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I.	Summary	
	
Correct	 development	 of	 the	 placenta	 is	 crucial	 for	 the	 growth	 of	 the	 embryo	 and	 the	

health	of	both	mother	and	child.	Using	mainly	the	mouse	as	a	model	system,	a	cohort	of	

transcription	 factors	 (TFs)	have	been	 implicated	 in	 the	specification	of	 trophectoderm	

lineage	 progenitors,	 which	 gives	 rise	 to	 the	 placenta.	 These	 progenitors	 are	 the	 first	

differentiated	cells	that	emerge	in	the	embryo,	and	therefore	their	specification	involves	

mechanisms	that	dissolve	pluripotency.	Importantly,	the	network	configuration	of	these	

transcription	factors	has	not	been	entirely	clarified,	and	so	is	the	degree	of	conservation	

in	 the	 human.	 Moreover,	 it	 is	 not	 well	 understood	 how	 pluripotency	 is	 terminated	

during	the	commitment	of	trophectoderm	progenitors,	and	how	this	is	regulated	on	the	

epigenetic	level.	

	

To	address	these	questions	I	employed	an	in	vitro	differentiation	system	that	is	based	on	

human	 embryonic	 stem	 cells	 (ESCs),	 and	 treatment	 with	 BMP4.	 This	 stimulates	 the	

differentiation	of	the	cells	into	a	trophoblast	fate.	To	analyze	the	underlying	mechanisms	

of	 this	 specification,	 I	 first	 optimized	 a	 purification	 modality	 for	 investigating	 the	

intrinsic	properties	of	these	progenitor	cells.	This	utilizes	an	antibody	that	is	specific	to	

APA	 (CD249,	 Ly-51,	 ENPEP),	 a	 surface	 marker	 of	 trophoblast	 progenitors,	 and	 cell	

purification	 via	 fluorescence	 activated	 cell	 sorting	 (FACS).	 Based	 on	 this,	 I	 employed	

global	 transcriptomic	 and	 epigenomic	 approaches	 as	well	 as	 functional	 approaches	 to	

analyze	 the	 underlying	 mechanisms	 of	 trophectoderm	 specification	 and	 pluripotency	

shutdown.	

	

Using	 this	 approach	 I	 first	 showed	 the	 close	 homology	 of	 the	 in	 vitro	 derived	 APA+	

trophoblast	 progenitors	 to	 human	 trophectoderm	 progenitors	 in	 blastocysts.	 I	 then	

went	on	 to	discover	 a	 gene	 regulatory	network	 that	 governs	 the	differentiation	of	 the	

human	ESC-derived	trophoblast	progenitors.	It	consists	of	the	four	transcription	factors	

GATA2,	GATA3,	TFAP2A	 (AP2-α)	 and	TFAP2C	 (AP2-γ),	which	 I	 collectively	named	 the	

TrophEctoderm	four,	or	in	short	–	the	TEtra.	I	found	that	the	TEtra	regulate	in	concert	

both	 repression	 of	 pluripotency	 and	 activation	 of	 trophoblast	 specific	 genes.	 I	 also	

discovered	 genome	wide	 distribution	 of	 the	 TEtra	 network,	 proven	 some	 of	 its	 main	
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components	 in	 functional	assays,	and	characterized	 important	epigenetic	 features	 that	

regulate	the	specification	of	human	trophectoderm	progenitors.	

	

The	 implications	 of	 my	 work	 are	 broad	 and	 include	 an	 important	 foundation	 for	

understanding	 in	 a	 great	 detail	 the	 mechanisms	 underlying	 human	 placental	

development	and	numerous	pathologies	related	to	placental	dysfunction	which	 impact	

the	health	of	mother	and	child.	Furthermore,	I	point	out	important	features	of	regulation	

of	 pluripotency	 dissolvent	 and	 TE	 specification	 that	 could	 be	 unique	 to	 the	 human.	

Finally,	 I	discover	 features	of	epigenetic	 turnover	that	are	pertinent	 for	understanding	

processes	undelaying	gene	regulation	in	development.	
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I.	Zusammenfassung	
	
Während	der	Schwangerschaft	 ist	die	korrekte	Entwicklung	der	Plazenta	essenziell	 für	

das	 Wachstum	 des	 Embryos	 und	 die	 Gesundheit	 von	 Mutter	 und	 Kind.	 Versuche	 an	

Mäusen	 ermöglichten	 die	 Identifikation	 eines	 Netzwerks	 an	 Transkriptionsfaktoren	

(TF),	 das	 der	 Entstehung	 von	 Trophectoderm-	 (Vorläuferzellen	 der	 Plazenta)	 und	

spezialisierten	Plazenta-Zellen	in	Mäusen	zugrunde	liegt.	Da	Trophectoderm-Zellen	die	

ersten	 differenzierten	 Zellen	 des	 Embryos	 ausmachen	 geht	 ihre	 Entwicklung	 Hand	 in	

Hand	 mit	 der	 Abschaltung	 von	 Pluripotenz-Genen.	 Die	 Charakterisierung	 dieses	

Netzwerks	 an	 TF	 ist	 jedoch	 noch	 nicht	 komplett	 ausgereift	 und	 es	 ist	 nicht	 klar,	 ob	

dieses	 auch	 im	 Menschen	 für	 die	 Entwicklung	 der	 Plazenta	 und	 das	 Ende	 der	

Pluripotenz	wichtig	sind	und	welchen	Einfluss	Epigenetik	auf	diese	Prozesse	hat.		

	

Um	 diese	 Fragen	 zu	 beantworten	 habe	 ich	 ein	 in	 vitro	 Differenzierungsprotokoll,	 bei	

dem	 ich	 humane	 Embryonale	 Stammzellen	 (ESZ)	 mit	 dem	 Morphogen	 BMP4	

differenziere,	 benutzt.	 Um	 die	 Homogenität	 der	 Population	 von	 Trophoblast-

Vorläuferzellen	sicherzustellen	habe	ich	die	Technik	fluorescence	activated	cell	sorting	

(FACS)	 benutzt	 um	 Vorläuferzellen	 entsprechend	 der	 Expression	 des	

Oberflächenantigens	 APA	 (CD249,	 Ly-51,	 ENPEP)	 anzureichern.	 Diese	 Zellen	 habe	 ich	

dann	für	die	Analyse	von	Transkriptom	und	Epigenom	als	auch	für	funktionelle	Assays	

benutzt	 um	 die	 grundlegenden	 Mechanismen	 der	 humanen	 Plazentaentwicklung	 zu	

entziffern.		

	

Hierdurch	 konnte	 ich	 zeigen,	 dass	 diese	 in	 vitro	 differenzierten	 Zellen	 zum	 Großteil	

homolog	sind	zu	in	vivo	Trophectoderm-Zellen.	Außerdem	konnte	ich	ein	Netzwerk		von	

TF	 identifizieren,	 das	 der	 Entwicklung	 von	 humanen	ESZ	 in	 frühe	Vorläuferzellen	 der	

Plazenta	zugrunde	liegt.	Dieses	besteht	aus	den	vier	TF	GATA2,	GATA3,	TFAP2A	(AP2-α)	

und	 TFAP2C	 (AP2-γ),	 die	 gleichzeitig	 Pluripotenz-Gene	 ab-	 und	 Trophoblast–Gene	

anschalten	 können.	 Schließlich	 habe	 ich	 die	 Verteilung	 dieser	 4	 TF	 über	 das	 gesamte	

Genom	 während	 dieser	 Differenzierung	 untersucht,	 durch	 Manipulation	 des	 Genoms	

gewisse	 Bestandteile	 dieses	 Netzwerks	 auf	 deren	 Bedeutung	 geprüft	 und	 zentrale	
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epigenetische	 Merkmale	 charakterisiert,	 welche	 die	 Entwicklung	 von	 humanen	

Plazenta-Vorläuferzellen	regulieren.		

Die	 Ergebnisse	 dieser	 Arbeit	 zeigen	 die	 detaillierten	 Mechanismen,	 die	 für	 die	 frühe	

Plazentaentwicklung	beim	Menschen	verantwortlich	sind.	 	
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II.	Introduction	

Trophectoderm	and	placental	development		
	
Generation	of	defined	cell	types	in	the	preimplantation	embryo		
	

The	 fertilization	 of	 the	 mammalian	 oocyte	 leads	 to	 the	 formation	 of	 an	 embryo	

consisting	of	totipotent	cells	called	the	morula.	During	the	partitioning	of	the	morula	and	

the	 formation	 of	 the	 blastocyst	 distinct	 cell	 types	 can	 be	 identified	 for	 the	 first	 time	

during	 development.	 This	 includes	 a	 group	 of	 pluripotent	 cells	 named	 the	 inner	 cell	

mass	(ICM),	and	multipotent	cells	of	the	trophectoderm	(TE).	The	ICM	further	gives	rise	

to	the	primitive	endoderm	(PE)	and	the	epiblast	that	forms	the	soma	and	the	germ	line	

(Figure	 II-1).	 At	 this	 stage	 the	 blastocyst	 implants	 in	 the	 uterus.	 The	 gene	 networks	

underlying	 the	 cell-commitment	processes	over	 time	have	been	 studied	extensively	 in	

the	mouse	using	chiefly	classical	approaches	of	gene	gain–	and	loss–of–function.	It	is	not	

well	 understood	 to	what	 degree	 the	molecular	 processes	 that	were	 elaborated	 in	 the	

mouse	are	conserved	in	our	own	development.	Because	it	is	not	anticipated	that	human	

embryos	 will	 become	 available	 for	 analysis	 by	 gene	 manipulation	 due	 to	 ethical	

restrictions,	this	gap	can	only	be	filled	using	in	vitro	cell	based	models.	

																																											

Figure	II-1:	Mouse	embryo	development	up	to	the	blastocyst	stage	
The	 fertilized	 egg	 develops	 via	 cell	 divisions	 into	 2-,	 4-,	 8-cell	 and	 morula	 stage	
embryo.	It	is	not	until	the	early	blastocyst	stage	that	defined	cell	types	emerge,	namely	
first,	 the	 trophectoderm	 (TE)	 and	 the	 inner	 cell	 mass	 (ICM),	 and	 subsequently	 the	
epiblast	(EPI)	and	the	primitive	endoderm	(PE)	(Yamanaka	et	al.,	2006).		
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The	first	specification	
	
Depletion	or	rearrangement	of	 totipotent	cells	 in	mouse	preimplantation	embryo	have	

shown	that	there	 is	plasticity	 in	the	cells	 that	can	compensate	 for	these	manipulations	

until	the	16-32-cell	stage	(Bedzhov	et	al.,	2014).	This	led	to	the	hypothesis	that	it	is	the	

position	 of	 the	 cells	 between	 the	 8-	 and	 32-cell	 stage	 that	 determines	 the	 lineage	

outcome:	inner	and	outer	cells	into	the	ICM	and	the	TE,	respectively	(Figure	II-2A).	This	

view	 has	 been	 challenged	 by	 depletion	 of	 the	 cell	 polarity	 genes	Par3	 and	 aPKC	 that	

skewed	lineage	ratio	in	favor	of	ICM	cells,	indicating	that	it	is	not	only	the	position	of	the	

cells	that	determine	the	lineage	outcome	(Plusa	et	al.,	2005).	It	has	also	been	proposed	

that	 there	exists	a	developmental	bias	 in	 the	blastomeres	of	 the	2-cell	 stage	 (Gardner,	

2001;	 Piotrowska	 et	 al.,	 2001;	 Piotrowska	 and	 Zernicka-Goetz,	 2001).	 Although	 time-

lapse	microscopy	observations	initially	rejected	the	view	that	the	two-cell	blastomeres	

are	distinct	 from	each	other	with	 regard	 to	 the	 ICM	and	TE	outcome	 (Motosugi	 et	 al.,	

2005),	more	 recently	experiments	using	genetically	 labeled	cells	have	emphasized	 the	

existence	 of	 a	 developmental	 bias	 (Tabansky	 et	 al.,	 2013).	 Another	 model	 reconciles	

these	observations	by	explaining	that	the	differences	in	cell	polarity	predispose	cells	in	

2-,	4-	and	8-cell	stage	embryos	to	give	rise	to	the	ICM	or	TE	(Johnson	and	Ziomek,	1981).	

This	relies	on	observations	that	at	these	stages	the	cells	have	apical-basal	polarity,	and	

depending	 on	 the	 plane	 of	 division,	 the	 cells	 either	 give	 rise	 to	 one	 polar	TE	 and	 one	

apolar	ICM	cell	or	to	two	polar	TE	cells.	This	model	is	in	agreement	with	the	increased	

production	of	ICM	cells	upon	the	loss	of	cell	polarity	(Sutherland	et	al.,	1990)	(Figure	II-

2B).	
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The	gene	network	governing	the	bifurcation	of	the	ICM	and	the	TE	has	been	extensively	

studied	in	the	mouse.	The	most	prominent	transcriptional	regulators	 implicated	 in	the	

formation	 of	 the	 ICM	 are	Oct4	 (Nichols	 et	 al.,	 1998),	Nanog	 (Mitsui	 et	 al.,	 2003a)	 and	

Sox2	(Avilion	et	al.,	2003),	whereas	Cdx2	(Niwa	et	al.,	2005;	Strumpf	et	al.,	2005),	Gata3	

(Ralston	et	al.,	2010)	and	Eomes	(Russ	et	al.,	2000)	are	important	for	the	TE.	The	latter	

are	restricted	to	cells	of	the	8-16	cell	stage	embryo	that	are	destined	to	become	TE	cells.	

Tead4	 was	 shown	 to	 regulate	 Cdx2,	 and	 its	 depletion	 leads	 to	 the	 earliest	 embryonic	

lethality	due	to	TE	defect	(Yagi	et	al.,	2007;	Nishioka	et	al.,	2008).	Surprisingly,	Tead4	is	

not	only	expressed	in	the	outer	cells	that	are	designated	to	become	TE,	but	also	in	inner	

cells	that	become	the	ICM	(Nishioka	et	al.,	2008).	The	phenotypic	specificity	in	TE	cells	is	

explained	 by	 the	 nuclear	 accumulation	 of	 Yap	 and	 Taz,	 the	 two	 transcriptional	 co-

Figure	II-2:	Models	of	TE/ICM	specification		
Primary	models	addressing	the	regulation	of	TE	and	ICM	cell	location.	(A)	The	inside-
outside	 model	 proposes	 that	 the	 position	 of	 the	 cells	 determines	 the	 outcome.	 In	
contrast,	the	cell	polarity	model	(B)	suggests	that	the	mode	of	cleavage	determines	the	
outcome:	if	cells	divide	symmetrically	relative	to	their	axis,	two	outside	polar	emerge	
(Ba),	 and	 if	cells	divide	asymmetrically	 this	 leads	 to	 the	emergence	of	one	polar	and	
one	apolar	cell,	outside	and	inside,	respectively	(Bb)	(Yamanaka	et	al.,	2006).		
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activators	of	Tead4,	which	are	also	vital	for	TE	development	(Nishioka	et	al.,	2009).	Both	

factors	are	 found	in	the	nucleus	of	 the	TE-destined	outer	cells	and	 in	the	cytoplasm	of	

the	inner	cells.	What	controls	Yap	and	Taz	localization	in	general	and	specifically	in	TE	

cells	are	kinases	of	the	Hippo	pathway:	the	asymmetry	in	cell-cell	contact	in	outer	cells	

results	 in	 the	 accumulation	 of	 the	 polarity	 proteins	 Par6	 and	 aPKC	 (Bedzhov	 et	 al.,	

2014),	 which	 inhibit	 the	 Hippo	 pathway.	 As	 a	 result	 unphosphorylated	 Yap	 and	 Taz	

translocate	to	the	nucleus.	In	contrast,	in	ICM	cells	the	Hippo	pathway	kinases,	Lats1	and	

Lats2	 are	 active;	 they	 phosphorylate	 Yap	 and	 Taz,	 leading	 to	 cytoplasmic	 localization	

and	thereby	prevention	of	Tead4-mediated	transcription	(Nishioka	et	al.,	2009)	(Figure	

II-3).	 Cellular	 polarity	 also	 governs	 TE	 specification	 by	 regulation	 of	 Cdx2	 mRNA	

localization	to	the	apical	side.	This	generates	inside	cells	 lacking	Cdx2	(Skamagki	et	al.,	

2013).	
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Nevertheless,	Cdx2	is	not	vital	or	alone	promoting	TE	development,	because	expression	

of	Cdx2	but	not	Oct4	is	variable	 in	the	cells	of	the	morula	(Dietrich	and	Hiiragi,	2007),	

and	the	 initial	TE	separation	 is	not	affected	by	depletion	of	maternal	and	zygotic	Cdx2	

(Wu	et	al.,	2010).	

	

Second	specification	and	implantation	
	
The	arrangement	of	 the	mouse	pluripotent	epiblast,	which	 is	surrounded	by	a	 layer	of	

PE	cells,	 is	mediated	by	selective	apoptosis	and	cell	migration	of	epiblast	and	PE	cells.	

Time-laps	 microscopy	 and	 tracking	 of	 ICM	 cells	 from	 mouse	 early	 to	 late	 blastocyst	

showed	that	the	precursors	of	epiblast	and	PE	are	intermingled	within	the	ICM	(Chazaud	

et	al.,	2006;	Plusa	et	al.,	2008;	Meilhac	et	al.,	2009).	With	regard	to	the	mechanism,	cells	

of	the	PE	and	the	epiblast	were	shown	to	become	established	by	unique	transcriptional	

programs	 that	 can	 already	 be	 detected	 at	 the	 early	 blastocyst	 (Chazaud	 et	 al.,	 2006;	

Kurimoto	et	al.,	2006):	Nanog	(Chambers	et	al.,	2003;	Mitsui	et	al.,	2003a)	and	Sox2	for	

the	 epiblast	 (Avilion	 et	 al.,	 2003),	 and	 endodermal	 genes	 such	 as	 Gata6,	 Gata4	

(Koutsourakis	et	al.,	1999)	or	Sox17	(Niakan	et	al.,	2010)	for	the	PE.	As	the	mechanisms	

governing	the	specification	of	epiblast	and	PE	cells	are	not	 the	 focus	of	my	work,	 they	

are	not	covered	here	but	can	be	found	elsewhere	(Bedzhov	et	al.,	2014).	

	

These	 events	 take	 place	 concomitantly	with	 the	 translocation	 of	 the	 blastocyst	 to	 the	

uterus	 where	 it	 implants	 in	 the	 endometrium	 by	 hatching,	 a	 process	 that	 involves	

breakdown	on	the	zona	pellucida	membrane.	The	cells	of	the	epiblast	further	give	rise	to	

the	 fetus,	 the	TE	 contributes	 to	 the	placenta	 and	 the	PE	 to	 the	 yolk	 sac	 (Gardner	 and	

Johnson,	1973;	Papaioannou	et	al.,	1975;	Gardner	and	Rossant,	1979;	Gardner,	1985).	

Figure	II-3:	Factors	involved	in	the	first	cell	specification	in	mouse	
Cells	of	the	morula	exhibit	different	features.	The	outside	cells	have	asymmetric	cell-cell	
contacts	and	form	the	TE,	whereas	the	inside	cells	have	symmetrical	cell-cell	contact	and	
form	 cells	 of	 the	 ICM.	 In	 the	 mouse	 it	 was	 suggested	 that	 in	 outside	 cells	 Amot	 and	
Lats1/2,	kinases	of	the	Hippo	pathway	are	inactive	and	Yap/Taz	can	go	to	the	nucleus	of	
the	cell.	This	leads	to	activation	of	Tead4	and	Cdx2,	which	strengthens	the	TE	identity	of	
outside	 cells.	 On	 inside,	 ICM,	 cells	 activity	 of	 Amot	and	 Lats1/2	 leads	 to	 repression	of	
Yap/Taz	 and	 Tead4	 is	 not	 switched	 on	 in	 the	 nucleus.	 Therefore,	 the	 pluripotency	
program	is	maintained	by	expression	of	Oct4	(Bedzhov	et	al.,	2014).	
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Human	and	mouse	preimplantation	embryos	compared	
	
While	mouse	and	human	preimplantation	blastocysts	are	morphologically	similar,	there	

are	some	important	differences:	mouse	and	human	blastocyst	form	around	E	day	3-3.5	

and	 5,	 respectively,	 and	 implantation	 takes	 place	 at	 E	 day	 4-4.5	 and	 7-9,	 respectively	

(with	 another	 round	 of	 cell	 division	 in	 the	 human)	 (Hertig	 et	 al.,	 1959;	 Finn	 and	

McLaren,	 1967;	Norwitz	 et	 al.,	 2001;	 Cockburn	 and	Rossant,	 2010).	 Known	molecular	

differences	 include	 timing	of	CDX2	expression,	 the	key	TE	TF,	which	 is	detected	 in	 the	

human	only	after	the	formation	of	the	blastocyst	(Niakan	and	Eggan,	2013).	Conversely,	

GATA3	expression	is	more	pronounced	in	human	TE,	probably	it	serves	to	compensate	

for	the	late	CDX2	expression	(Deglincerti	et	al.,	2016).	Differences	in	expression	patterns	

also	 exist	 between	 human	 and	mouse	 blastocysts.	 For	 example,	 OCT4	 is	 ubiquitously	

expressed	 in	all	 cells	of	 the	human	blastocyst	at	E	day	5-7,	whereas	 in	 the	mouse	 it	 is	

restricted	 to	 the	 ICM.	 Moreover,	 in	 contrast	 to	 the	 mouse,	 PE	 and	 ICM	 cells	 are	 not	

sorted	 at	 E	 day	 6	 in	 the	 human	 (O'Leary	 et	 al.,	 2012;	 Roode	 et	 al.,	 2012;	 Niakan	 and	

Eggan,	2013;	Deglincerti	et	al.,	2016).		

	

Finally,	 interestingly	TE	cells	that	are	 isolated	from	the	human	blastocyst	can	still	give	

rise	 to	 pluripotent	 cells	 in	 vitro	 (De	 Paepe	 et	 al.,	 2013),	 which	 indicates	 that	 human	

blastocyst	cells	are	more	plastic	than	the	cells	of	the	murine	blastocyst.		

	

Chorion	and	placenta	development	
	
After	 implantation,	 the	 blastocyst	 committed	TE	 cells	 develop	 into	 an	 extraembryonic	

tissue	named	the	chorion,	the	primary	precursor	of	the	placenta.	The	placenta	forms	the	

interface	 between	 the	 mother	 and	 the	 fetus,	 which	 is	 important	 for	 the	 exchange	 of	

nutrients,	 waste	 products	 and	 gases,	 and	 for	 the	 prevention	 of	 immune	 response	

towards	 the	 fetus.	 The	 placenta	 is	 also	 regulating	 the	 hormone	 regimens	 that	 are	

necessary	 for	 fetal	 growth	 (Rossant	 and	 Cross,	 2001).	 Perturbations	 of	 chorion	

development	and	placental	dysfunction	are	 implicated	 in	 fetal	 growth	 retardation	and	

abnormalities	that	can	also	impact	the	health	of	the	mother.	
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Mouse	placental	development	
	
The	attachment	of	the	blastocyst	to	the	maternal	endometrium	is	mediated	by	mural	TE,	

the	TE	that	surrounds	the	blastocyst	cavity	opposite	of	the	ICM.	The	mural	TE	cells	then	

undergo	DNA	endoreplication	without	cell	division,	a	process	that	leads	to	the	formation	

of	 trophoblast	 giant	 cells.	 These	 cells	 remodel	 the	 vascular	 system	 and	 promote	

angiogenic	 processes	which	 are	 crucial	 for	 generating	 the	 vascular	 infrastructure	 that	

regulate	nutrient,	gas	and	waste	product	exchange	between	the	fetus	and	the	maternal	

tissues	(Rossant	and	Cross,	2001;	Simmons	et	al.,	2007).	Polar	TE,	which	reside	adjacent	

to	 the	 ICM,	 proliferate	 and	 generate	 structures	 named	 the	 extraembryonic	 ectoderm	

(ExE)	and	the	ectoplacental	cone	(Figure	II-4).	

	

	

The	cone	grows	by	expansion	of	a	population	of	trophoblast	progenitor	cells	in	the	ExE	

region.	This	 relies	on	several	TFs,	 like	Elf5,	 a	TF	 that	 regulates	 the	expression	of	Cdx2	

and	 Eomes	 (Donnison	 et	 al.,	 2005;	 Ng	 et	 al.,	 2008)	 or	 Ets2	 (Georgiades	 and	 Rossant,	

2006;	Polydorou	and	Georgiades,	2013)	(see	section	“The	transcriptional	network	of	TE	

development”).	

Around	 E	 day	 8.5	 the	 extra	 embryonic	 allantois	 tissue,	 which	 is	 mesoderm	 derived,	

makes	 contact	with	 the	 chorionic	 ExE.	 This	 perpetuates	 the	 folding	 of	 the	 ExE	which	

Figure	II-4:	Morphology	of	the	late	mouse	blastocyst	
Mouse	TE	progenitors	form	the	extraembryonic	ectoderm,	the	ectoplacental	cone	and	
trophoblast	giant	cells.	The	PE	gives	rise	to	the	yolk	sac.	Adapted	from	(Rossant,	2015).		



	12	

creates	villous	branching	structures	named	the	placental	labyrinth.	This	tissue	consists	

of	 several	 layers	 of	 labyrinthine	 trophoblasts	 and	 it	 is	 structurally	 supported	 by	

spongiotrophoblast	 cells	 that	 are	 derived	 from	 the	 ectoplacental	 cone.	 Fused	

cytotrophoblasts	 cells	 named	 syncytiotrophoblasts	 form	 at	 the	 tip	 of	 the	 elongating	

branches	of	 the	villous	 tree	 (Cross	 et	 al.,	 2003).	To	 support	 the	 transport	of	nutrients	

and	the	exchange	of	gas	and	waste	products,	sinuses	develop	in	the	spongiotrophoblast	

tissue,	 a	 process	 leading	 to	 invasion	 of	 maternal	 blood	 to	 the	 placenta	 (Rossant	 and	

Cross,	2001)	(Figure	II-5).	

Key	TFs	that	are	involved	in	these	processes	include	glial	cell	missing	1	(Gcm1),	which		

drives	 the	 branching	 and	 the	 differentiation	 of	 syncytiotrophoblasts	 (Basyuk	 et	 al.,	

1999;	 Anson-Cartwright	 et	 al.,	 2000;	 Schreiber	 et	 al.,	 2000),	 and	 TF	 AP-2γ	 (Tfap2c)	

which	promotes	the	formation	of	the	labyrinth	(Werling	and	Schorle,	2002).		

	

Human	placental	development	
	

Our	 knowledge	 regarding	 human	 placental	 development	 is	 based	 primarily	 on	

hysterectomies.	 Compared	 with	 the	 mouse,	 where	 trophoblast	 giant	 cells	 mediate	

implantation	and	invasion	of	the	mouse	blastocyst	into	the	uterus,	in	the	human	this	is	

established	by	invasive	extravillious	trophoblast	cells.	Common	to	these	cell	types	is	that	

they	are	both	polyploid	(Berezowsky	et	al.,	1995;	Zybina	and	Zybina,	1996;	MacAuley	et	

5.21E5.7E0.6E

Ectoplacental
cone

Trophoblast
giant cells

Trophoblast
giant cells

Trophoblast
giant cells

Spongiotrophoblast

Maternal
decidua

Umbilical
cordLabyrinth

Parietal
yolk sac

Mesothelium

Extra-embryonic
ectoderm

Chorionic
ectoderm

Allantois

Embryo

Amnion

Epiblast

Visceral
yolk sac

Trophoblast
Primitive endoderm

Figure	II-5:	Illustrations	of	mid-stage	placenta	developmental	in	the	mouse		
Adapted	from	(Rossant	and	Cross,	2001).	
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al.,	 1998).	The	 chorionic	 villi	 of	 the	human	placenta	 are	 functionally	 equivalent	 to	 the	

labyrinth	of	the	mouse	placenta.	In	both	species	these	villi/	labyrinth	are	covered	with	

syncytiotrophoblasts	 that	 are	 in	 contact	with	 the	maternal	 blood	 (Rossant	 and	 Cross,	

2001)	 and	 produce	 hormones	 like	 chorionic	 gonadotropin	 (CG),	 which	 is	 involved	 in	

placentation	 through	 activities	 such	 as	 maintaining	 angiogenesis	 of	 the	 uterine	

vasculature	and	promoting	differentiation	of	cytotrophoblasts	into	syncytiotrophoblasts	

(Shi	et	al.,	1993;	Rao	and	Alsip,	2001;	Zygmunt	et	al.,	2002)	(Figure	II-6).		

	
	

There	exist	 some	key	differences	between	 the	species	 in	 relation	 to	TE	and	blastocyst	

implantation.	This,	for	example	include	that	while	the	mouse	blastocyst	attaches	to	the	

uterus	at	the	mural	part	of	the	TE,	the	human	blastocyst	makes	its	contact	through	the	

polar	 TE	 (Herzog,	 1909).	 Another	 difference	 is	 that	 during	 early	 implantation	 the	

blastocyst	 is	 rapidly	 engulfed	 by	 the	 expanding	 decidua	 (the	 uterine	 stroma)	 in	 the	

mouse	while	during	human	implantation	the	TE	cells	are	highly	invasive	and	invade	the	

uterine	stoma	(Hertig	and	Rock,	1973;	Enders,	1976).	Furthermore,	it	is	thought	that	the	

mouse	yolk	sac	plays	an	important	role	in	nourishing	the	embryo	before	the	placenta	is	

developed,	 while	 in	 the	 human	 invasive	 trophoblasts	 rather	 than	 the	 yolk	 sac	 are	

important	in	this	respect	(Rossant,	2015).		
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Figure	II-6:	Gross	anatomy	of	human	and	mouse	placenta		
The	 inset	 image	 shows	 a	 cross-section	 of	 a	 chorionic	 villus,	 where	 TE-derived	
structures	are	 shown	 in	blue	and	mesoderm-derived	 tissues	are	displayed	 in	orange	
(Rossant	and	Cross,	2001).		
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Trophoblast	stem	cells	
	
In	the	mouse,	all	the	cell	types	of	the	placenta	are	thought	to	originate	from	multipotent	

precursor	cells	that	exist	initially	in	the	polar	TE	and	later	in	the	ExE.	It	is	thought	that	

the	 renewal	 of	 these	 progenitors	 relies	 on	 FGF	 signaling	 because	 Fgfr2	 is	 specifically	

expressed	in	TE	cells	and	the	ligand	FGF-4	is	expressed	in	the	adjacent	ICM	cells	in	late	

mouse	blastocysts	(Yuan	et	al.,	1995;	Arman	et	al.,	1998).		
The	 information	 about	 the	 involvement	 of	 FGF4	 in	 TE	 renewal	 has	 facilitated	 the	

culturing	of	mouse	trophoblast	stem	cells	(TSCs).	Such	cultures	have	been	established	so	

far	 from	 mouse	 blastocysts	 and	 ExEs,	 which	 was	 dissociated	 from	 the	 early-streak	

around	day	6.5	post	coitus	(Tanaka	et	al.,	1998;	Uy	et	al.,	2002).	In	vitro	TSCs	are	able	to	

renew	at	the	presence	of	Fgf4	and	can	produce	various	cell	types	of	the	chorioallantoic	

placenta	 including	 spongiotrophoblast,	 syncytiotrophoblast	 and	 giant	 cells.	 When	

implanted	into	blastocysts	TSCs	contribute	to	the	ExE,	ectoplacental	cone	and	giant	cells,	

but	not	to	the	cells	of	the	epiblast,	PE	or	other	extraembryonic	tissues	that	are	derived	

from	the	ICM	(Tanaka	et	al.,	1998).	

Several	TFs	contribute	to	the	establishment	or	the	maintenance	of	TSCs,	including	Cdx2,	

Gata3,	Eomes,	Tfap2c,	Elf5,	Ets2	and	Esrrb	(Latos	and	Hemberger,	2014).	The	functional	

importance	 of	 these	 factors	 was	 recently	 confirmed	 by	 reports	 showing	 that	 ectopic	

expression	 of	 combinations	 of	 these	 factors,	Tfap2c,	Gata3,	Eomes	 and	Myc	 or	Tfap2c,	

Gata3,	 Eomes	 and	 Ets2,	 convert	 mouse	 fibroblasts	 into	 trophoblast	 stem-like	 cells	

(Benchetrit	et	al.,	2015;	Kubaczka	et	al.,	2015).	 Importantly,	derivation	of	human	TSCs	

or	 cells	 that	 have	 similar	 self-renewal	 /	 differentiation	 features	 has	 not	 yet	 been	

reported	to	date.	

	

The	transcriptional	network	of	TE	development	
	
The	putative	network	of	TFs	that	underlies	mouse	TE	development	seems	to	comprise	of	

three	 primary	 layers,	 involved	 in	 the	 specification,	 reinforcement	 and	 further	

differentiation,	 respectively	 (Senner	 and	 Hemberger,	 2010)	 (Figure	 II-7).	 Tead4	 and	

Cdx2	 are	 atop	 of	 this	 network	 (Nishioka	 et	 al.,	 2008)	 and	 regulate	Eomes	 and	Tfap2c,	

which	subsequently	regulate	Gata3,	Elf5	and	Ets2.	This	classification	is	primarily	based	

on	 the	 severity	 of	 the	 respective	 phenotypes	 resulting	 from	 gene	 inactivation:	 loss	 of	
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Tead4	results	 in	 the	 earliest	 known	 lethality	due	 to	 a	developmental	 failure	of	 the	TE	

(Yagi	et	al.,	2007;	Nishioka	et	al.,	2008),	and	Cdx2	depleted	blastocysts	 fail	 to	 implant,	

but	not	to	specify	TE	precursors	(Strumpf	et	al.,	2005).	Deletion	of	Eomes	leads	to	a	later	

impairment	 of	 TE	 differentiation	 and	 developmental	 arrest	 at	 E4.5	 (Russ	 et	 al.,	 2000;	

Strumpf	 et	 al.,	 2005).	 Similarly,	 deletion	of	Elf5	 produces	 embryos	 that	 lack	Cdx2	 and	

Eomes	expression,	do	not	form	the	ExE	and	no	TSCs	can	be	derived	from	these	embryos	

(Donnison	et	al.,	2005;	Ng	et	al.,	2008).	Tfap2c	depletion	leads	to	death	at	days	7	to	9	of	

embryonic	 development	 (Werling	 and	 Schorle,	 2002),	 and	 knockout	 of	 Ets2	 leads	 to	

developmental	 impairments	of	TE	cells	(Georgiades	and	Rossant,	2006;	Polydorou	and	

Georgiades,	 2013).	 Finally,	 Gata3	 seems	 to	 play	 an	 important	 role	 because	

overexpression	 of	 Gata3	 in	 mouse	 embryonic	 stem	 cells	 generates	 trophoblast	

committed	 cells,	 overexpression	 in	TSCs	promotes	 their	 differentiation	 (Ralston	 et	 al.,	

2010)	 and	 it	 is	 part	 of	 the	 cocktail	 that	 converts	 mouse	 fibroblasts	 into	 trophoblast	

stem-like	cells	(Benchetrit	et	al.,	2015;	Kubaczka	et	al.,	2015).	

	

	

Comparison	 of	 human	 TE,	 human	 embryonic	 stem	 cells	 (ESCs,	 described	 below)	 and	

cells	 of	 the	 adult	 placenta	 resulted	 in	 a	 list	 of	 16	TFs	 induced	 in	 the	TE	 and	 placenta	

compared	to	human	ESC,	 including	TFs	that	have	been	shown	to	be	involved	in	mouse	

trophoblast	 development	 like	 GATA3,	 TFAP2C	 and	 GCM1	 and	 some	 that	 are	 still	 not	

connected	with	mouse	trophoblast	or	TE	development	(Bai	et	al.,	2012).	

However,	the	connectivity	of	the	network	is	still	largely	unknown.	

Figure	II-7:	A	putative	transcription	circuit	of	mouse	trophoblast	development		
The	dashed	 lines	 indicate	 putative	 connections	between	Eomes,	Gata3,	Elf5	 and	Ets2	
with	Tcfap2c	(Senner	and	Hemberger,	2010).		
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Human	pluripotent	stem	cells	
	
Human	 pluripotent	 stem	 cells	 (PSCs),	 in	 the	 form	 of	 ESCs	 that	 are	 derived	 from	

blastocyst-stage	 embryos,	 or	 induced	 pluripotent	 stem	 cells	 (iPSCs)	 produced	 by	

reprograming	 of	 somatic	 cells	 using	 a	 cohort	 of	 pluripotency	 TFs,	 can	 be	maintained	

indefinitely	 in	vitro.	Human	ESCs	/	 iPSCs	 can	differentiate	 into	derivatives	of	 all	 three	

germ	layers,	the	meso-,	endo-	and	ectoderm.	Interestingly,	as	early	as	the	first	report	of	

human	ESCs,	 it	was	noted	 that	differentiation	 into	progeny	 resembling	 cells	 of	 the	TE	

lineage	takes	place,	but	with	a	low	efficiency	(Thomson	et	al.,	1998).	This	is	despite	the	

fact	 that	 the	 gene	 network	 regulating	 human	 PSCs	 was	 found	 similar	 to	 that	 of	 the	

mouse,	including	OCT4,	NANOG	and	SOX2	(Nichols	et	al.,	1998;	Boyer	et	al.,	2005;	Wang	

et	 al.,	 2012).	Moreover,	 it	was	 shown	 that	 in	human	ESCs	OCT4	and	SOX2	 can	 form	a	

complex	 and	 bind	 to	 their	 own	 and	 to	 the	 NANOG	 promoter	 to	 activate	 their	 gene	

expression.	 These	 three	 factors	 also	 bind	 genes,	 as	 TFAP2C,	 important	 for	

developmental	processes	and	can	contribute	to	their	silencing	in	human	ESCs	(Boyer	et	

al.,	 2005).	 Therefore,	 OCT4,	 SOX2	 and	 NANOG	 are	 considered	 the	 key	 responsible	

players	for	maintenance	of	the	pluripotent	state	and	restriction	of	differentiation.	

	

OCT4	
	
As	 Oct4	 can	 antagonize	 Cdx2	 expression,	 its	 regulation	 is	 relevant	 for	 ICM	 and	 TE	

specification,	and	 is	elaborated	here	 in	detail.	During	mouse	development,	Oct4	mRNA	

and	protein	is	first	detected	in	the	oocyte	(Scholer	et	al.,	1989;	Rosner	et	al.,	1990;	Yeom	

et	 al.,	 1991;	 Palmieri	 et	 al.,	 1994).	 During	 the	 8-cell	 stage,	 Oct4	 mRNA	 and	 protein	

expression	 increases	 again	 (Yeom	 et	 al.,	 1991;	 Palmieri	 et	 al.,	 1994),	 and	 becomes	

restricted	to	pluripotent	cells	upon	the	partitioning	of	the	ICM	and	the	TE.	Importantly,	

although	Oct4	is	vital	for	renewal	of	ICM	cells,	it	is	not	necessary	for	specification	of	the	

pluripotent	 cells	 (Frum	et	 al.,	 2013;	Wu	 et	 al.,	 2013).	 Later,	Oct4	 is	 expressed	 only	 in	

specific	 tissues	of	 the	epiblast,	 and	 finally	 is	detected	only	 in	 the	primodial	germ	cells	

(PGCs)	(Yeom	et	al.,	1996),	which	give	rise	to	the	gametes	(Figure	II-8).		
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Several	regulatory	regions	exist	in	the	OCT4	locus,	including	the	proximal	promoter	and	

proximal	 and	distal	 enhancers.	Within	 the	 enhancers	 there	 are	 four	 elements	 that	 are	

conserved	between	mouse,	bovine	and	human,	indicating	a	common	mode	of	regulation	

(Nordhoff	 et	 al.,	 2001).	 The	 distal	 enhancer	 regulates	 the	 expression	 of	 Oct4	 in	

pluripotent	/	embryonic	germ	cells	whereas	the	proximal	enhancer	is	active	in	epiblast	

cells	 (Yeom	et	 al.,	 1996;	Tesar	et	 al.,	 2007).	This	 regulation	 involves	proteins	 that	 can	

positively	 or	 negatively	 influence	 Oct4	 expression	 by	 binding	 to	 different	 regulatory	

elements	 (Wu	 and	 Scholer,	 2014).	 For	 example,	 the	 binding	 of	 Cdx2	 to	 the	 distal	

Figure	II-8:	Expression	of	Oct4	during	the	mouse	life	cycle		
Oct4	(green)	is	expressed	in	the	oocyte,	the	cells	of	the	ICM,	in	the	epiblast	and	finally	
in	PGCs	(Wu	and	Scholer,	2014).	
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enhancer	downregulates	Oct4	in	mouse	TE	cells	(Niwa	et	al.,	2005).	Conversely,	binding	

of	pluripotency	factors	as	Nanog,	Sox2	or	Oct4	itself	to	the	enhancer	regions	induces	its	

expression	(Wu	and	Scholer,	2014)	(Figure	II-9).	

	

Transcriptional	processes	in	response	to	Bone	Morphogenic	Protein	(BMP)	4	
in	human	ESCs		
	
BMP4	 is	 a	 TGF-beta	 superfamily	 ligand	 that	 binds	 to	 type	 I	 and	 II	 BMP	 receptors	

(Allendorph	et	al.,	2006).	Binding	of	the	ligand	promotes	phosphorylation	and	activation	

of	the	receptor	regulated	SMADs	(R-SMAD),	SMAD1/5/8,	that	associate	with	a	common	

mediator	 SMAD	 (Co-SMAD),	 SMAD4.	 This	 heteromeric	 complex	 translocates	 into	 the	

nucleus	where	it	regulates	gene	expression	(Mukhopadhyay	et	al.,	2008;	Morikawa	et	al.,	

2011)	(Figure	II-10).		

Figure	II-9:	Transcriptional	regulation	of	mouse	Oct4		
A	 schematic	 overview	 of	 the	 Oct4	 gene.	 TFs	 and	 the	 respective	 binding	 sites	 that	
regulate	Oct4	are	indicated	on	top.	Green	and	red	labels	indicate	positive	and	negative	
influence.	CR=	conserved	region;	Sp1=	GC-rich	site	recognized	by	TFs	of	the	Sp1/Sp3	
family;	HRE=	hormone	response	element	(Wu	and	Scholer,	2014).		
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In	 the	 mouse	 16-cell	 stage	 blastocysts	 components	 of	 the	 BMP	 pathway	 are	 already	

differentially	expressed	in	inside	and	outside	cells,	with	inside	cells	expressing	mRNA	of	

BMP	 ligands	 Bmp4	 and	 Bmp7,	 whereas	 outside	 cells	 show	 mRNA	 expression	 of	 the	

receptor	BmprII.	Further	manipulation	of	4	cell	stage	mouse	embryos,	using	dominant	

negative	 forms	of	Smad4	and	BmprII,	 led	 to	 impaired	 formation	of	TE	and	PE,	but	not	

epiblast	 cells	 at	 E4.5	 (Graham	 et	 al.,	 2014).	 However,	 embryos	 depleted	 of	 Smad4	 or	

BmprII	 develop	 past	 the	 implantation	 stage,	 but	 show	 abnormalities	 in	 the	

extraembryonic	tissues	and	cannot	gastrulate	(Beppu	et	al.,	2000;	Chu	et	al.,	2004).	BMP	

signaling	 plays	 also	 an	 important	 role	 in	 the	mouse	 post-implantation	 embryo	 during	

the	 formation	 of	 the	 node	 and	 the	 primitive	 streak	 and	 it	 coordinates	 the	 left-right	

asymmetry	 and	 patterning	 in	 the	mouse	 (Winnier	 et	 al.,	 1995;	 Fujiwara	 et	 al.,	 2002).	

Further	it	plays	central	parts	in	formation	of	PGCs	and	mesoderm	(Lawson	et	al.,	1993;	

Winnier	et	al.,	1995).	

	

BMP4-mediated	trophoblast	differentiation	of	human	ESCs		
	
Human	 tumor	 cell	 lines	 derived	 from	 choriocarcinoma,	 such	 as	 JAR	 or	 JEG3,	 primary	

cytotrophoblast	 cultures	 and	 immortalized	 extravillous	 cytotrophoblasts	 are	 classical	

Figure	II-10:	The	BMP	pathway	(Shore	and	Kaplan,	2010)	
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models	for	investigating	trophoblast	physiology	(Ringler	and	Strauss,	1990).	Yet,	these	

systems	cannot	recapitulate	the	emergence	of	differentiated	trophoblast	cell	types	from	

progenitor	 cells	 (Genbacev	 et	 al.,	 2013).	 The	 derivation	 of	 human	 ESCs	 and	 later	 of	

human	iPSCs	revolutionized	this	aspect	because	it	turned	out	that	human	PSCs	have	an	

intrinsic	 tendency	 to	 differentiate	 into	 trophoblast-like	 progeny	 by	 exposure	 to	 BMP	

ligands	(Xu	et	al.,	2002).	Human	ESCs	treated	with	BMP4	(Telugu	et	al.,	2013)	or	with	a	

combination	of	BMP4,	an	Activin	A	 inhibitor	and	a	FGF2	 inhibitor	 (Amita	et	al.,	2013)	

could	 mimic	 the	 invasive	 behavior	 of	 some	 trophoblast	 cells.	 The	 phenotypes	 noted	

include	 rapid	 flatting	 of	 the	 cells,	 emergence	 of	 syncytium-like	 cells,	 production	 of	

placental	 hormones,	 expression	 of	 typical	 early	 trophoblasts	 genes	 and	 reduction	 of	

pluripotency	genes	(Xu	et	al.,	2002;	Das	et	al.,	2007;	Marchand	et	al.,	2011;	Drukker	et	

al.,	2012;	Ezashi	et	al.,	2012;	Sudheer	et	al.,	2012;	Amita	et	al.,	2013).		

This	trophoblast	phenomenon	was	received	initially	with	a	surprise,	as	human	ESCs	are	

thought	to	represent	a	developmental	stage	past	the	segregation	of	the	ICM	and	TE.	The	

trophoblast	 nature	 of	 these	 cells	 was	 therefore	 challenged	 by	 a	 classification	 system	

used	to	classify	in	vivo	first	trimester	trophoblasts.	The	in	vitro	differentiated	cells	fulfill	

some,	but	not	all	criteria.	They	express	the	tested	trophoblast	specific	proteins	(KRT7,	

TFAP2C	and	GATA3),	their	ELF5	promoter	gets	de-methylated,	but	the	expression	of	the	

microRNA	 cluster	 C19MC,	 which	 is	 highly	 expressed	 in	 first	 trimester	 trophoblast,	 is	

only	weakly	expressed	in	the	BMP4,	Activin	A	inhibitor	and	FGF2	inhibitor	treated	cells.	

Further	 they	 do	 not	 express	 the	 placenta	 specific	 HLA-G,	 which	 induces	 immune	

tolerance	during	pregnancy	(Lee	et	al.,	2016).	

Moreover,	it	was	disputed	that	human	ESCs	derived	trophoblast	progeny	emerges	from	

TE	fates	cells:	Bernardo	and	colleagues	treated	human	ESCs	with	combinations	of	BMP4,	

FGF2	 and	Activin	 in	 chemically	 defined	medium.	Using	BMP4	+	FGF2,	which	does	not	

resemble	the	culture	conditions	used	before	by	others,	BRACHYURY	(BRA),	a	mesoderm	

associated	 TF,	 as	well	 as	 CDX2,	 the	 trophoblast	 associated	 TF,	were	 upregulated.	 The	

BRA	upregulation	was	dependent	on	FGF2.	In	contrast	to	previous	studies	cells	treated	

with	BMP4	alone	did	only	result	in	low	amounts	of	KRT7+	cells	(4-8%	of	all	cells	at	day	7	

of	 differentiation)	 and	 no	 de–methylation	 of	 ELF5.	 RT-PCR	 of	 the	 sorted	 KRT7+	 cells	

revealed	 high	 expression	 of	 the	 trophoblast	 associated	 genes	 GCM1,	 ELF5	 and	 HCGA,	

which	encodes	for	hCG,	but	also	of	mesoderm	associated	genes	ISL1	and	FLK1	in	KRT7+	

compared	 to	 KRT7-	 cells.	 Therefore	 they	 conclude	 that	 this	 differentiation	 route	

represents	an	extraembryonic	mesoderm	rather	than	a	trophoblast	pathway	(Bernardo	
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et	al.,	2011).	However,	a	newer	study	shows	that	treatment	of	human	ESCs	with	BMP4	

also	 leads	to	expression	of	 target	genes	 including	WNTs,	which	promote	expression	of	

mesoderm	genes.	This	creates	a	mixture	of	trophoblast	and	mesodermal,	WNT	induced,	

cells,	rather	than	extraembryonic	mesoderm,	as	the	addition	of	a	WNT	inhibitor	leads	to	

the	formation	of	trophoblast	cells	only	(Kurek	et	al.,	2015).		

		

Human	PSC	derived	trophoblast	progenitors	
	

Understanding	 of	 developmental	 processes	 using	 human	 ESCs	 is	 hindered	 by	 the	

emergence	of	heterogeneous	progeny.	The	differentiation	of	human	ESCs	with	different	

factors	 can	 lead	 to	 the	 emergence	 of	mixed	 populations	 of	 cells	with	 different	 nature	

(Gifford	et	al.,	2013).	In	our	case	BMP4	not	only	produces	trophoblast	cells,	but	also	cells	

with	other	specifications,	e.g.	mesoderm	(Bernardo	et	al.,	2011;	Kurek	et	al.,	2015).	This	

complicates	 the	 identification	 of	 ground	 laying	 mechanisms	 during	 one	 specific	

developmental	process,	as	 the	unwanted	side	products	can	blur	the	real	drivers	of	 the	

differentiation.		

This	 can	 be	 circumvented	 by	 using	 antibodies	 against	 surface	 antigens	 expressed	 by	

unique	progenitor	populations.	Aminopeptidase	A	(APA,	also	known	as	CD249,	Ly-51),	

encoded	 by	 the	 ENPEP	 gene,	 was	 shown	 to	 be	 a	 suitable	 candidate	 to	 sort	 purified	

trophoblast	 progenitors	 from	 BMP4	 differentiated	 cells,	 as	 APA+	 but	 not	 APA-	 cells	

develop	into	placental	structures,	shown	by	expression	of	the	placental	specific	proteins	

STS,	the	placental	alkaline	phosphatase	(PLAP)	and	human	placental	lactogen	(HPL)	and	

others,	when	implanted	into	mice	(Drukker	et	al.,	2012).	Furthermore	APA	was	shown	

to	be	present	on	the	surface	of	human	syncytiotrophoblast	cells	(Ito	et	al.,	2003)	and	it	

was	also	found	to	be	involved	in	the	regulation	of	maternal	blood	pressure	in	the	mouse	

(Mitsui	et	al.,	2003b).		

	

Chromatin	associated	histone	turnover	in	development	and	

differentiation		

The	molecular	basis	of	tissue	formation	is	the	expression	of	unique	sets	of	genes	from	

the	genome,	which	is	uniform	in	all	cell	types.	Epigenetics	is	the	discipline	that	deals	

with	the	mechanisms	of	gene	regulation	that	are	heritable	over	cell	and	organismal	
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generations	without	changes	in	the	DNA	sequence.	Some	of	the	best-characterized	

epigenetic	mechanisms	are	biochemical	modifications	of	histone	tails	and	additions	of	

methyl	groups	to	DNA.	

Nucleosome	architecture	and	the	histone	code		
	

The	 eukaryotic	 DNA	 is	 compressed	 in	 the	 form	 of	 a	 polymer	 named	 chromatin	

(Paweletz,	2001).	Two	forms	of	chromatin	are	distinguished	by	their	density,	known	as	

eu-	 and	 heterochromatin	 during	 interphase	 that	 correspond	 to	 open	 and	 closed	

configurations	of	chromatin.	The	nucleosome	 is	 the	basic	unit	of	 the	chromatin,	which	

consist	of	a	histone	octamer	containing	 two	copies	histone	H2A,	H2B,	H3	and	H4	with	

146bp	of	DNA	wrapped	around	it,	and	the	histone	tails	reaching	outside	of	this	structure	

(Luger	et	al.,	1997)	(Figure	II-11).	

	

The	structure	of	the	chromatin	is	determined	by	several	key	factors,	including	variants	

of	 the	 core	 histone	 proteins	 encoded	 by	 different	 genes	 and	 producing	 chromatin	 of	

different	 densities.	 This	 influences	 the	 recruitment	 of	 activating	 or	 repressing	 factors.	

For	 example,	 histone	 H3.3,	 a	 variant	 of	 H3,	 is	 found	 in	 transcriptionally	 active	 loci,	

whereas	histone	H2AZ,	a	variant	of	H2A,	recruits	 the	heterochromatin	specific	protein	

HP1α	and	thereby	promotes	the	maintenance	of	heterochromatin	(Sarma	and	Reinberg,	

2005).	 Another	 process	 that	 changes	 the	 nucleosome	 distribution	 and	 position	 is	

chromatin	 remodeling,	mediated	by	nucleosome	sliding	or	nucleosome	eviction	which	

enhances	 accessibility	 of	 regulatory	 sequences	 (Cairns,	 2007).	Modification	 of	 specific	

Figure	II-11:	The	structure	of	the	nucleosome		
DNA	that	 is	wrapped	around	the	histone	octameres,	consisting	of	each	two	copies	of	
histones	 H2A,	 H2B,	 H3	 and	 H4.	 Red	 lines	 indicate	 histone	 tails	 projecting	 from	 the	
nucleosome	(Marks	et	al.,	2001).		
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residues	on	histone	tails,	called	posttranslational	modifications	(PTM),	can	further	affect	

the	chromatin	structure	and	accessibility	of	the	DNA	for	TFs.	The	addition	or	removal	of	

these	 reversible	 PTMs	 can	 lead	 to	 activation	 or	 repression	 of	 a	 specific	 DNA	 locus	

(Jenuwein	and	Allis,	2001).	

Many	 different	 histone	 modifications	 have	 been	 reported	 and	 best	 characterized	 are	

those	involving	histone	methylation,	acetylation	and	phosphorylation	(Figure	II-12).	The	

recognition,	 establishment	 and	 removal	 of	 PTMs	 depend	 on	 specific	 proteins,	 called	

readers,	writers	and	erasers.	

	

	

Methylated	histone	tails		
	

Figure	II-12:	Post-translational	modifications	of	histone	tails	
A	 simplified	diagram	of	methylation,	 acetylation,	phosphorylation	and	ubiquitination	
marks	of	histone	tails.	The	amino	acid	residues	of	the	histone	tails	H2A,	H2B,	H3	and	
H4	are	shown.	The	numbers	 indicate	the	position	of	the	respective	amino	acid	in	 the	
histone	 tail.	 Ph=	 phosphorylation;	 ac=	 acetylation;	 ub1=	 ubiquitination;	 me=	
methylation	(Bhaumik	et	al.,	2007).		
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Histone	 methylation	 takes	 place	 on	 lysine	 and	 arginine	 residues	 of	 the	 histone	 tails	

(Shilatifard,	 2006;	 Kouzarides,	 2007).	 While	 arginines	 are	 mono-	 or	 dimethylated,	

lysines	can	be	mono-,	di-	and	trimethylated.	The	most	prominent	and	best-characterized	

methylation	marks	are	on	 lysine	4,	9,	27,	36	and	79	of	histone	H3	and	at	 lysine	20	of	

histone	 H4.	 These	 histone	 marks	 have	 been	 studied	 extensively	 with	 respect	 to	

transcriptional	regulation.	

	

Acetylated	histone	tails	
	
Acetylation	 of	 specific	 lysines	 on	 histone	 tails	 leads	 to	 neutralization	 of	 their	 positive	

charge	 and	 alters	 the	 DNA-histone	 interaction	 leading	 to	 a	 more	 open	 chromatin	

conformation.	 This	makes	 the	DNA	more	 accessible	 for	 proteins	 like	 TFs	 (Shahbazian	

and	 Grunstein,	 2007).	 The	 writers	 of	 histone	 acetylation	 are	 called	 histone	 acetyl	

transferases	(HATs)	and	the	erasers	histone	deacetylases	(HDACs).	Many	transcriptional	

coactivators,	 such	 as	 p300	 have	 an	 intrinsic	 HAT	 activity,	 whereas	 transcriptional	

corepressor	complexes	contain	HDAC	subunits	 (Denslow	and	Wade,	2007;	Shahbazian	

and	Grunstein,	2007).	

	

Phosphorylated	histone	tails	
	
Serine	and	threonine	residues	of	histone	tails	can	be	phosphorylated.	Phosphorylation	

of	 these	amino	acids	 is	 involved	 in	DNA	repair,	mitosis	and	activation	of	 transcription	

(Rossetto	 et	 al.,	 2012).	 Transcriptional	 activation	 is	 mediated	 by	 a	 crosstalk	 of	
phosphorylation	marks	with	enzymes	that	can	acetylate	histone	tail	residues	next	to	the	

phosphorylation	sites,	promote	removal	of	the	methylation	mark	of	H3K9me3	or	inhibit	

the	 removal	 of	 methylation	 at	 the	 H3K4	 position.	 All	 these	 events	 lead	 to	 an	 open	

transcriptionally	active	chromatin	configuration	(Lau	and	Cheung,	2011).		

	

DNA	methylation		
	
The	methylation	of	the	fifth	position	of	the	cytosine	nucleoside	is	conserved	throughout	

the	animal	kingdom	(Feng	et	al.,	2010),	and	most	of	the	methylation	in	mammals	takes	

place	in	C-phosphate-G	dinucleotides	(CpGs)(Ramsahoye	et	al.,	2000;	Ziller	et	al.,	2011).	

At	 least	 three	 enzymes	 catalyze	 DNA	methylation	 in	 humans:	 DNMT1	 is	 ubiquitously	
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expressed	and	maintain	 the	methylation	marks	during	cell	division,	 and	DNMT3A	and	

DNMT3B	 are	 developmentally	 regulated	 and	 carry	 out	 de-novo	methylation	 (Li	 et	 al.,	

1992;	Okano	et	al.,	1999).	In	the	human	genome,	which	is	overall	depleted	of	CpGs,	there	

are	around	28	million	CpG	sites	of	which	60-80%	are	constitutively	methylated.	Out	of	

these,	less	than	10%	are	located	in	so	called	CpG	islands,	which	are	regions	with	a	high	

CpG	 content.	 These	 regions	 are	mostly	 unmethylated	 and	 located	 at	 the	 promoters	 of	

developmental	 and	 housekeeping	 genes	 (Deaton	 and	 Bird,	 2011).	 Enzymes,	 namely	

TET1,	 TET2	 and	 TET3	 can	 remove	 the	 methylation	 mark	 of	 the	 CpG	 by	

hydroxymethylating	 the	 CpG	 base	 and	 therefore	 reverting	 the	 effect	 of	 the	 before	

methylated	CpG	(Tahiliani	et	al.,	2009;	Guo	et	al.,	2011).	CpG	hydroxymethylation	exists	

mainly	 in	 the	brain	and	PSC,	both	 in	humans	and	mice	 (Kriaucionis	and	Heintz,	2009;	

Tahiliani	et	al.,	2009;	Pastor	et	al.,	2011;	Szulwach	et	al.,	2011).		

	

Epigenetic	profiles	of	PSCs	
	
Electron	microscopy	of	heterochromatin	domains	and	DNaseI	or	Micrococcal	nuclease	

(MNase)	digestion,	which	allow	the	detection	of	open	chromatin,	showed	that	in	mouse	

and	 human	 ESCs	 the	 chromatin	 state	 is	 more	 open	 than	 in	 somatic	 cells,	 meaning	 it	

harbors	less	heterochromatin	(Park	et	al.,	2004;	Efroni	et	al.,	2008;	Schaniel	et	al.,	2009;	

Ahmed	et	al.,	2010)	(Figure	II-13).		

	

	

Heterochromatin
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Figure	 II-13:	 Schematic	 illustration	 of	
different	chromatin	regions.		
The	 upper	 pane	 shows	 condensed,	
transcriptional	 inactive	 heterochromatin	
marked	 with	 histone	 H3K27	 tri-
methylation	marks.	
The	 middle	 pane	 shows	 open,	
transcriptional	 active	 euchromatin	
marked	with	histone	H3K4	tri-methylation	
marks.	
The	 lower	 pane	 shows	 bivalent	 domains	
that	are	marked	by	histone	H3K4	and	K27	
tri-methylation	 marks	 at	 the	 same	
position,	 which	 poises	 them	 for	
transcriptional	activation	or	repression.	
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Transcriptionally	inactive	heterochromatin	in	PSCs	is	characterized	by	repressive	H3K9	

di-	 and	 trimethylation	marks	 (H3K9me2,	H3K9me3),	 found	at	 repetitive	elements	 like	

centromeres	 (Peters	et	al.,	2001;	Lehnertz	et	al.,	2003)	or	by	 trimethylation	of	H3K27	

(H3K27me3)	at	facultative	heterochromatin	regions	(Boyer	et	al.,	2006;	Lee	et	al.,	2006;	

Mikkelsen	et	al.,	2007).	In	the	same	cells,	genes	in	transcriptionally	active	euchromatin	

are	marked	by	H3K4me3	at	their	promoter	regions	(Bernstein	et	al.,	2006;	Mikkelsen	et	

al.,	 2007)	 and	 by	H3K27	 acetylation,	 H3K4me1	 and	 the	 presence	 of	 the	HAT	 p300	 at	

their	 respective	 enhancer	 region	 (Rada-Iglesias	 et	 al.,	 2011).	 Moreover,	 actively	

transcribed	genes	contain	H3K36me3	marks	in	the	gene	body	(Kolasinska-Zwierz	et	al.,	

2009).	 This	 active	 histone	 modification	 combination,	 comprising	 of	 H3K4me1,	

H3K4me3,	 H3K27	 acetylation	 and	 H3K36me3	 distributed	 in	 different	 regions	 around	

the	gene,	is	present	in	pluripotency	and	housekeeping	genes	in	mouse	and	human	PSCs.	

Mouse	and	human	PSCs	also	feature	a	unique	category	of	histone	modifications	named	

the	 bivalent	 domains	 characterized	 by	 co-occupancy	 of	 H3K4me3	 activating	 and	

H3K27me3	 repressing	marks	 (Bernstein	 et	 al.,	 2006;	Mikkelsen	 et	 al.,	 2007).	 Bivalent	

domains	are	associated	with	promoters	of	developmental	genes	 that	contain	high	CpG	

regions	in	PSC	but	bivalent	domains	are	found	rarely	in	differentiated	cells	(Watanabe	et	

al.,	2013).	The	conceptual	framework	states	that	it	is	the	existence	of	bivalent	domains	

that	 allows	 developmental	 genes	 to	 be	 rapidly	 silenced	 or	 activated	 during	

differentiation	by	loss	of	the	activating	H3K4me3	mark	or	by	removal	of	the	repressing	

H3K27me3	mark,	 respectively	 (Pan	 et	 al.,	 2007;	 Pasini	 et	 al.,	 2010).	 This	 concept	 has	

been	debated	initially	by	researchers	who	argued	that	the	existence	of	bivalent	domains	

could	be	 explained	by	 analysis	 of	mixture	of	 cells	 harboring	 activating	 and	 repressive	

marks	at	the	same	respective	loci.	This	concern	has	been	dismissed	by	sequential	ChIP	

assays	 for	H3K4me3	and	 then	 for	H3K27me3	(or	vice	versa)	 that	confirmed	 that	both	

marks	 could	 be	 detected	 at	 the	 same	 region	 (Pan	 et	 al.,	 2007;	 De	 Gobbi	 et	 al.,	 2011).	

Moreover,	 analysis	 of	 mononucleosomes	 in	 conjunction	 to	 sequential	 ChIP	 in	 mouse	

ESCs	 revealed	 that	 H3K4me3	 and	 H3K27me3	 can	 co-exist	 on	 the	 same	 nucleosome	

(Voigt	et	al.,	2012).	Importantly,	there	is	a	correlation	between	the	presence	of	high	and	

medium	CpG	promoters	and	the	presence	of	bivalent	domains	in	mouse	and	human	ESC.	

Furthermore,	practically	all	promoters	that	are	CpG	rich	lack	DNA	methylation	marks	in	

human	 and	mouse	 PSC	 (Weber	 et	 al.,	 2007;	 Fouse	 et	 al.,	 2008;	Meissner	 et	 al.,	 2008;	

Mohn	et	al.,	2008).		

Promoters	with	a	 low	percentage	of	CpGs	are	 less	well	 studied	as	 they	are	 found	at	 a	
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very	 small	 part	 of	 the	 human	 genes.	 Only	 around	 6,5%	 of	 these	 low	 CpG	 promoters	

harbor	H3K4me3	marks	 and	do	 not	 show	 any	H3K27me3	mark	 in	mouse	ESCs.	 	 Low	

CpG	genes	have	also	been	associated	with	highly	tissue	specific	functions	(Mikkelsen	et	

al.,	 2007)	 and	 harbor	 DNA	 methylation	 marks	 in	 human	 ESC.	 During	 human	 ESC	

differentiation	 the	DNA	methylation	 levels	 of	 these	 low	CpG	 genes	 anti-correlate	with	

gene	expression	(Xie	et	al.,	2013).		

During	differentiation	of	ESCs	it	was	shown	that	pluripotency	genes	acquire	repressive	

marks,	 both,	 histone	 modifications	 and	 DNA	 methylation,	 whereas	 genes,	 that	 are	

important	 during	 this	 differentiation	 state	 loose	 the	 repressive	 H3K27me3	mark	 and	

acquire	additional	activating	H3K4me3	marks.	On	the	contrary,	if	the	gene	is	not	needed	

during	this	developmental	step	it	looses	the	activating	H3K4me3	mark	and	gets	silenced	

(Christophersen	and	Helin,	2010).		

Taken	 together,	 all	 these	 epigenetic	 events	 contribute	 to	 the	 establishment	 of	 unique	

gene	expression	patterns	in	specialized	cell	types	resulting	from	PSC	without	changes	in	

the	DNA	sequence.	
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III.	Aims	of	the	study	
	
My	 interest	 lies	 in	 the	 first	 differentiation	 event	 of	 human	 development	 –	 the	

specification	of	TE	progenitors.	I	have	set	the	primary	objective	to	utilize	human	PSCs	as	

a	model	and	novel	surface	markers	defined	by	the	Drukker	lab	for	purifying	trophoblast	

progenitors	as	a	basis	for	my	analysis.	Because	of	the	ethical	ban	on	research	of	human	

embryos	as	well	as	the	minute	quantity	of	chromatin	in	mouse	embryos,	this	human	PSC	

progenitor-progeny	 system	 is	 both	 essential	 and	 uniquely	 tailored	 to	 break	 grounds	

understanding	 the	 cell	 intrinsic	 molecular	 properties	 that	 drive	 the	 specification	 of	

human	TE	progenitors.	The	specific	aims	of	my	work	include:	

	

1.	 To	 resolve	 the	 uncertainty	 concerning	 the	 lineage	 correspondence	 of	 human	

PSC-derived	trophoblast	progeny	

	

There	 exists	 uncertainty	 regarding	 the	 lineage	 correspondence	 of	 BMP4-treated	 PSC	

progeny	 that	 exhibits	 trophoblast	 features,	 including	 expression	 of	 the	 trophoblast	

specific	genes	KRT7,	CDX2,	GATA3,	GCM1,	ELF5	and	others,	production	of	 the	placental	

hormone	human	Chorionic	Gonadotropin	 (hCG),	presentation	of	 the	placental	 immune	

regulator	HLA-G,	 and	 exhibiting	demethylation	of	 the	ELF5	 promoter	 (Xu	 et	 al.,	 2002;	

Amita	et	al.,	2013;	Lichtner	et	al.,	2013;	Lee	et	al.,	2016).	These	properties	are	regarded	

by	many	as	evidence	 for	a	TE	decent	of	 the	cells	(Roberts	et	al.,	2014)	however,	other	

investigators	claimed	that	the	expression	of	genes	that	are	characteristic	to	mesoderm	

progeny,	which	includes	blood,	muscle,	and	bone	tissues,	such	as	ISL1	and	FLK1	and	the	

absence	of	KRT7	at	the	day	7	after	differentiation,	indicates	that	the	trophoblast	progeny	

emerges	 from	 mesoderm	 precursors	 (Bernardo	 et	 al.,	 2011).	 What	 complicates	

concluding	 the	 lineage	 classification	using	 the	 existing	data	 is	 the	 fact	 that	BMP4	also	

induces	 the	 expression	 of	 WNT3	 during	 the	 differentiation	 process	 leading	 to	

heterogeneous	cultures	consisting	of	trophoblast	and	mesoderm	cell	populations	as	our	

lab	has	shown	in	collaboration	(Kurek	et	al.,	2015).	However,	this	is	still	not	a	proof	of	

the	TE	decent	of	BMP4-induced	trophoblast	progeny.	To	resolve	this	issue	I	have	set	to	

address	the	following	questions:	
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a. Does	 the	 gene	 cohort	 expressed	 in	 progenitors	 during	 the	 differentiation	 of	

human	PSC	support	mesoderm	classification?	

b. Does	 the	 gene	 cohort	 expressed	 in	 progenitors	 during	 the	 differentiation	 of	

human	PSC	support	trophoblast	classification?	

c. What	is	the	lineage	correspondence	of	the	non-trophoblast	progenitors	emerging	

during	the	differentiation	of	human	PSCs?		

d. Does	 the	gene	cohort	expressed	 in	BMP4	 induced	purified	 trophoblast	progeny	

from	human	PSCs	correspond	to	blastocyst	stage	human	TE	progeny?	

	

My	 experimental	 approach	 included	 global	 transcriptomic	 and	 tissue	 classification	

bioinformatics	 methods	 coupled	 to	 culturing	 of	 bulk	 human	 PSCs	 and	 cell	 sorting	

modalities	 of	 differentiated	 derivative	 populations.	 Furthermore,	 I	 used	 existing	

transcriptomic	datasets	of	human	blastocyst-stage	TE	as	a	basis	for	comparison	to	the	in	

vitro	generated	trophoblast	progenitors.	

	

2.	 To	 explain	 the	 genetic	 mechanism	 that	 drives	 trophoblast	 specification	 of	

human	PSCs	

	

Previous	 studies	 have	 identified	 TFs	 that	 are	 highly	 expressed	 following	 BMP4	

treatment	of	human	PSCs	(Xu	et	al.,	2002;	Marchand	et	al.,	2011;	Sudheer	et	al.,	2012).	

Nevertheless	they	were	not	placed	in	the	context	of	a	TF	network	that	explains	the	mode	

of	trophoblast	formation.	I	reason	that	this	is	due	to	two	primary	causes:		

1.	 Cellular	 heterogeneity:	 studies	 from	 our	 lab	 and	 others	 have	 shown	 that	 there	 is	 a	

high	 degree	 of	 lineage	 heterogeneity	 in	 early	 differentiating	 human	 PSC	 cultures	

(Drukker	et	al.,	2012;	Kurek	et	al.,	2015).	Cell	purification	therefore	has	to	be	applied	for	

analyzing	 the	 intrinsic	 properties	 of	 cell	 lineages,	 a	 principle	 that	 has	 been	

demonstrated	 in	 defining	 the	 populations	 of	 the	 hematopoietic	 system,	 the	 nervous	

system	and	others	(Hoppe	et	al.,	2014).		

2.	 Post	 lineage	 commitment	 analysis:	 previous	 studies	 of	 human	 PSC	 differentiation	

towards	trophoblast	lineages	mainly	focused	on	analyzing	cultures	that	already	contain	

trophoblasts,	 which	 are	 therefore	 not	 compatible	 with	 attempts	 to	 analyze	 the	

mechanism	leading	to	 trophoblast	specification	 from	human	PSCs.	 I	have	therefore	set	

the	following	questions	for	identifying	the	TF	network	that	underlie	human	trophoblast	

specification:	
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a. What	are	the	key	TFs	upregulated	by	BMP4	treatment	prior	to	the	emergence	of	

committed	trophoblast	progenitors	from	human	PSCs,	and	do	they	correspond	to	

mouse	TE	key	genes?	

b. What	are	 the	 trajectory	 categories	of	 the	upregulated	TFs	and	do	 they	 indicate	

layers	of	a	putative	TF	network?	

c. Is	 there	 a	 correspondence	 between	 the	 key	 putative	 TFs	 upregulated	 before	

trophoblast	progenitors	and	TFs	enriched	in	purified	trophoblast	progenitors?	

d. What	is	the	connectivity	of	the	putative	trophoblast	TF	network?	

e. Does	 reduction	 of	 early	 key	 trophoblast	 TF	 candidates	 perturb	 trophoblast	

progenitor	specification	and	the	putative	network?	

f. How	does	the	trophoblast	TF	network	relate	to	downregulated	genes	during	the	

process	of	trophoblast	progenitor	specification		

	

To	 address	 these	 questions	 I	 have	 used	 the	 above-mentioned	 approaches,	 and	 in	

addition	I	determined	the	bound	human	genomic	loci	of	key	putative	TFs	for	identifying	

the	connectivity	of	the	TE	TF	network.	Moreover,	I	used	functional	knock-out	assays	for	

proving	the	network	connectivity.	

	

3.	 To	 decipher	 epigenetic	 mechanisms	 that	 underlie	 trophoblast	 specification	

from	human	PSCs		

	

Analysis	of	a	spectrum	of	histone	modifications	of	bulk	cultures	of	human	ESCs	treated	

by	BMP4	(Xie	et	al.,	2013)	did	not	yield	a	significant	insight	into	epigenetic	mechanisms	

underlying	 trophoblast	 commitment.	 I	 reason	 that	 this	 is	 due	 to	 the	 above-mentioned	

confounding	 effects	 of	 lineage	 and	 stage	 heterogeneity.	 To	 identify	 epigenetic	

chromatin-related	mechanisms	that	play	key	roles	during	this	differentiation	process	 I	

have	set	to	address	the	following	questions:	

	

a. What	is	the	turnover	of	the	activating	and	repressing	histone	modifications	of	key	

genes	in	trophoblast	progenitors	and	their	precursors?	

b. What	 is	 the	 turnover	 of	 DNA	 methylation	 marks	 of	 key	 genes	 in	 trophoblast	

progenitors	and	their	precursors?	
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c. Can	transcriptional	reduction	and	induction	of	key	pluripotency	and	TE	genes	be	

explained	 by	 changes	 in	 histone	 configurations	 and	 DNA	 methylation	 marks	

during	trophoblast	progenitors	commitment?	

	

To	 address	 the	 questions	 related	 to	 the	 histone	 modification	 and	 DNA	 methylation	

turnover	I	analyzed	the	genome-wide	distribution	of	the	H3K4me3	modification,	which	

is	 correlated	 with	 transcribed	 chromatin,	 the	 H3K27me3	 modification,	 which	 is	

correlated	 with	 non-transcribed	 chromatin,	 and	 of	 CpG	 methylation	 in	 purified	

undifferentiated	cells	and	trophoblast	progenitors.	I	have	correlated	this	chromatin	data	

with	transcriptomic	data	for	gaining	a	holistic	view	of	the	regulation	governing	human	

TE	 specification,	 Finally,	 this	 combinatorial	 analysis	 enabled	 me	 to	 define	 a	 human	

trophoblast	chromatin	signature	similar	to	the	one	identified	for	the	cardiac	progeny	of	

human	PSC	(Paige	et	al.,	2012).		
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IV.	Material	and	Methods	

Material	
	

Cell	culture	 Article	number	 Vendor	
2-Mercaptoethanol	 31350-010	 Life	Technologies	
Accutase	 A6964-100ML	 Sigma-Aldrich	
B27	Supplement,	minus	insulin-10	
mL	 A1895601	 Life	Technologies	

Collagenase,	type	IV	 17104019	 Life	Technologies	
DMEM	 21969035	 Life	Technologies	
DMEM/F12	 11320074	 Life	Technologies	
DMSO	 D5879-100ml	 Sigma-Aldrich	
Gelatin	powdered,	pure	Ph.	Eur.,	NF	 A1693,0500	 AppliChem	
GlutaMAX,	100X	 35050038	 Life	Technologies	
HyClone™	Fetal	Bovine	Serum	
(South	America),	Research	Grade	

SV30160.03	(LOT	Nr	
RZB35918)	 GE	Healthcare	

Knockout-Serum	Replacement	(KSR)	 10828028	 Thermo	Fisher	
Scientific	

Matrigel-Matrix	 FALC354230	 Schubert&Weiss	
MEM	Non-Essential	Amino	Acids	
Solution	(100X)	(NEAA)	 11140050	 Thermo	Fisher	

Scientific	
Millex-GP	Syringe	Filter	Unit,	0.22	
µm,	polyethersulfone,	33	mm,	
gamma	sterilized	

SLGP033RS	 Merck	Millipore	

mTESR1	 5850	 Stemcell	
Technologies	

PBS,	1x	 14190094	 Life	Technologies	
Penicillin-Streptomycin	 15070063	 Life	Technologies	
Recombinant	Human	BMP-4	Protein	 314-BP	 R&D	Systems	
Recombinant	Human	FGF-basic	(154	
a.a.)(bFGF)	 100-18B	 Peprotech	

RPMI-1640	medium	 21875034	 Life	Technologies	

Trypsin-EDTA	(0.25%),	phenol	red	 25200056	 Thermo	Fisher	
Scientific	

Y-27632	dihydrochloride	(ROCK	
inhibitor)	 1254/10	 R&D	Systems	

µ-Slide	8	Well,	ibidi-treat	 80826	 Ibidi	

	
Human	Chorionic	Gonadotropin		 Article	number	 Vendor	

AccuLite®	CLIA	 8575-300	 Monobind	
PREGNANCY	TESTS	 720-0723	 VWR	
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ChIP-Seq	 Article	number	 Vendor	
16%	Formaldehyde	(w/v),	Methanol-
free	10	x	10	mL	 10321714	 Thermo	Fisher	

Scientific	
AbSurance	Histone	H3	Antibody	
Specificity	Array		 16-667	 Merk	Millipore	

Agencourt®	AMPure®	XP,	60	mL	 A63881	 Beckman	Coulter	
Albumin	from	bovine	serum	(BSA)	 A9647-10G	 Sigma-Aldrich	
ChIP-IT	high	sensitivity	kit	 53040	 Active	Motif	

Clarity	Western	ECL	Substrate,	200	ml	 170-5060	 Bio-Rad	
Laboratories	

Dynabeads(R)	Protein	A	for	
Immunoprecipitation	 10001D	 Life	Technologies	

EDTA	Dinatriumsalz	Dihydrat	>99%	
250g	 X986.1	 Carl	Roth	

EGTA	 3054.1	 Carl	Roth	
Glycine	 23391,02	 Serva	
HEPES,	1M	Buffer	Solution	20x100ml	 15630122	 Life	Technologies	
HiSeq®	Rapid	SBS	Kit	v2	(50	Cycle)		 FC-402-4022	 Illumina	
HiSeq®	Rapid	SR	Cluster	Kit	v2		 GD-402-4002	 Illumina	
NEBNext®	ChIP-Seq	Library	Prep	
Reagent	Set	for	Illumina®	 E6200	S	 New	England	

Biolabs	
NEBNext®	Multiplex	Oligos	for	
Illumina®	(Index	Primer	Set	1)	 E7335S	 New	England	

Biolabs	
Nuclease-free	water	(H2O)	 AM9932	 Life	Technologies	
Phenylmethylsulfonylfluorid	5	g	(PMSF)	 6367,1	 Carl	Roth	
Protease	Inhibitor	Cocktail	Set	III,	
EDTA-Free	-	Calbiochem	 539134	 Merk	Millipore	

Proteinase	K	Solution	20	mg/ml	1.25	ml	 AM2546	 Life	Technologies	
Qiaquick	PCR	purification	kit		 28104	 Qiagen	
Quant-iT	PicoGreen	dsDNA	Assay	Kit	 P7589	 Life	Technologies	
Qubit	dsDNA	HS	Assay	Kit	 Q32854	 Life	Technologies	
Rabbit	IgG	isotype	control	antibody	100	
µg	 GTX35035	 Biozol	Diagnostica	

Ribonucleic	acid,	transfer	from	bakers	
yeast	(tRNA)	 R5636-1ML	 Sigma-Aldrich	

RNA	6000	Pico	kit	 5067-1513	 Agilent	
RNase	A	(20	mg/ml)	 12091021	 Life	Technologies	
RNeasy	MinElute	cleanup	kit	 74204	 Qiagen	
RNeasy	mini	kit		 4104	 Qiagen	

SDS	Solution,	20	%	 20768,02	 Serva	
Electrophoresis	

Sodium	Chloride	 P029.2	 Carl	Roth	
Sodium-deoxycholate	 D6750-10G	 Sigma-Aldrich	
TRIS	PUFFERAN®	 5429,3	 Carl	Roth	
Triton™	X-100	 X100-500ML	 Sigma-Aldrich	
TURBO	DNase	2U/µl	1000U	 am2238	 Life	Technologies	
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Microarray	&	RNA	seq	&	RT-PCR	 Article	
number	 Vendor	

Encore™	Biotin	Module	,	60	pack	 4200-60	 NuGen	
GeneChip®	Human	Gene	2.0	ST	Array,	30	arrays	 902113	 Affymetrix	
GeneChip®	Hybridization,	Wash,	and	Stain	Kit	 900720	 Affymetrix	
NextSeq	500/550	v2	reagent	cartridge,	75x	 FC-404-2005	 Illumina	
Ovation®	Pico	WTA	System	V2	,	60	pack	 3302-60	 NuGen	

Power	SYBR®	Green	PCR	Master	Mix	 4367659	 Thermo	Fisher	
Scientific	

RNA	6000	Pico	kit	 5067-1513	 Agilent	
RNeasy	MinElute	cleanup	kit	 74204	 Qiagen	
RNeasy	Mini	kit		 74104	 Qiagen	
SuperScript®	III	First-Strand	Synthesis	System	for	
RT-PCR		 18080051	 Life	Technologies	

TaqMan®	Gene	Expression	Master	Mix	 4369016	 Thermo	Fisher	
Scientific	

TruSeq	Stranded	total	RNA	LT	kit	(RiboZero	Gold)	 RS-122-2301	 Illumina	
	

DNA	methylation	 Article	
number	 Vendor	

EZ	DNA	Methylation-Lightning™	Kit	 D5030	 Zymo	Research	

Infinium	HumanMethylation450	BeadChip	Kit	 WG-314-
1003	 Illumina	

Wizard	DNA	isolation	kit	 A1120	 Promega	
	

Immunofluorescence	&	western	blot	 Article	
number	 Vendor	

2-Mercaptoethanol	 M3148	 Sigma-Aldrich	

Clarity	Western	ECL	Substrate,	200	ml	 170-5060	 Bio-Rad	
Laboratories	

goat	anti-mouse	IgM-HRP	 sc-2064	 Santa	Cruz	
Ibidi	mounting	medium	 50001	 Ibidi	

Mini-PROTEAN	TGX	Stain	Free	Gels,	4-15%	 456-8086	 Bio-Rad	
Laboratories	

PhosSTOP™	 4906837001	 Sigma-Aldrich	
Powder	Milk,	blotting	grade	 T145.1	 Carl	Roth	

ProLong®	Gold	Antifade	Reagent	with	DAPI	 8961	 New	England	
Biolabs	

Protease	Inhibitor	Cocktail	Set	III,	EDTA-Free	-	
Calbiochem	 539134	 Merk	Millipore	

TRIS	PUFFERAN®	 5429.3	 Carl	Roth	
Triton™	X-100	 X100-500ML	 Sigma-Aldrich	
µ-Slide	8	Well,	ibidi-treat	 80826	 Ibidi	
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Genome	editing	 Article	
number	 Vendor	

Accutase	 A6964-100ML	 Sigma-Aldrich	
Boric	acid		 B7901	 Sigma-Aldrich	
Doxycycline	hydrochloride	 D9891-1G	 Sigma-Aldrich	
GeneJET	Plasmid	Miniprep	Kit,	50	preps	 K0502	 Fermentas	
LE	Agarose,	500	g	 840004	 Biozym	
Lithium	acetate	dihydrate	 L6883	 Sigma-Aldrich	
NEB®	5-alpha	Competent	E.	coli	(High	Efficiency)	 C2987	I	 NEB	
P3	Primary	Cell	4D-Nucleofector®	X	Kit	L	(24	RCT)	 V4XP-3024	 Lonza	
PureLink	HiPure	Plasmid	Filter	Maxiprep	Kit	 K210017	 Life	Technologies	
Quick	Ligation™	Kit	 M2200	L	 NEB	
QuickExtract	DNA	Extraction	Solution	1.0	 101098	 Biozym	
SYBR®	Safe	DNA	Gel	Stain	 5001208	 Life	Technologies	
Taq	PCR	Master	Mix	Kit	(1000	U)	 201445	 Qiagen	
	

Media	composition	
	

bFGF	medium	 MEF	medium	
400	ml	 DMEM/F12	 500ml	 DMEM	
100	ml	 KSR	 50	ml	 FBS	
5	ml	 NEAA	 5.5	ml	 NEAA	
5	ml	 Glutamax	 5.5	ml	 Glutamax	

10	ng/ml	 bFGF	 5	ml	 Penicillin-
Streptomycin	

1	ml	 2-mercaptoethanol	 	 	

5	ml	 Penicillin-
Streptomycin	 	 	

	
Diff	medium	1	 Diff	medium	2	

400	ml	 DMEM/F12	 49	ml	 RPMI	medium1640	

100	ml	 KSR	 1	ml	 B27	Supplement,	
minus	insulin	

5	ml	 NEAA	 50	ng/ml	 BMP4	(added	fresh	
daily)	

5	ml	 Glutamax	 	 	
1	ml	 2-mercaptoethanol	 	 	

5	ml	 Penicillin-
Streptomycin	 	 	

50	ng/ml	 BMP4	(added	fresh	
daily)	 	 	

Tables	IV-1-7:	Reagents	used	in	this	study	
	

Table	IV-8:	Media	composition	of	bFGF	and	mouse	embryonic	fibroblast	(MEF)	medium	
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mTESR1	

mTESR1	was	prepared	by	 adding	100	ml	mTESR1	5x	 Supplement	 to	400	ml	mTESR1	

Basal	Medium	and	addition	of	5	ml	Penicillin-Streptomycin.	

	

1x	Matrigel	(MG)	

Matrigel	 was	 prepared	 by	 thawing	 on	 ice	 and	 dilution	 of	 1	 ml	 MG	 in	 50	 ml	 cold	

DMEM/F12.	This	mix	was	then	stored	at	4°C	and	used	for	up	to	4	weeks.	

	

2x	Collagenase	

Collagenase	was	prepared	by	addition	of	100	mg	of	collagenase	to	50	ml	of	DMEM/F12.	

The	collagenase	was	dissolved	and	sterile	filtered.	

	

Freezing	medium	

Freezing	medium	contained	of	culture	medium	(bFGF	or	mTESR1)	plus	10%	DMSO.	

	

FACS	medium	

FACS	medium	was	prepared	by	addition	of	2-4%	FBS	and	5	mM	EDTA	to	PBS.		

	

Methods	

Cell	culture	

	

All	centrifugation	steps	were	performed	at	RT	for	4	min	and	1200	RPM	on	a	Megafuge	

40R	centrifuge	(Thermo	Fisher	Scientific).	

	

Human	ESC	lines	used:	

	

For	this	work	I	used	two	different	human	embryonic	stem	cell	lines,	namely	H9	(WA09)	

and	HUES9	iCRISPR.	The	H9	cells	were	used	for	the	main	part	of	the	project	(Microarray,	

ChIP-Seq,	 DNA-methylation,	 time-course	 RNA-Seq,	 immunofluorescent	 microscopy),	

whereas	the	HUES9	iCRISPR	cells	were	used	for	genetic	manipulation	experiments.	The	

Table	IV-9:	Media	composition	Differentiation	(Diff)	medium	1	and	2	
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reason	 for	 this	 is	 that	 the	 HUES9	 iCRISPR	 cells	 were	 genetically	 manipulated	 by	

Transcription	 activator-like	 effector	 nucleases	 (TALENs)	 in	 a	 way	 that	 the	 DNA	

endonuclease	Cas	9	was	inserted	in	the	AAVS1	locus	of	the	genome	of	HUES9	cells.	The	

expression	 of	 Cas	 9	 can	 be	 induced	 by	 addition	 of	 doxycycline.	 This	 system	 allows	

editing	 the	 genome	 of	 the	 cells	 just	 by	 introducing	 guide	 RNAs	 and	 addition	 of	

doxycycline.	Thus	it	represents	a	fast	and	easy	way	to	perform	gene	editing	experiments	

with	high	efficiency	(Gonzalez	et	al,	2014).		

		

Culture	conditions	

	

Maintenance:		

	

H9	cells	

H9	cells	were	cultured	on	a	 layer	of	 irradiated	mouse	embryonic	fibroblasts	(MEFs)	in	

bFGF	medium.	 The	 feeder	 layer	 is	 used	 because	 it	 produces	 different	 factors	 that	 are	

important	for	the	maintenance	of	pluripotency.	Passaging	of	these	cells	was	performed	

every	3-4	days	when	cells	were	70-80%	confluent.	Therefore	one	day	prior	to	passaging,	

the	irradiated	feeders	were	plated	on	gelatin	coated	plates	and	left	to	attach	for	one	day	

in	MEF	medium.	For	splitting,	the	H9	cells	were	incubated	for	45	min	to	1	hour	with	2x	

collagenase.	After	the	colonies	detached	the	cells	were	collected	with	bFGF	medium	and	

allowed	to	settle	by	gravity.	When	the	majority	of	cells	were	settled,	the	excess	medium	

was	sucked	off,	cells	were	resuspended	in	bFGF	medium	and	pipetted	up	and	down	for	5	

times	with	a	10	ml	pipette	to	break	the	colonies	into	smaller	clumps	of	cells.	Then	cells	

were	passaged	1:6	on	the	MEF	plates	in	bFGF	medium.	

	

For	 RNA-Seq	 experiments,	 which	 were	 performed	 in	 collaboration	 with	 Dr.	 Dmitry	

Shaposhnikov,	H9	 cells	were	 adapted	 to	mTESR1	medium	and	 cultured	on	MG	coated	

plates	in	feeder-free	conditions.	Passaging	was	performed	as	for	cells	in	bFGF	medium,	

except	that	mTESR	was	used	instead	of	bFGF	and	cells	were	plated	on	MG-coated	plates	

instead	of	feeder	layers.	

	

HUES9	iCRISPR	cells	(Gonzalez	et	al.,	2014)	

HUES9	iCRISPR	cells	were	maintained	 in	mTESR1	medium	and	cultured	on	MG	coated	

plates	 in	 feeder-free	 conditions,	 as	 this	 provided	 beneficial	 for	 further	 nucleofection	
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experiments.		Passaging	was	performed	as	described	for	H9	cells.	

	

Freezing	

Freezing	of	 cells	was	performed	by	addition	of	 collagenase	as	described	above,	except	

cells	were	not	plated	on	plates,	but	resuspended	in	freezing	medium	and	transferred	to	

cryotubes.	 Then,	 cells	 were	 cooled	 down	 in	 Mr.	 Frosty	 freezing	 containers	 (Thermo	

scientific)	 at	 -80°C.	 The	 freezing	 containers	 allow	 the	 cells	 to	 cool	 down	 for	 1°C	 per	

minute,	 the	 optimal	 speed	 to	 conserve	 cells.	 After	 24	 hours	 cells	were	 transferred	 to	

liquid	nitrogen.	

	

Thawing	

Cells	 were	 taken	 from	 liquid	 nitrogen,	 quickly	 thawed	 in	 the	 water	 bath	 at	 37°C,	

resuspended	 in	 culture	medium,	 centrifuged	and	 the	 supernatant	was	discarded.	Cells	

were	 taken	 up	 in	medium	 and	 plated	 in	 the	 respective	medium,	 either	 on	MEFs	 (for	

bFGF	cultured	cells)	or	on	MG-coated	dishes	(for	mTESR1	cultured	cells).	

		

BMP	directed	differentiation	

	

H9	in	bFGF	

Cell	culture	plates	were	coated	with	MG	for	30	min.	Cells	were	dissociated	to	single	cells	

by	incubation	in	0.25%	Trypsin	for	5	min	at	37°C.	Detached	cells	were	collected	in	MEF	

medium	 and	 centrifuged.	 Afterwards,	 cells	 were	 resuspended	 in	 Diff	 medium	 1	 and	

plated	 at	 a	 density	 of	 105	 000	 cells/cm2.	 BMP4	 was	 added	 fresh	 every	 day	 at	 a	

concentration	of	50	ng/ml.	Medium	was	changed	daily	during	differentiation	and	cells	

were	harvested	after	2.5	days	using	0.25%	Trypsin	as	described	above.	

	

H9	in	mTESR1	

Cell	culture	plates	were	coated	with	MG	for	30	min.	H9	cells	were	dissociated	to	single	

cells	by	 incubation	with	Gentle	cell	dissociation	buffer	 for	10	min.	Cells	were	plated	in	

mTESR1	plus	10	µM	ROCK	inhibitor	(Y-27632).	On	the	next	day	cells	were	washed	with	

PBS	and	Diff	Medium	2	 including	 freshly	 added	BMP4	 to	 a	 concentration	of	50	ng/ml	

was	 added.	 Medium	 was	 changed	 daily.	 For	 time-course	 experiments	 cells	 were	

harvested	at	time-points	8	hours,	16	hours,	24	hours,	48	hours	and	72	hours	using	PLB	
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buffer.	

	

HUES9	iCRISPR:	

BMP4	directed	differentiation	of	HUES9	cells	was	performed	as	described	 for	H9	cells	

cultured	in	bFGF	medium,	except	that	10	µM	ROCK	inhibitor	was	added	for	the	first	24	

hours	of	differentiation.	

	

Human	Chorionic	Gonadotropin	(hCG)	measurement	

	

For	hCG	measurement	cells	were	differentiated	as	described	above	and	1	ml	of	medium	

was	collected	per	sample	every	24	hours.	For	initial	testing	pregnancy	test	stripes	were	

used	 following	manufacturer’s	 instructions.	 Samples	were	 then	 frozen	 and	 stored	 at	 -

80°C	 for	 further	 testing	 with	 the	 AccuLite®	 CLIA	 kit	 according	 to	 manufacturer’s	

instructions.		

	

Fluorescence	activated	cell	sorting	(FACS)	

	

The	following	protocol	was	adjusted	to	2.5	x	105	cells	(¼	of	a	confluent	6	well	plate).	If	

more	cells	were	used,	for	example	for	ChIP-Seq,	the	protocol	was	up-scaled	accordingly.	

For	FACS	cells	were	incubated	with	1	ml	0.25%	trypsin	per	6	well	until	they	dissociated	

as	single	cells.	Trypsin	was	stopped	by	the	addition	of	3	ml	MEF	medium	and	cells	were	

centrifuged.	 Cells	 were	 then	 resuspended	 in	 1	 ml	 FACS	 medium,	 distributed	 to	 4	

different	tubes	(1x	antibody	staining,	1x	IgG	staining	and	2x	for	RNA	isolation)	and	put	

on	ice.	Then	the	appropriate	amount	of	primary	antibody	was	added		(Table	IV-10)	and	

stainings	were	performed	for	30	min	on	ice.	Afterwards	cells	were	centrifuged	at	2000	g	

for	5	min	at	4°C.	The	supernatant	was	removed	and	the	pellet	was	resuspended	in	200	µl	

FACS	medium	containing	secondary	antibody	(1:250).	Cells	were	incubated	in	the	dark	

for	 another	 30	min	 on	 ice,	 centrifuged,	 the	 supernatant	 removed	 and	 resuspended	 in	

250	µl	FACS	medium	containing	Propidium	 iodide	 (PI,	1:200).	Cells	were	 then	 filtered	

through	a	Falcon	40	µm	cell	 strainer	 (BD)	 and	analyzed	on	a	FACS	ARIA	 III	 (BD).	 For	

sorting,	 cells	 were	 gated	 using	 FSC-A	 against	 SSC-A	 according	 to	 morphology	 of	 the	

population	and	then	doublets	were	excluded	according	to	FSC-A	against	FSC-W.	Next	PI	
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was	 excited	 using	 the	 561	 nm	 yellow-green	 laser	 and	 detected	 using	 a	 610/20	 filter.	

Exclusion	 of	 the	 PI-positive	 cells	 diminishes	 dead	 cells	 in	 the	 population.	 Then	 the	

respective	dye	of	the	secondary	antibody	was	detected	using	either	the	633	nm	red	laser	

to	excite	Alexa	Fluor	647	 that	was	detected	using	a	660/20	 filter,	or	 the	488	nm	blue	

laser	to	excite	Alexa	Fluor	488,	where	the	fluorescence	was	detected	via	a	530/30	filter.	

For	 sorting	 the	 top	 and	 lowest	 20%	 of	 the	 APA	 population	were	 gated	 and	 sorted	 as	

APA+	and	APA-,	respectively.	The	primary	SSEA-5	labeled	antibody	was	detected	using	

the	405	nm	violet	laser	for	excitation	and	the	450/40	filter	for	detection.	

FACS	data	was	then	analyzed	using	FlowJo	X	10.0.7r2.	
	
Antibodies	used	for	FACS:	
	

Antibody	 Vendor	 Catalog	
Number	

Lot	
Number	

Concentration	
used	

Purified	Mouse	
Anti-Human	
CD249,	

Clone	2D3/APA	

BD	Biosciences	 564532	 4197560	 1µg/2,5x105	cells	
or	1:200	

Mouse	Igg	 eBioscience	 16-4714-85	 E034743	 1µg/2,5x105	cells	
or	1:400	

SSEA5	Pacific	
Blue	 Homemade	 	 	 5µl/2,5x105	cells	

Alexa	Fluor(R)	
488	goat	anti-
mouse	IgG	

(H+L)	2	mg/ml	

Life	Technologies	 A11001	 1726530	 1:250	

Alexa	Fluor(R)	
647	goat	anti-
mouse	IgG	

(H+L)	2	mg/ml	

Life	Technologies	 A21235	 1383063	 1:250	

	

RNA	isolation	

RNA	was	 isolated	using	 the	RNeasy	mini	 kit	 according	 to	manufacturer’s	 instructions.	

Isolated	RNA	was	stored	at	-80°C	thereafter.		

	

Quantitative	real-time	PCR	(RT-PCR)	

Reverse	transcription	

Table	IV-10:	Antibodies	used	for	FACS	analysis	
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RNA	concentration	was	measured	using	the	Nanodrop	ND-1000	system.	For	all	samples	

of	 an	 experiment	 similar	 RNA	 concentrations	 were	 reverse	 transcribed	 using	 the	

SuperScript®	III	First-Strand	Synthesis	System	for	RT-PCR	according	to	manufacturer’s	

instructions.	cDNA	was	amplified	using	oligo	dT	primers.	

	

RT-PCR	

Both,	 SYBR	green	 and	Taq	Man	 reactions	were	performed	using	 the	QuantStudio	12K	

Flex	Real-Time	PCR	System	(Thermo	Fisher	Scientific)	in	384	well	plates.		

	

SYBR	green	

For	SYBR	green	reactions	the	following	mastermix	and	primers	were	used:	

	
	

Volume	in	µl	 Component	
5	 Power	SYBR®	Green	PCR	Master	Mix	
2.25	 Primer	mix	[4	µM]	
1	 DNA	
1.75	 H2O	

	
Primers:	
	

Name Forward Reverse 
ELF5 CCTGATGTCGTGGACTGATCTG GCTTAGTCCAGTATTCAGGGTGG 

GAPDH GAGTCAACGGATTTGGTCGT ATGACAAGCTTCCCGTTCTC 
STS GCTGGCAAAAGTCAACACGGAG GTCCGATGTGAAGTAGATGAGGG 

	

	
TaqMan	
	
TaqMan	reactions	were	performed	using	the	following	mastermix	and	Taq	Man	assays:	
		

Volume	in	µl	 Component	
5	 TaqMan®	Gene	Expression	Master	Mix	
0.5	 TaqMan	Probe	
1	 DNA	
3.5	 H2O	

Table	IV-11:	Mastermix	used	for	SYBR	green	assay	
	

Table	IV-12:	Primers	used	for	SYBR	green	assay	
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TaqMan	Assays:	
	

Gene	 Assay	
ANKRD1	 Hs00923599_m1	
CD13	 Hs00174265_m1	
CDX2	 Hs01078080_m1	
ENPEP	 Hs00157366_m1	
GAPDH	 Hs02758991_g1	
GATA2	 Hs00231119_m1	
GATA3	 Hs00231122_m1	
GCM1	 Hs00961601_m1	
MESP1	 Hs00251489_m1	
POU5f1	 Hs01895061_u1	
ROR2	 Hs00171695_m1	
T	 Hs00610080_m1	

TFAP2A	 Hs01029413_m1	
TFAP2C	 Hs00231476_m1	
TP63	 Hs00978343_m1	
VGLL1	 Hs00212387_m1	

	

Microarray	

Microarray	was	performed	using	the	GeneChip	Human	Gene	2.0	ST	Arrays	(Affymetrix).	

They	were	hybridized	and	scanned	according	to	manufacturer’s	instructions.	

	

Chromatin	Immunoprecipitation	(ChIP)	

	

Histone	modification	ChIP:	

	

Antibody	testing	

Antibodies	 were	 tested	 for	 specificity	 using	 the	 AbSurance	 Histone	 H3	 Antibody	

Specificity	Array	 according	 to	manufacturer’s	 instructions.	 Briefly,	 the	membrane	was	

rehydrated	in	methanol	and	blocked	using	5%	milk	powder	in	TBS-T	for	1	hour	at	room	

temperature.	 Afterwards	 the	 antibody	 was	 added	 to	 the	 blocking	 solution	 and	 the	

Table	IV-13:	Mastermix	used	for	TaqMan	assay	
	

Table	IV-14:	Probes	used	for	TaqMan	assay	
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membrane	 was	 incubated	 at	 4°C	 over	 night.	 The	 membrane	 was	 then	 washed	 three	

times	with	TBS-T	for	5	min	each.	After	incubation	with	secondary	antibody	for	1	hour	at	

room	 temperature	 three	 washing	 steps,	 as	 described	 before,	 followed	 and	 the	

membrane	was	incubated	for	1	min	with	Clarity	Western	ECL	Substrate	and	imaged.	

Further	antibody	testing	was	performed	using	ChIP-RT-PCR.	Therefore	regions	enriched	

and	depleted	for	the	respective	histone	mark	were	determined	using	the	UCSC	genome	

browser	and	ENCODE	data.	Primers	were	designed	in	these	regions	using	Primer3	Plus	

(http://primer3plus.com/cgi-bin/dev/primer3plus.cgi)	 to	 span	 around	 80-150bp.	

(Table	IV-15)	These	primers	were	then	used	to	test	the	specificity	of	the	antibodies	after	

the	ChIP	by	RT-PCR	using	the	SYBR	green	mastermix	as	described	above.	For	analysis	of	

the	enrichment	or	depletion	the	mean	Ct	of	2	technical	replicates	was	used	per	primer	

set	 and	 compared	 to	 the	 adjusted	 input	 values	 (the	 Ct	 values	 of	 the	 input	 need	 to	 be	

adjusted	according	to	the	dilution	factor)	with	the	formula:	

	
%	input	=	100	𝑥	2(Ct	(adjusted	Input)-	Ct	(IP))	

	
Primers	used:	

Name	 Forward	 Reverse	
ACTB	 AACGGCAGAAGAGAGAACCA	 AAGATGACCCAGGTGAGTGG	
B2M	 GAGGCTATCCAGCGTGAGTC	 GAAGTCACGGAGCGAGAGAG	
CCND1	 TGAAGAATCCCTGGATGGAG	 GCCTGGGGTGAGATACAAGA	
ESR1	 AGAAAGGCGGGCATTAACTT	 GGCCTTGACTTTCATGGTGT	
EVX2	 CTGAGTCTTCGGGGTTTCAA	 GTCAGCGGGAGAAAGAGTTG	

GAPDH	#1	 AGTCCCCAGAAACAGGAGGT	 AGAGCGCGAAAGGAAAGAA	
GAPDH	#2	 CTCTCTCCCATCCCTTCTCC	 GGGAAGAGGGGAAGCTGTAT	
GAPDH	#3	 AGGCAACTAGGATGGTGTGG	 TGGACTCCACGACGTACTCA	
HOXD12	 GGAAACCCTACACGAAGCAG	 TCGCTGAGGTTCAGCCTATT	
K4neg	 CCAGGCAGATGAATGAGGAT	 CCCTTCCAAGGCTCTCTTCT	

NEUROG1	 CTGCAGGTACCCCTGATCTC	 AACTGCCCTTTCCTGAGTGA	
SPERT	 GCATTAGAAGCTGGGGTGAA	 CCTTCTCTCTTGCCCATCTG	

	
	
Sample	preparation:	

Cells	 were	 dissociated	 from	 three	 confluent	 10	 cm	 plates	 using	 0.25%	 trypsin	 as	

described	 before.	 The	 pellet	 was	 resuspended	 in	 10	ml	 cold	 DMEM/F12	 and	 1	ml	 of	

freshly	 prepared	 crosslinking	 solution,	 consisting	 of	 50	 mM	 Hepes/KOH,	 100	 mM	

sodium	 chloride,	 1	 mM	 EDTA,	 0.5	 mM	 EGTA,	 11%	 Formaldehyde	 (diluted	 from	 16%	

Table	IV-15:	Primers	used	for	ChIP-RT-PCR	
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Formaldehyde)	was	added.	This	 results	 in	a	1%	 formaldehyde	concentration.	After	10	

min	on	the	shaker	the	crosslinking	was	stopped	by	the	addition	of	550	µl	2.5	M	glycine.	

Cells	were	centrifuged	at	2000	g	for	5	min	at	4°C.	The	pellet	was	resuspended	in	5	ml	ice	

cold	 PBS	 with	 50	 µl	 100	mM	 PMSF	 (in	 ethanol)	 and	 centrifuged	 as	 before.	 Then	 the	

pellet	was	 resuspended	 in	 cold	 FACS	medium	 and	 stained	 as	mentioned	 above.	 After	

sorting	1x106	cells	per	 tube	cells	were	washed	once	more	with	PBS+PMSF	and	 further	

flash	frozen	in	liquid	nitrogen.	Cells	were	stored	at	-80°C	until	ChIP	was	performed.	

	

ChIP:	

All	steps	were	performed	on	ice	unless	noted	otherwise.	For	each	ChIP	reaction	2.5	x	105	

cells	were	used.	

	

Pre-clearing	beads	preparation:	

For	10	pre-clearing	reactions	200	µl	Dynabeads(R)	Protein	A	 for	 Immunoprecipitation	

were	 put	 on	 a	MagnaRack™	Magnetic	 Separation	Rack	 (Thermo	 Fisher	 Scientific)	 and	

excess	 liquid	was	 discarded.	 The	 beads	were	 resuspended	 in	 1	ml	 TE	 	 buffer	 and	 for	

blocking	 purposes	 100	 µl	 tRNA	 (10	mg/ml)	were	 denaturated	 for	 5	min	 at	 95°C	 and	

added	with	4	µl	of	rabbit	IgG	isotype	control	(5	µg/µl)	to	the	beads.	This	mix	was	then	

rotated	at	4°C	over	night	and	then	washed	three	times	with	1	ml	wash	buffer	1	(WB1,	50	

mM	Tris	 pH	 8.8,	 0.1%	 SDS,	 0.1%	Na-Deoxycholate,	 1%	Triton	 X100,	 150	mM	 sodium	

chloride,	1	mM	EDTA,	0.5	mM	EGTA)	 for	5	min	at	a	 rotating	wheel	at	4°C.	Afterwards	

beads	were	resuspended	in	200	µl	TE	buffer.	

	

Cell	lysis:	

Cell	pellets	(1	x	106	cells)	were	taken	from	-80°C	and	thawed	on	ice	for	45	-	60	min.	500	

µl	Lysis	buffer	1	(50	mM	Hepes,	140	mM	NaCl,	1	mM	EDTA,	10%	glycerol,	0.5%	NP-40,	

0.25%	Triton	X-100)	were	supplemented	with	protease	inhibitor	(1X)	and	the	pellet	was	

resuspended	by	pipetting	up	and	down.	Cells	were	then	rotated	vertically	for	10	min	at	

4°C.	 Afterwards	 cells	 were	 centrifuged	 at	 2000	 g	 for	 5	 min	 at	 4°C.	 	 The	 pellet	 was	

resuspended	in	500	µl	Lysis	buffer	2	(LB2,	10	mM	Tris,	200	mM	NaCl,	1	mM	EDTA,	0.5	

mM	 EGTA)	 supplemented	 with	 protease	 inhibitor	 (1X)	 and	 again	 rotated	 and	

centrifuged	as	before.	Afterwards	 the	pellet	was	 resuspended	 in	120	µl	 Lysis	buffer	3	

(LB3,	 10	mM	Tris,	 100	mM	NaCl,	 1	mM	EDTA,	 0.5	mM	EGTA,	 0.1%	Na-Deoxycholate,	
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0.5%	N-lauroylsarcosine,	0.1%	SDS)	and	transferred	into	microTUBE	AFA	Fiber	Pre-Slit	

Snap-Cap	6x16mm	for	sonication.	

	

Sonication:	

Sonication	 was	 performed	 in	 120	 µl	 LB3	 in	 microTUBE	 AFA	 Fiber	 Pre-Slit	 Snap-Cap	

6x16mm	with	 a	 Covaris	 E220	 Focused-ultrasonicator	 with	 the	 following	 parameters:	

Peak	Incident	Power	=	105,	Duty	Factor	=	10%,	Cycles	per	Burst	=	200,	Treatment	time	

(s)	=	480	at	4°C.		

	

IP:	

Chromatin	was	diluted	with	900	µl	dilution	buffer	(50	mM	Tris	pH	8.0,	167	mM	sodium	

chloride,	1.1%	Triton	X100	and	0.11%	Na-Deoxycholate)	and	a	50	µl	aliquot	(equals	5%)	

was	taken	as	input	sample	and	frozen	at	-20°C.	To	the	rest	of	the	sample	80	µl	beads	for	

pre-clearing	were	 added	 and	 the	 chromatin	was	 rotated	 for	 2	 hours	 at	 4°C.	 Then	 the	

supernatant	was	collected	in	a	new	tube	and	the	pre-clearing	beads	were	discarded.	The	

pre-cleared	 chromatin	 was	 then	 aliquoted	 into	 4	 tubes,	 each	 aliquot	 containing	

chromatin	from	2.5	x	105	cells.	The	preferred	antibody	was	then	added	to	each	tube	and	

the	sample	was	incubated	on	the	rotating	wheel	over	night	at	4°C.	In	parallel,	for	each	IP	

reaction	 20	 µl	 Dynabeads(R)	 Protein	 A	 for	 Immunoprecipitation	 per	 sample	 were	

blocked	with	10	µl	BSA	(10	mg/ml)	and	20	µl	denaturated	tRNA.	The	beads	where	filled	

up	 to	1	ml	with	TE	buffer	and	put	on	a	rotating	wheel	over	night	at	4°C.	Next	day	 the	

beads	 were	 washed	 three	 times	 with	 WB1	 as	 described	 for	 the	 pre-clearing	 beads,	

resuspended	 in	 20	 µl	 TE	 buffer	 per	 IP	 and	 then	 the	 chromatin	 was	 rotated	 with	 the	

beads	for	3	hours	at	4°C.	Next,	two	washing	steps	were	performed	using	WB1	followed	

by	one	washing	step	with	wash	buffer	2	(WB2,	50	mM	Tris	pH	8.0,	0.1%	SDS,	0.1%	Na-

Deoxycholate,	 1%,	 Triton	 X100,	 500	 mM	 sodium	 chloride,	 1	 mM	 EDTA	 and	 0.5	 mM	

EGTA),	 one	 with	 wash	 buffer	 3	 (WB3,	 50	 mM	 Tris	 pH	 8.0,	 250	 mM	 LiCl,	 0.5%	 Na-

Deoxycholate,	0.5%	NP40,	1	mM	EDTA	and	0.5	mM	EGTA)	and	two	washing	steps	with	

wash	 buffer	 4	 (WB4,	 50	mM	Tris	 pH	8.0,	 10	mM	EDTA	 and	5	mM	EGTA).	 The	 bound	

chromatin	was	 then	eluted	 from	 the	beads	by	 incubation	of	130	µl	 elution	buffer	 (EB,	

1%	SDS,	 0.1	M	NaHCO3)	 in	 a	 shaker,	with	 full	 speed	 shaking	 for	 15	min	 at	 65°C.	 The	

liquid	was	collected	and	transferred	to	a	new	tube.	Then	the	elution	step	was	repeated	

with	100	µl	EB	and	the	sample	collected	in	the	same	tube	as	before.	At	this	step	the	input	

sample	 was	 thawed,	 filled	 up	 with	 EB	 to	 230	 µl	 and	 treated	 as	 the	 IP	 samples.	 All	
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samples	were	 filled	up	with	TE	buffer	 to	a	volume	of	300	µl.	For	digestion	of	RNA	the	

chromatin	was	 incubated	with	 3	 µl	 RNAse	A	 resulting	 in	 a	 final	 concentration	 of	 200	

µg/ml	 for	 45	min	 at	 37°C.	 Then	9	 µl	 5M	 sodium	 chloride	 and	3	 µl	 Proteinase	K	were	

added	and	the	sample	decrosslinked	in	the	shaker	over	night	at	65°C.	Shaking	was	on	for	

15	 min	 every	 hour.	 The	 next	 day	 the	 DNA	 was	 purified	 using	 the	 Qiaquick	 PCR	

purification	 kit	 and	 eluted	 in	 30	 µl	 elution	 buffer	 supplied	 by	 the	 kit.	 This	 DNA	 was	

tested	 for	 enrichment	 of	 positive	 and	 negative	 regions	 as	 described	 above	 and	 then	

frozen	at	-20°C	until	library	preparation.	

	

Transcription	Factor	ChIP:	

	
For	ChIP	of	GATA2,	GATA3,	TFAP2A	and	TFAP2C	1	 x	107	 cells	were	used	and	 treated	

according	to	the	ChIP-IT	high	sensitivity	kit.	

	
Antibodies	used		

Name	 Vendor	 Catalog	
number	 Lot	number	 Concentration	

used	
H3K4me3	

polyclonal	antibody	
–	Premium	

Diagenode	 C15410003-
50	 A.5051-001P	 1	µg/IP	

H3K27me3	
polyclonal	antibody	

–	Classic	
Diagenode	 C15410069	 A1821D	 1	µg/IP	

GATA2	antibody	
(H-116)	 Santa	Cruz	 sc-9008	X	 B0514	 5	µg/IP	

Purified	Mouse	
anti-GATA3,			
clone		L50-823	

BD	
Biosciences	 558686	 509987	 5	µg/IP	

AP-2α	(TFAP2A)	
antibody	(C-18)	 Santa	Cruz	 sc-184X	 J1310	 5	µg/IP	

AP-2γ	(TFAP2C)	
antibody	(6E4/4)	 Santa	Cruz	 sc-12762X	 H2012	 5	µg/IP	

	

Next	generation	sequencing	

ChIP-Seq	

	
Library	preparation	 for	ChIP-Seq	was	performed	using	 the	NEBNext	ChIP-Seq	Library	

Table	IV-16:	Antibodies	used	for	ChIP-Seq	experiments	
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Prep	Reagent	Set	for	Illumina		and	the	NEBNext®	Multiplex	Oligos	for	Illumina®	(Index	

Primer	 Set	 1)	 according	 to	 manufacturer’s	 instruction	 with	 15	 cycles	 of	 PCR.	 The	

libraries	where	then	multiplexed	and	sequenced	using	the	HiSeq®	Rapid	SBS	Kit	v2	(50	

Cycle)	and	HiSeq®	Rapid	SR	Cluster	Kit	v2	on	a	HiSeq	2500	(Illumina).		

	

RNA-Seq:	

	
The	following	paragraph	was	submitted	to	Developmental	Cell	for	publication	as	Krendl	

et	al.	2017:	

3	µg	of	RNA	were	treated	with	TURBO	DNase	(Life	Technologies,	am2238)	according	to	

manufacturer’s	 instructions	 followed	 by	 Rneasy	 MinElute	 RNA	 cleanup	 kit	 (Qiagen,	

74204).	Microcapillary	electrophoresis	on	Agilent	2100	Bioanalyzer	with	RNA	Pico	6000	

kit	(Agilent,	5067-1513)	was	used	to	analyze	RNA	quality	(RIN	values	>8).	Per	RNA-seq	

library,	 1	 µg	 of	 DNAse-treated	 RNA	 was	 treated	 with	 RiboZero	 Gold	

(Human/Mouse/Rat)	 kit	 (Illumina,	 RS-122-2301)	 to	 remove	 rRNAs,	 followed	 by	 RNA	

cleanup	using	the	Rneasy	MinElute	RNA	cleanup	kit.	Sequencing	libraries	were	prepared	

using	 TruSeq	 Stranded	 total	 RNA	 LT	 kit	 (Illumina,	 RS-122-2301)	 according	 to	

manufacturer’s	 instructions	 using	 11	 cycles	 of	 PCR	 followed	 by	 purification	 with	

Agencourt	Ampure	XP	beads	(Beckman-Coulter,	A63881).	Libraries	were	evaluated	on	

an	 Agilent	 2100	 Bioanalyzer	 using	 the	 DNA	 1000	 kit	 (Agilent,	 5067-1504).	 DNA	

concentration	 was	 measured	 using	 a	 Qubit	 dsDNA	 HS	 Assay	 Kit	 (Life	 Technologies,	

Q32854).	 Samples	were	 sequenced	using	a	NextSeq	500	 instrument	 to	generate	75-nt	

single-end	 reads,	 sequencing	 depth	was	 20–40	Mio	 reads	 per	 library.	Multiplexing	 of	

libraries	was	performed	according	to	manufacturer’s	instructions.	

	

Quantification	of	libraries	

	
The	 concentration	 of	 the	 libraries	 was	 measured	 using	 the	 three	 methods	 described	

below.	 The	molarity	was	 calculated	 automatically	 for	 the	Bioanalyzer	method,	 for	 the	

two	other	methods	it	was	calculated	using	the	following	formula:	

nM	=	
!"#$%#&'(&)"# !"!"  ! !"""""" 

!"#$%&'( !"#$ ! !"#
	

	

Then	the	mean	value	of	the	three	different	measurements	was	determined	and	libraries	
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diluted	stepwise	to	2	nM.		

	

Bioanalyzer	

	
The	 fragment	 size	 and	 the	 molarity	 of	 the	 sample	 was	 determined	 using	 the	 High	

Sensitivity	DNA	Analysis	Kit	 on	 a	 2100	Bioanalyzer	 instrument	 (Agilent)	 according	 to	

manufacturer’s	instructions.	

	

Pico	green	concentration	measurement	

	
The	DNA	concentration	was	measured	using	 the	Quant-iT	PicoGreen	dsDNA	Assay	Kit	

with	 a	 Safire	 2	 multimode	 microplate	 reader	 (Tecan)	 according	 to	 manufacturer’s	

instructions.		

	

Qubit	concentration	measurement	

	
DNA	concentration	measurement	was	performed	using	the	Qubit	dsDNA	HS	Assay	Kit	on	

a	Qubit	2.0	Flourometer	according	to	manufacturer’s	instructions.	

	

DNA	methylation	analysis	

	
In	 order	 to	 identify	 differences	 in	 DNA	 methylation	 levels	 on	 a	 genome	 wide	 level,	

genomic	DNA	from	sorted	populations	was	isolated	using	the	Wizard	DNA	isolation	kit	

and	 bisulfite	 conversion	 was	 performed	 using	 the	 EZ	 DNA	 MethylationTM	 Kit.	 Three	

replicates	 of	 each	 population	 were	 then	 analyzed	 with	 the	 Infinium	

HumanMethylation450	 BeadChip	 kit	 according	 to	 manufacturer’s	 instructions.	 Data	

analysis	was	performed	using	the	RnBeads	R	package	(http://rnbeads.mpi-inf.mpg.de).	

	

Immunofluorescent	Microscopy	

	
The	following	paragraph	was	submitted	to	Developmental	Cell	for	publication	as	Krendl	

et	al.	2017:	
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Cells	 grown	 in	 8-well	 chamber	 slides	 coated	 with	 MG	 were	 fixed	 with	 4%	

formaldehyde/PBS	for	15	min	at	room	temperature	and	permeabilized	with	0.3%	Triton	

X-100/5%	BSA/PBS	for	30	min	at	room	temperature.	Primary	and	secondary	antibodies	

were	 diluted	 to	 working	 concentrations	 in	 1%	 BSA/0.1%	 Triton	 X-100/PBS.	 Primary	

antibody	was	 incubated	 overnight	 at	 4°C,	 secondary	 for	 1	 hour	 at	 room	 temperature.	

Specimens	were	washed	with	PBS	containing	DAPI	before	applying	mounting	medium.	

Images	were	obtained	using	a	Zeiss	Axiovert	200M	epifluorescent	microscope.		

	
Antibodies	used:	
	

Name	 Vendor	 Catalog	
number	 Lot	number	 Concentration	

used	

GATA-3	 Biocare	
Medical	 CM	405	A	 031915	 1:200	

AP-2α	
(TFAP2A)	
antibody		
(C-18)	

Santa	Cruz	 sc-184X	 J1310	 1:200	

AP-2γ	
(TFAP2C)	
antibody	
(6E4/4)	

Santa	Cruz	 sc-12762X	 H2012	 1:200	

Alexa	Fluor(R)	
488	goat	anti-
mouse	IgG	

(H+L)	2	mg/ml	

Life	
Technologies	 A11001	 1726530	 1:1000	

Western	blot	
	
The	following	paragraph	was	submitted	to	Developmental	Cell	for	publication	as	Krendl	

et	al.	2017:	

	

Cells	 were	 trypsinized	 and	 lysed	 using	 RIPA	 buffer,	 containing	 phosphatase	 and	

protease	inhibitors.	After	addition	of	2x	SDS	loading	buffer	supplemented	with	10%	2-

Mercaptoethanol	 	 samples	were	heated	at	95°C	 for	5	min.	 Samples	were	 run	on	Mini-

PROTEAN	TGX	Stain	Free	Gels,	4-15%	and	blotted	using	the	Mini	Trans-Blot	Cell	 (Bio-

Rad	 Laboratories).	 Following	 3	 x	 5	min	 washing	 steps	 with	 TBS-T,	 membranes	 were	

blocked	with	5%	milk	powder	in	TBS-T.	Membranes	were	then	incubated	over	night	at	

4°C	with	 5%	milk	 powder	 in	 TBS-T	 containing	 the	 primary	 antibody.	 After	 3	 x	 5	min	

Table	IV-17:	Antibodies	used	for	immunofluorescent	microscopy	
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TBS-T	washing	 steps	 the	membrane	was	 incubated	with	 goat	 anti-mouse	 IgM-HRP	 in	

5%	milk	 powder	 in	 TBS-T.	 Following	 4	 washing	 steps,	 15	 min	 each,	 with	 TBS-T	 the	

membrane	 was	 incubated	 for	 1	 min	 with	 Clarity	Western	 ECL	 Substrate	 and	 imaged	

with	ChemiDoc™	MP	System	(Bio-Rad	Laboratories).		

	

Buffers	used:	
	

RIPA	buffer	 2x	SDS	loading	
buffer	

1x	SDS	
running	buffer	

1x	wet	
transfer	
buffer	

TBS-T	

50	mM	Tris	
HCL	pH	7.5-8	

120	mM	Tris	
HCl	pH	6.8	

2.5	mM	Tris	
base	

2.5	mM	Tris	
base	 2	mM	Tris	base	

150	mM	NaCl	 4%	SDS	 19.2	mM	
Glycine	

19.2	mM	
Glycine	 15	mM	NaCl	

1%	Trition	X-
100	 20%	Glycerol	 0.01%	SDS	 	 0.1%	Tween	20	

0.5%	Na	
deoxycholate	

0.02	%	
bromophenol	

blue	
	 	 Adjust	pH	to	

7.5	

0.1%	SDS	 	 	 	 	

	
	
	
Antibodies	used:	

Name	 Vendor	 Catalog	
number	 Lot	number	 Concentration	

used	
Purified	Mouse	
anti-GATA3,			
clone		L50-823	

BD	
Biosciences	 558686	 509987	 1:700	

β-Actin	(8H10D10)	
Mouse	mAb	 Cell	signaling	 3700	 	 1:5000	

goat anti-mouse 
IgM-HRP	 Santa	cruz	 sc-2064	 	 1:10000	

	

CRISPR/Cas9	gene	editing	
	

Guide	RNA	design	

	
Guide	 RNAs	 (gRNAs)	 were	 designed	 using	 the	 MIT	 CRISPR	 design	 webpage	

Table	IV-18:	Buffers	used	for	western	blot	
	

Table	IV-19:	Antibodies	used	for	western	blot	
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(http://crispr.mit.edu)	 according	 to	 Ran	 et	 al	 (Ran	 et	 al.,	 2013)	 instructions.	 For	 the	

GATA3	genome	editing	experiment	two	pairs	of	gRNAs	were	designed,	flanking	a	region	

at	the	first	exon/intron	boundary,	in	order	to	cut	out	this	genomic	region.	The	following	

gRNAs	were	used	for	this	experiment:	

	
Name	 Target	 Sequence	

GATA3_gRNA	 GATA3	 CACCGTACTGCGCCGCGTCCATGT	
GATA3_gRNA_rev_comp	 GATA3	 AAACACATGGACGCGGCGCAGTAC	
GATA3_gRNA_2	 GATA3	 CACCGACACTCTCGCGACGAGCCAG	
GATA3_gRNA_rev_comp_2	 GATA3	 AAACCTGGCTCGTCGCGAGAGTGTC	
	

Vector	construction	

	
gRNAs	were	resuspended	in	TE	buffer	to	a	final	concentration	to	1	µg/µl	and	1	µl	of	each	

gRNA	 and	 reverse	 compliment	 fragment	 were	mixed	 in	 100	 µl	 TE	 buffer.	 They	 were	

denatured	 in	 a	 Mastercycler	 nexus	 (Eppendorf)	 for	 5	 min	 at	 100°C.	 Then	 the	

temperature	 was	 lowered	 for	 5°C/minute	 until	 25°C	 were	 reached.	 This	 allows	

annealing	of	 the	 two	complementary	gRNA	fragments.	The	annealed	gRNAs	were	then	

ligated	into	a	pBS	U6	Vector	with	the	following	reaction:	

	
Reagent	 Amount	

pBS	U6	vector	 50	ng	
gRNA	mix	 4	µl	
H2O	 5	µl	

2x	Quick	Ligation	Reaction	Buffer	 10	µl	
Quick	T4	DNA	Ligase	 1	µl	

	
This	mix	was	 then	 incubated	 for	5	min	at	 room	 temperature	and	 further	 transformed	

into	 5-alpha	 Competent	 E.	 coli,	 which	 where	 first	 thawed	 on	 ice	 for	 30	 min.	 For	

transformation	1	µl	of	the	ligation	was	mixed	with	50	µl	bacteria	and	incubated	for	30	

min	on	ice.	After	this	they	were	incubated	for	30	seconds	at	42°C,	put	on	ice	for	2	min	

and	 then	 supplemented	 with	 550	 µl	 SOC	 medium.	 The	 mix	 was	 incubated	 at	 a	

thermomixer	at	500	rpm	shaking	 for	45	min	at	37°C	and	50	µl	were	 then	plated	on	a	

pre-warmed	Agar	plate	 containing	100	µg/ml	ampicillin	 (AMP)	and	 incubated	at	37°C	

over	 night.	 The	 next	 day	 colonies	 were	 picked	 and	 incubated	 in	 3	 ml	 LB	 medium	

Table	IV-20:	gRNA	sequences	used	for	genome	editing	experiments	
	

Table	IV-21:		Composition	of	the	ligation	reaction	of	pBS	U6	vector	and	gRNA	
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containing	AMP	 (100	µg/ml)	and	again	 incubated	at	37°C	over	night.	The	DNA	of	 this	

mix	 was	 then	 isolated	 used	 the	 GeneJET	 Plasmid	 Miniprep	 Kit	 according	 to	

manufacturer’s	 instructions	 and	 sent	 for	 Sanger	 sequencing	 using	 the	 U6	 forward	

primer	to	GATC	Biotech.	Sanger	sequencing	results	were	analyzed	for	proper	integration	

of	the	right	gRNA	using	the	Sequencher	5.1	software.	When	sequences	where	right	the	

leftovers	of	 the	miniprep	were	 incubated	 in	100	ml	LB	Medium	containing	100	µg/ml	

AMP	and	incubated	over	night	at	37°C.	Maxi	prep	was	performed	the	next	day	using	the	

PureLink	HiPure	Plasmid	FP	Maxiprep	Kit	according	to	manufacturer’s	instructions.	

	

Nucleofection	

	
For	 genetic	 modification	 experiments	 the	 HUES9	 iCRISPR	 cell	 line	 was	 used	 and	

cultured	as	described	above.	For	nucleofection	a	10	cm	plate	of	70-80%	confluent	cells	

was	dissociated	into	single	cells	using	3	ml	Accutase.	After	dissociation	the	Accutase	was	

stopped	 using	 3	ml	mTESR1	 and	 cells	 were	 centrifuged.	 Cells	 were	 resuspended	 and	

counted	 using	 the	 Neubauer	 cell	 counter.	 1	 x	 106	 cells	 were	 nucleofected	 with	 6	 µg	

plasmid	(3	µg	per	target	sequence)	on	a	4D	NucleofectorTM	System	(Lonza)	using	the	P3	

Primary	Cell	4D-Nucleofector	X	Kit.	Cells	were	re-plated	on	a	MG	coated	6	well	plate	in	

pre-warmed	 mTESR	 and	 doxycycline	 hydrochloride	 (Dox)	 was	 added	 to	 1	 µg/ml.	

Additionally	 ROCK	 inhibitor	 was	 added	 to	 a	 concentration	 of	 10	 µM	 for	 the	 first	 24	

hours.	 After	 this	 period	 the	 cells	 were	 cultured	 for	 two	 days	 in	 mTESR1	 and	 Dox.	

Thereafter	they	were	cultured	as	described	before.		

	

Identification	of	genetically	edited	clones	

	
When	 cells	 on	 the	6	well	 reached	 confluency	 they	were	passaged	as	 single	 cells	using	

Accutase	and	plated	on	MG-coated	10	cm	plates	in	a	low	density	(1:20	-	1:50)	in	order	to	

obtain	single	cell	colonies.	For	the	first	24	hours	ROCK	inhibitor	was	added	as	described	

above.	The	rest	of	the	cells	were	used	for	DNA	extraction	(explained	below)	and	testing	

of	 the	 genome	 editing	 efficiency	 by	 PCR	 (explained	 in	 the	 next	 paragraph).	 gRNA	

combinations	that	showed	a	cut	were	used	for	single	clone	picking.	
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After	clones	reached	a	size	that	was	sufficient	for	picking,	they	were	picked	using	the	tip	

of	a	200	µl	pipette	and	put	into	one	well	of	a	96	well	plate.	Colonies	were	then	broken	up	

and	1/10	of	it	was	taken	for	direct	DNA	isolation.		

	

DNA	isolation	

The	DNA	 isolation	was	performed	using	 the	QuickExtract	DNA	Extraction	Solution	1.0	

according	 to	manufacturer’s	 instructions.	Briefly,	50	µl	of	 solution	was	added	 to	20	µl	

media	 containing	 the	 cells,	 vortexed	 for	 15	 seconds	 and	 then	 incubated	 for	 6	min	 at	

65°C.	 After	 this	 cells	were	 vortexed	 again	 for	 15	 seconds	 and	 incubated	 for	 2	min	 at	

98°C.		

	

PCR	

To	 detect	 the	mutated	 genomic	 DNA,	 I	 designed	 primers	 flanking	 the	 site	 of	 excision	

using	Primer	3	plus.	Initially	primers	were	tested	on	genomic	DNA	using	a	gradient	PCR	

with	an	annealing	temperature	from	60°C	to	70°C.	The	results	were	then	detected	on	an	

agarose	gel	 in	Lithium	Acetate	Borate	(LAB)	buffer	(10mM	Lithium	Acetate	and	10mM	

Boric	Acid)	including	Sybr	Safe	(1:20000).	The	percent	of	the	agarose	gel	used	depended	

on	 the	 size	 of	 the	 fragment	 that	 should	 be	detected.	 Fragments	 smaller	 than	1500	bp	

were	analyzed	on	a	1,5%	agarose	gel,	whereas	 fragments	between	1500	and	5000	bp	

were	analyzed	on	a	1%	agarose	gel.	This	testing	resulted	in	the	following	conditions	for	

GATA3:	

PCR	
Mastermix	

Volume(μl)	
for	1	

reaction	
for	bulk	

Volume(μl)	
for	1	

reaction	
for	picked	
colonies	

	

PCR	program	 Temperature	
in	°C	

Time	in	
min	

Taq	PCR	
Master	Mix	 10	 10	 	 	 94	 3	

4µM	Primer	
mix		 2	 2	 	

45x	
94	 0.5	

DNA	 2	 6	 	 68.2	 1	
H2O	 6	 2	 	 72	 1	
Total	
volume	 20	 20	 	 	 72	 10	

	 	 	 	 	 10	 hold	

	
Primers	used	

Table	IV-22:		PCR	mastermix	and	program	used	for	detection	of	GATA3	mutated	clones	
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Target	 Forward	primer	 Reverse	primer	
GATA3	 CGAGGCCATGGAGGTGACGG	 CCCCCACCCCAAAACCTGCA	

	

Data	analysis		

	
Data	 analysis	 was	 performed	 in	 collaborations	 with	 Dr.	 Steffen	 Sass	 (Institute	 of	

Computational	 Biology,	 Helmholtz	 Center	 Munich,	 Munich,	 Germany)	 and	 Dr.	 Tobias	

Straub	 (Biomedical	 Center	 Munich,	 ZFP	 and	 Bioinformatic	 Unit,	 Planegg-Martinsried,	

Germany)	

	

The	 following	 paragraphs	 were	 submitted	 to	 Developmental	 Cell	 for	 publication	 as	

Krendl	et	al.	2017:	

Microarray	

	
CEL	files	were	processed	and	normalized	using	the	affy	package	within	the	R	framework	

for	statistical	computing.	Normalization	was	performed	using	robust	multiarray	average	

(RMA).	 Genes	 with	 low	 variation	 or	 low	 signal	 were	 removed	 by	 applying	 a	 filtering	

approach	 that	 is	 implemented	 in	 the	 genefilter	 package	 (Bourgon	 et	 al.,	 2010).	

Differential	gene	expression	was	determined	using	limma	(Smyth,	2004).	P-values	were	

corrected	for	multiple	testing	using	the	Benjamini	and	Hochberg.	A	gene	was	considered	

to	be	differentially	expressed	if	its	corrected	p-value	was	below	a	threshold	of	0.05.	The	

resulting	gene	sets	were	subject	to	literature-based	tissue	enrichment	analysis	using	the	

GeneRanker	tool	within	the	Genomatix	Software	Suite.	

	

ChIP-Seq	read	processing	

	
Sequencing	 reads	 were	 aligned	 to	 version	 hg19	 of	 the	 human	 genome	 using	 bowtie	

(Langmead	et	al.,	2009)	version	1.1.1	allowing	only	for	single	matches	to	the	reference	

(parameter	–m	1).	We	extended	the	matched	reads	to	a	total	of	200	bp	and	calculated	

for	each	sample	a	per-base	genomic	coverage	vector	by	cumulating	the	total	spans	of	all	

sequenced	fragments.		

	

Table	IV-23:		Primers	used	for	detection	of	GATA3	mutated	clones	
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Histone	modification	enrichment	at	promoters	

	
Per	gene	for	each	4	kb	window	the	number	of	matching	reads	in	each	replicate	sample	

were	 calculated.	 Raw	 read	 counts	 were	 transformed	 by	 𝑟𝑒𝑎𝑑𝑠. 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑! =

𝑎𝑟𝑐𝑠𝑖𝑛 !"#$%!
!"!#$ !"#!"

,	where	i	=	promoter	window,	reads	=	number	of	reads	covering	i.	

Signal	 enrichment	 was	 analyzed	 by	 subtracting	 the	 normalized	 reads	 of	 the	

corresponding	input	samples	from	the	IP	read	values.	Enrichments	across	replicates	of	

each	 histone	 modification	 were	 adjusted	 by	 quantile	 normalization	 and	 values	 were	

averaged.	 In	 case	 of	 many	 promoters-to-one	 gene	 relationships	 we	 selected	 the	

promoter	with	highest	interquartile	range	of	signals	across	all	experimental	conditions.		

	

Peak	calling	and	definition	of	robust	peak	sets	

	
Transcription	 factor	 peaks	were	 called	 using	Homer	 (Heinz	 et	 al.,	 2010)	 findPeaks	 (v	

4.7.2)	 with	 parameters	 style=factor,	 size=200,	 fragLength=200,	 inputFragLength=200	

and	C=0.	All	 peaks	were	 called	 using	 the	 corresponding	 input	 samples	 as	 control.	We	

defined	peaks	 as	 robust	 if	 the	 region	was	 called	 in	 at	 least	 two	biologically	 replicated	

samples	except	for	TFAP2C,	for	which	only	one	high	quality	data	set	was	obtained.	

	

De	novo	motif	discovery	and	genome-wide	motif	searches	

	
We	search	for	enriched	motifs	in	peak	regions	using	MEME	(Bailey	et	al.,	2009)	using	the	

zero	or	one	occurrence	per	sequence	(“zoops”)	model.	

	

RNA-Seq	

	
RNA-Seq	reads	were	mapped	to	the	hg38	genome	using	TopHat	(Trapnell	et	al.,	2009).	

The	resulting	alignments	were	overlaid	with	the	UCSC	“known	gene”	track	(Kent	et	al.,	

2002)	 to	obtain	exon	read	coverage	 for	every	annotated	gene.	Genes	with	a	maximum	

read	 count	 of	 zero	 across	 all	 samples	were	 considered	 to	 be	 non-expressed	 and	 thus	

removed	 from	 further	 analysis.	 The	 count	 data	 was	 then	 pre-processed	 using	 voom	

(Law	 et	 al.,	 2014)	 including	 quantile	 normalization	 between	 the	 individual	 samples.	

Differential	gene	expression	between	time	points	was	then	determined	similarly	to	the	
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microarray	 data.	 For	 illustration	 purposes	 data	 was	 normalized	 using	 the	 igv	 tools	

option	normalize	coverage	data.	

Time	series	of	selected	TFs	were	clustered	according	to	the	pairwise	Pearson	correlation	

coefficients	using	k-means	clustering	analysis	with	k=6	clusters.	Fisher’s	exact	test	was	

employed	 to	 test	 whether	 a	 set	 of	 genes	 with	 a	 certain	 histone	 modification	 was	

significantly	overrepresented	in	one	of	the	resulting	clusters.		
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V.	Results	

Analysis	of	the	lineage	correspondence	and	heterogeneity	of	

progeny	generated	from	human	ESCs	by	BMP4	
	
There	 is	 still	 controversy	 whether	 the	 trophoblast-like	 progeny	 that	 emerges	 from	

human	ESCs	 by	 BMP4	 treatment	 descends	 from	mesoderm	 or	 trophoblast	 precursors	

(Aims	 section	 “To	 resolve	 the	 uncertainty	 concerning	 the	 lineage	 correspondence	 of	

human	PSC-derived	trophoblast	progeny”).	Furthermore	the	degree	of	heterogeneity	in	

this	progeny	population	 is	not	clear.	To	address	these	questions	I	 treated	human	ESCs	

plated	 as	 single	 cells	with	BMP4,	 a	 regimen	 that	 promotes	 trophoblast	 differentiation	

(Introduction	 section” Transcriptional	 processes	 in	 response	 to	 Bone	 Morphogenic	

Protein	(BMP)	4	in	human	ESCs“).	To	determine	the	optimal	time	point	for	purifying	the	

cells	by	sorting	I	first	analyzed	the	expression	of	APA	by	flow	cytometry	(Figure	V-1A).	

This	 showed	only	~10%	APA+	cells	 in	 the	 first	 two	days,	but	at	day	3	 this	population	

increased	to	around	60%	of	the	cells,	which	then	plateaued	(Figure	V-1B).		

	

Based	 on	 this	 analysis,	 I	 elected	 the	 time-point	 of	 2.5	 days	 for	 purifying	 the	 cells	 and	

analyzing	their	cell	intrinsic	properties	(as	earlier	time-points	do	not	yield	sufficient	cell	

amounts	for	genome-wide	analyses).	I	sorted	the	top	20%	APA+	and	lowest	20%	APA-	

cells	 for	 analyzing	 the	 corresponding	 trophoblast	 and	 non-trophoblast	 progenitor	

Figure	V-1:	Time	course	analysis	of	APA+	cells	
A.	 Representative	 time-course	 flow	 cytometry	 measurements	 of	 the	 cell	 surface	
marker	APA	in	BMP4-treated	human	ESCs	over	a	period	of	6	days.	
B.	A	Diagram	showing	the	percentage	of	the	APA+	population	over	a	period	of	6	days.	
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population	 (Figure	 V-2A).	 Residual	 differentiated	 cells	 were	 eliminated	 from	 human	

ESCs	 cultures	 by	 staining	 the	 cells	 using	 an	 antibody	 specific	 for	 the	 surface	 marker	

SSEA-5	and	sorting	of	the	positive	fraction	(Tang	et	al.,	2011).	

An	 important	 characteristic	 of	 trophoblast	 or	 placenta	 cells	 is	 the	 expression	 of	

hormones,	 including	 the	 human	 chorionic	 gonadotropin	 (hCG)	 (Introduction	 section	

“Human	placental	development”).	Therefore,	 to	validate	 the	 trophoblast	enrichment	of	

the	 BMP-4	 treated	 human	 ESC	 cultures,	 I	 tested	 the	 production	 of	 hCG	 initially	 using	

pregnancy	“stick”	 tests	and	 later	using	a	quantitative	 immunoencymometric	assay.	My	

analysis,	conducted	at	days	0,	2,	4,	6	and	8	confirmed	trophoblast	induction	using	BMP-

4,	as	only	cells	of	 these	cultures	produced	the	hormone	starting	at	day	4	and	not	cells	

treated	with	KSR	medium	only		(Figure	V-2B).	

	

To	 address	 the	 lineage	 identity	of	 the	APA+	and	APA-	populations,	 I	 initially	 analyzed	

these	 populations	 using	 RT-PCR.	 Testing	 the	 expression	 of	 specific	 assays	 for	

pluripotency	 (OCT4),	 trophoblast	 (CDX2,	 ELF5,	 ENPEP	 and	 GCM1)	 and	 meso-	 or	

mesendoderm	(MESP1,	T,	CD13,	ROR2	and	GSC)	genes	showed	that	both,	the	APA+	and	

the	APA-	population	compared	to	sorted	SSEA-5+	cells	exhibited	a	decrease	of	OCT4	and	

an	 increase	of	 trophoblast	 genes.	Moreover,	 the	expression	of	ELF5,	ENPEP	 and	GCM1	

Figure	 V-2:	 Flow	 cytometry	analysis	 of	APA	and	hormone	production	 of	BMP4	 treated	
human	ESCs.	
A.	A	representative	flow	cytometry	analysis	of	the	cell	surface	marker	APA	in	2.5	day	
BMP4-treated	 human	 ESCs.	 Gates	 used	 for	 sorting	 of	 top	 and	 bottom	 20%	 of	 the	
population	are	shown.	FL2	=	Fluorescence	2	
B.	Time	course	analysis	of	hCG	protein	concentration	produced	by	human	ESCs	treated	
with	KSR	based	medium	alone	or	KSR+BMP4	(n=2).		
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was	higher	in	the	APA+	population	compared	to	the	APA-	population.	In	addition	in	the	

APA-	 population	 compared	 to	 the	 SSEA-5+	 cells	 I	 observed	 an	 increase	 in	meso-	 and	

mesendoderm	gene	expression	(Figure	V-3).	These	data	provided	me	the	confirmation	

necessary	 for	 conducting	 further	 analysis	pertaining	 to	 the	 identity	of	 the	 trophoblast	

progenitors	and	for	mechanistic	investigation.	

	

		

Next,	I	analyzed	the	same	samples	(three	replicates	of	SSEA-5+,	APA-	and	APA+	sorted	

cells)	 using	 GeneChip	 Human	 Gene	 2.0	 ST	 arrays	 (Affymetrix).	 This	 platform	 allows	

quantification	 of	 approximately	 40,000	 RefSeq	 transcripts,	 including	 nearly	 25,000	

genes	 and	 11,000	 lincRNAs.	 Analysis	 of	 these	 samples	 according	 to	 gene	 expression	

Figure	V-3:	Targeted	gene	expression	measurements	in	APA-	and	APA+	populations.	
Quantitative	 PCR	 analysis	 of	 canonical	 developmental	 TFs	 and	markers,	 involved	 in	
pluripotency,	 trophoblast,	 mesoderm	 and	 mesendoderm	 development,	 assayed	 in	
sorted	APA-,	APA+,	SSEA-5+	cell	populations.	Expression	amplitudes	were	normalized	
to	 the	 SSEA-5+	 cell	 population,	 or	 delta	 Ct	 relative	 to	GAPDH,	 if	 expression	was	 not	
detected	 in	 the	 SSEA-5+	 cell	 population.	 Standard	 error	 of	 the	 mean	 of	 two	
independent	 experiments	 (sorted	 from	human	ESCs	of	different	passages)	 is	 shown.	
ND	refers	to	not	detected.	
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patterns	 showed	 that	 all	 replicates	 of	 the	 respective	 populations	 clustered	 together	

(Figure	V-4A).	Furthermore,	this	showed	that	the	APA-	population	is	more	similar	to	the	

SSEA-5+	population	than	the	APA+	population	to	the	SSEA-5+	population.	By	applying	a	

two-fold	expression	change	cutoff	and	a	false	discovery	rate	(FDR)	cutoff	of	5%	between	

biological	 replicates	 I	 found	 around	 720	 decreased	 (Figure	 V-4B)	 and	 around	 1000	

increased	 (Figure	V-4C)	 transcripts	between	all	 three	 conditions.	 I	 also	noted	 that	 the	

proportion	 of	 transcripts	 differentially	 expressed	 between	 the	 APA+	 vs.	 SSEA-5+	

populations	is	much	higher	than	between	the	APA-	vs.	SSEA-5+	populations.	I	presume	

the	reason	for	this	is	because	the	replicates	of	the	APA-	population	are	heterogeneous,		

and	therefore	many	genes	do	not	reach	the	5%	FDR	threshold.	

This	 in	depth	 transcriptomic	approach	corroborated	and	expanded	 the	RT-PCR	data.	 I	

found	that	the	pluripotency	downregulation	also	includes	SOX2	and	NANOG	next	to	OCT4	

(Figure	 V-4B).	 Furthermore,	 among	 the	 notable	 increased	 transcripts	 I	 identified	 a	

trophoblast	 specific	 signature,	 consisting	 of	 GCM1,	 TP63,	 ENPEP,	 GATA3	 and	 TFAP2C	

(Introduction	 section	 “The	 transcriptional	 network	 of	 TE	development“)	Among	 these	

genes,	 I	 found	VGLL1,	whose	homolog	has	been	shown	to	be	a	co-factor	 for	one	of	 the	

primary	TE	formation	factors	in	the	mouse,	Tead4	(Nishioka	et	al.,	2008),	leading	me	to	

postulate	that	it	also	may	play	a	role	in	human	TE	development.	
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Next,	 I	 analyzed	 the	 genome-wide	 transcriptome	 data	 in	 the	 respective	 populations	

using	Genomatix	GO-term	analysis	of	enriched	 tissue	and	cell	 type	categories.	Starting	

with	the	increased	genes	in	the	APA+	vs.	the	SSEA-5+	cell	population	identified	placenta	

Figure	V-4:	Microarray-based	transcript	expression	analysis	of	APA-,	APA+	and	SSEA-5+	
populations.	
A.	 An	 hierarchical	 clustering	 of	 Affymetrix	 GeneChip	 Human	 Gene	 2.0	 ST	 Array	
triplicate	 APA-,	 APA+	 and	 SSEA-5+	 cell	 population	 data	 calculated	 using	 Pearson	
correlation	coefficients	as	measure	of	similarity.	It	shows	sample	clustering	according	
to	cell	population	identity.	
B.	 -	 C.	 Venn	 diagrams	 exhibiting	 the	 number	 and	 overlap	 of	 decreased	 (B)	 and	
increased	(C)	gene	transcripts	 in	APA+	versus	APA-	populations	and	sorted	SSEA-5+	
undifferentiated	 human	ESCs.	Transcript	measurements	 performed	using	Affymetrix	
Human	 Gene	 ST	 2.0	 arrays.	 Differentially	 expressed	 transcripts	 were	 analyzed	 by	
applying	 a	 fold	 change	 cut-off	 of	 2	 and	 a	 false	 discovery	 rate	 (FDR)	 of	 5%	between	
biological	repetitions	(n=3).	Two	folds	higher	number	of	differentially	expressed	genes	
was	 noted	 comparing	 the	 APA+	 versus	 the	 SSEA-5+	 cell	 population	 than	 the	 APA-	
versus	 the	 SSEA-5+	 and	 the	 APA+	 versus	 the	 APA-	 cell	 population,	 because	 fewer	
genes	 in	 the	 APA-	 population	 reached	 the	 FDR	 threshold	 of	 5%.	 The	 positions	 of	
canonical	pluripotency	and	trophoblast	genes	are	indicated	respectively	in	(B)	and	(C).	
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and	trophoblast	associated	categories	among	the	highest	enriched	(exhibiting	the	lowest	

p-values)	(Figure	V-5A).	In	contrast,	comparing	enriched	transcripts	of	the	APA-	vs.	the	

SSEA-5+	cell	populations,	the	most	enriched	tissues	were	of	ectoderm,	mesenchymal	or	

embryonic	structure	categories	(Figure	V-5B).	Finally,	comparing	the	APA+	vs.	the	APA-	

increased	transcripts	we	identified	only	uterus,	trophoblast	and	placenta	tissues	among	

the	top	7	enriched	GO-terms	(Figure	V-5C).		

	

	

After	establishing	the	lineage	correspondence	of	the	APA+	population	to	trophoblasts,	I	

next	 analyzed	 the	 similarity	 to	 early	 embryonic	 human	 TE.	 I	 relied	 on	 a	 published	

dataset	that	compared	TE	cells	isolated	from	human	blastocysts	to	human	ESCs	(Bai	et	

al.,	 2012).	 I	 found	 an	 overlap	 of	 23	 TFs,	 which	 underlie	 the	 classification	 of	

trophoblast/placental	 tissues,	whereas	 the	non-overlapping	TFs	were	mostly	enriched	

for	 other	 embryonic	 structures	 (Figure	 V-6).	 Taken	 together	 these	 data	 clarify	

cell/lineage	 identifies	 pertinent	 to	 my	 primary	 study	 objectives	 and	 questions:	 it	

strengthens	 the	 perspective	 that	 the	 trophoblast	 progeny	 of	 human	 ESCs	 is	 of	 a	 TE	

Figure	V-5:	GO-term	analysis	of	enriched	tissues	of	APA-,	APA+	and	SSEA-5+	populations	
Genomatix	 GO-term	 analysis	 of	 enriched	 tissue	 and	 cell	 type	 categories	 applied	 to	
transcripts	 increased	 in	 the	 APA+	 compared	 to	 SSEA-5+	 (A),	 the	 APA-	 compared	 to	
SSEA-5+	(B)	and	the	APA+	compared	to	the	APA-	(C)	cell	populations.	(A)	and	(C)	show	
enrichment	for	placenta,	cytotrophoblast	and	others,	while	(B)	shows	enrichment	for	
different	–	non-placenta-	categories.	
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origin,	 it	 indicates	 a	 mixed	 lineage	 embryonic	 character	 of	 the	 non-trophoblast	

population	that	emerges	during	early	differentiation	of	human	ESCs	using	BMP4,	and	it	

reveals	the	correspondence	of	human	trophoblast	progenitors	to	human	embryonic	TE.	

Further	it	corroborates	the	use	of	APA+	cells	that	emerge	from	human	ESCs	in	vitro	by	

treatment	using	BMP-4	as	a	differentiation	system	that	enables	to	study	differentiation	

mechanisms	towards	human	extraembryonic	tissues.		

	

	

	

Histone	modification	turnover	during	BMP4-mediated	

human	ESC	differentiation	to	trophoblast	progenitors	
	
Mechanisms	of	epigenetic	regulation	produce	the	phenotypic	diversity	of	our	cells	and	

tissues	that	harbor	the	same	genetic	information.	The	histone	composition	and	specific	

modifications	of	histones	establish	the	grounds	for	differential	gene	expression	among	

Figure	V-6:	Comparison	of	in	vitro	generated	trophoblasts	to	TE	from	human	embryos	
A	 VENN	 diagram	 exhibiting	 the	 correspondence	 in	 upregulation	 of	 TFs,	 co-
transcriptional	 regulators	 and	 ENPEP	 (APA)	 (extracted	 using	 the	 Genomatix	
bioinformatics	 tool)	 between	 a	 published	 dataset	 (Bai	 et	 al.,	 2012)	 (comparing	 TE	
versus	 human	 ESCs)	 and	 my	 list	 of	 genes	 in	 the	 APA+	 versus	 the	 SSEA-5+	 cell	
population.	 A	 5	 and	 2	 fold-change	 cut-off	 were	 applied	 to	 the	 published	 and	 my	
dataset,	 respectively.	 Middle	 pane	 shows	 Genomatix	 GO-term	 analysis	 of	 enriched	
tissues	 of	 the	 respective	 group	 of	 genes.	 Right	 pane	 shows	 the	 extracted	 TFs	 plus	
ENPEP	from	the	group	of	overlapped	genes.	
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cell	types	(Introduction	section	“Chromatin	associated	histone	turnover	in	development	

and	 differentiation”).	 To	 gain	 understanding	 of	 the	 mechanisms	 that	 regulate	 the	

establishment	 of	 the	 trophoblast	 fate	 I	 therefore	 used	 my	 human	 ESC	 BMP4	

differentiation	system.	I	focused	on	identifying	the	locations	of	the	activating	H3K4me3	

and	the	repressing	H3K27me3	 in	 the	sorted	SSEA-5+,	APA-	and	APA+	cell	populations	

using	 chromatin	 immunoprecipitation	 (ChIP)	 in	 conjunction	 to	 next	 generation	

sequencing	 (ChIP-Seq).	 The	 reason	 for	 analyzing	 these	 marks	 is	 to	 identify	 the	

reshuffling	of	histone	modifications	and	to	establish	its	correlation	with	gene	expression	

changes	during	the	differentiation	process	on	a	genome	wide	level.	

	

Optimization	of	protocols	and	reagents	
	
I	first	established	a	histone	H3K4me3	and	H3K27me3	ChIP	protocol	that	is	suitable	for	

small	cell	populations	that	I	could	readily	purify	by	FACS.	I	tested	different	protocols	till	

the	ChIP	yielded	 the	 lowest	background	and	highest	enrichment	 for	 specific	 sites,	 and	

DNA	 fragments	 of	 around	 150	 and	 500	 bps	 for	 maximizing	 the	 resolution	 of	 the	

sequencing	(Methods	section	“Chromatin	Immunoprecipitation”).		

In	addition,	I	have	tested	the	specificity	of	the	ChIP	antibodies,	because	binding	to	other	

histone	modifications	 could	produce	 false	positive	hits.	 I	 verified	 the	 specificity	of	 the	

antibodies	 using	 a	 membrane	 blotted	 with	 modified	 histones.	 This	 showed	 that	

Diagenode	 antibodies	 exhibited	 the	 highest	 specificity	 (for	 example	 compare	 with	

membranes	reacted	with	H3K27me3	antibodies	from	Millipore	and	Active	Motif	which	

exhibited	unspecific	binding	to	H3K4me3,	H3K9me3	and	Millipore	also	to	H3K36me3	in	

Figure	V-7).	
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Furthermore,	 I	have	tested	the	quality	of	 the	ChIP	by	RT-PCR	using	primers	that	were	

designed	 for	 genomic	 regions	 that	 harbor	 the	 respective	 H3K27me3	 and	 H3K4me3	

modifications	 in	 human	 ESCs	 and	 negative	 control	 regions	 where	 these	 marks	 were	

previously	 found	 to	 be	 absent.	 The	 percent	 of	 input	 DNA	 was	 used	 to	 calculate	 the	

enrichment	 or	 depletion	 of	 the	 histone	marks.	 These	 experiments	 have	 validated	 that	

the	 Diagenode	 antibodies	 produced	 the	 highest	 enrichment	 (Figure	 V-8).	 Finally,	 I	

adjusted	the	amount	of	antibody	that	was	optimal	for	the	ChIP	of	2.5	x	105	sorted	cells.	

	

Figure	V-7:	Testing	of	H3K27me3	antibody	specificity	for	ChIP	
AbSurance	Histone	H3	Antibody	Specificity	Arrays	reacted	with	Millipore,	 ,	Active	
Motif	 and	Diagenode	antibodies.	 The	 red	 rectangle	 represents	 the	 sector	 spotted	
with	H3K27me3	histones.	The	signal	 in	 the	 lower	right	corner	 corresponds	to	an	
internal	positive	control	that	detects	the	secondary	antibody.	
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Global	analysis	of	H3K4me3	and	H3K27me3	positions	during	trophoblast	
specification	
	
To	analyze	histone	modification	positions	that	are	relevant	to	the	transcriptome	profiles	

of	the	sorted	APA+,	APA-	and	undifferentiated	SSEA-5+	cell	populations,	I	used	the	same	

preparations	for	ChIP-Seq	as	were	used	for	microarray	analysis.	I	analyzed	the	DNA	

fragments	by	Illumina	HiSeq2500	instrument	providing	at	least	20	million	50bp	single	

end	reads	per	sample,	and	mapped	these	to	the	hg19	human	genome	annotation	

(Methods	section	“ChIP-Seq	read	processing“).	

Mapping	the	reads	to	the	human	genome	showed	statistically	significant	positions	of	the	

H3K4me3	mark	 in	narrow	peaks	around	 transcription	 start	 sides,	 and	 the	H3K27me3	

mark	 exhibited	 coverage	 over	 broader	 regions	 in	 general	 and	 in	 gene	 bodies.	 These	

results	are	consistent	with	the	functions	of	H3K4me3	and	H3K27me3	in	gene	activation	

and	 repression,	 respectively	 (Introduction	 section	 “Epigenetic	 profiles	 of	 PSCs“).	

Figure	V-8:	Testing	of	H3K4me3/K27me3	antibody	specificity	by	RT-PCR	
A.	RT-PCR	analysis	of	regions	within	ACTB,	GAPDH,	B2M,	HOXD12,	ESR,	and	SPERT	loci	
using	 template	 DNA	 derived	 from	 ChIP	 of	 sorted	 SSEA-5+	 cells	 with	 H3K4me3	
Diagenode	 premium	 polyclonal	 antibody	 (Cat.	 Nr.	 C15410003-50,	 LotNr:	 A.5051-
001P).	Matched	IgG	control	was	used,	and	percentage	of	enrichment	over	the	input	is	
shown.	
B.	 RT-PCR	 analysis	 of	 regions	within	HOXD12,	EVX2,	NEUROG1,	GAPDH,	CCND1,	 and	
B2M	 loci	 using	 template	 DNA	 derived	 from	 ChIP	 of	 sorted	 SSEA-5+	 cells	 with.	
H3K27me3	 Diagenode	 standard	 polyclonal	 antibody	 (Cat.	 Nr.	 C15410069,	 LotNr:	
A1821D).	Matched	IgG	control	was	used,	and	percentage	of	enrichment	over	the	input	
is	shown.	
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Following	 these	 validations,	 I	 focused	 on	 the	 biological	 functions	 of	 the	 respective	

histone	modifications	to	the	process	of	trophoblast	specification,	and	therefore	analyzed	

the	 differentially	 expressed	 genes	 in	 the	 APA+	 vs.	 the	 SSEA-5+	 cell	 population	 in	 this	

respect.	

Analyzing	 first	 the	 histone	modification	 turnover	 of	 the	 increased	 genes,	 I	 discovered	

that	 more	 than	 half	 of	 these	 genes	 harbor	 the	 activating	 H3K4me3	 mark	 in	 their	

respective	promoter	regions	already	in	the	SSEA-5+	undifferentiated	cell	population.	In	

addition	 22%	 of	 genes	 exhibit	 bivalency	 marks	 (H3K4me3	 and	 H3K27me3	

colocalization),	and	18%	do	not	harbor	both	marks	(no	Mod).	Only	a	very	small	fraction,	

around	2%,	of	the	increased	genes,	is	marked	by	H3K27me3	in	SSEA5+	cells	(Figure	V-

9).	 In	 the	 SSEA-5+	 to	 APA+	 transition	 I	 registered	 a	 high	 degree	 of	 turnover	 in	 the	

bivalent	genes	to	H3K4me3,	and	hardly	any	gene	in	the	H3K4me3	monovalent	group	in	

SSEA5+	 cells	 change	 their	 histone	mark	 configuration	 during	 differentiation	 to	 APA+,	

which	 is	 expected	 because	 H3K4me3	 marks	 have	 been	 found	 to	 be	 a	 key	 feature	 at	

active	gene	promoters.	Conversely	and	unexpectedly,	only	a	small	fraction	of	the	genes	

in	the	no	Mod	category	change	their	histone	mark	configuration	during	differentiation	to	

APA+	 trophoblast	 progenitors.	 This	 is	 surprising	 because	 in	 many	 cases	 active	

transcription	 is	 accompanied	 by	 H3K4me3	 marks	 in	 the	 promoter	 region	 of	 the	

respective	gene.	

	
	

Figure	V-9:	Histone	modification	turnover	of	
increased	transcripts	in	the	APA+	vs.	SSEA-5+	
cell	populations	
Transcripts	 were	 assigned	 to	 four	 histone	
modification	 classes,	 H3K27me3,	 H3K4me3,	
bivalent	double	positive	and	no	modification	
(no	Mod)	based	on	enrichments	of	H3K4me3	
and	 H3K27me3	 signals	 in	 a	 4	 kb	 window	
around	 their	 TSS	 (n=3).	 Analysis	 included	
870	 increased	 genes	 from	 lists	 of	
differentially	 expressed	 transcripts	 in	 the	
APA+	 versus	 the	 SSEA-5+	 cell	 population.	
Presented	 are	 the	 changes	 in	 the	 histone	
classes	 between	 the	 SSEA-5+	 and	 the	 APA+	
cell	population.	
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Analyzing	the	histone	modification	landscape	of	the	decreased	transcripts	with	respect	

to	their	configuration	in	SSEA-5+	undifferentiated	cells	revealed	that	the	majority	of	the	

genes	 harbor	 monovalent	 H3K4me3	 marks.	 Interestingly,	 although	 they	 were	

transcriptionally	downregulated,	most	monovalent	H3K4me3	genes	maintain	the	mark,	

and	 this	 indicates	 that	 these	 genes	 are	 still	 active	 in	 APA+	 cells,	 just	 at	 a	 lower	 level.	

Interestingly,	we	find	the	pluripotency	gene	NANOG	in	a	small	group	of	genes	where	the	

H3K4me3	 monovalent	 mark	 is	 removed	 upon	 differentiation,	 and	 this	 indicates	 a	

distinct	mode	of	reducing	transcriptional	activity	(Figure	V-10).	

		

	

	

H3K4me3	and	H3K27me3	turnover	in	TFs	during	trophoblast	specification	
	
Because	TFs	and	transcriptional	co-factors	are	critical	drivers	of	cell	fate,	I	next	focused	

the	 analysis	 on	 them	 for	 understanding	 the	 mechanisms	 of	 trophoblast	 progenitor	

specification.	 Interestingly,	 these	 fell	 into	 two	categories	containing	classical	early	and	

late	mouse	/	human	trophoblast	genes,	e.g.	GATA3,	TFAP2C	and	CDX2,	and	ELF5,	GCM1,	

VGLL1	 and	TP63,	which	belonged	 to	 the	bivalent	 and	no-mod	 categories,	 respectively.	

Furthermore	 I	 noted	 an	 enrichment	 of	 placenta-associated	 non-TFs	 in	 this	 no	 Mod	

category	 (Figure	 V-11).	 This	 indicates	 that	 bivalent	 TFs	 in	 SSEA5+	 cells	 could	 be	

activated	faster	than	the	ones	carrying	none	of	the	H3K4me3	or	H3K27me3	marks.		

Figure	V-10:	Histone	modification	turnover	of	
decreased	transcripts	in	the	APA+	vs.	SSEA-5+	
cell	population	
Transcripts	 were	 assigned	 to	 four	 histone	
modification	 classes,	 H3K27me3,	 H3K4me3,	
bivalent	double	positive	and	no	modification	
(no	Mod)	based	on	enrichments	of	H3K4me3	
and	 H3K27me3	 signals	 in	 a	 4	 kb	 window	
around	 their	 TSS	 (n=3).	 Analysis	 included	
592	 decreased	 genes	 from	 lists	 of	
differentially	 expressed	 transcripts	 in	 the	
APA+	 versus	 the	 SSEA-5+	 cell	 population.	
Presented	 are	 the	 changes	 in	 the	 histone	
classes	 between	 the	 SSEA-5+	 and	 the	 APA+	
cell	population.	The	position	of	pluripotency	
genes	NANOG	and	OCT4	is	indicated.	
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Figure	V-11:	Histone	modifications	of	APA+	enriched	TFs	
A	 heatmap	 display	 of	 APA+	 versus	 SSEA-5+	 increased	 genes	 and	 their	 respective	
histone	mark	 enrichments	 at	 gene	 promoters	 analyzed	 in	 APA-,	 APA+,	 and	 SSEA-5+	
cell	 populations.	 Genes	 are	 grouped	 according	 to	 their	 histone	 modification	
configurations	 in	 SSEA-5+	 cells.	 Right	 pane	 displays	 TFs	 isolated	 of	 the	 respective	
groups.	 Additional	 placenta	 associated	 genes	 (non	 TFs)	 of	 the	 no-mod	 category,	
identified	via	GO	term	analysis	(Genomatix)	are	displayed.	
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Representative	examples	of	bivalent	(GATA3),	H3K4me3	monovalent	(ARID3A),	

H3K27me3	monovalent	(TFAP2B)	and	no	Mod	(GCM1)	genes	in	SSEA-5+	cells	and	their	

histone	modification	turn-over	to	the	APA-	and	the	APA+	population	are	shown	in	

Figure	V-12.	
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For	the	downregulated	TF	OCT4	a	representative	example	of	the	histone	mark	positions	

in	the	three	purified	populations	is	shown	in	Figure	V-13.		

	

	

Taken	 together,	 the	 changes	 in	 the	 histone	modification	 that	 I	 characterized	 indicate	

that	 the	network	of	 the	TFs	 that	govern	TE	differentiation	consist	 of	 a	 cascade,	which	

begins	 with	 bivalent	 genes	 that	 are	 transcriptionally	 poised	 and	 therefore	 loose	 the	

H3K27me3	 mark	 when	 transcribed,	 continues	 with	 genes	 that	 harbor	 neither	 the	

modification	and	have	slower	activation	kinetics	and	is	accompanied	by	the	silencing	of	

pluripotency	genes	that	loose	the	activating	H3K4me3	mark	during	differentiation.	

	

Identification	of	a	putative	human	trophoblast	gene	network	

Time-course	transcriptomic	analysis	of	BMP4-treated	human	ESCs		
	
While	 the	analysis	of	purified	APA+	progenitors	brought	a	 further	 step	 to	 identify	 the	

intrinsic	 properties	 of	 cells	 committing	 to	 the	 human	 trophoblast	 lineage,	 to	 gain	 a	

Figure	V-12:	Representative	histone	mark	maps	of	SSEA-5+,	APA-	and	APA+	increased	
genes	
Representative	histone	mark	maps	of	genes	with	characteristics	of	bivalent	(GATA3),	
monovalent	H3K4me3	(ARID3A)	and	H3K27me3	(TFAP2B)	and	modification	deficient	
(GCM1)	 loci	 in	 SSEA-5+	 cells.	 Histone	 coverage	 (y-scale)	 of	 one	 out	 of	 three	
experiments	is	displayed	in	SSEA-5+,	APA-	and	APA+	cell	populations.	

Figure	V-13:	Turn	over	of	histone	marks	in	the	OCT4	gene	
Histone	 coverage	 (y-scale)	 of	 one	 out	 of	 three	 experiments	 is	 displayed	 in	 SSEA-5+,	
APA-	and	APA+	cell	populations.	
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holistic	perspective	of	this	process	I	had	to	add	another	layer	of	information	that	refers	

to	processes	that	precede	the	emergence	of	the	progenitors	at	day	3	of	differentiation.	I	

have	therefore	performed	in	collaboration	with	Dr.	Dmitry	Shaposhnikov	a	time-course	

RNA-Seq	analysis	of	human	ESCs	treated	with	BMP	until	72	hours,	the	time	point	when	

the	APA+	progenitors	appear.		

To	 corroborate	 the	 results	 acquired	 by	 the	 different	 transcriptomic	 approaches,	

microarrays	for	analyzing	the	progenitors	and	RNA-sequencing	for	the	time	course	bulk	

human	ESCs	analysis,	I	analyzed	the	overlap	in	the	differentially	regulated	genes.	I	found		

a	trend	of	increasing	overlap	that	included	over	90%	of	the	genes	after	48	and	72	hours	

of	 differentiation	 (Figure	 V-14).	 These	 data	 therefore	 indicate	 that	 the	 network	 of	

trophoblast	genes	consist	of	several	layers,	and	this	confirms	our	lists	of	involved	genes.	

	

	
	

To	 identify	 the	 sequence	 of	 activation	 of	 the	 genes	 in	 the	 TE	 network	 I	 analyzed	 the	

expression	 pattern	 (e.g.	 trajectory)	 of	 the	 TFs	 that	 are	 upregulated	 during	 the	 time-

course	bulk	RNA-seq	measurements		(Figure	V-15).	

Figure	V-14:	Analysis	of	trophoblast	genes	by	
microarray	and	RNA-seq	
A	 bar	 plot	 exhibiting	 the	 number	 of	
transcripts	 overlapping	 at	 each	 of	 the	
respective	 time-point	 of	 bulk	 human	 ESCs	
BMP4	 treatment	 (8,	 16,	 24,	 48	 and	 72	 hrs;	
transcript	levels	in	undifferentiated	cells	were	
used	as	a	reference)	with	genes	increased	and	
repressed	in	the	APA+	versus	the	SSEA-5+	cell	
population.	 Green,	 orange	 and	 grey	 sectors	
correspond,	 respectively,	 to	 the	 increased,	
repressed	genes	and	no	overlap.	A	FDR	of	less	
than	 5%	 between	 replicates	 (n=2)	 was	 used	
to	 annotate	 differentially	 expressed	 genes	
between	the	respective	time	points	and	0	hrs.	
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I	identified	6	main	cohorts	of	which	3,	termed	early,	intermediate	and	late,	are	the	most	

relevant	 for	 my	 purposes	 because	 they	 could	 provide	 clear	 separation	 of	 time	 wise	

activation	 of	 several	 group	 of	 trophoblast	 TFs.	 The	 genes	 registered	 in	 these	 clusters,	

numbered	 1,	 3,	 and	 6	 respectively,	 are	 presented	 in	 Table	 V-1.	 I	 have	 validated	 the	

expression	of	some	of	these	early	genes	by	immunohistochemistry	(Figure	V-16).	

early	 intermediate	 late	
CRTC3	 ANKRD1	 MED12L	 ARID3A	 GRHL1	 PPARG	
DLX5	 ARID5B	 MED13L	 ASXL1	 HIC2	 RARB	
DLX6	 CDX2	 NR2F2	 BARX2	 HIPK3	 RCOR1	
EGR1	 CHD3	 NRIP1	 BCL6	 HOXB2	 SETD7	
FOS	 CITED2	 PPARGC1A	 BHLHE40	 JUP	 SMARCA2	

GATA2	 DLX3	 RREB1	 BNC1	 KDM6B	 SMYD2	
GATA3	 ELF2	 RYBP	 CALCOCO1	 KLF6	 SOX9	
HEY1	 ELF4	 SATB1	 CEBPA	 KLF8	 TEAD3	
JUN	 GRHL2	 SERTAD2	 CREB3L2	 LCP1	 TFAP2B	
LEF1	 HAND1	 TBX3	 ELF1	 MAFB	 THRB	
MSX2	 IKZF2	 TEAD1	 EPAS1	 MED12	 TLE4	
TFAP2A	 ISL1	 TFAP2C	 EYA2	 MEIS1	 TP63	
TLE3	 KAT2B	 ZNF117	 FOXO4	 MEIS2	 VGLL1	

	 MAGED1	 ZNF436	 GCM1	 NFIL3	 ZFHX3	

	 	 ZNF83	 	 	 ZNF440	
	

Figure	V-15:	Gene	expression	trajectories	of	increased	TFs	
Clusters	 of	 increased	 TFs	 (Microarray	 APA+	 versus	 SSEA-5+)	 extracted	 from	 time-
course	 RNA-seq	 analysis	 of	 human	 ESCs	 treatment	 by	 BMP4	 exhibiting	 6	 primary	
cohorts	 of	 expression	 trajectories.	 Clustering	 was	 performed	 according	 to	 pairwise	
Pearson	correlation	coefficients	using	k-means	clustering	analysis	with	k=6	clusters.	

Table	V-1:	TFs	in	early,	intermediate	and	late	clusters	
The	TFs	of	clusters	1,	3	and	6	deduced	from	Figure	V-15.	
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These	indicate	that	BMP4	exposure	activates	an	early	panel	of	TFs,	which	subsequently	

targets	additional	 layers	of	TFs	 in	 the	 intermediate	or	 late	 trajectories.	Representative	

RNA-Seq	read	profiles	of	an	early	(GATA3),	intermediate	(CDX2)	and	late	(GCM1)	gene	

of	the	respective	groups,	and	one	decreased	gene	(OCT4)	are	shown	in	Figure	V-17.	

Figure	V-16:	Immunohistochemistry	of	selected	TFs	of	the	early	trajectory	TFs	
Representative	immunohistochemistry	staining	of	GATA3,	TFAP2A	and	TFAP2C	in	
undifferentiated	and	2.5	days	BMP4	treated	human	ESCs.	DAPI	is	shown	in	blue,	
primary	antibodies	were	detected	by	Alexa	488	labeled	secondary	antibody.	
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Figure	V-17:	Representative	RNA-Seq	read	count	profiles	
Representative	diagrams	exhibiting	expression	(RNA-Seq)	of	genes	during	time-course	
treatment	of	human	ESCs	by	BMP4.	Genes	included	are	GATA3,	CDX2,	GCM1	
(representing	the	early,	intermediate	and	late	clusters)	and	the	downregulated	
pluripotency	gene	OCT4	(n=2).	Presented	are	normalized	expression	values.	
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The	 same	clustering	approach	was	also	performed	 for	 the	decreased	TFs,	but	 this	did	

not	help	to	separate	and	produce		cohorts	that	are	meaningful	for	understanding	stages	

of	gene	repression	(Figure	V-18).	

	

	

	
In	order	to	detect	the	drivers	of	trophoblast	commitment	within	the	early,	intermediate	

and	 late	 upregulated	 gene	 clusters,	 I	 focused	 on	 the	 genes	 above	 a	 log2	 fold-change	

cutoff	of	5.	The	time-points,	where	this	cutoff	was	applied,	were	chosen	according	to	the	

expression	 patterns	 of	 the	 respective	 groups.	 As	 the	 early	 group	 exhibits	 a	 steep	

increase	already	after	8	hours	the	cutoff	was	applied	at	this	time	point,	whereas	for	the	

intermediate	 and	 late	 groups	 24	 and	 48	 hour	 time-points	 were	 chosen,	 respectively,	

because	then	the	steepest	increase	in	expression	was	observed	(Figure	V-15).	

The	 corresponding	 TFs	 are	 presented	 in	 Figure	 V-19.	 The	 TFs	 exhibiting	 the	 highest	

degree	of	activation	already	after	8	hours	of	BMP-4	treatment	in	the	early	trajectory	are	

GATA2,	MSX2,	GATA3	 and	TFAP2A.	 In	 the	 intermediate	 trajectory	 I	 noted	 trophoblast	

Figure	V-18:	Gene	expression	trajectories	of	decreased	TFs	
Clusters	 of	 decreased	 TFs	 (Microarray	 APA+	 versus	 SSEA-5+)	 extracted	 from	 time-
course	 RNA-seq	 analysis	 of	 human	 ESCs	 treatment	 by	 BMP4	 exhibiting	 3	 primary	
cohorts	 of	 expression	 trajectories.	 Clustering	 was	 performed	 according	 to	 pairwise	
Pearson	correlation	coefficients	using	k-means	clustering	analysis	with	k=3	clusters.	
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regulators	 including	 HAND1,	 CDX2	 and	 TFAP2C	 (Introduction	 section	 “The	

transcriptional	network	of	TE	development“	and	(Riley	et	al.,	1998)).	Finally,	in	the	late	

cluster	I	noted	15	TFs,	including	the	TFs	VGLL1,	TP63	and	GCM1.	

	

	

Genome	wide	mapping	of	GATA2/3	and	TFAP2A/C	bound	loci	during	BMP4-
mediated	human	ESC	differentiation	
	
As	 I	 have	 hypothesized	 that	 early	 activated	 TFs	 propel	 the	 trophoblast	 specification	

network,	I	next	focused	in	this	regard	on	the	functions	of	primary	candidates	in	the	early	

gene	cluster	group.	I	performed	ChIP-Seq	experiments	in	collaboration	with	Dr.	Dmitry	

Shaposhnikov	using	antibodies	that	are	specific	for	human	GATA2,	GATA3,	TFAP2A	and	

TFAP2C.	The	reason	that	I	chose	TFAP2C	instead	of	MSX2,	which	is	in	the	early	cluster	

while	 TFAP2C	 is	 in	 the	 intermediate,	 is	 that	 other	work	 in	 our	 lab	 has	 indicated	 that	

MSX2	is	redundantly	expressed	in	other	early	lineages,	and	because	TFAP2C	is	involved	

in	mouse	 TE	 specification	 and	 it	 is	 a	 member	 of	 the	 AP2	 family.	 As	 the	 TF	 ChIP-Seq	

typically	 requires	 more	 cells	 than	 histone	 modification	 ChIP-Seq,	 these	 experiments	

were	performed	using	bulk	cell	preparations.	By	performing	de-novo	motif	detection	of	

the	sequenced	reads	I	discovered	that	the	GATA-motif	is	overrepresented	in	the	GATA2	

and	 GATA3	 ChIP-Seq	 experiments.	 Furthermore,	 same	 analysis	 of	 the	 TFAP2A	 and	

TFAP2C	ChIP	sequenced	reads	showed	the	consensus	motif	for	the	TFAP	family	(Figure	

V-20).	This	 is	 reassuring	 that	my	TF	ChIP	 readouts	 are	 specific	 for	 their	bound	 target	

loci.	

Figure	V-19:	Highest	induced	TFs	of	early,	intermediate	and	late	clusters	
Exhibited	 are	 TFs	 of	 the	 respective	 early,	 intermediate	 and	 late	 transcript	 groups	
increased	above	a	threshold	of	5	fold	change	(log2)	at	8,	24	or	48	hrs,	respectively.	FC	
=	fold	change;	h	=	hours		
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Next	I	focused	on	identifying	the	genes	exhibiting	peaks	of	TF	binding	within	a	region	of	

3.5	kb	up-	and	5	kb	downstream	of	the	TSS.	By	analyzing	the	cooperative	binding	of	the	

TFs,	I	discovered	five	categories	where	0,	1,	2,	3	or	4	TFs	are	bound	in	the	same	region.	

To	 find	 out	 whether	 increased	 or	 decreased	 expression	 during	 trophoblast	

differentiation	could	be	explained	by	the	binding	of	the	genes	by	the	TFs,	I	analyzed	the	

correlation	 between	 the	 TF	 bound	 sites	 and	 the	 induced/repressed	 genes	 noted	

following	72	hours	of	differentiation	compared	with	undifferentiated	cells.	As	a	result	I	

observed,	that	multiple	TF	binding	correlate	with	the	upregulation	of	genes	rather	than	

the	downregulation,	with	several	important	exceptions	that	are	discussed	below	(Figure	

V-21).		

	

Figure	V-20:	De-novo	motif	analysis	of	TF	ChIP-Seq	
Motifs	enriched	in	the	genomic	fragments	isolated	by	transcription	factor	ChIP-Seq	of	
GATA2,	GATA3,	TFAP2A	and	TFAP2C.	

Figure	V-21:	Correlation	of	TF	binding	
and	gene	expression	
A	 bar	 plot	 exhibiting	 the	 correlation	
between	 the	 number	 of	 the	 bound	
GATA2,	 GATA3,	 TFAP2A	 and	 TFAP2C	
TFs	(either	0,	1,	2,	3	or	all),	in	3.5kb	up-	
and	 5kb	 down-stream	 of	 gene’s	 TSS,	
and	 their	 direction	 of	 regulation:	 up-	
(green)	 and	 down-	 (red)	 regulated,	or	
unchanged	 (blue),	 comparing	
differentially	expressed	genes	at	the	72	
hour	 time-point	 BMP4	 treatment	
versus	 undifferentiated	 cells	 as	
determined	 by	 global	 RNA-Seq	
analysis.	
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In	total	I	found	204	genes	that	are	bound	by	the	all	4	TFs	in	the	region	of	3.5	kb	up-	and	

5	kb	downstream	of	the	TSS	(Table	V-2-4).		

upregulated	

AADACL3	 C8orf31	 DOCK9	 HRH1	 LINC00518	 MPZL1	 OPN3	 S100A16	 TRIL	

ABCA4	 CA12	 DOPEY2	 INADL	 LINC00936	 MTUS1	 ORAI3	 SLC20A2	 TRIML2	
ACVR1	 CDH10	 ELMO1	 ITGA2	 LMOD2	 MYLK-AS1	 P2RY6	 SLC7A2	 TTLL7	

ADAM18	 CDX2	 ENPEP	 ITGB6	 LOC100130476	 MYO6	 PDE10A	 SLCO2A1	 USP43	
AMOT	 CMTR2	 ENTPD4	 KALRN	 LOC100507346	 NEDD9	 PDZD2	 SMTNL2	 VTCN1	

ANKRD1	 COLEC12	 FAM89A	 KCNC3	 LOC729739	 NKX2-3	 PIK3C2G	 SPARC	 YPEL2	

ANXA3	 CRIP1	 FOXC1	 KCNN4	 LPP	 NOS2	 PPFIBP2	 STS	 YPEL5	
ANXA4	 CSF1R	 FRS2	 KIAA1456	 LPP-AS2	 NPC2	 PRTG	 SVOPL	 ZAP70	

ARHGAP24	 CSGALNACT1	 GADD45G	 KIAA1551	 LTBR	 NPNT	 PTPN14	 SYNPO	 ZFPM1	
BACE1	 CTSL3P	 GAS7	 KMO	 MAB21L3	 NR2F2	 PTPN3	 TACC1	 ZNF358	

BACE1-AS	 CYP1B1	 GNLY	 KRT18	 MAP3K8	 NR2F2-AS1	 PTTG1IP	 TBX3	 	
C10orf10	 DGKD	 GRHL1	 KRT19	 MBNL3	 NRK	 RALBP1	 TINCR	

	C1QTNF6	 DIAPH3	 GSTO1	 KRT8	 MBOAT2	 NTAN1	 RHOBTB2	 TMBIM1	

	C21orf2	 DLX4	 HAPLN1	 LGR5	 MIR205	 NTRK1	 RRBP1	 TNFAIP3	

		

unchanged	

ACOT2	 FAM65B	 LSM4	 PPP1R26-AS1	 SLC16A9	 TLE3	 ZFX	 ZNF853	

ALDH4A1	 GLG1	 MESDC2	 PPP1R9A	 SLC44A1	 TMEM254	 ZMIZ2	 ZSWIM6	
ATRAID	 GMEB1	 MRS2	 RABGGTB	 SLC5A10	 TMEM254-AS1	 ZNF175	

	
C14orf80	 IQGAP2	 MYO1B	 RBL2	 SLC7A6	 TMEM44	 ZNF280D	

	
CHML	 ISCA2	 NENF	 RBM15	 SNX13	 UBR5	 ZNF343	

	
DCP1A	 IVNS1ABP	 PDS5A	 RPL13AP20	 SOCS2	 WDR74	 ZNF587	

	
DTNA	 LETMD1	 PGS1	 SETD4	 SSBP3	 WDR91	 ZNF593	

	
ECH1	 LINC00339	 PLS3	 SLBP	 TGIF1	 YTHDF1	 ZNF826P	

		

downregulated	

ARTN	 CERKL	 HSD17B4	 LDLR	 PDK1	 PTPRD	 SCNN1A	 UNQ6494	

ASPRV1	 FDFT1	 IL17RD	 LOC440600	 POU5F1	 PTPRG	 SLC45A4	 USP44	
CA14	 GJA1	 JADE1	 LRRC9	 PRTFDC1	 QSOX2	 TMEM55A	

		

	

Tables	V-2-4:	Gene	loci	bound	by	all	4	TFs	
Tables	showing	up-,	downregulated,	and	unchanged	transcripts	 that	are	bound	by	all	
four	 TFs	 (GATA2,	 GATA3,	 TFAP2A	 and	 TFAP2C)	 3.5kb	 up-	 and	 5kb	 down-stream	 of	
their	TSS.	Lists	are	derived	from	the	analysis	shown	in	Figure	V-21.	
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By	further	analyzing	the	different	combinations	of	three	of	the	TFs,	I	found	that	GATA3	

exhibits	 the	 broadest	 co-occupancy	 with	 the	 other	 TFs	 (Figure	 V-22)	 indicating	 that	

GATA3	may	be	the	most	important	driver	of	this	developmental	process.	

	

	

	

Of	 the	204	bound	genes	 I	 found	 that	122	genes	were	upregulated	at	 the	72	hour	 time	

point	of	BMP4	treatment.	(Table	V-2).	Among	these	were	11	TFs	e.g.	CDX2	and	ANKRD1,	

which	were	identified	in	the	group	of	genes	that	exhibited	an	intermediate	upregulation	

behavior.	Other,	non	TF	genes,	 in	 this	group,	 include	trophoblast	associated	genes	 like	

STS,	VTCN1,	KRT8	or	KRT18.			

The	decreased	 list	 consisting	of	 the	 genes	 that	 are	bound	by	 all	 four	TFs,	 didn’t	 show	

enrichment	 for	 specific	 tissues,	 but	 importantly	 included	 the	 TF	 OCT4	 and	 the	

transcriptional	co-activator	JADE1	(Figure	V-23).		

Figure	V-22:	The	number	of	transcripts	bound	by	either	3	or	4	TFs	
A	 graph	 showing	 the	 numbers	 of	 genes	 that	 are	 bound	 either	 by	 4	 or	 different	
combinations	of	3	TFs	extracted	from	GATA2/3	and	TFAP2A/C	ChIP-Seq	data.	
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Figure	V-23:	Transcripts	bound	by	all	4	TFs	
An	overview	of	genes	that	are	bound	by	GATA2,	GATA3,	TFAP2A	and	TFAP2C	TFs	(all	
4)	 and	 the	 cellular	 location	 of	 the	 respective	 proteins	 as	 annotated	 by	 Genomatix.	
Increased	 and	 decreased	 genes	 during	 the	 BMP4	 time	 course	 are	 exhibited	 in	 the	
upper	 (green)	and	 lower	 (red)	 sections.	Transcriptional	 regulators	are	marked	bold,	
and	representative	placenta	enriched	non-TFs	(GO	terms	analysis)	are	shown.	OCT4	is	
the	 only	 down-regulated	 TF	 bound	 by	 all	 four	 TFs.	 The	 rest	 of	 the	 down-regulated	
genes	were	not	associated	with	specific	developmental	processes.	
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Interestingly,	 I	 found	 that	 the	 TFs	 bind	 in	 the	 first	 intron	 of	 CDX2	 and	 OCT4,	 while	

typically	the	four	exhibit	binding	upstream	or	in	the	near	vicinity	of	TSS,	for	example	as	

in	ANKRD1.	 For	GCM1,	 I	 observed	binding	of	GATA2,	GATA3	and	 to	 a	 lesser	 extend	of	

TFAP2A	(Figure	V-24).	

	

Taken	 together	 I	 took	 these	 data	 as	 an	 indication	 that	 the	 four	 TFs,	 namely	 GATA2,	

GATA3,	 TFAP2A	 and	 TFAP2C,	 collectively	 underlie	 human	 trophoblast	 specification.	 I	

therefore	 next	 set	 to	 functionally	 test	 the	 importance	 of	 these	 four	 TFs,	 whom	 I	

operationally	 named	 the	 TEtra	 (the	 TrophEctoderm	 four),	 for	 this	 differentiation	

pathway.	

	

Functional	analysis	of	the	trophoblast	TF	network		
	

Figure	V-24:	Examples	of	TF	binding	events	by	the	four	TFs	
Genomic	 maps	 of	 representative	 genes,	 CDX2,	 ANKRD1,	 GCM1	 and	 OCT4,	 and	 the	
corresponding	 reads	 extracted	 from	 the	 ChIP-Seq	 of	 GATA2,	 GATA3,	 TFAP2A	 and	
TFAP2C.	
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As	mentioned	above,	 I	 found	 that	GATA3	exhibits	 the	broadest	 co-occupancy	with	 the	

other	 members	 of	 the	 TEtra.	 Therefore,	 I	 decided	 to	 focus	 on	 this	 TF	 for	 functional	

validation	 of	 the	 network	 that	 I	 identified.	 I	 used	 a	 human	 ESC	 line	 that	 harbors	 an	

inducible	 form	of	 the	CRISPR-Cas	system	(HUES9	 iCRISPR,	 (Gonzalez	et	al.,	2014))	 for	

knocking-out	 (KO)	 GATA3.	 My	 readout	 for	 the	 function	 of	 GATA3	 included	

measurements	 of	 the	 APA+	 cell	 population	 by	 FACS,	 targeted	 gene	 expression	

measurements	 by	 RT-PCR	 and	 detection	 of	 hCG	 levels	 by	 the	 immunoencymometric	

assay.	

To	knockout	GATA3	 I	used	two	pairs	of	guide	RNAs	(gRNAs)	that	were	designed	to	cut	

out	a	region	of	325bp	from	the	second	exon	and	the	downstream	intron.	This	resulted	in	

a	 premature	 stop	 codon	 in	 this	 intron	of	GATA3.	 I	 have	derived	 two	 clones	 harboring	

such	 mutations	 in	 both	 alleles,	 which	 were	 verified	 as	 knockouts	 by	 Western	 blot	

analysis	after	exposure	of	GATA3	KO	human	ESCs	to	BMP4	(Figure	V-25).	

	
	

The	impact	on	differentiation	as	tested	by	flow	cytometry	indicated	that	the	formation	of	

the	APA+	cell	population	 is	severely	 impaired,	noting	a	decrease	of	 the	cell	population	

from	~60%	in	the	wild-type	cells	to	5%	in	the	GATA3	KO	cell	clones	(Figure	V-26).	This	

validates	 that	 GATA3	 indeed	 is	 one	 of	 the	 primary	 drivers	 of	 the	 APA+	 trophoblast	

differentiation	in	human	ESCs.	

	

Figure	 V-25:	 Western	 blot	 analysis	 of	 GATA3	
knock-out	in	the	CRISPR-CAS	inducible	ESC	system	
A	Western	 blot	 analysis	 of	wild-type	 and	GATA3	
KO	iCRISPR	human	ESC	clones	exposed	for	3	days	
to	BMP4	treatment.		
	

Figure	V-26:	Flow	cytometry	analysis	of	APA	in	human	ESCs	and	GATA3	knock-out	
Representative	APA	flow	cytometry	plots	exhibiting	analysis	of	wild-type	and	GATA3	
KO	iCRISPR	clones	following	3	days	of	BMP4	differentiation.	FL2	=	Fluorescence	2	
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To	measure	the	effect	of	GATA3	on	its	assumed	targets	that	were	identified	by	TF	ChIP-

Seq,	 I	 measured	 the	 expression	 of	 candidate	 genes	 in	 the	 network	 by	 RT-PCR	 and	

compared	to	the	wild-type	cells.	I	found	that	the	expression	of	several	key	genes	in	the	

network,	 including	GATA2,	GCM1,	VGLL1	 and	STS	 decreases	 in	 comparison	 to	 the	non-

modified	 cells	 and	 as	 anticipated	 from	 my	 ChIP-Seq	 data,	 which	 have	 indicated	 that	

OCT4	is	inhibited	by	the	TEtra,	this	gene	shows	a	transcriptional	increase.	Surprisingly,	

however	several	genes	exhibited	trends	that	are	opposite	the	anticipated.	This	includes	

TFAP2A,	TFAP2C,	CDX2	and	TP63	that	were	increased	in	the	GATA3	KO	clones	relative	to	

the	 control	 (Figure	V-27).	 I	 hypothesize	 that	TFAP2A	 and	TFAP2C	 partially	 counteract	

and	 compensate	 the	 GATA3	 KO	 on	 the	 transcriptional	 level	 by	 upregulation	 of	 CDX2.	

However,	 it	 is	 also	 likely	 that	 CDX2	 is	 regulated	 by	 additional	 ways	 that	 are	 GATA3	

independent.		

	

Finally	to	validate	the	effect	of	GATA3	on	placenta	hormone	production,	I	compared	the	

hCG	 production	 in	 the	 GATA3	 KO	 clones	 to	 unmodified	 cells	 using	 an	

immunoencymometric	 assay.	 In	 line	with	 the	previous	data,	 I	 found	 that	 also	 the	hCG	

production	is	severely	impaired	during	differentiation	of	GATA3	KO	cells	to	trophoblast	

by	treatment	with	BMP4	(Figure	V-28).	

	

Figure	V-27:	Analysis	of	trophoblast	candidate	genes	after	GATA3	KO	in	human	ESCs		
The	 relative	 expression	 fold	 change	 of	 a	 set	 of	 pluripotency	 and	 early	 trophoblast	
genes	was	analyzed	 by	RT-PCR	comparing	GATA3	 KO	and	wild-type	 iCRISPR	human	
ESCs	 following	 3-day	 of	 BMP4	 treatment.	 Standard	 error	 of	 the	mean	 (SEM)	 of	 two	
independent	experiments	is	shown.	
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Identification	of	developmental	epigenetic	signatures	

Correlation	of	histone	modification	turnover	and	temporal	regulation	of	TFs	
during	BMP4-mediated	human	ESC	differentiation	
	
To	 identify	 epigenetic	 mechanism	 that	 underlie	 human	 trophoblast	 differentiation,	 I	

analyzed	the	correlation	between	transcription	and	changes	of	the	histone	modification	

patterns	 in	 the	 early,	 intermediate	 and	 late	 groups	 of	 TFs	 detected	 by	 bulk	 RNA	

sequencing.	For	that	I	tested	if	any	of	the	histone	modification	marks	and	combinations	

is	overrepresented	 in	 the	populations	of	SSEA-5+,	APA-	and	APA+	sorted	cells.	 I	noted	

that	bivalency	is	enriched	in	the	SSEA-5+	fraction	with	respect	to	the	genes	with	early	

induction	 trajectory,	 that	 H3K27me3	 and	 to	 a	 lesser	 extent	 H3K4me3	 and	 bivalent	

categories	characterize	the	genes	exhibiting	the	intermediate	trajectory	in	SSEA-5+	cells,	

and	that	the	no	Mod	and	bivalent	categories	are	most	prevalent	in	the	group	of	the	genes	

that	exhibit	 latest	 induction	behavior	with	 respect	 to	all	 cell	populations.	Of	note,	 this	

distribution	 of	 histone	mark	 enrichment	 is	 similar	 in	 the	 APA-	 cell	 population.	 In	 the	

APA+	cell	population,	however,	there	is	a	shift	to	the	H3K4me3	category	in	the	early	and	

intermediate	 cluster,	 whereas	 in	 the	 late	 cluster	 no	 Mod	 and	 bivalent	 marks	 persist	

(Figure	V-29).	Taken	together,	these	data	indicate	that	distinct	patterns	of	histone	marks	

characterize	 TFs	 that	 are	 activated	 at	 different	 stages;	 bivalent	 TFs	 go	 first,	 than	

bivalent/H3K27me3	marked	TFs	and	finally	no	Mod	TFs,	such	as	GCM1.	

Figure	V-28:	Placental	hormone	production	of	human	ESCs	harboring	GATA3	KO	
Time	course	analysis	of	hCG	concentration	produced	by	wild-type	or	GATA3	KO	human	
iCRISPR	ESCs	treated	with	KSR+BMP4	(n=2).	
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Key	genes	of	the	early,	intermediate	and	late	cohorts	and	their	corresponding	histone	

modification	status	in	SSEA-5+	cells	is	shown	in	Figure	V-30.	

	

	

	

Figure	V-29:	Trophoblast	gene	expression	kinetics	and	histone	mark	turnover	
The	 left	 panel	 exhibits	 the	 trajectories	 of	 early,	 intermediate	 and	 late	 increased	 TF	
cohorts	over	a	time-course	of	72	hrs	where	human	ESCs	were	treated	by	BMP4.	Only	
APA+	versus	SSEA-5+	cell	population	induced	TFs	are	plotted.	The	right	panes	exhibit	
the	overrepresented	histone	modification	categories	of	these	TFs	in	SSEA-5+,	APA-	and	
APA+	cell	populations,	classified	as	bivalent,	monovalent	and	TFs	where	these	histone	
modifications	were	not	detected.	P-values	were	calculated	by	applying	Fisher’s	exact	
test	 for	 the	 observed	 number	 of	 overlaps	 between	 the	 group	 of	 genes	 with	 the	
respective	histone	modifications	and	the	genes	in	the	three	cohorts.	
	

Figure	V-30:	Histone	marks	of	TFs	from	early,	intermediate	and	late	cohorts	
TFs	of	the	early,	intermediate	and	late	cohorts	exhibiting	>	log2	5	fold	change	at	8,	24	
or	 48	 hrs,	 respectively.	 Font	 color	 labels	 correspond	 to	 the	 histone	 modification	
categories	 in	 SSEA-5+	 undifferentiated	 cells	 (extracted	 from	 Figure	 IV-19):	 bivalent	
(blue),	H3K4me3	monovalent	(green),	H3K27me3	monovalent	(red)	and	H3K27me3,	
H3K4me3	modification	negative	(grey).	
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DNA	methylation	changes	during	human	trophoblast	differentiation	
	
As	DNA	methylation	changes	play	an	important	role	in	developmental	gene	regulation,	I	

investigated	 the	 5-Methylcytosine	 status	 of	 hundreds	 of	 thousands	 of	 CpG	 loci	 in	 the	

SSEA-5+,	APA-	and	APA+	cell	population.	For	consistency,	 this	analysis	was	conducted	

using	the	same	batch	of	samples	used	for	microarray	and	histone	modification	analyses.	

As	a	background	for	explaining	the	results	below,	it	should	be	mentioned	that	in	human	

ESCs	 bivalent	 genes	 are	 typically	 CpGs	 rich,	 often	 harboring	 CpG	 islands	 at	 their	

promoters,	and	do	not	exhibit	DNA	methylation	marks	in	this	region.	

In	line	with	previous	observations,	I	did	not	observe	CpG	methylation	in	CpG	islands	at	

promoters	 of	 early	 bivalent	 TFs	 neither	 in	 undifferentiated	 cells	 not	 in	 progenitor	

populations,	where	they	are	H3K4me3	monovalent	e.g.	GATA2	(Figure	V-31).	TFs	of	the	

no	Mod	category,	e.g.	GCM1	exhibited	CpG	methylation	in	SSEA-5+	cells,	but	surprisingly	

although	 they	were	 induced	 in	 the	 APA+	 progenitor	 population,	 they	 did	 not	 show	 a	

significant	removal	of	methylated	CpGs	(Figure	V-31).	

	

	

	

In	 fact	 I	 identified	 only	 few	 instances	 where	 significant	 changes	 in	 CpGs	methylation	

could	 be	 observed	 at	 induced	 trophoblast	 genes,	 always	 in	 the	 direction	 of	 de-

methylation	 comparing	 the	 APA+	 to	 SSEA-5+	 cell	 populations.	 I	 found	 that	 this	 de-

methylation	in	fact	takes	place	in	the	sites	of	TEtra	binding,	the	most	notable	of	which	I	

observed	 in	VTCN1	 (Figure	 V-32).	 I	 noted	 a	 similar	 trend	 of	 CpG	 de-methylation	 and	

Figure	V-31:	Representative	CpG	sites	in	promoter	regions	of	early	and	late	TFs	
Displayed	are	the	TSS	of	 the	GATA2	and	GCM1	genes,	and	positions	of	 the	respective	
CpG	 island	and	 the	CpG	poor	 region.	Bottom,	 the	DNA-methylation	 state	of	 analyzed	
CpGs	 at	 the	 corresponding	 genomic	 positions	 in	 the	 SSEA-5+,	 APA-	 and	 APA+	 cell	
populations.	DNA-methylation	analysis	was	conducted	in	triplicates	and	classification	
was	 performed	 as	 follows:	 unmethylated:	 0-20%,	 intermediate:	 21-60%	 and	 highly	
methylated:	61-100%.	
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TEtra	 co-localization	 in	 several	 other	 structural	 genes	 that	 are	 induced	 in	 APA+	

trophoblast	progenitors	(highlighted	with	an	asterisk	in	Figure	V-23)	

	

	

	 	

Figure	V-32:	TF	binding	and	developmental	changes	of	DNA	methylation	in	VTCN1	
A	genomic	map	of	the	low	CpG	gene	VTCN1,	which	is	induced	in	the	APA+	versus	the	
SSEA-5+	 cell	population,	 exhibiting	 binding	 of	 GATA2,	 GATA3,	 TFAP2A	 and	TFAP2C.	
Bottom,	 the	DNA-methylation	 status	of	 analyzed	CpGs	at	 the	 corresponding	genomic	
positions	in	the	SSEA-5+,	APA-	and	APA+	cell	populations.	Analysis	was	conducted	as	
indicated	in	Figure	V-31.	
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VI.	Discussion	

My	 results	 break	 grounds	 in	 general	 understanding	 of	 trophoblast	 progenitor	

differentiation	 and	 in	 particular	 in	 the	 human.	 This	 is	 because	 I	 was	 able	 to	 prove	

lineage	 correspondence	 and	 analyze	 cell	 intrinsic	 properties	 of	 human	 trophoblast	

progenitors	 using	 purified	 populations	 of	 progenitors	 during	 their	 process	 of	

differentiation	from	human	pluripotent	ESCs.	I	discovered	the	TEtra	TFs	that	are	at	the	

basis	of	this	differentiation	pathway,	and	proved	functionally	that	it	is	a	critical	part	of	

the	 network	 that	 drives	 human	 trophoblast	 specification.	 This	 circumvents	 ethical	

limitations	on	 studying	human	embryogenesis	 trophoblast	development,	 and	provides	

critical	grounds	to	explore	mechanisms	of	placental	disease	that	have	long-term	effects	

on	 child’s	 and	 mother’s	 health.	 Moreover,	 I	 discovered	 key	 modes	 of	 epigenetic	

regulation	 that	 govern	 human	 trophoblast	 specification,	 and	 these	 modes	 may	 have	

implications	to	understanding	human	development	to	various	cell	types.	

	

Resolving	the	uncertainty	concerning	the	lineage	

correspondence	of	human	PSC-derived	trophoblast	progeny	

As	 a	 foundation	 for	 my	 doctoral	 thesis,	 I	 began	 my	 investigation	 of	 the	 progenitor	

population	 that	 emerges	 from	 human	 ESCs,	 termed	 here	 the	 APA+	 progenitors,	 by	

analyzing	their	lineage	correspondence.	I	have	obtained	several	lines	of	evidence,	which	

in	my	opinion,	remove	the	doubts	that	the	progeny	of	human	PSCs	treated	with	BMP4	is	

of	 a	 trophoblast	 origin	 (Introduction	 section	 “BMP4-mediated	 trophoblast	

differentiation	of	human	ESC”).	This	includes:	

	

1.	 I	 have	 shown	 that	 the	 progeny	 of	 human	 ESCs	 treated	 by	 BMP-4	 includes	 other	

lineages	and	possibly	residual	undifferentiated	cells	in	the	APA-	population.		

	

I	have	demonstrated	this	by:		

	

a.	RT-PCR	analysis	of	the	APA-	population	indicates	heterogeneity	of	this	population,	as	

in	 parallel	 to	 trophoblast	 genes	 also	 genes	 of	 other	 lineages	 (e.g.	 meso-	 and	
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mesendoderm	 represented	 by	MESP1	 and	 T)	 are	 induced.	 Further	 I	 saw	 lower	OCT4	

expression	in	the	APA+	compared	with	the	APA-	population	indicating	that	there	are	still	

cells	with	pluripotency	characteristics	in	the	APA-	population.		

b.	 The	 increase	 of	 trophoblast	 genes	 was	 less	 pronounced	 in	 the	 APA-	 population,	

indicating	lower	numbers	of	trophoblast	cells	in	this	population.	ELF5	for	example	was	

not	 detected	 in	 APA-	 population	 and	 GCM1	 expression,	 which	 is	 important	 for	

syncytiotrophoblast	development,	was	very	low	in	the	APA-	population.	

c.	 Global	 gene	 expression	 analysis	 and	 GO-term	 bioinformatics	 showed	 that	 the	 APA-	

population	 is	 enriched	 for	 lineages	 including	 ectoderm	 and	 mesenchyme	 and	 not	

trophoblast	or	placenta.	

	

2.	I	have	shown	that	the	purified	APA+	population	has	a	trophoblast	correspondence.		

	

I	have	demonstrated	this	by:		

	

a.	 RT-PCR	 analysis	 of	 purified	 APA+	 cells	 demonstrated	 that	 trophoblast	 associated	

genes	 (CDX2,	 ELF5,	 GCM1	 and	 ENPEP)	 and	 not	 genes	 of	 meso-	 and	 mesendoderm	

(MESP1,	T,	CD13,	ROR2	and	GSC)	are	expressed	in	this	population.	Further	I	showed	that	

the	pluripotency	gene	OCT4	is	downregulated	more	in	this	population	compared	to	APA-	

cells.	

b.	 Global	 gene	 expression	 analysis	 and	 GO-term	 bioinformatics	 comparing	 the	 APA+	

population	 to	 both,	 the	APA-	 	 and	 the	pluripotent	 population	 	 showing	 that	 the	APA+	

population	is	enriched	for	tissues	of	trophoblast	and	placental	nature.	

c.	 Using	 existing	 transcriptomic	 datasets	 of	 human	 blastocyst-stage	 TE	 as	 a	 basis	 for	

comparison	 to	 the	 in	 vitro	 generated	 trophoblast	 progenitors.	 Comparison	 of	 the	

datasets	 led	 me	 to	 the	 conclusion	 that	 the	 core	 transcriptional	 TFs	 in	 my	 system	

correlate	with	the	in	vivo	dataset.	

	

A	recent	study	pointed	out	that	BMP4	differentiated	human	ESCs	fulfill	some,	but	not	all	

criteria	 of	 in	 vivo	 first	 trimester	 trophoblasts	 (Introduction	 section	 “BMP4-mediated	

trophoblast	 differentiation	 of	 human	ESC”).	 This	 study	 shows	 for	 example	 that	 only	 a	

portion	of	the	in	vitro	differentiated	cells	expresses	GATA3	and	TFAP2C,	in	vivo	markers	

for	 trophoblasts.	However,	 they	have	utilized	clumps	of	cells	as	a	starting	material	 for	

differentiation,	which	 in	my	opinion	 represent	 the	physiology	of	 ICM	cells	 rather	 than	



	91	

polar	 TE	 cells	 and	 could	 then	 lead	 to	 a	 less	 efficient	 BMP4	 mediated	 differentiation	

process.	 Our	 protocol,	 which	 is	 based	 on	 seeding	 human	 ESCs	 as	 single	 cells	 before	

differentiation,	 can	 overcome	 at	 least	 partially	 this	 heterogeneity	 as	

immunohistochemistry	 identified	 GATA3	 and	 TFAP2C	 expression	 in	 a	majority	 of	 the	

cells.		

Despite	of	 this,	 Lee	and	colleagues	noted	 that	CpGs	at	 the	ELF5	promoter	become	de-

methylated,	resembling	the	state	of	 the	 in	vivo	 first	 trimester	trophoblast.	My	analysis,	

however,	 did	 not	 show	 de-methylation	 of	 this	 trophoblast	 specific	 promoter,	 but	 as	

mentioned	 before	we	 look	 at	 a	 very	 early	 time-point	 and	 generally	 identify	 very	 few	

changes	in	DNA	methylation	over	the	entire	genome.	

	

Heterogeneity	during	differentiation	is	in	my	opinion	the	source	of	debate	on	the	lineage	

correspondence	of	the	trophoblast	progenitors	that	emerge	from	human	PSCs.		

For	example,	Bernardo	and	colleagues	showed	that	human	ESCs	treated	with	BMP4	in	

chemically	 defined	 medium	 express	 both,	 trophoblast	 and	 mesoderm	 genes	 and	

conclude	 that	 these	 are	 of	 extraembryonic	 mesoderm	 therefore	 challenging	 the	

trophoblast	 nature	 of	 these	 cells	 (Introduction	 section	 “BMP4-mediated	 trophoblast	

differentiation	 of	 human	 ESC”).	 However,	 the	 experimental	 system	 used	 by	 Bernardo	

and	colleagues	harbors	important	limitations:	

	

a.	They	apply	a	different	cultivation	and	differentiation	protocol	than	all	studies	before	

by	using	chemically	defined	medium	on	gelatin	membranes	 soaked	 in	FBS	and	do	not	

state	whether	they	started	the	differentiation	using	single	cells	or	cell	clumps.		

b.	The	differentiation	performed	with	BMP4	only	results	in	4-8%	KRT7+	cells.	Compared	

with	studies	performed	later	by	several	groups	this	does	not	reflect	their	findings,	

where	at	least	40%	(Amita	et	al.,	2013)	and	in	other	cases	most	of	the	BMP4	treated	cells	

were	KRT7+	(Telugu	et	al.,	2013;	Lee	et	al.,	2016).	Still	it	is	important	to	mention	that	

Lee	and	colleagues	utilized	an	Activin	A	inhibitor	and	ALK	and	FGF	receptor	inhibitors,	

which	suppress	mesoderm	differentiation	in	combination	with	BMP4	for	differentiation.		

c.	They	analyze	these	4-8%	of	KRT7+	cells	and	although	they	state	that	the	KRT7+	cells	

express	both	trophoblast	genes	(GCM1,	ELF5	and	HCGA)	and	mesoderm	genes	(ISL1	and	

FLK1),	the	amount	of	genes	characterized	limit	the	assignment	of	these	cells	to	a	certain	

lineage.	Genome	wide	analysis	of	this	KRT7+	population	could	have	shed	light	into	the	

nature	of	these	KRT7+	cells.		
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d.	There	is	still	the	possibility	of	heterogeneity	in	this	KRT7+	population	that	can	lead	to	

expression	of	these	mesoderm	and	trophoblast	genes	in	different	subpopulations	of	cells	

similar	to	what	we	saw	analyzing	the	APA+	and	APA-	population.		

	

It	 has	 been	 repeatedly	 shown	 that	 cell	 purification	 is	 an	 imperative	 paradigm	 for	

determining	the	intrinsic	properties	of	stem	cells	and	progenitors	(Hoppe	et	al.,	2014).	

Because	previous	studies	were	not	based	on	purified	progenitors	their	conclusions	may	

have	 derived	 on	 the	 basis	 of	 co-existing	 populations,	 including	 a	 mes/mesendoderm	

population.	 Further,	 one	 mechanism	 of	 the	 emerging	 heterogeneity	 during	 BMP4	

treatment	of	human	ESCs	was	discovered	as	BMP4	can	also	activate	components	of	the	

WNT	 pathway	 leading	 to	 induction	 of	 mesoderm	 genes	 and	 further	 a	 mesoderm	

subpopulation	 in	 the	 culture	 (Introduction	 section	 “BMP4-mediated	 trophoblast	

differentiation	of	human	ESC”).	

	

In	conclusion	our	data	show	that	this	differentiation	approach	represents	a	promising	

experimental	method	to	follow	cells	from	a	precursor	state	to	defined	trophoblast	cell	

types	during	human	development	with	the	ability	to	eliminate	unwanted	side	products	

of	the	BMP4	mediated	differentiation	process.		

Taken	together	the	data	obtained	from	the	gene	expression	analysis	allowed	me	to	

successfully	address	the	first	aim	of	my	study.	

	

The	TF	circuit	of	human	APA+	trophoblast	progenitors	

I	 took	 a	 combined	 approach	 for	 identifying	 the	 network	 of	 genes	 that	 govern	 human	

trophoblast	 specification.	 I	 relied	 on	 purified	 populations	 of	 the	 BMP4	 driven	

differentiation,	as	I	have	proved	that	these	progenitors	recapitulate	most	of	the	human	

TE	 and	 trophoblast	 progenitor	 characteristics	 (section	 above),	 in	 conjunction	 with	

global	transcriptional,	epigenetic	mark,	and	time-course	RNA-seq	analyses.	In	addition,	I	

used	TF	ChIP-seq	and	functional	assays	to	prove	my	finding	of	the	network	(Figure	VI-

1).	
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The	following	evidence	support	the	outline	of	this	network	including:	

	

a.	We	showed	that	the	four	TFs,	i.e.	the	TEtra	-	GATA2,	GATA3,	TFAP2A	and	TFAP2C	are	

highly	upregulated	at	the	earliest	time	point	analyzed	(8	hrs	BMP-4	treatment),	and	bind	

to	the	promoters	of	intermediate	and	late	differentiation	genes	(Figure	VI-1).	Additional	

evidence	 supporting	 the	 classification	 of	 the	 TEtra	 TF	 as	 drivers	 of	 TE	 differentiation	

include	 that	Gata3	 and	Tfap2c	 are	known	key	players	of	early	mouse	TE	development	

(Introduction	section	“The	transcriptional	network	of	TE	development”).	

b.	The	targets	of	the	TEtra	 include	a	very	well	known	mouse	TE	marker	-	CDX2,	of	 the	

intermediate	 TF	 cohort,	 and	 GCM1,	 a	 key	 syncytiotrophoblast	 TF	 of	 the	 late	 cohort	

(Introduction	section	“Mouse	placental	development”).		

c.	 The	 TEtra	 TFs	 bind	 to	 the	 first	 intron	 of	 OCT4	 leading	 to	 repression	 of	 this	 key	

pluripotency	gene.	I	have	shown	this	by	genome	wide	TF	binding	analysis	of	the	Tetra	

using	 ChIP-Seq	 and	 subsequent	 knock-out	 of	 GATA3.	 This	 links	 the	 progression	 to	 a	

trophoblast	fate	with	the	inhibition	of	the	pluripotency	network.	

	

Importantly,	the	logic	of	the	TEtra	TF	network	is	built	in	away	that	the	binding	sites	of	

these	two	families	are	in	may	cases	overlapping.	This,	in	my	opinion,	confers	robustness	

to	this	differentiation	pathway	by	redundancy.	The	human	network	in	this	regard	seems	

to	have	features	that	are	dissimilar	to	the	mouse	including	the	rewiring	of	the	network;	

Figure	 VI-1:	 Regulatory	
network	 of	 human	
trophoblast	development	
A	 summary	 of	 the	
observed	 time-course	
increased	 (green)	 and	
decreased	 (red)	
trophoblast	 and	
pluripotency	 genes	
following	BMP4	 treatment	
of	human	ESCs.	Reciprocal	
interactions	 (binding	 in	
the	 promoter	 regions)	
within	 the	 cohort	 of	 the	
early	 four	 TFs,	 the	 TEtra	
factors,	 are	 outlined	
according	 to	 ChIP-seq	
analysis.	
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while	 in	 the	human	GATA2,	GATA3,	TFAP2A	and	TFAP2C	 seem	to	regulate	CDX2,	 in	 the	

mouse	 it	 is	 Cdx2	 that	 regulates	 Tfap2c	 and	 Gata3	 (Introduction	 section	 “The	

transcriptional	network	of	TE	development”).	 In	 line	with	our	observations	are	recent	

single	cell	analysis	 studies	of	human	blastocyst	derived	TE	cells,	which	have	 indicated	

that	in	the	human	GATA2	and	GATA3	are	expressed	earlier	than	CDX2	(Petropoulos	et	al.,	

2016).	 This	 was	 further	 confirmed	by	 another	 group	 using	 an	 in	 vitro	 3D	 assay	 that	

mimics	 early	 human	 development	 (Deglincerti	 et	 al.,	 2016).	 Nevertheless,	 the	 full	

picture	seems	to	be	more	complex	as	recent	studies	have	placed	mouse	Gata3	in	parallel	

to	Cdx2	 (Ralston	et	al.,	2010)	and	Tfap2c	upstream	of	Cdx2	 (Cao	et	al.,	2015).	Also	my	

discoveries	 indicate	 that	 the	TEtra	network	 is	 auto-regulatory	 to	 some	extend	as	 they	

are	 found	to	be	bound	at	 their	respective	promoters	during	differentiation	and	GATA3	

depletion	leads	to	upregulation	of	TFAP2A	and	TFAP2C,	which	could	indicate	a	possible	

compensation	mechanism	(Figure	V-27).	One	additional	difference	between	mouse	and	

human	development	 is	 that	EOMES	was	not	detected	upregulated	 in	our	data,	while	 in	

the	mouse	 it	 plays	 a	 critical	 role	 (Russ	 et	 al.,	 2000;	 Strumpf	 et	 al.,	 2005).	 Again,	 our	

observations	are	in	line	with	in	vivo	measurements	(Petropoulos	et	al.,	2016).		

Furthermore,	 our	 identified	 TF	 network	 could	 partly	 explain	 why	 mouse	 fibroblasts,	

when	 treated	with	 a	 combination	 of	 4	 TFs,	 including	Gata3	 and	Tfap2c	 but	 not	Cdx2,	

reprogram	 to	 a	 trophoblast	 stem-like	 state	 (Benchetrit	 et	 al.,	 2015;	 Kubaczka	 et	 al.,	

2015).	

	

What	 is	 perplexing	 is	 that	 KO	 of	 GATA3	 alone	 seems	 to	 severely	 impair	 human	

trophoblast	 commitment	 (Figure	 V-26).	 I	 would	 not	 expect	 this	 severe	 phenotype	

because	of	the	putative	TF	redundancies,	but	still	I	have	not	analyzed	time	points	earlier	

than	 8	 hrs	 and	 the	 direct	 targets	 of	 the	 Smads	 transducers	 and	 therefore	 additional	

studies	are	necessary	to	understand	in	detail	the	function	of	GATA3.	

	

The	 fact	 that	 there	 is	 redundancy	 in	 the	 key	 players	 of	 the	 early	 human	 trophoblast	

development	 by	 GATA2	 -	 GATA3	 and	 TFAP2A	 -	 TFAP2C	 could	 add	 stability	 to	 this	

developmental	 step.	 This	 suggests	 that	 this	 early	 cell	 fate	 decision	 is	 controlled	 in	 a	

similar	way	as	the	second	wave	of	development,	where	the	epiblast	separates	from	the	

primitive	 endoderm,	 as	 the	 factors	 involved	 in	 this	 process	 have	 been	 shown	 to	 be	

GATA4	–	GATA6	and	SOX7	–	SOX17	(Niakan	et	al.,	2010;	Blakeley	et	al.,	2015).	Although	

this	hypothesis	needs	further	validation	this	could	mean	that	very	critical	early	cell	fate	
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decisions	 in	 the	 human	 embryo	 are	 controlled	 by	 a	 mechanism	 that	 relies	 on	 the	

redundancy	of	TFs.	Taken	together,	these	data,	obtained	by	time-course	gene	expression	

analysis	and	TF	ChIP-Seq	analysis	of	TEtra,	allowed	me	to	address	the	second	aim	of	my	

study.	

	

Regulation	 of	 CDX2	 and	 OCT4	 during	 human	 trophoblast	

differentiation	

My	 discoveries	 include	 novel	 features	 of	 regulation	 of	 trophoblast-pluripotency	

bifurcation.	 This	 began	with	my	 finding	 that	CDX2	 is	 up-	 and	OCT4	 is	 downregulated	

during	 differentiation	 from	 human	 ESCs	 to	 APA+	 trophoblast	 progenitors.	 Then	 I	

observed	 that	 the	 TEtra	 TFs	 bind	 novel	 sites	 in	 the	 first	 introns	 of	 these	 genes.	

Furthermore,	I	found	that	in	these	sites	the	four	TFs	overlap.	This	indicates	the	presence	

of	 a	 regulatory	 element	 at	 this	 site	 and,	 according	 to	 the	 expression	 direction,	 I	

hypothesized	that	CDX2	and	OCT4	are	positively	and	negatively	regulated,	respectively.	

In	the	case	of	CDX2,	there	has	been	a	previous	indication	that	this	 intronic	site	plays	a	

role	 in	mouse	 trophoblast	 development.	 It	 has	 been	 shown	 that	 binding	 of	 Gata3	 and	

Tfap2c	to	this	site	can	regulate	Cdx2	expression	in	mouse	TSCs	(Home	et	al.,	2009;	Cao	et	

al.,	 2015).	 Another	 study	 showed	 that	 the	 Cdx2	 promoter	 region,	 as	 well	 as	 the	 first	

intron,	are	 targets	of	Nanog	and	Oct4	 in	mouse	ESCs	and	 that	during	 the	 transition	of	

pluripotency	 to	 TSCs	 this	 region	 is	 bound	 by	 Cdx2	 itself,	 which	 could	 lead	 to	 an	

autoregulation	feedback	loop	(Chen	et	al.,	2009).	In	mouse	blastocysts	Cdx2	expression	

is	controlled	by	a	TE-specific	enhancer	 (TEE)	 that	 lies	upstream	of	 the	Cdx2	promoter	

(Rayon	et	al.,	2014),	but	this	regulatory	element	is	not	essential	for	Cdx2	expression	in	

mouse	 TSCs.	 Taken	 together	 this	 indicates	 that	 two	 sites	 regulate	 Cdx2	 expression	

sequentially:	 the	 TEE	 in	 early	 development	 and	 the	 intronic	 site	 later	 during	

development.	However,	the	intronic	region	was	ruled	out	as	an	extraembryonic	specific	

enhancer	 as	 it	 is	 also	 active	 in	 mouse	 ESCs,	 shown	 by	 reporter	 assays.	 Yet,	 the	

explanation	for	the	activity	of	the	reporter	assay	in	mouse	ESCs	could	be	that	Nanog	and	

Oct4	 bind	 this	 fragment	 in	 mouse	 ESCs,	 therefore	 leading	 to	 a	 positive	 result	 in	 the	

reporter	assay.	The	mechanism	behind	this	could	be	that	Nanog	and	Oct4	silence	Cdx2	in	

mouse	ESCs.		
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In	 human	 ESCs	 CDX2	 is	 also	 bound	 by	NANOG	 and	OCT4	 in	 the	 promoter	 region	 and	

together	 they	 have	 been	 proposed	 to	 silence	 the	 gene	 in	 ESCs	 (Boyer	 et	 al.,	 2005).	

Furthermore,	by	reviewing	the	published	ENCODE	datasets	of	NANOG	and	OCT4	ChIP-

Seq	I	 found	that	the	same	intronic	region	of	CDX2,	which	 is	bound	by	the	Tetra	TFs,	 is	

also	bound	and	possibly	regulated	by	NANOG	and	OCT4	in	human	ESCs.	

Taken	together,	this	has	led	me	to	propose	a	model	for	human	CDX2	regulation	(Figure	

VI-2)	 that	 takes	 into	 account	 previous	 findings	 and	 my	 data.	 It	 proposes	 mutual	

exclusive	regulation	of	CDX2,	either	in	the	direction	of	repression	in	pluripotent	cells	or	

in	the	direction	of	induction	when	OCT4/NANOG	are	replaced	by	the	TEtra	TFs.		

	

 

An	unexpected	finding	is	that	following	differentiation	of	the	GATA3	KO	cells	with	BMP4	

I	 have	not	 noted	 reduced	 levels	 of	CDX2	 compared	 to	 control.	 Surprisingly	 I	 noted	 an	

opposite	effect	-	CDX2	is	upregulated	when	GATA3	is	absent	during	BMP4	treatment	of	

human	 ESCs.	 One	 explanation	 for	 this	 phenomenon	 could	 be	 the	 before	 mentioned	

compensation	 by	 TFAP2A/C	 or	 another	 compensatory	 route	 that	 effects	 the	 level	 of	

CDX2	in	this	case.		

	

Figure	VI-2:	Proposed	regulation	mode	of	CDX2		
Shown	 is	 the	 genetic	 structure	 of	 the	CDX2	 locus	with	 its	 three	 exons.	 Left	 (yellow)	
indicates	the	regulation	of	CDX2	 in	human	ESCs.	Right	(blue)	shows	the	regulation	in	
trophoblast	progenitors.	Green	indicates	activation	and	red	indicates	repression.	
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Although	 the	 regulation	 of	 Oct4	 /	 OCT4	 was	 rather	 extensively	 studied	 and	 several	

regulatory	 regions	 were	 identified,	 including	 promoter	 upstream	 proximal	 and	 distal	

enhancers,	I	am	not	aware	of	a	prior	discovery	of	regulatory	elements	in	the	first	intron	

as	I	have	made	(Figure	VI-3).	

	

	

		

The	 functional	 importance	 of	 the	 TEtra	 binding	 to	 the	 first	 intron	 of	 OCT4	 requires	

functional	validation.	I	have	begun	this	by	using	the	GATA3	KO	cell	 line,	which	verified	

the	direction	of	negative	regulation	of	OCT4	by	the	TEtra	TFs,	because	the	levels	of	OCT4	

increased	in	this	cell	line	compared	to	control	(Figure	V-27).	Removal	of	the	GATA	and	

TFAP2	binding	sites	should	be	performed	in	the	endogenous	 locus	or	using	a	reporter	

assay.	My	hypothesis	is	that	without	GATA	and	TFAP2	binding	sites	OCT4	levels	will	be	

maintained.	One	reason	why	I	did	not	perform	such	experiments	is	that	I	noted	several	

Figure	VI-3:	Proposed	regulation	mode	of	OCT4		
Shown	is	the	genomic	assembly	of	the	OCT4	locus	with	its	five	exons	(blue),	the	distal	
and	 the	proximal	 enhancer.	 Upper	and	 bottom	panes	outlines	 the	modes	 of	positive	
and	negative	regulation	in	human	ESCs	and	trophoblast	progenitors,	respectively.	TSS	
=	 transcription	 start	 site;	 green	 indicates	 activating	 and	 red	 indicates	 repressing	
factors.	



	98	

tandem	GATA	and	TFAP2	motifs	and	several	bound	regions	within	the	intron.	Therefore,	

a	thorough	mutational	screen	is	necessary,	and	this	was	beyond	the	scope	of	my	thesis.		

	

Epigenetic	regulation	of	trophoblast	differentiation	

My	study	shows	that	the	early	and	many	intermediate	key	regulators	of	the	trophoblast	

differentiation	 have	 CpG	 rich	 promoters	 and	 are	 marked	 with	 both,	 the	 activating	

H3K4me3	 and	 the	 repressing	 H3K27me3	 marks	 concomitantly	 in	 undifferentiated	

human	 ESCs.	 I	 further	 showed	 that	 these	 bivalent	 TFs	 are	 upregulated	 very	 rapidly	

during	 differentiation	 and	 loose	 the	 repressing	 H3K27me3	 mark	 within	 2.5	 days	 of	

differentiation.	 In	 contrast	 to	 this,	 I	 observed	 that	 some	 of	 the	 key	 trophoblast	

regulatory	 TFs,	 which	 are	 upregulated	 later	 during	 differentiation,	 are	 CpG	 poor	 and	

harbor	no	activating	or	repressing	marks	in	undifferentiated	cells.	In	this	group	I	found	

GCM1,	TP63	and	VGLL1.	 In	the	progenitors	only	TP63	acquires	 low	levels	of	H3K4me3,	

while	GCM1	 and	VGLL1	 remain	 unmarked.	 This	 suggests	 that	 in	 genes	 harboring	 CpG	

poor	 promoters,	 transcriptional	 activation	 precedes	 the	 acquisition	 of	 activating	

H3K4me3	marks.	Furthermore,	very	little	changes,	if	any,	take	place	in	methylated	CpG	

islands	 during	 the	 transition	 from	pluripotent	 to	APA+	 trophoblast	 cells.	 The	 changes	

that	I	did	observe	were	mainly	de-methylation	of	CpGs	in	CpG	poor	genes,	which	become	

activated	 during	 differentiation.	 Interestingly,	 the	 site	 of	 de-methylation	 often	 co-

localizes	with	 the	TEtra	peak	sites	 (Figure	V-32),	 indicating	 that	binding	of	TFs	either	

leads	 to	active	de-methylation	or	 interferes	with	 the	maintenance	of	CpG	methylation.	

The	epigenetic	characteristics	of	the	genes	activated	in	the	trophoblast	progenitors	fits	

with	 their	order	of	 induction.	 It	has	been	shown	 that	bivalent	CpG	rich	promoters	are	

typically	developmental	regulators,	and	that	CpG	poor	genes,	which	are	not	marked	with	

histone	 modifications,	 typically	 encode	 for	 structural	 proteins	 (Introduction	 section	

“Epigenetic	profiles	of	PSCs”).	However,	I	found	a	novel	feature	in	this	regard	-	also	late	

trophoblast	specific	TFs	included	in	this	group,	indicating	that	I	discovered	a	novel	form	

of	developmental	regulation.	Additionally,	 it	was	shown	that	gene	expression	and	DNA	

methylation	 negatively	 correlate	 during	 differentiation	 (Xie	 et	 al.,	 2013),	 but	 in	 our	

relatively	 early	 time-point	 of	 analysis	 we	 did	 not	 observe	 this	 phenomenon	 as	 I	 still	

detect	DNA-methylation	marks	at	many	CpG	poor	promoters	of	expressed	genes	in	the	

APA+	population.	Therefore	I	conclude	that	the	transcriptional	activation	of	these	genes	
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happens	 before	 the	 erasure	 of	 DNA	 methylation	 marks	 at	 their	 promoters.	 All	 these	

observations	allow	me	to	successfully	address	the	third	aim	of	my	study.	

	

Biomedical	relevance	of	the	discovery	of	the	TEtra	TFs	

My	 identification	 of	 the	 TF	 circuit	 that	 underlies	 human	 trophoblast	 differentiation	

opens	a	path	to	understand	developmental	pathologies	of	the	placenta.	This	is	because	it	

provides	 a	 platform	 to	 discover	 their	 molecular	 etiology	 that	 may	 in	 many	 cases	

originate	 from	 misregulation	 of	 early	 transcriptional	 networks.	 Breaking	 grounds	 in	

understanding	 placental	 impairments	 and	 disorders	 causing	 miscarriages	 or	

preeclampsia	is	important	for	offspring	and	mother’s	health.	

Preeclampsia	 for	 example	 is	 a	 hypertensive	 disorder,	 which	 is	 usually	 diagnosed	 by	

proteinurea	 and	 hypertension	 after	 the	 20th	 week	 of	 gestation	 (Bulletins--Obstetrics,	

2002).	Importantly	the	link	between	preeclampsia	and	members	of	the	TEtra	has	been	

made	already,	although	 it	was	almost	unnoticed.	Published	evidences	 include	datasets	

showing	that	GATA2	and	TFAP2A	are	both	downregulated	in	preeclampsia	compared	to	

placentas	 from	 normal	 pregnancies.	 Furthermore,	 a	 strong	 enrichment	 of	 the	 AP2	

(TFAP2)	 binding	 motif	 was	 noted	 at	 many	 downregulated	 genes	 in	 preeclampsia	

placentas	(Sober	et	al.,	2015).		

	

Finally,	 our	 findings	 could	 also	 be	 pertinent	 for	 reproductive	 therapies	 by	 artificial	

reproductive	 technologies	 (ART)	 such	 as	 in	 vitro	 fertilization	 (IVF).	 A	 study	 in	 mice	

found	 that	 ART	 increases	 the	 chances	 for	 maldevelopment	 and	 dysfunction	 of	 the	

placenta,	 which	 is	 linked	 to	 reduced	 weight	 of	 the	 fetal	 mice	 (Chen	 et	 al.,	 2015).	

Examining	 this	 data	 they	 found	 misregulation	 of	 GCM1	 following	 IVF	 compared	 to	

normal	 pregnancies,	 which	 we	 found	 to	 be	 a	 target	 of	 GATA2	 and	 GATA3	 during	

trophoblast	differentiation.	

Taken	together,	this	provides	an	initial	 indication	that	by	discovering	the	TEtra,	I	have	

made	a	first	crucial	step	in	the	direction	of	understanding	early	placental	and	pregnancy	

defects,	 that	 this	 could	 translate	 to	 improve	 ARTs	 and	 treatment	 of	 conditions	 with	

impaired	placental	development.	
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IX.	Abbreviations	
%	 Percent	
°C	 Degree	Celsius	
3D	 Three	Dimensional	
APA	 Aminopeptidase	A	
bFGF	 Basic	Fibroblast	Growth	Factor	
BMP	 Bone	Morphogenic	Protein	
BMPRI	 Bone	Morphogenic	Protein	Receptor	1	
BMPRII	 Bone	Morphogenic	Protein	Receptor	2	
bp	 Base	Pair	

Cat.Nr.	 Catalog	Number	
cDNA	 Complementary	DNA	
ChIP	 Chromatin	Immunoprecipitation	

ChIP-Seq	 Chromatin	Immunocprecipitation	paired	with	Next	Generation	
Sequencing	

cm2	 Square	Centimeter	
CpG	 Cytosine-phosphate-Guanine	

CRISPR/Cas	 Clustered	Regularly	Interspaced	Short	Palindromic	Repeats/CRISPR	
associated	protein	9	

Ct	 Cycle	threshold	
DAPI	 4’,	6-Diamidino-2-Phenylindole	
DMEM	 Dulbecco's	Modified	Eagle's	Medium	
DMSO	 Dimethyl	Sulfoxide	
DNMT1	 DNA	Methyltransferase	1	
DNMT3A	 DNA	Methyltransferase	3A	
DNMT3B	 DNA	Methyltransferase	3B	
Dox	 Doxycycline	
E	 Embryonic		
EB	 Elution	Buffer	

EDTA	 Ethylenediaminetetraacetic	Acid	
EGTA	 Ethylene	Glycol-bis(β-aminoethyl	ether)-N,N,N',N'-Tetraacetic	Acid	
ENCODE	 Encyclopedia	of	DNA	Elements	
ESC	 Embryonic	Stem	Cell	
ExE	 Extraembryonic	Ectoderm	
FACS	 Fluorescence-Activated	Cell	Sorting	
FBS	 Fetal	Bovine	Serum	
FDR	 False	Discovery	Rate	
FGF2	 Fibroblast	Growth	Factor	2	
FSC-A	 Forward	Scatter-Area	
FSC-W	 Forward	Scatter-Width	
g	 Gramm	
GC	 Guanine-Cytosine	

GO-term	 Gene	Ontology	term	
gRNA	 Guide	RNA	
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H3K27	 Histone	3	Lysine	27	
H3K4	 Histone	3	Lysine	4	
H3K9	 Histone	3	Lysine	9	
H3S28	 Histone	3	Serine	28	
H9	 WA09	Embryonic	Stem	Cells	
HAT	 Histone	Acetyl	Transferase	
hCG	 Human	Chorionic	Gonadotropin	
HDAC	 Histone	Deacethylase	
ICM	 Inner	Cell	Mass	
IgG	 Immunoglobulin	G	
IP	 Immunoprecipitation	
IVF	 In	Vitro	Fertilization	
kb	 Kilo	Bases	
KO	 Knock-Out	
KSR	 Knockout	Serum	Replacement	
LB	 Lysis	Buffer	

lincRNA	 Long	Intergenic	Non-Coding	RNA	
log2	 Log	Base	2		
Lot	Nr.	 Lot	number	
M	 Molar	
me1	 Mono-Methylation	
me2	 Di-Methylation	
me3	 Tri-Methylation	
MEF	 Mouse	Embryonic	Fibroblasts	
MG	 Matrigel	
mg	 Milligram	
min	 Minutes	
Mio	 Million	
ml	 Milliliter	
MM	 Mastermix	

MNase	 Micrococcal	Nuclease	
mRNA	 Messenger	RNA	
NaCl	 Sodium	Chloride	
ND	 Not	Detected	
NEAA	 Non	Essential	Amino	Acids	
ng	 Nano	Gramm	
nm	 Nano	Meter	
nM	 Nano	Molar	

no	Mod	 No	Modification	
nt	 Nucleotide	
PBS	 Phosphate-buffered	saline	
PE	 Primitive	Endoderm	
PGC	 Primodial	Germ	Cell	
pH	 Potential	of	Hydrogen	
PI	 Propidium	Iodide	

PMSF	 Phenylmethane	Sulfonyl	Fluoride	
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PSC	 Pluripotent	Stem	Cell	
PTM	 Photomultiplier	Tube	
RefSeq	 Reference	Sequence	
RIN	 RNA	Integrity	Number	

RNA-Seq	 RNA	Sequencing	
ROCKi	 Rho-	associated,	Coiled-Coil	Containing	Protein	Kinase	Inhibitor	
RPM	 Revolutions	Per	Minute	
rRNA	 Ribosomal	RNA	
RT	 Room	Temperature	

RT-PCR	 Real-Time	PCR	
SDS	 Sodium	Dodecyl	Sulfate	
SSC-A	 Side	Scatter-Area	
TALEN	 Transcription	Activator-Like	Effector	Nuclease	
TBS-T	 Tris-Buffered	Saline	with	Tween20	
TE	 Trophectoderm	

TE	buffer	 Tris-EDTA	Buffer	
TEE	 TE-specific	Enhancer	
TET	 Ten-Eleven	Translocation	Methylcytosine	Dioxygenase		
TF	 Transcription	Factor	
tRNA	 Transfer	RNA	
TSC	 Trophoblast	Stem	Cell	
TSS	 Transcription	Start	Side	
UCSC	 University	of	California,	Santa	Cruz	
WB1	 Wash	Buffer	1	
WT	 Wild	Type	
µg	 Micro	Gram	
µl	 Micro	Liter	
µM	 Micro	Molar	
µm	 Micro	Meter	
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