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1. ABKÜRZUNGSVERZEICHNIS 

 

ACh                             Acetylcholin 

AEA                            Arachidonoylethanolamid 

CB1 / CB2                    Cannabinoid 1-Rezeptor /Cannabinoid 2-Rezeptor 

Δ9-THC                        Δ9-tetrahydrocannabinol 

DMSO                         Dimethylsulfoxid 

DPP4                           Dipeptidyl  peptidase IV 

 ECS                             Endocannabinoidsystem 

 EFS                             Elektrische Feldstimulation 

ENS                             enterisches Nervensystem 

FAAH                           fatty acid amide hydrolase 

GI                                 gastrointestinal 

GPCR                          G-Protein-gekoppelten Rezeptoren 

KCl                               Kaliumchlorid 

KO                                Knockout 

KRP                              Krebs Ringer Puffer 

LPS                               Lipopolysaccharide 

MgSO4       Magnesiumsulfat 

n                                    Stückzahl 

NaCl                              Natriumchlorid 

NaHCO3       Natriumhydrogencarbonat 



2 

NaH2PO4       Natriumdihydrogenphosphat 

NO                                 Stickstoffmonoxid 

NOS                               Stickstoffmonoxid-Synthase 

OEA                               Oleylethanolamid 

PEA                                Palmitoylethanolamid 

PPAR-α                          Peroxisome proliferator-activated receptor alpha 

TRPV-1                           Transient receptor potential cation channel    

                                        subfamily  V   member 1 

Tween80       Polyoxyethylene (20) sorbitan monooleate 

V        Volt 

wt                                     Wild-Typ 

ZNS                                  Zentrales Nervensystem 
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2. EINLEITUNG  

 

Das Endocannabinoidsystem (ECS) war in den letzten Jahrzehnten Fokus 

zahlreicher Studien, die dessen Auswirkung unter verschiedenen physiologischen 

und pathologischen Bedingungen im menschlichen Körper untersuchten. 

Der therapeutische Nutzen der ECS-Modulation umfasst entzündliche, 

kardiovaskuläre, metabolische und neurodegenerative Erkrankungen sowie die 

Schmerzregulation. Cannabinoide spielen auch eine wesentliche Rolle in 

gastrointestinalen (GI-) Prozessen wie Motilitätsstörungen, Entzündungen, 

Infektionen und Schmerzmodulation.1 Das ECS besteht aus den zwei G-Protein-

gekoppelten Rezeptoren (GPCR) CB1- und CB2-Rezeptor, den endogenen Liganden 

wie Anandamid (AEA) und 2-Arachidonoylglycerol, den biosynthetischen und 

katabolen Wegen und möglicherweise einem Membrantransporter, dessen 

Vorkommen momentan unter Diskussion steht.  

Dazu sind in den letzten Jahren andere ECS-assoziierte Rezeptoren entdeckt 

worden2, die möglicherweise als pharmakologisches target benutzt werden können, 

ohne die typischen zentralen Nebenwirkungen der endogenen und exogenen 

Cannabinoiden zu besitzen. Unter diesen neuen Rezeptoren gibt es unter anderem 

den  G-Protein-gekoppelten Rezeptor GPR119. Zahlreiche Studien haben die Rolle 

vom GPR119-Rezeptor in der Regulation der Glukosehomöostase, des 

Sättigungsgefühls und des Körpergewichts gezeigt. Dieser Rezeptor wird 

hauptsächlich im GI-Trakt exprimiert (Darm und Pankreas), nicht aber im zentralen 

Nervensystem. Genau diese Erkenntnis macht aus GPR119 ein attraktives Ziel für 

die pharmakologische Modulation des ECS. Dennoch haben sich bis heute wenige 

Studien mit der Funktion dieses Rezeptors in der GI-Motilität befasst. Es ist nicht 

bekannt, ob dieser Rezeptor an der Modulation der GI-Motilität teilnimmt und ob er 

ausschließlich durch neuronale oder auch muskuläre Mechanismen seine Wirkung 

entfalten kann. Diese Arbeit hat die möglichen Einflüsse von GPR119 auf die 

Darmkontraktilität im Dünndarm und Kolon der Maus und im menschlichen Kolon 

untersucht. Es ist weiterhin bekannt, dass der CB1-Rezeptor der Hauptrezeptor des 

ECS ist, der die Darmmotilität unter physiologischen Bedingungen beeinflussen 

kann. Deswegen wurde in dieser Arbeit auch untersucht, ob die CB1-Rezeptoren in 

der GPR119-induzierten Wirkung involviert sind und wenn ja, in welchen Abschnitten 

des unteren GI-Trakt und im welchen Ausmaß. Um diese Fragen zu beantworten 

 4 
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wurden verschiedene Organbad-Versuche mit  Maus- und Humangewebe 

durchgeführt. 

 

Fragestellungen dieser Arbeit waren: 

 

- Wie beeinflussen nicht-selektive und selektive GPR119-Rezeptor-Agonisten die  

   Kontraktilität vom Dünn- und Dickdarmgewebe der Maus? 

 

- Sind die Effekte auf humanes Kolongewebe übertragbar? 

 

- Werden die GPR119-Effekte ausschließlich durch den CB1-Rezeptor vermittelt oder  

  gibt es einen  CB1-unabhängigen Weg, der die Motilität moduliert? 

 
Die Ergebnisse dieser Untersuchungen sollen der Frage nach der Bedeutung des 

GPR119-Rezeptors im GI-Trakt nachgehen, insbesondere ob es einen möglichen 

therapeutischen Nutzen in der Therapie motilitätsassoziierten Krankheiten gibt. 
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3. MATERIAL UND METHODEN 

 

Geräte: 
 
Analog/Digital                            Power 1401  

Wandler                                     (Cambridge Electronic, Cambridge, UK) 

 

 Stimulator                                  Grass S11 Stimulator  

                                                   (Grass, Quincy, Massachusetts, USA) 

 

Verstärker                                  Transbridge 

                                                   (World precision instruments Inc.,  

                                                   Sarasota, Florida, USA) 

 

Kraftwandler                               FTO3C Force Transducer 

                                                   (Grass, Quincy, Massachusetts, USA) 

 

Stimulatorbox                             Eigenbau  

 

Computer                                    Fujitsu Siemens GmbH, München, DE 

 

Software SPIKE2                        Version 4.01  

                                                    (Cambridge Electronic, Cambridge, UK) 

 

Organbad-Set                             Eingebau 

 

Thermostat                                  Thermomix 1420  

                                                     (B. Braun,  Melsungen, DE) 

 

Doppelwandige Organbäder       Laborglaswaren Josef Schmitz,  München,  DE          
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Verwendete Substanzen 
 
SR141716                        Tocris bioscience, Ellisville, USA 
 
Oleylethanolamide            Tocris bioscience, Ellisville, USA 
 
AS 1269574                      Tocris bioscience, Ellisville, USA 
 

 

3. ELEKTRISCHE FELDSTIMULATION AN DÜNNDARM- UND KOLONSEGMENTEN    

  

3.1.1 Versuchstiere 

 

Für die Versuche wurden weibliche Balb/C  Mäuse  verwendet  (8 bis 10 Wochen          

alt). Unter standardisierten Bedingungen wurden die Tiere artgerecht in einem Raum 

unter Temperaturkontrolle (25oC ± 1 oC) mi einem künstlichem Tag-Nacht-Rhythmus 

von 12-h/12-h Tag/Nacht-Zyklus  gehalten und konnten ad  libitum trinken und 

Trockenfutter  essen. Die Versuche wurden von der Ethikkommission der Ludwig-

Maximilians-Universität München genehmigt und alle erforderlichen Anstrengungen 

wurden unternommen, um die  Zahl der Tiere  und das Leiden dabei zu minimieren. 

 

3.1.2 Humangewebe 

 

     Für die Humangewebe-Versuche wurde Gewebe aus den gesunden                                  

Resektionsrändern von Kolonresektaten  von Patienten benutzt, die aufgrund eines 

Kolonkarzinoms operiert worden sind (in Zusammenarbeit mit der Chirurgischen 

Klinik Großhadern, München und dem Human Tissue and Cell Research 

Foundation). Die Präparate stammen aus dem proximalen oder distalen Kolon von 

makroskopisch tumorfreien Kolonregionen von n=15 Patienten (Alter: 40-90 Jahren, 

27 % Frauen, 73 % Männer) (Tabelle 1). Die ausgewählten Patienten litten weder 

unter Motilitätsstörungen, noch unter chronisch entzündlichen Darmerkrankungen. 

Die Patienten wurden nicht mit Opioiden oder Motilitätshemmer prämediziert und 

lediglich 20 % wurden präoperativ chemotherapeutisch behandelt. Die mittlere 

warme Ischämiezeit für die Geweberesektate war 27 min; die mittlere kalte 

Ischämiezeit war 1 h und 14 Minuten. Nach zügigem, gekühltem Transport ins Labor 

wurden die Präparate sofort für die Versuche weiter verarbeitet. Mucosa und 

Submucosa wurden sorgfältig entfernt, so dass nur die zirkuläre und longitudinale 

Muskelschichten verblieben sind. 
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n  der Patienten Alter + Geschlecht Mittlere warme 

Ischämiezeit 

Mittlere kalte 

Ischämiezeit 

  

       n= 15 

40-90 Jahren 

Frauen: 27 % 

Männer: 73 % 

 

27 min 

 

1 h 14 min 

 
Tabelle 1. Darstellung des Patientenkollektivs der Humangewebeversuche. Für die 
Versuche wurde Gewebe aus den gesunden Resektionsrändern von Kolonresektaten  
von n=15 Patienten benutzt, die aufgrund eines Kolonkarzinoms operiert worden sind. 
Alter zwischen 40-90 Jahren, 27 % Frauen, 73 % Männer. Die mittlere warme 
Ischämiezeit war 27 min, die mittlere kalte Ischämiezeit 1h 14 min. 

 

3.1.3 Versuchsanordnung 

 

Für die Versuche standen sechs Organbäder zur Verfügung. Diesen wurden jeweils 

mit 7 ml Krebs-Ringer-Puffer (KRP) (NaCl 115,5 mM, NaHCO3 21,9 mM,  Glukose 

1,1 mM, MgSO4  1,16 mM, NaH2PO4  1,16 mM, CaCl2 2,5 mM, KCl  4,16 mM) befüllt.  

Die Pufferlösung  wurde kontinuierlich bei einer konstanten  Temperatur  von 37,0oC 

mit Carbogen (95 % O2, 5 % CO2) begast. Ca. 1 cm lange Darmabschnitte aus dem 

Dünndarm und dem mittleren und distalen Kolon der Maus wurden präpariert und in 

die Organbäder eingebracht. Dabei wurden die Darm-Segmente an beiden Enden 

mit nicht-elastischen Fäden geknotet und zwischen zwei Platin-Ringelektroden 

platziert. Das orale Ende des Segmentes wurde oben und das anale Ende unten 

positioniert. (Abb.2a) 

                                  a.                 b.      

Abb.2  Schematische Darstellung der Positionierung der Gewebe zwischen den 
Elektroden. Komplette Darmsegmente der Maus wurden an beiden Enden mit nicht-
elastischen Fäden geknotet und zwischen den Platin-Ringelektroden platziert. 
Angedeutet sind die Gefäßarkaden des Segmentes (a). Beim Humangewebe wurden 
Darmstreifen bestehend aus zirkulärer und longitudinaler Muskelschicht an beiden 
Enden geknotet und zwischen den Elektroden platziert und gespannt (b). 

 

oral 

anal 

Platinumelektrode 
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Während der Vorbereitung der Darmsegmente wurde der Puffer alle 15 Minuten 

gewechselt. Der Faden des oralen Endes wurde dann mit dem isometrischen 

Kraftwandler verbunden. Der Stimulator löste eine elektrische Feldstimulation (EFS) 

aus, die die Darmsegmente zur Kontraktion in longitudinaler Richtung anregte 

(Stimulationsparameter: Elektrische Spannung:  40 V, Pulsdauer: 0,5 ms, 

Stimulationsdauer 10 sec, Stimulationsfrequenz 10 Hz und 50 Hz). Die 

Kontraktionskraft wurde dann in Gramm (g) angegeben und durch den Einsatz eines 

Kraftwandlers, eines Signalverstärkers und eines Analog-Digital-Umsetzer (A/D-

Wandlers) konnten die ausgelösten Kontraktionen am Computer-Bildschirm 

beobachtet werden (Abb.3). Bei den Humangewebe-Versuchen war das Vorgehen 

ähnlich: Bei der Präparation des Gewebes wurden Serosa und Submucosa entfernt 

und ca. 1 cm langen und 0.5 cm breiten Streifen wurden vorbereitet und in die 

Organbäder eingebracht. Dabei wurden die Darm-Streifen an beiden Enden mit 

nicht- elastischen Fäden geknotet und zwischen zwei Platinringelektroden platziert 

und gespannt (Abb.2b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abb. 3: Versuchsaufbau. Ca. 1 cm lange Darmsegmente der Maus bzw. humane 
Darmstreifen wurden in das doppelwandige Organbad eingespannt und am oralen und 
analen Ende mittels Fäden fixiert. Die Stimulation erfolgte über die Platinumelektrode 
(Elektrische Spannung:40V, Stimulationsfrequenz: 10Hz und 50 Hz, Pulsdauer 0,5 ms, 
Stimulationsdauer: 10 sec). Die ausgelösten Kontraktionen konnten über den 
Kraftwandler abgeleitet werden und am PC-Monitor ausgewertet werden. 
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3.1.4   Versuchsdurchführung 

 

Die Betäubung der Versuchstiere wurde mit Isofluran (Forene®) durchgeführt. Nach 

erfolgreicher Betäubung wurden die Tiere durch zervikale Dislokation getötet. Das 

Abdomen wurde dann durch einen medianen Schnitt durch die Linea alba geöffnet 

und das Ileum, Jejunum und Kolon wurden dargestellt und schnell entnommen. Die 

entnommenen Darmabschnitte wurden dann in mit begastem KRP gefüllten 

Petrischalen platziert. Die Mesenterialgefäße samt Bindegewebe wurden sorgfältig 

präparativ entfernt um glatte Darmsegmente für die weitere Präparation zu erhalten.  

Ca. 1 cm lange Darmabschnitte aus dem Dünndarm und dem mittleren und distalen 

Kolon wurden präpariert und in die Organbäder eingebracht. Dabei wurden die Darm-

Segmente an beiden Enden mit nicht-elastischen Fäden geknotet und zwischen zwei 

Platinringelektroden platziert. Während der Vorbereitung der Darmsegmente wurde 

der Puffer circa alle 15 Minuten gewechselt. Nach einer Äquilibrierungsphase von ca. 

30 Minuten wurde der Puffer der Organbäder gewechselt und die Darmsegmente alle 

5 Minuten elektrisch stimuliert. Bei stabilen und konstanten Kontraktionen wurden die 

ersten drei gleichmäßigen Kontraktionen als Kontrollwert benutzt. Placebo-Versuche 

zeigten konstante Kontraktionen über mehreren Stunden. 

 

Die Testsubstanzen wurden dann alle 20 Minuten (vier Kontraktionen in 5-minütigen 

Abständen waren ausreichend als Einwirkzeit für die Substanz) in kumulativ 

steigender Konzentration in die Organbäder eingeführt. Bei den Versuchen mit dem 

CB1-Antagonist SR141716 wurde, vor der Gabe der zu untersuchenden Substanz, 

die Einwirkzeit des Antagonisten auf 1 Stunde verlängert.   

 

Die OP-Präparate aus dem menschlichen Kolon wurden nach der Entnahme aus den 

Patienten sofort in ein mit Carbogen aufgesättigtem KRP eingebracht und ins Labor 

transportiert. Die mittlere warme Ischämiezeit für die Geweberesektate war 27 min; 

die mittlere kalte Ischämiezeit war 1 h und 14 Minuten. Bei der Präparation des 

Gewebes wurden  Serosa und Submucosa sorgfältig entfernt und ca. 1 cm langen 

und 0.5 cm breiten Streifen wurden vorbereitet und in die Organbäder eingebracht. 

Die Segmente wurden an beiden Enden mit chirurgischen Fäden geknotet und an 

den Kraftwandler angebracht. Auch bei diesen Versuchen wurde, nach einer 

Äquilibrierungsphase von ca. 30 Minuten, der Puffer der Organbäder gewechselt und 

die Darmsegmente alle 5 Minuten elektrisch stimuliert.  
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In dieser Studie wurden folgende Versuche durchgeführt: 

- Wirkung des nichtselektiven GPR119-Agonisten Oleylthanolamide (OEA) auf die  

  Kontraktilität im Dünndarm und Kolon der Maus 

- Wirkung des selektiven GPR119-Agonisten AS 1269574 auf die Kontraktilität im  

  Dünndarm und Kolon der Maus 

- Plazeboversuche mit Mausgewebe 

- Wiederholung der Versuche in Anwesenheit des CB1-Antagonist SR141716  

- Wirkung von OEA und AS 1269574 im menschlichen Kolon 

- Plazeboversuche mit menschlichem Gewebe 

- Wiederholung der Humangewebe-Versuche in Anwesenheit von SR141716    
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3.1.5 Auswertung 

 

Es wurden die Amplituden der elektrisch induzierten Kontraktionen ausgewertet.  

Die Amplitude wurde aus dem Abstand zwischen Basallinie und dem jeweiligen 

maximalen Ausschlag der Reflexantwort ermittelt (Abb.4). Die Kontraktionskraft 

wurde in Gramm (g) gerechnet. Als Kontrollwert wurde der Mittelwert aus den ersten 

drei Kontrollkontraktionen (ohne Hinzugabe einer Substanz) gewählt und als 100 % 

angesehen. Bei Zugabe der Testsubstanzen wurde die Änderung der 

Kontraktionsamplitude erfasst und  erneut der Mittelwert daraus ausgerechnet.  Die 

Wirkung der Testsubstanzen wurde dann im Verhältnis zum Kontrollwert von 100 % 

berechnet. Die Amplitude wurde mit der Software SPIKE2 4.01 (Cambridge 

Electronic, Cambridge, U.K.) ausgewertet. 

 
 

 
 

 

  

Abb.4 Schematische Darstellung eines Beispielversuches mit Amplitudenmessung 

einer EFS-ausgelösten Kontraktion. Zeit zwischen den Kontraktionen = 5 min. 

Kontraktionsamplitude in Gramm (g) gemessen. (Elektrische Spannung: 40V, 

Stimulationsfrequenz: 10Hz und 50 Hz, Pulsdauer 0,5 ms, Stimulationsdauer: 10 sec). 

 

 

 

3.1.6  Statistische Auswertung 

 

Die Daten wurden als Mittelwert ± Standardfehler (Standard error of the mean  

S.E.M.) angegeben. Das Symbol „n“ steht für die Anzahl unabhängiger Experimente 

an  Darmgewebe von unterschiedlichen Mäuse/Humanpräparate. Zum Vergleich der 

Mittelwerte wurde der Student-t-Test für gepaarte Stichproben angewendet. Es 

wurde ein Signifikanzniveau von p < 0,05 festgelegt. 

 

 

 

 

 

5 min 

 

5 g 

2 g 
Basallinie 

4 g 
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4 ERGEBNISSE 

 

4.1 ELEKTRISCHE FELDSTIMULATION AN DÜNNDARMSEGMENTEN DER MAUS  

 

4.1.1 Wirkung des nicht-selektiven GPR119-Agonisten OEA auf die  glattmuskuläre   

Kontraktilität des Dünndarms der Maus 

 

Die Zugabe von OEA in kumulativ steigenden Konzentrationen (100 nM – 100 µM) 

führte zu einer Hemmung der ausgelösten Kontraktionen im Dünndarm der Maus nur 

in hohen Konzentrationen (10 µM bis 100 µM). Bis zur Konzentration von 1 µM 

waren keine signifikanten Änderungen zu sehen. Bei 10 µM wird eine 

Amplitudenabnahme von 12 ± 2,5 % beobachtet. In der höchsten Konzentration von 

100 µM wurde eine Hemmung von 71± 4,5 % erreicht (n>6, p < 0,005) (Abb. 5). 

 

 

                             

Abb.5 Einfluss von OEA auf die Kontraktilität im Dünndarm der Maus. Die früheste  
signifikante Abnahme der kontraktilen Aktivität wird mit 10 µM erreicht (n>6, p< 0,005) 
mit einer Amplitudenabnahme von 12 ± 2,5 %. In der höchsten Konzentration von 100 
µM wurde eine Hemmung von 71 ±  4,5 % erreicht. 
 
 
 

 

. 
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4.1.2 Wirkung des selektiven GPR119-Agonisten AS1269574  auf die glattmuskuläre  

Kontraktilität des Dünndarms der Maus 

 

Wie bei OEA führt AS1269574 zu einer schwachen Abnahme der Kontraktilität im 

Dünndarm der Maus. Es zeigt sich lediglich in der  höchsten Konzentration von  

100 µM  eine Abnahme der Amplitude von 22 ± 3,5 % erreicht (n>6, p< 0,0001) 

(Abb.6).  

 

                                     

                
 

Abb.6 Einfluss des selektiven GPR119 Agonisten AS1269574 auf die Kontraktilität im 

Dünndarm der Maus. Es zeigte sich einen Einfluss nur bei einer Konzentration  von 

100 µM mit einer Abnahme der Amplitude von 22 ± 3,5 %   

(p-Wert bei 100 µM *** = < 0,0001, n>6)  
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4.1.3   Interaktion zwischen dem CB1-Rezeptor-Blocker SR141716 und OEA im Dünndarm 

der Maus 

 

Um die mögliche Interaktion zwischen dem CB1-Rezeptor und dem GPR119-

Rezeptor zu untersuchen erfolgte nun die pharmakologische Antagonisierung des 

CB1-Rezeptors mit dem selektiven Antagonisten SR141716 in einer Konzentration 

von 100 nM. Bei hohen Konzentrationen (10-10 µM) von OEA zeigt sich mit und 

ohne Antagonist eine Reduktion der Kontraktionsamplitude. Signifikante 

Unterschiede wurden nicht beobachtet (n >6, p-Wert nicht signifikant). (Abb.7) 
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Abb.7 Interaktion zwischen OEA und SR141716 im Dünndarm der Maus. Es 

zeigt sich kein signifikanter Unterschied in der OEA-Wirkung bei der Hemmung 

der Kontraktilität nach SR141716-Gabe (n>6). 
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4.1.4 Interaktion zwischen dem CB1-Rezeptor-Blocker SR141716 und  AS1269574 im 

Dünndarm der Maus 

 

Wie bei OEA wird die Wirkung von AS1269574 durch SR141716 nicht signifikant 

beeinflusst. (Abb.8) 
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Abb.8 Interaktion zwischen AS1269754 mit SR141716. Auch im Dünndarm zeigen sich 

keine signifikanten Unterschiede nach CB1-Antagonismus (p-Wert nicht signifikant) 

 

 

4.2 ELEKTRISCHE FELDSTIMULATION AN KOLONSEGMENTEN DER MAUS 

 

4.2.1 Wirkung des nicht-selektiven GPR119 Agonisten OEA auf die glattmuskuläre    

       Kontraktilität des Kolon der Maus 

 

OEA führt im Kolon der Maus zu einer konzentrationsabhängigen Hemmung der 

Kontraktilität schon ab einer Konzentration von 1µM. Diese Konzentration führt zu 

einer Abnahme der Kontraktilität von 6,7 ± 1,4  %. Bei 100 nM wurde keine 

signifikante Wirkung beobachtet. Bei 10 µM kommt es zu einer Abnahme der 

Kontraktionen von  20 ± 3 %. In der höchsten Konzentration von OEA kommt es zu 

einer ausgeprägten Abnahme der Kontraktilität von 81,5 ± 5 % (n > 6) (Abb.9)   

p-Wert bei 1 µM *** = 0,0007, p-Wert bei 10 µM *** = < 0,0001, p-Wert bei 100 µM *** 

= < 0,0001 
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Abb.9 Wirkung von OEA im Kolon der Maus. Es zeigen sich signifikante  Abnahmen 

der muskulären Kontraktilität ab einer Konzentration von 1 µM ( 6,7 ± 1,4 %).  Bei 10 

µM kommt es zu einer Abnahme der Kontraktilität um 20 ± 3 %. Die höchste 

hemmende Wirkung ist bei einer OEA Konzentration von 100 µM zu sehen( 81,5 ± 5 %). 

(n > 6, p-Wert bei 1 µM *** = 0,0007, p-Wert bei 10 µM *** = < 0,0001, p-Wert bei 100 µM 

*** = < 0,0001) 
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4.2.2 Wirkung des selektiven GPR119-Agonisten AS1269574 auf die glattmuskuläre 

Kontraktilität im Kolon der Maus 

 

Ähnlich wie OEA zeigt AS1269574 eine ausgeprägte Hemmung der Kontraktilität im 

Kolon der Maus schon ab einer Konzentration von 10 µM (Abnahme der Kontraktilität 

um 50,5 ± 6 %). In der höchsten Konzentration von 100 µM ist die Abnahme der 

Kontraktilität am größten ( 88 ± 3,5 %, n>6) (Abb.10). p-Wert *** bei 10 µM = 0,0002, *** 

bei 100 µM = < 0,0001 

 

 

              
 

Abb.10 Konzentrationsabhängige Hemmung der Kontraktilität von AS1269574 im 

Kolon der Maus. Eine signifikante Abnahme der Kontraktilität findet sich schon ab 

einer Konzentration von 1 µM. Die maximale Abnahme der Kontraktilität findet sich bei 

einer Konzentration  von 100 µM. (n>6, bei 10 µM p = 0,0002, bei 100 µM p  < 0,0001) 
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4.2.3 Interaktion zwischen dem CB1-Rezeptor Blocker SR141716 und OEA im Kolon der 

Maus 

 

Wie bei den Versuchen im Dünndarm, erfolgte auch im Kolon die Antagonisierung 

des CB1-Rezeptors um die mögliche Interaktion mit dem nicht-selektiven GPR119-

Agonisten OEA zu untersuchen. 

Die Zugabe von SR141716 (100 nM, Äquilibrierungsphase von 1 h) vor OEA zeigt 

einen signifikanten Einfluss auf die OEA-induzierte Wirkung auf die Kontraktilität. Bei 

den höheren OEA-Konzentrationen (10 μM und 100 μM) wird eine signifikante 

Abnahme der hemmenden Wirkung auf die Kontraktilität beobachtet. Bei einer OEA 

Konzentration von 10 µM nimmt die Amplitude nach SR141716 Gabe um 11,5 ± 3 % 

zu. Bei 100 µM nimmt die Amplitude der Kontraktionen um 16,5 ± 7 % zu (p-Wert < 

0,005, n=7) (Abb.11). 

            

     

K
ontr

ollw
er

t

10
0 

nM M
1 

M
10

 
M

10
0 

50

100
OEA

OEA +  SR141716

Konzentration (M)

    OEA + SR141716 - Kolon, Maus

***

***

***

A
m

p
li

tu
d

e
 i

n
 %

 v
o

m
 K

o
n

tr
o

ll
w

e
rt

 
Abb.11  Einfluss vom CB1-Rezeptor Antagonist SR141716 (100 nM) auf die OEA-

vermittelte Hemmung der kontraktilen Aktivität im Kolon der Maus. Es zeigt sich eine 

partielle Antagonisierung der OEA-vermittelten Hemmung der Kontraktionen mit einer 

Signifikanz von p<0,005, n=7. 
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4.2.4 Interaktion zwischen dem CB1-Rezeptor Blocker SR141716 und  AS1269574 im 

Kolon der Maus 

 

Die Gabe von SR141716 (Äquilibrierungsphase von 1 h) führt zu einer deutlichen 

Antagonisierung der AS1269574 –Wirkung im Kolon der Maus. AS 1269574 bis zu 

einer Konzentration von 10 µM entfaltet keine hemmende Wirkung mehr,  und die 

Amplitude der Kontraktionen bleibt bei auf Niveau der Kontrollwerte. Die Wirkung von 

AS1269574 in höherer Konzentration (100 µM) wird aber nur partiell von SR141716 

antagonisiert, mit einer Zunahme der Amplitude um 28 ± 6 % (n=7, p< 0,0001).  

Hier wird den Kontrollwert nicht erreicht (Abb.12).  
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Abb. 12 Die Abbildung zeigt den Einfluss von AS1269574 vor und nach CB1-Blockade 

durch SR141716. Die Blockade führt zu einer Aufhebung der AS1269574-Wirkung bis 

zu einer Konzentration von 10 µM. Bei einer AS1269574 Konzentration von 100 µM ist 

die Antagonisierung nur partiell, mit einer Zunahme der Amplitude um 28 ± 6 % (n=7, 

Signifikanz p< 0,0001) 
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4.3   ELEKTRISCHE FELDSTIMULATION AN HUMANEN KOLONSEGMENTEN  

 

4.3.1  Wirkung des nicht-selektiven GPR119-Agonisten OEA auf die  glattmuskuläre     

  Kontraktilität im menschlichen Kolon 

 

OEA zeigt eine konzentrationsabhängige Hemmung der Kontraktilität schon ab einer 

Konzentration von 10 nM ( 3 ± 1,5%, p < 0,03, n=6). Bei 100 nM wird eine Abnahme 

der Kontraktilität von 9 ± 2,5 % (p< 0,006) beobachtet.  Bei 1 µM zeigt sich eine 

Abnahme der Amplitude um 18 ± 3 % (p< 0,0001). Bei 10 µM kommt es im Vergleich 

zur vorherigen Konzentration zu einer weniger ausgeprägten Abnahme der 

Kontraktilität von 16 ± 5 % (p< 0,004). Die höchste OEA Konzentration von 100 µM 

erzielt die höchste hemmende Wirkung auf die Kontraktilität mit einer Abnahme der 

Kontraktionsamplitude von 54 ± 6 % (p< 0,0001). (Abb.13) Die Trägersubstanzen in 

dieser Versuchsreihe (DMSO, Aqua ad iniectabilia und Tween80) zeigten keinen 

Einfluss auf die Kontraktionen (Ergebnisse nicht aufgeführt).  

 

                    
 

Abb.13 Darstellung des Einflusses von OEA in kumulativ steigenden Konzentrationen                

(10 nM – 100 µM) auf die glattmuskuläre Kontraktilität im menschlichen Kolon (n>6). 

Bei 10 nM wird eine Amplitudenabnahme von 3 ± 1,5% erreicht (p < 0,03). Bei 100 nM 

beträgt die Abnahme der Kontraktionen 9 ± 2,5 % (p< 0,006).  Bei 1 µM zeigt sich eine 

Abnahme der Amplitude um 18 ± 3 % (p< 0,0001). Die höchste OEA-Konzentration (100 

µM) erreicht eine Abnahme der Kontraktilität von 54 ± 6 % (n=6, p< 0,0001) 
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4.3.2  Wirkung des selektiven GPR119-Agonisten AS1269574 auf die glattmuskuläre   

 Kontraktilität im menschlichen Kolon 

 

Der selektive GPR119-Agonist AS1269574  verdeutlicht seine Wirkung durch die 

kontinuierliche und signifikante Abnahme der Kontraktilität im humanen Kolon. Er 

entfaltet seine Wirkung schon ab einer Konzentration von 10 nM, mit einer 

signifikanten Abnahme der Amplitude um 3,5 ± 1 % (p= 0,0025). Bei 100 nM wird eine 

Abnahme der Kontraktilität um 11,5 ± 2 % beobachtet (p< 0,0001).  Es zeigt sich 

weiterhin eine konzentrationsabhängige Hemmung der Kontraktilität bei 

Konzentrationen von 1 µM, 10 µM und 100 µM mit den jeweiligen Abnahmen der 

Amplituden um 37 ± 6 %, 67 ± 6 % und 91,5 ± 1 % (p < 0,0001). Unter 100 µM 

AS1269574 zeigt sich eine fast vollständige Hemmung der Kontraktilität (n = 6). 

(Abb.14) 

 

                
   

Abb.14  Einfluss von AS1269574 in kumulativ steigender Konzentration (10 nM-100 µM) 
auf die Kontraktilität im menschlichen Kolon. Bei 10 nM kommt es zu einer 
signifikanten Abnahme der Amplituden um 3,5 ± 1 % (p=0,0025). In der höheren 
Konzentration von 100 nM beträgt die Abnahme der Kontraktionsamplitude 11,5 ± 2 % 
(p< 0,0001). Bei 1 µM wird eine Abnahme von 37 ± 6 %, bei 10 µM von 67 ± 6 % und bei 
100 µM von 91,5 ± 1 % erreicht (p < 0,0001).  Es zeigt sich also eine 
konzentrationsabhängige Hemmung der Kontraktilität schon bei niedrigen 
Konzentrationen. 
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4.3.3 Interaktion zwischen dem CB1-Rezeptor-Blocker SR14716  und  OEA  im 

menschlichen Kolon 

 

Der nicht-selektive GP119-Agonist OEA bewirkt dosisabhängig eine Abnahme der 

Kontraktilität, die ab einer Konzentration von 10 nM signifikant ist. Der CB1-Rezeptor-

Antagonist SR141716 (100 nM) antagonisiert vollständig die Wirkung von OEA im 

menschlichen Kolon (Abb.15). Die Zugabe von OEA bei vorheriger Gabe von 

SR147161 (Äquilibrierungsphase von 1 h) zeigt keine Einflüsse auf die Kontraktilität 

des Kolons mehr; die Amplituden der Kontraktionen bleiben bis zum Ende des 

Versuchs auf Niveau der Kontrollamplitude von 100 % (n= 6, p< 0,0001). Die für diese 

Versuche benutzte Trägersubstanzen DMSO, Tween80 und Aqua ad iniecatabilia 

zeigten keinen Einfluss auf die EFS-ausgelösten Kontraktionen (Ergebnisse nicht 

aufgeführt). Es zeigt sich also eine total Aufhebung der OEA Wirkung nach CB1-

Antagonisierung. 
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Abb. 15  Einfluss des nicht-selektiven GPR119 Agonisten OEA alleine und nach 
Zugabe des CB1-Antagonisten SR141716A (100 nM) im menschlichen Kolon. Nach 
SR141716-Gabe entfaltet OEA keine hemmende Wirkung mehr, und die Kontrollwerte 
werden wieder erreicht (n= 6, p< 0,0001). Es zeigt sich also eine totale 
Antagonisierung der OEA-vermittelten Hemmung der Kontraktilität. 
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4.3.4 Interaktion zwischen dem CB1-Rezeptor-Blocker SR141716 und  AS1269574  im 

menschlichem  Kolon 

 

Der selektive GP119-Agonist AS1269574 führt zu einer konzentrationsabhängigen 

Abnahme der Kontraktilität im menschlichen Kolon. Die Zugabe vom CB1-Rezeptor-

Blocker SR14716 führt  zu einer partiellen Antagoniserung der AS1269574-induzierten 

Wirkung (n=6) (Abb.16). Bei AS1269574 Konzentrationen von 10 nM wird der 

Kontrollwert von 100 % erreicht, was eine vollständige Antagonisierung bei dieser 

niedrigen Konzentrationen zeigt. Bei 100 nM zeigt sich, nach Gabe von SR141716, 

eine Zunahme der Amplituden von 11,5 ± 2 %, was den Kontrollwert von 100 % 

wieder erreicht. Bei einer steigenden AS129574-Konzentration von 1 µM zeigt sich 

nach CB1-Blockierung eine Zunahme der Amplitude um 27 ± 4,5 %; der Kontrollwert 

von 100 % wird aber nicht erreicht, was eine partielle Antagonisierung zeigt. Bei einer 

AS1269574-Konzentration von 10 µM kommt es durch SR141716-Zugabe zu einer 

Zunahme der Kontraktilität um 43 ± 5 %. In der höchsten AS1269573-Konzentration 

(100 µM) führt die CB1-Antagonisierung zu einer Zunahme der Amplitude um 21,5 ± 3 

%. Signifikanz der Interaktion: p< 0,0001. Die für diese Versuche benutzte 

Trägersubstanzen DMSO, Tween80 und Aqua ad iniectabilia zeigten keinen Einfluss 

auf die EFS-ausgelösten Kontraktionen (Ergebnisse nicht aufgeführt).  
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Abb.16 Einfluss des selektiven GPR119-Agonisten AS1269574 alleine und nach 

Zugabe von SR141716 (100 nM) auf die Kontraktilität im menschlichen Kolon. Es zeigt 

sich eine partielle Antagonisierung durch SR141716 (p< 0,0001). Die Kontrollwerte von 

100 % werden nicht bei allen Konzentrationen erreicht. 
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5. ALLGEMEINE  DISKUSSION 

 

5.1 ENTERISCHES  NERVENSYSTEM (ENS)  

 

Die Innervation des Gastrointestinaltrakt (GI-Trakt) erfolgt durch das zentrale (ZNS) 

und durch das enterische Nervensystem (ENS). Diese zwei Systeme kommunizieren 

miteinander, obwohl das ENS, bekannt als „Gehirn des Magen-Darm-Traktes“, viele      

Funktionen  wie z.B die GI-Motilität und Sekretion weitgehend unabhängig vom ZNS 

regulieren kann.3 Die intrinsische Innervation des Darmes setzt sich zusammen aus  

Ganglienzellen die sich in zwei Plexus befinden: der myenterische Plexus (auch 

Auerbach-Plexus genannt) zwischen der Ring- und der Längsmuskelschicht der 

Muscularis externa und der submuköse Plexus (Meissner-Plexus) in der 

Submucosa.4 Während die Neurone im Plexus myentericus die glattmukuläre 

Aktivität des Darmes regulieren, modulieren die Neurone im Plexus submucosus die 

sekretorische Funktion und die Durchblutung.5 Beide Plexus werden von 

präganglionären parasympatischen und postganglionären sympathischen Fasern 

innerviert, was die modulierenden Effekte des ZNS auf das ENS vermittelt. Unter den 

enterischen Neuronen findet man, je nach Funktion und Eigenschaften, 

afferente/sensorische Neurone, Interneurone und efferente, postgangionäre-

parasympathische Neurone.6, 7 Sensorische Neurone nehmen intraluminale 

Veränderungen im GI-Trakt (chemisch/mechanisch) wahr und aktivieren dann 

Interneurone, die die sekretomotorische Neurone entweder stimulieren oder 

hemmen. Die Mehrheit der exzitatorischen Neuronen benutzt Acetylcholine (ACh) 

und Substanz P als exzitatorische Neurotransmitter/Neuropeptid, während andere 

Neurone inhibitorische Neurotransmitter wie Stickstoffmonoxid (NO), vasoaktives 

intestinales Peptid (VIP), Neuropeptid Y (NPY) und Adenosintriphosphat (ATP) in 

unterschiedlichen Zusammensetzungen verwenden.8 Das enterische Nervensystem 

wird durch das ZNS und die Hypothalamus-Hypophysen-Nebennieren-Achse 

moduliert, was zusammen als „Hirn-Darm-Achse“ bezeichnet wird („Brain-gut Axis“). 

Unter physiologischen Bedingungen erreichen Signale aus dem GI-Trakt das Gehirn, 

was wiederum zu Änderungen in der Motilität, Sekretion und Immunsystem des GI-

Traktes führen kann. 9 
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5.2   Endocannabinoidsystem (ECS) 

 

Seit tausenden von Jahren wurden pflanzliche- und Kräuterpräparate für die 

Therapie gastrointestinaler Beschwerden eingesetzt.10 Unter diesen Präparaten hat 

Cannabis sativa eine wichtige Stellung bei der Behandlung verschiedener Störungen 

wie Migräne, Krampfanfälle, Glaukom, Muskelspasmen, Schmerz, Übelkeit und 

Diarrhö gehabt.11 Weitere Cannabis-Einsatzgebiete waren GI-Infektionen, 

entzündliche Prozesse und Motilitätsstörungen.12 Die verantwortliche Cannabis-

Komponente mit diesen positiven Eigenschaften war Δ9-tetrahydrocannabinol (Δ9-

THC), erstmals in den Sechzigerjahren entdeckt. 13  Seitdem wurde ein neuer 

endogener Signalweg identifiziert, das sog. Endocannabinoid System (ECS).  

Die Hauptkomponente dieses Systems sind: 

- die CB1- und CB2-Rezeptoren ( entdeckt und kloniert jeweils in 1990 und 1993)14 15 

- endogene CB-Liganden (wie Anandamide und 2-arachidonylglycerol (2-AG)) 16, 17 

- fatty acid amide hydrolase (FAAH), das wichtigste Enzym zur Inaktivierung der    

  endogenen CB-Liganden  und die biosynthetische und metabolische Wege der    

  Endocannabinoiden18, 19  

- und  Endocannabinoid-Membrantransporter, die weiter erforscht werden müssen 

   (es gibt noch keinen Konsensus bezüglich des Transportmechanismus) 20 

Durch das ECS werden viele physiologische und pathologische Prozesse moduliert  

und beeinflusst. Es nimmt u.a. Teil an der Energiebilanz und der Nahrungsaufnahme 

durch zentrale und periphere Wirkungen, inklusive dem GI-Trakt. 21 Dadurch führen 

Cannabinoid-Rezeptor-Agonisten zu einer vermehrten Nahrungs- und 

Körpergewichtszunahme, was in der Therapie von Kachexie im Rahmen HIV-

Erkrankungen und Tumoren zu Nutzen kommen kann. 22, 23  Cannabinoide besitzten 

weiterhin effektive antiemetische Eigenschaften .24 Das Vorhandensein von zentralen 

Nebenwirkungen macht aber deren Einsatz eher zur Second-Line-Therapie.25  

 

Das ECS spielt auch eine Rolle in der Modulation der Schmerzwahrnehmung, was 

positive Effekte in der Behandlung von chronischen Schmerzzuständen und Spastik 

bei Multiple Sklerose zeigt. 26, 27  Auch neurodegenerative Erkrankungen wie Morbus 

Alzheimer können durch die ECS-Modulation positiv beeinflusst werden. 28  
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Zu guter Letzt zeigen Cannabinoide auch antitumorale Wirkungen, was ein 

attraktives pharmakologisches target in der Therapie maligner Tumoren darstellt.29 

 

 5.3   CANNABINOIDREZEPTOREN 

 

Wie bereits in Kapitel 2 erwähnt, sind der CB1- und CB2-Rezeptor die klassischen 

Cannabinoidrezeptoren für alle CB–Agonisten (Endocannabinoide, synthetisch 

hergestellte Cannabinoide und Phytocannabinoide). Diese zwei Rezeptoren gehören 

der Familie der G-Protein-gekoppelten Rezeptoren (GPCR) an. 30 Während CB1 

hauptsächlich im zentralen und peripheren Nervensystem lokalisiert ist, wird CB2 

vorwiegend auf Immunzellen exprimiert und wird bei entzündlichen Prozessen 

verstärkt exprimiert. 31-33 Im Darm sind die CB1-Rezeptoren in den zwei Plexus des 

ENS lokalisiert; Plexus submucosus und Plexus myentericus.32 In diesen Plexus 

finden sich CB1- und CB2-Rezeptoren auf Motoneuronen, Interneuronen und primär-

afferente Neuronen. Auf inhibitorischen Motoneuronen, die Stickstoffmonoxid-

Synthase (NOS) enthalten, sind weder CB1-
 noch CB2-Rezeptoren zu finden.34, 35  

Die Wirkung der CB-Rezeptoren auf die Motilität im GI-Trakt wird  in 6.1.5 erläutert.  

 

Es werden weiterhin andere Rezeptoren durch bestimmte Endocannabinoide 

aktiviert: u.a. Transient receptor potential vanilloid 1 (TRPV1), PPARα (Peroxisome 

proliferator-activated receptor alpha), GPR55 und GPR119. 

 

Das Endocannabinoid Anandamide und Oleylethanolamide (OEA) sind beide 

Liganden des TRPV1 Rezeptors.36 OEA ist ein Lipid mit struktureller Ähnlichkeit zu 

Anandamid, besitzt aber keine bzw. eine nur schwache CB1- und CB2-Affinität. Es 

gibt Hinweise, dass das ECS eine Rolle bei der Modulation der Aktivierung des 

TRPV1 Rezeptors spielen könnte.37 Dieser Rezeptor, zusammen mit dem CB1-

Rezeptor, kann z.B. die viszerale Hyperalgesie beeinflussen.38 Es findet sich auch 

ein Zusammenspiel zwischen ECS und TRPV1 bei der Modulation der Motilität unter 

pathologischen Zuständen.39 Die Pharmakologie der Interaktionen zwischen 

Endocannabinoiden und TRPV1 ist aber komplex und noch nicht völlig geklärt; 

weitere Studien sollen diese Interaktionen besser Untersuchen. 
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PPARα ist ein intrazellulärer Rezeptor, der bei Aktivierung als Transkriptionsfaktor 

die Expression verschiedener Gene reguliert. Dieser Rezeptor ist im ganzen GI-Trakt 

lokalisiert, mit der höchsten Konzentration im Dünndarm.40 OEA und PEA 

(Palmitoylethanolamid) sind keine CB-Rezeptor Liganden, aktivieren jedoch PPARα. 

Wahrscheinlich sind auch THC und Anandamid PPARα-Agonisten. Die Interaktion 

zwischen PPARα und den Endocannabinoiden führt zur Regulation des 

Sättigungsgefühl, der Gewichtsreduktion, der Lipolyse, der Analgesie und zu Anti-

Entzündlichen Effekten.41 Dieser intrazelluläre Rezeptor scheint nicht an die 

Regulation der Motilität im GI-Trakt teilzunehmen. 

 

GPR55 wurde erstmals in 1999 als orphan G-Protein-gekoppelter Rezeptor 

identifiziert und42, trotz geringer Strukturähnlichkeiten zu den CB-Rezeptoren,  wurde 

dieser Rezeptor den CB-Rezeptoren zugeordnet.43 Doch der Cannabinoid-Status 

wird bis heute kontrovers diskutiert.44 GPR55 wird hauptsächlich im ZNS, im oberen-

GI-Trakt und den Nebennieren exprimiert. Eine Studie suggeriert GPR55 als neuer 

CB-Rezeptor mit CB1- und CB2-unabhängigen Signalwegen. 45 Unter den vielen 

Substanzen die getestet worden sind,  zeigte auch OEA, ein Lipid mit struktureller 

Ähnlichkeit zum Endocannabinoid Anandamid ohne CB-Rezeptor Affinität, GPR55-

Aktivität. 43 

 

5.4 GPR119 

 

In der Literatur findet man verschiedene Namen die für denselben Rezeptor benutzt 

worden sind: u.a. GPCR2 46 und 19AJ.47 2003 wurde erstmals GPR119 (zusammen 

mit anderen ähnlichen G-Protein gekoppelten Rezeptoren) durch eine schwedische 

Arbeitsgruppe als Waise Klasse 1 (Rhodopsin-Typ) G-Protein gekoppelter Rezeptor 

identifiziert. 48 Fredriksson ordnete den Rezeptor zu einer neuen Untergruppe der 

Bioamin-Rezeptoren zu. Griffin G. 49 zeigte, dass  GPR119 die größte Affinität zu den 

Cannabinoid-Rezeptoren besitzt, mit Oleylethanolamide als effektivstes und 

potentestes Ligand für diesen Rezeptor, im Gegensatz zur Studie von Bonini JA et 

al.,50 die bestimmte Retinoide als Rezeptor-Agonisten suggeriert hatte (all-trans 

Retinsäure). Overton et al.51 beschrieb auch die OEA-induzierte Aktivierung von 

Hefen die entweder humanen oder murinen GPR119-Rezeptoren exprimierten. 

Andere Cannabinoide wie AEA haben dagegen keine Wirkung entfaltet. Aus diesen 

Berichten wurde dann GPR119 als putativer Cannabinoid-Rezeptor klassifiziert. 
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Doch die OEA-Konzentrationen die den GPR119-Rezeptor aktivieren können 

scheinen physiologischerweise zu hoch zu sein; andere mögliche potente endogene 

Agonisten müssen noch identifiziert werden. GPR119 wird hauptsächlich im 

Pankreas und im gastrointestinalen Trakt exprimiert.  

                            

 

Seit der Entdeckung von GPR119 in den pankreatischen Insel- und β-Zellen wurde 

eine modulierende Rolles des Rezeptors  auf die Insulin-Freisetzung spekuliert. 

Seitdem haben viele Studien gezeigt, dass GPR119-Agonisten tatsächlich die 

Glukoseabhängige Insulin-Freisetzung modulieren, ähnlich wie GLP-1-Analoga. 

Dabei gibt es keine signifikante Stimulation des basalen Glukose-Wertes.52-54 

GPR119 ist auch in den intestinalen neuroendokrinen L-Zellen lokalisiert, wo es die 

GLP-1 Freisetzung stimuliert. 55, 56 In  einer Studie wurde herausgefunden, dass 

GPR119-Agonisten die GLP-1 Sekretion in GLUTag Zellen, intestinalen Zellen und in 

vivo glukoseunabhängig stimulieren. Im Vergleich war die GPR119-vermittelte 

Insulinfreisetzung, wie bereits beschrieben, glukoseabhängig.57 Verschiedene 

Studien haben gezeigt, dass GPR119-Agonisten, sowohl in normoglykämischen als 

auch in hyperglykämischen Nagetiermodellen die Glukose-Peaks während des 

oralen Glukosetoleranztests (oGTT) verhindern/supprimieren können.58 Das Inkretin 

GLP-1 hat aber viele Eigenschaften: Es inhibiert auch die glukoseabhängige 

Glukagon-Freisetzung, es verzögert die Magenentleerung und erhöht das 

Sättingungsgefühl  in Tier- und Humanmodelle. Daraus folgt eine verminderte 

Kalorieneinnahme mit konsequenter Gewichtsabnahme.59, 60 

 

Verschiedene Moleküle wurden als GPR119-Liganden identifiziert. Unter diesen z.B. 

platelet-activating factor und lyso-platelet activating factor, lysophosphatidic acid, 

lysophosphatidylserine, und  lysophosphatidylcholine.52 Seitdem auch OEA als 

Ligand für GPR119 beschrieben worden ist, wurde spekuliert, dass OEA, zusätzlich 

zur den Wirkungen auf PPARα, auch ein endogener Ligand von GPR119 ist.2 Es 

fehlen aber weitere Studien um das zu beweisen. 

Andere GPR119-Agonisten sind in den letzten Jahren untersucht worden. 

Unterdessen PSN375963, PSN632408 und AS1269574. Während OEA die Insulin-

Ausschüttung als Folge eines cAMP-Anstiegs und der Verstärkung der Glukose-

abhängigen Ca2+-Freisetzung erhöhte, hatten die synthetisch hergestellten GPR119-
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Agonisten PSN375963 und PSN632408 unterschiedliche Effekte auf die  Insulin 

Freisetzung, cAMP und intrazelluläres Ca2+. 54  Das zeigte, dass trotz selektivem 

GPR119-Agonismus, andere GPR119-unabhängige Signalwege aktiviert werden 

könnten. In den letzten Jahren wurden weitere hochselektive und hochpotente 

GPR119-Agonisten entwickelt, mit denen die Wirkungen dieses Rezeptors besser 

untersucht werden können. Unter diesen neuen Substanzen zeigt AS1269574 die 

besten Eigenschaften (Abb.17). Dieser neue GPR119-Agonist wurde als potenzielles 

Pharmakon in der oralen Diabetes mellitus Typ II-Therapie untersucht und führte 

dabei zu einer in vitro und in vivo glukoseabhängigen Insulinsekretion.61 

                                     

   Abb.17 Struktur des selektiven GPR119-Agonisten AS1269574 (© Copyright 2015  

   Tocris Bioscience. All Rights  Reserved). 2-[[2-(4-Bromophenyl)-6-methyl-4- 

   pyrimidinyl]amino]ethanol 

 

 

 

Weitere Modifikationen dieser Substanz führten zu anderen GPR119-Agonisten wie 

AS1535907 und AS1907417, die auch zu ähnlichen Ergebnisse führten.62, 63  

In der vorliegender Arbeit wurde AS1269574 als selektiver GPR119-Agonist benutzt, 

weil es in verschiedenen Studien eine hohe Selektivität und Potenz gezeigt hat.64, 65 

 

5.5    WIRKUNGEN DER CANNABINOIDE AUF DIE GI-MOTILITÄT 

 

Das ECS ist u.a. an der Darmmotilität, Magensekretion und dem GI-Transit beteiligt. 

Diese Effekte sind durch eine CB1-vermittelte präsynaptische Inhibition der Sekretion 

exzitatorischen Neurotransmitter vermittelt. 66 Darüber hinaus sind auch andere 

Mechanismen vorgeschlagen worden: unter anderem die Inhibition der nicht-

adrenergen-nicht-cholinergen (non-adrenergic-non-cholinergic) extitatorischen und 

inhibitorischen Übertragung.67, 68 Es gibt Hinweise dafür, dass sich der GI-Trakt unter 

einem ständigen Einfluss des ECS befindet und dass die Cannabinoide als 

physiologische „Bremse“ der Motilität dienen. 69  Hauptrezeptor für die Vermittlung 
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der Inhibition der Motilität unter physiologischen Bedingungen ist der CB1-Rezeptor.  

Andererseits gibt es aktuell weniger Hinweise bezüglich den CB2-vermittelten 

Einflüssen auf die Motilität unter normale Bedingungen. Unter pathologischen 

Zuständen konnte man eine Beteiligung beider Cannabinoidrezeptoren in der 

Modulation der Motilität  beobachten. Es wurde z.B. gezeigt, dass eine induzierte 

Entzündung des Kolons von CB1-Knockout Mäusen zu spontanen rhythmischen 

Aktionspotentialen in den glatten Muskelzellen führte, was aber in den Wildtyp-

Mäusen nicht der Fall war. Es findet sich also auch eine CB1-Komponente in der 

Regulation der Motilität unter pathologischen Zuständen.70 Weitere Studien kamen 

auch zu ähnlichen Ergebnissen.71 CB2 Rezeptoren werden im Darm hauptsächlich in 

Makrophagen und Plasmazellen der Lamina propria gefunden72, was die 

Überexpression dieser Rezeptoren bei entzündlichen Prozessen erklärt.33 Außerdem 

wurde gezeigt, dass CB2-Rezeptor Knockout Mäuse empfindlicher gegenüber einer 

2,4,6-Trinitrobenzolsulfonsäure induzierten Entzündung waren. 73, 74 Verschiedene 

Studien sprechen für das Vorhandensein von CB1- und CB2-vermittelten Effekten in 

der Hemmung der Motilität unter entzündlichen Zuständen (begleitet durch eine 

Abnahme des Schmerzempfindens, der intestinalen Flüssigkeitssekretion und des 

Entzündungsprozesses).75, 76 

 

In 2011 wurden die  GPR55-Einflüsse auf die Motilität untersucht.77 Erstens fand sich 

eine GPR55-Expression im Darm der Ratte die Ähnlich zur Expression in der Maus 

ist. Die Lokalisation des Rezeptors war auf die Submucosa und  den Plexus 

myentericus beschränkt. Es fand sich weiterhin eine Überexpression von GPR55 

unter entzündlichen Bedingungen, was Hinweise für eine mögliche Beteiligung 

dieses Rezeptors in der Regulation des Darms unter pathologischen Zuständen 

liefert. In einer weiteren Studie konnte gezeigt werden, dass der GPR55-Agonist  

O-1602 inhibierende Einflüsse auf die evozierten Kontraktionen in Muskelstreifen 

vom Kolon und Ileum der Maus hatte, wobei die größten Effekte im Kolon zu sehen 

waren. Diese Effekte konnten durch den selektiven Antagonist Cannabidiol 

aufgehoben werden, aber nicht durch CB1- und CB2- Antagonisten. Weiterhin 

verlangsamte O-1602 u.a.  die Transitzeit im Darm, was bei GPR55-KO-Mäusen 

nicht der Fall war.78 GPR55 hat also nützliche Eigenschaften bezüglich der  Therapie 

funktioneller aber auch entzündlicher GI-Störungen gezeigt. Attraktiv ist die 

Tatsache, dass die Aktivierung dieses Rezeptors, wie auch GPR119, keine CB1-

typischen zentralnervöse Nebenwirkungen aufweist. 
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6.  Spezielle Diskussion 

 

Das ECS war und ist Fokus vieler Studien um optimale therapeutische Möglichkeiten 

der Modulation dieses Komplexen Systems zu erreichen, sei es im GI-Trakt oder im 

ZNS. Das ECS verfügt über ein großes therapeutisches Potenzial, was aber durch 

die zentralnervösen Nebenwirkungen (Dysphorie, Unruhe, Panik, Benommenheit, 

Gedächtnisstörungen, Abnahme der psychomototischen und kognitiven Fähigkeiten, 

etc.) limitiert wird. Deswegen wird ständig nach neuen Möglichkeiten der ECS-

Modulation gesucht, die keine negativen Wirkungen im ZNS als Folge haben. Die 

Suche nach neuen Wegen beinhaltet auch die Erforschung der ECS-assoziierten 

Rezeptoren wie GPR119, die trotzt mangelnder strukturellen Ähnlichkeit zu den 

klassischen Cannabinoidrezeptoren, ähnliche Liganden besitzen. Die Tatsache, dass 

dieser Rezeptor nicht im ZNS sondern im GI-Trakt exprimiert wird, macht ihn umso 

attraktiver. Zahlreiche Studien haben sich mit den positiven Eigenschaften dieses 

Rezeptors bezüglich der Glukosehomöostase, Gewichtskontrolle und 

Nahrungsaufnahme beschäftigt. Nichtsdestotrotz wissen wir bis heute sehr wenig 

über die Funktion dieses Rezeptors bei der Modulation der Motilität im GI-Trakt. 

Keine Studie hat sich bis heute mit dieser Fragenstellung beschäftigt.  

Ziel dieser Studie war, neue Erkenntnisse über die mögliche Beteiligung vom 

GPR119-Rezeptor in der Modulation der GI-Motilität im Darm der Maus und des 

Menschen zu gewinnen.  

Da der CB1-Rezeptor eine große Rolle in der Modulation der Motilität spielt79, wurde 

untersucht, ob GPR119 im Zusammenspiel mit CB1 seine Wirkung entfaltet. Die 

Interaktion mit dem CB2-Rezeptor war nicht Teil der Studie, weil bekannt ist, dass 

CB2-Rezeptor hauptsächlich unter pathologischen Bedingungen seine Wirkung auf 

die Motilität entfaltet.80, 81 Um die Wirkungen von GPR119 zu testen, wurden 

verschiedene Organbad-Versuche durchgeführt; erst mit der Maus und dann mit 

Humangewebe. Bei der Maus wurde die Substanz im Dünndarm und im Kolon 

getestet. Weil es sehr schwer ist, Operations-Präparate aus dem Dünndarm des 

Menschen zu bekommen, wurde lediglich die Wirkung der Substanz im menschlichen 

Kolon getestet. Die gleichen Versuche wurden dann nach Gabe des CB1-Rezeptor-

Antagonisten SR 141716  wiederholt, um die mögliche Interaktion zwischen 

GPR119-  und CB1-Rezeptoren zu zeigen. 

Letztlich wurde der Einfluss des selektiven Muskarinrezeptor-Agonisten Bethanechol 

auf die Wirkung der GPR119 Agonisten untersucht, um Hinweise für den möglichen 
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Wirkort dieser Substanzen zu erhalten (Neuronal oder muskulär. Es ist bekannt, dass 

Endocannabinoide ihre Wirkung auf neuronale Ebene entfalten, in dem sie auf die 

präsynaptische Cannabinoidrezeptoren binden). 

 

 

6.1   WIRKUNG GPR119-AGONISTEN IM MAUSGEWEBE 

 

Im Dünndarm der Maus zeigen sich signifikante Wirkungen der zwei GPR119-

Agonisten auf die Motilität des Darmes nur in sehr  hohen Konzentrationen (10 -100 

µM).  Die Substanz mit der größten Potenz bezüglich der Inhibition der Kontraktilität 

ist der nicht-selektive GPR119 Agonist OEA, die bei einer Konzentration von 100 µM 

zu einer Abnahme der Kontraktionsamplitude um 71 ± 4,6 % führt (n>6). Der 

selektive GPR119 Agonist AS1269574 erreicht in seiner höchsten Konzentration eine 

Inhibition von  22 ± 3,5 % (n>6) (Abb.5 und Abb.6) 

 

Es zeigt sich eine schwache Wirkung beider GPR119-Agonisten auf die Kontraktilität, 

wobei der selektive Agonist AS1269574 schwächer ist. Es ist bekannt, dass OEA die 

Magenentleerung und die Motilität im Darm hemmt.82, 83 Nicht bekannt ist die 

Wirkweise dieser Substanz und durch welche Rezeptoren diese Hemmung 

stattfindet.  Eine Studie von 2009 zeigte, dass OEA unabhängig von dem CB1,CB2, 

PPARα, TRPV1 oder GLP-1-Rezeptor seine Wirkung entfaltet.84  Weil OEA auch ein 

GPR119-Agonist ist 85, wurde spekuliert, dass die hemmende Wirkung auf die 

Motilität durch diesen Rezeptor zustande kommt.  Es fehlen aber Studien mit 

spezifischen GPR119-Antagonisten und GPR119-KO-Mäusen, mit denen diese 

Theorie bestätigt oder widersprochen werden kann.  

 

Im Dünndarm der Maus zeigt OEA eine größere Wirkung gegenüber 

AS1269574.Vermutlich entfaltet OEA diese hemmende Wirkung durch andere 

Rezeptoren und Signalwege, die bis heute noch unbekannt sind. 

 

Im Kolon der Maus zeigt sich eine stärkere inhibitorische Wirkung  beider GPR119-

Agonisten(Abb.9 und Abb.10).Die Substanzen zeigen eine konzentrationsabhängige 

Inhibition der Kontraktilität schon bei niedrigeren Konzentrationen im Vergleich zum 

Dünndarm. OEA verhält sich fast wie im Dünndarm, obwohl im Kolon schon bei 1 µM 

eine signifikante Inhibition beobachtet wird. Andererseits zeigt AS1269574 eine viel 
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größere inhibitorische Potenz im Kolon im Vergleich zum Dünndarm. Schon in einer 

Konzentration von 10 µM kommt es zu einer ausgeprägten Abnahme der 

Kontraktilität um 50,5 ± 6 %. Insgesamt zeigt sich also eine stärkere Beteiligung des 

GPR119-Rezeptors im Kolon der Maus.  

 

6.2   GPR119/CB1-REZEPTOR-INTERAKTION IM MAUSGEWEBE 

 

Im Dünndarm der Maus zeigt sich für beide GPR119-Agonisten keinen signifikanten 

Einfluss des CB1-Rezeptor-Antagonisten SR141716 auf die schwache hemmende 

Wirkung der zwei Substanzen (Abb.7 und Abb. 8).  Es ist also eine CB1-

unabhängige Wirkung der GPR119-Agonisten in der Modulation der Kontraktilität im 

Dünndarm der Maus zu sehen. 

 

Interessanterweise zeigt sich im Kolon der Maus eine starke CB1-Rezeptor 

Mitbeteiligung in der hemmenden Wirkung der GPR119 Agonisten, insbesondere bei 

dem selektiven GPR119-Agonisten AS1269574. Die hemmende  Wirkung von OEA 

wird durch SR141716 teilweise antagonisiert (p<0,005, n=7). (Abb.11 und Abb.12) 

 

Es zeigt sich also eine partielle Mitbeteiligung der CB1-Rezeptoren bei der OEA-

vermittelte Hemmung der Kontraktilität im Kolon der Maus.  

 

Bei dem selektiven GPR119-Agonisten AS1269574 zeigt sich im Kolon der Maus 

eine interessante Interaktion. Bis zu einer AS1269574-Konzentration von 10 µM  wird 

eine komplette Antagonisierung beobachtet, mit einer fehlenden Hemmung der 

Kontraktilität, was eine CB1-vermittelte Hemmung der Kontraktilität vermuten lässt. 

Bei 100 µM wird der Kontrollwert aber nicht erreicht, was eine partielle CB1-

Beteiligung in der GPR119-vermittelten Wirkung im Kolon zeigt. Es zeigt sich also 

eine CB1-abhängigen und einen CB1-unabhängigen Weg in der GPR119-vermittelten 

Hemmung der kontraktilen Aktivität im Kolon.  

 

Zusammenfassend kann behauptet werden, dass der GPR119-Rezeptor eine 

untergeordnete Rolle in der Modulation der GI-Motilität im Dünndarm der Maus spielt 

und dass es keine relevante CB1-Komponente in der GPR119-induzierten Hemmung 

der Kontraktilität gibt. OEA zeigt eine höhere Potenz im Dünndarm der Maus, was 

sich auf das Vorhandensein anderer GPR119-unabhängigen Wege erklären lässt.  

Im Kolon werden aber die Effekte von OEA komplett durch SR141716 antagonisiert, 
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was einen CB1-abhängigen Weg in der Hemmung der Motilität vermuten lässt. Beide 

GPR119-Agonisten zeigen eine größere Wirkung im Kolon. Die inhibitorische 

Wirkung von AS1269574 im Kolon der Maus wird aber nur partiell von SR141716 

blockiert, was einen GPR119-abhängigen Weg bei der Modulation der Motilität zu 

bedeuten hat.   

 

 

6.3   GPR119 WIRKUNGEN IM HUMANGEWEBE 

 

Interessanterweise zeigen beide GPR119 Agonisten eine stärkere Wirkung im 

menschlichen Kolon, mit einer signifikanten Hemmung der Kontraktilität schon ab 

einer Konzentration von 10 nM (Abb.13 und Abb.14). OEA erreicht nicht die 

ausgeprägte Hemmung der Kontraktilität, die im Kolon der Maus zu sehen war, wirkt 

aber schon bei niedrigeren Konzentrationen (10 nM), was durch die stärkere Wirkung 

zu erklären ist. Das gleiche gilt auch für AS1269574, obwohl hier eine stärkere 

Hemmung der Kontraktilität auch in der höchsten Konzentration von 100 µM 

beobachtet wird. Die Tatsache, dass der nicht-selektive GPR119-Agonist eine 

schwächere hemmende Potenz im Vergleich zum selektiven Agonisten besitzt kann 

sich dadurch erklären, dass unbekannte GPR119-unabhängigen Mechanismen 

involviert sind. Das Zusammenspiel dieser Mechanismen führt möglicherweise zu 

dieser etwas schwächeren Wirkung von OEA. Es wurde erstmalig gezeigt, dass 

GPR119-Rezeptor-Agonisten zu einer ausgeprägter Hemmung der Kontraktilität im 

menschlichen Kolon führen. 

 

 

6.4 GPR119/CB1-INTERAKTION IM HUMANGEWEBE 

 

Im Vergleich zum Mausgewebe führt die Antagonisierung mit SR141716 zu einer 

vollständigen Aufhebung der OEA-vermittelten Inhibition der Kontraktilität im 

menschlichen Kolon (Abb.15). Der Kontrollwert  wird wieder erreicht und OEA 

entfaltet keine Wirkung mehr. Es zeigt sich also eine CB1-abhängige Hemmung der 

kontraktilen Aktivität durch OEA im menschlichen Kolon. In der OEA-vermittelten 

Wirkung sind wahrscheinlich auch andere Rezeptoren wie möglicherweise auch 

GPR119 involviert. In diesen Versuchen ist aber deutlich geworden, dass der CB1-

Rezeptor der Hauptspieler in der OEA-vermittelten Modulation der Motilität ist.  
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Trotz niedriger bis fehlender Affinität zu den Cannabinoidrezeptoren zeigt OEA eine 

signifikante Interaktion mit dem CB1-Rezeptor im Humangewebe.43, 86 Zu einer 

ähnlichen Schlussfolgerung kam auch eine andere Arbeit, die eine inkomplette 

Antagonisierung der OEA-induzierten Inhibition des oberen-GI Transit durch CB1-

Blockade gezeigt hat.87 Nichtdestotrotz kann man eine GPR119-Komponente in der 

OEA-vermittelten Wirkung nicht ausschließen. 

 

Interessanterweise führt die Antagonisierung von AS1269574 zu einer partiellen 

Aufhebung der hemmenden Wirkung, was einen CB1-unabhängigen Weg in der 

GPR119-vermittelten Modulation der Motilität vermuten lässt (Abb. 16). Es wird also 

zum ersten Mal gezeigt, dass der GPR119 Rezeptor erstens zu einer Hemmung der 

Kontraktilität im menschlichen Kolon führt, und zweitens, dass diese Effekte nur 

partiell durch CB1-Aktivierung bedingt sind. Ob diese Effekte durch GPR119-

induzierte GLP-1 Freisetzung bedingt sind, was auch zu einer Hemmung der Motilität 

führen kann, ist sehr unwahrscheinlich, da die Kolonsegmente, die für die Versuche 

präpariert und benutzt worden sind, ausschließlich aus  der Muskelschicht 

zusammengesetzt waren (d.h. ohne Mucosa und ohne Submucosa). Eine CB2-

Mitbeteiligung unter physiologischen Bedingungen ist laut Literatur extrem 

unwahrscheinlich 33, deswegen wurde bei dieser Studie verzichtet, diesen Rezeptor 

zu Antagonisieren.  

 

Es ist auch wahrscheinlich, dass die CB1-vermittelte Hemmung im Gewebe von 

gesunden Probanden viel ausgeprägter im Vergleich zu Kolon-Karzinom Patienten 

ist, da die CB1-Expression in diesen Geweben viel niedriger  ist 88. Es scheint 

deshalb sehr plausibel zu sein, dass GPR119 direkte Effekte auf die Kontraktilität 

besitzt, die nur zum Teil durch CB1-Rezeptoren bedingt ist. 
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6.5 KLINISCHE BEDEUTUNG UND THERAPEUTISCHE 

ANWENDUNGSMÖGLICHKEITEN  

 

Die GPR119-Forschung hat in den letzten Jahren deutlich zugenommen. Im Fokus 

standen dabei vor allem die Therapiemöglichkeiten bei Diabetes mellitus. Doch die 

Wirkungen vom GPR119-Rezeptor auf die Motilität waren bis heute noch unbekannt. 

Mit dieser Studie zeigt dieser Rezeptor ein neues therapeutisches Potenzial was die 

Modulation der GI-Motilität angeht. Die Forschung dieses neuen Rezeptors wird auch 

von Nutzen in der Entwicklung neuer Antidiabetika sein, denn nur so wird man in der 

Lage sein, die bestmöglichen Pharmaka zu entwickeln. Die Tatsache, dass es eine 

neue Möglichkeit gibt, das ECS ohne zentralnervöse Nebenwirkungen zu 

modulieren, macht diese Entdeckung interessant. Obwohl GPR119 nicht zu den 

klassischen Cannabinoidrezeptoren gehört, wurde eine Interaktion zwischen diesen 

Rezeptoren beobachtet. Dass die Effekte im menschlichen Kolon ausgeprägter im 

Vergleich zum Tiermodell sind, macht dieser Rezeptor umso attraktiver. Weitere 

Studien sollen die Rolle dieses Rezeptors bei der Modulation der Motilität in anderen 

GI-Regionen des Menschen erforschen, um die vollständige Wirkung von GPR119 

besser zu verstehen. 

 

Das meistbenutzte Arzneimittel gegen Durchfall ist der Opioid-Rezeptor-Agonist 

Loperamid, dass bei kleinen Kindern zu erheblichen Nebenwirkungen wie Lethargie, 

Atemdepression und Koma führen kann, weil die Blut-Hirn-Schranke noch nicht völlig 

entwickelt ist.89, 90 Loperamid wird im ZNS über Effluxpumpen vom Para-Glykoprotein 

(p-GP)-Typ aus dem Gehirn transportiert, was zur überwiegend peripheren Wirkung 

führt. Dieser Mechanismus erklärt auch warum es zum Abusus oder zu 

Nebenwirkungen kommen kann, wenn die Einnahme von Loperamid mit P-

Glykoprotein Inhibitoren kombiniert wird.91 In der normalen Dosierung ist die 

Einnahme von Loperamid beim Erwachsenen aber unbedenklich.92 Viele sind die 

möglichen Einsatzgebiete einer motilitätshemmenden Substanz ohne ZNS-Wirkung; 

u.a. Reisediarrhö, funktionelle Störungen wie Reizdarmsyndrom vom Diarrhö-Typ, 

Chemotherapie-induzierte Diarrhö und Kurzdarmsyndrom. Die Applikation eines 

GPR119-Agonisten kann eine potentielle Alternative zu Loperamid darstellen, vor 

allem bei kindlichen Patienten, da die Substanz keine zentralnervösen 

Nebenwirkungen zeigt.  
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7.  ZUSAMMENFASSUNG 

 

Das ECS war in den letzten Jahren Fokus zahlreicher Studien. Die vielfältigen 

therapeutischen Möglichkeiten der Beeinflussung des ECS sind aber durch die 

zentralen Nebenwirkungen der endogenen und exogenen Cannabinoiden begrenzt. 

Um die modulierende Wirkung der Cannabinoiden auf die Darmmotilität 

pharmakologisch zu nutzen sind aber andere Wege, die auf die Peripherie 

beschränkt sind, zu finden. Die Suche nach neuen  Angriffspunkten des ECS ohne 

diese Nebenwirkungen hat sich auch mit anderen ECS-assoziierten Rezeptoren 

beschäftigt. Unter diesen Rezeptoren finden wir auch den GPR119-Rezeptor, der 

hauptsächlich im Pankreas und GI-Trakt exprimiert wird, nicht aber im ZNS. Während 

zahlreiche Studien die Rolle dieses Rezeptors in der Regulation der 

Glukosehomöostase, des Sättigungsgefühls und des Körpergewichts untersucht 

haben, sind die Wirkungen von GPR119 auf die Modulation der Motilität im GI-Trakt 

noch unbekannt.  

 

In den durchgeführten Versuchen  mit  Maus- und Humangewebe konnte gezeigt 

werden, dass der GPR119-Rezeptor eine Rolle bei der Modulation der Motilität im 

GI-Trakt spielt. Es konnte des Weiteren gezeigt werden, dass die Wirkung von 

GPR119-Agonisten auf Darmgeweben Mukosa- und Submukosa-unabhängig 

geschehen kann. 

Beide GPR119-Agonisten zeigten eine schwache hemmende Wirkung im Dünndarm 

der Maus. Diese Wirkung konnte durch die CB1-Blockade nicht aufgehoben werden. 

Vermutlich spielt der GPR119-Rezeptor eine untergeordnete Rolle bei der 

Modulation der Motilität im Dünndarm der Maus und wahrscheinlich auch beim 

Menschen. 

Im Kolon der Maus und des Menschen zeigten beide Agonisten eine viel höhere 

Potenz im Vergleich zum Dünndarm, was wahrscheinlich auf die verstärkte 

Expression dieses Rezeptors in dieser Region des GI-Trakt zurückzuführen ist. Wir 

können also spekulieren, dass der Hauptwirkort vom GPR119-Rezeptor für die 

Modulation der Motilität das Kolon ist. 

 

Weil der CB1-Rezeptor der Hauptrezeptor des ECS ist, der die Motilität unter 

physiologischen Bedingungen beeinflusst, wurde die Interaktion zwischen GPR119-

Rezeptor und CB1-Rezeptor untersucht. Während im Dünndarm der Maus keine 
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signifikante Interaktion zwischen den zwei Rezeptoren festzustellen war, zeigte sich 

im Kolon der Maus und des Menschen eine signifikante partielle CB1-Komponente in 

der GPR119-vermitttelten Hemmung der Kontraktilität. Bei dem nicht-selektiven 

Agonisten OEA wurden die Effekte auf die Kontraktilität durch CB1-Antagonismus 

komplett aufgehoben, was vermuten lässt, dass OEA u. a. durch den CB1-Rezeptor 

seine hemmende Wirkung auf die Motilität entfaltet. Möglicherweise spielt auch der 

GPR119-Rezeptor eine Rolle bei der OEA-vermittelten Inhibition der Motilität, zur Zeit 

fehlen aber die pharmakologischen Möglichkeiten um diese Hypothese zu bestätigen 

oder zu widerlegen. 

 

Diese Erkenntnisse sollen ein besseres Verständnis über die Funktion des GPR119-

Rezeptors als neue pharmakologische Zielstruktur zur Modulation der GI-Motilität 

liefern. 
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