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Abstract

This thesis is about the derivation of effective mean field equations and their next-order
corrections starting from nonrelativistic many-body quantum theory. Mean field equations
provide an approximate ansatz for the description of interacting many-particle systems. In
this ansatz the interaction between the particles is replaced by a self-consistent external po-
tential leading to an effective one-body description of the many-particle system. Next-order
corrections provide an approximation which goes one step further and tries to capture also
subleading effects that are not resolved by the mean field ansatz. We present mathematical
proofs for the validity of such effective theories for different models that are motivated, e.g.,
from the theory of ultracold atoms (the bosonic Hartree equation and the corresponding
Bogoliubov theory) and from plasma physics (the motion of a tracer particle through a de-
generate and dense electron gas). Starting from a many-body Schrödinger equation, our goal
is to show that the solutions converge in a particular limit to the solutions to an effective
mean field equation and its next-order corrections. After a short introduction and a sum-
mary in Chapter one, we present the main part of this work in three self-contained chapters.

In Chapter two we analyze the dynamics of a large number N of nonrelativistic bosons in
the weak coupling limit, i.e., for a coupling constant gN = N−1. It is well known that in the
limit of infinite particle number, the Hartree equation emerges as an effective one-particle
theory of the Bose gas. This is closely related to the remarkable physical phenomenon of
Bose-Einstein condensation at low temperature, namely that the majority of particles in a
Bose gas occupies the same copy of a single one-particle quantum state. Our emphasis lies
in the description of the few particles that fluctuate around the Bose-Einstein condensate.
We show convergence of the fully interacting dynamics to an auxiliary time evolution in the
norm of the N -particle space. This result allows us to prove several other assertions. Among
other things, it is used to derive the Hartree equation with optimal speed of convergence
N−1 for initial states that are close to ground states of interacting systems and also to
prove convergence of the N -particle solution towards a time evolution obtained from the
Bogoliubov Hamiltonian on Fock space.

Chapter three is about the low energy properties of the weakly interacting homogeneous
Bose gas. Here, we derive a novel estimate for low energy eigenfunctions stating that the
probability for finding l particles out of their total number N not in the condensate is expo-
nentially small in the number l. Using this bound, we then prove that the ground state wave
function of the microscopic model satisfies certain quasifree type properties. The exponen-
tial decay is moreover used to provide an alternative proof for the validity of Bogoliubov’s
approximation for the low-lying energy eigenvalues. Bogoliubov theory states that the ex-
citation energies of the Bose gas are given by excitations of free quasiparticles obeying an
effective energy-momentum dispersion relation which is linear for small momentum. The
linearity of the effective dispersion relation is an essential ingredient for the explanation of
the superfluid character of the Bose gas.

In Chapter four we study the time evolution of a single particle coupled through a pair
potential to a dense and homogeneous ideal Fermi gas in two spatial dimensions. This type
of model is well known in plasma physics where it is used to describe the energy loss of ions
moving through a dense and degenerate electron gas. We analyze the model for a coupling
parameter g = 1 and prove closeness of the time evolution to an effective dynamics for
large densities of the gas and for long time scales of the order of some power of the density.
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The effective dynamics is generated by the free Hamiltonian with a large but constant
energy shift. To leading order, this energy shift is given by the spatially homogeneous mean
field potential produced by the gas particles, whereas at next-to-leading order, one has
to consider an additional correction to the mean field energy which is due to so-called
recollision processes.
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Zusammenfassung

Die vorliegende Arbeit handelt von der Herleitung effektiver Mean-field-Gleichungen (auch
Molekularfeld-Gleichungen genannt) und deren Korrekturen ausgehend von der nichtrela-
tivistischen Vielteilchen-Quantenphysik. Mean-field-Gleichungen stellen einen Ansatz zur
näherungsweisen Beschreibung wechselwirkender Vielteilchensysteme dar. Dabei wird die
Wechselwirkung zwischen den Teilchen durch selbstkonsistente externe Potentiale ersetzt,
was zu einer effektiven Einteilchenbeschreibung des Vielteilchensystems führt. “Korrekturen
in nächster Ordnung” bieten eine Näherung, welche einen Schritt weiter geht und Effek-
te zu beschreiben versucht, die durch die Mean-Field-Näherung nicht erfasst werden. Wir
präsentieren rigorose Beweise für die Gültigkeit solcher effektiver Theorien für verschiede-
ne Modelle, die u.a. motiviert sind aus der Theorie der ultrakalten Gase (die bosonische
Hartree-Gleichung und die entsprechende Bogoliubov-Theorie), sowie aus der Plasmaphysik
(die Bewegung eines Testteilchens durch ein entartetes und dichtes Elektronengas). Ausge-
hend von einer Vielteilchen-Schrödinger-Gleichung besteht unser Ziel darin, die Konvergenz
der Lösungen gegen Lösungen der einfacheren Mean-Field-Gleichung sowie deren Korrek-
turen nachzuweisen. Nach einer kurzen Einleitung und Zusammenfassung in Kapitel eins,
stellen wir den Hauptteil der Arbeit in drei voneinander unabhängigen Kapiteln dar.

In Kapitel zwei analysieren wir die Dynamik einer großen Anzahl N nichtrelativistischer
Bosonen im Schwachen-Kopplungs-Limes, sprich, für Kopplungskonstante gN = N−1. Es ist
bekannt, dass das Bosegas im Limes unendlich vieler Teilchen durch die effektive Einteilchen-
Hartree-Gleichung beschrieben wird. Dies steht in engem Zusammenhang mit dem inter-
essanten physikalischen Phänomen der Bose-Einstein-Kondensation bei niedrigen Tem-
peraturen, nämlich, dass die Mehrheit der Teilchen im Bosegas denselben Einteilchen-
Quantenzustand besetzt. Unser Augenmerk liegt auf der Beschreibung der wenigen Teilchen,
die sich nicht im Bose-Einstein-Kondensat befinden. Wir zeigen, dass die Lösung der voll-
wechselwirkenden Theorie in der Norm des N -Teilchen-Hilbertraums gegen eine einfachere
Hilfsdynamik konvergiert. Dieses Resultat erlaubt uns, eine Reihe von weiteren Behauptun-
gen zu beweisen. Unter anderem wird es verwendet zur Herleitung der Hartree-Gleichung
mit optimaler Konvergenzrate N−1 für Anfangszustände, die den Grundzuständen wechsel-
wirkender Systeme ähnlich sind. Außerdem zeigen wir die Konvergez der N -Teilchen-Lösung
gegen eine Zeitentwicklung, die durch den Bogoliubov-Hamiltonian auf dem Fockraum be-
schrieben wird.

Kapitel drei handelt von den Niedrigenergie-Eigenschaften des schwach-wechselwirkenden
Bosegases. Wir beweisen eine neuartige Abschätzung für Niedrigenergie-Eigenfunktionen,
welche aussagt, dass die Wahrscheinlichkeit dafür, l der N Teilchen nicht im Kondensat
zu finden, exponentiell (in der Zahl l) abfällt. Ausgehend von diesem Resultat beweisen
wir, dass der Grundzustand des mikroskopischen Modells bestimmte “quasifreie” Eigen-
schaften erfüllt. Der exponentielle Abfall wird außerdem verwendet, um einen alternativen
Beweis für die Richtigkeit der Bogoliubov-Näherung für niedrigliegende Energie-Eigenwerte
zu präsentieren. Die Bogoliubov-Theorie besagt, dass die Anregungsenergien des Bosegases
durch Anregungen freier Quasiteilchen beschrieben werden, welche eine effektive Energie-
Impuls-Dispersionsrelation erfüllen. Die effektive Dispersionsrelation der Quasiteilchen ist
für kleine Impulse linear, was als wesentlicher Aspekt bei der Erklärung der suprafluiden
Eigenschaften des Bosegases eingeht.
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In Kapitel vier analysieren wir die Zeitentwicklung eines einzelnen Teilchens, welches durch
ein Paarpotential an ein dichtes, homogenes ideales Fermigas gekoppelt ist. Ähnliche Mo-
delle werden in der Plasmaphysik verwendet, um den Energieverlust von Ionen, die sich
durch dichte, entartete Elektronengase bewegen, zu beschreiben. Wir analysieren das Mo-
dell für einen Kopplungsparameter g = 1 und beweisen die Nähe der Zeitentwicklung zu
einer effektiven Dynamik für hohe Dichten des Gases und für lange Zeitskalen, die mit einer
bestimmten Potenz der Dichte anwachsen. Die effektive Dynamik wird hierbei durch den
freien Hamilton-Operator mit einer großen, aber konstanten Energiekorrektur erzeugt. In
führender Ordnung ist die Energiekorrektur durch das homogene Mean-field-Potential der
Gasteilchen gegeben, während in der nächsten Ordnung zusätzliche Terme aufgrund von
sogenannten Rekollisions-Prozessen berücksichtigt werden müssen.
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Chapter 1

Introduction

Many interesting physical systems are made up of a large number of particles. Microscopic
elements (electrons, atoms or molecules) are the basic building blocks of all states of matter,
viz., gases, fluids, plasmas and solids. Their number may range from thousands in a dilute
gas up to the Avogadro number nA ∝ 1023 in a chemical sample or a solid. On the atomic or
molecular level the behavior of the particles is described by a linear many-body Schrödinger
equation. When the number of particles is very large, however, direct analytical and numeri-
cal attempts for solving the many-body Schrödinger equation are completely impracticable.
This forces one to resort to approximate and effective models which are more tractable and
thus necessary for predicting and explaining the physical phenomena of interest. Such effec-
tive theories are much simpler because they do not describe the motion of every individual
particle. Instead, they focus on few collective degrees of freedom which become relevant
from a coarse grained perspective when the system is seen as a whole (properties, e.g., like
pressure, temperature or coarse grained density). The list of effective theories known for
instance in physics and chemistry is incredibly long. The ideal gas equation, the Vlasov
and the Boltzmann equations as well as the three laws of thermodynamics, fluid mechanics,
plasma equations, Hartree and Hartree-Fock theory (which explain, e.g., many phenomena
in the theory of ultracold gases as well as in chemistry), and practically all models used in
solid state physics, and many more. From a pragmatic point of view, such effective theories
are often presented as the starting point of the analysis. However, one should be aware that
there is always a more fundamental theory behind these effective equations. The quest for
understanding the relation between the microscopic laws and the effective models which
emerge on a macroscopic scale is very old yet still a current field of research. It goes back at
least to the works of J. C. Maxwell [90] and L. Boltzmann [23] who argued (in the second
half of the 19th century) that gases were made up of microscopic atoms. Even though this
idea was not widely accepted at their time, it helped Boltzmann to give a convincing expla-
nation of the second law of thermodynamics as an effective theory which emerges from the
Newtonian motion of a large number of atoms. The paradigm of a mathematically rigorous
derivation of an effective equation came many decades later and is due to H. Grad [59] and
O. E. Lanford [74]. They made the arguments proposed by Boltzmann mathematically pre-
cise in a certain dilute limit and proved the validity of the Boltzmann equation as the coarse
grained description for the empirical density of a rarified gas of small hard spheres (their
derivation holds at least for short times whereas for longer times this is still considered
to be an interesting and difficult open problem, see, e.g., [111]). Since then many rigorous
results regarding the derivation of all kind of effective equations (e.g., mean field, kinetic,
hydrodynamic) have followed, both in classical and quantum mechanics. It has become one

1



2 1. Introduction

of the central themes of statistical physics to provide mathematically precise justifications
of macroscopic, effective models starting from a first principle many-body theory.

In this work, we present the rigorous derivation of different bosonic and fermionic mean
field models (and their next-order corrections) starting from a nonrelativistic many-particle
Schrödinger equation. In the remainder of this chapter, we introduce the basic principles of
many-body quantum mechanics, we explain the general idea of the mean field ansatz and
summarize the relevant aspects of the models and the physical situations that we have in
mind. Eventually, we give an outline of the main part of this thesis including a summary
of our main results.

1.1 Many-body quantum mechanics

In nonrelativistic quantum mechanics an N -particle system is described by a complex valued
wave function Ψ = Ψ(x1, ..., xN ) ∈ L2(ΩN ) where L2 denotes the space of square-integrable
functions Ψ : ΩN → C and Ω ⊂ Rd or Ω = Rd for spatial dimension d. Internal degrees
of freedom like spin are neglected throughout this work. We abbreviate the scalar product
resp. the norm on the Hilbert space L2(ΩN ) by

〈
Ψ,Φ

〉
=

∫
ΩN

Ψ(x1, ..., xN )Φ(x1, ..., xN ) dx1...dxN , ||Ψ|| =
√〈

Ψ,Ψ
〉
, (1.1)

where Ψ denotes the complex conjugate of Ψ. It is always assumed that ||Ψ|| = 1 such
that |Ψ(x1, ..., xN )|2 can be interpreted as the probability density of finding particle one
at position x1, particle two at position x2 and so on. Quantum mechanics postulates a
simple rule for the statistical description of outcomes of repetitions of experiments. Most
physical quantities of interest, e.g., position, momentum and energy are associated with
a self-adjoint operator A (possibly unbounded) on the given Hilbert space. The two most
relevant objects to characterize the statistical outcome of an experiment are the average
value and the variance. For an operator A and a system described by the wave function Ψ,
they are defined as1

EΨ[A] =
〈
Ψ, AΨ

〉
, VarΨ[A] =

〈
Ψ,
(
A− EΨ[A]

)2
Ψ
〉
. (1.3)

Relevant operators are, e.g., the differential operator pxi = −i∇xi , i.e., i times the gradi-
ent acting on the variable xi, which is associated with the momentum of the ith particle
(throughout this work, we use units such that the Planck constant ~ and the mass m of
the particles satisfy ~ = 2m = 1), the multiplication operator xi related to the position
of the ith particle, real valued and even functions v : Ω → R (also acting as multiplica-
tion operators) describing the potential energy between two particles, and many others. A
particularly important operator is the Hamiltonian H which represents the total energy of

1Denoting by
∑
a∈A Pa the orthogonal projector onto the spectral subspace of L2(ΩN ) which corresponds

to a given subset A ⊂ spec(A) of the spectrum spec(A) ⊂ R of the self-adjoint operator A, one can also
define the probability for the event that the quantity associated to the operator A assumes a value which
lies in the set A. This probability is given by the “mass” in the normalized wave function Ψ that lies in this
spectral subspace, i.e.,

PΨ

(
A ∈ A

)
= EΨ

[∑
a∈A

Pa
]

=
〈
Ψ,
(∑
a∈A

Pa
)

Ψ
〉
. (1.2)
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the system. For N nonrelativistic particles (without magnetic potential) it has the general
form2

H =
N∑
i=1

(
−∆xi +W ext(xi)

)
+ gN

∑
1≤i<j≤N

v(xi − xj). (1.4)

Here, −∆xi = i∇xi · i∇xi denotes the Laplace operator (with appropriate boundary condi-
tions on ∂Ω) and

∑
i(−∆xi) corresponds to the total kinetic energy. The function W ext :

Ω → R describes an external potential and gN ∈ R denotes the coupling constant which
characterizes the strength of a collision between two particles. In all models that we are
going to consider, W ext and v are such that the Hamiltonian H is bounded from below and
self-adjoint on an appropriate dense subset.

For computing average values like in (1.3), one requires information about the wave
function Ψ that describes the system of interest. An important class of wave functions are
the so-called stationary states for which the expectation value and the variance are time-
independent quantities (for time-independent operators). Such stationary states solve the
time-independent Schrödinger eigenvalue equation,

HΨ = EΨ, E ∈ R, Ψ ∈ L2(ΩN ). (1.5)

The ground state wave function, e.g., if it exists, is the solution to the eigenvalue equation
for the smallest possible value E. It is of particular interest because in many experiments,
one starts, e.g., with an ultracold gas of atoms and the idea is that at very low temperature
the particles should be correctly described by the wave function corresponding to the lowest
possible eigenvalue of H. Stationary states are of course very special and in general, the
time evolution of a system is nontrivial. Nonstationary wave functions evolve according to
the time-dependent Schrödinger equation,

i∂tΨt = HΨt, Ψt=0 = Ψ0 ∈ L2(ΩN ). (1.6)

Unique solutions of the time-dependent Schrödinger equation are given via Stones’s Theo-
rem by Ψt = UtΨ0 where {Ut}t∈R is the strongly continuous one-parameter group of unitary
operators associated with the self-adjoint operator H. In the case that the Hamiltonian is
time-independent, the time-evolution is generated by Ut = e−iHt.

For many situations the relevant operators act only on a small subsystem out of the total
N particles. In such a case it is useful to introduce so-called k-particle marginals γ(k)

Ψ of the
wave function Ψ (also called k-particle reduced density matrices). γ(k)

Ψ : L2(Ωk)→ L2(Ωk),
k ∈ N, is an integral operator which is defined through its kernel

γ
(k)
Ψ (x1, ..., xk; y1, ..., yk) =∫

ΩN−k
Ψ(x1, , ...xk, xk+1..., xN )Ψ(y1, ..., yk, xk+1..., xN )dxk+1...dxN . (1.7)

The average value of a k-particle operator Ak (note that we always use the same notation
for Ak and Ak = Ak ⊗ 1⊗N−k where 1 denotes the identity on L2(Ω)), can be expressed in

2In Chapter 4 we study an N+1-body system (one particle plus a fermionic reservoir) where a single
tracer particle interacts through a pair potential with N gas particles. There the Hamiltonian has a slightly
different form compared to (1.4), see (1.39).
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terms of the k-particle marginal, 〈
Ψ, AkΨ

〉
= Tr

[
Akγ

(k)
Ψ

]
, (1.8)

where TrBk denotes the trace of a trace-class operator Bk, i.e.,

TrBk = TrL2(Ωk)B
k =

∑
i≥1

〈
ψi, B

kψi
〉
L2(Ωk)

(1.9)

for some orthonormal basis {ψi}i≥1 of L2(Ωk). In order to predict the r.h.s. of (1.8), it is
now sufficient to have knowledge about γ(k)

Ψ instead of the complete wave function Ψ. Our
chosen normalization is always such that Trγ(k)

Ψ = ||Ψ|| = 1.

According to a very elementary principle of quantum theory, all particles in nature
fall into two distinct groups: bosons and fermions. The difference between bosonic and
fermionic particles is captured in the symmetry property of the corresponding wave func-
tion. A wave function Ψs describing N indistinguishable bosonic particles is symmetric
under any permutation of two of the particle coordinates x1, ..., xN . On the other hand, for
indistinguishable fermions, the wave function Ψa is required to be totally antisymmetric
under pairwise permutations of the variables:

Ψs(x1, x2, ..., xN ) = Ψs(xσ(1), xσ(2), ..., xσ(N)) ∀σ ∈ SN , (1.10)

Ψa(x1, x2, ..., xN ) = (−1)σΨa(xσ(1), xσ(2), ..., xσ(N)) ∀σ ∈ SN , (1.11)

where SN is the symmetric group of the set {1, ..., N} and (−1)σ denotes the sign of the
permutation σ ∈ SN . The postulate that fermionic wave functions are antisymmetric is also
referred to as Pauli principle or exclusion principle. Below we explain that the Pauli principle
can be relevant for the physics of a many-particle fermion system. The correct Hilbert spaces
for describing bosonic and fermionic systems are thus the symmetric resp. antisymmetric
subspaces L2

s(Ω
N ) = {Ψ ∈ L2(ΩN ) : Ψ obeys (1.10)} and L2

a(Ω
N ) = {Ψ ∈ L2(ΩN ) :

Ψ obeys (1.11)}. Everything that has been discussed above is equally true if one replaces
L2(ΩN ) by its symmetric or antisymmetric subspace. Let us also mention the important
fact that the symmetry property of a given initial state Ψ0 is always preserved under the
time evolution in (1.6), i.e., the action of the group {Ut}t∈R leaves the (anti)symmetric
subspace of L2(ΩN ) invariant. This follows from H being a symmetric expression in the
coordinates x1, ..., xN .

1.2 The mean field approximation

After a brief explanation of the general idea behind the mean field ansatz, we discuss the
so-called weak coupling (Hartree) limit for bosons as well as for fermions. The weak coupling
limit is defined by the assumption that the strength of the interaction decreases with the
number of particles in the system. This type of situation provides the prime example of a
many-body model for which an effective mean field description (Hartree theory) emerges
in the limit of large particle number (the weak coupling assumption is also meaningful
for classical particles where the corresponding mean field theory is given by the Vlasov
equation). For fermions, we then introduce another microscopic model for which the mean
field ansatz can be expected to make correct predictions. We call this situation the “high
density limit for fermions”. Contrary to the weak coupling limit, the interaction does not
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decrease with the number (or the number per unit volume) of particles in the system. In
this model, the Fermi pressure plays a crucial role for the emergence of the effective mean
field behavior.

The list of physical models for which the mean field approximation is sensible is of course
much longer than the few examples that are discussed or analyzed in this work. Among
many others, the most famous ones are the Ising model and many of the related variants
of lattice spin systems for which the mean field ansatz provides a main tool of analysis.

1.2.1 The general idea

The major difficulty in solving Schrödinger equations like (1.5) and (1.6) for many particles
is the interaction term in the Hamiltonian H which causes the wave function Ψ to be in
general a highly entangled object, i.e., it does not factorize as a function of the variables
(x1, ..., xN ) ∈ ΩN . This makes even numerical attempts for solving the Schrödinger equa-
tion impossible because of the large dimension dN � 1 of the underlying space. The mean
field ansatz is a famous approach for an effective and approximate description of inter-
acting many-particle systems. Originally, it has been introduced by P. Curie [32] and P.
Weiss [124] in the context of explaining ferromagnetic properties. For bosons it was first
used by E. Gross [63] and L. Pitaevskii [105] whereas for fermions it goes even further back
to D. Hartree [64], V. Fock [50] and J. Slater [117]. The basic idea behind the mean field
approach is to assume that the particles are independent of each other and evolve in an ef-
fective, self-consistent external one-particle potential (the independence assumption makes
sense for bosons but can not hold in the fermionic case for which we explain the necessary
generalization below). In this ansatz, the many-body Hamiltonian H is replaced by a set
of one-particle Hamiltonians which are in general nonlinear. The hope or belief is that the
nonlinearity of the effective equation reproduces the relevant effects which are due to the
interaction in the original many-body model. The complexity of the problem is significantly
reduced by the mean field ansatz and in principle the effective equations are suitable for a
numerical or analytical analysis.

Having the underlying N -particle theory in mind, this poses the problem of understand-
ing the validity of the mean field approximation. One has to answer the question of how
independence between the particles can arise an persist in interacting systems. This cer-
tainly happens only under particular physical conditions and on specific length and time
scales. For a sharp definition of these conditions and also the correct scales, one studies the
interacting many-body model in a particular limit where one or more physical parameters
go to infinity (or to zero). One possible such parameter is the particle number N or the av-
erage density ρ = N/|Ω| (|Ω| being the volume of Ω) tending to ∞. The conditions and the
relevant time and length scales for which one may expect, or can even prove, the validity of
the mean field ansatz are then formulated in terms of specifying their limiting behavior, the
scaling properties w.r.t. this limit. One may adjust the mass of the particles, the strength
of the interaction, the range of the potential, the volume to which the particles are confined
to, the correct time scale, and possibly others. Let us emphasize that it may already be
a nontrivial problem to find interesting situations under which a sensible and nontrivial
mean field limit can be expected to emerge from the microscopic theory. The mathematical
part of the program is to formulate and prove a theorem which assures that under the
specified conditions (e.g., an appropriately scaled Hamiltonian and proper initial data) the
solution of the many-body Schrödinger equation converges w.r.t. a meaningful notion of
distance to the solution of the corresponding effective mean field description. First rigorous
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results in this regard have been derived by Hepp and Braun [25] and Neunzert and Wick
[98] who proved the accurateness of the Vlasov equation starting from Newton’s equations
for N weakly interacting particles. For quantum systems, the first theorems were proven
by Spohn in the bosonic and fermionic case [121] as well as by Narnhofer and Sewell [97]
for fermions.

1.2.2 Weak coupling limit for bosons

The idea of independent particles moving through an effective external potential produced
by the other particles can only be true, or approximately true, if the strength of the in-
teraction is on the one hand not too strong (single collisions are not allowed to matter as
they would destroy independence between the particles) but on the other hand also not too
weak (such that the effect due to all other particles sums up to an effective potential). On
a heuristic level, this can be understood with the law of large numbers. If we assume an
exact product wave function Ψ = ϕ⊗N and a weak coupling constant gN = (N − 1)−1, the
interaction term in H corresponds to a scaled sum of N independent random variables.3

The potential acting, e.g., on the first particle at position x, thus satisfies

1

N − 1

N∑
i=2

v(xi − x) ≈ 1

N − 1

N∑
i=2

∫
Ω
v(x− y) |ϕ(y)|2 dy =

∫
Ω
v(x− y) |ϕ(y)|2 dy, (1.12)

which holds with large probability w.r.t. the distribution |ϕ⊗N−1|2. The r.h.s. depends now
only on the single variable x and the expectation is that one can describe the wave function
Ψ ≈ ϕ⊗N in terms of the solution of an effective one-particle equation, the Hartree equation,

εϕ =
(
−∆x +W ext(x) +

(
v ∗ |ϕ|2

)
(x)
)
ϕ, ε ∈ R,

∫
Ω
|ϕ(x)|2dx = 1, (1.13)

i∂tϕt =
(
−∆x +W ext(x) +

(
v ∗ |ϕt|2

)
(x)
)
ϕt, ϕt=0 ∈ L2(Ω), (1.14)

for the stationary as well as the time-dependent case, respectively. By ∗ we denote the
convolution of two functions defined on Ω, i.e.,

(f ∗ g
)
(x) =

∫
Ω
f(x− y)g(y)dy. (1.15)

The validity of the mean field ansatz can be studied in the stationary as well as in the time-
dependent setup. For the time-independent case, one has to prove that, e.g., the many-body
ground state wave function obeys the assumed product structure. The situation is slightly
different for the dynamical problem where one wants to show that starting with independent
particles, the independence property (the product structure of the wave function) is pre-
served under the time evolution. The latter is often referred to as propagation of chaos. In
both cases, however, one has to be cautious about the meaning of “Ψ ≈ ϕ⊗N”. One should
not expect that for interacting particles, the wave function is close to a product in the
sense of the L2 distance of the full N -particle space. We will later see that this is wrong for
stationary wave functions as well as for time-dependent solutions of the Schrödinger equa-
tion. Due to the interaction between the particles, the many-body wave function will always
develop weak correlations which are not described by the Hartree ansatz. The Hartree equa-
tion holds rather in a coarse grained sense, namely for the reduced densities which have

3Note that any coupling gN that approaches zero as N−1 when N tends to ∞ would be equally fine.
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been defined in (1.7). Proving the validity of the Hartree equation for the ground state
wave function Ψ0 (and analogously for other low energy eigenfunctions) would consist in a
statement of the form

lim
N→∞

Tr
[
Ak
(
γ

(k)
Ψ0 − γ

(k)

ϕ⊗NH

)]
= 0, (1.16)

with k ∈ N, and where Ak belongs to a suitable class of k-particle operators. Ψ0 is here
the (N -dependent) ground state wave function of the many-body Hamiltonian H, and ϕH

is the ground state solution to the stationary Hartree equation (1.13). Another possible
meaning of the mean field approximation for the ground state is a comparison of the energy
per particle, i.e., limN→∞E

0/N = εH for the N -particle ground state energy E0 and the
lowest possible value of the Hartree energy functional,

εH = inf
ϕ∈L2(Ω)

{〈
ϕ,
(
−∆ +W ext +

1

2

(
v ∗ |ϕ|2

))
ϕ
〉

:

∫
Ω
|ϕ(x)|2dx = 1

}
. (1.17)

Note that (1.13) is the Euler-Langrange equation to the Hartree energy functional
〈
ϕ,
(
−∆+

W ext + 1
2(v ∗ |ϕ|2)

)
ϕ
〉
. For the case that the Hamiltonian H does not posses a ground state,

one similarly defines the ground state energy as the infimum of the corresponding energy
functional, i.e., E0 = inf ||Ψ||=1

〈
Ψ, HΨ

〉
, and one would still expect the comparison between

the energies to hold in the limit of large N . Similarly, for the time-dependent setting, a
possible criterion for the validity of the mean field ansatz is defined by the convergence of
the reduced density at times t, given that the initial state satisfies the same “factorization
property”, namely

lim
N→∞

Tr
[
Ak
(
γ

(k)
Ψ0
− γ(k)

ϕ⊗N0

)]
= 0 ⇒ lim

N→∞
Tr
[
Ak
(
γ

(k)
Ψt
− γ(k)

ϕ⊗Nt

)]
= 0, (1.18)

with k ∈ N, and where Ψt solves the time-dependent many-body Schrödinder equation
for initial condition Ψ0, while ϕt is the solution to the time-dependent Hartree equation
(1.14) with initial condition ϕ0. Assertions like (1.16) and (1.18) mean that the majority
of particles in the gas behaves according to the mean field approximation in the sense that
one can predict the average values of a suitable class of operators in terms of the product
wave function ϕ⊗N , cf. (1.8). This is what one refers to as condensation of the Bose gas
into the one-particle state ϕ. Let us stress that the weak coupling assumption for bosons is
of twofold importance for the mean field approximation. On the one hand, gN = (N − 1)−1

is the typical choice for the law of large numbers in (1.12). On the other hand, it guarantees
that the potential energy of the system is compatible with the kinetic energy, i.e., of the
same order in the particle number N .4 The kinetic energy is expected to be of order N (due
to the N summands in the kinetic term in H), whereas the interaction term in H contains
a double sum and thus the potential energy is on average of order

gN
∑
i<j

〈
ϕ⊗N , v(xi − xj)ϕ⊗N

〉
= gN

N(N − 1)

2

〈
ϕ,
(
v ∗ |ϕ|2

)
ϕ
〉

= O(gNN
2). (1.19)

Only for gN = O(N−1), neither the kinetic energy nor the potential energy is dominant in
the large N limit. On the level of the mean field equation: a different choice of gN would
imply an additional factor gN (N − 1) in front of the effective potential which could cause

4We say that a function f(N) is of order g(N), or in short f(N) = O(g(N)), iff there exist two N -
independent positive constant C,D such that Cg(N) ≤ f(N) ≤ Dg(N) for all N larger than some N0.
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the latter to be either subleading or superleading compared to −∆x.

The weak coupling (Hartree) model as presented can be used, e.g., to describe bosonic atoms
for which the number of electrons is proportional to the nuclear charge [19, 118, 9, 12, 71],
and similarly for the description of stars where the Hartree equation is related to the so-
called Chandrasekhar Theory describing the collapse of dense stars [88]. More importantly,
however, we think of the weak coupling assumption as a meaningful prototype model for a
more realistic (and also more involved) microscopic theory which is capable to explain the
remarkable phenomenon of Bose-Einstein condensation in a dilute gas of ultracold atoms.
Bose-Einstein condensation is the name for a low temperature phase of a dilute Bose gas in
which a macroscopic fraction of the atoms occupies a single one-body wave function. The
existence of this phase was experimentally observed for the first time in the 90s in systems
of cooled alkali atoms [8, 34]. The theoretical possibility of this effect was already explained
about 70 years earlier by A. Einstein [38] (and for massless particles also by S. Bose [24]).
Such condensates exhibit many interesting properties that are known to be accurately de-
scribed by a nonlinear one-particle model which is defined by the so-called Gross-Pitaevskii
Hamiltonian (first introduced by Gross [63] and Pitaevskii [105]),

hGP,ϕ
x = −∆x +W ext(x) + a|ϕ(x)|2, a ∈ R. (1.20)

Describing the Bose gas in terms of the effective Gross-Pitaevskii Hamiltonian leads to
many correct predictions about its nontrivial physical behavior. Among others, the effective
description is capable to explain the appearance of vortices in rotating condensates5 (see,
e.g., [31] for the mathematical analysis and [1] for experimental evidence) as well as the
time evolution of initially trapped condensates (see, e.g., [73]). Bose-Einstein condensation
occurs in dilute gases where the atoms interact strongly but very rarely. Even though this
is very different from the physical picture behind the weak coupling limit – a dense gas
of particles with weak and long-range pair interaction–, the microscopic interaction results
in a similar nonlinear effect (formally, one obtains the Gross-Pitaevskii Hamiltonian from
the Hartree equation if one chooses v(x) = aδ(x)). This analogy can be seen as our main
motivation for studying the less complicated weak coupling limit of the Bose gas. A more
detailed explanation of the connection between the weak coupling limit and the N -particle
model that describes a dilute gas of atoms and from which the effective Hamiltonian (1.20)
can be derived, is given in Appendix A.

A list of references and remarks about known results for the derivation of the Hartree
equation starting from the many-body theory in the weak coupling limit is given in Section
2.1.1 for the time-dependent case and in Section 3.1 for the stationary problem. Let us also
mention the excellent summary about recent rigorous results by Lewin in [76], from which
some of the ideas explained in this and the following subsection are motivated.

1.2.3 Next-order corrections in the weak coupling limit for bosons

The bosonic mean field ansatz provides also the correct starting point for the explanation
of collective phenomena that go beyond the mean field description. E.g., the emergence
of interesting effective energy-momentum dispersion relations like the phonon dispersion

5Note that in order to describe the appearance of vortices, one needs to include a vector potential in
the Gross-Pitaveskii Hamiltonian, i.e., one replaces −i∇x 7→ −i∇x + A(x) with A : Rd → Rd modeling the
rotational forces in the condensate.



1.2. The mean field approximation 9

relation (for small momentum), or the so-called phonon-maxon-roton dispersion relation6

(see, e.g., in [122, 70]). Both effects are predicted by means of an effective description of
the Bose gas in terms of the quadratic Bogoliubov Hamiltonian,

HBog =

∫
Ω
a∗x

(
−∆x +

(
v ∗ |ϕ|2

)
(x)− 1

2

〈
ϕ,
(
v ∗ |ϕ|2)ϕ

〉)
ax dx (1.21)

+

∫
Ω

∫
Ω
ϕ(x)v(x− y)ϕ(y)a∗xay dxdy +

1

2

∫
Ω

∫
Ω

(
ϕ(x)v(x− y)ϕ(y)a∗xa

∗
y + h.c.

)
dxdy,

acting on the bosonic Fock space over L2(Ω) with the Hartree mode ϕ removed (a∗x and
ax denote the usual creation and annihilation operators and h.c. stands for the hermitian
conjugate). This approximation can be understood as the next-order description of the
Hartree equation and was first introduced by Bogoliubov in [22] in order to explain the
superfluid property of the Bose-Einstein condensate (which follows essentially from the so-
called Landau criterion which is satisfied for a linear dispersion relation, see, e.g., [106,
Chapter 6]). Similarly as for the mean field ansatz, it poses the question of understanding
its validity and its precise relation to the interacting many-body theory. Bogoliubov theory
will be introduced in more detail and analyzed for the time-dependent setup in Chapter 2
resp. for the stationary setting in Chapter 3.

1.2.4 Weak coupling limit for fermions

The basic idea is the same as in the bosonic case. Due to the Pauli principle, however,
fermions can not be described by a product (or approximate product) wave function and
thus fermionic particles can not be independent of each other. The simplest type of wave
functions (which is the correct generalization of the product state since it describes nonin-
teracting particles) is given by an antisymmetric product of N pairwise orthonormal one-
particle orbitals {ϕk}k≥0, ϕk ∈ L2(Ω). We denote the normalized antisymmetric product
by

N∧
k=1

ϕk(xk) =
1√
N !

∑
σ∈SN

(−1)σ
N∏
k=1

ϕσ(k)(xk), (1.22)

where SN denotes the symmetric group of integers {1, ..., N} and (−1)σ is the sign of
the permutation σ ∈ SN . Note that the set of N orbitals has to be linearly independent
since otherwise the wave function

∧N
k=1 ϕk would be identically zero. In analogy to the

bosonic case, one wants to approximate the solution to the N -body Schrödinger equation
by a “product” wave function of the form (1.22) for which the orbitals solve a set of
selfconsistent coupled nonlinear mean field equations. The most natural set of such equations
for N orbitals are given in the stationary case by the time-independent fermionic Hartree
equations,7

6A phonon energy-momentum dispersion relation is characterized by its linearity for small momentum,
i.e., the energy depends linearly on the momentum. The phonon-maxon-roton dispersion relation possesses
a local maximum in the energy momentum relation which is followed by an additional local minimum. For
reasons of illustration, we included some pictures of the excitation spectrum of the Bose gas at the end of
Appendix 3.B.

7Let us mention that another possible mean field description for fermions are the so-called Hartree-Fock
equations for which the effective potential contains an additional exchange term, namely(

gN

N∑
l=1

(
v ∗ |ϕl|2

)
(x)
)
ϕk 7→

(
gN

N∑
l=1

(
v ∗ |ϕl|2

)
(x)
)
ϕk −

(
gN

N∑
l=1

(
v ∗ ϕlϕk

)
(x)
)
ϕl (1.23)
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εkϕk =
(
−∆x +W ext(x) + gN

N∑
l=1

(
v ∗ |ϕl|2

)
(x)
)
ϕk, εk ∈ R, ϕk ∈ L2(Ω), (1.24)

for {ϕk}Nk=1 such that
〈
ϕk, ϕl

〉
= δkl, and similarly in the time-depending setting by the

time-dependent fermionic Hartree equations,

i∂tϕk,t =
(
−∆x +W ext(x) + gN

N∑
l=1

(
v ∗ |ϕl,t|2

)
(x)
)
ϕk,t, ϕk,t=0 ∈ L2(Ω), (1.25)

with {ϕk,0}Nk=1 pairwise orthonormal (note that the orthonormality of the initial orbitals is
preserved which follows readily from ∂t

〈
ϕk,t, ϕl,t

〉
= 0). The fermionic Hartree and Hartree-

Fock equations (and many related variants thereof) have numerous applications in theoreti-
cal physics and theoretical chemistry. Most importantly, they are used for the computational
analysis of the electronic structure of large atoms and molecules. Moreover, they are widely
applied in many related areas as, e.g., in solid state physics, in atomic theory as well as in
nuclear physics. Since the number of references that can be easily found with regard to the
application of the fermionic Hartree(-Fock) approximation in any of the mentioned fields is
immense, we refrain from providing any reference here.

The rigorous derivation of the fermionic Hartree equations in the weak coupling limit
(i.e., for gN → 0 when N tends to ∞) starting from a many-body Hamiltonian H of the
form (1.4) is well understood in two interesting regimes (see below and for more details, in
Appendix B). The choice of the correct coupling constant gN for which the kinetic energy
and the potential energy are compatible is, however, more subtle than for bosons. This
additional difficulty is a consequence of the so-called kinetic energy inequality (a variant of
the Lieb-Thirring inequality, cf. [84, Chapter 4.2]) for antisymmetric wave functions. The
kinetic energy inequality states that for any Ψa ∈ L2

a(Ω
N ) with Ω ⊂ Rd, the average kinetic

energy is bounded from below by

N ||∇Ψa||2 ≥ Cd|Ω|−
2
dN1+ 2

d , Cd > 0. (1.26)

As an example, think of N particles confined to a region Ω ⊂ R3 with |Ω| = 1. In this case,
the kinetic energy of any antisymmetric N -body wave function is necessarily of order N5/3

or larger which is much more compared to N bosons having kinetic energy ∝ N . In order
to guarantee that many fermions have compatible energies, one has to choose the coupling
strength gN and also the volume to which the fermions are confined to very carefully. In
Appendix B, we give a brief presentation of two different limits for which the kinetic and
potential terms scale in the same way and for which the rigorous derivation of the fermionic
Hartree equations is well understood. Both models were originally introduced by Narnhofer
and Sewell [97] and have been subject also to more recent analysis, e.g., [39, 18, 51] as well
as [101, 11, 100].8

• The so-called semiclassical limit for which the particles are confined to a volume of
order one and gN = N−1. Here, one has to replace −∆xi 7→ N−2/3∆xi and ∂t 7→

in (1.24) resp. in (1.25). To our knowledge, however, in the microscopic regimes for which the Hartree-Fock
equations have been derived so far, the exchange term turned out to be only a subleading correction to
the leading order Hartree description (one may think of this as an interesting open problem, i.e., to find
a meaningful limit for which the exchange term in the Hartree-Fock equations is of leading order in the
approximation).

8Note that the derivation of the fermionic Hartree equations is not further investigated in this thesis.
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N−1/3∂t (for the time-dependent case) in the microscopic Schrödinger equation as
well as in the Hartree equations. This regime corresponds to a semiclassical limit (one
can think of the additional prefactors as a small Planck constant ~ = ~N ∝ N−1/3),
and at leading order, the system can be also approximated by the Vlasov equation
(the mean field description of N weakly interacting classical particles). The fermionic
Hartree equations provide a subleading correction to the classical approximation. We
explain some more details in Appendix B.1.

• Fermions that occupy a region Ω ⊂ R3 of large volume |Ω| ∝ N and that interact
through a Coulomb potential v(x) ∝ |x|−1 (here, the average density is of order
one and the mean field effect is due to the very long range of the interaction). The
coupling constant has to be chosen as gN = N−2/3 such that the kinetic energy and the
potential energy are compatible, both being proportional to the number of particles
N . Even though the potential energy is as large as the kinetic energy, the particles
behave approximately freely in this limit because the average forces are of subleading
order. The fermionic Hartree equations provide a subleading correction to the free
time evolution. For more details, we refer to Appendix B.2.

1.2.5 High density limit for fermions

Another interesting consequence of the antisymmetry of the wave function is the so-called
Fermi pressure. The Fermi pressure can be interpreted as a force between the particles which
is present even for noninteracting fermions and which becomes very strong in a dense Fermi
gas. That it may drastically change the statistical properties of the particles can be easily
seen already from a very simple example. Think of a one-dimensional unit box with periodic
boundary conditions and noninteracting particles in their lowest possible energy state. We
ask for the probability for finding the particles on the left side respectively the right side
of the middle of the box. For a single particle in the box, the correct wave function is the
constant function (a plane wave with zero momentum) and there is no difference between
a boson and a fermion. The probability to find the particle on the left or the right side is
one half for the boson as well as for the fermion. Putting two identical particles inside the
box there is already a significant difference. The bosonic two-particle state is the product
of two constant functions which immediately leads to

PΨs(both on the left) = PΨs(both on the right) = 1/4, (1.27)

PΨs(one on the left, one on the right) = 1/2. (1.28)

For fermions, the two-particle ground state is more complicated. Due to the antisymmetry,
the particles can not be both described by the constant wave function. The wave function
corresponding to the lowest energy is given by the antisymmetric product of the constant
function and the plane wave with momentum equal to 2π, i.e.,

Ψa(x1, x2) =
1√
2

(
ei2πx1 − ei2πx2

)
. (1.29)

The corresponding probabilities are given by

PΨa(both on the left) = PΨa(both on the right) = 1/4− 1/2π2, (1.30)

PΨa(one on the left, one on the right) = 1/2 + 1/π2, (1.31)
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where we have used that

PΨ

(
particle one in [a, b], particle two in [c, d]

)
=

∫ b

a
dx1

∫ d

c
dx2|Ψ(x1, x2)|2. (1.32)

The probability of finding both fermions on one side of the box is suppressed compared to
the bosonic case and it seems that fermions tend to repel each other. If we proceeded with
the indicated example, we would see that the strength of this repulsion becomes stronger
when the number of fermions that are concentrated in a given volume increases. It is this
effect that causes dense fermion systems to be distributed much more rigidly compared
to bosons. In Appendix 4.A, we give an illustrative example of how strong this repulsive
effect can become for large densities. For an ideal Fermi gas with average density tending
to infinity, we show that a large extent of the particles behaves almost like a rigid body and
that there remain only relatively few particles that deviate from to the average distribution.
Density fluctuations are thus strongly suppressed in a dense Fermi gas compared to a Bose
gas where the fluctuations behave at best according to the square root of N law of i.i.d.
particles (what happens is exactly the same as indicated in (1.30), namely that additional
contributions due to the antisymmetry of the wave function diminish the probability for
particles randomly building clusters).

In Chapter 4 we present a model of a tracer particle coupled to the ideal Fermi gas in
the high density limit. In this model, the mean field description (modified by a compara-
tively small next-order correction to the mean field energy of the system) provides a good
approximation even for a “strong” coupling constant g = 1. Since the mean field potential
(and also the next-order energy correction) is spatially constant, the time evolution of the
system is effectively free. In plasma physics, such a behavior is known for degenerate elec-
tron gases which for large density lose their ability of stopping ions that move through the
electron gas (see, e.g., [33] and for more references, Section 4.1.2). This is very different
from the motion of a tracer particle through a dense homogeneous Bose gas in which the
free time evolution (the mean field description) would be disturbed already after a very
short time t = t(ρ) which approaches zero when the density ρ increases. The reason for this
different behavior are the strong fluctuations in the Bose gas for coupling constant g = 1.

1.3 Outline and summary

In the remainder of this work, we analyze the weakly interacting Bose gas (in the station-
ary and also in the time-dependent setting) as well as the dynamics of a tracer particle
“strongly” interacting through a pair potential with an ideal Fermi gas in the high density
limit. The different chapters are self-contained and can be read independently of each other.
Here, we provide a short summary of our main results.

Chapter 2: Time evolution of the Bose gas

We study the Bogoliubov corrections and the trace norm convergence for the Hartree dy-
namics. The microscopic model is defined by a Hamiltonian HN of the form (1.4) with
gN = (N − 1)−1 and v, e.g., the Coulomb potential. Hatree theory states that the many-
body solution is approximately given by a product wave function ΨN,t ≈ ϕ⊗Nt (under
the assumption that the initial state has the same product structure) where ϕt solves the
nonlinear Hartree equation (1.14). The meaning of approximation is here in the sense of
reduced densities like for instance in (1.18). We first show convergence of an auxiliary time
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evolution to the fully interacting dynamics in the norm of the N -particle space. To this
end we introduce an effective N -particle Hamiltonian H̃t

N . Denoting the projector onto the
one-dimensional subspace spanned by ϕt(xi) as pti = |ϕt(xi)〉〈ϕt(xi)| and its orthogonal

complement as qti = 1− pti, one obtains H̃t
N from the original Hamiltonian HN ,

HN =
N∑
i=1

(
−∆xi +W ext(xi)

)
+

1

N − 1

∑
1≤i<j≤N

(pti + qti)(p
t
j + qtj)v(xi − xj)(pti + qti)(p

t
j + qtj), (1.33)

by neglecting all terms that contain three or more qt-projectors. For particular initial con-
ditions (summarized in Assumption 2.2), we prove that the true dynamics is well approxi-
mated by the effective time evolution, i.e.,∣∣∣∣∣∣(e−iHN t − T e−i ∫ t0 H̃s

Nds
)

ΨN,t=0

∣∣∣∣∣∣
L2(R3N )

≤ eC(1+t)2

√
N

, (1.34)

where T is the time-ordering operator, i.e., {T e−i
∫ t
0 H̃

s
Nds}t∈R stands for the unitary group

generated by H̃. The notion of closeness is here much stronger compared to reduced den-
sities. From (1.34), we derive further results. On the one hand, we show for the reduced
one-particle density that

Tr
∣∣∣γ(1)

ΨN,t
− γ(1)

ϕ⊗Nt

∣∣∣ ≤ eC(1+t)2

N
, (1.35)

where N−1 is the optimal convergence rate, as well as

Tr
∣∣∣√1−∆

(
γ

(1)
ΨN,t
− γ(1)

ϕ⊗Nt

)√
1−∆

∣∣∣ ≤ eC(1+t)2

√
N

. (1.36)

For both estimates, it is relevant to have information about the next-order corrections from
(1.34). On the other hand, we show that the fluctuations around the Hartree product in Ψt

are correctly described by a Bogoliuvov Hamiltonian on Fock space. The main results are
stated in Theorems 2.6, 2.7 and 2.9.

Our results in Chapter 2 extend and quantify several previous results regarding the deriva-
tion of Hartree and Bogoliubov theory starting from the N -particle Bose gas. A summary of
known results together with a list of references is given in Sections 2.1.1 and 2.1.2. We pro-
vide the physically important convergence rates, we include time-dependent external fields
and also treat singular interactions like Coulomb. Moreover, our results allow more general
initial states compared to previous results, e.g., those that are expected to be ground states
of interacting systems. The techniques that we employ in this chapter consist to a large
extent of a generalization of the method that was introduced by Pickl in [103]. In Section
2.2.4 we use also ideas from Lewin et al. [80].

Chapter 3: Low energy properties of the Bose gas

We analyze the properties of eigenfunctions and eigenvalues of the homogeneous weakly-
interacting Bose gas on the unit torus. The Hamiltonian has the same form as in (1.4).
However, we set the external potential equal to zero and the pair potential has to sat-
isfy further assumptions. In particular it is required to be of positive type, i.e., v̂ ≥ 0.
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Hartree theory describes the leading order contributions of eigenfunctions as well as eigen-
values. E.g., all energy eigenvalues EnN close to the ground state energy of HN satisfiy
limN→∞(EnN/N − εH) = 0 where εH = v̂(0)/2 is the lowest possible Hartree energy. This
can be shown to imply that the corresponding eigenfunctions Ψn are to leading order de-
scribed by the Hartree product, namely, limN→∞ γ

(1)

Ψn = |ϕH〉〈ϕH|, where ϕH is the ground
state solution to the stationary Hartree equation. In our main theorem of this chapter, we
prove that for any low energy eigenfunction Ψn

N of the Hamiltonian HN , the probability for
finding l particles not in the Hartree state is exponentially small in the number l, i.e.,

PΨnN

(
l particles not in the Hartree state

)
≤ Ce−Dl, (1.37)

with positive (N -independent) constants C,D. From this bound, we then derive certain
quasifree type properties of the ground state Ψ0

N of the microscopic system which were
so far only known for the corresponding Bogoliubov ground state. Such quasifree type
properties are important for the analysis of the time-dependent Schrödinger equation (cf.
Chapter 2) as they appear exactly as the required assumptions on the initial wave functions.
We also use the exponential decay in order to provide an alternative strategy for proving
the validity of Bogoliubov theory for the low energy spectrum of HN (the original proof
was given by Seiringer in [116] and then extended into various directions by Grech and
Seiringer [60], by Lewin et al. [81] and by Dereziński and Napiórkowski [37]). Bogoliubov
theory states that the low energy excitations of the N -particle system are given by the set
of numbers, { j∑

i=1

√
|ki|4 + 2v̂(ki)|ki|2 : ki ∈ 2πZd\{0}, j ∈ N

}
, (1.38)

which can be interpreted as excitation energies of noninteracting quasiparticles that obey
an effective energy momentum dispersion relation e(k) =

√
|k|4 + 2v̂(k)|k|2. We formulate

our main results in Theorem 3.1, Corollary 3.6 and Theorem 3.7.

Chapter 4: Free dynamics of a particle coupled to a dense Fermi gas

The motion of a tracer particle in a dense homogeneous Fermi gas is considered. Here, the
problem is simplified by coupling only one particle to a gas of noninteracting fermions.
On the other hand, the problem is made harder by considering a thermodynamic limit,
without scaling of the interaction parameter. Differently stated, we analyze the model in a
regime of “strong” coupling (g = 1) where the interaction strength does not become weaker
with increase of the density. Due to the antisymmetry of the wave function, however, the
interaction of the gas with the tracer particle turns out to be effectively weak, which is in
strong contrast to a bosonic or classical gas. The motivation of this model comes from the
phenomenon, known in plasma physics, that the ability of a degenerate electron gas to stop
ions is decreasing with increasing gas density. This is the opposite of the expectation from
classical physics, and also from bosonic systems. There, the higher the density of the gas,
the more collisions the ion undergoes and thus the more it is disturbed in its motion. In
fermionic systems, it is the Pauli principle or the Fermi pressure that changes the situation
drastically by limiting the number of possible interactions and their effective strength. The
motion of a tracer particle in a homogeneous ideal electron gas is described by a Hamiltonian

HN+1 = −∆y −
N∑
i=1

∆xi +

N∑
i=1

v(xi − y), (1.39)



1.3. Outline and summary 15

where x1, ..., xN denote the gas variables and y the tracer particle variable. As initial state
we assume a wave function ϕ⊗Ω where ϕ ∈ L2([0, L]d) and Ω ∈ L2([0, L]dN ) is the ground
state of the free Fermi gas in the box [0, L]d with periodic boundary conditions. We prove
that for d = 2 (in Appendix 4.C, we derive a similar statement also for d = 1) and for a
certain class of compactly supported potentials v(x),

lim
N→∞

%=N/L2=const

∣∣∣∣∣∣e−iHN+1t
(
ϕ⊗ Ω0

)
− e−iH

mf
N+1t

(
ϕ⊗ Ω0

)∣∣∣∣∣∣
L2([0,L]2+2N )

≤ Cε(1 + t)
3
2

%
1
8
−ε

, (1.40)

where ε > 0 is a sufficiently small number and Cε denotes an ε-dependent positive constant.
The effective Hamiltonian given by Hmf

N+1 = −∆y −
∑N

i=1 ∆xi + %v̂(0) − Ere is equivalent
to the generator of the free dynamics. Here,

%v̂(0) =
N∑
i=1

〈
Ω0, v(xi − y)Ω0

〉
L2([0,L]2N )

(1.41)

is the spatially constant mean field potential felt by the tracer particle due to the gas par-
ticles and Ere > 0 is a next-order energy correction which comes from so-called immediate
recollisions diagrams. Eq. (1.40) states that for large densities, the tracer particle moves ef-
fectively freely through the electron gas on the relevant time scale. The result is noteworthy
because it provides an explicit example which shows that the mean field approximation is
valid for fermions far beyond a weak coupling limit g → 0 (note that the inclusion of the
next-order correction in the energy is important for the derivation of the stated result; nev-
ertheless, the energy correction does not change the physical behavior since it only provides
a constant phase factor). The proven statement can also be interpreted as a derivation of a
long-lived resonance of the initial momentum distribution of the tracer particle. We state
our exact result in Theorem 4.1.





Chapter 2

Time evolution of the Bose gas

This chapter is organized as follows. In Section 2.1 we introduce the model and explain
the Hartree and Bogoliubov ansatz for the description of the weakly interacting Bose gas
including a short summary of existing results. Section 2.2 contains our main theorems re-
garding the derivation of the Hartree and Bogoliubov approximation. All proofs are deferred
to Section 2.3.1

2.1 Introduction

A system of N spinless bosons in nonrelativistic quantum mechanics is described by a wave
function ΨN ∈ HN with

HN := L2
s (R3N ; dx1, ..., dxN ), (2.1)

the subspace of square integrable functions that are symmetric under permutations of the
variables x1, ..., xN ∈ R3 (we only consider three dimensions here but the analysis is the
same for any dimension). We always assume that Ψ is normalized, i.e., ||ΨN || = 1, such that
|ΨN (x1, ..., xN )|2 can be interpreted as the probability density of finding the particles at po-
sitions x1, ..., xN . The time evolution of the wave function is governed by the nonrelativistic
many-body Schrödinger equation

i∂tΨN,t = Ht
NΨN,t, (2.2)

where the Hamiltonian operator Ht
N is of the form

Ht
N =

N∑
i=1

hti + λN
∑

1≤i<j≤N
v(xi − xj). (2.3)

Here, hti = −∆i + W t
i denotes a one-particle operator, ∆i is the Laplacian describing the

kinetic energy of the i-th particle and W t
i = W t(xi) a possibly time-dependent external

potential. The interaction between the gas particles is described by a real-valued function
v = v(x), e.g., the Coulomb potential v(x) = 1/|x|. The coupling constant in front of the
interaction will be chosen as λN = 1/(N − 1) which ensures that the average interaction

1Note: The content of the present chapter is a revised version of the work presented in [92]; the main
results being the same as in [92]. While the three authors (Sören Petrat, Peter Pickl and the author of this
thesis) contributed equally to obtain the results of this work, its presentation is due to the author of the
thesis.

17
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energy is of the same order as the average kinetic energy, namely of order N . In this
situation, a nontrivial behavior of the many-body system can be expected for large particle
number N .2

Our goal in this chapter is to investigate the large N limit of solutions to the Schrödinger
equation and, in particular, the corrections to the leading-order mean field component of
such solutions.

The physical setting we have in mind is that the gas is initially trapped in a confining
potential W 0 and cooled down, such that ΨN,0 is close to the ground state of H0

N . By
removing or changing the external field W t, the ground state of H0

N is in general not
an eigenfunction of Ht

N for t > 0 anymore, so the time evolution is nontrivial. To our
understanding, this is the picture behind the experiments of ultracold gases exhibiting the
phenomenon of Bose-Einstein condensation, see, e.g., [20] and references therein.3

2.1.1 The Hartree equation

It has been established in many different settings that Hartree theory emerges as the macro-
scopic description of the low temperature many-body Bose gas in the mean field regime,
i.e., for N →∞, NλN → 1. Hartree theory is defined by the one-body Hamiltonian

ht,ϕ = ht + v ∗ |ϕ|2 − µϕ, ϕ ∈ L2(R3), (2.4)

where ∗ denotes the convolution of functions on R3, and the phase factor µϕ = 1
2

∫
dx (v ∗

|ϕ|2)(x)|ϕ(x)|2 is chosen for later convenience. In order to understand the relation between
the microscopic model defined by (2.3) and Hartree theory, think of a completely factorized
N -particle wave function ΨN = ϕ⊗N for which the potential term in HN corresponds
to a sum of identically and independently distributed random variables with probability
density |ϕ|2. It follows from the law of large numbers that the potential felt by, e.g., the
first particle, at position x is given by the average value (v ∗ |ϕ|2)(x); cf. (1.12). The N -
particle Hamiltonian HN is hence expected to act as a sum of N one-body Hamiltonians
each given by (2.4). In more precise terms, the Hartree Hamiltonian governs the leading
order dynamics of a wave function which is initially close to a condensate ϕ⊗N0 , e.g., in the
sense of

lim
N→∞

Tr
∣∣∣γ(1)

ΨN,0
− |ϕ0〉〈ϕ0|

∣∣∣ = 0 ⇒ lim
N→∞

Tr
∣∣∣γ(1)

ΨN,t
− |ϕt〉〈ϕt|

∣∣∣ = 0, (2.5)

where Tr denotes the trace, and the one-particle state ϕt solves the nonlinear time-dependent
Hartree equation

i∂tϕt = ht,ϕtϕt (2.6)

with initial condition ϕ0. The operator γ
(1)
ΨN

: L2(R3) → L2(R3) is the one-body reduced

density matrix of ΨN ∈ L2
s(R3N ), defined by its kernel

γ
(1)
ΨN

(x, y) =

∫
ΨN (x, x2, ..., xN )ΨN (y, x2, ..., xN )dx2...dxN ,

2This is not necessarily true for fermionic many-body systems. As we will see in Chapter 4, an interesting
mean field type behavior can emerge even when the potential and the kinetic energy do not scale in the
same way with the relevant parameter which tends to ∞.

3Note, however, that for actual experiments the Gross-Pitaevskii limit is more relevant, which is more
involved than the mean field limit we are considering in the present work. A brief discussion of the Gross-
Pitaevskii limit and its relation to the weak coupling regime can be found in Appendix A.



2.1. Introduction 19

and |ϕt〉〈ϕt| is the one-body reduced density w.r.t. to the state ϕ⊗Nt ∈ L2
s (R3N ). Implica-

tions like (2.5) are referred to as propagation of chaos or persistence of condensation, and
have been proven in different and very general settings. Without claim for completeness,
let us mention the following results.

• The first rigorous result was derived by Spohn [121] for bounded pair potentials
v approaching the question in terms of the Bogoliubov-Born-Green-Kirkwood-Yvon
(BBGKY) hierarchy, a set of coupled equations for the k-particle marginals of Ψt.

• The same method was then used to derive bosonic mean field equations for singular
(Coulomb like) potentials in [14, 48] and for semirelativistic systems in [41].

• In [2, 40, 3, 45, 46, 47], Spohn’s approach was applied to the Gross-Pitaevskii regime,
i.e., for pair potential v(x) replaced by vN (x) = N3v(Nx), for which the Gross-
Pitaevskii equation was derived in the large N -limit.

Note that the approach using the BBGKY hierarchy is based on an abstract com-
pactness argument and therefore no explicit error bounds are obtained. The speed of
convergence in (2.5) is thus not known (this is different in the original work by Spohn
where a Duhamel expansion was used in order to obtain an explicit error bound; the
requirement that the Duhamel expansion converges, however, restricts the validity of
the derivation to short times).

• A different approach, the so-called Hepp method or coherent state approach, goes back
to the works by Hepp [66] and also by Ginibre and Velo [56, 57] about the classical
limit of bosonic systems. This method makes use of a Fock space representation of
the many-body Bose gas. The use of Fock space allows one to analyze coherent states
(with nonfixed particle number) which, in turn, facilitates the separation of the mean
field component from the microscopic time evolution and allows one to control the
fluctuations around the Hartree equation.

• The coherent state approach has inspired many works about the derivation of the
Hartree equation, among others the work by Rodnianski and Schlein [115] who first
derived the Hartree equation with explicit convergence rate,

Tr
∣∣∣γ(1)

ΨN,t
− |ϕt〉〈ϕt|

∣∣∣ ≤ eCt√
N
, (2.7)

holding for factorized initial data and interaction potentials v2 ≤ C(1−∆).

• Analogous techniques were used in order to improve the error term toN−1 (for initially
factorized data) in [29] for the same class of potentials v2 ≤ C(1−∆) and also in [30]
for potentials v ∈ L3(R3) + L∞(R3).

• The coherent state approach turned out to be fruitful also for a quantitative derivation
of the Gross-Pitaevskii equation by Benedikter et al. in [16].

• Starting from initially factorized data, the optimal convergence rate N−1 in the
Hartree limit was moreover obtained in [44] for bounded potentials and in [75] for
the semirelativistic case (i.e., for −∆ replaced by

√
1−∆) of gravitating particles.
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• In [55], Fröhlich et al. explain that the mean field limit can be understood as an
Ergodov type statement meaning that the time evolution of observables commutes
with the Wick quantization up to an error that vanishes in the mean field limit.
They prove the accuracy of the time-dependent mean field equation for the Coulomb
potential.

• Another recent approach (providing explicit error terms) was introduced by Pickl [103]
where the Hartree equation is derived through an ad hoc counting of the number of
particles leaving the condensate at a given time. This new technique was applied, e.g.,
in [72] to derive the Hartree equation for very singular potentials including the critical
case v(x) = |x|−2 and in [104] for deriving the Gross-Pitaevskii equation with time-
dependent external potentials. As one of our main lemmas (cf. Lemma 2.3) is based
on a generalization of the method introduced by Pickl, we give a short exposition of
its basic ideas below the mentioned lemma.

• In [5, 6] the propagation of Wigner measures was studied in the mean field limit.
This idea was used in [4] for deriving the Hartree equation with optimal rate N−1 for
bounded potentials.

The question whether it is reasonable to assume that the initial condition is factorized in
the first place is answered by Hartree theory as well. Indeed, under suitable conditions,
the ground state of a weakly interacting Bose gas exhibits Bose-Einstein condensation: The
wave function Ψ0

N corresponding to the lowest eigenvalue of a Hamiltonian of the form
(2.3) factorizes into an N -fold product of a single one-particle wave function ϕH which is
determined by minimizing the nonlinear Hartree functional

Eh0,ϕ(ϕ) =
{
〈ϕ, h0,ϕϕ〉 : ϕ ∈ H1(R3), ||ϕ|| = 1

}
. (2.8)

The condensation property holds again in the reduced sense (here we assume that a unique
minimizer exists), i.e.,

lim
N→∞

Tr
∣∣∣γ(1)

Ψ0
N
− |ϕH〉〈ϕH|

∣∣∣ = 0. (2.9)

It further holds for a comparison of the energies, i.e., E0
N = NεH + o(N) where E0

N denotes
the infimum of the spectrum σ(H0

N ) and εH the infimum of (2.8) (the symbol o(AN ) stands
for terms with o(AN )/AN → 0 for N → ∞). The rigorous analysis of this question goes
back to [19, 88]. For recent results and an extensive list of references, we refer to [77]. For
the special case of a homogeneous Bose gas in the box, we study the stationary problem
in Chapter 3. For this case, it is shown in Appendix 3.A that energies close to the ground
state energy are given at leading order by NεH; the corresponding next-order contribution
o(N) is analyzed in detail in Section 3.2.3.

2.1.2 Different notions of distance

The notion of distance in (2.5) and (2.9) is equivalent to convergence of bounded k-particle
operators with norm of order one (for fixed k when N tends to ∞). This, in turn, is strong
enough to imply a law of large numbers type result for such observables. E.g., in the case
k = 1 and a one-particle operator A (Ai acting on the ith particle), it implies that for all
δ > 0,

lim
N→∞

PΨN,t

(∣∣∣ 1

N

N∑
i=1

Ai −
〈
ϕt, Aϕt

〉∣∣∣ ≥ δ) = 0. (2.10)
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In order to control unbounded observables like energy or momentum, a stronger statement
than (2.5) is needed. A suitable generalization is given by

lim
N→∞

Tr
∣∣∣√1−∆

(
γ

(1)
ΨN,t
− |ϕt〉〈ϕt|

)√
1−∆

∣∣∣ = 0, (2.11)

i.e., convergence in the so-called energy trace norm. Questions in this direction have been
studied in [91, 89] and more recently in [7].

Yet another natural notion of distance, much stronger compared to convergence in terms
of reduced densities, is the L2-norm on the full N -particle space L2

s(R3N ). In the interacting
case, i.e., for v 6= 0, the ground state is not close to a product of one-particle wave functions,
and neither does the initial product structure survive the dynamics in the L2 sense. If only
a single particle is not in the correct condensate wave function, there is no closeness in L2-
norm. On the other hand, condensation is a macroscopic phenomenon, i.e., it still holds, even
if a few out of a very large number N of particles are not in the condensate. The property of
condensation, and persistence of condensation, is therefore correctly understood in terms of
reduced densities, e.g., in the sense explained in (2.5) or (2.11). An approximation in terms
of the L2-distance of ΨN,t or the ground state Ψ0

N is nevertheless very interesting. A large
N approximation in L2(R3N ) is for instance closely connected to the analysis of low energy
excitations which play a crucial role in the explanation of superfluidity and other collective
phenomena of Bose-Einstein condensates. Such an approximation can be understood as the
next-to-leading order correction to Hartree theory; it is generally known under the name of
Bogoliubov theory [22].

Such a norm approximation in terms of Bogoliubov theory was rigorously derived by Lewin
et. al. in [80] (and similarly for the NLS equation4 by Nam and Napiórkowski [95, 96]). Their
main result is a full characterization of fluctuations in ΨN,t around the Hartree product
ϕ⊗Nt . It was shown that

lim
N→∞

∣∣∣∣∣∣ΨN,t −
N∑
k=0

(
ϕ
⊗(N−k)
t ⊗s χ(k)

t

)∣∣∣∣∣∣
HN

= 0, (2.12)

where ⊗s stands for the normalized symmetric tensor product, cf. (2.47), and the correlation

functions (χ
(k)
t )k≥0, χ

(k)
t ∈ L2

s(R3k), solve a Schrödinger equation on the bosonic Fock space
of excitations with an N -independent, quadratic Hamiltonian.

2.1.3 Objective of this chapter

Our goal in this chapter is to contribute to the understanding of (2.5), (2.11) and (2.12).
Besides that, we introduce a first quantized version of Bogoliubov theory.

Our strategy is to first show norm convergence of ΨN,t towards the solution Ψ̃N,t of a

Schrödinger equation with a simpler Hamiltonian H̃N,t which is quadratic in a sense that
we explain below. If we denote by pti = |ϕt(xi)〉〈ϕt(xi)| the orthogonal projector in the

variable xi onto the condensate state ϕt and by qti = 1 − pti, then the Hamiltonian H̃t
N is

4The NLS or nonlinear Schrödinger limit is defined by HN as in (2.3) but with the function v replaced by
an N -dependent pair potential vN (x) = N3βv(Nβx) for β ∈ [0, 1] and v ∈ C0(R3). For β = 0, one recovers
the Hartree limit for bounded potentials, whereas for β = 1, it coincides with the Gross-Pitaevskii limit (cf.
Appendix A). For β ∈ (0, 1), the NLS limit defines a model between the Hartree and the Gross-Pitaevskii
regime for which the limiting equation is given by the Hartree equation with v replaced by ||v||1δ(x).



22 2. Time evolution of the Bose gas

obtained from the original Hamiltonian (2.3),

Ht
N =

N∑
i=1

ht,ϕti +

+ λN
∑

1≤i<j≤N
(pti + qti)(p

t
j + qtj)

(
vij − v ∗ |ϕt|2i − v ∗ |ϕt|2j + 2µt

)
(pti + qti)(p

t
j + qtj), (2.13)

by discarding all terms that contain three or four qt’s. For wave functions that are, in a
suitable sense, sufficiently close to the Hartree product, the Hamiltonian H̃t

N will be related
to the usual Bogoliubov Hamiltonian on Fock space (see (2.51)) by a unitary transformation.
After showing in Theorem 2.6 that

||ΨN,t − Ψ̃N,t||HN ≤ exp
(
C(1 + t)2

)
N−1/2, (2.14)

where Ψ̃N,t solves the Schrödinger equation with Hamiltonian H̃t
N , we derive

1. in Theorem 2.7 that γ
(1)
ΨN,t

converges to |ϕt〉〈ϕt| in trace norm with optimal rate 1/N ,

as well as in energy trace norm with rate 1/
√
N ,

2. in Theorem 2.9 the approximation of ΨN,t in terms of correlation functions (χ
(k)
t )k≥0

in the sense of (2.12), with expected optimal rate.

Both points provide extensions of known results. Convergence in trace norm with rate 1/N
was shown in [44, 29, 30, 75] for initial wave functions that are completely factorized, and in
[4] for more general initial conditions but only for bounded pair potential v. It is interesting
to note that for our proof, the Hartree approximation is not sufficient to derive (2.5) with
optimal rate (this is in agreement with previous results for unbounded v). Instead, one
also needs information about higher-order corrections to the Hartree approximation. In [7],
convergence in terms of the energy trace norm was derived by means of an abstract argu-
ment, without explicit error. The characterization of ΨN,t in terms of correlation functions

(χ
(k)
t )k≥0 was first studied in [80]. Here, we derive the optimal error of this approximation

which was not included in the analysis of [80, cf. Remark 3].

From the technical point of view, our approach consists of a generalization of the method
that was used by Pickl resp. Knowles and Pickl to derive the Hartree equation in [103, 72].
We expect this approach to turn out stable and versatile and therefore also useful in order
to derive similar results for more complicated situations, in particular for the NLS and
Gross-Pitaevskii limit.

Next-to-leading order corrections in ΨN,t have been studied in [95, 96] for the NLS
equation with 0 ≤ β < 1

2 . Let us note that there are also very strong results about the
L2-approximation for states on Fock space, derived by means of the coherent state method
that goes back to Hepp [66]. These results cover the weakly interacting case [62] as well as
the NLS limit for all β < 1 [21] (a detailed list of references can be found in [95, Section
1.2]). The initial states are here coherent states in Fock space, or slight generalizations
thereof. These results also give convergence in L2-norm for initial N -particle states, with
a weakened rate of convergence. It is unclear whether the results also imply convergence
of initial N -particle ground states, like we consider in this work, or that were considered
in [80, 95, 96]. For a detailed comparison of the two different approaches, we refer to [80,
Section 3].
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2.1.4 Notation

• | · | denotes the standard norm on Cd for arbitrary dimension d.

• For k ∈ {0, 1, ..., N} we denote the Hilbert space of square integrable wave functions
by Hk := L2

s (R3k; dx1, ..., dxk). The scalar product on Hk is denoted by 〈·, ·〉Hk and
the norm by ||·||Hk . We usually omit the subscript Hk since it is clear from the context
which space is meant.

• By Hk
s (k = 1, 2) we denote the symmetric (first resp. second) Sobolev space, i.e., the

set of wave functions ψ ∈ L2
s for which the Sobolev norm ||ψ||Hk = ||(1 + | · |2)

k
2 ψ̂||L2

is finite, where ψ̂ ∈ L2 denotes the Fourier transform of ψ.

• For any linear operator A : L2(Rn)→ L2(Rn) we define the operator norm by

||A||op = sup
||ψ||=1

||Aψ||. (2.15)

• The letters C and D are used to denote positive constants with numerical values that
may change from one line to the other. We emphasize that all constants denoted by
C and D are independent of the relevant parameters N and t.

2.2 Main results

We consider Hamiltonians Ht
N of the form (2.3) with external potential W t : R3 → R and

pair interaction v : R3 → R satisfying

Assumptions A.1. (The model)

1. The mapping t 7→W t is C1(R, L∞(R3)),

2. v(x) = v(−x) and v2 ≤ C(1−∆) for some C > 0.

Note that due to Hardy’s inequality, | · |−2 ≤ 4(−∆), this includes the physically important
Coulomb interaction v(x) = |x|−1.

Next we summarize known results about well-posedness of the many-body Schrödinger and
the Hartree equation.

Well-posedness of the N-body time evolution. It follows from the standard Kato-
Rellich argument that under Assumptions A.1, the Hamiltonian Ht

N is self-adjoint on

H2
s (R3N ). In particular, HN ≡ Ht

N −
∑N

i=1W
t(xi)ΨN is time-independent and self-adjoint

and thus generates the unitary time evolution e−iHN t. Due to A.1.1. we have that the map-
ping t 7→

∑N
i=1W

t(xi)ΨN is Lipschitz continuous for any ΨN ∈ HN . According to [61,
Theorem 2.5], this is sufficient for Ht

N to generate a unitary time evolution in the follow-
ing sense: For any T > 0 there exists a unique two-parameter family of unitary operators
UN (t, s) : HN → HN , satisfying the following properties:

(a) UN (t, s)H2
s (R3N ) ⊂ H2

s (R3N ) for all s, t ∈ [0, T ], and the map (0, T ) 3 t 7→ UN (t, s)ΨN

is continuously differentiable for any s ∈ [0, T ] and ΨN ∈ H2
s (R3N ), with

i∂t
(
UN (t, s)ΨN

)
= Ht

N

(
UN (t, s)ΨN

)
,
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(b) UN (t, t) = 1 and UN (t, r)UN (r, s) = UN (t, s) for all r, s, t ∈ [0, T ],

(c) (t, s) 7→ UN (t, s)ΨN is strongly continuous on [0, T ]× [0, T ].

Well-posedness of the Hartree time evolution. Given Assumptions A.1, it follows,
e.g., by adapting the techniques used in [28] to our setting, that for every wave function
ϕ0 ∈ H1(R3), the Hartree equation (2.6) admits a unique global solution ϕt ∈ H1(R3) for
all t > 0. It is also well-known that mass and energy of the Hartree solution are conserved
quantities – modulo the change of the time-dependent external potential –, i.e., for any
t ≥ 0, we have 〈

ϕt, ϕt
〉
−
〈
ϕ0, ϕ0

〉
= 0, (2.16)〈

ϕt, h
t,ϕtϕt

〉
−
〈
ϕ0, h

0,ϕ0ϕ0

〉
=

∫ t

0

〈
ϕs,
(
∂sW

s
)
ϕs
〉
ds. (2.17)

Moreover, one finds the following bounds for the H1- and the H2-norm, respectively,

||ϕt||2H1 := ||∇ϕt||2 + ||ϕt||2 ≤ C(1 + t), (2.18)

||ϕt||2H2 := ||∆ϕt||2 + ||∇ϕt||2 + ||ϕt||2 ≤ DeCt(1+t), (2.19)

where C = C(||ϕ0||H1) and D = D(||ϕ0||H2) are time-independent positive constants with
D <∞ for ϕ0 ∈ H2(R3). In the latter case, (2.19) guarantees that ϕt ∈ H2(R3) for all later
times. The H1-bound is a direct consequence of (2.17), and for details about the derivation
of the H2-bound we refer to [28, Section 3]. Let us also remark that for time-independent
external potential W t ≡W , one obtains the above estimates with the factor (1+t) replaced
by one.

Invoking the assumed bound on the pair potential v, together with (2.18), one readily finds
that

||v ∗ |ϕt|2||∞ ≤ C
√

1 + t, ||v2 ∗ |ϕt|2||∞ ≤ C(1 + t), (2.20)

for some time-independent constant C = C(||ϕ0||H1).

We now define some operators we will use throughout this chapter. Let ϕt denote the
solution to the Hartree equation for given initial condition ϕ0 ∈ H1(R3) with ||ϕ0|| = 1.

Definition 2.1. For any 1 ≤ i ≤ N , we define the time-dependent projectors

pti : HN → HN , ptiΨN (x1, ..., xN ) = ϕt(xi)

∫
ϕt(xi)ΨN (x1, ..., xN )dxi, (2.21)

and qti = 1−pti. At some points we use the more convenient braket notation, i.e., pt = |ϕt〉〈ϕt|
(when acting on the one-particle space) respectively pti = |ϕt〉〈ϕt|i = |ϕt(xi)〉〈ϕt(xi)| (when
acting on the many-particle space).

Note that pt and qt satisfy Heisenberg type equations of motion, namely,

i∂tp
t =

[
ht,ϕt , pt], i∂tq

t =
[
ht,ϕt , qt

]
. (2.22)
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Definition 2.2. For every t ≥ 0 we define an N -particle auxiliary Hamiltonian by

H̃t
N =

N∑
i=1

ht,ϕti + λN
∑

1≤i<j≤N

[(
ptiq

t
jvijq

t
ip
t
j + ptip

t
jvijq

t
iq
t
j

)
+ h.c.

]
, (2.23)

with vij = v(xi − xj), λN = (N − 1)−1, and where h.c. stands for the Hermitian conjugate
of the preceding expression.

Well-posedness of the auxiliary time evolution. Using (2.20), together with

||vpt||2op ≤ ||ptv2pt||op = ||pt||op
〈
ϕt, v

2ϕt
〉
, (2.24)

it follows that the time-dependent part in (2.23) is bounded and hence, H̃t
N defines a self-

adjoint operator on H2
s (R3N ). Furthermore, one shows with (2.22) and (2.24) that for any

T > 0, the mapping (0, T ) 3 t 7→ (H̃t
N +

∑N
i=1 ∆i)ΨN is Lipschitz continuous for any

ΨN ∈ H2
s (R3N ). We can thus use again [61, Theorem 2.5] implying that for any interval

[0, T ], there exists a unique group of unitary operators ŨN (t, s) : HN → HN , such that

(a) ŨN (t, s)H2
s (R3N ) ⊂ H2

s (R3N ) for all s, t ∈ [0, T ], and the map (0, T ) 3 t 7→ ŨN (t, s)ΨN

is continuously differentiable for any s ∈ [0, T ] and ΨN ∈ H2
s (R3N ), with

i∂t
(
ŨN (t, s)ΨN

)
= H̃t

N

(
ŨN (t, s)ΨN

)
,

(b) ŨN (t, t) = 1 and ŨN (t, r)ŨN (r, s) = ŨN (t, s) for all r, s, t ∈ [0, T ],

(c) (t, s) 7→ UN (t, s) is strongly continuous on [0, T ]× [0, T ].

From a straightforward computation, which we postpone to Appendix 2.A, it follows that

Ht
N = H̃t

N +
1

N − 1

∑
1≤i<j≤N

(
v

(3q,t)
ij + v

(4q,t)
ij

)
, (2.25)

with

v
(3q,t)
ij = v

(3q,t)
ji := qtiq

t
j

(
vij − v̄ti − v̄tj + 2µt

)(
qtip

t
j + ptiq

t
j

)
+ h.c., (2.26)

v
(4q,t)
ij = v

(4q,t)
ji := qtiq

t
j

(
vij − v̄ti − v̄tj + 2µt

)
qtiq

t
j , (2.27)

and v̄ti =
(
v ∗ |ϕt|2

)
(xi) and µt = 1

2

∫ (
v ∗ |ϕt|2

)
(x)|ϕt(x)|2dx.

Remark 2.1. Note that there are no terms on the r.h.s. in (2.25) that are linear in pt. The
operator H̃t

N contains only quadratic terms while the remainders are cubic or quartic. The
reason for the linear terms to not appear is the correct choice of the phase factor µt in the
Hartree Hamiltonian.

2.2.1 Norm convergence of ΨN,t towards Ψ̃N,t

The key ingredients for our first main result are Lemmas 2.3 and 2.4.



26 2. Time evolution of the Bose gas

Lemma 2.3. Let ϕt be the unique solution of the Hartree equation (2.6) with initial
condition ϕ0 ∈ H1(R3), ||ϕ0|| = 1, and let ΨN ∈ HN , ||ΨN || = 1. Then, for ΦN,t ∈
{UN (t, 0)ΨN , ŨN (t, 0)ΨN} with t > 0, and any fixed integer n ≤ N , there exists a positive
constant Cn such that

〈
ΦN,t,

( n∏
j=1

qtj

)
ΦN,t

〉
≤ eC(1+t)3/2

n∑
i=0

Cn
Nn−i

〈
ΨN ,

( i∏
j=1

q0
j

)
ΨN

〉
. (2.28)

The quantity
〈
ΨN,t, q

t
1ΨN,t

〉
≡ αN (t) for ΨN,t = UN (t, 0)ΨN counts the average relative

number of particles outside the condensate in ΨN,t. In [103, 72], it was shown by Pickl resp.
Knowles and Pickl that for appropriate initial conditions αN (t) ≤ eCtN−1. This was in turn

used to prove γ
(1)
ΨN,t
→ |ϕt〉〈ϕt| by means of the relation

αN (t) ≤ Tr
∣∣∣γ(1)

ΨN,t
− |ϕt〉〈ϕt|

∣∣∣ ≤√8αN (t), (2.29)

which was derived, e.g., in [72, Lemma 2.3]. Since the strategy for proving Lemma 2.3 is the
same as in the derivation of the bound for αN (t), let us explain it in some detail. The idea
is to control αN (t) via a Gronwall argument, i.e., to show that ∂tαN (t) ≤ C(αN (t) +N−1)
from which one infers the desired bound, namely αN (t) ≤ eCt(αN (0) + N−1).5 For the
simplest case ΨN = ϕ⊗N0 , we have q0

1ΨN = 0, and thus αN (0) = 0. The time-derivative of
αN (t) has an obvious physical meaning, namely the rate of particles leaving the condensate
wave function at time t. It is not difficult to find (for details, we refer to Lemma 2.15) that
it is given by

∂tαN (t) = 2 Im
〈
ΨN,t, q

t
1p
t
2

(
v(x1 − x2)−

(
v ∗ |ϕt|2

)
(x1)

)
pt1p

t
2ΨN,t

〉
+ 2 Im

〈
ΨN,t, q

t
1q
t
2v(x1 − x2)pt1p

t
2ΨN,t

〉
+ 2 Im

〈
ΨN,t, q

t
1q
t
2

(
v(x1 − x2)−

(
v ∗ |ϕt|2

)
(x1)

)
pt1q

t
2ΨN,t

〉
. (2.31)

The three terms represent the different processes which cause particles to deviate from the
mean field evolution ϕt. In the first line (qpvpp), two particles both in ϕt collide with each
other leaving one particle inside and one particle outside the condensate wave function;
in the second line (qqvpp), two particles in ϕt collide with a resulting correlated pair.
Eventually, in the third line (qqvpq), one mean field particle collides with a particle which
is already not in the condensate leaving both particles outside ϕt. The imaginary part
indicates that also the reverse processes are taken into account. All other possible collisions
do not alter the overall number of particles in the condensate and thus do not appear in
∂tαN (t). Now, the first term is identically zero because pt2v12p

t
2 = (v∗|ϕt|2)(x1)pt2 is cancelled

exactly by the mean field potential. The second and third terms are small because of the
two respectively three qt’s. In the last line (assuming here ||v||∞ < C for simplicity) it
follows immediately with Cauchy-Schwarz that∣∣∣ Im 〈ΨN,t, q

t
1q
t
2

(
v12 − v ∗ |ϕt|21

)
pt1q

t
2ΨN,t

〉∣∣∣
≤ C||qt1qt2ΨN,t|| ||pt1qt2ΨN,t|| ≤ C||qt1ΨN,t||2 = CαN (t),

5Gronwall’s inequality states that if the derivative of a function f : R→ R, t 7→ f(t), satisfies the estimate
∂tf(t) ≤ C(t)(f(t) + δ(t)) for continuous functions C(t) : R→ R+ and δ(t) : R→ R+, then f(t) is bounded
from above in terms of

f(t) ≤
(
e
∫ t
0 C(s)ds

)
f(0) +

∫ t

0

δ(s)e
∫ s
0 C(s′)ds′ds. (2.30)
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as ||qt1ΨN,t||2 =
〈
ΨN,t, q

t
1ΨN,t

〉
. In the second term we can not directly apply Cauchy-

Schwarz since both qt’s are on one side of the scalar product. This term is indeed not small
for all wave functions in L2(R3N ) and the symmetry of ΨN,t becomes crucial. For symmetric
wave functions, one can show that commuting one of the qt from the left to the right side
effectively costs an error proportional to N−1:

∣∣∣ Im 〈ΨN,t, q
t
1q
t
2v12p

t
1p
t
2ΨN,t

〉∣∣∣ =
∣∣∣ 1

N − 1
Im
〈
qt1ΨN,t,

( N∑
j=2

qtjv1jp
t
j

)
pt1ΨN,t

〉∣∣∣
≤
√
αN (t)

N − 1

∣∣∣∣∣∣( N∑
j=2

qtjv1jp
t
j

)
pt1ΨN,t

∣∣∣∣∣∣
≤
√
αN (t)

N − 1
C
(√

N +N ||qt1ΨN,t||
)
≤ C

(
αN (t) +

1

N

)
,

which leads to the bound for ∂tαN (t). The proof of Lemma 2.3 is a generalization of this
argument.

The derivation of mean field equations via the Grönwall argument for αN (t) is both very
simple and effective. It is comparatively simple because no propagation estimates for the
microscopic solution ΨN,t are needed and thus also no expansion in terms, e.g., of the
BBGKY hierarchy appears. It is effective because it yields with very small effort explicit
error terms. The latter are important from the physics point of view where N is consid-
ered to be large but always finite. Moreover, one can modify the definition of αN (t) such
that the approach is applicable also to more complicated situations. Along with the nec-
essary modifications, this approach has been used to derive the time-dependent Hartree
equation for very singular potentials (including the critical case of the Hartree equation
v(x) = |x|−2) [72, Section 4], the Hartree equation in a large volume mean field limit [35],
the NLS equation without positivity condition [102] as well as the Gross-Pitaevskii equation
with time-dependent external potentials [104]. It is also applicable for fermions to derive
the Hartree and Hartree-Fock equations in the corresponding mean field limit [101, 11, 100]
(for a short discussion of the fermionic weak coupling limit, see Section 1.2.4 and Appendix
B).

We next analyse the structure of the auxiliary Hamiltonian in more detail. Therefor
note that each term in the effective two-body potential in H̃t

N contains exactly two qt’s
and two pt’s. This is a crucial property, as it directly implies that the number of particles
inside the condensate is changed always in steps of two. More generally it means that under
the time evolution generated by the auxiliary Hamiltonian, there is no mass flow between
the orthogonal subspaces in HN that correspond to an even respectively an odd number
of particles outside the Hartree state. In order to make this observation precise, let us
introduce the projectors f̂ϕtodd/even : HN → HN by

ΨN 7→ f̂ϕtoddΨN =
N∑
k=0
k odd

( k∏
i=1

qti

N∏
j=k+1

ptj

)
sym

ΨN , (2.32)

ΨN 7→ f̂ϕtevenΨN =
N∑
k=0
k even

( k∏
i=1

qti

N∏
j=k+1

ptj

)
sym

ΨN , (2.33)
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where (·)sym abbreviates the symmetric tensor product, cf. (2.92). It follows directly that

1 = f̂ϕtodd + f̂ϕteven, f̂ϕtoddf̂
ϕt
even = 0 = f̂ϕtevenf̂

ϕt
odd, f̂ϕtevenf̂

ϕt
even = f̂ϕteven,

and the same also for f̂ϕtodd. The operator f̂ϕtodd/even projects on the subspace in HN with

odd/even number of particles that do not occupy the product wave function ϕt. For instance,
f̂ϕtevenϕ

⊗N
t = ϕ⊗Nt , since in ϕ⊗Nt there is an even number of particles (zero particles) that do

not belong to the condensate. We summarize the parity argument that we explained above
in the following lemma.

Lemma 2.4. Let ϕt ∈ H1(R3) be the solution to the Hartree equation (2.6) with initial
datum ϕ0 ∈ H1(R3), and let ΨN ∈ HN and Ψ̃N,t = ŨN (t, 0)ΨN . It holds that for all t ≥ 0

||f̂ϕtevenΨ̃N,t|| = ||f̂ϕ0
evenΨN ||, ||f̂ϕtoddΨ̃N,t|| = ||f̂ϕ0

oddΨN ||. (2.34)

The proof of the lemma is a consequence of the vanishing of the commutators

[
H̃t
N −

N∑
i=1

ht,ϕti , f̂ϕtodd

]
= 0 =

[
H̃t
N −

N∑
i=1

ht,ϕti , f̂ϕteven

]
. (2.35)

The parity property (2.34) is important for estimating expectation values of operators like
qt1A1p

t
1, which effectively measure the overlap between even and odd parts in ΨN . Starting

from wave functions whose mass is initially located in only one of the two sectors, the
parity argument turns out to be useful to improve certain estimates. We will use it for
instance to get optimal control – optimal in the sense of its N -dependence – of the quantity
|〈ΨN,t, q

t
1(−∆1)pt1ΨN,t〉|. The latter is important for bounding the kinetic energy of the

particles in ΨN,t which are outside the condensate; see Theorem 2.6 and its proof.
Since we want to obtain an L2-approximation of ΨN,t, it is necessary to have good

control of the behavior of all N particles. This means that also good control of particles
outside the condensate is required. For bounded potentials, one can use the fact that the
number of such particles is small compared to N , and that they can therefore not disturb the
other particles too much. For singular potentials, however, already a few badly behaving
particles can in principle cause problems when they come close together and generate a
large potential energy. That such behavior is very unlikely is due to energy conservation.
In order to deal with singular potentials, the idea is thus to use energy conservation to
obtain sufficient control of ∇1q

t
1ΨN,t, i.e., to control the regularity of the part of ΨN,t

which describes particles outside the Hartree product. This, in turn, leads to appropriate
bounds on the potential energy of these particles, since we assume that the pair potential
is dominated by the kinetic energy.

Definition 2.5. We define the energy per particle w.r.t. Ht
N by

EN,t : H1
s (R3N )→ R, ΨN 7→ EN,t(ΨN ) := N−1

〈
ΨN , H

t
NΨN

〉
, (2.36)

and the Hartree energy by

EH,t : H1(R3)→ R, ϕ 7→ EH,t(ϕ) :=
〈
ϕ, ht,ϕϕ

〉
= ||∇ϕt||2 +

〈
ϕ,W tϕ

〉
+ µt. (2.37)

From now on, let ϕt ∈ H1(R3) be the unique solution to the Hartree equation (2.6) with
initial condition ϕ0 ∈ H1(R3), ||ϕ0|| = 1, let ΨN,t = UN (t, 0)ΨN and Ψ̃N,t = ŨN (t, 0)ΨN

with ΨN ∈ HN , ||ΨN || = 1, and let the initial wave functions ϕ0, ΨN satisfy
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Assumptions A.2. (Initial conditions)

1. ϕ0 ∈ H2(R3), ΨN ∈ H1
s (R3N ), and

∣∣EN,0(ΨN )− EH,0(ϕ0)
∣∣ ≤ CN−1,

2.
〈
ΨN ,

(∏n
j=1 q

0
j

)
ΨN

〉
≤ CN−n for n = 1, 2, 3,

3. ||f̂ϕ0

oddΨN || ≤ CN−
1
2 .

Remark 2.2. Instead of Assumption 2.2.3, one could equivalently assume that the even part
of the wave function is initially small, i.e., ||f̂ϕ0

evenΨN || ≤ CN−
1
2 . This would lead to the exact

same results with all proofs being completely analogous (therefore we restrict ourselves to
Assumption 2.2.3).

A more detailed explanation of Assumptions A.2 is given in Section 2.2.2.

Now we can state our main result. It gives a bound for the difference between ΨN,t and

Ψ̃N,t in terms of the L2-distance of the full N -body space.

Theorem 2.6. Let ϕ0,ΨN satisfy Assumptions A.2. Then there exists a time-independent
constant C > 0 such that for all t ≥ 0,

||ΨN,t − Ψ̃N,t||2 + ||∇1q
t
1ΨN,t||2 ≤

exp
(
C(1 + t)2

)
N

. (2.38)

Remark 2.3. 1) Going through the proof of the theorem, it seems likely that the N -
dependence of the error in (2.38) can not be further improved. Let us also note that in
the case of a static external potential, the time-dependent factor exp(C(1 + t)2) would be
replaced by exp(C(1 + t)).

2) To obtain convergence of ΨN,t towards Ψ̃N,t for a bounded pair potential v is straight-
forward. The idea is to apply Duhamel’s formula, which leads to

||ΨN,t − Ψ̃N,t||2 = −2

∫ t

0
Im
〈
Ψ̃N,s,

(
Hs
N − H̃s

N

)
ΨN,s

〉
ds,

and then use λN = 1/(N − 1), together with the fact that each term in Hs
N − H̃s

N contains
three or four qs’s, cf. (2.25). For a bounded potential, convergence then follows immediately
from Lemma 2.3 (however, not directly with the rate above).

3) Similar estimates for the quantity ||∇1q
t
1ΨN,t||2 were derived before, e.g., in [72, 104].

The main difference here is that the explicit error on the r.h.s. is of order 1/N instead of
1/
√
N as, e.g., in [72, Lemma 4.6]. This improvement of the N -dependence is due to the

control of the norm difference which gives us additional information about the structure
of the state ΨN,t. We use in particular the fact that H̃t

N does not couple the odd and
even sectors in HN . Correlations between the two sectors which appear in expressions like
|〈ΨN,t, p

t
1(−∆1)qt1ΨN,t〉| lead to an error proportional 1/

√
N when estimating ||∇1q

t
1ΨN,t||2

like in [72, Lemma 4.6]. That such correlations are surpressed by an additional factor 1/
√
N

can of course not directly be inferred from the time evolution of the full Hamiltonian Ht
N .
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2.2.2 Discussion of the initial conditions

Before we go on with two applications of Theorem 2.6, we discuss the meaning of Assump-
tions A.2 in some more detail.

A simple example of an N -particle wave function that satisfies all assumptions is the
complete product state ΨN = ϕ⊗N0 . Ground states of noninteracting bosons, e.g., are given
by such exact product wave functions. For interacting systems, however, it is well under-
stood that the ground state obeys the product structure only approximately since weak
correlations between the particles are present. In the sense of the L2-distance, the true
ground state of an interacting system is not close to the product wave function. Therefore,
we give some comments on the relevance of Theorem 2.6 for initial states that are given
by ground states of interacting, trapped systems, or other systems with suitably attractive
external fields, e.g., bosonic atoms.

A.2.1. The first assumption states that the energy per particle w.r.t. the initial state ΨN

is given by the Hartree energy w.r.t. ϕ0, up to an error of order N−1. In other words, the
average energy of the system equals N times the Hartree energy plus some N -independent
correction at leading order. This next-to-leading order correction is expected to be correctly
predicted by a Bogoliubov approximation for the fluctuations around the condensate. For
ground states of confined systems, this is known to be true in several cases: Seiringer and
Grech have shown in [60] that A.2.1 holds for bounded pair potentials, whereas Lewin et.
al. have generalized the statement in [81] to a more general setting, including the Coulomb
case v(x) = 1/|x| for confined bosons and also for bosonic atoms.

A.2.2. This inequality is equivalent to the requirement that the expectation value of the
first three moments of the number of particles outside the condensate is of order one. Bose-
Einstein condensation is usually associated with a bound for the first moment, namely that
1 − 〈ΨN , p

0
1ΨN 〉 = O(N−1), which means that only a finite number – uniform in N – of

particles in ΨN does not occupy the state ϕ0. The constraints on the higher moments can
be interpreted as requiring a higher purity of the condensate described by ΨN . That such
bounds hold for the ground state of a trapped system can be verified, e.g., by applying
techniques used in the proofs of the main theorems in [60, 81]. In Chapter 3, we explain
that for N bosons in a box, the probability of finding k particles in the ground state outside
the condensate is exponentially small. From this, it follows directly that the expectation
value of the n-th moment for any n ≥ 1 is of order O(N−n).

A.2.3. Here it would be equally fine to assume ||f̂0
evenΨN || = O(N−

1
2 ) instead of the odd

part being small. Theorem 2.6 holds in this case as well with the corresponding proof being
completely analogous.

In order to see that the third assumption is distinct from the previous two, let us consider
a simple example: We choose the wave function

HN 3 ΨN =
1√
2
ϕ⊗N0 + ϕ

⊗(N−3)
0 ⊗s χ(3), (2.39)

with ||ϕ0|| = 1, χ(3) ∈ H3, ||χ(3)||2 = 1
2 , and where ⊗s denotes the normalized, symmetric

tensor product, cf. (2.47). If we take χ(3) sufficiently regular, it is not difficult to verify that
Assumption A.2.1 is satisfied. This is because〈

ϕ⊗N0 , H0
Nϕ
⊗N
0

〉
= NEH,0(ϕ0).
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Moreover, Assumption A.2.2 holds also true. Assumption A.2.3, however, does not hold for
ΨN as in (2.39) since the norm of the odd part of ΨN equals ||χ(3)|| = 1/

√
2, while the norm

of the even part is also equal to 1/
√

2.

Remark 2.4. In [80], the norm approximation (2.12) was shown for initial N -particle states
that are built up from quasifree excitation states on Fock space. This was mainly moti-
vated from the results in [81] where it was shown that in the ground state of a trapped
system (and similarly for other systems with appropriate external potentials), the excita-
tions can be approximated by a Bogoliubov ground state which is a quasifree state. Here
we focus on initial states satisfying Assumptions A.2. In Corollary 3.6, we show that for
the homogeneous bose gas on the unit torus, the ground state satisfies Assumptions A.2.

2.2.3 Trace norm convergence

Using the bound for ||ΨN,t − Ψ̃N,t|| together with Lemmas 2.3 and 2.4, we can show that

γ
(1)
ΨN,t

→ |ϕt〉〈ϕt| in trace norm distance with optimal error which is of order N−1. We
emphasize that for our proof, it is crucial to control not only the relative number of particles
in the condensate but the full norm approximation, i.e., also the fluctuations around the

condensate. Using in addition the estimate for ||∇1q
t
1ΨN,t||, we show that γ

(1)
ΨN,t

is close to

|ϕt〉〈ϕt| also in terms of the energy trace distance.

Theorem 2.7. Let ϕ0,ΨN satisfy Assumptions A.2. Then there exists a constant C such
that for all t ≥ 0,

Tr
∣∣∣γ(1)

ΨN,t
− |ϕt〉〈ϕt|

∣∣∣ ≤ exp
(
C(1 + t)2)

N
, (2.40)

Tr
∣∣∣√1−∆

(
γ

(1)
ΨN,t
− |ϕt〉〈ϕt|

)√
1−∆

∣∣∣ ≤ exp
(
C(1 + t)2)
√
N

. (2.41)

Remark 2.5. 1) For a proof of the first statement, we actually require less regularity of ϕ0

than stated in Assumptions A.2. To this end note that one finds a similar norm approxi-
mation as in Theorem 2.6, using an effective Hamiltonian defined by

H̃t
N + λN

∑
1≤i<j≤N

v
(4q,t)
ij , (2.42)

with v
(4q,t)
ij defined as in (2.27). In this case, one would not need Assumption A.2.1 to derive

a bound for ||ΨN,t − Ψ̃N,t|| analogous to the one in (2.38), and therefore it is sufficient to
assume ϕ0 ∈ H1(R3). We omit further details since the indicated argument can be readily
verified along the steps of the proof of Theorem 2.6 when H̃t

N is replaced by (2.42).

2) The vanishing of the r.h.s. in (2.40) for N → ∞ is a well-known result. For unbounded
v, the optimal rate has to our knowledge only been derived so far for initial conditions
equal to the full Hartree product [44, 29, 30, 75]. Theorem 2.7 holds for more general wave
functions, and in particular, for the ground state of a trapped, interacting system. That it
is not possible to improve the error further, can be inferred from (2.29). The l.h.s. in (2.29)
converging faster than 1/N would imply that the wave function ΨN,t were close to the state
ϕ⊗Nt in L2-sense. The latter is false for interacting systems, as can be inferred, e.g., from
(2.38). The rate in (2.41) is not expected to be the optimal one. To obtain an error of order
N−1 also for the energy trace norm will be addressed in a future work.
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3) Following the argument from the proof of (2.40), one can show as well that for any fixed

integer k, the k-particle reduced density, γ
(k)
ΨN,t

: Hk → Hk, defined by its kernel

γ
(k)
ΨN,t

(x1, ..., xk, y1, ..., yk) =∫
ΨN,t(x1, ..., xk, xk+1...xN )ΨN,t(y1, ..., yk, xk+1...xN )dxk+1...dxN , (2.43)

converges to the k-fold product of the Hartree density, i.e.,

Tr
∣∣∣γ(k)

ΨN,t
− |ϕt〉〈ϕt|⊗k

∣∣∣ ≤ exp
(
Ck(1 + t)2

)
N

. (2.44)

2.2.4 Bogoliubov corrections on Fock space

We define the set of correlation functions (χ̃
(k)
N,t)

N
k=0, χ̃

(k)
N,t ∈ (qt1...q

t
k)Hk, by

χ̃
(k)
N,t(x1, ..., xk) :=√(

N

k

)( k∏
i=1

qti

)∫ ( N∏
i=k+1

ϕt(xi)

)
Ψ̃N,t(x1, ..., xN ) dxk+1 . . . dxN . (2.45)

By means of the partition 1 =
∑N

k=0(qt1...q
t
kp
t
k+1...p

t
N )sym, cf. Definition 2.11, one can show

that the following time-dependent decomposition of Ψ̃N,t, in terms of ϕt and the correlation

functions χ̃
(k)
N,t, holds as an identity at each time,

Ψ̃N,t =

N∑
k=0

ϕ
⊗(N−k)
t ⊗s χ̃(k)

N,t. (2.46)

Here, ⊗s stands for the normalized symmetric tensor product between ψ(l) ∈ Hl and ψ(k) ∈
Hk defined by

ψ(l) ⊗s ψ(k) :=
1√

k!l!(k + l)!

∑
σ∈Pk+l

ψ(l)(xσ(1), ..., xσ(l))ψ
(k)(xσ(l+1), ..., xσ(l+k)). (2.47)

It follows from (2.45) that the χ̃
(k)
N,t are orthogonal to ϕt in every coordinate and at all times,

as well as that ||χ̃(k)
N,t||2 equals the probability of finding exactly k particles in Ψ̃N,t which are

not in the condensate wave function. The idea of decomposing an N -particle wave function
according to (2.46) and to study the thereby defined k-particle correlation functions was
introduced in [81] where it was used to describe the low-energy spectrum – eigenvalues and
eigenvectors – of the Bose gas in the mean field limit. The idea was then used to study
the time evolution in [80] for the mean field limit and similarly in [95, 96] for the NLS scaling.

We next introduce a hierarchy of equations, called Bogoliubov hierarchy, which determines

the time evolution of an infinite set of correlation functions which we denote by (χ
(k)
t )k≥0,

χ
(k)
t = χ

(k)
t (x1, ..., xk) ∈ Hk:

i∂tχ
(0)
t =

1√
2

∫ ∫
K(2),t(x, y)χ

(2)
t (x, y)dxdy, (2.48)
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i∂tχ
(1)
t (x1) =

(
ht,ϕt(x1) +K(1),t(x1)

)
χ

(1)
t (x1)

+

√
6

2

∫ ∫
K(2),t(x, y)χ

(3)
t (x1, x, y)dxdy, (2.49)

and for all k ≥ 2,

i∂tχ
(k)
t (x1, ..., xk) =

k∑
i=1

(
ht,ϕt(xi) +K(1),t(xi)

)
χ

(k)
t (x1, ..., xk)

+
1

2
√
k(k − 1)

∑
1≤i<j≤k

K(2),t(xi, xj)χ
(k−2)
t (x1, ..., xk\xi\xj)

+

√
(k + 1)(k + 2)

2

∫ ∫
K(2),t(x, y)χ

(k+2)
t (x1, ..., xk, x, y)dxdy. (2.50)

Here we introduced the following operators: K(1),t : H1 → H1 is given by K(1),t = qtK̃(1),tqt

where K̃(1),t : H1 → H1 is defined via its integral kernel K̃(1),t(x, y) = ϕt(y)v(x− y)ϕt(x).
Further, K(2),t : H1 ⊗ H1 → qtH1 ⊗ qtH1 with K(2),t = qt ⊗ qtK̃(2),t where K̃(2),t(x, y) =
v(x− y)ϕt(x)ϕt(y).

Remark 2.6. 1) (Equivalence to Bogoliubov theory on Fock space) Interpreting (χ
(k)
t )k≥0 =:

χt as an element of the time-dependent Fock space Fs(q
tH1) =

⊕∞
k=0(qt1...q

t
kHk) the above

hierarchy (2.48-2.50) is equivalent to the Schrödinger equation

i∂tχt = Ht
Bogχt, (2.51)

where Ht
Bog is a quadratic, nonparticle conserving Hamiltonian given by

Ht
Bog =

∫
a∗x

(
ht,ϕt(x) +K(1),t(x)

)
ax dx+

1

2

∫ ∫ [
K(2),t(x, y)a∗xa

∗
y + h.c.

]
dxdy.

The operator-valued distributions a∗x, ax are defined by

(a∗xχ)(k)(x1, ..., xk) =
1√
k

k∑
i=1

δ(xi − x)χ(k−1)(x1, ..., xk\xi),

(axχ)(k)(x1, ..., xk) =
√
k + 1

∫
χ(k+1)(x1, ..., xk, x)dx,

with χ = (χ(k))k≥0 ∈ Fs.

2) (Equivalence to Bogoliubov theory for density matrices) Yet another way to understand
the Bogoliubov hierarchy was considered, e.g., in [95], motivated by ideas from [62]. If one

defines the density matrices γt : H(1),t → H(1),t and αt : H(1),t → H(1),t by

〈f, γtg〉 =
〈
χt, a

∗(g)a(f)χt
〉
Fs , 〈f, αtg〉 =

〈
χt, a(g)a(f)χt

〉
Fs ,

the hierarchy (2.48-2.50) is equivalent to the pair of coupled equations for γt and αt,

i∂tγt =
(
ht,ϕt +K(1),t

)
γt − γt

(
ht,ϕt +K(1),t

)
+K(2),tα∗t − αtK(2),t∗,

i∂tαt =
(
ht,ϕt +K(1),t

)
αt + αt

(
ht,ϕt +K(1),t

)T
+K(2),t +K(2),tγT

t + γtK
(2),t.

A similar system of Bogoliubov type equations was recently studied also in [10].
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3) Well-posedness of the Bogliubov hierarchy (2.48-2.50), or equivalently of the Schrödinger
equation (2.51) has been shown in [80, Section 4.3]. The main difficulty is the time-
dependence of Ht

Bog, and one essential ingredient is to show that K(2),t is a Hilbert-Schmidt
operator. This corresponds to the physical fact that only a finite number of correlations –
particles in Fs(q

t
1H1) – is created during time evolution.

Our last goal is to show that the corrections to the Hartree product in ΨN,t are effectively
described by the solutions of the Bogoliubov hierarchy, i.e.,

lim
N→∞

∣∣∣∣∣∣ΨN,t −
N∑
k=0

(
ϕ
⊗(N−k)
t ⊗s χ(k)

t

)∣∣∣∣∣∣ = 0. (2.52)

To this end, it remains to show that limN→∞ χ̃
(k)
N,t = χ

(k)
t .

Lemma 2.8. Let ϕ0,ΨN satisfy Assumptions A.2. If (χ̃
(k)
N,t)

N
k=0 is given by (2.45), and

(χ
(k)
t )k≥0 solves the Bogoliubov hierarchy (2.48) with initial condition χ

(k)
0 = χ̃

(k)
N,0 for all

0 ≤ k ≤ N , and χ
(k)
0 ≡ 0 for all k ≥ N + 1, then there exists a constant C such that for all

t ≥ 0,

N∑
k=0

||χ̃(k)
N,t − χ

(k)
t ||2 ≤

exp
(
C(1 + t)2

)
N

. (2.53)

Remark 2.7. We emphasize that the elements of the tuple (χ̃
(k)
N,t)

N
k=0 depend explicitly on N

whereas the time evolution of the sequence (χ
(k)
t )k≥0 is N -independent, and the sequence

depends on N only through the initial condition.

A quantitative version of (2.52) follows as a corollary of Theorem 2.6 and the previous
lemma.

Theorem 2.9. Let ϕ0,ΨN satisfy Assumptions A.2. If (χ
(k)
t )k≥0 solves the Bogoliubov

hierarchy (2.48) with initial condition

χ
(k)
0 =

√(
N

k

)( k∏
i=1

q0
i

)∫ ( N∏
i=k+1

ϕ0(xi)

)
ΨN (x1, ..., xN ) dxk+1 . . . dxN

for 0 ≤ k ≤ N , and χ
(k)
0 ≡ 0 for all k ≥ N + 1, then there exists a constant C such that for

all t ≥ 0,

∣∣∣∣∣∣ΨN,t −
N∑
k=0

(
ϕ
⊗(N−k)
t ⊗s χ(k)

t

)∣∣∣∣∣∣2 ≤ exp
(
C(1 + t)2)

N
. (2.54)

2.3 Proofs

We first state a technical lemma from which the proofs of the theorems then follow more
easily. It can essentially be read as estimates for terms like |

〈
ΦN ,

[
qϕ1 , A1

]
Φ̃N

〉
|, where A1

is a one-particle operator and ΦN , Φ̃N wave functions that are symmetric in almost all
coordinates. To have control of such terms is important in order to use each of the qt’s that
are available in the terms that need to be estimated. We defer its proof to Section 2.3.3.
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Lemma 2.10. Let ϕ ∈ H1, ΦN , Φ̃N ∈ HN , and pϕi = |ϕ(xi)〉〈ϕ(xi)|, qϕi = 1 − pϕi as in

Definition 2.1. Let further f̂ϕodd, f̂ϕeven as in (2.32) and (2.33) with ϕt replaced by ϕ.

1. Let A be an operator on H1 with ||Apϕ||2op + ||pϕA||2op <∞. Then,∣∣∣〈ΦN , q
ϕ
1A1p

ϕ
1 ΦN

〉
+
〈
ΦN , p

ϕ
1A1q

ϕ
1 ΦN

〉∣∣∣
≤
||f̂ϕoddΦN ||2

10
+ 10

(
||Apϕ||2op + ||pϕA||2op

)(
2||qϕ1 ΦN ||2 +

1

N

)
. (2.55)

2. Let v be a real-valued and even function satisfying v2 ≤ D(1 −∆) for some D > 0.
Then, ∣∣∣〈Φ̃N , q

ϕ
1 q

ϕ
2 v(x1 − x2)qϕ1 q

ϕ
2 ΦN

〉∣∣∣
≤ C

(
N ||qϕ1 q

ϕ
2 q

ϕ
3 Φ̃N ||2 + ||qϕ1 q

ϕ
2 Φ̃N ||2

)
+
||∇1q

ϕ
1 ΦN ||2 + ||qϕ1 ΦN ||2

N
(2.56)

for some positive constant C.

3. Let A12 = A21 be an operator on H2 with ||A12p
ϕ
2 ||op + ||pϕ2A12||op <∞. Then,∣∣∣〈ΦN ,

(
qϕ1 q

ϕ
2A12q

ϕ
1 p

ϕ
2 + h.c.

)
Φ̃N

〉∣∣∣
≤
||f̂ϕoddΦN ||2 + ||f̂ϕoddΦ̃N ||2

N
+ CN

(
||A12p

ϕ
2 ||

2
op + ||pϕ2A12||2op

)(
||qϕ1 q

ϕ
2 q

ϕ
3 ΦN ||2

+ ||qϕ1 q
ϕ
2 q

ϕ
3 Φ̃N ||2 +

||qϕ1 q
ϕ
2 ΦN ||2 + ||qϕ1 q

ϕ
2 Φ̃N ||2

N
+
||qϕ1 ΦN ||2 + ||qϕ1 Φ̃N ||2

N2
+

1

N3

)
(2.57)

2.3.1 Proofs of Theorems 2.6, 2.7 and 2.9

Without further mentioning, we will frequently apply Lemmas 2.3 and 2.4 throughout the
following proofs. Together with Assumptions A.2, they imply〈

ΦN,t,
(
Nqt1 +N2qt1q

t
2 +N3qt1q

t
2q
t
3

)
ΦN,t

〉
≤ exp

(
C(1 + t)3/2

)
(2.58)

where ΦN,t ∈ {ΨN,t, Ψ̃N,t}, as well as

||f̂ϕtoddΨ̃N,t||2 ≤ CN−1, ||f̂ϕtoddΨN,t||2 ≤ 2||ΨN,t − Ψ̃N,t||2 + CN−1. (2.59)

Proof of Theorem 2.6. Let βN (t) := ||ΨN,t− Ψ̃N,t||2 + ||∇1q
t
1ΨN,t||2. Our strategy is to show

that

βN (t) ≤ C
∫ t

0
βN (s) ds+

exp
(
C(1 + t)2

)
N

, (2.60)

and then conclude by means of the integral version of Gronwall’s inequality. By a standard
density argument, we can assume that ΨN = ΨN,0 ∈ H2

s (R3N ).6

6For given ΨN ∈ H1
s (R3N ), we choose Ψre

N ∈ H2
s (R3N ) with for instance ||ΨN − Ψre

N || ≤ N−2. One can

now carry out the argument with Ψre
N ∈ H2

s (R3N ) since UN (t, 0)Ψre
N and ŨN (t, 0)Ψre

N are differentiable w.r.t.

to t, and then one concludes by means of unitarity that ||ΨN,t− Ψ̃N,t|| ≤ ||(UN (t, 0)− ŨN (t, 0))Ψre
N ||+ 2N−2.
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Bound for ||ΨN,t − Ψ̃N,t||2. Using that Ht
N and H̃t

N are self-adjoint, together with (2.25)

and symmetry of the wave functions ΨN,t, Ψ̃N,t, we find for the time-derivative

∂t||ΨN,t − Ψ̃N,t||2 = 2 Im
〈
ΨN,t − Ψ̃N,t, H

t
NΨN,t − H̃t

N Ψ̃N,t

〉
= −2 Im

〈
Ψ̃N,t,

(
Ht
N − H̃t

N

)
ΨN,t

〉
= −N Im

〈
Ψ̃N,t, v

(3q,t)
12 ΨN,t

〉
(2.61)

−N Im
〈
Ψ̃N,t, v

(4q,t)
12 ΨN,t

〉
, (2.62)

with v
(3q,t)
12 and v

(4q,t)
12 defined as in (2.26) resp. (2.27). For the first line, we apply inequality

(2.57) with ||(v12 − v̄t1 − v̄t2)pt2||op ≤ C
√

1 + t. Then with (2.58) and (2.59), we obtain

|(2.61)| ≤ ||ΨN,t − Ψ̃N,t||2 +
eC(1+t)3/2

N
. (2.63)

In the second line, we find on the one hand that

N
∣∣∣〈Ψ̃N,t, q

t
1q
t
2v12q

t
1q
t
2ΨN,t

〉∣∣∣ ≤ ||∇1q
t
1ΨN,t||2 +

eC(1+t)3/2

N
, (2.64)

where we used inequality (2.56), and then applied again (2.58). On the other hand, we
directly obtain

N
∣∣∣〈Ψ̃N,t, q

t
1q
t
2

(
v̄t1 + v̄t2 − 2µt

)
qt1q

t
2ΨN,t

〉∣∣∣ ≤ eC(1+t)3/2

N
,

since ||v̄t||∞ + µt ≤ C
√

1 + t.

Bound for ||∇1q
t
1ΨN,t||2. The argument consists of two steps. First, we show that the

”bad part” of the kinetic energy can be bounded as follows:

||∇1q
t
1ΨN,t||2 ≤

1

5
||ΨN,t − Ψ̃N,t||2 +

∣∣ẼN,t(ΨN,t)− EH,t(ϕt)
∣∣+

eC(1+t)2

N
, (2.65)

where

ẼN,t(ΨN,t) := N−1
〈
ΨN,t, H̃

t
NΨN,t

〉
=
〈
ΨN,t,

(
ht,ϕt1 +

1

2
v

(2q,t)
12

)
ΨN,t

〉
(2.66)

denotes the energy per particle w.r.t. H̃t
N . Here, and also below, we are using the abbrevi-

ation

v
(2q,t)
12 = v

(2q,t)
21 :=

(
pt1q

t
2v12q

t
1p
t
2 + pt1p

t
2v12q

t
1q
t
2

)
+ h.c. (2.67)

In the second step, we then use energy conservation of the original Hamiltonian Ht
N –

modulo the change due to the external potential W t – in order to show that the energy
difference that appears on the r.h.s. in (2.65) can be approximated in terms of∣∣∣ẼN,t(ΨN,t)− EH,t(ϕt)

∣∣∣
≤
∣∣∣EN,0(ΨN )− EH,0(ϕ0)

∣∣∣+

∫ t

0
||ΨN,s − Ψ̃N,s||2ds+

eC(1+t)2

N
. (2.68)



2.3. Proofs 37

To obtain the first inequality, we multiply each of the ΨN,t in (2.66) by 1 = (pt1+qt1)(pt2+qt2),
and extract the ”bad part” of the kinetic energy:

ẼN,t(ΨN,t)− EH,t(ϕt) = ||∇1q
t
1ΨN,t||2

+
〈
ΨN,t, q

t
1

(
W t

1 + v̄t1

)
qt1ΨN,t

〉
(2.69)

+
〈
ΨN,t,

(
pt1h

t,ϕt
1 pt1 −

〈
ϕt, h

t,ϕt
1 ϕt

〉)
ΨN,t

〉
(2.70)

+ 2 Re
〈
ΨN,t,

(
pt1h

t,ϕt
1 qt1

)
ΨN,t

〉
(2.71)

+ 2
〈
ΨN,t,

(
pt1q

t
2v12q

t
1p
t
2

)
ΨN,t

〉
(2.72)

+ 2 Re
〈
ΨN,t,

(
pt1p

t
2v12q

t
1q
t
2

)
ΨN,t

〉
. (2.73)

All but the first line on the r.h.s. can be estimated using simple algebra together with (2.58)
and (2.59):

|(2.69)| ≤
(
||W t||∞ + ||v̄t||∞

)
||qt1ΨN,t||2 ≤ eC(1+t)3/2

N−1,

|(2.70)| =
〈
ϕt, h

ϕt
1 ϕt

〉
||qt1ΨN,t||2 ≤ eC(1+t)3/2

N−1,

|(2.72)| ≤ 2||v12p
t
2||op||qt1ΨN,t||2 ≤ eC(1+t)3/2

N−1,

|(2.73)| ≤ 2||v12p
t
2||op ||qt1qt2ΨN,t|| ≤ eC(1+t)3/2

N−1.

For the remaining line, we apply inequality (2.55) with A = ht,ϕt , and use (2.59):

|(2.71)| ≤ 1

5
||ΨN,t − Ψ̃N,t||2 +

C

5N
+ ||ht,ϕtpt||2op

eC(1+t)3/2

N
. (2.74)

Noting that ||ht,ϕtpt||op ≤ C||ϕt||H2 ≤ exp(Ct(1 + t)) completes the proof of inequality
(2.65).

In the second step, we estimate the energy difference on the r.h.s. of (2.65). For that,
we add and subtract EN,t(ΨN,t), and use the fact that only the time-dependent external
potential causes a change in the energy, i.e.,

EN,t(ΨN,t)− EN,0(ΨN ) =

∫ t

0

〈
ΨN,s,

(
∂sW

s(x1)
)

ΨN,s

〉
ds. (2.75)

Together with the analogous relation for the Hartree energy, cf. (2.17), we thus find∣∣∣ẼN,t(ΨN,t)− EH,t(ϕt)
∣∣∣ ≤ ∣∣∣EN,0(ΨN )− EH,0(ϕ0)

∣∣∣+
+
∣∣∣ẼN,t(ΨN,t)− EN,t(ΨN,t)

∣∣∣+

∫ t

0
ds
∣∣∣〈ΨN,s,

(
Ẇ s

1 −
〈
ϕs, Ẇ

sϕs
〉)

ΨN,s

〉∣∣∣, (2.76)

where Ẇ s ≡ ∂sW s. We proceed with∣∣∣〈ΨN,s,
(
Ẇ s

1 −
〈
ϕs, Ẇ

sϕs
〉)

ΨN,s

〉∣∣∣
≤
∣∣∣〈ΨN,s,

(
ps1Ẇ

s
1 p

s
1 −

〈
ϕsẆ

s
1ϕs

〉)
ΨN,s

〉∣∣∣+
∣∣∣〈ΨN,s,

(
qs1Ẇ

s
1 q

s
1

)
ΨN,s

〉∣∣∣
+ 2
∣∣∣〈ΨN,s,

(
ps1Ẇ

s
1 q

s
1

)
ΨN,s

〉∣∣∣
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≤ 1

5
||ΨN,s − Ψ̃N,s||2 + exp

(
C(1 + t)2

)
N−1,

where we used that Ẇ s is bounded, and applied one more time inequality (2.55). Eventually,
we note that ∣∣∣EN,t(ΨN,t)− ẼN,t(ΨN,t)

∣∣∣ ≤ 1

N

(
||∇1q

t
1ΨN,t||2 +

eC(1+t)2

N

)
, (2.77)

which one verifies following the same steps as in the estimates for (2.61) and (2.62).

Conclusion. Adding everything up, we obtain (2.60) and can apply the Gronwall argument
which proves that βN (t) ≤ exp

(
C(1 + t)2

)
N−1.

Proof of Theorem 2.7. Bound for the trace norm. We start from the fact that

Tr
∣∣∣γ(1)

ΨN,t
− |ϕt〉〈ϕt|

∣∣∣ = sup
||A||≤1

∣∣∣Tr
(
Aγ

(1)
ΨN,t
−A|ϕt〉〈ϕt|

)∣∣∣ (2.78)

where the supremum is taken over compact operators A acting on H1 with norm smaller or
equal to one (the identity follows from duality between trace class operators and compact
operators). Inserting 1 = pt1 + qt1 around A1, we find

Tr
(
Aγ

(1)
ΨN,t
−A|ϕt〉〈ϕt|

)
=
〈
ΨN,t, A1ΨN,t

〉
−
〈
ϕt, Aϕt

〉
=
〈
ΨN,t, p

t
1A1p

t
1ΨN,t

〉
−
〈
ϕt, A1ϕt

〉
+
〈
ΨN,t, q

t
1A1q

t
1ΨN,t

〉
(2.79)

+
〈
ΨN,t, p

t
1A1q

t
1ΨN,t

〉
+
〈
ΨN,t, q

t
1A1p

t
1ΨN,t

〉
. (2.80)

The first line is small, since using pt1A1p
t
1 = 〈ϕt, Aϕt〉pt1, 1−pt1 = qt1, ||A||op ≤ 1, and (2.58),

we obtain

|(2.79)| ≤ 2||qt1ΨN,t||2 ≤
eC(1+t)3/2

N
. (2.81)

For the second line, we use inequality (2.55) with ||Apt||op ≤ 1, then Theorem 2.6 together
with (2.58) and (2.59) in order to find

|(2.80)| ≤ ||ΨN,t − Ψ̃N,t||2 + ||f̂ϕtoddΨ̃N,t||2 +
(
||qt1ΨN,t||2 +

1

N

)
≤ eC(1+t)2

N
. (2.82)

Bound for the energy trace norm. This part of the theorem follows essentially from
the estimate for ||∇1q

t
1ΨN,t|| in Theorem 2.6. We start from

Tr
∣∣∣√1−∆

(
γ

(1)
ΨN,t
− |ϕt〉〈ϕt|

)√
1−∆

∣∣∣
= sup
||A||≤1

∣∣∣Tr
(
A
√

1−∆
(
γ

(1)
ΨN,t
− |ϕt〉〈ϕt|

)√
1−∆

)∣∣∣, (2.83)

where the supremum is taken again over all compact operators A with norm less or equal
than one. Using the abbreviation B :=

√
1−∆A

√
1−∆, we compute

Tr
(
A
√

1−∆
(
γ

(1)
ΨN,t
− |ϕt〉〈ϕt|

)√
1−∆

)
=
〈
ΨN,t, p

t
1B1p

t
1ΨN,t

〉
− 〈ϕt, B1ϕt〉 (2.84)

+
〈
ΨN,t, q

t
1Bq

t
1ΨN,t

〉
(2.85)
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+
〈
ΨN,t, q

t
1B1p

t
1ΨN,t

〉
+
〈
ΨN,t, p

t
1B1q

t
1ΨN,t

〉
. (2.86)

The first line,

|(2.84)| = 〈ϕt, Bϕt〉 ||qt1ΨN,t||2 ≤
eC(1+t)2

N
, (2.87)

since ||
√

1−∆ϕt||2 = ||ϕt||2 + ||∇ϕt||2 ≤ C(1 + t), cf. (2.18). For the second line, we find

|(2.85)| ≤ ||
√

1−∆1q
t
1ΨN,t||2 = ||qt1ΨN,t||2 + ||∇1q

t
1ΨN,t||2 ≤

eC(1+t)2

N
, (2.88)

where we used Theorem 2.6 and (2.58). The last line is the one which causes the weaker
rate of convergence in (2.41) compared to (2.40). Note here that due to the presence of the
gradients in B, one can not use the smallness of the odd part in ΨN,t any more, and thus one
loses a factor N−1/2. Using the Cauchy-Schwarz inequality and ||

√
1−∆pt||op ≤ C(1 + t),

one finds hat

|(2.86)| ≤ 2||
√

1−∆pt||op
(
||qt1ΨN,t||+ ||∇1q

t
1ΨN,t||

)
≤ eC(1+t)2

√
N

. (2.89)

This completes the proof of the theorem.

Proof of Theorem 2.9. Using the triangle inequality and Theorem 2.6, we know that

∣∣∣∣∣∣ΨN,t −
N∑
k=0

(
ϕ
⊗(N−k)
t ⊗s χ(k)

t

)∣∣∣∣∣∣ ≤ eC(1+t)2

√
N

+
∣∣∣∣∣∣Ψ̃N,t −

N∑
k=0

(
ϕ
⊗(N−k)
t ⊗s χ(k)

t

)∣∣∣∣∣∣. (2.90)

Then, with Lemma 2.8 and ||ϕt|| = 1, it follows that

∣∣∣∣∣∣Ψ̃N,t −
N∑
k=0

(
ϕ
⊗(N−k)
t ⊗s χ(k)

t

)∣∣∣∣∣∣2 =
N∑
k=0

||χ̃(k)
N,t − χ

(k)
t ||2 ≤

exp
(
C(1 + t)2

)
N

. (2.91)

2.3.2 Preliminaries for proofs of the remaining lemmas

We summarize some necessary definitions and preliminary assertions that are needed to
prove the remaining lemmas. Readers familiar with the method that was introduced in
[103] may skip this section except for Lemma 2.16.

Let ϕ ∈ H1, pϕi = |ϕ(xi)〉〈ϕ(xi)| and qϕi = 1− pϕi .

Definition 2.11. Define the family of projectors (PϕN,k)
N
k=0, PϕN,k : HN → HN by

PϕN,k =
( k∏
i=1

qϕi

N∏
j=k+1

pϕi

)
sym

=
∑
a∈Ak

N∏
i=1

(qϕi )ai(pϕi )1−ai (2.92)

with

Ak =
{
a = (a1, ..., aN ) ∈ {0, 1}N :

N∑
i=1

ai = k
}
. (2.93)
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We also set PϕN,k = 0 for all k < 0 and k > N . Note the following properties:

1. PϕN,k is an orthogonal projector,

2. PϕN,kP
ϕ
N,l = δklP

ϕ
N,k,

3. 1 =
∑N

k=0 P
ϕ
N,k (this follows from ∪Nk=0Ak = {0, 1}N ),

4.
[
pϕi , P

ϕ
N,k

]
= 0 =

[
qϕi , P

ϕ
N,k

]
.

Definition 2.12. We call any function f : {0, 1, ..., N} → R+
0 a weight function (or simply

weight) and define the linear combination of weighted projectors w.r.t. the weight f by f̂ϕ,

f̂ϕ : HN → HN , f̂ϕΨN =
N∑
k=0

f(k)PϕN,kΨN . (2.94)

For any integer |d| ≤ N , we define the shift operator τd by

τdf : {0, 1, ..., N} → R+
0 , (τdf)(k) =


0 for k + d < 0,

f(k + d) for 0 ≤ k + d ≤ N,
0 for N < k + d.

It is straightforward to see (using property 4 resp. 2 below Definition 2.11) that

1. ||f̂ϕ||op ≤ supk∈[0,N ] f(k),

2. [f̂ϕ, pϕi ] = 0 = [f̂ϕ, qϕi ], [f̂ϕ, PϕN,k] = 0,

3.

ĝϕf̂ϕ =

N∑
k,l=0

f(k)g(l)PϕN,kP
ϕ
N,l =

N∑
k=0

g(k)f(k)PϕN,k = (̂gf)
ϕ

= (̂fg)
ϕ

= f̂ϕĝϕ (2.95)

for any two weights f, g.

We shall make frequent use of the weight functions

m(k) =
k

N
, n(k) =

√
k

N
. (2.96)

They satisfy two important properties, namely

1

N

N∑
i=1

qϕi =
1

N

N∑
i=1

qϕi

( N∑
k=0

PϕN,k

)
=

1

N

N∑
k=1

N∑
i=1

qϕi P
ϕ
N,k =

1

N

N∑
k=1

kPϕN,k = m̂ϕ, (2.97)

and

τ̂dm
ϕ = (̂τdn)2

ϕ
= (τ̂dn

ϕ)(τ̂dn
ϕ). (2.98)

We further introduce the corresponding ”inverse” weight functions

µ(k) =

{
0 for k = 0,
N
k for 1 ≤ k ≤ N,

ν(k) =

{
0 for k = 0,√

N
k for 1 ≤ k ≤ N,

(2.99)
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which satisfy

m̂ϕµ̂ϕ = m̂µϕ =
N∑
k=0

m(k)n(k)PϕN,k =
N∑
k=1

PϕN,k = 1− PϕN,0, n̂ϕν̂ϕ = 1− PϕN,0, (2.100)

and also

τ̂dµ
ϕ = (̂τdν)2

ϕ
= (τ̂dν

ϕ)(τ̂dν
ϕ). (2.101)

Remark 2.8. The above definition is in agreement with (2.32) and (2.33) if we set

feven(k) =

{
1 for k even,

0 for k odd,
fodd(k) = 1− feven(k).

It follows immediately from the properties of (PϕN,k)
N
k=0 that f̂ϕodd + f̂ϕeven = 1, f̂ϕoddf̂

ϕ
even =

f̂ϕevenf̂
ϕ
odd = 0, as well as f̂ϕevenf̂

ϕ
even = f̂ϕeven and f̂ϕoddf̂

ϕ
odd = f̂ϕodd.

Lemma 2.13 (Pull through formula). Let Q
(0)
12 = pϕ1 p

ϕ
2 , Q

(1)
12 = pϕ1 q

ϕ
2 + qϕ1 p

ϕ
2 and Q

(2)
12 =

qϕ1 q
ϕ
2 , and let f be an arbitrary weight function, and A12 any operator on L2(R3)⊗L2(R3).

Then the following commutation rule holds for 0 ≤ i, j ≤ 2:

Q
(i)
12A12Q

(j)
12 f̂

ϕ = τ̂j−if
ϕ
Q

(i)
12A12Q

(j)
12 . (2.102)

Let us explain this for a simple example, i = 2, j = 0 and A12 = v12 and ΨN = ϕ⊗N :

qϕ1 q
ϕ
2 v12p

ϕ
1 p

ϕ
2

(
f̂ϕϕ⊗N

)
= τ̂2f

ϕ
(
qϕ1 q

ϕ
2 v12p

ϕ
1 p

ϕ
2ϕ
⊗N
)
. (2.103)

Proof. For 0 ≤ k ≤ N and r ∈ {0, ..., N − 1}, we set

Pϕ,rN,k =
∑
a∈Ark

N∏
i=r+1

(qϕi )ai(pϕi )1−ai (2.104)

with

Ark =
{
a = (a1, ..., aN−r) ∈ {0, 1}N−r :

N−r∑
i=1

ai = k
}
. (2.105)

For k < 0 and k > N , let Pϕ,rN,k = 0. Then, for j ∈ {0, 1, 2} (note that j is the number of

qϕ’s in Q
(j)
12 ),

Q
(j)
12 f̂

ϕ =
N∑
k=0

f(k)Q
(j)
12 P

ϕ
N,k =

N∑
k=0

f(k)Q
(j)
12 P

ϕ,2
N,k−j =

N−j∑
k=−j

f(k + j)Q
(j)
12 P

ϕ,2
N,k, (2.106)

The pull through formula follows from the fact that Pϕ,2N,k commutes with A12:

Q
(i)
12A12Q

(j)
12 f̂

ϕ =

N−j∑
k=−j

f(k + j)Pϕ,2N,kQ
(i)
12A12Q

(j)
12 (2.107)
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=

N−j∑
k=−j

f(k + j)PϕN,k+iQ
(i)
12A12Q

(j)
12

=

N+i−j∑
k=i−j

f(k + j − i)PϕN,kQ
(i)
12A12Q

(j)
12 (2.108)

=

N∑
k=0

(τj−if)(k)PϕN,kQ
(i)
12A12Q

(j)
12 = τ̂j−if

ϕ
Q

(i)
12A12Q

(j)
12 .

Definition 2.14. We define the so called counting functional w.r.t. ϕ and with weight f
by 〈

·, f̂ϕ ·
〉

: HN → R+
0 , ΨN 7→

〈
ΨN , f̂

ϕΨN

〉
. (2.109)

For ϕt ∈ H1(R3) the solution of the Hartree equation (2.6), and any ΨN ∈ HN , the mapping
t 7→ 〈ΨN , f̂

ϕtΨN 〉 is differentiable with derivative

∂t
〈
ΨN , f̂

ϕtΨN

〉
= −i

〈
ΨN ,

[ N∑
i=1

ht,ϕti , f̂ϕt
]
ΨN

〉
. (2.110)

Proof. We recall Definition (2.1) for the set of projectors (PϕtN,k)
N
k=0 and introduce the

abbreviation Rϕti = (qti)
ai(pti)

1−ai such that

PϕtN,k =
∑
a∈Ak

N∏
i=1

(qti)
ai(pti)

1−ai =
∑
a∈Ak

N∏
i=1

Rϕti . (2.111)

Taking the time-derivative, one finds with ∂tR
ϕt
m = −i

[
ht,ϕtm , Rϕtm

]
,

∂tP
ϕt
N,k =

∑
a∈Ak

∂t

( N∏
i=1

Rϕti

)

=
∑
a∈Ak

N∑
m=1

(m−1∏
i=1

Rϕti

)(
∂tR

ϕt
m

)( N∏
i=m+1

Rϕti

)

= −i
∑
a∈Ak

N∑
m=1

(m−1∏
i=1

Rϕti

)[
ht,ϕtm , Rϕtm

]( N∏
i=m+1

Rϕti

)
= −i

[ N∑
m=1

ht,ϕtm , PϕtN,k

]
. (2.112)

Lemma 2.15. Let ϕt ∈ H1(R3) be the solution to the Hartree equation (2.6) with ϕ0 ∈
H1(R3), ||ϕ0|| = 1. We set

Zϕt(x1 − x2) =
1

2

(
v(x1 − x2)−

(
v ∗ |ϕt|2

)
(x1)−

(
v ∗ |ϕt|2

)
(x2)

)
, (2.113)

and, for any Ψ ∈ HN , let
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(I)ϕtf,ΨN = 4N Im
〈
ΨN ,

(
f̂ϕt − τ̂−1f

ϕt)
qt1p

t
2Z

ϕt(x1 − x2)pt1p
t
2ΨN

〉
, (2.114)

(II)ϕtf,ΨN = 2N Im
〈
ΨN ,

(
f̂ϕt − τ̂−2f

ϕt)
qt1q

t
2Z

ϕt(x1 − x2)pt1p
t
2ΨN

〉
, (2.115)

(III)ϕtf,ΨN = 4N Im
〈
ΨN ,

(
f̂ϕt − τ̂−1f

ϕt)
qt1q

t
2Z

ϕt(x1 − x2)pt1q
t
2ΨN

〉
, (2.116)

with f being any weight function. Then, with ΨN ∈ H2
s (R3N ), ||ΨN || = 1, we have

1. for ΨN,t = UN (t, 0)ΨN ,

∂t
〈
ΨN,t, f̂

ϕtΨN,t

〉
= (I)ϕtf,ΨN,t + (II)ϕtf,ΨN,t + (III)ϕtf,ΨN,t . (2.117)

2. for Ψ̃N,t = ŨN (t, 0)ΨN ,

∂t
〈
Ψ̃N,t, f̂

ϕtΨ̃N,t

〉
= (II)ϕt

f,Ψ̃N,t
. (2.118)

Remark 2.9. By the identity in (2.97), it follows that

αN (t) =
〈
ΨN,t, q

t
1ΨN,t

〉
=
〈
ΨN,t, m̂

ϕtΨN,t

〉
. (2.119)

Using m̂ϕt − τ̂−dm
ϕt = d

N

∑N
k=d P

ϕt
N,k (for d = 1, 2), one can apply Lemma 2.15 in order to

obtain (2.31).

Proof of Lemma 2.15. Using (2.110), the fact that ΨN,t solves the Schrödinger equation
and the symmetry of ΨN,t, we find that the time-derivative of the counting functional is
given by

∂t
〈
ΨN,t, f̂

ϕtΨN,t

〉
= i
〈
ΨN,t,

[
Ht
N −

N∑
i=1

ht,ϕti , f̂ϕt
]
ΨN,t

〉
= i
〈
ΨN,t,

[N
2
v(x1 − x2)− N

2

(
v ∗ |ϕt|2

)
(x1)− N

2

(
v ∗ |ϕt|2

)
(x2), f̂ϕt

]
ΨN,t

〉
= iN

〈
ΨN,t,

(
Zϕt(x1 − x2)f̂ϕt − f̂ϕtZϕt(x1 − x2)

)
ΨN,t

〉
. (2.120)

Multiplying both of the ΨN,t with the identity 1 = (pt1 + qt1)(pt2 + qt2), leads to

∂t
〈
ΨN,t, f̂

ϕtΨN,t

〉
= iN

〈
ΨN,t, p

t
1p
t
2

(
Zϕt(x1 − x2)f̂ϕt − f̂ϕtZϕt(x1 − x2)

)
pt1p

t
2ΨN,t

〉
+ 2iN

〈
ΨN,t, p

t
1q
t
2

(
Zϕt(x1 − x2)f̂ϕt − f̂ϕtZϕt(x1 − x2)

)
pt1q

t
2ΨN,t

〉
+ 2iN

〈
ΨN,t, p

t
1q
t
2

(
Zϕt(x1 − x2)f̂ϕt − f̂ϕtZϕt(x1 − x2)

)
qt1p

t
2ΨN,t

〉
+ iN

〈
ΨN,t, q

t
1q
t
2

(
Zϕt(x1 − x2)f̂ϕt − f̂ϕtZϕt(x1 − x2)

)
qt1q

t
2ΨN,t

〉
+ 2iN

〈
ΨN,t, p

t
1p
t
2

(
Zϕt(x1 − x2)f̂ϕt − f̂ϕtZϕt(x1 − x2)

)
qt1p

t
2ΨN,t

〉
+ c.c.

+ iN
〈
ΨN,t, p

t
1p
t
2

(
Zϕt(x1 − x2)f̂ϕt − f̂ϕtZϕt(x1 − x2)

)
qt1q

t
2ΨN,t

〉
+ c.c.

+ 2iN
〈
ΨN,t, p

t
1q
t
2

(
Zϕt(x1 − x2)f̂ϕt − f̂ϕtZϕt(x1 − x2)

)
qt1q

t
2ΨN,t

〉
+ c.c.

(2.121)
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where c.c. denotes the complex conjugate of the preceding expression. Application of the
pull through formula (Lemma 2.13) shows that all but the last three lines are identically
zero. In the last three lines, we also use the Pull through formula and then that Zϕt(x1−x2)
is a symmetric operator.

By the same argument, one finds as well (2.118). The only difference is that (I) and (III)
are identically zero due to the definition of the potential in H̃t

N .

Lemma 2.16. Let ϕt ∈ H1(R3) be the solution to the Hartree equation (2.6) with ϕ0 ∈
H1(R3), ||ϕ0|| = 1, and let m(k) = k

N as in (2.96). It holds that for any Ψ ∈ HN ,

(I)ϕtmn,ΨN = 0,
∣∣∣(II)ϕtmn,ΨN ∣∣∣+

∣∣∣(III)ϕtmn,ΨN ∣∣∣ ≤ Cn||ϕt||H1

n∑
l=0

〈
ΨN , (m̂

ϕt)lΨN

〉
Nn−l . (2.122)

Proof of Lemma 2.16. Term (I). The first term is identically zero for any n, (I)ϕtmn,ΨN = 0,

because pt2v(x1 − x2)pt2 in

pt2Z
ϕt(x1 − x2)pt2 = pt2v(x1 − x2)pt2 − pt2

(
v ∗ |ϕt|2

)
(x1)pt2 = 0 (2.123)

cancels exactly the mean field potential. It is this term which determines the choice of the
effective potential in the Hartree equation.

For the second and third term, we need to compute the difference

(m̂ϕt)n − (τ̂−dm
ϕt)n =

N∑
k=0

[( k
N

)n
−
(k − d

N

)n]
PϕtN,k =

n−1∑
l=0

Cn,l,d
Nn−l (m̂

ϕt)l, (2.124)

where the constants Cn,l,d =
(
n
l

)
(−d)n−l are determined by the binomial expansion of

(k − d)n.

Term (II). Note that pt2v̄
t
1q
t
2 = 0 and recall the pull through formula as well as the weight

functions m,n and µ, ν and also that qϕ1 ΨN = (1−PϕtN,0)qϕt1 ΨN = (ν̂ϕt n̂ϕt)qϕt1 ΨN by means
of (2.100). It follows∣∣(II)ϕtmn,ΨN ∣∣

=
∣∣∣ n−1∑
l=0

Cn,l,−2

Nn−l−1

〈
ΨN , (m̂

ϕt)l
(
qt1q

t
2v12p

t
1p
t
2

)
ΨN

〉∣∣∣
=
∣∣∣ n−1∑
l=0

Cn,l,−2

Nn−l−1

〈
ΨN , (m̂

ϕt)l/2ν̂ϕt
(
qt1q

t
2v12p

t
1p
t
2

)
(τ̂−2m

ϕt)l/2τ̂−2n
ϕtΨN

〉∣∣∣
≤

n−1∑
l=0

|Cn,l,−2|
Nn−l−1

||v12p
t
1||op ||qt1qt2(m̂ϕt)l/2ν̂ϕtΨN || ||(τ̂−2m

ϕt)(l+1)/2ΨN ||

≤
n−1∑
l=0

|Cn,l,−2|
Nn−l−1

||v12p
t
1||op

√√√√ l+1∑
j=0

(
l + 1

j

)( 2

N

)l+1−j〈
ΨN (m̂ϕt)jΨN

〉〈
ΨN , qt1q

t
2(m̂ϕt)lµ̂ϕtΨN

〉
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≤
n−1∑
l=0

|Cn,l,−2|
Nn−l−1

||v12p
t
1||op

l+1∑
j=0

(
l + 1

j

)( 2

N

)l+1−j〈
ΨN , (m̂

ϕt)jΨN

〉
≤ Cn||ϕt||H1

n∑
l=0

〈
ΨN , (m̂

ϕt)lΨN

〉
Nn−l (2.125)

The essential ingredient here is the symmetry of the wave function which ensures that not
all mass can be located around, e.g., x1 ≈ x2 (for general ΨN ∈ L2(R3N ), the second term
would not be necessarily small).

Term (III). Again via the pull through formula, and similarly as in (II),

∣∣(III)ϕtmn,ΨN ∣∣ =
∣∣∣ n−1∑
l=0

Cn,l,−1

Nn−l−1

〈
ΨN ,

(
qt1q

t
2(v12 − v̄t1)qt1p

t
2

)
(m̂ϕt)lΨN

〉∣∣∣
=
∣∣∣ n−1∑
l=0

Cn,l,−1

Nn−l−1

〈
(τ̂−1m

ϕt)l/2ΨN ,
(
qt1q

t
2(v12 − v̄t1)qt1p

t
2

)
(m̂ϕt)l/2ΨN

〉∣∣∣
≤

n−1∑
l=0

|Cn,l,−1|
Nn−l−1

(
||v12p

t
2||op + ||v̄t||∞

)
||qt1(m̂ϕt)l/2ΨN || ||qt1(τ̂−1m

ϕt)l/2ΨN ||

≤ Cn||ϕt||H1

n∑
l=0

〈
ΨN , (m̂

ϕt)lΨN

〉
Nn−l . (2.126)

2.3.3 Proofs of Lemmas 2.3, 2.4, 2.8 and 2.10

We begin with

Proof of Lemma 2.10. Let ΦN , Φ̃N ∈ HN and ϕ ∈ H1.

1. By means of the pull through formula (2.102) together with the fact that f̂ϕevenf̂
ϕ
odd = 0,

we obtain

f̂ϕodd

(
pϕ1A1q

ϕ
1

)
f̂ϕodd = 0 = f̂ϕeven

(
pϕ1A1q

ϕ
1

)
f̂ϕeven. (2.127)

Moreover, it follows from (2.100) and PϕN,0q
ϕ
1 = 0 that qϕ1

(
n̂ϕν̂ϕ

)
ΦN = qϕ1 ΦN . Thus, one

finds for the first term on the left side of (2.55),∣∣∣〈ΦN ,
(
pϕ1A1q

ϕ
1

)
ΦN

〉∣∣∣
=
∣∣∣〈f̂ϕoddΦN ,

(
pϕ1A1q

ϕ
1

)
f̂ϕevenΦN

〉
+
〈
f̂ϕevenΦN ,

(
pϕ1A1q

ϕ
1

)(
n̂ϕν̂ϕ

)
f̂ϕoddΦN

〉∣∣∣. (2.128)

Next, we apply again the pull through formula (2.102) in order to move n̂ϕ to the left of the
scalar product, and then use the Cauchy-Schwarz inequality together with the properties
summarized below Definition 2.12. We make use of qϕ1 (ν̂ϕ)2 = 1, as expectation values on

HN (recall that f̂ϕoddΦN ∈ HN ), and eventually use (τ̂dn
ϕ)2 = τ̂dm

ϕ = d
N + m̂ϕ which

implies

〈
ΦN , (τ̂dn

ϕ)2ΦN

〉
≤ |d|
N

+ ||qϕ1 ΦN ||2, (2.129)
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Hence, one obtains

(2.128) =
∣∣∣〈f̂ϕoddΦN ,

(
pϕ1A1q

ϕ
1

)
f̂ϕevenΦN

〉
+
〈
τ̂−1n

ϕ
f̂ϕevenΦN ,

(
pϕ1A1q

ϕ
1

)
ν̂ϕf̂ϕoddΦN

〉∣∣∣
≤ ||f̂ϕoddΦN || ||pϕ1A1||op ||qϕ1 ΦN ||+ ||τ̂−1n

ϕ
ΦN || ||pϕ1A1||op ||qϕ1 ν̂

ϕf̂ϕoddΦN ||

≤ 20−1||f̂ϕoddΦN ||2 + 10||pϕ1A1||2op
(
||qϕ1 ΦN ||2 + ||τ̂−1n

ϕ
ΦN ||2

)
≤ 20−1||f̂ϕoddΦ̃N ||2 + 10||pϕ1A1||2op

(
2||qϕ1 ΦN ||2 +N−1

)
. (2.130)

For the second term on the left side of (2.55), we proceed along the same steps which leads
to the first statement of the lemma.

2. We use qϕ1 Φ̃N =
(
n̂ϕν̂ϕ

)
qϕ1 Φ̃N = qϕ1

(
n̂ϕν̂ϕ

)
Φ̃N , apply the pull through formula and then

the Cauchy-Schwarz inequality,∣∣∣〈ΦN ,
(
qϕ1 q

ϕ
2 v12q

ϕ
1 q

ϕ
2

)(
n̂ϕν̂ϕ

)
Φ̃N

〉∣∣∣ ≤ ||qϕ1 qϕ2 n̂ϕΦN || ||v12q
ϕ
1 q

ϕ
2 ν̂

ϕΦ̃N ||. (2.131)

In the second factor, we invoke the assumed bound on v, i.e., v2 ≤ C(1−∆),

||v12q
ϕ
1 q

ϕ
2 ν̂

ϕΦ̃N ||2 ≤ C
(
||∇1q

ϕ
1 q

ϕ
2 ν̂

ϕΦ̃N ||2 + ||qϕ1 Φ̃N ||2
)
, (2.132)

and then we use symmetry of Φ̃N in combination with (2.97), in order to find〈
Φ̃N ,

(
qϕ2 ν̂

ϕν̂ϕ
)
qϕ1 (−∆1)qϕ1 Φ̃N

〉
≤ N

N − 1

〈
Φ̃N ,

(
m̂ϕµ̂ϕ

)
qϕ1 (−∆1)qϕ1 Φ̃N

〉
.

In the first factor, we make use of (n̂ϕ)2 = m̂ϕ and (2.97), and use the symmetry of ΦN , in
order to obtain

(2.131) ≤ C
(
N ||qϕ1 q

ϕ
2 q

ϕ
3 ΦN ||2 + ||qϕ1 q

ϕ
2 ΦN ||2

)
+
||∇1q

ϕ
1 Φ̃N ||2 + ||qϕ1 Φ̃N ||2

N
. (2.133)

3. Following the argument as in part 1, with some obvious modifications, one finds∣∣∣〈ΦN ,
(
qϕ1 q

ϕ
2A12q

ϕ
1 p

ϕ
2

)
Φ̃N

〉∣∣∣
=
∣∣∣〈f̂ϕoddΦN , µ̂

ϕ
(
qϕ1 q

ϕ
2A12q

ϕ
1 p

ϕ
2

)
τ̂−1m

ϕ
f̂ϕevenΦ̃N

〉
+
〈
f̂ϕevenΦN , τ̂1n

ϕ
(
qϕ1 q

ϕ
2A12q

ϕ
1 p

ϕ
2

)
ν̂ϕf̂ϕoddΦ̃N

〉∣∣∣
≤ ||A12p

ϕ
2 ||op

(
||µ̂ϕqϕ1 q

ϕ
2 f̂

ϕ
oddΦN || ||qϕ1 τ̂−1m

ϕ
Φ̃N ||+ ||τ̂1n

ϕqϕ1 q
ϕ
2 ΦN || ||qϕ1 ν̂

ϕf̂ϕoddΦ̃N ||
)

≤
||f̂ϕoddΦN ||2 + ||f̂ϕoddΦ̃N ||2

2N
+ C||A12p

ϕ
2 ||

2
opN

(
||qϕ1 q

ϕ
2 q

ϕ
3 Φ̃N ||2 + ||qϕ1 q

ϕ
2 q

ϕ
3 ΦN ||2+

+
||qϕ1 q

ϕ
2 Φ̃N ||2 + ||qϕ1 q

ϕ
2 ΦN ||2

N
+
||qϕ1 Φ̃N ||2 + ||qϕ1 ΦN ||2

N2
+

1

N3

)
. (2.134)

The term containing the Hermitian conjugate is estimated in the same manner.

Proof of Lemma 2.3. First note that

〈
ΦN,t,

( n∏
j=1

qtj

)
ΦN,t

〉
≤
〈
ΦN,t, (m̂

ϕt)nΦN,t

〉
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which follows from the symmetry of ΦN,t together with (2.97) and (k − i)/(N − i) ≤ k/N
for i ≤ k ≤ N . From Lemmas 2.15 and 2.16 we know that

d

dt

〈
ΦN,t, (m̂

ϕt)nΦN,t

〉
≤ ||ϕt||H1

n∑
l=0

〈
ΦN,t, (m̂

ϕt)lΦN,t

〉
Nn−l . (2.135)

(note that it is again sufficient to prove the bound for ΦN,t ∈ {ΨN,t, Ψ̃N,t} with ΨN ∈
H2(R3N ) in order to conclude the statement of the Lemma via a density argument). The
remainder of the argument follows by induction. Assume that for all k ≤ n− 1,

〈
ΦN,t, (m̂

ϕt)kΦN,t

〉
≤ eC(1+t)3/2

k∑
l=0

Cn,k
N l−n

〈
ΨN , (m̂

ϕ0)lΨN

〉
. (2.136)

By means of (2.135) and ||ϕt||H1 ≤ C
√

1 + t, Gronwall’s inequality implies that

〈
ΦN,t, (m̂

ϕt)nΦN,t

〉
≤ eC(1+t)3/2

n∑
l=0

Cn,l
N l−n

〈
ΨN , (m̂

ϕ0)lΨN

〉
. (2.137)

The case n = 1 follows as well with Gronwall’s inequality, cf. Lemmas 2.15 and 2.16,

∂t
〈
ΦN,t, m̂

ϕtΨN,t

〉
≤ C
√

1 + t
(〈

ΦN,t, m̂
ϕtΦN,t

〉
+

1

N

)
(2.138)

⇒
〈
ΦN,t, m̂

ϕtΦN,t

〉
≤ eC(1+t)3/2

(〈
ΨN , m̂

ϕ0ΨN

〉
+

1

N

)
.

This completes the proof of the lemma since

〈
ΨN , (m̂

ϕ0)nΨN

〉
≤

n∑
i=1

1

Nn−i
〈
ΨN ,

( i∏
j=1

q0
j

)
ΨN

〉
(2.139)

which is verified using again (2.97).

Proof of Lemma 2.4. The time-derivative of ||f̂ϕtoddΨ̃N,t||2 is given by

∂t
〈
Ψ̃N,t, f̂

ϕt
oddΨ̃N,t

〉
= (II)ϕt

fodd,Ψ̃N,t

= 2N Im
〈
Ψ̃N,t,

(
f̂ϕtodd − τ̂−2f

ϕt

odd

)
qt1q

t
2v12p

t
1p
t
2Ψ̃N,t

〉
, (2.140)

cf. Lemma 2.15. Recalling the definition of the shifted weight function,

f̂ϕtodd − τ̂−2f
ϕt

odd = f(1)PϕtN,1 = PϕtN,1, (2.141)

and the fact that

qt1q
t
2P

ϕt
N,1 = 0 (2.142)

shows that ||f̂ϕtoddΨ̃N,t|| = ||f̂ϕ0

oddΨ̃N,0||. A similar calculation holds for the even case.

Proof of Lemma 2.8. Using the decomposition in (2.46), it can be verified by direct calcula-
tion that if Ψ̃N,t solves the Schrödinger equation i∂tΨ̃N,t = H̃t

N Ψ̃N,t, then the corresponding
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correlation functions (χ̃
(k)
N,t)

N
k=0, defined as in (2.45), solve the following system of coupled

equations.

i∂tχ̃
(0)
N,t =

√
N

N − 1
B(2→0),tχ̃

(2)
N,t (2.143)

i∂tχ̃
(1)
N,t =

(
ht,ϕt +K(1),t

)
χ̃

(1)
N,t +

√
N − 2

N − 1
B(3→1),tχ̃

(3)
N,t, (2.144)

and for all 2 ≤ k ≤ N ,

i∂tχ̃
(k)
N,t =

k∑
i=1

(
ht,ϕti +

N − k
N − 1

K
(1),t
i

)
χ̃

(k)
N,t

+

√
(N − k + 2)(N − k + 1)

N − 1
A(k−2→k),tχ̃

(k−2)
N,t

+

√
(N − k)(N − k − 1)

N − 1
B(k+2→k),tχ̃

(k+2)
N,t . (2.145)

Recall that we are using the convention χ̃
(k)
N,t ≡ 0 for all k ≥ N+1. Here we have introduced

the abbreviations

A(k−2→k),tχ̃
(k−2)
N,t =

1

2
√
k(k − 1)

∑
1≤i<j≤k

K(2),t(xi, xj)χ̃
(k−2)
N,t (x1, ..., xk\xi\xj),

B(k+2→k),tχ̃
(k+2)
N,t =

√
(k + 1)(k + 2)

2

∫ ∫
K(2),t(x, y)χ̃

(k+2)
N,t (x1, ..., xk, x, y)dxdy,

with K(1),t and K(2),t(x, y) defined as below (2.50). Let us explain how one arrives at

(2.143)-(2.145). Taking the time-derivative of χ̃
(k)
N,t, one finds

i∂tχ̃
(k)
N,t =

N∑
i=1

ht,ϕti χ̃
(k)
N,t +

√(
N

k

)( k∏
j=1

qtj

)
〈ϕ⊗(N−k)

t ,
(
H̃t
N −

k∑
i=1

ht,ϕti

)
Ψ̃N,t

〉
,

where the scalar product is taken w.r.t. the coordinates xk+1, ..., xN . For the term containing
the interaction, we show one example, namely√(

N

k

)( k∏
j=1

qtj

)
〈ϕ⊗(N−k)

t ,
( 1

N − 1

∑
i<j

ptip
t
jvijq

t
iq
t
j

)
Ψ̃N,t

〉
=

√(
N

k

)
(N − k)(N − k − 1)

2(N − 1)

∫ ∫
K(2),t(x, y)

( k+2∏
j=1

qtj

)
〈ϕ⊗(N−k−2)

t , Ψ̃N,t〉dxdy

=

√
(N − k)(N − k − 1)

N − 1
B(k+2→k),tχ̃

(k+2)
N,t .

Similarly, one computes also the other terms from H̃t
N . Note that for wave functions φ(k) ∈

Hk, χ(k−2) ∈ Hk−2, the operators A and B satisfy the relation〈
φ(k), A(k−2→k),tχ(k−2)

〉
=
〈
B(k→k−2),tφ(k), χ(k−2)

〉
. (2.146)

Moreover, one readily finds that

||K(1),t||op ≤ C||ϕt||H1 , (2.147)
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as well as

||A(k−2→k),t||2op + ||B(k+2→k),t||2op ≤ Ck2||ϕt||2H2 . (2.148)

The equations (2.143–2.145) are almost the same as the ones from the Bogoliubov hierarchy.
The differences are the N -dependence of the coefficients and also that the Bogoliubov
hierarchy is infinite. The remainder of the proof is to show that the two solutions are close
to each other in the sense that

gN (t) :=

∞∑
k=0

||χ̃(k)
N,t − χ

(k)
t ||2 (2.149)

is small as indicated in the statement of the lemma. We know a priori that gN (t) is finite for

all t ≥ 0, because
∑∞

k=0 ||χ̃
(k)
N,t||2 = ||Ψ̃N,t||2 = 1 and

∑∞
k=0 ||χ

(k)
t ||2 = 1. The former follows

from unitarity of ŨN (t, s) and ||ΨN || = 1. The latter is a consequence of the well-posedness
of the Bogoliubov hierarchy (for details about well-posedness of the Bogoliubov hierarchy
we refer to [80, Section 4.3]). Moreover, one can rewrite gN (t) as a finite sum, namely as

gN (t) = 2− 2
N∑
k=0

Re
〈
χ̃

(k)
N,t, χ

(k)
t

〉
. (2.150)

Next, we compute its time-derivative and then estimate it in order to apply Gronwall’s

inequality. Using the equations of motion for χ̃
(k)
N,t and χ

(k)
t , we find

d

dt
gN (t) = −2

N∑
k=1

Im
〈
χ̃

(k)
N,t,

k∑
i=1

(
1− N − k

N − 1

)
K

(1),t
i χ

(k)
t

〉
(2.151)

+ 2

N−2∑
k=0

Im
〈√(N − k)(N − k − 1)

N − 1
B(k+2→k),tχ̃

(k+2)
N,t , χ

(k)
t

〉
(2.152)

− 2
N∑
k=2

Im
〈
B(k→k−2),tχ̃

(k)
N,t, χ

(k−2)
t

〉
(2.153)

+ 2

N+2∑
k=2

Im
〈√(N − k + 2)(N − k + 1)

N − 1
A(k−2→k),tχ̃

(k−2)
N,t , χ

(k)
t

〉
(2.154)

− 2
N∑
k=0

Im
〈
A(k→k+2),tχ̃

(k)
N,t, χ

(k+2)
t

〉
. (2.155)

Since K(1),t is self-adjoint, we can replace in the first line χ
(k)
t by χ

(k)
t − χ̃

(k)
N,t. Using the

Cauchy-Schwarz inequality as well as the inequality of arithmetic and geometric means, one
finds

|(2.151)| ≤ 4
N∑
k=1

(
1− N − k

N − 1

)2∣∣∣∣∣∣ k∑
i=1

K
(1),t
i

∣∣∣∣∣∣2
op
||χ̃(k)

N,t||
2 +

N∑
k=1

||χ̃(k)
N,t − χ

(k)
t ||2.

In the first summand, we use the bound from (2.147), then (1− N−k
N−1 )2k2 ≤ C k4

N2 , and recall

the identity ||χ̃(k)
N,t||2 = ||PϕtN,kΨ̃N,t||2. With

N∑
k=0

k4

N2
||χ̃(k)

N,t||
2 ≤ N2

N∑
k=0

k3

N3
||PϕtN,kΨ̃N,t||2 = N2

〈
Ψ̃N,t(m̂

ϕt)3Ψ̃N,t

〉
, (2.156)
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we can use (2.97) and then (2.58), in order to find

|(2.151)| ≤ eC(1+t)3/2

N
+ gN (t).

In (2.153), we substitute the summation index k 7→ k+2 and obtain after adding the second
and third line,

− 1

2

(
(2.152) + (2.153)

)
=

N−2∑
k=0

(
1−

√
(N − k)(N − k − 1)

N − 1

)
Im
〈
B(k+2→k),tχ̃

(k+2)
N,t , χ

(k)
t − χ̃

(k)
N,t

〉
(2.157)

+
N−2∑
k=0

(
1−

√
(N − k)(N − k − 1)

N − 1

)
Im
〈
B(k+2→k),tχ̃

(k+2)
N,t , χ̃

(k)
N,t

〉
, (2.158)

where we have added and subtracted the second line. Similarly, after substituting k−2 7→ k
in (2.154), we find

− 1

2

(
(2.154) + (2.155)

)
=

N−2∑
k=0

(
1−

√
(N − k)(N − k − 1)

N − 1

)
Im
〈
A(k→k+2),tχ̃

(k)
N,t, χ

(k+2)
t − χ̃(k+2)

N,t

〉
(2.159)

+
N−2∑
k=0

(
1−

√
(N − k)(N − k − 1)

N − 1

)
Im
〈
A(k→k+2),tχ̃

(k)
N,t, χ̃

(k+2)
N,t

〉
(2.160)

+

N∑
k=N−1

Im
〈
A(k→k+2),tχ̃

(k)
N,t, χ

(k+2)
t

〉
. (2.161)

By means of (2.146), we have

(2.158) + (2.160) = 0.

For estimating (2.157), we proceed similarly as in the estimate for (2.151), and find, using

(2.148) as well as (

√
(N−k)(N−k−1)

N−1 − 1)2k2 ≤ C k3

N , that

|(2.157)| ≤ C||ϕt||2H2

N−2∑
k=0

k3

N
||PϕtN,k+2Ψ̃N,t||2 + gN (t). (2.162)

Shifting k 7→ k − 2 in the first summand,

N2
N−2∑
k=0

k3

N3
||PϕtN,k+2Ψ̃N,t||2 ≤ CN2

〈
Ψ̃N,t,

(
(m̂ϕt)3 +

(m̂ϕt)2

N
+
m̂ϕt

N2
+

1

N3

)
Ψ̃N,t

〉
,

and thus, again by (2.58), we find

|(2.157)| ≤ eC(1+t)3/2

N
+ gN (t).
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Along the same argument, one obtains the same bound also for (2.159). It remains to
estimate the last term,

|(2.161)| ≤ C||ϕt||H2N
(
||χ̃(N−1)

N,t || ||χ(N+1)
t ||+ ||χ̃(N)

N,t || ||χ
(N+2)
t ||

)
≤ C||ϕt||H2N2

(
||χ̃(N−1)

N,t ||2 + ||χ̃(N)
N,t ||

2
)

+
(
||χ(N+1)

t ||2 + ||χ(N+2)
t ||2

)
≤ eC(1+t)2

N
+ gN (t), (2.163)

where the last step follows from

N2
(
||χ̃(N−1)

N,t ||2 + ||χ̃(N)
N,t ||

2
)
≤ 2N2

N∑
k=0

k3

N3
||χ̃(k)

N,t||
2 ≤ eC(1+t)2

N−1.

Altogether, via Gronwall’s inequality, we have found

gN (t) ≤ eC(1+t)2
(
gN (0) +N−1

)
=
eC(1+t)2

N
, (2.164)

since χ̃
(k)
N,0 = χ

(k)
0 for all k, i.e., gN (0) = 0.

Appendices

2.A The difference H t
N − H̃ t

N

We verify (2.25): For that, rewrite the Hamiltonian Ht
N as

Ht
N =

N∑
i=1

ht,ϕti − 1

2(N − 1)

N∑
i 6=j

(
v̄ti + v̄tj − 2µt

)
+

1

N − 1

∑
i<j

vij

=
N∑
i=1

ht,ϕti +
1

N − 1

∑
i<j

(
(pti + qti)(p

t
j + qtj)(vij − v̄ti − v̄tj + 2µt)(pti + qti)(p

t
j + qtj)

)
,

and compute the different terms with pt’s and qt’s.

1.

ptip
t
j(vij − v̄ti − v̄tj + 2µt)ptip

t
j = ptip

t
j(2µ

t − 2µt − 2µt + 2µt) = 0,

2.

qtip
t
j(vij − v̄ti − v̄tj + 2µt)ptip

t
j = (qti v̄

t
ip
t
i)p

t
j − (qti v̄

t
ip
t
i)p

t
j = 0,

and similarly for the term with qti and ptj reversed on the l.h.s., and also for the Hermitian
conjugate of these terms.

3.

qtip
t
j(vij − v̄ti − v̄tj + 2µt)qtip

t
j = (qti v̄

t
iq
t
i)p

t
j − (qti v̄

t
iq
t
i)p

t
j − (ptj v̄

t
jp
t
j)q

t
i + 2µtqtip

t
j = 0,

and similarly with qti and ptj reversed on both sides.
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4. (
qtip

t
j(vij − v̄ti − v̄tj + 2µt)ptiq

t
j + qtiq

t
j(vij − v̄ti − v̄tj + 2µt)ptip

t
j

)
+ h.c.

=
(
qtip

t
jvijp

t
iq
t
j + qtiq

t
jvijp

t
ip
t
j

)
+ h.c. ≡ v(2q,t)

ij

5. (
qtiq

t
j(vij − v̄ti − v̄tj + 2µt)(ptiq

t
j + qtip

t
j) + h.c

)
= v

(3q,t)
ij ,

6.

qtiq
t
j(vij − v̄ti − v̄tj + 2µt)qtiq

t
j = v

(4q,t)
ij .

In total, we obtain

Ht
N =

N∑
i=1

ht,ϕti +
1

N − 1

∑
i<j

(
v

(2q,t)
ij + v

(3q,t)
ij + v

(4q,t)
ij

)
,

which is the same as (2.25).



Chapter 3

Low energy properties of the
homogeneous Bose gas

In this chapter we analyze the low energy spectral properties of the homogeneous weakly
interacting Bose gas on the unit torus. After formulating the setup and the problem in the
following section, we present our main estimate and two applications thereof in Section 3.2.
All proofs are postponed to Section 3.3.

3.1 Setup and problem

The low energy eigenfunctions of the weakly interacting Bose gas are at leading order (in
the particle number N) described by mean field or Hartree theory. This is well known and
rigorously understood since the works from Benguria and Lieb [19] and Lieb and Yau [88].
The eigenfunctions are, in the sense of reduced densities, approximately equal to an N -fold
product of a single one-body state ϕH, the so-called condensate wave function which, in
turn, is the ground state solution of the Hartree equation (or more generally minimizes the
Hartree energy functional). This is the famous phenomenon of Bose-Einstein condensation
at low temperature meaning that the overwhelming majority of the N particles in the gas
occupies the same copy of a single wave function ϕH. The main objective in this chapter
is to derive a novel estimate for the probability of finding a given number l of particles
not in the state ϕH. We show that this probability is exponentially small in the number
l. Our analysis is restricted to the case of the homogeneous gas on the torus (we expect
a similar result to hold also in the nonhomogeneous case for which the analysis, however,
is more complicated). The exponential decay of the probabilities for finding l particles
outside the condensate is then applied to show that the fluctuations around the Hartree
product in the N -body ground state wave function obey two important properties that are
reminiscent of the properties of a quasifree state in Fock space. That the fluctuations can
be approximately described by a quasifree state was first observed, among other things, by
Lewin et al. in [81] where they analyzed a more general situation (including the homogeneous
setup). The quasifree properties for the fluctuations in the microscopic ground state hold
asymptotically for large N . Here, we derive error bounds which are expected to be the
optimal ones for the homogeneous case.1 After that we use our main result to characterize
the low-lying eigenvalues in terms of Bogoliubov theory. Bogoliubov theory can be seen
as the limiting description of the fluctuations around the Hartree product. It states that

1The quality of the error bounds is relevant for the derivation of the time-dependent Hartree equation
with optimal speed of convergence and initial states close to the true ground state; cf. Remark 3.1.
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54 3. Low energy properties of the homogeneous Bose gas

the low energy excitation spectrum of the N -body system is for large N described to good
approximation by the spectrum of noninteracting quasiparticles obeying an effective energy-
momentum dispersion relation. It has been derived rigorously first by Seiringer in [116] and
since then generalized into various directions [60, 81, 37]. Using the exponential bounds for
the probability of finding particles outside the Hartree product, our derivation provides an
alternative strategy for the justification of Bogoliubov theory.

We consider an N -particle Hamiltonian of the form

HN = −
N∑
i=1

∆xi +
1

N − 1

∑
1≤i<j≤N

v(xi − xj), (3.1)

acting on L2
s(TdN ), d ∈ {1, 2, 3} being the spatial dimension and T a one-dimensional torus

of length L = 1 (the results hold for arbitrary L <∞ but for ease of notation we set L = 1).
−∆xi is minus the Laplace operator describing the kinetic energy of the ith particle. The
factor (N − 1)−1 denotes the mean field coupling constant and guarantees that on average
the interaction energy is of the same order as the kinetic energy, namely ∝ N . In this scaling
regime a nontrivial solution is expected for which neither the kinetic nor the interaction
part of the Hamiltonian dominates the physics in the large N limit. The interaction between
the particles is modeled by a real valued (N -independent) function v : Td → R, x 7→ v(x),
with Fourier transform defined as

v̂(k) =

∫
Td
v(x)eikxdx for all k ∈ 2πZd. (3.2)

The function v is required to satisfy Assumption 3.1.

1. v(x) = v(−x), v(x) ≥ 0 and v̂(k) ≥ 0,

2. v ∈ L2(Td) and v̂ ∈ L1(2πZd).

The Hamiltonian HN is bounded from below and by means of Kato’s Theorem it defines
a self-adjoint operator on the dense subset D(

∑N
i=1−∆xi) ⊂ L2

s(TdN ). The system defined
by HN is translation invariant which follows from the chosen boundary conditions and the
dependence of the pair potential v on the difference of the particle coordinates xi − xj
for all 1 ≤ i, j ≤ N . Translation invariance implies that HN commutes with the total
momentum operator PN =

∑N
i=1(−i∇xi), i.e., [HN , PN ] = 0. Therefore, there exists a

joint spectrum (called energy-momentum spectrum) of the operators HN and PN denoted
by spec(HN , PN ) ⊂ R1+d. Joint eigenvalues of HN and PN are given by all (EN , pN ) ∈
spec(HN , PN ) which satisfy the eigenvalue equations

HNΨN = ENΨN and PNΨN = pNΨN (3.3)

for joint eigenfunctions ΨN ∈ L2
s(TdN ). In this chapter we study properties of such eigen-

functions and the corresponding energy eigenvalues EN for the case that EN is close to the
lowest possible eigenvalue E0

N , the ground state energy. Let us denote the energy eigen-
values larger than E0

N by EnN (n ≥ 1) where EnN ≤ EmN ⇔ n ≤ m (i.e., with increasing
order counting multiplicity of degenerate values) and the corresponding eigenfunctions by
Ψn
N . Eigenvalues and eigenfunctions of a many-body operator like HN are in general very

complicated objects. In the weak coupling regime we consider here, however, the analysis
simplifies because for energies not too far from the ground state energy, eigenfunctions Ψn

N
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are at leading order given by the Hartree product, Ψn
N ≈ ϕ

⊗N
H , in the sense that the energy

equals N times the Hartree energy:

lim
N→∞

EnN
N

= inf
ϕ∈L2(Ω)

{〈
ϕ,
(
−∆ +

v ∗ |ϕ|2

2

)
ϕ
〉

: ||ϕ|| = 1
}

(3.4)

(∗ denotes the convolution of functions on Td). In the homogeneous setting, ϕH = 1 is the
constant function, and the minimum of the Hartree energy is given by εH =

〈
ϕH,

(
−∆ +

1
2v∗|ϕ|

2
)
ϕH

〉
= v̂(0)/2. The proof of (3.4) is not very difficult in our setup and we postpone

it to Appendix 3.A. In the general case – nonhomogeneous and for more general potentials –
it is much more involved and we refer to [77, 78, 79] for recent results and further references.
In Appendix 3.A, we explain that it follows from (3.4) that the majority of the N particles
in the gas occupies the condensate wave function ϕH, i.e., limN→∞ nH(N)/N = 1 with
nH(N) the number of particles in the state ϕH. For large but finite particle number N , the
probability of having a significant amount of particles outside the condensate wave function
is thus necessarily small since otherwise, Eq. (3.4) would be false.

In this chapter we use the same notation as summarized in Section 2.1.4.

3.1.1 Objective of this chapter

Our main goal is to show that the probability to find l out of the N particles described by a
low energy eigenfunction Ψn

N outside the condensate wave function is exponentially small:

PΨnN

(
l particles not in ϕH

)
≤ Ce−Dl (3.5)

for N -independent constants C,D > 0. Below Theorem 3.1, we give a detailed explanation
of the idea behind the proof of (3.5). Here, we explain it very briefly: If we denote by
P 0
N,l the projectors on wave functions in L2

s(TdN ) which contain exactly N − l particles in

the state ϕH, then the probabilities that we want to estimate are given by ||P 0
N,lΨ

0
N ||2. The

exponential decay is inferred from a difference inequality for the discrete function ||P 0
N,lΨ

0
N ||2

(the integer l being the variable) which is a consequence of the energy eigenvalue equation
for Ψ0

N . This difference inequality turns out to be analogous to the Schrödinger equation
for a particle on a one-dimensional lattice in a potential barrier which lies above the energy
of the particle: −∂2

i ψi = (E − V )ψi with E < V . In this case the exponential decay of the
wave function ψi is well known as the tunneling effect.

From (3.5), we then derive

1. in Corollary 3.6 quasifree type properties for the ground state Ψ0
N ,

2. in Theorem 3.7 the validity of Bogoliubov theory for low-lying energies.

It was shown by Lewin et. al. in [81, Theorem A.1] that the ground state of the Bogoliubov
Hamiltonian is a quasifree state in Fock space (the Bogoliubov Hamiltonian is introduced in
(3.9) and the definition of quasifree states is given in (3.17) and (3.18)). They further proved
that the Bogoliubov ground state is related through a partially isometric mapping (see also
below) to an N -body wave function which converges in L2-distance towards the ground
state Ψ0

N . The quasifree properties of the ground state of the Bogoliubov Hamiltonian,
however, are not directly transferred to analogous statements about Ψ0

N . There is further
information required about the wave function Ψ0

N – e.g., the exponential decay in (3.5) – in
order to show that it satisfies similar ”quasifree type” properties as the ground state of the
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Bogoliubov Hamiltonian. Regarding the second point, the derivation of Bogoliubov theory
for the low energy spectrum, our proof offers a different approach to obtain a similar result
as by Seiringer in [116]. However, our method does not allow us to cover the same range of
energies as in [116].

3.1.2 Bogoliubov approximation

Let us close this section with a short presentation of Bogoliubov’s description of the weakly
interacting Bose gas. Bogoliubov theory predicts the next-order contribution in En = NεH+
o(N) where o(N) stands for a function f(N) which is small compared to N in the large
N limit: f(N)/N → 0 for N → ∞. It was first introduced in 1947 by Bogoliubov in his
famous work on the theory of superfluidity [22]. Application and justification in the context
of the ground state have been extensively studied in the mathematical pyhsics literature;
e.g., [58, 86, 87, 119, 127, 116, 60, 37, 81] and [107, 108, 109] for a more recent approach
using a novel application of the Feshbach-Schur method. That Bogoliubov theory describes
also the low energy excitation spectrum has been rigorously shown in [116, 60, 37, 81]. We
define the Bogoliubov ground state energy as

EBog = −1

2

∑
k 6=0

(
|k|2 + v̂(k)− e(k)

)
, (3.6)

where the elementary excitation energy e(k) is given by

e(k) =
√
|k|4 + 2|k|2v̂(k). (3.7)

The sum in (3.6) is meant to run over all values k ∈ 2πZd\{0} (this convention will be used

throughout). Note that EBog has a finite value since e(k) = |k|2(1 + 2v̂(k)/|k|2)
1
2 such that

the summands in (3.6) behave like v̂(k)2/|k|2 for large |k| (recall, e.g., that v ∈ L2 and thus
also v̂ ∈ L2). Moreover, we define the Bogoliubov excitation energies by the set of numbers

{ j∑
i=1

e(ki) : k1, ..., kj ∈ 2πZd \{0} , j ≥ 1
}

(3.8)

and denote these values by Kn
Bog (n ≥ 1, with increasing order counting multiplicity). In

Appendix 3.B we show that the numbers E0
Bog = EBog and EnBog = EBog + Kn

Bog (n ≥ 1)
coincide with the eigenvalues of the Bogoliubov Hamiltonian

HBog =
∑
k 6=0

[
k2 +

v̂(k)

2

(
2a∗kak + a∗ka

∗
−k + aka−k

)]
, (3.9)

which acts on the bosonic Fock space Fs where ak and a∗k satisfy the canonical commutation
relations [ak, a

∗
k′ ] = δkk′ , [a∗k, a

∗
k′ ] = 0 = [ak, ak′ ]. Having the original N -particle system in

mind one should think of Fs as the symmetric Fock space constructed over the one-particle
Hilbert space {ϕH}⊥ = {ϕ ∈ L2(Td) :

〈
ϕ,ϕH

〉
= 0},

Fs =
∞⊕
l=0

l⊗
sym.

(
{ϕH}⊥

)
. (3.10)
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The creation and annihilation operators a∗k and ak in (3.9) are then defined by adding
and removing a plane wave eikx ∈ L2(Td) with momentum k ∈ 2πZd\{0} to the state
χ = (χl)l≥0 ∈ Fs:2

(akχ)l = (akχ)l(x1, ..., xl) =
√
l + 1

∫
Td
e−ikxl+1 χl+1(x1, ..., xl+1) dxl+1, (3.11)

(a∗kχ)l = (a∗kχ)l(x1, ..., xl) =
1√
l

l∑
i=1

eikxi χl−1(x1, ..., xl\xi). (3.12)

It is important to note that a particle in Fs corresponds to a particle in the Bose gas which
does not occupy the state ϕH. Without going into much detail at this point, let us mention
that the relation between Fs and L2

s(TdN ) is defined via the partial isometry

χ = (χ0, χ1, χ2, ...) ∈ Fs ∼ Φ =
N∑
l=0

(
ϕ⊗N−lH ⊗s χl

)
∈ L2

s(TdN ), (3.13)

where ⊗s denotes the normalized symmetric product between two symmetric functions; see
(3.116). The vacuum state in Fs for instance represents the product wave function ϕ⊗NH in
the N -particle space L2

s(TdN ). It is thus not surprising that HBog is not particle number
conserving, as particles in Fs represent fluctuations around the Hartree product.

We denote the eigenfunctions of the Bogoliubov Hamiltonian by χn ∈ Fs (n ≥ 0), i.e.,
HBogχ

n = EnBogχ
n. In [81] it was shown (even in a more general setup) that HBog possesses

a unique ground state which is related to the N -particle wave function via

lim
N→∞

∣∣∣∣∣∣Ψ0
N −

N∑
l=0

(
ϕ⊗N−lH ⊗s χ0

l

)∣∣∣∣∣∣
L2
s(TdN )

= 0. (3.14)

This implies, e.g., that Ψ0
N ≈ ϕ⊗NH is false in the sense of the full N -particle norm. Note

that this is not in contradiction with (3.4) or with limN→∞ nH(N)/N = 1 which are much
weaker assertions. The latter follow from Ψ0

N → ϕ⊗NH in trace-norm distance of reduced
density matrices. E.g,

lim
N→∞

Tr
∣∣∣γ(1)

Ψ0
N
− γ(1)

ϕ⊗NH

∣∣∣ = 0, (3.15)

where TrA stands for the trace of a trace class operator A : L2(Td) → L2(Td) and γ
(1)
ΨN

is
the one-particle marginal w.r.t. ΨN defined by its integral kernel

γ
(1)
ΨN

(x, y) =

∫
Td(N−1)

ΨN (x, x2, ..., xN )ΨN (y, x2, ..., xN )dx2...dxN . (3.16)

The phenomenon of Bose-Einstein condensation, i.e., the macroscopic occupation of the
condensate wave function, is physically well described by the notion of distance in (3.15)
whereas in this regard, the norm distance on L2

s(TdN ) is too strong. To see this, recall
that even for a single particle in a state φ ∈ {ϕH}⊥ ⊂ L2(Td), the symmetric N -body state
ϕN−1

H ⊗sφ is already orthogonal to the full Hartree product. From the physics point of view,
however, it is unreasonable to expect that all N particles occupy the wave function ϕH. The

2Note that in the present chapter, our choice of notation for indicating the elements from the different
sectors in Fock space is different compared to Chapter 2. Here, we use a subscript (instead of a superscript)
for indicating the respective sector, i.e., χ = (χl)l≥0, χl ∈ L2

s(Tdl).
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distance in (3.14), on the other hand, becomes relevant if one wants to describe also the
behavior of the fluctuations around the Hartree product which is, in turn, important for the
explanation of interesting phenomena that are not captured by the Hartree approximation
(like superfluidity of the Bose gas for instance). It was also shown in [81] that the ground
state χ0 ∈ Fs is quasifree. A quasifree state χ ∈ Fs is defined by the so-called Wick property
(see, e.g., [120, Chapter 10]), which states that the expectation value of any product of an

odd number of creation/annihilation operators a#
k ∈ {ak, a

∗
k} is identically zero whereas the

product of any even number of creation/annihilation operators factorizes into all possible
pairings or contractions. More precisely, for any integer n, a quasi free state χ ∈ Fs satisfies

〈
χ,
( 2n−1∏

i=1

a#
ki

)
χ
〉

= 0, (3.17)

〈
χ,
( 2n∏
i=1

a#
ki

)
χ
〉

=
∑
σ∈P2n

〈
χ, a#

kσ(1)
a#
kσ(2)

χ
〉
·
〈
χ, a#

kσ(3)
a#
kσ(4)

χ
〉
· ... ·

〈
χ, a#

kσ(2n−1)
a#
kσ(2n)

χ
〉
,

(3.18)

where a#
k ∈ {ak, a

∗
k}, k1, ...k2n ∈ 2πZd\{0}, and P2n is the set of pairings (a subset of all

permutations of the numbers {1, ..., 2n}) given by

P2n =
{
σ ∈ S2n : σ(2j − 1) < σ(2j + 1), j = 1, ..., n− 1,

σ(2j − 1) < σ(2j), j = 1, ..., n
}
. (3.19)

Two properties that are reminiscent of the quasifree property are

1. It holds that either ∑
l odd

||χl||2 = 0 or
∑
l even

||χl||2 = 0, (3.20)

2. For any m ≥ 1, 〈
χ,Nmχ

〉
≤ Cm

(
1 +

〈
χ,Nχ

〉)m
, (3.21)

where N is the number operator on Fs, i.e., N =
∑

k 6=0 a
∗
kak.

One the one hand, a state satisfying (3.20) obeys automatically (3.17). On the other hand,
that every state satisfying (3.18) obeys (3.21) was shown, e.g., in [95, Lemma 5]. Let us stress
that for proving an analogous statement for the true ground state Ψ0

N it is not sufficient to
use convergence from (3.14). Here, it is required to have additional information about Ψ0

N .
From the exponential decay in (3.5), e.g., an estimate like (3.21) for the true ground state
(and other low energy eigenfunctions) can be inferred.

The reason why the energies EnBog in (3.8) have this comparatively simple form is that the
Bogoliubov Hamiltonian is quadratic in the creation and annihilation operators and can
thus be diagonalized by a unitary transformation (the argument of diagonalizing HBog is
presented in Appendix 3.B). The excitation energies Kn

Bog can be interpreted as sums of
one-particle energies e(k) of noninteracting quasiparticles. The interaction effectively results
in a new energy-momentum dispersion relation e(k) being linear in k for low momenta (for
nonzero v̂ when k is small) compared to the free dispersion relation efree(k) = |k|2.
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3.2 Main results

Before stating our results, we introduce an auxiliary Hamiltonian H̃N which provides an
intermediate step between HN and HBog. Let pki = |ϕk(xi)〉〈ϕk(xi)|, i.e.,

pki : L2
s(TdN )→ L2

s(TdN ), ΨN 7→ ϕk(xi)

∫
Td
ϕk(xi)ΨN (x1, ..., xN ) dxi, (3.22)

the orthogonal projector onto the normalized plane wave ϕk(xi) with momentum k ∈ 2πZd
(note that in this notation ϕ0 = ϕH), and let qki = 1 − pki the projector onto the corre-
sponding orthogonal complement. Then rewrite the original Hamiltonian H by adding and
subtracting the mean field energy Nv̂(0)/2 and inserting the identity 1 = (p0

i + q0
i )(p

0
j + q0

j )
on the left and right of the two-body potential (we use the abbreviation v(xi − xj) = vij),

HN = −
N∑
i=1

∆xi +
Nv̂(0)

2
+

1

N − 1

∑
1≤i<j≤N

(p0
i + q0

i )(p
0
j + q0

j )
(
vij − v̂(0)

)
(p0
i + q0

i )(p
0
j + q0

j ).

From this expression, we define H̃N by discarding all terms that contain three or four q0’s
(this is analogous to Definition (2.23)):

H̃N = −
N∑
i=1

∆xi +
Nv̂(0)

2
+

1

N − 1

∑
1≤i<j≤N

[(
p0
i q

0
j vijq

0
i p

0
j + p0

i p
0
jvijq

0
i q

0
j

)
+ h.c.

]
. (3.23)

A simple computation (analogous to the one in Appendix (2.A)) shows that the remainder
is given by

HN − H̃N =
1

N − 1

∑
1≤i<j≤N

[(
q0
i q

0
j vij(q

0
i p

0
j + p0

i q
0
j ) + h.c

)
+
(
q0
i q

0
j (vij − v̂(0))q0

i q
0
j

)]
.

(3.24)

Note that there remain only terms with exactly two p0’s while all contributions with four
and three p0’s are cancelled. In Lemma 3.4 we show that for large enough N the operator
H̃N possesses a unique ground state Ψ̃0

N . This may not be completely obvious. Due to the

projectors in the definition of the two-body potential in H̃N , the standard technique of
showing uniqueness by means of positivity of the ground state wave function may not be
applicable (a detailed exposition of the argument for showing uniqueness of the ground state
via its positivity is given, e.g., in [123, Section 10.5]). We introduce H̃N for two reasons: On
the one hand, it already has the same quadratic structure as HBog. This appears here as

the fact that H̃N does not contain contributions with an odd number of q0’s. On the other
hand, a comparison between HN and H̃N is straightforward due to (3.24) (the interaction
terms in H̃N and HBog, e.g., differ by additional combinatorial factors and the operators

do not act on the same spaces). We denote eigenvalues and eigenfunctions of H̃N by ẼnN
respectively by Ψ̃n

N (n ≥ 1 with increasing order and counting multiplicity).

Define the excitation energies of HN and H̃N by

Kn
N = EnN − E0

N resp. K̃n
N = ẼnN − Ẽ0

N . (3.25)

Eventually, let us introduce a set of projectors (P 0
N,l)

N
l=0 with P 0

N,l : L2
s(TdN ) → L2

s(TdN )
defined by

P 0
N,l =

(
q0

1...q
0
l p

0
l+1...p

0
N

)
sym

(3.26)
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where (·)sym denotes the symmetric tensor product. The P 0
N,l project onto the subspace of

L2
s(TdN ) of wave functions which contain exactly l particles outside the Hartree product.

The probability of finding l particles not in ϕH for a given normalized state ΨN is thus
equal to ||P 0

N,lΨN ||2.

3.2.1 Exponential decay for probabilities ||P 0
N,lΨ

n||2

Our main result in this chapter is summarized in

Theorem 3.1. Let n ≥ 0. There exist positive constants C and D such that

(a) ||P 0
N,lΨ

n
N ||2 ≤ Ce−Dl for all Kn

N ≤ l ≤ N ,

(b) ||P 0
N,lΨ̃

n
N ||2 ≤ Ce−Dl for all K̃n

N ≤ l ≤ N ,

and

(c) ||χnl ||2 ≤ Ce−Dl for all l ≥ Kn
Bog.

Let us explain the basic idea behind the proof. We start from the respective eigenvalue
equation for Ψn

N , Ψ̃n
N or χn and arrive at a relation for neighboring values of, e.g., ||PN,lΨn

N ||2
(neighboring in the variable l with l even or l odd, respectively). This relation is then
shown to imply the exponential decay in l. We exemplify this for Ψ0

N : If one takes the
scalar product between HNΨ0

N = E0
NΨ0

N and PN,lΨ
0
N ≡ Ψ0

N,l and uses the upper bound

E0
N ≤ Nv̂(0)/2,3 one can derive a difference inequality (or recurrence relation) for the values
{||Ψ0

N,l||2 : l even} resp. {||Ψ0
N,l||2 : l odd}, which is similar to

∂2
l ||Ψ0

N,l||2 + 2||Ψ0
N,l||2 ≥

( 16π2

||v̂||∞

)
||Ψ0

N,l||2. (3.27)

Here, ∂2
l ||Ψ0

N,l||2 = ||Ψ0
N,l+2||2 − 2||Ψ0

N,l||2 + ||Ψ0
N,l−2||2. The essential ingredient to find this

inequality is the structure of the auxiliary Hamiltonian H̃N together with the fact that〈
Ψ0
N,l, (HN − H̃N )Ψ0

N

〉
is comparatively small. One uses in particular that H̃N does not

change the number of particles in the condensate by one. The discrete derivative on the
l.h.s. comes from the ppvqq + h.c. contribution in H̃N which couples Ψ0

N,l with Ψ0
N,l±2.

Moreover, one uses that the qpvpq+h.c. is positive and that 4π2 is the smallest kinetic energy
above zero, i.e.,

〈
Ψ0
N,l,−∆1Ψ0

N

〉
≥ 4π2l||Ψ0

N,l||2/N . If we take this difference inequality for

granted and assume that ||v̂||∞ < 8π2, we readily obtain the exponential decay ||Ψ0
N,l||2 ∝

e−Dl (the inequality is easily solved via an exponential ansatz). Let us emphasize that
(3.27) is reminiscent of the time-independent Schrödinger equation of a particle on the one-
dimensional lattice with energy equal to 2 inside a potential barrier of height 16π2/||v̂||∞ >
2. In this situation, the exponential decay of the wave function is well known as the tunneling
effect.

This argument is made rigorous in the proof of Theorem 3.1. In particular, we show how
the idea can be generalized to ||v̂||∞ ≥ 8π2 and to other low energy eigenfunctions Ψn

N , Ψ̃n
N

and χnN .

Corollary 3.2. Let n ≥ 0 and m ∈ N (m ≤ N). There exist positive constants Cm and C
such that

3The upper bound follows from E0
N = inf ||ΨN ||=1

〈
ΨN , HNΨN

〉
≤
〈
ϕ⊗NH , Hϕ⊗NH

〉
= Nv̂(0)/2.
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(a)

〈
Ψn
N ,
( m∏
i=1

q0
i

)
Ψn
N

〉
≤ Cm
Nm

(
1 + (Kn

N )m
)
, (3.28)

(b)

〈
Ψ̃n
N ,
( m∏
i=1

q0
i

)
Ψ̃n
N

〉
≤ Cm
Nm

(
1 + (K̃n

N )m
)
, (3.29)

and

(c)

∞∑
l=0

lm
〈
χnl , χ

n
l

〉
≤ C

(
1 + (Kn

Bog)
m
)
. (3.30)

Using (a) and (b) from Corollary 3.2, one can readily derive bounds for the difference of
HN and H̃N . For that recall that every term in HN − H̃N contains three or four q0’s, cf.
(3.24).

Corollary 3.3. Let n ≥ 0. There is a positive constant C such that

(a) ∣∣∣〈Ψn
N , (HN − H̃N )Ψn

N

〉∣∣∣ ≤ C[(1 +Kn
N )

3
2

√
N

+
(Kn

N )2

N

]
,

(b) ∣∣∣〈Ψ̃n
N , (HN − H̃N )Ψ̃n

N

〉∣∣∣ ≤ C[(1 + K̃n
N )

3
2

√
N

+
(K̃n

N )2

N

]
.

3.2.2 Quasifree type properties of the ground state

Let us denote the orthogonal projectors onto the subspaces of L2
s(TdN ) which correspond

to an even respectively odd number of particles in the condensate wave function by

f̂0
odd : L2(TdN )→ L2(TdN ), ΨN 7→ f̂0

oddΨN =
N∑
l=0
l odd

P 0
N,lΨN , (3.31)

f̂0
even : L2(TdN )→ L2(TdN ), ΨN 7→ f̂0

evenΨN =
N∑
l=0
l even

P 0
N,lΨN , (3.32)

They satisfy f̂0
even + f̂0

odd = 1 and f̂0
evenf̂

0
odd = 0.

Lemma 3.4. The ground state Ψ̃0
N of H̃N is unique (up to a constant phase factor) and it

holds that either

f̂0
evenΨ̃0

N = Ψ̃0
N , f̂0

oddΨ̃0
N = 0 or f̂0

evenΨ̃0
N = 0, f̂0

oddΨ̃0
N = Ψ̃0

N .
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Proof. Assuming uniqueness for a moment, the second statement follows from the fact that
all interaction terms in H̃N change the number of correlated particles either by zero or by
two, as well as that −∆ϕ0 = 0. Hence, one finds that[

H̃N , f̂
0
even

]
= 0 =

[
H̃N , f̂

0
odd

]
,

and thus, knowing that Ψ̃0
N is unique, it follows that all mass is either contained in the

even or in the odd sector (otherwise we could construct two ground state eigenfunctions
f̂0

evenΨ̃0
N/||f̂0

evenΨ̃0
N || as well as f̂0

oddΨ̃0
N/||f̂0

oddΨ̃0
N || contradicting the assumption that the

ground state is unique). The proof of uniqueness follows from the following Theorem; see
Section 3.3.5

Theorem 3.5. There exists a constant C > 0 such that (with appropriately chosen phases;
recall that the ground state is defined only up to a constant phase)

||Ψ0
N − Ψ̃0

N || ≤
C√
N
. (3.33)

Corollary 3.6. The ground state wave function Ψ0
N satisfies the following quasifree type

properties:

1. It holds that either

||f̂0
oddΨ0

N || ≤
C√
N

or ||f̂0
evenΨ0

N || ≤
C√
N
. (3.34)

2. For any integer m ≤ N and some positive constant Cm,

〈
Ψ0
N ,
( m∏
i=1

q0
i

)
Ψ0
N

〉
≤ Cm
Nm

. (3.35)

The second statement follows from Corollary 3.2 for n = 0. The first one is an immediate
consequence from Theorem 3.5 and Lemma 3.4. The reason why we call this “quasifree type
properties” is that they are reminiscent of (3.20) and (3.21), as explained thereafter. For
that, recall the relation in (3.13) and note that the operator Nq0 is the analogue of the
number operator N on the Fock space (3.10). Moreover, it is known, and we recall this in
Appendix 3.A, that

〈
Ψ0
N , (Nq

0
1)Ψ0

N

〉
≤ C such that (3.35) expresses a similar “factorization

property” as (3.21).

Remark 3.1. In Chapter 2, we have studied the time evolution of the many-body Bose gas
by approximating it with the dynamics generated by a Hamiltonian H̃t

N analogous to the
one defined in (3.23) (with the obvious modifications for the time-dependent setting and
for more general situations including a nonzero external potential). The optimal error term
for the time-dependent approximation holds for wave functions satisfying initially certain
properties which were summarized in Assumption 2.2. Corollary 3.6 shows that the ground
state of the homogeneous gas confined to a box satisfies properties A.2.2 and A.2.3. That
it satisfies A.2.1 can be seen from Theorem 3.7.
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3.2.3 Low-lying energy eigenvalues

Another consequence of Theorem 3.1 is that the ground state energy E0
N and also the

excitation energies Kn
N defined in (3.25) converge in the large N limit to the Bogoliubov

energy EBog resp. the Bogoliubov excitations Kn
Bog.

Theorem 3.7. Let EBog as in (3.6). There is a constant C such that∣∣∣E0
N −

(Nv̂(0)

2
+ EBog

)∣∣∣ ≤ C

N
. (3.36)

Let further n ≥ 1 and Kn
Bog as in (3.8). Then, there exists a constant C such that

∣∣∣Kn
N −Kn

Bog

∣∣∣ ≤ C[ 1√
N

+
(Kn

Bog)
3
2

√
N

+
Kn

Bog

N
+

(Kn
Bog)

2

N

]
. (3.37)

The statement of the theorem coincides with some part of [116, Theorem 1]. We emphasize,
however, that our statement is valid only for fixed values of n, whereas [116, Theorem 1]
proves convergence of excitation energies up to Kn � N .

Remark 3.2. It is an open problem to derive the Bogoliubov approximation for the excitation
spectrum in the thermodynamic limit, i.e., for N,L → ∞, ρ = (N − 1)/Ld = const. In
this setup the coupling constant 1/(N − 1) in (3.1) needs to be replaced by Ld/(N −
1) = 1/ρ and Bogoliubov theory is expected to become accurate in the large ρ limit. Such
a model is of particular interest because the momentum becomes a continuous variable
in the thermodynamic limit which is a crucial ingredient in the macroscopic theory of,
e.g., superfluidity. We refer the reader for more details to [36, 37]. In [36] Dereziński and
Napiórkowski study a so-called mean field large volume limit, namely N,L → ∞ while
La � ρ for some number a > 0. This can be considered as an intermediate step towards
the true thermodynamic limit. Let us note that at least for the ground state energy, our
approach can be applied without major modifications also to this type of limit, leading to
a similar result as obtained in [37, Theorem 1.1].

Our strategy for proving Therorem 3.7 is to show via an appropriate comparison of HBog

with H̃N that Kn
Bog ≈ K̃n

N , and then use Corollary 3.2 for proving K̃n
N ≈ Kn

N . For the first

step, we argue that the auxiliary Hamiltonian H̃N is unitarily equivalent to an operator

Nv̂(0)

2
+ H̃≤NN (3.38)

acting on functions in F≤Ns ⊂ Fs (the first N + 1 sectors of the Fock space Fs). Extending
H̃≤NN trivially to the whole Fock space (and denoting this extension by H̃N ), we derive a
bound similar to

−C
N
N 2 + small ≤ H̃N −HBog ≤

C

N
N 2 + small (3.39)

where N denotes the particle number operator on Fs. We then apply the so-called min-max
principle which states that the eigenvalues of a self-adjoint operator A (acting on a Hilbert
space H) below the essential spectrum, counted with multiplicity in increasing order, are
equal to the min-max values {µn(A)}n≥0 defined through

µn(A) = min
Y n+1

max
ψ∈Y n+1, ||ψ||H=1

〈
ψ,Aψ

〉
H, (3.40)
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where the infimum is taken over all n + 1-dimensional subspaces Y n+1 ⊂ H. Note that
in our notation, µn is the n+1-th eigenvalue since we start from n = 0. If there exists
only a finite number M of eigenvalues below the bottom of the essential spectrum, then
µn(A) = inf σess(A) for all n > M . For A ≈ B with some other self-adjoint operator B that
has eigenvalues {µn(B)}n≥0, one can use (3.40) to find an upper bound for µn(A) in terms
of the eigenvalue µn(B) and the explicit error

max
ψ∈Y n+1

B , ||ψ||H=1

〈
ψ, (A−B)ψ

〉
H. (3.41)

Here Y n+1
B ⊂ H is the subspace spanned by the first n+ 1 eigenfunctions of B. Vice versa,

one obtains an upper bound for µn(B) in terms of µn(A) + error where the error is given
by the same expression as in (3.41) with operators A and B interchanged. Using the same
argument in combination with Lemma 3.3, one also proves K̃n ≈ Kn.

3.3 Proofs

For notational convenience, we omit the subscript N throughout the following sections.

We first note some important properties of the projectors P 0
N,l which are easily verified

using their definition in (3.26) (cf. Definition 2.11 and Eq. (2.97) with ϕt replaced by ϕ0):

1. P 0
N,l is an orthogonal projector,

2. P 0
N,lP

0
N,l′ = δll′P

0
N,l,

3. 1 =
∑N

l=0 P
0
N,l,

4. [p0
i , P

0
N,l] = 0 = [q0

i , P
0
N,l],

5. 1
N

∑N
i=1 q

0
i =

∑N
l=0

l
NP

0
N,l.

From assertions 1, 2 and 5, we directly obtain an important relation that we frequently use
throughout the following proofs, namely, that for any symmetric wave function ΨN ,

||q0
1(P 0

N,lΨ)||2 =
〈
P 0
N,lΨ,

( N∑
k=0

k

N
P 0
N,k

)
P 0
N,lΨ

〉
=

l

N
||P 0

N,lΨ||2, (3.42)

and similarly also for the product q0
1q

0
2.

3.3.1 Proof of Theorem 3.1

(a) We first show that for some δ ∈ (0, 1],4

||P 0
N,lΨ

n||2 ≤ Ce−Dl for all Kn ≤ l ≤ bδN/2c . (3.43)

Then, we use this estimate to derive the bound also for the remaining values of l:

||P 0
N,lΨ

n||2 ≤ Ce−DN for all bδN/2c ≤ l ≤ N. (3.44)

4By b·c we indicate the floor function, i.e., b·c : R+
0 → N with bxc being the largest integer less than or

equal to the real number x.
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Remark 3.3. For the proof of (3.44), we assume in addition that Kn ≡ Kn
N � N . However,

we emphasize that this does not pose a further restriction on the number n, as we consider
only fixed n. Going through the part of the proof of Theorem 3.37 where we derive the
upper bounds for µn(H̃) in terms of µn(HBog) resp. for µn(H) in terms of µn(H̃), it can be
verified that Kn is of order one w.r.t. N whenever Kn

Bog is of order one (which is the case
for all fixed n as Kn

Bog is per definition N -independent).

In order to show (3.43) let us introduce the abbreviation Ψl ≡ P 0
N,lΨ and the constant

bδ,l∗ =
4√
l∗

+
(4||v̂||1
||v̂||∞

)√
δ (3.45)

for δ ∈ (0, 1], l∗ ∈ N. Moreover, we need the following two lemmas.

Lemma 3.8. Let l∗ ≤ N , δ ∈ (0, 1] and Ψ ∈ L2
s(TdN ). Then, for all l∗+ 2 ≤ l ≤ bδNc− 2,

N
∣∣∣〈Ψl, p

0
1p

0
2v12q

0
1q

0
2Ψ
〉∣∣∣ ≤ N

2

∑
k 6=0

v̂(k)
(
||pk1p0

2Ψl+2||2 + ||pk1p0
2Ψl||2

)
(3.46)

+ bδ,l∗ ||v̂||∞
(
l||Ψl||2 + (l + 2)||Ψl+2||2

)
,

N
∣∣∣〈Ψl, q

0
1q

0
2v12p

0
1p

0
2Ψ
〉∣∣∣ ≤ N

2

∑
k 6=0

v̂(k)
(
||pk1p0

2Ψl−2||2 + ||pk1p0
2Ψl||2

)
(3.47)

+ bδ,l∗ ||v̂||∞
(
l||Ψl||2 + (l − 2)||Ψl−2||2

)
.

Lemma 3.9. Let δ ∈ (0, 1], Ψ ∈ L2
s(TdN ) and Ṽ rest ≡ H − H̃ as in (3.24). Then, for all

integers l ≤ bδNc − 1,∣∣∣〈Ψl, Ṽ
restΨ

〉
−
〈
Ψl, q

0
1q

0
2v12q

0
1q

0
2Ψ
〉∣∣∣ (3.48)

≤ bδ,l∗ ||v̂||∞
(

(l − 1)||Ψl−1||2 + 2l||Ψl||2 + (l + 1)||Ψl+1||2
)
.

Proof of (3.43). We abbreviate gnl ≡ l||Ψn
l ||2 and set

√
δ = min{ π2

400||v̂||1 , 1} and

l∗ = max
{⌊(200||v̂||∞

π2

)2
⌋
,

⌊
25Kn

4π2

⌋}
.5

The argument is divided into three steps: 1) We derive an inequality similar to (3.27). For
||v̂||∞ < 8π2, it would directly imply (3.27) and we could proceed as explained thereafter.
For the general case, we keep additional negative terms on the l.h.s. of (3.27). 2) Those
negative terms are used in order to derive a more suitable relation. This new relation, how-
ever, does not hold for the numbers l||Ψl||2 but for appropriately chosen sums of the l||Ψl||2
(due to the negative terms, this leads to cancellations on the l.h.s. of (3.27) whereas on
the r.h.s. there are no cancellations). This procedure leads to a suitable generalization of
(3.27), namely the difference inequality (3.65). 3) We solve the difference inequality via an
exponential ansatz. Together with the normalization condition ||Ψn|| = 1, this will imply
(3.43).

Step 1. For all integers l∗ + 2 ≤ l ≤ bδNc − 2, the following inequality holds:

anδ,l∗g
n
l ≤

N

4

∑
k 6=0

v̂(k)

||v̂||∞

(
||pk1p0

2Ψn
l+2||2 + ||pk1p0

2Ψn
l−2||2 − 2||pk1p0

2Ψn
l ||2
)

(3.49)

5Note that the choices of δ and l∗ are not optimal and many other examples would work as well.
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+ bδ,l∗
(
gnl−2 + gnl−1 + gnl+1 + gnl+2

)
,

where

anδ,l∗ =
1

||v̂||∞

(
4π2 − Kn

l∗

)
− 4bδ,l∗ . (3.50)

Note that for the chosen values of δ and l∗, the number anδ,l∗ > 0 is strictly positive. To
derive (3.49), we start from the eigenvalue equation for Ψn, HΨn = EnΨn, and recall that
the energy En = E0 + Kn is bounded from above by Nv̂(0)/2 + Kn. Taking the scalar
product with Ψn

l , using H = H̃ + Ṽ rest, leads to

N
〈
Ψn
l , (−∆1)Ψn

〉
−Kn||Ψn

l ||2 +N
〈
Ψn
l , p

0
1q

0
2v12q

0
1p

0
2Ψn

l

〉
(3.51)

≤ −N
2

〈
Ψn
l , p

0
1p

0
2v12q

0
1q

0
2Ψn

l+2

〉
− N

2

〈
Ψn
l , q

0
1q

0
2v12p

0
1p

0
2Ψn

l−2

〉
−
〈
Ψn
l , Ṽ

restΨn
〉
.

The upper line can be computed explicitly: Since p0
1+q0

1 = 1, ∆ϕ0 = 0, q0
1 =

∑
k 6=0 |ϕk〉〈ϕk|1

and ||q0
1Ψn

l ||2 = l
N ||Ψ

n
l ||2, one obtains for all l ≥ l∗,

N
〈
Ψn
l , (−∆1)Ψn

〉
−Kn||Ψn

l ||2 ≥ 4π2N ||q0
1Ψn

l ||2 −Kn||Ψn
l ||2 ≥

(
4π2 − Kn

l∗

)
l||Ψn

l ||2 > 0,

(3.52)

and with the Fourier decomposition of the potential, v(x) =
∑

k v̂(k)eikx,〈
Ψn
l , p

0
1q

0
2v12q

0
1p

0
2Ψn

l

〉
=
∑
k 6=0

v̂(k)
〈
Ψn
l , p

0
1q

0
2e
ik(x1−x2)q0

1p
0
2Ψn

l

〉
=
∑
k 6=0

v̂(k)
〈
Ψn
l ,
(
|ϕ0〉〈ϕk|

)
1

(
|ϕk〉〈ϕ0|

)
2
Ψn
l

〉
=
∑
k 6=0

v̂(k)||pk1p0
2Ψn

l ||2.

(3.53)

In the last step we have used symmetry of Ψn
l under permutation of coordinates in order

to exchange the integration variables. Since the upper line in (3.51) is thus positive (recall
that v̂ ≥ 0), and since also N

〈
Ψn
l q

0
1q

0
2v12q

0
1q

0
2Ψn

l

〉
≥ 0 (since v ≥ 0), we can apply Lemmas

3.8 and 3.9 in order to bound the lower line and obtain the stated inequality in (3.49).

Form ∈ N, let fnj,m denote the arithmetic average of the 2m+1 numbers gnj−m, g
n
j−m+1, ..., g

n
j+m,

i.e.,

fnj,m =
1

2m+ 1

j+m∑
l=j−m

gnl . (3.54)

Our next goal is to show that for certain values of j (and for sufficiently large but N -
independent m), the fnj,m satisfy a difference inequality similar to the one in (3.27). This
will be used to derive the exponential decay in the third step.

Step 2. Take the sum of both sides in (3.49) for l running from j − m up to j + m
(m ≥ 0 and l∗ + 2 +m ≤ j ≤ bδNc − 2−m). The left side gives

j+m∑
l=j−m

(
anδ,l∗g

n
l

)
= anδ,l∗(2m+ 1)fnj,m. (3.55)
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In the first line on the r.h.s. of (3.49), it is essential that we have a “telescoping sum” and
thus cancellations up to the boundary terms. This leads to

j+m∑
l=j−m

[N
4

∑
k 6=0

v̂(k)

||v̂||∞

(
||pk1p0

2Ψn
l+2||2 − ||pk1p0

2Ψn
l ||2 + ||pk1p0

2Ψn
l−2||2 − ||pk1p0

2Ψn
l ||2
)]

=
N

4

∑
k 6=0

v̂(k)

||v̂||∞

(
||pk1p0

2Ψn
j+m+2||2 − ||pk1p0

2Ψn
j+m||2 + ||pk1p0

2Ψn
j−m−2||2 − ||pk1p0

2Ψn
j−m||2

)
≤ N

4

(
||q0

1p
0
2Ψn

j+m+2||2 + ||q0
1p

0
2Ψn

j−m−2||2
)
≤ gnj+m+2 + gnj−m−2, (3.56)

where we have discarded the two negative terms from the second line, then used
∑

k 6=0 p
k
1 =

q0
1, and further ||q0

1p
0
2Ψn

l ||2 ≤
l
N ||Ψ

n
l ||2. Summing over the second line of the r.h.s. in (3.49),

we find

j+m∑
l=j−m

[
bδ,l∗

(
gnl−2 + gnl−1 + gnl+1 + gnl+2

)]
≤ 2bδ,l∗(2m+ 1)fnj,m + bδ,l∗

(
gnj−m−2 + gnj−m−1 + gnj+m+1 + gnj+m+2

)
. (3.57)

Together, this leads to the relation(anδ,l∗ − 2bδ,l∗

1 + bδ,l∗

)
(2m+ 1)fnj,m ≤

(
gnj−m−2 + gnj−m−1 + gnj+m+1 + gnj+m+2

)
, (3.58)

being valid for all l∗ + 2 + m ≤ j ≤ bδNc − 2 − m (m ≥ 0). It is important to note
that the first factor on the l.h.s. is still strictly positive (which can be seen, using, e.g.,
anδ,l∗ ≥ 8π2/(50||v̂||∞) and bδ,l∗ ≤ 2π2/(50||v̂||∞)):

cnδ,l∗ ≡
anδ,l∗ − 2bδ,l∗

1 + bδ,l∗
≥
(

1 +
50||v̂||∞

4π2

)−1
> 0. (3.59)

Let m∗ = 8
⌊
1 + 50||v̂||∞/4π2

⌋
+ 1, and compute

(2m∗ + 1)
(
fnj−m∗,m∗ + fnj+m∗,m∗

)
=

j∑
l=j−2m∗

gnl +

j+2m∗∑
l=j

gnl ≥
j−m−1∑
l=j−2m∗

gnl +

j+2m∗∑
l=j+m∗+1

gnl ,

(3.60)

for l∗+ 2 + 2m∗ ≤ j ≤ bδNc− 2− 2m∗. Using (3.58) we obtain a lower bound for the r.h.s.
For that, sort all terms into groups of four. E.g., the two first and the two last,(

gnj−2m∗ + gnj−2m∗+1

)
+
(
gnj+2m∗−1 + gnj+2m∗

)
≥ cnδ,l∗(4m∗ − 3)fnj,2m∗−2 (3.61)

following from (3.58) with m = 2m∗ − 2. Equivalently, for i even, 2 ≤ i ≤ m∗ − 2 (with
m = 2m∗ − i− 2), one finds(

gnj−2m∗+i + gnj−2m∗+i+1

)
+
(
gnj+2m∗−i−1 + gj+2m∗−i

)
≥ cnδ,l∗(4m∗ − 2i− 3)fnj,2m∗−i−2.

(3.62)
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Putting everything together, it follows from (3.60) that

fnj−m∗,m∗ + fnj+m∗,m∗ ≥
1

2m∗ + 1

(m∗−2∑
i=0
i even

cnδ,l∗(4m
∗ − 2i− 3)fnj,2m∗−i−2

)

= cnδ,l∗

m∗−2∑
i=0,
ieven

( 1

2m∗ + 1

j+(2m∗−i−2)∑
l=j−(2m∗−i−2)

gnl

)

≥ cnδ,l∗
m∗−2∑
i=0
i even

( 1

2m∗ + 1

j+m∗∑
l=j−m∗

gnl

)
= cnδ,l∗

(m∗ − 1)

2
fnj,m∗ . (3.63)

The choice of m∗ ensures that

cnδ,l∗
(m∗ − 1)

2
≥
(

1 +
50||v̂||∞

4π2

)−1 (m∗ − 1)

2
> 4. (3.64)

In particular, the l.h.s. is larger than 2 uniformly in N . For simplicity we further assume that
N is such that the integer bδNc−l∗−4−2m∗ is multiple ofm∗ (the argument is easily applied
to the general case as well). The number m∗ then divides the tuple (gnl∗+2, ..., g

n
bδNc−2) into

M+1 (for some M ∈ N) partlially overlapping blocks (subtuples), each with length 2m∗+1
and centered around the values gnl∗+2+im∗ , i = 1, ...,M + 1:

block 3︷ ︸︸ ︷( block 1︷ ︸︸ ︷
gnl∗+2, ..., g

n
l∗+2+m∗ , ..., g

n
l∗+2+2m∗ , ..., g

n
l∗+2+3m∗ , ..., g

n
l∗+2+4m∗ , ... ...,

block M+1︷ ︸︸ ︷
gnbδNc−2−2m∗ , ..., g

n
bδNc−2

)
.︸ ︷︷ ︸

block 2

If we denote the arithmetic average of the elements of each such block by hni,m∗ , i = 1, ...,M+
1 (in other words, we set hni,m∗ = fnl∗+2+im∗,m∗), it follows from (3.63) that the hni,m∗ satisfy
the difference inequality

hni−1,m∗ + hni+1,m∗ ≥ cnδ,l∗
(m∗ − 1

2

)
hni,m∗ , i = 2, ...,M, (3.65)

with c ≡ cnδ,l∗
m∗−1

2 > 4. Reading the inequality as ∂2
i h

n
i,m∗ ≥ (c − 2)hni,m∗ , this should be

seen as the correct generalization of (3.27).

Step 3. We now use this relation to derive the exponential decay of the hni,m∗ as func-

tions of the variable i ∈ {2, ...,M}. One solves (3.65) via the exponential ansatz hni,m∗ = xi,
x > 0, i.e.,

x2 − cx+ 1 =
(
x− c

2

)2
−
(c2

4
− 1
)
≥ 0 ⇔

∣∣∣x− c

2

∣∣∣ ≥√c2

4
− 1, (3.66)

with two possible intervals of solutions, namely

x+ ≥
c

2
+

√
c2

4
− 1, x− ≤

c

2
−
√
c2

4
− 1, (3.67)

(since c > 2, the number below the root is strictly positive). One easily finds that x+ > 1 and
x− < 1. Thus, x+ corresponds to an exponentially growing function whereas x− describes
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an exponential decay in the variable i. Here, we are interested only in x− because the
function hni,m∗ must fulfill the following normalization condition,

hnM,m∗ ≤
M∑
i=1

hni,m∗ ≤ C
N∑
l=0

l||Ψn
l ||2 ≤ CN. (3.68)

For the exponentially increasing solution, we would have that for N -independent positive
constants C and D,

CeDδN ≤ CeDM ≤ hnM,m∗ ≤ CN, (3.69)

which is false for large N . The solution to the difference inequality (3.65) (satisfying the
required normalization condition) is then exponentially bounded from above, namely

hni,m∗ ≤ C
[ c

2
−
√
c2

4
− 1
]i

= Ce−Di, 2 ≤ i ≤M, (3.70)

with D = − ln
[
c
2 −

√
c2

4 − 1
]
> 0 since c > 2. By definition of the hni,m∗ , it follows immedi-

ately that

||Ψn
l ||2 ≤ Ce−Dl, l∗ + 2 +m∗ ≤ l ≤ bδNc − 2−m∗. (3.71)

Recalling that δ, m∗ and l∗ are N -independent, this proves (3.43) when N is taken suffi-
ciently large.

Proof of (3.44). Define

Ψn
r =

N∑
l=b δN2 c+1

P 0
N,l Ψn, Ψn

e = Ψn −Ψn
r , and Ψn

r,no =
Ψn
r

||Ψn
r ||

(3.72)

(note that whenever Ψn
r ≡ Ψn

N,r = 0, there is nothing we need to show and hence we can
restrict the argument to a subsequence with ||Ψn

N,r|| > 0). The idea of the proof is to use

(3.43) for showing that the product ||Ψn
r ||
〈
Ψn
r,no, (H − En)Ψn

r,no

〉
is exponentially small in

N . Then, one notes, using the fact that Ψn
r contains a nonvanishing fraction of particles

outside the condensate ϕ0, that the average energy of Ψn
r,no can not be close to En, which is

true only for states in which the majority of particles has condensated. Hence, ||Ψn
r || needs

to be exponentially small which gives (3.44). Let us explain this in detail.

We start with n = 0. It follows from

0 =
〈
Ψ0, (H − E0)Ψ0

〉
≥
〈
Ψ0
r , (H − E0)Ψ0

r

〉
+ 2 Re

〈
Ψ0
e, (H − E0)Ψ0

r

〉
(3.73)

(which is true since H − E0 ≥ 0) that

||Ψ0
r ||2
〈
Ψ0
r,no, (H − E0)Ψ0

r,no

〉
≤ Ce−DN . (3.74)

To see this note that H couples only the “neighbouring” terms of Ψe and Ψr, and thus∣∣∣〈Ψ0
e, (H − E0)Ψ0

r

〉∣∣∣ ≤ 2N
∣∣∣〈Ψ0

e, q
0
1p

0
2v12q

0
1q

0
2Ψ0

r

〉∣∣∣+ 2N
∣∣∣〈Ψ0

e, p
0
1p

0
2v12q

0
1q

0
2Ψ0

r

〉∣∣∣
≤ CN

(
||Ψ0
b δN2 c−1

||+ ||Ψ0
b δN2 c

||
)
||Ψ0

r || ≤ Ce−DN , (3.75)
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by means of (3.24), the definitions of Ψ0
r , Ψ0

e and (3.43). The vanishing of the second factor
on the left side in (3.74) for large N would imply that Ψ0

r,no were close to the actual ground
state which is not correct. In order to show this, we set

Ψ0
r,> = Ψ0

r,no −
m∑
i=0

αi0r Ψi, αi0r =
〈
Ψi,Ψ0

r,no

〉
, (3.76)

such that Ψi ⊥ Ψ0
r,> for all 0 ≤ i ≤ m. The number m is chosen as the smallest integer

such that Em+1 − E0 ≥ ε > 0 (for some small ε > 0 and all large N). It then follows that

〈
Ψ0
r,no, HΨ0

r,no

〉
≥

m∑
i=0

Ei|αi0r |2 + Em+1||Ψ0
r,>||2, (3.77)

and thus in particular, using |α10
r |2 + ...+ |αm0

r |2 + ||Ψ0
r,>||2 = 1,

〈
Ψ0
r,no, (H − E0)Ψ0

r,no

〉
≥ (Em+1 − E0)||Ψ0

r,>||2 ≥ ε
∣∣∣∣∣∣Ψ0

r,no −
m∑
i=0

αi0r Ψi
∣∣∣∣∣∣2. (3.78)

Recalling the definition of Ψ0
r,no and the identitiy

∑N
l=0 P

0
N,l = 1 with P 0

N,lP
0
N,l′ = P 0

N,lδll′ ,
one also finds

∣∣∣∣∣∣Ψ0
r,no −

m∑
i=0

αi0r Ψi
∣∣∣∣∣∣2 ≥ ∣∣∣∣∣∣ bδN/2c∑

l=0

P 0
N,l

( m∑
i=0

αi0r Ψi
)∣∣∣∣∣∣2 =

bδN/2c∑
l=0

∣∣∣∣∣∣P 0
N,l

( m∑
i=0

αi0r Ψi
)∣∣∣∣∣∣2, (3.79)

and, moreover, using the abbreviation Φ = α00
r Ψ0 + ...+ αm0

r Ψm,

(3.79) =1−
N∑

l=b δN2 c+1

||P 0
N,lΦ||2 ≥ 1− 2

δ

( N∑
l=0

l

N
||P 0

N,lΦ||2
)
≥ 1− C

Na
(3.80)

for some a > 0. The last step follows from Eq. (3.167), Appendix 3.A and corresponds to
the physical fact that the majority of particles in Ψm occupies the condensate wave function
ϕH. This is explained in more detail in Appendix 3.A (here we use that Kn = O(1) for
fixed n; cf. Remark (3.3)). Summarizing the different steps, we have found that〈

Ψ0
r,no, (H − E0)Ψ0

r,no

〉
≥ C

(
1− 1

Na

)
, (3.81)

which together with (3.74) implies that ||Ψ0
r ||2 =

∑N
l>δN/2 ||P 0

N,lΨ
0||2 ≤ Ce−DN . This proves

(3.44) for n = 0.

Next, we fix n ≥ 1, and assume (3.44) to hold for all m < n. We start again from

0 =
〈
Ψn
r , (H − En)Ψn

r

〉
+
〈
Ψn
e , (H − En)Ψn

e

〉
+ 2 Re

〈
Ψn
e , (H − En)Ψn

r

〉
(3.82)

The bound for
∣∣〈Ψn

e , (H−En)Ψn
r

〉∣∣ is derived as above. However, H−En is no more positive
such that one needs to control first the negative contributions of the two other terms: Let

Φn
e,> = Ψn

e −
n∑
i=0

βine Ψi, βine =
〈
Ψi,Ψn

e

〉
, (3.83)
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s.t. Ψi ⊥ Φn
e,> for all 0 ≤ i ≤ n. Then,

〈
Ψn
e , (H − En)Ψn

e

〉
≥

n−1∑
i=0

|βine |2(Ei − En) + ||Φn
e,>||2(En+1 − En) ≥ −Ce−DN (3.84)

because Ei − En < 0 for i < n and (recall Ψe =
∑

l≤bδN/2c P
0
N,lΨ and Ψi

e −Ψi = Ψi
r)

|βine |2 =
∣∣〈Ψi,Ψn

e

〉∣∣2 =
∣∣〈Ψi

e,Ψ
n
〉∣∣2 =

∣∣〈Ψi
e −Ψi,Ψn

〉∣∣2 ≤ ||Ψi
r||2 ≤ Ce−DN (3.85)

for all i < n. Similarly, for

Φn
r,> = Ψn

r −
n∑
i=0

βinr Ψi, βinr =
〈
Ψi,Ψn

r

〉
, (3.86)

we find

〈
Ψn
r , (H − En)Ψn

r

〉
≥

n−1∑
i=0

|βinr |2(Ei − En) + ||Φn
r,>||2(En+1 − En) ≥ −Ce−DN , (3.87)

because for all 0 ≤ i < n (recall Ψr =
∑

l>bδN/2c P
0
N,lΨ),

|βinr |2 =
∣∣〈Ψi,Ψn

r

〉∣∣2 =
∣∣〈Ψi

r,Ψ
n
r

〉∣∣2 ≤ ||Ψi
r||2 ≤ Ce−DN . (3.88)

Thus, using (3.82), we infer that

−Ce−DN ≤
〈
Ψn
r , (H − En)Ψn

r

〉
≤ Ce−DN − 2 Re

〈
Ψn
e , (H − En)Ψn

r

〉
≤ Ce−DN , (3.89)

and thus

||Ψn
r ||2

∣∣∣〈Ψn
r,no, (H − En)Ψn

r,no

〉∣∣∣ ≤ Ce−DN . (3.90)

From here, we proceed similar as in the case n = 0. Let

Ψn
r,> = Ψn

r,no −
m∑
i=0

αinr Ψi, αinr =
〈
Ψi,Ψn

r,no

〉
, (3.91)

with m ≥ n the smallest integer such that Em+1 − En ≥ ε > 0 (for some small ε and all
large N). Then,〈

Ψn
r,no, (H − En)Ψn

r,no

〉
≥

n−1∑
i=0

|αinr |2(Ei − En) +

m∑
i=n+1

|αinr |2(Ei − En) + ||Ψn
r,>||2(Em+1 − En)

≥ −Ce−DN + ε||Ψn
r,>||2, (3.92)

which follows from |αinr |2 ≤ ||Ψi
r||2 ≤ Ce−DN for all 0 ≤ i < n (shown similarly as for the

βinr ). Moreover,

||Ψn
r,>||2 ≥

∣∣∣∣∣∣ bδN/2c∑
l=0

P 0
N,l

( m∑
i=0

αinr Ψi
)∣∣∣∣∣∣2 =

bδN/2c∑
l=0

∣∣∣∣∣∣P 0
N,l

( m∑
i=0

αinr Ψi
)∣∣∣∣∣∣2, (3.93)
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and, using again the abbreviation Φ = α0n
r Ψ0 + α1n

r Ψ1 + ...+ αmnr Ψm, we find

(3.93) = 1−
N∑

l=b δN2 c+1

||P 0
N,lΦ||2 ≥ 1− 2

δ

( N∑
l=0

k

N
||P 0

N,lΦ||2
)
≥ 1− C

Na
(3.94)

for some a > 0, where the last step follows from Eq. (3.167), Appendix 3.A (here we use
again Kn = O(1) for fixed n; cf. Remark (3.3)). Altogether, this implies ||Ψn

r ||2 ≤ Ce−DN

which proves (3.44) for n ≥ 1, and hence completes the proof of Theorem 3.1 (a).

(b) The same argument as in the proof of part (a) can be used for proving the statement
also for eigenfunctions Ψ̃n. The only difference is the absence of Ṽ rest in (3.51).

Alternatively, one can derive estimates similar to the ones in Lemma 3.8 where the constant
bδ,l∗ is replaced by a constant bl∗ ∝ 1/

√
l∗ (in particular, not depending on δ). By means of

this new estimate, the argument to prove (3.43) could be employed to derive the exponential
bound for ||Ψ̃n

l || directly for all K̃n ≤ l ≤ N (in the Proof of (a), to the contrary, it seems
necessary to split the argument into two steps, namely (3.43) and (3.44) which is due to
the presence of Ṽ rest). This second alternative to prove the statement is more analogous to
the proof of (c); see below.

(c) The strategy is the same as in the proof of (3.43). Taking the scalar product between
HBogχ

n = (EBog +Kn
Bog)χn with (0, 0, ...0, χnl , 0, 0, ...) ∈ Fs, where χnl ∈ L2

s(Tdl) is the lth
component of χn ∈ Fs, we obtain (using EBog < 0)

4π2l||χnl ||2 +Kn
Bog||χnl ||2 +

∑
k 6=0

v̂(k)||akχnl ||2

≤
∑
k 6=0

v̂(k)

2

(∣∣∣〈χnl , a∗ka∗−kχnl−2

〉∣∣∣+
∣∣∣〈χnl , aka−kχnl+2

〉∣∣∣). (3.95)

Furthermore, with some elementary algebra using the canonical commutation relations of
ak and a∗k,∣∣∣〈χnl , a∗ka∗−kχnl−2

〉∣∣∣ ≤ 1

2

(〈
χnl , a

∗
kakχ

n
l

〉
+
〈
χnl−2, a−ka

∗
−kχ

n
l−2

〉)
≤ 1

2

(〈
χnl , a

∗
kakχ

n
l

〉
+
〈
χnl−2, a

∗
−ka−kχ

n
l−2

〉
+ ||χnl−2||2

)
, (3.96)∣∣∣〈χnl , aka−kχnl+2

〉∣∣∣ ≤ 1

2

(〈
χnl , a

∗
kakχ

n
l

〉
+ ||χnl ||2 +

〈
χnl+2, a

∗
−ka−kχ

n
l+2

〉)
, (3.97)

such that for all l ≥ l∗,

1

||v̂||∞

(
4π2 −

Kn
Bog

l∗
− ||v̂||1

2l∗

)
l||χnl ||2 (3.98)

≤ 1

4

∑
k 6=0

v̂(k)

||v̂||∞

[
||akχnl−2||2 + ||akχnl+2||2 − 2||akχnl ||2

]
+
( ||v̂||1

2(l∗ − 2)

)
(l − 2)||χnl−2||2.

If we choose l∗ > (Kn
Bog + ||v̂||1/2)/(4π2), the factor on the l.h.s. is again positive and we

can proceed in exact analogy as in the proof of (3.43). However, note the difference that
here the inequality holds for all l ≥ l∗. Going through steps 2 and 3 (with some obvious
modifications) one proves the exponential decay, i.e., ||χnl ||2 ≤ Ce−Dl for all l ≥ Kn

Bog.
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3.3.2 Proofs of Corollaries 3.2 and 3.3

Proof of Corollary 3.2. Note first that for any symmetric wave function Ψ, we have

〈
Ψ,
( m∏
i=1

q0
i

)
Ψ
〉
≤

N∑
l=0

( l
N

)m
||P 0

N,lΨ||2, (3.99)

which follows from the identity 1
N

∑N
i=1 q

0
i =

∑N
l=0

l
NP

0
N,l and l−1

N−1 ≤
l
N for all l ≤ N . The

proof of the corollary is now straightforward:

Kn∑
l=0

lm||P 0
N,lΨ

n||2 ≤ (Kn)m
Kn∑
l=0

||P 0
N,lΨ

n||2 ≤ (Kn)m, (3.100)

and

N∑
l=Kn+1

lm||P 0
N,lΨ

n||2 ≤ C, (3.101)

which is true because ||P 0
N,lΨ

n||2 ≤ Ce−Dl. (3.100) and (3.101) also hold for Ψ̃n when Kn

is replaced by K̃n.

Proof of Corollary 3.3. We recall H − H̃ from (3.24), and use the Fourier decomposition
of v. With q0

2e
ikx2p0

2 = |ϕ−k〉〈1|2, ∀k ∈ 2πZd\{0}, and Corollary 3.2, we find for the terms
with three q0’s and one p0 in (3.24),

N
∣∣∣〈Ψn, q0

1q
0
2v12q

0
1p

0
2Ψn

〉∣∣∣ ≤ N∑
k 6=0

v̂(k)
∣∣∣〈Ψn, q0

1|ϕ−k〉〈ϕ0|2q0
1Ψn

〉∣∣∣
≤ N ||v̂||∞

(∑
k 6=0

||q0
1p
−k
2 Ψn||

)
||q0

1Ψn||

≤ N ||v̂||∞||q0
1q

0
2Ψn|| ||q0

1Ψn|| ≤ C(1 +Kn)
3
2

√
N

. (3.102)

For the term with four q0’s in H − H̃, we obtain

N
∣∣∣〈Ψn, q0

1q
0
2

(
v12 − v̂(0)

)
q0

1q
0
2Ψn

〉∣∣∣ ≤ N∑
k 6=0

v̂(k)
∣∣〈Ψn, q0

1q
0
2e
ik(x1−x2)q0

1q
0
2Ψn

〉∣∣
≤ N ||v̂||1 ||q0

1q
0
2Ψn||2 ≤ C(1 +Kn)2

N
. (3.103)

The same estimates hold again when Ψn and Kn are replaced by Ψ̃n and K̃n.

3.3.3 Proofs of Lemma 3.4 and Theorem 3.5

Proof of Lemma 3.4. To obtain uniqueness of the ground state Ψ̃0, we show that

||Ψ̃0 −Ψ0|| ≤ CN−
1
4 (3.104)

for Ψ̃0, Ψ0 with appropriately chosen relative phase factor. Uniqueness of Ψ̃0 then follows
from uniqueness of Ψ0. That Ψ0 is nondegenerate follows from standard techniques showing
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that the ground state of H has to be a positive function (for details, we refer to [113, Section
XIII.12]). Assume Ψ̃0

1 ⊥ Ψ̃0
2 two different ground states of H̃. According to (3.104) we would

find that

√
2 = ||Ψ0

1 − Ψ̃0
2|| ≤ ||Ψ̃0

1 −Ψ0||+ ||Ψ0 − Ψ̃0
2|| ≤ CN−

1
4 (3.105)

which leads to an obvious contradiction for large enough N .

In order to derive (3.104), let Ψ0 = αΨ̃0 + Ψ̃⊥ with Ψ̃0 ⊥ Ψ̃⊥ and the phase in Ψ0 such
that α =

〈
Ψ̃0,Ψ0

〉
∈ R and α > 0. It follows that 1 = α2 + ||Ψ̃⊥||2 and thus

||Ψ̃0 −Ψ0|| ≤ ||Ψ̃⊥||+ (1− α) ≤ ||Ψ̃⊥||+ (1− α2) = ||Ψ̃⊥||+ ||Ψ̃⊥||2 ≤ 2||Ψ̃⊥||. (3.106)

For estimating the norm of ||Ψ⊥|| we start from〈
Ψ0, H̃Ψ0

〉
≥ Ẽ0α2 + Ẽ1||Ψ⊥||2 = Ẽ0 + (Ẽ1 − Ẽ0)||Ψ̃⊥||2. (3.107)

With K̃1 = Ẽ1 − Ẽ0, it follows that

K̃1||Ψ̃⊥||2 ≤
〈
Ψ0, H̃Ψ0

〉
− Ẽ0 ≤

〈
Ψ0, (H̃ −H)Ψ0

〉
+
〈
Ψ̃0, (H − H̃)Ψ̃0

〉
≤ C√

N
, (3.108)

where we have used
〈
Ψ0, HΨ0

〉
≤
〈
Ψ̃0, HΨ̃0

〉
in the second step, and Corollary 3.3 in

the third step. That the spectral gap Ẽ1 − Ẽ0 = K̃1 ≥ ε > 0 is strictly positive is not
obvious and we have to take it for granted at this point. It follows for instance from the
proof of Theorem 3.7 where we show that limN→∞ K̃

1 = K1
Bog, together with the fact that

K1
Bog ≥ ε > 0.

The idea for improving the convergence rate in (3.104) (which is the statement of The-
orem 3.5) is to use additionally the property “f̂0

oddΨ̃0 = 0 or f̂0
evenΨ̃0 = 0”. To do that we

need some technical preparations which are summarized in

Lemma 3.10. Let a ∈ {1
2 , 1}, d ∈ {−1, 0, 1}, and (τ̂dn

0)a and (τ̂dν
0)a denote the linear

combinations of projectors (cf. Definition (2.12))

(τ̂dn
0)a =

N−d∑
k=1−d

(k + d

N

)a
P 0
N,k, (τ̂dν

0)a =
N−d∑
k=1−d

( N

k + d

)a
P 0
N,k. (3.109)

Then, for any Ψ ∈ L2
s(TdN ), the following assertions hold:

(a)
[
(τ̂dm

0)a, s0
i

]
= 0 for m ∈ {n, ν}, s0

i ∈ {p0
i , q

0
i } and 1 ≤ i ≤ N ,

(b) q0
1Ψ = (τ̂dn

0)a(τ̂dν
0)aq0

1Ψ for d ∈ {−1, 0, 1},

(c) q0
1q

0
2v12q

0
1p

0
2(τ̂dm

0)aΨ = (τ̂d+1m
0
)aq0

1q
0
2v12q

0
1p

0
2Ψ for m ∈ {n, ν}, d ∈ {−1, 0},

(d) q0
1p

0
2v12q

0
1q

0
2(τ̂dm

0)aΨ = (τ̂d−1m
0
)aq0

1p
0
2v12q

0
1q

0
2Ψ for m ∈ {n, ν}, d ∈ {0, 1},

(e) ||q0
1(τ̂dn

0)
1
2 Ψ||2 ≤ C||q0

1q
0
2Ψ||2 and ||q0

1(τ̂dn
0)1Ψ||2 ≤ C||q0

1q
0
2q

0
3Ψ||2 for d ∈ {−1, 0, 1},

(f) ||q0
1(τ̂dν

0)
1
2 Ψ||2 ≤ C||Ψ||2 and ||q0

1q
0
2(τ̂dν

0)1Ψ||2 ≤ C||Ψ||2 for d ∈ {−1, 0, 1}.
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Proof of Theorem 3.5. Following the same argument as in the proof of Corollary 3.4, it
remains to find an improved bound in (3.108):

K̃1||Ψ̃⊥||2 ≤
〈
Ψ0, (H̃ −H)Ψ0

〉
+
〈
Ψ̃0, (H − H̃)Ψ̃0

〉
. (3.110)

Let us assume f̂0
oddΨ̃0 = 0 (the proof would be completely analogous for f̂0

evenΨ̃0=0; Corol-
lary 3.4 states that either of the two is zero). We estimate the terms with three q0’s and
one p0, using that qqvqp only couples the odd with the even part, and vice versa:∣∣∣〈Ψ̃0, q0

1q
0
2v12q

0
1p

0
2Ψ̃0

〉∣∣∣ =
∣∣∣〈f̂0

oddΨ̃0, q0
1q

0
2v12q

0
1p

0
2f̂

0
evenΨ̃0

〉
+
〈
f̂0

evenΨ̃0, q0
1q

0
2v12q

0
1p

0
2f̂

0
oddΨ̃0

〉∣∣∣ = 0.

For Ψ0, we find∣∣∣〈Ψ0, q0
1q

0
2v12q

0
1p

0
2Ψ0

〉∣∣∣ =
∣∣∣〈f̂0

oddΨ0, q0
1q

0
2v12q

0
1p

0
2f̂

0
evenΨ0

〉∣∣∣+
∣∣∣〈f̂0

evenΨ0, q0
1q

0
2v12q

0
1p

0
2f̂

0
oddΨ0

〉∣∣∣.
Here we proceed with Lemma 3.10, and obtain

N
∣∣∣〈f̂0

oddΨ0, q0
1q

0
2v12q

0
1p

0
2f̂

0
evenΨ0

〉∣∣∣ = N
∣∣∣〈f̂0

oddΨ0, (τ̂0ν
0)1q0

1q
0
2v12q

0
1p

0
2(τ̂−1n

0
)1f̂0

evenΨ0
〉∣∣∣

≤ N ||q0
1q

0
2(τ̂0ν

0)1f̂0
oddΨ0|| ||v12p

0
2||op ||q0

1(τ̂−1n
0
)1Ψ0||

≤ CN ||f̂0
oddΨ0|| ||q0

1q
0
2q

0
3Ψ0||

≤ K̃1

10
||f̂0

oddΨ0 − f̂0
oddΨ̃0||2 +

CN2

K̃1
||q0

1q
0
2q

0
3Ψ0||2

≤ K̃1

10
||Ψ0 − Ψ̃0||2 +

C

K̃1N
, (3.111)

where we have also used that ||f̂0
odd||op ≤ 1 as well as ||v12p

0
2||op ≤

√
||p0

2v
2
12p

0
2||op ≤ ||v12||2 ≤

C. Similarly, one finds

N
∣∣∣〈f̂0

evenΨ0, q0
1q

0
2v12q

0
1p

0
2f̂

0
oddΨ0

〉∣∣∣ ≤ K̃1

10
||Ψ0 −Ψ0||2 +

C

K̃1N
. (3.112)

The term with four q0’s in H−H̃ has been already estimated in (3.103). Using K0 = K̃0 = 0
completes the proof of Theorem 3.5.

3.3.4 Proofs of Theorem 3.7

Proof of Theorem 3.7. We first compute the difference between H̃ and HBog. For that, we
introduce the unitary mapping

UϕH : L2
s(TdN )→ F≤Ns , Ψ 7→ UϕHΨ = (χΨ

l )Nl=0 ∈ F≤Ns , (3.113)

where F≤Ns =
⊕N

l=0

⊗l
sym.

(
{ϕH}⊥

)
. UϕH is defined by6

χΨ
l (x1, ..., xk) =

√(
N

l

)( l∏
i=1

q0
i

)∫  N∏
j=l+1

ϕ0(xi)

Ψ(x1, ..., xN ) dxl+1 . . . dxN . (3.114)

6The mapping UϕH gives the correct relation between the N -particle space and the Fock space of ex-
citations F≤Ns ⊂ Fs which we have mentioned in (3.13). It maps Ψ onto its component in which exactly
N− l particles occupy the condensate wave function and then removes the corresponding degrees of freedom.
What remains is a symmetric l-particle wave function which is orthogonal to ϕH in all coordinates. This
mapping was first introduced in [81].
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Also note for symmetric Ψ the identity, following from 1 =
∑N

l=0 P
0
N,l,

Ψ =
N∑
l=0

P 0
N,lΨ =

N∑
l=0

(
ϕ⊗N−lH ⊗s χΨ

l

)
, (3.115)

where ⊗s denotes the normalized symmetric product between two symmetric wave functions
ψl ∈ L2

s(Tdl), ψk ∈ L2
s(Tdk),

ψl ⊗s ψk =
1√

k!l!(k + l)!

∑
σ∈Pk+l

ψl(xσ(1), ..., xσ(l))ψk(xσ(l+1), ..., xσ(k+l)). (3.116)

It follows from the definition of UϕH that for Ψ,Φ ∈ L2
s(TdN ),

〈
Ψl,Φl

〉
=
〈
Ψ, P 0

N,lΦ
〉

=
N !

(N − l)!l!
〈
Ψ,
(
q0

1...q
0
l p

0
l+1...p

0
N

)
Ψ
〉

=
〈
χΨ
l , χ

Φ
l

〉
. (3.117)

Unitarity of UϕH is then obtained from

〈
Ψ,Φ

〉
=

N∑
l=0

〈
Ψl,Φl

〉
=

N∑
l=0

N !

(N − l)!l!
〈
Ψ,
(
q0

1...q
0
l p

0
l+1...p

0
N

)
Ψ
〉

=
N∑
l=0

〈
χΨ
l , χ

Φ
l

〉
.

One also finds by direct computation that

UϕHH̃U−1
ϕH

=
Nv̂(0)

2
+ H̃≤N , (3.118)

where H̃≤N : F≤Ns → F≤Ns is given by H̃≤N =
⊕N

l=0 H̃
≤N
l with

H̃≤Nl =
∑
k 6=0

|k|2a∗kak +
∑
k 6=0

v̂(k)

2

[
2
(N − l
N − 1

)
a∗kak + c1(N, l)a∗ka

∗
−k + c2(N, l)aka−k

]
(3.119)

for all l ≤ N − 2, and

H̃≤Nl =
∑
k 6=0

|k|2a∗kak +
∑
k 6=0

v̂(k)

2

[
2
(N − l
N − 1

)
a∗kak + c2(N, l)aka−k

]
(3.120)

for l ∈ {N − 1, N}. Here, we have used the abbreviations

c1(N, l) =

√
(N − l + 2)(N − l + 1)

N − 1
, c2(N, l) =

√
(N − l)(N − l − 1)

N − 1
. (3.121)

We give an example of how one arrives at (3.118): We need to compute√(
N

l

)( l∏
i=1

q0
i

)
〈ϕ⊗(N−l)

H , H̃Ψ
〉
,

where the scalar product is taken w.r.t. the coordinates xl+1, ..., xN . The one-particle part
of the Hamiltonian leads to√(

N

l

)(
−

l∑
i=1

∆i +
Nv̂(0)

2

)( l∏
i=1

q0
i

)
〈ϕ⊗(N−l)

H ,Ψ
〉

=
(∑
k 6=0

|k|2 a∗kak +
Nv̂(0)

2

)
χΨ
l .
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For the qqvpp part of the interaction term in H̃, one finds√(
N

l

)( l∏
i=1

q0
i

)
〈ϕ⊗(N−l)

H ,
( 1

N − 1

∑
1≤i<j≤N

q0
i q

0
j vijp

0
i p

0
j

)
Ψ
〉

=

√(
N

l

)√(
N

l − 2

)−1

1

N − 1

∑
1≤i<j≤l

q0
i q

0
j vijϕ

0(xi)ϕ
0(xj)χ

Ψ
l−2(x1, ..., xl\xi\xj)

=

√(
N

l

)√(
N

l − 2

)−1

1

N − 1

√
l(l − 1)

2

∑
k 6=0

v̂(k)a∗ka
∗
−kχ

Ψ
l−2(x1, ..., xl−2)

=

√
(N − l + 2)(N − l + 1)

N − 1

∑
k 6=0

v̂(k)

2

(
a∗ka
∗
−kχ

Ψ
l−2

)
(x1, ..., xl).

Proceding similar for the other interaction terms in H̃, one obtained the given expression.

We denote the eigenfunctions of H̃≤N by χΨ̃n ∈ F≤Ns . Due to unitarity of UϕH , they are

given by χΨ̃n = UϕHΨ̃n. The corresponding eigenvalues equal µn(H̃≤N ) = Ẽn − Nv̂(0)/2.

Note that the components χΨ̃n

l ∈ L2
s(Tdl) decay as well exponentially in the number l, i.e.,

||χΨ̃n

l ||2 ≤ Ce−Dl for all l ≥ K̃n, (3.122)

which follows from ||χΨ̃n

l ||2 = ||Ψ̃n
l ||2, cf. (3.117), and Theorem 3.1 (b).

Ground state energy. Lower and upper bound for E0 in terms of Ẽ0: We find∣∣∣E0 − Ẽ0
∣∣∣ ≤ max

{∣∣∣〈Ψ0, (H − H̃)Ψ0
〉∣∣∣, ∣∣∣〈Ψ̃0, (H − H̃)Ψ̃0

〉∣∣∣} ≤ C

N
(3.123)

which follows along the same lines of the proof of Theorem 3.5; cf. the estimates following
(3.110).

Next, we want to find upper and lower bounds for µ0(H̃≤N ) in terms of µ0(HBog). Here,

the comparison of H̃≤N and HBog is more tedious because they act on different spaces.

Upper bound for µ0(H̃≤N ) in terms of µ0(HBog): To this end, we introduce

H≤NBog = PF≤Ns
HBogPF≤Ns

, (3.124)

where PF≤Ns
is the orthogonal projector onto F≤Ns ⊂ Fs. Denoting χ0,≤N = PF≤Ns

χ0

(χn ∈ Fs are the eigenfunctions of HBog), we find that

µ0

(
H̃≤N

)
≤

〈
χ0,≤N , H̃≤Nχ0,≤N〉

F≤Ns
||χ0,≤N ||2

F≤Ns

. (3.125)

The denominator is easily estimated (using ||χ0||Fs = 1 and the exponential decay of ||χ0
l ||),

||χ0,≤N ||2F≤Ns =

N∑
l=0

||χ0
l ||2 = 1−

∞∑
l=N+1

||χ0
l ||2 ≥ 1− C

Na

∞∑
l=N+1

lae−Dl ≥ 1− Ca
Na

(3.126)
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for any integer a > 0 and some positive constant Ca. Choosing a large enough, one obtains
for instance ||χ0,≤N ||−2

F≤Ns
≤ C(1 +N−2). We proceed with〈

χ0,≤N , H̃≤Nχ0,≤N〉
F≤Ns

=
〈
χ0,≤N ,H≤NBogχ

0,≤N〉
F≤Ns

(3.127)

+
〈
χ0,≤N ,

(
H̃≤N −H≤NBog

)
χ0,≤N〉

F≤Ns
, (3.128)

where the first line equals

(3.127) =
〈
χ0,H≤NBogχ

0
〉
Fs = µ0(HBog) +

〈
χ0,
(
H≤NBog −HBog

)
χ0
〉
Fs , (3.129)

and it remains to compute the difference

〈
χ,
(
H≤NBog −HBog

)
χ
〉
Fs ≤ −

∞∑
l=N+1

∑
k 6=0

k2
〈
χl, a

∗
kakχl

〉
−

∞∑
l=N+1

∑
k 6=0

v̂(k)
〈
χl, a

∗
kakχl

〉
+

∞∑
l=N−1

∑
k 6=0

v̂(k)

2

∣∣∣〈χl, aka−kχl+2

〉∣∣∣+

∞∑
l=N+1

∑
k 6=0

v̂(k)

2

∣∣∣〈χl, a∗ka∗−kχl−2

〉∣∣∣
≤ C||v̂||∞

∞∑
l=N−1

l||χl||2 + C||v̂||1
∞∑

l=N−1

||χl||2. (3.130)

Here, we have made use of v̂(k) ≥ 0 as well as of (3.96) and (3.97) with χn replaced by
χ ∈ Fs. For χ = χ0, the last line is small (following again from the exponential decay of
||χ0

l ||) such that 〈
χ0,
(
H≤NBog −HBog

)
χ0
〉
Fs ≤

C

N
. (3.131)

Next, we have to estimate the difference H̃≤N − H≤NBog. Using again (3.96) and (3.97), and
in addition the fact that∣∣∣1− (N − l

N − 1

)∣∣∣ ≤ C l

N
,

∣∣∣1− c1(N, l)
∣∣∣ ≤ C l

N
,

∣∣∣1− c2(N, l)
∣∣∣ ≤ C l

N
, (3.132)

with c1 and c2 defined as in (3.121), we obtain∣∣∣〈χ0,≤N ,
(
H̃≤N −H≤NBog

)
χ0,≤N〉

F≤Ns

∣∣∣ ≤ C||v̂||∞ N∑
l=0

l2

N
||χ0,≤N

l ||2 + C||v̂||1
N∑
l=0

l

N
||χ0,≤N

l ||2.

(3.133)

By means of the exponential decay of the ||χ0,≤N
l ||, this leads to∣∣∣〈χ0,≤N ,

(
H̃≤N −H≤NBog

)
χ0,≤N〉

F≤Ns

∣∣∣ ≤ C

N
. (3.134)

In total, this shows that µ0(H̃≤N ) ≤ µ0(HBog)+C/N , and thus Ẽ0−Nv̂(0)/2−EBog ≤ C/N .

Lower bound for µ0(H̃≤N ) in terms of µ0(HBog): For the corresponding lower bound, we

denote by H̃ the trivial extension of H̃≤N to the whole Fock space Fs and by χ̃0 ∈ Fs the

state that equals χΨ̃0
on F≤Ns and is identically zero otherwise (note that ||χ̃0||Fs = 1).

Then, we proceed in analogy to before,

µ0(HBog) ≤
〈
χ̃0,HBogχ̃

0
〉
Fs ≤

〈
χ̃0, H̃χ̃0

〉
Fs +

〈
χ̃0,
(
HBog − H̃

)
χ̃0
〉
Fs . (3.135)
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The first term is given by〈
χ̃0, H̃χ̃0

〉
Fs =

〈
χΨ̃0

, H̃≤NχΨ̃0〉
F≤Ns

= µ0(H̃≤N ), (3.136)

and for the second term, we find similarly as in (3.133),〈
χ̃0,
(
HBog − H̃

)
χ̃0
〉
Fs =

〈
χΨ̃0

,
(
H≤NBog − H̃≤N

)
χΨ̃0〉

F≤Ns

≤ C||v̂||∞
N∑
l=0

l2

N
||χΨ̃0

l ||2 + C||v̂||1
N∑
l=0

l

N
||χΨ̃0

l ||2. (3.137)

Since ||χΨ̃0

l ||2 ∝ e−Dl, cf. (3.122), the last line is again bounded in terms of C/N . This
completes the derivation of the lower bound and leads to the claimed estimate for the
ground state energy.

Excitation energies. Upper bound for µn(H̃≤N ) in terms of µn(HBog): For the upper
bound, we use the min-max principle with the subspace

Y ≤Nn+1 = PF≤Ns
Yn+1 ⊂ F≤Ns (3.138)

where Yn+1 ⊂ Fs is the n+1-dimensional subspace spanned by the eigenvectors {χ0, ..., χn}.
One obtains

µn(H̃≤N ) ≤ max
χ≤N∈Y ≤Nn+1 ,

||χ≤N ||
F≤Ns

=1

〈
χ≤N ,H≤NBogχ

≤N〉
F≤Ns

+ max
χ≤N∈Y ≤Nn+1 ,

||χ≤N ||
F≤Ns

=1

〈
χ≤N ,

(
H̃≤N −H≤NBog

)
χ≤N

〉
F≤Ns

.

(3.139)

The difference in the second term is computed similarly as in (3.133), such that

〈
χ≤N ,

(
H̃≤N −H≤NBog

)
χ≤N

〉
F≤Ns

≤ C||v̂||∞
N∑
l=0

l2

N
||χ≤Nl ||

2 + C||v̂||1
N∑
l=0

l

N
||χ≤Nl ||

2. (3.140)

Since χ≤N lies in Y ≤Nn+1 , we have ||χ≤Nl || ≤ nCe
−Dl for all l ≥ Kn

Bog, and thus, we find

max
χ≤N∈Y ≤Nn+1 ,

||χ≤N ||
F≤Ns

=1

〈
χ≤N ,

(
H̃≤N −H≤NBog

)
χ≤N

〉
F≤Ns

≤ C
[ 1

N
+
Kn

Bog

N
+

(Kn
Bog)2

N

]
. (3.141)

For the first term in (3.139), we proceed with

max
χ≤N∈Y ≤Nn+1 ,

||χ≤N ||
F≤Ns

=1

〈
χ≤N ,H≤NBogχ

≤N〉
F≤Ns

= max
χ≤N∈Y ≤Nn+1 ,

χ≤N 6=0

〈
χ≤N ,H≤NBogχ

≤N〉
F≤Ns

||χ≤N ||2
F≤Ns

, (3.142)

where we can replace the set over which we take the maximum by χ ∈ Yn+1, i.e.,

(3.142) = max
χ∈Yn+1,

χ 6=0

〈
χ,H≤NBogχ

〉
Fs

||PF≤Ns χ||F2
s

= max
χ∈Yn+1,

χ 6=0

[〈χ,H≤NBogχ
〉
Fs

||χ||F2
s

||χ||F2
s

||PF≤Ns χ||F2
s

]
(3.143)
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(note that for all χ ∈ Yn+1, χ 6= 0, the norm ||PF≤Ns χ||F2
s

does not vanish, see below). For

the second factor in the brackets, one finds that for all χ ∈ Yn+1, χ 6= 0, χ =
∑n

i=0 ciχ
i, it

holds that

||χ||2Fs
||PF≤Ns χ||F2

s

≤ 1 +
Ca
Na

, (3.144)

where the integer a can be chosen arbitrarily large. To see this, we compute

||χ||2Fs
||PF≤Ns χ||F2

s

= 1 +

∑n
i=0 |ci|2

∑∞
l=N+1 ||χil||2∑n

i=0 |ci|2
∑N

l=0 ||χil||2
, (3.145)

and by means of the exponential decay of ||χil||2 for all i ∈ {0, ..., n}, l ≥ Kn
Bog, the estimate

in (3.144) follows. It remains to compute

max
χ∈Yn+1,

χ 6=0

〈
χ,H≤NBogχ

〉
Fs

||χ||2Fs
= µn(HBog) + max

χ∈Yn+1,

χ 6=0

〈
χ,
(
H≤NBog −HBog

)
χ
〉
Fs

||χ||2Fs
(3.146)

For the last term, we proceed similarly as in (3.130):

max
χ∈Yn+1,

χ 6=0

〈
χ,
(
H≤NBog −HBog

)
χ
〉
Fs

||χ||F2
s

≤ max
χ∈Yn+1,

||χ||Fs=1

[
C||v̂||∞

∞∑
l=N−1

l||χl||2 + C||v̂||1
∞∑

l=N−1

||χl||2
]
≤ C

N
,

(3.147)

where the bound follows again from the exponential decay of ||χl||. This completes the
derivation of the upper bound.

Lower bound for µn(H̃≤N ) in terms of µn(HBog): In order to obtain the lower, we apply the

min-max principle with Ỹn+1 ⊂ Fs, the subspace spanned by {χ̃1, ..., χ̃n}. One finds

µn(HBog) ≤ max
χ̃∈Ỹn+1,||χ̃||Fs=1

〈
χ̃, H̃χ̃

〉
Fs + max

χ̃∈Ỹn+1,||χ̃||Fs=1

〈
χ̃,
(
HBog − H̃

)
χ̃
〉
Fs

= µn
(
H̃≤N

)
+ max
χΨ∈Y Ψ̃

n+1,||χΨ||
F≤Ns

=1

〈
χΨ,

(
H≤NBog − H̃≤N

)
χΨ
〉
F≤Ns

, (3.148)

where Y Ψ̃
n+1 ⊂ F≤Ns denotes the subspace spanned by {χΨ̃0

, ..., χΨ̃n}. The difference in the
second term can be computed and estimated similarly as in (3.140). Using the exponential
decay of ||χΨ

l ||, one obtains

max
χΨ∈Y Ψ

n+1,||χΨ||
F≤Ns

=1

〈
χΨ,

(
H≤NBog − H̃≤N

)
χΨ
〉
≤ C

[ 1

N
+
Kn

Bog

N
+

(KBog)2

N

]
. (3.149)

Altogether, recalling |Ẽ0 −Nv̂(0)/2− EBog| ≤ C/N , we have thus shown that

∣∣∣K̃n −Kn
Bog

∣∣∣ ≤ C[ 1

N
+
Kn

Bog

N
+

(Kn
Bog)2

N

]
. (3.150)

Lower and upper bound for µn(H) in terms of µn(H̃): The application of the min-max prin-
ciple is simpler here because H and H̃ are defined on the same Hilbert space. In the upper
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bound, we use X̃n+1 ⊂ L2
s(TdN ), the n+1-dimensional subspace spanned by {Ψ̃0, ..., Ψ̃n},

such that

µn(H) ≤ µn(H̃) + max
Ψ̃∈X̃n+1,||Ψ̃||=1

〈
Ψ̃, (H − H̃)Ψ̃

〉
. (3.151)

Then we use (3.24) together with ||
∑n

i=0 ciΨ̃
i
l|| ≤ nCe−Dl for all l ≥ K̃n, in order to find

(the argument is the same as in the proof of Corollary 3.3 with Ψ̃n replaced by Ψ̃ ∈ X̃n+1),

µn(H) ≤ µn(H̃) + C
[1 + (K̃n)

3
2

√
N

+
(K̃n)2

N

]
. (3.152)

The lower bound is proven in complete analogy, now taking the subspace spanned by
{Ψ0, ...,Ψn}. Together with |E0 − Ẽ0| ≤ C/N , this leads to

∣∣∣Kn − K̃n
∣∣∣ ≤ C[1 + (Kn)

3
2

√
N

+
(Kn)2

N

]
. (3.153)

3.3.5 Proofs of Lemmas 3.8, 3.9 and 3.10

Proof of Lemma 3.8. We use p0
1e
ikx1q0

1 = |1〉〈ϕk|1, ∀k ∈ 2πZd\{0}, exploit the symmetry
of the wave function and apply Cauchy Schwarz,

N
∣∣∣〈Ψl, p

0
1p

0
2e
ik(x1−x2)q0

1q
0
2Ψl+2

〉∣∣∣ ≤ ( N

N − 1

)∣∣∣∣∣∣( N∑
m=2

q0
me

ikxmp0
m

)
Ψl

∣∣∣∣∣∣ ||pk1Ψl+2||

≤
(

1 +
2

N

)∣∣∣∣∣∣( N∑
m=2

q0
me

ikxmp0
m

)
Ψl

∣∣∣∣∣∣ ||pk1Ψl+2|| (3.154)

(note that || |ϕ0〉〈ϕk|1Ψ|| = ||pk1Ψ|| for any wave function Ψ). The sum is split into diagonal
and off-diagonal contributions, this time using q0

2e
ikx2p0

2 = |ϕ−k〉〈1|2, ∀k ∈ 2πZd\{0}, i.e.

∣∣∣∣∣∣( N∑
m=2

q0
me

ikxmp0
m

)
Ψl

∣∣∣∣∣∣2 = N ||q0
2e
ikx2p0

2Ψl||2 +N2
〈
q0

2e
ikx2p0

2Ψl, q
0
3e
ikx3p0

3Ψl

〉
(3.155)

≤ N ||Ψl||2 +N2
〈
|ϕ−k〉〈1|2Ψl, |ϕ−k〉〈1|3Ψl

〉
= N ||Ψl||2 +N2||p−k1 p0

2Ψl||2,

where we have used symmetry of Ψl in order to exchange integration variables. This leads
to

N
∣∣∣〈Ψl, p

0
1p

0
2v12q

0
1q

0
2Ψl+2

〉∣∣∣ ≤∑
k 6=0

v̂(k)
(√

N ||Ψl|| ||pk1Ψl+2||+N ||p−k1 p0
2Ψl|| ||pk1Ψl+2||

)
(3.156)

+
2

N

∑
k 6=0

v̂(k)
(√

N ||Ψl|| ||pk1Ψl+2||+N ||p−k1 p0
2Ψl|| ||pk1Ψl+2||

)
.

(3.157)
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Proceeding with the first summand in the first line (using ϕk ⊥ ϕl for l 6= k),∑
k 6=0

v̂(k)
√
N ||Ψl|| ||pk1Ψl+2|| ≤

||v̂||∞
2

√
N
(
||Ψl|| ||q0

1Ψl+2||
)

≤ ||v̂||∞
2

√
l + 2

(
||Ψl|| ||Ψl+2||

)
≤ ||v̂||∞

2
√
l
∗

(
l||Ψl||2 + (l + 2)||Ψl||2

)
, (3.158)

where one takes into account that
√
l+2
l ≤ 4√

l
≤ 4√

l
∗ and further ||q0

1Ψl+2||2 = l+2
N ||Ψl+2||2. In

the second summand in (3.156), we insert the identity 1 = p0
2 + q0

2, then use v̂(k) = v̂(−k),
and find∑
k 6=0

v̂(k)N ||p−k1 p0
2Ψl|| ||pk1Ψl+2|| ≤

N

2

∑
k 6=0

v̂(k)
(
||p−k1 p0

2Ψl||2 + ||pk1p0
2Ψl+2||2 + ||pk1q0

2Ψl+2||2
)

≤ N

2

∑
k 6=0

v̂(k)
(
||pk1p0

2Ψl||2 + ||pk1p0
2Ψl+2||2

)
+ ||v̂||∞

N

2
||q0

1q
0
2Ψl+2||2

≤ N

2

∑
k 6=0

v̂(k)
(
||pk1p0

2Ψl||2 + ||pk1p0
2Ψl+2||2

)
+
||v̂||1

2

√
δ(l + 2)||Ψl+2||2,

where we have used N ||q0
1q

0
2Ψl+2||2 = (l+2)2

N ||Ψl+2||2 ≤
√
δ(l + 2)||Ψl+2||2 and ||v̂||∞ ≤ ||v̂||1.

Similarly, one finds for the sedond line

(3.157) ≤ ||v̂||∞
1

N
√
l
∗

(
l||Ψl||2 + (l + 2)||Ψl||2

)
+ ||v̂||∞

1

N

(
l||Ψl||2 + (l + 2)||Ψl+2||2

)
+ ||v̂||1

√
δ

N
(l + 2)||Ψl+2||2

≤ ||v̂||∞
( 2√

l∗
+

2||v̂||1
||v̂||∞

√
δ
)(
l||Ψl||2 + (l + 2)||Ψl+2||2

)
. (3.159)

Together, this leads to (3.46). In close analogy, one derives also the bound in (3.47).

Proof of Lemma 3.9. We begin by recalling the definition of Ṽ rest,∣∣∣〈Ψl, Ṽ
restΨ

〉
−N

〈
Ψl, q

0
1q

0
2v12q

0
1q

0
2Ψl

〉∣∣∣ (3.160)

= N
∣∣∣2〈Ψl, q

0
1q

0
2v12q

0
1p

0
2Ψl−1

〉
+ 2
〈
Ψl, q

0
1p

0
2v12q

0
1q

0
2Ψl+1

〉
+
〈
Ψl, q

0
1q

0
2 v̂(0)q0

1q
0
2Ψl

〉∣∣∣.
Let δ ∈ (0, 1] and l∗ + 2 ≤ l ≤ bδNc − 1. For the first term, we find using the Fourier
transform of v,

N
∣∣∣〈Ψl, q

0
1q

0
2v12q

0
1p

0
2Ψl−1

〉∣∣∣ ≤ N∑
k 6=0

v̂(k)
∣∣∣〈q0

1Ψl, |ϕk〉〈ϕ0|2eikx1q0
1Ψl−1

〉∣∣∣
≤ N

∑
k 6=0

v̂(k)||q0
1p
k
2Ψl|| ||q0

1Ψl−1||

≤ N ||v̂||∞
l||Ψl||
N

√
l − 1||Ψl−1||√

N

≤
√
δ

2
||v̂||∞

(
l||Ψl||2 + (l − 1)||Ψl−1||2

)
. (3.161)
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The same way, one finds

N
∣∣∣〈Ψl, q

0
1p

0
2v12q

0
1q

0
2Ψl+1

〉∣∣∣ ≤ √δ
2
||v̂||∞

(
l||Ψl||2 + (l + 1)||Ψl+1||2

)
, (3.162)

and similarly also

N
∣∣∣〈Ψl, q

0
1q

0
2v12q

0
1q

0
2Ψl

〉∣∣ = N
∑
k 6=0

v̂(k)
∣∣∣〈Ψl, q

0
1q

0
2e
ik(x1−x2)q0

1q
0
2Ψl

〉∣∣ ≤ δ||v̂||1l||Ψ||2. (3.163)

Proof of Lemma 3.10. The lemma can be proven using the relations summarized below
Definition (2.12) and also the pull through formula from Lemma 2.13.

Appendices

3.A Condensation

For the homogeneous Bose gas with pair potential v satisfying Assumption 3.1, it is not
difficult to show that the low-energy system condensates at leading order. Therefor note
for symmetric wave function Ψ the lower bound for the interaction energy,

1

N − 1

∑
1≤i<j≤N

〈
Ψ, v(xi − xj)Ψ

〉
=

1

2(N − 1)

∑
1≤i 6=j≤N

∑
l,m,n,p

〈
Ψ, plip

m
j v(xi − xj)pni p

p
jΨ
〉

=
1

2(N − 1)

∑
k

v̂(k)
∑
l,m,n,p

∑
1≤i 6=j≤N

〈
Ψ, plip

m
j e

ik(xi−xj)pni p
p
jΨ
〉

=
Nv̂(0)

2
||Ψ||2 +

1

2(N − 1)

∑
k 6=0

v̂(k)
∣∣∣∣∣∣ N∑
i=1

∑
l

|ϕl〉〈ϕl+k|iΨ
∣∣∣∣∣∣2

− N

2(N − 1)

∑
k 6=0

v̂(k)||Ψ||2

≥ Nv̂(0)

2
||Ψ||2 − N

N − 1

v(0)

2
||Ψ||2, (3.164)

where the sums in k, l,m, n, p are meant to run over all values in 2πZd (recall that v̂ ≥ 0). It
then follows for all symmetric wave functions Ψ with

〈
Ψ, HΨ

〉
/||Ψ||2 = E0 +K that (using

the upper bound E0 ≤ Nv̂(0)/2)

Nv̂(0)

2
− N

N − 1

v(0)

2
≤
〈
Ψ, HΨ

〉
||Ψ||2

≤ Nv̂(0)

2
+K. (3.165)

For Ψ = Ψn and K = Kn � N , this implies the assertion in (3.4). Furthermore, one finds

K ≥
N
〈
Ψ, (−∆x1)Ψ

〉
||Ψ||2

− N

N − 1

v(0)

2
, (3.166)
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and thus, since p0
1 + q0

1 = 1 and ∆ϕ0 = 0,(
K +

N

N − 1

v(0)

2

)
||Ψ||2 ≥ N

〈
Ψ, q0

1(−∆x1)q0
1Ψ
〉
≥ 4π2N

〈
Ψ, q0

1Ψ
〉

= 4π2N
( N∑
k=0

l

N
||P 0

N,lΨ||2
)

(3.167)

by means of the identity 1
N

∑N
i=1 q

0
i = 1

N

∑N
l=0 P

0
N,l.

3.B Diagonalizing HBog

We briefly present the argument of diagonalizing the Bogoliubov Hamiltonian (3.9). This
is a standard argument which can be found in the literature; here we quote the nice and
compact exposition from [37, Section 6]. Let

A(k) = |k|2 + v̂(k), B(k) = v̂(k), (3.168)

and define αk, βk, ck and sk via

αk =
1

Bk

(
Ak −

√
A2
k −B2

k

)
= tanh(2βk), (3.169)

ck =
1√

1− α2
k

= cosh(2βk), (3.170)

sk =
αk√

1− α2
k

= sinh(2βk). (3.171)

Moreover, for S = e−X with X =
∑

l 6=0 βl
(
a∗l a
∗
−l − ala−l

)
, using the Lie formula and the

notation [X, ak]j+1 = [X, [X, ak]j ], [X, ak]0 = ak, one finds that

e−Xake
X =

∞∑
j=0

(−1)j

j!

[
X, ak

]
j

= ak + 2βka
∗
−k +

1

2
4β2

kak + .... (3.172)

The j = 1 term, e.g., follows from

−
[
X, ak

]
= −

∑
l 6=0

βl

(
a∗l
[
a∗−l, ak

]
+
[
a∗l , ak

]
a∗−l

)
= β−ka

∗
−k + βka

∗
−k = 2βka

∗
−k, (3.173)

and similarly for j ≥ 2. In total, the ak transform as

SakS
∗ = ckak + ska

∗
−k. (3.174)

Application of the unitary transformation e−X (note that X is antihermitian) to the Bo-
goliubov Hamiltonian then leads to

HBog =
∑
k 6=0

1

2

(
Ak(a

∗
kak + a∗−ka−k) +Bk(a

∗
ka
∗
−k + aka−k)

)
= −1

2

∑
k 6=0

(
Ak −

√
A2
k −B2

k

)
+
∑
k 6=0

√
A2
k −B2

k(cka
∗
k + ska−k)(ckak + ska

∗
−k)
)
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= EBog + S
(∑
k 6=0

e(k) a∗kak

)
S∗, (3.175)

with EBog and e(k) defined as in (3.6) and (3.7). The spectrum of HBog is thus given by

E0
Bog = EBog, and EnBog = EBog +Kn

Bog (n ≥ 1), (3.176)

where Kn
Bog was defined in (3.8).

Below, we show some examples of the excitation spectrum (Kn
Bog = Kn

Bog(p), p) for the
one dimensional Bose gas for different pair potentials v(x). The excitation energies are
depicted w.r.t. to the total momentum p = k1 + ... + kj ∈ (2π/L)Z of the respective
excitation, cf. (3.8). We show one- (red triangles), two- (blue disks) and three-particle
excitations (green disks). The units are chosen such that 2π

L = 1
10 , and the choice of the

pair potential is indicated below the respective figure. Both, the scale and the presented
examples are motivated from [37, Section 1] where similar figures of the excitation spectrum
were presented.
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Figure 3.B.1: Excitation spectrum (Kn
Bog(p), p) for pair potential v̂(k) = 1

10e
− k
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86 3. Low energy properties of the homogeneous Bose gas
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Figure 3.B.2: Excitation spectrum (Kn
Bog(p), p) for pair potential v̂(k) = 50
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Figure 3.B.3: Excitation spectrum (Kn
Bog(p), p) for pair potential v̂(k) = 75
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Chapter 4

Free dynamics of a tracer particle
coupled to a dense Fermi gas

We derive the effective free time evolution of a tracer particle coupled to the ideal Fermi
gas in the high density limit in two spatial dimensions. After presenting the model and our
main theorem, we discuss interesting aspects regarding the model and the claimed result.
The proof of the main result is provided in Section 4.2 and we close the chapter with a list
of four appendices.1

4.1 Introduction and main result

In this chapter we consider the dynamics of a tracer particle interacting with a dense and
homogeneous two-dimensional fermionic gas. In order to keep the analysis simple we neglect
the interaction between the gas particles and focus only on the interaction between tracer
particle y and gas particles x1, . . . , xN . The general model we wish to study is defined by
the Hamiltonian2

H = − 1

2my
∆y −

N∑
i=1

1

2mx
∆xi + g

N∑
i=1

v(xi − y), (4.1)

where v ∈ C∞0 (the space of smooth functions with compact support), and g > 0 is a
coupling constant. The time evolution of the (N+1)-body wave function Ψt ∈ Hy ⊗HN =
L2(Td) ⊗ L2(TdN ), where d is the dimension, T a one-dimensional torus of length L ∈ R,
and L2 denotes the space of complex square integrable functions (for simplicity, we neglect
spin), is given by the Schrödinger equation

i∂tΨt = HΨt. (4.2)

As initial condition we choose a factorized state Ψ0 = ϕ0⊗Ω0, where ϕ0 ∈ Hy is the initial
wave function of the tracer particle and Ω0 ∈ HN is the free fermionic ground state with
periodic boundary conditions in the d-dimensional box of side length L. For analyzing Ψt we

1Note: This chapter was published together with Maximilian Jeblick, Sören Petrat and Peter Pickl in
[69]; compared to [69], two new appendices were added. The work is for the most part due to the author of
the thesis. It is a continuation of an earlier collaboration with the mentioned coauthors, in particular with
Maximilian Jeblick, about the one-dimensional model [67, 68].

2For ease of notation we do not explicitly indicate the N and L dependence of the Hamiltonian H ≡ HN,L,
resp. the wave functions Ψ ≡ ΨN,L throughout this chapter.
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first take the limit N,L→∞ with % = N/Ld = const. in order to remove finite size effects
and then consider large gas densities %. Note that in this situation the average potential
energy of the tracer particle is proportional to g%. We later choose g = 1, such that our
analysis is beyond any weak-coupling limit.

We expect that the above model exhibits some interesting phenomena which depend in
particular on the time scale that one considers. Here, we consider time scales for which the
tracer particle moves in the mean field of the gas particles. Since the mean field potential is
spatially homogeneous for the ideal Fermi gas, the effective dynamics is equivalent to the free
time evolution. For longer times, we expect that the tracer particle will create electron-hole
pairs and eventually lose its energy. The situation may differ depending also on the spatial
dimension. For reasons which we explain in Section 4.1.2, we focus on the two dimensional
case. Let us also remark that the described model is relevant, e.g., for understanding the
motion of ions in a degenerate and dense electron plasma. In this situation it is known that
the ability of the plasma to stop ions decreases in the high-density limit; cf. Section 4.1.2.

We prove in this chapter that in the limit %→∞, the time evolution of the tracer particle
is close to the free dynamics on a particularly large time scale, namely for t � %1/12. Our
main result is readily stated:

Theorem 4.1. Let d = 2, the masses mx = my = 1/2 and the coupling constant g = 1.
Let further Ψ0 = ϕ0 ⊗Ω0 where ϕ0 ∈ Hy with ||∇4ϕ0|| ≤ C uniformly in % = N/L2 and Ω0

is the free fermionic ground state in T2. Then, for any small enough ε > 0, there exists a
positive constant Cε such that

lim
N,L→∞

%=N/L2=const.

∥∥∥e−iHtΨ0 − e−iH
mftΨ0

∥∥∥
Hy⊗HN

≤ Cε(1 + t)
3
2 %−

1
8

+ε (4.3)

holds for all t > 0, where

Hmf = −∆y −
N∑
i=1

∆xi + %v̂(0)− Ere(%) (4.4)

is the free Hamiltonian with constant mean field %v̂(0) = 〈Ω0,
∑N

i=1 v(xi − y)Ω0〉HN minus
a positive %-dependent next-to-leading order energy correction Ere(%) which is defined in
(4.10).

Let us remark that in Theorem 4.1, we have fixed all scales except for the density %
and the time t. The statement is meaningful for all pairs of % and t for which the r.h.s. of
(4.3) becomes small compared to one. A more detailed expression for the error term can
be inferred from (4.50) in combination with Lemma 4.2. The proof of Theorem 4.1 is given
in Section 4.2. Before we discuss the model, the theorem and its application in physics in
more detail, let us stress that Theorem 4.1 is nontrivial and might be surprising at first
sight:

• Contrast the situation with a tracer particle in a classical or bosonic gas. Since the
velocity of the tracer particle is of order one and the interaction proportional to the
density %, then after times of O(1), the tracer particle has scattered with O(%) particles
in the gas. The expected mean free path of the tracer particle is accordingly small,
namely ∝ %−δ for some δ > 0.
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• In a fermionic gas, the kinetic energy of the tracer particle can dissipate into its
environment by means of particle-hole excitations. One might expect that this kind
of friction mechanism would become stronger the larger %. This is the case for a tracer
particle in a Bose gas which was shown in the mean field regime on a rigorous level
in [53, 52, 15]. For fermions one finds a different behavior: the larger the density, the
less the particle is disturbed and, vice versa, disturbs the gas less. As a consequence,
the free motion holds on a much larger time scale t = 0(%δ) for some δ > 0; cf. the
r.h.s. in (4.3).

Our result follows from a careful analysis of the fluctuations in the gas and their propagation,
and relies heavily on the Fermi pressure, i.e., the antisymmetry of the wave function of the
fermionic particles. We give a sketch of the proof in Section 4.1.3 and provide a physically
more intuitive explanation in Section 4.1.3.

4.1.1 The model in more detail

Let us discuss the considered model and its properties in more detail. First, note that we do
not take any internal degrees of freedom such as spin into account. On the level of our main
result, we do not expect a qualitative different behavior by doing so. Note also that our
focus lies on the analysis of the interaction between the tracer particle and the gas, whereas
the mutual interaction of the gas particles is neglected. While this is generally expected
to be a reasonable approximation for many situations, its rigorous justification is a very
interesting question on its own. Physical units are chosen such that the constant ~ and the
masses of tracer particle and gas particles are dimensionless and ~ = 2my = 2mx = 1.

We model the potential between the tracer particle and each of the gas particles by an
infinitely differentiable function with compact support (uniformly in L), i.e., v ∈ C∞0 (T2)∩
C∞0 (R2). Theorem 4.1 holds as well for less regular potentials with fast enough decay
at infinity. In order to simplify the proof as much as possible, however, the chosen class
of potentials is very convenient. We often abbreviate the total interaction term in H by
V =

∑N
i=1 v(xi − y). Since V is bounded, H defines a self-adjoint operator on the second

Sobolev space H2(T2(N+1)) ⊂ Hy ⊗ HN . For the corresponding time evolution, we write
U(t) = e−iHt, t ≥ 0.

The initial wave function ϕ0 of the tracer particle is restricted to be an element of
H4(T2) ⊂ Hy with ||ϕ0||H4 < C for all values of %. The initial state of the gas is assumed to
be given by the ground state of the ideal Fermi gas which is described by the antisymmetric
product of N one-particle plane waves,

Ω0(x1, ..., xN ) =
1√
N !

∑
τ∈SN

(−1)τ
N∏
i=1

φpτ(i)
(xi), (4.5)

with φp(x) = L−1eip·x ∈ L2(T2), and (pj)
N
j=1 the N pairwise different elements of (2π/L)Z2

with smallest absolute value. SN denotes the group of permutations of integers {1, ..., N}
and (−1)τ is the sign of the permutation τ . Since the system is defined on a torus of side
length L (with periodic boundary conditions), the set of possible momenta in the gas is
given by the lattice (2π/L)Z2. We label the momenta such that for j1, j2 ≥ 1 we have
j1 < j2 ⇔ |pj1 | ≤ |pj2 |. The wave function Ω0 corresponds thus to the lowest possible

kinetic energy given by
∑N

k=1 p
2
k.

It is later very convenient to use fermionic creation and annihilation operators. For wave
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functions Ψ ∈ Hy ⊗HN which are antisymmetric in the gas-coordinates, we have

a∗(pl)a(pk)Ψ(y, x1, ..., xN ) =

N∑
i=1

φpl(xi)

∫
T2

dz φ∗pk(z)Ψ(y, x1, ..., xi−1, z, xi+1, ...xN ), (4.6)

i.e., a particle with momentum pk ∈ (2π/L)Z2 is replaced by a particle with momentum
pl ∈ (2π/L)Z2.

An important quantity that characterizes the state Ω0 is the Fermi momentum kF . It is
defined as kF = |pN | where pN belongs to the set of momenta {pk ∈ (2π/L)Z2 : k = 1, ..., N}
which minimizes the kinetic energy

∑N
i=1 p

2
ki

. The value kF defines the so-called Fermi sphere
and is related in two space dimensions to the average density % via

% =
1

L2

N∑
k=1

=

∫
|p|≤kF

d2p

(2π)2
=
k2
F

4π
⇔ kF =

√
4π%. (4.7)

We study the model in the thermodynamic limit, i.e., for N,L → ∞, and % = N/L2 =
const. This simplifies the analysis because it allows us to ignore additional effects which
are due to the chosen boundary conditions. For very large systems, i.e., in particular for
L/supp(v) � 1, such boundary effects are not expected to be physically relevant which
justifies the analysis in the thermodynamic limit. We emphasize that for the result we are
interested in in this work, it is really the parameter %� 1 which is the physically interesting
one. We expect a very similar result to hold if one repeats all estimates for fixed but large
values of N and L, and then considers the regime in which N � L.

Let us next discuss the effective model. The effective dynamics is described by the
Schrödinger equation with mean field Hamiltonian Hmf. Note that Hmf is also self-adjoint
on H2(T2(N+1)) and the corresponding mean field time evolution is denoted as Umf(t),
t ≥ 0. The average potential w.r.t. Ω0 that acts at position y ∈ T2,

E(y) = 〈Ω0, V Ω0〉HN (y) = %v̂(0), (4.8)

where v̂ denotes the Fourier transform, is spatially constant. The homogeneity of E(y) = E
is furthermore conserved under the mean field time evolution Umf(t), i.e.,

〈Ωf
t , V Ωf

t 〉HN = 〈Ω0, V Ω0〉HN , Ωf
t = e−iH

f
N tΩ0, (4.9)

where Hf
N = −

∑N
i=1 ∆xi denotes the free Hamiltonian of the gas. The Schrödinger equation

with Hamiltonian (4.4) defines therefore a self-consistent approximation. The reason why
we call Hmf a mean field Hamiltonian is that to leading order, it is obtained from H by
replacing the potential V by its average value E. The constant Ere(%) is due to immediate
recollisions between the tracer particle and gas particles. It is given by

Ere(%) = lim
N,L→∞

%=N/L2=const.

1

L4

N∑
k=1

∞∑
l=N+1

|v̂(pk − pl)|2

p2
l − p2

k

θ
(
|pl| − |pk| − %−

1
2

)
, (4.10)

where θ(x) denotes the usual Heaviside step function, i.e., θ(x) = 1 for x ≥ 0 and zero
otherwise. Eq. (4.60) of Lemma 4.3 shows that for any ε > 0 there are positive constants
C,Cε such that

C ≤ Ere(%) ≤ C%2ε + Cε%
−1/ε. (4.11)
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Since %v̂(0)−Ere(%) is constant as a function of the coordinates y, x1, ..., xN , the time evo-

lution Umf(t) is physically equivalent to the free dynamics generated by Hf
y + Hf

N (where

Hf
y = −∆y).

Note that in the rest of this chapter we omit the subscripts Hy, HN or Hy ⊗ HN on
all scalar products and norms, since it is always clear from the argument on which space
the scalar product or norm is meant.

4.1.2 Discussion of the main result

We give a list of nonrigorous remarks and assertions about various aspects of the described
model and Theorem 4.1.

Spectral properties

H and Hmf describe translation invariant systems and therefore the total momentum
is conserved by both dynamics, U(t) as well as Umf(t). In the microscopic model, how-
ever, the initial momentum of the tracer particle is not necessarily conserved due to the
presence of the interaction. The joint energy-momentum spectrum of (H, P̂tot), P̂tot =
−i∇y −

∑N
i=1 i∇xi being the total momentum operator, is thus expected to consist of

degenerate values (Etot, Ptot) where the degeneracy results from the different possibili-
ties of splitting the total momentum Ptot between the tracer particle and the gas. For
(Etot, Ptot) = (〈Ψ0, HΨ0〉, 〈Ψ0, P̂totΨ0〉), the kinetic energy of the tracer particle may as-
sume values between Ekin

y = 0 and Ekin
y = P 2

tot. Note here that the smallest excitation
energy of the gas is equal to 4π2/L2 � 1. It is not difficult to verify that for every value
q2 ∈ [0, P 2

tot], there exists a wave function Ψq ∈ Hy ⊗HN , such that

〈Ψq,−∆yΨ
q
〉

= q2 +O(L−2), 〈Ψq,Ψq′〉 = 0 for |q − q′| > 4π2/L2, (4.12)

while the Ψq are dynamically accessible in the sense that〈
Ψq, HΨq

〉
=
〈
Ψ0, HΨ0

〉
,
〈
Ψq, P̂totΨ

q
〉

=
〈
Ψ0, P̂totΨ0

〉
. (4.13)

This can be seen as follows: let us consider single particle-hole excitations and assume that
the tracer particle has initial momentum

〈
ϕ0, (−i∇)ϕ0

〉
=
〈
Ψ0, P̂totΨ0

〉
= P0 6= 0. From

energy conservation it follows that p2
k + P 2

0 = (P0 − δp)2 + (pk + δp)2, where δp = p` − pk
is the momentum transfer between the tracer particle and the gas (|pk| ≤ kF , |p`| > kF ).
This implies the condition (p`−pk)(p`−P0) = 0. In Figure 4.1 (l.h.s.), the grey disk around
P0 indicates the set of δp that satisfy energy conservation. For each such δp one can find a
pk that also satisfies the above conditions. The grey ring at the circumference of the Fermi
sphere shows all such possible momenta pk for given P0. All these particle-hole excitations
lower the kinetic energy of the tracer particle while they do not change the total energy
and the total momentum of the system. On the r.h.s. of Figure 4.1, we depict the resulting
kinetic energy spectrum of the tracer particle: for Ptot 6= 0 and in the limit L → ∞, our
initial wave function Ψ0 lies on top of a continuous fiber [0, P 2

tot] of dynamically accessible
states (in the sense explained above).3

Although the rigorous analysis of spectral properties in the thermodynamic limit is very
subtle, we expect the above considerations to be true for d ≥ 2 and %� 1.

3To illustrate the argument more explicitly, let us give a very simple example of a transition that conserves
total energy and total momentum, but lowers the kinetic energy of the tracer particle. Suppose, the initial
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Ekin
y (Etot, Ptot)

Ptot

ϕ0 ⊗ Ω0

P 2
tot

P0

kF

P0

δp

pk

pk + δp

Figure 4.1: L.h.s.: A possible particle-hole excitation in the 2d Fermi sphere which lowers
the kinetic energy of the tracer particle from P 2

0 to (P0 − δp)2 while leaving total mo-
mentum P0 =

〈
Ψ0, P̂totΨ0

〉
and total energy E0 =

〈
Ψ0, HΨ0

〉
unchanged. R.h.s.: Reduced

kinetic energy spectrum of the tracer particle Ekin
y (Etot, Ptot) for given value Etot and as

function of Ptot. The part below P 2
tot corresponds to dynamically accessible states for which

Ekin
y (Etot, Ptot) lies between zero and P 2

tot.

Dimension

The spectral properties are very different in one spatial dimension. For d = 1, there are no
dynamically accessible states, i.e., wave functions with total energy and momentum equal
to that of Ψ0, for which the average kinetic energy of the tracer particle is smaller than
its initial value P 2

tot. Any nonnegligible momentum transfer from ϕ0 to Ω0 would cause an
increase in the energy of the gas proportional to kF which is due to the quadratic energy
dispersion relation.4 The reduced kinetic energy spectrum of the tracer particle in one
dimension and for large kF is therefore the same as in the free model: Ekin

y = 〈Ψ0, P̂totΨ0〉2,
with no other values allowed. This makes a result similar to Theorem 4.1 less surprising. A
rigorous analysis of the one dimensional model was carried out in [67]. In Appendix 4.C,
we write down the theorem for d = 1 and give a short sketch of how the the argument we
employ to prove Theorem 4.1 is adapted to the one dimensional case.

For d = 3, the spectral properties are similar to the case d = 2. However, for d = 3, it is
unclear if a similar result about the dynamics holds; see also Remark 4.1 and Appendix 4.D
where we explain the additional difficulties in more detail. This is why we chose to study
d = 2.

momentum of the tracer particle is given by P0 6= 0. Let us now consider a particle-hole excitation that
absorbs all the momentum of the tracer particle, i.e., the momentum transfer is δp = P0, such that the total
momentum is conserved. Then the difference in the total energy before and after the collision is

δE = P 2
0 + p2

k −
(
pk + P0

)2

= −2pk · P0. (4.14)

Therefore, energy is conserved in this case if pk · P0 ≈ 0.
4This can be seen from (4.14): In one dimension the energy difference is −2pk ·P0 ∝ −kF for any pk near

the Fermi surface. For d ≥ 2, this is different as explained above and indicated in Figure 4.1.
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Asymptotic energy loss

From the spectral picture that was explained in Section 4.1.2, we expect that eventually,
the kinetic energy of the tracer particle dissipates into the gas by means of particle-hole
excitations. Recall Figure 4.1 (r.h.s): for L → ∞, the initial wave function Ψ0 lies above
the continuous fiber over P0 =

〈
Ψ0, P̂totΨ0

〉
. If the initial momentum is nonzero, the tracer

particle occupies an excited state which is coupled to a dispersive medium with a large
number of degrees of freedom. In such a situation, one may expect that the excited sub-
system approaches asymptotically its lowest energy state. For the Fermi gas, this friction
mechanism is suppressed for large values of %. Theorem 4.1 states that Ψ0, or equivalently,
the initial momentum distribution of the tracer particle, is stable on a large time scale,
namely at least for t = o(%1/12). On some larger time scale the tracer particle is expected
to slow down until it reaches its ground state Ekin

y = 0.

The rigorous understanding of existence and properties such as lifetime and decay rate
of long-lived resonances is, however, very difficult. It needs more refined techniques and
perhaps a more general formulation of the model (e.g., defining it directly on R2) in order
to describe the physically correct behavior for t → ∞. In [82], e.g., a similar question was
studied on the level of the (fermionic) Hartree equation for which it was shown that a small
defect added initially to the translation-invariant homogeneous state disappears for large
times due to dispersive effects of the gas.

Norm distance

Since we consider a regime of strong coupling, even a single collision can be enough to
disturb the free motion of the system. It is thus necessary to prove that all particles behave
according to the mean field equation. This is the reason why the difference in norm between
U(t)Ψ0 and Umf(t)Ψ0 is the right quantity to consider. Note that the situation is different
compared to the weak coupling regime where the aim is usually to prove that the relative
number of particles which evolve according to the mean field potential is close to one; see,
e.g., [13, 39, 54, 18, 101, 11, 100] for the fermionic case.

Fluctuations and mean field regime

The substitution of the potential V in U(t)Ψ0 by its average value E would be easy to justify
if fluctuations around E were negligibly small, i.e., if V ≈ E would hold with probability
close to one (w.r.t. the probability density defined by |Ωf

t |2). We show in Lemma 4.3,

Eq.(4.57), that this is not the case: while limN,L→∞,%=const. ||(V − E)Ωf
t ||2 is suppressed in

the sense that it grows only with
√
% instead of % (as naively expected from the square root

of N law), it still diverges in the limit % → ∞. The reason for the large fluctuations is the
strong coupling g = 1. If we had assumed a weak coupling, say g = %−1, the fluctuations
would vanish when % tends to ∞ and an estimate like in Theorem 4.1 would follow almost
trivially. We emphasize this because it exemplifies an interesting fact: the mean field regime
for fermions does not necessarily coincide with a weak coupling limit g → 0 (%→∞). For
bosons, on the other hand, the mean field regime coincides with the weak coupling limit.
In other words, Theorem 4.1 provides an explicit example of a setting where the accuracy
of the mean field approximation can be proven for a range of coupling constants g which is
much larger compared to the range in the bosonic or classical case. In Section 4.1.3 we give
a short explanation of why the mean field description is valid even though the fluctuations
can be very large.
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Let us also remark that more generally one finds for d = 1, 2, 3 spatial dimensions,

lim
N,L→∞

%=N/L2=const.

∣∣∣∣∣∣(V − E)Ωf
t

∣∣∣∣∣∣2 = Cd%
d−1
d , (4.15)

with d-dependent constants Cd. A similar result about the suppression of fluctuations in a
Fermi gas has been mentioned in [27, Eqs. (48)-(50)]. Compared to (4.15), there appears
an additional factor ln % on the r.h.s. which is due to the fact that v was chosen less regular
than in our case.

Subleading energy correction Ere(%)

In Lemma 4.3 we show for d = 2 that C ≤ Ere(%) ≤ C%2ε + Cε%
−1/ε for any ε > 0 and

positive constants C,Cε. This means in particular that the claimed estimate in Theorem 4.1
would not be correct without including Ere(%) in the definition of Hmf. Nevertheless, Ere(%)
is only a subleading correction to the mean field energy %v̂(0). It arises from so-called imme-
diate recollisions, i.e., collisions of the type where the tracer particle excites a particle-hole
pair in the gas and then immediately recollides with the excited particle which recombines
with the hole. Such processes appear in the expansion of Ψt into the different collision
histories that have to be controlled, see the end of Section 4.2.3. Let us remark that if we
iterate the Duhamel expansion (4.16) infinitely often, one can identify in each order terms
that contain only immediate recollisions. Then one can indeed show that the phase factor
eiEre(%)t cancels exactly the leading order contribution of those immediate recollision terms
summed up in all orders. We explain this in some more detail in Appendix 4.B. From the
definition of Ere(%) in (4.10) one can see that only gas particles near the Fermi surface
contribute to Ere(%).

Application to physics

The presented model is very close to the physically interesting situation of ions moving
through a degenerate and dense electron plasma. An understanding of what is often referred
to as slowing down of ions in a degenerate plasma has been of interest in the physics
literature at least since a work by Fermi and Teller in 1947 [49] (see also [93]). They have
pointed out that the efficiency of the gas for slowing down ions with velocities far below
the Fermi edge is very low. The same question has later been analyzed explicitly for the
high-density case for which the energy loss of the ions was found to be caused mainly by
(rare) collisions with other ions instead of interactions with the electrons from the plasma;
see, e.g., [114, 33, 125, 126]. These results raised considerable interest in the field of nuclear
physics in which it was known that the existence of long-lived ions in the plasma is essential
for the occurrence of fusion reactions; e.g., [26, 99]. Let us stress that to our knowledge,
the analysis has remained so far on a purely formal level. The rigorous bound we present
here (even though for a much simpler model), starting from the microscopic dynamics and
taking into account the full strong interaction, seems to be novel.

4.1.3 Sketch of the proof

For deriving Theorem 4.1 we use Duhamel’s expansion in order to decompose Ψt into
different wave functions that correspond to different collision histories of the tracer particle.
The main difficulty is to control the interaction with particles occupying momenta close to
the Fermi edge. Our main ingredient here is the large shift in the energy and the thereby
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caused phase cancellation during the scattering with such particles. It turns out to be
necessary but also sufficient to use a third order expansion in the difference H −Hmf. Let
us stress again that g = 1. This prevents us from using a straightforward order by order
expansion of the time evolution. Thus, after expanding to third order, we have to estimate
an error term involving the whole time evolution U(t). In order to convey the main ideas
and techniques behind the proof, let us start by expanding

U(t)Ψ0 − Umf(t)Ψ0 = −i
∫ t

0
dτ1U

mf(t− τ1)(H −Hmf)Umf(τ1)Ψ0 (4.16)

− i
∫ t

0
dτ1

(
U(t− τ1)− Umf(t− τ1)

)
(H −Hmf)Umf(τ1)Ψ0,

which follows from expanding U around Umf in terms of Duhamel’s formula and then
splitting U = Umf + (U − Umf). The first term on the r.h.s. contains deviations from the
effective dynamics due to single particle-hole excitations. In order to present the main
argument, let us ignore the next-to-leading order energy correction Ere(%) in the following.
Using some elementary algebra (only momenta inside the Fermi sphere can be annihilated
and momenta outside the Fermi sphere created), one readily rewrites

(V − E)Ψ0 =
1

L2

N∑
k=1

∞∑
l=N+1

v̂(pl − pk)
(
ei(pl−pk)yϕ0

)
⊗ a∗(pl)a(pk)Ω0. (4.17)

Abbreviating kkl(τ1) = eiH
f
y τ1ei(pl−pk)ye−iH

f
y τ1 (which evolves the tracer particle freely to

time τ1 at which its momentum is changed by pl− pk and then evolves it back to the initial
time), it is also straightforward to arrive at∣∣∣∣∣∣ ∫ t

0
dτ1U

mf(−τ1)(V − E)Umf(τ1)Ψ0

∣∣∣∣∣∣2
=

1

L4

N∑
k=1

∞∑
l=N+1

∣∣v̂(pk − pl)
∣∣2

︸ ︷︷ ︸
=||(V−E)Ωft ||2

∣∣∣∣∣∣ ∫ t

0
dτ1e

i(p2
l−p

2
k)τ1kkl(τ1)ϕ0

∣∣∣∣∣∣2. (4.18)

Due to the regularity of the potential v it is unlikely that a single collision causes a large
momentum transfer between ϕ0 and Ω0. This is reflected in the fact that the Fourier trans-
form of a smooth and compactly supported function decays faster than any polynomial: for
all p ∈ N there exists a constant Dp such that∣∣v̂(pk − pl)

∣∣ ≤ Dp

(1 + |pk − pl|)p
, (4.19)

which follows directly from the Paley-Wiener Theorem; e.g., [112, Theorem XI.11]. At this
point it is convenient to introduce the following notation. For ε > 0 we define v`,ε and vs,ε

such that

v̂`,ε(pk − pl) = θ
(
|pk − pl| − %ε

)
v̂(pk − pl) (4.20)

v̂s,ε(pk − pl) = θ
(
%ε − |pk − pl|

)
v̂(pk − pl). (4.21)

The transition amplitude |v̂`,ε(pk − pl)|2 is negligible for %� 1 which can be inferred from
(4.19). What remains to be bounded is the transitions in (4.18) with momentum transfer
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of order one, i.e.,

1

L4

N∑
k=1

∞∑
l=N+1

∣∣v̂s,ε(pk − pl)∣∣2∣∣∣∣∣∣ ∫ t

0
dτ1e

i(p2
l−p

2
k)τ1kkl(τ1)ϕ0

∣∣∣∣∣∣2. (4.22)

The reason that this term vanishes as well is the oscillation of the integrand ei(p
2
l−p

2
k)τ1kkl(τ1)ϕ0.

Outside a set of critical points of the phase for which |pl| − |pk| ≤ κ(%), for some appropri-
ately small κ(%) � 1, the energy shift grows rapidly: p2

l − p2
k =

(
|pl| + |pk|

)(
|pl| − |pk|

)
&√

%κ(%)� 1. By partial integration, one thus finds that

(4.22) .
t2

L4

[ N∑
k=1

∞∑
l=N+1

{ stationary points }

+
1

%κ(%)2

N∑
k=1

∞∑
l=N+1

] ∣∣v̂s,ε(pk − pl)∣∣2, (4.23)

which will be shown to vanish in the limit % → ∞, see Remarks 4.1 and 4.1 below. This
result is the key ingredient to understand the proof of Theorem 4.1. Since the interaction
is modeled by a two-body potential, it is reasonable to expect that an appropriate estimate
for the higher order terms in (4.16) follows from a bound of the r.h.s. of (4.23). Technically,
however, it is more tedious to obtain good control of the higher-order contributions. The
difficulty is the appearance of the full time evolution U . Using the Duhamel expansion for
U − Umf, one finds an estimate similar to∣∣∣∣∣∣ ∫ t

0
dτ1

∫ τ1

0
dτ2U(τ2)(V − E)Umf(τ2 − τ1)(V − E)Umf(τ1)Ψ0

∣∣∣∣∣∣2 . t2 · (4.22) ·
∣∣∣∣∣∣(V − E)Ωf

t

∣∣∣∣∣∣2,
for which the r.h.s., however, is still divergent for %→∞ (recall that limN,L→∞,%=const. ||(V −
E)Ωf

t || → ∞ when % tends to ∞). Expanding U another time, the main contribution that
has to be controlled is given by∣∣∣∣∣∣ ∫ t

0
dτ1

∫ τ1

0
dτ2

∫ τ2

0
dτ3U(τ3)(V − E)Umf(τ3 − τ2)(V − E)Umf(τ2 − τ1)(V − E)Umf(τ1)Ψ0

∣∣∣∣∣∣.
Now one can use the oscillation of the integrand also in the second time-variable. It will be
shown in detail that this can be bounded in terms of

t2 lim
N,L→∞

%=N/L2=const.

(∣∣∣∣∣∣(V − E)Ωf
t

∣∣∣∣∣∣2 · (4.22)2
)
→ 0 (%→∞). (4.24)

This explains why we expand the dynamics up to third order for proving Theorem 4.1.

Let us conclude with some remarks.

Remark 4.1. 1) In Lemma 4.3 we show that limN,L→∞,%=const. ||(V −E)Ω0||2 ∝
√
%. The term

containing the nonstationary terms in (4.23) will therefore be proportional to %−
1
2κ(%)−2.

The term containing the stationary points in (4.23) turns out, in d = 2, to be proportional
to
√
%κ(%)2. Thus, one actually needs a finer separation around the stationary points in

order to obtain the desired bound in %. The details of this separation are explained in
Section 4.2.4.

2) The second summand on the r.h.s. of (4.23) behaves at best like ||(V − E)Ω0||2/k2
F .

Recalling (4.15) as well as kF ∝ %
1
d in d dimensions, it is clear that a similar statement as
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Theorem 4.1 also holds for d = 1. For d = 3, on the contrary, the last term is not small,
even if one optimizes the separation of the nonstationary points. We provide more details
about d = 1 and d = 3 in Appendices 4.C and 4.D.

3) Some of the techniques we use in the proof of our main result also appear in the proof of
quantum diffusion of a particle in an external random potential [42, 43], which is in several
respects much more involved. The main difficulty of our problem is that we do not have a
small coupling constant, but we need to show that the interaction is effectively small.

Physical picture behind the proof

On the one hand, it is obvious that for % � 1 the tracer particle can interact only with
particles that occupy a momentum close to the Fermi edge. This is due to the exclusion
principle and because all momenta smaller than kF are occupied in Ω0. Particles with small
momentum can simply not be lifted above kF . In other words, for %� 1, the Fermi pressure
becomes so strong that the particles far inside the Fermi sphere behave very rigidly and
are thus hardly disturbed by the presence of the tracer particle (and vice versa). On the
other hand, the reason why collisions with particles with momentum close to kF do not
disturb the free motion is that such particles have very large momenta when %� 1 (i.e., for
mx = 1/2, large velocities) and thus interact only on a very short time scale with the tracer
particle. Hence, the momentum transfer is effectively small. Let us note that in the limit of
very short wave lengths, the particle behavior is dominant, which makes this explanation
plausible. In the proof, the high momenta of the gas particles (or, the short time scale of
interaction) appear as the factor %−1 ∝ k−2

F in (4.23).

4.2 Proof of the main result

4.2.1 Notations and definitions

We introduce for any t ≥ 0, the operators

kkl(t) : Hy → Hy, ϕ 7→ kkl(t)ϕ = eiH
f
y te−i(pk−pl)ye−iH

f
y tϕ, (4.25)

gkl(t) : Hy → Hy, ϕ 7→ gkl(t)ϕ = e−i(p
2
k−p

2
l )tkkl(t)ϕ, (4.26)

and

D(t) : Hy ⊗HN → Hy ⊗HN , Ψ 7→ D(t)Ψ = U(−t)Umf(t)Ψ. (4.27)

We denote the Fourier transform of the potential v by v̂, where v̂ is defined such that

v(x) =
1

L2

∞∑
k=1

v̂(pk)e
ipkx. (4.28)

Moreover, we use the following abbreviations:

• v̂kl = v̂(pk − pl),

• v̂`,εkl = θ
(
− %ε + |pk − pl|

)
v̂kl, v̂s,εkl = θ

(
%ε − |pk − pl|

)
v̂kl.

• Ek = p2
k,

• || · ||TD = limTD || · || = limN,L→∞,%=const. || · || (note that despite this notation, || · ||TD

does not define a proper norm since ||f ||TD may be zero for nonzero f),

• a∗(pl)a(pk)Ω0 = Ω
[l∗k]
0 and all kind of variations thereof.
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4.2.2 Collision Histories

Here we introduce the following wave functions. Let us remark that the reason for introduc-
ing Ψ1, ...,Ψ4 as well as ΨA, ...,ΨF (see below) is not obvious at this point. As we explain
hereafter, one can interpret ΨA, ...,ΨF as different collision histories of the tracer particle.
In the proof of Theorem 4.1 in Section 4.2.3 we will see that it is sufficient to control the
norm of these collision histories. We set

Ψ1(τ2, τ1) =
1

L4

N∑
k1=1

∞∑
l1=N+1

|v̂k1l1 |2
(
gl1k1(τ2)gk1l1(τ1)ϕ0

)
⊗ Ω0, (4.29)

Ψ2(τ2, τ1) =
1

L4

N∑
k1,k2=1

∞∑
l1=N+1

v̂k2k1 v̂k1l1

(
gk2k1(τ2)gk1l1(τ1)ϕ0

)
⊗ Ω

[k2l∗1 ]
0 , (4.30)

Ψ3(τ2, τ1) =
1

L4

N∑
k1=1

∞∑
l1,l2=N+1

v̂l1l2 v̂k1l1

(
gl1l2(τ2)gk1l1(τ1)ϕ0

)
⊗ Ω

[l∗2k1]
0 , (4.31)

Ψ4(τ2, τ1) =
1

L4

N∑
k1,k2=1

∞∑
l1,l2=N+1

v̂k2l2 v̂k1l1

(
gk2l2(τ2)gk1l1(τ1)ϕ0

)
⊗ Ω

[l∗2k2l∗1k1]
0 , (4.32)

which satisfy the equality (this is straightforward to verify)

Umf(−τ2)(V − E)Umf(τ2 − τ1)(V − E)Umf(τ1)Ψ0 = Ψ1 + Ψ2 + Ψ3 + Ψ4. (4.33)

We further define

ΨA(t) = Ere(%)

∫ t

0
dµ2(τ)D(τ2)Umf(−τ1)(V − E)Umf(τ1)Ψ0, (4.34)

ΨB(t) = Ere(%)

∫ t

0
dτ1D(τ1)Ψ0 + i

∫ t

0
dµ2(τ)D(τ2)Ψ1(τ2, τ1), (4.35)

ΨC(t) =

∫ t

0
dµ2(τ)D(τ2)Ψ2(τ2, τ1), (4.36)

ΨD(t) =

∫ t

0
dµ2(τ)D(τ2)Ψ3(τ2, τ1), (4.37)

ΨE(t) = Ere(%)

∫ t

0
dµ3(τ)D(τ3)Ψ4(τ2, τ1), (4.38)

ΨF(t) =

∫ t

0
dµ3(τ)U(−τ3)(V − E)Umf(τ3)Ψ4(τ2, τ1), (4.39)

where we have introduced the shorthand notation∫ t

0
dµn(τ) =

∫ t

0
dτ1

∫ τ1

0
dτ2 ...

∫ τn−1

0
dτn. (4.40)

The different wave functions ΨX(t), X ∈ {A,B,C,D,E,F} can be identified with the following
collision histories of the tracer particle:

A: single collisions which cause particle-hole excitations in the Fermi gas.

B: two collisions with the same particle, removing the particle-hole excitation which was
caused in the first collision; the constant Ere(%) cancels the contribution in which the
second collision follows immediately after the first one.
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C: two collisions with the same particle; the second collision scatters the lifted particle
into another momentum above the Fermi edge.

D: two collisions; the second collision scatters a particle from below the Fermi edge into
the hole that was created in the first collision.

E: two collisions with two different particles; causing two particle-hole excitations.

F: three collisions; three particle-hole excitations but also all possible recollisions with
the already scattered particles; the different possibilities are listed in Section 4.1.

4.2.3 Main lemma and proof of Theorem 4.1

The main lemma we have to prove is

Lemma 4.2. Let 0 < ε < 1/8. Under the same assumptions as in Theorem 4.1, there exist
positive constants C, Cε such that

||ΨA(t)||TD ≤ C(1 + t)2
(
%−

1
4

+5ε + Cε%
− 3

2ε

)
, (4.41)

||ΨB(t)||TD ≤ C(1 + t)2
(
%−

1
4

+2ε + Cε%
− 1
ε

)
, (4.42)

||ΨC(t)||TD ≤ C(1 + t)2
(
%−

1
4

+2ε + Cε%
ε− 1

2ε

)
, (4.43)

||ΨD(t)||TD ≤ C(1 + t)2
(
%−

1
4

+2ε + Cε%
ε− 1

2ε

)
, (4.44)

||ΨE(t)||TD ≤ C(1 + t)3
(
%−

1
2

+8ε + Cε%
1
4

+6ε− 1
2ε

)
, (4.45)

||ΨF(t)||TD ≤ C(1 + t)3
(
%−

1
4

+6ε + Cε%
1
2
− 1

2ε

)
, (4.46)

hold for all t > 0.

We now show that Theorem 4.1 follows from the above bounds.

Proof of Theorem 4.1. We begin with Duhamel’s formula,

U(t)− Umf(t) = −i
∫ t

0
dτ1U

mf(t− τ1)
(
V − E + Ere(%)

)
U(τ1), (4.47)

then use that 〈Umf(τ1)Ψ0, (V − E)Umf(τ1)Ψ0〉 = 〈Ψ0, (V − E)Ψ0〉 = 0, apply Duhamel’s
formula again, and eventually use the identity in (4.33):

1

2

∣∣∣∣∣∣U(t)Ψ0 − Umf(t)Ψ0

∣∣∣∣∣∣2 = −Re
〈(
U(t)− Umf(t)

)
Ψ0, U

mf(t)Ψ0

〉
=− Re

〈
Ψ0, iEre(%)

∫ t

0
dτ1U(−τ1)Umf(τ1)Ψ0

〉
+ Re

〈
i

∫ t

0
dτ1

(
U(τ1)− Umf(τ1)

)
Ψ0,

(
V − E

)
Umf(τ1)Ψ0

〉
=− Re

〈
Ψ0, iEre(%)

∫ t

0
dτ1U(−τ1)Umf(τ1)Ψ0

〉
+ Re

〈
Ψ0, Ere(%)

∫ t

0
dµ2(τ2)U(−τ2)Umf(τ2 − τ1)

(
V − E

)
Umf(τ1)Ψ0

〉
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+ Re
〈 ∫ t

0
dµ2(τ)Umf(−τ2)U(τ2)Ψ0, U

mf(−τ2)(V − E)Umf(τ2 − τ1)(V − E)Umf(τ1)Ψ0︸ ︷︷ ︸
=Ψ1+Ψ2+Ψ3+Ψ4

〉
.

(4.48)

We proceed with the term that contains Ψ4. Using
〈
Ψ0,Ψ4(τ2, τ1)

〉
= 0 (note that Ψ4

always contains a particle outside the Fermi sphere), and applying one more time Duhamel’s
formula, we find

Re
〈 ∫ t

0
dµ2(τ)Umf(−τ2)

(
U(τ2)− Umf(τ2)

)
Ψ0,Ψ4(τ2, τ1)

〉
= Re

〈
Ψ0, i

∫ t

0
dµ3(τ)U(−τ3)

(
V − E + Ere(%)

)
Umf(τ3)Ψ4(τ2, τ1)

〉
= Re

〈
Ψ0, i

(
ΨE(t) + ΨF(t)

)〉
. (4.49)

By means of the triangle inequality and Cauchy-Schwarz, it follows that∣∣∣∣∣∣U(t)Ψ0 − Umf(t)Ψ0

∣∣∣∣∣∣ ≤ 2
(√
||ΨA(t)||+

√
||ΨB(t)||+

√
||ΨC(t)||

+
√
||ΨD(t)||+

√
||ΨE(t)||+

√
||ΨF(t)||

)
. (4.50)

Application of Lemma 4.2 with ε > 0 sufficiently small then proves the theorem.

The rest of this section is devoted to the proof of Lemma 4.2.

4.2.4 Proof of Lemma 4.2

Preliminaries

For ε > 0, we define the two-dimensional index set

Sε(N, %) :=
{

(k, l) : 1 ≤ k ≤ N, N + 1 ≤ l, |pk − pl| < %ε
}
⊂ N2, (4.51)

and for M ∈ N the family of sets

Sε,M
n (N, %) :=

{
(k, l) ∈ Sε(N, %) : %−bn ≤ |pl| − |pk| < %−bn+1

}
, 0 ≤ n ≤M, (4.52)

where

b0 =∞, bn =
1

2
− n− 1

M

(1

2
+ ε
)
, 1 ≤ n ≤M. (4.53)

For notational convenience, we omit from now on the N -, %-, ε- and also the M -dependence
in the notation: S = Sε(N, %) and Sn = Sε,M

n (N, %). The index set S corresponds to
the transitions that have to be controlled in (4.23), i.e., collisions with momentum transfer
smaller than %ε. The sets of pairs of momenta {(pk, pl) ∈ (2π/L)2Z4 : (k, l) ∈ Sn} are
pairwise disjoint, and

M⋃
n=0

{
(pk, pl) ∈ (2π/L)2Z4 : (k, l) ∈ Sn

}
=
{

(pk, pl) ∈ (2π/L)2Z4 : (k, l) ∈ S
}
. (4.54)
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The distance of modulus between the occupied momentum pk and the new momentum state
pl increases in Sn for increasing n. With 2c = 1/(1

2 + ε),

|pl| − |pk| ≥ %−bn = %−
1
2

+ n−1
2cM for (k, l) ∈ Sn, 1 ≤ n ≤M. (4.55)

Hence, also the energy shift increases,

El − Ek =
(
|pl|+ |pk|

)(
|pl| − |pk|

)
≥ kF%−bn = C%

n−1
2cM for (k, l) ∈ Sn, (4.56)

1 ≤ n ≤M . %−bn corresponds to the factor κ(%) in (4.23).

In the following lemma we state the key estimates that are used in order to prove Lemma
4.2. Recall that θ(x) = 1 for x ≥ 0 and zero otherwise.

Lemma 4.3. Assume 0 < ε < 1
2 and M, q ∈ N. Let v(x) ∈ C∞0 (T2)∩C∞0 (R2) and v`,ε, vs,ε

defined as in (4.20),(4.21). Then there exist positive constants C, Cq,1 < Cq,2, Cε,q such
that

Cq,1%
1
2 ≤ lim

TD

1

L4

N∑
k=1

∞∑
l=N+1

∣∣v̂(pk − pl)
∣∣q ≤ Cq,2% 1

2 , (4.57)

lim
TD

1

L4

N∑
k=1

∞∑
l=N+1

∣∣v̂`,ε(pk − pl)∣∣q ≤ Cε,q%−1/ε, (4.58)

lim
TD

1

L4

∑
(k,l)∈Sn

≤ C%
1
2

+ε−bn+1

(
%−bn+1 − %−bn

)
for 0 ≤ n ≤M, (4.59)

C ≤ Ere(%) = lim
TD

1

L4

N∑
k=1

∞∑
l=N+1

∣∣v̂(pk − pl)
∣∣2

El − Ek
θ
(
|pl| − |pk| − %−

1
2

)
≤ C%2ε + Cε%

−1/ε,

(4.60)

lim
TD

1

L2

∞∑
k=1

∣∣v̂(pk − p)
∣∣ ≤ C%2ε + Cε%

−1/ε for p ∈ (2π/L)Z2. (4.61)

The proof of the lemma is postponed to Section 4.2.5. For notational ease, let us abbreviate
the number of possible transitions that correspond to the set Sn by

Vn(N, %) :=
1

L4

∑
(k,l)∈Sn

=
1

L4

∞∑
k=1

∞∑
l=1

χSn

(
(k, l)

)
, (4.62)

χA : N2 → {0, 1} denoting the characteristic function, i.e., χA((k, l)) = 1 whenever (k, l) ∈
A ⊂ N2, otherwise zero. We readily obtain the following

Corollary 4.4. Given the same assumptions as in Lemma 4.3, and setting 2c = 1/(1
2 + ε),

there exists a constant C > 0 such that

lim
TD
V0(N, %) ≤ C%−

1
2

+ε, (4.63)

lim
TD

(
%−(n−1

cM )Vn(N, %)
)
≤ C%−

1
2

+ε
(
%

1
cM − %

1
2cM

)
for 1 ≤ n ≤M, (4.64)
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Remark 4.2. The decomposition of S into the sets Sn is optimal in the sense that the r.h.s.
of all estimates in (4.63) and (4.64) behaves asymptotically almost the same, namely ∝ %−

1
2

for small ε and large M .

The corollary follows from Lemma 4.3 together with the definition of the bn in (4.53). Next,
we summarize some bounds which makes the presentation of the proof of Lemma 4.2 more
convenient.

Lemma 4.5. Let ε > 0, kkl(t) as in (4.25), gkl(t) as in (4.26) and S = Sε(N, %) as in
(4.51). Given the same assumptions as in Theorem 4.1, the following bounds hold for all
τ1, τ2 ≥ 0 (χA : N2 → {0, 1} denotes the characteristic function as explained above),

χS

(
(k, l)

)
||∂τ1kkl(τ1)ϕ0|| ≤ C%2ε, (4.65)

χS

(
(k, l)

) (
||∂τ2kkl(τ2)gkl(τ1)ϕ0||+ ||∂τ2klk(τ2)gkl(τ1)ϕ0||

)
≤ C%2ε, (4.66)

χS

(
(k, l)

)
χS

(
(m,n)

)
||∂τ2klk(τ2)∂τ1kmn(τ1)ϕ0|| ≤ C%4ε, (4.67)

χS

(
(k, l)

)
χS

(
(m,n)

)
||∂τ1kkl(τ1)kmn(τ1)ϕ0|| ≤ C%4ε. (4.68)

The proof is obtained by means of Stone’s theorem and the assumption ||∇4ϕ0|| ≤ C (for
more details, see Section 4.2.5). Note that since Sn ⊂ S, the estimates in (4.65)-(4.68) hold
also if S is replaced by any of the Sn resp. by any pair of Sn, Sm (0 ≤ n,m ≤M).

From now on, we always assume that 0 < ε < 1/8 and denote 2c = (1
2 + ε)−1. Fur-

thermore, we will equally use the letter τ for indicating the dependence on the variables
τ = (τ1, τ2) or τ = (τ1, τ2, τ3). For notational ease, let us also introduce for two real numbers
A and B:

A . B ⇔ ∃ C > 0 s.t. A ≤ CB,

where the constant C may depend on the supremum of v̂ but is independent of any of the
relevant parameters (N , L, %, t, ε and M).

Derivation of the bound for ||ΨA(t)||TD

In order to bound ||ΨA(t)||TD, we first split the interaction potential into the contributions
coming from small momentum transfer v̂s,ε and those from large momentum transfer v̂`,ε.
The v̂`,ε will then be estimated using (4.58). For the v̂s,ε, we seperate the stationary points
of the phase which can be estimated using (4.63). For the nonstationary points, we do one
partial integration in the time in order to be able to use (4.56) and (4.64).

Let M ≥ 1, and for 0 ≤ n ≤M ,

Ψs,n
A (t) =

1

L2

∑
(k1,l1)∈Sn

v̂s,εk1l1

∫ t

0
dµ2(τ)D(τ2)

(
gk1l1(τ1)ϕ0

)
⊗ Ω

[l∗1k1]
0 , (4.69)

Ψ`
A(τ1) =

1

L2

N∑
k1=1

∞∑
l1=N+1

v̂`,εk1l1

(
gk1l1(τ1)ϕ0

)
⊗ Ω

[l∗1k1]
0 . (4.70)

Using the identity in (4.17) and vk1l1 = vs,εk1l1
+v`,εk1l1

, this leads to the following decomposition
of ΨA(t),

ΨA(t) = Ere(%)

M∑
n=0

Ψs,n
A (t) + Ere(%)

∫ t

0
dµ2(τ)D(τ2)Ψ`

A(τ1). (4.71)
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We emphasize that Ψs,n
A (t) depends on the choice of M through the M -dependence of the

sets Sn, whereas ΨA(t) and Ψ`
A(t) are both M -independent. Next, we estimate each term

on the r.h.s. of (4.71). In the last one, we find, using 〈Ω[l∗1k1]
0 ,Ω

[n∗1m1]
0 〉 = δl1n1δk1m1 for

k1,m1 ≤ N , N + 1 ≤ l1, n1, as well as ||gk1l1(τ1)ϕ0|| = 1,

||Ψ`
A(τ1)||2 =

1

L4

N∑
k1=1

∞∑
l1=N+1

|v̂`,εk1l1
|2 ≤ Cε%−1/ε, (4.72)

where the bound has been derived in (4.58). Recalling also (4.60) which states that Ere(%) .
%2ε + Cε%

−1/ε, and using unitarity of D(s), one obtains for the last term in (4.71)∣∣∣∣∣∣Ere(%)

∫ t

0
dµ2(τ)D(τ2)Ψ`

A(τ1)
∣∣∣∣∣∣

TD

. t2
(
%2ε + Cε%

−1/ε
)
%−1/(2ε). (4.73)

In Ψs,0
A (t), we need to estimate the norm∣∣∣∣∣∣ 1

L2

∑
(k1,l1)∈S0

v̂s,εk1l1

(
gk1l1(τ1)ϕ0

)
⊗ Ω

[l∗1k1]
0

∣∣∣∣∣∣2 .
1

L4

∑
(k1,l1)∈S0

= V0(N, ρ). (4.74)

The remaining expression, i.e., the number of transitions corresponding to the set S0, has
been estimated in (4.63). Thus,

||Ψs,0
A (t)||TD . t2%−

1
4

+ 1
2
ε.

Lemma 4.6. Let Ψs,n
A (t) as in (4.69). Under the same assumptions as in Theorem 4.1,

||Ψs,n
A (t)||TD . (1 + t)2%−

1
4

+ 5
2
ε

√
%

1
cM − %

1
2cM , 1 ≤ n ≤M, (4.75)

holds for all t > 0.

One can now use that for M = bln %c (the largest integer smaller than the number ln %),

M∑
n=1

||Ψs,n
A (t)||TD . (1 + t)2%−

1
4

+ 5
2
εM%

1
2cM . (1 + t)2%−

1
4

+3ε (4.76)

because M%
1

2cM ≤ ln % · e
1
2c . %

1
2
ε for any ε > 0. This proves the bound for ||ΨA(t)||TD in

(4.41). That taking first the thermodynamic limit and then M = bln %c is unproblematic
(even when % tends to ∞) is summarized in the following

Remark 4.3. ΨA(t) as well as Ψ`
A(τ) in (4.71) are both M -independent. There is thus no

need to interchange the order of the two limits. One first takes the thermodynamic limit on
both sides and then passes to the limit of large M . Since only the r.h.s. of (4.71) depends
on the choice of M , this provides the desired estimate.

Proof of Lemma 4.6. We first decompose each of the Ψs,n
A (t) via partial integration in τ1.

For that, we recall gk1l1(τ1) = ei(El1−Ek1
)τ1kk1l1(τ1) and rewrite (for n ≥ 1)

Ψs,n
A (t) =

1

L2

∑
(k1,l1)∈Sn

v̂s,εk1l1

∫ t

0
dτ1

(∂τ1ei(El1−Ek1
)τ1

i(El1 − Ek1)

)∫ τ1

0
dτ2D(τ2)

(
kk1l1(τ1)ϕ0

)
⊗ Ω

[l∗1 ,k1]
0 .
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Partial integration in τ1 leads to

Ψs,n
A (t) =

∫ t

0
dτD(τ1)Ψs,n

A,1(t, τ1) +

∫ t

0
dµ2(τ)D(τ2)Ψs,n

A,2(τ1), (4.77)

where

Ψs,n
A,1(t, τ1) =

1

L2

∑
(k1,l1)∈Sn

v̂s,εk1l1

(gk1l1(t)− gk1l1(τ1)

i(El1 − Ek1)
ϕ0

)
⊗ Ω

[l∗1 ,k1]
0 , (4.78)

Ψs,n
A,2(τ1) =

1

L2

∑
(k1,l1)∈Sn

v̂s,εk1l1

(ei(El1−Ek1
)τ1∂τ1kk1l1(τ1)

i(El1 − Ek1)
ϕ0

)
⊗ Ω

[l∗1 ,k1]
0 . (4.79)

Next, we estimate the the norms of Ψs,n
A,1(τ) and Ψs,n

A,2(τ):

||Ψs,n
A,1(t, τ1)||2 .

1

L4

∑
(k1,l1)∈Sn

1

(El1 − Ek1)2
.
(
%−(n−1

cM )Vn(N, ρ)
)
, (4.80)

where we have used (4.56),

||Ψs,n
A,2(τ1)||2 .

1

L4

∑
(k1,l1)∈Sn

||∂τ1kk1l1(τ1)ϕ0||2

(El1 − Ek1)2
. %4ε

(
%−(n−1

cM )Vn(N, ρ)
)
, (4.81)

where we have made in addition use of (4.65). The remaining expressions have been esti-
mated in (4.64).

Derivation of the bound for ||ΨB(t)||TD

In the estimate for ||ΨB(t)||TD, we first identify the contribution in i
∫ t

0 dµ2(τ)D(τ2)Ψ1(τ)

that cancels with the energy correction Ere(%)
∫ t

0 dτ1D(τ1)Ψ0. The remaining terms will
then be estimated using similar techniques as in Section 4.2.4.

For 0 ≤ n ≤M (M ≥ 1), let

Ψs,0
B (t) =

1

L4

∑
(k1,l1)∈S0

|v̂s,εk1l1
|2i
∫ t

0
dµ2(τ)D(τ2)gl1k1(τ2)gk1l1(τ1)Ψ0, (4.82)

Ψs,n
B,1(t) =

1

L4

∑
(k1,l1)∈Sn

|v̂s,εk1l1
|2
∫ t

0
dτ2D(τ2)

gl1k1(τ2)gk1l1(t)

(El1 − Ek1)
Ψ0, (4.83)

Ψs,n
B,2(t) =

1

L4

∑
(k1,l1)∈Sn

|v̂s,εk1l1
|2
∫ t

0
dτ2D(τ2)

kl1k1(τ2)kk1l1(τ2)

(El1 − Ek1)
Ψ0, (4.84)

Ψs,n
B,3(t) =

1

L4

∑
(k1,l1)∈Sn

|v̂s,εk1l1
|2
∫ t

0
dµ2(τ)D(τ2)

gl1k1(τ2)ei(El1−Ek1
)τ1∂τ1kk1l1(τ1)

(El1 − Ek1)
Ψ0, (4.85)

Ψ`
B(τ) =

1

L4

N∑
l1=1

∞∑
k1=N+1

|v̂`,εk1l1
|2gl1k1(τ2)gk1l1(τ1)Ψ0. (4.86)

Via partial integration, this leads to the identity

ΨB(t) = Ere(%)

∫ t

0
dτ1D(τ1)Ψ0 −

M∑
n=1

Ψs,n
B,2(t)
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+ Ψs,0
B (t) +

M∑
n=1

[
Ψs,n

B,1(t)−Ψs,n
B,3(t)

]
+ i

∫ t

0
dµ2(τ)D(τ2)Ψ`

B(τ). (4.87)

The first step in estimating the r.h.s. is to note that for any M ≥ 1, the thermodynamic
limit of the upper line is bounded in terms of

∣∣∣∣∣∣Ere(%)

∫ t

0
dτ1D(τ1)Ψ0 −

M∑
n=1

Ψs,n
B,2(t)

∣∣∣∣∣∣
TD

≤ Cε%−1/ε. (4.88)

In Ψs,n
B,2(t), the fluctuation does not propagate in time (note that kl1k1(τ2)kk1l1(τ2) = 1),

and the factor 1/(El1 − Ek1) does not make this term small enough. This collision history
corresponds to immediate recollisions with the same particle removing the particle-hole
excitation which was created in the first scattering. It needs to be canceled directly by the
next-to-leading order energy correction in Hmf. To see that the above estimate is true, we
rewrite

M∑
n=1

Ψs,n
B,2(t) =

M∑
n=1

1

L4

∑
(k1,l1)∈Sn

|v̂s,εk1l1
|2

(El1 − Ek1)

∫ t

0
dτ2D(τ2)Ψ0 (4.89)

=
1

L4

N∑
k1=1

∞∑
l1=N+1

|v̂k1l1
|2

(El1 − Ek1)
θ
(
%ε − |pk1 − pl1 |

)
θ
(
|pl1 | − |pk1 | − %−

1
2

)∫ t

0
dτ2D(τ2)Ψ0,

and thus, recalling definition (4.10), we need to estimate

∣∣∣Ere(%)− lim
TD

1

L4

N∑
k1=1

∞∑
l1=N+1

|v̂k1l1
|2

(El1 − Ek1)
θ
(
%ε − |pk1 − pl1 |

)
θ
(
|pl1 | − |pk1 | − %−

1
2

)∣∣∣
= lim

TD

1

L4

N∑
k1=1

∞∑
l1=N+1

|v̂k1l1
|2

(El1 − Ek1)
θ
(
− %ε + |pk1 − pl1 |

)
θ
(
|pl1 | − |pk1 | − %−

1
2

)

= lim
TD

1

L4

N∑
k1=1

∞∑
l1=N+1

|v̂`,εk1l1
|2

(El1 − Ek1)
θ
(
|pl1 | − |pk1 | − %−

1
2

)

. lim
TD

1

L4

N∑
k1=1

∞∑
l1=N+1

|v̂`,εk1l1
|2. (4.90)

By (4.58), one obtains (4.88). Note that in the last step, we have used El1 − Ek1 =

(|pl1 | − |pk1 |)(|pl1 |+ |pk1 |) ≥ %−
1
2kF = C (since |pl1 | ≥ kF ).

It follows with (4.63) that

||Ψs,0
B (t)||TD . t2 lim

TD
V0(N, ρ) . t2%−

1
2

+ε, (4.91)

as well as with (4.58),

||Ψ`
B(τ)||TD . t2 lim

TD

1

L4

N∑
k1=1

∞∑
l1=N+1

|v̂`,εk1l1
|2 ≤ Cεt2%−1/ε. (4.92)

The bounds for the remaining wave functions are summarized in
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Lemma 4.7. Let Ψs,n
B,1(t) and Ψs,n

B,3(t) as in (4.83) and (4.85). Then, under the same as-
sumptions as in Theorem 4.1, there exists a positive constant Cε such that

||Ψs,n
B,1(t)||TD + ||Ψs,n

B,3(t)||TD .(1 + t)2%−
1
2

+ε
(
%

1
4 + Cε%

−1/ε
)(
%

1
cM − %

1
2cM

)
(4.93)

holds for all 1 ≤ n ≤M and t ≥ 0.

Taking the sum of all terms, passing to the thermodynamic limit and then choosing again
M = bln %c . %ε, cf. (4.76), one finds

M∑
n=1

(
||Ψs,n

B,1(t)||TD + ||Ψs,n
B,3(t)||TD

)
. (1 + t)2

(
%−

1
4

+2ε + Cε%
− 1

2
+2ε− 1

ε

)
. (4.94)

This proves the bound for ||ΨB(t)||TD in (4.42) (recall Remark 4.3 and the fact that ΨB(t)
and Ψ`

B(τ) do both not depend on M).

In order to prove Lemma 4.7, we need the following estimate.

Lemma 4.8. Let ψ ∈ L2(T2) and Ω0 as in (4.5). Then, there exists a positive constant C
such that

∣∣∣∣∣∣(∂τD(τ)
)(
ψ ⊗ Ω0

)∣∣∣∣∣∣2 . ||ψ||2
(
Ere(%)2 +

1

L4

N∑
k=1

∞∑
l=N+1

|v̂kl|2
)

(4.95)

holds for all τ > 0.

Proof. Using i∂τD(τ) = U(−τ)(Hmf−H)Umf(τ), ||Ω0|| = 1 and some basic algebra similar
as in (4.17) and (4.18), it follows directly that∣∣∣∣∣∣(∂τD(τ)

)(
ψ ⊗ Ω0

)∣∣∣∣∣∣2 . ||ψ||2 Ere(%)2 +
∣∣∣∣∣∣(V − E)

(
ψ ⊗ Ω0

)∣∣∣∣∣∣2
. ||ψ||2

(
Ere(%)2 +

1

L4

N∑
k=1

∞∑
l=N+1

|v̂kl|2
)
. (4.96)

Proof of Lemma 4.7. Let

Ψs,n
B,11(t) =

1

L4

∑
(k1,l1)∈Sn

|v̂s,εk1l1
|2D(t)− gl1k1(0)gk1l1(t)

i(El1 − Ek1)2
Ψ0, (4.97)

Ψs,n
B,12(t, τ2) =

1

L4

∑
(k1,l1)∈Sn

|v̂s,εk1l1
|2
ei(El1−Ek1

)τ2∂τ2
(
D(τ2)kl1k1(τ2)

)
gk1l1(t)

i(El1 − Ek1)2
Ψ0, (4.98)

1 ≤ n ≤M . One verifies by means of partial integration that

Ψs,n
B,1(t) = Ψs,n

B,11(t)−
∫ t

0
dτ2Ψs,n

B,12(t, τ2). (4.99)

By (4.56),

||Ψs,n
B,11(t)|| .

(
%−(n−1

cM )Vn(N, ρ)
)
, (4.100)
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and, by using Lemma 4.8 together with (4.64), (4.66),

||Ψs,n
B,12(t, τ2)|| . %−(n−1

cM ) 1

L4

∑
(k1,l1)∈Sn

(∣∣∣∣∣∣(∂τ2D(τ2)
)
kl1k1(τ2)gk1l1(t)Ψ0

∣∣∣∣∣∣+
+
∣∣∣∣∣∣∂τ2kl1k1(τ2)gk1l1(t)ϕ0

∣∣∣∣∣∣)
.
(
%−(n−1

cM )Vn(N, ρ)
)(
Ere(%) +

( 1

L4

N∑
k=1

∞∑
l=N+1

|v̂kl|2
) 1

2
+ %2ε

)
. (4.101)

Let similarly

Ψs,n
B,31(τ1) =

1

L4

∑
(k1,l1)∈Sn

|v̂s,εk1l1
|2

(
D(τ1)gl1k1(τ1)− gl1k1(0)

)
ei(El1−Ek1

)τ1∂τ1kk1l1(τ1)

i(El1 − Ek1)2
Ψ0,

Ψs,n
B,32(τ) =

1

L4

∑
(k1,l1)∈Sn

|v̂s,εk1l1
|2
ei(Ek1

−El1 )(τ2−τ1)∂τ2

(
D(τ2)kl1k1(τ2)

)
∂τ1kk1l1(τ1)

i(El1 − Ek1)2
Ψ0,

such that by partial integration in τ2,

Ψs,n
B,3(t) =

∫ t

0
dτ1Ψs,n

B,31(τ1)−
∫ t

0
dµ2(τ)Ψs,n

B,32(τ). (4.102)

From (4.56) together with (4.65), it follows that

||Ψs,n
B,31(τ)|| . 1

L4

∑
(k1,l1)∈Sn

||∂τ1kk1l1(τ1)ϕ0||
(El1 − Ek1)2

. %2ε
(
%−(n−1

cM )Vn(N, ρ)
)
, (4.103)

as well as in combination with Lemma 4.8 and (4.66),

||Ψs,n
B,32(t)|| . %−(n−1

cM ) 1

L4

∑
(k1,l1)∈Sn

(∣∣∣∣∣∣(∂τ2D(τ2)
)
kl1k1(τ2)kk1l1(τ1)Ψ0

∣∣∣∣∣∣+ %2ε
)

(4.104)

.
(
%−(n−1

cM )Vn(N, ρ)
)(
Ere(%) +

( 1

L4

N∑
k=1

∞∑
l=N+1

|v̂kl|2
) 1

2
+ %2ε

)
. (4.105)

Lemma 4.7 then follows from (4.57), (4.60) and (4.64).

Derivation of the bound for ||ΨC(t)||TD

In the estimate for ||ΨC(t)||TD there appears an additional sum. This can be dealt with by
using (4.61).

We define for 0 ≤ n ≤M ,

Ψs,n
C (t) =

1

L4

∑
(k1,l1)∈Sn

N∑
k2=1

v̂k2k1 v̂
s,ε
k1l1

∫ t

0
dµ2(τ)D(τ2)

(
gk2k1(τ2)gk1l1(τ1)ϕ0

)
⊗ Ω

[k2l∗1 ]
0 ,

(4.106)

Ψ`
C(τ) =

1

L4

∞∑
l1=N+1

N∑
k1,k2=1

v̂k2k1 v̂
`,ε
k1l1

(
gk2k1(τ2)gk1l1(τ1)ϕ0

)
⊗ Ω

[k2l∗1 ]
0 , (4.107)
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such that

ΨC(t) =

M∑
n=0

Ψs,n
C (t) +

∫ t

0
dµ2(τ)D(τ2)Ψ`

C(τ). (4.108)

Note that
〈
Ω

[k2l∗1 ]
0 ,Ω

[m2n∗1]
0

〉
= δk2m2δl1n1 for k2,m2 ≤ N , N + 1 ≤ l1, n1. Using this and

|v̂| ≤ C, one finds

||Ψ`
C(τ)||2 .

1

L8

N∑
k1=1

∞∑
l1=N+1

|v̂`,εk1l1
|
N∑

k2=1

|v̂k2k1 |
N∑

m1=1

∞∑
n1=N+1

|v̂`,εm1n1
|

N∑
m2=1

|v̂m2m1 |
〈
Ω

[k2l∗1 ]
0 ,Ω

[m2n∗1]
0

〉
.

1

L4

N∑
k1=1

∞∑
l1=N+1

|v̂`,εk1l1
| 1

L2

N∑
k2=1

|v̂k2k1 |
1

L2

N∑
m1=1

|v̂`,εm1l1
|. (4.109)

Then, by means of (4.58) and (4.61), ||Ψ`
C(τ)||TD ≤ Cε%ε−

1
ε , and thus∣∣∣∣∣∣ ∫ t

0
dµ2(τ)D(τ2)Ψ`

C(τ)
∣∣∣∣∣∣

TD

≤ Cεt2%ε−
1
ε . (4.110)

Similarly, we can estimate the norm in Ψs,0
C (t). Using (4.61), we find

∣∣∣∣∣∣ 1

L4

∑
(k1,l1)∈Sn

N∑
k2=1

v̂k2k1 v̂
s,ε
k1l1

gk2k1(τ2)gk1l1(τ1)ϕ0 ⊗ Ω
[k2l∗1 ]
0

∣∣∣∣∣∣2
.

1

L4

∑
(k1,l1)∈S0

1

L2

N∑
k2=1

|v̂k2k1 |
1

L2

N∑
m1=1

|v̂s,εm1n1
| . V0(N, ρ)

(
%2ε + Cε%

−1/ε
)
%2ε.

(4.111)

In combination with (4.63) this gives

||Ψs,0
C (t)||TD . t2%−

1
4

+ 3
2
ε
(
%ε + Cε%

−1/(2ε)
)
. (4.112)

Lemma 4.9. Let Ψs,n
C (t) as in (4.106). Then, under the same assumptions as in Theo-

rem 4.1, there exists a positive constant Cε such that

||Ψs,n
C (t)||TD . (1 + t)2%−

1
4

+ 7
2
ε

√
%

1
cM − %

1
2cM

(
%ε + Cε%

−1/(2ε)
)
, 1 ≤ n ≤M, (4.113)

holds for all t > 0.

Here, we can use again that M%
1

2cM . %
1
2
ε for M = bln %c, and thus obtain

M∑
n=1

||Ψs,n
C (t)||TD . (1 + t)2%−

1
4

+2ε
(
%ε + Cε%

−1/(2ε)
)
. (4.114)

This proves the bound for ||ΨC(t)||TD in (4.43).

Proof of Lemma 4.9. We define for 1 ≤ n ≤M ,

Ψs,n
C,1(t, τ1) =

1

L4

∑
(k1,l1)∈Sn

N∑
k2=1

v̂k2k1 v̂
s,ε
k1l1

(
gk2k1(τ1)

gk1l1(t)− gk1l1(τ1)

i(El1 − Ek1)
ϕ0

)
⊗ Ω

[k2l∗1 ]
0 , (4.115)
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Ψs,n
C,2(τ) =

1

L4

∑
(k1,l1)∈Sn

N∑
k2=1

v̂k2k1 v̂
s,ε
k1l1

(
gk2k1(τ2)

ei(El1−Ek1
)τ1∂τ1kk1l1(τ1)

i(El1 − Ek1)
ϕ0

)
⊗ Ω

[k2l∗1 ]
0 ,

(4.116)

and find via partial integration,

Ψ
(n)
C (t) =

∫ t

0
dτ1D(τ1)Ψs,n

C,1(t, τ1)−
∫ t

0
dµ2(τ)D(τ2)Ψs,n

C,2(τ). (4.117)

For estimating the wave functions on the r.h.s., we use again
〈
Ω

[k2l∗1 ]
0 ,Ω

[m2n∗1]
0

〉
= δk2m2δl1n1 ,

(4.56) and (4.61),

||Ψs,n
C,1(τ)||2 .

1

L4

∑
(k1,l1)∈Sn

%−(n−1
cM ) 1

L2

N∑
k2=1

|v̂k2k1 |
1

L2

N∑
m1=1

|v̂s,εm1l1
|

. %2ε
(
%−(n−1

cM )Vn(N, ρ)
)(
%2ε + Cε%

−1/ε
)
. (4.118)

Similarly, using in addition (4.65),

||Ψs,n
C,2(t, τ1)||2 . %4ε 1

L4

∑
(k1,l1)∈Sn

%−(n−1
cM ) 1

L2

N∑
k2=1

|v̂k2k1 |
1

L2

N∑
m1=1

|v̂s,εm1l1
|

. %6ε
(
%−(n−1

cM )Vn(N, ρ)
)(
%2ε + Cε%

−1/ε
)
. (4.119)

Application of (4.64) completes the proof of the lemma.

Derivation of the bound for ||ΨD(t)||TD

The term ΨD(t) has a similar structure as ΨC(t) and can be estimated analogously.

For 0 ≤ n ≤M , let

Ψs,n
D (t) =

1

L4

∑
(k1,l1)∈Sn

∞∑
l2=N+1

v̂l1l2 v̂
s,ε
k1l1

∫ t

0
dµ2(τ)D(τ2)

(
gl1l2(τ2)gk1l1(τ1)ϕ0

)
⊗ Ω

[l∗2k1]
0 ,

(4.120)

Ψ`
D(τ) =

1

L4

N∑
k1=1

∞∑
l1,l2=N+1

v̂l1l2 v̂
`,ε
k1l1

(
gl1l2(τ2)gk1l1(τ1)ϕ0

)
⊗ Ω

[l∗2k1]
0 . (4.121)

This leads to the identity

ΨD(t) =

M∑
n=0

Ψs,n
D (t) +

∫ t

0
dµ2(τ)D(τ2)Ψ`

D(τ). (4.122)

Using
〈
Ω

[l∗2k1]
0 ,Ω

[n∗2m1]
0

〉
= δl2n2δk1m1 which holds for l2, n2 ≥ N + 1 and k1,m1 ≤ N , one

finds

||Ψ`
D(t)||2 .

1

L4

N∑
k1=1

∞∑
l1=N+1

|v̂`,εk1l1
| 1

L2

∞∑
l2=N+1

|v̂l1l2 |
1

L2

∞∑
n1=N+1

|v̂`,εk1n1
|. (4.123)
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Then, (4.58) in combination with (4.61) leads to ||Ψ`
D(τ)||TD ≤ Cε%ε−

1
ε , and hence,∣∣∣∣∣∣ ∫ t

0
dµ2(τ)D(τ2)Ψ`

D(τ)
∣∣∣∣∣∣

TD

≤ Cεt2%ε−
1
ε . (4.124)

We similarly estimate the norm in Ψs,0
D (t),∣∣∣∣∣∣ 1

L4

∑
(k1,l1)∈S0

∞∑
l2=N+1

v̂l1l2 v̂
s,ε
k1l1

(
gl1l2(τ2)gk1l1(τ1)ϕ0

)
⊗ Ω

[l∗2k1]
0

∣∣∣∣∣∣2
.

1

L4

∑
(k1,l1)∈S0

1

L2

∞∑
l2=N+1

|v̂l1l2 |
1

L2

∞∑
n1=N+1

|v̂s,εk1n1
|. (4.125)

With (4.61) and (4.63), it follows that

||Ψs,0
D (t)||TD . t2%−

1
4

+ 3
2
ε
(
%ε + Cε%

−1/(2ε)
)
. (4.126)

Lemma 4.10. Let Ψs,n
D (t) as in (4.120). Under the same assumptions as in Theorem 4.1,

there exists a positive constant Cε such that

||Ψs,n
D (t)||TD . (1 + t)2%−

1
4

+ 7
2
ε+ 1

2cM

(
%ε + Cε%

−1/(2ε)
)
, 1 ≤ n ≤M, (4.127)

holds for all t ≥ 0.

It follows as below Lemma 4.9 that for M = bln %c,
M∑
n=1

||Ψs,n
D (t)||TD . (1 + t)2%−

1
4

+2ε
(
%ε + Cε%

−1/(2ε)
)
, (4.128)

which proves the bound for ||ΨD(t)||TD in (4.44).

Proof of Lemma 4.10. For 1 ≤ n ≤M , we set

Ψs,n
D,1(t, τ1) =

1

L4

∑
(k1,l1)∈Sn

∞∑
l2=N+1

v̂l1l2 v̂
s,ε
k1l1

(
gl1l2(τ1)

gk1l1(t)− gk1l1(τ1)

i(El1 − Ek1)
ϕ0

)
⊗ Ω

[l∗2k1]
0 ,

Ψs,n
D,2(τ) =

1

L4

∑
(k1,l1)∈Sn

∞∑
l2=N+1

v̂l1l2 v̂
s,ε
k1l1

(
gl1l2(τ2)

ei(El1−Ek1
)τ1∂τ1kk1l1(τ1)

i(El1 − Ek1)
ϕ0

)
⊗ Ω

[l∗2k1]
0 .

Partial integration leads to

Ψs,n
D (t) =

∫ t

0
dτ1D(τ1)Ψs,n

D,1(t, τ)−
∫ t

0
dµ2(τ)D(τ2)Ψs,n

D,2(τ). (4.129)

It remains to compute the norm of the wave functions on the r.h.s. Using (4.56),

||Ψs,n
D,1(t, τ1)||2 . %−(n−1

cM ) 1

L4

∑
(k1,l1)∈Sn

1

L2

∞∑
l2=N+1

|v̂l1l2 |
1

L2

∞∑
n1=N+1

|v̂s,εk1n1
|, (4.130)

and similarly, using in addition (4.65),

||Ψs,n
D,2(τ)||2 . %4ε%−(n−1

cM ) 1

L4

∑
(k1,l1)∈Sn

1

L2

∞∑
l2=N+1

|v̂l1l2 |
1

L2

∞∑
n1=N+1

|v̂s,εk1n1
|. (4.131)

The lemma then follows from (4.61) together with (4.64).
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Derivation of the bound for ||ΨE(t)||TD

The term ΨE(t) is more difficult to estimate since it involves four sums. In order to get the
desired bound, it is not enough to do one partial integration. We have to split the term more
carefully into different contributions and for some of them perform an additional partial
integration. This gives an additional phase cancellation which is enough for the desired
bound.

For 0 ≤ n,m ≤M , we define

Ψs,nm
E (t) =

1

L4

∑
(k1,l1)∈Sn

∑
(k2,l2)∈Sm

v̂s,εk2l2
v̂s,εk1l1

∫ t

0
dµ3(τ)D(τ3)

(
gk2l2(τ2)gk1l1(τ1)ϕ0

)
⊗ Ω

[l∗2k2l∗1k1]
0 ,

(4.132)

Ψ`
E(τ) =

1

L4

N∑
k1,k2=1

∞∑
l1,l2=N+1

ŵ`,εk2l2k1l1

(
gk2l2(τ2)gk1l1(τ1)ϕ0

)
⊗ Ω

[l∗2k2l∗1k1]
0 , (4.133)

where

ŵ`,εk2l2k1l1
:= v̂`,εk2l2

v̂s,εk1l1
+ v̂s,εk2l2

v̂`,εk1l1
+ v̂`,εk2l2

v̂`,εk1l1
. (4.134)

This leads to

ΨE(t) = Ere(%)
M∑

n,m=0

Ψs,nm
E (t) + Ere(%)

∫ t

0
dµ3(τ)D(τ3)Ψ`

E(τ), (4.135)

since v̂k1l1 v̂k2l2 = v̂s,εk2l2
v̂s,εk1l1

+ ŵ`,εk2l2k1l1
. Using that for k1, k2,m1,m2 ≤ N and N + 1 ≤

l1, l2, n1, n2, 〈
Ω

[l∗2k2l∗1k1]
0 ,Ω

[n∗2m2n∗1m1]
0

〉
= (δk2m2δk1m1 + δk2m1δk1m2)δ⊥k2k1

δ⊥m2m1
×

× (δl2n2δl1n1 + δl2n1δl1n2)δ⊥l2l1δ
⊥
n2n1

, (4.136)

where δ⊥kl = 1− δkl, we find

||Ψ`
E(τ)||2 .

1

L8

N∑
k1,k2=1

∞∑
l1,l2=N+1

(
|v̂`,εk2l2

| |v̂s,εk1l1
|+ |v̂s,εk2l2

| |v̂`,εk1l1
|+ |v̂`,εk2l2

| |v̂`,εk1l1
|
)
. (4.137)

By means of (4.57) and (4.58), ||Ψ`
E(τ)||TD ≤ Cε%

1
4
− 1

2ε , such that together with (4.60) we
find for the last term in (4.135) that∣∣∣∣∣∣Ere(%)

∫ t

0
dµ3(τ)D(τ3)Ψ`

E(τ)
∣∣∣∣∣∣

TD

≤ Cεt3%2ε+ 1
4
− 1

2ε . (4.138)

Similarly, one finds for Ψs,00
E (t),∣∣∣∣∣∣ 1

L4

∑
(k1,l1)∈S0

∑
(k2,l2)∈S0

v̂s,εk2l2
v̂s,εk1l1

(
gk2l2(τ2)gk1l1(τ1)ϕ0

)
⊗ Ω

[l∗2k2l∗1k1]
0

∣∣∣∣∣∣2 . V0(N, ρ)2. (4.139)

Hence, with (4.63),

||Ψs,00
E (t)||TD . t3%−

1
2

+4ε. (4.140)
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Lemma 4.11. Let Ψs,nm
E (t) be defined as in (4.132). Under the same assumptions as in

Theorem 4.1,

||Ψs,0n
E (t)||TD + ||Ψs,n0

E (t)||TD . (1 + t)3%−
1
2

+3ε

√
%

1
cM − %

1
2cM , 1 ≤ n ≤M, (4.141)

||Ψs,nm
E (t)||TD . (1 + t)3%−

1
2

+5ε
(
%

1
cM − %

1
2cM

)
, 1 ≤ n,m ≤M, (4.142)

holds for all t > 0.

With M = bln %c we then obtain that (recall (4.76) and Remark 4.3)

M∑
n=1

(
||Ψs,n0

E (t)||TD + ||Ψs,0n
E (t)||TD

)
. (1 + t)3%−

1
2

+4ε, (4.143)

M∑
n=1

||Ψs,nm
E (t)||TD . (1 + t)3%−

1
2

+6ε. (4.144)

This proves the bound for ||ΨE(t)||TD in (4.45).

Proof of Lemma 4.11. We define for 1 ≤ n ≤M ,

Ψs,n0
E,1 (t, τ1) =

1

L4

∑
(k1,l1)∈Sn

∑
(k2,l2)∈S0

v̂s,εk2l2
v̂s,εk1l1

(
gk2l2(τ1)

gk1l1(t)− gk1l1(τ1)

i(El1 − Ek1)
ϕ0

)
⊗Ψ

[l∗2k2l∗1k1]
0 ,

Ψs,n0
E,2 (τ) =

1

L4

∑
(k1,l1)∈Sn

∑
(k2,l2)∈S0

v̂s,εk2l2
v̂s,εk1l1

(
gk2l2(τ2)

ei(El1−Ek1
)τ1∂τ1kk1l1(τ1)

i(El1 − Ek1)
ϕ0

)
⊗Ψ

[l∗2k2l∗1k1]
0 ,

Ψs,0n
E,1 (τ) =

1

L4

∑
(k1,l1)∈S0

∑
(k2,l2)∈Sn

v̂s,εk2l2
v̂s,εk1l1

(gk2l2(τ1)− gk2l2(τ2)

i(El2 − Ek2)
gk1l1(τ1)ϕ0

)
⊗Ψ

[l∗2k2l∗1k1]
0 ,

Ψs,0n
E,2 (τ) =

1

L4

∑
(k1,l1)∈S0

∑
(k2,l2)∈Sn

v̂s,εk2l2
v̂s,εk1l1

(ei(El2−Ek2
)τ2∂τ2kk2l2(τ2)

i(El2 − Ek2)
gk1l1(τ1)ϕ0

)
⊗Ψ

[l∗2k2l∗1k1]
0 .

By partial integration, this leads to

Ψs,n0
E (t) = Ere(%)

∫ t

0
dµ2(τ)D(τ2)Ψs,n0

E,1 (t, τ1)− Ere(%)

∫ t

0
dµ3(τ)D(τ3)Ψs,n0

E,2 (τ), (4.145)

Ψs,0n
E (t) = Ere(%)

∫ t

0
dµ2(τ)D(τ2)Ψs,0n

E,1 (τ)− Ere(%)

∫ t

0
dµ3(τ)D(τ3)Ψs,0n

E,2 (τ). (4.146)

Furthermore, for all 1 ≤ n,m ≤M , and X ∈ {1, 2, 3}, we set

Ψs,nm
E,X (t, τ) =

1

L4

∑
(k1,l1)∈Sn

∑
(k2,l2)∈Sm

v̂s,εk2l2
v̂s,εk1l1

(
G(X)

k2l2k1l2
(t, τ)ϕ0

)
⊗ Ω

[l∗2k2l∗1k1]
0 , (4.147)

where we introduce the operators G(X)

k2l2k1l1
(t, τ) : Hy → Hy, defined by

G(1)

k2l2k1l1
(t, τ) =

gk2l2(t)gk1l1(t)− gk2l2(τ1)gk1l1(τ1)

i(El2 − Ek2)i(El2 − Ek2 + El1 − Ek1)
−
gk2l2(τ1)

(
gk1l1(t)− gk1l1(τ1)

)
i(El2 − Ek2)i(El1 − Ek1)

,

(4.148)
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G(2)

k2l2k1l1
(t, τ) =

ei(El1−Ek1
+El2−Ek2

)τ1∂τ1

(
kk2l2(τ1)kk1l1(τ1)

)
i(El2 − Ek2)i(El2 − Ek2 + El1 − Ek1)

−
gk2l2(τ2)ei(El1−Ek1

)τ1
(
∂τ1kk1l1(τ1)

)
i(El2 − Ek2)i(El1 − Ek1)

−
ei(El2−Ek2

)τ1
(
∂τ1kk2l2(τ1)

)(
gk1l1(t)− gk1l1(τ1)

)
i(El2 − Ek2)i(El1 − Ek1)

, (4.149)

G(3)

k2l2k1l1
(t, τ) =

ei(El2−Ek2
)τ2
(
∂τ2kk2l2(τ2)

)
ei(Ek1

−El1 )τ1
(
∂τ1kk1l1(τ1)

)
i(Ek2 − El2)i(El1 − Ek1)

. (4.150)

With a two-fold partial integration one now finds

Ψs,nm
E (t) = Ere(%)

[ ∫ t

0
dτ1D(τ1)Ψs,nm

E,1 (t, τ)

−
∫ t

0
dµ2(τ)D(τ2)Ψs,nm

E,2 (t, τ) +

∫ t

0
dµ3(τ)D(τ3)Ψs,nm

E,3 (t, τ)
]
.

(4.151)

It remains to compute the norm of the above wave functions. Recalling that the scalar
product produces four Kronecker-deltas,

||Ψs,n0
E,1 (t, τ1)||2 .

1

L4

∑
(k1,l1)∈Sn

1

El1 − Ek1

1

L4

∑
(k2,l2)∈S0

×

×
∑

(m1,n1)∈Sn

1

En1 − Em1

∑
(m2,n2)∈S0

〈
Ω

[l∗2k2l∗1k1]
0 ,Ω

[n∗2m2n∗1m1]
0

〉
.
(
%−(n−1

cM )Vn(N, ρ)
)
V0(N, ρ). (4.152)

Using in addition (4.65),

||Ψs,n0
E,2 (τ)||2 .

1

L4

∑
(k1,l1)∈Sn

||∂τ1kk1l1(τ1)ϕ0||
El1 − Ek1

1

L4

∑
(k2,l2)∈S0

×

×
∑

(m1,n1)∈Sn

||∂τ1km1n1(τ1)ϕ0||
En1 − Em1

∑
(m2,n2)∈S0

〈
Ω

[l∗2k2l∗1k1]
0 ,Ω

[n∗2m2n∗1m1]
0

〉
. %4ε

(
%−(n−1

cM )Vn(N, ρ)
)
V0(N, ρ). (4.153)

By means of (4.64), this shows the first part of the first bound in the lemma. We omit the
proof for Ψs,0n

E (τ) since it works exactly the same way as for Ψs,n0
E (τ).

For the second bound of the lemma, note that by using (4.56) and Lemma 4.5, one finds

χSn

(
(k1, l1)

)
χSm

(
(k2, l2)

)
||G(1)

k2l2k1l1
(t, τ)ϕ0|| . %−( n−1

2cM )%−(m−1
2cM ), (4.154)

χSn

(
(k1, l1)

)
χSm

(
(k2, l2)

)
||G(2)

k2l2k1l1
(t, τ)ϕ0|| . %4ε%−( n−1

2cM )%−(m−1
2cM ), (4.155)

χSn

(
(k1, l1)

)
χSm

(
(k2, l2)

)
||G(3)

k2l2k1l1
(t, τ)ϕ0|| . %4ε%−( n−1

2cM )%−(m−1
2cM ). (4.156)
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Then, for all 1 ≤ n ≤M and X ∈ {1, 2, 3},

||Ψs,nm
E,X (t, τ)||2 .

1

L8

∑
(k1,l1)∈Sn

∑
(k2,l2)∈Sm

∑
(m1,n1)∈Sn

∑
(m2,n2)∈Sm

||G(X)

k2l2k1l1
(t, τ)ϕ0||×

× ||G(X)
m2n2m1n1

(t, τ)ϕ0||
〈
Ω

[l∗2k2l∗1k1]
0 ,Ω

[n∗2m2n∗1m1]
0

〉
. %8ε

(
%−(n−1

cM )Vn(N, ρ)
)(
%−(m−1

cM )Vm(N, ρ)
)
. (4.157)

The bounds for the remaining expressions have been derived in (4.64).

Derivation of the bound for ||ΨF(t)||TD

The estimate for ||ΨF(t)||TD is more tedious, since we have to deal with an additional (V −E),
i.e., we have to take into account one more collision, starting from Ψ4. This leads to many
possible collision histories, which we write down in (4.160)-(4.165) below. After that, we
use the same techniques as in the previous sections.

We first rewrite the potential

(V − E) =
1

L2

∞∑
l3=1

∞∑
k3=1

(l3 6=k3)

v̂k3l3e
i(pk3

−pl3 )ya∗(pl3)a(pk3) (4.158)

in terms of fermionic creation and annihilation operators, cf. (4.6). This can be used to
decompose the wave function ΨF(t) (for M ≥ 1) in terms of

ΨF(t) =

M∑
n,m=0

(
Ψs,nm

F,1 (t) + Ψs,nm
F,2 (t) + Ψs,nm

F,3 (t)
)

+

∫ t

0
dµ3(τ)D(τ3)

(
Ψ`

F,1(τ) + Ψ`
F,2(τ) + Ψ`

F,3(τ)
)
, (4.159)

where we introduce (recall the definition (4.134) for ŵ`,ε)

Ψs,nm
F,1 (t) =

1

L6

∑
(k1,l1)∈Sn

∑
(k2,l2)∈Sm

N∑
k3=1

∞∑
l3=N+1

v̂k3l3 v̂
s,ε
k2l2

v̂s,εk1l1
×

×
∫ t

0
dµ3(τ)D(τ3)

(
gk3l3(τ3)gk2l2(τ2)gk3l3(τ1)ϕ0

)
⊗ Ω

[l∗3k3l∗2k2l∗1k1]
0 , (4.160)

Ψs,nm
F,2 (t) =

1

L6

∑
(k1,l1)∈Sn

∑
(k2,l2)∈Sm

∞∑
l3=N+1

v̂l2l3 v̂
s,ε
k2l2

v̂s,εk1l1
×

×
∫ t

0
dµ3(τ)D(τ3)

(
gl2l3(τ3)gk2l2(τ2)gk1l1(τ1)ϕ0

)
⊗ Ω

[l∗3k2l∗1k1]
0

+
1

L6

∑
(k1,l1)∈Sn

∑
(k2,l2)∈Sm

∞∑
l3=N+1

v̂l1l3 v̂
s,ε
k2l2

v̂s,εk1l1
×

×
∫ t

0
dµ3(τ)D(τ3)

(
gl1l3(τ3)gk2l2(τ2)gk1l1(τ1)ϕ0

)
⊗ Ω

[l∗3 l
∗
2k2k1]

0

+
1

L6

∑
(k1,l1)∈Sn

∑
(k2,l2)∈Sm

N∑
k3=1

v̂k3k2 v̂
s,ε
k2l2

v̂s,εk1l1
×
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×
∫ t

0
dµ3(τ)D(τ3)

(
gk3k2(τ3)gk2l2(τ2)gk1l1(τ1)ϕ0

)
⊗ Ω

[k3l∗2 l
∗
1k1]

0

+
1

L6

∑
(k1,l1)∈Sn

∑
(k2,l2)∈Sm

N∑
k3=1

v̂k3k1 v̂
s,ε
k2l2

v̂s,εk1l1
×

×
∫ t

0
dsµ3(τ)D(τ3)

(
gk3k1(τ3)gk2l2(τ2)gk1l1(τ1)ϕ0

)
⊗ Ω

[k3l∗2k2l∗1 ]
0 , (4.161)

Ψs,nm
F,3 (t) =

1

L6

∑
(k1,l1)∈Sn

∑
(k2,l2)∈Sm

v̂l2k2 v̂
s,ε
k2l2

v̂s,εk1l1
×

×
∫ t

0
dµ3(τ)D(τ3)

(
gl2k2(τ3)gk2l2(τ2)gk1l1(τ1)ϕ0

)
⊗ Ω

[l∗1k1]
0

+
1

L6

∑
(k1,l1)∈Sn

∑
(k2,l2)∈Sm

v̂l1k1 v̂
s,ε
k2l2

v̂s,εk1l1
×

×
∫ t

0
dµ3(τ)D(τ3)

(
gl1k1(τ3)gk2l2(τ2)gk1l1(τ1)ϕ0

)
⊗ Ω

[l∗2k2]
0

+
1

L6

∑
(k1,l1)∈Sn

∑
(k2,l2)∈Sm

v̂l2k1 v̂
s,ε
k2l2

v̂s,εk1l1
×

×
∫ t

0
dµ3(τ)D(τ3)

(
gl2k1(τ3)gk2l2(τ2)gk1l1(τ1)ϕ0

)
⊗ Ω

[k2l∗1 ]
0

+
1

L6

∑
(k1,l1)∈Sn

∑
(k2,l2)∈Sm

v̂l1k2 v̂
s,ε
k2l2

v̂s,εk1l1
×

×
∫ t

0
dµ3(s)D(τ3)

(
gl1k2(τ3)gk2l2(τ2)gk1l1(τ1)ϕ0

)
⊗ Ω

[l∗2k1]
0 , (4.162)

and moreover,

Ψ`
F,1(τ) =

1

L6

N∑
k1,k2,k3=1

∑
l1,l2,l3=N+1

v̂k3l3ŵ
`,ε
k2l2k1l1

(
gk3l3(τ3)gk2l2(τ2)gk1l1(τ1)ϕ0

)
⊗ Ω

[l∗3k3l∗2k2l∗1k1]
0 ,

(4.163)

Ψ`
F,2(τ) =

1

L6

N∑
k1,k2=1

∞∑
l1,l2=N+1

∞∑
l3=N+1

v̂l2l3ŵ
`,ε
k2l2k1l1

(
gl2l3(τ3)gk2l2(τ2)gk1l1(τ1)ϕ0

)
⊗ Ω

[l∗3k2l∗1k1]
0

+
1

L6

N∑
k1,k2=1

∞∑
l1,l2=N+1

∞∑
l3=N+1

v̂l1l3ŵ
`,ε
k2l2k1l1

(
gl1l3(τ3)gk2l2(τ2)gk1l1(τ1)ϕ0

)
⊗ Ω

[l∗3 l
∗
2k2k1]

0

+
1

L6

N∑
k1,k2=1

∞∑
l1,l2=N+1

N∑
k3=1

v̂k3k2ŵ
`,ε
k2l2k1l1

(
gk3k2(τ3)gk2l2(τ2)gk1l1(τ1)ϕ0

)
⊗ Ω

[k3l∗2 l
∗
1k1]

0

+
1

L6

N∑
k1,k2=1

∞∑
l1,l2=N+1

N∑
k3=1

v̂k3k1ŵ
`,ε
k2l2k1l1

(
gk3k1(τ3)gk2l2(τ2)gk1l1(τ1)ϕ0

)
⊗ Ω

[k3l∗2k2l∗1 ]
0 ,

(4.164)

Ψ`
F,3(τ) =

1

L6

N∑
k1,k2=1

∞∑
l1,l2=N+1

v̂l2k2ŵ
`,ε
k2l2k1l1

(
gl2k2(τ3)gk2l2(τ2)gk1l1(τ1)ϕ0

)
⊗ Ω

[l∗1k1]
0
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+
1

L6

N∑
k1,k2=1

∞∑
l1,l2=N+1

v̂l1k1ŵ
`,ε
k2l2k1l1

(
gl1k1(τ3)gk2l2(τ2)gk1l1(τ1)ϕ0

)
⊗ Ω[l∗2k2]

+
1

L6

N∑
k1,k2=1

∞∑
l1,l2=N+1

v̂l2k1ŵ
`,ε
k2l2k1l1

(
gl2k1(τ3)gk2l2(τ2)gk1l1(τ1)ϕ0

)
⊗ Ω

[k2l∗1 ]
0

+
1

L6

N∑
k1,k2=1

∞∑
l1,l2=N+1

v̂l1k2ŵ
`,ε
k2l2k1l1

(
gl1k2(τ3)gk2l2(τ2)gk1l1(τ1)ϕ0

)
⊗ Ω

[l∗2k1]
0 . (4.165)

The different contributions in ΨF(t) correspond to the different collision histories in (V −
E)Ψ4.

Bounds for ||Ψs,nm
F,1 (t)||TD and ||Ψ`

F,1(τ)||TD. We use that for ki,mi ≤ N , N + 1 ≤ li, ni
(i = 1, 2, 3), the scalar product

〈Ω[l∗3k3l∗2k2l∗1k1]
0 ,Ω

[n∗3m3n∗2m2n∗1m1]
0 〉 =

( ∑
σ∈S3

δl3nσ(3)
δl2nσ(2)

δl1nσ(1)

)
δ⊥l3l2δ

⊥
l2l1δ

⊥
l1l3δ

⊥
n3n2

δ⊥n2n1
δ⊥n1n3

×

×
( ∑
σ∈S3

δk3mσ(3)
δk2mσ(2)

δk1mσ(1)

)
δ⊥k3k2

δ⊥k2k1
δ⊥k1k3

δ⊥m3m2
δ⊥m2m1

δ⊥m1m3
,

produces six Kronecker deltas in each summand, in order to find

||Ψ`
F,1(τ)||2 .

1

L8

N∑
k1,k2=1

∞∑
l1,l2=N+1

|ŵ`,εk2l2k1l1
| 1

L4

N∑
k3=1

∞∑
l3=N+1

|v̂k3l3 |. (4.166)

Then, by means of (4.57) and (4.58), ||Ψ`
F,1(τ)||TD ≤ Cε%

1
4
− 1

2ε
+ε, which leads to∣∣∣∣∣∣ ∫ t

0
dµ3(τ)D(τ3)Ψ`

F,1(τ)
∣∣∣∣∣∣

TD

≤ Cεt3%
1
2
− 1

2ε . (4.167)

Similarly in Ψs,00
F,1 (t), we estimate the norm,

∣∣∣∣∣∣ 1

L6

∑
(k1,l1)∈S0

∑
(k2,l2)∈S0

N∑
k3=1

∞∑
l3=N+1

v̂k3l3 v̂
s,ε
k2l2

v̂s,εk1l1
×

×
(
gk3l3(τ3)gk2l2(τ2)gk1l1(τ1)ϕ0

)
⊗ Ω

[l∗3k3l∗2k2l∗1k1]
0

∣∣∣∣∣∣2
. V0(N, ρ)2 1

L4

N∑
k3=1

∞∑
l3=N+1

|v̂k3l3 |. (4.168)

Using (4.57) in combination with (4.63), leads to

||Ψs,00
F,1 (t)||TD . t3%−

1
4

+ε. (4.169)

Lemma 4.12. Let Ψs,nm
F,1 (t) be defined as in (4.160). Under the same assumptions as in

Theorem 4.1,

||Ψs,0n
F,1 (t)||TD + ||Ψs,n0

F,1 (t)||TD . (1 + t)3%−
1
4

+3ε

√
%

1
cM − %

1
2cM , 1 ≤ n ≤M, (4.170)
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||Ψs,nm
F,1 (t)||TD . (1 + t)3%−

1
4

+5ε
(
%

1
cM − %

1
2cM

)
, 1 ≤ n,m ≤M. (4.171)

holds for all t > 0.

Next, we set again M = bln %c and find, using M%
1

2cM . %ε as well as M2%
1
cM . %ε,

M∑
n=1

(
||Ψs,0n

F,1 (t)||TD + ||Ψs,n0
F,1 (t)||TD

)
. (1 + t)3%−

1
4

+4ε, (4.172)

M∑
n,m=1

||Ψs,nm
F,1 (t)||TD . (1 + t)3%−

1
4

+6ε. (4.173)

Proof of Lemma 4.12. We define for 1 ≤ n ≤M ,

Ψs,n0
F,11 (t, τ) =

1

L6

∑
(k1,l1)∈Sn

∑
(k2,l2)∈S0

N∑
k3=1

∞∑
l3=N+1

v̂k3l3 v̂
s,ε
k2l2

vs,εk1l1
×

×
(
gk3l3(τ2)gk2l2(τ1)

gk1l1(t)− gk1l1(τ1)

i(El1 − Ek1)
ϕ0

)
⊗ Ω

[l∗3k3l∗2k2l∗1k1]
0 , (4.174)

Ψs,n0
F,12 (τ) =

1

L6

∑
(k1,l1)∈Sn

∑
(k2,l2)∈S0

N∑
k3=1

∞∑
l3=N+1

v̂k3l3 v̂
s,ε
k2l2

v̂s,εk1l1
×

×
(
gk3l3(τ3)gk2l2(τ2)

ei(El1−Ek1
)τ1∂τ1kk1l1(τ1)

i(El1 − Ek1)
ϕ0

)
⊗ Ω

[l∗3k3l∗2k2l∗1k1]
0 , (4.175)

Ψs,0n
F,11 (τ) =

1

L6

∑
(k1,l1)∈S0

∑
(k2,l2)∈Sn

N∑
k3=1

∞∑
l3=N+1

v̂k3l3 v̂
s,ε
k2l2

vs,εk1l1
×

×
(
gk3l3(τ2)

gk2l2(τ1)− gk2l2(τ2)

i(El2 − Ek2)
gk1l1(τ1)ϕ0

)
⊗ Ω

[l∗3k3l∗2k2l∗1k1]
0 , (4.176)

Ψs,0n
F,12 (τ) =

1

L6

∑
(k1,l1)∈S0

∑
(k2,l2)∈Sn

N∑
k3=1

∞∑
l3=N+1

v̂k3l3 v̂
s,ε
k2l2

vs,εk1l1
×

×
(
gk3l3(τ3)

ei(El2−Ek2
)τ2∂τ2kk2l2(τ2)

i(El2 − Ek2)
gk1l1(τ1)ϕ0

)
⊗ Ω

[l∗3k3l∗2k2l∗1k1]
0 . (4.177)

Via partial integration we obtain

Ψs,n0
F,1 (t) =

∫ t

0
dµ2(τ)D(τ2)Ψs,n0

F,11 (t, τ)−
∫ t

0
dµ3(τ)D(τ3)Ψs,n0

F,12 (τ), (4.178)

Ψs,0n
F,1 (t) =

∫ t

0
dµ2(τ)D(τ2)Ψs,0n

F,11 (τ)−
∫ t

0
dµ3(τ)D(τ3)Ψs,0n

F,12 (τ). (4.179)

We further set for 1 ≤ n,m ≤ M , and for G(X)

k2l2k1l1
(t, τ), X ∈ {1, 2, 3}, defined as in

(4.148)-(4.150),

Ψs,nm
F,1X (t, τ) =

1

L6

∑
(k1,l1)∈Sn

∑
(k2,l2)∈Sm

N∑
k3=1

∞∑
l3=N+1

v̂k3l3 v̂
s,ε
k2l2

v̂s,εk1l1

(
gk3l3(τX)G(X)

k2l2k1l1
(t, τ)ϕ0

)
⊗ Ω

[l∗3k3l∗2k2l∗1k1]
0 .
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Partial integration leads again to

Ψs,nm
F,1 (t) =

∫ t

0
dτ1D(τ1)Ψs,nm

F,11 (t, τ)−
∫ t

0
dµ2(τ)D(τ2)Ψs,nm

F,12 (t, τ) +

∫ t

0
dµ3(τ)D(τ3)Ψs,nm

F,13 (t, τ).

Using (4.56) in combination with (4.65), we find for Y ∈ {1, 2},

||Ψs,n0
F,1Y(τ)||2 .

1

L12

∑
(k1,l1)∈Sn

(1 + ||∂τ1kk1l1(τ1)ϕ0||
El1 − Ek1

) ∑
(k2,l2)∈S0

N∑
k3=1

∞∑
l3=N+1

|v̂k3l3 |×

×
∑

(m1,n1)∈Sn

(1 + ||∂τ1km1n1(τ1)ϕ0||
En1 − Em1

) ∑
(m2,n2)∈S0

N∑
m3=1

∞∑
n3=N+1

|v̂m3n3 |〈Ω
[l∗3k3l∗2k2l∗1k1]
0 ,Ω

[n∗3m3n∗2m2n∗1m1]
0 〉,

. %4ε
(
%−(n−1

cM )Vn(N, ρ)
)
V0(N, ρ)

1

L4

N∑
k3=1

∞∑
l3=N+1

|v̂k3l3 |. (4.180)

In complete analogy one finds the same bound for Ψs,0n
F,1Y(τ), Y ∈ {1, 2}. Next, using (4.56)

together with (4.154)-(4.156), we find for X ∈ {1, 2, 3},

||Ψs,nm
F,1X (τ)||2 .

1

L12

∑
(k1,l1)∈Sn

∑
(k2,l2)∈Sm

N∑
k3=1

∞∑
l3=N+1

|v̂k3l3 |||G
(X)

k2l2k1l1
(t, τ)ϕ0||×

×
∑

(m1,n1)∈Sn

∑
(m2,n2)∈Sm

N∑
m3=1

∞∑
n3=N+1

|v̂m3n3 |||G(X)
m2n2m1n1

(t, τ)ϕ0|| 〈Ω
[l∗3k3l∗2k2l∗1k1]
0 ,Ω

[n∗3m3n∗2m2n∗1m1]
0 〉

. %8ε
(
%−(n−1

cM )Vn(N, ρ)
)(
%−(m−1

cM )Vm(N, ρ)
) 1

L4

N∑
k3=1

∞∑
l3=N+1

|v̂k3l3 |2. (4.181)

The stated estimates then follow from (4.57) and Corollary 4.4.

Bounds for ||Ψs,nm
F,2 (t)||TD and ||Ψ`

F,2(τ)||TD. In Ψ`
F,2(t), and similarly in Ψs,nm

F,2 (t), we denote
the four lines separately by Ψ`

F,2i(t), i = 1, 2, 3, 4. We derive the estimates only for the first
line, whereas for i = 2, 3, 4 everything works in exact analogy to the case i = 1. Using the
Kronecker deltas in (k2, k1,m2,m1 ≤ N and l3, l1, n3, n1 ≥ N + 1)

〈Ω[l∗3k2l∗1k1]
0 ,Ω

[n∗3m2n∗1m1]
0 〉 =(δl3n3δl1n1 + δl3n1δl1n3)δ⊥l3l1δ

⊥
n3n1
×

× (δk2m2δk1m1 + δk2m1δk1m2)δ⊥k1k2
δ⊥m1m2

, (4.182)

one finds

||Ψ`
F,21(τ)||2 .

1

L4

N∑
k1,k2=1

∞∑
l1,l2=N+1

|ŵ`,εk2l2k1l1
| 1

L2

∞∑
l3=N+1

|v̂l2l3 |
1

L2

∞∑
n2=N+1

(|v̂n2l3 |+ |v̂n2l1 |).

(4.183)

By means of (4.58) and also (4.61), we obtain ||Ψ`
F,21(τ)||TD ≤ Cεt3%

1
4

+2ε− 1
2ε , and hence,∣∣∣∣∣∣ ∫ t

0
dµ3(τ)D(τ3)Ψ`

F,21(τ)
∣∣∣∣∣∣

TD

≤ Cεt3%
1
4

+2ε− 1
2ε . (4.184)
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Similarly, we estimate in Ψs,00
F,21(t) the norm

∣∣∣∣∣∣ 1

L6

∑
(k1,l1)∈S0

∑
(k2,l2)∈S0

∞∑
l3=N+1

v̂l2l3 v̂
s,ε
k2l2

v̂s,εk1l1

(
gl2l3(τ3)gk2l2(τ2)gk1l1(τ1)ϕ0

)
⊗ Ω

[l∗3k2l∗1k1]
0

∣∣∣∣∣∣2
.

1

L4

∑
(k1,l1)∈S0

1

L4

∑
(k2,l2)∈S0

1

L2

∞∑
l3=N+1

|v̂l2l3 |
1

L2

∞∑
n2=N+1

(
|v̂s,εk1n2

|+ |v̂s,εk2n2
|
)
.

(4.185)

Using (4.61) in combination with (4.63), this leads to

||Ψs,00
F,21(t)||TD . t3%−

1
2

+ε
(
%2ε + Cε%

−1/ε
)
. (4.186)

Lemma 4.13. Let Ψs,nm
F,2 (t) be defined as in (4.161). Then, under the same assumptions

as in Theorem 4.1, there exists a positive constant Cε such that

||Ψs,0n
F,2 (t)||TD + ||Ψs,n0

F,2 (t)||TD . (1 + t)3%−
1
2

+3ε+ 1
2cM

(
%2ε + Cε%

−1/ε
)
, (4.187)

||Ψs,nm
F,2 (t)||TD . (1 + t)3%−

1
2

+5ε+ 1
cM

(
%2ε + Cε%

−1/ε
)
, (4.188)

holds for all 1 ≤ n,m ≤M and t ≥ 0.

For M = bln %c, one obtains similar as before

M∑
n=1

(
||Ψs,n0

F,2 (t)||TD + ||Ψs,0n
F,2 (t)||TD

)
. (1 + t)3%−

1
2

+4ε
(
%2ε + Cε%

−1/ε
)
, (4.189)

M∑
n,m=1

||Ψs,nm
F,2 (t)||TD . (1 + t)3%−

1
2

+6ε
(
%2ε + Cε%

−1/ε
)
. (4.190)

Proof of Lemma 4.13. We denote the four lines in Ψs,nm
F,2 (t) respectively by Ψs,nm

F,2i (t), i =
1, ..., 4. We prove the Lemma for the first line. The same estimates are readily verified for
the other three lines as well. Let us define

Ψs,n0
F,211(t, τ) =

1

L6

∑
(k1,l1)∈Sn

∑
(k2,l2)∈S0

∞∑
l3=N+1

v̂l2l3 v̂
s,ε
k2l2

v̂s,εk1l1
×

×
(
gl2l3(τ2)gk2l2(τ1)

gk1l1(t)− gk1l1(τ1)

i(El1 − Ek1)
ϕ0

)
⊗ Ω

[l∗3k2l∗1k1]
0 , (4.191)

Ψs,n0
F,212(τ) =

1

L6

∑
(k1,l1)∈Sn

∑
(k2,l2)∈S0

∞∑
l3=N+1

v̂l2l3 v̂
s,ε
k2l2

v̂s,εk1l1
×

×
(
gl2l3(τ3)gk2l2(τ2)

ei(El1−Ek1
)τ1∂τ1kk1l1(τ1)

i(El1 − Ek1)
ϕ0

)
⊗ Ω

[l∗3k2l∗1k1]
0 , (4.192)

Ψs,0n
F,211(τ) =

1

L6

∑
(k1,l1)∈S0

∑
(k2,l2)∈Sn

∞∑
l3=N+1

v̂l2l3 v̂
s,ε
k2l2

vs,εk1l1
×

×
(
gl2l3(τ2)

gk2l2(τ1)− gk2l2(τ2)

i(El2 − Ek2)
gk1l1(τ1)ϕ0

)
⊗ Ω

[l∗3k2l∗1k1]
0 , (4.193)
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Ψs,0n
F,212(τ) =

1

L6

∑
(k1,l1)∈S0

∑
(k2,l2)∈Sn

∞∑
l3=N+1

v̂l2l3 v̂
s,ε
k2l2

vs,εk1l1
×

×
(
gl2l3(τ3)

ei(El2−Ek2
)τ2∂τ2kk2l2(τ2)

i(El2 − Ek2)
gk1l1(τ1)ϕ0

)
⊗ Ω

[l∗3k2l∗1k1]
0 . (4.194)

By partial integration,

Ψs,n0
F,21 (t) =

∫ t

0
dµ2(τ)D(τ2)Ψs,n0

F,211(t, τ)−
∫ t

0
dµ3(τ)D(τ3)Ψs,n0

F,212(τ), (4.195)

Ψs,0n
F,21 (t) =

∫ t

0
dµ2(τ)D(τ2)Ψs,0n

F,211(τ)−
∫ t

0
dµ3(τ)D(τ3)Ψs,0n

F,212(τ). (4.196)

We set further, with G(X)

k2l2k1l1
(t, τ), X ∈ {1, 2, 3} as in (4.148)-(4.150),

Ψs,nm
F,21X(t, τ) =

1

L6

∑
(k1,l1)∈Sn

∑
(k2,l2)∈Sm

∞∑
l3=N+1

v̂l2l3 v̂
s,ε
k2l2

v̂s,εk1l1

(
gl2l3(τX)G(X)

k2l2k1l1
(t, τ)ϕ0

)
⊗ Ω

[l∗3k2l∗1k1]
0 .

By partial integration again,

Ψs,nm
F,21 (t) =

∫ t

0
dτ1D(τ1)Ψs,nm

F,211 (t, τ) +

∫ t

0
dµ2(τ)D(τ2)Ψs,nm

F,212 (t, τ) +

∫ t

0
dµ3(τ)D(τ3)Ψs,nm

F,213 (t, τ).

Next, we compute using (4.65), for Y ∈ {1, 2},

||Ψs,n0
F,21Y(τ)||2 . %4ε 1

L4

∑
(k1,l1)∈Sn

%−(n−1
cM ) 1

L4

∑
(k2,l2)∈S0

1

L2

∞∑
l3=N+1

|v̂l3l2 |
1

L2

∞∑
n2=N+1

(
|v̂l3n2 |+ |v̂l1n2 |

)
.

Similarly, one derives the same estimate for ||Ψs,0n
F,21Y(τ)||. Furthermore, using (4.154)-(4.156),

one finds

||Ψs,nm
F,21X(τ)||2 . %8ε 1

L4

∑
(k1,l1)∈Sn

%−(n−1
cM ) 1

L4

∑
(k2,l2)∈Sm

%−(m−1
cM )× (4.197)

× 1

L2

∞∑
l3=N+1

|v̂l3l2 |
1

L2

∞∑
n2=N+1

(
|v̂l3n2 |+ |v̂l1n2 |

)
.

The proof of the lemma then follows from (4.61), (4.63) and (4.64).

Bounds for ||Ψs,nm
F,3 (t)||TD and ||Ψ`

F,3(τ)||TD. We denote the four different lines by Ψs,nm
F,3i (t),

respectively Ψ`
F,3i(τ) and derive the bounds only for i = 1 since for i = 2, 3, 4, the same

estimates are derived analogously. Using
〈
Ω

[l∗1k1]
0 ,Ω

[n∗1m1]
0

〉
= δl1n1δk1m1 for k1,m1 ≤ N and

N + 1 ≤ l1, n1, we find

||Ψ`
F,31(τ)||2 .

1

L8

N∑
k1,k2=1

∞∑
l1,l2=N+1

|ŵ`,εk2l2k1l1
| 1

L4

N∑
m2=1

∞∑
n2=N+1

|v̂n2m2 |. (4.198)

By (4.57) and (4.58), it follows that ||Ψ`
F,31(τ)||TD ≤ Cε%

1
2
− 1

2ε , and thus,∣∣∣∣∣∣ ∫ t

0
dµ3(τ)D(τ3)Ψ`

F31(τ)
∣∣∣∣∣∣

TD

≤ Cεt3%
1
2
− 1

2ε . (4.199)
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Similarly, in Ψs,00
F,31(t), we estimate the norm∣∣∣∣∣∣ 1

L6

∑
(k1,l1)∈S0

∑
(k2,l2)∈S0

v̂l2k2 v̂
s,ε
k2l2

v̂s,εk1l1

(
gl2k2(τ3)gk2l2(τ2)gk1l1(τ1)ϕ0

)
⊗ Ω

[l∗1k1]
0

∣∣∣∣∣∣2 . V0(N, ρ)3.

(4.200)

Hence, by means of (4.63), we find

||Ψs,00
F31 (t)||TD . Ct3%−

3
4

+ 3
2
ε. (4.201)

Lemma 4.14. Let Ψs,nm
F,3 (t) be defined as in (4.162). Then, under the same assumptions

as in Theorem 4.1, there exists a positive constant Cε such that

||Ψs,0n
F,3 (t)||TD + ||Ψs,n0

F,3 (t)||TD . (1 + t)3%−
3
4

+4ε+ 1
2cM

(
%2ε + Cε%

−1/ε
)
, (4.202)

||Ψs,nm
F,3 (t)||TD . (1 + t)3%−

3
4

+6ε+ 3
2cM

(
%2ε + Cε%

−1/ε
)
, (4.203)

hold for all 1 ≤ n,m ≤M and t ≥ 0.

With M = bln %c, it follows

M∑
n=1

(
||Ψs,n0

F,3 (t)||TD + ||Ψs,0n
F,3 (t)||TD

)
. (1 + t)3%−

3
4

+5ε
(
%2ε + Cε%

−1/ε
)
, (4.204)

M∑
n,m=1

||Ψs,nm
F,3 (t)||TD . (1 + t)3%−

3
4

+7ε
(
%2ε + Cε%

−1/ε
)
. (4.205)

Proof of Lemma 4.14. Again, we prove the lemma only for the i = 1 term. Let

Ψs,n0
F,311(t, τ) =

1

L6

∑
(k1,l1)∈Sn

∑
(k2,l2)∈S0

v̂l2k2 v̂
s,ε
k2l2

v̂s,εk1l1
×

×
(
gl2k2(τ2)gk2l2(τ1)

gk1l1(t)− gk1l1(τ1)

i(El1 − Ek1)
ϕ0

)
⊗ Ω

[l∗1k1]
0 , (4.206)

Ψs,n0
F,312(τ) =

1

L6

∑
(k1,l1)∈Sn

∑
(k2,l2)∈S0

v̂l2k2 v̂
s,ε
k2l2

v̂s,εk1l1
×

×
(
gl2k2(τ3)gk2l2(τ2)

ei(El1−Ek1
)τ1∂τ1kk1l1(τ1)

i(El1 − Ek1)
ϕ0

)
⊗ Ω

[l∗1k1]
0 , (4.207)

Ψs,0n
F,311(τ) =

1

L6

∑
(k1,l1)∈S0

∑
(k2,l2)∈Sn

v̂l2k2 v̂
s,ε
k2l2

v̂s,εk1l1
×

×
(
gl2k2(τ2)

gk2l2(τ1)− gk2l2(τ2)

i(El2 − Ek2)
gk1l1(τ1)ϕ0

)
⊗ Ω

[l∗1k1]
0 , (4.208)

Ψs,0n
F,312(τ) =

1

L6

∑
(k1,l1)∈S0

∑
(k2,l2)∈Sn

v̂l2k2 v̂
s,ε
k2l2

v̂s,εk1l1
×

×
(
gl2k2(τ3)

ei(El2−Ek2
)τ2∂τ2kk2l2(τ2)

i(El2 − Ek2)
gk1l1(τ1)

)
ϕ0 ⊗ Ω

[l∗1k1]
0 . (4.209)
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Via partial integration,

Ψs,n0
F,31 (t) =

∫ t

0
dµ2(τ)D(τ2)Ψs,n0

F,311(t, τ)−
∫ t

0
dµ3(τ)D(τ3)Ψs,n0

F,312(τ), (4.210)

Ψs,0n
F,31 (t) =

∫ t

0
dµ2(τ)D(τ2)Ψs,0n

F,311(τ)−
∫ t

0
dµ3(τ)D(τ3)Ψs,0n

F,312(τ). (4.211)

We set further, for G(X)

k2l2k1l1
(t, τ), X ∈ {1, 2, 3} as in (4.148)-(4.150),

Ψs,nm
F,31X(t, τ) =

1

L6

∑
(k1,l1)∈Sn

∑
(k2,l2)∈Sm

v̂l2k2 v̂
s,ε
k2l2

v̂s,εk1l1

(
gl2k2(τX)G(X)

k2l2k1l1
(t, τ)ϕ0

)
⊗ Ω

[l∗1k1]
0 .

Partial integration leads again to

Ψs,nm
F,31 (t) =

∫ t

0
dτ1D(τ1)Ψs,nm

F,311 (t, τ)−
∫ t

0
dµ2(τ)D(τ2)Ψs,nm

F,312 (t, τ) +

∫ t

0
dµ3(τ)D(τ3)Ψs,nm

F,313 (t, τ).

Similar as before, we find for Y ∈ {1, 2}, using (4.65),

||Ψs,n0
F,31Y(τ)||2 . %4ε

(
%−(n−1

cM )Vn(N, ρ)
)
V0(N, ρ)2. (4.212)

Analogously, one derives the same estimate for ||Ψs,0n
F,31Y(τ)||. Furthermore, using (4.154)-

(4.156), one finds

||Ψs,nm
F,31X(t, τ)||2 . %8ε

(
%−(n−1

cM )Vn(N, ρ)
)(
%−(m−1

cM )Vm(N, ρ)
)2
. (4.213)

The stated estimates follow from (4.63) and also (4.64).

This completes the proof of the bound for ||ΨF(t)||TD in (4.46).

4.2.5 Proofs of Lemmas 4.3 and 4.5

Proof of Lemma 4.3. Let us first note that the choice v ∈ C∞0 (R2) ensures that the constant
Dp in (4.19) is smaller than some C > 0 uniformly in the length L of the torus.

We begin with the upper bound in (4.57). Using the Paley-Wiener Theorem, cf. (4.19)
with p s.t. pq > 3,

lim
TD

1

L4

N∑
k=1

∞∑
l=N+1

∣∣v̂(pk − pl)
∣∣q ≤ lim

TD

1

L4

N∑
k=1

∞∑
l=N+1

Dq
p

(1 + |pk − pl|)qp

=
Dq
p

(2π)4

∫
|k|≤kF

d2k

∫
|l|≥kF

d2l
1

(1 + |k − l|)qp[
|k|+ |l| ≥ |k + l|

]
≤ Cq

∫
|k|≤kF

d2k

∫
|l|≥kF−|k|

d2l
1

(1 + |l|)qp

≤ Cq
∫
|k|≤kF

d2k

[
−1

(1 + |l|)qp−2

]∞
kF−|k|

≤ CqkF
[

1

(1 + kF − |k|)qp−3

]kF
0

, (4.214)
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which proves the upper bound.

To show the lower bound in (4.57), we assume for simplicity that v̂(0) > 0 (the argument is
easily adapted to the general case). Let us denote here limTD v̂ = v̂TD with vTD ∈ C∞0 (R2).
Due to continuity of v̂TD : R2 → R, there is a nonempty, compact ball of some radius r > 0,
Br(0) ⊂ R2, such that v̂TD(k) > 0 for all k ∈ Br(0). In particular, for given l ∈ R2 with
|l| ∈ [kF , kF + r/10], we have v̂TD(k − l) > 0 for all k ∈ Br(l) with |k| ≤ kF . Since the set

A =
{

(k, l) ∈ R4 : |l| ∈
[
kF , kF + r/10

]
, k ∈ Br(l), |k| ≤ kF

}
(4.215)

is nonempty and compact, there exists a nonzero minimum on A,m ≡ min(k,l)∈A v̂TD(k−l) >
0. It is then sufficient to consider the transitions corresponding to A in order to obtain the
lower bound:

lim
TD

1

L4

N∑
k=1

∞∑
l=N+1

∣∣v̂(pk − pl)
∣∣q =

1

(2π)4

∫
|k|≤kF

d2k

∫
|l|≥kF

d2l
∣∣v̂TD(k − l)

∣∣q
≥
∫
|k|≤kF

d2k

∫
|l|≥kF

d2l
∣∣v̂TD(k − l)

∣∣q χ((k, l) ∈ A)
≥ mq

∫
|k|≤kF

d2k

∫
|l|≥kF

d2l χ
(
(k, l) ∈ A

)
= mq

∫ kF+r/10

kF

d|l| |l|
∫
|k|≤kF

d2k χ
(
k ∈ Br(l)

)
[
for sufficiently large kF

]
= Cqr

3kF . (4.216)

Remark 4.4. Along the same lines, one verifies (4.15) also for d = 1 and d = 3.

We next come to (4.58). Let ε > 0. Applying again Paley-Wiener, this time with p s.t.
p/2− 3 > 0 and p > 1

ε + 2
ε2

, we find

lim
TD

1

L4

N∑
k=1

∞∑
l=N+1

∣∣v̂`,ε(pk − pl)∣∣ ≤ lim
TD

1

L4

N∑
k=1

∞∑
l=N+1

Dpθ
(
|pk − pl| − %ε

)
(1 + |pk − pl|)p

≤ Dp

(2π)4

∫
|k|≤kF

d2k

∫
|l|≥kF

d2l
θ(|k − l| − %ε)
(1 + |k − l|)p

≤ Dp

(2π)4%εp/2

∫
|k|≤kF

d2k

∫
|l|≥kF

d2l
1

(1 + |k − l|)
p
2

≤ Dp

(2π)4
%−εp/2%

1
2 (4.217)

where we have used in the last step the estimate from (4.214). The bound in (4.58) then
follows from the choice p > 1

ε + 2
ε2

.

To show (4.59), one passes to the thermodynamic limit, and computes by direct inte-
gration (for sufficiently large % and ε < 1/2),

lim
TD

1

L4

∑
(k,l)∈Sn

= lim
TD

1

L4

N∑
k=1

∞∑
l=N+1

θ
(
%ε − |pk − pl|

)
χ
(
%−bn ≤ |pl| − |pk| < %−bn+1

)
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=
1

(2π)4

∫
|k|≤kF

d2k

∫
|l|≥kF

d2l θ
(
%ε − |k − l|

)
χ
(
%−bn ≤ |l| − |k| < %−bn+1

)
≤ C%

1
2
−bn+1%ε

(
%−bn+1 − %−bn

)
. (4.218)

For the proof of (4.60), we recall the definition in (4.10) and insert v = vs,ε + v`,ε:

Ere(%) ≤ lim
TD

1

L4

N∑
k=1

∞∑
l=N+1

∣∣v̂s,ε(pk − pl)∣∣2
(El − Ek)

θ
(
|pl| − |pk| − %−

1
2

)
(4.219)

+ lim
TD

1

L4

N∑
k=1

∞∑
l=N+1

∣∣v̂`,ε(pk − pl)∣∣2
(El − Ek)

θ
(
|pl| − |pk| − %−

1
2

)
. (4.220)

In the first line we proceed with (4.54) and find for any M ≥ 1,

(4.219) =
M∑
n=1

lim
TD

1

L4

∑
(k,l)∈Sn

∣∣v̂s,ε(pk − pl)∣∣2
(El − Ek)

≤ C
M∑
n=1

lim
TD

%−( n−1
2cM ) 1

L4

∑
(k,l)∈Sn

= C
M∑
n=1

%−( n−1
2cM )%

1
2

+ε%−bn+1

(
%−bn+1 − %−bn

)
= C%−

1
2

+ε
(
%

1
2cM − 1

) M∑
n=1

%
n

2cM ≤ C%−
1
2

+ε%
M+1
2cM ≤ C%2ε, (4.221)

where we have taken the limit M →∞ and inserted 2c = (1
2 +ε)−1. The second line (4.220)

has been estimated in (4.90). This proves the upper bound in (4.60). For the lower bound,
we insert again v = vs,ε + v`,ε,

Ere(%) ≥ lim
TD

1

L4

N∑
k=1

∞∑
l=N+1

∣∣v̂s,ε(pk − pl)∣∣2
(El − Ek)

θ
(
|pl| − |pk| − %−

1
2

)
. (4.222)

Since |pl − pk| ≤ %ε, we find that |pl| − |pk| ≤ |pl − pk| ≤ %ε and |pl| + |pk| ≤ 3%
1
2 (for

ε ≤ 1/2), i.e., (El−Ek)−1 ≥ 1
3%
−ε− 1

2 . Furthermore, note that the bound from (4.216) holds
also if we replace v̂ by v̂s,ε for any ε > 0. Thus we find

(4.222) ≥ 1

3
%−ε−

1
2 lim

TD

1

L4

N∑
k=1

∞∑
l=N+1

∣∣v̂s,ε(pk − pl)∣∣2θ(|pl| − |pk| − %− 1
2

)
≥ C%−ε−

1
2

(
%

1
2 − C

)
≥ C%−ε. (4.223)

Eventually note that here we can pass to the limit ε → 0 which completes the derivation
of the lower bound in (4.60).

The proof of (4.61) follows immediately from the decomposition of the potential; cf.
(4.20) and (4.21).
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Proof of Lemma 4.5. We prove only (4.65), since (4.66)-(4.68) are derived in complete anal-
ogy.∣∣∣∣∣∣∂τ1kkl(τ1)ϕ0

∣∣∣∣∣∣ =
∣∣∣∣∣∣(∂τeiHf

y τ1
)
ei(pl−pk)·yϕfτ1 + eiH

f
y τ1ei(pk−pl)·y∂τ1ϕ

f
τ1

∣∣∣∣∣∣
=
∣∣∣∣∣∣|pk − pl|2eiHf

y τ1ei(pl−pk)·yϕfτ1 − 2(pl − pk) · eiH
f
y τ1ei(pl−pk)·y∇yϕfτ1

∣∣∣∣∣∣
≤ |pk − pl|2 + C|pk − pl| (4.224)

because ||∇yϕfτ || = ||∇yϕ0|| ≤ C (uniformly in %). The estimate follows since |pk − pl| ≤ %ε

for all (k, l) ∈ S.
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Appendices

We close this chapter with four appendices.

4.A Fermi pressure

We have explained in Section 4.1.2 that the fluctuations of the potential around its average
value w.r.t. Ω0 are strongly suppressed (suppressed compared to free bosons where the
fluctuations would be proportional to the density %), namely that

||(V − E)Ω0||2 ≤ Cd%
d−1
d . (4.225)

This is a direct consequence of the Fermi pressure (the antisymmetry of the wave function)
which causes many fermions to be distributed much more homogeneously than bosons or
classical particles. There is, however, another interesting difference between fermions and
bosons due to the Fermi pressure: in a dense Fermi gas, the fluctuations are only caused
by momentum modes close to kF whereas for bosons all modes contribute equally to the
fluctuations in the gas. Assume v(x) = χB(x) the characteristic function for some compact
ball B ⊂ [0, L]d (in this case, the fluctuations of the potential coincide with local density
fluctuations since the function v(x) = χB(x) measures the number of particles within the
ball B). Let us then rewrite the operator (V − E) in terms of creation and annihilation
operators, i.e.,

(V − E) =
1

L

∞∑
k=1

( 1

L

∞∑
l=1,l 6=k

v̂kle
i(pk−pk)ya∗(pl)a(pk)

)
=

1

L

∞∑
k=1

V pk , (4.226)

with V pk = L−1
∑∞

l=1,l 6=k v̂kle
i(pk−pk)ya∗(pl)a(pk). The interesting point about this decom-

position is that the {V pk}k≥1 are centered and uncorrelated (operator valued) random
variables w.r.t. to Ω0, meaning that

〈
Ω0, V

pkΩ0

〉
= 0 for all k and

〈
V pkΩ0, V

pk′Ω0

〉
= 0 for

k 6= k′. The variance of the total sum of all V pk thus equals the sum of all variances of the
V pk ,

||(V − E)Ω0||2 =
∣∣∣∣∣∣( 1

L

N∑
k=1

V pk
)

Ω0

∣∣∣∣∣∣2 =
1

L2

N∑
k=1

||V pkΩ0||2. (4.227)

For v(x) = χB(x) one can associate the operator V pk with the random variable that de-
scribes the local density of all modes carrying momentum k. By means of (4.227) we can
look at the local density fluctuations w.r.t. the momentum variable 0 ≤ |pk| ≤ kF . In Figure

4.A.1 we depict the functions {||V pΨi||2TD : 0 ≤ |p| ≤ kF } for different values of % = k
1/d
F

and (for comparison) for three different wave functions Ψi. The lower line corresponds to
Ψ1 = Ω0, the ideal Fermi gas. The middle line stands for a nonsymmetric wave function
Ψ2 =

∏N
i=1 φi(xi), the product of all one-particle orbitals with momenta inside the Fermi

sphere, and Ψ3 = Ω+
0 is the bosonic analogue of Ω0, i.e., Ψ3 is defined as in (4.5) with

(−1)τ replaced by +1. The four pictures show that, eventually, for high densities, the par-
ticles with momentum inside the Fermi sphere tend to be distributed very homogeneously
in the case of Ω0. Here the fluctuations in (4.225) are only caused by modes with very
high momentum close to kF (the lower line in Figure 4.A.1). For Ψ1 and Ψ2 this is differ-
ent as fluctuations are nonzero foll all occupied modes. The small value of ||V pΩ0||2TD for
|p| not close to the Fermi momentum is a consequence of the antisymmetry of the wave



4.B. Recollision diagrams 127

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250

0.0

0.2

0.4

0.6

0.8

1.0

0 500 1000 1500 2000 2500

0.0

0.2

0.4

0.6

0.8

1.0

kF = 25kF = 10

kF = 250 kF = 2500

Figure 4.A.1: We show the functions {||V pΨi||2TD : 0 ≤ |p| ≤ kF } for different values kF and
for three different wave functions Ψi (we depict the case d = 1; qualitatively, however, the
pictures are the same for d ≥ 2). The lower line corresponds to the ideal Fermi gas Ψ1 = Ω0

and shows that the fluctuations are strongly suppressed for modes away from kF when %
becomes large. The middle line indicates the wave function Ψ2, a nonsymmetric product of
plane waves with momenta between zero and kF . The upper line stands for Ψ3 = Ω+

0 , the
bosonic analogue of (4.5), i.e., with (−1)τ replaced by 1.

function in combination with the fast decay of the Fourier transform of v (for that note
that ||V pkΩ0||2 = L−2

∑
l≥N+1 |v̂(pk − pl)|2 and v̂[χB](pk) ∝ 1/p2

k and even faster decay for
potentials v ∈ C∞0 ).

We think that the explained argument provides an interesting heuristic picture of the
statistical properties of the dense ideal Fermi gas, namely, that the proability for slow
particles in Ω0 building random clusters approaches zero when % becomes large, whereas for
the fast modes in Ω0, the probability for density fluctuations is nonvanshing but nevertheless
much smaller compared to the fluctuations in a dense bosonic gas.

4.B Recollision diagrams

In this appendix we show that the next-order energy correction Ere = Ere(%) in Hmf is due
to so-called immediate recollisions that come from all orders in the Duhamel expansion.
In the proof of Lemma 4.2 it was not necessary to know that Ere has contributions from
arbitrary high orders in the expansion since we could identify the correct choice of Ere
directly from the estimate in (4.90) where it was used to cancel the immediate recollision
contribution in ΨB. However, it is an interesting insight to see exactly where the subleading
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phase Ere comes from. To this end, let us denote by

H̃mf = Hmf + Ere = −∆y −
N∑
i=1

∆xi + %v̂(0) (4.228)

the mean field Hamiltonian without Ere, and then write down the Dyson series of U(t)Ψ0

around Ũmf(t), i.e.,

U(t)Ψ0 = Ũmf(t)Ψ0 + Ũmf(t)

∞∑
n=1

(−i)n
∫ t

0
ds1...

∫ sn−1

0
dsn

(
Ũmf(−s1)(V − E)Ũmf(s1)

)
...×

× ...
(
Ũmf(−sn)(V − E)Ũmf(sn)

)
Ψ0. (4.229)

Comparing the microscopic time evolution with Umf(t)Ψ0 = eiEretŨmf(t)Ψ0 and using the
above expansion for U(t)Ψ0, we find∣∣∣∣∣∣U(t)Ψ0 − eiEretŨmf(t)Ψ0

∣∣∣∣∣∣2 (4.230)

= 2 Re
(

1− e−iEret
〈
Ũmf(t)Ψ0, U(t)Ψ0

〉)
= 2 Re

(
1− e−iEret

)
− 2 Re e−iEret

∞∑
n=1

(−i)n
∫ t

0
ds1...

∫ sn−1

0
dsn×

×
〈
Ψ0,

(
Ũmf(−s1)(V − E)Ũmf(s1)

)
...
(
Ũmf(−sn)(V − E)Ũmf(sn)

)
Ψ0

〉
,

where a nonvanishing contribution remains at zeroth order. This term is of course due to
the wrong choice of phase in the expansion in (4.229). Note that the n = 1 term is exactly
zero and we can directly proceed for n = 2 in order to show how the contributions from
immediate recollisions look like. The n = 2 term is given by

−2 Re e−iEret(−i)2 1

L4

N∑
k=1

∞∑
l=N+1

|v̂kl|2
∫ t

0
ds1

∫ s1

0
ds2e

−i(El−Ek)(s1−s2)fkl(s1, s2), (4.231)

where we have introduced the abbreviation fkl(s1, s2) =
〈
ϕ0, kkl(s1)klk(s2)ϕ0

〉
. Immediate

recollisions are defined as the contributions in such expressions where the second collision
happens right after the first, i.e., the ones for s1 ≈ s2. After a partial integration, we find∫ t

0
ds1

∫ s1

0
ds2e

−i(El−Ek)(s1−s2)fkl(s1, s2)

=

∫ t

0
ds1e

−i(El−Ek)s1
[ei(El−Ek)s2

i(El − Ek)
fkl(s1, s2)

∣∣∣s2=s1

s2=0
−
∫ s1

0
ds2

ei(El−Ek)s2

i(El − Ek)
∂s2fkl(s1, s2)

]
=

∫ t

0
ds1

1

i(El − Ek)
+ rest, (4.232)

where in the first term fkl(s1, s1) = 1 and where after a second partial integration,

|rest| ≤ C t

(El − Ek)2
+ higher order. (4.233)

Neglecting for simplicity the problem coming from the stationary points |pk| ≈ |pl| (they
can be separated from the sum in (4.231) and then treated exactly as in the proof of Lemma
4.2, cf. Corollary 4.4), one obtains recalling the definition of Ere from (4.10),

(4.231) = −2 Re e−Eret(−i)2(−iEre) + rest2, (4.234)
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where |rest2| can be shown to be proportional to t/kF . The important point is that for all
n even, there remains always a term after partial integration which is not small enough.
This nonvanishing contribution comes from the boundary terms si = si−1 where one can
use the cancellation due to the oscillating phase only once (a second partial integration
is not possible exactly as in the first term in (4.232)). For n = 4, this is the term where
two recollisions happen right after each other. The corresponding expression is found to be
given by

immediate recollisions in the 4th term = −2 Re e−iEret(−i)4 (−iEret)2

2
, (4.235)

and similarly for all n even, it is not difficult to find

immediate recollisions in the nth term = −2 Re e−iEret(−i)n (−iEret)n/2

(n/2)!
. (4.236)

Summing up all contributions (note that for n odd there are no diagrams that only contain
immediate recollisions since there always remains at least a single particle-hole excitation)
leads to

immediate recollisions from all orders = −2 Re e−iEret
∞∑

n=2,n even

(−i)n (−iEret)n/2

(n/2)!

= −2 Re e−iEret
∞∑
n=1

(iEret)
n

n!

= −2 Re e−iEret
(
eiEret − 1

)
= −2 Re

(
1− e−iEret

)
. (4.237)

From the last line, one can now see that the sum of all recollision terms cancels exactly the
contribution from the nonvanishing zeroth term in the expansion in (4.230).

4.C The model in one dimension

The main difference in the definition of the model in one spatial dimension is that the
possible momenta for L <∞ are now given by p ∈ (2π/L)Z, and that the Fermi momentum
|pN | = kF is proportional to %. Below, we are going to prove the following theorem which is
the analogous statement to Theorem 4.1 (a slightly different statement implying the same
result as Theorem 4.15 was derived in [67]).

Theorem 4.15. Let d = 1, the masses mx = my = 1/2 and the coupling constant g = 1.
Let Ψ0 = ϕ0 ⊗ Ω0 with ϕ0 ∈ Hy with ||∇4ϕ0|| ≤ C uniformly in % = N/L and Ω0 the
free fermionic ground state in T. Then, for any small enough ε > 0, there exists a positive
constant Cε such that

lim
N,L→∞

%=N/L=const.

∥∥∥e−iHtΨ0 − e−iH
mftΨ0

∥∥∥
Hy⊗HN

≤ Cε(1 + t)
3
2 %−

1
4

+ε (4.238)

holds for all t > 0, where

Hmf = −∆y −
N∑
i=1

∆xi + %v̂(0) (4.239)

is the free Hamiltonian with constant mean field 〈Ω0,
∑N

i=1 v(xi − y)Ω0〉HN = %v̂(0).
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Remark 4.5. 1) Note the two differences compared to Theorem 4.1: the absence of an
additional next-to-leading order energy correction in Hmf and the better error on the r.h.s.

2) As explained in Section 4.1.2, we expect, and this is in contrast to d = 2, that the
l.h.s. of (4.238) is small for large % on all time scales. Theorem 4.15 can prove this only to
some extent since the error term on the r.h.s. becomes small only as long as t� %1/6.

One possibility to prove (4.238) is to adapt the proof of Theorem 4.1. For that, note
that the argument depends on the dimension essentially through Lemma 4.3 and Corollary
4.4. The corresponding bounds for d = 1 are summarized in

Lemma 4.16. Let d = 1, 0 < ε < 1/2 and M, q ∈ N. Let v(x) ∈ C∞0 (T)∩C∞0 (R) and v`,ε,
vs,ε defined as in (4.20),(4.21). Then there exist positive constants C, Cq, Cq,ε such that

lim
TD

1

L2

N∑
k=1

∞∑
l=N+1

∣∣v̂(pk − pl)
∣∣q = Cq, (4.240)

lim
TD

1

L2

N∑
k=1

∞∑
l=N+1

∣∣v̂`,ε(pk − pl)∣∣q ≤ Cq,ε%−1/ε, (4.241)

lim
TD
V0(N, ρ) ≤ C%−1, (4.242)

lim
TD

(
%−( n−1

2cM )Vn(N, ρ)
)
≤ C%−1+ε

(
%

1
2cM − %

1
cM

)
, 1 ≤ n ≤M (4.243)

lim
TD

1

L

N∑
k=1

∣∣v̂(pk − p)
∣∣ ≤ C%ε + Cε%

−1/ε for p ∈ (2π/L)Z. (4.244)

The proof is analogous to the ones for Lemma 4.3 and Corollary 4.4.

The only bound that remains to be shown is the one for Ψs,n
B,2(t), 1 ≤ n ≤ M ; cf.

Section 4.2.4. In the two-dimensional case, this term was directly canceled by Eεre(%) which
is identically zero for d = 1. However, one easily verifies, using El1 − Ek1 ≥ CkF%

−bn =

C%−
1
2

+ n−1
2cM (since kF ∝ %), that in one dimension,

M∑
n=1

||Ψs,n
B,2(t)||TD . (1 + t)%−

1
2

+εM%
1
cM . (1 + t)%−

1
2

+2ε, (4.245)

since M%
1
cM . %ε for M = bln %c. This completes the proof of Theorem 4.15.

4.D The model in three dimensions

We explain why it is not possible to adapt the proof of Theorem 4.1 also to the case d = 3.
Here, the possible momenta are given by p ∈ (2π/L)Z3 and |pN | = kF ∝ %

1
3 . We exemplify

this for one particular term, namely∣∣∣∣∣∣ M∑
n=1

Ψs,n
A (t)

∣∣∣∣∣∣2 =
M∑
n=1

||Ψs,n
A (t)||2TD ≤

M∑
n=1

[
lim
TD

1

L6

∑
(k,l)∈Sn

1

(Ek − El)2

]
, (4.246)

which appears at second order in the Duhamel expansion; cf. Section 4.2.4. Here, we have
used in addition that the Ψs,n

A (t) are pairwise orthogonal, and then we applied the first step
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from (4.80). In order to obtain the optimal bound for the r.h.s., let us be more general as
in the case d = 2 and define the sets Sn with b0 =∞ and bn = b+ (n−1)/(2cM), for b > 0

and 2c = (b+ ε)−1, b ∈ R. Using (El − Ek) ≥ %
1
3
−bn for all (k, l) ∈ Sn, together with

lim
TD

1

L6

∑
(k,l)∈Sn

. %
2
3
−bn+1%2ε

(
%−bn+1 − %−bn

)
, (4.247)

one finds

1

L6

∑
(k,l)∈Sn

1

(Ek − El)2
. %2bn−2bn+1

(
1− %−bn+bn+1

)
.

1

M
ln %
(

1 +O(M−1 ln %)
)
, (4.248)

1 ≤ n ≤ M . Hence, this way (taking M → ∞) we obtain at best (4.246) . ln %, which
would imply a trivial statement like ||ΨA(t)||TD . ln % already for t of order one.





Appendices

A Gross-Pitaevskii limit for bosons

The N -particle Hamiltonian HGP
N which describes a gas of dilute atoms is defined (for d = 3

spatial dimensions) by a Hamiltonian of the form (1.4) but with the pair potential v replaced
by an N -dependent pair potential vN (x) = N3v(Nx) with v ∈ C0(Ω) and coupling constant
gN = 1/(N−1). HGP

N looks formally very similar to the weak coupling Hamiltonian for which
the coupling is also given by gN = 1/(N−1) but the pair potential v is N -independent (i.e.,
of long-range type compared to vN ). Another analogy is that solutions to the microscopic
Schrödinger equation i∂tΨN,t = HGP

N ΨN,t (and similarly for the stationary equation) are
described in the large N limit by a one-particle nonlinear effective Hamiltonian, the so-
called Gross-Pitaevskii Hamiltonian, given by hGP,ϕ

x = −∆x + a|ϕ(x)|2, where a denotes
the scattering length of the potential v. It is well known, e.g., that for particular initial
conditions,

lim
N→∞

Tr
[
Ak
(
γ

(k)
ΨN,t
− γ(k)

ϕ⊗Nt

)]
= 0, (249)

where ΨN,t solves the microscopic Schrödinger equation for appropriate initial conditions
and ϕt is the solution to the corresponding Gross-Pitaevskii equation i∂tϕt = hGP,ϕtϕt,
see, e.g. [2, 3, 40, 45, 46, 47, 102, 16, 104]. Similar convergence results are known also for
the ground state wave function (and ground state energy) for which we refer to the thor-
ough summary in [85]. Despite these close analogies, the Gross-Pitaevskii equation is not
a direct consequence of the Hartree equation for v ∝ δ. The significant difference is the
scattering length a that appears in the effective Hamiltonian. The reason for the scattering
length to appear in the effective description is the strongly localized and peaked interac-
tion vN (x) = N3v(Nx) → δ(x) (N → ∞) which causes the N -particle wave function to
have a more complicated structure compared to solutions in the weak coupling model. In
particular, there emerges another relevant length scale (the range of the interaction) on
which a low energy wave function develops pair correlations between the particles. One
may think of these correlations as the correct equilibration of ΨN having nodes where two
particles approach the same point (this reduces the potential energy) and ΨN becoming to
steep around these nodes (which enhances the kinetic energy). This additional microscopic
structure of the wave functions is summarized in the effective coupling a.

The reason why we mention the Gross-Pitaevskii limit is that the N -dependence of HGP
N

can be very well motivated.5 To see this, let us consider N particles in a box of volume

5To our knowledge, there is no similarly convincing motivation for the N -dependence of the weak coupling
model itself. We rather think of the weak coupling model as a first step towards the physically more realistic
Hamiltonian HGP

N . Since both models share some relevant common features, it is helpful to understand the
weak coupling model before one approaches the same questions for the much more involved Gross-Pitaevskii
limit.
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L3 described by a Hamiltonian HGP,unscaled
N of the form (1.4) with W ext = 0, gN = 1 and

v ∈ C0([0, L]3) (unscaled stands here for N -independent). We assume that the side length of
the box increases with the particle number as L = N . For a repulsive potential, the particles
spread over the whole box at an average distance L/N

1
3 , and thus in particular, the ratio

between the support of the interaction and the average distance between the particles
approaches zero when N tends to∞ (which defines the dilute limit of the gas). For reasons
of convenience, one now rescales the whole system into a box of volume one meaning that
we introduce new spatial coordinates x 7→ x̃ = x/L. The Hamiltonian HGP,unscaled

N,x is then
replaced by

HGP,unscaled
N,x 7→ HGP,unscaled

N,x̃ = − 1

L2

N∑
i=1

∆x̃i +
∑
i<j

v
(
L(x̃i − x̃j)

)
=

1

N2

[
−

N∑
i=1

∆x̃i +
1

N

∑
i<j

vN (x̃i − x̃j)
]

=
1

N2
HGP

N,x̃, (250)

where vN (x̃) = N3v(Nx̃). The so obtained Hamiltonian HGP

N,x̃ is of the same form as the
weak coupling model (with the difference that v = vN is N -dependent) and the pre factor
1/N2 determines the correct energy scale (in the stationary case) resp. the correct time
scale (for the time-dependent Schrödinger equation). Replacing vN by some N -independent
function v (e.g., the Coulomb potential), one arrives at the weak coupling model. This step
of simplification allows us to analyze the effective “long-range properties” of a microscopic
model that describes a realistic Bose-Einstein condensate without taking into account the
additional difficulty due to the short-scale structure caused by the strongly peaked pair
potential vN . Many of the results that we derive in the weak coupling limit are expected to
be similarly true in the Gross-Pitaevskii regime.

B More about the weak coupling limit for fermions

We briefly present two different models for which the derivation of the time-dependent
Hartree equations is well understood (for a recent work on the stationary problem, see, e.g.,
[51]). Both models were originally introduced by Narnhofer and Sewell [97].

B.1 Semiclassical limit

In the so-called semiclassical limit, one considers N fermionic particles described by the
time-dependent Schrödinger equation

iN−
1
3∂tΨN,t =

(
−N−

2
3

N∑
i=1

∆xi +N−1
∑

1≤i<j≤N
v(xi − xj)

)
ΨN,t, (251)

for which one wants to compare the solution Ψt for particular initial conditions (close to
a Slater determinant and obeying a certain semiclassical structure, see, e.g. [18, Theorem
2.1]) to the antisymmetric product of orbitals {ϕk,t}Nk=1 which solve the fermionic Hartree
equations,

iN−
1
3∂tϕk,t =

(
−N−

2
3 ∆x +N−1

N∑
l=1

(
v ∗ |ϕl,t|2

)
(x)
)
ϕk,t. (252)
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The phisical situation behind this limit is the following: the particles are confined to a
volume of order one and thus a priori their kinetic energy for a wave function that is close
to the ground state is proportional to N5/3, cf. the kinetic energy inequality (1.26). Since the
total potential energy is of order N (note the coupling constant gN = N−1), an additional
scaling of the kinetic term is required in order to make the potential and kinetic energies
compatible. The N -dependent factor in front of the time-derivative adjusts the correct time
scale for which the particles (having average velocities ∝ N1/3) travel a distance of order
one. Heuristically, the semiclassical character of this equation can be seen from recasting
the additional prefactors into a small Planck constant ~N = N−1/3. Starting from (252),
the fermionic Hartree equations were derived for a certain class of bounded potentials in
[39, 18, 101] (see, e.g., [101, Theorem 2.3]),

Tr
∣∣∣γ(1)

ΨN,t
− γ(1)∧

k ϕk,t

∣∣∣ ≤ Ct((Tr
∣∣∣γ(1)

ΨN,t
− γ(1)∧

k ϕk,0

∣∣∣) 1
2

+
1√
N

)
, (253)

for some time-dependent constant Ct. The derivation for the Coulomb potential is still an
open problem for which a partial result was obtained recently in [110]. The semiclassical
properties of the microscopic solution can be shown by means of comparing the Wigner
distribution w.r.t. ΨN,t to the solution of a classical Vlasov equation (for recent results, see
[17]).

B.2 Large volume limit with Coulomb interaction

Another possible limit for which the fermionic Hartree equations have been derived is
defined by the Schrödinger equation

i∂tΨN,t =
(
−

N∑
i=1

∆xi +N−2/3
∑

1≤i<j≤N
|xi − xj |−1

)
Ψt, (254)

and similarly for potentials v(x) = |x|−s and gN,s = N
s
3
−1 for s ∈ (0, 1). Here, the fermions

are supposed to be confined to a region Ω ⊂ R3 of large volume |Ω| ∝ N (thus, the average
density is of order one) with kinetic energy not larger than CN . The coupling constant is
therefore chosen such that the potential energy is also of order N . To see that this is the
case for v(x) = |x|−1 and gN = N−2/3, let us compute the mean field potential (the direct
term) for N plane waves that are confined to a sphere of radius N1/3, namely

N∑
l=1

(
| · |−1 ∗ |ϕl|2

)
(x) = 4π

∫ N1/3

0
rdr = CN2/3. (255)

Note that the exchange term can be easily shown to be subleading compared to the direct
term, and thus, for a Slater determinant made up from plane waves, one similarly finds〈∧

ϕ,
(∑

i<j |xi − xj |−1
)∧

ϕ
〉

= O(N5/3). It has been shown in [11, Theorem II.1] (and
similarly also in [101]) that for appropriate initial conditions, the solution to the microscopic
Schrödinger equation satisfies

Tr
∣∣∣γ(1)

ΨN,t
− γ(1)∧

ϕk,t

∣∣∣ ≤ Ct((N 2
3 Tr
∣∣∣γ(1)

ΨN,0
− γ(1)∧

ϕk,0

∣∣∣) 1
2

+N−1/6
)
, (256)

where the orbitals solve the fermionic Hartree equations,

i∂tϕk,t =
(
−∆x +N−2/3

N∑
l=1

(
| · |−1 ∗ |ϕl,t|2

)
(x)
)
ϕk,t, ϕk,t=0 = ϕk,0. (257)
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The same result with improved convergence rate was derived more recently in [100] where
it was shown moreover that the solution ΨN,t can be approximately described also by the
fermionic Hartree equations with a spatially constant mean field potential. The Hartree
equations (257) provide thus a subleading correction to the free time evolution (with ap-
propriately chosen phase). That the dynamics is approximately free can be also inferred
from the fact that the average forces produced by the mean field potential in (257) (which
is of leading order, i.e., compatible to the kinetic energy) is suppressed by a factor N−1/3:

∣∣∣∇x N∑
l=1

(
| · |−1 ∗ |ϕl|2

)
(x)
∣∣∣ ≤ N∑

l=1

(
| · |−2 ∗ |ϕl|2

)
(x) = 4π

∫ N1/3

0
dr = CN1/3,

and thus expected to be subleading compared to the average velocities of the particles.
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[40] A. Elgart, L. Erdős, B. Schlein and H.-T. Yau, Gross-Pitaevskii equation as the mean
field limit of weakly coupled bosons, Arch. Ration. Mech. An., 179 (2006), pp. 265–283

[41] A. Elgart and B. Schlein, Mean field dynamics of boson stars, Commun. Pure. Appl.
Math., 60 (2007), pp. 500-545
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[96] P. T. Nam and M. Napiórkowski, A note on the validity of Bogoliubov correction to
mean-field dynamics, arXiv preprint (2016), https://arxiv.org/abs/1604.05240

[97] H. Narnhofer and G. L. Sewell, Vlasov hydrodynamics of a quantum mechanical model,
Commun. Math. Phys., 79 (1981), pp. 9–24

[98] H. Neunzert and J. Wick, Die Approximation der Lösung von Integro-Differential-
Gleichungen durch endliche Punktmengen, Lecture notes in Math., Springer Berlin, 395
(1974), pp. 275–290

[99] A. Peres and D. Shvarts, Fusion chain reaction - a chain reaction with charged particles,
Nucl. Fusion, 15 (1975), pp. 687–692

[100] S. Petrat, Hartree-Fock corrections in a mean-field limit for fermions, arXiv preprint
(2016), https: //arxiv.org/abs/1609.04754

[101] S. Petrat and P. Pickl, A new method and a new scaling for deriving fermionic mean-
field dynamics, Math. Phys. Anal. Geom., 19 (2016), issue 1

[102] P. Pickl, Derivation of the time dependent Gross-Pitaevskii equation without positivity
condition on the interaction, J. Stat. Phys., 140 (2010), pp. 76–89

https://arxiv.org/abs/1609.06264
https://arxiv.org/abs/1509.04631
https://arxiv.org/abs/1604.05240
https://arxiv.org/abs/1609.04754


Bibliography 143

[103] P. Pickl, A simple derivation of mean field limits for quantum systems, Lett. Math.
Phys., 97 (2011), pp. 151–164

[104] P. Pickl, Derivation of the time dependent Gross-Pitaevskii equation with external
fields, Rev. Math. Phys., 27 (2015), issue 1

[105] L. P. Pitaevskii, Vortex lines in an imperfect Bose gas, Sov. Phys. JETP, 13 (1961),
pp. 451–454

[106] L. P. Pitaevskii and S. Stringari Bose-Einstein condensation, Oxford University Press,
2003

[107] A. Pizzo, Bose particles in a box I. A convergent expansion of the ground state
of a three-modes Bogoliubov Hamiltonian, arXiv preprint (2015), https://arxiv.org/
abs/1511.07022

[108] A. Pizzo, Bose particles in a box II. A convergent expansion of the ground state of
the Bogoliubov Hamiltonian in the mean field limiting regime, arXiv preprint (2015),
https://arxiv.org/abs/ 1511.07025

[109] A. Pizzo, Bose particles in a box III. A convergent expansion of the ground state
of the Hamiltonian in the mean field limiting regime, arXiv preprint (2015), https://
arxiv.org/abs/ 1511.07026

[110] M. Porta, S. Rademacher, C. Saffirio and B. Schlein, Mean field evolution of fermions
with Coulomb interaction, arXiv preprint (2016), https://arxiv. org/abs/1608.05268

[111] M. Pulvirenti and S. Simonella, Propagation of chaos and effective equations in kinetic
theory: a brief survey, arXiv preprint (2016), https://arxiv.org/abs/1611.07082

[112] M. Reed and B. Simon, Methods of modern mathematical physics II: Fourier analysis,
self-adjointness, Academic Press (1975)

[113] M. Reed and B. Simon, Methods of modern mathematical physics IV: Analysis of
Operators, Academic Press (1978)

[114] R. H. Ritchie, Interaction of charged particles with a degenerate Fermi-Dirac electron
gas, Phys. Rev., 114 (1959), pp. 644–654

[115] I. Rodnianski and B. Schlein, Quantum fluctuations and rate of convergence towards
mean field dynamics, Commun. Math. Phys., 291 (2009), pp. 31–61

[116] R. Seiringer, The excitation spectrum for weakly interacting bosons in a trap, Com-
mun. Math. Phys., 306 (2011), pp. 565–578

[117] J. C. Slater, Note on Hartree’s method, Phys. Rev., 35 (1930), pp. 210–211

[118] J. P. Solovej, Asymptotics for bosonic atoms, Lett. Math. Phys., 20 (1990), pp. 165–
172

[119] J. P. Solovej, Upper bounds to the ground state energies of the one- and two-component
charged Bose gases, Commun. Math. Phys., 266 (2006), pp. 797–818

[120] J. P. Solovej, Many-body quantum mechanics, lecture notes, ESI (2014), http://math.
ku.dk/ solovej/MANYBODY/mbnotes-ptn-5-3-14.pdf

https://arxiv.org/abs/1511.07022
https://arxiv.org/abs/1511.07022
https://arxiv.org/abs/1511.07025
https://arxiv.org/abs/1511.07026
https://arxiv.org/abs/1511.07026
https://arxiv.org/abs/1608.05268
https://arxiv.org/abs/1611.07082
http://math.ku.dk/~solovej/MANYBODY/mbnotes-ptn-5-3-14.pdf
http://math.ku.dk/~solovej/MANYBODY/mbnotes-ptn-5-3-14.pdf


144 Bibliography

[121] H. Spohn, Kinetic equations from Hamiltonian dynamics: Markovian limits, Rev.
Mod. Phys., 53 (1980), pp. 569–615

[122] J. Steinhauer, R. Ozeri, N. Katz and N. Davidson, Excitation spectrum of a Bose-
Einstein condensate, Phys. Rev. Lett., 88 (2002), issue 12

[123] G. Teschl, Mathematical methods in quantum mechanics, Volume 99 of Graduate
Studies in Mathematics, American Mathematical Society (2009)
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