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Abstract 

For decades, phthalates are widely used as plasticizers in plenty of consumer 

products e.g. food packaging, toys, clothing and personal care products. They are not 

chemically bound to the polymer matrix, so they can easily be released into the 

environment for example by leaching or migration. Humans are exposed to 

phthalates via ingestion, inhalation or dermal uptake. They are rapidly metabolized in 

humans and excreted via urine, mainly within two days. Phthalates act as endocrine 

disruptors and target mainly the reproductive system. According to US-Environmental 

Protection Agency (US-EPA), infants have an unintended uptake of 60 mg dust per 

day. Among other things, dust contains a various amount of pollutants as e.g. 

phthalates. Therefore, dust could pose a potential health risk to humans. Currently 

there are no information’s about the bioavailability of phthalate in dust. Consequently 

in risk assessments the bioavailability is determined as 100 %. In the case of 

phthalates, in vitro digestion tests are indicating a bioaccessibility of 10 – 32 %. The 

aim of this study was to determine the relative oral bioavailability of certain phthalates 

as butyl benzyl phthalate (BBzP), bis (2-ethylhexyl) phthalate (DEHP), di-n-butyl 

phthalate (DnBP) and di-isononyl phthalate (DINP) in house dust after oral ingestion.  

Study design: Seven five week old piglets were fed five different dust samples 

collected from daycare centers and one food sample. Overall, 0.43 to 0.83 g of dust 

samples sieved to 63 µm were administered orally. The urine was collected over a 

period of 38 hours. The excreted metabolites were quantified using an LC-MS/MS 

method.  

Results: The mean uptake rate of the applied dust dose for BBzP, DnBP, DEHP and 

DINP is 28 ± 18 %, 52 ± 18 %, 43 ± 11 % and 47 ± 26 %, respectively. The 

bioavailability in food is 37 ± 23 % for BBzP, 39 ± 16% for DnBP, 53 ± 15 % for 

DEHP and 43 ± 13 % for DINP. No significant difference between the quantities of 

plasticizers excreted in urine after dust administration compared to food was 

observed. The metabolites showed their maximum concentration three to five hours 

post dose.  

Conclusion: The bioavailability of the investigated phthalates is much higher 

compared to the bioaccessibility reported from in vitro digestion tests. Furthermore it 
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is noticeable that the bioavailability of DEHP does not vary between the dust 

samples. A dose dependent saturation process for DINP was observed. Besides 

other intake pathways, dust could pose a relevant source of phthalates for toddlers.  
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Zusammenfassung 

Seit Jahrzenten werden Phthalate in großen Mengen als Weichmacher in 

(Lebensmittel-) Verpackungsmaterial, Spielzeug oder Kleidung eingesetzt und zählen 

daher zu einer der wichtigsten Industriechemikalien. Phthalate sind nicht an die 

Polymermatrix gebunden und können durch (Ab-)Nutzung relativ leicht in die Umwelt 

abgegeben werden. Phthalate werden als endokrin aktive Substanzen eingestuft und 

haben eine negative Wirkung auf das Reproduktionssystem. 

Kleinkinder nehmen oral täglich 60 mg unbeabsichtigt Hausstaub auf. In Hausstaub 

kommen teils hohe Konzentrationen an Schadstoffen, wie z.B. Phthalate, vor. Derzeit 

gibt es keine Kenntnisse über die orale Bioverfügbarkeit von Weichmachern in der 

Matrix Staub. In einem in vitro Verdauungstest konnte eine Bioverfügbarkeit von 

Phthalaten aus dem Staub zwischen 10,2 % (DEHP) und 32 % (DMP) nachgewiesen 

werden. In dieser Studie soll anhand eines Tierversuchs die orale Bioverfügbarkeit 

von Butylbenzylphthalat (BBzP), Bis (2-ethylhexyl)phthalat (DEHP), Di-n-

butylphthalat (DnBP) und Di-isononylphthalat (DINP) in Hausstaub und 

Lebensmitteln untersucht werden. 

Studiendesign: Sieben fünf Wochen alte Schweine erhielten jeweils fünf 

unterschiedliche Hausstaubproben (Staub aus Kindertagesstätten auf 63 µg gesiebt; 

verabreicht: 0,43-0,83g) und eine Lebensmittelprobe. Der Urin wurde über 38 

Stunden gesammelt. Die ausgeschiedenen Metabolite wurden mittels einer LC/MS-

MS Methode bestimmt. 

Ergebnisse: Die durchschnittliche Aufnahme von BBzP, DnBP, DEHP und DINP im 

Staub lag bei 28 ± 8 %, 52 ± 18 %, 43 ± 11 % und 47 ± 26 %. Bei der 

Lebensmittelprobe lag sie bei 37 ± 23 % für BBzP, 39 ± 16 % für DnBP, 53 ± 15 % 

für DEHP und 43 ± 13 % für DINP. Es konnte kein signifikanter Unterschied bei der 

Aufnahme zwischen Hausstaub und Lebensmittelprobe nachgewiesen werden. Das 

Konzentrationsmaximum der Phthalatmetabolite im Urin konnte drei bis fünf Stunden 

nach der Probengabe festgestellt werden.  

Schlussfolgerung: In dieser Studie konnte gezeigt werden, dass die Bioverfügbarkeit 

- je nach Weichmacher im Hausstaub - bei ca. 40 % liegt und somit höher als in den 

in vitro Verdauungstests (10 – 20 %). Außerdem zeigte sich, dass die 
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Bioverfügbarkeit von DEHP innerhalb der getesteten Staubproben stabil und 

reproduzierbar ist. Bei DINP konnte ein dosisabhängiger Sättigungsprozess 

festgestellt werden. Zusammenfassend lässt sich sagen, dass Staub eine 

Expositionsquelle bei Kleinkindern darstellt.
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Abbreviation 

µg/kg/d Microgram per kilogram per day 

2cx-MMHP Mono-(2-carboxymethyl)hexyl phthalate 

5OH-MEHP Mono-(2-ethyl-5-hydroxylhexyl) phthalate 

5oxo-MEHP Mono-(2-ethyl-5oxohexyl) phthalate 

5cx-MEPP Mono-(2-ethyl-5carboxypentyl) phthalate 

7oxo-MINP Mono-(4-methyl-7oxo-octy)l phthalate 

7cx-MINP Mono (4-methyl-7-carboxy-heptyl) phthalate 

7OH-MINP Mono-(4-methyl-7-hydroxyoctyl) phthalate 

95th P 95th percentile 

ADD Average daily dose 

AGD Anogenital distance 

b.w. Body weight 

BBzP Butyl benzyl phthalate 

Cmax Concentration maximum 

DEHP Bis (2-ethylhexyl) phthalate 

DINP Diisononyl phthalate 

DnBP Di-n-butyl phthalate 

EDCs Endocrine Disrupting Chemicals 

EU European Union  

FSH Follicle stimulating hormone 

GC/MS Gas chromatography–mass spectrometry 

HMW High molecular weight 

HPLC High-performance liquid chromatography 

IgE Immunoglobulin E 

IgG Immunoglobulin G 

Kow N-octanol/water coefficient 

LC-MS Liquid chromatography–mass spectrometry 

LMW Low molecular weight  

LOD Limit of detection  

LOQ Limit of quantitation  

MBzP Mono-benzyl phthalate 

MED Median 

MEHP Mono (2-ethylhexyl) phthalate 

mg/d Milligram per day 

MIN-MAX Minimum–maximum  

MINP Mono-isononyl phthalate 

MnBP Mono-n-butyl phthalate 

NOAEL No observed adverse effect level 

PBDE Polybrominated diphenyl ethers 

PVC Polyvinyl chloride 

RfD Reference dose 
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t½ Half-life time 

T3 Triiodothyronine 

T4 Thyroxine 

TDI Tolerable daily intake 

Th2 T helper cells 2 

Tmax Time after sample administration, when the maximum urine 
concentration is reached 

TSH Thyroid stimulating hormone 

US-EPA United states environmental protection agency  
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1I Introduction  

1I1 Phthalates 

Synthetic chemical diesters of 1,2-benzenedicarboxylic acid (Figure 1), commonly 

known as phthalates, are widely used in the chemical industry as plasticizers to 

increase the flexibility and softness in plastic, e.g in polyvinyl chloride (PVC). 

Plasticizers can represent up to 40% of plastic products [1]. In addition to PVC 

products, phthalates are present in various consumer products like personal care 

products, children’s toys, food packaging, building materials, clothing, medical 

devices and in pharmaceutical products [2, 3]. There are more than 25 different 

phthalates in technical use. Table 1 gives an overview of the phthalates and their 

characteristics on which this study focuses.  

 

Figure 1. Molecular structure of phthalate esters, R and R1 are alkyl and aryl chains with the same or 
different structures [3]. 

 

Phthalates are categorized in two groups based on physiochemical properties: 

 Low molecular weight (LMW) phthalates: produced from alcohols with a straight 

chain of one to four carbon backbones. These are primarily used in 

pharmaceuticals and personal care products as a solvent, e.g. in fragrances, 

soaps, lotions etc. LMW phthalates are slightly to moderately water soluble [3, 

4]. 

 High molecular weight (HMW) phthalates: produced from alcohols with a straight 

chain or ring structure of five or more carbon backbones. These kinds of 

phthalates are primarily used as plasticizers in vinyl products such as flooring, 

wall covering, medical devices and food contact material. HMW phthalates are 
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water insoluble, but soluble in most organic solvents like alcohol, ether and oils [3, 

4]. 
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Table 1: Overview of the investigated phthalates, their corresponding metabolites and their characteristic [3]

Phthalate Molecular 
Formula: 

CAS No. Backbone 
length 

Log 
Kow 

Metabolites  Uses 

Butylbenzyl 
phthalate 
(BBzP) 

C19H20O4 85-68-7 C4,C5 4.48 Mono-benzyl phthalate (MBzP) Automotive adhesives, coating, sealants 
and paints, plasticizer in children’s toys, 

Di-n-butyl 
phthalate 
(DnBP) 

C16H22O4 84-74-2 C4 4.57 Mono-n-butyl phthalate (MnBP) Plasticizer for rubber, adhesives in textiles 
and leather treatments, children’s toys, 
fragrance bases for household, personal 
care and cosmetic products 

Diethylhexyl 
phthalate 
(DEHP) 

C24H38O4 117-81-7 C6 7.50 Mono-(2-ethylhexyl) phthalate 
(MEHP)  
Mono-(2-ethyl-5-hydroxylhexyl) 
phthalate (5OH-MEHP)  
Mono-(2-ethyl-5oxohexyl) phthalate 
(5oxo-MEHP) 
Mono-(2-ethyl-5carboxypentyl) 
phthalate (5cx-MEPP) 
Mono-(2-carboxymethyl)hexyl 
phthalate (2cx-MMHP) 
 

In coating, adhesives and resins for 
flooring, PVC labels, fragrance bases for 
perfumery and cosmetic products 

Di-isononyl 
phthalate 
(DINP) 

C26H42O4 285533-12-0,  
68515-48-0 

C8;C9 8.8 Mono-isononyl phthalate (MINP) 
Mono-(4-methyl-7oxo-octyl) 
phthalate (7 oxo-MINP) 
Mono-(4-methyl-7-hydroxyoctyl) 
phthalate (7OH-MINP) 
Mono (4-methyl-7-carboxy-heptyl) 
phthalate (7cx-MINP) 

Plasticizer for PVC applications, flooring, 
carpet backing, lamination, toys 
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Di-2-ethylhexyl phthalate (DEHP) and Di-isonyl phthalate (DINP) are the principally 

used phthalates in industry [5]. In the European Union, the use of DEHP, DEP and 

DnBP is banned and often replaced by substitutes like DINP, which now accounts for 

80% of the phthalate production in Europe [6]. Because of their extensive use and 

the resulting permanent presence in the environment, phthalates are substances of 

concern [7]. 

 

1I1I1 Toxicokinetics of phthalates 

The majority of phthalate uptake takes place after oral ingestion. Once incorporated 

in the human body, phthalates are rapidly metabolized and excreted via urine. 

Phthalates undergo a biotransformation, which can be categorized in two phases:  

Phase 1: Phthalates are metabolized into their corresponding mono-ester (primary 

metabolite) by hydrolysis of one of their ester bonds. The monoester of high 

molecular weight phthalates undergoes a further enzymatic oxidation of the alkyl 

chain and is finally metabolized to more hydrophilic metabolites (secondary 

metabolites).  

Phase 2: also known as conjugation reaction; the primary or secondary metabolites 

conjugate with glucuronic acid and/or sulfate, both increase the water solubility and 

might reduce the biological activity of the phthalate metabolites. The glucuronide 

conjugate is finally excreted mainly with urine. The conjugation reaction is catalyzed 

mainly by the enzyme uridine diphosphate glucuronosyltransferase (UGT) [3].  

 

The amount of oxidative metabolites depends on the alkyl chain length of phthalates 

because oxidative metabolites are more water soluble than monoesters. Water 

solubility decreases relative to increasing alkyl chain length. As a consequence, low 

molecular weight phthalates are mainly metabolized to monoesters (primary 

metabolite), whereas high molecular weight phthalates like DEHP or DINP mainly 

transform their monoester in a second step to oxidative metabolites and excrete them 

as secondary metabolites [8, 9]. Only 2 – 7 % of the applied dose of high molecular 

weight phthalates is excreted as their primary metabolite [10].  

In the human body, phthalates are absorbed by the gastrointestinal tract, where they 

are metabolized to the corresponding monoester, which is then further transported to 

the liver. The monoester is transformed to the secondary metabolites mainly in the 
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liver. After that, the primary or secondary metabolites are transported to the kidneys 

where they are excreted by urine [11, 12]. During the urinary excretion, there are 

several maximums of metabolite elimination. The metabolism of phthalates is 

biphasic with a fast elimination rate within the first 24 hours after dose administration 

followed by a slow elimination rate. Most of the applied dose is excreted within the 

first 48 hours [13].  

Although the urinary excretion in humans has a high individual variation of phthalates 

and their metabolites content, the ratio of hydrolytic and oxidative metabolites from 

the parent compound are highly stable in urine [14].  

The individual metabolism of the investigated phthalates in this study is discussed in 

detail in Section 1I2I5.  

 

1I1I2 Exposure and migration of phthalates  

1I1I2I1 Routes of exposure 

Due to their chemical and physical properties, phthalates are not chemically bound to 

the polymer, which means that they can be easily released into the surroundings by 

leaching, evaporation, migration and abrasion from the polymer matrix during usage 

[3, 4, 10]. Additionally phthalates are lipophilic, which can be an influencing factor in 

their leaching and environmental distribution behavior [9]. Based on their semi- to 

non-volatile characteristics, phthalates are mainly bound to particles like in dust 

instead of staying in the gaseous phase [11].  

Humans are exposed to phthalates on a daily basis via several pathways like 

ingestion, inhalation (gaseous or particle bound), dermal absorption and intravenous 

injection [8]. Phthalate exposure can occur directly by using a product which contains 

phthalates, e.g. personal care products, or indirectly by a product where the 

phthalates are leached or migrate into, e.g. food through packaging material.  

• Ingestion: is the main route of exposure to phthalates. It occurs mainly via 

dietary intake and to lesser extent via pharmaceuticals, nutritional supplements, and 

mouthing or sucking children toys. The systemic bioavailability is assumed to be 50 

% for adults and 100 % for children / infants [15]. 

• Inhalation: occurs through house dust and also through medical devices, e.g. 

breathing tubes (bioavailability from 75 % (adults) to 100 % (children and infants) 
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• Skin absorption: occurs through direct contact with products like clothes, 

personal care products, etc. which contain phthalates. In general the absorption of 

phthalates through skin is limited (bioavailability lays around 5 %).  

• Intravenous: occurs through medical devices when phthalates migrate from 

e.g. infusion bags into the fluid which is intravenously administered to the patient [9].  

 

Ingestion of food containing phthalates and absorption through the use of personal 

care products are the major contributors to phthalate exposure, whereas inhalation is 

negligible [16].  

In addition to the different exposure pathways mentioned before, the phthalate body 

burden is influenced by hand to mouth activity, mobility, diet, personal care and 

hygiene practices. Therefore infants and toddlers have a higher risk of an increased 

phthalate intake than adults, based on their high food and water requirements per 

unit of body mass, their increased hand to mouth activity and their higher ventilation 

rate [17].  

 

1I1I2I2 Mouthing – another exposure pathway for infants 

Young children use mouthing as a part of exploring their environment. Mouthing is 

defined as activities where fingers or objects are put into the mouth or touched with 

the mouth, which includes licking, sucking, chewing, biting but excludes eating and 

drinking. An important and limiting factor of phthalates exposure is the duration of 

mouthing, which is equal to the exposure time. As demonstrated in studies [18, 19], 

mouthing objects like toys, fingers and pacifiers and mouthing time differ by age. 

Between 0 and 18 months the average mouthing time of toys is 20 mins, whereas 

between 18 and 36 months, it is only five minutes [20]. Sucking and licking behaviors 

are the most common way of mouthing. It was also shown that mouthing objects 

change by age. In the first three months, the main mouthing objects are fabrics (80 

%), while around 6 to 9 months, plastic toys account for 50 % of the objects mouthed 

and remain the main mouthing object until the age of five. A 6 to 9 months old child 

mouthed around 26 different items per day, whereas only 3 items were mouthed by a 

1 to 3 month old child. The highest mouthing time (5 hours) was found at age 6 to 9 

months and two year old children [18]. In general the hand to mouth frequency 

decreased by increasing age [21, 22]. Besides the age of the child and the duration, 
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another important factor of the frequency of mouthing is the location, indoor and 

outdoor. It was shown that indoor hand to mouth frequencies was 2.4 times higher 

than outdoors with two-year old children.  

In two meta-studies, Xue et al. [21, 23] calculated the frequency of hand to mouth 

and object to mouth. The average indoor hand to mouth contact for toddlers ranged 

between 12.7 and 19.6 contacts per hour, whereas the mean indoor object to mouth 

contact is higher and varies between 15 and 26.6 times per hour. At 1 to 2 years, the 

outdoor object to mouth rate was three times lower than the indoor rate. 

In addition to mouthing, crawling and sitting on the floor increases the accessibility to 

house dust. Compared to older children and adults, infants and toddlers have a 

greater exposure risk of indoor pollutants in dust.  

Including mouthing, the average daily dust ingestion of an infant or toddler is around 

50 mg/d whereas an adult only ingests around 1 mg/d [24, 25]. Furthermore, infants 

and toddlers could be exposed through using teething rings, pacifiers or the nipple of 

baby bottles, which could contain certain phthalates. Since 1999 the use of 

phthalates in certain baby articles were restricted to less than 0.1 % of the object 

weight [20].  

In conclusion, mouthing of objects, like toys etc. which contain phthalates or are 

covered by dust can be a potential source of the phthalates exposure for infants and 

toddlers.  

 

1I1I2I3 Phthalate migration  

The common method for measuring phthalate migration from toys to saliva is the 

head over heels agitation method. Five sample pieces 2 mm thick and 23 mm in 

diameter are removed from the surface of the investigated toy. Each piece is put in a 

flask which is filled with 25 ml of saliva simulant solution. In a head over heels rotator, 

this flask is rotated for 30 min at 60 rpm. After this, the saliva simulant solution was 

prepared for analyzing by HPLC or GC/MS [26] (detailed description in TNO Report 

[27]). Pfaff et al. [28] concluded in their migration experiment with plastic toys that the 

average DEHP and DINP migration was around 10 µg/cm²/h. In an in vivo 

experiment by Fiala et al. [29], the migration behavior of DINP was investigated by 

sucking and biting on a toothing ring. The result of that study showed that the 

average release of DINP through sucking was 1.38 µg/min/10cm², whereas when 
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chewing was included, it amounted to 2.22 µg/min/10cm². During this procedure 36 

% of the DINP content of the toothing ring was released. Furthermore, it showed that 

the migration behavior of DEHP is similar to DINP. The higher the DEHP and DINP 

content of a product, the higher the migration rate. In addition to the phthalate 

content, it has been concluded that the migration rate is also influenced by factors 

like surface roughness, coating type, thickness of the object, and the surrounding 

temperature [26, 30]. Further tests also showed that in a saliva simulant solution the 

migration rate was higher than in water and additionally that sucking and chewing 

increase the migration process compared to static conditions [29].  

 

1I1I2I4 Methods to calculate phthalate exposure and intake 

There are two tools to calculate the human phthalate exposure, biomarker studies 

and indirect studies. In biomarker studies, the total daily intake was back calculated 

using the metabolite concentration in urine. Whilst in the indirect studies, the 

concentrations in the environmental media and food combined with e.g. ingestion 

rates are used to calculate the phthalate intake. Biomarker studies are susceptible to 

physiology and do not provide any information about exposure sources. In addition, 

the toxicokinetic properties of each phthalate has to be known for an adequate 

calculation. In the indirect studies, the main focus is on dietary intake, which is 

calculated by a database of phthalate concentration in food. A few indirect studies 

include other pathways like inhalation or dermal contact [31].  

Clark et al. [31] performed a comparative study of biomonitoring and the indirect 

method and concluded that in many cases both methods agree with each other and 

discrepancies are explainable through regional differences, focusing on one 

metabolite, not including all pathways or lack of information. Both methods have their 

advantages as well as their disadvantages, but there is a tendency that for low 

molecular weight phthalates the biomarker method is a better choice, because for 

those phthalates is it difficult to identify all the exposure source, whereas for high 

molecular weight phthalates, either method is adequate. Furthermore, the indirect 

method is useful to detect new exposure sources while the biomarker method 

quantifies the amount of exposure.  
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For calculating phthalate intake, the following equations are used:  

The daily intake of phthalates is estimated by the following equation [32]:  

             

D = daily intake, C urine = metabolite concentration in urine in µg/l, UV = excreted urinary volume per 
day, Fue = molar fraction of excreted metabolites in relation to the corresponding parent compound, 
MWp = molecular weights of phthalates and MWm =molecular weight of the corresponding metabolite.  

 

To estimate the phthalate intake through dust ingestion the following formula is used 

[24]:  

             

Edust = phthalate intake caused by dust in mg/kg b.w. per day, Cdust: phthalate concentration in dust in 
mg/kg, qdust: amount of the daily dust ingestion in kg/d, ruptake: the fraction of the amount of phthalates 
transferred into the body.  

 
This equation can be modified for other ways of ingestion, e.g. food or exposure 

through toys.  

 

1I1I3 Health effects of phthalates  

Due to the extensive use of chemicals, the exposure of humans to various industrial 

chemicals has increased in the last decades. Several of such man-made substances 

have been shown to be toxic in animal studies and also have an impact on human 

health, respectively [33]. As shown in vivo and in vitro, several phthalates have an 

antiandrogenic activity and possible estrogenic actions and therefore phthalates are 

classified as endocrine disrupting/modulating agents, which target mainly the male 

reproductive system [16]. 

Endocrine-Disrupting Chemicals (EDCs) are natural or man-made substances which 

alter the normal function of the hormone system, by inhibition, mimicry or modification 

of the hormone. In addition, EDCs can modify the production of hormones in 

endocrinal glands and the metabolism of hormones [34].  

 

1I1I3I1 Reproduction and development 

Some phthalates cause reproductive and developmental toxicity. They are able to 

cross the placental barrier. Gestational exposure can reduce the Leydig cell 

testosterone production, which could cause malformation in genital development or a 
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shortened anogenital distance (AGD) [16]. In addition, it was discussed if 

abnormalities like hypospadias, cryptorchidism and malformation of the epididymis, 

vas deference, seminal vesicles and prostate are effects of the so- called “phthalate 

syndrome” or “testicular dysgenesis syndrome”. Especially DEHP, DnBP and BBzP 

are associated with these abnormalities [35].  

At the present state of knowledge, it is not clear if prenatal phthalate exposure is 

associated with gestational length or anthropometry of newborns. In recent years, 

several studies have been published, but the results are inconclusive [36, 37].  

 

Semen parameters  

The primary target of e.g. DEHP are Sertoli cells in the testes. Furthermore, it is well 

known that the metabolite MEHP is responsible for the effects in the testes. The 

Sertoli cells are an important part of spermatogenesis by determination of the amount 

of germ cells. The amount of Sertoli cells in an adult man is influenced by the 

proliferation of Sertoli cells in puberty. The Leydig cells, responsible for the 

production and secretion of testosterone and stimulation of sperm production, were 

also negatively affected by phthalates. It has been shown that DEHP and DnBP 

reduce sperm motility [3, 38]. Duty et al. [39] observed a dose response relation 

between MBzP (metabolite of BBzP) and sperm concentration and motility. 

Furthermore, a correlation between phthalate exposure and DNA damage in human 

sperm was reported. A repeated DEHP dose results in seminiferous tubular atrophy 

induced by the loss of meiotic and post meiotic cell populations in the seminiferous 

epithelium [3, 40, 41].  

Ovary 

Some phthalates are suspected of disrupting the development of ovaries and oocyte, 

acceleration of the primordial follicle recruitment, targeting growing follicles, inhibiting 

the growth of antral follicles, disrupting oocyte maturation and ovulation and altering 

the post-ovulatory process. Further, several studies indicated, that phthalates disrupt 

the production, action and secretion of several sexual hormones by altering mRNA, 

protein and steroidogenic enzymes, resulting in a decreased estradiol level. But the 

mechanism of action is still not clear and further research is needed [42]. 
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1I1I3I2 Thyroid hormone system  

The thyroid hormone system is involved in many physiological processes like 

metabolism, brain and organ development and fetal and child growth. Phthalates are 

suspected of affecting the thyroid signaling through various mechanisms, by 

interfering with the binding between T3 and transport proteins and the plasma 

membrane uptake of active T3, respectively. An inverse relationship between urinary 

DEHP-metabolites and total and free T4 levels, total T3, thyroglobulin and increased 

TSH level was observed. Those results indicated that phthalates negatively affect the 

thyroid system and metabolism, which can cause a negative impact for the 

developing fetus and growing child [16, 43, 44].  

 

1I1I3I3 Asthma and Allergies  

Phthalates have been associated with modulation of the immune system. Reviewed 

by Bornehag et al. [33], experimental studies showed that phthalates have an 

adjuvant effect on Th2 cells (differentiation or production) and enhanced the level of 

Th2 cells promoted immunoglobulins IgG and IgE. IgE has an essential role in 

allergies and asthma. Several epidemiological studies indicate a possible correlation 

between asthma, allergies, rhinitis, eczema or wheezing symptoms and phthalate – 

especially DEHP exposure [17]. Another study by Bornehag et al. [45] showed that 

high concentration of DEHP in house dust is associated with asthma and high levels 

of BBzP are related to allergic and eczematous symptoms.  

 

1I1I4 Biomonitoring data of phthalate levels in urine 

The Human Biomonitoring Commission advises two Human BioMonitoring values 

(HBM1 and HBM2) to assess the pollutant exposure in the general population. The 

HBM1 value is a control value, where no negative health effects are expected, 

whereas the HBM2 value is an intervention level. The (HBM I) for the sum of DEHP 

metabolites in urine is set for children (6-13 y) at 500 µg/l, for women in childbearing 

age 300 µg/l, and for the rest 750 µg/l [47]. The German Environmental Surveys 

(GerES) IV, a representative study, showed that 1.5 % of the investigated children 

exceed the HBM I value [46]. Additionally, GerES indicated that children have up to 
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four fold higher urinary phthalate metabolite levels than adults. The study also shows 

that the concentration levels decreased by increasing age [46]. 

Table 2 gives an overview of the urinary phthalate metabolite concentration of 

several biomonitoring studies conducted on children. In nearly all urine samples the 

phthalate metabolites were detectable [42]. Moreover, it shows that highest 

concentrations were observed for DEHP metabolites, followed by DnBP and DINP 

metabolites [46]. 
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Table 2. Phthalate metabolite concentration in urine [µg/l] 
Source MEHP 5oxo-MEHP 5OH MEHP 5cx-MEPP MnBP 
 MED Min-Max 95thP. MED Min-Max 95thP MED Min-Max 95thP MED Min-Max 95thP MED Min-Max 95thP 

Fromme et al, 2013 
n=663 [47] 

   17.9 0.8-168 58.2 16.5 0.8-225 60.2    32.4 2.3-221 124 

Langer et al, 2014 
n=441 [48] 

4.7 - 14.6 17.6 - 71.3 33.2 - 115.9 34.5 - 135.8 80.1 - 242.7 

Becker et al, 2004 
n=254 [49] 

7.18 0.74-223 29.7 97.7 <0.5-
1420 

139 52.1 1.86-2590 188 - - - - - - 

Koch et al. 2007 
n=239 [50] 

- - - - - - - - - - - - 166 15.5-3193 624 

Koch et al. 2003 
n=85 [51] 

10.3 <LOQ-
177 

37.9 36.5 0.5-544 156 46.8 0.5-818 224 - - - - - - 

Kasper-Sonnenberg 
et al. 2012 n=104 
[52] 

4.0 <LOQ-
27.7 

17.1 26.4 1.9-135 88.8 31 1.6-163 88.2 42.1 7.3-259 127 54.2 2.0-274 148 

Becker et al. 2009 
n=599 [46] 

6.7 <LOD-
319 

25.1 36.3 <LOD-
2490 

123 46 <LOD-3640 164 61.4 <LOD-
4490 

209 93.4 <LOD-
1090 

310 

Larsson et al. 2017 
n=113 [53] 

1.5 <LOD-11 5.6 12 1.5-82 37 17 1.8-133 56 16 2.4-100 52 54 3.9-327 141 

 MINP 7oxo MINP 7OH-MINP 7cx-MINP MBzP 
 MED Min-Max 95thP MED Min-Max 95thP MED Min-Max 95thP MED Min-Max 95thP MED Min-Max 95thP 

Fromme et al, 2013 
n=663 [47] 

- - - 4.6 0.2-486 29.9       11.6 0.8-311 80.7 

Langer et al. 2014 
n=441 [48] 

- - -          13 - 74.1 

Becker et al, 2004 
n=254 [49] 

- - -          - - - 

Koch et al. 2007 
n=239 [50] 

- - -          18.8 0.93-744 123 

Koch et al. 2003 
n=85 [51] 

- - -          21 1.2-268 146 

Kasper-Sonnenberg 
et al. 2012 n=105 
[52] 

- - -          11.7 0.5-368 62.9 

Becker et al. 2009 
n=599 [46] 

- - - 5.4 <LOD-
86.7 

28.9 11 <LOD-198 50.6 12.7 <LOD-
195 

58.9 18.1 <LOD-468 76.2 

Larsson et al. 2017 
n=113 [54] 

- - - 5.6 0.7-453 35 12 1.3-1100 93 17 1.7-2300 128 8.6 1-95 45 

All studies collected morning urine, except of Fromme et al.[47] and Larsson et al.[54] (spot urine samples); all urine samples were collected from children, MED: 
Median, Min-Max: minimum to maximum, 95th P.: 95th Percentile. 
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1I1I5 Short description of certain phthalates  

According to the Annex XVII to Regulation (EC) No 1907/2006 of the European 

Parliament and of the Council, toys which contains DEHP, BBzP or DnBP in a 

concentration greater than 0.1% by weight of plastics is not allowed to be placed on 

the EU market. DINP is forbidden to have higher concentration of 0.01% per weight 

in toys and childcare articles [14]. BBzP, DEHP and DnBP are also classified as 

substances of very high concern and are listed in REACH [54].  

 

1I1I5I1 Butyl benzyl phthalate (BBzP) 

Butyl benzyl phthalate is produced by esterification of phthalic anhydride. The 

resulting monobutyl ester of the phthalic acid reacts with benzyl chloride to form 

BBzP. The physicochemical properties of BBzP are described in Table 3. From 1994-

1997 36,000 tons p.a. of BBzP were produced and used within the European Union. 

The use and production of BBzP has decreased since 2004 (19,500 tons p.a.), 

because it was classified as toxic, possibly causing harm to unborn children (R61), 

risking impaired fertility (R62) and effecting the environment negatively, especially 

aquatic organisms (R50-53). According to Directive 76/769/EEC, the marketing and 

use of BBzP and preparations containing BBzP intended for consumer use is 

prohibited, which means it is banned in cosmetic products, toys and childcare articles 

[55]. BBzP is mainly used as a plasticizer in PVC products, especially in flooring. 

Besides PVC, sealants, adhesives, paints, ink and lacquers contain BBzP [56].  

Table 3. Physicochemical characteristics of BBzP [56] 

IUPAC Name Benzyl butyl phthalate 

CAS Number 85-68-7 
Molecular formula  C19H2004 
Molecular weight 312.35 g/mol 
Physico-chemical properties Physical state: Clear oily liquid 
 melting point < -35°C 
 boiling point: 370°C at 10.10 hPA 
 relative density 1.116g/cm³ at 25°C 
 vapor pressure 0.00112 Pa 
 water solubility 2.8 mg/l at 20-25°C 
 Partition coefficient n-octanol/water  4.84 
Structural formula 

 



 

19 

 

Toxicokinetics of BBzP  

For the general population, the most probable means of BBzP exposure are 

ingestion and inhalation of indoor air. The absorbed BBzP is metabolized to mono 

butyl phthalate (MnBP) and mono benzyl phthalate (MBzP) in the gut wall and/or in 

the liver (Fig. 2). In rats, where most toxicokinetic studies have been made, the ratio 

of MnBP and MBzP is 3:1. On the contrary, in humans, the main metabolite and 

therefore an adequate biomarker seems to be MBzP. Based on limited data, the half- 

life time seems to be less than 24 hours [56].  

 
Figure 2. Schematic view of the Metabolism of BBzP [56]. BBzP: Benzylbutyl phthatale, MnBP: mono-

n-butyl phthalate, MBzP: mono-benzyl phthalate. The framed metabolite MBzP is qualified as a 

biomarker. 

 

Health effects 

This phthalate has a low acute toxcixity (oral LD 50 20,400 mg/kg). Repeated dose 

toxicity studies (mainly in rats) resulted in decreased body weight gain, negative 

effects to organs as liver, kidney, spleen and pancreas and male genital tract as 

testes, epididymis and prostate. Besides altering the semen parameters (already 

mentioned above), BBzP is inversely related to the anogenital index (AGI). Boys with 

a high prenatal maternal urinary MBzP concentration had a higher probability of a 

lower AGI [56].  

BBzP is associated with rhinitis, eczema (atopic dermatitis), allergy and a higher risk 

of asthma especially for children (reviewed by Bekö [57]). In an epidemiological study 

conducted by Bornehag et al. [45], a relationship between the BBzP concentration in 

children’s bedroom dust and diagnosed rhinitis or eczema was determined. Several 

in vivo and in vitro studies indicate a weak estrogenic as well as an anti-androgen-

like activity after a high dose of BBzP [56].  
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1I1I5I2 Di-n-butyl phthalate (DnBP) 

DnBP production occurs through the reaction of phthalic anhydride with n-butanol in 

the presence of concentrated sulphuric acid (catalysator). DnBP is used as a gelling 

aid (for cellulose ether, polyvinyl acetate dispersion), a lubricant (textile manufacture), 

an antifoam agent or a solvent (oil-soluble dyes, insecticides, peroxides etc.). The 

enteric coating material in medications or food supplements also contains DnBP. 

Formerly, DnBP was added to cosmetic products to enhance durability and 

smoothness but since April 2005, it is no longer available on the European market. 

However, this plasticizer can be found in a wide range of end products like textiles, 

coatings and the primary packaging of medicines [58, 59].  

Based on the European restriction, the production and use of DnBP has decreased 

from 26,000 tons in 1998 to 10,000 tons in 2007. The physicochemical 

characterization of DnBP is given in Table 4.  

Table 4. Physicochemical characteristics of DnBP  

IUPAC Name 1,2-Benzendicarboxylic acid dibutyl ester 

CAS Number 84-74-2 
Molecular formula  C16H22O4 
Molecular weight 278.34 g/mol 
Physico-chemical properties Physical state: Oily liquid 
 melting point -69°C 
 boiling point: 340°C at 1,013hPa 
 relative density 1.045g/cm³ at 20°C 
 vapor pressure 9.7±3.3x10-5 hPa at 25°C 
 water solubility 10 mg/l at 20°C 
 Partition coefficient n-octanol/water  Log Kow 4.75 
Structural formula 

 

 

Toxicokinetics of DnBP 

The exposure to DnBP occurs mainly through oral uptake, where it is rapidly 

absorbed and mainly excreted in urine within 48 hours. Fecal excretion is very low 

and negligible. Compared to oral uptake, dermal absorption is with 2.4 µg/cm²/hour 

relatively slow. After dermal exposure to rats, 60 % of the dose was excreted within 7 

days [60]. 

The metabolism of DnBP was investigated by Koch et al. [59]. Di-n-butyl phthalate is 

metabolized to mono-n-butyl phthalate (MnBP) and then further oxidized to its 

metabolites 3OH–mono-n-butyl-phthalate (3OH-MnBP) and 4OH-mono-n-butyl-
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phthalate (4OH-MnBP). The latter is then metabolized to 3-carboxy-mono-

propylphthalate (MCPP) (as shown in Figure 3). In this study, it was postulated that 

84% of the applied DnBP doses was excreted as the primary metabolite MnBP, with 

a half-life time of 2.6 hours. Therefore MnBP is an appropriate biomarker for 

biomonitoring studies.  

 
Figure 3. Schematic view of the DnBP metabolism (according to Koch et al. [59]). DnBP: di-n-
butylphthalate; MnBP: mono-n-butylphthalate; 3OH-MnBP: 3OH-mono-n-butylphthalate; 4OH-MnBP: 
4OH-mono-n-butylphthalate; MCPP: 3carboxy-mono-propylphthalate; the framed metabolite are 
qualified biomarkers. 

 

Health Effects  

DnBP is classified as reprotoxic. DnBP seemed to have more of an anti-androgenic 

effect than estrogenic. Reproductive toxicity studies in male rats showed increased 

incidence of undescended testes, hypospadias, malformation of reproductive organs 

and nipple retention. The underlying mechanism might be a decrease in the fetal 

testicular testosterone production in Leydig cells. DnBP is associated with sperm 

motility and weak evidence of an altered morphology was found [39]. In a Chinese 

case control study, a relationship between a higher meconium DnBP metabolite level 

and lower birth weight in infants was found [17]. The No observed adverse effect 

level (NOAEL) ranges between 20 to 50 mg/kg body weight per day [61].  
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1I1I5I3 Bis (2-ethylhexyl) phthalate (DEHP) 

The production of DEHP occurs through the esterification of phthalic anhydride with 

2-ethyl-hexanol [15]. DEHP is mainly used as plasticizers in polymer products, 

especially in flexible PVC (up to 30 % DEHP content), which is used in many different 

products as toys, building material (flooring), cables and medical products (tubes, 

blood bags, etc.). Besides PVC, it is also used in polymer and non-polymer 

formulations and products like sealants, paints lacquers or ceramics. In 1997 the 

volume of production of DEHP was estimated to be 595,000 tons p.a. in Western 

Europe. Since 2004 the use of DEHP has decreased to 221,000 tons p.a., while the 

production and use of phthalates to substitute DEHP, DINP and DIDP has increased. 

Based on the fact that DEHP slowly migrates from polymer products during their 

complete lifetime, both humans and the environment are constantly exposed to 

DEHP [62]. Its physicochemical properties are given in Table 5.  

According to Annex I of Council Directive 67/548/EEC [63], DEHP is classified as 

toxic to reproduction (Category 2; R60-61).  

Table 5. Physicochemical characteristics of DEHP 

IUPAC Name Bis (2-ethylhexyl) phthalate  

CAS Number 117-81-7 
Molecular formular  C24H38O4 
Molecular weight 390.56 g/mol 
Physico-chemical properties Physical state: Colourless oily liquid 
 melting point -55°C 
 boiling point: 385°C at 1013hPa 
 relative density 0.98 g/cm³ at 20°C 
 vapor pressure 0.000034 PA at 20°C 
 water solubility 3 µg/l at 20°C 
 Partition coefficient n-octanol/water  7.5 
Structural formula 
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Toxicokinetics of DEHP  

The DEHP exposure occurs through oral, inhalation, dermal or intravenous 

pathways. The main exposure source is intake of food which is DEHP-contaminated 

either by general environmental pollution or by contact with DEHP containing 

materials, DEHP handling and preparation processes.  

After oral uptake, DEHP is rapidly absorbed and metabolized in the gastrointestinal 

tract. DEHP is quickly hydrolyzed to mono (2-ethylhexyl) phthalate (MEHP -primary 

metabolite) and 2-eythalhexanol (2-EH) by lipases in the small intestine. In the liver, 

MEHP is further modified by several side-chain oxidation and hydroxylation reactions. 

A toxicokinetic study conducted by Koch et al.[13] showed that after 24 hours 67 % of 

the applied DEHP dose was excreted as five of the major metabolites: 2-ethyl-5-

hydroxy-hexylphthalate (5OH-MEHP; 23.3 %), 2-ethyl-5-carboxy-pentylphthalate 

(5cx-MEPP; 18.5 %), 2-ethyl-5-oxy-hexylphthalate (5 oxo-MEHP; 15 %), mono (2-

ethylhexyl) phthalate (MEHP; 5.9 %) and 2-(carboxymethyl)-hexylphthalate (2cx-

MMHP; 4.2 %). On the second day only 3.8 % of DEHP was excreted as 2cx-MMHP 

(1.6 %), 5cx-MEPP (1.2 %), 5OH-MEHP (0.6 %) and 5 oxo-MEHP (0.4 %). Further it 

was shown that the secondary metabolites have longer elimination half-life time and 

a later concentration maximum as the monoester MEHP. The long half-life 

elimination qualifies 5cx-MEPP and 2cx-MMHP (12-15 hours and 24 hours) as 

biomarkers to measure time-weighted exposure, while 5OH-MEHP and 5oxo-MEHP 

(10 hours) represent more a short-term exposure to DEHP. A dose dependency in 

metabolism and excretion was not observed. A graphic scheme is shown in Figure 4.  
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Figure 4. Schematic view of the DEHP metabolism (according to Koch et al. [64]), the framed 
metabolites are qualified biomarkers. 

 

Health effects 

The acute toxicity of DEHP is very low. The oral LD50 ranged between >20,000 mg/kg 

b.w. (rats) and > 10,000 mg/kg b.w. (mice). DEHP is not reported to be mutagenic or 

carcinogenic. In several repeat dose toxicity studies (orally administered), it was 

shown that DEHP induces toxicity to testes and kidneys. In rodent studies, DEHP 

affected fertility and reproduction in both sexes and also influenced development in 

the offspring. Further, it was shown that DEHP-induced testicular toxicity causes less 

harm to a sexually mature animal than to a developing and prepubertal animal. The 

primary metabolite (MEHP) is suspected to be the active metabolite, which affects 

testes and reproduction. The main target of DEHP (MEHP induced testicular toxicity) 

are the Sertoli cells and Leydig cells. Further, it decreases the capacity of the follicle 

stimulating hormone (FSH) in Sertoli cells, zinc and the testosterone levels in the 

testes. Low zinc levels in testes enhance the susceptibility to gonadotoxic effects in 

male rodents. Based on limited human data, the observed NOAEL for testicular 

effects of 4.8 mg/kg/d in animal studies was considered to be relevant for humans as 

well. Besides testicular effects, some research indicates that oral dosing of DEHP 

cause hypo-oestrogenic anovulatory and polycystic ovaries in adult female rats. An 

alteration in the oestrus cycle with resulting changed testosterone and oestradiol 

concentration in ovary cells was observed after DEHP administration to female rats. 

Developmental toxicity has been observed in several studies, the rats male pups 
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showed DEHP-induced malformations, e.g. demasculinisation or reduced AGD by 

inhibiting fetal testosterone production. In vitro as well as in vivo studies indicate that 

DEHP interferes with the endocrine function and might have antiandrogen effects. 

Therefore DEHP can influence sexual differentiation [15].  

Besides reprotoxicity, DEHP might influence the thyroid hormone system. An inverse 

association between MEHP and free T4 and total T3 was observed. More data are 

needed to determine the importance of such an association [43].  

From an epidemiological point of view, a significant association was found with a high 

concentration of DEHP in children’s bedroom dust and diagnosed asthma [45].  

 

1I1I5I4 Diisononyl phthalate (DINP)  

There are three different kinds of DINP, which are also produced in different ways. 

The first DINP (CAS 68515-48-0) is made by the “polygas” process, the second one 

(CAS 28553-12-0) is n-butene based and the third one (CAS 28552-12-0) is 

produced n- and iso-butene based. DINP 1 is a mix of esters of the o-phthalic acid 

with C8-C10 alkyl alcohols of different chain lengths and branching distribution, 

whereas DINP 2 has only isomeric C9 alcohols in the ester chain. Since 1995, the 

production of DINP 3 (CAS 28552-12-0) has stopped. Based on the different 

chemical structures, the three DINPs may have different physicochemical and 

toxicological characteristics (the general ones are shown in Table 6) [65, 66].  

In 1994, 107,200 t of DINP were produced in the European Union. Because of low 

toxicity, DINP is replacing DEHP and therefore the production of DINP has increased 

in the last two decades. Ninety-five% of the DINP produced is used as a plasticizer in 

PVC products, the other five % are mainly used in polymer products (e.g. rubbers). 
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Table 6. Physicochemical characteristics of DINP [67] 

IUPAC Name 1,2-Benzenedicarboxylic acid, di-C8-10 branched alkyl esters, C9 
rich and di-“isononyl”phthalate 

CAS Number 685515-48-0 and 28553-12-0 
Molecular formula  C8+2xH6+4xO4 with x=8 to 10 (x=9 as main constitution) → C26H42O4 

Molecular weight 420.6 (average) g/mol 
Physio-chemical properties Physical state: Oily viscous liquid 
 melting point Ca. -50°C 
 boiling point: >400°C 
 relative density ca.0.975 at 20°C 
 vapor pressure 6*10-5 Pa at 20°C 
 water solubility 0.6 µg/l at 20°C 
 Partition coefficient n-octanol/water  8.8 
Structural formula 

[67] 

[68] 

 

Toxicokinetics of DINP 

The routes of DINP exposure are mainly oral through consumer products, food or 

toys. The dermal or inhalation pathway is very limited. The dermal uptake of DINP is 

very slow (4 % of the dose within 7 days).  

After the oral uptake, DINP is rapidly hydrolyzed to MINP in the gastro-intestinal tract 

(GIT) and then absorbed. MINP undergoes an oxidative metabolism by the ω-

oxidation (oxidation of the terminal carbon atom of the side chain) or ω-1 oxidation 

(oxidation of the penultimate carbon atom of the side chain) pathway to form 

secondary metabolites with hydroxyl-, oxo- and carboxyl- functional groups (7OH-

MINP, 7oxo-MINP and 7cx-MINP) [12] (see Figure 5). The distribution compartments 

are the liver, kidney and blood but DINP does not accumulate in the body. In a 

toxicokinetic study conducted by Koch et al. [69], 43.6 % of the applied dose was 

excreted mainly as OH-MINP (20.2 %), carboxy-MINP (10.7 %), oxo-MINP (10.6 %) 

and MINP (2.1 %) within 48 hours. The estimated half-life time is between three to 

five hours within the first elimination phase of 24 hours post dose. In rodents, a 

limited absorption in a high dose range was observed [11].  

https://www.google.de/imgres?imgurl=https://www.ec.gc.ca/ese-ees/D3FB0F30-6123-4868-B9B7-E4008A50419B/X-20150803142650546.jpg&imgrefurl=https://www.ec.gc.ca/ese-ees/default.asp?lang%3DEn%26n%3DD3FB0F30-1&docid=qUenIF0NHoxM5M&tbnid=xr_RMeJf1J4gTM:&vet=1&w=1670&h=651&bih=904&biw=1680&q=cas%2068515-48-0&ved=0ahUKEwjZ28Lmt57SAhVISBQKHXwiD0gQMwg7KBQwFA&iact=mrc&uact=8
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Figure 5. Schematic view of the DINP metabolism (4 methyl-octyl side chain) [69], DINP: Di-
isnonylphthalate, MINP: mono (4 methyloctyl) phthalate, 7OH-MINP: -mono-(4-methyl-7-hydroxyoctyl) 
phthalate (7OH-MMeOP); 7-oxo-MINP: mono (4-methyl-7oxooctyl) phthalate (7oxo-MMeOP); 7cx-
MINP: mono (4-methyl-7-carboxy-heptyl) phthalate (7-carboxy-MMeHP). 
 
 

Health effects 

DINP has a low acute toxicity and showed no irritant effects on skin, eyes or the 

respiratory system. Neither mutagenic nor carcinogenic effects were observed. In 

repeated-dose toxicity studies in rats or mice, no effects on testes weight, estrogen 

activity and developmental malformation were observed, but biochemical changes in 

liver (increased asparate-aminotransferase (AST) and alanine aminotransferase 

(ALT) and an increased liver weight. Only one study showed a reduced mice testis 

weight after a high dose of DINP (5.7 mg/kg/d). The EU did not classify DINP[14].  

 

1I2 Dust 

In industrial countries, humans spend 60 to 90% of their time indoors, either at home, 

in offices or in transportation facilities. The indoor environment is a significant source 

of pollutants which are found in various products like detergents, furniture, flooring 

and wall covering material. In addition, indoor activities such as smoking and cooking 

as well as the frequency of air exchange can influence the level of pollutants in the 

indoor environment. The greater amount of time spent indoors, limited room 

ventilation, and slower chemical degradation rates lead to higher indoor pollutant 

exposure compared to outdoors. Analyzing indoor dust can give information about 

the presence of, and exposure to, pollutants in indoor environments. House dust is 

linked to adverse health effects like asthma and allergies because it is a transport 
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medium for allergens, heavy metals, semi- and non-volatile chemical substances, 

e.g. phthalates or polybrominated diphenyl ethers [70-74]. Dust is characterized as 

indoor particles that have settled on the surface of objects, as well as floors and 

carpeting. It also includes soil particles or other organic matter that has been tracked 

or blown into the indoor environment from outside [75]. Dust composition differs not 

only between indoors and outdoors, it also varies between the kitchen, living room 

and bathroom of a dwelling [76]. Hawley et al. [25] estimated that the average 

amount of dust on an indoor surface is approximately 560 mg/m². Dust contains 

human and animal skin fragments and hair, paper fibers, glass wool, textile fibers, 

organic, inorganic and metal particles, in descending order [73]. The particle size of 

dust caused by abrasion from furniture and everyday objects ranges from 0.001 to 1 

mm [77]. 

 

1I2I1 Phthalates in dust 

As a consequence of their ubiquitous usage, phthalates are one of the most 

frequently occurring compounds in house dust. Phthalates are released as vapor 

from the flooring material containing PVC which is then absorbed by particles in 

indoor air.  

Phthalates like DEP, DnBP and DiBP tend to exist as gases and are therefore more 

frequently found in indoor air, whereas DEHP, DINP and BBzP, being less volatile, 

are more common in house dust [78]. Based on the lack of degradation or dissipation 

of the organic pollutants which are bound to dust, organic pollutants have a high 

exposure potential [79]. The composition of house dust is non-homogeneous and the 

phthalate concentrations are highly variable. It has been shown that phthalate 

accumulations strongly depend on particle size distribution in house dust [30]. Wang 

et al. [80] investigated the accumulation rate of phthalates in different particle sizes < 

63 µm, 63 - 100 µm, 100 - 280 µm and 280 - 2,000 µm; the highest rates were found 

at < 63 µm and 63 - 100 µm. Bioaccessibility decreased by increasing particle size. 

Particles with <63 µm are associated with a higher health risk for humans than 

particles with diameter of 280 - 2000 µm. Furthermore, it was shown that particles < 

250 µm have the highest capacity to be collected by the human hand [29].  

Table 7 gives an overview over the phthalate concentration in house dust.  
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Bornehag et al. [81] measured the phthalate content in dust in relation to building 

types in 390 homes in Sweden. The phthalate most frequently and with the highest 

levels of concentration detected in dust was DEHP, followed by DnBP and BBzP. In 

this study it was shown that flooring materials influence the phthalate concentration. 

Apartments with PVC flooring have a higher DEHP and BBzP content in dust 

compared to apartments with no PVC. In addition to PVC, there are other sources 

which influence the DEHP background concentration because the average DEHP 

content in dust in PVC flooring apartments was found to be around 0.7 mg/g, 

whereas in dwellings containing no PVC, the DEHP content was 0.55 mg/g. In 

contrast, this effect was not observed for BBzP. In other studies published by 

Fromme et al. [47] did not observe this effect. Hwang et al. [79] investigated the 

exposure of endocrine disrupting chemicals, like phthalates, polybrominated diphenyl 

ethers and polychlorinated biphenyls in dust samples from 10 apartments and one 

community hall in California, USA. This study revealed that DEHP was the most 

frequently detected pollutant in all dust samples and its concentration was 104-7630 

µg/g which is two to six times higher compared to other pollutants. 

DnBP is associated with compressed wood floors because DnBP is often used as a 

gloss agent in plastic additives or paint for such floors. Furthermore, an association 

between the frequency of cleaning the floor and DnBP was found, based on the fact 

that DnBP is often a component in cleaning products [82]. 
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Table 7. Phthalate concentration in dust [mg/kg] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
All dust samples were sieved <63µm except of Blanchard et.al. (100µm), Guo et al. (2mm) from vacuum cleaning bags; Fromme et al. [47], Langer et al.[83], 
Bamai et al [82] Larsson et al. [53] used filters. 

 

Source BBzP DEHP DnBP DINP 
 MED Min-Max 95th P MED Min-Max 95th P MED Min-Max 95th P MED Min-Max 95th P 

Fromme et al,2013  
n= 63 [47] 

6 0.1-348 93 888 99-10086 7616 21 2-266 95 302 30-7091 2955 

Bamai et al 2013 
n=128 [82] 

2 1.0-139  1110 213-7090 - 16.6 2.0-1670 - 139 11.9-2100 - 

Wang et al.,2013 
(Hong Kong) n=20, 
[80] 

4.28 0.61-
81.9 

- 528 96.8-2190 - 4.8 0.25-17.4 - - - - 

Blanchard et al. 
2014, n= 30 [78] 

8.5 - - 289 - - 11.9 - - 130 - - 

Langer et al. 2010 
n=497, [83] 

3.7 0.7-285 - 210 12.7-6611 - 15 0.18-253 - - - - 

Guo et al. 2011  
(China), n=75 [84] 

0.2 n.g-12.0 - 228 9.9-8400 - 20.1 1.5-1160 - - - - 

Guo et al. 2011 
(USA) n=33, [83] 

21.2 3.6-393 - 304 37.2-9650 - 13.1 4.5-94.5 - - - - 

Larsson et al. 
2017,(Sweden) 
n=100,[53] 

8.7 - 110 290 - 1900 21 - 140 380 - 3400 

Abb et al. 2009 
(Germany) n=30 
[72]  

15.2 - - 604 - - 29 - - 129 - - 
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1I2I2 Exposure through dust 

House dust is suspected to be an important exposure pathway to environmental 

pollutants. Especially young children ingest a high amount of dust via a high hand to 

mouth or object to mouth frequency. Because of their lower body weight, children 

have a relative high dust uptake, which can cause a potential health risk [85]. 

In general there are three different approaches to estimate the exposure through 

dust.  

1. Tracer element methodology: tracer as heavy metals as e.g. lead in dust, are 

used to quantify the amount of dust intake. Ideally the tracer does not be 

metabolized and excreted via feces or urine and it’s only found in high 

concentration in dust. Estimated dust uptake ranged between 26 - 470 mg/d. 

2.  Biokinetic model comparison methodology: This method is used to compare 

biomarkers in urine or blood from the toxicant with exposure pathways as diet, 

air, dust and soil. With data from the literature the dust uptake is expected to 

be 100 mg/d. 

3. Active pattern methodology: It is a combination of analyzing the frequencies of 

hand to mouth and object mouth activity and time spend outdoor and indoors. 

Estimated dust and soil uptake of 10-1000 mg/d [85].  

 

Based on the literature and model data’s, the US-EPA estimated that the average 

uptake of dust ranged between 30 to 60 mg/d. Infants (six weeks to < one year) and 

adults have an unintended oral uptake of 30 mg, while toddler and children (one year 

to six years and six to twenty-one years) ingest 60 mg dust per day. For the age 

group three to six years, an upper percentile of 100 mg dust per day was defined [75, 

85].  

 

The Danish authorities [58] predicted the DnBP ingestion on a daily basis to be 

around 2.3 µg/kg b.w. in summer (50 mg of dust ingestion/day) and 4.1 µg/kg b.w. in 

winter (100 mg of dust per day).  

Depending of the phthalate and its concentration in dust, oral exposure ranges 

between 0.5-21 µg/kg per day (details are shown in Table 8) [86]. 
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Table 8. Phthalate intake through dust ingestion (reviewed by Oomen etal. [86]) 
Phthalate Mean ingestion rate [µg/kg/d] Maximum ingestion rate [µg/kg/d] 
 Adult Child Adult Child 

BBzP 0.23 2.1 32 304 
DEHP 2.3 21 29 270 
DIDP 0.052 0.49 0.05 0.49 
DINP 0.12 1.2 0.12 1.2 
DiBP 0.060 0.56 0.06 0.56 
DnBP 0.16 1.5 3.9 36 

 

Kang et al. [87] investigated the oral bioaccessibility1 in dust by an in vitro digestion 

test. It was shown that the bioaccessibility of DEHP, BBzP and DnBP ranged 

between 10-15 %. By simulating the gastric and intestinal conditions, Wang et al. [80] 

published lower bioaccessibility levels as Kang et al. (2.2 - 12.6 % for DiBP, BBzP, 

DEHP, DIDP). Additionally, a higher bioaccessibility of DMP (15.5 %) at 63 µm dust 

size fraction compared to 0.14 % at 280 - 2000 µm was observed.  

In a bioavailability study conducted by Freeman et al. [90], it was shown that arsenic 

in dust and soil is 3.5 to 5 times less bioavailable than arsenic solved in a solution. It 

indicates that there is an association with the n-octanol/water coefficient (KOW) and 

bioavailability or bioaccessibility. The higher the KOW value, the lower the oral 

bioaccessibility [91]. 

 

Several biomonitoring studies investigated the correlation between children phthalate 

body burden and the phthalate concentration in dust. Fromme et al. [47] measured 

the phthalate concentration in air and dust from German day care centers and 

phthalate metabolite concentration in 663 samples of children’s urine after attending 

the investigated day care centers. A significant correlation of phthalates 

concentration in dust and concentrations of metabolites in urine was only found at the 

bivariate analysis level. Another study conducted by Fromme et al. [92] reported the 

occurrence of phthalates in indoor air and dust from 133 apartments and daycare 

centers in Berlin, Germany.  

                                            
1 Bioaccessability is the amount of a tracer that is soluble or accessible in the gastrointestinal 
environment but not necessarily available for assimilation, whereas bioavailabiliy means that, in 
addition to being accessible in the gastrointestinal environment, the ingested contaminant can reach 
the blood circulation and exert toxic effects.  88. Turner, A., Bioaccessibility of Trace Metals in 
Household Dust A2 - Nriagu, J.O, in Encyclopedia of Environmental Health 2011, Elsevier: Burlington. 
p. 317-322. 89. Yuswir, N.S., et al., Bioavailability of heavy metals using in vitro digestion model: a 
state of present knowledge. Rev Environ Health, 2013. 28(4): p. 181-7. 
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They found that an unintended intake of dust (assumption of 100 mg dust per day) of 

young children could contribute 25 % of the total DEHP body burden.  

In a comparative assessment of phthalate exposure through house dust in China and 

the USA conducted by Gou et al. [84], the results indicated that house dust intake 

accounts for less than 2.2 % of DiBP and DnBP and two to five percent of DEHP 

intake in China, whereas the intake rates in the USA were higher (1 – 16 % for DiBP 

and DnBP, 3 – 21 % for BBzP and 10 – 58 % for DEHP).  

Langer et al. [48] observed significant correlations between DEP, DnBP, DiBP and 

BBzP in dust and their metabolites in children’s urine. For DEHP, there was no 

significant correlation with its observed metabolites.  

 

It is still unclear how much the dust uptake contributes to phthalate exposure. The 

knowledge of bioavailability of phthalates in dust is very limited. Therefore the 

bioavailability of dust is often assumed to be 100 %. However, by this hypothesis, 

children could exceed the TDI through dust ingestion, but the results of human 

biomonitoring studies indicated that this is normally not the case.  

 

1I3 The aim of the study  

This study is conducted to examine the bioavailability of phthalates in house dust 

after oral administration to the model organism, the pig. In this study, we focused on 

phthalates which are highly present in dust and where biomonitoring data showed 

that the human is highly exposed to.  

The aim of the study is to: 

 Determine if dust is a potential source of phthalate exposure, especially for 

toddlers and infants; 

 Investigate if the bioavailability of plasticizer differs in house dust and food 

matrices. 
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2I Material and Methods  

In this in vivo bioavailability study of certain phthalates2 in house dust, eight piglets 

(5-6 weeks old, male, 11-14 kg b.w.; one dropout) received five different dust 

samples and one food sample. The experiment took place from the 5th of October to 

the 15th of November 2015 at the Federal Institute for Risk Assessment in Berlin, 

Germany and was approved by the Regional Office of Health and Social Affairs 

(LAGeSo). The written approval for this animal experiment (Reg 0272/13) and the 

experiment plan (Table A1.) appears in the appendix.  

 

2I1 Study design and sampling  

The dust samples, as well as the food sample, were orally administered to the pigs in 

their morning feeding. The amount of dust given ranged from 432 mg to 832 mg 

(Table 9). 

The food sample consisted of 25 µl of the 1 % ethanol-phthalate mixture. A stock 

solution for each phthalate was made (e.g.10 ml ethanol with 10.7 mg BBzP; 501.2 

mg DEHP, 52.5 mg DINP, and 10.4 mg DnBP). Afterwards 23 µl of the BBzP stock 

solution, 2504.4 µl of the DEHP stock solution, 863.3 µl of the DINP stock solution 

and 44 µl of the DnBP stock solution were diluted in 25 ml ethanol. Table 10 gives an 

overview of the phthalates content in the dust samples. The chemicals which were 

used for the solution are listed in Table A2 in the appendix. The given dose was 

adjusted to the levels of the tolerable daily intake (TDI) of DEHP (50 µg/kg b.w.).  

Table 9: Administered amount of dust [mg] 

mg  Dust A Dust B Dust C Dust D Dust E 

Pig 1 592.21 443.32 553.69 650.41 832.00 

Pig 2 600.9 457.53 535.31 670.39 825.31 

Pig 3 560.91 456.36 544.86 691.00 753.06 

Pig 4 565.07 445.57 620.32 684.67 735.25 

Pig 5 569.09 451.38 550.34 667.06 763.00 

Pig 6 566.42 478.53 528.76 654.67 786.57 

Pig 7 592.58 432.34 541.02 662.76 742.20 

                                            
2  Butylbenzyl phthalate (BBzP), Di-n-butylphthalate (DnBP), Diethylhexylphthalte (DEHP) and 
Diisononyl phthalate (DiNP)  
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Table 10. Overview of phthalate concentration in the administered dust and food sample 

[mg/kg] Dust A Dust B Dust C Dust D Dust E Food 

BBzP 30 180 50 4 20 19 

DEHP 6900 8700 7000 5800 4800 2500 

DnBP 70 50 240 50 10 31 

DINP 1100 470 1700 2100 4300 857 

 

For an eventual background exposure, a urine sample (control urine) was collected 

before the dust/food sample was given. After the oral administration, the urine was 

collected over a period of 38 h. The volume of the collected urine was noted and a 

maximum of 100 ml of the excreted sample was refilled in a polyethylene cup and 

stored at -20 °C until further analysis and measurement.  

To avoid any bias, the order of the dust sample varied between the piglets. Also, 

before, during and after an experiment, to the extent possible, any contact with 

phthalates was avoided. After each single experiment, a three day washout period 

was followed to avoid any influence from the previous experiment. Figure 6 shows 

the experiment setting and a detailed description of the single experiment procedure 

is given in Table 11.  
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Figure 6. Metabolite cages with urine collecting vessels. 

 
Table 11. Detailed schedule of a single oral experiment 

Day Sample no Time  

Day 1  22:00 Piglets were put in the metabolite cages 

Day 2 1 06:00 Urine sampling and sample administration 

Day 2 2 07:00 Urine sampling 

Day 2 3 08:00 Urine sampling 

Day 2 4 09:00 Urine sampling 

Day 2 5 10:00 Urine sampling 

Day 2 6 11:00 Urine sampling 

Day 2 7 12:00 Urine sampling 

Day 2 8 13:00 Urine sampling 

Day 2 9 14:00 Urine sampling 

Day 2 10 15:00 Urine sampling 

Day 2 11 16:00 Urine sampling 

Day 2 12 17:00 Urine sampling 

Day 2 13 18:00 Urine sampling 

Day 2 14 20:00 Urine sampling 

Day 2 15  22:00 Urine sampling 

Day 3 16 06:00 Urine sampling 

Day 3 17 10:00 Urine sampling 

Day 3 18 14:00 Urine sampling 

Day 3 19 18:00 Urine sampling 
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Day 3 20 20:00 Urine sampling 

Day 3  20:00 Piglets left the metabolite cages 

 

2I2 Pig keeping 

 
The 6 week old piglets (Landschwein x Edelschwein, F1 generation x JSR Top Vital 

Pietrein) had access to water ad libitum and received 900 g of cooked potatoes 

(class: princess, from a local farmer, Germany) twice a day (6 am and 4 pm). During 

their three day wash-out period, 250 ml of Fresubin© (Fresenius Kabi, Germany) was 

added to their morning feed ration to avoid a nutrition deficiency. Two piglets shared 

a pigpen, the floor of which was covered with straw. The temperature in the daylight 

pigpen was regulated at 26 °C. The piglets were weighed regularly to verify their 

condition. During the total experiment period, they gained four to five kilograms each.  

 

 

2I3 Analytical methods 

2I3I1 Analysis of phthalates in dust  

The dust sample originated from another study “Phthalates in German daycare 

centers: Occurrence in air and dust and the excretions of their metabolites by 

Children (LUPE3)” and were collected in several day care centers in Bavaria, Berlin 

and North-Rhine-Westphalia between November 2011 and May 2012 [47]. The five 

dust samples with the highest levels of phthalates were chosen for this project. The 

dust3 from the vacuum bags of child daycare centers were sieved through a 63 µm 

sieve and stored in glass jars covered with aluminum foil. For analyzing the phthalate 

concentration, 100 - 150 mg of the sieved dust were distributed into glass vials and 

spiked with internal standard DMP-d4, DBP-d4, BBP-d4 and DEHP-d4. 

Subsequently, it was sonicated for 15 min and transferred to centrifuge tubes. The 

glass vials were washed with 5 ml MTBE and then centrifuged (3076 x g, 15 min, + 5 

°C). The supernatant was refilled in brown glass screw cap vials (PTFE-silicone 

washer) for 15 min (3076 x g +5°C) then subsequently decanted in brown glass 

                                            
3 The dust originated from the bag of the vacuum cleaner from the child day care center. Those dust samples 
gives a representative overview of the general indoor phthalate exposure in the child day care centers. 



 

38 

 

screw cap vials (PTFE-silicone-washer). For quality measurement, control blank 

samples were prepared. The samples were analyzed by a gas chromatographic 

system with a mass selective detector in electron impact (EI) mode (Shimadzu GC-

MS QP2010 with 30m/0.25mm ID/0.25 µm Phenomenex Zebron ZB-5 ms). The limit 

of detection (LOD) and limit of quantitation (LOQ) for DEHP was 0.3 ng/g and 1 ng/g, 

for DnBP 0.2 ng/g and 1 ng/g, for DINP 3 ng/g and 7 ng/g, and for BBzP 0.1 ng/g and 

1 ng/g [47]. 

 

2I3I2 Phthalate metabolite analysis in urine 

The phthalate metabolites were quantified with an accredited analytical method 

(QSP-O-1616-02) as previously published by Völkel et al. [93].  

 
Sample preparation 

200 µl of the thawed room temperature urine sample were mixed with 55 µl of 

ammonium acetate buffer (1M, pH 6.5, Riedl-de Haën), 10 ng of an internal standard 

mix (1 ng/µl), and 5 µl of β-glucuronidase (Type 2 H-2 from Helix promoatia, Sigma). 

For the enzymatic hydrolysis, the samples were placed in a thermomixer for 1.5h 

(500 l/min, 37 °C). After the enzymatic hydrolysis, 250 µl acetonitrile (LC-MS Grade, 

Fischer Chemicals) were added. The samples were centrifuged for 15 min at 20,800 

x g to eliminate potential depositions. The sample solution was then decanted in a 

vial and filled up with 480 µl of 0.5 % formic acid (Roth, Germany).  

For quality control, spiked samples consisted of 980 µl of control urine and 20 µl of 

native Standard mix. Two hundred µl of spiked urine were taken out and processed 

like the regular urine sample. In addition to the regular samples, the urine samples 

taken in the third and fourth hour after administration were diluted with purified water 

in a ratio of 1:10. The concentration values from diluted and undiluted samples were 

compared. Both values showed similar values. All samples were prepared as 

duplicates and each batch included a spiked urine sample (as well in duplicate) to 

control measurement quality.  

Analytical methods, quantitation and chemicals  

50 µl of the sample were injected into a high-performance liquid chromatography 

(HPLC) system (UlitMate 3000), using a column switching unit), where the separation 

occurred, which is coupled with an AB Sciex Q Trap 5500 tandem mass 
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spectrometer, where the mass detection was performed. The instrumental analytical 

method is listed in Table 12.  

Table 12 Detail description of the used phthalate LC-method 

Trap column 25 µm, 20x2.1mm ID (Oasis HLB, Waters Oasis) 

 Mobile phase  HPLC gradient water with 0.1% formic acid (Solvent A) 

&acentonitrile), with 0.1% formic acid (Solvent B) 

 Injection  50 µl 

 Time 0 - 2 min 2.1 - 16 min 16.1 - 20min 20.1 - 22 min 

 Flowrate 1ml 0 ml 1ml  1ml 

 Isocratic 
(Solvent B) 

10% 10% 100% 10% 

Analytical collumn  3µm, 150x3mm (Luna Phenyl-Hexyl, Phenomenex) 

 Mobile phase HPLC gradient water with 0.1% formic acid (Solvent A) 

&acentonitrile with 0.1% formic acid (Solvent B) 

 Time 0 - 2 min 2 - 13 min 13.1 - 20 min 20.1 - 22 min 

 Flowrate 0.4 ml 0.4 ml 0.4 ml 0.4 ml 

 Gradient 
(Solvent B) 

35%  35-65% 100% 35% 

At the quadruple mass spectrometer, the following settings were used to detect the 

investigated analytes: a negative ion mode with curtain gas (N2) 45 psi, nebulizer gas 

55 psi, turbo gas 60 psi, heated gas temperature 600 °C, ion spray voltage -4000 V, 

dwell time 30 ms. Data quantitation was set in the multiple reaction monitoring (MRM) 

mode. The settings for the qualifier and quantifier ions, as well as the list of reference 

and internal standards are shown in the appendix in Table A3 and Table A4.  

For quantification of the phthalate metabolites, a calibration curve with a known 

amount of metabolite concentration (0.5, 1, 2, 5, 10, 20, 50, 100, 200 and 400 pg/µl) 

was used (Figure 7). The limits of quantitation (LOQ) were 0.5 µg/l for oxo-MINP, 

oxo-MEHP, MODMOP, 5cx-MEPP; 1 µg/l for 7OH-MINP, 5OH-MEHP, MEHP; 1.3 

µg/l for MHDMOP, 7cx-MINP, 1.5 µg/l for MINP; 2.5 µg/l for MnBP, MBZP and 5 µg/l 

for 2cx-MMHPP.  

Figure 8 shows a chromatogram of all investigated metabolites phthalate metabolites.  
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Figure 7. Example of calibration curve of MnBP.  

 

Figure 8. Chromatogram of phthalate metabolites [100 pg/µl]. 

 

2I3I4 Additional control measurements in indoor air 

An indoor air sample (3.6 l/min, 1.32 m³ over 6 h) of both pigpens was collected once 

on a glass fiber filter and additionally on polyurethane foam by using a GGP sampler. 

The analytical separation of phthalates was performed by gas chromatography with 

subsequent detection by electron impact mass spectrometry in accordance with VDI 

guideline 4301-6 (2012). The indoor air phthalate concentration in the pigpens 

ranges between 50-59 ng/m³ (details are shown in Table 13). 
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The measurement and analysis were performed by the Department of Environmental 

Health Protection from the Berlin-Brandenburg State Laboratory.  

 
Table 13. Phthalate indoor air concentration  

 LOD [ng/m³] Pigpen A [ng/m³] Pigpen B [ng/m³] 

DnBP 10 50 59 

BBzP 10 < < 

DEHP 50 < 55 

DiNP 50 < < 
<: below LOD 

 

2I3I5 Additional control measurements in animal food 

To avoid further exposure to plasticizers, the potatoes and Fresubin were analyzed 

with an accredited method (PA 1.605) by the Fraunhofer Institute for Process 

Engineering and Packaging IVV. The method is described briefly as follows: For the 

phthalate determination, 10 g of potatoes were extracted by acetone (dest.) and n-

hexane. Deuterium labeled standards (D4-DEHP and D4-DBP) were added. The 

supernatant was analyzed by GC-MS (Shimadzu QP5000; SIM-mode; Column ZB-

50, 30 m x 0.25 µm; Temperature: 80 °C/1min - 10 °C/min – 300 °C/17 min). The 

results are shown in Table 14.  

 

Table 14. Determination of phthalate concentration in food  

 Potatoe sample  Fresubin  

BBzP < LOD (< 5 ng/g) < LOD (< 10 ng/g) 

DnBP < LOD (< 2 ng/g) < LOD (< 20 ng/g) 

DEHP < LOD (< 5 ng/g) < LOD (< 20 ng/g) 

DINP < LOD (< 5 ng/g) < LOD (< 600 ng/g) 

 

2I4 Statistical analysis  

The evaluation of urine analysis was performed with MultiQuant 2.1.1 (AB SCIEX) 

and for calculations and statistics Microsoft Excel 2010 and SPSS 19 (IBM) were 

used.  

The phthalate values were normally distributed (Kolmogorov–Smirnov–Test, Dust: 

n=35; BBzP: p= 0.539; DEHP: p=0.275; DINP: p=0.142; DnBP: p= 0.708, Food: n=7; 

BBzP: p=0.684; DEHP: p=0.997, DINP: p=0.762; DnBP: p=0.918), therefore for 
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group comparisons (dust uptake versus dietary uptake), a T-test for independent 

samples was used.  

Calculation of the phthalate uptake using urinary metabolite concentration  

To reach the absolute concentration [µg], the measured concentration of the urine 

samples [ng/ml] was multiplied by the corresponding excreted urine volume [ml] and 

then divided by 1000. Subsequently, each absolute concentration was added to the 

other urine samples. The sum of the metabolite [µg] was then divided by the 

molecular weight [g/mol] of the metabolite. The excreted metabolite [µmol] was 

divided by the administered amount from the parent compound [µmol]. The sum was 

multiplied by 100 to calculate the percentage dose uptake [%]. The complete dose 

uptake, from dose application to 24 hours post dose and 24 hours to 38 hours post 

dose, was calculated. The molecular weight of the phthalates and their metabolites 

are given in Table 15.  

 

 

Table 15. Molecular weight of phthalates and their metabolites  

Phthalate g/mol Metabolite g/mol 

BBzP 312.37 MBzP 256.25 
DEHP 390.56 MEHP 278.34 
  5OH-MEHP 294.34 
  oxo-MEHP 292.32 
  5cx-MEPP 308.30 
  2cx-MMHP 308.32 
DINP 418.62 MINP 292.38 
  oxo-MINP 306.35 
  7OH-MINP 308.37 
  7cx-MINP 322.35 
DnBP 278.35 MnBP 222.23 

 

Toxicokinetic calculations  

The elimination half-life time (t½) of the metabolites was estimated by using the 

following equation  

 

ke= elimination constants 
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It was observed that after 24 hours post dose, the excretion of the metabolites 

increased again. Therefore the half life time was calculated for each elimination 

period (first half life time: Cmax to 16 hours post dose, second half life time: 24 to 38 

hours). The urine sample with the highest concentration (Cmax) is defined as tmax.  
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3I Results  

Mainly no metabolites were detected in the control urine samples or only a 

concentration (< 1.5 µg/l) was detected. The control urine samples were not used for 

any calculation. Quality control samples were in good agreement with the expected 

concentration of 20 pg/µl (recovery was between 80 - 110 %). The coefficient of 

variation or the duplicate urine samples was below 15 %.  

3I1 Excretion of plasticizers in the dust experiment 

The mean administered dose of plasticizers in dust ranged from 2.7 µg (BBzP) to 

4057 µg (DEHP) respectively (Table 16). For quality control, a reference dust was 

measured (SRM dust). The recovery in this dust sample was between 80 - 100 %. 

Additionally the dust samples were diluted (1:100), the diluted and undiluted 

concentration were in good agreement. The dust samples were analyzed in 2014 and 

2016. Both measurements resulted in the same amount of concentration.  

Table 16. The mean and standard deviation (SD) of the administered dose in µg 

 BBzP DEHP DnBP DINP 

Dust A 17.3 ± 0.5 3989.4 ± 113.1 40.5 ± 1.1 636 ± 18 

Dust B 84 ± 7.2 4056.7 ± 346.2 23.3 ± 2 219.2 ± 18.7 

Dust C 27.7 ± 1.5 3874.3 ± 214.8 132.8 ± 7.4 941 ± 52.2 

Dust D 2.7 ± 0.1 3878.5 ± 86.2 33.4 ± 0.7 1404.3 ± 31.2 

Dust E 15.5 ± 0.8 3728.5 ± 187.7 7.7 ± 0.4 3340 ± 168 

For low molecular weighted phthalates, the mean urinary excretion of the applied 

dose in dust measured 27.7 ± 17.6 % for BBzP and 52.2 ± 18 % for DnBP. The mean 

for high molecular weighted phthalates as DEHP is 43 ± 11 % and for DINP 47 ± 26 

%, respectively. As shown in Figure 9, the mean excretion of BBzP, DnBP, DEHP 

and DINP for dust sample A was 22.5 ± 7 %, 55 ± 19 %, 44 ± 8.5 %, 75 ± 21 %; for 

dust sample B: 28 ± 12 % (BBzP), 42 ± 14 % (DEHP), 58 ± 12 % (DnBP); for dust 

sample C: 25 ± 13 % (BBzP), 45 ± 16 % (DEHP), 52 ± 28 % (DINP), 39 ± 15 % 

(DnBP), for dust sample D: 9.6 % (BBzP), 39 ± 6 % (DEHP), 37 ± 9 % (DINP) 46 ± 

15 % (DnBP), for dust sample E: 54 ± 10 % (BBzP), 44 ± 6 % (DEHP), 23 ± 5 % 

(DINP), 69 ± 21 % (DnBP). Table 17 shows the urinary excretion for each plasticizer 

and dust sample in every single pig. Because of conflicting results in dust sample B, 
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DINP was rejected. For the same reason, the DnBP measurement was excluded for 

pigs 2, 4 and 5 in dust sample E.  
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Figure 9. Excretion of phthalates in relation to the applied dose in %.  
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Figure 9. Excretion of phthalates in relation to the applied dose in %.  
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Table 17. The sum of phthalate metabolite excreted in urine (in % of the applied dose of each dust 
sample) 

 
 
 
 
 
 
 

  BBzP DEHP DINP DnBP 

Dust A Pig 1 23.9 49.6 93.9 49.0 
 Pig 2 24.1 44.0 96.7 30.6 
 Pig 3 25.3 35.2 60.5 75.6 
 Pig 4 29.7 54.6 62.3 82.3 
 Pig 5 14.2 45.1 67.7 59.0 
 Pig 6 11.9 30.5 45.9 48.2 
 Pig 7 29.0 49.8 96.7 82.6 
Mean±SD  22.5 ± 7 44 ± 8.5 75 ± 21 55 ± 19 

Dust B Pig 1 39.2 48.0 - 71.0 
 Pig 2 27.8 34.2 - 71.1 
 Pig 3 22.6 33.9 - 40.2 
 Pig 4 29.9 64.25 - 56.5 
 Pig 5 11.9 33.2 - 43.7 
 Pig 6 47.6 55.1 - 63.7 
 Pig 7 15.9 26.2 - 58.8 
Mean±SD  28 ± 12 42 ± 14  58 ± 12 

Dust C Pig 1 8.7 32.0 29.2 23.6 
 Pig 2 28.5 41.1 57.9 47.6 
 Pig 3 44.7 68.8 99.0 41.5 
 Pig 4 14.5 32.5 27.7 30.6 
 Pig 5 18.2 37.2 33.4 27.4 
 Pig 6 19.1 38.1 39.6 35.5 
 Pig 7 41.7 70.3 80.3 74.5 
Mean±SD  25 ± 13 45 ± 16 52 ± 28 39 ± 15 

Dust D Pig 1 9.4 36.5 30.4 30.0 
 Pig 2 11.2 39.1 38.0 49.4 
 Pig 3 17.6 29.4 30.1 47.8 
 Pig 4 8.0 39.3 29.2 31.6 
 Pig 5 4.6 38.3 38.7 59.0 
 Pig 6 - 37.8 38.8 38.8 
 Pig 7 12.4 50.8 56.1 71.6 
Mean±SD  9 ± 6 39 ± 6 37 ± 9 46 ± 15 

Dust E Pig 1 52.5 48.6 22.2 71.9 
 Pig 2 60.2 50.2 29.7 - 
 Pig 3 42.0 38.7 17.0 65.3 
 Pig 4 55.0 39.6 22.6 - 
 Pig 5 60.0 42.8 22.8 - 
 Pig 6 67.1 57.3 30.6 96.0 
 Pig 7 41.0 37.5 15.7 43.4 
Mean±SD  54 ± 10 44 ± 6 23 ± 5 69 ± 21 
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3I2 Excretion of phthalates in the food experiment 

The food sample contained 19 µg BBzP, 2500 µg DEHP, 31 µg DnBP and 857 µg 

DINP. The solution was afterwards analyzed by gas chromatograph to confirm the 

concentration.  

As given in detail in Table 18 and Figure 10, the mean excreted amount of the 

applied dose in urine is 37 ± 23 % of BBzP, 53 ± 15 % of DEHP, 43 ± 12.5 % of DINP 

and 39 ± 16 % of DnBP. Similar to dust, pig 3 was left out for DnBP and BBzP. Pig 2 

was excluded for DnBP, respectively.  

Table 18. The sum of phthalate metabolites excreted in urine (in % of the applied dose of the food 
sample) 

 BBzP DEHP DINP DnBP 

Pig E 69.2 61.3 50.8 61.2 

Pig F 30.0 78.6 53.7 - 

Pig G - 59.0 56.6 - 
Pig H 63.5 47.0 26.9 50.6 
Pig I 19.1 37.7 27.7 32.6 
Pig K 24.5 53.8 48.8 23.5 
Pig L 17.8 36.3 35.8 26.2 

Mean ±SD 37±23 53±15 43±12.5 39±16 

 

 
Figure 10. Excretion of phthalates in relation to the applied food sample in %.  
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3I3 Comparison the urine excretion of phthalates in dust and food 

No significant differences between the quantities of plasticizers excreted in urine in 

the two experiments (dust and food ingestion) were observed (BBzP: p = 0.262; 

DEHP p = 0.358; DINP p = 0.055 and DnBP: p = 0.764). By testing the individual 

metabolites, only MEHP showed a slight significance (p = 0.05) (MBzP: p = 0.263; 

5OH-MEHP: p = 0.839; 5oxo-MEHP: p = 0.08; 5cx-MEPP: p = 0.394; MINP: p = 

0.021; oxo-MINP: p = 0.064; OH-MINP: p = 0.415; cx-MINP: p = 0.660 and MnBP: p 

=0.531). Table 19 and Figure 11 provide a detailed overview of the metabolite 

excretion of each pig in relation to the applied dose in dust and food.  

Table 19. Mean ± SD of metabolite excretion in related to the applied dose in dust and food [%] 

DEHP  Pig MEHP 5OH-MEHP oxo-MEHP 5cx-MEP 

  Dust Food Dust Food Dust Food Dust Food  
 1 9.0 ± 3.4 15.6 12.0 ± 2.5 17.7 8.3 ± 1.7 12.2 13.2 ± 1.7 15.8 
 2 7.6 ± 1.8 13.0 9.0 ± 2.5 9.4 8.7 ± 0.9 18 16.4 ± 1.9 38.3 
 3 9.0 ± 3.1 12.8 10.7 ± 5.0 12.0 9.0 ± 3.0 15.1 12.3 ± 5.0 19.1 
 4 6.8 ± 2.5 6.5 11.5 ± 6.0 8.8 7.7 ± 1.5 7.7 20.0 ± 5.4 24 
 5 4.8 ± 2.0 3.3 5.3 ± 1.6 5.8 9.0 ± 1.0 6.8 20.2 ± 2.4 21.8 
 6 5.2 ± 2.4 4.7 9.5 ± 3.0 13.9 9.1 ± 4.2 10.5 19.5 ± 3.5 24.7 
 7 7.4 ± 4.2 2.8 7.6 ± 2.8 8.3 12.1 ± 4.0 6.7 17.3 ± 4.8 18.5 

 Total 7.1 ± 3.0 8.4±5.3 9.4 ± 4.0 10.8±4 9.2 ± 2.8 11±4.3 17.3 ± 4.8 23.2 ± 7.4 

DINP  MINP oxo-MINP OH-MINP cx-MINP 
  Dust Food Dust Food Dust Food Dust Food  
 1 34.0 ± 34.5 36.8 1.5 ± 0.7 2 3.5 ± 2.2 6.3 4.7 ± 1.5 5.7 
 2 45.6 ± 32.0 41.5 3.6 ± 0.7 2.6 1.1 ± 0.6 3.2 5.2 ± 2.0 6.4 
 3 44.8 ± 35.6 48.6 2.6 ± 0.4 3 1.2 ± 0.5 1.6 3.0 ± 1.3 3.4 
 4 26.5 ± 19.0 20.3 2.2 ± 1.0 1.1 3.8 ± 1.3 3 2.8 ± 1.2 2.4 
 5 32.0 ± 20.3 22 3.5 ± 1.6 3 2.4 ± 0.7 1.3 2.8 ± 1.0 1.5 
 6 28.0 ± 10.6 36.6 3.0 ± 1.7 2.5 4.0 ± 1.8 5.8 3.4 ± 1.7 4.0 
 7 50.3 ± 34.7 28.2 3.8 ± 2.4 2.3 2.0 ± 0.9 1 6.0 ± 3.0 4.4 

 Total 37.3 ± 26.4 33.4±10.4 2.9 ± 1.4 2.3±0.6 2.6 ± 1.6 3.2±2.1 4.0 ± 2.0 4.0±1.7 

BBzP, DnBP MBzP MnBP   
  Dust Food Dust Food   
 1 26.7 ± 19.0 70 48.0 ± 24.0 57   
 2 30.4 ± 18.0 30 48.5 ± 17  -   
 3 30.4 ± 12.0 - 48.9 ± 15 -   
 4 27.4 ± 18.0 63.5 47.7± 20.3 47.8   
 5 21.8 ± 21.8 19 41.0 ± 10.5 33   
 6 29.0 ± 27.5 24.5 51.5 ± 28.4 23.5   
 7 28.0 ± 13.8 17.8 53.6 ± 15.0 26.2   

 Total 27.7 ± 17.7 37.3 ± 23 48.7 ±18.0 37.4±14.4  
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Figure 11. Percentage excretion of the sum of (A) BBzP-, (B) DnBP-, (C) DEHP- and (D) DINP-
metabolite in relation to the applied dose of dust. 
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Figure 11. Percentage excretion of the sum of (A) BBzP-, (B) DnBP-, (C) DEHP- and (D) DINP-
metabolites in relation to the applied dose of dust. 
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3I4 Toxicokinetics of phthalates 

An example of the time course of the urinary excretions is given in Figure 12 (dust 

sample) and Figure 13 (food sample). The time course for each pig and applied 

sample is given in the appendix. In the dust samples, the metabolites of DEHP, 

DINP, BBzP and DnBP had the highest concentration within the first five hours after 

application. In the food sample, the highest concentration for DEHP and DINP was 

observed 24 hours post dose, the LMW phthalates had their highest concentration 

within the first five hours. The metabolism of phthalates can underlie a two-phase 

elimination. The initial increase of metabolite excretion is observed after three to five 

hours, followed then by a decrease. A second increase occurs normally 24 hours 

post dose. Because of this, the half-life time was calculated for both peak times. A 

detailed description of the toxicokinetic is given in the appendix (Section AI2).  
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Figure 12. Time course of urinary phthalate metabolite excretion after dust administration. 
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Figure 13. Time course of urinary phthalate metabolite excretion after food administration. 
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3I4I1 Butyl benzyl phthalate 

Dust: 

The urinary concentration maximum (cmax) occurred 3 ± 0.8 hours post dose. The 

estimated half-life time of MBzP was about 5 ± 4.3 hours. Within the first 24 hours, 27 

± 17 % of the applied BBzP dose was excreted as MBzP. Between 24 and 38 hours, 

only 0.1 ± 0.3 % of the dose was eliminated.  

Food: 

The maximum concentration in urine was observed after 4.2 ± 3 hours post dose. 

The half-life time was about 4 ± 2.3 hours. 45 ± 37.8 % of the dose was eliminated 

within the first 24 hours. On the second day no MBzP was detectable in the urine. 

3I4I2 Di-n-butyl phthalate 

Dust: 

The maximum concentration was reached after 2.8 ± 1 hours post dose. The first 

estimated half-life time was around 3.3 ± 3.3 hours, whereas 24 hours later the 

second half life time was reached within 6.2 ± 5 hours. During the first 24 hours, 46 ± 

17.6 % of the given dose was eliminated via urine, while 24-38 hours post dose only 

2.7 ± 3 % of the given dose was detected. 

Food:  

After 2.8 ± 0.4 hours post dose, the urinary maximum concentration was reached. 

The half-life time was estimated at 3.2 ± 2.1 hours. The second half-life time (24 

hours post dose) was 3.8 ± 1.2 hours. 34.3 ± 17 % of the absorbed dose was 

metabolized and eliminated within in the first 24 hours. On the second day only 1.3 ± 

2 % of the dose was detected in urine. 

3I4I3 Bis (2-etylhexyl) phthalate  

Dust 

Tmax were estimated for MEHP, 5OH-MEHP, oxo-MEHP and 5cx-MEPP as 3 ± 1 

hours, 2.7 ± 1 hours, 3.6 ± 1.3 hours and 5 ± 5 hours. 4.2 ± 2 hours (MEHP), 4.7 ± 

2hours (5OH-MEHP), 6.3 ± 3.8 hours (oxo-MEHP) and 5.3 ± 2.7 hours (5cx-MEPP) 

were determined as the half-life time in the first excretion phase. The second 

excretion period was 24 hours post dosing, the mean half-life time was in decreasing 

order 5.6 ± 3 hours (MEHP), 5 ± 1.8 hours (5OH-MEHP), 5.2 ± 2 hours (oxo-MEHP), 

5.1 ± 2 hours (5cx-MEPP). Within the first 24 hours, 40.2 ± 10.2 % from the DEHP 
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dose were excreted as 16.3 ± 4.6 % 5cx-MEPP, 8.7 ± 3.8 % 5OH-MEHP, 8.4 ± 2.6 % 

oxo-MEHP and 6.7 ± 3 % MEHP. After 24 hours, 2.7 ± 1 % DEHP dose was found in 

urine. It was mainly excreted as 1 ± 0.4 % 5cx-MEPP followed by 0.7 ± 0.3 % oxo-

MEHP, 0.6 ± 0.4 % 5OH-MEHP and 0.4 ± 0.2 % MEHP.  

Food: 

After 24 hours, the maximum concentration was reached. The elimination half-life 

was 5.4 ± 1.4 hours for MEHP, 4.6 ± 1 hours for 5cx-MEPP, 6 ± 1.6 hours for oxo-

MEHP and 5.2 ± 1.3 hours for 5OH-MEHP. Within the first 24 hours, 38.6 ± 7.4 % 

DEHP of the applied dose was mainly excreted as 5cx-MEPP (18 ± 5.3 %), oxo-

MEHP (7.6 ± 2.6 %), 5OH-MEHP (7 ± 4.2 %) and MEHP (6 ± 3.6 %). 24-38 hours 

after the sample administration, 13.5 ± 5.2 % DEHP was found in urine (5.3 ± 2.2 % 

5cx-MEPP, 3.3 ± 1.8 % oxo-MEHP, 2.4 ± 1.7 % MEHP and 2.4 ± 1.6 % 5OH-MEHP). 

To sum up, for all pigs administered the dust and food samples, the metabolites were 

excreted in the following order of abundance: monoester < hydroxyl < oxo < carboxy. 

Figure 14 illustrates the measured amount of the DEHP metabolites excreted in both 

dust and food samples. 
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Figure 14. A) DEHP-metabolites in relation to the given dose in dust samples B) The excreted DEHP-
metabolites in relation to the applied dose in food.  
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3I4I4 Diisononyl phthalate 

Dust: 

DINP metabolites reached their mean maximum concentration at 4.2 ± 4 hours 

(MINP) 5.5 ± 6.6 hours (oxo-MINP), 4 ± 4.2 hours (7OH-MINP) and 4.8 ± 5.6 hours 

(cx-MINP) after dose application. 

The estimated halt-life time for the first elimination phase was similar for all 

metabolites: 5.3 ± 2 hours (MINP), 6.6 ± 4 hours (oxo-MINP), 5.6 ± 3 hours (7OH-

MINP) and 5.8 ± 3.4 hours (7cx-MINP). The second elimination phase occurred 24 

hours post dose. The half-life time was estimated at 5.3 ± 2 hours for MINP, 6.6 ± 4 

hours for oxo-MINP, 5.5 ± 3 hours for 7OH-MINP and 5.8 ± 3.4 hours for 7cx-MINP. 

During the first 24 hours, 43.4 ± 24 % of the dose was excreted as 34 ± 25 % MINP, 

3.7 ± 2 % 7cx-MINP, 2.7 ± 2.3 % 7OH-MINP and 3 ± 1.6 % oxo-MINP. After 24 hours 

to 38 hours, only 3.6 ± 2.5 % DINP as 3 ± 2.4 % MINP, 0.27 ± 0.25 % oxo-MINP, 

0.24 ± 0.2 % 7cx-MINP and 0.23 ± 0.3 % 7OH-MINP was excreted.  

Food: 

The maximum concentration for MINP and oxo-MINP was reached 24 hours after 

sample administration. The tmax for 7OH-MINP and oxo-MINP occurred after 24.5 ± 

1.5 hours and 25.7 ± 4.5 hours, respectively. The half-life time for excreted MINP was 

about 6 ± 1.6 hours, for oxo-MINP about 7.3 ± 3.5 hours, for 7OH-MINP about 7.5 ± 

3.7 hours and for 7cx-MINP about 5.2 ± 2.8 hours. 

36.8 ± 14.8 % of the DINP dose was excreted in the first 24 hours mainly as MINP 

(30.3 ± 15.1 %), followed by 7cx-MINP (2.8 ± 1.3 %), 7OH-MINP (2.1 ± 1.5 %) and 

oxo-MINP (1.5 ± 0.4 %). On the second day, 15.3 ± 6.3 % DINP (12.3 ± 6 % MINP, 

1.1 ± 0.5 % 7cx-MINP, 1 ± 0.73 % 7OH-MINP and 0.8 ± 0.3 % oxo-MINP) was 

eliminated by urine.  

 

In conclusion, for dust samples, the metabolites were excreted in the order of 

abundance: hydroxyl < oxo < carboxy< monoester. For the food sample, the order of 

abundance differed: oxo< hydroxyl< carboxy< monoester. Figure 15 illustrates the 

amount of the DINP metabolites excreted in the samples of dust (Fig 15. A) and food 

(Fig. 15. B), respectively. 
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Figure 15. A) The sum of the excreted DINP-metabolites in relation to the applied dust samples B) 
The DINP metabolites in the food sample.  
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4I Discussion  

Oral bioavailability is defined as the fraction of an ingested contaminant in a certain 

carrier matrix which reaches systemic circulation. Oral bioavailability is influenced by 

three different points:  

1.  The contaminant is released from the matrix during digestion in the 

  gastrointestinal tract. This step is also known as bioaccessibility  

2.  The absorption of the bioaccessible fraction by the intestinal epithelium.  

3.  The metabolism of the contaminant in the intestine and liver  

The bioaccessibility is mainly affected by the matrix, whereas the absorption rate and 

metabolism are influenced by the chemical properties of the contaminant [94]. 

4I1 Bioavailability of phthalates in dust  

The mean bioavailability of the applied dose in dust was 27.7 ± 17.6 %, 52.2 ± 18 %, 

43 ± 11 % and 47 ± 26 % for BBzP, DnBP, DEHP and DINP respectively. In this 

study, our collecting time was limited to 38 hours. We were still able to detected 

metabolites in the last urine sample and have to assume that the excretion of the 

applied phthalates was not completed. This might lead to a minor loss in 

bioavailability data. The applied dose was orientated to the TDI of DEHP. Every dust 

sample was applied with a similar DEHP concentration but the amount of dust varied. 

In consideration of intra-individuality, the bioavailability of DEHP has a low variation 

and seems to have a good reproducibility. It is assumed that this observation obtains 

as well for the other investigated phthalates. It is also noticeable that the 

bioavailability of DEHP and DINP is fairly similar (median: DEHP 39.3 %, DINP: 38.3 

%). We also observed a saturation process: the higher the applied DINP dose, the 

lower the bioavailability. In dust sample A, a mean of 636 ± 18 µg of DINP was 

administrated with a remarkably high bioavailability of 75 ± 21% compare to dust 

sample E with an applied dose of 3340 ± 168 µg of DINP and bioavailability of 23 ± 5 

%. The applied amount of dust varies between 0.5 g (dust A) and 0.78 g (dust E). To 

clarify if the concentration or the amount of dust underlies a saturation process dust 

sample A and C were compared. Dust sample A and dust sample C were 

administered in a similar amount (0.54 g) and the concentration varies from 636 ±18 

µg (dust A) to 941 ± 52.2 µg (dust C). The bioavailability of DINP was determined for 

dust sample A of 75 ± 21 % and for dust sample C of 52 ± 28 %. Those results might 
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indicate that the saturation process depends on the applied concentration and not on 

the given amount of matrix. These findings compare favorably with Mckee et al. [11], 

who also observed a decreased absorption rate by an increasing orally administered 

dose in rats. Forty-nine % of the given DINP dose (50 mg/kg) was observed, whereas 

there was only an uptake of 39 % of the 500 mg/kg DINP dose. We did not observe 

this effect in other phthalates.  

Our results showed a higher bioavailability than in vitro digestions test. In an in vitro 

digestion test a bioaccessibility of 2.24 - 12.6 % for DnBP, BBzP, DEHP, and DINP in 

dust was observed [80]. In another in vitro digestion test, slightly higher values were 

noted (10 – 15 % for BBzP, DnBP, DEHP and DINP) [87].  

Both in vitro digestion tests used dust particles with a diameter of 63 µm, where the 

highest bioaccessibility is suspected. In this study, the same particle size was used, 

therefore an influence of the particle size fraction can be excluded.  

As shown in this study, as well as in the in vitro digestion test, bioavailability varies 

according to the phthalate under investigation.  

The in vitro digestion test is often used as a method to investigate bioavailability; it 

enables similar conditions for an experiment series and reduces inter-individual 

variances. Bioaccessibility is influenced in any case by natural physiological 

conditions like transfer time, pH, enzyme production and diffusion barrier. Changes in 

those parameters influence the results of in vitro digestions tests [95]. Additionally, in 

in vitro digestion tests, only the bioaccessibility of a compound can be determined 

but, e.g. the absorption rate cannot be included, which is an important influencing 

factor of bioavailability.  

In a comparison study of five different in vitro digestion tests, a wide range in the 

bioaccessibility of heavy metals in three different soil samples was observed (e.g. 

Arsenic : 6 - 95 %, 1 – 19 % and 10 – 59 %). It was concluded that the pH value is 

probably the reason of the differences in the bioaccessibility. Increased 

bioaccessibility through the presence of food components (in this case milk powder) 

was also tested. Compared to the different pH values, the presence of food 

components has a minor influence [91]. In this study the dust sample was applied 
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with a portion of food which may lead to a slight increase of bioaccessibility as 

compared with dust uptake by e.g. putting a dust covered toy in their mouth.  

The different results between this study and the in vitro digestion tests indicate that 

the chosen parameters for the in vitro test (pH, acid mixture, residual of time, ratio 

between matrix and liquid.) might not match the simulation of digestion, which could 

lead to an underestimation of the bioavailability. At the current state of knowledge, in 

vitro digestion tests cannot accurately simulate the bioaccessibility of human 

digestion (in vivo). Thus, the results of an in vitro digestion test should be interpreted 

with caution and considered only as indicative values.  

In an arsenic bioavailability study conducted by Freeman et al. [96], cynomolgus 

monkeys received a dust, soil and soluble sodium arsenate sample via a gelatin 

capsule gavage and an intravenous injection. The mean absolute bioavailability 

(corrected by the intravenous injection) for house dust was 19 % and for the soluble 

arsenic was 68 %. These results suggest that the compounds in matrix dust have a 

reduced health risk based on its reduced bioavailability. In this study, it was not 

possible to calculate the absolute bioavailability. The results of the intravenous 

injection were not trustworthy because of difficulties in administration and therefore 

excluded from this study.  

Additionally, arsenic and phthalates have completely different chemical properties, 

which makes it difficult to compare these results. Nonetheless, it can still be 

demonstrated that the ingestion of dust results in a noticeable exposure to chemicals.  

 

4I2 Bioavailability of phthalates in food sample  

In our study, the mean bioavailability was 37.3 ± 23 % (BBzP), 39 ± 16 % (DnBP), 53 

± 15 % (DEHP) and 43 ± 12.5 % (DINP). In a review, Wormuth et al. [24] 

summarized that the bioavailability of phthalate uptake through diet ranged between 

69 – 78 % (BBzP), 64 – 73 % (DnBP), 15 – 95 % (DEHP) and 75 – 90 % (DINP). 

These reported levels are higher than those found in our study. Our food sample was 

a 1 % ethanol-phthalate mixture and potatoes. For this study, we are aware that the 

food sample might not be as representative as a normally prepared dish. Because of 

adding a solution to the sample, we might disregard the process of how much the 
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contaminant is released from the matrix food. However, the research focus was more 

on dust. In our study we could not observed a difference in the bioavailability of the 

matrix dust and food. Huwe et al. [70] observed similar findings in rats with 

polybrominated diphenyl ethers (PBDEs) in matrix dust and oil. They observed that 

PBDEs in dust bioconcentrate in rat fat tissue to the same or higher extent as PBDEs 

applied with oil. PBDEs accumulate in the body, which could influence the results of 

this study. The physicochemical characteristics of PBDEs are different to phthalates, 

which makes it difficult to compare these results. Anyway the study indicates a trend, 

which should be verified by further research.  

 

4I3 Toxicokinetics of phthalates 

Although the bioavailability in food and dust is similar, the toxicokinetic profile differs. 

In dust samples, the maximum concentration was reached three to five hours post 

dose and in the food sample, after three to four hours (LMW phthalates) and 24 

hours for HMW phthalates. The delayed release or metabolism of the phthalates 

could be caused by the use of the carrier ethanol. It is noted that in other orally 

applied toxicokinetic studies, the highest concentration was reached shortly after 

administration [13, 59, 66, 69]. In any case, a biphasic metabolism was observed. 

The second increase was observed 24 hours after dose application. This effect can 

be explained by the fact that the metabolites underlie an enterohepatic circulation 

and there was no overnight collection of urine (eight hours break). Morning urine 

seems to be more highly concentrated in general. The half-life times, tmax and Cmax, 

correspond to the results in other studies [13, 59, 66, 69, 97].  

Compared to studies of humans, we observed variations of DINP metabolism. The 

metabolites were excreted in an order of abundance: OH-MINP < oxo-MINP < cx-

MINP < MINP in dust. In food, the oxo-MINP metabolite came first and then the OH-

MINP group. In a toxicokinetic study conducted by Koch et al. [69], it was reported 

that metabolite excretion is in the order of abundance: MINP < oxo-MINP < cx-MINP 

< OH-MINP. Our results indicate that piglets are slower in metabolizing DINP 

compared to humans. In a DEHP toxicokinetic study with rats, dogs and pigs, it was 

also shown that in pigs the eliminations of radioactivity were slowest [98]. Another 

difference was identified in the DEHP metabolism. The carboxy metabolite 5cx-
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MEPP was the main excreted metabolite. In this study, the excretion was in an order 

of abundance of MEHP< 5OH-MEHP< 5oxo-MEHP< 5cx-MEPP whereas in general, 

the following order of abundance obtains: MEHP< 5 oxo-MEHO < 5cx-MEPP < 5OH-

MEHP. However there is no indication that this has an effect on the bioavailability. 

Further research should verify if the metabolite excretion order is influenced by the 

pigs, which might have a different metabolism.  

Additionally it should be clarified if e.g. 5cx-MEPP was also identified as the 

structurally analogues 5cx-MEPTP, which is a metabolite of a terephthalate (DEHTP) 

a structural isomer of DEHP. In a DEHTP- toxicokinetic study was shown that 13 % 

of the excreted 5cx-MEPTP is in shares comparable to the 5cx-MEPP [99]. The 

presence of DEHTP in dust might lead to an unintended background exposure which 

was probably measured as 5cx-MEPP of DEHP. This could lead to a slight 

overestimation of the bioavailability of DEHP.  

 

4I4 Dust as an exposure source  

In this experiment, we were able to show that dust is an exposure source for 

phthalates. The background exposure was kept as low as possible and verified by a 

control urine sample, therefore assuring that the main phthalate exposure was 

caused by the administered dust samples. Our results agree with biomonitoring and 

risk assessment studies where dust was already suspected to be an exposure 

source. 

With our bioavailability data and assuming an daily dust intake of 60 mg and an 

average bodyweight of 13 kg, the mean intake for BBzP, DEHP, DINP and DnBP 

through dust would be 0.07 ± 0.09 µg/kg b.w., 12.1 ± 2.1 µg/kg b.w., 3.7 ± 0.6 µg/kg 

b.w. and 0.16 ± 0.13 µg/kg b.w.. This intake would contribute 0.01% (BBzP), 24.1 % 

(DEHP), 2.4 % (DINP) and 1.7 % (DnBP) to the TDI of each phthalate. For a 

cumulative risk assessment, the hazard Index (HI)4 was calculated with an daily 

intake of 0.07 µg/kg/d BBzP, 12.1 µg/kg/d. DEHP, 3.7 µg/kg/d DINP and 0.16 µg/kg/d 

                                            
4 Hazard Index (HI) is the sum of the hazard quotients (HQ), which is defined as   

. An HI <1 is will not result in negative health effects, while an HI > 1 can pose a health risk.  
100. https://www.epa.gov/national-air-toxics-assessment/nata-glossary-terms, 20.06.2017. 
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DnBP and their corresponding TDI’s. The HI was 0.2. It shows that the phthalate 

exposure only through dust does not pose a health risk.  

Kang et al. [87] calculated an average daily dose (ADD) of DEHP through non-dietary 

ingestion of house dust for preschool children in China. Under a moderate dust 

ingestion rate (0.05 gram per day), none of the children would exceed the reference 

dose (RfD) of 20 µg/kg b.w./d, but for a high dust ingestion rate (0.2 g/d), 13 % of the 

dust samples would result in a higher ADD than the RfD. Considering the 

bioaccessibility of phthalates in dust, no dust sample would result in exceeding the 

RfD. DnBP showed also no indication of exceeding the RfD (RfD: 100 µg/kg b.w./d). 

Kang et al. estimated that moderate dust intake and high dust intake contributes 28.4 

% and 61.3 % to the overall DEHP exposure. 74.8 % (under moderate dust intake) 

and 92.2% (high dust intake) of the total DnBP exposure was contributed through 

dust intake. In a similar study conducted by Wang et al. [80], the daily intake of 

phthalates in house dust was evaluated. For toddlers, the highest phthalate exposure 

was calculated with 5.4 ng/kg b.w./d, 102 ng/kg b.w./d and 5800 ng/kg b.w./d for 

BBzP, DnBP and DEHP, respectively. Dust ingestion was identified as a major 

contributor for non-dietary DEHP exposure with 81.4 - 96.4 % of the total intake. By 

taking the dietary exposure into account, the dust ingestion would contribute 36.5 % 

of the DEHP exposure (calculated for adults). For the low molecular phthalate DnBP, 

indoor air seems to be the major contributor of the non-dietary DnBP exposure. By 

calculation of the ADD, 5 % of the dust samples exceed the RfD (20 µg/kg b.w./d for 

DEHP) by a high dust intake rate (200 mg/d). For a moderate dust intake (100 mg/d), 

no dust sample would exceed the RfD. In a China-USA comprehensive study, the 

daily dust intake for toddlers was 83.7 ng/kg b.w./d, 0.9 ng/kg b.w./d and 949 ng/kg 

b.w./d for DnBP, BBzP and DEHP in China, in the USA, the values were generally 

higher with 64.4 ng/ kg b.w./d (DnBP), 104 ng/kg b.w./d (BBzP) and 1500 ng/kg 

b.w./d (DEHP) [84]. Except for the DEHP value, the values are in good agreement to 

those reported by Wang et al. [80]. The ingestion of dust contributes only 2 – 5 % of 

the total DEHP and DnBP exposure in China and 1 – 16 % of the total DnBP, 3 – 21 

% of the total BBzP and 10 – 58 % of the total DEHP intake in the USA. In another 

biomonitoring study by Fromme et al. [47], the phthalate content in air and dust from 

German daycare centers was measured. The phthalate exposure was identified by 

the excreted metabolites in 663 urine samples of children attending the investigated 
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daycare centers. No child exceeded the TDI values for DEHP and DnBP, only one 

child had a higher DINP value than the TDI and 16 children exceeded the TDI of 

DiBP. The daily intake was determined by back-calculation based on the amount of 

the urinary phthalate metabolites. The average intake was calculated with the median 

and the high intake with 95th percentile of urinary metabolite concentration. Those 

intakes were compared with the TDI. In the “high” total intake scenario, less than 50 

% of the TDI was reached, except for DiBP (62 %). It also showed a significant 

correlation between the concentration in indoor air and dust and the excreted urinary 

metabolite concentration on a bivariate analysis, but using a multiple linear 

regression model, only indoor air was correlated with urinary metabolite 

concentration [47].  

Bekö et al. [4] estimated the phthalate intake of children in urine through the 

exposure of dust ingestion, inhalation and dermal absorption. They analyzed dust 

and children’s urine samples and assumed a daily dust uptake of 60 mg. The daily 

total intake, which was estimated by the urinary metabolite concentration, was 

compared to the estimated daily uptake from the indoor environment (dust ingestion, 

inhalation and dermal absorption). DEHP had the highest intake resulting from dust 

ingestion. It was also shown, that 75 % and 95 % of the weekly indoor intake of BBzP 

and DEHP entered the body through dust ingestion, whereas for low molecular 

phthalates like DnBP and DiBP, 80% of the weekly indoor intake (WIindoors) occurs via 

dermal absorption from air. Bekö et al. [4] assumed that indoor exposure 

corresponds to 2.2 % (DEHP), 13 % (DnBP) and 0.01 % (BBzP) of the TDI. In a 

similar study conducted by Langer et al. [48], a significant correlation between 

phthalates concentration in house dust (home and daycare samples) and urinary 

metabolite concentration in the urine of 441 Danish children (DnBP-MnBP p<0.05, 

BBzP-MBzP p<0.001) was found. Compared to the other studies, a correlation 

between DEHP metabolites and dust concentration was not observed.  

All these studies concluded that dust is a contributor to phthalate exposure, 

especially for non-dietary exposure and for toddlers. They also indicate that indoor air 

is a major contributor to DnBP and DiBP exposure. All the mentioned studies were 

based on different amounts of dust ingestion (60-200 mg/d), which leads to a 
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different assumption of how much dust exposure contributes to the total phthalate 

exposure. 

 

4I5 Dust exposure compared to food exposure  

In several studies it was shown that the predominant intake source for DEHP intake 

is diet. As shown in a duplicate diet study performed by Fromme et al. [101], a 

significant correlation was determined between the DEHP concentration in food and 

the concentration in urine samples (where the DEHP intake was back-calculated). 

For DnBP, no correlation and for DiBP, a weak correlation was observed. An infant-

based duplicate diet study showed that for DiBP and DnBP, the dietary intake only 

comprised about 24 – 32 % of the total intake. For BBzP, it was only 4 % of the total 

intake. However, for DEHP, dietary intake is the dominant contributor [102]. A risk 

characterization of dietary uptake by Heinemeyer et al. [62] showed that less than 1 

% of German adults may exceed the tolerable daily intake of 50 µg/kg b.w. DEHP. 

Furthermore, they concluded that the average external dietary exposure of DEHP 

ranged between 3-14 µg/kg b.w./d and that 30 to 40 % of the total intake is 

contributed by the ingestion of dust. Wormuth et al. [24] assumed that for infants and 

toddlers, the main source for BBzP is dust (>70 %) and food might contribute 20 % to 

the total BBzP exposure. For children and adults, the main source is food (60 - 73 %) 

and contaminated indoor air (26 %). For infants, toddlers and children, the mouthing 

of soft plastics is up to 90 % responsible for DINP take up, whereas teenagers and 

adults are mainly exposed through dust (>30 %) and air (~30 %). The main source 

for DnBP exposure is food (40 – 90 %). For infants, toddlers and children, indoor air 

(20 - 40 %) and dust (10 %) are additional exposure sources. Female teenagers and 

adults are exposed by personal care products too (15 – 50 %). Food is the most 

important source for DEHP (50 – 98 %), for infants and toddlers, dust (>35 %) and 

toys (8 – 9 %) also contribute to the DEHP exposure. DINP is used as a substitution 

for DEHP. It is expected that exposure pathways are becoming more similar, thus 

food will also become the major exposure source for DINP.  

Reviewed by Oomen et al. [86], the DEHP exposure through food and water is 

almost 3 - 16 µg/kg b.w./d for adults and 12-26 µg/kg b.w./d for children. Compared 



 

70 

 

to the TDI value of 50 µg/kg b.w., a child has a share of 24-52 % of the TDI through 

this pathway.  

It has been assumed that through infant formula consumption, newborns and infants 

are exposed to 2.4 - 1.8 µg/kg b.w./d DINP [30]. Several human biomonitoring 

studies confirm that the main phthalate exposure takes place through ingestion. A 

duplicate diet study conducted by Fromme et al. [102] showed that the DEHP 

concentration in highly contaminated food lay around 4.7 µg/kg b.w. (95th percentile) 

and the high intake from biomonitoring data was 4.9 µg/kg b.w.. Koch et al. [103] 

tested in a 48 hour fasting study the phthalate exposure using excretion data in urine. 

The high molecular weight phthalates DEHP, DINP and DIDP showed a fast 

elimination rate and remained at a low level, whereas the low molecular weight 

phthalates DMP, DEP, BBzP, DnBP and DiBP had a rising and declining 

concentration in urine. These results indicated that the main exposure of high 

molecular weight phthalates occurs by food ingestion, whereas the others seem to 

have another exposure source, like personal care products or through indoor air and 

dust. 

 

4I6 Phthalate in dust as a health risk? 

In the last years, the toxicokinetic properties, sources and health effects of phthalates 

have been intensively investigated. In general, the average body burden of 

phthalates does not exceed the TDI value. A decreasing urinary phthalate 

concentration in recent years indicates a declining exposure to some phthalates. 

Nonetheless, especially children continue to show high urinary phthalate levels 

compared to adults. Children have a high food and water requirements per unit of 

body mass, an increased hand to mouth activity, a higher ventilation rate and 

unintended dust ingestion rate than adults. It is suspected that dust is an additional 

but minor exposure source for children. Our findings support this hypothesis. 

However, the question of phthalate exposure through dust posing a potential health 

risk still remains open. As mentioned above, several risk assessment studies 

concluded, that the ingestion of dust does not lead to an intake that exceeds TDI or 

RfD values. It was also observed that from daily intake calculations (including dust 

and dietary intake), children should have exceeded the TDI, but the urinary 
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concentration showed no higher values than the TDI for one phthalate or a 

combination of several phthalates. Additionally, in most of risk assessments, a 

bioavailability of 100% was assumed. Our study indicates that the bioavailability of 

phthalates in dust is less than 60%. In consideration of an estimated intake of 60 mg 

of dust per day, it can be concluded that dust is an additional phthalate exposure 

source, but it is still a minor contributor to the total exposure (0.01 % of the TDIBBzP, 

24.1 % of the TDIDEHP, 2.4 % TDIDINP, and 1.7 % of the TDIDnBP). Another important 

consideration is that only through the ingestion of dust, the hazard index was at 0.2, 

which also means that no negative health effects should be expected. Especially for 

the HMW phthalates such as DEHP and DINP, the dietary uptake is still the main 

exposure source for all age groups. On the contrary, for the LMW phthalates such as 

BBzP, DnBP and DiBP, it shows that the indoor environment, including dust, has an 

influence on the total exposure, but without a negative health effect.  

 



 

72 

 

 

5I Conclusion and future perspectives  

According to the US-EPA, toddlers have an unintended daily uptake of approximately 

60 mg dust which contains a variety of pollutants. Especially phthalates are present 

in high amounts and could pose a potential health risk. Currently, there is no 

information about the bioavailability of phthalates in the matrix dust. Our results show 

that the bioavailability of phthalates is much higher (~30 – 60 %) compared to in vitro 

digestion tests (~10 – 20 %). Furthermore, it is noticeable that the bioavailability of 

DEHP, for example, does not vary within the dust samples. A dose dependence 

uptake of DINP was observed. In other phthalates, we did not find this effect. Further 

research is needed to understand the underlying mechanism of the dose 

dependence DINP uptake. Moreover it should be clarified if this effect also occurs in 

humans and how much does it influence the DINP exposure.  

Biomonitoring studies indicate that children are highly exposed to phthalates but they 

do not normally exceed the TDI. In addition to diet and toys, dust could be an 

additional source of plasticizers for toddlers. However, because the limited amount of 

dust uptake does not normally lead to children exceeding the TDI, phthalate 

exposure through dust does not pose a health risk for children.  

The next step of research should be focused on determining the actual amount of 

ingested dust. On dust uptake, the quantity ingested has a higher influence on the 

exposure of phthalates than their bioavailability. In this study we focused only on 

bioavailability, thus there was only one test using a higher amount of dust where we 

noticed an increase of the phthalate exposure. But under realistic situations, where a 

child ingests approximately 60 mg dust during the day, it might contribute to a 

constant background exposure similar to indoor air without noticing an increase or 

decrease of urinary phthalate excretion. Further research is still needed in regard to 

how much indoor air contributes to the phthalate exposure, especially DnBP and 

DiBP. Additionally, further research should also address the bioavailability of other 

contaminants in dust, to determine whether dust poses a general exposure source or 

just in the case of phthalates.  

 



 

73 

 

 

 



 

74 

 

 

6I References 

1. Gimeno, P., et al., Identification and quantification of 14 phthalates and 5 non-
phthalate plasticizers in PVC medical devices by GC-MS. J Chromatogr B 
Analyt Technol Biomed Life Sci, 2014. 950: p. 99-108. 

2. Rudel, R.A., et al., Phthalates, Alkylphenols, Pesticides, Polybrominated 
Diphenyl Ethers, and Other Endocrine-Disrupting Compounds in Indoor Air 
and Dust. Environmental Science & Technology, 2003. 37(20): p. 4543-4553. 

3. Australian Government Department of Health and Ageing, N., A summary of 
physicochemical and human health hazard data for 24 ortho-phthalate 
chemicals. June 2008. 

4. Beko, G., et al., Children's phthalate intakes and resultant cumulative 
exposures estimated from urine compared with estimates from dust ingestion, 
inhalation and dermal absorption in their homes and daycare centers. PLoS 
One, 2013. 8(4). 

5. Intermediates), E.E.C.f.P.a. http://www.ecpi.org/. 13.05.2014  
6. http://www.plasticisers.org/en_GB/plasticisers/high-phthalates. acces August 

2014. 
7. Anderson, W.A.C., et al., A biomarker approach to measuring human dietary 

exposure to certain phthalate diesters. Food Additives & Contaminants, 2001. 
18(12): p. 1068-1074. 

8. Koch, H.M. and A.M. Calafat, Human body burdens of chemicals used in 
plastic manufacture. Philos Trans R Soc Lond B Biol Sci, 2009. 364(1526): p. 
2063-78. 

9. Kato, K., et al., Urinary metabolites of diisodecyl phthalate in rats. Toxicology, 
2007. 236(1-2): p. 114-22. 

10. Wittassek, M., et al., Assessing exposure to phthalates - the human 
biomonitoring approach. Mol Nutr Food Res, 2011. 55(1): p. 7-31. 

11. McKee, R.H., et al., Absorption, disposition and metabolism of di-isononyl 
phthalate (DINP) in F-344 rats. J Appl Toxicol, 2002. 22(5): p. 293-302. 

12. Saravanabhavan, G. and J. Murray, Human biological monitoring of diisononyl 
phthalate and diisodecyl phthalate: a review. J Environ Public Health, 2012. 
810501(10): p. 9. 

13. Koch, H.M., R. Preuss, and J. Angerer, Di(2-ethylhexyl)phthalate (DEHP): 
human metabolism and internal exposure-- an update and latest results. Int J 
Androl, 2006. 29(1): p. 155-65. 

14. European Commission and EC, Risk Assessment Report for DINP. Final 
Report Office for Official Publications of the European Communities 2003. 35. 

15. Bureau, E.C., Bis(2-ethylhexyl)phthalate (DEHP). 
https://echa.europa.eu/documents/10162/e614617d-58e7-42d9-b7fb-
d7bab8f26feb 17.02.2017, 2008. 

16. Sathyanarayana, S., Phthalates and children's health. Curr Probl Pediatr 
Adolesc Health Care, 2008. 38(2): p. 34-49. 

17. Braun, J.M., S. Sathyanarayana, and R. Hauser, Phthalate exposure and 
children's health. Curr Opin Pediatr, 2013. 25(2): p. 247-54. 

http://www.ecpi.org/
http://www.plasticisers.org/en_GB/plasticisers/high-phthalates


 

75 

 

18. Smith, S.A. and B. Norris, Reducing the risk of choking hazards: mouthing 
behaviour of children aged 1 month to 5 years. Inj Control Saf Promot, 2003. 
10(3): p. 145-54. 

19. Juberg, D.R., et al., An observational study of object mouthing behavior by 
young children. Pediatrics, 2001. 107(1): p. 135-42. 

20. Heinemeyer, G.H., A. ; Sommerfeld, C. ; Springer, A. ; Hausdörfer, S. ; Treutz, 
M., Phthalate-Belastung der Bevölkerung in Deutschland: 
Expositionsreleveante Quellen, Aufnahmepfad und Toxikokinetik am Beispiel 
von DEHP und DINP  

Band I: Exposition durch Verzehr von Lebensmitteln und Anwendung von 
Verbraucherprodukten. 2012. 

21. Xue, J., et al., A meta-analysis of children's hand-to-mouth frequency data for 
estimating nondietary ingestion exposure. Risk Anal, 2007. 27(2): p. 411-20. 

22. Jensen, A., H.Knudsen, Total health assessment of chemicals in indoor 
climate from various consumer products. Survey of Chemical Substances in 
Consumer Products, 2006. No.75(Danish Ministry of the Environment. 
Environmental Protections Agency. ). 

23. Xue, J., et al., A meta-analysis of children's object-to-mouth frequency data for 
estimating non-dietary ingestion exposure. J Expo Sci Environ Epidemiol, 
2010. 20(6): p. 536-45. 

24. Wormuth, M., et al., What Are the Sources of Exposure to Eight Frequently 
Used Phthalic Acid Esters in Europeans? Risk Analysis, 2006. 26(3): p. 803-
824. 

25. Hawley, J.K., Assessment of health risk from exposure to contaminated soil. 
Risk Anal, 1985. 5(4): p. 289-302. 

26. Bouma, K. and D.J. Schakel, Migration of phthalates from PVC toys into saliva 
simulant by dynamic extraction. Food Addit Contam, 2002. 19(6): p. 602-10. 

27. Rijk, R., & Ehlert, K., Migration of phthalate plasticizers from soft PVC toys and 
childcare articles.TNO Report V3932. Netherlands Organisation for Applied 
Scientific Research, 2001. 

28. Pfaff, K., et al., Phthalat-Belastung der Bevölkerung in Deutschland: 
Expositionsrelevante Quellen, Aufnahmepfad und Toxikokinetik am Beispiel 
von DEHP und DINP 

           Band II: Ergänzende Messungen von DEHP, DINP und DiNCH in 
Lebensmitteln und Migrationsmessungen in Verbraucherprodukten. 
http://www.uba.de/uba-info-medien/4392.html 2012. 

29. Fiala, F., I. Steiner, and K. Kubesch, Migration of di-(2-ethylhexyl)phthalate 
(DEHP) and diisononyl phthalate (DINP) from PVC articles. 
http://www.verbraucherrat.at/content/02-projekte/03-chemische-gefahren/01-
weichmacher-im-spielzeug/phthalates2.pdf. 12.06.2014, 2000. 

30. European Chemichals Agency and ECHA, Concerning DINP and DIDP in 
relation to Entry 52 of Annex XVII to regulation (EC) no 1907/2006 (REACH). 
2007. 

31. Clark, K.E., et al., Modeling Human Exposure to Phthalate Esters: A 
Comparison of Indirect and Biomonitoring Estimation Methods. Hum Ecol Risk 
Assess, 2011. 17(4): p. 923-965. 

32. Kohn, M.C., et al., Human exposure estimates for phthalates: Environ Health 
Perspect. 2000 Oct;108(10):A440-2. 

33. Bornehag, C.G. and E. Nanberg, Phthalate exposure and asthma in children. 
Int J Androl, 2010. 33(2): p. 333-45. 

http://www.uba.de/uba-info-medien/4392.html
http://www.verbraucherrat.at/content/02-projekte/03-chemische-gefahren/01-weichmacher-im-spielzeug/phthalates2.pdf
http://www.verbraucherrat.at/content/02-projekte/03-chemische-gefahren/01-weichmacher-im-spielzeug/phthalates2.pdf


 

76 

 

34. Matsui, S., Endocrine Disruptors. Encyclopedia of Toxicology, 2008(May): p. 
1259-1260. 

35. Meeker, J.D., S. Sathyanarayana, and S.H. Swan, Phthalates and other 
additives in plastics: human exposure and associated health outcomes. Philos 
Trans R Soc Lond B Biol Sci, 2009. 364(1526): p. 2097-113. 

36. Huang, Y., et al., Phthalate levels in cord blood are associated with preterm 
delivery and fetal growth parameters in Chinese women. PLoS One, 2014. 
9(2). 

37. Philippat, C., et al., Exposure to phthalates and phenols during pregnancy and 
offspring size at birth. Environ Health Perspect, 2012. 120(3): p. 464-70. 

38. Fredricsson, B., et al., Human sperm motility is affected by plasticizers and 
diesel particle extracts. Pharmacol Toxicol, 1993. 72(2): p. 128-33. 

39. Duty, S.M., et al., Phthalate exposure and human semen parameters. 
Epidemiology, 2003. 14(3): p. 269-77. 

40. Creasy, D.M., J.R. Foster, and P.M. Foster, The morphological development 
of di-N-pentyl phthalate induced testicular atrophy in the rat. J Pathol, 1983. 
139(3): p. 309-21. 

41. Nagao, T., et al., Effect of butyl benzyl phthalate in Sprague-Dawley rats after 
gavage administration: a two-generation reproductive study. Reprod Toxicol, 
2000. 14(6): p. 513-32. 

42. Hannon, P.R. and J.A. Flaws, The effects of phthalates on the ovary. Front 
Endocrinol, 2015. 6(8). 

43. Meeker, J.D. and K.K. Ferguson, Relationship between urinary phthalate and 
bisphenol A concentrations and serum thyroid measures in U.S. adults and 
adolescents from the National Health and Nutrition Examination Survey 
(NHANES) 2007-2008. Environ Health Perspect, 2011. 119(10): p. 1396-402. 

44. Boas, M., et al., Childhood exposure to phthalates: associations with thyroid 
function, insulin-like growth factor I, and growth. Environ Health Perspect, 
2010. 118(10): p. 1458-64. 

45. Bornehag, C.G., et al., The association between asthma and allergic 
symptoms in children and phthalates in house dust: a nested case-control 
study. Environ Health Perspect, 2004. 112(14): p. 1393-7. 

46. Becker, K., et al., GerES IV: phthalate metabolites and bisphenol A in urine of 
German children. Int J Hyg Environ Health, 2009. 212(6): p. 685-92. 

47. Fromme, H., et al., Phthalates in German daycare centers: occurrence in air 
and dust and the excretion of their metabolites by children (LUPE 3). Environ 
Int, 2013. 61: p. 64-72. 

48. Langer, S., et al., Phthalate metabolites in urine samples from Danish children 
and correlations with phthalates in dust samples from their homes and 
daycare centers. Int J Hyg Environ Health, 2014. 217(1): p. 78-87. 

49. Becker, K., et al., DEHP metabolites in urine of children and DEHP in house 
dust. International Journal of Hygiene and Environmental Health, 2004. 
207(5): p. 409-417. 

50. Koch, H.M., et al., Di-n-butylphthalate and butylbenzylphthalate - urinary 
metabolite levels and estimated daily intakes: pilot study for the German 
Environmental Survey on children. J Expo Sci Environ Epidemiol, 2007. 17(4): 
p. 378-87. 

51. Koch, H.M., et al., Internal exposure of the general population to DEHP and 
other phthalates—determination of secondary and primary phthalate 



 

77 

 

monoester metabolites in urine. Environmental Research, 2003. 93(2): p. 177-
185. 

52. Kasper-Sonnenberg, M., et al., Levels of phthalate metabolites in urine among 
mother–child-pairs – Results from the Duisburg birth cohort study, Germany. 
International Journal of Hygiene and Environmental Health, 2012. 215(3): p. 
373-382. 

53. Larsson, K., et al., Phthalates, non-phthalate plasticizers and bisphenols in 
Swedish preschool dust in relation to children's exposure. Environment 
International. 

54. Commission, E., Commission delegated directive (EU) 2015/863 of 31 March 
2015 amending Annex II to Directive 2011/65/EU of the European Parliament 
and of the Council as regards the list of restricted substances. http://eur-
lex.europa.eu/legal-content/DE/TXT/?uri=CELEX%3A32015L0863 
19.02.2017, 2015. 

55. Petra Apel, A.C., Ulrike Fiddicke,Marike Kolossa-Gehring, Belastung der 
Bevölkerung mit Weichmachern –Studienergebnisse und Stand der 
Diskussion zu einer kumulativen Risikobewertung. 
http://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/b
elastung_mit_weichmachern_58-65.pdf 14.02.2017, 2004. 

56. Bureau, E.C., Benzyl butyl phthalate (BBP)-European Union Risk Assessment 
Report https://echa.europa.eu/documents/10162/bad5c928-93a5-4592-a4f6-
e02c5e89c299 13.02.2017, 2007. 

57. Beko, G., et al., Phthalate exposure through different pathways and allergic 
sensitization in preschool children with asthma, allergic rhinoconjunctivitis and 
atopic dermatitis. Environ Res, 2015. 137: p. 432-9. 

58. Agency, E.C., Evaluation of new scientific evidence concerning the restrictions 
contained in annex XVII to regulation (EC) NO 1907/2006 (REACH) review of 
new available information for dibutyl phthalate (DBP). 
https://echa.europa.eu/documents/10162/13641/dbp_echa_review_report_201
0_6_en.pdf, 2010. 

59. Koch, H.M., et al., Di-n-butyl phthalate (DnBP) and diisobutyl phthalate (DiBP) 
metabolism in a human volunteer after single oral doses. Arch Toxicol, 2012. 
86(12): p. 1829-39. 

60. Bureau, E.C., European Union Risk Assessment Report dibutyl phthalate 
http://www.plasticisers.org/uploads/Risk%20assessments/DBP%20Risk%20A
ssesment%20Full%20Report.pdf, 2004. 29. 

61. Agency, E.C., Comparison of potential endocrine disrupting properties of di-
isononyl phthalate(DINP), di-isodecyl phthalate (DIDP),and di-n-butyl 

phthalate (DnBP). 
https://echa.europa.eu/documents/10162/13641/ref11_dinp_didp_en.pdf 
08.02.2017, 2012. 

62. Heinemeyer, G., et al., Estimation of dietary intake of bis(2-
ethylhexyl)phthalate (DEHP) by consumption of food in the German 
population. Int J Hyg Environ Health, 2013. 216(4): p. 472-80. 

63. http://ec.europa.eu/environment/archives/dansub/pdfs/annex1_en.pdf, 
25.06.2017. 

64. Koch, H.M., et al., New metabolites of di(2-ethylhexyl)phthalate (DEHP) in 
human urine and serum after single oral doses of deuterium-labelled DEHP. 
Arch Toxicol, 2005. 79(7): p. 367-76. 

http://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX%3A32015L0863
http://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX%3A32015L0863
http://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/belastung_mit_weichmachern_58-65.pdf
http://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/belastung_mit_weichmachern_58-65.pdf
http://www.plasticisers.org/uploads/Risk%20assessments/DBP%20Risk%20Assesment%20Full%20Report.pdf
http://www.plasticisers.org/uploads/Risk%20assessments/DBP%20Risk%20Assesment%20Full%20Report.pdf
http://ec.europa.eu/environment/archives/dansub/pdfs/annex1_en.pdf


 

78 

 

65. Bureau, E.C., Risk Assessment Report on 1,2-Benezedicarboxylic Acid, Di-
C8-10 Bracnched Alkyl Esters, C9-Rich, and Di-Isononyl Phthalate (DINP). 
Institute for Health and Consumer Protection, European Union 2003. 

66. Koch, H.M., J. Muller, and J. Angerer, Determination of secondary, oxidised di-
iso-nonylphthalate (DINP) metabolites in human urine representative for the 
exposure to commercial DINP plasticizers. J Chromatogr B Analyt Technol 
Biomed Life Sci, 2007. 847(2): p. 114-25. 

67. https://www.ec.gc.ca/ese-ees/default.asp?lang=En&n=D3FB0F30-1, 
20.02.2017. 

68. http://www.caslab.com/Diisononyl_phthalate_CAS_28553-12-0/, 20.02.2017. 
69. Koch, H.M. and J. Angerer, Di-iso-nonylphthalate (DINP) metabolites in 

human urine after a single oral dose of deuterium-labelled DINP. Int J Hyg 
Environ Health, 2007. 210(1): p. 9-19. 

70. Huwe, J.K., et al., Comparative absorption and bioaccumulation of 
polybrominated diphenyl ethers following ingestion via dust and oil in male 
rats. Environ Sci Technol, 2008. 42(7): p. 2694-700. 

71. Cizdziel James V, V.F.H., Attics as archives for house infiltrating pollutants: 
trace elements and pesticides in attic dust and soil from southern Nevada and 
Utah,. Microchemical Journal, 3 January 2000. 64  (1): p. 85-92,. 

72. Abb, M., et al., Phthalates in house dust. Environment International, 2009. 
35(6): p. 965-970. 

73. Molhave, L., et al., House dust in seven Danish offices. Atmospheric 
Environment, 2000. 34(28): p. 4767-4779. 

74. Office, U.S.G.A., Indoor Pollution: Status of Federal Research Activities. 1999. 
75. Agency, U.S.E.P., Exposure factors handbook. 2011. 
76. Lioy, P.J., N.C. Freeman, and J.R. Millette, Dust: a metric for use in residential 

and building exposure assessment and source characterization. Environ 
Health Perspect, 2002. 110(10): p. 969-83. 

77. World Health Organization , W., Hazard Prevention and Control in the Work 
Environment: Airborne Dust. 1999. 

78. Blanchard, O., et al., Semivolatile organic compounds in indoor air and settled 
dust in 30 French dwellings. Environ Sci Technol, 2014. 48(7): p. 3959-69. 

79. Hwang, H.-M., et al., Occurrence of endocrine-disrupting chemicals in indoor 
dust. Science of The Total Environment, 2008. 404(1): p. 26-35. 

80. Wang, W., et al., Size fraction effect on phthalate esters accumulation, 
bioaccessibility and in vitro cytotoxicity of indoor/outdoor dust, and risk 
assessment of human exposure. J Hazard Mater, 2013. 261: p. 753-62. 

81. Bornehag, C.-G., et al., Phthalates in Indoor Dust and Their Association with 
Building Characteristics. Environmental Health Perspectives, 2005. 113(10): p. 
1399-1404. 

82. Ait Bamai, Y., et al., Associations of phthalate concentrations in floor dust and 
multi-surface dust with the interior materials in Japanese dwellings. Sci Total 
Environ, 2014. 469: p. 147-57. 

83. Langer, S., et al., Phthalate and PAH concentrations in dust collected from 
Danish homes and daycare centers. Atmospheric Environment, 2010. 44(19): 
p. 2294-2301. 

84. Guo, Y. and K. Kannan, Comparative assessment of human exposure to 
phthalate esters from house dust in China and the United States. Environ Sci 
Technol, 2011. 45(8): p. 3788-94. 

http://www.ec.gc.ca/ese-ees/default.asp?lang=En&n=D3FB0F30-1
http://www.caslab.com/Diisononyl_phthalate_CAS_28553-12-0/


 

79 

 

85. Moya, J. and L. Phillips, A review of soil and dust ingestion studies for 
children. J Expo Sci Environ Epidemiol, 2014. 24(6): p. 545-54. 

86. Oomen, A.G., et al., Exposure to chemicals via house dust ( RIVM Report 
609021064/2008. 2008. 

87. Kang, Y., et al., Risk assessment of human exposure to bioaccessible 
phthalate esters via indoor dust around the Pearl River Delta. Environ Sci 
Technol, 2012. 46(15): p. 8422-30. 

88. Turner, A., Bioaccessibility of Trace Metals in Household Dust A2 - Nriagu, 
J.O, in Encyclopedia of Environmental Health2011, Elsevier: Burlington. p. 
317-322. 

89. Yuswir, N.S., et al., Bioavailability of heavy metals using in vitro digestion 
model: a state of present knowledge. Rev Environ Health, 2013. 28(4): p. 181-
7. 

90. Freeman, G.B., et al., Bioavailability of arsenic in soil and house dust impacted 
by smelter activities following oral administration in cynomolgus monkeys. 
Fundam Appl Toxicol, 1995. 28(2): p. 215-22. 

91. Oomen, A.G., et al., Comparison of five in vitro digestion models to study the 
bioaccessibility of soil contaminants. Environ Sci Technol, 2002. 36(15): p. 
3326-34. 

92. Fromme, H., et al., Occurrence of phthalates and musk fragrances in indoor 
air and dust from apartments and kindergartens in Berlin (Germany). Indoor 
Air, 2004. 14(3): p. 188-95. 

93. Volkel, W., et al., Phthalate intake by infants calculated from biomonitoring 
data. Toxicol Lett, 2014. 225(2): p. 222-9. 

94. Brandon, E.F., et al., Consumer product in vitro digestion model: 
Bioaccessibility of contaminants and its application in risk assessment. Regul 
Toxicol Pharmacol, 2006. 44(2): p. 161-71. 

95. Wienk, K.J., J.J. Marx, and A.C. Beynen, The concept of iron bioavailability 
and its assessment. Eur J Nutr, 1999. 38(2): p. 51-75. 

96. Freeman, G.B., et al., Bioavailability of arsenic in soil impacted by smelter 
activities following oral administration in rabbits. Fundam Appl Toxicol, 1993. 
21(1): p. 83-8. 

97. Kessler, W., et al., Kinetics of di(2-ethylhexyl) phthalate (DEHP) and mono(2-
ethylhexyl) phthalate in blood and of DEHP metabolites in urine of male 
volunteers after single ingestion of ring-deuterated DEHP. Toxicol Appl 
Pharmacol, 2012. 264(2): p. 284-91. 

98. European Commission, J., BIS (2-ethylhexyl) Phthalate (DEHP). 2008. 
99. Lessmann, F., et al., Metabolism and urinary excretion kinetics of di(2-

ethylhexyl) terephthalate (DEHTP) in three male volunteers after oral dosage. 
Archives of Toxicology, 2016. 90(7): p. 1659-1667. 

100. https://www.epa.gov/national-air-toxics-assessment/nata-glossary-terms, 
20.06.2017. 

101. Fromme, H., et al., Intake of phthalates and di(2-ethylhexyl)adipate: Results of 
the Integrated Exposure Assessment Survey based on duplicate diet samples 
and biomonitoring data. Environment International, 2007. 33(8): p. 1012-1020. 

102. Fromme, H., et al., Phthalate and di-(2-ethylhexyl) adipate (DEHA) intake by 
German infants based on the results of a duplicate diet study and 
biomonitoring data (INES 2). Food Chem Toxicol, 2013. 53: p. 272-80. 

http://www.epa.gov/national-air-toxics-assessment/nata-glossary-terms


 

80 

 

103. Koch, H.M., et al., Identifying sources of phthalate exposure with human 
biomonitoring: results of a 48h fasting study with urine collection and personal 
activity patterns. Int J Hyg Environ Health, 2013. 216(6): p. 672-81. 

 

 

7I Appendix 

AI Appedix 

AI1 Material and Methods 



 

81 

 



 

82 

 



 

83 

 



 

84 

 



 

85 

 



 

86 

 



 

87 

 



 

88 

 



 

89 

 

 
Table A1. Experiment timetable. Letters are dust samples, numbers are pigs 

05.10.2015 
8pm Pigs: 
1,2,3 and 4 
into the 
metabolite 
cage 

06.10.2015 
6am-10pm 
B-1 
C-2 
D-3 
E-4 

07.10.2015 
6am-8pm 
B-1 
C-2 
D-3 
E-4 

08.10.2015 
8pm Pigs: 
5,6 and 7 
into the 
metabolite 
cage 

09.10.2015 
6am-10pm 
E-5 
C-6 
B-7 

10.10.2015 
6am-8pm 
E-5 
C-6 
B-7 

11.10.2015 
8pm Pigs: 
1,2,3 and 4 
into the 
metabolite 
cage 

12.10.2015 
6am-10pm 
A-1 
B-2 
E-3 
C-4 

13.10.2015 
6am-8pm 
A-1 
B-2 
E-3 
C-4 

14.10.2015 
8pm Pigs: 
5,6 and 7 
into the 
metabolite 
cage 

15.10.2015 
6am-10pm 
C-5 
A-6 
E-7 

16.10.2015 
6am-8pm 
C-5 
A-6 
E-7 

17.10.2015 
8pm Pigs: 
1,2,3 and 4 
into the 
metabolite 
cage 

18.10.2015 
6am-10pm 
C-1 
E-2 
B-3 
A-4 

19.10.2015 
6am-8pm 
C-1 
E-2 
B-3 
A-4 

20.10.2015 
8pm Pigs: 
5,6 and 7 
into the 
metabolite 
cage 

21.10.2015 
6am-10pm 
D-5 
B-6 
A-7 

22.10.2015 
6am-8pm 
D-5 
B-6 
A-7 

23.10.2015 
8pm Pigs: 
1,2,3 and 4 
into the 
metabolite 
cage 

24.10.2015 
6am-10pm 
D-1 
A-2 
C-3 
B-4 

25.10.2015 
6am-8pm 
D-1 
A-2 
C-3 
B-4 

26.10.2015 
8pm Pigs: 
5,6 and 7 
into the 
metabolite 
cage 

27.10.2015 
6am-10pm 
Food 
sample for 
Pig 5,6 
and 7 

28.10.2015 
6am-8pm 
Food 
sample for 
Pig 5,6 
and 7 

29.10.2015 
8pm Pigs: 
1,2,3 and 4 
into the 
metabolite 
cage 

30.10.2015 
6am-10pm 
Food 
sample for 
Pig 1,2,3 
and 4 

31.10.2015 
6am-8pm 
Food 
sample for 
Pig 1,2,3 
and 4 

1.11.2015 
8pm Pigs: 
5,6 and 7 
into the 
metabolite 
cage 

02.11.2015 
6am-10pm 
A-5 
D-6 
C-7 

03.11.2015 
6am-8pm 
A-5 
D-6 
C-7 

04.11.2015 
8pm Pigs: 
1,2,3 and 4 
into the 
metabolite 
cage 

05.11.2015 
6am-10pm 
E-1 
D-2 
A-3 
D-4 

06.11.2015 
6am-8pm 
E-1 
D-2 
A-3 
D-4 

07.11.2015 
 

08.11.2015 
8pm Pigs: 
5,6 and 7 
into the 
metabolite 
cage 

09.11.2015 
6am-10pm 
IV-Injection  
For Pigs 
5,6 and 7 

10.11.2015 
6am-8pm 
IV-Injection  
For Pigs 
5,6 and 7 

11.11.2015 
6am-10pm 
IV-Injection  
For Pig 
1,2,3 and 4 

12.11.2015 
6am-8pm 
IV-Injection  
For Pig 
1,2,3 and 4 

13.11.2015 
8pm Pigs: 
5,6,7 into 
the 
metabolite 
cage 

14.11.2015 
6am-10pm 
B-5 
E-6 
D-7 

15.11.2015 
6am-8pm 
B-5 
E-6 
D-7 

 
 
 
 
Table A2. Used Standards for food sample 

Plasticizer  Brand CAS-Number 

BBP Fluka 85-68-7 
DEHP Fluka 117-81-7 
DnBP Fluka 84-74-2 
DINP Fluka 28553-12-0 
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Table A3. Transition settings of the investigated and labeled phthalate metabolites RT: retention time; 
DP: declustering potential; EP: entrance Potential; CEP: collision cell entrance potential; CE: Collision 
energy  

RT  GROUP Q1 

MASS 

[DA] 

Q3 
MASS 

[DA] 

ID DP EP CEP CE 

8.3 5CX-MEPP 

307 
113 QUAL. 

-15 -10 -12.71 
-40 

159 QUANT. -22 

311 
113 

D4 LAB. 
QUAL. 

-15 -10 -12.86 
-36 

159 
D4 LAB. 
QUANT. -18 

8.6 
5-OH-
MEHP 

293 
121 QUANT. 

-30 -10 -12.21 
-28 

145 QUAL. -20 

297 
125 

D4 LAB. 
QUANT. 

-30 -10 -12.35 
-22 

145 
D4 LAB. 
QUAL. -24 

9.1 
7CX-
MMEHP 

321 
121 QUAL. 

-35 -10 -13.22 
-30 

173 QUANT. -18 

325 
125 

D4 LAB. 
QUAL. 

-35 -10 -13.36 
-32 

173 
D4 LAB. 
QUANT. -18 

9.1 2CX-MMHP 

307 
113 QUAL. 

-10 -10 -12.71 
-42 

159 QUANT. -14 

311 
113 

D4 LAB. 
QUAL. 

-10 -10 -12.86 
-36 

159 
D4 LAB. 
QUANT. -16 

9.2 MIBP 

221 
77 QUANT. 

-20 -10 -9.62 
-24 

134 QUAL. -20 

225 
81 

D4 LAB. 
QUANT. 

-20 -10 -9.76 
-28 

138 
D4 LAB. 
QUAL. -20 

9.2 
5-OXO-
MEHP 

291 
121 QUANT. 

-25 -10 -12.14 
-22 

143 QUAL. -22 

295 
124 

13C4 LAB. 
QUANT. 

-25 -10 -12.28 
-22 

143 
13C4 LAB. 
QUAL. -20 

9.3 MNBP 

221 
77 QUANT. 

-25 -10 -9.62 
-26 

121 QUAL. -20 

225 
71 

D4 LAB. 
QUAL. 

-25 -10 -9.76 
-20 

79 
D4 LAB. 
QUANT. -28 

9.4 
7OH-
MMEOP 

307 
77 QUAL. 

-25 -10 -12.71 
-46 

121 QUANT. -32 

311 
81 

D4 LAB. 
QUAL. 

-25 -10 -12.86 
-44 
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125 
D4 LAB. 
QUANT. -28 

9.9 MCDMHP 

335 
121 QUAL. 

-20 -10 -13.72 
-30 

187 QUANT. -28 

339 
125 

D4 LAB. 
QUAL. 

-20 -10 -13.87 
-40 

187 
D4 LAB. 
QUANT. -20 

10.1 MBZP 

255 
77 QUAL. 

-20 -10 -10.84 
-34 

107 QUANT. -18 

259 

77 
13C4 LAB. 
QUAL. 

-20 -10 -10.98 

-36 

107 

13C4 

LAB.QUANT

. -20 

10.1 7OXO-MINP 

305 
77 QUAL. 

-25 -10 -12.64 
-42 

121 QUANT. -26 

309 
81 

D4 LAB. 
QUAL. 

-25 -10 -12.79 
-42 

125 
D4 LAB. 
QUANT. -22 

   9.8 

- 10.8 
MHDMOP 

321 
77 QUAL. 

-45 -10 -13.22 
-48 

121 QUANT. -30 

325 
81 

D4 LAB. 
QUAL. 

-45 -10 -13.36 
-50 

125 
D4 LAB. 
QUANT. -26 

11.0 MODMOP 

319 
77 QUAL. 

-30 -10 -13.15 
-52 

121 QUANT. -22 

323 
81 

D4 LAB. 
QUAL. 

-30 -10 -13.29 
-44 

125 
D4 LAB. 
QUANT. -32 

14.3 MEHP 

277 
127 QUAL. 

-25 -10 -11.63 
-22 

134 QUANT. -24 

281 

127 
13C4 LAB. 
QUAL. 

-25 -10 -11.78 

-30 

137 

13C4 

LAB.QUANT

. -22 

14.8 MINP 

291 
77 QUANT. 

-30 -10 -12.13 
-38 

139 QUAL. -28 

295 79 

13C4 

LAB.QUANT

. -30 -10 -12.28 -38 

141 
13C4 LAB. 
QUAL. -24 
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Table A4. List of the used standards  

Native standard Internal standard 

MEHPa 13C2-MEHPa 
5OH-MEHPa D4-5-OH-MEHPb 
5 oxo–MEHPa 13C4-5-oxo-MEHPa 
MBzPa 13C2- MBzPa 
MnBPa 13C2-MnBPa 
MINPa 13C2-MINPa 
2cx-MMHPb D4-2cx-MMHPb 
5cx-MEPPb D4-5cx-MEPPb 
OH-MINPb D4-7OH-MINPb 
oxo-MINPb D4-oxo-MINPb 
cx-MINPb D4-cx-MINPb 

a)Campridge Isotope, b)Biochemisches Institute für Umweltcarginogene 

 
 

AI2 Results 

The detailed description of toxicokinetics of phthalates 

AI2I1 Butyl benzyl phthalate 

Pig 1 

Dust: 

The urinary concentration maximum occurred 3.5 ± 0.7 hours post dose. The 

estimated half-life time of MBzP was about 7.8 ± 9.1 hours. 

Within the first 24 hours, 26.6 ± 18.6 % of applied BBzP dose was excreted as MBzP. 

Between 24 to 38 hours only 0.2 ± 0.5 % of the Dose was eliminated.  

Food: 

Two hours after dose administration, the maximum concentration was observed in 

urine. The half-life time was about 2.4 hours. 69.2 % of the applied dose was 

eliminated within the first 24 hours. On the second day no MBzP was detectable in 

the urine.  

 

Pig 2  

Dust:  

MBzP reached its maximum concentration 2.2 ± 0.5 hours post dose. The average t½ 

was about 5 ± 3.6 hours. On the first day, 30.3 ± 18.1 % of the applied BBzP dose 

was eliminated as MBzP. On the second day, only 0.08 ± 0.17 % of dose was found 

in urine.  
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Food: 

The concentration maximum was reached three hours post dose. Based on the 

excretion profile, it was not possible to calculate the half-life. The uptake and 

metabolism took place in the first 24 hours where 30 % of the BBzP dose was 

excreted  

 

Pig 3  

Dust: 

The concentration maxima was reached 3.2 ± 1 hours post dose. The estimated half-

life time was about 2.8 ± 0.5 hours. On the first sampling day, 30.2 ± 12.3 % and on 

the second day 0.3 ± 0.6 % of the applied BBzP dose was detected. 

Food: 

It was more than the applied dose excreted in urine.  

 

Pig 4  

Dust: 

The urinary concentration maximum was observed 2.5 ± 0.6 hours post dose. t½ was 

determined about 6.4 ± 6.6 hours. 27.4 ± 18.1 % of the applied dose was completely 

excreted on the first day.  

Food: 

The maximum concentration was reached three hours post dose. 4.4 hours was 

determined as elimination half-life time. In Sum 63.4 % of the BBzP dose was 

completely excreted within 24 hours as MBzP.  

 

Pig 5  

Dust: 

Tmax was observed 3 ± 1.1 hours post dose and the half-life time was about 3.2 ± 0.6 

hours. In total, 18.2 ± 14.4 % of the dose was completely eliminated during the first 

day. 

Food: 

Within three hours, the maximum concentration was reached. The calculated half-life 

time was 2.2 hours. Similar to dust, the complete 0.2 % of the applied BBzP dose 

was excreted within 24 hours.  
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Pig 6  

Dust:  

MBzP reached its urinary Cmax at 2.7 ± 1 hours after dose. The t½ was estimated as 

7.1 ± 3.5 hours. 29 ± 27.4 % of the given dose was excreted in the first 24 hours. 

From 24 hours to 38 hours 0.1 ± 0.2 % of the given dose was detected in urine.  

Food: 

After ten hours the maximum concentration was reached. The half-life time was 

estimated with 8.4 hours. 24.5 % of the applied dose was completely excreted on the 

first day, on the second day no metabolites were detected.  

 

Pig 7  

Dust:  

Cmax was estimated after three hours post dose. The elimination half-life was 

determined around 3.4 ± 1.6 hours. During the first 24 hours, 28 ± 13.6 % of the 

given dose was detected. 

Food: 

Similar to the other piglets, Cmax was noticed after three hours post dose and t ½ was 

after 3.9 hours. The complete absorbed dose of 17.8 % was excreted within 24 

hours.  

 

AI2I2 Di-n-butyl phthalate  

Pig 1 

Dust:  

The maximum concentration was reached after 2.8 ± 0.8 hours post dose. The first 

estimated half-life time was around 3.3 ± 1.8 hours, whereas 24 hours later the 

second half life time was reached with 7.3 ± 4.8 hours.  

During the first 24 hours, 45 ± 21 % of the given dose was eliminated via urine, while 

24 - 38 hours post dose only 3.2 ± 3 % of applied dose was detected. 

Food:  

After two hours post dose the urinary maximum concentration was reached. The half-

life time was estimated for 1.8 hours. The second half-life time (24 hours post dose) 

was 3.8 hours. The complete absorbed dose of 56.8 % was metabolized and 

eliminated within in the first 24 hours. 
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Pig 2  

Dust:  

The highest concentration was 2.5 ± 0.6 hours post dose noticed. During the first 

elimination period, the half-life time was about 6.6 ± 7.6 hours, while at the second 

elimination phase, t½ was 6.3 ± 8.8 hours. The second elimination period occurred 11 

to 36 hours post dose (see table A5). 

43.7 ± 16.1 % of the applied dose was excreted in the first 24 hours. On the second 

day, 4.6 ± 5.9 % was detected.  

Food:  

More than 100 % of the applied dose was found  

 

Pig 3  

Dust:  

The concentration maxima was 2.6 ± 1.5 hours post dose noticed. t½ of the first 

elimination period was 1.9 ± 0.2 hours, while the second t½ was estimated with 2.6 ± 

0.2 hours and occurred 9 - 24 hours post dose (for details see table X).  

Within the first 24 hours, 45.7 ± 16.7 % of the given dose was eliminated. 24 - 38 

hours post dose, 3.1 ± 2.3 % of the applied dose was found in urine.  

Food:  

The uptake was more than the given dose  

 

Pig 4  

Dust:  

It took 2.2 ± 0.5 hours after dose administration to reach the maximum concentration. 

t½ of the first elimination phase was 1.9 ± 0.4 hours, the second elimination half-life 

time was 7.5 ± 9.2 hours and occurred 12 - 14 hours post dose  

On the first day, 46.6 ± 19.4 % of the applied dose was excreted, whereas on the 

second day, only 1.1 ± 1.5 % respectively. 

Food:  

The maximum concentration was reached three hours post dose. The elimination 

half-life time was determined with four hours. 

47.8 % of the dose was absorbed and metabolized and completely excreted within 

24 hours post dose.  
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Pig 5  

Dust:  

The maximum concentration was 3.2 ± 0.9 hours post dose observed. During the first 

elimination, the half-life time was determined at 2.5 ± 0.6 hours, the second t½ was 

calculated with 6.8 ± 4.3 hours (12-24 hours post dose).  

38.6 ± 10.7 % of the dose was determined in the first 24 hours. Only 2.2 ± 2.4 % was 

excreted on the second day, respectively.  

Food:  

Three hours post dose, the maximum of concentration was reached. The half-life 

time amounted 2.8 hours. 

21.3 % of the applied Dose was excreted in the first 24 hours as MnBP. After 24 

hours 2.4 % of the applied dose was eliminated.  

 

Pig 6  

Dust:  

The concentration maximum was observed 3.4 ± 1.7 hours post dose. t½ for the first 

excretion phase was about 4.4 ± 1.6 hours, the second t½  was 7.6 ± 2 hours (11 - 24 

hours post dose) 

50.5 ± 29 % of the applied dose was detected in 24 hours post dose. 0.9 ± 1.3 % was 

found on the second day.  

Food: 

The Cmax was determined three hours after dose administration. The estimated 

elimination half –life time was 8.7 hours. Within 24 hours, 23.5 % of the applied dose 

was detected in urine.  

 

Pig 7  

Dust:  

2.7 ± 0.5 hours post dose, the highest concentration was measured. During the first 

elimination phase, the half-life time was estimated around 2.1 ± 1.4 hours, the 

second above 5.6 ± 2.2 hours (24 h post dose). 

49.7 ± 13.4 % of the administrated dose was found in urine as MnBP. On the second 

day, only 3.8 ± 2.9 % was detected.  
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Food: 

Same as dust samples, the concentration maximum was reached three hours post 

dose. The first and second t½ was determined with 5.6 hours and 5 hours.  

22 % of the applied dose was detected in urine samples 24 hours post dose. 24 

hours to 38 hours post dose, only 4.2 % of the applied dose was identify and 

excreted as MnBP.  

 

A detail description of the toxicokinetic parameters of MBzP and MnBP, 

concentration maximum (Cmax) and it’s time appearance (tmax), half-life time (t½) in the 

first excretion and second period (second tmax [h] + second t ½) are given in Table A5.  
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Table A5. Detail description of kinetic parameters of BBzP and DnBP metabolism [Cmax in µg, tmax and 
t ½ in hour]. 

Dust  Pig MBzP MnBP 

  cmax tmax  t½  cmax tmax  t½  

A 1 0.7  2 3.4 2 4 24+5 

 2 0.9 2 6 3.1 2   

 3 0.9 3 2 5.5 3 2 24+3 

 4 1.4 2 2 9 2 2 14+1 

 5 0.5 4 4 3 4 4 

 6 0.3 2 5 2.5 2 4 

 7 1.6 3 2 4.9 3 2 

B 1 4.7 4 18.4 2.08 4 5.7 24+15.1 

 2 4.6 3 10 3 3 4 24+2 

 3 3.6 2 3 1.8 2 2 

 4 4.6 2 16 2.8 2 5 

 5 1.8 4 3 1.6 4 2 

 6 5 4 8 24+1 2.7 4 5 11+9 

 7 4.3 3 3 3 3 4 

C 1 1.1 - - - 12.1 3 2 24+5 

 2 2.1 2 2 14.7 2 18 36+0.5 

 3 2.6 5 3 1.8 5 2 12+3 

 4 1.2 3 2 11 3 2 12+14 

 5 0.9 2 4 5.6 2 3 24+4 

 6 0.9 2 5 6.3 2 3 28+6 

 7 2.6 3 3 18.7 3 2 24+7 

D 1 0.1 - - - 1.8 2 2 14+3 

 2 0.2 3 - - 4.7 3 3 

 3 0.1 2 - - 1.8 1 4 

 4 0.2 2 - - 2.8 2 2 

 5 0.1. 12 - - 4.4 3 2 12+9 

 6 0 - - 1.4 6 2 14+5 

 7 0.3  - 4.7 2 4 24+7 

E 1 2.3 3 3 1.8 3 2 

 2 2.7 2 2 1.9 2 2 11+2 

 3 1.3 3 3 0.9 2 2 

 4 1.6 3 5 1 32 2 

 5 2.2 2 3 2.1 2 5 

 6 4.4 3 5 2.6 3 2 

 7 1.4  6 0.6 3 - - 

Food 1 2.8 2 2.3 5.5 2 2.9 

 2 2.9 3 - 13 32 2 

 3 4 4 3 6.2 4 2 24+7 

 4 2.1 3 4 2.8 3 4 

 5 1.2 3 2 3.3 3 3 

 6 0.6 10 8 0.9 3 9 

 7 0.6 3 4 1 3 5 
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AI2I3 DEHP 

Pig 1  

Dust:  

MEHP and oxo-MEHP reached their maximum concentration after 3.4 ± 0.5 hours, 

5OH-MEHP and 5cx-MEPP had their tmax at 2.8 ± 0.8 hours. During the first 

elimination period, MEHP has a half-life time of 5 ± 2.4 hours, followed by 5cx-MEPP 

(5.2 ± 1 hours), 5OH-MEHP (5.3 ± 2.8 hours) and oxo-MEHP (7.7 ± 4.8 hours). In the 

second elimination phase, which normally occurred 24 hours after drug 

administration, the estimated mean half-life time for MEHP, oxo-MEHP, 5OH-MEHP 

and 5cx-MEPP was 4.4 ± 1 hours, 4.7 ± 0.7 hours, 4.6 ± 0.7 hours and 4.1 ± 0.5 

hours. Within the first 24 hours 40 ± 7.5 % of the applied DEHP dose was excreted 

as 12.6 ± 1.6 % 5cx-MEPP), 11.5 ± 2.3 % 5OH-MEHP, 7.6 ± 1.6 % oxo-MEHP, 8.4 ± 

3.33 % MEHP. Between the 24 hours to 38 hours post dose, 2.3 % of the applied 

Dose was excreted as 0.7 ± 0.2 % oxo-MEHP, 0.7 ± 0.3 % 5OH-MEHP, 0.6 ± 0.2 % 

5cx-MEPP, 0.5 ± 0.3 % MEHP. 

Food 

All metabolites reached their maximum concentration after 24 hours and have an 

elimination half –life time of four hours. Within the first 24 hours, 46 % of DEHP dose 

was excreted as 11.5 % MEHP, 8.9 % oxo-MEHP, 13.4 % 5OH-MEHP, 12.2 % 5cx-

MEPP. On the second day 15.3 % DEHP was eliminated as 4.1 % MEHP, 3.3 % oxo-

MEHP, 4.2 % 5OH-MEHP and 3.6 % 5cx-MEPP.  

 

Pig 2  

Dust: 

The mean Tmax for MEHP and 5OH-MEHP were determined after 2.4 ± 0.5 hours and 

for oxo-MEHP and 5cx-MEPP after 3 ± 1 hours after dust sample application.  

The mean half-life times for the first elimination period was estimated as 2.8 ± 0.9 

hours (MEHP), 3.5 ± 1.7 hours (5OH-MEHP), 5 ± 2.5 hours (oxo-MEHP), 6.1 ± 3.4 

hours (5cx-MEPP). During the second elimination, which normally was after 24 

hours, the mean half-life time was determined around 9.1 ± 3 hours for the primary 

metabolite MEHP, the secondary metabolite had a shorter half life time with 4.4 ± 0.8 
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hours (5OH-MEHP), 4.7 ± 1 hours (5cx-MEPP) and 4.8 ± 1.1 hours (oxo-MEHP), 

respectively.  

During the first 24 hours, 40 ± 6 % of the applied DEHP-Dose was eliminated as 15.8 

± 2 % 5cx-MEPP, 8.3 ± 0.8 % oxo-MEHP, 7.2 ± 1.6 % MEHP, 8.6 ± 2.5 % 5OH-

MEHP. After 24 hours only 1.8 ± 0.4 % of the administrated DEHP dose were 

eliminated as 0.6 ± 0.07 % 5cx-MEPP, 0.4 ± 0.08 % oxo-MEHP and 5OH-MEHP and 

0.4 ± 0.3 % MEHP.  

Food: 

The maximum concentration was determined 24 hours after dose application and the 

elimination half-life times ranged around three hours. 48.5 % of the DEHP dose was 

excreted in the first 24 hours. The main metabolite was 5cx-MEPP with 28.6 % 

followed by 11.6 % oxo-MEHP, 8.1 % MEHP and only 0.06 % 5OH-MEHP. In the 

sampling period 24 hours to 38 hours post dose: 20.8 % DEHP (9.7 % 5cx-MEPP, 

6.3 % oxo-MEHP, 4.8 % MEHP, 0.03 % 5OH-MEHP) was eliminated by urine. 

 

Pig 3  

Dust: 

MEHP, oxo-MEHP and 5cx-MEPP reached their mean maximum concentration after 

4.4 ± 1.3 hours post dose, while 5OH-MEHP had its tmax after 3 ± 1.2 hours.  

In the first elimination period, the mean half-life time at 4 ± 2.5 hours 5cx-MEPP, 5.7 

± 3.3 hours 5OH-MEHP, 6 ± 3.7 hours MEHP to 6.3 ± 3.3 hours oxo-MEHP. After 24 

hours, the second elimination phase occurred with a mean half-life of 3.75 ± 3.7 

hours for MEHP, 5.9 ± 3.6 hours for 5OH-MEHP, 7.4 ± 2.4 hours for 5cx-MEPP and 

7.7 ± 3.6 hours for oxo-MEHP. On the first day 38 ± 14.3 % of the DEHP dose were 

excreted in form of MEHP (8.4 ± 3 %), oxo-MEHP (8.2 ± 2.7 %), 5OH-MEHP (9.7 ± 

4.5 %) and 5cx-MEPP (11.5 ± 4.5 %). After 24 hours, only 3.3 ± 1.6 % of the DEHP 

dose was excreted as 0.9 ± 0.4 % 5cx-MEPP, 0.9 ± 0.5 % oxo-MEHP and OH-MEHP 

and 0.6 ± 0.2 % MEHP. 

Food:  

Twenty-four hours after dose application, all metabolites reached their maximum 

concentration. The half-life time for MEHP, oxo-MEHP, 5OH-MEHP and 5cx-MEPP 

was estimated as 5.4 hours, 6 hours, 5.4 hours and 4.5 hours. 41 % of the applied 

DEHP-dose was excreted within the first 24 hours (14.1 % 5cx-MEPP, 10.2 % oxo-
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MEHP, 9 % MEHP and 8.1 % 5OH-MEHP). In the sampling period from 24 to 38 

hours only 17.5 % of DEHP dose was eliminated by urine (5 % 5cx-MEPP and oxo-

MEHP, 3.8 % MEHP, 3.7 % 5OH-MEHP).  

 

Pig 4  

Dust: 

Tmax for MEHP and 5OH-MEHP were estimated as 2.4 ± 0.5 hours and three hours 

for oxo-MEHP. For 5cx-MEPP, the mean of tmax was determined as 11.2 ± 11.7 

hours.  

During, the first elimination period the half-life time was estimated for MEHP as 4.5 ± 

1.6 hours, 5cx-MEPP as 5.2 ± 1.4 hours, 5OH-MEHP as 5.3 ± 2 hours and oxo-

MEHP as 7 ± 2.6 hours. At the second elimination period (24 hours after dust 

application), the half-life time ranged between 5.3 ± 1.7 hours (5cx-MEPP), 5.6 ± 1.8 

hours (oxo-MEHP), 5.7 ± 2.6 hours (5OH-MEHP) and 6.5 ± 3.5 hours (MEHP). 

18.7 ± 5.2 % 5cx-MEPP, 10.8 ± 5.6 % 5OH-MEHP, 7.2 ±1.4 % oxo-MEHP, 6.5 ± 2.4 

% MEHP were excrete. 43.2 ± 12.2 % of the DEHP-doses was eliminated in the first 

24 hours. On the second collecting day 2.8 ± 1.1 % of the applied DEHP dose was 

excreted as 1.1 ± 0.4 % 5cx-MEPP, 0.7 ± 0.5 % 5OH-MEHP, 0.6 ± 0.2 % oxo-MEHP, 

0.3 ± 0.1 % MEHP.  

Food 

The maximum concentration was determined 24 hours after sample administration. 

The elimination half-life of six hours for MEHP, 6.3 hours for oxo-MEHP, 5.5 hours for 

5OH-MEHP and 5.3 hours for 5cx-MEPP was determined. On the first day, 18.4 % 

5cx-MEPP, 6.7 % 5OH-MEHP, 5.7 % oxo-MEHP, 5.1 % MEHP, in total 36 % of the 

applied DEHP dose was eliminated. On the second day only 11 % of applied DEHP 

dose was found in urine (5.6 % 5cx-MEPP, 2 % 5OH-MEHP and oxo-MEHP, 1.4 % 

MEHP) 

 

Pig 5  

Dust: 

Tmax (mean) were estimated for MEHP, 5OH-MEHP, oxo-MEHP and 5cx-MEPP as 

2.4 ± 0.5 hours, 3.2 ± 1.6 hours, 4.2 ± 1.8 hours and 5 ± 1 hours. 
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3.2 ± 0.3 hours (MEHP), 4 ± 0.9 hours (5OH-MEHP), 4.3 ± 0.8 hours (oxo-MEHP) 

and 4.6 ± 1.3 hours (5cx-MEPP) were determined as the mean half-life time in the 

first excretion phase. The second excretion period was 24 hours post dose, the mean 

half-life time was in decreasing order 7 ± 2.7 hours (MEHP), 4.8 ± 1 hours (5OH-

MEHP), 4.6 ± 0.8 hours (oxo-MEHP), 4.5 ± 0.8 hours (5cx-MEPP). Within the first 24 

hours, 35.1 % from DEHP dose were excreted as 19 ± 2.9 % 5cx-MEPP, 8.1 ± 0.82 

% oxo-MEHP, 4.6 ± 1.1 % 5OH-MEHP and 4.3 ± 1.5 % MEHP. After 24 hours 2.1 % 

DEHP dose was found in urine. It was mainly excreted as 0.9±0.2 % 5cx-MEPP 

followed by 0.5 ± 0.1 % oxo-MEHP, 0.2 ± 0.06 % 5OH-MEHP, 0.19 ± 0.04 % MEHP.  

Food: 

After 24 hours, the maximum concentration was reached. The elimination half-life 

was 5.3 hours for MEHP and 5cx-MEPP, eight hours for oxo-MEHP, 6.2 hours for 

5OH-MEHP. Within the first 24 hours, 29 % DEHP of the applied dose was mainly 

excreted as 5cx-MEPP (17.2 %), oxo-MEHP (5 %), 5OH-MEHP (4.5 %) and MEHP 

(2.4 %). 24 - 38 hours after the sample administration 8.6 % DEHP was found in 

urine (4.6 % 5cx-MEPP, 1.8 % oxo-MEHP, 1.3 % 5OH-MEHP and 0.9 % MEHP).  

 

Pig 6 

Dust: 

The mean maximum concentration for metabolites MEHP and 5OH-MEHP was 2.6 ± 

0.9 hours, 4 ± 2.3 hours for oxo-MEHP and 4.4 ± 2 hours for 5cx-MEPP.  

In the first elimination period, the mean half-life of MEHP, oxo-MEHP, 5OH-MEHP, 

5cx-MEPP were predicted as 4.3 ± 2.1hours, 8 ± 7.5 hours, 5.1 ± 1.8 hours and 7.1 ± 

4.8 hours.  

During the second elimination period (24 hours after dose application), the half-life 

time of MEHP, oxo-MEHP, 5OH-MEHP, 5cx-MEPP were determined as 4.2 ± 0.4 

hours, 4.3 ± 0.8 hours, 4 ± 0.6 hours and 4 ± 0.4 hours. During the first 24 hours, 

34.7 % DEHP of the applied dose were eliminated. In Detail: 18 ± 3.6 % 5cx-MEPP, 

8.4 ± 3.9 % oxo-MEHP, 8.7 ± 2.9 % 5OH-MEHP and 4.8 ± 2.4 % MEHP. After 24 

hours, 1.4 ± 0.5 % 5cx-MEPP, 0.7 ± 0.4 % oxo-MEHP, 0.7 ± 0.3 % 5OH-MEHP, 0.3 ± 

0.1 % MEHP. To sum it up, on the second day only 3.2 ± 0.9 % DEHP of the applied 

Dose was measured in urine.  

Food: 
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After 24 hours, tmax for all metabolites was reached. The elimination half-life time was 

5.8 hours, 6.5 hours, 5.7 hours and 4.8 hours for MEHP, oxo-MEHP, 5OH-MEHP and 

5cx-MEPP. Within the first 24 hours, the elimination of the applied DEHP dose was 

38.7 % (18.8 % 5cx-MEPP, 9.9 % 5OH-MEHP, 6.7 % oxo-MEHP, 3.3 % MEHP). 

After 24 to 38 hours, 15 % was excreted (5.8 % 5cx-MEPP, 4.1 % 5OH-MEHP, 3.7 % 

oxo-MEHP, 1.4 % MEHP) 

 

Pig 7  

Dust: 

The mean maximum concentration were found at three hours for 5cx-MEPP and oxo-

MEHP, 2.6 ±0.5 hours for 5OH-MEHP and for 2.8 ±0.4 hours MEHP after dust 

application  

The median half-life was in increasing order 3.5 ± 1.1 hours (MEHP), 4.3 ± 1.7 hours 

(5OH-MEHP), 5 ± 2.5 hours (5cx-MEPP) and as 5.6 ± 2.6 hours (oxo-MEHP) with the 

highest half life time. After 24 hours the second elimination period was determined. 

The mean half-life times ranged between: 4.3 ± 2 hours, 4.7 ± 1.4 hours, 4.8 ± 1.4 

hours and 6.2 ± 3.2 hours for MEHP, 5OH-MEHP, oxo-MEHP and 5cx-MEPP. Within 

the first 24 hours, 44 ± 15.8 % of the DEHP dose was eliminated as 19 ± 5.5 % 5cx-

MEPP, 11 ± 4 % oxo-MEHP, 7 ± 2.6 % 5OH-MEHP. On the second day, 3.5 % 

DEHP were mainly excreted as 5cx-MEPP (1.2 ± 0.4 %), followed by oxo-MEHP (1 ± 

0.4 %), 5OH-MEHP (0.5 ± 0.2 %) and MEHP (0.3 ± 0.1 %).  

 

Food: 

Similar to the other piglets, tmax was estimated 24 hours after dose administration. In 

increasing order the elimination half-life ranged from 5.5 hours, 6.6 hours, 6.8 hours 

to 7.8 hours for 5cx-MEPP, 5OH-MEHP, oxo-MEHP and MEHP. On the first sampling 

day, 30 % of DEHP dose as 15.8 % 5cx-MEPP, 6.8% 5OH-MEHP, 5.4 % oxo-MEHP 

and 2.2 % MEHP). On the second day only 6 % of the applied dose was excreted as 

mainly 5cx-MEPP (2.6 %) followed by 5OH-MEHP (1.4 %), oxo-MEHP (1.3 %) and 

MEHP (0.6 %). 
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A detail description of the toxicokinetic parameters, concentration maximum (Cmax) 

and it’s time appearance (tmax), half-life time (t½) in the first excretion and second 

period (24 hours plus second t ½) are given in Table A6. 
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Table A6. Detail description of kinetic parameters of DEHP metabolism [Cmax in µg, tmax and t ½ in hours]. 

Dust  Pig MEHP oxo-MEHP 5OH-MEHP 5cx-MEPP 

  cmax tmax  t½  cmax tmax  t½  cmax tmax  t½  cmax tmax  t½  

A 1 42.3 3 5 24+4 43.2 3 7 24+4 88.3 2 5 24+4 67 2 5 24+4 

 2 60.1 2 4 14+12 47 2 7 24+6 59.8 2 5 24+6 85.6 4 9 24+6 

 3 52.1 3 2 24+10 44.8 3 4 24+8 38.2 3 3 24+8 69 3 3 24+9 

 4 87.6 2 3 24+12 54.1 3 5 24+8 64.5 2 4 24+7 113.7 3 6 24+6 

 5 34 3 3 24+4 48 4 3 24+4 24 3 4 24+4 122.5 4 4 24+3 

 6 17 2 5 24+4 28.2 3 7 24+4 34.3 2 4 24+4 62.6 3 6 24+4 

 7 49.2 3 3 32+2 98.2 3 4 24+5 72 3 3 24+5 154.2 3 3 24+4 

B 1 43.3 4 8.8 24+5 47.5 4 16 24+5 61.9 4 10 24+5.3 73.8 4 6 24+4 

 2 34.6 3 4 14+11 36.7 3 8 24+4 47.2 3 5 24+4 45.8 3 10 24+5 

 3 31.8 6 12 36+1 24 6 5 24+11 50.9 2 11 36+1 51.2 6 4 24+9 

 4 47.3 2 5 24+6 33.7 3 10 24+6 100.9 2 8 24+5 130 24 4 

 5 12.7 2 4 24+6 35.1 6 4 24+5 18.5 2 5 24+5 101.5 6 4 24+5 

 6 31.6 2 8 24+4 55.6 4 20 24+4 58.6 2 8 24+4 94.6 4 14 24+4 

 7 37.6 3 3 24+6 49.6 3 4 24+5 53.2 3 3 24+5 78.1 3 3 24+4 

C 1 45.9 3 2 24+6 53.5 3 4 24+5 124.3 3 3 24+5 112.7 3 3 24+5 

 2 72.7 2 2 12+8 57.7 2 2 12+6 86.6 2 1 24+4 27.4 2 3 24+4 

 3 88.5 5 5 24+5 68.4 5 12 24+4 95.7 2 3 12+10 114.4 5 3 12+7 

 4 26.8 3 6 24+3 37.8 3 7 24+3 45.5 3 7 24+3 100.8 24 2 

 5 30.6 2 3 24+11 33.7 6 5 24+6 15.3 6 5 24+6 88.5 6 6 24+6 

 6 25.2 2 2 28+4 43.7 8 1 28+3 37.2 2 3 28+3 79.8 8 1 24+4 

 7 103 3 3 24+7 106.1 3 4 24+6 75 3 3 24+7 152.2 3 4 24+5 

D 1 27.3 4 4 24+3 29.8 4 5 24+4 46.7 2 4 24+4 59.1 2 5 24+3 

 2 49 3 2 14+10 72.3 4 4 24+4 73 3 3 24+4 137.4 4 4 24+5 

 3 36.2 5 7 36+1 33.4 5 4 14+11 35.7 5 6 24+8 44.9 5 1 14+8 

 4 41.7 2 3 24+5 31.5 3 5 24+3 55.6 2 3 24+4 91.6 3 4 24+4 

 5 33.4 3 3 24+6 59.3 3 4 24+4 56.1 3 3 24+4 124.6 4 3 24+4 

 6 15.4 4 3 24+4 18.7 2 6 11+5 34.4 4 4 24+4 96.6 4 5 24+3 

 7 53.8 2 4 24+4 60.8 2 7 24+4 52.7 2 5 24+4 89.9 2 3 

E 1 86.5 3 4 24+4 58.7 3 6 24+5 93.2 3 4 24+5 110.4 3 6 24+4 

 2 78 2 2 24+4 76.3 4 4 24+4 121.2 2 3 24+4 136.7 2 4 24+4 

 3 37.5 3 4 28+3 32.5 3 7 24+4 44.9 3 5 24+4 43 3 8 24+3 

 4 33.3 3 6 24+6 39 3 9 24+7 57.7 3 4 12+10 80.5 2 5 12+8 

 5 45 2 3 24+6 45.1 2 5 24+4 50.2 2 3 24+5 84.1 5 5 24+4 

 6 100 3 4 24+5 113 3 6 24+5 141.2 3 5 24+5 137 3 9 24+4 
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 7 24.9 3 5 28+3 48.1 3 10 28+3 27 2 7 28+3 70.9 3 9 12+11 

Food 1 53.8 24 4 53 24 4.5 78.8 24 4 71.6 24 4 

 2 69.9 24 3 101.,1 24 3 53.7 24 3 267.7 24 3 

 3 47.5 24 5 69.5 24 6 31.8 24 5 107.8 24 4.5 

 4 17.2 24 6 31.8 24 6 36.3 24 5.5 106.5 24 5 

 5 11.2 24 5 19.6 24 8 16 24 6 76.5 24 5 

 6 15 24 6 38.1 24 6.5 55 24 6 111.5 24 5 

 7 6.8 24 8 19.3 24 7 21.2 24 7 50 24 5.5 
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AI2I4 Diisononyl phthalate  

Pig 1 

Dust: 

All metabolites of DINP reached their mean maximum concentration at 3.2 ± 0.5 

hours (MINP and Oxo-MINP) and 2.7 ± 0.5 hours (7OH-MINP and cx-MINP) post 

dose. 

The estimated half-life time for the first elimination phase was similar for all 

metabolites: 5.6 ± 1.7 hours (MINP), 5.7 ± 1.5 hours (oxo-MINP), 5.1 ± 1.5 hours 

(7OH-MINP), 6 ± 1.3 hours (7cx-MINP). The second elimination phase occurred 24 

hours post dose. The half-life time was estimated for MINP (4.7 ± 0.7 hours), 4 ± 0.3 

hours oxo-MINP, 3.8 ± 0.8 hours 7OH-MINP, 4.5 ± 0.6 hours 7cx-MINP. During the 

first 24 hours, 40 ± 31 % of the Dose was excreted as 32 ± 32 % MINP, 4.4 ± 1.4 % 

7cx-MINP, 3.4 ± 2 % 7OH-MINP and 1.5 ± 0.6 % oxo-MINP. After 24 hours to 38 

hours only 6.4 % DINP as 5 ± 5.5 % MINP, 0.6 ± 0.3 % 7cx-MINP, 0.4 ± 0.2 % 7OH-

MINP and 0.2 ± 0.1 % oxo-MINP was excreted.  

Food: 

The maximum concentration was reached 24 hours after sample administration. 

MINP was excreted with a half-life time of 4.5 hours, oxo-MINP about 4.3 hours, 

7OH-MINP about 4.4 hours and 7cx-MINP about 4.3 hours. 

37 % of the DINP dose was excreted in the first 24 hours mainly as MINP (26.7 %) 

followed by 7OH-MINP (4.6 %), 7cx-MINP (4.2 %) and 1.4 % (oxo-MINP). On the 

second day, 13.8 % DINP (10.1 % MINP, 1.7 % 7OH-MINP, 1.4 % 7cx-MINP, 0.6 % 

oxo-MINP) was eliminated by urine.  

 

Pig 2 

Dust: 

The primary metabolite MINP had the mean maximum concentration at 3.3 ± 1.1 

hours post dose. The secondary metabolites oxo-MINP and 7OH-MINP reached their 

maximum concentration after 2.3 ± 0.6 hours. The mean of tmax for 7cx-MINP was 2.7 

± 1 hours after dust application. The half-life time during the first elimination phase 

was estimated for MINP about 4.2 ± 2.1 hours, 5.4 ± 3.7 hours for oxo-MINP, 2.8 ± 

0.8 hours for 7OH-MINP, 5.5 ± 4.8 hours for 7cx-MINP. The second elimination 

phase occurred 11 - 24 hours post dose with the following half-life time: 4.4 ± 0.9 
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hours for MINP, 3.7 ± 2.1 for oxo-MINP, 21.4 ± 14.2 hours for 7 OH-MINP, 6.6 ± 6 

hours for 7cx-MINP. 53 ± 28 % of the applied dose were excreted within 24 hours as 

43 ± 30 % MINP, 5 ± 2 % 7cx-MINP, 3.5 ± 0.6 % oxo-MINP, 1.1 ± 0.5 % 7OH-MINP. 

On the second day only 2.6 ± 1.8 % DINP as 2.4 ± 2 % MINP, 0.1 ± 0.11 % 7cx-

MINP, 0.1 ± 0.04 % oxo-MINP, 0.01 ± 0.01 % 7OH-MINP were excreted.  

Food: 

After 24 hours the maximum concentration was reached. The half-life was 

determined as 3.1 hours (MINP); three hours (oxo-MINP and 7cx-MINP) and 3.3 

hours (7OH-MINP). Within the first 24 hours, 35 % of the DINP dose as 27 % MINP, 

4.5 % 7cx-MINP, 2 % 7OH-MINP, 1.6 % oxo-MINP whereas on the second day 18.4 

% DINP (14.1 % MINP, 2 % 7cx-MINP, 1.2 % 7OH-MINP, 1 % oxo-MINP) was 

excreted. 

 

Pig 3  

Dust: 

The mean of tmax was for all DINP-Metabolites 4 ± 1.1 hours after dose application. 

The first half-life time for the metabolites was 6.5 ± 2.6 hours for MINP, 6.1 ± 3 hours 

for oxo-MINP, 4.7 ± 2.4 hours for 7OH-MINP and 4.6 ± 2.3 hours for 7cx-MINP. The 

second elimination phase was determined 10 to 24 hours poste dose, the half-life 

times were for MINP at 6 ± 2 hours, oxo-MINP: 6.5 ± 1.9 hours, 7OH-MINP: 6.7 ±3 

hours, 7cx-MINP: 7.7 ± 3.3 hours. 

Within the first 24 hours 46.7 ± 32 % of the applied Dose were excreted as 40.5 ± 

31.4 % MINP, 2.7 ± 1.1 % 7cx-MINP, 2.4 ± 0.4 % oxo MINP, 1.1 ± 0.4 % 7OH-MINP. 

24 - 38 hours after the dust application only 5 ± 4.5 % DINP were excreted as 4.3 ± 

4.3 % MINP, 0.2 ± 0.15 % 7cx-MINP, 0.3 ± 0.1 % oxo-MINP  

Food: 

Tmax was noticed 24 hours post dose. The half-life time was estimated 5.8 hours for 

MINP, 6.4 hours for 7OH-MINP, 6.3 hours for 7cx-MINP and 7 hours for oxo-MINP.  

During the first 24 hours 37 % of the applied DINP dose was excreted as 33 % MINP, 

2.2 % 7x-MINP, 1.8 % oxo-MINP and 0.9 % 7OH-MINP. On the second day 18.8 % 

DINP was eliminated (15.8 % MINP, 1.2 % 7cx-MINP, 1.1 % oxo-MINP, 0.7 % 7OH-

MINP). 
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Pig 4  

Dust: 

Three hours after dose application tmax of MINP was reached. In the case of oxo-

MINP the mean tmax was: 7.7 ± 11 hours, 3 ± 1.4 hours for 7OH-MINP and 3.2 ± 1.2 

hours for 7cx-MINP. The first half-life time was estimated as 5.8 ± 1.7 hours for 

MINP, 4.3 ± 1.1 hours for oxo-MINP, 4.6 ± 1.5 hours for 7OH-MINP and 6.2 ± 3.8 

hours 7cx-MINP. The second half was determined 14 to 24 hours post dose and was 

calculated as: 5.4 ± 2 hours for MINP, 6 ± 3 hours for oxo-MINP, 5.3 ± 2.9 hours for 

7OH-MINP, 5 ± 2.4 for 7cx-MINP. 

In the first 24 hours, 30.5 ± 20.4 % of the administrated dose were excreted as 22 ± 

21 % MINP, 3.6 ± 1.3 % 7OH-MINP, 2.7 ± 1.2 % 7cx-MINP and 2 ± 1 % oxo-MINP. 

In the collection period of 24-38 hours only 2 ± 1.1 % DINP were eliminated as 1.6 ± 

1.4 % MINP, 0.13 ± 0.1 % oxo-MINP, 0.16 ± 0.13 % 7OH-MINP, 0.13 ± 0.1 % 7cx-

MINP.  

Food: 

The highest concentration was observed 24 hours after dose. The eliminated half-life 

varies from 5.8 hours (7cx-MINP), 6.1 hours (MINP), 7.6 hours (oxo-MINP) to 8.2 

hours (7OH-MINP).  

67.5 % of the DINP dose were excreted within 24 hours (62.6% MINP, 2.2 % 7OH-

MINP, 1.8 % 7cx-MINP, 0.8 % oxo-MINP), whereas on the second day 24.3 % of the 

applied dose were eliminated as 22.6 % MINP, 0.8 % 7OH-MINP, 0.6 % 7cx-MINP 

and 0.3 % oxo-MINP.  

 

Pig 5  

Dust: 

The highest concentration was determined for all metabolites at 3.7 ± 1.7 hours post 

dose. 

The elimination half-life time was calculated for MINP, oxo-MINP, 7OH-MINP and 

7cx-MINP with: 4.1 ± 0.7 hours, 8.4 ± 3.7 hours, 8.3 ± 2.6 hours and 5.7 ± 1.3 hours 

respectively. 24 hours post dose, the second elimination half-life time was 

determined with 4.7 ± 1 hours, 3.3 ± 0.5 hours, 6.6 ± 6.8 hours and 2.4 ± 1.1 hours 

for MINP, oxo-MINP, 7 OH-MINP and 7cx-MINP.  
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In the first 24 hours, 37 ± 19 % of the dose were excreted as 29 ± 20 % MINP, 3.1 ± 

1.4 % oxo-MINP, 2.6 ± 1 % 7cx- and 2.1 ± 0.5 % 7OH-MINP. After 24 hours 2.2 ± 1.3 

% of the applied dose were excreted as 1.8 ± 1.3 % MINP, 0.2 ± 0.1 % oxo-MINP, 

0.15 ± 0.04 % 7OH-MINP and 0.05 ± 0.04 % 7cx-MINP.  

Food: 

The maxima of MINP, oxo-MINP, 7OH-MINP and 7cx-MINP were reached after 24 

hours post dose. The half-life was determined as followed 7.8 hours (MINP), 14 

hours (oxo-MINP), 15 hours (7OH-MINP) and 8.6 hours (7cx-MINP).  

20 % of the applied DINP dose was eliminated within the first sampling day: In detail: 

16.2 % MINP, 1.9 % oxo-MINP, 1 % 7cx-MINP and 0.8 % 7OH-MINP. On the second 

sampling day 7.7 % DINP was eliminated (5.7 % MINP, 1 % oxo-MINP, and 0.5 % 

7cx-MINP and 7OH-MINP.  

 

Pig 6  

Dust: 

Compare to other pigs, tmax was delayed 9.5 ± 10 hours for MINP and oxo-MINP. 

7OH-MINP and 7cx- MINP had their tmax at 9.2 ±10 hours. The first estimated half-life 

for MINP, oxo-MINP, 7OH-MINP and 7cx-MINP was 4.7 ± 2.3 hours, 6.1 ± 4.7 hours, 

4.6 ± 2.2 hours and 4.9 ± 3 hours respectively.  

The second half-life time appeared 24 - 28 hours post dose, with 4 ± 0.8 hours, 4.5 ± 

0.4 hours, 4.2 ± 0.8 hours, and 4.6 ± 1 hours for MINP, oxo-MINP, 7 OH-MINP and 

7cx MINP.  

Within in the first 24 hours, 36 ± 7.3 % DINP were excreted as 25 ± 10 % MINP, 4.2 ± 

2.7 % oxo-MINP, 3.6 ± 1.6 % 7OH-MINP and 3.1 ± 1.3 % 7cx-MINP. On the second 

day 4.5 ± 2 % DINP were eliminated as 3 ± 1.3 % MINP, 0.6 ± 0.4 % oxo-MINP, 0.48 

± 0.3 % 7OH- MINP and 0.35 ± 0.31 % 7cx-MINP.  

Food: 

The highest concentration for MINP and oxo-MINP was determined at 24 hours, for 

7OH-MINP 28 hours and for 7cx-MINP 36 hours post dose.  

The elimination half-life time was calculated for MINP, oxo-MINP, 7OH-MINP and 

7cx-MINP 6.1 hours, 7.8 hours, 7.3 hours and 0.7 hours respectively 

Within the first 24 hours, 31.4 % of the applied DINP dose was excreted mainly as 24 

% MINP, followed by 3.5 % 7OH-MINP, 2.4 % 7cx-MINP and 1.5 % oxo-MINP, from 
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24 hours to 38 hours 17 % DINP was found in urine (12.5 % MINP, 2.3 % 7OH-

MINP, 1.4 % 7cx-MINP and 1 % oxo-MINP. 

 

Pig 7 

Dust: 

MINP reached their maximum concentration after three hours, similar to 7OH-MINP 

(2.6 ± 0.5 hours). Oxo-MINP and 7cx-MINP had their tmax at 8.25 ± 10.5 hours post 

dose. The first estimated half-life was 6 ± 2.6 hours for MINP, 9.5 ± 8 hours for oxo-

MINP, 8.5 ± 6.2 hours for 7OH-MINP and 8.2 ± 7 hours for 7cx-MINP. 

The second half-life (24 - 28 hours post dose) was estimated as 4.7 ± 1.4 hours for 

MINP), 5 ± 1.5 hours for oxo-MINP, 5 ± 1.8 hours for 7-OH-MINP and 4.2 hours for 

7cx-MINP. 

On the first day 59 ± 28 % DINP was eliminated by urine as 46 ± 32 % MINP, 5.6 ± 

2.7% 7cx-MINP, 3.5 ± 2.1 % oxo-MINP and 4.2 ± 4.9 % 7OH-MINP. On the second 

day, 5.5 ± 2.2 % DINP of the administrated dose were found in urine. The main 

metabolite was 4 ± 2.8 % MINP followed by 0.4 ± 0.3 % oxo-MINP, 0.4 ± 0.3% 7cx-

MINP, 0.5 ± 0.2 % 7OH-MINP.  

Food: 

After 24 hours the maximum concentration was reached. The half-life was 

determined for 7.4 hours MINP, 7.5 hours oxo-MINP, 8 hours 7cx-MINP, 8.2 hours 

7OH-MINP.  

22.7 % MINP, 3.5 % 7cx-MINP, 1.8 % oxo-MINP and 0.8 % 7OH-MINP (∑28.8 % of 

the applied DINP dose) were eliminated in the first 24 hours. Only 7 % of the DINP 

dose was found in urine as 5.4 % MINP, 0.8 % 7cx-MINP, 0.5 % oxo-MINP, 0.2 % 

7OH-MINP on the second day 

 

A detail description of the toxicokinetic parameters, concentration maximum (Cmax) 

and it’s time appearance (tmax), half-life time (t½) in the first excretion and second 

period (24 hours plus second t ½) are given in Table A7. 

 

The following figures reperesent the toxicokinetic time course of every pig with each 

dust sample and food sample. 
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Table A7. Detail description of kinetic parameters of DINP metabolism [Cmax in µg; tmax and t½ in hour] 

Dust  Pig MINP Oxo-MINP 7OH-MINP 7cx-MINP 

  cmax tmax  t½  cmax tmax  t½  cmax tmax  t½  cmax tmax  t½  

A 1 56.6 3 7 24+4 1.4 3 4 - 1.7 3 7 24+3 2.8 3 7 24+4.6 

 2 64.6 2 7 24+6 2.1 2 11 24+2 0.7 2 4 11+7 2.8 2 13 14+15 

 3 41 3 4 24+7 1.3 3 7 24+7 0.6 3 7 10+5 1.8 3 5 24+7 

 4 45.1 3 5 24+8 1 2 11 3.4 2 3 14+7 2.5 5 11 

 5 45.8 4 3 24+4 2.3 4 5 24+4 1.1 4 7 24+17 1.2 4 18 

 6 25 3 7 24+4 1 3 12 24+5 1.8 2 7 24+4 1.3 2 6 24+4 

 7 99.1 3 4 24+5 3 3 5 24+5 1.3 3 - 4.6 3 4 24+4 

C 1 49.8 3 3 24+5 1.6 3 3 3.4 3 3 24+5 7.5 3 4 24+5 

 2 86.6 2 2 24+4 4.5 2 2 12+6 1 2 3 5.3 2 2 24+2 

 3 97.2 5 10 24+4 3.3 5 8 16+7 1.1 5 3 12+6 5 5 4 12+11 

 4 31.7 3 7 24+3 1.7 24 2 3.1 5 7 24+2 1.6 3 12 24+2 

 5 25.3 6 5 24+6 1.1 6 14 24+2 1.5 6 12 24+3 1.9 6 6 24+2 

 6 34.3 8 2 28+3 1.5 8 2 28+4 3.6 8 2 28+3 2.7 8 2 24+6 

 7 99.3 3 4 24+6 5.1 3 4 24+6 3.4 3 4 24+7 14 3 4 26+5 

D 1 24 4 5 24+4 3.1 4 6 24+4 7 2 5 24+4 10 2 6 24+4 

 2 63.5 4 4 24+4 10 3 5 24+4 5 3 4 24+3 18 3 4 24+5 

 3 40.6 5 6 24+8 4.2 5 2 14+8 2.6 5 2 14+12 3.3 5 2 14+6 

 4 28 3 4 24+4 4.7 2 5 24+3 11 2 4 24+4 6.5 5 4 24+5 

 5 64.5 3 4 24+4 7.2 3 6 24+3 4.4 3 6 24+3 9 3 4 24+2 

 6 33.1 24 4 7 24 5 6 24 5 8.2 24 4 

 7 56.6 3 8 24+4 11.5 24 4 5.4 2 5 24+4 17.7 24 4 

E 1 46.7 3 6 24+5 8.8 3 7 24+4 42.7 3 5 24+4 33.3 3 6 24+4 

 2 122.2 4 4 24+4 24 2 4 24+4 1.9 2 3 14+14 10.1 4 3 24+4 

 3 36.3 3 6 24+4 8.3 3 8 24+4 6.1 3 7 24+4 12.7 3 7 24+4 

 4 45.8 3 7 24+6 12 3 5 12+9 20.4 3 4 12+8 11.6 3 5 12+8 

 5 48.1 2 4 24+4 17 2 9 24+4 14.2 2 8 24+4 11.8 2 6 24+4 

 6 116.5 3 5 24+5 31.8 3 6 24+5 65.8 3 5 24+5 38.3 3 7 24+4 

 7 37.6 3 9 28+3 7.1 3 19 28+3 8.8 3 16 28+4 11.7 3 16 28+3 

Food 1 52.2 24 4 2.7 24 4 8.5 24 4 8.4 24 4 

 2 72.2 24 3 4.8 24 3 5.9 24 3 14.6 24 3 

 3 68.8 24 6 4.5 24 7 2.4 24 6 5.6 24 6 

 4 27 24 6 1.4 24 8 3.1 24 8 3.7 24 6 

 5 19.7 24 8 2.8 24 14 1.2 24 15 1.9 24 9 

 6 47.1 24 6 3.1 24 8 7.1 28 7 6.5 36 1 
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No BBzP were detected. 
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