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SUMMARY 

Continuous environmental monitoring of hydrological parameters is nowadays essential, and even irreplaceable, 

in order to attain a better understanding of our Earth’s climate system, the hydrologic cycle, and the hydrologic 

storages. Both, the dynamic seasonal snow and soil storages are rather short-term water storages compared to 

groundwater, glaciers or oceans, with the latter three having much longer retention times. Snow and soil 

parameters are, due to their high dynamics, important inputs for climate and hydrological simulations. Precise 

knowledge on them should help to reduce uncertainties in climate change scenarios, extreme event forecasting, 

and water and energy supply strategies, e.g. for drinking water and agricultural production. However, it is an 

extremely demanding task to get continuous environmental data, and to apply sensors which are potentially 

usable at almost any location on the Earth. Prominent problems of recent in situ and remote sensing techniques 

are for example, that they do not fulfil the required temporal or spatial resolution, they can be destructive, 

labour-intense, too expensive to be installed at numerous places, or are not applicable in remote and complex 

terrain. To overcome some of these shortcomings, further research on potential methods, techniques and sensors 

is important and promising.  

This thesis investigates an innovative Global Navigation Satellite System (GNSS) approach, which is completely 

different to standard positioning or navigation applications. The overall aim of this approach was to develop a 

novel, continuous, non-destructive and globally applicable low-cost system based on the freely available Global 

Positioning System (GPS) L1-band signals. The approach was to collect data on environmental properties like 

hydrological snow and soil storages using GPS signal strength and carrier phases combined with dielectric 

properties. In particular, the focus was on the measurement of the three bulk snow cover properties snow water 

equivalent (SWE), snow height (HS), and liquid water content in snow (LWC), as well as soil moisture (SM).  

To achieve the development of this novel approach, the thesis was built up in the following four main steps:  

1) LWC retrieval based on GPS C/N0 attenuation  

In autumn 2012, the first experimental prototype GPS sensor was installed at the high Alpine SLF test site 

Weissfluhjoch (WFJ) (2.540 m a.s.l.) near Davos in Switzerland. The GPS carrier-to-noise power density 

ratio (C/N0), which expresses the signal strength, was tracked with an antenna positioned under the snow 

cover. During wet snow periods, the signal strength was reduced markedly due to intense attenuation caused 

by liquid water. For better comparability, C/N0 was normalized for each elevation- and azimuth-angle and 

for each of the up to 32 GPS satellites for every time step based on snow-free reference values. By 

combining the normalized signal strength with models of the complex permittivity of snow and by applying 

externally measured HS data along with a reliable assumption of the dry snow density, it was possible to 

quantitatively measure bulk volumetric LWC, especially for the spring melt periods. This approach was the 

first successful means for recording LWC using continuous and non-destructive low-cost GPS sensors. 

LWC showed high agreement with meteorological and snow hydrological measurements, and with several 

measurements with capacity probes in snow pits (Chapter 2). Moreover, the GPS derived LWC values were, 

compared to other studies in literature, validated with a high accuracy (0.4 to 0.7 percent points (pp)) with 

data from a L-band upward-looking ground-penetrating radar (upGPR). The latter data were supplied by a 

research group from the WSL Institute for Snow and Avalanche Research Institute SLF, who performed 

these measurements at the WFJ test site (Chapter 3). 

2) Derivation of HS, SWE and LWC by combining GPS C/N0 with upGPR TWT 

In a subsequent step and in close collaboration with the SLF, HS and SWE were derived additionally to 

LWC by combining (a) GPS signal strength received at a ground-based GPS antenna located beneath the 
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snowpack with (b) time delay of electromagnetic waves travelling through a snowpack which was recorded 

by the upGPR system mentioned above. The latter was buried in the ground and measured the two-way 

travel time (TWT) of electromagnetic waves through the snowpack, which are markedly reflected at the air-

snow interface. The snow cover properties HS, SWE and LWC derived solely by this upGPR-GPS 

combination were corroborated with a high correlation against conventionally measured in situ data. For 

example, the root-mean-square deviation (RMSD) between the upGPR-GPS combination and the closest 

situated HS sensor ranged from 3.3 and 6.6 cm, and 31 to 48 mm between the sensor combination and a 

snow pillow. A big advantage of this combination is that HS, SWE and LWC were derived non-

destructively from beneath the snowpack. This is a big step towards improving avalanche forecasting and 

could potentially be applied in avalanche-prone slopes (Chapter 3).  

3) Derivation of SWE for dry-snow conditions based on GPS carrier phases 

In autumn 2015, a second generation prototype GPS sensor setup was installed at the test site WFJ. This 

made it possible to analyse the GPS carrier phases in addition to GPS C/N0. A novel snow-specific GNSS 

approach was developed to derive SWE from carrier phase measurements, for which two static GPS 

antennas, one positioned above and one below the snowpack, were used. Before the first snowfall, the 

baseline between both antennas was determined in millimetre accuracy using Real Time Kinematic (RTK) 

positioning. As snow reduces the velocity of electromagnetic waves, the idea of this approach was to 

determine zenith time delay information derived by carrier phase measurements as the latter change with a 

snowpack on top of one antenna. By using an elevation mapping function, plus an assumption of signal 

wave velocity in dry snow and the particular refraction angles being proportional to the dielectric snow 

properties, it was possible to calculate SWE from the time delay in the GPS signals. This work was 

performed in close collaboration with ANavS GmbH and Vista Remote Sensing GmbH within the ARTES-

IAP Demo Project SnowSense co-funded by ESA. This approach already works very well for dry-snow 

conditions, however, for wet-snow conditions (as of November 2016) it still requires further development 

with regard to a more stable carrier phase processing. The GPS SWE results for dry snow are in high 

correlation with the conventionally measured, continuous snow pillow recordings with a RMSD of 11 mm. 

This is also true comparing the GPS SWE results with manual snow pit measurements with a RMSD of 23 

mm (Chapter 4).  

4) Transfer to other environmental properties: Soil moisture retrieval based on GPS C/N0 

The GPS signal strength attenuation approach described under the first point was transferred from the 

derivation of snow cover properties to the derivation of SM. This should demonstrate a potential 

transferability to other environmental properties. This approach was investigated at a bare soil field at a test 

site of the German Weather Service (DWD) in Munich for a period of almost 1.5 years (January 2014 – June 

2015). The C/N0 changes due to the evolution of SM were recorded at GPS antennas installed at a soil depth 

of 10 cm. Similar to the LWC approach, a dielectric mixing model for moist soils and the dry soil density 

were taken into account. With this method, the SM of the entire upper soil column, which represents the 

direct interface between air and soil, was retrieved. SM was quantitatively measured with high correlation 

with other in situ methods such as frequency domain (FD) and gravitational probes at certain sampling 

depths and volumes. The accuracy was clearly below 0.04 m³ m-³, which is considered as a high agreement 

and is often the benchmark for SM retrievals from microwave remote sensing products. To get an accurate 

validation of the entire first 10 cm, this soil layer was modelled in addition with the physically-based land-

surface model PROMET. The SM accuracy of 0.025 m³ m-³ between the GPS method and the simulation is 

very good (Chapter 5). 

In summary, this thesis thus encompasses successful and highly promising steps towards the development of a 

new continuous, non-destructive, globally applicable low-cost environmental monitoring system using GPS 

signals. The validation of snow cover properties as well as SM showed high accuracy with reference data. A big 

success is that SM and SWE, in case of dry snow, were derived solely using GPS L1-band signals; no further 
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sensors were necessary. However, for the derivation of snow cover properties in case of wet snow, it is presently 

still necessary to combine GPS with other sensors (e.g., HS laser sensor or upGPR). Regarding the SWE 

derivation due to carrier phase time delay this GPS only approach is currently restricted to dry snow, because 

wet snow makes phase processing difficult (as of November 2016). This issue is currently being investigated. A 

successful solution of this work would lead to the derivation of all three snow cover properties HS, SWE and 

LWC using solely GPS L1-band signals. In Section 6.2 an outlook is given on a potential implementation of 

combining (a) GPS C/N0 with (b) carrier phase time delay in case of wet snow. In addition, as presented in 

Section 6.3, further research could be on the sensor improvement, the implementation at different areas and 

further methods and analysis, and as a potential transfer to further environmental characteristics such as plant 

biomass. As this sensor setup is a point measurement, it would be also a useful improvement, to undertake 

further steps towards an increase in spatial distribution of information, e.g. by installing numerous sensors in an 

entire network or to combine this GPS approach with other remote sensing and hydrologic modelling 

approaches. Moreover, this GPS approach could be extended to other GNSS systems, such as the upcoming 

European Galileo system.      
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ZUSAMMENFASSUNG 

Heutzutage ist ein kontinuierliches Monitoring hydrologischer Parameter für ein besseres Verständnis des Kli-

mas, des hydrologischen Kreislaufs sowie der hydrologischen Speicher notwendig und nicht mehr wegzudenken. 

Die Verweilzeit des Wassers in den hydrologischen Schnee- und Bodenspeichern ist im Vergleich zu 

Grundwasser-, Gletscher- und Ozeanspeichern eher kurz. Aufgrund ihrer hohen Dynamik, sind Schnee- und 

Bodenparameter wichtige Eingangsdaten für Klimamodelle und hydrologische Simulationen. Sie helfen 

Unsicherheiten hinsichtlich Klimawandelszenarien zu reduzieren, sowie Vorhersagen von Extremereignissen 

und der Wasserverfügbarkeit, z.B. für Trinkwasser und die Landwirtschaft, zu unterstützen. Allerdings ist es eine 

große Herausforderung, kontinuierliche Daten von Umweltparametern zu generieren bzw. auf Sensoren 

zurückzugreifen, die nahezu überall auf der Welt angewendet werden können. Schwachstellen derzeitiger in situ- 

und Fernerkundungstechniken können z.B. sein, dass sie arbeitsaufwendig, destruktiv oder für einen breiten 

Einsatz zu teuer sind. Zudem erfüllen sie oftmals nicht die nötige zeitliche oder räumliche Auflösung bzw. 

können nicht in entlegenen Gegenden oder in komplexem Terrain angewandt werden. Um solche 

Unzulänglichkeiten zu verbessern, ist mehr Forschung hinsichtlich neuer Methoden, Technologien und Sensoren 

wichtig und vielversprechend.  

In dieser Doktorarbeit wird ein innovativer Ansatz unter Zuhilfenahme des Globalen Navigationssystems 

(GNSS) untersucht, der sich von standardmäßigen Positionierungs- und Navigationsanwendungen unterscheidet. 

Das übergeordnete Ziel war es, einen Ansatz mit kostengünstigen Sensoren des Globalen Positionierungssystems 

(GPS) zu entwickeln, der kontinuierliche, nicht-destruktive Messungen ermöglicht und potentiell global 

angewendet werden kann. Die Messungen basieren dabei auf Mikrowellensignale des freiverfügbaren GPS L1-

Bandes, womit Umweltdaten zur Charakterisierung des Schnee- und Bodenspeichers erhoben werden können. 

Im Speziellen wurde der Fokus auf die Messung der Schneedeckeneigenschaften, Schneewasseräquivalent 

(SWE), Schneehöhe (HS) und der volumetrischen Feuchte des Schnees (LWC) sowie der Bodenfeuchte (SM) 

gelegt. Dazu wurden als GPS Rohdaten die Signalstärken und die Trägerphasen verwendet und mit den 

dielektrischen Eigenschaften von Schnee und Boden kombiniert.  

Um diesen neuen Ansatzes zu entwickeln, wurde die Doktorarbeit anhand der folgenden vier Punkte aufgebaut: 

1) Messung von LWC anhand der Abschwächung von GPS C/N0  

Im Herbst 2012 wurde ein erster experimentell entwickelter GPS Sensor-Prototyp auf dem hochalpinen SLF 

Messfeld Weissfluhjoch (WFJ) (2.540 m ü. NN) in der Näher von Davos in der Schweiz, installiert. Das 

GPS Träger-Rausch-Leistungsverhältnis (C/N0), das die Signalstärke ausdrückt, wurde von GPS Antennen 

aufgenommen, die am Boden unter der Schneedecke ausgelegt wurden. Aufgrund des Flüssigwassers, wur-

de die Signalstärke während Zeiten mit feuchten Schneeverhältnissen deutlich reduziert. Die C/N0-Daten 

wurden für jeden Zeitschritt anhand einer schneefreien Referenz normiert. Die normierten C/N0-Werte wur-

den dabei je Zeitschritt, Elevations- und Azimuthwinkel für alle aktiven, insgesamt bis zu 32 GPS Satelliten 

berechnet. Während der Frühjahrsperioden konnte der volumetrische Feuchtegehalt des gesamten Schnee-

pakets quantitativ bestimmt werden, indem die normalisierte Signalstärke mit Modellen zur komplexen 

Permittivität und mit extern gemessener Schneehöhe sowie einer realistischen Annahme der trockenen 

Schneedichte kombiniert wurde. Dies ist das erste kostengünstige GPS-Verfahren, um LWC kontinuierlich 

und nicht-destruktiv zu ermitteln. Der zeitliche Verlauf der LWC-Werte zeigte eine hohe Übereinstimmung 

mit kontinuierlichen meteorologischen und schneehydrologischen Messungen, ebenso, wie die an einigen 

Tagen in Schneeprofilen durchgeführten Messungen mit Kapazitätssonden (Kapitel 2). Zudem wurden 

LWC-Daten zur Verfügung gestellt, die von einem Forscherteam des WSL Instituts für Schnee- und Lawi-



Zusammenfassung 

__________________________________________________________________________________________ 

__________________________________________________________________________________________ 

X 

nenforschung SLF mit einem nach oben gerichteten L-Band Bodenradar (upGPR) unter Einbeziehung ex-

tern gemessener HS-Daten kontinuierlich auf dem Testfeld gemessen wurden. Die Übereinstimmung der 

beiden LWC Messungen ist (verglichen mit anderen Studien in der Literatur) mit 0.4 bis 0.7 pp 

(Prozentpunkten) hoch (Kapitel 3). 

2) Kombination von GPS C/N0 mit upGPR TWT zur Messung von HS, SWE und LWC  

In einem weiteren Schritt und in enger Zusammenarbeit mit dem SLF wurden neben dem LWC auch HS 

und SWE bestimmt. Dies wurde durch die Kombination von (a) der GPS Signalstärke und (b) der 

Zeitverzögerung elektromagnetischer Wellen durch Schnee, die mit dem zuvor genannten upGPR gemessen 

wurden, ermöglicht. Das upGPR wurde im Boden vergraben und hat die Zweiwegelaufzeit (TWT) 

elektromagnetischer Wellen durch ein Schneepaket gemessen, die an der Grenzschicht Atmosphäre – 

Schneeoberfläche signifikant reflektiert wurden. Die Schneedeckenparameter HS, SWE und LWC, die 

durch die Kombination der zwei Sensoren abgeleitet wurden, weisen eine hohe Korrelation zu konventionell 

gemessenen in situ Daten auf. Die Wurzel aus der mittleren quadratischen Abweichung (RMSD) von HS, 

gemessen mit GPS, und dem nahegelegensten in situ Sensor lag zwischen 3.3 und 6.6 cm und die 

Übereinstimmung von SWE mit einem Schneekissen lag zwischen 31 und 48 mm, was als sehr gut 

einzustufen ist. Ein großer Vorteil dieser Sensorkombination ist, dass alle Schneedeckenparameter nicht-

destruktiv und unterhalb der Schneedecke ermittelt werden können. Dies ist ein großer Schritt hinsichtlich 

einer potentiellen Verbesserung der Lawinenvorhersage und eignet sich potentiell dazu in Lawinenhängen 

eingesetzt werden zu können (Kapitel 3).   

3) Messung von SWE anhand der GPS Trägerphasen unter trockenen Schneebedingungen  

Im Herbst 2015 wurde ein weiter entwickelter GPS Sensor-Prototyp am Testfeld WFJ installiert, mit der ne-

ben GPS C/N0 auch die GPS Trägerphasen analysiert werden konnten. Um SWE zu bestimmen, wurde ein 

spezieller schneespezifischer GNSS Ansatz, basierend auf GPS Trägerphasenmessungen, entwickelt. Eine 

Antenne wurde dabei über der Schneedecke angebracht und die andere am Boden ausgelegt, die somit 

während der Schneeperiode mit Schnee bedeckt war. Vor dem ersten Schneefall wurde der Abstand 

zwischen beiden Antennen mit Millimetergenauigkeit anhand eines kinematischen Echtzeit- (RTK) 

Positionierungsalgorithmus bestimmt. Schnee reduziert die Geschwindigkeit von elektromagnetischen 

Wellen. Sobald Schnee auf der unteren Antenne liegt, wurde die Zeitverzögerung der GPS Signale im 

Schnee in Zenitrichtung zwischen den Antennen anhand von Trägerphasenmessungen ermittelt. Die 

aufgrund des Schnees resultierende Zeitverzögerung wurde unter Berücksichtigung der Geometrie und den 

dielektrischen Eigenschaften von trockenem Schnee, in SWE umgewandelt. Dabei definieren die die-

lektrischen Eigenschaften die Wellengeschwindigkeit und die Refraktion. Diese Arbeiten wurden in enger 

Zusammenarbeit mit den Firmen ANavS GmbH und Vista Geowissenschaftliche Fernerkundung GmbH im 

Rahmen des von der ESA geförderten ARTES-IAP Demo Projektes SnowSense durchgeführt. Dieser An-

satz funktioniert sehr gut für trockenen Schnee; für nassen Schnee muss er jedoch noch hinsichtlich einer 

stabileren Phasenauswertung verbessert werden (Stand November 2016). Die Ergebnisse für trockenen 

Schnee zeigen eine hohe Korrelation mit konventionell gemessenen SWE Daten. Der RMSD zwischen den 

kontinuierlichen SWE GPS- und Schneekissen-Daten ist mit einem RMSD von 11 mm sehr hoch. Dies gilt 

ebenso für den RMSD von 23 mm zwischen SWE GPS-Daten und den ein- bis zweiwöchentlich manuell in 

Schneeprofilen gemessenen SWE Daten (Kapitel 4). 

4) Übertragung auf andere Umweltparameter: Messung der Bodenfeuchte mit GPS C/N0 

Der LWC-Ansatz hinsichtlich der Signalstärkeabschwächung, wie im ersten Punkt beschrieben, wurde in 

einem weiteren Ansatz auf die Messung der Bodenfeuchte angewendet, was auch die generelle Möglichkeit 

der Übertragung auf andere Umweltparameter demonstrieren soll. Dies wurde auf einem nicht mit 

Vegetation bedeckten Boden auf dem Bodenmessfeld des Deutschen Wetterdienstes (DWD) in München 

untersucht. Die Zeitspanne betrug ca. 1.5 Jahren (Januar 2014 – Juni 2015). Die GPS Signalstärkeänderung 

aufgrund von Bodenfeuchteänderungen wurde mit Antennen ermittelt, die in einer Tiefe von 10 cm 
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vergraben wurden. Ähnlich zu dem LWC-Ansatz für Schnee, wurden normalisierte C/N0-Werte gebildet, die 

mit einem dielektrischen Bodenfeuchtemodell kombiniert wurden. Damit wurde die Bodenfeuchte der 

gesamten oberen Bodenschicht bestimmt, die die direkte Austauschschicht zwischen Atmosphäre und 

Boden darstellt. Quantitativ stimmt die GPS Bodenfeuchte mit Messungen der klassischen 

Gravitationsmethode und der sogenannten ‚Frequency Domain‘ (FD) Methode, aufgenommen in 

verschiedenen Bodentiefen und für verschiedene Probenvolumina, sehr gut überein. Die Genauigkeit lag 

jeweils deutlich unter 0.04 m³ m³, welches einen typischen Bezugspunkt für die Güte von mithilfe 

Mikrowellenfernerkundung ermittelten Bodenfeuchteprodukten darstellt. Um zusätzlich eine Validierung 

der GPS SM der ersten 10 cm durchzuführen, wurde diese Bodenschicht mit dem physikalisch basierten 

Landoberflächenmodell PROMET modelliert. Die Übereinstimmung lag hier bei 0.025 m³ m³ und ist als 

sehr hoch einzustufen (Kapitel 5). 

Zusammengefasst stellt diese Doktorarbeit erfolgreiche und sehr vielversprechende Schritte in Richtung der 

Entwicklung eines neuen kostengünstigen und potentiell global einsetzbaren Umweltmesssystems dar, welches 

kontinuierlich und nicht-destruktiv, unter Verwendung von GPS L1-Band Signalen, misst. Sowohl die mit GPS 

gemessenen Schneedeckenparameter als auch die Bodenfeuchte zeigen eine sehr hohe Übereinstimmung mit den 

Referenzdaten. Ein großer Erfolg ist, dass sowohl die Bodenfeuchte als auch SWE unter trockenen Schnee-

bedingungen nur anhand von GPS Signalen abgeleitet werden konnte, ohne weitere Sensoren miteinzubeziehen. 

Für die GPS-Messungen der Schneedeckenparameter unter feuchten Schneebedingungen ist es momentan aller-

dings nach wie vor notwendig, sie mit anderen Sensoren (z.B. HS Laser Sensor oder upGPR) zu kombinieren. 

Der SWE-Ansatz, basierend auf Trägerphasen, ist auf trockenen Schnee beschränkt und zeigt noch Schwie-

rigkeiten bei der Verarbeitung der Phase unter feuchten Schneebedingungen (Stand November 2016). Dies ist 

allerdings Gegenstand laufender Arbeiten. Eine erfolgreiche Lösung dieser Aufgabe würde dazu führen, dass 

somit alle drei Schneedeckenparameter, HS, SWE und LWC, nur unter Verwendung von GPS L1-Band Daten, 

abgeleitet werden könnten. Eine mögliche Durchführung dieser Kombination von (a) GPS C/N0 und (b) der 

anhand der Trägerphasen ermittelten Laufzeitverzögerung unter feuchten Schneebedingungen, ist als Ausblick in 

Kapitel 6.2 behandelt. Wie in Kapitel 6.3 dargestellt, können weitere Forschungs-und Entwicklungsarbeiten eine 

Verbesserung des Sensors an sich, die Implementierung in anderen Regionen, darauf aufbauende Methoden und 

Analysen, sowie der Transfer zu weiteren Umweltcharakteristika, wie z.B. die Pflanzenbiomasse, beinhalten. Da 

es sich bei dem momentanen Ansatz um eine Punktmessung handelt, könnten zudem weitere Arbeiten in 

Richtung räumlich verteilter Messungen unternommen werden. Dies könnte z.B. durch kostengünstige GPS-

Sensornetzwerke oder durch eine Kombination mit anderen Fernerkundungs- bzw. Modellierungsansätzen gelöst 

werden. Zudem könnte dieser GPS Ansatz auch unter Berücksichtigung weiterer GNSS-Systeme, wie z.B. das 

neue Europäische Galileo System, erweitert werden.   
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1. INTRODUCTION 

1.1 Motivation and research questions 

Responsibilities and tasks of applied hydrology are of rising importance. Continuous environmental monitoring 

of hydrological parameters is irreplaceable for a better understanding of our Earth’s climate system, the 

hydrologic cycle and the hydrologic storages. This includes for example the big challenges extreme event and 

hazard prevention, water supply for agricultural production and drinking water as well as economic and 

ecological management of navigation, tourism and energy. These topics were extensively investigated for 

example in the integrated project GLOWA-Danube and in continuing studies for the Upper Danube basin for the 

past and recent climate situation and for future climate scenarios [GLOWA-Danube, 2009; Ludwig et al., 2003; 

Mauser and Prasch, 2015].  

As an example, Koch et al. [2011a and 2011b] found out that for the Alpine Upper Danube basin a large portion 

of runoff and hydropower generation is influenced by the amount and temporal release of the seasonal snow 

cover. Within this catchment, the highest portion of snow melt, with up to approximately 40% of the total runoff, 

occurs in the Alps and Alpine forelands. Particularly, the energy generation of run-of-the-river power plants is 

influenced by the temporal occurrence of snow melt. Additionally, reservoir power plants are affected by snow 

cover driven reservoir filling stages. This illustrates that a precise knowledge on the amount and melting 

occurrence of snow is largely important for planning and managing energy generation. Bringing this example to 

a broader context by taking into account the needs of future generations and considering climate change impacts, 

a better and enlarged monitoring of the environment, encompassing e.g. the snow and soil storages, is highly 

needed as an adaptation strategy [ICPDR, 2013]. The hydrological snow storage and soil storage are rather short-

term, compared to groundwater, glaciers or oceans which underlie a longer retention time. Both are due to their 

high dynamics extremely important as input variables for climate and hydrological simulations.  

In general, seasonal snow is a key parameter in fresh-water resources management and an essential component 

within the Earth's climate system [Barnett et al., 2005; DeWalle and Rango, 2008; Vaughan et al., 2013]. Snow 

cover dynamics in alpine head-watersheds play a significant role on the water supply under current and future 

climate conditions [Prasch et al., 2013; Weber et al., 2016], but are also globally of high importance. Depending 

on the season, the worldwide snow cover of land lies between 16 and 57 Mio. km² [Baumgartner and Liebscher, 

1996]. During the Northern Hemisphere's winter period, more than 50% of the landmass can be covered with 

snow [Foster and Rango, 1982]. In the Northern Hemisphere, snow plays an important role as temporal water 

storage for most areas of the Eurasian and Northern American continents between the Arctic Circle and the 

Northern Tropics. Worldwide, approximately one-third of water originating from snow melt serves for crop 

growth [Steppuhn, 1981] and is in numerous regions a necessary source and control parameter for irrigation and 

general water availability [Immerzeel et al., 2009; Mankin et al., 2015; Rango, 1980]. Moreover, the amount of 

snow and the snow melt may also influence the dynamics in soil moisture in affected regions.  

Soil moisture in general is one of the most relevant variables for water management, plant growth, e.g., in 

agriculture, or for the emergence of floods and is a key variable in the global energy and water cycle [Dirmeyer, 

2000; Jung et al., 2010]. Especially in the upper most centimetres of the soil, soil moisture is highly dynamic and 

acts as direct link between the terrestrial and atmospheric interface. Similar to the hydrological snow storage, the 

soil storage is coupled with the climate system and hydrological processes like precipitation, evapotranspiration, 

infiltration and as surface runoff, interflow or groundwater recharge. Therefore, continuous and spatially 

distributed knowledge about this variable is highly needed for global and regional climate and land surface 

simulations and to improve the forecasting of water availability [Dorigo et al., 2011; Koster et al., 2004; 
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Seneviratne et al., 2010]. As mentioned above, soil moisture serves as water source for plants. In times of 

climate change and an increasing world populations this is highly relevant for agricultural production and food 

security [Godfray et al., 2010; Mauser et al., 2015] and is also discussed in current debates on water resources 

management and the food water energy nexus [Dobriyal et al., 2012; Ringler et al., 2013].  

In summary, an improvement in snow and soil monitoring is necessary to reduce uncertainties in the simulation 

of climate change, and to improve diverse hydrological applications. However, until now, continuous model 

inputs and proper validations of snow cover properties and soil moisture are scarce. Environmental monitoring is 

still not sufficient and current remote sensing and ground-based snow measurements often lack the required 

temporal and spatial resolution or are not applicable in remote and complex terrain. Furthermore, numerous 

sensors and measurements techniques are quite expensive, weather-dependant, error-prone or labour-intense.  

Therefore, the overall motivation of this thesis is to improve environmental monitoring with high temporal 

resolution, of hydrological snow and soil storages. Envisaging a potentially ideal in situ sensor for such 

applications, it should be easy to install with low maintenance, it should measure non-destructively and should 

also be suitable for applications in remote or difficult to access areas. The potential sensor should be low-cost, 

e.g. compared to high-end geodetic sensors, making the installation at numerous locations for basin-wide 

applications potentially possible.  

This thesis introduces an innovative Global Navigation Satellite System (GNSS) technique to derive essential 

data for continuous snow and soil monitoring. In particular, this approach focuses on the three snow cover 

properties snow height (HS), snow water equivalent (SWE), and liquid water content in snow (LWC) as well as 

soil moisture (SM). The measurements are based on simple low-cost Global Positioning System (GPS) receivers 

and antennas recording the freely available L1-band signals at 1.57542 GHz. However, these GPS sensors were 

used in a completely different way than for standard applications, like positioning or navigation approaches. 

Moreover, this novel GPS approach is different to current microwave remote sensing approaches, where the 

information of the Earth’s surface is mainly based on scattering at the medium’s surface by applying active 

sensor systems or based on emission through the medium by applying passive sensor systems. The main idea of 

this thesis is that the electromagnetic waves, broadcast by the GPS satellites, pass through media like snow or 

soil and are tracked within or underneath the observed medium to deliver information about the investigated 

medium. Thereby mainly signal strength attenuation and time delay of electromagnetic waves through a medium 

are investigated. In the following, the three research questions (RQ) of this thesis are presented. Additionally, 

the corresponding hypotheses (HY) are formulated: 

RQ1. Is it possible to derive information on environmental parameters with low-cost GPS sensors by 

analysing GPS signals passing through a medium like snow or soil?  

HY1: With commercially available low-cost GPS sensors, the freely broadcasted L1-band can be 

tracked encompassing numerous signal information in their sensor specific raw data protocol like 

information on position, carrier phase and carrier frequency, Doppler shift and signal strength. In 

general, by applying the physical fundamentals of the interrelation of electromagnetic waves with 

dielectric materials, information on environmental properties can be measured by passing through a 

medium considering signal attenuation within the medium and time delay of the signals through the 

medium. Already many remote sensing Earth observation missions, which successfully derived 

environmental parameters like soil moisture and snow cover properties, have been carried out in the L-

band frequency range. As the GPS L1-band is also broadcast in the L-band domain, it should be 

possible to use the GPS signals for the derivation of environmental properties as well.  

RQ2. Which snow cover properties can be derived? Which GPS raw data information is necessary, how 

should the GPS sensors be located, and is external information required?  

HY2.1: Dry snow is a mixture of air and ice. If the snow becomes wet, droplets of liquid water occur in 

the snow pores due to melting processes or rain water. In the microwave range, water has, compared to 
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other material of the Earth’s surface, significantly different dielectric properties leading to clear signal 

strength attenuation of the signals received at an antenna beneath the observed media. The signal 

strength is recorded by the carrier-to-noise-power density ratio (C/N0) of each GPS satellite at each time 

step and elevation. Combined with dielectric mixing models and information on its vertical extent, the 

GPS signal strength attenuation in wet snow can be used to retrieve quantitative information on the bulk 

volumetric LWC.  

HY2.2: Following physical laws and considering dielectric mixing models of snow, the snow properties 

LWC, SWE and HS can be retrieved simultaneously. Therefore, signal attenuation and information on 

the travel time of signals in snow have to be combined. HS and SWE are related by the dry snow 

density, which can either be assumed or measured. During wet-snow conditions, when liquid water is 

present, the wave velocity is further reduced, which leads to the problem that SWE and HS might be 

overestimated. This could, however, be corrected by including signal strength information on LWC. 

HY2.3: The GPS carrier phase measurements give information on the travel time of GPS signals 

between satellites and receivers. The velocity of electromagnetic waves travelling through snow is 

markedly reduced, compared to the velocity in the air, which is roughly the speed of light. To get 

information on this, one GPS antenna should be installed above the snow cover and one should be 

placed on the ground level below the snowpack. Both GPS receivers simultaneously record carrier 

phases. With a specific RTK (Real Time Kinematic) positioning approach the baseline between both 

antennas can be calculated for snow-free conditions. During periods with snow cover, the calculated 

distance between the two antennas, expressed as carrier phase residuals, increases virtually due to the 

delay of the GPS signals passing through snow. This time delay information can then be transformed to 

the snowpack quantity, expressed as SWE. During wet-snow conditions, in addition C/N0 data should 

be used to correct the SWE and to derive HS and LWC as well. 

RQ3. Is it possible to transfer the derivation of snow cover properties to soil properties? 

HY3: In principle, the physical fundamentals of the behaviour of electromagnetic waves in snow and in 

soil are the same. However, their dielectric characteristics are different and soil has a higher density 

than snow. Soil is a mixture of air, soil particles with a specific texture and bound and free water in the 

soil pores. Analogous to the signal strength attenuation in wet snow, the GPS signals attenuate due to 

liquid water in the observed soil column. For this approach at least one antenna has to be placed at a 

certain soil depth. The maximum installation depth whether or not the GPS signal can still be tracked 

depends on the soil texture, density and SM. From this information and combined with a dielectric 

mixing model, SM can be derived quantitatively. 

The presented research questions and hypothesis are investigated in detail within the scientific papers of this 

cumulative thesis in the Chapters 2 to 5. In Chapter 6 the answers to the research questions are summarized and 

an outlook on potential further work is given.  

Before going more into detail, the state of the art on this topic is described. In Section 1.2, the three investigated 

snow cover properties, and soil moisture are defined, and an overview on possible ground based and remote 

sensing methods, encompassing their challenges and potential limitations, is presented. The physical basis of 

electromagnetic waves and their interrelations with materials with different dielectric properties such as air, 

water, snow and soil is demonstrated in Section 1.3. An overview on GNSS as well as the state of the art of 

GNSS measurements of environmental properties is following in Section 1.4. In Section 1.5, the used GPS 

sensors and the partly self-constructed components, the applied raw data, and the test sites Weissfluhjoch (WFJ) 

for the snow observations, and the Munich (MUC) for the soil moisture monitoring are described. Section 1.6 

provides the formulation of the six main research objectives, which should help to solve the research questions 

and finally lead to the thesis outline, structured by objectives, chapters and scientific papers, respectively.  
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1.2 Definition and measurement methods of snow cover properties and soil moisture 

The investigated snow cover properties and the soil moisture are shorty defined in this section. Moreover, 

comprehensive information on the state of the art regarding snow cover properties and soil moisture 

measurements are presented and their challenges and limitations are pointed out.   

1.2.1 Snow cover properties 

Snow is one of the most difficult weather elements to be measured in an accurate, consistent manner [National 

Weather Service, 2013]. In the early and mid-20th century, first in situ snow measurements were carried out for 

scientific research [Colbeck, 1987]. This encompassed snow hydrological purposes [Garstka, 1958; US Army 

Corps of Engineers, 1956] and avalanche protection [SLF, 2015a]. In the last decades, snow monitoring of 

various snow cover properties with ground-based in situ and remote sensing methods has increased largely and 

became operationally for various hydrological, climatological and hazard prevention applications. In this thesis 

the snow cover properties HS, SWE and LWC are investigated, which are as already mentioned to be of major 

interest to describe hydrological and climate processes and which play an important role in risk assessment. In 

the following, these terms are defined and an overview on current ground-based and remote sensing methods 

regarding HS, SWE and LWC for dry and wet-snow conditions is given. 

Definition of HS, SWE and LWC 

Snow is a granular material of crystalline ice that was formed as flakes in the clouds. During snowfall the flakes 

are further shaped due to the atmospheric conditions and can be deposited on the Earth’s surface as seasonal or 

permanent snow cover. Deposited snow on the ground is a highly porous, sintered material and undergoes a 

steady transformation, known as metamorphism, according to temperature, radiation and wind [Fierz et al., 

2009]. In general, the snow cover is characterized by several properties like its amount, depth, wetness, and 

density and several stratigraphic characteristics such as grain size, grain shape and hardness.  

HS: The snow height describes the entire thickness of a dry or wet snowpack and is given in cm; the height of 

new snow (HN) is defined as freshly fallen snow which has accumulated during a defined observation period of 

e.g. 24 h on top of HS from the day before [Fierz et al., 2009]. Information on HS and HN and temperature, 

wind and stratigraphy, are essential parameters in avalanche research [Schweizer et al., 2003].  

SWE: The snow water equivalent represents the quantity of water that would be released upon complete melting 

of a dry or wet snowpack [Fierz et al., 2009]. As SWE is a measure for the amount of snow, it is highly 

requested by hydrologists [DeWalle and Rango, 2008]. SWE is the product of HS and the snow density and is 

given in mm water equivalent (w.e.). Therefore, HS and SWE are closely related, especially for dry-snow 

conditions. During melting conditions, they can differ significantly due to a markedly increase of the wet snow 

density. Dry snow density can either be measured in snow pits or can be estimated [e.g., Jonas et al., 2009].  

LWC: The liquid water content in snow is the factor that determines whether a snowpack is dry or wet. If the 

snowpack is dry, it contains only air and ice particles. If it turns wet, also droplets of liquid water arise between 

the ice particles. The transition from dry to wet snow occurs either in case the snowpack starts to melt due to 

intense short- and longwave radiation or if it is infiltrated by rain. In return, the snowpack can only refreeze 

partly to almost dry conditions; an irreducible liquid water content remains [Mitterer, 2012]. Qualitatively, snow 

wetness can be expressed by the five conditions dry, moist, wet, very wet and soaked/slush [Fierz et al., 2009; 

Perla and Martinelli, 1978]. The bulk volumetric LWC can be derived by several empirical formulas as well as 

dielectric mixing models (see Section 2.5). LWC is closely linked to the melt-water outflow of a snowpack. 

Moreover, due to water infiltration, the snowpack may lose its strength which might lead to wet snow avalanche 

formation [Mitterer et al., 2011b]. 
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Ground-based snow measurements 

Ground-based measurements of snow are limited to a certain location, but serve as a necessary input for different 

applications. Measurements of HS are the most common snow measurements. Although SWE is a highly 

demanded variable, especially by hydrologists, there is still a great lack in ground-based SWE measurements and 

LWC is even totally underrepresented by measurements.   

HS: Since several decades, HS is conventionally and operationally measured, either routinely by manual surveys 

with rulers and snow sticks or continuously with laser or ultrasonic sensors. The new snow height (HN) 

accumulated during one day can either be measured manually with a snowboard which has to be cleared every 

day at the same time or as the increase in HS with other continuous measurement instruments during a defined 

time period. In general, HS measurements are the most accurate snow measurements. New measurements 

techniques encompass e.g., terrestrial laser scanning [e.g., Grünewald et al., 2010; Prokop, 2008] or microwave 

radar systems such as an upward-looking ground-penetrating radar (upGPR) which are installed below the snow 

cover [e.g., Heilig et al., 2009; Schmid et al., 2014]. The new systems have in common that they are also 

applicable for slopes, but are not conventionally applicable and quite expensive which makes a usage at 

numerous locations like sensor networks unrealistic. Regarding recent investigations in ground based GNSS 

reflectometry (GNSS-R) it is referred to Section 1.4.2.  

SWE: Compared to HS, it is more difficult and less accurate to measure SWE. The most accurate measurements 

are done manually. At snow profile surveys, SWE measurements are performed by weighing the snow mass in 

cylindrical probes with a defined volume, but only at a few locations in the mountains, like at the SLF test site 

WFJ, these manual measurements are performed on a bi-weekly mode [Marty and Meister, 2012]. Only at a few 

locations, SWE is measured continuously with instruments that rely on weighing systems. These are mainly 

permanently installed snow pillows or snow scales. However, both systems are limited to levelled terrain and 

could be influenced by bridging effects within the snowpack, especially when the snow transits from dry to wet 

[Johnson and Marks, 2004]. Further, estimates on SWE can be carried out by precipitation or runoff 

measurements, which, however, neglect evaporation losses. The meltwater outflow of a snowpack can be 

registered, e.g., with a special snow lysimeter [Kattelmann, 1984], though this method is only possible during 

melting conditions. The amount of solid precipitation can be measured by precipitation gauges or laser 

distrometers, but the measurement of solid precipitation is more error prone than for liquid precipitation [Tabler 

et al., 1990]. Especially wind can cause 40 to 80% errors in solid precipitation measurements compared to liquid 

precipitation were the errors due to wind range between 3 to 20% [Goodison et al., 1998].  

LWC: Measurements of LWC are even more difficult. This is due to non-linear processes like water infiltration 

and flow within the snowpack, which are moreover variable in space and time. Until now, no satisfying 

operational method exists to continuously and non-destructively monitor LWC. Manual snow wetness 

observations in snow pits provide only a rough estimate which are based on a wetness index [Fierz et al., 2009; 

Perla and Martinelli, 1978]. An overview of several in situ snow wetness measurements with devices is given by 

Boyne and Fisk [1987], Mitterer [2012] and Techel and Pielmeier [2011]. They include techniques like hot 

(melting), cold (freezing) or alcohol calorimetry and dilution methods and dielectric measurements. The 

dielectric properties of wet snow can, e.g., be measured within snow pits by the devices Denoth meter [Denoth, 

1989; Denoth et al., 1984] and the Finnish Snow Fork [Sihvola and Tiuri, 1986]. However, they have in common 

that they are destructive, cumbersome, laborious, show only a snap-shot in time, and can only be applied at 

accessible locations. Approaches of time-domain reflectometry (TDR) [e.g., Schneebeli et al., 1998; Waldner et 

al., 2001] were able to monitor the snow wetness continuously and non-invasively; but, this technique is also 

error-prone as these instruments need to be placed within the snowpack and influence thereafter the water flow. 

With radar systems, a wetting front within the snowpack and the bulk volumetric LWC can be monitored also at 

avalanche starting zones [Schmid et al., 2014]. But, as already pointed out, radar measurements are expensive 

and they need further external measurements to derive LWC.  
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Remote sensing of snow properties 

Compared to ground-based measurements, remote sensing approaches have the advantage to deliver data with 

high spatial coverage, also for locations which are remote and not easy to access. However, they often lack the 

necessary temporal or spatial resolution, e.g., regarding snow melting processes or are not applicable in steep 

terrain due to geometric issues. A comprehensive overview on snow remote sensing is given e.g., by Hall and 

Martinec [1985], Rees [2005] and Tedesco [2014]. With multispectral and hyperspectral sensors, the snow cover 

extent or single snow cover properties like albedo or grain size can be detected by indexing methods [Dozier and 

Painter, 2004; Painter et al., 2009]. Regarding all spaceborne techniques, in particular active and passive 

microwave remote sensing approaches are applied for the detection of snow cover properties. Their information 

relies on the dielectric characteristics of the observed medium snow [Mätzler et al., 1984]. 

HS/SWE: As a first step, most approaches aim to derive HS and then, take density estimates into account, to 

calculate SWE [Tedesco, 2014]. HS and SWE approaches work quite well under dry-snow conditions but are 

still unreliable or uncertain as the snow becomes wet. The reason for this is that the occurrence of water causes 

distinct change in the dielectric properties. Passive microwave approaches investigate microwaves emitted from 

the snowpack. The brightness temperature measured at the sensor is dependent on wetness, volumetric 

scattering, grain size and the frequency of the microwave signal. Until now, several brightness temperature 

algorithms for HS and SWE detection exist in the literature [e.g., Chang et al., 1987; Hallikainen, 1984; Mätzler, 

1987; 1994; Pulliainen and Hallikainen, 2001; Rango et al., 1979; Tedesco and Kim, 2006; Tsang et al., 1992]. 

However, several sources of errors might occur due to uncertainties in estimating the correct grain size or 

considering liquid water [Foster et al., 2005; Rees et al., 2006; Tedesco et al., 2010]. The same brightness 

temperatures might express different snow cover property combinations describing the ill-posed nature of the 

retrieval problem. Therefore, passive microwave approaches are dependent on a priori knowledge to properly 

depict HS and SWE. Active microwaves techniques use the backscattered signal from an active sensor. Ku-band 

scatterometers (e.g., QuickScat) seem to be most suitable for HS retrievals [Hallikainen et al., 2003]. But also X, 

C, or even L-band sensors (e.g., SIR-C, X-SAR, Envisat ASAR, CryoSat-2, SMOS, Sentinel-1) have recently 

been applied [e.g., Bernier and Fortin, 1998; Bernier et al., 1999; Maaß et al., 2013; Shi and Dozier, 2000]. In 

addition, several interferometric approaches (e.g., ERS-1/2, TanDEM-X, TerraSAR-X) have been proposed 

[e.g., Guneriussen et al., 2001; Rott et al., 2003]. In some studies, active and passive microwave techniques were 

combined to achieve more precise solutions [e.g., Hallikainen et al., 2003; Tedesco and Miller, 2007]. Besides 

microwave remote sensing, global SWE estimates have been achieved e.g., with gravity data from the GRACE 

satellites [Niu et al., 2007]. Moreover, the new LiDAR ICESat-2 satellite, which should be launched in 2017, 

looks promising to generate global HS maps. Looking at small scales, changes in HS can be derived with 

photogrammetry or airborne laser scanning and LiDAR (Light Detection and Ranging) techniques with high 

accuracy [e.g., Deems et al., 2013; Hopkinson et al., 2004]. SWE can be gained with airborne gamma radiation 

measurements [e.g., Carroll and Carroll, 1989; Fritzsche, 1983]. However, these techniques can only be carried 

out for small catchments and are not operationally in use because they are expensive, weather-dependant, labour-

intense. As they can only be applied occasionally these data show only a snap-shot in time.  

LWC: Wet snow can be detected with optical and thermal sensors (e.g., MODIS, LANDSAT) [e.g., Hall et al., 

2006 and 2013]. Moreover, all active and passive microwave sensors (see above) directly detect changes of the 

dielectric properties of snow due to an increase of water in snow [e.g., Abdalati and Steffen, 1995; Loew et al., 

2002; Nagler and Rott, 2000; Takala et al., 2009; Tedesco, 2009]. Regarding active microwaves, the 

backscattering coefficient decreases significantly as the snow becomes wet whereas, regarding passive 

microwaves, the brightness temperature increases [Stiles and Ulaby, 1980]. Most of these remote sensing 

approaches for wet snow detection are used to generate large scale (e.g., Greenland or Antarctica) or global snow 

melting maps. The melt-onset and daily melt-freeze cycles can easily be detected, but no quantitative assumption 

on the LWC using microwave remote sensing can be made [Tedesco, 2014].  
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1.2.2 Soil moisture  

The intense monitoring of SM has started in the early last century with agricultural crop growing as its main 

focus driver. This aspect is nowadays an even more important factor in managing today’s global food security. In 

the last decades, the scope of SM monitoring has moved also towards climate and hydrological aspects. 

Currently numerous ground-based in situ measurements and microwave remote sensing approaches are 

operationally in use and worldwide databases on SM are built up.  

Definition of soil moisture 

SM describes the quantity of water in the soil. It may be expressed as volumetric water content with regard to the 

volume or as gravimetric content with regard to the mass of a soil column. The SM range of a specific soil 

largely depends on its soil texture, soil density and mineral composition. It has an influence on the capacities of 

water storage, percolation and capillary rise. The minimum SM that can be accessed by plants is often expressed 

as wilting point and the maximum SM content which can be hold in the pores as field capacity. The resulting 

overall SM range available for plants is the so called usable field capacity [Scheffer and Schachtschabel, 2002]. 

Ground-based soil moisture measurements  

In situ soil moisture can either be measured directly or indirectly. The gravimetric method is the only direct 

method where defined soil samples are weighed before and after drying. The mass changes are directly linked to 

the SM content of the observed soil sample. Time domain reflectometry (TDR) and frequency domain (FD) are 

indirect methods applying electromagnetic techniques which measure the dielectric properties of the soil in 

connection with its water content. TDR uses the time information of a reflected waveform to calculate the SM 

content, whereas FD is classified as a capacitance technique. Both methods can be utilized as permanently 

installed probes in sensor networks and are able to log SM at different soil depths. However, they often have to 

be calibrated and the original soil column might be disturbed by the installation. Moreover, the SM readings 

might be affected by air or water gaps around the sensor prongs [Walker et al., 2004]. In the last years, ground-

penetrating radar systems have also been applied to derive SM non-invasively based on dielectric soil properties 

[e.g., Klenk, 2012]. The matric potential of soil water can be measured with tensiometers and resistance blocks, 

which are mainly applied for agricultural applications. Since recently, in situ SM can also be derived by applying 

cosmic-ray neutrons [Zreda et al., 2008] as an integral over a few 100 m. Further, approaches based on neutron 

probes [Vachaud et al., 1977] can be used. But these techniques are, in particular due to intense calibration, high 

costs and high maintenance, not operationally applicable, yet. A comprehensive overview of different in situ soil 

moisture measurement techniques is given, e.g., in Robinson et al. [2008], Scheffer and Schachtschabel [2002] 

and Walker et al. [2004]. Besides, many SM techniques applied in a number of different networks around the 

globe are summarized in the International Soil Moisture Network (ISMN) [Dorigo et al., 2011].  

GNSS-R approaches for SM monitoring exist and are similar to those retrieving HS. They are also shortly 

described in Section 1.4.2. 

Remote sensing of soil moisture 

In the last decades, active and passive microwave remote sensing techniques have been developed and were 

applied successfully for soil moisture monitoring on different scales [e.g., Dobson and Ulaby, 1986; Loew et al., 

2006; Mauser et al., 1995; Njoku et al., 2003; Ulaby et al., 1996; Wagner et al., 2007]. Brocca et al. [2011] and 

Peng et al. [2015], for example, evaluated different satellite based SM products and with respect to spatial 

downscaling of satellite soil moisture. Moreover, Peng et al. [2016] developed a method applying besides 

microwave data also visible and infrared satellite observations and using a specific vegetation temperature 

condition index. With all these remote sensing methods it is possible to derive surface SM as an integral of the 

moisture in the upper few centimetres of the soil depending on the dielectric characteristics, which vary with 
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varying SM content. The spaceborne sensors used for active microwave SM monitoring encompass, e.g., 

Sentinel-1, ERS-1/2, Envisat ASAR, RADARSAT-1/2, ALOS PALSAR. Since several decades, also numerous 

studies based on passive microwave approaches to measure SM have been carried out [e.g., Eagleman and Lin, 

1976; Wang et al., 1990; Wigneron et al., 2003]. One of the first spaceborne passive microwave radiometer 

missions was AMSU in 1978, followed by several others like AMSR-E since 2002. In 2009, the Soil Moisture 

and Ocean Salinity (SMOS) satellite operated by ESA [Barré et al., 2008; Kerr et al., 2010] and in January 

2015, the Soil Moisture Active Passive (SMAP) satellite operated by NASA was launched [Entekhabi et al., 

2010]. Both recent passive satellite missions operate in the microwave L-band, which is most suitable for soil 

moisture observations [Kerr et al., 2001].  

1.2.3 Challenges and limitations  

Environmental monitoring of snow cover properties and soil moisture is still a challenge and in many areas there 

is a lack of continuous and reliable measurements. Besides many advantages, practically all current measurement 

methods have their limitations.  

Ground-based measurements give an appropriate picture of the situation at a certain location and deliver 

measurements with high temporal resolution. However, they are often restricted in their spatial coverage, 

especially when applied at single stations, representing information for large areas. Regarding this, without a 

dense sensor network, representativeness for larger areas is limited. Soil moisture can vary locally and vertically, 

depending on local soil texture variations and climate factors. Regarding snow covered regions the snow cover 

properties vary significantly at different expositions, slope gradients or altitudes. Moreover, several in situ 

sensors installed on poles are not applicable, e.g. in complex or steep avalanche prone terrain as they would be 

destroyed in case of extreme events. Due to high maintenance and too high costs of the sensors, e.g., snow 

pillows, some environmental properties like SWE are measured only at a few locations worldwide. Manual 

measurements are often precise, but they show only a snap-shot in time and are time consuming and labour 

intense. If a snowpack or a soil column should be investigated in its vertical extent, snow pits or a hole in the soil 

have to be dug, which might destroy the original snow or soil layering. Moreover, some regions are too remote 

or are too risky to access routinely by labourers.  

Regarding remote sensing applications with optical and infrared sensors, problems arise from possible cloud 

cover. Microwave remote sensing is weather-independent but relies on complex data processing. Passive 

microwave sensors cover large areas and deliver good estimates for large scale soil moisture or snow cover 

applications; however, their spatial resolution with up to several km² is too low to apply it in complex, especially 

alpine terrain. And in particular active microwave approaches are limited due to foreshortening, shadowing and 

layover effects which reduce their applicability in complex terrain and especially in alpine regions, where a low 

spatial resolution and mixed pixels can distort the information for certain regions and altitude levels [Strozzi et 

al., 1997, Wiesmann et al., 2007].   

Generally, a reasonable combination of several methods encompassing ground-based measurements and remote 

sensing techniques and combinations with modelling approaches might be most promising to avoid errors and to 

achieve the highest benefit in environmental monitoring [Tedesco, 2014] and of course, further development and 

research in the field of environmental monitoring as presented in this thesis, is promising and advisable.  

1.3 Physical basis on electromagnetic waves and dielectric properties of snow and soil 

The GPS approach presented in this thesis is based on the interrelation of electromagnetic waves with media like 

snow and soil. The physical fundamentals are presented in the following.  
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1.3.1 Propagation, reflection and refraction of electromagnetic waves 

A significant point in the history of physics was the formulation of the Maxwell’s equations describing the 

relation of the electric field ܧ, the magnetic field ܪ, the electric charge ܳ, the current density J, the magnetic 

permeability ߤ∗and the dielectric permittivity ߝ∗ [Ulaby and Ravaioli, 2015; Woodhouse, 2005]. In this section, 

the main formulations which are relevant for the scope of this thesis are described.  

The one-dimensional propagation of the electromagnetic waves is defined by 

߲ଶܧ
ଶݖ߲

ൌ ∗ߝ∗ߤ
߲ଶܧ
ଶݐ߲

,  (1.1) 

where E is the electrical field, z the direction and ݐ the time variable. The magnetic permeability ሺߤ∗ ൌ ଴ߤ ∙ μሻ is 

the product of the magnetic permeability ߤ଴ of free space and the relative magnetic permittivity μ which is 1 for 

nonmagnetic materials like snow or soil. Analogously, the dielectric permittivity ሺߝ∗ ൌ ଴ߝ ∙  is the product of	ሻߝ

the dielectric permittivity of free space ߝ଴ and the relative dielectric permittivity ߝ in Equation (1.1). The latter is 

medium-specific and is considered complex (ߝ ൌ ᇱߝ ൅  ᇱᇱሻ with a real part εᇱand an imaginary part εᇱᇱ. Inߝ݅

general, dielectric properties are often described as a complex function of the frequency of the applied 

electromagnetic field. The real part εᇱ of the complex permittivity is thereby related to the stored energy. The 

imaginary part εᇱᇱ is related to the loss of energy within a medium and is also called dielectric loss factor [Ulaby 

et al., 2014].   

The phase velocity ݒ of electromagnetic waves can be derived after Maxwell’s equations: 

ݒ ൌ
1

ඥߝ∗ߤ∗
  (1.2) 

Investigating a low-loss dielectric material (ߝᇱᇱ/ߝᇱ ≪ 1) [Woodhouse, 2005], where conductivity can be 

neglected, the phase velocity within a nonmagnetic material can be simplified [Bradford et al., 2009] to 

ݒ ൌ
ܿ଴
√εᇱ

  (1.3) 

where the speed of light in free space is 

ܿ଴ ൌ
ଵ

ඥఓబఌబ
≅ 3	 ൈ 10଼	m	sିଵ  (1.4) 

The distance ݀ the electromagnetic wave travelled through a medium in a certain time ݐ is defined as 

݀ ൌ  (1.5)  ݐݒ

In general, the incident, reflected and transmitted waves at an interface between two media follow the Fresnel 

equations of reflection and transmission and the law of conservation of power. At boundaries between two 

different media, electromagnetic waves might be reflected at and transmitted through their interface. The amount 

of reflected energy is dependent on the relationship between the wave impedance ܼ௜ of media 1 and 2, which 

defines the reflection coefficient 

ݎ ൌ
ܼଶ െ ܼଵ
ܼଶ ൅ ܼଵ

ൌ
ሺߝଶ

ᇱ ൅ ଶߝ	݅
ᇱᇱሻ െ ሺߝଵᇱ ൅ ݅ ଵᇱᇱሻߝ

ሺߝଶ
ᇱ ൅ ଶߝ	݅

ᇱᇱሻ ൅ ሺߝଵ
ᇱ ൅ ݅ ଵߝ

ᇱᇱሻ
  (1.6) 

in case the magnetic permeability does not change and at normal incidence. The calculation of the amount of 

reflected energy for oblique incident angles is described in Section 2.4.4.  

The refraction index ݊ is defined as the square-root of the relative dielectric permittivity 

݊ ൌ  (1.7)  .ߝ√
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After Snell’s Law the angles of incidence ߠଵ and refraction ߠଶ are related as follows to the refraction coefficients 

݊ଵ and 	݊ଶ of two different media: 

݊ଵ
݊ଶ

ൌ
sin ଶߠ
sin ଵߠ

  (1.8) 

1.3.2 Attenuation and penetration depth in the microwave domain 

Travelling through a lossy dielectric medium, even if it is low-loss dielectric, electromagnetic waves loose 

energy. This is called attenuation. The decay of the incident intensity ܫ଴ is exponential for the distance ݀:  

ሺ݀ሻܫ ൌ     ሻ (1.9)݀ߙሺെ	଴expܫ

The attenuation coefficient ߙ for a specific frequency ݂ is defined as  

ߙ ൌ ඨ
଴ߤ
ᇱε଴ߝ

 (1.10) ݂ߨ଴2ߝᇱᇱߝ		

Thereafter, attenuation is related to the complex permittivity where the imaginary part describes the energy 

losses and also is related to the penetration depth of the electromagnetic waves within a medium. The penetration 

depth ߜ௣ is the inverse of the attenuation 

௣ߜ ൌ
1
ߙ
ൌ

ටߝ
ᇱε଴
଴ߤ

݂ߨ଴2ߝᇱᇱߝ		
 

(1.11) 

and is defined as the distance at which the power of the incident electromagnetic wave is reduced by the factor ݁. 

The microwave domain encompasses the frequency range from 0.3 to 300 GHz in the electromagnetic spectrum. 

This refers to wavelengths of 1 m to 1 mm [Ulaby et al., 2014]. The microwave frequencies are classified in 

several bands, whereof the L-band is defined by IEEE to be situated at 1 to 2 GHz. This corresponds to 

wavelengths from 30 to 15 cm. L-band has the advantage that it is almost weather-independent [Hofmann-

Wellenhof et al., 2008] and undergoes, compared to the shorter wavelengths of the Ku-, X- and C-bands, a higher 

penetration depth into the Earth's surface. As this is multiple as long as the size of snow grains, the waves can 

easily penetrate into the snow cover or soil. For dry snow the penetration depth can be hundreds of meters, 

whereas for wet snow it is reduced to the (sub-)meter level, depending on the LWC [Mätzler, 2002]. For 

extremely dry soils the penetration depth may reach several meters [Woodhouse, 2005], however, if the soil is 

moist the penetration depth is reduced to a few centimetres [Ulaby et al., 2014]. 

In this study, the GPS L1-band at 1.57542 GHz referring to a wavelength of ߣ ≅	19 cm is used. In the Sections 

2.4, 3.2, 4.2 and 5.3, the propagation of L-band microwaves and the interrelation of the reflection, refraction and 

attenuation processes due to dielectric behaviour are described more in detail for the investigated snow cover 

properties and soil moisture measurements.  

1.3.3 Microwave dielectric properties of snow and soil 

In the microwave range the interactions between the electromagnetic waves and a certain material are expressed 

as dipolar processes describing the rotation and vibration of polar molecules. The response of a dielectric 

material to an applied electromagnetic field is not instantaneous and might lead to a phase difference and 

amplitude decline which is expressed in the real and imaginary part of the complex permittivity of a certain 

medium. Already on the way through the Earth's ionosphere and atmosphere, several effects on microwaves like 

reflection and refraction as well as energy loss due to attenuation may occur [Hofmann-Wellenhof et al., 2008; 

Woodhouse, 2005]. However, these effects are negligible compared to the interaction with the Earth’s surface 
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materials like snow or soil which are investigated in this study. Snow and soil are a mixture of different materials 

where each of them has characteristic dielectric properties depending on frequency and temperature.  

Dry snow is a two-phase mixture of air and ice. The real part of the complex permittivity of air εୟ
ᇱ  is 1 and the 

imaginary part εୟ
ᇱᇱ is 0. This means that for dry snow, only the dielectric properties of ice in combination with the 

density of the snowpack are significant. The real part of the dielectric constant of ice is ε୧
ᇱ ൌ3.18 [Bradford et al., 

2009] and the imaginary part is negligible at 0°C in the lower GHz range [Artemov and Volkov, 2014; Sihvola 

and Tiuri, 1986]. In case the snow becomes wet, water is added as a third phase. Water, however, has very 

prominent dielectric properties and depending on its volumetric content in the snowpack, it highly influences its 

dielectric behaviour [Mätzler, 1987; Stiles and Ulaby, 1982].  

Free liquid water follows the dielectric response of polar molecules where the movements occur at GHz 

frequencies. The complex permittivity of water ε௪ can be described by the Debye model [Hasted, 1972] 

ε௪ ൌ ε௪ஶ ൅
ε௪଴ െ	ε௪ஶ

1 ൅ ݅ሺ2݂߬ߨ௪ሻ
 (1.12) 

where ε௪ஶ is the  dielectric constant at high frequencies, ε௪଴ the static dielectric constant of water and ߬௪ the 

relaxation time constant. These constants are temperature dependent and the complex permittivity of water 

changes with temperature [Chaplin, 2016]. Figure 1.1 illustrates the temperature and frequency dependence of 

the complex permittivity of water for the entire microwave range. For the GPS L1-band frequency at 

1.57542 GHz the real part of the complex permittivity of water at 0°C is around 88 and the imaginary part 

slightly above 10. For higher temperatures, both, the real and imaginary part increases.    

 

Figure 1.1: Behavior of the real and imaginary part of the complex permittivity of water in the entire microwave range for 
temperatures of 0 to 100°C. The red and blue arrows illustrate the effect of increasing temperature [Chaplin, 2016, modified]. The 
GPS L1-band frequency at 1.57542 GHz is marked as green line. 

In literature, the dielectric properties of snow are either estimated empirically [e.g., Denoth, 1989; Sihvola and 

Tiuri, 1986; Tiuri et al., 1984]) or by three-phase mixing models [e.g., Lundberg and Thunehed, 2000; Perla, 

1991; Roth et al., 1990]. All approaches show that the proportion of water highly influences the dielectric 

properties of snow. For LWC values between 0 and 8%, the real part of the complex permittivity ranges between 

1.7 and 3.5 to 4 depending on the applied dielectric model. The imaginary values range between 0 and 0.3. For 

more details on the calculations of the real and imaginary part of the complex permittivity of snow it is referred 

to Section 2.5.1. 

Soil, if it is not frozen, is a mixture of air, soil particles, bound water and free water. The dielectric properties of 

air and free water were described above. Similar as for snow, the water content plays a significant role to define 
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the dielectric properties of the soil. Molecular movements in bound water are similar to free water, however, 

they occur in the MHz range and remain constant in the GHz range [Chaplin, 2016]. According to Dobson et al. 

[1985], the real part is most likely set to 35 and the imaginary part of the complex permittivity of bound water to 

15. The dielectric properties of soil particles are dependent on soil texture classified as sand, silt and clay, and 

their mineral composition, e.g., if they originate from limestone or granite. They mainly lay in the range of 2 to 

10 for the real part, whereas the imaginary part is negligible. Completely dry soil lays in the range of 2 to 4 for 

the real part of the complex permittivity and is dependent on layering and porosity of the soil particles [Ulaby et 

al., 2014]. The dielectric properties of soils, if dry or wet have been described widely in literature with several 

empirical or semi-empirical model [e.g., Hallikainen et al., 1985; Roth et al., 1990; Topp et al., 1980; Wang and 

Schmugge, 1980] and the physically based four-component model [Dobson et al., 1985]. The latter is described 

in detail in Section 5.3.3.  

1.4 Overview on GNSS and their applications on environmental properties 

In this section, the Global Satellite System (GPS) as part of the Global Navigation Satellite System (GNSS) and 

possible environmental measurement techniques using GNSS are introduced.   

1.4.1 GNSS and GPS 

The U.S. NAVigational Satellite Timing And Ranging Global Positioning System (NAVSTAR GPS) is a 

weather independent and space-based navigation system and belongs to the Global Navigation Satellite System. 

Satellite navigation systems were built up since the 1970s in the United States and Russia for precise positioning 

for military applications and were fully operational since the mid-1990s. Later plenty of further applications, 

ranging from geodetic, navigational, mapping and scientific applications, came up, too. Nowadays, GNSS is a 

system of satellites for navigation applications with global coverage. At present, it encompasses the operational 

U.S. NAVSTAR GPS and the Russian GLONASS. By 2020, the European Galileo and the Chinese 

BeiDou/COMPASS system, which will be expanded into the global Compass BeiDou-3 navigation system, are 

planned to be fully operational and will be added to the GNSS in its entire extend [Hofmann-Wellenhof et al., 

2008; Jin et al., 2014].  

For this approach, the NAVSTAR GPS system (in the following just named GPS) was used. However, the 

techniques described in the following would also potentially be applicable with the other GNSS systems. In total, 

the GPS system encompasses up to 32 GPS satellites, arranged in six orbits with an equatorial inclination of 55° 

and with an altitude of ~20200 km above the Earth. The ground repeat period is one sidereal day (~ 23 h 

56 min). This leads to a global coverage of at least four to ten simultaneously observable satellites above an 

elevation mask of 10° at any time [Hofmann-Wellenhof et al., 2008].  

The GPS signals are broadcast in the L-band microwave range and are right-handed circular polarized. All GPS 

satellites transmit two signals, the civilian L1-band (1.57542 GHz) and the non-civilian L2-band (1.2276 GHz), 

which are phase modulated on two different frequencies. Moreover, satellites of the recent generation can also 

transmit a further civilian signal, the L5-band (1.17645 GHz). The civilian C/A (coarse acquisition) code for a 

standard positioning service is modulated on the L1-band, whereas the non-civilian P-code is placed on the L1- 

and L2-band for a highly precise positioning service reaching a millimetre range. The standard observable is the 

pseudorange which is derived from run-time observations between each GPS satellite and the GPS receiver. In 

total, at least four satellites with measured pseudoranges are needed to determine position, velocity or attitude, 

which are applied in the fields of surveying and navigation. The pseudorange can result either from the coded 

satellite signals as code pseudorange or from measurements of the carrier phase as phase pseudorange. Though 

the latter leads to a much higher accuracy in positioning, the carrier phase is ambiguous and difficult to process 

[Hofmann-Wellenhof et al., 2008]. The signal power of the received GPS signals is expressed as the carrier-to-
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noise power density ratio (C/N0), whereof the noise is assumed to be white and Gaussian distributed. C/N0 is a 

bandwidth-independent index that relates the carrier power to the noise per 1 Hz bandwidth taking ten times the 

decadic logarithm and is expressed in dBHz. In general, for the most geodesists the broadcast GNSS signal 

strength is only a quality flag measure which was not applied for positioning and navigation applications. 

Normally, the C/N0 values range between 44 to 50 dBHz; values below 34 dBHz are characterized as weak 

[Hofmann-Wellenhof et al., 2008]. The received GPS data can either be logged with a receiver dependent raw 

data format or by the standard NMEA (National Marine Electronics Association) or RINEX (Receiver 

INdependent EXchange) output format. Raw GPS protocols contain information on carrier phase, carrier 

frequency, Doppler shift and C/N0 for each visible satellite with a certain pseudo random noise (PRN) number at 

a certain elevation and azimuth angle for each time step. Further, some receivers provide positioning and 

navigation solutions and information on satellite orbit data expressed as almanac data [Hofmann-Wellenhof et 

al., 2008]. 

Until now, numerous GPS receiver types exist. The spectrum ranges from highly precise and quite expensive 

military and geodetic receivers, differential GPS systems and simple low-cost GPS systems, which are for 

example installed in smartphones or in car navigation systems. Even though the low-cost receivers are only able 

to record the L1-band and are more imprecise regarding clock errors and phase tracking, it is also possible to 

reach very high accuracies (~ 1 cm) in static and kinematic positioning applications by applying specifically 

adapted RTK positioning algorithms [Borre and Strang, 2012; Henkel, 2015; Henkel and Iafrancesco, 2014]. 

1.4.2 GNSS measurements for environmental monitoring 

Besides numerous real-time navigational and surveying applications, environmental monitoring with GNSS is on 

the advance. Highly precise positioning algorithms allow the monitoring of short- and long-term geodynamical 

phenomena like movements, e.g., in the fields seismology, geology and glaciology. Thereby, investigations of 

volcanic eruptions, fault motions or earthquakes may resolve the geodetic signature or even predict hazards in 

advance [e.g., Blewitt et al., 2009; Larson, 2013; Ohta and Iguchi, 2015; Shi et al., 2010]. Moreover, GNSS is 

increasingly used for meteorological observations using tomography techniques [e.g., Bartelt et al., 2012; 

Bender et al., 2011; Bosy et al., 2010; Lutz, 2008].  

The explicit derivation of environmental properties, such as snow cover properties or soil moisture, is 

investigated by the following three techniques using C/N0 and carrier phase. In the following, these methods are 

shortly defined:  

 GNSS reflectometry: With this approach, reflections of GNSS signals on the Earth surface are analysed 

[Jin et al., 2014]. Comparing direct and indirect signals, the GNSS receivers act as an interferometer, 

whereby the observed GPS C/N0 signal frequency, mainly recorded by L2-band, depends on the height 

of the antenna above the Earth, the GPS wavelength and the environmental properties. 

 GNSS signal attenuation: With this approach the attenuation of GNSS signals through a medium 

depending on its thickness and permittivity is investigated, whereof especially the moisture content of a 

media can be derived. 

 GNSS signal time delay: Based on a fix baseline between two antennas, the time delay of the GNSS 

signals through a medium can be resolved by processing carrier phases with a specific RTK positioning 

approach. With this method, especially the amount of the media which was passed by the GNSS signals 

can be expressed.  

In the following the state of the art of these three methods is presented, whereof the last two techniques were 

mainly developed in this thesis. 

GNSS reflectometry: In the last two decades, GNSS reflectometry (GNSS-R) increased as a new Earth 

observation remote sensing technology which was first suggested by Martin-Neira [1993] in the 1990s. GNSS-R 
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involves, measurements e.g., on snow, sea ice, ocean surface roughness, soil moisture and vegetation biomass by 

reflections from the Earth of GNSS signal strength either from a ground-based station or from aircraft or 

spacecraft platforms [Jin et al., 2014]. Due to the consideration of oblique angles below 30 degrees of satellite 

elevation, a larger area or so called footprint compared to the direct vicinity of the antenna is investigated. The 

spatial scale of GNSS-R approaches reaches up to 1.000 m² which is intermediate between point-based in situ 

measurements and remote sensing satellite data [Larson, 2016]. Depending on the snow height, soil moisture 

content or plant water content, the reflections occur at a shallower or a deeper soil level and leads to different 

reflection patterns. An overview of numerous GNSS reflectometry approaches is provided by Botteron et al. 

[2013], Cardellach et al. [2011] and Jin et al. [2014]. Several investigations were undertaken to detect 

particularly HS based on multipath analysis and by using C/N0 information [Gutmann et al., 2012; Jacobson, 

2010; Larson and Small, 2016; Larson et al., 2009; McCreight et al., 2014; Nievinski and Larson, 2014a; b; 

Ozeki and Heki, 2012; Rodriguez-Alvarez et al., 2012b]. SM for both, bare and vegetated soils, was also 

investigated by numerous approaches [Chew et al., 2015; Katzberg et al., 2006; Larson et al., 2008; Privette III 

et al., 2016; Rodriguez-Alvarez et al., 2009; Rodriguez‐Alvarez et al., 2011; Vey et al., 2016; Zavorotny et al., 

2010]. Besides, few GNSS-R approaches on forests [Ferrazzoli et al., 2011; Wu and Jin, 2014] and several 

approaches on agricultural and vegetation biomass [Egido et al., 2012; Pierdicca et al., 2013; Small et al., 2010] 

were investigated, too. GNSS-R studies especially for SM and biomass estimation based on aircraft are 

investigated e.g. by Egido et al. [2014], Motte et al. [2016] and Pei et al. [2014]. Reflected GNSS signals were 

also recorded with the European GEROS-ISS sensor on-board of the International Space Station for large scales 

[Wickert et al., 2014]. Moreover, observations of reflected GNSS signals with a specific sensor onboard of the 

low Earth orbiting TechDemoSat-1 have been used recently for global soil moisture maps [Chew et al., 2016]. 

For the future, the new NASA CYGNSS mission (launch, November 2016, as of November 2016) of 8 GPS bi-

static radar receivers to be deployed on separate micro-satellites have a high potential for further global GNSS-R 

observations for large scale land applications [Rose et al., 2014].  

GNSS signal attenuation: Until now, GNSS approaches, investigating changes in signal strength are very rare 

in literature, and were not used for quantitative studies. Regarding snow studies, Schleppe and Lachapelle [2008] 

analysed a significant GPS signal attenuation and a decrease in position accuracy and precision due to 

pseudorange quality deterioration within avalanche deposited snow, but they could not qualitatively measure 

snow properties. Regarding other fields, the existence of ice loadings on GPS antennas [O Keefe et al., 2000] and 

the effect of vegetation water content [Rodriguez-Alvarez et al., 2012a] were observed by signal attenuation 

approaches. As a clear advancement and as a highly innovative approach, successful analysis on LWC and SM 

had recently been developed by Koch et al. [2014] and Schmid et al. [2015]. This is presented for the snow cover 

properties in the Chapters 2 and 3 and by Koch et al. [2016] for soil moisture, presented in Chapter 5. With 

these studies, it was possible for the first time, to continuously, non-destructively and quantitatively derive 

environmental properties with low-cost GNSS sensors. The objectives of these studies are introduced in Section 

1.6, for detailed information it is referred to the relevant chapters.  

GNSS signal time delay: Further, another highly innovative GNSS approach was recently developed which uses 

signal time delay to retrieve SWE within a snowpack. Two static GPS receivers were used to determine the 

carrier phases differentially, indicating time delay in snow, whereby changes in carrier phases are related to 

changes in SWE. This method is also presented in this thesis and is submitted to a peer-reviewed journal; its 

current status is presented in Chapter 4. With this novel method it is possible to successfully derive SWE for 

dry-snow conditions by solely using GPS carrier phase measurements. However, further research is needed on 

the carrier phase processing during wet-snow conditions. As a vision for wet-snow conditions, the combination 

of time delay of GPS signals through a snowpack with the above mentioned signal strength attenuation approach 

would lead to the derivation of HS, SWE and LWC by solely using GPS signals. This is shortly presented as an 

outlook in Section 6.2 
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1.5 GPS sensors, raw data and test sites 

In this section the used GPS sensors and further components and the applied raw data are described. Besides, the 

test sites Weissfluhjoch (WFJ) for the snow measurements and Munich (MUC) for the soil measurements are 

presented.   

1.5.1 GPS sensors and raw data 

For the development of a first experimental prototype GPS sensor, highly suitable components were chosen. 

Important points were their robustness, low-power consumption, and suitability for extreme meteorological 

conditions. On the one hand, suitable low-cost GPS antennas, receivers and fanless PCs, weather-proofed boxes, 

and cables were acquired. On the other hand, several components were self-constructed, including an antenna 

radome, GPS reset boxes and application boards for the GPS receivers. In Table 1.1, the specific sensor 

components which were used for the two GPS setups at the test sites WFJ and MUC are listed. 

Table 1.1: Overview on GPS sensor components and their amount installed at the test sites WFJ and MUC. In the Appendix related 
pictures are shown.   

Sensor component WFJ MUC Appendix 

Fastrax IT430 GPS receiver with application board and SiRF IV chip 
[Fastrax, 2011]; operation temperature range: -40 to 85°C 

3 3 A.1 

Self-constructed GPS application board with USB-to-serial interface and 
voltage regulation 

3 3 A.1 

Large weather-proofed box (~ 100 x 40 x 30 cm³) to store receivers and PC 1 1 A.2, B.1 

Small weather-proofed box (~ 20 x 10 x 5 cm³) to store receivers 1 - A.3 

Hirschmann GPS7M magnetic mount antenna [Hirschmann, 2014] with a 
coax cable length of 3 m  

3 3 A.3, A.4, 
B.2, B.3 

Tallysman TW2140 magnetic mount antenna [Tallysman, 2016] with a coax 
cable length of 5 m, ground plate (since autumn 2013) 

3 - A.5 

Antenna radome to protect the antenna above the snow from snow cover and 
weather influences 

1 - A.6 

Spo-book fanless PC to store data and to connect and control the receivers 
with the software SiRFLive; ideal for harsh environmental conditions: 
operation temperature / relative humidity ranges: –40 to 70°C / 0 to 95% 

1 1 A.7, A.8 

Self-constructed reset box for the GPS receivers 1 1 A.9 

70 m of Ethernet and power cables and cables for reset (WFJ) and 25 m 
power cable (MUC). All cables were protected against animal bites. 

1 1 A.10 

One GPS system encompasses a fanless PC and three receivers and three antennas. At the SLF test site WFJ one 

of these GPS sensor systems is running since autumn 2012 and at the DWD test site MUC another one was 

running from January 2014 until June 2015. At the test site WFJ, a stable internet connection enabled permanent 

data access and at the test site MUC, it was possible to collect the data each week with an external device. To get 

a better impression on the sensor components, several pictures are shown in Appendix A for the test site WFJ and 

in Appendix B for the test site MUC.  

Figure C.1 in Appendix C illustrates, exemplarily for the test site WFJ, the installation plan of all GPS sensor 

components listed above. The receiver for the antenna installed at the pole was placed in the smaller weather-

proofed box, whereas the other two receivers connected with the ground antennas and the fan-less PC were 

stored in the larger box. The reset box, the switch for the internet connection and the power outlet were situated 

in a sheltered hut nearby this test site. In general, the installation plan for the test site MUC is quite similar. 
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Differences are that no internet was available at the test site MUC and as the distance between all antennas was 

less than 3 m, all receivers could be placed in one weather-proofed box.   

Since autumn 2015, additionally a second generation prototype GPS sensor was installed at the test site WFJ. 

This sensor was provided by the company ANavS GmbH within the frame of the ESA-funded Artes-IAP project 

SnowSense. It encompasses two u-blox LEA-6T GPS receivers and two u-blox ANN-MS GPS patch antennas 

with a cable length of 5 m [u-blox, 2016] and a processing and storage unit. The receivers were connected to a 

low-power consuming cheap single-board computer, which controlled the receivers and managed the data 

storage (Appendix A.11 and A.12). 

For this thesis, the following raw data messages received by Fastrax IT430 were of interest. They were 

considered in the receiver specific One Socket Protocol (OSP) and were extracted for every visible satellite at 

each time step of a 1 Hz measurement [Hofmann-Wellenhof et al., 2008; House and Park, 2009]: 

 TOW (GPS time of week) and GPS week number: Time and date information. 

 PRN (pseudo random noise) number: GPS satellite number. 

 Elevation and azimuth: Orbital angle annotation of each GPS satellites in relation to the receiver.  

 Carrier-to-noise-power density ratio (C/N0): Bandwidth-independent index number that relates the 

power received from the satellites to the receiver's noise per 1 Hz bandwidth. This parameter is used to 

quantify the signal power of the received signal. 

Moreover, from the further developed second generation ANavS GPS sensor, the following information were 

additionally used [Hofmann-Wellenhof et al., 2008]: 

 Code phase (pseudorange) (ߩ): Distance information between GPS satellites and GPS receiver with an 

accuracy in the meter level, which can be potentially improved by specific processing techniques.  

 Carrier phase (߮): Has a periodic nature and can be used (in combination with code phase information) 

to determine the distance between GPS satellites and GPS receiver with an accuracy in the centimetre 

to millimetre level. However, carrier phase measurements are ambiguous by integer numbers of full 

waves and are more difficult to process than the code phases. 

 Orbit data: Two-hourly updated information on precise ephemerides data of each PRN 

The application and processing of the GPS raw data for the derivation of the snow cover properties and the soil 

moisture are described in detail in the Sections 2.3, 3.2.3, 4.2-4.3 and 5.3.1. 

1.5.2 Test site Weissfluhjoch 

The snow cover property measurements were performed at the high Alpine SLF test site WFJ (46°49'47"N, 

9°48'34"E, 2540 m a.s.l.) above Davos, Switzerland in the Plessur Alps. The flat site is situated in the small, 

south-west facing valley Dorftälli in the Parsenn skiing area, whereof the peak Weissfluh is the highest mountain 

(2834 m a.s.l.). The extension of the test site is approximately 25 m by 25 m. Figure 1.2 gives an overview of the 

test site during the snow covered period. Appendix A.13 to A.18 show further pictures of the site during summer 

and winter.  

The high-alpine climate is characterized by a mean annual temperature of -2.5°C and a mean annual precipitation 

sum of about 1200 mm. The dominating wind direction is north-west and 75% of precipitation is accumulated as 

snow. On average, the first permanent snow cover date is 18 October (range from 6 September to 25 November) 

and the mean melt out date is 9 July (range from 3 June to 15 August) [Marty and Meister, 2012; SLF, 2015b]. 

Geologically, the region is situated in the outermost west of the Eastern Alps with Penninic facies and the 

overthrusted Eastern Alpine facies including dolomitic material (Aroser Dolomite), which is predominant for the 

peaks [Hsü and Briegel, 2013; Spicher et al., 2004]. The test site lays in the alpine grassland zone [Meurer, 

1984; Reisigl and Keller, 1987], however, it is partly covered with gravel. 
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Figure 1.2: Overview of the SLF test site Weissflhjoch, near Davos, Switzerland in the Parsenn skiing area (photo taken by 
L. Schmid). The area where the GPS sensors are installed is situated approximately in the middle of the test field.  

The test site WFJ has good accessibility, internet connection, and is connected to the public electricity grid. It is 

fully equipped with numerous sensors recording meteorological and snow cover properties [Marty and Meister, 

2012; SLF, 2015a]. Some recordings started already in 1936 and as a special issue, this site holds globally 

unrivalled time series measurements. Besides ongoing operational measurements, also several sensor prototypes 

were tested at this site and important snow science experiments have been carried out [SLF, 2015b]. This test site 

is an ideal location for GPS applications in high alpine areas due to its wide and open terrain. At any time, it has 

high satellite coverage because of an unobstructed line of sight between the GPS receivers and the GPS 

satellites. In autumn 2012, three GPS sensors were installed. One antenna (GPS1) was mounted facing-up on a 

5 m high pole in the middle of the test site and was always situated above the snow cover. The other two 

antennas (GPS2 & GPS3) were installed, also facing-up, on the ground level and were buried underneath the 

snowpack during the entire snow period. Appendix A.3 and A.5 give an impression on the setup of GPS2 and 

GPS3. Appendix A.4 and A.6 depicts the GPS1 antenna on the pole. In autumn 2015, the advanced ANavS 

sensors were installed, whereof one antenna was mounted on the same pole as the first system and the second 

antenna was brought out next to the others on the ground level. Appendix A.12 shows an antenna of the advanced 

prototype GPS senor. For more details on the measurement setups, see Sections 2.2, 3.2.1 and 4.1, respectively. 

This test site is ideal to validate new prototype sensors as their results can be compared with numerous 

meteorological and snow measurements of conventional sensors. The snow surface temperature (TSS) and all 

relevant meteorological parameters were measured continuously in a fine temporal resolution. The 

measurements of HS were recorded by two ultrasonic and one laser sensor, SWE by a snow scale and a snow 

pillow (Appendix A.19 and A.20) and the meltwater outflow by a 5-m² snow lysimeter (Appendix A.21). The 

temporal resolution of these snow measurements was 30 minutes. Additionally, HN was measured with a 

snowboard every day at 8 a.m. At a bi-weekly rhythm, manual measurements in snow pits (Appendix A.22) were 

taken and at a few dates LWC measurements with a Denoth meter and a Snow Fork (Appendix A.23). Moreover, 

measurements of a L-band upward-looking ground-penetrating radar (Appendix A.24), operating at 1.6 GHz, 

were used to compare and combine the GPS measurements. Figure D.1 in Appendix D gives an overview of the 

location of all sensors applied in this study, either for reference measurements or for combination with the GPS 

measurements. Additionally, Table D.1 in Appendix D lists of the measurements and sensors and their 

(aggregated) temporal resolution used in this study.   

GPS area
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1.5.3 Test site Munich 

The soil moisture measurements were performed at the inner-city meteorological observation site of the German 

Weather Service (DWD) in Munich (48°16'43'' N, 11°32'37'' E, 518 m a.s.l.) in Southern Germany. This site is 

easy to access and is located close to the university, which made frequent maintenance possible. Munich is 

characterized by a temperate and humid climate of Central Europe with monthly average temperatures ranging 

from -2°C in winter to 17°C in summer. The prevailing wind direction is west. The mean annual precipitation in 

Munich reaches 930 mm with a summer precipitation peak [Mauser and Prasch, 2015]. Snow cover typically 

lasts for several weeks in winter, but with a decreasing trend in coverage duration and amount due to climate 

change [Weber et al., 2010]. The test site is well equipped with standard DWD meteorological measurement 

instruments recording e.g. precipitation, wind, temperature and cloud cover.  

The GPS measurements were performed at a standard DWD soil measurement field (see Figure 1.3), wherein the 

soil temperature at several depths is continuously measured by the DWD. This soil measurement field has an 

extent of approximately 10 m² and is not covered by vegetation. Therefore, it is highly suitable specifically for 

the SM derivation of bare soil. Within a radius of approximately 20 m, the test site is free from surrounding 

obstacles like houses or trees and allows relatively undisturbed GPS measurements for a city location. The soil 

texture of the soil measurement field is sandy loam. As the test site is situated on top of the Munich gravel plain 

north of the Northern Calcareous Alps, limestone is the dominant rock type leading to chromic luvisols. The 

groundwater table in this region is lower than 2.5 m below the surface and, due to the small clay content 

capillary rise plays a negligible role.  

 

Figure 1.3: (a) Areal overview of the circular DWD test site which is situated in the North-western part of the City of Munich 
[Google Earth, 2016]. The vegetation-free soil measurement field is marked. (b) Part of the soil measurement field which was used 
for the soil moisture measurements (5 November 2013). The location of the surface antenna GPS1 and the approximate location of 
the buried antennas GPS2 & GPS3 and the weather-proofed box are marked. 

In total, three GPS receivers were installed. One antenna (GPS1) was placed on top of the soil and the other two 

antennas (GPS2 & GPS3) were placed within the soil column at a soil depth of 10 cm (Appendix B.2 and B.3). 

Regarding meteorological measurements, precipitation, air temperature and soil temperature at a depth of 5 cm 

were used. As reference, FD ECH2O probes (Decagon Devices, U.S.; Appendix B.4 and B.5) to continuously 

measure SM at soil depths at 5 cm and 10 cm were installed. Surface SM was additionally measured by 

ThetaProbe ML2x FD probes (Delta-T Devices, U.K.; Appendix B.6) and standard manual gravimetric probes in 

a weekly to bi-weekly rhythm. Additionally, the SM for a layer depth of 10 cm and all relevant hydrological 

parameters percolation were modelled by the physically based, hydrologic land-surface PROcesses of Mass and 

Energy Transfer (PROMET) model [Mauser and Schädlich, 1998; Mauser and Bach, 2009].  
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1.6 Thesis outline 

The following describes the research objectives and gives rise to the structure of this thesis, it’s chapters and 

scientific publications. 

1.6.1 Research objectives 

It is a highly demanding task to provide continuous environmental data with a sensor system which is potentially 

applicable at almost any place on Earth. The main goal of this thesis is to develop a new continuous, non-

destructive and globally applicable low-cost measurement system based on GPS L1-band signals to derive, in a 

first step the snow cover properties HS, SWE and LWC, and in a second step SM. To answer the three research 

questions introduced in Section 1.1, several strategic development and validation steps have to be passed. 

Accordingly, this thesis is structured around the following research objectives (OJ), showing a continuous 

progress in data analysis, algorithm development, and application:  

OJ1. Construction and installation of a suitable GPS sensor system 

a) Definition of GPS sensor requirements, with the aim to develop a low-cost GPS sensor system 

which should be able to continuously measure snow cover properties and SM in a non-destructive 

manner, and in harsh environmental conditions.  

b) Construction and installation of a suitable GPS sensor system to measure snow cover properties at 

the SLF test site WFJ. 

c) Installation of a suitable GPS sensor system for SM measurements at the DWD test site MUC. 

OJ2. LWC of wet snow derived by GPS C/N0 

a) C/N0 algorithm development retrieving normalized C/N0 values based on a snow-free reference. 

b) Derivation of the bulk volumetric LWC based on GPS signal strength attenuation, and HS using a 

conventional sensor. 

c) Verification of the temporal LWC evolution and daily melt-freeze cycles detected by GPS in 

comparison with temperature, HS and snow lysimeter readings and several capacity measurements.  

d) Validation of GPS derived data by comparison with upGPR measurements.  

OJ3. HS, SWE and LWC derived by combining GPS C/N0 and upGPR TWT 

a) Combination of the GPS C/N0 algorithm with time information of L-band electromagnetic waves 

travelling through the snowpack, which were recorded by an upGPR sensor. The latter records the 

two-way travel time (TWT) of waves, which are reflected at the air-snow boundary. 

b) Derivation of the three snow cover properties HS, SWE and LWC from beneath the snowpack.  

c) Validation of the data derived by the upGPR-GPS combination with conventionally measured data. 

OJ4. SWE of dry snow derived by GPS carrier phase  

a) Development of GPS carrier phases algorithm and assuming a reduced signal propagation in snow 

to extract snow-specific time delay. 

b) Derivation of SWE under dry-snow conditions based on changes in the time delay of GPS signals 

through the snowpack.  

c) Validation with conventional SWE measurements. 

OJ5. Method transfer to other environmental properties: Soil moisture derived by GPS C/N0 

a) Development of C/N0 algorithm to derive SM based on GPS signal strength attenuation in the soil.  

b) Validation with SM measured gravimetrically and by FD sensors. 

c) Validation with the land-surface model PROMET for the same integral surface soil layer. 

OJ6. HS, SWE and LWC derived solely by combining GPS C/N0 and GPS carrier phase 

a) Combination of GPS C/N0 attenuation within snow and time delay of GPS signals through a 

snowpack to derive the snow cover properties HS, SWE and LWC for dry and wet snow. 
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Figure 1.4: Overview of the research objectives OJ1-OJ6 regarding setup, data input and processing. The derivation of the snow and 
soil properties, are indicated by different colours and are classified also according to the six thesis chapters. The direction of 
development is indicated.  

The overview given in Figure 1.4 summarizes the research objectives in a scheme. The objectives OJ1-OJ6 are 

classified according to the thesis chapters, the snow properties LWC, SWE and HS and the soil property SM. 

Moreover, they are classified after the analysis categories setup and the different raw data inputs GPS C/N0, GPS 

phase, the combinations GPS C/N0 and upGPR TWT as well as GPS C/N0 and GPS carrier phase. The research 

development direction is indicated step by step with red arrows. On the one hand it shows the development 

within the snow property derivation applying signal strength and time delay information and on the other hand 

the transfer to SM as another environmental property. 

1.6.2 Chapter outline 

Chapter 1 introduces the overall motivation and the research questions of this thesis, different snow and SM 

measurement methods, the physical fundamentals, and gives an overview on GNSS. This first chapter also 

contains parts of OJ1 regarding the applied GPS sensors and the test sites which are presented in Section 1.5. The 

further outline of this thesis is as follows (see Figure 1.4): Chapter 2 introduces the new GPS method to 

continuously and non-destructively derive LWC in snow through GPS signal strength attenuation and externally 

measured HS. The results are compared with meteorological and snow hydrological data (OJ1 and OJ2). In 
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Chapter 3, at first, the bulk LWC derived by GPS is compared and validated with LWC measurements by an 

upGPR (OJ2). Secondly, the GPS signal strength and the time delay information derived by upGPR TWT are 

combined and lead to the derivation of HS, SWE and LWC (OJ3). Chapter 4 describes the methodology to 

derive SWE for dry-snow conditions solely by GPS carrier phase. The results were validated with conventional 

snow pillow and manual snow pit measurements (OJ4). In Chapter 5, the signal strength attenuation approach 

presented for snow LWC is transferred to the derivation of SM. The GPS SM validation was carried out by 

several in situ SM measurements and PROMET model results (OJ6). In Chapter 6, the conclusions and an 

outlook on future work are given, including potential further steps on the combination of C/N0 and carrier phase 

to derive HS, SWE and LWC for dry and wet snow solely by GPS signals (OJ5).  

Appendix A and B encompasses several illustrations of the measurement setup at the two test sites WFJ and 

MUC. The GPS installation plan and an overview of all measurements at the test site WFJ are shown in 

Appendix C and D, respectively. Appendix E presents a conference proceeding on the first results on GPS signal 

strength reduction caused by melt-freeze cycles in spring.  

1.6.3 Scientific publications 

In total, this cumulative thesis encompasses four manuscripts, three of them have already been published in peer-

reviewed journals and one has recently been submitted to a peer-reviewed journal. Each manuscript is reprinted 

in one single chapter and contains the chapter specific objectives.  

Chapter 2:  Publication in the journal Sensors 

Koch, F., Prasch, M., Schmid, L., Schweizer, J. and Mauser W. (2014): Measuring snow 

liquid water content with low-cost GPS receivers. Sensors, 14(11), 20975-20999. 

Chapter 3:  Publication in the journal Geophysical Research Letters. This publication was performed in 

close collaboration with the WSL Institute for Snow and Avalanche Research SLF. 

* L. Schmid and F. Koch contributed equally to this work.  

Schmid*, L., Koch*, F., Heilig, A., Prasch, M., Eisen, O., Mauser, W. and Schweizer, J. 

(2015): A novel sensor combination (upGPR-GPS) to continuously and nondestructively 

derive snow cover properties. Geophysical Research Letters, 42(9), 3397–3405.  

Chapter 4:  Submitted to the journal IEEE Transactions on Geoscience and Remote Sensing. This 

publication was performed in close collaboration with ANavS GmbH and Vista Remote 

Sensing GmbH. 

* P. Henkel and F. Koch contributed equally to this work.  

Henkel*, P., Koch*, F., Appel, F., Bach, H., Prasch, M., Schmid, L., Schweizer, J. and 

Mauser, W. (2017): Snow water equivalent of dry snow derived from GNSS carrier phases. 

IEEE Transactions on Geoscience and Remote Sensing, Volume, Issue, Pages. 

Chapter 5:  Publication in the journal Water 

Koch, F., Schlenz, F., Prasch, M., Appel, F., Ruf, T. and Mauser W. (2016): Soil moisture 

retrieval based on GPS signal strength attenuation, Water, 8(7), 276. 

The findings of the first two publications were investigated during the project ‘Kontinuierliche Messung der 

Schneedeckenentwicklung mit GPS-Empfangsgeräten zur Bestimmung des Schneespeichers im Hochgebirge’ 

(DFG MA 875/12-1; project period: 07/2011 – 0572015) funded by the German Research Foundation. The 

findings of the third publication were investigated during the ARTES-IAP Demo Project SnowSense 

(http://artes-apps.esa.int/projects/snowsense-dp) co-funded by the European Space Agency (ESA 4000113149/ 

14/NL/AD; project period: 02/2015 – 02/2018). The findings of the forth publication were investigated during 

the period of both projects. 
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The journals’ impact factors and rankings are listed in Table 1.2. 

Table 1.2: Overview of journals in which the papers of this thesis are published or are submitted to (Journal Citation Report 2015 
[Thomson Reuters, 2016]). 

 Sensors Geophysical 
Research Letters 

IEEE Transactions on Geo-
science and Remote Sensing 

Water 

Impact Factor 2.245 4.196 3.360 1.428 

5-year Impact Factor 2.474 4.406 3.863 1.751 

Category Instruments & 
Instrumentation 

Geosciences, 
Multidisciplinary 

Remote Sensing Water 
Resources 

Journal ranking (category) 10 / 56 9 / 175 4 / 28 39 / 83 

Status published published submitted published 
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2. MEASURING SNOW LIQUID WATER CONTENT 

WITH LOW-COST GPS RECEIVERS 

This chapter is published in the journal Sensors:  

 

Koch, F., Prasch, M., Schmid, L., Schweizer, J. and Mauser W. (2014): Measuring snow liquid water content 

with low-cost GPS receivers. Sensors, 14(11), 20975-20999; doi: 10.3390/s141120975. 

 

 

Abstract 

The amount of liquid water in snow characterizes the wetness of a snowpack. Its temporal evolution plays an 

important role for wet-snow avalanche prediction, as well as the onset of meltwater release and water availability 

estimations within a river basin. However, it is still a challenge and a not yet satisfyingly solved issue to measure 

the liquid water content (LWC) in snow with conventional in situ and remote sensing techniques. We propose a 

new approach based on the attenuation of microwave radiation in the L-band emitted by the satellites of the 

Global Positioning System (GPS). For this purpose, we performed a continuous low-cost GPS measurement 

experiment at the Weissfluhjoch test site in Switzerland, during the snow melt period in 2013. As a measure of 

signal strength, we analyzed the carrier-to-noise power density ratio (C/N0) and developed a procedure to 

normalize these data. The bulk volumetric LWC was determined based on assumptions for attenuation, reflection 

and refraction of radiation in wet snow. The onset of melt, as well as daily melt-freeze cycles were clearly 

detected. The temporal evolution of the LWC was closely related to the meteorological and snow-hydrological 

data. Due to its non-destructive setup, its cost-efficiency and global availability, this approach has the potential 

to be implemented in distributed sensor networks for avalanche prediction or basin-wide melt onset 

measurements. 

2.1 Introduction 

Seasonal snow is a very important reservoir component in the hydrological cycle, which releases temporarily 

delayed fresh water to the forelands. Downstream water suppliers are highly dependent on snow meltwater 

release from the alpine head-watersheds, which provides drinking and irrigation water, especially when mostly 

needed during the summer time. The average snow water equivalent (SWE) describes the total amount of snow 

stored within a certain catchment. However, this measure does not provide information on the state of snow 

melting. The liquid water content (LWC) ߠ୵ in snow describes the snow wetness of a snowpack. It is an 

indicator for snow melt and snow stability. A clear increase in liquid water leads to an onset of meltwater runoff 

within a catchment. This is relevant information, e.g., for flood predictions during intense melting due to intense 

solar radiation or rain-on-snow events. Temporal and quantitative meltwater delivery predictions are therefore 

highly demanded by decision makers in the field of water management dealing, e.g., with catchment runoff and 

flood forecasts [Prasch et al., 2013; Strasser and Mauser, 2001; Weber et al., 2010], hydropower generation, as 

well as reservoir management [Koch et al., 2011a; Koch et al., 2011b] and, thereafter, optimization of 
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hydropower production. Moreover, information on the LWC of a snowpack is important information for wet-

snow avalanche forecasting, since infiltrating water affects the mechanical strength and hence the stability of the 

snowpack [Baggi and Schweizer, 2009; Kattelmann, 1987; Mitterer et al., 2011b]. 

In general, snow wetness is difficult to measure in situ, as well as to derive from satellite-based remote sensing 

measurements. Moreover, to consider the spatiotemporal evolution of meltwater runoff and snow stability, there 

is a need for continuous, non-destructive monitoring of the LWC in snow. Changes in the LWC can quickly 

change snowpack properties and meltwater outflow [Heilig et al., 2009; Mitterer et al., 2011b]. They represent 

non-linear processes, which are difficult to detect or forecast. Manual snow wetness observations in snow pits 

only provide a rough estimate and are based on a wetness index [Fierz et al., 2009]. An overview of several in 

situ snow wetness measurements is given by Boyne and Fisk [1987] and Techel and Pielmeier [2011]. Most in 

situ techniques are based on centrifugal, dielectric, dilution and calorimetric measurement methods. Instruments 

that measure the permittivity of wet snow are, e.g., the Denoth meter [Denoth, 1989; Denoth et al., 1984] and the 

Finnish Snow Fork [Sihvola and Tiuri, 1986]. They have in common that they are destructive, time consuming, 

laborious and can only be applied at accessible locations. Approaches of time-domain reflectometry (TDR) (e.g., 

[Schneebeli et al., 1998]) were able to monitor the snow wetness continuously and non-invasively; however, this 

technique is also not applicable, e.g., in avalanche-prone areas. With upward-looking frequency modulated 

continuous wave (upFMCW) and ground-penetrating radar (upGPR) systems, the bulk volumetric LWC can be 

derived also at avalanche starting zones [e.g., Okorn et al., 2014; Schmid et al., 2014]. However, upward looking 

radar systems are limited in application to a single point and are expensive, power intensive and laborious to 

install.  

The radiative properties of a snowpack in the range of L-band microwave radiation are mainly determined by the 

dielectric constant. Due to the high dielectric constant of water compared to dry snow, wet snow causes 

characteristic changes in microwave backscattering and penetration depth or emission rate regarding active or 

passive microwaves, respectively. Several microwave remote sensing approaches and their combinations were 

investigated for snow wetness detection [e.g., Appel et al., 2005; Hallikainen, 1989; Mätzler et al., 1997; Rott 

and Davis, 1993; J Shi and Dozier, 1995; Stiles and Ulaby, 1980]. However, remote sensing applications are 

difficult to apply in alpine terrain, due to the low spatial resolution and complex topography (mountain 

shadowing and foreshortening effects). Because of the satellite’s long repetition times, snow wetness parameters 

can only be detected every few days, depending on the swath width. Consequently, satellite remote sensing can 

currently not observe daily melt-freeze cycles. Moreover, regarding contemporary passive microwave systems, 

spatial resolutions up to 25 km² are very coarse and not applicable for mountainous regions. In sum, microwave 

applications in alpine terrain lack the required temporal resolution to observe the spatiotemporal dynamics of 

important melt processes. Though various in situ measurements at the point scale and remote sensing approaches 

at a large scale have been investigated, it remains challenging to continuously and non-destructively determine 

LWC in snow with high spatial resolution.  

Due to its global and continuous availability, new remote sensing applications based on the Global Navigation 

Satellite System (GNSS), such as the American GPS, the Russian GLONASS, the future European Galileo and 

the Chinese Beidou/COMPASS systems, have become increasingly popular. Several investigations were 

undertaken to detect snow depth or snow water equivalent based on multipath analysis of the carrier-to-noise 

power density ratio or carrier phase data [Gutmann et al., 2012; Jacobson, 2010; Larson et al., 2009; Ozeki and 

Heki, 2012; Rodriguez-Alvarez et al., 2012b]. An overview is provided by Botteron et al. [2013] and Jin et al. 

[2011]. These GNSS reflectometry techniques are mainly based on the analysis of reflections at the Earth surface 

in comparison to direct signals received at an antenna above the ground. Changes in snow depth [Jin and Najibi, 

2014; Larson et al., 2009], vegetation [Wu and Jin, 2014] or soil moisture [Zavorotny et al., 2010] lead to 

changes in the reflected signals and signal polarization. Besides observations in the microwave range, surface 

reflectivity for snow surface monitoring is also applied at other wavelength spectral domains, like the near-
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infrared [Leroux et al., 1998; Salminen et al., 2009]. A detailed study on the reflectivity and polarization of 

GNSS signals was carried out by Najibi and Jin [2013]. Besides snow depth estimates, Jin and Najibi [2014] 

found that snow surface temperatures are detectable with dual-frequency GPS signals on behalf of reflected 

signals from the pseudorange and carrier phase. In general, these methods describe in situ measurements on a 

small scale covering an area of the GPS footprint according to the Fresnel ellipsoids, which depend on the 

antenna installation height above the reflecting surface and the elevation angle. According to Larson and 

Nievinski [2013], the footprint can be up to hundreds of square meters. Schleppe and Lachapelle [2008] showed 

with low-cost GPS receivers a clear signal attenuation within avalanche deposited snow and a decrease in 

position accuracy and precision due to pseudorange quality deterioration. Besides, ice loading on GPS antennas 

[O Keefe et al., 2000] and the effect of vegetation water content [Rodriguez-Alvarez et al., 2012a] were observed 

by signal attenuation approaches. However, to our knowledge, the existing GNSS snow studies were limited to 

flat terrain, and no studies regarding the snow wetness (LWC) have been carried out to date.  

The aim of this study is to analyze whether the bulk volumetric LWC of an entire snowpack can be derived non-

destructively at a high temporal resolution from GPS signal strength losses. We used low-cost GPS receivers and 

antennas, which are, in principle, globally applicable. The measurement devices are low power consuming; the 

data analysis is not time consuming and labor-intensive; and the measurements are taken in a continuous mode. 

After providing an overview of our new experimental low-cost GPS measurement setup at the Weissfluhjoch test 

site (2540 m a.s.l., Eastern Swiss Alps) (Section 2.2), we will describe the GPS data processing in Section 2.3. 

Signal changes due to atmospheric variability, reflection and refraction at the snow-atmosphere interface, as well 

as attenuation within the snowpack are considered in Section 2.4. In Section 2.5, the method to calculate the 

LWC based on signal attenuation is demonstrated and subsequently applied to the melt period in spring, 2013 

(Section 2.6). The GPS data are shown in comparison with single reference measurements, as well as continuous 

meteorological and snow-hydrological data. The results are discussed in Section 2.7, and finally, Section 2.8 

provides the conclusions and an outlook.  

2.2 Measurement setup 

The flat test site, Weissfluhjoch (46°49'47" N, 9°48'34" E), is located above Davos (Eastern Swiss Alps) at an 

elevation of 2540 m a.s.l in a small, south-west facing valley. The site is well-equipped with numerous sensors to 

continuously record meteorological and snow properties [Marty and Meister, 2012]. It is an ideal location for 

GPS applications in high alpine areas, as it has a high satellite coverage, due to its almost unobstructed line of 

sight between the GPS receivers and the GPS satellites.  

On 26 September 2012, before the first snowfall in autumn occurred, we installed three low-cost Fastrax IT430 

GPS receivers with SiRF IV chips [Fastrax, 2011], named GPS1, GPS2 and GPS3 (Figure 2.1). Each of the 

receivers was connected with low-cost Hirschmann GPS7M magnetic mount antennas [Hirschmann, 2014]. The 

cost of each receiver and antenna pair (without data logging, data transmission, power supply, etc.) is 

approximately 150 USD. The antenna of GPS1 was mounted facing-up at a 4-m high pole approximately in the 

middle of the test site, to always be situated above the snow cover. Due to its small size of 3.9 cm × 3.9 cm and 

almost permanent wind influence at this exposed point, there was no or only negligible snow deposition on top 

of this antenna. Because GPS1 stayed snow-free, it delivered information on atmospheric influences on the GPS 

signals. The antennas GPS2 and GPS3 were installed also facing-up on the ground nearby GPS1. They stayed 

buried underneath the snowpack during the entire snow-covered period. The horizontal distance between GPS2 

and GPS3 was approximately 1 m. The cable length between the receivers and the antennas was 3 m. Figure 2.1 

illustrates the location of all three GPS antennas at the test site Weissfluhjoch on a snow-free day. The GPS 

antennas were connected to the receivers, which were stored in a weather-proof box, via 3-m coax cables. 

Between the weather-proof box and the data acquisition on a PC in the nearby hut, 70 m of power and data cable 
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were installed. The GPS receivers recorded the raw data each second, which resulted in a total data volume of 

approximately 700 MB/day.  

 

Figure 2.1: Overview of the location of the water-proof box with the Fastrax IT430 receivers, the hut where the PC was located and 
the Hirschmann GPS7M antennas of GPS1, GPS2 and GPS3 at the Weissfluhjoch test site on a snow-free reference day (26 
September 2012). 

For validation, continuously measured meteorological and snow-hydrological data were analyzed, including air 

and snow surface temperature, snow depth measurements from a laser sensor and meltwater outflow at a snow 

lysimeter. The comprehensive set of meteorological and snow-hydrological measurements was aggregated to a 

resolution of half an hour. On eleven days, conventional manual snow profiles according to Fierz et al. [2009] 

were recorded near the GPS system setup. In addition, the LWC was measured using the dielectric devices, 

Denoth meter and Snow Fork. The Denoth meter data were collected on six and the Snow Fork data on four 

dates during the considered spring period, on some days even at two different times. Both measurements were 

taken in the snow pit for each layer, and for analysis, the weighted mean for the entire snow depth was 

calculated. The snow profiles included an estimate of snow wetness for each layer (Wetness Index 1 to 5). To 

make this information comparable to the bulk volumetric LWC derived from the GPS recordings, we converted 

the wetness index of each layer to an approximate volumetric LWC (Wetness Index 1 to 5 corresponding to ߠ୵ 

of 0, 1.5, 5.5, 11.5 and >15%, respectively). The bulk volumetric LWC for the entire snowpack was calculated as 

the weighted mean of the LWC of each layer. The test site was continuously covered with snow from 27 October 

2012, to 11 July 2013; the snow cover remained predominantly dry until mid-April. For the derivation of liquid 

water in snow, a three-months spring period (7 April–6 July 2013) was chosen as a representative demonstration 

period. The first week of this period is one week before the snow melt started and represents almost dry 

conditions, whereas during the rest of this period, the snowpack was mainly moist or wet.  
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2.3 GPS raw data and processing of normalized C/N0 values 

2.3.1 GPS raw data 

The applied low-cost Fastrax IT430 GPS receivers track the L1 C/A code only. The freely available GPS 

broadcast is transmitted via microwaves at the L1-band at a frequency f of 1.57542 GHz [Hofmann-Wellenhof et 

al., 2008]. The main field of application for low-cost GPS L1-band receivers is navigation, with its focus on 

positioning data. However, for deriving the LWC in snow, the received signal strength is of interest. As a 

measure, the signal strength is expressed as the carrier-to-noise power density ratio (C/N0). C/N0 is a bandwidth-

independent index and is used for assessing signal quality. It quantifies the signal power of the received signal of 

tracked satellites [Hofmann-Wellenhof et al., 2008]. 

Daily variations of the receiver noise due to temperature changes at the receiver and the cables were neglected, 

and the receiver noise was kept constant for the further modeling of the GPS input data. During the measurement 

period, GPS2 and GPS3 were always underneath the snow cover with a snow temperature at the bottom of the 

snowpack constantly at about 0 °C. At the upper antenna (GPS1), slight daily variations might occur, which 

were, however, neglected for the scope of this study. The ratio C/N0 is determined for each satellite that is in 

sight of the receiver at a certain time. At the Weissfluhjoch test site eleven GPS satellites can be tracked on 

average with the applied Fastrax IT430 receivers. In total, the system operates 32 GPS satellites grouped in six 

orbits with an equatorial inclination of 55 degrees. During a sidereal day (~23 h 56 min), all GPS satellites can 

be tracked for several hours at the test site, Weissfluhjoch. 

 

Figure 2.2: Sky plot as a polar plot of all GPS satellites recorded simultaneously by the three GPS receivers at the Weissfluhjoch test 
site for one sidereal day. The angular coordinates describe the azimuth angle and the polar axis the elevation angle. C/N0 values 
below an elevation angle of 10° were masked out for the calculation (these areas are marked grey). 

For the study period (7 April–6 July 2013), the C/N0 data, logged in a receiver-dependent raw data protocol, 

were extracted for each of the 32 satellites at each time step of one second; in addition, the corresponding 

satellite number (pseudo random noise, PRN), the time, as well as the satellite elevation and azimuth information 

were recorded. Due to a failure of GPS satellite PRN 27, there were no data available from this satellite during 

the observation period. The sky plot in Figure 2.2 displays the trajectory of all GPS satellites on their sky paths 

and illustrates the hemispherical coverage during one sidereal day at the test site, Weissfluhjoch. This pattern of 

trajectories is repeated every sidereal day and is identical for GPS1, GPS2 and GPS3. Due to the orbital 

arrangement of the satellite tracks, the northern azimuth angles have less coverage, because the test site is 

situated at northern latitudes. For further data processing, C/N0 values below an elevation angle of 10 degrees 
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were masked out, because only weak signals were recorded below this elevation angle, or no signals were 

received, due to a slight hemispherical obstruction of the GPS satellites by surrounding slopes. The location of 

the flat hut (see Figure 2.1) in the north-eastern sector at an approximate distance of 40 m from the GPS 

receivers had negligible influence on the line of sight between GPS receivers and GPS satellites. All three 

receivers maintained lock on all GPS satellites (except PRN 27) every day, even when the maximum snow depth 

and LWC values were reached. 

2.3.2 Normalized C/N0 values 

Besides environmental and atmospheric influences and the characteristics of receiver and antenna, the value of 

the recorded carrier-to-noise power density ratio (C/N0) depends on the elevation and azimuth angles of the 

received signals, as well as on the specific GPS satellite that emitted them. Due to different GPS satellite ages 

and other satellite characteristics, the peak field strength and, thereafter, also, the magnitude of the received C/N0 

values differ slightly for each GPS satellite. Due to angle-dependent antenna sensitivity patterns, the received 

signal varies with different azimuth and elevation angles. Furthermore, multipath effects can cause changes in 

the received signals, especially at near grazing incidence. To account for all of these influences, several azimuth 

and elevation classes were defined to normalize the C/N0 values for each time step with respect to elevation- and 

azimuth-angle and satellite characteristics. In total, 16 elevation angle classes (in steps of five degrees between 

10 and 90 degrees) and 16 azimuth angle classes for the entire azimuth range (in steps of 22.5 degrees) for all 32 

GPS satellites were assigned, accounting for a total of 8192 classes. However, due to the hemispherical satellite 

distribution with less satellite tracks in the northern direction (see Figure 2.2), not all classes are covered by C/N0 

values. Figure 2.3 shows exemplarily the C/N0 class distribution for GPS satellite PRN 1 for one sidereal day. 

One single class is covered only once by approximately 10 min. The mean class value is represented by the mean 

of all C/N0 values recorded during the satellite passage over this class. 

 

Figure 2.3: Sky plot as a polar plot for the GPS satellite PRN 1 for one sidereal day with the classification of the C/N0 values with 16 
elevation and 16 azimuth classes. The classes assigned with values for PRN 1 are colored blue. C/N0 values below an elevation angle 
of 10° were masked out for the calculation (these areas are marked grey). 

To make the C/N0 values comparable individually for each GPS antenna, it was necessary to define a snow-free 

reference day encompassing the period of a sidereal day. Therefore, a representative sidereal reference day 

without a snow cover and stable and dry tropospheric conditions was chosen, which is, for this study, the UTC 

time period 09:00, 21 July 2013–08:56, 22 July 2013. It is assumed that for this time period, all C/N0 values 

were influenced by low atmospheric attenuation and ionospheric fluctuations. This means that all recorded C/N0 
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values during the entire time period theoretically represent the same signal strength. Thereafter, all values in 

each of the 8192 classes for this reference day express the normalized GPS C/N0 value 1.0. Then, all C/N0 values 

at each time step of each class were compared to the reference C/N0 value in the corresponding class. With this 

approach, also sub-daily variations of the C/N0 pattern, which are repeated every sidereal day, are considered and 

normalized. The data of all normalized C/N0 values calculated for each class with one-second resolution were 

aggregated to 30 min. Besides the temporal aggregation, the normalized GPS C/N0 values express also a spatial 

aggregation of GPS data recorded from different satellites at different elevation and azimuth angles covering 

different Fresnel zones around the antennas.  

GPS1 as a snow-free reference measurement showed slight temporal fluctuations due to different atmospheric 

conditions for each time step, which impact also GPS2 and GPS3. During the snow-covered period, GPS2 and 

GPS3 were also influenced by the snow cover. The normalized half-hourly GPS C/N0 data of GPS1, GPS2 and 

GPS3 served as input for the further calculation of the LWC. Due to their almost identical location, GPS2 and 

GPS3 recorded the C/N0 values in parallel. For the observed three-month spring period, the coefficient of 

determination (R²) and the Nash-Sutcliffe efficiency coefficient (NSE) showed a very good agreement, with R² = 

0.96 and NSE = 1.00. For further data processing, for each time step, the average of the normalized GPS C/N0 

from GPS2 and GPS3 was taken. The normalized C/N0 of GPS1 is denoted as Im1, and the normalized C/N0 of 

the mean of GPS2 and GPS3 is denoted as Im2,3. 

2.4 Interaction of GPS signals with the snowpack 

2.4.1 Overview of processes and influences on GPS signals 

Several processes influence the GPS L1-band microwave signals on their way from the GPS satellites to the GPS 

receivers underneath the snow cover. These include reflection and refraction at the snow-air interface, as well as 

attenuation within the snowpack, which encompasses absorption and scattering [Bernier, 1987; Woodhouse, 

2005]. These processes are mainly dependent on changes of the complex permittivity of a medium. For this 

study, εୱ describes the complex relative permittivity of snow, which is given as: 

εୱ ൌ εୱ
ᇱ ൅ ݅	εୱᇱᇱ (2.1)  

where εୱ
ᇱ  is the real part and εୱ

ᇱᇱ the imaginary part of the permittivity. An overview of received intensity and 

signal strength losses, as well as angle changes due to reflection, refraction and attenuation processes is given in 

Figure 2.4. The measured intensity ܫ୫ଶ,ଷ underneath the snow cover at GPS2 and GPS3 can be described with: 

୫ଶ,ଷܫ ൌ 	 ୲ܫ െ	ܫୟ ൌ ୫ଵܫ െ ୰ܫ െ   ୟ (2.2)ܫ

where ܫ୫ଵ is the received intensity at GPS1 above the snow cover, ܫ୰ is the reflected intensity at the snow-air 

interface, ܫ୲ is the transmitted intensity into the snowpack and ܫୟ is the intensity loss due to signal attenuation 

within the snowpack.  

In general, signal losses in the atmosphere are much smaller than signal influences at the  

snow-atmosphere interface and within the snowpack. Comparing dry and wet snowpack conditions, a dry 

snowpack has less influence on the signals than wet snow. According to Mätzler [2002], the penetration depth, 

defined as the distance at which the power is reduced to 1/e of its original value [Woodhouse, 2005], of L-band 

microwaves in dry snow is up to 400 m, whereas at an LWC of approximately 1%, it decreases to ~2.5 m and at 

approximately 5% to ~0.5 m. The main reason is signal attenuation within the snowpack due to liquid water 

[Stiles and Ulaby, 1980]. Due to the fact that water has a high complex permittivity compared to air and ice 

[Bernier, 1987; Sihvola et al., 1985], the received signal power is remarkably lower for wet than for dry snow. 

The degree of refraction and reflection at the snow-atmosphere interface is also influenced by the LWC, but has 

a lower effect than losses due to attenuation within the snowpack. Due to a longer wavelength of GPS 
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microwave radiation (L1-band: λ = 19 cm) compared to the approximately 10- to 20-times smaller size of snow 

grains, the effects of snow microstructure can be neglected in the range of L-band microwaves. In the following, 

the consideration of signal attenuation (including scattering and absorption), refraction and reflection in the 

processing chain are shortly described.  

 

Figure 2.4: Overview of influences on the measured GPS intensity and radiation path length through snow, as well as the angle 
changes due to the reflection, refraction and attenuation processes. Only the direct signal paths are shown (in red); several multipath 
effects at and multiple bounces between the air/snow and snow/ground interfaces are neglected. 

For the sake of simplicity, we neglected within our low-cost approach several multipath effects with coherent 

reflections at and bounces between the air/snow and snow/ground interfaces, which have only minor effects on 

the calculation of the LWC, as the latter is mainly based on the signal attenuation within the snowpack. 

2.4.2 Atmospheric influence and variability 

The incident radiation, also called peak intensity ܫ଴, which is sent directly from the GPS satellites, first 

undergoes losses by passing the atmosphere. These losses occur because of signal attenuation, reflection and 

refraction processes, e.g., at electrons, small particles and water vapor molecules in the ionosphere and 

troposphere, and can vary from day to day, due to different atmospheric and ionospheric conditions. These 

processes affect the incoming radiation at all three GPS receivers above and underneath the snow cover in the 

same way. For each time step, the intensity ܫ୫ଵ derived from GPS1 represents theoretically also the intensity that 

would be measured at GPS2 und GPS3 without the influence of the snowpack.  

The normalized GPS C/N0 values received at GPS1 contain information about these atmospheric signal strength 

variations for each time step compared to the chosen reference day with good weather and stable ionospheric 

conditions. For all further calculations, the normalized GPS C/N0 values derived from GPS1 with its atmospheric 

variability information were used as input values to calculate the reflection, refraction and attenuation processes 

within the snowpack and at its surface.  

2.4.3 Refraction and snow depth correction 

The calculation of the refraction influence on the GPS signals, expressed as the angle of refraction ߴ୰ୣ୤୰ and the 

refraction index ݊ୱ, depends on the angle of incidence and the snow wetness. The mean angle of incidence at the 
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GPS antennas at the Weissfluhjoch test site received from all GPS satellites considering all possible elevation 

angles between 10° and 90° is ߴ଴ = 48° (which corresponds to a GPS elevation angle of ୣߴ୪ୣ୴ = 42°). Due to:  

݀ୱ ൌ
݀

cosߴ୰ୣ୤୰
 (2.3)  

this oblique incident radiation travels a longer distance dୱ through the snow than the vertical distance that 

represents the snow depth d measured with the laser sensor. Refraction due to a change from one to another 

medium, such as at the snow-atmosphere interface, causes a change of the angle of incidence and, thereafter, also 

in dୱ. The refraction coefficient ns of snow is described with: 

݊ୱ ൌ ඥεୱᇱ  (2.4)  

Because the refraction coefficient of the atmosphere can be approximated with 1.0, the angle of refraction ߴ୰ୣ୤୰ 

at the snow-atmosphere interface is expressed using Snell’s Law as: 

݊ sin ୰ୣ୤୰ߴ ൌ
sin ଴ߴ
݊ୱ

 (2.5)  

The wetter the snow, the larger the value of εୱ
ᇱ  and, consequently, the higher the refraction. As a result, this 

means that ݀ୱ decreases and gets closer to the measured snow depth ݀. 

2.4.4 Reflection at the snow surface 

Due to reflection at the snow-atmosphere interface, less than the entire intensity ܫ୫ଵ penetrates into the 

snowpack. As the incident radiation is circular polarized, the mean reflected intensity ܫ୰ at one circumference 

ߙ) ൌ ሾ0	2ߨሿ) is given by: 

௥ܫ ൌ
׬ ටሺୄݎ ඥܫ୫ଵ sin ሻଶߙ ൅ ሺݎ∥ඥܫ୫ଵ cosߙሻଶ

ଶ

ߙ݀
ଶగ
଴

ߨ2
ൌ
ଶݎୄ ൅ ∥ݎ

ଶ

2
 ୫ଵܫ

(2.6)  

with ୄݎ  and ݎ∥ as the perpendicular and parallel reflection coefficients, respectively:  

ݎୄ ൌ
௥ୄܧ

ୄܧ
௜ ൌ

ܼୱ cos ଴ߴ െ ܼ୴ cosߴ୰ୣ୤୰
ܼୱ cos ଴ߴ ൅ ܼ୴ cosߴ୰ୣ୤୰

 (2.7)  

∥ݎ ൌ
∥ܧ
௥

∥ܧ
௜ ൌ

ܼ୴ ݏ݋ܿ ଴ߴ െ ܼୱ ݏ݋ܿ ୰ୣ୤୰ߴ
ܼ୴ ݏ݋ܿ ଴ߴ ൅ ܼୱ ݏ݋ܿ ୰ୣ୤୰ߴ

 (2.8)  

with: 

ܼୱ ൌ ඨ
଴ߤ

ε଴ ሺεୱᇱ ൅ ݅	εୱᇱᇱሻ
 (2.9)  

as the wave impedance for snow and: 

ܼ୴ ൌ ඨ
଴ߤ
଴ߝ

 (2.10) 

as the free-space wave impedance (approximately corresponding to the wave impedance of the atmosphere), 

where ߤ଴ is the magnetic constant and ߝ଴ the electric field constant. ୄܧ
௜  and ܧ∥

௜ are the field components of the 

incident wave perpendicular and parallel to the plane of incidence, respectively, and ୄܧ௥ and ܧ∥
௥ the field 

components of the reflected wave perpendicular and parallel to the plane of incidence, respectively. 
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2.4.5 Attenuation within the snowpack 

The attenuation coefficient ߙ of a medium like snow is defined as: 

ߙ ൌ ඨ
଴ߤ
ε௦ᇱ ε଴

		ε௦ᇱᇱε଴  (2.11) ݂ߨ2

and can additionally be described for a homogenous medium, as we assumed it for snow, by applying Beer-

Lambert’s law [Otto, 2011]: 

ߙ ൌ െ
ln ቀ

ୟܫ୲ିܫ
୲ܫ

ቁ

݀ୱ
ൌ െ

ln ൬
୫ଶ,ଷܫ

୫ଵܫ െ ୰ܫ
൰

݀ୱ
 (2.12) 

with ܫ୫ଵ and ܫ୫ଶ,ଷ as input data and ݀ୱ and ܫ୰ calculated with Equations (3) and (6), respectively. The attenuation 

within the snowpack increases with increasing snow wetness. 

2.5 Calculation of liquid water content based on the complex permittivity 

2.5.1 Real and imaginary part of the complex permittivity 

Considering reflection, refraction and attenuation processes in the atmosphere, at the snow-atmosphere interface 

and within the snowpack, the bulk volumetric LWC based on the complex permittivity can be calculated by 

mixing formulas for wet snow. The complex permittivity of wet snow as a three-phase mixture of air, ice and 

water is dominated by its volumetric LWC. In general, wet snow has a significantly higher complex permittivity 

than dry snow [Sihvola et al., 1985; Tiuri et al., 1984]. Permittivity can either be estimated with an empirical 

relation [Denoth, 1989; Tiuri et al., 1984] or three-phase mixing models [e.g., Perla, 1991; Roth et al., 1990]. 

Most formulas for wet snow determination are valid within the pendular regime with an LWC below 8% to 10%.  

Real part: Three approaches exist to determine the real part of the complex permittivity for wet snow [Lundberg 

and Thunehed, 2000] in the frequency range of the GPS signals: the empirical equations of Sihvola and Tiuri 

[1986] and Denoth [1989] and the three-phase mixing formula from Roth et al. [1990]. With regard to the latter, 

Lundberg and Thunehed [2000] found an empirical relationship for their measurements and showed similar 

results in calculating the LWC. The real part depends on both the snow wetness and the dry snow density 

[Lundberg and Thunehed, 2000; Sihvola and Tiuri, 1986]. The liquid water content (LWC) ߠ௪ is given as 

percent per volume. 

(1) Empirical formula from Sihvola and Tiuri [1986] after Tiuri et al. [1984]: 

εୱ
ᇱ ൌ 1 ൅ 1.7 ൈ 10ିଷ	ୢߩୱ ൅ 7.0 ൈ 10ି଻ ୱୢߩ

ଶ ൅ 8.7 ൈ 10ିଶߠ୵ ൅ 7.0 ൈ 10ିଷߠ୵ଶ  (2.13) 

with ߩௗ௦ as the dry-snow density in kg/m³. 

(2) Empirical formula from Denoth [1989]: 

εୱ
ᇱ ൌ 1 ൅ 1.92 ൈ 10ିଷߩ୵ୱ ൅ 4.4 ൈ 10ି଻ߩ୵ୱଶ ൅ 1.87 ൈ 10ିଵߠ୵ ൅ 4.5 ൈ 10ିଷߠ୵ଶ  (2.14) 

with ߩ௪௦ as the wet-snow density defined as: 

୵ୱߩ ൌ ୱୢߩ	 ൅ 0.01  ୵ (2.15)ߩ୵ߠ

with ߩ୵ = 1000 kg/m³ as the density of water. 

(3) Three-phase mixing formula from Roth et al. [1990]: 

εୱ
ᇱ ൌ ሺ0.01	ߠ୵ε୵

ᇱ ଴.ହ	൅	
ୱୢߩ
୧ߩ
	ε୧
ᇱ଴.ହ+(1-

ୱୢߩ
୧ߩ

୵)εୟߠ 0.01-
ᇱ ଴.ହ)

ଶ
 (2.16) 
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with the permittivity of air εୟ
ᇱ  = 1.0, of ice ε୧

ᇱ = 3.18 and of water ε୵
ᇱ  = 88 at 0°C and a frequency of 1 GHz 

[Bradford et al., 2009; Mitterer et al., 2011b]. For this study, the dry-snow density was assumed with ୢߩୱ = 370 

kg/m³, which was the bulk dry-snow density just before the first melting in the measurement period in spring, 

2013, at the test site, Weissfluhjoch; the density of ice is ߩ୧ = 917 kg/m³. 

Imaginary part: The imaginary part ε௦
ᇱᇱ of the complex permittivity for wet snow is directly related to the snow 

wetness and can be given according to Sihvola and Tiuri [1986] after Tiuri et al. [1984] and Bradford et al. 

[2009] as: 

εୱ
ᇱᇱ ൌ

݂
10ଽHz

ሺ1.0 ൈ 10ିଷߠ୵ ൅ 8.0 ൈ 10ିହߠ୵ଶ ሻε୵ᇱᇱ  (2.17) 

with ε୵
ᇱᇱ  = 9.8 as the imaginary part of the complex permittivity of water at 0°C and a frequency of 1 GHz 

[Sihvola and Tiuri, 1986]. 

In the range of microwave radiation from 1 MHz–2 GHz [Bradford et al., 2009], the real part of the complex 

permittivity of wet snow is frequency independent, so that these equations can be applied without corrections. 

However, the imaginary part depends on frequency in this microwave range. Figure 2.5 illustrates the 

dependence of the permittivity on the LWC for the different formulations (Equations (2.13), (2.14), (2.16) and 

(2.17)). The higher the LWC, the higher is the deviation between the different formulations.  

 

Figure 2.5: Permittivity vs. liquid water content (LWC) calculated with the three formulations and their mean for the real part εୱ
ᇱ  and 

the imaginary part εୱ
ᇱᇱ. The dry snow density was set to 370 kg/m³. 

Table 2.1: Real εୱ
ᇱ  and imaginary part εୱ

ᇱᇱ of the complex permittivity of snow, corresponding reflectivity r² and the attenuation 
coefficients α for varying values of LWC; LWC is the mean of the three approaches for the real part (Equations (2.13), (2.14) and 
(2.16)). 

Volumetric Liquid 
Water Content ࢝ࣂ 

Permittivity, Real 
Part εs' 

Permittivity, 
Imaginary Part εs'' 

Reflectivity r² 
Attenuation 
Coefficient α 

0% 1.74 0.00 0.03 0.01 

2% 2.10 0.04 0.03 0.83 

4% 2.50 0.08 0.05 1.79 

6% 2.96 0.14 0.07 2.75 

8% 3.46 0.21 0.09 3.79 

2.5.2 Retrieval algorithm 

The input data for Equations (2.2)–(2.17) are the normalized GPS C/N0 data ܫ୫ଵ and ܫ୫ଶ,ଷ and the snow depth ݀ 

measured by a laser sensor nearby the GPS receivers every 30 min. With a root-finding algorithm, the two 

attenuation Equations (2.11) and (2.12) were set equal under consideration of the three different cases for the 
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equations for the real part εୱ
ᇱ  of the complex permittivity of snow (Equations (2.13), (2.14) and (2.16)). The 

imaginary part εୱ
ᇱᇱ was calculated after Equation (2.17). The permittivity was assumed to be temperature-

independent, so no external temperature measurement was required as input. In summary, the only unknown of 

this approach is the LWC, which can be calculated as described above by the externally measured snow depth 

and the recorded GPS data for each time step assuming a constant value of the dry snow density (370 kg/m³), 

which means that it was held fixed at this nominal value. Table 2.1 illustrates how the reflectivity and the 

attenuation coefficient increase with increasing LWC; in particular, the attenuation coefficient strongly 

increases.  

2.6 Results 

The LWC of the snowpack covering the antennas GPS2 and GPS3 at the Weissfluhjoch test site was calculated 

for the three-months spring period (7 April–6 July 2013) in half-hourly temporal resolution. The system worked 

well apart from one break-down of 50 h from 19–21 June due to a power failure at the test site.  

 

Figure 2.6: Normalized GPS C/N0 values (dB) taken as the mean of the two GPS receivers under the snow cover (GPS2 and GPS3) 
at the Weissfluhjoch test site for the period 7 April–6 July 2013.  

2.6.1 Bulk volumetric liquid water content derived with the three different formulations 

Figure 2.6 shows the evolution of the normalized GPS C/N0 values in decibels taken as the mean of GPS2 and 

GPS3, which were buried under the snowpack during the entire spring period. These values serve besides the 

snow depth as main input data for the calculation of the LWC. Higher normalized GPS C/N0 (~ −1 dB) values 

represent dry snow, whereas lower values (< −3 dB) represent moist to wet snow. A value of about 0 dB would 

represent snow-free conditions. The LWC was calculated as described above with the snow depth and the 

normalized GPS C/N0 values as input for each time step of 30 min. For the real part of the complex permittivity, 

the three approaches, in the following named Tiuri (Equation (2.13)), Denoth (Equation (2.14)) and Roth 

(Equation (2.16)), as well as their mean value were applied for each time step.  

The bulk volumetric LWC calculated as the mean of all three equations for the entire observation period covered 

a range from 0% to 6.3%. The minimum LWC determined with the three equations was 0%, and the maximum 

varied between 6% and 6.9%, with the lowest values calculated with Tiuri and the highest with Roth. In general, 

the differences in LWC between the different approaches increase with increasing LWC. The largest difference 

between the three mixing formulas was 0.9 percent points (pp). Figure 2.7 illustrates the temporal evolution of 

the bulk volumetric LWC calculated with the three mixing formulas for wet snow for the real part, as well as 

their mean value during the study period. In general, the evolution is fairly similar. At the beginning of the 

period, the snow was almost dry with a bulk volumetric LWC clearly below 0.5%. Around mid-April, the LWC 

started to increase and reached a first maximum of approximately 4% in the first week of May. Until the 

beginning of June, the values decreased to approximately 1.7% with a sharp increase in the first week of June up 
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to a second peak, comparable to the level of the first maximum, i.e., approximately 4%. The further increase 

until the beginning of July up to the maximum values was interrupted by three smaller minima around 2.5% to 

3%. Moreover, all curves show small daily fluctuations of the bulk volumetric LWC indicating daily melt-freeze 

cycles, which we will focus on in more detail later. The differences due to the different formulations for 

calculating the LWC were quite small. In the following, to simplify comparisons, we will refer to the mean of 

the bulk volumetric LWC calculated from the three different formulations. 

 

Figure 2.7: Bulk volumetric LWC of the snowpack above the antennas of GPS2 and GPS3 at the Weissfluhjoch test site for the 
period 7 April–6 July 2013, calculated with the normalized GPS C/N0 data. The LWC was calculated with three different 
formulations (Roth, Denoth and Tiuri). Furthermore, the mean of the three curves, as well as reference measurements with the Snow 
Fork, the Denoth meter and the estimate from manually observed snow profiles are shown. 

2.6.2 Comparison with reference measurements in snow pits 

In addition to the GPS-derived LWC, Figure 2.7 includes single destructive reference measurements taken in 

snow pits nearby. These include measurements with a Denoth meter, a Snow Fork and wetness estimates for 

each stratigraphic layer according to Fierz et al. [2009]. The wetness values determined with the Denoth meter 

and the Snow Fork did not match well with the GPS measurements. The under- and over-estimation compared to 

GPS-derived values was up to 2 pp. Moreover, values obtained with the Snow Fork were up to 3 pp higher than 

with the Denoth meter for the same date. However, this discrepancy is in accordance with previous findings by 

Techel and Pielmeier [2011], Mitterer et al. [2011b] and Schmid et al. [2014]. Overall, Figure 2.7 suggests that 

the values of the bulk volumetric LWC derived from the normalized GPS C/N0 data are approximately within the 

range of the values measured with the Denoth meter and the Snow Fork. During the first four weeks of the study 

period when the LWC was below 2%, the bulk values derived from the manually observed wetness index were 

slightly below the normalized GPS C/N0 curves. They agreed quite well at the end of the study period, but they 

clearly deviated in mid-May and at the beginning of June, when the LWC was generally high. The root-mean-

square deviation (RMSD) between the GPS-derived LWC and the reference measurements was about 1 pp 

(Table 2.2). The correlation between GPS-derived LWC and reference measurements was lowest for the snow 

profile estimates (adjusted R² = 0.55). 
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Table 2.2: Difference between the GPS-derived LWC and reference measurements (Denoth meter, Snow Fork and snow profile 
estimates). The absolute mean difference and the adjusted correlation coefficient are given. 

 Denoth Meter Snow Fork Snow Profile 

number of measurements 9 6 11 

RMSD (pp) 1.0 1.2 1.2 

adjusted R² 0.90 0.91 0.55 

2.6.3 Comparison with meteorological and snow-hydrological data 

Figure 2.8 shows the evolution of the measured snow depth, air and snow surface temperatures and the 

meltwater outflow for a 5 m² lysimeter, as well as the bulk volumetric LWC derived from the normalized GPS 

C/N0 measurements (only the mean is shown) at the Weissfluhjoch test site for the entire study period. In the 

following, the evolution is described by considering six sub-periods with different snow melt conditions. 

 

Figure 2.8: (a) Snow depth, (b) air and snow surface temperature and (c) lysimeter meltwater outflow, as well as the bulk volumetric 
LWC (mean of the three approaches, as in Figure 2.7) derived from normalized GPS C/N0 measurements at the Weissfluhjoch test 
site during the time period 7 April–6 July 2013. Vertical dashed lines between six sub-periods (denoted I to VI). 

Sub-period I (7–13 April 2013): This sub-period is characterized by almost dry-snow conditions. Due to cold air 

and snow surface temperatures, no discharge was registered at the lysimeter, and the bulk volumetric LWC was 

between 0 and 0.5%.  

Sub-period II (14 April–8 May 2013): Due to melting, the snow depth decreased from 1.9 to 1.4 m. The air 

temperature, especially during mid-day, was mostly above 0°C, and the snow surface temperature reached 

mostly 0°C at its daily maximum, indicating snow melting processes. The LWC started to increase markedly on 

14 April, one day before the start of the first lysimeter meltwater outflow, which indicates that the wetting front 
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arrived at the bottom of the snowpack. The bulk volumetric LWC increased to approximately 4%, and the 

maximum daily discharge amounted to 1 to 2 l/(m²h). 

Sub-period III (9 May–4 June 2013): Temperatures below 0°C and several snowfalls causing the snow depth to 

increase to almost 2 m again characterized the third sub-period. These conditions resulted in an absence of 

meltwater outflow and a clear decrease in the bulk volumetric LWC. However, even though meltwater outflow 

stopped, the GPS-derived measurements suggested that approximately 2% of liquid water was still present in the 

snowpack at the end of this sub-period. 

Sub-period IV (5–22 June 2013): The air temperature was almost always above 0°C, reaching a maximum of up 

to 15°C. Consequently, the snow surface temperature ranged, especially in the second week, around 0°C. These 

melting conditions led to a strong decrease in snow depth and to an increase of the LWC of up to 5.5% and a 

peak discharge of up to 6.5 l/(m²h). The increase in discharge was temporally highly correlated with the increase 

in air temperature and LWC.  

Sub-period V (23–29 June 2013): In contrast to the previous sub-period, temperatures were lower and no 

meltwater-outflow was registered. This sub-period was characterized by two small snowfalls, which resulted in a 

significant decrease in the bulk volumetric LWC, in particular during the snowfalls. 

Sub-period VI (30 June–6 July 2013): Temperatures rose again, leading to a clear decrease in snow depth and an 

increase in meltwater outflow. The bulk volumetric LWC increased in parallel. After 6 July, the snow depth was 

spatially too variable to calculate reliable values of LWC. Furthermore, the snow wetness reached a higher bulk 

volumetric LWC than expected within the pendular regime, for which the applied mixing formulas are valid. The 

snow finally disappeared on 11 July, only five days after the end of this sub-period. 

From the above descriptions, it becomes clear that the meteorological and snow-hydrological evolution had a 

great influence on the evolution of both the measured LWC and the lysimeter meltwater outflow; and that, in 

general, the temporal evolution of GPS-derived LWC agreed well qualitatively with meteorological, as well as 

the snow-hydrological data. 

The daily evolution of GPS-derived LWC clearly showed the daily melt-freeze cycles typically observed during 

the snowmelt period. Figure 2.9 exemplarily shows the temporal evolution of measured snow depth, air and 

snow surface temperature and lysimeter meltwater outflow, as well as the LWC derived from the normalized 

GPS C/N0 measurements for eight days (14–21 April). During this period, the snow depth decreased in the first 

six days from 1.89 to 1.65 m. On the seventh day, it increased to 1.85 m during a snowfall and decreased again 

to 1.68 m on the eighth day. Snow depth decreased especially during mid-day when the snow surface 

temperature reached 0°C and was stable at nighttime, in accordance with temperatures below 0°C. During the 

first six days, the air temperature was almost always above 0°C, and the snow surface temperature reached 0 °C 

during the daytime. During these days with melt activity, the bulk volumetric LWC showed a daily course, 

reaching a maximum in the afternoon. Furthermore, a time-lagged daily discharge maximum was observed. 

While reaching the maximum LWC, also the maximum percolation rate was reached within the snowpack. After 

the meltwater passed through the entire snowpack, it arrived at the bottom of the snowpack at the lysimeter with 

a delay of approximately 0.5 to 1.5 h after the daily LWC maximum was reached. During the end of the night 

and the early morning, the minima were reached due to refreezing processes. On 20 April, a dry snowfall was 

recorded, and the temperatures dropped to approximately 0°C. Subsequently, no discharge was registered, and 

the LWC decreased. On the last day, a clear daily melt-freeze cycle can be observed again.  
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Figure 2.9: (a) Snow depth, (b) air and snow surface temperature and (c) lysimeter meltwater outflow, as well as the bulk volumetric 
LWC derived from normalized GPS C/N0 measurements at the Weissfluhjoch test site during the time period 14–21 April 2013. 
Daily peaks of the lysimeter outflow and the LWC are marked with the dashed lines in corresponding colors. 

2.7 Discussion 

2.7.1 Advantages and limits 

This new experimental low-cost GPS measurement system is capable of detecting bulk volumetric LWC 

continuously and non-destructively over an entire melting period. This means changes in the LWC, such as daily 

melt-freeze cycles, can be traced with half-hourly resolution. This highly temporally resolved and non-

destructive information on the evolution of the LWC was so far only reached with radar systems [Okorn et al., 

2014; Schmid et al., 2014]. Other in situ measurements, like dielectric probes or manual measurements, are all 

labor-intense, time consuming and invasive, which means that snow profiles have to be dug to derive snow pit 

information. Even though the LWC derived by GPS sensors can only deliver bulk values without information on 

the snow stratigraphy, the GPS data provide valuable information for hydrological applications, e.g., to detect 

the melt-onset with high temporal resolution. These GPS measurement systems have the clear advantage that 

they can be installed at large numbers, due to their cost efficiency, with low-cost devices and freely available 

GPS raw data. Sensor networks with large numbers of sensor members could be installed, monitoring on a large 

scale, e.g., melting processes of an entire hydrological catchment, or on a small scale, e.g., an avalanche prone 

slope, which is heterogeneously covered by snow. Nevertheless, for the LWC calculations, additional snow 

depth measurements are necessary. This could probably be overcome in the future by determining the snow 
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depth by applying additional GPS measurements and algorithms [e.g., Gutmann et al., 2012; Larson et al., 

2009]. 

2.7.2 Uncertainty estimates for the calculation of the bulk volumetric liquid water content 

For the GPS-derived LWC based on intensity losses, three common approaches exist to determine the real part 

of the complex permittivity for wet snow in the frequency range of the GPS signals. However, Figure 2.7 does 

not give an answer to which of the applied equations after Sihvola and Tiuri [1986] (Equation (2.13)), Denoth 

[1989] (Equation (2.14)) and Roth et al. [1990] (Equation (2.16)) is the most realistic, though this is not subject 

of this study. Even if the curves of the bulk volumetric LWC lay close together, the choice of the mixing formula 

for wet snow may carry uncertainties in the derivation, especially if the wetness is high. For comparison with 

other data, the mean of the three quite common approaches was taken. 

Besides differences in the results by applying the different empirical mixing formulas, further uncertainties 

remain. In addition to the normalized GPS C/N0 data, snow depth and the dry snow density are input parameters 

that may also be erroneous, e.g., due to spatial variations in snow depth, which may have implications on 

different Fresnel zones around the GPS antenna. Though the laser sensor is installed quite close to the GPS 

measurement setup, snow depth at the location of the GPS receivers can certainly deviate by a few centimeters. 

An overestimation in snow depth leads to an underestimation of the LWC and vice versa; the higher this error is, 

the lower is the snow depth. If, for example, the LWC is 4%, an overestimation of 10 cm in snow depth leads to 

 ୵ = 3.8% (i.e., an underestimation by 5.6%) at a measured snow depth of 1.54 m at the laser sensor; if theߠ

measured snow depth is only 0.64 m, the same error in snow depth results in an underestimation of ߠ୵ by 13%. 

A possible effect of snow depth variability could, e.g., be reduced if the snow depth sensor would have been 

directly mounted above the GPS instruments, which was technically not feasible. However, errors in snow depth 

larger than about ±10 cm are rather unlikely at the test field, as further snow depth sensors and manual 

measurements showed. 

The dry snow density was 370 kg/m³ before the snow became wet and was held constant over the entire melting 

period, as suggested by Mitterer et al. [2011b]. Deviations in dry snow density, for example due to settling 

during the melting period, have little effect on the calculation of the LWC. For example, for an LWC of 4.0%, a 

deviation in snow density of 20% leads to an increase or decrease of the LWC to only 4.1 or 3.9%, 

respectively. To avoid uncertainties caused by the density assumption, it would only be possible to continuously 

derive the wet snow density, e.g., using independent measurements, which, however, could cause further 

measurement uncertainties.  

Moreover, additional uncertainties may occur due to multiple reflection paths at and between the air/snow and 

snow/ground interfaces or at the flat hut or other poles at the test site and, in particular, affect the GPS antenna 

above the snow cover (GPS1). However, these effects are minor, compared to the considered reflection, 

refraction and attenuation processes at and within the snowpack, and these are neglected within this simple low-

cost approach. 

2.7.3 Comparison with other measurements  

Few quantitative reference measurements were available. The bulk volumetric LWC derived by the non-

destructive normalized GPS C/N0 measurements could only be compared to the few destructive measurements 

conducted with either the Denoth meter [Denoth, 1989] or the Snow Fork [Sihvola and Tiuri, 1986] or to the 

wetness estimates for each stratigraphic layer according to Fierz et al. [2009]. First, the destructive methods 

cannot be carried out at exactly the same location, including the problem that the snow wetness can spatially be 

variable. Second, they are all destructive methods, and due to the fact that the snow pit wall is exposed to 

atmospheric influences, the snow wetness can change rapidly and, hence, influence the measurements. Third, 

these reference measurements are quite labor-intense and, due to their destructiveness, were only performed on a 
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few dates, so they are only a snapshot without showing the temporal evolution of the LWC. Forth, the manual 

measurements and observations within the snow pit are often subjective and can only be interpolated with 

limited accuracy for the entire snowpack. Fifth, the two dielectric methods show large discrepancies, which was 

already observed by Techel and Pielmeier [2011], Mitterer et al. [2011b] and Schmid et al. [2014]. 

Overall, we showed that the bulk volumetric LWC derived from GPS data was highly sensitive to the daily 

meteorological and snow-hydrological evolution and can plausibly be explained by them. Due to their frequent 

repetition and sensitivity, the measured C/N0 values from GPS signals can be used to resolve the evolution of the 

entire period and daily melt-freeze cycles and their impact on snow LWC. The daily evolution of the LWC 

derived from the GPS measurements was in good qualitative agreement with the daily evolution of the 

meteorological and snow-hydrological data, but we were at this point of our research unable to provide a proper 

quantitative validation, as appropriate in situ or remote sensing methods were not readily available. 

2.8 Conclusion and outlook 

We presented a new approach to continuously determine snow liquid water content (LWC) with simple low-cost 

GPS receivers based on the attenuation in wet snow of the GPS signal strength broadcasted via L1-band 

microwaves. With this new experimental measurement approach, it was possible to directly derive from 

measured normalized GPS C/N0 data the bulk volumetric LWC of a seasonal snowpack continuously and non-

destructively. Intensity losses due to reflection, refraction and attenuation processes within the atmosphere and 

the snowpack, as well as at the snow-atmosphere interface were considered.  

The LWC was calculated with three common and plausible mixing formulas based on the real permittivity of wet 

snow at the high elevation Weissfluhjoch test site above Davos, Switzerland, over an entire melt period in 

spring, 2013. The GPS-derived temporal evolution of LWC was compared with single destructive reference 

measurements and continuous meteorological and snow-hydrological data. The LWC showed qualitatively a 

high temporal coincidence with the evolution of air and snow surface temperatures, snow depth and meltwater 

outflow during the entire observation period. Furthermore, the melt onset and daily melt-freeze cycles were 

clearly detected.  

In summary, the comparison of the evolution of the meteorological and snow-hydrological data with the bulk 

volumetric LWC derived with GPS data showed that a wealth of information on the dynamics of snow LWC is 

contained in the measurements. The normalized GPS C/N0 values reacted very sensitively to an increase or 

decrease of the LWC within the snowpack, e.g., during melting and refreezing conditions, and provide an 

indication for meltwater outflow. However, it has to be clearly stated that with the available in situ reference 

measurements, it was not possible to quantitatively validate the measured snow LWC. Therefore, in a next step, 

the bulk volumetric LWC derived by normalized GPS C/N0 data should be compared with other continuous and 

non-destructive measurement methods for the same time period. A promising method for this task may be an 

upward-looking ground-penetrating radar system.  

The main advantages of this approach are that the measurement devices are low cost and low power consuming 

and that data analysis is not time consuming and labor intensive. The GPS signals are freely, globally and 

continuously available, and through the development of dedicated GPS receivers for smart internet appliances, 

like smartphones, the market offers a wide range of highly-sensitive, cheap, small, robust and low-power 

devices. This means that the measurement principle can be applied on a global basis (provided power and 

telemetry is available) to acquire information on LWC at a high temporal resolution without destroying the snow 

cover. It is possible to join large numbers of these receivers to sensor networks, which, once installed within a 

hydrological catchment, could be used, e.g., to deliver data for predicting snow melt and runoff in their spatial 

distribution and at different elevation levels. This could help to validate and temporally complement remote 
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sensing applications supporting continuous runoff predictions for flood or hydropower services. Moreover, due 

to the small size of the instruments and the non-destructive measurement setup, it is possible to install the GPS 

antennas also in steep slopes. This has the potential to, e.g., support avalanche forecasting through continuous 

information on snow wetness directly from avalanche-prone slopes, where, to date, this information is hardly 

available. Analyzing signal strength losses of normalized GPS C/N0 data caused by wet snow has therefore a 

high potential for continuously monitoring the LWC, e.g., in basin-wide sensor networks for hydrological 

applications or for avalanche predictions.  
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Abstract 

Monitoring seasonal snow cover properties is critical for properly managing natural hazards such as snow 

avalanches or snowmelt floods. However, measurements often cannot be conducted in difficult terrain or lack the 

high temporal resolution needed to account for rapid changes in the snowpack, e.g., liquid water content (LWC). 

To monitor essential snowpack properties, we installed an upward looking ground-penetrating radar (upGPR) 

and a low-cost GPS system below the snow cover and observed in parallel its evolution during two winter 

seasons. Applying external snow height (HS) information, both systems provided consistent LWC estimates in 

snow, based on independent approaches, namely measurements of travel time and attenuation of electromagnetic 

waves. By combining upGPR and GPS, we now obtain a self-contained approach instead of having to rely on 

external information such as HS. This allows for the first time determining LWC, HS, and snow water equivalent 

(SWE) nondestructively and continuously potentially also in avalanche-prone slopes.  

3.1 Introduction 

The snow cover is not only an important component of the climate system [Vaughan et al., 2013] and a vital 

reservoir of freshwater but also can contribute to natural disasters such as floods and snow avalanches. For 

hazard mitigation, continuous information on snow height (HS), snow water equivalent (SWE), and liquid water 

content (LWC) of snow are highly demanded. HS and SWE are important parameters describing the total 

amount of snow. The evolution of LWC, or the wetness of the snowpack, is an indicator for snowmelt and snow 

stability. Melting at the snow surface affects the albedo that is a very important parameter for modeling the 

climate system. The temporal evolution of these snow cover properties is essential for, e.g., snow avalanche 

[Baggi and Schweizer, 2009; Mitterer et al., 2011a] or flood forecasts [Bacchi and Ranzi, 2003; Jasper et al., 

2002]. In situ snowpack and meteorology observations are highly demanded input variables for snowpack 

modeling [Bartelt and Lehning, 2002; Brun et al., 1992; Brun et al., 1989; Lehning et al., 2002a; Lehning et al., 

2002b] as well as global climate simulations [Barnett et al., 2005; Lemke et al., 2007; Loth et al., 1993] and 
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hydrological models and water use applications [Koch et al., 2011b; Martinec and Rango, 1986; Mauser and 

Bach, 2009; Prasch et al., 2013; Strasser and Mauser, 2001; Warscher et al., 2013]. 

Several satellite and ground-based measurements exist to monitor snow properties but are often difficult to apply 

in high mountain regions and particularly when the snow becomes wet. This is especially the case for avalanche-

prone slopes, where up to date, it is impossible to continuously and nondestructively measure HS, SWE, and 

LWC. Current remote sensing techniques apply visible and infrared as well as active and passive microwaves, in 

particular to monitor changes over large areas in the polar regions (e.g., tundra and sea ice) [e.g., Bartsch et al., 

2007; Dozier and Painter, 2004; Frei et al., 2012; Langlois et al., 2007; Pulliainen and Hallikainen, 2001; J Shi 

et al., 1994; Stiles and Ulaby, 1980; M Tedesco et al., 2013]. However, their applicability is inappropriate for 

steep slopes in mountainous terrain due to layover and foreshortening effects. Moreover, their temporal or spatial 

resolution inhibits reliable monitoring of rapid changes in, e.g., LWC in the snow cover. Ground-based 

measurements are scarce and often not applicable in complex and remote terrain. Though laser or ultrasonic 

sensors measure HS continuously, they need to be installed on poles which can easily be destroyed in steep 

slopes due to snow movements or avalanches. Snow pillows or snow scales can provide SWE but are only 

applicable in level terrain. Furthermore, these measurement systems are susceptible to bridging effects and 

therefore, erroneous measurements may occur, particularly when the snow changes from dry to wet [Johnson 

and Marks, 2004]. Studies exploiting the Global Navigation Satellite System (GNSS) raw data, such as Global 

Positioning System (GPS) reflectometry, have demonstrated that HS or SWE can be continuously monitored but 

are presently also limited to flat terrain and are installed on poles [Jacobson, 2010; Larson et al., 2009; 

McCreight et al., 2014; Najibi and Jin, 2013; Ozeki and Heki, 2012]. Measurements of LWC with dielectric 

probes like the Denoth sensor [Denoth, 1994] or the Finnish Snow Fork [Sihvola and Tiuri, 1986] have in 

common that they are destructive, labor intense, error prone, and miss the subdaily temporal dynamics of melt 

and refreeze processes. Moreover, due to safety concerns, they are, as well as other manual observations (e.g., 

following Fierz et al. [2009]), not applicable in avalanche-prone terrain. 

Two promising methods for continuously and nondestructively measuring snow properties, which are also 

potentially applicable in complex terrain, are (1) radar systems like an upward looking ground-penetrating radar 

(upGPR) [Heilig et al., 2010; Mitterer et al., 2011b; Schmid et al., 2014] or an upward looking frequency 

modulated continuous-wave radar [Gubler and Hiller, 1984; Okorn et al., 2014] and (2) a system of small and 

easy to apply low-cost GPS receivers [Koch et al., 2014]. For this study, we made use of an upGPR and 

compared and combined the measurements with a GPS system. Both systems are buried underneath the 

snowpack, continuously record its properties, and work in a similar frequency range, namely the microwave L 

band. They rely on independent methods: upGPR on velocity and GPS on signal attenuation of the 

electromagnetic waves [Bradford et al., 2009]. Combined with external HS information, these two methods are 

among the first systems that can reliably determine bulk LWC of snow nondestructively [Koch et al., 2014; 

Schmid et al., 2014].  

The aim of this study is to compare the LWC derivations of both systems and to combine the two methods 

(upGPR and GPS) in order to continuously and nondestructively derive – with this novel sensor combination – 

the essential snow properties LWC, HS, and SWE, even without additional external information and also during 

wet snow conditions.  

3.2 Methods 

3.2.1 Weissfluhjoch study site and accompanying data 

The upGPR [Schmid et al., 2014] and GPS [Koch et al., 2014] measurements were performed at the flat study 

site Weissfluhjoch (Davos, Switzerland) at 2540masl. Meteorological and snow cover properties are recorded 



3. A novel sensor combination (upGPR-GPS) to continuously and nondestructively derive snow cover properties 

__________________________________________________________________________________________ 

__________________________________________________________________________________________ 

44 

with numerous sensors [Marty and Meister, 2012; Mitterer et al., 2011b]. We made use of a laser gauge and two 

ultrasonic sensors to measure HS and a snow scale and a snow pillow to measure SWE. Manual snow profiles, in 

accordance to Fierz et al. [2009], were performed on a biweekly basis within 2–8 m of the location where the 

upGPR was buried [Schmid et al., 2014]. In addition to the conventional snow profile, we recorded LWC using a 

capacity probe [Denoth, 1994] and during the winter season 2012–2013, also the Finnish Snow Fork [Sihvola 

and Tiuri, 1986]. SWE was determined by measuring snow density in the pit multiplied by HS. Furthermore, HS 

was directly measured above the upGPR by using an avalanche probe. The height of new snow (HN) 

accumulated during a standard observing period of 24 h was measured every morning at approximately 8 A.M. 

as described in Fierz et al. [2009]. The location of the upGPR, the GPS antennas, the profile line, the other 

measuring devices used in this study as well as the distances between the sensors are shown in Figure 3.1.  

 

Figure 3.1: Overview of the study site Weissfluhjoch and the location of the measurement instruments and the profile line. The 
upGPR and the two GPS antennas as well as the snow scale and the snow pillow are buried in the ground below the snow cover. 
Ultrasonic 1 and 2 and the laser gauge are mounted on poles above the snow cover. The distances between the measuring devices are 
shown at the top.  

3.2.2 upGPR 

The radar instrumentation as well as the radar data processing is described in [Schmid et al., 2014]. In this study, 

we made use of the 1.6 GHz data set. We determined the two-way travel time of the snow surface reflection 

using the semiautomated picking algorithm [Schmid et al., 2014, p. 512]. HS was calculated according to Schmid 

et al. [2014, Equation (1)] assuming a constant speed of the electromagnetic wave of 0.23 m ns-1
 as suggested by 

[Mitterer et al., 2011b], which is the speed in dry snow with a density (ୢߩୱ) of 357 kg m-3
 [Schmid et al., 2014]. 

HS can only be determined under dry snow conditions. If an external HS measurement is available, the real part 

of the bulk relative effective dielectric permittivity [Schmid et al., 2014, Equation (6)] and the LWC can be 

derived after Roth et al. [1990] with the parameters defined in Schmid et al. [2014, Equation (5)] assuming a 

constant value of ୢߩୱ (357 kg m-3). 
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3.2.3 GPS 

The nondestructive low-cost GPS measurement setup and the GPS data processing are described in Koch et al. 

[2014]. For redundancy, two GPS antennas were buried underneath the snowpack. The freely available GPS L1 

band information is transmitted at a frequency of 1.57542 GHz. The calculation of LWC is based on GPS signal 

strength losses in snow. The LWC model described in Koch et al. [2014] considers attenuation, reflection, and 

refraction processes at the snow surface and within the snowpack and requires an external HS measurement as 

well as the same assumption for dry snow density (ୢߩୱ = 357 kg m-3). Whereas Koch et al. [2014] only 

considered the mean elevation angle, we now calculated the reflection and refraction for each single elevation 

angle. Furthermore, to be independent of an above-ground installation, we only used GPS receivers beneath the 

snow cover for this study, as atmospheric influences are negligible for calculating LWC. LWC is per definition 

zero for dry snow conditions. However, the values derived from the GPS measurements showed a slight offset, 

possibly due to elusive further losses by multiple reflections. Because we knew from the upGPR measurements 

the date of the first wetting of the snowpack [Schmid et al., 2014, p. 514] and hence the duration of the dry snow 

period, we compensated the offset such that the GPS-derived values of LWC were zero on average during dry 

snow conditions. For the calculation of the attenuation and reflection processes [Koch et al., 2014, Equations 

(2.6)-(2.12)], we considered the complex permittivity of snow. To be consistent with the radar measurements, 

the real part was also calculated after Roth et al. [1990] and the imaginary part after Tiuri et al. [1984] [Koch et 

al., 2014, Equations (2.16) and (2.17)]. The values of LWC derived separately from the two GPS antennas 

underneath the snowpack agreed very well as indicated by a root-mean-square deviation (RMSD) of 0.2 

percentage points (pp). In the following, the mean of these two recordings will be used. 

3.2.4 Combination of both methods 

With both systems, operating in the microwave L band, the bulk volumetric LWC can be determined from 

beneath the snowpack—based on two independent physical approaches applying two-way reflectometry for the 

upGPR [Schmid et al., 2014] and signal attenuation for the GPS [Koch et al., 2014]. However, both systems 

required external information on HS and ୢߩୱ to derive LWC. Basically, the following equation with three 

unknowns had to be solved by both systems: 

LWC ൌ ݂ሺHS,   ୱሻ (3.1)ୢߩ

As mentioned above, a constant value for ୢߩୱ (= 357 kg m-3) can be assumed. By combining the two methods, 

upGPR and GPS, we obtained two equations with two unknowns; and thus, the equations can be solved and HS 

and LWC can be derived. Knowing ୢߩୱ, HS, and LWC, we can also determine SWE: 

SWE ൌ ሺୢߩୱ ൅ ܽ LWC	ߩ୵ሻ	HS (3.2)  

with ߩ୵ the density of water and ܽ = 3.08 as proposed in Schmid et al. [2014]. 

3.3. Results 

3.3.1 Comparison of both methods 

For the winter seasons 2012–2013 and 2013–2014, the bulk volumetric LWC was derived separately from the 

upGPR and GPS data relying on additional external HS data of a nearby laser sensor. Figure 3.2a and 3.2b show 

the temporal evolution of LWC during the two winter seasons covering dry and wet snow conditions. After 14 

April 2013 and 1 April 2014, the snow considerably changed from dry to wet. At 17 June 2013, both systems 

stopped due to a power failure at the study site; after 19 June 2013, only data from the GPS were available. 

During wet snow conditions and with a snow height of at least 1m, the two values of LWC (and their temporal 
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evolution) derived separately from upGPR and GPS data agreed very well as indicated by a RMSD of 0.4 to 0.7 

pp (Table 3.1). However, at the end of the snow-covered period, as HS decreased below 1 m and became more 

variable due to fast melting, the curves started to deviate. Comparing the LWC values obtained with the Denoth 

sensor and the Snow Fork with those from upGPR and GPS, resulted in a RMSD for the Denoth sensor between 

0.3 and 0.9 pp and for the Snow Fork between 1.5 and 2.2 pp. The agreement between the two dielectric devices 

was weak with 2.1 pp. 

Diurnal variations of LWC derived separately from upGPR and GPS are shown in Figure 3.3, exemplarily for 

late spring 2013. During periods of fair weather and hence melting, the daily fluctuations were prominent but did 

not exceed 2%. When the air temperature was below 0°C or during snowfall (e.g., 29 May to 3 June), the 

variations were clearly less pronounced. Even though the absolute values of LWC derived from upGPR and GPS 

differed slightly, the temporal agreement with regard to daily melt and refreeze processes was high. 

 

Figure 3.2: Comparison of snow properties derived from upGPR and GPS with conventional measurements for the time periods 15 
February to 12 July 2013 and 10 February to 20 June 2014. The colored backgrounds illustrate in white dry snow and in blue wet 
snow conditions. Light blue shows when snow height was at least 1m; dark blue when it was below 1m. Red backgrounds indicate 
when there were no upGPR data in 2013 and when the GPS receivers were no longer covered with snow in 2014. (a, b) Bulk 
volumetric liquid water content derived separately with upGPR and GPS using externally measured snow height data (laser). The 
markers show the average liquid water content of the snowpack measured in a snow pit with the Denoth sensor and the Snow Fork. 
(c, d) Snow height derived with the combination of upGPR and GPS, conventionally measured snow height at three different 
locations as well as manually measured snow height by probing directly above the upGPR. In addition, the snow height measured 
with the upGPR as described in Schmid et al. [2014] without GPS or external information is shown. (e, f) Snow water equivalent 
derived with the combination of upGPR and GPS, compared with the snow pillow, the snow scale, and manual measurements in a 
snow pit. 
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3.3.2 Combination of both methods 

Combining the upGPR and GPS data, HS was derived for the two winter seasons and compared to three 

conventional and continuous HS measurements (a laser gauge and two ultrasonic sensors) as well as several 

manual measurements (probing above the upGPR) (Figure 3.2c and 3.2d). In addition, HS derived with upGPR 

as described in Schmid et al. [2014] without GPS or external information is shown. In Table 3.1, the RMSD 

between all methods is listed for wet snow conditions when HS was at least 1m. Overall, the correlation between 

the devices was better in spring 2014 (mean RMSD = 7.9 cm) than in 2013 (mean RMSD = 10 cm). The mean 

RMSD between the upGPR-GPS combination and the conventional methods was 9.8 cm in spring 2013 (6.5% of 

the mean HS (HSതതതത) of 150 cm) and 6.3 cm in spring 2014 (4.3% of HSതതതത of 146 cm). For comparison, the mean 

RMSD between the conventional methods was 10.2 cm in spring 2013 and 8.9 cm in spring 2014. The RMSD 

between the upGPR-GPS combination and the laser sensor (which is the nearest sensor to the upGPR and the 

GPS) was 6.6 cm in 2013 (4.4% of HSതതതത) and 3.3 cm in 2014 (2.3% of HSതതതത). The RMSD between laser and 

ultrasonic 1 was in a similar range (3.3 cm in 2013 and 5.2 cm in 2014), although they were closer together. 

Deriving HS from upGPR data only leads to a distinct overestimation during wet snow conditions of on average 

27 cm in 2013 and 16 cm in 2014. 

 

Figure 3.3: Diurnal variations of the bulk volumetric liquid water content in comparison with temperature and snow height data, 
exemplarily shown for the time period 29 May to 16 June 2013. (a) Evolution of the liquid water content in snow with daily 
fluctuations (upGPR and GPS), low-pass filtered with a moving average over 24 h without daily fluctuations (upGPRmw24 and 
GPSmw24), and the difference of LWC and the low-pass filtered trend representing the daily fluctuations (upGPRdf and GPSdf). (b) Air 
temperature (TA) and snow surface temperature (TSS). (c) Snow height (HS) measured with the laser sensor and height of new snow 
(HN) as manually measured daily at 8 a.m. 

Figure 3.2e and 3.2f show the SWE derived with the upGPR-GPS combination in comparison with snow pillow 

and snow scale as well as the manual measurements from the snow pits. Especially in 2013 during the dry-to-wet 

transition, snow scale and snow pillow deviated considerably. In general, the agreement between the 

conventional measurements was poorer (mean RMSD of 127 mm w.e. in 2013 and 78 mm w.e. in 2014, Table 

3.1) than compared to the upGPR-GPS combination with a mean RMSD of 69 mm w.e. in 2013 (10.6% of mean 

SWE (SWEതതതതതതത) of 650 mm w.e.) and 52 mm w.e. in 2014 (9.8% of SWEതതതതതതത of 532 mm w.e.). Even though the snow 

pillow is situated furthest away from the upGPR and GPS, the agreement was best in both years. 
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Table 3.1: Root-mean-square deviations for bulk volumetric liquid water content (RMSDLWC), snow height (RMSDHS) and snow 
water equivalent (RMSDSWE) for the season 2012-2013 (above diagonal, regular) and 2013-2014 (below diagonal, italic). Important 
results are shown in bold.  

     RMSDLWC (pp)

   upGPR GPS Denoth meter Snow Fork 

  upGPR - 0.7 0.9 2.2 

  GPS 0.4 - 0.9 1.5 

  Denoth meter 0.4 0.3 - 2.1 

      RMSDHS (cm)

  upGPR upGPR & PS Laser Ultrasonic 1 Ultrasonic 2  Manual 

upGPR - 27.6 26.8 24.5 39.0 18.4 

upGPR & GPS 14.0 - 6.6 7.1 13.7 11.7 

Laser 14.8 3.3 - 3.3 13.8 5.8 

Ultrasonic 1 10.4 5.3 5.2 - 15.3 4.8 

Ultrasonic 2 26.1 13.5 12.6 17.3 - 18.1 

Manual 12.8 3.1 1.0 6.4 11.1 - 

      RMSDSWE (mm w.e.)

    upGPR & GPS Snow pillow Snow scale Manual 

  upGPR & GPS - 48 77 82 

  Snow pillow 31 - 112 121 

  Snow scale 83 55 - 149 

  Manual 43 65 114 - 

3.4. Discussion 

3.4.1 Comparison of both methods 

We separately derived the bulk volumetric LWC fromthe upGPR and the GPS data. Both systems recorded data 

with sensors installed below the snow cover but required externally measured HS and an estimate for ୢߩ to 

derive LWC. The few measurements with the dielectric devices (eight Denoth and five Snow Fork samples in 

2013 and three Denoth samples in 2014) revealed values of LWC in a similar range as derived with upGPR and 

GPS. The RMSD between all measurements and the Snow Fork was quite large with 1.5–2.2 pp; values 

measured by the Snow Fork were larger than measured by the other methods. This discrepancy was already 

reported by Mitterer et al. [2011b], Schmid et al. [2014], and Techel and Pielmeier [2011]. In general, the 

comparison of upGPR and GPS with the dielectric devices is questionable. The latter are destructive, gives only 

a snap shot in time and is conducted within a snow pit where conditions might change rapidly due to external 

influences [Koch et al., 2014; Mitterer et al., 2011b; Schmid et al., 2014]. 

For the first time, it was possible to compare and validate the two methods that both provide bulk LWC in a 

continuous and nondestructive manner. The comparison between upGPR and GPS showed a high level of 

agreement with regard to the temporal evolution and the range of LWC values over the entire spring periods 

2013 and 2014 (Table 3.1). Moreover, both systems showed diurnal variations due to melt and refreeze 

processes—again in good temporal agreement. Differences in LWC between the two methods might occur 

because HS at the location of the laser sensor differs from HS above the upGPR or the GPS antennas. 

Considerable differences in LWC between upGPR and GPS were observed only at the end of the snow-covered 

period (June 2014), when HS decreased below 1m accompanied with a clear increase in LWC. On the one hand, 
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as the calculation of LWC strongly depends on HS, possible differences in HS between the upGPR and GPS 

locations and the HS sensor location may be more pronounced shortly before the melt out of the instruments and 

will have a relatively large effect. In addition, very deep concave furrows of 10 cm were observed on the surface, 

such that not even the surface was well defined. On the other hand, the LWC directly upon upGPR and GPS can 

easily vary due to rapid melting processes within the ripe snowpack (end of June 2013 and beginning of June 

2014). Moreover, the formulas applied for the complex permittivity are only valid up to a LWC of approximately 

8% [Lundberg and Thunehed, 2000; Mitterer et al., 2011b]. However, these deviations were only observed at the 

very end of the snow covered season; overall, the agreement between both systems was very good. 

3.4.2 Combination of both methods 

Combining upGPR and GPS allowed deriving the snow properties LWC, HS, and SWE without using any other 

external information. As main advantages, this combination is installed below the snow cover and works 

nondestructively, operates independently from poles and stakes, avoids possible bridging effects within the snow 

cover, and can therefore potentially be applied in slopes to support avalanche and flood warnings in remote 

areas. Because the GPS receivers are cheap, the costs of this sensor combination are only negligibly higher than 

for the upGPR alone. To eliminate a possible error due to spatial variability within the snowpack, especially 

during melt conditions, both instruments can be installed at the same place at the ground surface, which means 

that they can observe the same snowpack properties simultaneously. 

As illustrated in Figure 3.2c and 3.2d, HS derived from the upGPR-GPS combination is in very good agreement 

with the HS laser measurement during dry and wet snow conditions. Laser, ultrasonic 1, and manual 

measurements were recorded closest to the upGPR and GPS locations. The RMSD between these measurements 

and the HS derived from the upGPR-GPS combination are all well below the mean RMSD of all conventional 

methods. These results suggest that the combined upGPR and GPS approach is suited to determine HS, even 

during wet snow conditions. Compared to upGPR without external information alone, the RMSD improved from 

on average 27 cm (2013) and 16 cm (2014) to 9.8 cm and 6.3 cm (Table 3.1).  

Regarding SWE (Figure 3.2e and 3.2f), the agreement between snow pillow and snow scale was surprisingly 

poor despite the fact, that they were situated only 5 m apart from each other. The deviations, especially obvious 

during the first wetting period in 2013 (1 April–6 May) might be due to bridging effects [Johnson and Marks, 

2004]. Overall, not being influenced by bridging effects and measuring nondestructively, the SWE and its 

evolution derived from only upGPR and the combination of upGPR and GPS seemed more reliable. Values of 

SWE derived from upGPR and GPS were mostly higher than those from snow pillow and snow scale but lower 

than from manual measurements. These findings can be explained by the observation of increasing HS at the 

study site from the snow pillow location to the manual snow profiles (Figure 3.1). The combined approach 

upGPR and GPS overestimated SWE during and shortly after intense snowfalls, as the bulk density decreased 

due to the low density of new snow (100 kg m-3) (e.g., end of March 2014). Exemplarily for a HS of 1.5 m and 

a LWC of 4%, an overestimation/underestimation of the bulk density of ±10% leads to an overestimation/ 

underestimation of SWE of ±7%. 

3.5 Conclusions 

We derived the bulk volumetric LWC with (1) an upGPR and (2) low-cost GPS receivers buried below the snow 

cover during two winter seasons. The independently estimated LWC and its evolution agreed very well—

suggesting that each of the two methods provides reliable values of LWC. The observation of daily melt-freeze 

cycles with high temporal resolution may improve runoff calculations within hydrological catchments, which 

are, e.g., important for hydropower and reservoir management. 
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We then combined the data from upGPR and GPS to continuously and nondestructively derive LWC, HS, and 

SWE without the need for additional external information (i.e., HS) from above snow instrumentation; this was 

not possible before. HS and SWE agreed well with conventional measurements. The novel combination allows 

to monitor essential snow cover properties from below the snow cover—which potentially can be applied in 

complex and remote terrain, e.g., in avalanche-prone slopes. We suggest to routinely upgrade all upGPR or other 

below snowpack techniques with low-cost GPS receivers, as the additional costs and manual effort for the 

installation are negligible compared with other costs like those of a radar system. The upGPR-GPS combination 

has the potential to improve avalanche forecasting and flood predictions. It could, moreover, provide an 

additional proxy for surface melt for comparison with surface energy balance models, which depend on several 

parameters like albedo. As the combination can estimate SWE with high temporal resolution, our approach may 

also be suited for large-scale applications, e.g., for catchment-wide estimation of runoff and hydroelectric power 

generation potential, as well as provide valuable ground truth data for remote sensing applications, e.g., in the 

field of glacier and sea ice studies. Therefore, we recommend widespread applications. 
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Abstract 

Snow water equivalent (SWE) is a key variable for various hydrological applications. It is defined as the depth of 

water that would result upon complete melting of a mass of snow. However, until now, continuous 

measurements of SWE are either scarce, expensive, labour-intense or lack temporal or spatial resolution 

especially in mountainous and remote regions. We derive SWE for dry-snow conditions using carrier phase 

measurements from Global Navigation Satellite System (GNSS) receivers. Two static GNSS receivers are used, 

whereby one antenna is placed below the snow and the other antenna on a pole above the snow. The carrier 

phase measurements of both receivers are combined in double differences (DD) to eliminate atmospheric errors 

and clock offsets. Each DD carrier phase measurement depends on the relative position between both antennas, 

on an integer ambiguity due to the periodic nature of the carrier phase signal, and on the SWE projected into the 

direction of incidence. The relative positions of the antennas are determined under snow-free conditions with 

millimetre accuracy using Real Time Kinematic (RTK) positioning. Subsequently, SWE and carrier phase 

integer ambiguities are jointly estimated with an integer least-squares estimator. We tested our method at an 

Alpine test site in Switzerland during the dry-snow season 2015-2016. The SWE derived solely by GNSS shows 

very high correlation with conventionally measured snow pillow (RMSE: 11 mm) and manual snow pit data. 

This method can be applied to dense low-cost GNSS receiver networks to improve the spatial and temporal 

information on snow cover properties. 

4.1 Introduction  

The Earth’s water resources are stored to a great extent in permanent or seasonal snow cover. The amount of 

water stored in the snowpack expressed as snow water equivalent (SWE) is a key variable in water resources 

management and an essential component within the Earth’s climate system [Vaughan et al., 2013]. The amount 

of snow and its melting determines quantitatively and temporally the river runoff of numerous mountain 

catchments. The snow cover is hence a naturally regulated storage which is relevant for many hydrological 

applications such as hydropower production, navigation, water supply for drinking water and irrigation [Barnett 

et al., 2005; Koch et al., 2011; Mauser and Prasch, 2015]. Moreover, the release of water stored in the snowpack 

might contribute to avalanche formation, slush flows and floods. The latter may in particular occur during 
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conditions of intense melting and rain in spring; their intensity and temporal occurrence may increase under 

changing climatic conditions [Bavay et al., 2009; Stewart, 2009]. Continuous monitoring of the snowpack, 

especially SWE is therefore highly requested for hydrological modelling approaches as well as avalanche and in 

particular flood forecasts. 

However, until now, measurements of SWE are very scarce, especially in difficult to reach and sparsely 

populated areas, and are often not conducted continuously. Conventionally, SWE is measured by weighing a 

given volume of snow cut out of the snowpack with tubes [Fierz et al., 2009]. This technique is so far the most 

reliable method, but it is destructive, as snow pits have to be dug, labour-intense, and gives only a snapshot in 

time. Snow pillows [Archer and Stewart, 1995] and snow scales, for example, measure continuously, but are 

quite expensive and difficult to install and are limited to flat terrain. Moreover, these methods are prone to 

measurement errors due to bridging effects, especially during the first wetting of snow in spring [Johnson and 

Marks, 2004]. Active and passive microwave remote sensing approaches, e.g. summarized by Tedesco [2014], 

provide spatial information, on snow height but also on SWE. However, they are often not available in high 

temporal resolution, may lack the required spatial resolution or are restricted due to foreshortening or layover 

effects, in particular in mountain regions [e.g., Strozzi et al., 1997]. In general, continuous and high quality 

measurements at numerous locations would be largely useful for the validation of Earth observation satellite data 

and to improve hydrological models.   

Since the last decade, several approaches to derive snow cover properties from GNSS signals have been 

developed. These are in particular GNSS reflectometry approaches, mainly based on fix installed, high-end 

geodetic receivers, aiming to derive information on snow height as the signals are reflected at the air – snow 

interface [e.g., Cardellach et al., 2011; Jacobson, 2010; Jin and Najibi, 2014; Larson et al., 2009; Rodriguez-

Alvarez et al., 2012b]. For this technique, mainly the line-of-sight and reflected GNSS signal strength 

information is applied and a quite flat area of up to 1.000 m² is needed [Larson, 2016], whereby the antenna is 

situated in the middle. Koch et al. [2014] developed an alternative approach using low-cost GPS receivers to 

quantitatively derive the liquid water content in the snowpack from the attenuation of the carrier-to-noise-power 

density ratio C/N0 caused by a prominent change of the dielectric properties of snow as liquid water occurs. In 

addition, this approach, in combination with an upward-looking ground penetrating radar system, provides snow 

height and SWE information under dry- and wet-snow [Schmid et al., 2015]. Evaluating the two-way travel time 

information of the electromagnetic pulse in the same L-band frequency domain had already shown good results 

for snow properties, as long as the snowpack was dry, but overestimated the snow height under wet-snow 

conditions [Schmid et al., 2014]. This deficiency was improved by the combination with the GPS system 

[Schmid et al., 2015]. However, radar sensors are expensive and thus not attractive for dense sensor networks. 

A novel and highly promising method to derive SWE with low-cost GNSS sensors, which is presented in this 

paper, was developed and applied within the ARTES-IAP Demo Project SnowSense (https://artes-apps. 

esa.int/projects/snowsense-dp), co-funded by the European Space Agency (ESA). In general, this project aims to 

provide highly demanded continuous and non-destructive information on snow cover properties, also in remote 

and difficult to access areas, e.g., for hydropower companies and flood or avalanche forecast centres. In order to 

make dense sensor networks possible, all sensors are low-cost encompassing two GNSS receivers and antennas, 

a micro-controller and data storage. One of these setups using low-cost GPS sensors (recording L1-band GPS 

signals) was used for this study at the high Alpine test site Weissfluhjoch near Davos, Switzerland at an 

elevation of 2.540 m a.s.l. Additionally, an optional self-sufficient energy component as well as a component for 

data transmission are available for the SnowSense GNSS sensor setup. However, regarding the latter, for this 

study, the infrastructure of the test site with its electric grid and its internet facility were used.  

We show, exemplarily for the dry winter period 2015-2016, that with this GNSS setup, SWE can continuously 

be determined solely with GNSS carrier phase signals. 
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4.2 Modelling of carrier phases with snow cover 

The snow causes a delay in both, code and carrier phase measurements, which is proportional to SWE under dry-

snow conditions. However, as the code measurements are too noisy for SWE derivation, we use only GNSS 

carrier phase measurements.  

In general, snow has the following effects on the carrier phase, which are both taken into account in our model: 

 delay of GNSS signals due to reduced signal propagation speed in snow  

 refraction at air-snow interface due to change in medium 

The signal delay can be derived from the phase measurements and is described using a precise model of the 

phase measurements and an integer least-squares estimator. It is the most sophisticated part as the phase 

measurements are also affected by several other parameters (e.g., the receiver's and satellite's position and 

integer ambiguities) and since all parameters need to be determined with a total error of at most a few 

centimetres. The consideration of the refraction is easy as the change of satellite elevation due to refraction can 

be computed analytically. Regarding this approach, we are interested only in the effect of snow, i.e. receiver and 

satellite clock offsets and biases, orbital errors and atmospheric errors are all nuisance parameters. Therefore, we 

eliminate all nuisance parameters by performing double difference measurements using two low-cost GNSS 

antennas connected to two low-cost GNSS receivers. Thereby, one antenna is placed on a pole above the snow 

and one antenna on the ground as shown in Figure 4.1. 

 

Figure 4.1: GNSS setup for derivation of SWE. 

We model the double difference (DD) carrier phase measurements for receiver pair ݎ ∈ ሼ1,2ሽ and satellite pair 

ሼ݇, ݈ሽ by 

λ߮ଵଶ
௞௟ ൌ λሺ߮ଵ

௞ െ ߮ଶ
௞ሻ െ λሺ߮ଵ

௟ െ ߮ଶ
௟ ሻ

ൌ Ԧ݁௞௟ ሬܾԦଵଶ ൅ ܿଵଶ
௞௟ ൅ ߣ ଵܰଶ

௞௟ ൅
ߣ
2
Δ ଵܰଶ

௞௟ ൅ ௞௟݉ߛ ∙ ݀ୱ ൅ Δ߮୑୔,ଵଶߣ
௞௟ ൅ ଵଶߝ

௞௟  
(4.1)  

with wavelength ߣ, phase measurement ߮௥௞ recorded in cycles, normalized line of sight vector Ԧ݁௞௟ between the 

antenna phase centres of the satellites and the receivers, baseline vector ሬܾԦଵଶ between pole and ground antennas, 

synchronization correction ܿଵଶ
௞ , integer ambiguity ௥ܰ

௞, half-cycle slip 
ଵ

ଶ
Δ ௥ܰ

௞, speed correction factor ߛ due to 

snow, mapping function ݉௞for projecting the vertical delay into slant delay, snow parameter ݀ୱ, phase multipath 

Δ߮୑୔,௥
௞ , and phase noise ߝ௥௞ and  
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ሺ∙ሻ	ൌ	ሺ∙ሻ௞ െ	ሺ∙ሻ௟           (4.2) 

being the difference between satellites ݇ and ݈. 

As the phase multipath and phase noise of Equation (4.1) can hardly be separated, we map the multipath to the 

noise, i.e. 

ଵ̃ଶߝ
௞௟ :ൌߣΔ߮୑୔,ଵଶ

௞௟ ൅ ଵଶߝ
௞௟ . (4.3)  

The snow-related term ݉ߛ௞௟ ∙ ݀ୱ is obtained from the DD phase measurements by subtraction of the estimates of 

the baseline term, the synchronization correction, the integer ambiguities and the cycle slips. The obtained term 

is typically called carrier phase residuals. If there is no snow, then the residuals are close to zero-mean white 

Gaussian noise with a standard deviation of less than 1 cm. If a snow pack exists, then the residuals are linearly 

proportional to both the mapping function ݉௞௟ and the snow parameter ݀ୱ. 

The snow parameter ݀ୱ expresses a virtual snow height which is proportional to the time delay of a vertical 

GNSS signal through the snowpack. The single difference mapping function is given by 

݉௞௟ ൌ
ଵ

ୱ୧୬൫ா౩
ೖ൯
െ

ଵ

ୱ୧୬൫ா౩
೗൯

, (4.4)  

with ܧୱ௞ and ܧୱ௟ being the elevation of the refracted signal of the ݇-th and ݈-th satellite, respectively. The 

elevation of this refracted signal can be obtained from Snell's law as 

ୱ௞ܧ ൌ 90° െ asin ቀ
௡౩
௡౗
sinሺ90° െ   ୟ௞ሻቁ, (4.5)ܧ

with  ܧୟ௞ being the satellite's elevation above the snow cover for exemplary the ݇-th satellite, and ݊ୟ and ݊ୱ 

being the refraction indices in the air and snow. For this approach, we set the elevation mask to 25° to eliminate 

satellites with excessive phase multipath and frequent losses of lock. 

The speed correction factor for electromagnetic waves for dry snow is given by 

ߛ ൌ
௖బ
௩౩
െ 1, (4.6)  

with the speed of light ܿ଴ and the speed of signal propagation ݒୱ ൎ 2.3 ൈ 10଼  ms-1, which was also applied, e.g., 

in Schmid et al. [2014 and 2015]. Moreover, ݒୱ can be determined by using the permittivity of snow ߝୱᇱ and 

applying Snell's law as 

௦ݒ ൌ
݊ୟ
݊ୱ
ܿ଴ (4.7)  

with 

݊ୱ ൌ ඥߝୱᇱ. (4.8)  

Moreover, it has to be considered that due to Snell's law, the wavelength in air ߣୟ of electromagnetic waves is 

reduced to the wavelength ߣୱ in snow as 

ୱߣ ൌ
݊ୟ
݊ୱ
  ୟ. (4.9)ߣ

4.3 Method for SWE derivation 

In this section, we describe in detail our method for the SWE derivation with GNSS. As the GNSS antennas are 

mounted at static points, it is sufficient to determine the 3D baseline vector only once and to re-use this known 

baseline for SWE derivation at every subsequent epoch. We determined the 3D baseline vector directly after the 
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installation of the receivers without any snow cover. Thus, the positioning can be separated from the estimation 

of the snow parameter. This setup without any snow cover refers to classic Real Time Kinematic (RTK) 

positioning, which was described by Talbot [1993]. An efficient implementation was developed e.g. by Takasu 

and Yasuda [2009]. The performance has been improved over the last two decades, e.g. by using multi-GNSS 

measurements and fixing ambiguities of multiple constellations (e.g. joint GPS/Glonass fixing [Henkel et al., 

2016a] and joint GPS/QZSS fixing [Kubo et al., 2004]), by code multipath estimation [Henkel et al., 2016b], by 

partial ambiguity fixing [Teunissen, 1995a], and/or by partial integer decorrelation [Henkel and Günther, 2009]. 

Figure 4.2 includes a flow chart for determining SWE. The steps in black solid boxes are identical to the ones of 

standard RTK positioning. The synchronization correction is needed for low-cost GNSS receivers and computed 

according to Henkel and Cárdenas [2014]. Cycle slips are obtained by prediction of measurements from history 

and by comparison of these predicted measurements with actual measurements. The steps in blue/dashed boxes 

are specific to snow and explained in this section. 

 

Figure 4.2: Flow chart for individual processing steps aiming to derive SWE. The steps in blue/dashed boxes are specific to snow. 

4.3.1 Fixing of initial ambiguities 

We correct the DD measurements for the a priori known baseline, the synchronization error and cycle slips, i.e. 

λ ෤߮ଵଶ
௞௟ ൌ 	λ߮ଵଶ

௞௟ െ Ԧ݁௞௟ ሬܾԦଵଶ െ ܿଵଶ
௞௟ െ

ߣ
2
Δ ଵܰଶ

௞௟ ൌ ߣ ଵܰଶ
௞௟ ൅ ௞௟݉ߛ ∙ ݀ୱ ൅ Δ߮୑୔,ଵଶߣ

௞௟ ൅ ଵ̃ଶߝ
௞௟  (4.10) 

which leaves only the ambiguities ଵܰଶ
௞௟ and the snow parameter ݀ୱ as unknowns. The combined phase noise and 

multipath ߝଵ̃ଶ
௞௟  is typically below 2 cm. 

The separation of ଵܰଶ
௞௟ and ݀ୱ can be performed only via the known mapping function, which changes over time 

with the satellite elevation. Therefore, we consider the corrected DD measurements from ݊ epochs jointly: 
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ቌ
ߣ ෤߮ଵଶ

௞௟ ሺݐଵሻ
⋮

ߣ ෤߮ଵଶ
௞௟ ሺݐ௡ሻ

ቍ ൌ ௞௟ܪ ൬ ଵܰଶ
௞௟

݀ୱ
൰൅ቌ

ଵ̃ଶߝ
௞௟

⋮
ଵ̃ଶߝ
௞௟
	ቍ, (4.11) 

with 

௞௟ܪ ൌ ቌ
ߣ
⋮
ߣ
	
ଵሻݐ௞௟ሺ݉ߛ		

⋮
௡ሻݐ௞௟ሺ݉ߛ		

	ቍ. (4.12) 

The least-squares estimates of the ambiguity and the snow parameter follow as 

ቆ
෡ܰଵଶ
௞௟

መ݀
ୱ
ቇ ൌ arg min

ଵܰଶ
௞௟, ݀ୱ

ቯቌ
ߣ ෤߮ଵଶ

௞௟ ሺݐଵሻ
⋮

ߣ ෤߮ଵଶ
௞௟ ሺݐ௡ሻ

ቍ െ ௞௟ܪ ൬ ଵܰଶ
௞௟

݀ୱ
൰ቯ

ଶ

ൌ ሺሺܪ௞௟ሻ୘ܪ௞௟ሻିଵሺܪ௞௟ሻ୘ ቌ
ߣ ෤߮ଵଶ

௞௟ ሺݐଵሻ
⋮

ߣ ෤߮ଵଶ
௞௟ ሺݐ௡ሻ

ቍ. (4.13) 

The sum of squared residuals of this least-squares adjustment is given by 

SSEଵଶ
௞௟ ൌ ቯ ுܲ

ୄ ቌ
ߣ ෤߮ଵଶ

௞௟ ሺݐଵሻ
⋮

ߣ ෤߮ଵଶ
௞௟ ሺݐ௡ሻ

	ቍቯ

ଶ

, (4.14) 

with ுܲ
ୄ being the projector on the space orthogonal of the space orthogonal of ܪ. If the sum of squared residuals 

is sufficiently small and the ambiguity estimate is close to an integer number, the ambiguity can be fixed by 

rounding to the nearest integer number, i.e.  

ෙܰଵଶ
௞௟ ൌ ൣ ෡ܰଵଶ

௞௟൧. (4.15) 

The snow parameter occurs as common variable for all double differences in Equation (4.10). Thus, the snow 

parameter couples the double differences of all satellites. The estimation of both, ଵܰଶ
௞௟ , ݇ ∈ ሼ1,… . ,  ,ሽ, and ݀ୱܭ

can be improved by a joint consideration of the measurements from all visible satellites and available epochs. 

Therefore, Equation (4.11) is expanded to  
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ଵ௟ ሺݐଵሻ
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, (4.16) 

with 

ܪ ൌ

ۉ

ۈ
ۈ
ۈ
ۇ
ߣ
⋮
ߣ

⋱
ߣ
⋮
ߣ

ተ

ተ

ଵሻݐଵ௟ሺ݉ߛ
⋮
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⋮
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⋮
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. (4.17) 

The least-squares solution of the DD integer ambiguities and snow parameter is given by 

൫ ෙܰଵଶ
ଵ௟, … , ෙܰଵଶ

௄௟, ሙ݀ୱ൯
୘
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ଶ

 (4.18) 
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where the phase measurements of all epochs and satellites are stacked as 

ߣ ෤߮ଵଶ ൌ ቀߣ ෤߮ଵଶ
ଵ௟ ሺݐଵሻ, … , ߣ ෤߮ଵଶ

ଵ௟ ሺݐ௡ሻ, … , ߣ ෤߮ଵଶ
௄௟ሺݐଵሻ, … , ߣ ෤߮ଵଶ

௄௟ሺݐ௡ሻቁ
୘
. (4.19) 

The solution of Equation (4.18) can be obtained with an integer least-squares estimator, e.g. the LAMBDA 

method of Teunissen [1995b], which includes an integer decorrelation ܼ and sequential tree seach ܵ to fix the 

ambiguities to integers. The ݅-th candidate of the search is given by  

ෙܰ
ଵଶ
ሺ௜ሻ ൌ 	ቌ

ෙܰଵଶ
ଵ௟

⋮
ෙܰଵଶ
௄௟
ቍ ൌ ܼିଵܵሺܼ ෡ܰଵଶሻ, (4.20) 

with 

෡ܰଵଶ ൌ 	ቌ
෡ܰଵଶ
ଵ௟

⋮
෡ܰଵଶ
௄௟
ቍ. (4.21) 

A fixing is typically considered as reliable if the sum of squared ambiguity residuals of the second-best candidate 

ෙܰ
ଵଶ
ሺଶሻ are significantly larger than the sum of squared ambiguity residuals of the first-best candidate ෙܰଵଶ

ሺଵሻ. This 

ratio test ݍ is given by  

ݍ ൌ
ቛே෡భమିேෙభమ

ሺమሻቛ
మ

ቛே෡భమିேෙభమ
ሺభሻቛ

మ ≫ 1, (4.22) 

and was analyszed in detail for future ambiguity resolution by Verhagen and Teunissen [2013]. Once the initial 

ambiguities are fixed, an instantaneous estimate of the snow parameter can be obtained at every epoch given by 

ሙ݀
ୱሺݐ௡ሻ ൌ

ଵ

௠౐ሺ௧೙ሻ∑షభሺ௧೙ሻ௠ሺ௧೙ሻ
∙ ݉୘ሺݐ௡ሻ∑ିଵሺݐ௡ሻቌ

ߣ ෤߮ଵଶ
ଵ௟ ሺݐ௡ሻ െ ෙܰଵଶ

ଵ௟

⋮
ߣ ෤߮ଵଶ

௄௟ሺݐ௡ሻ െ ෙܰଵଶ
௄௟
ቍ, (4.23) 

with 

݉ሺݐ௡ሻ ൌ ߛ ∙ ቌ
݉ଵ௟ሺݐ௡ሻ

⋮
݉௄௟ሺݐ௡ሻ

ቍ. (4.24) 

4.3.2 Initialization of ambiguities of newly tracked satellites 

The ambiguities of newly tracked satellites need to be initialized. We distinguish between initializations after 

short signal interruptions (e.g. due to loss of phase lock) and long signal interruptions (e.g. rise of satellite above 

horizon). For short signal interruptions, the ambiguities can be instantaneously fixed using the phase 

measurements at epoch ݊ െ 1 and the change of the mapping function, i.e. 

ෙܰଵଶ
௞௟ ൌ ቂ ෤߮ଵଶ

௞௟ ሺݐ௡ሻ െ
௠ೖ೗ሺ௧೙ሻ

௠ೖ೗ሺ௧೙షభሻ
	 ෤߮ଵଶ

௞௟ ሺݐ௡ିଵሻ െ ෙܰଵଶ
௞௟ሺݐ௡ିଵሻቃ. (4.25) 

For longer signal interruptions, the likelihood of undetected cycle slips and/or of a change in the snow parameter 

increases. Therefore, the ambiguities are fixed using the current snow parameter estimate, i.e. 

ෙܰଵଶ
௞௟ ൌ ቂ

ଵ

ఒ
൫ ෤߮ଵଶ

௞௟ െ ௞௟݉ߛ ∙ መ݀ୱ൯ቃ. (4.26) 
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4.3.3 Re-adjustment of ambiguities 

Tracking errors of the receivers and/or errors in the cycle slip correction might require a re-adjustment of the 

ambiguities. We consider two options for this re-adjustment. 

The first option can be applied if a satellite is having approximately the same elevation as the reference satellite. 

In this case, the mapping function ݉௞௟ vanishes and the ambiguity of the satellite can be simply re-adjusted as 

ෙܰଵଶ
௞௟ ൌ ൤

ఒఝ෥భమ
ೖ೗

ఒ
൨. (4.27) 

The second option is a least-squares re-estimation of ambiguities and snow parameter according to Equation 

(4.13). In general, the first option is clearly preferred since it is much more accurate. However, there are some 

satellite passes with an elevation maximum far below the elevation of the reference satellite. In this case, a re-

adjustment can only be performed with the second option. 

4.3.4 Fixed phase residuals 

After the ambiguities were fixed, ݎଵଶ
௞௟ remains as 

ଵଶݎ
௞௟ ൌ λ ෤߮ଵଶ

௞௟ െ ߣ ෙܰଵଶ
௞௟ ൌ ௞௟݉ߛ ∙ ሙ݀ୱ ൅ ଵ̃ଶߝ

௞௟ . (4.28) 

Regarding Equation (4.28), the fixed phase residuals ݎଵଶ
௞௟ encompass the snow term ݉ߛ௞௟ ∙ ሙ݀ୱ and ߝଵ̃ଶ

௞௟ . 

 

Figure 4.3: Carrier phase residuals for each GPS satellite recorded over one day (a) snow-free conditions (11 Oct 2015) with small 
fixed phase residuals around zero. Carrier phase residuals and arcs for each GPS satellite recorded over one day (b) for dry-snow 
conditions with a SWE of approx. 200 mm w.e. (13 Jan 2016), (c) for dry-snow conditions with a SWE of approx. 400 mm w.e. (5 
Feb 2016), and (d) for dry-snow conditions with a SWE of approx. 600 mm w.e. (31 Mar 2016). 
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Figure 4.3 illustrates the carrier phase residuals of all 32 GPS satellites recorded during one day for four 

exemplary days with different values of SWE with approximate SWE values of 0, 200, 400 and 600 mm w.e. 

The starting point and the ending point of each satellite is given by the time of satellite rising and setting and, 

thus, is almost independent of snow cover. Each colour corresponds to one of the 32 GPS satellites. 

There are three different types of dynamics in the residuals: First, short-term variations over a few seconds are 

caused by phase multipath. Second, mid-term variations over a few hours are caused by the change of the 

satellite elevation. Finally, long-term variations over several hours or days are caused by changes of the 

snowpack. Clearly, the second type is dominant once the SWE exceeds a certain minimum and leads to the 

typical arched shape.  

 

Figure 4.4: (a) Fixed phase residuals with arcs, exemplary shown for four reference satellites, recorded over approximately a time 
period of five hours on 17 January 2016. (b) Corresponding refracted elevation in dry snow of those four satellites. 

The minimum of the carrier phase residuals is reached when the satellites reach their maximum elevation angle. 

The residuals of satellites serving as reference satellite are equal to zero due to the DD approach, and residuals of 

satellites, which have temporally even a higher elevation than the reference satellite, show negative values. An 

example is given in Figure 4.4 for a time period of approximately five hours for the passing of four reference 

satellites and their corresponding refracted elevation angles over the un-refracted mask of 25 degrees 

corresponding to a refracted angle of approximately 44.2 degrees. Each change of the reference satellite is 

indicated with a black dashed line. We require a minimum of 60 degrees for the un-refracted signal 

(corresponding to an elevation of approximately 67.4 degrees for the refracted signal) of a satellite to be chosen 

as reference satellite. Once a satellite falls below this minimum elevation, the satellite with the highest elevation 

is chosen as new reference satellite. 
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4.3.5 Filtering of snow parameter estimate 

The accuracy of the least-squares snow parameter estimate can be obtained from Equation (4.23) as 

ௗෘೞሺ೟೙ሻߪ ൌ
ଵ

ඥ௠౐ሺ௧೙ሻ∑షభሺ௧೙ሻ௠ሺ௧೙ሻ
, (4.29) 

and simplifies for a single double difference measurement to 

ௗෘೞሺ೟೙ሻߪ ൌ
ଵ

ఊ௠ೖ೗ ∙  ఝ. (4.30)ߪ

This standard deviation of the snow parameter depends on the following factors: 

 accuracy of DD carrier phase measurements (ߪఝ ൑ 1 cm) 

 difference of mapping functions ݉௞௟ 

 speed correction factor ߛ ൌ
௖బ
௩ೞ
െ 1 ൎ 0.3  

Figure 4.5 shows the scaling of the noise standard deviation. The scaling is lowest if the difference between the 

elevation of a satellite and the elevation of the reference satellite reaches its maximum. In this case, the scaling 

factor varies between 5 and 10 depending on the elevation of the reference satellite. 

 

Figure 4.5: Snow parameter determination: scaling of phase noise by mapping function and speed correction factor. 

The scaling factor quickly increases with smaller elevation differences between the considered satellite and the 

reference satellite. This large scaling factor makes the single-epoch snow parameter estimate very noisy and 

requires some filtering. 

The fixed phase measurements can be described by some arcs parametrized by the snow parameter and mapping 

function. We can obtain such fitted arcs by least-squares estimation of the snow parameter based on given fixed 

phase measurements and mapping functions. As the phase measurements of some satellites might be corrupted 

by receiver tracking errors or azimuthal inhomogeneities in the snow cover, we perform the fitting for each 

satellite separately, i.e. 

ߣ ෤߮ෘଵଶ,୤୧୲୲ୣୢ
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ଶ
ൌ ߛ ෥݉௞௟ ∙

ଵ

ఊ൫௠෥ೖ೗൯
౐
௠෥ೖ೗

ሺ ෥݉௞௟ሻ୘ߣ ෤߮ෘଵଶ
௞௟ , (4.31) 

with the stacked fixed phase measurements of epochs ݐଵ and ݐ௡  

ߣ ෤߮ෘଵଶ
௞௟ ൌ ቌ

൫ߣ ෤߮ଵଶ
௞௟ ሺݐଵሻ െ ෙܰଵଶ
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⋮

൫ߣ ෤߮ଵଶ
௞௟ ሺݐ௡ሻ െ ෙܰଵଶ

௞௟൯
ቍ, (4.32) 
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and the stacked mapping functions 

෥݉௞௟ ൌ ቌ
݉௞௟ሺݐଵሻ

⋮
݉௞௟ሺݐ௡ሻ

ቍ. (4.33) 

We use only the satellites with a good agreement of the fixed phase measurements and fitted arcs, i.e. 

∑ ฮߣ ෤߮ෘଵଶ
௞௟ ൫ݐ௝൯ െ ߣ ෤߮ෘଵଶ,୤୧୲୲ୣୢ

௞௟ ൫ݐ௝൯ฮ
ଶ௡

௝ୀଵ ൑ ߯ଶ, (4.34) 

with ߯ଶ being an upper bound on the sum of squared residuals. Additionally to the fixed phase residuals, Figure 

4.3 shows the arcs for each satellite in black for days with snow cover as well as Figure 4.4 in detail for a few 

hours. The fitted arcs based on raw residuals and mapping functions assume a constant snow parameter for SWE 

derivation. 

The accuracy of the snow parameter can be further improved by a joint consideration of the fitted arcs from the 

satellites with good fitting. Therefore, we replace the “raw” measurements in Equation (4.23) by the fitted arcs 

and consider only the subset of satellites with sufficiently accurate arc fitting, i.e. 

ሙ݀
ୱ,୤୧୲୲ୣୢሺݐ௡ሻ ൌ

ଵ

௠౩
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ߣ ෤߮ෘଵଶ,୤୧୲୲ୣୢ
ଵ௟ ሺݐ௡ሻ

⋮
ߣ ෤߮ෘଵଶ,୤୧୲୲ୣୢ

௄௟ ሺݐ௡ሻ
ቍ, (4.35) 

where the lower index ݏ denotes the subset of satellites with sufficiently small sum of squared residuals. 

Finally, ሙ݀ୱ,୤୧୲୲ୣୢሺݐ௡ሻ is low pass filtered to reduce jumps in case of lost or newly tracked satellites. Thus, the final 

snow parameter estimate is given by 

ሙ݀
ୱ,୤୧୲୲ୣୢሺݐ௡ሻ ൌ

ଵ

ఛ
ሙ݀
ୱ,୤୧୲୲ୣୢሺݐ௡ሻ ൅ ቀ1 െ

ଵ

ఛ
ቁ ሙ݀ୱ,୤୧୲୲ୣୢሺݐ௡ିଵሻ, (4.36) 

with ߬ being the time constant of the low-pass filter. For this approach, ߬ was set to 4 hours. 

4.3.6 Calculation of SWE 

In a final step, we calculated SWE by multiplying the speed correction factor with the filtered snow parameter, 

expressing the virtual snow height, which is proportional to the time delay of the GNSS signals through the dry 

snowpack, by 

SWEሺݐ௡ሻ ൌ 	ߛ ∙ ሙ݀ୱ,୤୧୲୲ୣୢሺݐ௡ሻ 	 ∙ 1000 ሾmmw. e. ሿ. (4.37) 

4.4 Results and Discussion 

We applied this approach for our GNSS measurement setup at the test site Weissfluhjoch for the entire dry-snow 

season from 1 October 2015 to 1 April 2016. After the latter date, the first significant wetting of the snowpack 

occurred and the snowpack was not considered as dry any more. The test site is equipped with numerous 

meteorological and snow sensors [Schmid et al., 2015; Marty and Meister, 2012]. We compared our 

measurements to SWE data recorded with a snow pillow and to manual measurements from weekly to bi-weekly 

snow profiles. The temporal resolution of the GNSS output data was reduced to one SWE value per 30 minutes 

to be temporally comparable with the continuous SWE in situ reference measurements taken in parallel with the 

snow pillow. The snowpillow and the GNSS system ran continuously without any breakdown. 

Figure 4.6 shows in dark blue the evolution of the GNSS-derived SWE and in light blue the SWE measured by 

the snow pillow. The weekly to bi-weekly manual snow profile measurements are indicated with magenta stars. 
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The distance between the GNSS measurements and the snow pillow is 20 m [Schmid et al., 2015]. The snow 

profiles including the manual measurements were performed in the vicinity of the two continuous measurements.  

In general, all three SWE measurements provide similar results. The continuous recordings of the snow pillow 

and GNSS show a very similar temporal evolution and similar absolute values. Small deviations between these 

two measurement methods might be due to small scale spatial variability caused by slightly different 

precipitation amounts and/or wind conditions, even though they are located close to each other at the same test 

site. The manual SWE measurements fit well with the values obtained with the two continuous measurement 

methods. However, in general, the manually measured values are slightly lower than the continuous 

measurements, which might also be related to small scale spatially variable snow properties at the test site. On 

some days, the agreement is better than on others. The reason for the observed difference in agreement might be 

related to the fact that the profile location varied in the course of the winter, being sometimes closer to the 

location of the continuous measurements, sometimes further away. 

 

Figure 4.6: Snow water equivalent derived by GNSS carrier phase residuals compared to measurements recorded with a snow pillow 
and to manual snow pit measurements; all data from the test site Weissfluhjoch during the dry-snow season 2015-2016. 

Table 4.1 summarizes the statistics for the comparison of the three SWE measurement methods. The methods 

show high agreement indicated by values of R² and Nash-Sutcliff-Efficiency Index (NSE) [Nash and Sutcliffe, 

1970] close to 1. Regarding the root mean square error (RMSE), the two continuous measurements GNSS and 

snow pillow fit best; the RMSE is very low, approximately 11 mm. The RMSE between manual measurements 

and GNSS or snow pillow measurements is, in both cases about 23 to 24 mm, low as well. The high degree of 

agreement between the methods is also shown by the regression lines in Figure 4.7. GNSS-derived and snow 

pillow data are very close to the 1:1 line.  

Table 4.1: Statistics overview of the comparison of SWE derived by GNSS and measured by snow pillow and weekly to bi-weekly 
manually measured in snow pits at the test site Weissfluhjoch for the dry-snow winter period 2015-2016. 

 
R² NSI RMSE [mm] 

GNSS – Snow pillow 0.999 0.998 10.6 

GNSS - manual 0.995 0.986 23.4 

Snow pillow - manual 0.997 0.985 24.0 
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Figure 4.7: Linear regression between in each case two of the three SWE methods GNSS, snow pillow and manual. Black solid line 
indicates 1:1 line.  

With this GNSS method it is possible to continuously and non-destructively derive SWE for dry-snow 

conditions. Important advantages of our GNSS approach, especially compared to snow pillow measurements, are 

that only low-cost GNSS sensors are used and that they only need little space for installation, whereas snow 

pillows are expensive and consist of 3 metres diameter bladder containing approximately 800 liters of an 

antifreeze solution, which needs to be installed with concrete at a flat area. Moreover, the heat-flux between the 

snow pillow surface might not be adequate to the heat-flux of the soil and the bottom of the snowpack [Johnson 

and Schaefer, 2002], and as already mentioned, the snow pillow measurements are potentially prone to errors 

due to bridging effects in the snowpack, especially during the transition of dry- to wet-snow conditions [Johnson 

and Marks, 2005]. In contrast, the GNSS system is not affected by disturbing heat fluxes or bridging effects as 

the signals travel non-destructively through the snow. However, as we only considered dry snow during the 

observed time period, no bridging effects at the snow pillow occurred. Regarding manual snow pit measurements 

in snow profiles, they represent the most reliable conventional method up to now, but are destructive and 

performed (bi-)weekly at best. In summary, our results of GNSS-derived values of SWE suggest that with this 

novel method it is possible to determine SWE with high accuracy and at low costs.  

In general, the following points have to be considered for obtaining highly precise GNSS-derived values of 

SWE. First, it is important to very accurately determine the baseline between the two GNSS antennas with our 

RTK model under snow-free conditions. An error in distance between the antennas of only 2.5 cm would lead to 

an error in SWE of approx. 50 mm. Therefore, it is very important to accurately process the carrier phase data 

also under snow-free conditions and to filter the baseline estimate to reduce phase noise and multipath. 

Moreover, it is important to tightly tense the pole with the upper antenna, e.g. with ropes, so that it cannot be 

markedly affected by vibrations or positional changes, e.g. due to wind effects. However, if a slight shift of one 

antenna occurs, it is possible to re-estimate the baseline using RTK. Second, at least two GNSS satellites have to 

be received at both antennas. Both satellites should be above an elevation angle of 25 degrees, to exclude errors 

and multipath problems potentially occurring at low elevation angles. Furthermore, the highest satellite should 

be above an elevation angle of 60 degrees to serve as reference satellite. This is actually guaranteed on every 
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place on Earth at any time due to the global GNSS satellite constellations, except the receivers are situated in 

extremely deep and steep valleys.  

Finally, this study was performed during dry-snow conditions when stable GNSS carrier phase processing is 

possible and provides, as shown above, highly accurate SWE values. The phase processing during wet-snow 

conditions is currently under development. Phase processing becomes increasingly difficult during wet-snow 

conditions as signal attenuation increases markedly with increasing liquid water content [Koch et al., 2014]. 

GNSS signal strength information as already applied in Koch et al., [2014] and Schmid et al., [2015] would have 

to be additionally considered in an integrated GNSS carrier phase and signal strength algorithm. However, this 

issue is beyond the scope of the study presented here, but will be considered in our future work. 

4.5 Conclusions 

Snow water equivalent (SWE) was continuously derived for dry-snow conditions solely based on carrier phase 

measurements of Global Navigation Satellite System (GNSS) receivers. Two static GNSS receivers were used to 

determine double differenced (DD) GNSS carrier phase measurements. A precise snow-specific model was 

developed for these DD measurements, which takes the delay of GNSS signals in snow due to the reduced signal 

propagation speed and the refraction processes, as well as the relative position between both GNSS antennas 

using Real Time Kinematic (RTK) positioning, and the carrier phase integer ambiguities into account. The 

carrier phase integer ambiguities and SWE were jointly estimated using an integer least-squares estimator. After 

ambiguity fixing, we analyzed the fixed phase residuals that depend on snow, phase noise and multipath. The 

snow-dependent part is proportional to SWE and an elevation-dependent mapping function. We applied a low-

pass filter to reduce phase noise and multipath and, thereby, to improve the accuracy of SWE. 

The proposed method was tested with two low-cost GPS receivers installed at the high Alpine test site at 

Weissfluhjoch in Switzerland during the dry-snow winter season 2015-16. The SWE measurements of a snow 

pillow with a temporal resolution of 30 minutes served as continuous reference. Our GNSS-derived SWE data 

show a high degree of agreement in absolute values and temporal evolution with this reference. The weekly to 

bi-weekly performed manual SWE measurements in snow pits also agree well with our GNSS-derived values.  

Advantage of the proposed method are e.g. that it does not require manual measurements, is globally applicable 

and it does not disrupt the snow cover. The reliability of integer ambiguity fixing and the accuracy of SWE can 

be further improved by using multi-GNSS instead of GPS-only measurements, i.e. by additionally including 

Galileo, GLONASS and/or Beidou measurements. The use of low-cost sensors is sufficient, which enables dense 

sensor networks. Thereby, snow information with high spatial and temporal resolution can be derived for entire 

river basins allowing for more accurate runoff and flood prediction. The global availability of GNSS signals 

enables measurements also in remote locations where conventional measurements are scarce. In many regions, 

especially in high mountain regions and the large areas of the Tundra, Taiga and Arctic, it is very valuable to 

gain information on the snow accumulated during the entire dry-snow winter period. Currently, our setup is 

installed at various remote test sites in Newfoundland involving first demo users within the scope of the ARTES-

IAP Demo Project SnowSense. 
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5. SOIL MOISTURE RETRIEVAL BASED ON GPS 

SIGNAL STRENGTH ATTENUATION 
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Abstract 

Soil moisture (SM) is a highly relevant variable for agriculture, the emergence of floods and a key variable in the 

global energy and water cycle. In the last years, several satellite missions have been launched especially to 

derive large-scale products of the SM dynamics on the Earth. However, in situ validation data are often scarce. 

We developed a new method to retrieve SM of bare soil from measurements of low-cost GPS (Global 

Positioning System) sensors that receive the freely available GPS L1-band signals. The experimental setup of 

three GPS sensors was installed at a bare soil field at the German Weather Service (DWD) in Munich for almost 

1.5 years. Two GPS antennas were installed within the soil column at a depth of 10 cm and one above the soil. 

SM was successfully retrieved based on GPS signal strength losses through the integral soil volume. The results 

show high agreement with measured and modelled SM validation data. Due to its non-destructive, cheap and low 

power setup, GPS sensor networks could also be used for potential applications in remote areas, aiming to serve 

as satellite validation data and to support the fields of agriculture, water supply, flood forecasting and climate 

change. 

5.1 Introduction 

Soil moisture (SM) is a measure for the quantity of water contained in the soil. It is one of the most relevant 

variables for plant growth, e.g., in agriculture or for the emergence of floods and it is a key variable in the global 

energy and water cycle [Dirmeyer, 2000; Jung et al., 2010; Kerr et al., 2010]. As SM is largely coupled with the 

climate system and hydrological processes, knowledge of this variable is highly demanded for global and 

regional climate predictions to improve the simulation of the climate system [Koster et al., 2004; Seneviratne et 

al., 2010]. As such, it is of high importance as input for hydrological models as well as flood and drought 

monitoring [Komma et al., 2008; Loew et al., 2009a]. Especially in the top layer, SM conditions can change very 

quickly, e.g., due to intense precipitation and high solar radiation. Therefore, the soil of the upper few 

centimetres is of great importance and the decisive variable that controls the processes at the interface of air and 

soil processes like evaporation, surface runoff formation, as well as infiltration, percolation, capillary rise and 

water storage to give plants the opportunity for water uptake [Jung et al., 2010; Koster et al., 2004]. For plant 

growth, the root-zone SM is of high importance. It is linked to surface SM with a temporal delay. However, until 

now it is still difficult to measure surface SM accurately. As climate and hydrological model approaches make 

use of information on the soil, an improvement in SM monitoring can help to reduce uncertainties in the 
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simulation of climate change forecasting, extreme events, ecosystems as well as agriculture and food production 

[Fischer et al., 2007; A Loew et al., 2009b; Mauser et al., 2015; Seneviratne et al., 2010]. 

In the last decades, active and passive microwave remote sensing techniques have been developed and were 

applied successfully for SM monitoring on different scales [Dobson and Ulaby, 1986; Loew et al., 2006; Mauser 

et al., 1995; Njoku et al., 2003; Ulaby et al., 1996; Ulaby et al., 2014; Wagner et al., 2007]. In 2009, the Soil 

Moisture and Ocean Salinity (SMOS) satellite operated by ESA was launched [Barré et al., 2008; Kerr et al., 

2010], and in January 2015, the Soil Moisture Active Passive (SMAP) satellite operated by NASA was launched 

[Entekhabi et al., 2010]. Both missions operate in the microwave L-band, which is most suitable for SM 

observations [Kerr et al., 2001; Ulaby et al., 1996]. Moreover, first SM retrievals have been carried out by 

GNSS (Global Navigation Satellite System) reflectometry approaches [Chew et al., 2015; Katzberg et al., 2006; 

Larson et al., 2008; Privette III et al., 2016; Rodriguez-Alvarez et al., 2009; Rodriguez‐Alvarez et al., 2011; 

Zavorotny et al., 2010], which analyse GNSS signals reflected from the soil. Depending on the moisture content 

in the soil, the reflected pattern changes, which is in principle quite similar to active microwave remote sensing. 

All of these remote sensing methods measure the surface SM as an integral of the SM in the upper centimetres of 

the soil. 

Satellite SM products are validated in most cases with in situ measurements in a continuous mode or manually 

during field campaigns at different test sites by different research teams. As reference, in situ time domain 

reflectometry (TDR) or frequency domain (FD) probes and gravimetric measurements are used as well as model 

approaches [Bircher et al., 2012; Dall'Amico et al., 2012; De Rosnay et al., 2006; Delwart et al., 2008; Jackson 

et al., 2011; Panciera et al., 2008; Rötzer et al., 2014]. A comprehensive overview on in situ SM measurements 

from many different networks around the globe can be obtained in the International Soil Moisture Network 

(ISMN) [Dorigo et al., 2011]. However, the validation sensors, which measure continuously, are typically 

installed at a certain soil depth and mostly measure the SM only at this certain soil depth without obtaining 

information from the interface of air and soil. Of course, the general trend in SM can be covered like this; 

however, the high dynamics directly at the soil surface that can in principle be captured by satellites might be 

underrepresented in the measurements with these methods. 

To overcome these limitations and as validation data are still scarce, we investigated a new dielectric non-

destructive in situ measurement technique that is able to continuously track the bulk SM of the upper ten 

centimetres of the first soil layer. This approach is based on L1-band GPS signal strength changes due to changes 

in the permittivity of the soil, which are highly correlated with changes in the water content within the soil. As 

the GPS signals are broadcasted via L-band, the physical processes are comparable to passive L-band microwave 

remote sensing, e.g., with the SMOS mission [Wigneron et al., 2007]. To be independent of vegetation 

influences on the GPS signals, this approach was tested on a bare soil field. In general, this GPS measurement 

setup and its technical background are quite similar to the retrieval of liquid water content in snow based on GPS 

signal strength changes that we described and validated in Koch et al. [2014] and Schmid et al. [2015]. The 

methodology of the low-cost GPS hardware on hydrological measurements was therefore already successfully 

applied in these studies. 

The aim of this study is to describe how this new method can be used to derive continuous SM data from GPS 

signal strength losses in the L-band microwave domain and to validate them. In Section 5.2, we provide an 

overview of the low-cost GPS measurement setup at the German Weather Service (DWD) in Munich and 

describe the accompanying in situ SM data measured by different sensors in bare soil. As the applied FD sensors 

and gravimetric probes measured the SM only at a certain depth, we used the PROcesses of Mass and Energy 

Transfer (PROMET) model [Mauser and Bach, 2009] to simulate the integrated SM for the upper soil layer that 

is measured by the GPS sensors. In Section 5.3, the GPS algorithm to retrieve SM is described. The bulk SM of a 

soil column is based on the GPS signal strength attenuation and is related to the complex permittivity, which is 

described with the Dobson four-component dielectric mixing model [Dobson et al., 1985]. In Section 5.4, SM 
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data derived from the different methods are presented and compared for a time period of almost 1.5 years 

(1 January 2014–10 June 2015) encompassing wet and dry soil periods. The conformities and discrepancies of 

all methods and the advantages and limitations of the GPS approach are discussed in Section 5.5, where we also 

present results from a small analysis to assess the sensitivity of the new method according to selected soil 

parameters. Section 5.6 provides the conclusion. 

5.2 Measurement setup and data 

5.2.1 GPS measurements at the DWD test site Munich 

The test site for the GPS SM measurements is situated at the meteorological observation site of the German 

Weather Service (DWD) in the city of Munich (48°16’43” N, 11°32’37’’ E, 518 m a.s.l.) in Southern Germany. 

It is well equipped with all standard meteorological measurement instruments. The DWD test site is 

characterized by a temperate and humid climate of Central Europe with monthly average temperatures ranging 

from -2°C in winter to 17°C in summer. The mean annual precipitation in Munich reaches 930 mm with a 

summer precipitation peak [Mauser and Prasch, 2015]. Snow cover typically lasts for several weeks in winter, 

but with a decreasing trend in coverage duration and amount due to climate change [Koch et al., 2011b; Weber et 

al., 2010]. 

 

Figure 5.1: Soil measurement field at the DWD test site Munich. The locations of GPS1, GPS2 and GPS3 as well as the locations of 
the other soil moisture measurements (ECH2O, ThetaProbe and gravimetric core probes) are marked. 

The soil of the DWD soil measurement field was classified according to a laboratory soil texture analysis as 

sandy loam. The average sand and clay content at 10 cm depth are 49% and 7%, respectively. The bulk soil 

density ߩ௕ is 1.3 g·cm-3. As the test site is situated in the Munich gravel plain north of the Northern Calcareous 

Alps, limestone is the dominant rock type leading to chromic luvisols. The groundwater table in this region is 

lower than 2.5 m below the surface and due to the low clay content, capillary rise plays a negligible role. 

The DWD test site Munich is suitable for soil measurements by GPS. Within a radius of approximately 20 m, the 

test site is free from surrounding obstacles like houses or trees and allows relatively undisturbed GPS 

measurements for a city location. We installed three low-cost GPS sensors at the vegetation-free DWD soil 

measurement field (see Figure 5.1). One sensor (GPS1) was mounted directly on top of the soil and the other two 
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sensors (GPS2 and GPS3) were installed at a depth of 10 cm within the soil column and were displaced 

horizontally to avoid being obstructed by the top one. The reason why we installed two GPS sensors in the soil is 

for redundancy purposes because maintenance of buried sensors is difficult under running conditions and to 

verify their high correlation, as stated in Section 5.3.2. 

The measurement period was from 1 January 2014 to 10 June 2015. Apart from a system failure another two 

days close to the end of the measurement period (27–29 April 2015) due to power failure another two days close 

to the end of the measurement period (27–29 April 2015) due to power failure and a delayed reset, the GPS 

sensors operated without interruption in a continuous mode. However, days with snow cover and frozen soil 

were excluded from the analysis in this paper, as snow on top of the soil, especially when it turns wet [Koch et 

al., 2014], and also soil frost, have a clear influence on the received GPS signal strength and can therefore 

influence the exact GPS SM retrieval. To avoid creeping temperature effects within the cables, a temperature 

threshold of 2 °C was chosen for the air as well as the soil temperature at a depth of 5 cm. In winter 2013/14, 

only very few days were affected by snow or soil frost; however, in winter 2014/15, there were longer snow 

periods where we excluded the entire winter months of December 2014 as well as January and February 2015 

from this analysis. 
Regarding the technical equipment, we used Fastrax IT430 GPS receivers [Fastrax, 2011] with integrated SiRF 

IV chips and stored them together with a temperature-robust and fan-less outdoor PC in a weather-proof box (see 

Figure 5.1). The receivers were connected via 3-m coax cables with small (3.9 cm ൈ 3.9 cm) Hirschmann 

GPS7M magnetic mount antennas [Hirschmann, 2014]. The raw data were stored on the PC, which was driven 

by electric power provided by the test site. The GPS system was controlled and driven by receiver-specific GPS 

software. As we used low-cost GPS components, which are easily available and utilized for numerous technical 

applications like smartphones, cameras or car navigation, the hardware costs of one antenna and receiver pair are 

quite low, approximately 150 USD, excluding weather-proof boxes, data storage and power supply. Taking all 

components into account, the applied hardware might be in a similar price range as standard FD or TDR probes. 

5.2.2 Accompanying in situ data 

Besides the GPS sensors, we installed three ECH2O EC-5 and two ECH2O TM frequency domain (FD) probes 

(Decagon Devices, Pullman, WA, USA) to continuously measure SM at soil depths of 5 cm (three probes) and 

10 cm (two probes). In the following, both sensor types will be named ECH2O probes. The measurement devices 

are located approximately 0.5 m apart from the buried GPS antennas within the same soil measurement field (see 

Figure 5.1). All ECH2O probes were installed horizontally with the prongs pointing in a horizontal direction. As 

suggested in Bogena et al. [2007], we applied a sensor-specific correction procedure based on ECH2O 

temperature readings to adjust the SM values for each time step. Due to battery failures, two data interruptions of 

the ECH2O sensors of a few days occurred (18–21 October 2014 and 1–3 March 2015). During field campaigns, 

which were conducted in a weekly to bi-weekly rhythm, we regularly measured surface SM with ThetaProbe 

ML2x FD probes (Delta-T Devices, U.K.) as well as standard manual gravimetric core probes. Further, we used 

hourly meteorological DWD data encompassing precipitation, air temperature and soil temperature at a depth of 

5 cm as well as daily snow height data. 

5.2.3 Land-surface model PROMET 

The hydrologic land-surface PROcesses of Mass and Energy Transfer (PROMET) model is physically based and 

describes all relevant water and energy fluxes [Mauser and Schädlich, 1998; Mauser and Bach, 2009; Mauser et 

al., 2015]. We modelled at a point scale and in an hourly resolution all relevant hydrological parameters for the 

DWD test site Munich. PROMET was driven by meteorological input data measured at the station and provided 

by the DWD. The output data, especially the SM, have successfully been validated within different studies, 

locations and at different scales [e.g., Loew et al., 2006; Mauser and Bach, 2009; Prasch et al., 2013; Prasch et 
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al., 2011; Strasser and Mauser, 2001]. The soil water dynamics in PROMET are simulated with a four-layer soil 

model applying an explicit solution of the Richards equation for flow in unsaturated media [Philip, 1957]. The 

soil water retention model of Brooks and Corey [1964] is used to relate soil suction head to SM content; a 

detailed description is given in Mauser and Bach [2009] and Muerth and Mauser [2012]. Muerth [2008] 

evaluated the soil temperature modelling abilities of PROMET in the Upper Danube Catchment with 

measurements and remote-sensing data. According to Schlenz et al. [2012b], modelled and measured SM data 

were compared extensively on different scales and locations in several large scale field campaigns around 

Munich between 2007 and 2012 and a detailed analysis of the SM modelling abilities and uncertainties of 

PROMET is given. The soil water model has been validated with good results, e.g., by Loew et al. [2006] and 

Schlenz et al. [2012b]. The model results were inter alia used to validate passive microwave remote sensing 

recordings from the SMOS mission [Dall'Amico et al., 2012; Loew and Schlenz, 2011; Schlenz et al., 2012a].  

For this study, the soil layers were selected to be situated at 0–5, 5–10, 10–45 and 45–145 cm depths. PROMET 

reports on the vertical average of each selected soil layer. The soil model parameterization parameterisation was 

done according to the soil texture analysis in the laboratory. For all comparisons between modelled and 

measured SM, the first two PROMET soil layers were used, as these correspond to the 10 cm surface soil layer 

that is considered with the GPS measurements. From the model output, we used SM, percolation and evaporation 

information. 

5.2.4 Soil moisture sampling volumes and vertical ranges of different methods 

Currently, several in situ SM measurement methods exist at an operational level. However, they may differ in 

their results as they use different techniques, are based on different sampling volumes, may disturb the original 

soil column or are affected by air or fluid gaps around their prongs [Walker et al., 2004]. Moreover, the results 

might be site specific and the sensor sensitivity might vary with the SM content [Mittelbach et al., 2011]. 

In this study, we applied the four different measurement methods ECH2O, ThetaProbe, gravimetric measurement 

and GPS as well as the model PROMET to derive SM at the DWD test site in Munich. As they are all based on 

different techniques, vary in sample volume or cover different soil layers, their comparability is restricted. Figure 

5.2a gives an overview on the vertical location and measurement range in the soil column with a depth of 10 cm. 

 
Figure 5.2: (a) Vertical location and measurements range in the soil column of the different methods to derive soil moisture. (b) 
Validation of ThetaProbe soil moisture readings by comparison with gravimetric measurements at the DWD test site Munich at 
numerous field campaigns during the measurement period January 1, 2014 - June 10, 2015. 

The ECH2O EC-5 and ECH2O TM probes reach an estimated sampling volume of 10.5 cm3 and of 15 cm3, 

respectively [Limsuwat et al., 2009]. As these sensors have a small sampling volume, they can only give valid 

information about the SM conditions in their direct vicinity, in this case at approximately 5 and 10 cm soil depth 
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as illustrated in the schematic in Figure 5.2a. The readings of the five ECH2O sensors showed high conformity. 

The correlation of the sensors at a depth of 5 and 10 cm was high with a correlation coefficient of 0.96 and root 

mean square error (RMSE) of 0.0115 m−3·m−3. In the following, the mean of all ECH2O measurements was 

taken. 

The prongs of the FD sensor ThetaProbe are 5 cm in length and they cover an approximate sampling volume of 

50 cm3, whereas the gravimetric measurements cover a standardized soil volume of 100 cm3 with a sampling 

depth of 4 cm. Regarding the measurement depth and vertical location at the top of the soil column, ThetaProbe 

and the gravimetric measurements are the most similar. Therefore, we used the gravimetric measurements 

mainly to validate the ThetaProbe readings. As illustrated in Figure 5.2b, these two methods show high 

correlation with a correlation coefficient of 0.93 and a RMSE of 0.0176 m−3·m−3. Therefore, further calibration 

of the ThetaProbe was not necessary. 

The GPS technique encompasses a bulk soil column of 10 cm and is not directly comparable to the other three 

conventional measurement techniques. Due to the hemispherical GPS satellite coverage, the sensors capture on 

average a circular cone above the buried antennas. The volume of the circular cone above each antenna is 

variable as it depends on the SM content. Due to more pronounced refraction processes in wet soils, the path 

length for electromagnetic waves, especially those with oblique angles, is shortened [Ulaby et al., 2014]. This 

may lead to a significant sampling volume reduction compared to dry soils. The volume with a GPS antenna 

installation depth of 10 cm and a cut-off elevation angle of 10 degrees encompasses approximately 665 cm3 for 

absolutely dry soils and approximately 50 cm3 for very wet soils, exemplarily calculated for a quite high SM 

content of 40 m3 m−3 regarding the observed soil in this study. 

The main advantage of the model PROMET is that it can calculate the SM of entire soil layers, which makes it 

more comparable to the GPS bulk measurements over an entire soil layer than, e.g., single ECH2O SM 

measurements at specific soil depths. For this study, we used the SM modelled by PROMET from the first two 

layers, accounting for a soil depth of 10 cm, which is comparable to a vertical integral soil column considered by 

the GPS measurements. 

5.3 Soil moisture derivation with GPS 

5.3.1 GPS data processing 

The GPS data processing to retrieve SM is quite analogous to the GPS data processing to retrieve liquid water 

content in snow, which was described in Koch et al. [2014]. In this section, we emphasise the main steps; for 

more details, consider Koch et al. [2014]. With the Fastrax IT 430 receivers, we tracked the GPS raw data of the 

freely available L1 C/A code at a temporal resolution of 1 s, which is broadcasd at a frequency of 1.57542 GHz. 

The GPS system encompasses in total 32 GPS satellites grouped in six orbits with an equatorial inclination of 55 

degrees. Each satellite is seen by the DWD test site in Munich for several hours during a sidereal day (~23 h 56 

min). For each time step, the hemispherical satellite coverage ranges between eight to twelve satellites. As all 

three GPS sensors are situated very close together, the pattern of the satellite trajectories for each sidereal day 

can be assumed identical. 

The carrier-to-noise power density ratio (C/N0) is included in the GPS raw data and gives information on the 

received signal strength of each tracked satellite [Hofmann-Wellenhof et al., 2008]. In a first step, we extracted 

the C/N0 received from each GPS satellite at a certain elevation and azimuth angle from the raw data for each 

time step. Signals below a satellite elevation of 10 degrees were masked out due to too weak signal strength and 

possible influences from the surrounding. As the received signal strength can vary at different azimuth and 

elevation angles, we defined 16 azimuth and 16 elevation classes for each of the 32 satellites according to Koch 

et al. [2014]. The reasons for this procedure are that the gain of the low-cost antennas is angle-dependant, the 
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signal strength might vary slightly for each satellite; furthermore, multipath patterns might occur. In a second 

step, we defined a sidereal reference day during dry and stable soil and atmospheric conditions. For this study, 

the UTC time period 13:26 16 June 2014–13:22 17 June 2014 was chosen. This period was characterized by 

stable and low SM conditions due to no rainfall, percolation, capillary rise and negligible condensation over the 

last seven days. We assume that during this reference period, the recorded C/N0 values theoretically present the 

same signal strength [Koch et al., 2014]; however, the recorded absolute values differ for different elevation and 

azimuth angles as described above. The measurement at GPS1, which is located above the soil column, 

corresponds to ܫ௠ଵ for each class (see Figure 5.3). To take the different azimuth and elevation patterns of each 

antenna into account, we scaled the reference data of GPS1 to the antenna characteristics of GPS2 and GPS3, 

respectively. In a last step, the measurements recorded within the soil column at GPS2 and GPS3 for each class 

and each time step, which correspond to ܫ௠ଶ,ଷ, were set into relation to ܫ௠ଵ to calculate the signal attenuation as 

described in the next section. For the SM calculations, slight temporal fluctuations due to different atmospheric 

conditions have no decisive impact and can be neglected according to Schmid et al. [2015] as described for the 

retrieval of snow liquid water content. 

 

 

Figure 5.3: Overview of influences on the measured GPS intensity and radiation path length through the soil column, as well as the 
angle changes due to reflection, refraction and attenuation processes according to Koch et al. [2014]. Only the direct signal paths are 
shown for one satellite at a specific elevation (in red). 

5.3.2 GPS signal strength attenuation 

The calculation of the SM is based on signal strength changes according to dielectric soil properties in 

connection with electromagnetic waves. We considered reflection, refraction and attenuation processes quite 

analogous to Koch et al. [2014]. Instead of the input value snow depth, we used the installation depth of GPS2 

and GPS3 at a soil depth of 10 cm. For this approach, we calculated the reflection and refraction for each single 

elevation value as already reported in Schmid et al. [2015], whereas in Koch et al. [2014], only the mean 

elevation angle was considered. The Equations (2.1)–(2.12) in Koch et al. [2014] were analogously applied for 

this study. However, instead of considering the complex permittivity of snow, for this approach, we considered 

the complex permittivity of soil, which is described in Section 5.3.3. The measured intensity ܫ௠ଶ,ଷ within the soil 

column as the mean of GPS2 and GPS3 at a soil depth ݀௦ = 0.1 m is described by 
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௠ଶ,ଷܫ ൌ ௧ܫ െ ௔ܫ ൌ ௠ଵܫ െ ௥ܫ െ   ௔ (5.1)ܫ

where ܫ௠ଵ is the received intensity at GPS1 above the soil, ܫ௧ the transmitted intensity into the soil, ܫ௔ is the 

intensity loss due to signal attenuation within the soil, and ܫ௥ is the reflected intensity at the interface of air and 

soil. Figure 5.3 gives a schematic overview. The calculation of the reflection and refraction is analogous to Koch 

et al. [2014]. As the main outcome, the attenuation coefficient ߙ is calculated by applying Beer-Lambert’s law: 

ߙ ൌ െ
ln	ሺ
௧ܫ െ ௔ܫ
௧ܫ

ሻ

݀௦
ൌ 	െ	

ln	ሺ
௠ଶ,ଷܫ

௠ଵܫ െ ௥ܫ
ሻ

݀௦
 (5.2)  

The results for ߙ from GPS2 and GPS3 achieved high agreement with a correlation coefficient of 0.94 and an 

RMSE of 0.0165 m−3·m−3, which implies a high reliability of the two GPS sensors below the soil. However, 

slight differences might occur due to different soil textures above the single antennas. For the further data 

processing, the average of both antennas within the bulk soil column was taken. Multiple reflections above the 

soil, e.g., at small obstacles or surrounding vegetation, or within the observed soil column might occur. 

However, these effects are difficult or even impossible to address, and we assume that they are minor compared 

to the considered reflection, refraction and attenuation processes, especially considering such a flat site. 

5.3.3 Dobson four-component dielectric mixing model 

With dielectric models, the SM can be calculated for a specific soil based on its dielectric characteristics within a 

specific microwave domain. For this study we applied the Dobson four-component dielectric mixing model 

[Dobson et al., 1985], which is based on the real ߝᇱ and imaginary part ߝᇱᇱ of the complex permittivity (ߝ ൌ ᇱߝ ൅

 ᇱᇱሻ. It describes the behaviour of moist soils at frequencies between 1.4 and 18 GHz, which encompass theߝ	݅	

GPS L1-band frequency at ݂ = 1.57542 GHz. Besides the four-component mixing model, a semi-empirical soil 

moisture mixing model is described in Dobson et al. [1985]. However, its performance for lower frequencies 

around 1.4 GHz is worse than the four-component dielectric mixing model [Dobson et al., 1985]. It was 

therefore not applied in this study. 

Wet soils consist of solid soil particles, air pockets and liquid water. The latter can be further divided into bound 

water, in a so-called Stern layer, and into bound water in a so-called Gouy layer; the former contains the first few 

molecular layers surrounding the soil particles; the latter is able to move in the soil medium [Dobson et al., 

1985]. Thereafter, the Dobson soil moisture model considers relative permittivities of the four components dry 

solids ߝௗ௦, bound water ߝ௕௪, bulk water ߝ௙௪ and air ߝ௔. The wet soil permittivity ߝ௪௦ is defined as 

ε௪௦ ൌ
3εௗ௦ ൅ 2 ௙ܸ௪൫ε௙௪ െ εௗ௦൯ ൅ 2 ௕ܸ௪ሺε௕௪ െ εௗ௦ሻ ൅ 2 ௔ܸሺε௔ െ εௗ௦ሻ

3 ൅ ௙ܸ௪ ൬
εௗ௦
ε௙௪

െ 1൰ ൅ ௕ܸ௪ ቀ
εௗ௦
ε௕௪

െ 1ቁ ൅ ௔ܸ ቀ
εௗ௦
ε௔

െ 1ቁ
 (5.3)  

with ௙ܸ௪, ௕ܸ௪ and ௔ܸ as the volume fractions of free water, bound water and air, which are dependent on the 

water content in the pores [Dobson et al., 1985]. The entire bulk soil moisture ݉௩ is given by 

݉௩ ൌ ௙ܸ௪ ൅ ௕ܸ௪ (5.4)  

where ௕ܸ௪ makes up only a small part. It was calculated after Dobson et al. [1985] and was set to 0.191 for the 

soil observed in this study. The real part of the complex permittivity of dry soil εௗ௦
ᇱ  is 

εௗ௦
ᇱ ൌ ሺ1.01 ൅ ௦ሻଶߩ0.44 െ 0.062 (5.5)  

with ߩ௦=2.65 g·cm−3 as the mean specific density of the soil paste [Ulaby et al., 2014] whereas the measured 

bulk soil density ߩ௕=1.3 g·cm−3. The imaginary part of dry soil is negligible. Values for ε௔, εௗ௦ and ε௕௪ are given 

in Table 5.1. 
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Table 5.1: Values for the real and imaginary part of the complex permittivity of air ε௔, dry soil εௗ௦ according to the soil properties of 
the observed soil and bound water ε௕௪ [Dobson et al., 1985]. 

Permittivity of 
medium 

real part ߝᇱ imaginary part ߝᇱᇱ 

ε௔ 1.00 0.00 

εௗ௦ 2.44 ~ 0.00 

ε௕௪ 35.00 15.00 

 

At a given frequency ݂, the complex permittivity of free bulk water ε௙௪ is assumed as a modified Debey-type 

relaxation [Cole and Cole, 1941; Lane and Saxton, 1952] and is due to the relaxation time of pure water ߬௪ and 

the static dielectric constant of water ε௪଴ dependent on the soil temperature. As the permittivity of wet soil is 

slightly temperature dependent, we took soil temperature data measured by the DWD into account. The real part 

is defined as 

ε௙௪
ᇱ ൌ ε௪ஶ ൅

ε௪଴ െ	ε௪ஶ
1 ൅ ሺ2݂߬ߨ௪ሻଶ

 (5.6)  

with ε௪ஶ = 4.9 as the high frequency limit of the permittivity of water. For more information on the calculation 

of ε௪଴, ε௪ஶ and ߬௪, consider Ulaby et al. [2014] and Lane and Saxton [1952]. The imaginary part of the 

complex permittivity of free bound water is defined as 

ε௙௪
ᇱᇱ ൌ

௪ሺε௪଴݂߬ߨ2 െ	ε௪ஶሻ
1 ൅ ሺ2݂߬ߨ௪ሻଶ

൅	
௠ೡߪ0.1

ε଴݂ߨ2
 (5.7)  

where ε଴ ൌ 8.854	 ൈ 10ିଵଶ is the permittivity of free space. It takes the effective conductivity of water ߪ௠ೡ 

[Dobson et al., 1985; Lane and Saxton, 1952] into account, which is calculated by 

௠ೡߪ ൌ ሺீߪ ൅ ୱሻቌߪ
1 െ

௕ߩ
௦ߩ
െ ௦݀ఋܣ௕ߩ ൈ 10ିସ

݉௩
ቍ (5.8)  

where 2.723 = ீߪ mS·cm−1 is the average conductivity in the Gouy layer, ߪୱ = 0.792 mS·cm−1 the conductivity 

of the soil paste, ܣ௦ = 49 m2 g−1 the specific particle surface, which correlates with the clay content, and ݀ఋ = 

3 Å. These soil-specific values were derived by or were taken from literature [Dobson et al., 1985] describing a 

very similar soil type with a low clay content of 8%. 

Table 5.2 shows changes in the real and imaginary part of the complex permittivity of the free bulk water ε୤୵ 

due to different soil temperatures. 

Table 5.2: Values for the real and imaginary part of the complex permittivity of free bulk water ε௙௪ at different soil temperatures. 

Soil temperature real part εᇱ imaginary part ߝᇱᇱ 

0.1°C 85.57 23.81 

10.0°C 82.76 19.42 

20.0°C 79.47 16.55 

30.0°C 76.12 14.75 

40.0°C 72.95 13.61 
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5.3.4 Calculation of soil moisture and sensitivity 

The attenuation coefficient ߙ was described by Equation (5.2) in Section 5.3.2, based on GPS measurements. 

Moreover, the attenuation coefficient ߙ of a medium like a wet soil can also be calculated in theory by the 

complex permittivity of wet soil with an emphasis on the imaginary part as: 

ߙ ൌ ඨ
଴ߤ

௪௦ᇱߝ ଴ߝ
௪௦ᇱᇱߝ   (5.9) ݂ߨ଴2ߝ

where ߝ௪௦ᇱ  and ߝ௪௦ᇱᇱ  are calculated after Equation (5.3) considering the real and imaginary part. With a root-

finding algorithm, we were able to set Equations (5.2) and (5.9) equal and could determine, as the only unknown 

of this approach, the soil moisture ݉௩ under consideration of all soil specific reflection, refraction and 

attenuation processes for each time step. Potential temperature effects on the GPS sensors causing potential 

signal strength changes were not taken into account for this approach. 

In general, the retrieval of SM with GPS depends on several physical soil parameters, which should be correctly 

investigated and determined to achieve precise results. However, to get an impression of how sensitive they are, 

we carried out a sensitivity analysis regarding the parameters soil density, soil texture and soil temperature. This 

aspect is described and discussed in Section 5.5.3. 

5.4 Results 

5.4.1 Time series of soil moisture and hydrological data 

During a period of almost 1.5 years (1 January 2014–10 June 2015), the SM of the upper ten centimetres at the 

soil measurement field at the DWD test site in Munich was retrieved from GPS attenuation measurements and 

other methods (Figure 5.2a). Figure 5.4a gives an overview on the soil temperature at a soil depth of 5 cm and 

precipitation evolution in daily resolution, which was directly measured at the DWD test site in Munich for the 

entire period. Figure 5.4b illustrates the evolution of the SM derived by GPS, measured by the Decagon FD 

ECH2O probes and modelled by PROMET in daily resolution. Moreover, the weekly to bi-weekly manual 

measurements with the Delta-T FD ThetaProbe and the gravimetric probe are shown. As described in Section 

5.2.1, the entire winter months of December 2014 and January and February 2015 were excluded due to potential 

snow cover or soil frost. Moreover, percolation and soil evaporation modelled with PROMET are presented. 

Water infiltration into the soil and percolation are largely coupled with precipitation events. However, the daily 

percolation sums are lower than the daily precipitation sums as evaporation and direct surface runoff occur as 

well. On the one side, the evaporation rate depends on the available free water and on the other side, also on 

suitable temperatures. Regarding the investigated soil during the entire measuring period, capillary rise was 

negligible and the soil evaporation was low and was only pronounced when the temperatures were above 

approximately 10°C, indicating high solar radiation and when free soil water was available in the first soil layer, 

e.g., after a rainfall event.  

In Figure 5.4a and 5.4b, regarding all methods, a direct relationship between SM increase and occurrence of 

percolation is obvious after precipitation events, when water infiltrated into the soil. This is especially the case 

after 1 July 2014. However, comparing the three continuous methods, the increase in SM of the ECH2O probes is 

slightly lower, whereas for GPS more pronounced, PROMET is again in between. During periods with no or low 

percolation, SM declines slowly. Again, the GPS SM shows the clearest decline, followed by PROMET and then 

by the ECH2O probes. The first six months of the measurement period (January–June 2014) were rather dry with 

only few light rainfall events. Consequently, as the temperatures started to rise in March 2014, SM declined 

especially in the upper four to five centimetres as the manual ThetaProbe and gravimetric measurements show. 
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Considerable dry periods occurred besides the first six months as well as in November 2014 and March to May 

2015. 

 

Figure 5.4: (a) Soil temperature at a soil depth of 5 cm and precipitation measured at the DWD test site Munich as well as (b) soil 
moisture measured by GPS, ECH2O, ThetaProbe and gravitationally as well as modelled with PROMET at the DWD test site 
Munich during the measurement period January 1, 2014 - June 10, 2015. The winter time with potential snow cover and soil frost is 
excluded. 
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Figure 5.5: Comparison of soil moisture values (a) measured by ThetaProbe vs. measured by GPS, (b) measured by ECH2O vs. 
measured by GPS, (c) modelled with PROMET vs. measured by GPS, (d) measured by ThetaProbe vs. measured by ECH2O, (e) 
measured by ThetaProbe vs. modelled with PROMET and (f) measured by ECH2O, vs. modelled with PROMET at the DWD test 
site Munich during the measurement period January 1, 2014 - June 10, 2015. 
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5.4.2 Comparison of the different soil moisture methods 

During the entire period, the SM curves derived from the continuous measurements with GPS and ECH2O 

probes as well as the modelled PROMET data show high conformity. The GPS SM exhibits the highest dynamic, 

whereas the ECH2O SM reveals the lowest. PROMET is in between but mostly closer to the GPS SM. A 

statistical overview of the minimum, maximum, mean and standard deviation is given in Table 5.3 for all 

methods. The mean of the three continuous methods ECH2O, GPS and PROMET is similar; however, the 

standard deviation is highest for the GPS values indicating a high dynamic range. The weekly to bi-weekly 

manual measurements with the ThetaProbe and gravimetric samples are mostly below the continuous methods, 

especially during dry periods. This is reflected in the lower mean and minimum values compared to the other 

methods. However, the two manual measurements exhibit a similar dynamic range to the GPS SM as shown in 

Table 5.3. 

Table 5.3: Statistics overview of the soil moisture retrieval from GPS, ECH2O, ThetaProbe and gravimetric samples as well as the 
modelled soil moisture with PROMET at the DWD test site Munich during the measurement period January 1, 2014 - June 10, 2015. 

 mean std min max 

GPS 0.2565 0.0469 0.1667 0.3977 

ECH2O 0.2633 0.0216 0.2044 0.3268 

PROMET 0.2522 0.0314 0.1892 0.3675 

ThetaProbe 0.2382 0.0465 0.1535 0.3553 
Gravimetric 0.2380 0.0482 0.1379 0.3507 

 

Table 5.4: Statistics overview of the correlation coefficient and the RMSE comparing ThetaProbe, ECH2O, PROMET and GPS. The 
upper triangular part (regular) represents the correlation coefficient and the lower triangular part (italic) represents the RMSE. 

 ThetaProbe ECH2O PROMET GPS 

ThetaProbe - 0.72 0.84 0.84 

ECH2O 0.0434 - 0.76 0.72 

PROMET 0.0277 0.0235 - 0.88 

GPS 0.0355 0.0355 0.0252 - 

 

As Figure 5.2 indicates, the manual surface SM measurements encompassing the gravimetric method and 

ThetaProbe show high correlation. As all comparisons with the gravimetric method and all other methods would 

show similar results compared to the ThetaProbe, they are therefore not explicitly shown as scatter plots in the 

following. The six scatter plots in Figure 5.5a–f as well as the correlation coefficient and the RMSE in Table 5.4 

show all variants of comparisons between GPS, ECH2O, PROMET and ThetaProbe SM. 

Comparing GPS, ECH2O and PROMET, the RMSE is clearly below 0.04 m−3·m−3, which is considered as a very 

high agreement and is often the benchmark for SM retrievals from microwave remote sensing products, e.g., for 

the SMOS mission, and in situ measurements [Kerr et al., 2001]. The same is true for comparisons of GPS and 

ThetaProbe SM. Only ThetaProbe SM values have a slightly higher RMSE than 0.04 m−3·m−3 when compared to 

ECH2O measurements Figure 5.5a shows a high conformity of the GPS measurements with ThetaProbe values; 

however, the positive offset of the diagonal indicates that the SM measurements undertaken with the ThetaProbe 

are mostly lower than those derived from the GPS. The difference between GPS and ECH2O SM in Figure 5.5b 

is due to the lower dynamic range of the ECH2O measurements. This can also be seen in Figure 5.5d by 

comparing ThetaProbe with ECH2O. In Figure 5.5e, ThetaProbe has also a higher dynamic range compared to 

PROMET, which is, however, less so than for the comparison of ThetaProbe and ECH2O in Figure 5.5d. Figure 
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5.5f gives an overview of the comparison of ECH2O and PROMET. Especially for higher SM values, explicitly 

above 0.2 m−3·m−3, PROMET is more dynamic than ECH2O. GPS and PROMET reach the highest correlation 

with a correlation coefficient of 0.88 as shown in Figure 5.5c. The slight deviation is due to the higher dynamic 

range of the GPS SM measurements. 

In Figure 5.6a–c, the scatterplots between GPS and the differences between GPS and ThetaProbe, GPS and 

ECH2O, and GPS and PROMET are shown, which indicate a multiplicative bias between GPS and the other 

methods. Regarding the lower or higher SM values, the differences between all methods are most pronounced, 

especially comparing GPS and ECH2O and lowest between GPS and ThetaProbe. Reaching higher SM values, 

PROMET shows a similar high dynamic range compared to GPS, which is indicated by the spreading of the 

points in the upper part of the scatter plot. Figure 5.6d–f contains scatterplots of the comparison of SM derived 

by GPS compared with the regression residuals between GPS and the other methods. As the correlation 

coefficient is lowest between GPS and the regression residuals of GPS and PROMET, indicating a random 

distribution, those two methods have the lowest systematic effect. Summarized, they show the highest 

coincidence of SM values. 

 

Figure 5.6: Comparison of soil moisture derived by GPS with the difference between (a) GPS and ThetaProbe, (b) GPS and ECH2O, 
and (c) between GPS and PROMET as well as with the regression residuals between (d) GPS and ThetaProbe, (e) GPS and ECH2O, 
and (f) between GPS and PROMET. The linear regression equations to calculate the residuals for each method compared to GPS 
were taken from the information given in Figure 5.5(a)-(c), respectively. 

5.5 Discussion 

5.5.1 Conformities and discrepancies between the different soil moisture methods 

We derived SM data at the DWD test site in Munich using two continuous measurement methods; firstly, by 

GPS sensors, which were investigated for the first time and secondly by FD ECH2O probes. Further, we 

manually measured surface SM with FD ThetaProbes and gravimetric probes in a weekly to bi-weekly basis. 

Moreover, we continuously modelled SM by PROMET. 
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The agreement of all results from the different methods is high, and all data follow the overall course of dry and 

wet events during the observation period of almost 1.5 years. The increase in SM after the occurrence of 

precipitation events with infiltration into the soil as well as long dry periods are covered by all methods. 

However, as described in Section 5.2.4, the comparability of these methods is limited due to different sampling 

volumes and different vertical validity ranges within the soil column. According to the results, differences in the 

SM readings regarding the different methods can be explained by differences in the SM conditions in the upper 

10 cm. For a better understanding, the described bulk soil column of 10 cm can be divided into two layers, firstly 

in approximately the first 5 cm as the direct air and soil interface and secondly in a slightly deeper layer of 5 to 

10 cm soil depth. 

The gravimetric and ThetaProbe measurements are taken in the uppermost 4 to 5 cm. It is apparent that during 

dry periods, this layer dries out more than the 5 to 10 cm layer, as the latter is covered by the surrounding soil 

particles and has no direct exchange with the atmosphere. In the findings, it can be clearly seen that the two 

manual methods reach the lowest SM values compared to all other methods during these dry periods (see Figure 

5.6 and Table 5.3). During wet periods they reach a similar maximum than the other methods because the water 

percolates quite fast from the surface to the 5 to 10 cm layer in the soil column. 

The ECH2O measurements, which were derived in a layer depth of 5 to 10 cm, show less dynamics but the highest 

mean value of all methods (see Table 5.3). In this vertical soil range, soil water is stored for a longer time, the SM 

content is more stable and influences from the atmosphere are less pronounced. 

SM simulated by PROMET considers the entire 10 cm layer. The SM evolution over the entire period is highly 

correlated with the ECH2O SM readings derived for the 5 to 10 cm soil depth. However, the SM dynamic range 

of PROMET is higher, which can be explained by the fact that PROMET also covers the highly dynamic surface 

processes but shows less dynamic than the manual surface measurements derived by ThetaProbe or gravimetric 

probes, which only consider the upper centimetres of the soil. It is therefore reasonable that the dynamics of 

PROMET occur between ECH2O and the manual methods. 

PROMET simulations and GPS measurements consider the same vertical range of the uppermost 10 cm and are 

therefore most suitable for comparison. Positively, the SM curves of GPS and PROMET fit very well, reach the 

highest correlation coefficient and a very low RMSE and have a similar dynamic range as well as similar 

minimum, maximum and mean values (see Figures 5.5 and 5.6 and Table 5.3). However, GPS is slightly more 

dynamic than the modelled data, especially during dry periods. One reason for this might be that the determined 

soil texture in the laboratory could be slightly different or inhomogeneous compared to the conditions in the soil 

plot, which would have an influence on the parameterisation of the PROMET model as well as the Dobson four-

component model applied for the GPS approach. This in turn has an influence on the SM calculations with both 

methods. Secondly, as the GPS measurements undergo reflection, refraction and attenuation processes, which are 

non-linear, especially in case of high SM gradients within the first 10 cm, the GPS calculations might slightly 

under- or overestimate SM. This is the case if, e.g., the upper 5 cm are drier or wetter, than the lower 5 cm. This 

might be the reason why during dry periods, GPS is more similar to the ThetaProbe and gravimetric 

measurements. In summary, we state that the GPS sensors are more sensitive to the dynamics at the soil surface, 

which is positive in terms of interpreting events directly at the interface of air and soil. 

5.5.2 Advantages and limitations of GPS soil moisture measurements 

This study successfully demonstrates that low-cost GPS sensors are highly capable of quantitatively and 

continuously retrieving bulk SM of the upper soil layer in a non-destructive manner. A main advantage is that 

the GPS antennas are installed below the soil column of interest, in this case the upper 10 cm, which means that 

the soil above the antennas is unaffected by the sensors after the installation. In contrast, gravimetric 

measurements are accurate but they are highly destructive as for each sample, soil has to be extracted. Regarding 

FD and TDR probes, their prongs might influence the soil sampling volume during installation. This could cause 
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destruction of the soil structure that could result in an increased pore volume that can fill up with air or water or 

compacted soil [Walker et al., 2004], which is not the case when using the GPS measurement system. 

Further, soil is a quite heterogeneous medium. Soil texture, pore size distribution, the soil density, and the 

existence of large air and water pockets or larger heterogeneities like small rocks might vary largely even at 

small scales. This makes SM measurements quite difficult and explains the effect that sensors installed next to 

each other might possibly measure different SM values [Walker et al., 2004]. As the GPS sensors cover the 

entire soil column above the antennas, which integrate over potential soil inhomogeneities, uncertainties are 

reduced due to larger sampling volumes. In contrast, most permanently installed FD or TDR sensors only have 

small sampling volumes at a certain soil depth. 

Moreover, we assume the advantage that the GPS sensors are sensitive to the surface SM. Especially the 

uppermost centimetres of a soil column, at the interface between air and soil, are subject to a high dynamic in 

SM due to the direct influence of precipitation as well as intense radiation during dry periods. All these processes 

can be resolved with high sensitivity by the GPS sensor measurements. 

It is also considered as an advantage that the GPS signals are broadcasted in the microwave L-band. For SM 

observations in general, that band is most suitable because the penetration depth of the electromagnetic waves 

reaches several centimetres even for moist soils. For dry soils, it can even reach several meters [Nolan and 

Fatland, 2003; Ulaby et al., 2014]. As the L-band is widely and successfully used for SM retrievals from 

microwave measurements, e.g., from SMOS or SMAP, SM data derived by GPS use the same band and rely on a 

similar physical basis. Therefore, GPS-retrieved SM measurements could have a high potential as ground truth 

validation data for L-band microwave products. However, passive microwave systems derive SM through 

emission and the active microwave systems, and GNSS-R use signal reflections, and the GPS approach 

presented in this study is mainly based on signal strength attenuation. 

As this method was only tested on a bare soil field, no quantitative statements about the SM retrieval capabilities 

of this GPS SM approach can be made for vegetation covered soils. However, we assume that this approach has 

high potential for soils covered, e.g., by agricultural crop plants like wheat, barley or even maize. In this case, an 

additional antenna above the vegetation would have to be installed to extract signal strength information from 

the plant water content, which has to be considered in the calculation in relation to the reduced signal strength at 

the antennas placed within the soil. Forest stands, however, might be too reductive for the GPS signals to also 

extract the underlying soils’ SM. 

Nevertheless, the vertical range of the soil column that can be investigated is limited, as at some point the GPS 

signal strength becomes too weak to be tracked continuously. The maximum installation depth might, however, 

differ for different soil textures and SM contents. For example, for high elevation angles (>70 degrees), the mean 

C/N0 values received above the soil at GPS 1, reached approximately 47 dBHz. At a GPS antenna installation 

depth of 10 cm at GPS2 and GPS3 and for this specific soil texture, we always received strong enough GPS 

signals without interruption. During quite dry periods, with an SM content of 20 m3·m−3, the mean C/N0 values 

of the high elevation angles reached approximately 36 dBHz, whereas they declined to approximately 29 dBHz 

during wet days, exemplarily at an SM content of 35 m3·m−3. However, an antenna installation depth below 

approximately 20 cm for this soil type, especially under wet soil conditions, makes potentially no practical sense, 

because the GPS signals would be attenuated excessively before reaching the GPS antennas. This could result in 

a reception of too weak GPS signals, which are then unreliable, or even longer signal interruptions or no signals 

at all. We tested this during a short experiment with an SM content of 35 m3·m−3 at a depth of 20 cm, where the 

C/N0 declined to approximately 19 dBHz considering the high elevation angles; during even wetter conditions 

the signals were, however, not continuous anymore. Applying this approach potentially to vegetation-covered 

soils at deeper laying root-zones, it could be difficult or even impossible to derive continuous SM information 

regarding this specific soil type. 
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A further limitation regarding this measurement approach might be a too constrained hemispherical coverage, 

e.g., due to tall buildings and trees in the surroundings or extremely steep mountain slopes and deeply cut 

valleys, which could cover the direct line of sight of too many GPS satellites to the receiver. However, other than 

GPS positioning algorithms, our approach to measure SM does not depend on a minimum number of four 

satellites to find a solution. Theoretically, the signal of one single GPS satellite for each time step would be 

sufficient. 

Last but not least, as for every retrieval algorithm, a wrong parameterization might lead to imprecise results. To 

obtain an impression of its sensitivity, we carried out a sensitivity analysis in the next section. 

5.5.3 Sensitivity analysis of GPS soil moisture measurements 

According to Dobson et al. [1985] and Hallikainen et al. [1985], we investigated the sensitivity of the retrieval 

algorithm for soil texture and soil temperature, which were identified as the most important physical soil 

parameters for this approach. In addition, we conducted a sensitivity assessment of the soil density because this 

parameter exhibited a rather large variability in our soil sampling. For this sensitivity analysis, we applied 

Equations (5.1)–(5.9) analogous to the original and correct soil parameterization. 

Regarding different soil textures with different sand, silt and clay contents, the same SM values are based on 

different values of the complex permittivity of moist soil [Dobson et al., 1985; Hallikainen et al., 1985]. The soil 

texture is mainly represented by the physical soil parameter ܣ௦, which was set to the value of 49 m2·g−1 for the 

observed soil at the DWD test site in Munich. Lower values for ܣ௦ represent soils with lower clay and higher 

sand contents, whereas higher values represent higher clay and lower sand contents. We increased and decreased 

 ௦ = 69 m2·g−1 siltܣ ௦ = 29 m2·g−1 represents, for example, the textural class sand andܣ .௦ by േ10 and േ20ܣ

loam. As shown in Figure 5.7a, the changes in ܣ௦ have quite a large impact on the SM results. If the soil is 

assumed to be too sandy, SM is underestimated, whereas if it is assumed too clayish, SM is overestimated. In 

case of an overestimation, the dynamic range increases and in case of an underestimation, it decreases. 

According to these findings, great effort should be taken to obtain reliable soil texture measurements in the 

laboratory. 

In general, the GPS SM retrieval is based on the complex permittivity of water, which is temperature dependent 

in the microwave range [Dobson et al., 1985; Hallikainen et al., 1985] (see also Table 5.2). For this study, we 

used separate soil temperature measurements to correctly adapt the Dobson four-component dielectric mixing 

model. In case no soil temperature readings are available, uncertainties in SM calculations might occur due to 

wrong soil temperature assumptions. To address this, we additionally calculated for each time step the SM with a 

fixed soil temperature assumption of 15°C, which is approximately the average annual soil temperature at the 

DWD test site. Figure 5.7b illustrates the difference between the assumed fixed soil temperature and the results 

with the correct soil temperature. Especially during the colder winter periods, the SM curves deviate the most 

with a rather high overestimation of up to 8%. However, during warm periods especially in summer, the 

deviation, expressed as an underestimation, is negligible or less than 2.5%. In case no soil temperature data are 

available, we recommend an assumption of the soil temperature based on air temperature measurements, if they 

are available, e.g., from stations nearby. The dynamic range of the air temperature measurements at our test site 

was only slightly higher than of the soil temperature readings at 5 cm soil depth, which is negligible for the SM 

results. 

To obtain an impression of how soil density variations affect the SM calculations, we decreased and increased 

the actual measured soil density of ߩ௕ = 1.3 g·cm−3 by േ10% leading to densities of 1.17 g·cm−3 and 1.43 

g·cm−3, and േ20% leading to densities of 1.04 g·cm−3 and 1.56 g·cm−3. Figure 5.7c shows that these changes in 

soil density have no severe impact on the SM results. An increase in soil density leads to a slight increase in the 

SM curve, whereas a decrease in soil density leads to a slight decrease in the SM curve. Though the soil density 

measurements might not be absolutely accurate, it is still possible to retrieve reasonable SM values. 
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Figure 5.7: Soil moisture derived from GPS containing different assumptions on (a) an increase or decrease of the specific soil 
surface ܣ௦, which is an indicator for different soil texture assumptions by േ10 and േ20, (b) a fix soil temperature assumption of 
15°C and (c) a soil density over- and underestimation of േ10% and േ20% compared to the original parameterized calculations at 
the DWD test site Munich during the measurement period January 1, 2014 - June 10, 2015. 

5.6 Conclusions 

With this new dielectric low-cost GPS approach, we were able to continuously and non-destructively retrieve the 

bulk soil moisture (SM) of the first 10 cm of bare soil. Our test site was situated at the soil measurement field at 

the DWD test site in Munich where we installed the sensors for a time period of almost 1.5 years (1 January 

2014–10 June 2015). The quantitative retrieval of SM is based on the attenuation of GPS L1-band signals and 

was calculated with the Dobson four-component soil moisture model based on the complex permittivity. 

The temporal evolution of the SM derived by GPS was compared with high conformity to three other 

measurement methods, namely FD ECH2O measurements, also in a continuous mode, and weekly to bi-weekly 

FD ThetaProbe and gravimetric measurements as well as SM simulations with the hydrologic land-surface 

model PROMET. Comparing all continuous methods, the SM derived by GPS is the most dynamic, showing the 

greatest minima during dry periods and the highest peaks during intense precipitation. As each method 

represents the SM values according to different sampling volumes and vertical ranges, their comparability has 

limitations. However, PROMET and GPS consider the same vertical range and also show the highest 

conformity. Only during periods with extreme vertical SM gradients, GPS seems to be more dynamic than 

PROMET. Moreover, all SM curves showed high temporal coincidence with parallel measured precipitation and 

modelled percolation. In addition, we carried out a sensitivity analysis to address the sensitivity of the applied 
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main physical soil parameters. Overall, an error in the estimation of density is less severe than errors in soil 

textures and temperature assumptions, especially during cold periods. 

In this study, we measured the temporal evolution of SM based on GPS signal attenuation for a bare soil field 

with a specific soil texture and at a certain soil depth. In a next step, this approach should also be tested for other 

soil types and different installation depths. Further, this approach could be extended to vegetation-covered soils. 

For this approach, two antennas above the soil with one situated directly at the soil surface and the second one 

above the vegetation to extract the signal attenuation of the vegetation layer could be used. Using this extension, 

near-surface SM could potentially also be derived for vegetation covered soils. This approach would be similar 

to or could also be combined with the approach of Koch et al. [2014] measuring the liquid water content of 

snow, with antennas above and below the snow cover. As a technology transfer to hydrological monitoring, the 

SM and snow cover approaches derived by GPS were already successfully investigated within a thematically 

specific DFG project and a ESA feasibility study, and are recently under preparation for demonstration as an 

integrated service within the IAP Demo Project SnowSense (co-funded by ESA under the ARTES 20 program). 

In general, a major advantage of this approach is that the retrieval of the hydrological observable, which is in this 

study SM, is based on the microwave L-band. This makes it highly attractive as potential validation data for SM 

products generated from L-band microwave remote sensing data, like the SMOS or SMAP mission. Moreover, 

this could complement satellite data with a large spatial coverage but low temporal resolution to extrapolate SM 

data in a continuous mode at representative sites. As the GPS antennas are installed at a defined soil depth, e.g., 

10 cm, the bulk SM of this first soil layer is measured rather than measuring only a small soil volume at a certain 

depth as is mostly done with FD or TDR sensors. As we use small low-cost and low-power GPS components, the 

data analysis is not time consuming and the GPS signals can be received globally, and this approach would be 

suitable to equip entire sensor networks in different regions worldwide. Besides serving as highly useful remote 

sensing ground truth data and validation data for climate and hydrology studies, SM retrieval based on GPS 

could also support agricultural studies. 

Acknowledgements 

The authors wish to acknowledge the contribution of the student Thomas Ramsauer of the University of Munich 

(LMU) helping with the installation and the weekly to bi-weekly in situ measurements at the German Weather 

Service (DWD) test site in Munich. Moreover, they would like to thank Heike Bach and Markus Muerth from 

Vista Remote Sensing GmbH for the numerous fruitful discussions on soil moisture model retrieval. The authors 

would like to thank the DWD, which kindly provided the opportunity to install our GPS sensors at their test site 

in Munich. Until mid-2015, Franziska Koch was supported by the German Research Foundation (DFG MA 

875/12-1). Recently, Franziska Koch and Florian Appel were co-funded by the European Space Agency (ESA, 

4000113149/14/NL/AD) within the ARTES-IAP Demo Project SnowSense (https://artes-

apps.esa.int/projects/snowsense-dp), which is gratefully acknowledged. The authors thank two anonymous 

reviewers for greatly improving this manuscript with their constructive comments. 

 



6. Conclusions and Outlook 

__________________________________________________________________________________________ 

__________________________________________________________________________________________ 

84 

6. CONCLUSIONS AND OUTLOOK 

6.1 Conclusions 

As introduced in the motivation in Section 1.1, continuous information on the bulk snow cover properties snow 

height (HS), snow water equivalent (SWE) and the volumetric liquid water content in snow (LWC), as well as 

the soil property soil moisture (SM) are largely needed for climate and hydrological simulations. Moreover, they 

are important for the prediction of extreme events, avalanches and water supply, e.g., for energy and agriculture. 

Therefore, the superior aim of this thesis was to develop a continuous, non-destructive, and potentially globally 

applicable low-cost measurement system to derive information on bulk snow cover properties and soil 

conditions. For this purpose, a new and completely different approach compared to all other applications relying 

on the freely available GPS L1-band signals was developed. To perform field studies on this approach in a 

specific snow or soil environment, suitable robust low-cost GPS sensors and components were chosen and partly 

self-constructed. Since autumn 2012, the GPS measurements on the snow cover properties were running at the 

high Alpine SLF test site Weissfluhjoch (WFJ) near Davos in Switzerland and the GPS soil measurements were 

conducted at a bare soil field of the German Weather Service (DWD) in Munich (MUC) for a time period of 

almost 1.5 years in 2014/15.  

To solve the above mentioned envisioned aims, the thesis was structured into six research objectives (OJ), 

defined in Section 1.6, which lead step by step to the answering of the three research questions (RQ), 

mentioned in Section 1.1. The research objectives encompass, e.g.: sensor construction and sensor setup at the 

test sites; data processing and algorithm development for the three bulk snow cover properties LWC, SWE and 

HS, as well as SM; the combination of different sensors and input data; data comparison and validation with 

meteorological and in situ reference measurements and modelling results. In the following, the conclusions and 

achievements summarized as research answers (RA) are described for each RQ:  

RQ1. Is it possible to derive information on environmental parameters with low-cost GPS sensors by 

analysing GPS signals passing through a medium like snow or soil?  

RA1: At the initial point of this thesis, this novel approach of applying low-cost GPS sensors relying on 

the freely broadcast GPS L1-band signals passing through media like snow or soil to derive information 

on environmental properties was considered theoretically possible. However, it was unclear if this could 

actually be achieved in practice. From a pure physics perspective, the behaviour of the electromagnetic 

waves in different media is well established, so it was obvious that this approach should theoretically be 

possible. However, it was uncertain for example, if GPS signals could be tracked through all different 

conditions in harsh environmental surroundings though varying thickness of the media, and whether the 

GPS sensors would perform reliably when used in a continuous mode over several years. Now, at the 

end of this thesis this fundamental first research question can be answered with a clear yes. It was 

possible to derive snow properties and SM accurately. 

RQ2. Which snow cover properties can be derived? Which GPS raw data information is necessary, how 

should the GPS sensors be located and is external information required? 

RA2.1: At the test site WFJ, one GPS sensor was installed on a pole and remained permanently above 

the surrounding snow cover. Two other sensors were placed at the ground level and were buried by 

snow during the entire snow period. As a first step, the recorded signal strength, expressed as C/N0, was 

analyzed and normalized with a snow-free reference for each time step. As snow melting occurred, 

C/N0 decreased markedly. Compared to that, the C/N0 of the upper antenna remained relatively 

constant, which means that atmospheric influence is negligible resulting in the assessment that the upper 
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antenna is not mandatory for this LWC approach. Taking into account externally measured HS, a dry 

snow density assumption and dielectric mixing models, it was possible for the first time, to 

quantitatively, continuously and non-destructively derive bulk volumetric LWC with low-cost GPS 

sensors. The results were in high coincidence with meteorological and snow lysimeter measurements 

taken in parallel as well as several capacity probe measurements in snow pits (see Chapter 2). The GPS 

derived LWC data was corroborated using L-band upward-looking ground-penetrating radar (upGPR) 

data (supplied by a SLF research team who was independently monitoring LWC). Comparing the 

results of both methods, the results showed a high correlation (see Chapter 3).  

RA2.2: Using solely time delay information of electromagnetic waves through snow, it is possible to 

accurately derive HS or SWE in case of dry snow, but lacks accuracy under wet-snow conditions. 

However, combining signal strength and time delay information, the three bulk snow properties HS, 

SWE and LWC can be jointly derived for dry and wet-snow conditions. This was successfully solved by 

combining GPS C/N0 and the two-way travel time (TWT) measured by an upGPR. This sensor 

combination offers a very good solution to measure non-destructively from beneath the snowpack and 

could therefore be a big step towards improving avalanche forecasting, as e.g. sensors installed on poles 

would easily be destroyed by avalanches. The results derived by the upGPR-GPS combination were 

validated positively by conventional in situ methods like laser and ultrasonic HS sensors as well as 

snow pillow and snow scale SWE recordings (see Chapter 3). 

RA2.3: Since autumn 2015, a second generation GPS sensor setup was installed at the test site WFJ, 

which made it possible to process GPS carrier phases. The antenna constellation with at least one above 

and one below the snow cover was the same as before. As snow reduces the velocity of electromagnetic 

waves, the time delay was determined using double differenced (DD) carrier phase measurements, an 

elevation mapping function, and the particular refraction angles being proportional to the dielectric 

snow properties. Using an assumption of signal wave velocity, it was possible to calculate SWE under 

dry-snow conditions. The results highly correlate with manual snow pit and snow pillow data (see 

Chapter 4). Under wet-snow conditions, however, further research on phase processing is needed. After 

a successful solution on this, additional to the time delay derived by GPS, C/N0 should be considered to 

jointly derive SWE, HS and LWC solely by GPS signals. As outlined in Section 6.2, this approach 

would be similar to the upGPR-GPS combination, however, using, instead of TWT, GPS carrier phases. 

RQ3. Is it possible to transfer the derivation of snow cover properties to soil properties? 

RA3: The GPS signal strength attenuation in wet soil behaves quite similar to the attenuation in wet 

snow. The GPS antennas, installed at a soil depth of 10 cm, derived the SM from the soil surface down 

to the depth of the installed antennas representing the entire first soil layer encompassing the direct 

interface between air and soil. Applying the Dobson four component dielectric mixing model, bulk SM 

was quantitatively derived with a high correlation with FD and gravimetric in situ methods either at the 

uppermost soil surface or at defined soil depths of the upper soil layer. To further corroborate the GPS 

measures, the SM of the 10 cm surface layer was modelled with the physically-based land-surface 

model PROMET, which showed very high correlation (see Chapter 5). This positive evaluation shows 

that it is possible, to adapt the methods developed for snow, to the derivation of soil properties, like SM. 

However, the GPS SM measurements are restricted to the soil surface as the signals would be attenuated 

too much in deeper soil layers, e.g. at deeper laying plant root-zones. 

In summary, all RQs can be answered positively and the main aims of this thesis were achieved successfully. By 

combining the GPS signal strength measurements with information from other sensors (e.g., laser or radar 

sensors), all three bulk snow cover properties were derived with high accuracy. As a further big success SM and 

SWE, in case of dry snow, were derived solely using GPS signals; no further sensors were necessary in these 

cases. However, regarding wet-snow conditions, it still requires further development with regard to a more stable 

carrier phase processing, which is currently investigated. A success in this work would lead in the derivation of 
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all three snow cover properties HS, SWE and LWC using solely GPS L1-band signals. Thereto, Section 6.2 is an 

outlook on the possibility of solely using GPS for wet snow. Additionally, Section 6.3 gives an outlook on a 

selection of potential improvements, extensions and further applications.  

In total, this thesis encompasses important and promising steps towards the development of a new continuous, 

non-destructive and low-cost environmental monitoring system which could be potentially applied globally and 

is not affected by cloud cover. The concept on solely using GPS signals for the derivation of environmental 

parameters shows considerable commercial promise. Moreover, establishing networks of low-cost GPS sensors, 

potentially also located in remote and difficult to access areas, could help to bridge gaps in environmental 

monitoring.  

6.2 Combination of GPS C/N0 and carrier phase time delay for wet snow 

As stated in Chapter 4 and in the section before, GPS carrier phase tracking and processing during conditions of 

wet snow is much more difficult compared to such of dry snow and is still under development (as of November 

2016). This is due to the significantly higher attenuation of the L1-band GPS signals passing through liquid 

water. In general, the C/N0 signal strength tracking is, so to speak, more robust than phase tracking, in particular 

by using low-cost GPS receivers. Due to an increase in tracking losses, cycle slips, phase noise, multipath and 

problems of estimating integer ambiguities correctly, especially the carrier phase processing becomes difficult. 

However, in close cooperation with ANavS GmbH, this subject is recently investigated to be solved as soon as 

possible in a positive way. The aim of this current work is in getting time delay information caused by wet snow 

between two permanently installed antennas, similar to the approach presented in Chapter 4.   

Under the assumption that the above mentioned work will be successful, the retrieved time delay can then be 

used as input for further algorithms on snow cover properties. The results of this thesis show already a direction 

towards a potential combination of the presented techniques in the Chapters 2, 3 and 4. In general, time delay 

information and C/N0 can be combined in case of wet snow, as both variables are functions of the dielectric 

characteristics of wet snow. Both can be used to calculate LWC when additional information such as externally 

measured HS is given. As demonstrated in Chapter 3, the snow properties HS, SWE and LWC were derived 

solely by combining the time delay information measured by the upGPR and the GPS signal strength. The 

difference between the upGPR TWT and the GPS carrier phase time delay through snow is that the former 

expresses HS and the latter SWE. This is due to the fact that upGPR measures the TWT of electromagnetic 

waves between the ground and the air-snow interface, whereas the GPS carrier phase time delay approach 

considers the time delay through the amount of snow particles which is independent of the snow density. 

However, both measurements can easily be converted as they are directly linked by the bulk density of the 

snowpack. So, it should generally be possible using GPS carrier phase time delay information instead of the 

upGPR TWT. In the following, this section points out how further steps could potentially look like.   

Before processing GPS carrier phase and C/N0 under dry or wet-snow conditions, snow-free reference data have 

to be processed. This encompasses the derivation of normalized C/N0 reference values, as described in Chapter 

2, and a fix baseline estimated with the RTK carrier phase positioning approach, as presented in Chapter 4. 

Independent whether the snow is dry or wet, information on the snow density is necessary. This value can either 

be assumed as a fix value (e.g. the mean of a certain region and time) [Heilig et al., 2009; Schmid et al., 2014] or 

can be estimated by meteorological and regional information, e.g., after the findings of Meløysund et al. [2007], 

Jonas et al. [2009] and Sturm et al. [2010]. Besides, further analysis on C/N0 might deliver such plausible dry 

snow density estimates regarding the complex permittivity of snow [Denoth, 1994; Sihvola and Tiuri, 1986]. 

However, GPS C/N0 values might be too noisy for this approach. In addition, a further possibility might be using 

information simulated by models, such as specific snowpack models [Bartelt and Lehning, 2002; Braun, 1993] 

or hydrological land-surface models, e.g., PROMET [Mauser and Schädlich, 1998; Mauser and Bach, 2009]. 
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As a check whether the snowpack is dry or wet, the signal strength values can be categorized. If the C/N0 values 

decrease by <-3dB from the standard value range (expressing a normalized C/N0 of approximately 0.8), they are 

classified as wet snow, whereas values lying above this threshold are handled as dry snow [Koch et al., 2014]. If 

the snow is classified as dry, SWE can be calculated by using the time delay derived by carrier phase residuals, 

as presented in Chapter 4. HS can then be calculated by multiplying SWE with the dry snow density.  

As already mentioned, in case of wet snow, the derivation of the snow cover properties becomes more difficult. 

This is because liquid water in snow leads to a significant increase in the dielectric properties, expressed in the 

real and the imaginary part of the complex permittivity. Regarding impacts on the carrier phase time delay of wet 

snow compared to dry snow, two points are relevant:  

 the refraction angle declines which shortens the pathway of the GPS signals through the snowpack,  

 and the velocity of the GPS signals in wet snow declines. 

To achieve information on all three snow cover properties, the carrier phase time delay and the normalized signal 

strength, have to be combined. This could potentially be solved by the following three methods: 

(a) Inclusion of the carrier phase time delay processing algorithm in the C/N0 root-finding algorithm, which 

was presented in Chapter 2, to solve the equations of the complex permittivity with more than one 

unknown. 

(b) Usage of a priori knowledge of previously processed time steps for the currently processed time step. 

(c) Calculation of carrier phase time delay for dry-snow conditions as pre-processed data, which might not 

be correct for wet snow. Correction by post-processing of C/N0 values combined with the results of the 

pre-processed carrier phase time delay values. 

In general, the implementation of option (b) and (c) are considered to be more practical than option (a). In the 

following, a possible implementation of option (b) is further described, whereof an example on a possible 

processing chain is given in Figure 6.1. 

 

Figure 6.1: Schematic overview of a potential processing chain for dry and wet-snow conditions combining GPS C/N0 and carrier 
phase. In this example a priori knowledge (option (b)) is used to solve the derivation of SWE, HS and LWC in case of wet snow.  
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As the current measurement time steps are one second, the snow conditions of subsequent time steps can be 

assumed as identical. Moreover, this could even reasonably be assumed for the mean of subsequent time steps of 

approximately up to 30 minutes, as the snow conditions do not change that quickly. As suggested in Chapter 4, 

additionally low-pass filtering techniques over a defined time period should be used to suppress outliers.  

After deriving the time delay information through a snowpack adapted to the current wet-snow conditions by 

involving C/N0, SWE can subsequently be calculated by using Equation (4.37). HS can then be calculated using 

the dry snow density information, as suggested above, and by including LWC information as a priori values from 

the previous time steps. As a last step, the calculated HS serves as input for the root-finding algorithm to solve 

the equations for LWC under consideration of the complex permittivity as presented in Chapter 2. The results of 

the three snow properties HS, SWE and LWC of this current time step are then again used as a priori knowledge 

input for the next time steps and so on.  

6.3 Further research and development perspectives 

Besides the further steps presented in Section 6.2, the following ideas and optimizations were identified as future 

research and development perspectives (RDP) on the basis of the findings presented in this thesis in 

combination with the aim to improve this new technique and to make it usable also for further applications: 

RDP1. Sensor improvement 

The first self-composed experimental sensor setup with the Fastrax IT430 receivers was successfully 

tested and applied over several years at both test sites under harsh environmental conditions. Negligible 

breakdowns occurred and when they did, they were attributed to power outages. However, for 

commercial use, this first experimental sensor system has to be improved. A first step in this direction 

has already been taken by using more advanced sensors  since autumn 2015. As an example, in the ESA 

Artes-IAP demonstration project SnowSense it is foreseen to use fully autarkic in situ measurement 

devices including a robust power management system with solar panels and batteries, a communication 

interface (e.g., SatCom) and an on-time processing unit. This is currently being tested at the SnowSense 

project test areas in Newfoundland. The outcome of this demonstration project should lead to the 

production of commercially available GNSS sensor systems.  

RDP2. Adaptive temporal data and energy management 

For this study, the GPS data was collected and analysed at one second intervals. This amassed a large 

volume of data requiring storage and processing capacity. However, the raw data of each time step is 

not entirely necessary to derive a complete picture of the temporal evolution of the observed 

environmental properties. An adapted data management plan should aim to record a reduced set of raw 

data at adequate time steps which means that the intervals should be still sufficient to derive all 

necessary information on significant short-term changes, e.g., in the amount of snow, its melting stage 

and in- or decrease in SM. This reduction in the amount of stored and processed data can either be 

handled by reducing the temporal rate, e.g. from one second to several minute or to reduce the 

recordings, e.g. for an hourly measurement interval of a few minutes, whilst during the rest of the time 

the receivers turn into a sleeping mode.  

This would additionally save energy. This strategy would especially be helpful or even necessary in 

remote areas where the sensor can only rely on solar and battery power. The derivation of an adequate 

solution of these aspects is also a major task in the project SnowSense. 

RDP3. Combination with GNSS-R 

As presented shortly in Section 1.4.2, interferometric GNSS reflectometry (GNSS-R) aims to derive HS 

with antennas installed above the snow cover. The received signal strength from line-of-sight and 

reflected signals contain multipath information of the varying snow cover surface compared to the fix 
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antenna height. HS retrieved by GNSS-R could, e.g., be used as input for the LWC signal strength 

model, presented in Chapter 2, which would replace the additionally used HS laser sensor. This 

approach could potentially also be combined with the approach presented in Chapter 4 and Section 6.2, 

e.g. to deliver a better estimate of a priori information and to calculate LWC based on the GNSS-R HS 

information. Moreover, improved information on SWE and HS would improve information on the bulk 

snow density. However, this approach might be too error-prone or impossible to correctly interpret by 

using low-cost receivers. The latter are quite noisy and for low-cost antennas with unknown, highly 

different antenna patterns. Moreover, this approach needs smooth surfaces for correct interpretation of 

the environmental properties. Slopes or obstacles like poles might spoil the information. Until now, 

GNSS-R was mainly used for high-end geodetic receivers or specific left- and right-hand polarized 

receivers. Moreover, most approaches predominantly used L2-band which has a lower frequency, but is 

not civilly available. In general, the noise in the L1-band readings are higher which makes an 

identification for example of HS practically more difficult [Larson, 2016]. 

RDP4. Derivation of spatial information 

The in situ GNSS approach, as introduced in this thesis is more or less a point measurement following a 

high temporal resolution. However, for many applications, regarding e.g., accurate predictions in water 

supply, hydropower or extreme events, spatial information is highly relevant. Region- or basin-wide 

networks with numerous low-cost GNSS sensors might improve spatial coverage as the parameters 

could be measured simultaneously at different locations, land use situations, altitudes or expositions.  

Moreover, a combination of the L-band in situ GNSS measurements with microwave remote sensing 

data, e.g., from the active C-band senor Sentinal-1 or the passive L-band sensor SMOS, would be a big 

improvement towards spatial information. The point measurement of snow properties and SM could 

then be interpolated at the explicit overflight date for the entire remote sensing scene depending on the 

values of the recorded microwave remote sensing data.  

Further, the measured in situ GNSS data could improve spatially distributed model results. Using them 

as input for, e.g., a physically-based land-surface model like PROMET, the quality of the model output 

of the observed snow and soil properties could be improved. Consequently, also the spatially modelled 

environmental properties would improve. 

RDP5. Identification of heterogeneities 

Based on the low-cost GPS sensors, an investigation of small scale differences within the snow cover or 

a soil column in its vertical and horizontal extent could be performed. The installation of sensors at 

defined snow heights could e.g. improve the understanding of wetting fronts during melt-onset, and on 

the effect of precipitation events and the respective depth of melt-freeze cycles, which occur from the 

top to the bottom of a snowpack. A vertical sensor arrangement in soils could track SM at different 

depths in parallel, as well as percolation and potential capillary rise activities.  

Horizontal variations could be recorded by placing several sensors at distances of a few decimetres or 

meters. An investigation is currently running at the test field WFJ to establish, if LWC differs spatially 

within an area of 100 m². An investigation of this type has been made possible using low-cost GPS 

sensors.  

RDP6. Applications at further locations 

Regarding the derivation of the snow cover properties, this approach was tested at a high alpine region 

having a continuous snow cover over for a period of 8-9 months. Over this period there were several 

months with dry-snow conditions with no or negligible melting periods. Following the first significant 

wetting date in spring, the snow cover remained more or less moist. This means that the conditions did 

not change frequently. As a next step, test sites at lower altitudes with more frequently changing snow 

conditions should be tested. This issue is presently being investigated at several locations in 

Newfoundland and in the Alps as part of the SnowSense project.  
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Regarding the derivation of SM by GPS signal strength attenuation, a transfer to other locations would 

be useful. As until now this approach was only tested at a bare soil field with a soil texture of sandy 

loam, an investigation regarding different soil types or even vegetation covered soils would be highly 

attractive. Regarding e.g. dry prairie or desert soils, the installation depth could be extended to several 

decimetres or meters. Moreover, the approach could be extended also to frozen soil. 

RDP7. Application of the upGPR-GPS combination in avalanche prone slopes  

The combination of upGPR and GPS was successfully tested at a flat area at the test site WFJ as 

presented in Chapter 3. The main advantage of this sensor combination is that it derives the snow 

properties HS, SWE and LWC non-destructively without external information and without poles or 

stakes as all instruments are installed underneath the snow cover. This makes it largely suitable for 

measurements in avalanche prone slopes, and is recently tested at a slope near Davos in Switzerland. In 

general, direct and continuous information from avalanche prone slopes, especially of LWC and HN 

would be highly relevant for avalanche predictions and hazard management.  

RDP8. Combination of upGPR and GPS carrier phase time delay to derive dry snow density  

As presented in Chapter 4, it is possible to use GPS carrier phase to retrieve accurate SWE values for 

dry snow. As the upGPR delivers accurate measures for HS of dry snow and SWE and HS are only 

related by the value of the dry snow density, the latter can also be derived accurately using this sensor 

combination. Further, it might be possible to extend this approach also to wet-snow conditions. 

Knowledge on the snow density is for example an important variable in avalanche forecasting as it 

gives important information on snow metamorphism and compression.  

RDP9. Extension to other GNSS signals 

Until now, this approach was applied only for GPS signals. As an addition, other GNSS signals could 

be used. GNSS sensors which are able to track GLONASS and GPS satellites in parallel would be 

beneficial because this would improve the overall satellite availability, especially over areas with 

difficult satellite coverage over mountain slopes, valleys and urban areas. In the future, also additional 

information from the European Galileo system and the improved Chinese Beidou/COMPASS system 

could be used in this sense. 

RDP10. Investigation of other environmental properties 

Last but not least, further research regarding other environmental properties could be carried out by 

applying the techniques presented in this thesis. Regarding signal strength attenuation, mainly due to 

water content within environmental material, such as plant water content as already investigated as a 

first estimation by Rodriguez-Alvarez et al. [2012a]. Moreover, this could encompass for example 

observations on the plant biomass, agricultural crop growth rates and vegetation health in a continuous 

mode and with a fine temporal resolution. The tracking of the plant biomass evolution could, e.g., help 

farmers to better manage their agricultural production and yields. Further, information on plant 

interception water could be derived, as then additionally the droplets of water on top of the plants are 

detected. The signal strength would then be attenuated more strongly compared to periods without 

interception.  

Moreover, GNSS phase measurements providing time delay data could further be applied for permanent 

snow cover or sea and glacier ice thickness measurements. This would be a highly promising approach 

regarding Polar Regions with almost dry-snow conditions.  

Further, the technique with two permanently installed antennas could also be used for the detection of 

slightly moving objects such as soil or snow dunes or to detect soil accumulation and erosion. In case of 

vertical mass changes, changes in signal strength and carrier phase time delay would occur. 
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Appendix A: Pictures of GPS sensor construction, installation, and reference 
measurements at the SLF test site Weissfluhjoch 

 

Figure A.1: FASTRAX IT430 GPS receiver (green) with self-
constructed application board (orange) with voltage regulation 
and USB-to-serial interface. 

Figure A.2: Connecting cables with the GPS receivers in the big 
weather-proofed box on the ground level for GPS2&3. 

 

Figure A.3: GPS1 antenna and small weather-proofed box for 
the receiver above the snow installed for the winter season 
2012/13 at the test site WFJ. 

 

Figure A.4: Hirschmann GPS7M antenna installed for the winter 
season 2012/13 at the test site WFJ. 

 

Figure A.5: Tallysman 2410 antennas with ground-planes 
installed since the winter season 2013/14 at the test site WFJ. 

  

Figure A.6: Self-constructed antenna radome for GPS1 used 
since the winter seasons 2013/14 at the test site WFJ. 
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Figure A.7: Fanless mini-PC Spo-book MOVE T56N. 

 

Figure A.8: PC monitor showing the active receiver specific 
GPS SiRFLife software. 

Figure A.9: GPS reset box for the GPS receivers GPS1, GPS2 
and GPS3 at the test site WFJ. 

Figure A.10: Laying out of cables with a length of 70 m at the 
test site WFJ (25.09.2012). 

 

Figure A.11: Suitcase with ANavS GPS sensor system 
encompassing a single-board computer, two antennas and two 
receivers (photo taken by P. Henkel). 

   

Figure A.12: Ground and pole antenna of the ANavS GPS 
sensor system installed at the test site WFJ (10.10.2016). 
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Figure A.13: View from Parsenn II top station on the WFJ test 
site and the Parsenn skiing area in autumn (03.09.2013; 
http://www.swisswebcams.ch). 

 

Figure A.14: View from Parsenn II top station on the WFJ test 
site and the Parsenn skiing area in winter (03.02.2014; 
http://www.swisswebcams.ch). 

Figure A.15: WFJ test site in summer (23.07.2012). 

 

Figure A.16: WFJ test site in spring (15.04.2013). 

 

Figure A.17: Panoramic view of Davos Parsenn skiing area, the 
test site WFJ and the mountain Weissfluhjoch (08.11.2013). 

 

Figure A.18: Maintenance work of GPS sensors at the test site 
WFJ (08.11.2013). 
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Figure A.19: Snow scale at the test site WFJ. 

 

Figure A.20: Snow pillow at the test site WFJ. 

 

Figure A.21: Snow lysimeter at the test site WFJ. 

 

Figure A.22: Open snow pit for bi-weekly snow profile analysis 
at the test site WFJ (15.04.2013). 

 
 

 

Figure A.23: SnowFork (above) and Denoth meter (below) for 
LWC measurements. 

     

Figure A.24: upGPR with hoisting device (left) and installed in 
the ground (right) at the test field WFJ (photos taken by L. 
Schmid). 
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Appendix B: Pictures of GPS sensor installation and reference measurements at the 
DWD test site Munich 

 

Figure B.1: Connecting cables and placement of GPS receivers 
in the weather-proofed box (01.10.2013). 

Figure B.2: Placement of the GPS1 antenna on top of the soil 
(01.10.2013). 

 

Figure B.3: Placement of the antennas of GPS2 and GPS3 at a 
soil depth of 10 cm (01.10.2013). 

 

Figure B.4: ECH20 Em50 data logger for the FD ECH2O probes. 

 

Figure B.5: Placement of FD ECH2O probes at the DWD test 
site Munich (01.10.2013). 

 

Figure B.6: Reference measurement with the ThetaProbe at the 
DWD test site (15.05.2014). 
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Appendix C: GPS Sensor installation plan at the test site Weissfluhjoch 

 

Figure C.1: Installation plan for all components of GPS1, GPS2 and GPS3 at the test site WFJ. For example, receiver Rec1 and 
antenna Ant1 belong to GPS1. 
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Appendix D: Overview of measured snow properties, sensors and their location at the 
test site Weissfluhjoch 

 

Figure D.1: Map of the test site WFJ showing all applied sensors and the snow profile lines. The green dots show the location of the 
GPS antennas situated either on the pole (GPS1) or on the ground level (GPS2&GPS3). 

Table D.1: Measured snow properties and applied sensors or techniques at the study site WFJ. 

Snow properties Sensor/Measurement 
technique 

Units Temporal resolution 
(aggregated) 

Air temperature (TA) Thermistor °C 30 min 

Snow surface temperature (TSS) Infrared °C 30 min 

Snow height (HS) Laser sensor cm 30 min 

Snow height (HS) Ultrasonic sensors cm 30 min 

Snow meltwater outflow 5-m² snow lysimeter l m-² h-1 30 min 

Snow height (HS), snow  water equivalent (SWE), 
liquid water content (LWC) 

GPS sensors cm, mm, % 30 min 

Snow  water equivalent (SWE) Snow pillow mm 30 min 

Snow  water equivalent (SWE) Snow scale mm 30 min 

Snow height (HS), snow  water equivalent (SWE), 
liquid water content (LWC) 

upGPR cm, mm, % 3 h (dry snow),  
30 min (wet snow) 

Liquid water content (LWC) Denoth meter % single days 

Liquid water content (LWC) Finnish Snow Fork % single days 

Snow height (HS), snow  water equivalent (SWE), 
Liquid water content (LWC), other snow properties 

Manual snow profiles in 
snow profile lines 

cm, mm, Index single days, bi-weekly 

Height of new snow (HN) Snow board cm every day at 8 a.m. 
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Appendix E: Measuring the hydrological snow storage in Alpine catchments with a new 

low-cost GPS technology 

This appendix is published in the Proceedings of the Danube Conference 2014: 

 

Koch, F., Prasch, M., Schmid, L., Schweizer, J. and Mauser, W. (2014): Measuring the hydrological snow 

storage in alpine catchments with a new-low-cost technology. Proceedings of the Danube Conference 2014, 

22.-24.09.2014, Deggendorf, Germany. 

 

 

 

Abstract 

The retarded runoff from the seasonal snow cover in the Alps and its forelands plays an important role for entire 

watersheds like the Danube River Basin which is one of Europe’s most important catchments reaching from the 

Eastern Alps down to the Black Sea. For hydrological purposes, information about the snow water equivalent 

and the amount and temporal onset of melt water release are highly important to estimate river runoff and water 

availability within a catchment. However, in mountainous areas it is still a problem to get these data due to no or 

only sparse in situ snow measurements. In general, a wider and more cost-efficient measurement network would 

improve e.g. low-flow and flood forecast models as well as water supply and hydropower estimates and would 

therefore also serve as a necessary basin-wide preparatory adaptation measure due to climate change impacts on 

snow which tend to cause an earlier runoff peak in spring.  

The study, which will be presented, investigates a new low-cost NAVSTAR-GPS (Navigational Satellite Timing 

and Ranging Global Positioning System) measurement experiment to derive continuous information on snow, 

especially on the liquid water content. During the snow covered periods of 2012-2013 and 2013-2014 we 

performed non-destructive snow measurements with low-cost GPS receivers and antennas above and underneath 

the snowpack at a high Alpine test site in Switzerland. The freely available GPS L1-band signals (1.57542 GHz) 

including the carrier-to-noise power density ratio of each of the 32 GPS satellites are partly absorbed and 

scattered by the snowpack, especially when it becomes wet. The attenuation of the GPS signals serves therefore 

as a good qualitative indicator for snow wetness and daily melt-freeze cycles. The GPS-derived snow wetness 

data were compared to meteorological and snow-hydrological data and agreed well in their temporal occurrence. 

To derive the liquid water content a mixing formula for wet snow related to the GPS signal attenuation was 

applied. Due to its cost-efficiency and global availability, this approach could possibly have the potential to be 

implemented in a basin-wide snow measurement network. Preliminary results of this new measurement 

technology will be presented. 

E.1 Introduction 

The retarded runoff from the seasonal snow cover in the Alps and its forelands plays an important role for entire 

watersheds like the Danube River Basin which is one of Europe’s most important catchments reaching from the 

Eastern Alps down to the Black Sea. For hydrological purposes, such as discharge forecasts for hydropower 

generation [Koch et al., 2011b], information about the snow water equivalent and the amount and temporal onset 

of meltwater release are highly important to estimate river runoff and water availability within a catchment. 

However, in mountainous areas it is still a problem to get these data due to no or only sparse in situ snow 
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measurements. Therefore, this study aims to develop a reliable low-cost technique which measures snow 

parameters continuously and which is globally applicable. 

E.2 Measurement setup 

Besides other snow parameters, the liquid water content of the snowpack is a key parameter to determine e.g. 

wet-snow stability and the spring meltwater onset. To continuously estimate the snow wetness, a new 

experimental low-cost GPS measurement technique was tested recently within an alpine catchment in winter and 

spring 2012/13. The measurements were situated at the high Alpine SLF test site Weissfluhjoch (46°49'47" N, 

9°48'34" E) near Davos in Switzerland. Three low-cost GPS receivers connected with low-cost GPS antennas 

were installed. One antenna was mounted at a high pole (GPSpole) which was always situated above the snow 

cover. The GPS signals received at this antenna serve as a snow free reference indicating atmospheric influences. 

Before the first snow fall in winter, two redundant antennas (GPSground) were brought out on the ground at an 

even place and were buried underneath the snowpack during the entire snow covered period. The signal losses 

registered at these antennas indicate the wetness of the snowpack. A schematic overview is given in Figure E.1. 

For validation, meteorological and snow-hydrological data were continuously recorded at the same site. 

 

Figure E.1: Schematic of the experimental GPS measurement setup. 

E.3 GPS data 

The freely available GPS data are transmitted via L-band microwaves at a frequency of 1.57542 GHz. The signal 

strength for each of the 32 GPS satellites is expressed as carrier-to-noise-power-density ratio (C/N0) and is 

continuously recorded with a temporal resolution of one second within the GPS raw data protocol. Per definition, 

C/N0 is a bandwidth-independent index and is used for assessing signal quality and quantifies the signal power of 

the received signal of each tracked satellite [Hofmann-Wellenhof et al., 2008]. The data analysis is based on 

normalized C/N0 data considering a snow-free reference as well as elevation and azimuth information for each 
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satellite at each time step. The microwave GPS signals interact as L-band microwaves with the snowpack, 

especially when it becomes wet [Bernier, 1987; Hofmann-Wellenhof et al., 2008]. Thereafter, the C/N0 values 

received at GPSground indicate the degree of signal losses due to attenuation, reflection and refraction processes 

within the snowpack and its surface. The normalized C/N0 values are aggregated to half-hourly data showing the 

evolution of the wetness of the snowpack continuously by registering changes of the snowpack in a high 

temporal resolution. 

E.4 Start of spring snow-melt and daily melt-freeze cycles 

In this study, the behavior of wet snow on the normalized GPS C/N0 signals was analyzed. At the test site 

Weissfluhjoch, GPSground was permanently covered with snow from the end of October 2012 until the beginning 

of July 2013. Until mid-April, the snowpack was predominately dry, before the melt period started. The results 

cover exemplarily a period at the beginning of the spring snow melt. Figure E.2 gives an overview of the 

evolution of the normalized C/N0 values recorded with the GPS receivers as well as surface temperature, 

precipitation and snow lysimeter meltwater outflow measured at the SLF test site Weissfluhjoch for the time 

period 12-28 April 2013. In general, the lower the normalized C/N0 values, the wetter was the snowpack. The 

first two days of this period represented dry snow conditions without discharge at the lysimeter and constantly 

high normalized GPS C/N0 values. After 15 April, the air temperature reached values above 0°C during mid-day 

and the first meltwater outflow was measured. In accordance to the evolution of the temperature and the 

meltwater outflow, the normalized GPS C/N0 indicate with a clear decline the onset of the snow melt period as 

well as daily melt-freeze cycles with a minimum during mid-day and a peak during night-time. Shortly after 

reaching the GPS signal strength minimum, the peak discharge occurred at the lysimeter. A dry snowfall with air 

temperatures below 0°C led to an increase of the snow water equivalent on 19 April and interrupted the daily 

repeated melt-freeze pattern. During the following day no discharge at the lysimeter was recorded and the GPS 

C/N0 values showed no significant decrease. Less discharge was also measured on 22 and 27 April with colder 

air temperature around mid-day. In sum, Figure E.2 clearly shows the coincidence of the GPS signals and the 

meteorological recordings. In a further step, the GPS signal strength losses due to attenuation, reflection and 

refraction processes will be transformed into the bulk volumetric liquid water content considering the complex 

permittivity, by applying e.g. Tiuri et al. [1984]. 

 

 
Figure E.2: Evolution of the normalized C/N0 values recorded with GPSground as well as air temperature, snow water equivalent 
and meltwater outflow at a snow lysimeter measured at the SLF test site Weissfluhjoch at the start of the snow melt period in 2013 
(12-28 April 2013). 

E.5 Conclusions 

As a low-cost, globally applicable, low power consuming and non-destructive snow measurement setup, this 

approach might have the potential to be implemented in a basin-wide snow measurement network aiming at 
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continuous data generation. Analyzing signal strength losses of GPS C/N0 data caused by wet snow has therefore 

a high potential for the determination of continuous measurements of the snow wetness with a high temporal 

resolution in basin-wide sensor networks for different hydrological applications. In general, a wider and more 

cost-efficient measurement network would improve e.g. low-flow and flood forecast models as well as water 

supply and hydropower estimates and would therefore also serve as a necessary basin-wide preparatory 

adaptation measure due to climate change impacts on snow which tend to cause an earlier runoff peak in spring.  
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