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 Summary 
 
Synaptic plasticity, the activity-dependent alteration of neuronal synapses, 

underlies learning and memory formation. Local translation of dendritically 

localized mRNAs greatly contributes to this process. The double-stranded RNA-

binding protein, Staufen2 (Stau2) is known to traffic along neuronal dendrites, 

thereby contributing to dendritic messenger RNA (mRNA) transport and local 

translation. To date, however, the precise mechanisms underlying the binding of 

Stau2 to its target mRNAs and hence their post-transcriptional regulation remain 

elusive. The aim of this thesis was to identify Stau2-bound mRNAs from rat brain 

and characterize the role of Stau2 in their post-transcriptional regulation in depth. 

These RNAs were identified either via microarray or individual nucleotide 

resolution CLIP (iCLIP) and deep sequencing in rat brain. The iCLIP results 

demonstrated significant Stau2 binding preferentially to the 3’-UTR region of 356 

mRNAs. For several of these targets, the regulation of mRNA stability, 

localization and finally translation by Stau2 was tested. Two novel Stau2 target 

mRNAs, Calmodulin3 (Calm3) and Regulator of G-Protein signaling 4 (Rgs4), 

localized to dendrites of hippocampal neurons. Both these mRNAs encode for 

proteins essential in neuronal signaling cascades essential in learning and 

memory. Stau2 stabilizes Rgs4 mRNA via its 3’-UTR. On the contrary, Stau2 did 

not affect Calm3 mRNA stability. Instead, I could show that it has a direct role in 

mediating Calm3 dendritic localization emphasizing that Stau2 function might be 

distinct for different target mRNAs. Interestingly, the 3’-UTR of the long isoform of 

Calmodulin3 (Calm3L) mRNA, showed strongest Stau2 binding in its retained 

intronic region. This interaction enabled Stau2 to mediate dendritic localization of 

this Calm3L isoform in mature rat hippocampal neurons. Notably, this localization 

is promoted by N-methyl-D-aspartate (NMDA)-mediated synaptic activation. 

NMDA activates ionotropic glutamate receptors and enhances their conductivity. 

This is now known to be one of the essential elements for the induction of 

synaptic plasticity and thus represents a molecular mechanism for 



learning and memory. We have also identified 27 other Stau2 target mRNAs that 

retain an intron in their 3’-UTRs. This suggests an elegant mechanism wherein 

Stau2 is recruited by selective intron retention in selected target mRNA 3’-UTR, 

which then acts in the neuronal activity-dependent localization of Calm3L mRNA 

to distal dendrites. Furthermore, in the absence of Stau2 the Calm3L isoform 

accumulates in the nucleus in hippocampal neurons. This introduces a new role 

for Stau2 (which is known to shuttle between nucleus and cytoplasm), in nuclear 

export. 

Together, this work identifies mRNA targets directly bound by Stau2 in neurons 

and along with the in depth analysis of these targets yields important insights into 

the specificity and underlying mechanisms of Stau2 function in synaptic plasticity. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Zusammenfassung 

 

Synaptische Plastizität, der funktionelle und strukturelle Umbau von Synapsen in 

Abhängigkeit neuronaler Aktivität, ist die Grundlage des Lernens und der 

Entstehung von Erinnerungen. Die dendritische Lokalisation von mRNA und 

deren anschließender Translation an der Synapse tragen zu diesem Prozess bei. 

Das Doppelstrang-RNA-Bindeprotein Staufen2 (Stau2) wird dabei in einem RNA-

Proteinkomplex entlang neuronaler Dendriten transportiert und trägt so zum 

mRNA Transport und zu der lokalen Translation in Dendriten bei. Bis heute ist 

der zugrundeliegende Mechanismus der Interaktion zwischen Stau2 und dessen 

Ziel-mRNAs sowie deren post-transkriptionelle Regulation nicht geklärt. Ziel 

dieser Dissertation war die Identifizierung Stau2-gebundener neuronaler mRNAs 

und die Charakterisierung der Stau2-abhängigen post-transkriptionellen 

Regulation dieser mRNAs. Die Identifizierung von Ziel-mRNAs im Nagerhirn 

erfolgte mittels microarray bzw. iCLIP (individual nucleotide resolution CLIP) in 

Kombination mit deep sequencing. Die iCLIP Ergebnisse zeigten eine 

signifikante Anreicherung von Stau2-Bindestellen in 356 mRNAs, bevorzugt in 

deren 3’-UTR. Für zwei der identifizierten mRNAs wurde die Stau2-abhängige 

Regulation der mRNA Stabilität, Lokalisation und Translation getestet. Diese 

Stau2 Ziel-mRNAs, Calmodulin3 (Calm3) und Regulator of G-Protein signaling 4 

(Rgs4), sind in den Dendriten hippocampaler Neuronen lokalisiert. Beide 

Transkripte codieren für Proteine, die eine wesentliche Rolle in einer neuronalen 

Signalkaskade einnehmen, welche für das Lernen und die Gedächtnisbildung 

essentiell ist. Stau2 stabilisiert die Rgs4 mRNA über deren 3’-UTR. Im 

Gegensatz dazu hat Stau2 keinen Einfluss auf die Stabilität der Calm3 mRNA, 

sondern übt eine direkte Rolle aus auf deren dendritische Lokalisation. Dies 

zeigt, dass Stau2 im Bezug auf unterschiedliche Ziel-mRNAs unterschiedliche 

Funktionen haben könnte. 

Interessanterweise wurde die stärkste Bindung von Stau2 an ein nicht 

gespleißtes Intron in der 3’-UTR der langen Isoform von Calmodulin3 (Calm3L) 



nachgewiesen. Durch diese Interaktion mit Stau2 wird die dendritische 

Lokalisation der Calm3L Isoform in hippocampalen Neuronen gewährleistet. 

Interessanterweise fördert die N-Methyl-D-Aspartat (NMDA) vermittelte 

synaptische Aktivität diese Lokalisation in Dendriten. NMDA aktiviert ionotrope 

Glutamatrezeptoren und steigert deren Konduktivität. Dies ist einer der 

essentiellen Prozesse, die zur Induktion synaptischer Plastizität führen, und stellt 

daher einen molekularen Mechanismus für das Lernen und die Bildung von 

Erinnerungen dar. Zusätzlich wurden 27 weitere Stau2 Ziel-mRNAs identifiziert, 

die ein Intron in ihrer 3’-UTR beibehalten. Dies deutet auf einen Mechanismus 

hin, bei dem Stau2 durch selektiv beibehaltene Introns in bestimmten 3’-UTRs 

rekrutiert werden kann. Dieser Prozess führt zur aktivitäts-abhängigen 

Lokalisation vom Calm3L mRNA in distalen Dendriten. In Abwesenheit von Stau2 

akkumuliert die Calm3L Isoform im Zellkern hippocampaler Neuronen. Es ist 

bekannt, dass Stau2 zwischen Nukleus und Zytoplasma transportiert wird. Diese 

Daten deuten somit auf eine bisher unbekannte Funktion von Stau2 im Export 

von mRNAs aus dem Zellkern.  

Zusammenfassend wurden in dieser Doktorarbeit Ziel-mRNAs identifiziert, die 

direkt von Stau2 in Neuronen gebunden werden. Die detaillierte Analyse dieser 

mRNAs liefert wichtige Erkenntnisse über den Beitrag von Stau2 zu der 

synaptischen Plastizität.  
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Introduction 
 

The human brain consists of gigantic neural networks that perform high-end 

tasks from memory formation to behavior control. Effective execution of these 

functions is heavily dependent on the precise modulation of individual neurons 

thereby achieving a dynamic balance between the long-term storage of information 

and plasticity in response to experience. One of the mechanisms underlying this 

process is mRNA localization and local translation at synapses. This is achieved 

through coordinated actions of RNA-binding proteins (RBPs) and regulatory non-

coding RNAs, which direct the fate of mRNAs via nuclear export, mRNA stability, 

transport, and translational control. This thesis explores the specificity of the 

molecular interactions between the RBP Staufen2 (Stau2) and its target mRNAs in 

single neurons and the mechanisms of Stau2-mediated post-transcriptional 

regulation of these mRNAs that underlie the observed synaptic plasticity. 

 

1. mRNA regulation in neurons 

One of the most remarkable characteristics of neurons is their large-scale usage 

of post-transcriptional mRNA regulation to achieve distinct functions, such as axon 

guidance and synaptic plasticity.  In comparison to other cell types, they express a 

wider range of alternatively spliced mRNAs, microRNAs and small RNAs.  Several 

studies have recently demonstrated a clear link between neurological diseases such 

as epilepsy and schizophrenia, and defective RNA regulation (Tolino et al., 2012; 

Wang et al., 2016).  Thus, neurons present a perfect system to understand novel 

concepts of RNA regulation.  

 

1.1 RNA localization  
Neurons harbor morphological and functional polarity. They contain several 

compartments; a cell body, a single branched axon and many highly branched 

dendrites. Each compartment serves a special function. The dendrites can form up to 

several thousand synaptic contacts with neighboring cells from which they receive 

positive or negative stimuli. These stimuli then reach the cell body wherein they are 

consolidated, and a single axon delivers a binary output to post-synaptic neurons 

(Spruston, 2008). The asymmetric distribution of cellular components establishes this 
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cellular polarity; a process essential for development and functioning of mature 

neurons. The prompt and local modulation of subcellular domains in response to 

stimulation is critical to the working of neuronal networks. One well-known 

mechanism that neurons use to create and maintain this asymmetry is the 

localization of subsets of mRNAs to specific domains of the cell and then their local 

translation (Martin and Ephrussi, 2009). This allows stringent temporal and spatial 

control of gene expression, which is used in neurons to achieve synapse-specific 

modifications during learning and memory formation (Martin and Ephrussi, 2009).  

 

1.2. mRNA-RBP interactions in synaptic plasticity 
Synaptic plasticity is the capacity of neurons to modify their synaptic strength, in 

response to usage (Costa-Mattioli et al., 2009) either in the form of long-term 

potentiation (LTP) or long-term depression (LTD). The formation of LTP occurs in two 

temporal phases: 1. Early LTP (E-LTP) induced by one stimulus, that depends on the 

modification of pre-existing proteins rather than new protein synthesis and lasts up to 

several hours; 2. Late LTP (L-LTP) induced by repetitive stimulation that persists for 

more than 8 hours, and requires transcription and new protein synthesis (reviewed by 

(Costa-Mattioli et al., 2009; Sutton and Schuman, 2006)). This two-step process of 

synapse modification is termed ‘synaptic tagging and capture’ (Doyle and Kiebler, 

2011; Martin and Kosik, 2002; Redondo and Morris, 2011). For decades it is known 

that mRNAs, ribosomes and translation factors localize to dendrites (Bodian, 1965; 

Poon et al., 2006; Steward and Levy, 1982). The first evidence that linked local 

mRNA translation to synaptic function came from the study by (Kang and Schuman, 

1996). They showed that brain-derived neurotrophic factor (BDNF)-dependent LTP in 

the hippocampus, is blocked by protein synthesis inhibitors. Interestingly, this protein 

synthesis can even be blocked in dendrites that had been surgically isolated from the 

cell body. There is now little doubt that RNA localization and hence local translation 

contributes to certain forms of synaptic plasticity (Costa-Mattioli et al., 2009; Sutton 

and Schuman, 2006). Many mRNAs encoding proteins e.g. β-actin, the α-subunit of 

the Calcium/calmodulin protein kinase II (CaMKIIα) (Osten et al., 1996) and a 

number of RBPs like the Fragile X mental retardation protein (FMRP), cytoplasmic 

polyadenylation-element-binding protein 1 (CPEB1), zipcode-binding protein 1 

(ZBP1) and Staufen proteins localize to distal dendrites. These RBPs have been 

implicated in the transport and translational control of dendritically localized mRNAs. 
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In addition to the role of local translation in dendrites, local translation of mRNAs is 

also important in axons, particularly during axon guidance and synapse formation. 

Local translation of cytoskeletal components, such as β-actin, RhoA and MAP1b 

regulates the structure of the growth cone (Hengst and Jaffrey, 2007). The most 

established case for local translation in axons is that of β-actin mRNA and its 

regulation by ZBP1 (Sasaki et al., 2010). Regulation of local β-actin protein synthesis 

is an important mediator of the response of the axon growth cones to external cues. 

mRNA function in neurons can be regulated at several steps; (1) nuclear export 

of the mRNA; (2) mRNP formation and maturation (3) mRNP transport and 

anchoring; (4) mRNA translational control; and finally (4) mRNA stability. Neuronal 

activity is now known to affect these individual steps. The model for activity 

dependent RNA localization in neurons is outlined in Figure 1. RNAs transcribed and 

spliced in the nucleus are packaged with RBPs to form ribonucleoprotein particles 

(RNPs) in the cell body. This process can already take place in the nucleus. RNPs 

are then transported to dendrites along the microtubule network (Ferrandon et al., 

1994). mRNAs that are translationally silent may be anchored close to synapses or 

continuously traffick until they are recruited to an active synapse as proposed in the 

sushi belt model (Doyle and Kiebler, 2011). Neuronal stimulation of a given synapse 

may lead to increased dendritic transport and/or the unpackaging of that mRNA 

followed by local translation. The protein produced as a result can then contribute to 

either structural, modifications e.g. the insertion of more neurotransmitter receptors 

into the plasma membrane, or molecular modification e.g. production of a signaling or 

cytoskeletal molecule at the synapse (Doyle and Kiebler, 2011). This activity-

dependent modification of dendritic spines constitutes a form of structural plasticity 

that is contributed by the local translation of synaptic proteins. 
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Figure 1 Model for mRNP formation, dendritic localization and local mRNA translation 
in neurons: RBPs bind to specific mRNA targets by binding to distinct localization elements 
(LEs), wherein they are assembled into diverse mRNPs. Here the small black boxes 
represent LEs that are primary sequence element; while stem-loops indicate LEs that 
represent conserved secondary structures. mRNP maturation is a complex process: it can 
occur before the actual translocation process starts or during transport along microtubules. 
The mRNPs then could be locally anchored at synapses or they keep translocating in a 
circular fashion like in a sushi-belt. Upon unmasking, proteins bound to the mRNA dissociate 
from the mRNP leading to the bound mRNA being accessible to ribosomes for subsequent 
translation. Finally, after translation is done the mRNA will either be degraded at the site of 
translation or repackaged into an mRNP (taken from Hutten, Sharangdhar and Kiebler 
2014). 
 
1.3. 3’-Untranslated region (3’-UTR) – hub of RBP regulation  

Historically, the central dogma asserted a very simplistic model, wherein a gene 

transcribed into a unique single “messenger” molecule or mRNA conveys the 

information to cytoplasmic ribosomes, in order to generate a functional protein by 

translation. After decades of research in the field it is now clear that this process 

shows enormous complexity brought by the generation of diverse mRNA isoforms 

generated post-transcriptionally, depending on the cellular context. Cells that have 

the same DNA code can therefore generate different mRNAs, which either results in 

different protein isoforms, or in distinct mRNA isoforms that encode the same open 

reading frames (ORF) but have different regulatory regions (UTRs). In recent years, 

3’-UTR function has gained importance especially in encoding neuronal functions 
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(Mayr, 2016). By controlling the length of a 3’-UTR, neurons generate mRNA 

isoforms with longer 3’-UTR sequences. These new 3’-UTRs now harbor new binding 

sites for specific RBPs, microRNAs, amongst others. 3’-UTR lengthening can be 

achieved by alternate splicing of the last exon, intron retention or alternate 

polyadenylation (Figure 2).   

 

1.4 Intron Retention  

Most of the introns occur within the ORF, although approximately 10% have been 

identified in UTRs. For a long time, introns have been considered as junk DNA that 

lies within a transcript and needs to be spliced out in the nucleus to obtain a 

functional mRNA that can be translated in the cytoplasm. Intron retention was thus 

considered an error in splicing. The link between these introns and the nonsense 

mediated decay (NMD) pathway strengthened this view (Nagy and Maquat, 1998; 

Zhang et al., 1998). In the NMD pathway, the exon junction complex (EJC) is placed 

20-24 nucleotides upstream of the exon junction once the spliceosome removes an 

intron from the precursor mRNA, marking the place where the intron was spliced out 

(Ji and Tian, 2009). Throughout the export of the mRNA from the nucleus and its 

cytoplasmic transport, the EJC remains tightly bound to it (Di Giammartino et al., 

2011). After the first round of translation, the EJC is displaced by the ribosomes 

moving along the mRNA (Nagy and Maquat, 1998). An EJC downstream of the 

termination of translation would persist in the messenger and activate NMD (Zhang 

et al., 1998). This is a mechanism that ensures elimination of potentially harmful 

truncated proteins, since premature termination codons (PTC) are frequently present 

at the beginning of intronic sequences (Le Hir et al., 2000). Hence the retention of 

introns in the 3’-UTR opens new questions. Studies in recent years have shown that 

these retained introns within coding sequences (CDSs) or UTRs mediate significant 

and distinctive roles in the neuronal gene regulation (Mauger et al., 2016). The 

presence of constitutive introns within the 3’-UTR leads to the degradation of mRNAs 

shortly upon their translation thereby reducing ‘noise’ (Bono and Gehring, 2011). On 

the other hand, retained introns can contain binding elements important for RBP-

dependent localization of the transcript (Buxbaum et al., 2014). With this novel view, 

retained introns in the 3’-UTR could now be regarded as important cis-regulatory 

elements that can help regulate gene expression at several levels.  
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Figure 2: 3’-UTR dependent mRNA diversity necessary for mRNA regulation in 
neurons: The differential mRNA localization, stability and translation in the soma (depicted in 
green) versus the neuronal processes (in pink) is achieved via the generation of a variety of 
mRNA isoforms that only differ in their 3’-UTR sequences. This is achieved either by (A) 
alternative polyadenylation (APA) or by (B) alternative splicing (AS) of the last exons. 
Transcripts with short 3’-untranslated regions (UTRs) are highly stable and generally localize 
in the soma, while transcripts with long 3’-UTRs show lower stability and localize to neuronal 
processes (Lianoglou et al., 2013; Shigeoka et al., 2016), where they can be locally 
translated. Elongation of 3’-UTRs leads to the generation of binding sites for trans-acting 
factors, e.g. RBPs, in extended 3’-UTR (Taliaferro et al., 2016). (C) Furthermore, levels of 
expression of the transcripts with retained introns can be regulated by their interaction with 
the exon junction complex (EJC). Premature termination codons generated due to the 
inclusion of introns in the coding sequence, are usually degraded by the nonsense mediated 
decay (NMD) pathway. Intron retention (IR) in the 3’-UTR can also lead to recruitment of 
specific RBPs that localize mRNA to neural processes. (D) A subset of mRNAs is stored in 
the nucleus by stable IR. Excision of the intron from the unspliced mRNA is induced by 
neuronal activation. Mature mRNA exported to the cytoplasm is then available for translation 
(Mauger et al., 2016). Local translation of transcripts at the synapses (in pink) is then 
activated by neuronal stimulation. (Taken from Fernández-Moya et al., 2017). 
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2. Staufen2 
Staufen has a well-documented function in mRNA localization in the 

development of the Drosophila oocyte (St Johnston, 2005). Also, in Drosophila neural 

precursors, Staufen mediates the asymmetric localization of prospero mRNA to only 

one daughter cell leading to its fate as a ganglion mother cell (Knoblich, 2008). 

Furthermore, Vessey et al., 2012 showed that the Staufen-dependent asymmetric 

localization of prospero in neural precursors is conserved in mammals. Mammals 

have two homologs of the Drosophila Staufen; Staufen 1 (Stau1) and Staufen 2 

(Stau2). Stau2 is expressed mainly in the brain. Stau1, however, is expressed in 

many types including neurons (Duchaîne et al., 2002). Stau1 and Stau2 also play an 

important role in early zebrafish development, where both are involved in the 

migration of primordial germ cells. However, only Stau2 is essential for survival of 

neurons in the central nervous system (Ramasamy et al., 2006). Importantly, the two 

proteins are mostly present in different ribonucleoprotein particles in neuronal 

dendrites. This implies that they have different roles in neurons (Duchaîne et al., 

2002).  

In hippocampal neurons, downregulation of Stau2 decreased the number of 

neuronal synapses (Goetze et al., 2006) that in turn reduced the amplitude of 

miniature excitatory post-synaptic current (mEPSC). These results imply a defect in 

synaptic transmission through post-synaptic glutamate receptors in the absence of 

Stau2. In mature neurons, Stau2 is also required for mGlu-R dependent long-term 

depression (LTD) (Lebeau et al., 2011). The sections below discuss the molecular 

basis of Stau2 function in further detail. 

 

2.1 Stau2 in RNA transport and anchoring 

Although it has been clearly demonstrated that Staufen is involved in RNA 

localization in Drosophila, it remains unclear whether mammalian Stau2 is directly 

involved in the transport of its target mRNAs. Many of the best-characterized models 

of RNA localization have been in Drosophila oocyte development, where differentially 

localized RNAs determine cell fate. Staufen mediates the localization of two of these 

RNAs, bicoid and oskar (St Johnston et al., 1991). Oskar mRNA fails to localize 

correctly in Stau mutant embryos. Staufen is required for both the localization and the 

maintenance of oskar mRNA at the posterior pole (Mhlanga et al., 2009; Rongo et 

al., 1995; Zimyanin et al., 2008). Interestingly, it was found that Staufen is associated 
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with the dynein motor together with bicoid mRNA when localizing to the anterior pole 

of the Drosophila oocyte, during late stages of transport (Weil et al., 2010).  

In neurons, a role of Stau2 in RNA localization has been indicated by studies in 

both Aplysia and rodents. In Aplysia sensory neurons, Staufen accumulates with the 

syntaxin mRNA at the opposite side of the cell body to the axon hillock in untreated 

cells, but then moves to the axon hillock with syntaxin mRNA in response to 

serotonin treatment (Liu et al., 2006). Using a dominant negative Stau2 isoform, 

(Tang et al., 2001) suggested a role of Stau2 in mRNA localization in mammalian 

neurons. But, the specificity and the direct interaction of Stau2 with certain mRNAs 

mediating their dendritic localization remained in question. In this thesis, in 

publication I (Sharangdhar et al., 2017) I could clearly show that Stau2 directly 

affects the localization of one of its target mRNA Calmodulin3 (Calm3) in neuronal 

dendrites in a neuronal activity dependent manner. 

 

2.2 Stau2 in mRNA stability 
Several studies have implicated Stau2 in regulation of mRNA stability. It also 

interacts with Upf1 a regulator of non-sense mediated mRNA decay (Fritzsche et al., 

2013; Graber et al., 2017; Miki et al., 2011). However, Stau2 tethering assays do not 

induce Upf1-dependent mRNA decay in HeLa cells (Miki et al., 2011). This suggests 

that the Stau2-Upf1 interaction has a different function. Knockdown of Stau2 in 

primary hippocampal neurons leads to a reduction in β-actin, MAP2, and α- and β-

tubulin mRNAs (Goetze et al., 2006; Miki et al., 2011). The mechanism that mediate 

Stau2-dependent mRNA stability remains unknown. The experimental data 

presented in publication II (Heraud-Farlow et al., 2013) here show direct links 

between Stau2 and the stability of a subset of its mRNA targets. Several mRNA 

targets e.g. Complexin1, Rgs4, etc are downregulated in the absence of Stau2 in 

hippocampal neurons. However, this subset accounts only for 3.2% of the identified 

Stau2 targets. This suggests that the role of Stau2 is not limited to the regulation of 

mRNA stability.  

 

2.3 Role of Stau2 in the Nucleus 
It is known that under certain conditions Stau2 shuttles between the nucleus 

and cytoplasm (Macchi et al., 2004). In mammalian cells, mutations in the dsRBD3 of 

Stau2 render it incapable of RNA binding causing the protein to accumulate in the 
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nucleolus (Macchi et al., 2004). The nuclear import is mediated via a bipartite NLS 

located between the dsRBD3 and dsRBD4. The 59kDa isoform (Stau259) can be 

exported by the Crm1 (Exportin-1) pathway, while the 62kDa isoform of Stau2 

(Stau262) is exported from the nucleus via an Exportin-5 dependent pathway (Macchi 

et al., 2004; Miki and Yoneda, 2004). However, wild type Stau2 protein is localized in 

the cytoplasm under normal conditions. It has been hypothesized that the NLS of 

Stau2 is unmasked in the absence of RNA (as in the Stau2 RNA binding mutants). 

This allows its interaction with the nuclear import machinery. Once in the nucleus, 

Stau2 could then interact with target RNAs to be exported together. Also, the data 

presented here in Publication I (Sharangdhar et al., 2017) clearly shows that Stau2 

downregulation in hippocampal neurons leads to accumulation of the Calm3L isoform 

in the nucleus. This further supports the theory of origin of Stau2 RNPs in the 

nucleus and would be consistent with mechanisms described for some other RBPs 

involved in RNA localization (Giorgi and Moore, 2007). 
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Publication I 
 

This section includes the work published in EMBO reports (2017), entitled  “A 
retained intron in the 3’-UTR of Calm3 mRNA mediates its Staufen2- and 
activity-dependent localization to neuronal dendrites” by  

Tejaswini Sharangdhar; Yoichiro Sugimoto; Jacqueline Heraud-Farlow; 
Sandra M. Fernández-Moya; Janina Ehses; Igor Ruiz de los Mozos; Jernej Ule; 
Michael A. Kiebler. EMBO reports Aug, 2017. doi:10.15252/embr.201744334 

 

Author contributions to this publication 

 

Tejaswini Sharangdhar contributed to the design of the project and carried out 

the experiments presented in the following figures: Fig 1D, 1E, 1F, 1G; Fig 2; Fig 

3; Fig 4, Fig EV1D, Fig EV2, Fig EV3 and Fig EV4 and also analyzed the data in 

these experiments.  

Yoichiro Sugimoto contributed to the Stau2 iCLIP data generation and analysis in 

Fig1C. Jacqueline Heraud-Farlow performed the Stau2 Immunoprecipitation (IP) 

experiments in Fig1B. Sandra M. Fernandez-Moya performed the northern blots 

in Fig. EV1B; Janina Ehses performed qRT-PCRs in fig 1H and they together 

with Tejaswini Sharangdhar analysed data in Fig3E. Igor Ruiz De Loz Mozos 

analyzed data for Fig1A and EV1A. Jernej Ule supervised the Stau2 iCLIP 

experiments and Michael Kiebler supervised the project and the collaboration.  

The manuscript was written together by Tejaswini Sharangdhar and Michael 

Kiebler. 

 

 

 



Scientific Report

A retained intron in the 30-UTR of Calm3 mRNA
mediates its Staufen2- and activity-dependent
localization to neuronal dendrites
Tejaswini Sharangdhar1, Yoichiro Sugimoto2,3, Jacqueline Heraud-Farlow4,†, Sandra M

Fernández-Moya1, Janina Ehses1, Igor Ruiz de los Mozos2,3 , Jernej Ule2,3 & Michael A Kiebler1,*

Abstract

Dendritic localization and hence local mRNA translation contributes to
synaptic plasticity in neurons. Staufen2 (Stau2) is a well-known
neuronal double-stranded RNA-binding protein (dsRBP) that has been
implicated in dendriticmRNA localization. The specificity of Stau2 bind-
ing to its target mRNAs remains elusive. Using individual-nucleotide
resolution CLIP (iCLIP), we identified significantly enriched Stau2 bind-
ing to the 30-UTRs of 356 transcripts. In 28 (7.9%) of those, binding
occurred to a retained intron in their 30-UTR. The strongest bound 30-
UTR intron was present in the longest isoform of Calmodulin 3 (Calm3L)
mRNA. Calm3L 30-UTR contains six Stau2 crosslink clusters, four of
which are in this retained 30-UTR intron. The Calm3LmRNA localized to
neuronal dendrites, while lack of the 30-UTR intron impaired its
dendritic localization. Importantly, Stau2mediates this dendritic local-
ization via the 30-UTR intron, without affecting its stability. Also,
NMDA-mediated synaptic activity specifically promoted the dendritic
mRNA localization of the Calm3L isoform, while inhibition of synaptic
activity reduced it substantially. Together, our results identify the
retained intron as a critical element in recruiting Stau2, which then
allows for the localization of Calm3LmRNA to distal dendrites.
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Introduction

Dendritic mRNA localization enables neurons to alter the synaptic

proteome thereby inducing plastic changes at selected synapses [1].

In this multi-step process, a selected set of RNA-binding proteins

(RBPs) assembles mRNAs containing cis-acting sorting signals into

ribonucleoprotein particles (RNPs) that are then transported along

the cytoskeleton into dendrites, near synapses [2]. Specific regula-

tion of local mRNA translation at synapses in response to synaptic

stimuli then allows long-term synaptic plasticity, the cellular basis

for learning and memory. Moreover, several other aspects of mRNA

regulation, from nuclear RNA splicing to mRNA stability, play

crucial roles in the adaptation of the synaptic proteome that is

required to maintain synaptic homeostasis [3]. Several studies have

recently reported extensive alternative splicing in neurons [4].

Furthermore, alternative polyadenylation in neurons leads to a vari-

ety of mRNA isoforms of the same transcript differing only in their

30-UTR length [5]. Together, these phenomena give rise to mRNAs,

all expressing the same polypeptide, but harboring additional regu-

latory elements that recruit the neuronal RBPs necessary for fine

post-transcriptional regulation [3,4].

Staufen2 (Stau2) is a well-known neuronal double-stranded

RBP (dsRBP) involved in asymmetric cell division of neural

progenitor cells and has been implicated in dendritic RNA local-

ization, in mature hippocampal neurons [6–9]. Previously, we

identified a repertoire of physiologically relevant target mRNAs

from neuronal Stau2-containing RNA granules [10]. For some of

these targets (e.g., Rgs4, Cplx1), Stau2 influences their mRNA

stability. However, only 38 of the 1,169 Stau2 targets identified

by Stau2 IP (3.2%) show changes in mRNA levels upon Stau2

downregulation [10]. Thus, Stau2 function is not restricted to

regulation of mRNA stability.

It is unclear how Staufen proteins bind to their target mRNAs

with the observed specificity, with several studies coming to dif-

ferent conclusions [11,12], and even some studies suggesting its

binding to be non-sequence-specific [8]. Hence, we applied individual-

nucleotide resolution CLIP (iCLIP) [13] as this yields information

about the direct Stau2 binding to its mRNA targets with higher

resolution compared to Stau2 IP microarray experiments previously

performed [10]. This approach allowed us to uncover significant
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Stau2 binding to 30-UTRs of 356 mRNAs, and 28 of these retained

an intron in their 30-UTR. The strongest Stau2 binding within a

retained intron was seen in the 30-UTR of the longest isoform of

Calmodulin 3 (Calm3L) transcript. Interestingly, Calm3L is the top

target identified by both iCLIP and Stau2 IP microarray. Further-

more, we showed that Calm3L mRNA localized to dendrites in

hippocampal neurons and that NMDA-mediated neuronal

activation specifically promoted dendritic localization of the

intron-containing Calm3L mRNA. Importantly, neither neuronal

activation/silencing nor Stau2 knockdown showed any changes in

total Calm3 mRNA levels. We then set out to investigate a direct

role of Stau2 in dendritic mRNA localization of Calm3L. Finally,

we demonstrated that the recruitment of Stau2 to the Calm3L
mRNA allows its dendritic localization.

Results and Discussion

iCLIP reveals specific binding of Stau2 to Calm3 mRNA via a
retained intron

In order to get a mechanistic insight into Stau2 binding to mRNAs,

we performed iCLIP experiments. We immunoprecipitated the

endogenous Stau2-RNA complexes from embryonic day 18 (E18)

mouse brains by using an antibody against Stau2 (Dataset EV1). IPs

using a rabbit pre-immune serum (PIS) were done in parallel as

negative control. We compared our results with the iCLIP data of

other two RBPs (TDP-43 and FUS) that were also produced from

E18 mouse brains [14]. Here, we identified significant Stau2 binding

in 30-UTRs of 356 neuronal mRNAs (Table EV1). For 28 of these,

the binding sites in 30-UTRs were found in the retained introns

(Fig 1A; Table EV2). Figure EV1A shows three examples of such

mRNAs with Stau2 binding sites within a retained 30-UTR intron.

Among these, Calm3 mRNA stood out as the top Stau2 mRNA target

with a retained 30-UTR intron and with 0.24% of all iCLIP tags on

mRNAs originating from Calm3. This binding was specific for

Calm3 transcripts, but not the other calmodulin orthologs (Calm1,

Calm2) [15], that do not contain any crosslink clusters. This was

confirmed by IP experiments: Only Calm3 transcripts were highly

enriched in the immunoprecipitates of Stau2-containing RNPs

(Fig 1B) [10], but no enrichment was obtained with control PIS IPs.

In rat brain, three mRNA isoforms of Calm3 have been reported,

which differ in their 30-UTR length [15]. In primary rat cortical

neurons, we only observed the presence of two isoforms

(Fig EV1B), the longest of which (Calm3L) contains a retained

intron in its 30-UTR. Our iCLIP analysis revealed that the Calm3

mRNA contains six high-confidence crosslink clusters in the 30-UTR
of the Calm3L isoform, four of which overlapped with the retained

intron (Fig 1C, upper panel). The lower panel in Fig 1C shows the

specific positions of these Stau2 crosslink clusters on a predicted

structure of the Calm3L 30-UTR. These positions were located right

next to the long-range predicted RNA duplexes. The cluster with

most crosslinking (cluster 2) was located next to a predicted long-

range duplex, which bridged regions of 30-UTR that are � 700 nt

apart. This observation is in agreement with the previous finding

that long-range duplexes in 30-UTRs of mRNAs are enriched on

Stau1 binding sites [16]. Importantly, no high-confidence crosslink

clusters were detected in other intronic regions of Calm3 transcript

(data not shown).

The expression of Calm3L isoform increased with the develop-

ment of in vitro-cultured hippocampal (Figs 1G and EV1D) and rat

cortical neurons (RCN) (Figs 1H and EV1C) and reached maximal

levels in mature neurons that have undergone synaptogenesis (stage

5 neurons; see [17]). Calm3L mRNA localizes mainly in the somato-

dendritic compartment. Also, its localization was restricted to the

MAP2-positive neuronal processes (i.e., dendrites) but not to the

MAP2-negative ones (Fig 1D and F). Importantly, Stau2 co-localized

with the Calm3L mRNA endogenously (Fig 1E).

Synaptic activity regulates Calm3 mRNA localization via the
retained 30-UTR intron in hippocampal neurons

Localization of an mRNA to dendrites can lead to its local transla-

tion and hence spatio-temporal regulation of its function. This local-

ization is known to be influenced by neuronal activity [18].

Therefore, we analyzed the effect of neuronal activation and

▸Figure 1. The intron-containing Calm3 mRNA isoform interacts with Stau2 and localizes to dendrites.

A The proportion of cDNAs (out of all cDNAs that mapped to the mouse genome) produced by iCLIP (using E18 mouse brain extracts) from the FUS, TDP-43, and Stau2
experiments that mapped to different RNA regions (i.e., UTR: untranslated region; CDS: coding sequence) and intergenic regions (i.e., non-annotated transcripts).

B Relative values of Calm3, Calm2, and Calm1 mRNA enrichment upon control or anti-Stau2 IPs from E17.5 rat brains. Pre-immune serum was used to perform control
IPs; n = 3, average + SEM.

C iCLIP results show that Stau2 specifically binds to the longest Calm3 (Calm3L) isoform retaining an intron in its 30-UTR (schematic in the middle). Lower panel shows
the specific positions of these Stau2 crosslink clusters on a predicted structure of the Calm3L mRNA.

D Representative images of endogenous Calm3L mRNA in rat primary hippocampal neurons (DIV15) visualized by a FISH probe directed against the intron (Calm3 intron
FISH; red). Magnified insets (40-lm dendritic sections) below identify MAP2-positive (box 1; MAP2 in green) and MAP2-negative (box 2) neuronal processes;
arrowheads indicate the FISH signal for Calm3L mRNA in the dendritic section; nucleus (DAPI; blue). Boxes on the top right show images of bright field (above) and
(below) Stau2 (purple) co-staining with DAPI (cyan); asterisk denotes the soma of the neuron under study; scale bar, 20 lm.

E Co-localization of endogenous Stau2 with endogenous Calm3L mRNA in the panel represented in (D). Arrowheads indicate dendritic co-clusters (Calm3 intron FISH;
green) and Stau2 immunostaining (purple); inset (top right) shows Stau2 staining in the soma at low exposure. The white perforated line marks the position of the
nucleus; scale bar, 20 lm.

F Quantification of the number of spots of Calm3L mRNA per length (40-lm region) in MAP2-positive and MAP2-negative neuronal processes; average + SEM taken
from three independent experiments (30 dendrites each), ***P < 0.001, unpaired Mann–Whitney U-test.

G Quantification of the cell body intensity normalized to area to measure levels of Calm3L mRNA in different stages of in vitro development of rat hippocampal neurons
(1, 4, 8, 12, and 15 DIV), n = 3, average + SEM, t-test; *P < 0.05, **P < 0.01.

H qRT–PCR experiments to measure the relative levels of Calm3L to total Calm3 mRNA in E17.5 or adult rat cortex and 0, 2, 4, and 6–7 DIV rat cortical neurons; n = 3,
average + SEM, t-test; *P < 0.05, **P < 0.01, ***P < 0.001.

EMBO reports ª 2017 The Authors

EMBO reports Stau2 regulates Calm3 RNA in hippocampal neurons Tejaswini Sharangdhar et al

2

Published online: August 1, 2017 



A 

0

10

80

5’-
UTR

CDS

3’-
UTR

Inter
gen

ic
Intro

n

3’-
UTR in

tro
n

TDP-43
FUS
Stau2

pr
op

or
tio

n 
of

 b
in

di
ng

 (%
)

C

1 

10

0.1

B 

Stau2 
crosslink

sites

Calm3
isoform

L

  M

Predicted
structure

Base-
paring

0

10
All sites

Clusters 1 2 3 5 64

Intron

A
G
G

C
C
C
G
G
G
C
A
G

C
U
G
G
C
C
AU
G
C
C
CG

U
U
CUCCUGAUCUCUUCUCGC

GCUCUCC
U

C
UCUU

CAAC
ACUCCCCU

GCGU
ACCC

GGUUCU
A

G
C

A
A

AC
A

G
C

A
A

U
U

G
A
UUG

A
CU
GAG

A
A

U
C

U
G
A
U

A
AAGC

A
C
C
A

A A A
G
A
U
U
U
G
U
C
C

C
A
A
G
CU

G
CAU

G
A
C U

G
C
U

CUC
UCUCCUUC

CUCCUG
AC

UGUCCC
UC

CA
CG

CCCUC
A
C
C

G
CUUCCUUUGGCC

UUCCCC
U

UCCAUUC
CCAG

U
C

UCC
AGG C

C
UGA

U
GCA

UUCA
CAAGGUGAAC

CCCA
UUGCC

C
UG

CCCUGGGGAGCCUCUG
CCCU

C
CUC

C
U

C C A G
C C C G G AUG G C U C U C C

U
C C

G G U
U U U G G

UUUG U U U C C U U
U U G

U U U G C C C U
U

C U U
U U G G G U G

C C G G G G
U G G C C ACCAUUCC

U G U C C CUGC
U

CAGUGGGG
AGGGGAGCAAG

GCCUUCUGCC
A

G G U G G A G GAG C
A

U G U C C C C U
G

C C A C U GU C
G C A

U
GCACCCCAGCCCUG

UG
A

CUCUGU
GUG

C
A A

G C C
C A GCA G

C C U
G
U G G G G C G G G G U G C

C A
A

G A G G G
G A

U G
A C

G G G A C G
UU C

C A G G A
CCG A G G G A G

UUG A G
G
A
U

G U G
A
C
C

CA G G A C
G G G G

G G C G
G G G G G G G G

G G U U G
U
G

UG U GU
G G A A G

G G U G
G A A G A G G C A G G A

A
G

G
C

C
U

U
G

G
A

A
G
C
U

AA C A
U
G
C
U

U
U
C
G
C
U
A
CUG
G
A
G
G
G
GGACUG

C
AUAG
A

G
U

GG
A
C G

G
C
A
C
U
C G

G
G
U
C
U
C
G
C
U
G
C

C
G
CU

G
U
U
C
U
GAAACCAUCU

G
G
CUG

G
C
U
U

U
C

U G
A
G
G
U

C

A

G
G
C
U
G
G
GU

G
G
G
G
G
G
C

U
G
U

C
A
U
C
G
G
C

C
A
U G

C
U

G
C
C
G
A
UC

A
U

A
CU

C
G
C
C
C
U
C
CU
C
A
U
C
C
C
U
CC
A
G
C

C
A
U

G U
C
C

C
G
C
U
GU
U
C
U
G
U
A A

A
U
A
C
C
UG
G
U
G

C
U A

A
C
A
U
CC

C
AU

G
C
C
G
C

U
C

C C
C
C

G
U
G
G
C
A

C
CC

C
C
A
G
C
C A

C
C
U

G
C
C
C

A
G U U

C
AG

G
G
C
U

G
G
U C

C
A
G

G A
A

U
G

GA U
GUG

G G
G

G
A U

G
G

U
C
G
CU

G
U

G
U

A A
U

G
U

G
C
CG

G
U

G
A

U
C

U
U

U
U

U
U

U
C

C
C

C
U
UCC

C
C

U
U

U
A

U G
C

C
C

C
U
U
A
A
A

A C U U U G
A

U
U U

U
UG

U
C
C
U
A
A

A
C

AUGCCG
G

G
C
C
AA

CU
A

A
A

G
G

G
UG

G
G

G
A

G
AG

G
A

G
A

G
A

UG
C

G
C

C
CC

AC
C

A
U
G
CUC

A
C

A
AG

AA
C

C
A
AC

C
U
GC

A
A

U
AAACA

C
U

U
C
U
A

UG
G

G
C

C
G

C
C

G
C

GC
A

G
A

G
C

A
C

G
C

A
G

C
G

G
G
CA

C
C

U
C

C

U
GC

C
C

C
U

C
C

G
U

G
G
U

G
A
C
U

UG
G
C
A

U
C G C

U U
U C U G C C C U C G C C C U G C C U G C C C

C
A
C

U C C
C
C

A
G C G G A

G A G
C
A

UGA
UCCGCA

C
CCU
U G C U U C

U G A C U C U A G C C U C
U G

G
G A C

A C
G
U

CA
GUCAA

CGC
GGGCA

G
UUCG

GUC
U G G G U U C C U

U U C C
U
U
U
C U C U G U

U C U C A U
C U G G C

C C
C C C A G G G U G A U C

U
U

GUUGCU
U

UU
U
G CUGGGACC

U
GCCAGCUU

UGAGA
C U C U C C A

C
C C C U UGGC A

C
CA

GCCUUAAGGGAG
GGAGGGACAGAG

CAAA
U

C
AGGAGACCCAGCC

UAGAGUUGA
GGGCAA

GGGCAGGUAGGCGUGAGGCUGUGGACUU
U
GCG

G
AAUGU

U
U

C
G

G
G

G
U

U
U U A

U
U

UU
G
G
U
U
U
U
U
U
G
U
U
U U U C C

U
U
U
U
U
U

U
U

UUUUUU
U

U
U
U
A
A
A
C

A
A

A
C

A
A

AC
A

A
A

C
CG

G
G
C
A A

U
A
U
U
G
U
G
U
U

C
A

G
U
U

C
A
A
G
C

U
G

U
G
A A

G
A
A

A
AAUA

U
A
U
A

U
C
AA

U
G
U
U
UU

C
C
A
A
UA

A
A
A
U
A
C
A
G
U
GAC

U
A
C

C
U
G
U
C
U
G
G
A

C
U

C
U

UC

UUCCCCCCUUUGGGAGUUAACC

CCCCAA
UUUUGGCC

CC
CC
UU
CCCC

GGUUUU
CCGGGGCCCCUU

C
CC

CCUUCC

UU
CC CC

CC CC

UU
CC CC

UU UU
UUUUUU

UU

U
UU UU

C C UU
UU

CC UU UU
UU UU GG GG GG UU GG

CC CC GG GG GG GG
UU

AUUUUCCCC
UU GG UU CCU

GG

GGGCCCAAACCCCCCCCCCCCAAGGGAACCCCCCCCCUUUGGG
UUGG

AA
CCCUUUCCCUUUGGGUU

GGGUUUGG
CC
AA AA

GG CC CC
CC AA GGGCCCCGGGGGG AAAACCCCCCCC

GG
CC CC UU

GG
UU GG GG GG GG CC GG GG GG GG UU GG CC

CC AA
AA A A C

U C
CCC

G U G

UG

A AA GG AA GG GG CC AA GG GG AA
A

G
G

C
C

U
U

G

G
CC
UU

A

GGG
CCC
UUU

UU
UUU
CCC
GGG
CCC
UUU
AAA
CCCUUCCCCGGGUUUU

GGG
AAA
GG

GG
AA
CC GG

GG
CC

U
CCC
GGG
CCC
UUU
GGG
CCC

CC
CC

GG
CCCC
CC

GGGG
UUU
GGG
UUU
UUU
CCC
UUU
GGGGGAAGGGGAAAAAAAAAAAACCAAAACCCCCCAACCCCUUAAAA CCUUUU UUUCCCC

GGG
GGG
CCCUUCCCCGGGUUUU

GGG
CCC
UUU
UUU

UU
CC

UU GGG
AAA
GGG
GGG
UUU

CC

AA

UU

GGG
GGG
GGG
GGG
GGG
GGG
CCC

UU
GGG
UUU

CC
AAA
UUU
CCC
GGG
GGG
CCC

CC
AA
UU GG

CC
UU

GG
CC
CC
GG
AA
UUCC

AA
CCCC
UU

AA
UU

CCUU
CC

GG
CC
CC
CC
UU
CC
CCUUCCCC
CCC
A
U

G UU
CC
CCUU

CCCC
CC

AACCCC AA
AA
UU

C
UUUU

UU

AAUUUAAAA
GGG
CCC
CCC
GGG
CCC

UU
CC

CC CC
CC
CC

GG
UU
GG
GG
CC
AA

CCC
CCC
CCCCCCCC

GAAAAUUUUUUUU
GGGG

UUAAAA
CC
AAGG

GG
GG
CC
UGGUUUU

GG AA
AA G

AA UUU
GGG

GGG
UUU

CCC
GG
CC

GG
UUU

GGG
UUU

GGG
UU

AA AAA
UUU

GGG
UUU

GGG
CC
CC

CC
GGG

GGG
UUU

GGG
AAA

UUU
CCC

UUU
UUU

UUU
UUU

UUU
UUU

UUU
CCC

CCC
CCC

CCC
UU
UU
UUUU

CCCCC
CCC

CCCC
UUU

UUU
UUU

AAA

UU GGG
CCC

C

CC
UU
UU
AA
AA
AA

AA CC UU UU UU GGG
AAA

UUU
UU UU

UU
UUGG

UU
CC
CC
UU
AA
AA

AA
CC

AAUUGGCCCCGG
G

G
CC
CC
CCCC
AA
CCC

AAAA
CCAAAAUU

AA
AA

AA
GG

GG
GG
UUGG

GG
GG

GG
AA

GG
AAGGAAAA

GGGGGG
AA

GG
AA

GG
AA

UUGGUUUU
CCGGGG

GG
CC

CC
CCCC

AACCAAAA
CCCCCC

AA
UU
GG
CCUUCC

AA
CC

AA
AAGG

AAAAAAAAA
CCCAAAA

CC
AA
AACC

C
U
GGC

A
AA

UU
AAA

UU
CC
UU
AA

UUGG
GG

GG
CC

CC
GG

CC
CC

GG
CC

GGCC
AA

GG
AA

GG
CC

AA
CC

GG
CC

AA
GG

CC
GG

G
G
C
GG
A

CC

CC

UU
GGCC

CC
CC

CC
UU

CC
CC

GG
UU

GG
GG
UU

GG
AA
CC

AA
UU
CCCC

UU
UUUU

GG
GG
CC
AA

UU UU
U C U GG CCC CCC CCC UUU CCC GGG CC C C U

U C CC
CC
CC

AAA
GG AAA GG

CC
AA

UUGGAA
UU

CC
U G A C U

GGG AAA CCC
AA CC

GG
UU

CCAA
GGUUCCAAAA

CC
A

G GGG U
C CC

UU
UU
U

UUU CCC U U1

2
4

5

6

5’ SS

3’ SS
 m

R
N

A 
en

ric
hm

en
t 

3
D E

Stau2

1

2

2

1

21 *

0 

1 

2

3

4

5

6

MAP2
positive 

MAP2
negative 

***

*

C
al

m
3 Lm

R
N

A 
lo

ca
liz

at
io

n 
(#

Sp
ot

s 
/ 4

0µ
m

de
nd

rit
e)

 

40

5 

10 

15 

20 

C
el

l b
od

y 
in

te
ns

ity
(C

al
m

3 L F
IS

H
) 

(N
or

m
al

iz
ed

 to
 a

re
a)

 

DIV 1 DIV4 DIV8 DIV12 DIV15 
0

**

*
*

*
*

*
*

**

DAPI

Calm3 intron FISH 
Stau2

MAP2 
Calm3 intron FISH 
DAPI 

F G

** * 

0 

0.2

1

0.4

0.6

0.8

C
al

m
3 

m
R

N
A

 le
ve

ls
 

(N
or

m
al

iz
ed

 to
 P

P
1a

) 

E17.5 
Cortex 

RCN 
0 DIV 2 DIV 6-7 DIV 

adult 
Cortex 

RCN RCN 

H

***

** ** 

**** 
***

** * 
Calm3 
all isoforms 
Calm3L 

***

*

Calm3 Calm2 Calm1 

Stau2-IP
Control-IP

Figure 1.

ª 2017 The Authors EMBO reports

Tejaswini Sharangdhar et al Stau2 regulates Calm3 RNA in hippocampal neurons EMBO reports

3

Published online: August 1, 2017 



*** 

0 

0.4 

1 

1.2 

0.6 

0.8 

0.2 

0 

1 

2 

3 

4 

0 

0.5 

1 

1.5 

2 

2.5 

SilencingNMDAMock

 D
en

dr
iti

c 
m

R
N

A 
lo

ca
liz

at
io

n 
(N

or
m

al
iz

ed
 to

 m
oc

k 
co

nt
ro

l)

 D
en

dr
iti

c 
m

R
N

A 
lo

ca
liz

at
io

n 
(N

or
m

al
iz

ed
 to

 m
oc

k 
co

nt
ro

l)

C
el

l b
od

y 
in

te
ns

ity
(C

al
m

3 L F
IS

H
) 

 (N
or

m
al

iz
ed

 to
 m

oc
k 

co
nt

ro
l) 

 

** 

  Mock NMDA                        Mock                      Silencing A B 

D C F 

Calm3 intron FISH 
Map2

DAPI

n.s 
n.s 

* 

Mock

5 

NMDAMock
0 

1 

2 

3 

4 

5 

SilencingMock

  Mock NMDA

  G
FP

-C
al

m
3 M

   
  G

FP
-C

al
m

3 L 
  

  G
FP

-C
al

m
3 M

   
  G

FP
-C

al
m

3 L 
  

  Mock Silencing

0 

5 

10 

15 

20 

25 

 D
en

dr
iti

c 
m

R
N

A 
lo

ca
liz

at
io

n 
(N

or
m

al
iz

ed
 to

 G
FP

 c
on

tr
ol

)

Calm3L    Calm3M Calm3INTGFP
0 

4 

6 

8 

10 

12 

2 

Calm3L    Calm3M Calm3INTGFP

 D
en

dr
iti

c 
m

R
N

A 
lo

ca
liz

at
io

n 
(N

or
m

al
iz

ed
 to

 G
FP

 c
on

tr
ol

)

G H

Silencing I J*** 
*** *** 

GFP-FISHGFP-FISH

tagRFP tagRFP

Mock NMDA Mock 

E 

C
el

l b
od

y 
in

te
ns

ity
(C

al
m

3 L F
IS

H
) 

 (N
or

m
al

iz
ed

 to
 m

oc
k 

co
nt

ro
l) 

 

Figure 2.

EMBO reports ª 2017 The Authors

EMBO reports Stau2 regulates Calm3 RNA in hippocampal neurons Tejaswini Sharangdhar et al

4

Published online: August 1, 2017 



silencing on the observed dendritic localization of endogenous

Calm3L in rat hippocampal neurons (DIV12). The dendritic localiza-

tion of Calm3L mRNA increased upon NMDA treatment (Fig 2A and

C), and it decreased drastically upon neuronal silencing (Fig 2B and

D) (see Materials and Methods). Importantly, these treatments did

not affect total Calm3L mRNA levels as fluorescence in situ

hybridization (FISH) signal intensity in the cell body (Fig 2E and F)

and qPCR values (Fig EV2D) were not modified. Next, we investi-

gated in detail the role of the 30-UTR intron in the dendritic localiza-

tion of Calm3 transcripts. As the endogenous short isoform of

Calm3 (Calm3M; lacking the retained exon) cannot be identified

specifically due to overlapping sequences with the Calm3L, we took

advantage of a GFP mRNA reporter assay. We generated several

GFP reporters, which contained different Calm3 30-UTRs (scheme

in Fig EV2E). We analyzed the localization of the GFP reporters in

rat hippocampal neurons upon NMDA stimulation or synaptic

silencing by FISH against the GFP sequence. The dendritic localiza-

tion of GFP transcripts containing the intron (Calm3L and

Calm3INT) increased upon neuronal stimulation (Figs 2G and I, and

EV2A) and was dramatically reduced upon synaptic silencing

(Figs 2H and J, and EV2B). These data showed that the Calm3

intron in the 30-UTR is sufficient to confer activity-dependent

changes in GFP mRNA localization. Moreover, neither of these

pharmacological treatments altered the total GFP mRNA levels in

Calm3L and Calm3INT reporters (Fig EV2C). Together, these experi-

ments showed that neuronal activity regulated dendritic localiza-

tion of Calm3L mRNA via the 30-UTR intron without altering its

total levels.

Staufen2-mediated dendritic localization of Calm3 mRNA via its
30-UTR intron

To investigate whether Stau2 directly mediates dendritic localization

of intron-containing transcripts, we evaluated the subcellular

localization of the different GFP mRNA reporters when they were

co-expressed with the exogenous 62-kDa isoform of Stau2 (TagRFP-

Stau262). TagRFP-Stau262 expression significantly increased the

dendritic localization of the intron-containing reporter mRNAs

(Figs 3A and B, and EV3A and B). The presence of the intron in the

reporter constructs (Calm3L and Calm3INT) was confirmed by qPCR

(Fig 3H). Importantly, exogenous TagRFP-Stau262 expression did

not alter the mRNA levels of either Calm3L and Calm3INT GFP or

luciferase reporter constructs (Fig EV3C and D) or endogenous

Calm3L mRNA (Fig 3F and G). This highlighted the dependence of

Calm3 mRNA on the cis-element (i.e., the Calm3 intron) and the

trans-factor (i.e., Stau2) for its localization. Moreover, the

◀ Figure 2. Neuronal activity regulates dendritic localization of Calm3 intron-containing endogenous and GFP reporter RNAs.

A, B Representative Calm3 intron FISH images of primary rat hippocampal neurons (DIV12) that were either stimulated by NMDA (15 min) (A) or silenced O/N (B) using
a standard cocktail containing TTX, CNQX, and AP5 (see Materials and Methods). Mock-treated neurons serve as the respective controls. Dendrites are visualized
with anti-MAP2 staining (green) and nuclei with DAPI (blue). Insets below show 40-lm dendritic sections marked by white boxes. Scale bar, 20 lm.

C, D Quantification of dendritic localization experiments shown in panels (A) and (B), respectively. Bars represent the mean number of spots per 40-lm dendritic
section normalized to control + SEM taken from three independent experiments. Selected dendritic regions were at least 2 cell body diameters away from the
soma. n ≥ 30 dendrites per condition; *P < 0.05; **P < 0.01; unpaired Mann–Whitney U-test.

E, F Quantification of fluorescence intensity in the cell body for Calm3L mRNA (detected by Calm3 intron FISH) upon neuronal stimulation by NMDA (15 min) (E) or
silencing O/N (F) of three different experiments as shown in panels (A) and (B), respectively. Values are normalized to respective controls; n = 3; mean number of
spots per 40-μm dendritic section normalized to control + SEM, t-test, P > 0.05, n.s. = not significant.

G, H Representative images of primary rat hippocampal neurons (DIV11) expressing TagRFP (purple) together with either GFP-Calm3L (upper rows) or GFP-Calm3M
(lower rows) that were stimulated by NMDA (15 min) (G) or silenced O/N (H) using a standard cocktail containing TTX, CNQX, and AP5 (the same as in panels A and
B; see Materials and Methods). Bright-field images are also included. Mock-treated neurons serve as the respective controls. GFP mRNA is detected using a GFP
FISH probe. Insets below each image show 40-lm dendritic sections marked by white boxes. Scale bar, 20 lm.

I, J Quantification of dendritic localization in panels (G) and (H). Bars represent the mean number of spots per 40-lm dendritic section normalized to control + SEM
taken from three independent experiments. Selected dendritic regions were at least 2 cell body diameters away from the soma. n ≥ 30 dendrites per condition;
***P < 0.001; unpaired Mann–Whitney U-test.

▸Figure 3. Stau2 overexpression increases the dendritic localization of Calm3 intron-containing GFP reporter mRNA.

A Representative images of primary rat hippocampal neurons (DIV12) co-expressing either GFP-Calm3L (upper rows) or GFP-Calm3M (lower rows) together with either
TagRFP (left) or TagRFP-Stau262 (both in purple) (right). GFP mRNA is detected using a GFP FISH probe (green). Bright-field images are also shown. Arrowheads in
the top right panel indicate co-localization. Insets below each image show 40-lm dendritic sections marked by white boxes. Scale bar, 20 lm.

B Quantification of dendritic localization of the different GFP reporters identified by GFP FISH upon co-transfection together with either TagRFP or TagRFP-Stau262

as shown in (A). Bars represent the mean number of spots per 40-lm dendritic section normalized to control + SEM taken from three independent experiments.
n ≥ 30 dendrites per condition. **P < 0.01, ***P < 0.001, unpaired Mann–Whitney U-test.

C, D Representative images of neurons co-transfected with the GFP-Calm3INT reporter (mRNA identified by GFP FISH) together with either the RBP TagRFP-Stau262 (C) or
the unrelated RBP TagRFP-Pum2 (D). Bright-field images are also shown. Insets below each image show 100-lm dendritic sections marked by white boxes in the
main image. Arrowheads indicate dendritic co-clusters. Scale bar, 20 lm.

E Quantification of the percentage of co-localization of GFP-Calm3INT total GFP mRNA spots together with TagRFP-Stau2 or TagRFP-Pum2 within a 100-lm dendritic
section as shown in panels (C) and (D); mean + SEM, taken from three independent experiments. n ≥ 40 dendrites per condition. Selected dendritic regions were at
least 2 cell body diameters away from the soma. ***P < 0.001; unpaired Mann–Whitney U-test.

F, G Relative mRNA levels of endogenous Calm3 transcripts (total and intron-retained isoform) upon exogenous TagRFP/TagRFP-Stau2 expression nucleofected rat
cortical neurons DIV1 (F). The total Stau2 mRNA levels in these cells are also shown (G); n = 3. Bars represent mRNA levels mean + SEM normalized to control PP1a
mRNA levels; t-test; *P < 0.05.

H Relative mRNA levels of intron-retained GFP-Calm3L and GFP-Calm3INT transcripts to total GFP mRNA; graph represents mean � SEM values normalized to
respective controls, n = 3, t-test; P > 0.05.
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GFP-Calm3INT transcripts co-localized with TagRFP-Stau262 as well

(Fig 3C and E). This co-localization was specific for the trans-factor

Stau2 since GFP-Calm3INT transcripts did not co-localize with

another RBP such as TagRFP-Pum2 (Fig 3D and E; Calm3 mRNA

does not harbor any consensus sites for Pum2 binding). Control

experiments showed that Pum2 does not alter either the Calm3L or
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Calm3INT reporter expression in luciferase expression assays (data

not shown).

Endogenous Stau2 regulates dendritic localization of
Calm3L mRNA

Staufen forms RNPs that mediate localization of its target mRNAs in

the Drosophila oocyte [19,20]. The mammalian homolog Stau2 has

been implicated in dendritic mRNA localization [6,8]; however, a

precise mechanism and its specificity remains elusive. In order to

investigate whether mammalian Stau2 directly regulates the

dendritic localization of endogenous Calm3L mRNA, we performed

FISH in neurons in culture. Here, we observed that downregulation

of Stau2 using transiently transfected shRNA (shStau2) [21] in rat

hippocampal neurons led to substantial reduction of dendritically

localized intron-retaining Calm3L transcripts (Fig 4A and C), while

a control shRNA (shControl) did not (Fig EV4A). Importantly, the

reduction in dendritic localization of Calm3L mRNA was completely

rescued when an RNAi-resistant Stau2 (Stau2R) [6] was co-

expressed together with shStau2 (Fig 4B and C). Co-expression of

Stau2R together with an shControl plasmid did not further increase

the dendritic localization of Calm3L mRNA significantly (Fig EV4B).

Interestingly, the localization of the Calm3L isoform was mainly

restricted to the nucleus in the absence of Stau2 (Fig 4A, inset) and

this effect could also be rescued by co-expression of Stau2R (Fig 4B,

inset). Importantly, the total levels of the Calm3L mRNA isoform

did not change upon Stau2 downregulation in hippocampal (Fig 4D)

or cortical neurons (Fig 4E and F). Stau2 can shuttle between the

nucleus and the cytoplasm [22]. The nuclear restriction of the

Calm3L mRNA in the absence of Stau2 further suggests a role for

Stau2 in the nucleus. Whether this is linked to its role in dendrites

needs further investigation.

In summary, these experiments showed that mammalian Stau2

regulates the dendritic localization of the intron-containing Calm3L
isoform in primary neurons without affecting its stability.

Together, our study has several implications. Genome-wide

expression of mRNA with longer 30-UTRs increases during develop-

ment in brain and muscle [23], and such isoforms have an increased

probability of localizing to neural projections of hippocampal

neurons [24]. This is in line with our findings that the long isoform

of Calm3 containing the retained intron in its 30-UTR is preferentially

expressed in mature hippocampal neurons. Furthermore, it is this 30-
UTR intron that enables Stau2 binding and mediates its dendritic

localization. Since this dendritic Calm3L mRNA localization is regu-

lated by NMDA receptor activation, it is tempting to speculate that

Calm3L recruitment enables local protein synthesis at synapses.

Importantly, Stau2 recruitment to the retained intron in the Calm3L
mRNA suggests that Stau2 recognizes RNA structure as an element

mediating specificity. While such specific recruitment is clear for

RBPs that bind in an mRNA sequence-dependent manner (in line

with our “RNA signature” hypothesis [2]), there has been limited

evidence for dsRBPs, like Stau2. In addition, the regulation of

dendritic mRNA localization of Calm3L, without changes in mRNA

stability or decay, indicates that Stau2 performs distinct functions on

specific targets. Importantly, the binding of Stau2 to 30-UTR introns

in other 27 mRNA targets ensues an elegant mechanism wherein

Stau2 recruitment can be achieved by selective intron retention. This

would then render its function regulatable in specific cell types or

during developmental stages. This mechanism of intron retention

would be of general importance not just for Stau2 but also in the

case of other RBPs.

Materials and Methods

Immunoprecipitations and RNA isolation

Stau2 RNP isolation and immunoprecipitation (IP) were performed

in triplicate as described [10,25]. Pre-immune serum was used to

perform control IPs. Total RNA was isolated using mirVanaTM

miRNA isolation kit according to the manufacturer’s instructions

(Applied Biosystems). RNA was eluted, ethanol-precipitated, and

resuspended in nuclease-free H2O and RNA concentration measured

using a NanoDrop spectrophotometer (Thermo Scientific). For quan-

tification of mRNA levels in nucleofected rat cortical neurons, we

used the QIAshredder and RNeasy kit (Qiagen) for RNA isolation.

On-column DNase (Qiagen) treatment was performed before

proceeding to cDNA synthesis. All steps were performed according

to the manufacturer’s instructions. For Northern blot analysis, total

RNA was isolated from DIV11 rat cortical neurons (RCN). For quan-

tification of endogenous Stau2 and Calm3 (Calm3L and Calm3

all isoforms) mRNA levels from 0/2/4/6–7 DIV RCN or from

◀ Figure 4. Dendritic localization of endogenous intron-containing Calm3L mRNA is regulated by Stau2 expression levels.

A Representative image of cellular localization of endogenous Calm3L mRNA (identified by intron FISH) in a rat hippocampal neuron transfected with an shRNA to
downregulate Stau2 (shStau2; green). Asterisks indicate Stau2 downregulated neurons (Stau2 levels were assessed by anti-Stau2 antibody staining; purple). Bright
field is also shown. Magnified inset (soma) shows a relative increase in nuclear localization. Magnified box on the right shows a decreased number of dendritic
Calm3L puncta in a 40-lm dendritic section marked with a white box and the corresponding phase image. The white perforated line marks the position of the
nucleus. Scale bar, 20 lm.

B Representative image of cellular localization of endogenous Calm3L mRNA (identified by intron FISH) in a rat hippocampal neuron co-transfected with an shRNA to
downregulate Stau2 (shStau2; green) and an RNAi-resistant Stau2 rescue construct (Stau2R). Selected dendritic regions were at least 2 cell body diameters away
from the soma. Magnified box on the right shows the dendritic Calm3L puncta in a 40-lm dendritic section marked with a white box and the corresponding phase
image. Panel on the lower left shows Stau2 immunostaining (purple), and panel on the upper left displays the corresponding bright field. Magnified inset (top right
corner) shows the soma. The white perforated line marks the position of the nucleus. Asterisk denotes the soma of the neuron under study. Scale bar, 20 lm.

C Quantification of dendritic Calm3L mRNA localization (identified by intron FISH) in the dendrites of neurons as in the experiments shown in (A) and (B). Bars
represent the mean number of spots per 40-lm-long dendritic region normalized to control + SEM taken from three independent experiments. n ≥ 30 dendrites
per condition, ***P < 0.001; unpaired Mann–Whitney U-test.

D Quantification of fluorescent intensity signal in the cell body to measure total levels of Calm3L mRNA [detected by Calm3 intron FISH experiments as represented in
panel (A) and (B)]. Bars represent mean values + SEM, normalized to respective controls, n = 3 experiments; t-test; P > 0.05.

E, F qPCR to measure endogenous levels of Calm3 (E) or Stau2 (F) in rat cortical neurons, where Stau2 was downregulated using an shRNA. n = 3 experiments,
mean + SEM, t-test, *P < 0.05.
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E17.5/adult rat cortex, the total RNA was obtained using TRIZOL

reagent (Thermo Scientific, 15596018) according to the

manufacturer’s instructions.

cDNA synthesis and quantitative RT–PCR

cDNA was synthesized from 0.5 to 1 lg DNase-treated RNA

using random primers and Superscript IIITM reverse transcriptase

(Invitrogen) according to the manufacturer’s instructions. For IPs,

0.5 lg of input RNA, 0.5 lg of IP RNA, and an equal volume of

pre-immune IP RNA were used as template. To detect Calm1,

Calm2, and Calm3 mRNAs, quantitative reverse transcriptase PCR

(qRT–PCR) was performed using the SYBR Green Master Mix (Bio-

Rad) according to the manufacturer’s instructions. Primers were

optimized to achieve 95–105% efficiency; qRT–PCR data were

analyzed using the comparative DDCT method [26]. For cDNA

synthesis using total RNA isolated from rat cortical neurons, 2 lg
total RNA for each sample was treated with 1 unit of DNase I

(Thermo Fisher Scientific) at 37°C for 30 min. DNase-treated RNA

was split in two: 1 lg was used for cDNA synthesis and the rest

1 lg for minus reverse transcriptase (�RT) reactions. Superscript

III (#18080093; Thermo Fisher Scientific) was used to perform

cDNA synthesis according to the manufacturer’s instructions. For

detecting mRNA levels by qPCR, a homemade SYBR Green Mix

[containing the following components at a final concentration of

1 M betaine (B0300; Sigma), 1× standard Taq buffer (NEB), 16 lM
dNTPs (N0447S; NEB), BSA 20 lg/ml (B9000S; NEB), 0.6 U per

reaction Hot-Start Taq DNA polymerase (M0495S; NEB), and

1 ll/ml of 1:100 SYBR Green (20010; Lumiprobe)] (in ddH2O) was

used. Forward and reverse primer pair mix was used 2 ll per

reaction from the following stock concentrations: Renilla and fire-

fly luciferase at 3 lM, GFP 5 lM, and Calm3 ORF Fwd/Rev

2.5 lM; Calm3 ORF Fwd/Calm3 intron Rev 4 lM, Stau2 5 lM,

pp1a 3 lM, GFP Fwd/Calm3 intron Rev 4 lM, and Renilla luci-

ferase Fwd/Calm3 intron Rev 4 lM. Five microliters of a 1:10 dilu-

tion of cDNA was added to total 15 ll reaction, in duplicate for

each primer set. –RT and ddH2O controls were used for each

sample. qPCRs were performed in a LightCycler 96 system (Roche)

and analyzed using the comparative DDCT method [27]. PP1a

mRNA levels were used as internal control for normalization.

Primer sets were rigorously validated on dilution series and opti-

mized to achieve 95–105% efficiency before use.

Stau2 iCLIP and analysis

We performed Stau2 iCLIP from E18 (embryonic day 18) mouse

brain samples using anti-Stau2 antibodies [25] or the pre-immune

serum (PIS) as a control according to a protocol described previ-

ously [14] with the following modifications. At the RNase diges-

tion step, 20 U of RNase I (Thermo Fisher Scientific, #AM2295)

was added to 1 ml of brain lysate. At the IP step, 450 ll of lysate
was incubated with 2 lg of anti-Stau2 antibody for 2 h at 4°C,

followed by incubation for 1 h at 4°C on a rotation wheel with

100 ll of protein G beads (Dynabeads, Thermo Fisher Scientific,

#10004D). Upon SDS–PAGE and transfer to nitrocellulose, the

region corresponding to the molecular weight larger than Stau2

(> 60 kDa) was excised and RNA was extracted from the

membrane.

High-throughput sequencing was done using 50 cycles on Illu-

mina GAII. The sequence reads were processed using the iCount

server (http://icount.biolab.si) as described before [14]. Briefly,

sequence reads are mapped to the mouse genome (mm9/NCBI37)

using Bowtie software [28] with the following parameters

(-v 2 -m1 -a –best –strata) and the mapped reads were collapsed

referring the unique molecular identifiers included in the reverse

transcription primer. The genomic regions were annotated using

Ensembl annotation (V.59). The significant crosslinking clusters

(flanking region of 15 nt and FDR < 0.05) were identified by

comparing them with randomized control [13,14,29]. The rando-

mers were registered and the barcodes were removed before

mapping the sequences to the genome sequence allowing two

mismatches using Bowtie version 0.12.7 (command line: -v 2 -m

1 -a –best –strata). The nucleotide preceding the iCLIP cDNAs

mapped by Bowtie was used to define the crosslink sites

identified by truncated cDNAs. The method for the randomer

evaluation, annotation of genomic segments, and identification of

significantly clustered crosslinking events was performed with

FDR 0.05 and a maximum spacing of 15 nt, as described earlier

[13], such that the positions of crosslink sites were randomized

within individual RNA regions (i.e., introns, CDS, and UTRs sepa-

rately). The replicate iCLIP experiments for the same protein were

grouped before performing the analyses. We used Gencode anno-

tation to define the RNA regions and identify 30-UTRs containing

retained introns.

Calm3 mRNA 30-UTR secondary structure prediction

The minimum free energy secondary structure of mouse Calm3

mRNA long 30-UTR (TROMER Transcriptome database id:

MTR004019.7.453.0) was predicted using the RNAfold program with

the default parameters [30].

Primary neuron cultures, transfections, and
pharmacological treatments

Embryonic day 17 (E17) hippocampal neurons were isolated

from embryos of timed pregnant Sprague Dawley rats (Charles

River) as described [6] and transfected using a calcium phos-

phate protocol [31,32]. For NMDA-mediated neuronal stimula-

tion, after 24 h of expression of transfected plasmids,

hippocampal neurons were treated for 10 s with 100 lM NMDA

in Ca2+/Mg2+-free PBS and then incubated in B27-NMEM

medium containing 100 lM NMDA for 15 min. Cells were then

rinsed with HBSS and fixed. For neuronal silencing, after 6 h of

expression of plasmids, cells were washed once with HBSS and

then incubated overnight at 37°C in NMEM-B27 medium contain-

ing 100 lM 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), 50 lM
2-amino-5-phosphonopentanoic acid (AP5), and 1 lM
tetrodotoxin (TTX). Cells were then washed twice with HBSS

and fixed. Mock-treated cells were used as controls for both

treatments. Where indicated, dissociated primary cortical neurons

were prepared from rat cortices remaining from hippocampal

dissections [10]. Rat primary cortical neurons (E17) were

transfected using Amaxa Nucleofection (Rat Neuron Nucleofector

Kit, Lonza, program O-003 according to the manufacturer’s

instructions).
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Imaging-based GFP expression assay in primary neurons

Gene fragments of interest were cloned downstream of the GFP

gene into the pEGFP vector under the control of a shorter version

of the synapsin promoter. As control, empty GFP reporter plas-

mid was used. DIV11 primary rat hippocampal neurons were co-

transfected with 1.5 lg of reporter plasmid and 1.5 lg of TagRFP

or TagRFP-Stau2 or TagRFP-Pum2 plasmid using calcium phos-

phate and fixed at DIV12 for performing FISH as described

below.

FISH and immunocytochemistry

Fluorescence in situ hybridization using tyramide signal amplifi-

cation was performed as described [33,34]. The following RNA

probes were used: Calm3 intron and GFP sense and antisense

from a cloned pBluescript II KS+ construct described below.

Immunocytochemistry was performed as previously described

[34]. For FISH following Stau2 knockdown, DIV11 primary

hippocampal neurons were transfected (co-transfection of

control/Stau2 shRNA with either TagRFP or RNAi-resistant

TagRFP-Stau2 62-kDa isoform) using calcium phosphate and

fixed at DIV16. For GFP mRNA FISH, DIV11 primary hippocampal

neurons were transfected [co-transfection of GFP constructs

containing different Calm3 30-UTRs with either TagRFP or

TagRFP-Stau2 (i.e., the 62-kDa isoform)] using calcium phos-

phate and fixed at DIV12.

Imaging and statistical data analysis

Images were acquired in Zen acquisition software using an

Observer Z1 microscope (both from Zeiss) with a 63× planApo oil

immersion objective (1.40 NA) and a CoolSnap HQ2 camera

(Olympus). For FISH experiments, z-stacks of neurons were

acquired (50 stacks with optimal step size suggested by the Zen

acquisition software ~0.26 nm). Images were then deconvoluted

using the Zen deconvolution module. For quantification, imaging

and selection of 40-lm dendritic regions for each image was done.

Images were then projected orthogonally. The Analyze particles

plugin in the ImageJ software was used for quantifying the number

of spots per 40-lm dendritic region that was at least 2 cell body

diameters away from the soma. For cell body intensity quan-

tification from FISH images, the measure function in the ImageJ

software was used. The average intensity/lm2 of each soma was

quantified.

For quantifying co-localizing events between GFP-Calm3INT
and TagRFP-Stau262, a deconvoluted set of images were selected

and manually scored by two independent observers. Percentage

of total GFP-Calm3INT particles (in a 100-lm dendritic region) co-

localizing with TagRFP-Stau262 were quantified. We used

TagRFP-Pum2 as control in parallel. For quantifying co-localizing

events, a deconvoluted set of z-stacks was selected and manually

scored blind to the experimental conditions (without knowing

whether it was TagRFP-Stau2 or TagRFP-Pum2) by two indepen-

dent observers. Only the spots that were in the same plane and

had their center of focus co-localizing were scored as co-localiza-

tion events. Individual “blind” scores were then averaged, and

the data were presented as percentage of total particles

co-localizing in a 40-lm dendrite (2 cell body diameters away

from the soma).

For all experiments, ≥ 30 dendrites (1 dendrite per neuron)/

≥ 30 cell body per set from three independent experiments were

selected for quantification. The conditions of experiments were kept

blind for the observer until final analysis. GraphPad Prism 7.0 soft-

ware was used to test the normal distribution of the data

(D’Agostino–Pearson omnibus test) and for significance testing

before decision of the statistical test to be used. Normalized values

were used to determine significant differences with the unpaired

Mann–Whitney U-test for samples with unequal variances. All

graphs were plotted in MS Excel.

Antibodies

Primary antibodies: Mouse monoclonal and rabbit polyclonal anti-

Stau2 antibodies (both used at 1:500 dilution) [35] were generated

by affinity purification from existing immune sera; polyclonal anti-

GFP antibodies were a gift from Werner Sieghart (CBR, Vienna,

Austria) (used at 1:5,000 dilution). The following commercial

antibodies were used: rabbit polyclonal anti-RFP (1:4,000) (Life

Technologies, R10367); and monoclonal anti-MAP2 (1:500) (Sigma-

Aldrich, M4403).

Secondary antibodies: Donkey anti-mouse A488-, A555-, or

A647-conjugated antibodies and donkey anti-rabbit A555- or A647-

conjugated antibodies (all from Life Technologies) were used at

1:1,000 dilution.

Plasmids

shControl (Dharmacon) and shStau2 [21] sequences were cloned

into the pSuperior + GFP vector system as described. Full-length

Calm3 30-UTR was PCR-amplified from a rat EST plasmid obtained

from ImaGenes (IMAGp998L0619945Q) (accession number

AF231407), using the primers Calm3L Fwd and Rev, and then

cloned into the psiCHECK2 vector (Promega) as described [10].

For cloning the Calm3 intron, the primers Calm3INT Fwd and Rev

were used, and it was cloned into pEGFP-C2 vector via EcoRI/

BamHI and then further sub-cloned into pBluescript KS+ vector

via SacI/BamHI (for FISH probes) and into psiCHECK2 (Promega)

dual-luciferase reporter plasmid via SacI/SalI for qPCR on luci-

ferase reporters.

Intermediate Calm3 30-UTR (Calm3M) was PCR-amplified from

a rat EST plasmid obtained from ImaGenes (IRBQp994H052D)

(accession number AF231407), using the primers Calm3M Fwd

and Rev, and then cloned into psiCHECK2 plasmid via SalI/NotI.

The CMV promoter in pEGFP-C1 plasmid was replaced by

synapsin (Syn) short promoter using the following primers: Syn

Fwd and Rev. This construct was then used to generate GFP

constructs with Calm3 full-length 30-UTR (GFP-Calm3L) via

HindIII/SalI, Calm3 intermediate 30-UTR (GFP-Calm3M) via

HindIII/SalI, and Calm3 intron (Calm3INT) via EcoRI/BamHI.

The coding sequence for 62-kDa isoform of Stau2 was cloned

into pTagRFP vector using the following primers: Stau2 Fwd and

Rev via XhoI/SacI. The RNAi-resistant Stau2 (Stau2R) (in

pEGFP-N1) generated previously [6] was sub-cloned into

pTagRFP-C. See the “Primers and shRNA sequences” section

below.
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Northern blot

10–15 lg of total RNA from cortical neurons DIV11 was electro-

phoresed in agarose–formaldehyde gels (1%), transferred to

Nytran membranes (Hybond-N, Amersham), hybridized following

standard procedures [36], and analyzed using PhosphorImager

screens in a Typhoon FLA9500 multi-mode imaging scanner and Fiji

software. Fragments of open-reading frames (ORF) and 30-UTR
intron were obtained by PCR and cloned into pBluescript KS+ plas-

mid (see primer sequences below). Double-stranded DNA was

obtained afterward by restriction endonuclease digestion and

radiolabelled using the random primer PrimeIt kit (Stratagene) and

[a-32P]dCTP.

Luciferase reporter mRNA expression and RNA isolation

Gene fragments of interest were cloned downstream of the

Renilla luciferase (Luc) gene into the psiCHECK2 vector

(Promega). As control, empty Luc reporter plasmid was used.

HeLa cells (plated in 24-well plates with 100,000 cells per well)

were transfected with 0.1 lg of reporter plasmid and 0.4 lg of

TagRFP or TagRFP-Stau2 plasmid (per well) using Lipofectamine

Primers and shRNA sequences

Primer name Species Primer sequence (50–30)

(qPCR) Calm1 Rattus norvegicus Fwd: TTCCCCCTCTAGAAGAATCAAA

Rev: CCACCAACCAATACATGCAG

(qPCR) Calm2 Rattus norvegicus Fwd: AAGGTTCCCCCACTGTCAGA

Rev: AAGCCACATGCAACATGGTA

(qPCR) Calm3 Rattus norvegicus Fwd: ACAGCGAGGAGGAGATACGA

Rev: CATAATTGACCTGGCCGTCT

(qPCR) Firefly luciferase Photinus pyralis Fwd: GAGTCTATCCTGCTGCAGCAC

Rev: CTCGTCCACGAACACCACTC

(qPCR) Renilla luciferase Renilla reniformis Fwd: GTCCGGCAAGAGCGGGAATGG

Rev: ACGTCCACGACACTCTCAGCAT

(qPCR) Calm3L Rattus norvegicus Calm3 ORF Fwd: GGAGACGGCCAGGTCAATTATGC

Calm3 intron Rev: GTCACCCAAAAGAAGGGCAAACC

(qPCR) Pp1a Rattus norvegicus Fwd: GTCAACCCCACCGTGTTCTTG

Rev: CTGCTGTCTTTGGAACTTTG

(qPCR) Stau2 Rattus norvegicus Fwd: GAACATCTCCTGCTGCTGAAG

Rev: ATCCTTGCTAAATATTCCAGTTGT

(qPCR) GFP Aequorea victoria Fwd: ACCCAGTCCGCCCTGAGCAA

Rev: GCGGCGGTCACGAACTCCAG

(Cloning) Calm3L Rattus norvegicus Fwd: AGGCCCGGGCAGCT

Rev: GGTAGTCACTGTATTTTATTGGAAAACA

(Cloning) Calm3INT Rattus norvegicus Fwd: GAATTCGGGAGCCTCTGC

Rev: CTGGGCAGGTCCCAGGGATCC

(Cloning) Calm3M Rattus norvegicus Fwd: ACTTCAGTCGACAGGCCCGGGCAGCTGGC

Rev: CTGGTTGCGGCCGCGGTAGTCACTGTATTTTATTGGAAAAC

(Cloning) Stau262 Rattus norvegicus Fwd: ATGGCAAACCCCAAAGAGAA

Rev: CTAGATGGCCGACTTTGATTTC

(Cloning) Syn Rattus norvegicus Fwd: ATACCCTGTGTCATTCCTTGTT

Rev: GGTGGCAGCTTGGGGCA

Calm3 ORF (Northern blot) Rattus norvegicus Fwd: CATGGCTGACCAGCTGACC

Rev: CACTTCGCAGTCATCATCTGTAC

Calm3 30-UTR intron (Northern blot) Rattus norvegicus Fwd: GGTCTCACTGACGCTGTTCT

Rev: GGCAGAAAGCGATGCCAAGT

shStau2 Rattus norvegicus GATATGAACCAACCTTCAA

shControl Rattus norvegicus GATCCCCCTCCAAAGTTCGATGGTTTTCAAGAGAAACCATCGAACTTTGGAG
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2000 (Invitrogen). Total RNA was isolated 24 h after transfection.

For quantification of luciferase mRNA levels in Lipofectamine-

transfected HeLa cells, we used the QIAshredder and RNeasy kit

(Qiagen) for RNA isolation. On-column DNase (Qiagen) treatment

was performed before proceeding to cDNA synthesis. All

steps were performed according to the manufacturer’s instruc-

tions.

Data availability section

Primary data

Stau2-iCLIP data were submitted to ArrayExpress. It can be accessed

through the following link: http://www.ebi.ac.uk/arrayexpress/e

xperiments/E-MTAB-5703.

Referenced data

iCLIP data for the RBPs TDP-43 and FUS from E18 mouse brains are

published [14]. The Stau2 IP data from E17 rat brains are published

as well [10].

Expanded View for this article is available online.
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Expanded View Figures

◀ Figure EV1. Stau2 binds to the intron-containing Calm3 mRNA isoform and regulates its expression (related to Fig 1).

A Snapshots from UCSC genome browser visualization of transcripts on mm10 version of mouse genome that have retained introns annotated within 3’-UTRs, as
defined by UCSC genes or ENCODE. The number of cDNAs that identify each crosslink position is shown in the track “STAU2 crosslinks”. The maximum cDNA number
is shown at the left of each track. Crosslinks in RNAs on the plus strand are shown in blue, and the cDNA count value is positive. In genes on the minus strand,
crosslinks are shown in orange, and cDNA count value is negative.

B Northern hybridizations using radiolabeled double-stranded DNA probes as indicated in scheme; Calm3 ORF in green and intron in blue (left panel). Ribosomal RNAs
(rRNAs) were visualized by ethidium bromide staining (right panel). The arrows indicate the position of the long and the spliced isoform of Calm3 mRNA detected
with probe Calm3 ORF.

C qPCR experiments to measure the percentage of Calm3L mRNA isoform in total Calm3 mRNA levels in E17.5 or adult rat cortex and 0, 2, 4, and 6–7 DIV rat cortical
neurons; n = 3.

D Representative images of endogenous Calm3 intron FISH (red) to visualize the levels of Calm3L mRNA in different stages of in vitro development of rat hippocampal
neurons (1, 4, 8, 12, and 15 DIV). Nuclei (DAPI; blue) and anti-MAP2 immunostaining (green) are also included. Scale bar: 20 lm.
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◀ Figure EV2. Dendritic localization of Calm3 intron-containing GFP reporter RNAs increases with neuronal stimulation and is reduced by silencing of neurons
(related to Fig 2).

A, B Representative images of primary rat hippocampal neurons (DIV11) expressing TagRFP (purple) together with either GFP-Calm3INT (upper row) or GFP (lower row)
that were stimulated by NMDA (A) or silenced (B) using a standard cocktail containing TTX, CNQX, and AP5 (see Materials and Methods). Bright-field images are
also included. Mock-treated neurons serve as appropriate controls for (A) and (B). These data compliment the datasets shown in Fig 2A and B. GFP mRNA is
detected using a GFP FISH probe. Scale bar, 20 lm.

C Quantification of fluorescence intensity in the cell body to measure total levels of GFP reporter mRNA (detected by GFP FISH experiments as represented in Figs 2G
and H, and EV2A and B) using the indicated Calm3 30-UTR constructs with indicated pharmacological treatment; bars represent mean � SEM values normalized to
respective controls, n = 3, t-test; P > 0.05.

D qPCR to detect the effect of neuronal activation/silencing on total levels of endogenous Calm3L or all Calm3 isoforms in rat cortical neurons DIV7; n = 3. Bars
represent mean + SEM values of mRNA levels normalized to PP1a, t-test; P > 0.05.

E Scheme representing the GFP reporter constructs used in this study.
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Figure EV3. Stau2 overexpression increases the dendritic localization of Calm3 intron-containing GFP reporter mRNA (related to Fig 3).

A, B Representative images of primary rat hippocampal neurons (DIV11), expressing either GFP-Calm3INT (A) or GFP (B) with co-expression of either TagRFP (left) or
TagRFP-Stau262 (right) (both in purple). GFP mRNA is detected using a GFP FISH probe (in green); bright-field images are also shown. These data compliment the
datasets shown in Fig 3A and B. Scale bars, 20 lm.

C Quantification of fluorescence intensity in the cell body to measure total levels of GFP reporter mRNA (detected by GFP FISH experiments represented in Figs 3A
and EV3A and B) using the indicated Calm3 30-UTR constructs with co-expression of either TagRFP or TagRFP-Stau262; bars represent mean values � SEM
normalized to respective controls, n = 3, t-test; P > 0.05, n.s. = not significant.

D Quantification of Renilla (RL) vs firefly (FL) luciferase mRNA in HeLa cells using the indicated Calm3 30-UTR constructs with co-expression of either TagRFP or
TagRFP-Stau262; bars represent mean values + SEM normalized to respective controls, n = 3, t-test; P > 0.05.
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Figure EV4. Stau2 downregulation substantially decreases dendritic localization of endogenous intron-containing Calm3L mRNA (related to Fig 4).

A, B Representative images of endogenous Calm3L mRNA visualized by a FISH probe directed against the intron (Calm3 intron FISH) in primary rat hippocampal
neurons expressing a control shRNA with co-expression of either TagRFP (A) or a (TagRFP-tagged) RNAi-resistant Stau2R (B). Asterisks indicate shRNA-expressing
neurons. The white perforated line marks the position of the nucleus. Magnified insets on the upper left show cytoplasmic localization of Calm3L mRNA. Magnified
boxes on the right show dendritic Calm3L puncta and the corresponding phase image. Selected dendritic regions were at least 2 cell body diameters away from the
soma. Panels on the lower left show Stau2 immunostaining and panels on the upper left the corresponding phase contrast. Scale bar, 20 lm. These data
compliment the datasets represented in Fig 4A–C.
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SUMMARY

RNA-binding proteins play crucial roles in directing
RNA translation to neuronal synapses. Staufen2
(Stau2) has been implicated in both dendritic RNA
localization and synaptic plasticity in mammalian
neurons. Here, we report the identification of func-
tionally relevant Stau2 target mRNAs in neurons.
The majority of Stau2-copurifying mRNAs expressed
in the hippocampus are present in neuronal pro-
cesses, further implicating Stau2 in dendritic mRNA
regulation. Stau2 targets are enriched for secondary
structures similar to those identified in the 30 UTRs of
Drosophila Staufen targets. Next, we show that
Stau2 regulates steady-state levels of many neuronal
RNAs and that its targets are predominantly downre-
gulated in Stau2-deficient neurons. Detailed analysis
confirms that Stau2 stabilizes the expression of one
synaptic signaling component, the regulator of G
protein signaling 4 (Rgs4) mRNA, via its 30 UTR.
This study defines the global impact of Stau2 on
mRNAs in neurons, revealing a role in stabilization
of the levels of synaptic targets.

INTRODUCTION

In neurons, RNA-binding proteins (RBPs) are essential for direct-

ing gene expression to distinct regions of the cell, such as growth

cones or synapses (Holt and Bullock, 2009). Local protein

synthesis in neuronal dendrites and at synapses is critically

important for both synaptic development and plasticity (Costa-

Mattioli et al., 2009; Sutton and Schuman, 2006; Kandel,

2009). Staufen proteins are double-stranded RBPs (dsRBP)
Cell Re
involved in RNA localization and synaptic plasticity (Dubnau

et al., 2003; Lebeau et al., 2011; St Johnston et al., 1991).

Work in several organisms indicates a role in RNA transport,

stability, translation, and anchoring (Dugré-Brisson et al., 2005;

Kim et al., 2005; Micklem et al., 2000; Tang et al., 2001; Zimyanin

et al., 2008). However, Staufen’s role in RNA localization in

neurons is not well understood.

Staufen2 (Stau2) is highly enriched in the brain and is impor-

tant for dendritic spine morphogenesis, which represent excit-

atory synapses (Goetze et al., 2006). It is viewed as one of the

best markers to follow the transport of RNPs due to its fast bidi-

rectional movement along dendritic microtubules (Köhrmann

et al., 1999; Zimyanin et al., 2008). Supporting its role in RNA

localization, expression of a dominant-negative Stau2 relocal-

izes a large proportion of total dendritic RNA toward the cell

body (Tang et al., 2001). Furthermore, downregulation of Stau2

in neurons impairs metabotropic glutamate receptor (mGluR)-

dependent long-term depression (LTD) (Lebeau et al., 2011).

Outstanding questions regarding the role of Stau2 in mature

neurons include which mRNAs it interacts with and whether it

plays a role in regulating their expression or localization. Here,

we sought to globally identify which mRNAs are associated

with Stau2 protein in the brain and investigate their regulation.

We report that Stau2 modulates the expression—most notably

the stabilization—of a subset of target RNAs that encode synap-

tic proteins. These targets are enriched for a recently identified

RNA secondary structure bound by Drosophila Staufen (Laver

et al., 2013). In conclusion, our data identify a mechanism for

Stau2 regulation of synaptic targets in neurons.

RESULTS

Identification of Stau2 Target RNAs from Rodent Brain
To isolate Stau2-containing RNA granules not linked to mem-

branes, we developed a protocol for RNP purification (Fritzsche
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Figure 1. Identification of Stau2 Target

RNAs from Soluble Stau2 RNPs

(A) The three-step biochemical procedure to

isolate endogenous Stau2 RNPs and identify their

RNA content.

(B) Heatmap of Affymetrix GeneChip arrays

showing the relative intensity of significantly en-

riched genes (adjusted p value < 0.05) in the Stau2

IP compared to the input from three independent

experiments. Each row represents a single mRNA.

(C) Validation of microarrays by qRT-PCR. mRNA

was isolated from input, Stau2 IPs, control IPs

(using rabbit preimmune sera), and the candidate

target genes quantified by qRT-PCR. Enrichment

was calculated as the IP relative to input and

cross-normalized to the reference genesKif5c and

Arntl. The mean ± SEM is shown (n R 3).

(D) Correlation of enrichment values (Stau2 IP/

input) obtained by microarray versus qRT-PCR.

Each point represents an individual mRNA, which

was quantified using both methods (n R 2).

Pearson’s correlation coefficient was significant

(p < 0.0001).

(E) Selected GO term enrichments observed for

Stau2-associated mRNAs. RNAs enriched R1.5-

fold (Stau2 IP/input) were used (n = 1,113).

See also Figure S1 and Tables S1 and S2.
et al., 2013) (Figure 1A). Soluble (S20) embryonic day 17 (E17) rat

brain preparations were separated by density gradient centrifu-

gation. Western blotting was used to identify those fractions

that were enriched for Stau2 but depleted of endoplasmic retic-

ulum (ER). Fractionation before immunoprecipitation (IP) greatly

reduces nonspecific interactors, as the ER is associated with

ribosomes and translating RNAs.

Affinity-purifiedmonospecificStau2antibodiescoupled topro-

tein A beads were used to isolate endogenous RNPs from ER-

depleted brain fractions. In three independent experiments, total

RNA was isolated from the IP and analyzed by microarray. Equal

amounts of IP and input RNAwere hybridized to the array and the

identified RNAs were ranked by enrichment in the IP relative to

input (Table S1). This identified a total of 1,206 RNAs significantly

enriched in theStau2 IP (usinganaverageof >1.5-foldenrichment

as a cutoff across three IPs and an adjusted p value < 0.05;
1512 Cell Reports 5, 1511–1518, December 26, 2013 ª2013 The Authors
Figure 1B). This represents �8.5% of

mRNAs expressed in the input fractions.

The enrichment of 38 candidate RNAs

from independent IPs was confirmed by

quantitative RT-PCR (qRT-PCR) (Fig-

ure 1C; Table S2). The candidates in-

cluded RNAs with a range of enrichments

and abundance to ensure that all classes

of RNAs could be validated. Preimmune

serum coupled to protein A beads was

used as a negative control (Figure 1C).

Note that the preimmune IPs could not

be used as a control for the microarrays

because insufficient RNA was isolated.

The correlation between qRT-PCR and

microarray data for the selected 38 genes
was highly significant (Pearson’s correlation coefficient, p <

0.0001; Figure 1D), indicating that the microarray data are robust

and reliable. As an independent control, we testedwhether candi-

date RNAswere enriched in the IP of another RBP, Barentsz (Btz),

which forms distinct RNPs compared to Stau2 in neurons (Fritz-

sche et al., 2013). Only one (Sacm1l) out of the six tested Stau2

target RNAs was also enriched in the Btz IP (Figure S1A). Indeed,

no overlapping targets were enriched >2-fold in both IPs by

microarray analysis (M.A.K., M.D., J.E.H.-F., D. Karra, P.P., S.T.,

and M. B., unpublished data) further suggesting that most of the

identified Stau2 targets are specific to this RNP.

Increasing evidence demonstrates that individual RBPs can

regulate a biologically coherent set of target RNAs and coordi-

nate their expression (Hogan et al., 2008; Keene, 2007; Ule

et al., 2005). Therefore, we performed DAVID Gene Ontology

(GO) term analysis of the Stau2 targets (>1.5-fold) and identified



Figure 2. Most Stau2 Targets Localize to Neuronal Processes in the

Hippocampus CA1 Region

(A) Stau2 targets identified in this study were compared to a new data set of

process-localized mRNAs from the CA1 region of the hippocampus (Cajigas

et al., 2012). The data set was derived from RNA sequencing of the soma and

neuropil layers from the CA1 region of mouse hippocampus. The first column

indicates the number and percentage of Stau2 target RNAs expressed in the

CA1 somatic layer. The second column indicates the number and percentage

of Stau2 target mRNAs that are expressed in the CA1 that are also found in the

neuropil (�77%).

(B) Localization of two Stau2 target mRNAs, Rgs4 and Calm3, was tested by

fluorescent in situ hybridization using digoxigenin-labeled riboprobes in pri-

mary hippocampal neurons (15–16 days in vitro). Sense probes were used as

negative controls. Scale bar, 10 mM.

See also Table S3.

Cell Re
enriched classes of genes (Huang et al., 2009). We found a sig-

nificant enrichment of several GO term categories, including pro-

tein localization and signal transduction mediated by small

GTPases (p values of 5.43 10�10 and 3.43 10�10, respectively;

Figure 1E). Interestingly, eight RNAs encode proteins that are

part of a G protein-coupled receptor (GPCR) signaling pathway

(Figure S1B). This pathway is important for signaling through

synaptic receptors such as the dopamine, glutamate, and

muscarinic acetylcholine receptors, among others (Lin et al.,

2002; Miura et al., 2002; Rashid et al., 2007). This result raises

the possibility that Stau2 may regulate RNAs encoding function-

ally related proteins as described for other neuronal RBPs, such

as Nova and FMRP (Darnell et al., 2011; Ule et al., 2005). In sup-

port of a possible role of Stau2 in intracellular signaling

cascades, we found both ERK1 and ERK2 kinases to be misre-

gulated when Stau2 levels were reduced in primary cortical

neurons (Figures S1C and S1D).

The Majority of Stau2 Target mRNAs Are Localized
to Neuronal Processes
Local translation at synapses contributes to several forms of

synaptic plasticity (Costa-Mattioli et al., 2009; Sutton and Schu-

man, 2006). Recent data indicate that 2,550 mRNAs localize to

the processes of CA1 neurons in the hippocampus (Cajigas

et al., 2012). According to those data, 3,508 transcripts were ex-

pressed in these cells, therefore suggesting that �72% of all

RNAs in the CA1 processes may be locally translated. To deter-

mine the number of Stau2 target mRNAs in this local pool, we

cross-referenced our data set with that of Cajigas et al. (2012)

(Table S3). Approximately 30% of the Stau2 targets were ex-

pressed in the CA1 somatic layer (Figure 2A). Of these, �77%

were found in the neuropil layer, which consists of neuronal pro-

cesses (Figure 2A). This is a small but significant enrichment of

localized messages in the IP over input, which also consisted

of �72% localized messaged (resampling without replacement,

p = 0.012). This suggests that the majority of endogenous Stau2

target RNAs localize away from the cell body into neuronal pro-

cesses. Using fluorescence in situ hybridization (FISH), we

further confirmed the localization of two Stau2 targets of interest,

Rgs4 and Calm3, to dendrites of primary rat hippocampal

neurons (Figure 2B). Thus, Stau2 may play a role in dendritic

localization of its target mRNAs.

Stau2 Regulates mRNA Levels in Primary Neurons
To elucidate the role of Stau2 on the regulation of target mRNAs

in primary neurons, we investigated the impact of Stau2 downre-

gulation on global gene expression. Primary cortical neurons

were transduced with lentivirus vectors expressing short hairpin

RNAs (shRNAs), which target Stau2 or a control hairpin (targeting

luciferase). After 5 days, total RNA was isolated and differences

in gene expression were identified by microarray from three

independent experiments. When Stau2 levels were reduced to

�10% of endogenous levels, 349 target mRNAs were downre-

gulated and 99 upregulated (Figure 3A, lane 3; Figure 3B; Table

S4). Interestingly, however, when a less potent shRNAwas used,

resulting in 30% of Stau2 remaining (shStau2-v3; Figure 3A, lane

4), the levels of only 13 RNAs changed (Figure S2A), with Stau2

itself being the only common target. These results suggest that
ports 5, 1511–1518, December 26, 2013 ª2013 The Authors 1513



Figure 3. Stau2 Regulates mRNA Levels in

Primary Neurons

(A) Western blot from primary cortical neurons

transduced with lentivirus expressing two inde-

pendent shRNAs targeting Stau2 or controls (2 + 5

DIV). Four isoforms of Stau2 (62, 59, 56, and

52 kDa) are expressed. Tubulin was used as

loading control.

(B) Microarray analysis was performed on total

RNA isolated from shStau2-v2 and shControl-v2

transduced primary cortical neurons. Significantly

changedmRNAs are ordered by fold change in the

knockdown relative to the control. Each dot rep-

resents a single mRNA, with red showing down-

regulated mRNAs and green showing upregulated

mRNAs. Stau2 is indicated because it was the

most downregulated RNA.

(C) qRT-PCR validation of eight mRNAs from the

microarray. Relative levels of the indicated RNAs

were determined in the shStau2-v2 knockdown

relative to the control, shControl-v2, using cross-

normalization to the reference genes Kif5c and

PPIA. Bars represent the mean ± SEM (n = 3).

(D) Correlation between the validated targets

shown in (C) and the fold change for the same

targets according to the microarray (Pearson’s

correlation coefficient, p < 0.001).

(E and F) GO terms enrichments (p < 0.05) for

significantly downregulated (E) and upregulated

(F) mRNAs following Stau2 downregulation (KD)

in cortical neurons (shStau2-v2). Benjamini-

Hochberg (BH) adjusted p values are shown.

See also Figure S2 and Table S4.
30% of normal Stau2 levels are sufficient to maintain target

mRNA levels in primary neurons. Themicroarray data were again

validated by qRT-PCR, showing a high correlation between both

data sets (Figures 3C, 3D, S2B, and S2C). Interestingly, the

downregulated RNAs were enriched for ‘‘synaptic’’ and

‘‘learning and memory’’-related GO term categories, whereas

the upregulated ones were enriched for different GO terms (Fig-

ures 3E and 3F). Together, gene expression analysis shows that

the majority of target genes identified are downregulated in

Stau2 knockdown neurons.

Identification of a Staufen-Recognized Structure in
Downregulated Stau2 Targets
In order to further investigate how Stau2 might regulate specific

transcripts in the brain, we searched for structural elements en-

riched in Stau2 targets. Here, we took advantage of our two

independentmicroarray experiments to select themost stringent

set of targets. Specifically, we selected those mRNAs that were

enriched in the IP of endogenous Stau2 RNPs from rat brain,

which were also affected by Stau2 downregulation in primary
1514 Cell Reports 5, 1511–1518, December 26, 2013 ª2013 The Authors
neurons. This resulted in 32 targets

whose levels decreased in the absence

of Stau2 and 6 that increased (Figure 4A;

Table S5). Interestingly, and in line

with what was recently reported for

Drosophila Staufen targets (Laver et al.,
2013), the median length of the 30 UTRs of Stau2-regulated

targets was significantly greater than that in the rat 30 UTRome

(1,189 bases for targets versus 496 bases for the rat 30 UTRome,

Wilcoxon rank sum p < 0.0001; Figure 4B). We next took advan-

tage of a novel computational strategy that was recently used to

identify structural elements in Drosophila Staufen target RNAs

(Laver et al., 2013) to assess whether the Stau2 targets were

enriched for Staufen-recognized structures (SRSs) similar to

those in Drosophila. We found that the Stau2 target 30 UTRs
were highly enriched for Type III SRSs (Wilcoxon rank sum p <

0.001; Figure 4C). Type III SRSs are defined by a stem consisting

of at least 10 out of 12 paired bases and no more than two

‘‘unpaired’’ bases (i.e., those that participate in neither canonical

nor noncanonical base pairings) (Laver et al., 2013). Notably,

95% (19 out of 20) of the analyzed downregulated targets carried

one or more Type III SRSs whereas only 33% (one out of three)

analyzed upregulated targets contained a type III SRSs (Fig-

ure S3; data not shown).

Given that downregulation was the predominant effect of

Stau2 knockdown on the target RNAs, we further validated



Figure 4. Stau2-Stabilized Target mRNA 30 UTRs Are Enriched for Staufen-Recognized Structures

(A) Overlap between mRNAs enriched in the Stau2 IP (from Figure 1) and mRNAs significantly changed following Stau2 knockdown (from Figure 3B). mRNAs

changed following the Stau2 knockdown (KD) are separated into upregulated (green circle) and downregulated (red circle).

(B) Median 30 UTR length of Stau2-regulated targets (overlap shown in A) compared to the rat genome. Note that only 23 of the 38 targets shown in (A) could be

used for this analysis due to incomplete database entries for the remainder (see Experimental Procedures). p < 0.0001, Wilcoxon rank sum test.

(C) Type III Staufen-recognized structures (SRSs) were mapped in the 30 UTRs of Stau2 targets and nontargets. The average number of Type III SRSs per

transcript and the frequency of SRSs are shown, both of which were significantly different between Stau2 targets (n = 20) and the rat 30 UTRome (n = 11,775).

Wilcoxon rank sum test p values are shown.

(legend continued on next page)
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one target, the regulator of G protein signaling 4 (Rgs4), which is

one of the synaptic mRNAs of the GPCR pathway and was

reduced by both Stau2 shRNAs to a statistically significant level

(reduced by 49% and 40% with shStau2-2 and shStau2-3,

respectively; Figure 4D). Note that shStau2-3 produces a stron-

ger knockdown when nucleofection or calcium transfection was

used, as compared to the viral-mediated knockdown shown

earlier (Figures S4A–S4C). The Rgs4 mRNA 30 UTR (ENSR-

NOG0000002773 in Figure S3A) contains two Type III SRSs.

This effect was further validated at the single-cell level using

Rgs4 FISH following Stau2 downregulation with shStau2-2 (Fig-

ure 4E) and shStau2-3 (data not shown), where the effect was

even more stark (Student’s t test p < 0.0001). Since there was

almost no Rgs4 left in the processes of Stau2-downregulated

neurons, only the cell body levels could be quantified.

To determine whether the observed reduction of Rgs4 mRNA

upon Stau2 knockdown is mediated via its 30 UTR, we generated

an Rgs4 30 UTR luciferase reporter and performed luciferase

assays in cortical neurons. Consistent with the reduction in

endogenous Rgs4 RNA we observed upon Stau2 knockdown,

Rgs4 reporter expression significantly decreased upon Stau2

downregulation with both shRNAs (Figure 4F). Together with

the qRT-PCR results, these findings suggest that Stau2 stabi-

lizes the Rgs4 mRNA via it’s 30 UTR.

CONCLUSIONS AND OUTLOOK

Here, we sought to identify physiologically relevant Stau2 targets

using a combined approach of immunoprecipitation of Stau2-

associated RNAs (to identify targets) together with the effect of

downregulation on those targets (to identify the role of Stau2 in

posttranscriptional regulation of these targets). While other

studies have identified candidate Stau2 targets, we found very

little overlap with our data set (Figure S4D), most likely because

the earlier studies did not fractionate Stau2-containing particles

away from ER. We believe that the more stringent approach

described here has yielded several insights into Stau2 function.

First, we have provided evidence for a role of Stau2 in the

stabilization of mRNAs as Stau2 targets were predominantly

downregulated in Stau2-deficient neurons. We note that the

levels of a small fraction of Stau2 targets increase upon Stau2

downregulation, consistent with a recent study in human cell

lines that implicates Stau2 in transcript destabilization (Park

et al., 2013). Although no such role of transcript stabilization

has been reported for Stau2 before, there is a recent publication
(D) qRT-PCR of Stau2 and Rgs4 mRNAs following knockdown of Stau2 in cort

shStau2 samples were determined using the DDCT method and cross-normaliz

change ± SEM (n = 5). Significant differences were determined between shStau2

(E) Rgs4 FISH in primary hippocampal neurons following knockdown of Stau2. T

later for FISH. Antisense RNA probes were used to detect endogenous Rgs4mRN

indicated with an asterisk in the FISH image. Note that some bleed-through from t

underestimates differences in the quantification. Average cell body intensity o

neighboring untransfected cells. Bars represent the mean ratio of transfected

(shControl-2, n = 25; shStau2-2, n = 25). Scale bar, 10 mM.

(F) Dual luciferase reporter assay in cortical neurons. Renilla activity was normalize

to shControl-1 and the luciferase empty vector. Bars represent the mean relative lu

p values were calculated using the Student’s t test.

See also Figures S3 and S4 and Tables S5 and S6.
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for Stau1, together with the long noncoding RNA TINCR,

showing a role in stabilizing differentiation mRNAs in human

keratinocytes (Kretz et al., 2013).

Second, our computational analysis of the Stau2 targets sug-

gests that it recognizes targets via secondary structures similar

to those that Drosophila Staufen recognizes in the 30 UTRs of

its targets (Laver et al., 2013). Given that the Rgs4 30-UTR con-

tains two such secondary structures (Type III SRSs) and together

with our finding that a reporter RNA carrying the Rgs4 30-UTR
behaves similarly to endogenous Rgs4 mRNA upon Stau2

knockdown, this supports the hypothesis that Stau2 regulates

its target RNAs by binding to type III SRSs in their 30 UTRs.
Thus, the secondary structures recognized by Staufen family

proteins may be conserved from flies to mammals.

Third, given that Rgs4 is a synaptic signaling molecule and

Stau2 downregulation has previously described synaptic pheno-

types (Goetze et al., 2006; Lebeau et al., 2011), misregulation of

Rgs4 following Stau2 knockdown could provide a mechanism

for the observed phenotypes. It is of particular note that Rgs4

has been linked to neuropsychiatric disorders (Terzi et al.,

2009), the stress response (Ni et al., 1999), and is responsive

to antidepressant drugs (Stratinaki et al., 2013). Therefore, regu-

lation by Stau2 would be of wide interest not only in the field of

RNA biology but also in clinical neurosciences.

Finally, it is very likely that mammalian Staufen proteins act as

multifunctional posttranscriptional regulators (St Johnston,

2005). In neurons, Stau2 likely plays a role in mRNA localization,

stability, and translation. Here, we focused on its effects on

mRNA regulation, uncovering a novel function in the stabilization

of steady-state levels of synaptic target RNAs, thus providing a

link between the molecular role of Stau2 as an RBP and its

cellular functions at the synapse.

EXPERIMENTAL PROCEDURES

Immunoprecipitations, RNA Isolation, and qRT-PCR

IPs were performed as described in RNase-free conditions on ice (Fritzsche

et al., 2013). RNA was isolated directly from beads and subjected to qRT-

PCR or microarray analysis in a minimum of three independent experiments.

Microarrays

For IP microarray analysis, RNA (200 ng) from input or IP was used for identi-

fying Stau2-associated RNAs. Preparation of terminal-labeled cDNA, hybridi-

zation to genome-wide GeneChip Rat Gene 1.0 ST Array (Affymetrix) and

scanning of the arrays were carried out according to manufacturer’s protocols

(https://www.affymetrix.com). Each IP as well as RNA isolated from the input

sample was analyzed from three biological replicates. Microarray data were
ical neurons. Differences in steady-state RNA levels between shControl and

ation to the reference genes PPIA, Arntl, and Vinculin. Bars represent mean

and shControl samples using the Student’s t test. **p < 0.01, ***p < 0.001.

he 8 DIV neurons were transfected with the indicated shRNA and fixed 4 days

A and GFP antibodies to detect shRNA-transfected cells. Transfected cells are

he GFP staining leads to a diffuse signal in the FISH channel, which also slightly

f Rgs4 FISH signal was quantified from transfected cells and normalized to

to untransfected cells ± SEM taken from three independent experiments

d to Firefly to control for transfection efficiency. This ratio was then normalized

ciferase activity ±SEM (nR 4).Sepp1 is an unaffected Stau2-enrichedmRNA.

hors

https://www.affymetrix.com


analyzed with the R/BioConductor suite (http://www.bioconductor.org).

Robust multiarray analysis was used for normalization (Irizarry et al., 2003).

A linear model was used for inferring differential expression between groups

(Smyth, 2004). p values were adjusted using the Benjamini-Hochberg method

(Benjamini and Hochberg, 1995). For knockdown microarrays, the GeneChip

Rat Gene 2.0 ST Array (Affymetrix) was used. The experiment and analysis

were performed as described above.

FISH and Immunocytochemistry

FISH using tyramide signal amplification was performed as described previ-

ously (Vessey et al., 2008). The following RNA probes were used: Calm3 sense

and antisense from EST IMAGp998L0619945Q (accession number

AF231407), 1.3 kb from the 30 UTR of Calm3; Rgs4 (accession number

NM_017214) antisense probe in the first 1 kb of the 30 UTR, sense probe in

the last 1.3 kb of the 30 UTR. Immunocytochemistry was performed as previ-

ously described (Zeitelhofer et al., 2008). Images were acquired using an

Axioplan microscope (Zeiss) with a 633 planApo oil-immersion objective,

1.40 NA, and an F-view II charge-coupled device camera (Olympus). For

FISH following Stau2 knockdown, 8 days in vitro (DIV) primary hippocampal

neurons were transfected using calcium phosphate and fixed at 12 DIV.

Images were acquired using an Observer Z1 microscope (Zeiss) with a 633

planApo oil-immersion objective, 1.40 NA, and an CoolSnap HQ2 camera

(Olympus). Quantification of average cell body intensity was carried out using

Zen (Zeiss). An equal number of transfected and untransfected cells from each

coverslip (from three independent experiments) were quantified and the ratio

of transfected to untransfected used to determine differences between

shStau2 and shControl cells.

Antibodies

Monospecific Stau2 and Barentsz rabbit polyclonal antibodies were generated

in our laboratory by affinity purification from existing immune sera: Staufen2

antibodies were directed against the 62 kDa isoform of mouse Stau2

(Zeitelhofer et al., 2008), and anti-Btz antibodies were directed against the C

terminus of Btz (amino acids 356–527) (Macchi et al., 2003). The following

commercial antibodies were used: anti-phospho ERK1/2 (Cell Signaling

Technologies, 4370), anti-ERK1/2 (Cell Signaling Technologies, 4696),

anti-Tubulin (Sigma, clone B512) and anti-Vinculin (Santa Cruz, sc-7649).

Primary Neuron Culture

Embryonic day 17 (E17) hippocampal neurons were isolated from embryos of

timed pregnant Sprague-Dawley rats (Charles River Laboratories) as previ-

ously described (Goetze et al., 2006). Dissociated primary cortical neurons

were prepared from cortices remaining from hippocampal dissections. See

Supplemental Experimental Procedures for more information.

Lentivirus Production

For lentivirus production, HEK293-FT were transiently cotransfected

with psPAX2, pVSVg, and the shRNA constructs using Lipofectamine

2000 (Invitrogen). Supernatants were concentrated by ultracentrifugation

(22,000 rpm, 2 hr, SW28 rotor; Beckman Coulter). Virus particles were resus-

pended in Neurobasal medium (Life Technologies). Neurons were transduced

on day 2 and collected on day 5 for analysis (DIV 2+5).

Computational Analysis of Staufen Target 30 UTRs
WedownloadedRattus norvegicus (Rnor_5.0) cDNA sequences from Ensembl

using BioMart in August 2013 and defined 30 UTRs as the portion of the cDNA

30- to the open reading frame, as defined by Ensembl. When there were

multiple isoforms for a gene, we used the longest isoform to represent its

mature mRNA sequence. Then, to identify SRSs in these 30 UTRs, we followed

our previously described protocol (Laver et al., 2013). See Supplemental

Experimental Procedures for details.

Luciferase Assay

Gene fragments of interest were cloned downstream of the Renilla luciferase

gene into the psiCHECK-2 vector (Promega). As control, empty luciferase

reporter plasmidwas used. Rat primary cortical neurons (E17–E18) were trans-

fected with 5 mg of reporter plasmid and 25 mg of shRNA plasmid into 1.23 106
Cell Re
cells and then distributed into six wells of a 24-well plate. Luciferase assays

were performed after 3 days using the Dual-Luciferase Reporter Assay System

(Promega) according to the manufacturer’s instructions using the GloMax

device (Promega). Ratios of Renilla/Firefly luciferase activity were calculated

and normalized to the shControl and the luciferase empty vector. The mean

of the normalized ratio from three or more independent experiments was

used to determine significant differences with the Student’s t test.

Further details are available in Supplemental Experimental Procedures.
SUPPLEMENTAL INFORMATION

Supplemental information includes Supplemental Experimental Procedures,

four figures, and six tables and can be found with this article online at http://
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Köhrmann, M., Luo, M., Kaether, C., DesGroseillers, L., Dotti, C.G., and

Kiebler, M.A. (1999). Microtubule-dependent recruitment of Staufen-green

fluorescent protein into large RNA-containing granules and subsequent den-

dritic transport in living hippocampal neurons. Mol. Biol. Cell 10, 2945–2953.

Kretz, M., Siprashvili, Z., Chu, C.,Webster, D.E., Zehnder, A., Qu, K., Lee, C.S.,

Flockhart, R.J., Groff, A.F., Chow, J., et al. (2013). Control of somatic tissue dif-

ferentiation by the long non-coding RNA TINCR. Nature 493, 231–235.

Laver, J.D., Li, X., Ancevicius, K., Westwood, J.T., Smibert, C.A., Morris, Q.D.,

and Lipshitz, H.D. (2013). Genome-wide analysis of Staufen-associated

mRNAs identifies secondary structures that confer target specificity. Nucleic

Acids Res. 41, 9438–9460.

Lebeau, G., Miller, L.C., Tartas, M., McAdam, R., Laplante, I., Badeaux, F.,

DesGroseillers, L., Sossin, W.S., and Lacaille, J.C. (2011). Staufen 2 regulates

mGluR long-term depression and Map1b mRNA distribution in hippocampal

neurons. Learn. Mem. 18, 314–326.

Lin, K., Wang, D., and Sadée, W. (2002). Serum response factor activation by

muscarinic receptors via RhoA. Novel pathway specific to M1 subtype

involving calmodulin, calcineurin, and Pyk2. J. Biol. Chem. 277, 40789–40798.

Macchi, P., Kroening, S., Palacios, I.M., Baldassa, S., Grunewald, B., Ambro-

sino, C., Goetze, B., Lupas, A., St Johnston, D., and Kiebler, M. (2003).

Barentsz, a new component of the Staufen-containing ribonucleoprotein par-

ticles in mammalian cells, interacts with Staufen in an RNA-dependent

manner. J. Neurosci. 23, 5778–5788.

Micklem, D.R., Adams, J., Grünert, S., and St Johnston, D. (2000). Distinct

roles of two conserved Staufen domains in oskar mRNA localization and trans-

lation. EMBO J. 19, 1366–1377.

Miura, M., Watanabe, M., Offermanns, S., Simon, M.I., and Kano, M. (2002).

Group I metabotropic glutamate receptor signaling via Galpha q/Galpha 11

secures the induction of long-term potentiation in the hippocampal area

CA1. J. Neurosci. 22, 8379–8390.
1518 Cell Reports 5, 1511–1518, December 26, 2013 ª2013 The Aut
Ni, Y.G., Gold, S.J., Iredale, P.A., Terwilliger, R.Z., Duman, R.S., and Nestler,

E.J. (1999). Region-specific regulation of RGS4 (Regulator of G-protein-

signaling protein type 4) in brain by stress and glucocorticoids: in vivo and

in vitro studies. J. Neurosci. 19, 3674–3680.

Park, E., Gleghorn, M.L., and Maquat, L.E. (2013). Staufen2 functions in

Staufen1-mediated mRNA decay by binding to itself and its paralog and pro-

moting UPF1 helicase but not ATPase activity. Proc. Natl. Acad. Sci. USA 110,

405–412.

Rashid, A.J., So, C.H., Kong, M.M., Furtak, T., El-Ghundi, M., Cheng, R.,

O’Dowd, B.F., and George, S.R. (2007). D1-D2 dopamine receptor heteroo-

ligomers with unique pharmacology are coupled to rapid activation of Gq/11

in the striatum. Proc. Natl. Acad. Sci. USA 104, 654–659.

Smyth, G.K. (2004). Linear models and empirical bayes methods for assessing

differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol.

3, Article3.

St Johnston, D., Beuchle, D., and Nüsslein-Volhard, C. (1991). Staufen, a gene

required to localize maternal RNAs in the Drosophila egg. Cell 66, 51–63.

St Johnston, D. (2005). Moving messages: the intracellular localization of

mRNAs. Nat. Rev. Mol. Cell Biol. 6, 363–375.

Stratinaki, M., Varidaki, A., Mitsi, V., Ghose, S., Magida, J., Dias, C., Russo,

S.J., Vialou, V., Caldarone, B.J., Tamminga, C.A., et al. (2013). Regulator of

G protein signaling 4 [corrected] is a crucial modulator of antidepressant

drug action in depression and neuropathic pain models. Proc. Natl. Acad.

Sci. USA 110, 8254–8259.

Sutton, M.A., and Schuman, E.M. (2006). Dendritic protein synthesis, synaptic

plasticity, and memory. Cell 127, 49–58.

Tang, S.J., Meulemans, D., Vazquez, L., Colaco, N., and Schuman, E. (2001). A

role for a rat homolog of staufen in the transport of RNA to neuronal dendrites.

Neuron 32, 463–475.

Terzi, D., Stergiou, E., King, S.L., and Zachariou, V. (2009). Regulators of G

protein signaling in neuropsychiatric disorders. Prog. Mol. Biol. Transl. Sci.

86, 299–333.

Ule, J., Ule, A., Spencer, J., Williams, A., Hu, J.S., Cline, M., Wang, H., Clark,

T., Fraser, C., Ruggiu, M., et al. (2005). Nova regulates brain-specific splicing

to shape the synapse. Nat. Genet. 37, 844–852.

Vessey, J.P., Macchi, P., Stein, J.M., Mikl, M., Hawker, K.N., Vogelsang, P.,
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Supplemental figures and legends 

 

Figure S1: Identification of Stau2 target RNAs from soluble Stau2 RNPs 
(Relates to Figure 1) 

(A) Immunoprecipitations for the RBP Barentsz were performed and the isolated 

mRNA analyzed by qRT-PCR. Six RNAs that are enriched in the Stau2 IP were 

tested for enrichment in Btz IP relative to the input sample. Sacm1l was the only 

mRNA that was significantly enriched in the IP compared to the control pre-

immune sera IP. Bars represent the mean enrichment from 3 independent 

experiments +/- SEM. Quantification of fold enrichment was cross-normalized to 

the reference genes GAPDH and PPIA.  

(B) Eight Stau2 target mRNAs (dark boxes) coding for Rgs4, Rgs2, the q/11 

subtype of the Gα G-protein (Gαq/11), Calmodulin (CaM), Calcineurin B subunit, 

RhoA, p63RhoGEF and CaMKIIβ have all been linked to a common GPCR 

signaling pathway. Signaling through Gαq/11 activates the MAPK cascade and can 

be inhibited by Rgs4 (Yan et al, 1997). Where the protein and RNA symbols 

differ, the RNA symbol is written in italics in parentheses. References for pathway 

interactions are: (Hague et al, 2005; Hao et al, 2006; Ishii et al, 2005a; Ishii et al, 

2005b; Lin, 2002; Lutz et al, 2005; Milligan & Kostenis, 2006; Yan et al, 1997). 

Enrichment of the individual RNAs in the Stau2 IP by microarray is indicated in 

the table.  

(C) The effect of Stau2 on ERK1 and ERK2 activation was tested by 

downregulation of Stau2 in primary cortical neurons. Plasmids expressing an 

shRNA targeting Stau2 or a non-targeting control shRNA were expressed in 

cortical neurons for 3 days, following which proteins were analyzed by Western 



blot. Phospho-specific or antibodies recognizing total ERK1/2 were used to detect 

active (phosphorylated) and total protein. Stau2 protein (four isoforms indicated) 

and Tubulin were detected to confirm knockdown efficiency. Note that all blots 

correspond to a single gel, however, intervening lanes were removed.  

(D) Quantification of Western blots from (B) of phospho-ERK1/2 relative to total 

ERK1/2. The mean +/- SEM from 3 independent experiments is shown. P-values 

were calculated using Student’s t-test. 
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Figure S2: Stau2 regulates mRNA levels in primary neurons (Relates to 
Figure 3) 

(A) Microarray analysis was performed on total RNA isolated from shStau2-v3 

and shControl-v2 transduced neurons. Significantly changed mRNAs are ordered 

by fold change in the knockdown relative to the control. Each dot represents a 

single mRNA with Stau2 being the most down-regulated RNA. 

(B) qRT-PCR validation of 8 mRNAs from the microarray. Relative levels of the 

indicated RNAs were determined in the shStau2-v2 knockdown relative to the 

control, shControl-v2, using cross-normalization to the reference genes Kif5c and 

PPIA. Bars represent the mean +/- SEM from 3 independent experiments.   

(D) Correlation between the validated targets shown in (B) and the fold change 

for the same targets according to the microarray (Pearson’s correlation 

coefficient, p< 0.001). 
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Figure S3: Mapping of Type III SRSs in the 3’-UTRs of Stau2 targets and 
non-targets (Relates to Figure 4).  

Type III SRSs were mapped in the 3’-UTRs of Stau2 targets (A), length-matched 

non-targets (B), and a random subset of non-targets (C). The x-axis represents 

the 3’-UTR in nucleotides, starting from the first nucleotide after the stop codon. 

Each 3’-UTR is represented by a grey bar within which the predicted Type III 

SRSs are represented by vertical red bars. For each SRS, the 5’-most nucleotide 

in the corresponding 10 of 12 motif hit is connected to its paired nucleotide in the 

partner arm by a line. In (A) the transcript identifier code is colored red if the 

transcript is downregulated or green if it is upregulated upon Stau2 KD. 
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Figure S4: Validation of Stau2 knockdown by shRNAs using nucleofection 
and calcium-based transfection in cortical neurons (Relates to Figures 4) 

(A-C) Validation of shRNA knockdown using nucleofection and calcium 

transfection. (A) Cortical neurons were transfected with the indicated shRNAs 

using nucleofection. After 3 days, protein samples were isolated for Western blot. 
Tubulin and Vinculin served as loading controls. The sequences targeting Stau2 

in shStau2-1 and shStau2-2 have both been published previously (Goetze et al., 

2006). shStau2-3 targets a third region of Stau2. shControl-1 (Stau2-2-mismatch 

control from (Goetze et al, 2006)) contains the shStau2-2 sequence but has 

several mismatches. ShControl-2 is a universal non-targeting control, and has no 

known complementary sequence in the mammalian transcriptome. pSuperior is 

the empty vector expressing no shRNA.  

(B) shRNAs were transfected into 8DIV hippocampal neurons, fixed at 11DIV and 

then immunostained with anti-Stau2 and Cy3-labelled anti-rabbit antibodies. GFP-

positive transfected cells are shown in the central images, and indicated by an 

asterisk next to the cell in the Stau2 immunostainings (outer images).  

(C) The intensity of Stau2 staining in the cell body in (B) was quantified in 

transfected and adjacent untransfected cells using Metamorph software (Roper 

Scientific, Visitron). Percentage change was calculated as the intensity of 

fluorescence of transfected cells relative to untransfected cells from the same 

experiment. Bars represent the mean +/- SEM of cells taken from 2 independent 

experiments (shControl-1 n=32, shControl-2 n=27, shStau2-2 n=8, shStau2-3 

n=12). Differences between controls and knockdowns were highly significant 

(Student’s t-test, p<0.001).  

(D) Comparison of the 38 Stau2-regulated targets identified in this study (see Fig. 
4A) to previously published Stau2 target datasets. 10 of the 38 RNAs were also 

found in the study by Maher-Laporte and Desgroseillers (2010), which was 

conducted by IP of endogenous Stau2 from unfractionated E17 rat brain. 5 RNAs 

were found with the study by Kusek et al. (2012), 2 of which were the same as 

those found by Maher-Laporte and Desgroseillers (Rgs4 and Ppp2r5b). This 



study was performed by IP of endogenous Stau2 from unfractionated E13 mouse 

brain. 5 different RNAs were found by Furic et al. (2008), 1 of which was shared 

with those also found by Maher-Laporte and Desgroseillers. This study was 

conducted in HEK-293 cells transfected by IP for over-expressed HA-tagged 

Stau262.  
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Supplemental Tables 

 

Table S1 – Stau2 IP microarray. mRNAs enriched more than 1.5-fold in the Stau2 

IP relative to input. Relates to Figure 1. See excel document Table S1. 

 



Table S2 - Full list of Stau2 target mRNAs validated by qRT-PCR for enrichment 
in the Stau2 IP. Relates to Figure 1 

Gene 
symbol 
 

Microarray 
Stau2 IP/ 

Input 

RT-qPCR 
Stau2 IP/ 

Input 

RT-qPCR 
Control IP/ 

Input 
Sepp1 4.38 6.25 0.70 
Sacm1l 4 10.44 1.40 
Comt 2.98 3.60 0.61 
Stx1a 2.8 3.44 0.90 
Sfrs3 2.77 1.69 0.43 
Rgs2 2.75 3.12 0.45 
Gna11 2.58 3.13 1.17 
Rgs4 2.3 2.59 1.11 
Lypla 2.3 2.04 0.71 
Prnp 2.21 0.84 0.53 
Cplx 2.2 1.47 1.02 
RhoJ 2.2 2.21 1.25 
RhoA 2.13 2.64 0.41 
Arpc4 1.92 1.52 0.41 
Calm3 1.91 4.34 0.41 
Nnat 1.77 5.85 0.31 
Camk2a 1.72 2.05 0.79 
Oprk 1.56 1.44 1.24 
Limk 1.56 1.37 1.45 
Actr2 1.55 1.31 0.66 
eIF4ebp2 1.47 0.87 1.21 
Septin9 1.3 1.59 0.90 
Arntl 1.23 0.68 1.03 
Calm1 1.23 1.29 0.55 
Actg 1.23 7.31 0.77 
Kif5c 1.16 1.23 1.10 
Map2 1.14 0.66 0.76 
Calm2 1.12 0.62 0.50 
Arc 1.08 1.52 4.57 
Cdc42ep2 1.05 0.64 0.43 
Usp7 1.02 0.56 0.96 
Ncam1 1.02 0.73 0.83 
Kcn2 1.02 0.64 0.41 
Cttnbp2 1.02 0.72 0.86 
ActB 0.93 0.41 0.48 
α-Tubulin 0.87 0.43 0.21 
Map1b 0.84 0.86 0.86 
Prox1 0.74 0.47 1.09 
Ift74 0.53 0.25 1.09 
Ndufa1 0.43 0.13 0.19 

 

 



Table S3 - Stau2-enriched targets cross-referenced to Cajigas et al (2012). All 

RNAs were cross-referenced to both the CA1 somatic layer and filtered neuropil 

layer. Relates to Figure 2. See excel document Table S3 

 

Table S4 – Stau2 knockdown microarray results. mRNAs significantly changed in 

shStau2-v2 relative to shControl-v2. Relates to Figure 3. See excel document 
Table S4. 

 



 

Table S5 – Overlapping RNAs between Stau2 IP and Stau2 knockdown 

microarrays. RNAs downregulated in the Stau2 knockdown are indicated in red, 

those that are upregulated are indicated in green. 

shSt2-2/ 
shControl-2 

Stau2 
IP/Input Gene Symbol Gene Description mRNA Accession 

0.265 2.20 Cplx1  complexin 1  NM_022864  
0.412 1.55 Ica1l  islet cell autoantigen 1-like  ENSRNOT00000041546  
0.473 1.55 RGD1559864  similar to mKIAA1045 protein  FQ211775  
0.486 1.95 Golph3l  golgi phosphoprotein 3-like  NM_001007698  
0.492 1.67 Nxph1  neurexophilin 1  NM_012994  

0.510 1.66 Nipsnap1  
nipsnap homolog 1 (C. 
elegans)  NM_001100730  

0.516 1.64 Nrsn1  neurensin 1  NM_001106109  

0.521 1.62 Gng7  
guanine nucleotide binding 
protein (G protein), gamma 7  NM_024138  

0.547 1.78 RGD1310127  
similar to cDNA sequence 
BC017158  BC099813  

0.567 1.66 B4galt5  

UDP-Gal:betaGlcNAc beta 
1,4-galactosyltransferase, 
polypeptide 5  NM_001108608  

0.572 2.30 Rgs4  
regulator of G-protein 
signaling 4  NM_017214  

0.578 2.16 Ppp2r1b  
protein phosphatase 2, 
regulatory subunit A, beta  NM_001025418  

0.581 2.14 Adck1  
aarF domain containing kinase 
1  NM_001108985  

0.597 1.74 Gtf2h3  
general transcription factor IIH, 
polypeptide 3  NM_001024236  

0.598 2.01 Thy1  Thy-1 cell surface antigen  NM_012673  
0.617 1.79 Snx10  sorting nexin 10  NM_001013085  

0.625 1.56 Ppp2r5b  
protein phosphatase 2, 
regulatory subunit B', beta  NM_181379  

0.628 1.83 Efr3b  
EFR3 homolog B (S. 
cerevisiae)  ENSRNOT00000039251  

0.640 1.61 Sdc1  syndecan 1  NM_013026  

0.641 1.75 Ift52  
intraflagellar transport 52 
homolog (Chlamydomonas)  NM_001177685  

0.642 1.56 Atg13  autophagy related 13  ENSRNOT00000023237  

0.657 1.92 Tstd2  

thiosulfate sulfurtransferase 
(rhodanese)-like domain 
containing 2  NM_001108663  

0.664 1.99 Fam45a  
family with sequence similarity 
45, member A  NM_001127681  

0.670 2.14 Sft2d2  SFT2 domain containing 2  NM_001034011  
0.676 1.89 Sfxn3  sideroflexin 3  ENSRNOT00000021171  

0.678 1.60 Srebf2  
sterol regulatory element 
binding transcription factor 2  ENSRNOT00000056041  

0.683 2.39 Cyb5b  
cytochrome b5 type B (outer 
mitochondrial membrane)  NM_030586  

0.690 1.60 Nmt2  N-myristoyltransferase 2  ENSRNOT00000030219  

0.707 1.67 St6galnac3  

ST6 (alpha-N-acetyl-
neuraminyl-2,3-beta-
galactosyl-1,3)-N-
acetylgalactosaminide alpha- NM_019123  



2,6-sialyltransferase 3  

0.718 1.95 RGD1305587  
similar to RIKEN cDNA 
2010107G23  BC158618  

0.719 1.53 Negr1  neuronal growth regulator 1  NM_021682  
0.720 2.11 Tollip  toll interacting protein  NM_001109668  
1.358 1.57 Rwdd4  RWD domain containing 4A  NM_001034994  
1.359 1.99 RGD1308106  LOC361719  NM_001134575  

1.481 2.00 Cdc25c  
cell division cycle 25 homolog 
C (S. pombe)  NM_001107396  

1.593 2.10 LOC302495  hypothetical LOC302495  NM_001106950  
 



 

Table S6 – Sequences and Structures surrounding SRSs in Stau2 target mRNAs. 

We show the sequences for the SRS matches (in uppercase) and the 150nt-long 

(if applicable) flanking sequences on either side of each match. We also show the 

centroid structure predicted for these regions. See excel document Table S6. 

 



Extended experimental procedures 

 

Plasmids and shRNAs 

shRNA plasmids were cloned into the pSuperior+GFP vector system according to 

manufacturer’s instructions (Oligo Engine). The targeting sequences were as 

follows: shStau2-1 5’ GCCCTACAGAATGAGCCAA 3’, shStau2-2 5’ 

GATATGAACCAACCTTCAA 3’, shStau2-3 5’ CCGTCAGTTTTGAGGTTAT 3’, 

shControl-1 5’ GATATGAAACCCCACTTAA 3’, shControl-2 5’ 

TAAGGCTATGAAGAGATAC 3’. shStau2-2 and shControl-1 (shStau2-2mis) have 

been previously described (Goetze et al, 2006). For lentiviral-mediated 

knockdown, the shControl-1, shStau2-2 and shStau2-3 expression cassette (H1 

promoter + shRNA) were subcloned from pSuperior into a lentiviral vector, FUW 

(Lois et al., 2002) coexpressing TagRFP driven by human ubiquitin C promoter. 

These sequences are denoted with shStau2-v2 and -v3. shControl-v1 

corresponds to the shControl-1 sequence, whereas shControl-v2 targets the 

luciferase gene with the sequence (5’-CGTACGCGGAATACTTCGA-3’).  

Full-length Rgs4 3’-UTR was PCR amplified from a rat EST plasmid obtained 

from Imagenes (IMAGp998K1715372Q) using the primers: Fwd, 

GTCAAAGTCGACTTCTCACACAGAGGCAGAGAACCGAAATGCCAAGACTCT

ATGCTCTGGAAAACCTG;Rev,GAACATGCGGCCGCGTAGGAAGCATTTATTT

CCTGTTATC and cloned into psiCheck-2 (Promega) dual luciferase reporter 

plasmid via SalI/NotI. The Sepp1 3'-UTR luciferase reporter was subcloned from 

Imagenes EST plasmid (IRQLp5017G0112D) using NotI/XbaI restriction sites. 

For Rgs4 antisense FISH probe, a portion of Rgs4 3’-UTR was PCR-amplified 

from rat genomic DNA and cloned into pGEM-T using the following primers: 

Fwd,TCTCACACAGAGGCAGAGAACC; Rev, TCCTCTCAAACATCCATCTCCA. 

 

Primary neuron cultures and transfections 

Embryonic day 17 (E 17) hippocampal neurons were isolated from embryos of 

timed pregnant Sprague Dawley rats (Charles River) as previously described 

(Goetze et al, 2006). Dissociated primary cortical neurons were prepared from 

cortices remaining from hippocampal dissections (E17 Sprague Dawley rats). 

Cortices were cut up and treated with 0.05% trypsin for 10 minutes, then triturated 



in DMEM+HS using a 1mL pipette and fire-polished Pasteur pipettes, then filtered 

consecutively through 100uM and 70uM filters. Cells were counted, transfected 

using the Amaxa Nucleofection™ device (see below) and plated directly onto 

Poly-L-lysine coated cell culture dishes.  

Primary hippocampal neurons used for imaging of shRNA knockdown efficiency 

and FISH were transfected using calcium phosphate precipitation as previously 

described (Köhrmann et al, 1999). Cortical neurons were transfected using the 

Amaxa Nucleofection™ device (Rat Neuron Nucleofector Kit, Lonza, program O-

003 or AK-009). Procedures were carried out as previously described (Zeitelhofer 

et al, 2007). Up to 4 million cells were transfected with 30µg of plasmid DNA and 

plated at a density of 1.5-2 million cells per 6cm dish. RNA or protein was isolated 

3 days later.  

Isolation of RNA from Stau2 RNPs 

IPs were performed as described in RNase-free conditions on ice (Fritzsche, 

Karra et al., Cell Reports, accepted). Briefly, E17 rat brains were homogenized in 

extraction buffer (EB; 25 mM HEPES (pH 7.3), 150 mM KCl, 8 % glycerol, 0.1 % 

NP-40, 40U/ml RNase inhibitor, 1 mM DTT, protease inhibitor cocktail) and 

centrifuged at 20,000g. The S20 was fractionated over a 15-30% Optiprep™ 

(Axis-Shield) density gradient that was centrifuged in a swinging bucket rotor 

(SW41, Beckman) at 280,000 x g at 4°C for 2.5 hours. 900µL fractions were 

removed and analyzed for Stau2, calnexin and ribosomal proteins by Western 

blot. Four fractions (F4-7) enriched for Stau2 but mostly depleted of calnexin were 

pooled and used as input for the IP. Input was pre-cleared with protein A beads 

before IP and 50µl was set aside for RNA isolation. Protein A beads coupled to 

an equal amount of either affinity-purified Stau2 (or Barentsz) antibodies or rabbit 

pre-immune serum were blocked with BSA and then incubated with the input for 2 

hours rotating at 4°C. Following binding, the beads were washed 2 times in EB 

supplemented with an extra 0.4% NP-40, 2 times in EB and 2 times in 5mM Tris, 

100mM NaCl.  

 

Total RNA was isolated using miRvana™ miRNA isolation kit according to 

manufacturers instructions (Applied Biosystems). For the first step, the lysis and 



binding buffer was added directly to the compacted IP beads after removal of the 

final wash. RNA was eluted from the column with 100µL nuclease-free H2O and 

ethanol precipitated. The final RNA pellet was resuspended in 12µl nuclease-free 

H2O and the concentration measured using a NanoDrop spectrophotometer 

(Thermo Scientific). RT-qPCR was performed (see below) on a minimum of 3 

independent IPs for any given RNA and significance determined using Student’s 

t-test (P<0.05) 

 

RNA/protein isolation from lentiviral transduced neurons 

Transduced neurons were harvested at 7DIV to isolate RNA and protein samples. 

RNA was isolated using RNeasy kit with on-column DNase digestion (Qiagen) 

according to the manufacturer’s instructions. Protein lysates were collected by 

washing the neurons first in warm HBSS and then lysing directly in 2 x Laemmli 

buffer. The lysate was boiled for 5mins at 95oC and then freeze-thawed once 

before Western blotting was performed.  

cDNA synthesis and quantitative RT-PCR 

RNA samples (0.5-2µg) were treated with DNase I to remove contaminations. 

Following this, cDNA was synthesized from 0.5-1µg DNase-treated RNA using 

random primers and Superscript III™ reverse transcriptase (Invitrogen) according 

to the manufacturer’s instructions. For IPs, 0.5 µg of input RNA, 0.5 µg of IP RNA 

and an equal volume of pre-immune IP RNA was used as template. Quantitative 

reverse transcriptase PCR (RT-qPCR) of mRNAs was performed using the SYBR 

green mastermix (Bio-Rad) according to manufacturers instructions. 3µl of a 1:10 

dilution of cDNA was added to each 25µl reaction, in triplicate for each primer set. 

For non-template controls (NTC), ddH2O was used in place of the cDNA. All RT-

qPCR data were analyzed using the comparative ΔΔCT method (Schmittgen & 

Livak, 2008). Primer sets were rigorously validated on dilution series and 

optimized to achieve 95-105% efficiency before use. For each new experiment, 

several potential reference genes were tested for stable expression between 

samples. To avoid any potential bias introduced by a single reference gene, 

cross-normalization to at least two reference genes was used (Weidensdorfer et 



al., 2009). Reference genes used for each experiment are indicated in the 

corresponding figure legend. 

GO term analysis 

GO term enrichments were determined using DAVID 

(http://david.abcc.ncifcrf.gov) (Huang et al, 2009). For the IP, RNAs that were 

enriched greater than 1.5-fold relative to input were used for the analysis. For the 

knockdown microarray, all significantly up- (99) and down-regulated (349) genes 

were used for the analysis. 

Gene symbols were used to compare the RNAs found in this study with those 

previously published. Mouse and human symbols were converted to rat where 

necessary using MammalHom 

(http://depts.washington.edu/l2l/mammalhom.html).  

 

Western blots  

Equal amounts of protein were separated via SDS-PAGE and subjected to 

immunoblotting. For phospho-ERK Western blotting, equal numbers of primary 

cortical neurons were transfected and plated. Cells were washed in HBSS and 

directly lysed and scraped from the dish in Laemmli buffer, boiled and an equal 

volume was used for SDS-PAGE. Membranes were blocked using 1 x Detector™ 

Block (KPL) solution, or 5% BSA in 1xTBS/0.1% Tween-20 (TBST) for phospho-

ERK antibodies, for at least 30 min at room temperature. Primary and secondary 

antibodies were diluted in blocking solution. The membrane was incubated with 

the primary antibody for 2 hours at room temperature or overnight at 4°C. 

Secondary antibodies were conjugated to the IRDye700 or -800 and incubated 

with the membrane for 1 hour protected from light. All washes were performed in 

PBS/0.1% Tween except for ERK antibodies where TBST was used. Following 

washes, the membrane was scanned with the infrared-based Odyssey Imaging 

System (Li-Cor). Western Blot bands were quantified using ImageJ software 

(http://rsbweb.nih.gov/ij/index.html). 

 

Identification of Staufen recognized structures (SRSs) 



We downloaded Rattus norvegicus (Rnor_5.0) CDNA sequences from Ensembl 

using BioMart in August 2013 and defined 3’-UTRs as the portion of the cDNA 3’- 

to the open reading frame, as defined by Ensembl. When there were multiple 

isoforms for a gene, we used the longest isoform to represent its mature mRNA 

sequence. Of the 38 ‘high-confidence’ genes identified by IP, 23 were analyzed 

for SRSs; the remainder were missing due to suspected off-target effects of the 

control or Stau2 shRNA (three transcripts), ID matching (four transcripts) or 

sequence unavailable (eight transcripts). Then, to identify SRSs in these 3’-UTRs, 

we followed our previously described protocol (Laver et al., 2013). Briefly, we 

annotate double-stranded RNA (dsRNA) stems using the annotation [M,N,U], 

where at least one arm is exactly M nucleotides long and the stem contains at 

least N canonical base pairs (i.e., Watson–Crick or G-U wobble base pairs) with 

the nucleotides in the other arm, including the bases at the 5’- and 3’- ends of the 

stem. Furthermore, both arms include at most U unpaired nucleotides (i.e., have 

no partner base on the opposite strand and thus are unable to form either a 

canonical or a non-canonical base-pair). We performed a two-step procedure to 

identify the SRS matches, where we first scan the 3’-UTRs to look for regions that 

are highly paired and then fold locally around those regions to identify appropriate 

stems. Taking the Type III SRS, [12,10,2], as an example, we first applied 

RNAplfold (Bernhardt et al., 2006) and calculated the single-nucleotide base-

pairing probability for the entire rat 3’-UTRome, using the parameter settings W = 

200, L = 150 and U = 1 as suggested (Lange et al., 2012). We then estimated the 

probability that 10 bases in each 12 nucleotide region participate in a canonical 

base pair using the lowest single-nucleotide probability from this region, after 

removing the two (i.e., 12-10) nucleotides with the lowest single-nucleotide 

probability among all of the nucleotides in the region except the bases at the 5’- 

and 3’-end of the region. We selected all the 10 of 12 motif hits within the top 1% 

of the 10 of 12 probabilities across all rat 3’-UTRs. We then folded these hits 

together with 150nt-long flanking sequences on either side of each hit, using 

Sfold (Ding & Lawrence, 2003). Based on the centroid structure predicted by 

Sfold, we selected matches to the Type III SRS from the 10 of 12 motif hits, 

based on the following four criteria: (i) at least 10 of the 12 bases in the 10 of 12 

motif hit had to be paired, including the first and last bases; (ii) the hit’s ‘partner 

region’, which is the transcript sequence between the bases that pair with the first 



and last bases of the 10 of 12 motif hit, had to pair only with bases in that hit (i.e., 

contain no hairpins); (iii) the motif hit had to pair only with bases in its partner 

region; and (iv) the 10 of 12 motif hit and its partner region together had at most 

two bases that neither formed a canonical base pair nor a non-canonical base 

pair (i.e., were unpaired). 

We scored the enrichment of the Type III SRS in two ways: Firstly, the frequency 

of Type III SRSs per 3’-UTR and, secondly, the frequency of Type III SRSs per 

nucleotide (i.e., normalized to 3’-UTR length). The expected baseline rates were 

calculated using the entire rat 3’-UTRome. We performed the two-tail Wilcoxon 

rank sum test to evaluate the significance of the enrichment for Type III SRSs in 

the Stau2 targets relative to the baseline.  
 

RT-qPCR primers (Relates to Figures 1 and 4) 

Gene Sequence 5' to 3' 
γ actin fwd CTTCCAGCAGATGTGGATCA 
γ actin rev CCAGGGAAATCGATACTTC 
Actr2 fwd GCTGGCCTTAGAGACCACAG 
Actr2 rev AAGCAATTCAGCAACACCAA 
Ago1 fwd CAACATCACTCACCCGTTTG 
Ago1 rev GCAGGTGCTGGGATAGAGAC 
Arc fwd AGAACGACACCAGGTCTCAA 
Arc rev CCTATTTTCTCTGCCTTGAAA 
Arntl fwd TTAGCCAATGTCCTGGAAGG 
Arntl rev CCTGGAACAGTGGGATGAGT 
Arpc4 fwd TTCGAAGGAAACCTGTGGAG 
Arpc4 rev GGAACTCCTCAGCCACGATA 
β actin fwd GTCCACCTTCCAGCAGATGT 
β actin rev GAAAGGGTGTAAAACGCAGC 
Bicd2 fwd AAGGAAGCACTCATGGAGGA 
Bicd2 rev GTCACCATGGCCTTCTCATT  
Calbindin fwd CTGACAGAGATGGCCAGGTT 
Calbindin rev GGCATCCAGCTCATTTTCAT 
Calm3 fwd ACAGCGAGGAGGAGATACGA 
Calm3 rev CATAATTGACCTGGCCGTCT 
CaMKIIα fwd AAACTGAAGGGAGCCATCCT 
CaMKIIα rev TCCATTGCTTATGGCTTCGATC 
Comt fwd GAGCTGGGAGCTTACTGTGG 
Comt rev CCCATTGAGGATGGTGACTT 



Cplx1 fwd GAGGCAGAACGTGAGGTCAT 
Cplx1 rev GAGTCAGGCTGCCTTCTGAG 
Dicer1 fwd GCAAGGAATGGACTCTGAGC 
Dicer1 rev GTACACCTGCCAGACCACCT 
eIF4ebp2 fwd GCGCAGCTACCTCAGGACTA 
eIF4ebp2 rev CGACGGTCCAACAGAAACTT 
Fez1 fwd TCTTCTCCTCCCTCTGTGGA 
Fez1 rev GCAAAGTAGGCACCTTCTCG 
Gabarapl2 fwd CCCATCTGACATCACTGTGG 
Gabarapl2 rev TTAGGCTGGACTGTGGGACT 
GAPDH fwd ATTCTTCCACCTTTGATGC 
GAPDH rev GTCCACCACCCTGTTGCTGTA 
Ift74 fwd CAAATGACTGCTGACCTGGA 
Ift74 rev AGGCATTTCTGTGGGTTGAC 
Kif5c fwd AACCTGGAGCAGCTTACCAA 
Kif5c rev CAGTAGCACGGAGCCTCTTC 
Limk1 fwd CCTCCGAGTGGTTTGTCGA 
Limk1 rev CAACACCTCCCCATGGATG 
Lypla1 fwd GCCTTCGCAGGTATCAAAAG 
Lypla1 rev TTCATCCTCCTGGGAATCTG 
Map1b fwd TGCTTCTGCATCCAAGTCAG 
Map1b rev TGTTGCTGTGGTTGGGAATA 
Map2 fwd GGAAGAAGCCTCGAAGATGGAA 
Map2 rev TGGGGAGTTTTACTTGTGTCCG 
Ncam1 fwd AACGGACTCCAAACCATGAC 
Ncam1 rev TGGCTTTGCTTCTGACTCCT 
Ndufa1 fwd CATCCACAAGTTCACCAACG 
Ndufa1 rev CAGGCCCTTGGACACATAGT 
Nnat var.1 fwd TCATCATCGGCTGGTACATC 
Nnat var.1 rev CTGTGTCCCTGGAGGATTTC 
Oprk1 fwd TTCCCTGGTCATGTTTGTCA 
Oprk1 rev CATCTCCAAAAGGCCAAGAA 
PPIA fwd GTC AAC CCC ACC GTG TTC TT 
PPIA rev CTG CTG TCT TTG GAA CT TTG 
Ppp2r1b fwd CAGCTGGGTGTGGAGTTTTT 
Ppp2r1b rev CATGAGGTTGTTGGTTGCTG 
Ppp2r5b fwd CATTTCCAGGTTGCAGAGCG 
Ppp2r5b rev ACAGTGTGGCAGTTGTCCTC 
Prnp fwd TAGGAGAGCCAAGCCGACTA 
Prnp rev CTTTTTGCAGAGGCCAACAT 
Rgs2 fwd AATATGGGCTTGCTGCATTC 
Rgs2 rev TGGGAGCTTCCTTCTCGAT 
Rgs4 fwd AGTCCCAAGGCCAAGAAGAT 
Rgs4 rev AACATGTTCCGGCTTGTCTC 
RhoA fwd AAGGACCAGTTCCCAGAGGT 



RhoA rev TGTCCAGCTGTGTCCCATAA 
RhoJ fwd TCATTGGGACCCAGATTGAT 
RhoJ rev GGCAGAGCATTCCAAGTAGC 
Sacm1 fwd AAGTGTTCCAAGGGACTGGA 
Sacm1 rev CTTGCAACTCCCCAGAAGAG 
Sepp1 fwd GGCCGTCTTGTGTATCACCT 
Sepp1 rev TGAAAGAGCAGTTTCCACACC 
Sept9 fwd GGATTCTGGGAAGGAAGACC 
Sept9 rev AGGCTTCGAAGTGGATGTTG 
Stau2 fwd GAACATCTCCTGCTGCTGAAG 
Stau2 rev ATCCTTGCTAAATATTCCAGTTGT 
α-Tubulin fwd  TGTCTTCCATCACTGCTTCC 
α-Tubulin rev  TGTTCATGGTAGGCTTTCTCAG 
Uhmk1 fwd TCCTGGCAGAGGACAAGTCT 
Uhmk1 rev CCCTCTTGTAGGCACTCAGC 
Vinculin fwd TCACAGTGGCAGAGGTAGTG 
Vinculin rev TGACAGTGTTCATTGAGTTC 
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AP5/APV – (2R)-amino-5-phosphonovaleric acid 
APA – Alternate poly-adenylation 
APS – ammonium persulfate 
AS – Alternative splicing 
Btz – Barentsz 
CA1 – Cornu Ammonis 1 
CaM/Calm – Calmodulin 
CaMKII – Calcium/Calmodulin Kinase II 
cDNA – complementary DNA 
CDS – coding sequence 
CNQX – 6-cyano-7-nitroquinoxaline-2,3-dione 
CPEB – cytoplasmic polyadenylation-element-binding protein 
Cplx1 – Complexin 1 
Crm1 – Chromosomal Maintenance 1 
DAPI – 4',6-diamidino-2-phenylindole 
DIV – days in vitro 
dsRBD – double-stranded RNA-binding domain 
dsRBP – double-stranded RNA-binding protein 
dsRNA – double-stranded Ribonucelic acid 
DTT – Dithiothreitol 
E/GFP – enhanced / green fluorescent protein 
E17 – embryonic day 17 
EJC – exon-junction complex 
ER – endoplasmic reticulum 
ERK – Extracellular signal Regulated kinase 
EV – empty vector 
FISH – Fluorescent in situ hybridisation 
FMRP – Fragile X Mental Retardation Protein 
FUS – Fused in Sarcoma 
GO – Gene ontology 
GPCR – G-protein coupled receptor 
GFP – Green Fluorescent protein 
iCLIP – individual-nucleotide resolution Cross-Linking and ImmunoPrecipitation 
IgG – immunoglobulin 
IP – Immunoprecipitation 
IR – Intron retention 
ISH – In situ hybridisation 
kb – kilobases 
KD – knockdown 
LE – Localization element 
LTD – Long-term depression 
LTP – Long-term potentiation 
MAP2 – microtubule-associated protein 2 
MCS – multiple cloning site 
mEPSC – miniature excitatory postsynaptic current 
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mGluR – metabatropic glutamate receptor 
miRNA – microRNA 
mRNA – messenger RNA 
NCBI – National Centre for Biotechnology Information 
NLS  – Nuclear localization signal 
NMD – Non-sense mediated decay 
NMDA – N-Methyl-D-aspartic acid 
nt – nucleotides 
NTC – Non template control 
OE – overexpression 
oligo(dT) – oligonucleotide deoxythymidine 
O/N – Overnight 
ORF – open reading frame 
PACT – protein activator of the interferon-induced protein kinase 
PAGE – polyacrylamide gel electrophoresis 
PIS – pre-immune serum 
PKMζ – Protein Kinase M, zeta 
PPIA – Peptidylprolyl isomerase A 
PTC – Premature termination codon 
Pum2 – Pumilio 2 
qRT-PCR - quantitative reverse transcriptase (real-time) PCR 
RBD – RNA-binding domain 
RBP – RNA-binding protein 
RCN – Rat cortical neurons 
RFP – red fluorescent protein 
Rgs – Regulators of G-protein signalling 
RhoA – ras homolog gene family, member A 
RISC – RNA-induced silencing complex 
RNAi – RNA interference 
RNP – Ribonucleoprotein particle 
RT – reverse transcription 
SDS-PAGE – Sodium dodecyl sulfate polyacrylamide gel electrophoresis 
SEM – Standard error of the mean 
shRNA – short hairpin RNA 
siRNA – short-interfering RNA 
snoRNA – small nucleolar RNA 
snRNA – small nuclear RNA 
SRS – Staufen recognized structure 
SSC – saline-sodium citrate 
Stau – Staufen 
TDP – TAR DNA-binding protein 
Tm – melting temperature 
TRBP – TAR RNA-binding protein 
tRNA – transfer RNA 
TTX – Tetrodotoxin 
UCSC – University of California, Santa Cruz 
UTR – untranslated region 
YFP – yellow fluorescent protein 
ZBP1 – Zipcode-binding protein 
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