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Summary 

Proteostasis is the cellular control mechanism ensuring the maintenance of a functional 

proteome, which is essential for proper cellular and organismal function. Being the main 

proteolytic system of the cell, the proteasome is an indispensable component of the cellular 

proteostasis network. Proteasomes are large protein complexes consisting of different 

subcomponents. The 20S proteasome catalytic core particle associates with different 

proteasome activators, including the 19S regulator and the alternative proteasome activators 

PA28αβ, PA28γ, or PA200, which open the 20S proteasome gate to facilitate substrate entry 

into the proteolytic chamber. Whereas the 19S regulator mediates ubiquitin- and 

ATP-dependent degradation of the majority of cellular proteins, the alternative proteasome 

activators function in an ubiquitin- and ATP-independent manner. According to the 

previously proposed building block concept, the recruitment of these proteasome activators 

to the 20S catalytic core particle allows for the fast adaption of proteasome function in 

response to cellular stimuli. Although the alternative proteasome activators have been 

implicated in the degradation of specific substrates, their function and regulation is largely 

unknown. Here, the regulation of alternative proteasome activators was investigated in lung 

biology and disease with the particular focus to provide proof-of-concept evidence for the 

fast regulation of activators upon cellular stimuli and to investigate the dysregulation and 

function of PA200 in hyperproliferative lung diseases. 

First, the specificity of a commercially available and widely used PA200 antibody targeting 

amino acids 1620-1634 of the human protein was analyzed using PA200 silencing in cells as 

well as tissues from PA200-/- mice. The data provided in this thesis revealed that the 160 kDa 

protein species detected by the antibody is not an isoform of PA200 as stated previously in 

the literature. Antibodies targeting different epitopes of the activator specifically recognized 

the 200 kDa PA200 protein and were used for further experiments. 

The second study of this thesis analyzed the regulation of alternative proteasome activators 

in response to proteotoxic stress mediated by inhibition of the proteasome. Here, a rapid 

recruitment of proteasome activators PA28γ and PA200 to the 20S proteasome was 

observed in response to inhibition of the 20S catalytic subunits via small molecule inhibitors 

in primary human lung fibroblasts (phLF). Investigating the underlying mechanism revealed 

that the recruitment of PA28γ and PA200 was independent from their transcriptional 



Summary 
 

XIV 

induction at early time points and that the extent of activator recruitment depended on the 

degree of proteasome inhibition. The rapid assembly of PA28γ and PA200 with 20S 

proteasome complexes in response to proteasome inhibition thus provides first evidence for 

a fast regulation of these activators according to cellular needs supporting the building block 

concept.  

The third study of this thesis analyzed the regulation and function of PA200 in 

hyperproliferative tissue remodeling. The results demonstrated upregulation of PA200 

protein levels not only in tissues of idiopathic pulmonary fibrosis (IPF) patients as well as in 

experimentally induced fibrosis of the lung and kidney but also in human biopsies from 

different types of lung cancer. In IPF tissues the induction of PA200 protein levels specifically 

localized to myofibroblasts and abnormal hyperplastic basal cells of the bronchial 

epithelium. LC-MS/MS analysis revealed that the PA200 interactome in phLF strongly adapts 

according to cellular activation and proliferation involving the interaction of PA200 with 

ribosomal proteins and heterogeneous nuclear ribonucleoproteins (hnRNPs) in proliferating 

cells. Transcriptomic and proteomic screens of PA200-silenced phLF revealed pronounced 

activation of cellular proliferation and survival, which was confirmed in cell culture 

experiments. In line with this observation, PA200-/- mice showed an improved survival in 

response to bleomycin-induced lung injury.  

 

In summary, the results obtained from these studies provide first evidence for the regulation 

of alternative proteasome activators PA28γ and PA200 upon different cellular stimuli. This 

supports the previously stated building block hypothesis suggesting the adaption of 

proteasome function on the level of activator recruitment to the 20S core particle. In 

addition, a dysregulation of PA200 in hyperproliferative lung diseases was observed and the 

activator was discovered to be a novel regulator of fibroblasts activation, proliferation and 

survival.  
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Zusammenfassung 

Proteostase bezeichnet den zellulären Kontrollmechanismus, welcher die Instandhaltung 

eines funktionellen Proteoms gewährleistet und damit maßgeblich zur physiologischen 

Funktion von Zellen oder ganzen Organismen beiträgt. Als eines der wichtigsten 

proteolytischen Systeme der Zelle ist das Proteasom ein essentieller Bestandteil dieses 

Proteostase-Netzwerks. Proteasomen sind sehr große Proteinkomplexe, welche aus 

verschiedenen Subkomponenten bestehen. Der 20S Kernpartikel kann mit verschiedenen 

Proteasomaktivatoren wie dem 19S Regulator oder den alternativen Proteasomaktivatoren 

PA28αβ, PA28γ, oder PA200 assoziieren, was seine Öffnung induziert und die Aufnahme von 

Substraten in dessen proteolytische Kammer ermöglicht. Im Gegensatz zum 19S Regulator, 

der für den Ubiquitin- und ATP-abhängigen Abbau eines Großteils der zellulären Proteine 

verantwortlich ist, agieren die alternativen Protesomaktivatoren ATP- und Ubiquitin-

unabhängig. Gemäß des kürzlich postulierten „Baustein-Konzepts” erlaubt die Rekrutierung 

dieser Proteasomaktivatoren zum 20S Kernpartikel eine schnelle Adaption der 

Proteasomfunktion an zelluläre Veränderungen. Die genaue Funktion und Regulation der 

alternativen Proteasomaktivatoren ist größtenteils unbekannt, obwohl angenommen wird, 

dass sie den Abbau spezifischer Substrate vermitteln. Im Rahmen der vorliegenden 

Dissertation wurde daher die Regulation alternativer Proteasomaktivatoren in der 

Lungenphysiologie als auch in Lungenerkrankungen mit dem besonderen Fokus untersucht, 

einen ersten Nachweis für die vom „Baustein-Konzept“ beschriebene Adaption alternativer 

Proteasomaktivatoren gemäß zellulärer Stimuli zu erbringen sowie eine potenzielle 

Dysregulation von PA200 in hyperproliferativen Lungenerkrankungen zu erforschen. 

In der ersten Studie wurde die Spezifität eines kommerziell erhältlichen und weitverbreiteten 

PA200 Antikörpers, welcher gegen die Aminosäuren 1620-1634 des humanen Proteins 

gerichtet ist, mittels siRNA-vermittelter Herabregulierung der PA200 Expression sowie in 

Geweben von PA200-/- Mäusen untersucht. Diese Analyse ergab, dass dieser Antikörper eine 

Proteinspezies von 160 kDa detektiert, welche im Gegensatz zur bisherigen Einschätzung der 

Literatur keine Isoform von PA200 darstellt, weshalb dieser Antikörper nicht für die 

spezifische Detektion von PA200 geeignet ist. Da die Spezifität anderer PA200 Antikörper, 

welche gegen andere Epitope des Proteins gerichtet sind, bestätigt werden konnte, wurden 

diese in den weiteren Experimenten verwendet. 
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In der zweiten Studie wurde die Regulierung alternativer Proteasomaktivatoren bei 

proteotoxischem Stress untersucht, der durch Proteasomhemmung erzeugt wurde. Die 

Inaktivierung der katalytischen 20S Untereinheiten durch nierdermolekulare Inhibitoren 

verursachte eine schnelle Rekrutierung der Proteasomaktivatoren PA28γ und PA200 an das 

20S Proteasom in primären humanen Lungenfibroblasten (phLF). Die Untersuchung des 

zugrundeliegenden Mechanismus ergab, dass die Rekrutierung von PA28γ und PA200 

unabhängig von einer transkriptionellen Hochregulation der Aktivatoren induziert wurde und 

dass die Rekrutierung vom Grad der Proteasominaktivierung abhing. Die rasche 

Assemblierung von PA28γ und PA200 mit dem 20S Proteasomkomplex bei Inhibierung des 

Proteasoms bestätigt somit die schnelle Regulation der Proteasomfunktion gemäß des 

„Baustein-Konzepts“. 

Die dritte Studie dieser Dissertation untersuchte die Regulation und Funktion von PA200 in 

hyperproliferativen Lungenerkrankungen. Die hierfür durchgeführten Studien zeigten eine 

Hochregulation von PA200 in fibrotischen Geweben der idiopathischen Lungenfibrose (IPF), 

experimentell-induzierter Fibrose von Lunge oder Niere sowie verschiedener Arten humaner 

Lungentumore. Die histologische Analyse von IPF Geweben zeigte insbesondere eine 

Erhöhung des PA200 Proteingehalts in Myofibroblasten und abnormalen hyperplastischen 

Basalzellen des Bronchialepitheliums. Mittels LC-MS/MS Analyse konnte eine deutliche 

Regulation des PA200 Interaktoms gemäß der zellulären Aktivierung und Proliferation 

festgestellt werden, wobei PA200 in proliferierenden Zellen vor allem mit ribsosomalen 

Proteinen und heterogenen nukleären Ribonucleoproteinen (hnRNP) interagierte. Die 

Transkriptom- sowie Proteom-Analyse von phLF mit siRNA-vermittelter Herabregulation von 

PA200 ergab eine deutliche Aktivierung der Proliferation und des Überlebensprogramms der 

Zellen, was mittels Zellkulturexperimenten bestätigt werden konnte. Außerdem zeigten 

PA200-/- Mäuse eine erhöhte Überlebensrate bei einer Bleomycin-induzierten 

Lungenschädigung im Vergleich zu Wildtyptieren. 

Zusammenfassend bestätigen die Ergebnisse dieser Dissertation die Regulation von PA28γ 

und PA200 gemäß bestimmter zellulärer Stimuli und erbringen somit eine erst Validierung 

des „Baustein-Konzepts“ hinsichtlich der alternativen Proteasomaktivatoren. Zudem wurde 

erstmalig eine Dysregulation von PA200 im Krankheitskontext beobachtet und eine bisher 

unbekannte Funktion des Aktivators als Regulator der Aktivierung, Proliferation und des 

Überlebens von Zellen entdeckt. 
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1 Introduction 

1.1 The proteasome – a major regulator of cellular proteostasis 

Proteins are large biomolecules that exert most cellular functions and are therefore involved 

in almost all biological processes. Protein quality control and protein homeostasis, also 

called proteostasis, control the maintenance of a functional proteome and are essential for 

the health of cells and organisms (Balch et al., 2008; Hartl et al., 2011; Meiners and Ballweg, 

2014). Different environmental, genetic or inflammatory influences can affect cellular 

proteostasis and lead to cellular and organismal malfunction (Figure 1.1). Dysregulation of 

proteostasis has been implicated in the pathogenesis of diseases of different organs, 

including the lung (Balch et al., 2014). Proteostasis controls the life cycle of a protein on 

several levels: synthesis of a linear amino acid chain by translation of the mRNA sequence 

through the ribosome, the folding thereof into a native, functional protein by molecular 

chaperones, and finally its timely controlled degradation by the autophagy pathway or the 

ubiquitin-proteasome system (UPS) (Hartl et al., 2011). Whereas autophagy mainly involves 

lysosomal degradation of protein aggregates and whole organelles, up to 80 % and thus the 

majority of all cellular proteins in mammals are degraded via the proteasome (Rock et al., 

1994). For this reason, the proteasome is a major regulator of proteostasis and its function is 

crucial for cellular function and viability. 

 

 
Figure 1.1: Maintenance of proteostasis during the life cycle of proteins. The life cycle of proteins includes 
the following steps: the translation of the mRNA sequence into a peptide sequence, the modification, localization 
and folding of the peptide chain into a functional, native structure and finally the controlled degradation of the 
protein. Proteostasis controls and balances these processes to maintain a functional proteome. Different insults 
and perturbations (red box) can lead to dysregulation of proteostasis, which can severely affect the cellular and 
organismal health (adapted from Martinon et Aksentijevich, Nature Reviews Rheumatology, 2014). 
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1.1.1 Proteasomal protein degradation 

The proteasome is a huge, evolutionarily conserved, multicatalytic protease complex 

involved in several important cellular functions in addition to protein quality control, which 

include, amongst others, cell cycle control, apoptosis, inflammation, transcription, signal 

transduction and major histocompatibility complex (MHC) class I antigen presentation 

(Finley, 2009). The UPS degrades the majority of cellular proteins, such as short-lived 

regulatory proteins and damaged soluble proteins, but also long-lived proteins, in an 

ubiquitin- and ATP-dependent fashion. ATP-dependent proteolysis was first recognized in 

the late 1970s (Ciechanover et al., 1978; Etlinger and Goldberg, 1977). Later, ubiquitin was 

noticed as an important recognition motif for proteins targeted for degradation and finally 

the proteasome was discovered as the actual proteolytic complex (Arrigo et al., 1988; 

Hershko et al., 1980; Hough et al., 1987). As proteolysis is irreversible and its malfunction can 

have severe effects on cell viability, ubiquitin-dependent protein degradation is a highly 

controlled, multistep process (Collins and Goldberg, 2017). Targeting of proteins for 

degradation requires the covalent attachment of a chain of at least four ubiquitin molecules 

to lysine 48 (K48) residues (Thrower et al., 2000). This is achieved by ubiquitin activating E1 

enzymes, ubiquitin-conjugating E2 enzymes and ubiquitin E3 ligases in a multistep and ATP-

dependent enzymatic cascade (Finley, 2009). It involves tagging of the protein with ubiquitin, 

recognition of the protein substrate by the 26S proteasome via its ubiquitin-tag, its 

deubiquitination, ATP-dependent unfolding and the translocation into the 20S core particle 

where it is finally degraded (Figure 1.2) (Finley, 2009; Hershko and Ciechanover, 1998). 

In addition, an ubiquitin-independent type of proteasomal degradation was discovered 

involving proteolysis of unfolded or structurally disordered proteins by the 20S proteasome 

catalytic core or degradation of specific substrates mediated by alternative proteasome 

complexes that contain other proteasome activators, such as PA28γ (Baugh et al., 2009; Ben-

Nissan and Sharon, 2014; Erales and Coffino, 2014). 
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Figure 1.2: The majority of cellular proteins are degraded in an ubiquitin-dependent manner by the 26S 
proteasome. Proteins targeted for degradation are covalently tagged with a polyubiquitin chain, which allows 
for their selective recognition via the 19S regulatory particle that is associated with the 20S core complex 
forming the 26S proteasome. The 19S regulator deubiquitinates and unfolds the substrates and translocates 
them into the catalytic core of the 20S proteasome core complex, where they are cleaved into small peptides 
(from Meiners et Eickelberg, 2012). 
 

1.1.2 The 20S proteasome core particle 

The proteasome consists of the 20S core particle that can associate with different 

proteasomal activators and therefore exhibits large structural complexity (Meiners et al., 

2014). Peptides targeted for degradation enter the 20S core complex through a pore in the 

center of the outer α-ring, which functions as gate controlling entry of substrates into the 

particle (Groll et al., 2000). The N-terminal tails of the outer α-ring subunits close the entry 

pore into the central proteolytic chamber thereby preventing uncontrolled access of 

substrates due to this closed conformation (Groll et al., 2000). Association of different 

proteasome activators with binding pockets on the surface of the 20S α-ring induces gate 

opening and facilitates the entry of peptides into the catalytic cavity for degradation 

(Stadtmueller and Hill, 2011).  

The 20S core particle is a ≈700 kDa protein complex composed of 28 subunits. They are 

symmetrically arranged in four rings of seven α-subunits (α1-7) on the outside flanking two 
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rings of seven β-subunits (β1-7) in the inside forming a barrel-shaped structure (Figure 1.3) 

(Kish-Trier and Hill, 2013). The proteolytic activity of the proteasome resides within the 

internal cavity of this barrel-shaped complex and encloses the three different catalytic active 

sites β1, β2 and β5 on each β-ring, which exhibit caspase-like (C-L), trypsin-like (T-L) and 

chymotrypsin-like (CT-L) activities. Here, peptides are cleaved into smaller fragments having 

a length of 3-20 amino acids (Kisselev et al., 1999). The proteasome belongs to the family of 

N-terminal nucleophilic hydrolases with all catalytic sites containing a threonine at position 1 

(Thr1) mediating peptide cleavage in an autocatalytic process (Brannigan et al., 1995; Groll 

and Huber, 2003). This involves the nucleophilic attack of its hydroxyl group on the carbonyl 

carbon atom of the peptide to be cleaved, while its N-terminus serves as a proton acceptor. 

 

Figure 1.3: Schematic representation of the 20S core particle. A) The 20S proteasome consists of two α-rings 
and two β-rings in a symmetric α1-7β1-7β1-7α1-7 conformation. The catalytic subunits β1, β2 and β5 of the 20S 
standard proteasome can be replaced by immunoproteasome subunits β1i, β2i and β5i. The outer α-rings exhibit 
a closed conformation unless binding of a regulator induces opening of the entry pore. Different proteasomal 
regulators bind via their HbXY motifs to binding pockets within the α-ring and induce gate opening. B) 
Substrates enter the 20S core particle through the gate within the center of the α-ring, where they pass the 
antechamber in order to be finally degraded in the proteolytic chamber (from B. Dahlmann, 2016). 
 

This so-called standard or constitutive proteasome is ubiquitously expressed in all nucleated 

cells. The immunoproteasome represents another type of 20S proteasome composed of the 

specialized catalytic subunits β1i (LMP2), β2i (MECL-1) and β5i (LMP7) (Groettrup et al., 

2010). Although these subunits are expressed and incorporated into newly assembled 

proteasomes in immune cells, their expression can also be induced by cytokines like 

interferon gamma (IFNγ), tumor necrosis factor alpha (TNFα) or lipopolysaccharide (LPS) in 

non-immune cells (Groettrup et al., 2010). In contrast to the standard proteasome, 
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immunoproteasome subunits have a differential cleavage specificity producing peptides with 

more hydrophobic residues at their C-terminus (Groettrup et al., 2001). These peptides are 

preferentially loaded onto MHC I molecules in the endoplasmic reticulum (ER), which are 

then presented as antigens on the cell surface. Therefore, immunoproteasomes have been 

discovered to play an important role in shaping the immune response, although it is 

assumed that this represents only one aspect of their function and others still need to be 

identified (Dahlmann, 2016). Another specialized β5t catalytic subunit exists in the thymus 

forming the so-called thymoproteasome, which has been discovered to be essentially 

involved in the development of CD8+ T cells (Murata et al., 2007). 

 

1.1.3 20S proteasome inhibitors 

The development of proteasome inhibitors targeting the proteolytic active sites of the 20S 

proteasome core complex has largely influenced proteasome research and also cancer 

therapy, as they were shown to efficiently kill tumor cells that are highly dependent on 

proteasomal protein degradation (Kisselev et al., 2012). In 2003, bortezomib (BZ) (Velcade®) 

was approved by the United States Food and Drug Administration (FDA) as the first 20S 

proteasome inhibitor for third-line treatment of relapsed and refractory mantle cell 

lymphoma and later also as a first-line treatment of newly diagnosed multiple myeloma 

patients (Kane et al., 2003, 2006, 2007). In 2012, the second-generation inhibitor carfilzomib 

(Kyrpolis®) was approved for the treatment of multiple myeloma exhibiting reduced side 

effects compared to the previously approved BZ (Herndon et al., 2013). 

In recent years, a variety of small molecule inhibitors have been developed that covalently or 

non-covalently bind to the catalytic sites of the 20S proteasome with different specificities 

thereby reversibly or irreversibly inhibiting its protease activities (Dick and Fleming, 2010). 

Irreversible inhibitor binding induces sustained proteasome inhibition, as recovery of 

proteasome activity requires de novo synthesis of 20S core particles. However, these 

molecules exhibit a negative pharmacodynamic profile since they also inhibit proteasomes of 

healthy and non-malignant cells when administered intravenously (Beck et al., 2012; 

Schmidtke et al., 1996). In contrast, reversible inhibitors were described to have less side- 

and off-target effects (Beck et al., 2012). Covalent inhibitors of the 20S proteasome 

proteolytic sites generally consist of two pharmacophores, a peptide scaffold and an 
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electrophilic anchor, which can be a boronate, α’,β’-epoxyketone, aldehyde or β-lactone to 

only name a few examples (Beck et al., 2012; Kisselev et al., 2012). All proteolytic subunits 

bind to the inhibitors via a common mechanism involving the nucleophilic addition of their 

Thr1 hydroxyl group to the inhibitor analogously to the nucleophilic attack of peptides for 

degradation. Of note, the composition of side chains - but not the reactive group or the 

peptide backbone - defines the substrate specificity of the inhibitor. Several different classes 

of proteasome inhibitors are shown in Table 1 focusing on the inhibitors used in this study.  

 

Table 1: Overview of covalent proteasome inhibitor classes, their inhibitory mechanisms and profiles and 
examples. The table shows a selection of covalent inhibitor classes, which are widely used in research or were 
applied in this study (adapted from Beck et al., 2012). 

Structural 
class  

Inhibitory mechanism and profiles Examples and  
their specificites 

Peptide 
aldehydes 
 

 
 
! first inhibitors 
! rapidly reversible and potent 
! also inhibiting serine and cysteine proteases 

 
 
β5 > β2 > β1 

Peptide 
boronates 

 
 
! more potent than aldehydes 
! reversible inhibitors but lower dissociation than aldehyde 
! dose-limiting toxicity by inhibition of serine proteases 

 
 
β5 > β1 > β2  

Peptide 
α’,β’-epoxy- 
ketones  

 
 
! most specific and potent inhibitors 
! irreversible 
! site-specific inhibitors and activity-based probes (ABPs) 
 

 
 
β5 > β2 > β1 
 

 
 
β5-specific 
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Besides covalent inhibitors, different classes of molecules interacting with the proteasome 

catalytic subunits in a non-covalently fashion have been generated, such as cyclic peptides or 

noncyclic peptides (Kisselev et al., 2012). In recent years, several inhibitors of specific catalytic 

subunits were developed, such as the β5-specific inhibitor oprozomib (ONX-0912) or the 

immunoproteasome-specific inhibitor ONX-0914 targeting β5i, which represents another 

milestone in proteasome inhibitor discovery (Muchamuel et al., 2009). Although these 

specific inhibitors have not yet entered the clinic, they are widely used in research in example 

for monitoring active proteasome complexes with so-called activity-based probes (ABPs) 

(Verdoes et al., 2010). 

 

1.1.4 Regulation of proteasome activity by proteasome activators 

Several proteasome activators have been discovered, including the 19S regulator and the 

alternative proteasome activators PA28αβ, PA28γ, PA200, and PI31, that have different 

substrate specificities and thereby fine-tune selective protein degradation (Figure 1.4) 

(Stadtmueller and Hill, 2011). The 19S regulator is an essential component of the UPS, as it 

forms the so-called 26S proteasome upon binding to the 20S core particle and is therefore 

essentially involved in ubiquitin-dependent protein degradation. Discovery of alternative 

proteasome activators, however, has further extended the complexity of proteasome 

structure and function. Despite exhibiting distinct functionalities, both 19S regulators and the 

alternative activators PA28αβ, PA28γ and PA200 bind to the α-ring of the 20S proteasome 

and induce opening of its axial pore via similar mechanisms involving their C-terminal 

regions. Whereas the three 19S regulator ATPase subunits RPT2, RPT3, and RPT5 as well as 

the alternative proteasome activator PA200 contain so-called HbXY motifs at their C-terminal 

regions that interact with the binding pockets within the α-ring, the PA28 family of activators 

binds to the 20S α-subunits via a C-terminal internal loop structure also inducing an open 

gate conformation (Kish-Trier and Hill, 2013). 
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Figure 1.4: Association of proteasome activators with the 20S core particle increases the complexity of the 
proteasome system. Different proteasome activators can associate with the 20S core particle (shown in grey) 
and induce opening of its otherwise closed α-ring allowing for the entry of substrates. Whereas the 19S regulator 
binds to the 20S proteasome in an ATP-dependent manner driving degradation of ubiquitinated proteins, the 
alternative activators of the PA28 family (also called 11S or REG), including PA28αβ and PA28γ, or PA200/Blm10 
do not require ATP for their association with the 20S core complex and subsequent protein degradation. 
Although they have been implicated to be involved in ubiquitin-independent protein degradation of specific 
substrates, it still requires further investigation to determine their exact function. PI31 has initially been described 
as an inhibitor of proteasome activity, but these observations are controversially discussed and its function is not 
fully understood (adapted from Schmidt et Finley, 2014). 
 

1.1.4.1 The 19S regulator 

The 19S regulator, also called regulatory particle (RP) or PA700, is a large protein complex 

composed of at least 19 subunits (Lander et al., 2012). Its role in targeting ubiquitinated 

proteins to the catalytic core of the 20S proteasome for their degradation is well established. 

Binding of one or two 19S regulators to the 20S proteasome forms 26S or 30S proteasomes 

respectively, which degrade the majority of cellular proteins. In contrast to the alternative 

proteasome activators, its function involving substrate binding, deubiquitination, unfolding 

and translocation as well as the stabilization of the 19S-20S interaction is strongly 

energy-dependent and requires hydrolysis of ATP (Liu et al., 2006). The 19S regulator is 

subdivided into two sub-compartments, the so-called “base” binding to the 20S core 

particle, and the “lid” (Figure 1.4). The base is composed of a ring of six AAA+ ATPase 

subunits RPT1-RPT6, which are in direct contact with the α-ring of the 20S core particle, and 

four non-ATPase subunits including RPN1, RPN2, RPN10 and RPN13 that are mainly 

functioning as ubiquitin receptors recognizing ubiquitinated substrates. The lid consists of 

nine non-ATPase subunits and is essentially involved in deubiquitination of substrates by the 

deubiquitinases RPN11, UCH37 and UBP6/USP14 (Lander et al., 2013). 
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1.1.4.2 The PA28 family of proteasome activators 

The PA28 family of alternative proteasome activators, which are also called 11S or REG, 

comprises two different ring-shaped particles composed of seven 28 kDa subunits each, the 

heteroheptamer PA28αβ and the homoheptamer PA28γ (Rechsteiner and Hill, 2005). In 

contrast to the 19S regulator, they are reported to activate the 20S core particle in an 

ATP-independent manner and mediate ubiquitin-independent degradation of substrates.  

PA28αβ is localized in the cytoplasm of cells from many organs with the highest expression 

in immune tissues (Rechsteiner et al., 2000). In this regard, the expression of PA28α and 

PA28β subunits and the formation of PA28αβ complexes can be induced by INFγ. Moreover, 

the activator preferentially associates with the immunoproteasome and in vitro 

characterization of purified complexes indicated that this activator stimulates all active sites 

of the proteasome (Fabre et al., 2015; Realini et al., 1997). Recently, the crystal structure of 

this activator complex revealed that it preferentially forms PA28α4β3 complexes, which are 

more stable and most strongly stimulate proteasome activity when compared to PA28α or 

PA28β homoheptamers (Huber and Groll, 2017). Several functional studies suggest that 

PA28αβ is involved in MHCI antigen processing (Dick et al., 1996; Groettrup et al., 1996; 

Preckel et al., 1999). 

In contrast, the activator PA28γ is exclusively found in the nucleus and was reported to 

stimulate activity of the proteasome in vitro with a preference for T-L activities (Realini et al., 

1997; Stadtmueller and Hill, 2011). Several studies proposed that PA28γ mediates the 

degradation of specific nuclear substrates, such as the cyclin-dependent kinase inhibitors 

p16, p19 and p21, the steroid receptor co-activator-3 (SRC-3) or the deacetylase SIRT1 (Chen 

et al., 2007; Dong et al., 2013; Li et al., 2006, 2007a). In line with mediating the degradation of 

important cell cycle inhibitors, PA28γ-/- mice exhibit growth retardation and mouse 

embryonic fibroblasts (MEFs) show increased apoptosis when compared to wildtype cells 

(Murata et al., 1999). An interaction of PA28γ with apoptotic factors has been reported 

suggesting an anti-apoptotic function of the activator, which has not been mechanistically 

understood yet (Rechsteiner and Hill, 2005). 

Although structural studies on PA26 - the homologue of PA28 in Archaea - revealed that this 

activator mediates ATP-independent opening of the 20S core particle with its C-terminal 

residues in a similar manner as the ATP-dependent 19S regulator, it is still unclear how entire 
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proteins and not only small peptides or unfolded proteins can enter its small pore for 

degradation (Förster et al., 2005; Stadtmueller and Hill, 2011; Whitby et al., 2000). 

 

1.1.4.3 PI31 

PI31 is the currently least understood proteasomal regulator. It was reported to associate 

with the 20S proteasome via multiple regions and was also detected to interact with 26S 

proteasomes (Li et al., 2014). Initial in vitro studies described PI31 as an inhibitor of 

proteasome activity, but this has been controversially discussed in recent studies 

characterizing the regulator in Drosophila or mammalian cells (Bader et al., 2011; Li et al., 

2014). Recent publications reported that the approximately 31 kDa protein PI31 forms a 

dimer and interacts with human Fbxo7, a component of the SCF-type E3 ubiquitin ligase, as 

well as with the E3 ubiquitin ligase Nutcracker in Drosophila, but its exact function remains 

unknown (Bader et al., 2011; Kirk et al., 2008; Li et al., 2014). 

 

1.1.4.4 Proteasome activator 200 (PA200) 

The proteasome activator 200 (PA200) was first described by Ustrell et al. in 2002 as a 

200 kDa, monomeric, nuclear proteasome activator that activates all catalytic sites but mainly 

stimulates the C-L activity of the 20S proteasome (Ustrell et al., 2002). Moreover, PA200 did 

not degrade model substrates such as ubiquitinated lysozyme or casein in in vitro 

degradation assays, which led to the conclusion that PA200 does only degrade peptides but 

not intact proteins in an ATP- and ubiquitin-independent manner. PA200 and its yeast 

homologue Blm10 bind to 20S proteasomes and were also found in association with 26S 

proteasomes forming so-called hybrid proteasomes (Blickwedehl et al., 2007; Schmidt et al., 

2005; Ustrell et al., 2002). 

PA200 is expressed in several eukaryotes including mammals, Saccharomyces cerevisiae, 

Caenorhabditis elegans and Arabidopsis thaliana, but not in Arachae or Drosophila 

melangoster (Fort et al., 2015; Ustrell et al., 2002). Although it is highly conserved among 

mammals, the sequence homology of the human PA200 and its yeast homologue Blm10 is 

very limited with only 17 % amino acid similarity (Ustrell et al., 2002). Despite this generally 

poor conservation, the sequence similarity is higher at the C-terminal region, which binds to 
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the 20S core particle and induces its gate opening (Fort et al., 2015; Sadre-Bazzaz et al., 

2010).  

Structural evidence on the activator is mainly provided by several studies analyzing the yeast 

analogue Blm10 (Iwanczyk et al., 2006; Sadre-Bazzaz et al., 2010; Schmidt et al., 2005). 

However, both proteins PA200 and Blm10 are composed of so-called HEAT (Huntingtin 

elongation factor 3 - PR65/A subunit of PP21- lipid kinase TOR) repeats consisting of two 

α-helices linked by a short loop and therefore seem to be structurally conserved (Fort et al., 

2015; Kajava et al., 2004; Schmidt et al., 2005). The crystal structure of Blm10 indicates that 

the 32 highly variable HEAT repeats form a solenoid, dome-like structure capping the 20S 

core particle with a narrow entry pore (Sadre-Bazzaz et al., 2010; Stadtmueller and Hill, 2011). 

Association of Blm10 with the 20S core particle involves binding of the C-terminal regions of 

the activator to the 20S subunit α5 inducing its repositioning, which forms a disordered and 

not fully opened gate into the core particle. This suggests that rather small, unfolded 

peptides and but not intact proteins are able to enter the 20S proteasome complex via the 

activator. Cryo-electron microscopy (cryo-EM) analysis of mammalian PA200-20S complexes 

purified from bovine testis also observed that the activator has an asymmetric and dome-like 

structure when bound to the 20S complex thus confirming data obtained from yeast (Figure 

1.5) (Ortega et al., 2005).  

 

 
Figure 1.5: Structure of PA200-20S proteasome complexes obtained by cryo-EM analysis. A) Cut-through 
of an isosurface representation of PA200-20S (left) and 20S proteasomes (right) isolated from bovine testis 
analyzed by cryo-EM. PA200 is shown in yellow and the 20S catalytic core complex in blue. The arrow indicates 
the opening of the α-ring upon PA200 binding, whereas the pores of the uncapped 20S are in a closed state. 
Cryo-EM pictures of B) and C) show a central section (A) and a cylindrical average (B) corresponding to the 
complex shown in A). The arrow indicates decreased density at the α-ring (from Ortega et al., 2005). 
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PA200 is in contact with all α-subunits of the 20S except α7, which forms an entry into the 

core particle. Moreover, the α-ring opens upon binding of PA200 allowing for the entry of 

substrates into the axial channel of the 20S proteasome.  

Despite having a similar structure and associating with the 20S core particle, recent studies 

provided evidence for a differential function of mammalian PA200 and yeast Blm10 

presumably resulting from the limited sequence homology of the protein in both species. 

Blm10 was suggested to be involved in proteasome maturation and assembly, as well as 

maintenance of mitochondrial integrity, which was not confirmed for mammalian PA200 

(Fehlker et al., 2003; Li et al., 2007b; Marques et al., 2007; Tar et al., 2014). Moreover, Blm10-

proteasome complexes were reported to mediate the degradation of Sfp1, a transcription 

factor driving ribosomal protein gene expression (Lopez et al., 2011). Another study 

proposed a role for Blm10 in maintaining genomic integrity and preventing DNA damage 

(Doherty et al., 2012). 

In mammals, PA200 is ubiquitously expressed in different organs but it is most abundant in 

testis (Ustrell et al., 2002). It preferentially binds to standard 20S proteasomes and not to 

immunoproteasomes, which accords well with the observation that its expression is not 

inducible by INFγ (Blickwedehl et al., 2007; Fabre et al., 2014). PA200-/- knockout mice are 

viable and do not exhibit developmental abnormalities except from a decrease in male 

fertility caused by impaired spermatogenesis. Qian et al. claimed that PA200 mediates 

ubiquitin-independent degradation of acetylated core histones, which is essential in the 

process of spermatogenesis. Defective histone degradation would therefore explain the 

phenotype of male infertility of PA200-/- mice (Qian et al., 2013). They also proposed that 

acetylation of histones allows for the binding of PA200 via its bromodomain-like regions. 

However, as this study did not use a full deletion of all PA200-coding exons and claimed that 

Blm10 - despite its low conservation - exerts the same function in yeast, these data have to 

be considered with caution. Several other studies suggested an involvement of PA200 in 

DNA repair, as PA200-26S hybrid complexes were reported to accumulate on chromatin 

upon ionizing radiation and PA200 silencing decreased survival of cells upon the treatment 

(Blickwedehl et al., 2008; Ustrell et al., 2002). However, PA200-deficient embryonic stem cells 

did not show an increased sensitivity to DNA damage by radiation or bleomycin treatment, 

and therefore PA200 does not seem to be essential for DNA damage repair in this cell type 

(Khor et al., 2006). Later, it was suggested that PA200 maintains glutamine homeostasis by 
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increasing post-glutamyl activity of the proteasome thus elevating cellular glutamine levels 

and improving cellular survival in response to ionizing radiation treatment (Blickwedehl et al., 

2012). In general, data on PA200 function have to be considered with caution, because 

unspecific antibodies were used in many studies as described in the results section 5 of this 

thesis. A recent study reported downregulation of PA200 by miRNA29b, which was 

suggested to be mediated by binding of the miRNA29b to the 3’ untranslated region (UTR) 

of the PSME4 gene (Wang et al., 2017). Here, PA200 was claimed to be a positive regulator of 

proteasome activity, which was not analyzed in more detail.  

Taken together, the cellular function of PA200 is rather unclear. Recent publications 

reviewing the available data proposed that due to its structure PA200 could also exert a 

protein degradation-independent function by for example serving as a proteasomal adaptor 

protein recruiting 26S proteasome complexes to certain cellular compartments (Rechsteiner 

and Hill, 2005; Savulescu and Glickman, 2011; Stadtmueller and Hill, 2011). Besides the 

illusive functional role of PA200, its regulation and involvement in the pathogenesis of 

diseases is completely unknown and illustrates the need for further studies to unravel the 

role of this alternative proteasome activator. 

 

1.1.5 Regulation of proteasome function according to cellular needs – the 

building block concept 

Accurate adjustment of proteasome function is required for timely- and spatially-controlled, 

selective protein degradation, which is essential for various cellular processes and functions. 

Being a huge protein complex composed of different sub-components, proteasomes can be 

regulated on several levels (Livneh et al., 2016). These include the regulation via transcription 

of proteasomal genes, post-translational modifications (PTMs) of proteasomal subunits as 

well as the association of the 20S core particle with different activators. The quantity of 

cellular proteasomes can be regulated via the induction of proteasome subunit expression in 

response to certain cellular stimuli, but transcriptional and translational induction of 

proteasome subunits followed by de novo assembly of these huge protein complexes is time 

consuming and therefore does rather not allow for a fast adaption of proteolysis according 

to cellular needs (Meiners et al., 2003, 2014; Steffen et al., 2010). 
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The discovery of so-called intermediate 20S core particles consisting of different catalytic 

subunits of the standard but also the immunoproteasome as well as of additional alternative 

proteasome activators binding to the 20S core particle further increases the complexity of 

proteasome regulation and led to a novel concept on how cells are able to quickly adjust 

protein degradation (Dahlmann, 2016; Meiners et al., 2014). According to this concept, the 

cleavage specificity of the proteasome is determined by the catalytic subunits forming 

different intermediate 20S proteasome particles. The substrate specificity as well as timely- 

and spatially-controlled turnover of proteins, however, is regulated by proteasome activators 

associated to the core particle (Meiners et al., 2014). The recruitment of different proteasome 

activators to one or both sides of the various 20S core proteasomes can give rise to a variety 

of different proteasome complexes contributing to the complexity of the system (Figure 

1.6 A and B).  

 

 
Figure 1.6: Building block concept: association of activators with the 20S core complex facilitates 
formation of diverse proteasome complexes. A) Proteasome complexes are composed of 20S proteasomes 
that are either uncapped or associated with one or two proteasome activators. Binding of the different 
proteasomal activators, including the 19S regulator (yellow), PA28αβ (blue), PA28γ (red) and PA200 (green), or 
PI31 (purple) to one or both ends of the 20S core particle can - in theory - give rise to many different complexes 
shown in B). Although not all of the depicted complexes have been identified within the cell yet, it is assumed 
that the association of activators with the catalytic core particle can allow for timely- and spatially-controlled 
regulation of proteasomal protein degradation according to cellular needs (adapted from Meiners et al., 2014). 
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Moreover, it provides a conceptual framework of how proteasome function can be adapted 

to cellular function: our so-called building-block concept hypothesizes that activators are 

recruited to the 20S proteasome in a timely- and spatially-controlled manner thus allowing 

for a fast adaption of proteasome function according to the cellular situation because new 

proteasomes complexes can be quickly assembled from free pools of their subcomponents 

So far, only a very limited amount of studies provided evidence for fast adaption of 

proteasome complexes to certain cellular events. These mainly assessed the regulated 

assembly of 26S and 30S proteasomes from 20S cores and 19S regulators via post-

translational modifications. Phosphorylation and acetylation of proteasomal subunits as well 

as the S-glutathiolation of 20S subunit α5 were reported to enhance proteasome activity, 

whereas glycosylation and oxidative modifications occurring during ageing and at conditions 

of oxidative stress inhibit proteasome activity (Guo et al., 2017; Livneh et al., 2016; Silva et al., 

2012; VerPlank and Goldberg, 2017; Wang et al., 2013; Zhang et al., 2003). One recent study, 

for example, reported that 26S proteasome assembly and activity is regulated by protein 

kinase A-mediated phosphorylation of the 19S subunit RPN6 at Ser14 according to cellular 

cAMP levels (Lokireddy et al., 2015). Moreover, phosphorylation of 19S subunit RPT3 was 

shown to induce 26S/30S proteasome activity by enhancing substrate translocation during 

cell cycle progression (Guo et al., 2015). Evidence for the adaptive assembly of alternative 

proteasome complexes according to cellular needs, however, is currently lacking. Some 

studies describe an altered assembly of alternative proteasome complexes at conditions of 

oxidative stress such as the increased formation of PA28αβ complexes supporting the 

concept of adaptive regulation of the proteasome system upon cellular dysfunction 

(Pickering and Davies, 2013).  

The proposed building block concept predicts that proteasome function - especially 

involving the association of activators to the 20S proteasome - is also adjusted in diseased 

tissues, when proteostasis is dysregulated (Balch et al., 2014). So far, evidence supporting 

this concept with regard to alternative proteasome complexes is limited to the observation 

that PA28γ expression is induced in several types of cancer cells (Chai et al., 2014; Okamura 

et al., 2003; Xiong et al., 2014). While dysregulation of overall proteasomal activity has been 

observed for several diseases, such as in neurodegenerative and cardiovascular disorders 

and recently also for chronic lung diseases, altered association of proteasome regulators 

with the 20S catalytic core is a novel concept for cellular homeostasis and disease 
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pathogenesis (Dahlmann, 2007; Kammerl et al., 2016; Meiners et al., 2014; Schmidt and 

Finley, 2014; Semren et al., 2015; VerPlank and Goldberg, 2017). Targeting the specific 

interaction of proteasome activators with the 20S proteasome thus may provide a promising, 

novel approach to therapeutically interfere with specific subsets of proteasome complexes, 

which is in contrast to the global inhibition of 20S proteasomes by small molecule inhibitors 

of the catalytic sites (Gaczynska and Osmulski, 2015). 
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1.2 Idiopathic pulmonary fibrosis  

Idiopathic pulmonary fibrosis (IPF) is a devastating, progressive and chronic interstitial lung 

disease (ILD) (Fernandez and Eickelberg, 2012a; Wynn, 2011). It is characterized by fibrotic 

remodeling of the lung architecture, which involves excessive deposition of extracellular 

matrix leading to loss of lung elasticity, an impairment of gas exchange and finally organ 

failure. Among all ILDs, which comprise diseases arising in the lung interstitium within the 

alveolar interspace, IPF occurs most frequently and progresses most aggressively (King et al., 

2011). According to a meta-analysis of studies between 1968 and 2012, IPF has a rising 

incidence of on average 3-9 cases per 100 000 persons in Europe and North America 

affecting more men than women (Hutchinson et al., 2015). Age is considered as one of the 

main demographic risk factors, and the median age of patients at diagnosis is 66 years 

(Martinez et al., 2017; Nalysnyk et al., 2012). Despite its rather low incidence, IPF progresses 

aggressively and patients have a very poor prognosis with a median survival of 3-5 years 

after diagnosis (Fernandez and Eickelberg, 2012a). So far, treatment options are limited, 

which contributes to the low survival of patients. Cigarette smoking as well as exposure to 

dust from metals or wood have been described as environmental risk factors for developing 

the disease (Baumgartner et al., 2000). Different comorbidities, such as gastroesophageal 

reflux, obesity, diabetes mellitus or pulmonary hypertension - to only name a few examples – 

are discussed to contribute to the disease progression, but require further investigation (King 

et al., 2011; Raghu and Meyer, 2012). However, as the term “idiopathic” implicates, the 

etiology of the disease has not been fully understood yet and therefore the understanding of 

its pathogenesis is – besides the discovery of new biomarkers enabling early diagnosis – of 

high interest for current and future research (Raghu et al., 2011). 

 

1.2.1 Pathological hallmarks of IPF 

IPF displays a very heterogeneous histological pattern with alternating areas of normal 

tissue, injured and hyperplastic alveolar epithelium in honeycombing areas as well as fibrotic 

patches (Figure 1.7) (Fernandez and Eickelberg, 2012a; Martinez et al., 2017).  
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Figure 1.7: IPF tissue is characterized by a heterogeneous but characteristic histological pattern. 
A) Histological analysis (hematoxylin & eosin (H&E) staining) of a normal lung showing the terminal bronchiole, 
respiratory bronchiole, alveolar duct and alveoli. B) Low magnification H&E staining of a lung biopsy from an 
usual interstitial pneumonia (UIP) patient indicating characteristic honeycombing (arrow). UIP with an unknown 
cause is also termed idiopathic pulmonary fibrosis. C) Higher magnification histological analysis of the same 
patient as shown in B) indicating the presence of fibroblasts foci (arrow) (from Martinez et al., 2017). 
 

The sub-pleural parenchyma is the mostly affected region of the lung, which often indicates 

advanced tissue remodeling (Wolters et al., 2014). The disease progresses from the exterior 

towards the central part of the lobule with sites of chronic injury being rather located in the 

parenchymal region and areas of active fibrosis being more in the central regions (Figure 

1.8). 

 

 
Figure 1.8: Schematic representation of normal lung architecture and IPF lung. Comparison between 
normal lung architecture (A) and severe fibrotic remodeling (B) in IPF lungs. Remodeling mostly localizes to the 
subpleural parenchyma in the lower parts of the lung lobes. Pathological hallmarks of IPF include an injured and 
hyperplastic alveolar epithelium, accumulation of myofibroblasts in so-called fibrotic foci, increased deposition 
of extracellular matrix and thickening of pleural septa (adapted from Fernandez et Eickelberg, 2012). 
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Figure 5 | Honeycombing typical in UIP. Honeycombing is the feature of subpleural cystic airspaces with well-defined 
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The pathological hallmarks of IPF are septal thickening, areas of airspace enlargement (so-

called honeycombs), as well as fibrotic foci, which all contribute to the destruction of the 

alveolar architecture and reduction of pulmonary elasticity (Figure 1.7 and Figure 1.8) 

(Fernandez and Eickelberg, 2012a; Wolters et al., 2014). Honeycombs are areas of enlarged 

airspace containing mucus and inflammatory cells that are surrounded by fibrotic tissue. 

Fibroblast foci are accumulations of active and proliferating myofibroblasts, which secrete 

excessive amounts of extracellular matrix. They are often surrounded by hyperplastic 

pneumocytes or bronchiolar cells and frequently found at the interface of fibrotic and 

normal lung tissue at sites of epithelial injury. In contrast to scar tissue and honeycombs, 

fibroblast foci are indicative for areas of progressing fibrosis with ongoing injury and their 

presence has been associated with poor prognosis of patients (Cavazza et al., 2010).  

 

1.2.2 Pathomechanisms of IPF 

The pathogenesis of IPF is considered as an aberrant or dysregulated wound healing 

response to repetitive microinjuries of the alveolar epithelium, which leads to excessive 

deposition of extracellular matrix in the lung (Martinez et al., 2017). This results in 

progressive lung scarring and loss of the defined lung structures and elasticity impairing 

alveolar gas exchange. The general, physiological wound healing process consists of four 

steps leading to proper restoration of injured tissues (Figure 1.9) (Wynn, 2011): First, 

circulating platelets, which are essential components of the coagulation cascade, are 

activated by inflammatory mediators secreted from damaged epithelium or endothelium and 

form fibrin clots mediating wound closure. In a second step, these platelets induce 

recruitment of inflammatory cells, such as neutrophils, lymphocytes, macrophages and 

eosinophils, to the site of injury by increasing vessel permeability and secreting chemokines. 

Inflammatory cells in turn secrete transforming growth factor beta 1 (TGF-β1) and other 

cytokines that augment the inflammatory response and mediate the activation, proliferation 

and migration of myofibroblasts. The different sources of myofibroblast are not completely 

understood yet, but might involve differentiation of resident fibroblasts, invasion of bone 

marrow fibrocytes or epithelial to mesenchymal transition (EMT) of epithelial cells. In the last 

step, myofibroblasts induce wound closure due to their contractile function and secrete 

extracellular matrix (ECM) components, which function as a scaffold for migration of 
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epithelial and endothelial cells mediating re-epithelialization and reconstitution of the tissue 

(Martin, 1997; Singer and Clark, 1999). Under normal conditions, the effector cells and ECM 

components are eliminated upon restoration of the tissue (Rockey et al., 2015). 

 

 
Figure 1.9: Dysregulation of normal wound healing induces fibrotic tissue remodeling of the lung. The 
scheme indicates the four stages of physiological wound healing: Epithelial cell injury induces secretion of 
inflammatory mediators and platelet activation, which also mediate wound closure. Inflammatory cells are 
recruited to the site of injury to prevent the entry of pathogens, to remove dead cells and to secrete pro-fibrotic 
cytokines, for example TGF-β1. In the next step, these cytokines activate myofibroblasts from different origins, 
which then secrete ECM components to facilitate the migration of endothelial and epithelial cells to the sites of 
tissue repair and induce wound contraction under normal conditions leading to tissue repair. Fibrotic tissue 
remodeling is regarded as dysregulation of wound healing involving an excessive deposition of ECM and thereby 
destructing functional lung tissue (from Wynn et al., 2011). 
 

Fibrosis, however, arises when chronic injury or dysregulation of the physiological wound 

healing process leads to continuous ECM deposition and scar formation destroying the 

original tissue architecture (Rockey et al., 2015; Wynn, 2011). Research on the 

pathomechanism of IPF is focused on diverse aspects of the disease and a plethora of 

different factors have been discussed to contribute to its pathogenesis, but the exact 

underlying mechanism is not known yet. Fibrotic diseases from different organs often involve 

persistent inflammation (Thannickal et al., 2004; Wynn, 2011). The role of inflammation in IPF, 

however, is controversial as fibrotic remodeling was reported to precede without a 

remarkable inflammatory response, which accords well with the observation that anti-

inflammatory therapies exhibit low efficiency (Rafii et al., 2013; Thannickal et al., 2004). The 

exact role of the innate and adaptive immune system, however, still requires further 

evaluation (Martinez et al., 2017). Ageing is considered as an important factor in IPF due to 

the fact that it is an age-related disease and lungs indeed show several molecular hallmarks 

of ageing (Martinez et al., 2017). Alveolar epithelial type 2 (AEC2) cells, progenitors of 

alveolar epithelial type 1 (AEC1) cells playing an important role in alveolar epithelial cell 

regeneration, exhibit different characteristics of ageing, such as genomic instability, cellular 
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senescence, mitochondrial dysfunction and loss of proteostasis to only name a few examples 

(Lehmann et al., 2017; Selman and Pardo, 2014). A genetic predisposition for developing IPF 

has also been discussed recently and several mutations in the lung epithelium have been 

identified in sporadic or familial IPF, including several genes contributing to telomere 

maintenance, the gene encoding the AEC2 marker protein surfactant protein C or mutations 

in the promoter region of the gene encoding mucin 5B (Armanios et al., 2007; Mulugeta et 

al., 2015; Seibold et al., 2012). Alveolar epithelial cells and myofibroblasts are considered as 

the main cell types involved in the continuous fibrotic remodeling in IPF (Wynn, 2011). 

Although the initial paradigm that repetitive epithelial micro-injury contributes to 

dysregulation of repair processes and fibrosis might be an important factor, the diversity of 

epithelial cell phenotypes in the diseased tissue including apoptosis, senescence but also 

hyperplastic proliferation is not understood yet (Martinez et al., 2017). Fibroblast foci are 

regarded as the active sites of fibrotic remodeling and myofibroblasts were discovered to be 

essentially involved in the production of ECM components, but the cellular origin of these 

myofibroblasts as well as how their persistence in the diseased lung is mediated has not 

been clarified yet. TGF-β1 is the most extensively studied profibrotic cytokine influencing 

cellular differentiation, proliferation and apoptosis (Fernandez and Eickelberg, 2012b). 

Produced by a variety of different cells in the lung, TGF-β1 induces recruitment of 

macrophages and fibroblasts, activation of myofibroblasts and secretion of other 

pro-inflammatory or pro-fibrotic cytokines and is thus considered as an important driver of 

fibrotic tissue remodeling. 

The complex interaction between the described components, such as epithelial and 

mesenchymal cells as well as the ECM, requires further investigation in order to determine 

the exact mechanism leading to IPF. 

 

1.2.3 Regulation of proteostasis in fibrotic tissue remodeling 

The lung is in direct contact with the environment and constantly exposed to mechanical and 

environmental stresses, which challenge cellular proteostasis (Balch et al., 2014). Therefore, 

perturbation of proteostasis has been proposed to contribute to different lung diseases and 

has also gained more and more attention in IPF research (Balch et al., 2014; Weiss et al., 

2010). The risk to develop IPF increases with age, and several studies reported that the ability 



1 Introduction 
 

22 

to cope with proteotoxic stress also decreases during ageing, suggesting that the 

proteostasis network could be affected in IPF (Kikis et al., 2010). Indeed, several components 

of the proteostasis network were observed to be regulated in fibrotic lung remodeling 

supporting this concept. Enhanced expression of ER stress markers and activation of the 

unfolded protein response (UPR) was observed in AEC2 cells in lungs of sporadic IPF patients 

(Korfei et al., 2008). However, the exact underlying mechanism – especially in sporadic IPF – 

has not been discovered yet, although herpes virus infection was discussed to contribute to 

enhanced ER stress (Lawson et al., 2008). In addition, several mutations in the SPC gene 

inducing misfolding of the protein in AEC2 that induce ER stress were discovered in cases of 

familial IPF (Korfei et al., 2016; Lawson et al., 2008; Mulugeta et al., 2015)., Insufficient 

degradation of misfolded or redundant proteins induces proteotoxic stress and leads to an 

imbalance of protein homeostasis (Mora et al., 2017). Autophagy, one of the two main 

cellular degradation machineries, was shown to be decreased in IPF tissues (Patel et al., 

2012). Moreover, impaired autophagy promoted myofibroblast differentiation and 

senescence of epithelial cells as well as fibrotic remodeling in mice leading to the 

assumption that an age-related impairment of autophagy might contribute to fibrosis in 

patients (Araya et al., 2013; Cabrera et al., 2015; Pardo and Selman, 2016). 

The regulation of the proteasome as the major degradation machinery for intracellular 

proteins was first analyzed by a recent study of our group, which showed that 26S 

ubiquitin-dependent protein degradation is activated in fibrotic lung tissue (Semren et al., 

2015). Here, we observed an induction of proteasome activity in fibrotic lungs of 

bleomycin-treated mice, which is a common animal model for experimentally induced 

fibrotic remodeling of the lung. IPF tissues exhibited elevated protein levels of the 19S 

subunit RPN6, which is rate-limiting for formation of 26S proteasomes (Pathare et al., 2012; 

Vilchez et al., 2012). RPN6 was mainly upregulated in myofibroblasts of fibroblast foci in IPF 

lungs, and in vitro experiments confirmed that proteasome function is indeed essential for 

TGF-β1-induced myofibroblast differentiation. Therefore, regulation of the proteasome 

represents a further aspect of imbalanced proteostasis in IPF tissues.  
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2 Aims 

The discovery of the different alternative proteasome activators has further extended the 

complexity of proteasome function. According to the building block concept, the recruitment 

of proteasome activators to different 20S proteasome core particles allows for fast, timely- 

and spatially-controlled adaption of proteasomal function according to cellular needs 

(Meiners et al., 2014). According to this concept, any imbalance of proteostasis in disease will 

involve adaptive alterations of proteasome function and alternative complex formation. 

However, the knowledge about the regulation of alternative proteasome activators and their 

association with the 20S proteasome core complex upon certain cellular stimuli or in the 

pathogenesis of disease is limited, and PA200 in particular has not been described in a 

disease context so far. The present study aimed to extend current knowledge on the 

regulation of proteasomal activators in lung biology and disease. The specific aims were as 

follows: 

 

1. Validating the specificity of antibodies for analysis of the proteasome activator PA200  

Preliminary data suggested that the widely used PA200 antibody that targets aa 

1620-1634 of the human protein also detects a protein not related to PA200, which has 

previously been described as an isoform of the activator (Ustrell et al., 2002). In the first 

part of the thesis, this and other commercially available antibodies were validated for their 

specificity in detecting mouse or human isoforms of PA200 using PA200 siRNA-mediated 

silencing and tissues of PA200-/- mice in order to ensure reliable and specific detection of 

PA200 in subsequent experiments. 

 

2. Investigating the regulation of alternative proteasome complexes in response to proteotoxic 

stress induced by proteasome inhibition 

Catalytic proteasome inhibition induces pronounced proteolytic stress and feeds back on 

the proteasome system by transcriptional upregulation of proteasomal genes (Meiners et 

al., 2003, 2007). Regulation of alternative proteasome complex formation, however, has 

not been studied in this system. Thus, the second chapter of this thesis aimed to 

investigate the regulation of proteasome complexes in response to proteasome inhibition 
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focusing on the kinetics of activator recruitment and on the underlying mechanism of 

alternative proteasome complex formation.  

 

3. Dissecting the regulation of PA200 in hyperproliferative lung diseases and investigating its 

function in primary human lung fibroblasts 

The third part of this thesis aimed to investigate the regulation of PA200 in 

hyperproliferative lung diseases including fibrotic tissue remodeling and lung cancer. For 

this purpose, IPF and lung cancer biopsies but also tissues from experimental murine 

kidney and lung fibrosis as well as lung cancer were analyzed to provide first evidence for 

a regulation of PA200 in disease. Moreover, the function of PA200 was investigated in 

primary human lung fibroblasts (phLF) by analyzing its interactome and characterizing 

the functional consequence of its silencing via transcriptomic and proteomic screens as 

well as validating suggested functions in cell culture experiments.  

 

In summary, the present study aims to provide new insights into the adaption of the 

alternative proteasome activators PA28γ and PA200 in response imbalanced proteostasis or 

diseases of the lung, thereby supporting the concept of the fine-tuned adjustment of 

proteasome function according to cellular needs via the recruitment of proteasomal 

activators to the 20S proteasome. Moreover, the detailed characterization of the so far 

unknown regulation of PA200 in disease as well as its cellular function adds a novel aspect to 

the pathogenesis of IPF and contributes to a better understanding of the underlying 

pathomechanism. 
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3 Materials 

3.1 Antibodies 

3.1.1 Primary antibodies 

Antigen Product 
number 

Host Type Appli-
cation  

Dilution Provider 

Acetyl-Histone H2B 
(Lys5) (D5H1S) 

12799 Rabbit Monoclonal WB 
 

1:1000 Cell Signaling, 
Danvers, USA 

Acetyl-Histone H3 
(Lys9) (C5B11) 

9649 Rabbit Monoclonal WB 
 

1:1000 Cell Signaling, 
Danvers, USA 

Acetyl-Histone H4 
(Lys8)  

2594 Rabbit Polyclonal WB 
 

1:1000 Cell Signaling, 
Danvers, USA 

AKT (pan) (C67E7) 4691 Rabbit Monoclonal WB 
 

1:1000 Cell Signaling, 
Danvers, USA 

CASP3 9662! Rabbit Polyclonal WB 1:2000 Cell Signaling, 
Danvers, USA 

Cleaved CASP3 9661 Rabbit Polyclonal WB 1:1000 Cell Signaling, 
Danvers, USA 

COL1A1 600401103 
 

Rabbit Polyclonal WB 
 

1:5000 Rockland 
Immunochemicals, 
Limerick, USA 

Cyclin D1 2978  
 

Rabbit Monoclonal WB 
 

1:1000 Cell Signaling, 
Danvers, USA 

Fibronectin sc-9068 
 

Rabbit Polyclonal WB 
 

1:1000 Santa Cruz, Dallas, 
USA 

GAPDH 
(HRP-linked) 

14C10 Rabbit Monoclonal WB 
 

1:80 000 Cell Signaling, 
Danvers, USA 

Histone H2B 
(D2H6) 

12364 Rabbit Monoclonal WB 
 

1:1000 Cell Signaling, 
Danvers, USA 

Histone H3 (D1H2) 4499 Rabbit Monoclonal WB 
 

1:2000 Cell Signaling, 
Danvers, USA 

Histone H4 (D2X4V) 13919 Rabbit Monoclonal WB 
 

1:1000 Cell Signaling, 
Danvers, USA 

IgG control  VEC%I%1000 Rabbit Polyclonal IP as IgG 
control 

Biozol Diagnostica, 
Eching Germany 

Mouse IgG1 K 
isotype control 

16-4714-82! Mouse - IP as IgG 
control 

Thermo Fisher 
Scientific, Waltham, 
USA 

Normal rabbit IgG 2729 Rabbit Polyclonal  IHC as IgG 
control 

Cell Signaling, 
Danvers, USA 

p21 MAB88058 Mouse Monoclonal WB 
 

1:3000 Merck Millipore, 
Billerica, USA 

PA200 
(for human) 

NBP1-22236 Rabbit Polyclonal WB 
IP 
IHC 
IF 

1:2500 
3 µL 
1:500 
1:500 

Novus Biologicals, 
Littleton, USA 

PA200 
(for mouse) 

NBP2-32575 Rabbit Polyclonal WB 
 

1:500 Novus Biologicals, 
Littleton, USA 

PA200 PA1-1961 Rabbit Polyclonal WB 
IHC 

1:1000 
1:600 

Thermo Fisher 
Scientific, Waltham, 
USA 

PA200 sc-135512 Rabbit Polyclonal IHC 1:50 
 

Santa Cruz, Dallas, 
USA 
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Antigen Product 
number 

Host Type Appli-
cation  

Dilution Provider 

PA28α ab155091 Rabbit Monoclonal WB 
 

1:1000 Abcam, Cambridge, 
United Kingdom 

PA28γ sc-136025 Mouse Monoclonal WB 
IF 

1:1000 
1:300 

Santa Cruz, Dallas, 
USA 

PA28γ BML-PW8190 Rabbit Polyclonal WB 
IP 

1:2000 
3 µL 

Enzo Life Science, 
Lörrach, Germany 

PARP (46D11) 9532 Rabbit Monoclonal WB 1:2000 Cell Signaling, 
Danvers, USA 

PCNA 18-0110 Mouse Monoclonal WB 1:2000 Thermo Fisher 
Scientific, Waltham, 
USA 

Phospho-AKT 
(Ser473) (D9E) 

4060 Rabbit Monoclonal WB 
 

1:1000 Cell Signaling, 
Danvers, USA 

PSMA4 ab119419 
 

Mouse Monoclonal WB 
 

1:2000 Abcam, Cambridge, 
United Kingdom 

RPL19 ab58328 
 

Mouse  Monoclonal WB 
 

1:1000 Abcam, Cambridge, 
United Kingdom 

RPN6 NBP1-46191 Rabbit Polyclonal WB 
 

1:2000 Novus Biologicals, 
Littleton, USA 

RPT5 A303-538A Rabbit Polyclonal WB 
 

1:5000 Bethyl Laboratories, 
Montgomery, USA 

THBS1 ab85762 
 

Rabbit Polyclonal WB 
 

1:1000 Abcam, Cambridge, 
United Kingdom 

UBIK48 05-1307 Rabbit Monoclonal WB 
 

1:1000 Merck Millipore, 
Billerica, USA 

α1-7 (MCP231) ab22674 Mouse  Monoclonal WB 
 

1:1000 Abcam, Cambridge, 
United Kingdom 

α4 BML-PW8120 Mouse Monoclonal WB 
IP 

1:2000 
3 µL 

Enzo Life Science, 
Lörrach, Germany  

α7 2456 S 
 

Rabbit Polyclonal WB 
 

1:1000 
 

Cell Signaling, 
Danvers, USA 

αSMA A5228 Mouse Monoclonal WB 
 

1:1000 Sigma Aldrich,  
St. Louis, USA 

β5 ab90867 Rabbit  Polyclonal WB 
 

1:1000 Abcam, Cambridge, 
United Kingdom 

β-Actin  
(HRP-linked) 

A3854 Mouse Monoclonal WB 
 

1:80 000 Sigma Aldrich,  
St. Louis, USA 

 

3.1.2 Secondary Antibodies 

Antigen Product 
number 

Host Appli-
cation  

Dilution Provider 

Anti-mouse IgG HRP-linked 7076 Horse WB 
 

1:40 000 
 

Cell Signaling, 
Danvers, USA 

Anti-mouse IgG HRP-linked 7074 Horse WB 
 

1:40 000 
 

Cell Signaling, 
Danvers, USA 
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3.2 Oligonucleotides and vectors 

Primers for quantitative real time polymerase chain reaction (RT-PCR), cloning and 

genotyping were purchased from Eurofins, Luxembourg. 

3.2.1 Primers for quantitative RT-PCR 

Gene Species  Sequence 5’-3’ 
ACTA 
(αSMA) 

human FW 
REV 

CGAGATCTCACTGACTACCTCATGA 
AGAGCTACATAACACAGTTTCTCCTTGA  

ACTB  
(β-Actin) 

human FW 
REV 

TCCATCATGAAGTGTGACGT 
GAGCAATGATCTTGATCTCAT 

CCND1 
(Cyclin D1) 

human FW 
REV 

CGTGGCCTCTAAGATGAAGG 
CTGGCATTTTGGAGAGGAAG 

COL1A1 human FW 
REV 

CAAGAGGAAGGCCAAGTCGAG  
TTGTCGCAGACGCAGATCC  

FN human FW 
REV 

CCGACCAGAAGTTTGGGTTCT  
CAATGCGGTACATGACCCCT  

GAPDH human FW 
REV 

TGACCTCAACTACATGGTTTACATG 
TTGATTTTGGAGGGATCTCG 

HPRT human FW 
REV 

TGAAGGAGATGGGAGGCCA 
AATCCAGCAGGTCAGCAAAGAA 

PSMA3 human FW 
REV 

AGATGGTGTTGTCTTTGGGG  
AACGAGCATCTGCCAACAA  

PSMB5 human FW 
REV 

TCAGTGATGGTCTGAGCCTG  
CCATGGTGCCTAGCAGGTAT  

PSMC3 human FW 
REV 

GTGAAGGCCATGGAGGTAGA  
GTTGGATCCCCAAGTTCTCA  

PSMD11 human FW 
REV 

GCTCAACACCCCAGAAGATGT  
AGCCTGAGCCACGCATTTTA  

PSME1 human FW 
REV 

CAAGGTGGATGTGTTTCGTG 
TGCTCAAGTTGGCTTCATTG 

PSME3 human FW 
REV 

TAGCCATGATGGACTGGATGG 
CCTTGGTTCCTTGGAAGGCT 

PSME4 human FW 
REV 

CCAACAGGAAAAGAATGCCGA 
CCAGGGCAGGTTTCTTTGCT 

RPL19 human FW 
REV 

TGTACCTGAAGGTGAAGGGG  
GCGTGCTTCCTTGGTCTTAG  

TGFB1 human FW 
REV 

CGACTCGCCAGAGTGGTTAT 
TAGTGAACCCGTTGATGTCCA 

Col1a1 mouse FW 
REV 

CCAAGAAGACATCCCTGAAGTCA 
TGCACGTCATCGCACACA 

Fn mouse FW 
REV 

GTGTAGCACAACTTCCAATTACGAA 
GGAATTTCCGCCTCGAGTCT 

Psme4 mouse FW 
REV 

CATCCTTCAAATAATGGGCG 
AAGCTTATGGCTTTCAGGCA 

Rpl19 mouse FW 
REV 

CGGGAATCCAAGAAGATTGA  
TTCAGCTTGTGGATGTGCTC  

Tnc mouse FW 
REV 

GCTTCACTGGCAAAGACTGCAA 
CGTAAAGCCCTCATGGCAGATA 
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3.2.2 Primers for genotyping of PA200-/- mice 

Primer Sequence 5’-3’ Tm [°C] 
PA200-wt-as  GTTGTTTGTTAGTTGTCAGGCTC 56.0 
I15.07 CCACCATCTAGGTTAAAGGT 53.0 
I29.02.Xho CCGCTCGAGGGCAGTACAGTCTTACT 67.0 

 

3.2.3 Primers for cloning of PA200 construct 

Primer Sequence 5’-3’ Tm [°C] 
PA200 FW TATGCTAGCCCGAGGAGATCTGC 69 
PA200 REV ATGGTACCCTATGCATAATAGCATGGTG 69 

 

3.2.4 siRNAs 

Silencer® select siRNAs for RNA interference were obtained from Ambion, Thermo Fisher 

Scientific, Waltham, USA. siRNAs were dissolved in nuclease free water at a stock 

concentration of 10 µM and stored in aliquots at -20 °C. 

siRNA siRNA ID Product number  Species 
Silencer Select PSME4 siRNA 1 s23262 4392420 Human 
Silencer Select PSME4 siRNA 2 s23263 4392420 Human 
Silencer Select PSME3 siRNA 1 s19871 4392420 Human 
Silencer Select PSME3 siRNA 2 s19873 4392420 Human 
Silencer Select PSMD11 siRNA  s11413  4392420 Human 
Silencer Select PSME4 siRNA 1 S98099 4390771 Mouse 
Silencer Select PSME4 siRNA 2 S98098 4390771 Mouse 
Silencer Select Negative Control No.1  - 4390843 Mouse/Human 
Silencer Select Negative Control No. 2 - 4390847  Mouse/Human 

 

3.2.5 Plasmids 

Vector Product 
number 

Provider 

Myc-DDK N-terminal tagged human PSME4 RC222965 OriGene Technologies, Rockville, USA 
pcDNA3.1/Zeo(+) V79020 Thermo Fisher Scientific, Waltham, USA 
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3.3 Cell culture 

3.3.1 Cell lines 

All cell lines were purchased from the American Type Culture Collection (ATCC), Manassas, 

USA.  

Cell line Origin Specification 
A549 Human adenocarcinoma, alveolar epithelial basal cell ATCC-Nr. CCL-185 
CCL-206 Mouse newborn lung fibroblast ATCC-Nr. CCL-206 

 

3.3.2 Primary human lung fibroblasts 

Primary human lung fibroblasts from different donors were provided by Prof. Dr. Andreas 

Günther, Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.  

ID Patient data 
406 Female, 50 years, peripheral normal lung tissue, organ donor  
409Sp Male, 51 years, peripheral normal lung tissue, organ donor  
411a Female, 44 years, peripheral normal lung tissue, organ donor  
423g Female, 41 years, peripheral normal lung tissue, organ donor  
Gi-151 Female, 60 years, histologically normal areas of lung specimens obtained after resective surgery 

for benign or malignant tumors   
Gi-152 Female, 72 years, histologically normal areas of lung specimens obtained after resective surgery 

for benign or malignant tumors   

 

3.3.3 Cell culture media 

Cell type Cell culture medium Product  
number 

Provider 

phLF MCDB 131   
10 % Fetal bovine serum (FBS) Superior  
100 U/mL Penicillin/Streptomycin  
2 mM L-glutamine  
2 ng/mL Basic-FGF  
0.5 ng/mL EGF  
5 µg/mL Insulin 

P04-80057 
S 0615  
15140-122 
G7513 
13256029 
E9644 
12585-O14 

PAN-Biotech, Aidenbach,, Germany  
Biochrom, Berlin, Germany  
Thermo Fisher Scientific, Waltham, USA  
Sigma-Aldrich, St. Louis, USA  
Thermo Fisher Scientific, Waltham, USA  
Sigma-Aldrich, St. Louis, USA  
Thermo Fisher Scientific, Waltham, USA  

A549 DMEM + GlutaMAX  
10 % FBS Superior 
100 U/mL Penicillin/Streptomycin  

21885025 
S 0615  
15140-122 

Thermo Fisher Scientific, Waltham, USA  
Biochrom, Berlin, Germany 
Thermo Fisher Scientific, Waltham, USA  

CCL-206 DMEM-F12 
10 % FBS Superior 
100 U/mL Penicillin/Streptomycin  

31330 
S 0615  
15140-122 

Thermo Fisher Scientific, Waltham, USA  
Biochrom, Berlin, Germany 
Thermo Fisher Scientific, Waltham, USA 
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3.4 Human donor and IPF lung tissue 

Lung tissues of donors and IPF patients were provided by Prof. Dr. Andreas Günther, 

Universities of Giessen and Marburg Lung Center (UGMLC), Gießen, Germany. All samples 

were approved with ethical consent according to national and international guidelines. 

ID Patient data 
198  Male, 61 years, peripheral normal lung tissue, organ donor  
2B Male, 29 years, peripheral normal lung tissue, organ donor  
22 Unknown, peripheral normal lung tissue, organ donor  
46 Unknown, peripheral normal lung tissue, organ donor  
58 Male, 53 years, peripheral normal lung tissue, organ donor  
Gi-151 Female, 60 years, histologically normal areas of lung specimens obtained after resective surgery 

for benign or malignant tumors  
200 Male, 42 years, peripheral normal lung tissue, organ donor  
406 Female, 50 years, peripheral normal lung tissue, organ donor  
409Sp Male, 51 years, peripheral normal lung tissue, organ donor  
411a Female, 44 years, peripheral normal lung tissue, organ donor  
146 Male, 60 years, IPF patient  
190 Female, 44 years, IPF patient  
207 Male, 47 years, IPF patient 
302 Male, 54 years, IPF patient  
324 Male, 34 years, IPF patient  
325 Female, 51 years, IPF patient  
327 Male, 61 years, IPF patient  
330 Female, 46 years, IPF patient  
331 Male, 57 years, IPF patient  
334 Female, 42 years, IPF patient  
335 Female, 57 years, IPF patient  
 

3.5 Human lung cancer tissue 

Human lung tissue obtained from patients surgically treated for lung cancer was provided by 

the Asklepios Biobank for Lung Disease, Gauting, Germany. Samples were approved with 

ethical consent according to national and international guidelines (project number 333-10). 

ID Patient data 
ASK89 Female, 72 years old, squamous cell carcinoma 
ASK86 Male, 60 years old, squamous cell carcinoma 
ASK223 Female, 61 years old, adenocarcinoma 
ASK215 Male, 67 years old, adenocarcinoma 
ASK211 Male, 76 years old, typical carcinoid 
ASK210 Male, 83 years old, adenocarcinoma 
ASK204 Male, 67 years old, squamous cell carcinoma 
ASK147 Female, 75 years old, adenocarcinoma 
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3.6 Drugs and treatments 

Drug Solvent Stock concentration Provider 
Bortezomib DMSO 2.6 mM Millenium, Pharmaceuticals, 

Takeda, Cambridge, USA 
Oprozomib DMSO 10 mM Onyx Pharmaceuticals, San 

Francisco, USA 
Epoxomicin DMSO 10 mM APExBio, Houston, USA 
TGF-β1 4 mM HCl +  

1 mg/mL BSA 
1000 ng/mL R&D Systems, Minneapolis, 

USA 
Staurosporine DMSO 1 mM Biomol, Hamburg, Germany 

 

3.7 Enzymes 

Product Provider 

DNase 2 U/µL Peqlab, Erlangen, Germany  
KpnI New England Biolabs, Ipswich, USA 
M-MLV Reverse Transcriptase Sigma-Aldrich, St. Louis, USA 
NheI New England Biolabs, Ipswich, USA 
Phusion Polymerase Thermo Fisher Scientific, Waltham, USA 
Proteinase K AppliChem, Darmstadt, Germany 
Taq Polymerase Thermo Fisher Scientific, Waltham, USA 

 

3.8 Kits 

Product Provider 

NucleoSpin® Plasmid purification kit Macherey-Nagel, Düren, Germany 
NucleoBond® PC500 plasmid purification kit Macherey-Nagel, Düren, Germany 
NucleoSpin® Gel and PCR clean up Macherey-Nagel, Düren, Germany 
Cell Proliferation ELISA, BrdU (colorimetric) Roche Diagnostics, Mannheim, Germany 
LightCycler 480 SYBR Green I Master  Roche Diagnostics, Mannheim, Germany 
Pierce BCA Protein Assay Kit Thermo Fisher Scientific, Waltham, USA 
Proteasome-GloTM Assay Promega, Fitchburg, USA 
Roti-Quick RNA Extraction Kit Carl Roth, Karlsruhe, Germany 
Vulcano Fast Red Chromogen Kit Biocare Medical, Concord, Canada 
PeqGOLD Total RNA-Kit  Peqlab, Erlangen, Germany 
Trichrome (Masson) Staining Kit Sigma-Aldrich, Munich, Germany  
WT PLUS Reagent Kit  Affymetrix, Santa Clara, US 

 

3.9 Markers  

Product Provider 

Protein Marker IV (10-245 kDa) AppliChem, Darmstadt, Germany 
DNA-ladder 100 bp Plus, peqGOLD VWR Peqlab, Rednore, USA 
DNA-ladder 1 kb Plus, peqGOLD VWR Peqlab, Rednore, USA 
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3.10 Buffer formulations 

All buffers were prepared with Milli-Q® water. 

Buffer Reagent Concentration  
0.1 M Phosphate buffer pH 8  Na2HPO4 

NaH2PO4 
93.2 mM 
6.8 mM 

2x Fluorescence proteasome activity assay 
buffer 

Tris pH 8.2 
KCl 
Magnesium acetate 
Magnesium chloride 

450 mM 
90 mM 
15 mM 
15 mM 

5x Native loading buffer Tris 
Glycerol 
Bromophenol blue 

250 mM 
50 % (v/v) 
0.01% (w/v) 

6x Laemmli buffer Tris 
Glycerol 
SDS 
Bromophenol blue 
DTT 

300 mM 
50 % (v/v) 
6% (w/v) 
0.01 % (w/v) 
600 mM 

AnnexinV binding buffer HEPES  
NaCl  
CaCl2  

10 mM 
140 mM 
2.5 mM 

Citrate buffer pH 6  Citric acid monohydrate  
Sodium citrate tribasic 

1.8 mM 
8.2 mM 

Extraction buffer (histone extraction) HEPES pH 7.9 
KCl 
MgCl2 
Sucrose 
Glycerol 

10 mM 
10 mM 
1.5 mM 
0.34 M 
10 % (v/v) 

High-salt solubilization buffer  
(histone extraction) 

Tris-HCl pH 8.0 
NaCl 
IGEPAL 

50 mM 
2.5 M 
0.05 % (v/v) 

Native gel running buffer Tris 
Boric acid 
EDTA 
MgCl2 
ATP 
DTT 

89 mM 
89 mM 
2 mM 
5 mM 
2 mM 
1 mM 

No-salt buffer (histone extraction) EDTA 
EGTA 

3 mM 
0.2 mM 

PBND buffer KCl 
Tris-HCl pH 8.3 
MgCl2 
Gelatin 
IGEPAL 
Tween-20 

50 mM 
10 mM 
2.5 mM 
0.01 % (w/v) 
0.45 % (v/v) 
0.45 % (v/v) 

PBST washing buffer NaCl 
KCl 
Na2HPO4 
KH2PO4 

Tween-20 

137 mM 
2.7 mM 
10 mM 
2 mM 
1 % (v/v) 

Phosphate buffered saline (PBS) pH 7.4 NaCl 
KCl 
Na2HPO4 

K2HPO4 

137 mM 
2.7 mM 
10 mM 
2 mM 
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Buffer Reagent Concentration  
Proteasome activity overlay assay reaction 
buffer 

Tris pH 7.5 
ATP 
MgCl2 

DTT 
Suc-LLVY-AMC 

50 mM 
1 mM 
10 mM 
1 mM 
0.05 mM 

RIPA lysis buffer pH 7.5 
 

Tris/HCl pH 7.5  
NaCl 
IGEPAL 
Sodium deoxycholate  
SDS 
cOmplete® protease inhibitor 

50 mM 
150 mM 
1 % (v/v) 
0.5 % (w/v) 
0.1 % (w/v)  
1x 

SDS PAGE running buffer Tris 
Glycin 
SDS 

25 mM 
192 mM 
0.1 % (w/v) 

Solubilization buffer Na2CO3 

SDS 
β-mercaptoethanol 

66 mM 
2 % (w/v) 
1.5 % (v/v) 

TAE buffer Tris 
Acetic acid 
EDTA 

40 mM 
20 mM 
1 mM 

Tris buffered saline and Tween (TBST) pH 7.6 Tris pH 7.6 
NaCl 
Tween-20 

20 mM 
135 mM 
0.02 % (v/v) 

TSDG buffer pH 7.0 Tris pH 7.0 
NaCl 
MgCl2 

EDTA 
DTT 
NaN3 

Glycerol 

10 mM 
10 mM 
1.1 mM 
0.1 mM 
1 mM 
1 mM 
10 % (v/v) 

Western blot transfer buffer Tris 
Glycine 
Methanol 

25 mM 
192 mM 
10 % (v/v) 

 

3.11 Reagents  

 

Product Solvent Stock  
concentration 

Provider 

4’,6-Diamidin-2-phenylindol (DAPI) PBS 1 M Sigma-Aldrich, St. Louis, USA 
6x DNA Loading Dye - 6x Thermo Fisher Scientific, 

Waltham, USA 
Activity based probe LW124 DMSO 2.5 µM Prof. Dr. H. Overkleeft, 

University of Leiden, 
Netherlands 

Activity based probe MV151 DMSO 50 µM Prof. Dr. H. Overkleeft, 
University of Leiden, 
Netherlands 

Activity based probe MVB127  DMSO 25 µM Prof. Dr. H. Overkleeft, 
University of Leiden, 
Netherlands 

Adenosine triphosphate (ATP) - - Roche Diagnostics, 
Mannheim, Germany 
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Product Solvent Stock  
concentration 

Provider 

Ampicillin - 100 mg/mL Bioline, Luckenwalde, 
Germany 

Annexin V-FITC - - BD Biosciences, San Jose, USA 
Antibody diluent - - Dako, Hamburg, Germany 
Bouin’s Solution  - - Sigma-Aldrich, St. Louis, USA 
Bovine serum albumin (BSA) - - AppliChem, Darmstadt, 

Germany 
Bz-valine-glycine-arginine- 
aminomethylcoumarine (Bz-Val- Gly-Arg-
AMC) 

DMSO 2 mM Bachem, Bubendorf, 
Switzerland 

cOmpleteTM protease inhibitor cocktail H2O 25x Roche, Basel, Switzerland 
Dithiotreitol (DTT) H2O 1 M Life Technologies, Carlsbad, 

USA 
DynabeadsTM Protein A - - Thermo Fisher Scientific, 

Waltham, USA 
DynabeadsTM Protein G - - Thermo Fisher Scientific, 

Waltham, USA 
ECL prime Western blotting reagent - - GE Healthcare, Cölbe, 

Germany 
Entellan - - Merck Millipore, Darmstadt, 

Germany 
Eosin G 0.5 % H2O - Carl Roth, Karlsruhe, Germany 
First Strand Buffer - 5x Life Technologies, Carlsbad, 

USA 
Fluorescent Mounting Medium - - Dako, Hamburg, Germany 
Hemalaun - - Carl Roth, Karlsruhe, Germany 
Immunizing peptide of PA200 Thermo 
antibody 

- - GenScript, Piscataway, USA 

Kanamycin - 10 mg/mL PAN Biotech, Aidenbach, 
Germany  

LB Agar - - Carl Roth, Karlsruhe, Germany 
LB Medium - - Carl Roth, Karlsruhe, Germany 
Lipofectamine® LTX with Plus Reagent - - Thermo Fisher Scientific, 

Waltham, USA 
Lipofectamine® RNAiMAX - - Thermo Fisher Scientific, 

Waltham, USA 
LuminataTM Classico Western HRP Substrate - - Merck Millipore, Darmstadt, 

Germany 
LuminataTM Forte Western HRP Substrate  - - Merck Millipore, Darmstadt, 

Germany 
MACH 2 Rabbit AP-Polymer - - Biocare, Concord, USA 
Normal Goat Serum  - - Cell Signaling, Danvers, USA 
Nuclease-Free Water - - Ambion, Thermo Fisher 

Scientific, Waltham, USA 
Nucleotide Mix - 10 mM Promega, Fitchburg, USA 
Opti-MEM Reduced Serum Medium - - Thermo Fisher Scientific, 

Waltham, USA 
Penicillin/Streptomycin - - Thermo Fisher Scientific, 

Waltham, USA 
Propidium iodide - - BD Biosciences, San Jose, USA 
Random Hexamers - 250 µM Promega, Fitchburg, USA 
RNAsin RNAse Inhibitor - 40 U/µL Promega, Fitchburg, USA 
Rodent Block M - - Biocare, Concord, USA 
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3.12 Chemicals 

  

Product Solvent Stock  
concentration 

Provider 

Roti-Block - 10x Carl Roth, Karlsruhe, Germany 
Roti-Immunoblock - 10x Carl Roth, Karlsruhe, Germany 
SOC medium - - Takara, Kusatsu, Japan 
Succinyl-leucine-leucine-valine-tyrosine-
aminomethylcoumarine (Suc-LLVY-AMC) 

DMSO 2 mM Bachem, Bubendorf, 
Switzerland 

SuperSignal West FEMTO - - Thermo Fisher Scientific, 
Waltham, USA 

SYBR Safe - - Thermo Fisher Scientific, 
Waltham, USA 

Trypsin (0.25 % EDTA) - - Thermo Fisher Scientific, 
Waltham, USA 

Vulcan Fast Red - - Biocare, Concord, USA 
Weigert’s Iron Hematoxylin solution  - - Sigma-Aldrich, St. Louis, USA 
Z-norleucine-proline-norleucine-aspartate-
aminomethylcoumarine (Z-nLPnLD-AMC) 

DMSO  2 mM Bachem, Bubendorf, 
Switzerland 

Product Provider 
Boric acid AppliChem, Darmstadt, Germany 
Bromophenol blue AppliChem, Darmstadt, Germany 
Citric acid monohydrate AppliChem, Darmstadt, Germany 
Dithiotreitol (DTT) Life Technologies, Carlsbad, USA 
DMSO Carl Roth, Karlsruhe, Germany 
EDTA AppliChem, Darmstadt, Germany 
EGTA AppliChem, Darmstadt, Germany 
Ethanol AppliChem, Darmstadt, Germany 
Gelatin Sigma-Aldrich, St. Louis, USA 
Glycerol AppliChem, Darmstadt, Germany 
Glycine AppliChem, Darmstadt, Germany 
IGEPAL Sigma-Aldrich, St. Louis, USA 
Isopropanol (p. A.) AppliChem, Darmstadt, Germany 
Magnesium acetate Sigma-Aldrich, St. Louis, USA 
Magnesium chloride AppliChem, Darmstadt, Germany 
Methanol (p. A.) AppliChem, Darmstadt, Germany 
Paraformaldehyde AppliChem, Darmstadt, Germany 
Potassium chloride AppliChem, Darmstadt, Germany 
Potassium phosphate monobasic AppliChem, Darmstadt, Germany 
Sodium azide AppliChem, Darmstadt, Germany 
Sodium chloride AppliChem, Darmstadt, Germany 
Sodium citrate tribasic dihydrate  AppliChem, Darmstadt, Germany 
Sodium deoxycholate AppliChem, Darmstadt, Germany 
Sodium phosphate dibasic AppliChem, Darmstadt, Germany 
Sodiumdodecylsulfate (SDS) AppliChem, Darmstadt, Germany 
Sucrose AppliChem, Darmstadt, Germany 
Tris AppliChem, Darmstadt, Germany 
Triton X-100 Life Technologies, Carlsbad, USA 
Tween-20 AppliChem, Darmstadt, Germany 
Xylene AppliChem, Darmstadt, Germany 
β-Mercaptoethanol AppliChem, Darmstadt, Germany 
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3.13 Consumables 

Product Provider 
6/24/96 well plates  TPP, Trasadingen, Switzerland  
96 well plates, white, for luminescence detection Berthold Technologies, Bad Wildbad, Germany  
Cell culture dishes (6 cm, 10 cm 15 cm) Nunc, Wiesbaden, Germany  
Cell culture flasks (75 cm2, 175 cm2) Nunc, Wiesbaden, Germany  
Cryovials 1.5 ml  Greiner Bio-One, Frickenhausen, Germany  
D-Tube™ Dialyzer Midi, MWCO 3.5 kDa Merck Millipore, Darmstadt, Germany 
Dismembrator Tubes (Nalgene Cryogenic Tubes) Thermo Fisher Scientific, Waltham, USA  
Falcon tubes (15 mL, 50 mL) BD Bioscience, Heidelberg, Germany  
Glass pasteur pipettes VWR International, Darmstadt, Germany  
Microplate 96-well, PS, flat bottom (for BCA assay) Greiner Bio-One, Frickenhausen, Germany 
NuPAGE Novex 3-8 % Tris-Acetate Gel 1.5 mm  
(10 & 15 well) 

Thermo Fisher Scientific, Waltham, USA  

PCR plates, white, 96 well Biozym Scientific, Hessisch Oldendorf, Germany  
Pipet tips Biozym Scientific, Hessisch Oldendorf, Germany  
Protein LoBind tube 1.5 mL Eppendorf, Hamburg, Germany 
PVDF membrane Bio-Rad, Hercules, USA  
SafeSeal reaction tubes (0.5 mL, 1.5 mL, 2.0 mL) Sarstedt, Nümbrecht, Germany 
Sealing foil for qPCR  plate Kisker Biotech, Steinfurt, Germany  
Serological pipettes Cellstar 2, 5, 10, 25 and 50 mL  Greiner Bio-One, Frickenhausen, Germany 
Sterican cannulas BD Bioscience, Heidelberg, Germany  
Super RX Fuji medical X-ray film Fujifilm Corporation, Tokyo, Japan 
Syringes (10 mL, 20 mL, 50 mL)  Neolab, Heidelberg, Germany  
Whatman blotting paper 3 mm GE Healthcare, Freiburg, Germany  
 

3.14 Technical devices and further equipment 

Technical device Provider  
-20 °C freezer MediLine LGex 410 Liebherr, Biberach, Germany 
-80 °C freezer Eppendorf, Hamburg, Germany 
-80 °C freezer U570 HEF New Brunswick, Hamburg, Germany 
Analytical scale XS20S Dual Range Mettler-Toledo, Gießen, Germany 
Autoclave DX-45 Systec, Wettenberg, Germany 
Autoclave VX-120 Systec, Wettenberg, Germany 
Cell culture work bench Herasafe KS180 Thermo Fisher Scientific, Waltham, USA 
Centrifuge MiniSpin plus Eppendorf, Hamburg, Germany 
Centrifuge Rotina 420R Hettich, Tuttlingen, Germany 
Centrifuge with cooling, Micro220R Hettich, Tuttlingen, Germany 
CO2 cell incubator BBD6620 Thermo Fisher Scientific, Waltham, USA 
Cytospin 2 centrifuge Hettich, Tuttlingen, Germany 
Dismembrator S Satorius, Göttingen, Germany 
Dry ice container Forma 8600 Series, 8701 Thermo Fisher Scientific, Waltham, USA 
DynaMag-2 Thermo Fisher Scientific, Waltham, USA 
Electrophoretic Transfer Cell, Mini Protean Tetra Cell Bio-Rad, Hercules, USA  
FACS LSRII Becton Dickinson, Franklin Lakes, USA 
Film developer Curix 60 AGFA, Morsel, Belgium 
flexiVent system SCIREQ, Montreal, Canada 
Fluorescent scanner Typhoon TRIO+ Amersahm Biosciences, Amersham, UK 
Gel imaging system ChemiDoc XRS+ Bio-Rad, Hercules, USA 
Hemocytometer Brand, Wertheim, Germany 
Hyrax M55 microtome Zeiss, Jena, Germany 
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Technical device Provider  
Ice machine ZBE 110-35 Ziegra, Hannover, Germany 
Intell-Mixer RM-2 Schubert & Weiss Omnilab, Munich, Germany 
Light Cycler LC480II Roche Diagnostics, Mannheim, Germany 
Liquid nitrogen cell tank BioSafe 420SC Cryotherm, Kirchen/Sieg, Germany 
Liquid nitrogen tank Apollo 200 Cryotherm, Kirchen/Sieg, Germany 
Magnetic stirrer KMO 2 basic IKA, Staufen, Germany 
Mastercycler gradient Eppendorf, Hamburg, Germany 
Mastercycler Nexus Eppendorf, Hamburg, Germany 
Microm STP 420D Tissue Processor Thermo Fisher Scientific, Waltham, USA 
Milli-Q® Advantage A10 Ultrapure Water Purification 
System 

Merck Millipore, Darmstadt, Germany 

Milli-Q® Integral Water Purification System for Ultrapure 
Water 

Merck Millipore, Darmstadt, Germany 

Mini Centrifuge MCF-2360 Schubert & Weiss Omnilab, Munich, Germany 
Mirax scanner Zeiss, Jena, Germany 
Multipette stream Eppendorf, Hamburg, Germany 
Nalgene Freezing Container (Mister Frosty) Omnilab, Munich, Germany 
NanoDrop 1000 PeqLab, Erlangen, Germany  
pH meter InoLab pH 720 WTW, Weilheim, Germany 
Plate centrifuge 5430 Eppendorf, Hamburg, Germany 
Plate reader Sunrise Tecan, Crailsheim, Germany 
Plate reader TriStar LB941 Berthold Technologies, Bad Wildbach, Germany 
Power Supply Power Pac HC  Bio-Rad, Hercules, USA 
Refrigerator Profi Line Liebherr, Biberach, Germany 
Research plus pipettes Eppendorf, Hamburg, Germany 
Roll mixer VWR International, Darmstadt, Germany 
Scale XS400 2S Mettler-Toledo, Giessen, Germany 
Shaker Duomax 1030 Heidolph, Schwabach, Germany 
Thermomixer compact Eppendorf, Hamburg, Germany 
Tissue Lyser II Quiagen, Hilden, Germany 
Vacuum pump NO22AN.18 with switch 2410 KNF, Freiburg, Germany 
Vortex mixer IKA, Staufen, Germany 
Water bath Aqua Line AL 12 Lauda, Lauda-Königshofen, Germany 

 

3.15  Software 

Software Provider  
Adobe Illustrator Adobe Systems, San Jose, USA 
Axio Vision Zeiss, Jena, Germany 
BD FACSDIVATM Becton Dickinson, Franklin Lakes, USA  
GraphPad Prism 5 and 7 GraphPad Software, La Jolla, USA 
Image Lab Bio-Rad, Hercules, USA 
ImageJ National Institutes of Health, Bethesda, USA 
LightCycler® 480 SW 1.5 Roche Diagnostics, Mannheim, Germany 
Magellan Software Tecan, Crailsheim, Germany 
Microsoft Office Professional Plus 2010 Microsoft, Redmond, USA 
Pannoramic Viewer 3DHISTECH, Budapest, Hungary 
Tristar MicroWin 2000 Berthold Technologies, Bad Wildbach, Germany 
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4 Methods 

4.1 Animal experiments 

4.1.1 Oxalate-induced kidney fibrosis mouse model  

Murine fibrotic kidney tissue (frozen and paraffin-embedded) and control tissue was 

provided by the group of Prof. Dr. Anders (Medizinische Klinik und Poliklinik IV, Klinikum der 

Universität München, Munich, Germany). Kidney fibrosis was induced by feeding female mice 

with 50 µmol/g sodium oxalate in a standard diet for 21 days, which causes chronic kidney 

disease (CKD) (Mulay et al., 2016). 

 

4.1.2 KrasLA2 mutant lung cancer mouse model  

The 129S/Sv-Krastm3Tyj/J (KrasLA2) mutant mouse strain was obtained from the Jackson 

Laboratory. Mice were crossbred with FVB-NCrl wildtype females (Charles River Laboratories) 

for more than seven generations. KrasLA2 mice exhibit a genetically induced duplication of 

exon 1 in the Kras gene. Both of these exon 1 copies contain an activating glycine to 

aspartatic acid mutation at codon 12 (G12D). In vivo recombination causes an active, 

oncogenic G12D allele in heterozygous animals, while homozygous mice already die during 

embryogenesis, as Kras is an essential gene. KrasLA2 mice are characterized by random and 

spontaneous development of lung tumors over time and thus represent a close-to-human 

lung cancer animal model (Johnson et al., 2001).  

 

4.1.3 Bleomycin-induced lung fibrosis of PA200-/- mice 

4.1.3.1 PA200-/- knockout mice 

Frozen sperm of PA200-/- mice was obtained from the laboratory of Barry Sleckman 

(Department of Pathology and Immunology, Washington University School of Medicine, St. 

Louis, USA). This mouse model involves deletion of the 45 coding exons of PA200 spanning 

108 kb by a Cre-loxP site-specific recombination system (Khor et al., 2006). The PA200-/- 

strain was generated by in vitro fertilization of C57BL/6 N mice and embryo transfer in the 

Research Unit of Comparative Medicine of the Helmholtz Zentrum München – Deutsches 

Forschungszentrum für Gesundheit und Umwelt (HMGU). Afterwards animals were kept in 
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the facilities of the Small Animal Platform (SMAP) of the Comprehensive Pneumology Center 

(HMGU) at constant temperature and humidity with a 12 hours light cycle and food and 

water ad libitum.  

 

4.1.3.2 Genotyping of PA200-/- mice 

Ear punches were lysed in 200 µL PBND buffer + 1 µL proteinase K (AppliChem) at 56 °C 

shaking at 1250 rpm overnight. Samples were centrifuged for 1 min at 13 000 rpm. The 

supernatant was mixed with a PCR master mix (Table 2) and PCR was performed using a 

temperature-time profile as shown in Table 3. 

 

Table 2: Composition of PCR master mix for genotyping of PA200-/- mice. 
Component Final concentration Amount 
10x PCR Rxn buffer (Thermo Fisher Scientific) 1x 2.5 µL 

10 mM dNTP Mix (Promega) 200 µM 0.5 µL 
50 mM magnesium chloride (Thermo Fisher Scientific) 2 mM 1 µL 
Primer PA200-wt-as 5 µM  0.25 µM 1.25 µL 
Primer I15.07 5 µM 0.25 µM 1.25 µL 
Primer I29.02.Xho 5 µM  0.25 µM 1.25 µL 
5U/mL Taq polymerase  (Thermo Fisher Scientific) 0.025 U/mL 0.125 µL 
Template  2 µL 
H2O ad 25 µL 15.125 µL 

 

Table 3: Temperature and time profile of PCR for PA200-/- genotyping. 
Repeats Temperature [°C] Time [min:sec] 
1x 94 03:00 
30x 95 00:30 

60 00:45 
72 01:30 

1x 72 10:00 
1x 4 ever 

 

The PCR product was mixed with 6x DNA loading dye (Thermo Fisher Scientific) and analyzed 

by gel electrophoresis using a 1.5 % agarose gel containing SYBR Safe (Thermo Fisher 

Scientific) for 30 min at 90 V and visualized under UV light with the ChemiDoc XRS+ system 

(Bio-Rad). A band of 381 bp indicates the wildtype allele, whereas successful deletion of the 

allele results in band of 500 bp. Presence of bands with both sizes indicates a heterozygous 

genotype. 
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4.1.3.3 Experimental bleomycin-induced lung fibrosis 

All animal experiments were approved by the local government for the administrative region 

of Upper Bavaria and conducted according to the guidelines of the approval (animal 

approval file number: 55.2-1-54-2532-114-2016). Two independent animal experiments were 

performed for this study using age- and sex-matched PA200-/- and littermate wildtype mice 

at an age of 8-9 weeks and 12 weeks. Animal experiments were conducted by Dr. Ilona E. 

Kammerl, postdoctoral scientist at the CPC, and David Kutschke, technician at the Institute 

for Lung Biology and Disease (ILBD) both at the HMGU. Specific-pathogen-freen mice were 

narcotized by intraperitoneal administration of 500 µg medetomidin, 5 mg midazolam and 

50 µg fentanyl (MMF) per kg body weight. Mice were instilled with 50 µL bleomycin 

dissolved in PBS (2 U/kg body weight) or PBS as control. Narcosis was antagonized by 

subcutaneous administration of 2.5 mg atipamezole, 500 µg flumazenil and 1.2 mg naloxone 

per kg body weight. Mice were monitored daily until the end of the experiments at day 14. 

They were narcotized with MMF (as reported previously) as well as 100 mg ketamin per kg 

body weight and lung function measurement using the flexiVent system (SCIREQ) was 

conducted by Dr. Isis E. Fernandez, postdoctoral scientist at the CPC (HMGU). Mice were 

sacrificed by exsanguation and bronchoalveloar lavage (BAL) was obtained and processed as 

described in section 4.1.3.4. Lungs were perfused by injection of PBS into the heart and the 

right lung was snap frozen in liquid nitrogen for subsequent protein and mRNA analysis. For 

histological analysis the left lung was infused with 4 % (w/v) PFA prior to withdrawal and 

then fixed in 4 % (w/v) PFA for 24 h at 4 °C prior to embedding in paraffin using the tissue 

processor Microm STP 420D (Thermo Fisher Scientific). 

 

4.1.3.4 Bronchoalveolar lavage 

Bronchoalveolar lavage (BAL) was obtained by rinsing the lungs three times with 500 µL PBS 

containing cOmplete® protease inhibitor cocktail (Roche). The obtained BAL fluid was 

centrifuged for 10 min at 1400 rpm, the BAL supernatant was snap frozen in liquid nitrogen 

for further analysis and the cell pellet was resuspended in 500 µL PBS + cOmplete® protease 

inhibitor. The total cell count was determined using a hemocytometer (Neubauer counting 

chamber) and 30 000 BAL cells were transferred onto glass slides by centrifugation at 

400 rpm for 6 min using a Cytospin 2 centrifuge (Hettich). BAL cells were dried at RT 
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overnight and May-Grünwald Giemsa staining was performed. Cells on glass slides were 

stained for 10 min in May-Grünwald staining solution (Merck) and rinsed in tab water for 

2 min. Then slides were stained for 15 min in Giemsa staining solution (Merck) diluted 1:20 

with tab water directly before usage. After rinsing in tab water for 2 min and drying at RT, 

BAL cells were mounted on glass slides with Entellan mounting medium (Merck). Slides were 

imaged using a Mirax scanning system (Zeiss). At least 200 cells per sample were analyzed 

regarding their morphology to determine the number of different immune cells in the BAL 

fluid, including macrophages, lymphocytes and neutrophils. 

 

4.2 Cell culture 

4.2.1 Cultivation of mammalian cell lines 

Human adenocarcinoma A549 cells and murine lung CCL-206 fibroblasts obtained from 

ATCC (American Type Culture Collection, Manassas, USA) were cultured as monolayers in 

75 cm2  or 175 cm2 cell culture flasks (Thermo Fisher Scientific) at 37 °C in a humidified 

atmosphere of 5 % CO2. A549 were cultivated in DMEM + GlutaMax and CCL-206 in 

DMEM F12 supplemented with 10 % (v/v) fetal bovine serum (FBS) (Biochrome) and 

100 U/mL penicillin/streptomycin (Gibco, Thermo Fisher Scientific). They were passaged 

twice a week at a ratio according to their growth rate.  

 

4.2.2 Isolation and culture of primary human lung fibroblasts 

Primary human lung fibroblasts (phLF) were provided by Prof. Dr. Andreas Günther 

(Universities of Giessen and Marburg Lung Center (UGMLC)) and isolated as previously 

described (Jordana et al., 1987, 1988). phLF from organ donors were cultivated in MCDB 

medium supplemented with 10 % (v/v) FBS (Biochrome), 100 U/mL penicillin/streptomycin 

(Gibco, Thermo Fisher Scientific), 2 mM L-glutamine (Thermo Fisher Scientific), 5 µg/mL 

insulin (Thermo Fisher Scientific), 2 ng/mL basic-FGF (Thermo Fisher Scientific) and 0.5 ng/mL 

human EGF (Sigma-Aldrich). phLF were grown until 90 % confluence and splitted twice a 

week. For this purpose, cells were washed with PBS, incubated for 2-3 min with Trypsin-EDTA 

(0.25 %) (Sigma) at 37 °C, re-suspended in cell culture medium and plated onto new cell 

culture dishes. All experiments were performed with phLF from passage 3 to 5. For 
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cryopreservation, phLF were frozen in 1 mL freezing medium consisting of culture medium 

supplemented with 10 % DMSO at -80 °C using a freezing container (Nalgene). For long-

term storage cells were transferred into a liquid nitrogen tank. 

 

4.2.3 Treatment of cells  

Prior to treatment with proteasome inhibitors or TGF-β1, phLF were synchronized in medium 

supplemented with 1 % FBS for 24 h. Medium was replaced and proteasome inhibitors 

bortezomib (Millennium, Takeda), oprozomib (Onyx Pharmaceuticals), epoxomicin (APExBIO) 

and TGF-β1 (R&D Systems) or respective controls were added to the cell culture medium for 

indicated times. For induction of apoptosis, staurosporine or DMSO as control were directly 

added to the cell culture medium without prior synchronization of cells.  

 

4.2.4 RNA interference  

Silencing experiments were performed by reverse transfection of siRNAs against two 

different regions of PSMD11 (final concentration 2 nM), PSME3, PSME4 (final concentration of 

10 nM) or two control siRNAs at the same concentration (Ambion, Life Technologies). For 

this purpose a transfection mix was prepared for control and knockdown samples as 

indicated in Table 4. siRNAs and Opti-MEM (Gibco, Life Technologies) were mixed and 

incubated for 5 min at RT, the RNAiMax was added and the total mixture was incubated for 

another 20 min at RT. 

 

Table 4: Composition of silencing master mixes 
Reagents Per well in 6-well plate 

(total volume 2.5 mL) 
Per 10 cm dish 
(total volume 6 mL) 

Opti-MEM 500 µL 1000 µL 
siRNA 1 + 2  1.25 +1.25 µL 3 + 3 µL 
RNAiMax 5 µL 10 µL 

 

In the meantime, phLF were washed with PBS, trypsinized and collected in MCDB medium 

supplemented with 1 % or 10 % FBS without penicillin/streptomycin. After adjusting cell 

density, 2 mL of cell suspension (= 100 000 cells) were plated per well of a 6-well plate and 

5 mL cell suspension (= 500 000 cells) per 10 cm dish. Subsequently, the silencing 
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transfection mix was carefully dispersed drop wise on the cells. After 16-24 h medium was 

replaced with standard cultivation medium or starvation medium containing 1 % FBS. 

 

4.2.5 Transient overexpression of PA200 

Overexpression of PA200 was performed by forward transfection of an expression vector 

using the Lipofectamine LTX reagent (Thermo Fisher Scientific). Cells were plated one day 

prior to transfection and cultured until 80 % confluence. For transfection, transfection mix A 

and B were prepared in microcentrifuge tubes as indicated in Table 5 below.  

 

Table 5: Composition of transfection mixes A and B (per well in a 6-well plate). 
Transfection mix A Transfection mix B 

Opti-MEM 100 µL Opti-MEM 100 µL 
DNA 1 µg Lipofectamine LTX 4 µL 
Plus Reagent (3 mg/mL) 2.5 µL   

 

Both transfection mixes were incubated at room temperature for 5 min followed by addition 

of transfection mix B to transfection mix A and incubation for 5 min. Meanwhile, each well of 

cells to be transfected was washed with 1.5 mL culture medium without 

penicillin/streptomycin. 200 µL transfection mix were dispersed drop-wise on the cells. After 

incubation for 4 h at 37 °C the transfection mix was removed and cells were cultured in 

normal phLF culture medium. 

 

4.2.6 Cell harvest 

For harvest, cells were washed with PBS and either scraped in PBS or harvested by detaching 

with trypsin and collecting in cell culture medium. After collecting cells, they were pelleted by 

centrifugation for 5 min at 5000 rpm and 4 °C. Cells detached with trypsin were washed once 

with PBS. Cell pellets were stored at -80 °C until further use. For extraction of mRNA, cells 

were directly scraped in 500 µL RotiQuick 1 solution (Carl Roth) and stored at -20 °C until 

continuing the RNA extraction. 
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4.2.7 MTT assay 

Cellular metabolic activity was determined by measuring the reduction of MTT (3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) to purple colored, insoluble 

formazan by NAD(P)H-dependent cellular oxidoreductases (Mosmann, 1983). Cells were 

cultured in 24- or 96-well-plates. 100 µL (or 20 µL for 96 well-plates) of 5 mg/mL thiazolyl 

blue tetrazolium bromide (Sigma) in PBS were added per well and incubated for 1 h at 37 °C. 

Wells containing only medium but no cells served as blanks. Medium was aspirated and the 

formazan crystals were dissolved in 500 µL (100 µL for 96-well-plate) isopropanol + 0.1 % 

Triton X-100 (AppliChem). Absorbance was measured at 570 nM with a SunriseTM plate 

reader (TECAN).  

 

4.2.8 BrdU Assay 

Cellular proliferation was assessed using a colorimetric immunoassay quantifying BrdU 

incorporation into newly synthesized DNA according to the manufacturer’s protocol (Roche). 

For transient silencing of PA200 phLF were mixed with transfection reagent and 4000 cells 

were plated per well in 96-well-plates in triplicates. 72 h after transfection, phLF were labeled 

with 10 µM BrdU in cell culture medium for 2 h at 37 °C. Subsequently, cells were fixed and 

denatured by addition of the FixDenat solution. After incubation with the BrdU-POD 

antibody (diluted 1:100 in antibody dilution solution) for 90 min at RT, cells were washed and 

the substrate solution was added to start a colorimetric reaction. Absorbance at 370 nM was 

measured after 15 min using the SunriseTM plate reader (TECAN). 

 

4.2.9 Annexin V/ PI staining 

Cellular apoptosis or necrosis was assessed in phLF upon PA200 silencing in response to 

staurosporine treatment using Annexin V/propidium iodide (PI) staining and flow cytometry 

analysis. 72 h after PA200 silencing (as described in section 4.2.4) phLF were treated for 3 h 

with 1 µM staurosporine or DMSO as a control. After harvesting cells by detaching with 

trypsin, they were counted, washed with PBS and suspended in 1x Annexin V binding buffer 

at a concentration of 1 000 000 cells/mL. 100 µL cell suspension were transferred to FACS 

tubes and stained with 5 µL Annexin V-FITC and 10 µL PI (BD Biosciences) for 15 min at RT in 
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the dark. Samples were diluted with 400 µL 1x Annexin V binding buffer prior to FACS 

analysis using a Becton Dickinson LSRII and data evaluation using the BD FACSDIVATM 

software (BD Biosciences). 

 

4.3 Protein biochemistry 

4.3.1 Protein extraction from cells and tissue 

4.3.1.1 Native protein extracts 

For evaluation of intact and active proteasome complexes cells and tissues were lysed under 

non-denaturing conditions. Prior to lysis, tissue was homogenized twice for 30 s at 3000 rpm 

using a Mikro-Dismembrator S (Sartorius). Cell pellets or homogenized tissues were 

resuspended in TSDG buffer containing 1x cOmpleteTM protease inhibitor cocktail (Roche) 

and lysed by 7 cycles of freezing in liquid nitrogen and thawing in water at RT. Afterwards 

lysates were centrifuged for 20 min at 15 000 rpm and 4 °C. Supernatant was transferred into 

new tubes and either directly subjected to determination protein of concentration by BCA 

assay or stored at -80 °C until further use. 

 

4.3.1.2 Denatured protein extracts 

To generate protein lysates under denaturing conditions, tissue was homogenized as 

described in the previous section. Cell pellets or homogenized tissues were suspended in 

RIPA buffer containing 1x cOmpleteTM protease inhibitor cocktail (Roche) and - if 

investigation of protein phosphorylation was desired - 1x PhosphoStop phosphatase 

inhibitor (Roche). After lysis on ice for 20 min, samples were centrifuged for 20 min at 

15 000 rpm and 4 °C in order to remove cell debris, supernatant was transferred to new 

tubes and either directly subjected to determination of protein concentration or stored 

at -20 °C until further use. 

 

4.3.2 Bicinchoninic acid (BCA) assay 

Total protein concentration of RIPA and TSDG lysates from cells and tissues was measured 

via bicinchoninic acid assay (BCA assay). A bovine serum albumin (BSA) calibration curve with 
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a concentration range from 0 to 2 µg/µL in PBS served as standard to determine protein 

concentrations. 20 µL BSA standard, 20 µL protein lysate or pure lysis buffer diluted 1:10 in 

PBS were mixed with 200 µL BCA reagent according to the manufacturer’s protocol (Thermo 

Fisher Scientific). After incubation at 37 °C for 30 min, absorbance was measured at 562 nm 

using a SunriseTM plate reader (TECAN) for subsequent calculation of protein concentrations. 

 

4.3.3 SDS-PAGE and Western blot analysis 

4.3.3.1 Sample preparation 

10 to 15 µg protein were used per sample for Western blotting. Protein extracts were diluted 

to an equal volume with Milli-Q® water and mixed with 6x Laemmli sample buffer and 

heated to 95 °C for 10 min in order to denature the proteins. 

 

4.3.3.2 SDS gel electrophoresis 

For electrophoretic separation of proteins, protein samples were loaded onto 7.5 %, 10 %, 

12 % or 15 % SDS polyacrylamide gels depending on the protein to be detected. Gels were 

prepared by mixing components listed in Table 6 and pouring into the casting equipment 

(Bio-Rad). Subsequently after pouring the resolving gel a layer of isopropanol was added in 

order to form a proper interface. This layer was removed after full polymerization of the gel 

by washing with MilliQ® water and then the stacking gel was casted. 

 
Table 6: Composition of 1.5 mm 7.5 %, 10 %, 12 % and 15 % SDS polyacrylamide gels. 

  
SDS resolving gels SDS  

stacking gel 
Component 7.5 % 10 % 12 % 15 % 3.6 % 

 
Volume 
(mL/gel) 

Volume 
(mL/gel) 

Volume 
(mL/gel) 

Volume 
(mL/gel) 

Volume 
(mL/gel) 

4x Resolving buffer 2.0 2.0 2.0 2.0 --- 
4x Stacking buffer --- --- --- --- 1.0 

H2O 4.0 3.3 2.8 2.0 2.52 
30 % Acrylamide 2.0 2.7 3.2 4.0 0.48 

TEMED 0.012 0.012 0.012 0.012 0.012 
10 % APS 0.1 0.1 0.1 0.1 0.050 

 

Protein samples and a Protein Marker V (VWR) were loaded onto SDS gels. Electrophoresis 

was performed in Bio-Rad gel running chambers at a voltage of 100 V, which was increased 

to 130 V when samples reached the resolving gel. 



4 Methods 
 

48 

4.3.3.3 Immunoblotting 

After electrophoresis proteins were transferred to a polyvinylidene fluoride (PVDF) 

membrane (Bio-Rad) via immunoblotting using the tank method. The membrane was 

activated in pure methanol and immunoblotting was performed at a constant current of 

250 mA for 90 min (or 200 mA for subsequent analysis of histones). 

Unspecific binding sites of the PVDF membrane were blocked with Roti®-Block solution 

(Carl Roth) for one hour. The membrane was incubated with primary antibody diluted in 

Roti-Block solution either overnight at 4 °C or for one hour at RT. The membrane was 

washed three times with PBST for 10 min and incubated with horseradish peroxidase-

conjugated secondary antibody diluted 1:40 000 in PBST for 60 min at RT on a shaker. After 

washing three times with PBST for approximately 30 min the proteins were detected using 

ECL (GE Healthcare) or LuminataTM Classico or Forte reagent (Merck Millipore) according to 

manufacturer’s instructions. Membranes were either exposed to X-ray films for different time 

spans and developed using a film developing machine (AGFA) or the signal was detected 

with the Chemidoc XRS+ system (Bio-Rad). 

 

4.3.4 Native gel electrophoresis 

The different intact and active proteasome complexes were analyzed by native gel 

electrophoresis of native protein extracts using the XCell SureLock® Mini-Cell system 

(Thermo Fisher Scientific). 15-20 µg protein of native TSDG extracts from cells or tissues were 

mixed with native loading buffer and loaded on gradient NuPAGE™ 3-8 % tris-acetate 

protein gels (Thermo Fisher Scientific). Electrophoresis was performed with native gel 

running buffer for 4 h at 150 V and 4 °C. Afterwards, native gels were incubated for 30 min at 

37 °C in native gel activity assay buffer containing 50 µM Suc-LLVY-AMC (Bachem), a 

fluorogenic, synthetic peptide substrate for chymotrypsin-like active sites of 20S proteasome 

complexes. Active proteasome complexes were detected using the ChemiDoc XRS+ system 

(Bio-Rad) at an excitation wavelength of 380 nm and emission wavelength of 460 nm. Prior 

to immunoblotting, the native gels were incubated in solubilization buffer for 15 min at RT to 

denature proteins and to transfer them more efficiently onto PVDF membranes. 

Immunoblotting of native gels was performed under standard conditions with a constant 

current of 250 mA for 90 min on ice. Membranes were blocked with Roti®-Block (Carl Roth), 
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incubated with primary and secondary antibodies and developed as described in section 

4.3.3.3. 

 

4.3.5 Proteasome activity assays 

4.3.5.1  Proteasome activity assay with fluorescent substrates 

Proteasome activity of all three catalytic sites was measured using fluorogenic substrates 

specific for the chymotrypsin-like (Suc-LLVY-AMC), caspase-like (Z-Leu-Leu-Glu-AMC) and 

trypsin-like activities (Bz-Val-Gly-Arg-AMC) (Bachem). 2 µg protein of native TSDG protein 

extracts per replicate were applied for analysis of the chymotrypsin-like activity and 7 µg 

protein for caspase- and trypsin-like activities, respectively. Protein extracts were diluted with 

TSDG buffer to a total volume of 20 µL, subjected to a black flat bottom 96-well plate 

(Greiner bio-one) and 200 µL of assay buffer were added containing the respective substrate 

at a concentration of 200 µM. Samples were always analyzed in triplicates and TSDG buffer 

served as a blank. Fluorescence intensity was measured at an excitation wavelength of 

353 nm and emission wavelength of 460 nm for 90 min at 37 °C using a TriStar LB 941 plate 

reader (Berthold Technologies). Proteasome activity of different active sites was calculated 

with fluorescence intensities detected after 60 min of measurement.  

 

4.3.5.2 Proteasome activity assay using luminescent substrates 

Chymotrypsin- and caspase-like activities were also measured with the Proteasome-GloTM 

Assay kit according to the manufacturer’s protocol (Promega). This kit cannot be used for 

measuring trypsin-like activities due to unspecific cleavage of this substrate by other 

proteases (Wilkins et al., 2014). 1 µg protein of native TSDG extracts from cells and tissues 

was diluted to an equal volume with TSDG buffer. Then the lysates were adjusted to a total 

volume of 20 µL with Milli-Q® water. They were mixed with 20 µL reaction buffer provided 

by the kit in a white flat bottom 96-well plate. Cleavage of the substrates 

Suc-LLVY-aminoluciferin by CT-L and Z-nLPnLD-aminoluciferin by C-L active sites releases 

aminoluciferin, which is then transformed into a luminescent signal. Luminescence was 

measured using a TriStar LB 941 plate reader (Berthold Technologies) every two minutes for 

30 min and values reaching the plateau of the signal were used for quantification. 
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4.3.6 Labeling of active proteasome complexes with activity-based probes 

(ABPs) 

Labeling of proteasomes with activity-based probes (ABPs) was performed as another 

approach to detect proteolytically active proteasome complexes in cell or tissue extracts. The 

ABPs consist of an inhibitor, which is fluorescently labeled, and bind to different active sites 

of proteasome complexes (MV151 binding to all active sites of the proteasome, MVB127 to 

β5/β5i and LW124 to β1/β1i) (Verdoes et al., 2006). 10 µg protein of native TSDG extracts 

from cells or tissues were incubated with 0.5 µM MV151, 1 µM MVB127 or 0.25 µM LW124 

diluted with Milli-Q® water to a final volume of 30 µL for 60 min at 37 °C and 600 rpm in the 

dark. Afterwards samples were either mixed with 6x Laemmli buffer for further analysis via 

SDS-PAGE or 5x native loading buffer for analysis of active proteasome complexes via native 

gel analysis. 5 µg of protein were applied for SDS-PAGE and native gel electrophoresis 

performed under conditions described in sections 4.3.3.2 and 4.3.4. Labeled, active 

proteasome subunits were detected with a Typhoon TRIO+ fluorescence scanner 

(GE Healthcare) in the Cy3/TAMRA channel at 450 PTM and with a resolution of 50 microns. 

The obtained signal was quantified using ImageJ software. After imaging, gels were stained 

with Page Blue staining solution (Thermo Fisher Scientific) to confirm equal loading.  

 

4.3.7 Co-immunoprecipitation 

For immunoprecipitation (IP) of 20S proteasome subunit α4 or PA200 cells were lysed in 

TSDG buffer under native conditions as described in section 4.3.1.1 to preserve physiological 

protein-protein interactions. Immunoprecipitation was performed using magnetic 

Dynabeads coated with Protein G for co-IP with antibodies raised in mouse or with Protein A 

for co-IP using antibodies raised in rabbit (Thermo Fisher Scientific). 30 µL of Dynabeads 

were transferred to protein LoBind tubes (Eppendorf) and washed twice with 100 µL 

phosphate buffer pH 7.4. They were resuspended in 50 µL phosphate buffer pH 7.4 and 

subsequently incubated with 3 µL of the antibody directed against the target antigen for 

15 min at 1250 rpm and RT. Afterwards, beads were washed twice with 100 µL TSDG buffer + 

0.2 % IGEPAL. Protein lysate (50-100 µg protein for IP of α4 and 200 µg protein for IP of 

PA200) and TSDG buffer containing 0.2 % IGEPAL were added to a total volume of 250 µL. 

After incubating samples in an overhead shaker for 2 h at 4 °C, 25 µL per sample of the total 
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mixture as well as supernatant only were transferred to new tubes as input and supernatant 

controls, respectively. Beads were washed three times with 400 µL TSDG buffer 

supplemented with 0.2 % IGEPAL and co-immunoprecipitated proteins were eluted in 25 µL 

1x Laemmli buffer for 10 min at 95 °C. Eluted proteins were further analyzed by Western 

blotting or sent to the Research Unit Protein Science (HMGU) for mass spectrometry analysis. 

 

4.3.8 Histology  

Paraffin embedded mouse and human tissues were cut in 3 µm thick sections using the 

Hyrax M55 microtome (Zeiss). 

 

4.3.8.1 Immunohistochemistry of PA200 

Tissue sections were incubated for one hour at 60 °C in order to melt paraffin, deparaffinized 

by incubating two times in xylene for 5 min and rehydrated in a descending alcohol series 

(100 %, 90 %, 80 % and 70 % (v/v)) for 1 min. To block endogenous protease activity and to 

permeabilize sections for nuclear staining they were incubated in a methanol/hydrogen 

peroxide (80 %/1.8 % (v/v)) solution for 20 min. Tissue sections were rinsed in Milli-Q® water 

and heat-induced antigen retrieval was performed in citrate buffer pH 6 using a decloaking 

chamber (Biocare Medical). After washing with TBST unspecific binding sites were blocked 

for 30 min with Rodent Block M (Biocare Medical). The slides were washed again in TBST and 

incubated with PA200 antibody diluted in Antibody Diluent (DAKO) for 1 h at RT. After 

extensive washing in TBST sections were incubated with MACH 2 Rabbit AP-Polymer (Biocare 

Medical) for 30 min at RT. Sections were rinsed again in TBST and incubated in Vulcan Fast 

Red AP substrate solution (Biocare Medical) for 10 min. Tissue sections were washed in TBST 

and MilliQ® water and hematoxylin counterstaining (Carl Roth) was performed to visualize 

nuclei. After repeated washing in TBST, sections were dehydrated in ethanol and xylene and 

mounted using Entellan mounting medium (Merck Millipore). Slides were imaged using the 

MIRAX scanning system (Zeiss). 
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4.3.8.2 Hematoxylin & Eosin staining 

Sections were deparaffinized and rehydrated as described in section 4.3.8.1. Tissue was 

stained in Hemalaun (Carl Roth) for 6 min and rinsed with tap water for 15 min. Afterwards 

sections were incubated in 0.5 % Eosin G solution containing 1 drop 100 % acetic acid per 

100 mL (Carl Roth) for 10 min. After rinsing in tap water for 5 min slides were dehydrated for 

5 min in 80 % (v/v) ethanol and for 2x 2 min in 100 % (v/v) ethanol followed by incubation in 

xylene for 2x 5 min. Finally, tissue sections were mounted using Entellan (Merck Millipore) 

and imaged with the MIRAX scanning system (Zeiss). 

 

4.3.8.3 Masson’s trichrome staining  

Masson’s trichrome staining was performed using the Trichrome Stain (Masson) Kit 

(Sigma-Aldrich) according to manufacturer’s instructions. Tissue sections were deparaffinized 

and rehydrated as described earlier in section 4.3.8.1. Slides were incubated in Bouin’s 

solution (Sigma-Aldrich) at RT overnight. After washing in tap water for 15 min, slides were 

stained with Weigert’s Iron Hematoxylin solution (Sigma-Aldrich) for 5 min and rinsed with 

tap water for 5 min. After washing in Milli-Q® water, slides were stained with Biebrich 

Scarlet-Acid Fuchsin solution for 5 min. After rinsing in Milli-Q® water sections were 

incubated in Phosphotungstic/Phosphomolybdic Acid Solution followed by subsequent 

staining in Aniline Blue Solution for 5 min. Slides were washed with 1 % acetic acid for 2 min 

and dehydrated through alcohol, cleared in xylene and finally mounted with Entellan 

mounting medium (Merck Millipore). After drying overnight, tissue sections were imaged 

with the Mirax scanning system (Zeiss). 

 

4.3.9 Histone extraction 

Histones were extracted by high-salt extraction according to a previously published protocol 

(Shechter et al., 2007). phLF transfected with control or PA200 siRNAs were cultured in 15 cm 

dishes for 72 h as the protocol requires a lot of cells to obtain enough protein. The extraction 

procedure was performed on ice or 4 °C to minimize activity of enzymes and proteases. Cells 

were lysed in 200 µL extraction buffer containing 0.2 % IGEPAL and cOmpleteTM protease 

inhibitor cocktail (Roche) for 10 min on ice. After centrifugation of cell lysates for 5 min at 
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6500 x g supernatant (= cytosolic fraction) was transferred to a new tube. The remaining 

pellet (= the nuclei) was washed with extraction buffer without detergent. After complete 

removal of supernatant nuclei were resuspended in 200 µL no-salt buffer and lysed by 

repetitive vortexing for 1 min followed by incubation on a rotator for 30 min at 4 °C.  Lysates 

were again centrifuged for 5 min at 6500 x g and supernatant (= nucleoplasm) was kept for 

further analysis. The chromatin pellet was then re-suspended in high-salt solubilization 

buffer by vortexing for 2 min and incubated on a rotator for 30 min at 4 °C. DNA and nuclear 

debris were spun down for 10 min at 16 000 x g. The supernatant was transferred to D-

TubeTM Dialyzer Midi MWCO 3.5 kDa tubes (Merck Millipore) and dialyzed in 1 L 10 mM 

TRIS-Cl pH 8.0 for 1 h under slow stirring. After 1 h the dialysis buffer was replaced with fresh 

10 mM TRIS-Cl pH 8.0 and incubated for another hour. Protein concentration of different 

fractions was determined by BCA assay (as described in section 4.3.2). 10 µg protein of 

cytosolic fraction and 2 µg protein of the nucleoplasm and chromatin fraction were further 

analyzed by immunoblotting. 

 

4.3.10 Proteomic screen 

Proteomic analysis by LC-MS/MS as described in the following section was performed by 

Dr. J. Merl-Pham, Research Unit Protein Science (HMGU). 

 

4.3.10.1 Sample preparation for proteomics 

10 µg protein of whole cell RIPA lysate or IP eluates were subjected to tryptic digest applying 

a modified FASP procedure (Grosche et al., 2016; Wiśniewski et al., 2009). After protein 

reduction and alkylation using DTT and iodoacetamide, samples were denatured in UA buffer 

(8 M urea in 0.1 M Tris/HCl pH 8.5), centrifuged on a 30 kDa cut-off filter device (PALL or 

Sartorius) and washed twice with UA buffer and twice with 50 mM ammoniumbicarbonate 

(ABC). Proteins were proteolysed for 2 h at room temperature using 1 µg Lys-C (Wako) and 

subsequently for 16 h at 37 °C using 2 µg trypsin (Promega). Peptides were collected by 

centrifugation and acidified with 0.5 % trifluoroacetic acid (TFA). 
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4.3.10.2 Mass spectrometric measurements 

LC-MS/MS analysis was performed on a LTQ Orbitrap XL (Thermo Scientific) or on a 

Q-Exactive HF mass spectrometer (Thermo Scientific) each online coupled to a nano-RSLC 

(Ultimate 3000 RSLC; Dionex). The analysis on the LTQ Orbitrap XL was performed as 

described before (Hauck et al., 2010; Merl et al., 2012). For subsequent analysis on the 

Q-Exactive HF, tryptic peptides were accumulated on a nano trap column (300 µm inner 

diameter × 5 mm, packed with Acclaim PepMap100 C18, 5 µm, 100 Å; LC Packings) and then 

separated by reversed phase chromatography (customized ACQUITY UPLC M-Class HSS T3 

Column, 1.8 µm, 75 µm X 250 mm; Waters) in a 80 min non-linear gradient from 3 to 40 % 

acetonitrile (ACN) in 0.1 % formic acid (FA) at a flow rate of 250 nL/min. Eluted peptides were 

analyzed by the Q-Exactive HF mass spectrometer equipped with a nano-flex ionization 

source. Full scan MS spectra (from m/z 300 to 1500) and MS/MS fragment spectra were 

acquired in the Orbitrap with a resolution of 60 000 or 15 000 respectively, with maximum 

injection times of 50 ms each. The up to ten most intense ions were selected for HCD 

fragmentation depending on signal intensity (TOP10 method). Target peptides already 

selected for MS/MS were dynamically excluded for 30 s. 

 

4.3.10.3 Label-free analysis using Progenesis LC-MS 

The acquired spectra per project were loaded to the Progenesis QI software (version 3.0, 

Nonlinear) for label free quantification and analyzed as previously described (Hauck et al., 

2010; Merl et al., 2012), except all features were exported as Mascot generic file (mgf) and 

used for peptide identification with Mascot (version 2.4) in the Ensembl Human protein 

database (release 83, 83462 sequences, 31286148 residues). Search parameters used were: 

10 ppm peptide mass tolerance and 0.02 Da or 0.6 Da fragment mass tolerance, one missed 

cleavage allowed, carbamidomethylation was set as fixed modification, methionine oxidation 

and asparagine or glutamine deamidation were allowed as variable modifications. A 

Mascot-integrated decoy database search calculated an average false discovery of <1 %. The 

Mascot Percolator algorithm was used for the discrimination between correct and incorrect 

spectrum identifications (Brosch et al., 2009). Peptides with a minimum percolator score of 

13 were re-imported into the Progenesis QI software and the abundances of the three most 

abundant peptides allocated to each individual protein were summed up (TOP3). Statistics 
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was based on the ANOVA calculated by the Progenesis QI software, on arcsinh() transformed 

normalized protein abundances (Grosche et al., 2016), followed by FDR-correction, resulting 

in given q-values. 

 

4.3.10.4 Stoichiometry calculations 

For calculation of protein stoichiometries the abundances of the three most abundant 

peptides per protein were summed up and referenced to the bait protein PSME4 (TOP3 

method, (Fabre et al., 2014)). 

 

4.4 Nucleic acid biochemistry 

4.4.1 Quantitative real-time RT-PCR 

4.4.1.1 RNA isolation of cells 

Total RNA of cells was isolated by phenol-chloroform extraction using the Roti®-Quick Kit 

(Carl Roth). Cells were lysed in 500 µL Roti®-Quick 1 solution. After thoroughly mixing with 

625 µL Roti®-Quick 2 solution, samples were incubated for 10 min on ice and centrifuged 

for 15 min at 10 000 rpm and 4 °C in order to allow phase separation. The upper aqueous 

phase was transferred to a new tube and 500 µL Roti®-Quick 3 solution was added. Samples 

were either incubated at -80 °C for 40 min or at -20 °C overnight. RNA was sedimented by 

centrifugation for 20 min at 13 000 rpm and 4 °C. Supernatant was removed and RNA pellets 

were washed twice with 70 % (v/v) ethanol. After drying on ice, the RNA pellet was dissolved 

in 30 µL nuclease-free water (Ambion, Thermo Fisher Scientific) and concentration was 

measured at a wavelength of 260 nm with the NanoDrop 1000 (Thermo Fisher Scientific). 

 

4.4.1.2 Reverse transcription of mRNA 

For reverse transcription, 0.5 to 1 µg RNA were diluted to 9.5 µL with nuclease-free water 

and mixed with 2 µL of 250 µM Random Hexamers (Thermo Fisher Scientific). After 

incubation for 10 min at 70 °C samples were placed on ice. 8.5 µL of a reverse transcription 

master mix was added (final concentrations: 1x First Strand Buffer, 10 mM DTT, 0.5 mM 

dNTPs, 1 U/µL RNAsin RNAse Inhibitor, 10 U/µL M-MLV transcriptase). Reverse transcription 

was performed with annealing for 5 min at 25 °C and elongation for 60 min at 37 °C using a 
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Mastercycler Nexus (Eppendorf). cDNA was digested with 1 U DNase at 37 °C for 15 min 

followed by heat inactivation at 75 °C for 10 min and diluted 1:5 with nuclease-free water 

(Ambion, Thermo Fisher Scientific). 

 

4.4.1.3 Quantitative real-time RT-PCR 

Quantitative real-time RT-PCR was performed using a SYBR Green LC480 system (Roche). A 

mix of 2.5 µL cDNA and 5 µL LC480 SYBR Green I Master mix (Roche) was subjected per well 

in a 96-well plate format. 2.5 µL forward and reverse primer dilution was added resulting in a 

final concentration of 0.5 µM. Samples were always measured in duplicates and plates were 

centrifuged for 2 min at 1000 rpm prior to starting measurement using the standard 

program of the Light Cycler 480II (Roche). Gene expression of the different samples was 

normalized to housekeeping genes ribosomal protein L 19 (RPL19) and hypoxanthine-

guanine phosphoribosyltransferase (HPRT). Relative gene expression was determined using 

the ΔΔCT method. The specificity of primers was controlled by measurement of a melting 

curve. 

 

4.4.2 Transcriptome microarray analysis 

Total RNA was isolated as explained in section 4.4.1.1. Microarray analysis as described in 

this section was performed by Dr. Martin Irmler, Institute of Experimental Genetics (HMGU). 

RNA quality was assessed using the Agilent 2100 Bioanalyzer and RNA of high quality 

(RIN > 7) was further used for microarray analysis. 300 ng total RNA was amplified using the 

WT PLUS Reagent Kit (Affymetrix). Amplified cDNA was hybridized on Human Clariom S 

arrays (Affymetrix). Staining and scanning was performed according to the Affymetrix 

expression protocol.  

Expression console (v.1.4.1.46, Affymetrix) was used for quality control and to obtain 

annotated normalized RMA gene-level data (Gene Level - SST-RMA). Statistical analyses 

were performed by utilizing the statistical programming environment R (R Development 

Core Team Ref1). Gene-wise testing for differential expression was done employing the 

limma t-test and Benjamini-Hochberg multiple testing correction (FDR < 10 %). For probe 

sets with identical values across all samples only one probe set was kept in the final gene 

sets. To reduce background, gene sets were filtered for average expression >30 (arbitrary 
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units) in at least one experimental group. Pathway analyses were generated through the use 

of QIAGEN’s Ingenuity Pathway Analysis (IPA®, QIAGEN, www.qiagen.com/ingenuity) using 

Fisher’s Exact Test p-values. 

 

4.4.3 Preparation of plasmid DNA for transfection 

4.4.3.1 Transformation of DH5α 

For transformation of Z-competentTM DH5α, bacteria were thawn on ice, 2 µL plasmid were 

added to the bacteria and gently mixed. After 10 min incubation on ice DH5α were plated on 

agar dishes containing the respective antibiotic (50 µg/mL ampicillin or 25 µg/mL 

kanamycine). Bacteria transformed with a plasmid containing a kanamycine resistance gene 

were incubated with 200 µL SOC medium (Takara) for 1 h at 200 rpm and 37 °C prior to 

plating on agar dishes. 

 

4.4.3.2 Cloning of PA200 into a pcDNA3.1 vector 

For overexpression experiments, PA200 cDNA was cloned into a pcDNA3.1 (+) vector. A 

fragment comprising the cDNA of PA200 was amplified from a commercial PA200 construct 

with a C-terminal Myc-DKK tag (Origene) by polymerase chain reaction (PCR) using a master 

mix and time-temperature profile as indicated in  

Table 7 and Table 8. 

 

Table 7: Composition of PCR master mix (per reaction). 
Component Final concentration Quantity 
5x HF/GC buffer 1x 10 µL 
10 mM dNTPs 200 µM 1 µL 
Primer forward 10 µM  0.5 µM 2.5 µL 
Primer reverse 10 µM  0.5 µM 2.5 µL 
10 ng/µL DNA template  0.2 ng/µL 1 µL 
Phusion Polymerase  1 U/50 µL 0.5 µL 
H2O Ad 50 µL 32.5 µL 
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Table 8: Temperature and time profile of PCR for PA200 amplification. 
Repeats Temperature [°C] Time [min] 
1x 98 03:00 
8x 98 00:10 

53 00:30 
72 03:00 

35x 98 00:10 
69 (gradient 3°C) 00:30 
72 03:00 

1x 72 10:00 
1x 4 ever 

 

The obtained PCR fragment was purified by agarose gel electrophoresis and gel extraction 

using a NucleoSpin® Extraction Kit (Macherey-Nagel). 

The purified PCR product and the pcDNA3.1 (+) vector were digested with KpnI and NheI 

enzymes (NEB) in buffer provided by the manufacturer at 37 °C for 1 h. After purification of 

digested vector and PA200 fragments by agarose gel extraction, ligation of the fragment and 

vector was performed using the Quick Ligation Kit (NEB) according to the manufacturer’s 

protocol. 50 ng of vector and a threefold excess of the insert were incubated in reaction 

buffer for 5 min at RT. The ligation product was transformed into Z-competentTM DH5α and 

spread onto LB-agar plates containing 50 µg/mL ampicillin (Bioline). Selected colonies were 

inoculated in LB medium containing 50 µg/mL ampicillin and plasmid DNA was extracted 

from bacteria using a NucleoSpin® Plasmid mini kit (Macherey-Nagel). Potential positive 

clones were selected by restriction analysis and the construct was sequenced (GATC Biotech 

AG). 

 

4.4.3.3 Preparation of plasmid DNA 

For generation of plasmid DNA used for transfection of cells, transformed DH5α were 

inoculated with LB medium containing the respective antibiotic at 200 rpm and 37 °C 

overnight. DNA was isolated using the NucleoBond PC 500 kit (Macherey-Nagel) according 

to the manufacturer’s protocol. DNA was then dissolved in nuclease-free water (Ambion, Life 

Technologies), concentration was measured at 260 nm using a NanoDrop 1000 (Thermo 

Scientific) and the plasmids were diluted to a concentration of 1 µg/µL for further 

applications.  
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4.5 Statistics 

Generated data were statistically analyzed as indicated in the figure legends. Cell culture 

experiments performed with phLF from different organ donors examined for protein and 

mRNA expression as well as proteasome activity were analyzed by one sample t-test. 

One-way ANOVA and Bonferroni’s multiple comparison test was used to statistically evaluate 

apoptosis assays. Nonparametric Mann-Whitney U test was applied for statistical analysis of 

protein and mRNA expression of human and mouse tissues. Results obtained from 

examination of BAL cells, lung function and mRNA levels in bleomycin-induced lung fibrosis 

of wildtype and PA200-/- mice were statistically analyzed with Kruskal Wallis test and Dunn’s 

multiple comparison test. 

 Statistic tests and graphic illustration of the data was conducted using the GraphPad Prism 

software (version 5.00 and 7.00). P-values < 0.05 were considered statistically significant 

(*p < 0.05, **p < 0.01, ***p < 0.001). Data represent mean +/- SEM.  
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5 Validating the specificity of antibodies for analysis of the 

proteasome activator PA200 

5.1 Introduction 

A major requirement to generate reliable data on protein function is the use of specific 

antibodies. Although PA200 has already been first described by Ustrell et al. in 2002, only a 

limited number of studies on the function of this proteasomal activator has been published 

in recent years. While some of those studies did not use antibodies for detection of the 

activator, the most frequently commercially available antibody was first described by Ustrell 

et al. and targets an epitope comprising amino acids (aa) 1620-1634 of the human protein 

(Ustrell et al., 2002). However, this immunoglobulin also recognizes a protein species at 

160 kDa, which is alleged to be an isoform of the activator (Ustrell et al., 2002). Therefore, 

initial experiments of this study aimed to test the specificity of antibodies targeting different 

epitopes of PA200, which are listed in Table 9  

 

Table 9: PA200 antibodies indicating epitopes, product numbers and publications they were used for. 
Epitope Antibody product number Publications 
aa 1620-1634 of the human protein PA1-1691 (Thermo Fisher Scientific) 

 
ab5620 (Abcam) 

Ustrell 2002,  
Blickwedehl 2007, 2008, 2012 
Pickering 2013 

aa 1-50 of the human protein NBP1-22236 (Novus Biologicals) Welk 2016 
aa 1019-1109  NBP2-32575 (Novus Biologicals) - 
unknown  
(near C-terminus of human protein) 

sc-135512 (Santa Cruz) George 2013 

 

5.2 Results 

5.2.1 Antibody against aa 1620-1634 recognizes 160 kDa protein species not 

responding to PA200 silencing 

First, silencing of PA200 was applied to test the specificity of two antibodies for human 

PA200, namely PA1-1961 (Thermo Fisher Scientific) directed against aa 1620-1634 and 

NBP1-22236 (Novus Biologicals) recognizing aa 1-50 of the human protein, which are not 

present in the mouse homologue. Primary human lung fibroblasts (phLF) were transfected 

with control or PA200 siRNAs and harvested after 24, 48 and 72 h. Immunoblotting with 

antibodies PA1-1961 and NBP1-22236 revealed a differential band pattern (Figure 5.1). The 
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widely used PA1-1961 recognized a predominant band at 160 kDa and a faint band of 

approximately 250 kDa both not responding to siRNA-mediated knockdown as well as a 

faint protein species of 200 kDa disappearing upon PA200 silencing. In contrast, NBP1-22236 

recognized only one 200 kDa protein species, which was decreasing over time in response to 

transfection of phLF with PA200 siRNAs, implying a much more specific detection of the 

activator. This accorded well with a strong decrease in full-length PA200 mRNA levels upon 

silencing of the activator under the same conditions (shown in Figure 7.25 of section 7.2.4.4). 

 

 
Figure 5.1: PA200 antibodies against the human protein vary in their specificity. RIPA extracts of primary 
human lung fibroblasts with transient silencing of PA200 for 24, 48 and 72 h were analyzed using 
immunoblotting with the antibody PA1-1961 from Thermo Fisher Scientific (left) and NBP1-22236 from Novus 
Biologicals (right) for detection of PA200.  
 

Specificity of antibodies for murine PA200 was tested using CCL-206 murine lung fibroblasts, 

which were transfected with control or PA200 siRNAs for 24, 48, 72 and 96 h. 

Immunoblotting with antibody PA1-1961 resulted in a similar band pattern as previously 

observed in human samples (Figure 5.2 A). The very abundant protein species at 160 kDa did 

not respond to the silencing, whereas a very faint band at approximately 200 kDa 

disappeared upon knockdown of PA200. Antibody NBP2-32575 (Novus Biologicals) suitable 

for detection of the murine protein recognized a single band of approximately 200 kDa, 

which decreased over time upon knockdown and started to recover after 96 h. Moreover, 

efficient silencing of the activator was confirmed using an additional method measuring 

mRNA levels after 24, 48 and 72 h of silencing in CCL-206 (Figure 5.2 B). Here, qPCR revealed 

a strong decrease of mRNA expression after 24 and 48 h, which slightly started to recover 

72 h after transfection. Concluding, the widely used antibody PA1-1961 targeting aa 

1620-1640 recognizes a prominent band at 160 kDa in cells of human and mouse origin 

which does not respond to PA200 silencing. In contrast, antibodies NBP1-22236 and 

NBP2-32575 targeting other regions of the protein specifically detect the 200 kDa protein 

species of human and mouse PA200 by immunoblotting. 



5 Validating the specificity of antibodies for analysis of the proteasome activator PA200 
 

63 

 
Figure 5.2: PA200 antibody PA1-1961 recognizes additional protein species not responding to PA200 
silencing in murine CCL-206. (A) Transient silencing of PA200 for 24, 48, 72 and 96 h in murine CCL206 cells was 
analyzed using immunoblotting with the antibody PA1-1961 (Thermo Fisher Scientific, left figure) and 
NBP2-32575 from (Novus Biologicals, right figure) for detection of PA200. (B) PA200 mRNA expression of samples 
used in (A) were determined by qPCR. RPL19 served as housekeeping gene. Bars show mRNA level normalized to 
time-matched controls (one-sample t-test, n = 3). Experiments were performed by T. Meul, master student at the 
CPC 2016. 
 

5.2.2 Blocking of the antibody with its immunizing peptide prevents its 

binding to both the 200 kDa and 160 kDa protein species  

To investigate whether the antibody PA1-1961 recognizes the 160 kDa protein species via its 

antigen binding site, blocking experiments were performed with the 15 aa immunizing 

peptide used for generation of the antibody compromising aa 1620-1640 of the human 

PA200 protein. The antibody was diluted 1:1000 in blocking reagent and incubated with 0 to 

6 µg/mL peptide over night at 4 °C. Western blots of the same CCL-206 lysate were then 

developed using the antibody blocked with increasing amounts of peptide. The signal for 

both bands at 160 and 200 kDa was already blocked with a peptide concentration of 

0.25 µg/mL (Figure 5.3 A). Remaining bands were also not blocked at higher concentrations 

and thus resulted from binding of other antibody regions to cellular proteins.  

In a second approach, the ability of the immunizing peptide to prevent binding of the 

antibody to its target sequence was also tested by immunohistochemistry (IHC). Diluted 

antibody PA1-1961 was incubated with the immunizing peptide at a final concentration of 

4 µg/mL overnight prior to staining of lung tumor sections from KrasLA2 mutant mice. No 



5 Validating the specificity of antibodies for analysis of the proteasome activator PA200 
 

64 

signal was obtained using antibody with blocked recognition site, whereas antibody without 

blocking peptide led to a strong staining of tumor regions (Figure 5.3 B).  

 

 
Figure 5.3: The immunizing peptide of PA200 antibody PA1-1961 efficiently blocks binding of the 
antibody to 200 kDa PA200 and the unknown 160 kDa protein species. (A) PA200 antibody PA1-1961 
(Thermo Fisher Scientific) diluted 1:1000 in blocking solution was incubated overnight with its blocking peptide at 
indicated concentrations. Immunoblotting of a CCL-206 lysate was then stained with the blocked PA200 
antibody. (B) KrasLA2 mouse lung tumor was stained with the PA200 antibody PA1-1961 pre-incubated with the 
blocking peptide (4 µg/mL) overnight or antibody without blocking peptide (pink). Nuclei (blue) were 
counterstained with hematoxylin. Experiments were performed by T. Meul, master student at the CPC 2016. 
 

5.2.3 PA200-/- confirms 160 kDa protein species being not related to PA200 

Testis and lung tissue of PA200-/- mice was used to investigate whether the additional 

160 kDa protein species is an actual isoform of PA200 as stated by previous publications 

(Blickwedehl et al., 2007; Ustrell et al., 2002). Testis and lung RIPA extracts of PA200-/- and 

wildtype mice were analyzed with antibodies PA1-1961 and NBP2-32575 by immunoblotting. 

Of note, antibody PA1-1961 caused a pronounced signal at 160 kDa in testis and lung tissues 

of wildtype as well as in PA200-/- animals, whereas the 200 kDa species was only observed in 

the wildtype (Figure 5.4 A). Therefore, the 160 kDa protein species detected with this 

antibody is not related to PA200 as the knockout mice harbor a full deletion of all PA200 

coding exons and do not express an isoform of the activator. In contrast, NBP2-32575 

recognized a single band of 200 kDa in wildtype tissues, which was not present in PA200-/-. 

Therefore, this antibody is well suited for specific immunodetection of PA200 in murine 

samples.  
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Figure 5.4: PA200 knockout reveals binding of PA1-1961 antibody to protein not related to PA200. 
(A) PA200 protein expression in RIPA lysates of testis and lung tissue from wildtype (WT) and PA200-/- (KO) mice 
was examined with antibodies PA1-1961 (Thermo Fisher Scientific, left figure) and NBP2-32575 (Novus 
Biologicals, right figure). (B) The antibody specificity was evaluated by immunohistochemical analysis of lung and 
testis sections from wildtype (WT) and PA200-/- (KO) mice using antibodies PA1-1961 (Thermo Fisher Scientific) 
and sc-135512 (Santa Cruz). Experiments were performed in collaboration with T. Meul, master student at the CPC 
2016. 
 

Specificity of different PA200 antibodies was also analyzed by immunohistochemistry of lung 

and testis tissues from wildtype and PA200-/- mice. As antibody NBP2-32575 is not suitable 
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for IHC, sc-135512 (Santa Cruz) was tested for this purpose. PA1-1961 caused a very strong 

staining of wildtype lung and testis tissue sections although expression of PA200 is generally 

lower in the lung as compared to testis (Ustrell et al., 2002) (Figure 5.4 B). Moreover, the 

signal was also present in PA200-/- testis and lung tissue sections confirming unspecific 

binding. In contrast, sc-135512 specifically stained cells of wildtype testis tissue, whereas no 

signal was obtained in the PA200-/-. Lung tissue sections exhibited no pronounced staining 

compared to testis, which accords well with a generally lower expression of the protein in the 

lung. 

Concluding, these findings illustrate the importance of thorough validation of antibody 

specificity. Using PA200 silencing and knockout approaches these experiments showed that 

PA1-1961, which is directed against an epitope comprising aa 1620-1634 of the activator and 

has been most frequently used in recent publications , is not suitable for specific detection of 

PA200 as it recognizes an additional 160 kDa protein species that is not related to PA200. 

Antibodies from Novus Biologicals and Santa Cruz directed against other epitopes were 

proven to be specific for detection of PA200. These validated antibodies were used for all 

subsequent experiments of this study as indicated in Table 10. 

 

Table 10: Antibodies validated for specific recognition of PA200 and their application in this study. 
(WB: Western blotting; IP: immunoprecipitation; IHC: immunohistochemistry) 
Antibody Application Validated by 
NBP1-22236 WB and IP of human samples Transient PA200 silencing 
NBP2-32575 WB of mouse samples WB of PA200-/- and wildtype tissue 
sc-135512 IHC of human and mouse tissue IHC of PA200-/- and wildtype tissue 
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5.3 Discussion 

Initial experiments of this study analyzing the specificity of several PA200 antibodies revealed 

that antibodies directed against aa 1620-1634 of the human protein detect a 160 kDa 

species which is not related to PA200. As these antibodies were used in most of the 

published studies, these observations on PA200 need to be considered with caution. 

 

5.3.1 Specific antibodies are essential for reliable research 

Antibodies are very important tools for basic and clinical research as well as clinical 

diagnostics as they are frequently used for detection of proteins. They require an absolute 

certainty regarding specificity and selectivity for recognition of their antigen; otherwise 

inconsistent and wrong data are generated leading to misinterpretation of data influencing 

future directions of research or even treatment of patients. However, a large proportion of 

commercially available antibodies fail to specifically detect their target protein. When 

Berglund et al. for example tested the specificity of 5436 commercially available antibodies 

by Western blotting and IHC for the Human Protein Atlas in 2008, they discovered that only 

approximately 50 % of them were suitable for the tested applications (Berglund et al., 2008). 

According to the FDA, validation is defined as “the process of demonstrating, through the 

use of specific laboratory investigations, that the performance characteristics of an analytical 

method are suitable for its intended analytical use” (Bordeaux et al., 2010). Therefore, 

validation of antibody specificity is an essential prerequisite for their analytical use to obtain 

reliable results. However, the use of antibodies not suitable for experimental use because of 

cross-reactivity, variability of among different batches or wrong applications is a major cause 

for the increasing lack of data reproducibility in research as recently discussed in an editorial 

by the Nature journal editor Monya Baker (Baker, 2015). Although non-specific antibodies 

are a widely discussed pitfall in research and despite the fact that the “International Working 

Group for Antibody Validation” recently provided a guideline for proper antibody validation, 

a general policy - especially for commercially available antibodies - does not exist (Bordeaux 

et al., 2010; Bradbury and Plückthun, 2015; Uhlen et al., 2016). 
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5.3.2 The use of unspecific antibodies limits available information on PA200 

In the present study, analysis of antibody specificity revealed that a frequently used antibody 

targeting aa 1620-1634 of human PA200 does also recognize proteins not related to PA200. 

Using this antibody for Western blotting and IHC, a prominent signal was observed upon 

PA200 silencing in murine and human cells as well as in murine PA200-/- tissues. For this 

reason, this antibody has to be considered as not specific for the detection of PA200 and 

thus cannot be applied in further experiments. Specific recognition of PA200 by 

immunoblotting was achieved using antibodies from Novus Biologicals targeted against aa 

1-50 of the human protein or directed against a 93 aa epitope in the middle region of the 

PA200 mouse homologue. Consequently, antibodies targeting a larger epitope might 

prevent unspecific recognition of proteins because the probability for detection of a similar 

epitope in a given sample is lower. 

PA200 antibodies targeting aa 1620-1634 are commercially available from different 

companies and have been used in several recent studies. They were fist generated by Ustrell 

et al. by immunizing rabbits with three synthetic fragments of human PA200 (Ustrell et al., 

2002). All three antibodies recognized a 160 kDa protein species by Western blotting, which 

was claimed to be an isoform of PA200. However, in this early study the antibody specificity 

was not further validated by silencing or knockout of the gene. When using this antibody for 

immunofluorescence staining, PA200 was described to localize in the nucleus and to form 

nuclear foci upon radiation (Ustrell et al., 2002). Both findings are not reliable, because 

stainings do not allow for discrimination between the unspecific 160 kDa and the PA200 

200 kDa protein species.  

The same antibody was also used in a study investigating the regulation of alternative 

proteasome activators in response to oxidative stress (Pickering and Davies, 2013). Here, the 

authors claimed that the 200 kDa, but not the 160 kDa and 60 kDa protein species, was 

increased in response to H2O2 treatment. Their further analysis involved immunofluorescence 

stainings to show formation of nuclear foci by PA200 in response to hydrogen peroxide 

treatment as well as co-immunoprecipitation of PA200. Again, these results are not reliable 

as an unspecific antibody was used for analysis. 

Blickwedehl et al. generated an antibody by immunization with two synthetic peptides with 

one of these peptides also comprising aa 1620-1634 of human PA200 with some additional 
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amino acids at the N- and C-terminal regions (Blickwedehl et al., 2007, 2008, 2012). They also 

observed several protein species claiming they are isoforms of PA200, but only the 200 kDa 

species was found to be associated with the 20S proteasome. With regard to the results of 

the present study these other two protein species are most probably not related to PA200. 

Whereas the first study of Blickwedehl and colleagues in 2007 clearly labeled different 

protein species detected by Western blotting, this was not the case in the following 

publications. Although PA200 silencing was used in some of the experiments, they did not 

discriminate between the different recognized protein bands and whether they are affected 

by silencing. Therefore, the conclusion drawn from these experiments are also questionable 

due to the lack of antibody specificity for detection of PA200.  

Other publications in recent years did not clearly indicate the source or the recognition site 

of the applied PA200 antibodies (Jagannathan et al., 2015; Qian et al., 2013; Wang et al., 

2017). Their findings involving regulation of PA200 by miR29b as well as the discovery of 

acetylated histones as first substrates of PA200 should thus to be considered with caution. 

Especially the study by Qian et al. has major deficits regarding the specificity of applied 

PA200 antisera and quality of obtained results in general. Here, PA200 immunoblots clearly 

indicate several protein species suggesting that a non-specific antibody targeting aa 

1620-1634 was used in these experiments (Qian et al., 2013). Moreover, a signal for the 

activator was obtained by staining of PA200-/- mouse embryonic fibroblasts with PA200 

antisera. Therefore, the results of this study are highly questionable due to the lack of 

antibody specificity and the use of a PA200 gene knockout, which comprised only a deletion 

of exon 25-26 out of 45 coding exons. 

 

Concluding, antibody validation experiments performed in this study indicate the absolute 

necessity for proper evaluation of antibody specificity. Evaluating all studies published on 

PA200 so far revealed that non-specific immunoglobulins targeting aa 1620-1634 were 

frequently used and therefore further limit the available information on PA200 and its 

function. Here in this study, antibody NBP1-22236 recognizing aa 1-50 only present in 

human PA200 was validated for Western blotting and IHC of human samples, whereas 

NBP2-32575 was proven specific for detection of the mouse homologue by Western 

blotting. Antibody sc-135512 targeting an unknown C-terminal region of the activator was 

shown to be suitable for IHC of human and mouse tissues.  
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6 Inhibition of proteasome activity induces formation of 

alternative proteasome complexes  

 

Parts of this chapter were recently published as the following: 

Vanessa Welk, Olivier Coux, Vera Kleene, Claire Abeza, Dietrich Trümbach, Oliver Eickelberg 

and Silke Meiners (2016). Inhibition of Proteasome Activity Induces Formation of Alternative 

Proteasome Complexes. The Journal of Biological Chemistry 291, 13147-13159. 

 

6.1 Introduction 

Proteasomes are huge protein complexes built of many different subunits. The constitutive 

20S proteasome core complex consists of 28 protein subunits with a total molecular weight 

of approximately 750 kDa (Groll et al., 1997; Tanahashi et al., 1993). However, additional 

binding of an activator, such as the 19S regulator and PA28αβ, PA28γ or PA200 activators, is 

required to induce opening of the outer α-ring thereby facilitating the entry and degradation 

of proteins (Groll et al., 2000; Stadtmueller and Hill, 2011). These proteasomal activators are 

huge protein complexes within the cell as well. The standard 19S regulator is composed of 

19 subunits with a total molecular weight of 700 kDa (Rechsteiner and Hill, 2005; Sharon et 

al., 2006; Stadtmueller and Hill, 2011). Alternative proteasome activators, such as the 

heteroheptamer PA28αβ and homoheptamer PA28γ with a total molecular weight of 

approximately 210 kDa each and the 200 kDa monomer PA200, are also very large in size 

(Stadtmueller and Hill, 2011). According to the proposed “building block concept”, the 

recruitment of proteasomal activators to the 20S core complex allows for fast adaption of 

protein turnover via this huge proteolytic complex (Meiners et al., 2014). This would allow 

cells to quickly respond to different stimuli. In contrast to several studies analyzing the 

phosphorylation of 19S subunits as a mechanism for fast adaption of 26S proteasome 

function, the assembly of alternative proteasome complexes composed of alternative 

activators, such as PA28αβ, PA28γ and PA200 that bind to 20S and 26S complexes, however, 

has not been systematically evaluated so far (Guo et al., 2017; VerPlank and Goldberg, 2017). 

Only rapid recruitment of PA28αβ to the 20S proteasome upon catalytic proteasome 

inhibition was observed in reticulocyte lysates in vitro (Shibatani et al., 2006). As proteasome 
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inhibition has been shown previously to involve autoregulatory feedback adaptation of 

proteasome function in the cell, it was reasoned that this may also be a good system to 

study rapid assembly of alternative proteasome complexes to obtain first evidence for a 

prompt and fine-tuned regulation of alternative proteasome complexes according to certain 

cellular stimuli (Meiners et al., 2003).  

 

6.2 Results 

6.2.1 Proteasomal activators are recruited to 20S and 26S proteasomes in 

response to proteasome inhibition. 

To investigate the regulation of alternative proteasome complexes in response to catalytic 

inhibition of the proteasome, primary human lung fibroblasts (phLF) were treated with a low 

dose of proteasome inhibitor bortezomib (BZ) for 24 h and the composition of proteasome 

complexes was analyzed via native gel electrophoresis (Figure 6.1). 

 

Figure 6.1: Proteasome inhibition induces formation of alternative proteasome complexes. phLF treated 
with 10 nM bortezomib (BZ) for 24 h were analyzed by native gel electrophoresis. Activity of the different 
complexes and their efficient inhibition in response to inhibitor treatment was visualized by an overlay assay 
using a fluorogenic substrate specific for CT-L activity. Immunoblotting was performed for 20S subunits α1-7, 19S 
subunit RPT5 and proteasomal activators PA28α, PA28γ and PA200. The figure shows representative results from 
experiments performed with phLF from three different organ donors. 
 

An in-gel activity assay using a substrate specific for the chymotrypsin-like (CT-L) activity 

confirmed effective inhibition of 26S/30S proteasome complexes and an almost complete 

inhibition of 20S proteasomes. Immunoblotting for 20S subunits α1-7 and the 19S subunit 

RPT5 unambiguously identified the distinct 20S and 26S/30S complexes. Moreover, BZ 

treatment induced the formation of different 20S proteasome-containing sub-complexes of 

bigger size suggesting recruitment of proteasomal activators to 20S proteasomes. Indeed, 
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recruitment of alternative proteasome activators PA28α, PA28γ and PA200 to mainly the 20S 

complexes in response to BZ treatment was confirmed by immunoblotting of the native gels.  

 

6.2.2 Formation of alternative proteasome complexes is a rapid response to 

proteasome inhibition. 

According to recent literature the function of proteasome activator PA28αβ is mainly 

associated with the immunoproteasome (Fabre et al., 2015; Groettrup et al., 1996). Therefore, 

this study focused on the activators PA28γ and PA200 for further experiments as they are 

described to preferentially bind to the standard 20S proteasome (Fabre et al., 2015). A time 

course experiment using BZ treatment of phLF for 2, 6, 16 and 24 h was performed and 

analysis of proteasome complexes via native gel electrophoresis was applied to further 

investigate the kinetics of the formation of alternative proteasome complexes. Interestingly, 

recruitment of PA28γ and PA200 was already observed after 2 h of proteasome inhibitor 

treatment and showed the strongest effect after 16 h (Figure 6.2).  

 

 
Figure 6.2: Recruitment PA28γ and PA200 occur rapidly after proteasome inhibition. Recruitment of PA28γ 
and PA200 was analyzed in phLF in response to BZ treatment for 2, 6, 16 and 24 h by native gel electrophoresis 
with overlay assay indicating CT-L activity of resolved complexes and subsequent immunoblotting for the 
activators PA28γ and PA200. A representative result from experiments performed with phLF from three different 
organ donors is shown.  
 

Measurement of proteasome inhibition via a native gel overlay assay using a substrate 

specific for CT-L active sites as well as via fluorogenic substrates specific for CT-L, C-L and 

T-L activities confirmed efficient inhibition of CT-L active sites already after 2 h BZ treatment 

when recruitment of PA28γ and PA200 was observed (Figure 6.3). The C-L active sites were 

only partially inhibited and T-L active sites of the proteasome were not affected by the 

inhibitor treatment, which is in line with the results of previous studies analyzing the 

specificity of BZ (Dick and Fleming, 2010).  
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Figure 6.3: Bortezomib treatment efficiently inhibits CT-L proteasome activity in phLF. Proteasome activity 
was measured in the same native protein lysates analyzed in Figure 6.2 using fluorogenic substrates specific for 
CT-L, C-L and T-L active sites. Bar diagram indicates proteasome activity as percentage compared to the time 
matching control measured in phLF from three different donors (one-way analysis of variance, Bonferroni’s 
multiple comparison test, n = 3). 
 

Proteins ubiquitinated at lysine 48 (K48) already accumulated after 6 h of BZ treatment and 

increased up to a fivefold induction after 24 h proving efficient inhibition of proteasomal 

protein degradation (Figure 6.4). 

 

 
Figure 6.4: Proteins ubiquitinated at lysine 48 accumulate in response to BZ treatment. phLF were treated 
with 10 nM BZ for 2, 6, 16 and 24 h and RIPA lysates were analyzed for accumulation of protein polyubiquitinated 
at lysine 48 (UbiK48) by Western blotting. Bar diagram shows quantification of obtained signals relative to 
housekeeper β-Actin and normalized to the time-matched control. Experiments were performed in phLF from 
three different organ donors (one sample t-test, n = 3). 
 

Therefore, these results provide the first evidence for a fast recruitment of proteasome 

activators in response to certain stimuli in intact cells, which suggest rapid adaption of 

proteasome function to cellular needs.  

 

6.2.3 Proteasome inhibition also mediates recruitment of PA28γ in HeLa cells. 

The formation of PA28γ-alternative proteasome complexes was validated in another cell type 

in the laboratory of Dr. Olivier Coux (CRBM-CRNS, Montpellier, France). HeLa cells were 
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treated with 10 nM BZ for 24 h and proteasome complexes were analyzed using gel filtration 

and immunoblotting (Figure 6.5).  

 

 
Figure 6.5: Recruitment of PA28γ upon proteasome inhibition in HeLa cells. Proteasome complexes of HeLa 
cells treated with 10 nM BZ for 24 h were analyzed by gel filtration. Immunoblotting was performed for 20S 
subunit β2, 19S regulatory particle subunit Rpt6 for detection of the 26S and 30S proteasomes and activator 
PA28γ to analyze its recruitment. The diagram indicates the relative distribution of PA28γ in different fractions 
obtained from control and BZ treated cells. The experiment was performed by Claire Abeza in the laboratory of 
Dr. Olivier Coux, CRBM-CRNS, Montpellier, France. 
 

Of note, Western blotting for PA28γ revealed that this activator exists mainly in a free 

non-proteasome bound form in untreated cells. In response to inhibition of 20S proteasome 

catalytic activity the activator was recruited to 20S and 26S proteasome complexes as 

previously observed in phLF. Therefore, the formation of alternative proteasome complexes 

does not depend on the cell type but can be considered as a general cellular event upon 

proteasome inhibition. 

 

6.2.4 Direct interaction of PA28γ and PA200 with 20S proteasome complexes 

is enhanced upon proteasome inhibition. 

Increased recruitment of PA28γ and PA200 to the catalytic core complex was validated with a 

second method using co-immunoprecipitation (co-IP) of the 20S proteasome and its 

interacting activators as well as other proteins. IP of the 20S subunit α4 was performed in 
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phLF 6 h after BZ treatment in native protein lysates preserving intact proteasome 

complexes. Immunoblotting confirmed successful enrichment of 20S proteasomes detected 

with an antibody against 20S subunits α4. Of note, an increased amount of PA28γ and PA200 

interacted with 20S subunit α4 upon inhibitor treatment compared to control treated cells 

(Figure 6.6). 

 

 
Figure 6.6: Catalytic proteasome inhibition enhances the interaction of the 20S core particle with PA28γ 
and PA200. Co-immunoprecipitation of 20S subunit α4 was performed in native lysates of phLF treated with 
10n M BZ for 6 h. Immunoblotting was performed for 20S subunit α4, PA28γ and PA200. 10% of total lysate used 
for co-IP was loaded as an input control. 
 

Therefore, the formation of alternative proteasome complexes in response to catalytic 

inhibition of the 20S complex was confirmed using two different approaches, namely native 

gel analysis and co-IP. 

 

6.2.5 Early recruitment of proteasomal activators is not regulated by their 

transcription. 

In a next approach, the transcriptional regulation of the activators in response to proteasome 

inhibition was investigated as a potential mechanism for their enhanced recruitment. phLF 

were treated with BZ for 2, 6, 16, and 24 h and protein levels were analyzed via Western 

blotting (Figure 6.7). Induction of PA28γ and PA200 protein levels was only observed after 16 

and 24 h of treatment, whereas recruitment of activators to the 20S complex already had 

been observed much earlier after 2 h of treatment with BZ.  
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Figure 6.7: Inhibition of proteasome activity induces PA28γ and PA200 protein expression after 16 and 
24 h. Protein expression of PA28γ and PA200 was analyzed by Western blotting in phLF treated with 10 nM BZ 
for indicated times. Bar diagram indicates the quantification of obtained signals relative to housekeeper β-Actin 
and normalized to the time-matched control. Experiments were performed in cells from three different organ 
donors (one sample t-test, n = 3). 
 

Analysis of mRNA levels by RT-qPCR indicated a significant increase for PA200, whereas 

transcription of PA28γ was not upregulated (Figure 6.8). Of note, induction of PA200 mRNA 

was observed after 16 h and therefore much delayed when compared to recruitment of 

activators. 

 

 
Figure 6.8: BZ treatment only induces PA200 mRNA expression at later time points. PA28γ and PA200 
mRNA levels were analyzed by qPCR in phLF treated with 10 nM BZ for indicated times. RPL19 served as a 
housekeeping gene. Bar diagram indicates mRNA expression of phLF treated with 10 nM BZ for indicated times 
relative to time matching controls. Experiment was performed in cells from three different organ donors (one 
sample t-test, n = 3). 
 

Recent studies already indicated a transcriptional induction of proteasomal genes in 

response to long-term proteasome inhibition. They identified nuclear factor 

erythroid-derived 2-related factor 1 (NRF-1) as transcription factor mediating increased 

expression of proteasomal subunits in response to proteasome inhibitor treatment 

(Radhakrishnan et al., 2010; Sha and Goldberg, 2014; Steffen et al., 2010). Therefore, an in 

silico promoter analysis using the Genomatix software was performed for this study by Dr. 

Dietrich Trümbach (Institute of Developmental Genetics, Helmholtz Zentrum München, 

Germany) to analyze whether the human promoter regions of the PSME3 and PSME4 gene 
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contain potential NRF-1 transcription factor binding sites (TFBSs). Analysis of the PSME3 

promoter revealed only one potential TFBSs approximately 1100 kb upstream from the 

transcription start site (TSS), which was found to be conserved only among human, chimp 

and rhesus monkey (Figure 6.9). In contrast, two TFBSs were identified in very close proximity 

to the TSS in the human PSME4 promoter. One of these TFBSs was highly conserved among 

a variety of different species, such as human, chimp, rhesus monkey, mouse, rat and frog. For 

these reasons this TFBS has a much higher probability for being a functional NRF-1 binding 

site within the PSME4 promoter region. 

 

 
Figure 6.9: Analysis of PSME3 and PSME4 promoter for potential NRF-1 transcription factor binding sites. 
Promoter regions of human PSME3 (encoding PA28γ) and PSME4 (encoding PA200) genes were analyzed for 
potential NRF-1 transcription factor binding sites (TFBSs) in different species. Red arrows indicate the 
transcription start site. Green arrows illustrate potential TFBSs of NRF-1 conserved among different species; grey 
arrows indicate non-conserved potential TFBSs. Analysis was performed by Dr. Dietrich Trümbach, Institute of 
Developmental Genetics, Helmholtz Zentrum München, Germany. 
 

Concluding, the identification of a potential NRF-1 TFBSs within the PSME4 promoter as well 

as the induction of PA200 mRNA levels in response to BZ treatment point towards a 

transcriptional regulation via NRF-1 in response to inhibitor treatment after 16 to 24 h, 

whereas PA28γ protein levels are rather regulated by stabilization of the protein than by 

induction of its transcription. Of note, recruitment of proteasomal activators at early time 

points is not regulated via an increase in their expression. 

 

6.2.6 Specific decrease of 26S and 30S proteasome complexes induces 

recruitment of PA200 but not PA28γ. 

Small molecule proteasome inhibitors, such as BZ, interfere with the catalytic activity of the 

20S core complex by binding to its active sites and thereby blocking the cleavage of 

peptides. Therefore, this type of proteasome inhibition interferes with all different types of 
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complexes including uncapped 20S proteasomes, 26S and 30S proteasomes as well as 

alternative proteasome complexes. To further clarify the trigger for alternative proteasome 

complex formation it was analyzed whether proteasomal activators are also recruited upon 

specific inhibition of ubiquitin-dependent protein degradation by 26S and 30S proteasomes. 

The 19S regulator subunit RPN6 functions as a clamp stabilizing the interaction between the 

20S core particle and the remaining 19S regulatory particle and is thereby essential for 26S 

and 30S proteasome assembly functioning as a rate-limiting subunit in this process (Pathare 

et al., 2012; Santamaria et al., 2003; Semren et al., 2015; Vilchez et al., 2012). For this reason, 

transient silencing of 19S regulator subunit RPN6 was applied for this study to interfere with 

the assembly of 26S and 30S in phLF and thus to specifically inhibit ubiquitin-dependent 

protein degradation via these complexes. Western blot analysis of protein lysates 72 h after 

transfection with siRNAs indicated efficient reduction of RPN6 protein levels as well as 

accumulation of proteins ubiquitinated at lysine 48 (K48) implying inhibition of 

ubiquitin-dependent protein degradation (Figure 6.10). Moreover, protein analysis revealed 

induction of PA200 protein levels in these cells, whereas PA28γ protein expression was not 

regulated. 

 

 
Figure 6.10: RPN6 silencing efficiently inhibits 26S and 30S ubiquitin-mediated protein degradation and 
induces expression of PA200. Analysis of K48-ubiquitinated proteins (UbiK48), expression levels of RPN6 and 
proteasomal activators PA28γ and PA200 by Western blotting in RIPA lysates of phLF treated with siRNAs against 
RPN6 or control siRNAs for 72 h. Bar diagram indicates quantification of protein levels of three independent 
experiments normalized to housekeeper β-Actin and to the respective scrambled siRNA-transfected control (one 
sample t-test, n = 3).  
 

According to these observations, RPN6 silencing for 72 h also strongly upregulated PA200 

on the mRNA level while PA28γ mRNA levels remained unchanged (Figure 6.11).  
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Figure 6.11: Inhibition of 26S and 30S proteasomes strongly induces PA200 mRNA level. mRNA expression 
of RPN6, PA28γ and PA200 genes was analyzed in phLF in response to silencing of RPN6 for 72 h via qPCR. 
RPL19 served as a housekeeping gene and bars indicate expression levels normalized to control siRNA 
transfected cells. Experiment was performed in phLF from three different organ donors (one sample t-test, n = 3). 
 

Analysis of proteasome complexes via native gel analysis confirmed effective interference 

with 26S and 30S assembly by RPN6 silencing (Figure 6.12). An in-gel activity assay using a 

fluorogenic substrate specific for chymotrypsin-like active sites indicated a strong decrease 

in 26S and 30S activity. Immunoblotting of the native gel for 19S subunit RPT5 and 20S 

subunits α1-7 confirmed loss of 30S and prominent reduction of 26S proteasomes. This was 

accompanied by the formation of an additional proteasome subset between 26S and 20S 

complexes presumably representing 20S complexes assembled with only parts of the 19S 

regulator. Of note, silencing of RPN6 also increased the formation of an additional 

alternative 20S complex, which suggested recruitment of alternative proteasome activators 

to the core complex. Indeed, immunoblotting for PA200 confirmed its recruitment to 20S 

proteasomes whereas PA28γ containing alternative proteasome complexes – in line with 

results of expression analysis – were not increased.  

 

 
Figure 6.12: Silencing of RPN6 induces recruitment of PA200 to the 20S complex. Native protein lysates of 
control or Rpn6 siRNA-transfected cells were analyzed by native gel electrophoresis. Proteasome activity was 
visualized by an overlay assay using a fluorogenic substrate specific for CT-L active sites. Immunoblotting was 
performed for 19S subunit RPT5, 20S subunits α1-7 and proteasomal activators PA28γ and PA200. Figure 
indicates representative results for experiments performed in phLF from three different donors. 
 

Concluding from these observations, recruitment of PA200, but not PA28γ, is sensitive to 

specific interference with ubiquitin-dependent 26S and 30S protein degradation. This 
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enhanced formation of PA200-containing alternative proteasomes also involves its 

transcriptional upregulation as observed for BZ treatment after 16 to 24 h. As induction of 

mRNA and protein levels was not observed for PA28γ, it is tempting to speculate that 

enhanced expression of PA200 is mediated by transcription factor NRF-1, as conserved TFBSs 

in proximity of the transcription start site were only identified in the PSME4 and not in the 

PSME3 promoter region. 

 

6.2.7 The extent of active site inhibition defines the dimensions of 

proteasomal activator recruitment. 

To investigate the correlation of proteasome inhibition and the formation of alternative 

proteasome complexes cells were treated with increasing concentrations of proteasome 

inhibitor BZ. Treatment of phLF with BZ at 1, 10, 50, and 100 nM for 6 h indicated a 

dose-dependent reduction of proteasome activity (Figure 6.13 A).  

 

 
Figure 6.13: BZ treatment induces dose-dependent formation of alternative proteasome complexes. 
Native lysates of phLF treated with indicated concentrations of BZ for 6 h were analyzed for (A) chymotrypsin-like 
(CT-L), caspase-like (C-L) and trypsin-like (T-L) proteasome activity and (B) alternative proteasome complex 
formation by native gel electrophoresis and immunoblotting for PA28γ and PA200. Bar diagram indicates the 
percentage of proteasome activity compared to control (one sample t-test, n = 3). Representative results of 
experiments performed in phLF from three different donors are shown in (B).  
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Here, the CT-L activity of the proteasome exhibited the strongest reduction to 10 % 

remaining activity compared to control at the highest applied BZ concentration, whereas the 

caspase-like (C-L) activity decreased to approximately 40 % and the trypsin-like (T-L) activity 

was not affected. This inhibitory profile of BZ treatment accords with recent literature and 

the data shown in Figure 6.3 (Dick and Fleming, 2010). Native gel analysis confirmed that 

dose-dependent reduction of CT-L activity caused dose-dependent recruitment of PA28γ 

and PA200 to the 20S and 26S proteasome (Figure 6.13 B). 

In a following approach it was investigated whether interference with only CT-L active sites is 

sufficient to induce activator recruitment. phLF were treated with increasing concentrations 

of CT-L active site specific proteasome inhibitor oprozomib (10, 50, and 100 nM) for 6 h(Dick 

and Fleming, 2010). Measurement of proteasome activity by fluorescent substrates 

confirmed a dose-dependent reduction of CT-L activity, whereas this inhibitor did not affect 

the other catalytic sites (Figure 6.14 A). Analysis of proteasome complexes by native gel 

analysis and subsequent immunoblotting for PA28γ and PA200 indicated a dose-dependent 

formation of alternative proteasome complexes (Figure 6.14 B). Therefore, inhibition of 

subunit β5 representing the CT-L activity is sufficient to induce the recruitment of activators 

to 20S and 26S proteasomes. 

 

 
Figure 6.14: Specific inhibition of CT-L active sites is sufficient to induce formation of alternative 
proteasome complexes. phLF treated with 10, 50 and 100 nM oprozomib (OZ) for 6 h were analyzed for (A) 
chymotrypsin-like (CT-L), caspase-like (C-L) and trypsin-like (T-L) proteasome activity and (B) recruitment of 
proteasomal activators PA28γ and PA200 by native gel electrophoresis, substrate overlay and subsequent 
immunoblotting. Bar diagram indicates the percentage of proteasome activity compared to the control (one 
sample t-test, n = 3). Representative results of experiments performed in phLF from three different donors are 
shown in (B). 
 

The extent of activator recruitment in response to efficient inhibition of all three catalytic 

activities of the proteasome in phLF was analyzed by treatment with 20 µM epoxomicin for 

4.5 h. Analysis of proteasome activity confirmed an almost complete reduction of all three 
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catalytic activities (Figure 6.15 A). Moreover, under this condition very pronounced 

recruitment of PA28γ and PA200 to the 20S core complex was detected when compared to 

the effect of treatments used so far in this study (Figure 6.15 B).  

 

 
Figure 6.15: Inhibition of all three catalytic active sites of the proteasome induces the most pronounced 
recruitment of proteasomal activators. (A) phLF were treated with 20 µM epoxomicin for 4.5 h and efficient 
inhibition of all three active sites was confirmed by proteasome activity assay. Bar diagram indicates the 
percentage of proteasome activity compared to DMSO treated cells (one sample t-test, n = 3). (B) Recruitment of 
PA28γ and PA200 was analyzed by native gel electrophoresis and immunoblotting. Here, a representative result 
for three experiments performed in phLF from different donors is shown. 
 

Hence, these observations suggest that recruitment of PA28γ and PA200 is titrated 

according to the extent of proteasome inhibition and that inhibition of the CT-L activity is 

sufficient to induce the formation of alternative proteasome complexes. 

 

6.2.8 Recruitment of PA28γ to purified 20S complexes is not enhanced in 

response to catalytic proteasome inhibition in vitro 

Several recent publications also suggested that binding of peptide ligands to the active sites 

induces an allosteric conformational change and opening of the 20S proteasome α-ring 

(Arciniega et al., 2014; Osmulski et al., 2009; Ruschak and Kay, 2012). Using an in vitro 

approach, Kleijnen et al. provided evidence for a stabilization of the weak interaction 

between 20S and 19S regulator by binding of an inhibitor to the active sites using an in vitro 

approach. This data suggests that occupancy of these catalytic centers signals to the bound 

regulator via an allosteric mechanism (Kleijnen et al., 2007). To investigate a possible 

regulation of activator recruitment to the 20S complex via allosteric signaling to the 20S 

proteasome α-ring, the recruitment of recombinant PA28γ to purified 20S proteasomes was 

analyzed in response to proteasome inhibition by our collaboration partner Dr. Olivier Coux, 

CRBM-CNRS UMR 5237, Montpellier, France. In vitro experiments were only performed with 
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activator PA28γ, as recombinant human PA200 is not commercially available and its 

expression failed due to its high molecular weight of 200 kDa (data not shown and personal 

communication of Dr. A. Geerlof, Protein Expression and Purification Facility, HMGU). 1 µg 

purified 20S proteasomes treated with 25 µM epoxomicin or DMSO as a control were 

incubated with 2 µg recombinant expressed PA28γ for 5 min at 37 °C. Subsequently, the 

formation of alternative proteasome complexes was examined via native gel electrophoresis 

(Figure 6.16).  

 

 
Figure 6.16: Recruitment of PA28γ to 20S is not enhanced by proteasome inhibition in vitro. 1 µg of 
purified 20S pre-treated with 25 µM epoxomicin were incubated with 2 µg recombinant PA28γ. The activity of 
obtained complexes and recruitment of PA28γ was investigated by native gel electrophoresis, in-gel CT-L overlay 
assay and immunoblotting. Bar diagram indicates densitometric analysis of immunoblots (data provided by Dr. 
Olivier Coux, CRBM-CRNS, Montpellier, France). 
 

An in-gel overlay assay using a fluorescent substrate specific for CT-L activity confirmed 

strong activation of proteasome activity upon addition of PA28γ implying the formation of 

active complexes by binding of the activator to the core complex. Pre-treatment with 

proteasome inhibitor epoxomicin led to an efficient inhibition of 20S activities. 

Immunoblotting for the 20S proteasome and PA28γ confirmed formation of PA28γ-20S 

proteasome complexes. However, the recruitment of PA28γ to the 20S core complex was not 

enhanced in response to occupancy of the catalytic sites by epoxomicin in this experimental 

setup.  

 

6.2.9 Proteasome inhibition induces activator recruitment in native cell 

extracts 

To analyze whether activator recruitment requires other cellular components or intact cells, 

the formation of alternative proteasome complexes was determined upon proteasome 

inhibitor treatment of native cell extracts. Native TSDG extracts of phLF were incubated with 
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20 µM epoxomicin inhibiting all three proteasomal catalytic sites for 1 h at 37 °C and 

600 rpm. In-gel overlay with a substrate specific for CT-L activity indicated efficient 

interference with proteasomal activity upon treatment (Figure 6.17 A). Of note, Western 

blotting of native gels showed increased association of PA28γ and PA200 with 20S and 26S 

complexes in extracts treated with epoxomicin.  

 

 
Figure 6.17: Treatment of native phLF extracts with epoxomicin or activity based probes (ABPs) MV151 
and MVB127 but not LW124 induces formation of alternative proteasome complexes. Native TSDG extracts 
of phLF were treated with (A) 20 µM epoxomicin, (B) 0.5 µM ABP MV151, (C) 1 µM ABP MVB127 or (D) 0.25 µM 
LW124 for 1 h at 37 °C and 600 rpm. Alternative proteasome complexes were then analyzed by native gel 
electrophoresis and immunoblotting for PA28γ and PA200. (A) Proteasomal activity in response to proteasome 
inhibition by epoxomicin was determined by in-gel overlay with a substrate specific for chymotrypsin-like (CT-L) 
activity. Efficient labeling of proteasome complexes with ABPs MV151, MVB127 and LW124 was confirmed by 
imaging of fluorescence. Figures indicate representative results for experiments performed with extracts from 
phLF of four different donors.  
 

ABPs are fluorescently labeled proteasome inhibitors with different specificities for the three 

active sites, which are widely used for experimental detection of active proteasome 

complexes (Li et al., 2013; Verdoes et al., 2006). To determine whether these ABPs also 

induce formation of alternative proteasome complexes, native TSDG extracts of phLF were 

treated for 1 h at 37 °C and 600 rpm with 0.5 µM MV151 recognizing all three catalytic sites 
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of the proteasome, 1 µM MVB127 specifically inhibiting β5/β5i active sites and LW124 

binding to β1/β1i sites according to the standard protocol for ABP labeling of proteasomes 

in cell lysates. Efficient labeling with ABPs was confirmed by imaging of fluorescently tagged 

proteasomes in native gels (Figure 6.17 B, C and D). Indeed, treatment of cell extracts with 

both ABPs MV151 and MVB127 induced recruitment of PA28γ and PA200 mainly to 26S but 

also 20S proteasomes (Figure 6.17 B and C). In contrast, labeling of phLF extracts with MV124 

inhibiting β1/β1i active sites did not induce recruitment of both activators (Figure 6.17 D). 

This suggests that inhibition of β5/β5i active sites is necessary for recruitment of 

proteasomal activators, as proteasome inhibitor oprozomib targeting β5/β5i was sufficient to 

induce dose-dependent formation of alternative proteasome complexes in intact cells 

(shown in Figure 6.14) 

In conclusion, these experiments showed that formation of alternative proteasome 

complexes upon proteasome inhibition does not require an intact cellular environment. 

Moreover, labeling of active proteasomes with ABPs widely used for activity profiling 

targeting β5/β5i or all three catalytic subunits also induces formation of alternative 

proteasome complexes thereby changing original cellular proteasome populations.  

 

6.2.10 Alternative proteasome complexes persist after recovery of proteasome 

activity 

In a further approach the potential persistence of alternative proteasome complexes after 

recovery of proteasome activity was analyzed to obtain insights into the functional role of 

their recruitment. After treatment of phLFs with 10 nM BZ for 6 h to induce activator 

recruitment, cells were allowed to recover proteasome activity in fresh cell culture medium 

for 24 h. Measurement of proteasome activity for all catalytic sites confirmed inhibition of 

CT-L and C-L activities after 6 h of treatment (Figure 6.18 A). After incubation in fresh 

medium, CT-L activity recovered and C-L and T-L activities increased compared to untreated 

cells harvested at the same time. Native gel electrophoresis and subsequent analysis of 

proteasome activity using an in-gel overlay assay confirmed recovery of CT-L activity in 26S 

and 30S complexes (Figure 6.18 B). Moreover, immunoblotting for 20S proteasome subunits 

α1-7 indicated formation of 20S containing alternative proteasome complexes running 

slightly slower than non-capped 20S proteasomes that persisted after recovery of 
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proteasome activity for 24 h. The amount of 30S proteasomes increased after the recovery 

phase, which accorded well with the increase in total proteasome activity after recovery. 

Immunoblotting for PA28γ and PA200 revealed that alternative proteasome complexes 

persisted after recovery of proteasome activity. Therefore, recruitment of proteasomal 

activators could be important for the cell to cope with proteotoxic stress, as these complexes 

are proteolytically active. 

 

 
Figure 6.18: Alternative proteasome complexes persist after recovery of proteasome activity. phLF were 
treated with 10 nM BZ for 6 h and directly harvested or allowed to recover from proteasome inhibition in fresh 
medium for 24 h. (A) Proteasome activity and (B) proteasome composition using native gel electrophoresis and 
immunoblotting were analyzed. Bar diagram (A) indicates the percentage of proteasome activity compared to 
control cells (one sample t-test, n = 3). A representative result of experiments performed in phLF of three 
different organ donors is shown in (B). 
 

6.2.11 Silencing of PA28γ decreases ability of cells to cope with proteasome 

inhibition 

The ability of cells to cope with proteasome inhibition upon loss of activator expression was 

investigated by transient silencing of PA28γ. Here, the effect of interference with alternative 

proteasomes formation was investigated with regard to cell survival and growth. After 

silencing of PA28γ for 48 h phLF were treated with 10 nM BZ for 6 h and allowed to recover 

in fresh medium for 24 h. Analysis of metabolic activity indicated a reduction in response to 
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BZ treatment in a similar extent as silencing of PA28γ (Figure 6.19 A). Of note, reduced levels 

of PA28γ in combination with proteasome inhibition further decreased metabolic activity of 

phLF. Total cell count, determined as a measure for cellular proliferation, was significantly 

reduced by BZ treatment (Figure 6.19 B). This corresponds well to the generally accepted 

notion that inhibition of the proteasome induces cell cycle arrest as many of its regulators, 

such as the cyclin-dependent kinases (CDKs) are not further degraded thereby blocking cell 

cycle progression (Hershko, 1997). Although silencing of PA28γ did not show a significant 

effect on total cell count, silencing together with BZ treatment significantly decreased 

cellular proliferation in comparison to BZ treatment alone. Western blot analysis of the same 

cells confirmed efficient silencing of PA28γ and also indicated a significant increase in 

CCND1 and cell cycle inhibitor p21 protein levels validating decreased proliferation and cell 

cycle arrest under the applied conditions using a second approach (Figure 6.19 C). 

 

 
Figure 6.19: PA28γ-deficiency decreases cell growth in response to proteasome inhibition. After 48 h of 
transient silencing of PA28γ phLF were treated with 10 nM BZ for 6 h and cells were allowed to recover 
proteasome activity in fresh medium for 24 h. (A) Metabolic activity, (B) cell count and (C) expression of PA28γ, 
CCND1 and p21 by Western blotting (C) were analysed. Bar diagrams of (A) and (B) indicate the percentage 
compared to controls (one-way analysis of variance, Bonferroni’s multiple comparison test, n = 3). Densitometric 
analysis of Western blots (C) indicates the fold change of protein levels compared to controls and normalized to 
housekeeping protein β-Actin (one-way analysis of variance, Bonferroni’s multiple comparison test, n = 3). 



6 Inhibition of proteasome activity induces formation of alternative proteasome complexes 
 

89 

Concluding, these data suggest that formation of PA28γ-containing alternative proteasome 

complexes indeed allows cells to better cope with proteotoxic stress as induced by catalytic 

proteasome inhibition. 
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6.3 Discussion 

Until now, only a very limited amount of studies have provided evidence for a fast adaption 

of proteasomal function according to cellular needs (Guo et al., 2015; Lokireddy et al., 2015) . 

Here, the effect of inhibition of proteasome function on regulation of alternative proteasome 

activators was investigated to provide first evidence for a fast adaption of proteasome 

complexes in intact mammalian cells. This study demonstrated a so far unknown and rapid 

regulation of proteasome complexes in response to inhibition of the catalytic active sites by 

small molecule proteasome inhibitors in different cell types. Treatment of cells with inhibitors 

at different doses and with different specificities for the active sites of the 20S core complex 

indicated that the formation of alternative proteasomes correlated with the extent of 

proteasome inhibition and was most pronounced when all three catalytic sites were 

inactivated. Of note, specific inhibition of 26S and 30S protein degradation caused 

recruitment of PA200, but not PA28γ, to the 20S complex, which was accompanied by 

transcriptional induction of the activator. Alternative proteasome complexes persisted when 

the active sites regained their activity, which suggests that they are involved in the cellular 

response to stress. In this regard, cells with PA28γ silencing showed a decreased ability to 

cope with proteotoxic stress involving a defect in cellular growth and proliferation.  

 

6.3.1 Regulation of the proteasome in response to active site inhibition 

In 2003, small molecule proteasomal inhibitors began to enter the clinic when bortezomib 

(Velcade) was the first proteasome inhibitor approved by the FDA for the treatment of 

multiple myeloma (Kane et al., 2003). In the same year our group analyzed the effects of 

inhibition of proteasomal activity on 26S and 30S proteasomes themselves (Meiners et al., 

2003). This study discovered that inhibition of proteasome activity by small molecule 

inhibitors induced gene transcription and protein levels of 26S subunits as an auto-

regulatory feedback loop to compensate its impaired function. Moreover, increased 

expression of proteasomal subunits accorded with augmented de novo assembly of 

proteasome complexes. Of note, in the aforementioned study treatment of cells for 6-8 h 

was sufficient to stimulate proteasomal gene expression and biogenesis of new proteasome 

particles. Despite these drastic effects on the 26S and 30S standard proteasome, the 

regulation of alternative proteasome complexes has not been investigated in mammalian 
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cells so far. Book and colleagues observed an induction of PA200 protein level and increased 

association with purified proteasome in response to proteasome inhibitor treatment for 30 h 

in Arabidopsis (Book et al., 2010). Another study reported recruitment of PA28αβ in response 

to proteasome inhibition in reticulocyte lysates in vitro (Shibatani et al., 2006). Hence, the 

present study identifies a so far unrecognized, remarkably strong and rapid recruitment of 

alternative proteasome activators to the 20S and 26S proteasomes in primary human cells in 

vivo. Concluding, catalytic inhibitors of the proteasome not only augment the formation of 

26S and 30S proteasomes but also stimulate concerted induction of alternative proteasome 

complexes. 

 

6.3.2 Potential mechanisms for alternative proteasome complex formation  

The exact mechanism of alternative proteasome complex formation is still unknown and 

requires further investigation, although recruitment of PA28γ and PA200 was studied in 

detail in response to different ways of proteasome inactivation in this study. However, 

different possibilities exist which are discussed in the following section. 

 

6.3.2.1 A non-proteasome bound reservoir of activators serves as a pool for rapid 

formation of alternative proteasomes.  

An initial recruitment of PA28γ and PA200 was already observed after 2 h of proteasome 

inhibitor treatment. Of note, induction of PA28γ and PA200 protein levels was only observed 

after 16 h, much later after the onset of alternative proteasome complex formation. 

Therefore, early formation of alternative proteasome complexes is transcriptionally 

independent and results from association of free, non-proteasome bound activators to the 

standard core complex. Indeed, gel filtration experiments as well as native gel analysis 

showed that PA28γ exists mainly in a free form in untreated cells, presumably forming 

heptamers. Therefore, it can be rapidly recruited to the 20S proteasome upon certain stimuli 

(Figure 6.5). For PA200, detection of a non-proteasome-bound fraction by native gel 

electrophoresis remains difficult, because the signal for PA200 is much lower compared to 

PA28γ.  The reason for this might be a lower affinity of the antibody to its antigen or/and a 

generally lower expression of the activator. Ustrell et al. investigated the expression of PA200 

in homogenates from several murine organs, including liver, spleen, brain, heart, kidney, lung 
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and testis, and observed that the protein was substantially lower expressed in the lung as 

compared to testis and other organs (Ustrell et al., 2002). Native gel electrophoresis of 

primary human lung fibroblasts followed by cutting the gel in 10 fragments and analysis by 

mass spectrometry revealed that PA200 was mainly associated with the 20S proteasome and 

detected in a lower amount in a free, non-proteasome bound form (data not shown, 

experiment performed by V. Welk and Dr. O. Vosyka). For this reason - and as its expression 

levels are not altered as an initial response to proteasome inhibition - this activator 

presumably also exists in a free form allowing fast recruitment. 

 

6.3.2.2 Rapid formation of alternative proteasome complexes is potentially 

triggered by an allosteric conformational change of the 20S core complex. 

In this study the degree of proteasome inhibition directly correlated with the quantity of 

newly formed alternative proteasome complexes. Moreover, Shibatani and colleagues 

observed recruitment of PA28αβ upon inhibitor treatment of reticulocyte lysates in vitro in 

the absence of a living cellular environment (Shibatani et al., 2006). These observations 

suggest that rapid recruitment of alternative proteasome activators might be caused by an 

allosteric conformational shift of the 20S core particle in response to inhibitor binding. 

Structural conformational changes of the 20S core particle have been analyzed by several 

studies in response to substrate or inhibitor binding. An early study by Osmulski and 

Gaczynska published in 2000 gave first evidence for allosteric regulation of 20S proteasome 

conformation when they showed by atomic force microscopy that 20S proteasome core 

complexes of fission yeast exist in an open or a closed conformation and that substrate 

binding to the catalytic sites promotes the open gate conformation (Osmulski and 

Gaczynska, 2000). In a follow-up study, the authors provided evidence that a tetrahedral 

transition state of the active sites induces an allosteric conformational shift in the α-ring 

inducing its gate opening in S. cerevisiae (Osmulski et al., 2009). Structural changes were also 

observed in the β5 subunits of yeast and mouse 20S proteasomes upon ligand binding using 

principal component analysis of the 20S crystal structures (Arciniega et al., 2014). NMR 

spectroscopy identified an allosteric mechanism that induces conformational changes to the 

PA28 activator-binding site upon active site modifications in T. acidophilum (Ruschak and 

Kay, 2012). Allosteric conformational changes have also been investigated in the context of 
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proteasome inhibitors. Kleijnen et al. suggested that in the absence of ATP the very fragile 

interaction of 20S and 19S regulator is stabilized by binding of proteasome inhibitors to the 

catalytic sites of the 20S proteasome. Indeed, they demonstrated that reactive groups of the 

inhibitors mediate the stabilization effect and that this effect is dose-dependent (Kleijnen et 

al., 2007). The first analysis of inhibitor binding on the structure of the human 26S 

holoenzyme revealed that binding of the inhibitor oprozomib to the catalytic site induces far 

distance allosteric structural changes up to the ubiquitin receptor RPN10, which are 

presumably transferred via 19S subunit RPN5 (Haselbach et al., 2017). The effect of an 

inhibitor-induced conformational change of the 20S proteasome on association with 

alternative regulators, however, had not been investigated so far. The recruitment of 

recombinantly expressed PA28γ to purified 20S proteasome in response to catalytic 

inactivation of active sites was analyzed using an in vitro reconstitution assay. Of note, the 

results of this experiment did not indicate an increased formation of PA28γ-bound 20S 

proteasomes in response to efficient inhibition of proteasome activity by epoxomicin. A very 

efficient recruitment of PA28γ was observed with and without inhibitor treatment. However, 

in vitro reconstitution assays are challenging and the observed result may be an artifact 

resulting from assay limitations. The binding of proteasomal activators to purified 20S 

proteasomes in vitro is a very fast process (personal communication Dr. Olivier Coux). The 

experimental setup, however, is very limited regarding fast detection of proteasome 

complexes as it involves time-consuming native gel electrophoresis, which does not allow for 

analysis within a few seconds after addition of the activator to the 20S core complex. Hence, 

in an artificial in vitro setting, the recruitment may proceed fast and complete impeding the 

quantitative detection of activator recruitment. Therefore, to draw a final conclusion whether 

an allosteric conformational change is the underlying trigger for fast formation of alternative 

proteasome complexes, another method allowing for a faster detection of changes in 

activator recruitment has to be applied.  

Formation of alternative proteasome complexes was also observed in inhibitor-treated 

protein extracts implying that this process does not require an intact living cell. However, 

other proteins present in the native extract could still be involved in recruitment of 

proteasome activators. Interestingly, PA200 was also recruited to 20S proteasomes in 

response to RPN6 silencing, when catalytic sites were active and not inactivated by inhibitors. 

Therefore, another so far unknown alternative mechanism of recruitment is also conceivable 
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and requires further investigation. Of note, analysis of ABP-labeled phLF extracts indicated 

that detection of active proteasome complexes with ABPs should be applied with caution, as 

the labeling procedure induces a shift in alternative proteasomes. 

 

6.3.2.3 Late recruitment of alternative proteasome activators accords with increased 

protein levels of PA28γ and PA200. 

In this study an enhanced protein expression of PA28γ and PA200 was observed after 16 h of 

BZ treatment in time course experiments. These observations suggest that recruitment of 

alternative proteasome activators at later time points is regulated via increased protein 

levels. Of note, an induction on mRNA level was only identified for PA200, but not for PA28γ 

mRNA expression, suggesting that the increase of PA28γ protein levels is rather regulated 

via protein stabilization than via induction of gene transcription. The regulation of 

proteasomal gene expression in response to proteasome inhibition has been extensively 

investigated in recent years: When Mitsiades and colleagues examined molecular pathways 

and the mechanism behind the pro-apoptotic effect of proteasome inhibitor bortezomib 

(PS-341) in multiple myeloma cells using an oligonucleotide microarray analysis, they 

observed upregulation of genes of the ubiquitin proteasome system in response to 

bortezomib treatment (Mitsiades et al., 2002). The previous study of our group provided 

evidence for transcriptional induction of 26S subunits in response to proteasome inhibitor 

treatment in non-cancer cells (Meiners et al., 2003). In 2010, nuclear erythroid-derived 

2-related factor 1 (NRF1) was discovered as the underlying transcription factor mediating 

proteasomal gene expression by binding to antioxidant response elements (AREs) of the 

proteasomal promoter regions in response to inhibition of proteasomal activity 

(Radhakrishnan et al., 2010). In the same year, Steffen et al. confirmed these findings and 

showed that the ER membrane-resident TCF11, the long isoform of NRF1 which is normally 

degraded via the ER-associated protein degradation, translocates into the nucleus in 

response to proteasome inhibition where it induces gene transcription (Steffen et al., 2010). 

Interestingly, another study also reported a transcriptional induction of PA200 but not PA28γ 

in response to 10 nM BZ treatment for 16 h in SHSY-5Y cells (Sha and Goldberg, 2014). 

Therefore, the results of the present study validate previous findings and in addition identify 

highly conserved NRF1 binding sites in the promoter region of the PSME4 gene, which are 
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not present in the PSME3 promoter region. Concluding, formation of alternative proteasome 

complexes in response to long time proteasome inactivation accords with induction of 

PA28γ and PA200 protein levels presumably supporting further recruitment and replenishing 

pools of non-proteasome bound activators. 

 

6.3.2.4 Regulation of PA200 in response to 26/30S silencing  

Silencing of 19S subunit RPN6 was applied to specifically interfere with 26S and 30S 

proteasomal protein degradation. Here, specific formation of only PA200-alternative 

proteasome complexes was observed. Delayed recruitment of the activator also accorded 

with induction of PA200 mRNA and protein levels, whereas PA28γ was not regulated. 

Therefore, these results provide first evidence for a differential regulation of both activators. 

So far, the effect of 26S/30S inhibition on the regulation of proteasomal gene expression and 

complex formation has only been investigated by a very early study by Woijic et al. using a 

screen of RNA interference against 20S and 19S subunits in Drosophila (Wójcik and 

DeMartino, 2002). Here, silencing of 19S subunits and subsequent reduction of 26S and 30S 

complexes induced concerted upregulation of 26S proteasomal genes and increased 

presence of 20S complexes, but the regulation of alternative proteasome activators was not 

investigated. An upregulation of 26S proteasomal subunits was also confirmed in the present 

study (data not shown). An increase in PA200 protein levels has been observed so far in a 

mutant of 19S regulator subunit Rpn12 in Arabidopsis (Book et al., 2010). Therefore, the 

regulation of PA200 in response to a specific decrease of 26S and 30S proteasomes in 

mammalian cells is an until now unrecognized and exciting finding, as this activator is 

described to mediate ubiquitin-independent protein degradation. However, this notion is 

based on early discoveries that it does not stimulate degradation of a 

ubiquitin-[125I]lysozyme conjugate and a study claiming that it might mediate the 

degradation of acetylated core histones (Qian et al., 2013; Ustrell et al., 2002).  

Several studies observed a protective function of 19S reduction in response to proteasome 

inhibitor treatment (Acosta-Alvear et al., 2015; Tsvetkov et al., 2015; Wójcik and DeMartino, 

2002). Moreover, decreased expression of 19S subunits correlated with resistance against 

proteasome inhibitor treatment in various cancer cell lines and tumors and was associated 

with a lower progression-free survival in multiple myeloma patients, implying a medical 
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relevance of this so far inexplicable observation (Tsvetkov et al., 2017). Of note, none of these 

studies analyzed the regulation and possible involvement of PA28γ and PA200 in this 

context. It is tempting to speculate that these activators might also play a role under these 

conditions. 

 

6.3.3 Function of newly formed alternative proteasome complexes in the cell 

The function of rapidly formed alternative proteasome complexes in response to proteasome 

inhibition is not yet understood. These complexes are presumably – at least partially – 

inhibited when proteasome activators are recruited. Although alternative activators were still 

present when phLFs regained proteasome activity, native gel electrophoresis indicated that 

alternative proteasome complexes consisting of 20S and PA28γ or PA200 did not fully 

recover CT-L activity (Figure 6.18). So far it is unclear why these complexes are still inhibited. 

Nevertheless, it is tempting to speculate that recruitment of alternative proteasomal 

activators contributes to the cellular stress response and helps cells to better cope with 

proteotoxic stress. The observation that cells were able to better cope with proteasome 

inhibitor treatment when they were able to express PA28γ supports this assumption (Figure 

6.19). Moreover, proteasome inhibition at nontoxic dose was shown to induce a protective 

response in endothelial cells by induction of enzymes of the antioxidant defense system, 

whereas toxic doses of proteasome inhibitors did not induce this effect (Meiners et al., 2006). 

This protective effect of low dose proteasome inhibition was confirmed in another study 

characterizing endothelial cells using proteomic and transcriptomic analysis suggesting that 

adaptive responses of alternative proteasome complex assembly contribute to protective 

stress responses (Bieler et al., 2009). 

PA28γ and PA200 are described to mediate the degradation of certain substrates, which 

already have been identified for PA28γ including cyclin-dependent kinase inhibitors p16, p19 

and p21 amongst others (Chen et al., 2007; Li et al., 2007a). Until now, however, acetylated 

histones are the only specific substrates described for PA200 (Qian et al., 2013). It has been 

suggested that PA200 contributes to degradation of peptides, unstructured or damaged 

proteins as its binding to the 20S core particle induces opening of the α-ring (Ortega et al., 

2005; Savulescu and Glickman, 2011; Ustrell et al., 2002). Of note, a recent publication 

claimed a role for alternative proteasome activators in the cellular response to oxidative 
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stress (Pickering and Davies, 2013). Here, the authors suggested an increased formation of 

alternative proteasome complexes in response to hydrogen peroxide treatment and argued 

that PA28γ has the ability to degrade oxidized proteins, which was not observed for PA200. 

All these observations raise the interesting possibility that proteasomal activators are 

recruited to the proteasome core complex in response to proteasome inhibition to facilitate 

degradation of certain substrates allowing the cell for better recovery from proteotoxic 

stress. 

 

6.3.4 Importance of defining molecular functions of proteasome inhibitors 

and development of more specific proteasome inhibitors 

Although inhibition of proteasomal active sites by small molecule inhibitors is a 

non-physiological situation in the cell, it is of major importance to understand the cellular 

response to these inhibitors as they are an effective treatment for myeloma. The proteasome 

inhibitors bortezomib (Velcade) and carfilzomib (Krypolis) are widely used in the clinic for 

FDA-approved treatment of multiple myeloma (Herndon et al., 2013; Kane et al., 2006).  

For this reason, it is of major importance to understand the molecular mechanisms and 

functions of these drugs in vivo to identify potential side and off-target effects. Beside the 

relevance for clinical use of proteasome inhibitors the induction of alternative proteasome 

complexes also represents an exciting tool for proteasome research, because cellular 

proteasome levels are generally very tightly regulated as changes in their amount have a 

major impact on cellular function (Ciechanover and Schwartz, 1998). However, the concerted 

formation of different alternative proteasome complexes in response to the inhibition of 20S 

active centers suggests that development of inhibitors interfering with the association of 

distinct proteasomal activators with the 20S core complex could represent a more specific 

means to inhibit proteasomal protein degradation and increase the knowledge on 

proteasome function. 

In contrast, the specific decrease of 26S and 30S proteasome complexes is a physiologically 

relevant setting. Recent studies reported that impaired 26S and 30S function occurs during 

ageing, neurodegeneration, COPD and oxidative stress (Kammerl et al., 2016; Livnat-Levanon 

et al., 2014; Myeku et al., 2015; Tonoki et al., 2009; Vernace et al., 2007). The regulation of 
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alternative proteasome activators upon those conditions has not been analyzed so far but is 

of major interest for future studies. 
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7 Analyzing the regulation and function of PA200 in 

hyperproliferative chronic lung disease 

7.1 Introduction 

The discovery of alternative proteasome activators and the existence of various complexes 

built of 20S core particles associated with different activators suggest that proteasomal 

protein degradation is a highly fine-tuned process. As discussed in the previous chapter, the 

knowledge about the cellular function of these different complexes in the lung and also 

other organs but also in disease is very limited and still requires detailed investigation. 

However, our data on rapid formation of alternative proteasomes in response to induction of 

proteotoxic stress via inhibition of proteasomal activity support the building block concept, 

which involves regulation of proteasome function according to cellular needs by activator 

recruitment to 20S core complexes rather than by induced transcription and de novo 

synthesis (Welk et al., 2016). It is tempting to speculate that these alternative proteasome 

complexes are also regulated in diseased tissues, when proteostasis and cellular function are 

also imbalanced (Hartl et al., 2011). Therefore, analysis of their regulation in different 

diseases can improve the understanding of their general cellular functions. PA28γ, for 

example, was discovered to be induced in cancers of different organs, which has been linked 

to its cellular function in mediating the degradation of the oncogenic proteins such as SRC-3 

(Chai et al., 2014; Li et al., 2006; Okamura et al., 2003).  

Beside very limited knowledge about the cellular function of PA200, regulation of this 

proteasome activator in diseased tissues as well as its involvement in the respective 

pathogenesis has not been described so far. For this reason, the following chapter aims to 

investigate the regulation of PA200 in lung diseases and to use the acquired knowledge for 

further elucidating the cellular function of PA200.  
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7.2 Results 

7.2.1 PA200 is upregulated in fibrotic tissue remodeling 

In a recent study, we observed that 26S proteasome activity is activated in the fibrotic lung. 

Moreover, proteasome activity is required for differentiation of fibroblasts into 

myofibroblasts, a major pathogenic driver of fibrosis (Semren et al., 2015). As information 

about the function of PA200 and its regulation in disease is very limited, the first approach of 

this study aimed to characterize its regulation in fibrotic tissue remodeling to better 

understand the function of the proteasome in this disease. 

 

7.2.1.1 PA200 expression is enhanced in idiopathic pulmonary fibrosis  

PA200 protein expression was first analyzed in RIPA extracts of IPF and donor tissues, which 

had been kindly provided by Prof. Dr. A. Günther, Universities of Giessen & Marburg Lung 

Center (UGMLC), Giessen, Germany. Western blotting indicated a significant induction of 

PA200 protein levels in fibrotic tissues compared to donor tissues (Figure 7.1). Increased 

expression of α-smooth muscle actin (αSMA), a marker for myofibroblasts accumulating in 

the lung during disease progression, confirmed fibrotic tissue remodeling in these samples. 

 

 
Figure 7.1: PA200 protein levels are elevated in lung homogenates of IPF patients. Protein expression of 
PA200 and myofibroblast marker αSMA was examined in RIPA lysates of lung homogenates from donors and IPF 
patients by Western blotting. Diagram shows densitometric analysis of the signal obtained for PA200 normalized 
to the mean signal of donors (Mann-Whitney U test, donor tissues n = 9, IPF tissues n = 13). 
 

Interestingly, qPCR of the same tissues analyzed for protein expression did not indicate a 

significant increase of PA200 mRNA levels in IPF tissues. This suggests that protein levels are 

rather induced by stabilization of the protein than by increased transcription of the activator 

(Figure 7.2). 
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Figure 7.2: PA200 mRNA expression is not significantly induced in IPF tissues. PA200 mRNA expression was 
determined by qPCR in donor and IPF tissue analyzed for protein expression in Figure 7.1. Diagram indicates 
mRNA expression as 2–ΔCT. RPL19 served as a housekeeping gene (Mann-Whitney U test, donor tissues n = 9 and 
IPF tissues n = 13). 
 

7.2.1.2 PA200 expression is increased in murine bleomycin-induced lung fibrosis  

Bleomycin-induced lung fibrosis is a widely applied mouse model for experimental 

investigation of fibrotic tissue remodeling in the lung. Instillation of bleomycin to the lungs 

causes inflammation resulting in development of fibrosis after 14 days, which resolves after 

56 days. To validate PA200 regulation in fibrotic tissues, its expression was analyzed in total 

lung homogenates of wildtype mice 14 days after instillation of PBS or bleomycin 

(3 U/kg body weight) by Western blotting. Development of fibrosis in these animals was 

confirmed by lung function measurement showing a significant decrease in compliance of 

mice 14 days after instillation of bleomycin as recently published (Semren et al., 2015). 

Analysis of PA200 protein expression by Western blotting demonstrated a significant 

increase in fibrotic lungs when compared to PBS-instilled lungs (Figure 7.3 A). PA200 mRNA 

expression was not regulated upon fibrotic tissue remodeling as also observed in human IPF 

tissues (Figure 7.3 B). 
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Figure 7.3: PA200 protein expression is induced in fibrotic lungs of bleomycin-instilled mice. (A) Lung 
homogenates of wildtype mice 14 days after instillation of bleomycin (3 U/kg body weight) or PBS as control 
were analyzed for PA200 protein expression by Western blotting. Diagram shows densitometric analysis of the 
signal obtained for PA200 normalized to the mean signal of PBS-instilled mice. (B) PA200 mRNA expression of 
the same lungs analyzed in (A) was determined by qPCR. Diagram shows expression as 2–ΔCT. RPL19 served as a 
housekeeping gene (Mann-Whitney U test, n = 6 per group). 
 

7.2.1.3  PA200 is upregulated in murine oxalate-induced kidney fibrosis 

A further approach of this study aimed to investigate whether regulation of PA200 is a 

general feature of fibrotic tissue remodeling in different organs or if this is restricted to the 

lungs. For this purpose, regulation of PA200 was assessed in a mouse model for oxalate-

induced kidney fibrosis provided by Prof. Dr. Anders, Medizinische Klinik und Poliklinik IV, 

Klinikum der Universität München, Munich, Germany. Induction of fibrotic remodeling in 

kidneys of mice fed with 50 µmol/g sodium oxalate in a standard diet for 21 days was 

confirmed by histological analysis using Masson’s trichrome staining for collagen deposition 

and hematoxylin & eosin staining (Figure 7.4 A). Moreover, expression of myofibroblast 

marker αSMA was also significantly increased in RIPA extracts of oxalate-induced kidney 

fibrosis compared to non-fibrotic kidneys (Figure 7.4 B). Here, Western blot analysis also 

indicated a significant induction of PA200 protein levels in fibrotic kidneys. This was 

accompanied by increased proteasome activity determined by native gel electrophoresis of 

proteasome complexes in native extracts and subsequent detection of proteasome activity 

using in-gel overlay of a CT-L activity specific substrate (Figure 7.4 C). Of note, 
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immunoblotting of the native gel revealed increased association of PA200 with 20S and 26S 

proteasomes in fibrotic kidneys. Concluding, upregulation of PA200 protein levels is not only 

restricted to fibrotic remodeling of the lung but is also observed in experimental fibrosis of 

kidneys suggesting that induction of PA200 expression and its association with the 

proteasome is a general event of fibrotic tissue remodeling in different organs.  

 

 
Figure 7.4: PA200 alternative proteasome levels are enhanced in fibrotic kidneys.  Mice were fed with 
50 µmol/g sodium oxalate in a standard diet for 21 days to induce chronic kidney disease. (A) Tissue sections of 
control- and oxalate-treated mice were stained with Masson’s trichrome (cytoplasm = red, collagen = green, 
nuclei = dark brown) and hematoxylin & eosin (cytoplasm = pink, nuclei = blue). (B) Expression of myofibroblast 
marker αSMA and PA200 was analyzed in total kidney RIPA extracts of oxalate- treated and control animals by 
Western blotting. Diagrams indicate densitometric quantification of the obtained signals normalized to the mean 
of controls (Mann-Whitney test, n = 5 per group). (C) Chymotrypsin-like (CT-L) activity of native extracts from 
fibrotic and control kidneys was determined by native gel electrophoresis and in-gel overlay assay. PA200 
alternative proteasome complexes were detected by subsequent immunoblotting (n = 5 per group). Experiments 
were performed by T. Meul, master student at the CPC 2016. 
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7.2.1.4 Myofibroblasts and bronchial basal cells are expressing PA200 in IPF lungs 

Cell types expressing PA200 in donor and IPF lungs were identified by IHC. A generally very 

low signal for the activator was obtained in healthy donor lungs (Figure 7.5). Non-fibrotic 

donor lungs exhibited only very faint expression of the activator in αSMA-positive smooth 

muscle cells surrounding vessels and keratin 5 (KRT5)-expressing basal cells. In contrast, 

PA200 expression was strongly induced in tissue sections of fibrotic lungs. Here, PA200 was 

highly expressed in αSMA-expressing myofibroblasts of fibroblast foci and KRT5-positive 

abnormal bronchial basal cells. 
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Figure 7.5: PA200 expression is induced in myofibroblasts and abnormal bronchial basal cells of IPF lungs. 
Immunohistochemistry of PA200, αSMA (myofibroblast marker) and KRT5 (basal cell marker) was performed in 
sequential lung donor and IPF tissue sections. Data was provided by Dr. M. Korfei, UGMLC Gießen. 
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7.2.1.5 PA200 expression decreases upon human bronchial epithelial cell 

differentiation 

As PA200 was specifically detected in basal cells of donors and especially in IPF tissues, 

expression of PA200 was assessed in basal cell differentiation using in vitro differentiation of 

primary human bronchial epithelial cells (phBECs) isolated from donor tissues as previously 

described (Schamberger et al., 2015). phBECs at day 0 and day 28 of differentiation were 

kindly provided by Dr. A. Schamberger, postdoctoral scientist at the CPC (HMGU). phBECs 

showed a significant two-fold decrease in PA200 protein and mRNA levels upon 

differentiation (Figure 7.6 A and B). To determine whether downregulation of the activator 

occurs in the early or late phase of the differentiation process, PA200 expression was also 

assessed in phBECs after 7, 14, 21 and 28 days. Here, only a slight and non-significant 

decrease of PA200 protein and mRNA levels was observed (Figure 7.6 C and D). 

 

 
Figure 7.6: Expression of PA200 decreases during differentiation of primary human bronchial epithelial 
cells. (A) PA200 protein and (B) mRNA levels of primary human bronchial epithelial cells were examined by 
Western blotting and qPCR at day 0 (d0) and day 28 (d28) of differentiation. Bar diagrams indicate PA200 levels 
normalized to d0. Amidoblack served as a loading control for Western blotting and RPL19 as housekeeping gene 
for qPCR (one-sample t-test, n = 3). (C) PA200 protein and (D) mRNA expression was also assessed after 7, 14, 21 
and 28 days. Bar diagrams indicate expression levels normalized to day 7 (one-sample t-test, n = 3). 
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Hence, these findings suggest a decrease in activator expression already between day 0 and 

day 7 of differentiation which accords well with increased expression of PA200 in basal cells 

as shown in the IHC analysis (Figure 7.5). 

 

7.2.1.6 PA200 is upregulated in TGF-β1-induced myofibroblast differentiation 

PA200 was abundantly expressed myofibroblasts of fibrotic foci in human IPF lungs. 

Therefore, its regulation upon TGF-β1-mediated differentiation of primary human lung 

fibroblasts (phLF) into myofibroblasts was investigated in a further approach. phLF were 

synchronized in starvation medium for 24 h followed by treatment with 5 ng/mL TGF-β1 for 

48 h. Expression of myofibroblast markers collagen1α1 (COL1A1), fibronectin (FN) and 

α-smooth muscle actin (αSMA) was significantly induced (Figure 7.7 A).  

 

 
Figure 7.7: PA200 expression and its association with the proteasome are enhanced upon myofibroblast 
differentiation. phLF cultured in 1 % FBS were treated with 5 ng/mL TGF-β1 for 48 h. (A) Expression of 
myofibroblast markers collagen1α1 (COL1A1), fibronectin (FN) and α-smooth muscle actin (αSMA) was examined 
by Western blotting. Bar diagram indicates densitometric analysis of signals normalized to controls (one-sample 
t-test, n = 6). (B) mRNA expression of PA200, 19S regulator subunit RPT5, 20S subunit α7 and β5 was analyzed by 
qPCR. Bar diagram indicates mRNA expression as fold over control cells. RPL19 served as housekeeping gene 
(one-sample t-test, n = 6). (C) Protein expression of PA200 and proteasomal subunits was determined by 
immunoblotting of the same cell extracts used in (A). Bar diagram indicates densitometric analysis of obtained 
signals normalized to controls (one-sample t-test, n = 6). (D) PA200 alternative proteasome complexes were 
detected by native gel analysis and immunoblotting for PA200 and 20S subunits α1-7. Proteasome activity was 
determined using overlay with a substrate specific for the chymotrypsin-like (CT-L) activity. Figure indicates 
representative results for experiments performed in phLF from three different organ donors.  
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Analysis of mRNA and protein expression of PA200, the 19S regulator subunit RPT5 and the 

20S proteasome subunits α7 and β5 revealed that only PA200 was significantly induced in 

response to TGF-β1 treatment whereas the other proteasomal subunits were not regulated 

(Figure 7.7 B and C). Of note, the association of PA200 with 20S and 26S proteasome 

complexes was also enhanced in TGF-β1-treated phLF compared to controls (Figure 7.7 D). 

Therefore, TGF-β1-mediated differentiation of phLF induced PA200 expression and its 

association to the proteasome forming proteolytically active complexes. These data clearly 

indicate a functional role for newly formed PA200 alternative proteasomes in myofibroblasts. 
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7.2.2 The PA200 interactome is regulated according to cellular growth 

In order to further dissect the functional role of PA200-containing proteasome complexes in 

TGF-β1-mediated differentiation of phLF, the interactome of PA200 upon different cellular 

conditions was investigated using an unbiased LC-MS/MS-based approach. 

 

7.2.2.1 Optimized immunoprecipitation protocol enables efficient pulldown of 

PA200 

For analysis of the interactome, an efficient immunoprecipitation (IP) protocol for PA200 had 

to be established initially. This involved testing of different amounts of PA200 antibody for 

efficient pulldown of PA200 in native phLF lysates preserving protein-protein interactions. 

PA200 protein levels were examined in eluates of control and PA200 IPs by Western blotting. 

10 % of each input and supernatant was also analyzed by immunoblotting to control for 

efficient pulldown of the activator in cell extracts. The activator was strongly enriched by all 

tested conditions as compared to the input (Figure 7.8). However, immunoblotting of input 

and supernatant of different IPs indicated that 1 µg antibody was not sufficient to 

completely extract the total amount of PA200 in the lysate, as there was still some activator 

remaining in the supernatant. For this reason, 3 µg antibody were used for the following 

experiments to ensure efficient immunoprecipitation of total amount of PA200 present in the 

cell extract. 

 

 

Figure 7.8: Optimized immunoprecipitation protocol indicates efficient pulldown of the activator. 
Immunoprecipitation of PA200 in a native TSDG lysate of primary human lung fibroblasts using increasing 
amounts of antibody was assessed for enrichment of PA200 by immunoblotting. Pulldown using an IgG control 
antibody of the same species served as control. 10 % of the total lysate (= input or I) and supernatant (S) were 
used to control for efficient immunoprecipitation of PA200 (right figure). 
 

7.2.2.2 PA200 binds with a higher stoichiometry to 20S than to 26S proteasomes 

First, the interactome analysis of PA200 was applied to better characterize the interaction of 

PA200 with the proteasome and to validate the applied protocol for sufficient detection of 

interacting proteins in phLF. Pulldown of PA200 in phLF cultured under standard conditions 
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in 10 % FBS was analyzed by LC-MS/MS and the interaction stoichiometry of PA200 with 

different proteasomal subunits was calculated with the obtained data set (Figure 7.9). α- and 

β-subunits PSMA1-7 and PSMB1-7 of the standard 20S proteasome interacted with PA200 in 

an interaction stoichiometry of approximately 1 indicating a prominent interaction of PA200 

with the 20S catalytic core. Interestingly, the interaction ratio with immunoproteasome 

subunits PSMB8 (LMP7) and PSMB10 (MECL-1) was only 0.14 and 0.05, respectively. 

Immunoproteasome subunit PSMB9 (LMP2) was not detected by LC-MS/MS in phLF. PA200 

interacted with subunits of the 19S regulator at an average ratio of 0.25 implying the 

presence of PA200-26S hybrid proteasomes in phLF. These data indicate that the association 

of PA200 with the standard 20S core particle is more frequent than association with 26S 

proteasomes. Interestingly, PA200 was also found to interact at very low stoichiometry with 

other alternative proteasome activators presumably by forming doubly capped alternative 

20S complexes, such as PA200-20S-PA28α/β (PSME1 and 2) or PA200-20S-PA28γ (PSME3) 

complexes.  

 

 
Figure 7.9: PA200 binds with higher stoichiometry to the 20S proteasome than to the 26S proteasome. 
Interaction of PA200 with subunits of the proteasome was investigated by LC-MS/MS analysis of PA200 
co-immunoprecipitation in native lysates of phLF cultured in 10 % FBS. Bar diagram indicates the interaction 
stoichiometry of PA200 with subunits of the standard 20S core complex, the immunoproteasome (IP), the 19S 
regulator or other alternative proteasomal activators. LC-MS/MS analysis was performed by Dr. J. Merl-Pham, 
Research Unit Protein Science of the HMGU. 
 

In conclusion, with detection of all proteasomal subunits except from PSMB9 the applied 

co-IP protocol and LC-MS/MS analysis proved to be suitable for uncovering of 

PA200-interacting proteins. Analysis of interaction stoichiometry indicated that PA200 mainly 

interacts with 20S complexes but also forms hybrid proteasomes with 26S complexes. Here, 

the activator preferentially binds to standard 20S proteasomes and not to 

immunoproteasomes, which are generally low expressed in non-immune cells. Moreover, 

these data indicate that there is almost no free PA200 in phLF in the presence of serum.  
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7.2.2.3 The interactome of PA200 adapts to cellular growth conditions 

Next, the PA200 interactome was analyzed upon stimulation of phLF with TGF-β1. Pulldown 

of PA200 was performed in phLF either cultured in 1 % FBS medium with or without 5 ng/mL 

TGF-β1 for 48 h (as applied for experiments in section 7.2.1.6.) or under standard conditions 

in 10 % FBS. Co-immunoprecipitated proteins were identified by LC-MS/MS and enrichment 

of proteins was calculated as the fold change compared to IP with IgG control antibody. 

Proteomic analyses revealed that the PA200 interactome was also strongly depending on 

cellular growth conditions (Figure 7.10). In cells cultured under starvation conditions in 

1 % FBS the number of co-immunoprecipitated proteins was very low (44 proteins identified 

by at least two peptides with fc≥2 and p<0.05). Here, identified proteins were mainly 

proteasomal subunits. Treating cells with TGF-β1 increased the number of interacting 

proteins (158 proteins identified by at least two peptides with fc≥2 and p<0.05). Although a 

variety of functionally different proteins co-immunoprecipitated with the activator, many 

proteasomal and ribosomal subunits as well as heterogeneous nuclear ribonucleoproteins 

(hnRNPs) were observed among the interacting proteins. 

In contrast to detection of only few interacting proteins in 1 % FBS, much more proteins 

were identified by co-IP of PA200 under standard growth conditions in 10 % FBS 

(218 proteins identified by at least two peptides with fc≥2 and p<0.05). Here, the 

interactome was similar to co-IP in 1 % FBS with TGF-β1 comprising proteasomal and 

ribosomal proteins as well as hnRNPs. 
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Figure 7.10: The PA200 interactome is regulated according to cellular growth and differentiation 
conditions. Interactome was examined by immunoprecipitation of PA200 in native phLF extracts cultured in 
10 % FBS, 1 % FBS or 1 % FBS + 5 ng/mL TGF-β1 for 48 h and LC-MS/MS analysis. Figure indicates identified 
interacting proteins (enrichment fc ≥2 compared to IP with IgG control, p<0.05) analyzed for experimentally 
based physical and functional protein-protein interaction networks using the STRING database. LC-MS/MS 
analysis was performed by Dr. J. Merl-Pham, Research Unit Protein Science, HMGU. 
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The so far unknown interaction between PA200 and thrombospondin-1 (THBS1) and 

ribosomal protein L19 (RPL19) identified by the LC-MS/MS screen was confirmed by IP of 

PA200 in native extracts of phLF and subsequent Western blotting. THBS1 and RPL19 were 

highly enriched in the IP of PA200 (Figure 7.11 A). Moreover, analysis of IP input and 

supernatant indicated that most RPL19 and THBS1 present in the native cell extract 

interacted with PA200, because almost no protein was detected in the supernatant after 

pulldown of PA200. However, both proteins THBS1 and RPL19 also interacted with the 20S 

proteasome as observed by co-IP of 20S subunit α3 (Figure 7.11 B). Therefore, it cannot be 

established with certainty whether PA200 interacts directly with these proteins or if they 

indirectly interact via the 20S proteasome. 

 

 
Figure 7.11: Thrombospondin-1 (THBS1) and ribosomal protein L19 (RPL19) interact with PA200 and the 
20S proteasome. Immunoprecipitation (IP) of PA200 was performed in native primary human lung fibroblast 
(phLF) extracts cultured in 10 % FBS and co-IP of THBS1 and RPL19 was investigated by immunoblotting. 10 % of 
total protein lysate (= input) and supernatant was loaded as controls. Figure indicates representative results of 
co-IPs performed in phLF from three different organ donors. 
 

To analyze whether THBS1 directly interacts with PA200, co-IP of 20S subunit α3 was 

performed in native extracts of phLF upon silencing of PA200 for 24, 48 and 72 h. Western 

blotting confirmed efficient pulldown and showed that THBS1 still interacts with the 20S 

proteasome when PA200 protein levels were efficiently decreased after 48 and 72 h (Figure 

7.12 A and B). These observations indicate that THBS1 interacts with PA200 via the 20S 

proteasome.  
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Figure 7.12: Thrombospondin-1 (THBS1) directly interacts with the 20S proteasome. 
(A) Co-immunoprecipitation (co-IP) of 20S proteasome subunit α3 in native cells extracts of phLF after 24, 48 
and 72 h of transient PA200 silencing cultured in 10 % FBS was analyzed for THBS1 and α3 protein levels by 
Western blotting. 10 % of the total protein lysate subjected to co-IP were loaded as an input control. IP with IgG 
served as a control for specific pulldown of proteins. (B) Protein extracts used in (A) were analyzed for expression 
of PA200 by Western blotting.  
 

As noted above, the PA200 interactome strongly depended on cellular culture conditions 

with enrichment of interacting proteins at conditions of either 10 % FBS or 1 % FBS with 

TGF-β1, while only few interacting proteins were detected when phLF were cultured in 

1 % FBS. This suggests that the interactome of PA200 is regulated according to cellular 

growth conditions. Indeed, analysis of PA200 regulation in phLF cultured under starvation 

versus growth conditions revealed an increase of PA200 protein levels upon 72 (Figure 

7.13 A). This observation accorded well with induced expression of proliferation markers 

cyclin D1 (CCND1) and proliferating cell nuclear antigen (PCNA) after 72 h. Moreover, 

association of PA200 with 20S and 26S proteasomes was also enhanced after 72 h when 

compared to starvation conditions (Figure 7.13 B). Hence, not only PA200 protein levels but 

also the association of PA200 with the proteasome were induced in phLF cultured in 10 % 

FBS, implying an increased formation of PA200-containing alternative proteasome 

complexes according to cell growth. 

 

In summary, LC-MS/MS analysis of PA200 interacting proteins revealed that the interactome 

of PA200 is changing according to cellular stimuli. These findings also accord well with the 

observation that PA200 expression and its association with the proteasome were regulated 

according to cellular growth conditions. Moreover, it suggests that not only PA200 

expression but also its function is adjusted according to cellular growth and differentiation. 

As PA200 strongly interacts with the 20S core particle, the identified interacting proteins 

could also be associated with the activator via the 20S proteasome. These data, however, 

indicate that PA200-20S proteasome complexes are localized with certain cellular 

components of the cytosolic or nuclear compartment that are enriched in hnRNPs and/or 

ribosomal proteins. 
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Figure 7.13 PA200 alternative proteasomes are enhanced in phLF cultured with 10 % FBS. (A) Primary 
human lung fibroblasts (phLF) were cultured in medium with 1 % or 10 % FBS for 24, 48 or 72 h and protein 
expression of PA200, cyclin D1 (CCND1) and PCNA was investigated by Western blotting of native TSDG lysates. 
Bar diagram indicates densitometric analysis of Western blots normalized to β-Actin and to 1 % FBS treated cells 
(one-sample t-test, n = 3). (B) Proteasome complexes were analyzed by native gel electrophoresis of the same 
native lysates of phLF cultured for 72 h used in (A). Proteasome activity was determined by an in-gel overlay with 
a fluorogenic substrate specific for the chymotrypsin-like (CT-L) activity and the gel was immunoblotted for 
PA200 and 20S subunits α1-7. Figure indicates representative results for experiments performed in phLF from 
three different donors. 
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7.2.3 PA200 does not degrade acetylated histones in lung fibroblasts 

Qian et al. recently proposed that PA200 mediates ubiquitin-independent degradation of 

acetylated core histones during spermatogenesis (Qian et al., 2013). As histones are essential 

for chromatin organization and their levels need to be tightly regulated to ensure proper 

transcription and cell growth, we speculated that the regulation of PA200 during cell growth 

may fine tune degradation of histones in response to cellular growth stimuli. 

 

7.2.3.1 PA200 silencing decreases amount of free histones 

DNA-bound histones strongly interact with the DNA and their isolation requires either acidic 

or high salt extraction (Shechter et al., 2007). Less stringent lysis conditions are sufficient for 

isolation of free histones not incorporated into DNA. Potential degradation of free acetylated 

histones was investigated in RIPA extracts of phLF upon PA200 silencing for 72 h by Western 

blotting for total and acetylated histones. Surprisingly, protein levels of total and acetylated 

histones H2B, H3 and H4 were strongly decreased in response to silencing of the activator 

contradicting a potential degradation via PA200 (Figure 7.14). 

 

 
Figure 7.14: Non-DNA bound acetylated and total histones decrease in response to PA200 silencing. 
Non-DNA bound acetylated and total histones were analyzed by Western blotting of RIPA lysates from primary 
human lung fibroblasts transfected with control or PA200 siRNA for 72 h. Bar diagram shows densitometric 
analysis of signals obtained for acetylated and total histones normalized to β-Actin and to respective controls 
(one-sample t-test, n = 3). 
 

Indeed, free total and acetylated histones H3 and H4 did also not accumulate at earlier time 

points after 24, 48, and 72 h of PA200 silencing but rather decreased over time (Figure 7.15). 
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Figure 7.15: Timecourse of PA200 silencing also indicates decrease of histones at earlier time points. Levels 
of acetylated and total histones H3 and H4 were examined in primary human lung fibroblasts upon silencing of 
PA200 for 24, 48 and 72 h by immunoblotting of RIPA lysates. Bar diagram shows quantification of Western blots 
with normalization of the obtained signal to β-Actin and to the time-matched control (one-sample t-test, n = 3). 
 

7.2.3.2 Overexpression of PA200 increases levels of free histones 

In a further approach the regulation of free total and acetylated histones was investigated 

upon overexpression of PA200. phLF were transiently transfected with a full length PA200 

cDNA construct and association of the activator with 20S and 26S proteasomes was analyzed 

by native gel electrophoresis and subsequent immunoblotting for the activator and 20S 

subunit α4 (Figure 7.16). Indeed, overexpression of the activator resulted in increased 

recruitment of PA200 to 20S and 26S proteasomes implying the formation of functional 

PA200-containing alternative proteasome complexes. 

 

 
Figure 7.16: PA200 proteasome complexes are formed upon overexpression of the activator. Primary 
human lung fibroblasts (phLF) were transiently transfected with a PA200 expression vector or empty vector as a 
control for 24 h. Native lysates were analyzed for proteasome activity and formation of PA200-containing 
proteasome complexes by native gel electrophoresis, in-gel overlay with a fluorogenic substrate specific for 
chymotrypsin-like (CT-L) activity and subsequent immunoblotting for PA200 and 20S proteasome subunit α4. 
Figure shows representative result of experiments performed with phLF of three different donors. 
 

Although transfection of phLF with PA200 only resulted in an approximately threefold 

induction of its protein level, a significant increase in free total and acetylated histones H3 

and H4 was observed (Figure 7.17). 
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Figure 7.17: Non-DNA bound acetylated and total histones accumulate upon overexpression of PA200. 
RIPA lysates of primary human lung fibroblasts transfected with PA200 expression vector or pcDNA3.1 empty 
vector were analyzed for PA200 expression and protein levels of acetylated and total histones H3 and H4 by 
Western blotting. Bar diagram indicates quantification of immunoblots normalized to β-Actin and to empty 
vector-transfected controls. Transfection was performed in three technical replicates of phLF from three different 
donors (one-sample t-test, n = 3). 
 

7.2.3.3 Chromatin-bound histones are not regulated by PA200 silencing 

A high salt chromatin extraction protocol was applied for extraction of DNA-bound histones 

in order to investigate whether PA200 regulates levels of these histones (Shechter et al., 

2007). Western blot analysis of cytosolic, nucleoplasmic and DNA-bound acetylated and total 

H2B, H3 and H4 revealed that the majority of histones was bound to DNA, whereas only a 

minor amount existed in a free form (Figure 7.18).  

 

 
Figure 7.18: DNA-bound histones are not altered in response to PA200 silencing. Histones were extracted 
from primary human lung fibroblasts (phLF) with silencing of PA200 for 72 h. 20 µg protein of cytosolic fraction 
and 2 µg protein of nucleoplasm and chromatin fraction were analyzed for levels of acetylated and total histones 
by Western blotting. Figure shows representative results of extractions with phLF of three different donors.  
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Of note, levels of DNA-bound acetylated and total histones were not decreased but rather 

slightly increased upon PA200 silencing. In contrast, free total and acetylated histones of the 

cytosolic fraction decreased upon PA200 knockdown when compared to control siRNA 

transfection. Therefore, these findings accord well with previous experiments analyzing non 

DNA-bound histones in RIPA extracts. 

 

In summary, these results suggest that acetylated and total histones are not degraded via 

PA200 in primary human fibroblasts of the lung. Non DNA-bound histones were significantly 

downregulated upon loss of the activator, whereas overexpression significantly induced 

histone levels. Therefore, levels of free histones are presumably not targeted for proteasomal 

degradation via PA200 in phLF cells but may rather be adjusted as part of the cellular 

response to altered levels of PA200 in the cell 
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7.2.4 PA200 regulates growth and survival of primary human lung fibroblasts 

Analysis so far has revealed an increased formation of PA200-proteasome complexes and 

regulation of the PA200 interactome in response to growth and differentiation stimuli. Next, 

the functional consequence of PA200 silencing in phLF was analyzed in an unbiased 

approach using microarray and proteomic screens in order to further elucidate the cellular 

function of PA200. Results were validated in cell culture experiments. 

 

7.2.4.1 PA200 silencing regulates genes with distinct molecular functions  

To investigate the regulation of cellular functions by PA200, siRNA-mediated transient 

silencing of the activator was performed for 72 h and regulation of gene expression was 

determined by microarray analysis provided by Dr. M. Irmler, Institute of Experimental 

Genetics, HMGU. Knockdown of PA200 efficiently reduced its mRNA levels (fold 

change = 0.12 and p-value = 4.4*10-9 over siRNA-transfected controls; data not shown). 

Genes that were regulated with a fold change >1.5 and FDR <10 % compared to control 

siRNA-transfected phLF were further analyzed for activation or inhibition of specific 

molecular functions by Ingenuity Pathway Analysis (1162 genes). Here, several molecular 

functions were predicted to be induced (z-score >2) or inactivated (z-score <2) (Figure 7.19): 

cell spreading, cell survival, growth of lesions, formation of cellular protrusions, microtubule 

dynamics as well as organization cytoplasm and cytoskeleton were predicted to be activated 

in PA200-deficient phLF. In contrast, formation of cytoskeleton and actin filaments as well as 

organismal death, morbidity or mortality were predicted to be inhibited. The general picture 

that emerges is that silencing of PA200 induces regulation of genes with distinct molecular 

functions involving enhanced cell growth and survival.!
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Figure 7.19: Transcriptomic analysis of PA200 silencing in primary human lung fibroblasts (phLF) indicates 
regulation of genes with distinct molecular functions. Transient siRNA-mediated silencing of PA200 for phLF 
was examined for gene regulation by microarray analysis. Regulated genes (fc >1.5, FDR 10 %) were analyzed for 
molecular functions by Ingenuity Pathway Analysis. Diagram indicates regulated molecular functions with 
respective activation z-scores (z-score <2 = inactivation, z-score >2 = activation). Microarray analysis was 
performed by Dr. M. Irmler, Institute of Experimental Genetics, HMGU. 
 

7.2.4.2 Proteomic screen confirms regulation of proteins involved in cellular growth 

and survival upon PA200 silencing  

Regulation of cellular function in response to silencing of PA200 was also investigated on 

protein level using LC-MS/MS. phLF of two different donors were transfected with control or 

PA200 siRNA in four technical replicates per condition. In total, the proteomic screen 

identified 4640 proteins. Although PA200 was not among detected proteins, presumably 

resulting from its low expression in lung cells, Western blot analysis of samples subjected to 

LC-MS/MS analysis showed very efficient reduction of PA200 protein levels upon knockdown 

(Figure 7.20 A). Among all identified proteins several proteins were found up- and down-

regulated more than two-fold with a q-value <0.05 (Figure 7.20 B). Proteins involved in cell 

death and apoptosis, such as caspase-3 (CASP3) and FAS receptor, were significantly 

decreased upon silencing of the activator. In contrast, expression of proteins contributing to 

cell growth, such as IGFBP5, was significantly induced.  
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Figure 7.20: Proteomic screen identifies regulation of proteins involved in growth as well as cell death and 
apoptosis upon silencing of PA200 in primary human lung fibroblasts (phLF). RIPA lysates of phLF with 
transient silencing of PA200 for 72 h were analyzed by LC-MS/MS. Silencing was performed in cells of two 
different donors with four technical replicates per condition. (A) Efficient knockdown of PA200 in these samples 
was confirmed by Western blotting. (B) Diagram indicates proteins identified by LC-MS/MS phLF from two 
different donors (grey symbols, 4640 proteins). Proteins regulated with fc ≥2 with q-value <0.05 and identified by 
≥2 peptides are shown in black. Proteins of the gene ontology biological process cell death/apoptosis are 
highlighted in red and proteins involved in growth are indicated in green. Gene ontology analysis was performed 
using the “Database for Annotation, Visualization and Integrated Discovery” (DAVID) Version 6.8. LC-MS/MS 
analysis was provided by Dr. J. Merl-Pham, Research Unit Protein Science, HMGU. 
 

546 proteins regulated with a fold change ≥1.2 and q-value <0.05 identified by two peptides 

were subjected to Ingenuity Pathway Analysis to determine their molecular functions. 
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Processes related to cell death and survival as well as cell growth were significantly enriched, 

which accords well with the transcriptomic data (Figure 7.21).  

 

 
Figure 7.21: Proteomic analysis of primary human fibroblasts (phLF) upon transient silencing of PA200 
indicates regulation of proteins with distinct molecular functions. Proteins regulated by fc ≥1.2and q <0.05, 
(identified by 2 peptides) upon siRNA-mediated silencing of PA200 for 72 h in phLF identified by LC-MS/MS were 
analyzed for molecular functions by Ingenuity Pathway Analysis. Bar diagram indicates p-value of significantly 
regulated molecular functions. 
 

According to the potential function of PA200 in promoting the degradation of specific 

substrates, a differential regulation of PA200 specific substrates is expected on mRNA versus 

protein level upon PA200 silencing. Therefore, the mRNA and protein levels of genes 

identified in both the transcriptomic and the proteomic screens were compared. For most of 

these genes mRNA and protein expression was altered to a similar extent as indicated by 

plotting of most data points on the bisecting line between both axes (Figure 7.22). The graph 

discriminates genes that are only significantly regulated only on mRNA level in black, 

significant regulation only on protein level in blue and significant alteration of both mRNA 

and protein levels in red. With regard to the potential function of PA200 as a proteasome 

activator targeting specific substrates for degradation, genes that are strongly increased only 

on the protein level are of particular interest, as silencing of the activator should induce the 

accumulation of a given substrate. However, genes that were only significantly altered on 

protein level showed an up- and downregulation in a similar extent with most upregulated 

proteins being induced less than 1.5-fold. This comparative approach did thus not clearly 

identify putative substrates for PA200-specific protein degradation. 



7 Analyzing the regulation and function of PA200 in hyperproliferative chronic lung disease 
 

124 

 
Figure 7.22: Most genes are co-regulated on mRNA and protein levels in response to PA200 silencing. 
Genes that were identified in both the transcriptomic and the proteomic screen were analyzed for their 
regulation on mRNA and protein levels in phLF upon siRNA-mediated silencing of PA200 for 72 h (2760 genes). 
The axes indicate the ratio of the expression in PA200-silenced versus control cells on mRNA and protein level. 
Genes regulated similarly on mRNA and protein levels are plotted on the diagonal line. Scatter plot shows genes 
not significantly regulated on protein and mRNA level in grey and genes only significantly regulated on protein 
level in blue (n=443), on mRNA level in black (n=377) and on both protein and mRNA level in red (n=318). 
Horizontal and vertical dashed lines indicate 1.5-fold regulation of mRNA or protein expression.  
 

Concluding, PA200 silencing regulated genes with distinct molecular functions on both 

mRNA and protein levels, which suggests that regulation of protein expression is rather 

caused by the cellular effect PA200 silencing than by accumulation of potential substrates of 

the activator. 
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7.2.4.3 PA200 silencing activates AKT signaling 

The AKT pathway is a key signal transduction pathway for regulation of cellular growth and 

survival via a plethora of cellular targets (Manning and Toker, 2017). Ingenuity Pathway 

Analysis of regulated genes and proteins in PA200-silenced phLF indicated an activation of 

cell growth and survival as well as inactivation of cellular apoptosis. Hence, a potential 

activation of AKT signaling via phosphorylation of protein kinase AKT at serine 473 (pAKT 

(Ser473)) was analyzed in these cells to obtain further insights into the regulation of this 

central cellular signaling pathway upon PA200 silencing. Protein levels of AKT and pAKT 

(Ser473) were determined by Western blotting of phLF in response to silencing of PA200 for 

72 h. Here, total AKT levels were not altered upon silencing of the activator, whereas 

phosphorylation of the protein kinase was significantly increased in PA200-deficient phLF as 

compared to controls (Figure 7.23). Therefore, the increased ratio of phosphorylated to total 

AKT indicates activation of AKT signaling. 

 

 
Figure 7.23: PA200 silencing activates AKT signaling. Regulation of AKT signaling in phLF upon knockdown of 
PA200 for 72 h was investigated by Western blotting using antibodies directed against PA200, total AKT and AKT 
phosphorylated at serine 473 (pAKT (Ser473)). Bar diagram indicates densitometric analysis of signals obtained 
for pAKT (Ser473) normalized to total AKT and control siRNA-transfected cells (one-sample t-test, n = 3). 
 

7.2.4.4 PA200 silencing induces proliferation of primary human lung fibroblasts 

As microarray and proteomic screens suggested an induction of cellular growth upon PA200 

silencing in phLF, proliferation of these cells was assessed by different approaches. 

Microscopic evaluation of phLF after 24, 48 and 72 h of transfection with PA200 siRNA 

indicated a notable increase in number of cells after 48 h compared to control 

siRNA-transfected cells (Figure 7.24 A).  
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Figure 7.24: siRNA-mediated silencing of PA200 induces proliferation of primary human lung fibroblasts 
(phLF). (A) phLF were transfected with siRNA against PA200 or control siRNA. Figure indicates representative 
pictures of cells after 24, 48 and 72 h. (B) phLF were counted 72 h after PA200 silencing. Bar diagram shows cell 
count normalized to control siRNA-transfected cells of the same patient (one-sample t-test, n = 3). (C) 
Proliferation of phLF was analyzed 72 h after silencing of PA200 by BrdU assay. Bar diagram indicates BrdU 
incorporation normalized to the mean of control siRNA-transfected cells (Mann-Whitney U test, n = 4). (D) 
Metabolic activity of phLF was measured 72 h after silencing of PA200 by MTT assay. Bar diagram indicates % 
metabolic activity normalized to the mean of control siRNA-transfected cells (Mann-Whitney U test, n = 4). (E) 
Expression of PA200 and proliferation markers cyclin D1 (CCND1) and PCNA in phLF upon PA200 silencing for 
72 h was investigated by Western blotting. Representative immunoblots of experiments performed with three 
technical replicates per condition in phLF from four different donors are shown. Bar diagram indicates 
densitometric analysis of PA200 silencing normalized to control siRNA-transfected cells (one sample t-test, n = 4). 
 

Moreover, analysis of the cell count in PA20--deficient phLF after 72 h of transfection 

showed a significant 1.5-fold increase in cell number compared to controls, which accorded 

well with 1.5-fold induction of BrdU incorporation as a measure for cellular proliferation 

(Figure 7.24 B and C). Moreover, cellular metabolic activity determined by MTT assay was 

also significantly enhanced after 72 h of PA200 silencing (Figure 7.24 D). Western blot 
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analysis confirmed efficient silencing of PA200, as protein levels were strongly decreased 

after 72 h of knockdown (Figure 7.24 E). In addition, the expression of two markers for 

cellular proliferation, cyclin D1 (CCND1) required for G1/S cell cycle progression and 

proliferating cell nuclear antigen (PCNA) involved in DNA replication, was also significantly 

increased upon knockdown of the activator. 

A time course of PA200 silencing in phLF revealed a significant and strong decrease in PA200 

mRNA expression after 24 h persisting up to 72 h after transfection (Figure 7.25 A). CCND1 

mRNA expression increased over time and was significantly induced after 48 h with a further 

increase up to 72 h of PA200 silencing (Figure 7.25 B). This finding thus accords well with 

microscopic analysis of transfected phLF over time shown in Figure 7.24. Moreover, qPCR 

analysis also revealed enhanced TGF-β1 mRNA expression after 48 h of transfection and 

induction of αSMA mRNA levels over time, which points towards an activation of phLF upon 

silencing of PA200 (Figure 7.25 C and D). 

 

 
Figure 7.25: Timecourse of PA200 silencing indicates enhanced mRNA expression of proliferation and 
myofibroblast markers in primary human lung fibroblasts (phLF). mRNA expression of (A) PA200, (B) 
cyclin D1 (CCND1), (C) TGF-β1 (TGFB1) and (D) myofibroblast marker αSMA was measured in phLF transfected 
with PA200 or control siRNA for 24, 48 and 72 h. HPRT served as housekeeping gene and bars indicate mRNA 
level normalized to control siRNA transfected cells (one-sample t-test, n = 3). 
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7.2.4.5 Proteasome activity is induced in response to PA200 silencing 

As PA200 has been originally described as a proteasome activator that stimulates 

caspase-like proteasome activity in vitro and as it is strongly associated with the 20S 

proteasome, we assessed whether silencing of PA200 would alter proteasome activities or 

composition (Blickwedehl et al., 2008; Ustrell et al., 2002).  

Proteasome complexes and their activities were analyzed by native gel electrophoresis in 

native extracts of phLF transfected with control and PA200 siRNA for 72 h. In-gel overlay with 

a substrate specific for CT-L activity indicated a significant induction of 20S as well as 26S 

and 30S activities (Figure 7.26 A). This accorded well with increased presence of 20S, 26S, 

and 30S complexes shown by immunoblotting of native gels for 20S subunits α1-7. 

Regulation of active proteasome complexes was also analyzed by a second approach using 

labeling of active proteasomes with the activity-based probe (ABP) MV151, which is a 

fluorescently labeled inhibitor that binds to all catalytic sites of the 20S core particle. Here, 

native gel electrophoresis and subsequent fluorescent imaging of labeled proteasomes 

confirmed an increased amount of 26S and 30S complexes upon silencing of PA200 (Figure 

7.26 B). The total amount of active proteasomes was also significantly induced as determined 

by activity based profiling using SDS-PAGE (Figure 7.26 C). These findings demonstrate that 

silencing of PA200 does not contribute to impairment in proteasome activity but rather 

results in an activation of overall proteasome activity which is most probably due to 

enhanced cell growth and survival.  
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Figure 7.26: Activity and quantity of proteasome complexes are increased in primary human lung 
fibroblasts (phLF) in response to PA200 silencing. PA200 silencing was performed in three technical replicates 
per condition in phLF for 72 h. (A) Activity of 20S, 26S and 30S proteasomes was determined by native gel 
electrophoresis and in-gel overlay with a fluorogenic substrate specific for chymotrypsin-like (CT-L) activity. 
Immunoblotting with an anti-α1-7 antibody indicates the amount of 20S, 26S and 30S proteasomes. Figure shows 
representative results of phLF from one donor. Bar diagram indicates densitometric analysis of 20S and 26S/30S 
proteasome complexes normalized to control siRNA-transfected cells (one-sample t-test, n = 4). (B) Active 
proteasome complexes in the same lysates used in (A) labeled with fluorescent ABP MV151 were analyzed by 
native gel electrophoresis. (C) Total amount of active proteasomes was determined by SDS-PAGE of 
MV151-labeled proteasome subunits. Bar diagrams of (B) and (C) indicate densitometric analysis of obtained 
signals normalized to the mean of control siRNA transfected phLF (Mann-Whitney U test, n = 4). 
 

Western blot analysis of cell extracts analyzed for proteasome activity and composition in 

Figure 7.26 confirmed efficient knockdown of PA200 (Figure 7.27 A). Moreover, protein 

expression of 19S subunit RPN6 of was significantly upregulated upon PA200 silencing, 

whereas lysine 48 polyubiquitinated proteins, 19S regulator subunit RPT5 and 20S catalytic 
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subunit β5 were not altered. PA200 mRNA expression was also significantly decreased by 

silencing of the activator (Figure 7.27 B). Proteasomal subunits including 20S subunits α7, 

19S regulator subunit RPT5 as well as PA28γ were not regulated on mRNA level, whereas the 

20S catalytic subunit β5 was significantly decreased. mRNA expression of RPN6 was slightly – 

although not significantly – induced according well with its induction on protein level. 

Concluding, PA200 silencing does not only induce proliferation but also significantly 

enhances formation of active proteasome complexes in phLF. Moreover, this accords well 

with induced expression of 19S subunit RPN6 on protein level, which was previously 

described as rate limiting subunit for formation of 26S and 30S proteasomes (Santamaria et 

al., 2003; Semren et al., 2015; Vilchez et al., 2012). 

 

 
Figure 7.27: Increased RPN6 expression accords well with enhanced proteasome activity upon PA200 
silencing in primary human lung fibroblasts (phLF). (A) Native extracts of phLF analyzed in Figure 7.26 were 
analyzed for accumulation of proteins ubiquitinated at lysine 48 (UbiK48) and expression of PA200, 19S subunits 
RPN6 and RPT5 and 20S catalytic subunit β5 by Western blotting. Bar diagram indicates densitometric analysis of 
obtained signals normalized to control siRNA-transfected phLF (one-sample t-test, n = 4). (B) mRNA expression 
of PA200, PA28γ, 20S subunits α7 and β5 as well as 19S subunits RPT5 and RPN6 were measured in phLF 
analyzed in Figure 7.26. Bar diagram shows mRNA expression normalized to control siRNA-treated cells using 
RPL19 as housekeeping gene (one-sample t-test, n = 4). 
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7.2.4.6 PA200 silencing decreases activation of apoptotic signaling 

Microarray and proteomic screening of PA200-deficient phLF versus controls suggested              

– besides induction of cellular growth – downregulation of components of the apoptotic 

signaling cascade. Therefore, regulation of cellular apoptosis by PA200 was investigated in 

more detail. Downregulation of caspase-3 (CASP3) protein expression as observed in the 

proteomic screen (Figure 7.20) was validated by Western blot analysis of protein extracts of 

PA200-silenced phLF (Figure 7.28). Here, PA200-deficient phLF of two different donors 

exhibited distinctly reduced levels of CASP3 thereby confirming results of the proteomic 

screen. Downregulation of caspase-3 on the protein level was accompanied by a reduction 

of its mRNA levels as confirmed by our transcriptomic data set (Figure 7.22). 

 

 
Figure 7.28: Protein levels of total caspase-3 are decreased upon PA200 silencing. Protein levels of total 
caspase-3 (CASP3) were examined 72 h after silencing of PA200 by Western blotting of the same cell extracts that 
were used for LC-MS/MS analysis. 
 

CASP3 expression was also evaluated at earlier time points using timecourse of PA200 

silencing in phLF for 24, 48, and 72 h. Western blot analysis confirmed a significant decrease 

in PA200 protein levels over time (Figure 7.29). Moreover, a delayed downregulation of 

CASP3 was observed over time indicating the strongest effect after 72 h.  

 

 
Figure 7.29: Decrease of total caspase-3 protein levels follows siRNA-mediated downregulation of PA200. 
PA200 silencing for 24, 48 and 72 h in primary human lung fibroblasts was analyzed for protein expression of 
PA200 and total caspase-3 (CASP3) by immunoblotting. Bar diagram indicates densitometric analysis of obtained 
signals normalized to β-Actin and time-matched controls (one-sample t-test, n = 3). 
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The functional consequence of CASP3 downregulation in PA200-deficient phLF was analyzed 

by assessing activation of the apoptotic cascade by staurosporine treatment in control and 

PA200 siRNA-transfected phLF. After silencing of PA200 for 72 h, phLF were treated for 3 h 

with 1 µM staurosporine (STS) for induction of apoptosis or DMSO as a control. Cleavage of 

CASP3 and its substrate poly (ADP-ribose) polymerase (PARP) – both hallmarks of apoptotic 

cell death – were analyzed by Western blotting (Figure 7.30 A). Silencing of PA200 again 

caused a specific reduction of total CASP3 protein level, which was, however, not observed 

for PARP (Figure 7.30 B). STS treatment led to distinct cleavage of CASP3 and PARP in control 

siRNA-transfected cells, which was much less abundant in PA200-deficient phLF. 

Quantification of Western blots confirmed a significantly increased ratio of cleaved to total 

CASP3 and PARP in PA200-expressing when compared to PA200-silenced phLF (Figure 

7.30 C).  
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Figure 7.30: Silencing of PA200 impairs cleavage of caspase-3 and PARP in response to apoptosis 
induction by staurosporine treatment. Primary human lung fibroblasts transfected with control or PA200 
siRNA for 72 h were treated with 1 µM staurosporine (STS) or DMSO as control for 3 h to induce apoptosis. (A) 
Levels of total and cleaved caspase-3 (CASP3) as well as total and cleaved PARP were examined by western 
blotting.  Figure indicates representative results of experiments performed with cells of four different donors. (B) 
Bar diagrams indicate quantification of signals obtained for total CASP3 and PARP normalized to controls (one-
way ANOVA and Bonferroni’s multiple comparisons test, n = 4). (C) Ratios of cleaved to total levels of CASP3 and 
PARP were determined by densitometric analysis of immunoblots (one-way ANOVA and Bonferroni’s multiple 
comparisons test, n = 4). 
 

Induction of apoptosis was also assessed using AnnexinV/PI staining as a second approach. 

AnnexinV (AV) recognizes phosphatidylserine, which is translocated from the inner side of 

the plasma membrane to the outside during early apoptosis of cells. In contrast, propidium 

iodide (PI), a fluorescent DNA intercalating agent, cannot penetrate intact plasma 
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membranes and therefore specifically stains necrotic cells. Thus, this method allows for 

distinguishing between living AV-/PI-, early apoptotic AV+/PI-, late apoptotic AV+/PI+ and 

necrotic AV-/PI+ cells. phLF transfected with control or PA200 siRNA were treated with STS as 

described for Figure 7.30. Representative dot plots of FACS analysis with phLF of one donor 

are shown in Figure 7.31 A.  

 

 
Figure 7.31: FACS analysis demonstrates attenuation of staurosporine-induced apoptotic cell death in 
PA200-silenced primary human lung fibroblasts (phLF). phLF were treated as described in Figure 7.30. 
(A) Apoptosis was monitored by AnnexinV /PI staining and FACS analysis. Dot plots show AnnexinV FITC versus PI 
signal of DMSO-treated controls and staurosporine-treated (STS) phLF upon transfection with control or PA200 
siRNAs. 10 000 cells were analyzed per condition. Figure indicates representative results for experiments 
performed in phLF of three different donors. (B) Bar diagrams indicate amount of living and early apoptotic cells 
as the percentage of total cells assessed by FACS analysis (one-way ANOVA and Bonferroni’s multiple 
comparisons test, n = 3) 
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Quantification of living, early apoptotic, late apoptotic and necrotic cells indicated no basal 

difference between control and PA200-deficient cells. STS treatment strongly decreased the 

percentage of living cells in control siRNA-transfected phLF. Induction of apoptotic cell death 

was clearly attenuated in PA200-deficient phLF (Figure 7.31 B). Corresponding to these 

results, STS treatment significantly increased the percentage of early apoptotic AV+/PI- cells 

in control compared to PA200 siRNA-transfected phLF (Figure 7.31 C). The number of late 

apoptotic and necrotic cells was not altered by all applied treatments (quantification of late 

apoptotic and necrotic cells not shown).  

 

In conclusion, Western blot analysis confirmed results of the proteomic screen showing 

downregulation of total CASP3 protein expression by PA200 silencing. Two distinct 

approaches reveal hat loss of PA200 function results in the decreased ability of phLF to 

undergo apoptosis. Moreover, the enhanced survival and growth of PA200-deficient cells 

corresponds very well to the enrichment of growth-associated genes and concomitant 

downregulation of pro-apoptotic genes as identified in the unbiased transcriptomic and 

proteomic screens (Figure 7.19 and Figure 7.21). 
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7.2.5 PA200-/- increases the survival of mice during development of 

bleomycin-induced fibrosis  

The fundamental effect of PA200 deficiency on survival and growth of primary lung 

fibroblasts as well as its specific elevation in fibrotic tissue remodeling prompted us to 

investigate the contribution of PA200 to the development of pulmonary fibrosis. An 

experimental mouse model of bleomycin-induced lung fibrosis was used to investigate 

fibrotic remodeling in wildtype and PA200-/- mice. This involved analysis of the survival in 

mice instilled with bleomycin (2 U/kg), lung function, infiltration of immune cells into the 

bronchoalveolar lavage fluid, fibrotic marker expression, and fibrotic remodeling by 

histology. 

 

7.2.5.1 PA200-/- mice better cope with bleomycin challenge of the lung 

Although no difference was observed in the fibrotic remodeling of lungs from wildtype and 

PA200-/- mice, knockout mice were able to cope much better with the treatment. Survival of 

animals after instillation of bleomycin was assessed for 14 days. Animals were monitored 

daily and sacrificed upon weight loss of >15 %. As indicated in Figure 7.32, PA200-/- mice 

exhibited a significantly increased survival upon intratracheal instillation of bleomycin when 

compared to wildtype mice.  

 

 
Figure 7.32: Survival of PA200-/- mice is improved compared to wildtype animals in response to bleomycin 
challenge of the lung. PA200-/- and wildtype (WT) mice were instilled with 2 U/kg body weight bleomycin (Bleo) 
or PBS and the survival of animals was monitored over 14 days. Animals with a weight loss >15 % were sacrificed. 
Curve indicates the survival of animals as percentage of total animals per group (Log rank test and log rank test 
for trend, WT PBS n = 18, PA200-/- PBS n = 14, WT Bleo n = 25, PA200-/- Bleo n = 25; combined results of two 
independent experiments). 
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7.2.5.2 Bleomycin-instilled PA200-/- and wildtype mice have a similar decline in lung 

function 

Lung function of mice was measured 14 days after bleomycin instillation using the flexiVent 

system that assesses resistance, elastance and compliance of lungs. Although the resistance 

of the airways to airflow significantly increased in bleomycin-treated wildtype and PA200-/- 

compared to the respective PBS-treated controls, no difference was observed between 

bleomycin-instilled knockout and wildtype animals (Figure 7.33 A). The elastance of the lung, 

which is defined as the change in pressure required for induction of a unit volume change, 

was also significantly elevated in lungs of bleomycin-instilled wildtype and PA200-/- mice and 

no significant difference was observed between those two groups (Figure 7.33 B). The lung 

compliance, the ability of the lung to expand defined as volume change per unit pressure 

change, significantly declined in bleomycin-treated animals both with PA200-/- and wildtype 

background (Figure 7.33 C and D).  

 

 
Figure 7.33: Lung function decline is similar in bleomycin-instilled PA200-/- and wildtype mice. Lung 
function of animals was analyzed 14 days after bleomycin or PBS instillation (Kruskal-Wallis test and Dunn’s 
multiple comparisons test, n = 11-16 per group; combined results from two independent experiments). Lung 
function measurement was performed by Dr. I. E. Fernandez, Postdoc at the CPC 2017. 
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7.2.5.3 Bleomycin-instilled PA200-/- and wildtype mice have similar pattern of 

immune cells in the bronchoalveolar lavage 

Immune cells within the bronchioalveolar lavage (BAL) were determined as another read out 

for fibrotic remodeling of the lungs. BAL cells were stained with May-Grünwald Giemsa and 

the percentage of different immune cells was assessed according to morphological 

characteristics (Figure 7.34 A). In PBS-instilled wildtype and PA200-/- animals approximately 

95 % of BAL cells were macrophages, which were significantly decreased in lungs of 

bleomycin-instilled mice (Figure 7.34 B). The percentage of lymphocytes was significantly 

increased in bleomycin-instilled wildtype and PA200-/- mice compared to PBS controls. Here, 

BAL of PA200-/- mice contained only a slightly higher but not significant percentage of 

lymphocytes when compared to wildtype animals (Figure 7.34 C). Approximately 1 % 

neutrophils were detected in both, PBS-instilled PA200-/- and wildtype mice. Their amount 

was increased to approximately 3 % by bleomycin instillation with again no difference 

between the two genetic backgrounds.  
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Figure 7.34: Immune cells of the BAL are similar in bleomycin-instilled in wildtype and PA200-/- mice.       
(A) Immune cells in the bronchoalveolar lavage fluid of PBS- and bleomycin-instilled (Bleo) wildtype and PA200-/- 

(KO) mice were examined by May-Grünwald Giemsa staining. Figure shows representative stainings. Number of 
(B) macrophages, (C) lymphocytes and (D) neutrophils was determined according to morphological 
characteristics assessing at least 200 cells per animal (Kruskal-Wallis test and Dunn’s multiple comparisons test, 
n = 11-16 per group; combined results from two independent experiments). 
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7.2.5.4 Bleomycin-treated PA200-/- and wildtype mice exhibit similar induction of 

fibrotic markers  

Expression of markers for fibrotic tissue remodeling was analyzed by qPCR of lung 

homogenates. Here, fibronectin (FN), collagen1α1 (Col1A1) and tenascin C (TNC) mRNA 

levels were significantly induced in bleomycin-instilled wildtype and PA200-/- mice (Figure 

7.35 A-C). However, no difference in the induction of fibrotic marker expression was 

observed between PA200-/- and wildtype animals. 

 

 
Figure 7.35: mRNA expression of fibrotic markers is equally induced in PA200-/- and wildtype mice in 
response to bleomycin challenge. mRNA expression of fibrotic markers (A) fibronectin (FN), (B) collagen1α1 
(COL1A1) and (C) tenascin C (TNC) was analyzed by qPCR in lungs of wildtype and PA200-/- (KO) 14 days after 
bleomycin or PBS instillation. Diagrams indicate mRNA levels as 2-dCT, Rpl19 served as housekeeping gene 
(Kruskal-Wallis test and Dunn’s multiple comparisons test, n = 12-17 per group; combined results from two 
independent experiments). qPCR was performed by C. Lukas, technician at the CPC 2017. 
 

7.2.5.5 Histological analysis reveals similar induction of fibrotic remodeling in 

bleomycin-instilled PA200-/- and wildtype mice  

Histological analysis using hematoxylin & eosin staining of lungs from bleomycin-treated 

mice at day 14 was used as a second approach to assess fibrotic tissue remodeling. This 

analysis confirmed that PBS-instilled PA200-/- mice exhibit normal lung architecture without 
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an apparent lung phenotype (Figure 7.36). Histology showed a similar development of 

fibrosis in wildtype and PA200-/- mice in response to bleomycin instillation as indicated by 

the dark blue patches of dense cells in the lungs of bleomycin-treated wildtype and PA200-/- 

mice (Figure 7.36). 

 

 
Figure 7.36: Histological analysis reveals similar induction of fibrotic remodeling in lungs of 
bleomycin-instilled PA200-/- and wildtype mice. Paraffin-embedded tissue sections of PA200-/- and wildtype 
mice at day 14 after instillation with bleomycin (2 U/kg) or PBS were stained with hematoxylin & eosin (H&E). 
Figure shows representative histology from two independent animal experiments. 
 

In summary, PA200 deficiency allowed mice to better cope with intratracheal bleomycin 

challenge but did not protect from fibrotic tissue remodeling in surviving animals. As fibrotic 

tissue remodeling starts only after initial inflammation after day 7 of bleomycin treatment, 

deficiency of PA200 potentially protects alveolar cells from initial injury but has no effect on 

the subsequent fibrotic wound healing response. 
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7.2.6 PA200 is strongly induced in lung cancer tissues 

Previous experiments of this study revealed an increased expression of PA200 upon fibrotic 

tissue remodeling and a role for PA200 in the regulation of cell growth, apoptosis, and 

survival. As proliferative signaling and resistance to cell death are also considered as 

hallmarks of cancer, it was speculated that PA200 might also be regulated in lung cancer 

(Hanahan and Weinberg, 2011).  

 

7.2.6.1 Homogenates of human lung cancer biopsies show increased expression of 

PA200 

For expression analysis of PA200 non-tumorous and tumor tissues of patients suffering from 

different types of lung cancers were collected in collaboration with the Asklepios Klinik in 

Gauting, Germany. Western blot analysis of RIPA extracts of these biopsies indicated a strong 

upregulation of PA200 protein levels in all tumor tissues compared to non-tumor lung 

samples of the same patient (Figure 7.37). 

 

 
Figure 7.37: PA200 protein levels are significantly elevated in lung tumor tissue. PA200 protein expression 
was determined in homogenates of non-tumor (C) and tumor (T) tissue from six lung cancer patients by Western 
blotting. Diagram indicates densitometric analysis of signals obtained for control and tumor tissue relative to 
β-Actin level (Mann-Whitney U test, n = 6). 
 

Of note, PA200 mRNA expression was not significantly induced in these biopsies (Figure 

7.38). Therefore, these findings suggest an induction of PA200 protein levels rather due to 

protein stabilization than increased RNA expression. 



7 Analyzing the regulation and function of PA200 in hyperproliferative chronic lung disease 
 

143 

 
Figure 7.38: PA200 mRNA level are not significantly upregulated in lung tumor tissues. PA200 mRNA levels 
of tumor and non-tumor control tissue of lung cancer biopsies from five different patients, which were analyzed 
for protein expression in Figure 7.37, were assessed by qPCR. RPL19 served as housekeeping gene 
(Mann-Whitney U test, n = 5). qPCR was performed by C. Lukas, technician at the CPC. 
 

7.2.6.2 Lung tumors of KrasLA2 mutant mice confirm increased expression of PA200 

Immunohistochemistry analysis of PA200 was applied to further validate upregulation of the 

activator in different types of lung cancer. Lung tissue sections of KrasLA2 mutant mice, which 

spontaneously develop tumors in the lung, showed induction of PA200 in the cytoplasm and 

nucleus of tumor cells compared to healthy lungs of wildtype mice (Figure 7.39). Moreover, 

non-tumorous tissue surrounding tumor areas in lungs of KrasLA2 mutant mice did not 

indicate staining for PA200, which corresponds well with very low expression observed in 

human non-tumorous tissues by Western blot analysis. 

 

 
Figure 7.39: PA200 expression is elevated in lung tumors of KrasLA2 mutant mice. Expression of PA200 (pink) 
was determined in wildtype and KrasLA2 mutant mouse lungs by immunohistochemistry. Nuclei were 
counterstained with hematoxylin (blue). IgG served as negative control (not shown). Staining was performed by T. 
Meul, master student at the CPC 2016. 
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7.2.6.3 Tumor cells but not tumor stroma and necrotic areas express PA200  

Expression of PA200 was also analyzed in tumor tissue sections of lung cancer patients, 

which were kindly provided by the Asklepios Klinik in Gauting, Germany. Distinct PA200 

overexpressing areas were identified by immunohistochemistry (Figure 7.40). Analysis of 

different subtypes of non-small cell lung cancer unambiguously showed that PA200 was 

strongly induced in cancer cells, whereas surrounding tumor stroma and necrotic areas 

indicate expression of the activator.  

 

 
Figure 7.40: Immunohistochemistry of human lung tumor biopsies identifies PA200-positive cancer 
cells.Paraffin tissue sections of different human lung carcinomas were analyzed for expression of PA200 (pink) 
using immunohistochemistry. Figure indicates representative staining of biopsies in different magnifications. 
Nuclei were counterstained with hematoxylin (blue). IgG served as negative control (not shown). Staining was 
performed by T. Meul and C. Lukas. 
 

Concluding, analysis of PA200 expression showed a remarkably strong induction in lung 

cancer tissues. PA200 was highly expressed in tumor cells but not in tumor stroma or 

necrotic areas. Therefore, these findings show that upregulation of PA200 protein level might 

be a common feature of lung tumor cells. 
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7.3 Discussion 

Although PA200 has been first described as a proteasomal activator already in 2002, little is 

known about its exact cellular function as well as its regulation in disease (Ustrell et al., 2002). 

Using validated antibodies, the present study reveals a so far unknown upregulation of 

PA200 protein levels in hyperproliferative chronic lung diseases, namely idiopathic 

pulmonary fibrosis and lung cancer. Moreover, not only the expression of PA200 but also its 

association with the proteasome and its interactome were regulated according to cellular 

activation and growth in primary human fibroblasts of the lung. Functional analyses involving 

transcriptomic and proteomic screens of PA200 silencing in phLF predicted an activation of 

growth and survival pathways in these cells and in vitro experiments in phLF confirmed 

PA200 as a novel regulator of cellular growth and survival.  

 

7.3.1 Induction of PA200 in hyperproliferative tissues is a new aspect of 

proteasome regulation in diseased tissues 

Being the main protein degradation machinery within the cell, the proteasome regulates 

many different cellular processes including cell differentiation, proliferation, apoptosis, signal 

transduction, gene transcription, and MHCI antigen presentation (Bowerman, 2006; Collins 

and Tansey, 2006; Naujokat and Hoffmann, 2002; Strehl et al., 2005; Taylor and Jobin, 2005). 

Proper control of proteasome function is essential for maintenance of protein homeostasis 

and cell function. For this reason, dysregulation of proteasome system in diseases is obvious 

and has been described for several disorders such as neurodegenerative and autoimmune 

disorders, viral infections and cancer (Dahlmann, 2007). However - besides an induction of 

PA28γ in cancer tissues - the role of alternative proteasome activators in diseases is still 

largely unknown und requires detailed investigation (Mao et al., 2008). Therefore, the 

upregulation of PA200 upon fibrotic tissue remodeling and in lung tumors provides a novel 

aspect of regulation of alternative proteasome complexes in diseased tissues. 
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7.3.1.1 Induction of PA200 is a novel aspect of proteasome deregulation in fibrotic 

tissue remodeling of the lung  

Beside the discovery of proteasomal degradation of TGF-β pathway components, studies 

analyzing the proteasome in fibrotic lung remodeling have been very limited (Imamura et al., 

2013; Soond and Chantry, 2011). Mutlu et al. reported anti-fibrotic effects of proteasome 

inhibitor treatment in bleomycin-induced lung fibrosis in mice and claimed that the anti-

fibrotic effects of bortezomib treatment were mediated by decreased expression of TGF-β 

target genes (Mutlu et al., 2012). The regulation of the proteasome itself in lung fibrosis was 

first analyzed in a previous study of our group. Here, we observed that 26S proteasome 

activity is induced upon fibrotic remodeling of the lung and proteasome function is required 

for TGF-β1-driven differentiation of myofibroblasts (Semren et al., 2015). However, the 

regulation of alternative proteasome activators – and especially of PA200 – was not analyzed 

in this context. 

A strong induction of PA200 protein expression was observed in fibrotic lungs of both IPF 

patients and bleomycin-instilled mice. Enhanced PA200 protein levels are more likely to be 

caused by protein stabilization than by increased expression, as mRNA levels were not 

significantly altered. Analyzing the cell types with increased expression of PA200 identified 

pronounced expression of the activator in hyperplastic bronchial basal cells and 

myofibroblasts of fibroblast foci, which are a classical histological feature of the disease 

(Jones et al., 2016). Activation of fibroblasts and differentiation into myofibroblasts, which 

produce excess of extracellular matrix leading to scar formation, is a major pathological 

hallmark of the disease (Wynn, 2011). Here, the pro-fibrotic cytokine TGF-β1 is considered as 

one of the main drivers of myofibroblast differentiation (Fernandez and Eickelberg, 2012b; 

Noble et al., 2012). In addition, accumulation of KRT5-positive basal cells was recently 

described as another characteristic feature of IPF tissues and dysregulation of basal cell 

proliferation or differentiation leading to hyperplasia has been identified in several diseases 

such as chronic obstructive pulmonary disease (COPD) and cystic fibrosis (Rock et al., 2010; 

Smirnova et al., 2016). 

Indeed, in vitro analysis of PA200 regulation during differentiation of primary human 

bronchial basal cells as well as primary human lung fibroblast into myofibroblasts accorded 

well with expression analysis in donor and IPF tissue. Upon differentiation of phBECs, PA200 

mRNA and protein levels were significantly decreased, implying a generally higher 
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expression in undifferentiated basal cells of the bronchial epithelium. IHC analysis of healthy 

lung sections also showed a more pronounced expression of PA200 in undifferentiated 

KRT5-positive basal cells when compared to differentiated bronchial epithelial cells. 

Moreover, analysis of PA200 in TGF-β1-activated myofibroblasts revealed a significant 

increase in expression and formation of PA200-containing alternative proteasome 

complexes, which also confirms IHC analysis of IPF tissue sections. 

 

7.3.1.2 PA200-/- mice better cope with bleomycin challenge of the lung 

In order to investigate the role of PA200 in the development of lung fibrosis, fibrotic lung 

remodeling in response to bleomycin instillation was analyzed in PA200-/- compared to 

wildtype mice. Although the survival of bleomycin-instilled PA200-/- was significantly 

enhanced compared to wildtype animals, the development of fibrosis at day 14 was 

comparable in all animals.  

The applied bleomycin mouse model has several limitations, although it is widely used to 

mimic the development of fibrosis in an experimental setting. First, instillation of bleomycin 

into the lungs induces an initial inflammatory response and therefore rather resembles an 

acute lung injury before the actual fibrotic remodeling is initiated (Matute-Bello et al., 2008). 

Second, this model does not involve the formation of so-called myofibroblast foci and 

induction of alveolar epithelial cell hyperplasia, which are both a hallmark of the human 

disease (Degryse and Lawson, 2011; Moeller et al., 2008; Moore et al., 2013). Lastly, fibrotic 

lung remodeling is restored within approximately 56 days after instillation of bleomycin, 

which is in large contrast to the human chronic and progressive disease. For these reasons, 

the bleomycin mouse model does not exactly resemble the human disease. The similar 

development of fibrosis in wildtype and PA200-/- mice might occur due to a different 

pathogenesis of fibrotic wound healing in the mouse model. In this study, PA200 was mainly 

identified in myofibroblasts of myofibroblast foci in human IPF tissues. Moreover, functional 

analysis discovered it as a regulator of fibroblast activation, proliferation, and survival. 

Nevertheless, the improved survival of PA200-/- upon bleomycin challenge of the lung 

accords well with increased survival of phLF in response to PA200 silencing in vitro. In line 

with this study, Khor et al. reported no significant differences in survival of wildtype and 

PA200-/- mice suggesting that an additional challenge is required to observe a differential 
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effect (Khor et al., 2006). Blm10, the yeast homologue of PA200, was discovered due to its 

responsiveness to bleomycin-induced DNA damage. However, this was not confirmed for the 

murine PA200 protein, because murine wildtype and PA200-/- embryonic stem cells showed a 

similar response to bleomycin treatment with no defects in the repair of DNA double strand 

breaks (Khor et al., 2006). Therefore, the enhanced survival of PA200-/- mice upon bleomycin 

challenge is presumably caused by a differential response in lung remodeling upon lung 

injury and not by a differential response to DNA damage caused by bleomycin. 

 

7.3.1.3 Regulation of PA200 is not only restricted to fibrotic remodeling of the lung 

Fibrotic remodeling of tissues from different organs shares common pathological 

characteristics, such as activation of myofibroblasts causing excess deposition of extracellular 

matrix components, which leads to scaring of the tissue and finally loss of proper organ 

function (Bataller and Brenner, 2005; Gabbiani, 2003; Wynn, 2011). Small molecule 

proteasome inhibitors have also been successfully applied for interference with fibrotic 

remodeling of experimentally induced fibrosis from other organs such as kidney, liver, heart 

or dermis (Anan et al., 2006; Koca et al., 2012; Meiners et al., 2004; Tashiro et al., 2003). 

However, regulation of the proteasome has not been investigated in other fibrotic organs 

except from the lung. Therefore, the present study shows for the first time that adaption of 

proteasome function is not only restricted to fibrosis of the lung, but can also be found in 

experimentally induced fibrotic kidney remodeling. Beside increased proteasome activity and 

induced expression of rate-limiting 19S regulatory subunits RPN6 (data of increased RPN6 

expression not shown), expression of PA200 and the formation of PA200 alternative 

proteasome complexes was significantly enhanced in homogenates of fibrotic kidneys. 

Hence, these findings suggest that induction of proteasome activity and PA200 alternative 

proteasomes is a general feature of fibrotic tissue remodeling from different organs and not 

only restricted to the lung. 

Lung cancer is another devastating lung disease characterized by aberrant and massive cell 

growth within the lung. Several hallmarks of cancer are also true for myofibroblasts in the 

fibrotic lung: resistance to cell death, evasion of growth suppressors, increased proliferation 

and invasion (Horowitz et al., 2016). In vitro experiments of this study analyzing the 

functional consequence of PA200 silencing in phLF indicated a strong upregulation of 
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cellular proliferation and survival involving induction of AKT signaling and suppression of 

apoptosis. These observations suggest that phLF acquired a cancer cell-like phenotype upon 

loss of PA200 function. Of note, PA200 protein levels were significantly upregulated in lung 

tumor tissues when compared to non-tumorous lung tissue of the same patient. Moreover, 

induction of PA200 expression was also observed in lung tumors of KrasLA2 mutant mice. 

However, only the tumor cells but not the tumor stroma or necrotic areas of human lung 

cancer biopsies expressed PA200. Tumor stroma consists of non-malignant tumor cells, such 

as carcinoma-associated fibroblasts (CAFs), mesenchymal cells, immune cells, endothelial 

cells and pericytes, and extracellular matrix (Bremnes et al., 2011). Therefore, the expression 

of PA200 in different cell types in IPF and lung cancer tissues suggests that its regulation is 

rather related to cellular phenotypes, such as increased proliferation and survival, and not to 

the cellular identity.  

Several studies observed an activation of the ubiquitin-proteasome system in tumor cells, 

which strongly depend on proteasomal protein degradation due to their high proliferation 

capacity, but the knowledge on the regulation of the proteasome and its activators in lung 

cancer is very limited ((Arlt et al., 2009; Chen and Madura, 2005; Shen et al., 2013). Therefore, 

the here observed increased PA200 expression in tumor cells of the lung is a so far unknown 

aspect of proteasome regulation in lung cancer and suggests that PA200 upregulation is a 

common feature of (hyper-)proliferative cells and tissues. 

 

7.3.2 Characterization of PA200 in the cell 

7.3.2.1 PA200 localizes to both cytosolic and nuclear compartments of the cell 

So far PA200 has been considered as a nuclear protein because a nuclear localization signal 

was discovered within the sequence of the human gene (Ustrell et al., 2002). Interestingly, 

homologs of the activator in Saccharomyces cerevisiae, Arabidopsis thaliana and 

Caenorhabditis elegans do not contain such a nuclear targeting sequence, but their sequence 

homology of 17-29 % with the human protein is also very low (Ustrell et al., 2002). 

Cellular localization of PA200 has only been analyzed by immunofluorescence staining in two 

studies by Ustrell et al. and Qian et al. (Qian et al., 2013; Ustrell et al., 2002). However, as 

discussed in section 5.3.2, both studies used non-specific antibodies and thus obtained 

results are not reliable. Indeed, immunocytochemistry (ICC) is the most reliable method for 
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cellular localization of proteins, but it requires the use of specific antibodies compatible with 

the applied staining conditions, especially with the fixation of cells. Testing a variety of 

antibodies and conditions for ICC of PA200 in the present study did not produce reliable 

results in PA200-silenced cells and controls (data not shown); Thus, PA200 can only be 

trustworthily detected by IHC and immunofluorescence staining of tissues. Here, staining of 

human and mouse tissue sections with two validated PA200 antibodies provided first reliable 

evidence for localization of the activator indicating that PA200 localizes mainly to the 

nucleus but is also present in the cytosol of cells in healthy and diseased lung tissue. In this 

context, the interactome analysis also revealed that many cytosolic proteins, such as 

ribosomal proteins, co-immunoprecipitated with PA200. Therefore, this study provides very 

exciting and new insights into the localization of the activator and contradicts the general 

notion that PA200 is an exclusively nuclear protein. 

Blickwedehl et al. analyzed the solubility profile of PA200 in response to digitonin extraction 

or crosslinking of cellular proteins with PFA and proposed that the 200 kDa protein is, 

although partially soluble, also associated with cellular components because PA200 was only 

detected in the pellets of lysates from PFA-fixed cells (Blickwedehl et al., 2007). In contrast, in 

the present study PA200 was efficiently extracted by cell lysis under detergent-free and 

non-denaturing conditions when compared to extraction of the remaining pellet in RIPA 

buffer (data not shown). Moreover, using the histone extraction protocol PA200 was only 

detected in the soluble fraction and not found in association with chromatin (data not 

shown), which is also contradictory to the previously reported detection of PA200 in 

chromatin fractions of HeLa cells (Blickwedehl et al., 2007). Concluding, these observations 

suggest that PA200 is not tightly associated with cellular components in phLF, especially not 

of the nuclear compartment. The here discovered discrepancy regarding the solubility of 

PA200 might have two reasons: First, analysis of protein association with cellular 

compartments by PFA fixation of cells or cell lysis with buffers of varying degrees of 

stringency as performed by Blickwedehl et al. is a very artificial setting and can lead to 

misinterpretation of results. Or second, PA200 is differentially associated with cellular 

components in different cell types. 
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7.3.2.2 PA200 mainly associates with the constitutive 20S proteasome in phLF 

Several studies observed the association of PA200 with the proteasome forming 20S singly- 

and doubly-capped as well as 26S hybrid alternative proteasome complexes using qualitative 

approaches involving co-IP of the 20S core particle (Blickwedehl et al., 2007; Fabre et al., 

2013, 2014, 2015; Ustrell et al., 2002). Ortega and colleagues analyzed PA200-20S 

proteasomes isolated by anion exchange chromatography and gradient gel centrifugation 

with electron microscopy and observed that PA200 interacts with all subunits of the α-ring 

except α7 thereby forming an opening into the particle and that PA200 binding to the 20S 

proteasome induces opening of its axial channel (Ortega et al., 2005). The determination of 

the interaction stoichiometry between PA200 and other proteasomal subunits by proteomic 

analysis of PA200 co-immunoprecipitating proteins is a novel approach because it allows for 

a quantitative assessment of all PA200 alternative proteasome complexes in cell extracts.  

Although the PA200 interactome was strongly adapting to cellular growth conditions, 

association of the activator with the proteasome was observed under all applied settings. 

Here, PA200 was preferentially associated with subunits of the constitutive 20S proteasome 

as it was only poorly interacting with immunoproteasome subunits that are, however, 

generally low expressed in non-immune cells. Nevertheless, this observation accords well 

with a previous study by Fabre et al. analyzing protein abundance correlation of affinity 

purified 20S complexes and interacting proteins in nine different human cell lines (Fabre et 

al., 2015). In the same context, Blickwedehl et al. reported that PA200 is not regulated by 

INFγ and interacted with 20S proteasomes in LMP2- and LMP7-deficient HeLa cells 

(Blickwedehl et al., 2007). 

In phLF, PA200 is associated with the constitutive proteasome subunits at an interaction 

stoichiometry ration of approximately 1. The interaction with 19S regulatory subunits 

forming PA200-26S hybrid complexes was substantially lower, which accords well with native 

gel analysis of PA200 alternative proteasomes in phLF extracts. Using electron microscopy 

analysis of 20S proteasomes isolated from bovine testis, Ortega et al. proposed that 50 % of 

isolated 20S was uncapped, 40 % of 20S was PA200 singly capped and 10 % of 20S 

proteasomes were PA200 doubly capped (Ortega et al., 2005). In contrast, results of the 

present study suggest that 20S particles are mainly singly capped in phLF under the applied 

conditions. However, composition of PA200 alternative proteasome complexes may vary 

among different cellular conditions and cell types, as the activator also shows a differential 
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expression pattern in different organs including a much higher expression in testis when 

compared to the lung (Ustrell et al., 2002). Moreover, isolation of proteasome complexes and 

electron microscopy as performed by Ortega et al. is a rather time consuming and harsh 

process, which in the end might not totally reflect the cellular situation. 

Interestingly, LC-MS/MS analysis revealed that PA28α, PA28β and PA28γ interact with PA200. 

This provides first evidence for the formation of mixed alternative proteasome complexes 

composed of two different activators associated with the 20S core particle. It requires further 

analysis to determine whether those particles have distinct functions or if they are 

bi-functional and exert activator-specific functions simultaneously at both sides of the 20S 

core particle. 

 

7.3.2.3 PA200 is regulated according to cellular growth and activation 

PA200 expression and association with proteasome was significantly enhanced in phLF 

cultured under growth conditions in cell culture medium containing 10 % FBS compared to 

1 % FBS, which accorded well with increased levels of proliferation markers. Moreover, the 

present study also observed induction of PA200 alternative proteasome complexes in 

TGF-β1-induced myofibroblasts, which are characterized by an activated phenotype 

involving induction of SMAD and AKT signaling, increased invasion capacity, survival and 

secretion of ECM components (Clark et al., 1997; Hinz et al., 2007; Horowitz et al., 2004). Of 

note, analysis of the PA200 interactome upon these different cellular stimuli indicated that 

not only the expression of the activator but also its interaction with other proteins strongly 

adapts to growth and activation of phLF.  

Expression of PA200 was also significantly induced in non-differentiated basal cells when 

compared to differentiated phBECs. Basal cells are self-renewing, multi-potent progenitor 

cells of the lung airway epithelium which can differentiate into Club cells, goblet cells and 

ciliated cells and thus play an important role in regeneration of the lung epithelium (Hong et 

al., 2006; Rock et al., 2009). PA200 expression mainly declined between day 0 and 7 of their 

differentiation, when expression of proliferation and basal cell markers is also largely 

decreasing (unpublished data of Dr. A. Schamberger, postdoctoral scientist at the CPC). 

Therefore, PA200 expression levels accord well with the self-renewing state of these cells. 
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Although ubiquitin-dependent protein degradation has been observed in a variety of 

different settings to be co-regulated with cellular proliferation and increased proteasome 

activity was recently reported to be essential for maintenance of pluripotency in human 

embryonic stem cells, the regulation of alternative proteasome activators in these processes 

has not been investigated so far(Ichihara and Tanaka, 1995; Vilchez et al., 2012). Therefore, 

this study provides first evidence for the regulation of PA200 alternative proteasome 

complexes depending on cellular proliferation and activation and thereby describes a new 

aspect of regulation of proteasome function according to cellular stimuli. 

 

7.3.2.4  PA200 regulates activation, proliferation and survival of phLF 

PA200 is not essential for cellular function, as PA200-/- mice do not show any distinct 

phenotype except from defects in spermatogenesis (Khor et al., 2006). Moreover, phLF coped 

well with silencing of the activator. Although PA200 is ubiquitously expressed in different 

organs and cell types, its expression - except from testis - is rather low (Ustrell et al., 2002). 

Analyzing the interaction of the 20S proteasome with different activators in 9 human cell 

lines, Fabre et al. discovered a very low abundance of PA200 alternative proteasomes 

comprising less than 5 % of all proteasome complexes (Fabre et al., 2014). The present study 

also observed that expression in the healthy lung is very low and that the amount of PA200 

alternative complexes is tightly regulated according to cellular growth or activation. 

However, loss of the small cellular pool of PA200 alternative proteasomes induced a 

remarkably strong cellular phenotype suggesting that these complexes have an important 

function and are tightly regulated to ensure proper cell function.  

Gene expression profiling in response to PA200 silencing in phLF using transcriptomic and 

proteomic screens revealed a so far unrecognized induction of cellular proliferation and 

survival, which was validated by in vitro experiments in these cells.  

Protein kinase AKT was significantly activated in response to PA200 silencing. This 

observation corresponds well to activation of proliferation and survival predicted by 

molecular function analysis of regulated genes and proteins upon PA200 silencing. AKT is a 

central signaling pathway of the cell regulating survival and also proliferation of cells via a 

plethora of mechanisms (Manning and Cantley, 2007). PA200 silencing also strongly induced 

proliferation of phLF, which accorded well with increased mRNA and protein expression of 
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the proliferation marker and cell cycle regulator cyclin D1. Moreover, enhanced expression of 

the myofibroblast marker αSMA and the cytokine TGF-β1 point towards an activated, 

myofibroblast-like phenotype upon PA200 silencing. In this context, molecular function 

analysis of regulated genes upon PA200 silencing also indicates the activation of processes 

that are characteristic for a myofibroblast-like phenotype, such as activation of cell 

spreading, microtubule dynamics as well as organization of cytoplasm and cytoskeleton. 

These data are partly in line with a study in HeLa cells by Blickwedehl et al., who observed 

that PA200 silencing enhances proliferation and activates the mTOR target ribosomal S6 

kinase in serum-starved cells and that this effect depends on glutamine supplementation 

(Blickwedehl et al., 2012). In the present study, induction of mTOR signaling was not 

observed (data not shown), although AKT serves as a major upstream regulator of the mTOR 

pathway (Laplante and Sabatini, 2012). These differences might result from the fact that both 

studies used different cell types – immortalized cancer cells versus primary cells – and 

differential serum conditions.  

PA200 silencing also induced proteasome activity and formation of standard 20S, 26S and 

30S proteasome complexes in phLF suggesting a general adaption of proteasome activity 

according to cellular proliferation and activation. Regulation of protein degradation 

according to cellular growth and activity has been suspected for a long time, as cell cycle 

progression for example is largely depending on proteasomal degradation, and proteasome 

function is important for amino acid recycling (Hershko, 1997; Suraweera et al., 2012; Vabulas 

and Hartl, 2005). However, analysis of the exact mechanism in a complex cellular 

environment is challenging and results presumably largely depend on the applied 

experimental setup. Recently, regulation of the proteasome according to cellular growth was 

controversially discussed in the context of mTOR signaling but the exact mechanism and 

differential findings of these studies require further investigation (Zhang et al., 2014; Zhao et 

al., 2015).  

Beside the induction of proliferation, transcriptomic and proteomic analyses also revealed 

downregulation of CASP3 and FAS, which are both important components of the apoptotic 

cascade. This is a completely new and exciting finding, as PA200 has not been described as a 

regulator of apoptosis so far. Downregulation of CASP3 protein levels was validated by 

Western blotting showing a strong decrease over time. Moreover, the activation of the 

apoptotic cascade was significantly impaired in PA200-deficient phLF upon treatment with 
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the apoptosis-inducer staurosporine, which inhibits protein kinases by binding to their ATP 

binding sites (Karaman et al., 2008). Concluding from these observations, downregulation of 

apoptotic proteins by PA200 silencing decreases the ability of phLF to undergo apoptosis, 

which accords well with activation of AKT signaling in these cells. The AKT pathway is a 

prominent regulator of cellular survival by increasing cellular growth and proliferation and 

decreasing apoptosis at the same time via a plethora of downstream targets (Manning and 

Toker, 2017; Zhang et al., 2011). AKT activation for example decreases apoptotic signaling by 

phosphorylation and inactivation of pro-apoptotic signals, such as the Bcl-2-associated 

death promoter (BAD) and different forkhead box (FoxO) transcription factors driving 

transcription of apoptosis-inducing genes.  

The regulation of cellular apoptosis by PA200 is a completely new finding, as so far survival 

of cells upon PA200 silencing has only been analyzed in response to radiation treatment in 

HeLa cells, but neither the basal difference in survival between PA200-expressing 

and -deficient cells nor effects on cellular apoptosis have been investigated (Blickwedehl et 

al., 2008).  

Resistance to apoptosis is a widely discussed phenotype of both normal lung fibroblasts as 

well as myofibroblast of the fibrotic lung (Thannickal and Horowitz, 2006). Upon normal 

tissue injury, the physiological function of activated myofibroblasts is to secrete ECM 

components providing a scaffold for migration of epithelial cells and to facilitate wound 

closure due to their contractile function thereby allowing for re-epithelialization (Martin, 

1997; Singer and Clark, 1999). Proper restoration of the tissue also requires resolution of the 

ECM scaffold and apoptosis of myofibroblasts (Desmoulière et al., 1995). Fibrotic tissue 

remodeling is described as dysregulated wound healing process leading to excess deposition 

of ECM and persistence of myofibroblasts (Thannickal et al., 2004). Low levels of apoptosis 

have been observed in myofibroblasts of human IPF tissues, and fibroblasts isolated from 

normal and IPF lungs were described to be resistant to apoptosis (Frankel et al., 2006; Plataki 

et al., 2005; Tanaka et al., 2002; Uhal et al., 1998). However, so far there has been no 

conclusive evidence that the persistence of myofibroblasts in the fibrotic lung is caused by 

resistance to apoptotic signaling. Although several mediators of apoptosis resistance in 

fibroblasts have been proposed, the exact mechanism still needs to be clarified (Ajayi et al., 

2013; Bühling et al., 2005; Im et al., 2016). Therefore, the discovery of PA200 as a regulator of 
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apoptosis in phLF is a novel and exciting finding describing a so far unrecognized function of 

this proteasome activator.  

Taken together, this study provides novel insights into the function of PA200 in phLF. The 

observation that inactivation of PA200 function drives activation, proliferation and survival of 

phLF suggests that it functions as a negative regulator of these processes in phLF. The 

underlying mechanism, however, will be the subject of future studies.  

Of note, enhanced AKT signaling, proliferation, metabolic activity, and apoptosis resistance 

point towards induction of a myofibroblast-like phenotype upon loss of PA200 function. This 

observation is in striking contrast to increased PA200 protein levels in TGF-β1-differentiated 

myofibroblasts, myofibroblasts of IPF tissues and tumor cells of lung cancer biopsies, as both 

of these cell types are characterized by increased proliferation and survival (Figure 7.41). 

Therefore, upregulation of PA200 might represent the frustrated cellular attempt to limit 

cellular growth and survival in diseased tissues. The exact molecular mechanism describing 

how PA200 silencing induces activation, proliferation and survival in phLF needs to be 

investigated in future studies. Taking into account that PA200 is a proteasome activator 

mediating the degradation of certain proteins, the potential substrate could be a driver of 

cellular proliferation and survival that is strongly induced in myofibroblast and also cancer 

cells. However, this is rather speculative as the function of PA200 with regard to degradation 

of specific substrates is unclear, as discussed in the following section. Moreover, as PA200 

silencing increased proteasome activity in phLF, PA200 could also be a regulator of 26S 

proteasome function by competing with the 19S regulator for binding to the 20S 

proteasome core complex. Lastly, PA200 might function as an adaptor protein thereby not 

being directly involved in protein degradation but rather targeting proteasome complexes to 

defined subcellular localizations. 
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Figure 7.41: Scheme of PA200 function in the lung. Upregulation of PA200 was observed in myofibroblasts 
and abnormal bronchial basal cells of IPF tissues, which accords well with increased PA200 expression in these 
cells in vitro at conditions of TGF-β1- or serum-induced cell growth. This suggests a general induction of PA200 
alternative proteasomes in activated or proliferating cells. In contrast to these observations, silencing of PA200 in 
phLF induced activation, proliferation and survival constituting a myofibroblast-like phenotype. This suggests 
that PA200 is a negative regulator of fibroblast activation, proliferation and survival and is therefore induced in 
diseased tissues to limit these processes. Elucidating the exact underlying mechanism will be subject of future 
studies but could involve the following: PA200 mediates degradation of specific substrates driving proliferation 
or survival of fibroblasts; PA200 regulates activity of 26S proteasomes; PA200 serves as an adaptor molecule 
localizing proteasomes to certain cellular compartments and is not directly involved in the degradation of 
proteins.  
 

7.3.2.5 Defining the exact molecular mechanism of PA200 function remains 

challenging 

Since the first description of PA200 as a proteasomal activator, a variety of different 

hypotheses regarding its exact mechanism of action have been proposed. The first study in 

2002 investigating the function of human PA200 claimed that the activator preferentially 

stimulates C-L activity of the 20S proteasome and only facilitates the degradation of 

peptides but not of intact proteins (Ustrell et al., 2002). In contrast, in the present study 

silencing of PA200 led to an increase of proteasome activity and formation of proteasome 

complexes in phLF. Moreover, the amount of PA200 bound to the proteasome in the cell is 
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rather low with only 5 % of 20S complexes being associated with the activator, which hinders 

detection of changes in proteasome activity mediated through activation of 20S complexes 

by PA200 (Fabre et al., 2014). Ustrell and colleagues also hypothesized that PA200 could 

antagonize protein degradation by competing with a 19S regulator for binding to the 20S 

core particle. In a later study Ortega et al. showed that binding of PA200 to the 20S core 

complexes triggers opening of its axial channel supporting its function as a proteasome 

activator (Ortega et al., 2005). Reviewing PA200 literature, Savulescu et al. proposed that by 

forming hybrid complexes with the 26S proteasome PA200 could also function as a peptide 

flusher accelerating the exit of cleaved peptides (Savulescu and Glickman, 2011). Moreover, 

they also hypothesized that PA200 might mediate degradation of damaged or misfolded 

proteins or even unfolded and defective proteins sequestered by ribosomes in an ubiquitin-

independent fashion. Indeed, Qian et al. have been the first and only ones so far claiming 

that PA200 mediates degradation of certain substrates (Qian et al., 2013). They proposed 

that PA200 facilitates ubiquitin-independent proteasomal degradation of acetylated core 

histones during spermatogenesis and DNA damage. Moreover, they concluded that 

acetylated histones are specifically recognized via the bromodomain-like region of PA200. 

However, this study has major deficits questioning the specific degradation of histones, 

although the observations accord well with the early finding that PA200 is essential for 

normal spermatogenesis (Khor et al., 2006; Qian et al., 2013). For example, the applied 

PA200-/- mouse model encompasses only deletion of exons 25 and 26 out of in total 45 

coding exons of the PA200 gene and is thus not a full knockout (Qian et al., 2013). Moreover, 

Western blot analysis and immunostaining of tissues and cells suggest that the applied 

PA200 antibody is not specific for recognition of the protein and proper controls are missing. 

Finally, this study claims to observe the same function for human PA200 and its yeast 

analogue Blm10, which are only poorly conserved and most probably have different 

functions. In the present study, the effect of PA200 silencing and overexpression on the 

regulation of total and acetylated histones was analyzed and did not confirm that PA200 

mediates degradation of acetylated histones in phLF.  

Identification of potential substrates of PA200 is a very challenging approach for several 

reasons. First, PA200 was observed to tightly interact with the 20S proteasome, which 

impedes the detection of direct interactors of the activator. Here in this study, the 

interactome analysis discovered a variety of proteins binding to the activator, and many of 
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them were also detected in a pulldown of the 20S proteasome followed by proteomic 

analysis (data not shown). Therefore, it is difficult to judge whether a protein directly 

interacts with PA200 or whether it interacts with PA200 via the 20S proteasome. THBS1, 

which was identified in the PA200 interactome, was still associated with the 20S proteasome 

in PA200-deficient cells. These data suggest that THBS1 - and potentially also other proteins 

identified in the co-IP of PA200 - interact with the activator via the 20S proteasome. And 

second, the degradation of a potential substrate is a very fast process and therefore the 

interaction of this substrate with PA200 might occur within a very limited amount of time, 

which hinders proper detection of substrates via mass spectrometry (Peth et al., 2013). 

Crosslinking mass spectrometry (XL-MS) is a promising approach for future studies to detect 

proteins that are directly interacting with PA200 ((Liu et al., 2015). This method involves 

linkage of amino acids in close proximity within a protein extract with an MS-cleavable linker 

and subsequent analysis of linked peptides by LC-MS/MS. Thus, this method provides not 

only information on the interaction but also on the structure of proteins and protein 

complexes. Although at the moment XL-MS requires further optimization because resolution 

for detection of cross-linked fragments and their exact annotation are limited, it is a very 

promising method for detection of direct protein-protein interacts in the future. 

However, observations from this and other studies suggest that PA200 might function as an 

adaptor protein and is therefore only indirectly regulating protein degradation. Adaptor 

proteins interact with protein binding partners via specific protein binding modules and can 

thereby organize large protein complexes in a spatial and temporal manner (Flynn, 2001; 

Pawson, 1997). Bringing specific proteins together, they are important mediators of signaling 

cascades as they transfer signals to specific protein complexes or subcellular compartments, 

for example during signal transduction via receptor tyrosine kinases from the cell surface 

into the cytosol. Another proteasome interacting protein, ECM29, has been suggested to act 

as an adaptor protein coupling proteasomes to the microtubules, the centrosome, the 

endocytic vesicles and the endoplasmic reticulum in mammalian cells (Gorbea et al., 2004, 

2010). Similar to PA200, ECM29 is a 200 kDa monomer composed of HEAT repeats that binds 

to the 26S proteasome and localizes to distinct cellular compartments supporting its role as 

an adaptor protein (Gorbea et al., 2010; Kajava et al., 2004).  

For several reasons, it is tempting to speculate that PA200 also functions as an adaptor: First, 

as several other adaptor molecules, PA200 is a monomeric protein composed of HEAT 
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repeats (Andrade et al., 2001; Kajava et al., 2004; Kobe et al., 1999). Second, it strongly 

interacts with the 20S proteasome. However, recent studies on human PA200 or its yeast 

homologue Blm10 concluded that its pore is too small to facilitate entry of intact proteins to 

the catalytic core and could therefore only mediate uptake of unstructured peptides, which 

points towards a function not directly related to protein degradation (Ortega et al., 2005; 

Sadre-Bazzaz et al., 2010). Third, in the present study PA200 alternative proteasome 

complexes interacted mainly with ribosomal proteins and hnRNPs suggesting that PA200 

alternative proteasomes might preferentially localize to these cellular compartments, which 

accords well with its cytosolic and nuclear expression. And fourth, beside the regulation of 

PA200 expression according to cellular proliferation and activation, silencing of PA200 

strongly induced cellular survival, which both points towards a regulation of major cellular 

signaling pathways as it is the case for many adaptor proteins (Flynn, 2001). And lastly, 

analysis of gene expression in phLF upon PA200 silencing by transcriptomic and proteomic 

screens revealed a similar regulation on mRNA and protein level. Here, genes that were 

strongly induced on their protein level were mostly regulated via mRNA expression. 

Assuming that PA200 targets specific substrates for degradation and that these proteins 

accumulate upon silencing of the activator, genes only regulated on protein level were of 

particular interest for this analysis. However, proteins that were exclusively altered on the 

protein level showed a similar extent of up- and downregulation and were mainly found to 

be only induced. Therefore, the analysis did not clearly display potential substrates of PA200.  

All these aspects suggest that PA200 might function as an adaptor protein to localize 

proteasomes to ribosomes and hnRNPs thereby adjusting previously described proteasomal 

protein degradation during ribosome biogenesis or protein synthesis (Stavreva et al., 2006; 

Turner and Varshavsky, 2000). Moreover, having an NLS and localizing to both the cytosol 

and nucleus, PA200 could theoretically also shuttle proteasome complexes between these 

compartments, as recently described for its yeast homologue Blm10 (Chowdhury and 

Enenkel, 2015; Weberruss et al., 2013). 

Concluding, evidence for a function of PA200 in mediating the degradation of specific 

substrates has been very limited so far. Although degradation of one or more proteins 

driving cell growth and survival would provide a logical explanation for the cellular 

phenotype observed in PA200-deficient phLF, other modes of action have to be considered.  

 !
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8 Concluding remarks  

In the present thesis, the role of alternative activators was dissected in lung biology and 

disease with a particular focus on the fast adaption of alternative activator complexes 

according to cellular stimuli and the regulation and function of the proteasome activator 

PA200 in hyperproliferative lung diseases. 

In the first part of the study, specificity testing of a widely used PA200 antibody revealed that 

this antibody is not specific for detection of the activator but also recognizes a protein 

species, which - in contrast to the statement of an early publication by Ustrell and colleagues 

- is not related to PA200 (Ustrell et al., 2002). This is an important finding, as many 

observations on the function and regulation of PA200 are based on experiments using this 

antibody and thus need to be considered with caution. Therefore, the findings of the initial 

study of the present thesis illustrate the importance of careful validation of antibody 

specificity using siRNAs or knockout mice.  

In the second part of the study, the regulation of alternative proteasome complexes was 

investigated in response to proteotoxic stress caused by proteasome inhibition. Here, a 

strong and fast recruitment of the alternative activators PA28γ and PA200 to the proteasome 

was observed. This is a very exciting finding, as it provides first evidence for the previously 

proposed building block concept predicting that recruitment of proteasome activators to the 

proteasome represents one possibility to quickly adapt proteasome function to cellular 

needs. 

The third part of this study provided first evidence for a regulation of PA200 in diseased 

tissues and discovered novel aspects on its function in phLF which largely extends the until 

now limited knowledge on the activator. Here, the upregulation of PA200 in fibrotic tissue 

remodeling as well as tumor cells of different lung cancer subtypes accorded well with the 

observation that PA200 is regulated according to cellular growth and activity. PA200 was 

discovered to be controlled on different levels, including its expression, its recruitment to the 

proteasome and its interactome. Moreover, the functional analysis of PA200 in phLF 

discovered the activator as a novel regulator of cellular activation, proliferation and survival.  

 

In conclusion, the here obtained results support the idea that proteasome function is 

regulated according to cellular needs on the level of activator recruitment to the 20S 
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proteasome complex, as proposed by the building block concept (Figure 8.1). Moreover, the 

here performed studies largely extend the so far limited knowledge on PA200 by identifying 

it as a novel regulator of cellular activation and survival and observing its induction in 

hyperproliferative lung disease, such as IPF and lung cancer. The results thereby further 

validate the building block concept and provide novel aspects for the pathogeneses of both 

diseases. 

 

 
Figure 8.1: The building block concept. In order to maintain cellular proteostasis, proteasome function can be 
quickly adapted according to cellular stimuli, such as inhibition of proteasome function or disease-relevant 
stimuli, via formation of the different proteasome complexes upon recruitment of proteasome activators to the 
20S core complex. 
 

Although the present and recent studies have contributed to a better understanding of 

alternative proteasome activators, further studies are required to dissect their exact function 

in more detail. One controversially discussed and fundamental question is whether these 

alternative activators are actually able to facilitate the degradation of intact proteins. Several 

studies reported that the pore of these activators is actually too small to allow for the entry 

of intact proteins and therefore can only facilitate the entry of small, unfolded peptides, 

which challenges the general concept that these activators mediate the degradation of 

specific proteins. Especially for PA200 several different mechanisms explaining how the 

activator regulates cellular survival and proliferation are plausible beyond a function in 

promoting degradation of specific substrates: first, PA200 may function as a placeholder by 

binding to 20S proteasomes and thereby controlling the association or the 20S core with the 

19S regulator; second, it may function as shuttle protein bringing specific proteins in close 
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proximity to the proteasome; and third, PA200 may function as an adaptor bringing 

proteasomes to distinct cellular compartments. In this regard, the development of inhibitors 

for the specific interaction of an alternative proteasome activator with the 20S proteasome 

will allow for more detailed characterization of their mechanism of action and may also 

provide a new therapeutic tool for diseases that are related to increased formation of PA200 

alternative proteasome complexes. 
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