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Abstract 

Panic Disorder (PD) affects about 7.9 million Europeans, with women affected 

twice as likely as men, causing substantial suffering and high economic costs. The 

etiopathogenesis of PD remains largely unknown, but both genetic and 

environmental factors contribute to risk. PD constitutes a strong psychological 

stressor, and it is therefore an important risk factor for accelerated aging. It is 

known that environmental factors can influence DNA methylation, and 

epigenetic regulation of genomic functions has been related to increased 

susceptibility for psychiatric disorders like PD.  Therefore, an Epigenome-Wide 

Association Study (EWAS) was conducted in the MPIP Panic Cohort I to compare 

medication-free PD patients (n=89) with healthy controls (n=76) stratified by sex. 

Replication was sought in an independent sample (MPIP Panic Cohort II) 

consisting of 131 cases and 169 controls, and functional analyses were 

conducted in a third sample (MPIP Dexamethasone Treatment Study, N=71). 

DNA methylation was assessed in whole blood using the Infinium 

HumanMethylation450 BeadChip and epigenetic age was calculated with the 

Horvath DNA methylation-based predictor of aging. One genome-wide 

association surviving FDR of 5% (cg07308824, P=1.094 x 10-7, P-adj=0.046) was 

identified in female PD patients (N=49) compared to controls (N=48). The same 

locus, located in an enhancer region of the HECA gene, was also 

hypermethylated in female PD patients in the replication sample (P=0.035) and 

the significance of the association improved in the meta-analysis (P-adj=0.004). 

Methylation at this CpG site was associated with HECA mRNA expression in 

another independent female sample (N=71) both at baseline (P=0.046) and after 

induction by dexamethasone (P=0.029). 5 of 15 candidates previously reported 

as associated with PD or anxiety traits also showed differences in DNA 

methylation after gene-wise correction and included SGK1, FHIT, ADCYAP1, 

HTR1A, HTR2A. Epigenetic age was accelerated in PD patients with agoraphobia 

of the MPIP Panic Cohort II compared to PD patients without, and effects were 

stronger in females. Our study examines epigenome-wide differences in PD 
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patients and epigenetic age acceleration in peripheral blood for PD. Our results 

point to possible sex-specific methylation changes in the HECA gene for PD and 

suggest age acceleration in PD patients with agoraphobia but overall highlight 

that this disorder is not associated with extensive changes in DNA methylation in 

peripheral blood. 
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1. Introduction 

Anxiety is a normal reaction to stress and can even be beneficial in some 

situations. Anxiety disorders differ from normal feelings of nervousness or 

anxiousness, often stress-induced, by being persistent (e.g. typically lasting 6 

months or more) and involving excessive fear or anxiety that can interfere with 

the ability of leading a normal life (American Psychiatric Association, 2013). 

Anxiety disorders are the most common type of psychiatric disorders and affect 

nearly 30 percent of adults (Kessler et al., 2007; Craske and Stein, 2016). Despite 

the high prevalence rates, anxiety disorders are often under-recognized and 

under-treated. According to the Diagnostic and Statistical Manual of Mental 

Disorders, 5th Edition (American Psychiatric Association, 2013), anxiety disorders 

include:   

 

1) Panic Disorder (PD) 

2) Agoraphobia 

3) Separation Anxiety Disorder 

4) Social Anxiety Disorder (Social Phobia) 

5) Specific Phobia 

6) Selective Mutism 

7) Generalized Anxiety Disorder (GAD) 

 

Anxiety disorders tend to be highly comorbid with each other, but they can be 

differentiated by close examinations since they differ from one another in the 

types of objects or situations that induce fear, anxiety or avoidance behaviour, 

and the associated cognitive ideation (American Psychiatric Association, 2013).  

Many of the anxiety disorders develop in childhood, tend to persist if not 

treated, and occur more frequently in females than in males (approximately 2:1 

ratio) (American Psychiatric Association, 2013). Anxiety disorders represent a 

heterogeneous group of disorders, probably with no single unifying etiology.  
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 Panic Disorder 

Panic Disorder (PD) is the most disabling anxiety disorder, causing substantial 

suffering and high economic and social costs. It affects about 7.9 million 

Europeans with women being twice as likely to be affected as men (Wittchen et 

al., 2011). PD is characterized by sudden episodes of acute anxiety (panic attacks) 

occurring without any apparent reason. It can be accompanied by a persistent 

concern of having additional attacks or worry about the possible consequences 

of the attacks (e.g. suffering of a heart attack, dying, losing control) and 

significant behavioural changes to avoid future panic attacks (Table 1) (Goodwin 

et al., 2005) .  First onset for PD is in adolescence and early adulthood  and it is 

highly comorbid with other mental disorders, especially agoraphobia (Noyes et 

al., 1986). Despite the substantial long-term disability, PD appears to be under-

diagnosed and under-treated in mental health settings. According to the DSM-5 

“Panic disorder is associated with high levels of social, occupational, and physical 

disability, considerable economic costs, and the highest number of medical visits 

among the anxiety disorders, although the effects are strongest with the 

presence of agoraphobia. Panic attacks and a diagnosis of panic disorder in the 

past 12 months are related to a higher rate of suicide attempts and suicidal 

ideation  even when comorbidity and a history of childhood abuse and other 

suicide risk factors are taken into account” (American Psychiatric Association, 

2013). Early to middle 20s is the typical mean age of onset and a small number of 

cases begin in childhood. Onset after age 45 years is unusual but can occur 

(American Psychiatric Association, 2013). 
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Table 1. Diagnostic criteria for panic disorder. The table is based on DSM-5 
(American Psychiatric Association, 2013). 

  

 

  

 

 

A. Recurrent unexpected panic attacks 
A panic attack is an abrupt surge of intense fear or intense discomfort that 
reaches a peak within minutes, 
and during which time four (or more) of the following symptoms occur: 

1. Palpitations, pounding heart, or accelerated heart rate 
2. Sweating 
3. Trembling or shaking 
4. Sensations of shortness of breath or smothering 
5. Feelings of choking 
6. Chest pain or discomfort 
7. Nausea or abdominal distress 
8. Feeling dizzy, unsteady, light-headed, or faint 
9. Chills or heat sensations 
10. Paresthesias (numbness or tingling sensations) 
11. Derealization (feelings of unreality) or depersonalization (being detached from 

oneself) 
12. Fear of losing control or „going crazy“ 
13. Fear of dying 

B. At least one of the attacks has been followed by 1 month (or more) of one or 
both of the following: 

1. Persistent concern or worry about additional panic attacks or their 
consequences (e.g. losing control,  
having a heart attack, “going crazy”) 

2. A significant maladaptive change in behavior related to the attacks (e.g. 
behaviors designed to avoid 
having panic attacks, such as avoidance of exercise or unfamiliar situations) 

C. The disturbance is not attributable to the physiological effects of a substance 
(e.g. a drug of abuse,  
a medication) or another medical condition (e.g. hyperthyroidism, 
cardiopulmonary disorders) 

D. The disturbance is not better explained by another mental disorder (e.g. the 
panic attacks do not occur 
only in response  to feared social situations, as in social anxiety disorder; in 
response to circumscribed phobic  
objects or situations, as in specific phobia; in response to obsessions, as in 
obsessive-compulsive disorder; 
in response to reminders of traumatic events, as in posttraumatic stress 
disorder; or in response to separation  
from attachment figures, as in separation anxiety disorder) 
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 Risk and Prognostic Factors 

The APA classifies the risk factors that can influence the onset of panic disorder 

in three main categories and describes them as follows (American Psychiatric 

Association, 2013): 

1. Temperamental: negative affectivity (neuroticism) (i.e., proneness to 

experiencing negative emotions) and anxiety sensitivity (i.e., the 

disposition to believe that symptoms of anxiety are harmful) are risk 

factors for the onset of panic attacks.  

2. Environmental: sexual and physical abuse during childhood are more 

common in PD compared to other anxiety disorders. Smoking 

represents also a risk factor for panic attacks and panic disorder. 

3. Genetic and physiological: It is believed that multiple genes confer 

vulnerability to panic disorder. However, the exact genes, gene 

products, or functions related to the genetic regions implicated 

remain unknown. Current neural systems models for panic disorder 

emphasize the amygdala and related structures, much as in other 

anxiety disorders. There is an increased risk for panic disorder among 

offspring of parents with anxiety, depressive, and bipolar disorders. 

Respiratory disturbance, such as asthma, is associated with panic 

disorder, in terms of past history, comorbidity, and family history 

(American Psychiatric Association, 2013). 

 

 Sex-Related Diagnostic Issues 

Relevant differences in the clinical features between males and females are not 

described so far. However, there is some evidence for sexual dimorphism, with 

an association between panic disorder and the catechol-O-methyltransferase 

(COMT) gene in females only (American Psychiatric Association, 2013). 
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 Agoraphobia 

The essential feature of agoraphobia is anxiety about being in places or 

situations from which escape might be difficult (or embarrassing) or in which 

help may not be available in the event of having a panic attack or panic-like 

symptoms (School of Health and Related Research (ScHARR), 2004). This leads to 

a pervasive avoidance of a variety of situations that may include: using public 

transportation, being in open spaces, being in enclosed places, standing in line or 

being in a crowd, being outside of the home alone in other situations (American 

Psychiatric Association, 2013). In most severe forms, agoraphobia can cause 

individuals to become completely home-bound, unable to leave their home and 

dependent on others for services or assistance to provide even for basic needs 

(American Psychiatric Association, 2013). 

Agoraphobia is diagnosed irrespectively of the presence of panic disorder. The 

percentage of individuals with agoraphobia reporting panic attacks or panic 

disorder preceding the onset of agoraphobia ranges from 30% in community 

samples to more than 50% in clinical samples (American Psychiatric Association, 

2013). The majority of individuals with panic disorder show signs of anxiety and 

agoraphobia before the onset of panic disorder. Every year approximately 1.7% 

of adolescents and adults have a diagnosis of agoraphobia. Females are twice as 

likely as males to be affected. Agoraphobia may occur in childhood, but 

incidence peaks in late adolescence and early adulthood. In two-thirds of all 

cases of agoraphobia, initial onset is before 35 years. Heritability for agoraphobia 

ranges up to 61% (American Psychiatric Association, 2013). Negative events in 

childhood (e.g. separation, death of parent) and other stressful events, such as 

being attacked or mugged, are associated with the onset of agoraphobia. The 

majority of individuals with agoraphobia also have other mental disorders, most 

frequently other anxiety disorders (e.g. specific phobias, panic disorder, and 

social anxiety disorder), depressive disorders (MDD), PTSD, and alcohol use 

disorder. Whereas other anxiety disorders (e.g. panic disorder) frequently 

precede onset of agoraphobia, depressive disorders and substance use disorders 
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typically occur secondary to agoraphobia (American Psychiatric Association, 

2013). 

 

 Pathophysiology of Anxiety Disorders 

Two are the most acknowledged contributors to psychopathology: genetic 

vulnerability and environmental stressors.  

Several approaches have been used to define the genetic contribution to 

psychiatric disorders like anxiety disorders, including family studies, twin studies, 

linkage studies, association studies, GxE studies, molecular, cellular and clinical 

studies (Figure 1).  

 

 Genetic Risk Factors 

 Family and Twin Studies 

Family and twin studies provided consistent evidence that panic disorder is 

familiar and heritable. The overall heritability of PD is substantial with heritability 

estimates up to 48% (Hettema et al., 2001).  

 

 Linkage Studies 

Having established that genetic factors influence PD, many linkage studies have 

been performed to map the relevant loci. Linkage analysis have implicated 

several chromosomal regions (Smoller et al., 2008) and the strongest evidence 

was found for the 13q locus when the phenotype was defined as a syndrome 

that included PD as well as several other medical conditions (mitral valve 

prolapse, serious headaches, and/or thyroid problems) (Weissman et al., 2000; 

Hamilton et al., 2003). 

In the largest analysis to date, Fyer et al. reported genome-wide significant 

linkage to 15q using a broad panic phenotype that included sporadic and limited 

symptom panic attacks in addition to PD (Fyer et al., 2006). However, there has 

been little consistency in linkage scans for PD (Smoller et al., 2008). 
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Figure 1. Summary of psychiatric genetics methods. Source: Smoller (2016) 
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 Genome-Wide Genetic Associations 

Genome-wide association studies (GWAS) enable a so-called “unbiased” search 

for risk loci by examining variants across the genome instead of limiting the 

search to hypothesized candidates (as in candidate gene studies) (Smoller, 2016). 

The first GWAS of PD was published in 2009 (Otowa et al., 2009), included 200 

cases and 200 controls of the Japanese population and reported significant 

variants in TMEM16B and PKP1, but these findings could not be replicated by the 

same investigators in a larger independent sample (Otowa et al., 2010; Smoller, 

2016). However, more robust support has emerged for transmembrane protein 

132D (TMEM132D) in three independent samples consisting of a total of 909 

cases and 915 controls. Risk genotypes identified in this study were associated 

with higher TMEM132D mRNA expression in human post-mortem frontal cortex.  

These results were further supported by a mouse model in which high anxiety-

related behaviour was associated with a TMEM132D SNP and correlated with 

expression of TMEM132D mRNA in the anterior cingulate cortex (Erhardt et al., 

2011). It has been suggested that this gene has a role in threat processing, but its 

function is not fully understood (Haaker et al., 2014; Smoller, 2016). 

This study had an adequate power to detect the reported effect size of OR 1.4 in 

the combined sample of 909 cases, even if the size of the discovery sample was 

modest. In complex psychiatric disorders genetic effect sizes of this magnitude 

are probably the exception, therefore more modest effects in other important 

genes might have been missed (Wellcome Trust Case Control Consortium, 2007; 

Baum et al., 2008; Erhardt et al., 2011). A summary of GWAS of anxiety disorders 

is reported in Table 2.  
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Table 2. GWAS of anxiety disorders. Source: Shimada-Sugimoto et al. (2015)  

 
Reference Phenotype Dataset Most 

significant 
finding 

P-value OR 

(Otowa et 
al., 2009; 
Otowa et 
al., 2010) 

PD 200 cases, 
200 controls  
(GWAS); 558 

cases, 566 
controls 

(Replication) 

TMEM16B 
(12p13) 

3.73x10-9 
(GWAS); NS 
(Replication) 

22.1 

(Erhardt et 
al., 2011) 

PD 216 cases, 222 
controls (GWAS); 

693 cases, 693 
controls 

(Replication) 

TMEM132D 
(12q24) 

7.73 x 10-7 
(GWAS); 1.36 

x 10-6 (all 
samples) 

2.2 

(Otowa et 
al., 2012) 

PD 718 cases, 1717 
controls (GWAS); 

329 cases, 861 
controls 

(Replication) 

BDRKB2 
(14q32) 

4.43 x 10-6 
(GWAS); 1.32 

x 10-5 (all 
samples) 

1.31 

(Kawamura 
et al., 
2011) 

PD 535 cases, 1520 
controls 

(genome-wide 
copy number 

variation 
analysis) 

Common 
duplication 
(16p11.2) 

3.5 x 10-6 2.35 

(Trzaskows
ki et al., 
2013) 

Anxiety-
related 

behaviours 

2810 7-year-old 
children (GWAS); 

4804 children 
(Replication) 

STXBP6, 
NOVA1 
(14q12) 

(Negative 
Cognition); 

CAP2 
(6p22.3)  
(Anxiety 

Composite) 

4.12 x 10-7 
(Negative 

Cognition); 
6.27 x 10-7 

(Anxiety 
Composite) 

- 

(Schosser 
et al., 
2013; 

Otowa et 
al., 2014) 

Anxiety in 
MDD 

1522 MDD (1080 
with anxiety) 
cases, 1588 

controls 

DSCAM 
(21q22.2) 

3.27 x 10-7 1.53 

(Otowa et 
al., 2014) 

GAD, PD, 
agoraphobi

a, social 
phobia, 
specific 
phobia 

2540 European 
Americans, 849 

African 
Americans 

MFAP3L 
(4q32.3) 

8.63 x 10-7 - 
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 Environmental Risk Factors  

Psychiatric disorders are multifactorial diseases that emerge through the 

interplay between environmental factors and genetic predisposition. The aim of 

gene-by-environment interaction (GxE) studies is exactly to determine the extent 

to which genetic predisposition in combination with environmental determinants 

shapes the risk for psychiatric disorders (Halldorsdottir and Binder, 2017). 

Different hypothesis have been developed over the years to explain how genes 

and environment contribute to disease risk. According to the “diathesis-stress” 

hypothesis, genes and adversity, independently and in combination, increase the 

liability to disorder (Smoller, 2016). This model however focuses only on negative 

environmental influences. An alternative model, known as the differential-

susceptibility perspective, has been proposed by Belsky and colleagues (Belsky et 

al., 2007; Belsky and Pluess, 2009). According to the latter, no genotype is 

inherently good or bad, but individuals vary in their susceptibility to both 

negative and positive environmental influences. 

 

GxE studies available so far have focused on a small number of predominantly 

functional candidate markers in a limited number of genes and no genome-wide 

search for GxE in common psychiatric disorders, including anxiety disorders (AD), 

has been conducted (Shimada-Sugimoto et al., 2015). The lack of such studies in 

this field is due to the need of larger samples and of a more precise definition of 

“environmental” or “candidate stressors” (Klauke et al., 2010), which are very 

important factors for the design of future genome-wide GxE studies in AD. 

 

Epidemiologic and twin studies (Kendler et al., 2016; South et al., 2016; Torvik et 

al., 2016) support the importance of adverse events occurring early in life in 

increasing the risk for psychiatric disorders, including mood and anxiety 

disorders but also psychoses and personality disorders (Kessler et al., 2010; 

Binder, 2017). Adverse life events have been shown to associate with specific 

epigenetic modifications, such as DNA methylation, which may mediate the 
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lasting cellular consequences of these exposures in psychiatric disorders (Slatkin, 

2009), also in the context of GxE (Klengel and Binder, 2015). 

 

 Epigenetics 

The word “epigenetic” literally means “in addition to changes in genetic 

sequence”. The term has evolved to include any process that alters gene activity 

without changing the DNA sequence, and leads to modifications that can be 

transmitted to daughter cells (although experiments show that some epigenetic 

changes can be reversed) (Weinhold, 2006). Epigenetic modifications are 

heritable changes in gene expression not encoded by the DNA sequence. They 

include DNA methylation, the histone code, noncoding RNA, and nucleosome 

positioning, along with DNA sequence. Epigenetic processes are natural and 

essential to many organism functions, but if they occur improperly, there can be 

major adverse health and behavioural effects. 

DNA methylation, catalysed by the DNA methyltransferases (DNMTs), is 

considered a key player in epigenetic silencing of transcription and is one of the 

most studied epigenetic modifications in human cells. Changes in DNA 

methylation patterns play a critical role in development, differentiation and 

diseases such as multiple sclerosis, diabetes, schizophrenia, aging, and multiple 

forms of cancer (Bibikova et al., 2011).  

DNA methylation may regulate the chromatin status via the interaction of 

DNMTs together with other modifications and with components of the 

machinery mediating those marks (Jin et al., 2011). 

 

 DNA Methylation 

DNA methylation is a heritable epigenetic mark involving the covalent transfer of 

a methyl group to the C-5 position of the cytosine ring (Figure 2) of DNA by DNA 

methyltransferases (DNMTs) (Robertson, 2005).  

In mammals, DNA methylation occurs at cytosines in any context of the genome 

(Lister et al., 2009). However, more than 98% of DNA methylation occurs in a 
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CpG dinucleotide context in somatic cells, while as much as a quarter of all 

methylation appears in a non-CpG context in embryonic stem  cells (ESCs) (Lister 

et al., 2009). DNA methylation is typically removed during zygote formation and 

then re-established in the embryo at approximately the time of implantation 

(Zhu, 2009). Most DNA methylation is essential for normal development, and it 

plays a very important role in a number of key processes including genomic 

imprinting, X-chromosome inactivation, and suppression of repetitive element 

transcription and transposition and, when dysregulated, contributes to diseases 

like cancer (Robertson, 2005; Gopalakrishnan et al., 2008; Jin et al., 2008; Jin et 

al., 2009). 

The methylation pattern in mammalian genomes is bimodal, with most of the 

genomes methylated except for short DNA stretches called CpG islands (CGIs), 

which are generally protected from methylation (Siegfried and Simon, 2010).  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. DNA methylation 
Modified from: http://www.ks.uiuc.edu/Research/methylation/ 
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 CpG Islands 

CpG islands were first described 30 years ago (Bird, 1986). In mammals CpG 

dinucleotides are under-represented in the genome with the exception of short 

DNA stretches called CGIs. This uneven distribution is also associated with a 

bimodal pattern of cytosine methylation (almost all CpG dinucleotides are 

methylated with the general exception of CGIs). The higher CpG density in the 

unmethylated CGIs is probably due to the lower mutation rate of unmethylated 

cytocines. Deamination of cytosines in methylated CpG dinucleotides produces 

thymine, which is stable, whereas deamination of unmethylated cytosine 

produces uracil, which can be removed by uracil glycosylase. The consequence is 

that unmethylated regions maintain their CpG density whereas methylated 

regions lose their CpG density due to mutations. Indeed, CpGs located within 

CGIs are more highly conserved between human and chimpanzee. Moreover, 

even among CGIs, methylated islands have diverged at faster rates than the 

nonmethylated CGIs (Siegfried and Simon, 2010). 

DNA methylation across CpG sites in the genome is typically regarded as 

bimodal, with CpG-rich regions known as CpG islands, often associated with 

transcription start sites (TSSs), typically showing hypomethylation, and other CpG 

sites showing hypermethylation (Wagner et al., 2014). 

 

 DNA Methylation and Gene Expression 

The relationship between methylation and gene expression is complex, with high 

levels of gene expression often associated with low promoter methylation (Kass 

et al., 1997) (Figure 3) but elevated gene body methylation (Jones, 1999), and 

the causality relationships have not yet been determined (Wagner et al., 2014).  

Methylation has been shown to be highly variable across cell types with variable 

sites falling in two broad categories: those with inverse correlation between DNA 

methylation and chromatin accessibility and constitutive DNA hypomethylation 

(Thurman et al., 2012). In the study of (Wagner et al., 2014), CpG probes where 

methylation levels correlated negatively with gene expression were for the most 
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part located in regions with marks of regulatory activity (H3K4me3 or DHS). In 

contrast, positively correlated probes were slightly more often seen with the 

inactive gene-associated marker H3K27me3 when compared with negatively 

correlated probes (Wagner et al., 2014). 

 
 

 
 

Figure 3. Consequences of DNA methylation on gene expression 
Source: http://missinglink.ucsf.edu/lm/genes_and_genomes/methylation.html 

 
 
 

 Epigenome-Wide Association Studies  

Although the genome gives information about genome sequence and structure, 

the human epigenome provides functional aspects of the genome. Epigenome-

wide association studies (EWAS) provide an opportunity to identify genome-wide 

epigenetic variants that could be associated with human phenotypes (Verma, 

2012; Flanagan, 2015). The epigenome is especially intriguing as a target for 

study, as epigenetic regulatory processes are, by definition, heritable from 

parent to daughter cells and are found to have transcriptional regulatory 

properties. As such, the epigenome is an attractive candidate for mediating long-

term responses to cellular stimuli, such as environmental effects modifying 

disease risk. When a pattern of changes of DNA methylation is found to occur 
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repeatedly at specific loci, discriminating the phenotypically affected cases from 

control individuals, this is regarded as an indication that epigenetic perturbation 

has taken place that is associated, possibly causally, with the phenotype. This 

approach is described as an epigenome-wide association study (EWAS) (Rakyan 

et al., 2011), and takes its cue from the association of genetic variability with 

phenotypes in genome-wide association studies (GWAS) (Birney et al., 2016). 

 

 Technical Background  

Epigenetic variation can contribute to the development of a disease or be a 

consequence of it (also known as reverse causality). Distinguishing between the 

two processes presents a major challenge for EWASs (Paul and Beck, 2014).  

Array-based assays have been widely adopted to study DNA methylation owing 

to their low costs, ease of use and high throughput. The Illumina Infinium 450K 

BeadChips are among such assays and have been the platform of choice for 

epigenome-wide association studies. They can quantify CpG and a very small 

fraction of non-CpG methylation at single-base resolution (Plongthongkum et al., 

2014).  

 

 Illumina 450K Array Design 

The Illumina 450K BeadChip interrogates more than 485,000 methylation sites 

per sample at single-nucleotide resolution and can analyse twelve samples in 

parallel. It covers 99% of RefSeq genes, with an average of 17 CpG sites per gene 

region distributed across the promoter, 5´ UTR, first exon, gene body, and 3´ 

UTR. It covers 96% of CpG islands, with additional coverage in island shores and 

the regions flanking them (Figure 4). Each sample is measured on a single array, 

in two different color channels (red and green) (Figure 5). For each CpG, there 

are two measurements: a methylated intensity and an unmethylated intensity. 

Depending on the probe design, the signals are reported in different colors:  

- for Type I design, both signals are measured in the same color: one probe 

for the methylated signal and one probe for the unmethylated signal. 
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- for Type II design, only one probe is used. The Green intensity measures 

the methylated signal, and the Red intensity measures the unmethylated 

signal (Bibikova et al., 2011). 

 

 

 

 

 

Figure 4. Illumina Infinium 450K BeadChip probe distribution. Source: (Bibikova 
et al., 2011) 
4A. Coverage of NM and NR transcripts from UCSC database. 
Each transcript was divided into “functional regions” — TSS200 is the region 
from Transcription start site (TSS) to − 200 nt upstream of TSS; TSS1500 covers − 
200 to − 1500 nt upstream of TSS; 5′ UTR, 1st exon, gene body and 3´ UTR were 
also covered separately. 
4B. Coverage of CpG islands and adjacent regions. 
CpG islands longer than 500 bp were divided into separate bins. The 2 kb regions 
immediately upstream and downstream of the CpG island boundaries, or “CpG 
island shores”, and the 2 kb regions upstream and downstream of the CpG island 
shores, referred to here as “CpG island shelves,” were also targeted separately. 
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Figure 5. Illumina Infinium 450K BeadChip principle. Modified from: 
https://www.illumina.com/products/methylation_450_beadchip_kits.html 
 
 

Two measures are commonly used to report methylation levels: β-values and M-

values. 

 

 

β-value: 

𝛽 =
𝑀

𝑀 + 𝑈 + 𝛼
 

 

 

where M and U denote the methylated and unmethylated signals respectively; α 

is a constant (by default, α=100) that regularizes the β-value when both 

methylated and unmethylated probe intensities are low. 

The β-value statistic results in a number between 0 and 1, or 0 and 100%. Under 

ideal conditions, a value of zero indicates that all copies of the CpG site in the 

sample were completely unmethylated (no methylated molecules were 

https://www.illumina.com/products/methylation_450_beadchip_kits.html
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measured) and a value of one indicates that every copy of the site was 

methylated (Du et al., 2010). 

 

M-value:  

 

𝑀𝑣𝑎𝑙 = 𝑙𝑜𝑔 (
𝑀

𝑈
) 

 

The M-value is calculated as the log ratio of the intensities of methylated probe 

versus unmethylated probe. 

An M-value close to 0 indicates a similar intensity between the methylated and 

unmethylated probes, which means the CpG site is about half-methylated. 

Positive M-values mean that more molecules are methylated than unmethylated, 

while negative M-values mean the opposite (Du et al., 2010). 

 

The β-value has a more intuitive biological interpretation, the M-value is on the 

other hand more statistically valid for the differential analysis of methylation 

levels (Du et al., 2010). In this thesis, M-values were used for differential 

methylation analysis and β-values to show the results.  

 

 DNA Methylation Age (Epigenetic Clock) 

DNA methylation changes during physiological processes like aging, but also 

during disease status, e.g. aging associated diseases (Bjornsson et al., 2008; 

Christensen et al., 2009; Rakyan et al., 2010; Hernandez et al., 2011; Heyn et al., 

2012; Horvath et al., 2012; Horvath, 2013).  

Considering the unprecedented growth rate of the world´s aging population, 

there is a clear need for a better understanding of the biological aging process 

and the determinants of healthy aging (Jylhava et al., 2017). Towards this aim, 

several DNA methylation-based predictors of aging have been developed  

(Bocklandt et al., 2011; Hannum et al., 2013; Horvath, 2013; Weidner et al., 

2014). Among these, a composite predictor comprised of 353 Cytosine-
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phosphate-Guanosine sites (CpGs) across the genome (‘epigenetic clock’) was 

shown to strongly correlate with chronological age across multiple tissues 

(r=0.96) in humans (Horvath, 2013) with a small mean deviation from calendar 

age (3.6 years), suggesting its usefulness as a biomarker in aging-related research 

(Zannas et al., 2015). The algorithm behind the DNA methylation age calculation 

uses a penalized regression model to predict the CpG sites and has been 

developed in 8000 samples, covering the entire adult life span and different 

ethnic populations.  

Accelerated epigenetic aging (Δ-age) calculated using this predictor, defined as 

the difference between DNA methylation-predicted age (DNAmAge) and 

chronological age, has been associated with aging-related diseases and other 

phenotypes, including cancer, obesity, cytomegalovirus infection, Down’s 

syndrome, PTSD, physical and cognitive decline, all-cause mortality, the presence 

of higher self-control, lower socioeconomic status, and lifetime stress (Horvath, 

2013; Horvath et al., 2014; Boks et al., 2015; Kananen et al., 2015; Marioni et al., 

2015b; Marioni et al., 2015a; Miller et al., 2015; Zannas et al., 2015). The 

correlation with all-cause mortality was confirmed in a study that included 13 

cohorts for a total of 13,098 individuals from three ethnic groups (Chen et al., 

2016). Moreover, epigenetic estimates that incorporated information on blood 

cell composition led to the smallest p-values for time to death (p=7.5 x 10-43). The 

latter study could strengthen the evidence that epigenetic age predicts all-cause 

mortality above and beyond chronological age and traditional risk factors.  This 

suggests that the epigenetic age of blood tissue is one of the mediating 

processes of chronological age on mortality and that this is independent of age-

dependent changes in blood cell composition.  
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2. Aims  
 

Exploring DNA methylation might give us an integrated view of both 

environmental and genetic risk factors. While epigenetic changes including DNA 

methylation are mainly tissue specific, some sites show cross tissue relevance 

(Farre et al., 2015; Hannon et al., 2015) and furthermore changes in peripheral 

tissues such as blood could serve as potential biomarker for disease risk. 

To date, a few studies have investigated differences in DNA methylation in 

candidate genes in PD (Bayles et al., 2013; Domschke et al., 2013; Prelog et al., 

2016; Ziegler et al., 2016), but genome-wide analysis of the peripheral blood 

methylome of PD patients as compared to controls are currently lacking.  To 

perform such a study in two independent samples of patients with PD vs control 

was the aim of the study. To reduce confounding due to effects of drug 

treatment, both patients and controls were free of psychotropic medication. 

Given that both the prevalence of PD as well as DNA methylation pattern show 

large sex differences (Yousefi et al., 2015), a sex-stratified analysis was 

undertaken and complemented by a meta-analysis.  

Previous studies report that hits identified in genome-wide association studies 

(GWAS) show changes in DNA methylation in peripheral blood, e.g. in 

schizophrenia (Montano et al., 2016) or bipolar disorder (Houtepen et al., 2016).  

For this reason, in addition to an unbiased approach, I also investigated DNA 

methylation changes in candidate genes that have emerged from genome-wide 

genetic studies either in humans or animals (Erhardt et al., 2011; Knoll et al., 

2016; Nieto et al., 2016). 

 

Panic disorder is known to be a strong stressor and psychological stress is an 

important risk factor for accelerated aging and aging-related diseases. PD has a 

high comorbidity rate with other psychiatric disorders like agoraphobia and 

depression, and with other medical conditions e.g. cardiovascular disorders, 

asthma, epilepsy (American Psychiatric Association, 2013). Agoraphobia 

constitutes a stronger stressor for patients with PD, therefore PD patients with 
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comorbid agoraphobia are classified as more severely ill compared to PD 

patients without (American Psychiatric Association, 2013).   

It has been proven that aging and aging-related diseases are associated with 

changes in DNA methylation (Bjornsson et al., 2008; Christensen et al., 2009; 

Rakyan et al., 2010; Hernandez et al., 2011; Heyn et al., 2012; Horvath, 2013), 

and was therefore used so far as a useful biomarker of aging-related research. 

Previous studies show indeed a correlation of DNA methylation age with 

morbidity and mortality (Horvath et al., 2015; Marioni et al., 2015b; Chen et al., 

2016; Christiansen et al., 2016).  

Given these previous findings, I wanted to investigate whether age acceleration 

is occurring in PD patients and if there is a difference among PD patients with 

agoraphobia and PD patients without. To answer these questions, I calculated 

epigenetic aging (∆-age) using the Horvath DNA methylation-based predictor 

(Horvath, 2013). 
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3. Materials and Methods 

 Samples and Study Design 

 MPIP Panic Cohort I and II 

PD patients included in the MPIP panic cohort I and II were recruited in the 

anxiety disorders outpatient unit at the Max Planck Institute of Psychiatry (MPIP) 

in Munich (Erhardt et al., 2011). PD was the primary diagnosis; mild secondary 

depression was allowed (Table 3). The diagnosis was ascertained by trained 

psychiatrists according to the Diagnostic and Statistical Manual of Mental 

Disorders DSM-IV criteria. All patients underwent the Structured Clinical 

Interviews for DSM-IV (SCID I and II). PD due to a medical or neurological 

condition or the presence of a comorbid Axis II disorder was an exclusion 

criterion. All patients included in the current analyses were not taking any 

psychotropic medications for at least 4 weeks before the blood draw and 

underwent a thorough medical examination including EEG, ECG and detailed 

hormone laboratory assessment. 

Control subjects were recruited from a Munich-based community sample and 

screened for the absence of axis I psychiatric disorders using the Munich version 

of the Composite International Diagnostic Interview (M-CIDI) (Wittchen, 1997). 

Controls were age- and sex-matched with patients.  

All subjects were Caucasian and provided written informed consent. The Ethics 

Committee of the Ludwig Maximilians University, Munich, Germany, in 

accordance with the Declaration of Helsinki approved all procedures.  

 

 MPIP Dexamethasone Treatment Study 

Glucocorticoid-induced methylation and gene expression changes were 

examined in an independent sample of 71 Caucasian female subjects (29 healthy 

probands and 42 depressed) recruited at the MPIP. Recruitment strategies and 

characterization of participants have been previously described (Arloth et al., 

2015). Baseline whole blood samples were obtained at 6 p.m. after 2 hours of 
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fasting and abstention from coffee and physical activity (baseline). Subjects then 

received 1.5 mg oral dexamethasone (DEX) and a second blood draw was 

performed at 9 p.m. three hours after DEX ingestion (post-DEX). The study was 

approved by the local ethics committee and all individuals gave written informed 

consent. 

 

 

Table 3. Characteristics of the participants included in the study 

Variable Controls Cases Total 

MPIP Panic Cohort I     

Participants, N (%) 76 (46%) 89 (54%) 165 

Male , N (%) 28 (17%) 40 (24%) 68 (41%) 

Female, N (%) 48 (29%) 49 (30%) 97 (59%) 

Age, years (SD) 37 (7.5) 36 (10.4)  

Diagnosis None PDA 72% 
PD 28% 

Comorbidity:
MDD 13.5% 

 

MPIP Panic Cohort II     

Participants, N (%) 169 (56%) 131 (44%) 300 

Male , N (%) 48 (16%) 48 (16%) 96 (32%) 

Female, N (%) 121 (40%) 83 (28%) 204 (68%) 

Age, years (SD) 38 (7.2) 38 (11.6)  

Diagnosis None PDA 61% 
PD 39% 

Comorbidity:
MDD 13% 

 

MPIP 
Dexamethasone 
Treatment Study 

   

Participants, N (%) 29 (41%) 42 (59%) 71 

Male , N (%) 0 0 0 

Female, N (%) 29  42 71 

Age, years (SD) 44 (11.4) 44 (13.7)  

Diagnosis None MDD  
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 Methylation Data 

 MPIP Panic Cohort I and II 

Genomic DNA was extracted from peripheral blood using the Gentra Puregene 

Blood Kit (Qiagen). DNA quality and quantity was assessed using NanoDrop 2000 

Spectrophotometer (Thermo Scientific) and Quant-iT Picogreen (Invitrogen). To 

minimize batch effects, samples were randomized with respect to case-control 

status, sex and age. 

Genomic DNA was bisulfite converted using the Zymo EZ-96 DNA Methylation Kit 

(Zymo Research) and DNA methylation levels were assessed for >480,000 CpG 

sites using the Illumina HumanMethylation450 BeadChip array. Hybridization and 

processing were performed according to the instructions of the manufacturer.  

 

 MPIP Dexamethasone Treatment Study 

Genomic DNA was extracted from whole blood using the Gentra Puregene Blood 

Kit (QIAGEN) and processed as for the MPIP Panic cohorts. DNA methylation 

levels were assessed for >480,000 CpG sites using the Illumina 

HumanMethylation450 BeadChip arrays.  

 

 Quality Control of Methylation Data 

 General 

The Bioconductor R package minfi (version 1.10.2) was used for the quality 

control of methylation data including intensity read outs, normalization, cell-type 

composition estimation, β- and M-value calculation. Outliers, i.e. samples whose 

behaviour deviated from that of others, were excluded from the analysis as well 

as samples with a discordant methylation-predicted vs reported sex 

(Supplementary Table S21). 

Failed probes were excluded based on a detection p-value larger than 0.01 in 

>50% of the samples. X chromosome, Y chromosome, and non-specific binding 

probes were removed (Chen et al., 2013). I also excluded probes if single 
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nucleotide polymorphisms (SNPs) were documented in the interval for which the 

Illumina probe is designed to hybridize. Probes located close (10 bp from query 

site) to a SNP, which had a minor allele frequency of ≥0.05, as reported in the 

1000 Genomes Project, were also removed. This yielded a total of around 

425,000 CpG sites in the discovery and replication sample for further analysis.  

The data were then normalized with functional normalization (FunNorm)(Fortin 

et al., 2014), an extension of quantile normalization included in the R package 

minfi. Batch effects were identified by inspecting the association of principal 

components of the methylation levels with possible technical batches using 

linear regressions and visual inspection of PCA plots using the Bioconductor R 

package shinyMethyl (version 0.99.3). Identified batch effects (i.e. bisulfite 

conversion plate and plate position) were removed using the Empirical Bayes' 

(EB) method ComBat (Johnson et al., 2007). Batch corrected M-values after 

ComBat were used for all further statistical analyses. 

 

 Biological and Non-Biological Confounders 

There is a number of other additional factors that influence data analysis which 

are not related to the scientific question that I want to answer, but rather due to 

the methodology itself, that introduces unwanted variability to the data. These 

additional factors, defined as confounders, can be classified in two main 

categories: 

1) Biological (or non-technical) confounders 

2) Non-biological (or technical) confounders 

 

 Biological Confounders 

Biological confounders include: 

1. Cell subtype proportional heterogeneity (Houseman) 

There is a potential for cell subtype proportional heterogeneity to 

influence the DNA methylation patterns observed in pools of cells. This 

was highlighted by Houseman and colleagues in a study showing that 
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altering the proportions of purified cells in a mixture generates different 

DNA methylation profiles, reflecting the distinctive DNA methylation 

patterns of each cell type present (Houseman et al., 2012). It was 

subsequently shown that cell subtype effects accounted for a major 

proportion of the epigenetic changes associated with ageing in a re-

analysis of five studies of peripheral blood leukocytes (Jaffe and Irizarry, 

2014). These findings of the influence of cell subtype heterogeneity 

prompted the development of new analytical approaches to account for 

this effect (Houseman et al., 2012; Houseman et al., 2014). Even when 

cells are “purified” using cell surface markers, (Wijetunga et al., 2014) 

found evidence for further cell subtypes with distinctive DNA methylation 

patterns. It is, therefore, likely that even when using purification 

techniques, a pool of cells is composed of multiple epigenomes, 

generating what can be defined as “meta-epigenome” (Wijetunga et al., 

2014). 

2. Age, sex and race  

In our study design and during the selection process of the samples to be 

included in the study, I already took into account that there is a sex-bias 

in the incidence of the disease (occurring panic disorder twice more often 

in females compared to males) and a difference in terms of age. I also 

considered that usually the distribution of age and sex is different in 

patients compared to healthy controls, that is why I matched cases and 

controls according to age and sex. I applied the same principle also when 

performing the experiments, and designed it in order to have the same 

ratio of males/females and a balanced age distribution across the 

methylation chips. 

 

For all these reasons, age, sex and Houseman-calculated cell count were always 

included as covariates in the regression models. As showed in the MDS plots 

(Supplementary Figure 1-2), all the individuals included in the study are 

Caucasians and there was no indication to include the PCs for ethnicity as 

covariates.   
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 Non-Biological Confounders  

„Batch effects“ are non-biological experimental variations commonly observed 

between multiple groups of samples (batches) in high-throughput experiments, 

e.g. microarray experiments, that can „confound“ the results by adding variation 

to the data, thus decreasing the statistical power to detect biological 

phenomena. For example, batch effects may occur if a subset of experiments 

was run on Monday and another set on Tuesday, if two technicians were 

responsible for different subsets of the experiments, or if two different lots of 

reagents, chips or instruments were used. 

Batch effects can be reduced through data normalization and through a good 

experimental design, i.e. the study groups have to be equally represented 

throughout the experiment (in this case in the different chips used). However 

still high levels of systematic heterogeneity in the data often remains and it can 

obscure biological phenomena under study; for this reason, it is necessary to 

correct the data for batch effects.  

There are two main ways to correct for batch effects: (1) directly removing 

known batch effects using ComBat and (2) identifying and estimating surrogate 

variables for unknown sources of variation in high-throughput experiments (Leek 

et al., 2010).  

 

 Batch Correction 

 ComBat 

ComBat uses an empirical Bayes approach to estimate and to remove batch 

effects and it also avoids over-correcting, which is critical for the use with small 

batches. Location and scale parameters, representing mean and variance, are 

estimated for each batch and each gene independently and combined with 

empirical Bayes to remove batch effects (Johnson et al., 2007). ComBat has been 

successfully applied to several datasets (Walker et al., 2008; Chen et al., 2011; 

Luo et al., 2012; Chmielewski et al., 2014), and using a single reference sample 

for each batch, its usefulness has been demonstrated for cross-sectional data 
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(Walker et al., 2008). This method assumes that the batches are known (Muller 

et al., 2016). 

 Surrogate Variable Analysis (SVA) 

In addition to the measured variable(s) of interest, there will tend to be sources 

of signal due to factors that are unknown, unmeasured, or too complicated to 

capture through simple models and this is true even for well-designed, 

randomized studies (Leek and Storey, 2007). 

Surrogate variables are covariates constructed directly from high-dimensional 

data (like gene expression/RNA sequencing/methylation/brain imaging data) that 

can be used in subsequent analyses to overcome these problems by adjusting for 

unknown, unmodeled, or latent sources of noise (Jaffe et al., 2015). 

Defining a precise biological question is a crucial step for genomics investigation 

in general, and for this type of analysis in particular. In performing SVA, effects 

specified in the model will be preserved while systematic heterogeneity is 

identified and subsequently adjusted for in subsequent statistical analysis. If our 

biological question is for example whether there is a difference between cases 

and controls, we can “protect for” case-control status and correct for the 

remaining variance. This approach has previously been shown to result in more 

accurate and stable gene rankings, improved false discovery estimation and 

correct p-value distributions (Leek and Storey, 2007, 2008; Leek et al., 2010).  

 

 Expression Data 

 MPIP Dexamethasone Treatment Study 

Whole blood RNA was collected using PAXgene Blood RNA Tubes (PreAnalytiX), 

processed as described previously (Arloth et al., 2015). Blood RNA was hybridized 

to Illumina HumanHT-12 v3 and v4 Expression BeadChips arrays. All gene 

expression array probes have been subjected to an extensive quality control 

including filtering by low p-detection value, variance stabilization and 

normalization (VSN) (Lin et al., 2008) as previously described in (Zannas et al., 

2015). Cellular composition was estimated by using CellCode (Chikina et al., 
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2015).  

 Statistical Analysis 

 MPIP Panic Cohort I and II 

 Epigenome-Wide Association Study 

Linear regression models were fit for each probe to test for a case vs control 

difference within the R package MatrixEQTL (version 2.1.1) (Shabalin, 2012). Sex, 

age and imputed white blood cell distribution from the Houseman projection 

(Houseman et al., 2012) were included as covariates. Population stratification 

was investigated using multidimensional scaling and could not be observed 

(Supplementary Figure 1-2). Significance after multiple testing was adjusted 

using false discovery rate (FDR) of 5%. As a first step all the samples of every 

cohort (Table 3) were analysed together but, given the higher prevalence of PD 

in females, I also performed a sex-stratified analysis, first in the MPIP Panic 

Cohort I and then in the MPIP Panic Cohort II. A fixed-effect meta-analysis across 

both samples was performed following identification of hits in the individual 

analyses. 

 

 Targeted Gene Analysis 

High number of studies showed mostly single SNP associations in different genes 

with PD, however, the replicability of these findings was low. Therefore, I used 

three lines of approaches to select candidate genes for the targeted methylome 

analysis:  

1) candidate genes from human genetic studies confirmed in the recent 

meta-analysis study of different international PD cohorts (TMEM132D, 

COMT, NPSR1 and HTR2A) (Howe et al., 2016), 

2) and/or having additional evidence from translational studies for anxiety 

and stress-related phenotypes (CRH, CRHR1, ADCYAP1, ADCYAP1R1, 

FKBP5, SGK1, BDNF, HTR1A) (Blaya et al., 2010; Ressler et al., 2011; 
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Konishi et al., 2014; Straube et al., 2014; Han et al., 2015; Cattaneo and 

Riva, 2016; Weber et al., 2016; Zannas et al., 2016) and lastly, 

3) genes containing loci with previous evidence for differential methylation 

in PD and anxiety disorders (GAD1, OXTR) (Domschke et al., 2013; Ziegler 

et al., 2015).  

All the genes examined (N=15) showed previous evidence of association with 

stress-related phenotypes not only in clinical (human) studies but also in 

preclinical (animal) studies (Leonard et al., 2008; Benekareddy et al., 2011; 

Erhardt et al., 2011; Desbonnet et al., 2012; Mustafa et al., 2015; Bahi et al., 

2016; Knoll et al., 2016; Nieto et al., 2016). 

The CpGs lying within the target genes were selected from the meta-analysis 

results of the EWAS and FDR correction of 5% was applied for the number of 

CpGs included in the gene.  

 

 Disease Association Analysis  

To investigate a possible enrichment for specific pathways, I conducted a disease 

association analysis using Web Gestalt (Zhang et al., 2005; Wang et al., 2013), 

DAVID (Huang da et al., 2009a, b) and the R-package DOSE (Yu et al., 2015). 

Tested genes for a disease enrichment were annotated from CpG sites with P-

value < 0.001 in the meta-analysis results of the cases vs controls EWAS in the 

whole sample (Ngenes=312), in the female subset (Ngenes=428) and in the male 

subset (Ngenes=379). The analysis was background corrected for the Illumina 

HumanMethylation450 BeadChip array annotated genes. 

 

 DNA Methylation Age Calculation 

DNA methylation age was calculated from peripheral blood of patients and 

controls included in the MPIP Panic Cohort I (N=165) and II (N=300). DNA 

methylation-based age prediction was performed using the R code and statistical 

pipeline developed by Horvath (Horvath, 2013). This predictor was developed 

using 82 Illumina DNA methylation array datasets (n = 7,844) involving 51 healthy 

tissues and cell types (Horvath, 2013). The raw data were normalized using BMIQ 
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normalization method (Teschendorff et al., 2013) implemented in the Horvath 

DNA methylation-based age predictor R script (Horvath, 2013). I then tested 

whether epigenetic age acceleration (∆-Age), calculated by subtracting the actual 

chronological age from DNA methylation age (Horvath, 2013), was associated 

with 1) case-control status; 2) the presence/absence of agoraphobia in PD 

patients. Since DNA methylation age is calculated from raw beta values, technical 

batches identified for MPIP Panic Cohort I and II (96-well plate) were included as 

covariates in the linear regression model together with age, sex and cell counts 

(Houseman and Horvath cell counts, specifically: PlasmaBlast, 

CD8pCD28nCD45Ran, CD8.naive,  CD4T,  NK,  Mono, Gran).  

 

 MPIP Dexamethasone Treatment Study 

Methylation levels of cg07308824 were tested for association with gene 

expression levels of the HECA mRNA (ILMN_1770667) using a linear mixed 

effects model within the lme4 package (Bates et al., 2015). 
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4. Results 

 Identification of Hidden Confounders 

MPIP Panic Cohort I (as well as MPIP Panic Cohort II) went through the quality 

control (QC) steps described in the Materials and Methods section. This QC 

pipeline has been used successfully previously (Zannas et al., 2015; Emeny et al., 

2017), I was therefore expecting to see similar results as previous studies. 

Surprisingly, the result of our first analysis in the MPIP Panic Cohort I showed a 

high inflation of test statistic (Figure 6).  

 

 

Figure 6. QQ-plot of the first case-control EWAS in the MPIP Panic Cohort I. 
Expected vs Observed –log10(p) of the results  for the case-control comparison 
(linear model, N=187). Lambda indicates the genomic inflation factor and it is 
defined as the ratio of the median of the empirically observed distribution of the 
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test statistic to the expected median (thus quantifying the extent of the bulk 
inflation and the excess false positive rate). 
 

Considering the small sample size (N=187), this result was clearly not due to a 

real case-control difference, but rather to hidden confounders which were still 

there even after batch correction. To exclude that a technical problem occurred 

during the experiment, I performed the same case-control analysis in the other 

samples (N=609, 399 MDD patients, 210 controls) that were processed together, 

in the same batch, with the MPIP Panic Cohort I. The results in this case were not 

significant and the QQ-plot showed no inflation (Figure 7). This confirmed that 

the inflation present in the MPIP Panic Cohort I was not due to a technical 

problem, but rather to unknown confounders. 

To investigate the possible sources of variability in the data, I used the Surrogate 

Variable Analysis (SVA) (Leek and Storey, 2007) approach, which has the aim of 

detecting hidden variability in a given dataset while protecting for the phenotype 

of interest. I therefore calculated the surrogate variables (SVs) protecting for the 

case-control status; I then checked for the correlation with our known batches 

(Supplementary Figure 3) and corrected including them in the regression model 

(Figure 8). None of the tested models with the SVs included performed much 

better than the initial model batch corrected using Combat.  

I then tested whether the model that I were using, the linear model (which is the 

model of election for methylation analysis due to the distribution of the data), 

was not the appropriate one, and applied a logistic regression (glm, 

family=binomial). The latter is in general useful in predicting a binary outcome 

from a set of continuous predictor variables, but it did not perform better than 

the linear model in our analysis (Figure 9).  
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Figure 7. QQ-plot of the case-control EWAS results in the MDD cohort (N=609). 
Linear model of the case-control analysis. 
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Figure 8. QQ-plot of the first case-control EWAS in the MPIP Panic Cohort I with 
SVs included in the model. 
Linear model with the first five surrogate variables included as covariates. 
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Figure 9. QQ-plot of the first case-control EWAS in the MPIP Panic Cohort I with 
glm applied and SVs included in the model. 
Logistic regression with the first five surrogate variables included as covariates. 
 

 

For this reason, I went deeper into the phenotypic characterization and went 

back to the laboratory to get more information about the samples, e.g. DNA 

extraction method, storage information, collection date. I then performed again 

the analysis considering the additional information. Strikingly, I realized that the 

processed samples were stored differently: only a few DNA samples (N=21) 

included in the MPIP Panic Cohort I, all (except one) controls, were stored at -

20°C while the rest of the samples was stored at 4°C. I hypothesized that this 

could be the factor possibly introducing a strong bias in the case-control analysis. 

However, it was a confounder I could not detect when correlating the principal 
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components with the known batches, even after including the storage 

information (Figure 10). The principal component analysis (PCA) did not reveal 

any cluster neither considering all the samples that were processed together 

(MPIP Panic Cohort I-MDD, Figure 11) nor analysing the MPIP Panic Cohort I 

alone (Figure 12). I therefore considered these samples as biological outliers and 

excluded them from the analysis. The resulting QQ-plot, after repeating the 

analysis without the outlier samples, does not show an inflation anymore (Figure 

13), proving that the different storage conditions might have been the hidden 

confounder I was looking for. 

 

 

 
Figure 10. Correlation plot for the MPIP Panic Cohort I-MDD data (N=699) after 
normalization, before batch correction.  
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Figure 11. Principal Component Analysis in the MPIP Panic Cohort I-MDD data 
(N=699) before (left) and after (right) batch correction for the Storage variable 
(1= extracted DNA stored at -20 °C, 2= extracted DNA stored at 4 °C). 

 

 

 

 

 

  

 

 

 

 

 

Figure 12. Principal Component Analysis in the MPIP Panic Cohort I (N=187) 
before (left) and after (right) batch correction for the Storage variable (1= 
extracted DNA stored at 4 °C, 2= extracted DNA stored at -20 °C). 
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Figure 13. QQ-plot of the case-control EWAS in the MPIP Panic Cohort I without 
the outlier samples. 

 

 

 Epigenome-Wide Association Study (EWAS) 

Genome-wide associations were performed in the MPIP Panic Cohort I (discovery 

sample), combined as well as stratified by sex. While no association survived 

correction for multiple testing in the overall samples and the male subset, one 

genome-wide association, cg07308824, surviving FDR of 5% (p= 1.094 x 10-7, p-

adj=0.046) was observed in the female subset of the MPIP Panic Cohort I 

(discovery sample). QQ plots for each of the analyses are presented in Figure 13 

and Supplementary Figures 4-8. cg07308824 is located in the promoter of the 

HECA gene and was hypermethylated in female PD patients (N=49) compared to 
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controls (N=48). The association and the direction of the association could be 

replicated in the MPIP Panic Cohort II (replication sample, p=0.035) and yielded a 

combined p-value of 1.651 x 10-8 in the meta-analysis, that would again survive 

correction for multiple testing (p-adj=0.004) (Figure 14-15). 

 

 

 

 

 

 

 

 

 

Figure 14. Manhattan plot of the Panic Disorder EWAS in females (meta-
analysis results). The x-axis shows chromosomal position and the y-axis shows 
−log10(P). The red line represents the multiple test threshold (p < 1.09 × 10−7).  

 

 
 

 
 
Figure 15. Box plot of DNA methylation levels for the genome-wide significant 
CpG, in the MPIP Panic Cohort I (discovery, p-adj= 0.046) and MPIP Panic Cohort 
II (replication, p=0.035). 
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 Targeted Gene Analysis 

The targeted gene analysis (see Supplementary Table 1-15 for the complete list 

of genes tested) using the meta-analysis results, yielded in females one 

significant CpG each (surviving 5% FDR correction over the CpGs in the gene) in 

ADCYAP1 (PACAP) (p-adj=0.010) and HTR1A (p-adj=0.041) (Figure 16). The same 

analysis yielded one significant CpG in SGK1 (p-adj=0.035) (Figure 17) in the 

whole sample and in males in FHIT (p-adj=0.010) and two significant CpGs in 

HTR2A (p-adj=0.015 and p-adj=0.029) (Figure 18) (Table 4). Single nominal 

associations have been found in the genes ADCY1P1R1, BDNF, COMT, CRH, 

CRHR1, GAD1, OXTR and TMEM132D.  No differential methylation was detected 

for NPSR1 between cases and controls. 

 

 

Table 4. Targeted gene analysis results for the significant CpGs  

 

Sample Gene CpG P-adj  
Meta-analysis 

Whole  SGK1 cg00959636 0.035 

Males 

FHIT cg07351758 0.010 

HTR2A 
cg09361691 0.015 

cg06476131 0.029 

Females 
ADCYAP1 (PACAP) cg13940693 0.010 

HTR1A cg16280141 0.041 
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Figure 16. Box plots of DNA methylation levels for the significant CpGs in the 
gene-targeted analysis in the MPIP Panic Cohort I (discovery) and MPIP Panic 
Cohort II (replication) in females.  
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Figure 17. Box plots of DNA methylation levels for the significant CpGs in the 
gene-targeted analysis in the MPIP Panic Cohort I (discovery) and MPIP Panic 
Cohort II (replication) in the whole sample.  
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Figure 18. Box plots of DNA methylation levels for the significant CpGs in the 
gene-targeted analysis in the MPIP Panic Cohort I (discovery) and MPIP Panic 
Cohort II (replication) in males.  

 

 Functional Characterization of Significant Results 

To assess the functionality of the significant CpG methylation site, association of 

methylation levels with gene expression of the HECA mRNA was tested. 

Methylation at this CpG site was associated with mRNA expression of HECA 

(ILMN_1770667) both at baseline (p=0.046) and after induction by 

dexamethasone (p=0.029) (Figure 19). Gene expression was significantly altered 

in the sample following dexamethasone induction (p=8.78e-05) but not DNA 

methylation (p=0.796) (Figure 20), indicating that the significant association 

between gene expression and DNA methylation is specific and not due to 

dexamethasone.  
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Figure 19. Functional characterization of significant results.  
Scatterplot showing the association between DNA methylation (x-axis, beta 
values) and gene-expression (y-axis, VSN normalized array probe intensity) in an 
independent female sample at baseline (p=0.046) and after induction by 
dexamethasone (p=0.029). 
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Figure 20. Box plot of DNA methylation and gene expression levels in the MPIP 
dexamethasone treatment study. 
DNA methylation levels on the left (p=0.796) and gene expression levels on the 
right (p=8.78e-05) at baseline and after dexamethasone induction in the MPIP 
dexamethasone treatment study. 
 

 

 Functional Annotation of the HECA Locus 

I further investigated the functional relevance of cg07308824 in the UCSC 

Genome Browser (Kent et al., 2002), located in the intragenic and enhancer 

region of the Homo sapiens headcase homolog (Drosophila) (HECA) gene on 

Chromosome 6 (Figure 21). An overlap was observed between the location of 

cg07308824 probe and histone 3 lysine 27 acetylation (H3K27Ac) on 7 cell lines 

from ENCODE (Rosenbloom et al., 2013), suggesting that the sequence where 

the probe is located is functional (Creyghton et al., 2010). 
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Figure 21. Annotation of the genome-wide significant CpG located in the HECA 
gene. The top panel contains the HECA gene model, located on Chr 6. The other 
two panels show the genome-wide significant CpG and the CpG island where the 
CpG is located. The bottom panel shows the levels of enrichment of the H3K27Ac 
mark in the HECA gene. Data were obtained from UCSC Genome Browser and 
plotted using the R package Gviz (Hahne and Ivanek, 2016). 
 

 

 Disease Association Analysis  

After the characterization of the genome-wide significant hit, I also wanted to 

investigate whether genes annotated to the top CpGs (p-value < 0.001) were 

enriched for specific diseases, especially psychiatric disorder. For this purpose I 

ran a disease association analysis using two web tools (Web Gestalt and DAVID) 

(Zhang et al., 2005; Huang da et al., 2009a; Wang et al., 2015) and the R-package 

DOSE (Yu et al., 2015). As for the previous analysis, I first analysed the whole 

sample of the MPIP Panic Cohort I and MPIP Panic Cohort II and then I stratified 

by sex.  

Looking broadly at the enrichment found for all the diseases in all the tools used, 

there was no disease that was enriched in all the three tools (Table 5). 

Looking more closely at disease enrichment with a focus on psychiatric disorder, 

an enrichment could be found in the whole sample (bipolar disorder, p=1.9e-2; 

mental disorders, p=2.5e-2) and in females (response to antipsychotic treatment, 

p=5.3e-2; ADHD, p=9.5e-2) using DAVID (Huang da et al., 2009a, b) (Table 6). 
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Table 5. Disease association analysis (General overlap) 
The table shows disease association results overlapping between the different 
pathway analysis tools used. Genes included in the analysis were annotated from 
CpGs with P < 0.001 in the meta-analysis results of the cases vs controls EWAS. 

 

 

Table 6. Disease association analysis (Psychiatric disorders) 
The table shows disease association results for psychiatric disorders. Genes 
included in the analysis were annotated from CpGs with P < 0.001 in the meta-
analysis results of the cases vs controls EWAS. 

 

 

 Blood-Brain Correlation of the HECA Locus 

No significant correlations were found between cg07308824 methylation levels 

and four different brain regions (i.e. prefrontal cortex, superior temporal gyrus, 

Pathway tool Whole sample Males Females 

Disease 
association 
overlapping 
between tools 

Germ Cell and 
Embryonal 
Neoplasm, 
Amyotrophic 
Lateral Sclerosis, 
Mental Disorders 

Type 2 Diabetes, 
Carcinoma 

Muscular 
Disease 

Web Gestalt - p=0.12 
 

p=0.001 

DAVID p=2.2e-2,  p=3.6e-
2,  p=2.5e-2 

p=2.8e-2, p=7.6e-2 
 

- 

DOSE (R-package) p=0.150,  p=0.07,  
p=0.154 

- p=0.121 

Pathway tool Whole sample Males Females 

Disease 
association with 
psychiatric 
disorders 

Bipolar disorder, 
Mental Disorders  

 Response to 
antipsychotic 

treatment, ADHD  

Web Gestalt - - - 

DAVID p=1.9e-2, p=2.5e-2 -   p=5.3e-2,  
P=9.5e-2 

DOSE (R-package) - - - 
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entorhinal cortex and cerebellum) in a linear regression model (Hannon et al., 

2015) (Supplementary Figure 6). 

 

 DNA Methylation Age and Agoraphobia 

Psychological stress is an important risk factor for accelerated aging and aging-

related diseases, including cardiovascular disease, immune dysregulation, and 

late-life neuropsychiatric disorders. Stress-related psychiatric disorders, including 

anxiety, PTSD and major depression, are themselves a risk for such diseases 

(Danese et al., 2008; Vaccarino et al., 2013; Meneghetti et al., 2017). The 

molecular mechanisms that link psychological stress with accelerated aging and 

aging-related diseases remain largely unknown. It has already been reported that 

stressors can induce lasting changes in DNA methylation (Weaver et al., 2004; 

Klengel et al., 2013), therefore one plausible mechanism that can act as a 

mediator in this process is epigenetic regulation through DNA methylation.  

PD is a strong stressor for the people affected and so far no studies have been 

carried out to determine whether patients affected by PD also develop age 

acceleration.  I was interested in investigating whether age acceleration was 

present in PD patients compared to controls, and whether age acceleration could 

be detected in the most severe patients, specifically the ones affected by panic 

disorder with agoraphobia.  

I first compared the ∆-age in PD patients with healthy controls in the whole MPIP 

Panic Cohort I (N=165, p=0.980) and II (N=300, p=0.282) and found no significant 

differences. I then stratified for sex and found no significant results in males 

(MPIP Panic Cohort I: N=68, p=0.835; MPIP Panic Cohort II: N=95, p=0.467) as 

well as in females (MPIP Panic Cohort I: N=97, p=0.964; MPIP Panic Cohort II: 

N=204, p=0.402) (Figure 22-23). 
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Figure 22. Violin plots of ∆-age by control-case status in the MPIP Panic Cohort I 
sample (from the left: whole sample, males only, and females only). 
 

 

 

 

 

Figure 23. Violin plots of ∆-age by control-case status in the MPIP Panic Cohort 
II sample (from the left: whole sample, males only, and females only). 
 

 

Because it is known that the symptoms of panic disorder are stronger in 

presence of agoraphobia (American Psychiatric Association, 2013), I 

hypothesized that epigenetic age acceleration (∆-age) would be positively 

associated with patients with agoraphobia and not in patients without. I then 

therefore restricted the analysis to patients only. 

I performed a first analysis in each dataset (MPIP Panic Cohort I and II) overall 

and then stratified by sex. I could confirm our hypothesis in the MPIP Panic 

Cohort II, where the ∆-age was positively associated with agoraphobia in the 
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whole dataset (N=131, p=0.016) and the association was stronger if females 

were analysed separately (N=83, p=0.005). Results were not significant in males. 

No association between ∆-age and agoraphobia was detected in the MPIP Panic 

Cohort I (Figure 24-25). 

 

 

 

 

 

Figure 24. Violin plots of ∆-age by agoraphobia status in the MPIP Panic Cohort 
I sample (from the left: whole sample, males only, and females only). 

 

 

 
 
Figure 25. Violin plots of ∆-age by agoraphobia status in the MPIP Panic Cohort 
II sample (from the left: whole sample, males only, and females only). 
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5. Discussion 

Panic disorder is a multifactorial disorder where both genetic and environmental 

factors contribute to its onset. Susceptibility genes for PD have been reported by 

previous genetic studies (Erhardt et al., 2011; Erhardt et al., 2012) (Howe et al., 

2016) (Weber et al., 2016) (Gottschalk and Domschke, 2016), but the mechanism 

involved in the pathogenesis of PD still remains to be clarified. Epigenetics is 

considered to be a mediator of environmental stressors on the genome, DNA 

methylation in particular. In this study I investigated whether DNA methylation is 

involved in panic disorder analysing blood samples of medication-free patients 

and healthy controls. Our results suggest that sex-specific DNA methylation 

changes are occurring in panic disorder patients and not in healthy controls and 

that epigenetic age is accelerated in PD patients with agoraphobia compared to 

PD patients without. This is, to our knowledge, the first study of this kind on PD 

in the European population. 

 

 Hidden Confounders 

Our results on the MPIP Panic Cohort I show the crucial importance of a good 

randomization process and a good experimental design. Even if our study was 

accurately randomized with cases and controls matched for age and sex, and 

distributed accordingly in different plates and slides, there were other variables, 

i.e. DNA storage, that introduced a considerable bias in our first analysis. 

Therefore, this demonstrates that the more information can be taken into 

consideration about the samples, the less will be the confounders in the analysis 

of the generated data. Crucial would be to take into account all the possible 

confounders already in the pre-experimental phase, so that batch effects can be 

avoided already in the laboratory. It is indeed known that if strong batch effects 

are present, it is not possible to disentangle the confounder from the 

experimental question under study (e.g. in a case-control study, if cases are 

separated in different slides from controls), so it is impossible in that case to get 
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rid of the batch effect.  Therefore, the experiment has to be repeated with well-

randomized samples for it to be analysable. 

In my analysis, I was probably not able to eliminate the hidden confounders with 

the surrogate variable analysis (SVA) because I was protecting for the case-

control status and only one out of 21 samples stored at -20°C was a control while 

the others were cases. 

I also could not see these outliers in the principal component analysis (PCA) of all 

the samples processed together (MPIP Panic Cohort I-MDD), because the 

difference in the storage treatment was randomly distributed between cases and 

controls (Figure 11). Surprisingly, a cluster was not present even when the PCA 

was performed on the MPIP Panic Cohort I only (Figure 12). 

 

 EWAS 

Genome-wide association of whole blood DNA methylation with PD cases and 

matched controls identified a locus (cg07308824), which was hypermethylated in 

female PD patients compared to healthy controls. This locus was also associated 

with case-control status in females in another independent sample and results 

were further confirmed with a meta-analysis (N=301). No methylation 

differences were identified at genome-wide level in the whole sample. This is the 

first and biggest EWAS for PD in a population with European background. 

The methylation locus that I identified in females is located in the intragenic and 

enhancer region (Kent et al., 2002) of the Homo sapiens headcase homolog 

(Drosophila) (HECA) gene on Chromosome 6. The HECA gene is a cell cycle 

regulator and may play an important role in human cancers e.g. hepatocellular 

carcinoma (Wang et al., 2015); however, only a few publications about this gene 

are available to date. The potential functional relevance of cg07308824 was 

further investigated in the UCSC Genome Browser (Kent et al., 2002). An overlap 

was observed between the location of cg07308824 probe and histone 3 lysine 27 

acetylation (H3K27Ac) on 7 cell lines from ENCODE (Rosenbloom et al., 2013) 

(Figure 21). H3K27Ac was previously found near to active regulatory elements 
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suggesting that the sequence where the probe is located is functional (Creyghton 

et al., 2010). The HECA gene is expressed in brain at lower levels compared to 

blood (Supplementary Figure 9) but I could not see any correlation between the 

methylation levels of the significant CpG found in blood and brain, which could 

indicate that the relevance of these results might be limited to blood. No 

significant correlations were found between cg07308824 methylation levels and 

four different brain regions (i.e. prefrontal cortex, superior temporal gyrus, 

entorhinal cortex and cerebellum) in a linear regression model using a publicly 

available data set (Hannon et al., 2015)(Supplementary Figure 10). 

It is noteworthy considering that methylation levels of the identified locus 

showed a significant correlation with gene expression levels of the HECA gene in 

another independent female sample, which points to the functional relevance of 

the observed methylation change. The fact that the direction of the association is 

positive (higher gene expression correlated with higher methylation) may be 

explained by the intragenic location of the significant locus. It has indeed 

previously been shown (Wagner et al., 2014) that a positive correlation with 

gene expression is expected for CpG probes located in the body of the gene and 

a negative correlation is expected for CpG probes located close to a gene’s TSS. 

The authors also report that however this is only partially verified, with one-third 

of the latter type showing a positive correlation and nearly half of the former 

type showing a negative correlation.  

Notably, the significant changes in DNA methylation presented here are small 

(0.08%) but replicable.  This is in line with results from the recent small Japanese 

EWAS in PD (Shimada-Sugimoto et al., 2017), where 40 significant CpGs with 

overall low methylation differences have been detected. Sex-specific associations 

were not reported, most likely because of the small sample size. Furthermore, 

similar effect sizes were observed in other methylome studies of complex 

disorders e.g. rheumatoid arthritis (Liu et al., 2013), multiple sclerosis (Huynh et 

al., 2014), Alzheimer’s disease (Lunnon et al., 2014) and schizophrenia (Montano 

et al., 2016). The latter study is to date the largest case-control EWAS in the 

psychiatric field, with 689 schizophrenia patients and 645 controls included in 

the analysis. A bigger (N=1522) epigenome-wide association study on anxiety in a 
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population-based cohort was recently published, suggesting the involvement of 

the ASB1 gene in anxiety-related phenotypes (Emeny et al., 2017). 

As epidemiological studies clearly show the relevant contribution of the 

environment to the development of anxiety disorders (South et al., 2016; Torvik 

et al., 2016) and that these influences result in DNA methylation changes (Teh et 

al., 2014), a strategy including higher sample size and integrating specific 

environment-related factors (such as number or structure of life events) might 

be more successful to detect higher case-control methylation differences in PD.  

Female-specific DNA methylation changes in PD have been previously shown 

both in mice (Papale et al., 2016) and in humans. A female-specific association 

and/or correlation of negative life events with decreased overall methylation 

levels has been shown for GAD1 and MAOA (Domschke et al., 2012; Domschke et 

al., 2013). In contrast, female-specific effects in terms of increased methylation 

levels of promoter region were observed in the FOXP3 gene for PD (Prelog et al., 

2016). Sex-specific findings regarding the methylation pattern have been also 

detected in depression, which is highly comorbid with PD, and psychosis (Byrne 

et al., 2013; Melas et al., 2013). 

Interestingly, the disease association analysis shows enrichment for psychiatric 

disorders in the whole sample and in females, but not in males. 

However, one of the limitations of the study is the lower number of males 

compared to females, which is due to the higher prevalence of the disease in the 

latter. This might also explain why no significant results were found in the male 

subset but only in females. For this reason a bigger study with a higher number 

of subjects, with possibly the same ratio between males and females, is 

necessary in order to confirm the sex-specificity of our findings.  

Another limitation is that I could not correct for the smoking status of the 

subjects, due to lack of information. I verified though that our significant 

genome-wide hit was not one of the top-associated CpGs in the biggest EWAS for 

cigarette smoking (Joehanes et al., 2016).  

 

A targeted gene approach was subsequently applied, with the aim of 

investigating if genes previously associated with PD or anxiety-related 
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phenotypes are affected at the methylation level. Five of the genes I analysed, 

i.e. HTR1A, HTR2A, ADCYAP1 (PACAP), FHIT and SGK1 showed different 

methylation patterns in PD patients compared to controls. For these genes, the 

evidence for a correlation with anxiety disorders at the genetic level could be 

confirmed in our data at the epigenetic level. SGK1 (serum/glucocorticoid 

regulated kinase 1) is one of the key player in the mediation of fast and chronic 

stress response and, therefore, could be implicated in the transition of the 

environmental stress influences via methylation (Cattaneo and Riva, 2016). It 

seems to play a role in the expression of conditioned fear in the animal model 

(Knoll et al., 2016) and is one target of miRNAs in the glucocorticoid pathway 

affecting neurogenesis and leading to anxiogenic and depressiogenic behaviour 

in mice (Jin et al., 2016). Additional evidence from human studies point to the 

implication of this gene in the pathophysiology of traumatic stress, e.g. PTSD 

(Licznerski et al., 2015) and our results point to a possible involvement in PD as 

well. The second gene which is implicated in the stress response regulation is 

PACAP (Pituitary adenylate cyclase-activating polypeptide). Ressler et al. could 

demonstrate a female specific significant correlation of the PACAP38 peptide 

concentration in blood with PTSD symptoms and diagnosis (Dias and Ressler, 

2013).  In line with these previous findings, I could also demonstrate a female 

specific significant methylation difference in one locus between cases and 

controls, suggesting that this gene may play an important role in long-lasting 

stress dependent pathophysiology in PD or other anxiety disorders. Similarly, a 

female specific methylation difference could be shown for the gene HTR1A. This 

serotonin receptor is the most abundant of all serotonin receptors in the brain 

and HTR1A variants have been shown to be associated with depression and 

defensive behaviour in PD patients (Straube et al., 2014). So far, there is no 

evidence for sex specific implication of HTR1A gene in PD or other mental 

disorders. There are instead already previous studies showing an association of 

HTR2A and PD (Unschuld et al., 2007; Howe et al., 2016), and supporting 

evidence comes from our results in males. Similarly, variants in the gene FHIT 

(fragile histidine triad) were nominally associated in GWAS studies with anxiety 

(Luciano et al., 2012) and PD (Erhardt et al., 2011) and were not sex specific. In a 
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recent huge meta-analysis for broad depression phenotype, several variants in 

FHIT were among the most significant hits (Direk et al., 2016). However, there 

was no difference in the burden of depressive symptoms or depression diagnosis 

between the male and female group in our study, therefore, I cannot refer our 

finding to depression as bias. For HTR1A, HTR2A and FHIT, sex-specific effects 

presented here need to be replicated and elucidated in further studies.  

 

 DNA Methylation Age 

Another aim of the study was to determine the effect of PD on epigenetic aging, 

as measured with the epigenetic clock (Horvath, 2013). I found that in the MPIP 

Panic Cohort II there was an increased epigenetic age acceleration in PD patients 

with agoraphobia compared to patients without and that results are stronger if 

females are analysed separately. This might be explained by the higher severity 

of PD in presence of agoraphobia (American Psychiatric Association, 2013). The 

fact that the association is stronger in females is in line with the other results of 

this study, which so far pointed at each level of our analysis towards a sex-

specific mechanism that may underlie the onset and pathophysiology of panic 

disorder. The results could not be confirmed in the MPIP Panic Cohort I, where 

no significant differences could be found. I also investigated whether there was 

age acceleration in PD patients compared to controls, but results were not 

significant neither in the whole samples, nor in the sex-stratified analysis, in both 

MPIP Panic Cohort I and II. This might be explained by the heterogeneity of the 

samples in terms of age. It was showed by Zannas et al. that the effect of 

personal life stress on ∆-age is stronger in older as compared to younger people 

(Zannas et al., 2015). This suggests that the effects in our study, if present, might 

be diluted by the age-range.  

To overcome the problem of the precision of the prediction of DNA methylation 

age, other predictors optimized for a different age-range have been developed. 

The Horvath age predictor was developed from primarily adult samples and has 

been used to accurately predict chronological age in children and adults 

(Horvath, 2013). It is known however that a prediction model is, in general, 
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weakest at the extremes of the distribution. Knight et al. therefore designed a 

predictor optimized to accurately estimate gestational age (GA) that can also be 

informative of developmental stage (Knight et al., 2016).  

 

 Limitations of the Study 

Psychiatric disorders are complex and heterogeneous disorders that bear the 

disadvantage that the primary organ affected, the brain, is usually not available. 

On the other hand, the use of post-mortem brain tissue samples, while 

informative, has also limits and  cannot capture the fluid state of the epigenome 

in vivo (Tylee et al., 2013). For this reason surrogate tissues that are more easily 

accessible, e.g. blood, have been often used as a potential proxy and source of 

biomarkers that may reflect the state of illness in the brain (Tylee et al., 2013). 

The limitations of the latter are certainly that their results only allow for indirect 

conclusions about the associated biological processes in living brain tissue. 

Walton et al. used a within-subject design to investigate the blood-brain 

correspondence of DNA methylation and found that most DNA methylation 

markers in peripheral blood do not reliably predict brain DNA methylation status 

(Walton et al., 2016). However, a subset of peripheral data may proxy 

methylation status of brain tissue. Therefore, the authors suggest that restricting 

the analysis to these markers can identify meaningful epigenetic differences in 

brain disorders (Walton et al., 2016). 

Horvath et al. investigated the effects of age on genome-wide methylation levels 

in leukocytes and brain tissue samples (frontal and temporal cortex, pons, and 

cerebellum). According to their review (Horvath et al., 2012), a number of 

factors, such as the location of the specific CpG site (island, non-island, proximity 

to promoter) and the participation of the gene in developmentally regulated 

gene expression programs influence age-related changes in methylation (Tylee et 

al., 2013). Their results moreover indicated a high correlation between blood and 

brain methylation levels (approximate r=0.9); the effects of age on methylation 

levels were also moderately conserved (approximate r=0.3). Their conclusion was 

that the blood-brain methylome is more closely correlated than blood-brain gene 
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expression values as detected by microarray (approximate r=0.6) (Tylee et al., 

2013). In the same direction, Kaminsky et al. observed a significant positive 

relationship between age and methylation levels at specific CpG sites in both 

blood and brain samples (Kaminsky et al., 2012). 

A number of studies (Kronfol and Remick, 2000; Felger and Lotrich, 2013; Emeny 

et al., 2017) have implicated immune changes as one possible contributor to the 

pathophysiology of psychiatric disorders, therefore peripheral blood may give 

direct mechanistic insight into the brain (Klengel and Binder, 2015). 

In summary, not all the findings deriving from peripheral blood reflect what is 

happening in the brain, but a close correspondence may indeed exist for many 

genes. The results presented in this thesis should be therefore considered with 

caution.
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6. Conclusions and Outlook 

The work described in this thesis examines epigenome-wide differences in 

peripheral blood for PD patients and suggests that possible sex-specific 

methylation changes are occurring, specifically in the HECA gene.  Moreover, 

epigenetic age seems to be accelerated in PD patients with agoraphobia 

compared to patients without, with effects being stronger in females. 

However, these results have to be considered preliminary and their validity 

might be limited to peripheral blood. Therefore, more studies with bigger sample 

sizes and possibly in different biological tissues have to be performed to gain 

more insights into the role of DNA methylation and the HECA gene in PD as well 

as the sex-specificity. To address these questions, a bigger replication sample 

should also include an equal number of males and females. 

As a second layer of analysis, epigenetic age acceleration should be measured in 

other cohorts of PD patients with and without agoraphobia to confirm our 

findings of age acceleration occurring in PD patients with agoraphobia. 
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7. Supplementary Material 

Supplementary Tables 1-15.  Targeted gene analysis  
List of all the CpGs tested for every target gene. Beta and P-values refer to the 
EWAS meta-analysis results in the whole sample and stratified by sex.  
 

ADCYAP1 (PACAP) 

 Whole Males Females 

Probe Beta P-value FDR (Gene) Beta P-value FDR (Gene) Beta P-value FDR (Gene) 

cg00067606 -0.0504 0.4317 0.949447 -0.2272 0.03499 0.28668 0.0449 0.5866 0.900692 

cg04105966 -0.0066 0.878 0.949447 -0.0781 0.3986 0.8712 -0.0082 0.8722 0.9198 

cg06372303 0.0034 0.9629 0.9629 -0.0466 0.7303 0.8712 0.1528 0.1048 0.4062 

cg07211875 0.0098 0.8622 0.949447 0.0276 0.7744 0.8712 0.0425 0.5534 0.900692 

cg07376535 0.045 0.496 0.949447 -0.0348 0.7729 0.8712 0.1765 0.03384 0.24714 

cg07788286 -0.0116 0.8967 0.949447 -0.3214 0.06718 0.30231 -0.028 0.798 0.9198 

cg10384245 0.045 0.3765 0.949447 0.0368 0.6656 0.8712 0.0847 0.2008 0.4062 

cg11402363 0.0815 0.2328 0.949447 0.0413 0.7456 0.8712 0.0261 0.7596 0.9198 

cg11771234 0.0213 0.7908 0.949447 0.2461 0.0894 0.32184 -0.0479 0.6312 0.900692 

cg11859607 -0.0491 0.352 0.949447 -0.0317 0.7281 0.8712 0.0068 0.9198 0.9198 

cg13940693 0.0084 0.8805 0.949447 -0.1812 0.03518 0.28668 0.2438 0.000593 0.010674 

cg14200170 -0.127 0.03223 0.58014 0.0071 0.9451 0.9481 -0.0347 0.6505 0.900692 

cg14479567 0.0301 0.7072 0.949447 -0.0782 0.5644 0.8712 0.136 0.1837 0.4062 

cg14489474 -0.0192 0.8281 0.949447 -0.0642 0.6738 0.8712 -0.2295 0.04119 0.24714 

cg14908653 -0.0248 0.7178 0.949447 -0.2592 0.04778 0.28668 -0.0192 0.8178 0.9198 

cg17439660 0.0661 0.3505 0.949447 0.0834 0.4905 0.8712 0.1198 0.2031 0.4062 

cg21331088 -0.0123 0.7441 0.949447 0.0675 0.2967 0.8712 -0.0696 0.1557 0.4062 

cg22374233 -0.0528 0.3309 0.949447 -0.006 0.9481 0.9481 0.0956 0.1964 0.4062 

 

ADCYAP1R1 (PACAP receptor) 

 Whole Males Females 

Probe Beta P-value FDR (Gene) Beta P-value FDR (Gene) Beta P-value FDR (Gene) 

cg01556466 -0.1996 0.03595 0.670383 -0.1541 0.3582 0.618709 -0.1724 0.1913 0.841067 

cg02418899 -0.0239 0.7897 0.9983 0.0307 0.8359 0.9329 0.1 0.3876 0.841067 

cg02846790 0.0589 0.3935 0.830722 -0.0105 0.9329 0.9329 -0.0195 0.8211 0.976041 

cg03447880 -0.0453 0.322 0.830722 -0.0539 0.5013 0.793725 -0.0366 0.5312 0.841067 

cg04879561 -0.0016 0.9859 0.9983 -0.1654 0.2648 0.54188 0.0909 0.4223 0.841067 

cg10000602 -0.1618 0.1722 0.670383 -0.4688 0.012 0.228 -0.0014 0.9929 0.9951 

cg11218385 -0.0547 0.3655 0.830722 -0.0556 0.6069 0.887008 -0.0797 0.2933 0.841067 

cg12140543 0.1192 0.2112 0.670383 0.0215 0.8924 0.9329 0.068 0.584 0.853538 

cg13886135 0.0369 0.693 0.9983 -0.3401 0.04424 0.366637 -0.089 0.4496 0.841067 

cg14785679 0.0227 0.7944 0.9983 -0.2577 0.05789 0.366637 -0.0187 0.8704 0.976041 

cg16621855 0.0237 0.6881 0.9983 -0.0185 0.853 0.9329 0.012 0.8733 0.976041 



 Supplementary Material 
 

65 
 

cg17822807 0.0309 0.6739 0.9983 0.2252 0.09804 0.406283 0.0645 0.4884 0.841067 

cg18421840 2.00E-04 0.9983 0.9983 -0.1469 0.2852 0.54188 6.00E-04 0.9951 0.9951 

cg19317517 -0.1125 0.1589 0.670383 -0.2136 0.1283 0.406283 0.077 0.4528 0.841067 

cg21619594 -0.0942 0.2117 0.670383 -0.1646 0.1855 0.440563 0.1132 0.2545 0.841067 

cg21844005 -0.0281 0.7024 0.9983 0.1969 0.1213 0.406283 0.0733 0.4511 0.841067 

cg22963629 -0.0108 0.8824 0.9983 -0.1733 0.1785 0.440563 0.0236 0.804 0.976041 

cg24384519 -0.0066 0.9329 0.9983 -0.0557 0.6671 0.90535 0.2632 0.0117 0.2223 

cg25195987 0.1254 0.1718 0.670383 -0.0373 0.8174 0.9329 0.1264 0.2964 0.841067 

 

BDNF 

 Whole Males Females 

Probe Beta P-value FDR (Gene) Beta P-value FDR (Gene) Beta P-value FDR (Gene) 

cg00298481 -0.1265 0.285 0.855536 0.1718 0.3485 0.7675 0.097 0.5367 0.934125 

cg01418645 0.078 0.3517 0.855536 -0.0977 0.4971 0.771184 0.1157 0.2892 0.934125 

cg05189570 0.0183 0.8676 0.915208 -0.107 0.573 0.771184 0.08 0.5722 0.934125 

cg06025631 0.0686 0.4779 0.855536 0.2301 0.1765 0.735417 0.0388 0.7473 0.934125 

cg06260077 -0.0075 0.938 0.938 0.0983 0.5861 0.771184 -0.0024 0.9835 0.9835 

cg06979684 -0.0738 0.3139 0.855536 -0.2008 0.1077 0.6975 -0.1534 0.09701 0.934125 

cg07159484 0.0165 0.7782 0.915208 0.1106 0.2676 0.7675 0.1126 0.1304 0.934125 

cg07238832 -0.0485 0.6191 0.915208 -0.2511 0.134 0.6975 0.0158 0.8999 0.940833 

cg08388004 0.1013 0.2613 0.855536 -0.1435 0.3347 0.7675 0.1149 0.3399 0.934125 

cg09492354 -0.0477 0.6261 0.915208 0.0184 0.9114 0.96625 -0.1694 0.1906 0.934125 

cg10558494 -0.0967 0.2255 0.855536 -0.2112 0.1395 0.6975 0.2338 0.01978 0.4945 

cg14291693 -0.0895 0.3045 0.855536 -0.0999 0.4771 0.771184 0.0543 0.6402 0.934125 

cg15014679 -0.0583 0.4299 0.855536 0.0429 0.7265 0.864881 -0.0516 0.5985 0.934125 

cg15313332 0.0617 0.4583 0.855536 0.0624 0.6666 0.83325 0.0605 0.5703 0.934125 

cg18117895 -0.0904 0.2966 0.855536 -0.1263 0.4298 0.7675 -0.0523 0.6224 0.934125 

cg18354203 -0.0276 0.6872 0.915208 -0.1422 0.2245 0.7675 -0.033 0.7032 0.934125 

cg18595174 -0.0445 0.5585 0.915208 -0.0171 0.8961 0.96625 -0.0218 0.8232 0.940833 

cg20108357 0.0865 0.2285 0.855536 -0.1808 0.1364 0.6975 0.0169 0.8554 0.940833 

cg20954537 -0.0354 0.7109 0.915208 0.0945 0.5578 0.771184 0.1082 0.3856 0.934125 

cg23426002 -0.0692 0.4791 0.855536 -0.1361 0.4151 0.7675 -0.0407 0.7343 0.934125 

cg23619332 -0.0184 0.8786 0.915208 -0.0191 0.9276 0.96625 0.0976 0.5288 0.934125 

cg23947039 0.1282 0.01451 0.36275 0.221 0.03315 0.6975 0.0266 0.6894 0.934125 

cg25962210 0.0639 0.4228 0.855536 0.1512 0.3036 0.7675 0.0548 0.5954 0.934125 

cg26057780 -0.0133 0.864 0.915208 -0.0024 0.987 0.987 -0.0114 0.9032 0.940833 

cg27193031 -0.0243 0.7932 0.915208 -0.1441 0.3757 0.7675 0.0579 0.6272 0.934125 

 

COMT 

 Whole Males Females 

Probe Beta P-value FDR (Gene) Beta P-value FDR (Gene) Beta P-value FDR (Gene) 

cg00107488 0.0065 0.9401 0.9802 0.1968 0.1889 0.611578 -0.1524 0.1805 0.736447 

cg00465975 -0.0069 0.9244 0.9802 0.07 0.5822 0.860119 -0.0169 0.8565 0.8834 



 Supplementary Material 
 

66 
 

cg03205258 -0.005 0.8893 0.9802 -0.0318 0.5999 0.860119 -0.0068 0.8834 0.8834 

cg03724721 -0.0253 0.7949 0.9802 0.0681 0.7012 0.860119 0.0843 0.478 0.736447 

cg04856117 -2.00E-04 0.9983 0.9983 -0.1824 0.1728 0.611578 0.0153 0.8826 0.8834 

cg06045576 0.1157 0.204 0.935894 0.0784 0.6336 0.860119 -0.2391 0.03039 0.464 

cg06346307 0.0518 0.5645 0.935894 -0.4143 0.004372 0.126788 0.0222 0.8528 0.8834 

cg06787004 0.108 0.2796 0.935894 0.0729 0.6573 0.860119 0.1988 0.1327 0.736447 

cg06860277 0.0781 0.4868 0.935894 0.0689 0.7224 0.860119 0.0402 0.7786 0.8834 

cg07579946 0.0504 0.5809 0.935894 -0.0743 0.6332 0.860119 0.1277 0.284 0.736447 

cg08289189 -0.0089 0.8944 0.9802 -0.0694 0.5459 0.860119 0.0445 0.6038 0.833813 

cg08730070 0.1632 0.04414 0.320015 0.2221 0.1532 0.611578 0.0999 0.3163 0.736447 

cg09926649 -0.0831 0.2905 0.935894 -0.169 0.1792 0.611578 -0.0159 0.8779 0.8834 

cg10122187 0.0221 0.7038 0.971914 -0.0258 0.7844 0.860119 -0.0853 0.2765 0.736447 

cg10253022 0.0793 0.3768 0.935894 -0.1159 0.4682 0.860119 0.0839 0.4529 0.736447 

cg11361387 -0.0887 0.1439 0.83462 -0.1254 0.1898 0.611578 0.0718 0.3931 0.736447 

cg12728623 0.0632 0.5121 0.935894 0.1581 0.3218 0.777683 -0.0564 0.6594 0.833813 

cg13175282 0.2176 0.01142 0.320015 0.0379 0.8008 0.860119 0.1246 0.2558 0.736447 

cg16834011 0.1582 0.04337 0.320015 0.0384 0.7707 0.860119 0.2201 0.032 0.464 

cg18731680 -0.0442 0.4924 0.935894 0.0352 0.7272 0.860119 -0.0702 0.4219 0.736447 

cg18773129 0.0376 0.6234 0.951505 0.0064 0.9598 0.9598 0.0447 0.6613 0.833813 

cg19930203 -0.162 0.0234 0.320015 -0.0174 0.8799 0.911325 0.0444 0.6474 0.833813 

cg20709110 -0.0033 0.9464 0.9802 0.0964 0.244 0.7076 -0.0699 0.2569 0.736447 

cg21905167 0.0423 0.5738 0.935894 -0.0626 0.6084 0.860119 -0.1944 0.05099 0.492903 

cg21919834 0.0318 0.6771 0.971914 -0.2054 0.1658 0.611578 0.1107 0.233 0.736447 

cg22546130 -0.0231 0.7766 0.9802 -0.3316 0.01465 0.212425 0.186 0.07032 0.50982 

cg23601416 0.0841 0.32 0.935894 -0.147 0.3039 0.777683 0.0963 0.3826 0.736447 

cg25836061 -0.0451 0.4905 0.935894 -0.1444 0.1616 0.611578 0.0652 0.4825 0.736447 

cg27521571 0.0523 0.4265 0.935894 -0.05 0.6345 0.860119 0.0763 0.3681 0.736447 

 

CRH 

 Whole Males Females 

Probe Beta P-value FDR (Gene) Beta P-value FDR (Gene) Beta P-value FDR (Gene) 

cg00603617 0.1035 0.2519 0.431829 0.0085 0.958 0.958 -0.0175 0.8787 0.8787 

cg03405789 -0.1706 0.02053 0.10688 0.0112 0.936 0.958 -0.1043 0.2391 0.35865 

cg08215831 0.07 0.1503 0.3006 -0.0141 0.8841 0.958 0.1449 0.01404 0.08424 

cg15971888 -0.0269 0.7758 0.7758 -0.1252 0.497 0.958 -0.0546 0.6326 0.75912 

cg17305181 -0.0466 0.3381 0.4508 -0.0711 0.4154 0.958 0.0911 0.1394 0.248914 

cg18640030 0.1051 0.02672 0.10688 0.0258 0.7515 0.958 0.089 0.1452 0.248914 

cg19035496 0.0306 0.5702 0.68424 0.2023 0.04534 0.54408 0.0972 0.1404 0.248914 

cg20329958 -0.1223 0.1017 0.24408 -0.1603 0.1738 0.958 -0.1859 0.05638 0.18723 

cg21240762 0.1022 0.3175 0.4508 0.1002 0.5859 0.958 0.029 0.8195 0.8787 

cg21878188 0.048 0.6343 0.691964 -0.1515 0.3789 0.958 0.2398 0.06241 0.18723 

cg23027580 0.2001 0.009545 0.10688 0.0882 0.5185 0.958 0.2669 0.005015 0.06018 

cg23409074 0.0995 0.0688 0.2064 -0.0484 0.6452 0.958 0.0608 0.3636 0.4848 
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CRHR1 

 Whole Males Females 

Probe Beta P-value FDR (Gene) Beta P-value FDR (Gene) Beta P-value FDR (Gene) 

cg00022871 0.0498 0.637 0.975 -0.0833 0.63 0.987553 0.0666 0.624 0.763688 

cg00025823 0.0099 0.8965 0.975 0.0873 0.5061 0.987553 0.0659 0.5093 0.730414 

cg04856689 -0.0952 0.1 0.823175 -0.156 0.128 0.608 -0.0457 0.5304 0.730414 

cg07778819 -0.0903 0.1733 0.823175 0.0083 0.9416 0.9922 0.0538 0.5382 0.730414 

cg11338426 -0.172 0.1522 0.823175 -0.3406 0.1064 0.608 -0.0979 0.506 0.730414 

cg11731737 0.0045 0.9309 0.975 -0.0199 0.8275 0.987553 0.0164 0.8008 0.845289 

cg13521908 -0.1154 0.2961 0.892156 0.0257 0.8836 0.987553 -0.2714 0.0674 0.730414 

cg13947929 -0.054 0.4226 0.892156 -0.0012 0.9922 0.9922 0.0683 0.4239 0.730414 

cg15607306 0.066 0.4151 0.892156 0.0319 0.8166 0.987553 0.0015 0.9889 0.9889 

cg16642545 0.0608 0.4768 0.90592 -0.1068 0.4444 0.987553 -0.1061 0.3516 0.730414 

cg16830379 -0.0824 0.3382 0.892156 -0.2499 0.08074 0.608 -0.0785 0.4758 0.730414 

cg18534039 -0.0078 0.9323 0.975 -0.0653 0.7171 0.987553 0.0503 0.6598 0.763688 

cg24063856 -0.0368 0.5671 0.975 -0.0778 0.5036 0.987553 -0.0333 0.6833 0.763688 

cg24353392 0.003 0.975 0.975 -0.1281 0.4467 0.987553 0.1821 0.1323 0.730414 

cg24394631 0.0156 0.7464 0.975 -0.0667 0.4246 0.987553 0.0592 0.3558 0.730414 

cg26656751 -0.0145 0.7419 0.975 -0.1694 0.0119 0.2261 -0.0373 0.5311 0.730414 

cg27410679 0.0867 0.3052 0.892156 0.0731 0.5889 0.987553 -0.0864 0.4364 0.730414 

cg27503360 -0.1991 0.05718 0.823175 -0.0279 0.8809 0.987553 -0.18 0.1794 0.730414 

cg27551605 -0.0097 0.8815 0.975 0.0193 0.8578 0.987553 0.1369 0.1014 0.730414 

 

FHIT 

 Whole Males Females 

Probe Beta P-value FDR (Gene) Beta P-value FDR (Gene) Beta P-value FDR (Gene) 

cg00071984 0.1004 0.174 0.72501 -0.02 0.8903 0.9912 0.094 0.2899 0.9447 

cg00506250 -0.0727 0.5265 0.982695 -0.1749 0.3757 0.9912 -0.003 0.9838 0.9951 

cg00658590 0.1067 0.2702 0.820393 0.0401 0.8001 0.9912 0.0962 0.436 0.989733 

cg00721771 0.0645 0.3802 0.982695 0.0014 0.9912 0.9912 0.1003 0.31 0.9447 

cg01556706 0.0182 0.7415 0.982695 -0.146 0.1233 0.80145 -0.0193 0.7822 0.9951 

cg02923224 0.0343 0.6361 0.982695 -0.0808 0.5541 0.9912 0.046 0.613 0.9951 

cg03060986 0.2573 0.002328 0.090792 -0.1763 0.2237 0.9912 0.1497 0.1831 0.826367 

cg03319184 -0.0027 0.9677 0.9892 0.0017 0.9877 0.9912 -0.0384 0.6607 0.9951 

cg03610148 0.1937 0.05035 0.63102 -0.0018 0.991 0.9912 0.2637 0.04792 0.6357 

cg04216480 0.0827 0.2945 0.820393 -0.026 0.8453 0.9912 0.1799 0.08276 0.6357 

cg04383442 0.1798 0.05617 0.63102 -0.148 0.3314 0.9912 0.0331 0.7881 0.9951 

cg04835638 0.1208 0.1859 0.72501 0.0535 0.7414 0.9912 0.2417 0.0362 0.6357 

cg05645292 0.1099 0.1488 0.72501 0.0926 0.4818 0.9912 -0.0221 0.8179 0.9951 

cg05709770 -0.1124 0.1202 0.72501 -0.2657 0.03914 0.305292 0.01 0.9124 0.9951 

cg07351758 -0.0112 0.9048 0.982695 -0.6192 0.000274 0.010694 0.1809 0.1136 0.6357 

cg08223225 -0.0015 0.9892 0.9892 -0.0515 0.8039 0.9912 0.2412 0.07833 0.6357 
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cg10763247 0.1066 0.2341 0.820393 -0.1009 0.4984 0.9912 0.0111 0.9248 0.9951 

cg11815980 -0.0256 0.7883 0.982695 -0.0703 0.6783 0.9912 0.0922 0.4568 0.989733 

cg13679804 0.0153 0.7701 0.982695 0.0627 0.4471 0.9912 0.0545 0.456 0.989733 

cg13745692 0.0543 0.5126 0.982695 0.0468 0.7276 0.9912 0.0724 0.5194 0.9951 

cg14147855 -0.0305 0.7321 0.982695 -0.0088 0.9542 0.9912 7.00E-04 0.9951 0.9951 

cg15135842 0.0198 0.8306 0.982695 -0.1549 0.3627 0.9912 -0.0535 0.6371 0.9951 

cg15238012 -0.0655 0.4165 0.982695 -0.1304 0.3482 0.9912 0.0924 0.3613 0.989733 

cg15970800 0.0303 0.7785 0.982695 0.0448 0.8196 0.9912 0.02 0.8825 0.9951 

cg16806041 -0.0484 0.5667 0.982695 -0.0395 0.7892 0.9912 0.0181 0.8687 0.9951 

cg17087356 0.1739 0.06472 0.63102 0.1753 0.2861 0.9912 0.0325 0.7865 0.9951 

cg17894779 0.0977 0.2918 0.820393 -0.0815 0.6151 0.9912 0.1838 0.1141 0.6357 

cg19282443 0.1679 0.1161 0.72501 0.0901 0.6283 0.9912 -0.0136 0.92 0.9951 

cg19729536 -0.0066 0.9323 0.982695 -0.0545 0.6815 0.9912 -0.0207 0.8386 0.9951 

cg20366397 0.0305 0.7811 0.982695 -0.1105 0.5522 0.9912 0.0604 0.6695 0.9951 

cg20517149 -0.0577 0.4933 0.982695 -0.3129 0.02887 0.305292 -0.0653 0.5301 0.9951 

cg22380007 0.0081 0.8393 0.982695 -0.2264 0.00176 0.03432 0.0521 0.2877 0.9447 

cg22533480 -0.0134 0.8636 0.982695 0.0472 0.7022 0.9912 -0.181 0.07068 0.6357 

cg23222057 -0.0064 0.9299 0.982695 -0.2589 0.03471 0.305292 -0.0534 0.5666 0.9951 

cg23737061 -0.0633 0.4357 0.982695 -0.09 0.4774 0.9912 -0.0899 0.4052 0.989733 

cg25724751 0.0331 0.6593 0.982695 -0.1619 0.1836 0.9912 -0.0011 0.9913 0.9951 

cg25921543 0.044 0.6272 0.982695 0.0909 0.5333 0.9912 0.1528 0.1907 0.826367 

cg26358659 0.0211 0.8371 0.982695 -0.2083 0.247 0.9912 0.0218 0.8667 0.9951 

cg27254860 0.105 0.1714 0.72501 0.0114 0.933 0.9912 0.0976 0.3149 0.9447 

 

FKBP5 

 Whole Males Females 

Probe Beta P-value FDR (Gene) Beta P-value FDR (Gene) Beta P-value FDR (Gene) 

cg00140191 -0.0095 0.9156 0.9156 -0.076 0.6362 0.956114 0.0457 0.682 0.909333 

cg00862770 -0.0144 0.875 0.9156 -0.2893 0.05151 0.41208 0.0807 0.496 0.878109 

cg02665568 0.0397 0.6025 0.9156 -0.0746 0.5369 0.956114 -0.0551 0.5872 0.878109 

cg03546163 0.0154 0.8468 0.9156 -0.0303 0.8366 0.956114 0.0743 0.4578 0.878109 

cg06087101 -0.1129 0.09849 0.7904 -0.1248 0.3068 0.867733 0.0451 0.6037 0.878109 

cg07061368 -0.0127 0.8722 0.9156 -0.0317 0.8151 0.956114 -0.0798 0.4227 0.878109 

cg07633853 -0.037 0.6138 0.9156 -0.2626 0.0283 0.41208 -0.172 0.07264 0.878109 

cg08586216 -0.0167 0.8784 0.9156 0.1918 0.3254 0.867733 0.0043 0.975 0.975 

cg10300814 0.0487 0.6327 0.9156 -0.0059 0.9747 0.9852 0.0242 0.8557 0.94528 

cg10913456 -0.0824 0.2729 0.9156 -0.1859 0.1979 0.867733 -0.0489 0.5884 0.878109 

cg14284211 -0.0296 0.5765 0.9156 0.0247 0.7918 0.956114 0.0098 0.8862 0.94528 

cg14642437 0.0135 0.8462 0.9156 -0.0527 0.6653 0.956114 0.1002 0.2648 0.878109 

cg16052510 0.0568 0.3671 0.9156 -0.0764 0.4941 0.956114 0.0474 0.5502 0.878109 

cg17085721 0.0286 0.736 0.9156 0.0026 0.9852 0.9852 0.0953 0.3893 0.878109 

cg18726036 0.112 0.09913 0.7904 -0.0578 0.6615 0.956114 -0.0273 0.7471 0.919508 

cg19014730 0.1435 0.1482 0.7904 -0.2024 0.2339 0.867733 0.1177 0.3461 0.878109 
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GAD1 

 Whole Males Females 

Probe Beta P-value FDR (Gene) Beta P-value FDR (Gene) Beta P-value FDR (Gene) 

cg00224929 -0.1151 0.2565 0.582955 -0.0017 0.9926 0.9926 0.089 0.4797 0.9953 

cg00729049 -0.0639 0.3315 0.6375 -0.0601 0.5836 0.892059 -0.0209 0.7982 0.9953 

cg01089249 0.0021 0.9756 0.9756 -0.3051 0.006905 0.172625 0.0619 0.4815 0.9953 

cg01089319 -0.0659 0.1748 0.517222 -0.1306 0.1276 0.556591 -0.0415 0.4882 0.9953 

cg01763173 0.1152 0.144 0.517222 -0.1679 0.2026 0.556591 0.0336 0.7518 0.9953 

cg02723395 0.0045 0.9298 0.968542 -0.1428 0.111 0.556591 0.0019 0.9766 0.9953 

cg04105250 0.0493 0.4382 0.695313 -0.0047 0.9669 0.9926 0.1051 0.1991 0.9953 

cg07420274 -0.0169 0.7377 0.922125 -0.0281 0.7614 0.964643 5.00E-04 0.9942 0.9953 

cg08863440 -0.1331 0.006858 0.17145 0.0072 0.9323 0.9926 -0.006 0.9258 0.9953 

cg09144707 0.0111 0.8725 0.968542 0.0548 0.6711 0.932083 0.0955 0.2618 0.9953 

cg11281641 0.0324 0.6359 0.922125 -0.0311 0.8103 0.964643 -0.0278 0.7345 0.9953 

cg11348701 -0.1768 0.0494 0.30875 -0.0967 0.5006 0.892059 -0.0689 0.5692 0.9953 

cg11582100 0.0139 0.8867 0.968542 -0.0867 0.6066 0.892059 0.0358 0.7731 0.9953 

cg14005211 -0.0698 0.04549 0.30875 -0.12 0.0499 0.425417 -0.0434 0.3229 0.9953 

cg14486905 -0.0578 0.1862 0.517222 -0.0986 0.1816 0.556591 0.064 0.252 0.9953 

cg14914809 -0.0296 0.7286 0.922125 -0.184 0.2449 0.556591 -0.0326 0.752 0.9953 

cg15126544 0.0712 0.1489 0.517222 -0.1252 0.1661 0.556591 0.1095 0.06797 0.849625 

cg15306595 -0.2275 0.03319 0.30875 -0.117 0.5319 0.892059 0.0297 0.8302 0.9953 

cg15753746 -0.1095 0.1203 0.517222 0.1533 0.167 0.556591 6.00E-04 0.9953 0.9953 

cg16911423 0.089 0.445 0.695313 -0.0499 0.8094 0.964643 0.0822 0.5667 0.9953 

cg19009018 0.0927 0.2564 0.582955 -0.1659 0.2248 0.556591 0.0544 0.6077 0.9953 

cg19538089 -0.0079 0.9169 0.968542 -0.0214 0.8637 0.981477 0.0853 0.3836 0.9953 

cg19846314 -0.0378 0.3886 0.693929 0.1399 0.05105 0.425417 -0.0109 0.8495 0.9953 

cg21535772 -0.0975 0.3259 0.6375 -0.0975 0.5732 0.892059 0.0456 0.7215 0.9953 

cg26391350 -0.0384 0.6655 0.922125 -0.0802 0.5764 0.892059 0.23 0.05303 0.849625 

 

HTR1A 

 Whole Males Females 

Probe Beta P-value FDR (Gene) Beta P-value FDR (Gene) Beta P-value FDR (Gene) 

cg01020744 0.0106 0.8343 0.903825 0.0908 0.3018 0.594425 0.0226 0.7247 0.817267 

cg02266732 -0.0476 0.3816 0.674818 0.0273 0.792 0.812 0.0213 0.7544 0.817267 

cg04694812 -0.1448 0.01779 0.23127 -0.1747 0.07498 0.324913 0.0712 0.4038 0.61061 

cg04799838 0.1181 0.1346 0.660833 0.0964 0.4784 0.616318 0.138 0.1705 0.484714 

cg07839533 -0.0996 0.1525 0.660833 -0.1644 0.1596 0.5187 -0.1075 0.2272 0.484714 

cg08259925 0.0332 0.571 0.674818 0.068 0.5215 0.616318 0.0904 0.2423 0.484714 

cg09698471 0.0487 0.477 0.674818 -0.2473 0.03323 0.324913 -0.0121 0.8856 0.8856 

cg10588470 0.0412 0.3416 0.674818 0.1407 0.06787 0.324913 0.0609 0.261 0.484714 

cg13666507 -0.052 0.3586 0.674818 -0.0714 0.4872 0.616318 0.1212 0.09676 0.484714 

cg15092168 -0.0382 0.521 0.674818 0.0844 0.3658 0.594425 -0.0968 0.2391 0.484714 

cg16280141 -0.0454 0.4468 0.674818 -0.1288 0.2331 0.594425 0.2164 0.003174 0.041262 
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cg23448729 0.0521 0.3248 0.674818 0.0914 0.3227 0.594425 -0.0507 0.4421 0.61061 

cg27615388 0.0017 0.9608 0.9608 -0.0139 0.812 0.812 0.0314 0.4697 0.61061 

 

HTR2A 

 Whole Males Females 

Probe Beta P-value FDR (Gene) Beta P-value FDR (Gene) Beta P-value FDR (Gene) 

cg00308665 0.0488 0.4868 0.9857 -0.0733 0.5726 0.68712 -0.0276 0.7543 0.9396 

cg02250787 -0.0416 0.5508 0.9857 -0.2273 0.07555 0.210432 0.0146 0.8669 0.9396 

cg06476131 -0.013 0.8378 0.9857 -0.316 0.004871 0.029226 0.1765 0.02728 0.1761 

cg09361691 -0.1354 0.03219 0.38628 -0.3527 0.001296 0.015552 0.0408 0.6169 0.9396 

cg11514288 0.0015 0.9795 0.9857 -0.1098 0.2933 0.43995 0.0407 0.5913 0.9396 

cg12089079 -0.0781 0.2738 0.8214 -0.2426 0.08768 0.210432 -0.0283 0.7408 0.9396 

cg12367389 0.0055 0.9411 0.9857 -0.0061 0.9661 0.9661 -0.0068 0.9396 0.9396 

cg14059288 -0.1516 0.1409 0.7188 -0.2898 0.1119 0.2238 0.2735 0.02935 0.1761 

cg15894389 -0.0171 0.7837 0.9857 -0.1105 0.2905 0.43995 0.0515 0.5294 0.9396 

cg16188532 -0.0779 0.1797 0.7188 -0.2064 0.03577 0.14308 -0.0227 0.7607 0.9396 

cg20102280 -0.0093 0.8987 0.9857 -0.0619 0.6432 0.701673 0.1157 0.2079 0.8316 

cg26950475 -0.0013 0.9857 0.9857 -0.0998 0.3847 0.512933 -0.0196 0.8505 0.9396 

 

NPSR1 

 Whole Males Females 

Probe Beta P-value FDR (Gene) Beta P-value FDR (Gene) Beta P-value FDR (Gene) 

cg00081087 -0.0708 0.3385 0.866125 -0.0697 0.5941 0.965413 -0.0105 0.9111 0.9111 

cg03382549 0.1207 0.1725 0.866125 0.0056 0.9706 0.9706 0.2105 0.05748 0.24908 

cg05399607 0.0043 0.9622 0.9622 -0.21 0.1605 0.6435 0.1293 0.2702 0.71916 

cg06506864 0.0469 0.3728 0.866125 -0.0798 0.3933 0.748614 0.1704 0.007977 0.09581 

cg08251685 -0.0691 0.4108 0.866125 -0.0245 0.8733 0.9706 0.0175 0.8675 0.9111 

cg15754660 0.0855 0.09754 0.866125 0.1037 0.2475 0.6435 0.071 0.2766 0.71916 

cg17744825 -0.0339 0.722 0.9386 0.0176 0.9133 0.9706 0.119 0.3397 0.736017 

cg19194095 0.0039 0.9622 0.9622 -0.1729 0.2049 0.6435 0.0873 0.4303 0.799129 

cg20495677 0.0635 0.3644 0.866125 0.0068 0.9536 0.9706 0.0213 0.8139 0.9111 

cg20842782 -0.0159 0.8542 0.9622 0.1281 0.4031 0.748614 0.0262 0.8106 0.9111 

cg23448390 -0.0662 0.533 0.866125 -0.4318 0.02289 0.29757 0.0512 0.6924 0.9111 

cg23862011 0.0454 0.6039 0.8723 -0.0116 0.9414 0.9706 0.038 0.7336 0.9111 

cg24929847 0.0733 0.4825 0.866125 -0.3039 0.08601 0.559065 0.3266 0.01474 0.09581 

 

OXTR 

 Whole Males Females 

Probe Beta P-value FDR (Gene) Beta P-value FDR (Gene) Beta P-value FDR (Gene) 

cg00078085 -0.0551 0.3384 0.661556 0.0346 0.7427 0.881282 -0.0451 0.5208 0.9555 

cg00385883 0.162 0.1131 0.661556 -0.0794 0.6432 0.881282 0.3078 0.02286 0.169975 

cg02192228 0.088 0.1461 0.661556 0.0399 0.6974 0.881282 -0.0012 0.9884 0.9884 
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cg03987506 -0.0473 0.4157 0.661556 0.0186 0.8568 0.9273 -0.0361 0.6191 0.9555 

cg04523291 0.0508 0.3698 0.661556 -0.0093 0.9273 0.9273 0.1559 0.02615 0.169975 

cg08535600 0 0.9995 0.9995 -0.1099 0.2265 0.881282 0.0181 0.7881 0.9555 

cg09353063 0.0666 0.2741 0.661556 0.0388 0.7329 0.881282 0.0472 0.541 0.9555 

cg12695586 -0.0267 0.6667 0.733092 -0.1694 0.1618 0.881282 0.0337 0.6621 0.9555 

cg15317815 0.0197 0.6767 0.733092 0.034 0.6542 0.881282 0.1222 0.05432 0.235387 

cg17285225 -0.0627 0.2339 0.661556 -0.0337 0.7149 0.881282 -0.0261 0.6983 0.9555 

cg19619174 0.0986 0.2742 0.661556 -0.2726 0.07895 0.881282 0.1683 0.132 0.429 

cg23391006 -0.0601 0.458 0.661556 0.048 0.7457 0.881282 -0.0249 0.8162 0.9555 

cg27501759 -0.0199 0.5233 0.68029 0.0178 0.7278 0.881282 0.0061 0.882 0.9555 

 

SGK1 

 Whole Males Females 

Probe Beta P-value FDR (Gene) Beta P-value FDR (Gene) Beta P-value FDR (Gene) 

cg00959636 -0.3081 0.000787 0.035424 -0.0941 0.5429 0.939635 -0.0021 0.9856 0.9856 

cg01059669 -0.1247 0.1967 0.5901 0.1557 0.337 0.871816 -0.1666 0.1743 0.6678 

cg02904344 0.0517 0.5148 0.858 0.1559 0.2766 0.871816 0.0453 0.6538 0.8406 

cg03146155 0.0765 0.2543 0.6585 -0.0719 0.5347 0.939635 -0.0878 0.2901 0.713045 

cg03400131 -0.0144 0.8348 0.9684 0.02 0.8799 0.960239 0.0422 0.6169 0.824824 

cg03762694 -0.1551 0.05531 0.3957 0.1272 0.3681 0.871816 -0.1048 0.3082 0.713045 

cg03944089 0.0093 0.8968 0.9684 -0.0517 0.6711 0.953743 0.0929 0.3133 0.713045 

cg04060943 0.0431 0.6092 0.877091 -0.1797 0.2277 0.871816 0.0985 0.3486 0.713045 

cg04905719 -0.0536 0.3023 0.680175 -0.0263 0.7418 0.953743 -0.085 0.2081 0.6678 

cg05183646 -0.0835 0.1623 0.521679 -0.2501 0.02184 0.480488 -0.0899 0.2205 0.6678 

cg05966641 0.0029 0.9684 0.9684 -0.2313 0.07036 0.63324 -0.0256 0.7723 0.923566 

cg06358608 -0.0329 0.6432 0.877091 0.0762 0.5397 0.939635 0.0724 0.427 0.7686 

cg06642177 0.0945 0.007257 0.163283 0.0159 0.7968 0.960239 0.0319 0.494 0.793929 

cg06849960 -0.1124 0.2532 0.6585 -0.2079 0.2853 0.871816 -0.1347 0.2537 0.713045 

cg07340870 0.2117 0.05854 0.3957 0.2113 0.2364 0.871816 0.2343 0.1282 0.6678 

cg08239804 0.0299 0.7262 0.961147 -0.297 0.03905 0.480488 -0.0556 0.6232 0.824824 

cg08550353 0.0321 0.6409 0.877091 0.1066 0.3565 0.871816 0.0638 0.468 0.788167 

cg08640361 0.1429 0.1342 0.50325 0.0185 0.9075 0.960239 -0.1126 0.3455 0.713045 

cg08647910 -0.0548 0.4741 0.826442 -5.00E-04 0.9974 0.9974 -0.0064 0.9465 0.9856 

cg08698685 0.0084 0.8757 0.9684 -0.0367 0.6733 0.953743 0.0174 0.8055 0.929423 

cg09315391 -0.004 0.9668 0.9684 -0.112 0.447 0.939635 0.0928 0.4729 0.788167 

cg09404376 0.1271 0.0718 0.3957 0.101 0.416 0.936 0.1743 0.05934 0.5841 

cg09872934 -0.0159 0.8251 0.9684 -0.1379 0.2846 0.871816 -0.0184 0.8376 0.9423 

cg10105971 -0.0449 0.6336 0.877091 -0.0271 0.8566 0.960239 -0.0832 0.5142 0.797897 

cg11856561 0.0101 0.9266 0.9684 -0.2646 0.1481 0.833063 0.1756 0.2106 0.6678 

cg12009778 0.0321 0.7607 0.9684 -0.3621 0.04271 0.480488 0.2384 0.07788 0.5841 

cg13307058 0.1 0.09686 0.43587 0.0762 0.5068 0.939635 0.0021 0.9774 0.9856 

cg14905466 0.0363 0.5627 0.877091 0.0397 0.7217 0.953743 0.0038 0.9607 0.9856 

cg17284168 -0.0591 0.5934 0.877091 0.0893 0.6447 0.953743 -0.0827 0.5454 0.8181 
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cg17689707 -0.1106 0.158 0.521679 0.0208 0.8779 0.960239 -0.0498 0.6197 0.824824 

cg18566177 0.0087 0.9256 0.9684 -0.012 0.9389 0.960239 0.0361 0.7638 0.923566 

cg20393620 -0.0121 0.8861 0.9684 0.0443 0.7363 0.953743 0.0178 0.8794 0.965195 

cg20655113 0.0267 0.7832 0.9684 0.0691 0.7113 0.953743 0.1472 0.2075 0.6678 

cg20822858 -0.0811 0.4775 0.826442 0.0205 0.9191 0.960239 0.169 0.2226 0.6678 

cg21064939 -0.1945 0.04844 0.3957 -0.2798 0.1248 0.833063 -0.3021 0.0128 0.192 

cg21078322 0.0748 0.3227 0.6915 -0.0365 0.7874 0.960239 -0.085 0.3702 0.724304 

cg21366688 0.0704 0.3438 0.703227 -0.0606 0.627 0.953743 0.1606 0.09767 0.627879 

cg21676440 -0.1223 0.2896 0.680175 -0.2162 0.2948 0.871816 -0.2585 0.07001 0.5841 

cg21834463 0.037 0.4706 0.826442 -0.0832 0.3456 0.871816 -0.1629 0.01225 0.192 

cg23347562 0.0789 0.457 0.826442 -0.0389 0.8407 0.960239 0.1646 0.2177 0.6678 

cg24688636 -0.1439 0.06378 0.3957 -0.2034 0.1302 0.833063 -0.2642 0.006513 0.192 

cg25025235 -0.0972 0.2634 0.6585 -0.095 0.5276 0.939635 -0.0643 0.5671 0.82321 

cg25661219 -0.156 0.07914 0.3957 -0.3501 0.03569 0.480488 -0.0299 0.7799 0.923566 

cg26557834 0.1684 0.03655 0.3957 0.1328 0.3486 0.871816 0.1004 0.3188 0.713045 

cg27289153 0.1291 0.1258 0.50325 -0.0731 0.6134 0.953743 0.0838 0.423 0.7686 

 

TMEM132D 

 Whole Males Females 

Probe Beta P-value FDR (Gene) Beta P-value FDR (Gene) Beta P-value FDR (Gene) 

cg01163404 0.1089 0.1225 0.601033 0.2281 0.05266 0.410459 0.0125 0.8917 0.9854 

cg01202700 0.2627 0.01158 0.211335 0.3553 0.05984 0.410459 0.2938 0.02614 0.432744 

cg01831527 -0.0222 0.7099 0.94071 0.0595 0.5857 0.92345 -0.0815 0.2604 0.746164 

cg02365079 0.1364 0.04654 0.283118 0.2054 0.08221 0.500111 0.0107 0.9031 0.9854 

cg02767665 0.0241 0.7505 0.94071 0.0209 0.8775 0.957934 0.0881 0.3673 0.812512 

cg03283235 -0.0326 0.6895 0.94071 0.0119 0.9325 0.9775 -0.0019 0.9854 0.9854 

cg03420866 -0.0508 0.537 0.94071 0.1719 0.2448 0.770758 -0.0181 0.8623 0.9854 

cg03469054 0.0441 0.4531 0.94071 -0.0715 0.5112 0.92345 0.1036 0.1493 0.746164 

cg03685843 -0.0021 0.9685 0.981951 -0.1253 0.2045 0.746425 -0.0747 0.2763 0.746164 

cg04386563 -0.0081 0.8993 0.976613 -0.117 0.2773 0.778573 0.0609 0.4494 0.849815 

cg04414975 -0.081 0.3413 0.94071 -0.307 0.02555 0.410459 -0.0691 0.5355 0.849815 

cg04729491 0.0398 0.7088 0.94071 -0.0291 0.8782 0.957934 -0.0106 0.9377 0.9854 

cg04925956 0.0389 0.5332 0.94071 -0.0241 0.8394 0.957934 -0.0518 0.4992 0.849815 

cg05160910 0.0375 0.6074 0.94071 0.2321 0.06185 0.410459 0.0973 0.3156 0.794441 

cg05384697 -0.1853 0.04234 0.280984 -0.1445 0.4073 0.838892 -0.1897 0.08699 0.58473 

cg05479657 0.0645 0.4126 0.94071 -0.0498 0.6908 0.92345 -0.0398 0.6969 0.97721 

cg05742082 -0.0227 0.7898 0.960923 -0.0993 0.564 0.92345 0.0962 0.3383 0.796642 

cg06200996 -0.0308 0.5584 0.94071 -0.0505 0.5793 0.92345 -0.0432 0.5236 0.849815 

cg06679878 -0.0165 0.8482 0.967478 -0.3303 0.02196 0.410459 -0.2043 0.06154 0.546364 

cg07056260 -0.0643 0.3118 0.94071 -0.1391 0.1953 0.746425 -0.0224 0.7859 0.97721 

cg07067993 -0.0376 0.4332 0.94071 -0.0713 0.3777 0.838892 0.0873 0.1595 0.746164 

cg07230440 0.0776 0.1235 0.601033 0.0329 0.7351 0.941444 -0.0527 0.3882 0.819269 

cg07350016 0.0513 0.5975 0.94071 -0.0794 0.6195 0.92345 0.039 0.7624 0.97721 



 Supplementary Material 
 

73 
 

cg08261450 0.0405 0.5438 0.94071 -0.1287 0.2721 0.778573 -0.0408 0.6287 0.936635 

cg08546107 -0.0013 0.9872 0.9872 -0.1925 0.2152 0.748076 0.1208 0.2362 0.746164 

cg09044656 0.0068 0.9204 0.976613 0.0904 0.4137 0.838892 0.0965 0.2862 0.746164 

cg10639585 0.028 0.6388 0.94071 0.046 0.6713 0.92345 0.0061 0.9347 0.9854 

cg11023224 0.0052 0.9411 0.981433 -0.1195 0.3893 0.838892 0.1089 0.1996 0.746164 

cg11160362 0.108 0.6069 0.94071 0.0122 0.9699 0.9775 -0.2488 0.3928 0.819269 

cg11230248 0.0825 0.2952 0.94071 0.1943 0.1686 0.733865 0.0137 0.89 0.9854 

cg11496226 -0.1054 0.02166 0.225883 -0.0574 0.4759 0.890787 -0.1544 0.006169 0.225169 

cg12072740 -0.0412 0.5541 0.94071 -0.2433 0.04073 0.410459 -0.0985 0.266 0.746164 

cg12820134 0.0178 0.8193 0.967478 -0.1296 0.3286 0.814923 -0.0641 0.529 0.849815 

cg13090220 0.1599 0.04151 0.280984 0.1352 0.3276 0.814923 0.1136 0.2506 0.746164 

cg13123585 -0.0419 0.5674 0.94071 -0.1381 0.2477 0.770758 0.003 0.9756 0.9854 

cg13916352 -0.0723 0.4593 0.94071 -0.1895 0.2534 0.770758 -0.0561 0.6555 0.93898 

cg14504768 -0.0147 0.8417 0.967478 0.071 0.5863 0.92345 0.0547 0.5513 0.856274 

cg14918019 0.0365 0.6602 0.94071 -0.0041 0.9775 0.9775 0.0093 0.9281 0.9854 

cg15617706 0.2868 0.005854 0.142447 0.0345 0.8459 0.957934 0.2738 0.0431 0.524383 

cg15936861 0.0317 0.718 0.94071 -0.2418 0.1079 0.562621 0.1396 0.2007 0.746164 

cg16048915 0.056 0.4032 0.94071 -0.0314 0.788 0.957934 0.0605 0.4764 0.849815 

cg16533379 0.0551 0.3138 0.94071 0.0192 0.8424 0.957934 0.0035 0.9588 0.9854 

cg17157798 -0.0147 0.8296 0.967478 -0.1897 0.1064 0.562621 0.0837 0.3527 0.804597 

cg17186073 -0.0772 0.09916 0.556822 -0.112 0.1709 0.733865 -0.047 0.4626 0.849815 

cg17444697 0.0559 0.3957 0.94071 0.0451 0.7068 0.92345 0.0866 0.2815 0.746164 

cg17513770 0.0176 0.7401 0.94071 -0.0047 0.9605 0.9775 0.104 0.1184 0.720267 

cg17718276 -0.0548 0.3384 0.94071 0.2271 0.04171 0.410459 -0.0024 0.972 0.9854 

cg17735631 0.0077 0.9231 0.976613 0.1239 0.3474 0.818071 0.0746 0.4832 0.849815 

cg17883960 0.031 0.6779 0.94071 -0.0057 0.9644 0.9775 0.0627 0.5133 0.849815 

cg18180056 0.0718 0.4296 0.94071 -0.1 0.5439 0.92345 0.0359 0.7525 0.97721 

cg18437033 -0.0617 0.5145 0.94071 -0.0232 0.8792 0.957934 0.0698 0.5676 0.863225 

cg18723572 0.166 0.01526 0.214377 0.0948 0.4355 0.853908 0.2139 0.01315 0.319983 

cg18758559 0.0026 0.9648 0.981951 0.0885 0.4003 0.838892 -0.0786 0.2807 0.746164 

cg19070138 0.1849 0.001056 0.077088 0.1522 0.1168 0.568427 -0.0032 0.9649 0.9854 

cg19700087 0.0244 0.6669 0.94071 0.0375 0.7084 0.92345 0.1107 0.1331 0.746164 

cg19790509 0.0827 0.2906 0.94071 -0.0765 0.5785 0.92345 0.0718 0.4571 0.849815 

cg20168964 0.0867 0.1801 0.730406 0.027 0.8083 0.957934 -0.0264 0.7513 0.97721 

cg20327057 0.2712 0.003043 0.11107 0.0846 0.6043 0.92345 0.2435 0.02964 0.432744 

cg20470734 0.048 0.4505 0.94071 -0.194 0.05933 0.410459 0.0168 0.8443 0.9854 

cg21903395 -0.0221 0.6757 0.94071 0.0363 0.7003 0.92345 0.0197 0.7755 0.97721 

cg23266743 -0.0606 0.4741 0.94071 -0.0486 0.7506 0.944721 -0.0156 0.8861 0.9854 

cg23733052 0.19 0.03625 0.280984 -0.1412 0.3326 0.814923 0.0758 0.5326 0.849815 

cg23805623 0.0288 0.5975 0.94071 -0.181 0.06041 0.410459 0.0655 0.3302 0.796642 

cg23917477 -0.0209 0.7603 0.94071 0.0514 0.6656 0.92345 0.2477 0.004213 0.225169 

cg24008358 0.0659 0.1666 0.7154 0.1575 0.06094 0.410459 -0.0162 0.7898 0.97721 

cg25015139 -0.0301 0.6985 0.94071 -0.1862 0.1872 0.746425 0.1165 0.231 0.746164 
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cg25102216 0.1816 0.02538 0.231593 -0.029 0.8573 0.957934 0.1068 0.2708 0.746164 

cg25625370 0.0714 0.1421 0.648331 0.0379 0.6591 0.92345 0.1122 0.06271 0.546364 

cg26322591 -0.0173 0.7326 0.94071 -0.2447 0.009236 0.410459 0.1045 0.08811 0.58473 

cg26364947 0.0555 0.2 0.768421 -0.0056 0.9423 0.9775 0.0241 0.656 0.93898 

cg26411747 0.2294 0.01762 0.214377 0.1354 0.4445 0.853908 0.1603 0.1791 0.746164 

cg26614129 0.0106 0.8801 0.976613 0.0496 0.686 0.92345 -0.1679 0.06736 0.546364 

cg27463181 0.0093 0.892 0.976613 0.1093 0.3349 0.814923 -0.031 0.7374 0.97721 
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Supplementary Figure 1. 
Multidimensional scaling (MDS) plots used to investigate population structure in 
the MPIP Panic Cohort I (discovery sample).  
 

 

 

 

 

 

 



 Supplementary Material 
 

76 
 

 

 

Supplementary Figure 2. 
Multidimensional scaling (MDS) plots used to investigate population structure in 
the MPIP Panic Cohort II (replication sample).  
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Supplementary Figure 3. Correlation plot for the MPIP Panic Cohort I-MDD data 

(N=699) after normalization, before batch correction, with the surrogate 
variables.  
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Supplementary Figure 4. QQ-plots of p-values for the MPIP Panic Cohort I 
(discovery sample).  
Theoretical vs observed distributions for all the 424,834 p-values from the case-
control analysis, males only.  
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Supplementary Figure 5. QQ-plots of p-values for the MPIP Panic Cohort I 
(discovery sample).  
Theoretical vs observed distributions for all the 424,834 p-values from the case-
control analysis, females only.  
 

 

 

 



 Supplementary Material 
 

80 
 

 

 

  

Supplementary Figure 6. QQ-plots of p-values for the MPIP Panic Cohort II 
(replication sample).  
Theoretical vs observed distributions for all 425,119 p-values from the case-
control analysis, whole sample. 
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Supplementary Figure 7. QQ-plots of p-values for the MPIP Panic Cohort II 
(replication sample).  
Theoretical vs observed distributions for all 425,119 p-values from the case-
control analysis, males only. 
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Supplementary Figure 8. QQ-plots of p-values for the MPIP Panic Cohort II 
(replication sample).  
Theoretical vs observed distributions for all 425,119 p-values from the case-
control analysis, females only.  
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Supplementary Figure 9. HECA Gene Expression in Tissues 
Expression values are shown in RPKM (Reads Per Kilobase of transcript per 
Million mapped reads). Box plots are shown as median and 25th and 75th 
percentiles; points are displayed as outliers if they are above or below 1.5 times 
the interquartile range. Data Source: GTEx Analysis Release V6p (dbGaP 
Accession phs000424.v6.p1) (http://www.gtexportal.org/home/)  
 

http://www.gtexportal.org/home/
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Supplementary Figure 10. Correlation of HECA methylation levels at the 
cg07308824 locus in whole blood and four brain regions in a linear regression 
model. The top panel is a boxplot with the DNA methylation levels per tissue 
type. Upper left panel: prefrontal cortex (PFC); lower left panel: superior 
temporal gyrus (STG); upper right panel: entorhinal cortex (EC); lower right 
panel: cerebellum (CER) (http://epigenetics.iop.kcl.ac.uk/bloodbrain/). 
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