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1 Abstract 

Acute leukemias (AL) are hematological malignancies with poor outcomes, and disease relapse 

represents a major challenge. Treatment resistant cells might persist for prolonged periods of 

time, might start proliferation and give rise to relapse. Novel treatment options are urgently 

needed to eradicate resistant cells and to prevent relapse in order to improve the prognosis and 

cure rate of AL patients. The aim of the present work was to identify and characterize the 

subpopulation of relapse-inducing cells in AL.  

Towards this aim, a unique method was used which had been established shortly before in the 

hosting lab. Here, primary AL cells from patients are propagated in immunodeficient mice as 

patient-derived xenografts (PDX) cells. Using genetic engineering of PDX cells and a two-step 

enrichment protocol targeting the transgenes, minor numbers of PDX cells can be isolated from 

mouse bone marrow to near purity in an unbiased way. Using the proliferation-sensitive dye 5-

(6)-Carboxyfluorescein-Succinimidyl Ester (CFSE) in mice, first hints had been generated that 

cells might exist in acute lymphoblastic leukemia (ALL) which reveal long term dormancy.  

In this work, the present method was optimized and transferred to acute myeloid leukemia 

(AML). The study showed that 8 out of 8 tested ALL PDX samples and 8 out of 9 AML samples 

contained a rare subpopulation of long-term dormant cells indicating that long-term dormancy 

represents a frequent feature in PDX AL. Upon systemic treatment of mice with 

chemotherapeutic drugs, proliferating cells showed marked sensitivity, while long-term 

dormant cells remained resistant. Long-term dormant cells contained cancer stem cells as they 

were able to initiate leukemia in next recipient mice. 

Thus, most patients' AL contains a rare subpopulation of dormant, treatment resistant cells with 

leukemia initiating properties which might represent a surrogate for relapse-inducing cells. Re-

transplantation experiments indicated that dormant cells started proliferating in next recipient 

mice, while proliferating cells converted into long-term dormant cells indicating a major 

functional cell plasticity.  

In conclusion, a rare cell population was identified that might serve as suitable surrogate to 

develop novel therapies against relapse in AL, targeting the challenging subpopulation of 

dormant, drug resistant, leukemia initiating cells. The transient nature of dormancy suggests 

that AL patients might profit from treatment strategies which release dormant, treatment 

resistant cells from their microenvironment in order to sensitize them towards treatment. 
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2 Introduction 

2.1 Acute Leukemias (AL) 

Acute leukemias (AL) belong to the ten most common cancers in the United States and Europe 

(Ferlay et al., 2013; Siegel et al., 2016). AL are hematologic malignancies with a rapid increase 

of immature blood cells. The accumulation of malignant, non-functional cells leads to an 

interference with healthy blood cells, and finally to bone marrow failure. Depending on the 

surface markers expressed on the tumor cells, AL is distinguished into two subtypes: acute 

myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) (Esparza and Sakamoto, 

2005; Estey, 2014).  

2.1.1 Acute myeloid leukemia (AML) 

AML is the most common leukemia in adults. In the US there are around 20,000 new patients 

per year and around 10,000 patients die from AML each year (Siegel et al., 2016). The incidence 

rises with an increase in age; patients older than 65 years are over 10 times more frequently 

effected than patients younger than 65. The median age of patients diagnosed with AML is 

around 70 years (De Kouchkovsky and Abdul-Hay, 2016; Estey and Dohner, 2006). 

Environmental influences like ionizing radiation are known to have an influence on the 

development of AML. 10-15 % of AML patients underwent a previous cytotoxic 

chemotherapy, and cigarette smokers develop 1.2-2.3 times more often AML than non-smokers 

due to benzene exposure (Estey and Dohner, 2006). AML is a heterogeneous disease with many 

different subtypes due to different genetic mutations, epigenetic aberrations, and downstream 

abnormalities. More than 97 % of AML tumors reveal known genetic mutations. In addition, 

around 55 % of AML cases show cytogenetic abnormalities, like translocations, inversions, and 

chromosomal imbalances, or even complex karyotypes (Estey and Dohner, 2006).  

The ancient French-American-British (FAB) classification system from 1976 uses 

cytomorphological and cytochemical characteristics of the myeloid blasts to group AML into 

eight AML subtypes. The World Health Organization released 2001 a new classification, which 

was revised 2008 and 2016 to incorporate genetic information, morphology, 

immunophenotype, and clinical presentation. Here, six AML subtypes are distinguished (De 

Kouchkovsky and Abdul-Hay, 2016; Estey and Dohner, 2006). The European Leukemia NET 

(ELN) classification incorporates cytogenetics and molecular genetic data, especially mutations 

in the NPM1, FLT3, and CEBPA genes, to define four risk groups. According to their 
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prognosis, the different groups are called favorable, intermediate-1, intermediate-2, and adverse 

which have in total 13 subsets (Estey, 2014; Roboz, 2012).  

AML is diagnosed cytomorphologically by malignant blasts in bone marrow or peripheral 

blood of patients, and by positive testing of these cells for a myeloid origin by myeloperoxidase 

activity, or the presence of Auer rods (De Kouchkovsky and Abdul-Hay, 2016). Furthermore, 

myeloid blasts are identified immunophenotypically by the expression of typical myeloid 

surface markers, like CD33 and CD13 (Estey and Dohner, 2006; Estey, 2014). The 

accumulation of these malignant, undifferentiated myeloid blasts in the bone marrow leads to 

an interference with the normal hematological cells and eventually to bone marrow failure. In 

addition, myeloid blast can escape into the blood stream and spread to other organs of the body. 

Untreated, this cell accumulation leads to death within months (De Kouchkovsky and Abdul-

Hay, 2016; Estey and Dohner, 2006). All patients are immediately treated by standard therapy, 

often even before the risk group is determined, which has the best outcomes for patients with a 

favorable or intermediate prognosis and a low risk of treatment-related mortality. The standard 

regimen includes two phases. The first phase, induction therapy, aims to achieve complete 

remission, which is defined by less than 5 % blasts in the bone marrow. Here, an anthracycline, 

like idarubicin or daunorubicin is given for three days, and in parallel a continuous 

administration of cytarabine is given for seven days. This so-called 3+7 scheme is repeated one 

to four times until complete remission is reached (De Kouchkovsky and Abdul-Hay, 2016; 

Estey and Dohner, 2006). After induction therapy stops, many patients develop relapse (Thol 

et al., 2015). In order to prevent relapse, the second phase, the consolidation therapy, starts to 

achieve lasting remission. If patients seem to not tolerate the intensive chemotherapy or 

chemotherapy alone is not effective, another possibility is allogeneic stem cell transplantation. 

Furthermore, for patients with a poor prognosis or a high risk of treatment-related mortality, 

investigational therapy, as part of a clinical trial, is an option (De Kouchkovsky and Abdul-

Hay, 2016; Estey and Dohner, 2006). 

Despite optimized chemotherapy and supportive care, the outcome for patients with AML is 

still poor. The long-term overall survival of younger patients is around 40-50 %. For patients 

older than 65, many of which also show a poor performance status, the prognosis is even worse, 

70 % will die within one year (Estey, 2014; Roboz, 2012). 

Besides age and performance status, the most relevant prognostic factor for chemotherapy 

response and outcome are the cytogenetic and molecular findings at diagnosis. Additionally, 

patients who suffer from a therapy-related AML or from AML after myelodysplastic syndrome 

are more resistant to chemotherapy and have a worse outcome. Therapeutic failure occurs due 
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to treatment resistance or due to treatment-related mortality. Treatment resistance is defined if 

complete remission cannot be achieved or maintained or if a relapse cannot be prevented or 

treated. Treatment-related mortality counts for patients who died from the adverse-effects of 

treatment (Estey, 2014). Prognostic markers for treatment-related mortality in patients are age 

and performance status at diagnosis, as well as platelet count, serum albumin, bilirubin and 

creatinine (De Kouchkovsky and Abdul-Hay, 2016; Estey and Dohner, 2006). 

In summary, AML is associated with an overall poor prognosis, especially for elderly patients, 

certain adverse subgroups and upon relapse. Genome sequencing data revealed AML as a very 

heterogeneous disease regarding mutations and cytogenetic abnormalities, which are a reason 

for diverse treatment outcomes. As the main treatment still consists of cytotoxic chemotherapy, 

an urgent need for new treatment strategies, like targeted therapies, exists (Estey and Dohner, 

2006). For the understanding of this complex biology, preclinical models are needed to finally 

develop new therapy strategies for a better prognosis of AML patients and to prevent AML 

relapse (Guzman and Allan, 2014).  

2.1.2 Acute lymphoblastic leukemia (ALL) 

ALL is the most common type of cancer in children. In the US are around 6,500 new cases per 

year (Siegel et al., 2016), hereof 60 % are persons younger than 20 years (Dores et al., 2012). 

The peak of incidence lies between the age of two and five (Hunger and Mullighan, 2015; Pui 

et al., 2008). However, also adults can develop the disease, but the incidence in adults is very 

low (Inaba et al., 2013; Pui et al., 2008). 

Some genetic factors, like Down’s syndrome, Blooms syndrome, ataxia-telangiectasia and 

Nijmegen breakage syndrome, are known to be associated with and leading to an increased risk 

of ALL (Hunger and Mullighan, 2015; Pui et al., 2008). In addition, some genetic alterations 

are associated with an increased risk for ALL or with a specific subtype of ALL. These include 

polymorphic variants in genes like ARID5B, CDKN2A, CEBPE, GATA3 and IKZF1. 

Environmental exposures like radiation, some chemicals, and exposure to electromagnetic 

fields only have little influence on the development of ALL (Hunger and Mullighan, 2015; 

Inaba et al., 2013). In most patients, the first oncogenic mutation appears in utero and before 

birth (Schiffman, 2016). 

The ancient French-American-British (FAB) classification divided ALL into three different 

subgroups by their morphological characterization. In 1997, and revised in 2008, the World 

Health organization combined morphological and cytogenetic criteria to divide ALL into three 

subtypes. The three main subtypes are mature B-cell, B-cell precursor (BCP-ALL) and T-cell 
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leukemia and have therapeutic implications. These subtypes can be further classified according 

to their specific genetic alterations (Pui et al., 2008; Terwilliger and Abdul-Hay, 2017). Besides 

karyotypic abnormalities, like aneuploidy or translocations, nowadays genome-wide analysis 

allows the genetic classification of all cases by the identification of genetic alterations, but is 

not yet used in clinical routine. Genes altered in ALL are often associated with hematopoietic 

differentiation, signaling or proliferation, and epigenetic regulation (Pui et al., 2012; Pui and 

Evans, 2013). A recently identified high risk immature subtype is early T-cell precursor (ETP) 

ALL, which is defined by specific immunological markers, characteristic gene expression 

profile, a mutational spectrum related to AML mutations, and transcriptional profile close to 

hematopoietic stem cells and granulocyte-macrophage precursors. These are hints for a stem 

cell disease of this subtype (Zhang et al., 2012). 

ALL is diagnosed by morphological and immunophenotyping examinations of peripheral blood 

or bone marrow aspirates (Inaba et al., 2013; Pui et al., 2008). The further discrimination 

between T-cell, mature B-cell, BCP ALL, and ETP-ALL is subsequently important for 

therapeutic procedures (Pui et al., 2008). To identify chromosomal abnormalities like hyper- 

and hypodiploidies and leukemia-specific gene rearrangements, translocation-specific RT-PCR 

and fluorescence in-situ hybridization are used. Flow cytometry is performed to identify the 

cell linage and CRLF2 overexpression. Genome-wide analyses are not used in clinical routine 

yet, but have prognostic and therapeutic implications, too. As a consequence of these diagnostic 

measures combined with clinical data, children are stratified in several risk groups which 

receive different intensity of treatment. Tumor-specific molecular markers are further used to 

quantify tumor load repetitively in each patient in order to evaluate treatment effects and to 

recognize any putative tumor re-growth early (Inaba et al., 2013; Pui et al., 2008). Without 

treatment patients die of the disease. The malignant and undifferentiated lymphoid cells 

accumulate in the bone marrow, lead to interference with healthy hematopoietic cells and 

eventually to bone marrow failure. Malignant cells can invade into the blood stream and affect 

other organs of the body (Terwilliger and Abdul-Hay, 2017). 

Treatment of all subtypes is divided into three phases: remission-induction therapy, 

consolidation therapy and maintenance therapy. Induction therapy, lasting for four to six weeks, 

includes a glucocorticoid, vincristine, and asparaginase or anthracycline. Standard risk children 

receive a combination of three chemotherapeutics, whereas high risk, very high risk, and adult 

patients receive a combination of four or more different chemotherapeutics. Patients with 

BCR-ABL1 translocation benefit from tyrosine-kinase inhibitors, like Imatinib (Inaba et al., 

2013; Pui et al., 2008). 
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Morphologic remission is defined by less than 1 % blasts in bone marrow; morphological 

remission is obtained in 96-99 % of children and in 78-92 % of adult patients (Inaba et al., 2013; 

Pui and Evans, 2006; Pui et al., 2008). 

The consequent 20-30 weeks of consolidation therapy are used to target residual leukemic cells. 

Here, high-doses of methotrexate with mercaptopurine, frequent applications of vincristine and 

corticosteroid and repetitive applications of asparaginase, as well as drugs from induction 

therapy are used (Inaba et al., 2013; Pui et al., 2008). 

The treatment phase of maintenance therapy lasts for around two years. This therapy phase shall 

prevent relapse and increase event-free and overall survival in patients. Here, daily 

mercaptopurine and weekly methotrexate is given with or without applications of vincristine 

and dexamethasone (Inaba et al., 2013; Pui et al., 2008). 

For patients who did not response to initial treatment or have a high-risk ALL, like BCR/ABL-

positive ALL, allogeneic hematopoietic stem cell transplantation or investigational therapy, as 

part of a clinical trial, are options (Inaba et al., 2013; Pui et al., 2008). 

During the last decades, treatment optimization, increase in supportive care and risk assessment 

to use the best treatment strategy have been resulted in improvements, especially for children, 

from a former deadly disease in the 1950s to 5-year survival rates above 90 % (Inaba et al., 

2013; Siegel et al., 2016). But survival rates for adults and infants remains little satisfactory 

with around 40 % survival rates for young adults and less than 10 % for adults older than 60 

years (Dördelmann et al., 1999; Goldstone et al., 2008). The survival rates of BCR/ABL-

positive ALL have improved through new treatment strategies including tyrosine kinase 

inhibitors from initial 10 % to around 40-60 % (Leoni and Biondi, 2015). Most ALL patients 

die from relapse and relapse occurs in 15-20 % of children and in 40-50 % of adult patients. 

The prognosis of relapsed patients is poor; in adults only less than 10 %, and in children 40-

50 % can be cured, due to increased treatment resistance of relapsed ALL (Gokbuget et al., 

2012a; Locatelli et al., 2013). 

There are several factors besides the subtype and molecular alterations that are of prognostic 

relevance in ALL: 

One is the age at diagnosis of the initial. Children between the age of 1 and 9 have better 

outcome than infants, adolescents, or adults (Hilden et al., 2006). Younger adults have a better 

prognosis than older ones. 

Another prognostic factor is the race, with black and Hispanic patients have worse outcome 

compared to white people treated exactly the same (Inaba et al., 2013; Pui et al., 2008). 
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Furthermore, an increase in leucocyte count above 50x109/L is associated with poorer outcome 

(Inaba et al., 2013; Pui et al., 2008).  

The most important prognostic factor for children and adults and even for patients with low-

risk disease at initial diagnosis is the determination of the minimal residual disease (MRD) 

levels during the induction therapy (Inaba et al., 2013). To determine and quantify these drug 

resistant MRD cells, morphological methods are recently replaced by the more sensitive 

methods of flow-cytometry and PCR amplifications. The advantage of PCR is the high 

sensitivity; here MRD levels around 0.001 % can be measured. With flow-cytometry MRD 

levels around 0.01 % can be determined, but this method is fast, less expensive and is applicable 

to a broad range of patients, allowing a fast treatment adjustment (Inaba et al., 2013). 

Measurement of MRD levels three months after diagnosis is associated with following risk 

groups for outcome: No detectable MRD level is associated with low risk, MRD levels between 

10-4 and 5x10-4 are associated with medium risk, and MRD levels above 5x10-4 are associated 

with high risk (van Dongen et al., 2015). 

Taken together, although most ALL patients have a good prognosis, as survival rates are high, 

the prognosis for infants and adults is still poor due to frequent ALL relapse. Therefore, new 

treatment options are needed which target residual, treatment resistant cells and prevent ALL 

relapse. 

2.2 Biology of AL cells 

In order to prevent AL relapse by new treatment strategies, a deep knowledge of the biology of 

AL cells is necessary. The following chapter will give an overview about the most important 

adverse characteristics of AL cells, which make it difficult to treat and cure patients with AL 

and to prevent disease relapse. 

2.2.1 Drug resistance 

Drug resistant cells represent an important reason for treatment failure in AL. These cells are a 

major threat for ALL and AML patients as they survive initial chemotherapy, might persist in 

the patient at MRD levels, and are able to induce a tumor relapse with poor prognosis (Blatter 

and Rottenberg, 2015; Gokbuget et al., 2012b; Pettit et al., 2016). For example in childhood 

ALL resistance towards glucocorticoids is a major problem. ALL patients which are not 

responding toward glucocorticoid chemotherapy have in general a worse prognosis than 

patients with a response. The underlying mechanisms for resistance remain at least on part 
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elusive (Inaba and Pui, 2010). In general, despite their major clinical importance, the 

mechanisms leading to drug resistance and the basic biologic conditions of relapse are still 

poorly understood. For instance it is not known whether relapse-inducing cells exist before 

treatment or whether they develop due to treatment and it is unclear if constant or transient 

features determine relapse-inducing cells (Kunz et al., 2015). In addition, gained genetic 

alterations might increase the drug resistance of rare subclones. And even chemotherapy itself 

might pressure and select for the most aggressive and drug resistant cell clones. Besides drug 

resistant cells might be induced by a protective surrounding microenvironment, so that 

chemotherapeutics cannot reach these cells, or the microenvironmental conditions exert an 

impaired effect on these agents (Ishikawa et al., 2007).  

Furthermore, drug resistance is closely associated with dormancy of cancer cells as 

conventional chemotherapy mainly interferes with cell cycle dependent processes which are 

not active in dormant cells (Clevers, 2011; Zhou et al., 2009).  

Taken together the eradication of drug resistant cells is a major goal for new treatment 

strategies, as tumor relapse caused by drug resistant cells is associated with dismal prognosis.  

2.2.2 Dormancy 

In many tumors entities, relapse occurs after initial successful treatment and is associated with 

poor prognosis. Reasons for relapse are tumor cells that survived treatment and persist for 

longtime, sometimes even decades, as minimal residual disease (MRD) cells. One cause for 

their resistance and longtime persistence might be their dormant state (Aguirre-Ghiso, 2007; 

Essers and Trumpp, 2010; Schillert et al., 2013). As conventional chemotherapy is cell cycle 

dependent and mechanisms required for cell proliferation are not active in dormant cells, 

dormancy might be a reason for resistance to chemotherapy (Clevers, 2011; Zhou et al., 2009).  

Many different adult stem cells contain dormant cells and as cancer stem cells (CSC) share 

various characteristics of these cells, dormancy might be an important characteristic within 

CSC, too (Orford and Scadden, 2008; Schillert et al., 2013). 

As mouse hematopoietic stem cells (HSC) represent the stem cells best characterized, many 

studies identified the existence of dormant cells within this population (Cheshier et al., 1999; 

Passegue et al., 2005; van der Wath et al., 2009; Wilson et al., 2008; Wilson et al., 2007; 

Yoshihara et al., 2007). In contrast, only few studies investigated dormancy in cancer cells so 

far, as (I) small subpopulations are difficult to identify due to detection limits, (II) lack of 

adequate markers to identify dormant tumor cells, and (III) lack of adequate model systems 

(Schillert et al., 2013). Some studies connected dormancy of CSC in a specific tissue with 
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increased drug resistance. For ovarian tumor cells, it has been shown that the CD24+ stem cell 

population proliferates slower, is more tumorigenic and more resistant to cisplatin (Gao et al., 

2010). With the help of the proliferating dependent dye 5-(6)-Carboxyfluorescein-Succinimidyl 

Ester (CFSE), a subpopulation of dormant cells, which is more resistant to chemotherapy and 

is able to start proliferation, was detected in a xenograft model of human primary breast cancer 

cells (Moore et al., 2012).  

Even in BCR/ABL positive chronic myeloid leukemia, quiescent and Imatinib mesylate 

resistant stem cells have been identified (Essers and Trumpp, 2010). In addition, Guan and 

coworkers showed that most leukemia initiating cell (LIC) of primary AML cells were dormant, 

therefore mainly quiescent AML cells were able to induce a tumor in NOD/SCID mice (Guan 

et al., 2003). In a xenograft mouse model of AML, it has been shown that dormancy and 

chemotherapy resistance of CD34+CD38- human AML leukemia stem cell (LSC) are 

connected. Here AML LSC are quiescent, chemotherapy resistant, and enriched in the mouse 

bone marrow endosteal niche (Ishikawa et al., 2007; Saito et al., 2010a; Saito et al., 2010b). 

The bone marrow endosteal niche is defined as the region around the bone matrix with a 

distance of less than 100 µm to the closest bone matrix (Nombela-Arrieta et al., 2013). The 

niche itself is an elusive structure within the bone marrow microenvironment. Several cellular 

components, like osteoblastic, endothelial, and mesenchymal cell, have been identified to 

contribute to the niche, as well as the signaling by molecular cross-talk and soluble factors 

provided by these cellular components and the HSC (Kiel and Morrison, 2008; Wilson and 

Trumpp, 2006). 

Identifying dormant tumor cells in primary patients’ samples is rather challenging (Essers and 

Trumpp, 2010), but feasible with Ki-67 staining in certain ALL subtypes where an 

accumulation of non-proliferating cells after chemotherapy has been described (Lutz et al., 

2013). For these measurements, it remains unclear for how long dormancy persisted, as Ki-67 

staining gives a snapshot of a given moment, but fails to distinguish between long-term and 

short-term dormancy.  

Especially the localization and microenvironment of dormant hematopoietic and CSC are 

supposed to represent a cause for their dormancy (Ishikawa et al., 2007; Saito et al., 2010b; 

Zhou et al., 2009). Labeling with proliferation specific dyes enabled the localization of dormant 

HSC. These cells are mainly localized close to the bone surface, the endosteum (Arai et al., 

2004; Fleming et al., 2008; Wilson et al., 2008; Wilson et al., 2007). These sites are assumed 

to be specialized niches and are called the endosteal bone marrow niches, where several studies 

showed an enrichment of HSC (Wilson and Trumpp, 2006). In addition for AML stem cells the 
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localization to the endosteal bone marrow niche has also been shown (Ishikawa et al., 2007; 

Saito et al., 2010b; Zhou et al., 2009).  

Interaction and molecular crosstalk between niche and HSC, via cell-cell contacts and soluble 

factors, promote the localization and dormancy of HSC (Trumpp et al., 2010; Zhou et al., 2009). 

Several molecules have been identified which are associated with the regulation and activity of 

the bone marrow niche (Wilson 2006). 

One approach to overcome chemotherapy resistance of CSC is to overcome their dormancy. 

Dormant HSC can be activated and start to proliferate after treatment with granulocyte colony-

stimulating factor, interferon-α or arsenic trioxide. This activation sensitizes them toward 

chemotherapy treatment (Trumpp et al., 2010). Therefore the same has been proposed to 

overcome the dormancy and thus the resistance of LSC (Trumpp et al., 2010). 

In an AML xenotransplantation model, treatment with the cytokine G-CSF induced 

proliferation of former dormant LSC; subsequent treatment with the chemotherapeutic drug 

cytarabine induced a decrease of LIC frequency and a longer survival of mice (Saito et al., 

2010b).  

In summary, the subpopulation of dormant cells represents a major challenge in the treatment 

of cancer patients, and reversing their dormancy represents an important goal to overcome drug 

resistance, to prevent relapse and to cure cancer patients. New treatment strategies should aim 

at targeting dormant tumor cells by bringing them back into proliferation (Essers and Trumpp, 

2010; Saito et al., 2010b; Trumpp et al., 2010).  

2.2.3 Stemness 

In normal hematopoiesis, cells differentiate in several steps as a hierarchically organized 

differentiation tree from immature stem- and progenitor cells into specialized mature cells. 

Similarities between leukemia development and normal hematopoiesis led to the concept of 

cancer stem cells (CSC). The subpopulation of CSC differs from the bulk of tumor cells, as 

they represent a biologically distinct subpopulation, in AML with specific surface markers. 

CSC bear self-renewal properties, are responsible for tumor maintenance and relapse and they 

give rise to all tumor cells (Bonnet and Dick, 1997; Schillert et al., 2013; Visvader and 

Lindeman, 2008). CSC features are identical to those from adult stem cells. However, CSC 

might originate from more mature cells besides adult stem cells (Jordan et al., 2006). 

The gold-standard method to prove the existence of CSC in a certain tumor sample is 

xenotransplantation into immunodeficient mice, as CSC are defined by and unique in their 

potential to initiate a new tumor. Due to this functional phenotype, CSC are also called tumor 
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initiating cells. In literature, both terms are used identically, without distinction and with a 

certain transition between both terms (Bansal and Banerjee, 2009; Zhou et al., 2009). In 

leukemia, the term leukemia initiating cell (LIC) is frequently used, but also replaced by the 

term leukemia stem cell (LSC) (Matsushita et al., 2014).  

A CSC hierarchy has first been described in AML (Bonnet and Dick, 1997) and was also found 

in numerous solid tumors like breast cancer (Al-Hajj et al., 2003), pancreatic cancer (Hermann 

et al., 2007), and colorectal cancer (O'Brien et al., 2007).  

Many studies exist on LSC in AML, which makes them the best characterized CSC between all 

different tumor entities (Pollyea et al., 2014; Wang and Dick, 2005). LSC are capable to give 

rise to identical daughter cells and to more differentiated cells, and can be identified by their 

immunophenotype (Lapidot et al., 1994; Pollyea et al., 2014). Thus LSC share many 

characteristics of hematopoietic stem cells (HSC) (Bhatia et al., 1997; Guenechea et al., 2001). 

First studies identified LSC as negative for the expression of lineage markers (lin-), positive for 

CD34 (CD34+), and negative for CD38 (CD38-) (Bhatia et al., 1997; Bonnet and Dick, 1997; 

Reya et al., 2001). But recent studies showed that the phenotype of LSC is even more complex, 

with different expression of various markers appearing in individual patients or as a result of 

disease progression (Eppert et al., 2011; Sarry et al., 2011). In addition, it is proposed that LSC 

are mainly localized in specialized bone marrow niches, like it has been demonstrated for HSC 

(Ishikawa et al., 2007; Saito et al., 2010b; Wilson and Trumpp, 2006). These niches are 

necessary for the function of HSC, as they regulate the maintenance, self-renewal and 

differentiation of HSC.  

Only a small frequency of all AML tumor cells are LSC (Bonnet, 2008; Bonnet and Dick, 

1997). LSC is an operational term, as these cells sustain AML (Dick, 2008; Reya et al., 2001; 

Tan et al., 2006) and have been characterized by features like self-renewal, dormancy and 

treatment resistance. Therefore they are a clinically highly relevant subpopulation of 

challenging cells (Aguirre-Ghiso, 2007; Essers and Trumpp, 2010). These features are 

interdependent as, e.g., drug resistance might be a consequence of dormancy and temporary 

dormancy might represent a prerequisite for being a stem cell. If these features coexist in a 

given tumor cell, this cell is putatively able to induce relapse. In AML, it is difficult to eradicate 

LSC with standard chemotherapy as they have different characteristics compared to the bulk of 

tumor cells. Thus, LSC survive chemotherapy and might be responsible for tumor relapse 

(Schillert et al., 2013).  

In contrast, in ALL, a defined stem cell hierarchy has not yet been identified and phenotypic 

markers are unable to characterize the population of stem cells or predict self-renewal potential 
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(Kong et al., 2008; le Viseur et al., 2008). Many ALL cells display CSC properties and initiate 

leukemia in mice (Morisot et al., 2010; Rehe et al., 2013). Therefore, stemness seems to be an 

insufficient characteristic to describe the subpopulation of relapse-inducing cells in ALL. Since 

leukemia initiating potential is a feature of nearly every single cell in samples from ALL 

patients, ALL might even be functionally homogeneous regarding stemness. Nevertheless, ALL 

behaves like a non-homogeneous disease regarding additional characteristics; seminal studies 

revealed a clear genetic heterogeneity in ALL (Anderson et al., 2011; Mullighan, 2013); and 

the existence of MRD after treatment argues in favor of functional heterogeneity in ALL from 

a clinical point of view. 

In summary, many tumor entities, including AML contain a rare subpopulation of CSC which 

challenges tumor treatment, as cells differ from the bulk of tumor cells and often show treatment 

resistance. As these cells are able to induce a new tumor, relapse might occur due to the survival 

of only a few CSC. Even in ALL, where almost all cells seem to have tumor inducing potential, 

functionally heterogeneous subpopulations seem to exist, relapse occurs in many patients after 

initially successful treatment. For a final eradiation of the tumor, it is important to eradicate 

CSC (Wang, 2007). 

2.2.4 Intra-tumor heterogeneity 

The subpopulations within a tumor might differ regarding genetic, epigenetic and functional 

properties. The existence of MRD cells after treatment is a hallmark for the intra-tumor 

heterogeneity. Subpopulations with a survival benefit such as drug resistance or adverse 

genotype persist and represent a major problem for the cure of patients (Burrell et al., 2013; 

Marusyk et al., 2012; Metzeler and Herold, 2016).  

Recent developments in genomic profiling through sequencing technologies have revealed 

extensive genetic diversity between different tumors types, between the same tumor types from 

different patients, and even within the tumor cells of one patient (Burrell et al., 2013; Greaves 

and Maley, 2012). Here, individual mutations or chromosomal aberrations define different 

subclones. These subclones within one tumor are related to each other in a complex clonal 

architecture (Anderson et al., 2011; Greaves and Maley, 2012). By sequencing or multiplex 

fluorescence in situ hybridization, this complex subclonal architecture can be followed up and 

thus give an insight into the cancer evolution. Thereby the amount of alteration, the types of 

genetic alterations, and the shared mutations between different clones expose the relationship 

within the different clones (Ding et al., 2012; Greaves and Maley, 2012). This diversity can be 
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seen in many tumor entities, including ALL, where an evolution with many branches has been 

detected (Burrell et al., 2013; Mullighan, 2013).  

The development of the different cancer clones is considered as a Darwinian evolutionary 

process, meaning that the subclonal architecture develops during time. Selective pressure forms 

the different variants resulting in diverse functional characteristics for the individual clones 

(Ding et al., 2012).  

The main reason for the different variants is genetic instability, with an increased mutation rate 

which leads to the genetic heterogeneity. This genetic diversity forms the evolution of the 

cancer genome and is one reason for the phenotypic variations of the different subclones 

(Burrell et al., 2013). As most tumors show a kind of genomic instability, this seems to have a 

benefit for the tumor evolution. Normally the replication of the genome occurs with high 

precision, as monitoring and repair mechanisms only lead to a low mutation rate and failures in 

chromosome segregation are rare. But errors in the mechanisms that maintain genome integrity 

or the exposure to exogenous mutagens lead to an increase in the mutation rate (Burrell et al., 

2013). Different genomic instabilities lead to different genetic alterations, such as increased 

point mutations, small insertions and deletions, chromosomal rearrangements, and different 

chromosome numbers (Burrell et al., 2013).  

A reason for selective pressure during cancer evolution might be chemotherapy, as it selects for 

clones with drug resistance which here have a survival advantages (Greaves and Maley, 2012). 

In addition chemotherapy itself can induce new mutations and thereby has a direct influence on 

the evolutionary process (Burrell et al., 2013; Greaves and Maley, 2012). 

Often clonal evolution becomes noticeable when former effective treatment becomes later 

inefficient or is inefficient at relapse. This phenotypic evolution towards more aggressive clones 

can be explained by genotypic changes in the main tumor. These changes might result from 

additionally gained mutations, which lead to drug resistance or from former minor subclones 

with resistance, which than outcompete the other clones (Burrell et al., 2013; Marusyk et al., 

2012). This phenomenon has also been detected in AL. In AML and ALL the clonal 

development from diagnosis and the corresponding relapse samples has been studied. Here, it 

has been shown that the clonal composition in the relapse samples differs from the 

corresponding one at diagnosis, suggesting a clonal evolution process from diagnosis to relapse. 

The clones found in the relapse sample had a survival advantage, which might be because of 

additionally gained mutations responsible for drug resistance (Anderson et al., 2011; Ding et 

al., 2012; Mullighan, 2013). In the majority of cases, the clones found in the relapse samples 

could be related to the clones at diagnosis. In only 6 % of the cases, the relapse was genetically 
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not related to the subclones at diagnosis. Often the major relapse clone was already present at 

diagnosis as a minor subclone. In general, at relapse more alterations were detected, which 

might be because of the mutagenic chemotherapy or because of spontaneous mutations which 

lead to a survival benefit. In addition certain pathways were often altered in relapse samples 

suggesting a survival benefit for these mutations.  

In general, changes in the genotype of subclones are often associated with changes in the 

functional phenotype, like the patients’ prognosis or response to therapy. But phenotypic 

heterogeneity is not always generated through genetic diversity, furthermore stochastic events 

in gene expression or protein stability, microenvironmental differences, and epigenetic 

alterations also have an influence on the functional phenotype of subclones (Burrell et al., 

2013).  

Especially epigenetic heterogeneity has been shown in recent studies to account for differences 

of genetically identical subclones. Gene expression can be influenced by different DNA 

methylation patterns at gene promoters, which might then influence the functional phenotype 

like proliferation or drug sensitivity (Burrell et al., 2013).  

Some leukemia subtypes have a distinct epigenetic pattern such as an increased promoter 

methylation, which directly influences the corresponding gene expression levels. In AML and 

ALL several genes have been identified which are abnormally methylated (De Kouchkovsky 

and Abdul-Hay, 2016; Mullighan, 2013). But these findings also opened new perspectives for 

individual epigenetic treatment strategies. For leukemia the first epigenetic drugs, the DNA 

methyltransferase inhibitors 5-azacitidine and 5-aza-2′-deoxyazacytidine, are already in clinical 

use (Sato et al., 2017). 

Taken together the intra- tumor heterogeneity of AL, which involves different genetic, 

epigenetic, and functional subpopulations, provides a survival benefit for the tumor during 

chemotherapy. The cancer evolution and the related clonal heterogeneity are an important 

element for relapse. Therefore an effective treatment is challenging, as it should target all 

different subclones, but could also exert selective pressure which might lead to new mutations. 

Novel treatment strategies are urgently needed to target all subpopulation in order to prevent 

relapse. 
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2.3 In vivo models for AL 

As studies on the complex biology of AL cells cannot be performed directly in patients, suitable 

model systems have to be used. These model systems should mimic the situation in the patient 

in the best possible manner.  

Primary AL cells have restrictions as they do not grow in vitro, disabling their amplification. 

Primary cell material is limited, especially in children, and often not enough material can be 

isolated for a single experiment and experiments cannot be reproduced. Furthermore, AL cell 

lines are not a suitable model for complex studies because they display continuous proliferation, 

clearly discriminating them from relapse-inducing cells. In addition, cell lines changed clonal 

composition during the process of immortalization and in vitro passaging alienating them from 

the original patients sample (Pan et al., 2009). Furthermore, the number of available AL cell 

lines is inadequate regarding the diversity of AL subtypes (Gillet et al., 2011; Hausser and 

Brenner, 2005). 

Mouse models have the advantages to study leukemia cells within a complex living system 

including extrinsic factors like the microenvironment. They can be divided into syngeneic 

models, where a mouse leukemia is studied in the presence of a functional immune system, and 

xenograft models, where human leukemia cells are transplanted and studied in mice without 

functional immune system (Jacoby et al., 2014). For syngeneic mouse models, leukemia 

associated genes, which are known to be potential drivers of leukemogenesis, are modified, 

either through transgenic mice, or by genetic modification of primary HSC followed by 

transplantation into recipient mice, or by chemical carcinogens (Jacoby et al., 2014). To study 

human AML and ALL cells close to the patients’, the currently best available model system is 

the patient-derived xenograft (PDX) mouse model of AL (Lee et al., 2007; Liem et al., 2004; 

Townsend et al., 2016). 

2.3.1 Patient-derived xenograft (PDX) mouse model of AL 

PDX are generated by the injection of primary AL cells derived from patients into 

immunodeficient mice. By serial re-passaging of leukemic cells from mouse to mouse, the PDX 

sample is amplified (Siolas and Hannon, 2013). The first immunodeficient mice which could 

be used for the engraftment of leukemic cell, were mice with a mutation leading to severe 

combined immunodeficiency (SCID) (Bosma et al., 1983). This mouse enabled the engraftment 

of human hematopoietic cells, leukemia cell lines, and primary patient cells (Kamel-Reid et al., 

1989). But due to remaining immunity of the mice, engraftment rates were poor, which led to 
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the development of mouse strains with even stronger immunodeficiency. Here, the SCID mouse 

was backcrossed onto a nonobese diabetic (NOD) background, resulting in the NOD/SCID 

mouse with higher engraftment rates (Shultz et al., 1995). This mouse strain was further develop 

to generate mice with an almost completely absent immune system by additional mutation of 

the interleukin-2 receptor gamma chain. These NOD/SCID/gamma chain depleted (NSG) mice 

do virtually not have any mature T cells, B cells or natural killer cells, and an impaired innate 

immunity (Shultz et al., 2005), which leads to even increased engraftment rates of AML and 

ALL (Alruwetei et al., 2015; Schmitz et al., 2011; Terziyska et al., 2012; Townsend et al., 2016; 

Vick et al., 2015). In contrast to xenograft models of solid tumors, the development of the 

leukemia xenografts showed an orthotopic tumor distribution involving the bone marrow, 

blood, spleen and liver. Disease distribution is very similar to the situation in patients and the 

malignant cells reside in a similar microenvironment within the mouse bone marrow (Baersch 

et al., 1997; Liem et al., 2004; Lock et al., 2002; Townsend et al., 2016).  

ALL PDX models have been used to model specific ALL subtypes. Engraftment and 

distribution levels correlate with the clinical outcome in patients. Additionally, the ALL PDX 

model is used to predict clinical chemotherapy response in patients (Liem et al., 2004; Woiterski 

et al., 2013) and to search for biomarkers that enable the prediction of response and resistance 

towards treatment (Townsend et al., 2016). Established ALL PDX samples are highly reliable, 

allowing the prediction of engraftment and the monitoring of the engraftment by blood analysis 

(Castro Alves et al., 2012; Lock et al., 2005; Terziyska et al., 2012). Especially in NSG mice, 

engraftment rates for different types of primary ALL samples are high. Townsend et al. reported 

engraftment rates of 67.5 % for B-ALL and even 46.7 % for the previous difficult to engraft T-

ALL (Townsend et al., 2016). 

AML PDX models have been used to identify specific immunophenotypes on leukemia 

initiating cells (LIC) and certain surface markers indicating LIC. Higher numbers of stem cells 

identified by appropriate markers in primary samples correlated with higher engraftment rates 

in mice (Bonnet and Dick, 1997; Hope et al., 2003; Lapidot et al., 1994). Surface markers are 

also used for the identification of biomarkers, to predict response and resistance after treatment 

and to predict the success of treatment for genetically different subtypes (Townsend et al., 

2016). In addition AML PDX models are an attractive tool for the development of new 

treatment strategies targeting leukemia stem cells (LSC) (Hope et al., 2003). Compared to ALL 

PDX models, AML models are more difficult to handle, need longer engraftment times, and 

have a lower engraftment rate (Lee et al., 2007). In NSG mice, the engraftment rate for 
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repetitively transplantable primary AML samples is 23.2 %, which nowadays allowed the 

establishment of a large repository of established AML PDX samples (Townsend et al., 2016).  

PDX models of human AL provide an important tool to investigate numerous aspects of the 

complex biology of AL. They enable amplification of human leukemic cells and have been used 

for identify clinically relevant risk groups to evaluate new treatment strategies (Meyer and 

Debatin, 2011). AML PDX and ALL PDX cells have been shown to retain important 

characteristics of primary AL cells and to recapitulate most clinical aspects of the leukemia 

(Castro Alves et al., 2012; Meyer and Debatin, 2011; Schmitz et al., 2011; Terziyska et al., 

2012; Vick et al., 2015). 

In summary, the NSG PDX model represents an especially suitable model to study leukemic 

cells in vivo. PDX AL cells are very closely related to the primary patients’ leukemia and 

represent an important tool to investigate questions on the complex biology of AL.  

2.3.2 PDX model to identify a rare subpopulation of dormant ALL cells 

The hosting lab where the current study was performed, established the PDX mouse model of 

AL for several years, both for acute myeloid (AML) and acute lymphoblastic leukemia (ALL) 

(Castro Alves et al., 2012; Terziyska et al., 2012; Vick et al., 2015). Before the study started, 

they had begun using the model to search for surrogates of relapse-inducing cells using 

dormancy as anchor. The underlying idea was that long-term dormant cells in the PDX AL 

model might represent relapse-inducing cells in patients, with the major advantage that PDX 

cells would allow repetitive and functional studies. 

The study was started by Sebastian Tiedt. His first aim was to establish a method to isolate 

minute numbers of PDX cells from bone marrow. Towards this aim, he chose a molecular 

approach and expressed three different marker transgenes in PDX cells by lentiviral 

transduction (Figure 1). The advantage of the molecular approach was that it allowed an 

unbiased isolation of entirely all human PDX cells independent from the expression of 

endogenous surface antigens, which might be restricted to yet undefined leukemia 

subpopulations.  
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Figure 1: Generation of transgenic PDX ALL with high expression of artificial transgenes  
A Scheme of the lentiviral constructs applied for expression of transgenes; arrow indicates start of transcription; 
EF1α = elongation factor 1-alpha promoter; mKate = red fluorescent protein cloned from sea anemone Entacmaea 
quadricolor; mCherry = red fluorescent protein cloned from Discosoma sp.; NGFR = a truncated form of the 
human low affinity nerve growth factor receptor lacking the intracellular signaling domain. 
B Exemplary FACS blot (upper panel) and bioluminescence in vivo imaging (lower panel) of enriched transgenic 
PDX ALL-199 cells (upper panel) and PDX ALL-265 cells (lower panel). 
C Schematic workflow for the generation of genetically engineered PDX ALL cells. Primary patients ALL cell 
were injected i.v. into immunodeficient NSG mice. After engraftment and proliferation, PDX cells were serially 
passaged in further recipient mice. Furthermore, PDX cells were transduced with lentiviral constructs as depicted 
in B. PDX cells expressing the transgenes were enriched by FACS sorting and amplified.  

 

As transgenic markers, he decided for expressing (i) the fluorescent protein mKate or mCherry 

for cell tracking and enriching by flow cytometry (Fehse et al., 1997); (ii) the artificial antigen 

NGFR for cell enrichment by magnetic cell sorting; and (iii) luciferase for repetitively 

monitoring disease progression in the same mouse (Figure 1A, B) (Rabinovich et al., 2008; 

Terziyska et al., 2012). A schematic workflow how transgenic PDX samples were generated is 

depicted in Figure 1C. In brief, PDX cells were lentivirally transduced ex vivo either with just 

one construct containing mCherry and the luciferase or with two constructs, one containing the 
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red fluorescent protein mCherry and a luciferase and the other containing the truncated 

extracellular receptor nerve growth factor receptor (NGFR) (Figure 1A). As transduction 

efficiencies in PDX cells are often low, in average around 30 %, but sometimes even less than 

5 %, flow cytometry was used to enrich transduced PDX cells to more than 95 % purity. 

Sebastian Tiedt next transplanted PDX ALL cells expressing all three transgenes into NSG 

mice and re-isolated them back again from mouse bone marrow at early time points in the 

leukemic disease when only very low numbers of PDX cells were yet present. He isolated 

mouse bone marrow and enriched human PDX ALL cells in a first step by magnetic beads 

coupled with an antibody directed against NGFR. In a second step, he enriched PDX ALL cells 

further by sorting fluorochrome positive cells by flow cytometry. Using this approach, he 

enriched low numbers of PDX cells from mouse bone marrow by a factor well above 10.000 

(Tiedt, 2014).  

Once the method was established, Sebastian Tiedt started to search for long-term dormant PDX 

ALL cells using stainings with the proliferation-dependent dye Carboxyfluorescein-

Succinimidyl Ester (CFSE) (Tiedt, 2014).  

 

Figure 2: Schematic workflow of staining with CFSE and enriching rare transgenic, CFSE stained PDX 

cells from mouse bone marrow 
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CFSE remains covalently bound inside of cells in vivo over several months (Takizawa et al., 

2011) and is distributed onto daughter cells upon cell division. Figure 2 shows the staining and 

detection workflow for CFSE. 

Using CFSE as label and a first kinetic, Sebastian Tiedt indeed found a rare subpopulation of 

PDX ALL cells that did not participate in tumor growth, but instead remained dormant over 

prolonged periods of time (Tiedt, 2014) – which represented the starting point of my work 

described below. 

Taken together, the working group of the hosting laboratory for this study had generated tools 

and techniques which enables re-isolating minute numbers of PDX cells from mouse bone 

marrow using molecular markers as anchors and has established CFSE staining in the PDX 

model for identifying long-term dormant ALL cells. 

2.4 Aim of this work 

In acute leukemias, treatment resistant cells, which might persist as minimal residual disease 

(MRD), might later be responsible for relapse and thereby determine the prognosis of patients. 

Chemotherapy resistance is considered to be closely related to dormancy, but the responsible 

biological mechanisms are still unclear. To prevent relapse and improve the outcome in 

patients, new treatment strategies for elimination of chemotherapy resistant cells are urgently 

needed. However until now technical limitations impede the isolation and detailed 

investigations on relapse-inducing cells in AML and ALL. 

The first aim of the present work was to develop the individualized patient-derived xenograft 

(PDX) model further by optimizing the isolation of minimal human PDX cells from mouse 

bone marrow.  

This technique together with the label retaining dye CFSE was then used to evaluate the in vivo 

growth behavior of ALL and AML PDX in the bone marrow of NSG mice. 

The study aimed to investigate, whether PDX samples derived from different patients with ALL 

or AML would frequently contain a subpopulation of dormant cells. To characterize dormant 

cells on a functional level, the study investigated, whether dormant PDX ALL and AML cells 

displayed a behavior that challenges current anti-leukemia treatment, such as drug resistance, 

stem cell properties and relapse-inducing potential. Furthermore, the study addressed the 

question whether adverse characteristics of the dormant subpopulation were transient or 

constant and which influence the bone marrow environment might have on growth behavior of 

PDX AL cells. 
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The developed model and the consequent findings will be of translational importance as they 

establish a basis to develop new treatment strategies to eradicate relapse-inducing cells. 
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3 Material 

3.1 Mice 

NOD.Cg-Prkdcscid IL2rgtm1Wjl/SzJ (NSG)  (Shultz et al., 2005) 

 

NSG mice have a severe combined immunodeficiency/non-obese diabetic (NOD/SCID) 

background with an interleukin-2 receptor gamma chain knockout. As a result mice are 

immunodeficient; they have no mature T cells, B cells or natural killer cells and are deficient 

in cytokine signaling. Mice were obtained from the Jackson Laboratory (Charles River 

Laboratories France). 

3.2 Cell lines 

HEK-293T     DSMZ, Braunschweig, Germany 

(SV40 large T-antigen expressing 

human embryonic kidney cells)        

Nalm-6 (B cell precursor leukemia cells) DSMZ, Braunschweig, Germany 

3.3 Plasmids and primer 

Plasmid 

pRSV-Rev (392)    Addgene, Cambridge, MA, USA 

pMDLg/pRRE (393)    Addgene, Cambridge, MA, USA 

pMD2.G     Addgene, Cambridge, MA, USA 

pCDH-EF1α-extGlucT2A-mCherry  cloned by Michela Carlet 

pCDH-EF1α- NGFR    cloned by Michela Carlet 

 

Primer for finger printing of mitochondrial DNA 

Primer 456     5’TCCACCATTAGCACCCAAAGC3’ 

Primer 457     5’TCGGATACAGTTCACTTTAGC3’ 

 

3.4 Antibodies 

CD33hu-PE,     BD Bioscience, Heidelberg, Germany 
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 clone: WM-53, #555450  

CD38hu-PE,       BD Bioscience, Heidelberg, Germany 

clone: HB7, #345806 

CD45hu-APC,    BD Bioscience, Heidelberg, Germany 

clone: HI30, #555485 

CD45mu-APC,     Biolegend, San Diego, CA, USA 

clone: 30-F11,#103112 

CD45mu-APC-Cy7,    Biolegend, San Diego, CA, USA 

clone: 30-F11, #103115  

CD271hu-PerCP/Cy5.5 (NGFR)  Biolegend, San Diego, CA, USA 

 clone: ME20.4, #345111 

 

Mouse IgG1 APC Isotype Control,  BD Bioscience, Heidelberg, Germany 

clone: MOPC-21, #555751  

Mouse IgG1 APC Isotype Control,   Biolegend, San Diego, CA, USA 

clone: MOPC-21, #400119 

Mouse IgG1 PE Isotype Control,   BD Bioscience, Heidelberg, Germany 

clone: MOPC-21, #559320 

Mouse IgG1 PE Isotype Control,   Biolegend, San Diego, CA, USA 

clone: MOPC-21, #400140 

 

Mouse cell depletion kit   Miltenyi, Bergisch Gladbach, Germany 

NGFR Beads     Miltenyi, Bergisch Gladbach, Germany 

3.5 Buffer and media 

DMEM medium for cultivation of AL cell line cells      

DMEM (Gibco, San Diego, USA), 10 % FCS (Biochrome, Berlin, Germany), 1 % 

glutamine (Gibco, San Diego, USA) 

Glucose-containing Hepes buffer 

H2O, 5 % Glucose (Braun, Melsungen, Germany), 20 mM Hepes pH 7.1 (Gibco, San 

Diego, USA) 

Medium for cultivation of ALL PDX cells 
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RPMI-1640 (Gibco, San Diego, USA), 20 % FCS (Biochrome, Berlin, Germany), 2 mM 

glutamine (Gibco, San Diego, USA), 1 % penicillin-streptomycin (Gibco, San Diego, 

USA), 1 % gentamicin (Lonza, Allendale, USA), ITS-G (=6 mg/l insulin, 3 mg/l 

transferrin, 4 µg/l selenium) (Gibco, San Diego, USA), 1 mM sodium pyruvate (Sigma-

Aldrich, St. Louis, USA), 50 µM α-thioglycerol (Sigma-Aldrich, St. Louis, USA) 

Medium for cultivation of AML PDX cells 

StemPro-34 medium (Thermo Fischer Scientific, Waltham, USA), 1 % penicillin-

streptomycin (Gibco, San Diego, USA), 1 % glutamine (Gibco, San Diego, USA), 2 % 

FCS (Biochrome, Berlin, Germany), 10 µg/l recombinant human Flt-3 Ligand (R&D 

Systems, Minneapolis, USA), 10 µg/l Recombinant human SCF (PeproTech, Rocky Hill, 

USA), 10 µg/l Recombinant human TPO (PeproTech, Rocky Hill, USA), 10 µg/l 

Recombinant human IL-3 (PeproTech, Rocky Hill, USA) 

PDX short-term storage medium 

RPMI-1640 (Gibco, San Diego, USA), 20 % FCS (Biochrome, Berlin, Germany), 1 % 

penicillin-streptomycin (Gibco, San Diego, USA), 1 % gentamicin (Lonza, Allendale, 

USA), 2 mM glutamine (Gibco, San Diego, USA) 

Phosphate-buffered saline (PBS) 

H2O, 137 mM NaCl (Carl Roth, Karlsruhe, Germany), 2.7 mM KCl (Merck Milipore, 

Darmstadt, Germany), 10 mM Na2HPO4 (Sigma-Aldrich, St. Louis, USA), 1.8 mM 

KH2PO4 (Merck Milipore, Darmstadt, Germany) 

 Phosphate-buffered saline with EDTA (PBE) 

 PBS, 0.5 % BSA, 5 mM EDTA (Lonza, Allendale, USA) 

3.6 Kits 

BrdU APC Flow Kit    BD Bioscience, Heidelberg, Germany 

CellTrace CFSE Cell Proliferation Kit Life Technologies, Carlsbad, CA, USA 

for flow cytometry 

MinElute PCR Purification kit  Qiagen, Venlo, NL 

QIAamp DNA Blood Mini Kit  Qiagen, Venlo, NL 

3.7 Chemotherapeutics 

Cytarabine     cell pharm GmbH, Bad Vilbel, Germany 

Daunorubicine    PFIZER PHARMA GmbH, Berlin, Germany 
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DaunoXome     Galen, Craigavon, UK 

Doxorubicine     Accord Healthcare GmbH, Freilassing, Germany 

Epirubicine     TEVA GmbH, Ulm/Donau, Germany 

Etoposide     TEVA GmbH, Ulm/Donau, Germany  

Mitoxantrone     TEVA GmbH, Ulm/Donau, Germany 

Vincristine     cell pharm GmbH, Bad Vilbel, Germany 

3.8 Reagents and chemicals 

α-thioglycerol     Sigma-Aldrich, St.Louis, USA 

Baytril (2.5 %)    Bayer, Leverkusen, Germany 

BrdU      VWR, Radnor, USA 

BSA      Carl Roth, Karlsruhe, Germany 

Coelenterazine    Synchem OHG, Felsberg, Germany 

DAPI (4',6-diamidino-2-phenylindole) Sigma-Aldrich, St. Louis, USA 

 (1mg/ml) 

D-Luciferin     BIOMOL GmbH, Hamburg, Germany 

DMSO      Sigma-Aldrich, St. Louis, USA 

DNase I     Roche, Mannheim, Germany 

DNase I buffer    Roche, Mannheim, Germany 

dNTPs  (10 mM each)   Biozym, Hessisch Oldendorf, Germany  

EDTA (0.5 M)    Lonza, Allendale, USA 

FACS Lysing Solution 10x   BD Bioscience, Heidelberg, Germany 

FCS      Biochrome, Berlin, Germany 

Ficoll      GE Healthcare, Freiburg, Germany 

Gentamicin     Lonza, Allendale, USA 

Glucose (20 %)    Braun, Melsungen, Germany 

Glutamine     Gibco, San Diego, USA 

GoTaq  G2 DNA Polymerase   Promega, Madison, USA 

 + Reaction Buffer (5x) 

Heparin     Ratiopharm, Ulm, Germany    

Hepes (1 M)     Gibco, San Diego, USA 

Isopropyl alcohol    Merck Milipore, Darmstadt, Germany  

ITS-G (insulin-transferrin-selenium; 100x) Gibco, San Diego, USA 
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KCl      Merck Milipore, Darmstadt, Germany 

KH2PO4     Merck Milipore, Darmstadt, Germany 

NaCl      Carl Roth, Karlsruhe, Germany 

Na2HPO4     Sigma-Aldrich, St. Louis, USA 

Penicillin-Streptomycin (5000 U/ml) Gibco, San Diego, USA 

Polybrene (2 mg/ml)    Sigma-Aldrich, St. Louis, USA 

Recombinant human Flt-3 Ligand  R&D Systems, Minneapolis, USA 

Recombinant human IL-3   PeproTech, Rocky Hill, USA  

Recombinant human SCF   PeproTech, Rocky Hill, USA 

Recombinant human TPO    PeproTech, Rocky Hill, USA 

Sodium pyruvate (100 mM)   Sigma-Aldrich, St. Louis, USA 

Turbofect     Thermo Fischer Scientific, Waltham, USA 

Trypsin (1x)     Invitrogen, Karlsruhe, Germany 

Trypan blue     Sigma-Aldrich, St. Louis, USA  

3.9 Consumables 

Amicon-Ultra 15 centrifugal filter units  Merck Millipore, Darmstadt, Germany 

Cell strainer     Greiner bio-one, Frickenhausen, Germany 

Centrifuge tubes (15 ml and 50 ml)  Greiner bio-one, Frickenhausen, Germany  

Cryotubes     Thermo Fischer Scientific, Waltham, USA  

Disposable serological pipettes  Greiner bio-one, Frickenhausen, Germany 

 (5 ml, 10 ml, 25 ml, 50 ml) 

LS columns     Miltenyi, Bergisch Gladbach, Germany 

Microvette, Lithium-Heparin (100 µl) Sarstedt, Nümbrecht, Germany  

Needles RN G32 PST3 51MM  Hamilton, Reno, USA 

Petri dishes     Greiner bio-one, Frickenhausen, Germany 

Pipette filter tips TipOne   Starlab, Hamburg, Germany 

(10, 20, 200, 1000)  

Well-Plates for tissue culture   Corning, Corning, USA 

 (6-well, 12-well, 24-well) 
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3.10 Equipment  

Biological safety cabinet Safe 2020 Thermo Fisher Scientific, Langenselbold, 

Germany 

Cell sorter BD FACSAriaIII BD Bioscience, Heidelberg, Germany 

Centrifuge Rotanta 460R Andreas Hettich GmbH & Co. KG, Tuttlingen, 

Germany  

Quietek CO2 Induction Systems  Next Advance, Averill Park, USA 

Flow cytometry BD Calibur   BD Bioscience, Heidelberg, Germany  

Flow cytometry BD LSRFortessa  BD Bioscience, Heidelberg, Germany 

Incubator HERA CELL 150i Thermo Fisher Scientific, Langenselbold, 

Germany 

In vivo Imager   Caliper Life Sciences, Mainz, Germany 

IVIS Lumina II Imaging System 

Light microscope 550 1317   Zeiss, Jena, Germany 

Micro Scales Sartorius 2001 MP2  Sartorius AG, Göttingen, Germany 

NanoDrop ND-1000 Thermo Fisher Scientific, Langenselbold, 

Germany 

Table Centrifuge mini Spin   Eppendorf, Hamburg, Germany  

Thermocycler Primus 25 advanced  Peqlab, Erlangen, Germany 

3.11 Software 

Name      Application 

FlowJo V10     Analysis of flow cytometry 

GraphPad Prism 6    Drawing of graphs, statistical analysis 

Living Image software 4.4   Analysis of in vivo imaging 

Microsoft Office    Figure drawing, calculations, writing 
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4 Methods 

4.1 Ethical statements 

4.1.1 Patient material 

Patients’ acute leukemic cells were collected from peripheral blood or bone marrow aspirates 

that had been obtained from leftovers of clinical routine sampling before onset of therapy. 

Written informed consent was obtained from all patients and from parents/carers in the cases 

where patients were minors. 

For AML, primary AML blasts were obtained from patients treated at the Department of 

Internal Medicine III, Ludwig-Maximilians-Universität, Munich.  

For ALL, primary ALL blasts were obtained from children treated at the Dr. von Haunersches 

Kinderspital, Ludwig-Maximilians-Universität, Munich or for one sample from a child treated 

at the University Children’s Hospital in Zurich.  

The study was performed in accordance with the ethical standards of the responsible committee 

on human experimentation (written approval by Ethikkommission des Klinikums der Ludwig-

Maximilians-Universität München, Ethikkommission@med.uni-muenchen.de, April 2008 

(068-08) and September 2010 (222-10)) and with the Helsinki Declaration of 1975, as revised 

in 2000.  

4.1.2 Animal work 

All animal trials were performed in accordance with the current ethical standards of the official 

committee on animal experimentation (written approval by Regierung von Oberbayern, 

poststelle@reg-ob.bayern.de; July 2010, number 55.2-1-54-2531-95-10; July 2010, number 

55.2-1-54-2531.6-10-10; January 2016, number 55.2-1-54-2532-193-2015; May 2010, number 

55.2-1-54-2532-193-2015 and August 2016, number 55.2-1-54-2532.0-56-2016). 

4.2 The NSG mouse model of individual acute leukemias 

For amplification of patients’ acute leukemias cells, the previously described NSG (see 3.1 

Mice) mouse model was used, which had been established in the hosting laboratory (Shultz et 

al., 2005; Terziyska et al., 2012; Vick et al., 2015). 

NSG mice were maintained under specific pathogen-free conditions in the research animal 

facility of the Helmholtz Zentrum München, Munich, Germany. Animals had free access to 
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food and water, and were housed with a 12-hour light-dark cycle and constant temperature. 

After injection, mice were treated with Baytril to prevent infections. Therefore 1 ml of 2.5 % 

Baytril solution was added to 250 ml drinking water. 

4.2.1 Expansion of primary patient cells and PDX cells 

For amplification of leukemic blast from acute leukemia patients, up to 107 cells from peripheral 

blood or bone marrow aspirates were re-suspended in 100 µl autoclaved and filtered PBS and 

injected into 6-16 weeks old NSG mice via the tail vein.  

For amplification of PDX cells, 102 - 107 cells were injected. 

Engraftment was monitored by up to 2-weekly flow cytometry measurement of human cells in 

peripheral blood (see 4.2.3 Flow cytometry of human cells in mouse peripheral blood). Mice 

were sacrificed (see 4.2.4 Sacrificing mice by CO2 exposure) at (i) defined days post-injection 

for specific experiments, (ii) first clinical signs of disease (rough fur, hunchback, or reduced 

motility) or (iii) at signs of advanced leukemia, as measured by quantification of human cells 

in peripheral blood or by in vivo imaging. If leukemia became not apparent, mice were killed 

and analyzed 25 weeks after cell injection by latest. From engrafted mice, leukemic cells were 

harvested from enlarged spleens (see 4.2.5 Isolation of PDX cells from mouse spleen) or from 

bone marrow (see 4.2.6 Isolation of PDX cells from mouse bone marrow). Re-passaging was 

successful in all engrafted samples. Accuracy of sample identity was verified by repetitive 

finger printing using PCR of mitochondrial DNA (see 4.2.2 Repetitive finger printing using 

PCR of mitochondrial DNA) (Hutter et al., 2004). 

4.2.2 Repetitive finger printing using PCR of mitochondrial DNA 

For early detecting putative, involuntary sample mix-ups and for a regular authentication of 

PDX samples, distinct areas of mitochondrial DNA was routinely sequenced and analyzed for 

sample-specific single nucleotide variants (Hutter et al., 2004). 

DNA was prepared of 107 PDX cells with the Qiagen QIAamp DNA Blood Mini Kit according 

to manufacturer’s instructions. DNA concentration was measured at the NanoDrop and DNA 

was stored at -80 °C. 

The following 50 µl reaction mixture was used for Polymerase Chain Reaction (PCR): 
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Table 1: PCR reaction mix 

 

 

PCR was run Thermocycler with following program: 

 

Table 2: PCR reaction cycle 

 

 

PCR products were purified using the Qiagen MinElute 70-7000 bp according to 

manufacturer’s instructions. 100 ng/µl of purified PCR products were sent for Sanger 

sequencing to GATC (Biotech, Konstanz, Germany) using primer 456 and primer 457. 

Results from sequencing were analyzed by comparing them to the reference sequence of each 

patient sample. If the sequence was correct, the sample could be used for experiments; if the 

sequence was incorrect, cells were trashed and cells from earlier passages were sequenced and 

used. 
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4.2.3 Flow cytometry of human cells in mouse peripheral blood 

For quantification of human cells in mouse peripheral mouse blood, 50 µl blood from the tail 

vein was collected with a heparin coated glass capillary and pour into a lithium-heparin 

Microvette. 

The blood was incubated with 0.5 µl hCD38-PE and 0.5 µl mCD45-APC (ALL samples) or 

with 5 µl hCD45-APC and 3 µl hCD33-PE (AML samples) for 30 min in the dark at room 

temperature. 

1 ml FACS Lysing Solution was added to the stained blood samples and incubated for 15 min 

at room temperature for lysing the erythrocytes. The blood sample was washed twice with 3 ml 

FACS buffer at room temperature, and centrifuged at 300 g for 5 min. Afterwards flow 

cytometry analyses were performed with a FACSCalibur (see 4.4.7 Flow cytometry analysis) 

and the results were analyzed using the FlowJo software. If more than 1 % of human cells were 

detected, the sample was classified as engrafted.  

4.2.4 Sacrificing mice by CO2 exposure 

Mice were sacrificed by CO2 asphyxiation by the Quietek CO2 Induction Systems. The mouse 

to be sacrificed was placed in a CO2 empty cage (V = 7.67 l). The cage was closed with a 

Quietek lid, which was connected with the house CO2 system (100 % CO2) via a hose. 

Afterwards the Quietek CO2 Induction Systems was started. First the mouse/mice was/were 

anesthetized by a gas flow rate of 10 % of the chamber volume per minute (750 ml/min) for 

one minute. Afterwards the mouse/mice was/were sacrificed by a gas flow rate of 30 % of the 

chamber volume per minute (2250 ml/min) for four minutes. Before organs were removed, the 

clinical death of the mouse/mice was/were verified.  

4.2.5 Isolation of PDX cells from mouse spleen 

To isolate PDX cells from mouse spleen, the spleen was homogenized by smashing the organ 

through a 70 µm cell strainer with 10 ml PBS into a 50 ml Falcon tube, and filled up with PBS 

to 30 ml. Afterwards the cell suspension was under-laid with 10 ml Ficoll by a 51 mm needle 

and centrifuged (400 g, 30 min, RT, without rotor brake). After Ficoll gradient centrifugation 

mononuclear cells could be harvested as a layer at the interphase. The cells were washed twice 

with PBS (400 g, 5 min, RT). After washing, the cells were re-suspended in required buffer or 

PDX short-term storage medium depending on further use and counted using a Neubauer 

chamber (see 4.4.1 Determination of cell numbers). 
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4.2.6 Isolation of PDX cells from mouse bone marrow 

For isolation of PDX cells from mouse bone marrow, the isolated two femura, two tibiae, two 

hips, backbone and sternum were crushed using a mortar and pestle. The cells were suspended 

in PBS and filtered through a 70 µm cell strainer. The cells were washed twice with 10 ml PBS 

(400 g, 5 min, RT). After washing, the cells were re-suspended in required buffer or PDX short-

term storage medium depending on further use and counted using a Neubauer chamber (see 

4.4.1 Determination of cell numbers). 

4.2.7 Enrichment of PDX cells by magnetic cell separation (MACS) 

For enrichment of PDX cells from mouse bone marrow magnetic cell separation (MACS) was 

used. 

The isolated bone marrow cells from one mouse (see 4.2.6 Isolation of PDX cells from mouse 

bone marrow) harboring PDX cells transgenic for NGFR, were incubated with 200 µl anti-

human NGFR MicroBeads for 10 minutes at 4 °C. Cell suspension was divided onto two LS 

columns, prepared according to manufacturer’s instructions. Cells were recovered from the 

column according to manufacturer’s instructions and washed with PBS. 

The isolated bone marrow cells from one mouse (see 4.2.6 Isolation of PDX cells from mouse 

bone marrow) harboring PDX cells not transgenic for NGFR, were incubated with 100 µl mouse 

cell depletion kit MicroBeads for 20 minutes at 4 °C. Cell suspension was divided onto two LS 

columns, prepared according to manufacturer’s instructions. Cells were recovered from the 

column according to manufacturer’s instructions and washed with PBS. 

4.2.8 Enrichment of PDX cells by fluorescence-activated cell sorting (FACS) 

mCherry positive PDX cells from mouse bone marrow cell suspensions were enriched by flow 

cytometry. Cells obtained after MACS enrichment (see 4.2.7 Enrichment of PDX cells by 

magnetic cell separation (MACS)) were stained with 10 µg/ml DAPI to exclude dead cells. 

Cells were sorted using a BD FACSAriaIII, gating on lymphocytes in forward/side scatter, the 

gate negative for DAPI and positive for expression of mCherry (Figure 3).  
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Figure 3: Gating strategy to sort mCherry+ PDX cells from mouse bone marrow 

 

Alternatively, 10 % of the entire bone marrow cell suspension without prior MACS enrichment 

step was directly analyzed by flow cytometry with the identical staining and gating procedure. 

The entire cell suspension was recorded for quantifications. Depending on further use, sorted 

cells were either frozen (see 4.4.2 Freezing viable cells), re-injected into mice or used for 

different experiments. 

4.2.9 Isolation of dormant and proliferating cells 

Separating PDX cells into dormant label retaining cells (LRC) and fast proliferating non-LRC 

was performed within the FACS enrichment step (see 4.2.8 Enrichment of PDX cells by 

fluorescence-activated cell sorting (FACS)) by using two additional gates on CFSE positive or 

negative cells. To set the gate, CFSE intensity of CFSE labeled PDX cells either incubated for 

two to three days ex vivo or isolated from a mouse two to three days after injection was 

measured. Here major bleaching of CFSE was complete while a decisive CFSE indicated that 

proliferation was only minor or did not start yet. At day two or three the CFSE mean 

fluorescence intensity (MFI) was measured and defined as the absence of cell proliferation (“0 

divisions”). Day three CFSE MFI was divided by factor two to calculate CFSE bisections 

mimicking cell divisions (Figure 4).  

 

 

Figure 4: Gating strategy to define LRC and non-LRC gate 
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According to literature (Takizawa et al., 2011), seven CFSE MFI bisections were defined to 

correspond to the entire loss of the CFSE signal. Non-LRC were defined as all cells harboring 

CFSE content below seven CFSE MFI bisections. The LRC gate was set including all cells 

harboring high CFSE signal of below three CFSE MFI bisections so that a maximum of 3 cell 

divisions was allowed in LRC. 

4.2.10 Calculation of cell number doubling times in vivo 

For calculation of cell number doubling times in vivo, first absolute numbers of PDX cells re-

isolated from bone marrow after at least three different days after cell injection were determined 

according to 4.2.8 Enrichment of PDX cells by fluorescence-activated cell sorting (FACS). 

Then, growing curves with a logarithmic y-axis for isolated PDX cells were calculated in 

GraphPad Prism 6. From the linear range of these curves linear regression lines were calculated 

in GraphPad Prism 6. With help of the linear regression lines, exact y values were calculated 

for day 3 and day 7. Afterward the growth rate µ was calculated by following formula: 

 

μ = 	 (ln �� − ln�
)
(�� −	�
)  

y7 = calculated y-value for day 7 

y3= calculated y-value for day 3 

t7 = 7 

t3 = 3 

 

Finally the doubling time in days was calculated by following formula: 

 


�������	���� = 	 ln 2μ  

4.2.11 Bioluminescence in vivo imaging 

In vivo imaging was used to detect and follow up leukemia in mice. In vivo imaging is based 

on the bioluminescence through the oxidation of substrates by luciferase enzymes. Cells can be 

tracked by cloning luciferase systems into these cells, the application of the respective 

substrates and the follow up detection of the emitted light by ultra-sensitive cameras (Kim et 

al., 2015).  
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The gaussia luciferase gene was originally cloned from the marine copepod Gaussia prince. It 

catalyzes the oxidation of coelenterazine in the present of oxygen. The light emission through 

the reaction ranges from 480 to 600 nm (Kim et al., 2015).  

The firefly luciferase gene was originally cloned from the North American firefly Photinus 

pyralis. It catalyzes the oxidation of D-luciferin in the presence of ATP, Mg2+ and oxygen and 

thereby emits light with a peak at 562 nm (Kim et al., 2015; Rabinovich et al., 2008). 

For in vivo imaging of NSG mice engrafted with PDX cells expressing gaussia or a recombinant 

codon-optimized form of firefly luciferase (effluc), the IVIS Lumina II Imaging System was 

used as previously described (Barrett et al., 2011; Bomken et al., 2013; Terziyska et al., 2012). 

Mice were anesthetized with isoflurane and immobilized in the imaging chamber. 

For imaging of PDX cells expressing gaussia luciferase, coelenterazine, dissolved in acidified 

methanol to a final concentration of 10 mg/ml, was used. Shortly before injection, 10 µl (= 100 

µg coelenterazine) was diluted in 200 µl sterile glucose-containing Hepes buffer and injected 

into the tail vein. Immediately after injection, mice were imaged for 15 seconds using a field of 

view of 12.5 cm with binning 8, f/stop 1 and open filter setting. Depending on imaging signal 

binning and f-stop were adjusted. 

For imaging of PDX cells expressing effluc (Rabinovich et al., 2008), D-Luciferin dissolved in 

sterile PBS to a final concentration of 30 mg/ml was injected at 150 mg/kg into the tail vein. 

Pictures were taken immediately for 15 sec or up to two minutes using a field of view of 12.5 

cm with binning 8, f/stop 1 and open filter setting. Depending on imaging signal binning and f-

stop were adjusted. 

The Living Image software 4.4 was used for data acquisition and quantification of light 

emission. 

4.2.12 In vivo treatment of mice 

NSG mice were injected intravenously (i.v.) with 1x107 PDX cells and were treated once or 

daily for three adjacent days starting on day seven after cell injection. 

Drug concentrations for treatment of mice were calculated from clinically relevant 

concentrations converting the human doses to mouse equivalent doses based on body surface 

area (Sharma and McNeill, 2009). Therefore first the human dose in mg/m2 was converted into 

the human dose in mg/kg using the human km factor of 37: 
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Next the human dose in mg/kg was converted into the mouse equivalent dose in mg/kg using 

the conversion factor 12.3: 

 

������	
���	��	��
�� = ℎ����	
���	��	��

�� 	 	12.3 

 

Control animals received PBS intraperitoneal (i.p.) or i.v. and all cytotoxic drugs were diluted 

in sterile PBS. Vincristine (VCR), etoposide (ETO), cyclophosphamide (CYCLO), cytarabine 

(ARA-C), amsacrine (AMSA), epirubicin (EPI), and DaunoXome (DNX) were used for 

treatment of mice depending on injected sample. Unless otherwise noted, the treatment scheme 

listed in Table 3 were applied. 

Mice were taken down 3 days after treatment start, bone marrow was collected, and PDX cells 

were isolated (4.2.6 Isolation of PDX cells from mouse bone marrow) and analyzed (4.4.7 Flow 

cytometry analysis).  
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Table 3: Treatment scheme of mice injected with PDX samples 

 

4.2.13 Limiting dilutions transplantation assay (LDTA) 

NSG mice were injected i.v. with limiting numbers of PDX cells. Development of leukemia 

was monitored by bioluminescence in vivo imaging (see 4.2.11 Bioluminescence in vivo 

imaging) every 7 to 14 days after cell injection or by quantification of human cells in peripheral 

mouse blood (see 4.2.3 Flow cytometry of human cells in mouse peripheral blood) every second 

week. Here, first the mice with the highest amount of injected cells were analyzed. When these 

mice showed a positive engraftment, mice who received the next dilution were analyzed too. 

Leukemia initiating cells (LIC) frequencies were determined according to Poisson statistics, 

using the ELDA software application (http://bioinf.wehi.edu.au/software/elda/) (Hu and Smyth, 

2009). 
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4.2.14 5-Bromo-2'-desoxyuridine (BrdU) labeling of proliferating PDX DNA 

To label DNA of proliferating PDX cells with BrdU, mice engrafted with PDX cells were fed 

with BrdU-containing drinking water (0.8 mg/ml) during the last seven days before cell 

isolation. BrdU was dissolved in H2O to a concentration of 12 mg/ml and stored at 4 °C. BrdU 

solution was diluted in drinking water of mice to a final concentration of 0.8 mg/ml every day, 

as BrdU is unstable at room temperature. 

4.3 Genetic engineering of PDX cells 

All genetic engineering procedures and constructs were approved by the Regierung von 

Oberbayern (written approvals September 2008, number 55-8791-8.549.1460, January 2010, 

number 55-8791-8.549.1562, and June 2016, number 55.1-8791-8.549.2261. All work with 

lentiviruses was performed under S2 conditions.  

For genetic engineering of PDX cells, a third generation lentivirus system was used (Dull et al., 

1998; Zufferey et al., 1999). 

4.3.1 Lentivirus production in HEK-293T cells 

For production of lentiviruses, the adherent cell line HEK-293T was used as packaging cell 

line. HEK-293T cells were grown in DMEM medium in a 75 cm2 culture flask. When cells 

reached 50-80 % confluency, medium was exchanged and transfection solution was prepared. 

For this purpose the packaging plasmids 392 (2.5 µg), 393 (5 µg) and pMD2.G (1.25 µg) and 

the respective transfer vector (2.5 µg) were mixed with 24 µl Turbofect and filled up with 

DMEM to a final volume of 1 ml. The solution was incubated for 20 min at RT and afterwards 

added dropwise to the cells in one culture flask. After incubation for three days cell suspension 

was transferred into a Falcon tube and centrifuged (400 g, 5 min, RT). Supernatant was filtered 

through a 0.45 µm filter and concentrated by centrifugation (2000 g, 30 min, RT) using 

Amicon-Ultra 15 centrifugal filter units until a remaining volume of 200-250µl. The 

concentrated virus was frozen in aliquots of 10 µl and stored at -80 °C.  

4.3.2 Determination of lentivirus titer 

For quality monitoring, the virus titer of the produced lentiviruses (see 4.3.1 Lentivirus 

production in HEK-293T cells) was determined on Nalm-6 cells. 0.5 x 106 cells in 0.5 ml RPMI 

were plated in 5 wells of a 24-well plate. Increasing amounts of virus (control, 1 µl, 3 µl, 10 µl, 
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25 µl) and 8 µg/ml polybrene were added to the cells. 4 days after transduction, cells were 

washed three times with PBS (400 g, 5 min, RT) and the percentage of positive transduced 

Nalm-6 cells was determined by flow cytometry (see 4.4.7 Flow cytometry analysis) for each 

virus concentration. The virus titer was calculated by following formula: 

 

#����	����� = 	 $%	 ∙ '( ) 	*+/�� 
 

F = % of transduced cells 

Z = number of cells at infection 

V = Volume of virus in ml 

 

For this study virus titer between 108 TU/ml and 3x108 TU/ml were used. 

4.3.3 Lentiviral transduction of PDX cells 

107 freshly re-isolated PDX cells were resuspended in 1 ml of medium for cultivation of ALL 

PDX cells or medium for cultivation of AML PDX cells were plated in a 6-well plate. 20 µl of 

virus (see 4.3.1 Lentivirus production in HEK-293T cells) containing the required transgene(s) 

and 8 µg/ml polybrene were added to the cells. 24 h after transduction, cells were washed three 

times with PBS (400 g, 5 min, RT), re-suspended in 100 µl PBS and injected into a mouse. 

Transduction rate was assessed by determining percentage of transgene expression by flow 

cytometry (see 4.4.7 Flow cytometry analysis). 

4.3.4 FACS sorting to enrich genetically engineered cells 

For enrichment of transgene expressing cells (see 4.3.3 Lentiviral transduction of PDX cells) 

sorting via a BD FACSAriaIII was performed. Freshly isolated (see 4.2.5 Isolation of PDX cells 

from mouse spleen or 4.2.6 Isolation of PDX cells from mouse bone marrow) or thawed (see 

4.4.3 Thawing cells) PDX cells were filtered through a 70 µm cell strainer. PDX cells which 

were transfected with pCDH-EF1α-NGFR were stained for NGFR (see 4.4.6 Antibody staining 

of cells and staining of dead cells). Afterwards cells were washed with PBS (400 g, 5 min, RT). 

PDX cells were re-suspended in PBS or PDX short-term storage medium to a concentration of 

107 cells/ml. Cells were stained with DAPI to exclude dead cells (see 4.4.6 Antibody staining 

of cells and staining of dead cells). For sorting a 100 µm nozzle and the adjustment “purity” 
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was used. The cells were sorted into medium for cultivation of ALL PDX cells or PBS 

supplemented with 10 % FCS.  

4.4 Ex vivo methods 

4.4.1 Determination of cell numbers 

Cell numbers were determined by a “Neubauer” counting chamber.  

From cell solutions a suitable concentration from 0.25 x 106 cells/ml to 1 x 106 cells/ml was 

prepared and 10 µl were filled into the counting chamber covered with a glass cover. Using a 

light microscope, cells in all 4 squares were counted. Here cells touching the lower and right 

limits were included, unlike cells touching the upper and left limit. If number of counted cells 

in all 4 squared was below 100, the cell concentration was too low. If number of counted cells 

in all 4 squared was above 400, the concentration was too high. 

For counting living cell, cell dilutions were mixed 1:1 (v/v) with 0.4 % trypan blue (w/v) before 

filling them into the counting chamber. Under the microscope living cells appear colorless and 

bright whereas dead cells were stained blue. 

Cell concentration was calculated as follows: 

 

-���	-��-��������� = 	 (����	�.	-�����
	-����)	 	(
�������	.�-���)	 	100	-����/�� 

4.4.2 Freezing viable cells 

Cells for later sorting (see 4.3.4 FACS sorting to enrich genetically engineered cells) were 

frozen at 5 x 107 cells/ml and all other cells were frozen at 107 cells/ml. Cell pellets were re-

suspended in 0.5 ml FCS per cryotube. Afterwards 0.5 ml freezing medium (80 % FCS + 20 % 

DMSO v/v) per cryotube were prepared and added dropwise to the cell suspension. 1 ml of the 

cell suspension was transferred into each cryotube. For a cooling rate of 1°C/min, cryotubes 

were placed into a freezing container, filled with isopropyl alcohol and stored at -80 °C. After 

24 h cryotubes were removed from freezing container and either stored at -80 °C for short term 

storage or in liquid nitrogen at -196 °C for long-term storage. 

4.4.3 Thawing cells 

To obtain cells with high viability, they were thawed by the thawing protocol of Dominique 

Bonnet (Bonnet, 2008). 
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Frozen cells (see 4.4.2 Freezing viable cells) were rapidly thawed in a 37 °C water bath. 100 µl 

DNase (1 mg/ml) were added dropwise to the thawed cells and mixed. Cells were transferred 

into a 50 ml tube and 1 ml FCS was added dropwise. After waiting for 1 min 10 ml PBS 

supplemented with 2 % FCS was added slowly. After waiting for 1 min cell suspension was 

slowly filled up to 30 ml with PBS + 2 % FCS. Afterwards cells were centrifuged (200 g, 4 min, 

RT). 

4.4.4 Ex vivo culture of PDX cells 

For ex vivo culture, PDX cells were diluted in medium at a concentration of 106 cells/ml. ALL 

PDX cells were incubated in medium for cultivation of ALL PDX cells and AML PDX cells in 

medium for cultivation of AML PDX cells. Cells were transferred into well plates and incubated 

at 37 °C, 5 % CO2. 

Ex vivo culture of PDX cells did not exceed three days, therefore no medium change was 

necessary.  

4.4.5 5-(6)-Carboxyfluorescein-Succinimidyl Ester (CFSE) staining of cells 

For labeling cells with 5-(6)-Carboxyfluorescein-Succinimidyl Ester (CFSE), freshly isolated 

PDX cells were suspended in pre-warmed (37 °C) PBS supplemented with 0.1 % BSA at a 

concentration of 106 cells/ml. Carboxyfluorescein diacetate succinimidyl ester (CFDASE) was 

suspended in DMSO to a concentration of 5 mM. Afterwards the diluted CFDASE was added 

to the cell suspension to a final concentration of 10 µM and incubated for 10 minutes at 37 °C. 

After incubation the staining was stopped by adding five times the original staining volume of 

cold RPMI supplemented with 10 % FCS and incubation for 5 min on ice. This step removes 

any free dye. Cells were centrifuged (400 g, 5 min, RT) and re-suspended in PBS for direct 

injection into recipient mice, or in appropriate medium. 

4.4.6 Antibody staining of cells and staining of dead cells 

A NGFR staining 

PDX cells transfected with pCDH-EF1α-NGFR, were stained with 5 µl/100 µl CD271hu-

PerCP/Cy5.5 (NGFR) antibody for 30 min at 4 °C.  
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B muCD45 staining 

Bone marrow suspension (4.2.6 Isolation of PDX cells from mouse bone marrow) was diluted 

in PBS to a concentration of 4 x 108 cells/ml, stained 1:100 (v/v) with CD45mu-APC-Cy7 

antibody and incubated for 30 min at 4 °C.  

 

C 5-Bromo-2'-desoxyuridine (BrdU) staining 

The detection of BrdU incorporation was performed according to maufacturer’s instructions of 

the BrdU Flow Kit (3.6 Kits). 

 

D 4',6-diamidino-2-phenylindole (DAPI) staining 

To exclude dead cells 10 µg/ml DAPI was added to the cell suspension immediately prior to 

measurement.  

 

After incubation time cells were washed with PBS (400 g, 5 min, RT) and re-suspended in PBS 

to a final concentration of 107 cells/ml. 

Stained cells where analyzed by flow cytometry, using either a BD LSRFortessa or a BD 

FACSAriaIII (see 4.4.7 Flow cytometry analysis). 

4.4.7 Flow cytometry analysis 

Flow cytometry analyses were performed using a BD LSRFortessa, a BD FACSAriaIII, or a 

BD FACSCalibur. Fluorescent proteins (mKate, mCherry) and other fluorochromes (APC-Cy7, 

PerCP-Cy5.5, DAPI,) were measured using the laser and filter settings indicated in Table 4. 

PDX samples were gated for living cells in FSC/SSC and for respective fluorochromes.  

 

Table 4: Filter settings of flow cytometry 

Laser [nm] Longpass Filter [nm] Bandpass Filter [nm] Parameter 

LSRFortessa    

355 505 525/50 

450/50 

 

Indo-1 

DAPI 

405 595 

475 

605/12 

525/50 

450/50 

 

Qdot 605 

Qdot 525 

Pacific Blue 

488 600 695/40 PerCP-Cy5.5 
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505 530/30 

499/10 

 

FITC, CFSE 

SSC 

561 750 

685 

635 

600 

570 

 

780/60 

710/50 

670/30 

610/20 

585/15 

PE-Cy7 

PE-Cy5.5 

PE-Cy5 

mCherry 

PE 

640 750 

710 

 

780/60 

730/45 

670/14 

 

APC-Cy7 

Alexa Fluor 700 

APC-Cy7 

FACSAriaIII    

375/405 735 

610 

556 

502 

780/60 

616/23 

584//42 

530/30 

450/40 

 

Qdot710 

Qdot605 

PacOrange 

Cerulan 

DAPI 

488 655 

502 

 

695/40 

530/30 

488/10 

 

PerCP-Cy5.5 

FITC, CFSE 

SSC 

561 735 

630 

600 

780/60 

670/14 

610/20 

582/15 

 

PE-Cy7 

PE-Cy5 

mCherry, mKate 

PE 

633 735 780/60 

660/20 

 

APC-Cy7 

APC 

FACSCalibur    

488  488/10 

530/30 

585/42 

>670 

SSC 

FL1 FITC 

FL2 PE 

FL3 PerCP 

635  661/16 FL4 APC 
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4.5 Statistics 

Two-tailed unpaired t-test was applied to determine the significance of relative reduction rates 

upon drug stimulation. F-test was applied to compare variances and in cases in which variances 

differed significantly, Welch’s correction was employed. All statistical analyses were 

calculated using GraphPad Prism 6 software. 

LIC frequencies were calculated according to Poisson statistics using the ELDA software 

application (http://bioinf.wehi.edu.au/software/elda) (Hu and Smyth, 2009). 
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5 Results 

Drug resistant cells that survive treatment might induce relapse in acute leukemias (AL) patients 

and therefore represent a major obstacle for curing AL. It remains a major challenge to isolate 

high numbers of drug resistant cells directly from patients as these cells are very rare; therefore, 

data on the functional characteristics of these important cells does not exist in the literature. 

To overcome this obstacle, the patient-derived xenograft (PDX) model was used to study 

patients’ tumor cells in vivo (Kamel-Reid et al., 1989; Liem et al., 2004; Shultz et al., 2005). 

The aim was to identify, isolate and characterize drug resistant cells with relapse-inducing 

potential from patients’ AL samples, using their in vivo resting phenotype as anchor.  

The following result section is divided into three parts; first, the optimization and the 

establishment of two methods to isolate minute amounts of PDX cells out of mouse bone 

marrow is described. Second, data are presented which reveal the presence of long-term resting 

PDX cells in patient samples of diverse leukemia subtypes. Third and last, certain functional 

properties of long-term resting PDX cells are described. 

These results will help to understand relapse-inducing cells in more detail and to ultimately 

develop treatment strategies to target relapse-inducing cells for a better prognosis of AL 

patients. 

5.1 Pool of transfected AL samples 

The overall study on dormant ALL cells was started by Sebastian Tiedt who mainly worked 

with two high risk relapse samples ALL-199 and ALL-265 (Tiedt, 2014). Therefore the current 

work was started by establishing a broader pool of PDX AL cells with the aim to be more 

representative for the heterogeneity within AL. Cells from different patients, with different AL 

subtypes and at different stages of disease were chosen for the experiments. Table 6 and Table 

5 show the five AML and the four ALL PDX samples that were used for the main experiments 

within this study. Information on all further samples that were used in this study is shown in 

Table S 2 and Table S 1. 
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Table 5: Clinical data of AML patients and sample characteristics of AML PDX samples used for main 

experiments. 

 

 

The passaging time in mice, defined as the days from injection of around 107 cells per mouse 

until mice had to be sacrificed due to end stage leukemia, was between 30 and 130 days with 

an average of 66 days for AML and 59 days for ALL samples. Furthermore and for time saving 

reasons, all but one sample had passaging times below 50 days limiting the aim to represent the 

heterogeneity of AL. 

For the main experiments in AML, samples expressed mCherry and luciferase were used to 

facilitate enrichment from mouse bone marrow. The transgenes had already been expressed in 

the PDX cells by other laboratory group members before. For the main experiments in ALL, 

samples expressing mCherry, luciferase and/or NGFR were used. mCherry transfection was 

performed for these samples within this study.  
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Table 6: Clinical data of ALL patients and sample characteristics of ALL PDX samples used for main 

experiments. 

 

 

5.2 Isolation of minute numbers of PDX cells from mouse bone marrow 

Minute numbers of treatment resistant cells might be responsible for relapse in patients. To 

improve treatment and prognosis of patients, investigations on these cells are necessary, but 

technical limitation hampered functional characterization of these challenging cells so far. The 

present study used the PDX AL model and concentrated on the first 3 weeks of AL growth in 

mice. Here, the low tumor burden is mainly restricted to bone marrow without major 

involvement of further organs (Barrett et al., 2011; Bomken et al., 2013) and reliable isolation, 

enrichment and detection of very low numbers of PDX cells from mouse bone marrow was 

necessary (Figure 5). 

When 107 ALL-199 PDX cells were injected into two mice and re-isolated after two or 42 days 

from mouse bone marrow, huge differences in the number of PDX cells became visible. After 

two days, human cells were measured which had successfully homed to the bone marrow which 

were only a 0.21 % of all living mononuclear cells in mouse bone marrow after transplantation 
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of ALL-199, whereas after 42 days 91.6 % of all living mononuclear cells in mouse bone 

marrow were human (Figure 5).  

 

 

Figure 5: Minute numbers of PDX cells exist at early time points in the mouse bone marrow  
Upper panel: original FACS data of mouse bone marrow cells, gated on the living lymphocyte population (DAPI-

) two and 42 days after injection of 107 ALL-199 PDX cells. Lower panel: scheme indicating that at early time 
points after injection of AL PDX only minute numbers of human PDX can be detected in the mouse bone marrow, 
whereas full blown leukemia consist of nearly 100 % human PDX cells in mouse bone marrow. 

 

For isolation and enrichment of low numbers of PDX cells from mouse bone marrow, cells 

transgenic for NGFR and a fluorochrome were used in the enrichment method established by 

Sebastian Tiedt (Tiedt, 2014). 

Transgenes allowed the effective enrichment of PDX cells from mouse bone marrow in a 

twostep procedure. A first enrichment step consisted in magnetic cell separation (MACS) of 

NGFR-expressing PDX ALL cells from the entire mouse bone marrow isolated. The second 

consecutive enrichment step consisted in flow cytometry enrichment of red fluorescent protein 

mKate expressing cells out of the cell suspension obtained after MACS enrichment. Here cells 

obtained after MACS enrichment were stained with DAPI to exclude dead cells and with anti-

muCD45 antibody to exclude mouse hematopoietic cells (see 4.2.7 Enrichment of PDX cells 

by magnetic cell separation (MACS) and 4.2.8 Enrichment of PDX cells by fluorescence-

activated cell sorting (FACS)). 
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Within this work the NGFR MACS FACS procedure was optimized to save time and material. 

As the red fluorescent protein mKate used by Sebastian Tiedt was not bright enough to clearly 

discriminate between transfected and non-transfected cells, cells were transfected with 

mCherry, as this fluorochrome has higher mean fluorescent intensity (MFI) (Figure 6). 

 

 

Figure 6: The red fluorescent protein mCherry has higher MFI than the red fluorescent protein mKate 
107 ALL-199 PDX cells expressing mKate or mCherry were injected i.v. into mice, and after 10 days re-isolated 
from mouse bone marrow and analyzed for red fluorescent color. 

 

For mKate alone it was not possible to clearly separate the positive PDX population from the 

negative mouse population by FACS. PDX cells expressing mCherry could be reliably 

identified in flow cytometry, and no additional anti-muCD45 staining was necessary to 

discriminate human from mouse cells (Figure 6). In addition, a titration of the magnetic anti-

NGFR beads was performed, to reduce cost. 4x108 whole bone marrow cells isolated from 

leukemia-free NSG mice were mixed with 8x105 ALL-199 PDX cells expressing mCherry and 

NGFR, and with different amounts of magnetic anti-NGFR beads. As highest amount of beads 

the company instruction (800µl) was used. For titration steps different amounts of beads until 

1/80 of company instructions (10µl) were added to the cell suspension. 

Afterwards MACS-based enrichment was performed on the mixtures, and collected cells were 

measured and quantified by flow cytometry gating (i) on the lymphocyte gate in forward/side 

scatter and (ii) the gate negative for DAPI and positive for mCherry (Figure 7). 

The graph in Figure 7 shows clearly that no cell loss was obtained if at least 100 µl of beads 

were used. When less beads were used the amount of isolated PDX cells decreased. To avoid 

cell loss during the enrichment steps, 200 µl of anti-NGFR beads were used for all further 

experiments. By reducing the amount of required beads by factor 4, the cost for beads could be 

reduced by factor 4 and thus substantially. 
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Figure 7: Optimization of NGFR MACS procedure 
4x108 mouse bone marrow cells were mixed with 8x105 ALL-199 PDX cells expressing mCherry and different 
amounts of magnetic anti-NGFR beads; MACS-based enrichment by NGFR was performed and collected cells 
were measured by flow cytometry. Total amount of mCherry positive cells was quantified by flow cytometry. 

 

As a second approach and to spare the second lentiviral transduction step for the expression of 

recombinant NGFR, a MACS based enrichment method which was independent of NGFR 

expression and instead used a newly commercially available so called “mouse cell depletion 

kit, which came on the market 2014. Here mouse cells from the bone marrow were captured by 

a commercial available mix of mouse antibody beads. During magnetic separation labeled 

mouse cells are captured in the columns and unlabeled cells were directly collected (Agorku et 

al., 2014). After this altered MACS enrichment step 1, further enrichment was performed by 

flow cytometry targeting on the transgenic mCherry identically as described above. To establish 

this enrichment method, the required amount of mouse cell depletion beads were determined 

by titration: 4x108 mouse bone marrow cells were mixed with 8x105 mCherry expressing PDX 

cells and different amounts of magnetic beads. Theoretically, if lower amounts of beads are 

used, lower amounts of mouse cells are captured and therefore the negative fraction including 

the human PDX cells would increase. Therefore here the read out was the measurement time at 

the flow cytometer for the negative fraction. To perform experiments with four mice on one 

day, measurement time of one mouse should not exceed one hour (Table 7).  

Table 7 shows that all tested amounts of beads lead to measurement times below one hour. To 

save material the lowest amount of beads (100µl) was used for all further experiments. 
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Table 7: Optimization of mouse cell depletion MACS to enrich minute numbers of PDX cells from mouse 

bone marrow cells 

 

 

Next, the mouse cell depletion method was validated, to ensure that it can isolate minute 

numbers of PDX cells from mouse bone marrow. Different numbers of mCherry expressing 

PDX cells were mixed with mouse bone marrow cells followed by the new enrichment 

procedure to quantify recovered PDX cell (Table 8).  

 

Table 8: Twostep procedure with mouse cell depletion MACS allows enrichment of minute numbers of PDX 

cells from mouse bone marrow 

 

 

A mouse bone marrow from a mouse without injected or mixed in PDX cells only showed 6 

false positive events in the DAPI- mCherry+ population. This background amount was always 

subtracted from all measured mCherry positive PDX samples to determine the absolute amount 

of PDX cells. Using the new enrichment protocol, as few as 174 PDX cells could be re-isolated 

out of 2x108 normal mouse bone marrow cells and therefore enabled cell enrichment of a factor 

well above 106 with little cell losses. This enrichment procedure could reliably be used for 
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further experiments to detect and isolate very few PDX cells in mouse bone marrow. The two 

enrichment protocols will referred to as NGFR MACS and MCD (mouse cell depletion) MACS 

throughout the text. 

 

Next both enrichment techniques were compared to ensure that they do enrich and isolated PDX 

cells from mouse bone marrow with similar efficiency. 1x108 mouse bone marrow cells were 

mixed with 4.2x104 mCherry and NGFR expressing PDX cells. Duplicates were either enriched 

by NGFR MACS or by MCD MACS and total amount of PDX cells were determined using 

flow cytometry targeting mCherry expressing cells (Table 9).  

 

Table 9: MCD MACS can substitute NGFR MACS 

 

 

Table 9 shows that both methods can recover between 67 % and 81 % of added PDX cells. 

Therefore, MCD MACS was used for all further experiments in NGFR negative PDX samples.  

Taken together, two different techniques to isolate minute numbers of transgenic PDX cells 

from mouse bone marrow were established or optimized and serve as basis for further isolation 

and characterization of challenging subpopulations in AL. 

5.3 Growth behavior of PDX cells in mice 

The established procedures enabled addressing basic questions with translational potential in 

AL biology. Investigations on leukemia biology were performed at diagnosis, meaning at late 
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time points of the disease, during treatment process or at relapse (De Kouchkovsky and Abdul-

Hay, 2016; Pui et al., 2015). Investigations on early leukemia development are missing. As a 

consequence little is known about the growth of leukemia in patients. But knowledge about the 

early growth, detailed kinetic and relapse of the leukemia would increase the understanding of 

the disease and would help to improve or develop new treatment strategies. Therefore, the in 

vivo growth behavior of different AL samples in mouse bone marrow was studied regarding 

homing and spontaneous growth. 

5.3.1 Homing of PDX samples to mouse bone marrow 

Homing is the process in which cells, systemically injected into the blood stream of animals, 

travel to their most appropriate niche. This process, intensively studied in normal 

hematopoiesis, elucidates rolling, adhesion, migration and the tumor-stroma interaction. As the 

hosting laboratory had reproduced that the bone marrow is the first site of homing for PDX AL 

cells in NSG mice (Terziyska et al., 2012; Vick et al., 2015), here the homing to mouse bone 

marrow was studied. 

 

107 fresh ALL or AML cells from mice with advanced leukemia sacrificed on the same day 

were injected into the tail veins of next recipient mice and re-isolated three days later by 

applying one of the established enrichment methods. The time point of three days was chosen 

as the current study could show that cells did not proliferate within the first three days (see 

below Figure 13 and Figure 18), while removal of non-homed cells by the mouse phagocyte 

system should be completed by then. 

In samples that did not express any transgenes, an alternative protocol was used; PDX AL cells 

were stained with CFSE (see 4.4.5 5-(6)-Carboxyfluorescein-Succinimidyl Ester (CFSE) 

staining of cells) before injection and analyzed directly by flow cytometry for CFSE positive 

cells. As cells could not be enriched by NGFR MACS prior to FACS analysis and FACS 

analysis was unfeasible for larger cell numbers, a portion of the bone marrow suspension was 

directly analyzed and absolute numbers of PDX cells were calculated thereof (Figure 8). 

However, after the MCD kit had been established this drawback was solved and mouse cells 

were removed by MACS before FACS measurement for samples not expressing transgenes 

(Agorku et al., 2014). 
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Figure 8: PDX samples differ broadly in their homing capacity to mouse bone marrow 
107 AML (A) or ALL (B) PDX cells were injected i.v. into mice and re-isolated from the bone marrow three days 
later, and absolute cell number was measured; each dot represents data from one mouse, except that a mean of six 
mice plus standard error is shown for samples ALL-199 and ALL-265 and mean of up to three mice plus standard 
error is shown for samples AML-491, AML-372, AML-393, and AML-346. 

 

Homing of 19 different PDX AL samples was measured and a maximum of 4 % of the injected 

PDX cells could be re-isolated from mouse bone marrow three days after injection (Figure 8). 

The eight different ALL samples and eleven AML samples showed highly different cell 

recruitment to bone marrow differing by more than two orders of magnitude with a minimum 

efficiency of only 0.01 % of injected cells homing to bone marrow in AML-388 and a maximum 

of 1.05 % in AML-491.  

 

These data indicate that homing of fresh PDX AL samples to mouse bone marrow is an overall 

highly inefficient process, but similar between ALL and AML. Differences between the 

samples suggest that homing might depend on specific, yet undefined characteristics of 

individual samples. 

 

Next, it was studied how the number of injected PDX cells might influence homing. Between 

107 and 105 ALL-199 cells were injected i.v. into mice and re-isolated by NGFR MACS three 

days later (Figure 9). A maximum 107 cells were chosen for injection, as former experiments in 

the laboratory showed that injection of more than 107 cells lead to severe agglutination in mice. 
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Figure 9: Homing to mouse bone marrow depends on the cell number injected 
ALL-199 cells were injected i.v. into mice at different cell numbers and re-isolated by NGFR MACS after three 
days; each dot indicates data from one animal. 
A Absolute number of homed PDX cells. 
B Percentage of homed PDX cells. 

 

The homing capacity into the mouse bone marrow strictly depended on the cell numbers 

injected. Surprisingly, when higher cell numbers were injected, homing efficiency increased. 

Injection of 107 cell lead to homing of 1.2 % of the injected cells, whereas the injection of 105 

cells lead to a homing of 0.03 % of cells (Figure 9B).  

To work with a maximum number of homed PDX AL cells per sample, 107 freshly isolated 

cells/mouse were injected in all further experiments.  

 

These data argue against the existence of a preformed, fixed number of niche places present in 

the bone marrow of each NSG mouse, which are able to house PDX cells. These data strengthen 

the assumption, that specific characteristics of the individual leukemia sample and the cell 

number injected determine the ability of the cells to home to bone marrow.  

5.3.2 In vivo growth of PDX cells in mouse bone marrow over time 

For a more detailed knowledge about the growth of leukemia, the in vivo growth of PDX cells 

in mice was studied over time. Therefore, 107 PDX cells were injected i.v. into mice and 

followed by quantifying absolute numbers (Figure 10) or relative amount (Figure 11) of PDX 

cells in mouse bone marrow at different time upon ex vivo cell enrichments. 
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Figure 10: Growth curves of AML-PDX cells in vivo show early logarithmic growth in mouse bone marrow 

107 CFSE stained PDX cells were injected i.v. at different time points up to five mice were analyzed and PDX 
cells were quantified; shown is mean +/- standard error. 

 

 

Figure 11: Percentage of PDX in bone marrow shows early logarithmic growth in mouse bone marrow  

107 ALL-199 PDX cells were injected i.v. At different time points 10 % of mouse bone marrow was analyzed and 
percentage of PDX cells was calculated. 

 

The growth of PDX AL cells in mouse bone marrow was logarithmic over the first weeks of in 

vivo growth, and growth slowed down thereafter when PDX cells reached only 10 % of total 

cells in mouse bone marrow. This growth behavior is called logistic growth (Araujo and 

McElwain, 2004; Schacht, 1980) and the same results had also been obtained for absolute 

numbers of ALL samples (Tiedt, 2014). 

 

From samples which were isolated at least at three different time points, absolute PDX numbers 

were determined and doubling times were calculated thereof (see 4.2.10 Calculation of cell 

number doubling times in vivo) (Figure 12). 
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Figure 12: AML PDX samples differ broadly in their doubling times in vivo 

107 AML PDX cells were injected i.v. into at least three mice and re-isolated from the bone marrow at different 
time points. From absolute numbers of re-isolated PDX cells doubling time in days per sample was calculated.  

 

Doubling times were analyzed in eight different AML PDX samples and varied widely. The 

shortest time for a single duplication was one day, whereas the maximum time was 3.5 days in 

the eight samples studied. 

 

Taken together new insights about leukemic growth were gained. PDX AL cells show sample-

specific homing and doubling times followed by early logistic growth in mouse bone marrow. 

5.4 A rare long-term dormant subpopulation exists in PDX cells 

Surviving malignant cells after therapy are a major obstacle in the cure of ALL and AML as 

they might induce deadly relapse (Blatter and Rottenberg, 2015; Gokbuget et al., 2012b; 

Ommen, 2016). A reason for therapy resistant cells might be their dormant state (Aguirre-

Ghiso, 2007; Essers and Trumpp, 2010; Schillert et al., 2013). The hosting laboratory decided 

using long-term dormancy as an anchor to get their hands onto relapse-inducing cells before 

this study started. Towards this aim, Sebastian Tiedt had established a method using the 

proliferation-sensitive dye 5-(6)-Carboxyfluorescein-Succinimidyl Ester (CFSE) which had 

already been used in mouse model studies on healthy hematopoiesis or AML, e.g., to 

characterize heterogeneous growth pattern and to identify dormant HSC (Takizawa et al., 2011; 

van der Wath et al., 2009). Sebastian Tiedt adapted the use of CFSE to studies on PDX ALL 

cells. Using three different samples, Sebastian Tiedt found for the first time that a rare 

subpopulation of long-term dormant cells exists in PDX ALL (Tiedt, 2014). The present work 

aimed next at broadening the existing data and studied additional PDX ALL samples for the 

existence of the long-term dormant subpopulation, including further ALL subtypes and PDX 

AML samples.  
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5.4.1 Establishing CFSE staining to follow up PDX AML proliferation in vivo 

With the aim of optimizing the established protocol from Sebastian Tiedt and transferring it to 

PDX AML, 107 AML-491 cells were stained ex vivo with CFSE (see 4.4.5 5-(6)-

Carboxyfluorescein-Succinimidyl Ester (CFSE) staining of cells) and were re-injected into next 

recipient mice. After 2, 10 and 16 days mouse bone marrow was collected from one mouse per 

time point and PDX cells were enriched by MCD MACS. Afterwards, PDX cells were analyzed 

targeting transgenic mCherry and the green CFSE dye to follow up proliferation in flow 

cytometry (Figure 13). 

 

 

Figure 13: Loss of CFSE signal over time  

107 AML-491 cells were injected into 3 mice and re-isolated by MCD MACS and analyzed by flow cytometry for 
the green CFSE dye at day 2, 10, and 14 after cell injection. 

 

Two days after cell injection, all PDX cells in the mouse bone marrow were still CFSE positive. 

At later time points cells were slowly losing their CFSE label. The CFSE MFI was drifting from 

right to left. The distribution of the CFSE signal at later time points was broad, showing that 

not all cells participated identically in proliferation (Figure 13).  

 

As BrdU incorporation is commonly used as proliferation marker and might be considered as 

“gold standard” to measure proliferation, CFSE labeling was validated as readout for measuring 

in vivo proliferation using a parallel BrdU staining (Figure 14). 
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Figure 14: Loss of CFSE correlates with loss of BrdU 
Donor mouse engrafted with ALL-265 was fed with drinking water containing BrdU (0.8 mg/ml) within the last 
seven days before cell harvesting. After re-isolation 107 cells were stained ex vivo with CFSE and were injected 
into four recipient mice. At days 1, 7, 10 and 17 mice were sscrified and PDX cells were isolated and quantified. 
“BrdU-ab” indicates that cells were stained with the anti-BrdU antibody; “+” and “-” indicate that the procedures 
were performed or not, respectively.  
A Raw FACS data of three time points for BrdU and CFSE stainings.  
B Correlation of BrdU positive and CFSE positive cells. Each dot represents data from one mouse. 
C Exemplary FACS blots of control cells which were negative for BrdU and CFSE but stained with the BrdU 
antibody. 

 

To stain leukemia cells with BrdU, a donor mouse was fed with BrdU the last 7 days before 

mice had to be taken down due to advanced leukemia. All leukemia cells re-isolated from the 

mouse spleen were BrdU positive, indicating strong proliferation in spleen at late time points. 

These cells were then stained ex vivo with CFSE, and 107 CFSE+ and BrdU+ PDX cells were 

injected i.v. into four mice. At different time points, mice were taken down and PDX cells were 

isolated and analyzed concerning BrdU and CFSE intensity. One day after cell isolation BrdU 

and CFSE signal are high. 7 and 17 days after cell injection both dyes lost the same amount of 

signal and the cell population is shifting from the right upper corner towards the left lower 

corner. The BrdU signal was from beginning on more egg shaped, most probably due to 

different BrdU take of in the donor mice before, and stays egg shaped for all time points (Figure 

14A). When CFSE and BrdU negative control cells were stained with BrdU antibody, the cell 

population was still negative for both signals, indicating no false positive staining by the 
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antibody (Figure 14C). Graphical analysis of the BrdU and CFSE MFI shows tight correlation 

of the loss of CFSE with the loss of BrdU signal (Figure 14B). Therefore CFSE can substitute 

BrdU as proliferation marker for further experiments. 

 

As additional quality control, loss of CFSE signal was correlated with cell quantity upon cell 

isolation (Figure 15). 

 

 

Figure 15: Loss of CFSE correlates to gain in cell numbers  

107 CFSE stained PDX AML-491 cells were injected i.v. into mice and PDX cells were re-isolated and quantified 
from the bone marrow after 2, 4, 7, 10, 14, 16 and 21 days; each dot represents data from one mouse. 

 

Here 107 CFSE stained PDX cells were injected i.v. into seven mice. PDX cells were re-isolated 

at different time points from day two on, quantified and analyzed for CFSE content. Figure 15 

shows that increase in PDX cell numbers closely correlated with loss of CFSE signal. 

 

As loss of CFSE staining closely correlates with both loss of BrdU staining and increase in 

absolute cell numbers, CFSE staining represents a reliable approach to monitor proliferation of 

PDX AML and ALL cells in mice. 

5.4.2 Analyzing CFSE staining to detect dormant cells 

Next, loss of CFSE was used to distinguish subpopulations of slowly and rapidly growing cells 

in AML and ALL. Therefore, gates for slowly and rapidly growing cells were defined as 

established by Sebastian Tiedt for ALL (Figure 16). 
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Figure 16: Gates defining label retaining cells (LRC) and non-label retaining cells (non-LRC) 
MFI of CFSE at start of the experiment (2 or 3 days after cell injection) was divided by factor 2 to model bisections; 
upon less than 3 bisections, cells were considered as LRC, upon more than 7 bisections as non-LRC; intermediate 
cells were considered as “others”. Shown are exemplary FACS blots with the calculated bisection lines of AML-
491 at day 2, 10, and 14 after cell injection. 

 

To set these gates and measure maximum CFSE mean fluorescence intensity (MFI), maximum 

CFSE intensity was measured at day 2 or 3 after injection. CFSE MFI was used to define start 

of any cell proliferation (“0 divisions”). CFSE bisections were calculated as surrogates for cell 

divisions by dividing CFSE MFI by factor 2. According to the use of the term in work on normal 

mouse hematopoiesis, cells were called label-retaining cells (LRC), if they had undergone less 

than 3 bisections of maximum CFSE MFI indicating dormant cells (Schillert et al., 2013). Cells 

that entirely lost CFSE and contained less CFSE than 7 bisections of maximum CFSE MFI 

were called non-LRC, indicating proliferating cells (Figure 16).  

 

 

Figure 17: Controls for enrichment method with MCD MACS and CFSE staining 
A MCD MACS was performed with a mouse bone marrow without prior application of PDX cells. Only six cells 
were detected in the mCherry gate but no cells in the LRC gate. 
B MCD MACS was performed with a femur of a fully engrafted mouse without prior CFSE labeling of AML-491 
PDX cells. No cells were found in the LRC gate. 

 

Additional quality controls were performed and background green fluorescence after MCD 

MACS in (i) a mouse with advanced leukemia containing PDX cells never labeled with CFSE; 

and (ii) a mouse which never received PDX cells were determined (Figure 17). 
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In both controls, no cells were found in the LRC gate, indicating that all cells that are detected 

in the LRC gate during experiments truly derive from CFSE labeled PDX AL cells. 

 

For each in vivo experiment a day 2 or day 3 mouse was required as control to set the LRC gate. 

To save resources, it was tested if CFSE stained PDX cells cultured ex vivo could be used for 

the LRC gate settings (Figure 18). 

 

 

Figure 18: CFSE stained cells have similar MFI after 2 days in vivo and ex vivo consequently giving raise to 

same LRC and non-LRC gates  
107 CFSE stained AML-491 or AML-372 PDX cells were injected i.v. into one mouse and re-isolated from the 
bone marrow 2 days later (left panel); 106 CFSE stained AML-491 or AML-372 PDX cells were cultured ex vivo 
for 2 days (middle panel); CFSE MFI signals of in vivo and ex vivo cultured PDX cells were compared by histogram 
(right panel). 

 

For two different samples, 107 CFSE stained PDX cells were injected into one mouse and 

re-isolated and analyzed 2 days later. In parallel 106 CFSE stained PDX cells were cultured ex 

vivo for 2 days (see 4.4.4 Ex vivo culture of PDX cells). For both approaches CFSE MFI was 

determined and LRC and non-LRC gates were calculated thereof. As shown in Figure 18, CFSE 

MFI for both approaches and in both samples was similar and therefore gave rise to the same 

LRC and non-LRC gates. Thus, in further experiments, CFSE stained PDX cells cultured ex 

vivo for 2 or 3 days were used to set LRC gate.  
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In summary, as Sebastian Tiedt established before for ALL, CFSE labeling and analyzing was 

established to study PDX AML proliferation in vivo. To set gates for fast and slowly 

proliferating cells ex vivo control were established and different controls showed that cells in 

the slowly proliferating LRC gate truly come from CFSE positive AL cells. 

5.4.3 All except one PDX AML samples contain a rare dormant subpopulation 

As Sebastian Tiedt detected for the first time long-term dormant cells in ALL (Tiedt, 2014), the 

next aim was to investigate the proliferation pattern of AML PDX cells in vivo. With the CFSE 

labeling, PDX enrichment, and analysis methods established above, multiple AML PDX 

samples from different AML subgroups were studied for their growth in vivo. First CFSE 

kinetics for three different AML samples were performed to study the in vivo proliferation 

pattern of AML PDX samples over time (Figure 19).  

For each AML sample 107 CFSE stained cells were injected into 6-7 mice and re-isolated 

between day 2 or 3 and day 21 or 29. At each time point one mouse was taken down, enriched 

for PDX cells and analyzed for CFSE content. Figure 19 shows, that all three analyzed AML 

samples lost CFSE content over time, indicating cell proliferation. In all three samples the PDX 

population did not lose the CFSE dye homogenously, instead some cells still retained the label 

even at late time points. Thus, all samples analyzed grow heterogeneously in mice and contain 

a rare subpopulation of dormant LRC. 

 

To exclude that LRC are restricted to these three individual AML samples and to understand 

whether also other subgroups of AML contain long-term dormant cells, six additional AML 

samples were analyzed for the existence of the LRC population (Figure 20 and Figure 21). To 

represent the heterogeneity of AML, samples from adults and children, samples from primary 

disease and from first or second relapse, from different ELN classifications, and samples with 

and without genetic engineering were tested. As before 107 CFSE stained PDX cells were 

injected i.v. per mouse and re-isolated and analyzed for CFSE content after 14 days. 
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Figure 19: AML PDX samples grow heterogeneously in mice over time  
107 CFSE stained AML PDX cells were injected i.v. into 6-7 mice; PDX cells were enriched from 1 mouse at each 
time point and analyzed by flow cytometry for CFSE content. One representative kinetics out of two identical 
experiments is shown for each sample. 

 

 

Figure 20: A rare, long-term dormant subpopulation exists in different subtypes of AML PDX cells growing 

in mice 
PDX cells from eight AML patients were studied, including different ELN classifications, pediatric and adult 
samples, samples from initial diagnosis and from relapse, and samples with and without genetic engineering. 107 
CFSE stained PDX cells were injected i.v. per mouse and were analyzed after 14 days. AML-538, AML-356 and 
AML-358 were not genetically engineered. Here, 10 % of the entire bone marrow isolate was analyzed without a 
prior MACS enrichment step. LRC numbers are indicated. 

 

5 out of 6 of the additionally studied AML samples and 8 out of 9 of all studied PDX AML 

samples contained the rare subpopulation of LRC (Figure 20), suggesting that existence of long-

term resting cells is a frequent phenotype in AML across different AML subtypes and 

characteristics. Interestingly, one PDX AML sample, AML-346 did not show long-term resting 

cells (Figure 21). To exclude that the absence of LRC in this sample was a measurement or 

staining error, this sample was analyzed several times for LRC (Figure 21). 
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Figure 21: AML-346 has no dormant subpopulation of LRC 
107 CFSE stained PDX cells were injected i.v. per mouse and were analyzed at indicated time points; PDX cells 
were enriched by MCD MACS and analyzed by flow cytometry. LRC numbers are indicated. 

 

For AML-346 three times day 7 and once day 15 was analyzed. Mainly all cells lost the CFSE 

dye already after 7 days. Thus in AML-346 all cells participate to proliferation, and no dormant 

subpopulation was present. This sample was derived from a child with a high risk relapse. The 

tumor behaved highly aggressive in the patient and the patient died of the disease (Table S 1). 

Absence of LRC in this sample suggests that LRC are not associated with aggressiveness in 

patients.  

 

In summary, it was shown that similarity to ALL most AML samples grow heterogeneously in 

mice and that 8 out of 9 PDX AML samples contain the rare dormant subpopulation of LRC.  

5.4.4 Different subtypes of ALL contain a dormant subpopulation 

In ALL, Sebastian Tiedt started to study PDX samples for their growth pattern in mice and first 

described the existence of LRC. But as he only studied three ALL samples (Tiedt, 2014), these 

experiments were verified and pursued.  

 

Different subtypes of ALL were studied for the existence of LRC. In total, eight PDX ALL 

samples were studied, which included B-cell precursor-ALL and T-ALL, pediatric and adult 

samples, samples from primary disease and from relapse and samples with and without genetic 

engineering (Figure 22). 
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Figure 22: A rare, long-term dormant subpopulation exists in different subtypes of ALL PDX cells growing 

in mice 
PDX cells from all eight ALL patients were studied, including B-cell precursor (BCP) ALL and T-ALL, pediatric 
and adult samples, samples from primary diseases and from relapse and samples with and without genetic 
engineering. Only ALL-199 and ALL-265 were genetically engineered. 107 CFSE stained PDX cells were injected 
i.v. per mouse and 10 % of bone marrow were analyzed at indicated time points. LRC numbers are indicated and 
grey indicates human non-LRC and mouse cells. 

 

For each sample 107 CFSE stained PDX ALL cells were injected i.v. and analyzed for CFSE 

content at indicated time points. For these experiments only samples ALL-199 and ALL-265 

expressed transgenes, all other samples were not genetically engineered to exclude that 

transgenes were responsible for the presence of LRC. Here 10 % of the entire population of 

bone marrow cells was directly analyzed by flow cytometry without prior MACS enrichment. 

To take into account the highly different proliferation rates and passaging times (Table 6) and 

with the aim to study late time points during passaging, most samples were analyzed when ⅓ – 

½ of passaging time in mice has passed. Even at these late time points, all samples contained 

cells in the LRC gate, indicating that these cells did not substantially divide, while overall 

leukemic load had increased by three orders of magnitude.  
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Thus, CFSE staining disclosed that in all eight PDX ALL samples studied not all PDX ALL 

cells participate equally in leukemia proliferation, instead a rare subpopulation of LRC that 

hardly divided over prolonged periods of time exists. 

 

In summary in AML and ALL PDX cells growing in mice a rare subpopulation of dormant cells 

was detected. These cells might be a surrogate for challenging leukemic cells in patients, which 

survive treatment and induce relapse with poor outcome. 

5.5 LRC are not enriched for cancer stem cells 

As long-term dormancy represents a hallmark of stem cells (Morrison and Spradling, 2008), it 

was analyzed, whether the dormant LRC were enriched for leukemia initiating cells (LIC) as 

stem cell surrogates. In ALL, Sebastian Tiedt already showed that ALL LRC are not enriched 

for stem cells (Tiedt, 2014). But as AML is the prototypic stem cell disease but AML stem cells 

remain difficult to enrich (Bonnet and Dick, 1997; Sarry et al., 2011), it was asked whether the 

subpopulation of LRC is enriched for cancer stem cells in AML. 

 

Using limiting dilution transplantation assays (LDTA) as gold standard method for determining 

LIC frequency (Castro Alves et al., 2012; Dick and Lapidot, 2005; Eppert et al., 2011; Sarry et 

al., 2011), FACS sorted LRC and non-LRC were re-transplanted into groups of mice after serial 

dilution. To monitor positive engraftment as read-out for the presence of LIC, in vivo imaging 

(see 4.2.11 Bioluminescence in vivo imaging) and blood measurement (see 4.2.3 Flow 

cytometry of human cells in mouse peripheral blood) were performed repetitively (Figure 23, 

Table S 3). 

Experiments were performed using AML samples AML-393 and AML-491. Limiting numbers 

of PDX cells were injected into groups of mice as indicated in Table S 3. Mice were counted 

as not engrafted when they did not show any sign of engraftment after twice the normal 

passaging time. LIC frequency was calculated using the online ELDA software 

(http://bioinf.wehi.edu.au/software/elda/) (Hu and Smyth, 2009). 

For AML-393, the calculated LIC frequency of non-LRC was 1/127 and for LRC 1/172. For 

AML-491, the calculated LIC frequency of non-LRC was 1/1364 and for LRC 1/853. Thus and 

for both samples, the LIC frequencies of non-LRC and LRC were highly similar if not identical 

indicating that stem cell frequencies were not increased in quiescent cells. 
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Figure 23: AML LRC are not enriched for stem cells 
LRC and non-LRC isolated and sorted of donor mice 10 days after injection of CFSE labeled AML-393 or AML-
491 cells were transplanted into secondary recipient mice in limiting dilutions at numbers indicated in Table S 3; 
bioluminescence in vivo imaging, blood measurement or BM FACS staining was performed to determine 
engraftment. LIC frequency was calculated using the ELDA software. 

 

Thus, LRC and non-LRC exhibited similar leukemia-initiating potential in the two AML 

samples analyzed, as it was already shown for ALL (Ebinger et al., 2016; Tiedt, 2014). 

Consequently LRC are not enriched for cancer stem cells. 

5.6 LRC survive systemic drug treatment in vivo 

In patients and as major challenge, drug resistant subpopulations of cancer cells might survive 

chemotherapy, persist over prolonged periods in the patients, and later might induce a relapse 

with poor prognosis (Gokbuget et al., 2012b; Locatelli et al., 2013; Lokody, 2014; Patel et al., 

2013). Especially dormant cells are known for their resistance against treatment with classical 

cytotoxic drugs, complicating elimination by anti-cancer therapy (Essers and Trumpp, 2010). 

As a rare dormant subpopulation was identified in PDX AL cells, the next question was whether 

this subpopulation behaves differently towards chemotherapy treatment compared to the bulk 

of leukemia cells. As a clinically related model, in vivo treatment of mice harboring PDX cells 

with cytotoxic drugs was performed and the different subpopulations were analyzed separately 

(Figure 24). 

For in vivo drug treatment experiments, 107 CFSE stained PDX cells were injected. After seven 

days of leukemic growth, mice were treated either with buffer as control or with cytotoxic drugs 

in a single or multiple applications. Mice were sacrificed at day 10 and PDX cells were re-

isolated and analyzed. As proof for stemness, drug resistant LRC of certain ALL samples were 

re-injected into next recipient mice (Figure 24).  
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Figure 24: Experimental procedure for drug treatment in vivo 

Mice were injected with 107 CFSE stained PDX cells. From day seven on mice received either buffer as control 
or a cytotoxic drug in a single or daily application. On day ten, mice were sacrificed and PDX cells were analyzed 
concerning their resting phenotype. Isolated LRC were re-transplanted as stem cell proof. 

5.6.1 Most AML LRC display increased drug resistance in vivo 

In patients, standard treatment of AML consists in cycles of an anthracycline for three days 

together with cytarabine for seven days. But cells might survive this treatment and later be 

responsible for relapse (De Kouchkovsky and Abdul-Hay, 2016; Estey and Dohner, 2006; Patel 

et al., 2013).  

To analyze whether dormant AML LRC are more drug resistant than proliferating cells, four 

AML samples AML-372, AML-393, AML-388 and AML-491 were studied as indicated in 

Figure 24. To mimic standard chemotherapy of AML patients, a treatment combination of the 

anthracycline DaunoXome and cytarabine was used. Concentrations were calculated from 

human dose to mouse equivalent dose (see 4.2.12 In vivo treatment of mice).  

In mice bearing AML-372, AML-393 and AML-388, the combination treatment markedly 

reduced leukemic load (Figure 25). 

To follow up leukemia load and treatment response, mice were imaged before and after 

treatment. At start of treatment at day seven, all mice had identical leukemia load. When mice 

were sacrificed, control mice show a slight increase in leukemia load, whereas drug treated 

mice had a clearly reduced tumor load in imaging by around one log (Figure 25A). Isolation 

and quantification of PDX AML cells showed an average reduction of 90 % of the tumor for 

AML-372 and AML-393, and even a 99.9 % reduction for AML-388 (Figure 25B). 

However, when dormant and proliferating subpopulations of AML-372, AML-393 and 

AML-388 were analyzed separately, marked difference became visible (Figure 26). 
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Figure 25: In vivo drug treatment reduced leukemic load in mice 

Mice were injected with 107 CFSE stained AML PDX cells. On day seven mice were treated either with buffer 
(ctrl) or with a single application DaunoXome (DNX 20 mg/kg i.p.) and a daily application of cytarabine (ARA-
C, 150 mg/kg i.p.). On day 10, mice were sacrificed and PDX cells were determined. 
A Treatment response in AML-393 and AML-388 bearing mice was monitored by in vivo imaging. 
B In vivo drug treatment reduced absolute numbers of living PDX cells; mean +/- standard error (AML-372 ctrl 
n=4, DNX & ARA-C n=6; AML-393 ctrl n=2, DNX & ARA-C n=2; AML-388 ctrl n=3, DNX & ARA-C n=4). 

 

 

Figure 26: LRC survive systemic drug treatment in vivo 

Analyses were performed as outlined in Figure 25. 
A Shown are original FACS data of representative mice from sample AML-372. 
B Quantification in all mice per group depicted as mean of relative drug effects on LRC compared to proliferating 
cells (100 %) +/- standard error; **** p<0.0001 by two-tailed unpaired t-test. 
C Mean relative proportion of LRC of total PDX cells with and without treatment; mean +/- standard error. 
* p<0.05, ** p<0.01 by two-tailed unpaired t-test and for AML-372 including Welch’s correction. 
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FACS blots for two representative mice of control and treated AML-372 sample show that in 

the DNX & ARA-C-treated mouse, overall leukemic burden was decreased, while the LRC 

population remained nearly unchanged. In relative terms, the LRC subpopulation became even 

more prominent and increased in percentage of total leukemic load from 0.98 % in control mice 

to 8.13 % in treated mice (Figure 26A). In all three AML samples analyzed, proliferating cells 

were 10 to 100-fold more efficiently eliminated by in vivo drug treatment compared to LRC 

(Figure 26B). As a consequence, the relative percentage of LRC within the total population of 

cells increased significantly after treatment. For AML-372 and AML-388, percentage of LRC 

in total PDX population increased from 2 % in control mice up to 40 % in treated mice. For 

AML-393, the increase in percentage of LRC was not that prominent, but still significant as the 

percentage of LRC in total population increased from 0.7 % in control mice to 2.5 % in treated 

mice (Figure 26C).  

The forth studied sample, AML-491 behaved differently. AML-491 was shown in in vivo 

treatments trials before by Binje Vick in the hosting laboratory to be extremely sensitive 

towards three cycles of cytarabine application for four days. In LRC assays, AML-491 did not 

show major drug resistance of LRC (Figure 27). 

 

 

Figure 27: LRC of AML-491 do not show a clear drug resistance 

Mice were injected with 107 CFSE stained AML-491 PDX cells. On day seven mice were treated either with buffer 
(ctrl) or with a single application DaunoXome (DNX 1-20 mg/kg i.p.) and for three days with a daily application 
of cytarabine (ARA-C, 150 mg/kg i.p.). On day 10, mice were sacrificed and PDX cells were determined.  
A Absolute numbers of living PDX cells after in vivo drug treatment. Mean of n=2 for 20 mg/kg DNX & Ara-C 
+/- standard error. 
B Quantification in all mice per group depicted as mean of relative drug effects on LRC compared to non-LRC 
(100 %); mean of n=2 for 4 mg/kg DNX & Ara-C and n=2 for 20 mg/kg DNX & Ara-C +/- standard error; 
** p<0.01, by two-tailed unpaired t-test. 
C Mean relative proportion of LRC of total PDX cells with and without treatment. For 20 mg/kg DNX & Ara-C 
mean +/- standard error. 
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In AML-491, different concentrations of DaunoXome in combination with 150 mg/kg 

cytarabine were tested. All concentrations, but the lowest one, reduced tumor load by at least 

90 % (Figure 27A). However, if dormant LRC and proliferating cells were analyzed separately, 

it became obvious that also LRC were largely reduced by treatment of all concentrations. The 

reduction by treatment was a little less for LRC compared to proliferating cells, but AML-491 

LRC did not show major drug resistance compared to LRC of the other three AML samples 

studied (Figure 27B). This phenomenon became also obvious, by analyzing the relative 

percentage of LRC within the total population of cells isolated from treated mice, here only a 

slight increase of LRC after treatment became visible in AML-491 (Figure 27C). 

 

Taken together, in vivo treatment showed that in three of four AML samples analyzed, LRC are 

more drug resistant than non-LRC, indicating that dormancy might be a reason for the survival 

of malignant cells after chemotherapy treatment. 

5.6.2 ALL LRC are drug resistant in vivo 

In ALL, Sebastian Tiedt used two samples without technical or biological replicates to first 

describe that PDX ALL LRC were drug resistant (Tiedt, 2014). Here the task was to verify and 

pursue these experiments. 

 

First, the in vivo cytotoxic drug response in ALL-50 and ALL-435, two samples obtained from 

patients at initial diagnosis, was studied (Figure 28). 

The experiments were performed as described before (Figure 24). Routine ALL treatment in 

patients involves more different drugs compared to AML. In ALL and beyond the 

anthracyclines and purin-analogs used in AML patients, drugs like antimicrotubule agents and 

topoisomerase II inhibitors are used (Inaba et al., 2013; Pui et al., 2008). 

For ALL-50, mice were treated with either cytarabine, etoposide, amsacrine or epirubicine. For 

ALL-435, mice were treated with either etoposide, amsacrine or epirubicine. The in vivo 

imaging before and after treatment in ALL-50 showed increase of leukemic load in control mice 

and reduction of leukemic load after treatment by 1 log or more (Figure 28A). All PDX cells 

were re-isolated by MCD MACS and quantified in flow cytometry. Drug treatment with all 

drugs resulted in clear reduction of leukemic burden by over 90 % in both samples (Figure 

28B). The same experiment was performed with the two relapse samples ALL-199 and ALL-

265, to indicate that the results were not restricted to a certain disease stage (Figure 29).  
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Figure 28: LRC survive systemic drug treatment in vivo in ALL initial diagnosis samples 

Mice were injected with 107 CFSE stained ALL-50 or ALL-435 PDX cells. From day 7 on mice injected with 
ALL-50 received either buffer (ctrl), a daily application of cytarabine (ARA-C, 150 mg/kg i.p.; n=2), a daily 
application of etoposide (ETO, 33 mg/kg i.p.; n=2), a daily application of amsacrine (AMSA, 25 mg/kg i.p.; n=2) 
or a single application of epirubicine (EPI, 25 mg/kg i.p.; n=2). From day 7 on mice injected with ALL-435 
received either buffer (ctrl), ETO (33 mg/kg, i.p.; n=2), AMSA (25 mg/kg i.p.; n=2) or EPI (25 mg/kg i.p.; n=1). 
On day 10, mice were sacrificed and LRC were analyzed.  
A Treatment response in ALL-50 bearing mice was monitored by in vivo imaging. 
B In vivo drug treatment reduced absolute numbers of living PDX cells. 
C Quantification in all mice per group depicted as mean of relative drug effects on LRC compared to non-LRC 
(100 %) +/- standard error; ** p< 0.01, *** p<0.001, **** p<0.0001 by two-tailed unpaired t-test. 
D Mean relative proportion of LRC of total PDX cells with and without treatment +/- standard error. 

 

For ALL-199, single applications of etoposide or vincristine were used in 8-9 mice each; for 

ALL-265, single applications of etoposide or cyclophosphamide were used in 3-4 mice each. 

Similar to the experiments performed in AML, all cytotoxic drugs reduced overall leukemic 

burden by more than 90 % (Figure 29A). When drug response was evaluated separately for 

LRC and proliferating cells, a marked difference became visible. Proliferating cells were 

eliminated 10 to 100-fold more efficiently in vivo compared to LRC (Figure 28C and Figure 

29B). As a consequence, the relative percentage of LRC within the total population of cells 

increased after treatment (Figure 28D and Figure 29C). 
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Figure 29: LRC survive systemic drug treatment in vivo in ALL relapse samples. 

Mice were injected with 107 CFSE stained ALL-199 or ALL-265 PDX cells/mouse and received either buffer (ctrl, 
n=7 for ALL-199; n=3 for ALL-265), etoposide (ETO, 50 mg/kg, i.p.; n=8 for ALL-199; n=3 for ALL-265), 
vincristine (VCR, 1.5 mg/kg, i.v.; n=9 for ALL-199) or cyclophosphamide (CYCLO, 150 mg/kg, i.p.; n=4 for 
ALL-265) on day 7; on day 10, mice were sacrificed, LRC analyzed and re-transplanted into secondary recipients.  
A In vivo drug treatment reduced absolute numbers of living PDX cells. 
B Mean of all 3-9 mice per treatment, depicted as relative drug effect on LRC compared to non-LRC (100 %) +/- 
standard error; **** p<0.0001 by two-tailed unpaired t-test.  
C Mean relative proportion of LRC of total PDX cells with and without treatment +/- standard error. 

 

Thus, while ALL proliferating cells of four different samples were decreased by in vivo 

treatment by more than 1 order of magnitude, most ALL LRC survived chemotherapy, 

suggesting increased in vivo treatment resistance of LRC. Compared to AML, ALL LRC 

behaved more homogeneous, as all tested LRC were drug resistant. But it has to be considered 

that for both leukemia subtypes the sample size was low.  

5.6.3 ALL LRC have leukemia-initiating potential 

In patients, cells which survived chemotherapy treatment might be responsible for tumor 

relapse. Due to the cancer stem cell theory, tumors are hierarchically organized with cancer 

stem cells on top of the hierarchy. Only cancer stem cells are able to propagate and induce new 

tumors (Wang and Dick, 2005). Therefore it was studied whether drug resistant LRC have stem 

cell potential and were able to induce a new tumor by transplanting drug resistant LRC into 

next generation mice (Figure 30). 

Drug resistant LRC of ALL-199 and ALL-265 were isolated from bone marrow of treated mice 

and re-injected into next generation mice. Re-engraftment was followed by in vivo imaging (see 

4.2.11 Bioluminescence in vivo imaging). 
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Figure 30: LRC reveal stem cell potential. 
LRC from drug treated mice were isolated, re-transplanted, tumor growth was monitored by in vivo imaging, and 
bioluminescence signals were quantified. Imaging pictures from dpi 60 (ALL-199; ctrl; VCR), dpi 108 (ALL-199; 
ETO), dpi 67 (ALL-265; ctrl), dpi 78 (ALL-265; ETO) and dpi 73 (ALL-265; CYCLO) are shown. 

 

Upon re-transplantation, all drug resistant LRC harbored leukemia-initiating potential as they 

gave rise to new leukemia. Regarding proliferations kinetics, LRC after drug treatment induced 

leukemia at similar kinetics than untreated control LRC indicating that short term drug 

treatment did not induce changes in LRC (Figure 30).  

 

Thus ALL LRC have stem cell potential. They might represent surrogates for relapse-inducing 

cells in patients, as they can induce a new tumor after surviving treatment. 

 

Taken together, LRC share the most important functional features that impede to cure cancer 

in patients: (i) dormancy; (ii) in vivo drug resistance and; (iii) leukemia-initiating potential. 

LRC might thus serve as preclinical surrogate for relapse-inducing cells in ALL and AML.  

5.7 Release from environment induces proliferation in LRC 

A treatment option to target relapse-inducing, drug resistant and dormant cells might be the 

conversion of these dormant cells into cycling cells to target them afterwards with cytotoxic 

drug (Essers and Trumpp, 2010; Zeng et al., 2009).  

Therefore, it was studied whether LRC inherit permanent biological characteristics or whether 

they might represent a reversible functional phenotype. As dormancy was the main feature 

defining LRC, experiments were performed to study whether dormancy of LRC was a cell 

inherent, cell autonomous characteristic. 
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To address these questions, LRC and non-LRC of AML-491, AML-393 and ALL-199 were 

isolated from mouse bone marrow and sorted into LRC and non-LRC as described above and 

thereby dissociated from their environment; LRC and non-LRC were separately re-transplanted 

into secondary recipient mice (Figure 31). 

 

 

Figure 31 Experimental procedure for isolation and re-transplantation of LRC and non-LRC 
From a 1st recipient mouse carrying CFSE stained ALL-199 cells, LRC, non-LRC and bulk cells were obtained at 
day 10; bulk cells and non-LRC were re-labeled with CFSE, re-transplanted into secondary recipient mice at high 
numbers and re-analyzed at day 10 using flow cytometry; bulk cells, LRC and non-LRC were re-transplanted at 
low numbers into groups of mice and leukemia growth was monitored over time. 

 

A first readout was determining the distribution between LRC and non-LRC in second recipient 

mice. For this readout, second recipient mice were transplanted with 10 million cells of either 

the bulk mixture of all cells or non-LRC and analysis performed at day 10 by flow cytometry. 

As this approach required transplantation of high cell numbers, it was unfeasible performing it 

with LRC, as only low numbers of LRC can be recovered from each mouse. The distribution 

between LRC and non-LRC was highly similar, if not identical for the bulk mixture of all cells 

or non-LRC and both populations displayed a clear subpopulation of LRC (Figure 32A). Thus, 

upon re-transplantation of a populations exclusively containing non-LRC, LRC were derived 

in next recipient mice. These data suggest that fast proliferating non-LRC retain the capacity to 

convert into dormant LRC.  

To test the opposite question whether slowly proliferating LRC might be able to convert into 

fast proliferating non-LRC, a second readout was used which used low cell numbers and could 

be applied to all three populations, namely the bulk mixture of all cells, LRC and non-LRC. 

When low cell numbers of either LRC, non-LRC or bulk cells were re-transplanted into next 

recipient mice, all populations initiated leukemic growth at identical speed in mice as monitored 

by in vivo imaging. For AML-491 after 13 weeks all three populations showed leukemic loads 

of around 1x1010 lg photons/s. The leukemic load of one mouse, transplanted with LRC had a 

delayed tumor growth, but also reached the same leukemic load. Probably, due to cell losses 
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during the complex isolation and injection procedure, fewer LRC cells were injected and 

engrafted and needed more time to induce the full leukemia. 

 

Figure 32: Release from the environment induces proliferation in AML LRC  
From a 1st recipient mouse carrying CFSE stained AML-491 or AML-393 cells, LRC, non-LRC and bulk cells 
were obtained at day 10 (AML-393) or at day 15 (AML-491). 
A Bulk cells and non-LRC were re-labeled with CFSE, re-transplanted in secondary recipient mice at high numbers 
and CFSE staining was re-analyzed at day 10 or day 15 using flow cytometry. 
B Growth curve in secondary recipients; bulk cells, LRC and non-LRC were re-transplanted at low numbers into 
groups of mice and leukemia growth was monitored over time by in vivo imaging. For ALL-199 no statistical 
significance was found between the linear regression slopes by Kruskal-Wallis test and Dunn’s multiple 
comparison tests. 

 

For AML-393 and ALL-199 all three population needed 6 or 8 weeks to show leukemic loads 

of 5x109 or 1x1011 lg photons/s, respectively (Figure 32B). The data show that re-
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transplantation into secondary recipient mice converted dormant LRC into fast proliferating 

cells. 

 

Thus, slowly proliferating LRC can give rise to fast proliferating cells upon re-transplantation 

and convert into non-LRC and vice versa; fast proliferating non-LRC can give rise to dormant 

LRC in the next generation of mice. These results suggest that LRC and non-LRC represent a 

reversible functional phenotype. AL cells exhibit a major functional plasticity and respond on 

the environmental context they are in. Therefore LRC might be targetable, by dissociating them 

from their environmental context and thereby converting them into treatable proliferating cells. 

 

The data showed in a PDX AL model the isolation and functional characterization of dormant 

cells which might be a surrogate for relapse-inducing cells in patients. This dormant and drug 

resistant stem cell subpopulation can be converted to proliferating cells by releasing them from 

their microenvironment. The developed model and the consequent findings will be of 

translational importance as they establish a basis to develop new treatment strategies to 

eradicate relapse-inducing cells in AL patients. 
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6 Discussion 

Acute leukemias (AL) consist of heterogeneous cell populations and the subgroup which 

displays treatment resistance determines the patients’ prognosis. Most AL patients initially 

respond to anti-leukemia therapy, but the majority of acute myeloid leukemia (AML) and 40-

50 % of acute lymphoblastic leukemia (ALL) patients develop disease relapse which is 

associated with poor outcome. Minimal residual disease (MRD) cells are a reason for relapse, 

as these cells survived chemotherapy and might persist even after prolonged time of therapy 

(Gokbuget et al., 2012b; Locatelli et al., 2013; Lokody, 2014; Patel et al., 2013). 

Novel treatment options are urgently needed to eradicate residual, treatment resistant cells, 

which have stem cell potential and therefore are able to induce relapse, to finally improve the 

cure rate and prognosis of patients with acute leukemia. For this a deep understanding is 

required on mechanisms determining treatment-resistance in vivo and the ability to induce 

relapse. Before this study, no functional studies on isolated MRD cells were performed as 

technical limitations like the reliable differentiation of malignant and healthy cells and the 

enrichment and isolation of very minute numbers of malignant cells hampered these studies so 

far. As treatment resistant cells are challenging to isolate, but considered to be dormant 

(Aguirre-Ghiso, 2007; Essers and Trumpp, 2010; Schillert et al., 2013), in this study dormancy 

was used as benchmark in searching for a therapeutically relevant subpopulation of AL cells. 

In this work, a preclinical mouse model was further optimized, which allowed the identification, 

isolation and enrichment of a rare subpopulation of in vivo long-term dormant cells in the PDX 

model of ALL and AML. Dormant cells were identified by label retaining cells (LRC) of the 

fluorescence dye 5-(6)-Carboxyfluorescein-Succinimidyl Ester (CFSE). The characterization 

of these LRC showed that they combine the three major adverse characteristics that challenge 

to cure cancer, namely (i) dormancy, (ii) in vivo drug resistance, and (iii) leukemia-initiating 

potential. In conclusion, LRC represent a preclinical surrogate for treatment resistant, dormant, 

and relapse-inducing cells in acute leukemias. Therefore, PDX LRC cells represent a valuable 

tool to investigate mechanisms of resistance, dormancy, and relapse in patients. The new 

insights, which could be gained with help of this model, might finally lead to the development 

of novel therapies to eliminate treatment resistant cells, prevent disease relapse and increase the 

prognosis of patients with ALL. 



Discussion  81 
 

 
 

6.1 Isolation of minute numbers of PDX cells enables studies on 

non-dividing AL cells 

The basis for this study was the NSG PDX model of acute leukemias. This model is an attractive 

possibility to experimentally study patients' tumor cells in vivo, which uses immuno-

compromised mice to expand and study tumor cells from patients (Shultz et al., 2005; Terziyska 

et al., 2012; Vick et al., 2015). It circumvents the limitations of in vitro approaches as cell lines 

display altered proliferation behavior and gained additional mutations by their immortalization, 

departing them from the original patients’ leukemia (Pan et al., 2009). As cell lines do not have 

genetic or dormant subclones and all cells participate in proliferation, cell lines could not be 

used within this study to search for challenging subpopulations. In addition the number of 

available cancer cell lines is inadequate regarding the diversity of cancer subtypes (Gillet et al., 

2011; Hausser and Brenner, 2005). Also in vitro approaches with primary tumor cells have 

significant limitations as they are reluctant to proliferate in vitro and material is limited (Mitra 

et al., 2013). Nowadays, a large amount of different leukemia PDX models have been 

established (Lee et al., 2007; Liem et al., 2004; Townsend et al., 2016). The broad number of 

available xenografts can reflect the complexity of the disease regarding different subtypes of 

the disease, namely different precursor cells, different genetic alterations, diagnosis and relapse 

samples, pediatric and adult patients, with and without cytogenetic changes. Furthermore, 

studies within the bone marrow microenvironment are possible (Townsend et al., 2016). As 

shown previously, PDX AL cells retain important characteristics of primary AL cells and 

remain mainly stable after successive passaging in mice regarding important characteristics 

such as time to overt leukemia, cell surface markers, response to drugs in vitro, and mutation 

pattern (Castro Alves et al., 2012; Lock et al., 2002; Rosfjord et al., 2014; Schmitz et al., 2011; 

Terziyska et al., 2012; Townsend et al., 2016; Vick et al., 2015). PDX models are mostly used 

for preclinical treatment trials (Gao et al., 2015; Suryani et al., 2014; Townsend et al., 2016). 

Here the model was developed further to isolate, enrich and characterize minimal numbers of 

AL cells from mice, based on transgenic expression of artificial molecular markers. 

Genomically integrated molecular tags were used to reliably and stably mark the PDX cells. 

Lentiviral integration into the genome of xenograft cells could possibly alter their properties, 

as the vectors might lead to clonal imbalance, and malignant cell transformation due to 

integration and upregulation of proto-oncogenes (Modlich et al., 2009). However, until now, 

no alterations in functional behavior of PDX cells before and after genetic engineering, that 

could have been caused by lentiviral transduction and the EF-1α as non-viral promoter, have 
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been detected (Barrett et al., 2011; Bomken et al., 2013; Iacobucci et al., 2016; Terziyska et al., 

2012; Vick et al., 2015). The advantage of the molecular approach with artificial molecular 

markers lies in the unbiased isolation of PDX cells independently from endogenous surface 

antigens, which might be restricted to leukemia subpopulations. For example, in BCP-ALL it 

has been shown that previous CD19 expressing ALL cells can develop a CD19 negative relapse 

(Maude et al., 2015). Meaning that here the use of the endogenous marker CD19 for the 

identification of ALL cells would fail to identify the cells responsible for the relapse.  

The optimized and developed methods enabled the enrichment and isolation of transgenic PDX 

cells at early time points and low cell numbers. In patients, AL is frequently detected at 

advanced stages of the disease, when disease symptoms, like bleeding and infections, appear 

and bone marrow already contains in average between 30 % and 80 %, sometimes even more, 

malignant cells (De Kouchkovsky and Abdul-Hay, 2016). Most patients receive anti-leukemia 

treatment directly after diagnosis. Without treatment, patients die within few months due to 

bone marrow failure (De Kouchkovsky and Abdul-Hay, 2016; Estey and Dohner, 2006; Pui 

and Evans, 2013). But as a consequence, little is known about the growth of leukemia in 

patients. Investigations on leukemia biology were performed at diagnosis, meaning at late time 

points of the disease, during treatment process or at relapse (De Kouchkovsky and Abdul-Hay, 

2016; Pui et al., 2015). Investigations on early leukemia development are missing. Due to 

technical limitations even in vivo models concentrate on late time points, when a large amount 

of leukemic cells can easily be isolated and studied. Suitable models and techniques are urgently 

needed to study engraftment and investigations on early leukemic development (Barrett et al., 

2011). So far, the same technical obstacles hampered characterizing phenotypic and functional 

features of relapse-inducing cells in leukemia patients in detail. These cells are difficult to 

clearly identify, and only exist at low numbers, hampering their isolation and availability for 

further experiments or characterization. Whereas the present study enables for the first time 

isolation of low numbers of pure leukemic cells and therefore investigations on early leukemia 

growth. 

Sebastian Tiedt started the study with the two high risk relapse samples ALL-199 and ALL-265. 

By CFSE labeling he identified in vivo long-term resting cells in these two samples. Without 

technical or biological replicates he showed that the long-term resting cells are treatment 

resistant (Tiedt, 2014). To exclude that only relapse samples show the identified dormant and 

drug resistant phenotype, a broader representative pool was chosen for this study. Relapse 

samples have already been exposed to chemotherapy, and might therefore represent a selected 

subset of particularly restive cells from the primary tumor. This might be a reason why they are 
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highly aggressive and grow best with short passaging times in mice compared to initial 

diagnosis samples (Meyer et al., 2011). In total, eight different AML and eight different ALL 

PDX samples were analyzed for the presence of a dormant subpopulation. To cover a high 

heterogeneity, the selected samples include different mutations, differences in cytogenetics and 

age, and samples were obtained from patients at initial diagnosis or from patients suffering from 

1st or 2nd relapse. Furthermore, these PDX samples have different passaging times between 30 

and 130 days. As all but one sample analyzed contained a long-term dormant subpopulation in 

vivo, it is concluded that the findings obtained in this study reflects a phenotype that is not 

restricted to single AL samples, but is rather a prerequisite of almost all AL samples. 

For the study two enrichment methods were used. The one based on NGFR MACS was 

optimized and the one based on mouse cell depletion (MCD) MACS was established.  

For the total study the optimization of the NGFR MACS lead to material savings and thereby 

to an enormous amount of cost reduction, while the experiments could still be reliably 

performed. 

The advantage of this new enrichment method based on MCD MACS is the independence of 

the second lentiviral construct containing the NGFR. Validation of this method showed the 

reliable isolation of few PDX cells from mouse bone marrow with only minor false positive 

events. Comparing both enrichment methods showed that both reliably identify and isolate 

identical small numbers of PDX cells from mouse bone marrow. Thus, both methods are 

adequate for the present study. 

In this study, two protocols were established, compared, and quality controlled to isolate, 

identify, and enrich minute numbers of PDX cells from mouse bone marrow with high 

reliability, sensitivity, and purity. 

6.2 Interaction between different AL samples and mouse bone marrow 

depends on sample specific characteristics 

The here developed enrichment methods enable the direct quantification of homed AL PDX 

cells to mouse bone marrow. The established models circumvent the former technical 

limitations of the identification, isolation, and enrichment of minute numbers of cells and 

enables thereby for the first time especially new insights into leukemia biology at early time 

points with direct cell number quantifications. Already Barrett and colleagues claimed that 

suitable models and techniques are urgently needed to study engraftment and investigations on 

early leukemic development. As different ALL samples show different kinetics in xenograft 
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models, detection and quantification of treatment effects in these models at early disease time 

points are interesting for new treatment options or the determination of patients’ outcome 

(Barrett et al., 2011). To investigate engraftment capacities of AL samples to mouse bone 

marrow, the gold standard method are limiting dilution transplantations assays (LDTA). They 

are used to compare differences of leukemia initiating cell (LIC) frequencies between different 

AML samples, between subpopulations regarding surface markers (Eppert et al., 2011; Sarry et 

al., 2011) and between treated and untreated samples (Castro Alves et al., 2012). The read-out 

is a qualitative one; the engraftment or the non-engraftment of cells in immunodeficient mice. 

The rates of positive and negative response at different doses allow the quantitative calculation 

of the LIC frequency with help of the ELDA software (Hu and Smyth, 2009). In addition the 

current standard method to detect engraftment of leukemia is the measurement of leukemia cells 

in the blood and most mice were only evaluated during endpoint analyzes. But these current 

methods do not give full insights into early leukemia growth, leukemia development or 

treatment response (Barrett et al., 2011), whereas the developed enrichment methods in this 

study now give the opportunity to study and quantify the early engraftment of AL. 

For engraftment studies, 107 PDX cells of eight ALL samples and of eleven AML samples were 

injected into mice and quantified from mouse bone marrow two or three days later. The homing 

capacity of the different PDX samples differed by more than two orders of magnitude. The 

maximum efficiency was around 4 % of injected cells that could be redetected after isolation, 

whereas the minimum efficiency was 0.01 % of the injected PDX cells.  

In addition, for the sample ALL-199, different cell numbers between 107 and 105 PDX cells 

were injected into mice and quantified from mouse bone marrow three days later. When higher 

cell numbers were injected, homing efficiency increased to a maximum of 1.2 %, whereas the 

injection of the lowest cell number only lead to a homing efficiency of 0.03 %. This shows that 

different PDX AL samples seem to have different engraftment rates to mouse bone marrow and 

the homing capacity depends on the cell number injected. The heterogeneity of homing capacity 

of different samples and different cell numbers are in line with previously published data, which 

show that AML or ALL PDX engraftment is a selective event, and that engraftment efficiency 

and time to full blown leukemia varies between different samples (Liem et al., 2004; Lock et 

al., 2002; Notta et al., 2011; Samuels et al., 2010; Sanchez et al., 2009). The current literature 

mainly concludes that different samples or different subpopulations might contain different 

frequencies of LIC.  

Later on in the study, qualitative LDTAs were performed for AML-393 and AML-491. Here 

LIC frequencies between 1/130 and 1/1400 were calculated. The data is in line with the direct 
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quantitative analysis of homed cells after three days for ALL-393 and AML-491, as here 0.3 

and 1 % of 107 injected cells homed to the mouse bone marrow.  

In contrast for ALL-199, qualitative analysis by LDTA showed 50 % engraftment for the group 

of 10 cells in the mouse bone marrow. Considering cell loss during the complex procedure of 

cell preparation and injection, these data suggest that each and every cell in this sample contains 

stem cell properties (Ebinger et al., 2016; Tiedt, 2014). In addition, other studies showed that 

in ALL almost every cell is a LIC, as LIC frequencies are very high (Morisot et al., 2010; Rehe 

et al., 2013). But in the present study, it seems that the engraftment rate drops if lower cell 

numbers are injected. A possible reason is the competition of transplanted cells with host bone 

marrow cells. Colvin and colleagues showed that transplanted cells and cells of the host bone 

marrow are in direct competition and the engraftment is directly related to the ratio of injected 

cells and bone marrow cells (Colvin et al., 2004). A reason for the high LIC frequency 

determined by LDTA might be the long-term evaluation. Here even very small cell numbers 

have time to increase to visible population. At early time points the present model might fail to 

quantify these few cells and might underestimated very small numbers. Further studies are 

necessary to explain on the one hand the decrease of homing efficiency for smaller cell 

numbers, but on the other hand the engraftment of very small cell numbers in ALL and AML 

at late time points as shown by LDTA.  

To calculate doubling times of eight different AML PDX samples, 107 PDX cells were injected 

into at least three different mice, and absolute numbers of PDX cells in the mouse bone marrow 

were quantified at different time points. From these numbers doubling times were calculated. 

The doubling times between the different AML PDX growing in mice differ broadly. The 

fastest sample has a doubling time of 1 day whereas the slowest sample has a doubling time of 

nearly 4 days. These different doubling times can explain the differences in passaging time of 

PDX AML and ALL samples in our group and in published data (Lock et al., 2002; Notta et 

al., 2011; Sanchez et al., 2009; Vick et al., 2015), as low doubling times lead to a faster increase 

of PDX cells and therefore to an earlier advanced leukemia burden in the mouse.  

Interestingly, the majority of cells that were injected in the present study are not able to home 

to the mouse bone marrow, as only minor fractions of injected cells were detected. A possible 

reason might be the homing of these cells to other organs than the bone marrow, which were 

not analyzed within this study. Other studies showed an early engraftment of leukemic cells to 

the liver (Barrett et al., 2011) and cells that home to the liver very early but left the liver again 

(Vick et al., 2015). But the early engraftment of the liver seems to be sample dependent as other 

studies showed a later engraftment of PDX within the liver (Bomken et al., 2013), whereas all 
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studies showed an obvious first engraftment to the bone marrow of the lower extremities. Thus, 

the bone marrow is the most important organ to investigate for engraftment rates. Furthermore, 

in this study around 75 % of the mouse bone marrow was analyzed (Colvin et al., 2004). It 

might be that the remaining bone marrow of thoracic limbs, skull or rib cage harbor more PDX 

cells. But it has been show that mainly the bone marrow of the lower extremities harbors 

leukemia cells at early time points (Barrett et al., 2011; Bomken et al., 2013) and therefore it 

seems to be very unlikely that the remaining bone marrow contains all the missing PDX cells. 

In theory cells might still circulate in the bloodstream and will engraft later. But for normal 

hematopoiesis it has been shown that the engraftment of injected hematopoietic stem cells 

(HSC) is finished after 4 hours and afterward no additional cells are engrafting (Ellis et al., 

2011). It seems likely that the same is true for AL cells. As a consequence, most injected cells, 

including the LIC, might have died and were degraded. 

These data indicate that the engraftment of specific leukemic sample into mouse bone marrow 

depends on the cell number injected and on specific characteristics of the individual samples, 

like different cell distribution in the mouse, different cell dying, or additional homing to other 

niches than the bone marrow, which might not been seen with the present model. Until now, no 

data exists about the number of niches in the bone marrow (Nombela-Arrieta and Manz, 2017). 

The data argue against the presence of a preformed and fixed number of niche places present in 

the bone marrow of each NSG mouse, which are able to house PDX cells (Ugarte and Forsberg, 

2013). In contrast, depending on the characteristics of the sample and the cell number injected, 

the bone marrow of each mouse seems to be able to home a different number of human leukemic 

cells.  

In summary, it was shown that the established model enables insight into early leukemia bone 

marrow engraftment and that the engraftment depends on sample specific characteristics.  

6.3 AL PDX samples show a logistic growth in mice 

Besides insights into early engraftment of AL PDX, also investigations on AL PDX growth 

would help to understand the biology of the disease in more detail to finally improve or develop 

new treatment strategies. 

In the present study lentiviral transduction of AL PDX samples enables enrichment and 

quantification of minute numbers of PDX cells from mouse bone marrow for detailed kinetics. 

Quantitative and relative analysis of PDX cells in mouse bone marrow over time showed an 

exponential increase of leukemic load for all analyzed samples over around two third of the 
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time from injection to leukemia induced death of the mouse, and growth slowed down 

thereafter. Mathematically, the early growth of PDX cells in mice is logarithmic, but slows 

down if about 10 % of cells within the mouse bone marrow are of human origin. This results 

mathematically in an overall logistic growth, which is an indicator for non-optimal nutrient 

supply (Schacht, 1980). A reason for logistic growth is space restriction, which seems on the 

one hand unlikely because the slowdown already happens when only 10 % of cells where of 

human origin but on the other hand it is likely because the bone marrow is surrounded by solid 

bone marrow, which cannot expand. Insufficient supply of critical resources like nutrients and 

oxygen by the bone marrow environment might diminish the proliferation rate of the leukemia 

cells, and is known to be another reason for the logistic growth of solid tumors (Araujo and 

McElwain, 2004; Bru et al., 2003; Casciari et al., 1992; Vaidya and Alexandro, 1982). Another 

reason for logistic growth could be an increase of cell death at high densities (Schacht, 1980). 

As it is known that PDX cells are spreading to other organs at later time points and that even 

the mouse bone marrow has up to more than 90 % leukemic cells at advanced leukemic stages 

(Bomken et al., 2013; Castro Alves et al., 2012; Jones et al., 2017; Wang et al., 2017), the 

possible increased cell death rate has to be compensated by a very high proliferations rate (Labi 

and Erlacher, 2015). Further studies are required to decipher the mechanisms which slow down 

leukemia growth at these low phases of leukemic infiltration in bone marrow. 

6.4 Subpopulation of dormant cells as model for relapse-inducing cells in 

patients 

In the present study CFSE staining was established to follow up proliferation. CFSE has already 

been used as proliferation marker in lymphocytes (Lyons and Parish, 1994; Parish, 1999), 

mouse HSC (Takizawa et al., 2011), and xenografts of solid tumors (Moore et al., 2012). Within 

this study, CFSE staining was established for ALL and AML PDX cells. By double staining 

with the widely used proliferation marker BrdU (Kee et al., 2002; Nakamura et al., 1991; 

Ninomiya et al., 2007), and the correlation of CFSE loss versus increase in absolute cell 

numbers in the mouse bone marrow, the present study shows that CFSE can reliably be used as 

proliferation marker of PDX cells. To analyze BrdU incorporation into DNA, permeabilization 

of these cells is necessary, meaning that cells die during this method. An advantage of CFSE is 

the detection of the signal in living cells without permeabilization, meaning that living cells can 

be further functionally characterized, and be re-injected for further studies.  
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Using the established enrichment methods combined with CFSE labeling, the present study 

discovered that PDX AML and ALL cells growing in mice reveal heterogeneity regarding 

proliferation. 107 PDX cells of several AML and ALL samples were labeled with CFSE, 

injected into mice, and PDX cells were enriched from mouse bone marrow and analyzed for 

CFSE content at different time points. AML and ALL contain a rare subpopulation of label 

retaining cells (LRC) which barely divide, even if tumor mass proliferated substantially. LRC 

existed in all but one different tested types of AL samples, in pediatric and in adult AL samples, 

in different risk groups as they exist in relapse and initial diagnosis samples. However, one 

AML sample did not contain LRC, indicating that the presence of LRC is not a mere 

stochastical event. Furthermore, LRC are not an artefact induced by the genetic engineering of 

the samples, because they also exist in samples without any lentiviral transduction or transgene 

expression. 

Thus, for the majority of samples, a few cells did not participate in proliferation. Like in normal 

hematopoiesis (Trumpp et al., 2010), PDX AML and ALL harbor rare, long-term dormant cells. 

In addition dormant cells were identified in primary ALL samples by Ki-67 staining (Lutz et 

al., 2013). However, the present study provides for the first time a preclinical tool to study 

dormant human AML and ALL cells in vivo and describes that long-term resting cells exist in 

AML and ALL. This fact was unknown so far, as immunohistochemistry and flow cytometry 

of primary patients' samples only allow quantifying dormant cells as a snapshot at a given 

moment when cells e.g., lacking Ki-67 expression. But these methods fail to distinguish 

between short-term and long-term resting cells (Lutz et al., 2013). In contrast, LRC represent 

long-term resting cells which did not divide for up to 29 days explaining their minor abundance 

compared to primary samples. In the present model system, the LRC fraction constantly 

diminished over time; one reason for this might lay in the technical limitation that cells which 

proliferate first and become dormant later lost their CFSE label, and thereby the present method 

might underestimate the frequency of resting cells. 

Development of relapse is a complex process involving genetic and non-genetic factors (Inaba 

et al., 2013). In adult ALL patients pre-existing minor clones with mutations responsible for 

drug resistance might lead to early relapse. Relapse originates often from treatment resistant 

cells that persist at MRD in the patients (Pui et al., 2008). Genome sequencing of matched 

diagnosis and relapse samples reveal that relapse samples often harbor specific genetic 

alterations. These genetic alterations were either acquired at relapse or already exist as minor 

clone at diagnosis and are responsible for the growth advantage and/or the treatment resistance 

of the subclone (Ding et al., 2012; Inaba et al., 2013; Pui et al., 2012). But some ALL cases are 
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genetically very stable, suggesting that here relapses are not mediated by mutational 

mechanisms (Staal et al., 2010). As cells at late relapse, meaning later than 30 month of 

diagnosis, often respond to the same treatment regimens as the cells at initial diagnosis, long-

term dormant leukemic cells without any additional mutation might be responsible for the 

relapse. Therefore ALL LRC might represent surrogates for cells responsible for late relapse 

and for relapse cells without any additional mutations, as often seen in children (Staal et al., 

2010). 

The fact that LRC exist might explain why patients suffering from leukemia profit from 

maintenance therapy. ALL patients are routinely treated with oral low dose chemotherapy from 

end of intensive chemotherapy until, e.g., 2 years after diagnosis, and maintenance therapy 

improves patients' prognosis (Schrappe et al., 2000). Low dose maintenance therapy might act 

by removing long-term resting leukemia cells with relapse-inducing potential when they start 

to proliferate. 

In conclusion the developed PDX model represents a unique tool to study long-term resting 

human leukemia cells in vivo and provides inside into leukemia biology. With the model, a rare 

dormant subpopulation within PDX AL cells was identified which might be a surrogate for 

relapse-inducing cells in patients. Therefore the developed model might be used as convenient 

tool to investigate new treatment strategies against dormant and relapse-inducing cells in 

patients. This tool enables for the first time improved research very close to the patients. 

6.5 Stemness and dormancy are not directly connected in AML 

A cancer stem cell (CSC) hierarchy has been described in numerous tumor entities including 

solid tumors (Visvader and Lindeman, 2008) and AML (Bonnet and Dick, 1997). Leukemia 

stem cells (LSC) are recognized as a clinically highly relevant subgroup of cells and are 

characterized by specific features such as self-renewal and dormancy (Essers and Trumpp, 

2010; Ishikawa et al., 2007; Viale et al., 2009). The identified LRC within this study are defined 

by their reduced proliferation rate. Additionally, Erbey Özdemir, a colleague in the hosting 

laboratory, showed that LRC are localized mainly within the endosteal bone marrow niche, 

which was defined as the region around the bone matrix with a distance of less than 100 µm to 

the closest bone matrix (Ebinger et al., 2016; Özdemir, 2017). The endosteal bone marrow niche 

was originally identified as the location of hematopoietic stem cells (HSC) and it has been 

shown that HSC rarely proliferate (Malhotra and Kincade, 2009; Trumpp et al., 2010). The 

same has been shown for CSC (Ishikawa et al., 2007). Therefore, it was studied whether AML 
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LRC are surrogates for LSC and whether AML stem cells can be enriched by the dormant 

phenotype. 

As surrogates for the LSC frequency, the leukemia initiating cell (LIC) frequency was 

determined by using the gold standard method LDTA (Castro Alves et al., 2012; Dick and 

Lapidot, 2005; Eppert et al., 2011; Sarry et al., 2011). In this study, the LIC frequency of sorted 

LRC and non-LRC in two different samples was compared. Sorted LRC and non-LRC were 

injected at different cell numbers into groups of mice and the engraftment of these cells was 

followed by blood measurement and in vivo imaging. From engraftment rates LIC frequencies 

was calculated using the ELDA software. Unexpectedly, CSC frequency was not higher in the 

LRC population; as LRC and non-LRC populations showed highly similar calculated LIC 

frequencies. These results are consistent with data of ALL LRC, as in ALL also LRC and non-

LRC have similar LIC frequencies (Ebinger et al., 2016; Tiedt, 2014). But the literature showed 

that LSC are mainly dormant (Ishikawa et al., 2007; Viale et al., 2009) and that only LSC can 

induce new tumors and propagate the disease (Bonnet and Dick, 1997; Huntly and Gilliland, 

2005; Lapidot et al., 1994; Reya et al., 2001). The current study showed that even fast 

proliferating leukemia cells have stem cell properties and can induce new tumors and that 

dormancy might not be an intrinsic characteristic of the here detected LRC, as pure LRC 

populations start to proliferate and induce new tumors. But the sample size within this study is 

very low and LRC and non-LRC were taken from their environment and re-injected into new 

mice for the LDTA. There might be putative extrinsic factors, that are responsible for the 

differences between LRC and non-LRC, but which are lost if they are taken from their former 

environment and placed into a new environment. 

The presented results that LSC exist in different phenotypic cell types are in line with current 

data about the heterogeneity of LSC. In contrast to the former theory that AML stem cells 

always express the markers lin-CD34+CD38-, and only these cells are able to induce a leukemia 

(Bonnet and Dick, 1997; Lapidot et al., 1994), present data shows that LSC are phenotypically 

heterogeneous (Eppert et al., 2011; Goardon et al., 2011; Jamieson et al., 2004; Sarry et al., 

2011; Taussig et al., 2010).  

Thus, as LRC and non-LRC have the same leukemia initiating potential, but different 

proliferation behavior in vivo, stemness and dormancy seems not to be directly connected in 

AML.  
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6.6 Drug resistance of LRC might be a consequence of their dormancy and 

bone marrow localization 

Tumor cells often display two challenging features, namely dormancy and drug resistance. 

Dormant cells are known for their resistance against cytotoxic drugs, complicating elimination 

by anti-cancer therapy (Essers and Trumpp, 2010). However, it is unclear whether either 

dormancy or drug resistance is pivotal in respect to the other, so that dormancy is a consequence 

of resistance or vice versa (Blatter and Rottenberg, 2015).  

As the identified LRC are defined by their dormant nature, the drug response of the dormant 

LRC and the fast proliferating non-LRC was compared. For this purpose as clinically related 

model, systemic in vivo drug treatment trials were performed. 107 CFSE labeled PDX cells were 

injected into mice. After seven days mice were treated with chemotherapy, followed by PDX 

cell enrichment and analysis for CFSE content 3 days later. LRC show marked resistance 

against in vivo chemotherapy. While systemic chemotherapy in mice reduced overall tumor 

mass by 90 %, most LRC survived chemotherapy. The relative drug reduction showed that 

proliferating cells were 10 to 100 fold more efficiently eliminated by in vivo chemotherapy than 

LRC. As a consequence, the relative percentage of LRC within the total population of cells 

isolated from treated mice increased significantly during treatment. LRC displayed in vivo 

resistance against a variety of different drugs of current ALL chemotherapy protocols used 

either in front line or in relapse. The study shows that acute leukemias consists of functionally 

heterogeneous cells regarding proliferation rate and drug resistance similar to functional 

heterogeneity shown in other tumor entities (Kreso et al., 2013). As LRC did not substantially 

participate in proliferation during growth of leukemia over weeks, and in treatment experiments 

over 10 days, LRC existed before onset of therapy and were not developed as a consequence of 

treatment. Drug resistance is associated with stem cell features of cancer cells (Wang, 2007). 

But as both LRC and non-LRC contain similar amounts of leukemia stem cells (LSC), but show 

different sensitivity towards drug treatment in vivo, the data implicate that stemness and drug 

resistance are not directly connected in acute leukemias. This assumption is supported by 

another current study, where it has been shown that cytarabine treatment resistant AML cells 

are not enriched for leukemia stem cells in an AML PDX model (Farge et al., 2017). 

In one AML sample, AML-491, also the LRC were largely reduced by the treatment. The 

reduction by the treatment was little less for LRC compared to proliferating cells, but the AML-

491 LRC did not show major drug resistance compared to the LRC of the other samples. In in 

vivo treatment trials with six different AML samples of a colleague in the hosting laboratory, 
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Binje Vick, only AML-491 was highly sensitive towards cytarabine treatment. Even one mouse 

was cured completely after treatment. The reason for this sensitivity might be that in this sample 

also the LRC are sensitive towards treatment. It shows that treating LRC might have a direct 

effect on the survival of mice. The data suggests that patients might benefit from treatment 

which targets dormant and drug resistant subpopulation. But the sample size with only one 

sample is very low and further samples which show LRC sensitivity would be needed to prove 

the correlation and to investigate the reasons for the drug sensitivity of these samples. 

Leukemia initiating cells are thought to be located in the hematopoietic niche where they 

interact with the environment, which might protect them from chemotherapy (Lane et al., 2009; 

Tabe and Konopleva, 2014). These cells might survive chemotherapy and could induce a new 

tumor. The results in this study are in line with this hypothesis, because the re-injection of drug 

resistant LRC into new recipient mice induced a new leukemia in those mice. Thus drug 

resistant LRC have stem cell properties. 

Furthermore, an interaction of LRC with the hematopoietic niche would explain their dormant 

phenotype, as a direct correlation between dormancy of HSC and their localization within the 

hematopoietic niche has been observed (Arai et al., 2004; Fleming et al., 2008; Wilson et al., 

2008). Moreover, even a drug resistance of HSC localized in the niche has been shown (Cheng 

et al., 2000). Indeed further studies of the hosting laboratory by Erbey Özdemir on the 

localization of LRC in the mouse bone marrow showed that LRC are significantly more located 

within the endosteal niche than non-LRC (Ebinger et al., 2016; Özdemir, 2017).  

As the identified LRC are drug resistant and are able to induce a new leukemia they might be 

surrogates for minimal residual disease (MRD) cells in patients; these cells survived drug 

treatment in patients and are often responsible for relapse. MRD levels are even a prognostic 

factor, as the level of MRD correlates with the risk for relapse (Gokbuget et al., 2012b; Locatelli 

et al., 2013; Paietta, 2015; Pettit et al., 2016).  

Taken together, LRC are characterized by a combination of three features that challenge anti-

leukemia treatment: dormancy, leukemia initiating potential and drug resistance, which might 

be a consequence of their bone marrow localization. As the established PDX model presented 

here covers all three features, this model might help to further characterize these cells and 

ultimately used to test new treatment regimens to increase outcome in patients and to prevent 

relapse.  
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6.7 The reversible phenotype of LRC might be a clinical treatment option 

One new treatment strategy against drug resistant cells might be to break their dormancy. For 

dormant HSC it has been shown that they can be modified by different factors to start 

proliferation. As a result the former drug resistant HSC were sensitized towards chemotherapy 

(Trumpp et al., 2010).  

Therefore, the question rises whether the detected subpopulation of LRC can be transformed to 

proliferating and thereby treatment sensitive cells. Regarding dormancy and proliferation the 

study investigated whether AL cells have a reversible or fixed phenotype. If LRC and non-LRC 

have a genuinely different biology harboring distinct and constant intrinsic characteristics, they 

might be organized in a hierarchical way similar to the known stem cell hierarchy existing in 

many tumors including AML (Kreso and Dick, 2014). If LRC and non-LRC have a temporary 

and reversible phenotype, they might behave like long-term dormant HSC. These cells can start 

cycling in response to stress for a defined period of time and turn back into dormancy later 

(Trumpp et al., 2010).  

In this study, re-transplantation experiments of dormant LRC showed that they started to 

proliferate when they were dissociated from their environment and injected into next recipient 

mice. When fast proliferating non-LRC were dissociated from their environment, re-labeled 

with CFSE and injected into next recipient mice, they gave rise to the same heterogeneous 

pattern as before, including dormant LRC. Thus, the study detected that dormant cells can 

convert into fast proliferating cells and vice versa. Therefore, this data favors the second 

scenario, as LRC and non-LRC exhibit their proliferation phenotypes as reversible, temporary, 

transient functional phenotypes. 

These new insights harbor direct translational consequences. As LRC lose their clinical relevant 

phenotype after release from the bone marrow environment, rapid sample processing might be 

critical for reliable profiling for diagnostics. But this is still a challenge in clinical routine 

(Bacher et al., 2010). 

The phenotypic reversibility detected in acute leukemias parallels to normal hematopoiesis, in 

which long-term dormant HSC start cycling in response to stress for a defined period of time 

and turn back into dormancy later (Essers et al., 2009; Wilson et al., 2008). For HSC it has even 

been shown that breaking their dormancy with different factors sensitized them towards 

chemotherapy (Essers et al., 2009; Trumpp et al., 2010). The data indicates that it also might 

be possible to convert dormant AL cells into proliferating cells by treating them with certain 

factors, and thereby converting the former drug resistant dormant cells into drug sensitive cells. 
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And indeed for leukemia stem cells (LSC) it has been already shown that converting LSC from 

a dormant state into proliferation can efficiently sensitize them towards chemotherapy (Essers 

and Trumpp, 2010). In AML, treatment efficacy was enhanced in vitro and in vivo by converting 

dormant AML cells into proliferation (Kuhne et al., 2013; Nervi et al., 2009; Saito et al., 2010b; 

Zeng et al., 2009). In ALL, similar therapeutic strategies were efficient (Parameswaran et al., 

2011; Sison et al., 2013; Welschinger et al., 2013). 

In addition this study showed that AL cells sustain major biological plasticity for adapting to 

the current situation and on external stimuli. Putative extrinsic factors influencing AL 

proliferation rates might result from the direct in vivo environment. As this study was restricted 

to bone marrow and the identified LRC are localized within a certain bone marrow 

microenvironment, the endosteal bone marrow niche (Ebinger et al., 2016; Özdemir, 2017), the 

bone marrow niche might play an important role in determining proliferation rate in this study. 

Already in healthy hematopoiesis, it has been shown that dormant HSC are located in the 

endosteal bone marrow niche (Wilson et al., 2007). Within this bone marrow niche, different 

cellular compartments and the molecular crosstalk by secreted factors regulate the maintenance 

of HSC in the niche (Kiel and Morrison, 2008; Wilson and Trumpp, 2006). In addition in 

leukemia increasing evidence exists regarding the close interplay between the bone marrow 

niche and leukemia cells residing therein, and mechanisms by which the niche supports the 

leukemic disease start to become unraveled (Raaijmakers, 2011). For ALL, it has been shown, 

that these cells are located in special bone marrow niches (Pitt et al., 2015) and that leukemic 

cells within the niche are quiescent (Saito et al., 2010b). Therefore, LRC might be dormant 

because of their localization close to the endosteal bone marrow niche. This is supported by the 

fact that LRC start to proliferate when they were dissociated from their environment. 

Disrupting this leukemia-niche interaction might represent an interesting concept for future 

therapies (Tabe and Konopleva, 2014). If treatment can release LRC from their in vivo 

environment, LRC might start to proliferate and thereby become sensitive towards 

chemotherapy. In normal hematopoiesis the interaction between HSC and their 

microenvironment can be disturbed to mobilize HSC (Morrison et al., 1997; Rettig et al., 2012). 

But also in AML, a treatment option is to induce mobilization of AML cells, to get them into 

circulation, which then enhances treatment effects of chemotherapy (Kuhne et al., 2013; Nervi 

et al., 2009; Zeng et al., 2009). In addition, targeting the niche in ALL, by disturbing the 

signaling between CXCL12 and its receptor CXCR4, leads to decreased development of 

leukemia (Pitt et al., 2015). The cytokine CXCL12 is produced by stromal cells and known to 

be important for the localization and maintenance of HSC (Lane et al., 2009).  
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As the current study showed that the dormant state of LRC is not an intrinsic but rather a 

convertible, temporary characteristic, also drug resistance might be a transient characteristic of 

LRC. In addition localization of LRC to the bone marrow niche seems to influence both, their 

dormancy and their drug resistance. These findings enable a first step towards new therapies. If 

dormant cells can be converted into proliferating cells, probably by targeting the bone marrow 

microenvironment, it should be able to target them afterwards with chemotherapy, reduce 

minimal residual disease and finally prevent relapse in patients.  

6.8 Outlook 

In this study, a dormant, drug resistant and stem cell like subpopulation within patient derived 

xenograft (PDX) acute leukemia (AL) cells was identified and characterized. It could be shown 

that this subpopulation is long-term resting, does not respond to chemotherapy-treatment in 

vivo, and is capable of inducing a new tumor (Figure 33). Therefore, these cells combine all 

adverse characteristics that challenge clinical success in AL patients (Lutz et al., 2013). As 

these cells might survive standard therapy and eventually lead to a relapse, they jeopardize 

patients’ prognosis.  

However, and as demonstrated in Figure 33, the rare population identified in this study has a 

reversible phenotype. When located on the endosteal bone marrow niche, which seems to have 

a protective influence, this subpopulation is dormant, drug resistant, and has leukemia stem cell 

properties. By release from the microenvironment, this population can be converted to a 

proliferating phenotype and might therefore be responsive towards therapy. This feature might 

therefore be a promising approach to target this adverse population. 

As demonstrated in further studies by Erbey Özdemir (Ebinger et al., 2016; Özdemir, 2017), 

the LRC population characterized here, resembles minimal residual disease (MRD) cells of AL 

patients. During the treatment of AL, treatment resistant cells represent a major challenge, as 

they eventually induce relapse which is associated with poor prognosis (Gokbuget et al., 2012b; 

Locatelli et al., 2013; Paietta, 2015; Pettit et al., 2016). To prevent relapse in patients it is 

important to eradicate treatment resistant, dormant tumor cells.  
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Figure 33: Plasticity hypotheses of human acute leukemic cells growing in mice.  

Newly identified rare acute leukemic cells are dormant, drug resistant, have stem cells properties and are localized 
in the endosteal niche whereas most acute leukemic cells are proliferating, are drug sensitive, have stem cell 
properties and are not localized in the endosteal niche. But cells do not have a fixed phenotype: depending on the 
microenvironment they can convert into one or the other phenotype.  

 

This plasticity of AL cells has a putative clinical relevance. For potential novel treatment 

strategies, the transient nature of the adverse characteristics of LRC suggests aiming at 

removing MRD cells from their protective environment in order to sensitize them towards 

chemotherapy treatment (Essers et al., 2009; Essers and Trumpp, 2010). The interaction 

between MRD cells and their bone marrow niche represents a promising target for novel 

therapeutic approaches to prevent relapse.  

More research is required to define the vulnerable targets of the LRC subpopulation or of the 

niche cells providing protection.  

Possible candidates for therapeutic targets are surface antigens that are differently expressed on 

LRC and non-LRC. Their inhibition on LRC might release these cells from their protective 

microenvironment. Beyond targeting the tumor cells, also the bone marrow microenvironment 

might be an effective target. Here signaling or surface molecules might be inhibited to shut 
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down environmental support. But as each non-LRC can convert into a drug resistant LRC, when 

it gets access to the protective niche, a persistent therapeutic inhibition might be required over 

prolonged periods of time. 

As the study showed that the microenvironment influences the functional phenotype of AL cells 

like dormancy and drug resistance, this data might explain the limited explanatory power of in 

vitro assays: Both constantly proliferating cell line cells and non-cycling, primary leukemia or 

PDX cells are highly sensitive towards chemotherapy in vitro, and can therefore not mimic 

drug-resistant MRD cells in the patient. Drugs that are effective in these in vitro assays often 

fail in patients (Kamb, 2005; Sun et al., 2006). One reason might be the missing influence of 

the microenvironment (Dhami et al., 2016; Pemovska et al., 2013; Wu et al., 2010). Recently, 

to improve drug testing in vitro, the bone marrow microenvironment is often included by using 

co-culture systems with human or mouse bone marrow stromal cells (Dhami et al., 2016; 

Frismantas et al., 2015; Pemovska et al., 2013; Suryani et al., 2014). However, as the critical 

factors responsible for the protective niche are not yet characterize, it is unclear if these methods 

are suitable model systems with predictive value. Furthermore, direct research on patients MRD 

cells is difficult due to their cryptic nature and minute number. This limits their isolation for 

further research (Hedley and Keeney, 2013; Ommen, 2016). PDX models circumvent these 

limitations. PDX models of different tumor entities have been already successfully used for the 

prediction of clinical outcome, for preclinical drug development, for the identification of 

biomarkers and for personalized medicine strategies (Bertotti et al., 2011; Dong et al., 2010; 

Gao et al., 2015; Garrido-Laguna et al., 2010; Hidalgo et al., 2011; Keysar et al., 2013; Liem et 

al., 2004; Rajeshkumar et al., 2009). In addition, in personalized treatment PDX have been 

already successfully used for new treatment strategies (Trahair et al., 2016). 

LRC in the here presented PDX model can repetitively be studied as highly enriched, pure 

fraction following the established isolation and enrichment protocol. The model allows the 

repetitive work on pure vivid LRC and thereby allowed the functional and phenotypical 

characterization of the population, which would not have been possible with primary patients’ 

MRD cells. LRC might represent a preclinical surrogate for a clinically relevant subpopulation 

threatening AL patients. Furthermore, LRC in the acute leukemia PDX model will serve as 

informative tool for the development of novel treatment strategies aiming at preventing AL 

relapse. Therefore LRC in the here developed preclinical model can now be used as surrogates 

for relapse-inducing cell, for developing novel therapies in order to prevent relapse and increase 

the prognosis of AL patients. 
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Table S 2, related to Table 6: Clinical data of ALL patients and sample characteristics 
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Table S 3, related to Figure 23: LRC and non-LRC harbor similar numbers of leukemia initiating cells 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix - Acknowledgment  V 
 

 
 

8.2 Acknowledgment 

First I like to special thank Prof. Dr. Irmela Jeremias for giving me the opportunity to perform 

my PhD thesis in her lab and her supervision of my PhD project. Thank you for all your support 

and assistance with my projects, for all the good inspiration and advises, for your belief and 

trust in me, and for all the things I learned during my time in the lab and especially from you.  

I am very thankful to Prof. Dr. Dirk Eick for the official supervision of my PhD thesis and his 

interest in my projects. Thank you for your scientific support, the helpful discussions about my 

projects, and for all the support, advice and ideas for writing my PhD thesis. 

A big thank you to my Thesis Advice Committee, including Prof. Dr. Dirk Eick, Prof. Dr. 

Olivier Gires, PD Dr. Ursula Zimber-Strobl, and Prof. Dr. Irmela Jeremias for the productive 

discussion rounds about my projects in a friendly atmosphere, for the input, ideas, and all the 

inspiriting advice and confidence regarding our data and publication. 

A special thank you goes to my PhD collaborating partner Erbey Özdemir. Thank you so much 

for being so uncomplicated and reliable, for the good and successful teamwork, and for all the 

nice and funny work together! 

I thank my whole working group “Jeremias”, all current and alumni members. For their 

introduction and teaching in all techniques, and for the friendly and great working atmosphere. 

A special thanks to all the TAs for all the help with the mice work, without your support the 

complex experiments for the present study would not have been possible! I am very grateful of 

all the help especially from Maike Fritschle and Fabian Klein. Thank you Dr. Binje Vick for 

answering all questions, your help, ideas, and the review of my thesis! I thank Dr. Catarina 

Castro-Alves for her support, helpful input, and her scientific and human advises. Thank you 

all for being great colleagues, becoming new friends, and for all the great time spending 

together in the lab and during free time! 

Thanks to all members of the animal facility for taking care and pay attention of my mice. 

And finally I thank my family for all the distraction during free time and their motivation, 

support, and admirations for what I do. 



Appendix - Publications  VI 
 

 
 

8.3 Publications 

Sarah Ebinger, Erbey Ziya Özdemir, Christoph Ziegenhain, Sebastian Tiedt, Catarina Castro 

Alves, Michaela Grunert, Michael Dworzak, Christoph Lutz, Virginia A. Turati, Tariq Enver, 

Hans-Peter Horny, Karl Sotlar, Swati Parekh, Karsten Spiekermann, Wolfgang Hiddemann, 

Aloys Schepers, Bernhard Polzer, Stefan Kirsch, Martin Hoffmann, Bettina Knapp, Jan 

Hasenauer, Heike Pfeifer, Renate Panzer-Grümayer, Wolfgang Enard, Olivier Gires, Irmela 

Jeremias (2016) „Characterization of Rare, Dormant, and Therapy-Resistant Cells in Acute 

Lymphoblastic Leukemia”  

Cancer Cell 30.6, 849-862;http://dx.doi.org/10.1016/j.ccell.2016.11.002 

 

Sarah Ebinger, Binje Vick, Christina Zeller, Karsten Spiekermann, Wolfgang Hiddemann, 

Irmela Jeremias „Patients‘ AML stem cells growing in mice display heterogeneous proliferation 

features“ 

Manuscript in preparation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


