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Abstract

Cancer is the second leading cause of death worldwide and many cancer subtypes
remain poorly understood. Most conventional chemotherapeutic treatments are still
associated with life-threatening toxic side effects that primarily result from a lack of
specificity directed towards cancer cells. Recent breakthroughs in genomic and
transcriptomic sequencing technologies have allowed the molecular profiling of
thousands of tumors in different cancer types. It has become evident that cancer
cannot be considered a singular disease and that its manifestations cannot
exclusively be explained by the accumulation of genetic mutations. Instead,
epigenetic and proteomic changes as well as posttranslational modifications (PTMs)
of proteins are crucial drivers of oncogenesis. In this thesis, | investigated system-
wide alterations in cancer at several biological and cellular levels using mass
spectrometry (MS). Starting from the nucleus of the cell, | explored the epigenetic
changes in lymphoma at the biotechnology company Genentech Inc. We found that
the methyltransferase EZH2 is the most significantly over-expressed epigenetic
regulator in cancer, and is co-regulated with a cell cycle network. Zooming out from
the nuclear level, | analyzed phosphorylation-signaling alterations in primary and
secondary glioblastoma cell line models at the University of California, San
Francisco (UCSF). Here, | focused on the interplay between the MAPK and PI3K
signaling cascades. At the Max Planck Institute (MPI) of Biochemistry, | moved on
to translational proteomics, working with human cancer tissues. | optimized an MS-
based proteomic workflow for the rapid screening of clinical tissue samples and
showed that MS-based proteomics can be used for novel therapeutic target

identification in end-stage chemorefractory cancer patients.

Through its industrial, academic and clinical perspective on a variety of proteomic
methods, this PhD thesis demonstrates that MS-based proteomics is applicable to
personalized oncology. My hope is that this unique resource of the identity, quantity,
and alterations of proteins, phosphosites and histone PTMs, may reveal new
insights into the field of oncology.
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1) Introduction

1. The proteome and its large scale investigation by mass
spectrometry

Each cell is a genuine masterpiece. Biological information is transcribed from DNA
to RNA and finally translated into proteins. These proteins may be further modified
post translationally, leading to intricate signaling patterns within and between
different cell types. Recent breakthroughs in DNA and RNA sequencing
technologies allow the molecular profiling of essentially complete genomes and
transcriptomes?. While these methodologies have revolutionized our understanding
of a vast array of human diseases, including cancer, fundamental mechanisms are
not only driven by genetic or transcriptomic alterations. Instead, they only manifest
clinically if they involve changes at the protein level as well. Proteins are the
paramount active biological entities in cells and work in concert with each other and
other biomolecules as molecular machines, ensuring that each cell generates
energy, communicates with its environment, divides, moves, performs its specific
biological functions, or commits apoptosis. The full complement of proteins in a
biological system is termed the proteome, while proteomics refers to the large-scale
investigation of the proteome using a variety of technologies. The unceasing
development of ever more powerful proteomic methods over the last decades now
enables the analysis of proteomes in great depth. As a result, the investigation of
complex biological functions and promising clinical applications are becoming

realistic?.

1.1 The human proteome

With approximately 20,000 protein-coding genes, the human genome is five times

smaller than that of an onion in terms of genome size. Thus, the number of genes



alone does not determine the complexity of an organism. Additional biological
differences originate from the regulation of the genes, alternative splicing, protein
localization and interactions. The human proteome, in particular, is diversified by
many protein variations (isoforms), and posttranslational modifications (PTMs),
which alone add at least another order of magnitude of complexity. More than 90%
of the human genes are spliced® and altogether, more than 300 types of PTMs have
been described*. Combined, these modifications yield millions of different possible
‘proteoforms’™, resulting in a dramatic increase in the complexity of the human
proteome. Among these PTMs, many have been shown to regulate normal and
pathogenic cell biological functions. The most common covalent modifications are
phosphorylation, ubiquitination, acetylation, glycosylation and methylation and
together they vastly increase the functional diversity of proteins. Among the some
300,000 human PTM sites that have so far been recorded in the PhosphositePlus
database®, only a small percentage have been assigned to regulatory or biological
functions. Additionally, proteins are often modified at multiple sites, either through a

combinatorial or sequential addition of functional groups.

Mass spectrometry (MS)-based proteomics has evolved into the method of choice
for the large-scale identification and quantitation of nearly all expressed proteins as
well as their site-specific PTMs?’. Phosphorylation is the most extensively studied
PTM because it is a key modulator of cellular signal transduction. MS-based
guantitative phosphoproteomics has already revealed site-specific phosphorylation
dynamics after EGF stimulation®, identified molecular switches underlying FGFR
cellular responses®, oncogenic signaling in the MAPK and PI3K pathways (Article
3), and ‘druggable’ kinases'?. These examples among many highlight the potential
of MS-based phosphoproteomics to improve our understanding of molecular
mechanisms, identify clinically relevant biomarkers and uncover potential

therapeutic targets.



1.2. Mass spectrometry-based proteomics

1.2.1.Mass spectrometry history

Mass spectrometry (MS) is a technology that determines the mass/charge (m/z)
ratios of ions for which Thompson (Th) is the proper unit. Based on the charge state
of an ion, the m/z ratios can be converted to its molecular mass with a standard unit
of Dalton (Da). The analyte of interest (peptides in this thesis) must first be ionized
in its intact form, as this is essential for its identification and quantification. This is
difficult for labile biomolecules but this obstacle was overcome with the development
of two soft ionization techniques (electrospray ionization (ESI) and matrix-assisted
laser desorption ionization (MALDI)) in 1988. In ESI, for which John Fenn received
a share of the Nobel Prize in Chemistry in 2002, analytes are directly vaporized and
ionized from a liquid phase using a high voltage via rapid solvent evaporationt*12,
As the solvent of the droplet evaporates, the charge density increases, resulting in
a stream of charged ions that are transferred into the vacuum of the mass
spectrometer. ESI has become particularly popular since it can directly be coupled
to a liquid chromatography (LC) system, which is ideal suited to the analysis of
complex protein and peptide mixtures. Subsequent technological advances
included the miniaturization of ESI in the form of the particularly sensitive, low-flow

nano-electrospray?*s.

1.2.2.Top-down vs. bottom-up proteomics

Conceptually, there are two MS-based proteomic strategies, termed ‘top-down’ and
‘bottom-up’. In top-down proteomics, intact proteins are analyzed, typically in
purified form*4. This can be beneficial for the comprehensive analysis of protein
isoforms, complex PTM conformations, and especially therapeutic antibodies. While
theoretically appealing, top-down measurements, remain experimentally and

computationally challenging because high molecular weight compounds are not



very sensitively ionized and their complex charge patterns render the MS and
MS/MS spectra difficult to acquire and interpret. In contrast, bottom-up proteomics
entails the digestion of proteins using sequence specific proteases into peptides,
leading to much simpler MS analysis. Bottom-up or ‘shotgun’ proteomics has
become the standard method for large-scale proteome analysis and has been
broadly applied to the analysis of in-depth and cell-type-resolved proteomes. In this
thesis, this advance has allowed me to map the human heart to unprecedented
depth (Article 6).

1.2.3.From cells or tissues to proteomes: Bottom-up proteomic
workflows

A typical bottom-up MS-based proteomics workflow consists of three main steps:
sample preparation, including protein digestion, the LC-MS measurement itself, and
subsequent data analysis (Figure 1). Apart from providing a general overview, | here
particularly focus on developments from our laboratory and those applied to the

projects in this thesis.



A) Sample preparation
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Figure 1 The bottom-up MS-based proteomic workflow A) Sample preparation consists
of protein extraction, digestion and optional PTM enrichment. B) HPLC and online MS
measurement. C) Data analysis includes peptide identification and quantification, assembly

into proteins and subsequent bioinformatic analysis. Adapted from?®.

Sample preparation includes the extraction of proteins from biological material and
their digestion into peptides. These peptides are then subjected to separation by
reversed phase high pressure LC (HPLC) based on their different strengths of
hydrophobic interaction with a stationary phase, typically C18 modified silica. As the
peptides elute from the chromatographic column, they are ionized via ESI and
transferred into the mass spectrometer. The generated mass spectra provide

information about the abundance (intensity) and the identity (amino acid sequence

and PTMs) of the peptide.



1.2.4.Sample preparation: From ‘in-gel’ to ‘in-solution’, and ‘in-
StageTip’

The first step of the proteomic workflow, sample preparation, is a crucial procedure
of MS-based proteomics. Sample preparation protocols have to be adapted to the
source and the amount of material. In biological research, proteins have been
analyzed mainly by 1D SDS polyacrylamide gel electrophoresis, a procedure that
employs detergent-mediated (e.g. sodium dodecyl sulfate (SDS)) solubilization of
the sample followed by SDS polyacrylamide gel electrophoresis. The development
of in-gel digestion, in which proteins that are still present in the gel, are directly
degraded by trypsin, paved the way for MS sample preparation that was
immediately useful to biologists®'’. By combining in-gel digestion with nano-
electrospray, MS became applicable for the first time to proteomics!®®. This
procedure also permits fractionation of the proteome through the excision of the
entire 1D gel in a chosen number of ranges. The development of Stop And Go
Extraction tips (StageTips) allowed convenient sample handling, even of minimal
sample amounts and optional peptide fractionation?°. Subsequently, improved LC-
MS performance made it possible to move from time-consuming in-gel digestion to
in-solution digestion?%22, In-solution digestion employs chaotropic agents, such as
urea, for protein extraction and digestion under denaturing conditions. This has the
advantage of directly extracting, denaturing, and digesting the proteins in the lysis
buffer. High concentrations of urea, however, are associated with decreased
digestion efficiency and such weak agents do not solubilize membrane proteins, for
instance. The ‘Filter-Aided Sample Preparation’ (FASP) allows removal of the
detergents or chaotropic agents by trapping the denatured proteins on a spin-filter
matrix, enabling efficient enzymatic digestion?®. The next step was the ‘in-StageTip’
protocol, as it permitted the robust preparation of samples in high-throughput, using
robotic assistance. In-StageTip digestion employs somewhat milder detergents than
SDS, such as sodium deoxycholate (SDC), which is particularly suitable for efficient

cell lysis, reduction, alkylation and protein digestion in a single device. These



sample preparation developments resulted in a considerably reduced sample

preparation time, contamination, and loss?4.

All sample preparation protocols first require the lysis of the biological source
material in order to efficiently extract proteins. This step can also require mechanical
breakdown, such as sonication, bead-milling or heating to increase lysis efficiency.
The cysteines of the extracted proteins are then reduced and alkylated to disrupt
disulfide bridges prior to digestion. The alkylation step prevents the reduced reactive
thiol groups from reforming disulfide bridges. Typical reducing agents include tris(2-
carboxyethyl)phosphine (TCEP) or dithiothreitol (DTT), while the most commonly
used alkylating agents are iodoacetamide (IAM) or chloroacetic acid (CAA). For the
proteolytic digestion of proteins, trypsin is the enzyme of choice due to its high
cleavage specificity C-terminal to lysines and arginines, generating an average
peptide length of 14 amino acids?®. The advantages of sequence specific digestion
enzymes include the generation of a limited and defined set of peptides, placing a
positive charge at the C-terminus in case of trypsin, and providing constraints in the
bioinformatic identification of peptides®®. In some cases, however, the resulting
tryptic peptides might be too long or too short for effective MS analysis. Other
enzymes can then be employed, such as chymotrypsin, AspN, Lys-N, Lys-C, Arg-
C, or Glu-C to increase the diversity of generated peptides, and to boost overall
protein sequence coverage?’. Other methods preventing the generation of too short
or hydrophilic peptides include chemical modification of lysines by propionic
anhydride to neutralize charges and block lysine residues?®2°. This labeling
approach is particularly suitable for bottom-up analysis of histone tails using trypsin
as it improves sequence coverage across the lysine- and arginine-rich tails that

harbor most modifications, as applied in article 2.

1.2.5.PTM-enrichment strategies

The analysis of the entire proteomes of cells or tissues is already challenging.

Conceptually and practically, biological processes involving regulatory PTMs that
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feature substoichometric modifications are even more difficult and in practice always
require additional enrichment steps during sample preparation. Common PTM
enrichment strategies use affinity purification based on charge properties or
antibody recognition. These are usually applied at the peptide level, ensuring higher
accessibility of PTMs — allowing specific binding. The importance of phosphorylation
has engendered highly effective protocols and approximately 240,000 human
phosphorylation sites have been reported so faré. During the lysis of the samples,
additional phosphatase inhibitors are generally added to prevent the
dephosphorylation of the proteins during sample handling. Global analysis of serine-
and threonine-phosphorylation (pS and pT) is commonly achieved by metal ion-
based enrichment methods such as immobilized metal affinity chromatography
(IMAC) or titanium dioxide (TiO2). They rely on the interaction between the
negatively charged phosphate groups and the positively charged iron (Fe) or
titanium (Ti) ions, respectively (Figure 2). Non-phosphorylated peptides are washed
away in the presence of salt to reduce non-specific binding of highly acidic peptides.
Phosphopeptides are subsequently eluted with potassium phosphate to disrupt the
phospho-Fe or -TiO2 interactions. While initially phosphorylation enrichment
required large starting material in the mg-range, workflow optimizations now allow
the analysis of more than 10,000 phosphosites from minimal starting material in a
96-well format°. Multiphosphorylated peptides, however, remain challenging to
assign and quantify unambiguously. To this end, the combination of IMAC with TiO2
(termed SIMAC) helps by efficienty separating of mono-phosphorylated from
multiply phosphorylated peptides3!. Alternative methods that also increase the
identification of multiply phosphorylated peptides include preferential binding to

graphite powder or Ti(4+)3233,
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Figure 2 TiO2 and IMAC phosphopeptide enrichment strategies.

Global phosphorylation distributions revealed that about 93%, 6%, and 1% of
phosphorylated sites occur on serine, threonine, and tyrosine, respectively (Figure
3) consistent with previous observations®. Although phosphotyrosines (pY) are
present at even lower site occupancies than pS and pT overal, they activate receptor
tyrosine kinases (RTKs) and play pivotal role in multiple diseases, including cancer.
For optimal identification of pY-containing peptides, they are purified from the
mixture of digested peptides by specific immuno-capture. For instance, the
combination of the recently developed P-Tyr-1000 antibody (Cell Signaling
Technology) with LC-MS/MS analysis, has recently resulted in the identification of
several hundreds of pY sites in colorectal cancer cells with a very high enrichment

specificity343.

Antibody-based enrichment strategies have been extended to the quantitative
analysis of ubiquitinations, methylations, and acetylations. In particular, the
development of anti-di-glycine remnant antibodies led to the identification of more
than 10,000 ubiquitination sites3¢:3’. Furthermore, antibodies separately targeting
mono-, di-, and tri- methylated lysines or mono- and di-methylated arginines
peptides have been applied to map the human methylome in great depth®.

Proteome-wide acetylation analyses have likewise been made possible by antibody-



based enrichment and have uncovered pivotal cellular processes that are regulated

by acetylation®°.

In addition to charge- or antibody-based enrichment strategies, enzyme-based
enrichment can uncover proteolytic sites of biologicals of interest. For example, the
subtiligase approach enabled the identification of more than 8,000 proteolytic sites,

including 1,700 caspase cleavage sites in human cells*©.

4x (1%) 3 (5%) pTyr 1%  pThr 6%

2X (25%)

1x (69%)

pSer 93%

Figure 3 distribution of phosphorylation events in HCT116 cells, A) Distribution of single,
doubly, triply and quadruply phosphorylated peptides B) Distribution of phosphorylated sites

per amino acid. (Data generated by the author).

1.2.6.Peptide fractionation for deep quantitative proteomes

In principle, protein level fractionation would be attractive but in practice it is
hampered by solubility issues and low resolution*!. To reach deep proteome
coverage in complex biological samples, an additional step of peptide fractionation
is applied prior to LC-MS measurements. Here, tryptic peptides are separated into
different fractions based on principles such as high pH reversed-phase fractionation
or strong cation exchange (SCX). Since the peptides are separated from each other
— decreasing complexity in LC-MS and more material can be injected onto the

analytical column in total, pre-fractionation will increase overall detectability of low

10



abundance peptides, leading to increased proteome depth and sequence coverage.
Off-line high pH reversed-phase fractionation combined with the low pH of the online
LC-MS has become popular because it tends to yield overall better peptide
identifications than using SCX*2. This is mainly due to the fact that individual first
dimension fractions are pooled from different parts of the gradient (‘concatenation’),
effectively providing orthogonal separation (meaning that peptide retention times
are not correlating)*3-*5. However, because of the large diameter of the C18 columns
used for fractionation, such approaches required starting material in the mg-range
and the concatenation of the different fractions was generally done manually (Article
3). To make the fractionation more streamlined, our group has developed a ‘loss-
less nano-spider’ fractionator, which enables the fractionation of very low-ug starting
material and automatically concatenates the collected fractions via a rotating
valve?®. In cell lines, this approach resulted in the gquantification of almost 12,000
proteins using 24 fractions. In article 6, | applied spider fractionation for the first time

to tissues and quantified over 10,000 proteins in a very challenging sample.

1.2.7.Liquid chromatography-mass spectrometry

The (fractionated) peptide mixtures are then subjected to HPLC separation, which
is based on the different hydrophobic interaction with a stationary phase, typically
C18-silica. Peptides elute in a time dependent manner by a linear increase of an
organic solvent such as acetonitrile. As the peptides elute from the chromatographic
column, they are ionized via ESI. The better the chromatographic resolution, the
lower the number of co-eluting peptides and the higher their concentration. This
makes very long columns and very small particle sizes attractive, albeit at the cost
of extremely high pressures. For instance, our group uses 75 pm inner diameter
columns with 50 cm lengths, filled with sub-2 um particles and requiring a pump
pressure of more than 1,000 bar. To improve the ionization efficiency, formic acid is
added to the solvent to provide a source of protons. The addition of the polar aprotic
dimethylsulfoxide (DMSO) solvent further enhances the ionization and has been

11



reported to increase peptide signals*’. We also observed this increase in sensitivity
in the heart atlas (Article 6), where | used 5% DMSO containing solvents for the LC-
MS/MS measurements. After the ionization step, the resulting charged ions are
transferred via an ion transfer tube to the vacuum region of the instrument. The
mass analyzer of the mass spectrometer then assigns m/z and intensity values to
the eluting peptides. They include quadrupole, time-of-flight (TOF), ion trap and
Orbitrap analyzers. Quadrupoles are characterized by high reproducibility and high
sensitivity but poor resolution and speed. TOF instruments have the highest
scanning speed but until recently suffered from comparatively low mass resolution.
Orbitraps are the most commonly used mass analyzer in proteomics today due to
their high resolution, sensitivity and accurate mass capabilities*®. The Orbitrap is
composed of one central spindle and two outer electrodes. It captures ions by
‘electrodynamic squeezing’ resulting from rapidly dropping the voltage on the central
electrode. The ions subsequently oscillate around the central electrode and the
frequency of oscillation is proportional to the square root of the mass of the ions.
The time varying signal (the ‘transient’) is subsequently Fourier transformed (FT),
converting the waveform of the ions into mass spectra. Coupling FT to a phased
spectrum deconvolution method (PSDM) has been recently shown to result in
doubling of the mass resolution, enabling the use of shorter transients and
consequently faster analysis cycles. However, this exciting method requires
extremely high computational power and is therefore not implemented on a broad

scale yet®.

As the peptide mass alone does not permit its complete characterization, a second
step of mass spectrometry, termed tandem MS, MS2 or MS/MS, is needed. While,
the MS1 scan yields the m/z values of the precursor ions (intact peptides), the MS2
scans result in the m/z values and intensities of their fragments. The analysis cycles
in shotgun proteomics consists of selecting the TopN most abundant peptides from
each MS1 scan (also termed survey of full scan) and subsequently fragmenting
them to generate the MS2 scans. Cycle times can be selected by choosing the

number of peaks to fragment (N) and — in Orbitrap analysis —the transient times for

12



MS1 and MS2 scans. To ensure fragmentation of peaks with very short elution

times, they should not exceed one or a few seconds.

1.2.8.Fragmentation strategies

The selection of appropriate fragmentation methods, such as collision-induced
dissociation (CID), higher energy collisional dissociation (HCD), or electron-transfer
dissociation (ETD) is important for the optimal generation of sequence ion series
required for peptide identification and unambiguous PTM site assignments. The
peptide or protein precursor ions are positively charged, with protonation sites
usually at the amino-terminus and the basic amino-acid residues and in CID, they
undergo collisions by interactions with inert gas molecules, such as helium. This
induces vibronic activation, leading to peptide bond dissociation and generating
primarily N-terminal b- and C-terminal y-type ions®%°! (Figure 4). The CID process
in ion trap is generally more effective for small and low-charge state peptides but is
strongly influenced by the amino acid sequence and the distribution of the positive
charges along the peptide backbone. HCD is a similar strategy of fragmentation as
CID but is characterized by higher activation energy compared to CID. The higher

fragmentation efficiency for HCD predominantly results in y-type fragment ions®2.
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Figure 4 Different fragmentation strategies lead to formation of different ion species. While
CID and HCD based fragmentation generate b- and y-type ions, ETD leads to the formation

of c- and z-type ions (adapted from®3).

When comparing HCD coupled to an Orbitrap analyzer to ion trap fragmentation
and detection, HCD produces higher quality spectra because of the superior
resolution and mass accuracy. Spectral acquisition times, however, are longer
compared to CID, because more ions need to accumulate to generate a signal by
image current detection in the Orbitrap. For phosphoproteomic analysis, both CID
and HCD induce so called ‘neutral losses’, meaning that uncharged phosphorylation
moieties are cleaved from their precursor peptides, creating a -98 Da (HsPQO4) mass
shift. It is debated which of CID or HCD is more appropriate for phosphorylation
analysis, but clearly HCD improves the formation of rich fragment ion spectra for
phosphopeptides®. ETD achieves fragmentation through neutralization of
backbone protonation sites with radical anions, used as the electron transfer
species, but generally at lower efficiency than CID or HCD. The resulting random
nonergodic N—Ca backbone bonds breaks generate c- and z-type fragment ions®®.
ETD is more effective for large, multi-charge state peptides and is particularly
suitable for detecting labile PTMs because peptide backbone fragmentation is
virtually independent of the amino acid sequence. For example, O-GICNAc

elimination does not occur using ETD®S.
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1.2.9.Mass spectrometer types

Major developments during the last decade have led to new high performance
instrumentation that provide both high resolution and high mass measurement
accuracies for MS1 and MS2 levels. Resolution is the ability to distinguish two peaks
of different m/z ratio (modern instruments can resolve peaks down to 1 mDa at mass
1,000), whereas mass accuracy describes the difference between measured and
theoretical mass. The high quality mass spectra that are typical today have

increased the reliability and efficiency of protein identification at the peptide level.

In this thesis, all measurements were performed on Thermo Fisher Scientific
Orbitrap mass spectrometers, which currently comprise six different instrument
types including LTQ-Orbitrap, Orbitrap Velos and Elite, Exactive, Q Exactive, and
Orbitrap Fusion.

The LTQ-Orbitrap, Orbitrap Velos, and Orbitrap Elite are hybrid configurations
where low-resolution linear ion-traps are combined with high-resolution Orbitraps
analyzers. The Orbitrap Velos was equipped with a novel ion source that replaced
the previous tube lens with a radiofrequency (RF) driven S-lens, enabling 10-fold
better ion transmission. Further improvements of the Orbitrap itself were
implemented in the third generation of hybrid mass spectrometers, the Orbitrap
Elite. It was equipped with a compact high-field Orbitrap analyzer, where the inner
diameter of the outer electrode was reduced from 30 to 20 mm, yielding twice the
resolving power. The Exactive consists only of an Orbitrap analyzer and is mainly
used for small molecule analysis. In contrast, Q Exactive type instruments are
additionally equipped with a quadrupole enabling ion selection, isolation and
fragmentation upstream of the Orbitrap. In this type of instrument, the Orbitrap is the
only mass analyzer, where MS1 and MS2 scans are always measured with high
resolution. Due to its simple design and excellent performance, the Q Exactive has
become an instrument of choice for proteomics in general (Figure 5). It is a benchtop
mass spectrometer, which is an important step to move MS towards clinical

applications. Finally, the Orbitrap Fusion (Lumos) is a high end instrument that can
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perform CID/HCD/ETD, detect intact and fragmented peptides in the ion trap and
perform multi-stage fragmentation (MS3 and higher), Orbitrap or both.
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Figure 5 Functional elements in the Q Exactive HF mass spectrometer®’.

1.2.10. Acquisition methods

In bottom-up proteomics, three main acquisition strategies are used?. The topN
method described above is a data dependent acquisition (DDA) strategy that has
been the mainstay of hypothesis-free shotgun (discovery) proteomics. In contrast,
targeted proteomics methods is used for acquiring a predefined set of peptides.
They monitor specific precursor-fragment transitions and come in flavors such as
single or multiple/parallel reaction monitoring SRM, MRM and PRM. Finally, data
independent acquisition (DIA) acquisition cycles through relatively large mass
windows to generate complex MS2 scans that cover all peptide precursors. It is an
emerging technology that has the advantage of generating comprehensive

fragment-ion maps.
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In more detail, a typical, top10 acquisition cycle on the Q Exactive HF instrument
consists of one MS1 scan followed by 10 MS2 scans and takes roughly one second.
Spectra are collected in the Orbitrap mass analyzer and the top 10 most intense
ions of the full scan are selected by the quadrupole with an isolation width chosen
to balance ion transmission and specific fragmentation of the intended precursor
(typically 1.4 m/z on our current instruments) for subsequent fragmentation in the
HCD collision cell. Likewise, an optimal fragmentation energy is chosen to yield
good fragment coverage and high MS2 identification rate (‘normalized collision
energy’ of 27% on a Q Exactive HF instrument)®®. To prevent the re-fragmentation
of peptides, precursors with the same mass are excluded from resequencing for
about 30 sec, more than the time taken for a typical peptide to elute from the HPLC
column. The resulting spectra contain information about the m/z values, retention
times and ion intensities for all the detected fragment ions. They are submitted to
software packages like MaxQuant®® to extract peptide information for identification
and quantification (see below). Due to the semi-stochastic selection of precursors
at the MS1 level in DDA, some precursors are not fragmented in every LC-MS/MS
runs, leading to missing values, which can lead to problems in downstream analysis.
This occurs mainly for low abundance peptides. To overcome this challenge,
MaxQuant has a ‘match between runs’ feature which transfers identifications from
runs where a peptide was sequenced to another where it was not, based on the m/z
ratios and retention times of the MS1 features®°6%, This way, if in a given LC-MS run
the required MS2 scan is not present or not interpretable, it can be transferred from
another LC-MS run. This matching strategy is particularly powerful in challenging,
high-dynamic range proteomics such as plasma®? and the heart muscle (Article 6).

A more recent acquisition method, termed ‘BoxCar’ further boosts the depth of
primarily high dynamic range proteomes®3. The capacity of the C-trap is limited to
about one million charges®*%4, therefore high abundant ions often fill the C-trap in a
very short time (<1 ms), effectively displacing low abundance peptides. This 1 ms
corresponds to less than 1% of the transient time for a high resolution mass
spectrum (128 ms for 60,000 resolution). These observations imply that 99% of the
generated ions are not used for mass analysis at the MS1 level. BoxCar increases

17



the dynamic range at the MS1 level by dividing the mass range into many segments,
which are sequentially filled (typically 30 segments in three separate MS1 scans).
This maximizes the usage of the incoming ion current by giving low abundant ions
longer injection times compared to high abundant ions. Consequently, fewer
missing values are observed using BoxCar, which makes optimal use of matching
identifications from a library at the MS1 level. In the heart atlas (Article 6) we applied

BoxCar for the first time in the context of a translational study.

There are several implementations of DIA®®, the most well-known of which is
‘sequential window acquisition of all theoretical mass spectra’ (SWATH), in which
ranges of precursors (typically 25 Da windows) are selected and fragmented
together®®. This results in complex fragment ion mixtures deriving from different
precursors. Until recently, SWATH was limited to the detection of only the most
abundant part of the proteome, for instance 2,000 proteins in cancer tissues®’.
Recent developments have made DIA acquisitions much more competitive. They
have recently been shown to largely eliminate the missing value problem and
reproducibly quantify protein abundances, reaching CVs down to 5% in technical
triplicates®®. However, DIA generally relies on information from pre-existing high-

quality spectral libraries. Both DDA and DIA are discovery-oriented and unbiased.

The third bottom-up acquisition mode is targeted proteomics (SRM/MRM/PRM®9:70)
whose goal is to detect a limited set of peptides with high reproducibility and
specificity. Targeted measurements require the creation of an inclusion list of
predetermined transitions (precursor/product ion pairs) and peptides. SRM and
MRM measurements are performed on triple quadrupole instruments (QQQ), where
the first selects the ions, the second contains the ions during fragmentation, and the
third quadrupole detects one (SRM) or more (MRM) product ions. MRM can yield
very reproducible and sensitive but suffers from limited specificity as a results of the
poor resolution and in practice is restricted to monitoring a small number of peptides.
In contrast, PRM is performed on a quadrupole-Orbitrap mass spectrometer offering

a clear advantage in terms of the high resolution, trapping, and high-throughput
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capabilities of this instrument. In article 3, we describe a histone PTM inclusion list

for targeted PRM measurements using the Skyline software for quantitation.

1.2.11. Protein identification and quantification

A key step in the shotgun proteomic workflow is the identification of proteins, which
relies on the interpretation of MS2 product ion spectra. Each peptide will generate
specific peptide fragment ions forming N-terminal (b-ions) or C-terminal (y-ions)
sequence ladders. With a complete series, the entire peptide sequence can be
assigned (‘de novo’ sequencing) (Figure 6). More commonly, the series are
incomplete and identification of spectra is carried out by database searches using
peptide search engines, such as Mascot or Andromeda’’’2, Both are based on
matching experimental to theoretical MS2 spectra that have been obtained through
in silico digestion of all proteins of a given organism’3. To control for false positive
hits (i.e. spectra that are assigned the wrong peptide), spectra are matched to a
database that includes each peptide in the in silico digest in both the true amino acid
order and reverse order. The resulting numbers of hits to the reversed database can
be used to define a false discovery rate (FDR), which is usually set to less than 1%.
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Figure 6 De novo interpretation of an MS/MS spectrum acquired in an ion trap, assigning
the sequence IEISELNR".

Next, peptide identifications are assembled into protein identifications, which is also
FDR controlled. Some peptide sequences are not unique to a specific protein, such
as those that match several protein isoforms. Following Occam’s razor principle —
that the simplest explanation is the most likely — they can be assigned to the protein
sequence that already contains the most unique peptides and are then called ‘razor
peptides’.

Protein identification is only a first step in gaining insight into the complexity of a
biological system. Proteins span an abundance range of more than six orders of
magnitude (or even more than ten orders in plasma and muscle), which already
makes it clear that quantitative information about protein abundance changes is
indispensable in the study of biological systems. Quantitative information can be
obtained in a ‘relative’ or ‘absolute’ fashion, where protein abundances are either
compared to each other or their concentration or copy number is determined.
Absolute quantities can be estimated indirectly or — potentially most accurately —
measured by comparison to a spiked-in absolute reference. Many gquantification
strategies have been developed (Figure 7) and at the highest level they can be
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categorized in those using stable isotopes and those relying on ‘label-free’

approaches.

1.2.12. Label- and label free-based quantification

Label-based quantification methods involve the incorporation of stable isotopes
either metabolically, by supplying labeled compounds, or chemically via conjugation
of stable isotope tags to peptides or proteins. Introduction of these stable isotopes
generally do not affect the physical behavior of a given (tagged) peptide in terms of
elution profiles or physical properties. In-vivo metabolic labeling, most commonly by
stable isotope labeling by amino acids in cell culture (SILAC), introduces a defined
mass shift between the samples that can be distinguished at the MS1 level’. For
example, labeling can be achieved by providing heavy 3Ce °N2-lysine and 3Ce
15Ns-arginine (K8R10), which introduces an 8 or 10 Da mass increase for a labeled
lysine- or arginine-containing tryptic peptide, respectively. SILAC experiments can
be extended to a triplex format, using ‘medium’ ?Hs-lysine and ‘heavy’ *3Ce. arginine
(R6K4). The abundance differences of the proteins are determined from the relative
intensity of the corresponding heavy and light labeled peptides. In metabolic
labeling, samples are combined up-front, thus it has the advantage to directly
correcting for any sample preparation biases at the LC-MS level. However, this
method suffers from reduced peptide identification because of increased spectral
complexity at the MS1 level, and it is only applicable to cellular and certain
mammalian systems, such as the SILAC mouse or fly or plants’®-7°. Much smaller
changes (in the mDa range) can be introduced in a SILAC variant called Neutron-
encoded (NeuCode) SILAC labeled samples®®. Other extensions of the classical
SILAC approach, include spiking in entire labeled proteomes (mix of cell lines
(super-SILAC)?, or SILAC-labeled protein epitope signature tags (PrESTs)®. For
absolute quantification, protein standard absolute quantification (PSAQ)®3, or
peptides (AQUA peptides)) can also be used as internal standards, but this is limited
to a moderate number of proteins of interest. In the SILAC-PrEST approach, a
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known guantity of recombinant heavy-labeled standards is added into each of the
experimental samples, which then are processed and analyzed together. Peptide
ratios between samples and the heavy-spike-in standard are readily calculated and
absolute quantification of up to 40 proteins of interest has been reported®.
Other methods for absolute quantification include the estimation of copy numbers
per cell using the ‘proteomic ruler’ approach, which relies upon the fixed relationship

between histones and DNA allowing MS-signals to be placed on an absolute scale?.

Chemical labeling is a strategy to incorporate stable isotopes, and can be used for
any sample, including primary tissues and body fluids. Here, labeling is generally
performed by derivatization at the peptide level. One such method is dimethyl
labeling that has three available channels due to conversion of each primary amine
to a secondary amine with isotope labeled formaldehyde®®. More popular strategies
for chemical labeling, simultaneously overcome the spectral complexity problem,
and include isobaric tags for relative and absolute quantification (iTRAQ, 8
channels)® and tandem mass tags (TMT, 11 channels)®’. These tags are composed
of three main functional parts, an amine-reactive group for attaching the label to the
N-terminal amine groups of lysine residues of the amino terminus of the peptides, a
reporter ion group for relative quantification, and a mass balancer group so that
peptides share the same MS1 mass. These tags offer greater multiplexing without
increasing spectral complexity and can decrease measurement time by the degree
of multiplexing. The MS2 spectra obtained from fragmentation of isobarically labeled
peptides contain two types of product ion peaks: reporter ion peaks that reflect the
abundance of the input material in each channel, and the peptide fragment ion
peaks that permit identification. While TMT-based multiplexing greatly increases the
overall throughput of sample measurements, it suffers from ‘ratio compression’,
where the actual ratio between channels are underestimated due to reporter ions
from co-isolated and co-fragmented ‘contaminating peptides’®88, This phenomenon
is a result of the relatively low resolution of quadrupole isolation of precursors. In
the low-mass reporter ion region of the fragmentation spectra, the target peptide
and the contaminating peptide give rise to identical reporter ions, ‘compressing’ the
actual ratios resulting in an underestimation of peptide abundance differences. To
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partially overcome this challenge, the isolation window can be narrowed, but
requires high performance quadrupoles®. Alternatively, the tag-containing
fragments of the precursor can be further isolated and fragmented but this requires
mass spectrometer capable of MS3, albeit at the expense of sequencing speed and
proteome coverage. Isobaric tags generally also generate an ion species containing
the intact peptides and the tag without the low mass reporter ion®l. Quantification
using these ‘complementary reporter ions’ does not suffer from ratio compression®2.
With future improvements in tag chemistry and instruments, this strategy holds great

promise for accurate measurement of proteins changes at high throughput.
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Figure 7 Different MS-based quantification strategies. A) SILAC based quantification is
performed at the MS1 level. B) TMT-based quantification can currently be multiplexed to
11-fold and here quantification is performed at the MS2 level and based on reporter ions.
C) Label free quantification can be done at the MS1 or MS2 level. In all strategies, the

peptide identification is performed after peptide fragmentation at the MS2 level.
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As label free quantification (LFQ) completely omits additional chemical reagents and
procedures it is by its nature the simplest and most economical approach. Early
label-free quantification methods rely the fact that the number of peptide spectrum
matches tends to correlate with protein abundance, and included ‘spectral counting’
and the emPAI method®3. More recent methods are greatly superior as they directly
guantify the intensity of the precursor ions by measuring the area underneath the
extrapolated curve of the precursor intensities in MS1 scans over the LC peak. In
combination with sophisticated algorithms, such as MaxLFQ this has been shown
to yield very accurate quantification, especially on high-resolution instruments.
Since sample preparation and measurement is performed for each sample
individually, the reproducibility of LFQ is usually worse than labeled-based
guantification. To overcome this, our group has developed automated sample
preparation workflows?492, which together with MaxLFQ largely eliminate potential
technical variations introduced during sample preparation and MS measurements.
LFQ, together with robust and streamlined sample preparation workflows and the
unlimited number of samples that can be compared, has become a popular

approach.

1.2.12. Nearly complete proteomes

Significant improvements of all steps of today’s MS workflow, encompassing sample
preparation to measurement and subsequent bioinformatics analysis, have enabled
the characterization of nearly complete proteomes’46:94, More than 10,000 proteins
can be routinely quantified in cell lines, model organisms and even in very
challenging tissues, such as heart muscle (Article 6). In a recent study’, Notably the
recent report of a very deep HelLa proteome also showed that the depth of
proteomics is now on par with RNA-based methods. The authors combined
extensive high pH reversed-phase fractionation with short LC-MS/MS gradients,
resulting in a sufficient number of peptide precursors to saturate the sequencing
speed of modern MS instruments. Using the aforementioned method, more than
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12,000 proteins (and >14,000 protein isoforms) were catalogued. Moreover, more
than 7,000 acetylation sites and 10,000 phosphorylation sites were identified and
guantified, even without any enrichment. Other proteomic studies have explored key
regulatory mechanisms at a large scale. For example, temporal changes in
phosphorylation have been investigated, on both long and short timescales30:95.%,
‘Organellar proteomics’ can also be employed to determine subcellular localization
on a system-wide scale®”-%8, and more recently this was done in a dynamic fashion
to monitor subcellular localization changes®. At higher resolution, interaction
partners of specific proteins can be uncovered through immunoprecipitation
experiments followed by MS. Global application of interactomics has resulted in draft
maps of the human interactome, an extensive network analysis of thousands of
proteins1®:191 Finally, the integration of measurements from several types of human
tissue proteomes combined with data generated by the community resulted in two
‘drafts of the human proteome’'02.193, These drafts, however, were very incomplete;
to illustrate this, our human heart atlas identified three times as many cardiac
proteins — mostly of low abundance. Furthermore, the total number of proteins
identified in these draft proteome studies is overestimated since their FDR is
unusually high'®, Nevertheless, these human proteome drafts illustrate the desire
of the community to determine the complete proteome to better understand the

complex protein composition in the human body.
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2. The cancer proteome at the nuclear, cellular and tissue
level

‘Cancer begins and ends with people’ — June Goodfield

2.1. Cancer

The emperor of all maladies!®, cancer, accounts for approximately nine million
deaths worldwide annually'%. About one in three women and one in two men will
develop cancer during their lifetimes. In some regions, cancer is even predicted to
surpass cardiovascular diseases. Cancer is the Latin word for Crab, this association
was penned by Hippocrates around 400 B.C. most likely because of its finger-like
projections that are reminiscent of the outline of a crab. Malignant cell growth, which
is dictated by ‘hallmarks of cancer’, is the fundamental feature that is shared
between these cells®”198, Cancer incidence has risen significantly over the last
decades. With longer life expectancies, it has become evident that the risk of
developing cancer correlates with age. For instance, a 30-year-old woman has a
one in 400 annual risk to develop breast cancer compared to one in nine for a
seventy-year-old. Our capabilities to detect cancer at early stages have much
increased in the last century. Introduction of mammography screening in the early
1980s, was followed by higher reported breast cancer incidences!®®. Changes in
modern life styles have also influenced cancer statistics. For example, lung cancer
incidence has exploded in the 1950s, correlating with the increase of cigarette
smoking and this cancer still remains the most common cause of cancer death.
There is also a significant link between obesity and cancer, as approximately one in
five cancer deaths are associated with obesity!©,

Many cancer subtypes, in particular rare cancers, remain poorly understood and
conventional chemotherapeutic treatments are still associated with life-threatening
toxic side effects!'L. This is primarily due to a lack of specificity towards cancer cells
or the known or suspected molecular drivers. Only a small percentage of patients

will benefit from the treatment, and the number of patients that need to be treated
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before one of them actually benefits from the treatment (NNT) remains strikingly
high (>40 in prostate cancer, for example!!?). Chemotherapy, specifically, has
serious side effects, to which a substantial percentage will succumb. These
numbers underscore the urgent need to develop more effective medicines, and
uncover predictive biomarkers that will help to stratify patients and target those most

likely to respond to a specific therapy.

2.2. Personalized cancer medicine

The concept of precision or personalized medicine was already born thousands of
years ago when Hippocrates said, ‘It's far more important to know what person the
disease has than what disease the person has’. Today, the goal of personalized
medicine is to individualize clinical decisions, thus distinguishing patients that are
most likely to respond and benefit from a given treatment from those who will only
suffer from detrimental side effects without benefit while still incurring health care
costs. The sequencing of the human genome and ongoing rapid technological
developments have set in motion the transformation of personalized medicine from
an idea to practice. For a small subset of patients, this has already become reality.
A pioneering study showed that imatinib (Gleevec, Norvartis)!*? specifically inhibits
the fusion protein BCR-ABL, which drives chronic myeloid leukemia. This drug led
to patient survival in about 90% of patients''4. Another example is the monoclonal
antibody Trastuzumab (Herceptin, Genentech), prescribed for HER2-positive breast
cancers where patients show improved survival''>. Monoclonal antibodies targeting
EGFR have also shown clinical efficacy, for instance in patients with EGFR-

expressing metastatic colon cancerts,

While next generation sequencing has driven the field since the turn of the
millennium, and allowed the molecular profiling of thousands of tumors in different
cancer types?, it has become evident that the development and complexity of cancer
does not lie in genetic changes alone. Clearly, epigenetic changes, protein

expression alterations, and aberrant PTMs play essential roles in the development
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of cancer. Thus, the use of MS-based proteomics holds great promise to unmask
the cause and highlight potential therapeutic targets in the next generation of

treatment.
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2.3. Nuclear level: The epigenetic landscape in oncology

2.3.1.Epigenetics

The nucleus is at the heart of each cell. Genetic information is stored in the form of
chromatin, which consists of DNA that is tightly wrapped around octameric histone
proteins (H3, H4, H2A, and H2B), forming nucleosomes. Modifications at the histone
level can result in changes in gene expression even without alterations in the DNA
sequence. These ‘epigenetic changes’ are frequently observed in tumorstt’-120,
DNA itself can also be modified, resulting in hyper- or hypometylation at the global
or local DNA level at certain CpG islands of promoter regions, and these are

commonly altered epigenetic patterns of cancers.

Histones contain lysine-rich N-terminal tails whose positive charges interact with the
negatively charged phosphate backbone of the DNA. The structure of this
nucleosome complex can be modified by multiple PTMs, including acetylation and
methylation of histone tails that influence gene expression. In general, tightly packed
chromatin (heterochromatin) is associated with histone methylation and gene-
silencing, whereas open chromatin (euchromatin) is associated with histone
acetylation and gene-expression. These acetyl and methyl marks present another
regulatory mechanism of the epigenetic machinery. Proteins that catalyze (‘writers’),
recognize (‘readers’) or reverse (‘erasers’) the transfer of histone marks (Figure 8)

are frequently altered in tumors.
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Figure 8 The main epigenetic regulators can be classified into three categories:
epigenetic ‘writers’ (enzymes that deposit covalent modifications on histone tails), ‘readers’
(proteins that bind to histone madifications), and ‘erasers’ (enzymes that catalyze the

removal of modifications on histone tails)

2.3.2.Contributions of MS-based proteomics to epigenetics

MS-based proteomics has become an invaluable method to study epigenetic
regulation in an unbiased way. While conventional proteomic workflows are not
suitable for lysine-rich and hydrophilic histone tails, specialized protocols have been
developed and are in routine use?2%121 For bottom-up histone tail analysis,
optimizations include the propionylation of histones to increase sequence coverage
and peptide-level phenyl isocyanate labeling to improve HPLC retention and the
detectability of hydrophilic peptides. For the more complete analysis of
combinatorial histone PTMs, relatively long amino acid sequences (~50-mers) can
be directly analyzed via ‘middle-down’ proteomics!?2. To this end, intact N-terminal
tails are generated by Glu-C or Asp-N mediated digestion of histone H3 or H4,
respectively. Middle-down approaches, however, still suffers from relatively poor

sensitivity in comparison to bottom-up workflows and the interpretation of MS2
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spectra remains computationally intensive and laborious. Adding ion mobility
separation to MS-based strategy holds great promise for the analysis of challenging
histone PTM combinations, such as H4 acetylations, which are chromatographically
almost indistinguishable!?31%4, Here, ions are separated by their mobility in a low
pressure gas under the influence of an electric field. This mobility is determined by
their size-to-charge ratio (collisional cross section). Together, these diverse MS-
based workflows have enabled the accurate description of histone variants such as
the nearly identical histone variants H3.1 and H3.3. Multiple novel histone marks,
such as O-GlyNAc, butyrylation, crotonylation, citrullination, and formylation have
been described on histones!?®. The more well described marks, including histone
acetylation and methylation can now be reproducibly and accurately quantified?®. In
addition to these histone marks, we show in article 3 that histone butyrylation
alterations can be quantified. Other examples of successful application of MS-based
workflows to epigenetics include the discovery of the effects of the histone
demethylase KDMS5 inhibitors?t, the role of macroH2A in melanoma'?®, and
quantification of histone PTM dynamics in cellular systems'?’. In addition, cross-
talks between different sites and types of histone PTMs have been described and

histone marks triggering the recruitment of specific epigenetic ‘writer'128.129,

2.3.3.The histone methyltransferase enhancer of zeste
homolog 2

The epigenetic writer enhancer of zeste homolog 2 (EZH2) is the driving catalytic
subunit of the polycomb repressive complex 2 (PRC2) (Figure 9). As a
methyltransferase, it tri-methylates histone 3 on lysine 27 (H3K27me3), a
transcriptionally repressive epigenetic mark that silences gene expression. It has
been found to inactivate multiple tumor suppressor genes, such as CDKN1C130.131,
In a second mode of action, EZH2 promotes cell proliferation via STAT3
methylation'3? or BRAC1 inactivation®33. EZH2 is overexpressed in multiple human

cancers, including lymphoma and its inhibition has been shown to induce apoptosis
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of cancer cells'34-136, Adding to these findings, we show in article 2 that cell cycle
regulators are down-regulated at the proteomic level following H3K27me3

demethylation in lymphoma cells.

Transcriptional silencing EZH2 Activating role
Jegree of phosphorylation
2618  Gonzalezetal,
i ® I '\"’Akt-f) Cancer Res. (2011)

| Transcription

[Transotpton !
I & Zeng et al., ® \ Gonzalez et al.,

Cell Cycle (2011) l Oncogene (2009)

fi

G2 . .
@ Proliferation
M -
- ZH2,
[] ®\
G1 H3K27me3 Kim et al.,
— Cancer Cell (2013)
Transcriptional
. Silencing
i? RUNX3 CDKN1C
Me

Gnad et al., 3

Genome Biol. (2007) Voo ot al ﬁ
Olsen et al, Int.J.Biol. Sci. (2012) Q@' Proliferation

Sci. Signal. (2010)
Proliferation

Figure 9 Model of the role of EZH2 in cell cycle regulation. By repressing transcription as a
member of the PRC2 complex (left panel), EZH2 enhances the expression of cell cycle
regulators indirectly by repressing associated tumor suppressors.EZH2 can also act as a
direct activator of cell proliferation following phosphorylation (right panel). In its
phosphorylated form, EZH2 activates STAT3 via methylation, which subsequently induces
cell proliferation. EZH2 can also phosphorylate BRACL1 via Aktl interaction, resulting in cell

cycle activation as well (Figure from article 2).
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2.3.4.Histone demethylases

Histone demethylases are epigenetic erasers and come in two main varieties, (i)
jumonji (JmjC) domain-containing demethylases, and (ii) the lysine-specific

demethylase (KDM1A/LSD1) family. Both classes play important roles in cancer®’.

2.3.4.1. JmjC domain-containing histone demethylases

JmjC domain-containing histone demethylases are the largest class of histone
demethylases and employ an oxidative mechanisms that is Fe?* and alpha—
ketoglutarate (a-KG) dependent. They can remove all three histone lysine
methylation states, unlike the LSD1 family, which can only remove mono- and
dimethyl lysine modifications. In the context of glioblastoma, which is among the
deadliest human cancers, we and others have shown that a-KG-dependent
demethylases are inhibited in glioblastoma cell line models that harbor somatic
isocitrate dehydrogenase 1 (IDH1) mutations (Article 3)'28. Clinically, there are
primary glioblastomas (which rapidly progress and develop de novo) and secondary
glioblastoma (which progress slowly after initially presenting as low-grade gliomas.
Interestingly, the majority of secondary (>70%) but rarely primary glioblastomas
harbor IDH1 mutations, involving Arg132 in nearly all cases'®. IDH enzymes are
key regulators of the TCA cycle by converting isocitrate into a-KG. The monoallelic
IDH mutation, however, generates an enzyme with neomorphic ability to convert a-
KG into 2-hydroxyglutarate (2-HG). As a result, the oncometabolite 2-HG
accumulates to very high levels in IDH mutant tumors and inhibits a-KG dependent
histone demethylases and DNA demethylases!#%14! (Figure 10). This subsequently
results in increased global DNA hyper methylation'®® and down-regulation part of
the proteome as shown in article 3. These observations suggest that different

therapeutic interventions should be used in primary versus secondary glioblastoma.
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Figure 10 Mechanism by which IDH mutations lead to alterations at the epigenetic and

gene expression levels (Figure from article 3).

2.3.4.2. Lysine-specific histone demethylases

The lysine-specific histone demethylase 1 (LSD1, also known as KDM1A) is a flavin
adenine dinucleotide (FAD)-dependent amine oxidase. LSD1 was the first histone
demethylase to be discovered!#?. Acting as an epigenetic eraser, it demethylates
mono- and di-methylated lysines (H3K4 and H3K9), thereby acting as a coactivator
or corepressor, depending on the context43. LSD1 has emerged as an interesting
therapeutic target because it is overexpressed in many cancer types, including lung
cancer44145 We also found that LSD1 is upregulated in the extremely rare and little
studied urachus carcinoma cancer (Article 7). Furthermore, inhibition of LSD1

inhibits tumors that gave rise to the development of multiple anti-LSD1 drugs that
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are currently in clinical trials'*>-47,  Tranylcypromine, an FDA-approved
antidepressant!#®, arose particular interest in the context of cancer treatment
because it revealed a strong LSD1-specific inhibitor side effect491%0,
Tranylcypromine and derivates of this drug showed clinical efficacy for several

indications, including the treatment of AML and are currently in clinical trials'>*.
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2.4. Cellular level: The phosphorylation-based signaling
landscape in oncology

2.4.1.Phosphorylation

Phosphorylation is the replacement of the neutral OH of the side chains of amino
acids serine, threonine, or tyrosine by the negatively charge phosphoryl group
(POs") and is subsequently converted to phosphate PO4? (Figure 11). The negative
charge can induce conformational changes, modulate protein activity, and mediate
or inhibit interaction with other proteins by providing a docking site. Kinases and
phosphatases are enzymes that covalently modify proteins by either adding or
removing phosphate groups. More than 500 putative protein kinase genes have
been described, constituting about 2% of all human genes, that can be classified in

a kinome treel%2,
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Figure 11 Phosphorylation and dephosphorylation mechanisms. The phosphorylation of
protein residues (serine, threonine or tyrosine) is catalyzed by protein kinases. The reaction

of dephosphorylation is mediated by protein phosphatases!®:.

Cellular phosphorylation signaling networks are complex interaction systems that
connect sequence-specific kinases and/or phosphatases to their respective target
proteins. A typical phosphorylation-signaling cascade starts with the stimulation of

RTKs via growth factors. This leads to their phosphorylation and activates a
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phosphorylation cascade via adaptor proteins, for instance those containing a Src

homology 2 (SH2) domain that specifically bind phosphorylated tyrosines.

2.4.2.The MAPK and PI3K pathways

The RAS-RAF-MEK-ERK (MAPK) and PI3K-AKT-mTOR (PI3K) pathways (Figure
12) were discovered about 30 years ago and are evolutionary conserved kinase
families that control key cellular mechanisms, such as cell proliferation, survival,

metabolism, and motility upon extracellular stimulit5+-158,

Cell proliferation -
/@Y \
\IEIF4EBP1 EIF4B RPS6 |
Protein synthesis of l
CDK4, CDK1, HIF1, PPAR... .’
+

Figure 12 The MAPK and PI3K pathways are activated in multiple cancers driving cell

proliferation, adapted from article 3.
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When the master regulator RAS is activated it mediates a phosphorylation cascade
including key kinases, such as mitogen-activated protein kinase (MAPK, also known
as extracellular signal regulated kinase (ERK)) and phosphoinositide 3-kinase
(PI3K). MAPK functions as the major effector of the RAS oncoprotein, which is a
member of the large family of GTPases. The RAS oncogenes were initially
discovered in murine sarcoma viruses!®%1%9 and three human RAS genes have been
described to date (H-RAS, N-RAS and K-RAS). They are anchored to the plasma
membrane and function as molecular switches. Adaptors, such as the growth factor
receptor bound protein 2 (Grb2) and the nucleotide exchange factor son of
sevenless (SOS) enable the conversion of guanosine diphosphate (GDP) bound to
RAS to guanosine triphosphate (GTP) in the cytoplasm'6l. This exchange allows
the subsequent activation of RAF, MEK and MAPK. In its inactive form, MAPK
presents a catalytic site that is blocked by a segment of amino acids, termed the lip.
The binding of MEK to MAPK destabilizes the lip structure, leading to the exposure
of a tyrosine and threonine that are subsequently phosphorylated by MEK. This
results in conformational changes and enables the binding of ATP in the catalytic
site of MAPK and its dimerization. Exclusively in this dimerized form, MAPK can be
translocated to the nucleus where it regulates the activation of numerous

transcription factors, such as MYC.

PI3K phosphorylates inositol membrane lipids to generate phosphatidylinositol
3,4,5-trisphosphate (PIP3) which in turn modulates the activity of intracellular
protein effectors. PIP3 recruits pleckstrin homology (PH) domain containing proteins
to the membrane, such as AKT1 and PDK1, which subsequently activate signaling
cascades involved in cell growth and proliferation. Both pathways actively cross-
talk. They can negatively regulate each other’s activity, a phenomenon that is
frequently observed when one of the two pathways is actively inhibited with a drug.
For instance, MEK inhibition leads to the EGF-mediated hyperactivation of AKT62,
Both pathways can also cross activate each other by regulating common down-

stream nodes, such as the TSC1/2 complex (Figure 12).
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The MAPK and PI3K pathways are frequently deregulated in cancer because they
play central roles in the control of cell proliferation, apoptotic pathways, oncogenic
kinase signaling, and transcriptional regulation. Recent large-scale genomic
sequencing initiatives of thousands of tumors through the TCGA consortium made
the significance of both pathways very apparent on a global scale!. This uncovered
BRAF, KRAS, PIK3CA and PTEN as the most frequently mutated genes in cancer.
In endometrial carcinoma, for example, PIK3CA showed somatic mutations in 53%
of 240 tumors. Similarly, KRAS is the most frequently altered signaling node of the
MAPK pathway, being mutated in about 40% of colorectal carcinomas®® and BRAF
mutations were found in 60% of thyroid carcinomas'®*. These key regulators show
the most significant ‘mutation hot spots’ in cancer®®, defined as the enriched
occurrence of specific point mutations within the gene and characteristic for its
cancer driving function. The most frequent hot spots are V60OE in BRAF, and
E545K in the helical and H1047R in the kinase domains of PIK3CA.

2.4.3.Development of kinase inhibitors

Protein kinases have become a major class of drug targets and today about 37
kinase inhibitors are FDA approved with an additional 250 in clinical trials¢®. Among
those, small molecules targeting the key nodes of the MAPK and PI3K pathways
have been most intensely pursued for cancer treatment. While some, such as RAS
cannot be directly targeted yet (#YetToBeDrugged)!®’, others have advanced into
the preclinical stage as validated targets. Specific MAPK and PI3K inhibitors include
cobimetinib (GDC-0973), pictilisib (GDC-0941), and taselisib (GDC-0032) which are
used in articles 3, 4 and 5. The oral, potent, and selective MEK inhibitor cobimetinib
has been approved for the treatment of melanoma in combination with BRAF
inhibitors168.169_ Pictilisib, is an oral, highly specific, ATP-competitive small-molecule
class | pan-PI3K inhibitor'’. It has demonstrated significant antitumor activity in a
wide array of cancer models in preclinical studies'’*173, Similarly, taselisib is an

oral, potent and selective inhibitor of mutant PIK3CA. It is currently in clinical phases
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[, I and Il for the treatment of advanced solid tumors, lung and breast cancer,

respectivelyl’4-176,

Besides kinase inhibitors, other anticancer strategies use targeted protein
degradation mechanisms, such as the proteolysis targeting chimeras (PROTAC)
technology, where small molecules simultaneously bind a target protein and a

ubiquitin ligase, enabling its ubiquitination and degradation in a generic way!’7:178,

While targeted therapies that block signaling through the MAPK and PI3K pathways
have shown clinical efficacy in several tumor types, the underlying signaling
phosphorylation cascades often remain poorly understood. The core signaling axes
of the two pathways span intricate networks, in which only a few substrates and

connections are well characterized so far.

2.4.4.MS-based phosphoproteomics of the MAPK and PI3K
pathways

Studying the dynamics of signal transduction networks in response to EGF
stimulation revealed that different phosphorylation sites of the same protein often
show distinct kinetics®. Hence, accurate modelling of a signaling pathway requires
treating it not only as a network of proteins but also as a network of interconnected
phosphorylation sites. Modifying specific nodes in this network by altering the
activities of associated protein kinases or phosphatases, may significantly influence
the entire signaling web and lead to unexpected effects. Only a few studies have
attempted to explore the global spectrum of phosphorylation signaling downstream
of the pivotal regulators of the MAPK or PI3K pathways'’®-182 These efforts
demonstrated the ability of MS-based proteomics to identify and quantify thousands
of phosphorylation sites and explore perturbed signaling webs. While these studies
primarily focused on the signal transduction through a specific protein kinase under
fixed conditions, in articles 4 and 5 we compared the regulation of

phosphoproteomes by mutating or inhibiting multiple gatekeepers of the most
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important cancer pathways, and examined the dependence on inhibitor class,
dosage, cell type, and type of kinase modulation (activation versus inhibition). In
addition, we studied the impact of dual inhibition, since combinatorial therapies are
thought to be superior to single agent treatment. This revealed interesting and
previously unknown effects on feedback mechanisms. In the clinic, the efficacy of
combined therapies, remains to be determined!®3. MS-based analyses of
convergence, crosstalk, and feedback associated phosphorylation patterns are
poised to provide important scientific insights into the optimal uses of combination
strategies to effectively block oncogenic pathways and overcome feedback

mechanisms.
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2.5. Tissue level: ‘from bench to bedside’

2.5.1.Current cancer diagnosis in clinical practice

In a clinical context, blood sampling and tissue biopsies are the two most common
means of biological sample collection. Today, the analysis of blood samples is
dominated by protein-based clinical laboratory tests using single-protein
immunoassays®®*. About 42% of analyses requested by clinicians are based on
proteins, compared to 35% for small molecules and 17% for cells. It is apparent that
already today, proteins are the most frequently assayed analytes in clinical routine.
Although the cancer field is dominated by genetic analyses, there are a number of
established biomarkers for several common cancers. These were discovered and
are routinely measured by non-proteomic technologies such as ELISAs. The only
possible exception was the FDA approved blood test ‘OVAL’, which is approved in
a narrow indication in the context of ovarian cancer (OvCa). OVAL relies on a
multiplexed immunoassay to measure the concentration of five individually non-
specific proteins, including apolipoprotein 1 (APOA1), beta-2 macroglobulin (B2M),
serum transferrin (TF), pre-alboumin (ALB), and the known OvCa marker CA-125
(MUC16)%*5-18  These proteins, however, are in some cases not detected
specifically enough using immunoassays and it is debated whether they are
sufficiently specific to OvCal®6189.1% Of note, using high pH reversed-phase
fractionation and state of the art MS we can easily identify all OVA1l protein

members with high accuracy in only 1 pl of serum from an OvCa patient (Figure 13).
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Figure 13 Protein abundance rank in OvCa serum. The five proteins used in the OVAL1 test

are highlighted in red (Data generated by the author).

For the detection and monitoring of the progression of prostate cancer, prostate-
specific antigen (PSA) levels - a protein produced exclusively by normal and
malignant prostate gland cells - are measured in the blood. PSA levels above 4
ng/ml are usually followed by a prostate biopsy and the higher the PSA levels, the
higher the risk of diagnosing prostate cancer in the biopsy. Higher PSA levels,
however, also correlate with benign enlargement of the prostate or infections,

meaning that these test are not very specific (high false positive rates).

Tissue samples are generally obtained by needle biopsy or surgical excision and
are subsequently analyzed by diagnostic pathology using hematoxylin and eosin
(H&E) staining (Figure 14). Hematoxylin colors nuclei of cells in dark purple,
whereas eosin mainly stains eosinophilic structures, including the cytoplasm, intra-
and extracellular proteins in pink. Blood cells are stained intensively red. H&E
staining enables the detection of irregular cell proliferation, stromal infiltration, and
overall abnormal cellular morphology. In most cases, H&E alone enables the
diagnosis and grading of cancer. Grading systems based on H&E staining, such as
the Gleason score for prostate cancer exist since the 1960s and are still routinely

used as an indicator of how quickly the tumor is likely to grow and spread.
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normal Primary tumor metastasis

Figure 14 H&E stainings of healthy, primary tumor and metastatic tissues. Proliferating cells
are colored in dark purple, such as the healthy epithelium (left panel) of cancer cells (middle
and right panels). The prominent pink staining in the middle and right panels is

representative of prominent stromal infiltration.

In some cases, further tissue stainings are performed to diagnose a particular
cancer type/subtype or measure the likelihood of a patient to respond to a particular
therapeutic treatment. To this end, immunohistochemistry (IHC), which utilizes
specific antibodies for the detection of proteins in tissue sections is applied. For
instance, current tissue-based FDA approved protein biomarkers include EGFR for
the therapy selection of colon cancer or HER2 for breast cancer diagnosis and
therapy selection. While these blood- and tissue-based tests are routinely used in
the clinic, they may suffer from lack of specificity, are based on outdated
technologies in some case, and generally do not enable the early detection of
cancer development.

2.5.2.Cancer FFPE tissues proteomics

The most frequent method for human tissue preservation is formalin fixation and
paraffin-embedding (FFPE). It is routinely used in tissue banks due to its long-term
preservation capabilities, and amenability to downstream IHC. FFPE is an
economical choice since samples can be stored at room temperature and at great
density. It is estimated that about half a billion archived FFPE cancer tissue samples

exist to date!®!. These immense archives of material in principle present an
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invaluable resource for studying the underlying molecular mechanisms of cancer,
testing known biomarkers and uncovering new ones. The main use of FFPE tissues
in the clinic today is H&E and IHC stainings for the detection of known cancer
aberrations. It is semiquantitative at best and allows the evaluation of only a few
targets at a time. FFPE cohorts have been challenging to use in gene expression
studies due to the difficulty in isolating nucleic acids, often resulting in samples with
poor RNA quality that are not usable for next generation sequencing®2. This was
also observed in article 7, where RNA sequencing could not be performed because
most of the RNA was degraded after extraction from FFPE and even from fresh
frozen cancer tissue. Proteins are more stable than RNA or DNA, therefore protein
profiling in high-throughput platforms, in principle holds great promise for uncovering

new biomarkers and improving prognostic and predictive power for clinicians.

Taking advantage of the stability and ease-of-handling of proteins, protein extraction
from FFPE material is possible in a robust manner for MS-based analysis.
Proteomic analysis of almost 30-year old FFPE tissues have been carried out
successfully*®® and the comparison of FFPE to fresh tissues did not reveal major
guantitative or qualitative differences at the protein or PTM level'®. We have
developed techniques to reverse the cross-links induced upon fixation to ensure
deep and quantitative proteome profiling to a depth of 10,000 proteins in colorectal
cancer tissues!®19, Qur group has also shown that a combination of tissue
proteomics and machine-learning classified patients with diffuse large B-cell
lymphoma depending on the cell of origin'®®. To enable a more streamlined analysis
of FFPE samples, we recently demonstrated that in StageTip sample preparation is
possible in a rapid manner and holds great promise for future applications in the
clinic (Article 7). Regarding the sample collection and processing, MS-based tissue
analysis can be performed on whole, marco- or micro-dissected tissues. Currently,
the majority of large-scale tissue studies are based on whole-tissue specimens, and
thus contain a mix of heterogeneous tumor cells, their respective tissue
microenvironment (stroma), and most likely some non-cancer cells. The stroma,
composed mainly of fibroblasts, immune and endothelial cells has been shown to
play driving roles during all phases of tumorigenesis and can influence therapy and
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patient outcome!9°-201, | aser-capture microdissection (LCM) is particularly powerful
to isolate homogeneous cell populations for subsequent investigation of proteomic
differences between tumoral and stromal cells. Procedures in our laboratory can
now easily quantify several thousands of proteins starting with as little as 10,000
micro-dissected cells in single MS runs using state of the art MS acquisition

methods.

2.5.3.In the quest of more reliable and early cancer biomarkers
using MS-based proteomics

A biomarker is a biological molecule that can be used to define a normal or abnormal
condition or disease. It may also be used to monitor therapeutic treatment.
Biomarkers can thus be grouped into prognostic, predictive, and
pharmacodynamics types?°?. Prognostic biomarkers provide information about the
patient's overall cancer outcome, regardless of therapy. A classical predictive
biomarker, which estimates the effect of a therapeutic intervention, is the HER2
protein amplification in breast cancer, which indicates the clinical efficacy of anti-
HER2 antibodies such as Trastuzumab (Herceptin). HER2 is also a prognostic
biomarker, as HER2+ breast cancers are associated with worse outcome. Similarly,
EGFR mutated lung tumors have been shown higher sensitivity to erlotinib or
gefitinib than wild type EGFR lung tumors?%3,

Biomarkers can be found at the DNA, RNA, or protein level and several analytical
platforms have been developed over the years for biomarker discovery. As protein
reflect the ‘real time’ status of a human body, are actively involved in disease onset
and are the main targets of currently available cancer therapies, they represent an
ideal target for biomarker discovery, in addition to the tumor driving DNA mutations.
Biomarkers for early cancer detection represent one of the most promising
approaches to fight cancer and improve clinical outcomes for cancer patients2%4,
Protein biomarker discovery, however, remains challenging compared to DNA and

RNA mainly due to the immaturity of the technology and the large dynamic range of
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proteins found in body fluids and tissues. Recently, our group has developed an
automated, robust, and highly reproducible workflow to quantify hundreds of plasma
proteins. Among those there were more than 40 FDA-approved biomarkers®?. In a
similar manner, we are now developing a very rapid and sensitive single run mass
spectrometric workflow for LCM and marcodissected cancer tissues. The latest
technological developments now make DIA tissue measurements increasing
competitive with DDA measurements, with the further attraction of improved

measurement reproducibility.

2.5.4.Clinical cancer proteomics consortia

Similar to the TCGA project, which sequenced, characterized and catalogued
cancer-specific alterations for thousands of tumors, the National Cancer Institute’s
(NCI) clinical proteomic tumor analysis consortium (CPTAC), launched in 2011,
aims to systematically identify and characterize cancer-relevant proteins and their
underlying biological pathways. CPTAC also integrates both proteomic and genomic
data (termed proteogenomics), which are starting to attract interest in the cancer
community. For example, the proteogenomic characterization of colon and
colorectal cancer suggested novel proteomic tumor subtypes associated with
clinical outcome?®®, similar to previous studies focusing on ovarian?®, and breast®
cancers. Of note, protein levels could not be predicted from genomic or
transcriptomic data, emphasizing the importance of studying the actual molecular
actors within a cellular system. Another goal of CPTAC is to enhance precision
oncology and share data collected with scientists and physicians. Other cancer
proteomic efforts have been based on DIA SWATH technologies. For instance, the
MS company SCIEX as well as the Human Proteome Organization (HUPO)
contribute to the large-scale cancer tissue analyses of multiple tumors with the goal
of reproducibly identifying and quantifying at least a few thousand proteins. Such
studies may generate new insights into oncogenesis beyond the genomic and

transcriptional level.
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II) Aims of the thesis

The aim of my thesis was to investigate system-wide alterations in cancer at the
protein level. Starting from cell line models, | moved to translational tissue cancer
proteomics and showed that MS-based proteomics can be used for therapeutic

target identification and characterization (Figure 15).

Similar to the layout above, my journey started in the nucleus of cells, where |
investigated the epigenetic changes in lymphoma at the biotechnology company
Genentech Inc. We found that EZH2, which is the most significantly over-expressed
epigenetic regulator in cancer, is co-regulated with parts of the network driving the
cell cycle. We also uncovered that IDH1 mutation leads to perturbations of the
histone code, altering histone tail acetylation and methylation in glioblastoma cell

line models.

Zooming out from the nuclear to the cellular level, | analyzed phosphorylation-
signaling changes in primary and secondary glioblastoma cell line models at the
University of California, San Francisco (UCSF). Here, | focused on the interplay
between the MAPK and PI3K signaling cascades and showed that dual inhibition is
superior to single MEK inhibition and that it reverses phosphorylation-signaling
patterns driven by oncogenic RAS overexpression. We also published an update of
where the MS-based PTM analysis field stands, with a focus on current enrichment

strategies and technological advances.

At the Max Planck Institute (MPI) of Biochemistry, | moved from cellular to
translational proteomics, investigating human tissues. A major challenge was to
overcome the high dynamic range of protein concentration in particular tissues,
which masks the identification of low-abundant proteins. In this context, | gained
much experience in the course of my exploration of the human heart proteome
(Article 6). The heart is basically a sophisticated muscle, which is a particularly
difficult tissue due to the overwhelming contribution of the proteins of the contractile

apparatus. We combined strategies and technologies such as peptide library
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matching, the peptide fractionation with the ‘loss-less nano fractionator’, and
efficient use of the precursor ions with ‘BoxCar’ runs. This combined strategy yielded
a dramatic increase in the total number of quantified proteins, reaching a depth of
more than 10,000 proteins in the human heart.

Based on these technological advances, the final aim of the thesis was to
demonstrate that MS-based proteomics can be applied to large tissue cohorts and
that it is possible to gain biologically and medically relevant information. | optimized
a MS-based proteomic workflow for the rapid screening of clinical tissue samples.
By applying this workflow to a chemorefractory cancer patient, I uncovered a
potential therapeutic target at the proteome level. Altogether, my results provide
unique resources of the identity and quantity of proteins and their (dis)regulation,
phosphosites and histone PTMs, revealing new insights into oncogenesis in

different types of cancer.

Biological cancer proteomics Translational cancer proteomics

lll) PI3K-MAPK
inhibition

MEK1
MEK2

ERK1

ERK2

Urachus
Bladder

Il) Phosphorylation

1) Histone code signaling

IV) Clinical tissue proteomics

Figure 15 Overview of my PhD Thesis - A journey through the proteomic landscape
of cancer. Moving from the nuclear (Genentech Inc.) and cellular (UCSF) levels to clinical

tissue (MPI) cancer proteomics.
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Article 1. Mass spectrometry-based detection and assignment of

protein posttranslational modifications?®’

ACS Chemical Biology

Sophia Doll*? and Alma L. Burlingame?

1Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158-2517

2Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry,
Martinsried, 82152, Germany

Great advances in MS-based proteomics now allow the identification and
guantitation of thousands of posttranslational modification (PTM) sites in a single
experiment. Recent developments in chromatography, PTM enrichment strategies,
and mass spectrometry have vastly increased the known inventory of many protein
modifications. The classes most actively investigated and discussed in this review
include phosphorylation, ubiquitination, O-GIcNAcylation, methylation, and
acetylation. More recently, succinylation, SUMOylation, and citrullination have been
investigated globally. Characterization of key regulatory roles of PTMs in multiple
cellular activities, including cancer development, have made PTMs a very attractive
field of study over the last decade.

In this review, we provide an update of where the MS-based PTM analysis field
stands, with a focus on current enrichment strategies and technological advances.
We discuss affinity purification enrichment strategies based on charge properties,
and antibody recognition. Furthermore, we review different fragmentation methods
for high confidence sequence identification and site localization of different PTMs.
We also highlighted a few examples of the discovery of previously unknown
biological roles of PTMs. Finally, we addressed the challenge of defining site-
specific functions.

My review has already been cited approximately 50 times in the last two years.
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ABSTRACT: Recent advances in mass spectrometry (M5 )-based
proteomics allow the identification and guantitation of thousands of

PTM anrichmant
Phosphordation

postiranslational modification (PTM) sites in a single experiment. Bolegical sample ypiguitination ¥ PTM

This follows from the development of more effective class enrichment
strategies, new high performance instrumentation and bioinformatic )
algorithms with rigorous scoring strategies. More widespread use of -
these combined capabilities have led t© a vast expansion in our
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knowledge of the complexity of biological processes mediated by

PTMs. The classes most actively pursned incude phosphorylation, ubiquitination, O-GlcMAcylation, methylation, and
acetylation. Very recently succinylation, SUMOvylation, and citrullination have emerged. Among the some 260 000 PTM sites
that have been identified in the human proteome thus far, only a few have been assigned to key regulatory and/or other
biological roles. Here, we provide an update of MS-based PTM analyses, with a focus on current enrichment strategies coupled
with revolutionary advances in high performance MS. Furthermore, we discuss examples of the discovery of recently described

binhgical roles of PTMs and

he hbuman genome project revealed only approximately

20000 protein-coding genes.! The proteome, however, is
far more complex and diverse because of post-translational
modifications (PTMs) and to some extent isoform variations.®
While RNA sequencing detects the expression and sequence
variations of the entire transcriptome,” mass spectrometry
(MS5)-based proteomics has the advantage of being able to
detect and structurally define any covalent changes in a protein
after translation. A dau.nting number of such d‘l.a.ngai confer
altered physiological activity, and many are reversible. There is
a growing need to carry out accurate measurements of site-
specific dynamics due to the lack of immunoaffinity reagents for
the large numbers of newly identified proteins and their PTM
analogs in rewired signaling networks, for example. Thus, the
field is seeing an increase in use and further optimization of
multiplexed targeted, selected-component gquantitation by
5pectral acquisition m millisecond time frames. In fact, studies
of large scale PTM dynamics will be driven by mass spectral-
based guantitation—the methodology of choice. PTMs
increase the functional diversity of proteins by adding covalent
modifications such as phuﬁphnryla.ﬁn‘n | ubri.quiﬁmﬁn‘n, glyco—
sylation, methylation, and acetylation. Beside single PTMs,
proteins are often modified through a combination of post-
translational hydrolytic cleavages and the addition of functional
groups tl'm:rugh a stepwise processes le.ading to protein
maturation or activation. Protein modifications influence and
many times even define a large variety of normal and
pathogenic cell biology functions. Therefore, identifying and
understanding PTMs is critical for gaining a comprehensive
undersl:anﬁng of cell bdnlngr, the detection and delineation of
molecular defects underlying human and other diseases, drug
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target discovery and validation, and the eventual treatment and
prevention of diseases.

A cuu.'nprd'lznsi.ve treatment of our earlier level of L\:m:rwlﬂdgz
of over 300 types of PTMs, which are kmown to occur
physiologically, can be found in the Walsh monograph.* Since
then, n:vnluti.u‘na.ry advances in enrichment strategies and
improved performances of capilbry liquid chromatography
(LC) and new MS instrumentation have driven our growing
knowledge of many PTMs. In fact, the delineation of the actual
complexity of many PTMs has emerged mostly through the
past decade. Thus, by significant enrichment of classes of
modified peptides before MS-analysis, thousands of precise
sites can now be identified with high confidence R

In high-resolution tandem MS, two stages of mass analysis
are used in a Hinglz experiment. The MS51 scan refers to the m/z
of the precursor ion (peptide or protein), whereas the MS2
scans refer to the m/z values recorded for their fragmented
ionic products. Major developments have led to new
instrumentation that provides both high resclution MS and
high mass measurement accuracies for both MS1 and MS2
levels Ehnultarmu_lily. The selection of appropriate energy
deposition methods, however, is necessary to ensure generation
of sequence ion series required for unambiguous site
assignments. H.lving high Tass spzctral measurement quallty
has increased the reliability and efhciency of PTM identification
at the peptide level and, in addition, has permitted the precise
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localization of modified sites for some intact protein
sequences.’” In particular, MS fragmentation strategies that
generate sufficient peptide fragmentation information are
essential for precse PTM identification and localization, by
definition. Among the different fragmentation strategies
commonly employed, electron capture and transfer-based
fragmentation techniques have proven to be essential for the
localization of labile modifications as well as in dramatically
expanding our experimental capability to carry out sequence
analyses on large peptides or even medium size intact proteins.
Labile structures include many serine or threonine phosphor-
ylation sites as well as very labile modifications such as O-linked
N-acetylglucosamine {0-GleNAc), y-carboxyglutamic acid, and
others 1514

In this review, we first describe how enrichment strategies
and the revolutionary advances in mass spectrometry have
contributed to l'ligh confidence PTM identifiation as well as
site-specific localization. We then emphasize the discovery of
previously unknown biological roles of PTMs including the
signaling pathway activation role of arginine methylation and
multiple cross-talk forms between PTMs. Finally, we address
the biclogical challenges of defining individual site-specific
functons. The complex fields of extracellular glytmylatnn and
protein lipidation are not covered in this review, but the
interested reader is referred to recently published reviews on
these tnpdui.m'm

PTM Enrichment Strategies. Since regulatory PTMs
feature substoichiometric site occupandes in many cases,
specific enrichment techniques are essential to achieve
detection and characterization of low relative abundance
components in digests of cell lysates (Table 1). Common

Table 1. PTM Enrichment Strategies

enrichment strategy PTM
amtibody based tymosine phos phoryation™**
xg'm'm."]'yﬁ:iru rmt]wht'lmm
Iysine acetybation™
ubdqu.iﬁn-lﬂcel':“
jonic intersctionbased saima'th:emﬁua'ﬁﬂnﬂ' I
[MAC, Ti0,, phosphorylation™
SIMAC
metabolic tagging
lectin N-ghyoosylation /0 -Glch Ac™
His 10 SUMO2 SUmMOH
lodaT MT % nitrosdation™
ghoxal derivate citrullination™
enzymatic-based
subtiligase protechsis™
PhiGase M-ghycosylation" !
phospholipase GPlanchor™

PTM enrichment strategies use affmity purification based on
charge properties or antibody recognition. They are applied at
the peptide level usually ensuring higher accessibility of PTMs
and allowing quite specific binding Prior to enrichment,
proteins are digested into peptides. The most commonly used
enzyme for peptide level PTM analysis is trypsin, due to its
high d:avagz specificity after lysine and a.rgininc.n In some
cases, however, the resulting tryptic peptides might be too long
or too short for effective MS analysis. Instead of using trypsin
alone, other proteases such as chymotrypsin, Aspl, Lys-N, or

endoproteinase Glu-C may be employed to increase the PTM
COVETage.

lonic Interaction-Based PTM Enrichment Strategies.
Among all PTMs phosphorybtion is the most extensively
studied and approximately 197000 human phosphorylation
sites have been reported™ Global analysis of serine- and
threonine-phosphorylation & commonly achieved by metal ion-
based enrichment methods such as immobilized metal affinity
chromatography (IMAC) and titanium dicxide (Ti0, ) 245
Both approaches use metal cations to bind the negatively
d'na:pd phosphopeptides, and protocols d:sigpﬂ:l to achieve
higher enrichment efficiencies have been constantly improved
over the past decade. Space does not permit discussion of the
extensive literature here, but the interested reader is referred to
the recent Engholm-Heller and Larsen review.”

Multiply phosphorylated peptides, however, remain challeng-
ing to detect and assign u:la.rnbig;.mu_lily. The combination of
both IMAC and TiQ; enrichment methods, which is termed
sequential elution from IMAC (SIMAC) enables efficient
separations of monophosphorylated from multiply phosphory-
lated peptides and thus higher numbers of monophosphor-
ylation site identifications > The use of graphite powder and
titanium(TV) has been reported to ncrease the identification of
multiply phosphorylated peptides. 3 An alternative approach
that holds promise to achieve higher phosphopeptide enrich-
ment levels imolve p]lm.m complexes that stbilize the weak
interaction between phosphoryl moiety and serine or threcnine
residues.’

Antibody-Based PTM Enrichment Methods Global phos-
phorylaion analysis revealed that 86%, 12%, and 2% of
phosphorylaion events occur on serine, threonine, and
tyrosine, rﬂ.pzcﬁvdy.ﬂ ;‘Llﬂ'lnugh phosphotyrosine  residues
represent only a small percentage of all phosphosites the signal-
initiating role of receptor tyrosine kinase (RTE) phosphor-
ylation initiates key signaling cascades and plays a driving role
in multiple diseases including cancer. To achieve higher
identification coverage of phosphotyrosine-containing peptides,
antibody-based enrichments in combination with LC-MS/MS
analyses have been applied 1_.'11:11:|mg qua.nttahv: p'ruﬁ]mg of
hundreds of phospherylated tyrosine residues ™

Antibody-based enrichment applications have been extended
to quantitative profiling of ubiquitination, methylation, and
acetylation. In particular, the development of antidiglycine-K
antibodies led to the detection of more than 19000
ubiguitination sites in a single proteomic workflow.”™
Furthermore, antibodies targeting mono-, di-, and trimethylated
lysine moieties and mono- and dimethyl arginine side chains
have been applied to map the human methylome in depth*®

Enzymatic-Based PTM Enrichment. In addition to ionic
interacion- or antbody-based enrichment strategies, enzy-
matic-based enrichments such as that, based upon application
of the protein ]iga_-iz, bub'l:i]ip_-iz, have been developed to study
cellular substrates formed during intracellular protechysis.
During proteclytic cleavage, new free N-termini are generated,
which are specifically biotinylated by the subtiligase, while
native acetylated N-termini (present on almost 90% of human
proteins | are not recognized. Subtiligase does not recognize e
amino functons on lysine side chains. Upon hbf:]ing, avidin
beads capture the bictinylated M-terminal amino fimctons of
newly cleaved protens. These hbeled truncated protens are
digested with trypsin. The N-terminal peptide of the substrate
is subsequently released from the avidin beads at the built in
cleavage site by Tobacco etch virus (TEV) and analyzed by LC-
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Figure 1. Overview of PTM amalysis at the protein and peptide level. The prindpal steps for protein level PTM enrichment and MS analysis are
represented on the left. Peptide level phosphorylation enrichment strategies are llustrated on the right. lsomeric isobars are proteins or peptides that
may reveal the same amino acid sequence with equal numbers of FTMs but with different PTM configurations. The development of algorithms that
search for non-redundant ions representing all possible FTM configurations enable the identification, quantification, and localization of all PTMs.

MS/MS. " This enrichment method allowed the identification
of over 8000 proteclytic sites including more than 1700 caspase
cleavages sites n human cells **

Very r{:ccntl}r, the wild type ﬂr-l}'ﬁc protease was shown to
cleave small ubiguitin-like modifier (SUMO) modified proteins
to form a GG-K remnant, thus providing a new strategy for
mapping of SUMO-modified proteins without the need for
introduction of mutations®® In addition, it has been reported
that over 4000 SUMO sites have been uncovered using the
decahistidine (His,J-tagged SUMO-Z strategy prior to MS
measurement

Sequential Enrichment. The development of seguental
enrichment strategies, which consist of using the ﬂcmr—ﬂ':mugi‘l
of a firt PTM enrichment step for a second or third
enrichment step has become pa.ﬂin:la:l}' desirable to reveal
potential regulatory relationships from cross-talk among
multiple FTMs from the same biological sample **°

In summary, enrichment strategies have been succﬂieifull}'
established for pruti:mm:—widr: identification of phnﬁphnryla—
tion, ubiquiﬁnaﬁun, acctylaﬁun, nmﬂ\ylaﬁun, prnt{:ul}'ﬁc
cleavages, SUMOrylation, as well as lectin-based enrichment
for 0- and N-linked glycopeptides'’ and iodoTMT-based 5-
nitrosylation enrichment.*® Tt is noted that neither analytical

54

nor enrichment strategies exst yet for the vast majority of the
other known PTMs*

PTM Enrichment at the Protein Lewel In contrast to
peptide level approaches, direct PTM analysis of intact proteins
preserves the intact structure of the protein that is rrmsl‘ly
destroyed in peptide level approaches. Prior to MS analysis,
intact proteins are separated from complex protein mixtures
using a variety of enrichment tcd'miqui:i.“"“ These include
gﬂ—dut{:cl Jiq'uid fraction entrapment d{:ctruphcm:ii_li, which
separates proteins on the basis of their molecular weights, and
LC technigues such as affinity, ion-exchange chromatography,
size-exclusion chromatography, reverse phase d'tn:n1'n.at|:vg§:'3(13;1
and online reversed phase LC tandem MS approach.
Immuncathnity methods can alse be used as effective and
specific protein purification PTDtDE-DL'i.'ﬁ Intact MS is a powerful
technique to reveal global purity and relative stoichiometries
and localize PTMs in highly modified but small proteins {10 to
Sﬂ-‘l‘f‘]:iaaj without prior knowledge of targeted PTMs (Figure
1).

M5 Fragmentation Strategies. In MS-based PTM
analysis, it is essential to generate enough peptide fragmenta-
ton mformation (MS2 scans) for high confidence sequence
identification and site localization of PTMs. Several fragmenta-
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tion strategies including collision induced dissociation (CID),
higher energy collisional disseciation (HCD), electron capture
dissociation (ECD), and electron transfer dissocation (ETD)
have been employed over the past decade for this purpose.

Collision Induced Dissociation. CID is the most common
and widely applied unimolecular dissociation technique for MS-
based proteome identification and quantification analysis.
Under CID, the peptide or protein precursor ions are positively
charged due to protonation of basic amino-acid residues and
undergo collisions by interactions with neutral gas molecules
{vibronic actvation ). In accordance with the mobile proton
model,® peptide bonds dissociate generating primary N-
termmnal b- and C-terminal y-type ions.® The CID process is
generally more effective for small and low-charge state peptides
but is strongly influenced by the amino acid sequence and the
distribution of the positive d‘la.tgﬂi across the peptide
backbone.

Higher Energy Collisional Dissociation. A similar strategy of
fragmentation is the beam-type CID, also called HCD. HCD
frag;'nzntaﬁi:rn is characterized by highf:r activation energy
compared to CID. The higher fragmentation efficiency for
HCD produces E‘r:dm‘lina:rﬂy y-type fragment ions compared
to b-type ions “* In the HCD mode, Fourier transform
detection i the Orbitrap analyzer results m better quality of
MS2 mass spectra, but spectral acquisition times are longer
compared to the greater acquisiion speed recurding CID
spectra (MS/MS data collected in the ion trapj."'u' Both
collisionally activated dissociation (CAD) methods, CID and
HCD, are almost universal for analyses of stable PTMs and
provide a high probability to generate and detect the
modification-specific peptide sequence ion series.

Electron Capture and Electron Transfer Dissociations. In
certain cases, however, CAD methods do not provide site-
specific modification ions for long amino acid sequences.
Moreover, the localization of the phosphorylation event within
identified peptides that harbor more than one serine, threonine,
or tyrosine is somebmes ambigun‘u_-i. In addition, it has proven
to be very challenging to decipher the complex histone patterns
of modifications or assign PTMs that are labile in the gas phase
using CAD energy deposition methods. For these cases,
electron-based fragmentation methods such as ECD and
ETD can be applied, achieving fragmentation through
neutralization of backbone protonation sites with thermal
electrons (ECD) or radical anions (ETD)."*7"" The resulting
nonergodic cleavages of N—Ca backbone bonds generate c-
and z- type frag:m:nt ions without losing the PTM lo calization
information.”*” While ECD can only be implemented on
Fourier transform ion cyclotron resonance (FTICR) MS
instruments, ETD can be implemented on high resolution
tandem MS instruments and is able to achieve highzr detection
sensitivity of bbile PTM sites as well as complex PTM
occupancies than with ECD-based apprnad'rui.”" % ECD
and ETD are complementary to CAD because they perform
better with highly charged state analytes, whereas CAD is more
efficient with low-charge state peptides. ™' ECD and ETD,
however, have major advantages over CAD for detecting
unstable PTMs because peptide backbone fragmentation is
virtually independent of the amino acid sequence, neutral losses
such as phosphate groups are reduced, and O-GlcMNAc
elimination does not occur, 7442

HCF-1 is a transcriptional coregulator of cell proliferation
and has been previcusly described as one of the most highly O-
GlcMAcylated proteins, Mearly 30 HCF-1 O0-GleN Ac sites have

previously been reported.” Using ETD and HCD, the site-
specific localzation of nearly 20 additional 0-GleMNAc on HCF-
1 could be identified with high confidence, a]hwing better
understanding of the transcriptional regulating role of O-
GleMN Ac ification of HCF-1.7 In contrast, aB-crystalline
has been found to be O-GlcNAcylated at only one serine
residue™ (O-GleNActransferase (OGT) was found to be
phosphorylated by Glycogen Synthase Kinase 3 (GSE3f),
and the phosphorylabon site has been localized to serine 3 or
4

Intact Protein lsoforms Profiling. Protein isoforms share a
high percentage of amino acid sequence homology but often
dramatically differ in their cellular concentration and biclogical
roles™ While MS on a digest mixture may not detect the
peptide carrying a given particular isoform modification, intact
protein level analysis has the advantagf: of mapping the
complete amino acid sequence. In intact MS/MS analysis,
precursor ions are conventionally selected by guadrupole or ion
trap device before fragmentation. These methods, however,
suffer from low mass selectivity. The stored waveform inverse
Fourier transform (SWIFT) method enables high mass
selectivity and achieves better isoform detecton but can only
be implemented on an FTICR instrument * Although FTICR
mass spectrometers are expensive and less easily accessible than
other mass spectrometers, traditionally, intact MS analysis has
been most successful with FTICR-MS, since it provides the
highest “pn_lae:ible resolution for intact protein sample anal-
ysis. " Barly work combining ECD and the SWIFT
technology on an FTICR-MS instrument has revealed the
PTM ccopancies of intact histone variants H2B.1 and H2B.2
from tetrahymena as well as novel H3 protein soforms in
rat®

Dynamics-Quantitation. New MS designs have proven to
provide powerful tools to gquantify selected components of
protein and PTM networks that provide new insight into
cellular dynamics. The dynamics of histone modifications have
been recently quantitatively established. Metabolic labeling of
human cells using 13C glucose has been shown to enable
monitoring of the dynamics of 13C-labeled acetyl groups'
incorporation on specific histone lysine. In this work, the
turnover of acetylation was determined to be generally faster
than methylation but slower than phosphorylation. Moreover,
the modification rate varied depending on the histone type,
targeted residues, as well as neighboring modifications ._”

Caspase cleavage dynamics have also been quantitatively
assessed by MS. Applying the N-termini subtiligase enrichment
strategy, M5 experiments across three human cell lines have
revealed that the cellular dcavagz kinetics of over 500 caspase
substrates vary strongly between cell types and cytotoxic drug
treatments. Furthermore, common caspase dﬂavagz substrates
that can be used to monitor the p'ru-:;;mptuﬁc effects of cancer
drug treatment have been identified.

ncovering PTM-Mediated Biological Processes.

Arginine Methylation Initiates Smad Signaling. Phosphor-
ylation is arguably the most common modification and a central
mechanism for cell transduction. Indeed many transmembrane
receptors are kinases or act through cytoplasmic kinase
domains, In some cases, however, the low kinetics of substrate
phosphorylation suggests a preccding step in the sigml
initiation. Recently, arginine methylation has been shown to
activate the bone morphogenetic proteins (BMP) induced
Smad-signaling pathway. Upon BMP binding inhibitory Smadé
is methylated by PRMTL. Smad6f in its unmethylated form
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dissociates from the BMP kinase receptor complex allowing
activation of rcgulatury Smads ﬂ'lrnugh phnhphnryiaticm
I:Figu.n: EA:I.-"'q This chservation raises the possibility that
]ipnd—inducad mzﬂ'ry].aﬁu‘n may ph}' arole in the activation of
other signaling pathways.

A) Arginine methylation iniliates Smad signaling

B) PTM crosstalk
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Figure 2. Examples of PTM-mediated biological processes. (A)
Arginine methyltion-mediasted Smad dgnaling pathway. (B) p53
interaction with the CEP/p300 complex through methydation and
acetylation exchange after DMNA damage P53 is subsequenty stabilized
and transactivates pro-apoptotic genes. The lower portion of pane B
represents a protein-mediated histone crosstalk between methylation
and acetylation, leading to chromatin remodeling favorable to
transcrptional activation. (C) PTM-mediated cellular trafficking of
BAS

PTM Crosstalk. Since recent studies have provided a g;luba.l
view of the widespread ocomrence of many PTMs, the next
challenge i to understand the interplay among different PTM
classes and specific sites nfrcm.llahm PTM- rrmdl.atad crosstalk
has been classified as positive or m:gat\-'e * In the case of
positive crosstalk, one PTM serves as an active signal for the
addition or removal of another PTM (e, phosphorylation
dependent ubdquiﬁmtbn:"" and SUMDyiaﬁnnﬂ':l or as a trigger
for brim:ling proteins that carry out a second modification l:z.g,
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histone mark binding prntﬂnsr]. In contrast, negative crosstalk
can include direct competition of different modifications
targeting the same amino acid or one modification can mask
the recognition site for another PTM (eg, the acetylation-
mediated inhibition of kinase phosphorylaion™).

Crosstalk between phusphnryhtnn and ubuql.utmaﬁu'n & one
of the most studied rdaﬁunshipﬁ. For zxa.rnplz, phueiphnrylaﬁun
can either promote or inhibit ubiquitination by regulating the
activity of the E3 ubiquitin hga.u: ccrntm”ing proteasomal
degradaﬁn‘n. For example, fn].lurwing DMNA damage, P53
becomes phosphorylated, thus decreasing the interaction
affinity with E3 ligase MDMZL P33 in its deubiguitinated
form further interacts with the CBP/p300 complex ﬂm:rugh
methyhtion and acetyltion Exd'n.'mge P53 is consequently
stabilized and transactivates pro-apoptotic genes (Figure
2B).”** Crosstalk between phosphorylation and ubiquitination
is also essential for the cancer-implicated epidermal growth
factor (EGF)- mzdl,aizd extracellular- 1.1gnal rzm:latad kinases
signaling pathway.”™ Here, E3 ligase Cbl binds phosphotyrosine
residues of the activated EGF receptor (EGFR). Subsequent
proteasome-independent ubiguitination of EGFR and endo-
cytic adaptor proteins mediate the EGFR internalization.
Interestingly, deubiquitination  directs EGPR through the
recycling pathway back to the cell membrane.”!

The histone code presents one of the most important
examples for extensive interpliy between different PTMs. ETD-
based M5 revealed several H3 lysine residues including lysine 9
(H3K9) that can be exclustvely methylated or acetylted with
different biolug;lcal outcomes. While HIK? methylation
correlates with transcriptional repression, H3K9 acetylation
induces transcriptional activation. H3K% can be mono-, di-, or
m:nzﬂv_.'htad with va.r:.’mg bmlupcal output dzp:m:lmg on the
deg;rze of mzﬂ\yld:m‘n Other histone 3 crosstalk forms
include the recently described acetylation-dependent SUMOy-
lation.'® This new type of oosstalk & of particular interest,
since histone SUMOylation has been previously associated with
transcriptional repression, whereas histone acetylation is linked
to transcriptional activation. Another form of crosstalk
describes proteins that bind to different types of PTMs. For
example, the nuclecsome remm:hﬂing factor (WURF) contains
two domains that bind the H3K4 di- or trmethylation and
H4K16 acetylation sites, leading to the_transcriptional
activation of homeotic genes (Flgl.m: "Bj An additional
form of histone crosstalk involves the phosphorylation of H3
(H3510), which leads to the acetylation of H4. H3510 creates a
binding site for 14—3—3, a phosphoserine binding protein. 14—
3—3 recruits a histone acetyltransferase MOF, which
subsequently acetylates H4 on lysine 16. Acetylated H4K16
in turn forms a binding site for a kinase that phosphorylates
BNA Polymerase II to facilitate transcriptional dcmgatmn of
FOSLL a gene activated in response to serum.™ Histone
modifications can  also prevent the recruitment of bum:lmg
proteins. For example, the heterochromatin proten 1 (HP1) is
not able to bind H3K9 when the adjpcent serine 10 is
phosphorylated clu.ring mitosis or gene actvation 54 In gznzral,
the interply among PTMs on histones appears to be context
and time specific, increasing the challenge of understanding the
reguhtﬂd d.'laIIEﬂi.

A few examples have shown that O-GlcMAcylation nteracts
with dphmphnrﬂahu‘n, acetylation, methylation, and ubiguitina-
ton."#45 While the crosstalk between O-GleMAcylation and

thphnryiahu‘n has been hypnthﬂuﬂd to be pa:irl.lh.rly
important for rrrulﬁple cellular Processes, im:luding the
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regulation of enzyme activity, cell division, and cytoskeletal
fanctions, 74 large-scale experiments revealed that only ™%
of all O-GleNAgylation sites were found to be phosphorylated
also and the frequency of negative crosstalk between these two
PTM:s is virtually equal to the frequency expected by dhance
alone” Owver the past decade, however, many particular
examples of crosstalk have been described, sl'mwing that
PTMs can work i concert to determine the final biological
read-put, 7499

FTMs Regulote the Cellular Ros Trafficking. While the
activation status of Ras proteins & regulatad by the :xd'la.ng of
GTP, for GDP their cellular localization is mediated by PTMs.
Ras traffics between various subcellubir compartments guided
by modifications such as farnesylation, proteolysis, methylation,
palmitoylation, and phosphorylaton, While farmnesylation of Ras
proteins increases its affinity toward the endoplasmic reticulum
(ER), proteclysis and subsequent methylation and palmitoyla-
tion trap the two Ras soforms HRas and NRas in the Golg
apparatus. Ras proteins are subsequently transported to the
plasma membrane via vesicles (Figure 20).M

These PTMs present potential therapeutic targets for the
development of small molecule Ras inhibitors in cancer.

Bological Challenge of Defining Site-Specific Func-
tions. The revolutionary development of PTM enrichment
methods and new MS strategies has enabled the identification
and quantification of more than 260 000 PTMs*® Only a small
proportion of PTM sites, however, have been associated with a
particular biological function. One major challenge for the
discovery of site-specific functions is to select a small number of
sites from a la.rge-sc.alz data set for follow-up experiments. In
general, any given PTMs are selected depending on the
identification accuracy, reasonable stoichiometry, and their
potential regulatory role in the process of interest. Evolutionary
conservation wsually points to important functionality and can
theretore be used as a guide in selection eriteria.” Qluantitative
large scale MS & an additional powerful tool that can be
employed to initially screen a subset of modified proteins that
are rcgulatad by the pathway of interest For exmmple, ].aIF-
scale MS revealed that less than 15% of phosphorylated sites
are modubted by EGF treatment.”

Functional follow-up experiments often include in vitro
enzyme assays to determine specific enzyme substrates or lysine
point mutations to investigate the functional role of a particular
PTM. The core components of the Clustered Regulatory
Interspaced Palindromic Repeats (CRISPR) system includes
the Cas9 muclease, which is able to create double-strand breaks
in DNA and guide RNA (gRNA), which directs the CRISPR
complex to a target sequence complementary to ERNA.'“ Using
CRISPR, point mutations have been generated in the genome
of mice, which led to single amino acid substitutions in proteins
of interest to probe site-specific PTM functions under in vive
condiions.™ Furthermore, the combination of CRISPR and
Chromatin Affinity Purification (ChAP)-MS provides a new
tool to study epigenetic regulation. Applying CRISPR-ChAP-
MS, a specific section of chromatin can be purified for
subsequent identification of associated histone PTMs and
proteins by high resolution MS. Unlike Chromatin Immuno-
precipitation (ChIP), this proteomic approach does not depend
on prior knowledge of the targeted protein or PTM.*® Other
useful MS follow up experiments rely on short hairpin RNA
(shRNA) knockdown of s ?Eﬂﬁi: regulators o investigate
protein network interactions.

MS-based proteomic measurements with additional con-
ditions, such as targeted kinase or receptor inhibition,
perturbing the PTMs of nterest can also be used as functional
follow-up experiments. For mstance, e-scale  proteomics
:xpznmznb. have elucidated the mTOR-regulated phospho-
p'mtzm'ne and cellular outputs of the fibroblast growth factor
receptor.™ In addition, MS analyses revealed new SUMOylated
protein sites uncovering the regulatory role of SUMOvylation in
all nuclear processes. " Despite these technological advances,
follow up experiments are often limited to selected PTMs and/
or sites on particular proteins and therefore would not reveal
potential fnctonality for the majority of PTMs that can be
characterized. Hence, it is reasonable to call into question the
biological relevance of at least some fraction of the 260000
reported human PTM sites.™

In summary, enrichment strategies and revelutionary
advances in mass spectrometry have enabled TIFOrouns
identification and quantification of large numbers of PTMs,
which certainly constitute the most complex rzgulatn‘ry
networks in eukaryote cells. Future challenges for PTM
proteomics inchide the optimization of PTM enrichment
strategies and the development of FTM screens that are faster,
more sensitive, and reproducible. Finally, the emerging
importance of PTM multisite occupancies and potential
modes of PTM crosstalk in proteins require the development
of novel methods for full-spectrum PTM identification not only
at the peptide level but ako at the intact protein level.
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In this manuscript, we investigated the epigenetic landscape in cancer at a large
scale. We first aimed to uncover somatic alterations in the epigenetic machinery in
thousands of tumors from The Cancer Genome Atlas (TCGA) at the genomic level.
To this end, a classification model that predicts the likelihood of epigenetic regulator
genes to be an oncogene, tumor suppressor, or neutral gene was trained using
3,356 tumors from seven cancer types. We found several tumor suppressor genes
among epigenetic regulators and gene expression and correlation network analysis
showed that EZH2 was the most significantly over-expressed epigenetic regulator

in cancer.

We followed up on this finding at the proteomic level, where we quantified global
proteomic changes by mass spectrometry after EZH2 inhibition. We treated
lymphoma cells with the EZH2 inhibitor EPZ-6438 (Tazemetostat) and performed
guantitative MS-based proteomics on these samples. We found that the repressive
epigenetic mark H3K27me3 was significantly downregulated and that EZH2 is co-
regulated with parts of the cell cycle network. These results suggest that EZH2

drives the development of cancer via deregulated cell cycle regulation.
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Abstract

Background: Many cancer cells show distorted epigenetic landscapes The Cancer Genome Atlas (TCGA) project
profiles thousands of tumors, allowing the discovery of somatic alterations in the epigenetic machinery and the
identification of potertial cancer drivers among members of epigenetic protein families

Methods: We integrated mutation, expression, and copy number data from 5943 tumers frem 13 cancer types to
train a dassfication model that predicts the likelihood of being an oncogene (OG), tumar suppressor (TSG) or
neutral gene (NG). We applied this predictor to epigenetic regulator genes (ERGs), and used differential expression
and comelation network analysis to identify dysregulated ERGs along with co-expressed cancer genes. Furthermore,
we quantified global proteomic changes by mass spectrometry after EZH2 inhibition.

Results: Mutation-based classifiers uncovered the OG-like profile of DNMTIA and TSGHike profiles for several ERGs

Differential gene expression and correlation network analyses revealed that £7H2 is the most significantly over-
expressed ERG in cancer and is coregulated with a cell cyde retwork. Proteomic analysis showed that EZH2
inhibition induced down-regulation of cell cycle regulators in lymphoma cells.

Conclusions: Using classical driver genes to train an OG/TSG predictor, we determined the most predictive
features at the gene level. Our predictor uncovered one OG and several TSGs among ERGs. Expression analyses
eluddated multiple dysregulated ERGs including EZH2 as member of a co-expressed cell gpcle network.

Background

The epigenetic landscape has become an important
research topic within oncology. Epigenetic regulatory
mechanisms include DNA methylation, covalent histone
modification, and chromatin remodeling mediated by the
SWIL/SNF complex. DNA methylation typically reduces
gene expression and is catalyzed by three major DNA
methyltransferases (DNMT's) [1]. In comparison, a larger
and more diverse panel of proteins regulates gene expres-
sion as writers, readers or erasers of posttranslational his-
tone modifications [2,3] (Additional file 1). Acetyl marks
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'Departments of Bloinformatics and Computational Blology, Genentach, USA
Full list of authar information i available at the end of the artide

are written by histone acetyltransferases (HATs), read by
bromodomain containing proteins, and erased by histone
deacetylases (HDACs). Analogously, histone methyl
marks are written by methyltransferases (HMTs) and
erased by demethylases (HDMTs). The multi-subunit
SWI/SNF chromatin-remodeling complex modulates
gene expression via nucleosome repositioning [4].
Perturbing the epigenetic machinery can lead to
uncontrolled cellular proliferation and altered apoptosis
[5,6]. Consequently, alterations of epigenetic regulators
and histone marks are frequently observed in cancer and
numerous compounds have been reported to be effective
against cancer cells by inhibiting epigenetic proteins and
reversing the effect of epigenetic modifications [7,8].
Clinically approved epigenetic drugs include the DNMT
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inhibitors vidaza and dedtabine [9,10], and HDAC inhi-
bitors vorinostat and romidepsin [11,12] for treatment of
myelodysplastic syndrome and cutaneous T cell lym-
phoma, respectively. Multiple pharmaceutical companies
are targeting the histone methyltransferase EZH2 for
cancer treatment. EZH2 inhibitors EPZ-5687 [13] from
Epiz}rme'ﬂ" and GSK-2816126 [14] from GlaxoSmith K-
line® for the treatment of non-Hodgkin's lymphoma are
currently in clinical phases [/l and I, respectively.

The increasing interest in the role of epigenetic
mechanisms in cancer has been accompanied by techno-
logical breakthroughs and large-scale initiatives to profile
large numbers of human tumors. The TCGA network
has produced genome and transcriptome sequencing
data for thousands of tumors, allowing systematic analy-
sis of molecular defects in cancer [15-17]. Integrative
analyses as seen in the TCGA Pan-Cancer project [18]
can uncover (Gs and TSGs, identify novel biomarkers,
and classify molecular subtypes. Maost of the current dri-
ver identification approaches aim to uncover somatic
aterations, point mutations in particular, that occur at a
statistically significant rate in cancer. Alternatively, using
genomic profiles of known OGs and TSGs as a reference,
machine leaming based predictors can be trained to iden-
tify cancer genes [19].

Both methodologies are founded on features of classical
drivers, which are mainly characterized by significant
mutation or copy number patterns. Many other genes
show consistent deregulated expression in cancer, but are
not classified as drivers, because their impact on the
development of cancer is not clear. Mutation based ana-
lyses might therefore underestimate the roles of genes
that drive cancer via increased or decreased expression.
Here we analyze the genomic landscapes of thousands of
tumors to pinpoint molecular aberrations within ERG
families. We used mutation, expression, and copy num-
ber alterations as features to predict OGs and TSGs
among 187 epigenetic regulators based on both published
and reprocessed TCGA data. Differential gene expression
analysis revealed ERGs with frequent distorted expression
in cancer. We further aimed to identify genes that are
co-expressed with ERGs

Materials and methods

Definition of ERGs and application of predictors

We classified ERG families by the presence of domains
associated with writing, reading and erasing epigenetic
marks, and defined the relationships between their
members by sequence similarity. For deacetylases,
methyltransferases, demethylases, and bromodomain-
containing proteins, the amino acid sequences of the
corresponding domains were used to determine conser-
vation by multiple sequence alignment. Domain annota-
tions were retrieved from the UniProt database (http://
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www.uniprot.org) [20]. Sequences of ‘SET", *SAM-depen-
dent MTase PRMT-type’ and ‘DOT1" domains were
derived for methyltransferases. ‘JmjC" and *SWIRM’
domains were characteristic for demethylases. Deacety-
lases contained ‘Histone deacetylase’ or ‘Deacetylase sir-
tuin-type’ domains, while each bromodomain containing
protein contained at least one domain described as
‘Bromo’ or ‘Bromo 1" in UniProt. When proteins had
multiple copies of a domain, the N-terminal domain
was used. Full-length sequences were used for acetyl-
transferases and members of the SWI/SNF complex,
since their catalytic domains are not clearly defined.
We created multiple sequence alignments for each
family with ClustalW2 (http://www.ebi.acuk/Tools/
msa/clustalw?/) [21] using default parameters. Phyloge-
netic trees were calculated with Jalview 2.8 [22] based
on average distance minimization and visualized in
iTOL 2.1 (http:/fitolL.embl.de) [23,24].

Mutation and copy number data

To create gene-alteration profiles for all human genes,
mutation and copy number data from tumors across the
following published TCGA cancer types were retrieved
using cBioPortal (http:/ /chioportal.org) [25,26]: urothelial
bladder carcinoma (BLCA) [27], breast carcinoma
(BRCA) [28], colon and rectal carcinoma (COAD, READ)
[29], glioblastoma (GEM) [30], chromophobe renal cell
carcinoma [31] (KICH), clear cell renal carcinoma
(KIRC) [32], acute myeloid leukemia (LAML) [33], lung
adenocarcinoma (LUAD) [34], lung squamous cell carci-
noma (LUSC) [35], ovarian carcinoma (OV) [36], gastric
adenocarcinoma (STAD) [37], papillary thyroid carci-
noma (THCA) [38], and endometrial carcinoma (UCEC)
[39]. The CGDSR R package functions getMutationData
and get ProfileData were recursively applied for all RefSeq
genes. We distinguished between missense mutations
with high (HiFl) or low (LoFl) functional impact based
on MutationAssessor [40]. Mutations with predicted
“medium” or “high” functional impacts were defined as
HiFl mutations, while mutations with predicted “neutral”
or “low"” functional impacts were defined as LoFl muta-
tions. Loss of function (LOF) mutations were determined
as the sum of nonsense and frameshift mutations. In
addition to non-synonymous mutations from cBioPortal,
we retrieved silent mutations directly from the TCGA
Data Portal (https://tcga-data.ncinih.gov/tcga/). Benign
mutations were defined as the combination of silent and
LoFl mutations. Copy number levels from cBioPortal
were classified as ‘deep loss', ‘single-copy loss’, *diploid’,
Tlow-level gain’ or *high-level gain' by GISTIC [41]. The
extents of copy number deletions and amplifications for
each gene in each cancer study were determined as the
proportions of tumors with ‘deep loss’ and *high-level
gain' changes, respectively. R [42] was used to format
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mutation and copy number data for annotation of trees
in iTOL.

Expression data and differential gene expression analysis

To identify differential gene expression between tumors
and healthy tissues, TCGA RNAseq raw reads were
downloaded for available tumor types (BLCA, BRCA,
COAD, KICH, KIRC, LUAD, LUSC, STAD, TCHA,
UCEC) and processed by our GSNAP [43] based tran-
scriptome analysis pipeline [44]. RNAseq data for both
tumors and healthy tissues were not available for GBM,
LAML and OV. RN Aseq reads were first aligned to ribo-
somal BRNA sequences to remove ribosomal reads.
Remaining reads were aligned to the human reference
genome (NCBI Build 37) using GSNAP version ‘2012-01-
11, allowing maximum of 2 mismatches per 75 base
sequence (parameters: “-M2-n10-B2-i1-N1-w
200000 -E 1 —pairmax-rna = 200000"). Gene expression
was quantified with RPKM values (reads mapping to a
gene per kilobase of transcript per million reads
sequenced) and variance stabilized counts derived from
the number of reads mapped to each RefSeq gene. The
DESeq R package [45] was applied to estimate size fac-
tors, obtain dispersion estimates, and measure differential
gene expression between tumors and healthy tissues
using default parameters. Results were reported as fold
changes and associated adjusted p-values. In addition to
DESeq based negative binomial generalized linear models
for differential expression significance, we defined genes
with tumor exclusive expression (genes that are
expressed in tumors but not in healthy tissues), if their
90% quantile expression levels in all healthy tissues were
equal to the expression levels of pseudo counts, but mini-
mum 1 RPKM in the tumors of at least one cancer type.

Prediction of OGs and TSGs

Following the methodology for parameter tuning as
described in the TUSON explorer [19], we applied the
Lasso approach [46] to identify the most reliable fea-
tures for predicting (0Gs and T5Gs. Lasso minimizes
the residual sum of squares (RS5) with a constraint (“L1
penalty”) on the sum of the absolute values of the coeffi-
dents fi; for all predictors p:

. P
RSS+2) " | 1A

The L1 penalty has the effect of shrinking some of the
coefficients to zero when the tuning parameter L is suf-
ficiently large. As a result, lasso models select the most
predictive subsets of features at specified . values.

For both feature selection and training, we used 49
OGs and 49 TSGs from the Cancer Gene Census (CGC)
[47] with experimentally validated involvement in
tumorigenesis as provided by TUSOMN. Genes that have
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not been associated with cancer development according
to CGC or the Entrez gene database formed a set of
10,900 NGs. Using TCGA data we employed 48 features
associated with mutation, expression, or copy number
alterations for each human gene (Additional file 2).
To prevent imbalanced classifications, we created 1000
random NG sets of size 150 each. Feature selections and
predictions were conducted for OGs and TSGs
separately.

Using the ‘cv.glmnet’ function from the R package
glmnet [46], we trained lasso based binomial classifica-
tion models for each random NG set against all OGs or
TS5Gs. We used 20-fold cross validations to determine
tuning parameter & yvielding minimum cross-validated
errors. Features were defined as reliable for OG or TSG
prediction, respectively, if the associated f coefficients
were not zero in at least 90% of the 1000 resulting clas-
sifiers. While TUSON applied the lasso approach for
feature selection only, we also used the resulting fitted
logistic regression models for prediction. We applied
glmnet's ‘predict’ function to each of the 1000 fitted
models based on optimal & values and the respective
optimal feature subsets. This resulted into 1000 sets of
predicted OGs and TSGs. Using a bagging based ensem-
ble classification approach, we applied binary classifica-
tions of all human genes based on a 90% majority vote.

Motably, we used all 49 (0Gs and 49 T5Gs as positive
sets for training. In the absence of a separate test set,
prediction accuracies were therefore measured as aver-
age 20-fold cross validation based areas under the curve
(AUC) across the 1000 classifiers from the training step.

Co-expression analysis

To estimate the strength of the pairwise linear relationship
between the expression levels all human genes in healthy
tissues, Pearson'’s correlation coefficients were calculated
based on WGCNA, an R package for weighted correlation
network analysis [48]. Using DESeq [45], variance stabi-
lized RN Aseq count data were used as a measure of gene
expression. Expression data of all non-tumor samples
were merged and analyzed in a combined approach. We
applied hard thresholding (R > 0.85) to comvert the result-
ing 19,115 = 19,115 similarity matrix into an adjacency
matrix. Using B we turned the adjacency matrix into a
network file that can be imported in Cytoscape [49].
Known cancer genes were defined by the Cancer Gene
Census (CGC) [47]. In total 25 out of 501 CGC genes
were ERGs.

Sample preparation and mass spectrometry analysis

To analyze the effect of EZH2 inhibition on the pro-
teome, we applied quantitative mass spectrometry based
proteomics to a non-Hodgkin's lymphoma B cell line,
WSU-DLCL2, Cells were cultivated in SILAC RMPI
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1640 medium containing *Ce'*N2-lysine (Lys8) and
PBCe'*N4-arginine (Arg10), as described [50]. After fully
labeling, as assessed by quantitative mass spectrometry,
cells were treated with the EZH2 inhibitor EPZ-6438
(Epizyme"‘. Cambridge, MA) (provided by LT Pharma-
Tech lnc""] (250 nM) for 2, 4, 6 or 8 days

Cell pellets were lysed in 8 M Urea, 20 mM HEPES
buffer by sonication and clarified by centrifugation at
16,000 = g for 10 min. Protein content was measured
using the Pierce BCA protein assay (Thermo Scientific)
by fluorescence spectrometry. SILAC-labeled proteins
were combined with an equal amount of unlabeled pro-
teins. Proteins were reduced with dithiothreitol and
alkylated with iodoacetamide prior to tryptic in-gel
digestion. 100 pg of the heavy/light protein mix was
loaded and separated by SDS-PAGE on a 4-12%
NuPAGE Bis-Tris gel (Invitrogen) and stained with Sim-
plyBlue Coomassie (Invitrogen). Gel bands were excised,
separated into 16 fractions, and destained followed by
overnight trypsin digestion at 37°C in 50 mM ammo-
nium bicarbonate.

Nanoflow LC-MS/MS analysis of tryptic peptides was
conducted on an LTCQ-Orbitrap XL (ThermoFisher) in
combination with a Waters nanoAcquity UPLC system,
as described [50]. The mass spectrometer was operated
in data-dependent mode and tandem mass spectra were
searched against the UniProt human database using
Mascot and a maximum false positive rate of 2% for
proteins.

Histone purification and H3K27me3 guantification

H2A, H2B, H3, and H4 histones were purified with a
commercially available histone purification kit (Active
Motif) accordingly to the manufacturer's instruction.
Histone concentrations were measured using the Direct
Detect™ Spectrometer (EMD Millipore). Heavy and light
amino acid-labeled histones were mixed in a 1:1 ratio.
Histones were propionylated, quenched by hydroxyla-
mine followed by tryptic digestion overnight and phenyl
isocyanate labeling. Histone peptides were then analyzed
by capillary reverse phase ultra high- pressure liguid
chromatography -electrospray ionization tandem mass
spectrometry on an Orbitrap mass spectrometer. Briefly,
1 pg of desalted histone peptides were injected on
1.7 pm BEH-CI18 column (Waters) and eluted over the
course of 90 minutes with an acetonitrile gradient. Spec-
tra were acquired in a “top-15" data-dependent experi-
ment. Data were further processed with Fishtones
(http:/ /research-pub.gene com/ fishtones-js/howto/.)

Qustering of time courses

Using the R package Mfuzz [51], log2 ratios of protein
intensity time profiles were clustered based on the fuzzy
c-means (FCM) soft partitioning clustering algorithm.

Page 4 of 15

Weused ¢ = 3 and m = L7 as parameters, where c is
the number of clusters and m is the fuzzification para-
meter. Membership values ranging from 0 to 1 reflect
the similarities of each time profile to its associated
cluster.

Gene ontology analysis

We used Cytoscape [49] and BinGO [52] to derive biolo-
gical functions that were significantly overrepresented in
co-expressed gene networks or proteins with intensity
changes after EZH?2 inhibition. The significance of over-
represented gene ontology annotations in these sets com-
pared to entire human proteome was calculated on the
basis of hypergeometric models and Benjamini Hochberg
false discovery rate correction.

Results

Definition of ERG families

We defined ERG families and their members by the pre-
sence of domains associated with writing, reading and
erasing epigenetic marks as described [53]. The resulting
panel of 187 epigenetic regulators comprised 3 DNMTs,
58 HMTs 32 HDMTs, 18 HATSs, 18 HDACs, 41 bromao-
domain proteins, and 20 members of the SWI/SNF
complex (Additional files 1, 3 and 4). Their phylogenetic
relationships were estimated by the sequence similarity
of associated domains. Using mutation, copy number
and expression data from 5943 tumors across 13 TCGA
cancer types, we set out to determine the involvement
of the defined ERGs in human cancer by OG/TSG pre-
diction, differential expression and correlation network
analysis.

Prediction of cancer driver genes

The most common approach to uncover cancer driver
genes is to identify somatic alterations that occur at a
statistically significant rate. As an alternative approach,
machine leaming based classifications use characteristics
of known OGs and TSGs as a reference (training set) to
predict cancer genes [19]. We implemented a similar
approach to test its applicability in our tumor panel and
to identify cancer drivers within ERG families
Construction of gene-alteration profiles

To characterize known cancer drivers and to identify
genes with similar features, we constructed ‘alteration
profiles’ for all human genes in each individual cancer
type as well as in the combined set of umors (Addi-
tional file 5, Materials and Methods). Each gene profile
contained 48 features measuring various types of altera-
tions in cancer (Additional file 2). For members of the
defined ERG gene families, we applied iTOL to visualize
four of the 48 established features (Figure 1 and Addi-
tional file 6). These include the proportions of tumors
with significant copy number alterations, non-synonymous
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reflected by the outer stacked bar plots.

Figure 1 Visualizing genomic alterations of bromo domain containing genes. The core of the plot reflects the phylogenetic relationships
between bromo domain containing proteins estimated by the saquence similarity of their associated domains The inner drde digplays the
expression fold-changes betwesn tumors and healthy tissues High expression in tumors is indicated in red, while low expression in tumors is
shown in blue. The outer circle illustrates the proportion of tumors with ‘deep loss” {blue) or highJdevel gain’ fred) changes. Mutation rates are
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sequence mutations within the gene coding region, and
the degree of differential expression between tumors and
adjacent normal tissues. The frequencies of copy number
deletions or amplifications for each gene were determined
as the proportions of tumors with ‘deep loss” or high-level
gain' changes based on GISTIC calculations [41], respec-
tively. To measure the degree of dysregulated expression
for each gene, we developed fold-change and p-value
based scores reflecting the significance of differential gene
expression based on negative binomial generalized linear
models (Materials and Methods). The majority (44 of 48)
of the integrated features, however, describe the frequen-
cies of various sequence mutation classes. To exclude the
effect of protein size [54], we normalized mutation fre-
quencies by the background mutation rate or coding
sequencing length. To distinguish between missense muta-
tions with high (HiFI) or low (LoFl) functional impact, we
used MutationAssessor [40], which is known to have high
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accuracy [55]. Loss of function (LOF) mutations were
defined as the combination of nonsense and frameshift
mutations. Benign mutations (as the combination of silent
and LoFI) mutations reflect the background mutation rate
of each gene. As a measure of the preferred occurrence of
specific point mutations within a gene, termed ‘mutation
hot spots’, we calculated entropy based *mutation selection
scores’ as described [19].

Selection of features reliable for OG and TSG prediction

For the training of binary classifiers and for the selection
of predictive features, we obtained OGs and TSGs from
the Cancer Gene Census (CGC) [47] as well as NGs, as
described [19]. To select features from the generated
gene-alteration profiles that distinguish cancer drivers
from NGs, we followed the methodology for parameter
tuning from the TUSON (TUmor Suppressor and ONco-
gene) explorer [19] (Materials and Methods). We used
the least absolute shrinkage and selection operator
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(Lasso) method [46] to identify the most reliable out of
48 parameters for predicting cancer genes.

For OG prediction, the most reliable parameters were
the occurrence of mutation hot spots, represented by
the mutation selection score (p = 5.8 = 107", one-tailed
Mann-Whitney U test, f coefficient = 5.3), the ratio of
HiF!l to LoFl missense mutations (p = 2.2 = 107, p =
0.06), and the amplification frequency (p = 1.8 = 107,
f = 2.48) (Figure 2A). These features indicate that cano-
nical OGs are characterized by copy number amplifica-
tions or recurrent missense mutations with high impact
on protein function. Examples for such somatic muta-
tion hot spots include V&OOE in BRAF (265 tumors),
H147E in PIK3CA (113 tumors), or G12D in KRAS
(63 tumors) (Figure 2B, Additional file 7). Overall, BRAF
(Sm = 2.71), PIK3CA (5, = 1.25), KRAS (5, = 1.11), and
IDH1 (5, = 0.82) showed the highest selection scores
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for missense mutations (Sm) among OGs. Interestingly,
known copy number driven OGs including MYC (5, =
0), ALK (5, = 0), and $0X2 (5, = 0) showed signifi-
cantly low preference for mutation hot spots (p = 27 =
107", one-tailed Mann-Whitney U test comparing
amplified versus non-amplified OGs based on CGC
annotation). Notably, none of the expression parameters
was selected as predictive feature (p = 0.4) implying that
the OGs from the training set are not consistently over-
expressed in cancer.

The most reliable feature set for TSG prediction
included the ratio of LOF to benign mutations (p = 2.1 x
10, B =2.13), splicing to benign mutations (p = 3.1 =
0+, B = 1.85) and the frequency of homozygous copy
number losses (p = 1.1 x 10°%, p = 1.08) (Figures 2A and
2D). In addition, given the significant underrepresenta-
tion of T5Gs in amplicons, the Lasso approach also
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Figure 2 Selecting features for OG and T5G prediction. &) Box plots illustrate feature differences between OGs (red), T5Gs (blue) and NGs
igray). Associated pvalues on the top of each box plot are based on one-tailed Mann-Whitney U tests and reflect the differences between OGs
and MGs, and T5Gs and NGs. B) Dots refledt the frequencies of protein altering mutations in the combined =t of tumaors from seven @ncer
types. OGs (red), T5Gs fblue) and NGs {gray) are sorted alphabetically on the x-axis. ) Proportions of loss of function (LOF) to benign mutations
are plotted against the entropy based mutation salection scores for all human genes. Blue indicates high fractions of LOF mutations, while red
indicates high mutation selection. D) Stacked bar plots present the relative frequencies of mutation classes in the combined tumar panel for
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selected the amplification frequency as predictive (p = 2.8
%1077 B = -1.06). This indicates that canonical T 5Gs are
characterized by copy number loss or mutations that
have deleterious effects on protein function. Interestingly,
multiple T5Gs showed significantly recurrent LOF or
splice site mutations including APC (R1450%; 22 tumors)
and VHL (V155splice; 13 tumors) as well as missense
mutations including TP53 (R175H; 51 tumors) and
PTEN (R130G; 26 tumors) (Figure 2B, Additional file 7).
Consequently, the selection scores for non-synonymous
mutations (p = 4.1 = 10 " p = 1.89) were high in the
training set (Figures 2A and 2C) and thus selected for
TSG prediction by Lasso. Expression parameters were
not selected as reliable features (p > 0.4) for TS5G
prediction.

Applying cancer gene classifiers to ERGs reveals more T5Gs
than OGs

To uncover cancer drivers among ERGs, we applied the
trained classification models that were used for feature
selection. We used all 49 known OGs and TSGs for the
training and feature selection step, because the size of
the positive set was relatively small for machine learn-
ing. Therefore, the assessment of our predictors relied
on 20-fold cross-validations instead of an independent
test set. The average areas under the curve (AUC) as
measure of prediction accuracy for OG and T5G classi-
fications were 8421% and 92.17%, respectively (Materi-
als and Methods).

To identify cancer genes that are driven by mutation,
we applied the predictors to the defined ERGs using the
most predictive mutation parameters only. Overall five
ERGs including the SWI/SNF complex subunits
PERMI1, ARID1A, and SMARCD]1 were classified as
TSGs (Figure 3A). Exclusion of copy number data from
the feature set yielded the same set. ARIDIA had the
highest ratio of LOF to benign mutations among ERGs,
and was mutated in 254% of urothelial bladder tumaors,
31.1% of gastric tumors, and 33.5% of endometrial
tumors. Overall 722% of all non-synonymous mutations
in ARID1A were LOF. PERM 1 was mutated in 36.5% of
dear cell renal carcinomas, of which 75.0% were LOF.
SETD2 was aso dassified as TSG with 39.9% of all non-
synonymous mutations classified as LOF. Consistent with
the mutation profiles of TSGs in the tmining set, multiple
LOF mutations had a non-random distribution within
predicted TSGs in more than one tumor (Figures 3B and
3C). ARID1 A, for example, showed a frameshift mutation
at position 1848 in 20 tumors (Figure 3C). Overall, with
the exception of alterations in DNM T34, the most recur-
rent mutations within ERG families were associated with
loss of function (Figure 3B).

Using the missense mutation selection score and the
ratio of HiFl to LoFl mutations, only DNAM T34 was pre-
dicted as OG. This result reflects the lack of recurrent

68

Page 7 of 15

and potentially activating hotspot missense mutations
within ERG families in our tumor panel. With the
exception of DNMT3A, we detected nonsense muta-
tions and indels, but no missense point mutations
among ERGs that occurred in more than four tumors.
The driver cdassification of DNMT3A by our OG pre-
dictor can be attributed to the occurrence of a mutation
hot spot in acute myeloid leukemia In total 28 (14.4%)
of the 195 tumors showed a missense mutation on posi-
tion 882 resulting in an overall mutation selection score
of 055.

We expected EZH2 to be classified also as an OG,
since it is a validated target pursued by multiple phar-
maceutical companies. Activating mutations within the
SET domain of EZH2 are frequent in non-Hodgkin's
lymphoma [56], but were not found as recurrent in the
analyzed cancer types.

With copy number data as an additional feature, com-
pleting the set of selected predictive parameters,
ACTLEA and ATAD2 were the only predicted OG
among ERGs. However, since the amplified genomic
regions harboring these genes were typically very large,
with an average length exceeding 50 Mb, it is equally
likely that both genes are only amplified as a passenger
EEnes.

Detection of ERGs with consistent over- or under-
expression in cancer

The Lasso-based feature selection for OG/TSG predic-
tion showed that canonical cancer drivers are usually
characterized by significant mutation patterns or copy
number alterations (Figure 2A), but not by consistent
gene expression patterns. Conseguently, while our
machine learning approach enabled us to uncover cancer
driver-like mutation and copy number alterations among
ERGs, significant gene expression patterns could not be
detected by prediction.

To pinpoint ERGs with consistently higher or lower
expression in cancer, we determined the differential
expression significance across the ten cancer types
with available RNAseq data using negative binomial
generalized linear models (GLM) [45] (Materials and
Methods). To assess the overall significance of differ-
ential expression in cancer for each gene, we combined
the p-values resulting from the cancer type specific
analyses using Fisher's probability test. Overall 11
ERGs showed consistent up-regulation in all cancer
types with combined p-values (pg) lower than 0.001
(Figure 4A, Additional file 8). EZH2 showed the most
significant over-expression in tumors (pp = 318 = 10

1y (Figure 5A) not correlating with copy number
alterations (p = 0.87 based on linear regression
between RPKM expression levels and total copy num-
ber) (Materials and Methods). The M¥YC cofactor
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[57,58] bromodomain reader ATAD2 (ATPase family,
AAA domain containing 2) was the second most sig-

with the length of the MYC amplicon that spans the
genomic region of ATADZ2 in 98% of the cases. Other

nificantly over-expressed ERG (pp = 2.6 x 107%%),
Expression levels of ATADZ2 correlated significantly
with copy number changes (p = 3.1 = 10 %) consistent

ERGs with homogeneous over-expression in cancer
included PRDMI3, DPFI, DNMTI, SUV420H2,
WHSCI, TRIM28, BAZIA, PRMTI, and HDACIO.
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Cuantile-based differential expression analysis (Materials
and Methods) revealed that BRDT, PRDMY, and
PRDM13 were exclusively expressed in tumors but not
in paired healthy tissues (Figure 58). With high expres-
sion levels across several cancer types, the testis-specific
BRDT gene [59,60] displayed characteristics of a cancer-
testis (CT) gene. CT genes are genes with normal
expression restricted to adult testicular germ cells, and
vet are aberrantly activated and expressed in various
cancer types [61]. As such CT genes are interesting tar-
gets in cancer therapy. As previously observed in non-
small cell lung cancers [62], differential expression ana-
lysis between BRDT expressing and non-expressing
LUSC tumors revealed co-expression with canonical CT
genes such as MAGE-All, GAGE4, GAGES, GAGEa
and GAGEIZ (Additional file 9, Materials and Meth-
ods). Almost all co-expressed genes also showed tumor-
specific expression in LUSC. PROMY and PRDM 13 also
showed exclusive expression in cancer, but their biologi-
cal roles in these tumors are unclear.

Consistently down-regulated ERGs included KAT2E,
EZHI, SMARCAZ, NCOAL ZMYNDI1, PRDM2, BAZ2B
and SIRT1, which showed significanty lower expression (pe
< 0,001} in tumors compared to healthy tissues (Figure 4B).
Comparing the sets of over- or under-expressed ERGs

70

showed that closely related genes such as KAT2A and
KAT2B exhibited different expression profiles. EZH2 and
EZH1, for example, form PRC2 (Polycomb repressive com-
plex 2) complexes with similar functionalities [63], but
opposite expression profiles. As another example, while
PRODM9 and PRDMI13 were exclusively expressed in tumors,
PRODM2 was consistently down-regulated in tumors,

Taken together the resulting panel of significantly
over- or under-expressed ERGs form an interesting can-
didate set of genes that potentially drive the develop-
ment of cancer via dysregulated expression. This model
is generally not applicable to classical OGs and T5Gs,
but might hold true for ERGs.

Co-expression network analysis

In addition to the identification of significant expression
patterns in tumors, we used the expression levels in
healthy tissues to detect co-expressed genes under nor-
mal conditions. The main objective of this analysis was to
uncover the involvement of ERGs in co-expression net-
works, which frequently form jointly regulated functional
modules [64]. Co-expressed genes can have similar biolo-
gical activities and even physically interact. In some cases
co-expression may reflect that one gene encoding protein
regulates the activity of the other gene.
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Using variance stabilized TCGA RNAseq count data
as a measure of gene expression, we analyzed co-expres-
sion networks by estimating pairwise linear relationships
between all protein coding human genes (Materials and
Methods).

Based on hard thresholding (r = 0.85) we converted
the resulting 19,115 = 19,115 similarity matrix into an
adjacency matrix, which contains binary information (O
no co-expression; 1: co-expression) about pairwise co-
expression. Transforming the adjacency matrix into
nodes (genes) and edges (co-expression) resulted in one
major network with 2465 genes including 37 ERGs, and
11 separate networks with 8 to 112 genes (Figure 6A).
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EZH2? & a member of a cell cycle network

Using gene ontology enrichment (Materials and Meth-
ods) we found that the discrete co-expression networks,
which were not connected to any node of the main net-
work, were associated with specific biological functions
such as muscle contraction (pgn = 8.9 = 10 ll}
collagen fibril organization (pgo = 4.4 x 10°'%), tissue
development (pgn = 1.4 = 10 *), oxidative phosphoryla-
tion (pgo = 3.1 x 10°%%), or regulation of secretion
{peo = 2.3 x 107%) (Additional file 10). Two co-expres-
sion modules contained 37 members of the protocad-
herin family representing tightly linked gene clusters o
and ¥, consequently associated with cell-cell adhesion
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(peo = 2.7 = 10 M 1.8 « 10°%). Another network
included nine members of the UDP glucuronosyltrans-
ferase 1 family, significantly associated with various
metabolic processes.

Strikingly, we identified a distinct network with 100
genes, almost exclusively associated with the regulation
of the cell cycle (pgn = 44 = 10 'r'?] (Figure 6D). EZH2
is the only epigenetic regulator in this module. In total
62 genes in the network were annotated cell cyde regu-
lators with consistent up-regulation in tumors, including
cell division cycle genes CDC6, CDC45, and CDC25C,
cycling CCNAZ2, CCNET and CCNB2, genes encoding
for aurora kinase B (AURKE) and its interaction partner
NUF2, mitotic checkpoint protein kinase TTK, RADS1,
checkpoint activator FANCI, DLGAPS, polo-like kinases
(PLK) 1 and 4 along with interacting cyclin regulator
FOXMI1. Other essential cell cycle genes included
BLEI, BUBIB, CHEK2, CDKI, and several members of
the kinesin family.

Multiple members of the cell cycle network are known
to regulate or physically interact with each other. For
example, the expression of EZH2 is known to be regu-
lated by the co-expressed transcription factor E2F2 [65].
The exact role of EZH2 as the only ERG in the cell
cycle network, however, is not clear.

Co-expression patterns in the main network

Analyzing the main network revealed multiple pairwise
co-expressions between ERGs and cancer genes. While
we took only a subset of genes of the CGC to train our
predictors, we defined all genes from the CGC as cancer
drivers in the co-expression analysis. Some examples for
positive correlations between ERGs and drivers are illu-
grated in Figure 6E and Additional file 11. Interestingly,
genes encoding longer proteins showed more co-
expressed genes, presumably because they provide
increased surfaces for interaction. Consequently, without
normalizing for coding sequence length, frequently
mutated ERGs correlated with more cancer genes than
rarely mutated ERGs (p = 2.3 = 10 s using permutation
test) (Figure 6B).

Overall, we found seven cases, where the expression of
one ERG was negatively correlated with the expression
of another gene (R < -0.85) (Additional file 12). The
transcription factor BLD31 was involved in three of the
seven instances including ASHIL, KAT6A, and KDM3B.
Without known functional causalities, however, it is dif
ficult to interpret these negative correlations.

ldentifying sub-networks by investigating highly co-
expressed gene pairs (directly linked nodes) within the
major network revealed 24 inter-connected co-expressed
ERGs (Figure 6C). This sub-network was composed of
members from different ERG families. Similar to all
observed co-expression patterns, this finding may not
only imply common functionality, but also reflect that
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the epigenetic machinery is partially controlling itself or
is commonly controlled by another regulatory
mechanism.

Proteomic analysis of the antiproliferative effect of EZH2
inhibition in mutant lymphoma cells

While the exact role of EZH2 in the identified cell
cycle network is not clear, E£H2 is known as direct
transcription repressor or activator of several cell cycle
regulators (Additional file 13). As member of the Poly-
comb-group family, EZH?2 acts as transcription repres-
sor of several cell cycle-related tumor suppressor genes
such as CDKN1C through methylation of histone
H3 on lysine 27 (H3K27) [66,67]. In an alternative
model for EZH2 mediated regulation, EZH2 promotes
mmorigenicity by direct activation of OGs such as
STAT3 [68].

Inhibition of EZH2 has been suggested to induce cell
cyce arrest in G1 phase and antiproliferative response
in the mutant-bearing lymphoma cell line WSU-DLCL2
(EZH2Y**'F) [13]. The associated study further showed
that proliferation of EZH2 wildtype cells was not
affected by the same treatment. After only 2 days of
compound treatment cell cycle genes were found signifi-
cantly down-regulated in the mutant cell line based on
microarray experiments. Overall, we identified 11 out of
the 30 most down-regulated cell cycle genes from this
study in our co-expressed network (CDCe, BURBI,
CDC25C, BUBIB, TTK, CCNB1, CCNAZ, PKMYTI,
E2F2, CDC20, PLKI).

To analyze the effect of EZH2 inhibition on the pro-
teome, we treated WSU-DLCL2 cells with the selective
EZH2 small molecule inhibitor EPZ-6438 I:E.piZj’mElﬁ:.
Cambridge, MA) [69,70] and measured global proteomic
changes after 2, 4, & and 8 days using SILAC (stable iso-
tope labeling by amino acids in cell culture) based mass
spectrometry (Materials and methods).

Consistent with previous findings [13], we observed
decreased viability of WSU-DLCL2 cells after EZH2
inhibition. Concordant with EXH2 as member of the
PRC2 complex, which trimethylates histone 3 on lysine
27, the level of the H3K27me3 histone mark decreased
by a factor of 2 and 3.3 after 2 and 5 days respectively
(Additional file 14).

We identified 2530 proteins on average and quantified
their intensity changes between EPZ-6438 treated cells
(heavy labeled) and their respective non-treated control
cells (light labeled) (Additional file 15). The combined
proteome profiles over all time points comprised 3066
proteins. Overall 1852 proteins were commonly identi-
fied in al time point experiments. Clustering the asso-
ciated time courses revealed three different profiles
representing up-, down-, and non-regulated proteins
(Additional file 16).
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In total 267 and 202 proteins showed minimum 2-fold

increase or decrease in expression levels respectively.
Based on gene ontology (GO) analysis, the set of down-
regulated proteins was significantly enriched for genes
associated with cell cycle (p = 2.25 x 10 ) and DNA
replication (p = 6.97 x 107} (Additional file 17).
Among the 59 down-regulated cell cycle proteins were
CDE2, CND1, MCM7, RFC2 and several regulators that
were co-expressed in the EZH2 cell cycle network
including CDK1, CND3, FANCI, BUB1L, KIF11, TOP2A,
TOPK, and UHRF1 (Figures 7A,B). Overall, 24 cell cycle
associated proteins were up-regulated after EZH2 inhibi-
tion including tumor suppressors ATM, BRCAZ and cell
cycle inhibitor CDN2C.
Our proteomics results do not distinguish whether
EZH2 inhibition acts directly on the expression of cell
cycle genes or more generally induces cell cycle arrest.
However, coupled with the known regulatory roles of
EZH2 as a member of the PRC2 complex and results
from previous studies [13], these data suggest a regula-
tory function of EZH2? in controlling it's co-expressed
cell cycle network.

Discussion

Alterations in the epigenetic machinery that lead to
uncontrolled cellular proliferation have become an
important research topic in the field of oncology. By
training cancer gene predictors based on TCGA data,
we found that classical cancer drivers are characterized
by significant mutation or copy number patterns, but
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not by altered expression. Among ERGs we identified
multiple T5Gs with significant proportions of loss of
function mutations. Given the lack of recurrent muta-
tion hot spots within the ERG families in the tumor
panel, DNMT3A was the only ERG that showed an OG-
like alteration profile. However, whether DNMT3A acts
a8 OG or TSG has been debated, and additional studies
are required to understand the exact role of DNMT3A
in cancer. The classification of DNMT3A as OG driver
can be attributed to the identification of a mutation hot
spot on position B82 in acute myeloid leukemia. This
shows that our predictor, which was trained on the com-
bined set of all tumors, was capable to detect significant
alterations within a single cancer type. It also makes
clear, however, that the approach is biased towards
included cancer types. Activating mutations within the
catalytic SET domain of EZH2, for example, are known
in non-Hodgkin's lymphoma [71], but were absent in our
tumor cohort.

Many ERGs, which were not predicted as drivers, had
dysregulated expression in cancer. The role of dysregu-
lated genes in cancer is generally difficult to determine
[72], but the discovered expression profiles among ERGs
were remarkable. E£ZH2 was the most significantly up-
regulated gene. Strikingly, co-expression network analy-
sis uncovered EZH2 as the only ERG in a co-expressed
cell cyde module. Selective inhibition of EZH2 has been
shown to decrease expression of multiple cell cycle reg-
ulators [13], many of which are in our co-expressed net-
work. Despite the limitations of mass spectrometry to
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identify a subset of the whole human proteome only, we
confirmed the down-regulation of cell cycle proteins
and showed a decrease of the PRC2-assodated H3K27
methylation mark after EZH2 inhibition. We cannot
determine, however, whether EZH2 inhibition acts
directly on the expression of cell cycle genes or more
generally induces cell cycle arrest. Interestingly, the
EZH?2 homaolog EZH1 has been proposed to form PRC2
complexes with similar functions [63], EZH1 is com-
monly down-regulated in cancer, which contradicts its
involvernent as a cell cycle promoting PRC2 subunit.

Several other ERGs were significantly over-expressed
in tumors. BROT, PROMY and PRDM 13, for example,
were exclusively expressed in tumors. BRDT showed
characteristics of a CT gene, and was co-expressed with
other known CT genes. The underlying mechanisms
that induce the co-expression of these genes or the
effect on the cancer cell are not known, but BRDT may
present a potential candidate for initializing their
expression as an epigenetic regulator,

While overexpression of ATAD2 and ACTL6A are
related to their genomic locations on large frequently
amplified chromosome regions, DNMT3B, KAT2A,
SUVE20H2 and several other ERGs showed ubiguitous
significant up-regulation in cancer, therefore presenting
an interesting candidate set for potential therapeutic
targets.

Taken together, our prediction method identified sev-
eral ERGs with mutation alteration profiles characteris-
tic of classical TSGs, DNMT3A was the only predicted
OG-like ERG with mutation hot spots in acute myeloid
leukemia. Expression analysis further supports the role
of EZH2 as an OG. Our study provides the first sys-
tematic analysis of the epigenetic regulators, thus pro-
viding basis for further prioritization of such players as
candidates for therapeutic target discovery.

Additional material

Additional file 1: Eplgenstic regulators of gene expression as
writers, erasers and readers of covalent DNA and histone
modifications. The upper panel provides an ovendew of writers [DHMTs,
HATs, and HMTs), erasers {DNDMTs, HDAC, and HDMTS), and readers
(brama damain containing and methyl binding poteins) of epigenetic
rmars. Epigenatic regulatars can be identified by the presence of spedific
amocaed domains, which are listed on the right of the lowsr panel The
sequence similarities between contained domains or total protein
sequences formed the phylogenetic trees for each epigenatic gene
family as shown an keft

Additional file 2: Description of genomic features

Additional file 3: List of members of ERG families

Additional file 4: llustration of the SWI/SHNF complex

Additional file 5: Overview: Cancer gene prediction applied w ERGs

Additional file & Genomic alterations of HATs, HDACs, HMTs, HDMs
and members of the SWISNF complex. The compasitions of the plots
are explained in Figus 1
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Additional file 7: List of frequent mutations in TCOGA
Additional file & Differential gene expression analysis results

Additional file 9: Co-sxpression of cancer testis genes A) Wolaano plat
resulting fram the differential exp=ssion analysis between BROT
expesang and BRDT nor-expressing LUSC tumaors. B Gene expression
levels of co-ewpressed cancer testis in LUSC (black: healthy tissues, =d
tumos)

Additional file 10: Gene ontology enrichment analysis of identified
coexpression networks. For some of the dentfied netwaris, gene
antalagy enrchment analyses wes peformed. 7% i the total number of
annatated genes in the given nebwork, while %" i the numbsr of
annotated genes in the netwark that are associated with the ghen gene
antolegy acosssion (GOHID). "W° ks the number of annotated genes in the
background set, while *n” i the number of genes from the background
et that are associated with the ghen gene ontology accession (GOHID)
Additional file 11: Bxamples of co-expession between ERGs and other
genss in healthy tissues. Each dot reflects the gene swpression levek
(represented by variance sthilred RMAseq count data) of the ERG
axis) ard the coapressed gene fy astsl Dots are colared acoording to
the asodated thsue indication

Additional file 12: MNagatie carslations betwesn sxpresion lavsls of
ER(xs and ather genes. Analogously gene expression (vanance stabilmed
RN As=q count data) of the epigenstic regulatar (x axis) and the oo-
expessed gene (y axks] Colors indicate the asocated tisue indication
Additional file 13: ¥nown models for EZH2 as odll oycle mgulatar. Twao
established models describe a o=l oycle mgulating role of EZH2: \With its
tramscrption repressing role as member of PRC complax (=t pand),
EZH2? enhances the expession of cell oycle reguilstars indirectly by
repreasing asocated tumaor suppressors such as COENIC Inan
alternatie madel, EFHD acts as a dired activator fright panel)
Phosphargated EZH? acthvates STATI wia methylation, which in turn
acthvates the cydin D12 complas Inerestingly COK1 and (D2 have
been shown to phosnhandae EZH2. In addition EZH2 has been shown
1o inhibit BRCAT phasphondation presumably via interaction with Akt-1
resulting into increase of cell cycle promaoting CDC25C

Additional file 14: Mass spectrometry based quantitation of

H3K27me following EZHZ inhibiton

Additional file 15: Mass spectamsetry results. List of identified proteins

and cormesponding quantitatie results

Additional file 16: Justered time senies Using fuzzy c-means dustsring,

time course prafiles formed three dusers of down-, up-, and non-

requlated proteins Colars reflect the similarities batween specific time

sefies and the assocated chuster

Additional file 17: Gene ontology enrichment analysis of regulated
proteins
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Glioblastoma are the most frequent brain tumors and can be classified into primary
and secondary glioblastomas. Current therapies combine surgery, radiotherapy,
chemotherapy, and temozolomide treatment, but less than 5% of the patients
survive longer than 5 years after diagnosis. Genomic analyses showed that more
than 70% of secondary glioblastomas harbor IDH1 mutation. The downstream
effects of IDH1 mutation on the proteome, phosphoproteome, and epigenome in
glioma, however, remain poorly understood. In this publication, we applied a SILAC
labeling methodology and high-resolution mass spectrometry to identify the main
differences between oncogenic HRAS driven cells and mutant IDH1-driven glioma
cells, mimicking primary and secondary glioblastoma. We found that primary
glioblastoma cell lines are mainly characterized by the overexpression of the MEK
and PI3K signaling pathways. Dual inhibition of MEK and PI3K was clearly superior
to single MEK inhibition in the cell line model; however, clinical efficacy remains to
be determined. In contrast, secondary glioblastoma cell lines showed epigenetic
reprograming at the histone code level. Applying a histone hybrid chemical labeling
method and high-resolution MS, we identified significant histone methylation,
acetylation, and butyrylation changes. Our results suggest a global transcriptional

repressive state, consistent with the down-regulation of the proteome,

77



transcriptome, whereas DNA is hyper-methylated and there is an increase in histone
tri-methylation marks. This work provides a unique resource of the identity of altered
proteins, phosphosites, and histone PTMs in RAS and IDH1 mutant astrocytoma
cell lines, revealing new insight into oncogenesis in glioma. | also illustrated the

January 2017 cover of Molecular and Cellular Proteomics (MCP).
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Quantitative Proteomics Reveals Fundamental
Regulatory Differences in Oncogenic HRAS and
Isocitrate Dehydrogenase (IDH1) Driven

Astrocytoma™s

Sophia Dollf/, Anatoly Urismani, Juan A. Oses-Prietof, David Arnoti§,

and Alma L. Burlingamezf|

Glioblastoma multiformes (GBEMs) are high-grade astro-
cytomas and the most common brain malignancies. Pri-
mary GEMs are often associated with disturbed RAS sig-
naling, and expression of oncogenic HRAS resulis in a
malignant phenotype in glioma cell lines. Secondary
GBMs arise from lower-grade astrocytomas, have slower
progression than primary tumors, and contain IDH1 mu-
tations in over 70% of cases. Despite significant amount
of accumulating genomic and franscriptomic data, the
fundamental mechanistic differences of gliomagenesis in
these two types of high-grade astrocytoma remain poorly
understood. Only a few studies have attempted to inves-
tigate the proteome, phosphorylation signaling, and epi-
genetic regulation in astrocytoma. In the present study,
we applied quantitative phosphoproteomics to identify
the main signaling differences between oncogenic HRAS
and mutant IDH1-driven glioma cells as models of primary
and secondary GBM, respectively. Our analysis confirms
the driving roles of the MAPK and PI3K/mTOR signaling
pathways in HRAS driven cells and additionally uncovers
dysregulation of other signaling pathways. Although a
subset of the signaling changes mediated by HRAS could
be reversed by a MEK inhibitor, dual inhibition of MEK and
PI3K resulted in more complete reversal of the phosphor-
ylation patterns produced by HRAS expression. In con-
trast, cells expressing mutant IDH1 did not show signif-
icant activation of MAPK or PI3K/mTOR pathways.
Instead, global downregulation of protein expression was
observed. Targeted proteomic analysis of histone modifi-
cations identified significant histone methylation, acetyla-
tion, and butyrylation changes in the mutant IDH1 ex-

From the $Department of Pharmaceutical Chemistry, University of
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Protein Chemistry, Genentach Inc, South San Francisco, 94158-2517
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pervised the histone ptm analysis; ALB. supervised the project.

pressing cells, consistent with a global transcriptional
repressive state. Our findings offer novel mechanistic in-
sight linking mutant IDH1 associated inhibition of histone
demethylases with specific histone modification changes
to produce global transcriptional repression in second-
ary glioblastoma. Our proteomic datasets are available
for download and provide a comprehensive catalogue of
alterations in protein abundance, phosphorylation, and
histone modifications in oncogenic HRAS and IDH1
driven astrocytoma cells beyond the transcriptomic
level. Molecular & Cellular Proteomics 16: 10.1074/
mcp.M116.063883, 39-56, 2017.

Gliomas are the most common human brain tumors with
~250,000 cases per year worldwide (1). Gliomas arise from
ghal cells, which are non-neuronal cells that provide support
and protection for neurons. Astrocytomas are the most com-
mon form of glioma (2) and are histologically categorized into
four grades (I-IV), of which grade Il {anaplastic astrocytomal),
and grade IV (glioblastoma multiforme (GBM)"), are malignant
(3). GBEMs are among the deadliest human cancers, and de-
spite the use of aggressive multimodality therapy combining
surgery, radiotherapy, and chemaotherapy, less than 5% of
patients survive longer than 5 years after diagnosis (4). Al-
though most GBMs (90%) develop de novo (primary glioblas-
toma) and typically have rapid progression, some (10%) pro-
agress more slowly after initially presenting as low-grade
gliomas (secondary glioblastoma) (supplemental Fig. S1) (5).

Most common alterations in primary glioblastomas include
telomerase reactivation, p53 and pRB pathway deactivation,
PTEN loss, and EGFR amplification leading to RAS signaling
activation (8). RAS network alterations (other than by muta-
tion, which is rare in gliomas) are commonly observed in
malignant astrocytomas (7-10). Importantly, overexpression
of HRAS in normal human astrocytes (MHAS) results in the
formation of intracranial tumors strongly resembling human

1 The abbreviations used are: GEM, glioblastoma multiforme; NHA,
normal human astrocytes; PTM, post-translational modification;
hTERT. human telomerase reverse transcriptase.
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grade Ill anaplastic astrocytoma after injection into mice. In
contrast, activation of AKT or EGFR does not trigger this
transformation (7). RAS remains difficult to target and several
small molecule inhibitors targeting downstream nodes of the
RAS regulated core axis have been developed for potential
cancer treatment. For example, cobimetinib (Genentech Inc.,
South San Francisco, CGA) and pictilisib (Genentech Inc.) are
both highly selective and potent inhibitors of MEK1/2 and
PI3K, respectively (11, 12). MEK or PI3K inhibitors as single
agents in GEM therapy, however, lack of efficacy and require
the development of more effective therapies (13, 14).

Cver 70% of secondary glioblastomas harbor isocitrate
dehydrogenase 1 (IDH1) mutations, involving Arg132 in nearly
all cases, whereas primary glioblastoma rarely show IDH mu-
fations (15-17). It has been shown that IDH1 Arg132 mutation
suppresses the biochemical ability of IDH1 to convert isoci-
frate into w-Ketoglutarate (o-KG) by further converting o-KG
into 2-hydroxyglutarate (2-HG) (18). As a result, the oncome-
tabolite 2-HG accumulates at high levels in IDH1 mutant
fumaors (up to 100-fold of normal) and inhibits «-KG-depend-
ent histone and DMA demethylases, affecting epigenstic reg-
ulation and associated gene expression (supplemental Fig.
52) (19, 20). Although 60 other human w-KG-dependent di-
oxygenases exist (21), «-KG-dependent histone demethy-
lases are the most sensitive to 2-HG-mediated inhibition (20).
Other epigenetic alterations induced by mutant IDH1 include
the CpG island methylator phenotype (CIMP), characterized
by increased global DMNA methylation (22). However, more
detailed mechanizsms of tumorigenesis produced by accumu-
lation of 2-HG and CIMP in IDH1-mutant gliomas, including
specific alterations in signaling pathways and key epigenetic
factors responsible for transformation and progression, re-
main largely unknown.

To uncover possible mechanisms driving the cellular and
molecular transformation of primary and secondary glioblas-
toma, we investigated changes of protein abundance, phos-
phorylation, and histone post-translational modifications
(PTMs) in an in vitro model. Direct analysis of proteins and
PTMs provides an important advantage over genomic and
transcriptomic approaches, because mBMNA expression often
does not correlate with protein expression and cannot predict
functional state of proteins determined by FTMs (23, 24). Only
a few studies have attempted to investigate the alterations in
phosphorylation within signaling networks in human gliomas
(25-27), but none have addressed the potential involvement of
an altered histone code by targeted quantitative mass spec-
trometry (MS). MS-based proteomics provides a platform for
in-depth identification and guantification of thousands of pro-
teins and their PTMs, including histone PTMs, and allows the
quantitation of perturbed signaling networks (26).

To study these mechanisms in vitro, we chose a previoushy
developed cellular model (7, 29). This system consists of
MNHA=, which are immortalized by the reactivation of telomer-
ase activity via the expression of human telomerase reverse

transcriptase (hTERT) and the introduction of virally-encoded
E& and ET to inhibit the transcription of ps3 and pRDb, respec-
tively. NHA EGET hTERT (control-MHA) are further trans-
formed into tumorigenic astrocytoma cells by either overex-
pressing oncogenic H-Ras V12 (RAS-MHA) or introducing
mutant IDH1 {IDH1mut-MHA), mimicking primary and second-
ary high-grade astrocytoma, respectively.

In this work we applied a quantitative MS-based strategy to
characterize the proteomic and phosphoproteomic changes
in HRAS and mutant IDH1 driven glioma cells. We report the
driving roles of the MEK and PI3K signaling pathways in
RAS-MNHA cells, and describe previously unknown alterations
in other pathways. Furthermore, we show that simultaneous
MEK and PI3K inhibition reverses many but not all signaling
changes driven by oncogenic HRAS in RAS-NHA cells. Addi-
tionally, we provide a quantitative view of major effects on
histone PTM occupancies resulting from the overproduction
of the oncometabolite 2-HG and its inhibition of chromatin
remodeling enzymes in IDH1mut-NHA cells.

EXPERIMENTAL PROCEDURES

Cell Culfure=Immortalized NHAs were a gift from B O. Pieper
(University of Califfomia San Francisco, CA)l The creation of NHA
exprassing EGET and hTERT (control-NHA), NHA expressing EG/ET,
hTERT, and IDH1mutant (IDH1mut-NHA), and MHA expressing E&/ET,
hTERT, and H-Ras V12 (RAS-NHA) has boen described previously (7,
30). IDHimut- and RAS-NHA cells were cultivated in stable isotope
labeling by amino acids in cell culture (SILAC) DMEM-H21 meadium
(Thermo Fisher Scientific, Waltham, MA) supplemented with 10%
dialyzed FBS and 1% Penicilin Streptomycin containing heawvy
130, N,-lysine and "*C,"5N,-arginine (R10K8) or medium “H,-lysine
and '*C,, arginine (R6K4) (Cambridge Isotope Laboratories, Andover,
MA), respectively. Control-NHA cells wera grown in SILAC DMEM-
H21 meadium supplemented with light lysine and arginine (ROKO). All
cell lines wera maintained at 37 *C and 5% CO, and collected after a
minimum of 5 passages.

Immunoblotting=To prepare the lysates for immunoblot assays,
cells were lysed in RIPA buffer (Thermo Fisher Scientific) supple-
mented with 1% phosphatase and protease inhibitors. Samplas wera
rocked at 4 “C for 30 min and cleared by centrifugation at 10,000 rpm
for 10 min at 4 °C. Pratein levals wera measurad using the Pierce BCA
protein assay (Tharmo Fisher Scientific) by flucrescence spectrome-
try. Equal amount of protein exiracts were incubated at 70 “C in LDS
sample buffer and reducing agent (Invitrogan, Carlsbad, CA) for 10
min before being separated by SDS-polyacrylamide gel electropho-
resis (NUPAGE, Invitrogen) and transferred to & nitroceliulose mem-
brane. After blocking for 1 h at room temperature with bovin serum
albumin, mambranes were incubated with primary antibodies over-
night at 4 *C. Anti-nestin (NES) antibody was obtained from Santa
Cruz Biotechnology. Specific antigen-antibody interaction was de-
tected with anti-mouse secondary antibodies labeled with horserad-
ish peroxidase (HRP). Signal was revealed by SuperSignal West Pico
Chemiluminescent HAP substrate (Thermo Fisher Scientific).

MEX and PI3K Inhibition—Wa treated heavy SILAC-labeled RAS-
NHA cells with 2 pm of cobimetinib (GDC-0973, Genentech Inc.) and
unlabsled RAS-NHA cells with DMSO for 4 h. Dual MEK and PI3K
inhibition was carried out by the addition of 2 pa GDC-0973 and 5 M
pictilisib (GDC-0041, Genentech Inc.). After 4 h, cells were collected
and stored at —80 “C. GDC-0973 and GDC-0941 drug concentrations
were salected based on previously described conditions (31).
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Sample Preparation and Titanium Dioxide (TiC.) Phosphopeptide
Enrichimant = After full incorporation of SILAC labels, cell palliets wera
collected and stored at —80 °C. Cell pellats were lysad in 8 w uraa, 20
mm HEPES buffer by sonication and clarified by centrifugation at
16000 x g for 10 min. Protein content was measured using Pierce
BCA protein assay (Thermo Fishar Scientific) according to the man-
ufacturer's protocol. Heavy and medium SILAC-labeled samples
wera combined with the unlabeled sample at 1:1:1 final protein con-
tent ratio. Proteins wears reduced with dithiothreitol and alkylated with
iodoacetamide prior to overnight tryptic in-solution digestion at 37 *C.
Tryptic peptides were further desalted with Sep-Pak C18 cartridges
(Waters Corporation, Milford, MA). Peptides wera enriched for phos-
phopeptides with an in-house packed TO, column using an AKTA
Purifier HPLC system (GE Healthcare, Chicago, IL) as described
praviously (32). Both, phosphopeptide and flowthrough (non-phosphor-
ylated peptides) fractions wers further fracticnated by off-line high-pH
reversed phase chromatography into 20 fractions as previously de-
scribed (32). The fractions were desalied with Zip Tip CG18 pipette tips
(Millipore Corporation, Billerica, MA) before liguid chromatography
tandem mass spectromeiry (LC-MS/MS) analysis. This experiment
was repeated in three biological replicates.

To assess the SILAC labeling efficiency, about 200 wg of proteins
of heavy RAS-NHA and medium IDH1mut-NHA SILAC-labeled sam-
ples were separately reduced, alkylated, and digested before LC-
MSE/ME analysis as described above.

LC-MS/MS Analysis—Nanoflow LC-MS/MS analysis of tryptic pep-
tides was conducted on an LTQ-Orbitrap Velos (Thermo Fisher Sci-
entific) fitted with an EASY-Spray PepMap® RSLC C18, 3 um, 100 A,
75 pwm = 15 cm column (Themo Fisher Scientific). About 0.4 pg of
desalted peptides wera loaded and eluted over the course of 57 min
from 2-27% solvent B (100% acetonitrile, 0.1% formic acid) and
stepped up to 50% in 2 min. The mass spactrometer was operatad in
"top-6” data-dependent mode, collecting M3 specira in the Orbitrap
mass analyzer (60000 resolution, 350-1500 m/z range) with an auto-
miatic gain control (AGC) target of 2E6 and a maximum ion injection
time of 250 ms. Following higher-energy collisional dissociation
(HCD), M5/MS spectra were collected in the Orbitrap (7500 resclu-
tion, 350-1500 m/z range) with an AGC target of 9E4 and a maximum
ion injection time of 500 ms. Label free analysis was performed on an
Orbitrap Fusion mass spectrometer in a "top-107 data-dependent
mode, collecting MS spectra in the Orbitrap (120,000 resolution,
375-1600 m/z scan range} with an AGC target of 2E5 and a maximum
ion injection time of 50 ms. After HCD fragmentation, MS/MS spectra
wara collected in the Orbitrap (30,000 resolution, 350-1400 m/z scan
range) with an AGC target of 5SE4 and a maximum injection time of 60
ms. Desalted peptides were loaded on an EASY-Spray PepMap@
RSLC C18, 2 pm, 100 A, 75 pm x 15 cm column (Therme Fisher
Scientific) and aluted over the course of 85 min with an acetonitrila
gradient from 2-25% solvent B (38% acetonitrile, 0.1% formic acid)
and stepped up to 40% in 2 min.

Experimental Design and Statistical Rafionale — For the character-
ization of the proteomic and phosphoproteomic changes in HRAS
and mutant IDH1 driven glioma cells, we applied a SILAC quantitative
M5-basad strategy. Biological triplicates of each triple-SILAC axper-
iment provided p values for the statistical analyses. An additional label
free guantification was measured to validate the proteomic changes
observed in IDH1mMut-NHA cells compared with control calls. Two
technical replicates were measured for the analysis of histone PTM
changes of IDH1mui- IDH1wt-, and control-NHA cells,

Data Analysis=Tandem mass specira were searched against the
UniProt_2015_07 human database (containing 68561 entries) using
MaxQuant version 1.5.2.8 with a 1% false discovery rate (FDR) at the
phosphosite, peptide, and protein lkevel. Default settings with the
following changes were applied: “phospho (STY)" wers selacted as

variable modifications for phosphopeptide searches, “re-guantify™
and “match between runs” were enabled, and a minimum ratio count
of 1 was selected, meaning that at least one labeled peptide triplet
needs to be quantified to report a SILAC ratio. Carbamidomethylation
of cysteine was selected as fixed modification and M-terminal protein
acetylation and methicnine oxidation as variable modifications and a
maximum of two missed cleavages was selacted with trypsin as
protease. The mass tolerance for precurser lons and fragmeant ions
were 20 ppm. Bioinformatics analysis was performed with Perseus
wversion 1.5.1.6, Microsoft Excel, and R statistical software. Heawy!
light and meadium/light log2 ratios were calculated for each detected
protein and normalized by maedian-cantering (Le. setting the median
log2 ratio equal to zero). Average log2 ratios from the biclogical
repeats and the corrasponding p values ware visualized with volcano
plots. p values wers calculated based on a f test and a p value of <
0.05 and fold change of = 2 (log2 = 1) were chosaen as the signifi-
cance cutoff based on the distributions cbserved in volcano plots. All
raw data, search parameters, and results are available on Proteome-
¥change via the PRIDE database (PXD00494s5). We provide further
information about all identified phosphopeptides in supplemental Ta-
bles 51-53 and the annotated spectra can be visualized using the
ProteinProspector MS-viewer with the following search keys:
rgbizvexBl (iriple SILAC experimeni, supplemental Table S1),
t334dbbxng (MEK inhibition experiment, supplemental Table 52), and
whixjvOhoj (dual MEK and PI3K inhibition experiment, supplemental
Table S3).

Gane Ontology, Molacwar Signafure Database (MSigDB) and Prin-
cipal Component Analysis (PCA) Analysis—To identify enriched bio-
logical processes terms within our data set we used DAVID bioinfor-
matics functional annotation tool (hitp://david.abce.ncifcrf.gov) (33).
The significance of fold enrichment was calculated wsing a Banjamini-
Hochberg adjusted p value of = 0.01. Gena sat anrichmeant analysis
(GSEA) was parformed using gene sat collections "h,” "c2,” "c3,” "c4,”
"c5," and "c6” from the MSigDB (34). We estimated the significance of
fold enrichments for aach gene sat by hypargecmetric tasting in . PCA
was performed on the processed data as described previoushy (35).

Hisfone Purnfication and Mass Spectromefry Analysis by Paralial
Resaction Monitaring (PRM)—H2A, H2ZB, H3, and H4 histones were
purified with a histone purification kit (Active Motif, Carlsbad, CA)
aceording to the manufacturer's protocol. Histone concentrations
were measured using Direct Detect Infrared Spectrometer (Millipora).
In total, 4 pg of unlabeled histones (exiracted from 1DH1mUt-,
IDH 1wi-, and RAS-NHA cells) and heavy amino acid-labeled histones
{emtracted from PCO cells, used as a common standard) were mixed
i a 1:1 ratio. Histone digestion and MS analysis were performad as
previously described (36). Briefly, histones were propionylated using
deuterated propionic anhydnde; the reaction was quenchad by hy-
droxylamine followed by tryptic digestion overnight and phenyl-iso-
cyanate (PIC) labeling. Histone peplidas wera then analyzed by
capillary reversed phasa ulira high-pressure liquid chromatography-
elactrospray ionization tandem MS on an Orbitrap Fusion mass spac-
trometer as described previcusly (37). Targeted product ion spectra
werz acquired by PEM basad on a targeted inclusion list containing 72
transitions covering 100 peptide combinations and 71 distinct histone
PTMs for histones H3 and H4. Data were further processed with Skyline
{38) and the relative abundance of histone PTMs across the samples
was normalzed using the heavy SILAC-labelad intamal standard (PC9
cells). Experiments were repeated twice (technical replicates) and a log2
ratio cutoff of = 0.2 was usad to define significant changes.

RESULTS AND DISCUSSION

I} Quantitation of Proteomic and Phosphoproteomic Changes
by SILAC-MS3 in RAS or Mutant IDHT Driven Glioma Celis—To
compare signaling alterations in RAS or mutant IDH1 driven
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Fiz. 1. Experimental design. IDH1mut-NHA and RAS-NHA cells weare medium and heavy SILAC-labeled, respectively. Control-NHA calls
remained unlabeled. Protein lysates were mixed in & 1:1:1 ratio, enzymatically digested, enriched for phosphopeptides by TiD2, and both
phosphopeptides and the flow through (FT) were fractionated by high-pH reversed phase chromategraphy into 20 fractions before analysis by
LG-MS/MS. Data were procassad using MaxQuant software at 1% FDR.

astrocytoma cell lines we determined proteome-wide phos-
phorylation and protein abundance changes in immortalized
MHA cells in response to overexpression of HRAS or mutant
IDH1 using SILAC based MS (39) (Fig. 14). After full incorpo-
ration of SILAC labels as assessed by MS (98 and 96%
labeling efficiency for RAS-NHA and IDH1mut-MHA cells, re-
spectively (supplemental Table 54)), the phosphorylation and
protein abundance changes of these two cell lines were com-
pared with control-NHA cells. Overall, we identified 6242
phosphorylation sites with a 1% FDR at the protein, peptide,
and phosphaorylation site level. Among these, 4978 phosphor-
ylation sites were mapped with high confidence (localization
probability = 0.75 (28)) (supplemental Table 55). A total of
2817 of these phosphosites were detected and quantified in
at least two of the three biclogical replicates, and 1402 sites

were detected in all three replicates and all three cell types
(Fig. 2A). The maijority (77%) of the detected phosphopep-
tides were singly phosphorylated, whereas 19% were doubly
and 4% triply phosphorylated. A comparison of relative phos-
phopeptide abundances (ratios to the control-NHA cells) be-
tween biological replicates showed high reproducibility, with
an average Pearson correlation factor R of 0.77 (supplemental
Figs. 534 and S4).

We detected a total of 4034 proteins at 1% FDR, of which
2800 proteins were identified in at least two biological repli-
cates, and 1764 proteins were detected in all three biological
replicates (Fig. 2B). Measured relative protein abundances in
the biological replicates showed high degree of reproducibility
with an average Pearson correlation factor R of 0.76 (supple-
mental Fig. S3B). M5 validated the over-expression of HRAS
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Fiz. 2. Detected proteomes and phosphoproteomes in three biological replicates. The Venn diagrams indicate the number of (4)
phosphositas (localization probability = 0.75) and (B) proteins identified in each biclogical replicate. Scatterplots llustrate the comparison of
protein intensities (log2) in (C) RAS-NHA cells compared with control-NHA cells and (D) IDH 1 mut-NHA cells compared with control-NHA cells

in one of three biclogical replicates.

at the protein level in RAS-NHA cells (Fig. 2C). Although
previous studies confirmed the presence of the mutant form
of IDH1 in IDH1mMut-MHA by Western blot (29), we also ob-
served significant over-expression of IDH1 at the protein level
(Fig. 20).

) Characterization of the Phosphoproteome in RAS-NHA
Celis—In order to detect signaling network alterations medi-
ated by oncogenic HRAS in glioma, we quantitatively com-
pared phosphorylation changes of RAS-NHA to those of NHA
cells as the control. For all comparizons, we used a 2-fold
change (log2 = 1) and p value of =20.05 cutoff to define
significant up or downregulation. Overall, 16.6% of all idendi-
fied phosphosites in RAS-NHA cells displayed significant
changes in regulation (Fig. 30). We found that 278 phosphor-
ylation sites comresponding o 154 proteins showed upregu-
lation, whereas 245 phosphorylation sites, mapping to 160
proteins, displayed downregulation (supplemental Table S6).
In total, 672 phosphorylated proteins were also detected in
the protein abundance measurements, allowing normalization
of phosphorylation changes by the respective protein expres-
sion to identify instances of abundance-independent changes
in phosphorylation (supplemental Table S7).

A) Affected Pathways Downstream of RAS—

Overexpression of HRAS Triggers Activation of the MAPK
and PI3K Pathways—To identify the biclogical processes
and pathways that are associated with altered phosphor-
ylation after HRAS overexpression, we performed GSEA
using MSigDB database of annotated gene sets (34). We
found that upregulated phosphoproteins in RAS-NHA cells
were significantly enriched for the MAPK (p = 0.0005), PI3K
[p = 0.009), and MTOR (p = 2e %) pathways (Fig. 3A).
Furthermore, sequences surrounding the regulated phos-
phosites showed a significant enrichment of canonical
MAPK and PIZK substrate recognition motifs (Fig. 38).

MAPK Pathway—Examining the correlation between phos-
phorylation and protein abundance revealed that a subset of
upregulated phosphosites, including MAPzK2, MAPK1, and
MAPKZ showed abundance independent upregulation (Fig.
3C). Phosphosites of MAPK1 (pT185 and pY187) are known
MAPZKA1/2 target sites (40) and displayed 3.4- and 6.5-fold
abundance independent upregulation in our experiments, re-
spectively. The dual phosphorylation of these two sites is
known to promote the kinase activity of MAPK1 and is re-
quired for maximal activation (41). Similarly, phosphorylation
of MAPK3 on pY¥204, which iz another target site of
MAP2K1/2 (42), revealed 6-fold higher abundance-independ-
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Fiz. 3. MAPK and PI3K signaling pathways are significantly upregulated in RAS-NHA cells. Upregulated phosphosites are significantly
enriched for (4) MAPK and PI3K pathways members based on GSEA analysis (p values are indicated for each gene set) and (B) for MAPK and
PI3K phosphorylation motifs. C, A subset of at least 2-fold regulated phosphosites show abundance-independent changes in all 3 biclogical

replicates. D, Proportion of regulated phosphosites.

ent upregulation (Fig. 44 and 48). In addition to perturbed
phosphorylation we found multiple changes at the protein
abundance level that are consistent with activation of the
MAPK pathway. For example, Sprouty protein 4 (SPRY4),
whose expression is induced by the MAPK pathway (43, 44),
showed a 10-fold upregulation at the protein level.

PizK Members—We also found that several key members
of the PI3K pathway showed regulation at the phosphoryla-
tion level, including AKT151, RPTOR, and RICTOR (Fig. 44
and 48). For example, AKT151 phosphosites pT246 and
p3212 displayed 3.1-fold and 1.9-fold abundance-independ-
ent upregulation, respectively. Both phosphosites have been
described as activating and are target sites of AKT1 and
MTOR, respectively (45, 46). Phosphorylation of AKT151 on
residue pT246 promotes activation of the mTORCA. Similarly,
phosphorylation of RPTOR on pS&63 displayed a 2.6-fold
upregulation; this site is also known to indicate mTORGCA
activation (47). Activation of mTORGCA leads to the stimulation
of its downstream targets including RPS6KEB1 and subse-
quent activation of EIF4B, which triggers transcription of mul-
tiple proteins involved in cell proliferation and survival (48).
Phosphorylation level of EIF4B (pS93) was identified in one of
the three biclogical replicates and showed 2.2-fold abun-

dance independent upregulation compared with control cells.
In contrast, other phosphosites on EIF4B, including pS238
and pS406, did not show significant changes. Interestingly,
another member of the EIF family, EIF4E, showed a 2.5-fold or
higher increase of phosphorylation on multiple sites in the
C-terminal tail, including pT205, pS207, and pS209. The
phosphorylation of EIF4E on pS209, known to be mediated by
the EIF4G-associated kinases MMK1 and MNK2, promotes
cap-dependent translation (49, 50). MNK1/2 are protein-ser-
ine/threonine kinases that are activated by MAPK, and inhibi-
tion of these two kinases results in decreased glioma forma-
tion in mice (51). Notably, pT205 and pS207 phosphosites on
EIF4E have not been functionally characterized. Their signifi-
cant upregulation points to a possible role in regulating the
function of EIF4E.

Other regulated proteins in PISK pathway in RAS-NHA cells
included Niban (FAM1294). FAM129A requlates the phosphar-
ylation of multiple proteins involved in translation regulation,
including EIF2A, EIF4EBP1 and RPS8KB1. Consistent with
overexpression of FAMA129A in multiple cancer types (52-54),
we observed a 2-fold upregulation of its abundance in RAS-
NHA cells. Additionally, we detected a 2-fold upregulation of
phosphorylation at pS&0z. This site is a known substrate of
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associated regulated phosphosites.

AKT1. Phosphorylation of FAM129A promotes the degrada-
tion of p53 (55), which in our system is consistent with sup-
pression of apoptosis by oncogenic HRAS, We also detected
another upregulated (3.7-fold) phosphosite of FAM129A at
pS646. The functional role of this phosphosite, however, is
unknown. Niban-like protein 1 (FAM123EB) also showed sig-
nificant upregulation of multiple phosphosites (pS641, pS646,
pS665, pS661, pSe9z, pSea6) in RAS-NHA cells. FAM129B
plays a critical role in cancer cell invasion, primarily by inhib-
iting caspase-mediated apoptosis (56). Although MAPK reg-
ulated signaling has been shown to mediate phosphorylation
of pS641, pSe46, pSe92 and pSE96 in melanoma (57), the
roles of pS665 and pS881 phosphosites have not been pre-
viously characterized.

Similar to prior reports, multiple target phosphosites of
MTOR showed significant upregulation in response to
HRAS overexpression, including pS289 on BAG3, pS768
and pS774 on LARP1, and pS212 on AKT131 (1.4-fold). All
three targeted proteins have been previously associated
with roles in cell proliferation and anti-apoptotic activity (58,
59).

Taken together, our findings indicate that the MAPK and
PI3K pathways are highly activated in RAS-MNHA cells.

Other Ras Downstream Pathways— In addition to the MAPK
and PI3K pathways, we identified altered phosphorylation of

other pathways and proteins that are known to act down-
siream of RAS, such as Cdc42 effector proteins 1, 2, 3, and
4, and p21-activated kinases (PAKS), as well as several PAK
target proteins. For example, multiple PAK1 target sites,
including ARHGEF2 pS&86 displayed upregulation (2.6-fold)
(B60). Furthermore, the PAK1 inhibitor Merlin (NF2) showed
significant (2.8-fold) downregulation at the protein level,
which is characteristic for PAK1 hyperactivation (61). We
further found that several Rho guanine nucleotide exchange
factors (GEFs) and Rho GTPase activating proteins (GAPS),
such as ARHGEF2, ARHGEF?, ARHGEF28, and ARHGAP22,
ARHGAPZ23, and ARHGAP24 exhibited significant upregu-
lation of protein abundance or phosphorylation. For in-
stance, ABHGEF2 phosphosites pS696, pSes6, and pS645
demonstrated 3.2-fold and higher upregulation.

RAS related proteins RALA, RALB, and RALEP1 are impor-
tant for RAS-mediated oncogenic signaling (62), and we found
that 6 of the 13 identified RAL interaction partners (R-RAS2,
RAP2B, RABSBE, RGL4, RALA and RALB) showed 2-fold or
higher upregulation at the protein level (supplemental Fig. S5).

Therefare, in addition to MAPK and PI3K pathways, multiple
other RAS effector pathways and proteins displayed changes
consistent with their RAS-dependent regulation.

B) Phosphorylation Patterns Point to Feedback Mediated
Phosphorylation of Upstream Regulators of RAS—In addition
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to the changes in downstream effectors of RAS, we also
found changes in phosphorylation of multiple proteins up-
stream of HRAS, pointing to feedback regulation mecha-
nisms. For example, EGFR, FGFR4, EPHAZ, and TGFER2
receptors showed significant phosphorylation upregulation in
RAS-NHA cells. EGFR phosphosites pT648, pS391, and
pS1166 displayed 3.5-fold, 3.7-fold, and 1.6-fold upregula-
tion, respectively. The pS991 and pS1166 sites are both
thought to be negative regulators of EGFR (63, 64). EGFR
pT648 has not been previously functionally characterized, but
our results suggest that by analogy to pS991 and p51166 this
phosphosite may also be involved in feedback downregula-
tion of EGFR. Additionally, pS251 and pS362 of ERRFI,
which iz a negative regulator of EGFR (65), were also signifi-
cantly upregulated, raising the possibility that phosphoryla-
tion at these sites may promote the activity of ERRFH as a
negative regulator of EGFR.

Furthermore, we found that FGFR4 phosphorylation site
pS573 was one of the most significantly upregulated (34-
fold) sites in our experiment. Whether phosphorylation of
pS573 on FGFR4 promotes its activation or inhibition, how-
ever, remains unclear. Interestingly, the receptor tyrosine
kinases (RTKs) EPHAZ and EPHB2, which are both involved
in cell adhesion and migration dependent signaling, showed
distinct responses to RAS activation. Although EPHB2
didn't reveal regulation in RAS-NHA cells, EPHAZ showed
significant upregulation at the protein and phosphorylation
levels. The AKT-mediated EPHAZ phosphorylation on resi-
due pS897 displayed a 4.9-fold upregulation.

C) Dual MAPK and PI3K Inhibition Yields a More Complete
Reversal of the Phosphorylation Changes Driven by Onco-
genic HRAS Compared with MEK Inhibition Onily—We next
wanted to know if the protein and phosphorylation regula-
tion changes observed as a result of oncogenic HRAS over-
expression in NHA cells could be reversed by inhibition of
its downstream effects. Specifically, we sought to identify
and compare the sets of regulatory changes reversible by
either a MEK inhibitor alone or in combination with a PI3K
inhibitor. For this purpose, we treated RAS-NHA cells with a
highly selective small-molecule inhibitor of MEK1/2 (GDC-
0973, Genentech Inc.) (11) and a potent class | PISK inhib-
itor {(GDC-0941, Genentech Inc.) (12) and measured global
protein and phosphorylation changes (Fig. 34).

MEK Inhibition— After MEK inhibition alone, we identified 85
and 170 phosphosites displaying at least 2-fold down or
upregulation in RAS-NHA cells compared with DMSO treat-
ment, respectively (supplemental Table 26 and supplemental
Fig. S6A4). Overall, we identified 115 {41.4%) of all significanthy
upregulated sites observed in the RAS-NHA versus control-
MHA cells experiments. Although 15 (13.0%) of upregulated
sites in RAS-NHA cells displayed at least 2-fold downregula-
tion after MEK inhibition (reversible sites) (Fig. 58), 25 (21.7%)
were paradoxically activated upon MEK inhibition beyond that
seen from HRAS overexpression (nonreversible sites) (Fig. 5C)

(supplemental Table £3). Reversible sites that showed at least
2-fold downregulation after MEK inhibition, included MAPKA
(pY187) and MAPKS (pY204) as well as phosphoproteins in-
volved in RAS protein signaling transduction (FAM1238B and
ARHGAP29). Other reversible sites included EPSEL2 (pS459),
MES (pT33s), PML (pS527) and TACC1 (pS276). On the con-
trary, we observed nonreversible sites such as AKT151
(pT246), which is consistent with the compensatory activation
of PIZK pathway as a result of MEK inhibition observed in
other systems (66). Interestingly, NES phosphorylation sites
showed opposite regulation after MEK inhibition. Although
pT338 was reversible, pS905 was activated upon MEK inhi-
bition. HMGA1 (pS44), GREM1 (pS77), and ILEST (pS667)
were also categorized as non-reversible sites. In addition to
the changes in downstream proteins, we found altered phos-
phorylation of multiple proteins upstream of MEK pointing to
feedback regulation mechanisms. For example, NGFR pS313,
which already showed 16-fold upregulation in RAS-NHA cells
(compared with control-NHA cells) was upregulated 20-fold
more after MEK inhibition alone, suggesting that this site
might be involved in compensatory activation of NGFR fol-
lowing MEK inhibition.

Dual MEK and Pisk Inhibition—We next investigated the
efficacy of dual MEK and PIZK inhibition in reversing signaling
changes mediated by oncogenic HRAS in RAS-MHA cells. By
applying quantitative MS after 4 h of treatment, we found 403
phosphosites displaying at least 2-fold downregulation after
dual inhibition compared with DMSO treatment. Only a mi-
nority of phosphosites (129) showed more than 2-fold upregu-
lation after dual inhibition (supplemental Table 510 and sup-
plemental Fig. S68).

In this dual inhibition experiment, we quantified 217 (78.1%)
of significantly upregulated phosphosites identified in the
RAS-NHA versus control-MHA cells experiment. Of these, 49
(22.6%) showed significant downregulation after dual inhibi-
tion {reversible sites) (Fig. 50) and 6 (2.8%) displayed signifi-
cant upregulation (nonreversible sites) (Fig. 5E) (supplemental
Table 311).

Among the reversible phosphorylation sites, MAPK1
(pT185, pY187), MAPK3 (pYo20), and AKT1S1 (pT24g)
showed the most substantial downregulation (up to 68-fold)
after dual inhibition. Furthermore, downstream targets of
the MAPK signaling cascade such as pS641, pS646, pSaa2
and pS696 of FAM129B, ARHGAP29 pS1029, and pS405
CTTN showed significant reversed phosphorylation pat-
terns. Multiple downstream targets of PI3K, including BAG3
and EIF4E showed significant reversed phosphorylation
patterns as well. Interestingly, pS946 and pTé48 of the
upstream regulator EGFR were also reversed. Similar to
MEK inhibition only, MES phosphorylation sites showed
distinct responses to dual inhibition. Although pT338 was
significantly downregulated after MEK inhibition only and
dual inhibition, pS1577 was one of the few nonreversible
phosphorylation sites after dual inhibition. Other nonrevers-
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Fiz. 5. MEK and PI3K inhibition reverses phosphorylation signaling patterns driven by oncogenic HRAS overexpression in RAS-NHA
cells. A, Experimental overview. B, Down and () upregulated phosphosites after MEK inhibition that were also upregulated in RAS-NHA versus
control-NHA cells. D, Down and (E) upragulated phosphosites after dual MEK and PI2K inhibition that were upregulated in RAS-NHA calls

compared with control-NHA cells.

ible phosphosites included NGFR (pS313), PTRF (p5237),
DST (pS106), PCDH7 (pSa74), and PPP1R14A (pS128), sug-
gesting that different pathways, other than PI3K and MAPK
regulate these sites.

MEK Inhibition Only Versus Dual MEK and PI3K inhibition—
Comparing both experiments fo each other revealed that
several phosphorylation sites showed opposite or more
substantial downregulation after MEK and PI3K inhibition
compared with MEK inhibition alone. For example, pT246 of
AKT151 showed 12-fold abundance-independent down-
regulation after dual inhibition, but 2-fold abundance-inde-
pendent upregulation after MEK inhibition alone. RICTOR
pS1302, which was 1.7-fold upregulated after MEK inhibi-
tion, showed no changes in phosphorylation after simulta-
neous inhibition. Several phosphosites of CDC42EP pro-
teins and TGFER2, which showed abundance-independent
increased phosphorylation after MEK inhibition displayed

downregulation after dual inhibition. Multiple phosphosites
of IRS-1 and 2, which are known substrates of MAPK (67),
showed 3.5-fold or higher downregulation after dual inhibi-
tion, but only moderate responses (< 1.5-fold) after MEK
inhibition. We further observed that in addition to RAS and
cell cycle associated proteins, phosphosites of focal adhe-
sions and cell motion proteins were significantly downregu-
lated after dual inhibition compared with MEK inhibition
alone (supplemental Fig. S6C, 560, and S&F).

Taken together, inhibition of MEK reversed only a minority
of HRAS-driven phosphorylation patterns. In comparison,
simultaneous inhibition of the MAPK and PI3K signaling
pathways reversed many signaling changes driven by on-
cogenic HRAS with the exception of sit phosphorylation
sites that were not reversible. Dual inhibition was clearly
superior in reversing oncogenic signaling in HRAS driven
glioma cells compared with MEK inhibition alone.
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Fiz. &. Significant dysregulation of epigenetic and metabolic proteins in IDHAmut-NHA cells. The volcano plots illustrate the Log2 fold
changes in IDH1mut-NHA compared with control-NHA cells (x axis) at the (A) protein abundance or (B} phosphorylation level and p values
estimated in biological replicates (v axis). C, Proportion of regulated (at least 2-fold) proteins and phosphosites in all 2 biclogical replicates. D,
Downregulated phosphosites in IDH1 mut-NHA cells are enriched for MAPK and PIZK motifs compared with control calls.

M) Oncogenic Activity of Mutant IDHT Induces Global Pro-
tein Expression Changes and Perturbs Epigenetic Regulation
in IDH1mut-NHA Celis—

Global Proteome and Phosphoproteome in IDHTmut-NHA
Cells—IDH1 mutation is a selective marker of secondary glio-
blastoma, and given its pivotal role in the inhibition of histone
demethylases and reorganization of DNA methylation, we as-
sessed whether protein abundance changes can be linked to
the histone PTM signature of IDH1mut-NHA cells.

Owerall, we observed more down than upregulated proteins
as well as phosphorylation sites in IDH1 mut-NHA cells com-
pared with control-NHA cells. In total, 115 proteins (4.1%) and
292 phosphosites (10.4%) showed at least 2-fold downregu-
lation compared with 67 (2.4%) proteins and 115 (4.0%) phos-
phosites displaying significant upregulation (Fig. 6C and sup-

plemental Table S12). The observed protein abundance
changes were concordant with prior transcriptomic profiling
of IDHimut-NHA cells that revealed a global downregulation
of gene expression compared with wild type IDH1 (IDH1wt)
NHA cells (22). Both proteomic and transcriptomic observa-
tions are consistent with the G-CIMP of IDH1 mutant gliomas,
which induces global reorganization of the franscriptome (22,
G8). Similar to other studies showing that mBNA expression
levels are not fully reflective of protein abundances (23, 24),
we found that relative protein intensities in IDH1mut-NHA
cells did not correlate with relative gene expression when
comparing our data with the microarray data (supplemental
Fig. 57).

IDH1 Mutation Induces Epigenetic Alterations in IDH1mut-
NHA Ceils —Upregulated proteins in IDH1mut-NHA cells were
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enriched for chromatin-associated proteins, such as DNA
replicating licensing factors MCM2-7, DNMT1, and HELLS
(highlighted in orange in Fig. 6A). In addition, multiple chro-
matin-associated proteins, including «-KG-dependent KDM2A,
displayed significant phosphorylation alterations (Fig. 88). In-
terestingly, the most significantly upregulated phosphoryla-
fion site in IDH1mMut-NHA cells was localized on N-acetylse-
rotonin O-methyltransferase-like protein ASMTL (pS223)
protein. Additionally, phosphosites in lysine specific demethy-
lazes KDM1A (p5166) and KDM2A [pS740) showed significant
downregulation, whereas pS301 of KDMSC displayed signif-
icant upregulation.

w-KG-dependent histone demethylases are major targets of
IDH1 (20, 69). Most «-KG dependent histone modifying en-
zymes, however, did not show significant changes in protein
abundance in our dataset, suggesting that functional inhibi-
tion of u-KG dependent enzymes by mutant IDH1 does not
significantly affect their protein expression level.

Histane PTM Occupancies in IDH1mut-NHA Cells Reveal a
Transcripfional Sikencing State—We nexi sought to investi-
gate the downstream targets of «-KG dependent histone
demethylases. To this end, we compared histone PTM occu-

pancies of IDH1mut-MNHA to control-MHA cells. We quantified
site-specific histone PTMs by applying a hybrid chemical
labeling method and MS analysis by PEM (Fig. 7A and sup-
plemental Table 513).

Histone Methyiation— Overall, we identified 29 different
methylation marks on histone H3. Consistent with previous
studies using antibody-based detection approaches (22, 70),
multiple histone methylation sites showed significant increase
in methylation in IDH1mMut-NHA compared with control-NHA
cells, including H3Kames3 (1.2-fold), H3K27me3 (1.5-fold), and
H3K36me3 (1.3-fold). We further identified two other signifi-
cantly upregulated fri-methylated marks on histone H3
(HaK4me3 and H4K20mes3) (Fig. 7B). Although H3Kames,
H3K27me3, H4K20me3, and H3K36me3 are known to be
associated with transcriptional silencing, H3K4me3 is linked
to transcriptional activation (71). To control for possible ef-
fects of IDH1 protein overexpression, we also included
IDH1wi-MHA cells in our histone PTM analysis. We found that
IDHIwt-NHA cells presented opposite histone tri-methylation
regulation compared with IDH1mut-MHA cells, as H3Kame3,
H3K27me3, H3K36me3, and H4K20me3 displayed significant
downregulation in IDH1wt-NHA cells. All three histone marks,
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displayed 1.8-, 2.9-, 1.7-, and 2.9-fold increased upregulation
in IDH1mMut- compared with IDH1wt-NHA cells, respectively.
These results are consistent with the function of wild type
IDH1, which produces «-KG and subsequently activates
w-KG-dependent histone demethylases. Mutant IDH1, how-
ever, inhibits «-KG-dependent histone demethylases, which
results in increased histone tri-methylation.

In contrast to tri-methylated histone lysines, mono- and
di-methylated lysines did not show significant regulation and
appear not to be affected by mutant IDH1. Overall, the ob-
served methylation patterns suggest a transcriptional repres-
sive state in IDH1mMUt-NHA cells.

Histone Acetylation—While the majority of histone meth-
ylation marks have been linked to transcriptional repression,
Iysine acetylation is associated with transcriptional activation
(72). We found that IDH1mut-NHA cells displayed significant
downregulation of histone acetylation. In fact, all associated
marks, including H3K4ac, H3k9ac, H3Kz23ac, H3K27ac,
H4KSac, H4Keac, H4K12ac, H4Kigac, and H4K20ac,
showed significant downregulation (Fig. 7C). H3K4ac and
Hakgac displayed the most significant downregulation (8.6-
fold and 3.1-fold compared with IDH1wi-NHA cells, respec-
tively). Both of these marks, if acetylated, are known fo induce
transcriptional activation (73, 74). Finally, H3K14ac and
HaK1gac showed a frend for downregulation in 1DH1mut-
MHA cells. These results indicate that mutant IDH1 induces a
global transcriptional state through reduced acetylation.

Histone Butyryiation— Among all identified histone PTMs,
butyrylation was one of the most upregulated marks. We
identified three histone butyrylation sites on histone H2
(HaK14, H3K18, and H3k23). The H3K18 and H3K23 butyry-
lation marks displayed 1.4-fold and 1.5-fold upregulation in
IDH1mut-NHA cells compared with control cells, respectively
(Fig. 70). Histone butyrylation, however, was even more
significantly upregulated in IDH1wWi-NHA cells. In fact, his-
tone butyrylation was 1.9-fold downregulated in IDH1mut-
compared with IDH1wt-NHA cells. These observations sug-
gest a regulatory link between IDH1 mutation and histone
butyrylation.

In summary, our histone PTM analysis revealed a significant
upregulation of histone lysine trimethylation and downregula-
tion of histone acetylation and butyrylation in IDH1 mut-NHA
cells compared with IDH1wi-NHA cells, pointing to a global
transcriptional repressive state mediated by mutant IDH1,
consistent with the observed downregulated proteome in
IDH1mut-NHA cells.

Mutant IDH1 Induces Mefabolic Changes in IDH 1mut-NHA
Celis—In addition to epigenetic changes, we found that met-
abolic proteins (highlighted in blue in Fig. 64 and supplemesn-
tal Fig. S8) regulating glycolysis, lipolysis, as well as oxi-
doreductase activity were significantly dysregulated in
IDH1mut-NHA cells compared with control-NHA cells. Al-
though metabolic proteins AGPATS, ACO1, GAPDH, PGAM1,
TALDO1, ALDOA, HK1, HK2, and GPI displayed downregu-

lation, ACAT1, ME2, CS, TKT, and PKM were significantly
upregulated. Changes in glucose flux in IDHImMut-NHA cells
were reflected by the downregulation of the AKT pathway (Fig.
G0) and other enzymes stimulating the glycolytic flux, such as
hexokinases. These findings have also been observed in a
label free analysis, comparing the proteomes of IDH1mut-
MNHA to control-MHA cells in a single-run mass spectrometry
workflow (supplemental Fig. 58). These observations are con-
cordant with the pivotal role of IDH1 within the TCA cycle (75).

V) HRAS-overexpressing or IDH1-mutated Astrocytomas
Are Driven by Different Oncogenic Pathways—We showed
that bath RAS-NHA and IDHimut-MHA cells express dys-
regulated altered oncogenic pathways. Using PCA, both cell
lines can be clearly differentiated from each other based on
their proteomic and phosphoproteomic profiles (supplemental
Fig. 84). The driving role of the MAPK and PISK pathways in
RAS-MHA cells was not reflected in IDH1mut-NHA cells. The
surrounding sequences of downregulated phosphosites in
IDHimut-MHA cells significantly matched with canonical
MAPK substrate recognition motifs (Fig. 60). Concordantly,
downstream targets of the MAPK signaling cascade such as
pS641, pS646, pS692 and pS6e96 of FAM123B (57), which
displayed significant upregulation in RAS-MHA cells, showed
significant downregulation in IDH1mut-NHA cells. In addition,
PI3K targets, such as AKT131 pT246 did not reveal any
regulation in IDH1mui-MHA cells (Fig. 65).

Other signaling pathways that showed different regulation
in IDH1mMut- compared with RAS-MHA cells include the Wnt
pathway. IDH1mut-NHA cells displayed significant upregula-
tion of g-catenin phosphosites and no upregulation of the
AKT-mediated inactivating GSK35 pS9 phosphorylation site,
indicating an inactive or less active Wnt signaling pathway
compared with RAS-NHA cells (supplemental Fig. 510). This
finding is consistent with a recent report highlighting that IDH1
Arg132 mutation reduces cell proliferation by downregulating
Wnt/g-Catenin signaling in glioblastoma (76). Although the
role of the Wnt pathway in human glioma remains unclear, the
Wnt pathway has oncogenic (77, 78) and antioncogenic (79—
61) activities in several cancer types.

Interestingly, one of the most downregulated (7-fold) pro-
teins in IDH1mMut-NHA cells was NES, which showed opposite
regulation in RAS-NHA cells with a 10-fold upregulation at the
protein level. We further showed by label free MS analysis and
Western blot that NES was exclusively downregulated in
IDH1mMut-NHA cells when comparad with IDH1wt-NHA, RAS-
MNHA, or control cells (supplemental Table S14 and supple-
mental Fig. $11). NES has been previously reported to be
overexpressed in GBEM (27), to comrelate with the malignancy
of glioblastoma (82), and its inhibition significantly reduced
tumor growth (83).

At the cell membrane level, EPHAZ and EPHBZ showed
distinct responses to RAS activation or IDH1 mutation in our
experiments. Although EPHAZ showed significant upregula-
tion in RAS-NHA cells, no significant changes were observed

50

Molecular & Cellular Proteomics 16.1



ASBMB

—~
—

—

MOLECULAR & CELLULAR PROTEOMICS

MCP

Signaling and Epigenetics in Astrocytoma

in IDH1mut-NHA cells. EPHB2Z, however, revealed significant
upregulation at the protein and phosphosite level exclusively
in IDH1mMut-NHA cells.

To assess the involvement of identified proteins in cancer
we compared our phosphoproteomic and proteomic datatoa
catalogue of 150 tumor suppressor genes and 350 oncogenes
listed in the cancer gene census (64). Overall, we quantitated
the relative abundance of 33 tumor suppressor proteins
(TSPs) and 102 oncoproteins in our proteomic or phospho-
proteomic experiments. Among the TSPs, MNeurofibromin
(NF1) and MF2 showed the most significant downregulation of
both abundance and phosphorylation in RAS-NHA cells but
did not show any significant regulation in IDH1 mut-NHA cells.
At the abundance level, NF1 (identified in one of the three
biological replicates) and NF2 displayed 9-fold and 2.8-fold
downregulation, respectively. NF1 and NF2 have been shown
to inhibit the activity of HRAS but not vice-versa (B5—88). Loss
of NF1 subsequently results in the activation of multiple path-
ways involved in gliomagenesis, including the MAPK and PI3K
pathways (89). The regulatory role of NF2, however, remains
poorly understood (90). Downregulated phosphorylation sites
included pSe6d, pS2523 (2.6-fold), pS2543 (4.6-fold) on NF1
and pS13 (2.8-fold) on MF2 proteins. The downregulated
phosphosites of NF1 have been previously reported, but their
function is unknown. In particular, all three phosphorylation
residues we uncovered on MNF2 including p510, pS12, and
pS13 have not been characterized, pointing to previously
unknown regulatory mechanisms.

Concluzion and Oufiook—In the present study we used
SILAC-based M5 to characterize global phosphorylation and
protein abundance changes in immortalized NHA cells ex-
pressing oncogenic HRAS or mutant IDH1. Although these
two models are not fully reflective of primary and secondary
GEM, they showed very distinct proteomic profiles consistent
with fundamentally different biological programs driving tu-
morigenesis in primary and secondary GBM (Fig. 8).

In RAS-MHA cells, we found activation of MAPK and PIZK
pathways. In addition to known changes in MAPK and PI3K
pathways, we identified significant changes in previously un-
characterized phosphosites within these pathways implicat-
ing them as likely sites of regulation downstream of oncogenic
HRAS signaling. These include EIF4E, FAM129A, FAM123B,
PAK, and NF2.

MEK inhibition resulted in partial reversibility of the changes
driven by oncogenic HRAS, whereas dual MAPK and PI2K
inhibition yielded a more complete reversal. Some compen-
satory changes because of MEK inhibition as a single agent,
including PI3K activation and upstream regulators TGFER2
and EGFR were blocked by the dual inhibition. However, even
dual MEK and PI3K inhibition did not reverse all signaling
changes mediated by oncogenic HRAS. NES (pS1577), NGFR
(pS313), PTRF (pS237), DST (pS106), PCOHT (pS974), and
PPP1R144 (pS128) were some of the few non-reversible
phosphorylation sites after dual inhibition, suggesting that

previously unknown feedback mechanisms regulate these
sites. Although dual inhibition of MEK and PI3K is clearly
superior to single MEK inhibition and is currently in phase |
clinical trials, based on these findings and multiple other
studies, clinical efficacy remains to be determined (91).

In addition to the activation of MAPK and PI3K pathways in
AAS-NHA cells, we identified changes in several other path-
ways. We observed a potential driving role for PAKs in glioma
development, consistent with previous studies (92-94). We
further found several interaction partners of the RAL proteins,
which are commaonly over-expressed in multiple cancer types,
including glioblastoma, to be highly upregulated in RAS-NHA
cells (62) (95, 96). In addition to regulation of the main signal-
ing cascades downstream of RAS, we observed substantial
phosphorylation and protein expression changes in other
pathways such as the Wnt pathway, presumably triggered by
interplay between the cascades. We also found regulated
phosphorylation sites of multiple proteins upstream of RAS,
pointing to feedback mechanisms. For instance, the FGF
signaling pathway, in particular FGFR4, which showed mas-
sive upregulation at the phosphorylation level has been re-
ported to stimulate the growth of GEM (97). We also identified
activating phosphorylation sites on EPHAZ, which have been
associated with glioblastoma invasion, consistent with the
mialignant phenotype of RAS-NHA cells (98). EPHAZ and other
Ephrin family receptors are particularly attractive for targeted
therapy, because they are expressed at very low abundance
or not expressed in healthy tissues but show high expression
in most cancerous tissues (39).

Unlike the changes in RAS-NHA cells characterized by
dysregulation of major signaling pathways, IDH1mut-NHA
cells displayed a global downregulation of protein expression,
detected at the level of both protein abundance and phos-
phorylation. The overall downregulation of protein expression
is consistent with evidence of genome-scale transcriptional
silencing identified previously (22). Protein expression
changes were accompanied by changes in histone PTMSs,
pointing to transcriptional repression, which in tum results
from mutant IDH1-mediated inhibition of histone demethy-
lases. Qur histone PTM analysis revealed a significant upregu-
lation of tri-methylated histone lysines, which are known to be
demethylated exclusively by «-KG-dependent histone dem-
ethylases. Therefore, our data suggest that «-KG dependent
histone demethylases are inhibited in IDH1mut-NHA cells.
This observation is consistent with previous reports that dem-
onstrated the overproduction of 2-HG, acting as a competitive
inhibitor of a-KG-dependent enzymes in IDH1mut-NHA cells
(18). Increase in methylation was accompanied by a decrease
in acetylation at essentially all measured sites providing fur-
ther support for a state of global transcriptional repression
mediated by mutant IDH1. We speculate that histone
deacetylase (HDAC) inhibitors, including those currently in
clinical trials for the treatment of GBEM (100), may reverse the
downregulation of the histone acetylome in IDH1mut-NHA
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significant upregulation, histone acetylation marks present significant downregulation in IDH1mui-NHA calls.

cells. We also detected upregulation of histone butyrylation in
IDH1mut- and IDH1wi-NHA cells. However, when compared
with IDH1wt-, IDH1mut-NHA cells displayed downregulated
histone butyrylation changes. The function of this recently
dizcovered histone PTM (101) remains largely unknown. A
study showed that butyrate and free CoA inhibit the activity of
HDACs but conjugated butyryl-CoA stimulated the activity of
HDACS (102). These findings suggest that IDH1mut-NHA cells
present decreased butyryl-CoA concentrations compared
with IDH1wt-NHA cells. It remains unknown, however, if be-
sides p300/CBP (101) other histone acetyl transferases can
use in addition to acetyl-CoA, other short-chain CoAs, such
as butytyl-CoA to carry out lysine butyrylation or whether
HDACs can debutyrylate lysines. Our results suggest that
histone butyrylation is regulated by different enzymes or
mechanisms than histone acetylation. Targeted PEM-based
MS is particularly suitable for the decryption of histone PTM

occupancies comparad with antibody-based methods, which
are commonly hindered by low specificity - in particular to-
ward di- and tri-methylated lysines - and epitope occlusion
problems, preventing the detection of combinatorial marks.
To investigate histone PTM occupancies in more detail, alter-
native quantification approaches, including electron transfer
MS methodology could be applied. These methods investi-
gate entire histones or large peptides directly by electron
transfer dissociation MS (103, 104). Although these analytical
strategies lack precise quantification and sensitivity, they
would provide complimentary information and be suitable for
follow up studies.

In summary, we provide integrated comparison of the pro-
teomic changes in HRAS and IDHi1mut driven malignant
astrocytoma cells, which points to drastically different
gliomagenesis mechanisms in primary and secondary GBEM.
Our analysis includes, to the best of our knowledge, the first
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targeted MS-based demonstration of multiple histone PTM
changes driven by mutant IDH1 in a cellular model of second-
ary glioblastoma. Based on these biological observations, we
predict very different therapeutic interventions to be useful in
primary versus secondary GBM. We provide a valuable re-
source of proteins altered in glioma, including potential bio-
markers or therapeutic targets.
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The Ras-Raf-MEK-ERK pathway is commonly upregulated in cancer. The
establishment of targeted MAPK pathway therapies, however, has proven difficult
as any cancers treated with MEK inhibitors rapidly develop resistance. To decipher
the underlying cause, it is essential to decrypt the phosphorylation network spanned
by the MAPK core axis. In this publication, we examined the spectrum of
phosphorylation signaling downstream of the key nodes of the Ras-Raf-MEK-ERK
pathway. We employed the label-free based PTMScan method from Cell Signaling
Technology, and quantified changes in the levels of phosphorylation sites in colon
cancer cell line HCT116 cells treated with MEK inhibitor cobimetinib (GDC-0973) or
the ERK inhibitor G-824.
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The RAS-RAF-MEK-ERK (MAPK) pathway is prevalently perturbed in cancer. Recent large-
scale sequencing initiatives profiled thousands of tumors providing insight into alterations at
the DNA and RNA levels. These efforts conhrmed that key nodes of the MAPK pathway, in
particular KRAS and BRAF, are among the most frequently altered proteins in cancer. The
establishment of targeted therapies, however, has proven difficult. To decipher the underlying
challenges, it is essential to decrypt the phosphorylation network spanned by the MAPK core
axis. Using mass spectrometry we identified 2241 phosphorylation sites on 1020 proteins, and
measured their responses to inhibition of MEK or ERK. Multiple phosphorylation patterns
revealed previously undetected feedback, as upstream signaling nodes, including receptor
kinases, showed changes at the phosphorylation level. We provide a dataset rich in potential
therapeutic targets downstream of the MAPK cascade. By integrating TCGA (The Cancer
Genome Atlas) data, we highlight some downstream phosphoproteins that are frequentdy
altered in cancer. All MS data have been deposited in the ProteomeXchange with identifier
PXD003908 (http:// proteomecentral proteomexchange.org/dataset/ PXDO03908).
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Many cancer types are characterized by defects in the
MAPK (RAS-RAF-MEK-ERK) pathway leading to uncom-
trolled growth and proliferation. Prevalent perturbation of
the MAPK pathway is most evident in thyroid carcinoma,
where BRAF, acting as effector kinase of RAS at the apex
of the MAPK pathway, showed mutations in 240 (80%6) of
399 tumors [1]. The associated missense mutation of BRAF
(VGOOE) is the most frequent hot spot mutation in TCGA
(http:/ /chioportal.org) [2, 3] (Supporting Information Fig. 1).
Besides BRAF, KRAS is the most frequently altered signal-
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ing node of the MAPK pathway (Supporting Information
Fig. 2), showing recurrent activating mutations on position
12 (G12DyV[C/A/S). In colorectal carcinoma, for example,
KRAS revealed somatic mutations in 94 (42.0%) of 224 tu-
mors [4]. Interestingly, 31 colorectal tumors revealed both
PIE3CA and KRAS mutations, suggesting tendency toward
co-ocourrence (p < 0.001). Furthermore, recurrent mutations
in WRAS ranked in the top ten of oncogenic mutation hot
spots in TCGA.

While it is difhcult to target KRAS, numerous small
molecule inhibitors targeting RAF or other nodes of the
MAPK core axis, induding MEK or ERK, have been devel-
oped for potential cancer treatments. The effect of targeting
a single node of the MAPK phosphorylation network, how-
ever, is commonly extenuated by (predominantly unknown)

www proteomics-journal.com
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feedback mechanisms [5), accentuating the rationale for si-
multaneous inhibition of multiple pathway members. For ex-
ample, the selective MEK inhibitor cobimetinib [6] has been
approved for the treatment of melanoma in combination with
BRAF inhibition.

Dual inhibition of the MAPK pathway has shown clini-
cal efhcacy, and several substrates of the pathway are well
characterized. Many nodes and connections of this complex
signaling network, however, are still unknown. Information
processing within the signaling web is primarily mediated by
changes in post-translational protein modifications, in par-
ticular by phosphorylation. Studying the dynamics of signal
transducton networks, for example, in response to EGF stim-
ulation [7], revealed that different phosphorylaton sites of
the same protein commeonly show distinct kinetics. Hence,
an appropriate model of a signaling pathway is actually not
a network of proteins but a network of interconnected phos-
phorylaton sites. Modifying specific nodes in this network,
by altering the activities of associated protein kinases for ex-
ample, may significantly perturb the entire signaling cascade
and lead to uncontrolled proliferation.

The few studies that investigated MAPK phosphorylation
signaling on a large scale demonstrated the ability of mass
spectrometry-based proteomics to identify hundreds of phos-
phorylation sites and quantify perturbed signaling [8]. To fur-
ther investigate the MAPK-regulated signaling cascade, we
quantified 2241 phosphorylation sites from 1020 proteins in
response to direct or indirect inhibition of ERK using label-
free mass SpeCctTometry.

To this end, we applied the PTMScan® method [9, 10]
as employed for the characterization of the PI3K-regulated
phosphoproteome [11] (Supporting Information Methods),
and measured phosphorylation levels in the HCT116 colon
cancer cell line in response to treatment with the MEK in-
hibitor cobimetinib (GDC-0973) or the ERK inhibitor G-824
[12]. Notably, ERK is the main substrate of MEK, and we
therefore postulate that phosphorylation changes observed
after both inhibitions are indeed attributed to decreased ERK
activity. HCT116 cells contain encogenic KRAS (G13D) and
PIE3CA (H1047R) mutations, representative of the signifi-
cant co-occurrence of both mutations in colorectal tumors.

Western blot profiling of protein lysates with 17 phospho-
motf antibodies (Kinome-View® western blotting service,
Cell Signaling Technology [13]) revealed the most apparent
changes of phosphorylation after inhibition of ERK activity
when using the PKA, AKT, phosphotyrosine, and MAPK
phospho-motf antibodies. Following phosphopeptide enrich-
ment of each sample by these antibodies, mass spectrome-
try analysis uncovered 2241 phosphorylation sites from 1020
proteins (Fig. 1, Supporting Information Tables 1 and 2).
The majority (75%¢) of the 2158 detected peptides were singly
phosphorylated, while 16 and 9% showed double or higher
multiplicity of phosphorylation, respectively. In most mult-
ply phosphorylated peptides, only one of the identified phos-
phosites matched with the associated antibody motf, indicat-
ing that this was the target of the antibody selection (Fig. 1).

& 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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We further found that different phospho-motif enrichments
were complementary. Overall, 88.7% of the AKT-enriched
phosphopeptides were unique, as were 99.6% of the pY-, and
98.9% of the MAPK-enriched phosphopeptides. In compari-
som, only 58% of the PKA phospho-motif enriched peptides
were unique, because many of the associated peptides were
also detected after AKT phospho-motif enrichment. Notably,
the AKT phospho-motif antibody yielded the highest identifi-
cation rate, and the associated sequence motif (R-X-X-p[S[T])
is not as specific as the PEA phospho-motif (R-R-X-X-p[S|T]).
Taken together, the distribution of phosphorylated serines,
threonines, and tyrosines was 49, 23, and 28%, respectively.
Because of the enrichment with the phosphotyrosine anti-
body, the relative occurrence of tyrosine phosphorylation was
an order of magnitude higher than the usually observed fre-
quency of around 2% in metal ion-based enrichment strate-
gies [7, 14].

Mass spectrometry and Western blot profiling made ev-
ident that the inhibition of ERK mainly leads to decreased
phosphorylation (Fig. 2A and Supporting Information
Fig. 3). Phosphorylated peptides that showed 3-fold or higher
changes were defined as regulated and manually reviewed
by inspecting corresponding extracted fon chromatograms
(Supporting Information Table 1). We selected this cutoff,
because 85-90% of the phosphopeptide intensity changes
fell within the + 3-fold change interval. Overall, 221 {10.2%)
peptides, corresponding to 135 proteins, showed decreased
phosphorylation in response to MEK inhibiton. Similarly,
288 (13.3%) peptides, corresponding to 156 proteins, dis-
played decreased phosphorylation after ERK inhibition. Most
proteins with decreased phosphorylation after MEK inhibi-
tion were also affected by ERK inhibition (70.4%6) (Fig. 2A).
Thus, quantitative results were not only consistent between
technical replicates (Supporting Information Fig. 4), but also
between MEK and ERK inhibition (p = 2.2 = 10-'%). This
significant correlation confirmed our postulation that MEK
inhibition reflects indirect inhibition of ERK activity. West-
ern blot analysis confirmed downregulation of ERK activity,
as the associated marker (36 5235/5236) showed decreased
phosphorylation in response to both inhibitors (Support-
ing Information Fig. 5). For further analyses, we defined
phosphopeptides that responded to the inhibition of MEK
or ERK, as MAPK regulated’. The merged phosphoproteome
contained 346 down- and 197 upregulated phosphopeptides,
mapping to 194 and 132 proteins, respectively. Similar to
PI3K signaling [11], Gene Set Enrichment Analysis (GSEA)
revealed that phosphoproteins downregulated in response to
inhibition of the MAPK pathway were involved in the cell
cycle [poses = 7.3 = 10-°), associated with signal transduc-
tion of multple growth factors (pegps = 0.001), and com-
monly deregulated in various cancer types (Posea < 0.001)
{Supporting Information Table 3). Overall, GSEA made evi-
dent that the PI3K- and MAPK-regulated phosphoproteomes
showed multiple commonalities at the functonal level (de-
spite the investigation in different cell lines), consistent with
the concerted roles of the two pathways as the cell's primary
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Figure 1. |dantification of the MAPK-regulsted phosphoproteome. Using label-free mass spectromatry, phosphorylation changes after
MEEK. or ERK inhibition ware measured in HCT116 cells. Four phospho-motif antibedies (PKA, AKT, pY, and MAPK) were employed for
phosphopeptide anrichment, and the corresponding numbers of identified phosphoproteins, peptides and sites are illustrated for each
enrichment experimant (left panel). Associated "sequence logos’ imiddle panel) reflect the relative frequencies of amingc acid residues
proximate to detected phosphosites. The relative proportions of identified phosphorylated serines, threonines, and tyrosines, and the
distribution of peptides that contained one or more phosphosites are reflacted by pie charts (right panel).

mechanisms for controlling cell survival and proliferation.
Strikingly, the PI3K- and MAPK-regulated phosphopro-
teomes also showed a substantial overlap at the substrate
level, though the PI3K and MAPK experiments were con-
ducted in different colorectal cell lines. When using a less con-
servative cutoff (2-fold) to observe similar trends, we found
that 163 and 67 of the 435 commonly identified phospho-
proteins showed down- or upregulation after both PI3K and
MAPK inhibition, respectively. Such redundant phosphory-
lation patterns indicate crosstalk with other pathways. For
example, both pathways are kmown to interplay with PEKA
signaling [15, 16]. and we found PEA substrate sites, in-
cluding Ser435 of cell cycle checkpoint regulator ATR [17],
to be substantially downregulated after inhibition of both
pathways (Supporting Information Table 4). Other common
changes, such as decreased phosphorylation of Rictor, TSC2,
and EIF4B, can be traced back to the convergence of the two
pathways. Notably, phosphorylation changes may occur on
different sites, when comparing the two studies. Supporting
Information Fig. 6 illustrates phosphorylation changes of se-
lected proteins in response to PI3K or MAPK inhibition.
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Strikingly, multiple changes in response to ERK inhibi-
tion, increased phosphorylation levels in particular, indicated
posttranslational- or transcription-mediated feedback mecha-
nisms. For example, several proteins that act at the apex of the
MAPEK pathway, including B-Raf, showed regulated phosphe-
rylation after inhibition of MEK or ERE. Interestingly, feed-
back of B-Rafhas been associated with phosphorylation of the
C-terminus [18], while we detected regulated phosphorylation
on Thrd440 and Ser4&5 (B-Raf contains 766 amino acids) (Sup-
porting Information Table 2). Furthermore, multiple trans-
membrane receptors, including ERBB3, MET, IGF2ZR, NRP1,
and EPHAL, showed increased phosphorylation after inhibi-
tion of the MAPK pathway (Fig. 2C). Phosphorylation of these
receptors that control the activity of several pathways may be
attributed to feedback-mediated crosstalk. For example, acti-
vation of ERBB3 enhances PI3K/AKT signaling and is tran-
scriptionally induced after MAPK inhibition [19], consistent
with higher levels of its phosphorylated form (Supporting
Information Table 2). Activation of ERBB3 has been further
linked to loss of phosphorylation of EGFR and ERBE2 [20],
and we found phosphorylation levels of both receptors to be

www.proteomics-journal.com
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downregulated after MEK and ERK inhibition. Analogously,
increased phosphorylation of EPH receptor Al (EPHAL) has
been associated with feedback loops triggered by AKT in-
hibition [21]. The converse link between phosphorylation of
EPHA1 and inhibition of MEK or ERK, however, has not been
previously demonstrated. Interestingly, phosphorylation of
EPHAZ (5897), previously linked to AKT activity [22], showed
decreased phosphorylation in response to inhibition of MAPK
activity, consistent with Western blotting (Supporting Infor-
mation Fig. 7).

Similarly, phosphorylation of Neuropilin-1 (NRP1) and
the hepatocyte growth factor receptor encoded by MET—
-both enhancers of PI3K signaling—have not been previ-
ously linked to MAPK activities. Taken together, we identified
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the gene expression in a patient [black: healthy tissue, red: tumar),

known phosphorylation patterns and discovered previously
undetected phosphoregulatory events that can be attributed
to feedback-control and crosstalk. These findings confirm the
requirement of targeting multiple nodes for efficient inhibi-
tion of MAPK activity.

However, dual inhibition to overcome redundancies and
feedback are rarely well tolerated. In addition, some drivers
are not targetable (e.g. KRAS), which underscores the need
to identify downstream nodes apart from the core signaling
axes as potential alternative targets. To this end, we analyzed
expression data from 4406 TCGA tumors from ten cancer
types (Supporting Information Methods). We applied differ-
ential expression analyses between tumors and healthy tis-
sues for each cancer type to uncover consistently upregulated
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phosphoproteins. Albeit speculative, the associated phospho-
rylation sites may be also elevated in cancer because of in-
creased expression of their harboring proteins. We found
that 22 of those phosphoproteins, which revealed regulation
after inhibition of ERK, showed consistently higher gene ex-
pression levels across different cancer types (fold change = 0,
Past = 0.001) (Fig. 3A). Spindle assembly factor TPX2 had the
maost significant expression profile in cancer (Fig. 3B), and
showed minimum 3.6-fold decrease of phosphorylation after
indirect (MEK) as well direct inhibition of ERK. The functions
of the associated phosphosites (T369 and T499), localized in
the importin binding domain of TPX2 [23], have not been
previously characterized.

Analogously, we further sought to uncover phosphoryla-
tion signals that may be frequently reduced in cancer because
of decreased expression of their harboring proteins. Seven
phosphoproteins showed regulation in our experiments and
displayed significantly low expression levels in tumors {fold
change = 0, pga = 0.001) (Fig. 3A). The A-kinase anchor
protein 12 (AKAP12) showed the most significant downreg-
ulation in cancer (Fig. 3C), and featured 3-fold or higher in-
creases of phosphorylation after ERK inhibition on multiple
sites. AKAP12 mediates the subcellular compartmentation of
PKA and PKC, but the roles of its phosphorylation sites have
not been described to our knowledge.

Finally, we also analyzed mutation data from 4130 TCGA
tumors from 15 cancer types (Supporting Information Meth-
ods), and looked for somatic point mutations of phosphory-
lated residues to any amino acid other than serine, threonine,
tyrosine, or glutamic acid, implying loss of phosphorylation
signal. However, we did not detect any phosphorylation site
thatwas mutated in three or more tumors. Taken together, we
found that multiple ERK-regulated phosphoproteins showed
striking alteration profiles in cancer. Since their roles in onco-
genic signaling are not well characterized, they provide an
interesting set of candidates for future studies.

In conclusion, reviewing the mutational landscape of thou-
sands of tumors from TCGA made clear that the perturbation
of the MAPK pathway is mainly attributed to mutations of its
upstream gatekeepers RAS and RAF. However, RAS cannot
be directly targeted and blocking the downstream core ki-
nase axis is challenging because of feedback mechanisms.
To shed light on the spectrum of downstream phosphory-
lation signaling. we blocked ERK activities in a direct (ERK
inhibition) and indirect manner (MEK inhibition), inducing
both decreased and increased phosphorylation. Notably, for
phosphopeptide enrichment prior to mass spectrometry, we
selected antibodies that revealed the most substantial reg-
ulation of phosphorylation based on western blotting. The
application of other phospho-motif antibodies may uncover
additional changes, but the fraction of regulated phosphopro-
teins would be smaller.

Similar to the effect of blocking PI3K activities, many af-
fected phosphoproteins were involved in the cell cyde or
proliferation. Interestingly, we observed a large overlap of
proteins that showed changes after the inhibition of both the
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PI3K and MAPK pathway, even though the experiments were
conducted in different colorectal cell lines.

The ERK-regulated phosphoproteome comprised multiple
nodes that act upstream of the MAPK core axis, incuding
transmembrane receptors. These phosphorylation patterns
made clear that the MAPK signaling cascade is characterized
by multiple feedback mechanisms, making targeted therapies
difficult. Inhibitor combinations are predicted to overcome
redundancies between pathways or feedback mechanisms.
However, the establishment of dual inhibition in the clinic
has proven difficult. By integrating TCGA data we found
many MAPK-regulated phosphoproteins that show consis-
tently decreased or increased expression in cancer. While the
impact of perturbed expression levels (in the absence of mu-
tations) in cancer is difhicult to decipher (“dark matter”) [24],
we postulate that some of the dysregulated MAPE-responders
may present potential alternative therapeutic targets.

Taken together we provide a unique resource of MAPK-
regulated phosphosites. The identification of multiple previ-
ously undetected upstream responding proteins illustrates
the difficulty of targeting MAPK. We uploaded the data
to the post-translational modification database PHOSIDA
{http:/ fwww.phosida.com) and included additional replicates
using different dosages or drug resistant derivates, which
further validate our observations. Furthermore, we deposited
raw data in PRIDE proteomeXchange [25] (project accession
PXDO03908).
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Similar to the MAPK pathway, the PI3K pathway is one of the most frequently
activated signaling nodes in cancer. Only a few studies have attempted to explore
the spectrum of phosphorylation signaling downstream of this kinase cascade. Such
investigations, however, are imperative to understand the mechanisms responsible
for oncogenic phenotypes. By applying mass spectrometry-based
phosphoproteomics, we studied the disturbed phosphoproteome after activation or
inhibition of PIK3CA using isogenic knock-ins and a series of inhibitors, including
pictilisib (GDC-0941) and taselisib (GDC-0032).

We uncovered phosphorylation changes in a wide variety of proteins involved in cell
growth and proliferation, for most of which this was not previously known. Multiple
phosphoproteome patterns revealed previously undetected feedback, convergence
and crosstalk between cancer pathways, accentuating the rationale for dual
pathway inhibition. We provide a dataset rich in potential therapeutic targets

downstream of the two most important signaling cascades in cancer.
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The PI3K pathway is commonly activated in cancer. Only a few studies have attempted to
explore the spectrum of phosphorylation signaling downstream of the PI3K cascade. Such
insight, however, is imperative to understand the mechanisms responsible for oncogenic phe-
notypes. By applying MS-based phosphoproteomics, we mapped 2509 phosphorylation sites
on 1096 proteins, and quantified their responses to activation or inhibiion of PIK3CA using
isogenic knock-in derivatives and a series of targeted inhibitors. We uncovered phosphorylation
changes in a wide variety of proteins involved in cell growth and proliferation, many of which
have not been previously associated with PI3K signaling. A significant update of the posttrans-
lational modification database PHOSIDA (http:/ jwww.phosida.com) allows efficient use of the
data. All MS data have been deposited in the ProteomeXchange with identifier PXDO003899
(http:/ /proteomecentral. proteomexchange.org/ dataset) PXDO03899).
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The PI3K (PI3E-AKT-mTOR) pathway is commonly dereg-
ulated in human cancer. Recent large-scale genomic pro-
filing of tumors through the TCGA consortium made the
significance of the pathway very apparent on a global scale.
The molecular characterization of thousands of carcinomas
uncovered pivotal regulators, including PIK3CA and PTEN,
among the most frequently mutated genes in cancer. In col-
orectal carcinoma, for example, PIK3CA showed somatic mu-
tations in 45 (20.1%) of 224 tumors [1]. Furthermore, onco-
genic mutations in the helical (E545K) and kinase (H1047R)
domains of PIK3CA are among the most frequent hot spot
mutations in TCGA (http://cbioportal.org) [2, 3] (Supporting
Information Fig. 1). Small molecule inhibitors targeting the
PI3K pathway have therefore been intensely pursued as po-
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tential treatments for different types of cancers, and several of
them have recently advanced into the clinic [4]. Here, we uti-
lized a series of targeted PI3K inhibitors, including pictilisib
(GDC-0941) and taselisib (GDC-0032). Pictlisib is a highly
specific, ATP-competitive, small-molecule class 1 pan-PI3K
inhibitor [5], and has demonstrated significant antitumor ac-
Hvity in a wide array of cancer models in preclinical studies [6].
Similarly, taselisib is a selective inhibitor of PI3K (highly se-
lective for mutant PIK3CA), and is currently in clinical phase
1T and I11 trials for the treatment of lung and breast cancer,
respectively [7].

Targeted therapies that block signaling through the PI3K
pathway have shown dinical efficacy in several tumor types.
The underlying signaling cascades, however, remain poorly
understood, as only a few studies have atempted to ex-
plore the global spectrum of phosphorylation signaling down-
stream of the PI3K pathway [8, 9]. Here, we performed a
label-free quantitative analysis of PI3K phosphorylation sig-
naling using isogenic knock-in derivatives as well as targeted

www. proteomics-journal.com
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Figure 1. Experimental workflow and depth of the detected phosphoproteome. [A) To quantify phosphorylation changes in response to
alterad activities of PI3K, the label-free PTMscan® method was applied (Call Signaling Technology). Briefly, for each condition proteins ware
extractad, digested, and separated from nonpeptide matenal. Phosphopeptides were isclated in independent immunoaffinity punfications
using phosphorylation motif antibodies, and identified and quantified by M5. (B} For each experiment, the number of identified phospho-
proteins and corresponding peptides and sites are shown. Phosphopeptides were quantified across conditions within one experiment. The
associated “sequence motif logos” illustrate the amino acid occurrences proximal to identified phosphosites. The font height reflects the
relative amino acid frequency at a given position. Pie charts show the distributions of phosphorylated serines, threonines, and tyrosine,

and singly to multiply phosphorylated peptides.

inhibitors, providing a unique resource for future studies to
characterize novel targets and biomarkers of oncogenic PI3K
signaling.

To compare phosphorylation levels between cells with
wild-type, oncogenic, or inhibited PIK3CA activities, we ap-
plied the label-free PTMScan® method [10, 11] as previously
described [12] (Fig. 1A, Supporting Information Methods).
In brief, views of cellular phosphorylation were obtained
for each sample by Western blot profiling of protein lysates
with 17 phospho-motif antibodies (Kinome-View® Western
blotting service, Cell Signaling Technology [13]). AKT,
ATM/ATR, and PEC phespho-motif antibodies yielded most
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substantial regulation of phosphorylation in response to
modulated PI3K activities based on this Western blot screen
(Supporting Information Fig. 2), and were therefore used for
phosphopeptide enrichment prior to MS analysis. Notably,
applied phospho-motif antibodies have a broad immunore-
activity for phosphorylation and are not limited to direct
substrates of specific kinases. M5 analysis uncovered 2509
phosphorylation sites mapping to 1096 proteins across all
experiments (Fig. 1B, Supporting Information Tables 1
and 2). For treatment versus control experiments we applied
a threefold cutoff to define up- or downregulation. Regu-
lated phosphorylated peptides were manually reviewed by
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inspecting corresponding extracted ion chromatograms and
are highlighted in bold in Supporting Information Table 1.
To analyze aberrant PIK3CA signaling triggered by onco-
genic mutations in the helical (E545K) or kinase (H1047R) do-
main. we quantified changes in the levels of phosphorylation
sites between isogenic SW48 PIK3CA wild-type and mutant
cells. Oncogenic RAS, RAF, or PTEN mutations are absent
in the SW48 wild-type cell line, and the previously identi-
fied PIK3CA mutation ({G914R) [14] is considered nonactivat-
ing. Thus, the 5W48 cell line has been classified as PIK3CA
wild-type (nononcogenic) [15], serving as an ideal model for
the introduction of oncogenic PIK3CA mutations and direct
activation of the pathway. MS revealed that the introduc-
tion of a single oncogenic amino acid change in PIK3CA
led to substantial global elevation of protein phosphorylation
levels, as 253 (10.5%) of the 2405 identified phosphopep-
tides mapping to 192 (17.6%) of 1096 proteins were upreg-
ulated in PIK3CA E545K mutant cells (Fig. 24 and B, Sup-
porting Information Tables 1 and 2). Similarly, 266 {11.1%)
phosphopeptides from 199 (18.2%6) proteins were upregu-
lated in H1047R mutant cells. Overall, phosphoproteomic
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changes were concordant between the two PIK3CA mu-
tant cell lines [p = 2.2 = 10-'% based on linear model-
ing p = 8.35 x 10 based on Chi-Square test on num-
ber of regulated phosphopeptides). In addition, quantitative
results were consistent between technical replicates in all
experiments, as phosphopeptide intensities between dupli-
cates showed strong positive correlations with an average
correlation coefficient {R?) of 0.95 [Supporting Information
Fig. 3).

We confirmed the global elevation of phosphorylation by
Western blotting (Supporting Information Fig. 2). Further-
more, using phosphosite-specific antibodies we validated ele-
vated levels of PI3K activity markers, including pAKT (5473),
pS6 (5235/5236), PRAS40 (T246), pFoxO3a (T32), pFoxO1
(T24), and pFoxO4 (T28), by Western blotting (Supporting
Information Fig. 4). Increased phosphorylation of additional
PI3K activity markers is identified by MS, incuding AS160
{T642), BAD (S118), CCT2 (S260), DNAJCS (S10), EphA2
{5897), FOXO3A (5253), FOXO4 [T32), GSK3A (521), GSK3B
(S9), MST2 (T384), PFKFB2 (S466), RAF1 (S259), and TSC2
[S939).

www.proteomics-journal com
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To better understand the phosphorylation-mediated mech-
anisms downstream of the PI3K-AKT-mTOR core axis, we
performed gene set enrichment analyses (GSEA) of genes
encoding proteins with elevated phosphorylation in the
PIK3CA mutant cell lines (Supporting Information Meth-
ods). We included gene set collections from the Molecular
Signatures Database (MSigDB) [16] associated with certain
biological processes, pathways, cancer types, or behaviors af-
ter treatment (gene set collectons “h,” “c2,” “c3,” "c4,” and
€57). Consistent with the role of the PI3K pathway, activa-
tion of PIK3CA significantly affected phosphoproteins in-
volved in cell cycle (poses = 1.39 = 10°°) or proliferation
{Pospx, = 6.12 x 104} (Fig. 2C; Supporting Information
Table 3). Cell-cycle regulators CDK2, PLEL, FOXO4, POLA,
HEC1, NOLCI, NUSAP1, SUNZ2, and TPX2, for example,
showed significant upregulation of phosphorylation in both
mutant cell lines. Only few of the associated phosphosites
have been previcusly functionally characterized. For example,
the microtubule-associated protein TPX2 displayed strong
(z21-fold) upregulation of phosphorylation in both PIK3CA
mutant cell lines on Ser121. This is a target site of Aurora
kinase A [AURKA) [17], and shows cell-cycle dependent occu-
pancy [18], but its function is unknown. The drastic response
of TPX2 to enhanced PI3K activity points to an “on or off”
phosphorylation-mediated mechanism that may be triggered
by CDEK1-mediated activation of AURKA in both mutant cell
lines.

In addition to cell-cycle proteins, GSEA revealed that mul-
tiple regulators of the cytoskeleton (posps = 3.18 = 104,
including NUSAP1, pleckstrin 2, piccolo, Fascin 1, HOOKS,
and KIF23, had increased phosphorylation. These cytoskele-
ton proteins and many other responding phosphoproteins are
commonly deregulated across different cancer types (Posps =
0.01). The mitotic spindle associated protein NUSAPL, for ex-
ample, is consistently overexpressed in cancer, and we identi-
fied one previously uncharacterized upregulated phosphosite
{Ser29%). A significant proportion (pesps, = 4.27 = 10-%) of
genes encoding affected phosphoproteins is even part of a
gene set, whose expression levels can be used to predict sur-
vival in cancer [19].

Moreover, target genes of transcription factors MYC (Pesga
= B2 x 10%) and EIF (pgspa = 5.0 = 10°7), which
are both Imown components of the downstream PI3K-
regulated proliferative machinery, were also significantly
overrepresented. Furthermore, several epigenetic regulators,
including DNMT3B, EZH1, HDACI, ATAD2, and
SMARCA4, displayed modulated phosphorylation in PIK3CA
mutant cells, which may be associated with the reported
link between PI3K/AKT signaling and epigenetic alterations
[20]. Motably, epigenetic regulators are not represented as
a gene set in Molecular Signatures Database. We therefore
identified them by comparing our data with a previously
defined set of 187 epigenetic regulators [21]. The putative
deregulation of the proliferative machinery as well as the
maodification of some epigenetic regulators at the posttrans-
lational level led us to the hypothesis that some phosphe-
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rylation changes may result from altered gene expression
of the harboring phosphoproteins. To this end, we carried
out a microarray analysis of the SW48 cell line and its iso-
genic counterparts {Supporting Information Methods). Strik-
ingly, we found that the vast majority of phosphorylaton
changes could not be explained by alteration in gene ex-
pression (Supporting Information Fig. 5). These results sug-
gest that perturbed phosphorylation patterns were mainly at-
tributed to changes in phosphorylation instead of altered gene
EXPTESSION.

While mutational activation of P13K mainly triggered ele-
vation of phosphorylation, we also saw decreased phosphory-
lation (Supporting Information Tables 1 and 2). The majority
of biological processes associated with these phosphoproteins
were related to cytoskeleton organization (pesp, = 2.84 =
10-4). NDRG1, MTUS1, K8, PGAMI, OXR1, LIM, BATID1,
SNX9, and C1%rf21 had decreased phosphorylation in both
mutant cell lines. Previcusly, microtubule-associated tumor
suppressors NDRG1 and MTUS1 also showed decreased
phosphorylation after KRAS activation [12]. NDRG1 revealed
a hyperphosphorylated region, comprising 11 target phos-
phosites of SGK1 and GSE3pB [22] between positions 330 and
367, and we validated the decrease of one of these (S330) by
Western blotting (Supporting Information Fig. 6). GSK3p is
known to be inactivated by AKT via phosphorylation on Ser9
[23], and we found this site to be upregulated in PIK3CA
mutant cells. Accordingly, all NDRG1 phosphosites were de-
creased ranging from 1.7-fold (Ser367] to 16-fold (Ser330).
While this phosphorylation cluster has not been function-
ally characterized, it may serve as biomarker for oncogenic
activity. Similarly, phosphosites of MTUS1 and most of the
other mapped phosphosites have either not been previously
identified or functionally characterized.

To reverse the effect of PISK activation and get additional
evidence for PI3K-mediated phosphorylation changes, we
treated the kmock-in cell lines with targeted PI3K inhibitors
pictilisib (GDC-0941), taselisib (GDC-0032), or the p110 al-
pha/delta selective tool compound inhibitor PI3KI-A/D [24].
These inhibitor treatments partially reversed the impact of
the two oncogenic PI3K nodes on the phosphorylation net-
work. Overall, 168 (45.5%) of the phosphopeptides that had
increased phosphorylation after mutational PI3K activation
were downregulated (minimum twofold) in PIK3ICA E545K
or H1047R mutant cells in response to at least one of the
three PI3K inhibitors. Most phosphorylation changes ob-
served were consistent between different inhibitor treatments
(Supporting Information Fig. 7). Downregulated phospho-
proteins were even more significantly enriched for known
nodes of PI3K tPE-SEA =42 x 10_5}, AKT {P'CSEA = 84 x
10-7), and growth facwor receptor signaling, including EGFR
signaling (peses = 3.8 = 10-°), validating PI3K activity-driven
phosphorylation events versus long-term secondary effects
(Supporting Information Fig. 8 and Supporting Information
Table 3). We validated the reverse of global phosphorylation
and the decrease of associated markers of PI3K activity by
Western blotting (Supporting Information Figs. 2 and 4).
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Fhosphoproteins respending to pictilisib, taselisib, or P13Ki-
A /D present a valuable resource for further investigation into
the impact of individual small molecule inhibitors. The provi-
sion of phosphoproteomic responses to small molecule com-
pounds that are currently in clinical trials is unique to our
knowledge.

To enable efficient use of these data, we updated the post-
translational modification database PHOSIDA (hitp:/ /www.
phosida.com) {Fig. 3) [25,26] and deposited raw data in PRIDE
proteomeXchange [27] (project accession PXDO003899). To
merge our dataset with other phosphoproteomic datasets,
we remapped the phosphopeptides of all associated studies to
Uniprotversion 2016/4. This enables users to compare the re-
sponse of PI3K-regulated phosphosites with other treatments
(e.g., EGF stimulation [28]) or biological processes (e.g. the
cell cycle [18, 29]). Notably, PHOSIDA reports quantitative
results at the site level, and provides additional information
including matching kinase motifs and secondary structure.

In summary, using two isogenic mutant models and a
panel of different inhibitors allowed the identification of
PI3K-mediated phosphorylation events by different kinase
modulations (activation versus inhibition). Western blotting
further validated our observations. The impact of the key
pathway regulators on the entire signaling cascade became
evident by the intreduction of a single oncogenic mutation
in PIK3CA, which triggered substantial global elevaton of
phosphorylation in hundreds of signaling nodes. Signifi-
cant proportions of affected phosphoproteins were involved
in the cell cycle or proliferation, consistent with increased
proliferation of these mutant cell lines. It is possible that
some phosphorylation changes resulted from altered pro-
tein expression. However, microarray analysis made clear
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tional Modification Database
PHOSIDA. By remapping pro-

teomic data to & common
datsbase  (Uniprot),  Pl3K-
mediated phosphorylation

events can be compared with
other treatments and condi-
tions, turning PHOSIDA into a
unique web environment for
quantitative  postiranslational
modification data.

that most respending phosphoproteins did not show sub-
stantial gene expression changes. Under the assumption that
gene expression levels reflect protein intensities to some de-
gree, we therefore conclude that observed phosphorylation
changes were mainly caused by differences in phosphoryla-
tion site occupancies. This hypothesis is further supported
by reversal of boosted phosphorylation levels by short-term
inhibitor treatments. Strikingly, only a fraction of the phos-
phoproteins that responded to inhibition of the core signal-
ing axes have been described as downstream nodes. We pos-
tulate that several phosphosites were regulated as a result
from the interplay with other pathways, while others are
direct targets of the heart of the pathway. Taken together,
we believe that our findings help to broaden our under-
standing of PI3K signaling, and we provide a valuable re-
spurce for future studies to characterize novel targets and
biomarkers of oncogenic signaling. For efficient use of the
data, we updated the posttranslational modification database
PHOSIDA.
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The heart is a central organ. It beats approximately 100,000 times a day, precisely
controlled by the interplay between electrical and mechanical fields. At the
anatomical level, the heart is composed of four cavities, two septa, four valves, and
six main vessels, which act in concert to ensure proper filling, ejection, contraction,
and overall pump function. At the cellular level, the human heart is composed of four

major cell types.

While this manuscript does not focus on cancer proteomics, here we combined
state-of-the-art technologies, such as in StageTip sample preparation, ‘loss-less’
nano fractionation, and new MS measurement methods for the first time and apply
them to map the human heart proteome. Starting with dissected heart samples from
trauma victims, we performed a tour de force proteomics analysis, which resulted in
the deepest heart proteome reported to date. Cumulatively, we quantified more than

11,000 proteins in the heart regions and (for the non-cardiomyocytes) in a cell-type
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specific manner. Apart from extensive biological and bioinformatic analysis of the
data, we demonstrate the usefulness of this resource by applying it to atrial
fibrillation, which revealed distinct mitochondrial dysfunction patterns, opening up
for a potential future molecular sub-classification. My study was mentioned in the
Max Planck Institute press release and reached an altmetric score of 161 (meaning
that my article was in the 98" percentile (ranked 2,277 of the 186,438 tracked
articles of a similar age in all journals) in only a few weeks after publication in Nature

Communications.
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Region and cell-type resolved quantitative
proteomic map of the human heart
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Markus Krane®* & Matthias Mann@ 2

The heart is a central human organ and its diseases are the leading cause of death worldwide,
but an in-depth knowledge of the identity and quantity of its constituent proteins is stil
lacking. Here, we determine the healthy human heart proteome by measuring 16 anatomical
regions and three major cardiac cell types by high-resolution mass spectrometry-based
proteomics. From low microgram sample amounts, we guantify over 10,700 proteins in this
high dynamic range tissue. We combine copy numbers per cell with protein organellar
assignments to build 2 model of the heart proteome at the subcellular level. Analysis of
cardiac fibroblasts identifies cellular receptors as potential cell surface markers. Application
of our heart map to atrial fibrillation reveals individually distinct mitochondrial dysfunctions.
The heart map is available at masgb.biochem.mpgde as a resource for future analyses of
normal heart function and disease.
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average life span and each contraction is precisely con-

trolled by an intricate interplay between electrical signals
and mechanical forces. At the anatomical level, it is composed of
four cavities, four valves, large arteries, and veins, which act in
concert to achieve proper filling, ejection, contraction, and overall
pump function. The heart’s own blood supply is ensured by two
coronary arteries. The human heart is composed of four major
cell types—cardiac fibroblasts (CFs), cardiomyocytes, smooth
muscle cells (SMCs), and endothelial cells (ECs)". Their pro-
portion with respect to number and volume, however, remains
controversial. CFs are mesenchymal cells, which produce the
extracellular matrix (ECM) scaffold of the heart and are thought
to constitute more than half of all heart cells®. Cardiomyocytes
are estimated to provide about 30% of the total cell number but
account for over 70% of the total cardiac mass because of their
large volume. In contrast, SMCs, which support the vascular
system, and ECs, which form the interior lining of the heart,
blood vessels, and cardiac valves, are generally believed w be
much less abundant However, these estimates have been chal-
lenged and a recent report claims that ECs are the largest cellular
population within the heart®,

The human heart beats more than two billion times in an

3 healthy human
adult hearls

| e e

High-pH reversed-phase

fractionation (8 fractions)

In common with other muscle tissues, the heart is dominated
by a small number of proteins involved in the contractile appa-
ratus. It employs tissue-specific isoforms such as cardiac tropo-
nins, which are used in the diagnosis of myocardial infarction.
From a physiological and pathophysiological perspective, it would
be desirable 1o gain deeper insights into the molecular char-
acteristics of the heart at the spatial and cellular levels. In parti-
cular, characterization of the healthy state of the human heart
would be an important starting point to investigate heart disease,
which—despite major progress remains the leading cause of death
in developed countries and is rapidly increasing in developing
ones?,

Relatively little is known about the protein composition of the
different regions and cell types of the heart Previous studies have
focused on defining differences between specific regions of the
heart, or single-diseased heart compartments®, or from nonhu-
man, or subeellular material®”. Phosphoproteomic studies have
also been applied for the analysis of mammalian hearts®®,
Moreover, other studies use transcriptomic approaches'®12,
which is an imperfect proxy for protein levels and their dynamics.
However, proteins are the driving forces of the cellular machinery
and they are involved in the control of virtually all physiologic
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Fig. 1 The quantitative lands=pe of the human heart proteome. a Experimental design, including the source of material (upper panel), in-depth vs. single
run analyses (middle panel}, and schematic depiction of the analytical workflow (lower panel}. b Graphicalillustration of the human heart showing the total
number of quantified proteins in each region. € Quantified proteins in three cardiac cell types and adipose fibroblasts. d Bar plot of the total number of
quantitied proteins in all heart regions, cell types, and the entire data set
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Fig. 2 Prindpal component analysis (PCA) of the 1& heart regions based on their proteomic expression profiles. a The proteomes of the cavities (RA, LA,
RV, LV, SepA, and SepV), vessels (Ao, PA, RCA LCA, INVC, and PVe), and valves (TV, MV, AV, and PV} depicted by replicate number (individuals 1, 2, and
3). The first and second component segregate the heart areas and account for 323 and 9% of the variability, respectively. b Proteins driving the
segregation between the three heart areas. € Cavities segregate into the ventricular and arial part, d vessels into coronary arteries (RCA, LCA) and
outgoing vessels (Ao, PA), and @ valves into ventricular (MY, TV} and semilunar valves (AV, PV}

events. The high dynamic range of the muscle proteome presents
a formidable challenge to the comprehensive analysis of the heart
at the level of expressed proteins. This is because very abundant
proteins make it difficult o detect low abundant regulatory
proteins in the same sample. The majorty of studies only iden-
tified a few thousand proteins, and there is a paveity of studies of
the human, nondiseased heart, because of the difficulty in
obtining the relevant tissue,

A global protein expression “footprint™ of the healthy heart can
be used as a reference library to compare against footprints of
malfunctioning hearts in the search for biomarkers, therapeutic
targets, or disease signatures. Recent advances in MS-based pro-
teomics technology now allow the identification of very deep
proteomes'* M, Our group has already established proteomics
maps of the mouse liver and brain'™'® and analyzed skeletal
muscle in considerable depth and sensitivity!™!¥, Here, we set out
to generate a spatial and cell-type-resolved proteomic map of the
healthy human heart. To this end, we measured 16 regions of
three human hearts, as well as primary cell types. We employed
high-sensitivity sample preparation, peptide fractionation, and an
advanced label-free LC-MS workflow to quantify a total of more
than 11,000 proteins. Our results establish proteomic differences
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between heart regions, suggest functional differences, and pin-
point potential cell-type markers. To illustrate the wsefulness of
the heart proteomic map, we apply it to define molecular changes
in patients suffering from atrial fibrillation (AFib).

Results

Establishing a proteomic map of the human heart. Three adult
hearts were obtained from male trauma victims aged 21-47 years
with no apparent adverse heart condition (Supplementary
Table 1). We selected a total of 16 anatomically defined regions
from each heart for MS analysis (Fig la, b): the atrial and ven-
tricular septa (Sep A and SepV') separating the atda and ventricles,
respectively; the right atrium (RA) and right ventricle (RV)
connected via the tricuspid valve (TV); the left atrdum (LA) and
left ventricle (LV) linked via the mitral valve {MV); the right and
left ventricles connected to the pulmonary artery (PA) and aorta
(Ao} via the pulmonary and aortic valves (PV and AV); the
inferior vena cava (IVC) collecting deoxygenated blood; the
pulmonary vein (PVe) carrying oxygenated blood; and the main
right and left coronary arteries (RCA and LCA) supplying the
heart with oxygen-rich blood. In addition, we isolated CFs, ECs,
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and SMCs from patients undergoing cardiovascular surgery
(Fig. lc).

After tissue homogenization in liguid nitrogen, we performed
all sample preparation using the “in-StageTip (iST) method” (see
“Methods™  section), reducing sample Ll‘.l[![d.[]'ll.[ld.[l.{’)[! loss,
pn:‘pa.ra.ti.ml tme, and l[:ILI."I:“d."iI.[JI._. qu.a.ntlflu.l.mn d.LLIJFd.L] The
recently described “loss-less™ nano-fractionator enabled efficient
fractionation of a total of only 30pg of peptides into eight
fractions, of which a third of each fraction was loaded in the
subsequent LC-MS step™. The resuling 400 samples were
amalyzed with a state-ofthe-art label-free workflow on a
quadrupole- Orbitrap mass spectrometer (Fig. la).

Analysis in the MaxQuant environment using a fal se- dj_quwerp
rate (FDR) of less than 1% at the peptide and protein levels®
identified a total of 181814 sequence-unique peptides. These
agssembled into 11,236 protein groups. Many high-abundance
proteins had very high sequence coverage—such as 100% for
myosin regulatory light chain 2 (MYL7)—whereas median
coverage of all proteins was ~38%. The MaxLEQ algorithm??

4

quantified 11,163 proteins, 10,751 in the 16 heart regions, and
10,447 in the noncardiomyocyte cell types, including AFs
(Fig. 1d). Proteomic depth was high in all regions, including
the four cardiac valves, in which we identified a mean of about
7800 proteins despite the fact that it mainly consists of ECM. To
put this number in perspective, rEa.uaJ]-sLs of the “human draft
proteome” heart data®® with the settings used here revealed that
our sl:ud}' identified more than three times as many proteins,
most of which were of low abundance (Supplementary Fig, 1). For
further anmalysis, we only considered a subset of 8908 proteins
with quantitative values in all biological triplicates of at least one
heart region.

Signal intensities for the gquantified proteins spanned more
than six orders of magnitnde, while only six proteins—myosin 7
(MYHY), titin (TTN), cardiac muscle-specific actin (ACTCI),
alpha-actinin-2 (ACTN2), and hemoglobin (HBA1 and HBB)
rEprESt‘utt‘d 25% of the total protein molecules in cavities, with
similar values in vessels and valves (Supplementary Fig. 2a-f). A
large amount of hemoglobin remained, despite extensive washing
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with proteins outside the significance lines colored in red or blue (FDR < 0.05). p values are calculated from the data of three healthy hearts. a Ventricular
(LY. RV, and SepV} compared to the atrial (LA, RA, and SepA) regions, b coronary arteries (LCA, RCA) compared to arteries (Ao, PA), and € semilunar

(AW, PV} compared to atrioventricular (TV, MV) valves

of the samples with PBS, since hearts of trauma victims cannot be
perfused. Due to efficient peptide fractionation, our measurement
covered regulatory proteing such as transcription factors GATA4,
GATAG, TBN20, TBX3, and TBXS controlling cardiac-specific
gene expression (Supplementary Fig. 3).

To assess quantitative reproducibility, we analyzed several
samples in technical triplicates. Pearson correlation coelficients
(0:97-0.99) were on par with, or exceeded the values previously
achieved in cell line systems™ (Supplementary Fig. 4). Likewise,
we observed high correlation values between biological replicates;
ranging from 0.83 (PVe) o 0.95 (LA) (Supplementary Fig 5). As
these wvalues incorporate any differences due to postmortem
sample treatment, we conclude that our results from three
individuals can likely be generalized tw the adult male population
at large. Raw data and MaxQuant results are provided online and
the human cardiac proteome resource is available in our online
database MaxQBY (see below).

Comparative analysis between anatomical areas of the heart.
For an overall assessment of proteomics similarities and differ-
ences of the 16 heart regions, we employed principal component
analysis (PCA). Cavities, vessels, and valves cleady clustered
separately with the samples from different individuals tightly
grouped together (Fig. 2a). The only exception was the PVe from
patient 1 and 2, which clustered closer to the atrium than the
other vessels. This is readily explained by the difficulty of
resecting PVe without contamination from LA; thus, PVe samples
were excluded from the subsequent analyses.

The segregation of the three groups was mainly driven by
MYL7, MYLS, cytochrome ¢ oxidase subunit 7Al (COXTAL),
sarcalumenin (SRL) and TTN (highlighted in red, driving
segregation of the cavities), and collagen proteins, such as
COL4A2, COLL4AL, and integring, including ITGA7, ITGAS,
and ITGB1 (highlighted in blue, segrepating vessels), as well as
biglycan (BGN), COLI1AL, COLIIA2, and COL6AS (highlighted
in purple, segregating valves) (Fig. 2b). As these proteins reflect
known biological differences between the cardiac cavities and the
vessels and valves that are rich in ECM components, they serve as

cartilage intermediate layer protein 2 (CILP2) and MXRAS
(valves), nephronectin (NPNT), a functional ligand of ITGAS and
ITGBI (vessels), and uncharcterzed proteins such as Cleod96
[ cavities).

Each of the three main clusters exhibited further subgroupings.
Heart cavities were divided into atrial (RA, LA, and SepA) and
ventricular (RV, LV, and SepV) parts and within them atrial and
ventricular septa were separated from atria and ventricles,
respectively. Furthermore, there was a moderate but clear
distinetion of the left and right side of the heart (Fig 2¢). The
vessel group subdivided into large arterdes (Ao and PA) and large
veins (IVC) (Fig 2d). Within the arteries, the RCA and LCA
formed a subcluster, demonstrating differences between coronary
and large arteries at the proteomic level. Finally, both atrioven-
tricular valves (MV and TV) clustered together, whereas
semilunar valves ( AV and PV) formed a separate group (Fig. 2e).
The main drivers of the PCA separation are highlighted in
Supplementary Fig. 6.

For a functional view of the proteomic differences in the
human heart, we performed unsupervised hierarchical clustering
of the 6807 proteins with statistically different expression across
the heart regions (FDR < 0.05) (Supplementary Data 1). This
again clustered individuals in all but one case (RV of one
individual), followed by cavities, vessels, and valves with their
subdivisions (Fig 3a). The heat map shows one major cluster of
highly and coexpressed proteins for each of the three anatomical
areas. Gene ontology and GSEA™ revealed that proteins in cluster
A (high expression in the cavities) were enriched (p< 1071
in terms of cardiac muscle contraction, Z dise, and sarcomere
organization compared to clusters B and C  (high
expression in the wvessels and walves, respectively). The terms
mitochondria and respiratory electron transport chain were also
enriched (p< 1077} in this cluster, concordant with the large
number of mitochondria to ensure sufficient amounts of ATP for
continuous muscle contraction (Supplementary Data 2). Thus,
our proteomic data provide a global protein expression basis for
the functional specialization of cardiac muscle tssue.

To provide insights into the organelle sizes in the heant
proteome at a quantitative level, we used the ?mr.eﬁ:n'u: ruler

positive controls of our proteomic analysis. Furthermore, the approach to estimate copy numbers per cell®™ together with
PCA analysis highlighted several interesting candidates, such as
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subcellular localization annottons”®™. We calculated an
approximate total protein content of 1| ng per diploid muclews
and found that a heart cavity muscle cell has an approximate
volume of 5pL per nuclens (note that about 30% of all
cardiomyocytes have two or more muclei”). These values are
roughly double that of mouse heart muscle cells®. Estimated
protein copy numbers per diploid nuclews and protein concen-
tration across our samples ranged from ~10to 10% and <0.1 nM
to 200 uM, respectively (Supplementary Data 3). We found that
mitochondria constituted 21% of protein mass in the cavities
(Fig. 3b, “Methods™ section, and Supplementary Diata 3). This
compares to 7% of mitochondrial protein mass in Hela cells®
and 3% in valves and vessels, demonstrating the immense aerobic
respiration in cardisc muscle cells localized in the atral and
ventricular part of the heart at a quantitative level.

To further mine our quantitative and in-depth proteome
resource, we used voleano plots™ o compare expression
differences within the three anatomical areas of the heart. We
specifically focused on proteins that were in the top 75% in
abundance and only identified in one of the two regions that we
compared (Supplementary Data 4).

The atrial vs. ventricular proteome. Although they are both
heart muscles, the main role of atria is to collect and transfer
pulmonary and systemic blood, whereas ventricles need to pump
the blood throughout the entire body. Consistent with these
different functions, we found drastic differences in their pro-
teomes, with 1220 (13.7%) proteins showing significantly higher
expression in the atria and 409 (4.6%) displaying higher expres-
sion in the ventricles (Fig. 4a). As expected, mitochondral pro-
teins were more abundant in ventricles (p< 107" by GSEA
analysis, Supplementary Data 5). Cardiomyocytes use fatty acids
as their main energy source and ventricular myocytes have higher
energy demands due to the greater force of contraction.
Accordingly, lipid metabolic processes were overrepresented in
the ventricular region (p 7 x 107°%), exemplified by the ~tenfold
increased expression of lipoprotein lipase (LPL). Likewise, it was
enriched in muscle contraction (p 9x 107°7), due to increased
cardiomyocyte size, as estimated by the proteomic ruler
("Methods™ section). The known markers for ventricles vs. atria,
such as MYL2, MYL3, and LPL were clearly recovered as such,
and our data set containg many additional ones, including the
lysine methyltransferase SMYD2, which is thought to have a role
in myocyte function™. Several interesting candidates were only
identified in the ventricles but not in the atria, such as the
probable histone demethylase JMJDIC, the ubiquitin ligase
TRIM38, the tumor suppressor RASSFS, and the uncharacterized
KIAAI324L protein. These proteins have not been associated
with ventricular functions before and suggest starting points for
exploring their role in heart physiology. Proteins previously
reported as atrium specific’™™, including myosin 6 (MYHs),
peptidyl-glycine alpha-amidating monooxygenase (PAM), and
natriuretic peptides A (NPPA) displayed ten to several hundred-
fold higher abundance in the atrium. Interestingly, these proteins
are only highly expressed in the wventrcular regions under
pathological conditions—for example, cardiac hypertrophy leads
to elevated PAM levels in ventricles?, We found potassium jon
channels predominantly in the atdal part, such as KCNK1, which
induces background currents™, and calcium-dependent ion
channels, including CACNA2D2 and 3 (>fourfold), as well as gap
junction GJAS (>ninefold), reflecting the presence of the sinus
and AV node, which generate the electrical impulse for heart
contraction. Others, such as CACNALC, which play an important
role in excitation-contraction coupling in the heart, were equally
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expressed In the atrda and ventricles (see also Supplementary
Fig. 7).

The high protein sequence coverage encouraged us to
investigate isoform-specific expression patterns of sarcomeric
proteins (Supplementary Data 6). These isoforms are of particular
importance because their altered expression has been associated
with diverse cardiac dysfunctions®™ and because troponins are
routinely used biomarkers for myocardial infarction’ The
myosin isoform families MYH6, MYH?7, MYL2-7, and MYL8
localized highly specifically tw atra or ventricles, confirming the
regional specificity of our data set despite high sequence identity,
for instance, over 80% between MYHs'!

Myocardial infarction remains one of the largest causes of
death and although rapid ELISA tests against cardiac troponins
THNNT2 and TNNI3 play a crucial role, further improvements in
diagnosis would be of great clinical benefit!®", Here, we found
that TNNT2 was more abundant (>twofold) than TNNI3 in all
cavities and that their expression largely correlated across regions
(Pearson correlation: 0.99). Interestingly, the cardiac isoform
myosin-binding protein C3 (MYBPC3), which participates in
stabilizing sarcomere structures, displayed a strikingly similar
protein expression profile to cardiac troponing and was similardy
abundant to TNNT2 (about 15-fold higher abundant) (Supple-
mentary Fig 8). Moreover, it can be detected by antibody- and
MS-based approaches in human plasma after myocardial
injury™45, showing that it can be used as an useful additional
parameter W monitor myocardial infaret.

Finally, while the RV and LV did not show any significantly
altered protein expression, the protein myotilin, which stabilizes
thin flaments during muscle contraction was much more
abundant in LA compared to RA (>100-fold; Supplementary
Fig. 9).

Large vs. small arteries proteomes. Coronary arteres are rela-
tively small as they supply the heart itself with blood; however,
their malfunction is responsible for the high prevalence of cor-
onary artery diseases (CADs), affecting more than 16 million
individuals in the United States alone™®. Overall, 1233 (13.8%) of
quantified proteins were significantly more abundant in coronary
arteries (RCA and LCA) and 631 (7.1%) in large arteries (Ao and
PA) (Fig. 4b). Proteins involved in mitochondral functions,
collagen proteins, and integring, such as COLISAL and ITGB4
were highly enriched in the coronary vs. large arteries. Fibro-
nectin (FN1) showed a 12-fold increase and has been previously
associated with CADsY, although it would need w be investi-
gated whether or not it is a specific marker for CAD patients.
Arylsulfatase E (ARSE) is a constituent of artery walls where it
regulates the composition of cartilage, and we found it w be >20-
fold more abundant in coronary arteries.

Large arteries showed significant (p< 3% 107%%) enrichment
for cytoskeleton proteins and proteins involved in cell junction,
consistent with the higher structural demands on them. For
instance, fibulin 5 (FBLNS) was six- to tenfold higher expressed
in PA and Ao than the other heart compartments (Supplemen-
tary Fig. 10). It is required to form the elastic lamina, has a
protective role against vascular injury, and its downregulation has
been associated with aortic aneurysm®™, Interestingly, fibroblast
growth factor 2 (FGF2) and ras-related protein (RAPLA),
described as a key regulator of FGF2-induced angiogenesis™,
were three- to sixfold more abundant in the large arteries. As we
had not identified FGF2 in a deep plasma proteome previously™,
it is unlikely to derive from blood remnants and may instead
represent an ECM-bound form®!, A total of 92 medium- to high-
abundance proteins were exclusively quantified in the large
arteries (Supplementary Data 4). This included the key focal
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adhesion protein SORBS1, COL26A1, and MYLK and MYHI1,
which are both involved in smooth muscle contraction, reflecting
the higher proportion of SMCs in the large arteries’ wall
compared to coronary arteries.

The atrioventricular vs. semilunar valves proteome. The atrio-
ventricular valves separating atria from ventricles (TV and MV)
are morphologically quite different from the semilunar valves
(AV and PV) preventing backilow of blood from aorta or pul-
monary artery to ventricles. We found that only 497 (56%)
proteins were significantly more abundant in the atrioventricular
valves and 242 (2.7%) were more abundant in the semilunar
valves (Fig. 4c). Valves are composed of highly organized ECM
proteins and changes in its composition and their possible release
are expected during valve deterioration, leading to dysfunction
and failing heart valves” % Although the overall changes were
limited, we found that among the ECM proteins, plectin isoform
3 and GFAP were highly expressed in the semilunar valves,
whereas peripheral plasma membrane CASK, collagen enzyme
P4HAL, integrin ITGAS, and neurofibromin (NF1) were sig-
nificantly higher in atrioventricular valves.

Cell-type-resolved proteome of the human heart. Our region-
resolved proteome achieved great depths, but as we used homo-
genized Hssue, we do not have cell-type-specific information
about the origin of the proteins. To address this, we isolated CFs,
ECs, and SMCs from tissue samples harvested during cardiac
surgery (Supplementary Table 2, “Methods” section). AFs were
included 1o help in defining the CF-specific proteome. Cardio-
myocytes were not investigated because of the impossibility to
culture these cells from surgical biopsies. We achieved highly
purified cell populations with values for CFs, AFs, ECs, and SMCs
of 96%, 97%, 96%, and 92%, respectively (Supplementary
Fig. 1la-d). Of a total of 11,236 different proteins, 7965 were
identified in all four cell types, indicating that the majority of the
cardiac cell proteome is expressed in its major cell types (Fig. 5a).
We found high correlation (0.92) in protein expression between
the fibroblast cell types (CF and AF), whereas SMC and EC were
somewhat less related (0.81) and this is also reflected in the PCA
{Supplementary Fig 12 and Fig. 5b). On average, the 40 most
abundant proteins aceounted for 25% of the total protein mass in
all four cell types (Fig 5¢). Consistent with the mesodermal origin
of these cell types, vimentin (VIM) was the most abundant pro-
tein, accounting for 3% of the total protein mass. In conjunction
with LARPS, VIM stabilizes type I collagen mBNAs, leading to
upregulation of the collagens COLIAL and COL1A2%, We found
the collagens in the top quartile (1) of expression in CFs, AFs,
and SMCs, whereas they were among the least abundant proteins
((4) in ECs. Cell-type-enriched proteins—those with at least
twofold higher expression in one of the cell types compared to all
others—are listed in Supplementary Data 7.

CF-enriched cell surface markers. Over the past decade, CFs
have been shown o hold great promise as ajgﬁhenr.ial target
population for cardiac regenertive therapies!*%7, Selection and
targeting of CFs, however, remains challenging and currently
relies on unspecific CF markers, including VIM, discoidin
domain-containing receptor 2 (DDR2), periostin (POSTN),
protein S100A4, ACTAZ, platelet-derived growth factor receplors
PDGFRoand 3, T-box transcription factor TBX18, and the THY1
membrane glycoprotein®™. Among these, only PDGFRB, S100A4,
and ACTA2 showed at least twofold enrichment in CFs com-
pared to ECs and SMCs, whereas all other currently employed CF
markers were not enriched in CFs. Remarkably, compared to
another fibroblast cell type (AFs), none of these markers were
& MATURE
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even twofold enriched. GAT A4 and TBX20 have been reported as
specific CF markers™. GATA4 was indeed only identified and
quantified in CFs; however, TBX20 was fourfold more abundant
in SMCs compared w CFs.

Globally, 609 (5.8%) proteins were specifically enriched in CFs
compared to AFs, ECs, and SMCs. These encompassed 25 cell
membrane receptors (Sup plementary Data 8). The presence of the
tyrosine kinase RORI in CFs has not been reported before but we
found it to be 200-fold more abundant than in the other cardiac
cell types. Activin receptor ACVRI is required for normal heart
development™ and it was also one of the most highest expressed
proteins in CFs. Natriuretic peptide receptor NPR3 has a central
role in vasodilatation, is known to be present in CFs® and our
data showed sixfold higher expression in CFs. The drug target
hepatocyte growth factor receptor MET, was also increased in
CFs (fourfold higher than BCs and SMCs). BDKRB2, the receptor
for bradykinin plays a pivotal role in the cardiovascular system by
regulating blood pressure. Interestingly, we exclusively identified
it in fibroblasts, with 11-fold higher expression in CFs compared
to AFs. Likewise, protein levels of the cell membrane phosphatase
PTPRZ1 were more than 40-fold higher in CFs compared to all
other investigated cell types, a finding supported by gqPCR
Interestingly, the direction of expression changes was concordant
between the mRNA and protein levels, Importantly, however, for
this and six other genes, the fold-changes indicated by gPCR were
not predictive of the actual protein-level changes (Fig. 5d). Our
data provide a catalog of CF-enriched marker candidates that
hold promise for better definition and wrgeting of human CFs.

EC and SMC proteome. Two further major cell types of the
human heart include ECs, which form the inner lining of heart
blood vessels and SMCs, the major constituents of the heart
vasculature. ECs contain numerous storage granules filled with
von Willebrand factor (VWE), which is involved in hemostasis,
VWEF was one of the most abundant proteins in ECs, whereas it
was among the least abundant in CFs, AFs, and SMCs (Fig. Sc).
The platelet endothelial cell adhesion molecule (PECAMI/CD31)
was among the most abundant (1) proteins in ECs. Further-
more, EC- specific proteins ESAM  (>22-fold) and ESMI
(exclusively) were overrepresented. Proteing involved in blood
vessel morphogenesis such as the VEGF receptors FLT1, FLT4,
KDR, as well as EPHB4 and its ligand Ephrin B2 showed 3- to
250-fold higher expressions compared to the other cell types
Comparing our data with single- cell transcriptomic data®
revealed that all genes identified as EC specific compared to CF
(except CAV2, which only displayed a moderate increase) also
showed at least several 10-fold upregulation in ECs at the pro-
teomic level (Supplementary Data 8).SMCs contain the same
muscle-contracting proteins as cardiac cells but do not have
troponin. The low levels of cardiac TNNT2 detected (= 100-fold
less than in cavities), are likely due to the 8% impurity of isolated
SMCs. In place of troponins, caldesmon (CALDI), which was
among the highest abundant proteins in SMCs, blocks the
myosin-head binding site on actin flaments®™. Proteins segre-
gating the SMC group (Fig. Sb, highlighted in pink) from EC, AF,
and CF included typical smooth muscle proteins such as
SMTNL2 and MYHI1 of which we quantified three splice var-
iants and two were exclusively identified in SMCs. Our analysis
also opens up for the investigation of new epigenetic mechanisms,
for instance, based on the very significant enrichment for EZH2-
regulated proteins (p < 10734,

Clinical application of the heart map to atrdal fibrillation.
Having generated a map of the healthy human heart, we next
investigated if it could serve as a reference to pinpoint molecular

| OO 1003 E =467 -017-0 174 7-2 | wearwna ture cormynature communications

121



NATURE

COMMUNICATIONS | DO1: 10.90328,/541467 -017-D

ARTICLE

300 min per patient

LC-MSME

@ 100 min

0 -8 5 4 2 0 2 4 &

Log2 fold change (AFib/healthy LA)

Fig. & Clinical application of the healtthy human heart atlas to atrial fibrillation. a Experimental workflow: LA tissues from three atrial fibrillation patients
(AFib) were single-runs of technical triplicates. Data were matched against the healthy human LA library. b Volcano plot of the p values vs the log2 protein
abundance differences in AFib compared to bealthy LA. Significantly up- and downregulated proteins are highlighted in red and blue, respectively (FOR

0.05}

differences between healthy and diseased tissue. To this end, we
collected LA samples from three patients suffering from AFib
(Supplementary Table 3), the most common heart arrhythmia
and a major cause of moralig®™. We applied a single-run
method, in which an in-depth measurement of the proteomic
system in question serves as a reference set of identified peptides
for deep and high-throughput single-run measurements®™ Lo
assess the proteomic changes in AFib patients from minimal
material and in a timely manner. We found that combining the
iST sample preparation, our established healthy reference heart
“library,” and single-run, triplicate measurements, any cardiac
sample can be profiled in less than two days, of which only
300 min are MS-measuring tme (Fig. 6a). In this way, we
quantified an average of 3681 proteins for the healthy LAs and
4147 proteins in the AFib group, with excellent average Pearson
correlations for technical and “biological replicates” of 0.97 and
0.93, respectively (Supplementary Fig. 13). In the AFib group
compared to healthy samples, 104 proteins were significantly
downregulated and 307 were upregulated (Fig 6b and Supple-
mentary Data 9). Proteins with increased expression in AFib are
involved in dbonucleoprotein complexes and transeription. Some
ECM proteins, such as DSTN, ITGB2, ITGAM, and FLNB, were
significantly upregulated in the AFib group, whereas others,
including COL1A2, COL3AL, and ITGB1 were downregulated.
These results point to a reorganization of the ECM in AFib,
explaining previous observations at the level of expressed pro-
teing®™, There is also evidence of significant contractile remo-
deling in AFib with several-fold lower expression of TNNTZ,
HRC, MYHS, SCNSA, and SRL, suggesting disruption of the
cardiac tissue, Furthermore, MPRIP, a protein that has been
previously associated with an increased number of stress fibers
when downregulated®™ showed 12-fold lower expression. The
most significantly downregulated proteins in the AFib group
(Fig. 6b and lower yellow box in Supplementary Fig. 14) were
enriched for “mitochondrion” (p< 107'%), This included the
most significantly downregulated protein (COX7B) and two other
key mitochondrial proteins—IMMT and TIMMBSA, all of which
were =>25-fold less abundant than in healthy tissue. Mitochon-
drial dysfunction has already been reported in AFib™ 7" how-
ever, the broader molecular nature of their defects and whether
they are different between patients are not fully understood.
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Interestingly, inspection of the hierarchical clustering plot within
the AFib group revealed distinet and nonoverlapping clusters of
up- and downregolated proteins for each of the three patients
(orange and green clusters, Supplementary Fig. 14), whereas
nondiseased biological controls showed similar expression o each
other. Although the number of AFib patients is muoch too small to
derive a general signature, our data clearly show that the mito-
chondrial defects reflected in the proteomes are very different
between individuals. These proteomic patterns point to a
potential molecular subclassification of AFib patients. These
observations, however, will require a more thorough analysis
including a larger patient cohort.

Discussion

Creating anatomical and cellular maps increases our under-
standing of human biology and diseases!®1%72, Here, we used
“loss-less”™ high-pH reversed- phase fractionation and high reso-
lution, quantitative MS to generate a heart region, and cell-type-
resolved human heart map. Starting from low microgram sample
amounts, we quantified over 11,000 proteins, representing by far
the deepest proteome of the healthy human heart, which is
available in the online database Max(B®, The ability 1o work
with minimal starting material enables in-depth proteomics
analyses from heart biopsies that can be obtained during surgery.
Furthermore, our streamlined proteomics workilow enables the
profiling of any cardiac sample in less than two days, a realistic
time frame for fature clinical application. At the anatomic level,
we found that the 16 heart regions clustered into the expected
three main areas (cavities, vessels, and valves). Binary comparison
of subgroups, such as the atria and ventricles, provides crucial
information to understand the basis for atroventricular differ-
ences in healthy as well as diseased human hearts, a precondition
to identify more specific and reliable biomarkers. To complement
the region-resolved heat map, we also established a comprehen-
sive proteomic map of three noncardiomyocyte cell types. This
should be particularly useful in future studies to better define and
target the CF population. CFs are activated into myofibroblasts
after acute myocardial infarction, leading to increased ECM
production and wound healing by scar formation within the
infarction area. The direct reprogramming of resident CFs after
myocardial infarction into induced cardiomyocytes or cardiac
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progenitor cells is currently a promising strategy for cardiac
regeneration. Our quantitative proteomic data question the spe-
cificity of currently used CF markers while providing a promising
panel of enriched cell surface markers for therapy. There isa lack
of reliable biomarkers for aortic aneurysms (enlargement of the
Ao) or more importantly aortic dissection (tear in the wall of the
Ao). Currently, both diagnoses rely on clinical examinations and
laborious imaging technigues. Our deep quantitative proteome of
large arteres, in particular the Ao, could help in establishing a
healthy baseline in future stodies aiming to define protein
expression indicative of these conditions. Likewise, our human
cardiac valve proteome can be used as a background for future
studies aiming to uncover biomarkers indicative of cardiac valve
deterioration. Finally, we show that patients suffering from AFib
present both common and distinct proteome profiles, potentially
pointing to individual-specific disease manifestation. While our
investigation is only a first step, it opens up as a yet-unexplored
maolecular classification at the level of expressed proteins. Further
directions in human heart proteomics could include region- and
cell-type-specific mapping at higher resolution, investigation of
PTMs, and the combimation of proteomics with detailed
mechanistic investigations of disease etiology.

Methods

Tissue preparation. In toal, 16 healthy heart regions from three adult male
indlividials {Supplementary Table 1) were collected less than 72h postmorniem
duering an autopsy after a court onder. The hearts of the subjects did not present any
relevant injury or signs of candiac malfunction and were therefone defined as
healthy. The 16 heart regions inchaded fur main vessels (aora (Ag), pulmonary
:ﬂm{PA] vena cava inferior ([VC), and vein [ FVe)), four heart
uwub{n atrium (RA), left atrium (LA}, ngﬂverﬂnde (BV), and left ventricle
{LV)), four heart vabves {tncuspll valve (TV), pu]rm.rnn- valve (FV), aortic valve
{AV), and miiral valve [ MV)), the ventricular s plum [Sep'u-’:l the atrial seplum
{SepA), the left coronary artery (LCA) and the right coromary artery (RCA) were
explanted by an oficial madm]@] expert. Samples were stored at —80°C afier
collection. The investigation was by the Jocal ethical committee of the
Medical Faculty of the Technical University of Munich {project no. 247/16s). The
ethical committes explicitly approved the we of human samples in the context of
trama.

Cell isolation. Atrial samples from patients undegoing cardiovascular surgery
were cul inte 1-2- fragments and digested with 2mg per ml of collagenase
type I {Life Techndogies, Cat. No. 17101-015, Cadsbad, CA) in PBS (1h, 37°C).
After filiration (70-pm cell strsiner (Greiner Bio-One, Cal. No. 542070, Frick-
enhausen, Germany) and red cell lysis (Red Blood Cell Lysis Solution, Milenyi
Bioter, Cat. Mo, 130-084-183, Be-g;::'h Hadbach, f‘mv] ﬂlemnmnmgoe]h
were resuspended in 1ml of anto-running M.l\ﬂilml]'er{MJlenyJ Bindee, Cat. Mo,
130-{FH)-221). After preseparation (30-um filer, Miltenyi Biotec, Cat. No. 130-041-
407, CDJl-puﬂLne endothelial cells {BECs) were isolated mmgi]ne C3l
MicroBesd Kit (Millenyi Biotec, Cat. No. 130-091-935) and the human FeR-
Bhdung Rq;ml {Mhemu Biotec, Cat Mo, 130-058-901) in the MACS system
{M]I.enw Biatec) :mmdms o the manubicturer’s instruction. Tsdated ECs were
cultured in Endothelial Cell Growth Medium 2 (PromoCell, Cat. No. C-22011,
Heidelbery, Germany) wntil confluence. Adipose Sbmoblasts (AF) were isolated
from subcutaneows i tissee and candiac ibmoblasts (CF) wer sdated Fom
atrial samples Tissues wene cul and digested using collagenase solution type II
{25h, 37 °C), and ressspended in DMEM high ghecose (Biochrom-Millipore, Cat.
Na FG (435; Bedin, Germany) containing 10% fetal calf serum (FCS, Fisher
Scientific, Schwerte, Gemmany ), penicllin (100 U per ml), stre plomycin (100ug per
ml), both from PanRescAppliChem (AppliChem, Dannstadt, Germany), and
siodiism- pyruvate (1 mM, Gibeo, Kadsbaden, CA) and grown to confluence.
Smooth muscdle cells (SMCs) were isolated from the artera mammarnia interma
{ITAL Vessels were cut longitedinally. With a scalpel, the tissse was cul inlo square
pieces. The pisces were put on BD Primaria™ §-well plates (Greiner Bio-One,
Frickenhauwsen, Germany ) and dried (2-3h, 37 °C, 5% CO,) Subsequently, SMC
growih medium 2 (PromoCell GmbH, Heidelberg, Germany) was added. When the
first SMCs migrated from the tissee, he pieces were removed and cells were grown
e confluence. All biepsies from patients wndergring candiovascular surgery were
transferred within 10 min Fom the operation room in PBS To pasiage the ECs,
SMCs, and Gbroblasts, cells were ineulmted with trypsn (Life Technologies) diluted
1 in 4 in PBS (5 min, 37*C, 5% O0y). Trypsin selution was neutralized using 2
times of medis. ECs and SMCs were frosen in liguid nitrogen in 10% DMSO (Roth,
Karknshe, Germany), 40% FCS, and 50% cell-type-specific medium. CFs and AFs
were frozen in lquid nitrogen wsing 10% DMSO and 10% FCS in ibroblast-specific
medium a8 described sbove. The generation of cell cultures from patient biopaes
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was approved by the local ethical committes of the Medical Faculty of the Tech-
nical University of Munich (project no. 158806 (amendment) and 2919/10).

Flow cytometry-based quantification of the cell types. Frocen SMCs solated
fromm the [TA (pasage p2) and cultured s described above were thawed and wied
for flow cyometry analysis SMCs were fised in 1% formaldehyde (20min) and
blocked in PBS containing 10% FCS (w'v) and 0.05% sodivm axide (w/'v). The fimt
antiboady anti-alpha smooth musce actin (ab5e04, Abcam, UK) was sdded at a
ratlo of 120 in wash /permeabilization bulfer (FBS comtaining 5% FCS (viv),
saponin 0.5% (wiv), and sodium axide (0.05%, w'v:;l for 30 min st 4 °C. The
secorsdary antibody goot-anti-rabbit Alexs Fluor 488% (ab150077, Abscam, UK) was
added al a mtio of 1:2000 in buifer containing saponin (30 min, ice, dark). BCs
from atrial biopsies were isoated and cultured as described above. After pre-
paration of a single-cell suspension, one sample of the total biopsy and the positive
and ive fraction obtained after MACS were amalyred All cell fractions wene
ru.npnmdedjn ice-cold PBS/S5% BSA/2 mM EDTA (FACS buffer) containing 5%
anti-human CD31 PE-C\I.-? (250314, eBioscience, Frankfum, ("ennarq-] amd imcu-
bated for 30 min in the dade CFs and AFs were solsted as deseribed before. Cells
wemmliuredmgﬂ:momtedphibandamhmdﬂpn 1 or 2. Cells wene
detached using 0.25% trypsin {Like T. ) dilusted &t 3 mito of 14 in PBS.
Monodonal anti-hueman CO90 PE-Cy5 (eBioscience, 15-00), anti-heman CDI05
APC (eBioscience, 17-1057), and anti-human CD45 FITC (eBioscience, 11-%459)
antiloadies were nesus al a ratio of 1:20 in ice-cold FACS bufler and incu-
bated for 30min on ice in the dark. Afier staining, all cells ing Mow
cytometry analyses were resuspended in ice-cold PBS0.5% BSA/M4 mM EDTA and
kept in the dark on ice witi] Bow cytometric analysis was perlormed with a BD
LSRFeressa (BIY, San Jose, CA) Negative contrls were unstained or stained with
ithe secondary antibody alone. Cytometry data were analyred with the Flow|o
snltware version 765 {,Ilormu_atmularmna

Immunocytochemistry. SMCs were fxed (4% PEA, 20min) and permesbilized in
PBS-T (0.1% Triten-X-100 in PBS, 10 min). Unspecific binding was blocked with
5% normal goat serum (Abcam, ab7841, Cambridge, UK) in PBEST for 30 min.
Polyclonal rabbit anti-alpha smooth muscle actin | Abcam, ab5684) was dihsted at 2
ratioof 1:X0 in PBS-T and SMCs were incubated with the first antibody ovemi

at 4°C. The mmnhn.- antbody poat-anti- rabhit [g("r {HE&L) Alesa Fluor 555
(Abcam, ab150078) was dilsted at a ratio of 1:300 in PBS-T. Cells were incubated
in the dark fr 60min ECs isolated from LA and the positive and the negative
fraction afier MACS sont were stained for CD31. Cells were isolated and processed
using the MACS system at described above and on cover slides until con-
fuence. Cells were fixed wing 4% PFA (10min) and blocked (5% goat serum in
PHES). Polycdonal rabbit anti-CD31 (Abcam, ab28364) was diluted at a ratio of 125
and incubated ovemight at 4 °C. Secondary antibody goat-anti-rabbit 1gG (HE&L)
Alexa Fluor 5557 (Abcam, ab150078) was diluted at a ratio of 1:500 and incubsted
(60 min, dark). Both antibodies were diluted in PBS. CFs and AFs were fixed wsing
4% PFA/sscmse in PBS (15min). For VIM staining, cells were permeabilized
(025% Triton-X- 100 in PBS) and unspecific binding sites were Hoded (5% goat
serum in PBS-T, 1 h). Polydonal rabbit anti-VIM (Abcam, abd5939) was wsed as
cytoskeleton marker at 1pg per ml of fnal concentrtion in PRS- T. For DDR2,
staining cells were washed with PBS after fiation and blocked with 5% gost-serum
in PBS. Polyclonal rablit anti-DDR2 (LSBio, LS-C99151, Seattle, WA) was diluted
at a ratio of 120 in PBS. Both antibodies were incubated for 1 h Secondary
anitibody goat-anti-rabbit 136 (H&L) Ales Floor 5557 (Abcam, ab]50078) was
dihsted at a ratio of 1:500 in either PBS-T or PBS and incubated for 1k inthe dark.
For immunoc yochemistry, SMOCs, ECs, CFs, and AFs wene grown to approod-
mately 8% confluence on 4-well chamber oover slides (Millizell EZ dides, Milli-
pore, Drammstadt, Germany). All incubations were performed al room temperature,
excepl a-em'g}rljnmhum After the last wash, slides were air-dded, mounted in
Abcam-mounting medium containing DAPT {Abcam, abli4139), sealed with
coverslips, and evalusted under a Muerescent microscope (Axiovert MW M, Zeiss,
D-73447 Oberkechen).

RT-qPCR analysis. Expression of CE-specific proteins was confimmed on tran-
seriptional level by RT-gPCR analysis. ECs, SMCs, CFs, and AFs (p0-4) were lysed
with BMA lysis buffer (Peglsb, Erlangen, Germany). Total RNA was purified using
the peqGOLD wtal RNA kit {Peglab) and reverse-transcrbed into ¢<DNA with M-
MLV revers tmn::rj:[:rl::e{[m-n.mpn, [Dharmetsdi, Cﬂ-nnrty) :mmdjngmﬂle
man ufacdurers recommendation. Bx of ALDH1A2, PDED, DAPE,
CSRP2, DIAPHI, CESL, and PTPRZ] was evaluated on 3 QuantStediod (Applied
Biosystems, Foster City, CA) using Power SYBR Green Master Mix (Applied
Biosystems) and the following conditions: activation of Tag DNA polymersse
{15 min at 95 °C) followed by 40 cycles with 155 at 95°C, 60s at 60 °C. The
sequences of the used primens are noted in Supplementary Table 4. Quantification
was performed wsing the relative expression software tool RESTE. Data were
normal tred i [Factin.

Sample preparation for M5 analysis. All 16 heart regions dissected from three
trama victims were washed three times with cold PBS before being crushed in
liguid nitrogen using 3 mortar and pestle. Powdered samples were then resspended
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i S0l of SDC reduction and allylation buffer and boiled for 10 min to densture
proteins'®. Samples were further mixed (six times fr 303 and cooled on ice in-
betwesn) using a FastPrep® 34 Instrument (MP Biomedicals). Protein concentrs-
tign was messured widng the Trypophan assay :nd 30y were funher procesed
fosr ewemnight digesion by adding Lys-C and ina 1:50 mtio (pg of enzyme
s g of protein) at 37°C and lmrpm{)nﬂ’-el'oﬂlmmgchv samples were
sonicated wsinga bioruptor 15 cvdbm’aﬂs;l and furher digested for 3h with Lys-
C and trypsin {1:100 ratio]. P were acidified to a hnal concentration of 0.1%
trifluoroscetic acid [ TFA) for SDB-RPS tmdms‘aml Iﬂp.ga]’pephduwere loaded
on four 14 gauge Si:p-Tj:p p] g [-'ephduwere washed first mﬂump.mpnmJ,n’lﬁ
TEA (200 pl) and then 0.2% TEA (200 ul) using an in-house-made Stage-Tip
centrifuge at Mg, Peptides were eluted with 60ul of eution buffer (8% acet-
onitrle/ 1% ammaonia) into sute sampler vials and dried at 80°C wing a SpeedVac
centrifisge | Eppendoct, Concentrator plus). Peptides were resuspendead in 2%
acetomitrileid 1% TEA and sonicated {Branson Ulirasonics, Ulirasonics Cleaner
Muodel 2510) before pepLide concentration estimation wding ihe Nan Aot
30 g of peptides of each sample were further Factionated into 54 fractions and
concatenated into § fractions by high-pH reversed-phase Fractionation wsing the
recently described “loss-Jess™ nano- frsctionator™. CEs, AFs, ECs, and SMCs were

similarly te the heart tivase cmples withowt liguid nitrogen crishing
and FastPrep™-24 Tnstriment.

Liquid chromatography-MS analysis. Nanoflow LC-MS/MS analysis of tryplic
peptides vas conducted on a quadrupole Orbitrap mas 5 () Eae-
tive HF, Themma Fidser Scientific, Roddord, IL, USA) coupled 1o an EASYaLC
1200 ultrs-high- pressure system (Thermo Figdver Scientific) vis a nano-electmosp ray
iaxny sovurce. About 1pg of peptides wer laded on a 40-cm HPLC-column (75-pm
inner diameter; in-howse using ReproSd-Pur C18-AQ 1.9-um silica beads;
Dir Maisch GmbH, Germany ). Peptides were wsitg a linear gradient fFom
210 0% Bin 55 minand stepped up to 40% in 40 min folowed by a 5 min wash at
98% B at 350 al per min where solvent A was 0L1% formic acid and 5% DMSO in
water and solvent Bwas 80% scetondtrle, 5% DMS0, and 01% brmic acd in
water. The total duration of the run was W0 min. Column temperature was kept at
60 *C by a peltier element-contining, in-house-developed oven. The mass spec-
trometer was operated in "op-15" data-dependent maode, collecting MS spectra in
the Orbitrap mass analyrer (60,000 resohstion, 300-1650 mz range) with an
automatic gain control (AGC) taget of 366 and 3 maximem ion imection time of
15 ms. The most interse ions from the full scan were isolated with an isolation
width of L5m/z. Following higher-energy collisional disseciation (HCD) with a
normalimed cdlision energy (NCE) of 27%, MSY/MS spectm were collected in the
Odbitrap (15,000 resaution) with an AGC trget of 5B and & maximuam jon
injection time of 25 ms. Precuror dymamic exclusion was enabled with a duration
of 30 s. For cinical AFib samples, 2 "top-5" data-dependent scquistion method as
described above was modified to increae the dynamic mnge on the M51 level by
including three MS scams {12 segments eacly; total AGC taget 1E6),
covering a m/z range of 400-12KL MS1 reschation was set to 120,000 3t m/z 200
er gl

MS data analysis. Tasdem mas spectra were searched againit the 2015 Uniprot
T n databmses (L POOOMOS640_9606 and UPOOWKKS640_9606_ad ditional) using
MaCuant™ version 1556 with a 1% FDR at the peptide and protein level,
peptides with a minimum length of seven amino acids with carlamidomethybtion
asa fixed modification, and N-terminal acetylation and methionine oxidations as
variable modifications. Enryme specificity was set ai C-erminal 1o arginine and
lysine wsing trypan & protesss and 3 maximam of two mised cdesvages wen
allowed in the database search. The maximum mass tolerance for and
fragment ions was 4.5 ppm and 20 ppm, respectively. If applicable, peptide iden-
tifications by MS/MS were tranderred between runs (o minimize missing valees or
quantification with a 07-min window afler retention time alignment. Label-free
quantification was peformed with the MaxLFQ algorithm wsing 3 minimum citio
count of 1. For dinical AFb nmp.'la, the identification tramder was restricted to
the }na:ll!.'lq.I LA ]ibnq.- on]u:nd we sel 3 minimem ratio count of 2 for kibel -free
quea nitific ation.

Statistical analysis. Statistical and bioinformnmatics analyss was pedormed with the
Pereus software®® [version 1.55.0), Micmaofl Excel, and B atatistical software.
Proteins that were identified in the decoy reverse database or only by site mod-
Jﬁuhonwmmimmdﬁedfwﬁl:::n]mkv'eahou&-ded ial con-
taminants Diats were firther fltered to make sure that identified proteins showed
expression in all biclogical triplicates of 3t Jeast one heart region and missing values
were imputed on the basis of normal digribution (down shifi =18, width=0.15).
PCA analysis of the heart region and cell types relied on singular vahse decom-
pnuii.ion:nd the an'gim] feature {p.m{ein] PAcE Wk arl.}mgom]}u iransformed imo
a st of lineady uncomelated vadables (principal components). These account for
distinet types of vadabdity in the data. For hierarchical dustering, LEQ) intensities
were first z-scomed and dustered wsing Euclidean as a distance measure for column
and row dustering, Gene set enrichment analyss (GSEA) was performed wsing
gene set collections from the MSigDB*. Mean log? mitios of biological triplicates
and the comesponding p values were vissalized with volcane plots. We used r-test
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for binary comparisons and SAM with 5= 0.1 and FDR <{0.05 for the aisesment
of -lest resulls in voleano plos®

Copy number calculation and subcellular heart proteome model. Coonversion of
LE() intensities to copy member estimations was achieved wsing the proteomic
ruder™. The proteomic ruler plug-in v0.1.6 was downloaded from the Perseus
plug-in store, for use with Pesews version 1.55.0. Protein intensities were flered
for three valid values in at least one heant region. Proteins belonging to the GO
term “Blood mi icle”™ wer removed From the analysis (see Supplemen tary
Dnhjfor:fu]]]iﬂd’mrmmdpmlde.Pmﬁng;uupu{p:oiei:nﬂntmhe
dj:l.ingu‘uhed based on the availshle pepLide infrmation ) were annotated with
aming acid sequence and Lryplic peptide information for the leading protein [D,
using the FASTA file used for processing in MaxCusant. Copy numbers per diphsid
nucleus wene estimated wsing the Dllowing settinge sveraging mode—"All od-
L " malecular madee—; ¢ molecular maw,” detectability
cormction—"Number of theoretical peptides,” scaling mode—"Histone p.rd.emruc
ruler,” ploidy "2," and wial cellular protein concentration—"200 g per L™ To build a
subcellular model of the heant atlas protecme, subcellular localation predictions
from spatial proleomics data®™ were matched (o the protein growps wing the
lesding canonical protein 1D, mMmmpvmmMofﬂwﬂueerepthn
mu]tq:-hadln the protein molecular weight to cale ulste mass. The mass of

wias attrbuted to the msclews, cvlmal ara specdic le momdms
tmb distribution in Hela cell. Since many ]-u@-u]v abundant heart-specific proteins
wene oot present in this spatial ics database, the top 104 s in each
hean :qm‘mwm mmp]ebedlpﬂ fer subeellulir Jocalization t;Png mm from
UniPmdt. These mamsally ansotated in masses were assigned entirely to the
respective organelle. This led 1o 3 median of %% of total protein mas being
asigned 1o 3 specific location.

Data availability. A MS proteomics data have been deposited on Proteo-
meXchange via the PRIDE database with the data sel identilier PXDNS675 and
can alio be sccessed in & wer-friendly format at i All other
adata supponting the Endings of tis stedy are avalable within this article and in the
supplementary material or from the corresponding authors on nable request.
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Recent groundbreaking advances in MS-based proteomics have set in motion the
transformation of translational MS-based cancer proteomics from an idea to a
practice. In this manuscript, we present a rapid proteomic workflow for the analysis
of clinically relevant cancer tissues allowing quantification of thousands of proteins
in several hours of measurement time. Applying our workflow to an extremely rare
cancer type, the urachus carcinoma, we uncovered a potential therapeutic target:
Lysine specific histone demethylase 1 (LSD1). We created the possibility for medical
doctors and scientists to truly use proteomics for end stage cancer patients to

identify additional actionable therapeutic options.
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Abstract

Recent advances in mass spectrometry (MS)-based technologies are now set
to transform translational cancer proteomics from an idea to a practice. Here,
we present a robust proteomic workflow for the analysis of clinically relevant
cancer tissues, which allows quantitation of thousands of tumor proteins in
several hours of measuring time and a total turnaround of a few days. We
applied it to an extremely rare and chemorefractory urachal carcinoma.
Quantitative comparison of lung metastasis and surrounding tissue revealed
several statistically significantly upregulated proteins, among them lysine
specific histone demethylase 1 (LSD1/KDM1A). LSD1 is an epigenetic
regulator and is the target of active development efforts in oncology. This
demonstrates that clinical cancer proteomics can rapidly and efficiently
identify actionable therapeutic options even in end stage cancer patients.
While currently described for a single case study, we envision that it can be

applied broadly to other patients in a similar condition.
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Introduction

Genomic and transcriptomic investigations based on next generation sequencing
has revolutionized the field of oncology in the last decade and allowed the molecular
profiling of thousands of tumors in different cancer types (Cancer Genome Atlas
Research Network et al., 2013; Stratton et al., 2009). While these technologies have
led to a better understanding of cancer origin and heterogeneity, it has often been
challenging to turn mutation patterns into actionable therapeutic suggestions. It has
also become evident that the development and complexity of cancer cannot be
understood at the genetic or transcriptomic level alone. Clearly, proteins, the driving
biological entities in cells, also play crucial roles in cancer. So far, proteomics — the
large scale study of all proteins in a given system - has lagged behind genomics for
technological reasons. However, following groundbreaking advances in mass
spectrometry (MS) based proteomics, comprehensive characterization of nearly
complete proteomes has now become a reality (Aebersold and Mann, 2016; Bekker-
Jensen et al., 2017). In parallel, several proteomic tumor analysis consortia (e.g.
CPTAC) have been launched and aim to systematically identify and characterize
cancer-relevant proteins. So far, these consortia have focused on knowledge

generation, rather than focusing on specific clinical applications.

Here we set out to use state of the art proteomics technology directly in a clinical
oncology context. Our group has already established proteomic workflows enabling
processing of clinically relevant tissue samples to great depth, even for formalin-
fixed paraffin-embedded (FFPE) material (Wisniewski et al., 2011, 2013). Recently,
we have combined nearly all sample processing steps in a single reaction tube,
thereby reducing preparation time, contamination and loss, while increasing
guantification accuracy (inStageTip method) (Kulak et al., 2014; Doll et al., 2017).
We reasoned that these advances would now enable rapid analysis of individual
tumor tissues to inform treatment decisions, especially in patients with rare and end
stage cancer malignancies, where evidence for therapeutic strategies and clinical

trials are often lacking.

129



Urachal carcinomas originate from a remnant of the fetal structure connecting the
allantois and the bladder. This form of cancer is very rare, accounting for less than
1% of all bladder cancers, aggressive, and consequently little studied. Patients with
metastatic urachal cancer have poor prognosis and limited treatment options
(Szarvas et al., 2016). Only a few cases have been investigated at the genomic level
(Collazo-Lorduy et al., 2016; Singh et al., 2016a) and there are no global protein
expression profiles of urachal carcinoma that could aid the search for biomarkers,
therapeutic targets, or disease signatures.

A 57-year-old female presented with an urachal carcinoma that has metastasized
to the lungs. The tumor had become refractory to all available chemo or radio
therapy regimes but the patient wished to continue treatment. Based on the
inStageTip sample preparation method, we developed a fast and reproducible
workflow capable of producing analysis results in only about two days. Profiling the
proteomic landscape of the metastasized tumor in comparison to the normal
appearing surrounding tissue, we aimed to uncover potential therapeutic targets and
gain a deeper understanding of the molecular mechanisms underlying this disease
and its progression. We also employed proteomics to characterize the archived
primary tumor and compared our results to deep sequencing data that we obtained

from the same metastases.

Results
Prior clinical course

Early symptoms of our patient included gross hematuria, which led us to perform a
subsequent cystoscopy and bladder biopsy. Histopathology revealed a mucinous
adenocarcinoma in the bladder, a finding consistent with a diagnosis of urachal
carcinoma. As a first line of treatment, we performed a partial cystectomy and
lymphadenectomy. Our final pathology showed a pT3b, pN1, L1, V1, RO mucinous
urachal carcinoma of the bladder (Supplementary figure 1A). Follow-up CT scans

were performed on a three-month basis. Nine months after resection, the CT scan
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revealed two suspicious hypodense lesions in the liver (Segment 5 and 4a) as well
as a local recurrence found at the bladder dome (Supplementary Figure 1B and C).
The local tumor board recommended chemotherapy, including one cycle of XELOX
(oxaliplatin and capecitabine) and nine cycles of FOLFOX (folinic acid, fluorouracil,
and oxaliplatin). Chemotherapy led to a partial hepatic response but was stopped
due to severe peripheral neuropathy. To assess further treatment strategies the
local recurrence was biopsied and confirmed transurethrally. After tumor board
consultation, we performed a resection of the local recurrence combined with a
partial hepatectomy and subsequent radiotherapy of the local recurrence side
(59,4Gy). In later stages, two metastases were diagnosed at the introitus vaginae
and the CT-scan of the thorax revealed bilateral noduli. Subsequent chemotherapy
with four cycles of Gemcitabine/Cis-Platin led to a mixed response and further
pulmonary progression of a predominant singular nodule was diagnosed (Figure
1A). At this point, all standard treatment options were exhausted and we set out to
resect the lung metastasis and surrounding healthy tissue for subsequent proteomic
analyses. Due to medical and psychological issues the resection was delayed for
two months. In the thoracoscopy a disseminated pleural carcinosis was observed,
that was most likely covered by pleural effusion in the preoperative CT-scan (Figure
1B). Pleural metastases and healthy pleura were biopsied, washed in PBS, flash

frozen, and immediately transferred for proteomic analyses within one day.
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A) March 2017 B) June 2017

L]

Main metastasi

Figure 1 Preoperative CT-scans of the urachal carcinoma patient. A) CT scan in March
2017 showing a main metastases in the lungs. B) CT scan in June 2017 depicting a pleural

effusion before the surgery, hiding a pleural carcinosis.

Streamlined proteomics workflow applied to chemorefractory carcinoma

To be useful in a clinical oncological setting, we reasoned that a proteomics
workflow need to fulfill several criteria, including rapid overall analysis time (few
days), extreme sensitivity (few thousand cells), depth of quantitative proteome
coverage (several thousand proteins) along with robustness and reproducibility. The
workflow that we adapted fulfills all these criteria (Methods): Briefly, we performed
all sample preparation in a single reaction vial, based on the in-StageTip (iIST)
method sample preparation (Kulak et al., 2014). We chose a single-run LC-MS/MS
workflow, rather than pre-fractionating the sample, to minimize measurement time

and maximize quantitative accuracy. All bioinformatic analysis was done in the freely

132



available MaxQuant and Perseus software environments (Cox and Mann, 2008;

Tyanova et al., 2016).

Upon shipment of the samples in the late afternoon, we started by lysing the
samples and extracting the proteins. The surrounding fat of the tissues were
removed by high speed centrifugation. Proteins were subsequently digested over-
night using proteases. On the following day, we analyzed the peptide mixtures using
a state-of-the-art label free workflow on a quadrupole — Orbitrap mass spectrometer
(Figure 2B). Each sample, constituting a few pg of material, was measured in single
shot triplicate measurements using 100 min high-performance liquid
chromatography (HPLC) gradients. Analysis in MaxQuant specified a false
discovery rate (FDR) of less than 1% at the peptide and protein levels. In total, we
identified 50,870 sequence-unique peptides, corresponding to 5,562 protein groups
(proteins that can be distinguished based on the available peptide information). The
MaxLFQ algorithm (Cox et al., 2014) quantified 5,543 proteins in total and similar
coverage in all samples. For further analysis, we only considered the subset of 4,857
proteins in our data with quantitative values with at least 70% valid values across
the samples. Mean sequence coverage of all proteins by identified peptides was
about 25%. Signal intensities for the quantified proteins spanned about five orders
of magnitudes, with hemoglobin as one of the most abundant proteins, despite
extensive washing of the samples with PBS before sample processing. Quantitative
reproducibility was excellent, demonstrated by Pearson correlation coefficients
between 0.97-0.99, and was on par, or even exceed the values we previously
achieved in cell lines systems (Coscia et al., 2016). We likewise observed high
correlation values between control tissues taken from different locations (0.92) and
between two different samplings of the metastases (0.97). Raw data and MaxQuant
results are provided online and are available in our proteomic database MaxQB
(Schaab et al., 2012). The complete workflow can be performed in less than 2.5

days and we conclude that it is well suited to application in the clinic.
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A) Proteomics Timeline

19th June == Surgery
Total time: Sample preparation
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53rd June == MaxQuant
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Figure 2 Case study proteomics workflow. A) Timeline of the project. B) Experimental

design, including source of material, inStageTip sample preparation, and depiction of the

analytical workflow.

Proteome analysis reveals LSD1 as a potential therapeutic target

For a functional view of the proteomic data, we used volcano plots — a type of scatter

plot often used to present large-scale proteomic data sets - to compare expression

differences between lung pleural metastases and healthy-appearing pleura. Based

on a t-test for binary comparison and employing a 5% FDR, we found that 108

(2.2%) proteins showed significant alteration, of which 47 displayed significant up-

regulation and 61 down-regulation in the metastases. Gene set enrichment analysis
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(GSEA) using gene set collections from the MSigDB (Subramanian et al., 2005)
revealed that proteins upregulated in the metastases were significantly enriched
(p<5e-6) for the terms epithelial mesenchymal transition, tumor invasiveness, and
tumor metastasis. For example, periostin (POSTN) has previously been reported to
promote cell motility in several cancer types, was 13-fold higher expressed in the
metastases compared with non-diseased tissue (Gillan et al., 2002; Ishiba et al.,
2014; Mikheev et al., 2015). The most up-regulated (>100-fold) protein in the
metastases was thrombospondin-2 (THBS2) and is also involved in cell invasion as
well as angiogenesis and correlates with poor survival (Bornstein, 2009; Iruela-
Arispe et al., 2004; Lin et al., 2016; Qian et al., 2017; Wang et al., 2016). Another
protein driving cell invasion, methylthioribose-1-phosphate isomerase (MRI1) was
highly significantly upregulated but only 1.9-fold (Kabuyama et al., 2009). These
observations demonstrate that the proteomics experiment performed as expected
and suggest an important role of these proteins in the metastatic progression of

urachal carcinoma.

In contrast, downregulated proteins were very significantly enriched in mitochondrial
proteins (p < 1e-17), such as pyruvate carboxylase (PC), Acetyl-CoA carboxylase 2
(ACACB), and Acyl-coenzyme A thioesterase 2 (ACOT2). Interestingly, Ras
suppressor protein 1 (RSU1) was about 4-fold down-regulated in the metastases.
Apoptosis-inducing factor 2 (AIFM2) was 28-fold down-regulated in the metastases
compared with non-diseased tissue. These observations suggest a regulatory role

of RSU1 and AIFM2 in urachal carcinoma metastases.

In an effort to derive therapeutic options, we first reduced the total number of
significantly upregulated proteins by applying a more stringent cutoff (1% FDR). This
yielded four significantly upregulated proteins in the metastatic tissue:
methylthioribose-1-phosphate isomerase (MRI1), solute carrier family 22 member
18 (SLC22A18), collagen alpha-1 (XI) chain (COL11A1), and lysine-specific histone
demethylase 1A (KDM1A, also known as LSD1) (Figure 3A). Next, we asked which
of these proteins were potentially druggable, which left us with LSD1 as the sole
remaining candidate. We quantified LSD1 with 11 unique peptides, reaching an
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approximate sequence coverage of 20%, and found that it was 16-fold more highly

expressed in the metastases compared to the control.

LSD1 is an epigenetic regulator that demethylates both the activating histone mark
H3K4me and the repressive mark H3K9me, thereby acting as a coactivator or
corepressor, depending on cellular context. LSD1 has previously been reported as
upregulated in multiple cancer types and its inhibition has antitumor activity in lung
cancer (Mohammad and Kruger, 2016; Singh et al., 2015). These findings led to the
development of multiple LSD1 inhibitors that are currently in clinical trials (Alsaqer
et al., 2017; Mohammad and Kruger, 2016; Schmidt and McCafferty, 2007). Even
though it was unclear whether the lung metastases would respond to a LSD1
inhibitor, there were no other rational or reasonable treatment options available at
this point. Unfortunately, extensive efforts to obtain one of these drugs for use in
our patient ultimately proved unsuccessful. Luckily, tranylcypromine a drug
developed decades ago and FDA approved for the treatment of depression and
anxiety (Burger and Yost, 1948) has recently been shown to irreversibly inhibit LSD1
as a side effect (Binda et al., 2010; Ulrich et al., 2017; Zheng et al., 2016). This
analogue of amphetamine is a monoamine oxidase (MAO) inhibitor, an enzyme
family that is mechanistically related to LSD1. Tranylcypromine and derivates of this
drug already showed clinical efficacy for several condition in clinical trials, including
the treatment of AML. The local tumor board approved treatment approved
treatment with this drug and our patient was prescribed a tyramine-free diet, to
prevent accumulation of tyramine (which is normally metabolized by MAO) leading
to high blood pressure, which may culminate in a hypertensive crisis (Gillman, 2011;
Ulrich et al., 2017). However, a baseline CT at the initiation of therapy revealed
dramatic metastatic progression to the liver, concurrent with hepatic failure
(Supplementary Figure 1D). The patient was then transferred to palliative care ward

and died soon after.

MS-based proteomics is a multifaceted technology and further allowed us to
investigate the plasma proteome of our patient. Based on our previously developed
‘plasma proteome profiling’ pipeline (Geyer et al., 2016a) we quantified
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approximately 460 proteins in triplicate LCMS measurements enabling
guantification of inflammatory proteins, such as CRP and the majority of the
complement system (Supplementary Figure 2). Furthermore, we identified the entire
inflammatory panel which we have previously reported and found it to be clearly
elevated compared to normal controls (Geyer et al., 2016b), as expected in a patient

with end-stage malignancy and heavy metastatic load.

We also investigated whether the patient would be likely to respond to
immunotherapy. MS-based measurements did not reveal any expression of PD1 or
PDL1 proteins, an observation that was later confirmed by immunohistochemistry
(Supplementary Figure 3D). We also did not observe any immune cells infiltration in

the metastases, suggesting a poor response to immunotherapy-based treatments.
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Figure 3 Proteins differentially expressed in the urachal carcinoma lung metastases.
A) Volcano plot of the p-values (y-axis) vs. the log2 protein abundance differences (x-axis)
between metastases and control, with lines of significance colored in black or grey lines
corresponding to a 5% or 1% FDR, respectively. B) Mechanisms of action of LSD1/KDM1A.
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Proteomic analysis of the primary tumor

To further investigate the proteomic landscape of our quantitative and in depth
proteomic case study, we next analyzed the proteome of the primary tumor, which
had been preserved as FFPE material for several years. H&E staining revealed that
the primary tumor was rich in extracellular mucin and stroma compared to healthy
control tissue (Figure 4B and C). Our proteomic analysis revealed major differences
between the primary and healthy surrounding tissue (Figure 4A). In total, we
guantified approximately 4,300 proteins and found that mucinous (MUC1 and
MUC?2) and mesenchymal proteins (such as THBS2, COL11A1, and CTHRC1) were
significantly upregulated in the primary tumor compared to healthy surrounding
tissue. Generally, the epithelial mesenchymal transition, and thus mesenchymal
gene upregulation is associated with poor prognosis in various malignancies
including colorectal cancer and ovarian cancer (Chen et al., 2014; Rokavec et al.,
2017; Sleeman and Thiery, 2011). The fact that mesenchymal proteins were highly
enriched in the primary tumor, is concordant with the later development of multiple
and aggressive metastases. Interestingly, we also found that LSD1 appeared to be
upregulated in the metastases compared to the primary tumor, albeit not

significantly.
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Figure 4 Differentially expressed proteins in the primary tumor. A) Volcano plot of the
p-values vs. the log2 protein abundance differences between primary tumor and control,
with significance lines (5% FDR) colored in black. B) H&E stainings of healthy control tissue

surrounding the primary tumor (C), reveals prominent stroma formation.

Next generation sequencing analysis of the metastases

To gain additional insights into the overall molecular mechanisms underlying
urachal carcinoma, tumor etiology and to compare transcriptomics to proteomics,
we also extracted RNA and DNA extraction for subsequent next generation
sequencing. The quality of the extracted RNA from the metastatic samples,
however, was poor, prohibiting transcriptomic analysis. DNA is more stable, allowing
us to perform exome sequencing on our sample. Overall, we observed hundreds of
mutations in coding regions, indicating a hypermutated phenotype, consistent with
a previous report (Kardos et al., 2017). Comparing the mutations to a database of
druggable genes (Broad Institute), yielded a total of 160 mutations of potential
therapeutic interest. Among those, we examined the mutation spectrum of the
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growth factor receptor (EGFR) as EGFR-inhibitors (e.g. gefitinib), have been
described for urachal carcinoma recently (Collazo-Lorduy et al., 2016; Singh et al.,
2016b; Sirintrapun et al., 2014). The EGFR pathway member K-RAS is frequently
mutated in urachal cancer and we identified a missense mutation at position 117
(K117N, exon 4) that has previously been associated with various cancers forms
such as bladder and colorectal cancer. Unfortunately, multiple studies reported that
patients with K-RAS mutations in exons 2, 3 and 4 did not respond to EGFR-
targeted therapy (Bokemeyer et al., 2015; Douillard et al., 2013). We also found two
intronic and two exonic somatic mutations of the LSD1 gene, which, however,

scored neutral by mutation effect predictors (Supplementary Figure 4).

Discussion

Modern oncology is at a turning point, where systemic cancer treatment is moving
from multi-cytotoxic chemotherapies towards individual targeted therapies. This is
particularly promising for patients suffering from rare cancer forms, where standard
chemotherapies often fail and large clinical studies are unlikely to be performed. In
the near future, sequencing at the genomic, transcriptomic and proteomic levels
might provide the basis for individual targeted treatment prescription and thereby
change clinical practice. However, the large spectrum of mutations does not
necessarily lead to clear therapeutic options, a problem that becomes even more
acute when considering mutational heterogeneity of most tumors. These general
challenges were reflected in our case study, where mutational analysis did not lead
to a clear treatment recommendation. In contrast, our personalized MS-based
proteomic analysis worked robustly and quickly on both the lung metastases and
the archived primary tumor.

The current standard treatment for localized urachal cancer is surgery, whereas
chemotherapy is used on the metastatic disease. Given the rarity of this cancer type,
robust data from prospective trials on chemotherapy regimens is unlikely to be
obtainable and evidence mainly consists of small retrospective cohorts. Due to the

similarity of urachal cancer to colorectal adenocarcinoma and urothelial carcinomas,
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treatment regimens are generally extrapolated from these diseases, justifying the
FOLFOX therapy prescribed to our patient. Targeted epidermal growth factor
receptor (EGFR)-inhibitors (e.g. gefitinib), have been prescribed for urachal
carcinoma recently. To guide decisions concerning this alternative therapy option,
we further looked into K-RAS mutations and uncovered a missense mutation.
However, EGFR-targeted therapy was not prescribed because multiple studies
reported that patients with similar K-RAS mutations as our patient, did not respond
to therapy (Bokemeyer et al., 2015; Douillard et al., 2013). Furthermore, the
elevated liver enzymes of our patients were contraindicated such a therapy. In the
search for possible treatment options in this patient, we found that PDL1 and CD8
immunohistochemistry were also negative, suggesting a poor response to check-
point inhibitors.

Lacking evidence-based treatment options for our end-stage patient, who was
willing to exhaust all possibilities, we turned to our MS-based proteomic analysis,
which identified LSD1 as a therapeutic target highly enriched in metastatic tissue,
thus providing a promising treatment opportunity. Of note, our workflow allowed fast
proteomic analysis of clinical tumor tissue providing timely results to the patient and
the clinicians. The proteomic sample preparation and data analysis were
accomplished in only about two days, faster than the genomic analysis. This
highlights the promise of MS-based proteomics in clinical routine, where fast target
identification for cancer patients beyond standard treatment could be highly

beneficial.

In summary, we demonstrated a fast and reproducible proteomic workflow that
created the possibility for clinicians to use proteomics for personalized diagnosis
and treatment in the clinical setting. By combining genomic with proteomics data,
we further informed the therapeutic decision. We aim to apply this workflow to
cancer patients in a variety of chemorefractive tumors, in the hope of identifying

additional treatment options for at least some of them.
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Supplementary Figures

Supplementary Figure 1: A) MR-imaging of the primary tumor showed a suspicious mass

at the anterior bladder wall (red circle). B-C) Follow-up CT-imaging revealed local
recurrence nine months after partial nephrectomy (red circle) and a hepatic metastasis (red

arrow). D) Massive progression of hepatic metastases in the CT scan prior to LSD1 therapy.
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Supplementary Figure 3: H&E stainings. A) Healthy urothelium of the partial cystectomy
specimen. B) Primary mucinous urachal adenocarcinoma. C-D) Hepatic metastasis of the
urachal carcinoma with negative PDL1 immunohistochemistry.

KDM1A

# Mutations

Amino_oxidase

T ]
0 200 400 600 852 aa

Supplementary Figure 4: Mutation diagram of LSD1.
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Material and methods
Sample preparation for mass spectrometry analysis

The lung metastases were collected during surgery and were washed three times
with cold PBS before flash freezing the samples in liquid nitrogen and shipping on
dry ice. The samples were cut in half to enable genomic and proteomic analysis.

Proteomic sample preparation

Control and lung metastases samples were thawed on ice and prepared according
to the in stage tip sample preparation method (Kulak et al. Nat Methods, 2014).
Briefly, 100 pl of the reducing alkylating sodium deoxycholate buffer (PreOmics) was
added to the samples before protein denaturation at 100°C for 20 min. Proteins were
then digested by LysC and trypsin overnight at 37°C and 1700 rpm. Peptides were
acidified to a final concentration of 0.1% trifluoroacetic acid (TFA) for SDB-RPS

binding and desalted before LC-MS/MS analysis.

Liquid chromatography-MS analysis

Samples were measured on an on a quadrupole Orbitrap mass spectrometer
(Scheltema et al., 2014; Kelstrup et al., 2014) (Q Exactive HF, Thermo Fisher
Scientific, Rockford, IL, USA) coupled to an EASYnLC 1200 ultra-high-pressure
system (Thermo Fisher Scientific) via a nano-electrospray ion source. About 1 pg of
peptides were loaded on a 40 cm HPLC-column (75 pm inner diameter; in-house
packed using ReproSil-Pur C18-AQ 1.9 um silica beads; Dr Maisch GmbH,
Germany). Peptides were separated using a linear gradient from 3% to 23% B in 82
min and stepped up to 40% in 8 min at 350 nl per min where solvent A was 0.1%
formic acid in water and solvent B was 80% acetonitrile and 0.1% formic acid in
water. The total duration of the gradient was 100 min. Column temperature was kept
at 60 °C by a Peltier element-containing, in-house developed oven. The mass
spectrometer was operated in 'top-15’ data-dependent mode, collecting MS spectra

in the Orbitrap mass analyzer (60,000 resolution, 300-1,650 m/z range) with an
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automatic gain control (AGC) target of 3E6 and a maximum ion injection time of 25
ms. The most intense ions from the full scan were isolated with a width of 1.4 m/z.
Following higher-energy collisional dissociation (HCD) with a normalized collision
energy (NCE) of 27%, MS/MS spectra were collected in the Orbitrap (15,000
resolution) with an AGC target of 1E5 and a maximum ion injection time of 25 ms.

Precursor dynamic exclusion was enabled with a duration of 20 s.

MS data analysis

Tandem mass spectra were searched against the 2015 Uniprot human databases
(UP000005640 9606 and UP000005640 9606 additional) using MaxQuant
version 1.5.3.34 with a 1% FDR at the peptide and protein level, peptides with a
minimum length of seven amino acids with carbamidomethylation as a fixed
modification and N-terminal acetylation and methionine oxidations as variable
modifications. Enzyme specificity was set as C-terminal to arginine and lysine using
trypsin as protease and a maximum of two missed cleavages were allowed in the
database search. The maximum initial mass tolerance for precursor and fragment
ions were 4.5 ppm and 20 ppm, respectively. If applicable, peptide identifications by
MS/MS were transferred between runs to minimize missing values for quantification
with a 0.7 min window after retention time alignment. Label-free quantification was

performed with the MaxLFQ algorithm using a minimum ratio count of 1.

Statistical analysis

Statistical and bioinformatics analysis was performed with the Perseus software
(Tyanova et al., 2016) (version 1.5.5.0), Microsoft Excel, and R statistical software.
Proteins that were identified in the decoy reverse database or only by site
modification were not considered for data analysis. Mean log2 ratios of biological
triplicates and the corresponding p-values were visualized with volcano plots. We
used t-test for binary comparisons and SAM with s0=0.1 and FDR<0.05 for the

assessment of t-test results in volcano plots.
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V) Discussion

Approximately nine million deaths worldwide are attributed to cancer, and its poor
clinical outcome is related to a diverse array of factors, including late diagnosis, lack
of specific treatment, therapy resistance, and the limited connection of pre-clinical
with clinical research. Many cancer subtypes remain poorly understood and few
targeted therapeutic treatments are available. Revolutionary advances in genomics
technologies have so far mainly contributed to our understanding of cancer origin
and heterogeneity but unfortunately not had much impact on the clinic. In parallel,
technology improvements in MS-based proteomics now finally enable the analysis
of the molecular drivers of cellular function — proteins. These advances enable the
identification and quantification of nearly complete proteomes, as more than 10,000
proteins and PTMs can be identified in cells and tissues, including challenging
muscle tissues (Article 6). It is therefore possible to use MS-based proteomics to
study cellular changes at a near comprehensive, systems-wide level by examining
changes in protein and PTM expression, protein subcellular localization and protein

interaction partners.

To address the fundamental question of how the genotype is mechanistically
translated into phenotype it is important to interrogate the role of specific genes, for
instance by deleting or inserting a gene or mutation of interest, on a global proteomic
and phosphoproteomic scale (Articles 4 and 5). Likewise, with small molecule
inhibitors we can investigate the perturbation of phosphorylation signaling cascades
following kinase inhibition, on a systems-wide scale (Article 3). For example, a
recent study showed that cancer driven alterations in human tumors can be mapped
in human cancer cell lines and correlated with drug treatment sensitivity?'2. Cell line
models could therefore be used in the future to guide and link the development and

application of therapies in the clinic.

Further proteomic developments now permit in-depth tissue analysis in about two
days from obtaining the sample to final analysis result, this speed being a

prerequisite for clinical application (Article 7). Based on such a rapid proteomic
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analysis, we uncovered a potential therapeutic target in a chemorefractory cancer
patient, which enabled clinicians devise a third line treatment. We envision that this
workflow can be applied to cancer patients at much earlier stages of disease
progression, with the ultimate goal to distinguish patients most likely to respond and
benefit from a given treatment from those who will only endure its negative side

effects.

Together, the technical advances detailed in this thesis lead us into a new paradigm,
in which MS-based proteomics is transformed from being a tool for specialist
laboratories to a powerful technology for translational cancer proteomics used in
cutting edge clinics to deliver personalized treatment options.

Building on the work presented here, we aim to expand our robust, rapid and
sensitive proteomic workflow to the analysis of human cancer tissues at both greater
depth and higher throughput and accuracy. We plan to apply this workflow to micro-
and macro-dissected cancer tissues in an automated fashion to explore the
proteome of large FFPE cancer tissue cohorts found in multiple biobanks as well as
biopsies collected during surgery. By facilitating the analysis of thousands of
samples in a reasonable timeframe, one could study the underlying molecular
mechanisms of cancer at the proteome level, testing the validity of known
biomarkers, while potentially uncovering new ones. In two preliminary studies, we
have already analyzed the proteome of 60 melanoma FFPE samples and adenoma
samples, which yielded relevant results.

To achieve more reproducible measurements (which is a prerequisite in clinical
practice) we envision using data independent acquisition (DIA) measurement
strategies. DIA has become particularly attractive with the latest technological
developments, predominantly the sequencing speed and sensitivity of the latest
Orbitrap instruments?!4. With the latest instrumentation, DIA largely eliminates the
missing value problem. It also provides the means to couple MS to fast LC
separation techniques. The recently developed Evosep LC, which is based on a
rapid elution concept?!®, significantly reduces the overhead time between sample

pick up and MS measurement start point. This new design of LC makes use of a
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pre-formed gradient that already contains the sample. Furthermore, sample to
sample carry over, and thus contamination, is considerably reduced as peptides are
loaded on disposable StageTips, which are used for direct elution of the samples.
Based on a 90 min method, one can reach a throughput of up to 16 tissue samples
per day and instrument. Chemical multiplexing, such as in 11-plex TMT would
enable an even higher throughput, enabling direct comparison of samples in the
same spectrum. This might obviate the need for technical triplicate measurements
that are still often used in label free approaches to ensure high accuracy. This
combination of robustness and performance technologies would make it possible to

tackle clinical studies at relatively high throughput.

The integration with various omics approaches, such as in proteogenomics, will play
even more important roles in cancer research and metabolomics also holds great
promise for precision surgery in particular. This will generate exponential data flows
that will necessitate concurrent advances in bioinformatics and computational
proteomics. Machine-learning technologies have the power to uncover cancer
drivers and facilitate the ability to generate biological insights from large datasets.
The integration of large scale omics data sets have led to a new era of data-driven
medicine, termed high definition medicine?!®. Likewise, in a truly personalized
medicine approach, one would begin by determining the personal healthy baseline
of an individual to later ascertain the exact pathology in a patient-resolved fashion.
In cases where this is not possible, one can at least establish typical reference
ranges, as we have begun to do with the proteome of a healthy human heatrt (in this
case, compared to diseased atrial fibrillation hearts) (Article 6). On a global scale,
large data sets would also enable better prevention and treatment options if these
big data are managed more effectively. Apart from improving the health of millions,
this could result in billions of dollar savings to health care systems, as better
management of current clinical trials could allow more efficient data sharing and

advance clinical trials more rapidly?!’.

In my journey from analyzing a single protein through a comprehensive

understanding of deep proteome networks, | also explored the scientific
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interconnections between industry, academia, and the clinic during my PhD. It is my
hope that collaborations between these different institutions will play increasingly
crucial roles in the future to develop more effective and affordable drugs, manage
big data and fight cancer more efficiently.
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