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Abstract 
While neuronal circuits are thought to be at the heart of how brains function, their 

description still remains incomplete for most brain regions. Specificity patterns of 

innervation have not been properly mapped and even definitions of cell types remain 

partially ambiguous. Progress is hindered by the lack of readily available techniques that can 

efficiently record and annotate whole neuronal circuits. 

The most advanced way to map neuronal circuits is using three-dimensional electron 

microscopy. A setup was created using an existing technique of this kind (serial block-face 

electron microscopy) and then improved to allow faster imaging. In a second step, the setup 

was considerably extended to remove overhead times between imaging steps. Additionally, 

an extraction technique was developed to create samples of mammalian neocortex that are 

centered on a region of interest. These technical improvements help creating larger and 

more targeted 3D electron microscopy datasets. Nevertheless, annotating such datasets is a 

challenge. A novel online tool called webKnossos was developed that allows large groups of 

annotators to collaborate on the analysis of 3D datasets, utilizing its efficient online 

transmission of raw data. Furthermore, webKnossos’ new interaction mode, “Flight Mode” 

improves the speed with which neurites can be reconstructed up to 10 fold over existing 

tools. 

Two datasets were acquired, one from layer 2/3 and one from layer 4 of mouse barrel 

cortex. Those datasets were used to measure how specific axons innervate target 

structures. Upon analyzing the layer 4 dataset, inhibitory axons were identified that in fact 

targeted structures with above-random specificity. These targets were apical dendrites, 

initial segments and the proximal part of spiny stellate dendrites. A group of axons was 

identified that innervated apical dendrites 27 times more frequently than what would be 

expected with random innervation. In layer 2/3, the high target specificity of chandelier 

axons was confirmed and new types of axons innervating pyramidal cell initial segments 

were described. 

An existing dataset from the visual system of Drosophila was converted into a format that 

could be annotated with webKnossos. This dataset was used to identify lobula plate 
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tangential cells, a group of cells specialized on aggregating visual flow information. 

Combining the reconstructions from many annotators, several lobula plate tangential cells 

were discovered that had not been described before in this species. 

This study provides valuable groundwork for the field of connectomics to meet new 

challenges such as complete reconstructions of the visual system of flies and of whole 

circuits in mouse cortex. It delivers tools for creating larger datasets and circuit maps, and 

describes new and unexpected circuit rules in mouse barrel cortex and circuit elements in 

the Drosophila visual system. 
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1 Introduction 

1.1 General motivation 
Brains of complex animals contain a large number of neurons (human:  86 billion neurons 

(Herculano-Houzel, 2009), mouse: 75 million neurons (Williams, 2000)). Even more staggering than 

the number of neurons within the brain is the number of synapses that these neurons can form with 

each other (for example every cortical pyramidal cell forms synapses with about 1000 - 10,000 

partners (Braitenberg and Schüz, 1991; Helmstaedter, 2013)). Groups of neurons and their 

connections are the building blocks of neuronal networks, which are thought to be at the core of 

how the brain performs computations.  While the field of neuroscience has gained enormous 

insights into the morphology and physiology of single cells (and the average pairwise connectivity 

and activity patterns of small sets of cells), only recently it has become possible to map connections 

within a neuronal circuit on a large scale. The key feature of these novel techniques is that they are 

not limited to statistical statements about connectivity but that for one tissue sample a large 

number of neurons and their synapses can be simultaneously observed. The field that is concerned 

with the measurement and analysis of such connectivity datasets has been named “connectomics”. 

1.2 Imaging requirements to detect connections between neurons 
Two neurons can only form a synapse if their neuronal processes touch. A way to measure if two 

cells are connected synaptically is to image the morphology of the two cells, to identify all spots 

where the two cells come into contact and to locally assess whether the contact spots are 

connections. If the morphologies of all cells and all synapses within a volume are being imaged 

simultaneously (“densely”), this method allows for the simultaneous identification of many 

synapses. 

1.2.1 Spatial resolution requirements 
 

The smallest processes encountered in mammalian cortex are about 40 nm (spine necks) and 50 nm 

(axons) (Helmstaedter, 2013). Other animals can have processes with even smaller diameters, e.g. 

30 nm in Drosophila (Butcher et al., 2012). The processes are densely packed and can run next to 

each other (e.g. axon bundles). In many tissue types, there is also no preferred direction for thin 

processes. 

Therefore the imaging requirements can be described as such: The resolution needs to be on the 

scale of the thinnest processes and such that two of these processes running next to each other can 

be discerned. A blurring of the image information, which would be unproblematic if only a single cell 

is labeled , e.g. (Markram et al., 1997), is not permissible (Helmstaedter et al., 2008). The neuropil is 
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usually isotropic and a lack of resolution in one dimension cannot fully be compensated for by better 

resolution in the other dimensions. Therefore in all three spatial dimensions the resolution has to be 

in the low tens-of-nanometers range. 

1.2.2 Volume requirement 
 

To build the full map of synaptic connections of a nervous system - its “connectome” - the nervous 

system has to be imaged entirely. At the necessary resolution, this has so far only been done once 

for adult animals: For the nematode worm C. elegans (White et al., 1986). Nonetheless, datasets of 

subregions of the brain can also be used to answer biologically relevant questions. 

If all inputs onto a cell are to be mapped, its dendritic tree has to be imaged in its entirety. To 

evaluate if two cells form a synapse, one needs to image the whole volume where this synapse 

might occur, plus the parts of the neurites that lead to that volume. The volume that allows doing 

that for all pairs of cells in a circuit simultaneously is called its “minimal circuit volume” 

(Helmstaedter, 2013). (Kasthuri et al., 2015) imaged a single dendrite with its surround and were 

able to detect axons that form multiple synapses with the dendrite. The imaged volume was 40 x 40 

x 50 µm³. Beyond the considerations of minimal circuit volumes, there are requirements for minimal 

volumes: To investigate how consistently an axon exhibits a certain innervation behavior, several of 

its synapses have to be within the dataset. Furthermore, neurons can have different types of 

dendrites, e.g. basal and apical dendrites. To be able to differentiate them by their morphology, a 

large enough stretch of neurite has to be imaged (see 3.1.9 for the criteria to identify apical 

dendrites). 

1.3 Electron microscopy 
Because the spatial resolution is so small and the volumes many orders of magnitude bigger, 

connectomic datasets are large. To acquire such datasets in reasonable timeframe, the microscopy 

has to be fast. Currently only electron microscopes can record data sufficiently fast. There are two 

types of electron microscopes, transmission electron microscopes (TEM) and scanning electron 

microscopes (SEM), both can deliver data at the necessary rates. These techniques are two-

dimensional: TEM only operates on thin slices (typically 70-350 nm) because electrons traverse the 

sample. SEM only scans the surface of a sample and cannot penetrate substantially. The techniques 

have to be extended into the third dimension by other means. The techniques to do that are serial 

sectioning TEM, serial sectioning SEM and serial block-face SEM. For TEM, samples have to be sliced 

for imaging anyway and consecutive slices offer a 3-dimensional stack: This technique is called serial 

sectioning TEM (ssTEM) and has been used for several notable projects (White et al., 1986; Harris 

and Stevens, 1989; Harris et al., 1992; Fiala et al., 1998). Improvements to the technique have been 
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focusing on increasing the speed of imaging (TEMCA, (Bock et al., 2011)). These slices are manually 

transferred onto an electron-transparent tape. The slices are prone to rupturing and distortions 

(Briggman and Denk, 2006), so it is so far not possible to build stacks out of slices thinner than about 

40-45 nm (Bock et al., 2011; Helmstaedter, 2013). As outlined in 1.2.1, this is not sufficient for 

correct reconstruction in some cases.  

Because the manual handling is problematic, a novel approach called ATUM has been developed 

(Hayworth et al., 2006; Kasthuri et al., 2015) where the slices are transferred onto a tape 

automatically. Because this tape is not transparent to electrons, the imaging is done with an SEM, 

making this a serial sectioning SEM technique. Slice thicknesses down to 25 nm are possible. 

Using an SEM, it is not necessary to image slices. Instead, the surface of the sample can be scanned 

without prior slicing. Then a thin layer of the top can be removed and the newly exposed surface can 

be imaged again. By repeating the process, over time a three-dimensional dataset is created. This 

technique is called Serial Block-face Scanning Electron Microscopy (SBFSEM or short SBEM). There 

are two options on how to remove the top layer of the block, either with a diamond knife (Denk and 

Horstmann, 2004) or with a focused ion beam (FIB-SBEM, (Knott et al., 2008)). 

The main advantage of SBEM is that the top of the block is more mechanically stable than a single 

slice. Single slice techniques are prone to distortions, rupture and slice loss. Datasets from FIB-SBEM 

samples currently can only be acquired if the sample is smaller than 100 µm in the smallest 

dimension, but efforts are underway to remove this limitation (Hayworth et al., 2015). 

1.4 Imaging and staining 
Scanning electron microscopy requires a mechanism to give the images contrast. The two most 

important sources of signal in SEM are back-scattered electrons (BSE) and secondary electrons (SE). 

Back-scattered electrons are electrons of the imaging beam that have been Mott-scattered at atoms 

of the sample at such an angle that they return towards the column. They lose energy by creating 

secondary electrons. Back-scattered electrons are scattered back with their landing energy only 

slightly attenuated (Goldstein et al., 2012). Mott scattering is quadratically dependent on the atomic 

number (Z), therefore using high-mass atoms in staining gives better back-scattering contrast 

(Hennig and Denk, 2007). 

Secondary electrons are electrons that are generated by the ionizing effect of the primary electrons. 

Secondary electrons have low energy, usually below 100 eV (Goldstein et al., 2012) and the image 

information is very superficial. Because secondary electrons are emitted more easily from exposed 

structures (corners, edges, ridges), the signal from secondary electrons is more sensitive to the 



12 
 

general shape of the sample (Goldstein et al., 2012). The signal from secondary electrons also 

contains information about the elementary composition of the sample, because strong scattering 

creates primary electrons that move laterally and superficially through the sample and elicit many 

secondary electrons that can escape from that superficial track (Titze, 2013). Secondary electrons 

are very susceptible to charging because of their low energy. Charging cannot be avoided in 

uncoated samples of neural tissue (Titze and Denk, 2013). Therefore in this piece of work imaging 

with back-scattered electrons is employed. To give differential contrast, the structures that shall be 

resolved are infused with atoms of high mass – for example osmium, lead and uranium. 

1.5 Sample preparation 
The high resolution of the datasets imposes strong requirements on the quality of the sample 

preparation. The first challenge is the protection of the sample from hypoxia. This can be achieved 

by intracardially perfusing the animal with a fixative. Furthermore, great care has to be taken when 

extracting the tissue. Even small forces can lead to visible ultra-structural damage (see 2.4.5.1). The 

actual sample preparation has to satisfy a number of requirements. The plastic (epoxy) in which 

samples are embedded must be hard enough so that the sample does not move away while the 

cutting force is applied and is sufficiently stable against electron beam damage, which changes the 

epoxy and makes it harder to cut (Starborg et al., 2013). A certain amount of beam damage is 

unavoidable and therefore the dose has to be limited to less than 20 electrons per nm², for more 

reliable cutting rather 10 electrons per nm² (Titze, 2013).  

This can only be achieved with a sufficiently dense stain. The development of such a stain by 

combining several stains that existed before was therefore of critical importance (Briggman et al., 

2011). The stain consists of several steps of heavy metal salt infiltration. The first step is a reduced 

osmium tetroxide infiltration, followed by a linking thiocarbohydrazide step, and a second non-

reduced osmium tetroxide infiltration (Seligman et al., 1966; Karnovsky, 1971). The next step is an 

infiltration of uranyl acetate solution, followed by a lead nitrate step (Walton, 1979). Finally, the 

samples are dehydrated and prepared for epoxy infiltration (Briggman et al., 2011). The four steps of 

three different heavy metals together give sufficient contrast for imaging with 10 - 20 electrons per 

nm² at (10 - 15 nm)² pixel size, but this regiment remains technically challenging. For the data stacks 

presented in chapter 2.1 and chapter 2.4, several attempts were made before samples could be 

produced that combined sufficiently dense staining with good epoxy quality for reliable cutting. Also, 

this method yields a denser stain in mammalian cortex samples compared to Drosophila brain tissue 

samples, so a specialized Drosophila stain was developed by Ch. Kapfer for the dataset presented in 

chapter 2.3. 
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1.6 Cell morphology reconstruction 

1.6.1 The reconstruction challenge 
 

A cubic millimeter of brain matter contains about 4.5 km of neuronal processes (Braitenberg and 

Schüz, 1991)1. Each process has to be followed (“traced”) to assign its volume to a specific neuron 

and to find its synapses. This constitutes a major challenge. If the process being traced is lost or 

misidentified (especially close to the soma), this can lead to the wrong attribution of thousands of 

synapses (Helmstaedter, 2013). If all neurites in the dataset have been traced, candidates for 

synapses between two processes can be identified by searching where the two processes come in 

close contact. Still, the image data at the contact spots has to be inspected to assess whether they 

are indeed synapses (Helmstaedter et al., 2013; Berning et al., 2015). 

1.6.2 Reconstructing axons is most critical 
 

The wiring consists (lengthwise) of 58% axonal wiring, 25% dendritic wiring and 17% glia processes 

(see 2.1.2.1, compare (Mishchenko et al., 2010)). To analyze connectivity, glia cells are not 

reconstructed.  The dendritic reconstruction consists of two tasks: Annotating the shaft of the 

dendrite and annotating spines. The shaft reconstruction is relatively easy because the shafts have a 

large diameter. In mammalian cortex, the majority of dendritic wiring is formed by spines 

(Braitenberg and Schüz, 1991). Spine reconstruction also poses a challenge, because the spine neck 

diameters are so small (see 1.2.1) – but if the reconstruction of a spine fails, only the synapse 

connecting onto that spine is not detected. 

For these reasons, reconstructing axons is the most critical part of the reconstruction challenge: 

They are very thin (at thin points down to 50 nm in diameter, see 1.2.1) and highly tortious. Small 

and very local disruptions in imaging quality or small mistakes in the reconstruction process can 

immediately lead to an important branch of the axon being lost (Helmstaedter et al., 2011). 

Furthermore, axons generally do not become progressively thinner as they extend, so there is no 

built-in safeguard against losing important parts as there is with dendrites. 

  

                                                           
1 If all neurites were circular, had the same diameter and would run densely packed in parallel, this would 
roughly correspond to a neurite diameter of 0.5 µm 
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1.6.3 Manual versus automatic annotation 
 

Reconstructing a neurite not only includes following it through the dataset, but also measuring its 

variations of shape along the way. Ultimately this means assigning almost every pixel of the dataset 

to a neuronal process identity. This is called a “segmentation” mapping (Equation 1). 

Equation 1 𝛺(𝑥,𝑦, 𝑧) = 𝑖𝑖 

 

To assign voxels to neurons, tools have been created to manually annotate voxels (Kim et al., 2014; 

Harris et al., 2015; Kasthuri et al., 2015), but manually volume-annotating processes takes about 

100 h of work per mm of neurite (Kasthuri et al., 2015), meaning that even a (100 µm)³ block would 

take 450,000 work hours. 

An alternative approach is to develop an algorithm that assigns voxels to neuron identity without 

human help. To measure annotation quality by automated reconstruction, it is necessary to first 

define an error metric: Because the reconstruction is an attribution of voxels to processes, it would 

be suggestive to count the number of voxels that have been labeled wrongly. This metric however 

can be misleading: In the pursuit of reconstructing a neurite along its length, a certain amount of 

border voxels can fail to be assigned correctly without causing any problems (Turaga et al., 2009). 

Problems arise when a neurite is “split” into separate processes. Also problematic are “mergers”, 

which happen if two processes of different cells carry the same label. This rationale is efficiently 

captured in the split/merger metric. It measures the average distance along the centerline of a 

process before a split or merger error occurs (Turaga et al., 2010; Berning et al., 2015).  

So far, attempts to build algorithms that can automatically segment whole cells have been 

unsuccessful. There have been several steps of improving the segmentation quality for various kinds 

of tissue and imaging method (Jain et al., 2007; Turaga et al., 2009; Jain et al., 2010; Turaga et al., 

2010; Jain et al., 2011; Sommer et al., 2011; Kaynig et al., 2015). The one that is used in this thesis 

has an average inter-error distance for splits and mergers of 5.03 and 214.52 µm, respectively 

(Berning et al., 2015), which was a new record at the time of publication. Nonetheless, these split 

rates mean that an improvement of at least two orders of magnitude would still be necessary to 

reconstruct whole cells correctly. 

1.6.4 Semi-automated annotation 
 

Due to these constraints, neither a fully manual nor a fully automatic reconstruction is feasible at the 

moment in large datasets. However, the strengths of manual and automated annotation can be 

combined to achieve much longer error-free annotations (Helmstaedter et al., 2011). Human 



15 
 

annotation is slow because manually contouring the outlines of processes is time consuming 

(Berning et al., 2015). It is also unnecessary: As highlighted before, segmentation algorithms yield 

good results locally. Human annotators are most efficiently employed to traverse problematic splits 

where a continuation of the segmentation is not possible. To make use of this, a process for 

neuronal “skeletonization” was developed (Helmstaedter et al., 2011). 

For skeletonization, the annotator follows the process through the dataset. The amount of 

annotation is greatly reduced; the annotator only marks the process in about every 10th layer by 

setting a single marker (“node”).  Markers that are being set sequentially are connected with an 

“edge”. This annotation style is sufficient to reconstruct the path of processes and brings a speed 

improvement by a factor of 50 (Helmstaedter et al., 2011). 

The skeletonization is a very sparse annotation and therefore not sufficient on its own to generate a 

list of places where the processes touch, but it can be combined with a computer-generated 

segmentation, especially a segmentation that is optimized to have very few mergers, like (Berning et 

al., 2015), by combining all segments that contain a marker of the same skeleton to create a full 

segmentation.  

1.7 Redundant annotation 
When several annotators reconstruct the same process (“redundancy”), the result will not always be 

identical. At times annotators connect parts that do not belong to the same process, end processes 

prematurely or miss branches that split off the main branch (Helmstaedter et al., 2011). When 

annotators are confronted with situations where their annotations differ, they are usually able to 

agree on one of their annotations. This makes it plausible that the majority of annotation errors are 

attention-related. Annotating dense neuronal tissue is strenuous and therefore the emergence of 

these errors is not surprising. It also means that multiple annotations can be pooled to create a 

better annotation quality. 

With redundant annotations it is possible to consolidate multiple annotations so that errors are 

removed and only markers persist that correctly mark the process. However, the annotators are free 

to set markers anywhere within the process. For that reason two annotations that correctly mark 

the same process can look very different microscopically. This means that the consolidation process 

is more complex than a series of yes/no votes.  Therefore, an algorithm called RESCOP was 

developed to automate this consolidation (Helmstaedter et al., 2011).  
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1.7.1 The RESCOP algorithm 
 

The first part of the RESCOP algorithm looks at the set of edges in a given reconstruction and asks for 

each of those edges whether other annotators agree that the edge is correctly connecting two 

voxels of the same process. To do so, for each edge the number of annotators that followed the 

same path are considered agreeing votes and the number of annotators that annotated in the 

proximity but did not follow the path are counted as disagreeing votes (Figure 1). Annotators that 

did not set nodes in the vicinity at all are not counted one way or the other because their absence 

stems from an earlier disagreement. 

 
Figure 1 Left: Overlay of neurite annotation done by 7 independent annotators. Right: Method for resolving 

disagreements. If neurites are annotated by placing points in them and connecting them with lines or “edges” 

(“skeletonization”), a consensus can be built from multiple annotations of the same neurite with the RESCOP algorithm. 

For each edge (here: dotted line in middle left panel) it is decided whether it belongs in the consensus by counting the 

skeletons that support its existence (red) or not support it (violet). Reprinted by permission from Macmillan Publishers 

Ltd: Nature Neuroscience, (Helmstaedter et al., 2011), copyright 2011 

 

To determine which percentage of agreeing votes is necessary to consider an edge valid, the second 

part of the RESCOP algorithm compares the voting for a given edge to a baseline probability 

distribution that is specific to the dataset. For example, an edge can be considered valid if 2 out of 7 

other annotators went along the same path if in this specific dataset correlated wrong edges (two 

annotators making the same mistake) are extremely rare. The baseline probability distribution can 

be also used to predict how fast the error rates would go down if the redundancy of annotation 

were to be increased. Because the second part of the RESCOP algorithm is independent of the 

specific annotation method it can be used for other redundant annotation setting where attention is 

a limiting resource for annotators, e.g. synapse annotation. 

1.7.2 Focused reannotation 
 

It was observed that for skeleton annotation the majority of decisions are very easy (Helmstaedter 

et al., 2011) and that the difficulty is concentrated in a few small regions. Therefore it is not very 

efficient to increase precision by reannotating the whole tree repeatedly. Instead it is preferable to 
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direct annotators specifically to places of high disagreement. This can be done efficiently in software 

that allows automatic task distribution like webKnossos (see 2.2). 

1.8 Innervation specificity 
A single axon has the ability to innervate multiple post-synaptic partners. In doing so, it can exhibit 

preferences for certain targets. One of the questions that this work addresses is how specific these 

connections are in the mouse barrel cortex. Innervation patterns are regularities encountered when 

analyzing neuronal connectivities. They can help to explain how neuronal circuits fulfill their task 

(Briggman et al., 2011; Borst and Helmstaedter, 2015). While some network motifs can only be 

detected when looking at a large number of cells, there are innervation patterns that can be 

detected by inspecting only a small number of cells in a network (Boergens et al., 2016). 

  
Figure 2 Left: Possible innervation patterns, illustrated using example cell n4. Right: Matrix view of connections on cell 

n4 at different level of detail. A connectivity matrix is a compact way of displaying all innervation information of a cell. 

Depending on the details of the connectivity matrix, different patterns are visible: Neuron-to-neuron specificity, 

neuron-to-dendrite specificity and neuron-to-segment specificity seen in the respective connectivity matrices for 

example cell n4 (right panel, top to bottom). From (Boergens et al., 2016), reproduced by permission of Oxford 

University Press. 

 

Innervation patterns are exemplified in Figure 2. The connectivity matrix CN,N  shows one kind of 

innervation specificity. Here cell n10 (red axon) specifically innervates cell n4, but not cell n3 and cell 
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n5. This pattern can for example be observed for direction selective pyramidal cells in V1 that 

preferable connect to cells with the same direction preference (Ko et al., 2011).  

A second kind of innervation pattern can be seen in the connectivity matrix CN,D (Figure 2, split up for 

dendrites): Axons can target specific parts of a neuron, e.g. soma or basal dendrites. For example, 

basket cells are known to preferably form synapses onto somata (Peters and Jones, 1984). 

Splitting up the connectivity matrix further into the subregions of the dendrites (CN,Dseg, Figure 2), a 

third kind of pattern becomes visible: Proximal and distal parts of the dendrite are targeted 

specifically. This pattern is implemented in the mouse retina, where bipolar cells of type 2 and 3 

target the proximal and distal part of starburst amacrine cell dendrites (Kim et al., 2014). 

1.8.1 Specificity calculations 
 

The specificity of innervation patterns is not an all or none phenomenon - in reality, specificity 

measurements can be more nuanced.  Some axons may preferably target a particular structure but 

not do all their innervations onto that structure: a baseline has to be found that defines “unspecific” 

behavior to be able to compare actually measured specificities. 

This baseline can be expressed as Peters’ rule (Peters and Palay, 1991), a hypothesis that states that 

innervation is as unspecific as possible, that means that for all regions of interest the probability for 

a synapse between an axon type and target (= cell type) is proportional to how much wiring of the 

two structures is in the volume (Equation 2).  

 � 𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥, 𝑦, 𝑧)
𝑣𝑣𝑣𝑣𝑣𝑣

∝ � 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑎𝑎𝑎𝑎(𝑥,𝑦, 𝑧) � 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡(𝑥,𝑦, 𝑧
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

) 

Equation 2 

The validity of Peters’ rule may depend on the size of the volume. If it is assessed on a small volume, 

the probability of two processes forming a synapse will be proportional to their actual touching. This 

is roughly true for some tissue types (Helmstaedter et al., 2013) but it is not true in cortex 

(Takemura et al., 2015). If the volume is too large, the rule cannot be true because it gives non-zero 

connection probabilities for cells that do not even come in contact macroscopically. However, on 

intermediate scales – micrometers to hundreds of micrometers – Peters’ theorem generates 

testable hypotheses. It predicts that innervation should be totally nonspecific - whereas connectivity 

patterns would create violations of the rule. 
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1.9 Barrel cortex 
In mammals different sensory modalities are represented in different areas of the cortex. A general 

organizing principle of each modality is the differentiation between early cortices where the 

information arrives and higher order cortices where the information is further processed. This is for 

example true for somatosensory cortex where these regions are called S1 and S2, respectively. Early 

sensory cortices retain the layouts imposed by the sensory modality, e.g. somatotopic maps, where 

areas that are close to each other on the body are represented close to each other in the cortex.  

This work focuses on the barrel cortex, a columnar structure within S1 found in rodents, which 

receives the primary sensory input from the whiskers on the animal’s snout that help the animal 

navigate its environment. Within the barrel cortex, additionally a discrete organization exists. Units 

called barrels each primarily respond to information received from a specific whisker. It is 

remarkable that the layout of the whiskers on the snout of the animal corresponds to the same 

pattern in cortex, having the same number of rows and columns of barrels as rows and columns of 

whiskers. This region was first discovered using a Nissl stain (Figure 3, (Woolsey and Van der Loos, 

1970)), which highlighted its segmented nature. Like the rest of the cortex, barrel cortex is organized 

into distinct layers that differ from each other in cell types and connectivity. These layers are 

numbered from 1 to 6, starting with layer 1 at the surface of the cortex. The barrel patterning is best 

visible in layer 4 of barrel cortex, where most of the fibers transporting the information from the 

whiskers (relayed over thalamus) terminate.  

 
Figure 3: Nissl stain of layer 4 of mouse barrel cortex, showing how a soma density measurement can be used to 

distinguish single barrels, scale bar 100 µm. Reprinted from Brain Research, Volume 17, Issue 2, Woolsey and Van der 

Loos, The structural organization of layer IV in the somatosensory region (S I) of mouse cerebral cortex: The description 

of a cortical field composed of discrete cytoarchitectonic units, Pages 205-242, Copyright 1970, with permission from 

Elsevier. 

 

The barrel cortex has become a model system for neuroscientific research. This is partly because of 

its existence in mice and rats, two of the most commonly used lab animals and partly because its 
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barrels are readily identifiable with several stains (Woolsey and Van der Loos, 1970; Land and 

Simons, 1985; Cooper and Steindler, 1986). The inputs are characterized (Agmon and Connors, 1991; 

Bruno and Sakmann, 2006; Meyer et al., 2010a), and there is a rich body of literature about 

connectivity statistics regarding cell types in barrel cortex (Feldmeyer et al., 1999; Beierlein et al., 

2000; Koelbl et al., 2013) and single cell properties (e.g. (Korngreen and Sakmann, 2000; Waters et 

al., 2003)). 

Many cortical neurons form synapses with cells that are several millimeters apart, thereby creating 

extensive networks. This makes connectomic analysis of cortical networks a task that requires very 

large datasets. Layer 4 of barrel cortex is a notable exception. Layer 4 of a single mouse barrel 

contains about 1650 excitatory cells ((Lefort et al., 2009), mostly “spiny stellate cells” that are 

morphologically distinct from the pyramidal cells of higher and lower levels, (Harris and Woolsey, 

1979)) and 140 inhibitory cells (Lefort et al., 2009; Meyer et al., 2011). The majority of inputs those 

cells receive are either from thalamocortical axons or from each other (Lübke and Feldmeyer, 2007; 

Helmstaedter, 2013).  The dendritic trees of the spiny stellate cells are much smaller than those of 

pyramidal cells, and they are oriented toward their respective barrel centers (Lübke et al., 2000).  

Furthermore, axons from barrel cortex spiny stellate cells leave their barrel and do not bend back to 

make further synapses. Because of this, barrel cortex is unique as a network having a small minimal 

circuit volume (see 1.2.2): only 300 x 300 x 300 µm³ have to be imaged to fully analyze this cortical 

circuit (Helmstaedter, 2013).,  

1.10 Three-dimensional annotation tools 
Annotation tools for connectomic reconstruction face two challenges. Firstly, they have to deal with 

ever larger amounts of raw EM data. Secondly, the increasing demand for reconstructions and the 

associated costs call for improvements in the reconstruction software to allow annotators to achieve 

a higher throughput.  

The first issue is becoming acute because datasets have continuously become larger and for many 

reconstruction scenarios it is difficult to devise strategies so that single annotators only have to work 

on subsets of the raw data: Cells usually extend over large portions of the dataset and it is hard to 

predict which parts of the dataset a cell projects to (Figure 4). Therefore, it is increasingly imperative 

not to store raw data locally on the annotator’s computer (as done in KNOSSOS, Helmstaedter et al 

2011) but to download the data on the fly as needed (as done in CATMAID, Saalfeld et al 2009, 

Schneider-Mizell et al, 2016).  
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To decrease annotation costs, it is desirable to reduce training times, which for existing tools are 

usually above 10 hours (15 hours per tracer (Helmstaedter, 2013; Helmstaedter et al., 2011), 20 

hours (Wanner et al., 2016)). Furthermore the interaction mode and image display should be 

streamlined so that the annotator can fully focus on the task at hand and not be distracted by 

technical limitation. This requirement can come into conflict with the on-the-fly delivery of data if 

the data delivery is not carefully optimized for slower connections (which are frequently 

encountered while traveling or in settings where undergraduate students aid with the 

reconstruction effort while working from home, see (Briggman et al., 2011; Helmstaedter et al., 

2013)). 

 
Figure 4: Dendritic arbor of cortical L5 pyramidal cell (left panel) and axon of the same cell projecting into the whole 

brain (right panel, black). Most cortical cells can innervate substantial parts of the brain - which means that even for 

single-cell reconstructions an annotator has to have large parts of the raw data readily available. 

 

1.11 The lobula plate of Drosophila melanogaster 
The optic system of the fly consists of the retina, lamina, medulla and lobula complex, the latter 

comprising the lobula and lobula plate (Borst, 2014). In each of these regions, the information is 

organized in a columnar retinotopic way, mirroring the layout of the compound eyes. Direction 

selective information is already present in the medulla and lobula. T4 cells in the medulla and T5 

cells in the lobula respond in a direction selective manner to ON and OFF stimuli, respectively 

(Maisak et al., 2013). In that aspect they are similar to starburst amacrine cells in the mouse retina, 

which have direction selective properties and also exist in an ON and an OFF variety (Borst and 

Helmstaedter, 2015). The input from T4 and T5 cells is aggregated in the lobula plate, where 

information for each preferred direction is represented in a distinct layer. Going from anterior to 

posterior these layers are: front to back, back to front, upwards, downwards. Within the lobula plate 

exists a group of large cells called lobula plate tangential cells (LPTCs). In the blowfly, about 60 of 

them have been identified (Haag and Borst, 2008). Shared features of LPTCs are their large diameter 
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dendrites and that they collect information over many columns, playing a role as an aggregator of 

information. Due to their ability to quickly transport information about movement of the fly relative 

to its environment, they are essential for the flight control of the fly (Borst and Haag, 2002).  

LPTCs all exist pairwise in the left and right hemisphere (some also project contralaterally) and two 

subgroups of them are cells reacting to horizontal and vertical optical flow. Horizontal cells are the 

horizontal system (HS) cells HSN, HSE and HSS (for north, equatorial, and south, respectively), which 

have been described in blowflies (Calliphora, (Hausen et al., 1980; Hausen, 1982)), house flies 

(Musca, (Pierantoni, 1976)) and fruit flies (Drosophila, (Heisenberg et al., 1978; Fischbach and 

Dittrich, 1989; Scott et al., 2002)); centrifugal horizontal (CH) cells which have been described in 

Calliphora and other blow flies (Hausen, 1976; Eckert and Dvorak, 1983; Egelhaaf et al., 1993; Gauck 

et al., 1997), Musca (Meyer et al., 1986) and potentially in Drosophila (Buchner et al., 1984; 

Rajashekhar and Shamprasad, 2004); the H1 and H2 cells, described in Calliphora (Hausen, 1984); 

and in Drosophila (Bausenwein et al., 1990; Schnell et al., 2010) and the Hu cell ((Haag and Borst, 

2001), “called U in (Hausen, 1984)”) in Calliphora. 

 
Figure 5: Light-microscopical images of the HS cells in Drosophila. The partial overlap of the dendritic trees (situated in 

the most anterior layer of the lobula plate) can be seen, as well as the somata which are connected to the main neurite 

by a very thin side branch. Scale bar 25 µm. From (Scott et al., 2002), with permission from John Wiley & Sons, Inc. 

 

Cells that primarily react to vertical optical flow are the cells of the vertical system (VS), called VS1, 

VS2, VS3…, which have been described in Calliphora (Hengstenberg et al., 1982), Musca (Pierantoni, 

1976) and Drosophila (Heisenberg et al., 1978; Scott et al., 2002), and the V1 and V2 cells as 

described in Calliphora ((Hausen, 1984), which were proposed to be “homologous to M-cells in 

Drosophila” (Heisenberg et al., 1978)). In Calliphora further tangential cells have been identified (Vi) 

and proposed (Vi2), for both see (Haag and Borst, 2007). Some thinner cells that bear a similarity to 

vertical cells have been described in Calliphora (Bishop and Bishop, 1981) and Drosophila 

(Rajashekhar and Shamprasad, 2004). 
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What all these cells have in common is that they react to a large field optical flow. There are other 

lobula plate tangential cells that are specialized in discriminating a moving object from the 

background. These are the FD (figure detection) cells, described in Calliphora (Egelhaaf, 1985) and 

Musca (Hausen and Wehrhahn, 1990). Their class potentially overlaps with the class of CI cells, 

described in Calliphora (Gauck and Borst, 1999).  

 
Figure 6: Light-microscopical images of the VS cells in Drosophila. The arrows highlight features which are useful to 

distinguish between the cells, namely the orientation of the major dorsal dendrite of VS3, the curving of the same 

dendrite in VS4, two separate large dorsal branches in VS5 and the fact that all major dorsal dendrites originate from a 

shared stem in VS6. Scale bar 25 µm. From (Scott et al., 2002), with permission from John Wiley & Sons, Inc. 

 

Disagreement exists over the number of cells in these classes. While the number of HS cells have 

been described as 3, the number of putative VS cells varies between 9 and 11 in Calliphora 

(Hengstenberg et al., 1982) and the number of VS cells in Drosophila is most commonly described as 

6 (Scott et al., 2002; Raghu et al., 2007; Joesch et al., 2008). The initial study by (Heisenberg et al., 

1978) identified 5-7 VS cells and recently up to three “Additional Vertical Cells” have been proposed 

(Rajashekhar and Shamprasad, 2004). Initially four H-cells (H1-H4) were described (Hausen, 1984), a 

number later increased to 6 (Douglass and Strausfeld, 1996), but only two of them have been 

characterized well enough to be included in recent models of the networks of lobula plate (Borst and 

Weber, 2011).  

When optically counting the number and types of lobula plate tangential neurons, several problems 

present themselves. It is not possible to visualize all neurons at once. Only 6 VS cells were imaged 

simultaneously by (Scott et al., 2002) and even then it was not possible to assign all branches 

unambiguously to cells. Furthermore, no protocol is known that would selectively stain all lobula 

plate tangential cells, because they have been defined mostly anatomically and physiologically. This 

problem of separate molecular, anatomical and physiological classifications is not confined to fly 

research, compare e.g. (Ascoli et al., 2008). A GAL4-3A driver line exists that stains some LPTCs in 

Drosophila (Scott et al., 2002), namely 6 VS and 3 HS cells (see (Raghu et al., 2007) for the complete 
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expression pattern). Most likely this does not stain all LPTCs and perhaps not even all VS cells. For 

some multimodal cells it was explicitly shown that they do not colocalize with this Gal4-3A driver line 

(Levy and Larsen, 2013).  

To reduce the number of visible cells, a random subsampling could be used. For the Drosophila 

GAL4-3A driver, such a system is MARCM, which labels a random subset of the cells marked in the 

line and has the advantage that cells that have a recent shared progenitor are often labeled together 

(Lee and Luo, 1999). If a purely anatomical reconstruction of cells is desired, a Golgi-silver stain can 

be employed (Fischbach and Götz, 1981; Rajashekhar and Shamprasad, 2004), which randomly stains 

about 1% of the neurons. For electrophysiological experiments, the visualization can be achieved by 

filling the cells with die after the conclusion of the experiment., This shifts the selection process to 

the onset of the recording. There cells can be selected by known anatomical or functional properties 

(compare for example (Warzecha et al., 1993)). 

If not all cells have been imaged at the same time, datasets from different specimens have to be 

moved into a shared reference frame. However, aligning datasets from different animals, 

experiments, labs or species is challenging. Even for datasets from a highly controlled environment, 

aided by modern information processing technology, this remains an active area of research (Peng et 

al., 2011). Cells that exist in multiple datasets can be identified if the datasets have been successfully 

aligned and if the cells are sufficiently stereotypical. Scott and colleagues (2002) investigated the 

latter by comparing the dendrites of four VS1 cells from different animals. They found that while the 

dendrites were reasonable consistent with each other, one of the cells had a branched main 

dendritic shaft and two of the cells had more than one dorsal dendritic branch.  

For all these reason, a dataset that contained all LPTCs in an unbiased fashion (marked in a way that 

they could be reconstructed) would have the potential to find new classes of neurons, to reliably 

count the number of neurons in each class and remove duplicate classes. 3D electron microscopy 

can do exactly that: record the morphology of all cells in a region of interest in a complete and 

unbiased fashion.  

1.12 Speed considerations for SBEM imaging 
Due to the large amount of data that has to be created for a successful 3D EM connectomics project, 

acquisition speed is one of the most important considerations. Three components play a role in the 

total acquisition time for a Serial Block-face EM stack: Pure imaging time (the time the beam spends 

scanning over the surface), cutting time and overhead time. The most significant contribution to 

overhead time is movement time: The practical field of view of a single beam scanning electron 
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microscope used for biological 3D EM is less than 100 µm. Therefore, in most projects, the field of 

view is extended mechanically. The most common mechanical way to extend the field of view is 

tiling (see Figure 50). Mechanical movement of the sample can introduce vibrations which persist 

after the movement has been completed and necessitates additional “cool-down time” after the 

movement before imaging. 

1.12.1 Imaging 
 

The imaging time depends on two factors. Firstly, the microscope has to be able to supply enough 

current to the rapidly moving small dot that does the scanning. Too few electrons hitting per pixel 

(charge density) means too little signal. To attain contrast that can be used for dense reconstruction 

(see 1.5), at least 1000 electrons have to be delivered to a region of about 10 x 10 nm² (Binding et 

al., 2013). This means that the maximum pixel frequency is 

Equation 3 𝑓𝑝𝑝𝑝𝑝𝑝 ≈
𝐼𝑏𝑏𝑏𝑏

1000 𝑒
 

 

where Ibeam is the beam current possible at a spot size of 10 nm and e is the elementary charge. 

Microscopes that can deliver such currents at the low landing energy necessary for surface imaging 

in biological samples (< 3keV) are a relatively recent development (Crewe et al., 1968; Crewe, 1973; 

Hainfeld, 1977; Orloff, 1981, 1985; Tuggle and Watson, 1984; Tuggle et al., 1986). The second 

challenge is that the detection system needs to have a sufficient bandwidth to be able to separate 

the signal coming from two neighboring pixels. The back-scattered electrons (BSE, section 1.4) are 

usually detected with a large-area diode. While the detector itself is fast enough (GHz range), the 

signal from this setup is challenging to amplify: The diode has a high capacity and produces small 

currents (nA range). The first amplifiers used by, for example (Briggman et al., 2011), were based on 

amplifiers developed for electrophysiology (Sigworth, 1995), where a similar problem of high 

capacity and small currents had to be overcome. 

1.12.2 Cutting 
 

On a diamond-knife Serial Blockface SEM setup, the cutting process takes about 30 s. Therefore, for 

very small datasets where no mechanical extension of the field of view is necessary, cutting can 

constitute more than 50% of the overall acquisition time, but the problem becomes less acute for 

larger datasets. Because dataset size is a volume effect and cutting time only grows with the height 

of the sample block (and to a certain extent the cutting length), the bigger the dataset gets the less 

relevant cutting time becomes. For very anisotropic samples, it is possible to use one of the shorter 

edges as the cutting direction. 
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1.12.3 Mechanical movement 
 

The fast and vibration-free movement of samples in an electron microscope is a topic of ongoing 

research (compare (Guo-Ying et al., 2013)). In the diamond-knife SBEM the situation is further 

complicated by the fact that the stage with the microtome on it is necessarily very heavy. Heavy 

objects have lower resonance frequencies and therefore longer cool-down times. An important 

consideration is the choice of motor for the movement. Geared motors have nearly unlimited range 

but are slow and induce vibrations. This can be improved with piezo motors, a type of motor that 

offers higher speed and creates the driving force by bending small piezo grips (Culp, 1991). Lastly, 

piezo stacks offer perfectly smooth movement, but have a limited range (the range of a piezo stack is 

about one thousandth of its length). 

1.12.4 Comparison of factors 
 

 
Figure 7: Comparison of time contributions to acquire a single 300 x 300 µm² slice in a SBEM setup, if the imaging speed 

is 500 kHz. 

In a scanning electron microscope as used for (Briggman et al., 2011), a single image can take up to 12 seconds. 

Therefore the scanning is the dominant contribution to overall stack acquisition time, even if the tiling motion is slow 

or needs settling time after movement. Example acquisition times shown for single tile size of 30 x 20 µm². 

 

The retina experiments that were the basis for (Briggman et al., 2011; Helmstaedter et al., 2013) 

were done with a FEI Quanta (FEI Company, Hillsboro, OR, United States) scanning electron 

microscope and a stage driven with conventional geared motors (P-227, Physik Instrumente, 

Karlsruhe, Germany). Because imaging speed was only 500 kHz, the distribution of acquisition time is 

dominated by actual imaging (Figure 7).  This would be too slow for a whole-barrel experiment, 

which would take at least 250 days on such a setup. At the time when the work for this thesis was 

begun, a much faster FEI Magellan microscope had become available (FEI Company, Hillsboro, OR, 

United States), which created substantially higher beam currents at the same resolution. In 
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agreement with Equation 3, this allows imaging at a pixel frequency of 10MHz. Juergen Tritthardt 

and Winfried Denk developed an improved amplifier that overcame the limitations of earlier 

electrophysiology-based amplifiers and allowed imaging at up to this frequency. 

 
Figure 8: Comparison of time contributions to acquire a single 300 x 300 µm² slice in a SBEM setup, if the imaging speed 

is 10 MHz. 

 

If the scanning speed is increased to 10 MHz (using a faster microscope and amplifier) and all the 

other parameters are kept the same as for the setup with 500 kHz imaging, the vast majority of time 

is spent for the tiling motion. Further increases to the scanning speed would not significantly 

improve effective speed. While the datasets from chapter 2.1 were recorded with this setup, the 

acquisition times for a whole barrel dataset would be excessive (more than 4 months). 

In this setting, movement is the dominant contribution to stack acquisition time (Figure 8). Chapter 

2.4 describes how to remove this movement overhead so that imaging is the dominant contribution 

to overall stack acquisition time again. 

1.13 Stitching and alignment 
Image stitching and alignment is the process by which a continuous three-dimensional dataset is 

created from a series of images. If the stack is tiled (i.e. each slice consists of several images) the 

images are stitched within a plane, forming a continuous image. To align the images in the z 

dimension, the images are positioned in a way that they are congruent with the image of the same 

position in the slice before it.  

For this it is necessary to determine the shift between two images that would bring them into 

alignment. This can be done manually (Fiala, 2005), by determining the peak of the cross correlation 

between the two images (Preibisch et al., 2009) or by using the SIFT algorithm (scale-invariant 

feature transform, (Lowe, 1999); e.g. used in TrakEM2, (Cardona et al., 2012)). 
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SBEM data is created by imaging the top of a solid block and therefore the images do not have to be 

rotated to be aligned. For many existing datsets a translation-only alignment algorithm was used 

(namely (Preibisch et al., 2009), used in (Briggman et al., 2011; Helmstaedter et al., 2011; 

Helmstaedter et al., 2013)) 

The algorithm used there compared the overlap region of adjacent tiles. For these images of 

theoretically identical information, the cross correlation was calculated. Then a threshold was 

applied onto the correlation calculation result and the center of mass of the largest super-threshold 

area was marked. The shift of this marker from the null position (center-of-image) was interpreted 

as the local vote on which translation would have yielded perfect alignment. The same algorithm 

was used to calculate the relative shift of images being situated on top of each other in z direction. 

This created a set of local shift vectors. This set massively over-determined the positions that the 

tiles should eventually take (about 12n votes compared to 2n degrees of freedom for n pictures). 

This over-determined system was solved by a weighted least-square relaxation. 

1.14 Structure of the thesis 
Chapter 2.1 will report the acquisition of two 3D EM datasets in layer 2/3 and layer 4 of mouse 

barrel cortex and the identification of innervation patterns in these datasets2; chapter 2.2 will report 

a newly developed tool for collaborative 3D online data annotation called webKnossos3; chapter 2.3 

will describe the processing and analysis of a large scale 3D EM dataset from Drosophila optic lobe; 

and in chapter 2.4 a 3D EM dataset will be reported that contains a whole barrel from mouse barrel 

cortex, and the methods will be highlighted that were used to acquire such a large dataset4. 

  

                                                           
2 The “L4” dataset was used in the following publications: Berning et al., Neuron, 2015; Boergens, Berning et 
al., Nature Methods, 2017; Staffler et al., eLife 2017. The “L2/3” dataset and the results of chapter 2.1 are 
unpublished as of September 1st 2017. 
3 This work was published as Boergens, Berning et al., Nature Methods, 2017 
4 This work is yet unpublished. The method described in chapter 2.4 contributed to Schmidt et al., Nature, 
accepted.  
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2 Results 

2.1 Innervation specificity in mouse barrel cortex 
The analysis of innervation patterns can help elucidate the function of neuronal circuits (See chapter 

1.8). For many parts of the nervous system (especially cortex), the extent of specific innervation of 

targets is open to debate (Peters et al., 1976; Braitenberg and Schüz, 1991; White, 2002; Sanes and 

Yamagata, 2009; Hill et al., 2012). Existing light-microscopical studies analyzing connectivity patterns 

in cortex rely on slice preparations and are susceptible to slice cutting artifacts (Song et al., 2005; 

Yoshimura et al., 2005). The existing 3D EM based studies investigate a rather small region of 

interest (Kasthuri et al., 2015) or are limited in their reconstructability due to insufficient z-resolution 

(Bock et al., 2011) and slice folding (Tomassy et al., 2014). Therefore an investigation was conducted 

looking for innervation specificity patterns in a sufficiently large, densely reconstructable 3D EM 

cortex dataset.  

2.1.1 Datasets 
 

 

pia 

 
 

 

 

 
white 

matter 

 

 

Figure 9 Left: Surface view of the serial block-face electron microscopy stacks recorded from layer 2/3 and layer 4 of 

mouse barrel cortex (resolution 12 x 12 x 26 nm³ (Layer 2/3) and 11.24 x 11.24 x 26 nm³ (Layer 4)). Right: Light-

microscopic image of coronal tissue slice from which the samples for the stacks were extracted (diameter of sample: 1 

mm) 

 



30 
 

Two datasets of mouse barrel cortex were recorded, one in a sample extracted from layer 4, the 

other one in a layer 2/3 sample. Barrel placement was confirmed by cytochrome oxidase staining 

(Land and Simons, 1985). The datasets are 99 x 66 x 202 µm³ (Layer 2/3) and 96 x 64 x 89 µm³ (Layer 

4) in size (Figure 9) and have a resolution of 12 x 12 x 26 nm³ and 11.24 x 11.24 x 26 nm³, 

respectively (see 3.1.3 for thickness measurement)5. The stitching and alignment of the datasets was 

done as described in 1.13, for further details see 3.2.1. The samples contain 187 and 117 somata, 

respectively. To aid exploratory discovery and to first test the tools for annotation, all 117 cells with 

somata in the L4 dataset were reconstructed. (Figure 10) 

 
Figure 10: Layer 4 dataset of mouse barrel cortex from previous figure (outlines of the raw data stack in orange. All 

neurons with somata in the dataset (blue spheres) were reconstructed manually. The main effort of this annotation 

task is the faithful reconstruction of all dendritic spines. Strategies to reduce this workload are discussed in detail in 

chapter 2.2.7. 

 

2.1.2 Reconstruction reliability 

2.1.2.1 Neurite reconstruction 
 

Single errors in manual process annotation can lead to tens or hundreds of synapses go undetected 

(compare 1.6). Because of this, it was important to measure how reliably processes can be 

reconstructed in the datasets. The datasets were recorded on the same setup just days apart and it 

was sufficient to assess reconstruction quality in one of them (the layer 4 dataset).  

A team of annotators was asked to reconstruct all processes in a bounding box (size: 7.5 x 10 x 5 

µm³, Figure 11) in the center of the dataset. To identify difficult spots where annotators struggled to 
                                                           
5 A subset of the L4 data is available here: 
https://demo.webknossos.org/datasets/2012-09-28_ex145_07x2_demo/view 
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find the correct path, annotation speed was measured. The 2200 edges (7.3% of all edges) with the 

slowest annotation times were inspected by an expert annotator. It was found that 5 of the 2200 

edges would need an increased amount of experience to be correctly judged. Thus, it was plausible 

that these spots would incur higher error rates from newly trained annotators. One spot was 

considered hard to decide even for expert annotators. This analysis was helpful for a first impression 

of annotation reliability in the dataset. However, annotation speed might be a weak proxy for 

annotation correctness and missed branches can correlate with faster annotation (further quantified 

in 2.2).  

 

                                                                                                                                                                           

Figure 11: Evaluating traceability by densely reconstructing all neurites within a small volume of the layer 4 dataset (7.5 

x 10 x 5 µm³). Difficult spots were identified by finding loci with reduced annotation speed (scale bar 2 µm). Snapshot 

from webKnossos annotation tool, see chapter 2.2. The red frame correspond to the coronal plane, the green frame is 

parallel to the pia.  

 

A team of annotators then annotated a set of randomly chosen processes in a small bounding box, 

distributed all over the dataset (Figure 12, left panel, see 3.1.5 for methods). The first part of the 

RESCOP algorithm – which is used for identifying disagreements in redundant annotations (see 

chapter 1.7.1) – was run on these data (example: Figure 12, right panel) and yielded a vote matrix 

(Figure 13, left panel). All edges that correspond to entries on the decision boundary (black box 

Figure 13, left panel) were then manually inspected. Of those, only one position was not easily 

resolvable and left some ambiguity – which can be resolved with biological priors (e.g.: every axon 



32 
 

needs to be connected to a soma). Extrapolating from that one situation, the mean inter-error-

distance can go up as high as 1.04 mm for high-redundancy annotation (see 3.1.5).  

 
Figure 12: Measurement of reliability of reconstruction for layer 4 dataset. Left: To assess the ability to reconstruct all 

neurites throughout the dataset, random seed points were distributed and annotators were asked to trace them within 

a (10 µm)³ bounding box (outlines of dataset (orange) and dense cube of Figure 11 shown). Right: These reconstruction 

were done redundantly (7-fold) and it was measured how much they agreed by using the RESCOP algorithm 

(Helmstaedter et al., 2011), see Figure 1. (disagreements shown in red and yellow, scale bar 2µm) 

 

For process annotation, errors are attention related (Helmstaedter et al., 2011). The second part of 

the RESCOP algorithm can be employed to extrapolate how increasing numbers of annotators help 

improve the quality of the tracing. This was done for the redundant tracings here and yielded 

inter-error distances as good as or better than for the e1088 dataset (dataset used for (Helmstaedter 

et al., 2011; Andres et al., 2012)), (Figure 13, right panel), both for normal annotation and focused 

reannotation (see 1.7.2). This result was published as part of the comparison of staining techniques 

in (Hua et al., 2015). 
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Figure 13: Analysis of neurite annotation consensus and prediction of annotation error rate. Left: vote histogram 

generated from annotations of the layer 4 dataset shown in Figure 12. Right: Prediction of annotation error rate for 

layer 4 and reference dataset. After the agreement for all neurite edges had been measured by RESCOP (Helmstaedter 

et al., 2011), they were accumulated into a vote matrix (left panel). Problematic edges are those that are close to the 

accept/reject decision boundary. Therefore those edges (within the black frame) were inspected manually. Only one of 

them was found to be critical for continuation of neurites, the others were related to spine-annotation. To estimate 

ease of reconstruction, it was measured which distribution of easy versus hard-to-reconstruct loci would generate a vote 

matrix as seen in the left panel. With this fitted distribution, it was possible to predict improvement of inter-error 

distance as the redundancy increases, both in a setting where new annotators reconstruct the whole neurite and where 

the equivalent work time is focused onto problematic loci (right panel) 

 

2.1.2.2 Synapse detection 
 

In cortex contact area is not a good proxy for synaptic connectivity (Takemura et al., 2015), therefore 

the next step was assessing synapse detectability. En-bloc synapse annotation is very time-

consuming (6 min/µm³, B. Staffler, personal communication). It is easier to search for synapses along 

axons. It is also more in line with the general task of measuring innervation specificity from a per-

axon perspective. 

On manual inspection, synapses looked clear and easily detectable in the data (Figure 14): Vesicle 

clouds are visible and docked vesicles can be seen close to the putative post-synaptic density. Post-

synaptic densities are less clear for inhibitory synapses (Figure 14, right panel). Synapse detection 

profited from the three-dimensionality of the dataset: Synapses that were not clear in a single plane 

could be resolved when aggregating the information from several planes (compare (Gray, 1959), 

L4 cortex 
e1088 
L4 cortex focused 
e1088 focused 
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traditional electron micrographs, where the image looks very sharp, but only a single layer is 

available to make the decision). Also, because the dataset is relatively isotropic, the concept of 

obliquely cut and thus hard to detect synapses was much less prevalent than, for example, in 

(Spacek and Harris, 1998). 

To approximate error rates for manual synapse annotation, a group of annotators was asked to 

annotate vesicle clouds and synapses (Figure 15) along a shared set of axons (see 3.1.6 for methods). 

Then the agreement between the annotators was measured (Figure 15, top-right panel). When the 

original annotators were confronted with sites where they were disagreeing, they usually could 

agree on a consensus, reporting to have missed a given synapse or being temporarily unaware of the 

criteria on what should constitute a full vesicle cloud (see 3.1.6). Therefore this is a setting were 

most errors are lack-of-attention errors and thus the error rates could be estimated using RESCOP 

(1.7.1): The error rates are dropping quickly with an increased number of annotators (Figure 15, 

bottom-right panel). 

This analysis also supplied an independent measurement for the synapse density along axons. 

Accepting synapses which 4 or more annotators agreed on yielded a synapse density of 

0.23 ± 0.07 synapses/µm in the three analyzed axons. 

An alternative to manual synapse detection is automated synapse detection. It was shown that 

automated synapse detection on this dataset can operate with a precision and recall of 88% for 

single synapses and a precision and recall of 97% if the information from multiple synapses 

connecting the same pair of neurons is pooled (Staffler et al., 2017). 
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Figure 14: Detection of synapses in 3D EM data of mouse cortex. Left: Slices through excitatory synapse 5 slices (130 nm) 

apart. Middle: Volume model of excitatory and inhibitory synapse, with location of slices that are shown in the other 

panels. Right: Slices through inhibitory synapse 5 slices (130 nm) apart. Three-dimensional data helps with identification 

of synapses. In the left column from top to bottom, the presynapse, the synaptic interface and the postsynaptic spine 

are marked with arrows. At 26 nm cutting thickness, a synapse is present in 10-30 consecutive planes. Aggregating the 

information from many planes can help making identification less ambiguous, both for excitatory and inhibitory 

synapses (left and right panel, respectively; scale bar 1 µm; in the images pia is to the top and the cuts were made in the 

coronal plane). This and all following cortex volume renderings have been created using a volume segmentation created 

by M. Berning, (Berning et al., 2015) 
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Figure 15: Method for identifying synapses along an axon. Left: Steps for synapse identification (from left to right). 1: 

Identification and marking of vesicle clouds (colored spheres show multiple annotators). 2: Reassessing raw data to 

identify postsynaptic partners. 3: Marking of postsynaptic partners. Right: Consensus quality and error rate prediction for 

scattered multi-annotator data shown on left.  

In conclusion, synapse identification along an axon can be split into vesicle cloud and post-synaptic process detection. For 

both, annotator agreement is sufficient for efficient synapse detection. Few synapses yield annotator disagreement close 

to decision border (top right, between 3 and 4 agreeing votes). RESCOP (Helmstaedter et al., 2011) can be used to predict 

error rates as more annotators work on a given synapse (bottom right). Scale bar 500 nm 

 

2.1.2.3 Axon type detection 
 

Having established the ability to detect synapses, the next task was to categorize them as excitatory 

or inhibitory. Within the recorded data it was often difficult to categorize an isolated synapse. This 

issue has been previously reported for EM data (Gray, 1959). In the layer 4 and layer 2/3 datasets it 

is not necessary to categorize an isolated synapse: Most axons in the datasets carry multiple 

synapses and “Dale’s principle in Eccles’ interpretation” (Dale, 1935; Eccles, 1976) states that all 

synapses of an axon release the same neurotransmitters. Therefore analyzing several synapses along 

one axon can increase the confidence of the categorization. Whether a connection was excitatory or 

inhibitory could be determined based on the information gathered from adjacent synapses. In 

summary, innervation type was distinguished on a per-axon basis (as opposed to a per-synapse 
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basis). Expert annotators were able to distinguish excitatory and inhibitory axons based on PSD 

shape and coloration - but it was found that beginner-level undergraduate annotators were 

struggling to make the distinction. However, they were able to reliably distinguish spine and shaft 

synapses. There is a correspondence between synapse geometry and axon type, with spine synapses 

usually belonging to excitatory axons and shaft synapses usually being inhibitory. This is not a 

reliable indicator of axon type identity on a single-synapse basis (see (Chen et al., 2012)) and thus 

has to be pooled over several synapses of the same axon (Table 1). 

 

Excitatory vs inhibitory axons Distinction by PSD and color Distinction by spine vs shaft 

Decision per synapse Not possible Unreliable (Chen et al., 2012) 

Decision per axon In this dataset only possible for 

experts 

Possible 

Table 1: Comparison of axon type detection strategies 

 

 

To measure the reliability of using only the shaft vs. spine synapse label to distinguish axon type, a 

pool of axons was traced completely through the dataset and all their synapses were annotated as 

either projecting onto a spine or a shaft (see 3.1.7 for methods). This showed that for those axons 

the synapses are either mostly onto spines or mostly onto shafts. It was then analyzed how many 

synapses per axon are necessary to reliably establish the axon type this way (Figure 16 left). For 

clusters of 10 synapses, the distribution of votes was found to be sufficiently bimodal and the 

majority of axons had a clear preference towards innervating either mostly spines or shafts (Figure 

16 right). Therefore, for all type determinations in this chapter, 10 synapses were analyzed. If this 

yielded a very close result (4-6 synapses onto spines), another 5 synapses were annotated to break 

the tie. 



38 
 

 
Figure 16: Axon type detection by counting synapses onto shafts versus synapses onto spines. Top left: Heat map of how 

consistent axons bear shaft or spine synapses, if n synapses of the axon are taken into account. Top right: Distribution of 

ratios of shaft vs. spine synapses for a surround size of 10.  

The larger the analyzed surround (number of synaspes n), the less frequently axons are encountered where roughly half 

the synapses are onto spines. For a surround of 10 synapses analyzed (top right panel), the distribution is sufficiently 

bimodal (split into spine-innervating axons and shaft-innervating axons) to allow a distinction between inhibitory and 

excitatory synapses. Bottom: example dendrite with inhibitory axon (yellow) forming three shaft synapses onto the 

dendrite and excitatory axon (red) forming three spine synapses onto the dendrite, an example case of high consistency 

of the spine-vs-shaft distinction. 

 

2.1.3 Initial segment innervation 
 

It is known that in all layers of cortex except layer 4, inhibitory chandelier axons innervate initial 

segments (IS) of pyramidal cell axons (Somogyi, 1977; Taniguchi et al., 2013). Because the action 

potential is usually initiated in the initial segment (Clark et al., 2009), this is a powerful spot to 

control firing rates. This innervation had been described as particularly specific, forming all synapses 
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onto initial segments, but the evidence remained inconclusive (Somogyi et al., 1982). There is only 

sparse information on innervation of initial segments in layer 4 (Marie and Peters, 1985). Therefore, 

it was measured how specific the innervation of initial segments in the layer 2/3 dataset actually is 

and whether there is a different kind of initial segment innervation in layer 4. 

2.1.3.1 Layer 2/3 IS innervation 
 

At first, one initial segment of a pyramidal cell was identified (see 3.1.8 for criteria to identify initial 

segments). Then all synapses onto that IS were annotated. It became clear that of those 10 

synapses, 5 were from the same axon (Figure 17). This putative chandelier axon was then 

reconstructed throughout the dataset. Its overall morphology was consistent with the known shape 

of chandelier axons. All its synapses were marked and the identity of the postsynaptic target 

established. Of the targets, 39 were onto initial segments but 2 were not. This shows that the affinity 

of chandelier axons for initial segments is high, but not absolute.  

 

                                                                                  
Figure 17: Multiple branches of a chandelier axon (red) innervate an initial segment of a pyramidal cell (grey) in layer 

2/3 mouse barrel cortex. Manually inspecting initial segments in layer 2/3 is an efficient strategy for identifying 

chandelier axons (scale bar 10 µm) 

 

The step of identifying all postsynaptic partners of the chandelier axon allowed for the convenient 

identification of further initial segments in the dataset. With the help of this set of initial segments, a 

second axon was identified that had multiple initial segment innervations and a chandelier-like 
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appearance (Figure 18, left panel). All of the synapses of that axon were also identified and all 80 of 

them were onto initial segments.  

In conclusion, chandelier cells could be reliably identified and their specificity measured. It was then 

investigated whether this was the only type of innervation onto initial segments. To assess this, all 

synapses of 12 initial segments were annotated (marked with * in Figure 20). This yielded an average 

synapse density of 0.1232 synapses per µm. Of those 12 IS, 3 initial segments were selected and all 

16 additional axons were reconstructed that innervated them (IS marked with ** in Figure 20). Of 

those axons, all postsynaptic partners were identified and it was assessed whether they were initial 

segments. This analysis yielded a much more varied picture than assumed before: While one more 

chandelier axon was identified, two more classes of axons were found: 2 high-specificity IS 

innervating axons that did not have the morphology associated with chandelier axons and 13 axons 

which targeted initial segments but also had other non-IS targets. What all axons had in common 

was that none of them was identified as excitatory (according to the criteria outlined in 2.1.2.3). The 

information of all axons was consolidated into a preliminary connectome of identified initial 

segments and their innervating axons (Figure 20).  

The chandelier axons exhibit very high specificity. Therefore they are well suited to establish an 

upper limit on the specificity measurement. This specificity measurement was done in accordance 

with the ideas outlined in 1.8.1 and is described in detail in 3.1.11. Briefly, the wiring length of initial 

segments in the dataset was compared to the overall wiring length of postsynaptic structures. For 

random wiring, this ratio should be equivalent to the ratio of synapses targeting initial segments to 

total number of synapses. The factor in which the two ratios differ is the specificity factor (Equation 

4).  

Equation 4 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓 =
     
𝑛𝑛𝑛𝑠𝑠𝑠_𝑡𝑡𝑡𝑡𝑡𝑡
𝑛𝑛𝑛𝑠𝑠𝑠_𝑎𝑎𝑎

     

    
𝑙𝑙𝑙𝑙𝑙ℎ𝑤𝑤𝑤𝑤𝑤𝑤_𝑡𝑡𝑡𝑡𝑡𝑡
𝑙𝑙𝑙𝑙𝑙ℎ𝑤𝑤𝑤𝑤𝑛𝑔_𝑎𝑎𝑎

     
 

 

For the chandelier innervation this factor is 234.6 (compare Figure 22) with error bounds of [+4.8 -

21.5] (see 3.1.11). The comparison of all wiring specificity factor of the layer 2/3 IS innervating axon 

shows the split into high- and low-specificity axons (Figure 18, right panel). 
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Figure 18: Multiple cells innervate a single initial segment. Left: A chandelier 

axon (orange) innervates an initial segment (dark grey). Additional synapses 

are interspersed (light grey). The orange axon exhibits a typical chandelier-

like morphology. Scale bar 20 µm. Right: Distribution of axonal specificities 

(the preference of axons to innervate a target) for initial segment innervation. 

Initial segments are innervated both by axons with a very high and low 

specificity for initial segments. 

 

 

 
Figure 19: Interneuron in layer 2/3 mouse barrel cortex dataset, dendrite red, axon blue, dataset bounding box orange 

(size: 99 x 66 x 202 µm³). No innervation exists onto the initial segment of this interneuron. 

 

All initial segments identified were initial segments of pyramidal cells. Therefore in a separate effort, 

a layer 2/3 inhibitory cell whose IS was within the dataset was identified (Figure 19, preliminary 

results indicate that one of ten cells in the dataset are inhibitory, see 3.1.10 for methods for 

inhibitory cell identification) and its IS was annotated. This IS did not contain any synaptic 

innervation at all. This means that even the low-specificity IS innervating axons had a specificity for 

pyramidal over interneuron initial segments. 
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Figure 20: Connectivity matrix for innervation of initial segments in layer 2/3 of mouse barrel cortex. High-specificity 

axons colored, fully synapse-annotated initial segments are marked with a star, initial segments where all 

innervating axons have been fully reconstructed are marked with a double-star. All identified chandelier axons (line 

1-3) have overlap with each other in their innervation targets. Some chandelier axons have non-initial-segment 

targets (line 1).  

 

2.1.3.2 Layer 4 IS innervation 
 

All initial segments of cells contained in the layer 4 dataset were annotated. The same criteria for 

identification were applied as in the layer 2/3 dataset (see 3.1.8). In the next step, all synapses 

projecting onto the initial segments were annotated. They were encountered at a rate of 0.22 

synapses/µm. This innervation density was higher than the value for layer 2/3 (0.1232 synapses/µm, 

see 2.1.3.1), despite the lack of chandelier cells in layer 4 (Taniguchi et al., 2013).  

In layer 2/3, the identified IS of an interneuron was not the target of any synapses. In the layer 4 

dataset, only one inhibitory cell with an IS in the dataset existed at all. This made it plausible that the 

dataset was recorded in either the center of a barrel (the hollow) or the septal region between 

barrels (Lin et al., 1985; Kätzel et al., 2011). Unlike in layer 2/3, this one interneuron IS was 

innervated. The axon of one of those synapses was reconstructed and yielded a specificity of 1/3. 

While using the analysis from one cell cannot give conclusive results, this might hint at a separate 

network of inhibitory IS-innervating axons or innervation only by low specificity axons. 
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Figure 21: Rendering of an initial segments in layer 4 and an example innervating axon. Initial segments of spiny stellate 

cells in layer 4 of mouse barrel are innervated, but not by extremely-high-specificity axons (i.e. the kind of specificity 

chandelier axons exhibit in layer 2/3). As an example for increased specificity, an axon is shown (blue) that is innervating 

an initial segment with 4 synapses (dark grey volume model) and also two other initial segments (dark grey wire 

models). Scale bar 20 µm. 

 

Of all synapses onto spiny stellate initial segments, 59 were chosen randomly and their axons fully 

reconstructed. All synapses formed by those axons were marked. Then automated contact detection 

was employed to generate candidates for synapses innervating pre-identified initial segments (see 

3.1.12 for methods). Those candidates were manually inspected to discern synapses from mere 

contacts. The information was pooled into a connectivity matrix (Figure 23). It is important to note 

that this procedure did not mark all initial segment synapses. Only 61% were detected because the 

initial segment library only contained initial segments whose somata were in the dataset, but this 

was compensated for (see 3.1.11.1). Overall, the specificities encountered in the layer 4 IS 

innervating axons were lower and more varied than for layer 2/3 (Figure 22). Axons exist that have 

an elevated specificity for axon initial segments. A typical medium-increased-specificity axon is axon 

51, which targets an initial segment with 4 synapses and then two further initial segments (Figure 

21) out of a total of 144 synapses, which gives it a specificity factor of 10.6 ± 3.9. 

2.1.4 Specificity of apical dendrite innervation in L4 
 

Another group of structures that can be investigated in the layer 4 dataset are the apical dendrites 

of layer 5 pyramidal cells which pass through layer 4 and form arborizations in higher layers. 

Therefore it was analyzed whether there is specific innervation onto layer 5 apical dendrites within 
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layer 4. First, a set of reconstructions was created that identified 117 apical dendrites within the 

dataset (as described in 3.1.9). Two apical dendrites were selected and nine axons innervating their 

shafts were randomly chosen. Those axons were completely reconstructed. According to the method 

detailed in 3.1.7, they were found to be inhibitory axons or, if they had too few synapses, they were 

at least consistent with the criterion. Then the innervation targets of those axons were identified 

and it was tested whether they were apical dendrites too. Of the 97 synapses tested in this way, 47 

were targeting apical dendrites. Through this process 7 additional apical dendrites were identified 

that had not been part of the initial library. The innervation specificity of the axons was between 9.8 

and 54.8 (Figure 22, excluding one outlier, the outlier is an axon with two synapses, hence the broad 

posterior – compare 3.1.11), with a mean specificity of 27.4 [+13.7 -3.3]. 

 
 Layer 2/3 chandelier axons   Layer 4 initial segment 

innervating axons 

 Layer4 inhibitory axons targeting 

layer 5 apical dendrites 

 

 

Figure 22: Overview of innervation specificities for structures in mouse barrel cortex, together with average specificity 

and error estimates for single axons. Mouse somatosensory cortex contains examples for extremely high specificity 

(chandelier axons onto initial segments in layer 2/3), low specificity combined with high inter-axon variance (initial 

segment innervation in layer 4) and medium high specificity combined with low variance (inhibitory innervation onto 

layer 5 apical dendrites within layer 4). Error bars were calculated using a Bayes simulation of an axon ensemble. 

 

It was then investigated whether there are axons that innervate both initial segments and apical 

dendrites. For this an automated synapse detection algorithm was used (Staffler et al., 2017). No 

crosstalk between these two categories of axons was found (Figure 23, right panel). This can be 

described as an avoidance of a certain target class, which is also a type of specificity. 

As discussed in the introduction (chapter 1.8.1), specificity statements can only be made when 

qualified by the volume over which the measurement takes place. The apical dendrites run through 
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the datasets in bundles. If the measurement volume is sufficiently small that it doesn’t smooth out 

these bundles, an axon running parallel to a apical dendrite in a bundle would have a lower 

specificity than one running orthogonally despite having the same ratio of hit/non-hit synapses (see 

Figure 23, left panel for a stretch of axon that exhibits both behaviors). The degree to which 

availability of apical dendrites (as fraction of overall postsynaptic wiring) depends on the spatial 

scale of integration was measured for all axons (Figure 24). It can be seen that some axons have a lot 

of spatial overlap with apical dendrites because they run along their bundles. Other axons run across 

the dataset and only form synapses when they come close enough to apical dendrites. 

 

                                                                                                                                             
 

Figure 23 Left: Volume rendering of apical dendrites (grey) and an innervating inhibitory axon (orange) in layer 4 of 

mouse barrel cortex. Specificity in apical dendrite innervation is not solely caused by axons and apical dendrites 

running in parallel: The inhibitory axon crosses through the dataset to innervate multiple apical dendrites. Scale bar 20 

µm. Right: Combined connectivity matrix for inhibitory innervation of apical dendrites (AD) and initial segments (IS) in 

layer 4 of mouse barrel cortex. Apical dendrite innervation is more specific. No axons were identified that innervate 

both apical dendrites and initial segments. 

 

35 excitatory axons that innervate apical dendrites were reconstructed. This was done by choosing 

consecutive spine heads of random apical dendrites and asking annotators to trace the axons that 

were innervating those spines. Automated contact detection was used to detect potential synaptic 

sites. This requires all spines of the postsynaptic structure to be reconstructed. Therefore, a revised 

set of tracings of the apical dendrites was created where annotators were instructed to make sure to 

annotate all dendritic spines completely. This skeleton tracing was combined with a volume 

segmentation (compare 3.1.12 for methods) to create a contactome between the apical dendrites 

and the reconstructed axons (see 1.6.4). Then all contact sites were manually annotated by expert 
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annotators as synaptic or non-synaptic. This is an ongoing effort, but so far no specificity could be 

observed. 

 
Figure 24: Availability of apical dendrites (as a fraction of total available postsynaptic wiring) for inhibitory apical-

dendrite innervating axons, plotted against the volume in which the availability is measured. The red lines describe 

individual axons, the underlying heat map the whole population of axons. For example, the peak of the red axon plot 

marked with a black arrow corresponds to the measurement that the postsynaptic wiring in a tube with a radius of 

15µm around this axon contains on average 6% apical dendrites. This is an increase over the general prevalence of 

apical dendrites in the dataset, which is 1.5% of the postsynaptic wiring. 

 

2.1.5 Spatial distribution of inhibitory innervation 
 

As discussed in 1.8, one pattern of specificity is innervation that targets a specific region of a 

dendrite (see Figure 2). Competing predictions exist whether a proximal or distal cluster of inhibitory 

innervation would be most effective (Koch et al., 1983; Gidon and Segev, 2012). In the layer 4 

dataset, the dendrites of the spiny stellate cells were used to answer for this cell type whether 

proximally clustered inhibition is present.  
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Figure 25: Measuring clustering of inhibitory innervation. Left: Set of 5 layer 4 spiny stellate cell main dendrites with 

spines reconstructed. Right: Example dendrite with all innervating axons.  

This reconstruction of innervating axons was done for all dendrites. Each axon was reconstructed until enough of its 

synapses had been identified to allow a decision whether it is excitatory or inhibitory (usually 10 synapses, see Figure 

16) 

 

Five dendrites of spiny stellate cells with somata in the dataset were randomly chosen. Two of the 

dendrites were from the same cell. These dendrites were redundantly (n=3) reconstructed by expert 

annotators, including all spines. Branch points that were leading into side branches were ignored, 

resulting in just one branch with spines (Figure 25). If the main branch left the dataset, the biggest 

side branch was chosen instead.  

All synapses onto those dendrites were marked and their axons were reconstructed into a 10-

synapse radius (see 3.1.7) to determine the axon type. If more synapses were needed to make the 

decision, more were included. One dendrite had been used to establish the axon type detection (see 

2.1.2.3) and its innervating axons and their synapses had already been reconstructed completely. 

Initial visual inspection showed a strong clustering of inhibitory innervation in the most proximal 

region of the dendrite (example dendrite in Figure 26). It was then tested whether this pattern was 

significant. The excitatory and inhibitory synapses were split into two groups (less and more than 25 

µm from the soma). On these groups a t-test was employed (Figure 26, inset), showing that there is 

a clustering of inhibition on the most proximal part of the dendrite (significant in 4 out of 5 

dendrites).  
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Figure 26: Example dendrite with its innervation (excitatory innervation: blue, inhibitory innervation: red). Inset: t-test 

for inhibitory clustering in the first 25 µm of each dendrite (**: p<0.01; ***: p<0.001). A bias for inhibitory innervation is 

visible in the proximal part of the dendrite. This clustering was significant in most cases (example dendrite: p = 0.008). 

Scale bar 10µm 

 

It was then invesitaged if this innervation specifically targeted a certain dendrite of the cell? For two 

of the dendrites, all inhibitory axons were reconstructed to the edges of the dataset and it was 

tested whether they innervated other parts of the cell. No hit was found targeting other main 

dendrites or the somata of the cells. If the somata or other dendrites had also been targeted, this 

might have meant that this inhibitory cluster was rather part of a larger cluster exercising tonic 

control over the cell (see 4.1 for an extended discussion). 
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2.2 webKnossos 
webKnossos is a newly developed in browser cloud-based connectomic reconstruction tool, that also 

pioneers a novel data interaction mode which yields significant gains in reconstruction speed.  

2.2.1 Data transmission speed 
 

webKnossos has been optimized for non-optimal connection settings. To investigate how well it 

performs in telecommuting reconstruction setting where bandwidth and latency are worse than 

what staff scientists have available in a research institute, webKnossos was compared with the most 

widely cited cloud-based annotation tool, CATMAID (Saalfeld et al., 2009; Schneider-Mizell et al., 

2016).  

The webKnossos back-end transmits 3D EM data in packages called buckets sized 32 x 32 x 32 voxels. 

Additionally, webKnossos uses a heuristic to predict which buckets will be needed next and loads 

them preemptively (see 3.3.2 for details). CATMAID, on the other hand, stores and transmits the 

data as images (size configurable, e.g. 256 x 256 px, compare Figure 27), separately for each z layer. 

To compare the maximum achievable data rates of webKnossos and CATMAID, both tools were 

installed on separate dedicated servers (see methods). An expert annotator then reconstructed an 

easy axon, tracing as fast as the raw data rate allowed. The first measurement was performed while 

being connected to the server under optimal conditions (1 Gigabit connection to server, server in 

same country). There the expert annotator was able to achieve movement speeds of 2.032 mm/h 

for webKnossos and 0.470 mm/h for CATMAID (Figure 28; this and all following measurements were 

executed in a dataset with voxels sized 11.24x11.24x28 nm³, see 3.3.1).  

 
Figure 27: Comparison of sequential 2D data loading strategies (as used in CATMAID) and true 3D loading strategies as 

used in webKnossos. In a 3D loading strategy, the lateral field of view can be smaller, laterally loading only the data 

that is necessary and then using the reduction of bandwidth demand to load the data that will be used as 

reconstruction movement proceeds along the neurite (pre-loading). Reprinted by permission from Macmillan 

Publishers Ltd: Nature Methods, (Boergens et al., 2017), copyright 2017 
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Then a speed restriction was activated in the browser, limiting the transmission to 100MBit, 20MBit, 

LTE-like speed, good 3G-like speed and normal 3G-like speed, respectively, and the test was 

repeated. The resulting speeds can be seen in Table 2 and Figure 27 and show a consistent 

advantage of webKnossos over CATMAID annotation-speed wise.  

 
Figure 28: Comparison of maximally achievable axon reconstruction speeds for webKnossos and sequential 2D loading 

(as used in CATMAID). For high speed connections, webKnossos is about 4 fold faster than CATMAID. For connections 

with a higher latency and bandwidth, the difference becomes even larger. Reprinted by permission from Macmillan 

Publishers Ltd: Nature Methods, (Boergens et al., 2017), copyright 2017 

 

 

 webKnossos sequ. 2D 

1G 2,032 mm/h 0,470 mm/h 

100M 1,939 mm/h 0,461 mm/h 

20M 2,084 mm/h 0,442 mm/h 

LTE 1,851 mm/h 0,353 mm/h 

3G+ 1,098 mm/h 0,135 mm/h 

3G 0,705 mm/h 0,073 mm/h 

Transcontinental 1,190 mm/h 0,088 mm/h 

(openconnectome)  0,059 mm/h 

Table 2: Comparison of maximally achievable axon tracing speeds in webKnossos and CATMAID 

 

 

A stated development goal of online annotation software is to facilitate collaboration between 

laboratories worldwide (Saalfeld et al., 2009). Therefore the speed measurement was repeated in a 

transcontinental setting: Accessing the webKnossos and CATMAID server (located in Germany) from 
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a computer at the Instituto de Investigación en Biomedicina de Buenos Aires, Argentina. The 

resulting values were 1.190 mm/h for webKnossos and 0.08 mm/h for CATMAID (Figure 28). 

Additionally, the maximally attainable reconstruction speed using a public CATMAID server located 

in the United States (https://www.openconnectomeproject.org) was tested from Frankfurt. The 

resulting speed was 0.059 mm/h. In conclusion, these measurements highlight the data rate 

advantage that webKnossos enjoys over CATMAID. 

 
Figure 29: Screenshot of the webKnossos user interface in ortho mode. Shown are the three orthogonal viewports, 

arranged along the three principal axes. The fourth viewport shows a 3D view of the reconstructed cells. On the right an 

abstract view of the active tree is rendered. Reprinted by permission from Macmillan Publishers Ltd: Nature Methods, 

(Boergens et al., 2017), copyright 2017 

 

2.2.2 Flight mode 
 

In the “classic” orthogonal view employed by webKnossos (as introduced by KNOSSOS – 

(Helmstaedter et al., 2011)), the top left view (also called ‘viewport’) shows the original images as 

recorded by the electron microscope and two other viewports show the reslice of the data in the XZ 

and YZ plane (Figure 29, called “ortho mode”). This view might not be optimal in two aspects. First, 

anecdotally, it was a major threshold for new annotators to understand this arrangement and to be 

https://www.openconnectomeproject.org/
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comfortable interacting with it. Secondly, while reconstructing, annotators are instructed to 

reconstruct a neurite in the viewport where the neurite appears most round (i.e. the viewport to 

which the neurite runs most orthogonally). This is necessary to avoid missing branch points, but 

slows down annotators because both the decision process which viewport to use and the 

reorientation after switching viewports constitute a mental effort (compare Figure 30a). 

Furthermore, for neurites running obliquely to all viewports (e.g. along the (1,1,1) direction), all 

viewports are suboptimal.  

These problems can be solved by using a single viewport that can be freely rotated. This idea was 

implemented in webKnossos in a mode called “flight mode”. The current view is defined by a 

position coordinate and a direction. The viewport is rendered by sampling the raw data in a 

hemisphere which is then projected into a rectangular frame (Figure 30b - 30d). The orientation can 

be adjusted with the mouse or keyboard, additionally keys are defined to move backwards and 

forwards. During the movement, the nodes that make up the annotation are placed at regular 

intervals without additional user interaction. 

 
Figure 30: Interaction and data projection in flight mode. Moving along a neurite, ortho mode necessitates abrupt 

changes in the orientation with which the annotator views the dataset (a). Flight mode only has one viewport that can 

rotate freely around the annotator (b, c). This is done by projecting the voxels that intersect a sphere centered on the 

current position into a square view (c, d). Reprinted by permission from Macmillan Publishers Ltd: Nature Methods, 

(Boergens et al., 2017), copyright 2017 

 

Both orthogonal and flight mode are equipped to handle branched neurites. The workflow by which 

this happens is that when an annotator encounters a branchpoint, they press B to set a marker and 

then select one of the two branches to continue. Once the annotator reaches the end of that 

branch, they press J and their view is moved back to the view they had when they pressed B. Then 

they can continue with reconstructing the other branch. 
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2.2.3 Ease of teaching for different interaction modes 
 

To investigate whether flight mode indeed makes neurite annotation easier to learn, a team of ten 

undergraduates (which had previously shown interest in working as annotators but had never used 

webKnossos) went through a regime consisting of a short introduction and then a short test 

reconstruction. The ten newly recruited annotators were split into two groups of five. They each 

watched one of two versions of a 2½ minutes long introductory video that explained ortho or flight 

mode, respectively. Then they were asked to reconstruct an axon for 5 minutes (all annotators 

worked on the same axon). Afterwards their achieved speed and committed errors were measured 

and it was found that the flight mode annotators had significantly outperformed the orthogonal 

mode annotators (ortho: 74µm/h, flight 165µm/h; for error rates see Figure 31). 

  
Figure 31: Comparison of almost naive annotators (2.5 minutes of training) performing in ortho and flight mode. It can 

be seen that all flight annotations were usable and the annotators working in flight mode outperformed their ortho 

counterparts in terms of speed. Reprinted by permission from Macmillan Publishers Ltd: Nature Methods, (Boergens et 

al., 2017), copyright 2017 

 

 
Figure 32: Distribution of previous annotation experience for annotators in the axon reconstruction tasks. Experience 

levels of annotators vary widely, from freshly trained to very experienced. Reprinted by permission from Macmillan 

Publishers Ltd: Nature Methods, (Boergens et al., 2017), copyright 2017 
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2.2.4 Speed advantages of flight mode 
 

It was then measured whether experienced annotators also profited from flight mode. From the 

center of the dataset, 40 neurites were chosen (32 axons) as training tasks and starting coordinates 

and orientations were selected for them. 51 annotators were randomly split into two groups (25 and 

26 annotators, respectively). They came from a variety of experience (Figure 32). Both groups were 

asked to watch an 8½ minute long introductory video (different versions for flight and ortho mode). 

For the flight mode annotators, the flight mode video explained how this annotation mode works, 

the ortho mode video served as a refresher course on best annotation practices in ortho mode. Both 

videos emphasized the goal to speed up the annotation process as much as possible without 

sacrificing accuracy. Special focus was placed on the correct adjustment of the “move value”. The 

move value is the speed at which the annotator moves through the dataset if they keep the space 

bar constantly pressed and therefore the move value is the maximum speed an annotator can 

achieve. An excessive move value however can cause errors or inaccuracies while tracing.  

 
Figure 33: Speed development during training and test iterations. The black bars indicate the stretches for which the 

speed was evaluated, the broken bar the re-training iterations. Right: averages for flight and ortho annotators in the 

test iteration, averaged on a per-annotator and a per-axon basis respectively. Annotators in flight mode consistently 

outperform their counterparts in ortho mode. Both types of annotators increase their average speed during training 

and test iterations and the speed gains achieved during the training iteration are maintained over an 8 week gap before 

the onset of the test iteration. Reprinted by permission from Macmillan Publishers Ltd: Nature Methods, (Boergens et 

al., 2017), copyright 2017 

 

Then the annotators were presented with the 40 training tasks in a random order (random in a 

different fashion for each annotator). Their move value and average speed were measured on a per 

task basis. If the average speed exceeded 75% of their preset move value (i.e. if they moved more 
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than 75% of the time) their preset move value was insufficiently high and they received an email 

instructing them to increase their move value. 

 
Figure 34: 20 axons selected for test iterations, all seeded from a (2.5 µm)³ bounding box roughly centered in the 

middle of the dataset. Random seeding from a densely reconstructed bounding box is superior to selecting random 

coordinates in the volume because the latter strategy has a bias to axons with a wider diameter. Reprinted by 

permission from Macmillan Publishers Ltd: Nature Methods, (Boergens et al., 2017), copyright 2017 

 

After all neurites had been reconstructed by at least 40 annotators each, 40 annotations of each 

neurite were randomly chosen (1600 annotations in total) and the speed of those 1600 annotations 

was measured. As can be seen in Figure 33 (left side), from the beginning the speed of flight mode 

annotations exceeded the ortho mode annotation speed (0.84 ± 0.05 mm/h and 0.49 ± 0.04 mm/h, 

p<10-4, Wilcoxon rank-sum test, averaged over the first 10 annotations). Additionally, the speed 

increased further during the duration of this training phase. The final speed was 1.11 +- 0.07 mm/h 
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for flight mode and 0.63 +- 0.05 mm/h for ortho mode, again significantly higher (averaged over the 

last 10 annotations, p<10-5). The increase in speed was also significant (p<10-3, Wilcoxon signed-rank 

test). 

After a pause interval of 8 weeks, it was investigated whether the flight annotators had retained 

their ability to outperform the ortho mode annotators in terms of speed. Out of the pool of the 

annotators that took part in the training iteration, 13 flight mode annotators and 13 ortho mode 

annotators were chosen (their speed performance was indistinguishable from the complete set of 

annotators in the last 10 iterations; p=0.246, Wilcoxon rank-sum test). 20 axons were randomly 

selected from the center of the dataset (Figure 34, see methods for randomization procedure). 

These were shuffled (again on an individual per annotator basis) and paired with an initial 5 axons 

from the training set (randomly chosen but not shuffled) to give the annotators an opportunity to 

reacquaint themselves with the task. All annotators were instructed to complete the 25 tasks. 

 
Figure 35: Overlay of ground truth and annotation tree. The two sides contrast the difference between an error that 

only caused the loss of a branchlet (which carried only one synapse, and therefore only induces a single synaptic 

connection error; left panel) and a continuity error that can have far-reaching consequences (the branch leaves the 

dataset - in a larger dataset this could potentially have meant losing hundreds of synapses; right). Reprinted by 

permission from Macmillan Publishers Ltd: Nature Methods, (Boergens et al., 2017), copyright 2017 
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Figure 36: Comparison of error rates for axons in flight and ortho mode and dendrites in flight mode. Separately plotted 

are errors that affect the continuity of the neurite outside of its local surround (Cont. err.) and those that do not. The 

dashed line marked error rates normalized to the length of the overlap tree of the ground truth and the actual 

annotation tree, the full line shows the error rate normalized to actual annotation tree length. (Black: ortho axon, pink: 

flight axon, turquois: flight dendrite. Reprinted by permission from Macmillan Publishers Ltd: Nature Methods, 

(Boergens et al., 2017), copyright 2017 

 

After they had finished, the average speed and the error rate for the test annotations were 

evaluated. Again, the flight mode annotators performed better (1.51 ± 0.04 mm/h for flight, 0.96 ± 

0.03 mm/h, Figure 33, right side). The error rate was analyzed on a subset of 10 axons (randomly 

chosen). For the error rate annotation, a previously developed method was used (Helmstaedter et 

al., 2011). Briefly, an expert annotator created ground truth annotation for the 10 selected axons. 

Then overlays were plotted of the annotations and the ground truth, projected in the three cardinal 

axes. In these annotations all errors were marked; separately errors larger than 10µm and less than 

10µm (Figure 35). Major errors can cause a whole branch of the axon to be lost, potentially affecting 

the correct identification of hundreds of synaptic contacts (therefore they are called continuity 

errors). Discrepancies smaller than 1µm were ignored. No significant difference between the error 

rate for flight mode and ortho mode annotations could be identified (all errors: p>0.34, major errors: 

p>0.28, Wilcoxon rank sum test). Both error rates were comparable to the error rates of published 

results (Helmstaedter et al., 2011; Hua et al., 2015). 
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2.2.5 Redundant flight mode annotations 
 

Single annotations have errors at a rate that can hamper connectomic analysis. If several 

annotations of the same neurite are created, it is possible to use an algorithm called RESCOP to 

create a consensus set of annotation pieces ((Helmstaedter et al., 2011), compare Introduction 

chapter 1.7). To evaluate how much redundancy improves error rates over single annotator 

performance for the test annotations, the RESCOP algorithm was employed on the test axons for 

redundancies ranging from 2 to 13 and the same error rate annotation process was employed 

(Figure 36). 

 
Figure 37: Relationship between error rate and speed for ortho and flight mode axons and flight mode dendrites: 

Plotting error rate vs speed shows both for continuity error and all errors that there is no decrease in accuracy as speed 

increases. This was evaluated on 30 flight axon, 30 ortho axon and 30 flight dendrite annotations. Color code as in 

Figure 36. Reprinted by permission from Macmillan Publishers Ltd: Nature Methods, (Boergens et al., 2017), copyright 

2017 

 

Additionally, 497 dendrites were reconstructed in flight mode by the initial group of 51 annotators. 

The reconstruction speed exceeded the axon reconstruction speed (2.11 +- 0.16 mm/h, see lower 

panel in Figure 37, reconstruction without spines) A random subset of 10 dendrites was chosen and 
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the error rate was measured as described above (Figure 36, non-redundant annotations had an error 

rate of 2.7 +- 0.69 per mm). 

To investigate whether the error rates increased for annotations that had been executed with a 

higher speed, the speed and error rates for the axon and dendrite tracings were correlated. No 

positive correlation could be found (Figure 37; ortho: r = -0.5, p = 0.007; flight r = -0.4, p > 0.04 for 

test axons; Pearson’s correlation), the data even suggest that the faster annotators committed fewer 

mistakes. 

In conclusion, the instruction to annotators to speed up their reconstruction was successful in the 

sense that it did not increase error rates compared to previously published studies but did increase 

speed. On top of that, the introduction of flight mode created an additional speed gain and makes 

learning of webKnossos easier. 

 

2.2.6 Fast synapse annotation in webKnossos 
 

For the connectomic analysis of the set of reconstructed dendrites and axons, it was necessary not 

only to reconstruct the neurites, but also the synapses between them. So far, the focus had been on 

reconstruction speed, now it was investigated whether the synapses could be added without 

negating the speed improvement. To annotate synapses, two strategies were considered: Either to 

follow the axons and mark all the synapses on them and then identify the respective postsynaptic 

dendrites; or to follow the dendrites and mark all the synapses and then identify the respective 

presynaptic axons. 

To reach a conclusion which strategy would be more efficient, it was measured which fraction of 

axons were close enough to reconstructed dendrites (<5 µm) to be able to form synapses onto them 

and which fraction of dendrites were close enough to axons to be innervated by them. If longer 

stretches of axons and dendrites run through areas where the opposite neurites are not present 

they wouldn’t have to be synapse-annotated. However, this was not the case, the vast majority of 

axons or the majority of dendrites would actually have to be synapse-annotated. Because more 

reconstructed dendrites than reconstructed axons were available (93.6 mm dendrites, 4.55 mm 

axon), it was decided to annotate the synapses on the axons (see below for a more general 

discussion of this trade-off). 
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Figure 38: Work flow for whole-connectome axon-first synapse annotation. After axons and dendrites have been 

redundantly reconstructed (I and II) and a consensus version has been created using the RESCOP algorithm, the 

consensus axons are used as a template to search manually for synapses along them (III). Then reconstructions are 

started in the marked postsynaptic volume (IV). This leads to a reconstruction of the spines. In a last automatic step (V), 

the spine reconstructions are matched to the reconstructed dendrites and the connectome is assembled. Reprinted by 

permission from Macmillan Publishers Ltd: Nature Methods, (Boergens et al., 2017), copyright 2017 

 

A new interaction mode for webKnossos was developed where it was possible to follow an existing 

axon (“template” axon, see methods) and mark the postsynaptic neurite if one encounters a 

synapse. The output of a 6-fold-redundant RESCOP run of the 32 axons of the 40 training neurites 

was used as the template axons along which to annotate synapses. 10 annotators from our student 

team were trained for one hour on how to use the synapse annotation mode and how to spot 

inhibitory synapses. After that, they were asked to reconstruct the synapses onto the 32 axons. 

Inhibitory axons synapses present unique challenges and therefore the annotators were asked to 

mark suspected axon as inhibitory. For the axons marked as inhibitory, another annotator was asked 

to mark their synapses, with the instruction to prioritize precision over speed. The average time 

consumption for excitatory axon synapse annotation was 1.2 ± 0.5 h/mm, (including inhibitory axons 

1.8 ± 1.0 h/mm). 

2.2.7 Fast spine reconstruction in webKnossos 
 

After that, markers were present in each postsynaptic volume that was relevant for the connectome, 

but the majority of them (90%) was in spine heads and not yet connected to their respective 

dendrite (i.e. the identity of the postsynaptic dendrite was unknown). Therefore a group of three 

annotators reconstructed the neurites starting at these markers (in ortho mode) until they 

encountered a dendritic backbone and then place three more nodes in that backbone. For shaft 

synapses this meant directly placing three nodes. After this task was completed, an expert annotator 
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measured the error rate in the spine tracings (3.3%; 1 of 30). The average spine annotation took 31.1 

+- 28.0 seconds. Per length of axon from which these tasks were created, the process took 2.3 ± 1.3 

h/mm. 

 

 
Figure 39: Distribution of dpd values for spine attachment. The dpd value measures the average distance between the 

last three nodes of the spine annotation and the dendritic backbone nodes (inset). For the training dataset (shown) a 

threshold of 250 nm splits the set correctly into attached and non-attached spines. Reprinted by permission from 

Macmillan Publishers Ltd: Nature Methods, (Boergens et al., 2017), copyright 2017 

 

 
Figure 40: Resulting connectome matrix for 32 axons and 497 dendrites. Rows correspond to axons, columns to 

dendrites. Only dendrites innervated by the 32 axons are shown (Inh: inhibitory innervations, Exc: excitatory 

innervations). Reprinted by permission from Macmillan Publishers Ltd: Nature Methods, (Boergens et al., 2017), 

copyright 2017 
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The average distance dpd of the last three nodes of each spine skeleton to each dendrites (dendrites 

at threefold redundancy) was measured and the dendrite that had the lowest score was selected as 

the candidate dendrite for that spine (Figure 39). 

A training sample of 200 of these pairs of spine reconstructions and candidate dendrites was 

created. Within that training sample a threshold dpd* = 250 nm correctly split the training set into 

dendrites with their attached spines and spine annotations whose dendrite is not part of the set of 

497 annotated dendrites, which therefore play no role in the connectome. An expert annotator then 

evaluated the performance of this classifier on a test set and found only one error (21 correctly 

attached, 1 wrong attachment, 178 correctly unattached). 

Using this algorithm, the connectome of the 32 axons and 497 dendrites was created (Figure 40, 

Figure 41). 

 
Figure 41: 3D display of resulting connectome. Dendrites in turquois, axons in yellow. Synapses (n = 104) marked as 

spheres, excitatory synapses violet and inhibitory synapses red. Reprinted by permission from Macmillan Publishers 

Ltd: Nature Methods, (Boergens et al., 2017), copyright 2017 
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2.2.8 Connectome strategies 
 

With the connectome assembled, it was possible to investigate whether the initially used axon-first 

synapse annotation strategy was optimal (and more generally, for which densities of axons and 

dendrites this is the right strategy). The empirical measurements for axon synapse annotation and 

spine reconstruction speed was used and a dendrite-based synapse detection speed of 11.1 h/mm 

was assumed (including spine annotation and reconstruction). Additionally, a sparse and dense 

regime can be distinguished (as discussed above, a sparse regime is where parts of the synapse 

annotation can be omitted because there is no suitable synaptic partner close-by). In Figure 42 it is 

outlined for which density of axons and dendrites an axon-first and a dendrite-first strategy is faster 

and which densities lead to a sparse regime.  

 
Figure 42: Ratio of connectome annotation time spent on synapse annotation (including spine reconstruction) 

compared to neurite reconstruction. The denser the reconstructed neurites fill the volume, the more time has to be 

spent on synapse annotation. The pink line shows the threshold below which it is more efficient to use the axons as a 

template to annotate synapses, above the line a dendrite-first strategy is more efficient. The dashed lines show the 

threshold below which not all stretches of template neurite have to be reconstructed because for some template 

neurite stretches the local surround contains no available partner neurites. The circle marks the situation for the local 

connectome from Figure 40, Figure 41. The cross marks the situation for a hypothetical L2/3-L4 cortical connectome as 

shown in the inset in Figure 43. The arrow in the color bar shows the ratio of time during the creation of the local 

connectome that was used for synapse annotation. Reprinted by permission from Macmillan Publishers Ltd: Nature 

Methods, (Boergens et al., 2017), copyright 2017 

 

As it can be seen, the decision to use an axon-first strategy for the 497 dendrites and 32 axons was 

correct (dendrites with redundancy 3, axons with redundancy 6). For a larger hypothetical 

annotation project consisting of 300 L2/3 cortical pyramidal cells (dendrites) and 100 L4 cortical 

spiny stellate cell axons (inset in Figure 43) the axon-first strategy is faster, too. That project is sparse 
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in both senses (not all dendrites have reconstructed axons close by as presynaptic partners and not 

all axons have dendrites close by as postsynaptic partners). What both the 497 dendrite-32-axon 

project and this have in common is that only a small fraction of the work load is spent on the 

synapse annotation (Figure 43). This means that the improvements in axon and dendrite 

reconstruction speed as reported here (1.5 and 2.1 mm/h respectively) are still valid even if synapse 

annotation time is taken into account. 

 
Figure 43: Time comparison of relative reconstruction effort for the ‘local’ connectome (Figure 40, Figure 41) and for a 

hypothetical connectome of 300 L2/3 pyramidal cell dendrites and 100 L4 cortical axons. Shown in turquois is the time 

consumption for dendrites, in pink for axons. The time demand for synapses is split up into synapse detection (crimson) 

and spine reconstruction (black). Reprinted by permission from Macmillan Publishers Ltd: Nature Methods, (Boergens 

et al., 2017), copyright 2017 
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2.3 Analysis of a Drosophila lobula plate SBEM dataset 

2.3.1 Stitching and alignment 
 

A protocol to stain Drosophila optic lobe for 3D EM was developed and a SBEM dataset was acquired 

by Ch. Kapfer containing the complete lobula plate, large parts of the lobula and a long stretch of 

tract medial of the lobula plate. At the time of the final stitching and alignment, this Drosophila 

lobula plate dataset was the biggest SBEM dataset that had so far been recorded (160 x 200 x 182 

µm³ at a resolution of 11 x 11 x25 nm³), a size which only recently has been surpassed (compare 

2.4.5 for efforts in mouse barrel cortex). To achieve such dataset dimensions, massive tiling of the 

field of view was employed, mostly in a 7 x 11 images grid (see Table 3, page 93). This meant that 

afterwards over half a million images had to be stitched and aligned. While the techniques outlined 

in 1.13 could be used for this effort, additional changes were necessary due to the larger and more 

complicated layout of the stack. 

2.3.1.1 Stack layout 
 

The stack was recorded cutting from lateral to medial, starting about 24 µm laterally from the onset 

of the lobula plate. In this cutting plane, the lobula was already present. The onset of the lobula 

plate and the border line between lobula and lobula plate could be easily distinguished by a zone 

with wider processes and tracheae (Figure 44). Due to the specific anatomic nature of the sample, it 

was necessary to change the grid layout of the tiling motion several times during stack acquisition. 

This had to be compensated for by the alignment script (see 3.2.3) 

2.3.1.2 Epoxy correction 
 

The structure of lobula and lobula plate was surrounded by a layer of somata, which in turn was 

surrounded by epoxy (see Figure 44). Because the epoxy had a very low conductivity, strong charging 

effects could be seen. Furthermore, the epoxy had no intrinsic structure that could be imaged with a 

SBEM setup. In those cases the alignment algorithm could not make a meaningful approximation as 

to what should have been the correct stitching. Therefore these regions were detected and 

separated from the rest of the alignment (3.2.3). 
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Figure 44: Lateral view onto Drosophila lobula (anterior, right) and lobula plate (posterior, left), slice 1660. The plane 

has been stitched by combining 7 x 11 single images. The lobula and lobula plate are surrounded by a layer of somata, 

which in turn is surrounded by epoxy. The epoxy has very little structure that the stitching algorithm can analyze. 

Therefore epoxy stitching is not gapless, but due to decoupled optimization of neuropil and epoxy stitching the main 

structure is unperturbed.  

 

2.3.1.3 Outlier detection 
 

As described in chapter 3.2, the algorithm performs best if the shift detection receives cut-outs that 

are already well pre-aligned. Ideally the cut-out is selected in a way that the mean detected shift in 

the cut-outs is zero. Because the motor position jitter was small for this experiment, it was possible 

to pre-align images to a precision better than 200 nm. In the cortex stacks, the equivalent procedure 

made complete failures of the shift detection so rare that all remaining failures could be inspected 

manually (see 3.2.1). In this lobula plate dataset, there were two challenges to this approach: Firstly, 

the number of images was much higher. Even the larger one of the two cortex datasets only had a 

tenth of the images of this dataset - although the single images had a wider field of view. Secondly, 

contrast of the recorded tissue was not as good as for the cortex datasets, probably due to the 

challenges of staining fly nervous tissue in a way that is compatible with SBEM requirements 

(compare 1.4). Therefore, after a run where all cut-out positions had been optimized, still more than 

50.000 shift value residual errors were more than 10 pixels. It was considered unfeasible to inspect 
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all problematic spots manually. Instead, a heuristic was defined that detected unreliable shift 

calculations and reduced the weight of that measurement in the least square relaxation (3.2.3). 

These heuristics increased the alignment quality so that annotation was possible. A remaining issue 

was the set of very thin processes that connect the main branch of the LPTCs with their somata. 

Here the use of expert annotators was necessary to compensate for a remaining jitter in the 

alignment. 

2.3.1.4 Mixing of alignment and annotation 
 

An initial run of the alignment had been done before the acquisition of the stack had terminated. 

Due to the long duration of the stack acquisition it was deemed desirable to start with the 

annotation of cells with the data from the initial run. A challenge with this approach was that the 

least-square relaxation finds a global optimum and integrating the additional information of the later 

slice layers would move the position of all images. Therefore the results of the initial run were stored 

and were compared with the results from the final run that had included all slices. 

This allowed creating an algorithm that assigned a voxel coordinate in the new output dataset to 

every voxel coordinate in the preliminary dataset. After the release of the final output dataset to all 

annotators, all skeletons that had been reconstructed in the first dataset were moved into this new 

coordinate system and no annotation effort was lost. 

2.3.2 Annotation of lobula plate tangential cells 

2.3.2.1 Explorative seeding by diameter 
 

The first step to reconstructe cells in a 3D EM dataset is defining seeds from which the tracing can 

start. Processes of tangential cells in the lobula plate have diameters that exceed the diameters of 

other processes in the region. Therefore processes were selected from the lobula plate that had big 

diameters and annotators were asked to reconstruct the full trees of those processes. With this 

method, 3 cells were identified that corresponded to morphologies associated with HS neurons 

(Figure 45, left panel) and 3 cells were identified that corresponded to VS neurons (Figure 45, center 

panel). While this showed that the technique was viable, the large number of missed branches made 

it clear that one annotator per skeleton was not enough and redundant annotations would have to 

be employed (see 1.7). Furthermore it became apparent that to facility comparison to light-

microscopic images (e.g. (Scott et al., 2002)) diameter information would be helpful in the skeleton 

reconstructions. 
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Therefore, a new annotation mode was developed, which used a feature that only KNOSSOS offered 

at that time: For each node, the annotator could set the diameter of the node freely. The skeleton of 

one VS cell was annotated redundantly (n=3) and a consensus skeleton was created from these 

multiple annotations. Then every 4th node along the branches was marked and a specifically trained 

annotator changed the diameters of the marked nodes so that they fit into the processes. It was 

ensured that all nodes around branch points were diameter-annotated, even if that locally broke the 

every-4th-node pattern. If the cross-section of the process was very anisotropic, the annotator was 

asked to aim for an equivalence of area. Then, a spline algorithm was used to interpolate the 

diameter between the marked nodes. The tree could then be converted into a HOC file and 

rendered in Amira (Figure 45, right panel). 

 

 
Figure 45: Non-redundant reconstructions of 3 HS and VS cells (left and center panel, respectively). Volume 

reconstruction of VS cell (right panel) While many small branches have been missed in the non-redundant 

reconstructions, the overall morphology can be recognized. To increase ease of comparison with existing light-

microscopical images, the diameters of nodes were reconstructed (exemplified for a VS cell, right panel). From this a 

rendering of a simplified volume model was created (scale bar 20 µm) 

 

2.3.2.2 Transition of annotation effort to webKnossos 
 

The first run of the alignment and stitching algorithm had created an output dataset that would fit 

onto a hard drive. Therefore it was possible to use KNOSSOS to distribute the dataset to all 

annotators. The second and final run of the dataset output was larger than 2.1 TB (compare 2.3.1.4) 

and would not fit on the hard drives that were deployed. Therefore this was considered an ideal use 
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case for the newly developed online annotation tool webKnossos (chapter 2.2). After implementing 

an extension that allowed to diameter-annotate nodes, it offered a much more convenient 

annotation environment, with automatic task distribution to annotators and remote dataset 

delivery. 

2.3.2.3 Complete and bundle-based reconstruction 
 

After the trees had been converted to the coordinate system of the final dataset (see 2.3.1.4), the 

skeletons could now be seen in a context where the bundle was present that carries processes from 

the LPTCs antero-medially. Therefore, bundle locations were included in the new seeding strategy. 

To make sure that all large cells would be included, in 5 layers in the dataset (88 µm, 95 µm, 106 µm, 

147 µm and 175 µm from the lateral end of the datasets) all processes present that had an increased 

diameter (first four planes) or were part of this bundle (two last planes) were marked for 

reconstruction. Processes were considered to have an increased diameter when they were still 

visible after a subsampling of the dataset by a factor of 16. All in all, 628 seeds were generated this 

way. This meant many annotations would be traced redundantly. As outlined in 2.3.2.1, this 

redundancy was desired - and due to the large number of available annotators not a problem. After 

the annotation was successfully completed, expert annotators created a library of all the cells thus 

reconstructed, joining redundantly-seeded trees and building consensus skeletons. This resulted in a 

set of 43 cells, which were then diameter-annotated. To increase volume quality, every node was 

then reannotated with diameter information. 

2.3.2.4 The set of HS neurons 
 

With this set of volume-reconstructed neurons, it was possible to draw analogies to the known 

horizontal cells in Drosophila (see Figure 5). A set of three cells was identified that corresponded to 

the known HSN, HSE and HSS cell (Figure 46). As can be seen, even at 4-5 fold redundancy, the 

annotators struggled with finding some smaller branches of the cell, probably due to low dataset 

contrast. In the top view of the reconstruction, the outlines of the lobula are marked in red, 

highlighting how the HS system cells branch in the most anterior layer of the lobula plate. 
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Figure 46: Volume rendering of redundant annotations of HS cells in posterior (left panel) and dorsal view (right panel). With 

redundant annotation and annotation of the projecting tract, morphologies of HSN, HSE and HSS can be seen more clearly. 

Outline of the lobula (red) shows stratification of HS cells close to lobula (most anterior layer of the lobula plate). The HS cells 

were contained in their entirety within the dataset, with no external projections that could not be reconstructed. Scale bar 20 

µm 

 

2.3.2.5 The set of VS neurons 
 

The general structure of VS cells was already known ((Scott et al., 2002), Figure 6), it was also 

possible to identify the equivalent cells in the EM dataset (Figure 47). To make sure that identified 

structures were not projections from other regions of the brain, for the cells also soma 

reconstruction were attempted. The somata were densely embedded in the layer of somata around 

the lobula plate (right side in Figure 44) and were only connected by very thin processes with the 

rest of the cell. Because of alignment problems in this region (compare 2.3.1.3), this reconstruction 

could only be done by expert annotators. It was done separately and the annotations were joined 

afterwards.  

Furthermore, there were three additional cells that were morphologically very similar to VS1-6 

(Figure 48). If those were indeed VS cells, this would mean that the Gal4-3A driver line used in (Scott 

et al., 2002; Raghu et al., 2007) does not capture all VS cells. However, for one of them no soma 

could be identified so far. 
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Figure 47: Volume rendering of redundant annotations of VS cells in overlay (left) and single view (right). 6 candidates for 

VS cells were reconstructed, all redundantly by 4-5 annotators. Then, the diameter of all nodes was adapted to match the 

diameter of the neurite at the position of the node. Expert annotators then identified and reconstructed the somata and 

attached them to their respective cells. Left: scale bar 50 µm. Right: VS1-VS2 top row, V3-V4 center row, VS5-VS6 bottom 

row, size reduced 4x 

 

 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

 

Figure 48: Overlay of further VS-like cells with similar VS cells. Three VS-like cells were identified. The VS-like cells 

shown together with similar VS cells. They were identified as VS-like cells because their neurites ran in the same bundle 

as the medial part of the VS cells, because they were contained within the dataset and (optionally) because their soma 

could be identified in close proximity of the somata of the VS cells (scale bar 50µm). 
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2.3.2.6 Candidates for CH cells 
 

While several bodies of work were unable to identify CH cells in Drosophila (Scott et al., 2002; Raghu 

et al., 2007), this does not mean that they do not exist: The expression system used (Gal4-3A) might 

just not include them. Indeed, three candidates were found that might correspond to DCH or VCH. 

They roughly have the right morphology and form their dendrites in the right layer (Figure 49). In 

Drosophila more large somata that could belong to LPTCs have been identified than the number of 

cells that were visible in the Gal4-3A line (19 versus 9, A. Borst, personal communication). Therefore 

additional cells should exist and these CH-like cells are plausible candidates. 

Together with the morphologies presented above, this highlights the possibilities of the dataset as 

well as the challenges: While correspondence of identified cells to classes identified in earlier work is 

not easy and cells need multiple annotations to yield high quality skeletons, the perspective to 

identify all lobula plate tangential cells in an unbiased fashion is exciting. 

 

                                                                                                                                                                                                                                                                                                                                                         

Figure 49: Known HS cells (left), candidates for CH cells (center) and overlay (right): while CH cells have not yet been 

conclusively described in Drosophila, many studies were able to identify them in Calliphora and other blow flies, e.g. 

(Hausen, 1976; Eckert and Dvorak, 1983; Egelhaaf et al., 1993; Gauck et al., 1997). Scale bar 50 µm 
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2.4 Continuous imaging 

2.4.1 Tiling and continuous imaging 
 

The easiest way to increase the field of view with a mechanical stage is called tiling. For this, images 

are taken that are smaller than the overall size of the region of interest. After one image has been 

acquired, the sample is moved mechanically so that the microscope is now centered on a region next 

to the one originally imaged. The movement is so configured that there is a small region of overlap 

between the two images that facilitates stitching (compare 3.2). This is continued in a grid-like 

fashion, until the whole region of interest is scanned (Figure 50, left panel).  

                         
Figure 50: Comparison of alternative methods for field of view extension: Tiling (left) and continuous imaging (right). 

Because the scanning electron microscope has a limited field of view, for large datasets the size of the overall field of 

view is extended by mechanical means. Using tiling, image acquisition in interspersed with abrupt movements to a new 

position (1, 2 ,3 ,4). This movement causes sample vibration and therefore necessitates long settling times (several 

seconds). For continuous imaging, the line feed of the scanning electron microscope is replaced with a smooth and 

continuous mechanical movement. This largely removes the need for tiling in one dimension. 

 

This process limits the possible speed: The imaging beam is shut off during movement. Therefore the 

movement has to be fast. This means that substantial accelerating and decelerating forces are 

applied. This problem is especially acute in diamond-knife SBEM because the stage includes the 

cutting apparatus and therefore is heavy. For the stacks in chapter 2.1.1 the wait times had to be 

increased to several seconds between end of movement and start of image acquisition to prevent 

image artifacts. 
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Here a continuous imaging technique for scanning electron microscopy is presented. Continuous 

imaging moves the sample during imaging. This is routinely done for atomic force microscopy (Binnig 

et al., 1986), where the sample is moved beneath the cantilever. All scanning is done by a piezo stack 

mounted under the sample. A solution like this would not work for scanning electron microscopy 

because the line scanning of the scanning electron microscope is too fast: Even in a 1 mm sample, a 

row at 10 MHz would only take 10 ms (Equation 5).  

Equation 5 𝑡𝑙𝑙𝑙𝑙 =
𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑠𝑠

𝑓𝑝𝑝𝑝𝑝𝑝𝑤𝑤𝑤𝑤ℎ𝑝𝑝𝑝𝑝𝑝
 

 

The second dimension, the line feed, is much slower and therefore a continuous imaging solution 

was implemented that operated only in that dimension. This created a setting where long sweeps of 

the sample were imaged without interruption, and these long sweeps were put together by 

conventional tiling in the other dimension (Figure 50, right panel). The sweeping movement has to 

be very smooth to not to disturb the imaging and a tight integration between the movement and 

imaging software is necessary. 

2.4.2 Piezo setup 
 

Piezo stacks are comprised of piezo crystals that extend and compress driven by piezoelectricity. 

Therefore they do not have any discontinuity in their movement. Unfortunately, the biggest piezo 

stacks that were available to be fitted inside the chamber of the microscope had a range of 200µm. 

Therefore the piezo action was levered to extend their range. 

A second concern was the stiffness of the movement system. The resonance frequency of a 

mechanical system like this can be approximated as the resonance frequency of a spring pendulum 

(Equation 6), where m is the mass of the stage and D is the stiffness of the motion system. 

Equation 6 𝑓𝑠𝑠𝑠𝑠𝑠𝑠 =
1

2𝜋
�𝐷
𝑚

 

 

To prevent image artifacts, a stiff system is desirable. The stiffness depends on the levering, and the 

final stiffness is decreased by the levering factor according to Equation 7. 

Equation 7 𝐷𝑓𝑓𝑓𝑓𝑓 =
1

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2
𝐷𝑟𝑟𝑟 

 

Experimentally, a compromise between stiffness and range was found (see 3.4) that provided 
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sufficient stiffness and a range of 350µm. This arrangement was built in a symmetrical fashion so 

that both axes were equipped with a piezo. The second axis was used to move the sample laterally 

between acquisition stripes (see Figure 50). To extend the field of view, both piezo actors were 

combined with geared motors (see Figure 62).  

 

2.4.3 Scanning pattern 
 

Combining the piezo stack and motor movement allowed fast acquisition over a large region of 

interest. The piezo system was used to create the stripes for the continuous imaging paradigm and 

to move laterally between the stripes. For stacks larger than 350 µm x 350 µm, the motors were 

used to split up the field of view into motor tiles (e.g. for a 600 µm x 600 µm whole barrel dataset 

2 x 2 motor tiles). Motor movements did only add a couple of seconds to the overall per-slice time 

and were therefore considered acceptable. 

A movement pattern was defined which the piezo actors would execute during imaging. The speed 

the stage has to move at during acquisition is given by Equation 8. Abruptly commanding the piezo 

actor to move at that speed would create forces that exceed the stiffness of the apparatus and 

therefore lead to shaking and imaging artifacts. Therefore no abrupt changes in movement speed 

were implemented. The final movement speed of the strip was reached by a linear ramp-up of speed 

and the scanning started as soon as the stage had reached the necessary speed (Equation 8)  

Equation 8 𝑣𝑠𝑠𝑠𝑠𝑠 =
ℎ𝑒𝑒𝑒ℎ𝑡𝑝𝑝𝑝𝑝𝑝

𝑡𝑙𝑙𝑙𝑙
 

 

After the first strip had been acquired, the direction of strip movement was reversed so that the 

sample moved in the other direction, the absolute speed being the same. Furthermore, the stage 

was moved to the side. This was not done abruptly, but with a ramp-up and –down of the lateral 

speed. When these two processes were combined, the movement of the sample was semi-circular 

and without abrupt forces. Doing this over several strips resulted in a snake-like pattern (Figure 51).  
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Figure 51: Overall scanning pattern for large field of view stack acquisition, combining tiling and continuous imaging. 

This combination allowed for nearly unlimited fields of view acquired at high speed. Because the piezo system was built 

symmetrically in x and y, the piezo stack operating in the axis orthogonal to the continuous imaging was used to 

actuate the tiling for several stripes next to each other, thus saving about 50% of tiling time. Four of these patterns are 

combined to image the whole region of interest in the barrel dataset. 

 

2.4.4 Autofocus for large samples 
 

The electron microscope has a focal depth of several micrometers. While this was sufficient to allow 

for a global focus point for the whole surface of smaller sample (see 2.1.1), a sample that is several 

hundred micrometers wide becomes very sensitive to tilts of the cutting and movement apparatus. 

Therefore the autofocus that was described in 3.1.2 was split up to operate on four separate regions, 

searching for an independent focus point in all four motor tiles. This had the added benefit that the 

quality of the autofocus could be monitored by testing how stable these four focus points were in 

relation to each other (Because the difference between them is driven by stable geometric 

circumstances, the relative distance would not change even if the overall focus distance drifted). 

2.4.5 Full barrel stack 

2.4.5.1 Sample preparation 
 

As discussed in 1.5 and 3.1, the process of preparing a sample for SBEM involves the infiltration of 

heavy metal compounds into the sample. For the samples for chapter 2.1 this was done as described 

in (Briggman et al., 2011), combining previously developed protocols (Seligman et al., 1966; 

Karnovsky, 1971; Walton, 1979). To assess placement of the small samples in barrel cortex, 

cytochrome oxidase staining was applied to the tissue (Figure 9). The cytochrome oxidase stain was 

applied to the same tissue position contralaterally. This was sufficiently accurate to confirm 
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placement in the barrel cortex but not to confirm placement of the stacks within a single barrel. 

Therefore a method was developed that allowed to extract a single barrel, stain it for SBEM and then 

report which barrel it is. 

To create a stack that contained one whole intact barrel, the sample had to be at least 300 µm in 

diameter (if perfectly centered, see Figure 52, left panel). In a first attempt, a circular punch was 

used to extract a sample 1 mm in diameter (see 3.5). For geometric reasons it was certain that this 

sample contained at least one complete barrel (Figure 52, left panel).  A post-hoc cytochrome 

oxidase stain proved successful placement (Figure 52, right panel) in the barrel cortex. 

  
Figure 52 Left: Barrel field with 1 mm and 500 µm punch diameter (left panel), adapted from (Jan et al., 2008), 

permission granted through Creative Commons Attribution License 4.0. Right: Cytochrome oxidase stain of slice with 1 

mm punch executed.  

With a 1 mm punch it was certain that the sample would contain an intact barrel. With a 500 µm sample, the success 

rate was found to be much lower. Stereotactic targeting of a punch reliably created samples in barrel cortex, but 

cytochrome oxidase staining quality impairment due to traumatic punching was visible. 

 

When attempting stains of 1 mm punch samples, the staining results were unsatisfying (Figure 53, 

left panel). The heavy metal staining agents did not fully penetrate the sample, resulting in an 

intermediate region with excess stain and ultrastructural damage and a center region with too little 

stain. It was found that without changing the staining protocol, 500 x 500 x 500 µm³ was the 

maximum block size to allow homogeneous staining. Reasons for this behavior and remedies have in 

the meantime been described by (Hua et al., 2015). Therefore using a different kind of punch was 

attempted, which had a diameter of only 500 µm (see 3.5). The success rate with this kind of punch 

was very low. The punches had substantial wall thickness which caused tensile stress on the tissue, a 

problem that was worsened by the small diameter of the punch. The tissue was prone to tearing 

instead of getting cut (see Figure 53, right panel). The low yield rate was exacerbated by the fact that 

the probability of hitting an intact barrel with a circle of 500 µm was low; the few mechanically 

successful sample extractions didn’t contain a whole barrel (see Figure 52, left panel). Furthermore, 
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the traumatic force exerted by the punch created a problem: the punch caused ultrastructural 

damage in the outer layers of the sample (visible in the EM) and a zone around the punch was 

unsuitable for cytochrome oxidase staining, making it hard to judge correct positioning (compare 

Figure 52, right panel, for blackening effect). 

            
Figure 53 Left: Example of a center of an EM-stained sample generated with a 1 mm punch. Right: Suggested 

explanation for low success rate of sample extraction with 500 µm punch.  

With the EM stain employed for this study, it was found that homogeneous staining of 1 mm punch samples was not 

possible. The outer region of the samples was stained correctly, but the center not sufficiently and an intermediate 

region contained excessive staining, while also showing tissue damage (left panel). On the other hand, extraction 

success rate was very low for 500 µm punches. The walls of the punch were very thick, quickly extending to 70 µm 

behind the cutting edge. This caused tensile stress which ripped the tissue apart before being cut (right panel). 

 

It therefore became clear that a fundamentally new approach was needed. A stereotactical 

apparatus was constructed that employed a mounted scalpel blade to set a small cut at a defined 

position. All further cuts were done in a vibratome (see 3.5), because vibratome cuts did not reduce 

the quality of cytochrome oxidase staining even in close proximity to the cut (see Figure 54). After 

aligning the vibratome to the orientation cut that was done in the stereotactical apparatus, a 500µm 

thick hemi-slice of barrel cortex was extracted by a series of rectangular cuts. This hemi-slice was 

expected to terminate at the medial end of barrel cortex (Figure 54). The remaining parts of barrel 

cortex were then sliced tangentially (parallel to pia) into 75 µm thick slices and a cytochrome oxidase 

stain was performed on them. 

Due to the gentle nature of the vibratome cuts the cytochrome oxidase stain had sufficient quality in 

the vicinity of the region of interest and this could be used to target the sample directly onto a 

barrel: After the results from the cytochrome oxidase stain were available, it was decided how much 

tissue had to be removed on the medial side of the slice (in the example of Figure 54: 0 µm). The 
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medial piece was (if necessary) cut off with the vibratome, followed by another cut 500 µm more 

laterally. Lastly, the sample was rotated and two vibratome cuts were made at a depth of 150 µm 

and 650 µm relative to the pia. This left a cube with an edge length of 500 µm on a side, whose 

surfaces all had been cut with the vibratome. 

This technique allowed a yield of about one targeted barrel sample per 5 animals. One of the 

successful sample extractions (Figure 54) was used for the stack described in 2.4.5.2. 

 
Figure 54: Overlay of cytochrome oxidase stain of tangential slice of barrel cortex and posterior-lateral region, with 

manual barrel annotation and position of final barrel sample. 

With the vibratome method, (500 µm)³ samples could be generated that contained an intact non-border barrel sample. 

Here a 70 µm tangential slice stained with cytochrome oxidase is shown, which was created after the coronal 500 µm 

thick hemi-slice was removed. The posterior-lateral block was temporarily removed to gain access to the hemi-slice and 

the corresponding cytochrome oxidase images were reassembled. In this specific case, the most medial part of the 

hemi-slice was selected as the final sample, but this can be adjusted depending on the results of the cytochrome 

oxidase barrel pattern. 

 

2.4.5.2 Stack acquisition 
 

Using the methods for continuous imaging, a stack was recorded that contained the layer 4 of a 

barrel. The stack was acquired at an average data rate of 6.3 MVx/s. This was a 20-fold speed 

improvement compared to the retina stacks recorded (Briggman et al., 2011) and was only possible 

due to the reduction in tiling time with continuous imaging (Figure 55). 

During stack acquisition, some issues were observed that limit reconstructability of the thinnest 

processes in the dataset (see Figure 56 for an overview and 3.5 for a detailed description).  
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Figure 55: Comparison of time contributions to acquire a single 300 x 300 µm² slice in a SBEM setup, if the imaging 

speed is 10 MHz and continuous imaging is employed.  

For the layer 4 mouse barrel cortex stack, the continuous imaging can be used to dramatically reduce acquisition time. 

The tiling time had been limiting before, reducing the data rate from a raw 10 MHz imaging rate to an effective 

acquisition rate of 880 kHz. With continuous imaging employed, imaging time was restored at the dominant factor, but 

at a faster overall level, allowing for an effective acquisition speed of 6.3 MHz  

 

Having finished the stack acquisition (after a total duration of 48 days), it was demonstrated that the 

newly developed method for barrel-centered sample extraction (see 2.4.5.1) indeed produced 

samples that contain a whole layer 4 of a barrel. To do this, a soma map of the dataset was created. 

It is known that somata density in layer 4 marks the barrels in barrel cortex (Meyer et al., 2010b). 

The quality in the dataset was sufficient everywhere to detect somata manually. 

     
Figure 56 Left: 3D electron microscopy stack containing a whole barrel. Right: Tangential soma density map of dataset shown 

on the left (plus region imaged at low resolution). 

The dataset includes the entire layer 4 and parts of layer 2/3 and layer 5. The cutting thickness for the first 200 µm was set to 

28 nm and then was reduced to 45 nm for another 60 µm. The rest of the sample was only cut to allow for the creation of a 

soma map. This soma map was created by measuring soma density in layer 4 and shows the successful targeting of the sample 

onto a barrel. 
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For automatic detection, at first the position of the layer 4 along the radial axis of the dataset was 

estimated. This was done by marking the sharp drop in soma density at the lower end of the layer 4 

(Meyer et al., 2010b) and the transition between the larger somata of layer 2/3 pyramidal cells and 

the smaller spiny stellate cells of layer 4. Then a heuristic was developed to measure soma density 

automatically in the thus identified layer 4 (see 3.5). This showed the outline of a barrel very 

centrally in the dataset, validating the sampling method (Figure 56, right panel).  

2.4.5.3 Image stitching 
 

The recorded L4 dataset consisted of 6.1 million single images. Assembling them all together is a 

substantial challenge. The translation-only-script used for chapter 2.1 and 2.3 had failures in shift 

detection at about every 1000th image. It is believed that this rate could be reduced with a scale-

invariant feature transform (Lowe, 1999) as the shift detection. Furthermore, a non-rigid approach 

would have more flexibility to counter imaging-induced distortion. Efforts to align this stack with 

such an algorithm are ongoing. 

In the meantime however, a dataset from medial entorhinal cortex was recorded by H. Schmidt 

using the continuous-imaging technique which was then used to discover a novel mechanism by 

which synapses are sorted along axons of excitatory cells (Schmidt et al., accepted). The size of the 

dataset was (424x429x274) μm³, which highlights the increase in dataset volume that continuous 

imaging makes possible. 
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3 Methods 

3.1 Mouse barrel cortex analysis methods 

3.1.1 Sample preparation 
 

Adult wild-type (C57BL/6) mice were used. They were transcardially perfused at postnatal 28 under 

isoflurane inhalation anesthesia with 2.5% PFA, 1.25% glutaraldehyde and 0.08M cacodylate buffer 

at pH 7.4. All procedures were approved by the local animal care and use committee. 

The fixated brains were removed from the skull after 48 h of fixation and sliced coronally to a 

thickness of 1 mm. Two samples were manually taken from the 6th most frontal slice in the region, 

known to be barrel cortex from prior experiments. The samples were extracted with a 1 mm biopsy 

punch (Integra Miltex, Plainsboro, NJ, United States) – a hollow cylinder with a sharp front edge. 

Contralaterally, the 6th most frontal slice was further sliced coronally into 70 µm sub-slices and a 

cytochrome oxidase staining was applied to them. With the help of an overlay, this confirmed that 

the samples were indeed from layer 4 and layer 2/3 of barrel cortex (Figure 57). 

Afterwards the tissue was stained with a reduced osmium tetroxide solution (2% OsO4, 0.15 M 

cacodylate buffer, 2.5% KFeCN) followed by a 1% thiocarbohydrazide step and a 2% OsO4 step for 

amplification (Briggman et al., 2011). After an overnight wash, the sample was further incubated 

with 1.5% uranyl acetate solution and 0.02 M lead (II) nitrate. The sample was dehydrated with 

propylenoxide and ethanol and embedded in Epon Hard (Serva Electrophorersis GmbH, Heidelberg, 

Germany) and hardened for 48 h at 60°C. This protocol did not allow for a homogeneous staining of 

the whole sample due to penetration issues. For both samples an imaging region was selected that 

was at the border of the sample. 

Both samples were placed on aluminum stubs and were milled with a trimmer for EM preparation 

(EM TRIM2, Leica Microsystems, Wetzlar, Germany) so that all four sides of the sample had tissue 

exposed. The wall facing the direction from which the knife would approach and the contralateral 

side were smoothed with an ultramicrotome (UC7, Leica Microsystems, Wetzlar, Germany). The 

sides of the samples were covered with gold in a sputter coater (EM MED020, Leica Microsystems, 

Wetzlar, Germany). For imaging, the samples were placed separately into a custom microtome 

(Denk and Horstmann, 2004; Briggman et al., 2011) within a scanning electron microscope 

(Magellan, FEI Company, Hillsboro, OR, United States). The samples were oriented so that the radial 

axis was lying within the cutting plane.  
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Figure 57: Overlay of coronal slice of Figure 9 with samples extracted and cytochrome oxidase stain of contralateral 

slice. After the samples were extracted from the coronal slice with a punch (diameter 1 mm), a cytochrome oxidase 

stain was performed on 70 µm sub-slices of the equivalent slice from the other hemisphere. The overlay confirmed 

placement in barrel cortex (scale bar 1 mm) 

 

In the layer 4 sample, the transition between layer 4 and layer 5A was identified by the sudden drop 

in soma density between the two layers (Meyer et al., 2010a). In the layer 2/3 sample, the transition 

between layer 1 and layer 2 was clear due to the very low soma density in layer 1. The region of 

interest was chosen so that it was situated in the transitory region between layer 2 and layer 3 using 

length approximations from existing literature (Lefort et al., 2009). Position and orientation of the 

transition zones agreed with the results from the cytochrome oxidase stain. 

3.1.2 Electron microscopy 
 

A region of 96 x 64 µm² within layer 4 was selected for imaging and a scanning pattern was 

established consisting of a grid of 3 by 3 separate image tiles with a pixel size of 11.24 nm. 3400 

slices were cut within that region with a set thickness of 25 nm (see 3.1.3). The imaging was done at 

an acquisition rate of 10 MHz. Combined with overhead times for cutting and tiling, the effective 

data rate was 0.9 MB/s (compare 1.12.4). 

A region of 99 x 66 µm² within the layer 2/3 sample was chosen for imaging. The pixel size was set to 

12 nm and 7776 slices were cut. All the other parameters were equivalent to the settings for the 

layer 4 dataset. 

The Magellan microscope (FEI Company, Hillsboro, OR, United States) was run with a fixed beam 

current of 3.2 nA, a landing energy of 2.5 kV and with the immersion field activated. An autofocus 

algorithm that had already been used for the (Briggman et al., 2011) study (a simpler version of the 

algorithm described in (Binding et al., 2013)) was customized to the Magellan microscope by 

adjusting gain parameters and adapting the calculated stigmation axes to the one present in the 
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microscope. Overall, the acquisition of the layer 4 dataset took 108 h and the acquisition of the layer 

2/3 dataset 247 h. 

3.1.3 Cutting thickness 
 

During stack acquisition, the cutting thickness was set to 25 nm. To check reliability of this setting, 

the cutting thickness was measured by manual inspection of an x-z-reslice, which yielded an 

approximate result of 28 nm. This value was used for dataset display during annotation. As an 

alternative metric, the cutting thickness was reevaluated by measuring the anisotropy of the nuclei 

of 18 randomly selected somata (in the plane orthogonal to the radial axis) and the cutting thickness 

was found to be 26.0 nm ± 0.45 nm. 

3.1.4 Annotation tools 
 

For all manual reconstructions, tools employing the skeleton annotation paradigm were used (1.6.4). 

Some tracings (most prominently the explorative layer 4 reconstructions from 2.1.1) were done 

using the software KNOSSOS (Helmstaedter et al., 2011), but the larger part of the reconstruction 

was done using a newly developed application called webKnossos (see 2.2). Briefly, KNOSSOS is a 

standalone application that necessitates that the annotators have a hard drive with the datasets 

available, while webKnossos is an online annotation tool that allows the data to be delivered over 

the internet. With this, larger annotator crowds can be put into action more quickly. Also of 

importance were the organizational features of webKnossos. Projects were created for the different 

questions that were investigated and the tasks belonging to these projects were automatically 

assigned to annotators. In both KNOSSOS and webKnossos, the adding of comments to nodes was 

used for synapse annotation. The newly developed merge-mode (3.1.12) was used to create the 

high-quality volumes in 2.1. 

3.1.5 Traceability 
 

For the bias-free traceability analysis (see 2.1.2.1), 90 pre-seeds were randomly chosen in the 

dataset. 30 seeds each were then surrounded by a flat bounding box (10 x 10 µm²) lying in the x-y, y-

z and x-z plane, respectively. Annotators marked all the processes crossing these 2-dimensional 

bounding boxes. From this pool of processes, 90 were randomly chosen (out of 3198). Of those, 22 

glial processes were eliminated because they cannot be efficiently skeleton-reconstructed. The 

remaining 68 processes were each assigned to 7 different annotators. These annotators 

reconstructed the processes in a 10 µm³ 3D bounding box. The resulting trees were fed into the first 

stage of the RESCOP algorithm, using the same set of parameters that was used for the retina study 

(Helmstaedter et al., 2011), except the test radius, which was set to 225 nm instead of 625 nm. The 
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test radius is the R.M.S. distance within which edges of other skeletons had to be in order to count 

as a vote in favor of an edge (see 1.7.1). 

For the manual inspection of the output of the first RESCOP stage, all edges that had a vote 

distribution adjacent to the decision boundary (i.e. changing the vote by one would move the result 

into the other category, see (Helmstaedter et al., 2011)) were manually inspected. The majority of 

boundary cases were spines of dendrites that were not fully traced into the spine heads. These 

boundary cases would at worst lead to the loss of one synapse and probably none (see 3.1.12) and 

this was not considered a critical error. Only errors that would cause a break in the main dendritic or 

axonal stem were considered critical and this number was used for the approximation of maximally 

achievable average inter-error distance. 

The second stage of the RESCOP algorithm used the vote distribution of the consensus trees to 

estimate remaining error rates. The assumption was that all edges have a ground-truth probability pe 

of being detected. If this probability was lower than 0.5, the edge was assumed to have a ground 

truth of being not a biological connection in the neuron, if it was larger than 0.5 it connects two 

spots that are in fact part of the same neuron. To calculate how well n annotators would be able to 

reconstruct a given structure from the vote distribution it was estimated how many edges with 

intermediate values of pe existed and how likely the consensus of n annotators would be wrong. The 

resulting value could be mapped for the number of annotators, estimating how many independent 

annotations are necessary to yield a certain mean error-free distance.  

3.1.6 Synapse detection  
 

For the test of manual synapse detection quality (see 2.1.2.2), two annotators traced the same set of 

three axons and compared the trees afterwards to make sure the tracings were without mistakes. At 

one point the two annotators differed and the annotation was corrected. Then a team of 6 

annotators was assembled. They moved along the axon and annotated all vesicle clouds. In a vesicle 

cloud, at least 5 vesicles had to be visible and the putative vesicle cloud had to be in proximity to a 

membrane. In a second step, the annotators marked for each vesicle cloud all the putative 

postsynaptic partners. To be considered postsynaptic partners, the staining in the respective 

membrane had to be more intense and vesicles had to be visible presynaptically that were docked to 

the synaptic membrane. For each of the so identified partners, the annotators were asked to create 

a comment on how confident they were about their judgment on a scale from 0 to 10. This 

information was saved together with the partner annotation. One annotator misunderstood the 

instructions and labeled the confidence on a per vesicle-cloud basis instead. A colleague that helped 

with assembling data but who otherwise was not involved with the study noticed this mistake and 
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was able to instruct the annotator to correct the mistake. Then all the annotations were pooled 

anonymously and it was measured by manual inspection how well they agreed. Only 16 out of 488 

synapses were between confidence level 3 and 7. Every synapse below confidence level 5 was 

rejected. Then the data was de-anonymized and annotators were allowed to discuss their results. 

Upon finding that majority of errors were attention-based, the error rate of manual synapse 

detection was estimated with the second part of the RESCOP algorithm (see 3.1.6). The prior was 

calculated and was used for the estimation of error rate over number of annotators. 

3.1.7 Axon type detection 
 

A dendrite within the layer 4 dataset was chosen and all synapses onto its main branch and its spines 

were annotated. These synapses were used as seeds and all seeded axons were reconstructed. On 

those axons, all synapses (3063 total) were categorized as either spine or shaft synapses. 

Additionally, it was indicated whether the synapse had multiple postsynaptic targets and/or 

mitochondria, but this information was not used further. Then, a custom MATLAB script found all 

possible clusters of n neighboring synapses along an axon. For each of those clusters it was 

measured which percentage of synapses was onto spine heads. In the n=1 case, this yielded the 

percentage of spine vs. shaft synapses, but for bigger n, this measure contained information on how 

consistent an axon targets spines or shafts. This information was normalized for axon length, so that 

long axons would not be overrepresented and plotted in a color-coded fashion over n (see Figure 

16). The information for n=10 was extracted separately and plotted because it was decided that for 

n=10 the distribution was sufficiently bimodal that only a minority of axons would be ambiguous and 

would have to be further annotated after initial type detection.  

3.1.8 Initial segment detection 
 

To detect axon initial segments of layer 2/3 pyramidal cells, layer 4 spiny stellate cells and layer 4 

interneurons, all the processes leaving the respective soma were inspected. The requirement for an 

initial segment was that its first 50µm did not have any further branching, that spine-like protrusions 

were rare (three or less per 50 µm) and that the diameter was relatively constant (less than a factor 

of two in diameter reduction over 50 µm). In all cells that were located sufficiently close to the pia-

side border of the dataset (so that their initial segments could run for 50 µm through the dataset), 

one and only one such process could be identified. If all but one process did contradict the 

requirements, this last process was assumed to be the initial segment even if less than 50 µm of it 

were contained in the dataset. For the layer 4 spiny stellate cells it was permitted that a dendrite 

and an initial segment shared the very proximal part of the process (less than 5 µm). This exception 

was encountered in three cells. The validity of these criteria was further made plausible by the 
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occasional development of an initial segment into a branched and/or myelinated axon at the distal 

end of the initial segment (Layer 2/3: 4 times; layer 4: 18 times) and by the high consistency of their 

orientation - all pyramidal and spiny stellate initial segments were found to leave the cell towards 

the white matter, while the sole layer 4 interneuron initial segment exited towards the pia. 

To discern initial segment synapses from soma synapses, the region of the axon hillock was 

identified where the curvature of the cell membrane was zero (neither the positive curvature of the 

soma nor the negative curvature of the narrowing initial segment). This was considered the border 

line between soma and initial segment. 

3.1.9 Apical dendrite detection 
 

Apical dendrites were detected by 3 independent annotators who marked all big processes traveling 

vertically through the dataset. This initial pool of candidates was then re-inspected and had to 

comply with the following requirements: The apical dendrites had to travel straight through the 

dataset, with a smaller entering diameter on the white matter side than the exiting diameter on the 

pia side. Only a 20% deviation of the direction of the process from the radial axis was deemed 

permissible. The dendrites had to have at least 1 spine every 10 µm. All candidates that were not 

myelinated axons fulfilled this requirement. Only one side branch was allowed, which had to be 

substantial smaller (less than half the diameter of the main branch) and branch off at an angle that 

was consistent with a growing direction towards the pia (not more than 10° angled downwards). 

3.1.10 Inhibitory cell identification 
 

For some cells that had their soma in the dataset the method outlined in 2.1.2.3 was not available 

because the axon of the cell was not sufficiently contained within the dataset. For those a different 

strategy was used to classify them as excitatory or inhibitory: The cell was completely reconstructed 

within the dataset, including all small protrusions. It was observed that cells show variation in how 

spiny their dendrites were. Namely, a subpopulation had a distinct pattern: Their dendrites had 

substantially fewer spines and the necks of those spines were stubby (Harris et al., 1992). Generally, 

dendrites had fewer spines closer to the soma, but the stubbiness was a consistent property per cell 

over regions of high and low spine density. The stubby non-dense spine bearing cells were assumed 

to be inhibitory cells. To classify cells of unknown identity, 20 spines in the most distal dendrites 

(edge of the dataset) were inspected. Spines that could completely and statically be seen in one of 

the three viewports (i.e. without moving the viewport, see 2.2) were classified as stubby. If 4 or 

more of the 20 spines were classified non-stubby, the cell was considered excitatory. 
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3.1.11 Specificity calculations 
 

For the specificity calculations, it was necessary to determine which fraction of synapses of a given 

axon projected onto a target type of structure. The axons were not randomly chosen, but seeded by 

the fact that they innervated one of the sets of investigated target structures. Therefore Bayesian 

methods were developed to include this one seeding synapse in a neutral manner. The axon for 

which the specificity was calculated was assumed to be a member of an ensemble of m axons, all 

with the same properties: Each had n synapses within the dataset and a general predisposition pe to 

form a synapse onto the target structure S. The size of the set of axons (set A) in the ensemble that 

confirmed with the observation of having k synapses onto S could be estimated with a binomial 

distribution (Equation 9). The ensemble would have a given number of synapses onto S (Equation 

10), of which a subset would be from the axons in A (Equation 11). Therefore the probability to 

encounter an axon from A upon analyzing a random synapse onto S (which is what was done in 

these studies) could be expressed as a fraction of the two (Equation 12). 

This can be turned into a Bayesian paradigm: Given a specific prior p(pe), what was the most likely pe 

to explain the encounter? The pencounter(p) for all axons in all three settings (layer 2/3 initial segment, 

layer 4 initial segment, layer 4 apical dendrite) was calculated, using a flat pe prior.  

 

Equation 9 𝑛𝑛𝑛𝐴(𝑚,𝑘,𝑛,𝑝𝑒) = 𝑚�
𝑛
𝑘
�𝑝𝑒𝑘(1− 𝑝𝑒)𝑛−𝑘 

  

Equation 10 𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑎𝑎𝑎_𝑡𝑡_𝑆 = 𝑚 𝑛 𝑝𝑒 

  

Equation 11 𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝐴_𝑡𝑡_𝑆 = 𝑘 𝑛𝑛𝑛𝐴 

  

Equation 12 

𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝐴_𝑜𝑜𝑜𝑜_𝑆

𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑎𝑎𝑎_𝑜𝑜𝑜𝑜_𝑆
=
𝑘 𝑚�𝑛𝑘�𝑝𝑒

𝑘(1− 𝑝𝑒)𝑛−𝑘

𝑚 𝑛 𝑝𝑒

=
𝑘 �𝑛𝑘�𝑝𝑒

𝑘−1(1− 𝑝𝑒)𝑛−𝑘

𝑛
 

 

Furthermore, a generalized best guess was made on what the predisposition of the innervating 

axons was to innervate S by multiplying the posteriors of all axons. It assumed that all the axons 

were following the same pe value (no split in high-specificity and low-specificity axons), the 

probability of which was judged on a case-by-case basis (see 2.1.3.1 and 2.1.3.2). Importantly, 

because the posterior was much broader for axons with few synapses, this inherently gave more 
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weight to axons of which many synapses had been reconstructed. To calculate the margin of error of 

both the local and global posteriors, the smallest interval [pe min, pe max] was chosen within which 67% 

of the probability spectrum was contained. To make statements about the absolute specificity of a 

given innervation type, the axons were compared to a hypothetical randomly innervating axon. Such 

an axon would target all structures in a blind fashion, therefore biasing itself towards structures with 

more wiring in the target region. To calculate the overall wiring length in the dataset, dendrites, 

somata and initial segments were considered viable targets. This was compared to the wiring length 

of the target structure to calculate a fraction of how much an axon should innervate the target 

structure if it were indeed random. The specificity factor was defined as the deviation from that 

random assumption. 

3.1.11.1 Factor for initial segments 
 

To calculate the total wiring length of initial segments of layer 2/3 pyramidal cells in barrel cortex, a 

literature value for the average soma density was used (Meyer et al., 2010b) and combined with the 

average length for initial segments observed in this body of work (50µm). While not all initial 

segments of all somata in the dataset were completely contained within the dataset, this was offset 

by other cells whose somata were not contained in the dataset but whose initial segments were. 

These effects cancelled each other out. 

In the layer 4 dataset the contact detection was done on a reduced set of initial segments: Only the 

initial segments with somata in the dataset were included. The overall length of layer 4 initial 

segment wiring was calculated by summing the length of the initial segments in the library. Both the 

synapse detection and the overall length calculation operated on the same subset of initial segments 

and the effects cancelled each other out. To estimate how large this subset was, the following 

assumptions were made: Of the cells whose somata were in the top 14 µm of the dataset, the whole 

50 µm of initial segment was contained. For the cells in the bottom 50 µm of the dataset, on average 

25 µm of initial segment was contained. Furthermore, of cells whose soma was invisible and less 

than 50µm above the dataset, an average of 25µm of initial segment was contained within the 

dataset. This latter part had not been detected. With that, the percentage of detected initial 

segment length was calculated (Equation 13), which was assumed to be proportional to the number 

of synapses detected. 

Equation 13 
14µ𝑚 × 50µ𝑚 + 50µ𝑚 × 25µ𝑚

14µ𝑚 × 50µ𝑚 + 50µ𝑚 × 25µ𝑚 + 50µ𝑚 × 25µ𝑚
= 0.6094 
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3.1.11.2 Factor for apical dendrites 
 

To calculate the number of apical dendrites in the layer 4 dataset, the number of pyramidal cells in 

layer 5 of mouse barrel cortex (Lefort et al., 2009) was normalized to the area of the dataset in a 

radial projection. Further it was assumed that all apical dendrites ran through the entire height of 

the dataset (64 µm). 

3.1.12 Volume reconstruction and Merge Mode 
 

For the automated contact detection used in 2.1.3.2, skeleton reconstruction was not sufficient 

(compare 1.6.4). The skeletons were combined with a segmentation that was optimized to be over-

segmented (SegEM, (Berning et al., 2015), run 20130516T2040408,3). Because the annotators had 

been instructed to set a node about every 100 nm and the average length of a segment was 

4.56 µm, this created a model of the process that contained almost all the volume of the process, 

which could therefore be used for contact detection between processes. Two segments were 

considered to be in contact when they overlapped after being dilated by a 2 voxel spherical 

structuring element (compare (Berning et al., 2015)).  

 
Figure 58: Two viewport panels showing user interaction in Merge Mode, with segments that the user selected because 

they belong to the neurite highlighted in color.  

Precomputed segments can be collected into a larger volume: With this, the output from an automated segmentation 

can be used to generate a high quality volume models that contains all structural elements, e.g. the spine necks in 

Figure 16. This annotation mode was implemented outside of the normal webKnossos development as a plugin. 

 

For visualization it was sometimes necessary to have high-quality 3D volume models of the involved 

processes (see Figure 26). For this again the segmentation described in (Berning et al., 2015) was 

used. The automated volume completion described above had small errors that reduced the 
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effectiveness of visualization (e.g. gaps in the volume reconstructions of spine necks). Therefore a 

new annotation mode was developed for webKnossos that allowed annotating a process in 

skeletonization mode while seeing the segmentation in a semi-transparent overlay (see Figure 58). 

With the creation of every node, the segmentation object within which the node was situated was 

added to the pool of segments that made up the process and the color of the segment was changed 

- so that it could be identified as part of the process. This allowed to manually collect all segments a 

process consisted of. As a last step, a custom MATLAB script used the final node list to collect all the 

segments thus marked, put together the volume, morphologically closed it with a structuring 

element of size 3, gauss-smoothed it and created a surface, simplifying that surface by reducing the 

number of vertices by a factor of 10 afterwards. This surface was then rendered using Amira (FEI 

Company, Hillsboro, Oregon, United States). 
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3.2 Image stitching and alignment 

3.2.1 L4 and L2/3 dataset 
 

After dataset acquisition, all files were inspected manually for imaging problems. The only problem 

was debris, which occurred when cut-off material remains at least partially on the sample and 

obscured the surface that is being imaged. Images thus affected were replaced by the images at the 

same position from the slice before or after. The most significant contribution that moved images 

from their fixed position in the grid was movement jitter of the x-y movement induced by the 

motors that moved the microtome. This effect could be compensated, i.e. there was a positioning of 

the tiles that removed the jitter effect of the motors. Additionally, images could be slightly distorted 

(e.g. due to charging from the electron beam), which could not be fully corrected by moving the 

images to a given position.  

Because these latter effects were small, a rigid, translation-only type of alignment was chosen. This 

was based on the MATLAB script used for (Briggman et al., 2011), which followed closely (Preibisch 

et al., 2009). In the following the changes are described that were made to this approach. 

The main challenge with this method was that occasionally the shift calculation failed entirely; 

returning values substantially more than 100 pixels off from the actual center. This did happen with 

image overlaps that contained very little structure. The least-square relaxation was not a good 

solution for this problem because outliers were given quadratically more influence. Therefore it was 

imperative to correct for these mistakes. For this, all local shift values were sorted by how big their 

residual errors after the least-square-fit were. This reliably identified overlaps where the shift 

calculation had failed. These usually corresponded to regions that had little structure (as mentioned 

before) or where the size of the overlap used for the cutout for the cross-correlation (1µm) and the 

actual overlap were too different. The second issue was fixed by setting the cutout size for the cross-

correlation to a more appropriate value at the affected overlap. The remaining errors were 

iteratively fixed by manually reducing the weight of the corresponding entry in the least-square 

relaxation by a factor of 1000. The effort was considered finished when the highest remaining 

residual error dropped below 10 pixels. Because the shift calculation of subsequent images in cutting 

direction was found to be the most reliable measurement, it was weighted with a correction factor 

of 3 in the weighted least-square relaxation. Lastly, the data was written out with the shifts applied 

into a KNOSSOS hierarchy (see 3.3.2). 
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3.2.2 Improved L4 dataset for webKnossos experiments 
 

The webKnossos flight mode (2.2.2) is sensitive to the quality of alignment. Therefore, an improved 

alignment was created of the layer 4 dataset. The prior alignment had reached a limit regarding how 

good a translation-only alignment of the raw data could get. To eliminate image distortions, it would 

be necessary to move different parts of an image in different directions. To do this, each image of 

the raw dataset was cut into smaller images sized 256x256 px. The delta calculation was run as 

described in chapter 3.2.1. The cutting procedure left no overlap between the cut images and their 

delta was set to zero. Additionally, a blood vessel and soma map was used and the delta results of 

images which mostly contained blood vessel or soma were given a decreased weight in the 

relaxation step. After the least-square relaxation, the cut images were discarded and their calculated 

shifts were used to create a smooth morphing of the original images. These morphed images were 

then used to write out the final dataset for the reconstructions. 

3.2.3 The Lobula plate dataset 
 

 

 

Number of slices Height of sub-stack Number of columns Number of rows 

284 7.1 µm 7 11 

260 6.5 µm 9 11 

356 8.9 µm 9 13 

4276 106.9 µm 7 11 

343 8.6 µm 7 11 

1784 44.6 µm 7 11 

Table 3: Overview of the Lobula plate substacks 

 

 

Because the original script only allowed perfect cubic tiling patterns, it was changed to allow empty 

images and the grid was extended to the size of the sub-stack with the biggest lateral extent (third 

sub-stack in Table 3). For the “missing” virtual images the relative shift to the neighboring images 

was not calculated and they were not included in the least-square relaxation. To correctly follow the 

bundle of processes from the lobula plate tangential cells, the region of interest had been changed 

twice: Before starting the second to last sub-stack in Table 3, the region had been shifted 24 µm to 

the anterior. This shift was as wide as a single image in the grid and the software could represent 

that by shifting all following images in the grid one to the left. About 9 µm more medially, between 
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the second-to-last and last sub-stack, another readjustment had been necessary and the necessary 

shift (12 µm) could not be represented in the grid logic. It was found that the local shift detection 

performed very poorly when having to detect such big shifts in subsequent images without prior 

information. Therefore the algorithm was extended so that the shift detection received cut-outs in 

which the prior knowledge about the shift was already incorporated. 

Neighboring images where the overlap region contained epoxy were isolated from the global 

alignment decision: As a first step, every 500th slice was inspected and tiles and overlap regions that 

contained epoxy were manually marked. It was sufficient to make that decision only every 500 slices 

(i.e. every 12.5 µm) because the border of the epoxy only moved slowly between slices. The relative 

shifts between images were calculated regardless of whether they had epoxy in them or not, but for 

the least-square relaxation, local shift vectors that were based on epoxy images were weighted 

significantly lower (10-4). Consequently, the least-square relaxation primarily aligned the pictures 

that contained somata and neuropil using the relative information between them. Nonetheless, the 

information from the problematic images was not discarded and the least-square relaxation tried 

aligning them as well as possible too, but without disrupting the main region of interest. 

To identify wrong shift measurements it was exploited that shifts were generally consistent between 

different slices: If a shift value differed more than 50 pixels from the average shift (regarding the 

same positions in all z slices), the weight of that measurement in the least-square relaxation was 

reduced by a factor of 104.  

Another heuristic was available to identify unreliable shifts: The shift detection operates by 

calculating the cross-correlation between the two cut-outs from the two adjacent images, applying a 

threshold to the result and detecting the center of mass of the largest super-threshold region. It was 

found that the size of that region correlated with the reliability of the shift detection: Failed shift 

detections often had significantly larger super-threshold areas. Therefore a graded weight reduction 

was implemented: If the area was larger than 600 px², the weight of the local measurement was 

reduced by a factor of 107, if the area was larger than 400 px², the weight was reduced by a factor of 

103 and if the size of the area was 200 px² or larger, the weight was reduced by a factor of 2. 

Combined, the outlier-sensitive weight reduction and the area-dependent weight reduction 

eliminated large-scale disruptions of the dataset  
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3.2.4 Speed improvements 
 

Due to the large size of the datasets, efficient handling of data became a requirement. To fulfill this 

requirement, the datasets were not handled locally, but high performance compute clusters (located 

at the MPI for Medical Research and the Max Planck Computing & Data Facility, Garching) were used 

to do the necessary calculations, with up to 200 CPU workers processing the data simultaneously. 

The algorithm was modified to allow for that. Furthermore, it was not efficient to rerun the shift 

detection of the whole dataset for every proposed change of the algorithm. Therefore a 

modification was introduced that allowed to very selectively recalculate the shifts of overlaps that 

had proven to be problematic. Every image had to be used in up to 6 separate calculations, because 

it had up to 6 neighboring images. It would have unduly reduced the throughput to load each image 

6 times. Therefore the stack was cut up in meta-slices of 9 slices each. The content of one meta-slice 

could be kept in memory completely and therefore every image was read only once (apart from the 

12.5% of images in the border layer, which was read twice, once for each meta-slice they belonged 

to). 

Initially, the output data was written slice-by-slice. Because each KNOSSOS cube incorporates data 

from 128 layers (see 3.3.2), every cube was opened 128 times and each time only 16 kBytes of data 

were added to the cube. This reduced the output data rate by a factor of 20. Therefore the algorithm 

was modified so that all necessary image data for blocks of 16 cubes (4 x 4 x 1 in x, y, z respectively) 

was read into memory and then entire cubes were created with one write command. With this final 

optimization, the total run time for the stitching and cubing could be brought down to 37 hours (for 

the Lobula plate dataset) and 20 hours (for the L4 dataset as it was used in the webKnossos speed 

tests).  
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3.3 webKnossos methods 

3.3.1 Dataset 
 

The test with naïve annotators was executed on the dataset 2012-09-28_ex145_07x2, described in 

chapter 2.1.1. For the other experiments of this chapter, the alignment of that dataset was improved 

(dataset name: 2012-09-28_ex145_07x2_new2, see 3.2 for details). 

3.3.2 Data delivery 
 

webKnossos data is stored on the server in cubes 128³ vx in size, as previously developed for 

KNOSSOS (Helmstaedter et al., 2011). The data has a bit depth of 8 (values 0-255). These cubes are 

stored on original resolution and additionally downsampled by factors of 2 (up to 512-fold resolution 

in data volume and resolution). For transmission, these cubes are split up into smaller units called 

“buckets” 32³ vx in size. Other values from 16³ vx to 128³ vx were tried as bucket size but 32³ vx was 

found to be most performant for typical connections. The client at a given moment requests only 

buckets of one zoom level, depending on how far zoomed-in/out the view is. 

In ortho mode, the buckets in the current plane of view (active viewport) are loaded first, prioritized 

by the Manhattan distance from the center of the viewport (higher numbers correlate to lower 

priority), the buckets in the next plane of view (in the direction of the last edge of the current 

reconstruction) with the distance multiplied by 2, the buckets of the next plane with the distance 

multiplied by 4 and so on. 

For flight mode, all buckets are loaded that are at least partially contained in a rectangular frustrum 

sized 5x5 buckets in the base and 4x4 buckets at the top, height 2.5 buckets, centered on the current 

position and rotated along the direction of view. The priority of the request is equal to the 

Manhattan distance from the current position. Also all the remaining buckets visible in the current 

viewport are loaded, as soon as all other cubes are successfully received. 

All buckets are compressed in a lossless fashion for transport between server and client. 

“4 bit mode” is an activatable setting that forces the server to only submit the 4 most significant bits 

of each voxel to be transmitted, thus saving about 50% of the bandwidth. It was used for all 

experiments. 

3.3.3 Data transmission test 
 

For the webKnossos speed test, a server at Hetzner Online GmbH (Gunzenhausen, Germany), was 

used (specifications: Intel(R) Xeon(R) CPU E3-1245 V2 (4 × 3,4 GHz); 32 GB RAM; 15 × 3 TB HWRaid 
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HDD). Annotation speed was manually controlled and the view was only advanced when the process 

was completely visible in the current viewport. 

For the CATMAID speed test, a server was deployed at the Max Planck Computing and Data Facility 

in Garching (specifications: Xeon E5-2630 12 cores, 128 GB RAM, 10 Gb network, JBOD of 4× Intel DC 

S3500 240 GB SSDs). Version 2016.12.16 of CATMAID was used. The dataset was converted to a 

three series of JPEG images sized 256x256 images, corresponding to XY, YZ and XZ slices of the 

dataset. JPEG compression quality was set to 75%, and the headers of the files were stripped to 

further reduce image size. The viewport size was adjusted so that it would match the webKnossos 

viewport size. CATMAID has a function to auto-advance a layer once the current layer is loaded (this 

feature is also available as a script in webKnossos) and this was used to control the speed. 

The test for webKnossos and CATMAID were conducted using version 56 of Google Chrome, working 

from the Max Planck Institute for Brain Research in Frankfurt and the Instituto de Investigación en 

Biomedicina de Buenos Aires, Argentina. The preset bandwidth settings of Google Chrome are 

detailed in Table 4 

 

Name Download Upload Latency 

LTE 4 Mbit/s 3 Mbit/s 20 ms 

Good 3G 1.5 Mbit/s 0.75 Mbit/s 40 ms 

Normal 3G 0.75 Mbit/s 0.25 Mbit/s 100 ms 

Table 4: Connection presets used by Google Chrome 

 

 

 

3.3.4 Axon seeding 
 

For the training tasks, a random box sized 4.5 x 4.5 x 4.2 µm³ was marked in the middle of the 

dataset. 68 processes were reconstructed within that box as putatively axonal. Of those 40 were 

selected randomly. Seeds were chosen for the 40 processes and for flight mode an initial orientation 

along the neurite was also provided. 

For the test tasks, a bounding box sized (2.5 µm)³ was selected that was within the center (15µm)³. 

The bounding box was selected so that it was free of blood vessels, somata and large dendrites. All 

processes within the bounding box were reconstructed. Then for all neurites in it was decided 

whether they were axons. Both the initial marking of neurites and the subsequent axon-classification 
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was controlled by three independent annotators. Of the 41 axons thus identified, 20 were chosen 

randomly for the reconstruction. 

3.3.5 Speed measurement process reconstruction. 
 

To measure the process reconstruction speed (axons and dendrites), the length of the processes was 

measured and the time annotators worked on them. The time could be read directly from the 

webKnossos database (which also controls payout to the annotators). The way the time was 

measured is that whenever an annotator was actively working, every 30 seconds a token was sent to 

the server. If no activity took part in the last 30 seconds, the sending of the token was delayed until 

working was resumed. Each sending of a token added 30s of time to that annotators time account.  

 
Figure 59: Comparing skeleton length between nominally identical flight and ortho tracings. As can be seen in the right 

subpanel, flight annotations are usually longer per actual neurite length. Reprinted by permission from Macmillan 

Publishers Ltd: Nature Methods, (Boergens et al., 2017), copyright 2017 

 

 

The naïve length measurement was done by measuring the length of all the edges in the annotation 

(compare chapter 1.6.4, skeleton based annotation). However, the naively measured length depends 

on the node density (more nodes reproduce the annotators’ fluctuation more efficiently) - and flight 

mode annotation have a higher node density than ortho mode annotations (Figure 59). Therefore 

the skeletons were smoothed with the NURBS algorithm (ref: (Piegl and Tiller, 2012)). To calibrate 

the algorithm, a set of 10 axons was prepared that each had a matched pair of flight and ortho 

tracings that were otherwise identical. The node-order parameter (NO) of the NURBS algorithm 

controled how much smoothing takes place. An attempted smoothing with an NO of 4 did not 

reduce the length difference between the paired skeletons below 14.93 ± 1.08 % (mean ± SEM, 

compare Figure 60).  
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Therefore a variable NO approach was chosen, with  

𝑁𝑁 = min (𝑐𝑐𝑐𝑐 �𝑐1 �
𝐷𝑠
𝑐2
�
𝑐3
� ,𝑁𝑛) 

where Nn is the number of nodes and Ds the density of nodes (in 1/µm). The parameters c1, c2 and c3 

were fitted so that the difference between the set of paired axons was below 1.79 ± 1.16% (mean ± 

SEM; c1 = 50, c2 = 5 1/µm, c3=4; Figure 60). Overall, this reduced the length of the skeletons by less 

than 20%. 

 
Figure 60: Comparison of length of 10 reconstructed axons in flight mode and ortho mode. One can see that both for 

original tracings and tracings smoothed with NURBS with a fixed NO = 4 the length difference between flight and ortho 

persists. A variable NO approach abolished the problem. Reprinted by permission from Macmillan Publishers Ltd: 

Nature Methods, (Boergens et al., 2017), copyright 2017 

 

3.3.6 Dendrite reconstructions 
 

The 497 dendrites were randomly chosen from a pool of over 2000 dendrites that had been 

previously reconstructed. The reconstructions were started at large diameter points of the dendrite. 

All annotations were conducted in flight mode. Annotators who had not seen the flight mode video 

before (because they had traced ortho mode before) were asked to watch it. All annotators were 

instructed to reduce their quality setting to medium (this only loads buckets that are downsampled 

once and thus reduces data rate demands). The annotators were instructed not to reconstruct 

spines. 
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3.3.7 RESCOP algorithm 
 

The RESCOP algorithm (Helmstaedter et al., 2011) was used to make a consensus version of 

annotations that had been created redundantly. This necessitated the fitting of parameters of the 

RESCOP algorithm (namely, the edge probability prior) to the data on which it would be run. For this, 

the prior was calculated separately for ortho and flight modes annotations (Figure 61).  

 
Figure 61: RESCOP algorithm output: Vote histogram (upper row) and optimized decision boundary (lower row; 

optimum vote: white line; majority vote: black line) for published data from (Hua et al., 2015) and for the axons from 

this study, calculated separately for flight mode and ortho mode reconstructions. Reprinted by permission from 

Macmillan Publishers Ltd: Nature Methods, (Boergens et al., 2017), copyright 2017 

 

3.3.8 Error annotation 
 

Redundancies 2, 3, 4, 5, 6, 7, 10 and 13 were used to measure the dependency of redundancy and 

error rate. For each setting, three random combinations were drawn for all redundancies and all 

measured neurites. 

3.3.9 Synapse annotation mode 
 

The synapse annotation mode combined flight-mode-style user interaction with manual node 

creation (in flight mode nodes are normally placed automatically). This mode was activated 

automatically when a task with the type “synapse annotation” was accessed. The task definition 

included a template neurite annotation so that the annotator could focus on the task of annotating 

synapses instead of neurite continuity. While moving along the template neurite annotation, right-



101 
 

clicking the viewport at the position of a postsynaptic volume belonging to a synapse created a 

marker at the respective position in the dataset. 

To determine error rates, three experts annotated the synapses on 4 test axons and compared this 

result to the ones supplied by the 10 annotators, measuring precision and recall. For the example 

connectome, the annotations of the most successful annotator (precision 0.96, recall 0.89) were 

used. The two axons that this annotator had marked as inhibitory were then reannotated by another 

student who had been instructed to focus more on correctness than on speed. 

In these inhibitory annotations, 20 of the marked synapses were checked by an expert annotator 

and neither errors nor intermittent missed synapses could be identified. 

3.3.10 Time consumption for synapse annotation 
 

To predict the threshold between the sparse and dense regime of synapse annotation, the total 

volume of virtual tubes with a radius of 5µm around all reconstructed dendrites and axons was 

calculated (assuming non-overlapping tubes). The threshold was set to where this volume exceeds 

the dataset volume. For the axon reconstruction speed a value of 1.5 mm/h was assumed (with 6-

fold redundancy), for the dendrite reconstruction speed 2.1 mm/h (with 3-fold redundancy). The 

time consumption for axon-based synapse annotation had been measured as 1.8 h/mm, the axon-

based spine reconstruction as 2.3 h/mm. For the dendrite-based synapse-annotation a time 

consumption of 11.1 h/mm was approximated (including spine annotation and synapse annotation; 

using the measured times for spine reconstructions). 
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3.4 Methods for continuous imaging 
For the movement in the x and y plane, internally levered piezo stacks were used, which had a 

stiffness of 0.4 N/µm (P-602, Physik Instrumente, Karlsruhe, Germany), which were then down-

levered again to a range of 350 µm and a stiffness of 3.2 N/µm (down-lever factor 2√2). 

The piezo actors were combined with geared motors (M230-25, Physik Instrumente, Karlsruhe, 

Germany) to extend their range. These motors were able to carry the weight of piezo actors on their 

tip (see Figure 62). The mounting of the motors was set up so that they attached at the right position 

to allow for a down-lever factor as calculated above. 

 

 
Figure 62: Mechanical construction that combined the range of a geared motor and a piezo stack to allow continuous 

imaging for large samples. 

With the employed levering factor, the piezo stack that drove the continuous imaging was able to move the sample 

stage by 350 µm. This was an insufficient range for the planned barrel cortex dataset. Therefore the piezo stack was 

coupled with a conventional geared motor. This motor employed a rack and pinion to retract and extend its tip. The 

piezo stack was mounted directly on the tip of the motor so that the movements of motor and piezo stack add 

together. Figure reprinted from (Schmidt et al., accepted) 

 

3.4.1 Setup of electronics 
 

Piezo stacks suffer from a hysteresis effect. There is no reliable relation between the applied voltage 

and the position of the piezo (Hall, 2001). Therefore the piezo actors used position sensors and 

control circuits to be able to exactly reach a desired position. This is was combined with amplifiers 

that generates the high voltages necessary for piezo extension (E-610, Physik Instrumente, 

Karlsruhe, Germany). The parameters of the closed-loop control circuit were fine-tuned to the 

applied load. However, it was not possible to find a set of parameters that combined fast 
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convergence time (<100 ms) with non-oscillatory behavior (without the mass of the microtome, this 

tuning had been possible). 

The position was controlled by a signal voltage of 0-10 V to the amplifier/controller. This 

corresponded to 350 µm range. For the piezo position to have a stability of better than 5 nm, the 

control voltage had to have stability better than 140 µV. This was outside of the specifications of the 

amplifier used. Therefore a combined approach was taken: The E-610 amplifier executed the 

complete scanning pattern 100 times. The output voltages of these runs were recorded. Then these 

100 voltage traces were averaged, removing the oscillatory behavior and the noise from the 

recording. Then the E-610 amplifier was removed and replaced by a different amplifier (ENV 40 SG, 

piezosystem jena, Jena, Germany). This amplifier had substantially better voltage stability. It 

executed the prerecorded voltage profiles in an open-loop setting.  

If a piezo moves over a range of 350 µm in 10 nm steps, there are 35000 different intermediate 

positions. To correctly scan over all of them, a Digital-Analog-Converter with a resolution of 16 bit 

was used (NI6259, National Instruments, TX, United States). It was controlled by a custom MATLAB 

script that also did the curve generation, recording and averaging, outputting on two channels the 

trace for the two piezo stacks and on the third channel a trigger signal for the image acquisition (see 

3.4.2). 

To remove a mains artifact (image oscillations with 50 Hz and 20nm amplitude) from the system, the 

following steps were taken: The ground of the piezo system was separated from the vacuum 

chamber ground and a custom 50 Hz filters was patched into the lines that drove the piezo stacks. 

This had the added benefit of smoothing some of the oscillations induced by the PI amplifier, so that 

now rudimentary stack acquisition was possible without prerecording traces and changing the 

amplifier. 

3.4.2 Control of the imaging setup 
 

The microscope used (FEI Magellan) was not designed with a continuous imaging setup in mind. 

Therefore workarounds had to be found to make the microscope ready for the task. Ideally, the 

microscope would suppress the line feed generated by the microscope deflection system that is 

employed during normal image acquisition; and the whole strip would be read into one continuous 

image. 

It was not possible to enable a mode where the whole strip was recorded as a single image. Initially, 

it was not even possible to record images directly after each other without pauses between the 

images that lasted more than 300 ms. Such a gap would correspond to a 10 µm gap between the 
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images. This was solved by a library that was supplied by FEI to the specifications of the project and 

allowed to record n consecutive pictures with gaps <30 ms between them. It was also not possible to 

completely disable the line feed, but the microscope was equipped with a mode called “Tilt mode” 

that allowed to correctly image tilted samples. When imaging a tilted sample the scanning rows have 

to be closer to each other. Tilting optically shrinks a sample in one axis, so bringing the lines closer to 

each other reverses that effect. For these reasons activating the “Tilt mode” reduced the strength of 

the line feed. The highest value the tilt correction could be set to was 85.9°, which meant that the 

line feed was reduced to 7% of its original value. The remaining line feed was used to compensate a 

remaining problem: The strip of pictures had small gaps (the aforementioned <30 ms gaps between 

the acquisition of consecutive images). The remaining line feed now caused the beam to act in 

synchronicity with the movement of the sample, thus stretching out the image frames. This closed 

the gaps and created a small overlap of about 80 pixels between the images that was used for 

stitching (see 3.2). For this to work, the sample had to move in the same direction as the line feed, 

but the direction of movement changed with every turn of the piezo snake (compare Figure 51). This 

reversal of scanning direction was compensated for by changing scanning rotation of the microscope 

by 180 degree for every strip.  

During strip acquisition, the sample moved 1 µm every 30 ms. Therefore the onset of the imaging 

had to be tightly controlled in synchronicity with the movement. It was found that triggering the 

acquisition start over a network connection was unfeasible because the jitter of the network 

connection exceeded the permissible jitter for imaging onset. Therefore a third channel was added 

to the control output of the movement generating script (see 3.4.1). This third channel was then 

used for triggering. 

A program was created (written in C# in the CLR VM to be able to interface with the microscope 

library) that ran on the microscope computer and listened to the output of this analogue trigger 

channel with a Redlab 1208FS ADC (Meilhaus Electronic, Alling, Germany). On trigger it started the 

acquisition of the required number of images in rapid succession. The number of images per strip 

and the dwell time were sent to the C# program before the acquisition started (Figure 63). With this 

it was possible to attain a time-jitter between strips of less than 15 ms. 

The number and height of the strips could be adjusted to the size of the region of interest. If the 

region of interest did not have a rectangular shape aligned with the axes of motion of the sample, 

the imaging during a strip could be started later or ended earlier for custom shape without having to 

change the scanning pattern. To further increase acquisition speed, the piezo stacks were not 
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returned to the original position after successfully moving through the pattern. Instead the next 

motor-tile was run rotated by 180° (compare Figure 51). 

 

 
Figure 63: Layout of computers and electrical components for continuous imaging. 

Two computers and two interfaces had to be combined to allow for a low-time-jitter synchronization of onset of 

imaging and piezo stack movement for continuous imaging. An Ethernet connection was found to be too unreliable 

(delay times could not be predicted between slices) and therefore the interface that generated the output ramps for 

the piezo stacks also generated a trigger signal that caused the other computer to start image acquisition. 
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3.5 Methods for full barrel stack 
For the large sample extraction, 1 mm single-use circular punches were used (Integra Miltex, 

Plainsboro, NJ, United States). There were no single-use circular punches with smaller diameters 

available, therefore punches specifically designed for neuroscience applications were used for the 

500µm diameter sample extraction (Leica Microsystems, Wetzlar, Germany).  

For the vibratome-based extraction, a small cut was created in the stereotactic apparatus that 

marked the position 2 mm posterior of the C2 barrel. Then the brain was extracted from the skull 

and moved into a vibratome (HM 650 V, Thermo Scientific, MA, United States) that was modified to 

additionally allow placing cuts at a controlled 90° angle relative to the normal cutting direction. 

All vibratome cuts were done while the sample was slightly submerged in cacodylate buffer to 

protect the sample from drying out. 

After a successful extraction, the staining was applied to the sample as described in 3.1.1. The 

sample was not fully embedded in a block of epoxy after staining (as done in 3.1.1), because 

otherwise, it would have been necessary to liberate the sampe from the block again and too much 

tissue of the 500 µm sample would have been lost during this reexposure. Therefore, a “dry 

embedding” was developed. Before the sample was placed into the oven for epoxy hardening, it was 

removed from the bath of epoxy. Excess epoxy was removed with a tissue used for lens cleaning and 

the sample was placed onto a 1 cm pin with a tip that had been sand blasted to create a table for the 

sample 1mm in diameter. In this configuration, the sample was put into the oven for hardening. This 

in-situ curing of epoxy meant that the trimming step of sample preparation could be skipped and the 

sides of the sample could be directly smoothed with an ultramicrotome (UC7, Leica Microsystems, 

Wetzlar, Germany), greatly reducing the amount of lost material. 

For stack acquisition, the field of view was 600 x 575 µm² (Figure 56, left panel), consisting of 9 strips 

of 14 images (3072 x 2048 px²) in each motor tile (see 2.4.3 for description). The pixel size was 11.24 

x 11.24 nm²; the cutting thickness was set to 28 nm. 

Starting at slice 1400 (after 9 days), cutting became irregular, at times converging to a pattern where 

only every second cut took place. Furthermore, over time the autofocus (see 3.1.2) became 

increasingly unstable. This instability created a zone in one motor tile in the slices 900-920 that was 

out of focus. After slice 3000, the focus quality was suboptimal, but not prohibitive for 

reconstruction. Later a piece of cutting debris was found inside the electron beam column and 

subsequent experiments have struggled with similar problems, so it is likely that debris-induced 

focus instability was the cause. 
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At slice 7400, the electron column shut off spontaneously. It is known that the column does an 

emergency shut-off if it briefly encounters a non-standard condition – this is a reasonable behavior 

for most electron microscopy applications but problematic for long-term stack acquisition. This 

caused 430 slices to be imaged without any beam current and the information of them was lost 

(Figure 56, right panel). After this incident, the cutting thickness was increased to 45 nm, to allow for 

dendritic reconstruction in the distal part of the barrel. At slice 8660 (end of the barrel, see Figure 

56, right panel), the cutting thickness was again increased (to 200 nm) and the acquisition was 

continued until the sample was complete cut away. 

To automatically detect somata in the dataset, a custom MATLAB script was used. After the extent 

of layer 4 was marked, the data therein was normalized to compensate for brightness drift across 

the dataset. Then a series of filters was applied, namely Gaussian smoothing, upper thresholding to 

eliminate blood vessels, lower thresholding to eliminate neuropil, a binarization and a morphological 

opening to remove small items. The remaining signal clearly identified somata. This data was then 

projected radially and a tangential soma density map was created. 
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4 Discussion 
The novel field of high resolution connectomics is still in the early stages of development but already 

yielding results. Neurons spread over great distances to form circuits and the neurites that do so are 

very thin, so two requirements have to be met. The first requirement is the acquisition of large data 

volumes that includes whole cells, and the second requirement is that imaging is done at a 

sufficiently high resolution to be able to identify even the smallest neurites. This creates large 

amounts of data and produces demands for high-throughput analysis. There are many open 

questions about connectivity of neural circuits, but even with regard to cell types and identities, 

meticulous analysis of cell morphology can yield surprises. This is already changing the way we think 

about the nervous system, e.g. (Helmstaedter et al., 2013; Morgan et al., 2016). 

This work presents methodological development on two fronts. On one hand, to make acquisition of 

large datasets possible, an improvement of imaging speed was made, reducing necessary times by a 

factor of 30. If the sample is targeted on a region of interest no unnecessary data is recorded, which 

also makes acquisition of data less time-consuming. A protocol to achieve this for a barrel in mouse 

somatosensory cortex was developed. Jointly these advances make the reconstruction of the 

connectome of a cortical circuit a realistic endeavor. On the other hand, as data sets grow, more 

people have to be involved in the processing and analysis of them. Therefore it was necessary to 

devise a tool for distributed and scalable data annotation. In this work webKnossos is presented as 

such a tool, making creation and analysis of connectomes more feasible. Using these methodological 

advancements specific innervation patterns for inhibitory axons in layer 4 and layer 2/3 of mouse 

barrel cortex have been revealed. The search for innervation patterns made by excitatory axons is 

ongoing. Careful reconstruction of cells in a dataset of the optic system of Drosophila yielded new 

cells that previously had not been shown to exist. 

4.1 Axons in mouse barrel cortex target subcellular structures specifically 
As described in the introduction, the mouse barrel cortex is a highly organized structure that 

receives input from the whiskers of the rodent. An open question is whether additionally to the 

macroscopical organization a microscopical organization principle exists. This microscopical 

organization may manifest itself as specific innervation patterns. In the introduction, a number of 

possible patterns were described, namely a cellular specificity (targeting of innervation onto specific 

cells), subcellular specificity (targeting of specific dendrites or cell components) and spatially 

selective specificity (proximal versus distal innervation of dendrites). Furthermore, it was established 

how a non-specific scenario would look like. This non-specific scenario can be described as Peter’s 

rule, stating that axons randomly innervate postsynaptic targets as they are available. To find out 
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whether wiring in cortex is following circuit patterns or is non-specific, two cortical datasets were 

recorded with Serial Block-face Electron Microscopy. One of them was located in layer 2/3 and the 

other in layer 4 of mouse barrel cortex, being radially aligned to each other. The size of the layer 2/3 

dataset and layer 4 dataset was 99 x 66 x 202 µm³ and 96 x 64 x 89 µm³ respectively. It was 

established that processes could be reliably reconstructed, synapses could be detected and the axon 

type could be determined. Then, a method was developed to distinguish excitatory and inhibitory 

axons. It is difficult to infer the axon type from a single synapse. The number of synapses that 

innervate spines and/or shafts was counted; this helped determine the type of axon (either 

inhibitory or excitatory). Because all synapses on the axon had to be of the same type (Dale’s law), 

information about single synapses (innervating a spine or shaft) could be statistically agglomerated 

to make a reliable decision regarding the type of axon. 

To improve annotation quality, multiple annotators were asked to work in parallel. Afterwards, this 

redundant information could be pooled to remove errors. Loading preexisting annotations and 

reannotating spots where no consensus was apparent was a direct approach to improve annotation 

quality. For edge cases of synapse identification and axon type identification, further annotation 

effort was directed to them. This general principle of “Focused Reannotation” is powerful in settings 

like this were annotation may be insufficiently accurate but heuristics can be found to measure the 

accuracy. In the future a scheme could be implemented were disagreements or uncertainties in 

annotations automatically trigger the generation of new tasks to clear up the ambiguity. 

The search for innervation patterns was started in layer 2/3. It is known that a class of interneurons 

called chandelier cells specifically target initial segments of pyramidal cells, but it was not clear 

whether chandelier cells also innervate other targets and/or whether other axons innervate 

pyramidal cell initial segments. After reconstructing 18 axons targeting 38 initial segments, it 

became clear that the situation is more nuanced than previously assumed. While chandelier axons 

target initial segments of pyramidal cells very specifically, there was a second class of axons that 

targeted pyramidal cell initial segments with a high specificity, but did not share the known 

morphology of chandelier cells. Furthermore, there were axons that innervated initial segments but 

did not exhibit an increased specificity for them.  

The next step was to quantify the specificity of each axon. The percentage of synapses that the axon 

made with the target structure was compared to how much the target contributes to overall 

postsynaptic wiring in the dataset. The latter is the percentage of innervation the target would 

receive if the axon would innervate blindly in regard to target identity. The innervation specificity of 

the chandelier axons was found to be 235 times above the random threshold. Identifying initial 
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segments of pyramidal cell was not time-consuming, because once a chandelier axons had been 

identified, many synapses yielded new initial segments. It was challenging to find an initial segment 

of an interneuron. Nevertheless, one was successfully identified and surprisingly it was not 

innervated at all. It would be interesting to investigate this situation for more interneurons and 

determine whether this is a shared property of all of them. 

It was investigated how spiny stellate initial segment innervation manifests itself in layer 4. For this, 

all synapses onto initial segments with somata in the dataset were reconstructed, which yielded the 

unexpected result that in layer 4, initial segments are more densely innervated than in layer 2/3. The 

specificity was measured for these initial segment innervations and was overall much lower. In 

contrast to layer 2/3, an interneuron initial segment was quickly discovered despite the fact that the 

interneuron density is lower in this dataset. No statistically significant difference could be found in 

the way its initial segment was innervated compared to the spiny stellate cells.  

Apical dendrites of layer 5 pyramidal cells running through the layer 4 dataset were selected as 

another class of postsynaptic targets for analysis. Inhibitory axons were identified that innervated 

those apical dendrites and their specificity was measured. The specificity of them was more 

consistent within itself than for the other types of innervation. In absolute numbers it was roughly in 

the middle between the extremely-high specificity of the chandelier cells and the slight specificity of 

the spiny stellate initial segment innervating axons. This result suggests a scenario where pyramidal 

cells from layer 5, which receive excitatory inputs from higher layers, now also show the ability to 

receive coordinated inhibitory inputs in layer 4. This would allow for an interruption of information 

flowing down cortical layers. Inhibitory input onto apical dendrites has also been shown to be a 

potent mechanism for abolishing coincidence detection in apical dendrites (Larkum et al., 1999).  

The specificity was measured for excitatory innervation onto apical dendrites. This was done using 

automated contact annotation and so far has not shown an increased specificity: Excitatory axons 

seem to treat apical dendrites just like normal dendrites. This is ongoing research and rarer 

excitatory high-specificity axons might be found in the future. 

A further question is whether the dendrites of inhibitory neurons receive specific innervation. These 

dendrites can be identified by the fact that they have fewer and shorter spines. This is an ongoing 

effort and results will add to the varied picture of specificities on cellular compartments that was 

already assembled. While the exact position of the synapses did not matter for the analysis of the 

initial segment and apical dendrite specificities, there are potentially patterns that use a spatial 

distribution of innervation along a dendrite. A likely candidate for that was inhibitory innervation 

onto spiny stellate dendrites. Competing theories postulate that innervation would be more efficient 
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on proximal or distal regions of the dendrite. Upon annotating a group of dendrites in the layer 4 

dataset, it was indeed found that there is a strong and significant clustering of inhibitory innervation 

on the first 25 µm of the dendrites. It was then investigated whether this innervation was specific for 

that dendrite or whether a model of a more global tonic inhibition of the cell to which the dendrite 

belongs would be more fitting. For tonic inhibition, further innervation onto the soma and/or other 

dendrites of the same cell would have been likely, but no innervation of that kind was found, 

highlighting the role of the inhibitory cluster as a specific veto point for information flowing through 

that dendrite. Because of the limited size of the dataset, only the proximal and middle regions of the 

dendrites were visible. While being sufficient to prove a proximal cluster of inhibition, this did not 

rule out that distal clusters of inhibition exist. It would be interesting to assess whether such clusters 

can be found. Furthermore it should be investigated whether similar clusters exist on interneurons 

or layer 2/3 pyramidal cells. 

4.2 webKnossos is a novel tool for online 3D EM data annotation 
As datasets grow larger, it becomes increasingly less feasible to distribute the data physically to the 

annotator. Therefore an online annotation tool called webKnossos was developed that receives its 

3D data over an existing internet connection. To ensure that the tracing speed was not limited by 

the speed of the internet connection, several optimizations were included that reduced the 

requirements in bandwidth and latency. Because annotation is an activity that requires to navigate 

the dataset in all three spatial axes, the data was transmitted in small cubes (called buckets) 32px on 

a side. This was shown to be superior to transmission as sequential 2D images and to transmission as 

cubes with a larger or smaller edge length. Furthermore, an algorithm was developed that predicted 

which buckets would be needed next and loaded them as soon as the data that made up the active 

view were completely loaded. With these optimizations, webKnossos was compared with the most 

successful existing online annotation tool, CATMAID and was found to be 4-13 times faster, 

depending on the quality of the connection (in-lab to mobile/transatlantic). It was especially relevant 

that the difference in performance became larger as connection quality became worse: In many 

settings, undergraduate annotators work from home over unreliable internet connections and 

collaborations often happen internationally, where an optimization for high-latency connection is 

especially relevant. 

webKnossos offers an interaction mode that closely resembles the interaction mode of KNOSSOS, a 

standalone tool for skeleton reconstruction. There are three viewports, representing the three 

cardinal axes through the dataset and reslices of the dataset are shown in the respective views. 

When annotators are creating skeleton annotations, they are instructed to always follow the neurite 
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in the viewport to which it runs the most perpendicular. Failure to do so can lead to lost branches. 

As neurites run through the dataset, their orientation changes frequently, which makes it necessary 

for the annotators to switch between viewports. It had been long suspected that those context 

switches increase mental load while tracing and thus reduce the speed with which neurites can be 

reconstructed. Furthermore it had been observed that the conceptionalization of this arrangement 

was a major obstacle in the process of learning how to annotate. 

Therefore a novel mode called flight mode was included in webKnossos and evaluated. In this mode 

there is only a single viewport. The annotator sees the data as if they were in the center of a hollow 

sphere in the dataset and see the raw data that is just outside of that sphere. The annotator can now 

move forwards or change the direction where they are headed, like the pilot of a plane (which gave 

the flight mode its name).  

It was investigated whether this mode was easier to learn and it was confirmed that after an 

introduction of only 2½ minutes, annotators could produce usable annotations with flight mode. 

Then it was investigated whether flight mode enabled experienced annotators to annotate faster. 

This yielded annotation speeds of 1.5mm/h for axons and 2.2 mm/h for dendrites, almost 10-fold 

faster than the fastest published annotation speeds. This was achieved without an increase in error 

rate and while annotating all branches of the neurite. 

It was then investigated whether these axon and dendrite annotations could be combined into a 

connectome. A set of 32 axon and 497 dendrites were combined and the synapses between them 

were reconstructed. It was shown that depending of the density of reconstructed axons and 

dendrites in the dataset the ideal strategy to create a full connectome is to annotate the synapses 

along the axons or along the dendrites. In this specific case it was faster to reconstruct the synapses 

along the axons. This was done (separately for excitatory and inhibitory dendrites) and the result 

was combined with manual spine annotation and an automatic linking of spine and dendrite 

annotations. For all these steps the speed and error rates were quantified and it could be shown that 

it is possible to create a full connectome where the overall reconstruction time is still dominated by 

the achievable neurite reconstruction speed.  

When reviewing videos of annotators reconstructing axons at speeds larger than 1.5 mm/h where 

no loading delays are encountered and the interaction mode introduces no effort into the process, it 

seems reasonable to assume that flight mode is so optimized that the measured reconstruction 

speed is limited by the speed with which an annotator can visually interpret 3D EM data and 
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therefore no further improvements in annotation speed through interaction tool development are 

possible. 

Rather, the next frontier is to make the allocation of human annotation power more efficient. As 

documented, redundant annotations are necessary to achieve satisfactory precision in many tasks. 

An improvement over redoing the whole annotation with a large number of annotators is first doing 

the task with a subset of the annotators and then increasing the redundancy at the spots where the 

few annotators disagreed. As discussed before, this scheme is called “Focused Annotation” and it 

can be a massive improvement, especially when using a tool like webKnossos where there is little 

overhead to distributing small tasks that focus on a hot spot. 

4.3 Reconstruction of lobula plate tangential cells in Drosophila yields 

candidates for cells not previously identified 
The tangential cells in the lobula plate are a fascinating component of the optical system of flies. 

They provide important information for the control of flight and body position and therefore are of 

major interest to vision research. Their large diameters make them an ideal target for a diamond 

knife-based SBEM study. A dataset had been acquired that allowed to attempt an analysis of the 

cells in question. A first necessary step was the stitching and alignment of the data. For this, new 

methods for data handling and automatic error correction in the alignment algorithm had to be 

developed. The algorithm that detected the shifts between adjacent images had an error rate of 

about 0.1%. These errors created disruptions and severely limited the ability to reconstruct neurites 

in the output dataset. A manual repair of these mistakes – as it had been done in smaller datasets – 

was unfeasible due to the high number of images involved. Therefore two automated metrics were 

developed that detected failed shift measurements. One metric identified the deviation of the 

detected shift from the average shift, the second metric was an internal process metric from the 

shift measurement. Both could be used to remove the damaging effect of the wrong shift vector by 

reducing its weight in the least square relaxation. With this in place, a dataset was created where 

most details of the tangential cells could be reconstructed by non-expert annotators. This dataset 

was then used to reconstruct the tangential cells in the lobula plate. The selection of start points was 

done independently in several layers, which resulted in a high coverage and therefore high quality of 

the reconstructions. The inclusion of the tract which leaves the lobula plate in anteromedial 

direction was of special value, because most tangential cells have a process in this tract and could 

thus be identified.  

The reconstructions were reannotated in a way that included the diameter of the processes, creating 

annotations that are easier to assess and compare to existing light-microscopical images. With this, 
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comparisons to neurons that had already been identified with a genetic expression system in 

Drosophila could be made. Interestingly, new cells were reconstructed that had not been seen in the 

genetic approach. Candidates for additional VS cells were found: three more than the six which were 

already described for Drosophila, making the situation more similar to blowflies, for which 9-11 VS 

cells exist.  Also, two cells were identified that resembled CH cells, despite the fact that they had not 

been fully described in Drosophila so far. Lastly, many cells were found that did not match the 

known patterns but still had intriguing morphologies, these should be closer examined. Future work 

should focus on identifying synapses in the dataset in a systematic fashion.  

This ongoing work shows parallels to recent progress in the field of mouse retina cell types 

(Helmstaedter, 2013). The unbiased inclusion of all bipolar cells within a volume revealed a novel cell 

type that had not been described so far (XBC). Using connectivity information, it was possible to split 

up the cells into subtypes that were not distinguishable morphologically (CBC5A/CBC5R). The 

unbiased inclusion of all these cells in the dataset shows that the 3D EM reconstruction of the 

Drosophila lobula plate was a necessary step to unravel the cell types of this intricate system. It has 

become a useful tool to understand the principles of fly vision. 

4.4 Continuous imaging reduces overhead time in serial block-face SEM 

dataset acquisition 
While small datasets can help gain valuable insights into the patterns of connectivity of neuronal 

tissue, acquiring stacks that contain whole circuits promises even deeper insights into how the brain 

performs its function. A layer 4 data set of a single barrel would take more than 4 months to image if 

recorded at the same speed as the small datasets described in this thesis. To be able to tackle such a 

big sample volume it is essential to improve the speed of acquisition. In this work, steps were 

implemented that allowed to increase the speed of acquisition by a factor of 30 compared to 

published SBEM studies. The first step was using a scanning electron microscope that had a much 

higher beam density. Beam density is essential for fast acquisition because the detector needs to be 

able to collect a sufficient amount of electrons per pixel, so fast pixel time can only be achieved with 

strong beams. The amplifiers for the first generation of SBEM setups were matched to the 

microscopes in which they were used and therefore could not correctly amplify the detector current 

on the new high-speed setup. A new amplifier had to be integrated with the new microscope to 

allow the fast imaging to take place. 

With the new imaging setup in place it became clear that imaging was not the only bottleneck. 

When imaging a large sample, it is moved under the beam in a grid-like fashion (tiling). The 

movement was abrupt and therefore there was a settling time for the apparatus after each shift 
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causing major delays in image acquisition. This reduced the theoretically possible acquisition rate 

nearly by one order of magnitude. To solve this, a novel scheme was developed: while the 

microscope generated a line scan, the sample slowly moved underneath the beam, thus generating a 

two-dimensional image. This method was termed “Continuous Imaging”. Because there were no 

abrupt accelerations and decelerations of the sample stage, no vibrations were encountered and the 

imaging could take place almost without interruption. To be able to use this mode, the sample 

stage/microtome had to be modified mechanically. Geared motors were not able to move 

sufficiently smooth and a custom piezo-driven stage had to be designed. Secondly, a new software 

environment had to be created to accurately combine the smooth movement of the piezo stacks 

with coordinated image acquisition. 

When trying to create a circuit-complete barrel cortex sample, it became clear that the EM staining 

had substantial limitations in penetration depth. Therefore a method was developed that allowed to 

extract a layer 4 single barrel sample in a targeted fashion, so that the sample did not exceed the 

penetration depth of the staining method. It was shown that this method generates high-quality 

samples that contain the whole layer 4 circuit of a barrel. While this was successful, novel staining 

methods were developed recently that have relaxed the volume restrictions for 3D EM staining. A 

dataset was recorded from a sample created by the method described in this work and it was shown 

that it indeed contains a whole barrel. With a size of 600 x 575 x 260 µm³ at a resolution of 12 nm x 

12 nm x (28 nm - 45 nm) it was the biggest SBEM dataset so far recorded. The stitching and 

alignment of it is an ongoing effort. While this barrel dataset is probably not fully reconstructable 

due to missing slices, it offers valuable ground work and an interesting starting point to analyze the 

microcircuit contained within a barrel. Furthermore, the fast imaging technique developed here can 

be used for large datasets of various tissues, providing a necessary improvement in 3D EM studies. 

Reducing acquisition times makes new classes of projects feasible and thus this method an 

important contribution to the field of connectomics. 

All in all, it was demonstrated that connectomics with serial block-face electron microscopy can 

generate substantial insights into neuroscientific questions and that the method is advancing, with 

exciting new improvements being developed in this work. 
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5 Contributions 
All experiments and analysis in chapter 2.1 were performed by the author except for contributions 

to staining improvement and samples creation done by B. Cowgill and contributions to MATLAB code 

for the proximal/distal analysis, volume reconstruction and contact detection supplied by M. Berning 

The data from chapter 2.2 is the result of a collaboration with M. Berning (publication as shared first-

authorship) and our statement regarding the contributions is as follows: 

KMB was instrumental in the discovery of flight mode as an intuitive data mode; MB and KMB 

contributed to the testing and error measurements in an about 60% / 40% share, which constituted a 

major work load during the extensive revision phase; KMB contributed the user-scripting feature, and 

wrote many first user scripts, an important extension capability of the software package; software 

implementation was otherwise performed by the scalable minds team; the comparison to other tools 

was performed primarily by MB with contributions by KMB; the connectome reconstruction workflow 

and its results were contributed by KMB. 

 

The dataset presented in chapter 2.3 was prepared and recorded by Ch. Kapfer, who also did the 

seed selection for the first and second phase and the curation for the consensus skeletons of the 

second phase. The author of this thesis stitched and aligned the dataset, led the team of annotators 

and developed the diameter mode and its Amira integration 

The method for extraction of barrel-centered fully stained samples in chapter 2.4 was developed 

with contributions by P. Bastians (who also contributed to the creation of the final sample that was 

used to record the dataset). Furthermore, the fast amplifier used for the diode detector was 

developed by W. Denk and J. Tritthardt. All other experimental steps, most notably the development 

and implementation of the continuous imaging mode were performed by the author. This method 

has been successfully used by H. Schmidt to record the largest existing entorhinal cortex dataset 

(Schmidt et al., accepted). 
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