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Kapitel 1

Einleitung

Die Internationale Caries Consensus Collaboration (ICCC), ein Zusammenschluss von 21

renommierten Kariologie-Experten, hat 2016 neue Richtlinien zur Kariesexkvation her-

ausgegeben [Schwendicke et al., 2016].
”
Oberste Priorität sollte der Erhalt gesunden und

remineralisierbaren Gewebes haben. Kariöses Gewebe soll selektiv nur soweit entfernt wer-

den, dass Bedingungen für eine langfristig stabile Restauration gegeben sind.“ Klassischer-

weise werden kariöse Läsionen soweit exkaviert, dass der Kavitätenboden sondenhart und

unverfärbt erscheint. Fusayama et al. (1966) haben jedoch bereits 1966 herausgefunden,

dass Verfärbung und Erweichung des Dentins der mikrobiellen Invasion immer vorausei-

len. Die Distanz zwischen Erweichung und mikrobieller Invasionsfront betrug dabei bis zu

1750 µm [Fusayama et al., 1966]. Die Orientierung an den Parametern Verfärbung und

Härte des Dentins würde somit zu einer unnötigen Entfernung gesunden Gewebes führen.

Seitdem wurden deshalb zahlreiche Methoden entwickelt um objektiv zwischen bakteri-

ell besiedelter und erhaltungswürdiger Zahnhartsubstanz zu unterscheiden und somit eine

minimalinvasive Kariestherapie zu ermöglichen [Banerjee et al., 2000b]. Die neueste Ent-

wicklung stellt der PolyBur (Komet Dental, Gebr. Brasseler GmbH und Co. KG, Lemgo,

Deutschland) dar, ein Polymerbohrer, der aufgrund seiner Härte zwischen gesunder und ka-

riöser Zahnhartsubstanz eine Selbstlimitation im Gesunden erfährt. Der Polymerbohrer ist

substanzschonender als andere Exkavationsmethoden [Tsolmon, 2008, Ferraz et al., 2015]
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und erhält somit mehr strukturell veränderte Zahnhartsubstanz. Verschiedene Studien ha-

ben gezeigt, dass es durch Versiegelung einer kariösen Läsion zu ihrer Arretierung kommen

kann [Mertz-Fairhurst et al., 1998, Bakhshandeh et al., 2012, Maltz et al., 2012]. Hinter-

grund ist dabei die Abschirmung der pathogenen Bakterien von ihrem Substrat [Keyes,

1962, Going et al., 1978, Mertz-Fairhurst et al., 1986], da ein kariöser Prozess nur im Zu-

sammenspiel der drei Faktoren Wirt, Bakterien und Substrat bestehen kann [Keyes, 1962].

Um diese Versiegelung bzw. Abschirmung durch eine Restauration zu erreichen ist der

Verbund mit dem Adhäsiv entscheidend. Adhäsive werden im Labor zumeist an Dentin

gesunder Zähne getestet [Kuraray, 2014]. Nach Polymerbohrer-Exkavation wird das Den-

tin jedoch von einer auffallend dicken Schmierschicht bedeckt [Silva et al., 2006,Tsolmon,

2008, Toledano et al., 2012]. Während Totaletch-Adhäsive die Schmierschicht weitestge-

hend auflösen können [Li et al., 2011, Sherawat et al., 2014], bauen sie Selfetch-Adhäsive

in den Verbund mit ein. Die Adhäsive der neuesten Generation, die Universaladhäsive,

sind sowohl für Totaletch- als auch für Selfetch-Anwendung zugelassen. Es stellt sich die

Frage, ob die modernen Universaladhäsive trotz der von einem Polymerbohrer produzier-

ten ausgeprägten Schmierschicht einen adäquaten Haftverbund herstellen können, der das

kariöse Restgewebe versiegeln und eine Restauration ermöglichen kann. Ziel der vorliegen-

den Studie ist es den Adhäsivverbund nach selbstlimitierender Kariestherapie mit einem

Polymerbohrer näher zu charakterisieren.



Kapitel 2

Literaturübersicht

2.1 Struktur kariösen Dentins

2.1.1 Definition der Karies

Die Zahnkaries wurde 1962 von der WHO definiert als lokalisierter, post-eruptiver, pa-

thologischer Prozess externen Ursprungs, der eine Erweichung der Zahnhartsubstanz mit

einschließt und im weiteren Verlauf zu einer Kavitätenbildung führt [WHO, 1962].

2.1.2 Ätiologie und Pathogenese der Karies

Gemäß Keyes (1962) sind drei Faktoren für die Entstehung einer Zahnkaries nötig: Wirt,

Bakterien und Substrat. Bakterien, die auf der Zahnoberfläche, dem Wirt, vorhanden

sind verstoffwechseln niedermolekulare Kohlenhydrate zu organischen Säuren [Miller, 1889,

Scheinin and Makinen, 1976].

Der dominierende Keim kariöser Prozesse, der S.mutans, ist in allen Kariesstadien in

großer Zahl vorhanden ist, während Aktinomyzeten klassischerweise in Initialläsionen, Bi-

fidobakterien und Laktobazillen dagegen in tiefen Kavitäten zu finden sind [Becker et al.,

2002, Hellwig et al., 2010]. Durch die entstandenen Säuren, kommt es innerhalb weniger

Minuten zu einem Abfall des pH-Wertes im Mund [Fejerskov et al., 1992]. Fällt dieser
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unter den kritischen Wert von ungefähr 5,5 für Schmelz [Meyer-Lückel, 2012] bzw. 6,5 für

Dentin [Hellwig et al., 2010], kommt es zu einer Entkalkung der Zahnhartsubstanz [Miller,

1889].

Bereits mit Nahrungsaufnahme setzt eine Gegenregulation ein, indem der Speichelfluss

und dessen Elektrolytkonzentration erhöht werden [Scheinin and Makinen, 1976]. Trotz-

dem dauert es nach dem Säureangriff meist über 30 Minuten bis der pH-Wert wieder im

neutralen Bereich liegt [Fejerskov et al., 1992]. Unter physiologischen Bedingungen können

die im Speichel enthaltenen Mineralien die Zahnhartsubstanz remineralisieren und es bil-

det sich ein Gleichgewicht aus De- und Remineralisation aus [Hellwig et al., 2010]. Ist die

Frequenz der Nahrungsaufnahme jedoch sehr hoch, wird dieses Gleichgewicht gestört und

verlagert sich zu Gunsten der Demineralisation [Gustafsson et al., 1954]. Es resultiert ein

irreversibler Mineralverlust der Zahnhartsubstanz, der zu ihrer Erweichung führt [Miller,

1889, WHO, 1962, Fusayama et al., 1966]. Solange die Entkalkung nur den Bereich des

Schmelzes betrifft, wird sie bald mechanisch entfernt. Sobald sie aber bis ins Dentin reicht,

erhöht sich die Ausbreitungsgeschwindigkeit des
”
pathologischen Prozesses“ [Miller, 1889].

Das Resultat ist ein Einbruch der Zahnoberfläche mit Bildung einer Kavität [WHO, 1962].

Bei einem Fortbestehen der drei Schlüssel-Faktoren der Kariesentstehung – Wirt, Bak-

terien und Substrat – schreitet die Veränderung und Zerstörung des Gewebes voran. Wird

einer der drei Faktoren jedoch modifiziert oder entfernt, kann der pathologische Prozess

gestoppt werden [Keyes, 1962]. Abhängig von den Umgebungsbedingungen wechseln sich

aktiv progrediente Phasen mit passiven ab [Massler, 1967,Mertz-Fairhurst et al., 1986].

Die WHO formulierte die Eckpunkte für das Entstehen eines
”
pathologischen Prozesses“

in ihrer Definition der Zahnkaries – die Notwendigkeit eines direkten Kontaktes zwischen

Wirt, Substrat und Bakterien (
”
lokalisiert, post-eruptiv“) auf der einen Seite; das Vorhan-

densein von Bakterien (
”
externen Ursprungs“) auf der anderen Seite [WHO, 1962].
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2.1.3 Histologie der Dentinkaries

Bereits vor Einbruch der oberflächlichen Schmelzschicht kann es zu Reaktionen der räum-

lich benachbarten Pulpa kommen [Brännström and Lind, 1965]. Sie stellen einen physio-

logischen Schutzmechanismus dar und haben das Ziel, das Gewebe zu erhalten und zu

regenerieren [Massler, 1967]. Vorherrschende Merkmale sind die Veränderung der Odon-

toblastenschicht mit Zellreduktion [Brännström and Lind, 1965], Dentinsklerose [Massler,

1967] und Bildung von Tertiärdentin [Stanley et al., 1983].

Im histologischen Schnitt einer kariösen Dentinläsion zeigen sich diese strukturellen Um-

bildungen in fünf voneinander abgrenzbaren Zonen. Der Pulpa folgen Richtung Schmelz-

Dentin-Grenze die Zone des Tertiärdentins, die Zone normalen Dentins, die transluzente

Zone, die Zone der
”
dead tracts“ und die Zone der Demineralisation [Schröder, 1991].

Das Tertiärdentin wird zum Schutz der Pulpa vor einwirkenden Noxen gebildet. Es

kann bereits vor einer Kavitätenbildung entstehen [Brännström and Lind, 1965].

Darüber liegt eine Schicht normalen Dentins [Schröder, 1991], das aber leichte Verände-

rungen aufweisen kann, weswegen es im Englischen
”
affected dentine“ genannt wird [Buchal-

la, 2012,Fusayama and Kurosaki, 1972].

Die dritte Schicht wird von sklerosiertem Dentin gebildet. Aufgrund der modifizierten

Dentinstruktur wird ihr Brechungsindex beeinflusst und sie erscheint im Durchlichtmikro-

skop transluzent [Miller, 1889,Stanley et al., 1983]. Die Unabhängigkeit der Schichtstärke

dieser transluzenten Zone von der Ausprägung der Demineralisation, lässt darauf schlie-

ßen, dass deren Entstehung weniger in einer passiven Einlagerung von Calciumphosphat-

Verbindungen nach Ende eines Säureangriffs begründet, sondern eine aktive Schutzfunktion

der Odontoblasten ist [Arnold et al., 2003]. Für die These einer aktiven Ablagerung von

Odontoblasten-Produkten spricht auch ein ähnliches Auftreten von sklerosierten Bereichen

nach mechanischen, nicht säure-bedingten, Belastungen wie Attrition und Abrasion [Miller,

1889].

Die vierte Zone Richtung Schmelz-Dentin-Grenze sind die sogenannten
”
dead tracts“.

Die Bezeichnung der Zone rührt daher, dass sich in den Dentintubuli dieser Zone keine vita-
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len Odontoblastenfortsätze mehr finden, was auf Obliterationsvorgänge in der darunterlie-

genden Zone sklerotischen Dentins zurückgeführt wird [Buchalla, 2012]. Im Gegensatz zur

Dentinsklerose der transluzenten Zone bieten die dead tracts wenig Widerstand gegenüber

Säuren und Bakterien [Stanley et al., 1983]. Während die Zone der
”
dead tracts“ in pe-

ripheren Dentinläsionen regelmäßig auftritt, verschwindet sie bei bakterieller Infiltration

tieferer Dentinbereiche [Buchalla, 2012].

Die äußerste regelmäßig auftretende Zone ist die Zone der Demineralisation. Obwohl sie

im Auflichtmikroskop ähnlich wie gesundes Dentin erscheint, ist ihr Mineralgehalt deutlich

geringer [Arnold et al., 2003].

Bei fortgeschrittenen Läsionen schließen sich noch zwei weitere Zonen nach außen an.

Die Zone der Penetration [Hellwig et al., 2010] mit geweiteten, teilweise konfluierenden

Dentintubuli und infiltrierenden Bakterienansammlungen [Shimizu et al., 1981].

Die oberflächlichste Schicht ist eine Mixtur aus degeneriertem Gewebe und Bakterien,

genannt Zone der Nekrose [Hellwig et al., 2010].

2.1.4 Mechanische Eigenschaften kariösen Dentins

Wie der lateinische Begriff Caries (
”
Morschheit, Fäulnis“) ausdrückt, sind die mechanischen

Eigenschaften kariösen Dentins gegenüber denen gesunde Dentins verändert. Dies zeigt sich

in einer poröseren Struktur [Arnold et al., 2003, Toledano et al., 2012], einer geringeren

Rissfestigkeit [Sano et al., 1994a], einem geringeren E-Modul [Sano et al., 1994a] und einer

geringeren Härte [Fusayama et al., 1966,Pereira et al., 2006,Tsolmon, 2008].

Die Demineralisierung der Zahnhartsubstanz durch den kariösen Säureangriff führt zu

einer porösen Grundstruktur. Der Körper versucht sich durch die Sklerosierung des Den-

tins zu schützen [Pereira et al., 2006], aber auch dadurch kommt keine hundertprozentige

Diffusionsbarriere zustande [Arnold et al., 2003]. Chemische Agenzien können in kariöses

Dentin signifikant tiefer eindringen als in gesundes Dentin [Hahn and Hellwig, 2004]. Nach

Exkavation der Karies wird die Penetrationsmöglichkeit deutlich reduziert und liegt im

Bereich normalen Dentins [Hahn and Hellwig, 2004]. Dies wird auf die weniger dichte Den-
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tinstruktur kariösen gegenüber gesunden bzw. exkavierten Dentins zurückgeführt [Hahn

and Hellwig, 2004].

Die Umstrukturierungen kariösen Dentins führen auch zu veränderten Materialkon-

stanten im Vergleich mit denen gesunden Dentins. Während dies physiologischerweise ein

E-Modul von 13-15 GPa aufweist, ist das E-Modul demineralisierten Dentins mit 0,25 GPa

wesentlich niedriger. Auch die Zugfestigkeit sinkt von 104 MPa in mineralisiertem Dentin

auf 30-32 MPa in demineralisiertem Dentin [Sano et al., 1994a].

Direkte Härte-Messungen von Pereira et al. (2006) ergaben für gesundes Dentin Werte

im Bereich von 54 bis 74 KHN, während der Wert für kariöses Dentin mit 26 bis 45 KHN

deutlich unter diesem Bereich lag [Pereira et al., 2006]. Diese Werte decken sich mit denen

anderer Untersuchungen [Fusayama et al., 1966,Tsolmon, 2008].

Fusayama et al. (1966) erstellten an Zahnschnitten charakteristische Härteprofile für ge-

sundes und kariöses Dentin. Die Knoop-Härte wurde von der Schmelz-Dentin-Grenze in

Richtung der Pulpenkammer in 50 µm-Abständen bestimmt. Wie in Abbildung 2.1 zu se-

hen ist, zeigte sich im gesunden Dentin von Schmelz-Dentin-Grenze in Richtung Pulpa

zunächst ein leichter Härteanstieg, der von einem stetigen Härteabfall gefolgt wurde [Fu-

sayama et al., 1966]. Im kariösen Dentin führte der Mineralverlust durch den kariogenen

Säureangriff zu einem veränderten Härteprofil [Miller, 1889,Lai et al., 2014]. Von sehr nied-

rigen Werten nahe 0 KHN im peripheren Bereich stieg die Härtekurve steil an bis zu einem

Peak in der Kurve, der in chronischer Karies sogar über der Härte gesunden Dentins lie-

gen konnte [Fusayama et al., 1966]. Nach dem Höchstwert fiel die Härtekurve in Richtung

Pulpa rasant ab [Fusayama et al., 1966].

Die Beobachtung, dass bei Charakterisierung der Karies chronische bzw. arretierte Ka-

ries im Gegensatz zu aktuter Karies unterschieden werden muss, wurde auch in anderen

Studien gemacht [Mertz-Fairhurst et al., 1986,Beighton et al., 1993].
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Abbildung 2.1: Härtemessung kariösen Dentins, Quelle: Fusayama et al. (1966).

Härte des Dentins in [KHN] in Abhängigkeit von dem Abstand zur

Schmelz-Dentin-Grenze (E). Im Verlauf von der Schmelz-Dentin-

Grenze in Richtung Pulpenwand (P) nimmt die Härte normalen Den-

tins (gestrichelte Linie) zunächst kurz zu auf ca. 70 KHN um dann

kontinuerlich auf bis zu ca. 30 KHN kurz vor Erreichen der Pulpa ab-

zunehmen. Die Härte kariösen Dentins (kontinuierliche Linie) dagegen

steigt von Werten unter 10 KHN peripher auf bis zu Werten über 70

KHN steil an und liegt damit im Bereich von 1000-300µm vor der Pul-

penwand sogar deutlich über der Härte gesunden Dentins. Die beiden

Kurven schneiden sich auf Höhe der Mikrobiologischen Front (M), dem

Endpunkt der bakteriellen Penetration. Die schattierte Fläche stellt

das sklerotische Dentin dar. Nach Erreichen des höchsten Punktes fällt

die kariöse Härtekurve bis zur Pulpenwand steil ab.

Anmerkung: Der dargestellte Kariesfall weist den Untersuchern (Fusa-

yama et al. (1966)) zufolge eine extrem große Fläche chronischen Den-

tins auf, die so stark nicht für alle Fälle beobachtet wurde.
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2.2 Versiegelung kariöser Läsionen

”
Die Ära des empirischen Bohrens und Füllens von Zähnen soll bald durch die Kunst der

Konservierenden Zahnheilkunde ersetzt werden, die sich auf die Wissenschaft der Kariolo-

gie und die genaue Kenntnis der Füllmaterialien stützt“ [Massler, 1967]. Masslers (1967)

Vision der Kariesbehandlung war es, durch Unterbinden der Infektionsausbreitung eine Re-

generation des Dentins durch Selbstheilungsprozesse zu erreichen. Er empfahl eine selektive

Entfernung infizierten Dentins gefolgt von einem
”
Verband“ aus Ca-OH und Zinkoxideu-

genol.

Dass die physiologische Ausheilung eines kariösen Prozesses möglich ist, stellte Miller

(1889) bereits 1889 fest und auch Keyes (1962) betonte den Arretierungseffekt, wenn einer

der drei Kariesfaktoren – Wirt, Bakterien, Substrat – entfernt wird.

In mehreren Studien wurde die Auswirkung der Abschirmung pathogener Bakterien von

ihrem Substrat evaluiert [Mertz-Fairhurst et al., 1986,Weerheijm et al., 1999,Bakhshandeh

et al., 2012,Maltz et al., 2012]. Kariöse Läsionen wurden nach unvollständiger Exkavation

mit verschiedenen Materialien versiegelt und nach Wiedereröffnung der Kavität untersucht.

Dabei erschien das Dentin meist trocken und hart [Jeronimus et al., 1975,Mertz-Fairhurst

et al., 1979]. Die Zahl der kultivierbaren Bakterien hatte sich innerhalb eines Zeitraumes

weniger Wochen bis zu mehreren Jahren um das 100-2000-fache reduziert [Handelman

et al., 1976,Going et al., 1978].

Der Erfolg der Versiegelung scheint materialabhängig zu sein [Jeronimus et al., 1975].

Nach 2-jähriger Restauration mit Amalgam bzw. kunststoffmodizifiertem Glasionomerze-

ment präsentierte sich in 44% der Fälle eine
”
sterile“ Kavität [Weerheijm et al., 1999],

wohingegen nach Versiegelung mit einem lichthärtenden Material im gleichen Zeitraum

eine Kariesprogression im Großteil ausblieb [Bakhshandeh et al., 2012].

In einer über 10 Jahre angelegten prospektiven Studie von Mertz-Fairhurst et al. (1998)

wurde die Versiegelung kariöser Läsionen mit einem Komposit untersucht. In den 85 über

die volle Zeit evaluierten Studienzähnen kam es in nur 14% der Fälle zu einem Versagen

der Restauration. Eine noch geringere Verlustrate von 2% wurde in der Vergleichsgruppe
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erzielt, in der konventionelle Amalgamrestaurationen zusätzlich eine Versiegelung erfuhren.

Bei der dritten Gruppe, der der unversiegelten Amalgamrestaurationen, traten dagegen

öfter Sekundärkaries sowie Undichtigkeiten der Füllungsränder auf [Mertz-Fairhurst et al.,

1998].

Auch Handelman et al. (1981) beobachteten eine Assoziation defekter Ränder mit pro-

gredientem Kariesgeschehen. Für Weerheijm et al. (1992) dagegen ließ sich aus Randun-

dichtigkeiten kein Rückschluss auf die bakterielle Besiedlung ziehen.

Die Untersuchungen Weerheijms et al. basieren auf einer Auswertung der bakteriellen

Besiedlung, während Handelman et al. eine röntgenologische Auswertung der Invasionstiefe

vornahmen.

Eine direkt intraorale Messung der Läsionstiefe führten Mertz-Fairhurst et al.(1986)

durch. Dafür wurde eine spezielle Apparatur entwickelt. Nach einem Untersuchungszeit-

raum von 1-17 Monaten waren die gemessenen Werte progredient in 4 von 14 Zähnen,

während ein Arretierungseffekt in den anderen Zähnen beschrieben wurde. Als Vergleich

diente jeweils eine Kariesläsion in der anderen Kieferhälfte, die über den Zeitraum keine

Behandlung erfuhr [Mertz-Fairhurst et al., 1998].

Das Design der verschiedenen Studien unterscheidet sich in der Dauer des Untersu-

chungszeitraumes, den verwendeten Materialien und dem Untersuchungsaufbau. Nichtsde-

stotrotz kommen sie zu dem Konsens, dass durch Versiegelung einer kariösen Läsion die

Ausbreitung des pathologischen Prozess be- bzw. verhindert werden kann.

Entscheidendster Faktor zum Erfolg scheint das Abschirmen der pathogenen Bakterien

von ihrem Substrat zu sein [Keyes, 1962,Going et al., 1978,Mertz-Fairhurst et al., 1986].
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2.3 Entwicklung moderner Kariesexkavationsmetho-

den

”
Extension for Prevention“ war die goldene Regel G.V. Blacks (1908), die jahrzehntelang

den Maßstab bei der Kariesexkavation darstellte. Um langfristig einen wasserdichten Ka-

vitätenverschluss durch ein Restaurationsmaterial zu erreichen, sollten die Kavitätenränder

in gesunde Schmelzbereiche extendiert werden und so eine mechanische Stabilität und eine

Selbstreinigung durch Nahrung und Zunge gewährleistet sein. Seine Praxistipps präzisierte

Black in den Prinzipien der Umriss-, Widerstands- und Resistenzform [Black, 1891,Black,

1908].

Während Blacks Step-by-Step-Anleitung zu einer erfolgreichen Füllungstherapie für die

zu seiner Zeit vorwiegend metallischen Restaurationsmaterialien zielführend war [Black,

1908], hat sie in Zeiten der Adhäsivtechnik ihre Allgemeingültigkeit verloren.

Wegen neuer Forschungsergebnisse zu Karieshistologie [Massler, 1967] und -progression

[Fusayama et al., 1966] wurde eine Diskussion um die Kariesexkavation entflammt. Es

herrscht nach wie vor Einigkeit, dass erkrankte Zahnhartsubstanz entfernt werden soll

[Black, 1908,Massler, 1967,Beighton et al., 1993,Hellwig et al., 2010]. Uneinig ist sich die

Zahnärzteschaft jedoch in welchem Ausmaß das Gewebe entfernt werden muss [Elderton,

1984,Fusayama, 1997,Schwendicke et al., 2016].

Als Referenz für eine gelungene Exkavation diente lange Zeit unverfärbtes und sonden-

hartes Dentin. Laut einer Umfrage der letzten Jahre wird diese radikale Exkavationsme-

thode an mindestens einem Achtel der deutschen Hochschulen für Zahnmedizin auch noch

genauso gelehrt [Kämmerer et al., 2014].

Weiches Dentin weist zwar generell höhere Bakterienzahlen auf als hartes Dentin [Beighton

et al., 1993], jedoch entdeckte Fusayama bereits 1966, dass Erweichung und Verfärbung kei-

nen Maßstab für die mikrobielle Invasion einer kariösen Läsion darstellten, da sie dieser

immer vorauseilten. In Einzelfällen betrug diese Diskrepanz zwischen Invasionsfront und

Erweichung bis zu 1750 µm [Fusayama et al., 1966].
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Insbesondere im Bereich des Dentins kann es nach kompletter Entfernung des erweichten

Gewebes durch den unnötigen Substanzverlust zur Exponierung der Pulpa kommen, was

eine verringerte Lebenserwartung des Zahnes nach sich zieht und deshalb bestmöglich

vermieden werden sollte. Da einige Studien gezeigt haben, dass eine kariöse Läsion durch

eine adäquate Deckfüllung versiegelt und somit eine Kariesprogression verhindert werden

kann [Keyes, 1962, Going et al., 1978, Mertz-Fairhurst et al., 1986], wurde die Forderung

nach Minimalinvasivität bei der Kariesexkavation laut.

Einen Lösungsansatz stellt die unvollständige Kariesexkavation dar, bei der nach sub-

jektiver Einschätzung pulpennah Restkaries belassen wird [Maltz et al., 2002, Kämmerer

et al., 2014]. Um objektiv zwischen irreversibel zerstörter und erhaltungswürdiger Zahn-

hartsubstanz zu unterscheiden, wurden im Lauf der letzten 50 Jahre verschiedene neue

Kariesexkavationsmethoden entwickelt.
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2.3.1 Caries Detector

Den Anfang minimalinvasiver, moderner Ansätze machte Fusayama selbst. Er entwickelte

auf Basis seiner Untersuchungen eine Leitlinie zu Exkavation und restaurativer Versorgung

der entstandenen Kavität [Fusayama, 1997]. Basis dafür war unter anderem die Beobach-

tung, dass sich eine kariöse Dentinläsion histologisch in zwei Zonen mit konträren Merk-

malen unterteilen ließ: eine äußere Zone, die bakterieninfiltriert und irreversibel geschädigt

war, während die innere Zone nicht infiziert, remineralisierbar und damit erhaltungswürdig

war [Kato and Fusayama, 1970].

Ziel war es eine gefärbte Lösung zu entwickeln, mit der die Grenze dieser beiden Zonen

dargestellt werden konnte. Diese Spezifikationen wies 1%-iges Azidrot 52 in Polypropylen-

glykol gelöst auf. Während sich das äußere, nekrotische Dentin rot anfärben ließ, blieb das

innere, vitale Gewebe davon unbetroffen [Fusayama and Terashima, 1972,Fusayama, 1997].

Das Resultat seiner Forschung wurde als
”
Caries Detector“ fortan von der Firma Kuraray

(Osaka, Japan) weltweit kommerziell vertrieben.

Gemäß Herstellerangaben wird die farbige Lösung auf die kariöse Läsion appliziert und

nach 10 s mit Wasserpray wieder entfernt. Mit einem Rosenbohrer werden die intensiv rot

erscheinenden kariösen Bereiche entfernt. Dieses Vorgehen wird so oft wiederholt bis kein

angefärbtes Dentin mehr in der Kavität sichtbar ist.

Der Caries Detector wird auch heute noch angewandt und diente in zahlreichen Studien

als Referenz für eine gelungene Exkavation [Hahn and Hellwig, 2004,Pereira et al., 2006].

Die erzielte Bakterienreduktion ist genauso effizient wie nach konventioneller Exkavation

[Lennon et al., 2006b].

Nachteil aus methodischer Sicht ist die Tatsache, dass sie auf materialspezifischer Diffu-

sion des Propylenglykols in poröses Gewebe beruht. Zwar scheint die stark entkalkte äußere

Zone der Karies selektiv angefärbt zu werden, ein spezifische Bindung an kariöses Gewebe

ist jedoch nicht gegeben [Fusayama and Terashima, 1972]. Nachteil in praktischer Sicht

ist die Anwendung in ästhetischen Bereichen, da die Lösung ebenso in gesundes, poröses

Gewebe eindringt und Reste des Farbstoffes in der Zahnhartsubstanz verbleiben können.
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2.3.2 Bio- und Chemomechanische Kariesexkavation

Eine spezifische Bindung an kariöses Dentin ist das Ziel chemo- und biomechanischer Exka-

vationsverfahren. Es handelt sich um Lösungen aus proteolytischen Enzymen bzw. Lösun-

gen mit NaOCl, deren Angriffsziel das denaturierte Kollagen im Dentin kariöser Läsionen

ist. Beispiele hierfür sind Carisolv (MediTeam Dental AB, Sävedalen, Sweden), Biosolv

(3M Deutschland GmbH, Neuss, Deutschland) und Papacárie (Fórmula & Ação, Sao Pao-

lo, Brasilien).

Die Anwendung der verschiedenen Systeme ist ähnlich. Nach Eröffnung der Kavität wird

ein Tropfen der spezifischen Flüssigkeit auf die Läsionsoberfläche aufgebracht. Ist die 30-60

s lange Einwirkzeit verstrichen, kann mit systemspezifischen Handinstrumenten erweichtes

Gewebe abgetragen werden. Dieses Vorgehen wird wiederholt bis kein Substanzabtrag mehr

möglich ist.

Der chemo- bzw. biomechanische Ansatz bietet eine effiziente Entfernung infizierten

Gewebes, die sich nicht von der konventioneller Exkavation unterscheidet [Lennon et al.,

2006b,Kitsahawong et al., 2015,Hosein and Hasan, 2008].

Vorteil ist eine laut Hersteller meist schmerzfreie Anwendung ohne Lokalanästhesie, was

insbesondere bei ängstlichen Patienten und Kindern einen Pluspunkt darstellen kann1. Die

resultierende Dentinoberfläche ist sehr weich [Tsolmon, 2008, Kitsahawong et al., 2015],

liefert jedoch mit einigen Adhäsiven vergleichbare Haftwerte wie die konventionelle Exka-

vation [Li et al., 2011,Sirin Karaarslan et al., 2012].

Großer Nachteil der Methode ist jedoch die lange Einwirkzeit von mindestens 30 s,

welche sich bei der mehrmals notwendigen Applikation der Lösung auf mehrere Minuten

summieren kann. Die Tatsache, dass die chemomechanische Exkavation ungefähr die dop-

pelte Zeit benötigt, um den gleichen Substanzabtrag zu erzielen wie die konventionelle

Exkavation [Hosein and Hasan, 2008, Kitsahawong et al., 2015, Lai et al., 2015], ist der

wohl limitierendste Faktor dieser Methode. Die dadurch bedingten höheren Behandlungs-

1Fórmula & Ação, Sao Paolo, Brasilien; http://www.formulaeacao.com.br/2010/loja-

produtos.asp?iID=168; 12.09.16
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kosten scheinen der Grund gewesen zu sein, weshalb diese Produktgruppe in Deutschland

wenig Resonanz gefunden hat2.

2http://www.bild-der-wissenschaft.de/bdw/bdwlive/heftarchiv/index2.php?objectid=31526364,

12.09.16
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Abbildung 2.2: Kariöse Läsion vor/nach Exkavation mit facelight.

Bild durch Diagnosebrille angefertigt bei Beleuchtung der Läsion mit

dem facelight

2.3.3 Fluoreszenzgestützte Kariesexkavation

Während die chemomechanische Kariesexkavation eine veränderte Grundausstattung an

Geräten benötigt, ist die Fluorescence Aided Caries Excavation, kurz FACE, eine unkom-

plizierte Erweiterung des gängigen Instrumentariums. Es handelt sich um eine Lampe im

violetten Wellenbereich (405 nm), die in Kombination mit einem Hoch-Pass-Filter (530

nm) kariöse Läsionen rot erscheinen und somit von grün fluoreszierender gesunder Zahn-

hartsubstanz unterscheiden lässt. Die Technik basiert auf Untersuchungen Buchallas et al.

(2004, 2005) zur Fluoreszenz kariöser Läsionen. Bei Exitation mit Licht der Wellenlänge

405 nm war die Intensität der für Karies typischen Fluoreszenzeffekte am größten. Un-

abhängig vom Verfärbungsgrad einer kariösen Läsion liegen diese im Bereich zwischen 600

und 700 nm, was sie rötlicher als gesunde Zahnhartsubstanz erscheinen lässt, die unter

genannten Bedingungen grün erscheint [Buchalla et al., 2004, Buchalla, 2005]. Das be-
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obachtete Emissionsspektrum weist Ähnlichkeit mit dem des Protoporphyrin IX, einem

Bakterienendprodukt, auf, weswegen es für die Fluoreszenzeigenschaft kariöser Läsionen

verantwortlich gemacht wird [Buchalla et al., 2004].

Als Kariesdiagnostikum scheint die Methode inbesondere für stark infizierte Dentin-

karies geeignet zu sein. Der Einsatz zur Detektion der Initialkaries wird kritisch betrach-

tet, da der Leitkeim, der S.Mutans, eine grüne Eigenfluoreszenz aufweist [Lennon et al.,

2006a]. Trotzdem zeigte sich auch bei nicht-kavitierten Schmelzläsionen das typische Emis-

sionsspektrum [Buchalla, 2005]. Dies könnte unter anderem an der roten Fluoreszenz der

karies-initiierenden Aktinomyzeten liegen [Becker et al., 2002,Lennon et al., 2006a]. Markt-

tauglich gemacht wurde die Technik in einer Zusammenarbeit von W&H (Laufen/Obb.,

Deutschland) und Sirona (Bensheim, Deutschland) und wird unter den Namen facelight

(W&H Deutschland GmbH, Laufen/Obb., Deutschland) bzw. SIROInspect (Sirona Dental

Systems GmbH, Bensheim, Deutschland) vertrieben.

Die Anwendung des Systems erfolgt in Kombination mit einem klassischen Stahlrosen-

bohrer oder einem Löffelexkavator. Die Kavität wird mit der Lampe beleuchtet und durch

den zugehörigen Filter betrachtet. Generell wird rot fluoreszierendes Gewebe entfernt bis

grün fluoreszierendes Gewebe zum Vorschein kommt (vgl. Abbildung 2.2). Das System

bietet dem Behandler die Möglichkeit lokal, beispielsweise pulpennah, minimalinvasiv vor-

zugehen [Buchalla and Lennon, 2013].

Vorteil der Methode ist eine Substanzschonung [Lennon et al., 2007, Lai, 2014] trotz

effizienter Bakterienreduktion [Lennon et al., 2007]. Die dafür benötigte Exkavationszeit

ist laut Lennon et al. (2006) sogar kürzer als die konventioneller Exkavation.

Nachteilig sind die erforderlichen Umgebungsbedingungen. Um die Fluoreszenz deutlich

sichtbar zu machen, sollte der Behandlungsraum leicht abgedunkelt werden [Lennon et al.,

2006b]. Die intermittierende Beleuchtung der Kavität sowie das Auf- und Absetzen der

Diagnosebrille können zu einem Störfaktor im Behandlungsablauf werden.
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Abbildung 2.3: PolyBur in den drei verfügbaren Größen 014, 018 und 023.

2.3.4 PolyBur

Das Hauptziel der modernen Forschung zur Kariesexkavation war es, eine objektive Metho-

de zu finden, die neben maximaler Substanzschonung gesunden Gewebes gleichzeitig eine

unkomplizierte Einbindung in den Praxisalltag gewährleisten würde. In diesem Zusam-

menhang wurde der PolyBur (Komet Dental, Gebr. Brasseler GmbH und Co. KG, Lemgo,

Deutschland) entwickelt. Es handelt sich um einen Bohrer aus Kunststoff (PEEK = Po-

lyetheretherketon), der bedingt durch seine materialspezifische Härte eine Selbstlimitation

in gesundem Dentin erfährt. Entwickelt wurde er von der Firma Komet (Komet Dental,

Gebr. Brasseler GmbH und Co. KG, Lemgo, Deutschland) in Zusammenarbeit mit Prof.

Dr. Karl-Heinz Kunzelmann (Ludwig-Maximilians-Unversität, Deutschland). Als Vorbild

diente der Smartprep (SS White Burs) Dr. Daniel Bostons (Temple University, USA).

Während der Metallschaft des ersten Smartpreps einen relativ hohen Anpressdruck zuließ

ist dieser beim PolyBur limitiert, da er komplett metallfrei konzipiert ist [Kunzelmann,

2011].
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Indikation ist laut Hersteller eine
”
weiche, pulpanahe Karies bei klinisch symptomlosen

Milch- und bleibenden Zähnen“, während
”
dunkel verfärbtes, hartes remineralisierbares

Dentin und Karies entlang der Schmelz-Dentin-Grenze“ eine Kontraindikation darstellt.

Die Anwendung orientiert sich am klassischen Behandlungsablauf. Nach Eröffnung der

Kavität werden zunächst pulpaferne kariöse Bereiche mit einem Stahlrosenbohrer entfernt.

Anschließend wird in pulpanahen Bereichen der PolyBur eingesetzt. Er wird mit einem

gängigen Winkelstück bei Umdrehungszahlen zwischen 2000 und 8000 U/Min betrieben.

Eine Wasserkühlung ist optional möglich, aber nicht erforderlich. Im Gegensatz zur Kari-

esexkavation mit einem Stahlrosenbohrer, bei dem zunächst periphere Läsionsanteile ent-

fernt werden, wird mit dem PolyBur immer die gesamte Kavität bearbeitet, wobei der

Anpressdruck erhöht wird bis die Schneiden sichtbar deformiert sind. Beim PolyBur han-

delt es sich um ein Einmalprodukt.

Die für die Exkavation benötigte Zeit unterscheidet sich für den PolyBur im Gegensatz

zu den aufwendigen bio- und chemomechanischen Methoden nicht von der herkömmlichen

Exkavation mit einem Stahlrosenbohrer [Dammaschke et al., 2006]. Vorteil ist auch der

Erhalt von signifikant mehr Zahnhartsubstanz gegenüber herkömmlicher Exkavation [Tsol-

mon, 2008, Ferraz et al., 2015]. Dies wirkt sich jedoch nachteilig auf die Röntgendiagno-

stik aus, da erhaltenes Restdentin wegen seiner geringeren Mineralisation im Röntgenbild

fälschlicherweise als Kariesrezidiv gedeutet werden kann.

Auffallend ist auch die Produktion einer dicken Schmierschicht [Silva et al., 2006,Tsol-

mon, 2008, Toledano et al., 2012], die bis zu 15 µm dicke Hybridschichten mit dem Den-

tinadhäsiv entstehen lässt [Silva et al., 2006].

Die Substanzschonung von Bruchteilen eines Millimeters [Tsolmon, 2008] kann jedoch

eine Pulpeneröffnung verhindern und dadurch die Langzeitprognose des Zahnes deutlich

verbessern.

Entscheidender Faktor für den Erfolg ist hierbei ein kariesfreier Kavitätenrand und eine

dichte adhäsive Deckfüllung sowie ein symptomloser Zahn [Kunzelmann, 2011].
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2.4 Adhäsivverbund an kariöses Restdentin

Adhäsive werden in der Entwicklung zumeist an Dentin gesunder extrahierter Zähne ge-

testet [Kuraray, 2014]. Die Haftung an kariöses Dentin ist jedoch geringer als an normales

Dentin [Pereira et al., 2006, Tsolmon, 2008, Komori et al., 2009, Toledano et al., 2012].

Dies mag an Veränderungen der Belastbarkeit [Sano et al., 1994a], der Härte [Tsolmon,

2008, Lai et al., 2014] und der Oberflächenqualität [Banerjee et al., 2000a, Silva et al.,

2006, Tsolmon, 2008, Banerjee et al., 2010] des Restdentins nach Kariesexkavation liegen.

Da die modernen Kariesexkavationsmethoden besonders viel von dieser veränderten Sub-

stanz erhalten [Lennon et al., 2007, Tsolmon, 2008, Lai et al., 2014], müssen die Adhäsive

auch hiermit interagieren können.

Fusayama et al. (1979) entwickelten ihrerzeit mit Clearfil Bond System-F (Kuraray Co.,

Osaka, Japan) ein Adhäsiv, das speziell auf die Oberfläche nach der Anwendung des Caries

Detector zugeschnitten war. Der Erfolg Fusayamas et al. beruhte auf erstmaliger Ätzung

des Dentins mit 40%-iger Phosphorsäure [Fusayama et al., 1979,Fusayama, 1997] zusätzlich

zur Schmelzätzung, die bereits seit 1955 durch Buonocore in die Zahnmedizin eingeführt

worden war [Buonocore, 1955]. Die gleichzeitige Ätzung von Schmelz und Dentin findet

auch heute noch Anwendung und wird Totaletch-Technik genannt.

2.4.1 Überblick Adhäsive

Die Einteilung der Dentinadhäsive erfolgte früher chronologisch zu ihrer Entwicklung in

Generationen. Heute werden sie entsprechend ihrer Anwendungsweise klassifiziert [Meyer-

Lückel, 2012]. Dabei werden Totaletch- von Selfetch-Systemen unterschieden sowie ein-

schrittige von mehrschrittigen Systemen, entsprechend der Anzahl der Applikationsschrit-

te.

Von jedem namhaften Unternehmen sind Adhäsive verschiedenster Kategorien auf dem

Markt. Goldstandard ist meist ein mehrschrittiges Totaletch-System, das klinische Lang-

zeiterfolge aufweisen kann. Gängige Vertreter sind Syntac (Ivoclar Vivadent AG, Schaan,

Liechtenstein), Adper Scotchbond Multi-Purpose (3M Deutschland GmbH, Neuss, Deutsch-
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land) und Optibond FL (Kerr GmbH, Rastatt, Deutschland) [Frankenberger, 2013].

Auch wenn Fusayama als Erstanwender der Dentinätzung keine Zunahme an Pulpitiden

beobachtete [Fusayama et al., 1979], kam die Diskussion um eine Pulpaschädigung nach

Totaletching nicht zum Stillstand. Die behandlerabhängige Über- bzw. Unterätzung und die

Techniksensitivität der entstandenen Dentinoberfläche resultierten in Pulpensensitivitäten

und unterschiedlichster Qualität der Haftung [Frankenberger, 2013].

Lösung sollten die anwenderfreundlichen reinen Selfetch-Systeme bieten. Erster Ver-

treter war das Clearfil SE Bond (Kuraray Co., Osaka, Japan), das komplett ohne Phos-

phorsäureätzung auskam. Es bestand aus zwei Komponenten, die in getrennten Schritten

appliziert werden mussten.

Die neueste Entwicklung sind die sogenannten Universaladhäsive, die aus nur einer

Lösung bestehen und sowohl in Selfetch- als auch in Totaletch-Technik oder mit selektiver

Schmelzätzung angewendet werden können. Einen Überblick über die aktuell auf dem

deutschen Markt erhältlichen Produkte dieser Kategorie liefert Tabelle 2.1.

2.4.2 Einfluss der Schmierschicht

Wie Pashley (1992) in seinem
”
Überblick über Struktur und Funktion“ der Schmierschicht

erklärt, wird durch jegliche Bearbeitung von Hartgewebe, egal ob manuell ausgeführt oder

mit rotierenden Instrumenten bewerkstelligt, eine 1-2 µm dicke Schmierschicht auf der

Oberfläche produziert. Da die Dentintubuli dabei durch Reste des entfernten Gewebes ver-

stopft werden, den sogenannten
”
Smear Plugs“, werden die Permeabilität, die Sensibilität

sowie die Oberflächenfeuchtigkeit des Dentins reduziert [Pashley, 1992].

Die Schmierschicht, die nach Kariesexkavation auf der Dentinoberfläche zurückbleibt,

ist abhängig von der Exkavationsmethode unterschiedlich dick [Banerjee et al., 2000a].

In einer Untersuchung Karaarslans (2012), die die Dentinoberfläche nach unterschiedli-

chen Exkavationsmethoden im Rasterelektronenmikroskop (REM) verglich, präsentierte

sich nach Exkavation mit einem Rosenbohrer eine dünne Schmierschicht, die die Öffnun-

gen der Dentintubuli erkennen ließ. Während eine auffallend dicke Schmierschicht nach
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Adhäsiv Hersteller

Scotchbond Universal 3M Deutschland GmbH

(Seefeld, Deutschland)

Adhese Universal Ivoclar Vivadent AG

(Schaan, Liechtenstein)

Clearfil Universal Bond Kuraray Co.

(Osaka, Japan)

Xeno Select Dentsply Detrey GmbH

(Konstanz, Deutschland)

Futurabond U Voco GmbH

(Cuxhaven, Deutschland)

G-Premio BOND GC Europe

(Leuven, Belgien)

Tabelle 2.1: Überblick Universaladhäsive (Stand 29.03.2017).
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Exkavation mit dem Carisolv-System einen vollständigen Verschluss der Dentintubuli nach

sich zog, ließ die Exkavation mit einem Er:YAG-Laser eine schmierschichtfreie Dentinober-

fläche zurück [Sirin Karaarslan et al., 2012].

Diese Oberflächenunterschiede können dem Ergebnis mancher Studien zufolge [Li et al.,

2011,Sherawat et al., 2014] durch die in der Totaletch-Technik verwendete 20-37%-ige Phos-

phorsäure [Hellwig et al., 2010] minimiert werden. Die Phosphorsäure kann die Schmier-

schicht entfernen, dadurch die Dentintubuli öffnen und somit die Ausbildung von Adhäsiv-

Tags in den Dentintubuli ermöglichen [Li et al., 2011]. Diese Tag-Bildung, die nach Ätzung

für jede Exkavationsmethode beobachtet wurde, führen Li et al. (2011) als Erklärung für

die Überlegenheit eines Totaletch-Systems gegenüber einem Selfetch-System im Mikrozug-

versuch an. Nakabayashi et al. (1991) betonten jedoch bereits 1991 nach ihren Untersu-

chungen zur Hybridschicht, dass die Tag-Bildung - wenn auch sehr beeindruckend im REM

visualisierbar - nur einen sehr geringen Anteil an der Dentinhaftung trägt.

Entscheidend scheint weniger die absolute Größe der Tags [Wagner et al., 2014], sondern

die Verbindung zum peritubulären Dentin zu sein. Diese Verbindung beruht laut Sano et

al. (1994) hautpsächlich auf mikromechanischer Verankerung des Adhäsivs an Kollagen,

das den Hauptbestandteil demineralisierten Dentins bildet. Ihnen zufolge würde bereits

eine oberflächliche, unvollständige Infiltration in diese demineralisierte Schicht reichen um

eine adhäsive Haftkraft von ca. 30 MPa zu gewährleisten [Sano et al., 1994a].

Wichtigster Faktor scheint somit nicht die Dicke der Schmierschicht, sondern ihre Dichte

zu sein, da sie Einfluss auf die Penetrationsmöglichkeit der Adhäsive hat [Sattabanasuk

et al., 2007].

2.4.3 Adhäsivverbund nach Polymerbohrer-Exkavation

Die Studienlage zur Haftkraft an Restdentin nach selbstlimitierender Kariestherapie mit ei-

nem Polymerbohrer ist dürftig. Zwei Studien haben im Mikrozugversuch die Adhäsivkraft

nach Polymerbohrer-Exkavation mit konventioneller Rosenbohrer-Exkavation verglichen.

Während Silva et al. (2006) den Smartprep (SS White Burs Inc., Lakewood, NJ, USA),
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den weltweit ersten Kunststoffbohrer, untersuchte, kam bei Toledano et al. (2012) der

SmartBurs II (SS White Burs Inc., Lakewood, NJ, USA) zum Einsatz. Der Kunststoff-

bohrer der ersten Generation, der Smartprep, wies einen Metallschaft auf. Der Smartburs

II, der Kunststoffbohrer der zweiten Generation von SS White Burs, ist dagegen genauso

wie der PolyBur von Komet (Komet Dental, Gebr. Brasseler GmbH und Co. KG, Lem-

go, Deutschland) komplett metallfrei konzipiert. Gemeinsam ist den Kunststoffbohrern

die Ausrichtung der Schneiden parallel zur Bohrerlängsachse. Dies ist nötig um trotz des

weichen Materials eine ausreichende Stabilität zu erreichen. Während die Schneiden der

Smartburs nur an den Seiten des Bohrerkopfes verlaufen, wurden sie beim PolyBur einem

Stahlrosenbohrer ähnlich über den Bohrerkopf laufend modelliert.

Beide erwähnte Studien kommen zu dem Ergebnis, dass die adhäsive Haftkraft von

Selfetch-Adhäsiven an Dentin nach Polymerbohrer-Exkavation geringer ist als nach kon-

ventioneller Exkavation mit einem Stahlrosenbohrer, während gesundes Dentin die besten

Werte aufweist.

Silva et al. (2006) ermittelten auch für ein Totaletch-Adhäsiv schlechtere Haftwer-

te für den Polymerbohrer im Vergleich mit einem Stahlrosenbohrer. Das von Toledano

et al. (2012) getestete Totaletch-Adhäsiv nivellierte dagegen den Unterschied zwischen

den Exkavationsmethoden. Toledano et al. (2012) führten die Ergebnisse zurück auf die

auffallend dicke Schmierschicht, die der Polymerbohrer auf der Dentinoberfläche produ-

ziert [Toledano et al., 2012]. Die Dentintubuli sind durch Smearplugs in der Tiefe ver-

schlossen und oberflächlich finden sich häufig lose Bruchstücke [Tsolmon, 2008]. Diese dicke

Schmierschicht entsteht aufgrund der Schneidengeometrie der Kunststoffbohrer, die nur

eine Schab–, aber keine Schneidwirkung zulassen. Die von Silva et al. beobachtete Hybrid-

schicht, die vom Adhäsiv mit dem Dentin gebildet worden war, war mit 8-15 µm [Silva et al.,

2006] soagar fast viermal so dick wie auf normalem kariösen Dentin [Pereira et al., 2006].

Während Selfetch-Systeme die Schmierschicht in ihren Adhäsivverbund einbauen, werden

Oberflächenunterschiede durch Phosphorsäure der Totaletch-Adhäsive minimiert [Li et al.,

2011,Sherawat et al., 2014] und könnten so die Ergebnisse Toledanos et al. (2012) erklären.

Die substanzschonende Arbeitsweise der selbstlimitierenden Kariestherapie [Ferraz et al.,
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2015] scheint eine derart große Schicht an stark porösen transluzenten Dentins zu hinterlas-

sen [Silva et al., 2006], dass sie weder von Selfetch- noch von Totaletchadhäsiven vollständig

infiltriert werden kann [Silva et al., 2006].
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Kapitel 3

Zielsetzung

Ziel der Studie ist es, den adhäsiven Haftverbund an kariöses Restdentin nach selbstli-

mitierender Kariestherapie mit einem Polymerbohrer zu charakterisieren. Der Fokus wird

hierbei auf natürliche Kariesläsionen an humanen Zähnen der zweiten Dentition gelegt. Als

Adhäsiv soll ein Universaladhäsiv der neuesten Generation dienen.

Zunächst soll ein Mikrozugversuch im Split-Tooth-Design durchgeführt werden um die

Haftkraft an exkaviertes Dentin nach Polymerbohrer-Exkavation zu bestimmen. Dies soll

verglichen werden mit konventioneller Stahlrosenbohrer-Exkavation und gesundem Dentin.

Außerdem soll der Einfluss einer zusätzlichen Phosphorsäureätzung vor Adhäsivapplikation

ermittelt werden.

Als zweiter Versuch wird eine Analyse im Mikro-CT stattfinden, um das Schrump-

fungsverhalten einer Kompositfüllung nach selbstlimitierender Kariestherapie zu charakte-

risieren. Dabei sollen die Schrumpfungsvektoren sowie die Gesamtvolmenschrumpfung der

Füllung evaluiert werden, um Informationen über die Qualität des Haftverbundes an ver-

schiedenen Kavitätenbereichen zu erhalten. Abschließend soll nach Hemisektion der Zähne

die interne Hybridschicht unter dem REM betrachtet werden.

Als dritter Versuch soll eine qualitative und quantitative Randanalyse im REM durch-

geführt werden. Die Randverhältnisse einer Kompositfüllung nach Exkavation sollen vor

und nach thermomechanischer Belastung bestimmt werden. Hiermit sollen Rückschlüsse
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über die Druck- und Langzeitstabilität der Restauration gezogen werden.



Kapitel 4

Material und Methoden

4.1 Material

4.1.1 Auswahl der Zähne

Zu Beginn der Studie wurde eine Genehmigung des Vorhabens durch die zuständige Ethik-

kommission der Ludwig-Maximilians-Universität, München, eingeholt (Zeichen: 545-15UE).

Für die Versuche wurden 68 extrahierte humane Zähne ausgewählt, die eine natürli-

che kariöse Läsion bis in das innere Dentindrittel ohne erkennbare Assoziation zur Pulpa

aufwiesen.

Die Zähne waren anonymisiert, stammten aber aus dem Patientenklientel derselben

Praxis, sodass eine standardisiertes Vorgehen post extractionem gegeben war. Bis Ver-

suchsbeginn wurden sie in Ringerlösung mit Natriumazid gelagert und innerhalb von drei

Monaten verwendet.

Zum Versuchsstart wurden die Zähne unter fließendem Wasser mit einem Handscaler

(Scaler SH6/76; Hu-Friedy, Frankfurt, Deutschland) von Geweberesten gereinigt und für

die Zeit des Versuchs in destilliertem Wasser gelagert.
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Material Hersteller LOT-Nummer

PolyBur Komet Dental,

Gebr. Brasseler GmbH und Co. KG,

Lemgo, Deutschland

505420

Scotchbond L-Pop 3M Deutschland GmbH,

Neuss, Deutschland

620732

Tetric EvoCeram (A2) Ivoclar Vivadent AG,

Schaan, Liechtenstein

U11481

Tetric EvoCeram Bulk Fill Ivoclar Vivadent AG,

Schaan, Liechtenstein

T20956

Total Etch Ivoclar Vivadent AG,

Schaan, Liechtenstein

U54018

Tabelle 4.1: Verbrauchsmaterialien der Versuche.

4.1.2 Übersicht Materialien

Für alle Versuche wurden Verbrauchsmaterialien der selben Charge verwendet um eventu-

elle Unterschiede der Materialqualität auszuschließen.

Eine Auflistung der verwendeten Materialien mit zugehöriger Chargennummer findet

sich in Tabelle 4.1.
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4.2 Mikrozugversuch

4.2.1 Material

Auswahl der Zähne

Für den Mikrozugversuch wurde ein Split-Tooth-Design gewählt, das es ermöglichte zwei

unterschiedliche Kariesexkavationsmethoden, PolyBur und Stahlrosenbohrer, an derselben

kariösen Läsion zu testen. Außerdem sollte im Ätzmodus zwischen Selfetch- und Totaletch-

Anwendung des Adhäsivs unterschieden werden.

Es wurden 40 extrahierte humane Zähne der zweiten Dentition mit natürlicher Karies

ausgewählt. Die käriöse Läsion sollte sich ins innere Dentindrittel erstrecken und eine

Oberfläche von mindestens 2,5 x 3 mm2 aufweisen. Hiermit wurde gewährleistet, dass für

jede Zahnhälfte im Split-Tooth-Modell ausreichend kariöse Testfläche für Exkavation und

Mikrozugversuch zur Verfügung stand.

Jeweils 20 Zähne wurden den Gruppen
”

se“ , in Selfetch- , und
”
te“, in Totaletch-

Anwendung, zugeordnet, wobei je eine Zahnhälfte mit dem PolyBur (Polybur), die ande-

re mit dem Rosenbohrer (Stahl) exkaviert wurde. Somit wurden vier Testgruppen á 20

Zahnhälften für den Mikrozugversuch definiert:

”
Polybur/se“,

”
Stahl/se“,

”
Polybur/te“ und

”
Stahl/te“.

Zusätzlich wurde pro Zahnhälfte eine Probe des gesunden Dentins als Referenz genom-

men. Dadurch wurden folgende Gruppen á 20 Zähnen gebildet:

”
Gesund/se-Polybur “,

”
Gesund/se-Stahl“,

”
Gesund/te-Polybur“ und

”
Gesund/te-Stahl“.

Herstellung der Proben

Auf einer rotierenden Schleifscheibe (Nassschleif- und Poliersystem LECO VP 100; Seri-

ennr: 2411; LECO Instrumente GmbH, Mönchengladbach, Deutschland) wurde zuerst mit

grobem 180-grit-Schleifpapier (LECO abrasive discs; LECO Instrumente GmbH, Mönchen-

gladbach Deutschland) der okklusale Schmelz entfernt bis eine plane Oberfläche im gesun-

den Dentin entstand. Die Fläche wurde nun so anguliert, dass sie parallel zum kariösen
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Kavitätenboden verlief. Anschließend wurde sie mit 320-grit-Schleifpapier (LECO abra-

sive discs; 810-265-PRM; LECO Instrumente GmbH, Mönchengladbach, Deutschland) fi-

niert und standardisiert. Zur Sicherung der Oberflächenstandardisierung wurde auf eine

regelmäßige Erneuerung des 320-grit-Schleifpapiers geachtet.

(a) Kariöser Zahn (b) Herstellung des Referenzdentins

(c) Hemisektion des Zahnes (d) Zahnhälften, bereit zur Exkavation

Abbildung 4.1: Erzeugung der Zahnhälften für das Split-Tooth-Design.

Um die Zahnhälften für das Split-Tooth-Modell zu erhalten, wurden die vorbearbeiteten

Zähne mit einer diamantierten Niedertourensäge (Isomet Low Speed Saw; Seriennr: 551-

ISF-01902; Buehler, Esslingen, Deutschland) in axialer Richtung zentral durch die kariöse

Läsion zerteilt (s. Abbildung 4.1). Die Säge wurde nur mit destilliertem Wasser betrieben

um das spätere Haftergebnis nicht durch eventuelle Ölrückstände zu verfälschen. Als Sägen-

halter diente ein mit einem 3D-Drucker angefertigter Probenhalter auf dem die Zähne ein-
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zeln mit einem selbsthärtenden Kunststoff (Luxatemp; DMG Chemisch-Pharmazeutische

Fabrik GmbH, Hamburg, Deutschland) befestigt wurden. Zur Exkavation der Karies wur-

(a) Zentrifugale Exkavation mit PolyBur bis

zum Bruch des Bohrerschafts

(b) Zentripetale Exkavation mit Rosenbohrer,

Kontrolle mit FACE

Abbildung 4.2: Exkavation der Karies mit PolyBur und Stahlrosenbohrer.

den zunächst Schmelzüberhänge mit einem roten Winkelstück (AC5000; Athena Champi-

on, Earth City, Missouri, USA) und einem zylindrischen Diamantbohrer (836018; Komet

Dental, Gebr. Brasseler GmbH und Co. KG, Lemgo, Deutschland) unter Wasserkühlung

entfernt. Die anschließende Exkavation mit PolyBur bzw. Rosenbohrer erfolgte mit ei-

nem grünen Winkelstück (Gentle Power Lux; SN 05-2003178; KaVo Dental GmbH, Biber-

ach/Riss, Deutschland) ohne Wasserkühlung (s. Abbildung 4.2).

Die kariösen Läsionen der Zahnhälften der Gruppen
”
Polybur/se“ und

”
Polybur/te“

wurden mit einem PolyBur (Komet Dental, Gebr. Brasseler GmbH und Co. KG, Lem-

go, Deutschland) der Größe 018 mit maximal 8000 Umdrehungen pro Minute exkaviert.
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Der Bohrer wurde zentral in der Karies angesetzt und zirkulär nach außen geführt. Der

Anpressdruck wurde soweit erhöht bis es zum Bruch des Kunststoffschaftes des PolyBurs

kam. Da ein Worst-Case-Szenario dargestellt werden sollte, wurde auf eine vom Hersteller

empfohlene periphere Exkavation der Karies mit einem Stahlrosenbohrer verzichtet. Somit

wurde gewährleistet, dass die komplette Exkavationsfläche als Testfläche genutzt werden

konnte.

In den Gruppen
”
Stahl/se“ und

”
Stahl/te“ wurde ein Stahlrosenbohrer (H1SEM.204.018;

Komet Dental, Gebr. Brasseler GmbH und Co. KG, Lemgo, Deutschland) bei max. 100000

Umdrehungen pro Minute (Optimum: 1000-1500 Umdrehungen pro Minute) verwendet.

Die Arbeitsrichtung war herkömmlich zentripetal. Um eine Über- oder Unterexkavation zu

vermeiden wurde der Endpunkt der Kariesxkavation mit der FACE-Technologie (facelight;

W&H Deutschland GmbH, Laufen/Obb., Deutschland) objektiviert. Es wurde exkaviert

bis die hellrot fluoreszierenden Bereiche verschwunden waren und die Kavität hellgrün

erschien.

Als Adhäsiv für die folgende Kompositfüllung diente das Universaladhäsiv Scotchbond

Universal in L-Pop-Form (3M Deutschland GmbH, Neuss, Deutschland). Die Zahnhälften

der Gruppen
”
Polybur/se“ und

”
Stahl/se“ wurden vorsichtig trocken gepustet, während

darauf geachtet wurde die Zähne nicht zu übertrocknen. Um ein Worst-Case-Szenario zu

erzeugen wurde der Microbrush des L-Pops Scotchbond nur einmal benetzt. Das Adhäsiv

wurde 20 s in die beschliffene Dentinoberfläche einmassiert und an Hand des Oberflächenglanz-

es auf eine gleichmäßige Verteilung in der Kavität überprüft. Das Adhäsiv wurde 5 s sanft

verpustet und 10 s lichtgehärtet (Bluephase Style; Seriennr: 7923; Ivoclar Vivadent AG,

Schaan, Liechtenstein).

Im Anschluss wurde ein Kompositaufbau aus einem universellen Nanohybrid-Komposit

(Tetric EvoCeram A2; Ivoclar Vivadent AG, Schaan, Liechtenstein) in 1,5-2 mm Inkremen-

ten bis zu einer Dicke von ca. 4 mm geschichtet. Die einzelnen Schichten wurden jeweils

10 s lichtgehärtet. Die Lichthärtelampe wurde täglich auf eine Leistung von über 1000 mW
cm2

überprüft (Optilux Radiometer; Kerr GmbH, Rastatt, Deutschland).
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(a) Phosphorsäureätzung (nur in
”
te“-

Gruppen)

(b) Applikation des Adhäsivs

(c) Einbringen des Komposits (d) Fertige Füllung

Abbildung 4.3: Einbringen der adäsiven Kompositfüllung.
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Die 40 Zahnhälften der Gruppen
”
Polybur/te“ und

”
Stahl/te“ wurden vor Auftrag

des Adhäsivs zusätzlich mit 37%-igem Phosphorsäuregel (Total Etch; Ivoclar Vivadent

AG, Schaan, Liechtenstein) angeätzt. Dazu wurden die Zahnhälften vorsichtig trocken

gepustet, das Ätzgel aufgetragen und nach 15 s gründlich zuerst mit Wasser, dann mit

ölfreier Luft abgesprüht. Für den anschließenden Kompositaufbau wurde mit Adhäsiv und

Füllungsmaterial genauso verfahren wie mit den Zahnhälften der Gruppen
”
Polybur/se“

und
”
Stahl/se“ (s. Abbildung 4.3).

Nach Herstellung des Kompositaufbaus wurden die Zahnhälften in destilliertem Wasser

für 24 h bei 37°C gelagert.

Präparation der Sticks

Zur Herstellung der Sticks für den Mikrozugversuchs wurde die diamantierte Niedertou-

rensäge (Isomet Low Speed Saw; Seriennr: 551-ISF-01902; Buehler, Esslingen, Deutsch-

land) mit eigens angefertigtem Probenhalter verwendet (s. Abbildung 4.4). Um die Po-

sitionen der ehemals kariösen Exkavationsfläche und der gesunden Referenzdentinfläche

besser lokalisieren zu können wurden zunächst die Kompositüberschüsse auf der Polier-

scheibe (Nassschleif- und Poliersystems LECO VP 100; Seriennr: 2411; LECO Instrumente

GmbH, Mönchengladbach, Deutschland) entfernt, bis plane Flächen zirkulär um den Zahn

entstanden.

Die Zahnhälften wurden mit Luxatemp (DMG Chemisch-Pharmazeutische Fabrik GmbH,

Hamburg, Deutschland) einzeln auf dem Probenhalter befestigt, wobei der Kavitätenboden

parallel zum Rand des rechtwinkligen Kunststoffträgers ausgerichtet wurde.

Ziel war es zwei Sticks mit 1 x 1 mm2 großer Querschnittsfläche pro Zahnhälfte zu

erhalten, je einen aus dem Bereich des exkavierten kariösen Dentins und einen aus dem Be-

reich des gesunden Referenzdentins. Dafür wurden zunächst 4 parallele Schnitte in axialer

Richtung senkrecht zum Probenhalter angesetzt, wobei je zwei im Abstand von 1 mm im

Bereich der jeweiligen Testflächen waren. Danach wurde der Halter um 90 Grad gedreht

und es folgten 4 parallele Schnitte im rechten Winkel zu den vorhergehenden.
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Abbildung 4.4: Präparation der Sticks.

Dank des quadrischen Probenhalterdesigns wurden pro Zahnhälfte zwei Sticks mit einer

annähernd 1 x 1 mm2 großen und senkrecht zum Übergang Zahn zu Komposit gelegenen

Testfläche erhalten.

Die Sticks wurden bis zu Versuchsbeginn in destilliertem Wasser gelagert.
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4.2.2 Methoden

Bestimmung der Frakturspannung

Für die Messung der Bruchkraft des Adhäsivverbundes wurde das Zug-Druck-Prüfsystem

TC 550 (Syndicad Ingenieurbüro, München, Deutschland) mit korrespondierender Software

verwendet, gemäß der Methode von Sano et al. (1994).

Zunächst wurde mit einer digitalen Schieblehre (Garant, 412601-150, Hoffmann Group,

München, Deutschland) die Größe der Testfläche bestimmt. Es wurde angenommen, dass

die Sticks einen rechtwinklingen Querschnitt haben. Die definierenden Seitenlängen a und

b der Querschnittsfläche wurden am Übergang zwischen Zahn und Komposit gemessen.

In den Versuchsaufbau (s. Abbildung 4.5) wurden zwei plane Probenhalter eingebracht

und in ihrer Achse ausgerichtet. Zur Fixierung der Sticks wurde die Klebetechnik gewählt.

Da die Elasitizität des Klebstoffes ein möglicher Faktor zur Entstehung von Messunge-

nauigkeiten ist, wurde für alle Tests Klebstoff der selben Chargennummer verwendet. Der

Klebstoff (Model Repair II blue; Dentsply-Sankin K.K., Tokyo, Japan) wurde punktuell

mittig auf die Probenhalter aufgetragen und die Enden eines Zahnsticks darin verankert.

Dank der weichbleibenden Eigenschaften des Klebers konnte der Stick nun optimal posi-

tioniert werden.

Die adhäsive Testfläche wurde paralell zu den beiden Probenhaltern in der Luft plat-

ziert, sodass eine Scherkomponente ebenso wie eine friktive Krafteinwirkung auf die Test-

fläche ausgeschlossen werden konnte. Die horizontale Anordnung des Versuchsaufbaus schließt

auch jene Messfehler aus, die vom Eigengewicht der Probenhalter herrühren könnten.

Nach Kontrolle der Probenposition wurde die Polymerisation des Klebers mit Hilfe des

zugehörigen Sprays initiiert.

Die Prüfung der Bruchkraft erfolgte mit einem konstanten Vorschub von 0,5 mm
min

. Die

Frakturspannung (=Zugfestigkeit) wurde durch Division der maximalen Bruchkraft durch

die berechnete Querschnitssfläche in [MPa] erhalten, gemäß

RZug=
FBruch

a·b [MPa].
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Abbildung 4.5: Mikrozugversuch mit Bruch der Sticks.

Analyse des Versagensmodus

Nach Bruch der Proben im Mikrozugversuch wurde unter einem Lichtmikroskop (Stemi

SV11; Carl Zeiss AG, Göttingen) bei 55-facher Vergrößerung der Versagensmodus analy-

siert und fotografisch dokumentiert.

Dabei wurden die Kategorien Adhäsiv/Mix/Kohäsiv unterschieden.
”
Adhäsiv“ bezeich-

nete einen Bruch innerhalb des Adhäsivverbundes mit resultierender
”
reiner“ Zahnober-

fläche, während ein Anhaften von Komposit zur Klassifikation
”
Mix“ führte.

”
Kohäsiv“

wurde nur Vergeben, wenn der Riss komplett im Komposit bzw. Zahn lag und der Adhäsiv-

verbund unbeschädigt blieb.

Statistische Methoden

Vor Beginn der Auswertung wurde ein Zahn (Zahn Nr. 19) in der Versuchsreihe
”
te“ aus-

sortiert, da die Karies bei Exkavation sehr hart erschien und somit keine Indikation für

einen PolyBur darstellte.

Überdies führten weitere Sachverhalte zum Ausschluss von Proben. Bei einigen Pro-

ben kam es bereits während der Präparation zum Bruch. Dies wurde dokumentiert und

es wurde kein
”
Ersatzstick“ aus der Fläche gesägt um die Ergebnisse nicht zu verfälschen.

Außerdem wurden auch alle Proben ausgeschlossen, die einen Winkel >25° zwischen Au-

ßenseite des Sticks und der Testfläche aufwiesen, da die Berechnung der Frakturspannung
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aus den Außenmaßen des Sticks bei größeren Winkeln zu große Fehler aufweist. Zum wei-

teren Ausschluss von Proben kam es durch Versagen des Klebers, mit dem die Sticks im

Versuchsaufbau verankert wurden. Die ausgeschlossenen Proben wurden nicht in die Sta-

tistik miteinbezogen.

Für die statistische Auswertung wurden zunächst die Gruppen des Referenzdentins mit

einem abhängigen t-test auf Unterschiede überprüft. Auf dem Signifikanzniveau p<0,05 er-

gab sich kein Unterschied für die Gruppen
”
Gesund/se-Polybur “ (p=0,6125) und

”
Gesund/se-

Rosenbohrer“ (p=0,09182), sowie für die Gruppen
”
Gesund/te-Polybur“ und

”
Gesund/te-

Rosenbohrer“. Zur weiteren Analyse wurden die Daten gepoolt und fortan als “gesund/se“

und
”
gesund/te“ verwendet. Die ehemals drei Faktoren, die alle Test-Gruppen genau defi-

nierten
”
Dentin“ (kariös/gesund),

”
Präp“ (Stahl/Polybur) und

”
Dba-Typ“ (se, te) konnten

durch das
”
Pooling“ der gesunden Gruppen um einen Faktor reduziert werden, indem die

Definition
”
gesund“ als drittes Merkmal des Faktors

”
Präp“ aufgenommen wurde und der

Faktor
”
Dentin“ dadurch elminiert wurde.

Die Gruppen wurden mit dem Shapiro-Wilk-Test auf Normalverteilung überprüft. Für

jede Gruppe wurden Mittelwert und Standardabweichung der Frakturspannung berechnet.

Zur genaueren Analyse der Zuverlässigkeit der einzelnen Behandlungsmethoden wurde für

jede Gruppe eine Weibull-Verteilung berechnet.

Die Unterschiede zwischen den Testgruppen wurden mit einer zweifaktoriellen Varian-

zanalyse überprüft. Das Signifikanz-Niveau wurde auf p<0,05 festgelegt.
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Abbildung 4.6: Röntgenbilder in Paaren zur Kariesdiagnostik.

4.3 Mikro-CT-Untersuchung

4.3.1 Material

Auswahl der Zähne

Zur Analyse im Mikro-CT wurden 12 extrahierte humane Zähne der zweiten Dentition

mit natürlicher Karies im Approximalbereich ausgewählt. Die käriöse Läsion sollte sich bis

ins innere Dentindrittel erstrecken, aber keine Assoziation zur Pulpa aufweisen. Um dies

zu verifizieren wurden je zwei Zähne mit ähnlicher Läsionsgröße und -lokalisation als Paar

geröntgt (s. Abbildung 4.6). Ein Zahn des Paares wurde der Gruppe
”
Polybur“ zugeordnet,

der korrespondierende Zahn der Gruppe
”
Rosenbohrer“, sodass zwei Gruppen á 6 Zähnen

entstanden.

Das Vorgehen gewährleistete eine adäquate Vergleichsmöglichkeit der Ergebnisse, auch

wenn die Kavitäten wegen der Forderung nach natürlichen Kariesläsionen nicht standardi-

sierbar waren.
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Herstellung der Proben

Eine Übersicht über die Herstellung der Proben findet sich in Abbildung 4.7. Um einen

Zugang zur kariösen Läsion zu erreichen wurden zunächst Schmelzüberhänge mit einem

roten Winkelstück (AC5000; Athena Champion, Earth City, Missouri, USA) und einem

zylindrischen Diamantbohrer (836018; Komet Dental, Gebr. Brasseler GmbH und Co. KG,

Lemgo, Deutschland) unter Wasserkühlung entfernt. Die anschließende Exkavation mit

PolyBur bzw. Rosenbohrer erfolgte mit einem grünen Winkelstück (Gentle Power Lux; SN

05-2003178; KaVo Dental GmbH, Biberach/Riss, Deutschland) ohne Wasserkühlung.

In der Gruppe
”
Polybur“ wurden nach Herstellerangaben zuerst die peripheren Anteile

der kariösen Läsion mit einem Rosenbohrer (H1SEM.204.018; Komet Dental, Gebr. Brasse-

ler GmbH und Co. KG, Lemgo, Deutschland) entfernt. Im Anschluss wurden die zentralen

Anteile mit einem PolyBur (Komet Dental, Gebr. Brasseler GmbH und Co. KG, Lemgo,

Deutschland) der Größe 018 mit maximal 8000 Umdrehungen pro Minute exkaviert bis es

zum Abknicken des Kunststoffschaftes des Bohrers kam.

Die Zähne der Gruppe
”
Rosenbohrer“ wurden mit einem Stahlrosenbohrer (H1SEM.204.018;

Komet Dental, Gebr. Brasseler GmbH und Co. KG, Lemgo, Deutschland) bei max. 100000

Umdrehungen pro Minute exkaviert bis mit dem facelight (W&H Deutschland GmbH,

Laufen/Obb., Deutschland) keine roten Bereiche mehr erkennbar waren.

Zum Finieren wurden in beiden Gruppen die approximalen Kavitätenwände mit einem

Finieridamanten (8837KR.314.014; LOT:733855; Komet Dental, Gebr. Brasseler GmbH

und Co. KG, Lemgo, Deutschland) parallelisiert, da sich in vorhergehenden Untersu-

chungen eine Abhängigkeit des Schrumpfverhaltens von der Kavitätengeometrie gezeigt

hat [Kaisarly, 2014].

Um eine annähernd gleiche Füllungsgeometrie zu erhalten und den Anforderungen des

Füllungsmaterials gerecht zu werden, wurden die Okklusalflächen der exkavierten Zähne auf

einer rotierenden Schleifscheibe (Nassschleif- und Poliersystems LECO VP 100; Seriennr:

2411; LECO Instrumente GmbH, Mönchengladbach, Deutschland) eingekürzt, sodass der

Abstand zwischen apikalem Füllungsrand und Okklusalfläche ca. 4 mm betrug. Auch die
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Wurzelspitzen wurden auf der Schleifscheibe gekappt, sodass eine sichere Verankerung im

Mikro-CT-Halter möglich war. Zur Befestigung der Zähne auf dem Mikro-CT-Halter wurde

lichthärtender Kunststoff (XX, Firma XX) verwendet.

Um eine fixe Positionierung des Füllmaterials zu erreichen wurde eine kunststoffhaltige

Verschlussfolie (Parafilm; Pechiney Plastic Packaging, Chicago, USA ) als Matrize angelegt

wie auch in einer anderen Studien beschrieben [Algamaiah et al., 2016].

Das Universaladhäsiv (Scotchbond Universal, 3M Deutschland GmbH, Neuss, Deutsch-

land) wurde in Selfetch-Technik angewandt. Es wurde 20 s in die Kavität einmassiert, 5 s

vorsichtig verblasen und 10 s lichtgehärtet (Bluephase Style; Seriennr: 7923; Ivoclar Viva-

dent AG, Schaan, Liechtenstein).

Im Anschluss erfolgte die Applikation des Füllmaterials Tetric EvoCeram Bulk Fill

(Ivoclar Vivadent AG, Schaan, Liechtenstein) in Bulk-Applikation. Dieser Arbeitsschritt

fand unter verdunkelten Lichtverhältnissen statt, sodass es zu keiner frühzeitigen Initiie-

rung des Polymerisationsprozesses kam.

Der Mikro-CT-Halter wurde bis unter den Füllungsrand mit Leitungswasser befüllt und

sofort mit einem Käppchen aus doppelter handelsüblicher Alufolie bedeckt um Lichteinfluss

zu verhindern.
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(a) Parallelisierung der Kavitätenwände (b) Aufkleben auf Probenhalter

(c) Anlegen der Matrize (d) Adhäsivapplikation und Härten

(e) Einbringen des Komposits ohne Härten (f) Einfüllen von Wasser

Abbildung 4.7: Probenherstellung fürs Mikro-CT.
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(a) Alufolie zum Schutz vor Lichteinfluss (b) Härten des Komposits vor zweitem Scan

Abbildung 4.8: Mikro-CT-Scan.

4.3.2 Methoden

Mikro-CT-Scan

Für die Scans im Mikro-CT (Mikrocomputer-Tomographiegerät Scanco µCT 40; Seriennr.:

05031700; Scanco Medical AG, Bassersdorf, Schweiz) wurde eine mittlere Auflösung mit

16µm-Voxelgröße gewählt. Mit einem 16,4 mm-großen Halter wurden bei 70 kV 309 Schich-

ten gescannt.

Pro Zahn wurden zwei Scans vorgenommen. Der erste Scan erfolgte direkt nach Proben-

herstellung mit unausgehärtetem Füllmaterial. Der zweite Scan erfolgte nach Aushärtung

des Füllmaterials. Dazu wurde das Alufolienkäppchen kurzzeitig entfernt und die Füllung

mit einer Lichthärtelampe (Bluephase Style; Seriennr: 7923; Ivoclar Vivadent AG, Schaan,

Liechtenstein) 10 s ausgehärtet (s. Abbildung 4.8), wobei darauf geachtet wurde den Pro-

benhalter nicht zu bewegen.

Analyse der internen Hybridschicht im REM

Im Anschluss an die Untersuchung im Mikro-CT wurden die Zähne mit Hilfe einer dia-

mantierten Niedertourensäge (Isomet Low Speed Saw; Seriennr: 551-ISF-01902; Buehler,

Esslingen, Deutschland) zentral durch die Füllung in zwei Hälften geteilt. Dafür wurden
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(a) Heimsektion der Zähne (b) Gesputterte Probe, fertig für das REM

Abbildung 4.9: Probenherstellung zur Oberflächenanalyse im REM.

die Proben vom Mikro-CT-Halter entfernt und auf einem Sägenhalter befestigt (Luxatemp;

DMG Chemisch-Pharmazeutische Fabrik GmbH, Hamburg, Deutschland).

Je eine der entstandenen Zahnhälften wurde für 24 h luftgetrocknet, sodass sie im

Folgenden leitfähig gemacht werden konnte. Mit Hilfe des Sputter Coater SC 7620 (Quorum

Technologies Ltd, Laughton, Vereinigtes Königreich) wurde bei 19 mA eine 25 nm dicke

Gold-Palladium-Schicht (80% Gold, 20% Palladium) auf der Oberfläche der Proben erzeugt

(s. Abbildung 4.9).

Anschließend wurden sie unter einem Rasterelektronenmikroskop (Supra 55 VP Zeiss;

Carl Zeiss AG, Oberkochen, Deutschland) bei 100- bis 1500-facher Vergrößerung mit Fokus

auf die Hybridschicht analysiert.

3D-Bestimmung der Schrumpfungsvektoren

Zur Auswertung der Schrumpfungsrichtung und -lokalisation des Füllungskomposits wur-

den an Hand der beiden korrespondierenden Scans eines Zahnes, vor/nach Aushärtung

des Füllmaterials, die Schrumpfungsvektoren berechnet. Dazu wurde der Algorithmus von

Chiang et al. (2009, 2010) verwendet.

Hierfür wurde zunächst eine starre Registrierung vorgenommen. Dabei werden die Au-

ßenkonturen der Proben abgeglichen um eventuelle Positionsveränderung des Probenhal-
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ters zwischen den beiden Scans auszugleichen.

Im Anschluss erfolgte eine elastische Registrierung um die Schrumpfung der Füllung, die

durch Lichthärtung induziert wird, darzustellen. Dabei dienten materialbedingte Lüftein-

schlüsse des Füllmaterials Tetric EvoCeram Bulk Fill (Ivoclar Vivadent AG, Schaan, Liech-

tenstein) als Tracer, deren Positionsveränderung von der Software als Schrumpfungsvekto-

ren berechnet werden konnte.

Die Vektoren wurden auf das Mikro-CT-Bild projiziert, sodass die Lokalisation und

Direktion der Kompositschrumpfung beurteilt werden konnte.

Volumenanalyse

Zur Analyse der Gesamtvolumenschrumpfung des Füllmaterials wurden die Bilddaten mit

Hilfe der Software Fiji [Schindelin et al., 2012] prozessiert (s. Abbildung 4.10).

Ausgangsbilder waren die bearbeiteten Versionen der beiden Scans, die durch die star-

re Registrierung entstanden waren. Der Bereich der Füllung wurde mit der Threshold-

Funktion segmentiert und die Bilder zu binären, d.h. schwarz-weißen, Bildern umgewandelt.

Im Anschluss erfolgte eine Glättung der Ränder (erode) und ein Schließen von Luftblasen

(fill holes). Mit Hilfe der Image Calculator-Funktion wurden die Daten des zweiten Scan

von den Daten des ersten Scan subtrahiert, sodass ein zweidimensionales Differenzbild

generiert wurde.

Die Pixelzahl des Differenzbildes (histogram) wurde in Relation zur Pixelzahl des Aus-

gangsbildes, das des ersten Scans mit unausgehärtetem Füllmaterial, gesetzt und lieferte

somit eine Aussage über die durch die Lichthärtung erfolgte Schrumpfung des Komposits.
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(a) Ausgangsbilder (b) Anpassung des Thresholds

(c) Erzeugung des ersten Binärbildes (d) Prozessierung des zweiten Bildes

(e) Subtraktion der Ausgangsbilder (f) Ausgangsbilder mit 2D-Differenzbild

(g) Histogramm der Pixelauswertung (h) 3D-Darstellung der Bilder

Abbildung 4.10: Bildprozessierung zur Volumenanalyse mit der Software Fiji [Schinde-

lin et al., 2012].
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Statistische Methoden

In die statistische Auswertung nicht einbezogen wurden Zähne, bei denen es während

der Exkavation zu einer großflächigen Pulpeneröffnung kam. Dies war der Fall bei zwei

Zähnen der Gruppe
”
Polybur“ (Nr.4 und Nr.5) sowie einem Zahn der Gruppe

”
Rosenboh-

rer“ (Nr.4).

Die Bilder der Oberflächenanalyse im REM wurden zur Visualisierung typischer Ver-

bundbereiche im Schmelz und Dentin nach entsprechender Exkavationsmethode herange-

zogen.

Die Schrumpfungsvektoren wurden wegen deren unterschiedlichen Anzahl und Qualität

nicht quantitativ, sondern nur qualitativ ausgewertet im Bezug auf ihre Lokalisation und

Direktion.

Von den Ergebnissen der Volumenschrumpfung wurde der Mittelwert und die Stan-

dardabweichung berechnet.

Die zwei- und dreidimensionalen Darstellungen des Differenzbildes wurden qualitativ

bewertet im Hinblick auf die Schichtstärke der Darstellungen in verschiedenen Kavitäten-

bereichen.
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4.4 Qualitative und Quantitative Randanalyse

4.4.1 Material

Auswahl der Zähne

Für die Randanalyse wurden 16 extrahierte humane Molaren der zweiten Dentition mit

natürlicher Karies gewählt, die sich bis in das innere Dentindrittel erstrecken sollte.

Jeweils zwei Zähne mit ähnlicher Läsionsgröße und -lokalisation wurden zur Verifizie-

rung der kariösen Ausdehnung paarweise geröntgt. Danach wurden ein Zahn des Paares

der Gruppe
”
Polybur“, der andere der Gruppe

”
Rosenbohrer“ zugeordnet, sodass zwei

Gruppen á 8 Zähnen gebildet wurden.

Herstellung der Proben

Zur Exkavation wurde die kariöse Läsion mit einem zylindrischen Diamantbohrer (836018;

Komet Dental, Gebr. Brasseler GmbH und Co. KG, Lemgo, Deutschland) von koronal

eröffnet und von überhängenden Schmelzrändern befreit. Die Präparation erfolgte mit ei-

nem roten Winkelstück (AC5000; Athena Champion, Earth City, Missouri, USA) unter

Wasserkühlung. Die folgende Kariesexkavation mit PolyBur bzw. Rosenbohrer erfolgte mit

einem grünen Winkelstück (Gentle Power Lux; SN 05-2003178; KaVo Dental GmbH, Bi-

berach/Riss, Deutschland) ohne Wasserkühlung.

In der Gruppe
”
Polybur“ wurden nach Herstellerangaben zunächst periphere Kariesan-

teile mit einem Stahlrosenbohrer (H1SEM.204.018; Komet Dental, Gebr. Brasseler GmbH

und Co. KG, Lemgo, Deutschland) bei max. 100000 Umdrehungen pro Minute entfernt.

Pulpanah wurde ein PolyBur (Komet Dental, Gebr. Brasseler GmbH und Co. KG, Lemgo,

Deutschland) der Größe 018 zentral in der Läsion angesetzt und mit maximal 8000 Um-

drehungen pro Minute zirkulär nach außen geführt. Der Anpressdruck wurde soweit erhöht

bis es zum Bruch des Kunststoffschaftes des PolyBurs kam.

In der Gruppe
”
Rosenbohrer“ wurde die Karies zentripetal mit einem Stahlrosenbohrer

(H1SEM.204.018; Komet Dental, Gebr. Brasseler GmbH und Co. KG, Lemgo, Deutsch-
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(a) Überschussentfernung mit Finierdiamant (b) Politur mit Soflexscheiben

(c) Polierter Zahn (d) Beschrifteter, eingekürzter Zahn

Abbildung 4.11: Politur des Füllungsrandes.

land) bei max. 100000 Umdrehungen pro Minute verwendet. Der Endpunkt der Karie-

sexkavation wurde mit Hilfe der FACE-Technologie (facelight; W&H Deutschland GmbH,

Laufen/Obb., Deutschland) bestimmt. Dazu wurde die Kavität intermittierend mit dem

facelight beleuchtet und exkaviert bis keine hellrot fluoreszierenden Bereiche mehr zu sehen

waren.

Zum Finieren der Kavität wurde in beiden Gruppen ein abgerundeter zylindrischer

Diamant (8837KR.314.014; LOT:733855; Komet Dental, Gebr. Brasseler GmbH und Co.

KG, Lemgo, Deutschland) verwendet. Hierbei wurden Rauigkeiten am Präparationsrand

beseitigt und eine klare Begrenzung der Kavität geschaffen.

Das Vorgehen der Füllung war für beide Gruppen gleich.
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Als Adhäsiv diente das Universaladhäsiv Scotchbond (3M Deutschland GmbH, Neuss,

Deutschland) in Selfetch-Anwendung. Die Zahnhälften wurden vorsichtig trocken gepustet,

während darauf geachtet wurde, die Zähne nicht zu übertrocknen. Der Microbrush des L-

Pops Scotchbond wurde mehrfach benetzt um die Einbringung von ausreichend Material

in die Kavität zu gewährleisten. Das Adhäsiv wurde 20 s in die beschliffene Oberfläche

einmassiert, 5 s sanft verpustet und 10 s lichtgehärtet (Bluephase Style; Seriennr: 7923;

Ivoclar Vivadent AG, Schaan, Liechtenstein).

Im Anschluss wurde ein Kompositaufbau aus einem universellen Nanohybrid-Komposit

(Tetric EvoCeram A2; Ivoclar Vivadent AG, Schaan, Liechtenstein) in 1,5-2 mm Inkremen-

ten geschichtet. Die einzelnen Schichten wurden jeweils 10 s lichtgehärtet. Die Lichthärtelam-

pe wurde täglich auf eine Leistung von über 1000 mW
cm2 überprüft (Optilux Radiometer; Kerr

GmbH, Rastatt, Deutschland).

Um optimale Voraussetzungen für die folgende Randanalyse zu schaffen wurde ein

besonderes Augenmerk auf die Politur der Füllungsränder gelegt (s. Abbildung 4.11).

Zunächst wurden grobe Überschüsse mit einem Finierdiamanten (8837KR.314.014; LOT:733855;

Komet Dental, Gebr. Brasseler GmbH und Co. KG, Lemgo, Deutschland) unter Was-

serkühlung im roten Winkelstück (AC5000; Athena Champion, Earth City, Missouri, USA)

entfernt. Anschließend wurden Soflex-Polierscheibchen (3M ESPE AG, Seefeld, Deutsch-

land) in absteigender Korngröße (grob bis superfein) im blauen Winkelstück (956A; W&H

Deutschland GmbH, Laufen/Obb., Deutschland)) mit Wasserkühlung verwendet. Zur ab-

schließenden Hochglanzpolitur diente ein Poliergummi (9526UF.204.100; Komet Dental,

Gebr. Brasseler GmbH und Co. KG, Lemgo, Deutschland).

Zur sicheren Identifizierung der Zähne wurde auf die Füllungsfläche eine Zahl eingra-

viert. Außerdem wurden am koronalen Rand der Füllung zwei Markierungsrillen gefräst, die

als Start- und Endpunkt der Analyse unter dem Mikroskop dienten. Bei einigen Zähnen war

der Füllungsrand aufgrund der großen Ausdehnung der Läsion nicht aus einem Blickwinkel

zu erfassen. Bei diesen Zähnen wurde eine dritte Markierung in der Mitte der anderen

verwendet, sodass der Rand in zwei Teilabschnitten analysiert werden konnte.

Die Wurzeln der Zähne wurden auf einer Polierscheibe (Nassschleif- und Poliersystems
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LECO VP 100; Seriennr: 2411; LECO Instrumente GmbH, Mönchengladbach, Deutsch-

land) eingekürzt, sodass die Distanz zwischen Kaufläche und Wurzelunterseite bei jedem

Zahn annähernd gleich groß war. Dadurch wurde eine gleichmäßige Belastung aller Zähne

im Kausimulator erreicht. Anschließend wurden die Zähne 5 min im Ultraschallbad gereingt

und in destilliertem Wasser gelagert.

Thermomechanische Belastung

(a) Thermische Belastung im Thermowechsel-

bad

(b) Mechanische Belastung im Kausimulator

Abbildung 4.12: Thermomechanische Belastung der Proben.

Nach 24 h Wasserlagerung bei 37°C, bezeichnet als Zeitpunkt t0, erfolgte die erste

Abformung.

Nach 6-tägiger Wasserlagerung bei 37°C wurden die Zähne im Thermowechselbad (Wil-
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lytec GmbH, Gräfelfing, Deutschland) in 2000 Zyklen zwischen 5°C und 55°C mit 30 s

Eintauchphase und 5 s Abtropfzeit thermisch belastet.

Die anschließende mechanische Belastung erfolgte in den Kausimulatoren
”
Gemini Typ

1 und 2“ (Syndicad Ingenieurbüro, München, Deutschland). Die Zähne wurden dazu mit

fließfähigem Komposit auf den Probenträgern befestigt. Nach Justierung der Proben im

Kausimulator wurden die Testkammern vollständig mit Wasser gefüllt. Nun erfolgten 50000

Zyklen vertikaler Belastung mit 50 N in einer Frequenz von 1 Hz im Zweikörperverschleiß,

wobei 6 mm große Degussit-Kugeln als Antagonist dienten.

Nach der thermomechanischen Belastung durch Wasserlagerung und Kausimulator (s.

Abbildung 4.12), bezeichnet als Zeitpunkt t1, erfolgte die zweite Abformung der Proben.

Herstellung der Epoxidharzeplika

Zur Abformung der Zähne zu den Zeitpunkten t0 und t1 wurde ein Silikon (Aquasil Ul-

tra Monophase; Dentsply Detrey GmbH, Konstanz, Deutschland) in speziell hergestellten

Kunststoffformen verwendet. Diese gewährleisteten eine optimale Schichtstärke des Ab-

formmaterials. Zweigeteilte Kavitäten wurden zweimal je Zeitpunkt abgeformt, wobei die

eingefrästen Orientierungsrillen als Lokalisationshilfe dienten.

Nach frühestens einer Stunde, der materialspezifischen Rückstellzeit, wurden die Abfor-

mungen mit einem Epoxidharz (EpoFix Kit; Struers, Ballerup, Dänemark) ausgegossen.

Dieses wurde im Verhältnis 7,5 ml Kunststoffbasis zu 1 ml Härter gemischt, 2 min gut

verrührt und 20 min mit 2 bar im Drucktopf belastet um dem Material mischungsbedingte

Lufteinschlüsse zu entziehen.

Nach 12 h Aushärtezeit wurden die Expoxidharzreplika entformt und basal plan ge-

schliffen (Nassschleif- und Poliersystems LECO VP 100; Seriennr: 2411; LECO Instrumente

GmbH, Mönchengladbach, Deutschland).
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Abbildung 4.13: Besputtertes Expoidhardreplikum für Randanalyse im REM.

Beschriftung und Orientierungsrillen deutlich sichtbar.

4.4.2 Methoden

Randanalyse im REM

Um die Epoxidharzreplika rasterelektronenmikroskopisch betrachten zu können, wurden

sie bei 19 mA mit einem Gold-Palladium-Gemisch (80%Gold, 20%Palladium) besputtert

(Sputter Coater SC 7620; Quorum Technologies Ltd, Laughton, Vereinigtes Königreich),

sodass eine 25 nm dicke leitende Schicht auf den Proben erzeugt wurde.

Für die quantitative und qualitative Randanalyse nach Roulet et al. (1989) wurden bei

200-facher Vergrößerung mit dem Detektor
”
SE2“ des Rasterelektronenmikroskops (Supra

55 VP Zeiss; Carl Zeiss AG, Oberkochen, Deutschland) sich überlappende Einzelbilder an-

gefertigt, die mit Hilfe des Stitching-Plugins [Preibisch et al., 2009] der Software Fiji [Schin-

delin et al., 2012] zu einem Gesamtbild pro Probe verbunden wurden. Die eingefrästen

Orientierungsrillen dienten als Start- und Endpunkt, sodass es auch bei zweigeteilten Ka-

vitäten zu keiner Doppelauswertung kam.

Die entstandenen Bilder wurden randomisiert kodiert und von einer objektiven Fach-

person, die nicht an Versuchsaufbau und Probenpräparation beteiligt war, mit dem Fiji-

Plugin [Schindelin et al., 2012]
”
KHKs-jQuanti-Gap“ [Kunzelmann, 2010] ausgewertet.

Folgende Kriterien wurden dabei für Schmelz und Dentin getrennt betrachtet:
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• Perfekter Rand (<1µm Spalt zwischen Füllungsmaterial und Zahn)

• Randspalt (>1µm Spalt zwischen Füllungsmaterial und Zahn)

Bei zweigeteilten Kavitäten wurden die Resultate der Einzelproben addiert und tauchen

fortan als Summenwert auf.

Statistische Methoden

In die statistische Auswertung nicht einbezogen wurden Zähne, bei denen es während der

Exkavation zu einer großflächigen Pulpeneröffnung kam. Dies war der Fall bei zwei Zähnen

der Gruppe
”
Polybur“ (Nr.1 und Nr.8) sowie zwei Zähnen der Gruppe

”
Rosenbohrer“ (Nr.2

und Nr.7).

Die Daten wurden zunächst mit dem Kolmogorow-Smirnow-Test auf Normalverteilung

überprüft. Für jede Testgruppe wurden Mittelwert und Standardabweichung berechnet.

Unterschiede zwischen den Gruppen wurden mit dem Welch-Test überprüft. Das Signifikanz-

Niveau wurde auf p<0,05 festgelegt.



Kapitel 5

Ergebnisse

5.1 Mikrozugversuch

Im Mikrozugversuch kam es zu einigen Ausschlüssen wegen eines Bruchs während der

Präparation der Sticks, schräger Testfläche oder fehlerhaften Klebens in den Versuchsauf-

bau. Eine Übersicht davon findet sich in Tabelle 5.3. Insgesamt wurden 33 von 156 Sticks

ausgeschlossen. Während es in den kariösen Gruppen, den Polybur- und Stahl-Gruppen,

zu 32,1% Testausschlüssen kam, waren es in den gesunden Gruppen mit 10,3% deutlich

weniger. Vom Test ausgeschlossene Proben wurden nicht mit in die Statistik einbezogen.
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5.1.1 Deskriptive Statistik

Mittelwert und Standardabweichung der Frakturspannung

Für jede Testgruppe sind die mittlere Frakturspannung in [MPa] sowie die Standardabwei-

chung in Tabelle 5.1 aufgelistet.

Gruppe n M SD

Polybur/se 13 15,95 8,46

Polybur/te 13 16,67 8,51

Stahl/se 13 15,54 6,21

Stahl/te 14 20,34 11,24

gesund/se 38 13,87 5,11

gesund/te 32 24,10 11,27

Tabelle 5.1: Probenzahl, Mittelwert und Standardabweichung der Frakturspannung

in [MPa].

Versagensmodus

Eine Übersicht über den im Lichtmikroskop definierten Versagensmodus der Proben findet

sich in Tabelle 5.2. Beispielbilder für die einzelnen Versagensmodi zeigt Abbildung 5.1.

Da kein einziger Kohäsiv-Bruch im Zahnmaterial beobachtet wurde ist die Klassifika-

tion
”
Kohäsiv(Zahn)“ in der Auflistung der Versagensmodi nicht zu finden.
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Gruppe Adhäsiv Mix Kohäsiv(Komposit) Summe(n)

Polybur/se 11 2 0 13

Polybur/te 8 5 0 13

Stahl/se 13 0 0 13

Stahl/te 10 4 0 14

gesund/se 38 0 0 38

gesund/te 25 3 4 32

Summe 105 14 4 123

Tabelle 5.2: Versagensmodus sowie Anzahl der getesteten Proben.

Ausschluss von Proben

Gruppe Anzahl Sticks Bruch bei Präp schräge Testfläche Fehler beim Kleben n

Polybur/se 20 0 7 0 13

Polybur/te 19 1 4 1 13

Stahl/se 20 0 5 2 13

Stahl/te 19 1 4 0 14

gesund/se 40 0 1 1 38

gesund/te 38 4 0 2 32

Summe 156 6 21 6 123

Tabelle 5.3: Auflistung der Ausschlüsse vom Test sowie Gesamt-
”
Anzahl“ der produ-

zierten und der getesteten (n) Sticks.
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Weibull-Statistik

Eine Übersicht über die charakteristischen Parameter der Weibull-Statistik zeigt Tabelle

5.4. Die Werte des Weibull-Moduls, β, liegen für alle Gruppen im Bereich zwischen 1.0 und

4.0, der für frühen Verschleiß steht und als Referenzbereich für die Testung von mechani-

schen Versagensmodi steht.

β η B10-life

Ätzmodus se te se te se te

Polybur 1,753 ↗ 2,541 18,3 → 18,35 5,067 ↗ 7,569

Stahl 3,025 ↘ 1,923 17,26 ↗ 22,99 8,203 → 7,134

gesund 3,074 ↘ 1,933 15,48 ↗ 27,57 7,443 → 8,640

Tabelle 5.4: Weibull-Modul (β), Charakteristische Lebensdauer (η) und Zeit bis zum

Bruch von 10% der Proben (B10-life).

Aufgelistet sind die Werte für jede Gruppe in Abhängigkeit vom Ätz-

modus. Die Pfeile demonstrieren die Veränderung der Werte durch eine

zusätzliche Phosphorsäureätzung in der
”
te-“-Gruppe im Vergleich zur

korrespondierenden Gruppe in reiner Selfetch-Anwendung des Adhäsivs

(
”
se“).

5.1.2 Unterschiedshypothesen

Die zweifaktorielle Varianzanalyse ergab eine hochsignifikante Abhängigkeit vom
”
DbaTyp“

(p= 2,264e-05). Dabei zeigten die Gruppen
”
te“ mit zusätzlicher Phosphorsäureätzung

höhere Werte als die Gruppen
”
se“ im reinen Selfetch-Modus. Für den Faktor

”
Präp“

lieferte die Varianzanalyse keine signifikanten Unterschiede zwischen den einzelnen Test-

gruppen (p=0,4539).
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(a) Adhäsiv (Zahn) (b) Mix (Zahn) (c) Kohäsiv (Zahnanteil, mit

Komposit bedeckt)

(d) Adhäsiv (Komposit) (e) Mix (Komposit) (f) Kohäsiv (Komposit)

Abbildung 5.1: Klassifizierung des Versagensmodus in die Kategorien
”
Adhäsiv“,

”
Mix“,

”
Kohäsiv“.

Zu sehen sind jeweils Zahnanteil und zugehöriger Kompositanteil der

Sticks (55x Vergrößerung).
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5.1.3 Visualisierung der Ergebnisse

Histogramme der Datenverteilung der ermittelten Frakturspannung

(a) Gruppe
”
Polybur/se“ (b) Gruppe

”
Polybur/te“

(c) Gruppe
”
Stahl/se“ (d) Gruppe

”
Stahl/te“

(e) Gruppe
”
gesund/se“ (f) Gruppe

”
gesund/te“

Abbildung 5.2: Häufigkeitsverteilung der Daten innerhalb der einzelnen Gruppen in

Abhängigkeit von der Frakturspannung in [MPa].

Normalverteilung in allen Gruppen außer der Gruppe
”
Polybur/te“ (b)

mit bimodaler Verteilung.
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Weibull-Diagramme

Eine Übersicht über die Weibull-Statistik aller Testgruppen findet sich in Abbildung 5.3.

Die Abbildungen 5.4 und 5.5 demonstrieren die Unzuverlässigkeit der Exkavationsmetho-

den bezogen auf die beiden Dba-Typen
”
se“ und

”
te“. In den drei folgenden Abbildungen

5.6, 5.7 und 5.8 werden die beiden Dba-Typen für jede Exkavationsmethode einzeln ver-

glichen.
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Abbildung 5.3: Weibull-Verteilung aller Testgruppen.

Die Legende zeigt, dass die Qualität der erhobenen Daten allgemein als

”
good“ (= gut) eingestuft wurde, ausgenommen der Daten der Grup-

pe
”
Polybur/te“, die als

”
bad“ (= schlecht) bezeichnet wurde. Der

Schnittpunkt mit der 10%-Perzentile, das B10-life, liegt für die Grup-

pe
”
Polybur/se“ bei niedrigerer Frakturspannung als für die anderen

Gruppen. Der Schnittpunkt mit der 63,2%-Perzentile, eta, ist für die

Gruppen
”
Stahl/te“ und

”
gesund/te“ bei deutlich höheren Fraktur-

spannungswerten als für die anderen Gruppen zu finden. Die Steigung

der Geraden, beta, ist für die Gruppen
”
gesund/se“,

”
Polybur/te“ und

”
Stahl/te“ am steilsten.
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Abbildung 5.4: Weibull-Verteilung der Exkavationsmethoden im Selfetch-Modus.

Die Konfidenzintervalle der Exkavationsmethoden zeigen eine Diskre-

panz mit einem Herausstechen des Intervalls der Gruppe
”
Polybur/se“

aufgrund von einer geringeren Steigung, beta. Der Schnittpunkt mit

der 10%-Perzentile, dem B10 life, liegt für die Gruppen
”
Stahl/se“ und

”
gesund/se“’ in einem ähnlichen Bereich, während der der Gruppe

”
Po-

lybur/se“ bei einem niedrigeren Wert zu finden ist. Dagegen liegt der

Schnittpunkt mit der 63,2%-Perzentile, eta, für alle Gruppen in einem

ähnlichen Bereich.
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Abbildung 5.5: Weibull-Verteilung der Exkavationsmethoden im Totaletch-Modus.

Die Konfidenzintervalle der Exkavationsmethoden überschneiden sich

größtenteils. Auch die Steigungen der Geraden, beta, sind ähnlich groß.

Der Schnittpunkt mit der 10%-Perzentile, dem B10 life, liegt für alle

Gruppen in einem ähnlichen Bereich. Dagegen liegen die Schnittpunk-

te mit der 63,2%-Perzentile, eta, nebeneinander. Der niedrigste Wert

eta-Wert ergibt sich hiermit für die Gruppe
”
Polybur/te“ während der

der Gruppe
”
Stahl/te“ mittig liegt und die Gruppe

”
gesund/te“ den

höchsten Wert aufweist.
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Abbildung 5.6: Weibull-Verteilung der Gruppen
”
Polybur/se“ und

”
Polybur/te“.

Die Konfidenzintervalle der Polybur-Gruppen sind breit gefächert.

Das der Gruppe
”
Polybur/te“ ist aufgrund der größeren Steigung,

beta, vertikaler ausgerichtet ist, jedoch überlappen sich die Intervalle

größtenteils. Während der Schnittpunkt mit der 10%-Perzentile, dem

B10 life, für die Gruppe
”
Polybur/te“ bei höherem Frakturspannungs-

wert liegt, schneiden sich die beiden Geraden im Bereich der 63,2%-

Perzentile, eta. Die Messwerte der Gruppe
”
Polybur/te“ beschreiben

ein
”
dogleg“ und liegen großteils neben der zugehörigen Geraden.
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Abbildung 5.7: Weibull-Verteilung der Gruppen
”
Stahl/se“ und

”
Stahl/te“.

Die Konfidenzintervalle der beiden Gruppen überschneiden sich

größtenteils. Die Steigung der Geraden, beta, ist für die Gruppe

”
Stahl/se“ steiler. Während der Schnittpunkt mit der 10%-Perzentile,

dem B10 life, in einem ähnlichen Bereich liegt, findet sich der Schnitt-

punkt mit der 63,2%-Perzentile, eta, für die Gruppe
”
Stahl/te“ bei

deutlich höherer Frakturspannung.
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Abbildung 5.8: Weibull-Verteilung der Gruppen
”
gesund/se“ und

”
gesund/te“.

Die Konfidenzintervalle der beiden Gruppen des gesunden Referenzden-

tins sind auffallend schmal. Eine Überlappung findet nur im unteren

Prozent-Bereich statt. Die Steigung der Gruppe
”
gesund/se“ ist deut-

lich größer als die der Gruppe
”
gesund/te“. Der Schnittpunkt mit der

10%-Perzentile, dem B10 life, liegt bei beiden Gruppen in einem ähn-

lichen Bereich. Dagegen ist der Schnittpunkt mit der 63,2%-Perzentile,

eta, für die Gruppe
”
gesund/te“ bei deutlich höherer Frakturspannung

zu finden.
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5.1.4 Bilder

Bilder von typischen Stickoberflächen der Selfetch-Gruppen finden sich in Abbildung 5.9.

Die Totaletch-Gruppen sind detaillierter aufgeführt. In den Abbildungen 5.12, 5.11 und

5.10 sind die Oberflächen von je drei Zahnsticks mit zugehörigem Kompositanteil darge-

stellt, wobei jeweils einer mit sehr niedriger, einer mit mittlerer und einer mit sehr hoher

Frakturspannung ausgewählt wurde.
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(a) Polybur Zahn (22,87 MPa) (b) Stahl Zahn (13,03 MPa) (c) gesund Zahn (23,58 MPa)

(d) Polybur Komposit (e) Stahl Komposit (f) gesund Komposit

Abbildung 5.9: Stickoberflächen der Reihen
”
se“ nach Bruch im Mikrozugversuch (mit

ermittelter Frakturspannung) (55x Vergrößerung).

(a) Aufgeworfene, rötlich verfärbte Zahnoberfläche nach PolyBur-

Exkavation. Hohe ermittelte Frakturspannung.

(b) Leicht verfärbte, teils glatte, teils raue Zahnoberfläche nach

Rosenbohrer-Exkavation. Geringe ermittelte Frakturspannung.

(c) Unverfärbte, zentral vom Schleifpapier geriffelte Zahnoberfläche.

Hoher ermittelter Haftwert.

(d) Zu (a) gehöriger Kompositanteil mit rauer Oberfläche und anhaf-

tenden Bruchstücken des Zahnanteils.

(e) Zu (b) gehöriger Kompositanteil mit rauer Oberfläche.

(f) Zu (c) gehöriger Kompositanteil mit strukturierter Oberfläche.
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(a) Zahn 04 (0 MPa; Bruch

bei Präp)

(b) Zahn 02 (14,84 MPa) (c) Zahn 18 (30,61 MPa)

(d) Komposit (e) Komposit (f) Komposit

Abbildung 5.10: Stickoberflächen der Gruppe
”
Polybur/te“ nach Bruch im Mikrozug-

versuch (mit ermittelter Frakturspannung) (55x Vergrößerung). Sor-

tiert nach aufsteigender Frakturspannung.

a) Zahnmaterial ohne Haftungsmöglichkeit, Bruch bei Stickpräparati-

on. Zahnoberfläche glasig, rötlich verfärbt.

(b) Geringe Frakturspannung. Zahnoberfläche stark aufgeraut mit

großflächigen weißlichen Adhäsivrückständen.

(c) Hohe Frakturspannung. Zahnoberfläche aufgeraut mit punktuell

weißlichen Adhäsivrückständen.

(d) Zu (a) gehöriger Kompositanteil glasig mit anhaftendem Zahn-

bruchstück im unteren Bildbereich.

(e) Zu (b) gehöriger Kompositanteil mit rauer Oberfläche.

(f) Zu (c) gehöriger Kompositanteil mit rauer Oberfläche.
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(a) Zahn 04 (6,45 MPa) (b) Zahn 02 (23,5 MPa) (c) Zahn 15 (47,01 MPa)

(d) Komposit (e) Komposit (f) Komposit

Abbildung 5.11: Stickoberflächen der Gruppe
”
Stahl/te“ nach Bruch im Mikrozugver-

such (mit ermittelter Frakturspannung) (55x Vergrößerung). Sortiert

nach aufsteigender Frakturspannung.

(a) Geringe Frakturspannung. Rötlich verfärbte, grob-rillige Zahno-

berfläche.

(b) Mittlere Frakturspannung. Teils gelbliche, teils weißliche aufgerau-

te Zahnoberfläche.

(c) Sehr hohe Frakturspannung. Gelbliche, etwas unebene Zahnober-

fläche.

(d) Zu (a) gehöriger Kompositanteil grob-rillig mit großflächigen

weißlichen Adhäsivrückständen.

(e) Zu (b) gehöriger Kompositanteil mit unebener, aber glatter Ober-

fläche.

(f) Zu (c) gehöriger Kompositanteil mit großflächig anhaftendem

Zahnmaterial in der unteren Bildhälfte. Kompositoberfläche grob auf-

geraut.
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(a) Zahn 14 (0 MPa; im Was-

ser gelöst)

(b) Zahn 07 (22,74 MPa) (c) Zahn 19 (36,46 MPa)

(d) Komposit (e) Komposit (f) Komposit

Abbildung 5.12: Stickoberflächen der Gruppe
”
gesund/te“ nach Bruch im Mikrozug-

versuch (mit ermittelter Frakturspannung) (55x Vergrößerung). Sor-

tiert nach aufsteigender Frakturspannung.

(a) Sehr geringe Frakturspannung. Nach gelungener Präparation

Auflösung des Haftverbunds während Wasserlagerung. Zahnoberfläche

mit leichten Rillen, weißlich gefärbt.

(b) Mittlere Frakturspannung. Sehr glatte, einheitlich unverfärbte

Zahnoberfläche.

(c) Sehr hohe Frakturspannung. Etwas aufgeraute Zahnoberfläche.

(d) Zu (a) gehöriger Kompositanteil aufgequollen, milchig verfärbt.

(e) Zu (b) gehöriger Kompositanteil sehr glatt, unverfärbt.

(f) Zu (c) gehöriger Kompositanteil aufgeraut mit kleinen Bläschen

im Material.
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5.2 Mikro-CT-Untersuchung

5.2.1 Analyse der internen Hybridschicht im REM

Perfekte Randverhältnisse im exkavierten Dentin

(a) Polybur (100x) (b) Polybur (500x) (c) Polybur (1500x)

(d) Rosenbohrer (100x) (e) Rosenbohrer (500x) (f) Rosenbohrer (1500x)

Abbildung 5.13: Perfekte Verbundfläche Dentin/Komposit nach Polybur- bzw. Rosen-

bohrerexkavation (100-1500x Vergrößerung).

Die horizontale dunkle Linie stellt die adhäsive Hybridschicht dar.

Der Kompositanteil befindet sich im Bild jeweils überhalb davon,

der Zahn unterhalb davon. Auffällig ist die stärker aufgeworfene

Zahnoberfläche mit unscharfer Begrenzung nach PolyBur-Exkavation

((a)-(c)) verglichen mit der nach Rosenbohrer-Exkavation ((d)-(f)).

Die deutliche Hybridschicht nach Rosenbohrer-Exkavation ist bis zu

18µm dick. Die schwerer abgrenzbare Hybridschicht nach PolyBur-

Exkavation ist ungefähr doppelt so dick.
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Perfekte Randverhältnisse im Schmelz

(a) Polybur (100x) (b) Polybur (500x) (c) Polybur (1500x)

Abbildung 5.14: Perfekte Verbundfläche Schmelz/Komposit (in aufsteigender Ver-

größerung).

Die dunkle vertikale Linie stellt die adäsive Hybridschicht dar. Der

Kompositanteil befindet sich jeweils links davon, der Zahn rechts

davon. Die Zahnoberfläche ist klar definiert mit dünner, einige µm

dicker adhäsiver Verbundzone.
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5.2.2 3D-Bestimmung der Schrumpfungsvektoren

Die Anzahl und Qualität der Schrumpfungsvektoren variierte sehr stark. Während in den

Polybur-Gruppen 24-43 Vektoren pro Kavität bestimmt werden konnten, konnte in den

Rosenbohrer-Gruppen maximal 13 Vektoren pro Kavität bestimmt werden. Die visuelle

Auswertung ergab eine Ausrichtung weg von der freien Oberfläche in Richtung Zahnzen-

trum für den Großteil der Vektoren. Ein typischer Vertreter ist in Abbildung 5.15 zu sehen.
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(a) Z-Ebene mit Zahnstruktur (b) Z-Ebene ohne Zahnstruktur

(c) Y-Ebene mit Zahnstruktur (d) Y-Ebene ohne Zahnstruktur

Abbildung 5.15: Darstellung der Schrumpfungsvektoren in unterschiedlichen Schnit-

tebenen.

Die Schrumpfungsvektoren sind sowohl in horizontaler (a)/(b) wie

auch in axialer (c)/(d) Schichtung zentripetal zur Zahnachse ausge-

richtet.
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5.2.3 Volumenanalyse

Deskriptive Statistik

Die Ergebnisse der Volumenanalyse sind in Tabelle 5.5 aufgelistet. Die Werte stellen das

Verhältnis aus Pixelzahl des durch Bildprozessierung erzeugten Differenzbildes in Relati-

on zur Pixelzahl des ersten Scans, der unausgehärteten Füllung, dar. Für Angaben in %

müssen die Werte mit 100 multipliziert werden.

Probe Nr. Polybur Rosenbohrer

1 0,017 0,032

2 0,024 0,019

3 0,021 0,018

4 - -

5 0,017 0,028

6 - 0,028

Mittelwert (SD) 0,019 (±0,03) 0,025 (±0,06)

Tabelle 5.5: Volumenschrumpfung durch Lichthärtung

(1 entspricht 100%; für %-Wert Zahlen mit 100 multiplizieren).
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Bilder der Volumenanalyse

(a) Polybur in 2D (b) Rosenbohrer in 2D

(c) Polybur in 3D - Ansicht 1 (d) Rosenbohrer in 3D - Ansicht 1

(e) Polybur in 3D - Ansicht 2 (f) Rosenbohrer in 3D - Ansicht 2
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Abbildung 5.16: Differenzbilder der Volumenanalyse in 2D- und 3D-Darstellung.

Basis der Bilder sind die berechneten Differenzbilder zwischen unaus-

gehärtetem und ausgehärtetem Scan. Die Schrumpfung des Kompo-

sits ist in 2D als weiße Linie, in 3D als farbige Fläche dargestellt.

Die 2D-Bilder ((a),(b)) sind in horizontalem Schnitt aufgenommen.

Die
”
freie“, im Approximalbereich gelegene Oberfläche ist im oberen

Bildabschnitt als dicke weiße Linie zu erkennen. Die dünnere weiße

Linie im unteren Bildabschnitt repräsentiert die Volumenschrumpfung

an der
”
gebundenen“, exkavierten Oberfläche im Inneren des Zahnes.

Deutlich zu sehen ist, dass die Schrumpfung im Bereich der
”
freien“

Oberfläche am größten ist. (Dass die Schrumpfung nur an der Ober-

fläche dargestellt ist, liegt an der Wahl der Auswertungsmethode. An

Hand der erzeugten Binärbilder lassen sich keine Rückschlüsse auf

Bewegungen in der Binnenstruktur mehr schließen.)

Die 3D-Bilder ((c)-(f)) sind so ausgerichtet, dass die Zahnachse in der

Vertikalen liegt. Zwischen den beiden Ansichten wurden sie einmal

um 180° um die Zahnachse gedreht. In Ansicht 1 liegt der Approxi-

malbereich linker Hand, in Ansicht 2 rechter Hand. Ebenso wie in der

2D-Darstellung sieht man die farbintensive dicke Schicht in den Berei-

chen der approximalen Oberfläche. Zusätzlich fällt die Farbintensität

der ebenfalls
”
freien“ Okklusalfläche auf. Die Darstellung der

”
gebun-

denen“ Oberfläche des zentralen Zahnanteils ist dagegen durchschim-

mernd und weist auf eine geringere Volumenschrumpfung in diesem

Bereich hin.
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5.3 Qualitative und Quantitative Randanalyse

Eine Übersicht über die Ergebnisse der Randanalyse findet sich in den Tabellen 5.6 und

5.7. Für die Angabe in % müssen die aufgelisteten Werte mit 100 multipliziert werden.

Der Anteil der beiden Kriterien,
”
perfekter Rand“ und

”
Randspalt“, ist für Dentin und

Schmelz getrennt aufgelistet, sodass sich jeweils eine Summe von 100% ergibt. Beispielbilder

für die Kriterien finden sich in Abbildung 5.18.

5.3.1 Deskriptive Statistik

Zeitpunkt t0 - nach 24 h Wasserlagerung bei 37°C

perf.Rand Dentin Randspalt Dentin perf.Rand Schmelz Randspalt Schmelz

Gruppe M SD M SD M SD M SD

Polybur 1,000 0,000 0,000 0,000 0,991 0,021 0,009 0,021

Rosenbohrer 0,993 0,018 0,007 0,018 1,000 0,000 0,000 0,000

Tabelle 5.6: Verteilung der Randkriterien zum Zeitpunkt t0.

M =Mittelwert, SD=Standardabweichung (1 entspricht 100%)

Zeitpunkt t1 - nach thermomechanischer Belastung

perf.Rand Dentin Randspalt Dentin perf.Rand Schmelz Randspalt Schmelz

Gruppe M SD M SD M SD M SD

Polybur 1,000 0,000 0,000 0,000 1,000 0,000 0,000 0,000

Rosenbohrer 1,000 0,000 0,000 0,000 1,000 0,000 0,000 0,000

Tabelle 5.7: Verteilung der Randkriterien zum Zeitpunkt t1.

M =Mittelwert, SD=Standardabweichung (1 entspricht 100%)
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5.3.2 Unterschiedshypothesen

Für den Zeitpunkt t0 ergab der Welch-Test weder für den Dentinanteil (p=0,36) noch für

den Schmelzanteil (p=0,36) der Kavität eine Abhängigkeit des
”
perfekten Randes“ von der

Exkavationsmethode.

Für den Zeitpunkt t1 konnte kein Welch-Test durchgeführt werden, da die Ergebnisse für

beide Exkavationsmethoden ausschließlich 100%
”
perfekten Rand“ ergaben, also keinen

Unterschied aufwiesen.
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5.3.3 Visualisierung der Ergebnisse

Abbildung 5.17: Anteil des Kriteriums
”
perfekter Rand“ im Dentin- und Schmelzanteil

zu den beiden Testzeitpunkten (t0=
”
24h“; t1=

”
TWL+Kausi“).

Die Höhe der Säulen stellt den Mittelwert dar, die
”
Whisker“ die

Standardabweichung.
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5.3.4 Bilder

Darstellung Randspalt vs. perfekter Rand

(a) Perfekter Rand im Schmelz (b) Perfekter Rand im Dentin

(c) Randspalt im Schmelz

(Links oben im Bild ist die Orientierungs-

rille zu sehen)

Abbildung 5.18: Kriterien der Randanalyse:
”
Perfekter Rand“ und

”
Randspalt“ (200x

Vergrößerung).

Die vertikale Linie zentral im Bild stellt den Übergang zwischen Zahn

und Komposit dar. Jeweils links davon ist das Komposit zu finden,

rechts davon der Zahn. Bild (a) und (b) stellen perfekte Verhältnisse

dar. Im Bild (c) ist der Übergang zwischen den Materialien deutlich

als schwarze Linie zu erkennen und stellt einen Randspalt dar.
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Gestitchtes Bild für die Randanalyse

Abbildung 5.19: Gestitchtes Bild für die Auswertung.

Einzelbilder mit 200x Vergrößerung im REM angefertigt. Anschlie-

ßend mit Fiji-Plugin
”
Pairwise-Stitching“ zusammengefügt und mit

”
KHKs-jQuantigap“ [Kunzelmann, 2010] ausgewertet.

Der Zahnanteil ist auf den Bildern jeweils rechts, der Kompositanteil

jeweils links zu finden.
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Kapitel 6

Diskussion

Ziel dieser Studie war es, den adhäsiven Verbund eines Universaladhäsivs an Dentin nach

selbstlimitierender Kariestherapie mit einem Polymerbohrer zu charakterisieren. Der Fokus

lag hierbei auf der Verwendung von natürlicher Karies an humanen Zähnen der zweiten

Dentition. Um den Sachverhalt von verschiedenen Seiten aus zu beleuchten wurde ein In-

Vitro-Aufbau mit extrahierten Zähnen gewählt. Dieser ermöglichte einen Mikrozugversuch

im Spit-Tooth-Design, einen Mikro-CT-Scan vor und nach Härtung des Füllungskomposits

sowie eine Randanalyse mit standardisierter thermomechanischer Belastung.

6.1 Mikrozugversuch

Der Mikrozugversuch wurde im Split-Tooth-Design durchgeführt. Dies ist insbesondere

von Bedeutung, da die Forderung nach natürlichen Kariesläsionen keine Standardisierung

bezüglich des Substrats zuließ. Durch das Split-Tooth-Design war es möglich zwei unter-

schiedliche Kariesexkavationsmethoden an derselben kariösen Läsion zu testen.

Nach Hemisektion eines Zahnes wurde eine Hälfte mit einem Polymerbohrer (Polybur),

die andere mit einem konventionellen Stahlrosenbohrer (Stahl) exkaviert. Um den End-

punkt der konventionellen Kariesexkavation zu objektivieren wurde die FACE-Technologie

verwendet. Zusätzlich wurde pro Zahnhälfte eine Probe des gesunden, oberflächenstandar-
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disierten Dentins (gesund) als Referenz getestet.

Bei dem verwendeten Adhäsiv handelte es sich um ein modernes Universaladhäsiv, das

sowohl für Selftetch- (se) als auch für Totaletchanwendung (te) zugelassen ist. Dies hatte

den Vorteil, dass der Einfluss einer zusätzlichen Phosphorsäureätzung mit dem gleichen

Adhäsiv evauliert werden konnte.

Statistisch untersucht wurden die Einflussfaktoren
”
Dentin“ (gesund/kariös),

”
Präp“

(Polybur/Stahl) und
”
Dba-Typ“ (se/te). Das Versuchsdesign wies die Besonderheit

auf, dass pro Zahn nur je ein Stick für die Gruppen
”
Polybur/se“/

”
Polybur/te“ und

”
Stahl/se“/

”
Stahl/te“ getestet wurde. Es stellt jedoch eine Herausforderung an die Stati-

stik dar, dass je zwei Sticks gesunden Dentins, aufgeteilt auf zwei unterschiedliche Gruppen

(
”
Gesund/se-Polybur“/

”
Gesund/se-Stahl“;

”
Gesund/te-Polybur“/

”
Gesund/te-Stahl“), ge-

liefert wurden.

Gemäß einer Studie zur statistischen Beurteilung von Ergebnissen des Mikrozugversuchs

kann es eine gewisse Abhängigkeit zwischen den Sticks eines Zahnes geben, die bei statisti-

scher Aufarbeitung beachtet werden sollte [Eckert and Platt, 2007]. Der gepaarte t-Test lie-

ferte jedoch weder für die Gruppen
”
Gesund/se-Polybur“/

”
Gesund/se-Stahl“ (p=0,6125)

noch für die Gruppen
”
Gesund/te-Polybur“/

”
Gesund/te-Stahl“ (p=0,09182) einen signifi-

kanten Unterschied auf 5%-Signifikanzniveau, sodass das Pooling zu je einer Gruppe (
”
ge-

sund/se“/
”
gesund/te“) möglich war. Der Faktor

”
gesund“ wurde neben

”
Polybur“ und

”
Stahl“ als drittes Merkmal der Variable

”
Präp“ eingeführt und machte den Faktor

”
Den-

tin“ damit überflüssig. Somit wurde die mehrfaktorielle Varianzanalyse um einen Faktor

auf zwei Faktoren reduziert.

Ätzung mit singifikantem Einfluss

In der zweifaktoriellen Varianzanalyse zeigte sich keine Abhängigkeit der im Mikrozugver-

such ermittelten Frakturspannung von der
”
Präp“-Methode (p=0,4539). Der

”
Dba-Typ“

hingegen hatte einen hochsignifikanten Einfluss auf den Haftverbund (p=2,264e-05) mit

einer klaren Überlegenheit der
”
te“-Gruppen mit zusätzlicher Ätzung verglichen mit den
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Gruppen in reiner Selfetch-Anwendung des Adhäsivs.

Bei näherer Betrachtung lässt sich eine Tendenz erkennen, dass der Effekt für jede Exkava-

tionsmethode unterschiedlich groß ist. Durch zusätzliche Ätzung verändert sich der mittlere

Haftwert nach Polybur-Exkavation kaum, während er sich nach Rosenbohrer-Exkavation

um ein Drittel erhöht und im gesunden Referenzdentin fast verdoppelt wird.

Mit dieser Beobachtung stimmt die Weibull-Statistik im Hinblick auf den η-Wert überein,

der Aussagen über die Überlebensdauer von 63,2% der Proben trifft. Auch dieser ändert

sich durch Ätzung für die Polybur-Gruppen kaum (ηse=18,3 vs. ηte=18,35), während er sich

nach Rosenbohrer-Exkavation deutlich erhöht (ηse=17,26 vs. ηte=22,99) und im gesunden

Referenzdentin fast verdoppelt wird(ηse=15,48 vs. ηte=27,57).

Erklärt werden kann dies dadurch, dass weder gesundes Dentin noch Restdentin nach

Rosenbohrer-Exkavation freiliegende Kollagenfasern zur Ausbildung einer Hybridschicht

aufweist. Diese werden durch Ätzung freigelegt und verbessern somit die Veranke-

rungsmöglichkeit des Adhäsivs. Das Restdentin nach Polybur-Exkavation ist dagegen vor-

demineralisiert, weshalb bereits die Selfetch-Anwendung eines Adhäsivs zur Ausbildung

einer adäquaten Hybridschicht ausreicht und eine zusätzliche Ätzung keine nennenswerte

Verbesserung bringt, vielleicht sogar eher zu einer Überätzung führt.

Anders als Mittelwert und η-Wert verhält sich das B10-life der Weibull-Statistik, das

gemäß Waloddi Weibull als Vergleichskriterium herangezogen werden sollte [Abernethy,

2004]. Während sein Wert zwischen den Exkavationsmethoden in Selfetch-Anwendung

differiert (B10Polybur/se=5,067; B10Stahl/se=8,203; B10gesund/se=7,443), liegt es in Total-

Etch-Anwendung in einem ähnlichen Bereich (B10Polybur/te=7,569; B10Stahl/te=7,134;

B10gesund/te=8,640).

Das B10-life charakterisiert die Überlebensdauer von 10% der Proben, trifft damit Aus-

sagen über Frühausfälle und sichert somit eine gewisse Qualität des getesteten Materials.

Die Werte ermittelten sprechen für eine Nivellierung der Unterschiede zwischen den Ex-

kavationsmethoden sowie eine Qualitätssicherung durch zusätzliche Phosphorsäureätzung.

Dies ist in Abbildung 5.5 durch eine großflächige Überschneidung der Konfidenzintervalle

der drei Methoden visualisiert. Ebenso zeigt es sich in einer Annäherung der Steigungs-
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werte der Geraden der Totaletch-Reihe (βPolybur/te=2,541; βStahl/te=1,923; βgesund/te=1,933)

im Vergleich zu den Steigungswerten der Selfetch-Reihe (βPolybur/se=1,753; βStahl/se=3,025;

βgesund/se=3,074).

In dieser Studie wurde eine Verbesserung der Haftkraft eines Universaladhäsivs an Den-

tin durch eine zusätzliche Phosphorsäureätzung beobachtet. In anderen Studien, die die

Anwendung verschiedener Universaladhäsive in Totaletch- und Selfetchanwendung vergli-

chen, zeigte sich dagegen kein Einfluss einer Ätzung auf die Haftung an Dentin [Takamizawa

et al., 2016,Wagner et al., 2014]. Der positive Effekt einer Schmelzätzung scheint dagegen

unumstritten [Hanabusa et al., 2012,Suzuki et al., 2016,Vermelho et al., 2016]

Es herrscht Einigkeit, dass eine Ätzung mit Säuren die vom Bohrer produzierte Schmier-

schicht entfernt und eine Freilegung von Dentintubuli bewirkt [Pashley et al., 1981,Ayad,

2001]. Das Ausmaß derselben hängt dabei vom pH-Wert der Säure ab [Ayad, 2001]. Da

es durch Entfernung der Schmierschicht zu erhöhten Flüssigkeitsbewegungen in der Ver-

bundzone kommt und Hydrolyse einer der Hauptgründe für Degradationprozesse in der

Hybridschicht ist [Frassetto et al., 2016], stellt sich jedoch die Frage, ob durch Ätzung

die Langszeitstabilität des Verbundes gefährdet ist [Pashley et al., 1981]. Hanabusa et al.

(2012) beobachteten nach Totaletch-Anwendung eines Selfetch-Adhäsivs (G-Bond Plus;

GC Europe, Leuven, Belgien) ein erhöhtes Nanoleakage im Bereich des Dentins, das sich

durch Silbernitrateinlagerung in der ganzen Breite des Haftverbunds darstellte. Einer Stu-

die Marchesis et al. (2014) zufolge trifft die durch Ätzung verstärkte Nanoleakagebildung

auch für das Universaladhäsiv Scotchbond Universal zu. Andere Studien zur Charakterisie-

rung Scotchbond Universals berichten dagegen eine adäquate Versiegelung des Dentins auch

nach Totaletch-Anwendung, eine langfristigere Haftung nach Totaletch-Anwendung [Ver-

melho et al., 2016], sowie eine stabilere Langzeithaftung im Vergleich mit anderen Adhäsi-

ven sowohl in Selfetch- als auch in Totaletch-Anwendung [Munoz et al., 2015].

Entscheidend für diese Langzeitstabilität könnte den Beobachtungen Muñoz et

al. (2015) zufolge der Adhäsiv-Bestandteil
”
MDP“ sein. Das MDP-Monomer (10-

Methacryloyloxydecyl Dihydrogenphosphat) wurde 1981 von Kuraray (Osaka, Japan) ent-

wickelt. Durch seine chemischen Eigenschaften bietet es eine hervorragende Haftung an
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Schmelz, Dentin sowie auch an Metalle und ist für den Erfolg des Befestigungskomposits

Panavia (Kuraray Co., Osaka, Japan) verantwortlich1. Im direkten Vergleich mit anderen

Funktionsmonomeren weist MDP die beste Haftung auf Schmelz und Dentin auf [Van Lan-

duyt et al., 2008]. Eine gute Haftung war dabei assoziiert mit geringer Löslichkeit der mit

der Zahnhartsubstanz gebildeten Calcium-Salze [Van Landuyt et al., 2008]. Gemäß des

Adhäsion/Dekalzifikationskonzepts von Yoshida et al. (2001) lässt sich aus der Löslich-

keit der Calcium-Salze ein Rückschluss auf die Haftung einer Säure an die Zahnhartsub-

stanz ziehen. Das Konzept besagt, dass eine Säure im ersten Schritt über eine Verbindung

zum Calcium des Hydroxyapatits an die Zahnhartsubstanz anhaftet, während im zweiten

Schritt entweder eine stabile Adhäsion aufgebaut wird und damit wenige Calcium-Salze

gelöst werden oder eine Dekalzifikation vonstatten geht. Interessant ist, dass der pH-Wert

der Säure dabei nicht entscheidend ist [Yoshida et al., 2001]. Die Hydrolyseresistenz des

MDPs [Van Landuyt et al., 2008, Yoshida et al., 2004] scheint der Grund zu sein wieso

Muñoz et al. (2015) die beste Langzeitstabilität für Adhäsive mit MDP-Bestandteil be-

obachteten. Zu diesen MDP-haltigen Adhäsiven gehört das in dieser Studie verwendete

Universaladhäsiv Scotchbond Universal. Das kann erklären wieso der von Scotchbond ge-

bildete Adhäsivverbund auch nach Totaletch-Anwendung einen adäquate Versiegelung des

Zahnes zu bewirken scheint [Montagner et al., 2017].

Analyse des Versagensmodus

Die Analyse des Versagensmodus fand nach Bruch der Sticks im Mikrozugversuch statt.

Hierfür wurde die adhäsive Oberfläche unter einem Lichtmikroskop bei 55-facher Ver-

größerung visuell beurteilt. Sie wurde eingeteilt in die Kategorien
”
Adhäsiv“,

”
Mix“ und

”
Kohäsiv“ wie auch von anderen Untersuchern praktiziert [Al-Harbi et al., 2015, Hana-

busa et al., 2012, Wagner et al., 2014]. Dabei bezeichnete
”
Adhäsiv“ einen Bruch in der

Adhäsivschicht,
”
Mix“ ein Anhaften von Kompositanteilen am Zahn und

”
Kohäsiv“ eine

Lokalisation der Bruchfläche vollständig im Komposit bzw. Zahn.

1Kuraray Europe GmbH; http://kuraraydental.com/key-technologies-innovations/mdp-monomer;

06.04.17
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Tabelle 5.2 ist zu entnehmen, dass der Großteil der getesteten Sticks der Kategorie

”
Adhäsiv“ zugeordnet wurde (85,4%). Dies ist positiv zu vermerken, da diese Katego-

rie die Testgröße des Versuchs, die adhäsive Frakturspannung, am eindeutigsten bestimmt,

während die Kategorien
”
Mix“ und

”
Kohäsiv“ unberechenbare zusätzliche Haftkomponen-

ten miteinschließen.

Die Kategorie
”
Mix“ war für jede Exkavationsart häufiger nach Totaletch- als nach Selfetch-

Anwendung des Adhäsivs zu beobachten (MixPolybur/se=15,4% vs. MixPolybur/te=38,5%;

MixStahl/se=0% vs. MixStahl/te=28,6%; Mixgesund/se=0% vs. Mixgesund/te=9,4%).

Auffällig ist das gehäufte Auftreten des
”
Mix“-Versagensmodus in den kariösen Gruppen

(78,6%) . Allein 50% aller Fälle finden sich in den Polybur-Gruppen. Die Zuteilung zur

Kategorie
”
Mix“ lässt sich dabei nicht in Einklang bringen mit überdurchschnittlichen

Frakturspannungswerten wie von Toledano et al. (2012) beobachtet. Eine wahrscheinliche-

re Erklärung hierfür ist die erleichterte Identifikation von kleinsten Kompositresten auf der

oft rötlich-verfärbten Oberfläche nach Exkavation, welche insbesondere nach subststanz-

schonender Exkavation mit dem Polybur vorzufinden ist. Dies lässt sich auch in den Ab-

bildungen 5.9 und 5.10 erkennen.

Die drei
”
Mix“-Fälle des gesunden Referenzdentins dagegen korrelieren mit überdurch-

schnittlichen Frakturspannungswerten und wurden alle nach Totaletch-Anwendung des

Adhäsivs beobachtet.

”
Kohäsiv“-Brüche im Komposit traten nur in der Gruppe

”
gesund/te“ auf. Auch hier ist

eine Assoziation mit überdurchschnittlichen Haftspannungswerten zu erkennen. Obwohl

die Gruppe
”
gesund/te“ mit 24,10 (±11,27) MPa den höchsten Mittelwert aller Testgrup-

pen aufweist, liegen 3 der 4
”
Kohäsiv“-Fälle mit Werten >30 MPa noch einmal deutlich

darüber.

Eine Besonderheit liegt in der Gruppe
”
Polybur/te“ vor. Die Daten dieser Gruppe sind

die einzigen mit der Klassifikation
”
bad“ in der Weibull-Analyse. Das gleiche Ergebnis

liefert der Shapiro-Wilk-Test, der dieser Gruppe als einziger eine fehlende Normalvertei-

lung zuweist. Der Verlauf der Werte in einem sogenannten
”
dogleg“ spricht für einen Mix

aus unterschiedlichen Versagensmodi [Abernethy, 2004]. Der zweigipfligen Verteilung des
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Shapiro-Wilk-Tests zufolge sollte es sich um zwei verschiedene Versagensmodi handeln.

Die Einteilung der Sticks zu den Kategorien des Versagensmodus lässt sich nicht assoziie-

ren mit über- bzw. unterdurchschnittlichen Frakturspannungswerten. Auffällig sind jedoch

drei deutlich überdurchschnittliche Werte (Zähne Nr.8, Nr.9 und Nr.18) in der Kategorie

”
Mix“. Nach erneuter Betrachtung dieser drei Sticks im Mikroskop fällt auf, dass deren

Oberfläche im Gegensatz zu den anderen Sticks unverfärbt ist und eine ähnliche Erschei-

nung wie gesundes Referenzdentin aufweist. Diese helle Oberfläche weist auf eine akute

Kariessituation hin, während die Verfärbung der anderen Sticks mit Einlagerung von Bak-

terienendprodukten und Mineralien für einen chronischen Prozess spricht [Daculsi et al.,

1987]. Dass es sich bei den Läsionen der drei Zähne mit erhöhten Haftwerten um akute,

weiche Karies handelte, ist auch aus den Notizen der Versuchsdurchführung zu entneh-

men. Die Härte sklerotischen Dentins unter akut kariösen Läsionen ist geringer (0,32 GPa)

als das unter chronisch kariösen Läsionen (0,50 GPa) [Zheng et al., 2005]. Somit wird

ein Polymerbohrer in chronischen Fällen weniger veränderte Zahnhartsubstanz entfernen

können. Die Haftkraft an sklerotisches Dentin ist jedoch sehr gering wie Van Meerbeek et

al. (1994) in einer Studie zeigen konnten. Dabei konnte ein Adhäsiv kaum in die Ober-

fläche des sklerosierten Dentins eindringen, womit die Ausbildung von Tags erschwert war.

Die ausgebildete Hybridschicht war sehr dünn im Vergleich zu der mit normalem Dentin

gebildeten. Auf stark sklerosierten Bereichen konnte selbst eine Ätzung mit Säure keine

Freilegung der Dentintubuli erreichen. Die hiernach beobachtete Oberfläche ähnelt den in

der vorliegenden Studie beobachteten Oberflächen von exkaviertem Dentin mit sehr gerin-

gen Haftwerten trotz Phosphorsäureätzung wie in Abbildung 6.1 zu sehen ist. Zu beachten

ist dabei, dass Van Meerbeek et al. eine 40-sekündige Ätzung mit Zitronensäure vorgenom-

men haben, die einer Studie Ayads (2011) zufolge weniger potent zur Vorbehandlung der

Dentinoberfläche als die in der vorliegenden Studie verwendete 37%-ige Phosphorsäure ist.

Eine Erklärung für die beobachtete Kurvenform lässt sich mit der verwendeten Klassifi-

zierung der Versagensmodi nicht finden. Die Qualität des Zahnsubstrats scheint dagegen
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(a) Zahn 04 der Gruppe
”
Polybur/te“ (0

MPa)

(55x Vergrößerung)

(b) Zahn 04 der Gruppe
”
Stahl/te“ (6,45

MPa)

(55x Vergrößerung)

(c) Sklerotisches Dentin nach Zitro-

nensäureätzung

(1000x Vergrößerung), Quelle: Van Meer-

beek et al. (1994)

Abbildung 6.1: Vergleich der Dentinoberfläche einer exkavierten chronischen Kari-

esläsion mit der sklerotischen Dentins.

Die Dentinoberfläche des Zahnes 04 ist nach PolyBur- (a) bzw. Ro-

senbohrerexkavation (b) zu sehen. Die glasige Struktur zeigt, dass

es trotz Phosphorsäureätzung zu keiner Aufrauung der Oberfläche

kam. Die Oberfläche präsentierte sich ähnlich wie die von Van Meer-

beek [Van Meerbeek et al., 1994] beobachtete Oberfläche sklerotischen

Dentins ohne jegliche Freilegung von Dentintubuli (c). Dies kann die

geringe Haftkraft an den Zahn 04 (0 Mpa bzw. 6,45 MPa) erklären.



6.1 Mikrozugversuch 99

einen entscheidenden Einfluss auf die erzielten Frakturspannungswerte zu haben. Der beob-

achtete geringe Substanzabtrag mit konsekutiv schlechter Adhäsivhaftung auf verfärbten,

chronischen Läsionen bestätigt die Indikationseinschränkung des PolyBur-Herstellers auf

weiche, unverfärbte Karies.

Im Hinblick auf den offensichtlichen Einfluss der Substratfarbe bei der Bestimmung des

Versagensmodus und die mangelnde Aussagekraft bezüglich Frakturspannungswerten stellt

sich die Frage wie sinnvoll die Bestimmung des Versagensmodus im Mikrozugversuch ist.

Zahlreiche Testausschlüsse

Die größte Herausforderung im Versuchsaufbau war es trotz Verwendung von natürlichen

Kariesläsionen vergleichbare Bedingungen zu schaffen. Bereits bei der Zahnauswahl wur-

den strenge Ausschlusskriterien angewandt. So sollte die Karies im Approximalbereich ge-

legen sein, ins innere Dentindrittel reichen und keine Assoziation zur Pulpa aufweisen. Die

gewählte Lokalisation gewährleistete eine Indikation für den PolyBur. Außerdem machte

es die Forderung nach einer mindestens 2,5 x 3 mm2 großen Läsionsoberfläche möglich ein

Split-Tooth-Design anzuwenden, bei dem die beiden Exkavationsverfahren nach Hemisek-

tion des Zahnes am gleichen Kariessubstrat angewandt werden konnten.

Während in der Literatur meist mehrere Sticks pro Zahn für dieselbe Gruppe gewonnen

werden [Vermelho et al., 2016, Hanabusa et al., 2012, Wagner et al., 2014], soll der Ver-

suchsaufbau der vorliegenden Studie mit nur einem Stick pro Gruppe pro Zahn positiv

hervorgehoben werden.

Weitere Ausschlusskriterien kamen nach Herstellung der Zahn-Komposit-Sticks zum Ein-

satz. Die Auflistung derselben findet sich in Tabelle 5.3.

Das häufigste Ausschlusskriterium war eine schräge Fläche am Verbund von Zahn zu Kom-

posit. Als maximal zulässige Neigung der Testfläche wurden 25° festgelegt, da bei größeren

Winkeln die Berechnung der Querschnittsfläche der Sticks aus den beiden Seitenkanten

große Fehler aufweisen würde. Vor allem aber würde eine Scherkomponente die Bestim-

mung der reinen Zug-Haftkraft, wie sie im Mikrozug erwünscht ist, verfälschen. Es wurden
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20 von 78 kariösen, jedoch nur 1 von 78 gesunden Sticks wegen schräger Testfläche vom

Versuch ausgeschlossen. Erklärung hierfür ist die schwierig mögliche Standardisierung der

Kariesfläche wegen der Forderung nach natürlichen Kariesläsionen, während die Präpa-

ration des gesunden Referenzdentins mit 320-grit-Schleifpapier eine plane, standardisierte

Fläche schuf.

Ein weiteres Ausschlusskriterium war ein fehlerhaftes Kleben der Sticks in die Mikrozug-

Prüfmaschine. Dies trat in nur 6 von 156 Fällen auf und lässt somit schwierig Schlüsse

ziehen. Auffällig war jedoch, dass es meist ab ca. 21 MPa zu einem Herauslösen der Sticks

aus dem Kleber kam. Ein theoretisch mögliches neuerliches Aufkleben der Sticks wur-

de wegen eventuell erzeugten Mikrorissen und resultierender Ergebnisverfälschung nicht

durchgeführt.

Das Auschlusskriterium
”
Bruch bei Präparation“ definierte ein Versagen des Haftverbundes

vor Befestigung der Proben in der Prüfmaschine. Es trat nur in 6 von 156 Fällen. 4 dieser 6

Fälle waren in der Gruppe
”
gesund/te“ zu finden, der Gruppe mit dem höchsten erzielten

Mittelwert der Frakturspannung. 3 dieser Sticks konnten gesägt werden, jedoch löste sich

während der 24-stündigen Wasserlagerung der Adhäsivverbund auf. Eine Erklärung hierfür

kann im Rahmen der Versuchsbeobachtung nicht geliefert werden, zumal die Testgruppe

neben dem höchsten Mittelwert auch das höchste B10-life nach Weibull, das Maß für die

ersten 10% an Verlust, aufweist.

Allgemein gilt zu sagen, dass die Ausschlüsse vom Test inbesondere in den Kariesgruppen

mit 25,6% Ausschuss zwar relativ häufig waren, jedoch für eine Qualitätssicherung der

Studie im Sinne von
”
Qualität vor Quantität“ stehen und somit die fehlende Standardisie-

rungsmöglichkeit der Testflächen ausgleichen.

Methodenkritik und Verbesserungsalternativen

Um vergleichbare Bedingungen zu schaffen wurde neben strengen Ausschlusskriterien und

standardisierter Referenzdentinoberfläche auch die Kariesexkavation mit dem Rosenbohrer

objektiviert. Dies ist insbesondere mit Hinblick auf die von Fusayama et al. (1966) beob-



6.1 Mikrozugversuch 101

achtete Diskrepanz zwischen Verfärbung, Erweichung und mikrobieller Invasion in kariösen

Läsionen wichtig. Als Referenz für eine gelungene Exkavation diente die FACE-Technologie

nach Buchalla et al. (2013). Diese bietet bei gleicher Kavitätengröße eine effizientere Bak-

terienreduktion verglichen mit klassischer Exkavation [Lennon et al., 2007]. Zudem wurden

alle Proben von der gleichen Person hergestellt, sodass behandlerspezifische Unterschiede

ausgeschlossen werden konnten.

Der Versuchsablauf richtete sich generell nach dem von Sano et al. (1994). Die Testflächen

lagen im Bereich der von Sano empfohlenen Flächengröße (1,6-1,8 mm2), womit das Über-

wiegen von
”
Adhäsiv“-Frakturen gesichert und Schwankungen der ermittelten Fraktur-

spannung, die von unterschiedlich großer Querschnittsfläche herrühren, reduziert werden

konnten.

Wie auch in den meisten Vergleichsstudien erfolgte der Mikrozugversuch nach 24-stündiger

Wasserlagerung bei 37°C ohne zusätzliche mechanische Belastung [Scherrer et al., 2010].

Wie andere Studien zeigten, werden durch mechanische Belastung jedoch die erzielten Frak-

turspannungswerte verringert [Montagner et al., 2017, Daneshkazemi et al., 2015]. Wegen

der unphysiologischen Füllungsgeometrie war eine mechanische Belastung in dieser Studie

nicht möglich, könnte aber Verbesserungspotenzial für zukünftige Versuche bieten.

Entscheidend war auch der Ansatz eines Worst-Case-Szenario, das erzeugt wurde, indem

der Microbrush des Adhäsivs nur einmal benetzt wurde, da ein mehrschichtiges Auftragen

von Selfetch-Adhäsiven den Haftverbund verbessern kann [Frankenberger et al., 2001].

Die größte Herausforderung stellte der Umgang mit natürlichen Kariesläsionen dar. Zwar

stammten alle Zähne aus dem Patientenklientel derselben Praxis, es wurde ein streng kon-

trollierter Ablauf post-extractionem befolgt und die Zähne wurden innerhalb von drei Mo-

naten verwendet, da mit zunehmender Lagerungsdauer die Haftkraft sinkt [Causton and

Johnson, 1979]. Trotzdem ließ sich kein Einfluss auf das Alter und die Chronifizierung der

Karies nehmen. Dieses Problem wurde mit einem Split-Tooth-Design gelöst, womit jeder

Testgruppe annähernd gleichwertiges Material zur Verfügung stand. Die häufig aufgetre-

tenen schrägen Testflächen ließen sich damit jedoch nicht reduzieren.
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6.2 Mikro-CT-Untersuchung

Im Mikro-CT sollte das Schrumpfungsverhalten einer Kompositfüllung nach selbstlimitie-

render Kariestherapie im Vergleich zu konventioneller Kariesexkavation mit einem Stahl-

rosenbohrer evaluiert werden. Das Schrumpfungsverhalten einer Füllung korreliert mit der

Stärke des Adhäsivverbundes und kann somit Aussagen über diesen liefern [Kim and Park,

2014]. Da die meisten einschrittigen Adhäsive keine radioopaken Füllkörper beinhalten,

war es nicht möglich den Adhäsivverbund direkt darzustellen.

Ein Split-Tooth-Design wie im Mikrozugversuch war nicht möglich, deshalb wurde be-

sonderes Augenmerk auf die Gruppenzuteilung der Zähne gelegt. Es wurden Zahnpaare

mit ähnlicher Läsionsgröße und -lokalisation gebildet und dieser Sachverhalt im Röntgen

verifiziert. Die anschließende Zuteilung je eines Zahnes pro Paar in die Gruppen
”
Poly-

bur“ bzw.
”
Rosenbohrer“ schaffte vergleichbare Bedingungen trotz fehlender Standardisie-

rungsmöglichkeit der natürlichen Kariesläsionen.

Um ein Worst-Case-Szenario zu erzeugen wurde das verwendete Universaladhäsiv (Scotch-

bond Universal; 3M Deutschland GmbH, Neuss, Deutschland) in Selfetch-Anwendung be-

nutzt, welche den Ergebnissen des Mikrozugversuchs dieser Studie zufolge der Totaletch-

Anwendung unterlegen ist.

Bei vorhergehenden Studien [Chiang et al., 2010, Kaisarly, 2014, Cho et al., 2011] wur-

den Klasse-I-Kavitäten untersucht, bei denen das Füllungsmaterial automatisch in einer

eindeutigen Position gehalten wurde. Für die Klasse-II-Kavitäten der vorliegenden Studie

musste dagegen eine Material zur Fixierung des Füllmaterials gefunden werden, das dank

Radiotransluzenz den Mikro-CT-Scan nicht beeinträchtigen würde. Mittel der Wahl war

eine laborübliche kunststoffhaltige Verschlussfolie (Parafilm; Pechiney Plastic Packaging,

Chicago, USA).

Um die drei Versuche der vorliegenden Studie vergleichen zu können wurde auf Verwen-

dung von Material der gleichen Produktions-Charge geachtet. Für den Mikro-CT-Versuch

konnte jedoch das Füllungskomposit des Mikrozugversuchs und der Randanalyse (Tetric

EvoCeram; Ivoclar Vivadent AG, Schaan, Liechtenstein) nicht verwendet werden, da es
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nur für die Schichtung von 2mm-Inkrementen zugelassen ist und konventionelle Komposi-

te in Bulkapplikation eine geringere Haftung aufweisen [Van Ende et al., 2013]. Hier war

jedoch ein Material gewünscht, mit dem man die ganze Kavität auf einmal füllen konnte.

Nur so konnte eine genaue Auswertung der zwei Scans vor/nach Härtung des Füllmaterials

stattfinden.

Da die Schrumpfungseigenschaften von Kompositen wesentlich von den Monomer- und

Füllersystemen abhängen [Al Sunbul et al., 2016], wurde das Tetric EvoCeram ähnliche

Bulkfill-Komposit (Tetric EvoCeram Bulk Fill; Ivoclar Vivadent AG, Schaan, Liechten-

stein) verwendet. Wie aus einer Studie Sunbuls et al. (2016) ersichtlich ist unterscheiden

sich die beiden Materialien nicht signifikant in ihrem Schrumpfungsstress. Dies ist von be-

sonderer Bedeutung, da erhöhter Schrumpfungsstress eines Materials zu vermehrtem Auf-

treten von
”
Debonding“ des Adhäsivverbundes zwischen Zahn und Komposit führt [Kim

et al., 2015] und somit klinische Relevanz für die Langlebigkeit einer Restauration hat [Fer-

racane and Hilton, 2016].

Ein zusätzlicher Vorteil des Materials ist die Verwendung von materialbedingten Lüftein-

schlüssen als Lokalisierungsmöglichkeit (Tracer) für die folgende Ermittlung der Schrump-

fungsvektoren. Während in vorhergehenden Studien [Cho et al., 2011,Chiang et al., 2010]

zusätzliche Füller aus Glas bzw. Zirkoniumdioxid als Tracer unter das Füllungsmateri-

al gemischt wurden, konnte das in dieser Studie verwendete Material unverändert, d.h.

praxisnah, appliziert werden.

Schrumpfungsvektoren zentripetal zum Zahnzentrum

Zur Berechnung der Schrumpfungsvektoren wurde ein Block-Matching Algorithmus nach

Chiang et al. (2009, 2010) herangezogen. Der erste Schritt der Berechnung, die starre Regi-

strierung, überlagert die beiden Scans einer Kavität vor/nach Härtung des Füllmaterials an

Hand unveränderter Außenkonturen wie der Schmelz-Zement-Grenze. Somit wird der Ein-

fluss einer möglichen Positionsveränderung des Probenhalters während der Lichthärtung

ausgeschlossen. Durch die folgende elastische Registrierung wird die Bewegung der im Ma-
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terial eingeschlossenen Tracer analysiert.

Da die Anzahl der erhaltenen Vektoren sehr variabel war, konnte keine quantitative Aus-

wertung derselben erfolgen. Stattdessen wurden sie nach Visualisierung bezüglich Lokali-

sation und Direktion qualitativ bewertet.

Für beide Exkavationsmethoden zeigte sich eine generelle Ausrichtung der Vektoren weg

von der freien Oberfläche der Füllung in Richtung des Zahnzentrums. Es konnten keine

zentrifugal gerichteten Vektoren im Zahninneren bestimmt werden, die für ein internes De-

bonding gesprochen hätten. Somit wird bestätigt, dass der Adhäsivverbund an Restdentin

nach PolyBur-Exkavation dem nach Rosenbohrer-Exkavation gleichwertig ist.

Die Ergebnisse dieser Studie decken sich mit einer anderen Studie, die das Schrumpfungs-

verhalten an Klasse-II-Kavitäten mit einem ähnlichen Versuchsaufbau überprüft hat [Al-

gamaiah et al., 2016]. Die generell zum Zahnzentrum ausgerichtete Schrumpfung des Kom-

posits kann für Klasse-I-Kavitäten vorhergehender Studien jedoch nicht bestätigt werden.

Wenn auch die Schrumpfung im okklusalen Bereich pulpawärts gerichtet war, kam es im

inneren Bereich der Kavität zu einer Schrumpfung in Richtung der freien Oberfläche [Cho

et al., 2011, Kaisarly, 2014]. Eine Erklärung hierfür könnte der unterschiedliche C-Faktor

der Kavitäten, das Verhältnis von gebundener zu freier Oberfläche [Feilzer et al., 1987],

sein. Je mehr Oberfläche einen intakten Adhäsivverbund aufweist, desto mehr Widerstand

wird der Polymerisationsschrumpfung entgegenwirken und desto mehr Schrumpfungsstress

ensteht. Wenn der Schrumpfungsstress die Haftfestigkeit des Adhäsivverbunds überschrei-

tet, kommt es zu einer
”
Leakage“-Bildung [Bowen et al., 1983]. Bei vergrößertem C-Faktor

kommt es somit zu einem vermehrten Auftreten von Spalten im Adhäsivverbund [Mo-

reira da Silva et al., 2007]. Da der C-Faktor für Klasse-I-Kavitäten vorhergehender Stu-

dien [Cho et al., 2011, Kaisarly, 2014] deutlich größer als für die Klasse-II-Kavitäten der

vorliegenden Studie ist, kann er als wahrscheinliche Erklärung für das unterschiedliche

Schrumpfungsverhalten der Kompositfüllungen gesehen werden.

Die erwünschte Beurteilung einzelner Kavitätenbereiche [Kaisarly and Gezawi, 2016] wie

beispielsweise der Exkavationsfläche war aufgrund der geringen Anzahl an lokalisierten

Tracern nicht möglich.
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Van Ende et al. (2015) führten eine Analyse der Schrumpfungsvektoren in homogenen

Kunststoffkavitäten unterschiedlicher Größe durch. Während es in großen Kavitäten zum

”
Debonding“ am Kavitätenboden kam, war dies für kleine Kavitäten nicht zu sehen. Das

von Van Ende et al. (2015) verwendete homogene Kavitätenmaterial weist per se eine

gleichbleibende Haftung in jedem Kavitätenbereich auf. Trotzdem kam es stets im Bereich

des Kavitätenbodens zu einem Haftverlust. Somit stellt sich die Frage inwieweit aus den

Beobachtungen der Vektorenanalyse ein Rückschluss auf die Qualität des Haftverbundes

gezogen werden kann.

Freie Oberfläche mit größter Schrumpfung in Volumenanalyse

Als Ausgangsbilder zur Berechnung der Volumenschrumpfung des Füllmaterials dienten die

Versionen der beiden korrespondierenden Scans vor/nach Härtung des Füllmaterials, die

nach starrer Registrierung entstanden waren. Damit wurden Positionierungsunterschiede

zwischen den beiden Scans ausgeschlossen. Durch Bildverarbeitung konnte ein Differenzbild

der beiden Scans erzeugt werden, das die erwünschten Informationen der Volumenänderung

beinhaltete. Dieses Differenzbild wurde einerseits zur qualitativen Analyse zweidimensio-

nal und dreidimensional visualisiert, andererseits zur quantitativen Analyse in Bezug zum

ersten Ausgangsbild, dem Scan vor Lichthärtung, gesetzt.

Die Auswertung ließ keine eindeutigen Unterschiede zwischen den beiden Exkavationsme-

thoden erkennen.

Qualitativ betrachtet zeigte sich in zweidimensionaler Darstellung der Differenzbilder eine

deutliche Schrumpfung an der ungebundenen, freien Oberfläche der Füllung im Gegensatz

zu einer geringen Schrumpfung an der gebundenen Oberfläche, dem Adhäsivbereich. Auch

dreidimensional war diese ausgeprägte Schrumpfung an der freien Oberfläche deutlich zu

erkennen.

Vorteil der dreidimensionalen Darstellung ist die Beurteilung der Schrumpfung in einzelnen

Kavitätenbereichen. Hierbei gibt die Farbintensität der Darstellung Informationen über

die Schichtstärke des Differenzbildes, d.h. über die erfolgte Volumenänderung. Während
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die ungebundenen Oberflächen, approximal und okklusal, eine starke Tönung aufwiesen,

präsentierte sich die gebundene Oberfläche deutlich weniger intensiv gefärbt. Die Färbung

der gebundenen Oberfläche war jedoch relativ homogen und ließ keinen Rückschluss auf

ein verändertes Schrumpfungsverhalten im exkavierten Bereich zu.

In der quantitativen Auswertung zeigte sich eine Gesamtvolumenschrumpfung von 1,7-

3,2%. Der Mittelwert der Gruppe
”
Rosenbohrer“ lag mit 2,5% (±0,06) etwas höher als

der der Gruppe
”
Polybur“ mit 1,9% (±0,03). Die Ergebnisse liegen damit in einem ähn-

lichen Bereich wie die Ergebnisse einer vergleichbaren Studie Algamaiahs et al.(2016) an

gesunden Zähnen, in der für Tetric EvoCeram Bulkfill (Ivoclar Vivadent AG, Schaan,

Liechtenstein) eine Volumenschrumpfung von 2,44% (±0,47) berechnet wurde. Die Werte

der anderen getesteten Materialien lagen mit 3,20-3,65% deutlich darüber. Aus der Tatsa-

che, dass Algamaiah et al. im Vergleich mit adhäsiv befestigten Füllungen eine um 0,93%

erhöhte Schrumpfung für nicht-adhäsiv befestigte Füllungen mit Tetric EvoCeram Bulk-

fill beobachtete, die Ergebnisse der vorliegenden Studie sich jedoch am Unterrand seiner

Schrumpfungswerte platzieren, lässt sich schlussfolgern, dass die Exkavation mit Polybur

und Rosenbohrer einen adäquaten Haftverbund nicht behindert.

Erklärung für die leichte Diskrepanz des Schrumpfungswerts der beiden Testgruppen ist

vermutlich ein Einfluss der Bildverarbeitung und der Kavitätengeometrie.

Im Rahmen der Bildverarbeitung wird das Füllungs- vom Zahnmaterial segmentiert. Dafür

wird mit Hilfe der Threshold-Funktion manuell ein Grenzwert für die materialbedingten

Grauwertunterschiede gesetzt, sodass ein Binärbild (schwarz/weiß) erzeugt werden kann.

Diese Grenzwert-Definition lässt jedoch besonders im Randbereich der Füllung einigen

Spielraum, sodass keine 100%-ige Reproduzierbarkeit gegeben ist. Dieses Definitionspro-

blem stellte sich insbesondere, da die exkavierten Läsionen der vorliegenden Studie natur-

gemäß eine Varianz in ihren Materialeigenschaften aufwiesen. Andere Studien betrachteten

dagegen artifizielle Kavitäten aus homogenem Kunststoff [Van Ende et al., 2015,Cho et al.,

2011]. Zudem enthält das erzeugte Binärbild nur Informationen über die Außenkontur der

Füllung. Sämtliche Bewegungen im Inneren der Füllung werden somit ignoriert und über-

schrieben.
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Dass die Kavitätengeometrie einen Einfluss auf das Schrumpfungsverhalten von Kom-

positfüllungen hat, wurde von Kaisarly (2014) bewiesen. Es zeigte sich, dass in

okklusal-konvergierenden Kavitäten eine deutlich größere Schrumpfung als in okklusal-

divergierenden Kavitäten auftritt, während parallelwandige Kavitäten die geringste

Schrumpfung aufweisen. Entscheidend könnten hierbei das Volumen und der C-Faktor

der Restauration sein. Der C-Faktor ist definiert als Verhältnis von gebundener zu unge-

bundener Oberfläche einer Restauration [Feilzer et al., 1987].

C-Faktor = gebundene
ungebundene Restaurationsoberfläche

Während der C-Faktor in okklusal-konvergierenden Kavitäten aufgrund des großen Anteils

an gebundener Oberfläche am größten ist, ist er in okklusal-divergierenden Kavitäten mit

einer großen ungebundenen Oberfläche sehr klein.

Verschiedene Studien zeigten eine Zunahme des Schrumpfungsstresses bei vergrößertem

C-Faktor [Witzel et al., 2007,Moreira da Silva et al., 2007]. Während Witzel et al. (2007)

darauf hinweisen, dass das Volumen einer Füllung dabei keinen Einfluss auf den Schrump-

fungsstress hat, beobachteten Boaro et al. (2013) eine Zunahme an Stress durch Volumen-

vergrößerung. Durch die Parallelisierung der Ränder in der vorliegenden Studie konnte die

Kavitätengeometrie einigermaßen vergleichbar gemacht werden. Es konnte jedoch kein Ein-

fluss auf das Volumen genommen werden, das somit ein weiterer Faktor bei der Beurteilung

des Ergebnisses sein könnte.

Eine mögliche Erklärung für die leichte Diskrepanz des Schrumpfungswerts der beiden

Testgruppen könnte auch eine elastische Dehnung des demineralisierten Restdentins nach

Polybur-Exkavation ohne sichtbares Debonding sein. Durch die gewählte Auflösung von 16

µm ist gemäß dem Nyquist-Shannon-Abtasttheorem eine eindeutige Auswertung erst ab

einem Bereich von 20-30 µm möglich.

Abschließend muss betont werden, dass die Ergebnisse dieser Studie in Einklang mit den Er-

gebnissen anderer Studien zur Volumenschrumpfung stehen [Algamaiah et al., 2016,Al Sun-

bul et al., 2016]. Eine der beiden angeführten Studien hat die Volumenschrumpfung mit

Hilfe der
”
bonded-disk“-Methode bestimmt [Al Sunbul et al., 2016]. Untersucht wurde das
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Schrumpfungsverhalten 18 aktuell auf dem Markt befindlicher Komposite unterschiedlicher

Viskosität. Der Schrumpfungswert für das Material Tetric EvoCeram Bulk Fill (Ivoclar

Vivadent AG, Schaan, Liechtenstein) platzierte sich dabei mit 2,27% im unteren Segment

der ermittelten Schrumpfungswerte, der von Tetric EvoCeram unten (1,83%) und einem

fließfähigen Komposit (Beautifil flow plus; Shofu INC, Japan) oben (4,68%) begrenzt wur-

de [Al Sunbul et al., 2016].

Die Relevanz der Mikro-CT-Methode wird somit bestätigt, sodass sie auch für zukünftige

Untersuchungen zur Volumen- und Schrumpfungsanalyse empfohlen werden kann. Bedacht

werden sollte jedoch die Limitierung der Methode durch die Wahl der Bildauflösung.

Oberflächenanalyse im REM - Hybridschichtdicke nach Polybur-Exkavation am

größten

Nach den Scans wurden die Zähne zur Randanalyse unter dem REM in zwei Hälften gesägt.

Die zur Besputterung nötige Trocknung der Zähne führte bei einigen Proben jedoch zu einer

Rissbildung im Adhäsivbereich. Die Bilder wurden daher nicht quantitativ ausgewertet,

sondern zur Visualisierung typischer Verbundzonen herangezogen.

Nach Polybur-Exkavation zeigte sich eine aufgeworfene Dentinoberfläche, die eine ca. 30

µm dicke Hybridschicht mit dem Adhäsiv gebildet hatte. Die Dentinoberfläche nach Rosen-

bohrerexkavation zeichnete sich dagegen als klare Linie ab. Die mit dem Adhäsiv gebildete

Hybridschicht erschien deutlich dünner als nach Polybur-Exkavation.

Die Hybridschicht wurde von Nakabayashi et al. (1991) definiert als Verbundzone zwischen

Füllungsmaterial und Zahnhartsubstanz, die durch eine säurestabile Verbindung zwischen

den beiden Anteilen Hypersensitivitäten und Sekundärkaries vorbeugen soll. Während

Phosphorsäure die Schmierschicht auflösen kann [Sherawat et al., 2014], kommt es bei

Selfetch-Adhäsiven zu einer Infiltration des Adhäsivs in die Schmierschicht. Da sich die

gebildete Hybridschicht als unregelmäßig geformte Schicht variierender Stärke präsentiert,

warfen Hanabusa et al.(2012) die Frage auf, ob sie nicht besser als
”
resin-infiltrated smear

layer“ bezeichnet werden sollte. Auch die Bilder dieser Studie, dargestellt in Abbildung
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5.13, lassen offen, ob es sich bei der beobachteten dunklen Struktur um die per Definition

säureresistente Hybridschicht oder eine Kombination aus
”
resin-infiltrated smear leayer“

und demineralisierter Zahnhartsubstanz handelt. Da Adhäsive den Untersuchungen von

Hahn et al. (2004) zufolge in demineralisierte Zahnhartsubstanz besser eindiffundieren

können, ist die Wahrscheinlichkeit hoch, dass es sich bei der beschriebenen Zone um die

Hybridschicht handelt.

In dieser Studie wurde ebenso wie in vorhergehenden Studien [Silva et al., 2006,Tsolmon,

2008,Toledano et al., 2012] die Beobachtung gemacht, dass die Exkavation mit einem Poly-

merbohrer eine auffallend dicke Schmierschicht hinterlässt. Diese ist weitaus dicker als die

auf normalem Dentin produzierte Schmierschicht [Kappert and Eichner, 2008]. Es ist nicht

geklärt, ob die in der Hybridschicht verbliebenen Schmierschicht-Bruchstücke langfristig

stabil bleiben [Van Meerbeek et al., 2003]. Somit stellt sich die Frage, ob die Exkavation

mit einem Polymerbohrer eine Verbundzone zwischen Zahn und Adhäsiv hinterlässt, die

überdurchschnittlich anfällig für Degradationsprozesse ist.

Die Schichtstärke einer Schmierschicht lässt per se keinen Rückschluss auf die Haftung

zu [Sattabanasuk et al., 2007]. Da die Haftung eines Adhäsivs an die Zahnhartsubstanz

assoziiert ist mit seiner Hydrolyseresistenz [Van Landuyt et al., 2008], lässt eine dicke

Schmierschicht, wie für den Polybur beobachtet, somit nicht direkt auf eine Anfälligkeit für

Degradationsprozesse schließen. Entscheidender Faktor für die Stabilität eines Adhäsivver-

bundes scheint die Dichte der Schmierschicht sowie die Interaktion zwischen Schmierschicht

und Adhäsiv zu sein [Sattabanasuk et al., 2007,Sherawat et al., 2014].

Die Qualität des Adhäsivverbundes an die vom Polymerbohrer produzierte Schmierschicht

scheint somit von der Wahl des Adhäsivs beeinflusst zu werden. Während 3-schrittige

Totaletch-Adhäsive generell eine gute Haftung aufweisen, die auch langfristig stabil bleibt

[Van Meerbeek et al., 2003], ist die Prognose für hydrophilere Adhäsive ungünstiger [Fran-

kenberger, 2013]. Das in dieser Studie verwendete Universaladhäsiv muss eine größere Hy-

drophilie aufweisen als die 3-schrittigen Totaletch-Adhäsiv, um in einem Schritt an hydro-

phobes Komposit und hydrophile Zahnhartsubstanz binden zu können. Ob der Adhäsiv-

verbund mit der vom Polybur produzierten Schmierschicht langfristig Schaden davon trägt,
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kann im Rahmen dieser Studie nicht geklärt werden. Darüber könnten zukünftige Versu-

che zur Mikroleakage-Bildung anhand der Silbernitratpenetration ins Gewebe geben [Tay

et al., 2003, Carrera et al., 2015]. Entscheidend ist jedoch, dass es sich bei der eventuell

betroffenen Fläche um wenige Quadratmillimeter im Inneren einer Kavität mit gesunden

Rändern handelt, sodass die klinische Relevanz in Frage gestellt werden kann.

Methodenkritik und Verbesserungsalternativen

Die durch Trocknung induzierte Rissbildung im Adhäsivverbund wurde auch im Übergang

von Schmelz und Dentin beobachtet. Der unterschiedliche Wassergehalt der Zahnantei-

le und Materialien führt bei dessen Verdunstung im Trocknungsprozess zu Oberflächen-

spannungen. Obwohl der Mikro-CT-Halter soweit möglich mit Wasser befüllt wurde, kann

bei der Gesamt-Scan-Dauer von 180 Minuten nicht vollkommen ausgeschlossen werden,

dass es bereits hier zu Verdunstung und Rissinduktion in Verbundbereichen kam. In der

Auswertung der Scans zeigten sich jedoch keinerlei Anzeichen auf Spalten in diesen Ver-

bundbereichen, sodass eine Rissbildung während des 24-stündigen Trocknungsprozesses

wahrscheinlicher ist. Dem könnte in zukünftigen Studien durch Kritische-Punkt-Trocknung

entgegengewirkt werden [Sherawat et al., 2014]. Hierbei kann durch schrittweise Substitu-

tion des Wassers durch eine aufsteigende Alkoholreihe die Oberflächenspannung minimiert

und Strukturzerstörungen verringert werden.
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6.3 Qualitative und Quantitative Randanalyse

Die Qualitative und Quantitative Randanalyse sollte Aussagen über die Ermüdungssta-

bilität des exkavierten Dentins nach selbstlimitierender Kariestherapie im Vergleich zu

konventioneller Kariesexkavation liefern.

Ebenso wie im Mikro-CT-Versuch wurden durch Paarung von Zähnen mit vergleichbarer

Kariesläsion zwei homogene Untersuchungsgruppen gebildet.

Die Exkavation erfolgte praxisnah, das heißt in der Gruppe
”
Polybur“ wurden zuerst peri-

phere Kariesanteile mit einem Stahlrosenbohrer entfernt und anschließend zentrale Anteile

mit einem Polymerbohrer. In der Vergleichsgruppe, der Gruppe
”
Rosenbohrer“, wurde zur

Objektivierung der konventionellen Exkavation die FACE-Technologie eingesetzt. Zur bes-

seren Beurteilung des Randes wurde keine Anschrägung vorgenommen, sondern senkrecht

zur Oberfläche präpariert, auch wenn es dadurch zu Schmelzrissen kommen kann.

Das verwendete Universaladhäsiv (Scotchbond Universal; 3M Deutschland GmbH, Neuss,

Deutschland) wurde in Selfetch-Anwendung benutzt. Da diese den Ergebnissen des Mi-

krozugversuchs zufolge der Totaletch-Anwendung unterlegen ist, konnte somit ein Worst-

Case-Szenario im Bezug auf den Haftverbund erzeugt werden.

Besonderes Augenmerk wurde auf die Ausarbeitung des Füllungsrandes gelegt. Hierfür

wurden ein feiner Diamantbohrer gefolgt von aluminiumoxidbeschichteten Politurscheiben

(Soflex; 3M Deutschland GmbH, Neuss, Deutschland) verwendet, da diese Abfolge die be-

sten Voraussetzungen für die Randanalyse bietet. Es zeigte sich, dass dadurch das Auftreten

von Randfrakturen verringert und der Anteil perfekter Ränder erhöht werden kann [Lutz

et al., 1983].

Der Fokus der Randanalyse lag auf dem Effekt einer thermomechanischen Ermüdungs-

simulation. Diese kann die Randdichtigkeit verringern, indem sie die in der Mundhöhle

vorherrschenden Bedingungen nachahmt [Crim and Mattingly, 1981]. Durch die gewählten

Parameter von 50°C Temperaturdifferenz in 2000 Zyklen sowie 50000 mechanischen Bela-

stungszyklen á 50 N können in wenigen Stunden die Effekte nachgeahmt werden, die durch

Nahrung innerhalb von Jahren entstehen [Brown et al., 1972]. Somit lassen sich Aussagen
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über die Langzeitstabilität der Restauration treffen.

Die verwendete Replikamethode, bei der Epoxidharzreplika des Randbereiches unter dem

REM betrachtet werden, stellt eine non-invasive Analysemethode dar. So konnten die

Verhältnisse vor (Zeitpunkt t0) und nach (Zeitpunkt t1) thermomechanischer Belastung

an dem gleichen Probenmaterial verglichen werden.

Zur qualitativen Beurteilung des Randes wurden zwei Kriterien festgelegt, die jeweils für

den Dentin- und den Schmelzanteil einer Kavität beurteilt wurden. Ein
”
Perfekter Rand“

wurde von einem
”
Randspalt“ unterschieden. Andere Studien unterschieden davon auch

noch eine
”
Quellung“ und ein

”
Artefakt /nicht beurteilbarer Rand“ [Knoerzer-Suckow,

2002,Glomb, 2002]. Da diese beiden Kriterien für die Erfolgsprognose einer Füllung nicht

wegweisend sind, wurden sie in dieser Studie nicht berücksichtigt.

Die Analyse des Rands an Hand der REM-Bilder wurde mit der Software
”
KHKs-

jQuantiGap“ durchgeführt [Kunzelmann, 2010]. Um eine objektive Auswertung zu gewähr-

leisten, wurden die Bilder randomisiert und von nur einem Behandler bewertet, der nichts

mit Probenpräparation und Versuchsdurchführung zu tun hatte.

Exkavationsmethode und Thermomechanische Belastung ohne Einfluss

Die statistische Auswertung ließ weder für den Zeitpunkt t0 (pDentin=0,36; pSchmelz=0,36),

noch für den Zeitpunkt t1 einen signifikanten Einfluss der Exkavationsmethode auf den

Anteil des perfekten Randes im Dentin bzw. Schmelz erkennen.

Die Ergebnisse zeigen, dass die selbstlimitierende Kariestherapie mit einem Polymerboh-

rer keinen negativen Einfluss auf die Randverhältnisse einer Füllung hat. Zudem wurde

bestätigt, dass der Haftverbund auch thermomechanischer Belastung standhält.

Die Analyse präsentierte meist exzellente Randverhältnisse mit 100% perfektem Rand,

lediglich der Dentinanteil der Gruppe
”
Rosenbohrer“ zum Zeitpunkt t0 mit 99,3% und der

Schmelzanteil der Gruppe
”
Polybur“ zum Zeitpunkt t0 mit 99,1% wichen hiervon ab.

Die präsentierten Ergebnisse deuten auf exzellente Randqualität sowohl im Schmelz als

auch im Dentin hin. Dies kann man mit dem flächenmäßig geringen Anteil an deminera-
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lisiertem Dentin im pulpanahen Bereich erklären, der keinen Einfluss auf die in gesunder

Zahnhartsubstanz liegenden Ränder zu haben scheint. In einer Studie Takahashis et al.

(2012) wurde dagegen im Schmelz eine vom Adhäsivsystem unabhängige gute Randqua-

lität mit >95,4% perfektem Rand beobachtet, während die Randqualität im Dentin nach

Behandlung mit Selfetch-Adhäsiven weit erfolgreicher war (82,2-84,8%) als nach Behand-

lung mit Totaletch-Adhäsiven (60,2-60,7%).

In der vorliegenden Studie wurde das Kriterium
”
perfekter Rand“ auf Randspalten <1 µm

zwischen Füllungsmaterial und Zahn begrenzt. Damit liegt es weit unter den klinisch erfor-

derlichen Maßgaben, die von der FDI (Fédération Dentaire Internationale), dem Zahnärzte-

weltverband, für direkte und indirekte Restaurationen in-vivo gesetzt wurden. Die FDI hält

Spalten zwischen Zahn und Restauration von bis zu 250 µm für klinisch akzeptabel [Hickel

et al., 2010].

Die Ergebnisse deuten darauf hin, dass Randanteile zum Zeitpunkt t0 als
”
Randspalt“ ein-

gestuft wurden, die nach thermomechanischer Belastung als
”
perfekter Rand“ deklariert

wurden. Obwohl die Bilder mit nicht 100% perfektem Rand erneut betrachtet wurden,

bestätigte sich die vorhergegangene Bewertung. Erklärung hierfür könnte eine hydrophile

Expansion des Adhäsivs im vormaligen Spaltbereich sein oder auch eine Ungenauigkeit bei

der Herstellung der Epoxidharzreplika. Die einzelnen Arbeitsschritte mit Abformung, Aus-

gießen der Abformung mit Epoxidharz und Besputterung der Replika weisen eine gewisse

Techniksensitivität auf, die zu Unstimmigkeiten wie genannter führen kann. Das Ausmaß

der Auswirkungen mit unter 1% an Veränderung ist jedoch als gering einzuschätzen.

Die noninvasive Vorgehensweise der Randanalyse nach Roulet et al. (1989) sowie die

Möglichkeit zur Anwendung in-vitro wie auch in-vivo [Roulet, 1987] erklärt, wieso die Me-

thode seit zwei Jahrzehnten erfolgreich praktiziert wird [Roulet, 1987, Schwendicke et al.,

2015].
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Kapitel 7

Zusammenfassung

Ziel der vorliegenden Arbeit war es den Adhäsivverbund an kariöses Restdentin nach selbst-

limitierender Kariestherapie mit einem Polymerbohrer zu charakterisieren. Untersucht wer-

den sollten natürliche Kariesläsionen an humanen Zähnen der zweiten Dentition sowie ein

modernes Universaladhäsiv.

In einem Mikrozugversuch nach Sano et al. (1994) wurde zunächst im Split-Tooth-

Design die Haftkraft des Adhäsivs (Scotchbond Universal; 3M Deutschland GmbH, Neuss,

Deutschland) an Restdentin nach PolyBur-Exkavation (Komet Dental, Gebr. Brasseler

GmbH und Co. KG, Lemgo, Deutschland) mit der nach Stahlrosenbohrer-Exkavation

(H1SEM.204.018; Komet Dental, Gebr. Brasseler GmbH und Co. KG, Lemgo, Deutsch-

land) verglichen und in Relation zur Haftkraft an gesundes Dentin gesetzt. Die zweifakto-

rielle Varianzanalyse ließ für die Exkavationsmethode keinen signifikanten Einfluss auf die

adhäsive Haftung (p=0,4539), dagegen aber einen deutlichen Einfluss des Ätzmodus (p=

2,264e-05) mit einer Überlegenheit der Totaletch– gegenüber der Selfetchanwendung des

Adhäsivs erkennen. Die Weibull-Statistik bestätigte, durch Annäherung und Erhöhung der

B10-life-Werte der Gruppen, eine Nivellierung der Qualitätsunterschiede sowie eine Qua-

litätssicherung durch zusätzliche Ätzung.

Im Mikro-CT wurde das Schrumpfungsverhalten einer Klasse-II-Kompositfüllung in

Abhängigkeit von der verwendeten Exkavationsmethode (
”
Polybur“ vs.

”
Rosenbohrer“)
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evaluiert. Von einem Zahn wurde je ein Scan vor und ein Scan nach Härtung des Füllungs-

materials (Tetric EvoCeram Bulk Fill; Ivoclar Vivadent AG, Schaan, Liechtenstein) ange-

fertigt. Die dem Material inhärenten Füllkörper wurden von dem Block-Matching Algo-

rithmus Chiangs et al. (2009, 2010) als Tracer zur Berechnung der Schrumpfungsvektoren

verwendet. Es ergab sich eine generelle Ausrichtung der Vektoren weg von der freien Ober-

fläche in Richtung des Adhäsivverbundes, unabhängig von der gewählten Exkavationsme-

thode.

Die Bildverarbeitung mit der Software Fiji [Schindelin et al., 2012] lieferte Aussagen über

die Gesamtvolumenschrumpfung des Füllungsmaterials. Diese belief sich auf Werte zwi-

schen 1,7 und 3,2%, wobei der Mittelwert der Gruppe
”
Polybur“ (1,9% (±0,03)) etwas

unter dem der Gruppe
”
Rosenbohrer“ (2,5% (±0,06)) lag.

Die Dentinoberfläche präsentierte sich unter dem REM nach Polymerbohrer-Exkavation

aufgeworfen, während sie nach Rosenbohrer-Exkavation relativ klar begrenzt, ähnlich der

des finierten Schmelzes war. Die mit dem Adhäsiv gebildete Hybridschicht war nach

Polymerbohrer-Exkavation fast doppelt so dick wie nach Rosenbohrer-Exkavation.

Im dritten Versuch, der qualitativen und quantitativen Randanalyse nach Roulet et al.

(1989), wurde der approximale Randschluss von Klasse-II-Füllungen in Abhängigkeit von

der zuvor verwendeten Exkavationsmethode (
”
Polybur“ vs.

”
Rosenbohrer“) untersucht.

Unter dem REM wurde der Anteil des perfekten Randes in Schmelz bzw. Dentin vor

und nach thermomechanischer Belastung in Thermowechselbad (2000 Zyklen, 5/55°C) und

Kausimulator (50000 Zyklen, 50 N, 1 Hz) bestimmt.

Zu beiden Zeitpunkten wurde der Randschluss sowohl im Schmelz als auch im Dentin

mit annähernd 100% Anteil an perfektem Rand klassifiziert. Der Welch-Test ließ somit zu

keinem Zeitpunkt eine Abhängigkeit des perfekten Randes von der gewählten Exkavations-

methode erkennen.

Die Ergebnisse der Versuche lassen schlussfolgern, dass ein Universaladhäsiv einen adäqua-

ten Haftverbund an das Restdentin nach selbstlimitierender Kariestherapie mit einem Po-

lymerbohrer herstellen kann, der dem Schrumpfungsstress einer Kompositfüllung standhält

und auch nach thermomechanischer Belastung bestehen bleibt.
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4.3 Einbringen der adäsiven Kompositfüllung . . . . . . . . . . . . . . . . . . . 35
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mittelter Frakturspannung) (55x Vergrößerung) . . . . . . . . . . . . . . . 72

5.10 Stickoberflächen der Gruppe
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Ich erkläre hiermit an Eides statt, dass ich die vorliegende Dissertation mit dem Thema

”
Charakterisierung des Adhäsivverbunds an Restdentin nach selbstlimitierender Karies-
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