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Preface

In the centuries to come, climate change will be one of the biggest, if not the biggest

challenge for mankind. Already in 1992, when the ‘United Nations Framework Convention

on Climate Change’ (UNFCCC) was adopted, the international community of the member

states agreed that in the interest of human safety the threat of global warming has to

be counteracted. At the time, this pledge was made in the face of far greater scientific

uncertainty than we know today. At present, the majority of scientists agrees that global

warming is caused and accelerated by anthropogenic emissions of greenhouse gases and

we begin to observe that climate change is impacting the livelihood of millions of people

worldwide1.

Anthropogenic greenhouse gas emissions are primarily caused by the use of fossil energy

sources. Although many countries strive to substitute fossil energies by renewables, es-

pecially in the developing world economic growth is still reliant on the use of fossil en-

ergy sources. While many progressive countries continue to reduce their emissions, in the

medium run some developing countries are expected to cause even higher carbon emissions

in their struggle to reduce poverty. In the Paris Agreement, which was adopted at the

21st COP (conference of the parties - the principal decision making body of the UNFCCC)

in 2015 in Paris, these differences are recognized. The aim of this agreement is to keep

the global atmospheric temperature rise in this century below 2◦C. One major advance-

ment compared to the Kyoto Protocol from 1997 is that it is based on voluntary action

plans or so-called ‘nationally determined contributions’ (NDCs), which are determined by

a bottom-up process. In this way more countries have voluntarily committed to pursue

climate mitigation measures than under the Kyoto Protocol. For instance, the member

states of the European Union have pledged to reduce their carbon emissions by 2030 by

40 % compared to 1990 levels. On the other hand, numerous countries in Africa and south

1See for instance the Fifth Assessment Report by the Intergovernmental Panel on Climate Change
(IPCC) in Field et al. (2014).
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Asia have committed to reduce their emissions relative to the business as usual, such that

in fact their emissions are expected to rise while their economies grow.

The negotiations which have lead to the Paris Agreement have shown that in the medium

run it will not be possible to separate world economic growth from the use of fossil en-

ergy. On the contrary, economic growth will be an important determinant of future carbon

emissions and its magnitude will have a decisive impact on the climate.

In this thesis, I systematically study the relationship between economic growth and climate

change and I put some emphasis on the inter-dependencies between the two. In addition,

I investigate the degree of uncertainty that is associated with future economic growth and

how it translates into uncertainty over future climate damages. As instruments I use carbon

emission scenarios as well as integrated models of the economy and the climate - so called

Integrated Assessment Models (IAMs)2. Both help to anticipate potential temperature

increases and climate damages. The main contributions of this thesis to the literature are

threefold. First, it carefully examines better representations of economic growth dynamics

for the use in carbon emission scenarios and IAMs. Second, it evaluates the uncertainty

of future economic growth and relates it to the expected future atmospheric temperature

increase. Third, it studies the effects of climate change on endogenous economic growth

through changing investment incentives that often go overlooked in the literature.

This thesis is organized in four chapters which all look at economic growth and climate

change from a different angle and with a different emphasis on theoretical and method-

ological approaches. At this point, I want to give a summary of the most important results

in this thesis. A short summary of each chapter on its own can be found at the end of this

preface.

To find a better representation of economic growth, I calibrate a model of endogenous

growth to data in Europe that span one and a half centuries, and simulate growth trajec-

tories into the future (chapter 1). The central question in this exercise is by how much the

energy and emissions intensities have to be reduced in Europe in order to offset additional

carbon emissions from future economic growth. The key quantitative finding is that be-

cause Western Europe is expected to grow at a higher rate, it has to reduce its energy and

carbon emissions intensities by about twice as much as Eastern Europe.

Because of the very complex nature of climate change, a very high degree of uncertainty is

2Integrated Assessment models are combined models of the economy and the climate, where both,
economic growth and climate change, are inter-dependent and endogenous to the model.



3

tied to all modeling approaches. Point forecasts have only a limited informative value and

it is just as important to quantify expected variations from the mean. I therefore estimate

confidence intervals of future economic growth and I assess how the uncertainty that is tied

to future economic growth translates into uncertainty regarding carbon emission pathways

(chapter 1). In addition, I dedicate a whole chapter to the development of a new Bayesian

approach, which can be used for the calibration of deterministic growth models of the long

run (chapter 2). The aim of this chapter is to develop a standardized approach towards

the calibration of deterministic growth models, which can be used for the construction of

carbon emission scenarios or IAMs. The appeal of this new Bayesian approach is that it

transforms the stochastic residual between the simulated and the observed data, which

comprises technological and other shocks, and turns it into confidence intervals of future

economic growth.

The relation between economic growth and climate change runs both ways. Not only car-

bon emissions drive global warming, but climate change also affects our future income. In

recent years, there has been a rising debate on how strongly climate damages will affect

GDP and whether they will have negative level or lasting growth effects. In the Integrated

Assessment literature, this question has predominantly been studied based on the notion

that climate damages might directly hit productivity growth or the accumulation of pro-

ductive assets. In this thesis, I identify and discuss a channel that is often overlooked in

the literature, through which global warming affects GDP (chapter 3). More specifically,

I estimate the adverse effect of climate change on the incentive to invest in research and

development, which ultimately leads to negative growth rather than level effects. In the

process, I replace the growth component of a workhorse IAM (the DICE model by Nord-

haus (2008)) by an endogenous growth model and re-calibrate growth towards its original

growth trajectory. Colloquially speaking, in this model, climate damages incentivize for-

ward looking households to invest less into economic growth. In an empirical exercise I

find that in its ‘Optimal Scenario’ the original DICE model with exogenous growth over-

estimates gross income in 2100 by 2.3 %. The difference gets larger the further time

progresses.

In 2000, the IPCC Special Report on Emission Scenarios clearly showed that one major

source for uncertainty regarding the scale of global warming is future economic growth.

To quantify its scale, I estimate the uncertainty that is tied to economic growth using

the Bayesian approach developed in this thesis and I implement it in the DICE model

(chapter 4). In this way, I can show how the uncertainty regarding future economic growth
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translates into carbon emissions within the framework of an IAM. An interesting result

from this exercise is that, in the ‘Optimal Scenario’, even though the estimated confidence

interval on gross income in 2100 is rather big, with an expected variation from the mean

of roughly ± 36 % within the 90 % confidence interval, the expected variation of the tem-

perature increase by 2100 is much smaller, with an expected variation from the mean of

roughly ± 4 % within the 90 % confidence interval. This is first, because the effects of

carbon emissions on the atmospheric temperature fully unfold with a delay and, second,

because in the ‘Optimal Scenario’ households mitigate nearly 100 % of their carbon emis-

sions by 2100.

Altogether, this thesis underlines the inter-dependency between economic growth and cli-

mate change. It gives a new perspective on the calibration of growth models and how

this changes our expectations of future carbon emission and climate damages. Central

to the analysis are not only point estimates, but also measures regarding the uncertainty

of future growth. In addition, this thesis investigates a rarely discussed channel through

which climate change might have a lasting and negative impact on growth.

Chapter 1 In this chapter, I construct carbon dioxide emission scenarios for Europe

until 2100. The three most important ways in which this chapter contributes to the liter-

ature are, first, that economic growth is driven by endogenous investments into research

and development. Second, the model is formally calibrated, using data that span a period

(1850-2008) longer than the projection period (2008-2100). Third, this work provides sta-

tistically valid confidence intervals of economic growth, which translate into a measure of

uncertainty regarding future carbon emissions. Forecasts are made on the regional level for

Europe as a whole, Western Europe, Eastern Europe and the former USSR. The calibra-

tion of economic growth yields higher future annual growth rates in Western Europe than

in Eastern Europe and the former USSR. In order to offset this higher economic growth

(or equivalently in order to keep future carbon emissions until 2100 at the same level as to-

day), Western Europe would have to reduce its energy and emission intensities by roughly

1 % annually, while in Eastern Europe and former USSR countries approximately 0.5 %

of annual reductions would be sufficient. Because of past economic turmoil the estimated

uncertainty that is tied to future economic growth is larger in Eastern Europe and former

USSR countries than in Western Europe.

An older version of this chapter has been published together with Prof. Dr. Richard S.J.
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Tol as CESifo Working Paper No. 4971 (see Ciesielski and Tol (2014)).

Chapter 2 In the Integrated Assessment literature there has been a growing need for

sound calibration techniques of growth models which go beyond the medium run and aid

as a forecasting device of macroeconomic trends. To model the future costs of climate

change, we need to know more about carbon emissions in the long run, and they will

crucially depend on future economic growth and technological advancements. Because the

majority of Integrated Assessment Models is deterministic, in this chapter I develop a

robust calibration technique for deterministic models of long run growth. The aim is to

present a standardized approach towards calibration, which is straight forward and easy to

adapt. I suggest a Bayesian inversion technique to elicit the distributions of all parameters

of calibration and to project the confidence intervals of future income and consumption

shares. Since in this chapter I propose a technique to calibrate deterministic models of

economic growth in the long run, I set my self apart from the Bayesian calibration lit-

erature of stochastic macro-economic models (see for instance Fernández-Villaverde and

Rubio-Ramı́rez (2007) and Fernández-Villaverde (2010)). To integrate over Bayes’ law I

use a Markov chain Monte Carlo (MCMC) algorithm. The likelihood function is derived

from a stochastic process, which describes the residuals between the observed and the

simulated data. Since the majority of Integrated Assessment models is based on a Ram-

sey type growth model, I demonstrate this procedure by calibrating a standard Ramsey

model of exogenous growth as well as an endogenous growth model by Aghion and Howitt

(1999). The resulting growth trajectories until 2050 from both models are similar with an

average growth rate of the median projection of 2.3 % in the Ramsey model and 2.2 %

in the Aghion & Howitt model. All parameters of calibration are well identified and have

clear-cut distributions. Therefore, I conclude that this approach is highly flexible for the

calibration of the growth component in Integrated Assessment Models and that it can be

adopted for a wide range of different growth models.

This chapter is the result of joint work with Dr. David Anthoff.

Chapter 3 This chapter analyzes the negative impact of climate change on economic

growth caused by a reduction of the return on general R&D and consequently of in-

vestments into the same. The framework is based on an Integrated Assessment Model,
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the DICE model by Nordhaus (2008). The DICE model builds on Ramsey type growth

where environmental damages cause a negative level effect on GDP. In a version of this

model, I substitute the growth component by endogenous Schumpeterian type growth and

calibrate it to the original. In the socially ‘Optimal Scenario’, the social planner is able to

mitigate climate change in two ways. First, he can invest in the reduction of carbon emis-

sions and, second, he can shift his spending away from the carbon-emitting capital stock.

In addition, in the endogenous Schumpeterian growth setting, the return on investment in

R&D declines due to environmental damages and thus investments into the general R&D

sector are reduced. Since endogenous investments into R&D are what drives economic

growth in a Schumpeterian model, global warming has a lasting and negative impact on

GDP growth through this channel. It can be understood as an additional effect which adds

to the channel of directed technical change as described in Acemoglu et al. (2012). In both

model versions, the reallocation of resources reduces future total output. However, the

negative effect in the endogenous growth setting is stronger, since investments into R&D

are allowed to go down. Comparing the Ramsey and the Schumpeterian version of the

DICE model, this long-lasting, negative growth effect is even stronger in a ‘Constrained

Optimum Scenario’, where households cannot actively mitigate to reduce climate damages.

On the contrary, in a ‘Business as Usual Scenario’, where the climate externality is not

internalized and the private return on investment is not affected by climate change, there

are no negative growth effects due to the reallocation of resources. In this scenario, how-

ever, higher growth rates cause more climate damages, which eventually overcompensate

an initially higher rate of economic growth.

Chapter 4 In the Integrated Assessment literature, economic growth is a major deter-

minant of projected carbon emissions and climate damages. Nevertheless, its importance

is often overlooked. While most macroeconomic models of growth are run for a couple of

decades at best, in an environmental context these same growth models are often solved

for centuries. This increases the dependency of all growth projections on their underlying

model assumptions. In this chapter, I carefully recalibrate the growth component of the

DICE-2016R model as described in chapter 3 using the Bayesian calibration approach de-

veloped in chapter 2. One major advantage of this Bayesian calibration technique is that

it quantifies the uncertainty that is tied to economic growth, given the model assumptions

and the observed hostorical data. In the DICE model, the link between economic growth
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and carbon emissions is particularly intense, since GDP translates directly into carbon

emissions at an exogenously given proportion, which shrinks over time as fossil energy is

gradually substituted by clean energies.

The expected mean temperature increase compared to pre-industrial levels, in the ‘Optimal

Scenario’ in the re-calibrated version of the DICE model, amounts to 3.8◦C. Interestingly,

the results show that even though the expected variation of future gross income is very

high, the expected variation from the mean temperature increase by 2100 is relatively

low, with only 4 % within the 90 % confidence interval. This is because in the ‘Optimal

Scenario’ the mitigation of carbon emissions amounts to almost 100 % in 2100. In the

‘Constrained Optimum Scenario’, where households have no instrument of direct mitiga-

tion, the mean temperature increase of the atmosphere compared to pre-industrial levels

amounts to 4.7◦C, with an expected variation of 11 % in the 90 % confidence interval in

2100. Thus, the implementation of effective climate change policies aimed at reducing car-

bon emissions does not only lower the level of the future temperature increase significantly,

but also the uncertainty over the magnitude of future climate damages.



Chapter 1

Carbon emissions scenarios in

Europe based on an endogenous

growth model

1.1 Introduction

Carbon emission scenarios help to anticipate potential temperature increases and con-

sequential damages to the climate and the environment. The IPCC Special Report on

Emission Scenarios by Nakicenovic et al. (2000) comprises a wide range of plausible pro-

jections from near zero emissions worldwide in 2100 to an over tenfold increase compared to

1990. In these scenarios, income per capita growth is identified as a major determinant of

future emissions, and a great source of uncertainty. Nevertheless, in the scenario literature

economic growth is not systematically studied, and the underlying growth models do not

reflect the rapid development of economic theory.

The aim of this study is to construct carbon dioxide emission scenarios for Europe until

2100. Our main contributions to the literature are, first, that economic growth is modeled

using a model of endogenous growth by C. I. Jones (1995a), rather than a model of ex-

ogenous growth. In the Jones model, economic growth is based on an increasing product

variety as first suggested by P. M. Romer (1990). Second, the model is formally calibrated

using data that span a period (1850-2008) longer than the projection period (2008-2100).

Third, this work provides statistically valid confidence intervals of economic growth, which

translate into a measure of uncertainty regarding future carbon emissions. Forecasts are

made on the regional level for Europe as a whole, for Western Europe, Eastern Europe and
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the Former USSR.

We use the Kaya identity to decompose carbon emissions1. Carbon emissions, Xt, are

subdivided into four components: population size, Pt, income per capita, Yt/Pt, the energy

intensity, Et/Yt, and the emissions intensity, Xt/Et:

Xt = Pt ∗
Yt

Pt

∗ Et

Yt

∗ Xt

Et

(1.1)

Our focus is on calibrating income per capita using a model of endogenous economic

growth. In addition, we quantify the uncertainty that is tied to economic growth, which

translates into an uncertainty regarding future carbon emissions. Future population sizes

are taken from UN forecasts and energy and emission intensities are assumed to decrease

at constant rates, which will be part of the analysis in section 1.5. We discuss the implica-

tions of future population growth as well as changes in the energy and emission intensities,

however, they are exogenous to our growth model.

The United Nations Framework Convention on Climate Change (UNFCCC) channels

global political efforts by 197 member states towards the common goal of keeping the at-

mospheric carbon concentration below a level that could endanger the human livelihood.

In the face of scientific uncertainty this goal has been identified with a temperature in-

crease of below 2◦C compared to pre-industrial times. One of the UNFCCC’s principles

is to burden developed countries with the larger part of emission reductions, since these

countries are also responsible for the majority of current and past carbon emissions. In the

Kyoto Protocol the member states of the European Union have committed to reduce their

domestic carbon emissions between 2008 and 2012 by 8 % below 1990 levels. The Kyoto

Protocol was adopted in 1997 and it entered into force in 2005. It included greenhouse

gas emission reduction plans by 37 industrialized countries and the European Union. In

2012, this was followed by the Doha Amendment, where the member states of the Euro-

pean Union committed to reduce carbon emissions until 2020 by 20 % below 1990 levels.

A subsequent agreement was reached in Paris in 2015. In this agreement, the member

states of the European Union have forwarded a ’nationally determined contributions’ plan

(NDC), where they commit to reduce domestic carbon emissions by 2030 by 40 % below

1990 levels.

1As has for instance been done in Hoffert et al. (1998) and Tol, Pacala, and Socolow (2009).
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In this work, we investigate the impact of expected future economic growth on carbon

emissions in Europe. We focus on the question by how much the energy and emissions

intensities would have to be reduced in order to achieve an absolute decoupling of carbon

emissions from economic growth. Put differently, we derive necessary reductions in both

intensities such that carbon emissions stay constant despite expected future growth. In

fact, both would have to be lowered much further, to reach the emission reductions as

targeted for by the NDC of the member states of the European Union. In addition, we

show at the regional level by how much more regions which grow at a higher rate have to

engage in the reduction of their energy and emissions intensities. However, both intensities

are exogenous to our growth model. Therefore, we are not able to depict the impact of

these efforts on future growth.

Our calibrations yield higher annual growth rates of income per capita in Western Europe

than in Eastern Europe and former USSR countries. Because past income in Western Eu-

rope has grown at a higher rate than in Eastern Europe and the Former USSR, the Jones

model picks up on these growth trends and projects them into the future. Consequently,

we find that in order to keep future carbon emissions until 2100 constant, Western Europe

would have to reduce its’ energy and emission intensities by roughly 1 % annually, while in

Eastern Europe and former USSR countries 0.5 % of annual reductions would be sufficient.

According to the Jones model, these reductions will be necessary to offset future economic

growth.

Our confidence intervals on future economic growth turn out to be significantly large. Be-

cause of past economic turmoil, the confidence intervals of future income per capita and,

thus, carbon emissions are larger in Eastern Europe and former USSR countries than in

Western Europe.

The calibration of endogenous growth is potentially interesting for implementation in

Integrated Assessment Models (IAMs). These are combined models of the economy and the

climate. For instance, there have been proposed endogenized growth versions of the DICE

model by Nordhaus (2008). Because of its tractability, the DICE model is a workhorse

model in the environmental economics literature. However, while Moyer et al. (2014) and

Dietz and Stern (2015) endogenize economic growth in the DICE model, they recalibrate

growth to the original model and not to observed time series on gross income. In this work,

we calibrate an endogenous growth model towards data that span one and a half centuries

and we show how projected growth and its confidence intervals translate into future carbon
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emissions.

In the following section we present and discuss our choice of data sets employed in

the calibration. Section 1.3 proceeds with a description of the Jones model and section 1.4

summarizes our technical approach. All results will be discussed in section 1.5. This entails

carbon emission projections and their corresponding confidence intervals on the regional

level. In section 1.6 we compare our income pathways to the SSP scenario framework which

was developed for the Fifth Asessment Report of the Intergovernmental Panel on Climate

Change. In section 1.7 we conduct a sensitivity analysis regarding the discount rate and

the capital share. Finally, section 1.8 concludes.

1.2 The data

The data set comprises four regions in Europe. These are Europe as a whole, Western Eu-

rope, Eastern Europe and the former USSR. In addition, we collect data for 22 countries in

Europe. The data set includes annual observations from 1850 to 2008. Thus, it covers the

turmoil of two world wars. To pick up historical time trends, the time frame for calibra-

tion starts well before the rise of the 19th century. Several boundary changes in Europe’s

past turn the collection of data into a cumbersome business. Because we are interested in

time series which are not influenced by the changing geographical size of a country, the

data was compiled as if today’s borders had been in place since 1850. Except for former

Czechoslovakia, the former USSR and former Yugoslavia, which were each aggregated into

one region. The collection of regional data is not affected by these complications.

In the remainder of this section, we will describe our data on population, income, energy

use and carbon emissions and our assumptions regarding the output elasticity.

Population Historical data on population by country is available in Angus Maddison’s

historical statistics (see Maddison (2010)). Coverage is complete by region (respectively

country) and year starting in 1920. For six Eastern European countries and the former

USSR there are some missing values before 1920. However, data are complete in 1850. This



1.2 The data 12

allows for cubic interpolation to fill in gaps2. Annual population forecasts by country from

2011 to 2100 are provided by the United Nations (see United Nations (2011)). Figure 1.1

illustrates past and future population growth of the whole sample in Europe and Russia.

A population maximum is expected to be reached shortly after 2000.
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Figure 1.1: Sample population in total Europe and Russia

Income Income between 1850 and 2008 was taken from Angus Maddison’s historical

statistics as well. The data are complete from 1950 onwards. As before, lacking observa-

tions for 12 countries and all four regions were filled in by cubic interpolation. For seven

countries, including the former USSR, there are no observations available before 1870. In

those cases missing observations were filled in by linear data extrapolation3. For the other

three regions in Europe data in 1850 is available.

Since 1850 the sample income in Europe and Russia has increased by a factor of 34 (see

figure 1.3). Growth has been relatively constant except for some kinks during the First

and Second World War and the collapse of the communist system in 1990.

The output elasticity In a Cobb-Douglas production setting, the output elasticity with

respect to the productive assets, capital and labor, determines their marginal productiv-

ity. A higher output elasticity with respect to capital, which is concurrent with a lower

2In those countries where boundary changes led to a sudden change in the population size, we construct
a replacement which reflects the current geographical size of the country.

3Again, in those cases where the boundaries of a country have changed, historical GDP was adjusted
to the current geographical size of the country.
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output elasticity with respect to labor, increases the marginal productivity of capital and,

therefore, raises the capital share in the economy. Historical capital shares in Europe

are controversially discussed. The Kaldor facts (Kaldor (1961)) state that long run capital

shares have been relatively constant over time. For a discussion see for instance Kongsamut,

S. Rebelo, and Xie (2001), Foellmi and Zweimüller (2008) and Acemoglu (2009). Thus, the

majority of carbon emission scenarios and also Integrated Assessment Models assumes the

output elasticity to be constant. However, recent empirical findings suggest that in a num-

ber of developed countries capital shares have been strongly increasing for some decades.

In Blanchard, Nordhaus, and Phelps (1997) the estimated capital share in some European

countries increased from 0.32 in 1980 to roughly 0.4 in 1995. C. I. Jones (2003) provides

empirical data on capital shares in OECD countries since 1960. The data shows that cap-

ital shares have been non-constant over time and in a number of countries in Europe they

have been increasing significantly. Since, in this study, the time frame for calibration alone

covers 150 years, we give credit to these findings and assume that the output elasticity

with respect to capital has been growing4. To be more precise, we assume that in Europe

and before 1850 the output elasticity with respect to capital was constant at 25 %. After

2100 we assume the output elasticity to stagnate at 45 %. In between we assume that

the elasticity has been increasing. To keep our results comparable between countries, we

assume the same evolution of output elasticities, (1 − σ), in all countries as is given in

equation (1.2) (see also figure 1.2).
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Figure 1.2: Assumed output elasticity with respect to capital

1− σ = arctan((year − 1975) ∗ 0.02) ∗ 0.084 + 0.35 (1.2)

4Vice versa we assume that the output elasticity with respect to labor has been decreasing.
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In a sensitivity analysis in section 1.7 we present a continuum of assumptions regard-

ing the output elasticity and find that our results are relatively sensitive towards these

assumptions. This is an interesting result and could be a fruitful topic for future research,

given that output elasticities in the scenario literature are often assumed to be constant

even over long periods of time.

Energy use and carbon emissions Annual data on energy use by country since 1960

is available at the World Bank (2014) online data base. Data on annual carbon emissions

from fossil fuel by country since 1751 is available in a very comprehensive collection by

Boden, Marland, and Andres (2017).
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Figure 1.3: Sample income and carbon emissions in total Europe and Russia

Figure 1.3 illustrates how past carbon emissions in Europe and Russia have been in-

creasing until 1990. Thereafter, we observe their sudden decline, while income in figure 1.3

continues to grow. For this reason, we assume that future energy and emission intensities

until 2100 will continue to decrease. When presenting our results in section 1.5, we will

vary the rate at which both are assumed to decrease. In this way we are able to differ-
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entiate the impact of future economic growth on carbon emissions depending on potential

future energy and emission intensities.

1.3 The Jones model

We calibrate the C. I. Jones (1995a) model of endogenous growth. This model is partic-

ularly suited for calibration, because it does not entail economies of scale. Economies of

scale imply that GDP growth depends on the population size of an economy. As C. I.

Jones (1995b) shows, empirically, economies of scale cannot be maintained. In the Jones

model, economic growth depends on the growth rate of the labor force, rather than on its

level as in the P. M. Romer (1990) model. Although the Romer model is a seminal model

in the theoretical literature on new growth theory and it is often cited as an example for

horizontal innovations driving economic growth, because it entails economies of scale, it is

less suited for calibration.

We do not make any changes to the Jones model. Economic growth in this model is

innovation-based and it is driven endogenously by profit maximizing agents who invest in

the creation of new technologies and thereby increase overall productivity. Technological

change is characterized as an increasing variety in intermediate products.

The economy consists of three sectors, a final goods sector, a sector producing intermediate

product varieties and a research sector. The latter develops blueprints, needed for the pro-

duction of additional variants of intermediate goods, which are employed in the production

of final output. Labor is divided between the final goods sector and the research sector.

Economic growth is endogenous in the sense that growth derives from the invention and

pursuit of new technologies by profit maximizing agents.

The final goods sector Final output, Y , is produced under perfect competition. It is

derived from labor and a variety of intermediate inputs5:

Y = (ϕL)σ
∫ A

0

xi
1−σ di (1.3)

0 < ϕ < 1 represents the share of labor, L, which is allocated to the production of final

output. The number of blueprints that are available for the production of intermediate

5For convenience we drop the time index. Otherwise every variable would have an additional index
such as Yt.
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products is denoted by A. It is equivalent to the knowledge stock and it represents tech-

nological progress in the economy. xi denotes the amount of variant i that is employed in

the production of final output and σ is the production elasticity.

The productive assets, labor and intermediate goods, earn their marginal product. wY

stands for wages in the final goods sector and pi for the price of an intermediate good:

wY = σ
Y

ϕL
(1.4)

pi =
∂Y

∂xi

= (1− σ)(ϕL)σx−σ
i (1.5)

The intermediate sector Each firm in the intermediate sector acts as a profit maximiz-

ing monopolist for the production of its own variant. Thus, intermediate firms are able to

choose their profit maximizing price. Blueprints for the production of intermediate goods

are purchased from the research sector. Production costs in the intermediate sector derive

from the cost of capital. One unit of an intermediate good requires one unit of capital, for

which intermediate firms have to pay interest, r. In addition, capital is depreciated at rate

δ.

max
xi

pi(xi)xi − rxi − δxi (1.6)

Using equation (1.5), we derive the optimal quantity in which each intermediate product

is produced. Because all firms in the intermediate sector are symmetric, all variants are

produced in the same quantity.

x̄ = xi =

(
(1− σ)2(ϕL)σ

r + δ

) 1
σ

(1.7)

Now equation (1.5) can be simplified to:

p̄ = pi =
r + δ

1− σ
(1.8)

Because intermediate product variants are produced in equal amounts, the capital stock

accumulates to: K = Ax and the production function in equation 1.3 can be rewritten as

follows:

Y = (AϕL)σK1−σ (1.9)
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In addition, all intermediate firms yield the same profits. Using equations (1.6), (1.7)

and (1.8), we can rewrite these profits:

π = σ(1− σ)
Y

A
(1.10)

and the interest rate on capital:

r = (1− σ)2
Y

K
− δ (1.11)

To maximize their profits, intermediate firms produce less goods and sell them at a

higher price than what would be socially optimal. When equation (1.11) is re-arranged

into the sum of the interest and depreciation rate, they exceed the marginal product of

capital by a factor (1− σ). Consequently, there is underinvestment into physical capital.

The research sector The research sector operates under perfect competition. The

creation of new blueprints depends on the size of the stock of intangible knowledge and on

the labor share (1− ϕ)L, which was allocated to the research sector:

dA

dt
= Ȧ = αJA

ηA [(1− ϕ)L]ηL (1.12)

ηA and ηL denote the production elasticities and αJ is an exogenous technological

parameter.

The patent price PA of a blueprint is bid up among firms in the intermediate goods sector

until it equals the present value of all profits that a monopolist is able to extract from the

production of its intermediate good:

PA(t) =

∫ ∞

t

e−
∫ τ
t r(s) dsπ(τ) dτ (1.13)

All earnings, which are derived from the sale of new blueprints to the intermediate

goods sector, are evenly allocated among all researchers in the form of wages, wL:

wL = PA
Ȧ

(1− ϕ)L
(1.14)

Hence, there are no profits in the research sector. In a labor market equilibrium, wages

in the final output sector and in the research sector are equal.
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Households Households draw their instantaneous utility, u, from consumption. Per

capita consumption, c, is inter-temporally additive and is discounted at rate ρ. The dis-

counted lifetime utility is denoted as U .

Ut =

∫ ∞

0

u (c(t)) eρtdt, ρ > 0 (1.15)

Households have constant elasticity preferences:

u(c) =
c1−θ − 1

1− θ
, θ > 0 (1.16)

θ is the elasticity of marginal utility.

They maximize their lifetime utility given their budget constraint:

max

∫ ∞

0

u (c(t)) e−ρtdt (1.17)

subject to: ḃ = rb+ w − PAȦ

L
+

Aπ

L
− c− nb (1.18)

with: b(0) = b0

where w denotes the equilibrium wage in the research and the final goods sector.

We can thus set up the Present-Value-Hamiltonian:

H =

(
c1−θ − 1

1− θ

)
e−ρt + λ

(
rk + w − PAȦ

L
+

Aπ

L
− c− nk

)
(1.19)

and the first order conditions:

Hc = 0 ⇔ c−θe−ρt = λ (1.20)

Hb = −λ̇ ⇔ (r − n)λ = −λ̇ (1.21)

This leaves us with the Keynes-Ramsey rule:

ċ

c
=

1

θ
(r − n− ρ) (1.22)
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Steady State Growth On the balanced growth path, which is also called the steady

state, the growth rates of all variables in the model are constant. For instance, the rate of

total factor productivity growth is constant:

∂
(

Ȧ
A

)
∂t

Ȧ
A

= 0 (1.23)

and, thus:

Ȧ

A
= gA =

ηL
1− ηA

n (1.24)

In the steady state, the rate of total factor productivity growth in equation (1.24)

equals the growth rate of income per capita, y, of the capital stock per capita, k, and of

consumption per capita: gA = gy = gk = gc (see C. I. Jones (1995a)). The growth rate

of the economy does not depend on its size as in P. M. Romer (1990), but on population

growth6.

The system of four differential equations and one static constraint To sum up,

the model is fully determined by a system of four differential equations, which describe the

evolution of the stock of intangible knowledge, A, the physical capital stock, K, household

consumption, C, and the patent price for new blueprints, PA. All these equations hold at

every point in time. This includes time periods outside the steady state.

The evolution of the intangible knowledge stock is given in equation (1.12). The evolution

of the physical capital stock is determined by household saving. Households spend their

income either on consumption or invest into the physical capital stock. Gross investments

are reduced by the depreciation of existing capital.

K̇ = Y − C − δK (1.25)

The evolution of total consumption can be derived from the Keynes-Ramsey rule in

equation (1.22).

Ċ =
C

θ
(r − ρ− n) + nC (1.26)

6See Eicher and Turnovsky (1999) for a growth model based on which the authors derive general
conditions for non-scale balanced growth.
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The transition of the patent price can be derived by differentiation of equation (1.13)

with respect to time7.

ṖA = rPA − π (1.27)

Using equations (1.4) and (1.14), a static equation guarantees wage equality:

σ
Y

ϕL
= PAαJA

ηA [(1− ϕ)L](ηL−1) (1.28)

In order to solve this system of four simultaneous differential equations and one static

constraint, A,K,C and PA have to be transformed into stationary variables whose growth

rates on the balanced growth path are zero (see appendix A for the transformed system of

differential equations and static constraints).

1.4 The technical approach

We calibrate the Jones model such that the sum of the squared residuals between the

observed and the simulated income is minimized. Numerically, we use the relaxation algo-

rithm by Trimborn, Koch, and Steger (2008) to solve equations (1.12) and (1.25) through

(1.28) simultaneously. Using this algorithm, the growth model is solved in continuous time

from minus infinity to infinity. Before our time frame of calibration sets in, the model is

assumed to be in a steady state. In 1850 transitional dynamics set in due to a changing

population growth rate and a changing output elasticity. After 2100 these parameter values

stay constant again, such that the model converges into a new steady state. A big advan-

tage of this algorithm is that we do not need to impose initial and end-point conditions on

the model. Yearly changes in the population growth rate and the production elasticity are

like a series of small, periodical and exogenous shocks that we impose on the model.

All parameter values from the Jones model are listed in table (1.1). We choose our

parameters of calibration to be ηA and ηL, which determine the growth rate of the econ-

omy (see equation (1.24)). Both are constrained by the common non-negativity and non-

increasing-returns-to-scale assumptions. In addition, the choice of the growth model itself

poses some assumptions on future projected growth. For instance, on the balanced growth

7The derivation of equation (1.27) involves the application of the product rule and the fundamental
theorem of calculus.
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path the Jones model predicts constant rates of growth, while in the scenario literature

growth rates especially in developed countries are often assumed to decline.

Table 1.1: Parameters of the model

Symbol Description Value Source

ρ discount factor 0.015 DICE 2013
θ elasticity of marginal utility 1.45 DICE model 2013
(1-σ) capital share in final output production non-const. see section (1.2)
δ capital depreciation rate 0.1 DICE model 2013
n population growth rate non-const. own calculations
αJ technological shift factor 1 assumption
0 ≤ ηA ≤ 1 productive elasticity of technology - parm. of calibration
0 ≤ ηL ≤ 1 productive elasticity of labor - parm. of calibration

For the construction of confidence intervals of future economic growth trajectories, we

need to derive the joint distribution of ηA and ηL. We assume that both follow a multivari-

ate normal distribution. From this distribution we draw a representative sample of random

values for both parameters. We solve the Jones model for every drawn combination of ηA

and ηL and derive the corresponding income per capita projection. The 95 % confidence

interval of future income per capita represents all forecasts except for the 2.5 % highest

and lowest.

The variance-covariance matrix of ηA and ηL is derived from the Hessian of the log-

likelihood function, as in Amemiya (1985). We assume that the observed value of past

income is a composite of a long-run time trend, which is described by the Jones model, and

an identical, independent and normally distributed error term, ϵi. Consequently, income

is also normally distributed. It is rather bold to assume that the error term is white noise,

given that observed income is a time series.

The density function of income, yi, with an expected value of µi and variance σ2, is thus8:

yi ∼ N(µi, σ
2) =

1√
2πσ2

e−
ϵ2i
2σ2 (1.29)

The likelihood of the whole sample is:

8The residual in equation (1.29) is: ϵi = yi − µi. It is the difference between observed and simulated
income. The variance, σ2, is also the variance of ϵi.
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L =
N∏
i=1

1√
2πσ2

e−
ϵ2i
2σ2 (1.30)

withN representing the number of forecasts. We derive the corresponding log-likelihood

function:

lnL =
−N

2
ln(2π)− N

2
ln(σ2)− 1

2σ2
(ϵ′ϵ) (1.31)

and the hessian, H, of the log-likelihood function. The Hessian measures the curvature

of the log-likelihood function. It is a matrix of second derivatives with regard to our

parameters of calibration, ηA and ηL, and to the variance of the error term. We summarize

these values in κ and refer to ηA and ηL as η:

κ =

[
η

σ2

]
(1.32)

H =
∂2lnL
∂κ∂κ′ =

[
∂2lnL
∂η∂η′

∂2lnL
∂η∂σ2

∂2lnL
∂σ2∂η′

∂2lnL
∂σ2∂σ2

]
(1.33)

=

[
− 1

2σ2

∂2(ϵ′ϵ)
∂η∂η′

1
2σ4

∂(ϵ′ϵ)
∂η

1
2σ4

∂(ϵ′ϵ)
∂η′

N
2σ4 − (ϵ′ϵ)

σ6

]

The covariance matrix of κ is the inverse of the negative expected value of the Hessian:

Cov =
[
−E[H]

]−1
(1.34)

Since the expected value of ϵi is zero, the expected value of the first derivative of the

sum of the squared residuals with respect to η is zero, too. Thus, η is not correlated with

the variance of the residual, σ2. In order to calculate the Hessian and the Covariance

matrix, we determine all gradients numerically.

Once we have estimated ηA and ηL, by minimizing the residual between the observed

and the simulated data, and their variance-covariance matrix as described in this section,

we draw a large sample of 150 random parameter values for ηA and ηL and derive their

corresponding income per capita projection as well as their confidence interval until 21009.

9ηA and ηL are truncated. However, this is not problematic, since our estimates for ηA and ηL, including
their expected variation, are not close to their boundary values.
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1.5 Results

We calibrate the Jones model of economic growth by minimizing the squared residual be-

tween observed and simulated income from 1850 to 2008. Our parameters of calibration

are the production elasticities ηA and ηL in the research sector. Table 1.2 shows all point

estimates for ηA and ηL in each region and their corresponding variances and covariances.

We achieve a good fit for all four regions: Europe as a whole, Eastern Europe, Western

Europe and the Former USSR. This means that the average values of the residuals be-

tween observed and simulated income are close to zero. The variances of our parameter

estimates give us a crude idea of the uncertainty that is tied to future income per capita

growth. Interestingly, the variances of ηA and ηL in Europe are smaller than when Western

and Eastern Europe are calibrated on their own. This might indicate that the sources of

variation in both regions offset rather than amplify each other.

Moreover, we have undertaken an attempt to calibrate income on the country level. How-

ever, in 10 out of 22 countries we achieve a dis-satisfactory fit (see table A.2 in appendix A

for our calibration results). In those countries calibrated income remains below observed

income between 1850 and 2008 and ηA and ηL are underestimated. This is the case, be-

cause for these countries our model does not converge for higher values of ηA and ηL. Given

the observed and expected paths of population growth and the assumed path of capital

shares between 1850 and 2100, there is no optimal path of consumption that provides a

better fit to past income. For these countries, a different set of exogenously given param-

eter values would allow for a better fit between simulated and observed income. Clearly,

capital shares and depreciation rates are not the same in all countries all over Europe.

However, to maintain comparability between countries, we do not adjust parameter values

for particular countries. This aspect of country-specific calibrations could be a potential

target for further research.

Table 1.2: Coefficients, variances and covariances

Country ηA V ar(ηA) ηL V ar(ηA) Cov

Western Europe 0.71 3.919e-04 0.73 5.561e-04 -3.759e-04
Eastern Europe 0.52 0.0021 0.80 0.0013 -7.21e-04
Europe 0.67 2.738e-04 0.75 3.141e-04 -1.513e-04
Former USSR 0.37 0.0025 0.78 0.0027 1e-05>Cov>-1e-05

In the Fromer USSR, the Covariance between etaA and etaL is not distinguishable
from numerical imprecision.
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In addition, we construct future carbon emission scenarios according to the Kaya iden-

tity in equation (1.1). These are based on UN population forecasts, our own income per

capita forecasts, derived from the calibration of the Jones model, and energy as well as

emission intensity projections. The resulting future emissions and their components are

summarized for Western Europe, Eastern Europe, Europe as a whole and the Former USSR

in figures 1.4 to 1.7. Future economic growth substantially differs between these regions.

Table 1.3 summarizes the mean, upper and lower bound of annual growth rates (averaged

over the 21st century). Projected growth is clearly strongest in Western Europe, followed

by Eastern Europe and the Former USSR. Since 1850 Western European economies have,

on average, been growing at higher rates than Eastern European economies and the Jones

model projects similar growth patterns into the future. In addition, according to UN fore-

casts of population growth, the Eastern European population will be strongly reduced after

2000 (see figure 1.5) while the Western European population size will stay relatively con-

stant (see figure 1.4). In the Jones model this has a negative impact on Eastern Europe’s

growth rate compared to Western Europe’s growth rate (see equation (1.24)).

The confidence intervals on income are not symmetric. In Western Europe, the distribution

of income displays a strong positive skewness10, while in Eastern Europe it has a smaller

but negative skewness. In addition, the confidence intervals do not have the same width.

The variation around the mean in Eastern Europe is much larger than in Western Europe,

reflecting greater economic (and other) turmoil in the past.

Table 1.3: Forecasted annual average growth rates in %

Region Mean Upper bound Lower bound

Western Europe 1.81 1.83 1.58
Eastern Europe 1.06 1.49 0.85
Europe 1.61 1.83 1.39
Former USSR 1.05 1.31 0.71

Since energy and emission intensities are outside of our model, we choose three constant

rates of their annual reduction for which we calculate future paths of carbon emissions.

These rates are 0.5 %, 0.75 % and 1 %.

In Eastern Europe (figure 1.5) and the former USSR (figure 1.7), we observe a decline in the

10The very strong and positive skewness of the distribution of income in Western Europe might be
partially driven by the circumstance that for some variations of the free parameter values there is no
solution to the Jones model. However, since the Jones model does not have a solution for these parameter
values, it is not possible to quantify this effect. The asymmetry of the other confidence intervals is data
driven.
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past energy use and also in carbon emissions from around 1989 to 2000, which is probably

linked to the collapse of the communist system. However, to sustain comparability between

regions, we use the same rates of reduction of future energy and emission intensities for all

regions and assume that the collapse of the communist system was only a temporary shock.

Overall, we find that, compared to current levels and given our choices regarding the

energy and emission intensity, carbon emissions in Western Europe and Europe as a whole

are projected to increase throughout the next century, while in Eastern Europe and the

Former USSR their path declines. Thus, we conclude that, according to the Jones model,

Western Europe would have to decrease its energy and emission intensities by approxi-

mately 1 % per year, while in Eastern Europe and the Former USSR an annual reduction

of 0.5 % would be sufficient, in order to keep future carbon emissions roughly constant

and to offset the effects of future economic growth. Since Western Europe is predicted to

grow faster, it has to engage in heavier emission reduction schemes than Eastern Europe,

in order to keep its future carbon emissions constant. Notably, Western Europe’s energy

and emission intensities are below the ones in Eastern Europe in 2008, however, its carbon

emissions per capita in 2008 are approximately 21 % higher. In addition, emission forecasts

in Eastern Europe and Former USSR countries reveal larger confidence intervals due to

higher uncertainty in income per capita growth.

In those countries where we are able to achieve a good fit of simulated to observed income,

the average confidence interval of income per capita is smaller than those of the regional

forecasts. Consequently, the derived variation in future carbon emissions on the country

level is also smaller than on the regional level. In these cases, the usage of country level

data could add information to the process of calibration and thus lead to more precise

forecasts.

We do not take trade and carbon leakage into account. Peters and Hertwich (2008), for

instance, find that in 2001 in a number of European countries emissions which were em-

bodied in imports were significantly higher than in exports. Thus, we expect that our point

estimates underestimate the true value of future carbon emissions caused by consumption.

1.6 A comparison with the SSP framework

Together with the Fifth Assessment Report of the Intergovernmental Panel on Climate

Change (IPCC AR5) a new framework of so-called Shared Socioeconomic Pathways (SSPs)
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Figure 1.4: Kaya decomposition of carbon emissions in Western Europe
b: Income per capita after 2008 is surrounded by a shaded area representing the 95 %
confidence interval. c, d: Energy use rel. to GDP and emissions rel. to energy use after
2008 were extrapolated assuming annual reductions of 0.5 %, 0.75 % (solid line) and
1 %. e: Carbon emissions after 2008 were calculated for the following annual energy
and emission intensity reductions: 0.5 %, one 0.5 % and the other 0.75 %, 0.75 % (solid
line), one 0.75 % and the other 1 % and finally 1 % (top to bottom). The shaded areas
represent the 95 % confidence intervals of the respective annual energy and emission
intensity reduction with regard to the uncertainty in income per capita. Thus, the
darkest area represents the 95 % confidence interval for an annual reduction of the
emissions and energy intensity by 0.75 %.
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Figure 1.5: Kaya decomposition of carbon emissions in Eastern Europe
See figure 1.4 for explanations.
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Figure 1.6: Kaya decomposition of carbon emissions in Europe
See figure 1.4 for explanations.
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Figure 1.7: Kaya decomposition of carbon emissions in the former USSR
See figure 1.4 for explanations.
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and Representative Concentration Pathways (RCPs) was adopted (see Field et al. (2014)

and SSP Public Database (2014)). In this section we compare our own income projections

with the SSP pathways.

The SSPs comprise of worldwide GDP, population and urbanization data until 2100 grouped

into 32 regions. All three time series are available for 5 different scenarios. SSP2 is the

’Middle of the Road’ scenario, with which we compare our results. Three modeling teams,

one each at IIASA, OECD and PIK, have made projections for GDP. Each team used mod-

els with different growth dynamics, although they are comparable in the sense that in all

three models growth is driven by an increase in primary inputs, labor-augmenting efficiency

improvements and total factor productivity improvements (O’Neill et al. (2017)). However,

the degree to which these forces influence economic growth differs between models. The

IIASA model places more emphasis on economic growth induced by human capital growth,

while the PIK model places more weight on long run total factor productivity growth. In

the OECD model, after 2016, growth is modeled in a similar way as in the PIK model with

total factor productivity being the dominant source of future economic growth. Before

this date, economic growth is calibrated towards projections made by the OECD, the IMF

and the World Bank. In the SSP2 scenario, all three groups implemented medium total

factor productivity growth and a medium speed of income convergence between countries.

In figures 1.8 through 1.10 we compare the three GDP pathways with our own income

projections for Western Europe, Eastern Europe and the Former USSR11.

For Western Europe, the income projection of this paper lies above all three GDP

pathways projected by IIASA, OECD and PIK. In Eastern Europe and the Former USSR,

on the contrary, our own projection lies below the other three pathways. Since we calibrate

the growth dynamics of the Jones model to data since 1850 and project these into the future,

we pick up stronger growth rates in Western Europe than in the other two regions.

Altogether, while the SSP2 pathways are constructed such that income across countries

and regions converges, the growth dynamics of the Jones model lead do diverging incomes.

11The SSP data on GDP is corrected for purchasing power parities and given in 2005 US $. Since our
own projections are made in 1995 GK $, we normalize our own time series such that income in 2010 is the
same as in the SSP data. Our own region specifications are very similar to those which were used for the
SSP pathways. See figure A.2 in appendix A for a comparison.
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Figure 1.8: A comparison of the SSP2 pathways (’middle of the road scenario’) in Western
Europe by IIASA, OECD and PIK with our own results. (Source: SSP Public Database
(2014) and own calculations)
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Figure 1.9: A comparison of the SSP2 pathways (’middle of the road scenario’) in Eastern
Europe by IIASA, OECD and PIK with our own results. (Source: SSP Public Database
(2014) and own calculations)
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Figure 1.10: A comparison of the SSP2 pathways (’middle of the road scenario’) in the
Former USSR by IIASA, OECD and PIK with our own results. (Source: SSP Public
Database (2014) and own calculations)

1.7 Sensitivity analysis

So far, we have discussed carbon emission projections in Europe and former USSR countries

depending on a certain set of parameter choices. In this section, we will evaluate the

sensitivity of our results towards the discount rate, ρ, and the output elasticity with respect

to capital, (1− σ).

In the past, there has been an intense debate about different parameterizations of discount

rates (see for instance Weitzman (1994)) and their moral dimension. In this study, we

refrain from a discussion of this sort, but we do want to provide insights into the sensitivity

of our results towards the discount rate. For high discount rates, households are less inclined

to invest into the capital stock in order to raise their future income. A high discount rate,

thus, leads to more consumption and lower savings today and to a lower level of future

income per capita. Correspondingly, in figure 1.11, we observe that a higher discount rate

leads to lower income per capita in 2100. This will also imply lower emissions in the future.

Overall, the sensitivity towards the discount rate is rather low. For a variation of discount

rates between 1 % to 3 %, ηA and ηL in figure A.1 (in appendix A) stay entirely constant,

income per capita in figure 1.11 decreases by 4.7 % and the fit of our model, measured by

the root mean squared error (RMSE) in figure A.2 (in appendix A), deteriorates slightly.

The RMSE decreases by 1.8 %.
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Figure 1.11: Sensitivity analysis towards the discount rate - Europe

In section 1.2, we have discussed some evidence which can be found in the literature for

the assumption that, in the past, capital shares in developed countries have been increasing.

The choice for the exact path of the output elasticity with respect to capital in this work,

however, was rather ad-hoc, even if within a range of reasonable trajectories. We assume

that the output elasticity with respect to capital had a size of 25 % in 1850 and that

it increases to 45 % in 2100. In the literature, sensitivity analyses towards the output

elasticity with respect to capital are rare. In this section, we increase the output elasticity

with respect to capital from 25 % in 1850 to 30 % up to 50 % in 2100. We find that this

choice has strong impacts on income per capita growth in figure 1.12. Income per capita in

2100 increases by roughly 60 % if the capital share amounts to 50 % in 2100 compared to

30 %. Taking into account that population growth rates in Europe will continue to decline,

it is straightforward that increasing capital shares have a strong and positive impact on

growth. Furthermore, the size of the output elasticity with respect to capital also has a

strong impact on the optimal size of our free parameters ηA and ηL in figure A.3 and on the

fit of our model to the data in figure A.4 (in appendix A). The fit of our model improves

with a lower output elasticity with respect to capital in 2100. Output elasticities of more

than 0.45 in 2100 yield an unproportionally large error.

1.8 Conclusions

In this chapter, we endogenize economic growth in the construction of carbon dioxide

emission scenarios. Our calibration period is longer than our projection period and we

derive statistically valid confidence intervals of growth. We show that the calibration of
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Figure 1.12: Sensitivity analysis towards the capital share - Europe

the Jones model leads to stronger annual average growth rates in countries with a higher

current income per capita. In these countries the model picks up higher growth rates from

the past and projects them into the future. In addition, in the Jones model steady state

growth is exponential. This is in contrast to the SSP framework in the Fifth Assessment

Report, where incomes are assumed to converge. As a consequence, we find that countries

with a higher income have to lower their annual energy and emission intensities by more

in order to offset the effects of their future economic growth and to keep their total carbon

emissions constant. While Western Europe would have to decrease its energy and emission

intensities by approximately 1 % per year, in Eastern Europe and the former USSR 0.5 %

per year seem to suffice. If we regard both regions independently from each other, the same

goal of keeping carbon emissions constant would require more radical policy measures to

be taken in Western Europe than in Eastern Europe. Taking into account past reductions

in the energy intensity in Western Europe (see figure 1.4), a continued yearly reduction

by 1 % seems achievable. A yearly reduction of the emissions intensity by 1 % however,

entails a reduction of the same by more than 50 % by 2100. In other words, in order

to keep future carbon emissions in Western Europe relatively constant, it would have to

substitute 50 % of its fossil energy supplies by non-fossil sources. This will only be feasible

with severe political intervention. However, the NDC which was forwarded by the member

states of the European Union in response to the Paris Agreement goes even further and

voluntarily commits to reduce carbon emissions by 40 % below 1990 levels by 2030. This

certainly shows that there exist very ambitious joint political efforts in Europe.

Further, we find weak evidence that conducting forecasts on the country level might add

to the overall precision of our projections. When income per capita is calibrated on the
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regional level, there is more uncertainty tied to the corresponding projections of future

carbon dioxide emissions than to the sum of country-wise forecasts. However, since we

made the same parameter choices for each country, our calibration of the Jones model to

country-wise data is only plausible for a small number of countries. The sensitivity analysis

reveals that our income and carbon emission projections are rather robust to the discount

rate, while they are strongly dependent on the output elasticity with respect to capital.

Although there has been an intense debate about the former, in the scenario literature,

capital shares are typically assumed to stay at a constant level. This aspect could be worth

considering in future research.



Chapter 2

A Bayesian approach towards the

calibration of deterministic models of

economic growth

2.1 Introduction

Models of long-run growth have initially been developed to explore the origins of growth

and to explain cross-country differences in growth trajectories. The literature has suggested

numerous potential sources of growth such as the availability of human capital and natural

resources or a country’s political and institutional stability. Originally, macroeconomic

models of long-run growth were not so much developed for the prediction of growth paths

into the distant future. On the contrary, Millner and McDermott (2016) have recently cast

serious doubt on the credibility of the predictive power of long-run growth models in the

context of environmental economics using the example of the Ramsey model. Neverthe-

less, in the environmental economics literature there has been a growing need for sound

calibration techniques of growth models which go beyond the medium run and act as a

forecasting device of macroeconomic trends. To model the future costs of climate change,

we need to know more about carbon emissions in the long run and they will crucially

depend on future economic growth and technological advancements. Growth models can

serve as a stepping stone for more complex environmental models such as Integrated As-

sessment Models (IAMs). These models estimate the cost of future carbon emissions and

as such integrate a climate model with a socio-economic component. Hence, it is impor-

tant to develop a robust calibration technique for models of long run economic growth.
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Since the majority of IAMs is deterministic, we develop a calibration technique for deter-

ministic growth models. The intuition is that deterministic models of growth describe a

long-run trend. Stochastic shocks to the economy, which may or may not be correlated,

are absorbed by the residual between the observed and the simulated data. Therefore,

we assume that the residuals follow a stochastic process. We suggest a Bayesian inversion

technique to elicit the distributions of our parameters of calibration and to project the con-

fidence intervals of future income and consumption shares. To integrate over Bayes’ law we

use a Markov chain Monte Carlo (MCMC) algorithm. Our aim is to present a standard-

ized approach towards the calibration of deterministic models of long-run growth, which

is tractable and easy to adapt. Our contribution is therefore methodological. Bayesian

approaches towards model calibration have already been described in the Real Business

Cycle (RBC) and the Dynamic Stochastic General Equilibrium (DSGE) literature (see for

instance Fernández-Villaverde (2010)). The focus of this literature, however, lies on the

calibration of stochastic macroeconomic models, which are mostly used to assess stochastic

moments of time series and to project economic activity into the near future.

The origins of economic growth are complex and they are studied in a long tradition

of growth models. The first model of economic growth, which had a neo-classical produc-

tion function at its heart was the Solow (1956) and Swan (1956) model. In this model

capital and labor are used as inputs to produce a uniform good for consumption and re-

investment. This approach has sparked a whole new thread of research, which seeks to

explore how growth is fostered and maintained. These are, for instance, the Ramsey (1928),

Cass (1965) and Koopmans (1965) type of neoclassical growth models, which emphasize

the optimization of household utility and endogenize the savings rate. Models of endoge-

nous technological change followed later. A very prominent example is by P. M. Romer

(1990), who endogenizes investments into R&D, which expand the horizontal variety of in-

puts and thereby raise productivity. An other class of thoroughly investigated endogenous

growth models are Schumpeterian type models of creative destruction such as in Aghion

and Howitt (1992). In these models vertical innovations replace incumbent products and

thereby increase productivity.

We show how our procedure is applied to a standard Ramsey model of exogenous growth

as well as the endogenous growth model by Aghion & Howitt. Because in the past there

have been attempts to endogenize the growth component in IAMs (see for instance the
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ENTICE model by Popp (2004) or an extension of the DICE model by Dietz and Stern

(2015)), we also show as an example how a model of endogenous growth can be calibrated.

As a side-effect we can demonstrate that our Bayesian approach can be applied to a va-

riety of deterministic growth models without modifying its essence. Since the majority

of IAMs is deterministic, we believe that this is a useful exercise. The resulting growth

trajectories until 2050 from both models are similar with an average growth rate of the

median projection of 2.3 % in the Ramsey model and 2.2 % in the Aghion & Howitt model.

Our parameters of calibration are well identified and have clear-cut distributions. Hence,

we conclude that our approach is highly flexible and can be adopted for a wide range of

different growth models.

2.2 Calibration versus estimation

Throughout the past approximately three decades model estimation has constantly gained

in importance, while calibration procedures remain vague and although they are applied

very frequently, the precise calibration technique and its accompanying assumptions are

fully and explicitly specified in a few cases only. Therefore, in this article we propose a

standardized Bayesian approach towards calibration, which is applicable to a big variety of

deterministic models of economic growth. Due to its schematic structure and its very high

degree of adaptability even to complex models of economic growth, we believe that this

approach will help to render future research in macroeconomic modeling and in particular

in the Integrated Assessment Modeling literature more transparent.

The gist of model calibration as well as model estimation is to make a parameter choice

such that a selection criterion is optimized. The selection criterion is based on the goodness

of fit of the model solution to the observed data. However, both differ in their choice of se-

lection criteria and in their methods. Estimation relies on statistical inference to determine

how strongly we can believe in the ability of a particular econometric model to resemble the

real world given a set of observed data. In contrast, what is commonly understood when

talking about calibration, is to strive for consistency of a theoretical model with observed

data. It involves setting parameter values such that a benchmark data set can be repro-

duced as model solution, or such that particular moments in the model solution are close

to analogous moments in the benchmark data. To reduce the degrees of freedom it is com-
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mon practice to take some parameter values from unrelated studies. However, in economics

there are no collections of universally true parameter values available. Therefore, any cal-

ibration exercise with exogenous parameter values is conditional on these same parameters.

Dawkins, Srinivasan, and Whalley (2001) observe that the economic model that is un-

derlying an estimation model is often very limited in its structure, while the estimation

model’s statistical extension can be very sophisticated. This allows econometricians to

perform numerous statistical tests to assess a model’s performance. Calibrators, on the

other hand, strive to maintain the richer model structure of economic models which are

well established in the theoretical literature. These models may be highly complex or non-

linear. In a way, the growing popularity of calibration results stems from an increasing

need by policy makers in the application of more complex and non-linear models which

prohibit estimation or testing. Dawkins, Srinivasan, and Whalley (2001) claim that, in the

past, the economics underlying econometrics and pure theory have drifted apart and that

calibration techniques may be a way to build a bridge between both.

Hoover (1995) describes this dichotomy as follows: Estimators rely on statistical inference

and pursue horse races between competing models and theories. If a model is rejected, this

casts doubt on the validity of its underlying theory. On the contrary, calibrators derive

parsimonious, stylized models from theory. They are interested in extracting information

from their model as best they can. If simulated model outcomes don’t match actual data to

a desired degree, this wont lead to a rejection of the model but rather to more refinements

until the match is satisfying. Since calibrated models are not subject to formal testing, they

hold little if any information regarding their validity. As Canova (2007) puts it, when cali-

brating a theoretical model, we do not believe, that the model reflects the data-generating

process of the observed data. On the contrary, we acknowledge that a theoretical model is

highly stylized and does not capture all relevant properties of the observed data and their

stochastic components. Consequently, model structure can have an unquantifiable impact

on the inferred implications and policy recommendations. Hence, the choice of model is

critical in calibration. However, as long as it is common practice to base model selection

on the theoretical literature, standardized criteria for model elicitation will be unattainable.

In the macroeconomic literature, the frequent use of calibration procedures came up to-

gether with real business cycle (RBC) models. These models constitute a flexible approach

towards the analysis of fluctuations and business cycles in the short and medium run. The
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essence of the traditional calibratory approach of RBC models is outlined in a seminal

article by Kydland and Prescott (1982) - although at the time they did not call it cali-

bration. In their pioneering work the authors suggest to use a Neoclassical growth model

and combine it with stochastic technological shocks to study business cycles. Their ideas

have sparked a whole new field of research, the essence of which is described in Kydland

and Prescott (1991) and Kydland and Prescott (1996). More recently, practitioners have

turned to Bayesian estimation and inference, which are better suited for a larger number

of endogenous parameter values and which give rise to new perspectives on the assessment

of a models empirical validity. Karagedikli et al. (2010) give a coherent historical account

on the evolution of estimation techniques of RBC and DSGE models and how they were

followed by calibratory approaches, especially in the Bayesian strand of the literature.

Taking the calibration of macroeconomic models from the medium to the long run,

the literature is less abundant. In the long run we are foremost interested in persistent

growth effects. While in the RBC and DSGE literature these growth trends are filtered

from the data (see King and S. T. Rebelo (1993) for a discussion), they are exactly the ob-

ject of interest in the long run. Stokey and S. Rebelo (1995) is an insightful meta-analysis

of growth effects of flat-rate taxes. In the process the authors compare the calibratory

approaches towards endogenous growth models in Lucas (1990), L. E. Jones, Manuelli,

and Rossi (1993) and King and S. Rebelo (1990). However, there is no unified calibration

technique apparent from these works.

2.2.1 A Bayesian approach

In every estimation or calibration exercise there are three sources of uncertainty: the model

specification itself, its parameterization and the observed data (see DeJong, Ingram, and

Whiteman (2000)). In frequentist statistics the model parameterization is perceived as

fixed, while the observed data is treated as random. The aim of conventional statistics

is to undertake inference about model parameters, which leads to their acceptance or

rejection at a specifically expressed degree of uncertainty. In Bayesian statistics, on the

other hand, the model parameters are random variables and the aim is to infer their likeliest

distribution, given the data and some prior information about the parameterization of the

model. Thus, the Bayesian approach turns away from being a selection device to find the

”true” model or parameter value. It rather determines an optimal parameter space given
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a certain model. This characteristic improves our ability to apply a particular model for

policy analysis.

Among the first authors who emphasize the uncertainty which is tied to the parameter-

ization of a theoretical model and therefore turn to a Bayesian approach for the calibration

of an RBC model, outlined by King, Plosser, and S. T. Rebelo (1988), are DeJong, Ingram,

and Whiteman (1996). They explicitly draw a line to a common practice in calibration,

which applies point-mass priors to parameters of the theoretical model and therefore im-

plicitly assumes that the only source of uncertainty lies in the sampling error. On the

contrary they suggest to express a researcher’s uncertainty over his prior beliefs about

model parameters of the theoretical model by stipulating a prior distribution. In addition

they stipulate priors for a statistical model which is assumed to reflect the data generating

process of the observed time series. Thereupon, they assess model fit by assessing the

proximity and degree of overlap of the implied posterior distributions of those parameter

values describing the real data and those describing the simulated data from the model.

The fact that the formulation and calibration of RBC and DSGE models has become

a systematic discipline was strongly supported by the fast development of Bayesian tech-

niques and more importantly their computability. Fernández-Villaverde (2010) and An and

Schorfheide (2007) give a stringent overview of their evolution and how economists have

solved theoretical and empirical challenges along the way. There are two distinct problems,

which arise specifically in a Bayesian approach: first that the likelihood function of a fully

specified macroeconomic model is very likely to be unknown and second that the posterior

distribution of the model parameters cannot be expressed analytically.

In their work DeJong, Ingram, and Whiteman (2000) show the essence of how these

problems are overcome in the literature. They calibrate a neoclassical RBC model with a

stochastic component and approximate the likelihood function of the non-stochastic steady

state of their model numerically. Using a Markov chain Monte Carlo algorithm the au-

thors can compute a large random sample, which is representative for their posterior. They

compare the ability of their model to forecast macroeconomic time series with that of a

Bayesian VAR and conclude that the predictive qualities of both are remarkably similar.

In comparison to these previous approaches, in this chapter we calibrate deterministic

models of long run growth. For this reason, the likelihood function is not derived from

the economic model itself, but from its in-sample forecasting error. Since deterministic

growth models neglect the stochastic nature of their growth engine, this stochastic process
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is reflected in the gap between the observed data and the data generated from the model.

As in DeJong, Ingram, and Whiteman (2000) we integrate over the resulting likelihood

function using a Markov chain Monte Carlo algorithm.

2.3 The growth models

We choose to demonstrate our calibration technique based on the Ramsey (1928), Cass

(1965) and Koopmans (1965) model. This is a well established workhorse model of exoge-

nous growth with amenable characteristics for calibration. As D. Romer (2012) points out,

the Ramsey-Cass-Koppmans model serves as a natural benchmark model with no market

imperfections, homogeneous households and no links among generations. In addition, we

show the flexibility of our approach by calibrating the Aghion and Howitt (1999) model of

endogenous growth. However, there are potential pitfalls tied to the choice of an endoge-

nous growth model.

Models of long-run growth have been developed to explore the origins of growth and to

explain cross-country differences of growth trajectories. Their predominant purpose has

not so much been for calibration and forecasting. This explains why a large number of

growth models, especially in the recent literature on endogenous growth, are, due to their

inherent characteristics, unsuitable for calibration. While many models lead to fruitful

insights and policy advice in the theoretical literature, some of them are contradicted by

time series evidence and are empirically problematic.

C. I. Jones (1999) divides the endogenous growth literature into three groups. In the

first group technology is a nonrival good, because the number of people using a technol-

ogy does not influence the cost of inventing it. Hence, holding the share of household

spending into R&D fixed, a larger population size raises the number of researchers which

bring about more technological change and thus economic growth. This group of model

entails economies of scale, which means that the rate of income per capita growth acceler-

ates as the population size and, consequently, the labor force grows or, equivalently, that

larger countries have a higher GDP per capita growth. Well-known representatives of this

type of model are P. M. Romer (1990), Grossman and Helpman (2001) and Aghion and

Howitt (1992). In his earlier work C. I. Jones (1995b) had already argued that empirically

economies of scale are undesirable. In various western countries since 1960 we have ob-

served that even a strong increase in population size did not have a persistant impact on

economic growth. In his subsequent work C. I. Jones (1995a) proposes a second class of
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model where the income per capita growth rate is proportional to the rate of population

growth. Thus, this model entails a level effect of population size on income per capita,

rather than a growth effect. As a consequence economic growth cannot be sustained with-

out population growth and even turns negative as population sizes go down. Again, in the

face of a diminishing population growth in western countries, this is not concurrent with

the observed evidence. However, this issue is overturned by a third class of model where

an increase in scale raises the number of product lines, but the economies growth depends

on the amount of R&D invested into each product line. Thus, growth can be sustained

even as the population shrinks. Prominent representatives are Aghion and Howitt (1999),

Young (1998) and Dinopoulos and Thompson (1998). For this reason this last class of

endogenous growth models is very suitable for calibration. The Aghion and Howitt (1999)

model is a representative of this last type of model and since it is very accessible, we choose

to base the demonstration of our calibration technique on this model.

Both models are set in continuous time, t. Capital letters denote flow or stock variables.

For instant K denotes the capital stock. Lower case letters represent per capita units, such

as k denotes the capital stock per capita. Cases with a hat represent efficiency units.

k̂ denotes the capital stock per effective unit of labor. The number of effective units

per worker increases over time as a result of technological progress. Dots represents the

derivative with respect to time.

2.3.1 The Ramsey-Cass-Koopmans model

There are two agents, households and firms, in the Ramsey-Cass-Koopmans (RCK) model.

Homogenous households consume final output Y and invest in firms in order to maximize

their current and future stream of discounted utilities. Final output is produced by a large

number of identical, profit maximizing firms which sell their products in a competitive

market. All firms are owned by households and thus their profits (if there were any) fully

accrue to households. They all have access to the same Cobb-Douglas production function,

Y = F (K,AL), with constant returns to scale:

Yt = (AtLt)
1−αKα

t (2.1)

Firms hire labor (L) and rent capital (K) from households in competitive factor mar-

kets. Labor enters multiplicatively with labor-augmenting A, which is commonly inter-
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preted as the effectiveness of labor, a state of knowledge or as the overall technological

progress taking place in an economy. In this chapter it will be referred to as the latter.

The initial values of these three variables are strictly positive. Lt grows exogenously at

rate n and At at rate gA. Firms take both as given. The output elasticity of capital, α,

determines the elasticity of substitution between one unit of technology augmented labor

and one unit of capital. Output can be converted into units of effective labor:

ŷt = k̂α
t (2.2)

Households Households divide their income at every point in time between consump-

tion, C, and savings, S. Savings are fully re-invested into the capital stock of firms. Utility

is drawn from consumption and is intertemporally additive. Households maximize their

discounted lifetime utility, denoted as Ut at discount rate ρ1:

Ut =

∫ ∞

0

u (c(t)) e(n−ρ)tdt, n ≥ 0, ρ > 0 (2.3)

Households derive their per-period utility at time t from per capita consumption, ct =

Ct/Lt. The utility function carries the form of constant-relative-risk-aversion (CRRA). ϵ

denotes the elasticity of marginal utility of consumption and, thus, 1/ϵ is the elasticity of

substitution between consumption at different points in time. The higher ϵ is, the lower is

the marginal utility of consumption as consumption rises and the stronger is the incentive

for households to exercise consumption smoothing over time.

u (c(t)) =
c1−ϵ
t

1− ϵ
, ϵ > 0 (2.4)

Households maximize the sum of their future discounted period utilities in equation

(2.5) subject to a budget constraint in equation (2.6), which accounts for household spend-

ing and income. Per capita wealth, b, rises with income from assets and labor and is

reduced by expenditures for consumption and the reallocation of assets to new members

of the overall population. All assets are invested into firms in the form of capital and earn

1In equation (2.3), we consider population growth, n. This means that households maximize their
lifetime utility which they draw from per capita consumption. This equation is the same in the Ramsey
model and in the Aghion & Howitt model, which is described in the following section 2.3.2. In the
equivalent equation (1.15) for the Jones model in chapter 1, n is not considered, because this is how the
original model by C. I. Jones (1995a) was set up. This means that households maximize their lifetime utility
which is drawn from per capita consumption. However, in the utility function, per capita consumption is
not weighed by population size.
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an interest r. Wages are denoted with w. Both equations are in per capita terms, such

that each household has only one person supplying assets and labor and consuming final

output.

max

∫ ∞

0

u (c(t)) e(n−ρ)tdt (2.5)

subject to: ḃt = rtbt + wt − ct − nbt (2.6)

with: b(0) = b0

We can thus derive the Present-Value-Hamiltonian:

H ≡ c
(1−ϵ)
t

1− ϵ
e(n−ρ)t + χt (rtbt + wt − ct − nbt) (2.7)

And the first order conditions:

Hc = 0 ⇔ c−ϵ
t e(n−ρ)t = χt (2.8)

Hb = −χ̇t ⇔ (rt − n)χt = −χ̇t (2.9)

This leaves us with the Keynes-Ramsey-Rule, which describes the growth trajectory of

consumption in efficiency units:

gĉ =
˙̂c

ĉ
=

rt − ρ

ϵ
− gA (2.10)

Firms behavior Firms all have access to the same production function in equation (2.1)

and sell their final output to households. Because there is perfect competition among all

firms and because the production function exhibits constant returns to scale, they earn

zero profits. Since factor markets are competitive, labor and capital are paid respectively

earn their marginal product. The net rate of return on capital, r, thus equals the marginal

product of capital reduced by the depreciation rate.

In the remaining part of this chapter the sum of all firms in the economy is represented

by one big firm. This firm maximizes its profits:
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max
K,L

πt = Kα
t (AtLt)

(1−α) − rtKt − wtLt − δKt (2.11)

The first order conditions follow:

πK = 0 ⇔ αk
(α−1)
t A(1−α) = rt + δ (2.12)

πL = 0 ⇔ (1− α)kα
t A

(1−α)
t = wt (2.13)

Next we insert equation (2.12) into the Keynes-Ramsey-Rule in equation (2.10):

˙̂ct =

(
αk̂

(α−1)
t − δ − ρ

ϵ
− gA

)
ĉt (2.14)

The financial assets of all households in the economy in equation (2.6) have to add up

to the amount of physical capital that is available2. The transition of the capital stock is

determined by household savings and the depreciation rate:

˙̂
kt = ŷt − ĉt − (δ + n+ gA) k̂t (2.15)

As was shown in D. Romer (2012), equations (2.14) and (2.15) constitute a system of

differential equations, which together with the initial values c0 and k0 describes a unique

path for the capital stock and consumption along which the economy evolves. Eventually

the economy converges towards a balanced growth path, where output, consumption and

the capital stock, all in per capita terms, grow at the rate of technological progress gA.

2.3.2 The Aghion-Howitt model

The endogenous growth model by Aghion and Howitt (1999) is an augmented Schumpete-

rian type model with no scale effects. Thus, a larger population size does not accelerate

economic growth. As in Young (1998), this is achieved by the assumption that, as the

population grows, research has to be spread over more variants of intermediate products.

2This is, because the economy is a closed economy with no governmental or inter-generational lending
and borrowing.
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Final output can be used interchangeably for consumption, as an investment into the

capital stock or as an input to research. It is produced employing labor, Lt, and a contin-

uum of intermediate products xit:

Yt = Q
(α−1)
t

(∫ Qt

0

Aitx
α
itdi

)
L
(1−α)
t (2.16)

Each variant is produced with its own specific productivity Ait. New (horizontal) prod-

uct variants originate from pure imitation of existing product variants. They are produced

with a random productivity level which is within the range of existing productivity levels

at time t. We assume that the number of intermediate products Qt at every point in time

is proportional to population size. Thus as the population grows, each household will give

rise to a new firm which produces its own new product variant. By making this assump-

tion we depart from the original model by Aghion and Howitt (1999) where population

size is constant. For this special case the authors assume that every household has the

same constant propensity to imitate existing variants and thus the number of products per

worker asymptotically converges toward a constant, supposedly before the analysis sets in

(for more details see Aghion and Howitt (1999)). This setting is certainly easier to justify,

because every household has the same small propensity to innovate, rather than not being

horizontally innovative at all except for new households, who have a propensity to innovate

of 100 %. However, when calibrating a growth model, population growth naturally is not

constant. For this reason, we make these alterations to the original model. Nevertheless,

for simplicity we assume that the number of product variants per worker is constant and

Qt = Lt. As product variety increases, expenditures towards research have to be spread

over more variants and thus any productivity gain from an expanding product variety

is entirely offset by this increasing cost. This model is thus at the opposite extreme of

those which stipulate horizontal innovation to be the main source of growth, such as in

P. M. Romer (1990). Aghion and Howitt (1999) argue that, while we may observe both in

reality, productivity gains from horizontal innovation are less obvious than from vertical

innovation which constitutes real quality improvements. While a larger variety of inter-

mediate products enhances the scope of specialization, it also renders production more

complicated and susceptible to errors and increases thin-market transaction costs. In this

model growth is solely fostered by vertical innovation, which improves the quality of goods.
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Intermediate firms Product variants are produced by monopolistic firms, who each

produce output xit of their own variant i. The number of monopolistic firms is proportional

to the population. Vertical product innovations are targeted at specific variants. Their

propensity of occurrence depends positively on the amount of resources allocated towards

research. Vertical innovations replace the earlier vintage of the product and with it the

incumbent monopolist. Intermediate products are produced using capital only. The higher

the quality of a firm’s product variant, the more capital intense is its production process:

xit =
Kit

Ait

(2.17)

Firms aim to maximize their profits given the cost of one unit of capital ζt:

ζt = rt + δ (2.18)

The profit maximizing price pit for product variant i equals its marginal product in the

final goods sector.

pit = αAitx
(α−1)
it

Firms thus solve the following optimization problem:

max
xit

πit = pitxit − ζtAitxit (2.19)

From the first order condition we derive the optimal quantity of each product variant:

πxit
= 0 ⇔ xt =

(
ζt
α2

) 1
α−1

(2.20)

⇔ pit =
Aitζt
α

(2.21)

Note that the optimal quantity in which product variants are produced in equation

(2.20) is independent of variant i, because the cost for one unit of capital is the same for

all firms. Defining an average productivity parameter At =
∫Qt
0 Aitdi

Lt
across all intermediate

products, we can rewrite the capital stock,
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Kt =

∫ Qt

0

Kitdi (2.22)

= xt

∫ Lt

0

Aitdi

= xtLtAt (2.23)

and thus we can also reformulate the production function as in the RKC model: ŷt = k̂α
t .

Assuming that labor earns its marginal product, it is paid the same wages as in the Ramsey-

Cass-Koopmans model in equation (2.13).

Using equations (2.18), (2.20) and (2.23), we can derive the interest rate:

rt = α2k
(α−1)
t A

(1−α)
t − δ (2.24)

= αf ′(ŷt)− δ

Note that the gross interest rate equals the marginal product of capital times α. Mo-

nopolistic firms can increase their profits by producing less intermediate goods, than what

would be socially optimal, in order to raise the price of their product variant. Hence, there

is less demand for capital which induces households to underinvest. Using equations (2.20)

and (2.21) we can derive firms profits:

πit = α(1− α)Aitx
α
t (2.25)

Using equation (2.23) we can rewrite a firms profit into a productivity adjusted value:

πit = Aitπt (2.26)

with: πt = α(1− α)k̂α
t (2.27)

The Research sector Innovations are firm-specific. Successful innovators each intro-

duce a new generation of a particular product variant to the market and produce with

the leading productivity parameter Amax
t , which represents the cutting edge technology.

Although innovations are firm specific, they exert knowledge spillovers and add to the
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publicly available knowledge stock. Thus, current innovators have a positive externality

on future research and development. On the other hand, they also exert a negative exter-

nality, since innovators render the previous version of their product variant obsolete and

replace the incumbent producer of this product variant.

Households respectively firms give up a certain share of final output for investment into

research to enhance technological progress and to promote new innovations. These individ-

ual research expenditures are divided between all product variants. The average Poisson

arrival rate ϕt of an innovation in each firm, into which the amount Rt of final output has

been invested into, is specified as follows:

ϕ(ht) = λhγ
t (2.28)

with: ht ≡
Rt

Amax
t

, 0 < γ < 1, 0 < λ (2.29)

Thus, the sum of all research expenditures amounts to LtRt. The exponent γ in equation

(2.28) causes decreasing returns to research with respect to the innovation propensity. This

assumption represents research congestion within a firm. In addition, in equation (2.29)

research expenditures are normalized by the leading edge parameter Amax
t . This manifests

what Aghion and Howitt (1999) call the curse of complexity. The further technology

advances, the higher is the increase in resource costs for new innovations.

The amount of resources allocated to research is determined by the arbitrage condition that

the marginal cost of research equal its marginal expected benefit (see equation (2.31)). The

marginal benefit from research on the sectoral level equals the marginal effect of research

on the propensity to innovate times the value of an innovation, Vt. Research firms face

an arrival rate of innovations which is proportional to the amount of research undertaken

in their own firm as compared to all other firms: ϕ(ht)hit/ht. The marginal propensity

to innovate is thus the derivative of the individual propensity to innovate with regard to

individual research expenditures: ϕ(ht)/(htA
max
t ). Expressed in units of final output the

arbitrage equation thus reads as follows:
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1 =
ϕ(ht)

htAmax
t

Vt (2.30)

equivalent to: ht = (λvt)
1

1−γ (2.31)

with: vt ≡
Vt

Amax
t

To describe how research expenditures evolve over time, we determine the first deriva-

tive of equation (2.31) with respect to t:

ḣt =
1

1− γ
(λvt)

γ
1−γ λv̇t (2.32)

where the productivity-adjusted value of an innovation equals the discounted sum of

all productivity adjusted future profits accrued by the respective innovation (see equation

(2.33)). The instantaneous discount rate in equation (2.33) equals the sum of the interest

rate, which reflects the opportunity cost of an investment, and the propensity to innovate,

which reflects the risk of a product variant to be replaced by a new innovation:

vt =

∫ ∞

t

e−
∫ τ
t (r(s)+ϕ(s))dsπ(τ)dτ (2.33)

Taking the first derivative with respect to time and using the product rule as well as

the fundamental theorem of calculus we obtain the following asset equation:

v̇t = (rt + ϕt)vt − πt (2.34)

Using equations (2.24), (2.26), (2.28) and (2.31) we can rewrite equation (2.32):

ḣt =
λ

1− γ

[(
α2k̂

(α−1)
t − δ + λhγ

t

) ht

λ
− α(1− α)k̂α

t h
γ
t

]
(2.35)

In the Aghion and Howitt (1999) model the growth rate of the leading technology

parameter is driven by an endogenous decision by households to allocate resources to

research. The more research firms undertake, the higher is their propensity to innovate

and a higher aggregate propensity to innovate, leads to more knowledge spillovers produced

by innovations which add to a publicly available stock of knowledge, Amax
t . Therefore, the
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growth rate of the leading technology parameter is proportional to the aggregate propensity

to innovate Qtϕ(ht) by a factor of σ. Because innovations have a smaller impact on the

aggregate economy, if there is a larger number of product varieties in place, the growth

rate of the leading-edge-technology-parameter is divided by Qt and, thus, reads as follows:

gA =
Ȧmax

t

Amax
t

= σϕ(ht) (2.36)

Further, Aghion and Howitt show that the ratio between the leading-edge parameter

and the average productivity parameter converges asymptotically:

Amax
t = At(1 + σ) (2.37)

Households optimization problem Households face the same CRRA utility function

as in the Ramsey-Cass-Koopmans model in equation (2.4). The budget constraint, how-

ever, compared to the one above is altered in such a way that households not only earn

wages and interest rates on the capital they lent to firms, but also from running monopo-

listic firms. On the other hand, their income now is divided between consumption, savings

and investments into research and development. Their optimization program is as follows:

max

∫ ∞

0

u (c(t)) e(nt−ρ)tdt (2.38)

subject to: ḃt = rtbt + wt + πtAt − ct −Rt − ntbt (2.39)

with: b(0) = b0

Deriving the fist order conditions and solving for ĝc leaves us with the Keynes-Ramsey-

Rule as given in equation (2.10). Inserting equation (2.24) results in the simultaneous

equation of households and firms:

˙̂c =

(
α2k̂

(α−1)
t − δ − ρ

ϵ
− gA

)
ĉ (2.40)

The change of the capital stock per efficiency unit from one point in time to an other

is equivalent to the gross capital accumulation throughout the same period of time net

of the depreciation of the existing capital stock and adjusted for growth in efficiency and

population size:
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˙̂
kt = ŷt − ĉt − ht(1 + σ)− (δ + nt + gA)k̂t (2.41)

While in the Ramsey-Cass-Koopmans model gross capital formation is the share of

GDP, which is not spent for consumption purposes, in the Aghion and Howitt model GDP

can also be allocated to the research sector.

Equations (2.35), (2.40) and (2.41) are the equations of motion which describe the tran-

sition of the capital stock, consumption and research activity over time. In the steady

state balanced growth prevails in the usual sense (see Aghion and Howitt (1999)). The

constant steady state rate of growth equals the growth rate of technological progress, which

is denoted by gA. The system is stable in the sense that for any initial amount of physical

capital in efficiency units there exists a unique path of consumption and research which is

a stable trajectory converging to the steady state.

2.4 The calibration procedure

2.4.1 The data

The aim of calibration is to optimize the fit of the simulated data resulting from a the-

oretical model to a set of observed time series. This is done by choosing optimal values

for a predetermined set of free parameters or as we call them parameters of calibration.

We calibrate two deterministic models of growth: The Ramsey model and the Aghion &

Howitt model. Our parameters of calibration have a direct impact on these models’ rate of

economic growth. In the Ramsey model this is the rate of technological advancements gA

and in the Aghion & Howitt model this is γ which is a scaling parameter to the propensity

to innovate and thus has a strong impact on the rate of technological advancements (see

equations (2.28) and (2.36)). In addition, we calibrate the initial values of the stock vari-

ables (in t = 0). These are in both models the initial capital stock, K0, and the initial set

of technological skills, A0. In the Aghion & Howitt model there are two extra parameter

values, connected to the rate of technological growth, σ and λ, which, in order to achieve

a good identification of the free parameters, have to remain at a predetermined value. All

other parameters are the same in both models and we keep the parameterization of both

models, as summarized in table 2.1, identical.



2.4 The calibration procedure 54

Table 2.1: Model parameterization

Parameter Value Source

Both models:
ρ discount rate 0.015 Nordhaus and Sztorc (2013)
α production elasticity 0.3 Nordhaus and Sztorc (2013)
ϵ intertemporal elasticity of

substitution
1.45 Nordhaus and Sztorc (2013)

δ capital depreciation rate 0.039 Penn World Table (Feen-
stra, Inklaar, and Timmer
(2015a))

n population growth rate non-constant Maddison (2010) and Nord-
haus and Sztorc (2013)

Aghion & Howitt model:
σ variation in technologies 0.5 this article
λ rescaling factor 0.2 this article

For ρ, α and ϵ we lean on the DICE model, because it is a widely known and very

transparent Integrated Assessment Model, and we expect that the calibration of long-run

growth models will be especially interesting to environmental economists and Integrated

Assessment modelers. The depreciation rate we calculate from the Penn World Tables,

since this is also the source for our time series on consumption shares. Because there

is comprehensive data on past population growth rates available, we prefer those over a

constant population growth rate. In the Aghion and Howitt model σ and λ are scaling

parameters to the propensity to innovate and thus their optimal values are strongly cor-

related with each other and to the free parameter γ. For this reason they have to remain

exogenous and are set to values for which, depending on the other exogenous parameter

values, there is a large solution set.

We calibrate both models towards world GDP and the consumption share, which reflects

on the overall household decision to split income into consumption and investment. In

addition to past time series which we feed into the model for calibration, we also use pop-

ulation forecasts in the calibrated model to predict future values of world GDP and the

consumption share.

In the remainder of this section we provide a detailed description of all three time series

and their sources.
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Population There are a number of historical data sets as well as forecasts of varying

quality and time stretches available. Naturally, we are interested in those which go as far

back and forward in time as possible. Since our Bayesian calibration technique is based on

auto-regressive time series statistics, we cannot use time series with missing or interpolated

data.

With regard to past observations of population size, we use the Maddison (2010) data set.

Maddison constructs historical population estimates from year 1 to 2009, where possible

on the country level. Starting in 1950 his world aggregate is available for every year. Some

exceptions aside, starting in 1950, Maddison derived his estimates from the U.S. Census

Bureau (2016). The U.S. Census Bureau (USBC) in turn provides an estimate of midyear

population size worldwide and where available on the country level from 1950 to 2050.

The United Nations (2015) offer an equally comprehensive data set on population sizes

on the country level starting in 1950 with forecasts until 2100 for different scenarios. Fig-

ure 2.1 shows the medium range projection. In addition, the United Nations (1999) provide

a dozen data points of world population before 1950 starting in year 0. According to Mad-

dison (2010), the differences between both, the USBC and the UN data sets, are very

limited. While the UN resort to interpolations for those years which lie in between cen-

suses, the USBC accounts for drastic events such as warfare and natural disasters even in

those years. Hence, we refrain from using the UN data set and prefer the Maddison data,

which also provides comprehensive data on world GDP. In figure 2.1 it is apparent that

the Maddison and UN time series are more or less the same until 2010. What is striking,

however, is the very strong exponential population growth starting in the fifties in contrast

to a rather low population growth in earlier years. We will pick up this growth spurt in

our growth model as well. But, as our growth models do not exhibit economies of scale,

this will not cause any problems.

In order to use our calibrated models to make forecasts, we are also dependent on popu-

lation forecasts. The United Nations (2004) go so far as to construct five different scenarios

until 2300. At the same time they emphasize that: ”Given the enormous uncertainties of

the character of demographic trends over such an extended period, the information content

of these projections is somewhat elusive.” In their zero growth scenario population growth

will level out shortly after 2100 at 8.3 bio people.

Since we anticipate that our model calibrations will primarily be used by climate economists,

we use the same population projection as William Nordhaus did in his DICE model in
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Figure 2.1: World population estimates/forecasts

Note: Population estimates/forecasts by the United Nations (1999) from year 1500
to 1949 and the United Nations (2015) from year 1950 to 2100, by Maddison (2010)
from year 1500 to 2030, by Nordhaus and Sztorc (2013) from year 2010 to 2100 and
by the United Nations (2004) from 2000 to 2100.

Nordhaus and Sztorc (2013). He assumes that population growth will go down to zero in

the farther future and that the population size will stagnate at 10.5 bio people. His data

points follow a continuous, logistic type function which was calibrated such that population

size in 2050 approximates the medium range estimate of the 2010 revision in the United

Nations (2011). In the United Nations (2015) revision numbers have been raised upward

by roughly 10 %. Hence the gap between the UN and the Nordhaus forecast of population

size in figure 2.1. But even the United Nations (2015) revision shows decreasing rates

of growth the closer the data gets to 2100. For this work it does not matter too much,

whether the population size will level off at 8.3, 10.5 or even 11 bio people. However, what

does matter is the assumption that its growth rate will go down to zero. There are models

of economic growth, which stipulate that zero population growth is accompanied by zero

GDP per capita growth. Other models cannot comply with zero population growth in their

steady state at all. Hence, there is a number of models of economic growth which should

not be calibrated for their lacking ability to handle the prevailing forecasts of population

growth. Together with the data set at hand the choice of model has strong implications

for the outcome of any calibration exercise.
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GDP We continue to use the Maddison (2010) data for historical GDP estimates. Again,

Maddison constructs his data on the country level from year 1 to 2008. Starting in 1950 he

provides a world aggregate on a yearly basis. To measure the level of economic performance

rather than exchange rates GDP is adjusted by Purchasing Power Parity converts (PPP)3.

He selects 1990 as the benchmark year and thus arrives at 1990 international dollars.

Starting in the fifties, the rate at which GDP per capita is growing is astonishing (see

figure 2.2), even more so if one takes into account that historical time series of GDP

growth are suspected to underestimate the true growth of economic performance. Nordhaus

(1997) argues that standard price indices, including the Geary/Khamis-indice employed by

Maddison, have difficulties to capture the improving quality and increasing range of goods

and services over time. Thus, he concludes that due to this mismeasurement of prices,

economic growth has been significantly underestimated since the Industrial Revolution.

There are other comprehensive sources for GDP growth, although their yearly estimates

do not reach as far back as in the Maddison data. For instance the World Bank (2016)

provides yearly observations, where available on the country level, starting in 1960. The

Penn World Table by Feenstra, Inklaar, and Timmer (2015a) provide yearly estimates

on the country level, starting in 1950 where available. Yet they do not include a world

aggregate. Palgrave Macmillan Ltd (2013) contains an extensive collection of historical

data including GDP by sector, where available starting in 1750, however not on a yearly

basis. Hence, for the purpose of this work and to maintain coherency with the population

estimates, we use the Maddison data.

Looking at the whole data starting in 1500 it may be that we start calibrating our growth

models in the midst of a kink. After 1950 GDP growth is suddenly very steep. If we

were able to start calibrating our growth models at an earlier point in time, our growth

projections would be flatter. Depending on whether one beliefs that this sudden growth

spurt will not be continued, we may overestimate future growth considerably.

Consumption share At a very high level of abstraction macroeconomists divide house-

hold spending into consumption and savings. In the growth literature, households can

invest their savings into a physical capital stock or, depending on the economies’ growth

engine, into some form of knowledge, technological progress or innovations. There are

manifold terms in the growth literature all leading to an increasing productivity of labor

3To derive PPP’s Maddison chooses the Geary-Khamis method developed in Geary (1958) and Khamis
(1972).
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Figure 2.2: World GDP per capita

Note: World GDP per capita estimates by Maddison (2010) from year 1500 to 2008.

and/or capital depending on the productivity of the research and development sector itself.

In this work we calibrate models of economic growth not only to household income, but

also to the share of income that is allocated to consumption versus savings.

We use the Penn World Table by Feenstra, Inklaar, and Timmer (2015a), documented in

Feenstra, Inklaar, and Timmer (2015b), to derive the consumption share from separate

income and consumption time series on the country level. The tables cover 167 countries.

Where available the data starts in 1950. The tables do not include world aggregates. We

therefore constructed aggregates which miss 97 countries in 1950, but which are complete

by 2010. The majority of the in 1950 missing countries are low income countries, which

in 2011 accounted for 13 % of world GDP. Since, on average, low income countries have a

lower savings rate, this might bias our time series of consumption shares in the first half

of the time series and amplify its negative trend. Figure 2.3 shows the resulting world

consumption share from 1950 to 2011. To our knowledge there is no other data available

which could overcome this problem. However, this potential bias is very limited, since

missing observations comprise of one eighth of total GDP in 2011 only.

To summarize, since we need all three time series on an annual basis and aggregated

to the world level, this leaves us at the smallest common denominator with GDP and the

consumption share both from 1950 to 2008 and the population size from 1950 until 2100

and beyond.
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Figure 2.3: World consumption share

Note: World consumption share in % of GDP derived from Feenstra, Inklaar, and
Timmer (2015a) from 1950 to 2011.

2.4.2 The methodology

The aim is to find a set of parameter values which optimizes the fit of the simulated data,

derived from the economic models, to the observed time series. Both are deterministic

models of growth, which we solve for 401 time steps from 1950 until 2350. Population

growth is non-constant. However, after year 2100 it goes rapidly down until it is roughly

zero in year 2200 and remains zero thereafter. Consequently, both growth models cannot

remain in a steady state throughout their whole evaluation period, but we can determine

the economy’s optimal transition path into its steady state to avoid the end point problem.

Thus, we condition the final value of all flow variables to match their steady state values

and solve both growth models for enough time periods to ensure that the end point does

not interrupt the economy’s transition path.

The parameter values which are to be identified are denoted as parameters of calibration or

free parameters. They directly influence the rate of technological progress and the initial

conditions on the stock variables. The observed time series are GDP and the consumption

share, which reflects on a households decision to split its income into consumption and

investment.

The calibration procedure is based on the Bayesian evaluation of the linear regression

model with auto-correlated errors (for details see Zellner and Tiao (1964)), only that the

linear regression model is replaced with non-linear models of macroeconomic growth. This

approach stems from the geophysical literature and is outlined in Urban and Keller (2010),
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Urban, Holden, et al. (2014) and Ruckert et al. (2017) based on the calibration of climate

models.

The aim of calibration is to center the observational time series on the model output.

Real world time series are subject to recurrent shocks and can thus best be described as a

stochastic process fluctuating around its trend. In contrast, the simulated data, which is

the solution to a deterministic model, is comparable to a smooth and non-constant time

trend. In order to calibrate our growth model we aim to produce those simulated time

series which best describe the trending behavior of our observed data. The residual between

these two time series follows a stochastic process with no time trend. Hence, observations

for GDP and the consumption share are interpreted as the sum of model output and an

unknown stochastic process, which we subsequently also call residual:

qt = f(Θ, t) + Zt

observations model residual

(2.42)

Here Θ contains the uncertain model parameters. The residuals are assumed to follow

an auto-regressive AR(1) statistical process with no drift and white-noise error terms.

Zt = ρZt + Ut, (2.43)

with Ut ∼ i.i.d.N(0, σ2
u). We assume that the residuals are wide-sense stationary with

ρ < 1, E[Zt] = 0 and V ar[Zt] = σ2
u/(1 − ρ2). Hence, their expected value is zero, which

reflects our aim to calibrate the growth models such that the expected residual between

the simulated and the observed data is zero. The residual AR(1) process represents a

combination of two error terms, first, an observation error which is sometimes also referred

to as measurement error and, second, an error of model misfit and other structural errors.

We do not attempt to disentangle these two sources of variability, but rather assume that

as one they can be modeled as an auto-regressive process. In this way we account for the

auto-correlation in the model-data residuals. While the observation errors are likely to be

uncorrelated, this is not true for potential model misfit, which is likely strongly correlated

over time. Hence, we believe that the unknown stochastic process of our residuals is best

described by an auto-regressive process of order one.

The notion to describe the discrepancy between simulated and observed data as a sta-

tistical process in the context of calibration was developed by Watson (1993). According

to him, a deterministic growth model is a highly stylized approximation of the stochastic
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data generating process generating the real data and the residual ”... represents the degree

of abstraction of the model from the data.”

The AR(1) is a parsimonious stochastic process, however it neglects possible correlations

between the estimated residuals of GDP and the consumption share. Regarding devel-

oped countries it is a stylized fact that, as income grows, the consumption share persists

at a relatively constant level and the correlation between both is very small. In develop-

ing countries on the other hand, there is a strong tendency that growing incomes lead to

smaller consumption shares and more savings. However, given the relatively small share

in world GDP that developing countries have, this is a weak argument for implementing

a vector-auto-regressive-process (VAR) compared to its cost, as it would double the num-

ber of unknown parameter values and thus heavily deteriorate identification. Calibration

always is conditional on the choice of model for both, the theoretical and the statistical

model, as well as on the observed data. Thus, to draw conclusions on the true stochastic

processes resulting from the residuals between the simulated and the observed data would

be circular reasoning.

A strong advantage of Bayesian calibration techniques is that it enables the modeler to

elicit the likeliest distribution of the parameters of calibration rather than point estimates

in frequentist statistics. Parameters of calibration stem from the theoretical model as well

as the statistical model which describes the residual. We summarize both in κ and aim

to elicit their joint distribution. A crude outline of our approach is the following: We

estimate the joint distribution of the parameters of calibration using Bayesian inference.

Since there is no analytical solution for the so-called posterior distribution of the free pa-

rameters, we resort to Monte Carlo integration using Markov chains (MCMC). The Monte

Carlo algorithm draws representative samples from the posterior distribution by running

Markov chains. In the remainder of this section we will lay out Bayes law and the Monte

Carlo algorithm in more detail.

Bayes law The parameters of calibration stem from the theoretical model of economic

growth as well as from the statistical model, formalizing the evolution of the residuals

between the simulated and the observed data. In this section both are represented by

vector κ. When calibrating an economic model we strive to determine the likeliest joint

distribution of κ given the observed data. In order to derive this entity, we first note that



2.4 The calibration procedure 62

the joint distribution of the observed data (D) and the parameters of calibration (κ) can

be computed by combining the likelihood of the observed data given κ, p(D|κ), with its

prior distribution p(κ) and vice versa:

p(D, κ) = p(D|κ)p(κ) = p(κ|D)p(D) (2.44)

This relation can be reformulated into Bayes’ rule, which gives us what we are mainly

interested in: the probability of the parameter values, given the data. This probability,

p(κ|D), is called the posterior distribution of κ.

p(κ|D) =
p(D|κ)p(κ)

p(D)
(2.45)

The denominator, p(D), is also called the normalization constant. In Bayesian infer-

ence it is a common problem that, because the normalization constant is an integral over

the marginal probabilities of the data, there is no analytical solution for the posterior in

equation (2.45). Hence we resort to the following proportionality:

Posterior ∝ Likelihood× Prior (2.46)

p(κ) represents a researcher’s prior beliefs about the distribution of the unknown param-

eter values. This so-called prior opens the door to a subjective influence on the estimation

procedure. Bayesian inference is about letting the data tell us how to transform these prior

beliefs into a posterior distribution of the unknown parameter values given the observed

data. Suitable priors and their degree of neutrality are extensively discussed in the litera-

ture. In this work we prefer to be as neutral as possible and therefore we use uniform prior

distributions.

The MCMC algorithm Since there is no analytical solution for the joint posterior

distribution of κ, we use the Monte Carlo algorithm to generate a representative sample

{Kt, t = 1, ..., n} of the joint posterior distribution of the elements of κ conditional on the

observed data. From this sample we derive the marginal kernel densities of each parameter

of calibration. The sample is drawn as a sequence, a so-called Markov chain, where the

distribution of the next realization Kt+1 is sampled from a distribution p(Kt+1|Kt), which

depends on the latest realization in the chain. The distribution p(.|.) is called the transition

kernel of the sequence. There are numerous kernels discussed in the literature, however all
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of them are special cases of the general framework by Metropolis et al. (1953) and Hast-

ings (1970). For efficiency reasons we use the Robust Adaptive Metropolis (RAM) sampler

developed by Vihola (2012). The subsequent enumeration gives a rough intuition on how

the RAM sampler determines Kt+1, the next segment in the chain4. For the computational

realization of the sampler we use the Klara package usable within the programming envi-

ronment of Julia.

• Make a guess for the initial chain value K1, which is the same as an initial guess

about the free parameters of calibration in κ.

• Sample a candidate point Πt := Kt + St+1, where St+1 ∼ q constitutes the proposal

distribution. It is distributed with q, a spherically symmetric probability density.

• Accept the candidate point Πt with probability α(Kt,Πt) :

α(Kt,Πt) = min

(
1,

π(Πt)

π(Kt)

)

π(.) represents the density of Kt and Πt. It is the posterior probability of Kt and Πt

given the data which is determined using to Bayes’ law. If the proposal is accepted,

Kt+1 = Πt. Otherwise Kt+1 = Kt. In words, a candidate point is always accepted if

its density is higher than that of the previous chain element. Otherwise a candidate

point is accepted with a probability that equals the density of the candidate point

divided by the density of the previous chain element.

• Update the proposal distribution St+1 such that if the acceptance probability αt is

smaller (higher) than the pre-determined target rate of acceptance α∗, the proposal

distribution is shrunk (enlarged).

To ensure convergence of the RAM algorithm, the proposal distribution should be ei-

ther a Gaussian or a Student distribution. The first realization of the chain, K1, has to be

supported by the target distribution π(K1) > 0. With a growing chain size n, the influence

of the first segment on Kn will diminish. With a reasonably sized burn-in, this influence

can be eradicated from the chain.

4See Vihola (2012) for an in depth description of the sampler.
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The likelihood function According to Bayes’ law the posterior distribution, which is

the target distribution of the RAM sampler, is the product of two components: the likeli-

hood of the data given the parameters of calibration (κ) and the prior distributions of all

parameters of calibration. Since we assume all priors to be uniform distributions, the joint

posterior distribution equals the likelihood rescaled to be a density.

When sampling from the target distribution, for every realization of the Markov chain,

we have to determine the likelihood of the data, given the proposal value Π. Hence we

solve our growth models for every proposal value. The residuals between the simulated

and the observed data are assumed to follow an AR(1) with no drift and white-noise error

terms.

Given these assumptions, we can determine the likelihood of the AR(1)’s given the

observed data and Π, where Π also contains the parameter values of the auto-regressive

processes, ρ and σu2 . This is done for every segment of the Markov chain. Since the

disturbance term, Ut, is Gaussian, so is Z1: Z1 ∼ N(0, σ2
u/(1 − ρ2)). Thus, the density of

the first observation takes the form:

fZ1(z1; ρ, σ
2
u) =

1√
2π
√
σ2
u/(1− ρ2)

exp

[
− z21
2σ2

u/(1− ρ2)

]
(2.47)

Conditioning on Zt−1 = zt−1, for any consecutive realization of Zt holds: E[Zt] = ρzt−1

and V ar[Zt] = σ2
u. Hence the density of observation t conditional on observation t − 1 is

given by:

fZt|Zt−1(z1|zt−1; ρ, σ
2
u) =

1√
2πσ2

u

exp

[
− u2

t

2σ2
u

]
(2.48)

= fUt(ut;σ
2
u) (2.49)

Hence, the joint density of Z1, Z2, ...ZT amounts to:

fZT ,ZT−1,...Z1(zT , zT−1, ...z1; ρ, σ
2
u) = fZ1(z1; ρ, σ

2
u)

T∏
t=2

fUt(ut;σ
2
u) (2.50)

If the sum of the log-likelihoods of GDP and the consumption share for parameter val-

ues Π is greater than for parameter values Kn from the previous segment in the Markov
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chain, then Π is accepted. Otherwise it is only accepted with probability α(Kn,Π).

To summarize the MCMC procedure

1. Stipulate an arbitrary starting value for the Markov chain which is within the support

of the posterior distribution (e.g. for which there is a solution to the model of

economic growth).

2. Solve the growth model using this starting value and simulate data for GDP and the

consumption share.

3. Determine the likelihood of the resulting residuals between the simulated and the

observed data, assuming that they follow an AR(1) and given the parameter values

of the AR(1) by the starting value of the Markov chain.

4. Let the RAM sampler determine the next random segment of the chain and repeat

steps 2 and 3 for this realization of parameter values.

5. Let the RAM sampler decide whether this next chain value is accepted.

6. Continue with step 4 and 5 until the desired length of the Markov chain is reached.

A major advantage of this procedure is that it is independent of the economic growth

model which is to be calibrated. The theoretical model has no impact on the algebraic

form of the likelihood function and the MCMC algorithm is the same for any number of

free parameters. Even if we wanted to calibrate a growth model towards more than two

observed time series, this could be done without changing the essence of this procedure.

However, one would have to calibrate over a higher number of free parameters, which might

raise identification issues. In this article, for instance, it might seem expedient to calibrate

both models towards the real interest rate, too. However, our prediction is that this would

reduce the goodness of fit immensely and pose problems on chain convergence5.

5For instance, the Aghion and Howitt model strongly underestimates the real interest rate while at the
same time it overestimates the households return on investment in order to create a sufficiently strong
incentive to invest in R&D. This is necessary to foster those strong rates of economic growth within the
model, which we have observed throughout the past, and still meet the observed consumption share.
Because of its inherent structure the model is incapable of adapting to all three time series at the same
time
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The Markov chains are representative, if they explore the full range of the target distri-

bution and do so in the right proportions. They should not get stuck or contain sudden

spikes. In theory, if a chain meet these criteria, we say it has converged. Unfortunately,

in practice there are no objective criteria for convergence of a realized chain. Suppose for

instance a chain has several isolated modes and it was ended before it was able to explore

more than one mode. This chain would seem to have converged, although it has not.

Strictly speaking, if we wanted to be absolutely sure about the convergence of a chain, it

would have to be infinitely long. The optimal length of a chain is discussed controversially

in the literature. Gelman and Rubin (1992a) and Gelman and Rubin (1992b) propose to

compute several long chains with different starting values, which, if they have converged,

should have the same sampling distributions at the end. Geyer (1992) on the other hand

argues that with one very long chain one has the best chance to discover if this chain slides

into a new mode. We resort to the former approach and compute several long chains with

very different starting values. For both models we sample 100.000 parameter vectors and

discard the first half as burn-in with a thinning of 100, such that we compute six chains of

500 segments each.

As a check for convergence we compute auto-correlation functions and the Gelman-Rubin

statistic as modified by Brooks and Gelman (1998). The intuition behind the Gelman-

Rubin statistic is to run several chains and to compare their between and within variation.

If a chains starting point is over-dispersed relative to the target distribution, the between

variation initially overstates the chains variance and vice versa, while the within variation

understates it, because early draws will not yet have fully explored the state space of the

target distribution. With an increasing number of realizations the influence of the starting

value diminishes, such that if a chain converges the Gelman-Rubin statistic approaches

unity.

A final note To conclude this section we will discuss how this calibration technique

relates to the RBC literature. The RBC literature aims to assess the nature of business

cycles. As such it models fluctuations of macroeconomic time series in the medium run.

For this reason the observed time series are detrended. In the past, stochastic models with

random shocks have been in the center of attention. These models are generally complex

and non-linear, such that they are linearized and in some cases a filter is applied in order

to derive a likelihood function directly from the model. Model calibration can be based
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on either frequentist or bayesian statistics. Model fit is assessed by comparing a choice of

statistical moments of the simulated data with the ones of the observed time series.

In this paper on the contrary, we calibrate models of long-run growth and thus we are

interested in replicating the time trend of the observed data. The models we calibrate are

deterministic and they are solved without prior linearization. The simulated data is thus

smooth while the observed time series follow a statistical process. Using the simulated

data we aim to replicate the time trend of the observed data as best we can, assuming that

the residual between the observed and simulated data follows a statistical process. Con-

sequently, we can derive the likelihood function of these residuals, given the theoretical

growth model, the statistical model and the observed data. Our framework is Bayesian.

Since there is no analytical solution to the posterior distribution of our parameters of cali-

bration we integrate over this distribution using an MCMC algorithm. This procedure has

numerous advantages. It allows for a profound statistical framework for calibration, even

for models without any stochastic components. We can abstain from model linearization

and filtering to derive the likelihood function, which potentially improves identification.

In addition, our method is very accessible and can be used for the calibration of a broad

variety of models without any alterations to the essence of this approach.

Since our goals are entirely different from those in the RBC literature, we do not see this

article as an addition to this literature.

2.5 Results

This chapter proposes a Bayesian approach towards calibration and demonstrates its ap-

plication to a Ramsey type model of exogenous growth and to the Aghion and Howitt

model of endogenous growth. In this way we are able to show the broad applicability of

this calibration technique. In this article the choice of theoretical models was narrowed

down by the prerequisite that the growth model’s inherent rate of economic growth should

be independent of population growth. Even though world population growth is expected

to cease after the 21 century, we do not expect that this will be a cause for economic

stagnation.

Our results show that all parameters of calibration are well identified, although their pri-

ors were assumed to be uninformative, except for some truncations which were implied by

the economic models and the stochastic processes. In table 2.2 we summarize all priors.
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Stipulating uninformative priors yields a convenient way for assessing the sensitivity of the

simulated data towards the parameters of calibration.

Parameter Prior

Both models:
K0 initial capital stock uniform, K0 > 0
A0 initial stock of skills uniform, A0 > 0
ρY parameter in AR(1) regarding

GDP
uniform, 0 ≤ ρY < 1

ωY variance of disturbances in AR(1)
regarding GDP

uniform, ωY > 0

ρC parameter in AR(1) regarding
consumption share

uniform, 0 ≤ ρC < 1

ωC variance of disturbances in AR(1)
regarding consumption share

uniform, ωC > 0

Ramsey model:
gA growth rate of technological skills uniform, gA > 0

Aghion & Howitt model:
γ scale parameter on propensity to

innovate
uniform, 0 < γ ≤ 1

Table 2.2: Assumed priors

The marginal posterior distributions of all parameters are presented in figure 2.4. The

only binding prior truncations are on ρy and ρc, which are forced below one to rule out

unit root shocks to the residuals between the simulated and the observed data on GDP

and the income share. Our prior assumption is that the expected value of these residuals is

zero. This prior assumption is a precondition for this calibration procedure. Otherwise the

simulated and the observed data could drift apart without bounds. In Bayesian statistics

the treatment of non-stationary time series does not differ from the treatment of stationary

time series. If one beliefs in the stationarity of a time series, then one may want to reflect

these beliefs with appropriate priors. Contrary to frequentistic statistics, which require

specific methods to tackle non-stationarity, the Bayesian theorem applies to both cases

alike and likelihood functions stay the same with and without a unit root (see Sims and

Uhlig (1991)).

Furthermore, the parameter values ρy and ρc measure the correlation between different re-

alizations of the stochastic processes over time and as such the persistence of disturbances

to the residuals between the simulated and the observed data. For both growth models

the distributions of ρy and ρc are skewed to the left and they bend towards their maximum
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value. The likelihood functions have reshaped our priors and the data tells us that there

is a strong correlation between the elements of the stochastic processes. Interpreting ρy

and ρc as a measure for auto-correlation, they can be used to assess our growth models

ability to reproduce the observed time series. Lower values would correspond to a lower

auto-correlation between the AR(1) realizations and thus with more intersections of the

simulated and the observed data. Although, ρy and ρc do not constitute an absolute mea-

sure of fit, an extremely narrow distribution with a median just below one points to a bad

model fit. This is not the case for the models calibrated in this article. The model fit is

depicted in figure 2.5 where the observed data on GDP and the cosumption share between

1950 and 2008 are plotted against their respective median in the simulated data. The con-

fidence intervals are derived by choosing 1000 random vectors of parameter values from the

Markov chain, which captures the joint distribution of all parameters of calibration. Then

both economic models are solved repeatedly for the whole sample and to their resulting

simulated data we add the stochastic realization of an AR(1), which is parametrized using

the respective parameter values from the Markov chain. GDP is well captured by the 90 %

confidence intervals. Regarding the consumption share, some observed values from before

1970 lie outside the confidence interval. We simulate both time series until 2050.

The marginal posterior distributions of the AR(1) parameter values in the Ramsey

model are almost identical to the ones in the Aghion and Howitt model in figure 2.4. This

comes as no surprise. In both models we have the same number of free parameters and the

initial conditions on the stocks lead to the same initial income in both models. This also

contributes to the similarity of both models’ confidence intervals of the calibrated time

series and their projections in figure 2.5. In the Ramsey model the annual average growth

rate of the median trajectory of GDP is 2.3 % and in the Aghion and Howitt model the

annual growth rate amounts to 2.2 %.

Figure 2.6 depicts the two-dimensional marginal probabilities of those free parameters

which stem from the growth models. In both models the initial stock of technological

skills, A0, is strongly correlated with the respective parameter value driving technological

change. In the Ramsey model this is gA and it is negatively correlated with A0. To fit

the observed data on GDP, an initially high stock of technological skills compensates for

a subsequently lower rate of technological change. In the Aghion and Howitt, model an

initially high stock of technological skills has a lasting and negative impact on the returns
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to future research investments. The authors call this the curse of complexity. The fur-

ther technological progress advances, the higher are the resource cost of new innovations.

Thus, to hit the average observed rate of GDP growth, the scale parameter γ, which has

a positive influence on the propensity to innovate, has to rise, too. As a consequence, in

the Aghion and Howitt model γ and A0 are positively correlated. Figure 2.6 shows that

all parameter values which stem from the theoretical models are well identified.

In the remainder of this section we assess the convergence of our Markov chains versus

their computational cost. We say that a Markov chain has converged, if it consists of a rep-

resentative sample for its target distribution. However, because the target distribution is

unknown, in practice we resort to a number of formal and semi-formal criteria, which have

to be met in order for us to believe that a chain has converged. Roughly speaking, these

criteria involve that a chain should be stable and not show any big lumps or spikes. This

is the case for all our chains and we support this result with the aid of the auto-correlation

functions and the Gelman-Rubin statistics below.

However, although longer Markov chains are a better representation of their target distri-

bution, longer chains also induce higher computational costs. Thus, in practice one needs

to determine the optimal length of a chain in order to make sure that it, on the one hand,

has converged towards its target distribution and is independent of its starting value and,

on the other hand, is as short as possible to save computational time. We compute six

chains for both growth models, which each contain 100.000 draws. We reduce the lumpi-

ness of our chains by a thinning of 100, such that the auto-correlation functions of all

free parameters remains roughly below 5 % (see figure (B.1) in appendix B). Further, we

divide all chains into two and compute the Gelman and Rubin statistic for all parameters

of calibration (see figure (B.2) in appendix B). This statistic compares the chains within

variation with their variation between chains and converges towards unity when chain con-

vergence is achieved. In both models this is the case after approximately 150 out of 500

observations. To be on the save side, we disregard the first half of each chain as burn-in.

Thus we are left with 500 draws in six converged chains, amounting to 3000 draws in toal,

which we can use to compute the kernel densities of our parameters of calibration.
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Figure 2.4: Marginal density functions of the estimated parameters
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Figure 2.5: Income per capita and consumption share projection
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2.6 Conclusions

The aim of this article is to introduce a transparent approach towards the calibration of

deterministic models of long-run growth, which allows for a statistically sound derivation

of the calibration parameters’ joint distribution and of the confidence intervals for the sim-

ulated data. The approach is a Bayesian inversion technique and to integrate over Bayes’

law we apply a Markov chain Monte Carlo algorithm. To show that this approach is ap-

plicable to a wide range of growth models without changing the essence of the proposed

technique, we exemplarily calibrate a Ramsey type model of exogenous growth and the

Aghion and Howitt model of endogenous growth. We find that all parameter values of

calibration are well identified. We are able to replicate the time series trend of GDP per

capita very well. The consumption share, however, has a tendency to be underestimated

by both growth models at least in the early years of the calibration exercise. Numerous

Integrated Assessment Models, such as for instance the DICE model by William Nordhaus,

are based on a Ramsey model. However, since there is a growing interest to endogenize

growth in the Integrated Assessment literature, we also demonstrate the calibration of an

endogenous growth model. A logical continuation of this article would be to replace the

growth component of a suitable Integrated Assessment model by our calibrated version of

the Aghion and Howitt model of endogenous growth and to test how the predictions of

this IAM change.

Two quantitative results from our calibration approach are the confidence intervals of

the simulated data and the distributions of our free parameters. Both depend on our choice

regarding the economic as well as the statistical model and on the parameterization of the

fixed parameters. A full sensitivity analysis would require to vary over these three impact

factors. In this article we show how the choice of growth model changes our quantitative

results. While the simulated confidence intervals of GDP are very similar between the

Ramsey and the Aghion and Howitt model, the confidence intervals of the consumption

share differ in their course and width between both models. These differences are not

tremendous, but it appears that the endogenous growth model by Aghion and Howitt is

able to achieve a better fit towards the consumption share. To expand the sensitivity

analysis a logical step would be to vary the statistical model and, for instance, to assume

that the residuals between the simulated and the observed data between different time

series are correlated and follow a vector-auto-regressive process. However, even for a vector-



2.6 Conclusions 75

auto-regressive model of order one, this would raise the number of free parameters by four

and deteriorate the identification of the individual stochastic processes. This could be a

connecting point for further research.

We have to acknowledge that we do not know what the true values of our fixed parameters

are. Our prediction is that, if the fixed parameters are varied within a reasonable range,

most of this variation will be picked up by the free parameters and change their distribution

accordingly. The simulated data will vary only marginally. Since the aim of this paper is

foremost to propose a new methodology of calibration and not to derive the most credible

parameter values for our parameters of calibration, we leave this exercise to future research.

An advantage of our Bayesian approach towards calibration is that as a side effect it reveals

the sensitivity of the simulated data towards the free parameters. This is reflected in the

simulated data’s confidence intervals, which are derived from the joint distribution of the

free parameters.



Chapter 3

The DICE model with endogenous

technological change driving

economic growth

3.1 Introduction

Climate change is widely understood as a dynamic problem. It entails various direct as well

as indirect effects on economic welfare. An atmospheric temperature increase affects, for

instance, agricultural productivity through droughts and water shortages instantaneously.

But it also has indirect effects on capital accumulation and savings which accrue over time.

In the literature, there is a rising awareness for potentially lasting and path-dependent

growth effects of climate change. Fankhauser and Tol (2005) describe two main dynamic

effects that connect climate change to economic growth. First, a capital accumulation

effect: when income is reduced, there are fewer resources available for investments into the

capital stock. Second, a savings effect: in a world with perfect foresight, it is likely that

households adjust their inter-temporal savings plan to the occurrence of damages caused by

climate change. A priori it is not clear whether the savings effect is a positive or a negative

effect. On the one hand, households may save more to make up for future expected losses.

On the other hand, the return on capital investments decreases, such that the incentive

to invest is lowered. In a reduced model of climate change and Ramsey type growth,

Frankauser and Tol show analytically that under a relatively broad set of assumptions

both, the capital accumulation effect and the savings effect, are unambiguously negative.

In addition, the authors investigate the magnitude of these effects in a numerical analysis
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based on four variations of the DICE model by Nordhaus (2008)1. The authors find that

the capital accumulation effect by far dominates the savings effect.

In the original version of the DICE model the capital accumulation effect as well as the

savings effect have relatively small impacts on the social cost of carbon and on economic

growth even under extreme climatic conditions. However, this is not in accordance to

the expectations raised by climate experts and has been criticized on numerous occasions.

There is a growing number of studies which suggest additional channels of climatic impacts

on the economy. This study and a handful of other studies argue that global warming also

affects investments into R&D, the formation of knowledge stocks and, thus, technological

progress in a very broad sense. In this way, climate change would have a negative impact

on the economy’s productivity. If this is the case, then there is an additional accumulation

and savings effect which influences the size of the knowledge stock, and climate change

would have a stronger and more lasting negative impact on economic growth. Gross in-

come would be even more path dependent.

There are different ways to investigate the effects of global warming on the formation of

knowledge stocks and economic growth. Dietz and Stern (2015), Moyer et al. (2014) and

Moore and Diaz (2015) construct different versions of the original DICE model, where

climate damages have a direct and negative impact on the level of knowledge stocks. Un-

surprisingly, they find a much higher social cost of carbon and a stronger negative impact

on economic growth than in the original DICE model. The magnitude of these results is

strongly dependent on model assumptions. In contrast, Fankhauser and Tol (2005) and Di-

etz and Stern (2015) suggest introducing endogenous growth to the DICE model. In these

model versions either overall investments are equally divided between physical and human

capital or the size of the knowledge stock is tied to the size of the capital stock, such that

investments into the latter also increase the size of the former. Again, these model versions

yield higher negative impacts of climate change on growth, while their quantitative size is

strongly dependent on model assumptions. In these model versions the savings effect and

the accumulation effect regarding physical and human capital are inseparably connected

to each other.

This paper goes beyond Fankhauser and Tol (2005) and Dietz and Stern (2015) by in-

troducing exclusive investments into the knowledge stock which drives economic growth.

Households can decide endogenously how much they want to invest into human capital

independently from physical capital. In this way, climate change is modeled to have sepa-

1In the literature, the DICE model is an integrated workhorse model of the climate and the economy.
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rable effects on both stocks. However, since the knowledge stock of the economy is directly

linked to the economies productivity and to its rate of growth, in a world with perfect

foresight, households implicitly decide on their optimal pathway of economic growth. In

this way, I am able to abstain from making an arbitrary assumption regarding the share

of damages which might directly or indirectly affect the size of the knowledge stock.

The framework is based on the DICE model by Nordhaus (2008). The model will be

described in detail in section 3.3. In a version of this model the growth component is sub-

stituted by endogenous Schumpeterian type growth and calibrated towards the original. I

solve three scenarios as have previously been described by Rezai (2011), each with an ex-

ogenous as well as an endogenous growth component. The introduction of an endogenous

growth component is new to the literature. Rezai’s social optimum scenario is identical to

the original by William Nordhaus. In this scenario the social planner is able to mitigate

climate change in two ways. First, he can invest in the reduction of carbon emissions and,

second, he can shift his spending away from the carbon-emitting capital stock. In addi-

tion, in the endogenous growth setting, this reallocation of resources is accompanied by a

reduction of investments into the R&D sector. In both growth model versions this reallo-

cation reduces future total output and thus carbon emissions. However, in the endogenous

growth setting there are two additional negative growth effects. First, the reduction of

income leads to a negative accumulation effect regarding the knowledge stock and, sec-

ond, as the return on investments in R&D decreases, the allocation of resources towards

R&D declines. Hence, there is also a negative savings effect. The accumulation effect is

even stronger in Rezai’s constrained optimum scenario, where households cannot actively

mitigate to reduce climate damages. This scenario is equivalent to the ”business as usual

scenario” by William Nordhaus. Yet, as in this scenario the climate externality is still

fully internalized, Rezai (2011) argues that it does not correspond to a business as usual

scenario. On the contrary, in the business as usual scenario in the spirit of Rezai (2011),

where the climate externality is not internalized, and the private return on investment is

not affected by climate change, there are no negative growth effects due to the reallocation

of resources.

3.2 Literature review

The potential channels through which climate change might affect economic growth as

well as the magnitude of their effects have been discussed controversially in the past. Dietz
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and Stern (2015) criticize that under standard assumptions current Integrated Assessment

Models (IAMs) do not support strong emission controls. The authors question this fact

and, therefore, introduce the endogeneity of economic growth, convexity of damages and an

increased climate risk to the DICE model. In particular, Dietz and Stern emphasize that

in the DICE model the damage multiplier on the level of gross output is the only mecha-

nism through which climate change has an effect on growth. This effect operates indirectly

through a reduction of investments into the capital stock, which is a rather narrow story

on how climate change affects economic growth. As mentioned in the previous section,

Dietz and Stern suggest two variations of the growth component in the DICE model which

entail endogenous growth. In both models the damage multiplier is partitioned between

the level of gross output and either the capital stock or the total factor productivity term.

In the model version where damages additionally hit the capital stock, the capital stock

is assumed to be proportional to an economy-wide productivity term, which, apart from

necessary investments into the capital stock, is costless. Investments into this productivity

term are consequently endogenous. In the model version where damages affect the level of

total factor productivity, Dietz and Stern assume a positive knowledge externality in the

form of knowledge spillovers from capital investments towards total factor productivity. In

both models, climate damages are interpreted as having a negative effect on the economy’s

productivity, which has a direct and negative effect on economic growth. The authors find

that these growth assumptions lead to an increase in the optimal emission control rate,

even if the effects on their own are not very strong - especially before 2100. All results

strongly depend on the fraction of damages which affects the capital stock or total factor

productivity. In both models, the social planner’s choice to invest into the knowledge stock

is tied to capital investments. There is no standalone and endogenous decision to invest

into R&D, as I will suggest in this chapter. A very interesting finding from the overall ex-

ercise with convex damages and an increased climate risk is that the importance of growth

assumptions diminishes when climate damages are more severe.

In the same context, Moyer et al. (2014) note that the three IAMs which are used for

the cost-benefit-analysis of carbon emissions by the US Interagency Working Group on the

social cost of carbon (SCC) produce very narrow SCC pathways and thus do not reflect the

true scale of uncertainty that they entail. Therefore, the authors build a model variant of

the DICE model where the damages caused by global warming affect the economy’s level

of productivity or even its growth rate. As expected, both approaches lead to an increase

in damages by many orders of magnitude. Naturally, when productivity growth is affected,
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the effects are stronger as compared to negative level effects. Moyer et al. (2014) thus con-

clude that the resulting SCC pathways are in general very sensitive to model assumptions.

Moore and Diaz (2015) calibrate a two-regional version of the DICE model, where one

region is poor and the other is rich. In one version of this two-regional DICE model global

warming is modeled to have negative effects on total factor productivity growth, and in a

second version it is modeled to accelerate capital depreciation. Both models lead to mod-

est negative growth effects in rich countries and to strong effects in poor countries. This

result could be caused by non-linear effects of climate damages on growth as suggested in

Burke, Hsiang, and Miguel (2015). This would mean that even if the economies of rich

countries in temperate climatic zones are less affected by global warming today, they would

be increasingly affected if the atmospheric temperature continues to increase. In addition,

it could be that poor countries have a higher share of climate sensitive production. Conse-

quently, as poor countries grow richer, they might become less affected by global warming.

Moore and Diaz (2015) underline that both possibilities have implications on future SSC

pathways and are therefore highly policy relevant.

To my best knowledge, potential negative growth effects of climate change in combination

with endogenous technological change driving economic growth, have not been addressed

so far in the context of other IAMs. There are at least three IAMs which entail endogenous

technological change, while economic growth is still driven by an exogenously given time

series of total factor productivity. Their economies include two or more competing energy

technologies. In the spirit of directed technical change, investments into the efficiency of

these energy technologies is endogenous. These models are the ENTICE model by Popp

(2004), which is a modified version of the DICE model, the WITCH model by Bosetti,

Massetti, and Tavoni (2007) and the DEMETER model by Gerlagh and van der Zwaan

(2003) and Gerlagh, van der Zwaan, et al. (2004).

In a second strand of the literature, the interdependency of economic growth and climate

change is analyzed econometrically. Dell, B. F. Jones, and Olken (2012) assess historical

panel data on within-country temperature fluctuations and find that temperature shocks

overall have a lasting effect on income per capita and economic growth, but especially so in

developing countries. In a meta analysis Dell, B. F. Jones, and Olken (2014) substantiate

this result by analyzing potential drivers of this negative growth effect, such as agricul-

tural output, labor productivity and mortality rates. In a similar context, Hsiang and Jina

(2014) find empirically valid evidence that windstorms exert negative growth rather than

level effects on income.
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As mentioned above, Burke, Hsiang, and Miguel (2015) find a global non-linear effect

of temperature on productivity levels. Their findings suggest that country-level produc-

tion is concave in temperature and that it peaks at an average annual temperature of

13C◦. Therefore, while cold countries are expected to be impacted by climate change only

modestly, and in very cold countries this impact may even be positive, hot countries are

expected to suffer more damages from climate change. As a result, the income-distribution

between countries world wide may become more unequal. Further, the authors estimate a

distributed lag model and find that only temperatures at the hot end of the temperature

distribution suggest negative growth effects. Looking at the whole temperature distribu-

tion, this study does reject neither level nor growth effects of temperature on GDP.

3.3 The DICE model

The DICE model is a widely used IAM. It is very accessible and tractable. It is based on

a Ramsey type economy, whose output causes carbon emissions, which in turn, through

climate forcing, increase the global surface temperature as well as the temperature of the

water systems. Damages due to global warming are modeled as a fraction of economic out-

put which is lost to household income. In all scenarios the agents have perfect foresight.

In the social optimum scenario the social planner is able to mitigate climate change in two

ways. First, he can invest in the reduction of carbon emissions and second, he can shift

his spending away from the carbon-emitting capital stock.

Following Rezai (2011), I rename the original base scenario by Nordhaus and call it the

constrained optimum scenario. This scenario solves for the social optimum, where direct

investments into the mitigation of carbon emissions are not possible, but otherwise the

externality is fully internalized. The only way for the social planner to mitigate climate

change in this scenario, is to reallocate resources away from growth enhancing capital

stocks. The third scenario is the business as usual scenario, where the climate externality

is not internalized. Consequently, there is no reallocation of resources and the private re-

turn on investment exceeds the social return on investment. When introducing endogenous

growth to the DICE model, growth is no longer driven by an exogenously given parameter

of technological advancements, but it is driven by the endogenous decision of the economy’s

agents to invest in their own productivity. Hence, agents divide their income between con-

sumption and savings, which are sub-divided between investment into the physical capital
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stock and investments into research and development. Future output is increased by higher

investments in general, be it into the physical capital stock or into the knowledge stock.

As a consequence, in the optimal and in the constrained optimal scenario, the savings and

the capital accumulation effects are even stronger in the endogenous growth setting and,

thus, negative growth effects caused by climate change become larger. In the business as

usual scenario with endogenous growth, there is only a negative savings effect. In this

scenario, households over-invest into capital and, therefore, have to endure more damages

from climate change. Eventually, the damages become so big that they overcompensate

any positive effects on income.

3.3.1 The original DICE model

Social planner problem Since the DICE model has been described in the literature

numerous times, this section will provide a short overview of the model. For this study I

use the latest version of DICE, which is DICE2016R. There is not yet a manual to this

model available, but its code can be downloaded from the web page by Nordhaus (2017).

The model is solved in discrete time and for sixty time intervals of five years. The first time

period starts in 2015. The social planner problem is a fully centralized problem where the

climate externality is fully internalized. At the heart of the model is neo-classical growth.

The social planner maximizes the discounted sum of utilities from consumption per capita,

ct:

max
T∑
t=0

{
1

(1 + ρ)T∆t
T∆LtU (ct)

}
(3.1)

Time intervals are denoted by t. T∆ represents the length and T the absolute number

of time intervals. The social discount rate ρ equals 1.5 %. Population size, L, grows over

time at an exogenously given rate (see the appendix for more detail). Consumption, ct, is

expressed in per capita terms.

Per-period utility, U , carries the form of constant relative risk aversion (CRRA). The

inter-temporal elasticity of substitution, ϵ, is 1.45.

U (ct) =
c1−ϵ
t − 1

1− ϵ
− 1 (3.2)
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The production function is Cobb-Douglas with labour-augmenting productivity, A. The

production value, Y , equals gross income. The output elasticity of capital, K, is denoted

by α and equals 0.3.

Yt = (AtLt)
1−αKα

t (3.3)

The capital stock is raised by investments and is lowered by depreciation at a rate, δ,

of 10 %.

Kt+1 = ItT∆ + (1− δ)T∆Kt (3.4)

A certain fraction of gross income is lost to damages, Ω, which are convex in the

atmospheric temperature, TATM . A further fraction is lost to the cost of abatement, Λ,

which increases exponentially in the emission control rate, MIU . Investments, I, thus,

equal the difference between net income and consumption.

It = Yt (1− Ω(TATMt)− Λ(MIUt))− Ct (3.5)

Λt = φtMIU2.6
t (3.6)

Ωt = 0.00236TATM2
t (3.7)

Nordhaus assumes that due to exogenous and costless technological advancements, the

efficiency of abatement, φt, in figure 3.62, increases over time until eventually the cost of

abatement reaches zero.

Carbon emissions, E, are the sum of industrial emissions, EInd, and exogenous emissions

from deforestation, ELand
3. Industrial emissions are caused in the process of final output

production and they can be lowered in an endogenous effort by investing into the control

rate MIU .

EInd t = sigmatYt (1−MIUt) (3.8)

2See appendix C for an exact representation of the efficiency of abatement term.
3See appendix C.
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sigmat denotes the emissions output ratio4.

Et = EInd t + ELand t (3.9)

The carbon cycle consists of three reservoirs, whose transition is interdependent. Car-

bon emissions first flow into the lower atmosphere and from there they are passed on to

the lower and deeper oceans. In equation (3.10) MAT stands for the carbon concentration

in the lower atmosphere, MU represents the concentration in the upper and ML in the

lower oceans.

MATt+1

MUt+1

MLt+1

 =

0.2728

0

0

EtT∆ +

0.88 0.196 0

0.12 0.797 0.0015

0 0.007 0.9985


MATt

MUt

MLt

 (3.10)

There is no limit to the accumulation of carbon in either of the reservoirs and there is

no decay rate. Once carbon is added to the carbon cycle, it remains there.

Atmospheric carbon which is above the equilibrium concentration of MATEQ = 588GtC,

drives the temperature of the atmosphere through radiative forcing, FORC. Forcing due

to other greenhouse gases, FORCEXt, evolves exogenously
5.

FORCt = 3.6813
log
(

MATt

MATEQ

)
log(2)

+ FORCEXt (3.11)

The climate system is modeled as a cycle as well, where energy is passed between the

atmosphere, TATM , to the oceans, TOCEAN .

(
TATMt+1

TOCEANt+1

)
=

(
0.1005

0

)
FORCt +

(
0.8718 0.0088

0.025 0.975

)(
TATMt

TOCEANt

)
(3.12)

Constrained optimal problem In the base scenario by Nordhaus (2008), the social

planner has perfect foresight and fully internalizes the climate externality. However, he has

no instrument for direct climate change mitigation at hand. Thus, Nordhaus sets MIUt =

0. Consequently, in this scenario the economy arrives at the social optimum under the

4See appendix C.
5See appendix C.
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constraint that direct investments into mitigation are not possible. The problem remains

the same as the social planners problem with the additional constraint that MIUt = 0.

As mentioned above, I follow the terminology of Rezai (2011) and name this scenario the

constrained optimal problem.

Business as usual problem In this scenario, the agent perceives carbon emissions,

caused by economic activity, as exogenous. Consequently, although industrial emissions are

still caused in the process of production, they are substituted by an exogenous emissions

term as in equation (3.13). Therefore, the agent has no incentive to mitigate, neither

through direct investments into the reduction of carbon emissions, nor by avoiding the use

of carbon-emitting capital, and, in the endogenous model version by avoiding investments

into the knowledge stock. The private return on capital and R&D investments exceeds the

social return and, as a consequence, the agent over-invests.

Et = ELand t + EExg t (3.13)

The computation of this scenario is carried out iteratively. The vector of initial carbon

emissions over time is set to an arbitrary, but plausible, value. Using these values, climate

damages are calculated accordingly and the growth model is solved. In the following round,

carbon emissions are adjusted to those values, which households would have emitted given

their gross output from the first round. The model is solved sequentially and in rounds

until the vector of exogenous carbon emissions has converged to the industrial emissions.

The economic intuition behind the business as usual scenario and its computational

solution are a simplified version of the business as usual scenario suggested in Rezai (2011)

and Shiell and Lyssenko (2008). These authors suggest to divide the economy into N

dynasties, who are each endowed with equal capital stocks and labor. All dynasties are

aware of the externality caused by their own emissions and, therefore, mitigate. However,

the larger the number of dynasties is, and since all foreign emissions are taken to be

exogenous, the smaller is the amount of the externality which is internalized. From the

perspective of each dynasty, as N → ∞, the social marginal cost of carbon emissions within

the dynasty goes down to zero and, thus, households effectively do not mitigate.

Although the economic intuition behind the business as usual scenario by Rezai (2011)

is very plausible, for simplicity, I choose to solve the scenario as described above, where

the economy has one representative agent who takes carbon emissions as fully exogenous.
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Both economies evolve along the same path. Yet, the business as usual scenario by Rezai is

computationally not as stable, as the one stated above. When dynasties become very small

in order for mitigation to converge to zero, their gross income and consumption become

very small, too. Combined with the discounting of future values, at some point the savings

rate becomes arbitrary.

3.3.2 Endogenous growth and the DICE model

In the endogenous growth scenario, labor augmenting productivity, At, is explained within

the model. The social planner has the additional option to invest into R&D, which fosters

the development of new skills and technologies. To introduce endogenous growth to the

DICE model, two alterations are necessary. First, it has to be clarified how the cost of

investments into R&D is deducted from the budget and, second, one needs to define a

functional form of how R&D investments translate into growth. I base those modifications

on the Schumpeterian growth model described in chapter 2. In this model economic growth

is driven by vertical innovations targeted at intermediate product variants. The likelihood

of an innovation increases in R&D investments. However, while in the original DICE

model innovations are costless, in the Schumpeterian growth model, R&D investments are

costly and reduce the social planners budget for investments into the capital stock and for

consumption. The explicit trade-off between the marginal cost and the marginal benefit

of R&D investments in this study is new to the literature and it opens up an additional

channel through which climate change affects economic growth. First, climate damages

reduce the budget, which is available for re-investment versus consumption, and, second,

they reduce the return on investments.

Social planner problem In this scenario the social planner internalizes the entire cli-

mate externality. He has two instruments at hand. He can mitigate climate change through

direct emission control or by shifting resources away from carbon-emitting capital and

knowledge stocks. The transition equation of the capital stock is identical to the original

DICE model in equation (3.4). However, overall investments are now reduced by the social

planner’s spending on R&D, which is denoted by R.

It = Yt (1− Ω(TATMt)− Λ(MIUt))− Ct − LtRt (3.14)
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Since R&D investments are targeted at product variants, with Lt representing the

number of product variants available at time t, total investments into research equal LtRt.

Equation (3.15) is the discretized version of the transition of labor augmenting productivity

in equation (2.36) in chapter 2.

At+1 =

(
1 + σλ

(
Rt

(1 + σ)At

)γ)T∆

At, 0 < γ < 1, 0 < λ, σ (3.15)

In the Schumpeterian growth model σ describes the bandwidth of productivity levels

which are attached to the production of intermediate products. The highest productivity

level equals: Amax
t = (1 + σ)At. Research expenditures in equation (3.15) are normalized

by the highest available productivity level, because resource costs for new innovations

increase the further technology advances. Aghion and Howitt (1999) call this the curse of

complexity. The exponent γ causes decreasing returns to research with respect to R&D

investments. λ is a rescaling factor to the propensity to innovate and σ is a factor of

proportionality between the propensity to innovate and productivity growth. In equation

(3.15), the term in the outer bracket, minus one, equals the arrival rate of an innovation in

chapter 2 6. Torn from the original model described in chapter 2, both constants loose some

of their meaning. From a technical point of view, together all three parameter values (λ, σ

and γ) determine how R&D translates into productivity growth. Therefore, in this chapter,

they are the free parameter values used to calibrate the endogenous growth component to

the original growth component of the DICE model. What is important in equation (3.15)

are the curse of complexity and the decreasing returns to scale in R&D. Other than that,

the exact formulation of equation (3.15) is not essential to this study.

Constrained optimal problem This scenario is equivalent to the constrained optimal

scenario with exogenous growth. Again, the social planner is capable of fully internalizing

the externality. However, he is constrained and unable to mitigate, such that MIUt = 0.

Business as usual problem This scenario is equivalent to the business as usual scenario

with exogenous growth, where the agent anticipates future climate damages, but does not

acknowledge that these are caused by his own carbon emissions. Therefore, the agent takes

climate change as a given obstacle and not as an externality of production, which may be

internalized.

6In chapter 2, this was denoted as ϕt, the average Poisson arrival rate of an innovation.
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3.4 Calibration

The original version of the DICE model has a Ramsey-type economy at its core and eco-

nomic growth is driven by the growth rate of total factor productivity. In DICE, this

productivity term follows an exogenously given path and its growth rate declines over

time. For this reason, the growth rate of GDP goes down as well. After some years, gross

income follows an approximately linearly ascending path, which is visualized in figure 3.1

(a). This is in contrast to the endogenous growth component suggested in this paper,

which follows an exponential growth path with a constant rate of growth once the steady

state is reached. For this reason, it is not possible to achieve a perfect fit between the

endogenous growth component and the original growth component from the DICE model.

This is why it is necessary to construct not only a new version of DICE with an endogenous

growth component, but also one with a Ramsey model, which essentially is identical to

the original version except for its path of total factor productivity growth. Total factor

productivity growth in the new Ramsey model is calibrated such that it produces the same

path of output as the endogenous growth model.

For calibration, I divide the original DICE model as well as the new exogenous and en-

dogenous model versions into their growth and climate components. Ignoring the climate

component for now, I first calibrate the endogenous growth component to the original

growth component by minimizing the sum of squared errors between both models’ gross

output. In this calibration the free parameters are those which determine how investments

into R&D translate into the propensity to innovate. In equation (3.15) these are σ, γ and

λ. The resulting growth trajectory is plotted in figure 3.1 (a). In a second step, I calibrate

the new and exogenous growth component with exponential growth towards the endoge-

nous growth component. Again, I do this by minimizing the sum of the squared residuals

between gross income in both growth models. This time, however, I use the level of total

factor productivity in each time period as the parameters of calibration, such that I am

able to generate a near-perfect match between gross income in both models (apart from a

numerical error). In this way, gross output of the recalibrated growth model versions is in

the ballpark of the original growth model in DICE. Since gross output of the recalibrated

model versions is almost identical, I will be able to compare the climate impacts of the

endogenous growth setting to the exogenous counterpart in DICE. The climate component

of the DICE model remains unchanged.
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Figure 3.1: Left panels: Comparison of the original Ramsey model with an endogenous
growth model and its new exogenous counterpart. The lines for the endogenous and the
new exogenous growth model are on top of each other, since they are calibrated to one
another. Right panels: Absolute differences between the endogenous growth model and its
exogenous counterpart.

The transition between growth models As described above, I calibrate the exoge-

nous growth model with exponential growth towards the endongenous growth model, such

that gross income in both models is identical. Population sizes remain unchanged. I use
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the path of total factor productivity, At, as free parameter values. Looking at the produc-

tion function in equation (3.3), it is clear that for every path of At there exists only one

path for the capital stock, Kt, which leads to a match of gross income, Yt, in both models.

Since the transition of Kt is uniquely determined by the social planner’s optimization of

social welfare over the savings rate, the adjustment of the exogenous to the endogenous

growth model is a convex problem and there is only one combination of At and Kt which

minimizes the difference in gross income between both models.

To better understand the transition from the endogenous to the exogenous growth model,

think of the following thought experiment. What happens if I insert the same path of

At from the endogenous growth model into the exogenous growth model? From the pro-

duction function in equation (3.3) follows that in this case Kt would also have to be the

same in both models in order to match gross income. But it wont be, because in this

case all expenditures on R&D in the endogenous growth model would have to be added to

consumption in the exogenous growth model. This, however, changes the utility in con-

sumption over time and, thus, the same path of Kt from the endogenous growth model is

not necessarily welfare optimal in the exogenous growth model.
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Figure 3.2: Stacked distribution of income

Ex-ante, it is not possible to say what the welfare optimal path for Kt in the exogenous

model would be. Since households have an incentive to smooth their consumption over

time, this will depend on the relative allocation of the additional units of consumption,

which were freed from R&D investments. Therefore, I solve the exogenous growth model

with the same path of At from the endogenous growth model. I find that this leads to a

higher welfare optimizing capital stock in early time periods than what would be necessary

to match gross income. Apparently, households postpone some of their consumption into



3.5 Results 91

the future. However, since the resources for R&D investments in the endogenous growth

model are very evenly distributed over time (see figure 3.2), this effect is rather small. The

capital stock in the exogenous model differs by less than 3 % from the capital stock in the

endogenous growth model.

The result of this thought experiment is also reflected in the calibration of the exogenous

growth model to the endogenous growth model. In figure 3.1 (d), the welfare optimizing

capital stock is initially slightly higher in the exogenous model and it is offset by an

initially smaller total factor productivity which is depicted in figure 3.1 (f). As a result,

gross-income in both models in figure 3.1(b) is a near-perfect match. Both differ only by

a numerical error 7.

To conclude, since the paths for Kt and At in both growth models are very close, nearly

all resources, which are freed from investments in the endogenous growth model, are used

for consumption in the exogenous growth model as shown in figure 3.2.

3.5 Results

After having calibrated the exogenous and the endogenous growth models with no cli-

mate externality towards each other and towards the original growth component of the

DICE model, they are now put back together with the climate cycle from the original

DICE model. Each version of the DICE model, the exogenous and the endogenous growth

model version, is solved in three different scenarios, the social planner optimum (OPT),

the constrained optimum (COPT) and the business as usual (BAU) problem, as described

in section 3.3.

This section will focus on the impact of climate change on economic growth in an exoge-

nously versus an endogenoulsy growing economy. This impact crucially depend on two

economic mechanisms. First, it depends on how economic agents redistribute their savings

between investments into physical capital versus knowledge stocks and, second, on how

they reallocate their savings and consumption over time. In addition, in the OPT scenario

this impact depends on the re-allocation of direct mitigation efforts.

To disentangle all growth effects which occur due to the climate externality, the endoge-

7To see whether the small differences in Kt and At in figures 3.1 (d) and (f) are driven by the end-point
conditions of both models, I have also run the calibration of both growth models with 90 instead of 60 time
steps. However, the curvature of both graphs for Kt and At remain. The results start to differ slightly
after 35 time periods. Since I evaluate only the first 20 time periods of the DICE model, which correspond
to 100 years, the end-point conditions do not drive my the results.
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nization of the growth component and the three different scenarios, the following discussion

is subdivided into paragraphs each targeted at a distinct model comparison.

Comparison of the exogenous OPT, COPT and BAU scenarios In this para-

graph, I focus on the differences between the OPT, COPT and BAU scenarios in the ex-

ogenous growth setting. These are best understood when looking at the return on capital.

Figure 3.3 depicts the return on capital in all six versions of the DICE model in different

metrics. The absolute return on capital in the OPT scenario based on exogenous growth is

depicted in sub-plot (a). This plot serves as a reference point to the other sub-plots. Sub-

plot (b) depicts the returns on capital in the exogenous COPT and BAU scenarios plotted

against the OPT scenario. As Rezai (2011) argues, the absence of a mitigation instrument

in the COPT scenario, increases carbon emissions and climate damages relative to each

unit of capital investments compared to the OPT scenario and, therefore, lowers the private

return on capital. For this reason, in figure 3.3 (b) in the first time period the return on

capital sets out at a lower level in the COPT compared to the OPT scenario. Because the

only way to internalize the climate externality in the COPT scenario, is to avoid invest-

ments into carbon-emitting physical capital, the capital stock in figure 3.4 (b) remains at a

lower level. In a world with decreasing returns to capital this increases the marginal return

to capital relative to the OPT scenario. Therefore, after only a few years, the return on

capital in the COPT scenario is slightly above the one in the OPT scenario (figure 3.3 (b)).

In the long run, as climate damages kick in, the return on capital goes down way below

the optimal scenario. In the BAU scenario, the private return on capital does not reflect

the social cost of the productive assets. It neglects the negative climate externality and,

therefore, in early time periods, it exceeds by far the socially optimal return in the OPT

scenario. Hence, economic agents over-invest. Eventually, climate damages dominate all

other effects and the return on investment under BAU adjusts to the return under COPT.

This is also reflected in the behavior of the capital stock in figure 3.4 (b). While the capital

stock under BAU is above the capital stock in the OPT scenario for a century, eventually,

climate damages become so big, that it falls below the OPT benchmark. Figure C.2 (b)

in appendix C shows that gross income follows a similar behavior as the capital stock and

figure 3.6 (b) shows that consumption per capita goes down whenever investments go up

and vice versa. In the exogenous growth scenarios, total factor productivity is exogenously

given. Thus, their pathways are identical as shown in figure 3.5 (b).
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Figure 3.3: Comparison of DICE model versions: Return on capital

The endogenization of growth The question remains how these results change when

growth in DICE is endogenized. To answer this question, I will first revisit the endoge-

nization of growth in general as discussed in the previous section 3.4. In the literature, it

is often overlooked that, the effects regarding the transition from exogenous to endogenous

growth without the climate externality remain, when the climate externality is added.

However, now they are accompanied by effects which are specifically brought about by

climate damages. Figures 3.3 (c) to 3.7 (c) depict the relative differences between all three

scenarios, when moving from the exogenous to the endogenous model version. The bench-

mark line illustrates the relative difference between the exogenous and the endogenous

growth model component without a climate externality. Hence, it depicts those changes

which are purely due to the transition between growth models. As was argued in section

3.4, since gross output is calibrated to be the same in both model versions (see the strictly

horizontal benchmark line in figure C.2 (c)), additional investments into the knowledge

stock in early time periods are, to a very small degree, compensated for by a reduction

of investments into physical capital. Thus, in figure 3.4 (c) the benchmark line depicts a
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reduction in the capital stock in the first decade, which does not fully recover within the

upcoming century. As a result the marginal benefit of capital investments increases and,

thus, the benchmark for the return on capital in figure 3.3 (c) goes up. The labor force

in both model versions is the same. Therefore, as the physical capital stock goes down,

it is offset by a slightly higher knowledge stock, respectively total factor productivity, as

depicted in figure 3.5 (c). Since the additional expenditures on R&D are paid for by a

reduction in consumption, the benchmark for consumption per capita in figure 3.6 (c) is

significantly lower than one. Overall, the endogenization of growth in the DICE model

has similar effects on the stocks, on consumption and on the return on capital, as has the

endogenization of the pure growth component.
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Figure 3.4: Comparison of DICE model versions: Capital stock

Transitioning from a pure growth model to DICE Transitioning from a growth

model without a climate externality to a growth model which entails a climate externality,

due to climate damages, the savings effect and the capital accumulation effect kick in. In

section 3.1 I argued that both effects are negative. First, the capital accumulation effect
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is negative, because climate damages lower the budget that is available for investments.

Second, the savings effect is negative, because, due to climate damages, the return on

investment decreases and, therefore, the economic agent has an incentive to shift some of

his consumption towards earlier time periods. Using the DICE model, Fankhauser and

Tol (2005) show in a numerical example that this incentive is stronger than the one of

consumption smoothing, where households have an incentive to save more in earlier time

periods in order to make up for future losses. In the endogenous growth model version of

DICE both effects are even stronger than under exogenous growth, because here climate

damages not only reduce the return on investment into physical capital, but also into

the knowledge stock. This leads to a negative savings effect on the knowledge stock and,

therefore, the relative knowledge stock in figure 3.5 (c) in all three scenarios of the DICE

model eventually falls below the benchmark. At this point, the negative savings effect on

the capital stock is not relevant, because it occurs in the exogenous growth model version

of DICE, too. A lower level of total factor productivity causes a lower growth rate of gross

income, which also falls below its benchmark in all three scenarios in figure C.2 (c). This,

in turn, leads to a negative capital accumulation effect. If gross income is smaller, the

budget which is available for investment is also smaller. Consequently, in the long run,

the relative capital stocks in all three scenarios are eventually below the benchmark line

in figure 3.4 (c) 8. In accordance to this, after some decades, in the endogenous growth

model version relative consumption in figure 3.6 (c) is lower than the benchmark 9.

Comparing the endogenization of OPT, COPT and BAU When comparing the

endogenization of the OPT, COPT and BAU scenarios with each other, it is striking

that the same effects that we observed for the exogenous growth model scenarios are now

magnified when growth is endogenized. In the COPT scenario with endogenous growth,

when there is no instrument of direct mitigation available, the return on investment for

both stocks falls below the return on investment in the OPT scenario with endogenous

growth. This means that the knowledge stock also grows at a slower rate than in the OPT

scenario with endogenous growth and, thus, gross income growth and the accumulation

of physical capital are slower. Consequently, when the COPT scenario is endogenized,

gross income and the capital stock in relative terms in figures C.2 (c) (in appendix C) and

3.4 (c) are lower compared to when the OPT scenario is endogenized. Households shift

8Even the relative capital stock in the BAU scenario falls below the benchmark shortly after year 2100.
9The relative return on capital in all three scenarios in figure 3.3 (c) falls below its benchmark, because

its marginal product depends on the size of the knowledge stock.
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Figure 3.5: Comparison of DICE model versions: Total factor productivity

their spending accordingly towards consumption (see figure 3.6 (c)). To sum up, when

growth is endogenized the climate externality has a stronger, negative impact on economic

growth in the COPT scenario than in the OPT scenario in relative terms10.

The same line of argument with opposite signs holds for the BAU scenario. In this

scenario, the climate externality is perceived as exogenous and, therefore, the private return

on investment exceeds the social return. This increases the rate at which the knowledge

stock grows in the BAU scenario with endogenous growth compared to the OPT scenario

with endogenous growth. Initially, this raises the pace at which gross income grows. As a

result, the physical capital stock also grows at a higher pace, due to the accumulation effect.

Therefore, when the BAU scenario is endogenized, gross income and the capital stock in

relative terms are initially higher compared to when the OPT scenario is endogenized

(see figure C.2 (c) in appendix C and figure 3.4 (c)). To finance the over-investment into

capital, consumption in figure 3.6 (c) is reduced. However, since a higher gross output

10Whether the absolute reduction in gross income in the COPT scenario is bigger than in the OPT
scenario due to the endogenization of growth, is not deducible from figure C.2 (b) and (c).
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Figure 3.6: Comparison of DICE model versions: Consumption per capita

causes stronger climate damages, this initially positive growth effect compared to the OPT

scenario is eventually reversed around year 2200.

The temperature increase of the atmosphere As shown in figure 3.7 (a), in the

OPT scenario with exogenous growth the temperature increase in 2100 relative to pre-

industrial times amounts to roughly 3.5◦C. In figure (b), the temperature increase in the

COPT and BAU scenarios with exogenous growth, compared to the OPT scenario with

exogenous growth is even higher, because in these scenarios the agents do not have an

instrument of direct mitigation at hand. The temperature increase in the BAU scenario is

slightly higher than in the COPT scenario, as gross-income under BAU is higher than un-

der COPT and consequently the economy emits more carbon into the atmosphere. When

growth is endogenized in sub-figure (c), temperatures increase even further in the BAU

scenario, because in this scenario gross income is higher than in the BAU scenario with

exogenous growth. Vice versa, in the COPT scenario with endogenous growth the tem-

perature increase is smaller, because gross income in this scenario is smaller than in the
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Figure 3.7: Comparison of DICE model versions: Temperature increase of atmosphere

COPT scenario with exogenous growth. In the OPT scenario, the endogenization leads to

a smaller gross income compared to the exogenous growth version of this scenario. There-

fore, the social planner’s resources for climate mitigation shrink and thus the social planner

reduces its mitigation efforts. This effect even over-compensates the fact that a lower gross

income also leads to less carbon emissions. Therefore, the temperature increase in the

OPT scenario with endogenous growth is higher than in the OPT scenario with exogenous

growth. Yet, figure 3.7 (c) shows that these effects are rather small. The differences in

the atmospheric temperature increase between the scenarios are brought about by similar

pathways of carbon emissions (see figure C.4 in appendix C) and they lead to equivalent

damages as a fraction of gross income (see figure C.5 in appendix C).

3.6 Conclusions

Climate change impacts economic growth through various channels. In the literature, this

has recently lead to multiple suggestions on how this inter-dependent relation could be

modeled. Prominent ideas are to have climate damages not only reduce gross income
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levels, but also physical capital or even knowledge stocks. These models predict by far

more severe reductions of economic growth and a higher social cost of carbon. However,

these results are strongly driven by their underlying assumptions. To date there is only

punctual data available on how climate change affects gross income growth, capital stocks

and total factor productivity. In addition, empirically, it is not clear that climate damages

have a persistent effect on future outcomes.

At this point this chapter can contribute to the literature. The modeling approach in

this chapter does not rely on an arbitrary assumption on how climate damages might

affect productivity directly. It rather introduces an endogenous growth model to open new

channels for indirect dynamics, affecting investments not only into a physical capital stock,

but also into the knowledge stock. These dynamics turn out to have a substantial negative

and, in particular, lasting impact on the accumulation of capital stocks and thereby on

economic growth.

Using a recalibrated version of the DICE model with endogenous growth, I find that in

the Optimal Scenario, where the climate externality is fully internalized, the exogenous

growth model version of DICE over-estimates gross income by 2.3 % in 2100 and by 6.8 %

in 2150. In the very long run, this gap gets even larger. This result, however, is driven by

the choices of the social planner. The social planner chooses to invest less into capital and

labor-augmenting productivity as a measure to reduce carbon emissions. Put differently,

welfare-optimizing growth might be lower than what has previously been found. As long as

our societies have not yet achieved the transition towards a carbon-free economy, it might

be optimal to reduce economic growth intentionally by more than has been found so far,

until new and clean technologies allow for higher rates of economic growth again.



Chapter 4

A re-calibration and Monte-Carlo

analysis of different growth

trajectories in the DICE model

4.1 Introduction

While most macroeconomic growth models are run for a couple of decades at best, in

an environmental context, these same growth models are often solved for centuries. The

resulting projections are, consequently, very sensitive to the model assumptions. In this

chapter, I will show what historical data on GDP and consumption shares tell us about the

uncertainty that is tied to future growth trajectories and how these add to the uncertainty

regarding future climate change. To give an example, I recalibrate the growth component

of the DICE-2016R model as described in chapter 3 using the Bayesian calibration ap-

proach developed in chapter 2.

While economic growth is a major determinant of projected carbon emissions and climate

damages, its importance is often overlooked in the Integrated Assessment literature. In

the DICE model, this link is especially intense, since GDP translates directly into carbon

emissions at an exogenously given proportion, which shrinks over time as fossil energy is

gradually substituted by clean energies.

One major advantage of this Bayesian calibration technique in chapter 2 is that it quanti-

fies the uncertainty associated with plausible parameterization of economic growth, given a

particular growth model and the historical data. The procedure involves sampling Markov

chains of all parameters of calibration. These are then used to run a Monte-Carlo analysis
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on the DICE model. The resulting confidence intervals will show how different growth

trajectories within the DICE model translate into confidence intervals of atmospheric tem-

perature increases and climate damages.

The FUND model is a prominent IAM on which Monte-Carlo analyses have been run be-

fore. These analyses are run with respect to a variety of parameter values which stem

from both the growth as well as the climate component (see for instance Anthoff, Tol, and

Yohe (2009a), Anthoff, Tol, and Yohe (2009b) and Anthoff and Tol (2009))1. The density

functions of these parameter values are predominantly based on expert guesses. In contrast

to this approach, in this chapter, I specifically focus on the uncertainty of future economic

growth and how it translates into the uncertainty over future climate outcomes. The nov-

elty in this chapter is that a Bayesian approach allows for a statistically sound estimation

of the probability density functions of those parameters which determine economic growth

in DICE. However, the recalibrated version of the DICE model in this chapter is still a

deterministic model. The uncertainty over parameter values is explored in a Monte-Carlo

analysis. Thus, we repeat the same optimization problem with different, but fixed parame-

ter values. An other conceptual approach towards uncertainty in IAMs would be to include

the uncertainty over certain parameter values directly in the optimization problem. Im-

plementations of a corresponding recursive dynamic programming approach in DICE can

be found in Crost and Traeger (2013), Cai, Judd, and Lontzek (2013) and Traeger (2014).

4.2 Model calibration and data

It is not fully clear how the DICE-2016R model and its growth component were calibrated.

The calibration of previous model versions has been addressed fragmentarily in numerous

publications as for instance in Nordhaus (2008) and Nordhaus and Sztorc (2013). Ac-

cording to these items, economic growth is calibrated towards historical data from the

International Financial Statistics (IFS) of the IMF (see Nordhaus (2007)) starting in 1960.

Total factor productivity is chosen such that the model can reproduce observed data on

world GDP and capital stocks. Projections of future economic growth starting in 2015

are made assuming that total factor productivity declines exogenously following a logistic

equation. Labor supply is exogenous and follows a logistic-type equation as well, which is

fitted towards the United Nations (2015) projections. World population reaches a limit of

1The documentation of the FUND model and further information on Monte-Carlo runs can be found
on the web page: http:www.fund-model.org
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11.5 billion in 2300.

In this chapter, I recalibrate the growth component of the original DICE model using

the same Bayesian approach which I have described in chapter 2. In a nutshell, this ap-

proach assumes that macroeconomic models of long-run growth describe a smooth trend

of gross income growth, while they neglect business cycles and seasonal fluctuations in the

medium and short run. Thus, the difference between the observed and simulated data

picks up all stochastic shocks which occur in the economy. Therefore, it is assumed to fol-

low a stochastic process, an auto-regressive process of order one. The aim is to maximize

the likelihood of the simulated data to describe the true growth trend of the economy,

by maximizing the likelihood of the residuals between the observed and simulated data to

follow an AR(1) process. The maximization takes place over a pre-determined range of free

parameter values. Along the way, I draw Markov chains, which constitute a representative

sample of the kernel-densities of the free parameter values. These can then be used to run

a Monte-Carlo analysis on the DICE model.

At the core of the original DICE model lies a Ramsey-type economy. Since the original

DICE model is solved in discrete time with time intervals of five years, I cannot use the

Ramsey model in continuous time like I have already calibrated in chapter 2. Therefore,

for the purpose of this chapter, I recalibrate the Ramsey model in discrete time and specif-

ically with time intervals of five years. Parameters of calibration are those parameters,

which have a direct impact on the level and slope of gross income. These are total fac-

tor productivity growth and the initial stocks of capital and total factor productivity. I

draw one Markov chain of 100k realizations for each parameter of calibration. All chains

converge within the first 25k realizations. To be on the safe side, I disregard the first half

of each chain. Further, I apply a thinning of 50. This pushes the auto-correlation of the

chain elements in each chain down to below 5% after a few realizations each. The final

chain length is thus 1k. Consequently, this is also the number of Monte-Carlo runs on the

DICE model.

The DICE-2016R model starts in 2015 and it is solved for sixty time periods. It con-

sequently runs until year 2310, which is long enough for reasonable end-point conditions

to not affect the model’s outcome within the first century at a discount rate of 1.5%. I

calibrate the growth component of the model towards GDP and the consumption share

from 1950 to 2010. This means that the model is calibrated towards 13 observations of
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GDP and consumption shares each. Consumption shares from 1950 to 2010 are calculated

using the Penn World Tables, described in Feenstra, Inklaar, and Timmer (2015a) and

GDP was taken from the Maddison data (see Maddison (2010)) and rescaled to meet the

unit requirement of the original DICE-2016R model. For population sizes from 1950 to

2010 I use the Maddison data set as well. The newly calibrated Ramsey model is able to

reproduce GDP per capita very well. The observed data lies within the 50% confidence

interval. The consumption share is less accurately reproduced and lies within the 90%

confidence interval.

4.3 Results

After having recalibrated the growth component of the DICE model, I compare its model

output to the original DICE model. In addition, I evaluate the uncertainty over future eco-

nomic growth and how it translates into confidence intervals of an atmospheric temperature

increase in the recalibrated model version.

The Social Optimum Scenario Since total factor productivity growth is a parameter

of calibration, I implicitly assume it to be a constant. The annual growth rate of total

factor productivity which best fits the data is 8.5%. In the original DICE model, this

growth rate is initially 8.2% and it is assumed to gradually decrease thereafter. The initial

values for the capital and knowledge stocks are very similar to those in the original DICE

model (see figures 4.1 and D.2 in appendix D). Since total factor productivity in the re-

calibrated version of the DICE model is strictly above the one in the original model, while

the labor force in both models is identical and the initial capital stocks are very close, the

median projection of gross output in the recalibrated model version is also higher than in

the original model in figure D.1 in appendix D. The same holds for the path of future

capital stocks and consumption in figures D.2 and D.3 2.

The confidence interval of total factor productivity in figure 4.1 is rather large. The

expected variation from the mean in 2100 within the 90 % confidence interval amounts to

26 %3. This has a strong effect on the uncertainty of future economic growth in figure D.1

2The return on capital in figure D.5 is higher than in the original version of the DICE model, because
a higher total factor productivity increases the marginal productivity of the capital stock.

3In 2100, the median projection of total factor productivity amounts to 19.4 units and the 90 %
confidence interval is 10.3 units wide.
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in appendix D. The expected variation from the mean within the 90 % confidence in 2100

interval amounts to 36 %4.
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Figure 4.1: Total factor productivity

Note: The light gray shaded area corresponds to the 90% confidence interval. The
dark gray shaded area corresponds to the 50% confidence interval of all projections.

Compared to the original DICE model, the persistently higher gross income in the re-

calibrated DICE model leads to more carbon emissions and climate damages in figures D.7

and D.8 (in appendix D) and to a stronger temperature increase of the atmosphere in fig-

ure 4.2. In 2100, the estimated mean atmospheric temperature increase amounts to 3.6◦C.

Interestingly, while the confidence interval on total factor productivity is rather wide, the

expected variation from the mean temperature within the 90% confidence interval in 2100

reaches only 4%. This is for two reasons. First, carbon emissions have a delayed impact

on atmospheric temperatures and, second, households are able to mitigate. Overall, since

mitigation efforts reach 100% shortly after 2100, the relatively high uncertainty in gross

income has only a small impact on the uncertainty regarding the temperature increase.

In addition, the emission control rate and the savings rate in figures 4.3 and D.4 in

appendix D are lower than in the original DICE model. This is because in the recalibrated

version of DICE income per capita grows faster. Thus, households are able to consume

4The median projection of gross income in 2100 is 1057 units and the width of its 90 % confidence
interval is 760 units.
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Figure 4.2: Temperature increase of atmosphere

Note: The light gray shaded area corresponds to the 90% confidence interval. The
dark gray shaded area corresponds to the 50% confidence interval of all projections.

more, which leads to a steeper reduction of the marginal benefit of consumption over time.

Therefore, households are less inclined to give up consumption in early time periods in

order to increase future income growth.

The social cost of carbon (SCC) is a widely used concept for understanding the cost

of global warming and for implementing climate change policies. It is the social cost of an

additional ton of carbon dioxide emissions into the atmosphere. In the Optimal Scenario

this is equivalent to the marginal cost of reducing carbon dioxide emissions by one ton:

SCC = −dΛt (MIUt)Yt

dEInd t

= −
∂Λt(MIUt)Yt

∂MIUt

∂EInd t

∂MIUt

(4.1)

The variation in the SCC is purely driven by the probability distribution of total factor

productivity growth. In 2020 in figure 4.4 (a) this variation is rather small, but it almost

doubles by 2050 in figure 4.4 (b).

The Constrained Optimum Scenario In this scenario households have no instrument

of direct mitigation at hand. The only way to reduce carbon emissions is to emit less in
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Figure 4.3: Emission control rate

Note: The light gray shaded area corresponds to the 90% confidence interval. The
dark gray shaded area corresponds to the 50% confidence interval of all projections.
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and 2050 (b) in 2100.
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the first place by reducing gross production. As discussed in chapter 3, in this scenario

gross income and the capital stock are lower compared to the Optimal Scenario, while

carbon emissions and climate damages are higher. This scenario is identical to the original

Business as usual Scenario by William Nordhaus.
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Figure 4.5: Temperature increase of atmosphere in the Constrained Op-
timal Scenario

Note: The light gray shaded area corresponds to the 90% confidence interval. The
dark gray shaded area corresponds to the 50% confidence interval of all projections.

The atmospheric temperature increase in this scenario compared to pre-industrial times

amounts to 4.7C◦. In the Optimal Scenario, the temperature increase is lower with 3.8C◦.

For the Optimal Scenario I have argued that the confidence interval around the atmospheric

temperature increase, even in 2100, is rather narrow, although the uncertainty associated

with the parameterization of economic growth is relatively high. This is the case for two

reasons. First, carbon emissions have a delayed impact on atmospheric temperatures and,

second, households are able to mitigate. After one century, mitigation efforts in the Opti-

mal Scenario reach almost 100%.

In the Constrained Optimal Scenario, households cannot directly mitigate carbon emis-

sions. While gross income in this scenario is smaller, its variation translates unmitigated

into the temperature increase of the atmosphere. Consequently, in this scenario, the at-

mospheric temperature increase is expected to vary by 11% from the mean within the 90%

confidence interval in 2100, compared to only 4% of variation in the Optimal Scenario.
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Thus, if climate change is unmitigated in the DICE model, the uncertainty concerning

future economic growth renders future climate outcomes almost three times as uncertain

compared to the social optimum with direct mitigation.

4.4 Conclusions

In this chapter I demonstrate how a Bayesian approach towards the calibration of growth

models, as described in chapter 2, can be used to recalibrate the growth component of

an Integrated Assessment model. Since the approach is very flexible, it can be used to

recalibrate any Integrated Assessment model which has a model of economic growth at its

core. In this chapter, I have recalibrated the growth component of the DICE-2016R model.

The growth component was calibrated towards observed data on GDP and consumption

shares since 1950. The resulting parameters of calibration were used to project economic

growth, together with the original climate component of the DICE model, into the future.

The Bayesian approach allows for a statistically sound derivation of confidence intervals

of future economic growth. By running a Monte-Carlo analysis on the DICE model, I

am able to assess how these translate into an expected variation of the climate variables.

A considerable complication of this approach is that it requires observed time series on

those variables towards which the model is calibrated. Because of the statistical nature

of this approach, these time series have to be without gaps. This may be problematic for

unobservable variables or for multi-regional models where the gathering of regional data

can be cumbersome or even impossible.

A major contribution of this chapter is to derive the uncertainty over future GDP growth

from a stochastic model and observed data and to show how it translates into uncertainty

over future climate damages and the social cost of carbon. Since Nordhaus assumes in

his Optimal Scenario relatively low costs of mitigation, which decrease sharply over time,

mitigation efforts reach 100% shortly after 2100. Therefore, the large uncertainty over

future income which I find in this chapter has only a small impact on the uncertainty over

the temperature increase and climate damages. In the Constrained Optimum Scenario,

where carbon emissions remain unmitigated, this impact is almost three times as large.

The median projection of gross income in the recalibrated version of DICE is above the one

in the original model. This is because I project past observed growth into the future using

a constant rate of growth of total factor productivity, while Nordhaus assumes a gradual

decay of total factor productivity growth. Nevertheless, from a modeling point of view it
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would be possible to transfer Nordhaus’ growth decay to the recalibrated version of the

DICE model.



Appendix A

Appendix to chapter 1

A.1 Transformation of the Jones model into station-

ary variables

All state and control variables are transformed into stationary values using:

Â = A
LβA

, K̂ = K
LβK

, Ĉ = C
LβK

and P̂A = PA

L
with βA = ηL

1−ηA
and βK = 1−ηA+ηL

1−ηA
.

such that in the steady state
˙̂
A =

˙̂
K =

˙̂
C =

˙̂
PA = 0.

To derive βA:

Ȧ =
ηL

1− ηA
nA (A.1)

˙(
A

LβA

)
=

ȦLβA − AβAL
βA−1L̇

L2βA
(A.2)

=
ÂηLn

1− ηA
− ÂβAn = 0

if

βA =
ηL

1− ηA
(A.3)
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To derive βK :

K̇ =
ηL

1− ηA
nK + nK (A.4)

˙(
K

LβK

)
=

K̇LβK −KβKL
βK−1L̇

L2βK
(A.5)

=
K̂ηLn

1− ηA
+ nK̂ − K̂βKn = 0

if

βK =
ηL

1− ηA
+ 1 (A.6)

Thus, for the equation of motion for
˙̂
A follows:

˙̂
A =

Ȧ

LβA
− A

LβA
βA

L̇

L
(A.7)

˙̂
A = αJÂ

ηA(1− ϕ)ηL − ÂβAn (A.8)

For
˙̂
K:

˙̂
K =

K̇

LβK
− K

LβK
βK

L̇

L
(A.9)

˙̂
K = Ŷ − Ĉ − (δ + nβK)K̂ (A.10)

For
˙̂
C:

˙̂
C =

Ċ

LβK
− C

LβK
βK

L̇

L
(A.11)

˙̂
C =

Ĉ

θ
(r − ρ− n) + nĈ − ĈβKn (A.12)



A.1 Transformation of the Jones model into stationary variables 112

For
˙̂
PA:

˙̂
PA =

ṖA

L
− P̂A

L̇

L
(A.13)

˙̂
PA = r̂P̂A − π̂ − P̂An (A.14)

with

r̂ = (1− σ)2
Ŷ

K̂
− δ = r (A.15)

and

π̂ = σ(1− σ)
Ŷ

Â
=

π

L
(A.16)

In the steady state r is constant and π grows at rate n. Consequently PA does also

grow at rate n.

The wage equality is given by:

σ
Ŷ

ϕ
= P̂AαJÂ

ηA(1− ϕ)(ηL−1) (A.17)

and Ŷ by:

Ŷ =
Y

LβK
= (Âϕ)σK̂1−σ (A.18)

The system of differential equations transformed into stationary variables is, thus, given

by:

˙̂
A = αJÂ

ηA(1− ϕ)ηL − ÂβAn (A.19)

˙̂
K = (Âϕ)σK̂1−σ − Ĉ − (δ + βKn)K̂ (A.20)

˙̂
C =

Ĉ

θ

(
(1− σ)2(Âϕ)σK̂−σ − δ − ρ− n+ θn

)
− nβKĈ (A.21)
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˙̂
PA =

(
(1− σ)2(Âϕ)σK̂−σ − δ − n

)
P̂A − σ(1− σ)Âσ−1ϕσK̂1−σ (A.22)

and the static constraint is given by the equality of wages:

σÂσϕσ−1K̂1−σ = P̂AαJÂ
ηA(1− ϕ)ηL−1 (A.23)

A.2 Region definitions

Table A.1: Region definitions in this paper and in the SSP database

Region This paper SSP database

Western Europe Austria, Belgium, Denmark, Austria, Belgium, Denmark,
Finland, France, Germany, Finland, France, Germany,
Italy, Netherlands, Norway, Greece, Ireland, Italy,
Sweden, Switzerland, UK, Luxembourg, Netherlands,
Ireland, Greece, Portugal, Portugal, Spain, Sweden,
Spain UK, Iceland, Norway,

Switzerland
Eastern Europe Bulgaria, Hungary, Poland, Albania, Bosnia and

Romania, Former Herzegovina, Croatia,
Czechoslovakia (Czech- Montenegro, Serbia, The
Republik, Slovakia), former Yugoslav Republic
Former Yugoslavia ( of Macedonia, Cyprus,
Yugoslavia, Bosnia, Croatia, Czech Republik, Estonia,
Macedonia, Slovenia, Serbia/ Hungary, Malta, Poland,
Montenegro/ Kosovo) Slovakia, Slovenia, Bulgaria,

Latvia, Lithuania, Romania
Former USSR Former USSR (Armenia, Russian Federation, Belarus,

Azerbaijan, Belarus, Republic of Moldova, Ukraine
Estonia, Georgia,
Kazakhstan, Kyrgyzstan,
Latvia, Lithuania, Moldova,
Russia, Tajikistan,
Turkmenistan, Ukraine,
Uzbekistan)
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A.3 Parameter estimates from a model calibration on

the country level

Table A.2: Coefficients, variances and covariances

Country ηA V ar(ηA) ηL V ar(ηA) Cov

Western Europe:
Austria * 0.55 0.0096 0.55 0.0038 1e-05>Cov>-1e-05
Belgium 0.66 0.012 0.74 0.0041 -0.0069
Denmark 0.66 7.607e-05 0.75 1.044e-04 1e-05>Cov>-1e-05
Finland 0.62 1.77e-04 0.77 2.058e-04 1e-05>Cov>-1e-05
France * 0.58 0.0027 0.81 0.0037 1e-05>Cov>-1e-05
Germany 0.63 5.149e-04 0.78 3.56e-04 -2.367e-04
Italy 0.66 1.634e-04 0.82 2.419e-04 1e-05>Cov>-1e-05
Netherlands 0.37 1.373e-04 0.78 154e-04 1e-05>Cov>-1e-05
Norway * 0.60 9.997e-04 0.74 0.0012 1e-05>Cov>-1e-05
Sweden * 0.65 5.575e-04 0.73 7.649e-04 -3.323e-04
Switzerland 0.64 0.001 0.76 0.001 1e-05>Cov>-1e-05
UK 0.59 2.202e-04 0.64 4.025e-04 1e-05>Cov>-1e-05
Ireland * 0.68 0.0039 0.68 0.0301 1e-05>Cov>-1e-05
Greece 0.58 0.0023 0.75 0.0017 -0.0018
Portugal * 0.62 0.0014 0.64 6.985e-04 1e-05>Cov>-1e-05
Spain * 0.55 0.0122 0.55 0.0049 9.919e-04
Eastern Europe:
Former Czechoslovakia * 0.60 0.0018 0.63 0.0018 1e-05>Cov>-1e-05
Former Yugoslavia * 0.37 0.0017 0.78 0.0017 1e-05>Cov>-1e-05
Bulgaria * 0.60 0.0011 0.74 8.944e-04 1e-05>Cov>-1e-05
Hungary 0.71 8.533e-04 0.74 0.002 -7.795e-04
Poland 0.43 9.436e-04 0.77 0.0012 -6.786e-04
Romania 0.34 0.0011 0.82 0.0011 1e-05>Cov>-1e-05

In countries marked with an asterisk calibrated income is more than 5% lower than observed
income in 2008.
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Figure B.1: Autocorrelation functions (lags 0 to 26)
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C.1 The DICE model in detail

The growth model The population size, Lt, evolves exogenously according to:

L1 = 7403 (million people) (C.1)

Lt+1 =
Lt

(
11500
Lt

)0.134
1000

(C.2)

The initial value of the capital stock, K1, is:

K1 = 223 (in trillion 2010 USD) (C.3)

Total factor productivity, alt, evolves exogenously according to:

al1 = 5.115 (C.4)

alt+1 =
alt

1− gat
(C.5)

with gat representing productivity growth:

gat = 0.076e−0.005∆T (t−1) (C.6)
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The return on investment, rt, is derived from the Keynes-Ramsey rule. ρ denotes the

rate of time preference, ϵ the elasticity of marginal utility from consumption and Ct denotes

consumption in absolute terms:

rt = (1 + ρ)

(
Ct+1 ∗ 1000

Lt+1

Lt

Ct ∗ 1000

) ϵ
T∆

− 1 (C.7)

The climate model The adjusted backstop price φt is:

φt = 0.212 ∗ 0.975(t−1) ∗ sigmat (C.8)

with an emissions output ratio sigmat of:

sigma1 = 0.35

sigmat+1 = sigmat e
gsigt∗T∆ (C.9)

The change in sigmat, named gsigt, equals the cumulative improvement of the energy

efficiency:

gsig1 = −0.0152

gsigt+1 = gsigt ∗ 0.999T∆ (C.10)

Emissions from deforestation, ELand t, amount to:

ELand t = 2.6 ∗ 0.885(t−1) (C.11)

Exogenous forcing of other greenhouse gases is denoted by FORCEX t:

FORCEX t =0.5 +
0.5

17
∗ (t− 1) for t ≤ 17 (C.12)

FORCEX t =1 for t ≥ 18 (C.13)
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D.1 Model output of the re-calibrated DICE-2016R

model
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Figure D.1: Gross income

Note: The light gray shaded area corresponds to the 90% confidence interval. The
dark gray shaded area corresponds to the 50% confidence interval of all projections.
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Figure D.2: Capital stock

Note: The light gray shaded area corresponds to the 90% confidence interval. The
dark gray shaded area corresponds to the 50% confidence interval of all projections.
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Figure D.3: Consumption per capita

Note: The light gray shaded area corresponds to the 90% confidence interval. The
dark gray shaded area corresponds to the 50% confidence interval of all projections.
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Figure D.4: Gross savings rate

Note: The light gray shaded area corresponds to the 90% confidence interval. The
dark gray shaded area corresponds to the 50% confidence interval of all projections.
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Figure D.5: Real interest rate

Note: The light gray shaded area corresponds to the 90% confidence interval. The
dark gray shaded area corresponds to the 50% confidence interval of all projections.
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Figure D.6: Cost of emission reductions

Note: The light gray shaded area corresponds to the 90% confidence interval. The
dark gray shaded area corresponds to the 50% confidence interval of all projections.
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Figure D.7: Total CO2 emissions

Note: The light gray shaded area corresponds to the 90% confidence interval. The
dark gray shaded area corresponds to the 50% confidence interval of all projections.
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