
i 
 

DISSERTATION ZUR ERLANGUNG DES DOKTORGRADES DER 

FAKULTÄT FÜR CHEMIE UND PHARMAZIE DER 

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN 
 

 

 

 

 
 
 

 
BIOLOGICAL AND TRANSLATIONAL 

CANCER PROTEOMICS 
 

 

 

 SOPHIA SUSANNA DOLL  
  

AUS 

MÜNCHEN, DEUTSCHLAND 

 

 

2018 





i 
 

Erklärung 

Diese Dissertation wurde im Sinne von § 7 der Promotionsordnung vom 28. 

November 2011 von Herrn Professor Dr. Matthias Mann betreut. 

 

Eidesstattliche Versicherung 

Diese Dissertation wurde eigenständig und ohne unerlaubte Hilfe erarbeitet.  

München, den 20.12.2017 

 

______________________ 

     Sophia Susanna Doll 

 

 

 

 

 

 

 

Dissertation eingereicht am _____16.01.2018____________ 

 

1. Gutachter: Prof. Dr. Matthias Mann _______________________ 

2. Gutachter: Prof. Henrik Daub _______________________ 

Mündliche Prüfung am ______26.02.2018_________ 

 



ii 
 

Abstract 
 
Cancer is the second leading cause of death worldwide and many cancer subtypes 

remain poorly understood. Most conventional chemotherapeutic treatments are still 

associated with life-threatening toxic side effects that primarily result from a lack of 

specificity directed towards cancer cells. Recent breakthroughs in genomic and 

transcriptomic sequencing technologies have allowed the molecular profiling of 

thousands of tumors in different cancer types. It has become evident that cancer 

cannot be considered a singular disease and that its manifestations cannot 

exclusively be explained by the accumulation of genetic mutations. Instead, 

epigenetic and proteomic changes as well as posttranslational modifications (PTMs) 

of proteins are crucial drivers of oncogenesis. In this thesis, I investigated system-

wide alterations in cancer at several biological and cellular levels using mass 

spectrometry (MS). Starting from the nucleus of the cell, I explored the epigenetic 

changes in lymphoma at the biotechnology company Genentech Inc. We found that 

the methyltransferase EZH2 is the most significantly over-expressed epigenetic 

regulator in cancer, and is co-regulated with a cell cycle network. Zooming out from 

the nuclear level, I analyzed phosphorylation-signaling alterations in primary and 

secondary glioblastoma cell line models at the University of California, San 

Francisco (UCSF). Here, I focused on the interplay between the MAPK and PI3K 

signaling cascades. At the Max Planck Institute (MPI) of Biochemistry, I moved on 

to translational proteomics, working with human cancer tissues. I optimized an MS-

based proteomic workflow for the rapid screening of clinical tissue samples and 

showed that MS-based proteomics can be used for novel therapeutic target 

identification in end-stage chemorefractory cancer patients. 

Through its industrial, academic and clinical perspective on a variety of proteomic 

methods, this PhD thesis demonstrates that MS-based proteomics is applicable to 

personalized oncology. My hope is that this unique resource of the identity, quantity, 

and alterations of proteins, phosphosites and histone PTMs, may reveal new 

insights into the field of oncology.
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I) Introduction 
 

1. The proteome and its large scale investigation by mass 
spectrometry 

 
Each cell is a genuine masterpiece. Biological information is transcribed from DNA 

to RNA and finally translated into proteins. These proteins may be further modified 

post translationally, leading to intricate signaling patterns within and between 

different cell types. Recent breakthroughs in DNA and RNA sequencing 

technologies allow the molecular profiling of essentially complete genomes and 

transcriptomes1. While these methodologies have revolutionized our understanding 

of a vast array of human diseases, including cancer, fundamental mechanisms are 

not only driven by genetic or transcriptomic alterations. Instead, they only manifest 

clinically if they involve changes at the protein level as well. Proteins are the 

paramount active biological entities in cells and work in concert with each other and 

other biomolecules as molecular machines, ensuring that each cell generates 

energy, communicates with its environment, divides, moves, performs its specific 

biological functions, or commits apoptosis. The full complement of proteins in a 

biological system is termed the proteome, while proteomics refers to the large-scale 

investigation of the proteome using a variety of technologies. The unceasing 

development of ever more powerful proteomic methods over the last decades now 

enables the analysis of proteomes in great depth. As a result, the investigation of 

complex biological functions and promising clinical applications are becoming 

realistic2. 

 

1.1 The human proteome 
 

With approximately 20,000 protein-coding genes, the human genome is five times 

smaller than that of an onion in terms of genome size. Thus, the number of genes 
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alone does not determine the complexity of an organism. Additional biological 

differences originate from the regulation of the genes, alternative splicing, protein 

localization and interactions. The human proteome, in particular, is diversified by 

many protein variations (isoforms), and posttranslational modifications (PTMs), 

which alone add at least another order of magnitude of complexity. More than 90% 

of the human genes are spliced3 and altogether, more than 300 types of PTMs have 

been described4. Combined, these modifications yield millions of different possible 

‘proteoforms’5, resulting in a dramatic increase in the complexity of the human 

proteome. Among these PTMs, many have been shown to regulate normal and 

pathogenic cell biological functions. The most common covalent modifications are 

phosphorylation, ubiquitination, acetylation, glycosylation and methylation and 

together they vastly increase the functional diversity of proteins. Among the some 

300,000 human PTM sites that have so far been recorded in the PhosphositePlus 

database6, only a small percentage have been assigned to regulatory or biological 

functions. Additionally, proteins are often modified at multiple sites, either through a 

combinatorial or sequential addition of functional groups.  

Mass spectrometry (MS)-based proteomics has evolved into the method of choice 

for the large-scale identification and quantitation of nearly all expressed proteins as 

well as their site-specific PTMs2,7. Phosphorylation is the most extensively studied 

PTM because it is a key modulator of cellular signal transduction. MS-based 

quantitative phosphoproteomics has already revealed site-specific phosphorylation 

dynamics after EGF stimulation8, identified molecular switches underlying FGFR 

cellular responses9, oncogenic signaling in the MAPK and PI3K pathways (Article 

3), and ‘druggable’ kinases10. These examples among many highlight the potential 

of MS-based phosphoproteomics to improve our understanding of molecular 

mechanisms, identify clinically relevant biomarkers and uncover potential 

therapeutic targets. 
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1.2. Mass spectrometry-based proteomics 

1.2.1. Mass spectrometry history 

 
Mass spectrometry (MS) is a technology that determines the mass/charge (m/z) 

ratios of ions for which Thompson (Th) is the proper unit. Based on the charge state 

of an ion, the m/z ratios can be converted to its molecular mass with a standard unit 

of Dalton (Da). The analyte of interest (peptides in this thesis) must first be ionized 

in its intact form, as this is essential for its identification and quantification. This is 

difficult for labile biomolecules but this obstacle was overcome with the development 

of two soft ionization techniques (electrospray ionization (ESI) and matrix-assisted 

laser desorption ionization (MALDI)) in 1988. In ESI, for which John Fenn received 

a share of the Nobel Prize in Chemistry in 2002, analytes are directly vaporized and 

ionized from a liquid phase using a high voltage via rapid solvent evaporation11,12. 

As the solvent of the droplet evaporates, the charge density increases, resulting in 

a stream of charged ions that are transferred into the vacuum of the mass 

spectrometer. ESI has become particularly popular since it can directly be coupled 

to a liquid chromatography (LC) system, which is ideal suited to the analysis of 

complex protein and peptide mixtures. Subsequent technological advances 

included the miniaturization of ESI in the form of the particularly sensitive, low-flow 

nano-electrospray13. 

 

1.2.2. Top-down vs. bottom-up proteomics 

 
Conceptually, there are two MS-based proteomic strategies, termed ‘top-down’ and 

‘bottom-up’. In top-down proteomics, intact proteins are analyzed, typically in 

purified form14. This can be beneficial for the comprehensive analysis of protein 

isoforms, complex PTM conformations, and especially therapeutic antibodies. While 

theoretically appealing, top-down measurements, remain experimentally and 

computationally challenging because high molecular weight compounds are not 
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very sensitively ionized and their complex charge patterns render the MS and 

MS/MS spectra difficult to acquire and interpret. In contrast, bottom-up proteomics 

entails the digestion of proteins using sequence specific proteases into peptides, 

leading to much simpler MS analysis. Bottom-up or ‘shotgun’ proteomics has 

become the standard method for large-scale proteome analysis and has been 

broadly applied to the analysis of in-depth and cell-type-resolved proteomes. In this 

thesis, this advance has allowed me to map the human heart to unprecedented 

depth (Article 6). 

 

1.2.3. From cells or tissues to proteomes: Bottom-up proteomic 
workflows 

 
A typical bottom-up MS-based proteomics workflow consists of three main steps: 

sample preparation, including protein digestion, the LC-MS measurement itself, and 

subsequent data analysis (Figure 1). Apart from providing a general overview, I here 

particularly focus on developments from our laboratory and those applied to the 

projects in this thesis. 
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Figure 1 The bottom-up MS-based proteomic workflow A) Sample preparation consists 

of protein extraction, digestion and optional PTM enrichment. B) HPLC and online MS 

measurement. C) Data analysis includes peptide identification and quantification, assembly 

into proteins and subsequent bioinformatic analysis. Adapted from15. 

 

Sample preparation includes the extraction of proteins from biological material and 

their digestion into peptides. These peptides are then subjected to separation by 

reversed phase high pressure LC (HPLC) based on their different strengths of 

hydrophobic interaction with a stationary phase, typically C18 modified silica. As the 

peptides elute from the chromatographic column, they are ionized via ESI and 

transferred into the mass spectrometer. The generated mass spectra provide 

information about the abundance (intensity) and the identity (amino acid sequence 

and PTMs) of the peptide. 
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1.2.4. Sample preparation: From ‘in-gel’ to ‘in-solution’, and ‘in-
StageTip’ 

 
The first step of the proteomic workflow, sample preparation, is a crucial procedure 

of MS-based proteomics. Sample preparation protocols have to be adapted to the 

source and the amount of material. In biological research, proteins have been 

analyzed mainly by 1D SDS polyacrylamide gel electrophoresis, a procedure that 

employs detergent-mediated (e.g. sodium dodecyl sulfate (SDS)) solubilization of 

the sample followed by SDS polyacrylamide gel electrophoresis. The development 

of in-gel digestion, in which proteins that are still present in the gel, are directly 

degraded by trypsin, paved the way for MS sample preparation that was 

immediately useful to biologists16,17. By combining in-gel digestion with nano-

electrospray, MS became applicable for the first time to proteomics18,19. This 

procedure also permits fractionation of the proteome through the excision of the 

entire 1D gel in a chosen number of ranges. The development of Stop And Go 

Extraction tips (StageTips) allowed convenient sample handling, even of minimal 

sample amounts and optional peptide fractionation20. Subsequently, improved LC-

MS performance made it possible to move from time-consuming in-gel digestion to 

in-solution digestion21,22. In-solution digestion employs chaotropic agents, such as 

urea, for protein extraction and digestion under denaturing conditions. This has the 

advantage of directly extracting, denaturing, and digesting the proteins in the lysis 

buffer. High concentrations of urea, however, are associated with decreased 

digestion efficiency and such weak agents do not solubilize membrane proteins, for 

instance. The ‘Filter-Aided Sample Preparation’ (FASP) allows removal of the 

detergents or chaotropic agents by trapping the denatured proteins on a spin-filter 

matrix, enabling efficient enzymatic digestion23. The next step was the ‘in-StageTip’ 

protocol, as it permitted the robust preparation of samples in high-throughput, using 

robotic assistance. In-StageTip digestion employs somewhat milder detergents than 

SDS, such as sodium deoxycholate (SDC), which is particularly suitable for efficient 

cell lysis, reduction, alkylation and protein digestion in a single device. These 
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sample preparation developments resulted in a considerably reduced sample 

preparation time, contamination, and loss24. 

All sample preparation protocols first require the lysis of the biological source 

material in order to efficiently extract proteins. This step can also require mechanical 

breakdown, such as sonication, bead-milling or heating to increase lysis efficiency. 

The cysteines of the extracted proteins are then reduced and alkylated to disrupt 

disulfide bridges prior to digestion. The alkylation step prevents the reduced reactive 

thiol groups from reforming disulfide bridges. Typical reducing agents include tris(2-

carboxyethyl)phosphine (TCEP) or dithiothreitol (DTT), while the most commonly 

used alkylating agents are iodoacetamide (IAM) or chloroacetic acid (CAA). For the 

proteolytic digestion of proteins, trypsin is the enzyme of choice due to its high 

cleavage specificity C-terminal to lysines and arginines, generating an average 

peptide length of 14 amino acids25. The advantages of sequence specific digestion 

enzymes include the generation of a limited and defined set of peptides, placing a 

positive charge at the C-terminus in case of trypsin, and providing constraints in the 

bioinformatic identification of peptides26. In some cases, however, the resulting 

tryptic peptides might be too long or too short for effective MS analysis. Other 

enzymes can then be employed, such as chymotrypsin, AspN, Lys-N, Lys-C, Arg-

C, or Glu-C to increase the diversity of generated peptides, and to boost overall 

protein sequence coverage27. Other methods preventing the generation of too short 

or hydrophilic peptides include chemical modification of lysines by propionic 

anhydride to neutralize charges and block lysine residues28,29. This labeling 

approach is particularly suitable for bottom-up analysis of histone tails using trypsin 

as it improves sequence coverage across the lysine- and arginine-rich tails that 

harbor most modifications, as applied in article 2. 

 

1.2.5. PTM-enrichment strategies 

 
The analysis of the entire proteomes of cells or tissues is already challenging. 

Conceptually and practically, biological processes involving regulatory PTMs that 
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feature substoichometric modifications are even more difficult and in practice always 

require additional enrichment steps during sample preparation. Common PTM 

enrichment strategies use affinity purification based on charge properties or 

antibody recognition. These are usually applied at the peptide level, ensuring higher 

accessibility of PTMs – allowing specific binding. The importance of phosphorylation 

has engendered highly effective protocols and approximately 240,000 human 

phosphorylation sites have been reported so far6. During the lysis of the samples, 

additional phosphatase inhibitors are generally added to prevent the 

dephosphorylation of the proteins during sample handling. Global analysis of serine- 

and threonine-phosphorylation (pS and pT) is commonly achieved by metal ion-

based enrichment methods such as immobilized metal affinity chromatography 

(IMAC) or titanium dioxide (TiO2). They rely on the interaction between the 

negatively charged phosphate groups and the positively charged iron (Fe) or 

titanium (Ti) ions, respectively (Figure 2). Non-phosphorylated peptides are washed 

away in the presence of salt to reduce non-specific binding of highly acidic peptides. 

Phosphopeptides are subsequently eluted with potassium phosphate to disrupt the 

phospho-Fe or -TiO2 interactions. While initially phosphorylation enrichment 

required large starting material in the mg-range, workflow optimizations now allow 

the analysis of more than 10,000 phosphosites from minimal starting material in a 

96-well format30. Multiphosphorylated peptides, however, remain challenging to 

assign and quantify unambiguously. To this end, the combination of IMAC with TiO2 

(termed SIMAC) helps by efficienty separating of mono-phosphorylated from 

multiply phosphorylated peptides31. Alternative methods that also increase the 

identification of multiply phosphorylated peptides include preferential binding to 

graphite powder or Ti(4+)32,33. 
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Figure 2 TiO2 and IMAC phosphopeptide enrichment strategies. 

Global phosphorylation distributions revealed that about 93%, 6%, and 1% of 

phosphorylated sites occur on serine, threonine, and tyrosine, respectively (Figure 

3) consistent with previous observations8. Although phosphotyrosines (pY) are 

present at even lower site occupancies than pS and pT overal, they activate receptor 

tyrosine kinases (RTKs) and play pivotal role in multiple diseases, including cancer. 

For optimal identification of pY-containing peptides, they are purified from the 

mixture of digested peptides by specific immuno-capture. For instance, the 

combination of the recently developed P-Tyr-1000 antibody (Cell Signaling 

Technology) with LC-MS/MS analysis, has recently resulted in the identification of 

several hundreds of pY sites in colorectal cancer cells with a very high enrichment 

specificity34,35. 

Antibody-based enrichment strategies have been extended to the quantitative 

analysis of ubiquitinations, methylations, and acetylations. In particular, the 

development of anti-di-glycine remnant antibodies led to the identification of more 

than 10,000 ubiquitination sites36,37. Furthermore, antibodies separately targeting 

mono-, di-, and tri- methylated lysines or mono- and di-methylated arginines 

peptides have been applied to map the human methylome in great depth38. 

Proteome-wide acetylation analyses have likewise been made possible by antibody-
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based enrichment and have uncovered pivotal cellular processes that are regulated 

by acetylation39. 

In addition to charge- or antibody-based enrichment strategies, enzyme-based 

enrichment can uncover proteolytic sites of biologicals of interest. For example, the 

subtiligase approach enabled the identification of more than 8,000 proteolytic sites, 

including 1,700 caspase cleavage sites in human cells40. 

  

 

Figure 3 distribution of phosphorylation events in HCT116 cells, A) Distribution of single, 

doubly, triply and quadruply phosphorylated peptides B) Distribution of phosphorylated sites 

per amino acid. (Data generated by the author). 

 

1.2.6. Peptide fractionation for deep quantitative proteomes 
 

In principle, protein level fractionation would be attractive but in practice it is 

hampered by solubility issues and low resolution41. To reach deep proteome 

coverage in complex biological samples, an additional step of peptide fractionation 

is applied prior to LC-MS measurements. Here, tryptic peptides are separated into 

different fractions based on principles such as high pH reversed-phase fractionation 

or strong cation exchange (SCX). Since the peptides are separated from each other 

– decreasing complexity in LC-MS and more material can be injected onto the 

analytical column in total, pre-fractionation will increase overall detectability of low 
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abundance peptides, leading to increased proteome depth and sequence coverage. 

Off-line high pH reversed-phase fractionation combined with the low pH of the online 

LC-MS has become popular because it tends to yield overall better peptide 

identifications than using SCX42. This is mainly due to the fact that individual first 

dimension fractions are pooled from different parts of the gradient (‘concatenation’), 

effectively providing orthogonal separation (meaning that peptide retention times 

are not correlating)43–45. However, because of the large diameter of the C18 columns 

used for fractionation, such approaches required starting material in the mg-range 

and the concatenation of the different fractions was generally done manually (Article 

3). To make the fractionation more streamlined, our group has developed a ‘loss-

less nano-spider’ fractionator, which enables the fractionation of very low-µg starting 

material and automatically concatenates the collected fractions via a rotating 

valve46. In cell lines, this approach resulted in the quantification of almost 12,000 

proteins using 24 fractions. In article 6, I applied spider fractionation for the first time 

to tissues and quantified over 10,000 proteins in a very challenging sample. 

 

1.2.7. Liquid chromatography-mass spectrometry 

 
The (fractionated) peptide mixtures are then subjected to HPLC separation, which 

is based on the different hydrophobic interaction with a stationary phase, typically 

C18-silica. Peptides elute in a time dependent manner by a linear increase of an 

organic solvent such as acetonitrile. As the peptides elute from the chromatographic 

column, they are ionized via ESI. The better the chromatographic resolution, the 

lower the number of co-eluting peptides and the higher their concentration. This 

makes very long columns and very small particle sizes attractive, albeit at the cost 

of extremely high pressures. For instance, our group uses 75 µm inner diameter 

columns with 50 cm lengths, filled with sub-2 µm particles and requiring a pump 

pressure of more than 1,000 bar. To improve the ionization efficiency, formic acid is 

added to the solvent to provide a source of protons. The addition of the polar aprotic 

dimethylsulfoxide (DMSO) solvent further enhances the ionization and has been 
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reported to increase peptide signals47. We also observed this increase in sensitivity 

in the heart atlas (Article 6), where I used 5% DMSO containing solvents for the LC-

MS/MS measurements. After the ionization step, the resulting charged ions are 

transferred via an ion transfer tube to the vacuum region of the instrument. The 

mass analyzer of the mass spectrometer then assigns m/z and intensity values to 

the eluting peptides. They include quadrupole, time-of-flight (TOF), ion trap and 

Orbitrap analyzers. Quadrupoles are characterized by high reproducibility and high 

sensitivity but poor resolution and speed. TOF instruments have the highest 

scanning speed but until recently suffered from comparatively low mass resolution. 

Orbitraps are the most commonly used mass analyzer in proteomics today due to 

their high resolution, sensitivity and accurate mass capabilities48. The Orbitrap is 

composed of one central spindle and two outer electrodes. It captures ions by 

‘electrodynamic squeezing’ resulting from rapidly dropping the voltage on the central 

electrode. The ions subsequently oscillate around the central electrode and the 

frequency of oscillation is proportional to the square root of the mass of the ions. 

The time varying signal (the ‘transient’) is subsequently Fourier transformed (FT), 

converting the waveform of the ions into mass spectra. Coupling FT to a phased 

spectrum deconvolution method (ΦSDM) has been recently shown to result in 

doubling of the mass resolution, enabling the use of shorter transients and 

consequently faster analysis cycles. However, this exciting method requires 

extremely high computational power and is therefore not implemented on a broad 

scale yet49. 

As the peptide mass alone does not permit its complete characterization, a second 

step of mass spectrometry, termed tandem MS, MS2 or MS/MS, is needed. While, 

the MS1 scan yields the m/z values of the precursor ions (intact peptides), the MS2 

scans result in the m/z values and intensities of their fragments. The analysis cycles 

in shotgun proteomics consists of selecting the TopN most abundant peptides from 

each MS1 scan (also termed survey of full scan) and subsequently fragmenting 

them to generate the MS2 scans. Cycle times can be selected by choosing the 

number of peaks to fragment (N) and – in Orbitrap analysis –the transient times for 
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MS1 and MS2 scans. To ensure fragmentation of peaks with very short elution 

times, they should not exceed one or a few seconds.  

 

1.2.8. Fragmentation strategies 

 
The selection of appropriate fragmentation methods, such as collision-induced 

dissociation (CID), higher energy collisional dissociation (HCD), or electron-transfer 

dissociation (ETD) is important for the optimal generation of sequence ion series 

required for peptide identification and unambiguous PTM site assignments. The 

peptide or protein precursor ions are positively charged, with protonation sites 

usually at the amino-terminus and the basic amino-acid residues and in CID, they 

undergo collisions by interactions with inert gas molecules, such as helium. This 

induces vibronic activation, leading to peptide bond dissociation and generating 

primarily N-terminal b- and C-terminal y-type ions50,51 (Figure 4). The CID process 

in ion trap is generally more effective for small and low-charge state peptides but is 

strongly influenced by the amino acid sequence and the distribution of the positive 

charges along the peptide backbone. HCD is a similar strategy of fragmentation as 

CID but is characterized by higher activation energy compared to CID. The higher 

fragmentation efficiency for HCD predominantly results in y-type fragment ions52. 

 

 



14 
 

 

Figure 4 Different fragmentation strategies lead to formation of different ion species. While 

CID and HCD based fragmentation generate b- and y-type ions, ETD leads to the formation 

of c- and z-type ions (adapted from53). 

When comparing HCD coupled to an Orbitrap analyzer to ion trap fragmentation 

and detection, HCD produces higher quality spectra because of the superior 

resolution and mass accuracy. Spectral acquisition times, however, are longer 

compared to CID, because more ions need to accumulate to generate a signal by 

image current detection in the Orbitrap. For phosphoproteomic analysis, both CID 

and HCD induce so called ‘neutral losses’, meaning that uncharged phosphorylation 

moieties are cleaved from their precursor peptides, creating a -98 Da (H3PO4) mass 

shift. It is debated which of CID or HCD is more appropriate for phosphorylation 

analysis, but clearly HCD improves the formation of rich fragment ion spectra for 

phosphopeptides54. ETD achieves fragmentation through neutralization of 

backbone protonation sites with radical anions, used as the electron transfer 

species, but generally at lower efficiency than CID or HCD. The resulting random 

nonergodic N–Cα backbone bonds breaks generate c- and z-type fragment ions55. 

ETD is more effective for large, multi-charge state peptides and is particularly 

suitable for detecting labile PTMs because peptide backbone fragmentation is 

virtually independent of the amino acid sequence. For example, O-GlcNAc 

elimination does not occur using ETD56. 
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1.2.9. Mass spectrometer types 

 
Major developments during the last decade have led to new high performance 

instrumentation that provide both high resolution and high mass measurement 

accuracies for MS1 and MS2 levels. Resolution is the ability to distinguish two peaks 

of different m/z ratio (modern instruments can resolve peaks down to 1 mDa at mass 

1,000), whereas mass accuracy describes the difference between measured and 

theoretical mass. The high quality mass spectra that are typical today have 

increased the reliability and efficiency of protein identification at the peptide level. 

In this thesis, all measurements were performed on Thermo Fisher Scientific 

Orbitrap mass spectrometers, which currently comprise six different instrument 

types including LTQ-Orbitrap, Orbitrap Velos and Elite, Exactive, Q Exactive, and 

Orbitrap Fusion. 

The LTQ-Orbitrap, Orbitrap Velos, and Orbitrap Elite are hybrid configurations 

where low-resolution linear ion-traps are combined with high-resolution Orbitraps 

analyzers. The Orbitrap Velos was equipped with a novel ion source that replaced 

the previous tube lens with a radiofrequency (RF) driven S-lens, enabling 10-fold 

better ion transmission. Further improvements of the Orbitrap itself were 

implemented in the third generation of hybrid mass spectrometers, the Orbitrap 

Elite. It was equipped with a compact high-field Orbitrap analyzer, where the inner 

diameter of the outer electrode was reduced from 30 to 20 mm, yielding twice the 

resolving power. The Exactive consists only of an Orbitrap analyzer and is mainly 

used for small molecule analysis. In contrast, Q Exactive type instruments are 

additionally equipped with a quadrupole enabling ion selection, isolation and 

fragmentation upstream of the Orbitrap. In this type of instrument, the Orbitrap is the 

only mass analyzer, where MS1 and MS2 scans are always measured with high 

resolution. Due to its simple design and excellent performance, the Q Exactive has 

become an instrument of choice for proteomics in general (Figure 5). It is a benchtop 

mass spectrometer, which is an important step to move MS towards clinical 

applications. Finally, the Orbitrap Fusion (Lumos) is a high end instrument that can 
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perform CID/HCD/ETD, detect intact and fragmented peptides in the ion trap and 

perform multi-stage fragmentation (MS3 and higher), Orbitrap or both. 

 

 

Figure 5 Functional elements in the Q Exactive HF mass spectrometer57. 

 

1.2.10. Acquisition methods 

 
In bottom-up proteomics, three main acquisition strategies are used2. The topN 

method described above is a data dependent acquisition (DDA) strategy that has 

been the mainstay of hypothesis-free shotgun (discovery) proteomics. In contrast, 

targeted proteomics methods is used for acquiring a predefined set of peptides. 

They monitor specific precursor-fragment transitions and come in flavors such as 

single or multiple/parallel reaction monitoring SRM, MRM and PRM. Finally, data 

independent acquisition (DIA) acquisition cycles through relatively large mass 

windows to generate complex MS2 scans that cover all peptide precursors. It is an 

emerging technology that has the advantage of generating comprehensive 

fragment-ion maps. 
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In more detail, a typical, top10 acquisition cycle on the Q Exactive HF instrument 

consists of one MS1 scan followed by 10 MS2 scans and takes roughly one second. 

Spectra are collected in the Orbitrap mass analyzer and the top 10 most intense 

ions of the full scan are selected by the quadrupole with an isolation width chosen 

to balance ion transmission and specific fragmentation of the intended precursor 

(typically 1.4 m/z on our current instruments) for subsequent fragmentation in the 

HCD collision cell. Likewise, an optimal fragmentation energy is chosen to yield 

good fragment coverage and high MS2 identification rate (‘normalized collision 

energy’ of 27% on a Q Exactive HF instrument)58. To prevent the re-fragmentation 

of peptides, precursors with the same mass are excluded from resequencing for 

about 30 sec, more than the time taken for a typical peptide to elute from the HPLC 

column. The resulting spectra contain information about the m/z values, retention 

times and ion intensities for all the detected fragment ions. They are submitted to 

software packages like MaxQuant59 to extract peptide information for identification 

and quantification (see below). Due to the semi-stochastic selection of precursors 

at the MS1 level in DDA, some precursors are not fragmented in every LC-MS/MS 

runs, leading to missing values, which can lead to problems in downstream analysis. 

This occurs mainly for low abundance peptides. To overcome this challenge, 

MaxQuant has a ‘match between runs’ feature which transfers identifications from 

runs where a peptide was sequenced to another where it was not, based on the m/z 

ratios and retention times of the MS1 features60,61. This way, if in a given LC-MS run 

the required MS2 scan is not present or not interpretable, it can be transferred from 

another LC-MS run. This matching strategy is particularly powerful in challenging, 

high-dynamic range proteomics such as plasma62 and the heart muscle (Article 6). 

A more recent acquisition method, termed ‘BoxCar’ further boosts the depth of 

primarily high dynamic range proteomes63. The capacity of the C-trap is limited to 

about one million charges54,64, therefore high abundant ions often fill the C-trap in a 

very short time (<1 ms), effectively displacing low abundance peptides. This 1 ms 

corresponds to less than 1% of the transient time for a high resolution mass 

spectrum (128 ms for 60,000 resolution). These observations imply that 99% of the 

generated ions are not used for mass analysis at the MS1 level. BoxCar increases 
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the dynamic range at the MS1 level by dividing the mass range into many segments, 

which are sequentially filled (typically 30 segments in three separate MS1 scans). 

This maximizes the usage of the incoming ion current by giving low abundant ions 

longer injection times compared to high abundant ions. Consequently, fewer 

missing values are observed using BoxCar, which makes optimal use of matching 

identifications from a library at the MS1 level. In the heart atlas (Article 6) we applied 

BoxCar for the first time in the context of a translational study. 

There are several implementations of DIA65, the most well-known of which is 

‘sequential window acquisition of all theoretical mass spectra’ (SWATH), in which 

ranges of precursors (typically 25 Da windows) are selected and fragmented 

together66. This results in complex fragment ion mixtures deriving from different 

precursors. Until recently, SWATH was limited to the detection of only the most 

abundant part of the proteome, for instance 2,000 proteins in cancer tissues67. 

Recent developments have made DIA acquisitions much more competitive. They 

have recently been shown to largely eliminate the missing value problem and 

reproducibly quantify protein abundances, reaching CVs down to 5% in technical 

triplicates68. However, DIA generally relies on information from pre-existing high-

quality spectral libraries. Both DDA and DIA are discovery-oriented and unbiased. 

The third bottom-up acquisition mode is targeted proteomics (SRM/MRM/PRM69,70) 

whose goal is to detect a limited set of peptides with high reproducibility and 

specificity. Targeted measurements require the creation of an inclusion list of 

predetermined transitions (precursor/product ion pairs) and peptides. SRM and 

MRM measurements are performed on triple quadrupole instruments (QQQ), where 

the first selects the ions, the second contains the ions during fragmentation, and the 

third quadrupole detects one (SRM) or more (MRM) product ions. MRM can yield 

very reproducible and sensitive but suffers from limited specificity as a results of the 

poor resolution and in practice is restricted to monitoring a small number of peptides. 

In contrast, PRM is performed on a quadrupole-Orbitrap mass spectrometer offering 

a clear advantage in terms of the high resolution, trapping, and high-throughput 
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capabilities of this instrument. In article 3, we describe a histone PTM inclusion list 

for targeted PRM measurements using the Skyline software for quantitation. 

 

1.2.11. Protein identification and quantification 

 
A key step in the shotgun proteomic workflow is the identification of proteins, which 

relies on the interpretation of MS2 product ion spectra. Each peptide will generate 

specific peptide fragment ions forming N-terminal (b-ions) or C-terminal (y-ions) 

sequence ladders. With a complete series, the entire peptide sequence can be 

assigned (‘de novo’ sequencing) (Figure 6). More commonly, the series are 

incomplete and identification of spectra is carried out by database searches using 

peptide search engines, such as Mascot or Andromeda71,72. Both are based on 

matching experimental to theoretical MS2 spectra that have been obtained through 

in silico digestion of all proteins of a given organism73. To control for false positive 

hits (i.e. spectra that are assigned the wrong peptide), spectra are matched to a 

database that includes each peptide in the in silico digest in both the true amino acid 

order and reverse order. The resulting numbers of hits to the reversed database can 

be used to define a false discovery rate (FDR), which is usually set to less than 1%. 
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Figure 6 De novo interpretation of an MS/MS spectrum acquired in an ion trap, assigning 

the sequence IEISELNR74. 

Next, peptide identifications are assembled into protein identifications, which is also 

FDR controlled. Some peptide sequences are not unique to a specific protein, such 

as those that match several protein isoforms. Following Occam’s razor principle – 

that the simplest explanation is the most likely – they can be assigned to the protein 

sequence that already contains the most unique peptides and are then called ‘razor 

peptides’. 

Protein identification is only a first step in gaining insight into the complexity of a 

biological system. Proteins span an abundance range of more than six orders of 

magnitude (or even more than ten orders in plasma and muscle), which already 

makes it clear that quantitative information about protein abundance changes is 

indispensable in the study of biological systems. Quantitative information can be 

obtained in a ‘relative’ or ‘absolute’ fashion, where protein abundances are either 

compared to each other or their concentration or copy number is determined. 

Absolute quantities can be estimated indirectly or – potentially most accurately – 

measured by comparison to a spiked-in absolute reference. Many quantification 

strategies have been developed (Figure 7) and at the highest level they can be 
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categorized in those using stable isotopes and those relying on ‘label-free’ 

approaches. 

 

1.2.12. Label- and label free-based quantification 

 
Label-based quantification methods involve the incorporation of stable isotopes 

either metabolically, by supplying labeled compounds, or chemically via conjugation 

of stable isotope tags to peptides or proteins. Introduction of these stable isotopes 

generally do not affect the physical behavior of a given (tagged) peptide in terms of 

elution profiles or physical properties. In-vivo metabolic labeling, most commonly by 

stable isotope labeling by amino acids in cell culture (SILAC), introduces a defined 

mass shift between the samples that can be distinguished at the MS1 level75. For 

example, labeling can be achieved by providing heavy 13C6 15N2-lysine and 13C6 

15N4-arginine (K8R10), which introduces an 8 or 10 Da mass increase for a labeled 

lysine- or arginine-containing tryptic peptide, respectively. SILAC experiments can 

be extended to a triplex format, using ‘medium’ 2H4-lysine and ‘heavy’ 13C6- arginine 

(R6K4). The abundance differences of the proteins are determined from the relative 

intensity of the corresponding heavy and light labeled peptides. In metabolic 

labeling, samples are combined up-front, thus it has the advantage to directly 

correcting for any sample preparation biases at the LC-MS level. However, this 

method suffers from reduced peptide identification because of increased spectral 

complexity at the MS1 level, and it is only applicable to cellular and certain 

mammalian systems, such as the SILAC mouse or fly or plants76–79. Much smaller 

changes (in the mDa range) can be introduced in a SILAC variant called Neutron-

encoded (NeuCode) SILAC labeled samples80. Other extensions of the classical 

SILAC approach, include spiking in entire labeled proteomes (mix of cell lines 

(super-SILAC)81, or SILAC-labeled protein epitope signature tags (PrESTs)82. For 

absolute quantification, protein standard absolute quantification (PSAQ)83, or 

peptides (AQUA peptides)) can also be used as internal standards, but this is limited 

to a moderate number of proteins of interest. In the SILAC-PrEST approach, a 
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known quantity of recombinant heavy-labeled standards is added into each of the 

experimental samples, which then are processed and analyzed together. Peptide 

ratios between samples and the heavy-spike-in standard are readily calculated and 

absolute quantification of up to 40 proteins of interest has been reported82. 

Other methods for absolute quantification include the estimation of copy numbers 

per cell using the ‘proteomic ruler’ approach, which relies upon the fixed relationship 

between histones and DNA allowing MS-signals to be placed on an absolute scale84. 

Chemical labeling is a strategy to incorporate stable isotopes, and can be used for 

any sample, including primary tissues and body fluids. Here, labeling is generally 

performed by derivatization at the peptide level. One such method is dimethyl 

labeling that has three available channels due to conversion of each primary amine 

to a secondary amine with isotope labeled formaldehyde85. More popular strategies 

for chemical labeling, simultaneously overcome the spectral complexity problem, 

and include isobaric tags for relative and absolute quantification (iTRAQ, 8 

channels)86 and tandem mass tags (TMT, 11 channels)87. These tags are composed 

of three main functional parts, an amine-reactive group for attaching the label to the 

N-terminal amine groups of lysine residues of the amino terminus of the peptides, a 

reporter ion group for relative quantification, and a mass balancer group so that 

peptides share the same MS1 mass. These tags offer greater multiplexing without 

increasing spectral complexity and can decrease measurement time by the degree 

of multiplexing. The MS2 spectra obtained from fragmentation of isobarically labeled 

peptides contain two types of product ion peaks: reporter ion peaks that reflect the 

abundance of the input material in each channel, and the peptide fragment ion 

peaks that permit identification. While TMT-based multiplexing greatly increases the 

overall throughput of sample measurements, it suffers from ‘ratio compression’, 

where the actual ratio between channels are underestimated due to reporter ions 

from co-isolated and co-fragmented ‘contaminating peptides’88,89. This phenomenon 

is a result of the relatively low resolution of quadrupole isolation of precursors. In 

the low-mass reporter ion region of the fragmentation spectra, the target peptide 

and the contaminating peptide give rise to identical reporter ions, ‘compressing’ the 

actual ratios resulting in an underestimation of peptide abundance differences. To 
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partially overcome this challenge, the isolation window can be narrowed, but 

requires high performance quadrupoles90. Alternatively, the tag-containing 

fragments of the precursor can be further isolated and fragmented but this requires 

mass spectrometer capable of MS3, albeit at the expense of sequencing speed and 

proteome coverage. Isobaric tags generally also generate an ion species containing 

the intact peptides and the tag without the low mass reporter ion91. Quantification 

using these ‘complementary reporter ions’ does not suffer from ratio compression92. 

With future improvements in tag chemistry and instruments, this strategy holds great 

promise for accurate measurement of proteins changes at high throughput. 

 

Figure 7 Different MS-based quantification strategies. A) SILAC based quantification is 

performed at the MS1 level. B) TMT-based quantification can currently be multiplexed to 

11-fold and here quantification is performed at the MS2 level and based on reporter ions. 

C) Label free quantification can be done at the MS1 or MS2 level. In all strategies, the 

peptide identification is performed after peptide fragmentation at the MS2 level. 
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As label free quantification (LFQ) completely omits additional chemical reagents and 

procedures it is by its nature the simplest and most economical approach. Early 

label-free quantification methods rely the fact that the number of peptide spectrum 

matches tends to correlate with protein abundance, and included ‘spectral counting’ 

and the emPAI method93. More recent methods are greatly superior as they directly 

quantify the intensity of the precursor ions by measuring the area underneath the 

extrapolated curve of the precursor intensities in MS1 scans over the LC peak. In 

combination with sophisticated algorithms, such as MaxLFQ this has been shown 

to yield very accurate quantification, especially on high-resolution instruments. 

Since sample preparation and measurement is performed for each sample 

individually, the reproducibility of LFQ is usually worse than labeled-based 

quantification. To overcome this, our group has developed automated sample 

preparation workflows24,62, which together with MaxLFQ largely eliminate potential 

technical variations introduced during sample preparation and MS measurements. 

LFQ, together with robust and streamlined sample preparation workflows and the 

unlimited number of samples that can be compared, has become a popular 

approach. 

 

1.2.12. Nearly complete proteomes 

 
Significant improvements of all steps of today’s MS workflow, encompassing sample 

preparation to measurement and subsequent bioinformatics analysis, have enabled 

the characterization of nearly complete proteomes7,46,94. More than 10,000 proteins 

can be routinely quantified in cell lines, model organisms and even in very 

challenging tissues, such as heart muscle (Article 6). In a recent study7, Notably the 

recent report of a very deep HeLa proteome also showed that the depth of 

proteomics is now on par with RNA-based methods. The authors combined 

extensive high pH reversed-phase fractionation with short LC-MS/MS gradients, 

resulting in a sufficient number of peptide precursors to saturate the sequencing 

speed of modern MS instruments. Using the aforementioned method, more than 
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12,000 proteins (and >14,000 protein isoforms) were catalogued. Moreover, more 

than 7,000 acetylation sites and 10,000 phosphorylation sites were identified and 

quantified, even without any enrichment. Other proteomic studies have explored key 

regulatory mechanisms at a large scale. For example, temporal changes in 

phosphorylation have been investigated, on both long and short timescales30,95,96. 

‘Organellar proteomics’ can also be employed to determine subcellular localization 

on a system-wide scale97,98, and more recently this was done in a dynamic fashion 

to monitor subcellular localization changes99. At higher resolution, interaction 

partners of specific proteins can be uncovered through immunoprecipitation 

experiments followed by MS. Global application of interactomics has resulted in draft 

maps of the human interactome, an extensive network analysis of thousands of 

proteins100,101. Finally, the integration of measurements from several types of human 

tissue proteomes combined with data generated by the community resulted in two 

‘drafts of the human proteome’102,103. These drafts, however, were very incomplete; 

to illustrate this, our human heart atlas identified three times as many cardiac 

proteins – mostly of low abundance. Furthermore, the total number of proteins 

identified in these draft proteome studies is overestimated since their FDR is 

unusually high104. Nevertheless, these human proteome drafts illustrate the desire 

of the community to determine the complete proteome to better understand the 

complex protein composition in the human body. 
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2. The cancer proteome at the nuclear, cellular and tissue 
level 

 
‘Cancer begins and ends with people’ – June Goodfield 

2.1. Cancer 

 
The emperor of all maladies105, cancer, accounts for approximately nine million 

deaths worldwide annually106. About one in three women and one in two men will 

develop cancer during their lifetimes. In some regions, cancer is even predicted to 

surpass cardiovascular diseases. Cancer is the Latin word for Crab, this association 

was penned by Hippocrates around 400 B.C. most likely because of its finger-like 

projections that are reminiscent of the outline of a crab. Malignant cell growth, which 

is dictated by ‘hallmarks of cancer’, is the fundamental feature that is shared 

between these cells107,108. Cancer incidence has risen significantly over the last 

decades. With longer life expectancies, it has become evident that the risk of 

developing cancer correlates with age. For instance, a 30-year-old woman has a 

one in 400 annual risk to develop breast cancer compared to one in nine for a 

seventy-year-old. Our capabilities to detect cancer at early stages have much 

increased in the last century. Introduction of mammography screening in the early 

1980s, was followed by higher reported breast cancer incidences109. Changes in 

modern life styles have also influenced cancer statistics. For example, lung cancer 

incidence has exploded in the 1950s, correlating with the increase of cigarette 

smoking and this cancer still remains the most common cause of cancer death. 

There is also a significant link between obesity and cancer, as approximately one in 

five cancer deaths are associated with obesity110. 

Many cancer subtypes, in particular rare cancers, remain poorly understood and 

conventional chemotherapeutic treatments are still associated with life-threatening 

toxic side effects111. This is primarily due to a lack of specificity towards cancer cells 

or the known or suspected molecular drivers. Only a small percentage of patients 

will benefit from the treatment, and the number of patients that need to be treated 
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before one of them actually benefits from the treatment (NNT) remains strikingly 

high (>40 in prostate cancer, for example112). Chemotherapy, specifically, has 

serious side effects, to which a substantial percentage will succumb. These 

numbers underscore the urgent need to develop more effective medicines, and 

uncover predictive biomarkers that will help to stratify patients and target those most 

likely to respond to a specific therapy. 

 

2.2. Personalized cancer medicine 

 
The concept of precision or personalized medicine was already born thousands of 

years ago when Hippocrates said, ‘It’s far more important to know what person the 

disease has than what disease the person has’. Today, the goal of personalized 

medicine is to individualize clinical decisions, thus distinguishing patients that are 

most likely to respond and benefit from a given treatment from those who will only 

suffer from detrimental side effects without benefit while still incurring health care 

costs. The sequencing of the human genome and ongoing rapid technological 

developments have set in motion the transformation of personalized medicine from 

an idea to practice. For a small subset of patients, this has already become reality. 

A pioneering study showed that imatinib (Gleevec, Norvartis)113 specifically inhibits 

the fusion protein BCR-ABL, which drives chronic myeloid leukemia. This drug led 

to patient survival in about 90% of patients114. Another example is the monoclonal 

antibody Trastuzumab (Herceptin, Genentech), prescribed for HER2-positive breast 

cancers where patients show improved survival115. Monoclonal antibodies targeting 

EGFR have also shown clinical efficacy, for instance in patients with EGFR-

expressing metastatic colon cancer116. 

While next generation sequencing has driven the field since the turn of the 

millennium, and allowed the molecular profiling of thousands of tumors in different 

cancer types1, it has become evident that the development and complexity of cancer 

does not lie in genetic changes alone. Clearly, epigenetic changes, protein 

expression alterations, and aberrant PTMs play essential roles in the development 
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of cancer. Thus, the use of MS-based proteomics holds great promise to unmask 

the cause and highlight potential therapeutic targets in the next generation of 

treatment.  
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2.3. Nuclear level: The epigenetic landscape in oncology 

 

2.3.1. Epigenetics 

 
The nucleus is at the heart of each cell. Genetic information is stored in the form of 

chromatin, which consists of DNA that is tightly wrapped around octameric histone 

proteins (H3, H4, H2A, and H2B), forming nucleosomes. Modifications at the histone 

level can result in changes in gene expression even without alterations in the DNA 

sequence. These ‘epigenetic changes’ are frequently observed in tumors117–120. 

DNA itself can also be modified, resulting in hyper- or hypometylation at the global 

or local DNA level at certain CpG islands of promoter regions, and these are 

commonly altered epigenetic patterns of cancers. 

Histones contain lysine-rich N-terminal tails whose positive charges interact with the 

negatively charged phosphate backbone of the DNA. The structure of this 

nucleosome complex can be modified by multiple PTMs, including acetylation and 

methylation of histone tails that influence gene expression. In general, tightly packed 

chromatin (heterochromatin) is associated with histone methylation and gene-

silencing, whereas open chromatin (euchromatin) is associated with histone 

acetylation and gene-expression. These acetyl and methyl marks present another 

regulatory mechanism of the epigenetic machinery. Proteins that catalyze (‘writers’), 

recognize (‘readers’) or reverse (‘erasers’) the transfer of histone marks (Figure 8) 

are frequently altered in tumors. 
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Figure 8  The main epigenetic regulators can be classified into three categories: 

epigenetic ‘writers’ (enzymes that deposit covalent modifications on histone tails), ‘readers’ 

(proteins that bind to histone modifications), and ‘erasers’ (enzymes that catalyze the 

removal of modifications on histone tails) 

 

2.3.2. Contributions of MS-based proteomics to epigenetics 

 
MS-based proteomics has become an invaluable method to study epigenetic 

regulation in an unbiased way. While conventional proteomic workflows are not 

suitable for lysine-rich and hydrophilic histone tails, specialized protocols have been 

developed and are in routine use28,29,121. For bottom-up histone tail analysis, 

optimizations include the propionylation of histones to increase sequence coverage 

and peptide-level phenyl isocyanate labeling to improve HPLC retention and the 

detectability of hydrophilic peptides. For the more complete analysis of 

combinatorial histone PTMs, relatively long amino acid sequences (~50-mers) can 

be directly analyzed via ‘middle-down’ proteomics122. To this end, intact N-terminal 

tails are generated by Glu-C or Asp-N mediated digestion of histone H3 or H4, 

respectively. Middle-down approaches, however, still suffers from relatively poor 

sensitivity in comparison to bottom-up workflows and the interpretation of MS2 
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spectra remains computationally intensive and laborious. Adding ion mobility 

separation to MS-based strategy holds great promise for the analysis of challenging 

histone PTM combinations, such as H4 acetylations, which are chromatographically 

almost indistinguishable123,124. Here, ions are separated by their mobility in a low 

pressure gas under the influence of an electric field. This mobility is determined by 

their size-to-charge ratio (collisional cross section). Together, these diverse MS-

based workflows have enabled the accurate description of histone variants such as 

the nearly identical histone variants H3.1 and H3.3. Multiple novel histone marks, 

such as O-GlyNAc, butyrylation, crotonylation, citrullination, and formylation have 

been described on histones125. The more well described marks, including histone 

acetylation and methylation can now be reproducibly and accurately quantified29. In 

addition to these histone marks, we show in article 3 that histone butyrylation 

alterations can be quantified. Other examples of successful application of MS-based 

workflows to epigenetics include the discovery of the effects of the histone 

demethylase KDM5 inhibitors121, the role of macroH2A in melanoma126, and 

quantification of histone PTM dynamics in cellular systems127. In addition, cross-

talks between different sites and types of histone PTMs have been described and 

histone marks triggering the recruitment of specific epigenetic ‘writer’128,129. 

 

2.3.3. The histone methyltransferase enhancer of zeste   
homolog 2 

 
The epigenetic writer enhancer of zeste homolog 2 (EZH2) is the driving catalytic 

subunit of the polycomb repressive complex 2 (PRC2) (Figure 9). As a 

methyltransferase, it tri-methylates histone 3 on lysine 27 (H3K27me3), a 

transcriptionally repressive epigenetic mark that silences gene expression. It has 

been found to inactivate multiple tumor suppressor genes, such as CDKN1C130,131. 

In a second mode of action, EZH2 promotes cell proliferation via STAT3 

methylation132 or BRAC1 inactivation133. EZH2 is overexpressed in multiple human 

cancers, including lymphoma and its inhibition has been shown to induce apoptosis 
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of cancer cells134–136. Adding to these findings, we show in article 2 that cell cycle 

regulators are down-regulated at the proteomic level following H3K27me3 

demethylation in lymphoma cells. 

 

 

Figure 9 Model of the role of EZH2 in cell cycle regulation. By repressing transcription as a 

member of the PRC2 complex (left panel), EZH2 enhances the expression of cell cycle 

regulators indirectly by repressing associated tumor suppressors.EZH2 can also act as a 

direct activator of cell proliferation following phosphorylation (right panel). In its 

phosphorylated form, EZH2 activates STAT3 via methylation, which subsequently induces 

cell proliferation. EZH2 can also phosphorylate BRAC1 via Akt1 interaction, resulting in cell 

cycle activation as well (Figure from article 2). 
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2.3.4. Histone demethylases 

 
Histone demethylases are epigenetic erasers and come in two main varieties, (i) 

jumonji (JmjC) domain-containing demethylases, and (ii) the lysine-specific 

demethylase (KDM1A/LSD1) family. Both classes play important roles in cancer137. 

 

2.3.4.1. JmjC domain-containing histone demethylases 

 
JmjC domain-containing histone demethylases are the largest class of histone 

demethylases and employ an oxidative mechanisms that is Fe2+ and alpha–

ketoglutarate (α-KG) dependent. They can remove all three histone lysine 

methylation states, unlike the LSD1 family, which can only remove mono- and 

dimethyl lysine modifications. In the context of glioblastoma, which is among the 

deadliest human cancers, we and others have shown that α-KG-dependent 

demethylases are inhibited in glioblastoma cell line models that harbor somatic 

isocitrate dehydrogenase 1 (IDH1) mutations (Article 3)138. Clinically, there are 

primary glioblastomas (which rapidly progress and develop de novo) and secondary 

glioblastoma (which progress slowly after initially presenting as low-grade gliomas. 

Interestingly, the majority of secondary (>70%) but rarely primary glioblastomas 

harbor IDH1 mutations, involving Arg132 in nearly all cases139. IDH enzymes are 

key regulators of the TCA cycle by converting isocitrate into α-KG. The monoallelic 

IDH mutation, however, generates an enzyme with neomorphic ability to convert α-

KG into 2-hydroxyglutarate (2-HG). As a result, the oncometabolite 2-HG 

accumulates to very high levels in IDH mutant tumors and inhibits α-KG dependent 

histone demethylases and DNA demethylases140,141 (Figure 10). This subsequently 

results in increased global DNA hyper methylation138 and down-regulation part of 

the proteome as shown in article 3. These observations suggest that different 

therapeutic interventions should be used in primary versus secondary glioblastoma. 
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Figure 10 Mechanism by which IDH mutations lead to alterations at the epigenetic and 

gene expression levels (Figure from article 3). 

 

2.3.4.2. Lysine-specific histone demethylases 

 
The lysine-specific histone demethylase 1 (LSD1, also known as KDM1A) is a flavin 

adenine dinucleotide (FAD)-dependent amine oxidase. LSD1 was the first histone 

demethylase to be discovered142. Acting as an epigenetic eraser, it demethylates 

mono- and di-methylated lysines (H3K4 and H3K9), thereby acting as a coactivator 

or corepressor, depending on the context143. LSD1 has emerged as an interesting 

therapeutic target because it is overexpressed in many cancer types, including lung 

cancer144,145. We also found that LSD1 is upregulated in the extremely rare and little 

studied urachus carcinoma cancer (Article 7). Furthermore, inhibition of LSD1 

inhibits tumors that gave rise to the development of multiple anti-LSD1 drugs that 
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are currently in clinical trials145–147. Tranylcypromine, an FDA-approved 

antidepressant148, arose particular interest in the context of cancer treatment 

because it revealed a strong LSD1-specific inhibitor side effect149,150. 

Tranylcypromine and derivates of this drug showed clinical efficacy for several 

indications, including the treatment of AML and are currently in clinical trials151. 
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2.4. Cellular level: The phosphorylation-based signaling 
landscape in oncology 

 

2.4.1. Phosphorylation 

 
Phosphorylation is the replacement of the neutral OH of the side chains of amino 

acids serine, threonine, or tyrosine by the negatively charge phosphoryl group 

(PO3−) and is subsequently converted to phosphate PO42- (Figure 11). The negative 

charge can induce conformational changes, modulate protein activity, and mediate 

or inhibit interaction with other proteins by providing a docking site. Kinases and 

phosphatases are enzymes that covalently modify proteins by either adding or 

removing phosphate groups. More than 500 putative protein kinase genes have 

been described, constituting about 2% of all human genes, that can be classified in 

a kinome tree152. 

 

Figure 11 Phosphorylation and dephosphorylation mechanisms. The phosphorylation of 

protein residues (serine, threonine or tyrosine) is catalyzed by protein kinases. The reaction 

of dephosphorylation is mediated by protein phosphatases153. 

 

Cellular phosphorylation signaling networks are complex interaction systems that 

connect sequence-specific kinases and/or phosphatases to their respective target 

proteins. A typical phosphorylation-signaling cascade starts with the stimulation of 

RTKs via growth factors. This leads to their phosphorylation and activates a 
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phosphorylation cascade via adaptor proteins, for instance those containing a Src 

homology 2 (SH2) domain that specifically bind phosphorylated tyrosines. 

 

2.4.2. The MAPK and PI3K pathways 

 
The RAS-RAF-MEK-ERK (MAPK) and PI3K-AKT-mTOR (PI3K) pathways (Figure 

12) were discovered about 30 years ago and are evolutionary conserved kinase 

families that control key cellular mechanisms, such as cell proliferation, survival, 

metabolism, and motility upon extracellular stimuli154–158. 

 

Figure 12 The MAPK and PI3K pathways are activated in multiple cancers driving cell 

proliferation, adapted from article 3. 
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When the master regulator RAS is activated it mediates a phosphorylation cascade 

including key kinases, such as mitogen-activated protein kinase (MAPK, also known 

as extracellular signal regulated kinase (ERK)) and phosphoinositide 3-kinase 

(PI3K). MAPK functions as the major effector of the RAS oncoprotein, which is a 

member of the large family of GTPases. The RAS oncogenes were initially 

discovered in murine sarcoma viruses159,160 and three human RAS genes have been 

described to date (H-RAS, N-RAS and K-RAS). They are anchored to the plasma 

membrane and function as molecular switches. Adaptors, such as the growth factor 

receptor bound protein 2 (Grb2) and the nucleotide exchange factor son of 

sevenless (SOS) enable the conversion of guanosine diphosphate (GDP) bound to 

RAS to guanosine triphosphate (GTP) in the cytoplasm161. This exchange allows 

the subsequent activation of RAF, MEK and MAPK. In its inactive form, MAPK 

presents a catalytic site that is blocked by a segment of amino acids, termed the lip. 

The binding of MEK to MAPK destabilizes the lip structure, leading to the exposure 

of a tyrosine and threonine that are subsequently phosphorylated by MEK. This 

results in conformational changes and enables the binding of ATP in the catalytic 

site of MAPK and its dimerization. Exclusively in this dimerized form, MAPK can be 

translocated to the nucleus where it regulates the activation of numerous 

transcription factors, such as MYC. 

PI3K phosphorylates inositol membrane lipids to generate phosphatidylinositol 

3,4,5-trisphosphate (PIP3) which in turn modulates the activity of intracellular 

protein effectors. PIP3 recruits pleckstrin homology (PH) domain containing proteins 

to the membrane, such as AKT1 and PDK1, which subsequently activate signaling 

cascades involved in cell growth and proliferation. Both pathways actively cross-

talk. They can negatively regulate each other’s activity, a phenomenon that is 

frequently observed when one of the two pathways is actively inhibited with a drug. 

For instance, MEK inhibition leads to the EGF-mediated hyperactivation of AKT162. 

Both pathways can also cross activate each other by regulating common down-

stream nodes, such as the TSC1/2 complex (Figure 12). 
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The MAPK and PI3K pathways are frequently deregulated in cancer because they 

play central roles in the control of cell proliferation, apoptotic pathways, oncogenic 

kinase signaling, and transcriptional regulation. Recent large-scale genomic 

sequencing initiatives of thousands of tumors through the TCGA consortium made 

the significance of both pathways very apparent on a global scale1. This uncovered 

BRAF, KRAS, PIK3CA and PTEN as the most frequently mutated genes in cancer. 

In endometrial carcinoma, for example, PIK3CA showed somatic mutations in 53% 

of 240 tumors. Similarly, KRAS is the most frequently altered signaling node of the 

MAPK pathway, being mutated in about 40% of colorectal carcinomas163 and BRAF 

mutations were found in 60% of thyroid carcinomas164. These key regulators show 

the most significant ‘mutation hot spots’ in cancer165, defined as the enriched 

occurrence of specific point mutations within the gene and characteristic for its 

cancer driving function. The most frequent hot spots are V600E in BRAF, and 

E545K in the helical and H1047R in the kinase domains of PIK3CA. 

 

2.4.3. Development of kinase inhibitors 

 
Protein kinases have become a major class of drug targets and today about 37 

kinase inhibitors are FDA approved with an additional 250 in clinical trials166. Among 

those, small molecules targeting the key nodes of the MAPK and PI3K pathways 

have been most intensely pursued for cancer treatment. While some, such as RAS 

cannot be directly targeted yet (#YetToBeDrugged)167, others have advanced into 

the preclinical stage as validated targets. Specific MAPK and PI3K inhibitors include 

cobimetinib (GDC-0973), pictilisib (GDC-0941), and taselisib (GDC-0032) which are 

used in articles 3, 4 and 5. The oral, potent, and selective MEK inhibitor cobimetinib 

has been approved for the treatment of melanoma in combination with BRAF 

inhibitors168,169. Pictilisib, is an oral, highly specific, ATP-competitive small-molecule 

class I pan-PI3K inhibitor170. It has demonstrated significant antitumor activity in a 

wide array of cancer models in preclinical studies171–173. Similarly, taselisib is an 

oral, potent and selective inhibitor of mutant PIK3CA. It is currently in clinical phases 
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I, II and III for the treatment of advanced solid tumors, lung and breast cancer, 

respectively174–176. 

Besides kinase inhibitors, other anticancer strategies use targeted protein 

degradation mechanisms, such as the proteolysis targeting chimeras (PROTAC) 

technology, where small molecules simultaneously bind a target protein and a 

ubiquitin ligase, enabling its ubiquitination and degradation in a generic way177,178. 

While targeted therapies that block signaling through the MAPK and PI3K pathways 

have shown clinical efficacy in several tumor types, the underlying signaling 

phosphorylation cascades often remain poorly understood. The core signaling axes 

of the two pathways span intricate networks, in which only a few substrates and 

connections are well characterized so far. 

 

2.4.4. MS-based phosphoproteomics of the MAPK and PI3K 
pathways 

 
Studying the dynamics of signal transduction networks in response to EGF 

stimulation revealed that different phosphorylation sites of the same protein often 

show distinct kinetics8. Hence, accurate modelling of a signaling pathway requires 

treating it not only as a network of proteins but also as a network of interconnected 

phosphorylation sites. Modifying specific nodes in this network by altering the 

activities of associated protein kinases or phosphatases, may significantly influence 

the entire signaling web and lead to unexpected effects. Only a few studies have 

attempted to explore the global spectrum of phosphorylation signaling downstream 

of the pivotal regulators of the MAPK or PI3K pathways179–182. These efforts 

demonstrated the ability of MS-based proteomics to identify and quantify thousands 

of phosphorylation sites and explore perturbed signaling webs. While these studies 

primarily focused on the signal transduction through a specific protein kinase under 

fixed conditions, in articles 4 and 5 we compared the regulation of 

phosphoproteomes by mutating or inhibiting multiple gatekeepers of the most 
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important cancer pathways, and examined the dependence on inhibitor class, 

dosage, cell type, and type of kinase modulation (activation versus inhibition). In 

addition, we studied the impact of dual inhibition, since combinatorial therapies are 

thought to be superior to single agent treatment. This revealed interesting and 

previously unknown effects on feedback mechanisms. In the clinic, the efficacy of 

combined therapies, remains to be determined183. MS-based analyses of 

convergence, crosstalk, and feedback associated phosphorylation patterns are 

poised to provide important scientific insights into the optimal uses of combination 

strategies to effectively block oncogenic pathways and overcome feedback 

mechanisms.  
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2.5.  Tissue level: ‘from bench to bedside’ 

 

2.5.1. Current cancer diagnosis in clinical practice 

 
In a clinical context, blood sampling and tissue biopsies are the two most common 

means of biological sample collection. Today, the analysis of blood samples is 

dominated by protein-based clinical laboratory tests using single-protein 

immunoassays184. About 42% of analyses requested by clinicians are based on 

proteins, compared to 35% for small molecules and 17% for cells. It is apparent that 

already today, proteins are the most frequently assayed analytes in clinical routine. 

Although the cancer field is dominated by genetic analyses, there are a number of 

established biomarkers for several common cancers. These were discovered and 

are routinely measured by non-proteomic technologies such as ELISAs. The only 

possible exception was the FDA approved blood test ‘OVA1’, which is approved in 

a narrow indication in the context of ovarian cancer (OvCa). OVA1 relies on a 

multiplexed immunoassay to measure the concentration of five individually non-

specific proteins, including apolipoprotein 1 (APOA1), beta‐2 macroglobulin (B2M), 

serum transferrin (TF), pre‐albumin (ALB), and the known OvCa marker CA-125 

(MUC16)185–188. These proteins, however, are in some cases not detected 

specifically enough using immunoassays and it is debated whether they are 

sufficiently specific to OvCa186,189,190. Of note, using high pH reversed-phase 

fractionation and state of the art MS we can easily identify all OVA1 protein 

members with high accuracy in only 1 µl of serum from an OvCa patient (Figure 13). 
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Figure 13 Protein abundance rank in OvCa serum. The five proteins used in the OVA1 test 

are highlighted in red (Data generated by the author). 

For the detection and monitoring of the progression of prostate cancer, prostate-

specific antigen (PSA) levels - a protein produced exclusively by normal and 

malignant prostate gland cells - are measured in the blood. PSA levels above 4 

ng/ml are usually followed by a prostate biopsy and the higher the PSA levels, the 

higher the risk of diagnosing prostate cancer in the biopsy. Higher PSA levels, 

however, also correlate with benign enlargement of the prostate or infections, 

meaning that these test are not very specific (high false positive rates). 

Tissue samples are generally obtained by needle biopsy or surgical excision and 

are subsequently analyzed by diagnostic pathology using hematoxylin and eosin 

(H&E) staining (Figure 14). Hematoxylin colors nuclei of cells in dark purple, 

whereas eosin mainly stains eosinophilic structures, including the cytoplasm, intra- 

and extracellular proteins in pink. Blood cells are stained intensively red. H&E 

staining enables the detection of irregular cell proliferation, stromal infiltration, and 

overall abnormal cellular morphology. In most cases, H&E alone enables the 

diagnosis and grading of cancer. Grading systems based on H&E staining, such as 

the Gleason score for prostate cancer exist since the 1960s and are still routinely 

used as an indicator of how quickly the tumor is likely to grow and spread.  
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Figure 14 H&E stainings of healthy, primary tumor and metastatic tissues. Proliferating cells 

are colored in dark purple, such as the healthy epithelium (left panel) of cancer cells (middle 

and right panels). The prominent pink staining in the middle and right panels is 

representative of prominent stromal infiltration. 

In some cases, further tissue stainings are performed to diagnose a particular 

cancer type/subtype or measure the likelihood of a patient to respond to a particular 

therapeutic treatment. To this end, immunohistochemistry (IHC), which utilizes 

specific antibodies for the detection of proteins in tissue sections is applied. For 

instance, current tissue-based FDA approved protein biomarkers include EGFR for 

the therapy selection of colon cancer or HER2 for breast cancer diagnosis and 

therapy selection. While these blood- and tissue-based tests are routinely used in 

the clinic, they may suffer from lack of specificity, are based on outdated 

technologies in some case, and generally do not enable the early detection of 

cancer development. 

 

2.5.2. Cancer FFPE tissues proteomics 

 
The most frequent method for human tissue preservation is formalin fixation and 

paraffin-embedding (FFPE). It is routinely used in tissue banks due to its long-term 

preservation capabilities, and amenability to downstream IHC. FFPE is an 

economical choice since samples can be stored at room temperature and at great 

density. It is estimated that about half a billion archived FFPE cancer tissue samples 

exist to date191. These immense archives of material in principle present an 
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invaluable resource for studying the underlying molecular mechanisms of cancer, 

testing known biomarkers and uncovering new ones. The main use of FFPE tissues 

in the clinic today is H&E and IHC stainings for the detection of known cancer 

aberrations. It is semiquantitative at best and allows the evaluation of only a few 

targets at a time. FFPE cohorts have been challenging to use in gene expression 

studies due to the difficulty in isolating nucleic acids, often resulting in samples with 

poor RNA quality that are not usable for next generation sequencing192. This was 

also observed in article 7, where RNA sequencing could not be performed because 

most of the RNA was degraded after extraction from FFPE and even from fresh 

frozen cancer tissue. Proteins are more stable than RNA or DNA, therefore protein 

profiling in high-throughput platforms, in principle holds great promise for uncovering 

new biomarkers and improving prognostic and predictive power for clinicians. 

Taking advantage of the stability and ease-of-handling of proteins, protein extraction 

from FFPE material is possible in a robust manner for MS-based analysis. 

Proteomic analysis of almost 30-year old FFPE tissues have been carried out 

successfully193 and the comparison of FFPE to fresh tissues did not reveal major 

quantitative or qualitative differences at the protein or PTM level194. We have 

developed techniques to reverse the cross-links induced upon fixation to ensure 

deep and quantitative proteome profiling to a depth of 10,000 proteins in colorectal 

cancer tissues195–197. Our group has also shown that a combination of tissue 

proteomics and machine-learning classified patients with diffuse large B-cell 

lymphoma depending on the cell of origin198. To enable a more streamlined analysis 

of FFPE samples, we recently demonstrated that in StageTip sample preparation is 

possible in a rapid manner and holds great promise for future applications in the 

clinic (Article 7). Regarding the sample collection and processing, MS-based tissue 

analysis can be performed on whole, marco- or micro-dissected tissues. Currently, 

the majority of large-scale tissue studies are based on whole-tissue specimens, and 

thus contain a mix of heterogeneous tumor cells, their respective tissue 

microenvironment (stroma), and most likely some non-cancer cells. The stroma, 

composed mainly of fibroblasts, immune and endothelial cells has been shown to 

play driving roles during all phases of tumorigenesis and can influence therapy and 
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patient outcome199–201. Laser-capture microdissection (LCM) is particularly powerful 

to isolate homogeneous cell populations for subsequent investigation of proteomic 

differences between tumoral and stromal cells. Procedures in our laboratory can 

now easily quantify several thousands of proteins starting with as little as 10,000 

micro-dissected cells in single MS runs using state of the art MS acquisition 

methods. 

 

2.5.3. In the quest of more reliable and early cancer biomarkers 
using MS-based proteomics 

 
A biomarker is a biological molecule that can be used to define a normal or abnormal 

condition or disease. It may also be used to monitor therapeutic treatment. 

Biomarkers can thus be grouped into prognostic, predictive, and 

pharmacodynamics types202. Prognostic biomarkers provide information about the 

patient’s overall cancer outcome, regardless of therapy. A classical predictive 

biomarker, which estimates the effect of a therapeutic intervention, is the HER2 

protein amplification in breast cancer, which indicates the clinical efficacy of anti-

HER2 antibodies such as Trastuzumab (Herceptin). HER2 is also a prognostic 

biomarker, as HER2+ breast cancers are associated with worse outcome. Similarly, 

EGFR mutated lung tumors have been shown higher sensitivity to erlotinib or 

gefitinib than wild type EGFR lung tumors203. 

Biomarkers can be found at the DNA, RNA, or protein level and several analytical 

platforms have been developed over the years for biomarker discovery. As protein 

reflect the ‘real time’ status of a human body, are actively involved in disease onset 

and are the main targets of currently available cancer therapies, they represent an 

ideal target for biomarker discovery, in addition to the tumor driving DNA mutations. 

Biomarkers for early cancer detection represent one of the most promising 

approaches to fight cancer and improve clinical outcomes for cancer patients204. 

Protein biomarker discovery, however, remains challenging compared to DNA and 

RNA mainly due to the immaturity of the technology and the large dynamic range of 
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proteins found in body fluids and tissues. Recently, our group has developed an 

automated, robust, and highly reproducible workflow to quantify hundreds of plasma 

proteins. Among those there were more than 40 FDA-approved biomarkers62. In a 

similar manner, we are now developing a very rapid and sensitive single run mass 

spectrometric workflow for LCM and marcodissected cancer tissues. The latest 

technological developments now make DIA tissue measurements increasing 

competitive with DDA measurements, with the further attraction of improved 

measurement reproducibility. 

 

2.5.4. Clinical cancer proteomics consortia 

 
Similar to the TCGA project, which sequenced, characterized and catalogued 

cancer-specific alterations for thousands of tumors, the National Cancer Institute’s 

(NCI) clinical proteomic tumor analysis consortium (CPTAC), launched in 2011, 

aims to systematically identify and characterize cancer-relevant proteins and their 

underlying biological pathways. CPTAC also integrates both proteomic and genomic 

data (termed proteogenomics), which are starting to attract interest in the cancer 

community. For example, the proteogenomic characterization of colon and 

colorectal cancer suggested novel proteomic tumor subtypes associated with 

clinical outcome205, similar to previous studies focusing on ovarian206, and breast95 

cancers. Of note, protein levels could not be predicted from genomic or 

transcriptomic data, emphasizing the importance of studying the actual molecular 

actors within a cellular system. Another goal of CPTAC is to enhance precision 

oncology and share data collected with scientists and physicians. Other cancer 

proteomic efforts have been based on DIA SWATH technologies. For instance, the 

MS company SCIEX as well as the Human Proteome Organization (HUPO) 

contribute to the large-scale cancer tissue analyses of multiple tumors with the goal 

of reproducibly identifying and quantifying at least a few thousand proteins. Such 

studies may generate new insights into oncogenesis beyond the genomic and 

transcriptional level.  
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II) Aims of the thesis 

 
The aim of my thesis was to investigate system-wide alterations in cancer at the 

protein level. Starting from cell line models, I moved to translational tissue cancer 

proteomics and showed that MS-based proteomics can be used for therapeutic 

target identification and characterization (Figure 15). 

Similar to the layout above, my journey started in the nucleus of cells, where I 

investigated the epigenetic changes in lymphoma at the biotechnology company 

Genentech Inc. We found that EZH2, which is the most significantly over-expressed 

epigenetic regulator in cancer, is co-regulated with parts of the network driving the 

cell cycle. We also uncovered that IDH1 mutation leads to perturbations of the 

histone code, altering histone tail acetylation and methylation in glioblastoma cell 

line models. 

Zooming out from the nuclear to the cellular level, I analyzed phosphorylation-

signaling changes in primary and secondary glioblastoma cell line models at the 

University of California, San Francisco (UCSF). Here, I focused on the interplay 

between the MAPK and PI3K signaling cascades and showed that dual inhibition is 

superior to single MEK inhibition and that it reverses phosphorylation-signaling 

patterns driven by oncogenic RAS overexpression. We also published an update of 

where the MS-based PTM analysis field stands, with a focus on current enrichment 

strategies and technological advances. 

At the Max Planck Institute (MPI) of Biochemistry, I moved from cellular to 

translational proteomics, investigating human tissues. A major challenge was to 

overcome the high dynamic range of protein concentration in particular tissues, 

which masks the identification of low-abundant proteins. In this context, I gained 

much experience in the course of my exploration of the human heart proteome 

(Article 6). The heart is basically a sophisticated muscle, which is a particularly 

difficult tissue due to the overwhelming contribution of the proteins of the contractile 

apparatus. We combined strategies and technologies such as peptide library 
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matching, the peptide fractionation with the ‘loss-less nano fractionator’, and 

efficient use of the precursor ions with ‘BoxCar’ runs. This combined strategy yielded 

a dramatic increase in the total number of quantified proteins, reaching a depth of 

more than 10,000 proteins in the human heart.  

Based on these technological advances, the final aim of the thesis was to 

demonstrate that MS-based proteomics can be applied to large tissue cohorts and 

that it is possible to gain biologically and medically relevant information. I optimized 

a MS-based proteomic workflow for the rapid screening of clinical tissue samples. 

By applying this workflow to a chemorefractory cancer patient, I uncovered a 

potential therapeutic target at the proteome level. Altogether, my results provide 

unique resources of the identity and quantity of proteins and their (dis)regulation, 

phosphosites and histone PTMs, revealing new insights into oncogenesis in 

different types of cancer. 

 

Figure 15 Overview of my PhD Thesis - A journey through the proteomic landscape 
of cancer. Moving from the nuclear (Genentech Inc.) and cellular (UCSF) levels to clinical 

tissue (MPI) cancer proteomics.  
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III) Publications 

 
Article 1: Mass spectrometry-based detection and assignments of protein 

posttranslational modifications 

Article 2: Bioinformatics analysis of thousands of TCGA tumors to determine the 

involvement of epigenetic regulators in human cancer 

Article 3: Quantitative proteomics reveals fundamental regulatory differences in 

oncogenic HRAS and Isocitrate Dehydrogenase (IDH1) driven astrocytoma 

Article 4: Phosphoproteome analysis of the MAPK pathway reveals previously 

undetected feedback mechanisms 

Article 5: Quantitative phosphoproteomic analysis of the PI3K-regulated signaling 

network 

Article 6: Region and cell-type resolved quantitative proteomic map of the human 

heart  

Article 7: Rapid proteomic workflow for solid tumors reveals LSD1 as a drug target 

in an end stage cancer patient (in preparation)  
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Article 1: Mass spectrometry-based detection and assignment of 
protein posttranslational modifications207 
 

ACS Chemical Biology 

Sophia Doll1,2 and Alma L. Burlingame1 

1Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158-2517 

2Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 

Martinsried, 82152, Germany 

 
Great advances in MS-based proteomics now allow the identification and 

quantitation of thousands of posttranslational modification (PTM) sites in a single 

experiment. Recent developments in chromatography, PTM enrichment strategies, 

and mass spectrometry have vastly increased the known inventory of many protein 

modifications. The classes most actively investigated and discussed in this review 

include phosphorylation, ubiquitination, O-GlcNAcylation, methylation, and 

acetylation. More recently, succinylation, SUMOylation, and citrullination have been 

investigated globally. Characterization of key regulatory roles of PTMs in multiple 

cellular activities, including cancer development, have made PTMs a very attractive 

field of study over the last decade.  

In this review, we provide an update of where the MS-based PTM analysis field 

stands, with a focus on current enrichment strategies and technological advances. 

We discuss affinity purification enrichment strategies based on charge properties, 

and antibody recognition. Furthermore, we review different fragmentation methods 

for high confidence sequence identification and site localization of different PTMs. 

We also highlighted a few examples of the discovery of previously unknown 

biological roles of PTMs. Finally, we addressed the challenge of defining site-

specific functions.  

My review has already been cited approximately 50 times in the last two years. 
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Article 2: Bioinformatics analysis of thousands of TCGA tumors to 
determine the involvement of epigenetic regulators in human 
cancer208 
 

BMC Genomics 

Florian Gnad1*, Sophia Doll2,3, Gerard Manning1, David Arnott2, Zemin Zhang1,4 

1Departments of Bioinformatics and Computational Biology, Genentech, USA.   
2Protein Chemistry, Genentech Inc., South San Francisco, CA 94080, USA.   
3Proteomics and Signal Transduction, Max-Planck-Institute for Biochemistry, Martinsried, Germany.  
4Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, 

China. 

 

In this manuscript, we investigated the epigenetic landscape in cancer at a large 

scale. We first aimed to uncover somatic alterations in the epigenetic machinery in 

thousands of tumors from The Cancer Genome Atlas (TCGA) at the genomic level. 

To this end, a classification model that predicts the likelihood of epigenetic regulator 

genes to be an oncogene, tumor suppressor, or neutral gene was trained using 

3,356 tumors from seven cancer types. We found several tumor suppressor genes 

among epigenetic regulators and gene expression and correlation network analysis 

showed that EZH2 was the most significantly over-expressed epigenetic regulator 

in cancer. 

We followed up on this finding at the proteomic level, where we quantified global 

proteomic changes by mass spectrometry after EZH2 inhibition. We treated 

lymphoma cells with the EZH2 inhibitor EPZ-6438 (Tazemetostat) and performed 

quantitative MS-based proteomics on these samples. We found that the repressive 

epigenetic mark H3K27me3 was significantly downregulated and that EZH2 is co-

regulated with parts of the cell cycle network. These results suggest that EZH2 

drives the development of cancer via deregulated cell cycle regulation. 
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Article 3: Quantitative proteomics reveals fundamental regulatory 
differences in oncogenic HRAS and Isocitrate Dehydrogenase 
(IDH1) driven astrocytoma209 

 
Molecular and Cellular Proteomics 

Sophia Doll‡, Anatoly Urisman‡, Juan A. Oses-Prieto‡, David Arnott§, and Alma L. 

Burlingame‡ 

‡Department of Pharmaceutical Chemistry, University of California, San Francisco, 94158–2517 

California 

§Department of Protein Chemistry, Genentech Inc, South San Francisco, 94158 –2517 California 

 

Glioblastoma are the most frequent brain tumors and can be classified into primary 

and secondary glioblastomas. Current therapies combine surgery, radiotherapy, 

chemotherapy, and temozolomide treatment, but less than 5% of the patients 

survive longer than 5 years after diagnosis. Genomic analyses showed that more 

than 70% of secondary glioblastomas harbor IDH1 mutation. The downstream 

effects of IDH1 mutation on the proteome, phosphoproteome, and epigenome in 

glioma, however, remain poorly understood. In this publication, we applied a SILAC 

labeling methodology and high-resolution mass spectrometry to identify the main 

differences between oncogenic HRAS driven cells and mutant IDH1-driven glioma 

cells, mimicking primary and secondary glioblastoma. We found that primary 

glioblastoma cell lines are mainly characterized by the overexpression of the MEK 

and PI3K signaling pathways. Dual inhibition of MEK and PI3K was clearly superior 

to single MEK inhibition in the cell line model; however, clinical efficacy remains to 

be determined. In contrast, secondary glioblastoma cell lines showed epigenetic 

reprograming at the histone code level. Applying a histone hybrid chemical labeling 

method and high-resolution MS, we identified significant histone methylation, 

acetylation, and butyrylation changes. Our results suggest a global transcriptional 

repressive state, consistent with the down-regulation of the proteome, 
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transcriptome, whereas DNA is hyper-methylated and there is an increase in histone 

tri-methylation marks. This work provides a unique resource of the identity of altered 

proteins, phosphosites, and histone PTMs in RAS and IDH1 mutant astrocytoma 

cell lines, revealing new insight into oncogenesis in glioma. I also illustrated the 

January 2017 cover of Molecular and Cellular Proteomics (MCP). 
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Article 4: Phosphoproteome analysis of the MAPK pathway reveals 
previously undetected feedback mechanisms210 

 
Proteomics 

Florian Gnad1, Sophia Doll2, Kyung Song3, Matthew P. Stokes5, John Moffat4, 

Bonnie Liu3, David Arnott2, Jeffrey Wallin3, Lori S. Friedman3, Georgia 

Hatzivassiliou3 and Marcia Belvin3 

1 Department of Bioinformatics and Computational Biology, Genentech Inc., South San Francisco, 

CA, USA  
2 Department of Protein Chemistry, Genentech Inc., South San Francisco, CA, USA  
3 Department of Translational Oncology, Genentech Inc., South San Francisco, CA, USA  
4 Department of Biochemical Pharmacology, Genentech Inc., South San Francisco, CA, USA  
5 Cell Signaling Technology Inc., Danvers, MA, USA 

 

The Ras-Raf-MEK-ERK pathway is commonly upregulated in cancer. The 

establishment of targeted MAPK pathway therapies, however, has proven difficult 

as any cancers treated with MEK inhibitors rapidly develop resistance. To decipher 

the underlying cause, it is essential to decrypt the phosphorylation network spanned 

by the MAPK core axis. In this publication, we examined the spectrum of 

phosphorylation signaling downstream of the key nodes of the Ras-Raf-MEK-ERK 

pathway. We employed the label-free based PTMScan method from Cell Signaling 

Technology, and quantified changes in the levels of phosphorylation sites in colon 

cancer cell line HCT116 cells treated with MEK inhibitor cobimetinib (GDC-0973) or 

the ERK inhibitor G-824. 
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Article 5: Quantitative phosphoproteomic analysis of the PI3K-
regulated signaling network211 

 
Proteomics 

Florian Gnad1, Jeffrey Wallin2, Kyle Edgar2, Sophia Doll3, David Arnott3, Liliane 

Robillard2, Donald S. Kirkpatrick3, Matthew P. Stokes4, Ulka Vijapurkar2, Georgia 

Hatzivassiliou2, Lori S. Friedman2 and Marcia Belvin2 

1 Department of Bioinformatics and Computational Biology, Genentech Inc., South San Francisco, 

CA, USA 2 Department of Translational Oncology, Genentech Inc., South San Francisco, CA, USA

  
3 Department of Protein Chemistry, Genentech Inc., South San Francisco, CA, USA  
4 Cell Signaling Technology, Inc., Danvers, MA, USA 

 

Similar to the MAPK pathway, the PI3K pathway is one of the most frequently 

activated signaling nodes in cancer. Only a few studies have attempted to explore 

the spectrum of phosphorylation signaling downstream of this kinase cascade. Such 

investigations, however, are imperative to understand the mechanisms responsible 

for oncogenic phenotypes. By applying mass spectrometry-based 

phosphoproteomics, we studied the disturbed phosphoproteome after activation or 

inhibition of PIK3CA using isogenic knock-ins and a series of inhibitors, including 

pictilisib (GDC-0941) and taselisib (GDC-0032). 

We uncovered phosphorylation changes in a wide variety of proteins involved in cell 

growth and proliferation, for most of which this was not previously known. Multiple 

phosphoproteome patterns revealed previously undetected feedback, convergence 

and crosstalk between cancer pathways, accentuating the rationale for dual 

pathway inhibition. We provide a dataset rich in potential therapeutic targets 

downstream of the two most important signaling cascades in cancer. 
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Article 6: Region and cell-type resolved quantitative proteomic 
map of the human heart and its application to atrial fibrillation212 

 
Nature Communications 

Sophia Doll1,2, Martina Dreßen3, Philipp Geyer1,2, Dan Itzhak1, Christian Braun4, 

Stefanie Doppler3 , Florian Meier1, Marcus-Andre Deutsch3,5, Harald Lahm3, Rüdiger 

Lange3,5, Markus Krane*,3,5, Matthias Mann*,1,2 

1 Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 

Martinsried, Germany  
2 Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of 

Copenhagen, Copenhagen, Denmark  
3 Department of Cardiovascular Surgery, German Heart Center Munich at the Technische Universität 

München, Munich, Germany  
4 Forensic Institute, Ludwig-Maximilians-University, Munich, Germany   
5 DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, 

Germany 

 

The heart is a central organ. It beats approximately 100,000 times a day, precisely 

controlled by the interplay between electrical and mechanical fields. At the 

anatomical level, the heart is composed of four cavities, two septa, four valves, and 

six main vessels, which act in concert to ensure proper filling, ejection, contraction, 

and overall pump function. At the cellular level, the human heart is composed of four 

major cell types.  

While this manuscript does not focus on cancer proteomics, here we combined 

state-of-the-art technologies, such as in StageTip sample preparation, ‘loss-less’ 

nano fractionation, and new MS measurement methods for the first time and apply 

them to map the human heart proteome. Starting with dissected heart samples from 

trauma victims, we performed a tour de force proteomics analysis, which resulted in 

the deepest heart proteome reported to date. Cumulatively, we quantified more than 

11,000 proteins in the heart regions and (for the non-cardiomyocytes) in a cell-type 
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specific manner. Apart from extensive biological and bioinformatic analysis of the 

data, we demonstrate the usefulness of this resource by applying it to atrial 

fibrillation, which revealed distinct mitochondrial dysfunction patterns, opening up 

for a potential future molecular sub-classification. My study was mentioned in the 

Max Planck Institute press release and reached an altmetric score of 161 (meaning 

that my article was in the 98th percentile (ranked 2,277th of the 186,438 tracked 

articles of a similar age in all journals) in only a few weeks after publication in Nature 

Communications. 
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Recent groundbreaking advances in MS-based proteomics have set in motion the 

transformation of translational MS-based cancer proteomics from an idea to a 

practice. In this manuscript, we present a rapid proteomic workflow for the analysis 

of clinically relevant cancer tissues allowing quantification of thousands of proteins 

in several hours of measurement time. Applying our workflow to an extremely rare 

cancer type, the urachus carcinoma, we uncovered a potential therapeutic target: 

Lysine specific histone demethylase 1 (LSD1). We created the possibility for medical 

doctors and scientists to truly use proteomics for end stage cancer patients to 

identify additional actionable therapeutic options. 

.  
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Abstract 

Recent advances in mass spectrometry (MS)-based technologies are now set 
to transform translational cancer proteomics from an idea to a practice. Here, 
we present a robust proteomic workflow for the analysis of clinically relevant 
cancer tissues, which allows quantitation of thousands of tumor proteins in 
several hours of measuring time and a total turnaround of a few days. We 
applied it to an extremely rare and chemorefractory urachal carcinoma. 
Quantitative comparison of lung metastasis and surrounding tissue revealed 
several statistically significantly upregulated proteins, among them lysine 
specific histone demethylase 1 (LSD1/KDM1A). LSD1 is an epigenetic 
regulator and is the target of active development efforts in oncology. This 
demonstrates that clinical cancer proteomics can rapidly and efficiently 
identify actionable therapeutic options even in end stage cancer patients. 
While currently described for a single case study, we envision that it can be 
applied broadly to other patients in a similar condition.  
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Introduction 

Genomic and transcriptomic investigations based on next generation sequencing 

has revolutionized the field of oncology in the last decade and allowed the molecular 

profiling of thousands of tumors in different cancer types (Cancer Genome Atlas 

Research Network et al., 2013; Stratton et al., 2009). While these technologies have 

led to a better understanding of cancer origin and heterogeneity, it has often been 

challenging to turn mutation patterns into actionable therapeutic suggestions. It has 

also become evident that the development and complexity of cancer cannot be 

understood at the genetic or transcriptomic level alone. Clearly, proteins, the driving 

biological entities in cells, also play crucial roles in cancer. So far, proteomics – the 

large scale study of all proteins in a given system - has lagged behind genomics for 

technological reasons. However, following groundbreaking advances in mass 

spectrometry (MS) based proteomics, comprehensive characterization of nearly 

complete proteomes has now become a reality (Aebersold and Mann, 2016; Bekker-

Jensen et al., 2017). In parallel, several proteomic tumor analysis consortia (e.g. 

CPTAC) have been launched and aim to systematically identify and characterize 

cancer-relevant proteins. So far, these consortia have focused on knowledge 

generation, rather than focusing on specific clinical applications. 

Here we set out to use state of the art proteomics technology directly in a clinical 

oncology context. Our group has already established proteomic workflows enabling 

processing of clinically relevant tissue samples to great depth, even for formalin-

fixed paraffin-embedded (FFPE) material (Wiśniewski et al., 2011, 2013). Recently, 

we have combined nearly all sample processing steps in a single reaction tube, 

thereby reducing preparation time, contamination and loss, while increasing 

quantification accuracy (inStageTip method) (Kulak et al., 2014; Doll et al., 2017). 

We reasoned that these advances would now enable rapid analysis of individual 

tumor tissues to inform treatment decisions, especially in patients with rare and end 

stage cancer malignancies, where evidence for therapeutic strategies and clinical 

trials are often lacking. 
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Urachal carcinomas originate from a remnant of the fetal structure connecting the 

allantois and the bladder. This form of cancer is very rare, accounting for less than 

1% of all bladder cancers, aggressive, and consequently little studied. Patients with 

metastatic urachal cancer have poor prognosis and limited treatment options 

(Szarvas et al., 2016). Only a few cases have been investigated at the genomic level 

(Collazo-Lorduy et al., 2016; Singh et al., 2016a) and there are no global protein 

expression profiles of urachal carcinoma that could aid the search for biomarkers, 

therapeutic targets, or disease signatures.  

A 57-year-old female presented with an urachal carcinoma that has metastasized 

to the lungs. The tumor had become refractory to all available chemo or radio 

therapy regimes but the patient wished to continue treatment. Based on the 

inStageTip sample preparation method, we developed a fast and reproducible 

workflow capable of producing analysis results in only about two days. Profiling the 

proteomic landscape of the metastasized tumor in comparison to the normal 

appearing surrounding tissue, we aimed to uncover potential therapeutic targets and 

gain a deeper understanding of the molecular mechanisms underlying this disease 

and its progression. We also employed proteomics to characterize the archived 

primary tumor and compared our results to deep sequencing data that we obtained 

from the same metastases. 

 

Results 

Prior clinical course 

Early symptoms of our patient included gross hematuria, which led us to perform a 

subsequent cystoscopy and bladder biopsy. Histopathology revealed a mucinous 

adenocarcinoma in the bladder, a finding consistent with a diagnosis of urachal 

carcinoma. As a first line of treatment, we performed a partial cystectomy and 

lymphadenectomy. Our final pathology showed a pT3b, pN1, L1, V1, R0 mucinous 

urachal carcinoma of the bladder (Supplementary figure 1A). Follow-up CT scans 

were performed on a three-month basis. Nine months after resection, the CT scan 
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revealed two suspicious hypodense lesions in the liver (Segment 5 and 4a) as well 

as a local recurrence found at the bladder dome (Supplementary Figure 1B and C). 

The local tumor board recommended chemotherapy, including one cycle of XELOX 

(oxaliplatin and capecitabine) and nine cycles of FOLFOX (folinic acid, fluorouracil, 

and oxaliplatin). Chemotherapy led to a partial hepatic response but was stopped 

due to severe peripheral neuropathy. To assess further treatment strategies the 

local recurrence was biopsied and confirmed transurethrally. After tumor board 

consultation, we performed a resection of the local recurrence combined with a 

partial hepatectomy and subsequent radiotherapy of the local recurrence side 

(59,4Gy). In later stages, two metastases were diagnosed at the introitus vaginae 

and the CT-scan of the thorax revealed bilateral noduli. Subsequent chemotherapy 

with four cycles of Gemcitabine/Cis-Platin led to a mixed response and further 

pulmonary progression of a predominant singular nodule was diagnosed (Figure 

1A). At this point, all standard treatment options were exhausted and we set out to 

resect the lung metastasis and surrounding healthy tissue for subsequent proteomic 

analyses. Due to medical and psychological issues the resection was delayed for 

two months. In the thoracoscopy a disseminated pleural carcinosis was observed, 

that was most likely covered by pleural effusion in the preoperative CT-scan (Figure 

1B). Pleural metastases and healthy pleura were biopsied, washed in PBS, flash 

frozen, and immediately transferred for proteomic analyses within one day. 
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Figure 1 Preoperative CT-scans of the urachal carcinoma patient. A) CT scan in March 

2017 showing a main metastases in the lungs. B) CT scan in June 2017 depicting a pleural 

effusion before the surgery, hiding a pleural carcinosis. 

 

Streamlined proteomics workflow applied to chemorefractory carcinoma 

To be useful in a clinical oncological setting, we reasoned that a proteomics 

workflow need to fulfill several criteria, including rapid overall analysis time (few 

days), extreme sensitivity (few thousand cells), depth of quantitative proteome 

coverage (several thousand proteins) along with robustness and reproducibility. The 

workflow that we adapted fulfills all these criteria (Methods): Briefly, we performed 

all sample preparation in a single reaction vial, based on the in-StageTip (iST) 

method sample preparation (Kulak et al., 2014). We chose a single-run LC-MS/MS 

workflow, rather than pre-fractionating the sample, to minimize measurement time 

and maximize quantitative accuracy. All bioinformatic analysis was done in the freely 
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available MaxQuant and Perseus software environments (Cox and Mann, 2008; 

Tyanova et al., 2016). 

Upon shipment of the samples in the late afternoon, we started by lysing the 

samples and extracting the proteins. The surrounding fat of the tissues were 

removed by high speed centrifugation. Proteins were subsequently digested over-

night using proteases. On the following day, we analyzed the peptide mixtures using 

a state-of-the-art label free workflow on a quadrupole – Orbitrap mass spectrometer 

(Figure 2B). Each sample, constituting a few µg of material, was measured in single 

shot triplicate measurements using 100 min high-performance liquid 

chromatography (HPLC) gradients. Analysis in MaxQuant specified a false 

discovery rate (FDR) of less than 1% at the peptide and protein levels. In total, we 

identified 50,870 sequence-unique peptides, corresponding to 5,562 protein groups 

(proteins that can be distinguished based on the available peptide information). The 

MaxLFQ algorithm (Cox et al., 2014) quantified 5,543 proteins in total and similar 

coverage in all samples. For further analysis, we only considered the subset of 4,857 

proteins in our data with quantitative values with at least 70% valid values across 

the samples. Mean sequence coverage of all proteins by identified peptides was 

about 25%. Signal intensities for the quantified proteins spanned about five orders 

of magnitudes, with hemoglobin as one of the most abundant proteins, despite 

extensive washing of the samples with PBS before sample processing. Quantitative 

reproducibility was excellent, demonstrated by Pearson correlation coefficients 

between 0.97-0.99, and was on par, or even exceed the values we previously 

achieved in cell lines systems (Coscia et al., 2016). We likewise observed high 

correlation values between control tissues taken from different locations (0.92) and 

between two different samplings of the metastases (0.97). Raw data and MaxQuant 

results are provided online and are available in our proteomic database MaxQB 

(Schaab et al., 2012). The complete workflow can be performed in less than 2.5 

days and we conclude that it is well suited to application in the clinic. 
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Figure 2 Case study proteomics workflow. A) Timeline of the project. B) Experimental 

design, including source of material, inStageTip sample preparation, and depiction of the 

analytical workflow. 

 

Proteome analysis reveals LSD1 as a potential therapeutic target 

For a functional view of the proteomic data, we used volcano plots – a type of scatter 

plot often used to present large-scale proteomic data sets - to compare expression 

differences between lung pleural metastases and healthy-appearing pleura. Based 

on a t-test for binary comparison and employing a 5% FDR, we found that 108 

(2.2%) proteins showed significant alteration, of which 47 displayed significant up-

regulation and 61 down-regulation in the metastases. Gene set enrichment analysis 
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(GSEA) using gene set collections from the MSigDB (Subramanian et al., 2005) 

revealed that proteins upregulated in the metastases were significantly enriched 

(p<5e-6) for the terms epithelial mesenchymal transition, tumor invasiveness, and 

tumor metastasis. For example, periostin (POSTN) has previously been reported to 

promote cell motility in several cancer types, was 13-fold higher expressed in the 

metastases compared with non-diseased tissue (Gillan et al., 2002; Ishiba et al., 

2014; Mikheev et al., 2015). The most up-regulated (>100-fold) protein in the 

metastases was thrombospondin-2 (THBS2) and is also involved in cell invasion as 

well as angiogenesis and correlates with poor survival (Bornstein, 2009; Iruela-

Arispe et al., 2004; Lin et al., 2016; Qian et al., 2017; Wang et al., 2016). Another 

protein driving cell invasion, methylthioribose-1-phosphate isomerase (MRI1) was 

highly significantly upregulated but only 1.9-fold (Kabuyama et al., 2009). These 

observations demonstrate that the proteomics experiment performed as expected 

and suggest an important role of these proteins in the metastatic progression of 

urachal carcinoma. 

In contrast, downregulated proteins were very significantly enriched in mitochondrial 

proteins (p < 1e-17), such as pyruvate carboxylase (PC), Acetyl-CoA carboxylase 2 

(ACACB), and Acyl-coenzyme A thioesterase 2 (ACOT2). Interestingly, Ras 

suppressor protein 1 (RSU1) was about 4-fold down-regulated in the metastases. 

Apoptosis-inducing factor 2 (AIFM2) was 28-fold down-regulated in the metastases 

compared with non-diseased tissue. These observations suggest a regulatory role 

of RSU1 and AIFM2 in urachal carcinoma metastases. 

In an effort to derive therapeutic options, we first reduced the total number of 

significantly upregulated proteins by applying a more stringent cutoff (1% FDR). This 

yielded four significantly upregulated proteins in the metastatic tissue: 

methylthioribose-1-phosphate isomerase (MRI1), solute carrier family 22 member 

18 (SLC22A18), collagen alpha-1 (XI) chain (COL11A1), and lysine-specific histone 

demethylase 1A (KDM1A, also known as LSD1) (Figure 3A). Next, we asked which 

of these proteins were potentially druggable, which left us with LSD1 as the sole 

remaining candidate. We quantified LSD1 with 11 unique peptides, reaching an 
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approximate sequence coverage of 20%, and found that it was 16-fold more highly 

expressed in the metastases compared to the control.  

LSD1 is an epigenetic regulator that demethylates both the activating histone mark 

H3K4me and the repressive mark H3K9me, thereby acting as a coactivator or 

corepressor, depending on cellular context. LSD1 has previously been reported as 

upregulated in multiple cancer types and its inhibition has antitumor activity in lung 

cancer (Mohammad and Kruger, 2016; Singh et al., 2015). These findings led to the 

development of multiple LSD1 inhibitors that are currently in clinical trials (Alsaqer 

et al., 2017; Mohammad and Kruger, 2016; Schmidt and McCafferty, 2007). Even 

though it was unclear whether the lung metastases would respond to a LSD1 

inhibitor, there were no other rational or reasonable treatment options available at 

this point.  Unfortunately, extensive efforts to obtain one of these drugs for use in 

our patient ultimately proved unsuccessful. Luckily, tranylcypromine a drug 

developed decades ago and FDA approved for the treatment of depression and 

anxiety (Burger and Yost, 1948) has recently been shown to irreversibly inhibit LSD1 

as a side effect (Binda et al., 2010; Ulrich et al., 2017; Zheng et al., 2016). This 

analogue of amphetamine is a monoamine oxidase (MAO) inhibitor, an enzyme 

family that is mechanistically related to LSD1. Tranylcypromine and derivates of this 

drug already showed clinical efficacy for several condition in clinical trials, including 

the treatment of AML. The local tumor board approved treatment approved 

treatment with this drug and our patient was prescribed a tyramine-free diet, to 

prevent accumulation of tyramine (which is normally metabolized by MAO) leading 

to high blood pressure, which may culminate in a hypertensive crisis (Gillman, 2011; 

Ulrich et al., 2017). However, a baseline CT at the initiation of therapy revealed 

dramatic metastatic progression to the liver, concurrent with hepatic failure 

(Supplementary Figure 1D). The patient was then transferred to palliative care ward 

and died soon after. 

MS-based proteomics is a multifaceted technology and further allowed us to 

investigate the plasma proteome of our patient. Based on our previously developed 

‘plasma proteome profiling’ pipeline (Geyer et al., 2016a) we quantified 
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approximately 460 proteins in triplicate LCMS measurements enabling 

quantification of inflammatory proteins, such as CRP and the majority of the 

complement system (Supplementary Figure 2). Furthermore, we identified the entire 

inflammatory panel which we have previously reported and found it to be clearly 

elevated compared to normal controls (Geyer et al., 2016b), as expected in a patient 

with end-stage malignancy and heavy metastatic load. 

We also investigated whether the patient would be likely to respond to 

immunotherapy. MS-based measurements did not reveal any expression of PD1 or 

PDL1 proteins, an observation that was later confirmed by immunohistochemistry 

(Supplementary Figure 3D). We also did not observe any immune cells infiltration in 

the metastases, suggesting a poor response to immunotherapy-based treatments. 

 

 

Figure 3 Proteins differentially expressed in the urachal carcinoma lung metastases. 
A) Volcano plot of the p-values (y-axis) vs. the log2 protein abundance differences (x-axis) 

between metastases and control, with lines of significance colored in black or grey lines 

corresponding to a 5% or 1% FDR, respectively. B) Mechanisms of action of LSD1/KDM1A. 
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Proteomic analysis of the primary tumor 

To further investigate the proteomic landscape of our quantitative and in depth 

proteomic case study, we next analyzed the proteome of the primary tumor, which 

had been preserved as FFPE material for several years. H&E staining revealed that 

the primary tumor was rich in extracellular mucin and stroma compared to healthy 

control tissue (Figure 4B and C). Our proteomic analysis revealed major differences 

between the primary and healthy surrounding tissue (Figure 4A). In total, we 

quantified approximately 4,300 proteins and found that mucinous (MUC1 and 

MUC2) and mesenchymal proteins (such as THBS2, COL11A1, and CTHRC1) were 

significantly upregulated in the primary tumor compared to healthy surrounding 

tissue. Generally, the epithelial mesenchymal transition, and thus mesenchymal 

gene upregulation is associated with poor prognosis in various malignancies 

including colorectal cancer and ovarian cancer (Chen et al., 2014; Rokavec et al., 

2017; Sleeman and Thiery, 2011). The fact that mesenchymal proteins were highly 

enriched in the primary tumor, is concordant with the later development of multiple 

and aggressive metastases. Interestingly, we also found that LSD1 appeared to be 

upregulated in the metastases compared to the primary tumor, albeit not 

significantly. 
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Figure 4 Differentially expressed proteins in the primary tumor. A) Volcano plot of the 

p-values vs. the log2 protein abundance differences between primary tumor and control, 

with significance lines (5% FDR) colored in black. B) H&E stainings of healthy control tissue 

surrounding the primary tumor (C), reveals prominent stroma formation. 

 

Next generation sequencing analysis of the metastases 

To gain additional insights into the overall molecular mechanisms underlying 

urachal carcinoma, tumor etiology and to compare transcriptomics to proteomics, 

we also extracted RNA and DNA extraction for subsequent next generation 

sequencing. The quality of the extracted RNA from the metastatic samples, 

however, was poor, prohibiting transcriptomic analysis. DNA is more stable, allowing 

us to perform exome sequencing on our sample. Overall, we observed hundreds of 

mutations in coding regions, indicating a hypermutated phenotype, consistent with 

a previous report (Kardos et al., 2017). Comparing the mutations to a database of 

druggable genes (Broad Institute), yielded a total of 160 mutations of potential 

therapeutic interest. Among those, we examined the mutation spectrum of the 
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growth factor receptor (EGFR) as EGFR-inhibitors (e.g. gefitinib), have been 

described for urachal carcinoma recently (Collazo-Lorduy et al., 2016; Singh et al., 

2016b; Sirintrapun et al., 2014). The EGFR pathway member K-RAS is frequently 

mutated in urachal cancer and we identified a missense mutation at position 117 

(K117N, exon 4) that has previously been associated with various cancers forms 

such as bladder and colorectal cancer. Unfortunately, multiple studies reported that 

patients with K-RAS mutations in exons 2, 3 and 4 did not respond to EGFR-

targeted therapy (Bokemeyer et al., 2015; Douillard et al., 2013). We also found two 

intronic and two exonic somatic mutations of the LSD1 gene, which, however, 

scored neutral by mutation effect predictors (Supplementary Figure 4). 

 

Discussion 

Modern oncology is at a turning point, where systemic cancer treatment is moving 

from multi-cytotoxic chemotherapies towards individual targeted therapies. This is 

particularly promising for patients suffering from rare cancer forms, where standard 

chemotherapies often fail and large clinical studies are unlikely to be performed. In 

the near future, sequencing at the genomic, transcriptomic and proteomic levels 

might provide the basis for individual targeted treatment prescription and thereby 

change clinical practice. However, the large spectrum of mutations does not 

necessarily lead to clear therapeutic options, a problem that becomes even more 

acute when considering mutational heterogeneity of most tumors. These general 

challenges were reflected in our case study, where mutational analysis did not lead 

to a clear treatment recommendation. In contrast, our personalized MS-based 

proteomic analysis worked robustly and quickly on both the lung metastases and 

the archived primary tumor.  

The current standard treatment for localized urachal cancer is surgery, whereas 

chemotherapy is used on the metastatic disease. Given the rarity of this cancer type, 

robust data from prospective trials on chemotherapy regimens is unlikely to be 

obtainable and evidence mainly consists of small retrospective cohorts. Due to the 

similarity of urachal cancer to colorectal adenocarcinoma and urothelial carcinomas, 



141 
 

treatment regimens are generally extrapolated from these diseases, justifying the 

FOLFOX therapy prescribed to our patient. Targeted epidermal growth factor 

receptor (EGFR)-inhibitors (e.g. gefitinib), have been prescribed for urachal 

carcinoma recently. To guide decisions concerning this alternative therapy option, 

we further looked into K-RAS mutations and uncovered a missense mutation. 

However, EGFR-targeted therapy was not prescribed because multiple studies 

reported that patients with similar K-RAS mutations as our patient, did not respond 

to therapy (Bokemeyer et al., 2015; Douillard et al., 2013). Furthermore, the 

elevated liver enzymes of our patients were contraindicated such a therapy. In the 

search for possible treatment options in this patient, we found that PDL1 and CD8 

immunohistochemistry were also negative, suggesting a poor response to check-

point inhibitors.  

Lacking evidence-based treatment options for our end-stage patient, who was 

willing to exhaust all possibilities, we turned to our MS-based proteomic analysis, 

which identified LSD1 as a therapeutic target highly enriched in metastatic tissue, 

thus providing a promising treatment opportunity. Of note, our workflow allowed fast 

proteomic analysis of clinical tumor tissue providing timely results to the patient and 

the clinicians. The proteomic sample preparation and data analysis were 

accomplished in only about two days, faster than the genomic analysis. This 

highlights the promise of MS-based proteomics in clinical routine, where fast target 

identification for cancer patients beyond standard treatment could be highly 

beneficial. 

In summary, we demonstrated a fast and reproducible proteomic workflow that 

created the possibility for clinicians to use proteomics for personalized diagnosis 

and treatment in the clinical setting. By combining genomic with proteomics data, 

we further informed the therapeutic decision. We aim to apply this workflow to 

cancer patients in a variety of chemorefractive tumors, in the hope of identifying 

additional treatment options for at least some of them. 
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Supplementary Figures 
 

 
Supplementary Figure 1: A) MR-imaging of the primary tumor showed a suspicious mass 

at the anterior bladder wall (red circle). B-C) Follow-up CT-imaging revealed local 

recurrence nine months after partial nephrectomy (red circle) and a hepatic metastasis (red 

arrow). D) Massive progression of hepatic metastases in the CT scan prior to LSD1 therapy. 
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Supplementary Figure 2: Plasma proteome abundance rank. The previously reported 

inflammatory panel is highlighted in red, other complement proteins are represented in blue. 
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Supplementary Figure 3: H&E stainings. A) Healthy urothelium of the partial cystectomy 

specimen. B) Primary mucinous urachal adenocarcinoma. C-D) Hepatic metastasis of the 

urachal carcinoma with negative PDL1 immunohistochemistry. 

 
 

 
Supplementary Figure 4: Mutation diagram of LSD1. 

  



146 
 

Material and methods  

Sample preparation for mass spectrometry analysis 

The lung metastases were collected during surgery and were washed three times 

with cold PBS before flash freezing the samples in liquid nitrogen and shipping on 

dry ice. The samples were cut in half to enable genomic and proteomic analysis. 

Proteomic sample preparation 

Control and lung metastases samples were thawed on ice and prepared according 

to the in stage tip sample preparation method (Kulak et al. Nat Methods, 2014). 

Briefly, 100 µl of the reducing alkylating sodium deoxycholate buffer (PreOmics) was 

added to the samples before protein denaturation at 100°C for 20 min. Proteins were 

then digested by LysC and trypsin overnight at 37°C and 1700 rpm. Peptides were 

acidified to a final concentration of 0.1% trifluoroacetic acid (TFA) for SDB-RPS 

binding and desalted before LC-MS/MS analysis.  

 

Liquid chromatography-MS analysis 

Samples were measured on an on a quadrupole Orbitrap mass spectrometer 

(Scheltema et al., 2014; Kelstrup et al., 2014) (Q Exactive HF, Thermo Fisher 

Scientific, Rockford, IL, USA) coupled to an EASYnLC 1200 ultra-high-pressure 

system (Thermo Fisher Scientific) via a nano-electrospray ion source. About 1 µg of 

peptides were loaded on a 40 cm HPLC-column (75 μm inner diameter; in-house 

packed using ReproSil-Pur C18-AQ 1.9 µm silica beads; Dr Maisch GmbH, 

Germany). Peptides were separated using a linear gradient from 3% to 23% B in 82 

min and stepped up to 40% in 8 min at 350 nl per min where solvent A was 0.1% 

formic acid in water and solvent B was 80% acetonitrile and 0.1% formic acid in 

water. The total duration of the gradient was 100 min. Column temperature was kept 

at 60 °C by a Peltier element-containing, in-house developed oven. The mass 

spectrometer was operated in ’top-15’ data-dependent mode, collecting MS spectra 

in the Orbitrap mass analyzer (60,000 resolution, 300-1,650 m/z range) with an 
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automatic gain control (AGC) target of 3E6 and a maximum ion injection time of 25 

ms. The most intense ions from the full scan were isolated with a width of 1.4 m/z. 

Following higher-energy collisional dissociation (HCD) with a normalized collision 

energy (NCE) of 27%, MS/MS spectra were collected in the Orbitrap (15,000 

resolution) with an AGC target of 1E5 and a maximum ion injection time of 25 ms. 

Precursor dynamic exclusion was enabled with a duration of 20 s.  

 

MS data analysis 

Tandem mass spectra were searched against the 2015 Uniprot human databases 

(UP000005640_9606 and UP000005640_9606_additional) using MaxQuant 

version 1.5.3.34 with a 1% FDR at the peptide and protein level, peptides with a 

minimum length of seven amino acids with carbamidomethylation as a fixed 

modification and N-terminal acetylation and methionine oxidations as variable 

modifications. Enzyme specificity was set as C-terminal to arginine and lysine using 

trypsin as protease and a maximum of two missed cleavages were allowed in the 

database search. The maximum initial mass tolerance for precursor and fragment 

ions were 4.5 ppm and 20 ppm, respectively. If applicable, peptide identifications by 

MS/MS were transferred between runs to minimize missing values for quantification 

with a 0.7 min window after retention time alignment. Label-free quantification was 

performed with the MaxLFQ algorithm using a minimum ratio count of 1. 

 

Statistical analysis 

Statistical and bioinformatics analysis was performed with the Perseus software 

(Tyanova et al., 2016) (version 1.5.5.0), Microsoft Excel, and R statistical software. 

Proteins that were identified in the decoy reverse database or only by site 

modification were not considered for data analysis. Mean log2 ratios of biological 

triplicates and the corresponding p-values were visualized with volcano plots. We 

used t-test for binary comparisons and SAM with s0=0.1 and FDR<0.05 for the 

assessment of t-test results in volcano plots. 
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IV) Discussion 

 
Approximately nine million deaths worldwide are attributed to cancer, and its poor 

clinical outcome is related to a diverse array of factors, including late diagnosis, lack 

of specific treatment, therapy resistance, and the limited connection of pre-clinical 

with clinical research. Many cancer subtypes remain poorly understood and few 

targeted therapeutic treatments are available. Revolutionary advances in genomics 

technologies have so far mainly contributed to our understanding of cancer origin 

and heterogeneity but unfortunately not had much impact on the clinic. In parallel, 

technology improvements in MS-based proteomics now finally enable the analysis 

of the molecular drivers of cellular function – proteins. These advances enable the 

identification and quantification of nearly complete proteomes, as more than 10,000 

proteins and PTMs can be identified in cells and tissues, including challenging 

muscle tissues (Article 6). It is therefore possible to use MS-based proteomics to 

study cellular changes at a near comprehensive, systems-wide level by examining 

changes in protein and PTM expression, protein subcellular localization and protein 

interaction partners. 

To address the fundamental question of how the genotype is mechanistically 

translated into phenotype it is important to interrogate the role of specific genes, for 

instance by deleting or inserting a gene or mutation of interest, on a global proteomic 

and phosphoproteomic scale (Articles 4 and 5). Likewise, with small molecule 

inhibitors we can investigate the perturbation of phosphorylation signaling cascades 

following kinase inhibition, on a systems-wide scale (Article 3). For example, a 

recent study showed that cancer driven alterations in human tumors can be mapped 

in human cancer cell lines and correlated with drug treatment sensitivity213. Cell line 

models could therefore be used in the future to guide and link the development and 

application of therapies in the clinic. 

Further proteomic developments now permit in-depth tissue analysis in about two 

days from obtaining the sample to final analysis result, this speed being a 

prerequisite for clinical application (Article 7). Based on such a rapid proteomic 
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analysis, we uncovered a potential therapeutic target in a chemorefractory cancer 

patient, which enabled clinicians devise a third line treatment. We envision that this 

workflow can be applied to cancer patients at much earlier stages of disease 

progression, with the ultimate goal to distinguish patients most likely to respond and 

benefit from a given treatment from those who will only endure its negative side 

effects. 

Together, the technical advances detailed in this thesis lead us into a new paradigm, 

in which MS-based proteomics is transformed from being a tool for specialist 

laboratories to a powerful technology for translational cancer proteomics used in 

cutting edge clinics to deliver personalized treatment options. 

Building on the work presented here, we aim to expand our robust, rapid and 

sensitive proteomic workflow to the analysis of human cancer tissues at both greater 

depth and higher throughput and accuracy. We plan to apply this workflow to micro- 

and macro-dissected cancer tissues in an automated fashion to explore the 

proteome of large FFPE cancer tissue cohorts found in multiple biobanks as well as 

biopsies collected during surgery. By facilitating the analysis of thousands of 

samples in a reasonable timeframe, one could study the underlying molecular 

mechanisms of cancer at the proteome level, testing the validity of known 

biomarkers, while potentially uncovering new ones. In two preliminary studies, we 

have already analyzed the proteome of 60 melanoma FFPE samples and adenoma 

samples, which yielded relevant results. 

To achieve more reproducible measurements (which is a prerequisite in clinical 

practice) we envision using data independent acquisition (DIA) measurement 

strategies. DIA has become particularly attractive with the latest technological 

developments, predominantly the sequencing speed and sensitivity of the latest 

Orbitrap instruments214. With the latest instrumentation, DIA largely eliminates the 

missing value problem. It also provides the means to couple MS to fast LC 

separation techniques. The recently developed Evosep LC, which is based on a 

rapid elution concept215, significantly reduces the overhead time between sample 

pick up and MS measurement start point. This new design of LC makes use of a 
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pre-formed gradient that already contains the sample. Furthermore, sample to 

sample carry over, and thus contamination, is considerably reduced as peptides are 

loaded on disposable StageTips, which are used for direct elution of the samples. 

Based on a 90 min method, one can reach a throughput of up to 16 tissue samples 

per day and instrument. Chemical multiplexing, such as in 11-plex TMT would 

enable an even higher throughput, enabling direct comparison of samples in the 

same spectrum. This might obviate the need for technical triplicate measurements 

that are still often used in label free approaches to ensure high accuracy. This 

combination of robustness and performance technologies would make it possible to 

tackle clinical studies at relatively high throughput. 

The integration with various omics approaches, such as in proteogenomics, will play 

even more important roles in cancer research and metabolomics also holds great 

promise for precision surgery in particular. This will generate exponential data flows 

that will necessitate concurrent advances in bioinformatics and computational 

proteomics. Machine-learning technologies have the power to uncover cancer 

drivers and facilitate the ability to generate biological insights from large datasets. 

The integration of large scale omics data sets have led to a new era of data-driven 

medicine, termed high definition medicine216. Likewise, in a truly personalized 

medicine approach, one would begin by determining the personal healthy baseline 

of an individual to later ascertain the exact pathology in a patient-resolved fashion. 

In cases where this is not possible, one can at least establish typical reference 

ranges, as we have begun to do with the proteome of a healthy human heart (in this 

case, compared to diseased atrial fibrillation hearts) (Article 6). On a global scale, 

large data sets would also enable better prevention and treatment options if these 

big data are managed more effectively. Apart from improving the health of millions, 

this could result in billions of dollar savings to health care systems, as better 

management of current clinical trials could allow more efficient data sharing and 

advance clinical trials more rapidly217. 

In my journey from analyzing a single protein through a comprehensive 

understanding of deep proteome networks, I also explored the scientific 
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interconnections between industry, academia, and the clinic during my PhD. It is my 

hope that collaborations between these different institutions will play increasingly 

crucial roles in the future to develop more effective and affordable drugs, manage 

big data and fight cancer more efficiently.  
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