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Preface

The European Union requires member states to promote research and technological devel-

opment with their industrial policies according to the “Treaty on European Union”, which

was signed in Maastricht in 1992.1 China, which has seen unprecedented growth over the

last decades as “the world’s factory”, clearly aims at a smooth transition towards a knowledge-

based economy with its current five-year plan for the years from 2016 to 2020: The first of five

focus areas is innovation.2 These are just two examples of technological progress becoming

a top priority for policy makers. But why does innovation feature on political agendas with

increasing prominence compared to other factors of development and growth?

Economists have long recognized that the accumulation of physical capital cannot explain

long-run growth (e.g. Grossman and Helpman, 1994). The technological knowledge in an

economy determines its ability to transform labor and capital into valuable outputs. Providing

workers with additional factories and machines has diminishing returns, at least if they do

not also become better as a result of technological advances. One production factor, whose

importance society is less aware of as a decreasing share of the population is employed in

agriculture, is fertile soil. As the amount of land the global population can work with is fixed

(or may even decline as a consequence of climate change and desertification), the productivity

of additional workers is eventually subject to the law of diminishing returns as well. In fact,

the first time in human history during which both per capita income and the population have

increased over an extended period, has only begun little more than two centuries ago with

the Industrial Revolution. Hudson (2014) emphasizes the crucial role of innovation in various

areas, extending far beyond steam power and factory production. Already in 1798, the rapid

1Treaty on European Union, Title XVII, Article 173
2https://www.uscc.gov/sites/default/files/Research/The%2013th%20Five-Year%20Plan.

pdf (last accessed 7 September 2017).

1
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PREFACE

increase of the population led Malthus to suggest that humanity might be trapped, as food

supply could only grow arithmetically, while the population grew geometrically. Any increase

in productivity would translate into higher population growth, such that the only stable

population size was at subsistence level. It has since turned out that birth rates adjusted

eventually and population growth in industrialized countries has slowed down. In some

countries, like Germany or Japan, it has even dropped to rates around zero. While parts of

the world are still in earlier stages of the demographic transition and the global population

continues to grow, current predictions3 point towards a leveling-off, with a world population

of about 11 billion by 2100. At the same time, overall living standards are increasing. Thus,

the outlook for humanity is not as gloomy as Malthus’ theory predicted. Yet, a stable world

population at a higher level requires further technological progress, beyond the developments

that enabled such growth in the first place, to limit resource degradation and environmental

problems. China’s current five-year plan, for instance, recognizes the need for “green growth”

in the third of its five major objectives.

Hence, innovation is more important than ever and economists can go beyond incorpo-

rating the growth of knowledge into their models, passively modeling how engineers and

scientists refine processes and develop products. If the creation and diffusion of knowledge

are not exogenous, but emerge endogenously in the economic system, understanding their

determinants is crucial (e.g. Romer, 1990; Aghion and Howitt, 1992).

Too many areas of economics have contributed to the identification of the factors that deter-

mine technological progress to provide a comprehensive review here. Instead, the following

describes how the chapters of this thesis fit into this context and what they add to the litera-

ture. The first chapter exploits transitional provisions in the process of European integration

as a natural experiment to identify the effects of free movement of labor on the production

and diffusion of knowledge. The second chapter studies the effect of competition on the type

of corporate research and development (R&D) in the context of the recent surge in Chinese

imports to Europe. The third chapter contributes to the literature on patents and innova-

tion, drawing evidence from U.S. antitrust history to estimate how patents affect follow-on

innovation, depending on market structure.

3https://esa.un.org/unpd/wpp/Publications/Files/WPP2017_KeyFindings.pdf (last accessed
7 September 2017).

2
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PREFACE

While concerns about human capital may seem like a recent political issue, the first patent

system in the Republic of Venice was established in 1474 precisely to attract skilled artisans

from other regions (Moser, 2013). By contrast, concerns about too much immigration through

membership in the EU and, in particular, the labor market consequences were hotly debated

ahead of the “Brexit” vote in 2016. The impact of international labor mobility is not only

controversial in destination countries, however. Emigration is often associated with a loss of

human capital, or “brain drain”, that hurts the economies of origin countries and prevents

them from catching up. In the first chapter4, we exploit the introduction of free movement

of labor in the EU to identify the causal effects of international labor mobility on knowledge

production within source countries as well as knowledge flows to these countries. The

introduction of free movement of labor after the accession of new EU member states did not

come into effect immediately in 2004 and later. The transition periods in the opening of labor

markets to migrants from new EU members were decided individually by old EU countries

for specific industries. This creates a suitable natural experiment for the identification of the

effects of emigration. The transitional provisions created exogenous variation in the ability of

new EU members’ citizens to migrate to old EU member states.

In response to Paul Krugman’s assertion that knowledge flows do not leave a “paper trail”,

patent citations have been found to be a suitable approximation (Jaffe et al., 1993). Thus, our

study not only takes advantage of the fact that, since the Venetian Statute, patent systems

have spread throughout Europe and thereby give us a proxy of the amount of innovation. The

references to other patents also allow us to trace knowledge flows to emigrants’ origins.

We find that rather than suffering from “brain drain”, industries with higher migration outflows

increase innovation as measured by patents. Moreover, an analysis of cross-border citations

suggests that the loss in human capital is compensated by reverse knowledge flows, such that

emigration is even helping source countries to converge towards the technological frontier.

Consistent with our interpretation, the effects are larger when restricting the sample to high-

skilled migrants.

Our findings contribute to the literature on the relationship between labor mobility and

innovation in general (e.g. Bosetti et al., 2015; Kaiser et al., 2015), but also add to research

4Chapter 1 is based on joint work with Yvonne Giesing and Nadzeya Laurentsyeva.
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on international migration and human capital. In the latter literature, several studies take

advantage of changes in the H-1B visa program in the U.S. to study the effects of immigration

in destination countries (e.g. Kerr and Lincoln, 2010), whereas Kerr (2008) uses the program to

study the effects on innovation and productivity in home countries. One important difference

between this program and our setting is that H-1B visas are targeted at skilled labor, while we

analyze the effects of free movement laws affecting all skill groups.

Furthermore, our study relates to the literature on the localization of knowledge by identifying

migration policy as one way to mitigate the effects of country borders, which have been found

to be particularly strong obstacles to knowledge flows (Jaffe et al., 1993; Hu and Jaffe, 2003;

Singh and Marx, 2013). Our results can help to inform migration policy.

In the second half of the last century, Europe’s economies saw increased trade not only within

the European Economic Area, but also with other continents. Imports from the world’s most

populous country have grown so much that a growing literature studies the effects of this

“China Shock” on the U.S. and Europe (e.g. Autor et al., 2013; Dauth et al., 2014; Autor et al.,

2016b). Economic reforms under Deng Xiaoping, who became the paramount leader of the

country in 1978, initiated a transition from socialist command economy to market-based

economy. In 2001 China even became a member of World Trade Organization (Naughton,

2007). Building on work by Bloom et al. (2016), I exploit this exogenous shock to study a more

general question in the second chapter: How does competition affect firms’ R&D strategies?

While the relationship between competition and the amount of innovation is an old question

that has been investigated at least since Schumpeter (1942), both theoretically and empirically,

much less is known about how competition affects the type of R&D that firms invest in. Some

theories have been proposed (e.g. Cabral, 2003; Kwon, 2010), but empirical evidence of the

causal relationship has been lacking.

Motivated by the theoretical literature on competition and innovation (Aghion et al., 2001), I

first explore the effects of competition on firms’ investments in an R&D model. The private

benefits of large innovations change less with competition than those of small steps, since

there is no room for increased business stealing if an innovation is so significant that the inno-

vator becomes a monopolist in any case. This implies a decreasing share of large innovations

among all innovations in my model. This relationship holds independently of the initial level

4
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of competition, by contrast to the effect of competition on the overall amount of innovation.

Yet, this finding is compatible with the inverted-U relationship between competition and total

innovation found in the literature (Aghion et al., 2005). Finally, the model shows that the level

of competition that maximizes the total amount of large innovations in an industry is lower

than the one that maximizes total innovation, thereby providing a theoretical explanation

for the trend towards more incremental R&D observed by Arora et al. (2015). Therefore the

optimal competition policy changes if the externalities of different types of innovation differ,

e.g. because of higher spillovers to other industries for larger innovations.

Technological progress has also affected the methods used in this chapter. Statistical tools

for text analysis have been available for a long time (e.g. Deerwester et al., 1990), but only

the increase in computational power available to researchers has enabled the recent increase

in applications of machine learning methods to large data sets in general and text data in

particular (Gentzkow et al., 2017). The empirical part of this chapter develops new measures

to quantify the type of innovation. The measures compare patent abstracts of a firm to those

of a comparison group such as previous patents of the same firm or the industry. The idea is

that a larger step leads to larger changes in the vocabulary in abstracts as well. An advantage

of these measures compared to citation-based measures is that they are fixed at the time of

application. The number of citations to a patent, by contrast, is determined later on and

depends on market conditions itself, while the similarity measures cannot be affected by

later developments and, in particular, changes in the private value of inventions as a result of

competition.

In instrumental variables regressions, I find support for the theoretical prediction of a decline

in the share of large innovations as competition increases due to the growth of Chinese

imports. Confirming the model, the empirical results suggest that the relative private value of

incremental innovations indeed increases when imports rise.

As this distortion towards smaller innovations should be taken into account in welfare consid-

erations, the empirical estimation of this causal relationship is relevant to various policies,

e.g. with respect to trade, standardization, and mergers.

When studying innovation in general, incentives are a natural starting point for economists

and intellectual property rights are supposed to provide them for the production of knowledge.

5
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As ideas can be considered public goods, there may be underprovision without intervention.

Intellectual property protection thus is an attempt to strike a balance between the inefficiency

of a monopoly with incentives for innovation. This tradeoff has been described formally by

Nordhaus (1969), but the idea that a temporary monopoly can serve as a reward can already be

found in Adam Smith’s “Wealth of Nations” (1776).5 On top of this balance between monopoly

and incentives, however, the fact that knowledge is both an input in knowledge production

as well as the output has to be taken into account. Any researcher using Google Scholar, the

search engine for academic publications, is greeted by the quote “Stand on the shoulders of

giants”, a metaphor which is often attributed to Isaac Newton, but has been expressed long

before. Hence the cumulative nature of science has long been appreciated and economic

theory, too, has considered this complication, e.g. to study the effects of patents on follow-on

innovators’ incentives (Scotchmer, 1991; Green and Scotchmer, 1995). The extent to which

such effects are economically relevant, rather than an insight of purely academic interest, is

ultimately an empirical question that researchers have begun to address more recently (e.g.

Galasso and Schankerman, 2015b; Sampat and Williams, 2015).

The government not only takes an active role in the market by granting temporary monopolies

to innovators through the patent system, however. At the same time, the government imple-

ments competition policy to prevent firms from abusing their market power. Some remedies

available to antitrust authorities have the potential to affect an economy’s capacity to produce

innovations and need to be studied from this perspective as well. The third chapter6 of this

thesis contributes to the literature by studying one of the most innovative organizations of

the 20th century, the Bell Laboratories (Bell Labs), and the consent decree that resulted from

an antitrust case against the parent company AT&T in 1956. This ruling has made thousands

of patents available without royalties to any company or inventor in the U.S., including those

protecting various groundbreaking innovations such as the transistor. Based on forward

citations to the affected patents, we estimate that follow-on innovation increased by 17% in

the following five years. Young and small companies seem to be the primary beneficiaries

5On rewarding merchants for taking risks, Smith writes: “It is the easiest and most natural way in which
the state can recompense them for hazarding a dangerous and expensive experiment, of which the public is
afterwards to reap the benefit. A temporary monopoly of this kind may be vindicated, upon the same principles
upon which a like monopoly of a new machine is granted to its inventor, and that of a new book to its author.”
(Book V, Chapter I, Part III)

6Chapter 3 is based on joint work with Martin Watzinger, Markus Nagler, and Monika Schnitzer.

6
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of the ruling. This suggests that patents pose a particularly strong barrier for these firms,

which is consistent with the literature (Galasso and Schankerman, 2015a). Moreover, we find

that compulsory licensing can only be an effective antitrust remedy if market foreclosure is

addressed as well. In the telecommunications industry, where Bell kept its dominant market

position, we do not find an effect on follow-on innovation.7 Our results on long-run inno-

vation confirm that compulsory licensing increased patenting by about 25% in the affected

technology areas.

The chapters of this thesis are self-contained and can be read independently.

7Note that this effect of competition policy on the citations to earlier patents confirms the need for the
text-based measure in the second chapter, since the novelty of an innovation cannot be affected by later policy
changes, but forward citations can.

7
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Chapter 1

Knowledge Remittances:

Does Emigration Foster Innovation?*

1.1 Introduction

Remittances, the money international migrant workers are sending back from the country of

employment to their home country, represent an important source of income for developing

countries and hence constitute a direct benefit of emigration (Russell, 1986). Furthermore,

apart from financial contributions, skilled migrants can “send” back the knowledge they have

acquired while working in other countries. This remittance of knowledge has the potential to

increase innovation in the origin countries and bring them closer to the technology frontier,

thus mitigating the negative effects of the loss of human capital due to emigration.

The number of highly educated foreigners in the OECD area now exceeds 31 million, ac-

counting for 45% of the increase in the foreign born population over the last decade (OECD

Database on Immigrants in OECD Countries, 2016). The number of skilled migrants has

especially increased within Europe since many members of the European Union (EU) and the

European Free Trade Association (EFTA) have introduced free movement for citizens of the

partner countries. Given the strong increase in labor mobility and rising concerns in countries

experiencing net outflows of skilled people, it is important to understand the consequences

*This chapter is based on joint work with Yvonne Giesing and Nadzeya Laurentsyeva.
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of migration. Should firms and policy makers think and act in the context of a “global war for

talent” or can the international mobility of skilled individuals make everyone better off, in

particular, by stimulating cross-border knowledge flows?

In this study, we establish a causal link between labor mobility, knowledge flows, and in-

novation activities. By exploiting changes in the European labor mobility legislation as a

quasi-experimental setting, we evaluate the effect of skilled emigration on innovation. We

find that the emigration of skilled individuals increases patenting in source countries and

argue that knowledge remittances can explain this positive effect. Using data on patent ci-

tations and migration flows from 32 European countries, we find that emigration increases

cross-border knowledge flows. Industries that are exposed to a higher mobility of their work-

ers start to cite patents from the emigrants’ destinations more frequently than before. The

international mobility of skilled workers seems to enlarge R&D networks and promote the

transfer of tacit knowledge. In this way, migration enables a faster diffusion of knowledge

from more to less technologically advanced countries and helps the latter to catch up.

We embed these results within the following conceptual framework. We assume a knowledge

production function, where innovation (here, for instance, measured by the number of

patents) is produced with the inputs of capital and labor and a certain production technology.

Emigration leads to a reduction in labor and thus has a direct negative effect on innovation

production. However, there might also be an indirect effect, which has often been overlooked

in this discussion. International migration can increase the flow of ideas and knowledge across

borders. Migrants might share knowledge about new technologies, processes, and products

with their former colleagues and friends at home. This increases the stock of knowledge in the

source countries and, through the recombination of ideas, positively affects innovation. The

production technology thus improves and patent production can grow even if the available

skilled labor is reduced. Our conceptual considerations thus suggest that migration has a

negative direct and a positive indirect effect on patenting levels in source countries. Although

we cannot disentangle these effects with our data, we provide empirical evidence on the total

effect.

The main challenge in the empirical analysis is the endogeneity of migration flows. This

could be due to reverse causality or omitted variables. To establish causality, we construct an

10
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instrumental variable (IV) for migration, using changes in labor mobility laws within Europe.

These laws are adopted and enforced by the destination countries and hence can be treated

as exogenous to economic conditions in migrants’ source countries.

The aim of our estimations are twofold. Combining several data sources, we do not only

establish a link between emigration and innovation in the source country, but also shed light

on the effect of knowledge remittances, potentially driving innovation. We start by analyzing

the effects of international labor mobility on total patenting activity in source countries.

The IV estimate suggests that a 1% increase in the number of emigrants increases patent

applications by 0.64% in the following two years. This result is statistically significant at the

1% level and robust to controls, fixed effects, and varying lags. The effect is quantitatively

more pronounced when we consider only the flows of migrants with patenting potential.

We complement the analysis of innovation activity by looking at the convergence in patenting

between migrants’ origin and destination industries. We limit the sample to pairs where

the destination is more technologically advanced than the origin and analyze whether the

difference in patenting levels changes with migration flows. This is a highly policy-relevant

question, especially in the context of the European Union: Some countries may block the

initiatives aimed at enhancing within-EU labor mobility by arguing that the outflow of skilled

people will further augment the asymmetries between richer and poorer member states.

Contrary to this argument, though, our results show that patenting differences between

origins and destinations decrease in the number of emigrants. Hence, emigration can promote

convergence to the innovation level of more advanced economies.

To establish the channel for the positive impact of emigration on innovation, we link emigra-

tion to reverse knowledge flows, that is the transfer of knowledge from migrants’ destinations

back to their origins. While skilled emigrants do not patent in their home country anymore,

they can stimulate knowledge and technology diffusion, thus improving the production tech-

nology in the origin country. Common to the innovation literature, we use cross-border

patent citations as a proxy for knowledge flows. The regression analysis relates the number of

citations to a particular destination country with the number of migrants that currently work

there. We find evidence that knowledge flows from destination to origin indeed increase with

11
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migration: the 2SLS regressions yield an elasticity of knowledge flows to emigration equal to

0.59.

Our project relates to two broad strands of the literature. The first one investigates the effects of

labor mobility on innovation. Several papers have established a positive effect of migration on

patenting in destination countries. Kerr and Lincoln (2010) and Doran et al. (2015) use random

visa allocations to find causal effects for the U.S. Bosetti et al. (2015), Parrotta et al. (2014),

Ozgen et al. (2014) and Niebuhr (2010) focus on European countries and establish cultural

diversity as one of the main channels to generate new ideas and innovation. The effect of

migration on source countries received less attention. Kerr (2008) and Choudhury (2015) find

that source countries benefit from knowledge flows and return migration and consequently

increase patenting and innovation. Kaiser et al. (2015) provide firm-level evidence by looking

at worker mobility within Denmark. They find that hiring new knowledge workers increases a

firm’s patenting activity. Interestingly, the former employers of these workers also increase

patenting, which can be explained by reverse knowledge flows. Braunerhjelm et al. (2015)

conduct a similar analysis with a matched employer-employee dataset from Sweden and also

show that both the receiving and the sending firms benefit from the mobility of knowledge

workers. The effects are stronger for interregional mobility. We contribute to this literature

by providing causal evidence that emigration leads to an increase in patenting. We thereby

confirm what Kerr (2008) and Choudhury (2015) showed for China and India in a very different

context and using another methodology. As we have comparable patenting data for source

and destination countries, we can extend this result and show that emigration leads to a

catch-up process.

The second strand of the literature analyzes the determinants of knowledge flows. Starting

with the seminal contribution by Jaffe et al. (1993), these studies have established that knowl-

edge is localized beyond the effects of agglomeration. Later studies focused on international

knowledge spillovers (Jaffe and Trajtenberg, 1999; Hu and Jaffe, 2003), showing that knowledge

takes time to cross country borders. Thompson and Fox-Kean (2005) challenge the approach

by Jaffe et al. (1993) and point out that intra-national localization effects are not robust to

a finer technology classification. However, even with their more conservative estimations,

the international localization remains significant. Singh and Marx (2013) investigate whether

12
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advances in communication technologies and lower costs of traveling reduce the localiza-

tion of knowledge over time. While they find evidence for a reduction in the significance of

state borders in the U.S., their results show that the effect of international borders has even

strengthened over time. Few studies so far analyzed the impact of international migration

on cross-border knowledge flows.1 Kerr (2008), for instance, studies the role of skilled immi-

grants in the U.S. and finds that immigrants form ethnic scientific networks that enhance the

technology transfer to source countries.

We extend this literature on knowledge flows to the European context using an identifica-

tion strategy that allows for a causal interpretation. We build a unique dataset by merging

comparable migration data for 32 European countries with European patent data and find

evidence for knowledge flows. Due to our unique European enlargement setting, we are

able to estimate causal effects of labor mobility independently of other integration events

by exploiting different opening times for trade, FDI and migration. We find that the positive

effect of mobility on knowledge remittances is particularly high for migrants with patenting

potential and is robust to a variety of specifications and samples.

The chapter is organized as follows. The next section describes a conceptual framework

to guide our empirical analysis. Section 1.3 outlines the data, followed by Section 1.4 that

presents the empirical specification and describes the instrument. Section 1.5 discusses the

results. Section 1.6 suggests knowledge flows as the channel. Section 1.7 provides robustness

checks and Section 1.8 concludes.

1.2 Conceptual Considerations

This chapter analyzes the effects of emigration on innovation in source countries. As there

are two opposing effects, our storyline becomes clearer if we support it with some conceptual

considerations. The considerations are based on a classical knowledge production function

as introduced by Griliches (1979) and further developed by Jaffe (1986) and Jaffe (1989). We

augment the knowledge production function with emigration. The concept illustrates two

1Prior literature on international knowledge flows has focused on trade, foreign direct investment and R&D
accessibility (Peri, 2005; MacGarvie, 2005, 2006).
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opposing effects: a reduction in knowledge production due to a decreasing skilled labor

force vs. an increase due to a better production technology induced by knowledge flows and

technological spillovers.

We assume a simplified knowledge production function of the form

Y = A f (K ,Ls). (1.1)

K is a measure of relevant capital available for research and development such as laboratories

and equipment. Ls stands for skilled labor and A measures total factor productivity (efficiency

of knowledge production). In our case A describes how well labor and capital can be combined

to produce the knowledge output Y and captures factors that are not explicitly modeled, such

as the knowledge stock on which researchers can build. To measure the output Y , we refer to

patents, as is common to the literature.

The direct effect of emigration, in this setting, is a reduction in Ls . Due to the outmigration

of skilled people, less workers are available for the production of innovation in the source

country. The innovation output Y should thus decrease.

However, there is a second indirect effect of emigration that works through the total factor

productivity A. After emigration, workers send back knowledge to their home countries.

For instance they may transmit technological information and ideas back to their previous

employer through communication with former colleagues. This employer becomes better at

producing innovation, which is reflected in an increasing A.

Theoretically, it is unclear whether the negative direct or the positive indirect effect prevails.

This depends on several other characteristics such as the industry, the technology, and the

innovation process. Consequently, it is even more important to gain this knowledge from a

rigorous empirical assessment of the question. Using patent data as a measure of innovation

output Y and controlling for various other factors corresponding to K and components of A

that are unrelated to the stock of knowledge, our empirical specification is able to identify

this net effect.

14
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1.3 Data Description

We create a unique dataset by merging comparable migration data for 32 European countries

with European patent data. The dataset has four dimensions: origin region2, destination

country, industry (two-digit, NACE Rev. 2), and year. The dependent variables of interest

are the number of patent applications (by origin-industry-year) as a proxy for innovation

and the number of cross-border citations (by origin-destination-industry-year) as a proxy for

knowledge flows. The main explanatory variable is the annual number of emigrants from a

given origin currently employed in a given destination industry.

The ideal migration dataset would contain precise data on migration flows, disaggregated

by origin and destination (countries and employing industries), skill level, and occupation.

In the absence of such a dataset, we use the second-best data from Eurostat Labour Force

Surveys (2000 - 2014). These are harmonized surveys, which take place annually in all EU

countries, Iceland, Norway and Switzerland and cover around 5% of national populations.

The surveys provide demographic information on individuals, including their current country

of residence, region of origin (EU15+4, NMS10, NMS2 or Other), education level, occupation,

and currently employing industry.3 We thus obtain the stock of migrants by year, region of

origin, destination country, and destination industry. In addition, we can use the information

by education level (university degree, vocational degree, or below) and by occupation (two-

digit, ISCO) to identify the stock of migrants with patenting potential.4 The available dataset

has several limitations. We can only observe the region of migrants’ origin instead of the

country. This means that we cannot differentiate between different 2004 accession countries

but have to treat them as one region (NMS10). Similarly we have to treat Romania and Bulgaria

2Here and in the following text “region” refers to the region to which Eurostat’s LFS data aggregate migrants’
origin countries: EU15+4 (EU15 and EFTA), NMS10 (new member states in 2004), NMS3 (Bulgaria, Romania and
Croatia) and all other countries. The fact that the EU3 region consists of Bulgaria and Romania, which joined the
EU in 2007, and Croatia, which followed only in 2013, adds further imprecision, as we cannot tell from the data
how many emigrants from this region came from Bulgaria and Romania and were able to take advantage of the
EU’s right to free movement already.)

3EU15+4 include 15 pre-2004 EU member countries (Austria, Belgium, Denmark, Finland, France, Germany,
Greece, Ireland, Italy, Luxembourg, Netherlands, Portugal, Spain, Sweden, United Kingdom) + 4 EFTA countries
(Iceland, Liechtenstein, Norway, Switzerland). NMS10 include countries that joined the EU in 2004 (Czech
Republic, Estonia, Hungary, Latvia, Lithuania, Poland, Slovakia, Slovenia, Malta, and Cyprus) and NMS2 include
countries that joined the EU in 2007 (Bulgaria and Romania).

4We assign a dummy called patenting potential to migrants working in occupations “Managers” and “Profes-
sionals” (ISCO codes: 11, 13, 21, 22, 23, 25, 31, 32, 35).
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as one region (NMS2). Furthermore, as we do not observe the origin industry of a migrant,

we assume that it is the same as the current industry at the destination. Besides, we cannot

identify flows of return migrants. These limitations result in high observational noise and

might bias our estimations towards zero.

To construct the instrument for migration flows we use changes in the European labor mobility

legislation. We obtain the relevant information from the Labour Reforms database, prepared

by the European Commission, which we complement with information from national legisla-

tions of the destination countries. Our baseline dataset covers the years from 2000 to 2012,

this period encompassed several changes to European labor mobility as described in more

detail in Subsection 1.4.2.

The data on innovative activity and knowledge flows come from the EPO’s Worldwide Patent

Statistical Database (PATSTAT, 2014 Autumn Edition).5 We are able to assign patents to

industries (two-digit NACE Rev. 2) via the International Patent Classification (IPC) of patents.6.

We then aggregate patent applications by country, industry, and year and patent citations

by patenting country, cited country, industry, and year. In our dataset, patenting country

corresponds to the origin country of migrants, while cited country corresponds to their

current destination. To assign patents to countries, we use the PATSTAT information about the

location of patent inventors and applicants, which are usually the organizations employing

the inventors. Since a patent can have several inventors, it may be assigned to multiple

countries if it is the result of an international collaboration. In these cases, we assign a share of

the patent to each country that is proportional to the share of co-inventors from that country.

The causes and consequences of such collaborations have been studied by Kerr and Kerr

(2015). Through this assignment of patents to the inventors’ countries it is possible to link a

patent with the location of all the patents that cite it.

5Patents and patent citations are imperfect measures for innovation and knowledge flows and have been
criticized for example by Duguet and MacGarvie (2005). Yet, these are the best proxies, which are available over
long periods of time and comparable across the countries we study.

6In order to assign four-digit IPC classes to industries, we use the concordance table provided by Eurostat in
Appendix 1 of the publication “Patent Statistics: Concordance IPC V8 - NACE REV.2”, published in October 2014
and last accessed on 21 November 2016.
https://circabc.europa.eu/sd/a/d1475596-1568-408a-9191-426629047e31/2014-10-16-Final%
20IPC_NACE2_2014.pdf
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Figure 1.1 motivates the subsequent econometric analysis: cross-border patent citations

(a proxy for knowledge flows) significantly increase following the introduction of free labor

mobility between a pair of countries. This figure mirrors the response of migration flows to

changes in labor mobility regulation within Europe (Figure A.1 in the Appendix).

We complement the dataset with several important control variables: bilateral industry-

specific FDI flows (provided by Eurostat), GDP and bilateral trade flows (from CEPII). By

combining these different data sources, we can draw conclusions about the effects of interna-

tional migration on patenting in the origin countries and establish reverse knowledge flows

as the channel, while controlling for possible fixed and time-varying confounders.

Figure 1.1: Cross-Border Patent Citations, Annual Treatment Effects of Free Labor Mobility
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Notes: Annual treatment effects on cross-border citations in patent applications around the introduction of
free movement (1965-2014). The regression includes year and country-pair fixed effects. Standard errors are
clustered at the citing country level.
Source: PATSTAT, European Commission, own calculations.

1.4 Econometric Specification

In our empirical analysis we first provide causal evidence for the effect of emigration on

patenting in origin countries. Second, we link this effect to the increase in knowledge flows.

We obtain the elasticities of patenting and cross-border citations to migration using OLS

and 2SLS approaches. In the latter, the variation in migration flows is generated only by the
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exogenous changes in labor mobility laws over 2000-2012. Our baseline regressions include

the sample of all patenting European countries. Besides, we provide separate estimates for a

sub-sample of Eastern European countries, which were affected the most by the changes in

labor mobility over the analyzed period.

1.4.1 Baseline Regressions

Patenting in Origin Countries

We start by analyzing the effects of emigration on total patenting in the origin countries.

For this, we aggregate the data at the origin, industry, and year level. Because we do not

have detailed country-of-origin data, we use the region of migrants’ origin: EU15+4, NMS10

and NMS2. The dependent variable is the number of patent application in a specific origin,

industry, and year. The explanatory variable is the number of emigrants from a specific region

that work in the same industry but in other European countries. We estimate the following

fixed-effects regression:

Yoi y =β1Moi y−l +β2Xoi y +φy +φoi +εoi y (1.2)

where o denotes the region of origin, i the two-digit industry, and y the year. Yoi y is the log

number of patent applications in a given region and industry. Moi y−l is the log number of

emigrants from an origin region, currently working in a given industry.7 l stands for the lag

between migration and patenting. The coefficient β1 captures the elasticity of patenting to

migration. Xoi y contains time-varying controls: a dummy for EU membership, trade inflows,

and FDI inflows. φy and φoi denote time and origin-industry fixed effects. εoi y is the error

term. The identifying variation thus comes from the within origin-industry changes in the

number of emigrants and patent applications. To account for a possible endogeneity bias,

we complement the OLS estimations with the 2SLS results, where we instrument migration

with changes in labor mobility legislation. We describe the instrument in more detail in

Section 1.4.2 below.

7Here and in all other specifications, before taking logs we add 1 to each observation. This transformation
ensures that we do not lose observations with zero values.
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Patenting Asymmetries between More and Less Advanced Countries

We go one step further and analyze whether migration increases or, on the contrary, lowers

patenting asymmetries between more and less advanced economies. On the one hand,

agglomeration effects and the resources available for research could lead to richer destinations

specializing even more on their comparative advantage, thus hindering convergence. If we

assume that skilled migrants move from less innovative to more innovative places, labor

mobility can increase patenting asymmetries despite some positive effects on the origin. On

the other hand, through the migrants working abroad, industries at origins can get access

to the frontier knowledge from more advanced economies. This can increase innovation

efficiency in origin industries and can allow a faster catch-up process with the technology

leaders. Hence, patenting asymmetries between destinations and origins of migrants might

decrease. We empirically evaluate the effect of migration on patenting asymmetries with the

following regression:

log (
Pdi y

Poi y
) =β1Modi y−l +β2X1oy +β3X2d y +β4X3odi y +φy +φodi +εodi y (1.3)

The level of observation is origin-destination (od) pair, industry (i ), and year (y). The depen-

dent variable log (
Pdi y

Poi y
) is the log difference in patent applications between the destination

and origin industries. The main explanatory variable is Modi y−l - the log number of migrants

from origin o working in industry i in destination d . l stands for the lag between migration

flows and patenting. The coefficient β1 shows whether the patenting asymmetries increase or

decrease in migration. In this specification we can also control for time-varying origin- and

destination-specific effects (X1oy , X2d y , X3odi y ): the total number of patents at origin, the total

number of patents at destination, the total number of patents in a given industry, a within EU

dummy (equals one when both origin and destination are EU members), the ratio of GDP

per capita between destination and origin, bilateral industry-level FDI, and trade flows. φy

and φodi denote time and origin-destination-industry fixed effects. εdoi y is the error term.

The coefficient β1 is thus identified solely through the variation in the number of emigrants

within an origin-destination-industry. General changes in patenting at origin and destination

cannot confound the results. As with Specification 1.2, we estimate OLS and 2SLS regressions.
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Knowledge Flows

Further, we investigate one potential channel behind the effect of migration on innovation:

knowledge flows. One speaks of knowledge flows whenever a researcher or an inventor builds

on the work done by others to create ideas or to solve a specific technological problem.

A common way to track knowledge flows is to use citations data (Jaffe et al., 1993). This

approach assumes that a citation to a particular patent or a publication reflects the usefulness

of the knowledge contained therein for further work. To determine the effect of migration on

knowledge flows we estimate the following empirical model:

Yodi y =β1Modi y−l +β2X1oi y +β3X2di y−l +β4X3odi y +φy +φodi +εodi y (1.4)

As in Specification 1.3, the level of observation is origin-destination (od) pair, industry (i ),

and year (y). The outcome of interest Yodi y represents the log number of cross-border

citations. Modi y−l is the log number of migrants from origin o working in industry i at

destination d . l stands for the lag between migration flows and patenting. We focus on

reverse knowledge flows, i.e., knowledge flowing from destination to origin countries of

migrants. Hence, Yodi y represents citations to patents from destination countries by new

patents at origin.8 For example, YPL/BEi y counts citations by Polish patents in industry i ,

filed in year y , to existing Belgian patents. It proxies the knowledge flows from Belgium to

Poland. MPL/BEi y−l represents the number of Polish migrants in Belgium, currently working

in industry i . The coefficient β1 captures the elasticity of citations to migration. In our

example, it shows the percent change in the number of citations from Poland to Belgium if

the number of emigrants from Poland to Belgium increased by 1%.

To avoid mechanic effects from the general increase in patenting at origin or destination

industries, we control for the number of patent applications in the origin industry (X1oi y )

and for the lagged number of patent applications in a destination industry X2di y−l . X3odi y

denote other controls: a within EU dummy (equals one when both origin and destination

countries are EU members), the total number of patents in a given industry, the bilateral FDI,

8We consider citations in patent publications and date patents with their application filing date.
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and trade flows. φy and φodi denote time and origin-destination-industry fixed effects. εodi y

is the error term. We again run both OLS and 2SLS regressions.

1.4.2 Instrument for Migration Flows

Even though we control for many observable factors and have a number of fixed effects in

the baseline OLS regressions, an endogeneity problem might still arise. Estimates could be

biased, for instance, if reduced patenting at the origin forces inventors to leave. To avoid

this problem, we use changes in the labor mobility laws in Europe as a source of exogenous

variation for migration flows.

The freedom of movement for workers is a policy chapter of the acquis communautaire of

the European Union and represents one of the four economic freedoms: free movement of

goods, services, labor and capital. According to the Article 45 of the Treaty on the Functioning

of the EU, “freedom of movement shall entail the abolition of any discrimination based on

nationality between workers of the Member States as regards employment, remuneration and

other conditions of work and employment.” In practice, it means that there are no restrictions

(such as quotas on foreign workers) or additional bureaucratic procedures (such as obtaining

a work permit or a permission from the local authorities) related to the employment of

foreign citizens. This right primarily concerns the citizens of the EU and EEA member states

who, starting from 1958, have gradually introduced free labor mobility towards their partner

countries.9

In our project, we exploit two episodes of changes in the free labor mobility in Europe.

First, in 2004 all EEA countries introduced free movement for the citizens of Switzerland.

Switzerland responded with a symmetric measure in 2007.10 Second, a special scheme has

been in force following the EU enlargements in 2004 and 2007. For up to seven years after

the accession, old EU members could restrict the access to their labor markets for citizens of

new member states. While some countries kept the restrictions for the whole period, some

9Norway and Iceland exert this right since 1994. Liechtenstein exerts this right since 1995, but imposes a
permanent quota for all EEA citizens.

10However, as a result of the “Against mass immigration” initiative, Switzerland is scheduled to impose
permanent quotas on residence/work permits for citizens of all EEA countries except Liechtenstein, starting
from 2017.
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provided easier labor market access only in certain industries, and some opened up their

entire labor markets directly upon the accession. When imposing restrictions the countries

had to apply them to the whole group of NMS from the same entry year. Therefore, they could

not target labor mobility laws at the citizens of some particular states. Iceland, Liechtenstein,

Norway, and Switzerland applied the transitional provisions towards the accession countries

in the same way. These labor mobility laws created variation in the migration flows between

European countries on the country, industry, and year level. Table A.1 in the Appendix

provides an overview of the precise opening dates of countries and industries. Importantly

for the identification, these changes to labor mobility did not coincide with other integration

events (free movement of capital and goods).

Figure 1.2 shows the spikes in migration from NMS during the initial opening in 2004, when

countries such as the UK, Sweden, and Ireland opened their labor markets and in 2011 when

all transitional provisions for the 2004 accession countries where abolished and Germany, for

instance, fully opened its labor market.

We can thus instrument real migration with exogenous labor mobility legislation. The first-

stage regression takes the following form:

Modi y = γ1F Modi y−1 +γ2F Modi y−2 +γ3F Modi y−3 +γ4Xodi y +νy +νodi +uodi y (1.5)

F Modi y−l is an indicator variable, which is equal to one if a specific industry i in a destination

country d is open for labor migrants from a country o in a given year y . We include a one,

two and three year lag to allow for the delayed effect. In our sample this indicator changes

only for origin and destination pairs with either Switzerland or new EU member states. As

these migration flows might be different, we show separate results for migration from only

Eastern Europe in every case. Xodi y , νy , and νodi are the same controls and fixed effects

as used in the baseline OLS specifications. When using the instrument for the patenting

regressions (Specification 1.2), we aggregate the values of the free movement variable by
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Figure 1.2: High-skilled Migration in Europe
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origin, industry, and year.11 In this case, the F M variable can be interpreted as the exposure

of a given origin-industry (oi ) to free labor mobility of its workers.

When constructing the free movement dummies, we take into account the fact that many old

EU members did not explicitly specify which industries are open to migrants from the NMS,

but rather allowed for special job schemes in sectors that experienced labor shortages. In case

of such implicit exceptions, we set the free movement dummy equal to one and multiply it by

a measure of labor shortages in a given industry of an old EU member state. As such measure,

we use the share of firms (in the destination industries) reporting to be constrained by the

factor labor. These data are available from the European Commission Business Survey. To

account for possible endogeneity (arising, for instance, when labor shortages are reported in

industries that grow faster in all EU countries), we control for the overall number of patent

applications in a given two-digit industry (aggregate over all European countries).

1.5 Results

In this section, we first show the effects of migration on total patenting at the origin. Second,

we provide evidence that emigration can reduce patenting asymmetries between less and

more advanced economies. We show OLS as well as 2SLS results. First-stage and reduced

form regressions are provided in the Appendix. Our baseline sample includes all patenting

European countries. In addition, we show separate estimations for the sub-sample of Eastern

European countries.

1.5.1 Migration and Patenting

This section shows that the emigration of labor increases overall innovation, measured by

the number of patent applications per year in a region. As the migration data only allow

us to estimate the effect of emigration at the region level, we aggregate the free movement

variable by industry and region of origin: EU15+4, NMS10, and NMS2. The aggregated F M

11For each origin region we have 31 free movement indicators corresponding to 31 possible destinations. We
aggregate them to one measure by using proximity weights (the inverse log distances between the two largest
cities of two countries.)
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Table 1.1: Patent Applications and Migration, OLS and 2SLS

(1) (2) (3) (4) (5) (6)
OLS OLS OLS 2SLS 2SLS 2SLS

VARIABLES Patents cit. weighted Patents Patents cit. weighted Patents

L2.Migrants 0.0994*** 0.0949** 0.637*** 0.903***
(0.0259) (0.0420) (0.139) (0.199)

L2.Migr.pat.potential 0.0572 1.175***
(0.0420) (0.332)

in EU -0.262*** -0.298*** -0.296*** -0.112 -0.0729 -0.406**
(0.0903) (0.0752) (0.0844) (0.157) (0.205) (0.164)

L2.Trade flow 1.634*** 2.535*** 2.124*** -0.679 -0.945 3.325***
(0.348) (0.432) (0.342) (0.607) (0.877) (0.724)

L2.FDI inflow 2.03e-05** 3.15e-05** 2.10e-05** 1.16e-05 1.84e-05 2.34e-06
(9.82e-06) (1.22e-05) (8.06e-06) (2.07e-05) (2.90e-05) (1.12e-05)

Observations 383 383 383 383 383 383
Region industry FE yes yes yes yes yes yes
Year FE yes yes yes yes yes yes
Clusters 53 53 53 53 53 53
F 6.517 11.29 7.285

Notes: The regressions in this table estimate the relationship between the migration flow out of a country
and innovation in that country. The first three columns are estimated with OLS and the last three columns
use a 2SLS estimation with our instrument based on free movement legislation. The dependent variables
are the number of patent applications in an industry and origin region in a year or, in columns 2 and 5, the
citation-weighted patent applications (i.e., patent applications + forward citations to these patents). Patent
application numbers and citation-weighted counts, number of migrants and trade flows are taken in natural
logarithms (more precisely, for variable x we use log(x +1) to include observations where x = 0). The sample
includes all EU members and countries in the European Free Trade Association. All specifications include year
and region-industry fixed effects. Robust standard errors are clustered at the region-industry level. Sources:
PATSTAT, Eurostat, CEPII *** p<0.01, ** p<0.05, * p<0.1

measure approximates the number of countries to whose labor markets an inventor in a

certain industry and region of origin had access and is normalized to be between 0 and 1,

where 1 corresponds to full access to all EU15+4 countries.

The first three columns of Table 1.1 show the baseline OLS regressions and the last three

columns show 2SLS regressions, which use the labor mobility legislation as an instrument

for migration.12 Columns 1 and 4 estimate the relationship between the overall number

of emigrants and the number of patent applications from inventors in that region. These

12Note that the right to free movement was not symmetric due to a one-sided transition period, e.g. workers of
old EU member states have been able to move to new EU member states as a rule earlier than the other way round.
Thus the instrument varies also with the direction of migration and we observe variation in emigration and
patenting over time for pairs of origin region and industry. We cluster on the origin-industry level to account for
autocorrelation in the regressions in Table 1.1. When we consider asymmetries and citations, there is additional
variation depending on the destination country, such that we cluster on the origin-destination-industry level.
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regressions show that workers’ migration to other EU member states has a significant and

positive effect on patenting in the regions of origin. As both variables are measured in

logarithms, the coefficient can be interpreted as the elasticity: the effect in the IV estimation

in column 4 suggests that a 1% increase in the number of emigrants in an industry causes

patent applications in the region of origin to increase by 0.6%. The 95% confidence interval

for the elasticity is between 0.37 and 0.91. If we consider the average number of emigrants

in the year 2004 (2459 emigrants) and the average number of patent applications 2 years

later (255 applications) for new EU member states per industry, this implies that about 1 to 2

additional applications result from 25 additional emigrants.13 Note however, that this number

only includes migrants in industries that were matched to the patent data, i.e., in which there

is patenting. Furthermore, the number of patent applications in 2006 we have used for this

calculation already includes the additional applications, such that the number of additional

patents is likely to be lower. Despite the noise and the level of aggregation in our data the

regressions are able to reject that there is a negative effect.

The second and fifth columns of Table 1.1 use citation-weighted patents as the treatment

variable, i.e., the number of patent applications plus the number of citations to these patents

in a region, industry, and year. The number of later patents building on and therefore citing a

patent is often used as a measure of quality.14 The citations for more recent cohorts in our

sample are subject to truncation, which is controlled for through year fixed effects. As the

coefficients are similar, we conclude that the quality of patenting has not deteriorated. Thus,

merely a higher propensity of inventors in origin regions to file patents as a result of European

integration does not seem to be the driver of the effect. Of course, the number of later patents

citing a patent (forward citations) is only a rough measure of quality and may be affected

by emigrants spreading information about their home countries’ latest technologies abroad

as well. Nonetheless, a higher number of forward citations would likely be associated with

a greater benefit of source countries’ innovations, since they indicate that more follow-on

innovation built on them.

131% of 2459 emigrants is about 25 and 0.37% (0.91%) of 255 applications is 0.94 (2.32).
14The relationship between citations and the social value of an invention has been documented in a case

study on Computed Tomography scanners in Trajtenberg (1990). A more recent study by Moser et al. (2015)
finds a robust correlation between citations of hybrid corn patents and the improvement in yield reported in
field trial data.

26



KNOWLEDGE REMITTANCES

Columns 3 and 6 differ from the other regressions in Table 1.1 in the migration variable, which

here includes only emigrants with patenting potential. Whereas the OLS regression shows a

smaller and insignificant partial correlation, the coefficient in the IV regression is larger than

the corresponding coefficient for all migrants in column 4.

The OLS estimate is likely to be downward biased due to omitted variables and reverse

causality. If there is an omitted variable in the OLS regressions that is negatively correlated

with emigration and positively with patenting levels, then the OLS estimate is downward

biased. This is very likely and could be driven, for instance, by management quality. A good

manager might lead to a good work and research environment. This results both in high

patenting levels and low emigration from this firm and consequently biases the OLS estimate

downward. Moreover, we might encounter reverse causality in the OLS regressions. If higher

patenting levels lead to less migration, then we observe a negative relationship between the

two variables that goes in the other direction. As a consequence, the OLS estimator is smaller

than it should be and thus downward biased.

Tables A.2 and A.3 in the Appendix provide the first stage results and the reduced form that

complement the 2SLS results analysis. One can see that the instrument is highly relevant in

the first stage and that the overall effect of the three lags for the free movement variables sum

up to a positive effect.

Table A.4 in the Appendix provides the same table with the restricted sample of NMS10

countries (2004 accession years). Due to the level of aggregation in the migration data, the

2SLS effects are not significant. Importantly we find no evidence of a significant negative

effect, which would be expected if the loss of human capital dominated.

1.5.2 Migration and Convergence

While the results of the previous section suggest that emigration can positively affect innova-

tion at the origin, this section investigates whether this positive effect is enough to reduce

patenting asymmetries between less and more advanced economies or whether international

migration still benefits knowledge production at destination countries more. This analysis

is relevant for policy discussions about benefits and costs of free labor mobility in Europe.
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Furthermore, the results in this section serve as a robustness check for the effects found above.

When analyzing asymmetries we use all four dimensions of our dataset: origin, destination,

industry, and year, and can therefore control for unobserved origin- and destination-specific

time-varying changes, which could bias our estimates of patenting elasticity to migration in

Section 1.5.1.

To have a clear direction of migration flows from less to more advanced economies, we restrict

the sample to the origin-destination pairs, where destinations are EU15+4 countries and

origins are new EU member states. In addition, in our baseline sample we consider origin and

destination pairs with Switzerland as a destination and other EU15+4 countries as origins. We

also show the results for migration from Eastern Europe only, and the results are consistent.

For each industry and year, we construct an asymmetry measure as the log difference between

the amount of patent applications at destinations and origins.

On average, destination industries file more than three times the amount of patent applica-

tions compared to origins. As expected, the patent quality of the former is also higher. We

then regress the asymmetry measure on the number of migrants. Table 1.2 presents OLS

(columns 1-3) and 2SLS (columns 4-6) results. The OLS coefficient of migration is slightly

positive, but is not statistically significant. This may be caused by the bias due to higher

migration outflows from more problematic industries. Another reason is that once we move

to the more disaggregated level, we introduce more noise in the migration data (more missing

and zero observations). This especially concerns already disaggregated migration data by skill

and occupation. 2SLS estimates, however, suggest that emigration allows origin industries

to catch up to the patenting level of destinations: a 1% increase in the number of migrants

reduces patenting asymmetries by 0.30% (column 4 and 5 in 1.2). The coefficient for mi-

grants with patenting potential is much larger in magnitude, but is imprecisely estimated

(see column 6). Overall, the regressions’ results can be interpreted within the framework of a

patent production function with decreasing returns to skilled labor: a marginal increase in

patent production at destinations (due to the immigration of skilled labor) is smaller than

the marginal increase in patenting at origins (due to the increase in patenting efficiency), e.g.

because knowledge about the latest technologies was scarce in source countries, while skilled

labor was abundant.
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Table A.6 in the Appendix presents the results from the same specifications but estimated on

a restricted sample with new EU member states as origins and EU15+4 as destinations (thus

excluding emigration from EU15+4 to Switzerland). The obtained coefficients are slightly

smaller in magnitude, but still significant. Table A.7 in the Appendix shows the reduced form

results, where instead of migration figures we use the bilateral free movement dummies.

One of the drawbacks of our migration data is the large amount of missing observations,

which could be either due to the effective absence of migrants or to misreporting.15 This

raises external validity issues to our estimations in terms of a generalization to all European

countries. Therefore, the most interesting results of Table A.7 are in columns 5 and 6 where we

present the coefficients from the regressions over the whole sample of origin and destination

pairs. The number of observations increases multiple times, yet the coefficients for the free

movement dummies are very close to the estimates from the baseline sample. Moreover,

most coefficients are more precisely estimated due to improved power: we note that EU

membership, higher bilateral trade flows and FDI also help the convergence.

While interpreting the regression coefficients, we implicitly assume that migrants stay within

the same industry. This is reasonable, as for skilled migrants the losses associated with

changing the industry are substantial. Hence, they are more likely to seek employment in

the same sector in the destination countries. If the assumption would not hold for some

industries, how would this affect our estimations?16 Suppose there are two industries: L and

M in Poland and Belgium. The Polish migrants from industry L move to Belgium to work in

industry M . Empirically, we observe MBE/PL/M/y to increase. The inflow of the skilled Polish

workers in the Belgian industry M raises its innovation activities (or in the worst case, does

not affect them). The performance of the Polish industry M is likely to remain unchanged.

The asymmetry measure log (
PBE/M/y

PPL/M/y
) either increases or at most stays the same, which goes

in the opposite direction of the reported effect. We thus might underestimate the magnitude

of the effect.

15For example, due to missing migration data we have to drop all observations with Germany as a destination
country.

16There are pairs of NACE industries, between which inventors may indeed be likely to move, for example
between “26 Manufacture of computer, electronic and optical products” and “27 Manufacture of electrical
equipment”.
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Table 1.2: Convergence in Patenting Levels and Migration, OLS and 2SLS

(1) (2) (3) (4) (5) (6)
OLS OLS OLS 2SLS 2SLS 2SLS

l og (
Pdi y

Poi y
) l og (

Pdi y

Poi y
) l og (

Pdi y

Poi y
) l og (

Pdi y

Poi y
) l og (

Pdi y

Poi y
) l og (

Pdi y

Poi y
)

VARIABLES Patents cit. weighted Patents Patents cit. weighted Patents

L2.Migrants 0.0319 0.0376 -0.305** -0.334**
(0.0223) (0.0276) (0.146) (0.158)

L2.Migr.pat.potential 0.117** -1.831
(0.0575) (2.212)

Patents, origin -1.220*** -1.391*** -1.206*** -1.207*** -1.376*** -1.419***
(0.0762) (0.0817) (0.0753) (0.0883) (0.0946) (0.281)

Patents, dest 1.066*** 1.105*** 1.069*** 1.058*** 1.096*** 1.021***
(0.0713) (0.0908) (0.0717) (0.0777) (0.0978) (0.0894)

Within EU 0.00806 -0.0884* 0.0109 0.0194 -0.0759 -0.0180
(0.0483) (0.0531) (0.0487) (0.0520) (0.0572) (0.0635)

GDPd /GDPo -0.173 0.400 -0.197 -0.188 0.384 0.173
(0.316) (0.367) (0.319) (0.338) (0.394) (0.530)

L3.Trade flow -0.0791 -0.0236 -0.0718 -0.0281 0.0326 -0.113
(0.0629) (0.0799) (0.0622) (0.0679) (0.0867) (0.0827)

L3.FDI flow 0.000575 -0.000443 0.000380 -0.000116 -0.00120 0.00254
(0.00668) (0.00668) (0.00671) (0.00783) (0.00786) (0.00926)

Observations 2,946 2,946 2,946 2,864 2,864 2,864
R-squared 0.486 0.551 0.486 0.424 0.500 0.325
Origin-dest-industry FE yes yes yes yes yes yes
Year FE yes yes yes yes yes yes
Clusters 582 582 582 500 500 500
F 83.92 122.8 76.50

Notes: The dependent variable is the natural logarithm of Patent sdest /Patent sor i g i n . Number of migrants,
number of patents (in origin and destination countries), GDP ratio between destination and origin, FDI, and
trade flows are in natural logarithms. The sample includes all EU and EFTA members. All specifications include
year and origin-destination-industry fixed effects. Robust standard errors are clustered at the origin-destination-
industry level. Sources: PATSTAT, Eurostat, CEPII
*** p<0.01, ** p<0.05, * p<0.1
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1.6 The Channel: Knowledge Flows

Having established that emigration leads to an increase in patenting, we want to analyze one

potential channel in more detail: knowledge flows. This section shows that migrants stimulate

knowledge flows from their new destinations to their countries of origin.

Table 1.3 presents the baseline OLS and 2SLS results. The dependent variable is the log count

of citations by patents in the origin to the destination country. This dependent variable

proxies the knowledge flows due to emigration. In the baseline estimations, we allow for

two-year lags between the time of migration and the citations in the patent applications. The

results are similar for a one-year lag but slightly weaker. Importantly, given the structure of

the dataset, we can account for origin-industry and destination-industry shocks. A possible

threat to identifying the coefficient of interest would arise if destination industries, which

experienced a positive patenting shock, started to attract more workers from other countries.

A higher supply of patents from this destination would also mechanically increase the amount

of citations to this country. We can control for such an effect by including the number of

patent applications in the destination industry (with a three year lag).17 In a similar way, we

control for the number of patent applications in the source country. The migration effect is

identified from the within origin-destination variation in the migration stocks and the count

of cross-border citations. Since both dependent and explanatory variables are in natural logs,

the coefficient represents the elasticity of cross-border citations to the number of migrants.

In the first column, we regress the citations on the overall number of migrants Modi y , year,

and origin-destination-industry fixed effects; in column 2 we add additional time-varying

controls; in column 3 we use the number of migrants with patenting potential as the main

independent variable. OLS results suggest a positive association between migration and

cross-border citations. The estimated coefficient for migrants with patenting potential is

robust to all controls and is twice as large compared to the overall migration stock.

Columns 4 to 6 of Table 1.3 show the 2SLS results that yield quantitatively larger elasticities

than the OLS. A 1% increase in emigrants induces a 0.59% growth in cross-border citations

to their origins. Table A.8 in the Appendix summarizes the results for the sub-sample where

17As a rule of thumb, it takes about three years for a patent to be granted.
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Table 1.3: Citations to Destination Industries, OLS and 2SLS

(1) (2) (3) (4) (5) (6)
VARIABLES OLS OLS OLS 2SLS 2SLS 2SLS

L2.Migrants 0.0334* 0.0269 0.799*** 0.588***
(0.0170) (0.0167) (0.213) (0.225)

L2.Migr.pat.potential 0.0638* 2.916
(0.0348) (2.302)

Patents, origin 0.191*** 0.192*** 0.174*** 0.192***
(0.0237) (0.0238) (0.0268) (0.0310)

L3.Patents, dest 0.0435*** 0.0431*** 0.0427*** 0.0219
(0.0145) (0.0145) (0.0158) (0.0236)

Within EU -0.0501 -0.0471 -0.0698* 0.0468
(0.0378) (0.0379) (0.0416) (0.0845)

L3.Trade flow 0.00665 0.0119 -0.104* 0.00902
(0.0392) (0.0390) (0.0617) (0.0440)

L3.FDI flow 0.00780 0.00711 0.0126** -0.0134
(0.00493) (0.00495) (0.00570) (0.0203)

Observations 7,299 7,287 7,287 7,136 7,124 7,124
R-squared 0.080 0.095 0.095
Origin-dest-industry FE yes yes yes yes yes yes
Year FE yes yes yes yes yes yes
Clusters 1322 1320 1320 1159 1157 1157
F 20.29 22.20 14.98

Notes: The dependent variable is number of citations from a region and industry to another country per year.
Citation counts, number of migrants, total number of patent application in origin and destination industries, FDI
and trade flows are taken in natural logarithms. The sample includes all EU and EFTA members. All specifications
include year and origin-destination-industry level fixed effects. Robust standard errors are clustered at the
origin-destination-industry level. Sources: PATSTAT, Eurostat, CEPII
*** p<0.01, ** p<0.05, * p<0.1
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new EU member states are origins and EU15+4 are destinations. Despite the reduction in the

sample size, the main 2SLS coefficients remain positive and significant. The reduced form

regressions (Table A.9 in the Appendix) are also consistent. When we estimate the reduced

form for the whole sample of origins and destinations, the free movement coefficients gain

significance and quantitatively remain almost identical to those from the baseline sample.

This indicates that some of the insignificant results in the baseline regressions (as, for example,

the imprecise coefficient for migrants with patenting potential) are mainly due to power

problems with noisy migration data.

Previous research has emphasized the role of communication between moving researchers

and their former colleagues at the previous employers (e.g. Kaiser et al., 2015; Braunerhjelm

et al., 2015). To test whether the channel they have found for inventors moving between firms

within a country is also the primary channel of international knowledge flows in our setting,

we exclude the inventor’s network. To do this, we exclude citations between inventors and all

employers (applicants) and other inventors they are listed with on a patent application at any

point in time. Table 1.4 reports the results for the restricted sample. While the coefficients

change slightly, they remain positive and significant. Thus only a small part of the effect

seems to be driven by the inventors’ close network. Knowledge flows that this method could

not capture include, for example, if a student at an Eastern European university moves on to

work in Western Europe, filing patents for the first time and citing her professors’ research.

However, the sizable effect that remains suggests that wider spillovers play an important role.

Citations are not always added by the inventor himself but can also be added by the examiner.

One worry might thus be that examiners become more aware of research done in other

European countries and that they consequently are more likely to add citations from these

countries. Alternatively, the effect might be driven by the fact that more patents are filed at

the European Patent Office, where examiners may be more likely to add references to foreign

patents than at the national offices.18 This concern is addressed by Table A.11, which shows

18The latter concern is also addressed in Table A.10, where only citations among patents filed with the USPTO
are included, such that European institutional changes should not affect the results.
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Table 1.4: Citations to Inventor’s Network Excluded

(1) (2) (3) (4) (5) (6)
VARIABLES OLS OLS OLS 2SLS 2SLS 2SLS

L2.Migrants 0.0346** 0.0276* 0.797*** 0.631***
(0.0171) (0.0167) (0.197) (0.203)

L2.Migr.pat.potential 0.0464 3.878*
(0.0314) (2.355)

Patents, origin 0.174*** 0.175*** 0.155*** 0.177***
(0.0226) (0.0226) (0.0262) (0.0358)

L3.Patents, dest 0.0353*** 0.0350*** 0.0344** 0.00732
(0.0134) (0.0134) (0.0150) (0.0247)

Within EU -0.0496 -0.0471 -0.0711* 0.0787
(0.0355) (0.0356) (0.0403) (0.0867)

L3.Trade flow 0.0296 0.0350 -0.0893 0.0312
(0.0389) (0.0387) (0.0597) (0.0484)

L3.FDI flow 0.00982** 0.00925* 0.0150*** -0.0179
(0.00481) (0.00482) (0.00569) (0.0224)

Observations 7,299 7,287 7,287 7,136 7,124 7,124
R-squared 0.077 0.091 0.091
Origin-dest-industry FE yes yes yes yes yes yes
Year FE yes yes yes yes yes yes
Clusters 1322 1320 1320 1159 1157 1157
F 19.18 19.85 10.82

Notes: In this table, citations within the network of the inventor are excluded, i.e., citations from applicants
and inventors with whom the cited inventor has patented at any point in time. The dependent variable is
the number of citations from a region and industry to another country in a year. Citation counts, number of
migrants, total number of patent application in origin and destination industries, FDI and trade flows are taken
in natural logarithms. The sample includes all EU and EFTA members. All specifications include year and
origin-destination-industry level. Robust standard errors are clustered at the origin-destination-industry level.
Sources: PATSTAT, Eurostat, CEPII
*** p<0.01, ** p<0.05, * p<0.1

the results only with citations that were added by the applicant (rather than the examiner or a

third party) according to PATSTAT and we can see that there are no qualitative changes.19

There are a number of ways for the knowledge flows to occur in practice. One possibility is

that emigrants increase the awareness of new knowledge or technologies. This could happen,

for example, if emigrants inform their former colleagues or if they meet at conferences.

Another possibility is that researchers in the source countries are aware of new knowledge or

technologies but need to learn how to use the tacit knowledge embedded in them. A close

contact among former colleagues might spur the transfer of tacit knowledge. Additionally

19In unreported regressions, we limit citations further to only include those that are marked in PATSTAT as
applicant-added and, additionally, where citing and cited patents are both priority patents filed at the USPTO.
The results are qualitatively similar despite the fact that only less than 1% of citations remain.
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return migration can increase innovation in source countries. Often, emigrants return to their

home countries after several years abroad and create start-ups or contribute to innovation in

other ways.20

1.7 Robustness

To confirm the validity of the results, we conducted a number of robustness checks. We find

that the increase in patenting activities as a result of emigration is not driven by different

pre-trends or institutional changes in the European patenting system.

One way to check the validity of the results is to examine pre-trends. If our results are valid,

the coefficient of interest should be zero if we regress citation patterns on future labor market

openings. Figure 1.1 in Section 1.3 shows the annual treatment effects for the regression

of cross-border citations on the free movement variable. We look specifically at bilateral

citations during the time period 15 years before and 15 years after free movement between

two countries has been established. The data we use for this graph are based on patent

applications over the 50 year period from 1965 to 2014. The regression includes year dummies

and country-pair fixed effects to take out trends. The figure shows that there is no significant

change in cross-border citations in the years prior to the establishment of free labor mobility.21

This is reassuring and increases the credibility of our results. It becomes clear that the effect

only starts to gain momentum at the time of the introduction of free movement and builds up

over the following years.

One might also worry that the institutional framework of registering patents has changed in

the EU, especially in the context of EU enlargement and the European Patent Convention.

We thus restrict the sample to patents that have been registered at the United States Patent

and Trademark Office (USPTO). Table A.10 in the Appendix shows the results. While we have

fewer observations, the qualitative results remain the same. The results thus do not seem to

be driven by institutional changes in Europe.

20Our time frame of analysis is more likely to reflect the increasing awareness of new technologies or the
transfer of tacit knowledge.

21Note that this graph uses country-level data, such that the free movement indicator only switches to 1 once
all sectors are open. Some of the (insignificant) increase before time 0 may thus be due to the partial openings
during the transition periods, which we exploit in the main part of the chapter for identification.
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1.8 Conclusion and Policy Implications

This study analyzes the effects of emigration on patenting levels in source countries. We find

that countries that experience emigration increase their level of patenting. We further suggest

that this has led to a catch-up process that brought origin countries closer to the technology

frontier. We also find that the international mobility of people has increased technology and

knowledge spillovers as evidenced by cross-border patent citations in the respective countries.

Specific channels that could have fostered the knowledge spillovers are the transfer of tacit

knowledge, the increased and improved network of inventors and return migration.

One policy recommendation that directly follows from these findings is that the EU could

benefit from further facilitating migration within Europe. As there are no more legal barriers

to free labor mobility, hindering factors are mostly language and administrative barriers. The

EU could reduce these barriers by ensuring the recognition of foreign qualifications and

the promotion of language courses at all age levels. In this way, the EU can exploit the full

potential of migrants both for destination and source countries.

Another policy implication is to ease skilled migration to Europe from outside the European

Union. This could be achieved by easing the access to European labor markets and the

recruitment of highly qualified foreign workers. While the Blue Card has been a step in this

direction, its scope could be increased to obtain a higher impact and administrative barriers

should be reduced. For those skilled migrants that are already in Europe, for instance skilled

refugees, labor market restrictions should be lifted to ease labor market integration. If these

people can be integrated fast into qualified positions without a loss in human capital, the

innovation system would greatly benefit.

We have shown in this chapter that source countries can benefit from emigration through

knowledge flowing back into the country. These benefits of knowledge flows can be maxi-

mized by facilitating research networks with emigrated inventors, for example by organising

conferences in the origin countries. Furthermore, governments can design programs to ac-

tively keep the diaspora engaged and by encouraging and facilitating return migration. Return

migrants bring back the newly gained knowledge and many times create their own start-ups

which can foster development in the countries of origin.
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While this chapter establishes that knowledge flows mitigate the negative consequences of

emigration, further research is needed to shed light on the precise way these knowledge flows

are created and characterized. Do migrants possess tacit knowledge that flows with people

but cannot be transferred by other means? Or do migrants enlarge the R&D network and

create better awareness of technologies in other countries? Do migrants have a competitive

advantage in negotiating licensing fees with their country of origin? These open questions

may guide further research in order to better understand how to increase knowledge flows

and maximise their benefits.
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Chapter 2

Small Steps or Giant Leaps?

Competition and the Size of Innovations

2.1 Introduction

“We wanted flying cars, instead we got 140 characters.”

— from Founders Fund’s manifesto

This statement, often attributed to the co-founder of PayPal and Founders Fund, Peter Thiel,

succinctly expresses the disappointment felt by many when comparing past expectations to

the actual technological progress of the last decades. The enthusiasm after breakthroughs

such as the Moon landing seems to have given way to an aspiration of quick profits through

tiny improvements, for instance in communication technology with social media websites and

apps. Another PayPal co-founder, Elon Musk, even felt compelled by the public’s apparently

waning interest in attempting “giant leaps” to other planets to pour his fortune into a risky

space start-up.1

But is there actually any empirical evidence for this sentiment beyond anecdotes, i.e., has

corporate innovation really changed in recent decades? R&D spending has increased over

this time period and appears to have paid off, at least when measured by the number of

1The title of this chapter is a reference to Neil Armstrong’s first words from the lunar surface on 21 July 1969:
“That’s one small step for (a) man, one giant leap for mankind.” https://www.hq.nasa.gov/office/pao/
History/alsj/a11/a11.step.html (last accessed on 5 September 2017).
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granted patents. At the same time, there has been a puzzling decrease in groundbreaking

innovations from corporate R&D. Arora et al. (2015) come up with a number of potential

explanations for their observation that firms’ innovation has indeed shifted towards more

incremental innovation. One of them attributes the trend to an increase in competition

due to globalization. However, the authors emphasize that their evidence only suggests a

relationship, but not necessarily causality.

The present study makes three main contributions. First, the choice between innovation

technologies targeting small or large inventive steps is incorporated into an R&D model

with interesting implications. Second, a new measure is developed to quantify the types

of innovations from patent abstracts. Third, the measure is used in instrumental variable

regressions to estimate the causal relationship between import competition and the type of

innovation.

The model endogenizes the allocation of resources to projects aiming at large inventive

steps versus more incremental ones. Motivated by a product market competition model

based on Aghion et al. (2001), I formalize how competition affects profits and, as a result,

R&D portfolio choice. Competition is modeled as the extent of substitutability between

the duopolists’ products, but allows for a wide range of interpretations, such as trade tariffs

or technological standardization. In a dynamic framework I show that an increase in the

intensity of competition leads to a decline in the share of large innovations in total innovations.

This effect is compatible with an inverted-U relationship between competition and the total

amount of innovation. However, the negative relationship between competition and the share

of large innovations holds independently of the initial level of competition. Furthermore, the

intensity of competition maximizing the amount of large innovation is lower than the intensity

maximizing overall innovation (which, in turn, is lower than the one maximizing the amount

of small innovation). If the social value of large innovations is higher, the socially optimal

level of competition is lower than the one maximizing the total number of innovations.

A firm’s incentives to invest in R&D stem from two sources: On the one hand, successful cost

reduction allows the firm to appropriate part of the social benefit of the innovation. On the

other hand, there is an additional component to higher profits resulting from R&D that is

due to business stealing (Mankiw and Whinston, 1986). In the model, market size is assumed
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to be fixed. Changes in competition affect business stealing more for incremental steps,

where a product is very comparable to its predecessor and to the products of competitors

without innovations. By contrast, for more radical innovations, this effect is negligible and the

innovator effectively becomes a monopolist.2 This study attempts to not only illuminate a

crucial aspect in the relationship between competition and innovation, but also to reconcile

seemingly contradictory observations such as the trend towards both more patents and fewer

groundbreaking innovations. This puzzle may thus exist not (only) because of an increased

ease of patenting even minor innovations over time, but because firms have adjusted their

R&D strategies to increased foreign competition and produce more incremental R&D, which

is less risky and leads to more, albeit smaller, steps.

The predicted relationship between competition and the type of innovation is tested using

changes in competitive pressure due to growing imports from China with the data and the

initial conditions instrument from Bloom et al. (2016). To quantify the type of innovation in a

way that is coherent with the model, I calculate novel measures based on the similarity of a

firm’s patents to a comparison group of patents. The idea is that larger inventive steps lead a

firm to areas in technology space which are more distant from previous innovations. Different

technologies entail changes in the terms occurring in patent abstracts. Thus the continuous

similarity variables may be interpreted as inverse measures of the size of inventive steps.

The estimations support the causal relationship between increasing competition and a shift

towards more incremental research, i.e., the patents become more similar to a firm’s own past

research. While this effect is a change of firms’ behavior, I also investigate whether increasing

import competition affected the selection of firms which are still observed patenting in

later periods, as the direction of research may be hard to adjust. The analysis of outcomes

for firms with different initial R&D types suggests that the primary channel is a change in

firms’ behavior. There is some evidence that the sales of firms with more incremental initial

research decreased less, following an increase in Chinese import competition, than those

whose innovations were less incremental. Thus competition makes small steps relatively

more valuable, a fact that is in line with the model.

2Drastic innovation implies complete business stealing, as other firms are forced out of the market by a large
innovation. However, the important difference is that post-innovation profits are independent of competition.
Profits after a large innovation are not affected by policies favoring competitors which can no longer be active in
the market due to their technological lag.
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There exists a well developed literature on the relationship between competition and inno-

vation. Schumpeter (1942) introduces the idea that market power is crucial to innovative

activity, both in terms of large firms’ capability to innovate – he describes advantages to scale

such as the ability to leverage the abilities of “better brains” or improved access to finance –

and the incentives for “creative destruction” arising from the prospect of profits, which could

not exist under perfect competition. A seminal contribution by Arrow (1962) points out the

“replacement effect” in the opposite direction: A monopolist has little incentive to invent a

new or improved product if this leads to self-cannibalization. I.e., it steals the old product’s

business, while not increasing profits as much as for an entrant, from whose perspective the

entire market share of the new product is part of the innovation’s net payoff. Schmidt’s (1997)

model shows that separation of ownership and control can give rise to another positive effect

of competition on the incentives for managers through the increased threat of liquidation.

However, reduced profits from a cost reduction through increased competition may lead to a

non-monotonic relationship.

An inverted-U relationship between competition and innovation is also supported empirically

in Aghion et al.’s (2005) influential paper. In their theoretical model, the authors find that

incentives for innovation through escape competition and the Schumpeterian effect dominate

at opposite ends of the spectrum of competition intensities due to the composition of industry

structures (which, in their model, means duopolists may be at the same technological level or

one may be ahead of the other).

Nonetheless, the survey by Schmutzler (2010) on the general relationship between competi-

tion and innovation concludes that it remains an “unresolved question”.3 Most studies in this

literature do not distinguish between different types of innovations. However, a small number

of publications specifically address this question and a number of further papers deal with

the size of the targeted innovations in extensions.4 The most relevant ones in the context of

this study are briefly summarized below.

3An earlier survey by Gilbert (2006) similarly describes the conclusions from the literature as “meager”.
4Note that this is different from the distinction between process and product innovation. Either of these

innovations may be small or large, as the new product or process may be more or less similar to what has existed
before. However, in my model innovations affect only the current market through cost reductions, such that
process innovation is the appropriate concept. Nonetheless, in reality the distinction is less sharp and a new
product, such as the smartphone, may render products in various other markets obsolete (such as MP3 players
and compact digital cameras).
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Cabral (1994) is the first paper to study this question and shows that firms in the market will

take on less risk in their R&D portfolios than would be socially optimal due to the effect of the

competitor’s success probability on the difference between social and private returns. Aghion

and Howitt (1992) come to a similar conclusion in an endogenous growth model, in which

the result is driven by the effect of business stealing. However, none of these papers focuses

on the change in this bias when the intensity of competition increases. In a later paper, Cabral

(2003) studies the effect of a firm’s position on the quality ladder on its R&D strategy. He finds

that even with an infinite horizon firms will play the risky strategy when sufficiently behind

and the safe one when they lead. The critical assumption is that there is a lower and an upper

limit to a firm’s profit, such that there is indeed “less to lose” when behind than when ahead.

There is no intensity of competition modeled beyond the technological position, which does

not capture a parameter that competition or trade policy can directly affect. Kwon (2010)

studies the influence of the number of competitors on firms’ R&D choice between a risky and

safe project. Assuming that each of the two innovations can be patented only by a single firm,

which is drawn at random among the innovators, Kwon finds a bias towards low risk projects

as well. He also analyzes the change of this bias with an increase in competition, which in his

model means a higher number of competitors. Understanding competition in this way, the

study predicts that more competition makes riskier projects more attractive due to the lower

probability of parallel innovation. In my model, by contrast, the number of firms is fixed and

competition only affects their profits.

A distinction between exploration and exploitation has also been made more recently by

Manso (2011) and a series of following papers which further explore the topic (e.g. Ederer,

2013; Ederer and Manso, 2013; Balsmeier et al., 2017). These studies approach the question

from an organizational perspective, abstracting from the market structure that determines

which type of innovation the owner of a firm wishes to incentivize for an agent or a team

to choose in the first place. Their models feature a principal-agent framework, in which an

optimal incentive contract is determined, whereas my study is concerned with the effect of

the incentives that emerge in the market on different types of R&D investments. Connecting

these two elements and exploring the transmission of market incentives to contracts and
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organizational incentive structures is an interesting area for future research, especially since

R&D managers require psychological elements to be taken into account.5

While the interpretation of the competition parameter in this and similar models is rather

abstract, the empirical part of the chapter focuses on one particular type of competition that

has received increasing attention recently: the competition that comes with openness to

trade and in particular the effect of Chinese import competition. Various recent articles have

studied the impact of this “China Shock” (Autor et al., 2016b) on American and European

economies. This surge in imports from China has been the result of increasing openness to

global markets by the country’s government, in particular through broad reforms in 1993 to

enable the country to become a WTO member (Naughton, 2007). The accession followed in

2001.

Whereas much of this literature has been concerned with the effects of these imports on the

domestic labor markets (Autor et al., 2013; Acemoglu et al., 2015) and a diverse set of other

questions, two recent studies in this literature, which explore the effect on innovation, come to

opposite conclusions: Bloom et al.’s (2016) study finds that European firms are driven towards

increased technological upgrading and more innovation by competition (an effect “within

firms”), as well as an increased chance of survival for firms which are already technologically

ahead. The empirical part of my study builds on their work, combining their data with

additional data from PATSTAT, the Worldwide Patent Statistical Database of the European

Patent Office. Autor et al.’s (2016a) later working paper finds that innovation has decreased

in American firms as a result of increased imports from China. While several reasons for the

opposite sign of the effect compared to Bloom et al.’s (2016) work are discussed, in reference

to Aghion et al. (2005) the authors suggest that the more competitive markets in the U.S.

may simply be beyond the maximum of the inverted-U, such that additional competition

decreases innovation.

The next section of the chapter presents the model and derives its implications for the effects

of competition on the types of corporate innovation. Section 2.3 describes the empirical

5Lacetera and Zirulia (2012) combine both approaches, however the choice between basic and applied
research in their model does not reflect the feature of interest to my study. In their paper, the distinction between
the two types is that basic research is open, which leads to externalities and from which the researcher derives
utility, while in my study the larger inventive step of more radical (and possibly more basic) research endeavors
is essential.

44



COMPETITION AND THE SIZE OF INNOVATIONS

approach and the construction of the measures for the types of innovation, as well as the

empirical results. Section 2.4 summarizes the conclusions and outlines potential directions

for future research. The appendix presents a model without the simplifying assumptions

that enabled an analytical solution of the main model. Furthermore, additional empirical

robustness checks are shown.

2.2 Model

2.2.1 Set-Up

Incentives for different types of R&D investments depend on the difference between product

market profits with and without the innovations. This section first presents the set-up of the

dynamic R&D model and the assumptions regarding profit levels with different technologies

and their changes with competition. In particular, while being ahead by a large step always

yields higher profits than by a small step, it is assumed that higher competition increases

profits only for a firm leading by a small step. A large step yields constant monopoly profits.

The motivation for these features is based on models from Aghion et al. (2001, 2002)6 and is

discussed after the presentation of the model. These assumptions are then shown to imply a

decreasing share of large innovations in all innovations. This decreasing share is compatible

with Aghion et al.’s (2005) inverted-U relationship between competition and total innovation

and holds independently of the initial level of competition, i.e., the position on the curve. The

maximum of the absolute level of large innovation then occurs at a lower level of competition

than that of total innovation. Thus the model suggests that maximizing total innovation may

not be the socially optimal policy if large steps lead to higher externalities.

In the R&D model, there are two firms competing in an industry over an infinite time horizon.

In each period, innovations of different types and firms are disjoint events, such that at

most one may occur, and the probabilities of small and large innovations for the two firms

depend on their investments in the previous round. The R&D outcome determines the relative

6Note that only the working paper of Aghion et al.’s (2002) study models the product market explicitly. The
published version (Aghion et al., 2005) abstracts away from the details of product market competition and
instead introduces a parameter measuring the extent to which the duopolists are able to collude.
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technological positions of the firms and their product market profits. Then R&D investments

are made and the next period follows. The firms are assumed to be myopic in the sense

that they consider only next period’s product market profit and current R&D costs in their

optimization.

The industry state is characterized by their relative positions: They may be at the same

technological level or one firm may be ahead of the other, either by a small or by a large step.

Following Aghion et al. (2005), it is assumed that the leading firm cannot invest in R&D. A

firm leading by a large step earns a profit of πL = 1. Irrespective of the size of the lag, the

follower can invest only in catch-up R&D and earns a product market profit of πF = 0. The

intensity of competition is captured by the variable ∆ ∈ [0, 1
2 ] and affects product market

profits for leveled firms and small step leaders. Each leveled firm earns π0 = 1
2 −∆, i.e., higher

competition reduces the sum of their profits from 1, which equals a large step leader’s profit,

to 0. A firm leading by a small step earns πS = 1
2 +∆. Thus the firms’ profits increase from 1

2

to 1 as competition increases. Only firms in leveled industries have two continuous choice

variables, nL for large steps and nS for small steps. The variables ni , i ∈ {L,S,F } are the

success probabilities for each type of innovation in a period and are associated with costs7

2n2
i , i ∈ {F,S,L}. Since it is assumed that there are no parallel innovations, R&D costs and

profits ensure that the sum of probabilities in equilibrium does not exceed 1. In addition, the

laggard’s benefits from spillovers are reflected in the help parameter h (with h < 7
8 ).8 In terms

of model dynamics, this parameter allows an exogenous influence on the tendency of the

economy to return to the leveled state (or, equivalently, the probability that an industry is

in the leveled state at any point in time). The help parameter can be seen as an additional

policy variable reflecting the strength of intellectual property protection and the extent of

7Since this study is concerned primarily with the changes in investments in the two innovation technologies
rather than their levels, in the model the equilibrium probability of achieving a large innovation will never be
smaller than that of a small innovation. This is the case simply because cost functions are assumed to be the
same for both technologies and thus a large cost reduction is more attractive by definition. The appendix shows
that the levels may be easily adjusted by introducing a cost parameter, such that large innovations are more
costly. Since the mechanism is not affected by this, I opted for improved analytical tractability in the main part
of the chapter and omitted these cost parameters.

8This help parameter benefits the laggard by increasing the probability of catching up and earning the profit
π0 in the leveled state next period. Such assumptions on h are not necessary in the model in the appendix,
since the probability of two innovations occurring at the same time is 0 in continuous time. The model in the
appendix supports the results of this section.
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Figure 2.1: Possible Positions on the Technology Ladder

F 0 S L

Notes: Firms may be equally advanced (0), lead by a small step (S) or by a large step (L), or lag behind as follower

(F ).

knowledge spillovers between companies.9 These positions10 and the possible movements

between them are depicted in Figure 2.1.

Since the model abstracts away from strategic interaction and firms look ahead only one

period, a firm’s profit and R&D investment depend only on its technological position and the

intensity of competition. The maximization problem for firms in the leveled state is

V0 = max
{nL ,nS }

π0 −2n2
L −2n2

S (2.1)

+nLπL +nSπS + (nL +nS)πF + (1−nL −nS −nL −nS)π0,

whereπ0 is the product market profit of a firm in the neck-and-neck state, from which the total

costs of R&D are subtracted. After the current period, the firm may find itself in a different

state. For simplicity, the next period is not discounted and its value is the expected profit in

the product market. Furthermore, as it is assumed that only either one or no innovation may

occur in each sector per period, parallel innovations are not considered. With probability

nL the firm makes a large innovation and with nS a small one, leading to profits πL and πS ,

respectively, in the product market. The next term takes the potential transition to position F

into account: If the other firm innovates, whose investment variables are nL and nS and are

taken as given by the optimizing firm, the future profit will be that of a follower πF . Finally,

9An example of a policy likely to affect these spillovers are non-compete contracts, which have been found
to even affect relocation decisions of knowledge workers by Marx et al. (2015). As a result of the assumption that
firms look ahead only one period, increasing h always increases innovation in this chapter’s model. If firms take
all future periods into account as in the model in the appendix, however, faster catch-up decreases the value of
being ahead.

10From the perspective of the following firm, the size of the lag does not matter such that only one position is
depicted.
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none of these transitions may occur and the next period’s present value will be the same

neck-and-neck present value as in the current period.

A lagging firm only has to choose the level of catch-up R&D nF in its optimization (where

nF is the probability of catching up, for simplicity irrespective of the lag size), such that its

objective function is:

VF = max
nF

πF −2n2
F + (nF +h)π0 + (1−nF −h)πF (2.2)

The structure of the objective function VF is similar to that of leveled firms, except that there

are fewer choices to make and the help parameter h plays a role in influencing the probability

of a successful catch-up. Finally, a firm leading by a small or large step has no decisions to

take and no R&D costs, such that there is no R&D optimization.

Firms’ maximization leads to the first order conditions below, which give the optimal invest-

ment levels.

4nL =πL −π0 (2.3)

4nS =πS −π0 (2.4)

4nF =π0 −πF (2.5)

To be consistent with a steady state, the probabilities that an industry is in either of the three

states (leveled with probability µ0 or unleveled with probability µF , where one firm is leading

by either a large step or by a small step) have to sum to one: µ0 +µF = 1. Furthermore, the

inflows and outflows of the states have to be equal.

2µ0(nL +nS) =µF (nF +h) (2.6)

The average innovation rates IL for large and IS for small steps in the economy depend on

the investment choices of firms in the leveled state, as well as the probability of the industry

being in that state µ0. The decrease of this latter probability for high levels of competition is
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the source of the downward sloping part of the inverted-U relationship between competition

and innovation.

IL = 2µ0nL (2.7)

IS = 2µ0nS (2.8)

These innovation rates describe the expected number of innovations per period for the

average industry for large and small steps, respectively.11 The results below describe how

these rates are affected by the intensity of competition ∆.

2.2.2 Discussion of the Model

In order to focus most clearly on the mechanisms leading to the results, the model makes

several assumptions. The most important ones are discussed in this section.

The model summarizes the product market in the profit levels and, in particular, assumes

that leveled firms’ profits decrease in competition and a small step leader’s profits increase,

while profits after a large step are constant. These features are consistent with models such as

Aghion et al. (2001), as explored further in Appendix B.4. These models assume that consumer

spending is fixed in a duopolistic industry. Competition is modeled as the substitutability

between the firms’ products. The size of the inventive step is reflected in the cost ratio. In

the extreme case where a large innovation leads to zero costs, the innovator serves the entire

market and its profit equals consumer spending, which is 1, independently of competition.

The idea is that if a technological advance is sufficiently large, the other firm will leave the

market and thus policies, which make it easier for a competitor to steal business, will have

no effect. Increasing competition decreases the profits of leveled firms, however, and it

11The innovation rates could also be interpreted as the probability of an innovation of a certain type in a
period. E.g. the probability of a large innovation (IL) depends on the probability that the industry is in the leveled
state (µ0), because this is necessary for innovations at the technological frontier. Furthermore, IL depends on
the probability of producing a large innovation in the leveled state for each firm (nL). This is multiplied by two,
because there are two firms and innovations are disjoint events.
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increases the benefits of leading by a small step.12 A small technological improvement by one

competitor is not sufficient to take over the entire market, e.g. because of barriers such as

tariffs, transportation costs or incompatibility. Thus reducing such barriers is assumed to

have a bigger effect on competitors which are technologically close. The empirical analysis

below provides suggestive evidence that small steps indeed become more beneficial under

higher competition.

To focus on the changes in industry structure and innovation, the model assumes that there

are no parallel innovations. This simplifies firms’ optimization and could be justified by the

fact that, as the period under consideration becomes shorter, success probabilities decrease

and the probability of parallel innovation may become negligible.13 The assumption that

firms look ahead only one period can be explained by the limited tenure of CEOs and the

insufficient alignment of their incentives with long-term investors’ interests.14 The consider-

ably more complex model in the appendix does not make this assumption and the results

survive in the numerical solution. An assumption that remains, however, is that while firms

maximize their present value through their R&D investments, they are unable to commit to

future implementation of strategies that are not profit maximizing from the perspective of

another position, in which the firm might find itself later.15 The exclusion of such strategic

considerations can again be justified by a high probability that CEOs will be replaced if they

do not maximize the company’s present value at any point in time. Thus the behavior of the

future company, whether decided by the same CEO or another, is constrained and has to be

taken as given by the current CEO.

The fact that the number of firms in the model is fixed may be justified by the existence of

strong barriers to entry in many innovative sectors. In other markets, however, the effect on

entrepreneurs’ innovation should factor into competition policy. While the optimal level of

12The model in the appendix assumes that small steps are sufficiently large for the leader’s profits to increase
with competition. Besides the arguments discussed in the context of the model in the appendix, it should be
noted that this model’s emphasis is on comparing drastic to all other innovations. The exclusion of smaller
advances also seems justified in view of the empirical analysis: Working with patent data, a truncation of
observed inventive steps is inevitable, i.e., the smallest improvements will not satisfy patentability requirements.

13The two innovation technologies for the two firms could also be thought of as leading into four different
technological directions and only at most one is “correct” and leads to an improvement.

14This simplification is also made in Chapter 12 of Aghion and Howitt (2008).
15A leader, for example, might want to threaten higher R&D investments in the leveled state, than is profitable

at that position, in order to deter the other firm from investing in catch-up R&D.
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competition may change, the shift towards small innovations should persist if outside innova-

tors can replace incumbents and compare post-innovation profits. Competition increases

the profits which entrants can expect after a small innovation, while large innovations yield

constant monopoly profits. Similarly, if outsiders need to enter through catch-up innovation,

their incentives upon entry would be shifted towards small steps by competition.

2.2.3 Results

The innovation rates IL and IS , as defined above, take only innovations at the technological

frontier into account, while catch-up innovation does not push beyond the best available

technology in the industry. R&D investments in these types of innovation are therefore

made only when firms are at the same technological position. Their success probabilities for

both types of innovation (nS for small steps and nL for large steps) are shown in Figure 2.2.

Both investments increase in competition (∆) because pre-innovation profits (i.e., profits in

the leveled state) decrease and incentives are determined by the difference between post-

innovation and pre-innovation profits. The difference in the slope is the result of increasing

profits for the small step leader, but constant profits after large innovations. Figure 2.2 also

shows that in the unleveled states the follower’s investment in catching up (nF ) decreases

with competition, as reaching the leveled state becomes less attractive.

Proposition 1. The share of large steps in all innovations in the economy decreases with the

intensity of competition.
d

d∆

(
IL

IL + IS

)
< 0 (2.9)

Proof. See appendix, Section B.1.

The proposition states that the share of large innovations declines for any level of competition.

The change in this share with competition can be seen in Figure 2.3. The intuition is that more

competition makes both types of innovation more attractive as it decreases a neck-and-neck

firm’s profits. However, only small innovation additionally becomes more attractive because

of increased post-innovation profits through additional business stealing. The inverted-U

relationship between total innovation and competition is maintained in the numerically

solved model in the appendix, in which profits follow directly from a product market model.
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Figure 2.2: R&D Investments in Leveled State
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Notes: Investments in R&D of each type for a firm in the leveled industry state (nL in dashed green and nS in

dotted red) and in catch-up innovation for unleveled states (nF in solid blue). (h = 0.2)

Figure 2.3: Share of Large Innovations
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Notes: This graph shows the share of large innovations in all innovations IL
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competition ∆. (h = 0.2.)
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Figure 2.4: Absolute Levels of Innovation
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Notes: This graph shows the absolute levels of total innovations I , as well as large (IL) and small (IS ) innovations,

for a given intensity of competition (∆): I in solid black, IL in dashed green and IS in dotted red. (h = 0.2)

As Figure 2.4 demonstrates, for some parameter values, the amounts of small and large innova-

tion (i.e., innovation rates IS and IL) may themselves follow an inverted-U, not only their sum.

(In the figure, this is only the case for IS .) The fact that the inverted-U relationship between

overall innovation and competition can persist indicates that there is no conflict between

this study and the results of Aghion et al. (2005). Rather, this model investigates the com-

position of the total amount of innovation, which is more commonly studied. Nonetheless,

as described below, while the socially optimal level of competition may still be interior (i.e.,

∆ ∈ (0, 1
2 )), it need not be the level that maximizes overall competition, when externalities of

different types of innovation differ. Note that unlike the effect of competition on the amount

of innovation, the effect on the share of large innovations stated in Proposition 1 is negative,

independently of the initial level of competition in the model. Thus, while the effect of an

increase in competition, e.g. due to globalization, on total innovation may be positive or

negative, the model unambiguously predicts a shift towards smaller steps.16

16A statement from Google executives Schmidt and Rosenberg (2014) fits well with the model’s prediction
that, as globalization has increased competition, the share of resources devoted by firms to catch-up and small
step innovation has increased. In their book “How Google Works” they lament: “Business leaders spend much of
their time watching and copying the competition, and when they do finally break away and try something new,
they are careful risk-takers, developing only incremental, low-impact changes.”
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Aghion et al. (2005) explain the inverted-U relationship between competition and innova-

tion as the interplay of two countervailing effects: On the one hand, more competition

increases the difference between pre-innovation and post-innovation profits in the leveled

state (“escape competition”). On the other hand, the incentives for a laggard to catch up to

the technological frontier decrease as competition becomes more intense (“Schumpeterian

competition”), as is easily seen in the extreme case of Bertrand competition, where both,

lagging behind and being at the same level of the competitor, yield zero profits. They assume

that a leader cannot benefit from additional innovation, e.g. because of spillovers, such that

it never invests in R&D. A crucial feature of their model is the “composition effect”, which

results from the decreasing share of industries being in the leveled state, rather than in the

unleveled state, as competition increases, and which determines which of the two previous

effects dominates. For low levels of competition, an industry is more likely to be in the leveled

state, such that the positive escape competition effect on neck-and-neck firms’ innovation

prevails. For high levels of competition, an industry is more often in the unleveled state

and further increases in competition make catching up and reaching the leveled state less

attractive for the follower (while the leader does not innovate at all).

Proposition 2. The absolute level of small innovation IS follows an inverted-U shape for h < 1
4

and otherwise is increasing in competition for any initial level of competition. The absolute

level of large innovation IL is decreasing in competition if h ≤ 1+p6
8 and increasing if h ≥ 1+p5

4 .

If h is in between these values, IL has an inverted-U shape.

Total innovation I = IL + IS is increasing in competition if h ≥
√

1
6 and is otherwise inverted-U

shaped.

Proof. See appendix, Section B.2.

Intuitively, the reason for the inverted-U is that incentives to innovate in the leveled state

increase with competition, but the share of industries able to innovate at the technology

frontier decreases as fewer industries are in that state. Figure 2.5 shows the share of leveled

industries µ0 as a function of competition.17

17The parameter h helps the follower to catch up. Hence, the higher this help parameter is, the more likely is
it that an increase in competition increases innovation, since it increases the probability of being in the leveled
state, in which competition increases R&D investments.
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Figure 2.5: Share of Industries in Leveled State
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Notes: Share of industries in the leveled state for a given intensity of competition (∆). (h = 0.2)

While for a model with one type of innovation the level of competition at which the curve

reaches its maximum may be of interest for the optimal policy, a question that arises only

in this chapter’s model is the relative position of the curves’ maxima. In Figure 2.4 total

innovation is maximized at the interior competition intensity ∆∗, while the expected number

of small innovations per period IS is maximized at the higher level ∆∗
S . By contrast, the

innovation rate for large innovations is maximized at the lowest level of competition (∆∗
L = 0).

Proposition 3. The level of competition ∆∗
L , at which the absolute amount of large step inno-

vation the economy produces is maximized, is at most ∆∗, which maximizes total innovation.

The level ∆∗
S , which maximizes the amount of small step innovation, is at least as high as ∆∗.

∆∗
L ≤∆∗ ≤∆∗

S

Proof. See appendix, Section B.3.

The proposition confirms that this order of the competition intensities maximizing large,

total and small innovation holds generally. The variable of interest to policy makers – the

socially optimal level of competition – thus depends on the relative social value of small and

large innovations. Taking a step back from this abstract model, this means that the fact that

small and large innovations are likely to have different net social values, the optimal policy

differs from an unweighted maximization of the number of innovations, e.g. approximated
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by the number of patents. If larger innovations tend to have higher externalities, the optimal

level of competition could be lower than the one that maximizes overall innovations. The

optimal competition policy ideally takes technological differences into account. Established

industries, in which the social benefits of further large step innovations seem low, may be

regulated more tightly, whereas lenient regulation may be appropriate for nascent industries

with new technologies, where experimentation is relatively more likely to yield sizable positive

externalities on consumers and other innovators.

Proposition 2 shows that the model is compatible with the inverted-U relationship found in

the literature. Proposition 3 demonstrates that the effects of competition on different types of

innovation are relevant for the optimal policy. The main prediction of the model, however, is

Proposition 1.

Hypothesis: An increase in the intensity of competition decreases the average size of corporate

innovations.

This hypothesis is tested in the next section. The results from the model are driven by the

effect of competition on profits at different technological positions.18 Below, the impact of

the type of inital innovation on various economic outcomes for firms is tested. The empirical

results suggest that competition indeed increases the relative value of small steps through

higher sales.

2.3 Empirical Identification of the Relationship between Com-

petition and the Type of R&D

The model presented in the previous section and the research question itself contain variables

which pose an empirical challenge not only because of identification, but also because of

measurement. This section discusses the study’s approach to quantifying competition and,

18For simplicity, the relationship between competition and product market profits with different relative
technological positions is an assumption in this section, which then explores the implications. By contrast, in
Appendix B.4, a similar relationship emerges from a product market competition model based on Aghion et al.
(2001). The empirical results are also in line with this model. Higher competition enables the leading firm to sell
more with given marginal costs.
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more specific to this context, the type of innovation, so as to avoid “making assumptions

about how unmeasurable things affected other unmeasurable things”.19

There are various ways to measure competition and the substitutability parameter α in

models like Aghion et al. (2001) may be interpreted as representing different policies affecting

competition. One important area in which policy makers can influence the extent to which

firms are able to enter each others’ market is trade policy. For instance, Autor et al. (2016b)

suggest the inverted-U relationship between competition and innovation from Aghion et al.

(2005) as a potential explanation for the contradiction between their results and Bloom

et al.’s (2016), thereby interpreting competition in the R&D model as import competition.

While production processes may well differ between Chinese exporters and their European

competitors, e.g. due to lower labor costs, the matching industry classification in the data set

suggests that they serve the same markets, such as the one for “Vehicular Lighting Equipment”

(SIC 3647). Note that the analysis includes only patents of European firms and that their

market position may be threatened even if the imported goods are of lower quality, as long

as they are sufficiently cheaper. The model’s intuition is still reflected in this setting, since a

small improvement in quality (or a decrease in production costs) could then be more valuable

by preventing business stealing. A sufficiently large technological advantage always allows a

firm to sell to the entire market, but the increased availability of imported goods in the market

makes a small step relatively more likely to attract customers.

A bigger challenge is posed by the type of innovation, which far fewer empirical studies have

tried to quantify. To get a continuous measure of a patent’s similarity compared to previ-

ous research I use natural language processing to evaluate patent abstracts. Such machine

learning methods are gaining popularity in economics in general, as well as in innovation

economics in particular20. Hoberg and Phillips (2010) and Kaplan and Vakili (2015) may be

the methodologically most closely related papers. The former study uses the similarity of

product descriptions to study mergers and acquisitions and the latter constructs a binary

19In one of Paul Krugman’s New York Times columns from August 2013, he argued that a reason for why New
Growth Theory fell out of favor was that “too much of it involved making assumptions about how unmeasurable
things affected other unmeasurable things”. URL: https://krugman.blogs.nytimes.com/2013/08/18/the-new-
growth-fizzle/ (last accessed on 30 May 2017).

20Recent examples of textual analysis methods and applications in economics include Baker et al. (2016),
Hansen et al. (2017) and Hansen and McMahon (2016). For overviews of available methods see Balsmeier et al.
(2016) and Bholat et al. (2015).
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measure of novelty, which is calculated using a latent Dirichlet allocation (LDA) (Blei et al.,

2003), to evaluate the “cognitive novelty” of innovations. My preferred measure, which is

described below, uses a different approach, but in the appendix I verify that the results are

qualitatively unchanged when using LDA, among other variations in the calculation of the

similarity measure. Kaplan and Vakili (2015) is not only relevant to this study because of their

technical approach, but also because of the economic insight gained from their analysis: Their

study draws a clear distinction between the economic value and the “cognitive novelty” of

an innovation, which may be viewed as corresponding to profitability in the product market

and step size (or cost reduction in the model in the appendix) of an innovation, respectively.

Hence, I estimate how the average novelty in a market is affected by import competition. The

results suggest that this choice is indeed driven by a change in the private economic value of

novelty.

Another advantage of the similarity measure over citation-based measures is that it is fixed

at the time of the application, whereas forward citations accumulate afterwards as further

innovations build on the patent. The extent of follow-on innovation, however, may itself

be the result of the economic value rather than of cognitive novelty.21 While the two are

clearly correlated, only the value, but not the novelty, of a given innovation can be affected by

competition ex post.

2.3.1 Data and Measure Based on Latent Semantic Analysis of Patents

This study presents a first empirical test of the causal relationship between product market

competition (more precisely, Chinese import competition) and the type of innovation firms

produce. Each firm in the sample is assigned a novel measure of R&D type (interpreted as the

extent to which the R&D portfolio is geared towards incremental innovation rather than more

radical or drastic innovation) based on textual analysis of the abstracts from its patent filings

in a year. This section explains the steps to construct the measure of the type of corporate

innovations used in the empirical analysis below from patent data from the European Patent

Office (PATSTAT 2014 Autumn Edition, which includes not only data on European patents but

also from various national patent offices and in particular the USPTO).

21In fact, Kaplan and Vakili (2015) use forward citations as their measure of economic value.
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To prepare the corpus of documents (i.e., patent abstracts) for further analysis, I limit the

sample to abstracts in English22 and use the Natural Language Toolkit (Bird et al., 2009) to

stem all words with the Porter Stemmer (Porter, 1980), such that ideally inflections of the

same word result in the same stem. In a next step, the term frequency-inverse document

frequency (tf-idf) matrix is produced using scikit-learn, a machine learning library for the

Python programming language (Pedregosa et al., 2011). This approach is commonly used in

the area of information retrieval for natural language processing and transforms the text in

each document into a vector, in which each word (or in this case, more precisely, word stem) is

one dimension. Thus, the order of words in the abstract is ignored (a so-called “bag-of-words

model”). By contrast to raw frequencies, tf-idf assigns lower weights to words that appear in a

large share of documents (like “signal”, “method” or “process”), whereas terms that appear

in a smaller subset of abstracts (like “auction”, “penicillin” or other more specific terms) are

assigned a higher weight in this measure.23 This method better approximates an emphasis

on the terms that define the content of a document. Furthermore, English stop words (e.g.

articles like “the”) are ignored explicitly, as well as stems occurring in more than 50% of

abstracts or in fewer than 5 abstracts (not only in an individual firm’s patents, but in all of the

patents over the entire sample period).

While the tf-idf matrix could be used already to measure the similarity between documents,

e.g. by calculating the cosine similarity of vectors, I next apply a singular value decomposition

(Deerwester et al., 1990).24 SVD is applied for dimensionality reduction and used as part of

latent semantic analysis (LSA, sometimes also called latent semantic indexing), as a reduced

matrix with fewer dimensions is better able to capture synonymy and polysemy, i.e., words

22If patent applications have multiple abstracts, PATSTAT contains the English version according to its data
catalogue. For a few abstracts, however, the language is incorrectly classified as English in the data. I remove
these observations by verifying the language with the “Compact Language Detection in R” package, which
makes Google Chrome’s language identification library available for the R programming language (https:
//cran.r-project.org/src/contrib/Archive/cldr/).

23Implementations of tf-idf in different studies and software packages vary in their precise functional form.

Here, a term’s tf-idf value is nd ,v︸︷︷︸
t f

(1+ ln(
1+nd

1+d fv
))︸ ︷︷ ︸

i d f

, where nd ,v is the number of occurrences of term v in document

d , nd is the number of documents and d fv is the number of documents which contain v . Vectors are then
divided by their Euclidean length for normalization. The results are robust to using sublinear scaling for term
frequencies instead, which means that a term’s additional importance from additional occurrences is decreasing
(Manning et al., 2008) and the tf-idf expression becomes (1+ ln(nd ,v ))(1+ ln( 1+nd

1+d fv
)) (and tf-idf is set to zero for

terms that do not occur).
24Table B.16 shows that the results are comparable if similarities are calculated directly from a tf-idf matrix.
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with multiple meanings (Manning et al., 2008; Murphy, 2012). Intuitively, the document

vectors from the tf-idf matrix, which contains 70167 documents and 17922 terms, are “sum-

marized” to a smaller number of components in this low-rank approximation based on SVD.

While it is not possible to interpret the meaning of each of the 100 continuous variables (i.e.,

components) that are calculated for each abstract, the main advantage of SVD for this study

is that different words with related meaning tend to be mapped into the same dimensions,

such that a comparison based on SVD is more robust to changes in wording without changes

in meaning.

Next, the vectors with the 100 components for each patent of a firm filed in a year are averaged

and their cosine similarity to the average firm’s vector of the comparison group is calculated

as the similarity measure. The comparison group consists of patent applications filed in the

preceding four-year period25 and includes patents of either only the same firm, of all firms in

the same two, three or four-digit SIC category, or of all firms in the sample.

In short, a patent whose abstract is very similar to the comparison group’s corpus of patent

abstracts is assigned a high similarity score.

These similarity measures are constructed for data from Bloom et al. (2016) on European

firms and their exposure to Chinese import competition, to which they are matched using

the Amadeus-PATSTAT-match provided by Peruzzi et al. (2014).26 Bloom et al.’s (2016) data

sources include Bureau van Dijk’s Amadeus database on firms and UN Comtrade. In the

regressions I use matched patent applications from all patent offices covered in PATSTAT

except for Chinese patents to maximize the number of observations, while excluding direct

effects on the propensity to protect intellectual property in the exporters’ own market. Another

reason for the exclusion of patents filed with the Chinese patent office (SIPO) from the analysis

is the sharp increase in patenting there starting in the late 1990s (Hu and Jefferson, 2008). The

literature suggests that several factors have contributed to this “Chinese patent explosion”

and that changes in patent law as well as lower novelty requirements may be among them

(Hu and Jefferson, 2009; Eberhardt et al., 2016). Robustness checks in the appendix with all

25The comparison group consists of four years to increase the probability that a firm has comparison patents,
such that it can be included in the regressions, while excluding the earlier year for which the similarity measure
is used in the long differences estimation.

26I retain only observations with a high match quality (variable “phat” in Peruzzi et al.’s (2014) dataset of
more than 0.99).
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patents (including patents filed in China and those with abstracts in non-English languages)

or selections on other criteria show that the qualitative results are not sensitive to these

choices.

2.3.2 Econometric Specification and Results

The econometric strategy is based on Bloom et al. (2016), who study the effect of Chinese

import competition on the number of patents, IT upgrading and total factor productivity

(TFP). Combining the data as explained in the previous section, I estimate the following

regression equation:

∆similarityi j kt =β∆ShareImChinai j kt +∆ ft +εi j kt , (2.10)

where indices denote firm i , industry j , country k and year t . The equation is estimated in

five-year differences, such that fixed effects that remain constant over time, e.g. for firms,

industry sectors and countries, disappear. The regression includes year fixed effects ∆ ft

to account for general time trends which should not be attributed to differential growth in

Chinese import penetration. ∆ShareImChinai j kt is the regressor of interest – the five-year

difference in the share of imports to an industry coming from China – and can be viewed as

roughly corresponding to the extent to which firms are able to enter each other’s markets and

steal business through superior or cheaper products, which is captured in the competition

parameter in the model.27 While import competition data are available at the four-digit

SIC level, firms’ exposure depends on the distribution of their activity over (one or several)

industries, such that the equation is estimated on the firm level and not pooled at the industry-

level. As most of the variation is between four-digit SIC categories (rather than between firms

within an industry), standard errors are clustered on the SIC4 level.

27Note that the ∆ in the model measures competition and can be viewed as a function of substitutability α in
the model in the appendix, whereas in this empirical section “∆” denotes five-year differences in the variables.
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As Chinese imports may have increased more in some sectors because its innovations were

more or less incremental than others, I use Bloom et al.’s (2016) initial conditions instrument28

for the endogenous variable ∆ShareImChinai j kt . The two-stage least squares regression

reported below instruments for this variable with ShareImChina j t−6 ·∆ShareImChinat , i.e.,

the initial share of Chinese imports of all imports in the specific sector (in the European

Union and the U.S.) is interacted with the overall growth of Chinese import competition.

Appendix B.5.3 reports first-stage estimation results and OLS regressions. The first stage shows

that the instrument is sufficiently powerful despite the reduction in sample size compared

to Bloom et al. (2016). The F statistic is above the rule of thumb of 10 for weak instruments

(Staiger and Stock, 1997). Amiti and Freund (2010) find that Chinese imports increased mostly

in existing products rather than new ones. Bloom et al. (2016) argue that this supports the

instrument’s exogeneity. This also explains the instrument’s relevance and, in the context

of my study, suggests that import growth was not driven by Chinese exporters’ expectations

about the development of particular industries’ innovation. Note that the exclusion restriction

relies on the changes in similarity not being directly affected by initial conditions (or both

being affected by a third variable), while a higher propensity of Chinese firms to enter sectors

with already more incremental innovation would not be a threat to validity.

Note that for the sample period from 2001 to 2005 (and similarity measures in each of those

years being compared to five years earlier), the assumption of the model that market size is

fixed seems plausible from a European perspective. The Chinese domestic product market is

likely much less important for European producers than access to the European market is for

Chinese exporters during this time period.

Figure 2.6a and the kernel density estimation in Figure B.6 show that there is significant

variation in (the five-year difference of) the similarity measure over the sample of patents. The

sample used in the estimation is considerably smaller than the one used in Bloom et al. (2016)

as only firms with patents in a given year and five years before can be used. Furthermore, not

all firms have been successfully matched to patent data and, depending on the comparison

28In most of their estimations, Bloom et al. (2016) rely on an instrument using quotas in textiles and apparel
that were lifted. As this restricts the sample to a sector that may not be representative and for which firms’ ability
to choose the type of innovation may be particularly limited by technological constraints, I use their second
instrument. Appendix B.5.4 shows that the IV estimates are similar, but are likely to be biased towards OLS due
to the weak instrument in this smaller sample. The F statistic is even well below the “less strict rule of thumb”
of 5 (Cameron and Trivedi, 2005).
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Figure 2.6: Histograms of Five-Year Change in Similarity Measure

(a) All patents of firms in sample
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(b) Sample used in the regressions based on simi-
larity to firms’ own patents
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group, the firms’ similarity measure may be missing for some years. For example, if the

comparison group of patents consists of the firm’s own patents in the preceding four-year

period, firms which have not patented before will not be assigned a similarity score. The

sample size therefore increases as the comparison group is defined more broadly at different

levels of industry aggregation. The sample used in the main estimation with a comparison to

a firm’s own patents, which leads to the smallest sample, is shown in Figure 2.6b.

Table 2.1: Descriptive Statistics

mean sd min p10 p25 p50 p75 p90 max
∆ sim(comp.) 0.03 0.27 -0.76 -0.30 -0.13 0.04 0.19 0.38 0.81
∆ sim(SIC4) 0.02 0.17 -0.51 -0.20 -0.09 0.02 0.13 0.23 0.66
∆ sim(SIC3) 0.01 0.16 -0.60 -0.19 -0.09 0.02 0.11 0.20 0.52
∆ sim(SIC2) 0.01 0.15 -0.46 -0.17 -0.08 0.02 0.10 0.19 0.59
∆ sim(all) 0.01 0.15 -0.49 -0.17 -0.08 0.01 0.10 0.18 0.55
∆ ShareImChina 0.03 0.05 -0.06 0.00 0.00 0.01 0.03 0.06 0.54
ShareImChina j t−6

·∆ShareImChinat 0.15 0.12 0.00 0.05 0.08 0.11 0.18 0.25 0.75
Observations 868

Notes: The descriptives in this table include the observations of the estimation based on the com-

parison to all previous patents (see Table 2.2, column 5). This sample is the largest one of the five

columns, since it is more likely that comparison group patents exist than for the more narrowly

defined comparison groups. The sample includes five-year differences for the years from 2001 to 2005.

The data are from PATSTAT, Bloom et al. (2016) and Peruzzi et al. (2014).

The results of the two-stage least squares (2SLS) estimations are reported in Table 2.2 and

show that an increase in import competition leads to a shift towards more similar, i.e., more
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incremental, corporate innovation for a given firm. The coefficient in column 1 uses the

outcome measure for the similarity of a firm’s patents in one year to its own patents filed in

the preceding four years. The strongest effect, both in terms of size and statistical significance,

is found here. This means that firms in sectors with higher Chinese import penetration file

patents that are closer to their past research agenda in terms of technological direction. It

can be interpreted as a reduction in exploration or radical innovation as a result of more

intense competition. In light of the model, this empirical result is in line with a decrease in

the average size of the inventive step, such that new innovations are closer to previous ones in

the technology space.

The next four columns in Table 2.2 use different similarity measures for the outcome (which

is still the five-year difference in this measure). Columns 2 to 4 compare a firm’s patents

filed in a year to the entire industry’s patents filed in the preceding four years, where the

industry is defined on the four, three and two-digit SIC level, respectively. In the fifth column,

the comparison group consists of all matched firms’ patents in the previous four years. The

coefficients of interest tend to become smaller as the comparison group is broadened to

include more firms and varied sectors. While the sign remains positive, the effects in these

four columns are not statistically significant. Hence, while there is clearly no evidence of a

shift towards innovations becoming more different from any of the groups, the increase in

similarity seems to be driven by a focus on a firm’s own core research agenda.29 Note that the

sample contains only European firms, such that the new competitors from China are excluded.

A conceivable reaction of European industries could be extended cooperation in R&D or even

collusion. The absence of a significant effect on similarity to a firm’s industry suggests that

this is not the case. At the same time, additional specialization on niches could decrease

similarity to the market, but does not seem to take place at a significant extent either.30

Again, if higher average similarity in an industry is positively correlated with competition,

e.g. because technologies are more standardized and markets can be entered more easily by

Chinese firms, this does not threaten the identification for two reasons. First, the model is

29An interesting area for future research is the relation between these findings and firm scope, as studied by
Akcigit and Kerr (2010). It may also be that more intense competition provides incentives for narrower research
and, as a result of the small steps remaining in the firm’s original technical direction, its scope narrows.

30This conclusion does not change if a firm’s own patents are excluded when the similarity to its industry
is calculated. Note that my results are also consistent with Autor et al. (2016b), who do not find evidence for
industry switching.
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estimated in differences, such that only changes, but not differences in levels, are estimated.

Second, a valid instrument ensures that what is estimated is indeed the effect of an increase

in competition on the change of average similarity, rather than the reverse.

The larger coefficient in the first column is partly due to the larger average similarity of a firm’s

patents to its own previous research than to the other comparison groups. The descriptive

statistics in Table 2.1 show that also the standard deviation is about twice as large for similarity

to own patents as for the other similarities. However, dividing the coefficients in Table 2.2 by

the standard deviations of the respective variables in the sample reveals that the effect remains

larger for the comparison to own patents and decreases as the comparison group is widened.31

One way to interpret the effect size is to calculate how a firm’s position in the similarity

distribution changes through import competition. The median of the similarity measure (and

not of its change) for the sample in column 1 is 0.562. The mean of ∆ShareImChina is 0.025.

Multiplying this number by the coefficient 1.459 in column 1 and adding it to the median

results in a similarity of 0.598. Thus the median firm is shifted by the mean effect from the

50th to the 56th percentile in the similarity distribution.

These results contribute the identification of a causal mechanism, which is playing a role

in the trend away from risky basic research towards more applied and incremental R&D, to

the observation by Arora et al. (2015). Venturing into the technological areas pertaining to

other industries may yield more radical innovation through novel recombinations of ideas,

but staying in one’s field is likely to deliver more predictable results. When these latter small

steps become relatively more valuable in the product market through increased risk of and

opportunity for business stealing, firms adjust their research accordingly. Note also that the

sample contains only firms which have patented in at least two years with a period of five

years in between. Thus the subset of firms provides evidence of an actual change in these

firms’ behavior rather than a change in the sample of firms, e.g. through differences in survival,

as considered in the next subsection.

31The coefficient for the change in import competition in Table 2.2, column 1, is 1.459. Divided by the
standard deviation for the sample used in this regression, shown in the appendix in Table B.2 (which is the same
as the one for the larger sample in Table 2.1), is 0.27 is 5.40. The same calculation for the coefficient in column 5
of Table 2.2 yields an effect size of (0.138/0.15 =) 0.92.
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Table 2.2: Similarity

(1) (2) (3) (4) (5)
∆ sim(comp.) ∆ sim(SIC4) ∆ sim(SIC3) ∆ sim(SIC2) ∆ sim(all)

b/se b/se b/se b/se b/se
∆ ShareImChina 1.459*** 0.314 0.288 0.135 0.138

(0.557) (0.331) (0.342) (0.242) (0.243)
Year FE yes yes yes yes yes
Companies 298 421 425 428 428
SIC4 114 135 139 142 142
SIC3 67 74 75 78 78
SIC2 17 19 19 19 19
N 707 860 865 868 868

Notes: The dependent variable is the five-year difference in the similarity measure (based on SVD with

100 components), which uses the abstracts of a firm’s patents in a year to calculate their similarity to

the comparison group of patents in the preceding four-year period. In column 1, the comparison

group consists of a firm’s own past patents. In columns 2 to 4, the comparison group contains patents

of all firms in the same industry, where the industry is defined increasingly broadly based on the

Standard Industrial Classification (SIC) (using four, three and two-digit SIC categories, respectively).

In column 5 the comparison group includes patents of firms from all other industries as well. The

model includes year fixed effects (see Equation 2.10) and is estimated with two-stage least squares

using Bloom et al.’s (2016) initial conditions variable to instrument for the increase in Chinese import

competition. The sample period is from 2001 to 2005. Standard errors are clustered at the four-digit

SIC level. The data are from PATSTAT, Bloom et al. (2016) and Peruzzi et al. (2014).

*** p<0.01, ** p<0.05, * p<0.1
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The smaller sample compared to Bloom et al. (2016) is a result of the data requirements for the

similarity measure (and of the imperfect match between data sets). The similarity measure

based on a firm’s own patents can be calculated only if there are at least four patents in the

data (two in the two years for which the five-year difference is calculated and two for their

respective comparison periods). Thus the sample is not representative of the total population

of firms. However, when studying innovation, it may be precisely these particularly innovative

firms, which remain in the sample, whose behavior we are interested in. If one considers an

economy’s overall innovation, the most innovative firms will necessarily have contributed to

it disproportionately. Thus, policy makers may also be particularly interested in the response

of these firms’ R&D to increasing competition. Nonetheless, in Appendix B.5.2 regressions are

repeated with adjusted weighting, such that each firm receives the same weight. The main

effect is slightly smaller, but still significant at the 10% level.

Tables B.3 and B.4 in the appendix show the distribution of the firms included in the regres-

sions in column 1 of Table 2.2 over countries and industries, respectively. Neither a country

nor a two-digit SIC category contain more than a quarter of all firms in the sample and the

distribution over countries and industries appears representative, with larger shares for larger

countries and with Machinery and Chemicals among the top categories.32

One potential problem in these main regressions may result from the inclusion of patents from

various different patent offices. The process of European integration has affected intellectual

property rights and, in particular, more and more patents are filed with the European Patent

Office rather than national offices. Furthermore, the availability of abstracts in English can be

affected by the route through which a patent is filed. Thus, a general shift towards English or

towards a different way of filing patents may confound the results if it has been affected by

Chinese import competition as well.33 To address these concerns, in Appendix B.5.1 I show

the same regressions using different samples of patents. Including only USPTO patents at the

cost of a further reduced sample size leads to qualitatively similar results (Table B.5). This

robustness check also ensures that patents filed with multiple patent offices with delay are

32The finer four-digit SIC categorization reveals that SIC 3499 “Fabricated Metal Products, Not Elsewhere
Classified” and SIC 2834 “Pharmaceutical Preparations” have the highest shares with 5.0% and 4.4% of firms in
the sample, respectively. All other four-digit SIC categories include less than 4% of firms each. Repeating the
regressions with either German or British firms excluded does not change the results qualitatively.

33Note, however, that level differences should not affect the results in the specification in five-year differences.
Only changes correlated with Chinese import competition would pose a problem to identification.
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not driving changes in the similarity measure, since only the U.S. filing would be included.34

Table B.6 goes in the opposite direction and increases the sample to include patents filed in

China and others with non-English abstracts (while duplicates are still removed). The results

are qualitatively and in terms of statistical significance the same as in the main regression in

Table 2.2.

The main regressions do not control for the change in the number of patents. As the results

of Bloom et al. (2016) demonstrate, this number is itself affected by the change in Chinese

import competition. It is therefore likely a “bad control”, in the sense that the total effect of

competition on the type of innovation is correlated with a change in the number of patents,

because the latter is influenced by competition as well (Angrist and Pischke, 2008). Thus a

regression including this control variable may lead to an erroneous attribution of some of

the change in similarity to the change in patenting, while this may merely be a correlation.

It is also possible, however, that the growth of patenting indeed affects similarity (and this

may, at least partly, mediate the effect of competition on similarity). Table B.1 in the appendix

reports the results and shows that the coefficients for the competition variable hardly change

at all. An increase in patenting is correlated with lower similarity, which would suggest that

the additional patents are due to the firms’ entering new research areas rather than merely an

increase in the propensity to file patents to protect intellectual property.35

Another concern regarding the process of patenting could be a shift towards secrecy. If such a

shift were induced by Chinese import competition, e.g. due to weaker intellectual property

rights in China, it would have to affect large innovations more than incremental ones to

explain the results without an actual change in R&D. Even if this were the case and companies

34Another way to ensure that later filings in other countries do not influence the measure is to limit the
sample to include only priority filings. This smaller sample leads to a weak instrument problem, however, and
does not permit a reliable estimation, although the estimated effect is of a similar magnitude. Interestingly,
the first stage improves if the sample is restricted further to include only Amadeus-PATSTAT matches above a
matching score of 0.995 (the F statistic is 6.36) and the magnitude of the effect increases to about 3.5, which
is significant at the 10% level. The cutoff for the matching score presents a tradeoff between sample size and
matching accuracy. Qualitatively, however, the results are robust to selecting different cutoffs and 0.995 in
particular leads to similar results with the sample used in Table 2.2 as well.

35This result alleviates a concern that has been raised in conversations with scientists at an innovation
consultancy: Firms may be more likely to split inventions into multiple patents under increased competition
in order to create patent thickets. Note also that simply increasing the number of patents would not bias the
results, since only the frequency of terms, but not their absolute number, affects the measure. A bias could result
if the additional patents, into which a given invention is split, are filed in different years. If this were the case,
however, a positive correlation between more patenting and higher similarity would be expected.
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merely avoided filing patents for large innovations without R&D adjustments, however, a

decrease in the number of patents would be expected, contradicting the evidence. Moreover,

the results below suggest that an initial focus on more incremental research increases sales

under import competition. Note that Arora et al. (2015) conclude that their observations are

not the result of a change in publication practices either.36

Appendix B.5.5 demonstrates the robustness of the results to variations in the methods used

for text analysis.

Change of Firm Behavior or Firm Selection?

While the theoretical model keeps the number of firms constant and assumes that only

their endogenous choice of R&D investments in different types of innovation is affected by

competition, an overall causal relationship between competition and smaller step innovation

in markets might as well be caused by an effect on the survival probability for firms with

different, but fixed, R&D allocations. The previous estimation has identified a change in

innovation for surviving firms (and which have continued to file patents). Of course, the

two effects are not mutually exclusive and it is therefore interesting to explore whether the

selection effect seems to play a role as well, when European firms’ competition with Chinese

exporters intensifies. Following Bloom et al. (2016), I combine their data with my similarity

measures to estimate the change in various outcomes for firms previously working on different

types of innovation. The absence of the probability of survival itself as an outcome in Table 2.3

is due to the fact that almost all of the firms in the sample survived. The sample of firms

used here is larger than in the previous estimations as only a measure for initial similarity is

needed, but not for current similarity. Nonetheless, this requirement limits the sample to (at

36While Arora et al. (2015) only make the binary distinction between scientific publications and patents,
their finding that Chinese import competition is associated with lower stock market valuation of a firm’s
journal publications is consistent with my finding on sales. Their results on patents, however, merely confirm
the increase observed by Bloom et al. (2016), but cannot draw a finer distinction between equally protected
intellectual property in patents. Another explanation for the trend away from scientific publications proposed
by Arora et al. (2015) is a decrease in firm scope, making applied research relatively more valuable. While these
changes may play a role in the general trend, my results do not suggest that they are the channel through which
import competition affects R&D. A firm which has previously patented in three areas and, after an increase
in competition, continues patenting in just one of them, would have a lower similarity measure than a firm
continuing in the three areas. Also, I do not find a significant shift towards more similar research within firms’
main industries, while if peripheral research areas were discontinued, this might be expected.
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least initially) innovative firms with sufficient patents for the construction of the similarity

measures.

Table 2.3 reports the results of estimating the following equation with 2SLS (where the addi-

tional instrumental variable for the interaction term is the interaction of the initial conditions

instrument with initial similarity):

∆outcomei j kt =β1∆ShareImChinai j kt +β2(similarityi j kt−5 ·∆ShareImChinai j kt ) (2.11)

+β3similarityi j kt−5 +∆ ft +εi j kt ,

where the dependent variable is the five-year log-difference of five economic outcomes for

the firms in the sample: employment, patent filings, new products, sales and total factor

productivity. The coefficient β2 estimates the differential effect of an increase in the share of

Chinese imports and firms with a higher initial similarity score (where own patents are the

comparison group).

Despite the larger sample, most of the coefficients of interest (belonging to the interaction

term) are insignificant. This suggests that the main effect of increased import competition is

on existing firms’ behavior rather than on the economic outcomes for firms with potentially

hard to adjust R&D strategies.

In Table 2.3, the largest coefficient is on sales, which are positively affected under increased

competition for firms whose initial research has been more incremental. This positive effect

on sales is significant at the 10% level and consistent with the model: A firm whose research

has been more incremental benefits from the increased private economic value after an

increase in competition. The small steps allow the firm to more easily steal business from

foreign competitors or, presumably more likely in the setting of Chinese import competition

in Europe, enable it to better protect its market share.

Table 2.3 does not adjust for multiple hypothesis testing. Adjustments like Holm (1979) or

Benjamini and Hochberg (1995) would lead to the conclusion that none of the null hypotheses,

that the outcomes are not affected by the interaction term, could be rejected at conventional
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Table 2.3: Initial Similarity and Various Economic Outcomes

(1) (2) (3) (4) (5)
Empl. Pat. New products Sales TFP
b/se b/se b/se b/se b/se

∆ ShareImChina 0.873 0.899 -1.846 -3.690** -1.415
(1.315) (1.728) (1.422) (1.542) (1.584)

Similarity ·∆ ShareImChina -1.447 1.843 0.523 6.288* 6.229
(3.036) (4.311) (2.223) (3.298) (4.770)

Similarity -0.030 0.083 -0.029 -0.186 -0.125
(0.117) (0.161) (0.082) (0.122) (0.146)

Year FE yes yes yes yes yes
Companies 659 591 807 489 243
SIC4 175 167 176 154 110
SIC3 92 91 89 84 62
SIC2 20 19 20 19 18
N 1524 1299 1945 1005 500

Notes: These regressions estimate the effect of initial R&D’s similarity measure (based on a comparison

to a firm’s own patents) and its interaction with Chinese import competition on five different economic

outcomes, again using the initial conditions instrumental variable in 2SLS estimation. The dependent

variables in columns 1 to 5 are the five-year log-differences in employment, patent filings, new

products, sales and total factor productivity, respectively. Standard errors are clustered at the four-digit

SIC level. The data are from PATSTAT, Bloom et al. (2016) and Peruzzi et al. (2014).

*** p<0.01, ** p<0.05, * p<0.1
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significance levels. Note, however, that these economic outcomes are not independent, such

that the dependence structure of the p-values is also likely to be far from independence

(Romano et al., 2010). For instance, the Bonferroni correction may thus be viewed as too

conservative. In particular, this dependence of outcomes even holds mechanically for the

similarity measures, which is why no adjustment is made in Table 2.2. Correcting for the five

hypotheses associated with the different similarity measures, the effect of competition on

similarity to a firm’s own previous patents would still be significant at the 5% level with the

aforementioned procedures or the Bonferroni method.

Innovation Type and Forward Citations

The preferred measure of the type of corporate innovation in this study is based on latent

semantic analysis of patent abstracts. This measure is capable of capturing a patent’s position

in technology space more precisely than traditional technological classifications, as it adjusts

to new words and concepts and can continuously measure a patent’s closeness to these

concepts. While such text-based measures are increasingly employed in the literature in

general (e.g. for industry classification in Hoberg and Phillips, 2010, or to measure uncertainty

in Baker et al., 2016) and in research using patent data in particular thanks to increasing

computational power, their calculation and interpretation is often less straightforward than

traditional measures based on citations. Much of the literature has captured the heterogeneity

between patents, e.g. in terms of economic value, using the number of citations or more

sophisticated measures based on the network of citations.

This section studies the effect of Chinese import competition on the simple and arguably most

popular measure of a patent’s characteristics, which is the number of times a patent is cited by

later patents (i.e., forward citations). This measure has been found to be a good proxy of the

value of patents (e.g. Harhoff et al., 1999).37 However, this study is not about the differences

in firms’ ability to produce valuable innovations, but about the type of innovations they aim

to produce, which in the model is understood as a choice variable that may be determined

37As mentioned above, while the similarity measure for a given patent application is fixed at the time of filing,
the value of a patent and its forward citations may be affected by competition later on. Nonetheless, forward
citations are likely to contain significant information about the quality of an invention and are frequently used
in the literature as such.
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by an R&D strategy that is adjusted to product market conditions. Therefore the outcome

variable is the five-year difference in the position of a firm’s average patent in the citation

distribution. These variables can also be interpreted as changes in the share of a firm’s patents

at the respective positions in the citation distribution and they replace the outcome variable

in Equation 2.10. The first dependent variable in Table 2.4 is an indicator which is one if a

patent has never been cited and zero otherwise. The second dependent variable (in columns

3 and 4) is an indicator for patents which are approximately in the middle 50% of the citation

distribution. The last two columns test whether a firm’s average patent is more likely to be

in the top quartile of citations when Chinese import competition increases. Table 2.4 shows

that the increase in never cited patents as a result of increased Chinese import competition

(again using the initial conditions IV) is highly significant. The negative effect on patents in

the middle of the citation distribution is significant at the 5% level. Furthermore, the effect of

competition on the chance of a firm’s average patent being among the top 25% most cited is

negative, although not statistically significant.

Overall, the signs of the coefficients are consistent with a shift towards lower value patents

as a result of higher competition. Import competition leads firms to produce more patents

that are never cited and fewer patents with many citations. This is in line with the idea that

firms adjust their R&D strategy towards more incremental and lower risk research, leading

more likely to patentable innovations, but producing fewer breakthroughs. Controlling for

the initial number of patents does not change the results qualitatively in the even-numbered

columns.
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Table 2.4: Effect on Forward Citations of Patents

(1) (2) (3) (4) (5) (6)
∆ not cited ∆ not cited ∆middle 50% ∆middle 50% ∆ top 25% cit. ∆ top 25% cit.

b/se b/se b/se b/se b/se b/se
∆ ShareImChina 1.176*** 1.182*** -0.664** -0.661** -0.512 -0.521

(0.407) (0.407) (0.280) (0.277) (0.500) (0.499)
∆ ln(patents+1) -0.005 -0.002 0.007

(0.014) (0.010) (0.012)
Year FE yes yes yes yes yes yes
Companies 571 571 571 571 571 571
SIC4 159 159 159 159 159 159
SIC3 83 83 83 83 83 83
SIC2 19 19 19 19 19 19
N 1171 1171 1171 1171 1171 1171

Notes: The dependent variables are the five-year differences in the position of a firm’s average patent

in the distribution of forward citations. All columns include year fixed effects and the even-numbered

columns control for the five-year change in patenting. The first two columns estimate the change

in never cited patents and columns 3 and 4 the change in patents in the middle 50% of the citation

distribution. The last two columns show the change in patents in the top 25% of the distribution. The

model is estimated with two-stage least squares using Bloom et al.’s (2016) initial conditions variable

to instrument for the increase in Chinese import competition. Standard errors are clustered at the

four-digit SIC level. The data are from PATSTAT, Bloom et al. (2016) and Peruzzi et al. (2014).

*** p<0.01, ** p<0.05, * p<0.1

2.4 Conclusion

This study explores the link between product market competition and the type of corporate

innovation. The literature has suggested intensified competition due to globalization as a

potential cause of the shift towards less risky innovation that has been observed over the

last decades (Arora et al., 2015). Building on existing models of competition and innova-

tion (Aghion et al., 2001, 2005), a fundamental difference in the incentives for drastic and

non-drastic innovation is shown to imply a shift towards a reduced share of large steps as

competition increases. A decrease in pre-innovation profits due to more intense competition

increases incentives for both types of innovation. However, only for small innovations do

post-innovation profits increase as well and thereby increase incentives to invest more than

for large innovation. Post-innovation profits for large innovations are constant due to the

fact that they lead to a monopoly position (following the definition for drastic innovation in

Tirole, 1988), i.e., the technological difference between leader and follower is so large that

competition policy, which makes it easier for firms to steal business from the other, has no
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effect, since the competitor no longer operates in the market. The endogenous choice of

investments in these two different types of innovation technologies is shown to be compatible

with an inverted-U relationship between competition and total innovation. The maximum

absolute level of large (small) innovation will occur at a lower (higher) level of competition

than the maximum of total innovation. The abstract parameter representing competition

in the model may be interpreted as a reflection of various policies affecting competition,

such as antitrust policy, standardization of technologies (e.g. chargers for devices such as

mobile phones or electric cars from different manufacturers) or the extent to which barriers

to international trade exist.

The empirical part of this chapter develops a novel measure of the type of innovation a firm

produces. Using latent semantic analysis, a firm’s patents are compared to its own previous

patents, the industry’s previous patents or all patents. Similarity to this previous research is

interpreted as the extent to which the research is incremental, i.e., the higher the similarity

measure for a firm’s new patent filings, the lower the share of large step innovation. This

measure is used to identify the causal effect of an increase in competition in an important,

albeit particular, setting: the impact of Chinese import competition on European firms’ R&D.

Following Bloom et al. (2016), I use instrumental variable regressions to estimate the effect

of a change in Chinese import competition on the change in the similarity measure of a

firm. The shift towards more incremental innovation caused by an increase in competition

is confirmed in the data. Furthermore, the interpretation of the model as an adjustment of

firms’ investment behavior, rather than of the types of firms that remain in the market, is

supported by the empirical results. Effects on outcomes for firms with different initial R&D

are mostly insignificant, but provide suggestive evidence for an increased private value of

incremental innovations, as predicted by the model.

Further studies are needed to estimate the causal relationship between competition and the

type of corporate R&D in additional settings. For example, an understanding of the role of

mergers and acquisitions as well as standardization in this relationship would be relevant for

policy makers.

Depending on the social value, and in particular the positive externalities, of small and large

step innovation, the socially optimal policy may not maximize the number of innovations, but
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should attach different weight to each type. Future research may clarify the optimal policy by

estimating differences in the appropriability of different types of innovation and in their social

value. Combining novel measures of innovation type with stock market reactions to patent

grants of assignees and of their competitors (Kogan et al., 2017) may be a promising way to

estimate their private and social values.38 Such an approach may also be able to identify

differential changes in these values after changes in competition.

The evaluation of policies affecting competition with respect to innovation is usually limited

to the amount of innovation. By revealing a distortion towards more incremental innovation

with increasing competition, this study has uncovered a hidden cost of lowering product

market prices in this way, that may be overlooked with traditional measures of innovation.

Depending on the differences in externalities of different innovation types, this cost may be

substantial. In addition, a comprehensive welfare analysis also needs to take into account that

corporate R&D is not the only source of technological progress. Hence, the relative strengths

of public and private organizations at producing different types of innovations and the extent

of spillovers also have to be considered in the optimal policy.

38Note that stock market reactions can capture only the “social value” for firms, but exclude consumer surplus,
such that additional proxy measures of broader externalities could be included, especially when estimating
welfare effects. (The assignee of a patent is the company or person receiving ownership of the patent that is
granted.)
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Chapter 3

Antitrust, Patents, and Cumulative

Innovation:

Bell Labs and the 1956 Consent Decree*

3.1 Introduction

Innovation is a key driver of economic growth. One of the main instruments governments use

to foster innovation is the patent system. A patent gives the right to exclude others from using

the patented inventions in order to stimulate innovation. However, there is a growing concern

that dominant companies might use patents strategically to deny potential entrants, often

small technology-oriented start-ups, access to key technologies in an attempt to foreclose

the market.1 As start-ups are thought to generate more radical innovations than incumbents,

market foreclosure may harm technological progress and economic growth (Baker, 2012).2 To

address this problem many critics call for antitrust policies as a remedy (Wu, 2012; Waller and

*This chapter is based on joint work with Martin Watzinger, Markus Nagler, and Monika Schnitzer.
1Derek Thompson, “America’s Monopoly Problem”, The Atlantic, October 2016; Robert B. Reich, “Big Tech

Has Become Way Too Powerful,” The New York Times, September 18, 2015, p. SR3; Michael Katz and Carl Shapiro
“Breaking up Big Tech Would Harm Consumer,” The New York Times, September 28, 2015, p. A24; Thomas Catan
“When Patent, Antitrust Worlds Collide,” Wall Street Journal, November 14, 2011.

2For example, Akcigit and Kerr (2010) show that start-ups do more explorative research and Foster et al.
(2006) show that in the retail sector the fast pace of entry and exit is associated with productivity-enhancing
creative destruction.
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Sag, 2014). Yet, up to now there are no empirical studies showing that antitrust enforcement

can effectively promote innovation.

In this study we investigate whether patents held by a dominant firm are harmful for follow-on

innovation, and if so, whether antitrust enforcement in the form of compulsory licensing of

patents provides an effective remedy. We advance on these questions by analyzing the effects

of one of the most important antitrust rulings in U.S. history: The 1956 consent decree against

the Bell System. This decree settled a seven-year old antitrust lawsuit that sought to break up

the Bell System, the dominant provider of telecommunications services in the U.S., because

it allegedly monopolized “the manufacture, distribution, and sale of telephones, telephone

apparatus and equipment” (Antitrust Subcommittee, 1958, p.1668). Bell was charged with

having foreclosed competitors from the market for telecommunications equipment because

its operating companies had exclusive supply contracts with its manufacturing subsidiary

Western Electric and because it used exclusionary practices such as the refusal to license its

patents.

The consent decree contained two main remedies. The Bell System was obligated to license

all its patents royalty-free and it was barred from entering any industry other than telecom-

munications. As a consequence, 7,820 patents or 1.3% of all unexpired U.S. patents in a wide

range of fields became freely available in 1956. Most of these patents covered technologies

from the Bell Laboratories (Bell Labs), the research subsidiary of the Bell System, arguably

the most innovative industrial laboratory in the world at the time. The Bell Labs produced

path-breaking innovations in telecommunications such as the cellular telephone technology

or the first transatlantic telephone cable. But more than half of its patents were outside the

field of telecommunications because of Bell’s part in the war effort in World War II and its

commitment to basic science. Researchers at Bell Labs are credited for the invention of the

transistor, the solar cell, and the laser, among other things.

The Bell case is uniquely suited to investigate the effects of compulsory licensing as an

antitrust measure for two reasons: First, it allows to study the effects of compulsory licensing

without any confounding changes in the market structure. In compulsory licensing cases,

antitrust authorities usually impose structural remedies such as divestitures, which makes

it difficult to separate the innovation effects of changes in the market structure from the
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innovation effects of changes in the licensing regime. Yet, in the case of Bell no structural

remedies were imposed, despite the original intent of the Department of Justice. This was due

to the intense lobbying of the Department of Defense as Bell was considered vital for national

defense purposes.

Second, Bell’s broad patent portfolio enables us to measure the effect of compulsory licensing

on follow-on innovation in different competitive settings. 42% of Bell’s patents were related to

the telecommunications industry. In this industry, Bell was a vertically integrated monopolist

who allegedly foreclosed rivals. The remaining 58% of Bell’s patent portfolio had its main

application outside of telecommunications. In these industries, Bell was not an active market

participant. By looking at the differential effects of compulsory licensing inside and outside

of the telecommunications industry we can distinguish the effects of potential foreclosure of

patents and of potential bargaining failures that are inherent in the patent system.

Our analysis shows that compulsory licensing increased follow-on innovation that builds on

Bell patents. This effect is driven mainly by young and small companies. But the positive ef-

fects of compulsory licensing were restricted to industries other than the telecommunications

equipment industry. This suggests that Bell continued to foreclose the telecommunications

market even after the consent decree took effect. Thus, compulsory licensing without struc-

tural remedies appears to be an ineffective remedy for market foreclosure. The increase

of follow-on innovation by small and young companies is in line with the hypothesis that

patents held by a dominant firm are harmful for innovation because they can act as a barrier

to entry for small and young companies who are less able to strike licensing deals than large

firms (Lanjouw and Schankerman, 2004; Galasso, 2012). Compulsory licensing removed this

barrier in markets outside the telecommunications industry, arguably unintentionally so.

This fostered follow-on innovation by young and small companies and contributed to the

long run technological progress in the U.S.

Looking at the results in more detail, we first consider the effect of compulsory licensing on

innovations that build on Bell patents. We measure follow-on innovation by the number of

patent citations Bell Labs patents received from other companies that patent in the U.S. We

find that in the first five years follow-on innovation increased by 17% or a total of around 1,000

citations. Back-of-the-envelope calculations suggest that the additional patents other compa-
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nies filed as a direct result of the consent decree had a value of up to $5.7 billion in today’s

dollars. More than two-thirds of the increase is driven by young and small companies and

individual inventors unrelated to Bell. Start-ups and individual inventors increase follow-on

innovation by 32% while for large and old companies the increase is only around 6%. Robust-

ness checks show that the increase in follow-on innovation is not driven by simultaneous

contemporary shocks to technologies in which Bell was active or by citation substitution.

The increase in follow-on innovation by other companies is accompanied by a decrease in

follow-on innovation by Bell, but this negative effect is not large enough to dominate the

positive effect on patenting by others. The limited negative response by Bell is most likely

due to the fact that at the time of the consent decree, Bell was a regulated monopolist subject

to rate of return regulation. Yet, the consent decree changed the direction of Bell’s research.

Bell shifted its research program to focus more on telecommunications research, the only

business Bell was allowed to be active in.

In a second step we split the increase in follow-on innovation by industry. We do not find

any increase in innovation in the telecommunications industry, the aim of the regulatory

intervention. Compulsory licensing fostered innovation only outside of the telecommuni-

cations industry. This pattern is consistent with historical records that Bell continued to

use exclusionary practices after the consent decree took effect and that these exclusionary

practices impeded innovation (Wu, 2012). As no structural remedies were imposed Bell con-

tinued to control not only the production of telephone equipment but was - in the form of

the Bell operating companies - also its own customer. This made competing with Bell in

the telecommunications equipment market unattractive even after compulsory licensing

facilitated access to Bell’s technology. For example, the Bell operating companies refused to

connect any telephone that was not produced by Western Electric, the manufacturing sub-

sidary of the Bell System (Temin and Galambos, 1987, p.222). In other industries, compulsory

licensing was effective to foster innovation by young and small companies since Bell as the

supplier of technology did not control the product markets through vertical integration or via

exclusive contracts.

Although the 1956 consent decree was not effective in ending market foreclosure, it perma-

nently increased the scale of U.S. innovation. In the first five years alone, the number of
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patents increased by 25% in fields with compulsorily licensed patents compared to techno-

logically similar fields without; and it continued to increase thereafter. This increase is again

driven by small and new companies outside the telecommunications industry. We find only a

small increase in patents related to the production of telecommunications equipment. This

indicates that market foreclosure may slow down technological progress and suggests that

antitrust enforcement can have an impact on the long-run rate of technological change. In an

in-depth case study we also show that the antitrust lawsuit led to a quicker diffusion of the

transistor technology, one of the few general purpose technologies of the post-World War II

period.

We contribute to the literature by being the first to empirically investigate the effect of antitrust

enforcement on innovation. Our results suggest that foreclosure impedes innovation and that

compulsory licensing without structural remedies is not sufficient to overcome foreclosure.

Access to technology through compulsory licensing alone does not stimulate market entry

and innovation unless there is sufficient access to the product market as well. These insights

are relevant not only for antitrust cases about abuse of a dominant market position, such as

the Bell case, but also for merger and acquisition cases where compulsory licensing is often

used as a remedy when mergers are approved. Our empirical findings support theoretical

arguments in the antitrust literature suggesting that to increase innovation, antitrust measures

should focus on exclusionary practices and the protection of start-ups (Segal and Whinston,

2007; Baker, 2012; Wu, 2012).

We also contribute to the literature on intellectual property by providing robust causal evi-

dence for the negative effects of patents on follow-on innovation of small and young compa-

nies. Our estimate of an increase in follow-on innovation by 17% is significantly smaller than

the increase reported by Galasso and Schankerman (2015b). They study the innovation effect

of litigated and invalidated patents and find an increase of 50%.3 While our study looks mainly

at patents in the electronics and computer industry, Sampat and Williams (2015) consider

gene patents and find no effect on follow-on research. The size of our measured effects is

consistent with that reported by other studies such as Murray and Stern (2007) and Moser

3Litigated patents are selected by importance and by the virtue of having a challenger in court. Thus, the
blocking effects of these particular patents might be larger than the average effect for the broad cross-section of
patents.
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and Voena (2012). They study various measures of follow-on innovation and report an overall

impact of a patent removal of about 10-20% in biotech and chemistry. Our finding of entry

of companies as the main mechanism driving the positive innovation effects of compulsory

licensing is consistent with Galasso and Schankerman (2015b). They show that the increase in

citations can be attributed to small companies citing invalidated patents of large companies.

Finally, this study contributes to our understanding of innovation and growth in the United

States in the 20th century. By providing free state-of-the-art technology to all U.S. companies,

compulsory licensing increased U.S. innovation because it opened up new markets for a large

number of entrants. This interpretation is consistent with theoretical concepts and historical

accounts. Acemoglu and Akcigit (2012) show theoretically that compulsory licensing can

foster innovation because it enables more companies to compete for becoming the leader

in an industry.4 In line with this idea, Gordon Moore, the co-founder of Intel, stated that

“One of the most important developments for the commercial semiconductor industry (...)

was the antitrust suit filed against [the Bell System] in 1949 (...) which allowed the merchant

semiconductor industry ‘to really get started’ in the United States (...) [T]here is a direct

connection between the liberal licensing policies of Bell Labs and people such as Gordon Teal

leaving Bell Labs to start Texas Instruments and William Shockley doing the same thing to

start, with the support of Beckman Instruments, Shockley Semiconductor in Palo Alto. This

(...) started the growth of Silicon Valley” (Wessner et al., 2001, p. 86) Similarly, Peter Grindley

and David Teece opined that “[AT&T’s licensing policy shaped by antitrust policy] remains

one of the most unheralded contributions to economic development – possibly far exceeding

the Marshall plan in terms of wealth generation it established abroad and in the United States“

(Grindley and Teece, 1997).

The remainder of this chapter is organized as follows. Section 3.2 describes the antitrust law-

suit against Bell and the consent decree. In Section 3.3 we describe the data and the empirical

strategy. In Section 3.4 we show that compulsory licensing increased follow-on innovation

and conduct robustness checks. In Section 3.5 we examine the effectiveness of compulsory

4In the model of Acemoglu and Akcigit (2012), compulsory licensing also makes innovation less profitable
because leaders are replaced more quickly. In the case of Bell, compulsory licensing was selectively applied
to only one company which was not active in the newly created industries. This suggests that there was no
disincentive effect and that our empirical set-up cleanly measures the effects of an increase in competition on
innovation.
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licensing as an antitrust measure against foreclosure in the market for telecommunications

equipment. In Section 3.6, we present the long run effects of the consent decree on U.S.

patenting. Section 3.7 presents a case study of the licensing of Bell’s transistor technology, the

defining general purpose technology of the 20th century. Section 3.8 concludes.

3.2 The Bell System and the Antitrust Lawsuit

In this section we describe the Bell System and the antitrust lawsuit against Bell. We then

discuss the unique features of the case that make it ideally suited for our empirical analysis.

3.2.1 The Bell System was a Vertically Integrated Monopolist

In 1956, American Telephone & Telegraph (AT&T) was the dominant provider of telecom-

munications services in the U.S. Through its operating companies, it owned or controlled

98% of all the facilities providing long distance telephone services and 85% of all facilities

providing short distance telephone services. These operating companies bought all of their

equipment from Western Electric, the manufacturing subsidiary of AT&T. As a consequence,

Western Electric had a market share in excess of 90% in the production of telecommunica-

tions equipment. Western Electric produced telecommunications equipment based on the

research done by the Bell Laboratories, the research subsidiary of AT&T and Western Electric.

All these companies together were known as the Bell System, stressing its complete vertical

integration (Figure 3.1). In terms of assets, AT&T was by far the largest private corporation in

the world in 1956, employing 598,000 people with an operating revenue of $2.9 billion or 1%

of the U.S. GDP at the time (Antitrust Subcommittee, 1959, p.31).

The Bell System held patents on many key technologies in telecommunications, as well as a

large number of patents in many other fields. Between 1940 and 1970, Bell filed on average

∼543 patents or 1% of all U.S. patents each year (see Figure 3.2). More than 70% of the

patents protected inventions of the Bell Laboratories (Bell Labs), arguably the most innovative

industrial laboratory in the world at the time.
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Figure 3.1: The Structure of the Bell System
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The Bell Labs were unique in their commitment to basic research. When the Bell Labs were

founded in 1925, no one knew which part of science might yield insights for the problems of

electric communication (Rosenberg, 1990; Nelson, 1962). As a result, the Bell System decided

that - besides supporting the day-to-day need of the System - the Bell Labs would engage

in basic science, assuming it would eventually yield products for some part of the large Bell

System (Gertner, 2012; Nelson, 1959; Arora et al., 2015).5

The Bell Labs produced path-breaking basic and applied research. Scientists at Bell are cred-

ited for the development of radio astronomy (1932), the transistor (1947), cellular telephone

technology (1947), information theory (1948), solar cells (1954), the laser (1957), and the Unix

operating system (1969). The 1950 staff of Bell Labs alone consisted of four future Nobel

Laureates in physics, one Turing Award winner, five future U.S. National Medals of Science

5According to the first head of basic and applied research at Bell Labs, Harold Arnold, his department would
include “the field of physical and organical chemistry, of metallurgy, of magnetism, of electrical conduction,
of radiation, of electronics, of acoustics, of phonetics, of optics, of mathematics, of mechanics, and even of
physiology, of psychology and meteorology”. This broad focus led to major advances in basic science, but also to
a large number of unused patents. For example, an investigation of the FCC in 1934 reported that Bell owned or
controlled 9,255 patents but actively used only 4,225 covered inventions (Antitrust Subcommittee, 1958, p.3842).
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Figure 3.2: Size and Diversity of Bell’s Patent Portfolio
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Notes: This figure shows the number of Bell patents in different technology subcategories over time. The
subcategories aggregate the U.S. Patent Classification (USPC) following the scheme of Hall et al. (2001). We
re-assign patents in the field of Optics to the Communication patents, as optics in the form of optical fiber played
a large role in the development of communication technology starting in the 1960s. Of the compulsorily licensed
patents published before January 1956 only 29 were in the field of Optics. The data are from the Worldwide
Patent Statistical Database (PATSTAT) of the European Patent Office.

recipients and 10 future IEEE Medals of Honor recipients. In 1950, Bell Labs employed 6,000

people, one third of whom were professional scientists and engineers (Nelson, 1962; Temin

and Galambos, 1987). This was 1% of the entire science and engineering workforce in the U.S.

at the time.6

3.2.2 The Antitrust Lawsuit

On January 14, 1949 the United States Government filed an antitrust lawsuit with the aim

to split AT&T from Western Electric.7 The complaint charged that Western Electric and

6According to the National Science Foundation, the number of workers in S&E occupations was 182,000 in
the U.S. in 1950. Source: https://www.nsf.gov/statistics/seind12/c3/c3h.htm (last accessed 30 August 2016).

7This account of facts follows largely the final report to the Antitrust Subcommittee of the House on the Bell
Consent Decree Program (Antitrust Subcommittee, 1959).
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AT&T had been engaged in the monopolization of the manufacture, distribution and sale of

telecommunications equipment in violation of the Sherman Antitrust Act of 1890 (Antitrust

Subcommittee, 1959, p.46). According to the complaint, Bell was closing the market to all other

buyers and sellers of telecommunications equipment by exclusionary practices including

exclusive contracts and the refusal to license patents.8

To correct this, the government sought three main remedies. First, Western Electric was to be

separated from AT&T, split into three competing companies, and to transfer all of its shares

of the research subsidiary Bell Laboratories to AT&T. Second, AT&T was to buy telephone

equipment only under competitive bidding and all exclusive contracts between AT&T and

Western were to be prohibited. Third, the Bell System was to be forced to license all its patents

for reasonable and non-discriminatory royalties (Antitrust Subcommittee, 1959, p.33).9 Yet,

none of this would happen.

The case ended with a consent decree on January 24, 1956, containing two remedies: First, the

Bell System had to license all its patents issued prior to the decree royalty free to any applicant,

with the exception of RCA, General Electric and Westinghouse who already had cross licensing

agreements with Bell (the so called B-2 agreements). All subsequently published patents had

to be licensed for reasonable royalties. As a consequence of the consent decree, 7,820 patents

in 266 USPC technology classes and 35 technology subcategories (Figure C.1 in Appendix C.1)

or 1.3% of all unexpired U.S. patents became freely available. Second, the Bell System was

barred from engaging in any business other than telecommunications.

The decree was hailed by antitrust officials as a “major victory”, but already in 1957 the

Antitrust Subcommittee of the Committee on the Judiciary House of Representatives started

to investigate whether the decree of AT&T was in the public interest. The final report issued

in 1959 pulled the decree to pieces: “the consent decree entered in the A.T. & T. case stands

8For example, Bell allegedly forced competitors “engaged in the rendition of telephone service to acquire
AT&T patent license under threat of (...) patent infringement suits,” or refused “to issue patent licenses except
on condition” to be able to control the telephone manufacturer or by “refusing to authorize the manufacture
(...) of telephones (...) under patents controlled by (...) the Bell System” or by “refusing to make available to the
telegraphy industry the basic patents on the vacuum tube” that are essential for telegraphy to compete with
telephone or by refusing to purchase equipment “under patents which are not controlled by Western or AT&T,
which are known to be superior” (Antitrust Subcommittee, 1958, p.3838).

9There were two minor remedies: First, AT&T was not to be allowed to direct the Bell operating companies
which equipment to purchase and second, all contracts that eliminated or restrained competition were to be
ceased.

86



ANTITRUST, PATENTS, AND CUMULATIVE INNOVATION

revealed as devoid of merit and ineffective as an instrument to accomplish the purposes of

the antitrust laws. The decree not only permits continued control by A.T. & T. of Western, it

fails to limit Western’s role as the exclusive supplier of equipment to the Bell System, thereby

continuing monopoly in the telephone equipment manufacturing industry.”

The hearings of the Senate subcommittee uncovered a timeline of cozy back and forth ne-

gotiations and intense lobbying by the Department of Defense (DoD). The DoD intervened

on behalf of Bell because it relied on the research of the Bell Labs. In World War II, the Bell

Labs had been instrumental in inventing the superior radar systems of the Allies. They also

engaged in around a thousand different projects, from tank radio communications to enci-

phering machines for scrambling secret messages (Gertner, 2012, p.59 ff.).10 In the following

years, Bell Labs continued to work for the DoD, for example by operating the Sandia National

Laboratories, one of the main development facilities for nuclear weapons.

After the complaint was filed in January 1949, Bell sought and obtained a freeze of the antitrust

lawsuit in early 1952 with support of the DoD, on the grounds that Bell was necessary for

the war effort in Korea. In January 1953, after Dwight D. Eisenhower took office, Bell began

to lobby for the final dismissal of the case. The argument was that the Bell System was too

important for national defense and thus should be kept intact. The government followed this

argument and the Attorney General Herbert Brownell Jr. asked Bell to submit concessions

“with no real injury” that would be acceptable in order to settle (Antitrust Subcommittee, 1959,

p.55)

In May 1954, AT&T presented and in June 1954 submitted to the Department of Justice a

checklist of concessions that would be an acceptable basis for a consent decree. The only

suggested major remedy was the compulsory licensing of all Bell patents for reasonable

royalties. To support its position, Charles Erwin Wilson, the Secretary of Defense, wrote

Herbert Brownell Jr., the Attorney General, a memorandum to the effect that the severance of

Western Electric from Bell would be “contrary to the vital interests of our nation” (Antitrust

Subcommittee, 1959, p. 56). In December 1955, the Department of Justice communicated

with AT&T that it was ready to consider a decree of the “general character suggested [by A. T.

10To highlight the engagement of Bell, we show in Figure C.2 in Appendix C.1.2 the patenting activity of Bell
in radar and cryptography during World War II.
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& T.] in its memorandum (...) dated June 4, 1954” (Antitrust Subcommittee, 1959, p.92). Bell

agreed.

3.2.3 Advantages of the Bell Case for the Empirical Set-Up

The Bell case has two characteristics that make it ideally suited to measure the innovation

effects of compulsory licensing as an antitrust remedy.

First, the consent decree did not impose any structural remedies for the telecommunications

market. This allows us to isolate the innovation effect of compulsory licensing without any

confounding changes in market structure. The reason why the Department of Justice did not

impose any structural remedies is unclear. The final conclusion of the Antitrust Subcommittee

blamed the lack of intent of the Attorney General to pursue Bell and the intense lobbying of

the Department of Defense for the fact that no structural remedies were imposed (Antitrust

Subcommittee, 1959, p.292). In contrast, the presiding judge Stanley N. Barnes stated that

in his opinion it was enough to confine Bell to the regulated telecommunications market

in order to prevent excessive prices and to end the exclusion of other suppliers (Antitrust

Subcommittee, 1959, p.317).

Second, due to Bell Labs’ commitment to basic science and its role in the war effort, Bell held

a large number of patents unrelated to telecommunications, in industries in which it was not

an active market participant. This gives us the opportunity to measure how the innovation

effect of compulsory licensing depends on the market structure. In the telecommunications

industry, Bell was vertically integrated. Hence Bell was not only a dominant player in the

production of the technology used for telephone equipment, but it also controlled the produc-

tion of telephone equipment (Western Electric), as well as the product market for telephone

equipment through its operating companies. In all other industries, Bell was a supplier of

technology, but was not active in production. Even more, the consent decree explicitly banned

Bell from ever entering into these businesses which meant that it effectively preserved the

market structure inside and outside of the telecommunications industry.
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Figure 3.3: Compulsorily Licensed Patents by Industry
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To visualize the broad patent portfolio of Bell we use the data of Kerr (2008) to assign the most

likely four-digit SIC industry group to each USPC class (Figure 3.3).11 Around 42% of all Bell’s

patents have their most likely application in Bell’s core business of producing telephones

and telegraphs (SIC 3661). The remainder is spread across a large number of fields with an

emphasis on electronics and industrial commercial machinery and computer equipment.12

3.3 Data and Empirical Strategy

For our estimation, we use comprehensive patent data for the U.S. from the Worldwide Patent

Statistical Database (PATSTAT) of the European Patent Office. In this data, we identify all

11We thank Bill Kerr for sharing his data.
12In Figure C.1 in Appendix C.1.1 we show the compulsorily licensed patents split by technology subcategories

following Hall et al. (2001). Only 31% of all Bell patents are in the field of telecommunications and the remaining
patents are spread over 34 other subcategories.
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compulsorily licensed patents of the Bell System with a list of patent numbers published in

the “Hearings before the Antitrust Subcommittee” of the U.S. Congress on the consent decree

of Bell in May 1958 (Antitrust Subcommittee, 1958).13

In an ideal world, we would compare the number of realized follow-on innovations building

on Bell patents with and without the consent decree. The problem is, however, that this is not

possible: First, a census of follow-on innovations does not exist and second, we can observe

only the state of the world in which the compulsory licensing of Bell patents happened but

not the counterfactual situation without the consent decree.

To measure follow-on innovations we use patent citations. Bell patents could be freely licensed

after the consent decree, but patents that built on licensed Bell patents still had to cite them.

Thus, we can use patent citations as a measure for follow-on innovations even though patents

had lost their power to exclude competitors (Williams, 2015). The advantage of this measure is

that, in contrast to most alternative measures such as new products or R&D spending, citations

are consistently available from 1947 onward.14 Citations have the additional advantage that

they have a high frequency which allows a precise measurement of effects. The caveat is

that some citations might have been added by the patent examiner, which adds noise to the

measure (Alcacer and Gittelman, 2006; Alcacer et al., 2009).

To construct a counterfactual for the compulsorily licensed Bell patents we use as control

group all other patents that are published in the same year, that have the same total number

of citations as the Bell patents in the five years prior to 1949, and that are in the same USPC

technology class. By conditioning on the publication year and prior citations we control for

the fact that, on average, young and high quality patents are cited more often. By conditioning

on the same technology class we control for the number of companies that are active in the

same field (i.e., for the number of potential follow-on inventors) and for technology-specific

citation trends.

13The list is the complete list of all patents owned by the Bell System in January 1956. It also includes patents
of Typesetter Corp. which were explicitly excluded from compulsory licensing in Section X of the consent decree.
We assume that these patents are unaffected.

14In 1947 the USPTO started to publish citations of prior art on the front page of the patent (Alcacer et al.,
2009).The first patent to include prior art was issued on February 4, 1947. Yet, inventions were evaluated against
the prior art already since the passage of the Patent Act of 1836. Prior to 1947, however, the prior art was available
only from the “file history” of the issued patent, which is not contained in PATSTAT.
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We can interpret our results causally under the assumption that in the absence of the consent

decree the Bell patents would have received the same number of citations as the control

patents did (parallel trend assumption). More specifically, the identifying assumption is that

conditioning on the control variables removes any systematic difference in follow-on citations

between Bell and the control patents that is not due to compulsory licensing.

One potential concern about this identification strategy might be that the antitrust authorities

chose to compulsorily license Bell patents for a reason related to the potential of follow-on

research of these patents. According to the complaint and historical records, compulsory

licensing was imposed because Bell used patents to block competitors in the field of telecom-

munications equipment. So if blocking patents are also patents that in the absence of com-

pulsory licensing would have experienced particularly strong follow-on innovation then we

might overestimate the effect of the consent decree.

Yet, this does not appear to be likely. In the absence of compulsory licensing, Bell’s telecom-

munication patents would have continued to block competitors because the consent decree

did not contain any other remedies aimed at restoring competition. Consequently, it seems

fair to assume that blocking patents would have continued to receive the same number of

citations as the control patents that have the same number of citations in the five years prior

to 1949.

Furthermore, this concern obviously does not apply to the 58% of patents Bell held outside the

field of telecommunications. These patents were included in the compulsory licensing regime

of the consent decree not because they were blocking, but purely due to their association with

the Bell System. Hence, there is no reason to expect any confounding effects.

To strengthen the point that the parallel trend assumption is plausible, we show in Section

3.4.1 that the number of citations of Bell and control patents was the same before the terms of

the consent decree became known. In Section 3.4.3 we also show that companies that did not

benefit from compulsory licensing did not start to cite Bell patents more after the consent

decree. Thus, the control patents are a plausible counterfactual for patents both inside and

outside of telecommunications.
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Another concern might be that Bell’s patenting strategy may have changed after the complaint

became known. This is why we focus on patents published by 1949, the year the lawsuit

against Bell started. The consent decree stated that only patents published before 1956 were

to be compulsorily licensed. As a consequence of this cut-off date, more than 98% of the

patents affected by the consent decree were filed before 1953, and more than 82% earlier than

1949. This implies that the characteristics of the majority of the affected patents were fixed

before the Department of Justice filed its initial complaint. To be on the safe side, we use only

patents granted before 1949, but the results do not change when we use all patents affected

by the consent decree.

Out of the 7820 Bell patents affected by the consent decree, 4,731 patents were published

before 1949. For 4,533 of these patents (i.e., for 95.8%) we find in total 70,180 control patents

that fulfill the criteria specified above. In our empirical analysis, we use the weights of Iacus

et al. (2009) to account for the potentially different number of control patents per Bell patent.15

Table 3.1 shows summary statistics. In column 1 we report the summary statistics for all

patents published between 1939 to 1956. In column 2 we report the summary statistics of all

Bell patents that were published between 1939 and 1956 and hence affected by the compulsory

licensing rule. Patents published before 1939 had lost their patent protection by 1956 and were

therefore not affected by the consent decree. In column 3 we report the summary statistics

of the Bell patents published between 1939 and 1948. These are the patents that we use in

our baseline regression.16 They are affected by the consent decree but published before the

lawsuit started and hence unaffected by a potential patenting policy change the lawsuit may

have triggered.

The summary statistics of Bell patents differ from those of non-Bell patents. The average

non-Bell patent in our data set receives 3.3 citations per patent and 6.1% of these citations are

self-citations.17 Bell System patents published in the same time period on average receive 5.2

15Iacus et al. (2009) proposes to use a weight of 1 for the treatment variable and a weight of
NTr eatment ,Str at a/NContr ol ,Str at a ·NContr ol /NTr eatment where NContr ol is the number of control patents in the
sample, NContr ol ,Str at a is the number of control patents in a strata defined by the publication year, the USPC
primary class and the number of citations up to 1949. NTr eatment and NTr eatment ,Str at a are defined analogously.
Using these weights we arrive at an estimate for the average treatment effect on the treated.

16To make the statistics comparable for affected and not affected patents, we only consider technology classes
in which Bell is active.

17In the main part of our study we only use citations by U.S. patents. In the appendix we run one regression
with citations of patents filed in foreign jurisdictions.
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Table 3.1: Summary Statistics

(1) (2) (3)
Non-Bell System Bell System Bell System

Affected Baseline Sample

mean mean mean
Filing Year 1944.5 1943.6 1940.6
Publication Year 1947.6 1946.5 1943.1
# Years in patent protection after 1956 8.6 7.5 4.1
Total cites 3.3 5.2 4.9
Citations by other companies 3.1 4.5 4.3
Self Citations 0.2 0.7 0.7
Citations by other companies prior to
1949

0.3 0.9 1.4

Observations 293578 7820 4731

Notes: The table reports the average filing and publication year, the average number of years until patent
expiration and citation statistics for patents published between 1939 and 1956. Column 1 includes all patents
of non-Bell System companies in technologies where a Bell System company published at least one patent.
Column 2 includes all Bell patents published between 1939 and 1956. Column 3 includes all Bell patents
published between 1939 and 1949, the baseline sample of most of our regressions. A citation is identified as a
self-cite if the applicant of the cited and citing patent is the same or if both patents belong to the Bell System.
The data are from the Worldwide Patent Statistical Database (PATSTAT) of the European Patent Office.

citations and 13.4% of these citations are self-citations.18 The numbers for the subsample

of Bell patents published until 1949 are very similar. They receive on average 4.9 citations of

which around 14.2% are self-citations.

3.4 Results: Compulsory Licensing Increased Follow-On In-

novation

Prior to the consent decree, Bell licensed its patents to other companies at royalty rates of 1%

- 6% of the net sales price. Lower rates applied if a cross-license was agreed upon (Antitrust

Subcommittee, 1958, p. 2685). The consent decree lowered these rates to zero and made

licensing available without having to enter into a bargaining process with Bell. In this section

we estimate whether and if so by how much this compulsory licensing increased follow-on

innovations.

18Except when explicitly mentioned in the text we correct for self-citations in all our regressions because we
are mainly interested to which extent other companies built on Bell Labs patents.
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Figure 3.4: Effect of Compulsory Licensing on Subsequent Citations
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Notes: This graph shows the estimated number of yearly excess citations of patents affected by the consent
decree ("Bell patents") relative to patents with the same publication year, in the same three-digit U. S. Patent
Classification (USPC) primary class and with the same number of citations up to 1949. To arrive at these
estimates we regress the number of citations in each year on an indicator variable that is equal to one if the
patent under consideration is affected by the consent decree, and year fixed effects (Equation 3.1). We correct for
self-citations. The dashed line represents the 90% confidence bands for the estimated coefficient. The sample
under consideration contains 4,533 Bell patents and 70,180 control patents. We cannot match 198 Bell patents
to control patents. To adjust for the different number of control patents per treatment patent in each stratum,
we use the weights suggested by Iacus et al. (2009). The data are from the Worldwide Patent Statistical Database
(PATSTAT) of the European Patent Office.

3.4.1 Timing: The Consent Decree Increased Citations of Other Compa-

nies Starting in 1955

In this section, we estimate the impact of the compulsory licensing on citations looking at the

time period 1949-1970. We employ the following difference-in-differences specification:

#Ci t ati onsi ,t =α+βt ·Bel li +Y ear F Et +εi ,t (3.1)
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where #Ci t ati onsi ,t is the number of follow-on citations of other companies to patent i in

year t . Bel li indicates whether the patent i is owned by the Bell System and is therefore

treated. We also include fixed effects for each year (Y ear F Et ).

Figure 3.4 shows per year the estimated number of excess citations of Bell patents that were

granted before 1949 relative to control patents, βt in Equation 3.1. From 1949 to 1954, the

average number of citations of treatment and control patents track each other very closely,

speaking in favor of parallel trends in citations to Bell patents and to the control patents. In

1955, the average number of citations of other companies to Bell patents starts to increase and

it converges again in 1960; 1960 is the average expiration date of the Bell patents in our sample

(Table 3.1).19 The yearly coefficients from 1955 to 1960 are mostly significantly different from

zero at the 10 % level.20

The increase in citations depicted in Figure 3.4 does not start in 1956, the year of the consent

decree, but in 1955. This is plausible because on May 28, 1954, Bell already suggested a consent

decree including the compulsory licensing of Bell System patents as described in Section

3.2. Thus, both the Bell Laboratories and companies building on Bell’s patents could have

known that compulsory licensing was pending as early as May 1954 (Antitrust Subcommittee,

1959).21

This timeline is supported by the cumulative abnormal stock returns for AT&T stocks shown

in Figure 3.5.22 Up to the election of Dwight Eisenhower, cumulative abnormal returns

were centered around zero. At the beginning of 1954, cumulative abnormal returns strongly

increased to around 11%. The large uptick in March 1954 is exactly synchronized with the date

of a memorandum summarizing a meeting of the Attorney General and Bell management

about how to resolve the Bell case (Antitrust Subcommittee, 1958, p. 1956). Shortly thereafter,

in May 1954, Bell proposed compulsory licensing as an acceptable remedy to settle the lawsuit.

There is no more persistent positive or negative change in the cumulative abnormal return

19From 1861 to 1994, the term of the patent was 17 years from issuance.
20In Appendix C.2.1 we graphically compare the average yearly number of citations to Bell and to control

patents and find the same results.
21The first media mentioning of the consent decree against Bell was on May 13, 1955 in the New York Times.

Public officials confirmed that top level negotiations are ongoing “looking towards a settlement of the AT&T
case”.

22The historical stock market data is from CRSP.
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Figure 3.5: Cumulative Abnormal Stock Returns of AT&T
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Prices (CRSP).

until 1959. In particular, the consent decree itself in 1956 did not seem to have had any more

informational value.

We can also infer from Bell’s behavior that as early as the first half of 1955, compulsory

licensing was expected. According to the consent decree, all patents had to be licensed for

free if they were published before January 24, 1956. If they were published after this cut-off

date, they were licensed on a reasonable and non-discriminatory basis. So starting from the

date when Bell became aware of the clause it had an incentive to delay the publication of its

patents beyond the cut-off date.

According to the data, Bell indeed started to delay its patents at the patent office beginning in

the first half of 1955. To pin down the date, we compare the propensity of a Bell patent to be

published with the propensity that control patents are published for a given filing year. In
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Figure 3.6, we show these hazard rates of publishing in a particular year for the filing years

1949 and 1953. For the filing year 1949, the publishing rates per year are very similar for Bell

patents and patents from other companies. If at all, Bell patents were published a bit earlier.

For the filing year 1953, this picture is reversed: Starting in the first half of 1955, Bell patents

had a significantly lower probability of being published. This is consistent with Bell trying

to delay the publications of its patents and having credible information about the general

outline of the consent decree in the first half of 1955 at the latest.
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Figure 3.6: Hazard Rates for Publication of Patents by Filing Year
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3.4.2 Magnitude: The Consent Decree Increased Citations to Bell Patents

by 17%

We next present our baseline regression. To quantify the size of the effects of the consent

decree, we estimate the average yearly effect of the consent decree on citations of other

companies for the time period 1949-1960. We employ the following difference-in-differences

model:

#Ci t ati onsi ,t =β1 ·Bel li +β2 · I [1955−1960]+β3 ·Bel li · I [1955−1960]+εi ,t (3.2)

where I [1955−1960] is an indicator variable for the treatment period. We define the treatment

period as from 1955 to 1960 based on the yearly coefficients in Figure 3.4.

The results are reported in Table 3.2 column 1.23 In the treatment period, the consent decree

resulted in 0.020 additional citations. This implies that, on average, the consent decree in-

creased citations to Bell patents by other companies by 17% from 1955 to 1960.24 Considering

only the 4,731 patents published before 1949, this implies a total increase of 568 citations. If

we assume homogeneous effects for all 7,820 patents published up to 1956, the total number

of excess citations is 938. The effect is also positive and statistically significant if we include

all patents up to 1956, the year of the consent decree (column 2).

Back-of-the-envelope calculations suggest that the additional patents for other companies

directly induced by the consent decree had a total value of up to $5.7 billion. To calculate

this number we use estimates for the average dollar value derived from Kogan et al. (2017)

to weigh each citing patent.25 According to these estimates, each compulsorily licensed

patent created an additional value of $121,000 annually in the treatment period (column

3). Assuming homogeneous effects for all 7,820 patents in the treatment group, the consent

23Note that patents receive fewer citations post treatment because older patents in general receive fewer
citations than younger patents. See Figure C.3 in Appendix C.2.1

24To determine the percentage increase, we first calculate the number of citations Bell patents would have
received in the absence of the treatment (counterfactual), using the coefficients in Table 3.2 column 1. The
counterfactual is 0.115 (= 0.183−0.004−0.064). We then divide the treatment effect, 0.02, by the counterfactual
(0.02/0.115 = 0.174).

25Kogan et al. (2017) measure the value of a patent using abnormal stock returns around the publishing date
of the patent. We use this data to calculate the average dollar value for a patent in each technology class and
publication year.
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decree led to around $5.7 billion in economic value over six years, between 1954 and 1960.

These calculations represent an upper bound because they assume that without the additional

citations induced by the consent decree the patent would not have been invented (i.e., that

the compulsorily licensed patent was strictly necessary for the citing invention).

The effect is measurable across the quality distribution of patents. We split all patents by

the number of citations a patent received in the first five years after publication and present

results in columns 4 and 5 of Table 3.2. We define a high-quality patent as a patent with at least

one citation before 1949 and a low-quality patent as a patent with no citations. The effect is

stronger for high quality patents, but the effect is also statistically significantly different from

zero for low quality patents. The effect is also not exclusively driven by the computer industry,

which was just about to start in 1956. In column 6, we report results when dropping all 491

Bell patents classified in the technology subcategories “Computer Hardware and Software”,

“Computer Peripherals” and “Information Storage” or “Others” (Hall et al., 2001) and find a

similar effect. The effect is also not driven by the concurrent consent decrees of IBM in 1956

or RCA in 1958. IBM and RCA were defendants in an antitrust case with compulsory licensing

as the outcome. We drop all citations from patents that also cite either the patents of RCA or

the patents of IBM and report the results in column 7.
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3.4.3 Robustness Check: No Increase in Citations by Untreated Compa-

nies

One concern for the estimation is that the effect of compulsory licensing on subsequent

citations might be driven by a shock that increased follow-on innovation to Bell patents and

was correlated with the consent decree. For example, the antitrust prosecutors might have

chosen to press for compulsory licensing because they expected that there would be many

follow-on innovations based on the high quality of the Bell’s patents.

To see whether this might have been the case we analyze the citation patterns of unaffected

companies to Bell patents and to the control patents. The 1956 consent decree singled

out three companies that were explicitly excluded from the free compulsory licensing of

Bell patents: the General Electric Company, Radio Corporation of America, and Westing-

house Electric Corporation. The reason was that these companies already had a general

cross-licensing agreement, the “B-2 agreements” dated July 1, 1932. A fourth company, the

International Telephone and Telegraph Company (ITT), was also not affected by the decree as

it had a patent pool with Bell.

We repeat our baseline analysis but use only the citations of the B-2 companies (including

ITT) as the dependent variable and report the results in Figure 3.7 and column 2 of Table C.1

in Appendix C.2.2. We do not find any effect. This suggests that the consent decree did not

change the citation behavior of excluded companies and the measured effects are not due to

a common technology shock. As these companies in total make up 12% of all citations to Bell

patents, this null effect is not due to a lack of measurability.26

A second concern might be that due to the free availability of Bell technology, companies

substituted away from other, potentially more expensive technologies. In Appendix C.2.3 we

show the results of additional auxiliary analyses suggesting that the effects are not driven by

citation substitution.

26We repeat our analysis also for foreign companies, which could also use Bell patents for free but which
did not receive technical assistance, and report the results in Table C.1, column 3 in Appendix C.2.2. Similarly,
we repeat our analysis for companies that already had a licensing agreement in place and compare them with
companies without a licensing agreement (Table C.1, columns 4 and 5, Appendix C.2.2). As expected, we find
that the effects are smaller for firms that were less affected by the consent decree.
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Figure 3.7: Effect of Compulsory Licensing on Subsequent Citations Among Companies
Exempt from the Consent Decree
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Notes: This graph shows the estimated number of yearly excess citations by General Electric Company, Radio
Corporation of America and Westinghouse Electric Corporation, the three companies exempt from the consent
decree, and by International Telephone and Telegraph Company, which already had a patent pool in place, of
patents affected ("Bell patents") relative to patents with the same publication year, in the same three-digit USPC
primary class and with the same number of citations up to 1949. To arrive at these estimates, we regress the
number of citations by the unaffected companies in each year on an indicator variable equal to one if the patent
under consideration is affected by the consent decree and year fixed effects. The dashed line represents the
90% confidence bands for the estimated coefficient. To adjust for the different number of control patents per
treatment patent in each stratum, we use the weights suggested by Iacus et al. (2009). The data are from the
Worldwide Patent Statistical Database (PATSTAT) of the European Patent Office.
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Finally, in Appendix C.2.4 we vary the construction of control groups and show that our results

are not driven by the particular choice of matching variables.
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3.4.4 Robustness Check: The Decrease in Bell’s Own Patenting is Lower

than the Increase in Patenting by Other Companies

We next examine how Bell reacted to the consent decree. Bell might have reduced its inno-

vation activities by more than other companies increased their innovation activities, such

that the net effect of the consent decree would be negative. To see, whether this is the case

we measure whether Bell continued to produce follow-on innovations building on its own

patents.27 Results are reported in column 8 of Table 3.2. The number of self-citations shows

a decrease of 0.006 self-citations in the years between 1955 and 1960. This decrease is sta-

tistically significant, but is not large enough to dominate the increase in citations by other

companies. In column 9 we present the effect on total citations, i.e., citations by other compa-

nies and self-citations by Bell. We find that total citations increased by 0.016. This speaks in

favor of a net increase in innovation due to the consent decree.

Bell’s innovation output in terms of number of patents continued to grow in line with expecta-

tions in the years following the consent decree. To show this, we construct a synthetic Bell and

compare it with the actual patent output of the Bell System. To construct a synthetic Bell, we

first calculate the share of Bell’s patents of all patents in each technology subcategory for the

years 1946, 1947, and 1948. Then we assume that Bell’s growth would have been in line with

the growth of other companies that existed before 1949 in these technology subcategories

so that Bell would have held its share in each subcategory constant for the following years.

Results are presented in Figure 3.8a. It shows that Bell’s patenting is on average smaller than

the patenting of the synthetic control, but not by much.28

Bell’s continued investment in research was in line with the incentives the consent decree

and the regulators provided. The consent decree did not significantly alter the profitability of

new patents. The consent decree mandated that Bell could demand “reasonable” licensing

fees for all patents published after January 1956. The reasonable royalty rates Bell charged

27Self-citations are a measure for how much a company develops its own patents further (Akcigit and Kerr,
2010; Galasso and Schankerman, 2015a).

28In Figure C.5 in the Appendix C.2.5 we compare the patenting output of Bell with other control companies
and find that Bell’s patent growth is in line - but at the lower end - of similar companies. The only exception is
the growth of General Electric which is much larger, highlighting the problem of constructing a counterfactual
for a single company.
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Figure 3.8: Innovation and R&D in the Bell System After the Consent Decree
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Notes: Subfigure (a) shows the total number of patents filed by the Bell System compared to a synthetic Bell. To
construct the synthetic Bell, we calculate the share Bell’s patents had in each two-digit technology subcategory
relative to all patents of companies that had at least one patent before 1949. We then assume that in the absence
of the consent decree, Bell’s patenting would have grown in each subcategory at the same pace as the patenting
of all other companies. As a consequence, Bell’s share in each technology subcategory is held constant. In a last
step, we add the number of patents up to a yearly sum. Subfigure (b) shows the ratio of R&D expenditures relative
to total R&D of American Telephone & Telegraph. The data are from the annual reports of AT&T. Subfigure (c)
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(SIC 3661). In Appendix C.2.6 we show the change in direction using NBER subcategories. The patent data are
from the Worldwide Patent Statistical Database (PATSTAT) of the European Patent Office.
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were not much different compared to the pre-decree royalties (Antitrust Subcommittee, 1959,

p.111). The only difference was that Bell had to give a license to any applicant.

Bell also had little incentive to reduce investment in R&D because the Bell System was subject

to a rate of return regulation following the Communications Act of 1934. According to annual

reports, AT&T had a stable ratio of R&D to operating revenue of 0.5% from 1949 to 1960 (Figure

3.8b).29 For the entire Bell System, the share of R&D to total turnover stayed almost constant

at 2%-3% from 1966 to 1982 (Noll, 1987). However, the absolute level of R&D effort increased

as the Bell System grew. Operating revenues increased from $3.2 billion in 1950 to $5.3 billion

in 1955, to $7.3 billion in 1960 and to $11 billion in 1965, while the staff at Bell Labs grew from

6,000 in 1950, to 10,000 in 1955, to 12,000 in 1960 and 15,000 in 1965 (Temin and Galambos,

1987).

But even if the consent decree offered no incentive for Bell to downsize, it offered incentives

for Bell to redirect its research budget towards applications in the telecommunications field.

Prior to the consent decree, Bell could expand to other businesses. Afterward, Bell’s future was

bound to common carrier telecommunications. The company correspondingly refocused its

research program on its core business and increased its share of patents in fields related to

the production of telecommunications equipment (Figure 3.8c).

These results are consistent with the study of Galasso and Schankerman (2015a) on patent in-

validations. They show that large companies on average do not reduce follow-on innovations

significantly if they lose a patent due to litigation. The only exception is if the large company

loses a patent outside of its core-fields. Then it reduces innovation in the field of the patent

under consideration and reacts by redirecting future innovation to a different but related field.

3.4.5 Mechanism: Increase in Citations is Driven by Start-ups.

We next examine which type of company increases innovation after the compulsory licensing

and report the results in Table 3.3. We split citations by the type of the citing assignee. An

assignee is either a company or an individual inventor; an assignee is defined as young and

29We do not know whether the consolidated balance sheet also includes the Bell Laboratories and Western
Electric. It seems that at least some parts of the Bell System are not consolidated in the annual reports of AT&T.
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small if its first patent was filed less than 10 years before it cited the Bell patent and if it had

less than 10 patents before 1949.30 We first use the number of citations from young and small

assignees as the dependent variable and report the results in column 2. We then use the

citations of all other assignees that are not young and small and report the results in column 3.

In column 4 we look explicitly at small and young assignees that are companies (“start-ups”),

leaving out individual inventors.31

We find that the increase in follow-on innovation is predominantly driven by young and

small companies entering the market and by individual inventors. Young and small assignees

increase their citations after 1955 by an average of 0.014 citations (32%) while all others

increase their citations by 0.006 (6%) on average. Around 70% of the overall increase comes

from young and small assignees, but they are responsible for only one-third of all citations to

Bell patents (columns 2 and 3 in Table 3.3).32 Among the small and young assignees, start-

ups experience a particularly strong increase: they account for 50% of the total increase in

citations although they are responsible for only 18% of all citations (column 4).

These results suggest that patents act as a barrier to entry for start-ups and prevent their

follow-on innovation. They provide support for the hypothesis that the consent decree

reduced potential bargaining failures. Several prior studies suggest that small firms might not

have large enough patent portfolios to resolve disputes or to strike cross-licensing agreements

(Lanjouw and Schankerman, 2004; Galasso, 2012; Galasso and Schankerman, 2015b). As

cross-licensing was a priority in the licensing strategy of Bell prior to the consent decree, a

small patent portfolio might have been a significant handicap for small inventors seeking a

license from Bell (Antitrust Subcommittee, 1958, p. 2685).

One potential concern might be that the observed increase of citations by young and small

companies was driven not by the consent decree itself but by other changes at Bell Labora-

tories. Historical accounts suggest that there was an exodus of important Bell researchers

30In Appendix C.2.7 we use different definitions for young and small companies and find that the effect is
mainly driven by companies that file their first patent.

31We identify companies as all assignees that are never inventors. Our results are robust to defining companies
as having Inc., Corp., Co. or similar abbreviations in their name.

32Young and small assignees are responsible for an increase of 0.014 citations (column 2). This is 70% of the
total increase of 0.02 (column 1). It is also an increase of around 32% relative to what we would have expected
without a consent decree. According to the estimates a Bell patent should have received 0.044 citations (0.068 is
the constant, the Bell effect is -0.008, and the average decrease in citations in the post treatment period is -0.016)
but did receive 0.058 citations (0.044 baseline effect + 0.014 treatment effect).
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around the time of the consent decree. For example, in 1953 Gordon Teal, inventor of a

method to improve transistor performance, joined the then small Texas Instruments Inc.

Similarly, William Shockley, one of the inventors of the transistor, left Bell in 1956 to found

Shockley Semiconductors Laboratory.

To show that this is not the case, we separately look at patent citations by people who were

at some point associated with Bell, but later patented for a different company, including

their co-inventors, and compare with citations by all remaining unrelated inventors. In

our data, there are 4,477 former Bell employees with 28,569 patents. These people have in

total 12,068 co-inventors who were never active at Bell and who filed 87,148 patents in total.

The results are reported in columns 5 and 6 of Table 3.3. We find a positive effect on the

citations of unrelated inventors and a negative effect on the citations of related inventors.

This pattern does not suggest that the increase in follow-on innovation was driven by former

Bell employees. However, the results do suggest that the Bell inventors had preferential access

to Bell technology prior to the consent decree and that there was a strong increase from

unrelated inventors afterwards.

3.5 Compulsory Licensing did not End Foreclosure in the Mar-

ket for Telecommunications Equipment

The aim of the consent decree was to end foreclosure in the market for telecommunications

equipment. According to the antitrust lawsuit, Bell was closing the market to all other buyers

and sellers of telecommunications equipment by using exclusive contracts between Western

Electric and the Bell operating companies and by refusing to license patents to competitors.

In markets outside of the telecommunications industry Bell was active only as a supplier of

technology but was not an active market participant.

Market foreclosure is thought to have a negative effect on the innovation activities of the

companies that are foreclosed (Baker, 2012; Wu, 2012). The argument is that foreclosed

companies cannot earn profits by selling their improved products directly to consumers. The
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only option they have is to sell their innovations to other companies.33 Thus, foreclosed

companies have lower incentives for innovation than companies with access to a customer

base.

In this section we compare the innovation effects of compulsory licensing inside and outside

of the telecommunications industry to infer whether market foreclosure is harmful for inno-

vation and whether compulsory licensing is effective in ending it. If compulsory licensing

increases innovation in the same way in all industries, then any difference between the two

competitive settings must be due to market foreclosure in the telecommunications indus-

try. If market foreclosure reduces innovation as argued above and if compulsory licensing

was effective in ending it, we should see a stronger increase in follow-on innovations in the

telecommunications industry than in other industries. In contrast, if compulsory licens-

ing was ineffective in ending market foreclosure, we should find a smaller effect. If market

foreclosure has no effect on innovation, we should find similar effects in all industries.

To compare the innovation effects within telecommunications and outside we first need

to characterize each citing patent by its closeness to the market for telecommunications

equipment. To do this, we use the concordance of Kerr (2008) that gives us the probability for

each USPC technology class that a patent in this technology class is used in the production

of telecommunications equipment (SIC 3661). We interpret this probability as a measure

of closeness to telecommunications. We then assign this probability to each citing patent

according to its technology class and sum up the citations for each level of likelihood to

construct a different dependent variable for each level of closeness, 26 altogether. In a last

step, we repeat our main regression for each level of closeness. We can thus estimate how

much the consent decree increased citations in markets that are close to the production of

telecommunications equipment and in markets unrelated to it.

In Figure 3.9 we show the average treatment effects estimated with our baseline model in

Equation 3.2 for different levels of closeness to the production of telecommunications equip-

ment. We find a strong negative relation between the closeness to telecommunications and

excess citations. Almost all excess citations come from patents that have nothing to do with

33Such a market for ideas exists only in special circumstances (Gans et al., 2002; Gans and Stern, 2003; Gans
et al., 2008).
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Figure 3.9: Excess Citations by Patents with Varying Likelihood of Being used in Production of
Communication Equipment
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Notes: This figure shows results from a difference-in-differences estimation of the impact of the consent decree
on follow-on patent citations with 1949-1954 as the pre-treatment period and 1955-1960 as the treatment period,
controlling for year fixed effects. We estimate Equation 3.2 and reportβ3 separately, using as dependent variables
citations from patents with a different relevance for the production of telecommunication equipment (SIC 3661 -
“Telephone and Telegraph Apparatus”). Relevance is measured by the likelihood that a patent is used in industry
SIC 3661 using the data of Kerr (2008). The size of the circle signifies the number of Bell patents in a technology
and a solid circle implies that the coefficient is significant at the 10% level. The data are from the Worldwide
Patent Statistical Database (PATSTAT) of the European Patent Office.
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Figure 3.10: Excess Citations by Patents According to the Most Likely SIC Industry Classifica-
tion
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Notes: This figure shows results from a difference-in-differences estimation of the impact of the consent decree
on follow-on innovation with 1949-1954 as the pre-treatment period and 1955-1960 as the treatment period,
controlling for year fixed effects. As the dependent variable, we use all citations by companies other than the
filing companies classified by the most likely SIC classification of the citing patent. As control patents, we use all
patents that were published in the U.S. matched by publication year, primary USPC technology class, and the
number of citations up to 1949. To classify a patent by its most likely industry, we use the data of Kerr (2008). We
assign to each USPC class the most likely four-digit SIC industry in which it is used. A solid circle indicates that a
coefficient is significant at the 10% level. The data are from the Worldwide Patent Statistical Database (PATSTAT)
of the European Patent Office.

telecommunications. We conclude from this that follow-on innovation in telecommunica-

tions was not influenced by compulsory licensing. Under the assumption that compulsory

licensing affects innovation similarly in all industries this result supports the argument that

market foreclosure has a chilling effect on innovation and indicates that compulsory licensing

was ineffective in solving it.

Next, we use Kerr’s data to assign each citing patent to the industry in which it is most likely

used and repeat the baseline regression with citations from patents in different industries.

The results are shown in Figure 3.10. Almost all additional citations are from patents with the

most likely application outside of the industry “Telephones and Telegraphs” (SIC 3661). A
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large part of the effect is driven by unrelated industries such as “Measuring and Controlling,”

“Audio and Video Equipment” or “Motor Vehicles.”34 These results support the notion that

market foreclosure is harmful for innovation and that compulsory licensing is ineffective as a

remedy.35

Foreclosure seems to be particularly harmful for start-up innovation. In columns (7) and (8) of

Table 3.3 we show that small and young companies increased their citations only outside the

field of telecommunications, but not inside.36 As a large part of the effect in the full sample

was driven by small and young companies, this suggests that also start-ups react strongly to

market foreclosure. In fields outside of telecommunications, compulsory licensing fostered

innovation by small and young companies since Bell as the supplier of technology did not

control product markets through vertical integration or via exclusive contracts.

Our results suggest that market foreclosure stifles innovation and that compulsory licensing

is not sufficient to foster innovation without supporting structural remedies. This confirms

the general perception at the time of the lawsuit. Both the public and antitrust officials

were aware that because of Bell’s persistent monopoly compulsory licensing would only help

companies outside the telecommunications field. A witness in the congressional hearings put

it succinctly: “while patents are made available to independent equipment manufacturers, no

market for telephone equipment is supplied (...). It is rather a useless thing to be permitted

to manufacture under patent if there is no market in which you can sell the product on

which the patent is based.” The Antitrust Subcommittee concluded that “The patent and

technical information requirement have efficacy only so far as they permit independent

manufacturers to avail themselves of patents in fields that are unrelated to the common

carrier communication business carried on by the Bell System companies, and nothing more.”

On May 4, 1954, presiding Judge Stanley N. Barnes suggested that compulsory licensing policy

for reasonable rates is “only good window dressing” but would do no good because Western

34In the Appendix C.3.1 we repeat the analysis using NBER technology subcategories to classifiy the citing
patent. The results are the same.

35Another explanation for our null result in the telecommunications market would be that there was a lack
of innovation potential in the telecommunication sector after 1956. To rule out this hypothetical possibility
we compare the development of patents in the telecommunications sector. Results are reported in Figure C.9
in Appendix C.3.2. They show that the number of citations to Bell’s telecommunications patents had a similar
trend as patents outside of telecommunications and that the number of Bell’s newly filed telecommunications
patents shows no signs of abating after the consent decree.

36We use the most likely SIC code to determine the field of the citing patent.
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Electric had already “achieved an exclusive position (...) and liberal licensing would not permit

competitors to catch up” in the telecommunications business (Antitrust Subcommittee, 1959,

pp. 108).

In the years after the consent decree, the Bell System faced repeated allegations of exclusionary

behavior. By the 1960s and 1970s, a range of new firms were eager to enter the telecommu-

nications market but Bell implemented measures to make it expensive or impossible (Wu,

2012). This led to a number of regulatory actions, for example forcing interconnections of

Bell’s telephone system to the entering competitors MCI in 1971 which provided long dis-

tance services using microwave towers (Temin and Galambos, 1987; Gertner, 2012, p. 272).

Eventually, the continued monopolization of the telecommunications market by Bell resulted

in the 1974 antitrust lawsuits. The lawsuit mirrored almost scene by scene the case of 1949.

Again Bell was charged with excluding competitors from the market of telecommunications

equipment. Again, the Department of Defense intervened on the grounds of national defense.

But the Reagan administration was not as accommodating as the Eisenhower administration

had been and the Department of Justice was keen on going after Bell. The case ended with

the break-up of the Bell System in 1983, opening up the market for telecommunications

equipment for competition.

3.6 The Consent Decree Increased U.S. Innovation in the Long

Run

The historical set-up of the Bell case gives us the opportunity to look also at the long-run

innovation effects of a consent decree. In the previous section we have shown that the increase

in follow-on citations is measurable for the first five years. This raises the question how lasting

the impact of a large-scale intervention in patent rights really is. To answer this question we

study the long-run impact of the case against Bell on the patent activities of firms patenting in

the U.S. More specifically, we examine the increase in the total number of patents in a USPC

technology subclass with a compulsorily licensed Bell patent relative to a subclass without.

We employ the following empirical model
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#Patent ss,t =βt · I (Bel l > 0)s +Contr ol s +εs,t (3.3)

where the outcome variable is the total number of patents in a technology subclass s (Moser

and Voena, 2012; Moser et al., 2014). The treatment variable equals one if there is at least one

compulsorily licensed patent in the technology subclass. As controls, we use USPC class-year

fixed effects.37 Our sample consists of 235 classes with 6,276 subclasses of which 1,209 are

treated.38

In Figure 3.11a we plot the number of excess patents for all patent classes. We leave out

patents by Bell to focus on patenting of other companies. Starting in 1953, the number

of patents in technology classes where Bell patents were compulsorily licensed increased

relative to subclasses without Bell patents, and it continued to do so beyond 1960, when the

last Bell patents affected by the consent decree expired. This suggests that the consent decree

increased U.S. innovation in the long run.

To quantify the effect we next estimate the average yearly effect of the consent decree on the

total number of patent applications for the time period 1949-1960. We employ the following

difference-in-differences model:

#Patent ss,t =β1 · I (Bel l > 0)s +β2 · I (Bel l > 0)s · I [1955−1960]+Contr ol s +εs,t (3.4)

where I (Bel l > 0)s is 1 if Bell has a patent in the subcategory s. As controls we use class-year

fixed effects.

The coefficients are reported in Table 3.4. In the first five years alone, patent applications

increased by 2.5 patent applications in treated classes (column 1). This is an increase of

37To follow the literature we use USPC technology classes here and not SIC classes.
38We exclude subclasses that did not have any patents at all before 1956 and we include only patent classes

that contain subclasses that were treated and subclasses that were not.
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Figure 3.11: Impact of the Consent Decree in the Long Run

(a) Annual Treatment Effects on the Number of Patent Applications
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(a) shows annual treatment effects βt estimated with Equation 3.3 for all patent classes. Standard errors are
clustered at the class level. Subfigure (b) shows the average increase in the number of patents β2 estimated with
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of the European Patent Office.
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around 24.5%.39 Furthermore, patent applications by new companies entering the market

increased relatively more than patent applications by other companies (columns 2 and 3).40

The increase appears to be stronger outside of telecommunications technologies (column

4 and 5). In Figure 3.11b we plot the average treatment effects estimated with Equation 3.4

for different levels of closeness to the production of telecommunications equipment. Again

the effects are weak for technologies closely related to the production of telecommunications

equipment and strong for unrelated technologies. This again suggests that the fields in which

Bell continued to operate experienced slower technological progress than markets where

entry of start-ups was possible.

Figure 3.11a shows that the increase in patenting begins in 1953, two years before the increase

in citations to Bell patents. In 1953, Bell’s most important invention, the transistor, became

available for licensing, spurring the creation of the computer industry. To make sure that

the entire increase is not driven by this one exceptional invention, we analyze computer and

non-computer patents separately and report the results in columns 6 and 7 of Table 3.4. The

effect is stronger for the computer patents, but the increase in patenting is also significant

without any computer patent.

Thus, overall we find that the consent decree led to a long-lasting increase in the scale of

innovation mainly outside the telecommunications field. This is consistent with the theoreti-

cal argument by Acemoglu and Akcigit who build on the step-by-step innovation model of

Aghion et al. (2001) to analyze the effects of compulsory licensing on innovation (Acemoglu

and Akcigit, 2012). They consider the case where all current and future patents in the economy

are compulsorily licensed for a positive price and identify two main effects. On the one hand,

compulsory licensing helps technological laggards to catch up and brings more industries

to a state of intense competition. This ‘composition effect’ increases innovation, because

companies in industries with intense competition invest more in R&D in order to become

39Untreated subclasses have on average 2.17 patent applications in the pre-treatment period. In these
subclasses the number of patent applications increases by 0.52 from the pre- to the post-treatment period. Using
the estimate for the difference between treated and untreated classes, 7.5, in column 1 of Table 3.4, we calculate
the counterfactual number of applications in treated classes in the absence of compulsory licensing which is
equal to 10.19 (=7.5 + 2.17+0.52). The treatment effect is 2.5. Thus, the number of patents increased relative to
the counterfactual by 24.5% (=2.5/10.19).

40The number of patents of young and small companies increases by 38% while the number of patents of all
other companies increases by 18%.
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the industry leader. On the other hands, compulsory licensing reduces the time a technology

leader keeps its profitable position. This ‘disincentive effect’ reduces the innovation and

growth in the economy.

In our case, compulsory licensing was selectively applied to one company that did not par-

ticipate in any market other than the telecommunications market. This enabled many new

companies to enter markets with state-of-the art technology and to compete for the industry

leadership with full patent protection of future inventions intact (Holbrook et al., 2000). Thus

in all industries but the telecommunications industry we measure the pure composition effect

without the counteracting disincentive effect. The interpretation that the consent decree

helped to open up new markets and enabled new start-ups to compete is consistent with

historical accounts on the growth of electronics and computers industry in the 1950s and

1960s (Grindley and Teece, 1997).

3.7 Case Study: The Diffusion of the Transistor Technology

In this section we examine the diffusion of the transistor technology because it is a particu-

larly insightful case study for the mechanisms illustrated in the previous sections for three

reasons: First, in response to the antitrust lawsuit Bell started already in 1952 to license the

transistor technology via standardized non-discriminatory licensing contracts. This creates

an interesting variation in the timing of licensing. Second, transistor patents were expected to

be particularly important, hence we can estimate how the amount of follow-on innovation

varies with patent quality. And finally, under the impression of the antitrust lawsuit Bell was

very careful not to engage in exclusionary practices with its transistor patents. Thus, in 1956

the only change for the transistor technology was that the patents were now royalty free. This

allows us to examine the isolated impact of a decrease in royalties.

The transistor is arguably the most important invention of Bell Labs. As the most basic

element of modern computers, the transistor has been instrumental in the creation of entire

industries and its invention heralded the beginning of the information age. The invention of

the transistor earned John Bardeen, Walter Brattain, and William Shockley the Nobel Prize in

Physics in 1956. They filed patents in June 1948 and announced the invention on July 1 of the
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same year. The patents were published in 1950 and 1951. Bell, the military, and the research

community at large immediately understood the importance and value of the transistor.

Due to the ongoing antitrust lawsuit, Bell’s management was reluctant to draw attention to

its market power by charging high prices for transistor components or for licenses (Mowery,

2011). To appease the regulator, Bell’s top managers agreed to share and license the transistor

device with standardized non-discriminatory licensing contracts (Gertner, 2012, p.111). In

addition, Bell decided to actively promote the transistor by organizing conferences to explain

the technology. In April 1952, over 100 representatives from 40 companies gathered for a

nine-day Transistor Technology Symposium, including a visit to Western Electric’s transistor

manufacturing plant in Allentown, PA. After the conference, 30 companies decided to license

the transistor technology for a non-refundable advance payment of $25,000 (∼ $220,000 in

today’s dollars) that was credited against future royalty payments (Antitrust Subcommittee,

1958, p.2957). Royalty rates amounted to 5% of the net selling price of the transistor in 1950,

which were reduced to 2% in 1953 (Antitrust Subcommittee, 1959, p. 117).

To be able to separately analyze the transistor we identify among the patents affected by the

consent decree all patents related to the original transistor inventor team. There are two main

transistor patents: Patent # 2,524,035 with the title “Three-Electrode Circuit Element Utilizing

Semiconductive Materials” granted in 1950 to John Bardeen and Walter Brattain and Patent #

2,569,347 with the title “Circuit Element Utilizing Semiconductive Material” issued to William

Shockley in 1951. To these two patents, we add all the patents of all researchers who actively

worked towards the development of the transistor at Bell Labs.41 Then we add all patents from

all co-authors. We identify 329 “transistor” patents affected by the consent decree (i.e., held by

Bell Labs). This sample is most likely a superset of all transistor patents. For example, it also

includes patent # 2,402,662 with the title “Light Sensitive Device” granted to Russell Ohl, the

original patent of the solar cell. The median publication year of the patents in the transistor

subsample is 1947; and 168 of these patents are also included in our baseline sample.

41Researchers whom we classify to have actively contributed to the transistor at Bell Labs were in alphabetical
order Bardeen, Bown, Brattain, Fletcher, Gardner Pfann, Gibney, Pearson, Morgan, Ohl, Scaff, Shockley, Sparks,
Teal and Theurer (e.g. Nelson, 1962).
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Figure 3.12: Annual Treatment Effects on Excess Citations of Transistor Patents
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Notes: This graph shows the estimated number of yearly excess citations of transistor-related patents affected by
the consent decree (“Bell patents”) relative to patents with the same publication year, in the same three-digit
USPC primary class and with the same number of citations up to 1951. We define Bell patents as transistor-
related if they are either one of the two main transistor patents (Patent # 2,524,035 or Patent # 2,569,347) or were
filed by inventors associated with these patents or their co-inventors. To arrive at these estimates, we regress the
number of citations in each year on an indicator variable that is equal to one if the patent under consideration is
affected by the consent decree and year fixed effects. The dashed lines represent the 90% confidence bands for
the estimated coefficient. To adjust for the different number of control patents per treatment patent in each
stratum, we use the weights suggested by Iacus et al. (2009). The data are from the Worldwide Patent Statistical
Database (PATSTAT) of the European Patent Office.

To be able to repeat our regressions in this subsample of transistor patents we extend our

baseline sample to patents published up to 1951. For our control group we now use patents

with the same number of pre-citations up to 1951 while all other criteria stay the same.

Figure 3.12 shows the yearly excess citations of transistor patents relative to control group

patents. The coefficient of 1952, which is not matched and is close to zero, speaks in favor

of parallel trends. The impact of licensing is measurable starting in 1953, and lasts for at

least 15 years. This suggests that standardized licensing had a positive impact on follow-on

innovation. The fact that the impact does not strongly increase in 1956 when the consent

122



ANTITRUST, PATENTS, AND CUMULATIVE INNOVATION

Table 3.5: The Transistor Subsample

(1) (2) (3) (4) (5) (6)

Publication year <1952 Publication year<1949
Subsample Base-

line
Transistor No

transistor
Base-
line

Transis-
tor

No
transistor

Start treatment 1955 1953 1955 1955 1953 1955

Bell -0.3 -1.4 -0.4 -0.4 -0.9 -0.4
(0.3) (1.2) (0.3) (0.5) (2.1) (0.5)

I(53/55-60) -5.7∗∗∗ -6.3∗∗ -5.6∗∗∗ -6.4∗∗∗ -7.4∗∗∗ -6.4∗∗∗

(0.7) (2.7) (0.7) (0.6) (2.2) (0.6)
Bell x I(53/55-60) 1.9∗∗∗ 8.0∗∗ 1.8∗∗∗ 2.0∗∗∗ 4.4∗ 2.0∗∗∗

(0.5) (3.7) (0.5) (0.6) (2.3) (0.6)
Constant 19.0∗∗∗ 23.0∗∗∗ 18.8∗∗∗ 18.3∗∗∗ 22.3∗∗∗ 18.1∗∗∗

(1.4) (3.2) (1.4) (1.2) (2.9) (1.2)
# treated 5758 204 5554 4533 168 4365
Clusters 239 65 237 225 58 223
Obs. 1035421 64891 1021733 896556 56664 886044

Notes: This table shows the results from a difference-in-differences estimation. As the dependent variable we
use all citations by companies other than the filing company. For the regression with the transistor patents, we
define the treatment period as starting in 1953; for the non-transistor patents we define the treatment period
as starting in 1955, as in our main regression in Equation 3.2. Bell is an indicator variable equal to one if a
patent is published by a Bell System company before 1949 and is therefore affected by the consent decree.
As control patents, we use all patents that were published in the U.S. matched by publication year, primary
USPC technology class, and the number of citations. We define patents as transistor patents if they were filed
by a member of the original transistor team or one of their co-authors. In the regressions for columns 1 to 3,
we use all patents with a publication year before 1952 and we match all citations up to and including 1951.
Correspondingly, in the regressions for columns 4 to 6 we use patents and citations up to 1949. The data are
from the Worldwide Patent Statistical Database (PATSTAT) of the European Patent Office. All coefficients are
multiplied by 100 for better readability. Standard errors are clustered on the primary three-digit USPC technology
class level and *, **, *** denote statistical significance on 10%, 5% and 1% level, respectively.

decree reduced licensing fees to zero suggests instead that the price effect of compulsory

licensing had little further impact.

Table 3.5 reports the results from repeating our baseline regression in this subsample. We find

that citations to the transistor patents increase by 52% (column 2). They experience around

a four times higher increase in follow-on citations than other consent decree patents. The

magnitude of the effect is consistent with the presumption that patents on more important

inventions experience a larger increase after compulsory licensing.

Despite the large effects, the transistor patents do not drive the effect in our main sample. To

rule out this possibility we analyze our original sample up to 1949 with and without transistor
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patents. Results are shown in columns (5) and (6). We find large but insignificant effects

for the transistor sample and virtually the same effect without transistors as in the baseline

regression that includes transistor patents (column 4).42

Transistors are the classical example of a general purpose technology that has the potential

of having a large scale impact on the economy (Helpman, 1998). If it had not been for

the antitrust lawsuit against Bell, odds are that Bell’s licensing policy would have been less

accommodating and the follow on-innovations stimulated by the transistors less dramatic

than they were.

3.8 Conclusion

In this study we show that antitrust enforcement can increase innovation. The 1956 consent

decree that settled the antitrust lawsuit against Bell increased innovation, mostly by small

and young companies building on Bell’s established technologies. We conclude that antitrust

enforcement can play an important role in increasing innovation by facilitating market entry.

Several antitrust scholars have argued that antitrust enforcement should pay special attention

to exclusionary practices because of their negative influence on innovation (Baker, 2012;

Wu, 2012). Our study seconds this view. We show that foreclosure has a negative impact on

innovation and that compulsory licensing may not be an effective remedy to end market

foreclosure and to overcome its stifling effect on innovation unless accompanied by structural

remedies.

Compulsory licensing is often imposed in merger cases where the market structure changes

endogenously (Delrahim, 2004; Sturiale, 2011). We would expect that if the newly merged

company is able to foreclose the product market, compulsory licensing is not an effective

42The large magnitude of the effect should not be taken at face value. The identifying assumption of this
regression is that the control patents would have had the same number of citations as the transistor patents. In
our regression this is true for 1953, but given the exceptional nature of the invention of the transistor, it is fair to
assume that this trend might have diverged in later years. Furthermore, it is not absolutely clear from the histori-
cal records why Bell decided to license the transistor patents. If the licensing decision was taken because of the
expectation of important follow-on research, our estimate might give an upper bound on the effect. For example,
Jack Morton, the leader of Bell Labs’ effort to produce transistors at scale, advocated the sharing of the transistor
to benefit from advances made elsewhere. Source: http://www.computerhistory.org/siliconengine/bell-labs-
licenses-transistor-technology/ (last accessed 9 September 2016).
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remedy. More empirical studies are needed to assess whether the negative effect of market

foreclosure on innovation is a first order concern for merger and acquisition cases.

We estimate the negative effects of patents on follow-on innovations by other companies, but

we cannot determine how large the incentive effect of patents for the company holding the

patent is. In our case, compulsory licensing does not appear to have had a strong negative

effect on Bell’s patenting activities. It would be surprising if this was the norm (Williams, 2015).

But it is consistent with Galasso and Schankerman (2015a) who show that large companies

do not reduce their innovation activity when their patents are invalidated in court, but do

change the direction of their research and development activities.

We analyze a very important antitrust lawsuit from the 1950s. Using a historical setting has

the advantage that we can draw on a large number of detailed historical accounts and that we

can conduct a long run evaluation many years after the case. At the same time it is unclear

whether the size of the effects of compulsory licensing would be similar today. Jaffe and

Lerner (2011) suggest that many negative effects of the patent system discussed today are

related to regulatory changes surrounding the establishment of the Court of Appeals for the

Federal Circuit in 1982. The reforms led to a significant broadening and strengthening of the

rights of patent holders and consequently to a surge in the number of patents granted. This

makes us think that the effects of compulsory licensing might be even larger today.
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Appendix A

Appendix to Chapter 1

A.1 Additional Tables and Graphs

Figure A.1: Migration Flows, Annual Treatment Effects of Free Labor Mobility
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Notes: Annual treatment effects on migration around the introduction of free movement (1986-2012). The
regression includes destination-year and country-pair-industry fixed effects. Standard errors are clustered at the
country-pair-industry level. Source: PATSTAT, European Commission, own calculations.
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Figure A.2: Inventor Mobility in Europe
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Notes: The graph shows the number of mobile inventors normalized to the total number of patent applications.
We count as mobile inventor an inventor who changes his country of residence compared to the previous patent
application. Thus migrants can be identified only if they have at least one patent application in each country.
Source: PATSTAT.
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Table A.1: Overview of the Gradual Opening of the EU15+4 Labor Markets

Country NMS8 NMS2 Sectoral Exceptions
(2004 entry) (2007 entry)

Austria 2011 2014 NMS8 (2007-2010), NMS2 (2007-2013): Construction,
Manufacturing of Electronics and Metals, Food and bever-
age services (restaurant business), other sectors with labor
shortages

Belgium 2009 2014 -
Denmark 2009 2009 -
Finland 2006 2007 -
France 2008 2014 NMS8 (2005-2007), NMS2 (2007-2013): Agriculture, Con-

struction, Accommodation and food services (tourism and
catering), other sectors with labor shortages

Germany 2011 2014 NMS8 (2004-2010), NMS2 (2007-2013): sectors with labor
shortages

Greece 2006 2009 -
Iceland 2006 2012 -
Ireland 2004 2012 -
Italy 2006 2012 NMS8 (2004-2005): sectors with labor shortages; NMS2

(2007-2011): Agriculture, Construction, Engineering, Ac-
commodation and food services (tourism and catering),
Domestic work and care services, other sectors with la-
bor shortages; Occupations: Managerial and professional
occupations

Luxembourg 2008 2014 NMS2 (2007 - 2013): Agriculture, Viticulture, Accommoda-
tion and food services (tourism and catering)

Netherlands 2007 2014 NMS8 (2004-2006), NMS2 (2007-2013): International
transport, Inland shipping, Health, Slaugtherhouse/meat-
packaging, other sectors with labor shortages

Norway 2009 2012 NMS8 (2004-2008), NMS2 (2007-2011): sectors with labor
shortages

Portugal 2006 2009 -
Spain 2006 2009 Reintroduction of restrictions for Romanians: 11/08/2011

- 31/12/2013
Sweden 2004 2007 -
United Kingdom 2004 2014 NMS2 (2007-2013): Agriculture, Food manufacturing

Notes: Column 2 shows the year of the labor market opening of the respective country for the NMS8 countries,
column 3 shows the year of the labor market opening of the respective country for the NMS2 countries. Column
4 shows, which sectors were exempt from restrictions.
Source: European Commission.
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Table A.2: Migration and Free Labor Mobility (First Stage)

(1) (2) (3) (4)
EU19 and NMS NMS NMS 2004 only EU19 and NMS

VARIABLES all migrants all migrants all migrants patent potential

L3.FM 2.352*** 5.039** 19.37* -0.563
(0.754) (2.320) (10.48) (0.645)

L4.FM 1.860*** 3.271* 4.298 1.156**
(0.630) (1.704) (4.065) (0.506)

L5.FM -0.136 -0.0996 9.662 0.350
(0.375) (0.418) (19.23) (0.292)

in EU 0.447** -4.541* 0.261
(0.204) (2.526) (0.180)

L2.Trade flow -1.077 -74.12 -2.072**
(1.089) (76.99) (0.953)

L2.FDI inflow 1.14e-05 0.000161*** 0.000185*** 1.45e-05**
(2.40e-05) (4.31e-05) (4.76e-05) (6.90e-06)

Observations 383 186 163 383
R-squared 0.597 0.683 0.701 0.363
Region industry FE yes yes yes yes
Year FE yes yes yes yes
F 10.20 48.57 660.0 10.11
Clusters 53 30 23 53

Notes: The regressions in this table estimate the first stage corresponding to Table 1.1 in column 1 and 4: The
dependent variable is (the second lag of the natural logarithm of) emigration in a region and outflow of migrants
with patenting potential, respectively. The instruments are the free movement variables for the three previous
years. The regressions include controls for EU membership, trade flows and FDI inflows. The first pair of
columns includes all EU and EFTA countries, the third and fourth column limit the sample to new member states
and the last two columns include only the 2004 accessions. All specifications include year and region-industry
fixed effects. Robust standard errors are clustered at the region-industry level. Sources: Patstat, Eurostat, CEPII
*** p<0.01, ** p<0.05, * p<0.1
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Table A.3: Patent Applications and Free Labor Mobility (Reduced Form)

(1) (2) (3) (4) (5) (6)
EU19 and NMS EU19 and NMS NMS NMS NMS 2004 only NMS 2004 only

VARIABLES Patents cit. weighted Patents cit. weighted Patents cit. weighted

L3.FM 1.075* 1.309* -0.276 -0.0181 1.758 2.047
(0.576) (0.717) (2.315) (2.193) (3.247) (4.016)

L4.FM 1.786*** 2.206*** -0.606 -0.216 -4.447 -4.335
(0.276) (0.386) (0.863) (0.805) (3.655) (3.624)

L5.FM -0.177 0.0565 -0.395 -0.264 3.418 4.612
(0.392) (0.526) (0.545) (0.710) (3.751) (3.579)

in EU 0.167 0.278**
(0.107) (0.121)

L2.Trade flow -1.399** -1.456*
(0.662) (0.863)

L2.FDI inflow 3.10e-05** 4.29e-05*** 1.45e-05 4.15e-05 2.49e-05 5.34e-05
(1.26e-05) (1.28e-05) (2.70e-05) (2.75e-05) (3.15e-05) (3.20e-05)

Observations 496 496 209 209 184 184
R-squared 0.442 0.742 0.267 0.177 0.257 0.162
Region industry FE yes yes yes yes yes yes
Year FE yes yes yes yes yes yes
Clusters 56 56 32 32 24 24

Notes: The dependent variables in the regressions shown in this table are the number of patent applications
(columns 1, 3 and 5) and citation-weighted patent applications (columns 2, 4 and 6). More precisely, the
dependent variable is the natural logarithm of 1 plus these counts. The same transformation is applied to the
trade flow regressor and for FDI inflows, the percentage change from the previous year is used as regressor. The
first pair of columns includes all EU and EFTA countries, columns 3 and 4 include all countries which joined
the EU in 2004 and later and the last two columns only include those which joined in 2004. All specifications
include year and region-industry fixed effects. Standard errors are clustered at the region-industry level. Sources:
Patstat, Eurostat, CEPII
*** p<0.01, ** p<0.05, * p<0.1
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Table A.4: Patent Applications and Migration in NMS10, OLS and 2SLS

(1) (2) (3) (4) (5) (6)
OLS OLS OLS 2SLS 2SLS 2SLS

VARIABLES Patents cit. weighted Patents Patents cit. weighted Patents

L2.Migrants 0.0924** 0.0730* 0.115 0.212
(0.0350) (0.0375) (0.156) (0.249)

L2.Migr.pat.potential 0.203* 0.101
(0.112) (0.0950)

L2.Trade flow 0.482 -0.650 0.758***
(0.518) (0.820) (0.251)

L2.FDI inflow -1.41e-05 -5.82e-06 -3.23e-07 -1.80e-05 -3.03e-05 9.41e-07
(1.87e-05) (1.80e-05) (1.72e-05) (3.34e-05) (4.83e-05) (1.68e-05)

Observations 163 163 163 163 163 163
Region industry FE yes yes yes yes yes yes
Year FE yes yes yes yes yes yes
Clusters 23 23 23 23 23 23
F 16.81 26.31 65.74

Notes: The regressions in this table estimate the relationship between the migration flow out of a country and
innovation in that country. The first three columns are estimated with OLS and the last three columns use a 2SLS
estimation with our instrument based on free movement legislation. The dependent variables are the number
of patent applications in an industry and origin region in a year or, in columns 2 and 5, the citation-weighted
patent applications (i.e., patent applications + forward citations to these patents). Patent application numbers
and citation-weighted counts, number of migrants and trade flows are taken in natural logarithms. The sample
includes only the 10 countries which joined the EU in 2004. All specifications include year and region-industry
fixed effects. Robust standard errors are clustered at the region-industry level. Sources: PATSTAT, Eurostat, CEPII
*** p<0.01, ** p<0.05, * p<0.1
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Table A.5: Patent Applications and Migration, USPTO Patents Only, OLS and 2SLS

(1) (2) (3) (4) (5) (6)
OLS OLS OLS 2SLS 2SLS 2SLS

VARIABLES Patents cit. weighted Patents Patents cit. weighted Patents

L2.Migrants 0.0270 -0.0894 0.346** 0.503**
(0.0535) (0.0694) (0.171) (0.232)

L2.Migr.pat.potential 0.000889 0.702
(0.0606) (0.429)

in EU 0.0258 0.402 0.0182 0.115 0.567 -0.0508
(0.204) (0.305) (0.206) (0.238) (0.374) (0.222)

L2.Trade flow 1.623** 2.409** 1.740** 0.252 -0.144 2.493***
(0.687) (1.002) (0.654) (0.901) (1.246) (0.842)

L2.FDI inflow 1.24e-05 3.06e-05** 1.28e-05 7.25e-06 2.11e-05*** 1.13e-06
(1.02e-05) (1.41e-05) (9.91e-06) (1.43e-05) (8.16e-06) (1.16e-05)

Observations 383 383 383 383 383 383
Region industry FE yes yes yes yes yes yes
Year FE yes yes yes yes yes yes
Clusters 53 53 53 53 53 53
F 32.56 273.0 26.87

Notes: The regressions in this table estimate the relationship between the migration flow out of a country and
innovation in that country, counting only patents that were filed with the USPTO. The first three columns
are estimated with OLS and the last three columns use a 2SLS estimation with our instrument based on free
movement legislation. The dependent variables are the number of patent applications in an industry and origin
region in a year or, in columns 2 and 5, the citation-weighted patent applications (i.e., patent applications
+ forward citations to these patents). Patent application numbers and citation-weighted counts, number of
migrants and trade flows are taken in natural logarithms. The sample includes all EU members and countries in
the European Free Trade Association. All specifications include year and region-industry fixed effects. Robust
standard errors are clustered at the region-industry level. Sources: PATSTAT, Eurostat, CEPII
*** p<0.01, ** p<0.05, * p<0.1
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Table A.6: Convergence in Patenting Levels (Patent sdest /Patent sor i g i n) and Migration, NMS
only, OLS and 2SLS

(1) (2) (3) (4) (5) (6)
OLS OLS OLS 2SLS 2SLS 2SLS

l og (
Pdi y

Poi y
) l og (

Pdi y

Poi y
) l og (

Pdi y

Poi y
) l og (

Pdi y

Poi y
) l og (

Pdi y

Poi y
) l og (

Pdi y

Poi y
)

VARIABLES Patents cit. weighted Patents Patents cit. weighted Patents

L2.Migrants 0.0289 0.0349 -0.254* -0.259*
(0.0229) (0.0285) (0.141) (0.151)

L2.Migr.pat.potential 0.118 -1.809
(0.0747) (2.810)

Patents, origin -1.080*** -1.052*** -1.081*** -1.083*** -1.055*** -1.065***
(0.109) (0.120) (0.109) (0.110) (0.122) (0.119)

Patents, dest 1.078*** 1.128*** 1.080*** 1.071*** 1.120*** 1.044***
(0.0713) (0.0910) (0.0717) (0.0765) (0.0962) (0.0890)

Within EU 0.0435 -0.0278 0.0431 0.0572 -0.0136 0.0724
(0.0529) (0.0584) (0.0533) (0.0555) (0.0612) (0.0693)

GDPd /GDPo -0.444 -0.0942 -0.446 -0.480 -0.132 -0.471
(0.359) (0.413) (0.360) (0.372) (0.430) (0.365)

L3.Trade flow -0.0394 0.0516 -0.0355 0.00323 0.0959 -0.0277
(0.0623) (0.0792) (0.0616) (0.0662) (0.0842) (0.0633)

L3.FDI flow 0.00139 0.00150 0.00108 0.000924 0.00101 0.00544
(0.00662) (0.00662) (0.00663) (0.00750) (0.00741) (0.0112)

Observations 2,763 2,763 2,763 2,681 2,681 2,681
R-squared 0.499 0.565 0.499 0.458 0.535 0.406
Origin-dest-industry FE yes yes yes yes yes yes
Year FE yes yes yes yes yes yes
Clusters 559 559 559 477 477 477
F 90.89 137.0 81.10

Notes: The dependent variable is the natural logarithm of Patent sdest /Patent sor i g i n . Number of patents
(in origin and destination countries), number of migrants, FDI, and trade flows are in natural logarithms.
The sample includes country-industry pairs, where origins are NMS and destinations - EU19 countries. All
specifications include year and origin-destination-industry fixed effects. Robust standard errors are clustered at
the origin-destination-industry level. Sources: PATSTAT, Eurostat, CEPII
*** p<0.01, ** p<0.05, * p<0.1
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Table A.7: Convergence in Patenting Levels (Patent sdest /Patent sor i g i n) and Free Labor
Mobility (Reduced Form)

(1) (2) (3) (4) (5) (6)
EU19 and NMS EU19 and NMS NMS only NMS only EU19 and NMS (all) NMS only (all)

VARIABLES Patents cit. weighted Patents cit. weighted Patents Patents

L3.FM -0.0135 0.00186 -0.0150 -0.00166 0.0179 -0.0131
(0.0368) (0.0434) (0.0412) (0.0496) (0.0122) (0.0130)

L4.FM -0.0631 -0.0573 -0.0534 -0.0554 -0.0403*** -0.0337**
(0.0440) (0.0469) (0.0505) (0.0554) (0.0133) (0.0146)

L5.FM -0.0256 -0.0393 -0.0267 -0.0283 -0.0166 -0.00647
(0.0419) (0.0449) (0.0495) (0.0534) (0.0127) (0.0137)

Patents, origin -1.242*** -1.407*** -1.094*** -1.067*** -0.640*** -0.618***
(0.0797) (0.0873) (0.111) (0.122) (0.0113) (0.0114)

Patents, dest 1.051*** 1.090*** 1.062*** 1.112*** 0.800*** 0.813***
(0.0725) (0.0921) (0.0729) (0.0929) (0.0216) (0.0218)

Within EU -0.00662 -0.100* 0.0241 -0.0442 -0.0781*** -0.0527***
(0.0494) (0.0549) (0.0553) (0.0620) (0.0141) (0.0149)

GDPd /GDPo 0.00771 0.555 -0.251 0.0737 0.183*** 0.175***
(0.331) (0.391) (0.384) (0.451) (0.0393) (0.0402)

L3.Trade flow -0.0450 0.00903 -0.0127 0.0766 -0.0499*** -0.0341***
(0.0629) (0.0810) (0.0629) (0.0807) (0.00866) (0.00878)

L3.FDI flow 0.00170 0.000342 0.00259 0.00241 -0.0140*** -0.0112***
(0.00656) (0.00665) (0.00651) (0.00659) (0.00416) (0.00418)

Observations 2,946 2,946 2,763 2,763 71,496 66,504
R-squared 0.487 0.552 0.500 0.565 0.217 0.225
Origin-dest-ind FE yes yes yes yes yes yes
Year FE yes yes yes yes yes yes
Clusters 582 582 559 559 5688 5304

Notes: The dependent variable is the natural logarithm of Patent sdest /Patent sor i g i n . Number of patents
(in origin and destination countries), number of migrants, FDI, and trade flows are in natural logarithms. All
specifications include year and origin-destination-industry fixed effects. Robust standard errors are clustered at
the origin-destination-industry level. Specifications 1-4 show the reduced form regressions for the sample used
in the OLS/2SLS estimations (i.e., the sub-sample for which migration data are available), specifications 5-6
show estimates for the full sample of country-industry pairs in 2000-2012. Sources: PATSTAT, Eurostat, CEPII
*** p<0.01, ** p<0.05, * p<0.1
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Table A.8: Citations to Destination Industries, NMS only, OLS and 2SLS

(1) (2) (3) (4) (5) (6)
VARIABLES OLS OLS OLS 2SLS 2SLS 2SLS

L2.Migrants 0.00255 0.00895 0.427* 0.436*
(0.0281) (0.0282) (0.222) (0.224)

L2.Migr.pat.potential 0.124 5.695
(0.133) (5.457)

Patents, origin 0.124*** 0.124*** 0.146*** 0.158**
(0.0332) (0.0331) (0.0369) (0.0622)

L3.Patents, dest 0.0118 0.0121 0.0183 0.0317
(0.0224) (0.0224) (0.0248) (0.0332)

Within EU -0.00869 -0.00991 -0.0280 -0.0827
(0.0608) (0.0609) (0.0637) (0.0991)

L3.Trade flow -0.0575 -0.0566 -0.122 -0.0791
(0.0722) (0.0724) (0.0837) (0.0895)

L3.FDI flow 0.00342 0.00306 0.00393 -0.0129
(0.0122) (0.0122) (0.0127) (0.0268)

Observations 2,763 2,763 2,763 2,681 2,681 2,681
R-squared 0.083 0.087 0.088
Origin-dest-industry FE yes yes yes yes yes yes
Year FE yes yes yes yes yes yes
Clusters 559 559 559 477 477 477
F 11.64 8.404 6.418

Notes: The dependent variable is the number of citations from a region and industry to another country in
a year. Citation counts, number of migrants, total number of patent applications in origin and destination
industries, FDI and trade flows are taken in natural logarithms. The sample is limited to new EU member states.
All specifications include year and origin-destination-industry level. Robust standard errors are clustered at the
origin-destination-industry level. Sources: PATSTAT, Eurostat, CEPII
*** p<0.01, ** p<0.05, * p<0.1
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Table A.9: Citations to Destination Industries and Free Labor Mobility (Reduced Form)

(1) (2) (3) (4)
EU19 and NMS NMS only

VARIABLES EU19 and NMS NMS only (all) (all)

L3.FM 0.00662 0.0785 0.0400** 0.0670**
(0.0349) (0.0516) (0.0163) (0.0306)

L4.FM 0.0734 0.0856 0.0431** 0.0903**
(0.0451) (0.0603) (0.0182) (0.0392)

L5.FM 0.0480 0.0753 0.0255 0.0406
(0.0470) (0.0559) (0.0169) (0.0337)

Patents, origin 0.138*** 0.134*** 0.0591*** 0.0974***
(0.0238) (0.0308) (0.00785) (0.0119)

L3.Patents, dest 0.0478*** 0.000519 0.0258*** -0.0130*
(0.0137) (0.0192) (0.00541) (0.00687)

Within EU 0.0154 0.163*** 0.00274 0.180***
(0.0361) (0.0553) (0.0144) (0.0247)

L3.Trade flow -0.152*** -0.0732 -0.0627*** 0.0372**
(0.0352) (0.0596) (0.00955) (0.0144)

L3.FDI flow -0.000418 0.0114 0.0257*** 0.0235***
(0.00520) (0.0113) (0.00357) (0.00639)

Observations 7,279 3,498 29,604 11,851
R-squared 0.174 0.133 0.099 0.110
Origin-dest-industry FE yes yes yes yes
Year FE yes yes yes yes
Clusters 1322 592 2304 912

Notes: The dependent variable is the number of citations from a region and industry to another country in a year.
Citation counts, number of migrants, total number of patent applications in origin and destination industries,
FDI and trade flows are taken in natural logarithms. All specifications include year and origin-destination-
industry level. Robust standard errors are clustered at the origin-destination-industry level. Columns 1 and 2
show the reduced form regressions for the sample used in the OLS/2SLS estimations (i.e., the sub-sample for
which migration data are available), columns 3 and 4 show estimates for the full sample of country-industry
pairs in 2000-2012. Sources: PATSTAT, Eurostat, CEPII
*** p<0.01, ** p<0.05, * p<0.1
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Table A.10: Citations to Destination Industries, USPTO Patents Only, OLS and 2SLS

(1) (2) (3) (4) (5) (6)
VARIABLES OLS OLS OLS 2SLS 2SLS 2SLS

L2.Migrants 0.0476** 0.0313* 0.679*** 0.288
(0.0188) (0.0178) (0.197) (0.184)

L2.Migr.pat.potential 0.0512 0.745
(0.0485) (1.703)

Patents, origin 0.193*** 0.194*** 0.186*** 0.195***
(0.0221) (0.0221) (0.0227) (0.0227)

L3.Patents, dest 0.0545*** 0.0542*** 0.0542*** 0.0491**
(0.0147) (0.0147) (0.0150) (0.0195)

Within EU 0.00444 0.00724 -0.00468 0.0300
(0.0332) (0.0332) (0.0343) (0.0667)

L3.Trade flow 0.0797* 0.0858** 0.0294 0.0853**
(0.0416) (0.0417) (0.0552) (0.0418)

L3.FDI flow -0.00960* -0.0102* -0.00738 -0.0152
(0.00526) (0.00527) (0.00568) (0.0134)

Observations 7,299 7,287 7,287 7,136 7,124 7,124
R-squared 0.132 0.150 0.149
Origin-dest-industry FE yes yes yes yes yes yes
Year FE yes yes yes yes yes yes
Clusters 1322 1320 1320 1159 1157 1157
F 44.41 35.32 34.64

Notes: The dependent variable is the number of citations from a region and industry to another country in a year.
Citation counts, number of migrants, total number of patent applications in origin and destination industries,
FDI and trade flows are taken in natural logarithms. The sample is limited to citations among U.S. patents. All
specifications include year and origin-destination-industry level. Robust standard errors are clustered at the
origin-destination-industry level. Sources: PATSTAT, Eurostat, CEPII
*** p<0.01, ** p<0.05, * p<0.1
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Table A.11: Only Citations Added by the Applicant

(1) (2) (3) (4) (5) (6)
VARIABLES OLS OLS OLS 2SLS 2SLS 2SLS

L2.Migrants 0.0234 0.0258 0.489*** 0.336*
(0.0176) (0.0172) (0.170) (0.192)

L2.Migr.pat.potential 0.0759** 1.239
(0.0342) (1.915)

Patents, origin 0.149*** 0.150*** 0.139*** 0.150***
(0.0220) (0.0220) (0.0231) (0.0233)

L3.Patents, dest 0.0253 0.0247 0.0249 0.0162
(0.0161) (0.0161) (0.0165) (0.0221)

Within EU -0.0992*** -0.0958*** -0.110*** -0.0574
(0.0335) (0.0334) (0.0354) (0.0712)

L3.Trade flow -0.0194 -0.0143 -0.0805 -0.0153
(0.0369) (0.0369) (0.0542) (0.0373)

L3.FDI flow 0.00811 0.00735 0.0108* -0.000953
(0.00506) (0.00508) (0.00554) (0.0154)

Observations 7,299 7,287 7,287 7,136 7,124 7,124
R-squared 0.070 0.080 0.080
Origin-dest-industry FE yes yes yes yes yes yes
Year FE yes yes yes yes yes yes
Clusters 1322 1320 1320 1159 1157 1157
F 22.90 20.46 18.95

Notes: The dependent variable is the number of citations from a region and industry to another country in a year.
Citation counts, number of migrants, total number of patent applications in origin and destination industries,
FDI and trade flows are taken in natural logarithms. The sample is limited to citations which have been added
by the applicant according to PATSTAT. Robust standard errors are clustered at the origin-destination-industry
level. Source: Eurostat and PATSTAT.
*** p<0.01, ** p<0.05, * p<0.1
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Appendix B

Appendix to Chapter 2

B.1 Proof of Proposition 1

First note that d
d∆

(
IL

IL+IS

)
< 0 is equivalent to d

d∆

(
nS
nL

)
> 0, since

IL

IL + IS
= 2µ0nL

2µ0nL +2µ0nS
= nL

nL +nS
= 1

1+nS/nL
.

Thus the proof only requires showing that d
d∆

(
nL
nS

)
< 0. Plugging the values for profits into

equations 2.3 and 2.4 gives optimal investments.

nL = 1

8
+ ∆

4

nS = ∆
2

It can now be seen that the ratio nL
nS

is a decreasing function of ∆.

nL

nS
= 1

4∆
+ 1

2

∂
(

nL
nS

)
∂∆

= −1

4∆2
< 0
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B.2 Proof of Proposition 2

The expected absolute amounts of small and large innovation can be expressed in the fol-

lowing way, using the values for R&D investments in the leveled state from the proof of

Proposition 1.

IS = 2µ0nS =µ0∆

IL = 2µ0nL =µ0

(
1

4
+ ∆

2

)

Next the steady state share of industries being in the leveled state (or equivalently, the proba-

bility of any particular industry being in that state) needs to be found. Using Equation 2.6 and

the fact that these probabilities have to sum to one µ0 +µF = 1 and recalling from above that

nF = 1
8 − ∆

4 , this can be written as:

µ0 = nF +h

2(nL +nS)+nF +h
= 1+8h −2∆

3+8h +10∆
.

This leads to the following expressions for IL and IS

IL =
1
4 +2h +4h∆−∆2

3+8h +10∆

IS = (1+8h)∆−2∆2

3+8h +10∆

The derivatives of these functions with respect to the level of competition are as follows.

d IL

d∆
= −5

2 −8h +32h2 − (6+16h)∆−10∆2

[3+8h +10∆]2
(B.1)

d IS

d∆
= 3+32h +64h2 − (12+32h)∆−20∆2

[3+8h +10∆]2
(B.2)
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That the absolute innovation levels are indeed concave functions of competition for the

relevant values of h can be shown in the following way: Let x′ denote the derivative of a

variable x with respect to ∆ and i ∈ {L,S}.

Ii = 2µ0ni

Ii ′ = 2(µ0′ni +µ0ni ′)
Ii ′′ = 2(µ0′′ni +2µ0′ni ′+µ0ni ′′)

The derivatives in these expressions are:

µ0′ = −2[3+8h +10∆]−10(1+8h −2∆)

[3+8h +10∆]2
= −(16+96h)

[3+8h +10∆]2
< 0

µ0′′ = 20(16+96h)[3+8h +10∆]−3 > 0

nL′ = 1

4
> 0

nS ′ = 1

2
> 0

nL′′ = nS ′′ = 0

Note that µ0′ = − 1
20 [3+8h +10∆]µ0′′, such that Ii ′′ can be expressed as:

Ii ′′ = 2(µ0′′ni +2µ0′ni ′) = 2µ0′′(ni − 1

10
[3+8h +10∆]ni ′).

It remains to be shown when the term in brackets is negative for the two innovation technolo-

gies, such that Ii is concave. Consider first the large step, for which the following inequality

must then hold.

ni < 1

10
[3+8h +10∆]ni ′

nL = 1

8
+ ∆

4
< 1

10
[3+8h +10∆]

1

4

40(
1

8
+ ∆

4
) < 3+8h +10∆

5 < 3+8h

1

4
< h
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The corresponding inequality for the small step always holds.

nS = ∆
2
< 1

10
[3+8h +10∆]

1

2

10∆< 3+8h +10∆

0 < 3+8h

Thus IS is always concave and IL is concave if 1
4 < h. If innovation rates are non-negative at

∆= 0, for an inverted-U shape to emerge they must be decreasing at∆= 1
2 . With the equations

above, we can see that the condition d IS
d∆ |∆= 1

2
< 0 implies h < 1

4 . If this is not satisfied, the level

of small innovation increases with competition for any initial level of competition.

d IL
d∆ shows that for IL to be increasing at ∆= 0 the condition h > 1+p6

8 ≈ 0.43 must be satisfied,

such that the condition for concavity is satisfied as well ( 1
4 < h). The condition d IL

d∆ |∆= 1
2
< 0

implies h < 1+p5
4 ≈ 0.81. (Hence, if IL is not concave, it is decreasing for the entire range

of competition intensities.) If the help parameter h satisfies both of these conditions IL is

inverted-U shaped.

The level of total innovation, I = IL + IS , has similar properties. It is a concave function of ∆,

since I ′′ = IL′′+ IS ′′ < 0 holds for any h. Summing up the derivatives d IL
d∆ + d IS

d∆ from above,

we can see that at ∆= 0 the slope will always be positive, i.e., for low levels of competition,

increasing the intensity of competition always increases the total level of innovation. I is

inverted-U shaped if at ∆= 1
2 this sum is negative. This is the case if h <

√
1
6 ≈ 0.41. If this

condition is not satisfied, overall innovation is increasing in competition for any initial level.

These results are summarized in the proposition.

B.3 Proof of Proposition 3

From the proof of Proposition 2, we know that the I and IS are concave and that if IL is not

always decreasing in competition, it is concave as well. Thus the maxima are reached where

the first derivatives are zero or at the boundary of the range of possible values of ∆, i.e., at

∆= 1
2 or ∆= 0, following from proposition 2 as well.
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If the maxima are not at the boundaries, then the curves are inverted-U shaped and have

interior maxima. If IL has an interior maximum, it will be where d IL
d∆ = 0. At this value for ∆

the numerator of Equation B.1 is equal to zero.

−5

2
−8h +32h2 + (−6−16h)∆−10∆2 = 0

10∆2 + (6+16h)∆+ 5

2
+8h −32h2 = 0

Thus, if the maxima for the IL , IS and I curves are interior, they are (the latter two are derived

in the same way using Equation B.2 and the sum of equations B.1 and B.2, respectively):

∆∗
L = −(3+8h)+

√
(3+8h)2 −25−80h +320h2

10

∆∗
S = −(3+8h)+

√
(3+8h)2 +15+160h +320h2

10

∆∗ =
−(3+8h)+

√
(3+8h)2 + 5

3 +80h +320h2

10

From the above equations for the maxima it can be seen that the number of large innovations

in the economy is maximized at a lower∆ than that of small innovations. Using the properties

derived above, one can also see that this must hold in the following way.

IL = I
IL

IL + IS

IL′ = I ′ IL

IL + IS
+ I

d

d∆

(
IL

IL + IS

)
< 0

At an interior maximum of total innovation I , the first order condition requires that the

first summand be zero. For the second summand, we know that I is positive and, from

Proposition 1 above, that the summand must then be negative. Thus, decreasing∆marginally

from the ∆∗ that maximizes I increases IL . The reverse holds for IS , i.e., the number of small

innovations increases moving to higher levels of competition from an interior ∆∗.

IS = I
IS

IL + IS

147



APPENDIX: COMPETITION AND THE SIZE OF INNOVATIONS

IS ′ = I ′ IS

IL + IS︸ ︷︷ ︸
=0

+ I
d

d∆

(
IS

IL + IS

)
︸ ︷︷ ︸

>0

> 0

B.4 Model with Fully Incorporated Product Market Competi-

tion

The model in the main part of the chapter makes various simplifications in order to allow

for an analytical solution. This section verifies with numerical solutions that these are not

necessary for the results described in the propositions for the main model and discusses how

the two models are related. In particular, the model in this appendix modifies the following

features of the previous model:

• Firms look ahead infinitely and discount the future appropriately rather than choosing

R&D investments only to maximize the expected profit in the next period.

• The model is in continuous time, such that innovations naturally do not occur at exactly

the same time and there is no need to ensure that a certain upper limit on investments

is not exceeded in equilibrium. Recall that in the previous model, only one or zero

innovations could occur per period and thus, the sum of the probabilities of innovations

for the two types and two firms could not exceed 1. The limit on equilibrium investment

was introduced implicitly through the cost functions.

• Costs for different types of innovation are likely to differ, e.g. because high expected

return comes with high risk of failure. As mentioned above, different costs for different

types of innovations affect innovation probabilities in equilibrium and can ensure, for

example, that large innovations occur less frequently than small ones.

• A large step may lead to a large, but finite, cost reduction, such that the competitor

remains active in the market.

• Finally, the profit levels at different technological positions all follow directly from the

product market competition model here, such that a follower’s position and profit differ

depending on the step size by which the competitor leads, as depicted in Figure B.1.
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Figure B.1: Possible Positions on the Technology Ladder

−L −S 0 S L

Notes: Possible positions on the technology ladder: Firms may be equally advanced (0), lead by a small step (S)

or by a large step (L), or lag behind by a small (−S) or a large step (−L).

This implies that investments in catch-up innovation will also differ between these two

positions. Substitutability α is the measure of competition in this model, replacing ∆.

Duopolists compete in the product market, producing output at their current costs. In

addition to the output decision, firms invest in two different R&D technologies, which affect

the probability of generating cost-saving innovations. The framework builds on existing

models of innovation (Aghion et al., 2001, 2005), but departs in that firms choose how much

to invest in the two types of innovation technologies. Neck-and-neck firms determine their

R&D strategy with two continuous variables, denoting the probability of a successful large or

small step, respectively. Again, a cost function for each innovation type determines the costs

associated with a certain success probability.

To justify the central assumptions regarding profits in the R&D model in the main part, I start

from a product market competition model following Aghion et al. (2001). In each industry

sector there are two firms offering differentiated products and competing in prices. A unit

mass of consumers maximizes the utility function u = ∫ 1
s=0 ln((qαs A +qαsB )

1
α )d s, with 0 <α≤ 1,

which integrates over all sectors s. Because of the natural logarithm in the utility function,

consumer spending in each sector is the same and it is convenient to normalize this amount

to 1, i.e., prices are expressed such that in all sectors ps A qs A +psB qsB = 1. This leads to the

following demand for firm i ∈ {A,B}:1

qi =
p

1
α−1
i

p
α
α−1
A +p

α
α−1
B

(B.3)

1Industry indices have been omitted from these equations, since all sectors are alike.
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Firm i produces qi with constant marginal costs ci , such that its first order condition is2

α−α(pi − ci )qi − ci

pi
= 0. (B.4)

Since both equalities hold for each firm, this constitutes a system of four equations, which

defines prices and quantities for both firms at the product market stage. Costs depend on

previous research outcomes and may be considered fixed at the production stage. Thus, with

the above system, the endogenous variables pi and qi determine profits πi for the firms as

well (disregarding any R&D costs at this point).

πi = (pi − ci )qi (B.5)

Aghion et al. (2001) derive some properties of the implicitly defined profit πi ( ci
c j

,α), where

ci denotes the costs of producing one unit of output for firm i , j ∈ {A,B} and i 6= j . Profit

depends only on relative costs and the intensity of competition, measured by the substi-

tutability parameter α. Note that this does not imply that industry profit is constant: When

one firm innovates and is a step ahead of its competitor, industry profit increases despite

constant consumer spending. The innovator can benefit from decreased costs because of the

competitor’s higher costs.

Profits in the symmetric equilibrium and the leveled state, i.e., when the duopolists are at the

same technological position, can be found as follows. (Indices are omitted due to symmetry

and equal costs in this industry state.)

q = 1

2p
(B.6)

α−α(p − c)q − c

p
= 0. (B.7)

⇒ q = α

2(2−α)c
, p = 2−α

α
c (B.8)

2The firm chooses a price to maximize πi = (pi − ci )qi with the demand function above.

150



APPENDIX: COMPETITION AND THE SIZE OF INNOVATIONS

This implies that each firm’s profit in the leveled state is π0 = 1−α
2−α (where the index 0 denotes

the relative technological position of the firms – in this case the technological distance to the

competitor is zero).3

At this point, it becomes necessary to formalize the notion of small and large steps. The

motivation for this study is more the potential decline in very large innovations than the

nature of the smaller steps that are observed. Thus, large innovations4 can be modeled as

those that result in a monopoly for one firm, which corresponds to the extreme case in the

model where the innovating firm’s costs drop to zero (while the competitor’s costs remain

positive). Small innovations are those that result in reduced but positive costs for the innovator.

Furthermore, I restrict the small innovations considered in the model to those that are large

enough to increase an innovator’s profits compared to profits when monopolizing half of the

market (which is the case when α→ 0). The assumption of a duopoly makes the requirement

appear restrictive, in that it requires “small” innovations to be rather large. While the precise

distinction corresponding to the main model would indeed actually be between infinite steps

and (sufficiently large but) finite steps, the requirement on the size of the inventive step

for small innovations appears much more likely to be satisfied when we think of a global

market with numerous small national markets. Then even a small cost advantage that can

be turned into profit on the entire quantity of a product sold globally (Bertrand competition

and complete substitutability through open borders and cheap transportation) may well be

worth more than the monopoly profit in a single small economy. Hence the model should

be interpreted qualitatively, illustrating mechanisms and describing the directions of effects

rather than quantifying their sizes. If, as in the numerical solution below, large steps lead

to very small, but positive, marginal costs, the qualitative results remain the same as in the

extreme case of zero marginal costs for large innovations.

The intuition for the property that small innovations become on average relatively more

attractive compared to large ones (with the aforementioned restriction) as substitutability

(α) increases from a value near 0 to 1 is then easy to see in Figure B.2. The other axis denotes

3Cf. eq. 8, Aghion et al. (2001). Unlike in their model, here the number of steps between competitors is not
explicitly counted as there are only four relative positions a firm can be in, as explained below.

4These innovations resemble “drastic innovations”, following Tirole (1988). If marginal costs drop to zero,
the innovator extracts the entire (fixed) consumer spending of 1 as profit and is able to offer an infinite amount
of the good in return. Thus, the price per unit of the good goes to 0 and is below any strictly positive costs of the
competitor, such that the competitor is no longer a constraint on the innovator’s price setting.
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Figure B.2: Product Market Profits

Notes: The figure shows firm profits depending on the intensity of competition α and the distance on the

technology ladder (where the cost ratio is 2−n and n can be understood as a measure of the firm’s technological

lead over its competitor).

the cost ratio, i.e. the size of the inventive step. E.g. at n = 1, the cost ratio is 1
2 , meaning that

the leading firm produces at half the costs of the other firm.5 The profits of neck-and-neck

firms decrease from 1
2 to 0 over this range of α. This decrease makes both types of innovations

more attractive, as they have been defined to lead to non-decreasing post-innovation profits.

The crucial difference between the two types is that the large innovation always leads to a

monopoly in the entire market and thus a fixed profit of 1 (the maximum possible profit, since

consumer spending is assumed constant). Post-innovation profits after a small innovation are

close to 1
2 for low levels of α, thus the difference between pre-innovation and post-innovation

profits is also close to zero. For α= 1, however, the firms are in Bertrand competition with

perfect substitutability between their products. Again by normalization of market size to 1,

the innovator’s profit is equal to the cost difference in this case, which by the assumption on

the minimum size of small steps is larger than 1
2 . Thus incentives to invest in both types of

innovation increase as neck-and-neck profits decrease.6

5The n here only refers to the step size and not to R&D investments.
6As Figure B.2 illustrates, the laggard’s profit after a small innovation is also decreasing in the intensity of

competition. After a large innovation, the laggard’s profit is always zero (as a result of the assumption that a large
innovation is “drastic”). Note that if large steps were less extreme and led to small but still positive costs, the
qualitative results of this study would go through, as demonstrated with the parameterization for the numerical
solution below. The difference is just that increasing post-innovation profits would increase the incentives to
invest in large R&D for very low levels of α. As post-innovation costs approach zero (or step size approaches
infinity), post-innovation profit will approach its maximum faster and faster as α increases starting from zero.
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As the difference between pre-innovation and post-innovation profits for neck-and-neck

firms is increasing in α for the entire range from 0 to 1, an increase in competition will always

lead to more innovation of both types in this industry state.

The system of equations includes firms’ profits in the product market under the costs brought

about by the outcome of R&D projects. The numerical solutions below show that, when the

product market competition model determines all the profit levels, the economy exhibits a

decreasing share of large innovations with competition under reasonable parameterizations.7

The maximum of the absolute amount of large innovations also occurs at lower levels of

competition than that of either total or small innovations in this model. To allow for an

analytical derivation of these results, however, in the model in the main part only the essential

feature of the product market competition model is maintained by introducing the competi-

tion parameter ∆ (replacing α), which directly affects profits. In the main model, a laggard’s

profit is defined to be πF = 0, while the large step leader gets πL = 1, both independently of

competition. The competition parameter∆ captures the crucial feature of the product market

model that increasing substitutability increases the spread between the profits of leveled firms

and a firm leading by a small step. It can be defined via the product market model, which

gives the profit in the leveled state π0, such that ∆≡ 1
2 −π0. The profit after a small innovation

is set to πS = 1
2 +∆. Recall from above that π0 = 1−α

2−α , such that ∆ is an increasing function of

α, with ∆ = 0 if α = 0 and ∆ = 1
2 if α = 1. Therefore ∆ increases from 0 to 1

2 as competition

intensifies.8 In the following, these simplications are not necessary, as the model is studied

only numerically.

A neck-and-neck firm’s present value is the result of the following maximization:9

7To be precise, this is the case if competition is sufficiently intense. The minimum intensity for increasing
competition to decrease the share of large innovations goes to zero as the large step size approaches infinity.

8The definition of ∆ above implies that ∆= 1
2 − 1−α

2−α . Note that the values for πF and πL correspond to the
values in the product market competition model for a large step which leads to zero marginal costs and any
α> 1. At α= 1, ∆= 1

2 and the simplified profits πF = 0 and πS = 1 are approached by the product market model
as the (finite) cost reduction brought about by the small step increases.

9The interest rate r is another exogenous parameter here and corresponds to the time preference of house-
holds, as in Aghion et al. (2001).
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V0 = max
{nL ,nS }

[

(
π0 −βL

n2
L

2
−βS

n2
S

2

)
d t

+e−r d t (
nLd tVL +nSd tVS +nLd tV−L +nSd tV−S

+ (1−d t (nL +nS +nL +nS))V0
)
].

(B.9)

π0 is the profit in the product market for a neck-and-neck firm minus the total R&D costs. As

in the main model, depending on R&D outcomes the firm may transition to a different state.

Future values are discounted by e−r d t . The chance of making a large innovation depends on

nL and, if successful, the firm becomes a leader by a large step, such that its present value

will be VL. Analogously, the transition to small step leadership follows in the equation. The

competitor’s corresponding investments, nL and nS , are taken as given. The future present

value may be V−L or V−S if the competitor had a large or a small innovation, respectively, and

if no innovation occurs the present value is V0 again.

As in the main model, a lagging firm only has to choose the level of catch-up R&D (h−L and

h−S are the respective help parameters). However, there are two different investment levels,

n−L and n−S , now for large and small step lags behind the competitor, respectively. In this

optimization the present values are:

V−L = max
n−L

[

(
π−L −β−L

n2
−L

2

)
d t

+e−r d t ((n−L +h−L)d tV0 + (1−d t (n−L +h−L))V−L)]

(B.10)

V−S = max
n−S

[

(
π−S −β−S

n2
−S

2

)
d t

+e−r d t ((n−S +h−S)d tV0 + (1−d t (n−S +h−S))V−S)]

(B.11)

As before, a firm leading by a large or a small step, has no R&D decisions to take and no R&D

costs, such that the present values do not involve a maximization.
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VL =πLd t +e−r d t (
(n−L +h−L)d tV0 + (1− (n−L +h−L)d t )VL

)
(B.12)

VS =πSd t +e−r d t (
(n−S +h−S)d tV0 + (1− (n−S +h−S)d t )VS

)
(B.13)

Taking advantage of the fact that e−r d t ≈ 1− r d t as d t becomes small (cf. Aghion et al., 2001),

the following Bellman equations can be derived (and terms involving (d t )2 can be ignored).

To briefly exemplify the derivation, consider the last equation (for VS).

VS =πSd t + (1− r d t )
(
(n−S +h−S)d tV0 + (1− (n−S +h−S)d t )VS

)
VS =πSd t + (n−S +h−S)d tV0 + (1− (n−S +h−S)d t )VS − r d tVS

r d tVS =πSd t + (n−S +h−S)d tV0 − (n−S +h−S)d tVS

r VS =πS + (n−S +h−S)(V0 −VS)

Applying the same transformation to the other value functions leads to the following system

of Bellman equations:

r VL =πL + (V0 −VL)(n−L +h−L) (B.14)

r VS =πS + (V0 −VS)(n−S +h−S) (B.15)

r V0 =π0 −βL
n2

L

2
−βS

n2
S

2
+ (VL −V0)nL + (VS −V0)nS

+nS(V−S −V0)+nL(V−L −V0)

(B.16)

r V−S =π−S −β−S
n2
−S

2
+ (V0 −V−S)(n−S +h−S) (B.17)

r V−L =π−L −β−L
n2
−L

2
+ (V0 −V−L)(n−L +h−L) (B.18)

Firms’ maximization of present values (or, equivalently, annuity values) leads to the first order

conditions below, which give the optimal investment levels.
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nL = (VL −V0)/βL (B.19)

nS = (VS −V0)/βS (B.20)

n−S = (V0 −V−S)/β−S (B.21)

n−L = (V0 −V−L)/β−L (B.22)

In the steady state the shares of industries in the three states (leveled or one firm leading with a

technological distance of either a large step or small step) have to sum to one: µ0+µS +µL = 1.

Again, inflows and outflows have to be be the same for each state.

µ0(2nL +2nS) = (µS +µL)(nF +h) (B.23)

µS(nF +h) = 2µ0nS (B.24)

µL(nF +h) = 2µ0nL (B.25)

The average innovation rates for large and small steps are defined as in the main model (in

equations 2.7 and 2.8). Unlike in the main model of the study, however, the model described

in this section will be studied only numerically and all the profits in the Bellman equations

follow directly from the product market competition model and the associated cost ratios.

Figures B.3 to B.5 illustrate the model with a parameterization that leads to very similar results

to the simplified model in the main part of the chapter. The costs of innovations differ by

type. Increasing the probability of a large innovation at the technological frontier (in the

leveled state) is most expensive with the cost parameter βL = 8 and a small innovation is

half as expensive βS = 4. Catch-up innovation from the large lag is associated with the cost

parameter β−L = 2 and from a small lag the parameter is β−S = 1. Both help parameters h−L

and h−S are equal to 1
10 and constant marginal costs of production are equal to10 c = 1, except

after a small innovation, which reduces costs to cS = 1
100 , or after a large innovation that leads

to finite, but very small marginal costs of cL = 1
10000 .

10More precisely, the stated costs are the relative costs of the innovating firm compared to the competitor’s
costs without innovation.
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Figure B.3: Profits at Different Positions
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Notes: This graph shows the profits for leveled firms (black) as well as small step (upper dotted red line) and large

step leaders (upper dashed green) and followers lagging with a small (lower dotted red) and large step (lower

dashed green). (r = 1
10 , βL = 8, βS = 4, β−S = 1, β−L = 2, h−L = 1

10 , h−S = 1
10 , c = 1, cS = 1

100 , cL = 1
10000 )

Figure B.3 shows how profits change with competition (i.e., substitutability α) for the different

firm positions. The figure shows that the mechanism from the simplified model remains:

Both R&D investments become more attractive for firms in the leveled state as pre-innovation

profits (π0, black line) decrease. However, large step leader’s profit (πL, upper green line)

increases earlier and flattens sooner than the profit of a small step leader (πS , upper red line),

as we move to higher values forα. This leads to the familiar shift towards large step innovation,

illustrated in Figure B.4. Note that the share would not be monotonously decreasing for all

parameterization. Numerical solutions suggest that if there is an initial increase, it happens at

lower levels of competition the greater the large cost reduction.

Figure B.5 confirms that innovation rates for this parameterization are similar to the simplified

model as well. The example shows that the three curves may continue to be inverted-U

shaped.

The model in this section is considerably more complicated and numerical results are shown

for one possible parameterization to demonstrate that the relationships in the simplified

model may arise in a model without these abstractions.
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Figure B.4: Share of Large Innovations
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Notes: This graph shows the share of large innovations in all innovations at the technological frontier ( IL
IL+IS

).
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10 , βL = 8, βS = 4, β−S = 1, β−L = 2, h−L = 1
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Figure B.5: Innovation Rates
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Notes: This graph shows the innovation rates for large (dashed green) and small (dotted red) innovation and

their sum (black). (r = 1
10 , βL = 8, βS = 4, β−S = 1, β−L = 2, h−L = 1

10 , h−S = 1
10 , c = 1, cS = 1

100 , cL = 1
10000 )
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B.5 Additional Empirical Results

Figure B.6: Kernel Density
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Table B.1: Similarity Regressions Controlling for Change in Patenting

(1) (2) (3) (4) (5)

∆ sim(comp.) ∆ sim(SIC4) ∆ sim(SIC3) ∆ sim(SIC2) dsim5all

b/se b/se b/se b/se b/se

∆ ShareImChina 1.486*** 0.337 0.316 0.154 0.158

(0.541) (0.330) (0.340) (0.242) (0.243)

∆ ln(patents+1) -0.040*** -0.015* -0.018** -0.013* -0.014*

(0.015) (0.009) (0.008) (0.007) (0.008)

Year FE yes yes yes yes yes

SIC2 FE no no no no no

Companies 298 421 425 428 428

SIC4 114 135 139 142 142

SIC3 67 74 75 78 78

SIC2 17 19 19 19 19

N 707 860 865 868 868

Notes: This table adds a control variable for the change in patenting (more precisely, the five-year

difference in ln(number of patents+1)) to the regressions from Table 2.2. The dependent variable is

the five-year difference in the similarity measure (based on SVD with 100 components). In column 1,

the comparison group consists of the firm’s own past patents. In columns 2 to 4, the comparison group

contains patents of all firms in the same industry, where the industry is defined based on the Standard

Industrial Classification (SIC) increasingly broadly (using four, three and two-digit SIC categories,

respectively). In column 5 the comparison group includes patents of firms from all other industries as

well. The model includes year fixed effects (as in Equation 2.10) and is estimated with two-stage least

squares using Bloom et al.’s (2016) initial conditions variable to instrument for the increase in Chinese

import competition. The sample period is from 2001 to 2005. Standard errors are clustered at the

four-digit SIC level. The data are from PATSTAT, Bloom et al. (2016) and Peruzzi et al. (2014).

*** p<0.01, ** p<0.05, * p<0.1
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Table B.2: Descriptive Statistics (Used in Regression with Similarity to Own Patents)

mean sd min p10 p25 p50 p75 p90 max

∆ sim(comp.) 0.03 0.27 -0.76 -0.30 -0.13 0.04 0.19 0.38 0.81

∆ sim(SIC4) 0.01 0.17 -0.51 -0.22 -0.10 0.01 0.13 0.22 0.66

∆ sim(SIC3) 0.00 0.16 -0.60 -0.19 -0.10 0.01 0.11 0.19 0.52

∆ sim(SIC2) 0.01 0.15 -0.46 -0.17 -0.08 0.01 0.09 0.19 0.50

∆ sim(all) 0.00 0.14 -0.49 -0.18 -0.08 0.01 0.09 0.18 0.48

∆ ShareImChina 0.02 0.04 -0.06 0.00 0.00 0.01 0.03 0.06 0.54

ShareImChina j t−6

·∆ShareImChinat 0.15 0.13 0.00 0.05 0.08 0.11 0.18 0.25 0.75

Observations 707

Notes: The descriptives in this table include the observations of the estimation based on the comparison

to a firm’s own previous patents (see Table 2.2, column 1). This sample is the smallest one of the five

columns, as the existence of own patents in the comparison period implies that the industry in

aggregate has patents as well. This sample includes five-year differences for the years from 2001 to

2005. The data are from PATSTAT, Bloom et al. (2016) and Peruzzi et al. (2014).
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Table B.3: Distribution of Firms over Countries

Country Percent

GB 24.5

DE 22.5

IT 17.4

FR 16.8

SE 8.7

FI 4.0

ES 2.3

AT 2.0

DK 1.7

Total 100.0

N 298

Notes: This table shows the percentage of firms in each country for the sample used in the regressions

based on similarity to a firm’s own patents in Table 2.2 (column 1). The notes to Table 2.2 regarding the

sample apply.
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Table B.4: Distribution of Firms over Industries

SIC2 Description Percent

35 Industrial and Commercial Machinery and Computer Equipment 24.2

28 Chemicals and Allied Products 15.1

34 Fabricated Metal Products 10.7

36 Electronic & Other Electrical Equipment & Components 10.4

38 Measuring, Photographic, Medical, & Optical Goods, & Clocks 8.7

37 Transportation Equipment 7.7

30 Rubber and Miscellaneous Plastic Products 4.4

39 Miscellaneous Manufacturing Industries 4.4

32 Stone, Clay, Glass, and Concrete Products 4.0

33 Primary Metal Industries 2.7

20 Food and Kindred Products 2.0

25 Furniture and Fixtures 2.0

26 Paper and Allied Products 1.3

24 Lumber and Wood Products, Except Furniture 0.7

27 Printing, Publishing and Allied Industries 0.7

31 Leather and Leather Products 0.7

22 Textile Mill Products 0.3

Total 100.0

N 298

Notes: This table shows the percentage of firms in each two-digit SIC category for the sample used

in the regressions based on similarity to a firm’s own patents in Table 2.2 (column 1). The notes to

Table 2.2 regarding the sample apply. Descriptions are added from http://www.dnb.com/content/

dam/english/economic-and-industry-insight/sic_2_digit_codes.xls.
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B.5.1 Regressions Using Different Samples of Patents

Table B.5: Similarity (USPTO Patents Only)

(1) (2) (3) (4) (5)

∆ sim(comp.) ∆ sim(SIC4) ∆ sim(SIC3) ∆ sim(SIC2) ∆ sim(all)

b/se b/se b/se b/se b/se

∆ ShareImChina 1.642** -0.237 -0.390 -0.443 -0.224

(0.686) (0.430) (0.469) (0.432) (0.346)

Year FE yes yes yes yes yes

Companies 127 187 191 195 195

SIC4 69 84 88 92 92

SIC3 45 52 53 57 57

SIC2 14 17 17 17 17

N 270 341 346 350 350

Notes: This table replicates Table 2.2 with a restricted sample: Only patent applications filed with the

USPTO are included. Apart from that, the notes to Table 2.2 apply.
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Table B.6: Similarity with All Patents (Including Chinese and Other Non-English Patents)

(1) (2) (3) (4) (5)

∆ sim(comp.) ∆ sim(SIC4) ∆ sim(SIC3) ∆ sim(SIC2) ∆ sim(all)

b/se b/se b/se b/se b/se

∆ ShareImChina 1.192** 0.167 0.135 0.052 0.038

(0.498) (0.309) (0.317) (0.240) (0.242)

Year FE yes yes yes yes yes

Companies 315 457 462 464 464

SIC4 116 136 141 143 143

SIC3 68 74 76 78 78

SIC2 18 19 19 19 19

N 764 937 943 945 945

Notes: This table replicates Table 2.2 with an extended sample, which in addition includes patents filed

in China, as well as any patents for which no English abstract is available. Apart from that, the notes to

Table 2.2 apply.

B.5.2 Regressions Weighting Firms Equally

Probability weights are used to weight firms equally here. I.e., individual observations for

a firm, whose five-year differences in similarity are observed in two years, receive half the

weight of a firm which is only once in the regression’s sample.
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Table B.7: Similarity Regressions Weighting Firms Equally

(1) (2) (3) (4) (5)

∆ sim(comp.) ∆ sim(SIC4) ∆ sim(SIC3) ∆ sim(SIC2) ∆ sim(all)

b/se b/se b/se b/se b/se

∆ ShareImChina 1.121* 0.406 0.211 0.012 0.156

(0.670) (0.329) (0.267) (0.251) (0.239)

Year FE yes yes yes yes yes

Companies 298 421 425 428 428

SIC4 114 135 139 142 142

SIC3 67 74 75 78 78

SIC2 17 19 19 19 19

N 707 860 865 868 868

Notes: This table presents modified regressions from Table 2.2, where each firm in the sample receives

equal weight. E.g. an observation of a long difference for a firm for which two observations are included

in the sample receives half the weight of an observation for a firm for which only one long difference is

observed. Apart from that, the notes to Table 2.2 apply.

Table B.8: First-Stage Regressions Weighting Firms Equally

(1) (2) (3) (4) (5)

∆ ShareImChina ∆ ShareImChina ∆ ShareImChina ∆ ShareImChina ∆ ShareImChina

b/se b/se b/se b/se b/se

ShareImChina j t−6

·∆ShareImChinat 0.112*** 0.149*** 0.149*** 0.149*** 0.149***

(0.016) (0.016) (0.016) (0.016) (0.016)

Year FE yes yes yes yes yes

Obs. 707 860 865 868 868

R2 0.11 0.19 0.19 0.18 0.18

F 15.77 24.76 25.27 25.50 25.50

Notes: This table shows the first-stage regressions belonging to the 2SLS regressions in Table B.7.

The number of observations per firm included in the regressions is shown in the Table B.9

(the sample is the same as in Table 2.2 in the main part). In the regression in the first column

of Table B.7, for 40% of included firms only one long difference is observed. For 20% of firms
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differences are observed in two year, while the percentages of firms with three, four and five

observations are above 10%. The additional observations in the four other columns of the

table do not alter this distribution much.

Table B.9: Number of Observations per Firm

(1) (2) (3) (4) (5)
comp. SIC4 SIC3 SIC2 all

n Percent Percent Percent Percent Percent

1 40.3 53.0 53.2 53.5 53.5
2 19.8 17.6 17.6 17.5 17.5
3 15.1 10.9 10.8 10.7 10.7
4 12.1 9.3 9.2 9.1 9.1
5 12.8 9.3 9.2 9.1 9.1
Total 100.0 100.0 100.0 100.0 100.0

N 298 421 425 428 428
Notes: This table shows the distribution of the number of observations per firm included in the

regressions Table B.7 (which is the same as for Table 2.2). The columns correspond to the columns

in these tables, i.e., the first column includes the sample in the regressions with the similarity to a

company’s own previous patents, in the second to fourth column the comparison group is the four,

three and two-digit SIC category of the firm and in the fifth column all patents are included in the

comparison group.

B.5.3 First-Stage and OLS Regressions

Table B.10: First Stage of Similarity Regressions

(1) (2) (3) (4) (5)

∆ ShareImChina ∆ ShareImChina ∆ ShareImChina ∆ ShareImChina ∆ ShareImChina

b/se b/se b/se b/se b/se

ShareImChina j t−6

·∆ShareImChinat 0.127*** 0.145*** 0.146*** 0.146*** 0.146***

(0.022) (0.023) (0.023) (0.023) (0.023)

Year FE yes yes yes yes yes

Obs. 707 860 865 868 868

R2 0.14 0.17 0.17 0.17 0.17

F 12.54 16.37 16.53 16.70 16.70

Notes: This table shows the first-stage regressions belonging to the main 2SLS regressions in Table 2.2.
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Table B.11: Similarity (OLS)

(1) (2) (3) (4) (5)

∆ sim(comp.) ∆ sim(SIC4) ∆ sim(SIC3) ∆ sim(SIC2) ∆ sim(all)

b/se b/se b/se b/se b/se

∆ ShareImChina 0.480* 0.337** 0.108 0.113 0.038

(0.250) (0.161) (0.113) (0.099) (0.100)

Year FE yes yes yes yes yes

Companies 298 421 425 428 428

SIC4 114 135 139 142 142

SIC3 67 74 75 78 78

SIC2 17 19 19 19 19

N 707 860 865 868 868

Notes: This table shows the OLS regressions corresponding to the main 2SLS regressions in Table 2.2.

Apart from that, the notes to Table 2.2 apply.

B.5.4 IV Regressions, First-Stage and OLS Regressions Using Quota IV

The following tables repeat the estimations from the main part of this study using Bloom

et al.’s (2016) main instrument, which is based on the abolition of quotas for textile and

apparel after China’s WTO accession, instead of initial conditions.
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Table B.12: Similarity (Quota IV)

(1) (2) (3) (4) (5)

∆ sim(comp.) ∆ sim(SIC4) ∆ sim(SIC3) ∆ sim(SIC2) ∆ sim(all)

b/se b/se b/se b/se b/se

∆ ShareImChina 2.501 2.744 1.449 1.715 2.048

(3.636) (1.884) (2.393) (2.063) (1.939)

Year FE yes yes yes yes yes

Companies 65 86 87 90 90

SIC4 25 34 35 38 38

SIC3 19 23 23 26 26

SIC2 12 14 14 14 14

N 92 114 115 118 118

Notes: Like Table 2.2, this tables shows estimations of Equation 2.10 using 2SLS, but instruments for

Chinese import competitions with Bloom et al.’s (2016) quota instrument. These quotas affected only

textile and apparel, such that the sample is smaller. The sample includes the years 2004 and 2005.

Apart from these changes, the notes to Table 2.2 apply.

Table B.13: First Stage of Similarity Regressions with Quota IV

(1) (2) (3) (4) (5)

∆ ShareImChina ∆ ShareImChina ∆ ShareImChina ∆ ShareImChina ∆ ShareImChina

b/se b/se b/se b/se b/se

∆Quota 0.047 0.075 0.117 0.112* 0.112*

(0.046) (0.057) (0.069) (0.056) (0.056)

Year FE yes yes yes yes yes

Obs. 92 114 115 118 118

R2 0.05 0.04 0.11 0.12 0.12

F 1.38 0.99 1.43 1.99 1.99

Notes: This table shows the first-stage regressions belonging to the 2SLS regressions in Table B.12,

which use the quota instrument.
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Table B.14: Similarity (OLS for Quota IV Sample)

(1) (2) (3) (4) (5)

∆ sim(comp.) ∆ sim(SIC4) ∆ sim(SIC3) ∆ sim(SIC2) ∆ sim(all)

b/se b/se b/se b/se b/se

∆ ShareImChina -1.608 -0.121 -0.375 -0.383 -0.148

(1.598) (0.451) (0.514) (0.491) (0.618)

Year FE yes yes yes yes yes

Companies 65 86 87 90 90

SIC4 25 34 35 38 38

SIC3 19 23 23 26 26

SIC2 12 14 14 14 14

N 92 114 115 118 118

Notes: This table shows the OLS regressions based on the sample in the 2SLS regressions using the

quota instrument in Table B.12.

B.5.5 Details and Variations of Latent Semantic Analysis

The main part of the chapter uses a low-rank approximation with 100 components in the LSA.

This is based on a commonly applied rule of thumb. The number is found in Deerwester et al.

(1990) and recommended in the documentation of the scikit-learn package, for example. The

truncated SVD matrix explains about 20% of the variance (see Figure B.7). To demonstrate

that the decision to follow this rule is not consequential for the qualitative results of this study,

this section lists the same regressions with different variations of the text-based measures.

Table B.15 shows the results based on a truncated SVD matrix with 1000 components for

slightly more than 50% explained variation.
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Figure B.7: Graph of Explained Variance
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Notes: Graph of explained variance (vertical axis) for singular value decomposition with different numbers of

components (horizontal axis)

Table B.15: Similarity (LSA with 1000 Components)

(1) (2) (3) (4) (5)

∆ sim(comp.) ∆ sim(SIC4) ∆ sim(SIC3) ∆ sim(SIC2) ∆ sim(all)

b/se b/se b/se b/se b/se

∆ ShareImChina 1.399*** 0.193 0.339 0.246 0.192

(0.528) (0.263) (0.237) (0.188) (0.196)

Year FE yes yes yes yes yes

Companies 298 421 425 428 428

SIC4 114 135 139 142 142

SIC3 67 74 75 78 78

SIC2 17 19 19 19 19

N 707 860 865 868 868

Notes: This table estimates the regressions from Table 2.2 with a similarity measure that is based on

LSA with 1000 components (instead of 100). The notes to Table 2.2 apply.
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SVD for dimensionality reduction is known to be able to improve the identification of concepts

from texts compared to the original tf-idf matrix. The qualitative results are robust to skipping

this step and directly comparing tf-idf vectors. Table B.16 shows the results with the 1000

most common terms. (As above, this happens after terms that appear in more than half of all

documents are removed.)

Table B.16: Similarity (tf-idf Only)

(1) (2) (3) (4) (5)

∆ sim(comp.) ∆ sim(SIC4) ∆ sim(SIC3) ∆ sim(SIC2) ∆ sim(all)

b/se b/se b/se b/se b/se

∆ ShareImChina 1.248** 0.161 0.301 0.205 0.203

(0.507) (0.254) (0.244) (0.199) (0.214)

Year FE yes yes yes yes yes

Companies 298 421 425 428 428

SIC4 114 135 139 142 142

SIC3 67 74 75 78 78

SIC2 17 19 19 19 19

N 707 860 865 868 868

Notes: This table estimates the regressions from Table 2.2 with a similarity measure based on the cosine

similarity of tf-idf vectors with 1000 most common terms (without singular value decomposition). The

notes to Table 2.2 apply.

B.5.6 Topic Modeling with Latent Dirichlet Allocation

A generative probabilistic model that can be applied to text corpora and that is increasingly

used in the literature is the latent Dirichlet allocation (Blei et al., 2003). I follow Kaplan and

Vakili (2015) in estimating the model with 100 topics. The results are shown in Table B.17.

Since a probability distribution over topics is estimated for each document, in addition to

cosine similarity, the table’s second set of columns uses the (five-year difference in) Kullback-

Leibler divergence. A decrease in this divergence implies more similar patents, i.e., the results

point in the same direction and are in line with the ones reported in the main part of the
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chapter. The hyperparameters of the Dirichlet priors are both set to 1
100 (i.e., 1

nr. of topics , which

is the scikit-learn default), and the maximum number of iterations has been set to 100.
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Appendix C

Appendix to Chapter 3

C.1 Appendix to Section 3.2

C.1.1 Compulsorily Licensed Patents by NBER Technological Subcategory

Figure C.1: Compulsorily Licensed Patents by NBER Technological Subcategory
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Notes: The pie chart shows the distribution of compulsorily licensed patents over 35 NBER technological subcat-

egories. The legend is sorted from largest share to smallest. The categorization in technological subcategories is

based on US patent classifications, following Hall et al. (2001). The data are from the Worldwide Patent Statistical

Database (PATSTAT) of the European Patent Office.
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C.1.2 Patenting of Bell in Radar and Cryptography

Figure C.2: War Technologies Created by Bell Labs
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Notes: This figure shows the yearly number of Bell patents relating to radar and cryptography, two technologies

relevant for World War II. We identify both technologies by their USPC class: We use the class 342 titled

“Communications: directive radio wave systems and devices (e.g., radar, radio navigation)” to classify radar and

class 380 titled “Cryptography” to classify cryptography. The data are from the Worldwide Patent Statistical

Database (PATSTAT) of the European Patent Office.

C.2 Appendix to Section 3.4

C.2.1 Comparing the Average Number of Citations of Treatment and Con-

trol Patents

In Figure C.3 we compare the evolution of patent citations to Bell patents and control patents

in the same publication year and the same four-digit technology class. We use the weights

proposed by Iacus et al. (2009) to adjust for the different number of control patents for each

Bell patent. From 1949 to 1953, the average number of citations of treatment and control
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Figure C.3: Average Number of Citations to Bell and Control Patents Published before 1949
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Notes: This figure shows average patent citations of patents published before 1949 in every year after publication.
The line with solid circles shows patent citations of the treated patents (Bell patents) and the line with empty
circles shows patent citations of control patents, with the same publication year and the same four-digit
technology class as the Bell patents. For aggregation we use the weights of Iacus et al. (2009) to adjust for a
different number of control patents for each Bell patent. The data are from the Worldwide Patent Statistical
Database (PATSTAT) of the European Patent Office.

patents track each other very closely. This implies that the Bell patents and the control patents

exhibit a parallel trend in citations in the first four years after the plea. The two lines diverge

in 1954, with Bell patents receiving relatively more citations than control patents, and they

converge again in 1961/1962. This is prima facie evidence for an effect from 1954 onward.

C.2.2 Pseudo Outcomes: Unaffected Companies Have No Excess Citations

In the main part of the text we use time varying coefficients to show that there are no yearly

excess citations from the B-2 companies, which were exempt from the compulsory licensing

agreement. In column 2 of Table C.1 we estimate the average effect for these companies

and find none. There are also two other groups of companies that were to a lesser degree

affected by the consent decree: foreign companies and companies that already had licensing
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agreements in place.1 Foreign companies could license for free but did not receive any

technical description or assistance from Bell.2 In Table C.1 we show the results using as the

dependent variable the citations from foreign companies in column 3 and from companies

that had a license before the consent decree in column 4. In the last column we use data on

all companies that did not have a license from Bell. We do not find a measurable effect for

foreign companies or companies with a license and a large effect for companies without a

license.

1 All companies with a license agreement are listed in the hearing documents (Antitrust Subcommittee,
1958, p. 2758).

2Verbatim in the consent decree “The defendants are each ordered and directed (...) to furnish to any person
domiciled in the United States and not controlled by foreign interests (...) technical information relating to
equipment (...)”.
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Table C.1: The Effect of Compulsory Licensing on Subsequent Citations of Unaffected Compa-
nies

(1) (2) (3) (4) (5)

Baseline B-2 Companies Foreign companies License No license

Treatment -0.4 -0.1 -0.0 0.5∗∗∗ -0.9∗∗

(0.5) (0.2) (0.1) (0.2) (0.4)

I(55-60) -6.4∗∗∗ -1.2∗∗∗ 2.1∗∗∗ -1.1∗∗∗ -5.4∗∗∗

(0.6) (0.2) (0.3) (0.2) (0.5)

T x I(55-60) 2.0∗∗∗ 0.2 -0.0 0.4 1.6∗∗∗

(0.6) (0.1) (0.2) (0.3) (0.5)

Constant 18.3∗∗∗ 2.3∗∗∗ 0.9∗∗∗ 3.1∗∗∗ 15.2∗∗∗

(1.2) (0.3) (0.1) (0.3) (1.0)

# treated 4533 4598 4533 4533 4533

Clusters 225 225 225 225 225

Obs. 896556 1096212 896556 896556 896556

Notes: This table shows the results from a difference-in-differences estimation with years 1949-1954 as pre-

treatment period and 1955-1960 as treatment period. The estimation equation is

#Ci t ati onsi ,t =β1 ·Bel li +β2 · I [1955−1960]+β3 ·Bel li · I [1955−1960]+εi ,t (C.1)

where I [1955− 1960] is an indicator variable for the treatment period 1955-1960. The variable "Bell" is an

indicator variable equal to one if a patent is published by a Bell System company before 1949 and therefore

treated by the consent decree. As dependent variable we use in the first column all citations by companies other

than the filing company. In the second column we use all citations of companies exempt from the consent

decree (GE, RCA, Westinghouse & ITT) and in the third column all citations of foreign companies. In the fourth

column we use citations of companies that had no licensing agreement with any Bell company prior to the

consent decree and in the last column we look at the citation of companies that had a licensing agreement.

As control patents, we use all patents that were published in the U.S. matched by publication year, primary

United States Patent Classification (USPC) technology class and the number of citations up to 1949. The data are

from the Worldwide Patent Statistical Database (PATSTAT) of the European Patent Office. All coefficients are

multiplied by 100 for better readability. Standard errors are clustered on the three-digit USPC technology class

level and *, **, *** denote statistical significance on 10%, 5% and 1% level, respectively.
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C.2.3 Pseudo Treatment: Citation Substitution is Small

One possible interpretation of our estimates is that due to the free availability of Bell tech-

nology, companies substituted away from other, potentially more expensive technologies.

If this were the case, we should find a negative impact of the consent decree on citations of

similar patents of other companies.3 To see if this is the case, we assign a pseudo treatment to

the patents of GE, RCA, Westinghouse, which were part of the B-2 agreement, and ITT. These

companies were among the largest patenting firms in the ten technology classes in which

Bell had most patents between 1939 and 1949. Results are reported in Table C.2, column 2.

We find no effect, implying that the citation substitution is either small or homogeneous to

patents of these companies and the control group.

For a second approach, we exploit the fact that a patent’s technology is classified twice: once

in the USPC system, which has a technical focus, and once in the IPC system, which reflects

more closely the intended industry or profession (“usage”) (Lerner, 1994). In columns 3 and 4

of Table C.2 we assign a pseudo-treatment to all patents that have the same USPC class and

the same IPC class as the Bell patents. As control group we use in column 3 patents with the

same USPC, but a different IPC classification as Bell patents. In column 4 we use as a control

group patents with the same IPC, but a different USPC classification as Bell patents. Thus we

compare patents that are arguably more similar to the Bell patents to two different control

groups. We find a small, negative but statistically insignificant effect. Again, this speaks in

favor of limited citation substitution or - alternatively - a homogeneous citation substitution

to all control groups.

3This approach is suggested by Imbens and Rubin (2015).
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C.2.4 Effects are Robust to Different Matching Strategies

In columns 5 to 7 of Table C.2 and in Figure C.4 we report results from using several alternative

matching variables. In the main specification, we use the age (measured by the publication

year), the technology (measured by USPC class) and the quality of a patent (measured by the

number of citations up to 1949). In column 6 we use patents in the same IPC but different

USPC class instead of using those in the same USPC class. In column 7 we match on the IPC

classification, independent of the USPC class. Finally, in column 8 we do a coarsened exact

matching in order to match all Bell patents.4 In all three cases the size of the effects is similar

to the one in the main specification. In Figure C.4 we show the size of the treatment effects for

different combinations of background variables as proxy for age, technology and quality. On

the vertical axis we plot the number of matched patents. The coefficient is mostly around 2.

4Coarsened exact matching was proposed by Iacus et al. (2012). In this specification we match on one of five
publication year categories that contain two years each and one of ten prior-citation categories.
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Figure C.4: Treatment Effects for Different Matching Variables
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Notes: In this figure we plot the parameter estimates from difference-in-differences estimations of the impact of
the consent decree for different matching strategies, controlling for year fixed effects. As before, as dependent
variable we use all citations by companies other than the filing company. In all regressions, we use a measure
for the age, the technology and the quality of a patent for matching. As measures for the age of a patent, we
alternatively use application year, publication year or both. For technology, we use the USPC, the USPC with
subclasses, the three and the four-digit IPC. As a measure of quality, we use the number of pre-citations as
exact numbers, coarsened to steps of five citations and an indicator for at least one citation prior to 1949. The
horizontal axis displays the number of matched Bell patents. Empty symbols are insignificant and full symbols
are significant at the 10% level. The data are from the Worldwide Patent Statistical Database (PATSTAT) of the
European Patent Office.
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C.2.5 Patenting Behavior of Bell Relative to Comparable Companies

Figure C.5: Patenting of Bell System and B-2 Companies without RCA
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Notes: In this figure we compare Bell’s total patenting to a synthetic Bell, the number of patents filed by the B-2

companies (General Electric, Westinghouse, RCA and ITT), General Electric and Westinghouse separately and

all companies that existed before 1949 and had at least 100 patents in any field in which Bell was active. The

number of patents are normalized to the average number of patents from 1946-1948. We show General Electric

and Westinghouse separately, because RCA had a consent decree involving patents in 1958 and thus might have

changed its behavior. The data are from the Worldwide Patent Statistical Database (PATSTAT) of the European

Patent Office.
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C.2.6 Share of Communication Patents Measured with NBER Technology

Subcategories

Figure C.6: Share of Communication Patents
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Notes: This figure shows the share of patents related to communication relative to all patents filed by Bell. We

define technologies related to communication as the NBER subcategories “Communication” and “Optics” (Hall

et al., 2001). We include “Optics” because after the invention of the laser at Bell Labs in 1958, Bell officials

predicted correctly that optics might be crucial for the future of communication (Gertner, 2012, p. 253).

C.2.7 Effect for Different Definitions of Small and Young Assignees

In Figure C.7 we estimate the main treatment coefficient separately for citations of different

size and age groups of assignees. We find that the effect is driven mainly by companies and

individual inventors without patents before 1949 and companies and individual inventors

that have been active for less than one year at the time of the citations.
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Figure C.7: Sample Split by Characteristics of Citing Firm

(a) By size of patent portfolio in 1949
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(b) By age of company at citation
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Notes: These subfigures show results from a difference-in-differences estimation with the years 1949-1954 as
pre-treatment period and 1955-1960 as treatment period, controlling for year fixed effects. As dependent variable
we use all citations by companies other than the filing companies with a specific size of their patent portfolio
(Subfigure (a)) and a specific company age (b) as indicated in the figure. As control patents we use all patents
that were published in the U.S. matched by publication year, primary USPC technology class, and the number of
citations up to 1949. The data are from the Worldwide Patent Statistical Database (PATSTAT) of the European
Patent Office.

C.3 Appendix to Section 3.5

C.3.1 Effect by NBER Technology Subcategory

In this section we estimate our main treatment effect separately for citations of patents in

different NBER technology subcategories. The results are reported in Figure C.8. The increase

in citations comes mainly from technologies related to electrical components, in particular

in “Electrical Devices”. Yet, there is no increase in citations by patents in the subcategory

of “Communication”. These results corroborate the finding in our main text that there is no

increase in follow-on innovation in industries concerned with production of communication

equipment, the core business of Bell.
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Figure C.8: Effect of Compulsory Licensing on Subsequent Citations By NBER Technological
Subcategory
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Notes: This figure shows difference-in-differences estimates of the impact of the consent decree on citations
from patents in different NBER technological subcategories, controlling for year fixed effects. As dependent
variable we use all citations by companies other than the filing company. As control patents we use all patents
that were published in the U.S., matched by publication year, primary USPC technology class, and the number
of citations up to 1949. A solid circle means that the coefficient is significant at the 10% level. We split the citing
patents by NBER technology subcategory following Hall et al. (2001). The data are from the Worldwide Patent
Statistical Database (PATSTAT) of the European Patent Office.
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C.3.2 No Lack of Follow-On Innovation in Telecommunications

This section presents evidence that the null effect in telecommunications was not due to a

lack in potential follow-on innovation in the telecommunications market. To do this we look

at the total number of citations, the sum of citations of other companies and self-citations, to

Bell patents inside and outside of telecommunications. In Subfigure (a) of Figure C.9 we plot

the average number of total citations to Bell patents related to communication and related

to other fields. We use the concordance of Kerr (2008) to assign to each Bell patent the most

likely SIC code. We find that the total number of citations to telecommunications patents of

Bell was at least as high as to patents outside of communication. This speaks against a low

quality of compulsorily licensed patents as a reason for the lack in follow-on innovation in

telecommunications. In Subfigure (b) we show that the total number of patent citations to

Bell’s patents inside and outside of telecommunications were also almost identical before

and after the consent decree. This suggests that after the consent decree the potential for

follow-on innovation was not significantly lower in telecommunications than in other fields.
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Figure C.9: Number of Citations to Bell Patents Inside and Outside of Communication
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Notes: Subfigure (a) shows the average number of citations per year for all Bell patents that are most likely used
in the production of communication equipment (SIC 3661) and that are used in any other industry. To classify
a patent by its most likely industry, we use the data of Kerr (2008) to assign to each USPC class the most likely
four-digit SIC industry in which it is used. Subfigure (b) shows the total number of citations to Bell patents
inside and outside of telecommunication filed in a particular year. In this graph we use total citations, the sum
of citations from other companies and from Bell to its own patents. The data stem from the Worldwide Patent
Statistical Database (PATSTAT) of the European Patent Office.
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