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Zusammenfassung

Zirren bestehen aus kleinen asphärischen Eiskristallen, die solare Strahlung reflektieren und ther-

mische Strahlung absorbieren und emittieren. Abhängig davon welcher Effekt dominiert, haben

Zirren einen kühlenden oder erwärmenden Effekt auf Erdatmosphäre und -boden. Eiskristalle

können, je nach Umgebungstemperatur und relativer Feuchtigkeit, zu unterschiedlichen Größen

und Formen anwachsen. Mögliche Eiskristallformen variieren von einfachen hexagonalen Säulen

und Plättchen bis hin zu komplexen Formen wie Aggregaten und Dendriten. Fehlende Kenntnis

der Eiskristallform verursacht große Unsicherheiten bei der Fernerkundung der optischen und

mikrophysikalischen Eigenschaften von Zirren. Jede Information über Eiskristallformen ist des-

halb nützlich, um Fernerkundungsmethoden von Eiswolken zu verbessern und um den Effekt von

Eiswolken auf das Strahlungsbudget und damit auf das Klima besser zu quantifizieren.

Ziel dieser Arbeit ist es zu untersuchen, ob Beobachtungen von Haloerscheinungen Informa-

tionen liefern können, um die Komplexität der Eiskristalleigenschaften einzugrenzen. Zu diesen

Eigenschaften zählen die Eiskristallgröße, -form, -rauigkeit, und -orientierung. Haloerscheinungen

entstehen durch Brechung und Reflexion von Licht an verschiedenen Eiskristallformen mit unter-

schiedlicher Orientierung und können deshalb wichtige Informationen über diese Eigenschaften

liefern. Der häufig sichtbare 22◦ Halo und der seltene 46◦ Halo entstehen beide durch zufällig

orientierte hexagonale Prismen. Die Berührungsbögen zum 22◦ Halo entstehen durch orientierte

Säulen. Nebensonnen hingegen treten bei Lichtbrechung an orientierten Eiskristallplättchen auf.

Die optischen Erscheinungen können mit Hilfe von Strahlungstransportmodellen quantitativ si-

muliert werden, die für zufällig orientierte Teilchen etabliert sind. Um die Simulation orientierter

Teilchen zu ermöglichen, wurde der Ray-Tracing-Algorithmus CrystalTrace entwickelt und in das

Monte Carlo Modell MYSTIC implementiert.

Im Rahmen dieser Arbeit wurde zur kontinuierlichen Beobachtung von Haloerscheinungen

das wetterfeste Kamerasystem HaloCam auf der Messplattform des Meteorologischen Instituts

München aufgebaut und vollständig charakterisiert. Zusammen mit dem neu entwickelten Halo-

Erkennungsalgorithmus HaloForest liefert HaloCam einen konsistenten Datensatz von Halobe-

obachtungen. Zwischen Januar 2014 und Juni 2016 detektierte HaloForest 22◦ Halos in 2% der

Beobachtungszeit. Mittels gleichzeitig gesammelter Ceilometerdaten konnte abgeleitet werden,

dass etwa 25% der Eiswolken einen sichtbaren 22◦ Halo erzeugten.

Das Ableitungsverfahren RICO wurde entwickelt, um Eiskristallgröße, -form sowie den Anteil

glatter und rauer Kristalle aus kalibrierten Strahldichtemessungen von 22◦ Halos zu bestimmen.

Die Analyse von HaloCam-Beobachtungen von September 2015 bis November 2016 ergab ef-

fektive Eiskristallradien von etwa 20 µm im Mittel, wobei mehr als 90% der Radien kleiner als

40 µm waren. Innerhalb der Messunsicherheit konnten die Beobachtungen von 22◦ Halos durch

plättchenförmige, hohle und massive säulenförmige Kristalle mit einem Anteil glatter Kristalle

von jeweils 80%, 60% und 30% reproduziert werden. Die optischen Eigenschaften von Eiskris-

tallplättchen ergaben die beste Übereinstimmung mit den Messungen im Bereich des 22◦ Ha-

los, gefolgt von Eiskristallsäulen und Aggregaten von Säulen. Die in dieser Arbeit verwendeten

Streueigenschaften von Eiskristallplättchen erzeugen einen deutlichen 46◦ Halo zusätzlich zum

22◦ Halo für Effektivradien bis etwa 50 µm. Da die ausgewerteten HaloCam-Beobachtungen aus-

schließlich 22◦ Halos ohne 46◦ Halo zeigten, müssen Plättchen als repräsentative Eiskristallform

ausgeschlossen werden. Folglich wird dieser Datensatz am besten durch säulenförmige Eiskristalle

repräsentiert.

Während der ML-CIRRUS Messkampagne konnte ein einzigartiger Datensatz aufgenommen

werden, welcher HaloCam Beobachtungen mit in-situ Messungen des Forschungsflugzeugs HA-

LO kombiniert. Dieser Datensatz enthält Beobachtungen von komplexen Haloerscheinungen,

die durch orientierte Kristalle erzeugt wurden. Mit CrystalTrace wurde eine Methode demons-

triert, die es erlaubt den Anteil orientierter Kristalle aus Beobachtungen von Nebensonnen und
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Berührungsbögen zu bestimmen.

Die vorliegende Arbeit zeigt, dass Haloerscheinungen wertvolle Informationen über Eiskristall-

form, -rauigkeit, -größe und -orientierung enthalten und führt erstmals eine systematische Unter-

suchung dieser Eigenschaften durch. Zusammen mit dem neu entwickelten automatischen Halo-

Erkennungsalgorithmus HaloForest liefert HaloCam einen konsistenten Datensatz von Langzeit-

Halobeobachtungen. Kombiniert mit dem Ableitungsverfahren RICO und CrystalTrace tragen

diese Beobachtungen zu einem verbesserten Verständnis von Eiskristalleigenschaften bei.
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Abstract

Cirrus clouds consist of small non-spherical ice crystals, which scatter solar radiation and absorb

and emit thermal infrared radiation. Depending on which of the effects dominates, these clouds

have either a cooling or a warming effect on the earth’s atmosphere and surface. Ice crystals

can grow to different sizes and shapes depending on the temperature and relative humidity of

their environment. Potential shapes range from hexagonal columns and plates to complex ice

crystal aggregates and dendrites. Inadequate knowledge about ice crystal shape results in large

uncertainties in retrievals of ice crystal optical and microphysical properties. Any information

about ice crystal shape is therefore valuable to improve ice cloud remote sensing and to better

quantify effects on the radiation budget and thus on climate.

This thesis aims at investigating the information content of halo displays regarding ice crystal

properties, which comprise ice crystal size, shape, surface roughness, and orientation in cirrus

clouds. Halo displays form by refraction and reflection of light by ice crystals with different

shapes and orientations and could therefore provide important information about these properties.

The frequently observed 22◦ halo and the rare 46◦ halo are both formed by randomly oriented

hexagonal crystals. Upper and lower tangent arcs are caused by oriented ice crystal columns

and sundogs emerge from light refracted by oriented ice crystal plates. The optical displays can

be simulated quantitatively using radiative transport models, which are well established for the

simulation of randomly oriented crystals. To allow simulation of oriented crystals, the raytracing

algorithm CrystalTrace was developed and implemented into the Monte Carlo model MYSTIC.

Within the scope of this work the weather-proof camera system HaloCam was designed and

installed on the rooftop platform of the Meteorological Institute Munich to allow for continuous

observation of halo displays. Together with the newly developed automated halo detection algo-

rithm HaloForest, HaloCam provides a consistent dataset of halo observations. Between January

2014 and June 2016 HaloForest detected 22◦ halos 2% of the time. Using co-located ceilometer

data, it was estimated that about 25% of the cirrus clouds produced a visible 22◦ halo.

The RICO retrieval was developed to estimate ice crystal size, shape and the fraction of smooth

and rough ice crystals from calibrated radiance measurements of 22◦ halos in combination with

radiative transfer simulations. Analyzing HaloCam data between September 2015 and November

2016 with RICO revealed effective ice crystal radii of about 20 µm on average, with more than

90% of the radii being smaller than 40 µm. Within the measurement uncertainty, the 22◦ halo

observations can be reproduced with plate-like, hollow, and columnar crystals with a smooth

crystal fraction of about 80%, 60%, and 30%, respectively. The optical properties of ice crystal

plates were found to best match the HaloCam observations in the region of the 22◦ halo, followed

by solid columns and aggregates of columns. The scattering properties of the ice crystal plates

used in this study, produce a pronounced 46◦ halo in addition to the 22◦ halo for effective radii up

to about 50 µm. Since the evaluated HaloCam observations showed only 22◦ halos without visible

46◦ halo, plates must be excluded as representative ice crystal shape. Therefore, solid columns

and aggregates of columns are the best matching habits for this dataset.

During the ML-CIRRUS campaign a unique dataset was collected combining HaloCam ob-

servations with in-situ measurements of the research aircraft HALO. This dataset contains obser-

vations of complex halo displays formed by oriented ice crystals. Using CrystalTrace, a method

was presented to retrieve the fraction of oriented ice crystals from observations of sundogs and

upper tangent arcs.

This study demonstrates that halo displays contain valuable information about ice crystal

properties such as size, shape, roughness, and orientation and performs for the first time a sys-

tematic investigation. Operating HaloCam in combination with HaloForest provides a consistent

dataset of long-term halo observations. In synergy with the RICO retrieval and CrystalTrace,

these observations contribute to an improved understanding of ice crystal properties.
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Chapter 1

Introduction

Cirrus clouds cover about 30% of the globe (Wylie and Menzel, 1999, Stubenrauch et al., 2006) and

play an important role in the earth’s energy budget. These clouds consist of small non-spherical ice

crystals, which scatter solar radiation and absorb and emit thermal infrared radiation. Depending

on which of the effects dominates, cirrus clouds have either a cooling or a warming effect on the

earth’s atmosphere and surface. The amount of transmitted and reflected light is governed by

the ice crystal radiative properties, which in turn depend crucially on shape, surface roughness

and orientation (e.g. Liou (1986), Wielicki et al. (1995), Wendisch et al. (2007), Yi et al. (2013)).

Ice crystals can grow to different shapes depending on the temperature and relative humidity

of their environment. Potential shapes include hexagonal columns and plates as well as complex

shapes such as bullet rosettes, aggregates of crystals and dendrites (Bailey and Hallett, 2004,

2009). Their sizes range from less than 10 micrometers up to a few millimeters (Baran, 2012).

Ice crystals often have roughened surfaces, hollow structures, included air bubbles and other

inhomogeneities which can significantly affect their scattering characteristics (Tape, 1994, Schmitt

and Heymsfield, 2007, Neshyba et al., 2013, Ulanowski et al., 2014, Tang et al., 2017).

For a given ice water content ice clouds may have a net warming or cooling effect, depending on

the ice crystal size and shape (Stephens et al., 1990). Furthermore, wrong assumptions regarding

the ice crystal shape can result in significant errors in retrievals of optical thickness and cloud mi-

crophysical properties using satellite-based shortwave infrared measurements (Mishchenko et al.,

1996, Baran et al., 1999, Yang et al., 2015, Holz et al., 2016). The uncertainty in the cirrus

optical thickness and the ice crystal effective radius was estimated to more than 50% and 20%,

respectively, by Key et al. (2002), Eichler et al. (2009) and Zinner et al. (2016). Ice crystal

orientation also has significant effects on the global radiative budget, as pointed out by Noel

and Sassen (2005). Better knowledge of ice crystal shape, surface roughness, and orientation is

therefore essential to improve estimates of the radiative forcing of cirrus clouds as well as satellite

retrievals of cirrus optical and microphysical properties (e.g. Yang et al. (2015), Liou and Yang

(2016)).

Over the past decades the natural distribution of ice crystal shape has been investigated by

laboratory studies (Magono and Lee, 1966, Bailey and Hallett, 2004, 2009) and in situ mea-

surements (Weickmann, 1947, Heymsfield and Platt, 1984, Field et al., 2005, Heymsfield et al.,

2013). Although these methods have been providing more and more detailed information about

ice crystal size and shape under various nucleation and growth conditions, they suffer from certain

limitations. The nucleation technique used in laboratory studies, for example, can influence the

shape of the growing ice crystals and lead to biased results (e.g. Bailey and Hallett (2012)). In

situ observations by aircraft probes are spatially limited. Furthermore, due to the high speed

of the aircraft, shattering of larger complex ice crystals at the inlets of the in situ probes is an

issue which might cause an artificially increased fraction of small particles (Baran (2012) and



2 1. Introduction

references therein).

Therefore, satellite-based methods have been investigated in recent years to retrieve informa-

tion about ice crystal shape with large spatial and temporal coverage. Retrievals of ice crystal

habit from multi-angular satellite measurements were pioneered by Baran et al. (1998, 1999)

using radiance measurements at two different viewing angles from the Along Track Scanning

Radiometer (ATSR-2). McFarlane and Marchand (2008) present a retrieval using measurements

from MISR (Multi-angle Imaging Spectroradiometer) and MODIS (Moderate resolution imaging

system) reflectances based on optical properties of single ice crystal habits. Multi-angular polar-

ized reflectances from the Polarization and Directionality of Earth Reflectance (POLDER) have

been used to infer information about ice crystal shape (e.g. Descloitres et al. (1998), Chepfer

et al. (2001), Baran and Labonnote (2006), Sun et al. (2006) and van Diedenhoven et al. (2012)).

However, these studies mainly focused on optically thick cirrus. Ice crystal shapes in thin cir-

rus clouds were investigated by Wang et al. (2014) and Holz et al. (2016) using a combination

of active and passive remote sensing instruments with co-located MODIS and CALIOP (Cloud

Aerosol Lidar with Orthogonal Polarization) observations. The majority of studies implies that

ice crystals with roughened surface represent the observations better than crystals with smooth

faces (Liu et al., 2014, Holz et al., 2016).

In addition to spectral information or polarization signals, another source of information

about ice crystal properties is the spatial distribution of refracted and reflected light in the

sky, caused by the details of ice crystal scattering characteristics. These scattering features,

commonly known as halo displays, can be observed as bright and colorful circles and arcs in the

vicinity of the sun. Halo displays are produced by hexagonal ice crystals with smooth faces via

refraction and reflection of light. The formation of halo displays has already been described by

Wegener (1925) and by a number of later publications (Greenler (1980), Minnaert (1993) and

Tape (1994)). Figure 1.1 illustrates the most frequent halo displays: the 22◦ halo (top left) is

formed by randomly oriented hexagonal ice crystals and appears as a bright ring around the

sun at a scattering angle of about 22◦. The 22◦ parhelia, commonly called sundogs, are caused

by light refracted by horizontally oriented hexagonal plates. The top right image in Fig. 1.1

shows a bright sundog on the right side of the sun. Upper and lower tangent arcs, which are

produced by oriented ice crystal columns, are presented on the lower left in Fig. 1.1. Their shape

depends on the solar elevation. For small solar elevations the upper and lower tangent arcs are

separated. They merge for larger solar elevations to form an elliptical ring around the 22◦ halo, as

depicted on the lower right image in Fig. 1.1. The merged tangent arcs are called circumscribed

halo. As the sun approaches the zenith, the initially elliptical circumscribed halo becomes more

and more spherical until it is almost indistinguishable from the 22◦ halo. Halos are not only

beautiful optical displays but also contain valuable information about ice particle size, shape and

orientation (Lynch and Schwartz, 1985, Sassen et al., 1994, van Diedenhoven, 2014, Flatau and

Draine, 2014). van Diedenhoven (2014) showed that the brightness contrast of the 22◦ halo in

ice crystal scattering phase functions is related to the aspect ratio and surface roughness of the

crystals. Quantitative analysis of the frequency of occurrence as well as brightness contrast of

halo displays can therefore help determine ice crystal shape, surface roughness and orientation in

cirrus clouds.

Probably the first reported photometric measurements of halo displays were performed by

Lynch and Schwartz (1985), who took a photo of a 22◦ halo around the moon with a Kodak film

camera. After digitizing the photo, the relative brightness and width of the 22◦ halo were analyzed

and possible ice crystal sizes and shapes were discussed based on theoretical considerations. In the

1990s, many halo observations have been collected by amateur observing networks (Pekkola, 1991,

Verschure, 1998), which is work-intensive and requires substantial personnel. To the author’s
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Figure 1.1: Examples of halo displays observed at the Meteorological Institute of the LMU in
Munich. The sun is blocked by a black circular shade to avoid stray light and saturation of the
camera sensor. Top left: 22◦ halo. Top right: right-hand 22◦ parhelia or sundog. Bottom left:
faint 22◦ halo with upper and lower tangent arc. Bottom right: 22◦ halo with circumscribed halo.

knowledge, the largest dataset so far has been collected by the German “Arbeitskreis Meteore e.V.

Sektion Halobeobachtungen” (AKM, https://www.meteoros.de). The community was founded

in 1990 and consists of a network of about 80 volunteers who collect halo observations on a

monthly basis throughout Germany, Austria, Romania and the UK. Since 1986 more than 150 000

observations of halo displays have been reported. AKM collects information about the halo type

and its duration, the type of cloud producing the halo display, the weather situation during the

observation (frontal system, precipitation) and more. An extensive long-term observation study

of high-level clouds and halo displays was performed by Sassen et al. (2003b), who evaluated

a ∼10 year record of halo observations, accompanied by polarization lidar measurements at the

Facility for Atmospheric Remote Sensing (FARS) in Salt Lake City, Utah. This study is also based

on visually collected halo observations. A fisheye camera, which took pictures every 20 min, was

used in this study in combination with field notes and extra photographs to monitor optical

displays.

So far, halo displays were investigated regarding ice crystal properties only qualitatively in

single case studies. Long-term studies have focused primarily on the frequency of halo displays

with high personnel effort. Ice crystal orientation and macrophysical properties of the cirrus

clouds, such as height and temperature, were investigated (Sassen et al., 2003b). To the author’s

knowledge, no systematic analysis of halo observations regarding ice crystal properties, such as

ice crystal size, shape and surface roughness, exists to date.

https://www.meteoros.de
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This thesis aims to investigate the information content of halo displays regarding ice crystal

properties, which comprise ice crystal size, shape, surface roughness, and orientation in cirrus

clouds.

This endeavor was approached with the following strategy:

• The information content of halo displays has to be investigated via a systematic analysis of

ice crystal properties under single and multiple scattering conditions.

• In order to investigate ice crystal orientation, a method has to be developed to allow radia-

tive transfer simulations of oriented ice crystals.

• To test the information content under realistic conditions, a retrieval needs to be developed

and applied to observations of halo displays.

• For a final assessment of the developed retrieval, it should be applied to long-term obser-

vations, which can be achieved by an automated observation and data evaluation method.

To perform automated halo observations, the weather-proof camera system HaloCam was de-

signed featuring a sun-tracking mount and a wide-angle lens, providing images with high temporal

and spatial resolution. This thesis presents, to the author’s knowledge, the first automated, con-

tinuous and long-term camera observations of halo displays. Together with HaloForest, a newly

developed automated detection algorithm for halo displays, the HaloCam system provides con-

sistent long-term observations of halo displays. Both the HaloCam camera system and the halo

detection algorithm are described in Forster et al. (2017). Furthermore, this is, to the author’s

knowledge, the first study using calibrated radiance observations of 22◦ halos to systematically

investigate the ice crystal optical and microphysical properties of the halo-producing cirrus clouds

with radiative transfer models. To allow simulation of oriented crystals, the raytracing algorithm

CrystalTrace was developed and implemented into the Monte Carlo model MYSTIC (Mayer,

2009), which is part of the radiative transfer library libRadtran (Mayer and Kylling, 2005). This

combination of CrystalTrace and MYSTIC allows radiative transfer simulation of oriented ice

crystals accounting for multiple scattering and interaction with aerosol and surface albedo.

Following a brief overview over the underlying theoretical concepts and equations in Chap-

ter 2, methods developed and used in this thesis will be presented in Chapter 3. First, ice crystal

single scattering properties are investigated and suitable parameters are determined to retrieve

information about ice crystal microphysical properties. All presented tools and methods were

developed within this work with exception of the radiative transfer library libRadtran with the

MYSTIC and DISORT solvers, the ice crystal optical property database and the specMACS in-

strument. Chapter 4 presents statistics of halo displays obtained during the ACCEPT campaign.

Long-term HaloCam observations of 22◦ halos in Munich were evaluated with the automated halo

detection algorithm HaloForest. Using calibrated radiance measurements, the RICO retrieval of

ice crystal properties is applied to specMACS observations for two case studies and to long-term

HaloCam observations. With CrystalTrace a method is proposed to retrieve the fraction of ori-

ented ice crystals from observations of upper tangent arcs and sundogs together with 22◦ halos.

The findings of this thesis are discussed and compared to previous results in Chapter 5. Key find-

ings and conclusions are summarized in Chapter 6 and ideas for future applications of HaloCam

are provided in Chapter 7.



Chapter 2

Theory

This chapter provides the theoretical basis for this work which focuses on the remote sensing

of cirrus clouds and halo displays. Halo displays are produced by refraction and reflection of

light by ice crystals. The formation of ice crystals and cirrus clouds, which are a prerequisite

for the formation of halo displays, are described in the first section of the theory chapter. The

second section presents the basic radiative laws used in this study including the radiative transfer

equation. The optical properties of molecules, aerosol and ice crystals necessary for radiative

transfer simulations are described. Combining the radiative with the ice crystal microphysical

principles, the final section of this chapter explains the formation of halo displays.

2.1 Ice crystals and cirrus clouds

The following sections provide a description of the formation of cirrus clouds which consist primar-

ily of ice crystals. The description of their macro- and microphysical properties mainly follows

Rogers and Yau (1996), Wallace and Hobbs (2006), Lynch et al. (2002), Lamb and Verlinde

(2011), and Liou and Yang (2016).

2.1.1 Formation of cirrus clouds

Clouds in the atmosphere form when the air becomes supersaturated with respect to liquid or ice

water and water vapor condenses. The most frequent way of reaching a state of supersaturation

is the rise of an air parcel accompanied by adiabatic cooling. In the upper troposphere where

the temperatures are well below 0 ◦C, ice clouds form. This study focuses on the properties of

thin high-level ice clouds, which are separated by the WMO (World Meteorological Organization,

2017) into three types according to their morphology: cirrus, cirrocumulus and cirrostratus.

Cirrus clouds are composed of ice crystals and have a transparent and wispy, sometimes feather-

or veil-like, appearance against the blue sky. They typically occur at altitudes greater than 6 km

and consist entirely of ice crystals for temperatures less than about −38 ◦C (Wylie and Menzel,

1999, Baran, 2012, Guignard et al., 2012). A typical example of a cirrus cloud is displayed in

Fig. 2.1.

As described in Liou and Yang (2016) cirrus clouds mainly form by synoptic-scale disturbances

such as jet streams, closed upper-levels lows, frontal overriding, etc. with relatively weak mean

vertical lifting rates. Cirrus clouds usually develop from top to lower levels but they can also be

generated by strong thunderstorm updrafts producing anvil-cirrus. Other formation mechanisms

are orographic processes and the rapid cooling of aircraft exhausts, which forms condensation

trails, short contrails. Persistent contrails and contrail cirrus, which also consist of ice crystals,

were recently added to the International Cloud Atlas of the World Meteorological Organization.
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Figure 2.1: Example of a cirrus cloud from World Meteorological Organization (2017).

Contrails are called cirrus homogenitus, since they are formed as a consequence of human activity.

Contrail cirrus occurs when persistent contrails spread out over time by strong upper-level winds

and transform to more natural-looking cirrus clouds. These clouds are called cirrus homomuta-

tus. Ice clouds also form in the middle atmosphere: the polar stratospheric ice clouds, called

nacreous or mother-of-pearl clouds, form between 20 km to 30 km at high latitudes in the winter

stratosphere. Polar mesospheric clouds, called noctilucent clouds, form in about 82 km in the

summer mesosphere when the lowest temperatures occur (e.g. Baumgarten et al. (2008)).

Having outlined the macrophysical formation of cirrus clouds, their microphysics will be de-

scribed in the following in terms of the formation and growth of ice crystals.

2.1.2 Formation and growth of ice crystals

Water can exist in three thermodynamic states: vapor, liquid, and ice. Essentially all ice in the

Earth’s biosphere is ice Ih, the hexagonal crystal form of ordinary ice. Stable down to −200 ◦C

it has a density of 0.917 g cm−3 (Liou and Yang, 2016). In rare cases the structure of ice can

exhibit dodecagonal, bullet pyramidal and pyramidal shape. The majority of ice crystals owe

their hexagonal (six-fold) shape to the hexagonal molecular symmetry within the crystal. Ice

crystals in the atmosphere can form either by homogeneous or heterogeneous nucleation. Homo-

geneous freezing or sublimation occurs when water molecules produce a stable ice-like structure

by statistical fluctuations which can serve as ice nuclei. However, extremely high supersaturation

is required for homogeneous freezing which rarely occurs in the atmosphere. At temperatures

slightly below 0 ◦C, supersaturation of more than a factor of 20 with respect to ice is necessary

for homogeneous nucleation. Liou and Yang (2016) state that droplets smaller than 5 µm freeze

homogeneously only at temperatures of −40 ◦C or lower.

In the atmosphere clouds at a temperature of −15 ◦C already contain a significant amount

of ice crystals. These ice crystals are formed by heterogeneous nucleation. Ice crystals form

either by contact freezing or deposition on most materials. The required supersaturation and

supercooling for contact freezing or deposition, i.e. heterogeneous nucleation, is significantly

smaller than for homogeneous nucleation. Supersaturation in conjunction with supercooling as

well as the material properties influence the probability of heterogeneous nucleation. Common

materials for ice nuclei are clay materials, especially kaolinite, bacteria, and meteoric material.

The concentration of ice nuclei, which are necessary for heterogeneous nucleation, is decreasing

with height. Thus, supercooled water droplets at −15 ◦C and below are not uncommon, whereas

for temperatures lower than −35 ◦C supercooled water clouds are rarely found (e.g. Hogan et al.
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Figure 2.2: (a) Phase diagram of water illustrating the saturation vapor pressure as a function
of temperature for the ice, water and vapor phase of the water molecules. The triple point is
indicated by a black dot. The red and blue lines below 0 ◦C represent the saturation vapor
pressure over ice and water, respectively. (b) Difference between the saturation vapor pressure of
water and ice as a function of temperature with a maximum at about −12 ◦C. Calculations based
on the equations in Sonntag (1990).

(2004) and Hu et al. (2010)). Secondary ice crystals can be produced by shattering of ice crystals

when they collide with large graupel particles. Another formation mechanism for secondary ice

crystals is splintering of freezing water droplets.

The mass increase of a growing ice particle is governed by the diffusion process. How the

saturation vapor pressure es changes with temperature T is described by the Clausius-Clapeyron

equation
des

dT
=
Lv es

Rv T 2
, (2.1)

with the specific latent heat Lv for water or ice, respectively, and Rv the specific gas constant for

water vapor. Its integrated form gives the exponential increase of the saturation vapor pressure

with temperature:
es(T )

e0
= exp

[Lv

Rv

(
1

T0
− 1

T

)]
, (2.2)

where e0(= 6.11 hPa) is the value at the triple point with a temperature of T0(= 273.15 K) at

which vapor, liquid, and ice phase can coexist (black dot in Fig. 2.2a). The saturation vapor

pressure over ice (red curve in Fig. 2.2a) is smaller than over supercooled water (blue curve in

Fig. 2.2a) at the same temperature due to the different latent heat at the transition. With help

of the time-dependent second-order diffusion equation

∂n

∂t
= D∇2 n (2.3)

the concentration of molecules n can be described at any point in the water vapor field with the

molecular diffusion coefficient D. Under the assumption that the system is in equilibrium and

imposing boundary conditions at the positions of the ice particle (ρv(s)) and ambient air (ρv(∞)),

the growth equation for an ice crystal can be described by

dm

dt
= 4π C D [ρv(∞)− ρv(s)] , (2.4)
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where ρv(∞) denotes the vapor density of the ambient air and ρv(s) at the ice crystal surface.

The non-sphericity of ice crystals is accounted for by the parameter C which depends on the size

and shape of the ice crystal. While for a spherical particle C = r, a circular disk of radius r is

parameterized by C = 2r/π which can be used as an approximation for ice crystal plates. The

shape of needles can be approximated by prolate spheroids. The saturation ratio with respect to

ice Sice is defined by

Sice = e/es,ice , (2.5)

with the water vapor pressure of the ambient air e and the saturation pressure over ice es,ice.

Using the Clausius-Clapeyron equation and Eq. (2.5), an analytical expression can be derived for

the ice crystal growth:
dm

dt
=

4π C (Sice − 1)

(fk + fD)
, (2.6)

where

fk = L2/(KRv T
2) and fD = Rv T/(D es,ice) , (2.7)

with ambient temperature T , thermal conductivity K and latent heat L. The growth rate is a

function of temperature and inversely proportional to pressure. In a cloud containing supercooled

water droplets the air is saturated with respect to liquid water and therefore supersaturated with

respect to ice (cf. Fig. 2.2a). Supersaturation ranges from 10 % at −10 ◦C to 21 % at −20 ◦C

(Wallace and Hobbs, 2006). This allows ice particles to grow by sublimation from the vapor

phase at the expense of the water droplets, which is called Wegener-Bergeron-Findeisen process

(Wegener, 1926, Bergeron, 1935, Findeisen, 1938). Liou and Yang (2016) state that the growth

rate of ice crystals via this process reaches its maximum at a temperature of about −12 ◦C,

as shown in Fig. 2.2b. A contribution to the different morphology of ice and water clouds is

the lower equilibrium vapor pressure over ice compared to water at the same temperature (cf.

Fig. 2.2). This enables ice particles to survive longer in the non-saturated air surrounding the

cloud producing the feather-like appearance of ice clouds as well as fallstreaks or virgae (Wallace

and Hobbs, 2006).

Ice crystals are formed by diffusion of water vapor and grow further by accretion, which

consists of collision and coalescence. Growth by collision is determined by the ice crystal fall

speed. For ice crystal aggregation the collection efficiency strongly depends on the ice crystal

shape, since dendrites are more likely to stick together than compact particles. Moreover, it

is favored by warmer temperatures, particularly above about −5 ◦C where ice surfaces become

sticky. In a mixed phase cloud ice particles grow by riming which describes the process of an ice

crystal capturing supercooled water droplets which subsequently freeze upon it. Particle shapes

range from rimed needles, columns, plates, to stellars which will finally loose their shape and turn

into graupel particles.

2.1.3 Ice crystal shape

Ice crystals have a common shape with a six-fold (hexagonal) symmetry which can be realized

in a range of different axis ratios. Simple hexagonal crystals have two basal faces and six prism

faces as shown in Fig. 2.3. The hexagonal axes a1, a2, a3, and c in Fig. 2.3 define the orientation

of the crystal lattice. Growing ice crystals exhibit non-spherical shapes due to non-uniform

deposition coefficients which affect the growth rates across the crystal surface. Their specific

shape depends on temperature and ice supersaturation (e.g. Magono and Lee (1966)). Ice crystal

shapes can be separated into plates and columns, which are called primary habits and provide

a first-order category for the classification of ice crystal shapes (Lamb and Verlinde, 2011). The

formation of these primary ice crystal habits is mainly determined by the ambient temperature
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Figure 2.3: Ice crystal geometry. Following the definition in Liou and Yang (2016) the c-axis is
perpendicular to the base and top faces of the ice crystal. The three ai-axes are defined
perpendicular to the c-axis and coincide with the intersections of two neighboring crystal side faces.

(cf. Fig. 2.4). Bailey and Hallett (2009) present a comprehensive ice crystal habit diagram

based on both laboratory studies and field observations using the Cloud Particle Imager (CPI)

as shown in Fig. 2.4. They report plate-like shapes from −20 ◦C to −40 ◦C and columnar shapes

from −40 ◦C to −70 ◦C. With increasing supersaturation the ice crystal shapes become more and

more complex. At temperatures below −20 ◦C mostly polycrystalline particles occurred. Between

−10 ◦C to −20 ◦C a variety of plate types, crystals with sector-like branches, fern-like, ordinary

dendritic, and stellar crystals as well as hexagonal plates were observed. For temperatures between

−20 ◦C to −40 ◦C, hollow columns, hollow bullet rosettes and aggregates occur. Bailey and Hallett

(2009) stated that most ice crystals are defective and irregular in shape to varying degrees. They

also found that most individual crystals are complex, irregular, and imperfect including single

crystals such as plates and columns. It was also pointed out that very small ice crystals growing

at low ice supersaturation are mainly compact faceted polycrystals, not spheroids, as suggested

in previous publications (Bailey and Hallett, 2009). The spatial distribution of water vapor and

temperature is modified by the primary crystal habit and influences the shape of the further

growing ice crystal. Primary habits such as columns, plates and dendrites are modified when

the ice crystals grow or move around in the cloud according to temperature and saturation. For

example plates can develop peripheral dendritic structure which forms sector stars or columns

can grow plates on their ends and turn into capped columns.

Ice crystal sizes in cirrus clouds span values from a few to thousands of microns. Figure 2.5

shows the definition of the ice crystal dimensions for columnar (a) and plate-like crystals (b). The

length of the c-axis is referred to by L, while the maximum diameter of the ice crystal top and

base faces is denoted by 2a. For certain ice crystal types the length L and diameter 2a are related

which was found in laboratory and field observations (Auer and Veal, 1970, Heymsfield, 1972).

From these observations Mitchell and Arnott (1994) derived the following empirical relationship

for columns:

2a = 0.7000L1.0 for L ≤ 100 µm , (2.8)

2a = 0.0696L0.5 for L > 100 µm . (2.9)

In synoptically generated cirrus, typical for the mid-latitudes, the ice crystal size tends to increase

with cloud depth (Lynch et al., 2002, Baran, 2012). Ice production occurs in the topmost layer,

called nucleation layer, which is supersaturated with respect to ice and contains small, single ice

crystals. While sedimenting into the deeper cloud layers, the ice crystals can grow from tens of

microns up to several cm in size (Heymsfield and Miloshevich, 2003). Growth is mainly due to

deposition of water vapor and aggregation. At the cirrus cloud base sublimation takes place due

to the dry air below and leads to rounded crystal edges.
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Figure 2.4: Ice crystal morphology as a function of temperature and supersaturation (Bailey
and Hallett, 2009). c©American Meteorological Society. Used with permission.

Larger ice crystals tend to take preferred orientations while falling. Jayaweera and Mason

(1965) found that cylinders tend to fall with their long axes horizontal in a viscous fluid if

the ratio of diameter (2a) to the maximum dimension (L) is less than 1, i.e. 2a < L. Ono

(1969) observed freely falling columnar and plate crystals in natural ice clouds. The author

confirmed that columnar crystals are oriented with a horizontal c-axis, whereas plates are oriented

with a vertical c-axis while falling. Platt (1978) performed lidar backscatter measurements and

found predominantly plate-shaped ice crystals which were oriented horizontally in cirrus clouds

at approximately −15 ◦C.
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Figure 2.5: Definition of ice crystal dimensions. The length of the c-axis is denoted by L. The
maximum diameter of the ice crystal top and base is defined by 2a.

2.1.4 Cirrus microphysical properties

Depending on the excess of water vapor and temperature the ice crystals grow to slightly different

sizes within a certain cloud volume. This ensemble of ice crystals can be described by a size

distribution, relating the particle size with the number concentration. The size of single ice

crystals is usually measured by their maximum dimension D, which corresponds to the length of

the c-axis L for columns and the diameter 2a for plates for example. The size distribution of ice

crystals is most commonly parameterized by a gamma distribution (Heymsfield et al., 2013)

N(D) = N0D
µ exp (−λD) , (2.10)

with the particle maximum dimension D, the intercept N0, the dispersion µ and the slope λ.

According to Heymsfield et al. (2013) µ typically takes values between about 0 and 2, whereas λ

ranges between about 10 cm−1 to 100 cm−1 for stratiform clouds and temperatures between 0 ◦C

to −50 ◦C. With increasing temperature the particle size distribution broadens and the dispersion

µ decreases. Assuming a certain particle size distribution N , the total projected area per unit

volume of air Atot and total volume of ice per unit volume of air Vtot are determined by

Atot =

∫ Dmax

Dmin

A(D)N(D) dD , (2.11)

and

Vtot =

∫ Dmax

Dmin

V (D)N(D) dD , (2.12)

where Dmin and Dmax denote the lower and upper boundary of the maximum dimension, N is

the number concentration and A(D) and V (D) are the projected area and volume of a specific

particle with maximum dimension D. The ice water content (IWC) is defined by

IWC = ρice

∫ Dmax

Dmin

V (D)N(D) dD = ρice Vtot , (2.13)

with ρice = 0.917 g cm−3. As discussed by McFarquhar and Heymsfield (1998) there are different

ways to define the effective radius reff . Throughout this study the definition

reff =
3

4

Vtot

Atot
(2.14)

will be used. In general, the particle size distribution evolves from cloud top to cloud base: ice

crystal size increases and ice crystal shapes become increasingly more complex toward the cloud

base (Baran (2012) and references therein).



12 2. Theory

2.2 Radiation and atmospheric radiative transfer

In order to provide a basic understanding of ground-based remote sensing of halo displays, this

section gives an overview over the characteristics of light and basic radiation laws, as well as

interactions of light with atmospheric constituents. Finally, these interactions are brought to-

gether in the radiative transfer equation, which describes the emission, absorption and scattering

of photons traveling through the atmosphere.

2.2.1 Radiative properties and physical description

Solar and thermal spectrum

Table 2.1: Classification of electromagnetic radiation for the solar and thermal spectrum
according to Thomas and Stamnes (1999).

Subregion Range Description

X rays λ< 10 nm Gamma radiation

UV 10 nm <λ< 400 nm Ultra violet light

VIS 400 nm <λ< 700 nm Visible light

Near IR 0.7 µm <λ< 3.5 µm Near infrared light

Thermal IR 3.5 µm <λ< 100 µm Thermal infrared light

Table 2.1 describes the classification of the electromagnetic spectrum into specific regimes,

where the wavelength of the radiation λ is defined by

λ =
c

ν
=

2πc

ω
, (2.15)

with the speed of light c measured in [m s−1] and the (angular) frequency ν (ω) in [s−1] with

ω = 2πν. For remote sensing applications it is convenient to separate the spectrum of the light

into two main regimes: the solar and the thermal spectrum with the transition at a wavelength of

about 3.5 µm according to Thomas and Stamnes (1999). This study focuses on the solar spectrum

and more precisely on the visible spectral range between 400 nm and 700 nm.

Radiative quantities

A beam of radiation is commonly described by its radiant energy Q with units [J]. The radiant

energy per unit time dt is called radiant flux Φ, which is calculated by Φ = dQ
dt with the unit

[W]. Throughout this study two radiative quantities are commonly used, the spectral irradiance

E and the spectral radiance L:

E =
dQ

dA dλ dt
[W m−2 nm−1] (2.16)

L =
dQ

dA dΩ dλ dt
[W m−2 nm−1 sr−1] (2.17)

The spectral irradiance E is defined as the variation of the radiating energy dQ by unit area dA,

time dt and wavelength dλ. Note, that in this definition the unit area dA is perpendicular to
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Figure 2.6: Spectrum of the solar radiation at the top of the atmosphere (black) based on data
from Kurucz (1992). The blue and red curves represent the emitted irradiance from an ideal
blackbody at 6000 K and 5777 K, respectively.

the incident direction. The spectral radiance L additionally takes into account the direction of

the incident radiation as an element of the unit solid angle dΩ. Subsequently, an introduction

to some fundamental radiative laws is provided following primarily Thomas and Stamnes (1999)

and Zinth and Zinth (2005).

Basic radiative laws

The solar spectrum, measured at the top of the atmosphere, is very similar to the radiation

spectrum of a blackbody with a temperature of 5778 K (Thomas and Stamnes, 1999). Planck’s

radiation law describes the spectral radiance of a blackbody as a function of its temperature

BPlanck(λ, T ) =
2hc2

λ5

[
exp

(
hc

λkBT

)
− 1

]−1

, (2.18)

with Planck’s constant h, the speed of light in vacuum c and Boltzmann’s constant kB. The red

and blue curves in Fig. 2.6 result from Eq. (2.18) integrated over the half space, which yields the

irradiance. Integrating Planck’s radiation law in addition over the wavelength gives the irradiance

as a function of the blackbody temperature, known as Stefan-Boltzmann’s law

EPlanck(T ) = π ·
∫ ∞

0
BPlanck(λ, T ) dλ = σB T

4 , (2.19)

where σB = 2π5k4
B/15h3c2 is called Stefan-Boltzmann’s constant.

Bouguer-Lambert-Beer’s law describes the attenuation of the radiance dL along the path

length ds through an extincting substance of concentration n

dL = −L · n · σext ds , (2.20)

with the extinction cross section σext. The extinction cross section is the sum of the absorption

and the scattering cross section

σext = σabs + σsca . (2.21)
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The optical thickness along a tilted path of light s′ is defined by

τs =

∫ s

0
kext(s

′) ds′ , (2.22)

with the extinction coefficient

kext = n · σext . (2.23)

Solving the integral over ds in Eq. (2.20) results in the integrated form of Bouguer-Lambert-Beer’s

law:

L(s) = L(0) · exp(−τs) . (2.24)

In a plane-parallel atmosphere the extinction coefficient kext is only a function of height z. For

such a plane-parallel atmosphere the optical thickness τ is defined by the integral of the extinction

coefficient kext along the vertical direction

τ =

∫ z

0
kext(z

′) dz′ , (2.25)

or dτ = −kext dz using the differential notation.

A path element ds tilted by an angle θ with respect to dz can be calculated by ds = dz/ cos θ =

dz/µ with µ < 0 for upward and µ > 0 for downward directed radiances. Using

τ =

∫ ∞

s
kext(s

′) · cos θ ds′ = cos θ · τs = τs · µ , (2.26)

the integrated form of Bouguer-Lambert-Beer’s law in a plane-parallel atmosphere yields

L(τ) = L(0) · exp(−τ/µ) , (2.27)

with µ > 0 and the extraterrestrial radiance at the top of the atmosphere L(0) at τ = 0.

2.2.2 Radiative transfer equation

One major focus of this study is the transfer of light through the atmosphere and its interaction

with atmospheric components such as clouds, molecules and aerosol particles. These processes

are described by the radiative transfer equation, which was first formulated by Chandrasekhar

(1960). Following Zdunkowski et al. (2007) the radiative transfer equation in a three-dimensional

medium can be expressed as

Ω · ∇L = −kextL+
ksca

4π

∫

4π
P(Ω′ ·Ω)L(Ω′) dΩ′ + kabsJ

e , (2.28)

with the spectral radiance L, the extinction coefficient, which is the sum of the scattering and

absorption coefficients, kext = ksca + kabs, the scattering phase function P, the solid angle Ω and

the source term Je. The radiative transfer equation in plane-parallel (one-dimensional) geometry

yields

µ
d

dτ
L(τ, µ, φ) =

(1)︷ ︸︸ ︷
L(τ, µ, φ)−

(2)︷ ︸︸ ︷
ω0

4π

∫ 2π

0

∫ 1

−1
P(cos Θ)L(τ, µ′, φ′)dµ′dφ′−

(3)︷ ︸︸ ︷
(1− ω0)BPlanck(T ) ,

(2.29)

using Ω · ∇L = dL/ds and kext ds = kext dz/µ = −dτ/µ with µ = cos θ. The term cos Θ = Ω′ ·Ω
is the cosine of the scattering angle Θ, which is a function of θ′, φ′, θ, φ. The four angles denote



2.2 Radiation and atmospheric radiative transfer 15

the zenith and azimuth angle of the incoming direction (θ′, φ′) and the scattered direction (θ, φ).

BPlanck(T ) is the Planckian emission (cf. Eq. (2.18)). Further variables in the radiative transfer

equation are: the single-scattering albedo ω0 = ksca/kext, the optical thickness τ .

In the following, the individual parts of the radiative transfer equation will be explained:

Together with the left hand side of Eq. (2.29),

• (1) represents the reduction of radiation due to extinction by atmospheric constituents

according to Bouguer-Lambert-Beer’s law (Eq. (2.27)),

• (2) characterizes the scattering of the radiation from the direction (θ′, φ′) into the new

direction (θ, φ), which is determined by the scattering phase function,

• (3) is the contribution of thermal emission to the radiation from the volume element along

the propagation direction of the photons following Planck’s law (Eq. (2.18)). This study

focuses on the visible part of the solar spectrum between 400 nm and 800 nm. In this spectral

range the single-scattering albedo ω0 ≈ 1 for ice crystals (Liou and Yang, 2016) and thus,

the thermal emission is negligible.

2.2.3 Light scattering by atmospheric particles

Figure 2.7: Relationship between particle size, radiation wavelength and scattering behavior for
atmospheric particles. Diagonal dashed lines represent rough boundaries between scattering
regimes (Petty, 2006).

The method to describe and calculate the optical properties of scattering particles in the at-

mosphere depends crucially on the relationship between the size of the particle and the wavelength

of the radiation, which is expressed by the size parameter χ:

χ =
2πr

λ
, (2.30)

with wavelength λ and particle radius r. For non-spherical particles different definitions of the

size parameter exist in the literature (Um et al., 2015). Throughout this thesis the size parameter

of ice crystals is defined by

χ =
πD

λ
. (2.31)
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Figure 2.8: Scattering phase functions for Rayleigh scattering (blue) and Lorentz-Mie theory
for an insoluble aerosol (black) at a wavelength of 550 nm.

As depicted in Fig. 2.7 there are basically three main scattering regimes:

1. Rayleigh or molecular scattering (Strutt (1871), χ� 1)

2. Lorentz-Mie theory (Mie (1908), χ ≈ 1, only valid for spherical particles)

3. Geometric optics (χ� 1)

Molecular and aerosol optical properties

For ground-based remote sensing of cirrus clouds, molecular and aerosol optical properties have

to be considered and will briefly be explained in the following. For very small particles in the

atmosphere, like molecules, with radii much smaller than the wavelength in the visible spectrum

(r � λ), the size parameter χ� 1 and Rayleigh scattering can be applied (cf. Fig. 2.7). Named

after Lord Rayleigh, who explained 1871 successfully the color and polarization of skylight. The

phase function for Rayleigh scattering is defined as

P(cos Θ) =
3

4
(1 + cos2 Θ) (2.32)

and depicted in Fig. 2.8 with a blue line. The scattering probability is equally maximal in the

forward and backward direction and decreases towards its minimum at a scattering angle of

Θ = 90◦.

A measure for the relative strength of forward scattering is given by the asymmetry fac-

tor, which is the first moment of the scattering phase function. The asymmetry factor can be

calculated by

g =
1

2

∫ 1

−1
P(cos Θ) cos Θ dcos Θ , (2.33)

where P(Θ) is the normalized phase function. For Rayleigh scattering g = 0, which is equivalent

to symmetric scattering. For complete forward or backward scattering the asymmetry factors are

g = 1 and g = −1, respectively. The scattering cross section for Rayleigh scattering is inversely

proportional to the 4th power of the wavelength λ (Thomas and Stamnes, 1999):

σsca ∝ 1/λ4 . (2.34)
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Figure 2.9: Ice crystal phase functions of smooth solid columns for effective radii of 5 (red), 20
(blue), and 80 µm (black) and a wavelength of 550 nm from the database of Yang et al. (2013).
The 22◦ and 46◦ halo at the respective scattering angles are a geometric optics phenomenon and
thus become more pronounced for larger ice crystals.

Equation (2.34) explains for example why the sky appears blue: the scattering cross section

strongly increases for smaller wavelengths. Blue light (λ = 420 nm) is scattered 10 times stronger

than red light at 720 nm. During dusk and dawn, light travels much longer distances through the

atmosphere, and only the longer wavelengths of the solar radiation reach the observer causing

the reddish light of the rising or setting sun. In the Mie regime (cf. Fig. 2.7) the size parameter

χ is close to 1. Small aerosol particles have size parameters of χ ∼ 1 and a pronounced forward

scattering compared to molecules, as shown in Fig. 2.8 by the black line for an insoluble aerosol

at λ = 550 nm. In this case the asymmetry factor takes values g > 0.

Ice crystal optical properties

Mie theory is only applicable to spherical particles, thus different methods have to be used to

calculate the optical properties of non-spherical ice crystals. Liou and Yang (2016) give detailed

explanations of available methods for different size parameters, such as the Finite-Difference Time

Domain (FDTD) method, the T-matrix method or the Discrete Dipole Approximation. For ice

crystals much larger than the wavelength with size parameters χ� 1, scattering is predominantly

in the forward direction and the geometric optics principles can be applied. Figure 2.9 shows three

phase functions of solid ice crystal columns with smooth surface, which are averaged over size

distributions with effective radii of reff = 5 µm (red), reff = 20 µm (blue), and reff = 80 µm (black)

at a wavelength of 550 nm. The phase functions exhibit a pronounced forward scattering peak

and show the 22◦ and 46◦ halo at the respective scattering angles. For a given wavelength, the

size parameter increases for larger effective radii and the halo peaks become more pronounced.

Like rainbows, halo displays are a geometric optics phenomenon. Thus, the optical properties of

large ice crystals can be calculated using the geometric optics approximation. According to Liou

and Yang (2016), the scattering phase function of an ensemble of non-spherical ice particles of

the same size and random orientation can be expressed by

P(Θ) =
1

2πσsca

∫ 2π

0

∫ π/2

0
P ′(α′, γ′)σ′sca(α′, γ′) sinα′dα′dγ′ , (2.35)
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where α′ and γ′ are the orientation angles relative to the direction of the incident light beam

and P ′ is the scattering phase function for a single particle. For randomly oriented particles the

scattering phase function depends solely on the scattering angle Θ. Integrated over the scattering

angle Θ and the azimuth angle φ, the phase function is normalized to unity:

∫ 2π

0

∫ π

0

P(Θ)

4π
sin Θ dΘdφ = 1 . (2.36)

For horizontally oriented ice crystals (cf. Section 2.1.3) the scattering phase function can be

written as

P(α, γ;µ′, φ′;µ, φ) = P(α′, γ′; cos Θ,∆φ) , (2.37)

with ∆φ = φ− φ′. The phase function depends on the directions of the incident (α′, γ′) and the

scattered beams (α, γ) as well as the orientation of the non-spherical ice crystal. The extinction

and scattering cross-sections σext and σsca, however, depend only on the direction of the incident

light and the ice crystal orientation.

For a symmetric hexagonal ice crystal two orientation angles can be defined with respect to

the direction of incident light: α the complement of the zenith angle and β the angle projected

on the x-y plane relative to the incident beam. The surface area of the ice crystal basal face is

3
√

3D2/8 and DL for the prism faces. The cross-sectional area for the basal plane of the ice

crystal mapped along the light beam is 3
√

3D2/8 sinα. For the prism plane the cross-sectional

area also depends on the angle of the light beam relative to the six prime planes, which should

be maximum for β = π/6. This yields DL cosα cos(π/6− β). Thus, the geometric cross-section

for the entire hexagonal crystal can be written as

G(α, β) =
3
√

3

8
D2 sinα+DL cosα cos(π/6− β) . (2.38)

To obtain the average cross-section for randomly oriented ice crystals the previous equation is

integrated over α and β:

G =
6

π

∫ π/6

0

∫ π/2

0
G(α, β) cosαdαdβ =

3

4
(
√

3D2/4 +DL) . (2.39)

The surface of a hexagonal ice crystal is S = 3(
√

3D2/4 + DL). The extinction efficiency is

defined as Qext = σext/G and approaches 2 in the geometric optics approximation, which is

called the optical extinction theorem. In the geometric optics limit the extinction cross-section

is σext = 2G = S/2. Thus the average geometric cross-section for randomly oriented hexagonal

ice crystals (plates, columns) yields G = S/4 and

G =
σext

2
=
S

4
. (2.40)
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Figure 2.10: Halo phenomenon in ice fog photographed by Wolfgang Hinz in Neklid, Czech
Republic, 30 January 2014. Among other halo displays, the 22◦ halo, both sundogs, the upper and
lower tangent arcs as well as the rare Parry arc and 46◦ halo are visible. c©Wolfgang Hinz. Used
with permission.

2.3 Halo displays

This section describes the formation of halo displays, which are produced by refraction and reflec-

tion of light by ice crystals suspended in the atmosphere. According to the World Meteorological

Organization (2017) halo displays are a group of optical phenomena in the form of rings, arcs,

pillars or bright spots, which are classified as photometeors. In general, a photometeor is an

optical phenomenon caused by reflection, refraction, diffraction or interference of light from the

sun or moon. Figure 2.10 shows a halo phenomenon formed by hexagonal crystals in ice fog.

If 5 or more halo displays are visible simultaneously, the optical displays together are called

halo phenomenon, according to AKM (“Arbeitskreis Meteore e.V. Sektion Halobeobachtungen”,

http://meteoros.de). While the 22◦ and 46◦ halo are produced by randomly oriented hexagonal

crystals, the upper and lower tangent arcs are formed by oriented ice crystal columns with hori-

zontal c-axis. The Parry arc is produced by oriented columns with horizontal orientation as for

the tangent arcs, but in addition the crystals have a fixed orientation around their c-axis. These

crystals have only a random orientation around the zenith and are called Parry oriented. The

Parry arc is named after W. E. Parry who first described this type of halo display between 1819

and 1820 (e.g. (Pernter and Exner, 1910, Tricker, 1970, Greenler, 1980)). Sundogs are caused by

oriented ice crystal plates with vertical c-axis. According to AKM, 22◦ halos can be observed on

80 to 120 days per year, sundogs on 60 to 80 days per year, and upper tangent arcs on 20 to 30

days per year. These three halo displays can be spotted most frequently, whereas the 46◦ halo

appears only on 4 to 10 days and the Parry arc on 2 to 6 days per year. The formation of these

halo displays will be explained in the following using the basic radiative laws in the geometric

optics approximation.

http://meteoros.de
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Figure 2.11: Schematic drawing of the light path geometry for refraction at a boundary. Here,
the light propagates from the source Q to the point of observation P with the incident angle θi and
the angle of refraction θt. The refractive indices of the two media are denoted with ni and nt.

2.3.1 Reflection and refraction laws

The refraction and reflection of light by ice crystals depends mainly on the refractive index, which

is primarily a function of the wavelength. The temperature dependence of the refractive index is

negligible for λ < 20 µm (Liou and Yang, 2016). The refractive index n is defined by the ratio of

the speed of light c0 in vacuum to that in the medium

n(λ) = c0/c(λ) ≈ √ε (2.41)

and can be expressed with the permittivity ε for frequencies in a small spectral range and far apart

from resonance frequencies. The refractive index consists of a real part nRe and an imaginary

part nIm

n = nRe − i nIm . (2.42)

While the real part describes refraction, absorption is determined by the imaginary part of the

refractive index. For wavelengths in the visible spectral range, the real refractive index takes

values of nRe ≈ 1.31, whereas the imaginary part is small with nRe < 2× 10−7 (Warren and

Brandt, 2008). The propagation of light in inhomogeneous media can be described using Fermat’s

Principle in the geometric optics approximation. Fermat’s Principle states that light propagates

such that the optical path W on the traveled path S0 is maximum or minimum compared to

neighboring paths Si. The optical path W is defined as

W (S) =

∫

S(Q−>P )
n(~x) dS (2.43)

for light propagating from the source Q to the point of observation P through the medium with

the refractive index n, which depends on the location ~x. For the light path which exhibits an

extreme value, the condition (
dW (S)

dS

)

S0

= 0 (2.44)

has to be fulfilled. Snell’s law can be derived using Eq. (2.44). Figure 2.11 shows schematically

the geometry of a refracted light path. The refractive index of the medium of the incident light

ni is smaller than the refractive index of the medium of the transmitted light nt. Using the
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Pythagorean theorem, the optical path W can be calculated from P to Q.

W = ni

√
h2
Q + x2 + nt

√
h2
P + (A− x)2 . (2.45)

With dW/dx = 0 we obtain

dW

dx
= ni

x√
h2
Q + x2

− nt
A− x√

h2
P + (A− x)2

= 0 (2.46)

and finally Snell’s law

ni sin θi = nt sin θt . (2.47)

Snell’s law describes the relation between the angle of incidence θi in a medium with refractive

index ni and the angle of refraction θt in a medium with refractive index nt.

To calculate the intensity of the reflected and transmitted light, the electric fields have to be

decomposed into their components parallel and perpendicular to the plane of incidence, denoted

by Er‖ and Er⊥. Applying the respective continuity conditions yields the reflection coefficients

of the field components parallel (~r‖) and perpendicular ( ~r⊥) relative to the plane of incidence,

called Fresnel Equations:

~r⊥ =
Er⊥
Ei⊥

= −sin(θi − θt)

sin(θi + θt)
, (2.48)

~r‖ =
Er‖

Ei‖
=

tan(θi − θt)

tan(θi + θt)
. (2.49)

2.3.2 Formation of halo displays

According to the long-term observations of Sassen et al. (2003b) and AKM, the most frequently

observed halo displays are the 22◦ halo, sundogs, and upper and lower tangent arcs. The scattering

geometry of 22◦ halos and sundogs can be calculated with simple analytic equations and will be

explained in the following. Although rarely observed, the formation of the 46◦ halo will be

explained together with the 22◦ halo due to the similarity of the raypaths forming the two halo

types.

Figure 2.12: Ray paths of the 22◦ and 46◦ halo through an ice crystal with prism angle ∆,
defined by the incident angles θi, angles of refraction θt, and the resulting scattering angle Θ.
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Figure 2.13: Schematic plot of 22◦ halo raypaths for different incident angles, realized by
different rotation angles of the ice crystal. The hexagons are rotated anti-clockwise with the initial
position represented in white and the final position in dark blue. The calculations were performed
using Eq. (2.51) for a wavelength of 500 nm. The color of crystal and raypath is changing from
white to blue for decreasing scattering angles. The raypath and hexagon corresponding to the
minimum scattering angle of 22.1◦ are represented in dark blue.

The 22◦ and 46◦ halo

The scattering phase functions in Fig. 2.9 feature both the 22◦ and 46◦ halo, which are formed by

two refractions by randomly oriented hexagonal prisms, as depicted in Fig. 2.12a. Examples of

a 22◦ halo and 46◦ halo are presented in Fig. 2.10. While the formation of the 22◦ halo requires

refraction through two side faces of the hexagon enclosing an angle of 60◦, the 46◦ halo forms by

refraction through a base and a side face with a wedge angle of 90◦. The scattering angle Θ of a

light ray refracted by a prism with opening angle ∆, can be written as

Θ = (θi − θt) + (θ′i − θ′t) = 2θ′i −∆ . (2.50)

Using Snell’s law (Eq. (2.47)) and assuming ni = 1 for the refractive index of air, the scattering

angle can be calculated as a function of the incident angle θi for a given prism wedge angle ∆:

Θ = θi −∆ + arcsin
(

sin ∆
√
n2 − sin2 θi − sin θi cos ∆

)
, (2.51)

with the refractive index of ice n = nt. Figure 2.13 shows a schematic plot of the raypaths from

Fig. 2.12b for different incident angles, which are realized here by rotating the hexagon relative

to the incident direction. Hexagon and raypath are displayed using a color gradient from white

to blue for decreasing scattering angles. For a symmetric raypath through the prism, i.e. for

θi = θ′t, the scattering angle Θ reaches a minimum Θ = Θmin. Using Θmin = 2θi −∆, Eq. (2.51)

becomes

Θmin = 2 arcsin

(
n sin

(
∆

2

))
−∆ , (2.52)

or

n =
sin
(

Θmin+∆
2

)

sin
(

∆
2

) . (2.53)

The dark blue raypath and hexagon in Fig. 2.13 correspond to the minimum scattering angle of

22.1◦ at a wavelength of 500 nm. The scattering angles for a 60◦ and 90◦ prism are presented in

Fig. 2.14 as a function of the incident angle for 400 nm (blue) and 800 nm (red). The incident angle

is varied between 15◦ and 90◦, perpendicular to the crystal face. For the 60◦ prism the minimum
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Figure 2.14: Scattering angle as a function of the incident angle for a 60◦ and 90◦ prism using
the refractive index of ice for wavelengths of 400 nm (blue) and 800 nm (red). The calculations
were performed using Eq. (2.51). Red and blue dots indicate the minimum scattering angles.

scattering angles result in 21.5◦ for 800 nm and 22.6◦ for 400 nm which are the theoretical values

for the 22◦ halo. Since the refractive index of ice is smaller for larger wavelengths, the minimum

scattering angle for 800 nm is smaller than for 400 nm, which explains the reddish inner edge of

the 22◦ halo. Minimum scattering angles of 47.8◦ (400 nm) and 44.7◦ (800 nm) are found for the

90◦ prism and represent the 46◦ halo. The flat minimum of the scattering angles calculated for

the 22◦ halo in Fig. 2.14 implies a bunching of rays close to the minimum scattering angle, which

is also illustrated in Fig. 2.13. This is the reason for the sharp inner edge of the 22◦ halo, as

visible in Fig. 2.10.

The 22◦ parhelia or sundogs

Another frequently observed halo type are the parhelia of the 22◦ halo, which are commonly called

sundogs (cf. Fig. 2.10). Sundogs form by refraction through two crystal side faces of horizontally

oriented ice crystal plates (i.e. with vertical c-axis). This halo type is not visible in the phase

functions in Fig. 2.9 since they assume randomly oriented ice crystals. The raypath responsible for

the formation of sundogs can be calculated analytically which was already presented by Wegener

Figure 2.15: Geometry of a skew ray producing a sundog in an ice crystal plate. The solar
elevation angle is denoted with h. The incident and transmitted angles are indicated by θi and θt,
respectively.
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Figure 2.16: Minimum scattering angle of the 22◦ parhelia or sundogs Θ′min as a function of the
solar elevation h for a wavelength of 400 nm and 800 nm. For a solar elevation of 0◦ the raypath is
the same as for the 22◦ halo resulting in the same scattering angles as in Fig. 2.14: 22.6◦ and 21.5◦

for 400 nm and 800 nm, respectively. For solar elevations larger than about 60◦ (Θ′min ≈ 48◦)
Eq. (2.56) cannot be solved and sundogs cannot form.

(1925) and Minnaert (1937). Similar as for the 22◦ halo, the rays are refracted through two crystal

side faces as illustrated in Fig. 2.15. However, the raypaths are skewed due to the tilted plane of

incidence relative to the crystal c-axis, which depends on the solar elevation angle h. Only for a

solar elevation of 0◦, i.e. at sunrise or sunset, the plane of incidence is perpendicular to the c-axis

and the raypath for sundogs is the same as for the 22◦ halo. For larger solar elevations the light

rays cannot follow the path of minimum deviation since the scattering plane is not perpendicular

to the c-axis as shown in Fig. 2.15. An equation for the minimum scattering angle of the sundogs

can be derived as outlined in Minnaert (1993):

Θ′min = 2 arcsin



√
n2 − sin2 h

1− sin2 h
sin

∆

2


−∆ , (2.54)

where h is the solar elevation. ∆ is the opening angle of the prism, which is 60◦ in the case of

sundogs. Introducing an “effective refractive index”

n′ =

√
n2 − sin2 h

1− sin2 h
(2.55)

the minimum scattering angle for sundogs can be written similar to Eq. (2.52)

Θ′min = 2 arcsin

(
n′ sin

∆

2

)
−∆ , (2.56)

with the effective refractive index n′ which is increasing with solar elevation. Figure 2.16 shows

the minimum scattering angle Θ′min as a function of the solar elevation h. For a solar elevation

of h = 0◦ sundogs and 22◦ halo are located at the same scattering angle. As the solar elevation

increases, the sundogs move further away from the 22◦ halo to larger scattering angles and their

brightness decreases as shown in Fig. 2.17. Due to the geometry of the raypath, there is an upper

limit of the solar elevation at which the formation of sundogs is possible. For h > 60◦ the arcsin
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Figure 2.17: Sundogs for increasing solar elevations, calculated with CrystalTrace (see
Section 3.8).

in Eq. (2.56) is not defined as its argument takes values > 1. According to Minnaert (1993), no

sundogs have been reported for solar elevations larger than 40◦. The minimum scattering angles

increase with wavelength causing a reddish inner edge and blueish outer edge of the sundogs,

similar to the 22◦ halo. The scattering angle difference between 400 nm and 800 nm is about 1.1◦

at a solar elevation of 0◦ and increases to > 2◦ for a solar elevation larger than 55◦.

The upper and lower tangent arcs and the circumscribed halo

Upper and lower tangent arcs form by ice oriented crystal columns with their c-axis horizontal.

Light is refracted through two crystal side faces, similar as for the 22◦ halo and the sundogs. These

arcs are located tangential to the 22◦ halo (cf. Fig. 2.10). The shape of the upper and lower

tangent arc depends strongly on the solar elevation, as illustrated in Fig. 2.18 using raytracing

simulations. For small solar elevations up to about 30◦ the upper and lower tangent arcs are

separated. As the solar elevation further decreases, the wings of the upper/lower tangent arc are

bending more and more upwards/downwards from the 22◦ halo. For solar elevations larger than

about 30◦ the upper and lower tangent arcs merge to form the circumscribed halo. For high solar

elevations the circumscribed halo approaches the 22◦ halo until the two halos merge for the sun

at the zenith. More details about the calculation on the formation and raypaths of tangent arcs

and circumscribed halos will be presented in Sections 3.8 and 4.3.

20° 30° 40° 50° 60°

Figure 2.18: Upper and lower tangent arc merging into circumscribed halo for increasing solar
elevations, calculated with CrystalTrace (see Section 3.8).
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Chapter 3

Methods

Sections 3.3.2, 3.5.1, 3.5.2 and 3.6 were partly published in Forster et al. (2017):

Forster, L., M. Seefeldner, M. Wiegner, and B. Mayer, 2017: Ice crystal characterization in

cirrus clouds: a sun-tracking camera system and automated detection algorithm for halo displays.

Atmospheric Measurement Techniques, 10 (7), 2499–2516, 10.5194/amt-10-2499-2017.

3.1 Radiative transfer simulations

Radiative transfer simulations were performed using the libRadtran radiative transfer package

(Mayer and Kylling, 2005, Emde et al., 2016). This library provides different solvers for the

radiative transfer equation. libRadtran allows for an accurate simulation of Rayleigh scattering,

molecular absorption, aerosols, surface albedo, and water and ice clouds. The DISORT and MYS-

TIC solvers were used for the radiative transfer simulations in this study and will be explained

in the following.

3.1.1 MYSTIC

Figure 3.1: Online visualization
of a MYSTIC simulation (Mayer,
2009).

MYSTIC (Emde and Mayer, 2007, Mayer, 2009, Emde et al.,

2011, Buras et al., 2011), which stands for “Monte Carlo code

for the physically correct tracing of photons in cloudy atmo-

spheres”, was used in this study for radiative transfer simula-

tions in the vicinity of the sun with a realistic representation

of the sunshape, which was implemented by Reinhardt et al.

(2014). Furthermore, MYSTIC was extended with the ray-

tracing algorithm CrystalTrace to perform radiative transfer

simulations of oriented ice crystals, which will be explained in

Section 3.8.

The principle of the Monte Carlo solver MYSTIC is the

tracing of individual photons through the atmosphere. Sam-

pling a large number of photons allows for an accurate simu-

lation of radiances and irradiances and their interaction with

inhomogeneous clouds, surface albedo, BRDF1, and topogra-

phy without explicit knowledge of the radiative transfer equation. The model domain consists of

1The “Bi-Directional Reflectance Function” is a 4D function, describing the reflection of light from an opaque
surface (Mayer, 2009)
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a one-dimensional (1D) grid, on which the concentrations of molecules and aerosols are defined,

and a three-dimensional (3D) grid for the cloud cells. A visualized example of a MYSTIC simu-

lation is shown in Fig. 3.1. This procedure is outlined in the following for the solar spectrum, i.e.

assuming the sun as photon source which is quantified by the extraterrestrial solar irradiance. In

MYSTIC, photons are defined by a location and direction in 3D space and are assigned with a

weight wa, which equals 1 at the source. With the sun as source, the photon’s initial direction is

defined by the solar zenith angle θ0 and azimuth angle φ0. The photons are traced through the

atmosphere from one scattering event to the next one. The photon’s free path length to the next

scattering event is sampled according to the probability density function (PDF)

Ps = exp

(
−
∫ s

0
ksca ds

′
)

(3.1)

with the total scattering coefficient ksca =
∑N

i=1 ksca,i, which is the sum of the scattering coeffi-

cients ksca,i for N interacting particles and molecules. The decision, which interaction takes place

is made by drawing a random number r ∈ [0, 1). The photon interacts with the jth particle type

if the random number fulfills the condition

∑j−1
i=1 ksca,i

ksca
< r ≤

∑j
i=1 ksca,i

ksca
. (3.2)

For sampling the scattering direction the phase function is used as PDF for the scattering an-

gle and a random number between 0 and 2π for the azimuth angle. Since loosing photons is

computationally inefficient, absorption is treated implicitly by reducing the photon’s weight wa

according to Bouguer-Lambert-Beer’s law (Eq. (2.24)).

wa = exp

(
−
∫
kabs ds

)
. (3.3)

Here, ds is the element of the photon path s and kabs is the total absorption coefficient including

molecules, aerosols, water and ice clouds. Photons absorbed by the earth’s surface are scattered

and weighted with either the Lambertian albedo or the BRDF, depending on the set up. In case

a photon exits the sides of the domain, periodic boundary conditions ensure that it re-enters the

domain from the opposite side. The path of the photon terminates if it hits the detector or exits

the atmosphere at the top. The preceding description of the photon tracing was based on the

(a) Forward tracing (b) Backward tracing

Figure 3.2: MYSTIC forward (a) and backward tracing mode (b), from Mayer (2009). The
solid lines represent the photon path, while the dashed lines indicate the local estimate in the
direction of the source at each scattering event. TOA stands for top of atmosphere.
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forward method which traces photons from their source to their final points. In contrast to the

forward tracing method, it is also possible to trace the photons backward from the final point to

the source of the radiation (Emde and Mayer, 2007). Both methods are illustrated in Fig. 3.2.

The backward tracing method is based on the Helmholtz reciprocity principle, which states that

the path of light from A to B is reversible (von Helmholtz and König, 1896). For the simulation

of radiances measured by remote sensing instruments with a small field of view (FOV), backward

tracing is a very powerful method to save computational time since only a very small amount

of the photons started in the beginning are finally detected by the sensor (cf. Fig. 3.2). For

backward tracing, the probability that a photon is scattered towards the source is calculated at

every scattering event. To obtain a better sampling statistic, the photon follows the direct path

to the source at each scattering event weighted by the probability for the respective scattering

angle, which is given by the scattering phase function. This method is called local estimate (Davis

et al., 1985, Kunkel and Weinman, 1976) and is illustrated by the dashed lines in Fig. 3.2. For

the radiative transfer simulations in clouds, the extremely efficient Variance Reduction “Optimal

Options” Method vroom (Buras et al., 2011) was used. This method enables radiance calculations

without the need to truncate the forward peak of the scattering phase functions.

3.1.2 DISORT

DISORT stands for “discrete ordinate technique” and was developed by Stamnes et al. (1988) to

calculate the angular variation of the radiance. This 1D solver treats the atmosphere as a number

of homogeneous, plane-parallel layers. The single terms of the radiative transfer equation can be

represented by Fourier and Legendre moments and the integral over the scattering phase function

can be approximated by a sum over discrete angles. This differential equation system can be solved

to calculate the radiance at 2n “discrete ordinates” or “streams”. One advantage of the DISORT

solver is that the solution of the radiative transfer equation can be derived in a completely explicit

form. The computational effort for each individual layer is independent of its optical thickness.

Furthermore, the method is accurate enough to perform benchmark calculations. DISORT is

used in this study to calculate the radiance distribution in the angular region of the 22◦ halo with

16 streams, which is the default value for radiances in libRadtran. These simulations could also

be performed with the MYSTIC solver but with much higher computational effort. Since cirrus

clouds, especially during the presence of halo displays, are rather homogeneous, 3D effects are

negligible in this case and the radiative transfer simulations can be performed with the DISORT

solver. Another advantage of DISORT is the noise-free result. Figure 3.3 shows the result of

a radiative transfer simulation using DISORT (red) in comparison with MYSTIC (blue) for a

horizontal slice through the 22◦ halo at a wavelength of 550 nm. The simulations were performed

at a solar zenith angle of θ0 = 50◦ in the almucantar plane, i.e. for a constant viewing zenith

angle θ = θ0. While MYSTIC accounts for the finite opening angle of the sun with 0.5◦, DISORT

assumes the sun as point source. The difference between the simulations performed with DISORT

and MYSTIC is small and amounts to about (1.4± 2.3) % for a cirrus cloud with optical thickness

COT = 0.5, consisting of smooth solid columns with reff = 80 µm.



30 3. Methods

15 20 25 30 35 40
Scattering angle [deg]

100

200

300

400

500

600

R
ad

ia
nc

e
[m

W
/(

m
2

nm
sr

)]

DISORT
MYSTIC

Figure 3.3: Radiative transfer simulations of a horizontal slice through the 22◦ halo using
DISORT (red line) and MYSTIC (blue line). The simulations were performed at a solar zenith
angle of θ0 = 50◦ in the almucantar plane, i.e. for a constant viewing zenith angle θ = θ0. The
cirrus cloud consists of smooth solid columns with an effective radius of reff = 80 µm and an
optical thickness of 0.5. The simulation was performed for a wavelength of 550 nm. The MYSTIC
simulations were performed for 1× 104 photons and the blue error bars represent the 2σ
confidence interval. While MYSTIC accounts for the finite opening angle of the sun with 0.5◦,
DISORT assumes the sun as point source.

3.2 Optical properties

3.2.1 Aerosol optical properties

Throughout this study aerosol optical properties from the OPAC database are used, which are

described in Hess et al. (1998). Figure 3.4 shows radiative transfer simulations with DISORT

using 4 different aerosol types of the OPAC database: continental clean, average, polluted, and

urban represented by the turquoise, blue, red and black curve, respectively. The optical properties

consist of different concentrations of insoluble and water-soluble aerosol, soot and sulfate aerosol.

Their concentrations vary with height and the differences between the aerosol types is confined to

the lowest level between the surface and 1 km height. The continental clean aerosol type does not

contain soot in the lowest level. For the continental average, polluted and urban aerosol type the

concentrations of the insoluble, water-soluble and soot component increase slightly in this order.

If not stated otherwise, the continental average aerosol type is used throughout this study.

3.2.2 Ice crystal optical properties

Two different parameterizations of ice crystal optical properties were used in this study. The

first is based on the database of Yang et al. (2013) who use different methods to calculate the

single scattering properties for different particle sizes. The second database of optical properties

is compiled using the raytracing technique, which will be further explained in Section 3.8, and

calculated with the freely available code presented by Macke et al. (1996). The optical properties

of these two parameterizations will be described in the following.

Optical properties based on Yang et al. (2013)

Based on the Amsterdam Discrete Dipole Approximation (ADDA) and Improved Geometric

Optics Method (IGOM), Yang et al. (2013) provide an extensive database of ice crystal optical

properties for 11 different habits assuming random orientation. The database covers a wavelength

range between 0.2 µm to 100 µm, maximum diameters from 2 µm to 10 000 µm and three roughness
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Figure 3.4: Radiative transfer simulations with DISORT using the continental clean
(turquoise), continental average (blue), continental polluted (red) and urban (black) aerosol type
from the OPAC database. An aerosol optical thickness of 0.1 was chosen at a wavelength of
500 nm. The simulations were performed for a solar zenith angle of θ0 = 45◦ in the almucantar
plane, i.e. for a constant viewing zenith angle of θ = θ0.

levels for the ice crystal surface (smooth, moderately and severely roughened). The database

contains optical properties for solid and hollow columns, aggregated columns consisting of 8

elements, plates and aggregates of plates with 5 and 10 elements, droxtals and solid and hollow

bullet rosettes. Prolate and oblate spheroids are not used in this study. The optical properties

for single ice crystals were averaged over gamma size distributions with N0 = 1 and µ = 1 in

Eq. (2.10) as explained in the appendix of Emde et al. (2016). According to Heymsfield and

Miloshevich (2003) these values are a reasonable assumption for mid-latitude cirrus clouds. With

N0 = 1 and µ = 1 the gamma distribution simplifies to an exponential distribution

N(D) = D exp (−λD) , (3.4)

with the ice crystal maximum dimension D. The slope λ was chosen such that the size distribution

results in prescribed effective radii between reff = 5 µm to 90 µm. Based on these size distributions

the bulk optical properties were calculated according to Eq. (2.14). Henceforth, these optical

properties will be referred to as YANG. Figure 3.5 shows scattering phase functions for each of

the 9 habits organized in four panels for columnar, hollow and plate-like crystals and droxtals.

These ice crystal groups favor the formation of similar halo types: solid columns, aggregates

of columns with 8 elements and solid bullet rosettes form both a 22◦ and 46◦ halo, whereas the

22◦ halo is much more pronounced than the 46◦ halo. A special feature of the solid bullet rosette’s

phase function is a small peak at a scattering angle of about 10◦. Crystals with hollow ends, such

as hollow columns and hollow bullet rosettes exhibit a 22◦ halo but cannot produce a 46◦ halo

since they lack the 90◦ prism between the crystal base and side faces. For the phase functions

of plate-shaped crystals the 46◦ halo is almost as pronounced as the 22◦ halo. Surface roughness

is parameterized similar to the approach by Cox and Munk (1954) who defined the roughness

conditions of the sea surface. A normal distribution of the slope of the ice crystal surface is

defined by

P (Zx, Zy) =
1

σ2
roughπ

exp

(
−
Z2

x + Z2
y

σ2
rough

)
, (3.5)
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Figure 3.5: Phase functions for 9 different ice crystal habits with smooth surface displayed for a
wavelength of 550 nm and an effective radius of reff = 90 µm from the database of Yang et al.
(2013). The phase functions are grouped for columnar crystals with solid (upper left) and hollow
ends (upper right), plate-like (lower left) ice crystals and droxtals (lower right).

with Zx and Zy representing the slope variations of the crystal’s surface along the two orthogonal

directions x and y. The parameter σrough is a measure of the degree of surface roughness and

represents crystals with increased surface roughness for larger values. The optical properties of

Yang et al. (2013) are provided for ice crystals with smooth (σrough → 0), moderately roughened

(σrough = 0.03) and severely roughened surface (σrough = 0.5). The effect of surface roughness

is displayed in Fig. 3.6 for solid columns with reff = 90 µm and a wavelength of 550 nm. While

for smooth crystals both the 22◦ and the 46◦ halo are visible (blue curve), increasing the surface

roughness of the ice crystals causes the halo features to fade. For moderately rough ice crystals,

indicated by the red curve, the 46◦ halo already disappears, while the brighter 22◦ halo is still

visible. Both halo features are completely smoothed out for severely roughened ice crystals,

represented by the black curve.

Figure 3.7 displays the parameterization of the aspect ratio for plates and columns which is used

in Yang et al. (2013) based on the the findings of Arnott et al. (1994), Auer and Veal (1970), Yang

et al. (2003) and Zhang et al. (2004). The aspect ratio in Fig. 3.7 is defined by ARyang = 2a/L as

in Yang et al. (2013)2. The maximum dimension of the ice crystal D is equal to the length of the

c-axis L by definition. For crystal maximum dimensions up to 100 µm the solid columns have a

constant aspect ratio of ARyang = 0.7 which is decreasing for larger crystals with 6.96
√
L. Thus,

solid columns become more elongated with increasing size. The opposite holds for ice crystal

plates. Starting from compact particles (ARyang = 1) for radii of the basal face a ≤ 2 µm, the

basal faces of the plates grow faster than their side faces resulting in very thin and wide plates.

2Note that except for Fig. 3.7 the aspect ratio throughout this work is defined by the inverse, i.e. AR = L/(2a) =
1/ARyang.
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Figure 3.6: Phase functions for solid columns compared for three different levels of surface
roughness: smooth (blue), moderately (red), and severely (black) roughened for an effective radius
of 90 µm and a wavelength of 550 nm.
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Figure 3.8: Phase functions calculated with the raytracing code described in Macke et al.
(1996) based on the original version (red) and the corrected version using the photon density
instead of a fixed photon number (blue). As a reference, the phase function of the YANG database
(black) is shown for the same wavelength of 550 nm and the same ice crystal: a single smooth ice
crystal column with aspect ratio AR = 14.4 and maximum dimension D = 1× 104 µm.

Optical properties based on raytracing calculations

The second parameterization of ice crystal optical properties used in this study is based on the

freely available raytracing code described in Macke et al. (1996). Since this parameterization is

based on the geometric optics approximation, it will be referred to as GO in the following. It

is important to note that, except for Fig. 3.7, throughout this study the ice crystal aspect ratio

(AR) is defined by the length of the side faces L divided by the diameter of the hexagonal base

2a

AR = L/2a , (3.6)

with AR < 1 for plates and AR > 1 for columns. This definition will be used in the following for

both the YANG and the GO optical properties.

Figure 3.8 shows the scattering phase functions calculated with the GO raytracing code in

comparison with the phase function of the YANG database at a wavelength of 500 nm for the

same columnar ice crystal with AR = 14.4 and a maximum dimension of D = 1× 104 µm. The red

curve represents the phase function calculated using the original raytracing code as described in

Macke et al. (1996). In comparison with the phase function of the YANG database (black curve),

GO shows significantly larger values for scattering angles inside the 22◦ halo for an identical ice

crystal size and aspect ratio. For compact ice crystals, however, the GO and YANG scattering

phase functions are in good agreement (not shown). For growing columns and plates with aspect

ratios increasingly deviating from 1, the difference between the GO and YANG phase functions

is increasing for smaller scattering angles. The reason for this behavior of the GO raytracing

code was identified by Konoshonkin et al. (2016): “incident rays are emitted from a rectangular

bounded the particle projection. With a change of particle orientation, the area of the rectangular

is variable. This area variation must be taken into account.” In correspondence with A. Macke

the bug was fixed by providing the photon density as a constant instead of the number of photons

to trace. For every orientation of the crystal the number of photons is calculated from the photon

density multiplied by the area of the bounding rectangle of the projected ice crystal. The blue

line in Fig. 3.8 shows the result of the corrected GO code using a constant photon density as

input parameter. Compared with the YANG phase function of the same ice crystal size and
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Figure 3.9: Phase functions calculated with the corrected GO raytracing code compared for a
different parameterization of surface roughness at a wavelength of 550 nm. The parameterization
described in Macke et al. (1996) assumes a uniform distribution, which is represented by the red
lines. The parameterization based on a Weibull distribution with η = 0.75 is indicated by the blue
lines. A single ice crystal column with maximum dimension D = 1× 104 µm and aspect ratio
AR = 14.4 was chosen with a smooth surface (σrough = 0, dashed lines) and a roughened surface
(σrough = 0.3, solid lines).

shape, which is depicted in black, and the phase functions agree well.

The raytracing code described in Macke et al. (1996) models surface roughness by introducing

random distortions of the crystal’s surface normal following a uniform distribution. This leads

to a random distortion of the outgoing ray after a reflection or refraction event. Neshyba et al.

(2013) measured single ice crystals in natural conditions during the South Pole Ice Crystal Ex-

periment with the polar nephelometer instrument (Gayet et al., 1997, 1998) and compared the

angular scattering intensities with simulations using the GO raytracing code. They found better

agreement with the observations when assuming a Weibull distribution instead of the uniform

roughness model. Thus, the GO code was modified for this study by replacing the uniform by

a Weibull distribution as described in Geogdzhayev and van Diedenhoven (2016). For this new

roughness model, the cosine of the zenith tilt angle µ̃ is calculated by

µ̃ = 1/
[
1 + σ2

rough(− ln t)1/η
]1/2

. (3.7)

Here, t is a random number uniformly distributed in the interval [0,1) and the roughness value

σrough determines the height of the distribution. For the parameter governing the shape of the

distribution η a value of 0.75 was chosen which Neshyba et al. (2013) found to best match

their observations. Geogdzhayev and van Diedenhoven (2016) found that the phase functions

calculated with η = 0.75 produce asymmetry factors comparable to the model based on a uniform

distribution for different roughness levels. Figure 3.9 illustrates the effect of a Weibull instead of

a uniform distribution on the phase function for the same ice crystal geometry as in Fig. 3.8 (solid

column) and a wavelength of 550 nm. For smooth crystals (dashed lines) there is no difference

between the phase functions since µ̃ = 1 for σrough = 0. For a roughness value of σrough = 0.3

it is clearly visible that the phase function based on a uniform distribution features an artificial

plateau at a scattering angle of about 19◦. Performing the calculations with an underlying Weibull

distribution with η = 0.75 yields a smooth phase function without 22◦ halo.

The raytracing code allows to perform simulations with different ice crystal aspect ratios,

ranging from thin plates (AR < 1) over compact crystals (AR = 1) to long columns (AR > 1)
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with surface roughness parameters from σrough = 0 (smooth) to σrough = 0.7 (rough). Roughness

parameters are limited to values σrough ≤ 0.7 as the code does not handle the shadowing and re-

entry effects correctly, which occur for highly tilted facets (Geogdzhayev and van Diedenhoven,

2016). It is further possible to perform simulations for different wavelengths associated with

different refractive indices, which have to be provided as input parameter.

In the subsequent section the information content of the ice crystal phase functions regarding

ice crystal microphysical and optical properties will be analyzed using the features of the 22◦ and

46◦ halo.

3.3 Information content of the 22◦ and 46◦ halo

Halo displays can be analyzed regarding three features: the angular position of the halo, its

brightness contrast relative to the background, and the angular width of the halo. The angular

position of the halo can help identify the type of halo display. For example, Eq. (2.52) can

be used to calculate the angular position of the brightness peak of the 22◦ halo and Eq. (2.56)

for sundogs. The angular position depends on the refractive index and thus the wavelength

and provides basic information about ice crystal geometry in terms of the prism angle and the

orientation. In the following sections the brightness contrast and the angular width of the halo

will be investigated regarding their information content about ice crystal properties. Exploiting

the fact that halo displays are single scattering phenomena, these features will be analyzed using

ice crystal scattering phase functions. Subsequently, the effect of multiple scattering on the

brightness contrast and angular width and thus on the information content of the 22◦ halo will

be investigated.

3.3.1 Single scattering regime

The halo ratio

The brightness contrast of the 22◦ and 46◦ halo in the scattering phase function can be measured

by the halo ratio (HR), which was used in previous publications for the analysis of scattering

phase functions (Gayet et al., 2011, Shcherbakov, 2013, van Diedenhoven, 2014). Here, the HR

is calculated by

HR = P(Θmax)/P(Θmin) , (3.8)

with Θmax = 23◦ and Θmin = 21◦ for the 22◦ halo and Θmax = 47◦ and Θmin = 45◦ for the

46◦ halo at 500 nm. The effect of the ice crystal aspect ratio on the halo ratio of the 22◦ and

46◦ halo is demonstrated in Fig. 3.10 with a fixed ice crystal equivalent radius of 320 µm. The

equivalent radius req is the radius of a sphere with a projected area equivalent to the projected

area of the ice crystal, assuming random orientation. The HR of the 22◦ halo increases from thin

plates (AR < 1) over compact crystals (AR = 1) to long ice crystal columns (AR > 1). This

behavior can be explained by the ice crystal geometry changing with the AR. The raypath of

the 22◦ halo passes through two side faces as shown in Fig. 2.12a. For an increasing area of the

side faces compared to the basal faces these raypaths are favored and the 22◦ halo becomes more

pronounced. The 46◦ HR exhibits a maximum for compact crystals with ARs slightly larger than

1 and decreases for thin plates and long columns. Recalling the raypath of the 46◦ halo from

Fig. 2.12a explains this relationship. The probability of a path passing through one base and

one side face of the crystal is maximum for a particle with equal areas of the side and basal face.

For a compact particle (2a = L), the hexagonal basal faces have a slightly larger geometric cross

section than the side faces (cf. Eq. (2.39)). Thus, the ice crystal has to be slightly elongated to

achieve equal cross sections of the side and basal faces and thus the maximum probability for
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Figure 3.10: 22◦ (top) and 46◦ halo ratio (bottom) as a function of the ice crystal aspect ratio
and surface roughness, calculated with the fixed version of the GO raytracing code. The ice crystal
aspect ratios range from 0.02 (plate) over 1 (compact particle) to 50 (column) and surface
roughness values increase from σrough = 0 (smooth) to σrough = 0.3 (rough). An equivalent radius
of req = 320 µm and a wavelength of 500 nm was chosen.

the raypath of the 46◦ halo. For increasing surface roughness of the ice crystals both the 22◦

and the 46◦ HR are decreasing. It can be concluded that the HR contains information about the

aspect ratio of the ice crystal. The 22◦ HR, however, exhibits an ambiguity for smooth plates and

rough columns which can result in the same HR. In other words, smooth plates can produce an

equally bright 22◦ halo as rough columns. The presence of a 46◦ halo indicates smooth compact

ice crystals, as shown in Fig. 3.10.

The asymmetry factor as a function of the ice crystal aspect ratio is displayed in Fig. 3.11 for

an equivalent radius req = 320 µm. The distribution of the asymmetry factor appears u-shaped
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Figure 3.11: Asymmetry factor as a function of ice crystal aspect ratio and surface roughness
for the same parameter range and wavelength as Fig. 3.10.
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Figure 3.12: Power spillover index of the 22◦ halo as a function of the effective ice crystal
radius calculated using phase functions of solid columns (YANG) at a wavelength of 550 nm.

with a minimum asymmetry factor of about 0.7 for columns with an AR slightly larger than 1.

The largest asymmetry factors occur for thin plates with values larger than 0.95. However, the

asymmetry factors are skewed towards ice crystal plates with larger values for thin plates than

for long columns. Figure 3.10 shows that the 22◦ HR is ambiguous for smooth plates and rough

columns. Thus, measurements of the HR can only be used to constrain the asymmetry factor if

this ambiguity is resolved. This is the case for very large values of the 22◦ HR, which can only

be achieved for smooth columns with large ARs.

The width of the 22◦ halo

Another source of information about ice crystal properties is the angular width of the 22◦ halo,

which seems to be determined by the size of the ice crystals, as shown in Fig. 2.9. Flatau and

Draine (2014) introduce the so-called “power spillover index” Ψ as a measure of the amount

of light scattered into the “shadow region” inside the 22◦ halo. The authors suggest that this

parameter may be used for constraining the ice crystal size. Figure 3.12 shows the power spillover

index for effective radii ranging from 5 to 90 µm at a wavelength of 500 nm using phase functions

of the YANG database. Here, the power spillover index is calculated by

Ψ =

∫ Θmin

19◦ (P(Θ)/dΘ)dΘ
∫ 25◦

19◦ (P(Θ)/dΘ)dΘ
, (3.9)

with Θmin the scattering angle of the 22◦ halo peak, which is determined using Eq. (2.52) and

amounts to 22.1◦ for 500 nm. Similar to the findings of Flatau and Draine (2014), the spillover

index strongly decreases with increasing effective radius. Thus, for larger ice crystal sizes the

amount of light scattered into the shadow region at scattering angles smaller than the 22◦ halo

peak decreases.

This section demonstrates that the 22◦ halo peak of the ice crystal phase functions contains

valuable information about ice crystal shape (i.e. aspect ratio) and surface roughness, as well as

particle size. The HR, which depends on the brightness contrast of the 22◦ halo peak, is sensitive

to ice crystal aspect ratio and surface roughness, whereas the spillover index is mainly determined

by the size of the ice crystals. In the subsequent section, the information content of the 22◦ halo

will be investigated under multiple scattering conditions in a realistic atmosphere.
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Figure 3.13: Sky radiance simulations with libRadtran (Mayer and Kylling, 2005) using the
DISORT solver for a solar zenith angle of 60◦, a viewing azimuth angle range of 0◦ to 160◦ and for
viewing zenith angles from 10◦ to 110◦. The simulations were performed for a spectral range of
380 nm to 780 nm (5 nm steps), weighted with the spectral sensitivity of the human eye. A
homogeneous cirrus cloud layer with optical thickness of 1 was assumed. Solid column ice crystal
optical properties of Yang et al. (2013) with an effective radius of 80 µm were used. Aerosol
scattering was not considered. The four panels show radiative transfer simulations with different
fractions of smooth solid columns ranging from 0% to 100%, as indicated by the labels. A
background of severely roughened solid columns is assumed with fractions changing from 100% to
0%, accordingly.

3.3.2 Multiple scattering regime

This section discusses the influence of multiple scattering on the visibility and brightness contrast

of halo displays, using the frequently observed 22◦ halo as example.

The 22◦ halo ratio

The effect of varying cloud optical thickness on the visibility of halo displays has already been

investigated by Hess (1996), Kokhanovsky (2008), Gedzelman and Vollmer (2008) and Gedzelman

(2008) using radiative transfer simulations. Kokhanovsky (2008) performed simulations of the

brightness contrast of the 22◦ halo as a function of the cirrus optical thickness using the radiative

transfer model SCIATRAN neglecting molecular and aerosol scattering. The results show a linear

decrease of the halo contrast with increasing optical thickness. Gedzelman (2008) and Gedzelman

and Vollmer (2008) used the model HALOSKY for radiative transfer simulations of 22◦ halos with

varying cloud optical thickness. HALOSKY considers single scattering by air molecules, aerosol

particles and cloud particles assuming homogeneous, plane-parallel atmospheric layers. Multiple

scattering is calculated only within the cloud by a Monte Carlo subroutine. Gedzelman and

Vollmer (2008) show results for radiance simulations of the 22◦ halo in the principal plane below

and above the sun. They found that the radiance at the bottom of the 22◦ halo reaches a

maximum value for a smaller cirrus optical thickness (COT ≈ 0.25) than the radiance at the top

of the cloud (COT ≈ 0.63). Hess (1996) found that the a 22◦ halo is visible if the COT is larger

than the Rayleigh and aerosol optical thickness (AOT) together and depends on the solar zenith

angle (SZA).

In this work, radiative transfer simulations were performed using the libRadtran radiative

transfer package and the DISORT solver, which were explained in Section 3.1. Radiative transfer

simulations of a cirrus cloud were performed assuming a homogeneous ice cloud layer with optical

thickness 1 (at 550 nm) located at a height between 10 km and 11 km. Figure 3.13 shows simu-

lations using different fractions of smooth solid columns (0%, 10%, 40%, 100%) and assuming a

background of severely roughened solid columns. All ice crystals have an effective radius of 80 µm.

The optical properties were chosen from the database of Yang et al. (2013). The sun is located at

a zenith angle of 60◦. Sky radiance was calculated for an angular range between 0◦ and 160◦ in
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Figure 3.14: Sensitivity studies of the 22◦ halo ratio at 550 nm (as defined in Eq. (3.47)) as a
function of the smooth crystal fraction (SCF) (a), cirrus optical thickness (b), aerosol optical
thickness (c), and surface albedo (d). The radiative transfer simulations were performed with
libRadtran and the DISORT solver for an ice cloud between 10 km and 11 km using the same
optical properties as in Fig. 3.13 for a solar zenith angle of 60◦. The default parameters, i.e. if not
varied, are 20% smooth solid columns, AOT = 0.2, COT = 1.0, and albedo = 0.0. The dashed
black line indicates HR = 1, which marks the threshold for the visibility of a halo display.

the azimuth direction and 10◦ to 110◦ in the zenith direction (i.e. from 10◦ off-zenith to 20◦ below

the horizon), which corresponds to the field of view of a wide-angle camera. The simulations were

performed for a spectral range of 380 nm to 780 nm (5 nm steps) and the results were weighted

with the spectral sensitivity of the human eye according to CIE 1986, as implemented in specrend

(http://www.fourmilab.ch/documents/specrend/).

Aerosol scattering was not considered and a spectral surface albedo of grass was chosen (Feister

and Grewe, 1995). For 0% (first panel of Fig. 3.13) all ice crystals are rough and thus no 22◦

or 46◦ halo is visible. For a fraction of 10% smooth crystals the 22◦ halo starts to form which

is in agreement with the findings of van Diedenhoven (2014). The 46◦ halo becomes visible for

a fraction of 40% smooth crystals. For 100% smooth crystals both 22◦ and 46◦ halo reach a

maximum brightness contrast for the respective cirrus optical thickness.

Figure 3.14 depicts the sensitivity of the 22◦ halo brightness contrast, represented by the

halo ratio as a function of the smooth ice crystal fraction (a), the cirrus optical thickness (b), the

aerosol optical thickness (c) and the surface albedo (d) for a wavelength of 550 nm. As in Fig. 3.13

an SZA of 60◦ was chosen and the ice cloud was defined at a height between 10 km and 11 km. The

halo ratio was determined in the principal plane above the sun. The dashed lines indicate a halo

ratio of 1, which was defined as threshold for the visibility of halo displays. Figure 3.14a shows

clearly that for SCF > 10% the halo ratio exceeds 1 and the 22◦ halo is visible. Figure 3.14b

illustrates how the HR is determined by the optical thickness of the cirrus cloud (COT) itself.

A maximum value for COT ∼ 1 can be observed. For a very thin cirrus, Rayleigh and aerosol

scattering become dominant, resulting in a small HR. The HR approaches its maximum value only

when COT is larger than the optical thickness of the background (here Rayleigh and aerosol).

For large COT, multiple scattering reduces the contrast of the 22◦ halo feature and the HR

decreases, similar to the findings of Kokhanovsky (2008). However, as Gedzelman and Vollmer

(2008) point out, the 22◦ halo peak might still be visible up to an optical thickness of ∼ 5 due

to the pronounced maximum in the scattering phase function. An increasing AOT causes a

decrease of the HR, which is displayed in Fig. 3.14c. For a typical value of AOT = 0.2 the HR

is reduced by ∼ 10% compared to an aerosol free atmosphere. A higher surface albedo causes

longer photon paths through the atmosphere and thus a higher chance of multiple scattering

(Fig. 3.14d). Reflected photons therefore cause a higher “background” brightness which leads to

a weaker brightness contrast of the halo display.

In general, the effect of the surface albedo on the HR is small compared to the effect of AOT

or COT. Halo displays are a geometric optics phenomenon, which means that they emerge only
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Figure 3.15: Power spillover index of the 22◦ halo as a function of the effective ice crystal
radius for solid columns (YANG) and a wavelength of 550 nm calculated using radiative transfer
simulations with DISORT for different cirrus optical thickness (COT) values.

when the particle size is much larger than the wavelength (Fraser, 1979, Mishchenko and Macke,

1999, Garrett et al., 2007, Flatau and Draine, 2014) which also depends on the aspect ratio of

the crystals (Um et al., 2015). The solar zenith angle affects the 22◦ halo brightness contrast

indirectly by increasing the optical path length through the atmosphere for large SZAs and thus

increasing the amount of multiple scattering (not shown). This effect is the same for different

viewing zenith angles which explains why the 22◦ halo is always brightest at the top (directly

above the sun) and faintest below the sun.

The power spillover index and FWHM

The power spillover index, which was defined in Section 3.3.1, proved useful as an estimate of the

ice crystal size for scattering phase functions. For halo observations under multiple scattering

conditions in a real atmosphere, however, the power spillover index is sensitive to the COT.

As shown in Fig. 3.15, increasing the COT has a similar effect on the power spillover index as

decreasing the effective radius. Flatau and Draine (2014) further suggest that the full width at

half maximum (FWHM) of the 22◦ halo peak could be used as a measure of its angular width.

To determine the FWHM of a 22◦ halo in the atmosphere a method was developed to correct the

radiance distribution for multiple scattering and to fit a Gaussian distribution to the 22◦ halo

peak. The method is visualized in Fig. 3.16. Figure 3.16a shows the radiance distribution of a

22◦ halo formed by solid columns with an effective radius of 20 µm and a SCF of 30%. The blue

curve represents the fit of the background brightness distribution which is produced by multiple

scattering. The fit function for the background is defined by

Lbackground = l1 exp(l2 Θ) + l3 cos(Θ) + l4 Θ + l5 , (3.10)

with the scattering angle Θ and the 5 fit coefficients l1 to l5. For the background fit scattering

angles Θ ≤ 19◦ and 35◦ ≤ Θ ≤ 45◦ were considered. The region of the 22◦ halo, which is masked

out for this fit, is displayed with gray shading in Fig. 3.16a. In a next step the background

Lbackground was subtracted from the radiance distribution for the whole scattering angle range

which results in the black curve in Fig. 3.16b. Finally, a Gaussian distribution was fitted to the

background-corrected curve which is illustrated in Fig. 3.16b by the red curve. For the Gaussian
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Figure 3.16: Estimation of the FWHM of the 22◦ halo under multiple scattering conditions. (a)
Radiance distribution across the 22◦ halo (black) and the background fit (blue). (b)
Background-corrected radiance distribution (black) and the Gaussian fit (red). The background fit
was performed for scattering angles Θ ≤ 19◦ and 35◦ ≤ Θ ≤ 45◦ and the Gaussian fit was
performed for 20◦ ≤ Θ ≤ 25◦. The scattering angle regions, which are not considered for the fit,
are represented in gray. The original radiance distribution (black) was simulated with libRadtran
using the DISORT solver for solid ice crystal columns with reff = 20 µm and a smooth crystal
fraction of 30% at a wavelength of 550 nm.

distribution the following fit function was used

Lgauss = l0 exp

(
(Θ− µΘ)2

2σ2
Θ

)
, (3.11)

with the amplitude l0, the expectation value µΘ, and the standard deviation σΘ as fit coefficients.

The fit of the Gaussian distribution was performed using the background-corrected radiance

distribution in the scattering angle range 20◦ ≤ Θ ≤ 25◦. The scattering angle region outside the

22◦ halo, which is represented with a gray shading in Fig. 3.16b, is not used for this fit. It revealed

that mainly the inner edge of the 22◦ halo peak is sensitive to the ice crystal size, which is also

visible in the scattering phase function Fig. 2.9. The FWHM of the 22◦ halo is then calculated

by

FWHM = 2
√

2 log 2 · σ . (3.12)

Figure 3.17a shows the FWHM of the 22◦ halo for different ice crystal effective radii ranging

from 5 µm to 90 µm and for a COT of 0.5 (red), 1.0 (blue), and 3.0 (black). The sensitivity of

the FWHM to variations of the COT is negligible, as depicted in Fig. 3.17a. This is in contrast

to the 22◦ HR, which strongly depends on the COT (cf. Section 3.3.2). Figure 3.17b shows the

FWHM for different ice crystal habits and SCFs ranging between 10% and 100%. All habits were

considered except for droxtals, which do not produce a 22◦ halo. This figure demonstrates that

ice crystal shape and surface roughness slightly influence the FWHM. However, this effect is still

smaller than the sensitivity of the FWHM to the ice crystal effective radius.
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Figure 3.17: Sensitivity tests of the 22◦ halo FWHM to (a) COT and (b) ice crystal habit and
smooth crystal fraction (SCF). Panel (a) demonstrates that the sensitivity of the FWHM to
variations of the COT is negligible. The blue curve in (b) shows the mean FWHM and the light
blue shading represents the minimum and maximum FWHM values for the respective ice crystal
effective radius for all ice crystal habits except droxtals and SCFs ranging between 10% and 100%.

3.4 specMACS – the cloud and sky hyperspectral imaging spec-

trometer

Measurements of halo displays were performed with the multipurpose hyperspectral cloud and sky

imaging spectrometer specMACS which is part of the Munich Aerosol Cloud Scanner (MACS).

The characterization and calibration of specMACS is described in detail in Ewald et al. (2015).

Designed to measure solar radiation transmitted and reflected by clouds and aerosol, specMACS

covers a wavelength range between 400 nm and 2500 nm with a spectral bandwidth between

2.5 nm and 12.0 nm. The instrument consists of two cameras, the VNIR (visible near-infrared)

spectrometer with a wavelength range of 400 nm to 1000 nm, and the SWIR (shortwave infrared)

spectrometer with a wavelength range of 1000 nm to 2500 nm. A scanning strategy was imple-

mented to cover the angular region of the complete 22◦ halo as well as both sundogs. Figure 3.18

displays specMACS measurements of a 22◦ halo, which deviates slightly from the circular shape

due to the representation in an azimuth-elevation grid. The scan starts above the sun and is per-

formed horizontally at 3 different elevations across spatial line, i.e. with the camera line sensor

oriented vertically. To avoid stray light and saturation of the sensor the shutter of the camera

was closed when the scattering angle between sun and camera was smaller than 10◦. specMACS

is equipped with shielding baffles to protect the detector from stray light. Scanning across spatial

line, the baffles ensure that stray light can be assumed negligible for scattering angles larger than

about 10◦ (personal communication with F. Ewald and T. Kölling).

The measurement error was calculated as described in Ewald et al. (2015) with some correc-

tions and modifications (personal communication with T. Kölling) which are presented in the

following. The signal S, which is measured in digital numbers (DN), consists of the radiometric

signal S0, the dark signal Sdark and the temporal noise N

S = S0 + Sdark +N . (3.13)
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Figure 3.18: specMACS scan of a 22◦ halo from 22 September 2015 showing the radiance in
mW m−2 nm−1 sr−1 for a wavelength of 550 nm. Note that the 22◦ halo deviates from a circular
shape due to the representation in an azimuth-elevation grid.

The noise N consists of the shot noise Nshot, the dark noise Ndc and the read noise Nread with a

joint standard deviation of

σN =
√
σ2

shot + σ2
dc + σ2

read . (3.14)

The SWIR noise standard deviation σN can be represented by a Poisson distribution and is

parameterized by

σN ,SWIR =
√

0.015S0 + 4.772 , (3.15)

between 0 and 12000 DN. For larger values σN ,SWIR shows a linear dependence with k2 = 0.015

[DN] until saturation is reached

σN ,SWIR =
√

0.015S0 . (3.16)

The VNIR noise standard deviation can be modeled by

σN ,VNIR =
√
−4.98e−6 S2

0 + 5.22e−2 S0 + 24.5 , (3.17)

which accounts for the non-linearity of the signal noise for large signals (cf. Fig. 13 in Ewald

et al. (2015)). The dark signal uncertainty is interpolated between the dark signal before and

after the measurement

σdark(t0) =
√
σ2

dark(t0−) (1− w)2 + σ2
dark(t0+)w2 , (3.18)

where σdark(t0∓) results from the standard deviation σdark(t∓1) of the dark signal average at t∓1 in

combination with an upper estimate of the dark signal drift ∆Sdark projected forward/backward
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from t∓1 to t0:

σ2
dark(t0,−) = σ2

dark(t−1) + 1/2 (∆Sdark(t0 − t−1))2 ,

σ2
dark(t0,+) = σ2

dark(t+1) + 1/2 (∆Sdark(t+1 − t0))2 .
(3.19)

Since ∆Sdark can not be treated as Gaussian error, the 2σ percentile of σdark is used to combine

the errors. The normalized signal accounting for the photo response nonlinearity can be modeled

by

sn =

√
4γ(S − Sdark) + 1− 1

2γ(tset + tofs)
, (3.20)

with γVNIR = (−2.3± 0.3)× 10−5 DN−1 and tofs,VNIR = (−0.001± 0.010) ms and γSWIR =

0 DN−1 and tofs,SWIR = (0.055± 0.001) ms. The remaining uncertainty of the sensor’s non-

linearity is estimated by

σnonlin =
1

2

sn,max − sn,min

sn,mean
· S0 . (3.21)

In addition, the signal measured by the optical components can be polarization sensitive. This is

accounted for by

σpol =
1

2

1 + ptot

1− ptot
ptot , (3.22)

where ptot = P · pmax with the sensor polarization sensitivity P and the maximum radiance

polarization pmax. The sensor polarimetric response is composed of a polarization insensitive part

O and a polarization sensitive part with partial response 2A. Then, the polarization sensitivity

P is

P =
A

A+O
· 100% . (3.23)

For a linear sensor the normalized signal sn scales linearly with the radiance L

sn = RL , (3.24)

with the radiometric response R. For an unknown degree of polarization p > 0 the error of

the measured normalized signal sn relative to the normalized polarization insensitive signal sP
n is

defined by ∆sP
n =|sn − sP

n |.

Following Ewald et al. (2015), the total error of the photoelectric signal S0 is calculated by

2σS0 = 2
√
σ2

dark + σ2
N . (3.25)

Then, the error of the normalized signal sn is composed of the relative errors of the photoelectric

signal σS0 , the non-linearity error σnonlin and the polarization error ∆sP
n

2σsn

sn
=

√(
2σS0

S0

)2

+

(
2σnonlin

sn

)2

+

(
∆sP

n

sP
n

)2

, (3.26)

where sP
n is the polarization dependent normalized photoelectric signal. Finally, the total error

of the measured radiance L is calculated by

2σL

L
=

√(
2σsn

sn

)2

+

(
2σR

R

)2

. (3.27)
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Figure 3.19: (a) specMACS scan across the left side of the 22◦ halo on 22 September 2015,
9:38 UTC displayed at a wavelength of 550 nm. The black dashed lines indicate the region
centered around the almucantar plane with an angular width of 2◦. (b) Radiance distribution
across the 22◦ halo as a function of the scattering angle obtained by averaging the radiance over
the 2◦ bins with a resolution of 0.1◦. The blue shaded region around the mean radiance represents
the the measurement error (red shading) σL combined with the standard deviation of the radiance
averaged over the region marked in (a). Both values are provided within a 2σ confidence interval.

To extract radiance distributions across the 22◦ halo, the specMACS measurements were binned

over a certain interval of the elevation angle and averaged. Figure 3.19 shows an example of a

specMACS scan of a 22◦ halo. The left part of the picture highlights the angular region which

is used to calculate the angular dependence of the radiance across the halo. In this case a bin

width of 2◦ was chosen in the elevation angle, centered around the solar elevation, i.e. in the

almucantar plane. To obtain the radiance distribution shown in the right panel of Figure 3.19,

the data was interpolated to a scattering angle grid with 0.1◦ resolution ranging from 10◦ to 35◦

and averaged over the angular bins. The averaged radiance distribution across the 22◦ halo L

is represented by the black line in Fig. 3.19b. The red shaded region around the mean radiance

displays the measurement error 2σL. The total error of the measurement uncertainty and the

variability of the radiance within the masked angular region is represented by the blue shaded

area in Fig. 3.19b and was obtained by Gaussian error propagation assuming the measurements

of the individual pixels are independent.
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3.5 HaloCam – an automated sun-tracking halo observation sys-

tem

3.5.1 System description

To automatically collect halo observations, the sun-tracking camera system HaloCam was de-

veloped and installed on the rooftop platform of the Meteorological Institute Munich (MIM)

at Ludwig-Maximilians University (LMU). HaloCam consists of two weather-proof, wide-angle

Figure 3.20: HaloCam setup with different wide-angle cameras: HaloCamJPG represents the
Mobotix S14D camera which consists of one camera body and two lenses with 4 mm focal length.
One lens is centered relative to the sun, the other lens is pointing to the zenith and is not used for
this study. This camera records pictures only in the compressed JPEG format. HaloCamRAW

represents the Allied Vision Manta G-235 C camera with a Kowa wide-angle lens with 6 mm focal
length and provides the uncompressed “raw” signal measured at the sensor.

cameras which are mounted on a sun-tracking system shown in Fig. 3.20. Detailed specifications

are provided in Table 3.1. HaloCamJPG (Mobotix S14D) is a light-weight modular camera with

an RGB CMOS sensor of 1/2” size and two lenses with the same specifications: each lens has

a focal length of 4 mm and provides a horizontal and vertical field of view (FOV) of 90◦ and

67◦, respectively. As visible in Fig. 3.20, one lens is pointing to the sun, the other one to the

zenith. In this study only the sun-centered lens is used and is, together with the camera body,

referred to as HaloCamJPG. This very robust and easy-to-operate camera records images in the

compressed JPEG format, hence the notation HaloCamJPG. The large temperature range from

−30 ◦C to 60 ◦C allows HaloCamJPG to be operated all year without external heating or cooling.

However, due to on-chip post-processing and JPEG compression the images cannot be used for

a quantitative analysis.

For this purpose, HaloCamRAW was additionally installed which provides the “raw”, i.e. un-

processed and un-compressed, signal from the sensor. HaloCamRAW, which is shown in Fig. 3.21,

consists of an Allied Vision Manta G-235C camera and a Kowa LM6HC wide-angle lens with

6 mm focal length. The camera features a Sony IMX174 CMOS sensor with 1936×1216 squared

pixels, which uses a Bayer color filter array (CFA, Bayer (1975)) for spectral measurements (cf.

Table 3.1). The color information is captured by the sensor via so-called primary color (RGB)

filters, which are located over the individual pixels and arranged in a Bayer mosaic pattern. For

HaloCamRAW the Bayer pattern starts with a red pixel (Allied Vision Technologies GmbH, 2015)

and a Bayer demosaicing algorithm (Allied Vision proprietary) is used to determine a red, green

and blue value for each pixel. For this study, HaloCamRAW is used in the raw-mode, i.e. the
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Figure 3.21: Interior of HaloCamRAW’s weather-proof casing. HaloCamRAW consists of an
Allied Vision Manta G-235C camera with a Kowa lens of 6 mm focal length. The camera is fixed
on a drawer, which is attached to the circular front lid of the cylindric weather-proof casing shown
in Fig. 3.20. A metal sheet is attached on the top of the camera body with a thermal compound to
support the cooling of the camera. For the window of the camera casing, a Heliopan UV-filter with
anti-reflection coating was used. The PoE (Power over Ethernet) cable is guided inside the camera
casing via a water-proof connecting plug through the lid just below the window (cf. Fig. 3.20).

signal measured by the camera sensor is directly used without (color) processing. This provides

monochrome images with superimposed Bayer checkerboard pattern as shown in Fig. 3.22. A

schematic illustration of the Bayer CFA layout with the red (R), blue (B) and two green (G1,

G2) channels is displayed as a magnified detail of Fig. 3.22.

Since HaloCamRAW itself is not protected, a weather-proof aluminum casing was built at

MIM (cf. Fig. 3.20). The casing has a cylindric shape and the camera is fixed on a drawer

which is attached to the circular front lid as shown in Fig. 3.21. An anti-reflection coated UV-

filter (Heliopan GmbH) is used as a window for the casing. The PoE (Power over Ethernet)

cable is guided inside the casing through the circular lid just below the window via a water-

proof connecting plug visible in Fig. 3.20. Both HaloCam cameras are operated in an automatic

exposure mode. For HaloCamJPG the image region used to determine the optimum exposure

time is confined to the region where the 22◦ halo occurs, which ensures that the pixels around

the 22◦ halo are not saturated. HaloCamRAW measures the histogram of the current image to

adjust the exposure time of the next image so that bright areas are not saturated. An upper

limit for the exposure time of 50 ms is imposed since the automatic exposure for HaloCamRAW

occasionally escalates to very large values resulting in overexposed images. In the following, the

term HaloCam refers to the camera system including the sun-tracking mount and both cameras,

whereas the terms HaloCamJPG and HaloCamRAW will be used for the specific camera.

Using a sun-tracking mount is ideal for the automated observation of halo displays and later

image processing since it automatically aligns the center of the camera with the sun. This implies

that all recorded halo displays are centered on the images. With this setup a small circular

shade fixed in front of the camera is sufficient to protect the lens from direct solar radiation

and to avoid overexposed pixels and stray light (cf. Fig. 3.20). The mount features two stepper

motors with gear boxes for adjustment of the azimuth and elevation angles, as described in

Seefeldner et al. (2004), with an incremental positioning of 2.16 arcmin per step. The positioning

of the mount is performed by passively tracking the sun: an algorithm calculates the current
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Figure 3.22: HaloCamRAW image as detected by the sensor. The image exhibits the
superimposed checkerboard pattern of the Bayer color filter array (CFA, Bayer (1975)) which is
shown schematically on the right for the red (R), the 2 green (G1, G2), and the blue (B) channels.

position of the sun which is converted to incremental motor steps. The pointing accuracy of the

mount can be roughly estimated to about ±0.5◦ (2σ confidence interval), which will be explained

in more detail in Section 3.6.1. Every 10 s HaloCam’s position relative to the sun is updated

and a picture is recorded. The camera FOV and the sensor resolution were chosen to optimize

the trade-off between a large coverage of the sky with high spatial resolution and low image

distortion. HaloCamJPG allows observation of the 22◦ halo, sundogs, upper and lower tangent

arc and circumscribed halo, which are the most frequently observed halo displays according to

Sassen et al. (2003b) and the results of AKM.

HaloCam observations aim at gaining a better understanding of the relationship between halo

displays and typical ice crystal properties in cirrus clouds. Hence, the observations are limited to

the most frequent halo displays without loosing relevant information about ice crystal shape and

orientation while achieving a high spatial and temporal resolution of the selected scene. Since the

presence or absence of the rare 46◦ halo might add information (cf. Section 3.3) HaloCamRAW

was tilted upward by 26◦ compared to HaloCamJPG to observe the upper part of both the 22◦

and 46◦ halo.

The HaloCam system was installed in September 2013 on the rooftop platform of MIM (LMU)

in Munich with HaloCamJPG only and was extended in September 2015 by HaloCamRAW. On

the rooftop platform additional measurements are performed operationally by a MIRA-35 cloud

radar (Görsdorf et al., 2015), a CHM15kx ceilometer (Wiegner et al., 2014) and a sun photome-

ter, which is part of the part of the AERONET (Aerosol Robotic Network) network (Holben

et al., 1998), as well as with the institute’s own sun photometer SSARA (Sun–Sky Automatic

Radiometer, Toledano et al. (2009, 2011)). HaloCam observations could ideally complement these

measurements to retrieve information about ice crystal properties.
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Table 3.1: HaloCam specifications

Camera system HaloCamJPG HaloCamRAW

Lens Mobotix L22 Kowa LM6HC

Focal length 4 mm (22 mm) 6 mm
Aperture F2.0 F1.8 - F16.0 (manual)
Horizontal field of view3 93◦ 87◦

Vertical field of view4 70◦ 65◦

Camera Mobotix S14D flexmount Allied Vision, Manta G-235C

Interface IEEE 802.3af (PoE) IEEE 802.3af (PoE)
Protection class IP65 None
Operating (ambient) temperature −30 ◦C to 60 ◦C 5 ◦C to 45 ◦C
Sensor 1/2“ CMOS, RGB 1/1.2“ CMOS, RGB

Sony IMX174LQJ
Maximum bit depth 8 bit 12 bit
Sensor resolution 3 MPixel 2.4 MPixel
Sensor pixels 2048×1536 1936×1216
Shutter type not specified global shutter
Image formats JPEG (8 bit) Bayer (8 or 12 bit)

Mono (8 or 12 bit)
RGB (8 bit), YUV

Measures w × h× d 115× 130× 33 mm 86.4× 44× 29 mm
Weight (camera body + lens) 444 g + 2×159 g 200 g + 215 g

3The horizontal and vertical FOV for both camera systems are the result of the geometric calibration in Sec-
tion 3.5.2.

4See footnote 3.
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Figure 3.23: (a) HaloCamJPG image from 12 May 2014, 13:52 UTC. The corresponding
scattering angle (ϑ) grid is displayed with representative contour lines at ϑ = 22◦, 35◦ and 46◦. (b)
Relative azimuth angle (ϕ) grid with numbered labels for the 6 image segments.

For analysis of halo displays on the HaloCam images the pixel location on the sensor must

be mapped to the spherical world coordinates. This is achieved by a geometric calibration of the

camera. Furthermore, if the measured pixel intensities are to be compared with radiative transfer

simulations, a radiometric calibration is required to convert the measured intensities to radiance

values. The geometric calibration is performed for both cameras of the HaloCam system, whereas

the radiometric calibration is applied only for HaloCamRAW.

3.5.2 Geometric calibration

Halo displays are single scattering phenomena and thus are directly linked to the optical properties

of the ice crystals producing them. The ice crystal phase function predicts the scattering angle Θ

of the 22◦ halo relative to the sun. Thus, the analysis of HaloCam images can be simplified

significantly by mapping the image pixels to scattering angles. This means the camera has to

be calibrated in order to determine the parameters for mapping the camera pixels to the real

world spherical coordinate system. For this mapping the intrinsic camera parameters have to be

determined, which are the focal lengths fx, fy and image center coordinates cx, cy, as well as the

distortion coefficients of the camera lens.

Different methods exist for the geometric calibration. Here, the method described by Zhang

(2000) is used, which is based on Heikkilä and Silvén (1997), to estimate the intrinsic camera

parameters as well as the radial and tangential distortion parameters of the lens. This method

requires several pictures of a planar pattern, for example a chessboard pattern with known di-

mensions, taken at different orientations. The calibration method using a chessboard pattern

was implemented in OpenCV by Itseez (2015) and is described in detail by Bradski and Kaehler

(2008). Using the distortion coefficients and intrinsic parameters, the camera pixels can be undis-

torted and mapped to the world coordinate system. Thereby, a zenith (ϑ) and azimuth angle (ϕ)

can be assigned to each pixel relative to the center of the sun. In this case the relative zenith

angle ϑ corresponds to the scattering angle Θ.

An overlay of the scattering angle grid onto a HaloCamJPG picture is shown in Fig. 3.23a

with representative contour lines at ϑ = 22◦, 35◦ and 46◦. From the scattering angle grid the

horizontal and vertical FOV can be calculated to ∼93◦ and ∼70◦, respectively. HaloCamJPG

images are recorded with a resolution of 1280×960 quadratic pixels which results in an angular

resolution of ∼0.07◦ for both the horizontal and the vertical direction. Figure 3.23b shows the
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Figure 3.24: (a) HaloCamRAW image (red channel) from 2 February 2016, 9:42 UTC with
corresponding scattering angle (ϑ) grid and representative contour lines at 22◦, 35◦ and 46◦. (b)
Relative azimuth angle (ϕ) grid with numbered labels for the 5 image segments.

relative azimuth angle grid which is chosen such that the image is separated into 6 segments.

For HaloCamRAW the geometric calibration was performed with the same method but for the

raw image (see Fig. 3.22). The relative zenith (ϑ) and azimuth (ϕ) for the HaloCamRAW red

channel (R-channel) are displayed in Fig. 3.24. Both the 22◦ and 46◦ halo are close to the image

center when the elevation of the camera is tilted upward by 26◦, as shown in Fig. 3.24a, in contrast

to HaloCamJPG where the sun is at the center of the image. This setup allows observation of

the upper part of the 22◦ and 46◦ halo, which is more suitable for a quantitative analysis. The

lower part of the halo is often obstructed by the horizon (during sunrise and sunset) and usually

less pronounced than the upper part due to increased multiple scattering (cf. Fig. 3.13). The

horizontal and vertical FOV of HaloCamRAW can be estimated from the calculated scattering

angle grid to ∼87◦ and ∼65◦, respectively. With a resolution of 608×968 quadratic pixels the

angular resolution of each of the 4 color channels amounts to about 0.1◦. As for HaloCamJPG, the

HaloCamRAW image is separated into segments using the relative azimuth angle ϕ. Figure 3.24b

indicates the 5 azimuth segments defined to obtain a detailed sampling of the 22◦ halo. For

further analysis and feature extraction each of these segments is averaged in direction of the

relative azimuth angle ϕ.

3.5.3 Radiometric characterization

Each sensor pixel is a semiconductive device which converts light into electrical charge and can

be treated as an independent radiometric sensor. The charge collected on a pixel is converted to

a voltage and then to a digital value by the A/D converters, which introduces noise at each step.

The signal measured by the sensor can be expressed as

S = S0 + Sd +N (3.28)

with Sd the dark signal, S0 the radiometric signal, and the measurement noise N , as presented

in Ewald et al. (2015). The measurement noise N is the sum of the radiometric signal noise N0

and the dark signal noise Nd

N = N0 +Nd . (3.29)

In the following sections the components of the measured signal S will be characterized and

their sensitivity on the camera settings and ambient conditions will be investigated. The dark
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Figure 3.25: HaloCamRAW dark signal of the R-channel, averaged over 100 images. An
exposure time of texpos = 2.0 ms was chosen and a temperature of 45 ◦C was measured inside the
camera.

signal measurements were performed in the optics laboratory of the Meteorological Institute

at LMU on 16 July 2015. The measurements at the Large Integrating Sphere (LIS) and the

spectral characterization of the sensor were performed at the Calibration Home Base (CHB)

(Gege et al., 2009) of the Remote Sensing Technology Institute at the German Aerospace Center

in Oberpfaffenhofen on 28 June 2016 in close cooperation with A. Baumgartner. In the subsequent

sections, temporally averaged values are indicated by angle brackets while spatial averages are

denoted by an overbar. If not stated explicitly all variables are defined pixel-wise.

Dark response

The dark signal Sd is defined as the signal which can be measured when no light is entering the

camera, i.e. the shutter is closed. This implies S0 = 0 and Eq. (3.28) becomes

S = Sd +Nd . (3.30)

For an averaged dark image 〈S〉 the remaining noise approaches zero 〈Nd〉 → 0 and the dark signal

Sd can directly be measured. The dark signal consists of the dark current sdc, which is caused by

thermally generated electrons and holes within the semiconductor material of the sensor, and the

read-out offset of the A/D converters Sread. The dark current sdc depends on the temperature T

and the exposure time texpos

Sd(T ) = sdc(T ) texpos + Sread . (3.31)

Thermal electrons are generated randomly over time with an increasing rate as the temperature

rises. Furthermore, the dark signal has a spatial component which is called fixed pattern noise

(FPN). Since HaloCamRAW has no external shutter, the dark signal during operation has to be

estimated from the laboratory characterization. The following experiments were performed in a

dark room and the camera lens was covered with an opaque cloth.

Figure 3.25 displays the dark signal 〈Sd〉 averaged over 100 images for an exposure time

of texpos = 2.0 ms and a device temperature of 45 ◦C for the R-channel. The temporally and

spatially averaged dark signal amounts to about 〈Sd〉 = (16.7± 0.2) DN. For this number of

averaged images, the dark signal in Fig. 3.25 does not show a significant spatial pattern. The

same is true for the G1-, G2-, and B-channel. Thus, it can be assumed that the FPN is smaller

than the dark signal noise of 0.02 DN or 0.1 % and is considered negligible for the following
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Figure 3.26: HaloCamRAW dark signal and dark signal noise of all 4 channels (R, G1, G2, B)
for different exposure times ranging from 0.03 ms to 1000 ms. The camera’s internal temperature
was constant at 45 ◦C. The dark signal average and the standard deviation were evaluated over
100 images for each exposure time.

analysis and later image processing. Figure 3.26 shows the dependency of the dark signal on

exposure time for a constant temperature inside the camera of about 45 ◦C. In operational mode

and under daylight conditions typical exposure times of 1 to 3 ms are used. For exposure times

up to 50 ms the mean dark signal amounts to about 16.7 DN with a standard deviation of 0.8 DN

for the R-channel. The variability of the mean dark signal for exposure times smaller than 50 ms

is less than 0.02 DN (0.1 %). As observed by Urquhart et al. (2015) and Ewald et al. (2015)

(VNIR camera of specMACS), the dark signal appears to be independent of the exposure time.

For larger exposure times, which are shaded in gray in Fig. 3.26, a significant increase of the

dark signal as well as the dark signal noise occurs. This behavior is most likely a combination

of the increasing dark current signal due to a longer exposure time and an increase of the read

noise signal Sread caused by the A/D converters. To investigate the temperature sensitivity of

the dark signal, measurements were performed with the camera set up inside a climate chamber

(Weiss5, SB11/160/40) in a dark room and with the camera lens covered. The temperature inside

the climate chamber can be adjusted between −40 ◦C to 180 ◦C with increments of 0.1 ◦C. The

estimated accuracy is about 0.05 K. The temperature was controlled using the software described

in Grob (2015), which is part of the runMACS software suite. For the dark measurements with

HaloCamRAW the temperature was varied between 10 ◦C and 50 ◦C in steps of 5 ◦C. Within this

temperature range the averaged dark signal varied less than 0.5 DN. To obtain an estimate for the

temporal drift of the dark signal, the standard deviation was calculated using all recorded dark

images for the different camera temperatures and exposure times and results to about 2.2 DN

for the 4 channels. For the dark signal correction of the HaloCamRAW data, for each of the 4

channels the respective mean values from Fig. 3.26 are used: 16.68 DN, 16.68 DN, 16.67 DN, and

16.61 DN for the R-, G1-, G2-, and B-channel, respectively.

Sensor photoresponse non-uniformity correction

The radiometric signal S0 differs from pixel to pixel due to different gains of each photodetector,

called photoresponse non-uniformity (PRNU). Furthermore, the wide-angle lens of HaloCamRAW

causes a decreasing brightness on the sensor for raypaths further away from the optical axis of the

5Weiss Klimatechnik GmbH, Greizer Straße 41-49, D-35447 Reiskirchen-Lindenstruth
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lens. This illumination falloff towards the edges of the sensor is called vignetting. Two different

types of vignetting occur:

1. Optical vignetting occurs when the ray bundle, which forms the image, is truncated by

two or more physical structures in different planes (Bass et al., 2010). Typically, one is

the nominal aperture and another is the edge of a (multiple element) lens. This kind of

vignetting naturally occurs in all lenses and typically affects peripheral light rays, far off

the optical axis.

2. Natural vignetting describes the effect that for off-axis image points the illumination is

usually lower than for the image point on the optical axis (Bass et al., 2010).

Optical vignetting can be diminished by reducing the entrance pupil, i.e. the aperture by increas-

ing the f -number. According to Bass et al. (2010) the f -number is defined by

f -number =
focal length

entrance pupil diameter
. (3.32)

For the Kowa lens of HaloCamRAW the f -number can be adjusted mechanically between 1.8 and

11 by a screw. A fixed value of f -number = 8 was chosen for all measurements and the calibration.

For the observation of halo displays close to the sun this represents a good trade-off between a

small aperture and short exposure times.

To obtain a model for the non-uniformity of the sensor response as a function of the pixel location,

flat-field measurements were performed at the LIS at CHB. Several measurements were performed

with the same exposure time. To minimize the impact of inhomogeneities in the brightness of the

integrating sphere, images were recorded at 6 different orientations by rotating the camera around

its own axis, i.e. with the center of the camera roughly pointing to the center of the sphere. For

each orientation 40 images were recorded, dark signal corrected and averaged. The measurements,

which were averaged over the rotation angles of the camera relative to the sphere, are shown in

Fig. 3.27a with the signal normalized to 1. The spherical patches visible in the figure are due to a

hole in the sphere, which allows for injecting a laser as light source for specific experiments. The

hole appears at different locations on the image due to the different rotation angles of the camera.

Owing to the large field of view of the camera, the edge of the two hemispheric components of the

LIS is visible. In order to fit a model to the flat-field measurements, these two regions were masked

out as displayed in Fig. 3.27b. The flat-field model correcting for the PRNU was determined by

fitting a 2-dimensional (2D) second order polynomial to the averaged and masked measurements.

F = a · r2 + b · r + c , (3.33)

where r2 = |x− x0|2 is the distance of the pixel location x from the image center x0. The result

is depicted in Fig. 3.27c for the R-channel with the following parameterization:

F = −1.23× 10−6 · r2 +−4.31× 10−6 · r + 0.99 , (3.34)

with y0 = 297.2 and x0 = 473.8. Finally, Fig. 3.27d shows the relative difference between the

flat-field model and the measurements in percent. The fluctuations of the signal difference are due

to inhomogeneities of the integrating sphere (and the FPN of the camera sensor). However, these

inhomogeneities are negligible for the image processing procedure since the flat-field model is used

to correct the camera measurements. The average difference between model and measurement

amounts to (0.0± 0.5) % for the R-channel with similar values for the remaining channels. The

PRNU correction is applied to the dark signal corrected red, green and blue channel separately.
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Figure 3.27: (a) HaloCamRAW dark signal corrected measurements S0 (R-channel), which are
normalized to 1, of the large integrating sphere (LIS) averaged over 6 different camera
orientations. (b) S0, normalized to 1, as in (a) with a mask applied to the areas where the holes
and the edge of the LIS are visible. (c) Flat-field model for HaloCamRAW R-channel fitted against
the measurements with a 2-dimensional 2nd order polynomial. (d) Relative difference between
flat-field model and measurements.

Correcting for the PRNU the flat-field corrected signal SF is defined by

SF = S0/F , (3.35)

with the radiometric signal S0 and the flat-field correction F .

Linearity of radiometric response

Similar to Ewald et al. (2015) the linearity of the CMOS sensor of HaloCamRAW was investigated

by measuring a temporally stable light source using different exposure times. This experiment

was performed at the Large Integrating Sphere (LIS) at CHB. Baumgartner (2013) characterized

the output stability of the LIS to better than σ = 0.02% over a time range of 330 s. For a perfectly

linear sensor with response R, the photoelectric signal S̃0 should increase linearly with exposure

time texpos and radiance L

S̃0 = RL texpos = sn texpos , (3.36)

with the normalized signal sn defined by

sn = RL . (3.37)

The deviation of the actually observed signal S0 from the linear relationship of S̃0 is called photo

response non-linearity. The acutally observed signal S0 can be written as

S0 = F sn texpos = F RL texpos , (3.38)
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Figure 3.28: HaloCamRAW average radiometric signal S0 as a function of exposure time texpos

for the 4 channels. In operational mode the automatic exposure settings ensure that the measured
signal ranges between 1000 and 3500 DN, where the averaged signal deviates from a linear
behavior between 0.04% for the B-channel and 0.28% for the G1-channel. Signals below and above
this range are shaded in gray. For signals close to saturation (4096 DN, black dashed line) the
signal deviates clearly from a linear behavior.

with the flat-field correction F and it follows that the normalized signal can be obtained by

sn = S0/(F texpos) . (3.39)

Figure 3.28 shows the measured radiometric signal S0 for exposure times texpos ranging from

0.5 ms to 29.5 ms, averaged over 5 images for each exposure time. The measured signal ranges

between 100 and 4037 DN for the G1 and G2 channels. For the data analysis of the HaloCamRAW

images, the measured signals range between 1000 and 3500 DN, where the mean deviation from

a perfectly linear sensor amounts to 0.18%, 0.28%, 0.25%, and 0.04% for the R-, G1-, G2-, and

B-channel, respectively. For signals close to saturation (4096 DN) the sensor becomes strongly

non-linear. Thus, signals S0 > 3500 DN are excluded from the analysis.

Spectral response

The spectral response of HaloCamRAW was characterized in a similar way as described in Gege

et al. (2009) and Baumgartner et al. (2012) using a collimated beam of the monochromator (Oriel

MS257) at CHB. The monochromator has an absolute uncertainty of ±0.1 nm for λ ≤ 1000 nm

and ±0.25 nm for λ > 1000 nm with a spectral bandwidth of 0.65 nm and 1.3 nm, respectively.

To keep the duration of the calibration procedure short, only a small region of 8×8 pixels (per

channel) on the camera sensor was illuminated by the monochromator via a parabolic mirror.

Measurements were performed over a wavelength range of 350 nm to 900 nm with steps of 5 nm

together with the window of the camera casing shown in Fig. 3.21. Figure 3.29 displays the result

of the spectral calibration for the red, blue and the two green channels. To obtain the spectral

sensitivity curves, the raw images were averaged over the illuminated pixel region and over a

set of 10 images per wavelength. Subsequently, the dark signal was subtracted and the spectral

response for each channel was normalized to 1.
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Figure 3.29: HaloCamRAW relative spectral response for the R-, G1-, G2-, and the B-channel.

Absolute radiometric response

To obtain an estimate for the absolute radiometric response of HaloCamRAW the images recorded

on 22 September 2015 were cross-calibrated against simultaneous specMACS measurements. For 7

different specMACS scans the HaloCamRAW image recorded closest to the time of the specMACS

scan was selected. The absolute radiometric response of HaloCamRAW can be determined by

dividing the normalized and flat-field corrected signal sn in [DN/ms] by radiance values L in

[mW m−2 nm−1 sr−1].

R = sn/L (3.40)

Here, one radiometric response R for all sensor pixels is determined under the assumption that

the PRNU is already accounted for by the flat-field correction. Figure 3.30a shows the calibration

factor C [DN mW−1 m2 nm sr], which is calculated by the HaloCamRAW radiometric signal S0
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Figure 3.30: Calibration factors (a) and radiometric response (b) for the 4 HaloCamRAW

channels. The values are derived from cross-calibration of HaloCamRAW against specMACS for 7
different scenes measured simultaneously on 22 September 2015. The legend on the right provides
the absolute radiometric response for HaloCamRAW with 1σ uncertainty evaluated over the 7
measurements.
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divided by the specMACS radiance L and scales linearly with the exposure time texpos

C = S0/(LF ) = sn/(LF ) · texpos . (3.41)

The errors are provided within a 1σ confidence interval and represent the sum of the specMACS

measurement error, which is calculated for each pixel as described in Section 3.4, and the standard

deviation of the calibration factor calculated over all considered pixels. It should be noted that the

measurement error of specMACS of about 5% is responsible for a large portion of the uncertainty

of the estimated radiometric response. A large part of the uncertainty is introduced by the

inhomogeneity of the observed scene. The exposure times range between 1.2 ms and 2.0 ms, which

are typical values for HaloCamRAW measurements of thin cirrus clouds in the vicinity of the sun.

Figure 3.30b shows the radiometric response R [DN ms−1 mW−1 m2 nm sr] as defined in Ewald

et al. (2015) for the 7 evaluated scenes. The radiometric response is independent of the exposure

time texpos. The resulting radiometric response for the R-, G1-, G2-, and B-channel is provided

in the legend of Fig. 3.30. These values were derived using the upper part of the specMACS

scan above the sun. An additional test using the middle part of the specMACS scan to both

sides of the sun revealed very similar values for the response with slightly larger uncertainties:

6.83± 0.56, 5.81± 0.56, 5.79± 0.56, and 5.28± 0.78 DN ms−1/(mW m−2 nm−1 sr−1). The larger

uncertainty of the response in the second evaluation is due to larger variabilities in the scenes used

for the evaluation. Since the mean values of both evaluations are very similar, it can be argued

that the results shown in Fig. 3.30 are a better estimate of the true response values. Therefore,

the results shown in Fig. 3.30 will be used in the following.

Signal noise

The measurements at the LIS can also be used to estimate the noise N of the measured signal

as described in Ewald et al. (2015). The noise consists of the dark noise Nd and the photon shot

noise Nshot. Thus, the standard deviation of the signal noise can be calculated by

σN =
√
σ2

shot + σ2
d + σread . (3.42)

As argued by Ewald et al. (2015), the number of photons N detected over a time interval texpos

can be estimated by a Poisson distribution. A Poisson distribution with expectation value N has

a standard deviation of σN ∝
√
N . Thus, the variance of the photon shot noise σ2

shot should scale

linearly with the number of detected photoelectrons N and the squared conversion gain k2 [DN2]

and σN can be written as

σN =
√
k2N + σ2

d . (3.43)

Figure 3.31 shows a histogram of the variance σ2
N (a) and the standard deviation σN (b) of

the measured signal of each sensor pixel, evaluated over 5 images, for all exposure times (0.5

to 9.5 ms). The results are shown for the R-channel here, but are very similar for the other 3

channels. According to Eq. (3.43), the variance of the signal measured by each pixel should scale

linearly with the signal itself (Fig. 3.31a), whereas the standard deviation should scale with the

square root of the signal (Fig. 3.31b). The signal noise ranges from about 10 DN for signals of

about 100 DN to about 40 DN for signals of about 1500 DN, typical for operational measurements.

HaloCamRAW total radiometric uncertainty

The total radiometric uncertainty of HaloCamRAW was estimated by applying Gaussian error

propagation to the equations describing the measured signal with the respective errors. Similar
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Figure 3.31: 2-dimensional histograms of the variance [DN2] (a) and the noise [DN] (b) of the
measured signal as a function of the averaged signal of the R-channel.

to the description in Ewald et al. (2015), the calculation of the total radiometric uncertainty will

be outlined in the following. According to Eq. (3.28) the error of the radiometric signal S0 is

computed by combining the absolute errors of the dark signal σd(texpos, T ) and the instantaneous

noise σN (S0)

2σS0 =
√

(2σd(texpos, T ))2 + (2σN (S0))2 . (3.44)

As defined by Eq. (3.39) the uncertainty of the normalized signal sn consists of the relative error of

the photoelectric signal σS0 , the relative error of the flat-field calibration σF, and the non-linearity

error σnonlin according to

2σsn

sn
=

√(
2σS0

S0

)2

+

(
2σF

F

)2

+

(
2σnonlin

sn

)2

. (3.45)

Uncertainties due to polarization of light by components of the camera or the casing were not

determined for HaloCamRAW. However, according to Ewald et al. (2015), the largest part of the

polarization sensitivity of specMACS is introduced by the transmission grating which adds the

spectral dimension to the measurements. Since HaloCamRAW is not equipped with a grating, it

is assumed that its polarization sensitivity is significantly lower than for specMACS. According

to Hansen and Travis (1974) direct sunlight is unpolarized and the degree of polarization is

increasing towards larger scattering angles. Thus, it can be argued that the degree of polarization

for transmitted light in region of the 22◦ halo is lower than for observations of reflected light from

cloud sides, especially in the rainbow scattering region, which is the focus of Ewald (2016).

Finally, the radiometric calibration accounts for the error of the sensor response σR, which was

estimated from cross-calibration between HaloCamRAW and specMACS

2σL

L
=

√(
2σsn

sn

)2

+

(
2σR

R

)2

. (3.46)

Table 3.2 provides the total relative and absolute radiometric uncertainties for the 4 channels

of HaloCamRAW for two typical signals of 1000 DN and 3000 DN. The relative radiometric un-

certainty is the error of the normalized signal sn (Eq. (3.45)) which is smaller than 3% for all

channels. For larger signals the relative 2σ error is smaller since the absolute error is divided by

a larger value (cf. Eq. (3.46)). This uncertainty is valid for signal ratios which are independent of
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Table 3.2: HaloCamRAW total radiometric uncertainty with a 2σ confidence interval.

Signal S R-channel G1-channel G2-channel B-channel

Relative
radiometric
uncertainty

2σsn
sn

100 %
1000 DN 2.8 % 2.3 % 2.3 % 3.3 %

3000 DN 1.8 % 1.6 % 1.6 % 2.1 %

Absolute
radiometric
uncertainty

2σL
L 100 %

1000 DN 14.0 % 16.4 % 16.4 % 25.6 %

3000 DN 13.9 % 16.3 % 16.3 % 25.5 %

the sensor response R. For spectral radiance measurements, however, the uncertainty increases

significantly due to the contribution of the uncertainty of the estimated sensor response σR. For

the R-channel the total absolute uncertainty amounts to about 14% and about 16% for the two

green channels. The uncertainty is largest for the B-channel with about 25.5%.

Since the radiometric response of HaloCamRAW was cross-calibrated against specMACS, the

relative radiometric uncertainty has to be combined with the measurement uncertainty of spec-

MACS. This method has some implications which potentially add to the uncertainty of the

estimated radiometric response. First, the HaloCamRAW images are recorded every 10 s, so the

average temporal offset between the specMACS and HaloCamRAW measurements amount to 5 s.

Second, a slight misalignment between the specMACS and HaloCamRAW images exists, since an

exact overlap is impossible due to the temporal offset. Third, to compare the measurements,

the specMACS observations have to be convolved with the spectral response of the 4 channels of

HaloCamRAW. For wavelengths at the edge of the spectral sensitivity of the specMACS sensor,

the measurement uncertainty increases strongly introducing additional uncertainty in the esti-

mated radiometric response for the HaloCamRAW measurements. This effect is responsible for

the large uncertainty of the blue channel, which has a spectral response centered at much shorter

wavelengths where specMACS has a larger measurement uncertainty compared to the red and

green channels.
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3.6 HaloForest – an automated halo detection algorithm

3.6.1 Image processing and feature extraction

For processing the HaloCam images, they are decomposed into their red, green, and blue color

channels. The brightness I of each pixel, provided in digital numbers [DN], can then be repre-

sented as an array of 1280×960 elements. As an example the HaloCamJPG image of Fig. 3.23 is

used to demonstrate the image processing in case of a 22◦ halo. Figure 3.32 depicts the brightness

distributions of the red, green and blue channel as a function of the scattering angle, averaged az-

imuthally over the uppermost image segment (no. 4 in Fig. 3.23b). The shaded areas in Fig. 3.32

represent twice the standard deviation of the averaged image region.
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Figure 3.32: HaloCamJPG image processing demonstrated for the image shown in Fig. 3.23,
segment no. 4. The three panels show the brightness distributions (in digital numbers [DN]) for
the red, green and blue image channel as a function of the scattering angle. The solid lines
represent the brightness averaged azimuthally over the image segment, whereas the shading
indicates the 2σ confidence interval. Vertical lines pinpoint the scattering angles of the 22◦ halo
minimum (dotted) and maximum (dashed) for the RGB channels.

By analyzing the HaloCam observations several features can be extracted from the brightness

distribution across the 22◦ halo, which will be explained in the following. The scattering angle of

the brightness maximum and minimum are indicated in Fig. 3.32 by vertical dashed and dotted

lines, respectively. The angular position of the 22◦ halo maximum (ϑhalo,max) is found by searching

for the maximum brightness in the interval (21.0◦, 23.5◦). Then, the angular position of the halo

minimum (ϑhalo,min) is determined by looking for the minimum brightness in the interval (18.0◦,

ϑhalo,max). Another important feature is the brightness contrast of the halo. In analogy to the

definition in Section 3.3.1, the HR in this section is defined as the brightness I at the scattering

angle of the halo maximum ϑhalo,max divided by the brightness at the scattering angle of the

minimum ϑhalo,min:

HR = I(ϑhalo,max)/I(ϑhalo,min) . (3.47)

As an example, the values for I(ϑhalo,max) and I(ϑhalo,min) are indicated in Fig. 3.34 by the blue
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Figure 3.33: Distribution of the scattering angles of the 22◦ halo brightness maximum ϑhalo,max

for 1289 randomly chosen and visually classified images using the uppermost image segment
(no. 4). The mean value amounts to 21.9◦ with a 2σ confidence interval of ±0.5◦. Note the
logarithmic scale of the y-axis.

triangles pointing up (max) and down (min), respectively. For clearsky conditions and homoge-

neous cloud cover the brightness distribution decreases from the sun towards larger scattering

angles, as shown in the example in Figs. Fig. 3.32 and Fig. 3.34. If HR < 1 the brightness at the

scattering angle of the halo maximum (I(ϑhalo,max)) is smaller than for the minimum (I(ϑhalo,min))

which is representative for a monotonically decreasing, featureless curve in this scattering angle

region. This is the case for clearsky conditions or homogeneous cloud cover without halo. For

HR = 1 the brightnesses at the halo maximum and minimum are the same, causing a slight

plateau in the brightness distribution. A distinct halo peak occurs for HR > 1. Thus, HR = 1 is

assumed as a lower threshold for the visibility of a halo. For the image of Fig. 3.32 the 22◦ halo

Table 3.3: 22◦ halo features from 12 May 2014 13:52 UTC (Fig. 3.32). The relative zenith angle
(which corresponds to the scattering angle) for the minimum ϑhalo,min and maximum ϑhalo,max

brightness of the 22◦ halo together with the brightness contrast, i.e. the halo ratio (HR) for the
red, green and blue image channel.

ϑhalo,min ϑhalo,max HR

Red 18.9◦ 22.0◦ 1.15
Green 19.4◦ 22.0◦ 1.16
Blue 19.8◦ 22.2◦ 1.14

features for the uppermost image segment are compiled in Table 3.3. The scattering angle of the

halo minimum (ϑhalo,min) is smallest for the red channel and largest for the blue channel which is

responsible for the reddish inner edge and the slightly blueish outer edge of the 22◦ halo visible

in Fig. 3.23. It should be noted that in many cases the 22◦ halo appears rather white apart from

a slightly reddish inner edge (Minnaert, 1937, Vollmer, 2006). The differences between scattering

angles for the three colors are smaller for ϑhalo,max compared to ϑhalo,min with a slightly larger

value for the blue channel. The halo ratio amounts to about 1.15 averaged over all three channels

and is largest for the green and smallest for the blue channel.

The angular position of the 22◦ halo brightness peak (ϑhalo,max) can also be used to estimate

the positioning accuracy of the HaloCam camera system relative to the sun. Figure 3.33 shows a

histogram of ϑhalo,max for 1289 randomly selected HaloCamJPG pictures showing a 22◦ halo in the

uppermost image segment. This segment was chosen since it contains the most pronounced halos.
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For a faint halo the peak in the brightness distribution is rather flat, causing a larger uncertainty

in the determination of its the angular position. The mean value of ϑhalo,max amounts to 21.9◦

with a 2σ uncertainty of 0.5◦, which is a rough estimate of HaloCam’s pointing accuracy. The

angular interval, which is used to determine ϑhalo,max and ϑhalo,min, is chosen sufficiently large to

account for the pointing accuracy of ±0.5◦.

3.6.2 Setup and training of HaloForest

The HaloCamJPG long-term dataset from January 2014 until June 2016 was evaluated by applying

a machine learning algorithm for the automated detection of halos. The algorithm was trained

using features extracted from the HaloCamJPG images. Some of these features (e.g., HR, ϑhalo,max,

ϑhalo,min) were already described in the previous section. The detection algorithm is presented

here for the case of the 22◦ halo but it is possible to extend it to other halo types as well.

The detection is performed by a classification algorithm which is trained to predict whether

a HaloCamJPG picture belongs to the class “22◦ halo” or “no 22◦ halo”. For such a binary

classification a decision tree can be used to create a model which predicts the class of a data

sample. Details on decision trees are explained in Appendix A.1.1. One major issue of decision

trees is their tendency to overfit by growing arbitrarily complex trees depending on the complexity

of the data. In this study the random forest classifier was used as described by Breiman (2001),

which improves the issue of overfitting significantly by growing an ensemble of decision trees. A

description of the random forest classifier used in this study is provided in Appendix A.1.2. In

principle, other classification algorithms could be used like artificial neural networks. The random

forest classifier was chosen for the following reasons. Apart from being robust against overfitting

it does not require much preprocessing of the input data like scaling or normalizing. During the

training of the individual trees the out-of-bag (OOB) samples (i.e., the samples which were not

in the training subsets) are used as test data and classification error estimates (e.g. out-of-bag

error) can be calculated simultaneously (Breiman, 2001). In contrast to artificial neural networks,

the basic structure and the internal threshold tests of decision trees are simple to understand and

can be explained by boolean logic. Henceforward, the algorithm applied to the classification of

22◦ halos will be called HaloForest.

The features used here for the classification are the 22◦ halo ratio, the scattering angle position

of the halo minimum and maximum, and the scattering angle confining the halo peak ϑhalo, end,

which are shown in Fig. 3.34 together with the slope of the regression line in black (solid). The

halo peak is confined by ϑhalo, end (dash-dotted line) which represents the scattering angle with

the same brightness level as ϑhalo,min in the scattering angle interval (ϑhalo,max, 35◦]. This feature

is used to ensure that the brightness for angles larger than ϑhalo,max is decreasing again. The

slope of the regression line serves as an estimate for the brightness gradient around the sun. For

clearsky images this gradient is steeper than for overcast cases. As a measure of the separation

of color in the halo, the scattering angle difference between the blue and red channel for the halo

minimum (∆ϑhalo,min) and maximum (∆ϑhalo,max) are calculated, which are defined as

∆ϑhalo,max = ϑhalo,max,blue − ϑhalo,max, red ,

∆ϑhalo,min = ϑhalo,min, blue − ϑhalo,min, red .
(3.48)

Furthermore, the standard deviation of the brightness averaged over the image segment is used

as a proxy for the inhomogeneity of the scene. These eight features are calculated for each of

the six image segments separately. In order to get an impression of typical values of the training

features for the two classes, Fig. 3.35a – c shows 2D scatter plots of selected feature pairs for the

upper image segment (no. 4). Features, which belong to the class “22◦ halo”, are displayed in blue
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Figure 3.34: As Fig. 3.32 showing the first minimum ϑhalo,min (dotted) and the maximum
ϑhalo,max (dashed) of the 22◦ halo for the green channel. In addition, ϑhalo, end is indicated
(dash-dot line) which represents the scattering angle of the same brightness as ϑhalo,min and
confines the halo peak. In this example ϑhalo, end is located at about 24.5◦. The corresponding
brightness I(ϑhalo,min) and I(ϑhalo,max) used to calculate the HR are marked with the blue
triangles pointing down (min) and up (max). The regression line of the averaged brightness
distribution (solid black), which is evaluated between scattering angles of 15◦ and 30◦, has a slope
of −2.5 for this example.

whereas the features of the class “no 22◦ halo” are represented by gray scatter points. Figure 3.35a

shows the distribution of the scattering angle of the halo maximum vs. minimum. The scattering

angles of the halo maximum ϑhalo,max are confined to a smaller interval for “22◦ halo” compared

with “no 22◦ halo”. However, the two classes share many data points in this projection so

more features are needed to generate decision boundaries in a higher, here 8-dimensional space.

Figure 3.35b depicts the scattering angle difference between the blue minus the red channel for the

halo maximum (∆ϑhalo,max) versus minimum (∆ϑhalo,max), which is positive for the “22◦ halo”

class since the inner edge (smaller ϑ) of the 22◦ halo is slightly red. The HR, which is shown in

Fig. 3.35c, takes values between 1 and ∼1.3 for the class “22◦ halos”. Images with a low mean

standard deviation of the image segment indicate rather homogeneous scenes which are present

most of the time when a 22◦ halo is visible. Figure 3.35a – c visualizes that the two classes

“22◦ halo” and “no 22◦ halo” can not be separated easily since the values of the features overlap.

The lower panels of Fig. 3.35d – f display the regions which are detected as “22◦ halo” (blue) and

“no 22◦ halo” (gray) by the trained algorithm.

For each of the six image segments an individual classifier was trained using a dataset of

visually classified HaloCamJPG images which were chosen randomly from the dataset. The per-

formance of the classifiers was tested using a random selection of 30% of the dataset which was

excluded from training. This procedure was repeated 100 times to get statistically significant re-

sults for the performance of the classifier. Table 3.4 shows the confusion matrix for the classifier

of the segments directly above (no. 4) and below the sun (no. 1) which represent the two extreme

cases of the performance of the six different classifiers: the upper part of the 22◦ halo has a higher

brightness contrast compared to the lower part which is often obstructed by the horizon. For

the training of HaloForest 1289 samples with a 22◦ halo and 5181 samples without 22◦ halo were

used for the uppermost segment (no. 4). The lowermost segment (no. 1) was trained with 296

and 3370 samples of the classes 22◦ halo and no 22◦ halo, respectively. The rows of the confusion

matrix indicate the true class labels of the samples (“22◦ halo” and “no 22◦ halo”), whereas the

columns contain the predicted class labels. The number of true positive and negative (in bold) as

well as false positive and negative classifications are evaluated and provided with a 2σ confidence

interval. The correct classification of “22◦ halo” is maximum for the uppermost image segment
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Figure 3.35: Panels (a) – (c): scatter plots of selected pairs of the 8 features used for training
HaloForest. Training samples with(out) 22◦ halos are represented in blue (gray). Panels (d) – (f):
decision boundaries of the random forest classifier for the respective feature pair. The predicted
probability used for separating the classes “22◦ halo” (p > 0.5) and “no 22◦ halo” (p ≤ 0.5) is
displayed in blue and gray, respectively.

Table 3.4: Confusion matrix for HaloForest for the uppermost (no. 4) and lowermost (no. 1)
image segments. The label “Predicted” refers to the class which was predicted by HaloForest
whereas “True” labels the visually identified class. The true positives (correctly classified
“22◦ halo”) are printed in bold font. False positives (“no 22◦ halo” classified as “22◦ halo”) and
false negatives are listed on the other diagonal. The results are provided with a 2σ confidence
interval.

Predicted

Segment 4: 22◦ halo no 22◦ halo

True
22◦ halo (97.3 ± 1.9) % (0.4 ± 0.3) %
no 22◦ halo (2.7 ± 0.9) % (99.6 ± 0.2) %

Segment 1: 22◦ halo no 22◦ halo

True
22◦ halo (88.5 ± 7.1) % (0.5 ± 0.5) %
no 22◦ halo (11.5 ± 3.5) % (99.5 ± 0.2) %

(no. 4) with about 98% and minimum for the lowermost segment with about 89%. The correct

classification of “no 22◦ halo” is overall higher than 99%, so the HaloForest algorithm seems to be

able to separate the two classes well. The performance of the other four segments ranges between

the results of the upper and lowermost segments.
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3.7 RICO – Retrieval of ice crystal properties

The preceding section presented the halo detection algorithm HaloForest which can be used to

automatically evaluate the large HaloCam dataset for the frequency of 22◦ halos. Cirrus clouds

featuring a halo display contain at least a certain amount of smooth hexagonal ice crystals.

The frequency of these cirrus clouds, which will be referred to as “halo-producing” cirrus in the

following, provides therefore a first estimate of the minimum fraction of smooth hexagonal ice

crystals in cirrus clouds.

More detailed information about ice crystal properties can be obtained by analyzing the

brightness contrast and angular width of the 22◦ halo as discussed in Section 3.3. The slope

of the radiance distribution around the 22◦ halo contains information about the cirrus optical

thickness (COT) and ice crystal effective radius. To obtain the maximum information content of

the 22◦ halo regarding the ice crystal optical and microphysical properties, all parameters have

to be considered simultaneously. This can be achieved by comparing radiance measurements

of the 22◦ halo with radiative transfer simulations. To determine the optical and microphysical

properties which best match the observations, a look-up table (LUT) was compiled by performing

radiative transfer simulations with DISORT. The LUT comprises different ice crystal habits,

surface roughness values, effective radii, COTs, and AOTs. Furthermore, the LUT is calculated

for different SZAs and observation geometries. For the surface albedo, aerosol type, atmospheric

profile and cloud height, fixed parameters were used for the LUT. Then, the LUT elements are

compared with the radiance measurements to find the best match. LUT and observations have to

be compared on the same angular grid. Maximizing the scattering angle range, which is used for

this comparison, provides more information. On the other hand, for a too large angular region

inhomogeneities in the cirrus optical and microphysical properties become relevant. To optimize

this trade-off, a scattering angle range between 16◦ ≤ Θ ≤ 33◦ was chosen. Measurements and

LUT are compared via the averaged root mean squared error (RMSE), which is calculated by

RMSE2 = Lmeas − LLUT . (3.49)

Taking the measurement error into account, all LUT elements with a mean RMSE within the 2σ

confidence interval are considered solutions for the cirrus optical and microphysical properties

RMSE ≤ 2σL,meas . (3.50)

The LUT element with the minimum RMSE is considered the best match. In the following this

retrieval method will be referred to by the acronym RICO, which stands for “Retrieval of Ice

Crystal prOperties”.

3.7.1 Ice crystal shape and roughness models

For the RICO retrieval three different models of ice crystal optical properties are used. Following

the findings of Schmitt and Heymsfield (2014), atmospheric ice crystals can be separated into

simple and complex particles. The 3 models used in this work have in common that the optical

properties of a specific ice crystal shape are mixed using smooth and rough ice crystals.

• YANG: optical properties based on Yang et al. (2013) for 9 different habits: droxtals, solid

columns, hollow columns, plates, 8-element columns, 5-element plates, 10-element plates,

solid bullet rosettes, and hollow bullet rosettes. Since this parameterization provides only

three different roughness levels (smooth, moderately roughened, and severely roughened),

the optical properties of smooth and severely roughened ice crystals were mixed linearly
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to achieve a continuous distribution of roughness levels. Different fractions of smooth and

rough ice crystals were mixed via their extinction coefficient in the radiative transfer sim-

ulations. The smooth crystal fraction (SCF) ranges between 0 ≤ SCF ≤ 1, resulting in

a rough crystal fraction of RCF = 1 − SCF. This approach is inspired by the findings of

Schmitt and Heymsfield (2014) and Liu et al. (2014) who suggest to separate ice crystals

into simple and complex particles.

• YANGRND: optical properties based on a random mixture of the Yang et al. (2013) optical

properties. All 9 habits were considered, each with a smooth and a severely roughened

version. The SCF was chosen randomly between 0% and 100% in steps of 5% for each

combination of a smooth and rough habit. Likewise, the effective radius was chosen ran-

domly for each habit between 5 and 90 µm with steps of 5 µm. The random sampling was

performed similar to Wang et al. (2014) and the optical properties were mixed by their

extinction coefficients as for YANG.

• GO: optical properties were calculated with the geometric optics raytracing code (Macke

et al., 1996) using the corrected version and the Weibull roughness parameterization as

described in Section 3.2.2. Solid hexagonal ice crystals were assumed with aspect ratios

ranging from 0.02 (thin plates) to 50 (long columns). Ice crystal roughness was parameter-

ized by a Weibull distribution taking values between 0 ≤ σrough ≤ 0.3. As for the YANG

optical properties, the different SCFs were achieved here by mixing the optical properties

for smooth (σrough = 0) and rough crystals (σrough = 0.3) via their extinction coefficients.

While the GO optical properties allow the definition of different ice crystal aspect ratios and

surface roughness levels, they do not account for the physical optics effects responsible for the

increasing power spillover index for a decreasing ice crystal size (cf. Section 3.3.1). The YANG

and YANGRND optical properties, in contrast, are also suitable for small ice crystals, but their

aspect ratios are coupled with the ice crystal size. In Chapter 4 both parameterizations will

be applied to measured radiance distributions of the 22◦ halo and their suitability to represent

optical properties of realistic ice clouds will be investigated.

3.7.2 Sensitivity studies

In the following the sensitivity of RICO on the retrieved smooth crystal fraction (SCF) is tested for

different scenarios using the YANG model for the ice crystal optical properties. LUTs assuming

slightly different atmospheric or ice cloud parameters are matched against synthetic measurements

simulated with DISORT. The tests are performed for the ice crystal habit, AOT, the aerosol

type, surface albedo, and atmospheric profile. The synthetic measurements were simulated for

a wavelength of 500 nm and a solar zenith angle of 45◦ in the almucantar plane. The SCF is

varied between 0 and 1 in steps of 0.05, whereas the cirrus optical thickness ranges between 0.1

and 3. The effective radius, which is related to the width of the 22◦ halo, was demonstrated to

be independent from multiple scattering effects. Thus, the sensitivity studies presented in this

section focus on the SCF with the effective radius treated as a free parameter, ranging from

10 µm to 90 µm in steps of 10 µm. Unless otherwise stated, ice clouds with different mixtures

of smooth and severely roughened solid columns with an aerosol-free atmosphere assuming the

U.S. standard atmospheric profile (Anderson et al., 1986) were used for the radiative transfer

simulations.

First, the retrieval error is estimated by applying the retrieval to simulated test cases using

LUTs with slight deviations in the assumed atmospheric condition, e. g. surface albedo, AOT,
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Figure 3.36: Sensitivity of RICO regarding 5 different LUT parameters: (a) ice crystal habit,
(b) AOT, (c) aerosol type, (d) surface albedo, and (e) atmospheric profile. A LUT was matched
against synthetic measurements simulated with DISORT at a wavelength of 500 nm and an SZA of
45◦ in the almucantar plane. Synthetic measurements for different COTs and SCFs were
calculated and are considered as “truth”. The LUTs were calculated for slightly different
parameter values or parameterizations for the different tests (a–e) while all other LUT parameters
were correct. Panels (a) – (e) show contour plots of the difference between the true and retrieved
smooth crystal fraction ∆SCF = SCFRetrieved − SCFTrue. Blue indicates an underestimation
(SCFRetrieved < SCFTrue) and red an overestimation (SCFRetrieved > SCFTrue) of the true SCF.
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aerosol type. In order to investigate the stability of the retrieval for different ice clouds, simula-

tions were performed for a range of COTs and SCFs for one ice crystal habit population. The

retrieval error is evaluated for the difference between the true and retrieved SCF defined by

∆SCF = SCFRetrieved − SCFTrue . (3.51)

Figure 3.36a demonstrates the effect of assuming a wrong ice crystal shape. All other LUT pa-

rameters are correct. The surface albedo is zero and an aerosol free atmosphere is assumed. The

difference of the retrieved smooth crystal fraction is denoted by ∆SCF. Blue colors indicate an

underestimation of the true SCF (SCFRetrieved < SCFTrue) and red colors represent an overesti-

mation of the true SCF (SCFRetrieved > SCFTrue). Calculating the LUT for solid columns and

applying it to a cirrus cloud consisting of hollow columns causes a tendency to underestimate the

retrieved fraction of smooth ice crystals. This is due to the fact that solid columns produce a

brighter halo than hollow columns. Therefore, a smaller fraction of smooth ice crystals is needed

in case of the solid columns to produce an equally bright halo. The error of the retrieved fraction

of smooth ice crystals is almost independent of the COT but increases with SCF. A maximum

error of ∆SCF = −0.45 occurs for COT = 2.8 and SCF = 0.8.

In Fig. 3.36b the sensitivity of the retrieved smooth crystal fraction is tested for an error in

the assumed AOT. For this test the surface albedo is set to zero and the “continental clean”

aerosol mixture from the OPAC library was chosen. Underestimating the AOT leads to an

underestimation of the SCF, especially for very small COTs. The 22◦ halo in the LUT is brighter

than in the true data due to the lower AOT, especially for low COTs for which the aerosol

scattering features dominate over the halo features. Therefore, a smaller SCF is sufficient to

obtain a 22◦ halo of the same brightness contrast as the true halo. When the COT becomes

larger than the AOT the retrieval error tends to decrease. For this test the largest error of the

retrieved SCF amounts to ∆SCF = −0.65 for COT = 0.1 and SCF = 0.9.

A similar but much less pronounced effect occurs for errors in the assumed aerosol type,

demonstrated in Fig. 3.36c. For the LUT the “continental polluted” OPAC aerosol optical prop-

erties were used whereas the truth is “continental clean” with a constant AOT of 0.2 and surface

albedo zero. In this case the SCF is overestimated for very small COTs. The maximum difference

between retrieved and true smooth crystal fraction amounts to ∆SCF = −0.3 for COT = 0.1 and

SCF = 0.7. The results of these two sensitivity studies demonstrate that especially for ground-

based remote sensing it is crucial to have an accurate representation of aerosol type and optical

thickness in the model setup in order to retrieve information about ice cloud optical properties.

An error in the assumed surface albedo of 0.1 (Fig. 3.36d) has a significantly weaker effect on the

retrieved smooth crystal fraction with a maximum error of ∆SCF = −0.05 for COT = 0.1 and

SCF = 0.1. For these simulations an aerosol free atmosphere was assumed.

The last sensitivity study shown in Fig. 3.36e investigates the effect of a different atmospheric

profile. This results in a slightly different humidity profile which in turn affects the aerosol optical

properties. For this experiment the LUT assumes the U.S. standard atmospheric profile whereas

the true profile is the mid-latitude summer atmosphere with higher relative humidity values in

the lower layers (Anderson et al., 1986). The results show that for very thin cirrus there is a small

difference between true and retrieved smooth crystal fraction of ∆SCF = −0.1 for COT = 0.1

and SCF = 0.8. In general the introduced error is negligible compared to the errors caused by a

wrong representation of the aerosol optical properties.

Figure 3.37 shows the same sensitivity studies as Fig. 3.36 but assuming measurements with

unknown radiometric response (cf. Eq. (3.13)). To retrieve the best match in the LUT, the

radiometric response of the measured radiance is a free parameter. The sensitivity test of assuming

a wrong ice crystal shape, shown in Fig. 3.37a, yields almost the same results as the study with
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Figure 3.37: Sensitivity studies for RICO as in Fig. 3.36 assuming uncalibrated measurements
by treating the radiometric response as a free scaling parameter in the retrieval.
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Figure 3.38: Sensitivity studies for RICO as in Fig. 3.36 assuming a radiometric calibration
error of 15%. This is achieved by using the radiometric response as free scaling parameter within
the boundaries of ±15%, i.e. R ∈ [0.85, 1.15] for the synthetic measurements simulated with
DISORT.
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the calibrated measurements. The underestimation of the SCF is larger for a brighter halo if

solid columns are assumed instead of hollow columns with a maximum error of the retrieved

SCF of ∆SCF = −0.4 for COT = 2.2 and SCF = 0.85. Figure 3.37b shows that uncalibrated

measurements can lead to large errors of the SCF ranging from an underestimation of ∆SCF =

−0.4 for small COTs to an overestimation up to ∆SCF = 0.55 for COT > 1 for an error in the

assumed AOT of 0.1. A similar behavior can be observed for the sensitivity test of the aerosol

type in Fig. 3.37c which results in a maximum underestimation of the SCF of ∆SCF = −0.15 for

small COTs and an overestimation of the SCF up to ∆SCF = 0.7 for COT = 1.5 and SCF = 0.5.

The tendency to underestimate the retrieved SCF for small COTs and a high SCF remains

almost the same as for calibrated measurements. The sensitivity studies of the retrieval on wrong

assumptions of the surface albedo (Fig. 3.37d) is almost negligible with a maximum error of

∆SCF = 0.05 in the retrieved SCF. An error in the assumed atmospheric profile (Fig. 3.37e)

results in a maximum error of the retrieved SCF between ∆SCF = −0.35 and ∆SCF = 0.3 at a

COT of 0.1 and 0.9, respectively. This study demonstrates that for uncalibrated measurements

the retrieval uncertainties can deviate up to 70% in the retrieved SCF from the errors of the

calibrated measurements.

Another test was performed for calibrated measurements with an error of the radiometric

response of 15%, which corresponds to the error of HaloCamRAW’s R-channel (cf. Section 3.5.3).

Figure 3.38 shows the results for the same sensitivity studies as in the previous cases (Figs. 3.36

and 3.37). The results of the ice crystal habit and AOT test in Fig. 3.38a and Fig. 3.38b are

very similar to the calibrated measurements assuming no error for the radiometric response (cf.

Fig. 3.36a and Fig. 3.36b). A slight overestimation of the retrieved SCF occurs for the aerosol

type and atmospheric profile test (Fig. 3.38c and Fig. 3.38e) compared to the sensitivity of the

calibrated measurements assuming no error for the radiometric response. For the aerosol type test

(Fig. 3.38c) the error of the retrieved SCF ranges between ∆SCF = −0.15 and ∆SCF = 0.15,

whereas for the atmospheric profile test (Fig. 3.38e) ∆SCF varies between [−0.35, 0.15]. The

error of the retrieved SCF for the albedo test (Fig. 3.38d) is negligible which occurs most likely

since errors in the assumed LUT parameters are transferred to the radiometric calibration factor

to some extent.

These sensitivity studies demonstrate that the largest retrieval errors occur for wrong assump-

tions of the ice crystal habit and the AOT. Thus, for the compiled LUTs all available ice crystal

habits for the YANG optical properties are considered. Under the assumption that the optical

properties represent the variability of ice crystals in natural cirrus clouds, the retrieval error for

the ice crystal habit is negligible. The AOT is varied in the LUT assuming typical values for

Munich. For the remaining LUT parameters, i.e. aerosol type, surface albedo, and atmospheric

profile, “best guess” fixed values or parameters are chosen. The procedure how the LUT param-

eters are selected will be presented in the following sections.

Depending on the temperature regime of the cirrus and its evolutionary stage, the cloud can

contain supercooled water droplets alongside the ice crystals. Hu et al. (2010) investigated the

occurrence frequency, liquid water content, liquid water path, and temperature dependence of

supercooled water droplets using global depolarization and backscatter intensity measurements

from CALIOP. These observations were combined with temperature information from co-located

infrared imaging radiometer (IIR) and MODIS measurements to derive cloud water paths. This

study considers clouds with an optical thickness greater than 0.4. Hu et al. (2010) confirmed the

findings of Hogan et al. (2004) who state that supercooled water clouds are rarely found below

−35 ◦C. According to Hu et al. (2010) the probability of water phase occurring in a cloud is

almost 0% for T ≤ −35 ◦C and increases rapidly to almost 100% at about −10 ◦C.
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Figure 3.39: Sensitivity studies for RICO as in Fig. 3.36 for measurements assuming mixtures
of smooth ice crystal columns with supercooled water droplets.

Since water droplets cannot form halo displays due to their spherical shape, they have in principle

a similar smoothing effect on halo displays as rough ice crystals. Water droplets may therefore

not be distinguishable from rough ice crystals by passive ground-based observations in the visible

spectral range. To investigate the effect of supercooled water droplets on the retrieved smooth

crystal fraction, synthetic measurements were simulated with DISORT for different mixtures of

smooth ice crystal columns and water droplets. Similar as for the two-habit LUTs, the fraction

of water droplets was increased from 0 for a cloud consisting entirely of smooth solid ice crystal

columns to 1 for a pure water cloud. The water cloud optical properties were calculated with the

Mie tool described in Wiscombe (1980). A gamma size distribution N(r) was assumed

N(r) = N0r
αexp

(
− r

reff νeff

)
, (3.52)

with the droplet radius r, the normalization constant N0, and α = 7, which corresponds to an

effective variance of νeff = 1/(α + 3) = 0.1, as described in Emde et al. (2016). It is assumed

that all cloud particles (water droplets and ice crystals) have the same effective radius which was

varied between 10 and 90 µm in steps of 10 µm. A LUT assuming different mixtures of smooth

and rough ice crystal columns was matched against these synthetic measurements. The retrieved

SCF is displayed in Fig. 3.39. The error of the retrieved SCF ranges in the interval ∆SCF ∈ [−0.1,

0.1]. This means that water droplets indeed have a very similar effect on the 22◦ halo as rough

ice crystals and introduce an error of the retrieved smooth crystal fraction of ∆SCF = ±0.1.

The sensitivity of the cloud height and thickness as well as the atmospheric profile on the

22◦ halo radiance distribution was tested. The tests were performed for the HaloCamRAW R-, G-,

and B-channel. Varying the cloud base height between 6 km and 10 km, both with a geometrical

thickness of 1 km resulted in differences of � 1 %. Similar results were obtained for the depth of

the cloud which was varied between 1 km and 4 km. Also the choice of the atmospheric profile

is negligible in this spectral range: the difference between a simulations using the U.S. standard

atmosphere and the mid-latitude summer atmosphere was � 1 %. Both atmospheric profiles are

defined in Anderson et al. (1986). Unless otherwise stated the LUT simulations were performed

using the U.S. standard atmospheric profile and a cirrus cloud between 10 km to 11 km height.

Furthermore, it was tested whether it is sufficient to perform radiative transfer simulations for

a representative wavelength rather than integrating over the full spectral sensitivity curves of

HaloCamRAW. Figure 3.40 shows the results of radiative transfer simulations using libRadtran
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Figure 3.40: Radiative transfer simulations performed with libRadtran for the HaloCamRAW

red, green and blue channel in the principal plane above the sun with SZA = 45◦. A cirrus cloud
with COT = 1 (at a wavelength 550 nm), reff = 20 µm and a mixture of 25% smooth and 75%
severely roughened solid columns was assumed. The continental average aerosol mixture from
OPAC was chosen with AOT = 0.1 at 550 nm.

for realistic conditions including a cirrus cloud with 25% smooth crystals and a typical AOT of

0.1. The geometry was chosen in the principal plane above the sun (SZA = 45◦) for scattering

angles between 10◦ and 50◦. The solid lines represent spectral simulations integrated over the

spectral sensitivity functions for the red, green and blue channel of HaloCamRAW. The dashed

lines display the same simulations but for only one wavelength which is equal to the weighted

average of the respective camera channels. The averaged relative differences are overall smaller

than 2%. Considering the large uncertainties of the unknown aerosol type let alone the variability

of the ice crystal shape, this uncertainty is considered small enough to allow for monochromatic

radiative transfer simulations using the representative wavelengths of each camera channel. The

representative wavelengths for HaloCamRAW were determined by the weighted average over the

spectral response of each channel (cf. Fig. 3.29) resulting in 618 nm for the red, 553 nm for the

green, and 498 nm for the blue channel.

3.7.3 Ancillary data

The sensitivity studies in the previous section revealed that the RICO retrieval is influenced

by additional parameters. Besides the ice crystal shape itself, the cirrus optical thickness has

the strongest impact on the retrieval followed by the aerosol optical thickness and the surface

albedo. The subsequent sections present ancillary data which are used to constrain these addi-

tional parameters in the retrieval and explains the methods which are used to determine these

parameters.

Aerosol optical thickness

The aerosol optical thickness was derived from the AERONET AOT product (Holben et al., 1998)

for the observation site on the MIM rooftop platform. The AOT during the time when the cirrus

cloud was observed can be estimated from clearsky periods before or after. According to the study

of Schnell (2014) typical AOT values for Munich during the period from 2007 to 2010 amount to

0.269± 0.014 based on AERONET data for a wavelength of 500 nm and ranged between 0.12 –

0.17 at 532 nm for measurements with MULIS (Multichannel Lidar System) (Freudenthaler et al.,

2009). Analyzing the AERONET aerosol optical thickness values (version 2, level 1.5) between

September 2015 and April 2017 the mean AOT at a wavelength of 500 nm amounts to 0.19 as

displayed in Fig. 3.41. 3% of the values range between 0.7 ≤ AOT ≤ 3, which are most likely thin,
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Figure 3.41: AERONET aerosol optical thickness (AOT) at 500 nm wavelength for the time
range between September 2015 and December 2016 for which the LUTs are calculated. The
average AOT during this time range amounts to about 0.19 (left panel). The histogram in the
right panel displays the AOT up to 0.7 and shows that the most frequent AOTs range between 0
and 0.5. 3% of the values range between 0.7 ≤ AOT ≤ 3. These are most likely thin, homogeneous
cloud layers which are not filtered out by the AERONET cloud-screening algorithm.

homogeneous cloud layers which are not filtered out by the AERONET cloud-screening algorithm.

To cover the most frequently observed values for Munich, which are displayed in Fig. 3.41b, the

LUTs were calculated for AOTs ranging between 0.0 and 0.5 in steps of 0.05. Schnell (2014) also

studied the typical aerosol type over Munich using CALIPSO data. Evaluated in geometrical

layer depth, the dominant aerosol type was smoke, followed by polluted dust. In autumn the

continental clean aerosol type was the second largest fraction. Other observed aerosol types

were dust and continental polluted aerosol. Unless otherwise stated, the LUT simulations were

performed using the “continental average” mixture which is part of the OPAC database and

described in Hess et al. (1998). To constrain the AOT in the retrieval, the daily mean value from

AERONET was used within a 2σ confidence interval.

Cirrus optical thickness

The cirrus optical thickness (COT) has a strong influence on the brightness contrast of the 22◦ halo

and has to be constrained as much as possible to retrieve ice crystal shape and roughness. For this

retrieval the COT is derived from sun photometer measurements using the SSARA instrument

(Toledano et al., 2009, 2011). The SSARA instrument provides direct sun measurements with a

temporal resolution of 2 s which is much more suitable for the observation of the highly variable

cirrus clouds than the AERONET data which has a temporal resolution of 15 min (Holben et al.,

1998). The COT is derived by calculating the total optical thickness from the SSARA direct sun

measurements. The previously estimated AOT is then subtracted and a correction parameter is

applied to account for the diffuse radiation measured additionally due to the increased forward

scattering of the large ice crystals. Similar to the procedure presented in Reinhardt et al. (2014)

the concept of the apparent optical thickness is used as in Shiobara and Asano (1994), Guerrero-

Rascado et al. (2013), and Segal-Rosenheimer et al. (2013).

According to Bouguer-Lambert-Beer’s law (cf. Eq. (2.24)), the solar radiance L transmitted
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by the atmosphere with a slant path optical thickness τs can be denoted as

L = L0 exp(−τs) ,

where L0 is the solar radiance at the top of the atmosphere. Any detector with a finite FOV which

is pointing towards the sun will measure both the direct solar radiance and the diffuse radiance

produced by scattering particles and molecules in the atmosphere. The total radiance entering

the instrument FOV can be considered as an apparent radiance L′ representing the direct and

the diffuse part together. The apparent radiance is defined as

L′ = L0 exp(−τapp) = L0 exp(−k τs) , (3.53)

with the apparent optical thickness τapp. The apparent optical thickness can be related with the

slant-path optical thickness τs by introducing the correction factor k

τapp = k τs , (3.54)

which accounts for the difference between direct and apparent radiance due to the additional

diffuse part and takes values k ∈ [0, 1]. Using Eq. (3.54) the slant-path optical thickness τs can

be calculated by

τs = ln

(
L0

L′

)
/k . (3.55)

As discussed in Reinhardt et al. (2014), for τs < 3 the correction factor k is most sensitive to the

detector FOV, the effective particle radius and shape but is almost independent of τs itself. For

the RICO retrieval the k-factors were calculated according to this procedure for the SSARA FOV

of 1.2◦ (Toledano et al., 2009) assuming a COT of 1.5 as proposed by Reinhardt et al. (2014).

The k-factors were calculated for all ice crystal habits, surface roughness values, and effective

radii used in the LUT. The COTs derived from the SSARA direct sun measurements using the

presented method, are used as an additional constraint in the retrieval.

Surface albedo

The surface albedo is another parameter which affects the transmission measured at the ground.

With increasing surface albedo more radiation is reflected by the ground which is scattered again

by the clouds. However, for an error of 0.1 in the assumed surface albedo the errors in the retrieved

SCF are significantly smaller (|∆SCF|≤ 0.05) than for a wrong assumption of the aerosol type

(|∆SCF|≤ 0.3) or AOT (|∆SCF|≤ 0.65) (cf. Fig. 3.36). To estimate the surface albedo during

the time of the measurements, the MODIS white-sky albedo product MCD43B3 (Strahler et al.,

1999) was used. The MODIS white sky albedo product is available for 7 wavelength bands

centered at 469, 555, 645, 858, 1240, 1640 and 2130 nm. Figure 3.42 shows the MODIS white-sky

albedo for the 555 nm wavelength band. For orientation, a few locations are indicated in Fig. 3.42

by red dots. The MIM (Meteorological Institute of the LMU) in Munich is represented by the

northernmost red dot and the DLR (German Aerospace Center) in Oberpfaffenhofen is marked

by the red dot south-west of Munich. The displayed geographic region was selected to cover the

coordinates of the projected 22◦ halo between sunrise and sunset throughout the year. Details on

the calculation of the coordinates of the projected 22◦ halo are described in Appendix A.2. At a

wavelength of 555 nm albedo values range between about 0.015 and 0.12 with the lowest values

for lakes (e.g. south of Starnberg) and forests (e.g. east of DLR). To obtain spectrally continuous

data, the ASTER spectral library (Baldridge et al., 2009) is applied to interpolate the MODIS

albedo data similar to the procedure described in Hausmann (2012). A linear combination of the
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Figure 3.42: MODIS MCD43A3 white sky albedo from 19 September 2015 at a wavelength of
555 nm displayed for the geographic region which is covered by the projected 22◦ halo between
sunrise and sunset throughout the year. The Meteorological Institute of LMU in Munich is marked
by a red dot and labeled with “MIM”. Some more locations, e.g. the DLR in Oberpfaffenhofen,
are marked for orientation.

spectral albedo of deciduous and conifer trees, grass, shingle and concrete is used to represent

the MODIS white sky albedo. Figure 3.43 shows the MODIS white sky albedo measured at the

seven wavelengths with black dots. The black line represents the linear combination of the single

ASTER spectral albedos which provides the best match of the MODIS measurements. The single

spectral albedos with the corresponding weighting coefficients are depicted in different colors. To

obtain the albedo measured e.g. by HaloCamRAW, the fitted spectral albedo from the ASTER

library (cf. black line in Fig. 3.43) is integrated over the spectral sensitivity of the respective

camera channel. In the case of HaloCamRAW, integrating the spectral albedo over the red, green,
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Figure 3.43: Spectral albedo data from the ASTER library provided with a resolution of 2 nm
for grass (blue), shingle (red), conifer (dark green) and deciduous trees (green) as well as concrete
(purple). A linear combination for the different ASTER albedo types is determined which
represents best the averaged MODIS data from Fig. 3.42 by applying the least-squares method.
The weighting factors for 19 September 2015 are provided in the legend of the figure. The
resulting mixture of ASTER albedo data is then used to obtain an approximation of the MODIS
albedo product for high spectral resolution, which is represented by the black solid line.
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Figure 3.44: Surface albedo between October 2015 and March 2017 for the HaloCamRAW RGB
channels. The data are obtained by weighting the spectral high-resolution parameterization of the
MODIS albedo data (cf. Fig. 3.43 black curve) with the spectral response of the RGB channels (cf.
Fig. 3.29). The surface albedo for the HaloCamRAW channels averaged over this period amounts to
0.065 (R), 0.063 (G), and 0.050 (B).

and blue channel yields the albedo values displayed in Fig. 3.44 with the respective line color.

For this figure the MODIS white sky albedo values were evaluated between October 2015 and

March 2017. Values larger than 0.1 were excluded since it is likely that they are affected by snow.

Averaging over the whole period yields mean albedo values for the red, green, and blue channel of

0.065, 0.063, and 0.050 respectively. The red and green channels show higher values than the blue

channel since the surface South of Munich is dominated by green grass and trees. Comparing the

red and the green channel, a slight difference between winter and summer is noticeable which is

very likely due to the vegetation period. During summer the deciduous trees increase the albedo

in the part of the spectrum covered mostly by the green channel, whereas in winter the albedo

measured by the green channel is slightly lower than the red channel.
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3.8 CrystalTrace – a raytracing algorithm for oriented ice crys-

tals

For radiative transfer simulations it is usually assumed that the scattering particles are randomly

oriented within the cloud or the atmosphere. This allows for a simplified parameterization of the

scattering process. The scattering phase function depends only on the scattering angle and the

relative azimuth angle of the incident and outgoing light can be selected randomly. In most cases

the assumption of randomly oriented particles is realistic, but in case of cirrus clouds oriented ice

crystals have frequently been observed by space-borne and ground-based observations. Noel and

Sassen (2005) studied the orientation of ice crystals in cirrus and mid-level clouds using scan-

ning polarization lidar observations. Chepfer et al. (1999) and Noel and Chepfer (2004) observed

oriented ice crystals in more than 40% of ice clouds by analyzing POLDER bidirectional polar-

ized radiances for specular reflection above optically thick ice clouds. Noel and Chepfer (2010)

analyzed CALIOP backscatter and depolarization ratios for thin ice clouds and found oriented

crystals in about 6% of all ice cloud layers. Zhou et al. (2012) retrieved the frequency of oriented

ice crystals by simulating the CALIOP backscatter and depolarization ratio with help of a 3D

Monte Carlo model and found a maximum fraction of oriented plates between 0.5% in cold ice

clouds and 6% in optically thick mixed-phase clouds.

Furthermore, certain halo displays such as sundogs and upper tangent arcs can only be explained

by the presence of oriented ice crystals (e.g. Wegener (1925), Tricker (1970), Tape (1994), Tape

and Moilanen (2006)). One objective of this work is to investigate the effect of ice crystal ori-

entation on halo displays and to explore possibilities to infer the fraction of oriented ice crystals

from their brightness contrast. When ice crystals are oriented the single-scattering properties are

not only a function of the scattering angle but depend also on the azimuth of the scattering plane

(Liou and Yang, 2016). For radiative transfer simulations of oriented ice crystals, their optical

properties have to be stored for the different incident and scattered directions which implies an

increase of the required memory space by a factor 360 for a resolution of 1◦. This can be avoided

by using the geometric raytracing method to calculate the radiance field caused by the refraction

and reflection of sunlight by ice crystals.

The raytracing method was first developed by Wendling et al. (1979) for hexagonal ice crystal

columns and plates. Several authors advanced the method by using more complex particles and

including absorption and polarization: Pattloch and Tränkle (1984), Muinonen et al. (1989),

Takano and Liou (1990) and later Macke (1994), Takano and Liou (1995), Hess (1996), Macke

et al. (1996), Yang and Liou (1998), and Prigarin (2009). This work focuses on the visible spectral

range (400 nm to 700 nm), where the wavelength is much smaller than the crystal size resulting

in size parameters of the order of 100. For large size parameters the geometric optics approach

can be used as an asymptotic approximation of fundamental electromagnetic theory (Liou and

Yang, 2016). As another advantage geometric raytracing can be simulated using the Monte Carlo

method and can thus be easily implemented in the existing MYSTIC code of libRadtran. The

raytracing method developed in this work and its implementation in MYSTIC will be explained

in the following.

For large size parameters the incident light can be considered as a bundle of parallel rays that

undergo reflection and refraction outside and inside the ice crystal with propagation directions

determined by Snell’s law (cf. Eq. (2.47)) at the surface. Starting with the direction of the

incident ray x0, the crystal’s orientation is calculated by randomly choosing three Euler angles

αEuler (angle of crystal c-axis), βEuler and γEuler. The Euler rotations around these three angles

are illustrated in Fig. 3.45. Three different configurations are usually distinguished for the choice

of the Euler angles:
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Figure 3.45: Ice crystal geometry and definition of Euler angles as used for CrystalTrace. The
reference coordinate system is represented by the x, y, and z-axes. (a) Original geometry of the ice
crystal rotated by the Euler angle αEuler around its z-axis. The axes of the updated coordinate
system are denoted by x′, y′, and z′. The second rotation by βEuler around the x′-axis results in
the crystal orientation shown in (b) with the updated coordinate system denoted by x′′, y′′, and
z′′. (c) Third rotation around the z′′-axis by γEuler.

1. Randomly oriented ice crystals: for randomly oriented crystals the new orientation is de-

termined by drawing a random number % between [0, 1)

αEuler = 2π % , (3.56)

βEuler = arccos(1− 2%) , (3.57)

γEuler = 2π % . (3.58)

Randomly oriented crystals cause the 22◦ and 46◦ halo.

2. Singly oriented ice crystals: for the parameterization of ice crystal orientation along their

c-axis, a Gaussian distribution is used with mean value µβ,Euler and standard deviation

σβ,Euler

βEuler =
1√

2σ2
β,Euler π

exp

(
−(%− µβ,Euler)

2

2σ2
β,Euler

)
. (3.59)

The standard deviation of the Gaussian orientation distribution will be referred to as orien-

tation parameter in the following. Ice crystal plates orient with their c-axis vertically which

implies µβ,Euler = 0◦. Ice crystal columns instead have aerodynamically stable orientations

with their c-axis horizontal and thus µβ,Euler = 90◦. This configuration is referred to as

singly oriented since only one crystal axis is oriented and the other two Euler angles αEuler

and γEuler are chosen randomly as in (1). Singly oriented ice crystals cause the upper and

lower tangent arcs in case of columns and sundogs in case of plates.

3. Parry oriented ice crystals: in rare cases horizontally oriented ice crystal columns can also

be oriented in their rotation around z′′′ (cf. Fig. 3.45c). This means that both βEuler and

γEuler are parameterized by a Gaussian distribution in analogy to Eq. (3.59). Only αEuler is

sampled from a uniform distribution between 0 and 2π. These oriented ice crystal columns

form the rare Parry arc which is visible above the upper tangent arc in Fig. 2.10.

Using the rotated ice crystal coordinates, an intersection between the direction of the incident

ray x0 and the plane of a crystal face is determined at a randomly chosen point. This procedure

is illustrated in Fig. 3.46: a circle is defined in the plane perpendicular to x0 and centered around

the geometric center of the ice crystal s. The radius is determined by the maximum diameter D

of the ice crystal. Within this circle a point is chosen by drawing random numbers for the zenith
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Figure 3.46: Method to determine the initial point x of the incident ray x0. The red arrow
denotes the incident direction of the ray with starting point x. The intersection point with the ice
crystal x is determined by drawing random angles θ and φ in a circle centered around the
barycenter s with diameter D, the maximum dimension of the ice crystal. The vectors u and v are
auxiliary vectors which are perpendicular to x and to each other.

(θ) and azimuth angle (φ). The resulting vector of the incident ray is denoted by a red arrow in

Fig. 3.46 and is calculated by

x = s− x0 ·D/2 + (cosφu + sinφv)
√
θ ·D/2 . (3.60)

Random points are repeatedly selected until an intersection is found between the plane of an ice

crystal face and the vector of the incident ray x. Once an intersection is found, the photon ray

is traced through the ice crystal by refraction and reflection using the Monte Carlo method. The

direction of the reflected and transmitted rays can be calculated using Snell’s law (Eq. (2.51)) and

their intensity with the Fresnel reflection coefficient R = (r2
‖+r2

⊥)/2 using Eqs. (2.48) and (2.49).

The photon is reflected if the chosen random number is % < R, otherwise it is transmitted. Total

reflection occurs if the angle of refraction is θt > arcsin(1/nRe). This procedure is repeated until

the photon escapes from the crystal.

This raytracing method allows performing radiative transfer simulations without explicit

knowledge of the scattering phase function. Furthermore, the raytracing technique is computa-

tionally fast compared to other methods like T-matrix or Discrete-Dipole Approximation (Draine

and Flatau, 1994, Flatau and Draine, 2014) which is an important advantage for the use of radia-

tive transfer simulations. However, the raytracing method is based on the laws of geometric optics

which can be applied to particle sizes much larger than the wavelength, i.e. χ� 1. As stated by

Liou and Yang (2016), this allows for the assumption that rays can be localized. Furthermore,

it has to be assumed that the energy attenuated by the scatterer may be decomposed into equal

extinction from diffraction and from Fresnel rays. The raytracing method developed for this study

is called CrystalTrace and allows radiative transfer simulations of mixtures of different ice crystal

shapes with selected degrees of orientation. The current implementation does not account for the

polarization state of the photon, diffraction, ice absorption and ice crystal roughness which could

be incorporated in the future. To study ice crystal orientation and its effect on the brightness of

halo displays in the visible spectral range, this is considered a suitable tool for basic sensitivity

studies. CrystalTrace was validated by comparing the scattering phase functions for ice crystals
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Figure 3.47: Comparison of the scattering phase functions calculated with YANG (black),
CrystalTrace (green) and the bug-fixed version of GO (blue) at wavelength of 550 nm. (a)
Scattering phase functions for a solid ice crystal column with AR = 1.4 and maximum dimension
D = 65 µm and (b) for AR = 14.4 with D = 1× 104 µm. Both the GO and CrystalTrace phase
functions were scaled to allow for a comparison of the results for scattering angles excluding the
forward scattering peak. The results compare well apart from the forward scattering region for the
smaller ice crystal (a) due to diffraction which is not accounted for by CrystalTrace.

with different aspect ratios with the GO raytracing code (cf. Section 3.2.2). Figure 3.47 compares

the phase functions calculated with CrystalTrace (green) and the GO raytracing code (blue) for

ice crystals columns with aspect ratio 1.4 (a) and long solid columns with aspect ratio 14.4 (b)

at a wavelength of 550 nm. The corresponding phase function of the YANG database (black) is

shown as a reference. The results compare well apart from the forward scattering region where

CrystalTrace shows smaller values than GO and YANG. This is due to diffraction which is not

accounted for by CrystalTrace. Due the coarser scattering angle resolution in the case of the GO

phase functions the peaks of the 22◦ and 46◦ halos are not as pronounced as for CrystalTrace.

To perform simulations of realistic ice clouds with multiple scattering in combination with

molecules and aerosol particles, CrystalTrace is implemented in libRadtran’s MYSTIC solver.

MYSTIC solves the radiative transfer equation by using the Monte Carlo method to trace single

photons through the atmosphere as described in Section 3.1.1. This is a perfectly suited framework

for implementing CrystalTrace. When a scattering process takes place at an ice crystal, the photon

is traced through the ice crystal and the new direction is directly calculated by CrystalTrace

instead of using the stored scattering phase functions. Furthermore, no delta-scaling is needed

since photons refracted by two parallel crystal faces escape the crystal and are traced further

through the atmosphere, i.e. are treated as unscattered. To account for the varying projected ice

crystal area for different orientations in the CrystalTrace extension implemented in MYSTIC, the

photons can be assigned with a weight. The simulations shown in this work were performed with

a version of MYSTIC and CrystalTrace, which does not yet account for this effect. However, the

simulations with MYSTIC and CrystalTrace are only used for qualitative analyses throughout

this work. Furthermore, the ice crystal aspect ratios used here are 2.5 for solid columns and
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Figure 3.48: Raytracing simulation with MYSTIC and CrystalTrace showing the radiance
distribution in a polar projection for the upper hemisphere using 1× 107 photons. The zenith
angle θ ranges from 0◦ to 90◦ at the horizon, whereas the azimuth angle φ ranges from 0◦ to 360◦.
The sun is located at an SZA of 60◦ and an azimuth angle of φ0 = 270◦. The simulation was
performed for a wavelength of 550 nm and an ice cloud of optical thickness of 0.8. The cirrus cloud
contains 40% oriented ice crystal columns (c-axis horizontal), 40% oriented ice crystal plates
(c-axis vertical), and 20% randomly oriented ice crystal columns. For both oriented crystal
populations an orientation parameter of σβ,Euler = 1◦ was chosen.

0.5 for plates, which is compact enough for this effect to be insignificant. Figure 3.48 shows

the radiance distribution simulated with MYSTIC and CrystalTrace for a cirrus with optical

thickness 0.8 in an aerosol-free atmosphere with non-reflective surface. A solar zenith angle of

60◦ and an azimuth angle of 270◦ were chosen. The cirrus cloud contains 40% oriented ice crystal

columns (c-axis horizontal), 40% oriented ice crystal plates (c-axis vertical), and 20% randomly

oriented ice crystal columns. For both oriented crystal populations an orientation parameter of

σβ,Euler = 1◦ was chosen. The oriented plates are responsible for the sundogs (22◦ parhelia) visible

on each side of the sun, the 120◦ parhelia, and the circumzenithal arc, which is visible at θ ≈ 10◦.

All parhelia are located on the parhelic circle which forms at the zenith angle of the sun θ = θ0

and is produced by reflection at vertical crystal faces of both oriented plates and columns. The

oriented hexagonal columns produce the upper and lower tangent arcs visible above and below

the sun in Fig. 3.48 and the 22◦ halo forms due to the presence of randomly oriented hexagons.

This simulation was performed using 1× 107 photons. For the implementation of CrystalTrace

MYSTIC has to be used in the “forward mode” (cf. Section 3.1.1 and Fig. 3.2a), which has

a similar computational time as the backward mode if both hemispheres are simulated. The

runtime for 1× 105 photons amounts to about 12 s for a setup as in Fig. 3.48 using an Intel Xeon

E5-2650 processor with 2 GHz clock frequency.



Chapter 4

Results

Section 4.1 was partly published in Forster et al. (2017):

Forster, L., M. Seefeldner, M. Wiegner, and B. Mayer, 2017: Ice crystal characterization in

cirrus clouds: a sun-tracking camera system and automated detection algorithm for halo displays.

Atmospheric Measurement Techniques, 10 (7), 2499–2516, 10.5194/amt-10-2499-2017.

4.1 Halo display statistics

HaloCam has been operated at MIM in Munich (Germany) since Sept 2013 where it provides con-

tinuous measurements including contributions to the ML-CIRRUS campaign in March and April

2014 (Voigt et al., 2017). Only during the ACCEPT campaign (Analysis of the Composition of

Clouds with Extended Polarization Techniques, Myagkov et al. (2016)) in October and Novem-

ber 2014 it was installed in Cabauw (The Netherlands). In the following sections the HaloCam

datasets collected during the ACCEPT campaign and in Munich will be evaluated regarding the

frequency of halo displays and halo-producing cirrus clouds.

4.1.1 Halo display statistics during ACCEPT

A first visual evaluation of the halo display frequency during the ACCEPT campaign (10 October

until 14 November 2014) was performed. The results are displayed in Fig. 4.1 as Venn diagram

(Venn, 1880). The occurrence of each different halo type is visualized by a circle. The radius

of each circle scales with the total observation time for the respective halo type. Cross sections

between the circles indicate instances where two or three halo displays were visible at the same

time. The observation time is given in hours. The total time of HaloCam observations, which

were collected during daytime only, amounts to about 344 h. With about 30 h, halo displays

were observed in almost 9% of the time. The presence of cirrus clouds within the HaloCam

field of view was evaluated visually and amounts to about 110 h. Thus, about 27% of the cirrus

clouds produced a visible halo display. The 22◦ halo (complete or partial) occurred in 16.2%, the

sundogs in 19% and the upper tangent arcs in 7.8% of the time when cirrus clouds were present.

Circumscribed halos were not observed during the campaign due to the low solar elevations. As

illustrated in Fig. 4.1, sundogs were observed more often than 22◦ halos with about 21 h vs. 18 h.

Thus, sundogs occurred in 70% and 22◦ halos in 60% of the total halo observation time (30 h).

Upper tangent arcs occurred in total for about 9 h (30%) and were most of the time accompanied

by 22◦ halos and sundogs. Thus, the majority of the halo displays were produced by oriented ice

crystals (cf. Section 2.3).
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Figure 4.1: Halo display statistics from HaloCam observations during the ACCEPT campaign
10 October until 14 November 2014. The observation times of 22◦ halo, sundogs and upper
tangent arc are provided in hours and are represented by the radii of the three circles. Cross
sections of circles indicate time periods when two or three halo displays were visible
simultaneously. The total observation time amounts to 344 h.

Compared to the findings of Sassen et al. (2003b) the relative fraction of 22◦ halos is roughly

similar with 50%, but sundogs with 12%, and upper/lower tangent arcs with about 15% were

far less frequent than observed during ACCEPT with 60%, 70%, and 30%, respectively. AKM

observed 22◦ halos 36% of the time, upper and lower tangent arcs 11% and left and right sundogs

with a relative frequency of 18% each. Although the frequency of simultaneous occurrence of the

left and right sundog is unknown (from the AKM database), one can deduce that the relative

frequency of both sundogs ranges between 18% and 36%, which is larger than the 12% of Sassen

et al. (2003b). Overall, Sassen et al. (2003b) and AKM found a much higher frequency for

22◦ halos compared to sundogs and tangent arcs, which is in contrast to the HaloCam observations

during the ACCEPT campaign. An overview of the complete halo display statistics evaluated

from HaloCam observations is provided in Table 4.2 (Section 4.1.2). The reasons for the differences

in the observed halo frequencies could be manifold: one main reason might be that a statistical

evaluation over six weeks is compared to a database of 10 (Sassen et al., 2003b) and 30 years

(AKM). It is possible that the observation time during ACCEPT was not long enough to yield

representative results for the frequency of the different halo displays. Another factor could be the

observation site. The mountains in the east of Salt Lake City, the observation site of Sassen et al.

(2003b), could obscure the sun during periods with low solar elevation which are favorable for the

formation of sundogs. It is possible that on average fewer sundogs could have been observed in

Salt Lake City than in Cabauw which is surrounded by a rather flat landscape. Also differences

in the dominating weather patterns forming cirrus clouds in Salt Lake City and Cabauw could

have an impact on halo formation as discussed in Sassen et al. (2003b). For the AKM and the

HaloCam dataset, information about dominating weather patterns for different halo displays is

not available. Furthermore, the observation period during the ACCEPT campaign from October

until mid-November was dominated by low solar elevations which implies a higher chance for

observing sundogs. Long-term observations have to be evaluated to obtain representative results

for the frequency of the individual halo types.
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4.1.2 Long-term halo statistics in Munich

In Munich HaloCam has collected data over more than 2 years between January 2014 and June

2016. This long-term dataset was evaluated automatically with the halo detection algorithm

HaloForest (cf. Section 3.6.2). HaloForest is based on a random forest classifier and a separate

classifier is trained for each of the 6 image segments shown in Fig. 3.23b. To ensure a high

classification accuracy, only the classifiers for the upper image segments (3, 4, and 5) were used

(cf. Table 3.4). A HaloCam image is assigned to the class “22◦ halo” if at least one of the image

segments 3, 4, or 5 predicts a 22◦ halo. Applying a probability threshold of p > 0.5, 22◦ halos

were detected in 152 h of the 7345 h total observation time during daylight. Hence, 22◦ halos

occurred in about 2.1% of the time.

As an additional test, the classification accuracy of HaloForest was checked for 470 randomly

chosen HaloCam images for the “22◦ halo” and “no 22◦ halo” class within this long-term ob-

servation period in Munich. The confusion matrix for this test is provided in Table 4.1 for the

image segments no. 3, 4, and 5 together. More than 88% of the 22◦ halos are classified correctly

Table 4.1: Confusion matrix similar to Table 3.4 for 470 randomly selected HaloCam images
between January 2014 and June 2016, evaluated for segments 3, 4, and 5.

Predicted

22◦ halo no 22◦ halo

True
22◦ halo 88.8 % 2.8 %

no 22◦ halo 11.2 % 97.2 %

and less than 12% are classified incorrectly as 22◦ halos. Images were incorrectly classified as

22◦ halo predominantly due to small bright clouds or contrails in a blue sky or structures in

overcast conditions which happen to cause a peak in the averaged brightness distribution at a

scattering angle of 22◦.

In addition, the fraction of cirrus clouds which produced a 22◦ halo during this time period was

investigated. The total frequency of occurrence of cirrus clouds was determined by independent

data of co-located CHM15kx ceilometer observations (Wiegner and Geiß, 2012). To guarantee

consistent observational conditions, only ceilometer measurements in the absence of low-level

clouds were considered. Proprietary software of the ceilometer automatically provides up to three

cloud base heights with a temporal resolution of 15 s. The detection is based on the fact that the

backscatter signals of clouds are significantly larger than the background noise. The sensitivity

of the ceilometer is sufficient to even detect clouds near the tropopause during daytime. Since

ceilometers, however, do not provide depolarization information, the discrimination between water

and ice clouds was made by means of the cloud base temperature Tbase. Sassen and Campbell

(2001) state that cirrus cloud base temperatures ranged between −30 ◦C and −40 ◦C during the

10-year observation period at the FARS observation site. As a temperature threshold is not

an unambiguous criterion for the existence of ice clouds, the frequency of occurrence for three

different temperatures was calculated: −20 ◦C, −30 ◦C, and −40 ◦C. If Tbase is lower than the

given temperature threshold, the cloud is considered a “cirrus cloud”. The temperature profiles

were obtained from routine radiosonde ascents of the German Weather Service at Oberschleißheim

(WMO station code 10868)1, which is located about 13 km north of the HaloCam site. During the

time period from January 2014 until June 2016 a fraction of 5.6% cirrus clouds was detected for

1The radiosonde data were downloaded from http://weather.uwyo.edu/upperair/sounding.html of the University
of Wyoming, College of Engineering, Department of Atmospheric Science.
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a cloud base temperature of Tbase < −20 ◦C. Towards lower cloud base temperatures the amount

of detected cirrus clouds decreases to 3.5% for Tbase < −30 ◦C and 1.9% for Tbase < −40 ◦C.

Due to the different pointing directions of the ceilometer (towards zenith) and HaloCam

(towards sun), the instruments observe different regions of the sky. This is accounted for by

prescreening the data for 1 h time intervals when the ceilometer detected a cirrus cloud. The

prescreening is subject to data availability for both instruments. The subsequent analysis of

cirrus fraction and halo frequency of occurrence is based on the full temporal resolution of 15 s and

10 s, respectively. Relative to the amount of detected cirrus clouds about 25% occurred together

with a 22◦ halo for the image segments 3, 4, and 5. This fraction does not change much for the

different cloud base temperatures (26.4% for Tbase < −20 ◦C and 24.5% for Tbase < −40 ◦C) since

the fraction of detected clouds decreases together with the detected halos for lower temperatures.

According to the confusion matrix in Table 4.1, 88.8% of the detected “22◦ halos” are real

halos, while 2.8% of the “no 22◦ halos” are actually “22◦ halos”. Correcting the result for the

estimated false classifications, the fraction of halo-producing cirrus clouds amounts to about

25% · 88.8% + 75% · 2.8% ≈ 24%. The comparison of ceilometer and HaloCam data implies that

about 25% of the cirrus clouds contain some fraction of smooth, hexagonal ice crystals. Sassen

et al. (2003b) observed a fraction of 37.3% cirrus clouds which produced a 22◦ halo within 1 h

time intervals. The results most likely differ because the observations originate from different

locations which might be dominated by different mechanisms for cirrus formation and a different

topography. It has to be noted however, that the evaluation method is very sensitive to the

sampling strategy of the observations: the fraction of halo-producing cirrus clouds increases to

more than 50%, if the HaloCam observations are binned to 1 h intervals, which are counted as

containing a halo regardless of their duration. This might also be a reason for the larger fraction

of halo-producing cirrus clouds observed by Sassen et al. (2003b). For comparison, the fraction

of cirrus clouds producing a halo display was evaluated visually for the HaloCam observations

during the ACCEPT campaign with a temporal resolution of 10 s and amounts to about 27%

including 22◦ halos, sundogs and upper/lower tangent arcs (cf. Section 4.1.1). This value is also

lower than the result provided by Sassen et al. (2003b) who observed any of the three halo types

in about 54% of the 1 h periods with cirrus. An overview of the frequency of halo displays (cf.

Section 4.1.1) and halo-producing cirrus clouds evaluated with HaloCam observations is provided

in Table 4.2.

The current version of HaloForest discriminates only between the two classes “22◦ halo” and

“no 22◦ halo”. Thus, interference with other halo types as sundogs or upper/lower tangent arcs

and circumscribed halos might occur at certain solar elevations. The position of sundogs relative

to the sun depends on the solar zenith angle (SZA) and can be calculated analytically as described

in Wegener (1925), Tricker (1970), Minnaert (1993) and Liou and Yang (2016). The sundogs are

located at scattering angles close to the 22◦ halo for large SZAs and occur at larger scattering

angles for small SZAs, i.e. high solar elevations (cf. Fig. 2.16). Figure 4.2 shows the same

HaloCam image with the azimuth segments as Fig. 3.23b. The minimum scattering angle of the

sundogs are calculated as a function of the SZA and represented by the red and green squares.

The SZAs range between 90◦ and 35◦ with a resolution of 1◦. The two white circles centered

around the sun at scattering angles of 21.0◦ and 23.5◦ indicate the mask which is used to find the

scattering angle of the 22◦ halo peak. For SZA ≤ 67◦ the sundog positions are located outside this

mask and cannot be misclassified as 22◦ halo (green squares). The red squares represent sundog

positions which are located within this mask and might therefore be misclassified. This is the

case for SZAs between 90◦ and 67◦. To obtain an estimate of the fraction of sundogs which are

misclassified as 22◦ halo, 1000 randomly selected HaloCam images were counter-checked visually.

This revealed that only 6 images showing sundogs without 22◦ halo in the segments (3–5) were
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Table 4.2: Summarized results of the frequency of halo displays derived from HaloCam
observations from Sections 4.1.1 and 4.1.2.

Dataset HaloCam HaloCam Sassen et al. (2003b) AKM
MIM ACCEPT FARS

Location Munich The Netherlands Salt Lake City, U. S. Europe
Observation 2014 – 2016 Oct – Nov 2014 1986 – 1996 since 1986
period 2.5 years 6 weeks ∼10 years ∼30 years

Relative frequency of halo displays (cf. Section 4.1.1)

22◦ halo – 60% 50% 36%
Sundogs – 70% 12% 18%
Upper/lower

– 30% 15% 11%
tangent arcs

Frequency of halo-producing cirrus clouds

22◦ halo 24% 16% 37% –
Sundogs – 19% 9% –
Upper/lower

– 8% 9% –
tangent arcs

Total 24% 27% 54% –

misclassified as 22◦ halo, which is < 1%. Upper tangent arcs could be detected by the uppermost

image segment (no. 4) and might therefore be misclassified as 22◦ halo. For very small SZAs (high

solar elevations) the tangent arcs merge to form the circumscribed halo which could be detected

in the segments 3 and 5 as well. The same procedure was repeated for these halo types: 1000

randomly selected images were checked for the presence of tangent arcs and circumscribed halos

without 22◦ halo yielding 28 images or 2.8%. However, if only a fragment of a halo is visible in

the uppermost segment, it is generally difficult to discriminate between an upper tangent arc and

circumscribed halo and a 22◦ halo.

The halo classification algorithm was presented for 22◦ halos, but it is possible to include

training data for other halo types as well. With the current version of HaloForest and the

co-located ceilometer observations the fraction of cirrus clouds producing a halo display was

estimated to about 25% for Munich between January 2014 and September 2016. Extending

HaloForest for the detection of other halo types, such as sundogs, may easily result in a larger

fraction. It can be argued that these halo-producing cirrus clouds contain a certain amount

of smooth, hexagonal ice crystals. By analyzing ice crystal single scattering properties, van

Diedenhoven (2014) showed that a minimum fraction of 10% smooth hexagonal ice crystal columns

is sufficient to produce a 22◦ halo. For a 22◦ halo produced by ice crystal plates the minimum

fraction of smooth crystals amounts to 40%. Thus, if the exact ice crystal habits of the cirrus

cloud are unknown, the minimum amount of smooth ice crystals probably ranges between 10%

and 40%. This implies that even for a large fraction of irregular or small ice crystals a 22◦ halo

might still be visible. A larger fraction of smooth ice crystals, however, could well be possible

for 22◦ halos with larger halo ratio, i.e. increased brightness contrast. Multiple scattering of

the cirrus cloud or atmosphere was not considered by van Diedenhoven (2014). If accounted for,

the minimum fraction of smooth crystals in halo-producing cirrus clouds could be much larger

(cf. Section 3.3.2). A more detailed analysis of the actual fraction of smooth ice crystals in
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Figure 4.2: HaloCam image as in Fig. 3.23b. The red and green squares indicate the minimum
scattering angle of the sundogs as a function of the solar zenith angle (SZA). The SZA ranges
between 90◦ and 35◦ with 1◦ resolution. The mask used to search for the 22◦ halo peak is
displayed by the two white circles and covers scattering angles between 21.0◦ and 23.5◦. Sundog
positions located within this mask might be misclassified as 22◦ halo and are marked as red. These
positions correspond with SZAs between 90◦ and 67◦. For smaller SZAs (higher solar elevations)
the sundogs are located outside the mask and cannot be misclassified as 22◦ halo by the algorithm.

halo-producing cirrus clouds will be presented in the following sections. For this analysis the halo

observations are complemented by radiative transfer simulations and additional measurements of

aerosol and cirrus optical thickness and surface albedo.

4.2 Retrieval of ice crystal properties

To retrieve more detailed information about ice crystal properties in halo-producing cirrus clouds,

the RICO retrieval (cf. Section 3.7) was applied to calibrated radiance observations from spec-

MACS and HaloCamRAW. Both the relative and absolute radiometric calibration of specMACS

were performed in the laboratory and the absolute radiometric uncertainty was estimated to about

5% (Ewald et al., 2015). The absolute radiometric calibration of HaloCamRAW however had to

be performed using specMACS as a reference which results in a much higher uncertainty of about

15%. Thus, to investigate the potential and the limitations of the RICO retrieval, it was first

applied to two case studies with specMACS measurements on 24 March and 22 September 2015

at the Meteorological Institute, Munich. Additional observations are available measured opera-

tionally by a MIRA-35 cloud radar (Görsdorf et al., 2015), a CHM15kx ceilometer (Wiegner et al.,

2014) and a sun photometer, which is part of the AERONET (Aerosol Robotic Network) net-

work (Holben et al., 1998), as well as with the institute’s own sun photometer SSARA (Sun–Sky

Automatic Radiometer, Toledano et al. (2009, 2011)).

4.2.1 Case study of 24 March 2015

On 24 March 2015 cirrus clouds formed in an airmass between a ridge and a trough at the

500 hPa pressure level. Cirrus clouds were present between 11:00 UTC until 15:30 UTC with

clearsky conditions in the morning and afternoon. Figure 4.3 shows an overview of the co-located

ceilometer and cloud radar (top), HaloCam (center) and sun photometer (bottom) observations.

When comparing the data it should be kept in mind that both the radar and the ceilometer are

pointing to the zenith, whereas HaloCam and the sun photometer are following the sun. Thus,

the observed regions of the sky are not the same, unless the sun is at the zenith. The presence of a
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Figure 4.3: Overview of observations on 24 March 2015. Top: cloud base and top height from
ceilometer range-corrected signal (turquoise dots) and cloud radar reflectivity (dark blue dots).
The gap in the radar reflectivity at around 13 UTC is due to a scan. Temperature contour lines at
0 ◦C (dashed), −20 ◦C (dash-dotted), −30 ◦C (dotted), and −40 ◦C (dashed) are interpolated from
radiosonde data. Center: time line of HaloCamJPG pixel slices above the sun extending from the
center of the black circular sun shade to the top of the image. The upper part of the 22◦ halo or
upper tangent arc is visible as a bright line in the center of the panel. The times of the specMACS
measurements are indicated by the turquoise crosses around noontime. Bottom: AERONET AOT
(turquoise stars) and apparent COT derived from SSARA direct-sun measurements (blue)
interpolated to a wavelength of 550 nm.

complete 22◦ halo requires relatively homogeneous cloud cover which allows a comparison between

the data with a time shift. In a westerly flow, which is typical for the observation site in Munich,

the sun-tracking instruments detect the clouds in their field of view later (earlier) than the zenith-

pointing instruments in the morning (evening). Cloud radar and ceilometer measurements are

used to estimate cloud top and base height.

Figure 4.3 (top) shows the range-corrected ceilometer signal and the detected cloud base and

top height as turquoise dots. The ceilometer detected the cloud base height at 6.5 km and cloud

top height at 7.5 km between 12 – 13 UTC. The cloud base and top height, which is derived from

the equivalent radar reflectivity factor (Ze) of hydrometeors at the boundaries of the cloud, is

represented by the dark blue dots. The gap in the radar reflectivity at around 13 UTC is due to

a scan, which was excluded from the analysis. The cloud base height estimated from the radar

observations is similar to the cloud height derived from the ceilometer measurements. Large

differences, however, are visible for the estimated cloud top height, which is significantly larger

for the radar data with about 9 km. This effect is due to attenuation of the ceilometer signal

which is more sensitive to the particle number concentration. The radar signal is able to reach
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Table 4.3: Cloud and aerosol properties during the specMACS scans on 24 March 2015.

specMACS cloud top (base) cloud top (base) AOT daily apparent COT
scan time height temperature average

12:50 UTC
9 km (6 km) −54 ◦C (−28 ◦C) 0.27± 0.06 0.13 to 1.37

12:54 UTC

the cloud top and is more sensitive to the size of the particles. To obtain the best estimate of the

cloud base and top height, the observations of both instruments are combined using the largest

height for cloud top and the smallest height for cloud base.

This work focuses on cirrus clouds, which have a cloud base height at temperatures below

the freezing point (Section 2.1.1). Thus, only height levels with temperatures of 0 ◦C and below

are indicated in Fig. 4.3 (top). The temperature profile is obtained from radiosonde ascents at

Oberschleißheim. In addition, the temperature levels at −20 ◦C, −30 ◦C and −40 ◦C are indicated

by dash-dot, dotted, and dashed lines, respectively. At cloud base (6 km) the temperature ranged

between −24 ◦C and −28 ◦C, whereas at cloud top (9 km) the temperature amounts to about

−54 ◦C.

To obtain a temporal overview, the HaloCam data (Fig. 4.3 center) is visualized by a time

series of pixel lines, which are extracted from each image (every 10 s) in the principal plane above

the sun, i.e. extending from the center of the circular sun shade to the image top. The image slices

are stitched together along the time axis showing the upper part of a 22◦ halo, upper tangent arc

or circumscribed halo as a line approximately in the center of the panel. The trace of the halo

features appears slightly reddish at the lower (inner) edge. The abrupt change in the HaloCam

image brightness shortly before 13 UTC was due to a restart of the camera system which was

necessary due to an earlier power outage. The power outage caused a reset in the automatic

exposure settings of the camera which is the reason for the overexposed pixels in the halo region

between 12 – 13 UTC. The HaloCam observations show a 22◦ halo together with an upper and

lower tangent arc from 11 UTC until around 14 UTC with faint sundogs between 13 and 14 UTC.

Note that sundogs and lower tangent arcs are not visible in the representation of the HaloCam

data in Fig. 4.3 center. The 22◦ halo and the bright upper and lower tangent arcs indicate the

presence of smooth hexagonal columns which were partly oriented. The sundogs are produced by

smooth ice crystal plates which are oriented with their c-axis horizontal. Low-level water clouds

started to form at around 13 UTC which obstructed the visibility of the halos at times.

The sun photometer observations are displayed in bottom panel of Fig. 4.3. The turquoise

stars represent the aerosol optical thickness (AOT) from AERONET version 2, level 2.0 (cloud

screened) interpolated to 550 nm. Clearsky conditions until 10:30 UTC and in the afternoon start-

ing from about 15:30 UTC allowed to estimate the AOT with a daily mean of 0.27± 0.06 within

a 2σ confidence interval. The apparent cirrus optical thickness (COT) is derived from SSARA

sun photometer measurements as explained in Section 3.7.3. While AERONET performs mea-

surements every 15 min, the SSARA measurements are available every 2 s. During the time when

the halo displays were observed the apparent COT ranged between 0.1 and 0.4. A time interval of

±10 min was chosen to estimate the apparent COT during the specMACS measurements, taking

into account the different pointing directions of the direct sun and the 22◦ halo measurements.

Table 4.3 shows the estimated values for cloud top and base height, apparent COT and average

AOT which are used to define the parameter range at the time of the specMACS measurements.

Figure 4.4 shows specMACS measurements at 12:50 and 12:54 UTC at a wavelength of 550 nm

and the retrieved ice crystal properties using the YANG optical properties. The left panel displays
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Figure 4.4: Retrieval of specMACS observations on 24 March 2015 at (a) 12:50 UTC and (b)
12:54 UTC using the YANG optical properties. The first panel displays the specMACS scan across
the right side of a 22◦ halo at a wavelength of 550 nm. The black dashed lines indicate the region
used to extract the radiance distribution shown in the second panel (dark green) as a function of
the scattering angle. The light green lines in the second panel represent matching LUT radiance
distributions with the minimum and maximum SCF for each habit. The third panel shows the
fraction of smooth (black) and rough (gray) crystals for all 9 habits. The white error bars, which
are centered around the SCF of the best match LUT element, indicate the spread of all possible
solutions. The fourth panel shows the asymmetry factor (g) of the best match (black dot) and the
error bars indicate the minimum and maximum value for all matching LUT elements of all 9
habits.

the specMACS scan across the 22◦ halo on the right side of the sun with the azimuth angle on the

x- and elevation angle on the y-axis. The dashed black lines indicate the region in the almucantar

plane which is used for the retrieval to avoid interference with the upper tangent arc above the

sun. Since the YANG optical properties assume randomly oriented ice crystals, applying the

RICO retrieval to halo displays formed by oriented crystals (e.g. upper tangent arc or sundogs)

would yield wrong results. Sundogs were not present during the time of the specMACS scans.

The specMACS measurements in the second panel (green) are obtained by averaging the radiance

over the masked region indicated by the black dashed lines which range between SZA± 1◦. The

error bars of the specMACS measurements in the second panel represent the total measurement

uncertainty, which was calculated as explained in Section 3.4, within a 2σ confidence interval.

LUTs were calculated for both measurement times separately and for all 9 ice crystal habits

of the YANG parameterization for different fractions of smooth and severely roughened crystals

(cf. Section 3.7.1). For the aerosol optical properties the OPAC “continental average” mixture

was chosen (cf. Section 3.2.1). A surface albedo of 0.073 at 550 nm was determined from the

MODIS white sky albedo product as explained in Section 3.7.3. For this case study an ice cloud

base height of 6 km and top height of 9 km was chosen according to the radar and ceilometer

observations (cf. Table 4.3). The range and resolution of the remaining LUT parameters, which

comprise smooth crystal fraction (SCF), effective radius (reff), cirrus optical thickness (COT),

and aerosol optical thickness (AOT), are provided in Table 4.4.
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Table 4.4: LUT parameters for 24 March 2015: minimum, maximum and resolution for smooth
crystal fraction (SCF), effective radius (reff), cirrus optical thickness (COT), and aerosol optical
thickness (AOT).

LUT min max resolution
parameter

SCF 0% 100% 5%
reff 5 µm 90 µm 5 µm
COT 0.1 2.0 0.05

2.1 3.0 0.1
3.2 4.0 0.2
4.5 6.0 0.5

AOT 0.05 0.5 0.05

Retrieval based on YANG optical properties

As explained in Section 3.7, the simulated radiance distributions of the LUT and the specMACS

almucantar measurements are compared by calculating the mean RMSE between the curves. A

match is found if the condition RMSE ≤ 2σL,specMACS is fulfilled. The best match corresponds to

the minimum RMSE. The light green curves in the second column of Fig. 4.4 represent matching

LUT elements for the maximum and minimum retrieved SCF of each habit. The third column

of Fig. 4.4 shows a bar chart of the smooth (black) and rough (gray) ice crystal fraction for each

habit corresponding to the best match, i.e. the minimum RMSE between LUT and measurement.

White error bars indicate the range between the minimum and maximum retrieved SCF for each

habit. The fourth column of Fig. 4.4 shows the retrieved asymmetry factors with the best match

represented by a black dot and error bars indicating the retrieved minimum and maximum values.

The y-axis ranges between 0.747 and 0.951, which corresponds to the minimum and maximum

asymmetry factor for all habits, smooth crystal fractions and effective radii in the LUT. In this

first retrieval step no additional measurements are used to constrain the LUT parameters, so the

results shown in Fig. 4.4 are only based on a comparison of measured and simulated radiances

for AOTs, COTs, and effective radii which can take any value available in the LUT.

At 12:50 UTC (Fig. 4.4a) and 12:54 UTC (Fig. 4.4b) the specMACS measurements are eval-

uated in the almucantar plane on the right side of the sun. A faint 22◦ halo is visible in the

specMACS data, which is caused by a thin cirrus cloud. The specMACS radiance distributions

in the second column exhibit larger error bars in the scattering angle range from 25◦ to 30◦ which

is due to spatial inhomogeneity of the cirrus. All habits except for 5-element plates and droxtals

match the measurements with different smooth crystal fractions. However, for column-like crys-

tals a smaller fraction of smooth crystals was retrieved on average compared to plate-like crystals.

This is due to the different aspect ratios of columns and plates, which causes a much brighter

halo in the case of columns compared to plates (cf. Section 3.3.1). Therefore, a much higher

fraction of smooth crystals is needed in the case of plate-like habits to produce the same halo

brightness as for columns. The best match for both 12:50 UTC and 12:54 UTC are solid columns.

At 12:50 UTC the best match SCF amounts to 35% with an effective radius of 10 µm and 25%

with an effective radius of 20 µm at 12:54 UTC. The best match asymmetry factor results in 0.780

(12:50 UTC) and 0.785 (12:54 UTC). For both specMACS scans the 22◦ halo is not pronounced

enough to constrain the ice crystal properties without additional information.

The retrieval was repeated with additional constraints on the LUT using the daily mean AOT

from AERONET and the apparent COT derived from the SSARA direct sun measurements. Both

optical thicknesses were interpolated to 550 nm. The actual COT was derived from the apparent
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Figure 4.5: As Fig. 4.4 but using constrained aerosol and cirrus optical thickness from sun
photometer observations.

COT according to Eq. (3.54) by using the k-factors for the respective ice crystal habit. For

each habit the k-factors were calculated for all effective radii and SCFs available in the LUT.

The minimum and maximum k-factors for each habit were used to estimate the lower and upper

boundary of the true COT. Since the k-factors strongly depend on the ice crystal effective radius,

the retrieval was performed iteratively: the retrieved effective radii from the first run are used to

constrain the k-factors in the second run using the mean effective radius with a 2σ uncertainty.

The LUT was constrained using the observed COT within the 10 min time interval. The minimum

observed COT within this time interval was used as lower limit and the mean value plus 2 standard

deviations as upper limit. The AOT in the LUT was constrained using the daily average within

a 2σ confidence interval. Figure 4.5 shows the retrieval results for the same measurements and

LUTs as in Fig. 4.4 but with additional constraints on the possible AOT and COT values in

the LUT. In this case only few ice crystal habits match the observations. At 12:50 UTC plates,

solid columns, solid bullet rosettes, and 8-element columns match the observations, whereas at

12:54 UTC only plates and solid columns are retrieved. The best matching habits are still the

solid columns with the same asymmetry factors as in Fig. 4.4 but with a SCF of 30% (12:50) and

20% (12:54) and an effective radius of 10 µm (12:50) and 20 µm (12:54). The best matching results

of the constrained retrieval are provided in Table 4.5. Confining the aerosol and cirrus optical

thickness helps constrain the ice crystal habit, but an ambiguity between plate and column-

shaped crystals remains. Although the results confirm that plate-like crystals with larger SCF

Table 4.5: Best match cloud properties retrieved for the specMACS scans on 24 March 2015
using constrained cirrus optical thickness (COT) and aerosol optical thickness (AOT).

specMACS habit SCF effective asymmetry COT AOT
scan time radius factor

12:50 UTC solid column 30% 10 µm 0.780 0.80 0.25
12:54 UTC solid column 20% 20 µm 0.785 0.70 0.25
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can produce an equally bright 22◦ halo as columnar crystals with smaller SCF, their asymmetry

factors are quite different (cf. Fig. 3.11). Thus, as long as both plate-like and columnar crystals

match the observations, the asymmetry factor can not be significantly constrained.

Retrieval based on YANGRND optical properties

As a test, the retrieval was performed for the 12:54 UTC case using the YANGRND optical

property parameterization which consists of random habit mixtures (cf. Section 3.7.1). The

best match phase function consists of 50% smooth and 35% rough 10-element plates, 8% smooth

droxtals, and 5% rough solid columns. The remaining habits sum up to 2%. The mean effective

radius of the corresponding radiance distribution amounts to 70 µm with an asymmetry factor

of 0.855 at a wavelength of 550 nm. However, several different mixtures of ice crystal habits

match the observations. Allowing for arbitrary mixtures of multiple ice crystal habits, surface

roughness, and size might yield a mixture which better represents the observations than using

a single habit with smooth and rough crystal fraction. However the retrieved habit mixtures

are “radiatively equivalent effective shapes”, as stated by McFarlane and Marchand (2008) and

Cole et al. (2013). Retrieving ice cloud properties from halo displays using ground-based remote

sensing is a complex task which is not well constrained. Thus, allowing more freedom for arbitrary

mixtures of ice crystal properties does not necessarily increase the information gain. The YANG

parameterization, assuming single habits with varying fraction of smooth and rough crystals, is

the most simple parameterization which is apparently sufficient to represent observations of the

22◦ halo and is therefore the preferred choice.

Retrieval based on GO optical properties

Figure 4.6 presents results of the retrieval applied to the same specMACS measurements as in

Fig. 4.4 using optical properties of the GO database for different ice crystal aspect ratios ranging

from 0.02 (thin plate) over 1 (compact crystal) to 50 (long column). The LUT for this retrieval

was generated assuming a mixture of smooth and rough crystals as for the YANG database.

Here, roughness parameters of σ = 0 and σ = 0.3 were chosen for the smooth and rough crystals

respectively. The results show that the LUT contains combinations of AR and SCF which yield

a matching radiance distribution for all ARs. The best match between specMACS measurements

and simulations at 12:50 UTC was achieved for ice crystal columns with AR = 3.5, a SCF of

10% and an asymmetry factor (g) of 0.848. For the specMACS observations from 12:54 UTC the

best match was found for ice crystal plates with AR = 0.3, a SCF of 75% and an asymmetry

factor of 0.928. However, for both times several combinations of AR and SCF exist which match

the observations within the measurement uncertainty. Columnar crystals as best match for the

12:50 UTC measurements is in agreement with the YANG parameterization. The smaller SCF in

the case of the GO parameterization is due to the larger AR indicating long columns compared to

the 10 µm column retrieved for YANG which corresponds to more compact crystals (cf. Fig. 3.7).

At 12:54 UTC GO retrieves plate-like crystals, whereas YANG retrieves solid columns as best

match with an effective radius of 20 µm. Plate-like crystals are also a possible solution for the

YANG parameterization with a SCF of about 75% which is comparable to GO.

Compared to the YANG ice crystal model, the GO model allows varying the ice crystal AR

independently from ice crystal size. This is an advantage for investigating 22◦ halos since the

halo ratio, i.e. the brightness contrast of the 22◦ halo, is mainly determined by ice crystal aspect

ratio and surface roughness (cf. Fig. 3.10). However, the conventional geometric optics method

to calculate ice crystal optical properties has several shortcomings for smaller pristine ice crystals

with random orientation which form the 22◦ halo (Bi and Yang, 2014, Yang et al., 2015, Um et al.,
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Figure 4.6: Retrieval results for 24 March 2015 at (a) 12:50 UTC and (b) 12:54 UTC using GO
optical properties. The first panel displays the specMACS scan across the right side of a 22◦ halo
at a wavelength of 550 nm. The black dashed lines indicate the region used to extract the radiance
distribution shown in the second panel (dark green) as a function of the scattering angle. The light
green lines in the second panel represent matching LUT radiance distributions with the minimum
and maximum SCF for each ice crystal aspect ratio (AR). The results of all matching ARs, crystal
fractions (CF) and asymmetry factors (g) are displayed as error bars in the last three panels. Note
the logarithmic y-scale of the AR panel. For the AR and asymmetry factor the best match values
are represented by a black dot. The best matching CF is displayed by a bar plot with black
representing the smooth and gray the rough crystal fraction.

2015). Um et al. (2015) calculated optical properties of ice crystals with different aspect ratios

with the Amsterdam Discrete Dipole Approximation (ADDA), which provides exact numerical

solutions of Maxwell’s equations, and the conventional Geometric Optics Method (GOM), which is

also used for the GO parameterization (Macke et al., 1996). The authors found that the minimum

size parameter χ (cf. Eq. (2.30)) required to produce a visible 22◦ halo strongly depends on the

AR of the ice crystal and amounts to χ = 45 (68; 91) for AR = 1 (0.5; 2), corresponding

to compact (plate-like; column-like) crystals. For these size parameters the asymmetry factors

calculated with the GOM and ADDA method differ by up to 5% and the extinction efficiency up

to 30%. As stated by Um et al. (2015) the differences in the phase functions can be much larger.

Thus, for the following analyses the YANG optical properties will be used and each ice crystal

habit will be treated separately.
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4.2.2 Case study of 22 September 2015
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Figure 4.7: Overview of observations on 22 September 2015. For a detailed description see
Fig. 4.3.

On 22 September 2015 cirrus clouds formed on the leading edge of a warm front approaching

from the west. After clearsky conditions in the early morning the first cirrus clouds formed around

7:00 UTC. Figure 4.7 shows an overview of the ceilometer and cloud radar observations (top),

HaloCam (center), and sun photometer (bottom) observations between 5:30 and 14:00 UTC.

As explained in the previous section it is important to keep in mind that the zenith-pointing

instruments (radar and ceilometer) observe different regions of the sky than the sun-tracking

instruments (HaloCam and sun photometer). For a homogeneous cloud cover the data can be

compared with a time shift. The height of the cirrus cloud base and top can be derived from

ceilometer (lidar) and radar measurements. Figure 4.7 (top) shows the range-corrected ceilometer

signal. As in Fig. 4.3 the detected cloud base and top height derived from the ceilometer measure-

ments are represented by turquoise dots whereas the cloud base and top height from the radar

measurements are marked with dark blue dots. Similar to Fig. 4.3 (top) the cloud top height

derived from the radar measurements is significantly larger than for the ceilometer measurements.

As already discussed in the previous section, the best estimate for cloud base and top height is

achieved by combining both observations using the cloud base height from the ceilometer and the

cloud top height from the radar measurements. This results in a cloud top height which is almost

constant at 10 km between 6:30 and 11:00 UTC. Between 11:00 and 12:00 UTC the cloud top

height drops to about 7 km. The cloud base height decreases in the course of the day from about

8 km at 6:30 UTC to about 4 km around 10:00 UTC where it remains until the onset of rain,

which is visible in the backscatter signal of the ceilometer at around 13:30 UTC. As in Fig. 4.3
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Table 4.6: Cloud and aerosol properties during the specMACS scans on 22 September 2015.

specMACS cloud top (base) cloud top (base) AOT daily apparent COT
scan time height temperature average

09:38 UTC
10 km (4.5 km) −48 ◦C (−10.5 ◦C) 0.14± 0.02

0.53 to 3.47
10:35 UTC 0.53 to 2.10
11:00 UTC 0.26 to 1.14

the temperature levels at 0 ◦C, −20 ◦C, −30 ◦C and −40 ◦C, which are derived from radiosonde

measurements at Oberschleißheim, are indicated by dashed, dash-dotted, dotted, and dashed

lines, respectively. Cloud top temperatures amount to about −48 ◦C during the observed period,

whereas the cloud base temperature increases to −5 ◦C and 0 ◦C. As in Fig. 4.3 the HaloCam

data (Fig. 4.7 center) is represented by a time series of pixel lines in the principal plane above the

sun with a temporal resolution of 10 s. The 22◦ halo observed between 7:00 to 11:00 UTC with

interruptions is visible as a line approximately in the middle of the figure which appears slightly

reddish at the lower (inner) edge.

The sun photometer observations in Fig. 4.7 (bottom) display the AERONET AOT version 2,

level 2.0 (cloud screened) with turquoise stars interpolated to 550 nm. Clearsky conditions in the

early morning around 6:30 UTC allowed to estimate the AOT with a daily mean of 0.14± 0.02

within a 2σ confidence interval. The apparent COT is derived from SSARA sun photometer

measurements as explained in Section 3.7.3. During the time when the halo display was observed

a maximum apparent COT of about 2.8 was measured. As in Section 4.2.1 a time interval of

±10 min was chosen to estimate the apparent COT during the specMACS measurements taking

into account the different pointing directions of the direct sun and the 22◦ halo measurements.

The LUT was constrained using the averaged COT over this 10 min time interval. The minimum

observed COT within this time interval was used as lower limit and the mean value plus 2 standard

deviations as upper limit. Table 4.6 shows the estimated values for cloud top and base height,

apparent COT and average AOT which are used to define the range of the LUT parameters at

the time of the specMACS measurements.

Figure 4.8 shows the specMACS measurements at 9:38, and 10:35 UTC on the left side of

the sun and at 11:00 UTC on the right side of the sun at a wavelength of 550 nm. As in the

previous case study the almucantar plane is used for the retrieval to avoid interference with the

upper tangent arc which contains light scattered by oriented ice crystals. Sundogs were not

observed. The specMACS data are displayed in green with error bars consisting of the standard

deviation of the averaged radiance and the propagated measurement uncertainty, as explained

in Section 3.4. The LUT is calculated for the same parameters as for the case study of 24

March 2015 (cf. Table 4.4) for the respective solar zenith angle of each measurement. The

simulated radiance distributions in the LUT and the specMACS almucantar measurements are

compared by calculating the mean RMSE between the curves. A match is found if the condition

RMSE ≤ 2σL,specMACS is fulfilled. The light green curves in the second column of Fig. 4.8 represent

matching LUT elements for the maximum and minimum retrieved SCF of each habit. The 3rd

column of Fig. 4.8 shows a bar chart of the smooth (black) and rough (gray) ice crystal fraction

for each habit corresponding to the best match between LUT and measurement with error bars

spreading between the retrieved minimum and maximum values for each habit. The 4th column

of Fig. 4.8 shows the retrieved asymmetry factors as an error bar with a black dot at the value

corresponding to the best match and ranging between retrieved minimum and maximum value.

The y-axis ranges between 0.747 and 0.951, which are the minimum and maximum value for the

asymmetry factor if all habits, SCFs and effective radii are considered.
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Figure 4.8: Retrieval applied to specMACS observations of 22 September 2015 using the YANG
optical properties. Aerosol and cirrus optical thickness of the LUT were constrained using sun
photometer observations as displayed in Table 4.6. For a detailed description see Fig. 4.4.

At 9:38 UTC (Fig. 4.8a) a pronounced 22◦ halo is visible which constrained the LUT parame-

ters to 5-element plates as the only matching habit. The SCF is constrained to 80%, the effective

radius to 10 µm with an asymmetry factor of about 0.841 at 550 nm. The retrieved COT varies

between 1.3 and 1.35 and the retrieved AOT amounts to 0.15. The 22◦ halo at 10:35 UTC is

less pronounced but helps constrain possible combinations of ice crystal habit and surface rough-

ness. Matching habits are plates, 5-element plates and 8-element columns. For the plates the SCF

amounts to 50%, for 5-element plates the SCF ranges between 45% and 55% and for the 8-element

columns a SCF of 10% was retrieved. The retrieved effective radius was 5 µm for all habits. For

the 10:35 UTC case, the asymmetry factor can be constrained to values smaller than 0.83. The

best match is represented by the 5-element plates with a SCF of 55% and an asymmetry factor

of 0.829 with a COT of 1.15 and an AOT of 0.15. The third measurement at 11:00 UTC was

taken just after the 22◦ halo disappeared (cf. Fig. 4.7, center) showing a featureless curve. All

habits except droxtals match the measurements with different amounts of smooth ice crystals. In

this case the SCF is very low as expected and rough ice crystals are dominating with an average

SCF of about 10% over all habits. The asymmetry factor could be slightly constrained to values

lower than 0.88. Again, the 5-element plates are the best matching habits with a SCF of 30%, an

effective radius of 5 µm and an asymmetry factor of 0.819 with a COT of 0.6 and an AOT of 0.15.

An overview of the retrieval best match for the three specMACS scans is provided in Table 4.7.

The two case studies showed that the 22◦ halo contains information about ice crystal habit,

smooth crystal fraction, effective radius and asymmetry factor. The more pronounced the 22◦ halo
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Table 4.7: Best match cloud properties retrieved for the specMACS scans on 22 September 2015
using constrained cirrus optical thickness (COT) and aerosol optical thickness (AOT).

specMACS habit SCF effective asymmetry COT AOT
scan time radius factor

09:38 UTC 5-element plate 80% 10 µm 0.841 1.30 0.15
10:35 UTC 5-element plate 55% 5 µm 0.829 1.15 0.15
11:00 UTC 5-element plate 30% 5 µm 0.819 0.60 0.15

the better constrained are the retrieval results. In most cases an ambiguity exists as plate-

like crystals with a larger SCF can produce an equally bright 22◦ halo as columnar crystals

with a smaller SCF. This is in agreement with the findings from analysis of single scattering

properties which showed that roughened columns exhibit the same 22◦ halo ratio as smooth

plates (cf. Fig. 3.10). Since the asymmetry factor, however, differs between plates and columns

as shown in Fig. 3.11, it can only be constrained if the ambiguity between plates and columns

is resolved. Constraining AOT and COT from sun photometer measurements helps constrain

possible solutions. Using the YANG parameterization, the retrieved best match habit seems

to be consistent over the time period of the specMACS scans, with solid columns with SCFs

between 20% and 30% for 24 March and 5-element plates with SCFs between 55% and 80% for

22 September 2015. Comparing the formation and temporal evolution of the cirrus clouds using

the cloud radar and ceilometer information of Figs. 4.3 and 4.7, the cloud top temperature is less

than −40 ◦C in both cases whereas the cloud base temperature on 22 September is much higher

with −10.5 ◦C than on 24 March with −28 ◦C. Thus, the colder and thinner cirrus on 24 March

is better represented by columnar crystals, whereas aggregates of plates better represent the ice

crystal properties of the deeper cirrus on 22 September with a warmer cloud base. Applying

the RICO retrieval with the GO parameterization to the observations a certain SCF can be

found for almost all aspect ratios which is able to reproduce the specMACS measurements within

the measurement error. The best match, however, are columns at 12:50 UTC and plates at

12:54 UTC which disagrees with the retrieval results using YANG. Um et al. (2015) report that

larger differences exist between scattering phase functions calculated with exact methods and the

geometric optics approximation for ice crystals which are just large enough to produce a 22◦ halo.

The effective radii which were retrieved using the YANG parameterization were rather small and

ranged between 5 µm and 20 µm. For these reasons only the YANG parameterization will be used

in the following.
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4.2.3 Application to long-term HaloCam observations

To obtain representative results for ice crystal properties of halo-producing cirrus clouds, long-

term observations are required. However, specMACS measurements can not be performed opera-

tionally since the instrument is not water-proof. Therefore, the weather-proof automatic camera

HaloCamRAW was installed in September 2015 on the rooftop platform of MIM. Between 22

September 2015 and 31 December 2016 HaloCamRAW recorded scenes with a 22◦ halo on 52

days with a temporal resolution of 10 s. The automated halo detection algorithm HaloForest,

described in Section 3.6.2, was used to filter the HaloCamRAW images for 22◦ halos. Additional

sun photometer measurements are used to constrain aerosol optical thickness (AOT) and cirrus

optical thickness (COT). As demonstrated in Section 4.2.1, the better these two parameters can

be constrained the more information about the ice crystal microphysical properties can be gained

from the observations. As described in Section 3.7.3, the AOT is obtained from the AERONET

database and the mean and standard deviation over the whole day are used as an estimate for

the AOT during the halo event. The apparent COT is derived from the SSARA sun photome-

ter measurements with a temporal resolution of 2 s. The retrieval is applied to the R-channel

of HaloCamRAW with a central wavelength of 618 nm (cf. Fig. 3.40) to minimize the relative

contribution of Rayleigh and aerosol scattering compared to the scattering by ice crystals.

Table 4.8: HaloCamRAW 22◦ halo days between 22 September 2015 and 31 December 2016.

Date Start time End time Number of images

2015-09-22 6:38 UTC 11:14 UTC 1054
2015-11-08 10:00 UTC 10:37 UTC 198
2015-11-10 9:00 UTC 10:23 UTC 88
2016-01-20 9:36 UTC 11:37 UTC 544
2016-02-02 8:00 UTC 14:00 UTC 1029
2016-02-06 12:00 UTC 15:20 UTC 724
2016-04-21 11:34 UTC 13:52 UTC 770
2016-11-04 10:27 UTC 10:40 UTC 78

Simultaneous measurements of the SSARA and the Cimel (AERONET) sun photometer to-

gether with HaloCamRAW observations are available for only 8 of the 52 days listed in Table 4.8.

Figure 4.9 shows an example of the AOT and apparent COT derived from sun photometer mea-

surements on 21 April 2016. The AOT is obtained from the AERONET dataset and is represented

by turquoise stars. The daily average AOT amounts to about 0.08± 0.04 at 618 nm. The blue

dots in Fig. 4.9 indicate the apparent COT derived from SSARA direct sun measurements, which

are available from about 11:30 UTC. The lower panel of Fig. 4.9 shows slices of the HaloCam

images along the principal plane above the sun. 22◦ halos and upper tangent arcs appear as a

bright line in the center of the panel with a reddish inner, i.e. lower, edge from about 11:30 until

14:00 UTC.

The HaloCamRAW observations were geometrically and radiometrically calibrated as described

in Sections 3.5.2 and 3.5.3. For applying the RICO retrieval to the HaloCamRAW data the LUT

was calculated for a wavelength of 618 nm with a surface albedo of 0.065 and a cloud base and

top height of 10 km and 11 km, respectively. For details on the choice of these LUT parameters

see Section 3.7.3. The remaining LUT parameters are provided in Table 4.9. To use as much

information as possible from the HaloCamRAW images for the retrieval, the radiative transfer

simulations for the LUT were performed for the viewing angles of all 5 image segments. The file

size of the LUT and observations was then reduced by averaging both simulated and measured



4.2 Retrieval of ice crystal properties 103

0.0

0.5

1.0

A
pp

ar
en

tC
O

T
2016-04-21, 618 nm, average AOT: 0.08±0.04

Apparent COT (SSARA)
AOT (AERONET)

06:00:00
08:00:00

10:00:00
12:00:00

14:00:00
16:00:00

18:00:00

Time [UTC]

0.0

0.1

0.2

0.3

A
O

T

Figure 4.9: Top: AERONET aerosol optical thickness (AOT, turquoise stars) and apparent
cirrus optical thickness (COT) derived from SSARA measurements (blue dots) for a wavelength of
618 nm. Bottom: time line of HaloCamJPG pixel slices above the sun as described in Fig. 4.3.

images over the 5 segments in the direction of the relative azimuth angle ϕ (cf. Fig. 3.24b). Thus,

a separate LUT was compiled for each of the 5 HaloCamRAW image segments which are evaluated

separately.

The RICO retrieval (Section 3.7) was performed as follows: for each HaloCamRAW image

the LUT was interpolated to the respective SZA and constrained to the previously determined

AOT within a 2σ confidence interval. To constrain the COT of the applied LUT, a 10 min time

interval centered at the time of the HaloCamRAW image was chosen to account for the slightly

different pointing directions Θ = 0◦ (sun photometer) and Θ = 22◦ (halo display) in combination

with the unknown wind direction. The corresponding COT was obtained by correcting the

apparent COT with the k-factors of the respective ice crystal habit in the LUT according to

Eq. (3.54). Then, each of the 5 averaged radiance distributions measured with HaloCamRAW

was compared to the LUT elements with the respective geometry. The scattering angle grid was

optimized for the retrieval to account for the vicinity of the 22◦ halo in addition to its peak while

keeping the angular region as small as possible to avoid inhomogeneities of the cirrus optical

and microphysical properties. The case studies presented in Sections 4.2.1 and 4.2.2 showed that

cirrus cloud inhomogeneities were present in some cases for scattering angles larger than about

25◦. Thus, for HaloCamRAW’s long-term dataset, measurements and LUT were compared on a

scattering angle grid between 18◦ and 25◦ with an angular resolution of 0.5◦. The previous case

studies (Sections 4.2.1 and 4.2.2) demonstrated that multiple configurations of ice crystal habit,

SCF, effective radius, COT and AOT matched the specMACS radiance observations within the

measurement error. Here, the goal is to investigate which ice crystal habit and SCF best matches

the observed radiance distributions across 22◦ halos. Sampling over many scenes should provide a

good estimate of the average ice crystal properties of halo-producing cirrus clouds. For each image

segment the best matching radiance distribution of the LUT was determined separately. Only

results are considered which agree with the measurements within the measurement uncertainty

RMSE ≤ 2σL. In addition, the results were filtered for HR > 1 to ensure that only samples with

22◦ halo are considered. The uppermost segment (no. 3 in Fig. 3.24) might contain signatures

of the upper tangent arc. Although the results did not significantly change, the upper image
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Table 4.9: LUT parameters: minimum, maximum value and resolution for smooth crystal
fraction (SCF), effective radius (reff), cirrus optical thickness (COT), aerosol optical thickness
(AOT), and solar zenith angle (SZA). COT and AOT are defined at a wavelength of 550 nm.

LUT min max resolution
parameter

SCF 0% 100% 5%
reff 5 µm 90 µm 5 µm
COT 0.1 2.0 0.05

2.1 3.0 0.1
3.2 4.0 0.2

AOT 0.00 0.50 0.05
SZA 25◦ 30◦ 5◦

40◦ 70◦ 10◦

segment was excluded for the presented retrieval results. Sundogs appear in the left and right

image segments (no. 1 and 5) only for SZA < 45◦ at scattering angles of Θ > 29◦ which does not

interfere with the 22◦ halo (cf. Fig. 4.2).

Figure 4.10 displays the retrieval results for the 3080 samples (4 segments per image) of a

22◦ halo observed on 21 April 2016, assuming solid columns (a), hollow columns (b), and plates

(c) as dominating ice crystal habit. The retrieved values for the SCF, effective radius, and

asymmetry factor (g) are provided as histograms with parameter boundaries and bins as defined

in the LUT. The cirrus and aerosol optical thickness are provided for the sake of completeness

but it is important to note that the retrieval is not optimized to retrieve these parameters. The

RMSE between LUT and measurement is provided in the rightmost panels of Figure 4.10. For

solid columns (Fig. 4.10a) the SCF peaks below 50% with a mean value of 33.4%, which implies

that the 22◦ halo on the HaloCamRAW images is represented best by a larger fraction of rough

solid columns. The ice crystal effective radii peak at 15 µm with a mean value of 23.0 µm and a

mean asymmetry factor of 0.788. Although the distribution of retrieved effective radii is strongly

skewed towards small values, the mean value and standard deviation are provided to allow for

comparison with other studies. The majority of COT values are below 1 with a mean value

of 0.53, whereas the AOT is constrained between 0.05 and 0.15 with a mean value of 0.10. In

the case of hollow columns (Fig. 4.10b), the retrieved SCF ranges around 50% with effective

radii of 18.5 µm on average and a mean asymmetry factor of about 0.81. The COT values are

slightly smaller than for the solid columns with a mean value of about 0.4. For ice crystal plates

(Fig. 4.10c) larger SCFs with a mean value of 75.1% are required to match the brightness contrast

of the 22◦ halo measured with HaloCamRAW. The mean effective radius with 16.4 µm is slightly

smaller than for the solid columns. Assuming plates as dominating ice crystal habit causes a

larger asymmetry factor on average with 0.867. The average COT amounts to 1.07 with a few

values larger than 2. In contrast to the AOT values, the COTs of the best match radiance

distributions are significantly larger for plates than for solid columns. This is due to the large

asymmetry factors and thus increased forward scattering of plates. This in turn causes smaller

k-factors to correct for the larger difference between true and apparent COT (cf. Section 3.7.3).

Compared with solid and hollow columns the plate habit shows the smallest RMSE values for

this dataset.

Figure 4.11 shows the results of the retrieval applied to the 8 days of 22◦ halo observations

with HaloCamRAW. The upper panel presents the retrieved SCF for each day and for the 8 habits:

plates (turquoise), 10-element plates (blue), 5-element plates (dark blue), hollow columns (pink),
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Table 4.10: RICO retrieval results evaluated for all 8 days. Mean value and standard deviation
are provided for the smooth crystal fraction (SCF), effective radius, and asymmetry factor, sorted
by increasing mean RMSE.

Habit RMSE SCF [%] Effective radius [µm] Asymmetry factor

plate 3.81 80± 10 20.7± 10.9 0.876± 0.021
solid column 4.08 40± 20 21.7± 13.2 0.787± 0.008
8-element column 4.19 30± 20 21.4± 16.4 0.752± 0.001
5-element plate 4.29 70± 10 16.2± 10.1 0.838± 0.005
10-element plate 4.25 80± 10 13.5± 11.5 0.876± 0.004
solid bullet rosette 4.55 30± 10 18.7± 12.2 0.779± 0.013
hollow column 4.63 50± 10 19.9± 09.6 0.811± 0.005
hollow bullet rosette 5.16 50± 20 19.1± 12.7 0.829± 0.007

hollow bullet rosettes (purple), solid columns (light green), solid bullet rosettes (green) and 8-

element columns (dark green). Droxtals were not considered for the retrieval since they do not

produce a 22◦ halo and did not reproduce the specMACS observations within the measurement

error (cf. Sections 4.2.1 and 4.2.2). By grouping the ice crystal habits into columnar (green),

hollow (pink), and plate-shaped (blue) crystals, the average SCF clusters at ∼30%, ∼60%, and

∼80%, respectively. A similar clustering results for the asymmetry factor, which is smallest for

columnar crystals and largest for plate-like crystals. In contrast to the differences of the retrieved

mean SCFs and asymmetry factors among the habits, the retrieved mean effective radii, shown

in the third panel of Fig. 4.11, seem to be almost independent of ice crystal habit and roughness.

This confirms that the width of the 22◦ halo is primarily determined by ice crystal size, while

shape and surface roughness play a minor role, as discussed in Section 3.3.2. The mean effective

radius amounts to about 20 µm. Due to the skewed distribution of the retrieved effective radii

(cf. Fig. 4.10), more than 90% of the results are smaller than 40 µm.

Figure 4.12 (upper panel) shows the cloud top (circles) and base (dots) height represented

by the mean value and standard deviation, which were derived from co-located cloud radar

measurements. On 4 November 2016 cirrus clouds formed only in the south and south-east during

the 22◦ halo event (cf. Table 4.8). Thus, the zenith-pointing cloud radar did not detect the cirrus

cloud observed by HaloCamRAW and therefore no cloud height could be provided. In the other

cases the cirrus clouds were more extended and the 22◦ halo was visible over a longer time period.

The cloud top height varied around 10 km except for 20 January 2016 with 6 km. The cloud base

height yields a larger variability between 5 km and 10 km. The corresponding temperatures at

cloud top (circles) and cloud base (dots), indicated by mean value and standard deviation, are

displayed in the lower panel of Fig. 4.12. The threshold temperature for homogeneous nucleation

is represented by the blue dashed line at −38 ◦C. For all 7 cases the cloud top temperature is

equal or colder than −38 ◦C while the cloud base temperature varies between −10 ◦C and −50 ◦C

on average. It is interesting to note that the coldest and thinnest cirrus on 10 November 2015

with a cloud base temperature of about −50 ◦C coincides with the smallest retrieved effective

radii in Fig. 4.11. This is in agreement with in situ observations which found the smallest ice

crystals close to cloud top and for the coldest temperatures in case of synoptic cirrus (e.g. Bailey

and Hallett (2009), Baran (2012)).

Table 4.10 presents the retrieved SCF, effective radius and asymmetry factor for all evaluated

days, sorted by increasing mean RMSE. The RICO retrieval revealed that ice crystal plates have

the overall smallest mean RMSE and thus seem to match the HaloCamRAW observations better

than the other 7 habits of the YANG database. The best matching LUT elements of ice crystal
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Table 4.11: Best match habit for the RICO retrieval applied to HaloCamRAW daily
observations for the default retrieval (first column) and considering the spectral response (second
column), followed by the continental clean, polluted, and urban aerosol type. Columns 7 and 8
show the retrieved best matching habit assuming the upper and lower boundaries of radiometric
response within a 1σ confidence interval. The habits vary between plates (plate), 5-element plates
(5-plate), 10-element plates (10-plate), 8-element columns (8-col), solid columns (sCol), hollow
columns (hCol), and solid bullet rosettes (sbRos).

Date Default Sensitivity tests

Spectral Aerosol type Radiometric response
response

contin. contin. urban R+ σR R− σR

clean polluted

2015-09-22 8-col 8-col 8-col sCol sCol 8-col sCol
2015-11-08 plate 5-plate plate plate plate plate 10-plate
2015-11-10 sCol hCol hCol sCol sbRos 8-col sCol
2016-01-20 plate plate plate plate plate plate plate
2016-02-02 sCol sCol sCol sbRos sbRos sCol sCol
2016-02-06 plate plate plate plate plate plate plate
2016-04-21 plate plate plate plate plate plate plate
2016-11-04 plate plate 5-plate plate plate 5-plate plate

plates have a SCF of (80± 10) %, an effective radius of (20.7± 10.9) µm and an asymmetry factor

of 0.876± 0.021. With increasing RMSE, the plates are followed by solid columns and 8-element

columns. Hollow columns and bullet rosettes have the largest mean RMSE.

Using the representative wavelength of the camera channel instead of accounting for the

spectral response of the channel, introduces a small bias of less than 2% for the R-channel (cf.

Fig. 3.40). Since the LUT was calculated for the OPAC continental average aerosol type, the

retrieval results might be biased if the actual aerosol type differs. To obtain a rough estimate

of the sensitivity of the retrieval, it was repeated with a modified LUT to model the effect of

these approximations. The LUT was modified by multiplication with a slope which is represen-

tative for the amount and the sign of the bias introduced by the approximations. Table 4.11

shows the results of the best matching habit for each day retrieved with the modified LUT. The

last two columns of Table 4.11, present the results of testing the sensitivity of the retrieval on

the uncertainty of the radiometric response within a 1σ confidence interval. A 1σ interval was

considered since a large part of the uncertainty is probably due to inhomogeneities in the cirrus

clouds used for the calibration (cf. Section 3.5.3). For this test the default LUT was used and

applied to HaloCamRAW measurements which were calibrated with R + σR and R − σR, respec-

tively. The best matching habit slightly changed for the different modifications of the LUT but

only within the plate-like or column-like crystal groups. The ice crystal plates remain the overall

best-matching habit. Another uncertainty might be the presence of supercooled water droplets as

discussed in Section 3.7.2 for cloud base temperatures warmer than −35 ◦C. However, Fig. 3.39

showed that the presence of water droplets has a small effect on the retrieved SCF since spherical

water droplets act like rough ice crystals in diminishing the 22◦ halo.

To test how representative the retrieved LUT parameters are for the whole scene, the averaged

HaloCamRAW images were compared with DISORT simulations for the same viewing geometry

and resolution as the image. Figure 4.13 shows the averaged HaloCamRAW images for 6 of

the 8 evaluated days (left) in comparison with DISORT simulations (center). The right panels

display the relative difference between observations and simulations. Interestingly, none of the
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HaloCamRAW images (Fig. 4.13 left panels) shows a 46◦ halo. Except for the 8 November 2015, the

observation periods are long enough that cloud inhomogeneities almost disappear after averaging.

This is clearly visible in the relative difference between observation and DISORT simulation in

the right image panels. If ice crystals in the cirrus cloud were able to form a 46◦ halo, it should

appear in the averaged image. Figure 4.13a displays the comparison with DISORT simulations

using ice crystal plates, which were found to best match the observations in the region of the

22◦ halo (cf. Table 4.10). However, the optical properties of plates produce a pronounced 46◦ halo

in addition to the 22◦ halo for all evaluated days, which is presented here for 22 September 2015

as an example. Comparing the retrieval results for all 8 habits revealed that 8-element columns

best match the whole scene of the HaloCamRAW images, taking into account the region of the

46◦ halo. The results in Fig. 4.13b are displayed for 6 of the 8 days. In contrast to Fig. 4.13a, the

DISORT simulations using 8-element columns do not show a 46◦ halo in the center panels. The

faint signatures in the region of the 46◦ halo of the relative difference between the HaloCamRAW

images and the DISORT simulations for 22 September 2015 and 21 April 2016 are exaggerated

in this representation due to subtracting small radiance values.

Thus, the absence of the 46◦ halo can be used to further constrain the ice crystal microphysical

properties. The retrieval was repeated for the individual HaloCamRAW images excluding all LUT

elements with a 46◦ halo. The results of the SCF, effective radius and asymmetry factor, averaged

over all habits, did not change significantly. In this case, the best matching habit (with the overall

smallest RMSE) in the scattering angle region between 18◦ ≤ Θ ≤ 25◦ is the solid column followed

by the 8-element column. For the whole scene of the HaloCamRAW images, 8-element columns

revealed to slightly better represent the observations than solid columns. It revealed that ice

crystal plates match the observations only for larger effective radii of about 50 µm on average.

This can be explained with the relationship between ice crystal aspect ratio and size for the Yang

et al. (2013) optical properties: small ice crystal plates have aspect ratios of AR ≈ 1 (cf. Fig. 3.7)

which are effective for the formation of 46◦ halos, as shown in Fig. 3.10. Since the overall mean

effective radius for all habits except for plates did not change significantly compared to the results

in Fig. 4.11, it seems that the size-AR parameterization of the plate habit does not represent well

the observations. Although the sundogs visible on 8 November 2015 and 6 February 2016 are

a clear indication for the presence of oriented ice crystal plates, they are obviously too large in

these cases to be randomly oriented.
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Figure 4.11: Retrieval results for all 8 days listed in Table 4.8 and 8 habits of the YANG
optical property database. Results are shown for the SCF (top), asymmetry factor (center), and
effective radius (bottom) using the mean value within a 1σ confidence interval. Note that the
underlying distributions might be asymmetric as depicted in Fig. 4.10. The colors are grouped into
blue, pink and green to highlight the plate-like, hollow, and columnar ice crystals, respectively.
Darker colors refer to more complex crystals.
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Figure 4.13: Left: HaloCamRAW radiance of the R-channel averaged over all images containing
a 22◦ halo for the respective day. Center: DISORT simulations using the retrieved best match ice
crystal habit for the 22◦ halo region (a) and the best match habit for the whole scene (b). Right:
relative difference between HaloCamRAW observations and the DISORT simulation.
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4.3 Considerations on ice crystal orientation

A significant fraction of cirrus clouds contains oriented ice crystals (Noel and Sassen, 2005, Noel

and Chepfer, 2010, Zhou et al., 2012). The statistics of halo displays during the ACCEPT

campaign (Section 4.1.1) revealed that the majority of halo displays was caused by oriented ice

crystals. Sundogs and upper tangent arcs, which are formed by oriented plates and columns, were

observed in 70% and 30% of the total observation time, respectively. 22◦ halos, which are produced

by randomly oriented hexagonal crystals, were observed 60% of the time. Furthermore, 22◦ halos,

sundogs, and upper tangent arcs often occurred simultaneously with a frequency of about 22%

relative to the total observation time. This section presents first results of the observations during

the ML-CIRRUS campaign (Voigt et al., 2017) with halo displays formed by oriented ice crystals.

Using CrystalTrace, a method is proposed to derive the fraction of oriented ice crystal plates and

columns from simultaneous observations of 22◦ halos and sundogs or upper tangent arcs.

4.3.1 Observation of oriented ice crystals during ML-CIRRUS

During the ML-CIRRUS campaign (Voigt et al., 2017) between March and April 2014 the novel

High Altitude and Long Range Research Aircraft (HALO) was probing cirrus clouds in Europe

with a unique set of instruments to characterize microphysical, optical, and radiative proper-

ties of the cirrus clouds and the atmospheric conditions. Based at and flying out of the German

Aerospace Center (DLR) in Oberpfaffenhofen, southern Germany, several overpasses of the HALO

research aircraft were performed over the Meteorological Institute of the LMU in Munich. Dur-

ing the campaign continuous measurements were performed with several instruments on the MIM

rooftop platform. At this time HaloCam was operated with HaloCamJPG and a Canon Powershot

G12 to record images in the uncompressed and unprocessed “raw” format. Additional measure-

ments were performed with the specMACS imaging spectrometer. Continuous observations of

the MIRA cloud radar are available both for zenith pointing measurements and scans. Moreover,

lidar measurements were performed with the Portable Lidar System (POLIS, Heese et al. (2004))

and continuous sun photometer measurements are available both from the AERONET Cimel and

the SSARA instruments.

On 1 April 2014 halo displays formed in a very homogeneous cirrus layer over Munich showing

a 22◦ halo simultaneously with an upper tangent arc and sundogs which lasted for about 4 h.

These halo displays were accompanied with a high aerosol concentrations due to transported

Saharan dust (Voigt et al., 2017). Figure 4.14 (left) shows the recorded HaloCamJPG image

from 8:25 UTC on 1 April 2014. The right side of Fig. 4.14 displays the same image filtered with

an unsharp mask to highlight the optical features in the image. Besides the 22◦ halo and the upper

tangent arc, the concave Parry arc on top of the tangent arc is clearly visible and was present for

some minutes. This halo display is very rare and is formed by Parry oriented ice crystal columns.

As explained in Sections 2.3 and 3.8, these ice crystal columns have a horizontal orientation, but

in addition with a fixed orientation around their c-axis. Thus, they are only randomly oriented

around their vertical axis. CrystalTrace was used to perform a radiative transfer simulation of

the scene in Fig. 4.14 for the corresponding SZA of 57◦ at a wavelength of 500 nm which is shown

in Fig. 4.15. As an estimate of the AOT, the daily average provided by AERONET was assumed

which amounts to 0.48 at a wavelength of 500 nm. The desert aerosol type from the OPAC

database was chosen (Hess et al., 1998). The simulation was performed for a COT of 1 and an ice

crystal mixture of 45% randomly oriented columns which form the 22◦ halo, 10% oriented plates

which cause the sundogs, 35% oriented columns which are responsible for the upper and lower

tangent arcs, and 10% Parry oriented columns which form the upper Parry arc. The different ice

crystal components were estimated to qualitatively reproduce the different halo displays visible in
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Figure 4.14: HaloCamJPG image from 1 April 2014 during the ML-CIRRUS campaign. Left:
original HaloCamJPG image with a faint 22◦ halo, both sundogs, an upper tangent arc and a
concave Parry arc on top. Right: same image with an unsharp mask filter applied to better
highlight the optical features. On the right image the Parry arc is clearly visible and even a faint
circumhorizontal arc can be noticed which extends outwards from the left sundog.

Fig. 4.14. As in Fig. 4.14, the Parry arc below the sun in Fig. 4.15 is not visible due to the large

AOT and the long path through the atmosphere due to the low viewing zenith angles. Compared

to Fig. 3.48, which was simulated for an aerosol-free atmosphere, Fig. 4.15 shows a strong forward

scattering signal in the solar aureole region and the brightness of the halo displays is significantly

reduced.

On 1 April 2014 the HALO research aircraft probed the cirrus clouds above MIM in Munich

and flew two legs at different heights crossing the cirrus clouds exactly where the halo displays were

visible from MIM. The flight path of the HALO aircraft is depicted in blue in Fig. 4.16 with light

blue representing the flight path inside the cirrus cloud layer. The MIM in Munich is indicated by

the green pin and the 22◦ halo, visible from MIM and projected on the cirrus layer, is indicated by

the yellow ellipse (cf. Appendix A.2 for details on the calculation of the projection). Figure 4.16

shows the two overpasses of HALO over the institute inside the cirrus cloud passing through

the cloud volume where the 22◦ halo should be visible. The first overpass crosses the 22◦ halo

between 10:03 UTC and 10:05 UTC and the second overpass between 10:16 UTC and 10:18 UTC.

The measurements of the Small Ice Detector Mark 3 (SID-3) were performed and evaluated by

Martin Schnaiter and Emma Järvinen from KIT Karlsruhe (personal communication). The SID-

3 instrument is described in Ulanowski et al. (2014) and is able to detect ice crystals in a size

range of 5 to 50 µm. SID-3 allows to resolve single particle light scattering patterns which can be

used to derive ice crystal complexity (Schnaiter et al., 2016). The SID-3 measurements during

the first and lower leg (10:04 UTC) contained 83 well-exposed images. These images showed a

halo feature in 16.9% and signatures of hexagonal crystals together with a halo feature in 3.6%

of the images. In the second and higher leg 59 images were well-exposed and a halo feature was

detected in 27.1% of the cases whereas 8.5% showed signatures of hexagonal crystals together with

a halo feature. Only about 4% to 8% of the crystals showed signatures of a hexagonal structure

in addition to a halo feature, corresponding to pristine hexagonal crystals with smooth crystal

faces. Nevertheless, between about 17% and 27% of the in situ collected ice crystals were able to

produce a 22◦ halo although their hexagonal structure was not as pronounced. Since the SID-3

data were collected simultaneously to the visible halo display, these results are another indication

that already a small fraction of halo-producing ice crystals is sufficient to produce a visible halo

display. For a future study it would be very interesting to compare these results with the ice

crystal properties retrieved via remote sensing. However, before a quantitative retrieval of the
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Figure 4.15: CrystalTrace simulation of 1 April 2014 8:25 UTC at an SZA of 57◦ and a
wavelength of 500 nm. The simulation was performed for 45% randomly oriented columns which
form the 22◦ halo, 10% oriented plates which cause the sundogs, 35% oriented columns which are
responsible for the upper and lower tangent arcs, and 10% Parry-oriented columns which form the
upper Parry arc. A cirrus optical thickness of 1 was chosen and the aerosol was parameterized by
the OPAC desert dust mixture with an AOT of 0.48 at 500 nm, which is the daily mean provided
by AERONET.

ice crystal optical and microphysical properties and orientation is possible, CrystalTrace needs

to be extended with a parameterization of diffraction and ice crystal roughness. Furthermore, a

parameterization of ice crystal optical properties has to be developed which allows to compare the

ice crystal roughness retrieved via remote sensing with the ice crystal complexity derived from

the SID-3 measurements.

To investigate whether and how the fraction of oriented ice crystals can be derived from

observations of halo displays, simulations were performed using the CrystalTrace algorithm. The

presented method assumes the presence of a 22◦ halo as a reference since it is formed only by

randomly oriented ice crystals. Then, the fraction of oriented plates can be derived by comparing

the brightness of the sundogs with the brightness of the 22◦ halo. An estimate of the fraction

of oriented columns can be retrieved by comparing the brightness contrast, i.e. the halo ratio,

of the upper tangent arc with the 22◦ halo. The fraction of oriented plates can be estimated by

comparing the halo ratio of the sundogs with the halo ratio of the 22◦ halo. This method will be

explained in more detail in the following sections.
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Figure 4.16: Flight path of the HALO research aircraft on 1 April 2014 during the ML-CIRRUS
campaign displayed in blue. The Meteorological Institute in Munich (MIM) is indicated by a green
pin. The 22◦ halo visible from MIM is represented by the yellow ellipse, which was calculated using
the equations described in Appendix A.2. The coordinates of the 22◦ halo were calculated for the
respective position of the sun and the height of the cirrus cloud base, which was derived from radar
measurements. The light blue sections of the HALO flight path indicate the location of the aircraft
within the cirrus cloud with two overpasses over MIM at around 10:04 UTC and 10:17 UTC.
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4.3.2 Information content of sundogs

Figure 4.18: CrystalTrace
simulation for plates with an
orientation fraction of 40% (cf.
Fig. 4.17c) in image projection.
The white lines indicate the
almucantar plane and the relative
azimuth angle ϑ = 40◦.

Sundogs together with a 22◦ halo were simulated with Crys-

talTrace for different fractions of randomly and oriented ice

crystal plates with an aspect ratio of 0.5. The oriented ice

crystal plates have a vertical c-axis and are oscillating with

a standard deviation of 1◦ (cf. Section 3.8). To focus only

on the effect of ice crystal orientation, an aerosol-free atmo-

sphere was assumed. The simulations were performed for a

wavelength of 550 nm, a solar zenith angle of 60◦ and a cirrus

optical thickness of 0.8. Figure 4.17 displays the CrystalTrace

simulations as polar plots for the upper hemisphere with the

sun at a solar azimuth angle of 270◦ for an increasing frac-

tion of oriented ice crystals. The cirrus cloud in Fig. 4.17a

contains only randomly oriented plates which produce a 22◦

and a 46◦ halo. A fraction of oriented columns of 20% already

shows both sundogs, the parhelic circle with the 120◦ parhelia

and the circumzenithal arc above the sun. As the fraction of

oriented crystals increases, the sundogs and other scattering

features produced by the oriented crystals intensify. Simultaneously, the brightness of the 22◦

and 46◦ halo is decreasing. In this representation the 46◦ halo disappears at a fraction of 60%

oriented plates while the 22◦ halo disappears at a fraction of 100% oriented ice crystal plates.

The smooth crystal fraction can be estimated using the 22◦ halo ratio. To obtain an estimate

of the fraction of oriented ice crystal plates, the ratio between the 22◦ halo ratio and the halo ratio

of the sundogs can be compared, which will be denoted by HRrandom and HRoriented, respectively.

As illustrated in Fig. 4.18, the halo ratio of the sundogs is calculated in the almucantar plane

whereas the 22◦ halo ratio is determined in the plane at a relative azimuth angle of ϑ = 40◦. Note

that evaluating ratios of measured radiances does not require an absolute radiometric calibration

of the camera (cf. Section 3.5.3). The radiance distributions in the almucantar plane and at

ϑ = 40◦ are shown in Fig. 4.19a and Fig. 4.19b, respectively. Black lines represent the location

of the halo minimum (dashed) and maximum (solid), which are used to calculate the halo ratio.

The radiance distribution across the sundog and the brightness of the halo peak is increasing

for a larger fraction of oriented plates. Figure 4.19b shows the radiance distribution across the

22◦ halo which is evaluated at a relative azimuth angle of ϑ = 40◦. The radiance distribution

across the 22◦ halo and the brightness of the halo peak are both decreasing for a larger fraction

of oriented plates. Figure 4.20 shows the halo ratio of the sundog (HRoriented) in the almucantar

plane (a), the halo ratio of the 22◦ halo (HRrandom) at a relative azimuth angle of ϑ = 40◦ (b)

and the HR factor (c), which is defined by HRoriented/HRrandom. The HRoriented of the sundog

(a) is increasing for a larger fraction of oriented crystals while the HRrandom of the 22◦ halo is

decreasing (b). The HR factor represents the factor by which the HRrandom is increased due

to the presence of oriented crystals. Thus, the fraction of oriented ice crystal plates could be

retrieved by calculating this factor from the measurement and comparing it to a look-up table of

pre-calculated factors. Besides the fraction of oriented crystals, the enhancement factor depends

on the orientation parameter, the ice crystal roughness, and the solar zenith angle.
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Figure 4.17: Radiative transfer simulations of a cirrus cloud containing ice crystal plates using
libRadtran’s MYSTIC solver combined with CrystalTrace for 107 photons. An SZA of 60◦ and an
azimuth angle of 270◦ were chosen. A cirrus optical thickness of 0.8 and an aspect ratio of 0.5 were
chosen for the ice crystal plates. The simulations were performed for different fractions of
randomly oriented ice crystals and ice crystals oriented with a vertical c-axis with a distortion
parameter of 1◦. The fraction of oriented crystals increases from 0% in (a) to 100% in (f).
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Figure 4.19: Radiance distributions extracted from Fig. 4.17 (a) in the almucantar plane and
(b) between the almucantar and principal plane at ϑ = 40◦ for an increasing fraction of oriented
ice crystal plates (AR = 0.5) at a wavelength of 550 nm. The radiance distribution in (a) shows
the cross section of the 22◦ halo and the right sundog, which occurs at a scattering angle of about
25◦. (b) Radiance distribution across the 22◦ and 46◦ halo. Black lines indicate the maximum
(solid) and minimum (dashed) of each halo display in the vicinity of the 22◦ halo.
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Figure 4.20: Halo ratios calculated using the maximum and minimum radiance values of the
halo peak cross section indicated by the black lines in Fig. 4.19 as a function of the oriented
crystal fraction. (a) Halo ratio of the sundogs in the almucantar plane as a measure of the fraction
of oriented ice crystal plates, denoted by HRoriented. (b) Halo ratio of the 22◦ halo at ϑ = 40◦ as a
measure of the randomly oriented crystal fraction, labeled with HRrandom. (c) Halo ratio
enhancement factor, calculated by HRoriented/HRrandom.
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4.3.3 Information content of upper tangent arcs

A 22◦ halo together with an upper tangent arc were simulated with CrystalTrace for different

fractions of randomly and oriented ice crystal columns with an aspect ratio of 2.5. The oriented

ice crystal columns have a horizontal c-axis and are oscillating with a standard deviation of 1◦.

The simulations were performed for a wavelength of 550 nm, a solar zenith angle of 60◦ and a

cirrus optical thickness of 0.8 similar to Fig. 4.17. Figure 4.21 shows polar plots of the upper

hemisphere with the sun at a solar azimuth angle of 270◦ for an increasing fraction of oriented ice

crystals. The cirrus cloud in Fig. 4.21a contains only randomly oriented columns which produce a

22◦ halo and a faint 46◦ halo. A fraction of oriented crystals of 20% already shows the upper and

lower tangent arc. As the fraction of oriented columns increases, the brightness of the upper and

lower tangent arc increases and the wings of the arcs become more pronounced. Starting from

an oriented crystal fraction of 40% the circumhorizontal arc is visible in this representation.

Figure 4.22: CrystalTrace
simulation for solid columns with
an orientation fraction of 40% (cf.
Fig. 4.21c) in image projection.
The white lines indicate the
principal plane and the relative
azimuth angle ϑ = 40◦.

Similar to Fig. 4.17 the 22◦ halo is still visible for 80% ori-

ented columns and the upper and lower tangent arc are visible

already for a fraction of 20% oriented crystals in this repre-

sentation.

The smooth crystal fraction can be estimated using the

22◦ halo ratio. Then, the fraction of oriented ice crystal

columns can be estimated by comparing the halo ratio of the

upper tangent arc in the principal plane, i.e. at φ = φ0, with

the halo ratio of the 22◦ halo at a relative azimuth angle of

ϑ = 40◦, as depicted in Fig. 4.22. Figure 4.23a shows the radi-

ance distribution across the upper tangent arc in the principal

plane, whereas Fig. 4.23b displays the radiance distribution

across the 22◦ halo at a relative azimuth angle of ϑ = 40◦.

The corresponding halo ratios are presented in Fig. 4.24a for

the upper tangent arc (HRoriented) and in Fig. 4.24b for the

22◦ halo (HRrandom). For the upper tangent arc an enhance-

ment factor of the halo ratio can be calculated from the fraction of HRoriented/HRrandom as shown

in Fig. 4.24c. Similar to the case of oriented plates, the halo ratio of the upper tangent arc

increases with larger fractions of oriented crystals and the HR of the 22◦ halo decreases. Since

the halo ratio of the oriented crystals HRoriented is much larger than HRrandom, the enhancement

factor is increasing.

This approach assumes that the ice crystals forming the 22◦ halo and the upper tangent arc

or sundogs have the same shape and aspect ratio. This is not necessarily the case. When sundogs

and a 22◦ halo are visible simultaneously they might be produced by the same ice crystals, one

part of the ice crystal population being oriented and the other part randomly oriented. This

might occur due to localized turbulence in the air. However, it is more likely that the ice crystals,

which are responsible for the sundogs and tangent arcs, are oriented since they are larger and

have more extreme aspect ratios compared to the crystals forming the 22◦ halo. To account for

this, LUTs have to be compiled for the enhancement factor assuming mixtures of different ice

crystal populations.
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Figure 4.21: As Fig. 4.17 but for ice crystal columns with an aspect ratio of 2.5. Randomly
oriented columns were mixed with columns oriented with a horizontal c-axis and a distortion
parameter of 1◦. The fraction of oriented crystals increases from 0% in (a) to 100% in (f).
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Figure 4.23: Radiance distributions extracted from Fig. 4.17 (a) in the principal plane and (b)
between the almucantar and principal plane at ϑ = 40◦ for an increasing fraction of oriented ice
crystal columns (AR = 2.5) at a wavelength of 550 nm. The radiance distribution in (a) shows the
cross section of the upper tangent arc, which occurs at the same scattering angle as the 22◦ halo.
(b) Radiance distribution across the 22◦ and 46◦ halo. Black lines indicate the maximum (solid)
and minimum (dashed) of each halo display in the vicinity of the 22◦ halo.
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Figure 4.24: Halo ratios calculated using the maximum and minimum radiance values of the
halo peak cross section indicated by the black lines in Fig. 4.23 as a function of the oriented
crystal fraction. (a) Halo ratio of the upper tangent arc in the principal plane as a measure of the
fraction of oriented ice crystal columns, denoted as HRorient. (b) Halo ratio of the 22◦ halo at
ϑ = 40◦ as a measure of the randomly oriented crystal fraction, labeled with HRrand. (c) Halo
ratio enhancement factor, calculated by HRorient/HRrand.



Chapter 5

Discussion

In the following the results of this study results will be further discussed and compared with the

literature. Previous studies retrieved information about ice crystal shape and surface roughness,

to the author’s knowledge, only using space-borne remote sensing. Passive remote sensing from

space of optically thin clouds over land is challenging since the measured reflectances are very

sensitive to the surface albedo. While the BRDF of the ocean is well-known, it is highly variable

over land surfaces. Thus, over land the majority of ice crystal shape and roughness retrievals

based on passive remote sensing techniques focuses on optically thicker ice clouds. Moreover,

space-borne observations of ice clouds might also include the ice phase of (deep) convection, e.g.

anvils of thunderstorms. Ground-based remote sensing of halo displays focuses on rather thin

cirrus clouds instead with a cirrus optical thickness (COT) smaller than about 5 (Gedzelman and

Vollmer, 2008). It should also be kept in mind that the results of this study were obtained from

local measurements in Munich in contrast to the space-borne observations which have a global

coverage.

Ice crystal roughness

Long-term HaloCam observations in Munich revealed that about 25% of the cirrus clouds pro-

duced a 22◦ halo. This fraction might be slightly larger when considering other halo types, such as

sundogs and upper tangent arcs as well. A visual evaluation of the 6-week HaloCam dataset dur-

ing the ACCEPT campaign resulted in about 27% halo-producing cirrus clouds, accounting for all

three halo types. Thus, the majority (∼73%) of cirrus clouds most likely contains predominantly

rough or complex ice crystals which do not produce a visible halo.

These findings are in agreement with the results of several studies based on satellite retrievals.

Using multi-angle reflectance measurements, Baran et al. (1998, 1999) and McFarlane and Marc-

hand (2008) found polycrystals and complex crystals to better represent the observations than

pristine single crystals. Studies based on multi-angular polarized reflectances from POLDER (Po-

larization and Directionality of Earth Reflectance) also report that featureless phase functions,

which correspond to roughened or complex crystals, better represent the measurements than

phase functions of a single ice crystal habit (Descloitres et al., 1998, Chepfer et al., 2001, Baran

et al., 2001, Baran and Labonnote, 2006, Sun et al., 2006). Holz et al. (2016) and Wang et al.

(2014) confirmed that rough and complex crystals better match the observations than smooth

single crystals for optically thin clouds (COT < 3) using retrievals based on lidar observations

and reflectances in the infrared spectrum.
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Ice crystal shape

This study revealed that the overall best matching ice crystal habits are solid columns and

8-element columns with a smooth crystal fraction (SCF) of (40± 20) % and (30± 20) % and

asymmetry factors at 618 nm between 0.75 and 0.79, respectively. Although plates best match

the HaloCamRAW observations in the region of the 22◦ halo, they produce a pronounced 46◦ halo

for the retrieved effective radii with a mean value of 20 µm, which was not visible in the evaluated

HaloCamRAW scenes.

Ice crystal columns and aggregates of columns were also found by Holz et al. (2016), however

without any smooth crystals, resulting in an asymmetry factor of about 0.75 in the mid-visible

spectrum. Also Wang et al. (2014) retrieved a mixture with a dominating fraction of columnar

crystals to best match the MODIS and CALIPSO observations over ocean with a SCF of 10%

and an asymmetry factor of 0.778 at a wavelength of 0.65 µm. These retrievals were performed

for COT < 3 which is comparable to the optical thickness range observed in this work. It is

interesting to note that the 8-element column, which is the overall best matching ice crystal habit

in this work, is the same as for the MODIS Collection 6 data product used for the operational

retrieval of ice cloud optical thickness and effective radius (Platnick et al., 2017).

Several other studies found plate-like or compact ice crystals to better represent the observa-

tions than columns, for example McFarlane and Marchand (2008), van Diedenhoven et al. (2012,

2013), Cole et al. (2014). However, these studies focus on optically thick cirrus, in particular anvil

cirrus, with potentially very different formation mechanisms compared to thin halo-producing cir-

rus clouds. Um et al. (2015) studied aspect ratios of natural ice crystals, which were collected

during field campaigns by a cloud particle imager, for temperatures between 0 ◦C and −87 ◦C

and found that synoptic cirrus is dominated by columnar crystals, while anvil cirrus contains a

larger fraction of plate-like crystals. All evaluated HaloCamRAW observations showed synoptic

cirrus or contrail cirrus and did not contain any anvil cirrus. Columnar ice crystals were found

to best match these HaloCamRAW observations, which is in agreement with the findings of Um

et al. (2015).

Ice crystal plates of the Yang et al. (2013) database produce a pronounced 46◦ halo for

the retrieved effective radii which was not visible in the HaloCamRAW observations. A possible

explanation could be that the parameterization of aspect ratio and size for ice crystal plates used

in Yang et al. (2013) does not represent the shapes of the observed ice crystals which produced

a 22◦ halo without a 46◦ halo.

Ice crystal size

The retrieved effective radii in this study are, to the author’s knowledge, the first observational

results for 22◦ halos and yield similar results for all 8 ice crystal habits with 90% of the raii

being smaller than 40 µm and with a mean value of 20 µm. Several studies (e.g. Mishchenko

and Macke (1999), Fraser (1979), Garrett et al. (2007)) investigated the size range in which ice

crystals actually produce a 22◦ halo based on theoretical and analytical considerations for single

crystals. A lower boundary for ice crystal maximum dimensions of about 10 µm was found based

on an analysis of the 22◦ and 46◦ halo in scattering phase functions of Yang and Liou (1996) and

Yang et al. (2000). This lower boundary is in agreement with the results from the laboratory

studies of Sassen and Liou (1979). Another criterion for the formation of a 22◦ and 46◦ halo is

random orientation. This occurs for compact ice crystals with maximum dimensions smaller than

about 100 µm. Ambiguities might occur since aggregated ice crystals such as bullet rosettes can

be oriented while their components are randomly oriented relative to each other (Fraser, 1979,

Sassen et al., 1994, Tape, 1994). Another indication for this upper size limit are the findings of
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Mishchenko and Macke (1997) who report that air bubbles develop in larger ice crystals, which

cause the 22◦ halo to fade. Furthermore, Bailey and Hallett (2002) state that pristine shapes are

mostly found in the laboratory for maximum dimensions smaller than about 100 µm. Um and

McFarquhar (2015)1 determined minimum size parameters for the formation of 22◦ halos as a

function of the aspect ratio (AR) resulting in χ = 45 for compact particles (AR = 1), χ = 103 for

plates with AR = 0.1, and χ = 182 for columns with AR = 4. The 46◦ halo forms starting from

size parameters of χ = 68 for plates (AR = 0.5), χ = 45 for compact crystals, and χ = 223 for

columns (AR = 2). Unfortunately, these results are difficult to compare since the effective radius

is defined for an ensemble of crystals accounting for different shapes, whereas ice crystal maximum

dimension and size parameter are defined for single particles. However, global observations of

ice cloud effective radii are available from the MODIS Collection 6 (Yi et al., 2017), which range

between 30 µm to 35 µm over land in the northern mid-latitudes. These values are slightly larger

than the mean effective radius retrieved for ice crystals producing a 22◦ halo with about 20 µm.

1It should be noted that the term “circumscribed halo” was used in Um and McFarquhar (2015) as a collective
term for the 22◦ and 46◦ halo. However, it is the correct term for the halo which is formed by horizontally oriented
ice crystal columns at high solar elevations, when upper and lower tangent arcs merge. This halo type is very
different from the investigated 22◦ and 46◦ halo which are formed by randomly oriented crystals.
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Chapter 6

Summary and Conclusions

The overarching aim of this thesis was to investigate the information content of halo displays

regarding ice crystal properties. The main focus lies on the 22◦ halo which is formed by randomly

oriented hexagonal ice crystals. It can be concluded that the brightness contrast and width of

the 22◦ halo contains valuable information on ice crystal size, shape, and surface roughness.

Using optical properties calculated with an improved version of the raytracing code described

in Macke et al. (1996) (GO), it was demonstrated that the brightness contrast of 22◦ halo, i.e.

the halo ratio, is monotonically increasing from thin plates (AR < 1) over compact particles

(AR = 1) to long columns (AR > 1). It could be confirmed that the 22◦ and 46◦ halo ratio is

determined by the ice crystal aspect ratio and surface roughness as shown in van Diedenhoven

(2014). Analysis of the 22◦ halo ratio further revealed that the relationship between the ice crystal

AR and the 22◦ halo ratio is ambiguous in the sense that smooth plates can produce an equally

bright 22◦ halo as roughened columns.

Based on the optical properties of the Yang et al. (2013) database (YANG), it was demon-

strated that the width of the 22◦ halo is related to the size of the ice crystals as suggested by

Flatau and Draine (2014). Two different parameters were investigated: the power spillover index,

which is a measure of the amount of light scattered into the region inside the 22◦ halo, and the

full width at half maximum (FWHM) as a measure of the angular width of the halo peak. While

the power spillover index proved to be a useful estimate of ice crystal size for scattering phase

functions, it is very sensitive to the cirrus optical thickness under multiple scattering conditions.

However, the sensitivity of the FWHM on the optical thickness revealed to be negligible.

With help of radiative transfer simulations it was demonstrated that the 22◦ halo ratio depends

on the cirrus and aerosol optical thickness and to a minor degree on the surface albedo. Besides

the ambiguity between columns and plates, the cirrus optical thickness (COT) introduces another

ambiguity to the halo ratio. The halo ratio reaches a maximum when the cirrus optical thickness

is larger than the background, i.e. Rayleigh and aerosol optical thickness (AOT).

The novel sun-tracking camera system HaloCam allows an automated observation of halo

displays and collection of a long-term database of halo observations. The HaloCam system is

weather-proof and consists of two cameras on a sun-tracking mount which ensures that the halo

displays stay centered relative to the camera. The most frequent halo displays are formed by ei-

ther randomly oriented or oriented plates and columns and therefore contain the most important

information about ice crystal properties. Thus, the camera setup was optimized for observing

22◦ halos, sundogs and upper/lower tangent arcs with high spatial and temporal resolution with-

out loosing relevant information. The HaloCam camera system was installed in September 2013

on the rooftop platform of the Meteorological Institute in Munich, first operating HaloCamJPG

only, followed by HaloCamRAW in September 2015.

In a first analysis the frequency of the 22◦ halo produced by cirrus clouds over Munich was in-
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vestigated using more than 2.5 years of HaloCamJPG data. For evaluating the long-term HaloCam

observations in Munich an automated halo detection algorithm, called HaloForest, was developed.

HaloForest is employed in this thesis for the detection of 22◦ halos but it can be extended for

the detection of other halo types such as sundogs and upper/lower tangent arcs. Applied to the

more than 2.5 years of data, HaloForest detected 22◦ halos about 2% of the total observation

time during daylight.

The frequency of cirrus clouds which were accompanied by halo displays was evaluated for

long-term HaloCam observations in Munich. Co-located ceilometer measurements were used to

evaluate the fraction of cirrus clouds. About 25% of the detected cirrus clouds occurred together

with a 22◦ halo. Extending HaloForest for more halo types (e.g. sundogs) would increase the

fraction of “halo-producing” cirrus clouds above 25%. During the 6-week ACCEPT campaign

the frequency of halo displays was evaluated visually and revealed that sundogs occurred in 70%,

22◦ halos in 60%, and upper tangent arcs in 30% of the total halo observation time. The fraction

of halo-producing cirrus clouds amounts to about 27% for this dataset.

To estimate the ice crystal optical and microphysical properties, the RICO (Retrieval of

Ice Crystal prOperties) retrieval was developed. This retrieval compares measured radiance

distributions across the 22◦ halo with look-up tables of radiative transfer simulations, which

were calculated for a range of ice crystal optical and microphysical properties. Additional sun

photometer measurements are used to constrain COT and AOT. To achieve continuous roughness

levels, the optical properties of smooth and severely roughened ice crystals of a specific habit

were mixed with smooth crystal fractions (SCFs) ranging from 0% to 100%. Sensitivity tests

showed that if the retrieval is applied to uncalibrated measurements with unknown radiometric

response, the retrieved SCF can deviate up to 70% from the true value. If the uncertainty of the

radiometric response is smaller than 15%, the error in the retrieved SCF is smaller than about

15%. A reasonable absolute calibration is therefore required to retrieve quantitative results of

the ice crystal properties.

The RICO retrieval was tested using specMACS calibrated radiance measurements of a

22◦ halo for two case studies on 24 March and 22 September 2015. The total measurement

uncertainty of specMACS was estimated to less than 5% (Ewald et al., 2015). By applying the

retrieval to these well characterized observations, the potential of the retrieval to constrain the

variability of ice crystal properties was assessed. It was found that several ice crystal habits and

SCFs match the observations within the measurement error. Plate-like crystals with a large SCF

and columnar crystals with a small SCF could reproduce the same 22◦ halo within the measure-

ment uncertainty. This result confirms the findings from the analysis of the single scattering

properties. Furthermore, the results indicate that the more pronounced the 22◦ halo, the better

constrained the retrieved ice crystal properties. If no 22◦ halo was visible, the retrieved SCF was

smaller than about 40% for plate-like crystals and smaller than about 10% for columnar crystals.

The droxtal habit did not match the observations for any of the case studies. The best matching

habits were solid columns on 24 March and 5-element plates on 22 September 2015 with effective

radii of 5 µm and 20 µm.

In addition to the YANG optical properties the GO optical properties were tested for the case

study on 24 March 2015, which are based on the geometric optics approximation. It revealed

that for each aspect ratio a corresponding SCF could be found to represent the observations

within the measurement uncertainty. A best match was retrieved for columnar crystals with

AR = 3.5 and a SCF of 10% at 12:50 UTC and plate-like crystals with AR = 0.3 and a SCF of

75% at 12:54 UTC. These results differ from the ice crystal habits retrieved with YANG. The

conventional geometric optics method has several shortcomings for small ice crystals. Um et al.

(2015) showed that phase functions calculated with geometric optics methods significantly differ
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from phase functions calculated with exact methods even if ice crystal sizes are large enough to

produce a 22◦ halo.

Another test was performed using radiative transfer simulations of ice crystal mixtures of

different habits, SCFs, and effective radii. The best match consists of 50% smooth and 35%

rough 10-element plates, 8% smooth droxtals, and 5% rough solid columns. The remaining ice

crystal habits sum up to 2%. This test demonstrated that arbitrary mixtures of multiple ice

crystal habits, surface roughness, and size might yield a better representation than a single habit

with smooth and rough crystal fraction. However, the retrieved habit mixtures are “radiatively

equivalent effective shapes”, as stated by McFarlane and Marchand (2008) and Cole et al. (2013).

Thus, allowing for arbitrary mixtures of ice crystal properties does not necessarily increase the

information gain.

As specMACS is not weather-proof, long-term observations of ice crystal optical and micro-

physical properties were performed using HaloCamRAW. This camera provides the “raw” signal

directly from the sensor and was geometrically and radiometrically calibrated. For the retrieval

the red channel was used with an absolute radiometric uncertainty of less than 15%. HaloForest

was used to select HaloCam images with a 22◦ halo. For 8 days in total, 22◦ halo observations

with simultaneous sun photometer measurements were available which are necessary to constrain

both AOT and COT. The retrieval was applied to a total of about 4400 HaloCamRAW images

and the best matching ice crystal microphysical and optical properties were analyzed. The results

showed that the average SCF for columnar, hollow, and plate-shaped crystals amounts to about

∼30%, ∼60%, and ∼80%, which is about 20% (solid columns) to 40% (plates) larger than the

minimum SCF estimated from single scattering properties (van Diedenhoven, 2014). The varia-

tion of the retrieved effective radii between the ice crystal habits is much smaller than for the SCF

and yields an overall mean of about 20 µm. The underlying distribution of the retrieved effective

radii is skewed towards smaller values with more than 90% of the radii being smaller than 40 µm.

Comparing the retrieved ice crystal effective radii with the temperature of cloud base and top

revealed that the smallest crystals were retrieved for the coldest cloud base temperature. This is

in agreement with in-situ observations which found the smallest crystals at the coldest temper-

atures close to cloud top (Baran, 2012). Although ice crystal plates with a SCF of (80± 10) %

best match the observations in the angular region of the 22◦ halo, the YANG optical properties

would produce a pronounced 46◦ halo for effective radii smaller than about 50 µm, which is not

visible in the evaluated HaloCam images. Filtering the LUT for elements without a 46◦ halo

yields solid columns and 8-element columns as best matching ice crystal habits with an average

SCF of (40± 20) %, an average effective radius of (23.8± 13.4) µm and an asymmetry factor of

0.788± 0.008. This result is in agreement with satellite-based retrievals for optically thin cirrus

which find aggregates of columns as best matching ice crystal habit (Wang et al., 2014, Holz

et al., 2016).

During the ML-CIRRUS campaign HaloCam observations on 1 April 2014 showed complex

halo displays lasting for several hours with a rare Parry arc visible for a few minutes. Additional

measurements during this campaign were performed with the MIRA-35 cloud radar, the POLIS

lidar, the CHM15kx ceilometer and the Cimel and SSARA sun photometers, as well as with

the hyperspectral imaging spectrometer specMACS. A unique dataset could be collected which

is complemented by in situ observations during two overpasses of the HALO research aircraft.

The halo displays on 1 April indicate the presence oriented ice crystals. To allow for radiative

transfer simulations of oriented ice crystals the Monte Carlo radiative transfer model MYSTIC

was extended by the raytracing algorithm CrystalTrace. A method was suggested to retrieve the

fraction of oriented ice crystal plates (columns) from simultaneous observation of the 22◦ halo

and sundogs (upper tangent arc). While the halo ratio of the 22◦ halo serves as a reference for
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the fraction of halo-producing crystals, the halo ratio of the sundogs or upper tangent arc relative

to the halo ratio of the 22◦ halo should contain information about the fraction of oriented ice

crystals.

This work demonstrates that halo displays contain valuable information about ice crystal prop-

erties such as ice crystal shape, surface roughness, size and orientation. With the new automated

camera system HaloCam and the halo detection algorithm HaloForest this study provides, for the

first time to the author’s knowledge, a framework for consistent and automated observations of

halo displays. By applying the RICO retrieval to long-term observations of calibrated radiances,

HaloCam allows for the first time to systematically investigate typical ice crystal properties of

halo-producing cirrus clouds. These observations contribute to an improved understanding of ice

crystal optical and microphysical properties. Implemented on different sites, HaloCam in combi-

nation with the HaloForest detection algorithm can provide a consistent dataset for climatological

studies of ice crystal properties representing typical cirrus clouds. Representative ice crystal op-

tical properties are required for remote sensing of cirrus clouds as well as climate modeling. To

the author’s knowledge, this thesis presents the first ground-based retrieval of ice crystal shape

and surface roughness using passive remote sensing. Since ground-based observations provide

information about the forward scattering part of the ice crystal optical properties, the results of

this work ideally complement the results of satellite-based studies.
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Outlook

This study demonstrates the potential of remote sensing of halo displays to provide information

about ice crystal shape, roughness, size and orientation. New aspects and further interesting

questions occurred in the course of this work which will be briefly mentioned in the following.

The results of this study showed that the parameterization of ice crystal size and aspect ratio of

the Yang et al. (2013) optical properties does not always reproduce the observations, especially

for small to medium-sized plates which show both a 22◦ and a 46◦ halo. The raytracing code of

Macke et al. (1996) allows to calculate optical properties with the aspect ratio as free parameter.

However, these optical properties are only valid in the geometric optics approximation which do

not represent well the optical properties of smaller ice crystals. Thus, for studying 22◦ halos,

optical properties calculated with improved geometric optics methods as in Yang et al. (2013)

would be necessary, which provide ice crystal size and aspect ratio as independent parameters.

In this study a monodisperse size distribution following a gamma distribution with µ = 1

(cf. Eqs. (2.10) and (3.4)) was used to calculate the bulk optical properties. The shape of

cirrus particle size distributions is often bi-modal as reported by Heymsfield and Miloshevich

(1995), Ivanova et al. (2001), Field et al. (2005) and Zhao et al. (2011). Investigating different

size distributions for halo-producing cirrus clouds may reveal that the smooth ice crystals which

produce the halo displays follow a different size distribution than the rough ice crystals.

For ground-based measurements the information content of the 22◦ halo depends on many

parameters such as the optical thickness of the cirrus and aerosol, the aerosol type, the surface

albedo and of course the ice crystal shape, surface roughness, and particle size. To minimize the

influence of the aerosol, the retrieval was applied to the red channel of HaloCam. Additionally, the

HaloCam measurements could be performed on top of a mountain, for example at the observation

platform on mount Zugspitze, which is located above the boundary layer.

The HaloCam system consists of two low-cost off the shelf cameras and a sun-tracking mount

which can easily be set up and installed at multiple locations. To constrain cirrus and aerosol

optical thickness, additional sun photometer measurements are required for the quantitative re-

trieval of ice crystal properties. Thus, HaloCam could be installed alongside the AERONET

instruments. The automated halo detection algorithm HaloForest could also be used to filter out

events of homogeneous cirrus clouds in the AERONET dataset. Most 22◦ halos form in thin,

homogeneous cirrus clouds which are difficult to filter from the sun photometer data (Smirnov

et al., 2000) and are often causing a bias in the retrieved AOT (e.g. Chew et al. (2011)). Halo-

Cam in combination with the RICO retrieval could also be used operationally to complement

other ground-based remote sensing methods by constraining ice crystal size, habit and surface

roughness and thus reducing uncertainties of the retrieved cirrus optical thickness (Eichler et al.,

2009, Zinner et al., 2016).

Furthermore, HaloForest could be extended for the detection of sundogs and upper tangent
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arcs for a long-term statistic of halo displays formed by oriented ice crystals. With help of

radiative transfer simulations with MYSTIC and CrystalTrace a method was proposed to retrieve

the fraction of oriented ice crystals from the simultaneous observation of the 22◦ halo and sundogs

or the upper tangent arc. CrystalTrace needs to be extended to account for ice crystal surface

roughness and diffraction. Then, the information content of halo displays produced by oriented

crystals could be further investigated by sensitivity studies. Besides the ice crystal shape and

surface roughness, the brightness of these halo displays depends also on the fraction of oriented

crystals and the distortion width of the orientation. It should be noted that the simultaneous

observation of different halo displays does not necessarily constrain ice crystal shapes: although

the presence of sundogs indicates ice crystal plates, other ice crystal shapes could still occur in

the same cirrus cloud and a simultaneous 22◦ halo could be formed by randomly oriented ice

crystal plates, columns or other hexagonal crystals.

The ML-CIRRUS observations of 1 April 2014 provide a unique dataset of co-located airborne

in-situ and ground-based remote sensing observations of different instruments. This dataset

contains observations of complex halo displays which were observed over several hours in very

homogeneous conditions. Accompanied by transported Saharan dust, the evaluation of these

observations is challenging but using synergies between the different available datasets it can

provide valuable insights on oriented ice crystals from a remote sensing as well as an in-situ

perspective.

Figure 7.1: HaloCam picture from 28 January 2017 showing left and right sundog which are
formed by contrails and contrail cirrus.

Besides cirrus clouds, the HaloCam observations also contain halo displays formed by con-

trails and contrail cirrus as shown in Fig. 7.1. Evaluating the HaloCam observations regarding

the formation of halo displays by contrails could provide further information of the ice crystal

properties of these clouds which have an important impact on the global radiation budget (e.g.

Schumann (2005), Forster et al. (2012)).

This study focused on observations of halo displays during daytime only. However, halo

displays can also be observed during nighttime with the moon as light source (Lynch and Schwartz,

1985, Sassen et al., 2003a). Sassen et al. (2003a) stated that halo observations during nighttime

showed different cirrus properties than daytime observations. This could be investigated with

HaloCam by using a moon-tracking algorithm in addition to the sun-tracking algorithm.
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Appendix

A.1 Decision trees and random forest classifier

The subsequent sections provide more details on decision trees and the random forest classifier

presented in Section 3.6.

A.1.1 Decision trees

The following description is based on Alpaydin (2010) and Raschka (2015). Decision trees start

with a root node followed by internal decision nodes, branches and terminal nodes, called leaves.

A typical example of a single decision tree, as used for HaloForest, is shown in Fig. A.1. For a

Figure A.1: Example for a decision tree for a selection of three HaloCam image features
confined to a maximum depth of three layers. The two classes, “halo” and “no halo” are depicted
by red and blue color. The transparency of the color represents the impurity of the class.

better visualization, the tree is grown using only three of the eight features and is pruned to a

depth of three layers. The explanation provided here focuses on the structure of tree rather than

the exact numbers of the threshold tests which differ from the ones used by HaloForest. The

halo ratio (HR), the mean standard deviation, and ∆ϑhalo,min are used as features in this case,

which are displayed in the first line of each node box with the respective threshold test. At each

decision node a threshold test is applied to one element of the n-dimensional feature vector (here,
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n = 3) which best splits the set of samples. The metric to determine the best split in this study

is the Gini impurity index, which is defined by Raschka (2015) as

IG(t) = 1−
c∑

i=1

p(i|t)2 , (A.1)

with c the number of classes and p(i|t) the fraction of samples which belongs to class i at node

t. The Gini index takes a minimum value for the maximum information gain (all the samples at

node t belong to one class) and the index is maximum for a uniform distribution. The discrete

result (here, True or False) of the threshold test decides which of the following branches is chosen.

The node boxes are connected by arrows representing the branches of the tree. They are colored

depending on the dominating class in the samples which is noted at the bottom of each box: red

for “22◦ halo” and blue for “no 22◦ halo”. The more transparent the color the higher the impurity

of the classes and the larger the Gini impurity index. This splitting process is repeated recursively

at each child node until a leaf node is reached. A leaf node is hit when all the samples in the

subset belong to the same class, or when splitting does not add more information. By repeating

this recursive decision process the n-dimensional feature space is subdivided into the pre-defined

classes on a path following from the root down. Figure 3.35 shows examples of the resulting

decision boundaries as 2-dimensional projections for a selection of feature pairs. The decision

tree is trained using a set of labeled training samples. During training the tree grows by adding

branches and leaves depending on the complexity of the data, which can lead to over-fitting. By

growing an ensemble of decision trees this issue can be improved, which is the idea of random

forest classifiers.
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Figure A.2: Out-of-bag (OOB) error rate for different values of n estimators (number of trees)
for three different realizations of the random forest classifier by changing the number of features
considered at each split.

A.1.2 Random forest classifier implementation

In this study the random forest classifier was used, which is described by Breiman (2001) and

implemented in the python module scikit-learn (Pedregosa et al. (2011), version 0.18.1). The

trees are trained by applying the bootstrap aggregation (bagging) method (Breiman, 1996), i.e.

by using a subset of the training samples which is chosen randomly with replacement and has the

same size as the original input samples. This implementation predicts the class of a sample by

averaging the probabilistic prediction of all individual decision trees instead of using the majority
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vote among the trees. The function call allows to define a number of parameters: the number of

trees is set to 100 and a maximum number of 3 features (log2(n) with n features) is considered for

searching the best split. These parameters are chosen to minimize the out-of-bag (OOB) error,

as shown in Fig. A.2. For an increasing number of estimators (trees) the OOB error stabilizes at

around 100 trees and is in general smaller for a confined number of features considered at each

split.

A.2 Projection of the 22◦ halo

This section outlines the calculation of the geographic coordinates of the 22◦ halo projected on

a cirrus cloud layer, which is used in Sections 3.7.3 and 4.3.1. Viewing the 22◦ halo from the

ground defines a cone with an opening angle of θ = 22◦ centered around the sun, as illustrated

in Fig. A.3. The cross-section of this cone with a plane-parallel cirrus cloud, represented by a

plane at height z, describes an ellipse with the sun in the focal point. Let the plane be located

at z = 0. The coordinates of the position of the sun are

Figure A.3: Geometry of the 22◦ halo projected onto a cloud in the x-y-plane at height z = 0.
The projected 22◦ halo has the shape of an ellipse with the sun in the focal point. The position of
the sun is denoted with the solar zenith angle θ0. The observer is located at point −→p with −→s
pointing into the sun and with

−→
h pointing at the 22◦ halo. The elliptic shape of the projected

22◦ halo is the result of the intersection of a cone with opening angle θ and the x-y-plane. In case
of the 22◦ halo θ = 22◦ and in case of the 46◦ halo θ = 46◦, accordingly.

−→s = (sin θ0, 0, cos θ0) = (sin θ0, 0, µ0) , (A.2)

with the solar zenith angle θ0. The observer is located at point −→p
−→p = (0, 0, −p3) . (A.3)

Let
−→
h describe the points on the 22◦ halo projected on the plane at z = 0. Then the following

conditions must be fulfilled: −→
h · −→s = cos θ = µ , (A.4)

and

|−→h | = 1 , (A.5)
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assuming −→s is already normalized. The points of the projected 22◦ halo x relative to the point

p can then be found by a linear combination of p and h

−→x = −→p + α · −→h . (A.6)

where −→x = (x1, x2, x3). With x3 = 0 −→x = 0 it follows that α = −→p /−→h = p3/h3 ≡ p/h.

Then −→
h = −→x /α = −→x /(−→p /−→h ) . (A.7)

To fulfill |−→h | = 1

|−→x /(−→p /−→h )| = 1 , (A.8)

which can be expressed by the vector components

h2 x
2
1

p2
+ h2 x

2
2

p2
+ h2 = 1 , (A.9)

or
x2

1

p2
+
x2

2

p2
+ 1 =

1

h2
. (A.10)

The condition
−→
h · −→s = µ can also be written as

h1 sin θ0 + h3 cos θ0 = µ , (A.11)

which yields
1

h2
= (

x1

p
sin θ0 + cos θ0)2/µ2 . (A.12)

Using Eq. (A.10) the vector −→x can be calculated by

x2
1 + x2

2 = (
1

h2
− 1) p2 , (A.13)

with

h = µ/(
x1

p
sin θ0 + cos θ0) . (A.14)
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der Physik, Vierte Folge, 25 (3), 377–445.

Minnaert, M., 1993: Rainbows, Halos, and Coronas, 185–258. Springer New York, New York,

NY, doi:10.1007/978-1-4612-2722-9 10.

Minnaert, M. G. J., 1937: De natuurkunde van’t vrije veld. Deel I. Licht en kleur in het landschap.

W. J. Thieme, Zutphen.



142 BIBLIOGRAPHY

Mishchenko, M. and A. Macke, 1997: Asymmetry parameters of the phase function for isolated

and densely packed spherical particles with multiple internal inclusions in the geometric optics

limit. J. Quant. Spectrosc. Radiat. Transfer, 57 (6), 767–794, doi:10.1016/S0022-4073(97)

00012-5.

Mishchenko, M. and A. Macke, 1999: How big should hexagonal ice crystals be to produce halos?

Applied Optics, 38 (9), 1626–1629, doi:10.1364/AO.38.001626.

Mishchenko, M., W. Rossow, A. Macke, and A. Lacis, 1996: Sensitivity of cirrus cloud albedo,

bidirectional reflectance and optical thickness retrieval accuracy to ice particle shape. Journal

of Geophysical Research, 101 (D12), 16 973–16 985, doi:10.1029/96JD01155.

Mitchell, D. L. and W. P. Arnott, 1994: A Model Predicting the Evolution of Ice Parti-

cle Size Spectra and Radiative Properties of Cirrus Clouds. Part II: Dependence of Ab-

sorption and Extinction on Ice Crystal Morphology. J. Atmos. Sci., 51 (6), 817–832, doi:

10.1175/1520-0469(1994)051〈0817:AMPTEO〉2.0.CO;2.

Muinonen, K., K. Lumme, J. Peltoniemi, and W. M. Irvine, 1989: Light scattering by randomly

oriented crystals. Applied Optics, 28 (15), 3051–3060, doi:10.1364/AO.28.003051.
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