total nuclear and electronic energy.
ψ(x1,x2, . . . ;R1,R2, . . .) denotes the wave function of the system. Therefore, the
quantum-chemical Hamiltonian can in general be written as

Ĥ = Ĥnuc + Ĥe + Ĥnuc-e . (5.3)

This problem is hardly solvable, but due to the inertia of the atomic nuclei origi-
nating from their high mass ratio compared to the electron mass, the atomic nuclei
in the above Schrödinger equation can be treated semi-classically as point-charges
whose movement has been frozen (Born-Oppenheimer approximation [Born and Op-
penheimer, 1927]). This results in a set of purely electronic Schrödinger equations
for every position of the nuclei {R}(∑

i

−1

2
∆xi +

∑
iA

−ZA
|xi −RA|

+
1

2

∑
i 6=i′

1

|xi − xi′ |

)
ψ{R}(x1,x2, . . .)

= Eψ{R}(x1,x2, . . .) .

(5.4)

The nucleus-nucleus interaction energy term has been dropped in the upper equation
because it is just a constant which can simply be added to the total electronic energy
E. The second quantization formulation of the Hamiltonian of Eq. (5.4) reads

Ĥ =
∑
σ

∫
d3x ψ̂†σ(x)

−1

2
∆ψ̂σ(x) +

∑
σ

∫
d3x

∑
A

−ZA
|x−RA|

ψ̂†σ(x)ψ̂σ(x)

+
1

2

∑
σσ′

∫
d3x d3x′

1

|x− x′|
ψ̂†σ(x)ψ̂†σ′(x

′)ψ̂σ′(x
′)ψ̂σ(x) ,

(5.5)

38



5.2 The quantum-chemical Hamiltonian in different basis types

where σ and σ′ denote the z-component of the electron-spin. Here, the continuous
real space forms a complete orthonormal basis

1̂ =

∫
d3x |x〉 〈x| (5.6)

〈x|x′〉 = δ(x− x′) . (5.7)

In the next subsections, different basis spaces which may be appropriate for the
MPO-construction of the above Hamiltonian are presented.

5.2.1 Hartree-Fock orbitals

The probably most common basis in the field of quantum chemistry is spanned
by the Hartree-Fock orbitals. So, assume that one has performed a mean-field or
Hartree-Fock calculation which yields a set of states |ϕi〉 with the properties

1̂ =
∑
i

|ϕi〉 〈ϕi| (5.8)

〈ϕi|ϕj〉 = δij . (5.9)

These states are the eigenstates of the Fock operator—an effective one-particle
Hamilton operator. The Fock operator is an operator obtained by extremizing the
energy expectation value with respect to the wave function requiring that the wave
function is a Slater determinant (cf. the textbook by Szabo and Ostlund [1996]).
Eq. (5.5) can be transformed into the Hartree-Fock-orbital basis by the operator
transformation

ψ̂†σ(x) =
∑
i

ϕ∗i (x)ĉ†iσ (5.10)

ψ̂σ(x) =
∑
i

ϕi(x)ĉiσ . (5.11)

Since the Hartree-Fock orbitals are orthonormal and complete, the new creation and
annihilation operators ĉ†iσ and ĉiσ fulfill the fundamental anti-commutation relations
for electrons. After inserting this transformation into the Hamiltonian, one arrives
at the equation

Ĥ =
∑
ij,σ

∫
d3xϕ∗i (x)

−1

2
∆ϕj(x)ĉ†iσ ĉjσ

+
∑
ij,σ

∫
d3xϕ∗i (x)

∑
A

−ZA
|x−RA|

ϕj(x)ĉ†iσ ĉjσ

+
1

2

∑
ijkl,σσ′

∫
d3x d3x′

ϕ∗i (x)ϕ∗j(x
′)ϕk(x)ϕl(x

′)

|x− x′|
ĉ†iσ ĉ

†
jσ′ ĉlσ′ ĉkσ

(5.12)

=
∑
ij,σ

hij ĉ
†
iσ ĉjσ +

1

2

∑
ijkl,σσ′

uijklĉ
†
iσ ĉ
†
jσ′ ĉlσ′ ĉkσ , (5.13)
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5 Matrix product operator representations of the quantum-chemical Hamiltonian

with

hij =

∫
d3xϕ∗i (x)

(
−1

2
∆ +

∑
A

−ZA
|x−RA|

)
ϕj(x) (5.14)

uijkl =

∫
d3x d3x′

ϕ∗i (x)ϕ∗j(x
′)ϕk(x)ϕl(x

′)

|x− x′|
. (5.15)

The first sum in Eq. (5.13) can now easily be brought into MPO-shape as shown in
chapter 4. We need to decouple the states i and j—or, in a quantum lattice model
picture, sites—by a matrix factorization such as QR

hij =
∑
a

qiaraj . (5.16)

With that, one can write the first sum as∑
ij,σ

hij ĉ
†
iσ ĉjσ =

∑
iσ

hiin̂iσ +
∑
a,i<j,σ

(
qiaraj ĉ

†
iσ ĉjσ + h. c.

)
(5.17)

=
(
1̂1 h11η̂1

)
�
(
�1̂2 h22η̂2

0 1̂2

)
� · · · �

(
hLLη̂L

1̂L

)

+
∑
aσ

(
1̂1 q1aζ̂

L†
1σ 0

)
�

1̂2 q2aζ̂
L†
2σ 0

0 f̂2 ra2ζ̂
L
2σ

0 1̂2

� · · · �
 0

raLζ̂
L
Lσ

1̂L


+ h. c.

(5.18)

= ĥ1 � ĥ2 � · · · � ĥL (5.19)

= ĥMPO , (5.20)

where it was assumed to have in total L orbitals. “h. c.” denotes the Hermitian-
conjugated part of the sum. The size of the operator matrices of ĥMPO is 12L + 2
and thus scales linearly with the number of basis orbitals taken into account. This
is never a problem concerning the computational cost.

The MPO-construction of the electron-electron interaction is more tricky and the
central problem of quantum chemistry. That is why the discussion of its construction
is shifted to the next subsection.

5.2.2 Atomic orbitals

We can basically change to any orbital basis we like. In quantum chemistry, one
usually expresses the Hartree-Fock orbitals (usually denoted as molecular orbitals,
MOs) in terms of atomic orbitals. These are atom-centered states which need not
be either normalized or orthogonal. The completeness and orthogonality relations
of a non-orthogonal basis set |χµ〉 reads

1̂ =
∑
µµ′

S−1µµ′ |χµ〉 〈χµ′ | (5.21)

〈χµ|χµ′〉 = Sµµ′ , (5.22)
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5.2 The quantum-chemical Hamiltonian in different basis types

where Sµµ′ denotes the overlap of the basis states

Sµµ′ =

∫
d3xχ∗µ(x)χµ′(x) . (5.23)

One can thus expand the Hartree-Fock orbitals in these atomic orbitals using the
relations above

|ϕi〉 =
∑
µµ′

S−1µµ′ 〈χµ′ |ϕi〉 |χµ〉 (5.24)

or, speaking in second quantization language, the creation and annihilation operators
of the Hartree-Fock states

ĉ†iσ =
∑
µµ′

S−1µµ′ 〈χµ′ |ϕi〉 ĉ
†
µσ (5.25)

ĉiσ =
∑
µµ′

S−1
∗

µµ′ 〈ϕi|χµ′〉 ĉµσ . (5.26)

The anti-commutation relations in a non-orthogonal basis then are

{ĉµσ, ĉµ′σ′} = 0 (5.27)

{ĉ†µσ, ĉ
†
µ′σ′} = 0 (5.28)

{ĉµσ, ĉ†µ′σ′} = Sµµ′δσσ′ . (5.29)

One then obtains for the quantum-chemical electronic Hamiltonian in an atomic
orbital (non-orthogonal) basis

Ĥ =
∑
ij,σ

hij ĉ
†
iσ ĉjσ +

1

2

∑
ijkl,σσ′

uijklĉ
†
iσ ĉ
†
jσ′ ĉlσ′ ĉkσ (5.30)

=
∑

ij,σ,µµ′,νν′

S−1µµ′ 〈χµ′|ϕi〉 〈ϕi|ĥ|ϕj〉S
−1∗
νν′ 〈ϕj|χν′〉 ĉ

†
µσ ĉνσ

+
1

2

∑
ijkl,σσ′

µµ′,νν′,κκ′,λλ′

S−1µµ′S
−1
νν′ 〈χµ′ |ϕi〉 〈χν′|ϕj〉 〈ϕi; ϕj|Û |ϕk; ϕl〉S

−1∗
κκ′ S

−1∗
λλ′

× 〈ϕk|χκ′〉 〈ϕl|χλ′〉 ĉ†µσ ĉ
†
νσ′ ĉλσ′ ĉκσ

(5.31)

=
∑

µµ′,νν′,σ

S−1µµ′ 〈χµ′|ĥ|χν′〉S
−1
ν′ν ĉ

†
µσ ĉνσ

+
1

2

∑
µµ′,νν′,κκ′,λλ′

σσ′

S−1µµ′S
−1
νν′ 〈χµ′ ; χν′|Û |χκ′ ; χλ′〉S

−1
κ′κS

−1
λ′,λĉ

†
µσ ĉ
†
νσ′ ĉλσ′ ĉκσ

(5.32)

=
∑
µν,σ

h̃µν ĉ
†
µσ ĉνσ +

1

2

∑
µνκλ,σσ′

ũµνκλĉ
†
µσ ĉ
†
νσ′ ĉλσ′ ĉκσ . (5.33)

The elements of the one-electron term h̃µν and of the electron-electron interaction
ũµνκλ have been defined as follows

h̃µν =
∑
µ′ν′

S−1µµ′ 〈χµ′ |ĥ|χν′〉S
−1
ν′ν (5.34)
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=
∑
µ′ν′

S−1µµ′

(∫
d3xχ∗µ′(x)

(
−1

2
∆ +

∑
A

−ZA
|x−RA|

)
χν′(x)

)
S−1ν′ν (5.35)

ũµνκλ =
∑

µ′ν′κ′λ′

S−1µµ′S
−1
νν′ 〈χµ′ ;χν′ |Û |χκ′ ;χλ′〉S

−1
κ′κS

−1
λ′λ (5.36)

=
∑

µ′ν′κ′λ′

S−1µµ′S
−1
νν′

(∫
d3x d3x′

χ∗µ′(x)χ∗ν′(x
′)χκ′(x)χλ′(x

′)

|x− x′|

)
S−1κ′κS

−1
λ′λ . (5.37)

Now, let us turn to the construction of the matrix product operator of the two-
electron part Û .

First of all, it is convenient to group operators with the same spin-variable

Û =
1

2

∑
µνκλ,σσ′

ũµνκλĉ
†
µσ ĉ
†
νσ′ ĉλσ′ ĉκσ (5.38)

=
1

2

∑
µνκλ,σσ′

ũµνκλ

(
ĉ†µσ ĉκσ ĉ

†
νσ′ ĉλσ′ − δσσ′Sκν ĉ

†
µσ ĉλσ′

)
(5.39)

=
1

2

∑
µνκλ,σσ′

ũµκνλĉ
†
µσ ĉκσ ĉ

†
νσ′ ĉλσ′ −

1

2

∑
µνκλ,σ

ũµκνλSκν ĉ
†
µσ ĉλσ . (5.40)

It can immediately be seen that the 4-rank tensorial quantity ũµκνλ is the major
problem in the MPO-construction process. Again, one must find a clever way to
decouple the orbitals µ, ν, κ and λ. This can be achieved by a matrix decomposition
technique as for the one-electron term∑

µνκλ

ũµκλν =
∑
αµνκλ

qµκ,αrα,νλ . (5.41)

Thus, the electron-electron part can be rewritten as sum of products of one-body
operators

Û =
1

2

∑
µνκλ,σσ′

ũµκνλĉ
†
µσ ĉκσ ĉ

†
νσ′ ĉλσ′ −

1

2

∑
µνκλ,σ

ũµκνλSκν ĉ
†
µσ ĉλσ (5.42)

=
1

2

∑
α

(∑
µκ,σ

qµκ,αĉ
†
µσ ĉκσ

)(∑
νλ,σ′

rα,νλĉ
†
νσ′ ĉλσ′

)
− 1

2

∑
α

∑
µνκλ,σ

qµκ,αSκνrα,νλĉ
†
µσ ĉλσ

(5.43)

=
1

2

∑
α

(∑
µκ,σ

qµκ,αĉ
†
µσ ĉκσ

)(∑
νλ,σ′

rα,νλĉ
†
νσ′ ĉλσ′

)
− 1

2

∑
α

(∑
µλ,σ

u
(α)
µλ ĉ

†
µσ ĉλσ

)
.

(5.44)

All the one-body operators can be brought into MPO-form as already shown and
the MPO-representation of Û can be written as

Û =
∑
α

(
q̂
(α)
MPO r̂

(α)
MPO − û

(α)
MPO

)
(5.45)

=
∑
α

Û
(α)
MPO . (5.46)
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It must be mentioned here that it is convenient to work with orthonormalized
atomic orbitals instead of non-orthogonalized ones to retrieve the canonical anti-
commutation relations. This can for example be done by a Cholesky decomposition
[Gentle, 2012] of the overlap matrix

S = LL† , (5.47)

where L is a lower triangular matrix. The inverse of the Cholesky matrix L serves
as transformation from a non-orthogonal to an orthogonal and normalized atomic
orbital basis

â†µσ =
∑
µ′

L−1
∗

µµ′ ĉ
†
µ′σ (5.48)

âµσ =
∑
µ′

L−1µµ′ ĉµ′σ (5.49)

Sµµ′ −→ δµµ′ , (5.50)

where the transformed creation and annihilation operators fulfill the canonical anti-
commutation relations

{âµσ, âνσ′} = 0 (5.51)

{â†µσ, â
†
νσ′} = 0 (5.52)

{âµσ, â†νσ′} = δσσ′δµν . (5.53)

The Hamiltonian in the now orthonormalized atomic orbital basis reads

Ĥ =
∑
µν,σ

hON
µν â

†
µσâνσ +

1

2

∑
µνκλ,σσ′

uON
µνκλâ

†
µσâ
†
νσ′ âλσ′ âκσ (5.54)

with

hON
µν =

∑
µ′ν′

L−1µµ′h̃µ′ν′L
†−1

ν′ν (5.55)

uON
µνκλ =

∑
µ′ν′κ′λ′

L−1µµ′L
−1
νν′ũµ′ν′κ′λ′L

†−1

κ′κL
†−1

λ′λ . (5.56)

The “ON” stands for “orthonormalized”.
The conversion of Û to a MPO is exact, so it requires no approximation. But, it

unfortunately involves the product of two MPOs. Suppose the size of every one-body
MPO scales with the number of orbitals L as 12L+2, then the size of the product of
two such one-body MPOs scales as (12L+ 2)2 = 144L2 + 48L+ 4. Additionally, one
has to sum the resulting MPOs L2 times. Therefore, a scaling of O(L4) for the size of
the two-electron operator as MPO results. The advantage of using orthonormalized
atomic orbitals compared to HF-orbitals is that Eq. (5.54) can directly be treated
with the density matrix renormalization group without a pre-HF calculation. The
only input needed is the one- and two-electron integrals hON

µν and uON
µνκλ.
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5.2.3 Discrete momentum space

Another basis widely used in condensed matter physics is the momentum space
representation. Here, the basis states or orbitals are plane wave states which can be
seen as performing a Fourier transform of the field operators

ψ̂†σ(x) =
1√
V

∑
k

eikxĉ†kσ (5.57)

ψ̂σ(x) =
1√
V

∑
k

e−ikxĉkσ , (5.58)

where V is the system volume and k are discrete or quantized momentum vectors
because its components are taken to be integer multiples of 2π

`

kx,y,z =
2π

`
nx,y,z , nx,y,z ∈ Z . (5.59)

` is the volume along one coordinate axis or the edge length of a box the system is
embedded in (V = `3). 1√

V is the normalization factor to ensure that the momen-
tum space creation and annihilation operators fulfill the canonical anti-commutation
relations

{ĉkσ, ĉ†k′σ′} =
1

V

∫
d3x d3x′ eikxe−ik

′x′{ψ̂σ(x), ψ̂†σ′(x
′)} (5.60)

=
1

V

∫
d3x d3x′ eikxe−ik

′x′δ(x− x′) (5.61)

=
1

V

∫
d3x ei(k−k

′)x (5.62)

= δkk′δσσ′ . (5.63)

Inserting the momentum space basis, one obtains for the Hamiltonian

Ĥ =
∑

k1k2,σ

hk1k2 ĉ
†
k1σ
ĉk2σ +

1

2

∑
k1k2k3k4,σσ′

uk1k2k3k4 ĉ
†
k1σ
ĉ†k2σ′

ĉk4σ′ ĉk3σ . (5.64)

At first sight, the overall form of Ĥ is the same as for every single-particle basis one
can think of. But, let us take a closer look at the one- and two-electron integral
expressions:

hk1k2 =

∫
d3x

V

(
eik1x

−1

2
∆e−ik2x +

∑
A

−ZA
|x−RA|

ei(k1−k2)x

)
(5.65)

=
k2
2

2
δk1k2 +

∑
A

−4πZAe
iRA(k1−k2)

V(k1 − k2)2
(5.66)

uk1k2k3k4 =

∫
d3x d3x′

V2

ei(k1−k3)x ei(k2−k4)x′

|x− x′|
(5.67)

=

∫
d3x d3x′

V2

ei(k1−k3)x ei(k2−k4)x′

|x|
ei(k1−k3)x′ (5.68)
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=

∫
d3x

V
ei(k1−k3)x

|x|
δk2−k4,k3−k1 (5.69)

=
4π

V(k2 − k4)2
δk2−k4,k3−k1 . (5.70)

The advantage of the momentum space representation is that the Hamiltonian in
this basis can be viewed as describing a quantum lattice model. Such a problem
can be tackled directly by a numerical diagonalization alternative like the density
matrix renormalization group method without having to carry out a preliminary
mean-field calculation. A further advantage of turning to momentum space is that
the electrostatic Coulomb potential is not as long-ranged as in real space. A major
drawback, however, is the MPO-construction of the electron-electron term. All four
momentum states k1, k2, k3 and k4 are coupled because of momentum conservation
reflected by the Kronecker-δ symbol δk2−k4,k3−k1 . This leads to the same size scaling
of O(L4) for the MPO matrices of the electron-electron operator.

5.2.4 Discrete position space

The next prominent basis in physics is real or position space. The quantum-chemical
Hamiltonian in continuous real space formulation reads

Ĥ =
∑
σ

∫
d3x ψ̂†σ(x)

−1

2
∆ψ̂σ(x) +

∑
σ

∫
d3x

∑
A

−ZA
|x−RA|

ρ̂σ(x)

+
1

2

∑
σσ′

∫
d3x d3x′

ψ̂†σ(x)ψ̂†σ′(x
′)ψ̂σ′(x

′)ψ̂σ(x)

|x− x′|

(5.71)

=
∑
σ

∫
d3x ψ̂†σ(x)

−1

2
∆ψ̂σ(x) +

∑
σ

∫
d3x

∑
A

−ZA
|x−RA|

ρ̂σ(x)

+
1

2

∑
σσ′

∫
d3x d3x′

1

|x− x′|

(
ρ̂σ(x)ρ̂σ′(x

′)− δσσ′δ(x− x′)ψ̂†σ(x)ψ̂σ′(x
′)
)
.

(5.72)

Such a continuous model is numerically hard to treat. Therefore, one often intro-
duces a grid and divides the continuum into a set of discrete lattice points with
lattice spacing δ (see Fig. 5.1). Always assuming infinitely many lattice sites and a
vanishing lattice spacing δ, one can rewrite the Hamiltonian of the continuous model
in terms of discrete lattice sites producing a quantum-mechanical lattice model. In
the following, it is shown how the mapping from the three-dimensional continuum to
a three-dimensional lattice is achieved for the kinetic, external and electron-electron
energy terms as it has been done for a one-dimensional continuous real-space system
by Stoudenmire et al. [2012].

Kinetic energy

To discretize the kinetic energy part, one must discretize the Laplacian ∆ = ∂2

∂x2
+

∂2

∂y2
+ ∂2

∂z2
. In the limit δ −→ 0, one can substitute the derivative of a function—or
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5 Matrix product operator representations of the quantum-chemical Hamiltonian

here of the field annihilation operator—by its differential quotient

∂

∂x
ψ̂(x, y, z) =

ψ̂(x+ δ
2
, y, z)− ψ̂(x− δ

2
, y, z)

δ
(5.73)

∂2

∂x2
ψ̂(x, y, z) =

ψ̂(x+ δ, y, z) + ψ̂(x− δ, y, z)− 2ψ̂(x, y, z)

δ2
. (5.74)

The same holds for the derivatives with respect to all the other coordinates. Thus,
the discretized Laplacian reads

∆ψ̂(x, y, z) =
1

δ2

(
ψ̂(x+ δ, y, z) + ψ̂(x− δ, y, z) + ψ̂(x, y + δ, z) + ψ̂(x, y − δ, z)

+ ψ̂(x, y, z + δ) + ψ̂(x, y, z − δ)− 6ψ̂(x, y, z)
)
.

(5.75)

Now, one can change from integration to summation using the fact that the electron
density is nothing but electron number per unit volume (d3x = δ3), which leads to
the new lattice creation and annihilation operators

ρ̂σ(x) =
n̂δi,σ
δ3

(5.76)

ψ̂†σ(x) =
ĉ†δi,σ√
δ3

(5.77)

ψ̂σ(x) =
ĉδi,σ√
δ3
. (5.78)

The position on the lattice is measured in integer multiples of the lattice spacing
x = δi (i ∈ Z3). The δ in the subscript of the lattice occupation number, cre-
ation and annihilation operators will be dropped in the following. The creation and
annihilation operators on the lattice obey the anti-commutation relations

{ĉ†iσ, ĉ
†
jσ′} = 0 (5.79)

{ĉiσ, ĉjσ′} = 0 (5.80)

{ĉiσ, ĉ†jσ′} = δσσ′δij . (5.81)

The discrete version of the kinetic energy operator then reads

T̂ =
∑
σ

∫
d3x ψ̂†σ(x)

−1

2
∆ψ̂σ(x) (5.82)

=
∑
iσ

−1

2δ2

(
ĉ†ixiyiz ,σ ĉix+1iyiz ,σ + ĉ†ixiyiz ,σ ĉixiy+1iz ,σ + ĉ†ixiyiz ,σ ĉixiyiz+1,σ + h. c.

)
+
∑
iσ

3

δ2
n̂ixiyiz ,σ

(5.83)

or in short
T̂ =

∑
ijσ

tij ĉ
†
iσ ĉjσ , (5.84)

46



5.2 The quantum-chemical Hamiltonian in different basis types

`

(a)

`

δ

(b)

Figure 5.1: Schematic visualization of the position space discretization. (a) Continu-
ous position space with edge length `. (b) Discrete lattice representation
of the continuous position space with edge length `. The smallest char-
acteristic length scale is the lattice spacing δ. In the limit of infinitely
many lattice sites and δ −→ 0, (a) and (b) are assumed to be equivalent.

where

tij =

{
−1
2δ2
δ|i−j|,1 , i 6= j

3
δ2
, i = j .

(5.85)

The off-diagonal elements ti 6=j describe the hopping of an electron on a lattice site
with lattice vector i to sites with positions j within a sphere of radius 1.

External potential

The external potential is quite simple to discretize. With all the definitions above,
it reads

V̂ =
∑
σ

∫
d3x

∑
A

−ZA
|x−RA|

ρ̂σ(x) (5.86)

=
∑
iσ

vin̂iσ , (5.87)

where it was defined

vi =
∑
A

−ZA
δ|i− iA|

. (5.88)

If it happens that an electron on the lattice hits a nucleus at position RA = δiA,
one has to account for the divergent potential by setting its value to

viA =
∑
A

−ZA
δ

. (5.89)
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Electron-electron interaction

The electron-electron interaction on a real-space grid is

Û =
1

2

∑
σσ′

∫
d3x d3x′

1

|x− x′|

(
ρ̂σ(x)ρ̂σ′(x

′)− δσσ′δ(x− x′)ψ̂†σ(x)ψ̂σ′(x
′)
)

(5.90)

=
1

2

∑
iσjσ′

uij

(
n̂iσn̂jσ′ − δσσ′δij ĉ†iσ ĉjσ′

)
, (5.91)

where

uij =

{
1

δ|i−j| , i 6= j
1
δ
, i = j .

(5.92)

Eq. (5.91) can be simplified further

Û =
1

2

∑
iσjσ′

uijn̂iσn̂jσ′ −
1

2

∑
iσ

uiin̂iσ (5.93)

=
1

2

∑
iσ

uiin̂iσ +
1

2

∑
i 6=j,σ

uijn̂iσn̂jσ +
1

2

∑
i,σ 6=σ′

uiin̂iσn̂iσ′ +
1

2

∑
i 6=j,σ 6=σ′

uijn̂iσn̂jσ′

− 1

2

∑
iσ

uiin̂iσ

(5.94)

=
1

2

∑
i 6=j,σσ′

uijn̂iσn̂jσ′ +
∑
i

uiin̂i↑n̂i↓ . (5.95)

The operator in the second sum of the last equation n̂i↑n̂i↓ measures the double-
occupancy of a lattice site. Hence, its matrix action on an orbital associated with
a particular lattice site, which is needed for the MPO-construction of the electron-
electron interaction, is

η↑η↓ =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 (5.96)

for all sites.

The total quantum-chemical Hamiltonian

Putting everything together, one obtains the total electronic quantum-chemical
Hamiltonian

Ĥ =
∑
iσ

tiin̂iσ+
∑
i 6=j,σ

tij ĉ
†
iσ ĉjσ+

∑
iσ

vin̂iσ+
∑
i

uiin̂i↑n̂i↓+
1

2

∑
i6=j,σσ′

uijn̂iσn̂jσ′ . (5.97)

To construct the MPO-representation of this Hamiltonian, the graph making up the
lattice in Fig. 5.1 (b) has to be labeled

1 2 3
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5.2 The quantum-chemical Hamiltonian in different basis types

so that the lattice is mathematically represented by an ordered set L = {i1; i2; i3; . . .}
containing all lattice vectors. By labeling the lattice vectors, the Hamiltonian be-
comes

Ĥ =
∑
kσ

tkkn̂kσ +
∑
k<l,σ

(
tklĉ

†
kσ ĉlσ + h. c.

)
+
∑
kσ

vkn̂kσ +
∑
k

ukkn̂k↑n̂k↓

+
∑

k<l,σσ′

ukln̂kσn̂lσ′
(5.98)

with

tkl =

{
−1
2δ2
δ|ik−il|,1 , k 6= l

3
δ2
, k = l

(5.99)

vk =

{∑
A

−ZA
δ|ik−iA|

, ik 6= iA∑
A
−ZA
δ
, ik = iA

(5.100)

ukl =

{
1

δ|ik−il|
, k 6= l

1
δ
, k = l .

(5.101)

All the one-body operators can immediately be constructed as MPOs including
the kinetic energy, external potential and the on-site Coulomb interaction of two
electrons resulting from Pauli’s principle. What is more, the two-body operator
of the pure electrostatic electron-electron interaction can readily be brought into
MPO-form. Making use of a matrix factorization technique and summing up spin,
one can write∑
k<l

ukln̂kn̂l =
∑
s,k<l

qksrsln̂kn̂l (5.102)

=
∑
s

(
1̂1 q1sη̂1 0

)
�

1̂2 q2sη̂2 0

0 1̂2 rs2η̂2
0 0 1̂2

� · · · �
 0
rsLη̂L

1̂L

 . (5.103)

Here, it was again assumed that the lattice consists of a finite but large number of
lattice sites L = {i1; i2; · · · ; iL}. It can directly be seen in the last equation that
the size scaling of the operator matrices in the discrete position space formulation is
much better than in any other basis. The size of an operator matrix scales linearly
with the total number of lattice sites L compared to O(L4). Unfortunately, the
amount of lattice sites needed for obtaining sufficiently accurate results must be
huge. That is why it is a priori not clear which of the presented basis types is the
best for DMRG calculations in terms of MPOs and MPSs.

It has been shown so far that the construction of the quantum-chemical electronic
Hamiltonian as MPO formulated on a position space lattice scales linearly with the
total number of lattice sites L taken into account, that means each of the L operator
matrices forming the Hamiltonian MPO has a matrix dimension or size which grows
linearly with L. Although discrete position space seems to be a promising starting
point, there are complications which will be pointed out in the following.

It should be noted that, in practical applications, one can only treat systems
embedded in a finite volume V = `3 on a lattice of a finite number of sites limited
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5 Matrix product operator representations of the quantum-chemical Hamiltonian

1 2 3 4 5 6

t12

t16

Figure 5.2: This sketch shows how labeling the lattice sites results in a chain-like
picture and the nearest-neighbor hopping in the kinetic energy becomes
an effective long-range hopping (red lines). Here, it was assumed that the
actual lattice has 3× 3 sites. An electron on the square-lattice starting
on the first site in the bottom left corner of the lattice can hop by one
site to the right or upwards. That is the first and the second site are
coupled by the hopping element t12 and the first and the sixth site in this
sketch are coupled by t16 because the sites are separated by a distance
of 1 from the first one.

by the computer resources. That already sets the accuracy for all the calculations
because the exact quantum-chemical system in vacuum is theoretically obtained in
the limit of infinitely many lattice sites L −→ ∞ and infinitesimally small lattice
spacing δ −→ 0. For good accuracy, one thus needs a large number of lattice
sites with a relatively small lattice spacing. This makes the construction of the
Hamiltonian more extensive. Consider for instance the kinetic energy term. Even
though electrons can just hop from one site to the next one, the labeling of the sites
and the resulting chain-like picture leads to an effective long-range hopping because
all the sites are coupled which are separated by a distance of 1 (see Fig. 5.2). The
kinetic energy matrix with elements tkl turns out to be sparse. But its large matrix
dimension is a problem since one must decompose the kinetic energy matrix into a
product of matrices to construct the MPO of the kinetic energy operator. Currently,
this can only be done approximately by a sparse matrix factorization like the sparse
singular value decomposition where one can only choose to get a certain number
of the largest or smallest singular values and corresponding left- and right-singular
vectors

tkl ≈
L′∑
s=1

aksλssbsl (L′ < L) . (5.104)

a and b denote the matrices of left- and right-singular vectors and λ is the matrix
containing the singular values

t ≈ aλb . (5.105)

So far, there seems to be no better solution to account for the effective long-range
hopping in the kinetic energy. In comparison to that, the external potential is not
a problem as its MPO has a constant size for every site which does not grow by
increasing the lattice size. The Coulomb interaction between electrons on differ-
ent sites is the most tedious part in constructing the MPO-representation of the
quantum-chemical Hamiltonian. Due to the long-range nature of the Coulomb po-
tential the matrix u with elements ukl is not even sparse. It is completely dense
making it hardly possible to build the matrix u for large lattice sizes and decompos-
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5.3 MPO-construction in the different basis types

ing it via a sparse matrix decomposition method. What is more, as it will become
clear from the DMRG algorithm in the next chapter and sections, one has to iterate
over all the lattice sites again and again until convergence of the energy is reached,
which can take quite some long time on a suitably large real-space lattice.

5.3 MPO-construction in the different basis types

It has been shown that, regarding the formal mathematical scaling, a discrete posi-
tion space formulation may be more favorable for quantum-chemical problems than
the other basis formulations since the MPO-construction of the Hamiltonian despite
the long-range behavior of the Coulomb potential has asymptotically linear scal-
ing with the number of lattice sites L with respect to its size per lattice site. The
advantage of a position space formulation is furthermore that quantum-chemical sys-
tems can be studied directly on a, quantum-chemically speaking, post-Hartree-Fock
level by variational renormalization methods like the density matrix renormalization
group (DMRG) method without having to perform an a priori mean-field calculation.
A further point is, having expressed the quantum-chemical system on a real-space
lattice once, all the entities which are calculated ranging from the electronic density
itself to correlation functions are defined on this lattice and can thus be visualized
pictorially.

Unfortunately, even though a discrete real-space representation of quantum chem-
istry seems to be a good choice for MPO-based simulations, the huge lattice sizes
are still a problem. The accuracy of calculations is directly connected to the number
of lattice sites L and the smallness of the lattice spacing δ. The exact solution of
the quantum-chemical problem is obtained in the limit L −→∞ and δ −→ 0.

From all the other basis spaces, the orthonormalized atomic orbital formulation is
also promising because it makes direct DMRG calculations (without Hartree-Fock)
possible as well, which is especially useful in situations where the Hartree-Fock
method is physically wrong and hard to converge. The asymptotic scaling of the
MPO-construction is O(L4), but the number of states or sites is much smaller than
in the discrete position space formulation. As it will be shown in the next chapter,
an advantage of atomic orbitals over all the other basis types is that these orbitals
are less entangled due to their local nature. This results in more efficient DMRG
calculations, in particular for systems with linear spatial topology and systems in
the regime between localized and delocalized electrons.

In the next chapter, the DMRG algorithm for quantum-chemical systems, which
has been implemented for this dissertation, is presented and practical simulations are
discussed both in the discrete position space and atomic orbital basis formulation.
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6 Electronic structure studies with
matrix product operators and
states

The following chapter is devoted to the main research part of this dissertation. It is
presented how electronic structure calculations for many-electron systems ranging
from atoms to small molecules can be achieved with a state-of-the-art variational
renormalization method like the density matrix renormalization group method. A
pilot reference implementation of the DMRG algorithm for the ground-state search
of quantum-chemical systems, which has been done in the programming language
Python 3 [Pilgrim, 2010] using the SciPy library [Jones et al., 2001] and has been
completely formulated in terms of matrix product operators and matrix product
states, is presented. Moreover, results for example simulations on specific systems
(e.g., He, H2, ionization energies of Be, H-chains, stretched C2H2, and small stretched
C-chains) are shown and discussed to explain the behavior of the implemented search
for ground-state energies and wave functions with the DMRG method due to the
chosen parameters in the discrete real-space and atomic orbital formulation as it
can also be found in Snajberk and Ochsenfeld [2017a] and Snajberk and Ochsenfeld
[2017b], respectively. A comparison of the convergence behavior of the DMRG
method in terms of molecular and atomic orbitals is presented and, at the end, a
small detour to molecules with three-dimensional extents using the example of cubic
hydrogen H8 is done. Overall, the presented DMRG implementation turns out to be
a direct correlation method which can directly (without pre-HF calculation) obtain
numerically exact results for quantum-chemical many-body problems, especially for
systems in the non-dynamical or static correlated regime where electrons are in
a critical state between being localized and delocalized, and where other post-HF
methods fail. For the above-mentioned test systems with linear topology, the atomic
orbital based DMRG approach performs better than the real-space lattice and HF-
orbital based approaches.

6.1 Ground-state search with the DMRG algorithm

6.1.1 Minimizing the Lagrangian

The density matrix renormalization group method belongs to the class of so-called
variational renormalization methods. Its basic equations can be derived in a varia-
tional manner as shown by Schollwöck [2011]. For this purpose, let us assume that
the Hamiltonian of the system to investigate has MPO-form and the many-body
wave function is in MPS-shape. Now, the expression for the normalized energy
expectation value is minimized with respect to the state matrices Ψ building the
matrix product state |ψ〉 under certain constraints. This results in the Langrangian
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6 Electronic structure studies with matrix product operators and states

function
L ({Ψ}, {Ψ∗}) = 〈ψ|Ĥ|ψ〉 − λ (〈ψ|ψ〉 − 1) , (6.1)

where λ is a Lagrangian multiplier for the constraint

〈ψ|ψ〉 − 1 = 0 (6.2)

making sure that the wave function |ψ〉 is normalized. The Lagrangian function
is minimized with respect to Ψm∗k (the derivative with respect to Ψmk yields an
analogous set of equations)

∂

∂Ψm∗k
L ({Ψ}, {Ψ∗}) = 0 (k = 1, 2, . . . , L) . (6.3)

The derivative with respect to Ψm∗k means the derivative with respect to all the
elements of Ψm∗k . For simplicity, it is assumed that all matrices in the MPS |ψ〉 and
in the MPO Ĥ have been contracted up to the site or single-particle state k, that is
the expectation value and the overlap become

〈ψ|Ĥ|ψ〉 =
∑

mknkll′αα′rr′

Ψ
m∗k
lr Plαl′H

mknk
αα′ Qrα′r′Ψ

nk
l′r′ (6.4)

〈ψ|ψ〉 =
∑

mkll′rr′

Ψ
m∗k
lr Slr,l′r′Ψ

mk
l′r′ . (6.5)

The minimization of L ({Ψ}, {Ψ∗}) with respect to all the matrix elements of one
state matrix, say Ψm∗k , then results in the following set of equations

0 =
∂

∂Ψ
m∗k
lr

L ({Ψ}, {Ψ∗}) =
∂

∂Ψ
m∗k
lr

( ∑
mknkll′αα′rr′

Ψ
m∗k
lr Plαl′H

mknk
αα′ Qrα′r′Ψ

nk
l′r′

− λ
∑

mkll′rr′

Ψ
m∗k
lr Slr,l′r′Ψ

mk
l′r′

) (6.6)

=
∑

nkl′r′αα′

Plαl′Hmknk
αα′ Qrα′r′Ψ

nk
l′r′ − λ

∑
l′r′

Slr,l′r′Ψmk
l′r′ (6.7)

=
∑
nkl′r′

H̃mknk
lr,l′r′ Ψ

nk
l′r′ − λ

∑
l′r′

Slr,l′r′Ψmk
l′r′ , (6.8)

or written as matrix vector equation

H̃k
~Ψk = λS~Ψk . (6.9)

The search for the ground state turns out to be the iterative solution of L generalized
eigenvalue problems. The Lagrangian multiplier λ here serves as the total ground-
state energy. By a transformation making all state matrices orthogonal and leaving
the energy and the total wave function unchanged

Ψ′
mk = X−1k−1Ψ

mkXk , (6.10)
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6.1 Ground-state search with the DMRG algorithm

Eq. (6.9) can be turned into an ordinary eigenvalue problem

H̃ ′k
~Ψ′k = λ~Ψ′k (6.11)

because S becomes the identity matrix. This is numerically much easier to handle.
The DMRG algorithm in terms of matrix product states and operators is based
on Eq. (6.11). This last equation demonstrates what the concept of basis renor-
malization implies. Instead of having to solve a problem in an exponentially large
basis space, the matrix product states and their operator analogues enable us just
to solve a set of polynomially large problems. If the lattice contains L sites and the
MPS-matrices are of the size M ×M , the size of the renormalized basis space is
truncated to a growth of the order O(M2L).

6.1.2 Implementational details on the single-site DMRG
algorithm

In the following, the so-called single-site DMRG algorithm implemented for this
dissertation to study quantum-chemical systems is presented. It is called one-site
DMRG because only one site matrix of the MPS wave function is optimized at a time.
The used programming language is Python 3 (www.python.org and for a good intro-
ductory book, see [Pilgrim, 2010]). For all the mathematical routines (e.g., matrix
multiplication, tensor manipulation, sparse matrices, sparse diagonalization etc.),
the NumPy and SciPy libraries are used (www.scipy.org [Jones et al., 2001]). It is
clear that Python 3 is not the most efficient programming language, but to test algo-
rithmic ideas in a pilot implementation in a fast and readable way, it is outstanding.
The pilot implementation here is based on two formulations of quantum-chemical
systems: a discrete real-space lattice and a Cholesky-orthonormalized atomic orbital
formulation.

Lattice creation

The first step is to initialize the lattice to use for the DMRG simulation.

• Real-space lattice: A box volume in which the quantum-chemical system is
embedded is chosen and filled with lattice sites. The accuracy of the calcula-
tions is now set by the amount of lattice sites and the smallness of the lattice
spacing. Including the origin of the coordinate system, the total number of
lattice sites is odd.

• Atomic orbitals: The atomic orbitals are considered as sites in an abstract
lattice which can be occupied by electrons. The ordering of these orbitals is
naturally dictated by the geometry of the system.

MPO construction of the Hamiltonian

Next, the Hamiltonian of the system to investigate must be constructed as a matrix
product operator. Concerning the initial steps, this is the most time-consuming part
because the Hamiltonian incorporates long-range interactions such as the electron-
electron interaction. The operator matricesHmn can become quite large. Therefore,
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6 Electronic structure studies with matrix product operators and states

it is convenient to try to compress their sizes. For this purpose, a MPO-compression
scheme has been implemented according to Fröwis et al. [2010]. This compression
scheme is based on a least-square fit of the Hamiltonian in MPO-form

min
Ô
||Ĥ − Ô||2 . (6.12)

The norm || · || is the operator analogue of the Euclidean 2-norm, the so-called
Frobenius norm defined as

||Ô|| =
√

Tr(Ô†Ô) . (6.13)

The idea of the compression scheme is to guess a matrix product operator Ô whose
operator-valued matrices have a smaller size than the MPO of Ĥ. By minimizing
then the squared distance between Ĥ and Ô under the operator 2-norm with re-
spect to the operator matrices of Ô, one obtains an approximation of the original
Hamiltonian MPO, but with a smaller size, which makes further steps faster. The
original Hamiltonian Ĥ is very sparse due to its construction. Therefore, it can
be compressed tremendously. Unfortunately, the dimension of quantum-chemical
MPOs normally gets so large that this compression scheme is not feasible any more.
That is why other compression schemes are suggested in section 6.2.

Initialization of a starting guess-state

Since DMRG is an iterative procedure—Eq. (6.11) is solved for each state matrix
Ψ—one has to start with a guess-MPS. This MPS can be randomly chosen, that is
one fixes the size of the involved state matrices. However, there are some numerical
subtleties one must pay attention at. If the number of lattice sites is large, say around
1000 sites, it is good to bring some information about the occupation numbers into
the guess-MPS because otherwise the long MPS cannot be normalized and its state
matrices cannot be orthogonalized. What is more, the effective Hamiltonian matrix
in Eq. (6.11) H̃ will contain numerical infinities or “NaNs”.

Initialization of pre-contractions

In this step, all the state and operator matrices are contracted up to the first site
beginning from the right end with site L

Q(L)
iLαLjL

=
∑
mLnL

Ψ
m∗L
iL
HmLnL
αL

ΨnL
jL
. (6.14)

For site L− 1, we then have

Q(L−1)
iL−1αL−1jL−1

=
∑

mL−1nL−1
iLαLjL

Ψ
m∗L−1

iL−1iL
Q(L)
iLαLjL

HmL−1nL−1
αL−1αL

Ψ
nL−1

jL−1jL
(6.15)

and so on. i, j and α are the indices of the state and operator matrices respectively.
On a single site, the contractions form some kind of site-expectation value. One
should note here that the state matrices have not been orthogonalized. In fact, it
is not necessary at the beginning as long as one orthogonalizes the matrices during
the iterations after each iteration step. One can even guess the pre-contractions
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6.1 Ground-state search with the DMRG algorithm

from the right and rely on the fact that the DMRG method figures out the correct
contractions—when starting from the left—during the iterations step by step.

Sweeping

Now, the actual DMRG iterations begin. Having sorted the lattice in a chain-like
fashion, Eq. (6.11) is formed for the first site and solved for the wave function
state matrix Ψm1 , i.e., the effective Hamilton matrix is constructed using the pre-
contractions and it is diagonalized (Lanczos or Davidson method). In order to
orthogonalize the state matrices and thus normalize the total wave function gradu-
ally during the sweeping procedure, a QR decomposition of the just obtained state
matrix is performed

Ψm1
i1
−→ Ψm1i1 =

∑
a1

Qm1a1Ra1i1 . (6.16)

It should be noted here that the size of the Q matrix must be truncated to the
original size of the guess state matrices, otherwise the size of the obtained state
matrices will grow exponentially. In this case, the truncation is no approximation
because the exponential growth is just a consequence of the QR-orthogonalization
steps. The R matrix is then formally multiplied into the state matrix of the second
site, but this multiplication is actually unnecessary since the state matrix for the
second site will be calculated in the next iteration step and its explicit shape does
not matter. Ψm1 is now updated by Qm1

Qm1a1 −→ Qm1
a1
. (6.17)

Additionally, one has to carry out the contractions of the new state matrix and the
operator matrix like in the pre-contraction step

P(1)
a1α1b1

=
∑
m1n1

Qm∗1
a1
Hm1n1
α1

Qn1
b1
. (6.18)

After that, all the same sub-steps are performed for the second site and so on

Ψm2
a1i2
−→ Ψm1a1,i2 =

∑
a2

Qm1a1,a2Ra2i2 (6.19)

P(2)
a2α2b2

=
∑
m2n2
a1α1b1

Qm∗2
a1a2
P(1)
a1α1b1

Hm2n2
α1α2

Qn2
b1b2

(6.20)

and the state matrix on site 2 is of course updated by the newly obtained Qm2 .
One continues with these steps until the right end of the chain is reached. Now,
the chain is reverted and the iterations mentioned above are repeated till the end
of the chain is reached again. Finally, a so-called sweep is done. A sweep consists
of micro-iterations including the solution of Eq. (6.11) for each lattice site. A full
sweep is done when the micro-iteration steps have returned to the site where the
sweep started. Fig. 6.1 shows the sweeping procedure pictorially. This sweeping
procedure is now continued over and over again, thus finding the correct weights of
the ground-state wave function with respect to the chosen size of its state matrices,
until the ground-state energy has been converged.
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...

...

Figure 6.1: One half of a sweeping cycle is shown from the top to the bottom. The
search for the ground-state wave function coefficients and thus the state
matrices of the corresponding MPS starts at the first site of the lattice
reordered in a chain-like fashion. In the first step (top), all the sites
have been contracted from the right (red dots in a rectangle) forming
the Q contraction expressions. The black dot represents the site where
Eq. (6.11) is solved and the black line denotes the site’s coupling to the
rest. When going to the next site, the state matrix at the site before is
orthogonalized and all the site matrices are contracted, which forms the
P expressions (blue dots in a rectangle). In this manner, one goes from
the left to the right end of the chain determining all the state matrices
and contracting all the sites gradually. When the last site is reached
(bottom), the chain is reverted and one continues to determine the state
matrices until the end of the chain is reached again.
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6.1 Ground-state search with the DMRG algorithm

Quality of convergence

When the energy is converged, the quality of the found ground-state can be esti-
mated by looking at the variance of the Hamiltonian

var(Ĥ) = 〈ψ|Ĥ2|ψ〉 − λ2 , (6.21)

which has to go to zero since |ψ〉 ought to be an eigenstate of Ĥ. Unfortunately,
calculating the variance is only possible for Hamiltonians with a small MPO-size
because it incorporates the square of the Hamiltonian and thus formally the multi-
plication of two MPOs, which is numerically demanding.

Another convergence criterion can therefore be the expectation value of the par-
ticle number operator

N = 〈ψ|N̂ |ψ〉 . (6.22)

N must converge towards an integer number representing the total number of par-
ticles in the system when the total energy is close to its exact value.

Parallelization

Though there are some ideas to parallelize the DMRG algorithm [Stoudenmire and
White, 2013], it is not clear at the current stage of this thesis how to parallelize
the central sweeping procedure of the DMRG algorithm, which is serial by design.
However, at least some parts can be parallelized: the MPO-construction per site
can be parallelized because—as it has been shown in the previous chapter—the
total Hamiltonian-MPO can be written as sum of MPOs

Ĥ =
∑
α≥0

Ĥ
(α)
MPO , (6.23)

where ĥ = Ĥ
(0)
MPO corresponds to the MPO of the one-electron Hamiltonian and

Û =
∑

α>0 Ĥ
(α)
MPO is the electron-electron interaction. The sum in Eq. (6.23) can

be parallelized. As a consequence, all the micro-iteration steps using the total
Hamiltonian (e.g., the left and right contractions and the construction of the effective
Hamilton matrix at a specific site) can also be parallelized. Fig. 6.2 shows how CPU-
parallelization affects the MPO-construction times using the example of increasing
hydrogen chains in the atomic orbital STO-3G basis [Hehre et al., 1969]. Using 8
CPU cores leads to a speed-up in construction time, but for more cores the gained
speed-up gradually saturates. To save RAM-memory, the Hamiltonian MPO is
written to disk. Fig. 6.3 depicts the disk usage of the MPO-construction with
increasing number of electrons and orbitals.

6.1.3 Particle number conservation

In performing ground-state searches for quantum-chemical systems with the DMRG
method in MPS/MPO-formulation, it is sometimes important to include symmetries
like the conservation of the particle number explicitly. This is especially important
when calculating the lowest-lying energy and corresponding wave function of an
ion in chemistry (ions are not the subject of this thesis). Otherwise the ground-
state search will end up with a state and an energy corresponding to the lowest
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Figure 6.2: MPO-construction times with increasing number of electrons and or-
bitals using the example of a hydrogen chain in the atomic orbital STO-
3G basis [Hehre et al., 1969].

possible eigenvalue of the quantum-chemical Hamiltonian, which is charge-neutral.
Therefore, one must include particle number conservation in the guess-state or in
the Hamiltonian. In the following, it is shown how to include the symmetry of
particle number conservation in the Hamiltonian. There are two known ways which
will be presented in the following [McCulloch, 2007, Peotta and Di Ventra, 2013,
Singh et al., 2010, 2011, Li et al., 1993].

Particle number conservation by projection

In group theory, particle number conservation belongs to the Abelian symmetry
group U(1). If particle number is conserved in the Hamiltonian, one says that
the Hamiltonian is U(1)-symmetric. This means the Hamiltonian is invariant with
respect to a change in the single-particle states or, phrased in terms of second
quantization, in the creation and annihilation operators by a phase factor

â†iσ = eiθĉ†iσ (6.24)

âiσ = e−iθĉiσ . (6.25)
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Figure 6.3: Disk usage of the MPO-construction of increasing hydrogen chains for-
mulated in the atomic orbital STO-3G basis [Hehre et al., 1969].

Consider a quantum-chemical Hamiltonian in an unspecified basis in second quan-
tization which consists of sums and products of creation and annihilation pairs

Ĥ
(
{ĉ†, ĉ}

)
=
∑
ij,σ

hij ĉ
†
iσ ĉjσ +

1

2

∑
ijkl,σσ′

uijklĉ
†
iσ ĉ
†
jσ′ ĉlσ′ ĉkσ (6.26)

=
∑
ij,σ

hije
−iθâ†iσe

iθâjσ +
1

2

∑
ijkl,σσ′

uijkle
−iθâ†iσe

−iθâ†jσ′e
iθâlσ′e

iθâkσ (6.27)

=
∑
ij,σ

hij â
†
iσâjσ +

1

2

∑
ijkl,σσ′

uijklâ
†
iσâ
†
jσ′ âlσ′ âkσ (6.28)

= Ĥ
(
{â†, â}

)
. (6.29)

This invariance immediately implies that the Hamiltonian commutes with the par-
ticle number operator

[Ĥ, N̂ ] = ĤN̂ − N̂Ĥ = 0 . (6.30)

As a consequence, the Hamiltonian can be expanded in a set of many-particle states
which are eigenstates of the particle number operator

N̂ |N〉 = N |N〉 (6.31)

Ĥ =
∑
MN

HMN |M〉 〈N | , (6.32)
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where M and N are the possible numbers of particles including also the case of
zero particles. The goal is now to project the Hamiltonian onto the space of many-
particle states (Slater determinants) with the correct predefined particle number.
This can be achieved by the projection operator

P̂N |M〉 = δN̂,N |M〉 =

{
|M〉 , M = N

0 , M 6= N .
(6.33)

This is an operator whose eigenvalues are either 1 if M = N or 0 otherwise. Ex-
panded in terms of occupation number states, the operator has the form

P̂N =
∑
mn

Pmn |m〉 〈n| (6.34)

=
∑
mn

δ∑
i ni,N

δmn |m〉 〈n| . (6.35)

It would now be possible theoretically to project the Hamiltonian onto the space of
many-particle states with correct predefined particle number N

ĤN = P̂ †NĤP̂N , (6.36)

but this is quite inefficient in practice due to the exponentially large basis space.
Therefore, the goal must be to find a MPO-representation of P̂N . To find a suitable
MPO-representation is part of this dissertation. The condition of particle number
conservation δ∑

i ni,N
is equivalent to the equation

n1 + n2 + · · ·+ nL = N . (6.37)

L is as usual the total number of lattice sites or single-particle states. We now
introduce auxiliary particle numbers Ni without changing the last equation

n1 + n2 + · · ·+ nL = N1 −N1 +N2 −N2 + · · ·+NL−1 −NL−1 +N . (6.38)

This leads to a set of equations

n1 = N1 (6.39)

n2 = N2 −N1 (6.40)

...

nL = N −NL−1 . (6.41)

Thus, one can write

δ∑
i ni,N

=
∑

N1N2···NL−1

δn1+0,N1δn2+N1,N2 · · · δnL+NL−1,N , (6.42)

where it is necessary to sum over all auxiliary particle numbers. With that, the
projection operator reads

P̂N =
∑
mnN

δn1+0,N1δm1n1 δn2+N1,N2δm2n2 · · · δnL+NL−1,NδmLnL |m〉 〈n| . (6.43)
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k

nk

Nk−1 Nk

Nk = Nk−1 + nk

Figure 6.4: It is shown how particle number conservation is implemented locally on a
specific lattice site. During the sweeping procedure particles accumulate
on the lattice sites such that there are N particles in total. One must
thus keep track of the local portion of particles moving through the
lattice. The sum of particles going into a site must equal the number
of particles going out. This makes it possible to ensure that one starts
with a zero-particle occupation of the lattice and eventually reaches a N -
particle occupation of the whole lattice. In this way, all possible particle
number combinations on the lattice can be established.

Its MPO-representation can then be deduced as

P̂N =
∑
mnN

Pm1n1
N1

Pm2n2
N1N2

· · ·PmLnL
NL−1

|m〉 〈n| (6.44)

=
∑
mn

Pm1n1Pm2n2 · · ·PmLnL |m〉 〈n| (6.45)

= P̂1 � P̂2 � · · · � P̂L (6.46)

with (
P̂k

)
Nk−1Nk

=
∑
mknk

Pmknk
Nk−1Nk

|mk〉 〈nk| (6.47)

=
∑
mknK

δnk+Nk−1,Nkδmknk |mk〉 〈nk| . (6.48)

Fig. 6.4 visualizes how the particle number projection operator P̂N can be con-
structed as a matrix product operator. The lattice is directed indicating the direc-
tion of the sweeping procedure. The projection operator is constructed such that
it keeps track of the particle number “moving” through the lattice starting with 0
particles at the first site and finishing with N particles at the last site. Going from
site to site, particles may be added by the occupation number indices m and n.
However, the particle number is conserved only if the sum of all particles moving
towards a site equals the number of particles leaving a site. The auxiliary particle
numbers Nk range from 0 to the maximally possible number of particles moving
through the lattice. All possible particle number combinations on the lattice can be
established in this manner.
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Projecting the Hamiltonian into the correct particle number sector works quite
well for small particle numbers. But for growing numbers of particles, it is impracti-
cal because the size of the site matrices of the particle-number-projected Hamiltonian
ĤN increases quadratically with the number of auxiliary particle numbers

(HN)mknkNk−1αk−1N
′
k−1,NkαkN

′
k

=
∑
m′kn

′
k

P
mkm

′
k

Nk−1Nk
H
m′kn

′
k

αk−1αkP
n′knk
N ′k−1N

′
k
. (6.49)

That is why another way to conserve the particle number is useful.

Particle number conservation by introducing a chemical potential

Recall the derivation of the DMRG equations by considering the Lagrangian function
Eq. (6.1). Particle number conservation can also be enforced by introducing an
additional constraint

〈ψ|N̂↑|ψ〉 −N↑ = 0 (6.50)

and
〈ψ|N̂↓|ψ〉 −N↓ = 0 (6.51)

with Lagrangian multipliers µ↑ and µ↓. The latter Lagrangian multipliers are called
chemical potential. This results in a modified Lagrangian function

L ({Ψ}, {Ψ∗}) = 〈ψ|Ĥ|ψ〉 − µ↑(〈ψ|N̂↑|ψ〉 −N↑)− µ↓(〈ψ|N̂↓|ψ〉 −N↓)
− λ(〈ψ|ψ〉 − 1)

(6.52)

= 〈ψ|Ĥ(µ↑, µ↓)|ψ〉 − λ(〈ψ|ψ〉 − 1) , (6.53)

where
Ĥ(µ↑, µ↓) = Ĥ −

∑
iσ

µσn̂iσ . (6.54)

By tuning the chemical potentials, one can fix the number of particles with different
spin-projections along the z-axis. One therefore has to consider Ĥ(µ↑, µ↓) in the

DMRG equations instead of the standard Hamiltonian Ĥ. The advantage of con-
serving the particle number in this way is that the size of the Hamiltonian MPO
does not increase. The energy of the N -particle system then reads

EN = E(µ↑, µ↓) + µ↑N↑ + µ↓N↓ . (6.55)

6.2 MPO compression schemes

As mentioned in section 6.1.2, the mathematical compression scheme by Fröwis et al.
[2010] for Hamiltonian MPOs gets unfeasible for growing numbers of electrons and
sites. For this reason, two physical compression schemes either for DMRG on a
real-space lattice or on an orbital lattice such as atomic orbitals are suggested in
the following.
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6.2 MPO compression schemes

6.2.1 Reduction of the lattice size and momentum space
expansion of the electron-electron interaction on a
real-space lattice

Because of the sweeping procedure, it is unfortunately of no use at the current stage
of technology and theory to consider a discrete real-space lattice as a single-particle
basis for DMRG calculations though the formal scaling of the construction of the
Hamiltonian MPO at a given site is linear. One must consider a huge number of
lattice sites to achieve accurate results. Nevertheless highly approximative DMRG
calculations are possible using a real-space lattice. The one-electron Hamiltonian ĥ
can be constructed and expressed on a real-space lattice. Its matrix elements are
given on an ordered grid with lattice spacing δ and L points as

hkl =

{
−1
2δ2
δ|ik−il|,1 , k 6= l

3
δ2

+
∑

A
−ZA

δ|ik−iA|
, k = l ,

(6.56)

where ik ∈ Z3 are the discrete lattice vectors. One has to regularize the external
potential when an electron hits the lattice site of one of the nuclei iA such that

vkl =
∑
A

−ZA
δ

(k = l , ik = iA) . (6.57)

The matrix h is very sparse and can thus be diagonalized by a sparse matrix eigen-
solver like the Lanczos method. The kept orthonormal eigenvectors Ckp of h are to
form the single-particle basis states (expressed on a real-space grid) for the MPO-
construction of the total Hamiltonian Ĥ and subsequent DMRG calculations.

Having obtained the eigenstates Ckp of the non-interacting electron system h
defined on a position space lattice, the total Hamiltonian of the interacting system
on a position space lattice

Ĥ =
∑
kl,σ

hklĉ
†
kσ ĉlσ +

1

2

∑
kl,σσ′

uklĉ
†
kσ ĉ
†
lσ′ ĉlσ′ ĉkσ (6.58)

with

ukl =
1

δ|ik − il|
(6.59)

is transformed into the eigenbasis of ĥ

ĉ†kσ =
∑
p

C†pkĉ
†
pσ (6.60)

ĉkσ =
∑
µ

Ckpĉpσ . (6.61)

Thus, the lattice size is reduced while the formal scaling of the MPO-construction
changes.

The challenge now is how to transform the electron-electron interaction because
its matrix u is completely dense in discrete real space such that it cannot be stored
in memory. Formally, the electron-electron interaction is transformed by the one-
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electron density on a single lattice site

Pk,pq = C†pkCkq . (6.62)

And, the electron-electron interaction in the eigenbasis of the non-interacting one-
electron part ĥ is obtained by

uprqs =
∑
kl

P T
pr,kuklPl,qs . (6.63)

Due to the large lattice size, the electron-electron interaction term uprqs must be
calculated on the fly. This is possible, but takes very long. That is why it is
suggested to expand the electron-electron interaction in momentum space

ukl =

Q∑
n=1

ũne
iπ
`
qnδ(ik−il) (6.64)

where it can be truncated systematically. The last equation can be seen as a trun-
cated Fourier series of the electron-electron interaction where Q denotes the number
of Fourier components or lattice sites in momentum space. The qn ∈ Z3 are the
discrete lattice vectors of a lattice in momentum space. The ũn are the expansion
coefficients or Fourier components which are obtained as follows:

ũn =

∫
V

d3x

V
e−i

π
`
qnx

|x|
. (6.65)

V = (2`)3 is the integration volume because one has to take into account that the
maximal distance along one coordinate direction electrons can interact over is 2`,
which is twice the edge length of the box the system is embedded in. Using the
identity

1

|x|
=

2√
π

∫ ∞
0

dt e−t
2(x2+y2+z2) . (6.66)

one can write

ũn =
2√
π

∫ ∞
0

dt

∫
V

d3x

V
e−i

π
`
qnxe−t

2(x2+y2+z2) . (6.67)

The last equation can now be integrated for every space coordinate separately. As
an example, it is done here for the x-coordinate. All the other coordinates are
integrated out analogously. The integral with respect to the x-direction is indicated
by ũ

(x)
n . One obtains

ũ(x)n (t) =

∫ `

−`

dx

2`
e−i

π
`
qn,xxe−t

2x2 (6.68)

=

√
π

4`t
e−

π2q2n,x

4`2t2

(
Erf

(
`t+

iπqn,x
2`t

)
− Erf

(
−`t+

iπqn,x
2`t

))
. (6.69)

Erf(·) denotes the so-called error function [Abramowitz and Stegun, 2012]. The
Fourier or momentum space components ũn can now be calculated by numerically
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integrating the expression

ũn =
2√
π

∫ ∞
0

dt ũ(x)n (t)ũ(y)n (t)ũ(z)n (t) . (6.70)

Having the series expansion of the electron-electron interaction ukl, the transforma-
tion into the eigenbasis of ĥ reads

uprqs =
∑
kl

P T
pr,kuklPl,qs (6.71)

=
∑
kln

P T
pr,kũne

iπ
`
qnδ(ik−il)Pl,qs (6.72)

=

Q∑
n=1

P̃ †pr,nP̃n,qs , (6.73)

where it was defined
P̃n,pr =

∑
k

√
ũne

−iπ
`
qnδikPk,pr . (6.74)

With this systematic truncation of the Fourier series of the electron-electron inter-
action, the construction of the electron interaction in position space and its trans-
formation to the one-particle eigenbasis of ĥ is speeded up and memory-efficient.
The Hamiltonian to use for DMRG calculations is then

Ĥ =
∑
pq,σ

hpq ĉ
†
pσ ĉqσ +

1

2

∑
pqrs,σσ′

uprqsĉ
†
pσ ĉ
†
qσ′ ĉsσ′ ĉrσ (6.75)

with
hpq = εpδpq (6.76)

because the Hamiltonian is expressed in terms of the eigenbasis of ĥ and εp are the
eigenenergies of the one-electron Hamiltonian.

6.2.2 Singular value compression of the electron-electron
interaction on an orbital lattice

Another physical compression scheme presented here uses the singular value decom-
position of the two-electron integral matrix. Consider the electron-electron interac-
tion in the orthonormalized atomic orbital basis uON

µνκλ = uON
µκνλ and reshape it into

a matrix
uON
µκνλ −→ uON

µκ,νλ . (6.77)

By performing a singular value decomposition of this matrix and keeping only the
largest singular values λα up to a certain threshold λthresh, one can compress the
MPO-construction

uON
µκ,νλ =

Nthresh∑
α=1

xµκ,αλαyα,νλ (6.78)
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=

Nthresh∑
α=1

x′µκ,αy
′
α,νλ . (6.79)

Nthresh ∈ N is chosen such that λα ≥ λNthresh
. In practice, a threshold of λNthresh

=
10−6 Hartree turned out to be reasonable for quantum-chemical Hamiltonians. Using
a singular value instead of a QR decomposition (see section 5.2.2) makes it possible to
construct the MPO of the electron-electron interaction and compress the dimension
of its MPO at the same time.

6.3 DMRG applications

In this section, results for DMRG calculations of certain quantum-chemical sys-
tems formulated both on a discrete position space lattice and on an orthonormal-
ized atomic orbital lattice are presented. First, we start with the DMRG method
formulated on a three-dimensional discrete position space lattice, which has been
developed for this dissertation, and then, results for the atomic orbital based DMRG
version, also developed for this dissertation, are presented.

6.3.1 The He-atom and the H2-molecule on a real-space lattice

He-atom

Let us begin with energy calculations of the He-atom and how the energy converges
with shrinking lattice spacing. The helium atom is embedded in a box with 10 Bohr
edge length. To avoid finite volume boundary effects, the box must be chosen as
large as possible. The one-particle Hamiltonian ĥ is diagonalized on a real-space
lattice in this box. The lowest-lying eigenstates of ĥ form the single-particle basis
states for the DMRG lattice. First, the electron-electron interaction is considered
to be exact. The dimension of the MPS-matrices is set to 16. In table 6.1, it is
shown how the helium ground-state energy calculated with the real-space lattice
DMRG approach for 5 orbitals expressed on a real-space lattice converges towards
the reference value with shrinking lattice spacing and growing number of lattice
points in position space. The reference CCSD (cc-pVQZ) value of−2.902410 Hartree
has been obtained with the program package Psi4 [Turney et al., 2012] using the
coupled-cluster method [Crawford and Schaefer, 2000] and the quantum-chemical
basis set cc-pVQZ [Dunning Jr, 1989]. Unfortunately, because of the enormous
increase of calculation times when shrinking the lattice spacing, it was not possible
to go below 0.2 Bohr as lattice spacing. To go further down with the lattice spacing,
it is necessary to use the momentum space truncation or compression of the electron-
electron interaction. Table 6.2 demonstrates for a given set of DMRG orbitals (5
orbitals), corresponding energy (−2.222093 Hartree), and lattice spacing (0.5 Bohr)
how the presented truncation using the momentum space expansion of the electron-
electron interaction behaves and how it converges towards the exact electron-electron
interaction limit when including higher numbers of momentum space points into the
momentum space expansion. Table 6.3 shows the continuation of table 6.1 further
down to a lattice spacing of 0.1 Bohr using the momentum space expansion (213

momentum space points) for the electron-electron interaction term. It can be seen
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how the DMRG energy further approaches the reference energy value by decreasing
the lattice spacing.

Lattice spacing δ
Number of orbitals

5
0.5 -2.222093
0.3̄ -2.462735
0.2 -2.661304
...

...

CCSD (cc-pVQZ): -2.902410

Table 6.1: Energy convergence of the helium ground-state energy with respect to the
smallness of the lattice spacing δ. The helium atom is embedded in the
center of a box with edge length 10 Bohr. The 5 lowest-lying eigenstates of
the one-electron Hamiltonian are used as the DMRG sites. As numerically
exact reference, the CCSD (cc-pVQZ) energy of the helium atom is used.

Momentum space points Energy
33 -2.602687
53 -2.452617
93 -2.285077
133 -2.235321
173 -2.226094
213 -2.223312
253 -2.222659
313 -2.222483

...
...

exact expansion -2.222093

Table 6.2: Energy convergence of the obtainable helium ground-state energy taken
from table 6.1 (5 orbitals, δ = 0.5 Bohr) with varying momentum space
expansions of the electron-electron interaction. With increasing numbers
of momentum space points, the energy converges to the exact electron-
electron interaction limit.
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Lattice spacing δ
Number of orbitals

5
0.5 -2.222093
0.3̄ -2.462735
0.2 -2.661304

0.1 (mom. exp.) -2.806292
...

...

CCSD (cc-pVQZ): -2.902410

Table 6.3: Continuation of table 6.1 with an electron-electron interaction expanded
in momentum space. 213 points in momentum space have been used.

H2-molecule

Next, the potential energy curve of the hydrogen molecule is calculated for differ-
ent lattice spacings and it is compared with the quantum-chemical coupled-cluster
method for different basis sets (see figure 6.5). For this purpose, the H2-molecule is
put into a box of edge length 10 Bohr. For the DMRG calculations, the 5 lowest-
lying orbitals of the one-electron Hamiltonian are chosen as DMRG sites and the
MPS-matrices have a size of 16 throughout all the calculations. The reference en-
ergy curve has been obtained with the CCSD (cc-pVQZ) method. Fig. 6.5 shows
the interpolated potential energy curves of H2 obtained with the discrete real-space
lattice DMRG approach for the lattice spacings 0.2 and 0.1 Bohr. In both cases,
the electron-electron interaction has been expanded in momentum space using 213

momentum space points. Moreover, the zero-lattice-spacing limit has been provided
by extrapolation. The comparison with the CCSD methods shows that the extrap-
olated curve nearly coincides with the CCSD (cc-pVDZ) curve. In particular, it
can be seen that DMRG qualitatively gives physically correct results even for the
largest lattice spacing in this set because all curves calculated with DMRG are sim-
ilar regarding their shapes to the CCSD (cc-pVQZ) reference curve. Above all, the
comparison with the CCSD (STO-3G) potential energy curve indicates that DMRG
tends to find the exact ground-state solution of the quantum-chemical Schrödinger
equation in its position space representation—of course depending on the lattice
spacing—and that it captures correlation effects which go under the name “static”
or “non-dynamic” correlation in quantum chemistry quite well. Physically speaking,
this is the part of electron correlation which occurs when bonds in molecules for in-
stance are stretched and the one-Slater-determinant ansatz from mean-field theory
breaks down. There, the electrons are so-to-say in a critical state between being
localized or delocalized on the set of possible one-electron states. Unfortunately, 0.1
was the smallest possible lattice spacing at the stage of this dissertation.

6.3.2 Atomic orbital DMRG

This section is now about results obtained with the developed atomic orbital based
DMRG method (AO-DMRG). The AO-DMRG program developed for this the-
sis is interfaced to the quantum-chemical program package PyQuante (http://
pyquante.sourceforge.net) to calculate the one- and two-electron integrals in
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Figure 6.5: Comparison of discrete real-space lattice DMRG calculations for varying
lattice spacings and coupled-cluster calculations of the H2 ground-state
potential energy curve. r is the distance of the nuclei and E the corre-
sponding energy. The reference energy curve has been obtained with the
CCSD (cc-pVQZ) method. The zero-lattice spacing curve (δ −→ 0) is
also provided by extrapolation of the 0.2 and 0.1 lattice spacing curves.

the atomic orbital basis. Throughout this section, the electron-electron interaction
is compressed according to the scheme presented in section 6.2.2 using the threshold
of 10−6 Hartree.

Ionization energies of the Be-atom

As an introductory example, calculations of the first and second ionization energies
(IE)

IEn = E
(0)
−n − E(0) (6.80)

of the Be-atom in an orthonormalized STO-3G atomic orbital basis are shown both
using the particle number conserving projection and the chemical potential tech-
nique. IEn is the nth ionization energy meaning the amount of energy needed to
ionize the system n times

Be −→ Ben+ + IEn . (6.81)
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Starting point is the Hamiltonian expressed in terms of orthonormalized atomic
orbitals

Ĥ =
∑
µν,σ

hON
µν â

†
µσâνσ +

1

2

∑
µνκλ,σσ′

uON
µνκλâ

†
µσâ
†
νσ′ âλσ′ âκσ . (6.82)

This Hamiltonian is brought into MPO-form and one applies the particle number
projection operator as MPO

ĤN = P̂ †NĤP̂N . (6.83)

Using the MPO-form of ĤN as input operator and the orthonormalized atomic
orbitals sorted from small to high angular momentum as DMRG sites, one obtains
for the first ionization energy

IE1 = −14.098200 + 14.403655 Hartree (6.84)

= 0.305455 Hartree (6.85)

and for the second ionization energy

IE2 = −13.440000 + 14.403655 Hartree (6.86)

= 0.963655 Hartree . (6.87)

These values were obtained within 2 sweeps using MPS-matrix sizes of 4 and a
convergence criterion of 10−6 Hartree. The charge-neutral ground-state energy of
beryllium is E(0) = −14.403655 Hartree. They coincide with the values from full-CI
calculations with the program Psi4.

The same values for the ionization energies IE1 and IE2 are also obtained by
introducing a chemical potential term

V̂chempot = −
∑
µσ

µσn̂µσ (6.88)

to the Hamiltonian Eq. (6.82) with the chemical potentials µ↑ and µ↓. The chemical
potentials must be chosen such that, in the case of Be+ and Be2+, the system
may only contain 3 and 2 electrons respectively. This is achieved by setting the
chemical potentials equal to the highest “occupied” eigenenergy of the one-electron
Hamiltonian in Eq. (6.82). For Be+ for example, to make sure that only one ↑-
electron is in the system, the corresponding chemical potential has to be

µ↑ = −1.744638 Hartree . (6.89)

With µ↓ = 0, this results in a 4-electron triplet state (N↑ = 1 and N↓ = 3). Raising
now µ↓ to

µ↓ = −0.2 Hartree (6.90)

leads to 3-electron Be+ with an energy

E(Be+) = E(µ↑, µ↓) + µ↑N↑ + µ↓N↓ (6.91)

= −14.098200 Hartree . (6.92)

For Be2+, both chemical potentials must be equal to the highest occupied eigenen-
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ergy of the one-electron Hamiltonian

µ↑ = −1.744638 Hartree (6.93)

µ↓ = −1.744638 Hartree . (6.94)

This then results in the total energy

E(Be2+) = −13.440000 Hartree (6.95)

and a singlet 2-electron system.

Hydrogen chain

The next example calculated to demonstrate the benefit of using atomic orbitals as
DMRG sites is a chain of 8 hydrogen atoms

H H H H H H H H

all separated by 2 Bohr. As atomic orbitals, the STO-3G basis is used meaning
that in this case the DMRG sites and the locations of the hydrogen atoms coincide.
Remember that the DMRG wave function in terms of a MPS is written as

|ψDMRG〉 =
∑
lnir

Ψni
lr |lnir〉 (6.96)

when the MPS-matrix of the wave function at the ith DMRG site is determined.
|lnir〉 is called “renormalized determinant”. If there are M |l〉 and |r〉 states re-
spectively and 4 |ni〉 states, then the wave function is expanded in terms of 4M2

renormalized determinants. Table 6.4 shows how the energy of the H8-molecule
approaches the exact (FCI) result with an increasing number of renormalized deter-
minants and increasing sizes of the involved MPS-matrices. It highlights a significant
property of the DMRG algorithm in terms of MPSs: it is variational in M . More-
over, timings are provided for each energy calculation. The calculations were run
with 16 CPUs. The deviation of the energy obtained with a restricted Hartree-Fock
calculation and the exact energy indicates that this system is strongly correlated
and DMRG gives physically correct (within the chosen atomic orbital basis) results
which are quite close to the FCI result, even for moderately large input parameters
M . As it is shown in the next paragraph, the good performance concerning the
ground-state energy description of DMRG is due to the use of orthonormal atomic
orbitals as sites. It is not because they have little overlap—they are orthonormal
and thus their overlap is always zero. It is rather because they reduce the entan-
glement of the sites. As a consequence, the MPS-matrix size M or the amount of
needed renormalized determinants can be kept low and one is nevertheless close to
the exact result.
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MPS size M Renorm. det. Energy (Hartree) Time (min)
4 64 -4.217049 1
8 256 -4.257578 8
12 576 -4.283668 10
16 1024 -4.285468 11
20 1600 -4.285694 53
24 2304 -4.285810 143
28 3136 -4.285892 250
32 4096 -4.285952 196
40 6400 -4.286002 504
50 10000 -4.286009 814
60 14400 -4.286010 1402

FCI -4.286011

Table 6.4: DMRG ground-state energies for a H8-molecule with strongly correlated
electrons using the Cholesky orthonormalized STO-3G basis as sites are
shown regarding various input parameters M . Furthermore, timings are
provided for the different DMRG calculations. With increasing MPS-
matrix size M , the DMRG energies converge towards the exact (FCI)
result. The Hartree-Fock energy is EHF = −4.138573 Hartree.

Elongated ethine C2H2

Ethine is a molecule of linear geometry

H C C H

and thus the atomic orbital based DMRG approach (AO-DMRG) is expected to
perform well too. To create a highly non-dynamically correlated case, the bonds
of ethine are stretched to 4 Bohr. For the AO-DMRG calculations of the ground-
state energy of the elongated ethine molecule (triplet state) in table 6.5, the atomic
orbital sites (STO-3G) are sorted with respect to the atom positions and angular
momenta of the basis functions from left to right (see figure 6.6). Table 6.5 shows a
comparison of the AO-DMRG approach and the standard quantum-chemical MO-
DMRG approach for different MPS-matrix sizes M . For the MO-DMRG approach,
the DMRG sites are formed by the molecular orbitals obtained from a restricted
open-shell Hartree-Fock calculation with the program package PyQuante and sorted
with respect to the corresponding orbital energies in increasing order from left to
right. What can be seen is that, for the same value of M , the naturally ordered AO
approach gives results which are closer and converge faster to the exact energy (FCI
program in Psi4) than the canonically ordered MO approach. This is an immediate
result of entanglement reduction between the site in the AO basis which makes it
possible to keep the MPS-matrix sizes smaller and to be still closer to the exact
energy. The CCSD(T) energy (routine in Psi4) is also provided in table 6.5 to point
out that we investigate a highly statically correlated case which has immense multi-
reference character and where standard quantum-chemical methods fail. Due to its
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1s 1s 2s 2px 2py 2pz 1s 2s 2px 2py 2pz 1s

H HC C

Figure 6.6: Natural ordering of the atomic orbitals as DMRG sites with respect to
atom position and angular momentum of the basis functions. The use of
atomic orbitals leads to a reduction of entanglement between the DMRG
sites. Thus, the MPS-matrix size M can be kept smaller than in the case
of canonically ordered (orbital energy ordering) HF-orbitals.

intrinsic multi-configurational or multi-determinantal ansatz, DMRG—especially in
the AO-formulation—can handle such multi-reference cases quite well.

M AO-DMRG(M) MO-DMRG(M)
4 -75.351739 -75.272006
16 -75.418983 -75.372264
28 -75.424161 -75.392286
40 -75.425521 -75.421537

ROHF -74.941021
CCSD(T) -75.412935

FCI -75.431742

Table 6.5: Comparison of the AO-DMRG and MO-DMRG approach for various
MPS-matrix sizes M with respect to the exact (FCI) energy. The re-
stricted open-shell Hartree-Fock (ROHF) energy and the CCSD(T) en-
ergy are also provided for comparison and to highlight that the elon-
gated C2H2-molecule is of strong non-dynamical correlation. The ROHF,
CCSD(T), and FCI results are obtained with the program package Psi4.

Small stretched C2-chains

The biggest systems investigated with the AO-DMRG approach in this dissertation
are small stretched C2-chains ((C2)1, (C2)2, and (C2)3 with an inter-atomic distance
of 5 Bohr respectively) in the STO-3G atomic orbital basis. These systems are
strong representatives of the static electron correlation and have highly non-trivial
spin states. This highlights an advantage of DMRG compared to other quantum-
chemical methods: DMRG is able to determine the absolute spin state and thus
the spin multiplicity automatically whereas, for standard quantum-chemical meth-
ods like CCSD(T), one must give the spin state to be searched as input for the
calculation. Table 6.6 shows a comparison of ground-state calculations for the dif-
ferent C2 chain lengths with the AO-DMRG method and various quantum-chemical
methods including ROHF and CCSD(T). The longest AO-DMRG calculation for
(C2)3 took 14 days. FCI calculations are unfortunately not possible at least for the
(C2)3-molecule because of RAM requirement issues. CISD already needs around 250
GB RAM in the case of (C2)3. For the ROHF and CCSD(T) method, the program
package CFOUR [Stanton et al.] has been used this time.

The data indicate the advantage and use of the AO-DMRG method since the
calculations need less than 10 GB of RAM with a relatively small MPS-matrix size
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parameter M = 16 for such highly non-dynamically correlated systems. The AO-
ordering according to the scheme presented in figure 6.6 may not be optimal, but
it is a good and natural starting point to sort the DMRG sites in order to reduce
the entanglement between the sites and thus to lower the computational effort.
Eventually, since DMRG is variational in M the energies obtained with the atomic
orbital implementation of the DMRG method can be considered to be closer to the
numerically exact results than all the other methods tested in this thesis.

Method
Energy (Hartree)

(C2)1 (C2)2 (C2)3
ROHF -74.3947582538 -148.6803701902 -222.7650689991
CCSD(T) -74.4344676250 -148.8686854431 -223.2968979819
AO-DMRG(16) -74.4452513113 -148.8896971930 -223.3276834310

Table 6.6: Comparison of ground-state energy calculations with the AO-DMRG
method and other quantum-chemical methods for various C2-chain
lengths.

Comparison of the AO-DMRG implementation with other quantum-chemical
DMRG programs

In this section, the AO-DMRG implementation of this thesis is compared with other
quantum-chemical DMRG programs including CheMPS2 and BLOCK using the
C2H2 molecule in the STO-3G basis from above as test system.

Comparative calculations (see table 6.7) with the DMRG program CheMPS2
[Wouters et al., 2014a,b, 2016, Wouters and Van Neck, 2014] interfaced to the pro-
gram package Psi4 and the program BLOCK developed within the Chan group with
contributions by Chan and Head-Gordon [2002], Chan [2004], Ghosh et al. [2008],
Sharma and Chan [2012], and Olivares-Amaya et al. [2015] show that the AO-DMRG
approach completely formulated in terms of matrix product states and operators
outperforms the standard quantum-chemical DMRG ansatz based on a sorted chain
of Hartree-Fock orbitals as DMRG sites and implemented in the BLOCK program
with respect to the size parameter M of the MPS-matrices for elongated, linear
molecules at least.

CheMPS2 is a spin-adapted, symmetry using quantum-chemical DMRG program.
It implements the two-site DMRG algorithm. For calculations, it uses the MPS-
representation of the many-particle wave function, but no MPO-formulation of the
Hamiltonian. Instead, it uses complementary operators as shown in the article by
Wouters et al. [2014b]. It is interfaced to the program package Psi4, which makes
it easy to perform DMRG calculations on top of a HF-calculation. The orbital
ordering is the canonical one according to the HF-orbital energies.

The BLOCK program is also a spin-adapted, symmetry using quantum-chemical
DMRG program which implements the single- as well as the two-site DMRG algo-
rithm. It does not use a complete MPO-representation of the Hamiltonian, but it
also uses a MPS-representation of the wave function. As orbital ordering measure,
it uses the Fiedler vector [Fiedler, 1973] by default. In the field of spectral graph
partitioning, the Fiedler vector is the eigenvector of the Laplacian matrix of a graph
corresponding to its second smallest eigenvalue called the algebraic connectivity.
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From table 6.7, it can be seen that DMRG converges much faster to the exact
energy of the system regarding the MPS-matrix size M using the local representa-
tion by atomic orbitals than the other tested programs implementing the standard
quantum-chemical DMRG approach using molecular orbitals.

M CheMPS2(M) AO-DMRG(M) BLOCK(M) BLOCKfv(M)
4 -75.277071 -75.351739
16 -75.368982 -75.418983
28 -75.392609 -75.424161
40 -75.414218 -75.425521
250 -75.431732 -75.431723
FCI -75.431742

Table 6.7: Performance comparison of the AO-DMRG and the quantum-chemical
DMRG programs CheMPS2 and BLOCK with respect to the MPS-matrix
size parameter M . By default, the smallest M -value in the BLOCK
program is 250. The subscript “fv” means that the calculation has been
carried out with an orbital ordering using the Fiedler vector. Without
“fv” means that the MOs in the BLOCK program are ordered canonically
according to increasing orbital energy. The smallest possible M -value for
the BLOCK program is 250. Energies are given in Hartree.

Increasing the basis set

A remaining question to be answered is whether the AO-approach still performs
better than the MO-approach when the underlying Gaussian basis set is increased
and thus the amount of DMRG sites grows. Table 6.8 shows the result of the analysis
referring to the example of C2H2 from above. The energies shown are converged
within a maximum of 100 sweeps. The used basis sets are the STO-3G [Hehre
et al., 1969], the 6-31G [Hehre et al., 1972], and the cc-pVDZ [Dunning Jr, 1989]
basis sets. The computational effort increases with an increasing number of basis
functions because the electron-electron interaction consists of a growing number of
terms. A peculiarity happens using molecular orbitals when increasing the basis set:
MO-DMRG seems to converge to a state where an electron has been added to the
total number of electrons N = 14. So, the ground-state search ends up in the wrong
many-electron state of the molecule unless adding an artificial chemical potential to
the external potential or increasing the MPS-matrix size M . Compared to the MO-
DMRG approach with canonically ordered sites, the AO-DMRG approach converges
to the correct neutral many-electron state when the number of basis functions and
thus the number of DMRG sites grows. The recommendation is to use atomic
orbitals instead of molecular orbitals when the investigated system is in the strongly
correlated regime.

The future goal should of course be to do quantum-chemical simulations with the
AO-DMRG method using large basis sets. For this dissertation however, the focus
has been put on increasing the number of electrons. Therefore, the use of the STO-
3G basis set throughout this application section has been necessary at the current
stage of research in order to be able to increase the MPS-parameter M beyond the
value of 4.
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Method Basis set N Energy (Hartree)

AO-DMRG(4)
STO-3G 14.0 -75.351739
6-31G 14.0 -75.842861
cc-pVDZ 14.000039∗ -76.207292

MO-DMRG(4)
STO-3G 14.0 -75.272006
6-31G 15.0∗ -76.363516
cc-pVDZ 15.0∗ -76.383164

Table 6.8: Comparison of the MO-DMRG and AO-DMRG approach, implemented
in the program written for this thesis, for increasing atomic orbital basis
sets. The parentheses behind the method show the MPS-matrix size M .
N is the expectation value of the particle number operator with respect
to the calculated DMRG wave function.
∗When increasing the basis set, M must be increased to avoid the DMRG
wave function converge to the wrong particle number state. For MOs,
DMRG ends up in the wrong particle number state when increasing the
atomic orbital basis.

A small detour to cubic hydrogen

It is not immediately clear if the naturally ordered AO-DMRG approach also per-
forms better than its MO-implementation for molecules which have extents in three
dimensions with strongly correlated electrons since the atomic orbitals which are not
linearly aligned have to be ordered in a chain-like fashion for DMRG. The simplest
model system investigated for this thesis is cubic H8 with a primitive cubic lattice
structure (4 Bohr edge length). Table 6.9 nicely shows that the local representation
by atomic orbitals also outperforms the molecular orbital ansatz even if the chain-
like ordering of the atomic orbitals for the DMRG algorithm is not perfect. The
reference RHF-FCI calculation in table 6.9 has been carried out with the program
package Psi4. The AO-description of molecules in principle allows a geometrical
ordering of the DMRG sites in space as opposed to molecular orbitals, which could
make the use of tensor network states—the generalization of matrix product states—
as representation of the many-body wave function possible in future projects. The
use of tensor network states will certainly enhance the convergence of AO-DMRG
further. DMRG in terms of tensor network states is however not the subject of this
dissertation.

M AO-DMRG(M) MO-DMRG(M)
4 -3.740883 -3.692207
16 -3.769260 -3.713874
28 -3.773209 -3.713874

RHF -3.120556
FCI -3.780244

Table 6.9: Investigation of the convergence performance of the AO-DMRG and MO-
DMRG approach for a non-linear, cubic system H8. The shown ground-
state energies are in Hartree.
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The main research goal of this dissertation has been the development of a state-of-
the-art density matrix renormalization group (DMRG) approach, which is suitable
for quantum-chemical applications especially in the regime of strong or static elec-
tron correlation, where exact calculations may not be feasible any more and where
standard quantum-chemical methods like Hartree-Fock and methods on top of it
like the coupled-cluster singles doubles with perturbative triples CCSD(T) method
or the configuration interaction CI method are qualitatively wrong. During the
research process, it has turned out that DMRG as a method to find the lowest-
lying many-particle eigenstates of a certain Hamiltonian can be applied directly to
quantum-chemical problems as an eigensolver and is not a mere post-HF method.
DMRG can actually be used to diagonalize a quantum-chemical problem directly
without any pre-simulations. It is a matter of the right single-particle basis states
to make a direct DMRG method. For this purpose, a discretized real-space lattice
formulation of quantum-chemical Hamiltonians and a formulation in terms of the
quantum-chemical Gaussian atomic orbital basis sets as single-particle states for
DMRG have been investigated.

The first project of this dissertation has then been to develop a formalism how to
construct the quantum-chemical Hamiltonian as a matrix product operator (MPO)—
the operator analogue of matrix product states (MPS)—in either of the basis for-
mulations and how to incorporate fixed particle numbers in order to be able to
calculate energies of charged systems. This construction formalism has emerged to
be parallelizable locally, i.e., the construction of the MPO at a specific site in the
DMRG chain can be parallelized. Fixing the particle number is achieved by either a
MPO-projection operator projecting the Hamiltonian on the subspace bearing the
desired number of particles or by adding a chemical potential term to the Hamilto-
nian. There are pros and cons concerning both approaches: the projection operator
approach has the advantage that one can fix the particle number without any further
information about the system, but the disadvantage is that the application of the
MPO-projection to the Hamiltonian in MPO-form increases the size of the matri-
ces representing the new projected Hamiltonian MPO, which directly results from
how MPOs are multiplied, and thus increases the computational cost of DMRG.
The disadvantage of introducing a chemical potential to the Hamiltonian to fix the
particle number is that one does not know at the beginning how to choose the chem-
ical potential. A good starting point is however to diagonalize the non-interacting
one-electron problem and use its eigenenergies to choose the correct value for the
chemical potential. Unfortunately, finding the right value of the chemical potential
is a little connected to trial and error, but the advantage of adding a chemical po-
tential is that the computational cost regarding the Hamiltonian as MPO stays the
same. The found MPO-constructions of the quantum-chemical Hamiltonian are effi-
cient because their MPO-matrix sizes can be systematically compressed speeding-up
construction times as well as making it possible to treat systems in a bigger basis
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space.
The generic formalism to construct any Hamiltonian in a second-quantized, quan-

tum lattice model form as MPO has led to the second project of this dissertation:
the development of a basis set free, direct DMRG approach for quantum-chemical
systems on a real-space grid coming from the discretization of the Hamiltonian for-
mulated in continuous real space and expressed in terms of quantum field operators
instead of the standard fermionic creation and annihilation operators. The MPO-
representation of the quantum-chemical Hamiltonian formulated on a discretized
position space lattice has the best formal asymptotic scaling properties with respect
to the growth of the MPO-matrix sizes of the Hamiltonian MPO in all the pre-
sented single-particle basis spaces ranging from discrete position space and discrete
momentum space to the Hartree-Fock orbital and atomic orbital basis spaces. The
MPO-matrix size asymptotically scales as O(L) where L denotes the amount of lat-
tice sites. Unfortunately, the amount of lattice sites must be enormously large for
sufficiently accurate results. In the test calculations for this thesis, it had not been
possible to go beyond 132651 lattice points. The problem stems from the electron-
electron interaction matrix which is completely dense in real space. Therefore, a
compression scheme based on an expansion of the electron-electron interaction in
momentum space or in terms of a Fourier series has been presented. This momen-
tum space expansion made it possible to go down to accuracies determined by a
lattice size of 1030301 lattice sites. The applications of the discrete position space
lattice DMRG approach for the helium atom and the hydrogen molecule have shown
that, even if the lattice sizes and thus the results are limited by today’s computer
resources, the developed basis set free approach captures the qualitative physical
behavior of the exact solution of the investigated quantum-chemical Hamiltonian
correctly. This is not the case for the basis set dependent quantum-chemical meth-
ods like truncated coupled-cluster and configuration interaction in small basis sets
particularly in the non-dynamically correlated regime.

The third major project has directly resulted from the study of the discrete posi-
tion space DMRG approach. To keep the idea of a direct ab initio DMRG method
for quantum-chemical applications and to circumvent the difficulty of needing huge
amounts of lattice sites for sufficiently accurate results, the quantum-chemical Gaus-
sian basis sets have been discussed as DMRG sites. Using these atomic orbitals, a
Hartree-Fock calculation in preparation of DMRG calculations is not needed. What
is needed is just the one- and two-electron integrals in the atomic orbital basis. Thus,
approximative, Hartree-Fock outnumbering and exact energy calculations within the
quantum-chemical basis set are possible immediately. The matrix product operator
size of the Hamiltonian formally scales as O(L4), but it can be compressed according
to the presented singular value compression scheme of the electron-electron inter-
action. It can be brought down to a size scaling of O(L2Ntrunc) where Ntrunc is
the number of kept singular values regarding a certain truncation threshold. Test
simulations of linear, elongated molecules ranging from a H8-chain, C2H2 to small
C2-chains, which are designed to have strong orbital interactions and thus highly
multi-determinantal character where a mean-field description completely leads to
wrong results, have shown that one can not only skip a Hartree-Fock calculation as
needed in standard quantum-chemical DMRG implementations, DMRG in terms of
an atomic orbital basis like the STO-3G basis even outperforms its common imple-
mentation in terms of molecular orbitals. This is because the entanglement between
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the interacting orbitals—in the context of DMRG, sites—is reduced due to the local
nature of the atomic orbitals. In standard quantum-chemical DMRG implementa-
tions based on a Hartree-Fock pre-calculation, the energy convergence with respect
to the matrix size of the involved matrix product state is influenced by the ordering
of the molecular orbitals. The natural ordering of the atomic orbitals according
to atom position and angular momentum of the basis function however leads to an
immediate entanglement reduction of the DMRG chain, a matrix product state with
smaller matrix size, and a resulting convergence boost. A detour to a small cubic
hydrogen system where the atomic orbitals are not centered on a line through the
nuclei has also shown that atomic orbitals do a good job in describing the physical
situation as far as the case of static electron correlation is concerned. Compared
to molecular orbitals, the AO-DMRG many-body energy is closer to the numeri-
cally exact energy with the same computational cost. Even though the non-linearly
distributed atomic orbitals of a molecule with three-dimensional extents have to
be numbered and ordered in a chain-like fashion when using a matrix product state
ansatz for the many-electron wave function, DMRG in terms of AOs performs better
than in terms of MOs in the case of strong electron correlation.

As far as the ordering of the atomic orbitals is concerned, a geometrical ordering
appears to be the most natural choice to improve the performance of DMRG. For
linear molecules, matrix product state wave functions sufficiently capture the cor-
relation between the atom-centered atomic orbitals. A further improvement, which
has not been a research part of this dissertation, could be the use of the generaliza-
tion of matrix product states: tensor network states. Increasing the tensor rank (a
matrix is a tensor of rank 2) gives more flexibility in capturing the leading orbital
correlations, i.e., only electrons occupying the highest angular momentum orbitals
are really correlated, which coincides with chemical intuition of active valence elec-
trons. Besides that, tensor network state wave functions could be designed to reflect
the geometry of a generic, non-linear molecule and its thus resulting electron-orbital
correlations.
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Below, the publications which have been produced during the preparation of this
dissertation are listed. The chapters 4, 5, and 6 of this dissertation cover the contents
of the listed publications in more detail.

• Philipp B. Snajberk and Christian Ochsenfeld, Matrix product operator based
density matrix renormalization group approach in the atomic orbital basis for
describing static electron correlation, submitted.

• Philipp B. Snajberk and Christian Ochsenfeld, Density matrix renormalization
group treatment of the electronic structure of small atoms and molecules on a
position space lattice, submitted.
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