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Summary III

Summary

Prion diseases are rare but fatal neurodegenerative diseases which occur both in humans and

mammals caused by the prion protein (PrP) which is well conserved among the species. In

this thesis the biochemical properties and the function of prion protein were investiagted using

different methods.

The oligomerisation state of the prion protein analysed by size exclusion chromatography

revealed that the prion protein is dimeric under native conditions. This was proven in the

yeast two-hybrid system followed by the identification of two interaction domains. The

influence of mutations and polymorphisms within the prion gene was investigated in the yeast

two-hybrid system. This method is also an useful tool for the investigation of the species

barrier.

To determine the role of dimeric prion proteins on the scrapie prion protein formation a

covalently-linked PrP dimer was constructed and expressed in yeast Pichia pastoris. The

protein was expressed as a glycosylated, proteinase K sensitive protein which is transported to

the plasma membrane of yeast cells.

Recently, the 37-kDa/67-kDa laminin receptor LRP/LR was identified as the receptor for

cellular PrP. Besides the in vitro interaction of PrP and LRP the binding domains on PrP and

LRP were mapped in the yeast two-hybrid system. In addition, cell binding assays revealed a

second HSPG-dependent binding domain leading to a comprehensive model of the PrP/LRP

complex on the cell surface.

The binding of heparan sulfates to the prion protein was investigated and binding domains

located on the N-terminus of the prion protein were characterized using biosensor and ELISA

methodology.

The prion-like protein Doppel (Dpl) shows neither an interaction with PrP nor with LRP, the

receptor for the cellular prion protein, in the yeast two-hybrid system, but is well expressed in

yeast cells.

The tyrosine kinase Fyn, activated by PrP in neuronal cells, interact directly with PrP in the

yeast two-hybrid system whereas LRP failed to interact with Fyn. 
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1. Transmissible Spongiform Encephalopathies (TSEs)

Transmissible spongiform encephalopathies (TSEs) are neurodegenerative diseases described

for human and animals. TSEs include Creutzfeldt-Jakob disease (CJD) (Creutzfeldt, 1920),

Gerstmann-Sträussler-Scheinker syndrome (GSS) (Gerstmann, 1928), Kuru (Zigas, 1970) and

fatal familial insomnia (FFI) (Lugaresi et al., 1986) in humans, scrapie in sheep (Hadlow et

al., 1982) and BSE in cattle (Wells et al., 1987). In addition, TSEs are known for felines

(Pearson et al., 1992) (FSE), goat (Pattison, 1965), elk and deer (Guiroy et al., 1991),

monkeys (Gibbs and Gajdusek, 1972) and other animals. In every species TSEs represents a

fatal disease leading to death. The clinical presentation of the disease includes behavioural

changes, motoric troubles, progressive dementia and ataxia. The main neuropathologic

features of the disease is a typical lesion of the CNS along with neuronal loss, spongiosis,

gliosis and astrogliosis (Lantos et al., 1997). Signs of a conventional viral infection were

never detectable in the CNS. This leads to the conclusion that the causing agent of the TSEs is

a new class of infectious agents termed prions (abbreviation for proteinaceous infectious

particle). Prions are proteins devoid of any nucleic acid (for review see Lasmézas and Weiss,

2000; Prusiner, 1982) and are resistant against proteinase digestion and chemical and physical

treatment (Bessen and Marsh, 1992). The lack of any nucleic acid in purified preparations of

prions (Kellings et al., 1992) makes it necessary to postulate a new mechanism for the

replication of the prion protein. The most accepted one is the "protein-only“ hypothesis

proposed by S. B. Prusiner (Prusiner, 1982; Prusiner, 1991). 

1.1. BSE epidemiology

The first suspected BSE cases in Europe were recognised in the United Kingdom in 1985 and

the first case was diagnosed in 1986 (Wells et al., 1987). The number of cases arose and

reached its maximum in 1992 with over 37000 cases (Fig.1). Two hypotheses about the origin

of the BSE epidemic exist (Fraser, 2000). According to the sheep origin hypothesis, the agent

causing the disease was transmitted from sheep to cattle by feeding of meat and bone meal

prepared from sheeps suffering from scrapie. Scrapie is a well known disease in sheep since

the 18th century (Hadlow et al., 1982). Meat and bone meal was inactivated by sterilization

with temperatures more than 130�C presumably inactivating the pathogenic prion protein. In

the early 80s the sterilization temperature was reduced to about 110�C which was insufficient

to inactivate the scrapie agent, allowing the agent to cross the species barrier between sheep

and cattle resulting in the BSE epidemic. One and a half year after the first histopathologic
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confirmation of BSE in 1986 the „feed ban“ was introduced which prohibited the feeding of

meat and bone meal to animals followed by the specified offal ban in 1989. The BSE cases

increased until 1992 due to the long incubation period of the disease (3-7 years in case of

cattle) (Wilesmith et al., 1991). In consequence of the feed bans a decrease of the number of

BSE cases was observed after 1992. The bovine origin hypothesis states that the infectious

agent originates from cattle which might develop the prion disease spontaneously (with an

expected incidence rate of 1/1.000.000 cattle). 

Fig. 1: Confirmed cases of BSE in the United Kingdom plotted per year of clinical onset.
Data were provided by the Office International des Epizooties (www.oie.int).

BSE is not only a problem of the United Kingdom. It was spread to a series of European

countries (table1). The appearence of BSE outside the UK is probably related with the import

and feeding of meat and bone meal contaminated with prions in these countries. E.g: strain

typing of a Swiss BSE case revealed the same results to that of those tested in the UK

(Vandevelde et al., 1992) which suggests the same origin of the disease. The expected

number of BSE cases in countries of continental Europe might not reach the level of the UK,

but is expected to further increase.
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Table 1:Number of confirmed BSE cases in Europe (source: www.ourworld-top.cs.com,

05. January 2002)

Country Number of BSE cases
since 1987

United Kingdom 181720
Ireland 843
Portugal 597
France 515
Switzerland 399
Germany 138
Spain 84
Belgium 65
Italy 48
Netherland 28
Denmark 8
Slovakia 5
Lichtenstein 2
Czech. Republic 2
Greece 1
Austria 1
Finland 1
Luxembourg 1
Slovenia 1

Further cases: Japan: 3, Oman:2, Falkland Islands. 1 and Canada 1

1.2. Transmission studies involving the BSE agent

Many experiments have demonstrated that the BSE agent is able to cross the species barrier.

Inoculation of the prion agent into a new host species might prolonge the incubation period

and may reduce the transmission rates. To study the transmission of prions from one species

to another four methods have been established: intracerebral, intraperitoneal and oral

inoculation of host species with prions (Race et al., 2001), usage of transgenic mice (Telling,

2000), in vitro conversion assays (Caughey et al., 1995) and the yeast two-hybrid system (see

chapter III).

By oral infection the BSE agent was directly transmitted to sheep (Bradley and Wilesmith,

1993), to goats (Bradley and Wilesmith, 1993) and to mice (Barlow and Middleton, 1990),

but not to chicken and pigs (Bradley and Wilesmith, 1993). Interestingly the scrapie agent

from sheep has also been transmitted to cows (Cutlip et al., 1994) suggesting that the BSE

epidemic was indeed induced by the scrapie agent.
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For ethical reasons the direct route of inoculation is sometimes impossible i.e. in case od

humans and cattle. Thus the usage of transgenic mice represents the appropriate method. In

some experiments the endogenous mouse prion gene Prn-p has been knocked out and the

Prn-p gene of a foreign species has been introduced. Among many transmission experiments

the transmission of hamster prions to mice transgenic for hamster PrP (haPrP+/+/moPrP-/-) lead

to the disease, whereas the transmission to wild type mice failed (Scott et al., 1989) indicating

a species barrier for the transmission of prions to foreign mammals.

One crucial step in prion diseases is the conversion of the cellular PrP into the pathogenic

isoform. According to the protein-only hypothesis the conversion proceeds by interaction of

the infectious prion protein (PrPSc) with the normal prion protein (PrPc) (Prusiner, 1982). In in

vitro conversion assays the conversion of cellular proteinase K sensitive PrP (PrPsen) of

human and sheep to the proteinase K resistant isoform (PrPres) driven by BSE prions was

proven (Raymond et al., 2000). In these experiments, however, infectious material has never

been generated.

1.3. New variant CJD

Sporadic Creutzfeldt-Jakob disease (sCJD) is a very rare neurodegenerative disease in

humans which was initially described in the 1920s (Creutzfeldt, 1920). Today the incidence

rate of CJD is about one case in 106 individuals (Alperovitch et al., 1994). There are three

reasons for the development of CJD: 85% of the cases are sporadic without any known origin,

15% are familial due to a mutation within the Prn-p gene and some cases have an iatrogenic

background where the infection occurs via contact with contaminated surgical instruments or

the application of human growth hormon (HGH) (Buchanan et al., 1991). The progression of

CJD is very rapid and leads to death about one year after the onset of the disease because of

spongiform degeneration and astrogliosis. The age of the patients ranges between 60 and 74

years.

A novel form of CJD was recognised in the UK in 1996 termed new variant CJD (nvCJD)

(Will et al., 1996) and epidemiological studies implied a link with BSE. Until 07 January

2002 104 confirmed cases and 9 probable cases were reported in the UK (source: The

Creutzfeldt-Jakob Disease Surveillance Unit, Edinbourgh, UK) and 4 cases were found in

France (Lasmézas, C.I. personal communication). The main difference between nvCJD and

the sporadic or familial CJD is the young age (mean age is 29 years) of the nvCJD patients. In

addition, investigation of brains of nvCJD patients revealed a special form of amyloid plaques

(florid-type plaques) due to their daisy-like appearance (Ironside and Bell, 1997). The most
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compelling evidence that nvCJD is caused by BSE prions came from studies with transgenic

mice (Scott et al., 1999). Transgenic mice expressing bovine PrP (bovPrP+/+/moPrP-/-)

propagate BSE prions indicating that there is no species barrier between cattle and these

transgenic mice. These mice were also highly susceptible to nvCJD leading to the same

features of the disease regarding incubation time, neuropathology and PrPSc deposition

whether the inoculate originates from cattle or a nvCJD patient. Wild type mice (C57BL6)

developed the disease after similar incubation time when inoculated with the nvCJD or BSE

agent (Bruce et al., 1997). Further macaques inoculated with the BSE agent showed the same

floride-type plaques as nvCJD patients (Lasmézas et al., 1996). All patients analysed so far

were homozygous for methionine at codon 129 of the Prn-p gene, which is the genotype of

38% of the white population (Jackson and Collinge, 2001) and all cattle analysed so far were

homozygous for methionine at the corresponding bovine codon (Goldmann et al., 1991).

Homozygocity at position 129 for methionine seems to be a genetic predisposition to develop

nvCJD. Recently, the human leukocyte antigen (HLA) class-II type DQ7 was identified as a

diagnostic marker for nvCJD because of its reduced frequency in the nvCJD cases compared

to classical CJD cases (Jackson et al., 2001).

The infection of humans with BSE implies an oral route of infection. About 50000 BSE-

infected cattle are supposed to have entered the human food chain (Anderson et al., 1996).

However, time humans have been exposed to the infectious agent, source of the infectious

BSE agent and duration of the exposition to the agent of the nvCJD cases were not

comprehensible. Extrapolation of data from mice models to humans revealed that the mean

incubation time for the development of nvCJD caused by BSE might be about 30 years.

However, the incubation period for sporadic CJD is estimated to be about 12 years (Brown et

al., 1992).

The BSE agent replicates within the lymphoreticular system when coming from the

gastrointestinal area after oral infection on its way to the brain (Hill et al., 1999). It is

impossible to predict at the moment whether nvCJD in humans will be epidemiologically

comparable to BSE in cattle.
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1.4. Familial forms of human TSE

The Prn-p gene encoding the prion protein is a single-copy gene, which is located on

chromosome 20 (Sparkes et al., 1986) and consists of three exons (Kretzschmar et al., 1986).

Among different species the sequence of the prion protein is highly conserved (Schätzl et al.,

1995) indicating the importance of PrPc for the organisms. 

Within the Prn-p gene point mutations, a deletion and insertions are reported which are

associated with the development of familial human TSEs (Fig.2). Three different types of

familial human TSE are known depending on the appearance of the disease: sporadic

Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker syndrome (GSS) and fatal

familial insomnia (FFI). The CJD phenotype is characterized by rapid progressing dementia

and periodic synchronized discharges in the electroencephalogram (EEG) (Bell and Ironside,

1993). The following mutations cause CJD: M178V (together with 129V), V180I, E200K,

R208H, V210, M232R, deletion of one octarepeat and insertion of 1, 2, 4, 5, 6, 7, 8 and 9

octarepeats (for review (Young, 1999)).

Fig. 2: Structural features and mutations and polymorphisms of the human prion protein. The
mutations indicated below represent point mutations. The wild-type amino acid precedes the
mutant amino acid. Polymorphisms are indicated above the prion protein. OR: octarepeat
region, CHO: glyocosylation sites, Amb: amber codon – termination codon, GPI: glycosyl-
phosphatidylinositol anchor, S1, S2: �-sheet 1 and 2, H1, H2, H3: �-helix 1, 2 and 3.
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The octarepeat region is a region located within the unstructered N-terminus (aa 51-91)

consisting of a fivefold repeat (in human) of eight amino acids which are glycine and proline

rich (Kretzschmar et al., 1986).

The GSS phenotype is denoted by a slower progression of the disease in which ataxia is the

predominant sign together with different amyloid deposits (Ghetti et al., 1995). The following

mutations are responsible for GSS: P102L, P105L, A117V, F198S and E217R. 

Fatal familial insomnia (FFI) is associated with one mutation: D178N. The typical hallmarks

of the FFI thalamic degeneration together with atrophy (Medori et al., 1992) is only

detectable when methionine is encoded at position 129. Valine at position 129 together with

D178N results in familial CJD. 

2. The prion protein

2.1. Processing and structure of PrP

The ORF of the human Prn-p gene is located in one exon on chromosome 20 and translation

results in a protein with a size of 253 amino acids (Fig. 3). On the N-terminus of the precursor

form of the prion protein a signal peptide is located which traffics PrP through the

endoplasmatic reticulum and the Golgi apparatus to the cell surface. PrP is N-glycosylated at

two asparagin residues located in the C-terminal part of PrP (aa 181 and 197) (Bolton et al.,

1985). Attachment of a glycosylphosphatidylinositol (GPI) anchor occurs at position 231 of

the human prion protein (Stahl et al., 1987). In addition, a single disulfide bridge is formed

between the cysteine residues at position 179 and 214 (Safar et al., 1990). The mature human

prion protein 23-231 is extracellularly attached to the cell membrane via its GPI anchor. PrP

is interacting on the cell surface with its cellular receptor the 37-kDa/67-kDa laminin receptor

(Gauczynski et al., 2001b). PrP becomes internalized via caveolae-like domains (Vey et al.,

1996) or clathrin-coated pits (Shyng et al., 1994). Since the 37-kDa/67-kDa laminin receptor

is required for PrPc internalization, clathrin coated pits are more likely to mediate the

internalization process than caveolae like domains (Gauczynski et al., 2001b). 
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Fig. 3: Maturation of the human prion protein. (A) Precursor form of PrP containing the
signal peptide at the N-terminus and the signal sequence at the C-terminus. (B) Mature form
of PrP. The signal domains are cleaved off and the protein is glycosylated and a GPI-anchor is
added. (C) Converted form of PrP. A model of PrPSc shows a higher �-sheet content in the N-
terminal part (Huang et al., 1996). (D) Proteinase K resistant part or PrP. After treatment with
proteinase K the C-terminal portion of PrP remains undigested. The fragment termed PrP27-
30 starts approximately with amino acid 90 (Hope et al., 1986). CHO: glyocosylation sites at
aa 181 and 197, GPI: glycosylphosphatidylinositol anchor, S1, S2, S3 and S4: �-sheet 1, 2, 3
and 4; H1, H2, H3: �-helix 1, 2 and 3, SP: signal peptide; SS: signal sequence; S-S: disulfide
bridge (aa 179 – aa 214). Amino acid numbering of human PrP is indicated. 

The human prion protein shows different structural features containing a globular domain

extending from residues 125 to 228, where three �-helices and two �-sheets are located as

determined by NMR analysis (Fig. 4) (Zahn et al., 2000). The N-terminal part of the protein is

highly flexible lacking any structural motif. 
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Fig. 4: NMR-structure of the human prion protein residues 23-230 modified from (Zahn et
al., 2000). The �-helices (curled structures) and �-sheets (arrows) are indicated. In addition,
the disulfide bridge is also marked (DS). The flexible unstructured tail of residues 23-121 is
represented by yellow dots. 

Within the N-terminus a highly conserved region is located consisting of five repeats of an

octamer (octarepeats). This region binds copper in vivo (Brown et al., 1997) and might be

important for the function of the prion protein (see chapter I 2.3). Newest results indicate that

the crystal structure of the prion protein is  dimeric (Knaus et al., 2001). The relevance of this

finding has to be further investigated due to non-physiological conditions used in this

crystalization study.

2.2. Conversion of the cellular prion protein to its pathogenic isoform

The conversion of the cellular form of the prion protein to its pathogenic isoform is the central

event of prion diseases. For this reaction and the replication of the pathogen several

hypotheses have been proposed. The most accepted one is the „protein-only“ hypothesis

(heterodimer hypothesis) proposed by S. B. Prusiner (Prusiner, 1991). The cellular prion

protein (PrPc) interacts with the scrapie form (PrPSc) forming a heterodimer, in which the PrPc

is forced to adopt the pathogene structure. The newly generated PrPSc is able to transform
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further PrPc molecules resulting in a chain reaction which leads to death of the organism. The

conversion reaction has been successfully performed in vitro (Caughey et al., 1995), but the

in vitro generation of infectious material failed. This leads to the conclusion that an additional

factor termed protein X might be necessary for the formation of pathogenic prions (Telling et

al., 1995). Most promising candidates for protein X represent chemical (Tatzelt et al., 1996b)

or molecular (Edenhofer et al., 1996) chaperones, which may favour the structural changes

during the conversion reaction (Liautard, 1993). A further model for the conversion of PrPc

into PrPSc is the nucleation-dependent polymerization model (Lansbury and Caughey, 1995).

Here, a so called crystal seed induces the conversion reaction. During the conversion process

�-helices of the cellular PrP are thought to change into a �-sheeted structure (Fig. 3) (Huang

et al., 1996; Pan et al., 1993).

The change in the secondary structure has dramatic effects on the properties of the prion

protein. The cellular PrP is soluble and completely sensitive towards proteinase K treatment

(Prusiner et al., 1981). In contrast, PrPSc has a high tendency to aggregate and PK treatment

results in a fragment of the protein termed PrP27-30, lacking about 60 amino acids at the N-

terminus compared to full-length PrPSc (Fig. 3). Like full-length PrPSc PrP27-30 is also

extremely resistant towards agents such as formamide or UV-radiation (Meyer et al., 1986).

The pathogenic PrP can be inactivated by phenol, NaOH or heat under pressure (138�C, 3 bar

>20 min). This high resistance of the scrapie form of the prion protein against degradation

leads to aggregation into scrapie-associated fibrils (SAFs) in the cells (Prusiner et al., 1983)

resulting in cell death.

2.3. Function of PrP

The question about the function of the cellular prion protein is still speculative. The

generation of mice ablated of the prion gene did not provide any prominent indications about

the function of PrP. The first Prn-p deleted mice were generated in 1992 and showed no

significant phenotype compared to wild-type mice (Bueler et al., 1992). This finding was

confirmed by other studies employing PrP0/0 mice (Manson et al., 1994). Other PrP0/0 mice

showed some alterations in their circadian rhythms and sleep behaviour (Tobler et al., 1996)

whereas another mouse line indicated the most intriguing features which suggested a

participation of PrP in the long-time survival of Purkinje neurons displayed in the

development of ataxia (Moore et al., 1999). This phenotype. however, is not due to the

deletion of the Prn-p gene, but to the hyperexpression of doppel encoded by the Prn-d gene

located 3‘ of the Prn-p locus. Some reports employing Prn-p knock-out mice describe a role



Chapter I 13

of PrPc in synaptic processes (Collinge et al., 1994). The only confirmed function of PrP is its

necessity for the infection with prions. Mice homozygous deleted in the Prn-p gene were not

infectable whereas heterozygous mice were only partially protected against scrapie infection

indicated in a prolonged incubation period (Bueler et al., 1993).

The role of PrP in the copper metabolism has been postulated: copper ions bind to the

octarepeat region located at the flexible N-terminus with micromolar affinity via coordination

with four histidins (Viles et al., 1999; Brown et al., 1997). Copper is an essential metal, which

plays a fundamental role in cell biochemistry, involving catalytic activities of several

enzymes including the superoxide dismutase (SOD). Cells expressing high levels of PrP

showed an increased resistance to oxidative stress compared to PrP knock out cells indicating

an increased Cu/Zn SOD activity (Brown and Besinger, 1998). Prn-p ablated mice showed a

reduced SOD activity in the brain (Wong et al., 2000). Whether this observation is due to an

increased copper transport of PrP to cuproenzymes such as SOD-1 or in the SOD activity of

PrP, which was reported for recombinant and immunoprecipitated PrP from mouse brains

(Brown et al., 1999), remains speculative. Copper homeostasis and oxidative stress are

relevant for the normal function of the CNS including synaptic transmissions. Any

disturbances in the copper transport or homeostasis are linked with some neurodegenerative

diseases such as the Menkes‘ syndrome, Wilson disease and Alzheimer’s disease (Waggoner

et al., 1999).

Recently, the involvement of PrP in signal transduction by activation of tyrosine kinase Fyn

has been reported (Mouillet-Richard et al, 2000) suggesting a possible role of PrP in signal

transduction pathways (see chapter I 4.).

3. The prion-like protein Doppel

The prion-like protein Doppel (Dpl) was discovered during sequencing of a genomic DNA

cosmid clone isolated from mice (Moore et al., 1999). �Doppel� is an acronym derived from

downstream prion protein-like gene. The mouse doppel gene Prn-d locates about 16 kb

downstream of the Prn-p coding region and is conserved in different strains of mice (Moore

et al., 1999) and in other mammals including sheep and cattle (Tranulis et al., 2001). With

respect to gene structure the doppel gene is in contrast to Prn-p interrupted by one intron

which leads to two mRNAs as alternative splice variants 2,7 and 1,7 kb in size, respectively

(Moore et al., 1999). The expression pattern of PrP and Dpl is quite different. Whereas PrP is
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expressed in a variety of neuronal tissues including brain, Dpl mRNA and the Dpl protein

were found in adult testis and heart, but were absent in the CNS of wild-type mice (Silverman

et al., 2000). In contrast, the expression of Dpl was upregulated in the brain in mice ablated of

the prion gene (Moore et al., 1999).

Comparison of the sequence of PrP with Dpl reveals a homology of 25% between both

proteins. On the first glance, Dpl seems to be an N-terminally truncated version of PrP

lacking the octarepeat region which might contribute to the function of PrP (Moore et al.,

1999). In addition Dpl also lacks the highly conserved hydrophobic region within the core

region of PrP, which might represent a putative transmembrane region. Both proteins harbor

the N-terminally located signal peptide responsible for translocation of the proteins through

the secretory pathway. Both proteins reveal also a signal sequence necessary for the addition

of the GPI-anchor. Dpl is an asparagin-linked glycosylated protein analogous to PrP, which

exist in non-, mono- and di-glycosylated forms (Silverman et al., 2000). As expected from the

existance of a signal sequence a GPI-anchor is added to the Dpl protein allowing the fixation

to the cell membrane on the cell surface. This was proven by a PIPLC treatment, which

cleaves off GPI-anchored proteins from the cell surface (Silverman et al., 2000). One major

difference between both proteins is the existance of an additional intramolecular disulfide

bridge for Dpl identified by mass spectrometrie (Lu et al., 2000). The solution of the NMR-

structure of Dpl revealed that Doppel and PrP share about the same features (Mo et al., 2001).

Three �-helices and two short �-strands are present in both proteins, whereas some

interstructural kinks and loops are different (Fig. 5).

Fig. 5: NMR-structrures of mouse Dpl 26-157 and mouse PrP 121-231 (modified from (Mo et
al., 2001)). Each structure reveals three �-helices and two ��sheets.
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The role of Dpl in prion pathogenesis replication remains unclear to date. Dpl cannot be

detected in the CNS, the main location of prion replication. The typical features of prion

pathology including spongiosis, gliosis and PrPSc accumulation were still observed in Prn-d

deficient neuronal tissues inoculated with scrapie prions (Behrens et al., 2001). Therefore,

Dpl seems to be likely dispensable for prion disease progression and generation of PrPSc.

Recently, the overexpression of Dpl in the CNS of transgenic mice on a Prn-p0/0 background

has no effect on the incubation time of a scrapie infection (Moore et al., 2001). In addition,

we were able to show that Dpl also fails to interact with PrP and the laminin receptor, the

receptor for cellular PrP (see chapter VI). Whether Dpl represents the proposed molecule

(Shmerling et al., 1998) which might be responsible for signal transduction in the absence of

PrP necessary for cell survival has to be further investigated. 

4. Participation of PrP in signal transduction

Due to its cell membrane localization the cellular prion protein could participate in cell

signalling pathways. There are some reports about the involvement of PrP in cellular calcium

signalling pathway. PrP contains a 21-amino acid fragment (PrP106-126) which showed a

cytotoxic effect on neuronal cultivated cells (Forloni et al., 1993). Two possibilities might be

responsible for this phenomenon. An interaction of the cytotoxic fragment with an intrinsic

ion transport protein or the formation of an ion channel are conceivable models (Kourie and

Shorthouse, 2000). The fragment PrP106-126 is able to form ion channels in planar bilayers

that were permeable to common physiological ions (Lin et al., 1997). This might disturb the

ion balance of the cell leading to apoptosis. In fact the prion protein affects the Ca2+/K+

homeostasis in cerebellar Purkinje cells (Herms et al., 2001). PrP is proposed to have

superoxide dismutase activity which is reduced in Prn-p0/0 neurons (Brown et al., 1999). The

SOD acitivity is predominantly involved in reduction of intracellular produced oxygen

radicals which are known to affect the Ca2+ influx (Guerra et al., 1996). Therefore, it is

unknown whether the cell death of PrP knockout cells is due to a lack of SOD-activity and

copper transport or the disturbance of the Ca2+ homeostasis. Calcium is an important player in

the signalling pathways of cells functioning as a second messenger (Berridge, 1998), which

can be activated by PrP. The transient release of intracellular calcium is a result of a

stimulation of microglial cultures by fibrillar neurotoxic prion peptides (Combs et al., 1999).

This effect is also observed with A�-peptide in the Alzheimer’s disease another
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neurodegenerative disease which is as well characterized by amyloidogenic features (Kourie

and Henry, 2001). The fibrillar peptides activate tyrosine kinases Lyn and Syk which initiate a

signalling cascade involving calcium as a second messenger. In addition, the involvement of

tyrosine kinases including Src kinases Fyn and Lck in the mobilization of intracellular Ca2+

via phosphilipase-C and IP3 is reported (Archuleta et al., 1993).

Some further evidences exist for the connection of the prion protein with the signal pathways

involving tyrosine kinases. PrP, the tyrosine kinases Fyn and Yes and subunits of the G

protein were located in the same caveolin-free complexes isolated from neuroblastoma cells

(Gorodinsky and Harris, 1995). In addition, the neurotoxic prion peptide fragment PrP 106-

126 behaves chemotactic for human monocytes through the use of a G-protein-coupled

formyl peptide receptor-like-1 protein (FPRL-1) activating phagocytosis (Le et al., 2001a; Le

et al., 2001b). Src kinases were also involved in the phagocytotic process mediated by the

kinase ZAP-70 (Majeed et al., 2001; Park and Schreiber, 1995). There is another common

feature for the neurotoxic PrP fragment and Fyn kinase in the relationship with the mitogen-

activated protein kinase (MAPK). PrP 106-126 activates the MAPK during the induction of

nitric-oxide synthase (Fabrizi et al., 2001), whereas Fyn plays a role in the signal cascade of

the activation of MAPK by thrombin in T cells (Maulon et al., 2001). In addition, scrapie

infection of neuroblastoma cells provoked up-regulation of the insulin-like growth factor-1

receptor (IGF-1R) (Ostlund et al., 2001) probably mediated by Src family tyrosine kinases

which are known to participate in the signalling of IGF-1R (Boney et al., 2001).

Recently, a more direct relation of the prion protein with the tyrosine kinase Fyn was

described (Mouillet-Richard et al, 2000). It was demonstrated that the activity of Fyn was

strongly increased in murine neuronal cells by antibody mediated cross-linking of PrPc. Since

Fyn is located on the innerside of the cell membrane and PrP stays GPI-anchored on the cell

surface, PrP is a potent candidate for signal transduction to modulate the signals from other

cells or the extracellular space. Therefore, an additional factor might be necessary to mediate

the signal from PrP to Fyn. A potential candidate is the 37-kDa/67-kDa laminin receptor

(LRP/LR) acting as the receptor for cellular PrP (Gauczynski et al., 2001b). The receptor is a

transmembrane receptor class 2 with its C-terminus orientated to the extracellular space

(Gauczynski et al., 2001b). Some other factors might also be involved in this process, e.g.

heparan sulfate proteoglycans (HSPGs), which are binding partners for PrP and LRP/LR

(Hundt et al., 2001), caveolin-1 or clathrin (Mouillet-Richard et al, 2000). Wether

phosphorylation of PrP, which is susceptible for enzymic phosphorylation by tyrosine kinases

(Negro et al., 2000) in combination with structural changes of PrP, or a more indirect way of
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signal transduction mediated by PrP is speculative to date. However, the important role of PrP

in signal transduction has been confirmed by the detection of several other proteins such as

Grb2 and Synapsin Ib interacting with PrP involved in signalling pathways (Spielhaupter and

Schatzl, 2001). 

5. Yeast two-hybrid system

Protein-protein interactions are crucial steps in many biological processes, such as signal

transduction pathways or receptor/ligand interactions. A useful tool for the identification and

analysis of protein-protein interactions represents the yeast two-hybrid system, which was

first developed by Fields and Song in 1989 (Fields and Song, 1989). The basic concept of the

yeast two-hybrid system emerged from the analysis of transcription factors which bind to

DNA sequences upstream the target genes followed by activation of the transcription

machinery (Vidal and Legrain, 1999). DNA binding and activation features are located in

physically separable domains of the protein (Keegan et al., 1986) which can be fused to

proteins of interest. Only in case the proteins interact with each other the transcription factor

is reconstituted and a reporter system is switched on (Fig. 6). In addition to the first reporter

gene which was the bacterial lacZ gene further selection markers such as LEU have been

established leading to growth of the yeast cells indicating the protein-protein interaction

(Gyuris et al., 1993).

5.1. Modifications of the yeast two-hybrid system

In the last few years, several new modifications of the yeast two-hybrid system have been

established recommanding the system for several different approaches. In order to detect

factors mediating the interaction of two proteins a three-hybrid system was generated

involving a third component such as a nucleic acid or a protein (Tirode et al., 1997). The

reverse two-hybrid has been generated to select for mutations, drugs or competing protein

disrupting a protein-protein interaction (Vidal et al., 1996). The readout of the reverse two-

hybrid system is inverse to the regular two-hybrid system: yeast cells are only viable in case

of no protein/protein interaction. A similar selection is performed in case of the split hybrid

system, where the tet repressor system is used for selection (Shih et al., 1996).
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Fig. 6: Principle of the two-hybrid system. Protein X is fused to a DNA-binding domain
(BD), which is capable to bind to the upstream activating sequence (UAS), e.g. LexA or
GAL4, whereas protein Y is fused to an activation domain (AD), e.g. the acidic activation
domain B42. A If protein X interact with protein Y, the transcription factor is reconstituted
and the reproter gene (lacZ / HIS3 / LEU2) is switched on. B No interaction between protein
X and Y leads to an inactive reporter gene.

The yeast two-hybrid method has been transfered to the E.coli system, which allows the usage

of the advantages of a prokaryotic system (for review (Hu et al., 2000)). E.coli cells grow

faster than yeast cells, eukaryotic regulatory proteins interfering the endogeneous yeast

metabolism can be investigated in E.coli and it is unlikely that E.coli proteins hamper this

protein-protein interaction.

In addition, the yeast two-hybrid system has been adopted to mammalian cells detecting

protein-protein interaction in an evolutionary highly developped system (Serebriiskii et al.,

2001). 

Whereas the regular two-hybrid occurs in the nucleus of the cells in which transcription takes

place new methods were established basing on interactions in the cytoplasm involving
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ubiquitin restoration (Johnsson and Varshavsky, 1994) or membrane-association employing

the Ras signalling pathway (Aronheim et al., 1997).

There is a broad application of the two-hybrid system for the investigation of the protein

network of a cell. Potential binding partners can be identified in a two-hybrid screen using a

cDNA library encoding many proteins. The regions involved in the interaction can be

determined by mapping analyses employing deletion or insertion mutants. Considering the

knowledge of the genome of different organisms cloning of open reading frames of part of the

genome and investigation in a two-hybrid analysis is possible (Hudson et al., 1997). Two-

hybrid technology plays also an important role in the proteomic studies of genomes, in which

besides mass spectrometry the two-hybrid technology represents a powerful tool for the

detection of protein-protein interactions (Pandey and Mann, 2000). 

5.2. Yeast two-hybrid analyses with the prion protein

A series of  proteins interacting with the prion protein have been identified in two-hybrid

analyses (for summary see chapter II). In 1995, Bcl-2 was the first PrP interacting protein

detected in a yeast two-hybrid screen (Kurschner and Morgan, 1995), including the

identification of ihnteraction domains (Kurschner and Morgan, 1996). The molecular

chaperone Hsp60 was identified as an interactor for human PrP favouring the hypothesis that

these molecules participate in the progression of TSEs (Edenhofer et al., 1996). In addition,

the 37-kDa/67-kDa laminin receptor was discovered as an interactor for PrP (Rieger et al.,

1997). This receptor has been proven to act as the receptor for the cellular prion protein

(Gauczynski et al., 2001b) and PrP/LRP-LR interaction domains have been also identified

(Hundt et al., 2001). Very recently, the participation of the prion protein in signaling

pathways has been proposed from yeast two-hybrid analyses demonstrating the interaction of

PrP with Grb2 and Synapsin Ib (Spielhaupter and Schatzl, 2001).

Interacting proteins of the prion-like protein Ure2p, a non-Mendelian genetic element of the

yeast Saccharomyces cerevisiae (for review (Tuite, 2000)), have also been identified and

characterized by a yeast two-hybrid analyses (Komar et al., 1999; Fernandez-Bellot et al.,

1999).
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I. Introduction

The prion protein PrP represents a central player in transmissible spongiform

encephalopathies (TSEs), also known as prion diseases (for review see Lasmézas and Weiss,

2000). The physiological role of the cellular isoform of PrP termed PrPc is speculative so far

(for review see (Weissmann, 1996)) and might involve control of circadian activity rhythms

and sleep (Tobler et al., 1996), maintenance of cerebellar Purkinje cell (Sakaguchi et al.,

1996), and normal synaptic functions (Collinge et al., 1994; Fournier et al., 1995; Kitamoto et

al., 1992). Because several reports do not describe any phenotype for PrP (Bueler et al., 1992;

Lledo et al., 1996; Manson et al., 1994) the only proved role of PrPc is its necessity for the

development of TSEs (Bueler et al., 1993) such as bovine spongiform encephalopathy (BSE)

in cattle, new variant Creutzfeldt-Jakob (nvCJD) in humans or scrapie in sheep. A recent

report describes a superoxide dismutase (SOD) activity for PrPc (Brown et al., 1999)

suggesting that PrP might play a role in the cellular resistance to oxidative stress.

In the last 20 years of the past twentieth century, researchers worldwide were eagerly

searching for molecules able to interact specifically with the prion protein in the hope of

identifying interactors (1) that play an important role in the life cycle of prions or (2) that

could be developed into powerful TSE therapeutics.

This chapter summarizes PrP interacting molecules that might be relevant for PrP

pathogenesis or TSE therapy. In the first section we describe putative prion protein receptors

including the role of heparan sulfate proteoglycans (HSPGs). A cellular model will be

presented that describes the possible role of prion receptors and prion proteins, including the

recently identified PrP-like protein termed doppel (Moore et al., 1999). The model

emphasizes the possible role of PrP and its receptor regarding PrP internalization as well as

signal transduction and physiological function, in particular, the 37 kDa laminin receptor

precursor (LRP), an up to now unidentified 66 kDa cell surface protein, and cadherins, which

are then discussed as prion receptors that might trigger the entry of PrP into scrapie infectable

cells. Next, we summarize the role of molecular chaperones, including chemical chaperones

that may catalyze or hamper the conversion process of PrPc to PrPSc. In this context, we

emphasize a possible function for protein X, an as yet unknown protein predicted by S.B.

Prusiner to be necessary for the PrP conversion process. The occurrence of PrP dimers under

native and denaturing conditions observed in different cell systems and in vitro represents

another aspect of PrP interactions, in this case an interaction of PrP with itself. The possible

role of such PrP dimers in the complex scenario of PrP oligomerization and multimerization
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processes is discussed. In the section V we report on a series of PrP interacting molecules

identified using different biochemical approaches such as ligand blotting and yeast two-

hybrid techniques. Among these are the PrP ligand proteins (Pli) encompassing Pli 3-8, Pli 45

and 110 as well as Bcl-2, which belongs to a family of proapoptotic and antiapoptotic

molecules. The role of Bcl-2 in the light of neurodegeneration and apoptosis is discussed. The

interaction between laminin and PrP-mediating neuritogenesis is reported. The last section

describes molecules, mainly of nonproteinaceous origin, which act as therapeutics for the

treatment of TSEs. These include polyanions such as heteropolyanion 23, dextran sulfate 500,

pentosan polysulfate (SP54), and heparin. Other groups of anti-TSE therapeutics include

Congo red, polyene antibiotics such as AmB and MS-8209, IDX, porphorins, phtalocyanes

and the protein clusterin. The possible modes of action of these molecules such as interfering

with the PrPc/PrPSc conversion process followed by PrP accumulation, interfering with the

cellular uptake of PrPc/PrPSc, overstabilization of PrPSc, or competing with cellular

glycosamino-glycans for the binding to PrPc are discussed. The last group of PrP interacting

molecules represent nucleic acids including RNA aptamers, the latter as a possible tool for the

diagnosis of TSEs.

II. Cell Surface Receptors

A. The Role of a Cellular Prion Protein Receptor

To understand the pathogenesis of diseases such as TSEs, it is necessary to clarify how the

biological system works under physiological conditions. The main principle of the "protein-

only“ hypothesis is that the cell-membrane glycoprotein PrPc is converted into its pathogenic

isoform PrPSc, a process that involves conformational changes of the protein (Prusiner et al.,

1998). During this transformation PrP acquires additional regions of ß-sheets in the

polypeptide chain, resulting in a partially resistance to proteases. The cellular pathway of PrPc

is of major interest because here the conversion of PrPc to PrPSc might take place. PrPc is

synthesized in the rough endoplasmatic reticulum (rER). It is passaged via the Golgi and

secretory granules to the cell surface where it is anchored to the plasma membrane by its

glycosylphosphatidylinositol (GPI) moiety (Rogers et al., 1991). According to an endocytic

recycling pathway, the surface-PrPc is internalized by clathrin-coated pits (Shyng et al., 1994)

or caveolae-like domains (CLDs) (Vey et al., 1996). The endocytosis of PrPc could be

mediated by a transmembrane protein, which might connect the GPI-anchored PrP to clathrin.
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Harris postulated the existence of an endocytic PrP-receptor that carries a coated-pit

localization signal in its cytoplasmic domain and whose extracellular domain binds the N-

terminal part of PrPc (Harris, 1999; Harris et al., 1996). He observed that deletions within the

N-terminal region of PrPc result in a decrease of internalization of the protein and

consequently in a reduction of the PrPc concentration in coated pits (Harris, 1999; Shyng et

al., 1995). In addition, Harris observed that chicken PrP binds to the surface of mammalian

cells via heparan sulfates on the cell surface (Shyng et al., 1995). Several researchers

described an interaction between heparan sulfates and PrP (Brimacombe et al., 1999;

Caughey et al., 1994; Chen et al., 1995; Gabizon et al., 1993). Heparan sulfates have been

shown to be a component of amyloid plaques in prion diseases (Gabizon et al., 1993).

Recently, it has been demonstrated that the addition of heparin competes with the binding of

copper to PrP which occurs in the octarepeat region (Brown et al., 1997; Brimacombe et al.,

1999), suggesting that this region of PrP binds to heparin. The recently observed superoxide

dismutase (SOD) activity of PrPc is dependent on the presence of the octarepeat region

(Brown et al., 1999) confirming the important role of this domain for PrP. HSPGs make up

proteoglycan moieties consisting of proteins carrying glycosaminoglycan (GAGs) chains

made of anionic polysaccharide chains. Heparan sulfate, the main GAG-constituent of

HSPGs, like heparin, consists of disaccharide repeating units of O-/N-sulforyl and N-

acetylglucosamine (or N-acetylgalactosamine) and O-sulforyliduronic acid except that it

harbors fewer N- and O-sulfate groups and more N-acetyl groups. The proteoglycans HSPGs

are thought to play an important role on the cell surface within the life cycle of prions.

The process by which exogenous PrPSc enters the cell is unclear so far. The uptake of

the infectious agent could also be mediated by a receptor protein or might occur receptor

independent. The conversion of PrPc to PrPSc may take place after internalization in cellular

compartments such as endosomes, lysosomes, or endolysosomes. This conversion process is

thought to be influenced by an unknown protein termed protein X (Telling et al., 1995),

which could represent a molecular chaperone such as Hsp60 (Edenhofer et al., 1996). In

addition, it has been suggested that several proteins possessing a GPI-anchor are excluded

from coated pits and internalized by caveolae (Anderson, 1993). Furthermore, it has been

reported that PrPc and PrPSc are present in CLDs isolated from scrapie-infected neuroblastoma

cells and brains of scrapie-infected hamsters, and it is speculated that the conversion of PrPc

into PrPSc could also take place in these compartments (Vey et al., 1996). To understand the

mechanism of this conversion event as well as the physiological function of the cellular prion

protein, it is important to investigate the involvement of a possible receptor protein as well as
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of proteins showing biological properties similar to PrP, such as the recently discovered PrP-

like protein designated doppel (Dpl) (Moore et al., 1999).

The discovery of doppel does not only represent the first PrP-related protein (Moore et al.,

1999), it also could explain some curious, surprising observations within several lines of

Prnp0/0 mice, which differ only in the strategy used to generate PrPc-deficiency. Creating an

internal insertion or deletion within the PrP exon 3, two lines of mice were generated showing

normal development without any pathological phenotype (Bueler et al., 1992; Lledo et al.,

1996; Manson et al., 1994). However, in two other cell lines the entire coding sequence of

PrP as well as a ~1 kb region 5' to exon 3 including the exon 3 splice acceptor site were

deleted (Sakaguchi et al., 1996). These Prnp0/0 mice showed progressive symptoms of ataxia

and Purkinje cell degeneration in the cerebellum. It is suggested that Dpl is involved in a

physiological process in a manner leading to this pathological phenotype. Doppel is the first

PrP-like protein to be described in mammals (Moore et al., 1999). It consists of 179 amino

acid residues showing ~25 % identity with all known prion proteins. The Dpl locus, Prnd, is

located 16 kb downstream of the PrP gene, Prnp, generating two major transcripts of 1.7 and

2.7 kb. Like PrP, Dpl mRNA is expressed during the embryogenesis but, in contrast to PrP, it

is poorly expressed in the adult central nervous system (CNS) and at high levels in the testis

of mice. However, Dpl is upregulated in the CNS of the two Prnp0/0 lines that develop late-

onset ataxia and Purkinje cell death but not in the normally developed Prnp0/0 lines (Moore et

al., 1999). Therefore, it was assumed that Dpl may provoke neurodegeneration in PrP-

deficient mice, an observation that might explain why some lines of Prnp0/0 mice develop

cerebellar dysfunction and Purkinje cell death, whereas others do not. Moore et al. suggested

that Dpl and PrP may share some biological functions owing to the similarities between these

two proteins (Moore et al., 1999). Would it be possible that PrP and Dpl bind to each other or

would it be also possible that they compete for binding to a common receptor? Dpl synthesis

is thought to occur in the secretory pathway to yield a globular, N-glycosylated, membrane-

associated protein comparable to PrPc, but in contrast to it containing no octarepeat region in

its N-terminal domain (Moore et al., 1999).

In addition, expression of moderate levels of N-terminal truncated PrP with deletions of

amino acid residues 32-121 or 32-134 caused ataxia and specific degeneration of the granular

layer of the cerebellum in PrP0/0 mice, whereas mice expressing shorter truncations of PrP, up

to residue 106, show no pathological changes (Shmerling et al., 1998). This granule cell

dysfunction was completely abrogated by introducing a single copy of a wild-type murine PrP

gene into mice. It is speculated that the truncated PrP may compete with some other molecule
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with a function similar to that of PrP for a common ligand or receptor. It was assumed that in

wild-type mice PrP interacts with a presumed receptor promoting signal transduction (Fig.

1A), and the same signal is elicited by interaction of the receptor with π, a conjectural protein

that has the functional properties of PrP, but is not closely related to it on DNA level (Fig. 1B)

(Shmerling et al., 1998). This would explain why the absence of PrPc has no obvious

phenotypic consequences. It is postulated that truncated PrP can interact with the receptor

without giving rise to a signal (Fig. 1C). The affinity of the receptor for truncated PrP would

have to be stronger compared to π, but would be less compared to intact PrP. Only N-terminal

truncated PrP where the deletion extends to or beyond residue 121 shows cerebellar

dysfunction leading to the conclusion that the globular domain of cellular PrP binds to a

receptor, whereas the flexible tail of the N-terminus spanning residues 23 to 120 is 

Fig. 1: Model of PrPc- and receptor-mediated signal transduction. In the normal cell, PrPc and
receptor molecules from the same cell or from different cells can interact and promote signal
transduction (A). The same signal might be elicited by the binding of a conjectural protein
designated π, which possesses the functional properties of PrPc explaining why some lines of
PrP0/0 mice develop normally (B). In the absence of PrPc, N-terminal truncated PrP can also
interact with the receptor competing with the binding of π, however, without giving rise to a
signal and leading to ataxia and degeneration of the granular layer of the cerebellum. A
similar event is thought to take place in PrP-deficient mice, which are showing a pathological
phenotyp. In these mice a PrP-like protein called doppel (Dpl) is upregulated in the CNS. It is
speculated that this protein may bind with higher affinity to the receptor than π does, resulting
in ataxia and degeneration of Purkinje cells (C). 
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responsible for activation (Shmerling et al., 1998). One possible interpretation for the

pathological phenotype caused by the expression of N-terminal truncated PrP is that such PrP-

mutants assumes a Dpl-like conformation that is neurotoxic and results in the killing of the

granular layer in the cerebellum (Moore et al., 1999). The association of Dpl overexpression

with degeneration of Purkinje cells which were rescued by overexpression of wild-type PrP,

suggest that Dpl and PrP interact perhaps directly or indirectly by competing as ligands for a

common receptor. Therefore, both proteins may play a role in cell contact processes (Fig. 1). 

Recently, a signal transduction activity of the prion protein by achieving tyrosine

kinase Fyn was described (Mouillet-Richard et al., 2000). Since PrPc locates GPI-anchored at

the cell surface, whereas Fyn-kinase is associated with the inner plasma membrane of the cell,

a transmembrane receptor might mediate the PrPc dependent activation of the Fyn-kinase.

In this section we describe the different candidates, identified so far, that may act as prion

protein receptors. Distinct strategies and methods were used to identify the putative receptor

molecule. Further investigations are necessary to clarify the identity of a physiological PrPc-

receptor and to reveal its role in the normal cellular process of PrPc as well as in the

pathogenesis of prion-diseases. Identification and characterization of this receptor are also

important in designing drugs that could be used to prevent the initial uptake of the infectious

agent into cells.

B. A 66 kDa Membrane Protein as a Potential Prion Receptor

Employing complementary hydropathy a 66 kDa membrane protein that could act as a

cellular prion protein receptor, was recently identified (Table I) (Martins et al., 1997). By

means of this strategy, a hypothetical peptide mimicking the receptor binding site should bind

to the neurotoxic domain of prion proteins. Here a peptide encoded by the DNA strand

complementary to that of the human PrP gene, spanning amino acid residues 114 to 129, was

chemically synthesized and used to immunize mice in order to generate antibodies directed

against this complementary prion peptide. The available mouse antisera were used to

investigate the localization of the putative receptor by immunofluorescence and confocal

microscopy approaches, resulting in the detection of an antigen at the cell membrane of

primary mouse neurons. In Western blot analysis of membrane extracts from mouse brain, the

antiserum recognized a specific protein of 66 kDa. In vitro and in vivo binding assays were

performed demonstrating that PrPc and the 66 kDa membrane protein could bind to each other

(Martins et al., 1997). Flow cytometry studies revealed that purified membrane extracts,

prepared from mouse brain, inhibited in vivo recognition of cellular PrP in cultured
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neuroblastoma cells (N2a) by anti-PrP antiserum. This process could be reversed by

pretreatment of such membrane extracts with antiserum raised against the complementary

prion peptide and the putative receptor protein. Furthermore, both the complementary prion

peptide and the antiserum against it were able to block the neurotoxic effects mediated by the

human prion peptide 106-126 towards cultured neuronal cells. Martins et al. suggested that a

specific receptor for prion proteins could be responsible for their internalization and for the

cellular responses mediated by PrPc. They speculated that, as PrPc tends to accumulate in

postsynaptic vesicles (Askanas et al., 1993), both PrPc and its receptor are involved in

interneuronal cell adhesion causing neuronal networking (Martins et al., 1997).

According to Martins et al. in the normal cell, PrPc and receptors from the same cell or from

different cells can interact and mediate signal transduction, triggering their physiological

function. They postulated that the infectious agent should interact with the same receptor

following internalization, facilitating the conversion of PrPc into PrPSc and leading to PrPSc

accumulation and finally cell death (Martins, 1999). Further investigations leading to the

identification of the 66 kDa protein are necessary to clarify the role of this putative receptor in

the normal process of PrPc, as well as in the pathogenesis of TSEs.



30 Chapter II

Table I. PrP binding proteins, identity and characteristics

PrP binding
Protein

cDNA
identified

Known
homology

Surface
protein

Method of
identification Reference

Pli45c Yes GFAP No ligand blot Oesch et al, 1990

Pli110c Yes PSF No ligand blot Oesch et al, 1990

Pli3c Yes human ESTs No PrP-AP
screening

Yehiely et al, 1997

Pli4c Yes None No PrP-AP
screening

Yehiely et al, 1997

Pli5c Yes guinea pig
organ of corti,
rat and human
ESTs

No PrP-AP
screening

Yehiely et al, 1997

Pli6c Yes Mouse Aplp1
(amyloid
precurser like
protein)

Yes PrP-AP
screening

Yehiely et al, 1997

Pli7c Yes Mouse Nrf2
(p45 NF-E2
related factor)

No PrP-AP
screening

Yehiely et al, 1997

Pli8c Yes None No PrP-AP
screening

Yehiely et al, 1997

37-kDa laminin
receptor
precursora

Yes 37 kDa
laminin-
receptor
precursor

Yes yeast-two-hybrid
screening

Rieger et al, 1997

66-kDa proteina No None Yes complementary
hydropathy

Martins et al, 
1997

Cadherinsa Yes Cadherins Yes PrP-AP
screening

Cashman and
Dodelet, 1997

Bcl2c Yes Bcl-2 No yeast-two-hybrid
screening

Kurschner and
Morgan, 1995

Chaperons
b Yes several

molecular
chaperons

No various methods DebBurman et al,
1997
Edenhofer et al, 1996
Tatzelt et al, 1996

a See Section II.
b See Section III.
c See Section V.
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C. The 37 kDa Laminin Receptor Precursor (37 kDa LRP)

In a yeast two-hybrid screen, we identified a specific molecule as an interaction partner for

the prion protein: the 37 kDa laminin receptor precursor (37 kDa LRP) (Table I) (Rieger et

al., 1997). We speculated that this protein could act as a potential receptor for the cellular PrP.

This interaction was confirmed by coinfection and cotransfection studies in insect and

mammalian cells, respectively (Rieger et al., 1997). Furthermore, investigations of the LRP

level in several organ and tissues of scrapie-infected mice and hamsters demonstrated that

LRP occurs in higher amounts only in those organs that exhibit infectivity and PrPSc

accumulation such as brain, spleen and pancreas compared with uninfected control animals

(Rieger et al., 1997). This was confirmed by cell culture experiments demonstrating an

increased amount of LRP in scrapie-infected mouse neuroblastoma (N2a) cells compared with

uninfected cells. Mapping of the 37 kDa LRP with different peptide fragments identified a

transmembrane domain containing amino acids 86-101 (Castronovo et al., 1991b) and a

laminin-binding domain comprising amino acids 161-180 (Castronovo et al., 1991b), which is

thought to be directed towards the extracellular space (Fig.2). Mapping of the LRP/PrP

interaction site performed in the yeast two-hybrid system demonstrated that the laminin-

binding domain can also function as a PrP binding site (Rieger et al., 1997) (Fig. 2).

Fig. 2: Schematic view of the prion protein (PrP) and the 37 kDa laminin receptor precursor
(LRP) on the surface of a scrapie-infectable cell. PrP is anchored by GPI (Blochberger et al.,
1997) and is thought to colocalize with LRP. The putative transmembrane region of LRP
stretches from aa 86 to aa101 (Castronovo et al., 1991b). The laminin binding domains from
aa 161 to 180 (Castronovo et al., 1991b) encompassing the palindromic sequence
LMWWML, which appeared during evolution from the non-laminin-binding ribosomal
protein p40 (Ardini et al., 1998), to the laminin-binding LRP on the cell surface is identical to
the PrP binding domain (Rieger et al., 1997).
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LRP is thought to be the precursor of the 67 kDa laminin receptor (67 kDa LR) because

attempts to isolate the gene for the 67 kDa LR resulted in the identification of a cDNA

fragment which encoded a 37 kDa polypeptide (Rao et al., 1989; Yow et al., 1988). This was

confirmed by pulse-chase experiments carried out with antibodies directed against the 37 kDa

protein (Castronovo et al., 1991; Rao et al., 1989). The 67 kDa laminin receptor was first

isolated from tumor cells (Lesot et al., 1983; Malinoff and Wicha, 1983; Rao et al., 1983)

owing to its high binding capacity to laminin, a glycoprotein of the extracellular matrix that

mediates cell attachment, movement, differentiation and growth (Beck et al., 1990).

Engelbreth-Holm-Swarm (EHS) laminin (Beck et al., 1990), which has been proved to bind to

the 37 kDa LRP (Rieger et al., 1997) (Table II), consists of three polypeptide chains: A or �

(440 kDa), B1 or �, and B2 or � (each 220 kDa), linked via disulfide bonds, resulting in the

typical cross-structure (Beck et al., 1990). Several other classes of laminin binding proteins

have been described including integrins (Albelda and Buck, 1990) and �-galactoside binding

lectins such as galectin-3 (Bao and Hughes, 1995; Ochieng et al., 1993; Yang et al., 1996)

equivalent to CBP-35 (Laing et al., 1989). Immunoblotting assays performed with a

polyclonal serum directed against galectin-3 revealed that the 67 kDa LR carries galectin-3

epitopes, whereas the 37 kDa LRP does not (Buto et al., 1998).

The 37 kDa LRP/67 kDa LR is a multifunctional protein (Table II) and its amino acid

sequence is well conserved throughout evolution, showing a high degree of homology among

mammalian species (Rao et al., 1989). The evolutionary analysis of the sequence identified as

the laminin-binding site [which we proved to correspond to the PrP binding domain (Rieger et

al., 1997)] suggested that the aquisition of the laminin binding capability is linked to the

palindromic sequence LMWWML, which appeared during evolution concomitantly with

laminin binding (Ardini et al., 1998). This protein evolved from the ribosomal protein p40,

which participated in protein synthesis on 40 S ribosomes without any laminin-binding

activity (Auth and Brawerman, 1992) to a cell surface receptor binding laminin (Rieger et al.,

1997), elastin (Hinek et al., 1988; Salas et al., 1992) and carbohydrates (for review see

(Ardini et al., 1998; Mecham, 1991; Rieger et al., 1999)). In addition, interaction of the

epitope-tagged laminin binding protein LBP/p40 with nuclear structures was observed in

cultured cells (Sato et al., 1996). In vitro analysis revealed that LBP/p40 binds tightly to

chromatin DNA through association with histones H2A, H2B and H4 suggesting that this

protein may play an essential role in the maintenance of nuclear structures (Kinoshita et al.,

1998).
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The laminin receptor family is highly conserved in a wide spectrum of eucaryotic cells

(Keppel and Schaller, 1991; Wewer et al., 1986), including yeast (Demianova et al., 1996),

and is encoded by archaean genomes (Ouzonis et al., 1995). 37 kDa LRP acts as a receptor

for the Venezuelan equine encephalitis virus on mosquito cells (Ludwig et al., 1996), whereas

the 67 kDa LR functions as a receptor for the Sindbis virus on mammalian cells (Wang et al.,

1992) (Table II). The mechanism of how the 37 kDa precursor protein forms the mature 67

kDa isoform is still unclear. Homodimerization of the 37 kDa LRP (Landowski et al., 1995)

or the involvement of an additional component (Castronovo et al., 1991a) has been discussed.

Recent studies suggested that the 67 kDa LR is a heterodimer stabilized by fatty acid-

mediated interactions (Buto et al., 1998). Very recently, it has been proved that the 67 kDa

LR (also termed laminin binding protein, p67 LBP) is expressed on a subset of activated

human T lymphocytes and, together with the integrin, very late activation antigen-6, mediates

strong cellular adherence to laminin (Canfield and Khakoo, 1999). In summary, the 37 kDa

LRP/67 kDa LR polymorphism remains a mystery. Both forms may act as a receptor for

prions on the surface of scrapie infectable cells. Mammalian genomes contain multiple copies

of the LRP gene, in particular 6 copies in the mouse and 26 copies in the human genome

(Fernandez et al., 1991; Jackers et al., 1996a) a fact that has hampered the identification of

the active gene for a long time. To date, only the 

gene for the chicken and the human gene encoding LRP have been isolated (Clausse et al.,

1996; Jackers et al., 1996b). The gene encoding 37 kDa LRP belongs to a multicopy gene

family and contains seven exons and six introns (Jackers et al., 1996b).

The 37 kDa LRP/p40 gene has been identified in different species including Saccharomyces

cerevisiae (Davis et al., 1992), Arabidopsis thaliana (Garcia-Hernandez et al., 1994),

Drosophila melanogaster (Melnick et al., 1993), the sea urchin Urechis caupo (Rosenthal and

Wordeman, 1995), Chlorohydra viridissima (Keppel and Schaller, 1991), the fungus Candida

albicans (Lopez-Ribot et al., 1994) and the archaebacterium Haloarcula marismortui

(Ouzonis et al., 1995), as well as in mammals (Ardini et al., 1998; for review: Rieger et al.,

1999).The 37 kDa LRP also acts as a receptor for alphaviruses such as the Venezuelan equine

encephalitis (VEE) virus on the surface of mosquito cells (Ludwig et al., 1996), has been

identified on the cell surface of the fungus Candida albicans (Lopez-Ribot et al., 1994). and

has been proved to be located on the surface of Madin-Darby canine kidney (MDCK) cells

from dogs, which might be involved in cell attachment, spreading and polarization (Salas et

al., 1992). These findings clearly demonstrate the location of the 37 kDa LRP on the cell

surface.
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Table II Characteristics of the 37 kDa laminin receptor precursora (LRP)/67 kDa laminin
receptorb (LR)

Characteristics
Isolation 37 kDa LRP/p40 cDNA (Rao et al., 1989; Yow  et al., 1988)

67 kDa LR isolated from solid tumors (Lesot et al., 1983; Malinoff and
Wicha, 1983; Rao et al., 1983)

Occurrence of the 37
LRP/p40 gene

Saccharomyces cerevisiae (Davis et al., 1992), Arabidopsis thaliana
(Garcia-Hernandez et al., 1994), Drosophila melanogaster (Melnick et al.,
1993), Urechis caupo (Rosenthal and Wordeman, 1995), Chlorohydra
viridissima (Keppel and Schaller, 1991), Haloarcula marismortui (Ouzonis
et al., 1995), Candida albicans (Lopez-Ribot et al., 1994), mammals (Ardini
et al., 1998)

Cellular localization of
37 kDa LRP

At the cell surface of mosquito cells (Ludwig et al., 1996) , of Candida
albicans (Lopez-Ribot, 1994) and of mammalian cells such as Madin-Darby
canine kidney cells (MDCK) (Salas et al., 1992); in the cytoplasm on 40S
ribosomes (Auth and Brawerman, 1992); in the nucleus (Sato et al., 1996)

Molecular weight 37,000 (laminin receptor precursor protein)
67,000 (mature laminin receptor protein)

Binding partners of
-37 kDa LRP

--67 kDa LR

Laminin (Rieger et al., 1997), PrPc (Rieger et al., 1997), the Venezuelan
equine encephalitis (VEE) virus (Ludwig et al., 1996); association of
LBPc/p40 with histones H2A, H2B and H4 (Kinoshita et al., 1998)
Laminin (Beck et al., 1990), elastin and carbohydrates (for review: (Ardini
et al., 1998; Mecham, 1991; Rieger et al., 1999), the Sindbis virus (Wang et
al., 1992)

Functional domains Transmembrane domain: aa 86-101 (Castronovo et al., 1991b),
Laminin binding domain: aa 161-180 (Castronovo et al., 1991b);
PrPc binding domain: aa 157 and 180 (Rieger et al., 1997)

Functions of
- 37 kDa LRP

- 67 kDa LR 

Receptor for laminin (Rieger et al., 1997), PrPc (Rieger et al., 1997) and the
Venezuelan equine encephalitis virus (Ludwig et al., 1996); as ribosomal
protein LRP/p40 involved in protein synthesis (Auth and Brawerman,
1992); possible role of LBPc/p40 in maintenance of nuclear structures
(Kinoshita et al., 1998)
Receptor for laminin (Beck et al., 1990), elastin, carbohydrates (for review:
(Ardini et al., 1997; Mecham, 1991; Rieger et al., 1997)) and the Sindbis
virus (Wang et al., 1992); crucial role in the metastatic potential of solid
tumors (Castronovo, 1991b)

a Laminin receptor precursor, LRP
b Laminin receptor, LR
c Laminin binding protein, LBP (equivalent to LRP)

Within the life cycle of prions, LRP may play a role in the physiological function of PrPc, as

well as in the pathogenesis of prion diseases. We assume that LRP is involved in the

internalization process of PrPc via cavolae-like domains (Vey et al., 1996) or clathrin-coated

pits (Shyng et al., 1994) (Fig. 3). Involvement of clathrin-coated pits in the endocytosis of a
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GPI-anchored protein such as PrPc is surprising because PrPc has no cytoplasmic domain that

can interact directly with the intracellular components of coated pits (Harris, 1999). Here a

receptor protein could be responsible for making the connection between the surface-anchored

PrP to clathrin. The uptake of PrPSc is thought to be mediated directly by a receptor protein

such as LRP, but could also be mediated in an indirect manner dependent on the presence of

cellular PrP. We assume that internalized PrPSc interacts with PrPc during the endocytic

pathway (Fig. 3). PrPc is probably converted into PrPSc within the endosome, lysosomes or

endolysosome influenced by an unknown protein termed protein X (Telling et al., 1995)

which could represent a molecular chaperone such as Hsp60 (Edenhofer et al., 1996).

Recently, a homology of the amino terminus of LRP with members of the Hsp70 family was

observed (Ardini et al., 1998) suggesting that LRP/p40 might be involved in protein folding.

Although we demonstrated a specific interaction between PrP and members of the Hsp60

family including GroEL (Edenhofer et al., 1996), no binding of PrP to members of the Hsp70

family was observed, which suggest no homology to the Hsp60 family (Edenhofer et al.,

1996). However, it cannot be excluded that a hypothetical chaperone activity of LRP might be

involved in the PrPc/PrPSc conversion reaction, which is thought to occur in endosomes,

lysosomes or endolysosomes of the endocytic pathway in the life cycle of prions. Other

proteins encompassing an GPI-anchor were internalized by caveolae (Anderson, 1993). It has

been suggested that PrPc and PrPSc are internalized by CLDs, a compartment where the

conversion of PrPc to PrPSc might also take place (Vey et al., 1996). PrPSc accumulation leads

to neuronal cell death resulting in vacuolization and death of the organism.

The role of LRP within the life cycle of prions mediating PrP internalization and its

involvement in pathological mechanisms within the complex scenario of transmissible

spongiform encephalopathies has to be further investigated.
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Fig. 3: Model of the life cycle of prions. PrPc is synthesized in the rough endoplasmatic
reticulum (ER), and after passing through the secretory pathway including the Golgi and
secretory vesicles, reaches the surface of a PrPSc infectable cell where it is anchored via a
glycosylphosphatidyl inositol (GPI) moiety. Endocytosis of PrPc and possibly PrPSc via
clathrin coated vesicles could be mediated by the 37 kDa laminin receptor precursor (LRP).
The uptake of the infectious agent could also be LRP independent. The conversion of the
internalized PrPc to PrPSc is thought to take place in the endosomes, lysosomes or
endolysosomes. Molecular chaperones could be involved in this conversion process. PrP
replication and aggregation can occur in neuronal cells of the brain but also in the cells
constituting the lymphoreticular system. Alternatively, endocytosis and conversion of PrPc

into PrPSc could happen in caveolae-like domains (CLDs).

D. The Cadherins

Two cell surface proteins were isolated from murine cells and characterized as so-called prion

protein binding proteins (PrPBPs) (Table III) (Cashman and Dodelet, 1997). Mouse and

human PrPs expressed as fusion proteins to human placental heat-stable alkaline phosphatase

(PrP-AP) bound with high affinity to the surface of many primary cells and cell lines,

particularly to the mouse muscle cell line G8, whereas no binding of AP alone could be

observed. Frog oocytes showing little or no intrinsic PrP-AP surface binding were

microinjected with in vitro transcribed mRNA generated from pooled plasmid clones of a G8
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cDNA library. Following selection of clones that showed specific binding to PrP-AP,

sequence analysis revealed the cDNA inserts in two clones, one encoded a portion of

protocadherin-43 spanning amino acid residues 67 to 252 and exhibited the highest level of

PrP-AP binding activity, the other one encoded a portion of OB-cadherin-1 (the N-terminal

cadherin repeat) and showed a moderate PrP-AP binding (Cashman and Dodelet, 1997).

Protocadherin-43 described by Sano et al. (1993) and OB-cadherin-1 described by Okazaki et

al. (1994) belong to a group of cell adhesion proteins designated Cadherins. Cadherins are a

family of transmembrane glycoproteins involved in Ca2+ dependent cell-cell adhesion that

occurs in many tissues mediating development patterning and tissue organization. They

contain a large N-terminal extracellular region consisting of repetitive subdomains including

the Ca2+-binding sites. Ca2+-binding is required for cadherin interaction and cell-cell adhesion,

a process that results from lateral clustering of cadherin cis dimers and their trans association

with cis dimers on the apposed cell (Steinberg and McNutt, 1999). The C-terminus consists of

a transmembrane region and a highly conserved cytoplasmic domain, through which

cadherins interact with intracellular adhesions proteins such as catenins and stabilize the

internal structure of the cell.

Binding of PrP-AP to cultured cells was significantly reduced in the presence of the calcium

chelator EDTA, indicating that for optimum binding, the presence of divalent cations such as

Ca2+ might be required. Binding of mouse, human and bovine cellular PrP as well as PrPSc

from BSE-affected brain to the candidate receptor was observed (Cashman et al., 1999). 

Prion proteins could act as novel ligands for cadherin proteins. Cadherins participate in cell-

layer segregation and morphogenesis in development, also in maintenance of cell-cell

recognition in mature tissues, and may participate in disorders in which recognition is

deficient, such as metastatic cancer. It is also possible that they are involved in muscle and

immunological disorders as well as in neurodegenerative diseases such as TSEs (Cashman

and Dodelet, 1997). The possible role of cadherins as cell surface receptors for prion proteins,

however, has still to be confirmed.
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III. Molecular Chaperones of Mammals

The crucial event in prion diseases involves the conformational change of the cellular form of

the prion protein into the pathogenic isoform. This change causes a dramatic alteration within

the structure. Structural variations of a protein often require a catalysing agent. Molecular

chaperones are prominent candidates that could promote this reaction.

The protein-only hypothesis indicates that the scrapie form of the prion protein can promote

the conversion of the cellular form. This leads to the conclusion that prions themselves can act

as chaperones (Liautard, 1991). Thermokinetic analysis of protein folding shows that a

misfolded chaperone gives rise to new misfolded chaperones, which fit very well to the

protein-only hypothesis in which PrPSc triggers the formation of PrPSc. 

Besides this theory, other proteins can act as promotors for the prion conversion reaction. In

1996 chemical reagents were investigated and were shown to affect formation and

propagation of PrPSc. Cellular osmolytes and proteinaceous chaperones were tested in this

context (Tatzelt et al., 1996b). Chaperones that can prevent the formation of PrPSc (Fig. 4)

might act as powerful tools for the generation of anti-TSE therapeutics.

Fig. 4: Influence of molecular and chemical chaperones on the conversion process of PrPc to
PrPSc. Molecular chaperones such as Hsp104 and GroEL promote the conversion reaction
whereas the chemical chaperones TMAO, DMSO and sucrose prevent PrPSc formation. 
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Molecular chaperones also represent a biochemical and mechanistical link between the

mammalian prions and the “prion-like” proteins in yeast. In this light heat-shock protein

Hsp104 has an effect on the conversion of hamster PrP (DebBurman et al., 1997) and on the

regulation of the yeast nonchromosomal element [PSI+] (Chernoff et al., 1995) suggesting

that the prion concept is of general importance in mammalian and nonmammalian systems.

Studies on the transmission of human prion proteins to transgenic mice indicates the existance

of an unknown protein termed “protein X”, which binds to PrP (Telling et al., 1995) and

might act as a molecular chaperone.

A. Heat-Shock Proteins

A number of cellular proteins function in vivo as chaperones that catalyse the formation of

proteins with an intact secondary, tertiary and quaternary structure. Heat shock proteins

(Hsps) are prominent representatives of these chaperones and were first discovered because of

their specific induction during the cellular response to heat shock (Gething and Sambrook,

1992). Nevertheless, the majority of the Hsps are expressed constitutively and their functions

are diverse. Hsps stabilize unfolded protein precursors, rearrange protein oligomers and

dissolve protein aggregates in an ATP-dependent manner.

Hsps are thought to play an important role in the conversion of the cellular prion protein PrPc

to the pathogenic isoform PrPSc (Table III). In 1995 the expression levels of Hsp72, Hsp28

and Hsp73 in normal and scrapie-infected mouse neuroblastoma cells were investigated

(Tatzelt et al., 1995). After heat shock Hsp72 and Hsp28 were both detectable in normal, but

not in scrapie-infected cells. The constitutively expressed Hsp73, however, was expressed at

comparable levels in both cell types, indicating that Hsp73 could possibly assist the formation

of PrPSc. The lack of Hsp72 and Hsp28 in scrapie-infected cells suggests that chaperones do

not catalyse a refolding of PrPSc into PrPc in these cells. Together, both facts might lead to an

increase of PrPSc concentrations in scrapie-infected cells.

We identified Hsp60 as a PrP binding molecule employing a HeLa cDNA library in prey and

hamster PrP in bait position of the yeast-two-hybrid system (Edenhofer et al., 1996). In vitro

binding studies with recombinant PrP confirmed the specificity of the PrP-Hsp60 interaction.

Mapping analysis employing a series of PrP peptides identified the C-terminus of PrP (aa 180

to aa 210) encompassing �-helix 2 and parts of �-helix 3 (179-193 and 200-217) (Riek et al.,

1996; Donne et al., 1997; Riek et al., 1997) as the Hsp60 binding domain on PrP. GroEL, the

prokaryotic homolog of Hsp60 revealed the same binding domain as Hsp60 on PrP. This
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indicates that eukaryotic as well as prokaryotic chaperones interact with the prion protein and

suggest an important role of heat shock proteins in the conversion process of prion proteins. 

Table III Function of heat shock proteins and their effect on the prion protein

Heat shock
protein

Reference First reported function in prion
diseases

Effect on PrP conversion

Hsp28 Tatzelt et al., (1995) Role in Ca2+-dependent
thermoresistance 

No effect on PrP
conversion/PrPSc

diminishes synthesis of
Hsp28

Hsp40 DebBurman et al., (1997) Co-chaperone of Hsp70s No effect on PrP
conversion

Hsp60 Edenhofer et al., (1996) Stabilization of prefolded
structures and folding

Binding to haPrP, binding
domain: aa 180-210

Hsp70 DebBurman et al., (1997) Completion of translocation in
mitochondria

No influence on PrP
conversion

Hsp72 Tatzelt et al., (1995) Prevents aggregation and
accelerates refolding of
damaged proteins 

No effect on PrP
conversion/PrPSc

diminishes synthesis of
Hsp72

Hsp73 Tatzelt et al., (1995) Cytosolic heat shock protein Assists PrPSc formation?
Hsp90 DebBurman et al., (1997) Stabilizing of inactive precursor

forms in the cytosol
No influence on PrP
conversion

Hsp104 DebBurman et al., (1997) Thermotolerance and ethanol
tolerance in yeast

Promotes conversion of
PrPc

GroEL Edenhofer et al., (1996)
and DebBurman et al.,
(1997)

Antifolding before translocation Binding to haPrP, binding
domain: aa 180-210,
promote conversion of
PrPc

GroES DebBurman et al., (1997) Form functional complex with
GroEL

No influence on PrP
conversion

GroEL and the heat shock protein Hsp104 are able to affect the in vitro conversion of hamster

PrP, confirming the importance of GroEL for the PrP conversion reaction (DebBurman et al.,

1997). However, this process requires the presence of exogenous added PrPSc, suggesting that

the conversion process and further aggregation seem to require a nucleation seed. Molecular

chaperones may probably be not sufficient for this reaction. Other heat shock proteins like

GroES, Hsp40, Hsp70 and Hsp90 do not show any effect in the conversion process. Hsp104

links mammalian prion proteins and the prion-like yeast protein Sup35. Hsp104 could therby

either promote sup35* or sup35 formation dependening on Hsp104 concentrations. Hsp104



Chapter II 41

might influence the regulating process of the [PSI+] element in S.cerevisiae (Patino et al.,

1996). In conclusion, heat shock proteins might influence the structure of mammalian and

yeast prions.

B. Protein X

The transmission of human prion proteins to transgenic mice depends on the species of the

endogenous expressed transgenic prion protein and the homozygocity/heterocygocity status of

the expressed transgene. In contrast to transgenic mice ablated for the mouse Prnp gene or

transgenic mice expressing low levels of a chimeric transgene, which are susceptible towards

human prions, transgenic mice expressing the human PrP transgene are completely resistant

towards human prions. This phenomenon reflecting the species barrier can be explained by a

species specific factor termed protein X, which is thought to participate in prion formation.

Protein X might act as a chaperone facilitating or hampering the conversion of PrPc to PrPSc.

The fact that transgenic mice hyperexpressing human PrP are resistant to human prions

(Telling et al., 1995), together with the finding that transgenic mice expressing chimeric

MHu2MPrPc retain human PrP susceptibility suggests that protein X could bind to the cellular

form of the prion protein and the affinity of protein X to prion proteins of different species

may vary. The binding of protein X to the prion protein may result in the PrP conversion

reaction. Differences in the amino acid sequence of PrP of different species may be the main

reason for both effects. The main differences between mouse and human PrP are thought to

reside in the carboxy-terminus of PrP. An epitope mapping of the binding site for protein X

on PrP (Kaneko et al., 1997b) by substitution of the basic residues at aa position 167, 171 or

218 preventing PrPSc formation suggests that the binding site for protein X on PrP resides

within this region. Amino acid 218 is located within the third �-helix of the mouse prion

protein and residues 167 and 171 reside within an adjacent loop. The stoichiometry of the

protein X/ PrPc complex is unknown to date. The fact that the protein X/PrPc interaction was

abolished by mutations preventing the PrPSc formation might be useful for the development of

anti-TSE therapeutic agents. A prerequiste for that, however, is the identification of protein X.

C. Chemical Chaperones

In contrast to “classical” chaperones consisting of proteins, chemical chaperones represent

chemical compounds of small molecular weight that are able to stabilize proteins and correct

misfolded ones (Welch and Brown, 1996) (Fig. 4). Chemical chaperones such as glycerol,

trimethylamine-N-oxide (TMAO) and dimethylsulfoxide (DMSO) might stabilize the native
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conformation of a protein by direct interaction. These compounds termed „cellular osmolytes“

are produced in cells in response to osmotic shock (Somero, 1986). Glycerol, TMAO and

DMSO were tested to determine their influence on the formation of PrPSc in ScN2a cells

(Tatzelt et al., 1996b). All reduced the extent of PrP conversion into its detergent insoluble

form. The stabilizing effect of the native form of a protein was also demonstrated for other

proteins such as the cystic fibrosis transmembrane regulator (CFTR) (Brown et al., 1996).

The presence of chemical chaperones might have an effect on the hydration of proteins.

Because self-association or tighter packaging of the prion protein is enhanced, PrPSc fails to

interact with PrPc so that no PrPc/PrPSc heterodimer is formed leading to an inhibition of the

PrP conversion process (Gekko and Timasheff, 1981). In the case that chemical chaperones

might be transported to the brain bypassing the blood-brain barrier (BBB), they might be

useful as therapeutic agents in TSE-therapy.

The influence of chemical chaperones has also been demonstrated in cell-free conversion

assays (DebBurman et al., 1997). The conversion of hamster PrP using partially denatured

PrPSc was only inhibited by DMSO. Glycerol and cyclodextrin compounds had no effect,

whereas molecular chaperones (Hsp104) were able to block the conversion process. Chemical

chaperones such as glycerol and cyclodextrin, acting as co-chaperones, might have an

influence on molecular chaperones that are lacking in a cell-free system.

IV. Interaction between prion proteins

According to the protein-only hypothesis, proposed by Prusiner (Fig. 5) the interaction of the

cellular prion protein with the pathological isoform seems to be the crucial step in the

conversion of PrPc to PrPSc. The existence of the hypothetical PrPc/PrPSc heterodimer may

require the presence of a homodimer consisting of two PrPc molecules. This homodimer is

thought to be in equilibrium with the PrPc monomers. It is unclear to date whether the

spontanous conversion reaction involves PrPc monomers or the PrPc homodimers. 
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Fig. 5: Scheme of the conversion process of PrPc to PrPSc. Three possibilities for the
conversion of PrPc into PrPSc do exist. An exogenous PrPSc triggers the conversion of PrP
monomers leading directly to the hypothesized heterodimer consisiting of PrPc and PrPSc.
Genetic predisposition of an individual leads to a spontanous conversion of PrPc to PrPSc. The
conversion process might proceed after formation of a dimeric PrPc or might occur with a
monomeric PrPc. The central PrPSc heterodimer forms a PrPSc homodimer aggregating into
amyloid fibrils.

In 1986 a 54 kDa protein was identified under denaturing conditions that may act as a dimeric

PrP precursor for the scrapie protein (Bendheim and Bolton, 1986). A 60 kDa form of a

recombinant hamster prion protein was detected in murine neuroblastoma cells in 1995

(Priola et al., 1995). It appears as a dimer under denaturing conditions analyzed by SDS-

PAGE and under native conditions analyzed by immunoprecipitation. The linkage of both

prion proteins might occur via hydrogen bonding, electrostatic interactions or covalent

linkage involving lysins at the N-terminus of the protein. The observed dimer formation might

be due to the hyperexpression of PrP with high PrP concentrations. 

The multimer formation of the prion protein and structural changes during this process has

been investigated by fluorescence correlation spectroscopy (FCS) (Post et al., 1998). Prion

aggregates mainly constituted of PrP27-30 were converted by sonication to monomeric PrP
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with an high �-helical content in the presence of 0.2% SDS. The oligomerization process was

then initiated by the reduction of the SDS-concentration. Formation of �-sheet structured

dimers was the initial step followed by oligomerization of these dimers within 10 minutes.

After 1 hour PrP was aggregated. Whether the conversion reaction arises before the

dimerization event or wether dimerization represents the initial step of the conversion process

remains speculative.

Prion proteins with mutations in the octarepeat region causing familial CJD show abnormal

aggregation properties (Priola and Chesebro, 1998). Hamster PrPs encompassing two, four

and six octarepeats were expressed in mouse neuroblastoma cells. The fact that PrP dimers

were detectable even under harsh denaturing conditions present in SDS-gel electrophoresis

suggest that the PrP monomers were covalently linked rather than stabilized by noncovalent

linkages such as hydrophobic interactions. However, covalently linked PrP dimers have still

to be confirmed by other systems.

Because of the lack of convincing experimental data, only a few models describe the PrP-

dimerization process. One of them proposes the highly conserved region from aa 109 to aa122

as a major dimerization domain (Warwicker and Gane, 1996) calculated by a computational

search for potential PrP interaction interfaces. Mutations such as alanine to valine at position

117 of human PrP associated with Gerstmann-Sträussler-Scheinker syndrome reside within

this region, and might alter the stability of the dimer, facilitating the conversion of PrPc to

PrPSc. In addition to the dimerization process, the association of the prion protein to the

membrane could play an important role in TSE pathogenesis (Warwicker, 1999). The putative

membrane-binding domain might be the first �-helix. The agglomeration of the prion protein

on the membrane might influence the orientation and configuration of PrP facilitating the PrP

interaction process.

Whether PrP dimers that have also been observed by us (Hundt, Gauczynski, Riley, and

Weiss, manuscript in preparation) might play an important role in the PrP oligo-

/multimerization process and whether PrP/PrP interfering agents might hamper the entire PrP

aggregation process have still to be investigated.
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V. Other PrP interacting molecules

This section first describes PrP interacting molecules identified by ligand blots, yeast two-

hybrid techniques or in vitro selection. Members of the PrP ligand family Pli are described

followed by Bcl-2 belonging to the family of proapoptotic and antiapoptotic molecules.

Second, molecules are summarized acting as therapeutics in TSEs. With the exception of the

protein clusterin, all the other molecules are of nonproteinaceous origin including polyanions,

Congo red, polyene antibiotics, IDX, porphorins and phtalocyanes. Finally, nucleic acids such

as RNA aptamers are described in their function as PrP-interacting molecules. 

A. PrP Ligands (Pli´s)

1. Pli 45 and Pli 110

Two PrP binding proteins were identified in 1990, using ligand blots (Oesch et al., 1990).

These two proteins identified from hamster brain were termed PrP ligands Pli 45 and Pli 110.

To investigate the interaction of purified PrP with other proteins the authors used radiolabeled

PrP27-30 and PrPc, respectively, for the binding of proteins from hamster brain that were

separated by SDS-PAGE and blotted to nitrocellulose (ligand blots).Two major bands became

visible by autoradiography using purified PrP27-30 and immunopurified PrPc. The molecular

weight of the identified proteins were 45,000 and 110,000, respectively, and both proteins

bound to PrPSc and PrPc derived from hamster brain. Other PrP binding proteins ranging from

32-200 kDa were also observed. The stability of the complexes formed by Pli 45 and PrP 27-

30 on nitrocellulose were investigated by intense washing steps and 50% of the radiolabelled

PrP27-30 was washed off after 60 hours, corresponding to a dissociation rate constant of

kD=3x10-6 s-1. Pli 45 revealed a sequence homology of 94.6% to murine GFAP (glial fibrillary

acidic protein) at the cDNA level, suggesting that Pli 45 and GFAP are the same proteins.

Comparitive immunochemistry studies, using polyclonal Pli45- and GFAP specific antibodies

revealed the same staining pattern as monoclonal anti-GFAP antibodies in scrapie-infected

sheep brain. In addition, both antibodies recognized recombinant GFAP expressed in

Escherichia coli, suggesting that Pli 45 and GFAP are indeed the same proteins.

Pli 45 was found exclusively in brain, whereas Pli 110 is present in several tissues, such as

brain, lung, liver, spleen and pancreas. Pli 110 was shown to be identical with PTP-associated

splicing factor (PSF) (Oesch, 1994). Because studies with GFAP0/0 mice revealed that GFAP

is not essential for scrapie development (Gomi et al., 1995; Tatzelt et al., 1996) and PSF is an
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essential splicing factor, located in the nucleus (Patton et al., 1993), it seems that Pli45 and

Pli110 do not play a crucial role in prion diseases.

2. Pli3-Pli8

Seven years after the identification of the first two PrP-binding proteins Pli 45 and Pli 110 six

other PrP ligands were found (Table I) (Yehiely et al., 1997). The authors used a different

system than that used for the identification of Pli 45 and Pli 110. Here, PrP was designed as a

fusion protein with alkaline phosphatase (AP) and secreted by NIH 3T3 cells. PrP-AP was

then used as a probe for screening the mouse brain cDNA library �gt11. Sequence analysis of

nine clones revealed the six unique sequences, Pli3 to Pli8. Two cDNA clones showed

homology to known sequences, to the mouse amyloid precursor-like protein (Aplp1) denoted

Pli6 and to the mouse p45 NF-E2 related factor 2 (Nrf2), termed Pli7. All six Plis revealed the

consensus sequence GXXXXXX(E/P)XP, which is not unique to PrP binding proteins, but

was identified in many other protein sequences. Hence, the authors conclude that it might

represent a functional motif. Negative charge might also play a role in PrP binding, as four

cDNA clones showed an excess of glutamic acids and aspartic acids over lysines and

arginines. Each cDNA clone identified a single copy gene and the chromosomal location of

each clone was identified in this work. 

Polyclonal antibodies directed against the polypeptides Pli3 and Pli5 were generated and

purified. Both antibodies recognized proteins from N2a cells and mouse brain on Western

blots. Anti-Pli3 antiserum detected a 70 and a 100 kDa polypeptide, whereas anti-Pli5

antiserum detected a 45 kDa polypeptide. All three identified polypeptides were believed to

be novel PrP-binding proteins. Antisera to Nrf2 (Pli7) and Aplp1 (Pli6) were also used as

probes on N2a cell lysates and mouse brain homogenates. For anti-Nrf2 antiserum, a 66 kDa

protein was found, that corresponds to the predicted size of mouse Nrf2. Aplp1 antiserum

recognized polypeptides of about 85 and 95 kDa molecular mass, which are likely to be two

different forms of Aplp1. The protein levels of Pli3 and Pli5 appeared similar in scrapie-

infected and noninfected brain and N2a cells, whereas higher levels of Pli5 mRNA could be

found in ScN2a cells. The protein levels of Nrf2 were found to be slightly decreased in ScN2a

cells, whereas Aplp1 protein levels remained unchanged in ScN2a cells and infected mouse

brain. Higher mRNA levels for both Aplp1 and Pli5 were found in ScN2a cells.

Aplp2 is a member of the APP-like (amyloid precursor protein) family, playing an important

role in the pathogenesis of Alzheimer disease (AD). The major component of the senile

plaques that are observed in AD is the A� peptide, which is derived from the APP protein



Chapter II 47

(Glenner and Wong, 1984; Masters et al., 1985). PrP and Aplp1 are both membrane proteins;

hence it is likely that they could interact on the cell surface. 

B. Bcl-2

Bcl-2 (Table I) represents a well-known member of a rapidly enlarging protein family of

proapoptotic and antiapoptotic molecules, including at least 15 related proteins (Adams and

Cory, 1998). In 1995 the role of Bcl-2 was investigated using a yeast two-hybrid screen

(Kurschner and Morgan, 1995). LexA-Bcl-2 in the bait and a murine cerebellar cDNA-VP16

fusion library in the prey position identified potential Bcl-2 binding proteins. Surprisingly the

prion protein and not bax, which is known to heterodimerize with Bcl-2 (Oltvai et al., 1993),

was pulled out by this screen. The sequenced cDNA clone contained a fusion between the

VP16 domain and mouse PrP, encompassing aa72 to aa245, denoted PrP-VP16. Usinging

LexA-PrP in the bait and Bcl-2-VP16 in the prey position of the yeast two-hybrid system

resulted also in an interaction between PrP and Bcl-2. Interactions with other members of the

Bcl-2 family, such as Bax or A1 were not observed. The PrP mutation P102L, associated with

human Gerstmann-Sträusler-Scheinker syndrome was investigated, and it was shown that this

mutation did not alter the binding behavior of PrP to Bcl-2. Interestingly, the PrP-Bcl-2

interaction could not be confirmed by coimmunoprecipitation assays, suggesting that this

protein interaction can be observed only in the yeast-two-hybrid system. 

Bcl-2 and Bax act as antiapoptotic and proapoptotic molecules in apoptosis, respectively.

Moreover, the ratio of Bax-Bcl-2 heterodimers to homodimers of each protein is important for

the regulation of apoptosis (Oltvai and Korsmeyer, 1994; O´Dowd et al., 1988; Yang and

Korsmeyer, 1996). Hence the authors concluded that PrP might play a role in disrupting the

Bax:Bcl-2 ratio by trapping Bcl-2 and favoring Bax-Bax homodimers, which would lead to

cell death by apoptosis (Fig.6). The trapping of Bcl-2 by PrP might occur during trafficking of

PrP before exposure to the cell membrane. Although Bcl-2 and PrP are both membrane

associated, the physiological cellular location of Bcl-2 is different from that of PrP. Bcl-2 is

thought to be an inner mitochondrial membrane protein (Hockenbery et al., 1990; Motoyama

et al., 1998) or might reside on the mitochondrial outer membrane, the endoplasmatic

reticulum, or the nuclear membrane (Krajewski et al., 1993; Lithgow et al., 1994) , and is not

present on the cell surface membrane.
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Fig. 6: Schematic view of Bcl-2::Bax, Bcl-2::PrP and Bax::Bax transitions and their possible
role in cellular functions.

C. Laminin

Laminin (LN) is a glycoprotein of the extracellular matrix (ECM) [for review see Beck et al.,

(1990)] that mediates cell attachment, communication, differentiation, movement and neurite

outgrowth promotion (Hunter et al., 1989). Laminin is the first ECM protein detected during

embryogenesis. In later development and in mature tissue, laminin serves as an ubiquitious

and major noncollagenous component of basement membranes (Beck et al., 1990). Laminin

was first isolated from Engelbreth-Holm-Swarm (EHS) tumor (Timpl et al., 1979) and from

extracellular deposits of murine parietal yolk sac (PYS) carcinoma cells (Chung et al., 1979).

A specific binding between laminin and the amyloid precursor protein (APP), the precursor of

the amyloid peptide involved in Alzheimer`s disease, has been identified (Narindrasorasak et

al., 1992). APP and �-amyloid peptide (1-40) interaction with the extracellular matrix

promotes neurite outgrowth, suggesting that the complex might play a normal physiological

role in the brain (Kibbey et al., 1993; Koo et al., 1993). Recently, a direct interaction between

the cellular prion protein (PrPc) and laminin was reported (Graner et al., 2000). An

involvement of the PrPc-laminin interaction in neuritogenesis induced by NGF plus laminin in

the PC-12 cell line was further suggested (Graner et al., 2000). Neuritogenesis, induced either

by laminin or its �-1-derived peptide in primary cultures from rat or either wild-type or PrP

null mice hippocampal neurons, might imply that PrPc could be the main cellular receptor for

the particular �-1 domain located to the carboxy terminus of laminin (Graner et al., 2000).

BaxBcl-2 Bcl-2

apoptotic

re-routing
of PrP ?

BaxBax

BaxBax +

anti-apoptotic

PrP

PrP



Chapter II 49

D. Therapeutics

1. Polyanions

Polyanions (Table IV), including heteropolyanion 23 (HPA-23), Dextran Sulfate 500 (DS

500), pentosan polysulfate (SP54) and heparin are known to bind the prion protein and/or

prevent PrPSc accumulation in animals and cell systems (Brimacombe et al., 1999; Caughey

and Raymond, 1993; Diringer and Ehlers, 1991; Ehlers and Diringer, 1984; Farquhar et al.,

1999; Gabizon et al., 1993; Kimberlin and Walker, 1983; Kimberlin and Walker, 1986;

Ladogana et al., 1992). The first polyanion denoted as an anti-scrapie drug was HPA-23

(Kimberlin and Walker, 1983; Kimberlin and Walker, 1986). The effect of HPA-23 was

tested in several different scrapie strains, such as 139A, ME7, 22A and 263K. HPA-23 was

effective in all these strains and prolonged the lifetimes of the animals significantly after

scrapie injection. Less effect was observed when scrapie material was injected

intraperitoneally or if the drug was given more than 48 hours after scrapie infection. Injection

before to infection with scrapie is not effictive, owing to the rapid metabolization or excretion

of HPA-23. HPA-23 is thought to interfere with early replication of PrPSc in the

lymphoreticular system, reducing the efficiency of scrapie infection. These results, together

with the brain toxicity of this molecule suggest, that HPA-23 has limited therapeutic value.

Two high-molecular-weight polyanions, carrageenan and DS 500, were shown to be highly

efficient in reducing scrapie titers in mice infected with the 139A strain of scrapie (Ehlers and

Diringer, 1984; Kimberlin and Walker, 1986). All intravenous or intraperitoneal combinations

of injecting DS 500 or scrapie reduced the effective titer about 100- to 200 fold. The effect of

DS 500 is long-lasting. Application of DS 500 up to 10 weeks before to infection increases

the incubation period in mice. However, DS 500 itself is highly toxic and causes up to 50%

mortality at a dose of 2 mg per mouse. Like HPA-23, DS 500 is thought to prevent PrPSc

replication in spleen and lymph nodes and its mode of action is likely to be independent of its

activity as a B-cell mitogen. The high-molecular-weight and negative charge may represent

important factors in the anti-scrapie effect of DS 500. SP54 (Pentosan Polysulfate, Fig. 7A)

has an anti-scrapie effect comparable to DS 500, but is less toxic. It has been shown that SP54

significally increases scrapie incubation period in hamsters infected with 263K scrapie strain

and in mice infected with the 139A, Me7 and 22A strains of scrapie (Ehlers and Diringer,

1984; Farquhar et al., 1999; Ladogana et al., 1992). SP54 is even effective if only a single

low-dose is injected after infection. A single injection of 250 µg of SP54 increased the mean

incubation period of the ME7 strain by up to 66% and 1 mg of SP54 protected mice

completely from the 22A scrapie strain. SP54 is thought be effective during the very early
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events of pathogenesis by interfering with the uptake of PrPSc by nerve endings and/or carrier

cells. The low-dose effect and the lower in vivo toxicity compared to other polyanions make

SP54 a promising candidate in the field of anti-scrapie polyanions.

All anti-scrapie polyanions published so far might act by competing directly with the binding

of cellular glycoaminoglycans (GAGs) to PrPc (see chapter II. A) and/or PrPSc (Brimacombe

et al., 1999; Caughey et al., 1994). Indeed, GAGs are involved in the metabolism of PrPc (see

chapter II.A) and thus in the biogenesis of PrPSc. It was shown by surface plasmon resonance,

that pentosan polysulfate shows the strongest binding to recombinant PrP followed by heparin

and dermatan sulfate. This correlates to the ability of the molecules to delay scrapie disease

and reduce PrPSc accumulation in scrapie-infected cell lines (Caughey and Raymond, 1993). 

2. Congo Red

Congo red (Fig. 7C, Table IV) is a dye that can be used as a diagnosic stain for amyloids. It is

well known that Congo red can inhibit PrPres accumulation in Sc+-MNB cells and PrPSc

replication in 263K and 139H treated hamsters (Caspi et al., 1998; Caughey et al., 1994;

Caughey et al., 1993; Ingrosso et al., 1995). The mechanism of the Congo red anti-scrapie

effect probably involves direct binding to PrPc, which again is thought to block the binding of

cellular GAGs to PrPc, as described for polyanions (Caughey et al., 1994). The proposed

direct binding of Congo red to PrPSc is thought to stabilize PrP Sc, the abnormal isoform of the

prion protein, and prevents its partial denaturation, which could be necessary for agent

replication (Caspi et al., 1998).

3. Polyene Antibiotics

Amphotericin B (AmB) and MS-8209 (Fig. 7D) are polyene macrolide antibiotics, that have a

ring structure containing a hydrophobic and a hydrophilic region on either side of the

molecule. They are used for the treatment of systemic fungal infections like candidiasis,

histoplasmosis and aspergillosis (Medoff et al., 1983). The effects of AmB and its derivative

MS-8209 were studied in several models of rodents including 263K-infected hamsters. Both

were very efficient in delaying scrapie disease and PrPSc accumulation. MS-8209 shows at

least a five times lower toxicity and a higher solubility and is able to double the incubation

time of scrapie in hamsters. In contrast to polyanions, polyene antibiotics are effective even

after intracerebral infection (Adjou et al., 1995; Demaimay et al., 1994; McKenzie et al.,

1994; Pocchiari et al., 1987; Xi et al., 1992). 



Table IV. Antiscrapie drugs likely to interact directly with PrP

Drug Tested scrapie
strain

Successfully treated
animals

Suggested mode of action Comments References

HPA-23 139A, ME7, 22A
and 263K

Mouse and hamster Prevents early agent
replication in the LRS,
competes with GAG
(glycosaminoglycan)
binding site

Effective in a lot of scrapie
strains, rapid metabolism and
excretion,
toxic

Kimberlin and Walker
(1983; Kimberlin and
Walker (1986

DS 500 139A Mouse Prevents agent replication
in the LRS due to its high
molecular weight and
negative charge, competes
with GAG
(glycosaminoglycan)
binding site

Long-lasting anti-scrapie effect
but toxic at therapeutic doses

Ehlers and Diringer
(1984); Kimberlin and
Walker (1986)

Pentosan
Polysulfate

139A, ME7, 22A
and 263K

Mouse and hamster Interferes with PrPSc

uptake from nerve
endings, competes with
GAG
(glycosaminoglycan)
binding site

Very promising drug, effective at
extreme low dose

Ehlers and Diringer
(1984); Farquhar  et al.
(1999); Ladogana et al.
(1992)

Amphotericin B C506M3 and
263K

Mouse and hamster Direct prevention of PrP
conversion or interference
with PrPSc uptake

Acute nephrotoxicity and low
solubility, widely used for the
treatment of fungals

Pocchiari  et al. (1987);
Xi  et al. (1992)

MS-8209 C506M3 and
263K

Mouse and hamster Same as for AmB Lower toxicity than AmB Adjou et al. (1995);
Demaimay et al. (1997)
Adjou et al. (1999)

Congo Red 263K and 139A Hamster Binding to PrPc with
polyanion-like behavior,
or binding to PrPSc

(overstabilisation)

Dyes amyloid Caspi et al. (1998);
Caughey et al. (1993);
Ingrosso et al. (1995)

Anthrycycline 263K Hamster Binding to PrPSc,
preventing amyloid 

Used for the treatment of
malignancies

Tagliavini et al. (1997)



deposition
Porphyrins and
Phtalocyans

263K Mouse expressing
hamster PrP

Binding to PrPSc Inhibits cell free PrPc/Sc

conversion
Caughey et al. (1998);
Priola et al. (2000)

Cp-60/Cp-62 ScN2a cells None Mimicking dominant
negative inhibition of
prion replication

Identified by using a
computational database search

Perrier et al. (2000)

IPrP13 (�-sheet
breaker)

139A Mouse Direct change of PrP
secondary structure

Synthetic peptide Soto et al. (2000)

Clusterin
[apolipoprotein J
(apo J)]

----- None, prevents
aggregation of
PrP106-126

Binding to PrPc/Sc Binds to extraneuronal PrPBSE McHattie and Edington
(1999)
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Fig. 7: Antiscrapie drugs of four different classes. (A) Pentosan polysulfate as a powerful
drug belonging to the polyanion family. (B) IDX a derivative of doxorubicin. (C) Congo red
belonging to the diazo dyes. (D) Amphotericin B and MS-8209 belonging to the family of
polyene macrolide antibiotics.

Presently AmB and its derivatives are the only category of antiscrapie drugs that are

prolonging the incubation period when given at late stages of infection (Demaimay et al.,

1997). However, the effect of polyene antibiotics vary between scrapie strains (Adjou et al.,
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1996). Note that the only reported treatment of clinical CJD with AmB in humans was

unsuccessful (Masullo et al., 1992). Several possible mechanisms are involved in the

antiscrapie effect of polyene antibiotics. AmB and MS-8209 have been proposed to directly

affect the PrPsen to PrPres conversion step and thus prevent PrPres accumulation (Adjou et

al., 1999; Adjou et al., 1997; Demaimay et al., 1997). Nevertheless a more indirect mode of

action seems to be possible, whereby AmB and its derivatives disturb the uptake of PrPres by

cells most likely by interfering with membrane cholesterol-rich domains (rafts) (Bolard, 1986;

Taraboulos et al., 1995). 

4. Other Therapeutics 

Anthracycline 4´-iodo-4´deoxy-doxorubicin (IDX) (Fig. 7B; Table IV) is a derivative of the

drug doxorubicin, which is successfully used in the treatment of several malignancies

(Barbieri et al., 1987). IDX binds to amyloid fibrils and induces amyloid resorption in patients

suffering from plasma cell dyscrasias with immunoglobulin light-chain amyloidosis (Gianni

et al., 1995; Merlini et al., 1995). IDX was shown to delay the clinical signs of scrapie disease

in 263K-infected hamsters when co-incubated with the 263K material prior to intracerebral

inoculation. At a molecular level IDX is thought to bind the abnormal form of PrP, thereby

decreasing the number of template molecules available for the PrPc conversion process

(Tagliavini et al., 1997).

Porphyrins and phtalocyans (Table IV) prevented PrPres accumulation in scrapie-infected

mouse neuroblastoma cell cultures (Caughey et al., 1998) and prolonged the incubation

period in hamster PrP expressing mice infected with 263K scrapie (Priola et al., 2000). The

molecules also inhibited a cell-free conversion of hamster PrPsen to PrPres, showing that the

effect seems to be due to direct PrP-binding. Nevertheless, because PrPres preparations are

not completely pure, interactions with other molecules might be possible. Some other

interactions with cells involved in scrapie pathogenesis can also not be excluded (Manuelidis,

2000). 

Based on the proposal of a protein X binding domain (Kaneko et al., 1997b) synthetic drugs

were identified that are able to inhibit PrPSc formation in ScN2a cells (Perrier et al., 2000).

Two compounds, Cp-60 and Cp-62 (Table IV) act in a dose-dependent manner and show low

toxicity. They are suggested to mimic the dominant negative inhibition of PrP replication

originally reported for a PrP mutant (Kaneko et al., 1997a). 

A 13-residue �-sheet breaker peptide (iPrP13) (Table IV) was shown to partly reverse PrPSc to

a PrPc like state. Mice inoculated with iPrP12-pretreated infectious material showed delayed

appearance of clinical symptoms (Soto et al., 2000). The peptide is thought to directly change
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the conformation of PrPSc from a �-sheeted to a more �-helical secondary structure and

therefore reduce infectivity. 

An effect of clusterin (Table IV) on the in vitro aggregation of the prion neuropeptide 106-

126 was tested. Clusterin co-localizes with extraneuronal PrPBSE in terminal BSE and the

aggregation of the neuropeptide 106-126 was inhibited by clusterin in a dose-dependent

manner (McHattie and Edington, 1999). The neurotoxicty of peptide 106-126 is subject of

discussion, since a recent report described aggregation but no neurotoxicity for this peptide

(Kunz et al., 1999). 

Dapsone (Manuelidis et al., 1998) and flurpirtine (Perovic et al., 1995) have also been

described as TSE therapeutics. In contrast to the previously described drugs, however, a direct

interaction with PrP is unlikely (Table V).

Table V. Antiscrapie drugs not thought to interact directly with PrP

Drug Tested on
scrapie strain

Success in animal
treatment

Suggested mode of action References

Dapsone SY Mouse Altering of macrophage
processing of infectious
agent and modulation of
inflammatory factors

Manuelidis et al,
(1998)

Flurpirtine
(Katadolon)

---- None, cures
neuronal cells
treated with
PrP106-126

Lowers toxic effect of
PrP106-126 by
normalization of GSH
levels

Perovic et al.
(1995)

E. Nucleic Acids 

So far, no nucleic acid directly linked to scrapie infectivity has been identified. The existence

of scrapie-specific homogeneous nucleic acid of more than 80 nucleotides has been excluded

by analysis of highly purified scrapie preparations involving improved return refocusing gel

electrophoresis (Kellings et al., 1992). However, the presence of a nucleic acid associated

with infectivity cannot be ruled out, as the BSE agent can be transmitted to mice in the

absence of detectable abnormal PrP (Lasmézas et al., 1997). 

The in vitro interaction of nucleic acid with PrP has been described for both DNA and RNA.

Using fluorescence labelled DNA, it was shown that the bindingstrength of peptide PrP106-

126 to DNA was of a similar order of magnitude as the binding of retroviral protein p10 with

model nucleic acids (Nandi, 1997). It was also shown that PrP106-126 polymerizes in the

presence of DNA in solution, whereas the peptide alone fail to polymerize (Nandi, 1998).
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RNA aptamers that bind specifically to recombinant hamster PrP (Weiss et al., 1995) but not

to recombinant PrP90-231 (Weiss et al., 1996) were isolated by in vitro selection (Weiss et

al., 1997). RNA aptamers of three different motifs were isolated, and all revealed a G quartet

scaffold, which was proved to be essential for PrPc binding. An RNA aptamer of only 29

nucleotides, representing the G quartet scaffold, was sufficient for PrPc recognition. The

interaction of the G quartet scaffold with PrPc was directed exclusively against the amino

terminus (aa23-52) of PrP. However, it could not be excluded that the aptamer recognizes

PrPSc, but failed to recognize PrP27-30, lacking aa23-89 from the amino terminus.
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Abstract

Recently, crystallization of the prion protein in a dimeric form was reported. Here we show

that native soluble homogeneous FLAG tagged prion proteins from hamster, man and cattle

expressed in the baculovirus system are predominantly dimeric. The PrP/PrP interaction was

confirmed in SFV-RNA transfected BHK cells co-expressing FLAG and oligohistidine

tagged human PrP. The yeast two-hybrid system identified the octarepeat region and the C-

terminal structured domain (aa90-aa230) of PrP as PrP/PrP interaction domains. Additional

octarepeats identified in patients suffering from  fCJD reduced (wtPrP versus PrP+9OR) and

completely abolished (PrP+9OR versus PrP+9OR) the PrP/PrP interaction in the yeast two-

hybrid system. In contrast, the Met/Val polymorphism (aa129), the GSS mutation Pro102Leu

and the FFI mutation Asp178Asn did not affect PrP/PrP interactions. Proof of interactions

between human or sheep and bovine PrP, and sheep and human PrP as well as failure of

interactions between human or bovine PrP and hamster PrP suggest that interspecies PrP

interaction studies in the yeast two-hybrid system may serve as a rapid pre-assay system to

investigate species barriers in prion diseases.

Introduction

Prions are thought to be the infectious agents of transmissible spongiform encephalopathies

(TSEs) (for review, see Ref. (Lasmézas and Weiss, 2000; Prusiner et al., 1998; Weissmann

and Aguzzi, 1997)). Several binding partners for the cellular form of the prion protein have

been identified (for review (Gauczynski et al., 2001a)) among them are molecular chaperones

such as Hsp60 (Edenhofer et al., 1996), protein X (Kaneko et al., 1997b) and the 37 kDa/67

kDa laminin receptor (Rieger et al., 1997), very recently identified as the receptor for the

cellular prion protein (Gauczynski et al., 2001b). Direct interactions of the prion protein with

itself have not been investigated so far.

One of the proposed models explaining the replication of prions is the protein only hypothesis

(Alper et al., 1967; Griffith, 1967; Prusiner, 1982) which states that a PrPSc monomer

interacts with a PrPc monomer to form a PrPSc/PrPc heterodimer. PrPSc then converts PrPc

to a PrPSc homodimer by changing its secondary/tertiary structure. Another model states that

a nucleus or seed consisting of PrPSc molecules incorporates PrPc monomers starting a

nucleation dependent polymerization or crystal seed reaction in which the PrPc monomers
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become converted to PrPSc molecules (Lansbury and Caughey, 1995). Both models result in

an oligo-/multimerization process finally leading to PrPSc aggregation. 

PrP dimers (for review see (Gauczynski et al., 2001a)) could play an essential role in this

conversion process and have been characterized as an intermediate state during PrP-

multimerization as analyzed by fluorescence correlation spectroscopy (FCS) (Jansen et al.,

2001; Post et al., 1998). PrP dimers have been observed in N2a cells and in scrapie-infected

hamster brains (Priola et al., 1995). Molecular modelling suggested the existance of PrP/PrP

dimers (Warwicker and Gane, 1996), which might be involved in PrP interspecies

transmission (Warwicker, 1997). The existence of a monomer-dimer equilibrium of partially

purified PrPc from cattle has been shown (Meyer et al., 2000). Very recently, crystallization of

dimeric PrP has been reported involving domain swapping of �-helical structures (Knaus et

al., 2001). Here we show by size exclusion chromatography that recombinant FLAG tagged

PrP from hamster, human and cattle, purified to homogeneity from the baculovirus system,

elute predominantly as dimers under native conditions. In the presence of DTT, the

monomeric PrP form was marginally increased suggesting that disulfide bonds do not

contribute to dimer formation. We confirmed the PrP/PrP interaction in BHK cells co-

expressing oligohistidine and FLAG tagged prion proteins using recombinant Semliki-Forest-

Virus RNAs. Employing the yeast two-hybrid system, in which the PrP/PrP interaction was

further confirmed, we identified both the octarepeat region and the carboxyterminus of the

prion protein (PrP90-230) as PrP/PrP interaction domains. 

Defined mutations within the Prn-p gene lead to familial Creutzfeldt Jakob Disease (fCJD),

Gerstmann-Sträussler-Scheinker (GSS) Syndrom and fatal familial insomnia (FFI) (for review

see (Lasmézas and Weiss, 2000)). A series of mutations affect the octarepeat region of the

prion protein. fCJD-patients encompassing two (Goldfarb et al., 1993), four (Campbell et al.,

1996), five (Goldfarb et al., 1991), six (Owen et al., 1990), seven (Goldfarb et al., 1991),

eight (Goldfarb et al., 1991) and nine additional octarepeats (Owen et al., 1992) have been

described. All these patients are heterozygous regarding these mutations (Majtenyi et al.,

2000). The mutation 102 proline to leucine leads to GSS (Goldgaber et al., 1989). The

polymorphism at position 129 of the human prion protein determines whether an organism

suffers from FFI (position 178 Asp to Asn together with methionine at position 129), fCJD

(position 178 Asp to Asn together with valine at position 129) or remains healthy (178 Asp

and 129 Met or 129 Val) (Tateishi et al., 1995 and references therein). Each patient suffering

from nvCJD investigated so far was homozygous for methionine at position 129 (Zeidler et

al., 1997). We investigated whether relevant mutations and polymorphisms within the Prn-p
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gene affect the PrP/PrP interaction behaviour. Mutated PrP proteins with alterations in the

octarepeat region, the first PrP/PrP binding domain, encompassing two, five and nine

additional octarepeats reduced the PrP/PrP interaction when tested against wild-type PrP, and

completely abolished the PrP/PrP interaction when PrP+5OR or PrP+9OR were tested against

themselves. Point mutations which are located in the second PrP/PrP interaction domain (90-

230), however, leading to amino acid substitutions at position 102 (proline to leucine), 129

(methionine to valine) and 178 (aspartate to asparagine), respectively, did not influence the

PrP/PrP interaction behaviour as assayed in the yeast two-hybrid system suggesting a

pathogenic mechanism different from that induced by the additional octarepeats. Finally we

investigated interspecies interactions of prion proteins of different species including man,

cattle, sheep and hamsters in the yeast two-hybrid system, suggesting that this system might

be a useful and rapid pre-assay system to investigate species barriers in prion diseases.

Results

Recombinant human, bovine and hamster PrP are dimeric under native conditions

FLAG tagged human, bovine and hamster PrP were synthesized in Sf9 cells infected with

recombinant baculoviruses and purified to homogeneity by anti-FLAG-antibody

chromatography. The homogeneous PrP from hamster, cattle and man revealed a molecular

weight of approx. 27 kDa under denaturing conditions on an SDS-PA-gel (Figure 1 A, D and

G) and was recognized by PrP specific antibodies (Figure 1 B, E and H). Under native

conditions, however, FLAG tagged hamster, bovine and human PrP revealed molecular

weights of 53, 54 and 53 kDa, respectively, and to a minor extent molecular weights of 24, 25

and 24 kDa, respectively, as determined by size exclusion chromatography (Figure 1 C, F and

I), demonstrating that PrP from these three species are predominantly dimeric under native

conditions. The measured values are close to the values derived from the individual amino

acid sequences, which are 23,9; 24,5 and 23,7 kDa, respectively for hamster, bovine and

human PrP. In the presence of DTT, the proportion of the monomeric form of human PrP was

increased from 1.9 to 6.6 % wheras the proportion of the dimeric form decreased from 98.1 to

93.4 %  (Figure 1 J), suggesting that intermolecular disulfide bonds do not or only marginally

contribute to PrP dimer formation. The FLAG tagged heat shock protein Hsp60 synthesized

in the baculovirus system (Figure 1 K, L) was monomeric under native conditions as

measured by size exclusion chromatography (Figure 1 M) demonstrating that the FLAG tag is

not responsible for the dimerization behaviour of FLAG tagged PrP. 
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PrP/PrP interaction in recombinant Semliki-Forest-Virus (SFV)-RNA transfected BHK

cells co-expressing oligohistidine and FLAG tagged PrP

In order to confirm the PrP/PrP interaction in an eucaryotic system, we chosed BHK cells co-

expressing highly glycosylated oligohistidine and FLAG tagged human prion proteins after

transfection with recombinant Semliki-Forest-Virus RNAs. The protein/protein interaction

was investigated by pull-down assays immobilizing oligohistidine tagged PrP on nickel

columns followed by the detection of the interacting FLAG tagged protein with an anti-FLAG

antibody. After co-expression of PrP227-oligohistidine-228 and PrP227-FLAG-228, the non-,

mono-, and diglycosylated forms of FLAG tagged PrP were detectable (Figure 2, lane 3),

demonstrating the interaction of both prion proteins in BHK cells. Expression of FLAG

tagged PrP alone resulted in a weak background binding to the nickel-column due to the

histidine-rich octa-repeat region of PrP (lane 4). As positive controls the PrP interacting

proteins 37 kDa laminin receptor precursor (LRP) (Rieger et al., 1997; Gauczynski et al.,

2001b; Hundt et al., 2001) and Hsp60 (Edenhofer et al., 1996) (lane 1) both tagged with

FLAG were used. Both proteins bound to oligohistidine tagged PrP (lane 1 and 2,

respectively). The system confirms the PrP/PrP interaction in BHK cells.

PrP/PrP interaction and identification of PrP/PrP interaction domains by yeast two-

hybrid analyses

Co-expression of human PrP tagged to the highly soluble GST in bait and prey position of the

yeast two-hybrid system (Gyuris et al., 1993) resulted in a strong interaction of both proteins

(Figure 3, row 3) confirming the PrP/PrP interaction observed in recombinant SFV-RNA

transfected BHK cells. GST failed to interact with itself and with GST::PrPc (Figure 3, rows 1

and 2, respectively). Next, we investigated which regions of the prion protein are involved in

the PrP/PrP interaction process. The highly flexible unstructured octarepeat region of PrP

(Donne et al., 1997; Riek et al., 1997) (also known as the proline/glycine rich region), which

has been shown to bind copper in vivo (Brown et al., 1997), consists of five (six in cattle)

repeats of a stretch of eight amino acids (PHGGGWGQ). Co-expression of the human PrP

octarepeat domain in both positions of the yeast two-hybrid system resulted in a strong

interaction between the two truncated PrP proteins (Figure 3, row 5). The ultimate amino

terminus of PrP (aa23-50), however, failed to interact with itself (Figure 3, row 6),

demonstrating that this region of PrP is not involved in the PrP/PrP interaction. Deletion of

the octarepeat domain resulted in a weaker interaction signal (Figure 3, row 4), suggesting the

existance of a second PrP/PrP interaction domain. Co-expression of PrP90-230 in both bait
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and prey position of the yeast two-hybrid system indeed resulted in a strong interaction signal

(Figure 3, row 7). In summary, these data demonstrate that the octarepeat region and PrP90-

230 contribute to PrP/PrP interactions.

Additional octarepeats located in the first PrP/PrP interaction domain impede PrP/PrP

interaction

Since the octarepeat region represents a PrP/PrP interaction domain, we investigated whether

additional octarepeats identified in familial CJD patients might influence the PrP interaction

behaviour. When human PrP encompassing two (Figure 4, row 7), five (row 8) and nine (row

9) additional octarepeats were expressed in bait versus wild-type PrP in prey position of the

yeast two-hybrid system, the PrP/PrP interaction was only slightly diminished. This situation

mimics the heterozygous state in all patients investigated so far expressing the mutated PrP on

one allele and the wild-type PrP from the other allele. However, when mutated human prion

proteins encompassing two (Figure 4, row 4), five (row 5) and nine (row 6) additional

octarepeats were co-expressed in both positions of the yeast two-hybrid system reflecting a so

far hypothetical case of a patient homozygous for this Prn-p mutation, the PrP/PrP interaction

was in the case of two additional octarepeats strongly reduced (row 4) and in case of five (row

5) and nine (row 6) additional octarepeats completely abolished.

The mutations  Pro102Leu (GSS) Asp178Asn (FFI) and the polymorphism Met129Val

do not influence the PrP/PrP interaction

We investigated the polymorphism Met-Val at position 129, the mutation Pro-Leu at position

102 and the mutation Asp-Asn at position 178 (polymorphism aa129 methionine) of the

human prion protein with respect to their influence on the PrP/PrP interaction behaviour.

Neither this polymorphism nor the mutation at position 102 expressed in bait position versus

wild type PrP in the prey position (Figure 5, lanes 6 and 4, respectively) or both expressed in

both bait and prey position (Figure 5, lanes 7 and 5, respectively) reflecting the heterozygous

and homozygous state, respectively, affected the PrP/PrP interation behaviour. In addition, the

FFI related mutation 178 Asp to Asn (aa129 methionine) did not influence the PrP/PrP

interaction behaviour when expressed in bait versus wild-type PrP in prey position

(heterozygous case; Figure 5, lane 8). We conclude that both mutations together with the

polymorphism which all reside within PrP90-230 have no influence on the PrP/PrP

interaction behaviour. Thus PrP dimers can be formed in all familial CJD (including cases due
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to additional octarepeats since they are exclusively heterozygous), GSS and FFI cases

investigated.

Interaction of prion proteins of different species in the yeast two-hybrid system

In order to investigate whether prion proteins of different species interact with each other, we

verified the interaction between prion proteins of different species in the yeast two-hybrid

system. As already observed with human PrP (Figure 3), bovine PrP (Figure 6, row 5), ovine

PrP (AQ) (Figure 6, row 8) and hamster PrP (Figure 6, row12) also interact with each other.

Regarding interspecies interactions, human PrP interact with bovine PrP (Figure 6, row 6) and

ovine PrP (AQ) (Figure 6, row 10), but not with hamster PrP (Figure 6, row 13). Bovine PrP

shows an interaction with ovine PrP (Figure 6, row 9) but no interaction with hamster PrP

(Figure 6, row 14). For specificity controls all PrP species failed to interact with GST (Figure

6, row 2, 4, 7 and 11). 

Discussion

According to the protein only hypothesis (Prusiner, 1982) and the nucleation dependent

polymerization model (Lansbury and Caughey, 1995), PrPc converts into PrPSc by either a

PrPSc monomer (Prusiner, 1982) or a PrPSc seed (Lansbury and Caughey, 1995). Recently,

PrP dimers have been characterized as an intermediate state during the PrP-oligo- and

multimerization process analyzed by fluorescence correlation spectroscopy (FCS) (Post et al.,

1998). PrP dimers consisting of �-helical PrP monomers were only stable for less than a

minute but PrP dimers consisting of mainly �-sheeted monomers have been found to be stable

for about 10 minutes (Post et al., 1998). Recently, a soluble and stable �-helical intermediate

of recombinant hamster PrP (90-231) was identified by size exclusion chromatography and

chemical cross-linking (Jansen et al., 2001). PrP dimers have also been described in

uninfected mouse neuroblastoma cells (Priola et al., 1995) with an approximate molecular

weight of 60 kDa. Similar 60-kDa PrP molecules were identified in scrapie-infected hamster

brains but not in uninfected brains (Priola et al., 1995). These authors suggested that the 60-

kDa dimeric PrP might contribute to the conversion of protease-sensitive to protease K

resistant PrP.
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Dimerization of recombinant prion proteins from human, cattle and hamster under

native conditions

A monomer-dimer equilibrium of partially purified PrPc from cattle has been described

(Meyer et al., 2000). Very recently, crystallization of  the dimeric recombinant PrP has been

reported involving domain swapping of the C-terminal helix 3 and rearrangement of the

disulfide bond (Knaus et al., 2001). We show in this manuscript that recombinant full-length

FLAG tagged PrP from human, cattle or hamster from insect cells infected with recombinant

baculoviruses appear predominantly dimeric under native conditions. Our recombinant PrP

was purified under native conditions from the medium of insect cells infected with

recombinant baculoviruses. Addition of DTT increases the monomeric form of PrP slightly,

suggesting that disulfide bridges do not or only marginally participate in PrP dimer formation.

We can exclude that the FLAG tag used for purification induces dimerization of our

recombinant protein, since FLAG tagged Hsp60 appeared to be solely monomeric.

PrP/PrP interactions in BHK cells transfected with recombinant SFV-RNAs

In order to prove the PrP/PrP interaction in highly developed eucaryotic cells, we transiently

co-expressed FLAG tagged and oligohistidine tagged PrP in BHK cells using the Semliki-

Forest-Virus system. Employing pull down assays, we demonstrated the interaction of these

highly glycosylated prion proteins in an evolutionary highly developed cell system.

PrP/PrP interactions and identification of PrP/PrP interaction domains

Direct PrP/PrP interactions have not been reported so far. We employed the yeast two-hybrid

system as a powerful tool for the detection of protein/protein interactions (Gyuris et al.,

1993). The yeast two-hybrid system is also useful for the identification of interaction domains

of  cytosolic (Lopez et al., 2001) and membrane-associated proteins (Bowman et al., 2000).

Expression of PrP in bait and prey position of the yeast two-hybrid system resulted in a direct

interaction of both proteins. Expression of PrP truncations and deletion mutants in the same

system identified the octarepeat region as one PrP/PrP interaction domain with a copper

binding capacity in vivo (Brown et al., 1997) and an intrinsic superoxide dismutase activity

(Brown, 1999). This flexible unstructured region of PrP (Donne et al., 1997; Riek et al.,

1997) might be important for the physiological function of the prion protein and might be

involved in the PrPc/PrPSc conversion process. The internalization process of the prion

protein is governed by metal binding to octarepeats (Sumudhu et al., 2001). Very recently, the

octarepeat region has been identified as an indirect interaction domain for the binding of the
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prion protein to its 37 kDa/67 kDa laminin receptor mediated by cell surface heparan sulfate

proteoglycans (HSPGs) (Hundt et al., 2001). 

Deletion of the octarepeat region resulted in a weaker PrP/PrP interaction in the yeast two-

hybrid system suggesting that a second PrP/PrP interaction domain within the

carboxyterminal part of PrP may exist. Co-expression of PrP90-230 in both positions of the

yeast two-hybrid system resulted in a direct interaction between both truncated PrP

molecules, demonstrating that the carboxy-terminus of PrP (PrP90-230) represents a second

PrP/PrP interaction domain. Since DTT affects PrP dimerization only marginally (Figure 1 J),

we conclude that intermolecular disulfide bridges do not or only marginally contribute to PrP

dimer formation.

Influence of additional octarepeats in PrP/PrP interaction processes

Additional octarepeats have been identified in patients suffering from familial CJD (Campbell

et al., 1996; Goldfarb et al., 1993; Goldfarb et al., 1991; Owen et al., 1992; Owen et al.,

1990). PrP encompassing nine additional octarepeats associated with familial CJD failed to

undergo Cu2+ -mediated endocytosis, suggesting that neurodegeneration may arise from the

ablation of internalization due to mutation of the octarepeats (Sumudhu et al., 2001). Since

these mutations affect the octarepeat region as one PrP/PrP interaction domain, we

investigated whether these mutations may influence the PrP/PrP interaction behaviour.

Expression of mutated PrP encompassing two, five and nine additional octarepeats in bait

position versus wild-type PrP in prey position of the yeast two-hybrid system diminished

slightly the PrP/PrP interaction process. This situation mimics heterozygous CJD patients

with the mutated Prn-p gene on one allele and the wild-type Prn-p on the other (Majtenyi et

al., 2000). Expression of mutated PrP with five and nine additional octarepeats in both

positions of the yeast two-hybrid system resulted in total inhibiton of the PrP/PrP interaction

reflecting a to our knowledge hypothetical homozygous CJD patients expressing this mutated

PrP on both alleles of the Prn-p gene. Our results suggest that PrP/PrP interactions take place

in all heterozygous CJD patients expressing additional octarepeats.

Transgenic mice expressing a mutant PrP encompassing nine additional octarepeat copies

exhibit a slowly progressive neurological disorder characterized clinically by ataxia and

neuropathologically by cerebellar atrophy and granule cell loss, gliosis, and PrP deposition

that is most prominent in the cerebellum and hippocampus (Chiesa et al., 1998). Moreover,

these mice produce PrP that is more pK resistant than normal PrPc (though it seems not to

represent bona fide PrPSc), which accumulates concomitant with massive apoptosis of
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granule cells in the cerebellum (Chiesa et al., 2000). These features are more pronounced in

homozygous (Tg(PG14+/+) than in heterozygous (Tg(PG14+/-) mice (Chiesa et al., 2000).

These data together with the observation that additional octarepeats cause familial CJD in

humans demonstrate that additional nine octarepeats indeed have a pathogenic effect.

Undimerized PrPc may not be able to full-fill its normal physiological function and be

abnormally processed. The recent finding that nine additional octarepeats in PrP prevent the

protein from copper mediated endocytosis (Brown et al., 1997) provides one explanation for

the neurodegeneration observed in patients encompassing this mutation.  Whether the wild-

type prion protein appears monomeric or dimeric at the cell surface remains to be

investigated. 

Moreover, a free N-terminus might render the non-dimerized prion protein more prone to

misfolding and probably to conversion into PrPSc. We hypothesize that the availability of the

second carboxyterminal PrP/PrP interaction domain is then required for PrPSc to convert

more free PrPc molecules resulting in prion propagation. This requirement is full-filled in

heterozygous cases of familial CJD, were PrP/PrP interaction does still occur as shown in the

yeast two-hybrid analysis (PrP+9OR versus wild-type PrP). 

Hence, we speculate that PrP/PrP interaction via the octarepeat binding domain may be

important for the normal physiological function of PrP and for the stabilization of PrPc/PrPc

dimers. In the heterozygous case PrPc/PrPc interaction is reduced but PrPc/PrPSc interaction

does still occur most likely via the second PrP/PrP interaction domain (PrP90-230). We

speculate, thus, that this binding domain might be important for PrPc/PrPSc conversion

process, since PrP90-230 dimers have been identified within the PrP

oligomerization/multimerization process analyzed by FCS (Post et al., 1998; Jansen et al.,

2001).

Influence of TSE relevant mutations and polymorphisms on the PrP/PrP interaction

behaviour

Defined mutations within the human Prn-p gene such as the Leu102Pro mutation or the

Asp178Asn mutation lead to GSS and FFI, respectively (for review see (Lasmézas and Weiss,

2000)). The polymorphism at position 129 Met/Val influences the susceptibility of humans

towards FFI, fCJD and nvCJD. Interestingly enough, all patients suffering from nvCJD

investigated so far are homozygous for methionine at this position. All these mutations and

the polymorphism either expressed in both positions or in bait versus wild-type PrP in prey
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position of the yeast two-hybrid system did not affect the PrP/PrP interaction process. This

findings are in good harmony with the assumption that only mutations such as E200K

affecting helix 3 of the prion protein may interfere with PrP dimer formation via the

structured region of PrP. 

In summary, PrP/PrP interactions occur via the octarepeat region and the carboxyterminal

region stretching from aa90 to 230 in case of human PrP. From these findings we assume that

interactions of the prion protein might occur in all patients suffering from GSS, FFI, fCJD and

nvCJD and might be important for the PrPc/PrPSc conversion process. Here, PrP/PrP

interaction inhibitors may act as powerful tools in therapy of TSEs. Also in case of familial

CJD caused by additional octarepeats PrP/PrP interaction may still occur most likely via the

PrP90-230 interaction domain. Blockage of this interaction may also result in an interference

of the PrPSc replication process. In a homozygous case, in which PrP/PrP interaction might

be completely blocked by five or nine additional octarepeats (here also the interaction via the

second PrP binding domain PrP90-230 is impeded probably due to sterical reasons), the

monomeric PrP might not be processed normally and may not fulfill its normal physiological

functions leading to the syndromes observed in transgenic mice expressing a mutated PrP

with nine additional octarepeats. Such a PrP seems to aggregate in a more pK resistant form

but prion replication has not been proved (Chiesa et al., 2000; Chiesa et al., 1998). 

Heterodimerization of prion proteins of different species

Investigating the interspecies interaction of prion proteins, we expressed prion proteins of

different species in bait and prey position of the yeast two-hybrid system. Bovine PrP

interacted with human PrP, but hamster PrP failed to interact with bovine and human PrP

(Table I). These data are in fairly good harmony with interspecies transmissions of prions.

Indeed there is now convincing evidence from interspecies transmission studies in animals

(Bruce et al., 1997; Lasmézas et al., 1996; Lasmezas et al., 2001) and transgenic mice (Hill et

al., 1997; Scott et al., 1999) that cattle BSE prions have transmitted to humans (Table I).

Hamsters have not been successfully inoculated with bovine PrP (Bradley and Wilesmith,

1993), and Creutzfeldt-Jakob disease was only serially transmitted to Syrian hamsters via

guinea pigs (Manuelidis et al., 1978) (Table I). In the latter case, incubation times varied

depending on the CJD strain used. Our yeast two-hybrid data further demonstrate an

interaction between ovine PrP (AQ) and bovine or human PrP. There are no transmission data

between sheep and humans (Table I). However, the ovine scrapie agent has been transmitted

to transgenic mice expressing bovine PrP (Scott et al., 2000). Cattle infected with the scrapie
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agent either intracerebrally (Cutlip et al., 1994) or intramuscularly, subcutaneously or orally

(Clark et al., 1995) developed TSEs (Table I). Although epidemiological data suggest that the

ovine scrapie agent is hardly transmittable to humans, a sheep-human transmission which we

suggest from our yeast two-hybrid data cannot be excluded. Employing the in vitro

conversion system (Caughey et al., 1995) interconversion studies have been performed which

further confirm our interspecies interaction results obtained from the yeast two-hybrid system:

both, bovine PrPBSE and ovine PrPSc (AQ) converted human PrPsen, although only to a

minimal extend, into a proteinase K (pK) resistant form (Raymond et al., 2000) (Table I).

Sheep PrPsen (AQ) was converted by PrPBSE into the pK resistant state (Raymond et al.,

1997) (Table I), whereas hamster PrPsen was not converted by bovine PrPBSE (Raymond et

al., 1997) (Table I). In summary, our results of interspecies PrP interactions in the yeast two-

hybrid system are in good harmony with transmission data obtained from transgenic and non-

transgenic animals  and with interconversion results obtained from the in vitro conversion

assay. Therefore, we suggest that the yeast two-hybrid system acts as a fast pre-assay system

to investigate species barriers in prion diseases.

Additional experiments including powerful PrP/PrP dimerization inhibitors might further

enlighten the role of PrP dimers in the replication mechanism of prions and the physiological

function of PrP.



Table I: Comparison of interspecies interactions in the yeast two-hybrid system with interconversion studies performed by the in vitro conversion

systema and transmission studies  in transgenic and non-transgenic animals

PrP species PrP species Interspecies inter-

actions by the yeast

two-hybrid system

Interconversions by in

vitro conversion assaysa

Interspecies transmissions

in transgenic mice

Interspecies transmissions

in animals

human cattle + +b +c +d

sheep cattle + +e +f +g

sheep human + +b n.d. n.d.

hamster human - n.d. n.d. via guinea pigsh

hamster cattle - -e n.d. -i

+: interaction in the yeast two-hybrid system, interconversion by in vitro conversion assays, transmission in transgenic mice and non-transgenic animals
-: no interaction in the yeast two-hybrid system, no interconversion, no transmission in animals
n.d.: not determined
a: according to (Caughey et al., 1995)
b: (Raymond et al., 2000)
c: (Hill et al., 1997); (Scott et al., 1999)
d: link between nvCJD and BSE demonstrated in macaques inoculated with PrPBSE (Lasmézas et al., 1996;)  and mice inoculated with PrPBSE / PrPnvCJD (Bruce et al., 1997), (Lasmezas et al., 2001)
e: (Raymond et al., 1997)
f: (Scott et al., 2000)
g: (Cutlip et al., 1994), (Clark et al., 1995)
h: (Manuelidis et al., 1978)
i: (Bradley and Wilesmith, 1993)
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Materials and methods

Recombinant proteins generated in the Baculovirus system

FLAG::haPrP23-231 has been generated as described (Rieger et al., 1997). cDNAs encoding

huPrP23-230, bovPrP25-242 obtained by H. Kretzschmar, Munich, and M. Shinagawa,

Obihiro, Japan, respectively, were generated by PCR and cloned into the transfer vector

pFLAG-BAC (Rieger et al., 1997) via BamHI (5´) and EcoRI (3´). The Hsp60 encoding

cDNA was amplified  from the vector pEt3a introducing a BamHI (5’) and a PstI (3’)

restriction site and cloned into the vector pFLAG-BAC (Rieger et al., 1997). Recombinant

viruses were generated by co-transfection of the transfer vectors with linearized viral DNA

according to the manufacturer's instructions (Baculogold; Pharmingen). Recombinant FLAG::

haPrP23-231, FLAG::huPrP23-230 and FLAG::bovPrP25-242 were expressed in baculovirus

infected Sf9 cells and purified to homogeneity as described for FLAG tagged haPrP

previously (Rieger et al., 1997).

Recombinant pSFV plasmid constructions

Construction of SFV1-LRP::FLAG was described (Gauczynski et al., 2001b). Construction of

pSFV1-Hsp60::FLAG. The Hsp60 encoding cDNA was amplified by PCR from pEt3a

introducing a BamHI and a XmaI restriction site at the 5' and 3' ends. The 1755 bp fragment

which contains the Kozak sequence and AUG at the 5' end and a FLAG-tag encoding

sequence at the 3' end was cloned into the SFV expression plasmid pSFV1 (Liljestrom and

Garoff, 1991) via BamHI/XmaI restriction sites, resulting in pSFV1-Hsp60::FLAG.

Construction of pSFV1-huPrP1-227FLAG228-253 and pSFV1-huPrP1-227HIS228-253. The

insertion of a FLAG- or a HIS-tag encoding sequence between codon 227 and 228 of the

human PrP sequence was done by PCR using the pSFV1-huPrP1-253 plasmid DNA as a

template. A 135 bp fragment (insertion of the FLAG encoding sequence) and a 129 bp

fragment (insertion of the HIS encoding sequence) which both encode the carboxy-terminus

of huPrP, were amplified introducing a StuI restriction site (endogenous site within codon 223

- 225) at the 5' end, the tag-encoding sequence between codon 227 and 228 as well as a

BamHI site at the 3' end. Both fragments were digested with StuI and BamHI and ligated via

the StuI restriction site to a 707 bp fragment encoding the aminoterminal part of huPrP from

pSFV1-huPrP1-253 digested with BamHI and StuI. The ligated DNA fragments were cloned

into the expression plasmid pSFV1 via the BamHI restriction sites resulting in pSFV1-
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huPrP1-227FLAG228-253 and pSFV1-huPrP1-227HIS228-253. The correct constructions of

pSFV1-Hsp60::FLAG, pSFV1-huPrP1-227FLAG228-253 and pSFV1-huPrP1-227HIS228-

253 have been confirmed by dideoxysequencing. The plasmid DNA pSFV1-huPrP1-253 was

described elsewhere (Krasemann et al., 1996).

Preparation of SFV-mRNA in vitro

The recombinant plasmid DNAs pSFV1-huPrP1-227FLAG228-253, pSFV1-huPrP1-

227HIS228-253, and pSFV1-LRP::FLAG were linearized with SpeI, the pSFV1-

Hsp60::FLAG plasmid DNA was cut with SapI (due to the internal SpeI restriction site within

the encoding sequence). The linearized plasmid DNAs were purified by phenol-chloroform

extraction followed by ethanol precipitation. Transcriptions were carried out in a total volume

of 50 µl containing 1,5 µg linearized plasmid DNA, 10x SP6 transcription buffer (0,4 M Tris-

HCl, pH 8,0 at 20°C; 60 mM MgCl2; 100 mM dithiothreitol; 20 mM spermidine), 1 mM of

each ATP, CTP and UTP, 500 µM of GTP, 1 mM of m7G(5')ppp(5')G, 50 units of RNasin

and 50 units of SP6 RNA polymerase and incubated for 2 h at 37 °C. The correct length of

transcripts was proven by agarose gel electrophoresis. RNA was stored at -20 °C. 

Mammalian cell culture, transfection and co-transfection studies with the Semliki-

Forest-Virus (SFV) system

Baby hamster kidney cells (BHK-21 C13; ATCC CCL 10) were cultured in Dulbecco's

modified Eagle's medium supplemented with 10 % heat-inactivated fetal calf serum (FCS), 2

mM L-glutamine, 100 µg/ml penicillin and 100 µg/ml streptomycin at 37 °C with 5 % CO2.

Transfection and cotransfection were carried out by electroporation, where RNA was added

directly from the in vitro transcription reaction to the BHK cells. BHK cells with a confluency

of ~80 % were rinsed with PBS (without MgCl2 and CaCl2), trypsinized, washed again and

finally resuspended in PBS to a density of 107 cells/ml. The total amount of transcribed RNA

was mixed with 0.8 ml cells and the mixture transfered to a 0.4 cm cuvette. Performing

cotransfection both RNAs were added in proportion 1:1 to the cells. Electroporation was

carried out at room temperature by two consecutive pulses at 850 V / 25 µF using a BioRad

Gene Pulser. The time constant after each pulse should be 0.4 to 0.5. The total volume of the

electroporated cells (8x106) was plated on 10 cm dishes containing 15 ml of complete growth

medium. The cells were incubated at 37 °C with 5 % CO2 for 48 h. 
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Pull down assays

BHK cells co-expressing huPrP-HIS and FLAG-tagged proteins such as huPrP-FLAG,

LRP::FLAG, Hsp60::FLAG (SFV-system) were harvested 48 h post transfection, washed

once with PBS and then lysed in PBS supplemented with 0.1% Triton-X-100 at 4°C. The

crude lysates were obtained by centrifugation at 14000 rpm 4°C for 15 min and purified by

the batch method using a Chelating Sepharose Fast Flow gel (Pharmacia/Biotech) charged

with nickel. The histidine-tagged protein (huPrP-HIS) was bound over night by rotating at

4°C, washed four times with PBS and eluted over night by competition with PBS containing

500 mM imidazole at 4°C. In order to investigate the interaction between huPrP-HIS and the

co-expressed FLAG-tagged proteins (mentioned above) the eluates were analyzed by Western

Blotting using the monoclonal anti-FLAG antibody M2 (Sigma).

Yeast two-hybrid analysis

Constructions of plasmid pSH2-1-GST::huPrP23-230 was described previously (Rieger et al.,

1997). The cloning procedure of all other human PrP constructs into the vector pSH2-1 was

analogous. The GST::huPrP23-230 encoding cDNA was excised from pSH2-1-

GST::huPrP23-230 and subcloned into pJG4-5 via EcoRI and SalI. All other constructs were

cloned into the vector pJG4-5 in the same way. The construct pSH2-1-GST::huPrP�GP

lacking the octarepeat region aa 51-91 was generated via Kunkel mutagenesis(Kunkel, 1985).

The constructs pSH2-1-GST::huPrPGP (aa52-93), pSH2-1-GST::huPrP23-50 and pSH2-1-

GST::huPrP90-230 were amplified by PCR using oligodesoxyribonucleotides coding for the

different PrP-sequences flanked by a BamHI (5') and a SalI (3') restriction site. The fragments

were cloned via BamHI and SalI restriction sites into the vector pSH2-1. The construct pSH2-

1-GST::huPrP23-230+9OR was subcloned from the vector pSFV1-huPrP+9OR (gift from Dr.

S. Krasemann). The constructs pSH2-1-GST::huPrP23-230+2OR and pSH2-1-

GST::huPrP23-230+5OR were generated by BstXI restriction of the construct with additional

9 octarepeats and ligation of the restriction products with different length. This results in the

insertion of 2 and 5 additional octarepeats. The constructs pSH2-1-GST::huPrP23-230P102L

and pSH2-1-GST::huPrPM129V were cloned via Kunkel mutagenesis. The construct pSH2-1-

GST::huPrPD178N (FFI) was subcloned from the plasmid pSFV1-huPrPD178N (FFI)

(Krasemann et al., 1996)which was a generous gift from Dr. S Krasemann. The construct

pSH2-1-GST::bovPrP25-242 was subcloned from the plasmid pSFV1-bovPrP via BamHI

(Krasemann et al., 1996) and SalI. The construct pSH2-1-GST::haPrP23-231 was subcloned
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from the plasmid pGEX-2T::haPrP23-231 (Weiss et al., 1995) via BamHI and SalI. The

construct pSH2-1-GST::shPrP25-234 (A/Q) was subcloned from a ovine DNA (generous gift

from W. Goldmann) via BamHI and SalI. All PrP constructs were confirmed by sequencing.

The different bait plasmids, the prey plasmid pJG4-5-LRP and the reporter plasmid pSH18-34

(lacZ) were co-transformed into EGY48 cells and transformants were tested in a �-

galactosidase assays.

Size Exclusion chromatography (SEC)

Phast System (Amersham Pharmacia)�The Superose 12 PC 3.2/30 column (Amersham

Pharmacia) was calibrated with the LMW calibration kit using the buffer 20mM HEPES pH

7.4. 2.5 µg (25 µl) each of the  homogeneous FLAG-tagged PrP from human, bovine and

cattle expressed in the baculovirus-system were loaded. The proteins were eluted with the

same buffer at a flow rate of 30µl/min and detected with a UV-M II monitor at 280nm. For

denaturation FLAG::huPrP23-230 was incubated with 100mM DTT, 95°C for 15 minutes.

Antibodies

The monoclonal anti-PrP antibody 3B5 was kindly provided by G. Hunsmann, Göttingen,

Germany, the polyclonal antibody JB007 was a kind gift of Corinne Ida Lasmézas, Fontenay-

aux-Roses, France. Anti-FLAG antibody M2 was purchased from Sigma. Secondary anti-

mouse IgG-POD conjugated was provided by Sigma. 
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Fig. 1. Analysis of recombinant FLAG::PrP from hamster, cattle and man and FLAG::Hsp60
under native and denaturing conditions. 400 ng of purified FLAG::haPrP23-231 were
analyzed by SDS-PAGE (12.5 % PA) followed by silver staining of the gel (A) and Western
Blotting (B) employing the monoclonal 3B5 antibody. (C) 6 µg of non-denatured
FLAG::haPrP23-231 were analyzed by size exclusion chromatography (SEC) on a Superose
12 PC 3.2/30 column (Amersham Pharmacia). Marker proteins (LMW calibration kit) are
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indicated. 600 ng of purified FLAG::bovPrP25-242 were analyzed by SDS-PAGE (12.5 %)
followed by silver staining of the gel (D) and Western Blotting (E) employing the 3 B5
antibody. (F) 4 µg of non-denatured FLAG::bovPrP25-242 were analyzed by SEC as
described above. 400 ng of FLAG::huPrP23-230 were analyzed by SDS-PAGE (12.5 % PA)
followed by silver staining of the gel (G) and Western Blotting employing the JB007 antibody
(H). (I) 8 µg of non-denatured FLAG::huPrP23-230 were analyzed by SEC in the absence of
DTT as described above. (J) 6 µg of FLAG::huPrP23-230 were analyzed by SEC after
denaturing with DTT. 300 ng of purified FLAG::HSP60 were analyzed by SDS-PAGE (12.5
%) followed by silver staining of the gel (K) and Western Blotting (L) employing an Hsp60
specific antibody. (M) 4 µg of non-denatured FLAG::Hsp60 were analyzed by SEC as
described above.

Fig. 2. Analysis of PrP/PrP interactions in BHK cells co-transfected with recombinant
Semliki-Forest-Virus RNAs. Extracts of total protein from BHK cells either non-transfected
(lane 5), transfected with SVF1-huPrP1-227FLAG228-253 (lane 4) or co-transfected with
SVF1-huPrP1-227FLAG228-253 and SVF1-huPrP1-227HIS228-253 (lane 3), SVF1-huPrP1-
227HIS228-253 and SFV1-LRP::FLAG (lane 2) or SVF1-huPrP1-227HIS228-253 and SFV1-
Hsp60::FLAG (lane 1) were harvested 48 h post transfection., purified by IMAC, analyzed on
a 12% PAA-SDS gel, blotted and developed with a monoclonal anti-FLAG-antibody (M2).
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Fig. 3. Identification of PrP/PrP interaction domains in the yeast two-hybrid system (S.
cerevisiae). Yeast cells containing the reporter plasmid pSH18-34 were co-transformed with
prey plasmids pJG-GST (row 1 and 2), pJG-GST::PrP23-230 (row 3), pJG-GST::PrP∆GP
(row 4), pJG-GST::GP52-93 (row 5), pJG-GST::PrP23-50 (row 6) and pJG-GST::PrP90-230
(row 7) as well as the bait plasmids pSH-GST (row 1), pSH-GST::huPrP23-230 (rows 2 and
3), pSH-GST::PrP∆GP (row 4), pSH-GST::PrP52-93 (row 5), pSH-GST::PrP23-50 (row 6)
and pSH-GST::PrP90-230 (row 7). Each of three transformants were resuspended in TE,
dotted on X-gal-supplemented plates and incubated at 30°C for 3 days (�-galactosidase
assay). 
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Fig. 4. Influence of additional octarepeats on the PrP/PrP interaction behaviour. Yeast cells
encompassing the reporter plasmid pSH18-34 were co-transformed with prey plasmids pJG-
GST (rows 1 and 2), pJG-GST::PrP23-230 (rows 3, 7, 8 and 9), pJG-GST::PrP+2OR (row 4),
pJG-GST::PrP+5OR (row 5), pJG-GST::PrP+9OR (row 6) as well as the bait plasmids pSH-
GST (row 1), pSH-GST::PrP23-230 (row 2 and 3), pSH-GST::PrP+2OR (rows 4 and 7), pSH-
GST::PrP+5OR (rows 5 and 8), pSH-GST::PrP+9OR (rows 6 and 9) (�-galactosidase assay).
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Fig. 5. Influence of the GSS-mutation P102L, the polymorphism M129V and the mutation
D178N on the PrP/PrP interaction behaviour analyzed in the yeast two-hybrid system. Yeast
cells containing the reporter plasmid pSH18-34 were co-transformed with prey plasmids pJG-
GST (rows 1 and 2), pJG-GST::PrP23-230 (rows 3, 4, 6 and 8), pJG-GST::PrP-P102L (row
5), pJG-GST::PrP-M129V (row 7), and pJG-GST::PrP+9OR (row 9) as well as the bait
plasmids pSH-GST (row 1), pSH-GST::PrP23-230 (rows 2 and 3), pSH-GST::PrP-P102L
(rows 4 and 5), pSH-GST::PrP-M129V (rows 6 and 7), pSH-GST::PrP-D178N (row 8) and
pSH-GST::PrP+9OR (row 9) (�-galactosidase assay). 
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Fig. 6. Interaction analysis of PrP of different species in the yeast-two-hybrid system. The
bait plasmids pSH-GST (row 1), pSH-GST::huPrP23-230 (rows 2 and 3), pSH-
GST::bovPrP25-242 (rows 4-6), pSH-GST::shPrP25-234 (AQ) (rows 7-10) and pSH-
GST::haPrP (rows 11-14) were co-transformed with the reporter-plasmid pSH18-34 and the
prey-plasmids pJG-GST (rows 1, 2, 4, 7 and 11), pJG-GST::huPrP23-230 (rows 3, 6, 10 and
13), pJG-GST::bovPrP25-242 (rows 5, 9 and 14) and pJG-GST::shPrP25-234 (AQ) (row 8)
(�-galactosidase assay). 
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Abstract

There is evidence that prion protein dimers may be involved in the formation of the scrapie

prion protein, PrPSc, from its normal (cellular) form, PrPc. Very recently the crystal structure

of the human prion protein in a dimeric form was reported (Knaus et al., 2001). Here we

report for the first time the overexpression of a human PrP dimer covalently linked by a

FLAG peptide (PrP::FLAG::PrP) in the methylotropic yeast Pichia pastoris. FLAG-tagged

human PrP (1-253) (huPrP::FLAG) was also expressed in the same system. Treatment with

tunicamycin and endoglycosidase H showed that both fusion proteins are expressed as various

glycoforms. Both PrP proteins were completely digested by proteinase K (pK), suggesting

that the proteins do not have a PrPSc structure and are not infectious. Plasma membrane

fractionation revealed that both proteins are exported to the plasma membrane of the cell. The

glycosylated proteins could be a powerful tool for PrPc/PrPSc conversion studies. 

Introduction

Transmissible spongiform encephalopathies are fatal neurodegenerative disorders such as

Creutzfeldt-Jacob disease in humans, bovine spongiform encephalopathy in cattle and scrapie

in sheep or goat (Lasmézas and Weiss, 2000; Prusiner et al., 1998; Weissmann and Aguzzi,

1997). They are associated with the accumulation of an abnormal form of the prion protein,

PrPSc, derived from the normal cell surface glycoprotein PrPc (Prusiner, 1982). PrPc requires

the 37kDa/67 kDa laminin receptor for internalization (Gauczynski et al., 2001b), a process

which is thought to require heperan sulfate proteoglycans (HSPGs) mediating the binding of

PrPc to its receptor via indirect binding domains (Hundt et al., 2001). The conversion of PrPc

to PrPSc is thought to take place in compartments of the endocytic pathway such as

endosomes, lysosomes or endolysosomes (for review see (Gauczynski et al., 2001a)). PrPSc

and PrPc have very different biochemical properties. PrPc is mainly �-helical and is readily

degradable by proteinase K, whereas PrPSc is characterized by an increase in �-sheet

conformation, a higher tendency to aggregate, insolubility and proteinase K resistance (Meyer

et al., 1986; Pan et al., 1993; Prusiner et al., 1984). In cases where the disease is transmitted,

prion replication appears to involve the interaction between host PrPc and pathogenic PrPSc

from an external source (Prusiner et al., 1984).

There is evidence that prion protein dimers may play a role in the conversion of PrPc to

PrPSc. Very recentlly the crystal structure of the human prion protein in a dimeric form was
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reported (Knaus et al., 2001). Formation of the dimer involves the three-dimensional

swapping of helix 3 and rearrangement of the disulfide bond. The authors suggest that the 3D

domain-swapping-dependent oligomerization may be an important step in the PrPc/PrPSc

conversion process. Formation of PrP dimers were also observed in N2a cells and in scrapie-

infected hamster brains (Priola et al., 1995). They have also been identified as intermediates

in the PrP oligo-/multimerization process by fluorescence correlation spectroscopy (Post et

al., 1998) and molecular modelling suggested the existence of PrP dimers (Warwicker and

Gane, 1996), which could be involved in interspecies transmission (Warwicker, 1997).

Recently, covalently linked multimers were observed on Western blots of PrPSc purified from

hamster brain infected with the 263K strain of scrapie (Callahan et al., 2001). It was

suggested that these multimers may be the result of some PrP molecules in the PrPSc

aggregates becoming covalently crosslinked in vivo. Meyer et al., observed a monomer-dimer

equilibrium under native conditions in at least a fraction of PrPc purified from bovine brains

(Meyer et al., 2000). Recently, a dimeric �-helical intermediate was observed during the in

vitro conversion of recombinant hamster PrP to large insoluble aggregates (Jansen et al.,

2001).

The availablility of large amounts of recombinant PrP expressed in E. coli has allowed the

solution structure of mouse, hamster, human and bovine PrP to be determined by NMR

spectroscopy (Donne et al., 1997; Lopez Garcia et al., 2000; Riek et al., 1997; Zahn et al.,

2000). However, these recombinant proteins lack two glycosyl groups and a

glycosylphosphatidylinositol (GPI) membrane anchor. Very little is known about the effect of

these two post-translational modifications on the structure and function of PrP. 

In this study we expressed a covalently-linked human PrP dimer (PrP::FLAG::PrP) and full-

length human PrP (huPrP::FLAG) in the methylotropic yeast, Pichia pastoris. This powerful

expression system makes use of the highly inducible alcohol oxidase promoter to express

large amounts of glycosylated protein. The proteins were expressed as fusion proteins to a

FLAG peptide and the native prion signal sequence and GPI anchor were included to direct

secretion of the protein. Expressions were carried out with tunicamycin, which blocks

glycosylation in vivo, to confirm the mixed glycoform expression. Optimization of expression

resulted in yields of approximately 50-100mg/l. The sensitivity of the expressed FLAG fusion

proteins to proteinase K and endoglycosidase H was determined. The fusion proteins were

detected in the yeast plasma membrane fraction but not in the media, suggesting secretion of

the protein to the cell membrane. 
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Materials and methods

Reagents and antibodies 

The monoclonal anti-PrP antibody 3B5 directed against the octapeptide repeat region of

human and bovine PrP was a gift from G. Hunsmann, Göttingen, Germany, and the 3F4

antibody directed against aa 109-112 of hamster and human PrP was from Chemicon. Anti-

FLAG antibody M2, secondary anti-mouse IgG-POD conjugate and tunicamycin were from

Sigma. Proteinase K, endoglycosidase H and Pefablock were purchased from Roche

Diagnostics.

Plasmid constructions 

(1) Construction of pPICZB-huPrP1-227FLAG228-253. The insertion of a FLAG encoding

sequence for the pSFV1-huPrP1-227FLAG228-253 plasmid is described elsewhere (Hundt et

al., in preparation). The cDNA was amplified by PCR from this plasmid, introducing EcoRI

and XbaI restriction sites at the 5‘ and 3‘ ends. The amplified fragment was cloned into the

Pichia pastoris expression plasmid pPICZB via EcoRI/XbaI restriction sites, resulting in

pPICZB-huPrP1-227FLAG228-253. 

(2) Construction of pPICZB-huPrP1-230FLAGhuPrP1-227FLAG228-253. cDNA encoding

huPrP1-253 was amplified by PCR and cloned into pSFV1, as described (Krasemann et al.,

1996), resulting in pSFV1-huPrP1-253. The cDNA encoding huPrP1-230 was amplified by

PCR from this plasmid, introducing EcoRI and HindIII restriction sites at the 5‘ and 3‘ ends.

A second fragment (FLAGhuPrP23-227FLAG228-253) was amplied by PCR from the

pSFV1-huPrP1-227FLAG228-253 plasmid, introducing a HindIII restriction site and a FLAG

encoding sequence at the 5‘ end and an XbaI restriction site at the 3‘ end. These two

fragments were restricted, ligated and cloned into the Pichia pastoris plasmid pPICZB via

EcoRI/XbaI restriction sites, resulting in pPICZB-huPrP1-230FLAGhuPrP23-227FLAG228-

253.

Expression in Pichia pastoris 

The P. pastoris expression system uses the promoter from the alcohol oxidase gene, AOX1,

to express heterologous proteins. The expression vector pPICZB (EasySelect Pichia

Expression Kit, Invitrogen) was digested with EcoRI and XbaI and ligated to the inserts.

DH5� cells were transformed with the ligation products and plated on low salt LB/zeocin

medium (0.5% yeast extract, 1% tryptone, 0.5% NaCl, and 25 µg/ml zeocin). The
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transformants were tested by restriction analysis, and positive clones were amplified to make

larger amounts of DNA.

The nucleotide sequences of the resulting plasmids were confirmed by dideoxy sequencing.

Prior to transformation into yeast, the plasmids were digested with SacI. The DNA was

transformed into Pichia pastoris (SMD 1168) according to the manufacturer's instructions and

the cells were plated onto YPD/zeocin medium (1% yeast extract, 2% peptone, 2% D-glucose,

0.1mg/ml zeocin). For secondary selection of multicopy transformants using zeocin, clones

were pooled, diluted in sterile water and about 1�104 cells were spread on YPD plates

containing increasing concentrations (200, 400, 600 and 1000 µg/ml) of zeocin.

10 clones with high zeocin resistence were selected for a test expression. Single colonies were

used to inoculate 10ml of BMGY (1% yeast extract, 2% peptone, 1.34% yeast nitrogen base

without amino acids, 0.00004% biotin, 1% glycerol, 50 µg/ml kanomycin, 0.1M potassium

phosphate buffer, pH 6.0). The cultures were grown overnight at 28°C to an A600 of 2-6 and

then harvested (2000g, 5 min, room temperature). The cultures were resuspended in medium

that contained 0.5% methanol instead of glycerol in order to induce the yeast cells to express

the heterologous protein. One ml aliquots of culture were removed every 24 hours and

centrifuged at 6000 rpm for 2 minutes in a microcentrifuge. Sixty microlitres of the

supernatant were added to 30µl of 3�SDS-loading buffer. The pellet was resuspended in

0.5ml distilled water and 60µl were added to 30µl 3�SDS-loading buffer. Expression of the

recombinant protein was monitored by SDS-PAGE followed by Western blotting and

detection with anti-PrP specific antibodies (3F4 or 3B5) or the anti-FLAG M2 antibody.

Larger-scale expression and optimization 

The highest expressing clones of the covalently-linked dimer and monomer as determined by

Western blot anysis were used to inoculate 25ml cultures of BMGY. The cultures were grown

at 28°C (230rpm) to an A600 2-6. After centrifugation the cultures were resuspended in 100ml

BMMY containing 0.5%, 1.0% or 2% methanol (to an A600 of 1) in 1l baffled flasks and

shaken at 28°C (200 rpm) for 72 hours. 1ml aliqouts were removed every 24 hours for

analysis of protein expression.

Expression in the presence of tunicamycin 

Tunicamycin was used to block in vivo glycosylation. It was added to 10ml cultures of the

covalently-linked dimer and monomer (from a stock solution of 1mg/ml in 0.1M NaCl) to a

final concentration of 15µg tunicamycin/ml culture. Small-scale expression was carried out
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essentially as described above, with tunicamycin being included in the BMGY and BMMY

culture media. 1ml aliquots were removed 24 hours after induction and expression of the

covalently linked dimer and monomer in the cell lysate was analysed by SDS-PAGE and

Western blotting. The monoclonal antibody 3B5, which recognises the octarepeat region of

human and bovine PrP, was used for protein detection.

Cell lysis and sensitivity to proteinase K 

Cell pellets containing over-expressed FLAG-tagged covalently linked dimer and monomer,

isolated from 2ml of each culture were resuspended in 1ml lysis buffer (10 mM Tris/HCl

buffer, pH 7.5, containing 10 mM EDTA, 100 mM NaCl, 0.5% Triton X-100, and 0.5%

deoxycholate). An equal volume of glass beads (500 microns) was added to each suspension

and the cells were broken by vortexing for a total of 4 minutes in bursts of 30 s alternating

with cooling on ice for 30 s. The glass beads were separated by centrifugation (4000 rpm for

10 mins, 4°C).

Resistance of the covalently linked PrP dimer and monomer to proteinase K was assessed.

100�l aliquots of the supernatants were incubated with proteinase K (0-4 �g/ml) at 37°C for 1

hour. Digestion was stopped by the addition of Pefablock to a final concentration of 1mM and

samples were analysed by immunoblotting (with the 3B5 antibody) after of SDS-PAGE.

Sensitivity to endoglycosidase H 

Cell pellets containing overexpressed FLAG-tagged covalently linked PrP dimer and

monomer were lysed as above, but in the following lysis buffer; 40mM sodium citrate, pH

5.5, 0.05% SDS, 0.5 mM PMSF. 50�l aliquots of the supernatants were incubated with or

without 0.5 units/ml endoglycosidase H at 37°C for 3 hours. The reaction was stopped by

addition of 3 � SDS-loading buffer and heating to 95°C for 5 minutes. Deglycosylation was

monitored by SDS-PAGE followed by Western blotting and detection with 3B5 antibody.

Purification of yeast plasma membrane fraction

The plasma membrane fractions of yeast overexpressing the FLAG fusion proteins were

purified using standard procedures (Panaretou and Piper, 1996). Pichia pastoris culture

pellets (from 50ml cultures) were resuspended in 10ml cold lysis buffer (25mM imidazole,

pH 7.0, 2mM EDTA, 0.4M sucrose). The cells were re-pelleted by centrifugation and the

supernatants discarded. Two ml of glass beads and 2ml of lysis buffer were added and cells

were broken by vortexing as described above. 9ml of cold lysis buffer was added and the cell
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debris and glass beads were pelleted by centrifugation (530g, 20 mins, 4°C). The supernatant

was removed and centrifuged (22000g, 30minutes, 4°C) to pellet the plasma and

mitochondria fractions. The supernant (cytosolic fraction) was removed and the pellet taken

up in TBS containing 5% Triton X-100. This was further diluted to 20ml with TBS containing

0.1% sarcosine, 0.1% NP-40 and 100mM dithiothreitol.

Immunoprecipitation

The FLAG fusion proteins were immunoprecipitated with 200µl of a 50% slurry of protein A-

Sepharose (Pharmacia) and 10µl of 3B5 antibody as described previously (Caughey et al.,

1999).

Removal of GPI anchor by cleavage with enterokinase

Enterokinase cleaves the final lysine of the FLAG-peptide and was used here to remove the

GPI-anchor of huPrP::FLAG. The expressed dimer was also treated with enterokinase even

though it has two potential cleavage sites. Yeast cells were lysed in TBS, 0.1% Triton X-100,

and 100µl of each supernatant was incubated with CaCl2 (final concentration 10mM) and

enterokinase (50µl added, 1unit/µl) at 37°C for 20 hours. The reaction was terminated with

EDTA (20mM).

SDS – polyacrylamide gel electrophoresis and immunoblotting 

Protein samples were separated on 12% Mighty Small gels according to the manufacturer's

protocol (Hoefer, Pharmaciea Biotech Inc. San Francisco, CA) and transferred

electrophoretically onto pre-wetted polyvinyldifluoride membranes. The blots were incubated

with an anti-PrP antibody (3F4, 3B5, 1:5000 dilution) or with an anti-FLAG M2 antibody

(1:600 dilution). The incubation steps were preformed as described previously (Weiss et al.,

1995) and the bound antibody was visualized with 3,3'-diaminobenzidine tetrahydrochloride.
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Results

Expression of covalently linked human PrP dimer and huPrP::FLAG proteins in Picha

pastoris

A covalently linked dimer of the human PrP (PrP::FLAG::PrP), with the FLAG octapeptide

(DYKDDDDK) as a linker and at its C-terminus (Figure 1A) was expressed in Pichia

pastoris. The FLAG peptide is used as an epitope tag for detection and purification of

recombinant proteins and was chosen here because of its highly charged, polar sequence. For

comparison, we also expressed a C-terminally FLAG-tagged human PrP molecule (Figure 1B,

huPrP::FLAG).

Plasmids pPICZB-huPrP1-227FLAG228-253 and pPICZB-huPrP1-230FLAGhuPrP1-

227FLAG228-253, transformed into the protease deficient P. pastoris strain SMD 1168,

exhibited high levels of intracellular production of the FLAG-tagged proteins (Figure 2).

Antibody 3B5 (and also 3F4 and anti-FLAG M2, results not shown) recognized 3 bands with

apparent molecular masses ranging from approximately 25 to 33kDa for huPrP::FLAG (Fig.2:

lanes 1 and 2) and approximately 5 bands for PrP::FLAG::PrP (Fig.2: lanes 3 and 4),

indicating that the fusion proteins were glycosylated. Higher molecular weight bands were

also detected for huPrP::FLAG at approximately the same molecular weight as the dimer

bands which suggests that the expressed PrP::FLAG forms covalently-linked dimers. Priola et

al. (Priola et al., 1995) also observed a 60-kDa PrP dimer derived from hamster PrP

expressed in murine neuroblastoma cells. This 60-kDa PrP was not dissociated under several

harsh denaturing conditions. 

Optimum expression was obtained with a 0.5 - 1.0 % methanol concentration and an

induction time of 24 hours (Figure 2). After longer induction times, degradation of the fusion

proteins occurred. Our data represent the first high-level expression of PrP in Pichia pastoris,

with an approximate expression yield of 50-100 mg fusion protein/l.

Effect of tunicamycin and endoglycosidase H sensitivity 

HuPrP::FLAG has two potential glycosylation sites (N-X-S/T) whereas the covalently linked

dimer has four sites. To investigate whether the higher molecular weight bands were due to

glycosylated protein, we expressed the fusion proteins in media containing tunicamycin

which blocks glycosylation in vivo and analysed the cell lysates by SDS-polyacrylamide gel

electrophoresis and Western blotting (Figure 3). In the presence of tunicamycin there was no

detectable glycosylated human PrP::FLAG (Fig. 3A). With the covalently-linked dimer, the

bands corresponding to the tri- and tetraglycosylated forms were strongly reduced (Fig. 3B). 
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Endoglycosidase H cleaves high mannose sugars and was used to confirm the expression of

various glycoforms of the fusion proteins. Cell lysate supernatants containing overexpressed

huPrP::FLAG or PrP::FLAG::PrP were incubated with endoglycosidase H (0.5 units/ml) for 3

hours at 37°C. Separation of proteins by SDS-PAGE and immunodetection with the 3B5

antibody (Figure 4) showed no detectable higher molecular weight bands of huPrP::FLAG,

corresponding to the mono- and diglycosylated forms. By contrast with the PrP::FLAG::PrP

there is some residual glycosylation which may be consistent with the covalent prion dimer

having some tertiary structure.

Proteinase K sensitivity

In order to analyse the resistance of the covalently linked dimer to proteinase K (pK) and to

compare it with huPrP::FLAG expressed in the same system, the cell lysate supernatants were

incubated with 0, 2 and 4 µg/ml pK for 1 hour at 37°C. Analysis by SDS-PAGE and Western

blotting (Figure 5) showed that the fusion proteins have similar pK sensitivity, both being

completely digested by 4µg/ml pK. Evidently pK is able to degrade the prion monomer and

covalent dimer equivalently.

Secretion of the fusion proteins to the plasma membrane 

The plasma membrane fractions of Pichia pastoris overexpressing huPrP::FLAG and

PrP::FLAG::PrP were isolated and analysed by Western blotting (Figure 6B and C). Both

fusion proteins were detected in the plasma membrane fractions. Coomassie blue staining

confirms that the covalently linked dimer is overexpressed and exported to the cell membrane

(Figure 6A, Lane 1). 

Immunoprecipitation 

The FLAG fusion proteins were immunoprecipitated with an anti-PrP antibody, 3B5, directed

against the octapeptide repeat region of human and bovine PrP, and Protein A sepharose. The

beads were washed and analysed by SDS-PAGE and immunoblotting (Figure 7),

demonstrating that the various glycosylation forms of both the dimer and monomer are

specifically recognised by PrP antibodies in solution, under non-denaturing conditions.

Enterokinase cleavage

Enterokinase is a highly specific serine protease which cleaves after the carboxy-terminal

lysine of the recognition sequence Asp-Asp-Asp-Asp-Lys. This is the last five amino acids of
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the FLAG –tag. Enterokinase was used to remove the final lysine of the FLAG peptide and

the GPI anchor of huPrP::FLAG. The expressed dimer was also treated with enterokinase

even though it has two potential cleavage sites. 

Comparison of the digested HuPrP::FLAG (Figure 8, lane 2) with the undigested protein

(Figure 8, lane 1) shows a slight reduction in molecular weight. However no difference in

apparant molecular weights was observed in the case of the dimer (Figure 8, lanes 3 and 4).

Since the dimer contains two FLAG-tags, one as the linker peptide and one close to the C-

terminus, we would expect a reduction in the amount of dimer and the appearance of

monomer bands after cleavage with enterokinase. The results obtained indicate that the dimer

may have some tertiary structure, which might protect the internal cleavage site from the

protease. 

Discussion

In the present study we used the methylotropic yeast Pichia pastoris to express high-levels of

non-, mono-, and diglycosylated full-length human PrP and various glycoforms of a

covalently linked human PrP dimer. Over the last few years interest in the P. pastoris

expression system has grown since it has the potential for high level expression. It has been

reported that in some cases up to several grams of the target recombinant protein per litre of

culture have been obtained (for review see (Romanos, 1995)), however it is normally

necessary to carry out fermentation to achieve this level of protein expression.

In mammalian cells high mannose sugars are added to PrPc in the endoplasmic reticulum

and are subsequently modified in the Golgi, becoming endoglycosidase H resistant. In yeast,

no modification of the high mannose sugars occurs and the glycosyl groups remain

endoglycosidase H sensitive. 

The physical state of the recombinant prion protein, monomer or covalent dimer, is unclear

at present. The endoglycosidase H studies suggest that the covalently linked PrP dimer has

some three-dimensional structure, stable enough to interfere with the deglycosylation by the

enzyme. Equally the effects of tunicamycin in abolishing glycosylation are less complete with

the covalent dimer. The proteinase K sensitivity status of FLAG tagged prion protein and the

covalently linked PrP dimer, however, proved to be similar. This suggests neither

recombinant protein has the PrPSc structure, which is pK resistant (Taraboulos et al., 1990).

The similarity in their cleavage properties is however not inconsistent with the covalent dimer

retaining some tertiary structure.
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The generation of a covalently linked enzymatically active dimer has been described for the

protease of human immunodeficiency virus (HIV) type one, composed of two copies of the

protease sequence linked by a structurally flexible hinge region (Krausslich, 1991). The

expressed dimer was stable and active against HIV polyprotein substrates. It was reported

recently that human PrP crystallizes in a dimeric form (Knaus et al., 2001). Formation of the

dimer involves 3D swapping of the C-terminal helix and rearrangement of the disulfide bond.

The authors suggest that this oligomerization may be an important step in the PrPc/PrPSc

conversion process. We hypothesize that the covalently linked PrP dimer might be a useful

tool in cell-free conversion assays (Horiuchi et al., 2000). It could be used as a template in the

assay or added to investigate whether the rate conversion of PrPc to PrPSc is altered. In

addition, a covalently linked PrP dimer might be a suitable tool in cell culture studies of non-

infected or scrapie infected neuroblastoma cells, investigating again its role in the PrPc and

PrPSc propagation process. 

Very recently, the 37/67 kDa laminin receptor has been identified as the cell surface

receptor for cellular PrP (Gauczynski et al., 2001b). This process might involve cell surface

HSPGs identified as co-factors for PrP binding (Hundt et al., 2001). The covalently linked

PrP dimer might interfere with the PrPc/PrPSc internalization process on neuronal cells.
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Fig. 1. Schematic diagram of FLAG-tagged PrP constructs and processing in the yeast cell.
Both amino- and carboxyl terminal fragments are removed. The GPI anchor and high
mannose glycans are added and the proteins are secreted to the cell surface. (A) Human PrP-
covalently linked to another huPrP via a FLAG peptide linker. A second FLAG tag is located
at the C-terminus, before the GPI anchor to aid detection and purification. The numbering of
amino acid residues refers to the location on the untagged human PrP. (B) C-terminally
FLAG-tagged human PrP.
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Fig. 2. Expression of FLAG-fusion proteins monitored by SDS-PAGE and Western blot
analysis. Shown is a 12% polyacrylamide gel, immunodetection was carried out with the 3B5
antibody. (Lane 1) Lysate of cells expressing PrP::FLAG in 0.5% methanol; (Lane 2)
PrP::FLAG in 1.0% methanol; (Lane 3) PrP::FLAG::PrP in 0.5% methanol and (Lane 4)
PrP::FLAG::PrP in 1.0% methanol.

Fig. 3. Expression of FLAG-fusion proteins in the presence or absence of tunicamycin
monitored by SDS-PAGE and Western blot analysis, immunodection was carried out with the
3B5 antibody. (Lane 1) Lysate of cells expressing PrP::FLAG in the absence and (Lane 2) in
the presence of 15µg/ml tunicamycin. (Lane 3) Lysate of cells expressing PrP::FLAG::PrP in
the absence and (Lane 4) in the presence of 15µg/ml tunicamycin.
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Fig. 4. Digestion with endoglycosidase H, monitored by SDS-PAGE and Western blot
analysis. Immunodetection was performed with the 3B5 antibody. (Lanes1-2) Lysate
supernatants of cells expressing PrP::FLAG, treated with 0 (Lane1) and 0.5 (Lane 2) units/ml
endoglycosidase H. (Lanes 3-4) Lysate supernatants of cells expressing PrP::FLAG::PrP
treated with 0 (Lane 3) and 0.5 (Lane 4) units/ml endoglycosidase H. At molecular weights
less than 46 kDa a number of smaller bands are observed, these are most probably cleavage
products. Note that the huPrP-FLAG monomer labels apply to lanes 1 and 2.

Fig. 5. Digestion with proteinase K, monitored by SDS-PAGE and Western blot analysis.
Immunodection is with the 3B5 antibody. (Lanes1-3) Lysates of cells expressing PrP::FLAG,
digested with 0 (Lane 1), 2 (Lane 2) and 4 (Lane 3) µg/ml proteinase K. (Lanes 4-6) Lysates
of cells expressing PrP::FLAG::PrP digested with 0 (Lane 4), 2 (Lane 5) and 4 (Lane 6) µg/ml
proteinase K.
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Fig. 6. Isolation of crude plasma membrane fractions (A) from yeast cells overexpressing
PrP:FLAG::PrP, analysed by SDS-PAGE and Coomassie blue staining. (Lane 1) membrane
fraction (Lane 2) cytosolic fraction, (B) analysed by Western blotting using the 3B5 antibody.
(Lane 1) membrane fraction (Lane 2) cytosolic fraction. (C) Isolation of crude plasma
membrane fraction from yeast cells overexpressing huPrP::FLAG analysed by Western
blotting using the 3B5 antibody. (Lane 1) membrane fraction.

Fig.7. Immunoprecipitation of FLAG-fusion proteins monitored by Western blotting, with the
3B5 antibody. (Lane 1) huPrP::FLAG (Lane 2) PrP::FLAG::PrP. 
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Fig. 8. Enterokinase cleavage of FLAG-fusion proteins. (Lane 1) untreated huPrP::FLAG,
(Lane 2) enterokinase treated huPrP::FLAG, (Lane 3) untreated PrP::FLAG::PrP, (Lane 4)
enterokinase treated PrP::FLAG::PrP. 
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Abstract

Cell-binding and internalization studies on neuronal and non-neuronal cells have

demonstrated that the 37-kDa/67-kDa laminin receptor (LRP/LR) acts as the receptor for the

cellular prion protein (PrP). Here we identify direct and heparan sulfate proteoglycan

(HSPG)-dependent interaction sites mediating the binding of the cellular PrP to its receptor,

which we demonstrated in vitro on recombinant proteins. Mapping analyses in the yeast two-

hybrid system and cell-binding assays identified PrPLRPbd1 [amino acids (aa) 144-179] as a

direct and PrPLRPbd2 (aa53 to 93) as an indirect HSPG-dependent laminin receptor precursor

(LRP)-binding site on PrP. The yeast two-hybrid system localized the direct PrP-binding

domain on LRP between aa 161 and 179. Expression of an LRP mutant lacking the direct

PrP-binding domain in wild-type and mutant HSPG-deficient Chinese hamster ovary cells by

the Semliki Forest virus system demonstrates a second HSPG-dependent PrP-binding site on

LRP. Considering the absence of LRP homodimerization and the direct and indirect LRP-PrP

interaction sites, we propose a comprehensive model for the LRP-PrP-HSPG complex.

Introduction

We recently identified the 37-kDa laminin receptor precursor (LRP) as an interactor for the

prion protein (PrP) (Rieger et al., 1997; for reviews see Rieger et al., 1999; Gauczynski et al.,

2001a). Employing a series of neuronal and non-neuronal cells, we proved that the 37-kDa

LRP/67-kDa high-affinity laminin receptor (LR) acts as the receptor for the cellular PrP

(Gauczynski et al., 2001b). In the present manuscript we used the yeast two-hybrid system

and cell-binding studies on neuronal as well as non-neuronal cells involving the Semliki-

Forest-Virus (SFV) system (for review see Liljestrom and Garoff, 1991; Tubulekas et al.,

1997) to identify domains on the PrP and the LRP involved in the PrP-LRP interaction on the

cell surface. We identified two binding domains for LRP on PrP termed PrPLRPbd1 and

PrPLRPbd2. The first one binds directly to LRP, whereas the second one depends on the

presence of heparan sulfate proteoglycans (HSPGs) on the cell surface. The yeast two-hybrid

system and cell-binding assays on wild-type and mutant HSPG-deficient Chinese hamster

ovary (CHO) cells also identified two binding domains for PrP on LRP .
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The relationship between 37-kDa LRP and 67-kDa LR is not yet fully understood and has

been explained with homodimerization of 37-kDa LRP (Landowski et al., 1995) or an

additional factor, such as a polypeptide (Castronovo et al., 1991), which might bind to 37-

kDa LRP to form the 67-kDa form of the receptor. The 67-kDa heterodimer might be

stabilized by hydrophobic interactions mediated by fatty acids such as palmitate, oleate and

stearate bound to 37-kDa LRP and to a galectin-3 (gal-3) cross reacting polypeptide (Buto et

al., 1998; Landowski et al., 1995). However, we recently proved that the �-galactoside lectin

gal-3 is not present on the surface of neuronal or non-neuronal cells used for PrP-

binding/internalization studies (Gauczynski et al., 2001b) and anti-gal-3 antibodies failed to

compete for the 37-kDa LRP/67-kDa LR-mediated binding and internalization of the cellular

PrP (Gauczynski et al., 2001b) suggesting that gal-3 is not a partner of 37-kDa LRP in this

context. In this study we investigated by a yeast two-hybrid system analysis whether gal-3

interacts with 37-kDa LRP and/or the cellular PrP. In addition, we investigated whether 37-

kDa LRP interacts with itself in the yeast two-hybrid and analyzed the monomer/dimer status

of the receptor by size-exclusion chromatography. Both PrP (Brimacombe et al., 1999;

Caughey et al., 1994; Chen et al., 1995b; Gabizon et al., 1993) and the 37-kDa/67-kDa LR

(Guo et al., 1992; Kazmin et al., 2000) bind to heparan sulfates. HSPGs are required for the

binding of the fibroblast growth factor (FGF) to its FGFR receptor (Spivak et al., 1994;

Venkataraman et al., 1999; Yayon et al., 1991) and act as initial attachment receptors for

bacteria (Chen et al., 1995b) and viruses including alphaviruses (Byrnes and Griffin, 1998),

human immuno-deficiency virus (HIV) type 1 (Mondor et al., 1998) and vaccinia virus

(Chung et al., 1998). Heparan sulfates are components of amyloid plaques in prion diseases

(Gabizon et al., 1993). We investigated the role of HSPGs as possible co-factors for 37-kDa

LRP mediating PrP binding. We also constructed recombinant (rec.) SFV-vectors leading to

the expression of an LRP mutant termed LRPdelBD::FLAG lacking the direct-binding

domain for PrP in wild-type and mutant HSPG-deficient CHO cells. We compared the PrP-

binding capacity to these cells with wild-type and mutant CHO cells hyperexpressing wild-

type LRP::FLAG. In light of our findings that 37-kDa LRP fails to form homodimers, and

that HSPGs mediate the binding of PrP to 37-kDa LRP, the relationship between 37-kDa LRP

and 67-kDa LR might be explained by the association of LRP with HSPGs as outlined in a

proposed model for the LRP-PrP-HSPG complex on the cell surface.
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Results

Identification of a direct LRP interaction domain on PrP by the yeast two-hybrid system

To determine the domains of PrP interacting directly with LRP, we employed a yeast two-

hybrid analysis with truncated PrP molecules in the bait position and LRP44-295 in the prey

position. Only truncated PrP retaining the regions amino acids (aa) 144-179 (Figure 1A, rows

6 and 7) interacted with LRP. This region contains domains corresponding to the first � helix

(aa 144-154), the second �-strand (aa 161-164) and the first amino acid of the second � helix

(aa179-193) of the human prion protein (Zahn et al., 2000). Regions from aa 23 to 143  of the

human PrP are not sufficient for binding to LRP (Figure 1A, rows 1-5). Regions  from aa 180

to 230 of human PrP (row 8) are not required for the direct interaction between PrP and LRP.

We termed this LRP interaction domain on PrP PrPLRPbd1.

Retrenchment of the direct PrP-binding domain on LRP by the yeast two-hybrid system

Recently, we mapped a direct PrP-binding domain on LRP between aa 157 and 180 (Rieger et

al., 1997) employing N-terminally truncated LRP molecules. In order to retrench this binding

domain precisely we co-expressed the C-terminally truncated LRP molecules LRP44-101 and

LRP44-160, respectively, together with full-length PrP in the yeast two-hybrid system. Both

truncations failed to interact with PrP (Figure 1B) confirming that this direct PrP-binding site

coincides with the laminin-binding domain (aa161-180). Expression of an LRP mutant

lacking this direct PrP-binding domain (LRPdelBD161-180) in CHO cells (Figure 4K)

showed that LRPdelBD161-180::FLAG was still able to bind to PrP, indicating the presence

of a second binding site for PrP on LRP, which locates either between aa 101-160 or 181 and

295 of LRP.

PrP144-179 interacts directly with LRP161-179 in the yeast two-hybrid system

In order to prove a direct interaction between the PrP and the 37-kDa/67-kDa LRP/LR via

PrP144-179 and LRP161-179, we co-expressed both protein domains in bait and prey

position, respectively, resulting in a strong interaction (Figure. 1 C, row 1). In contrast,

huPrP144-179 failed to interact with LRP180-295 (row 2) or LRP44-160 (row 3).
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�-galactoside gal-3 does not interact with PrP or LRP in the yeast two-hybrid system

The association of gal-3 with the LRP has been suggested (Buto et al., 1998; Landowski et

al., 1995). However, gal-3 antibodies do not influence the LRP-dependent binding/

internalization of PrP on the cell surface, suggesting that this molecule does not act as a co-

receptor for LRP (Gauczynski et al., 2001b). For confirmation that gal-3 does not interact

with PrP, we expressed gal-3 in bait and PrP in prey position of the yeast two-hybrid system

resulting in no interaction between the two proteins (Figure 2A, row 2). Gal-3 also failed to

interact with LRP in the yeast two-hybrid system (Figure 2A, row 3).

37-kDa LRP fails to interact with itself in the yeast two-hybrid system and appears

monomeric by size-exclusion chromatography

The polymorphism of the LRP is still unclear. In order to test whether homodimerization of

LRP could account for this 37-kDa/67-kDa polymorphism and to understand better the

configuration of the LRP-PrP-binding complex, we cloned the cDNA encoding for LRP in the

bait and prey position of the yeast two-hybrid system. LRP fails to interact with itself (Figure

2B, row 2), suggesting that LRP is unable to directly form homodimers. For confirmation we

purified LRP::FLAG from SFV-RNA-LRP::FLAG transfected BHK cells by anti-FLAG

antibody chromatography to homogeneity and analyzed the native protein by SDS-PAGE and

size exclusion chromatography. The protein migrated as a 37-kDa protein on an SDS-

polyacrylamide gel (Figure 2 C, lane 1) and eluted as a 40-kDa protein from a native size-

exclusion column (Figure 2, D), confirming that 37-kDa LRP is monomeric under native

conditions. Thus the 67-kDa form of the LRP may result from the association of the LRP with

other molecules such as HSPGs.

Identification of the PrP interaction domains PrPLRPbd1 and PrPLRPbd2 by binding

assays with prion peptides to NT2 and N2a cells

The yeast two-hybrid system identified the domain aa 144-179 of PrP as a direct binding site

for LRP termed PrPLRPbd1. To identify other domains of PrP, which might bind indirectly to

LRP, we exposed NT2 and N2a cells to glutathione S-transferase (GST)-fused PrP peptides

covering the entire PrP sequence. Besides peptide 129-175 encompassing the direct binding

domain PrPLRPbd1, GST::PrP53-93 bound to the cells in an LRP-dependent fashion. The

binding of GST::PrP53-93 (Figure 3A) and GST::PrP129-175 (Figure 3C) is shown on NT2

cells in comparison with GST::PrP90-109 (Figure 3B). This binding can be inhibited by
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addition of the LRP antibody W3 (insets in Figure 3A, C). The binding properties of the

whole array of peptides are also shown on N2a cells (Figure 3D-J). Only GST::PrP53-93

(Figure 3E) and GST::huPrP129-175 (Figure 3H) bound to the cells dependent on LRP-LR

(LRP antibody competition is shown in the bottom insets of Figure 3). The integrin laminin

receptor VLA6 does not co-localize with PrP or LRP-LR on the surface of neuroblastoma

cells (Gauczynski et al., 2001b). The addition of an anti-VLA6 antibody, failed also to

compete for the binding of GST::PrP53-93 or GST::PrP129-175 to N2a cells (Figure 3 E and

H, top insets), confirming that VLA6  does not act as a receptor for PrP. We termed the

indirect binding domain PrPLRPbd2. As the two binding domains are located N- and C-

terminally of the proteinase K cleavage site of PrPres, we tested longer peptides in our

binding assay corresponding to the two fragments that result from proteolytic cleavage of PrP,

i.e. PrP23-89 and PrP90-230. Both peptides bound to both cell types in an LRP-dependent

manner (Table I). Combining these data with the results from the yeast two-hybrid system

(Figure 1) we conclude that two binding sites on PrP for LRP termed PrPLRPbd1 (aa144 to

179) and PrPLRPbd2 (aa53-93) do exist. Results of the PrP peptide binding studies to N2a and

NT2 cells including antibody competitions are summarized in Table I.

Table I: Summary of the binding behaviour of individual GST-fused PrP peptides to NT2 and
N2a cells including LRP-LR and VLA6 antibody competition
Peptide
(aa) 

Binding to 
N2a cells

LRP-LR
antibody
competition

Binding to
NT2 cells

LRP-LR
antibody
competition

PrP53 -93 +++ +++* +++ +++
PrP90-109 - - - -
PrP110-128 - - - -
PrP129-175 +++ +++* +++ +++
PrP180-210 - - - -
PrP218-230 - - - -
PrP23-89 +++ +++ +++ +++
PrP90-230 +++ +++ +++ +++
*No competition with an VLA6 antibody
+++, strong binding/competition
   -, no binding/competition
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Binding of PrP to LRP via PrPLRPbd2 is dependent on HSPGs

The cell-binding assay led to the identification of an additional binding domain for LRP on

PrP which was not identified in the yeast two-hybrid system, indicating that a third molecule

is necessary to mediate the binding of LRP to PrPLRPbd2. It has been reported that 60% of the

binding of rec. chicken PrP to CHO cells depends on the presence of endogenous heparan

sulfates (Shyng et al., 1994). Mutant CHO cells (S745) are severely deficient in HSPGs

because of an altered xylose transferase activity, the first enzyme required for

glycosylaminoglycan (GAG) synthesis (Esko et al., 1985) and therefore represent an

appropriate model system to investigate whether HSPGs might represent the third interactor

in the binding of PrPLRPbd2 to LRP. First, we proved that the binding of rec. GST::huPrP23-

230 to wild-type CHO cells (Figure 4A) and to the mutant CHO cells (Figure 4B) was LRP-

LR-dependent (Figure 4C and D). We then saturated selectively PrPLRPbd1 by incubating

GST::huPrP23-230 with a monoclonal PrP antibody directed against the domain 140-180 of

PrP. Obstructing PrPLRPbd1 inhibited the binding of the rec. PrP to HSPG-deficient (Figure

4F) but not to wild-type CHO cells (Figure 4E), demonstrating that binding of PrP to LRP via

PrPLRPbd2 needs the presence of HSPGs. The peptide GST::PrP53-93 corresponding to

PrPLRPbd2, which bound to normal cells (Figure 4G), did not bind to HSPG-deficient cells

(Figure 4H). However, the binding was restored in a dose-dependent manner after addition of

soluble HSPGs (Figure 4I and J), confirming that the interaction of PrP to LRP via PrPLRPbd2

is HSPG-dependent.

Identification an HSPG-dependent second binding site for PrP on LRP

The two binding sites on PrP, one of which is direct and the other indirect, suggested that two

‚acceptor‘ sites might also exist on LRP. To test this hypothesis we adapted our SFV

expression system to CHO cells. We then expressed LRP::FLAG and a mutant LRP lacking

the direct PrP-binding domain (aa 161-180), termed LRPdelBD::FLAG, in wild-type CHO

cells and the mutant CHO-S745 cell line lacking HSPGs ( Figure 4K, lower panels). In wild-

type CHO cells (Figure 4K, lanes 1-6) the binding of GST::huPrP was enhanced, when

LRP::FLAG was hyperexpressed (Figure 4K, lane 2 versus lane 6). Hyperexpression of

LRPdelBD::FLAG did not reduce the amount of the bound GST::huPrP (Figure 4K, lane 4),

indicating that the binding was HSPG mediated. In mutant CHO-S745 cells lacking HSPGs

(Figure 4K, lanes 7-13) the amount of bound GST::huPrP was also enhanced in LRP::FLAG

hyperexpressing cells compared with non-transfected  cells (Figure 4K, lane 8 and 13). CHO-
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S-745 cells expressing LRPdelBD::FLAG, however, showed a reduced binding of

GST::huPrP (Figure 4K, lane 10), similar to non-transfected cells (Figure 4K, lane 13)

suggesting that the second indirect PrP-binding site was not functioning in the absence of

HSPGs. In order to confirm that HSPGs are responsible for the binding of PrP to the second

binding domain on LRP, we added HSPGs to cells overexpressing LRPdelBD::FLAG

resulting in a total restoration of the PrP-binding (Figure 4K, lane 11). HSPGs failed to

increase the binding of GST::huPrP to CHO wild-type (Figure 4L, lanes 2 and 3) and CHO-S-

745 cells (Figure 4L, lanes 5 and 6) due to the presence of the direct binding domains on PrP

and LRP. We conclude from these data that two binding sites for PrP on LRP exist: a direct

one, which is located from aa161-179 and a second indirect one which resides either between

aa101-160 or between aa 180-295 of LRP.

Interaction of PrP and LRP in vitro

The direct binding domains on LRP (aa161-179) and PrP (aa144-179) should allow the two

proteins to interact with each other in vitro. GST-fused LRP (Rieger et al., 1997) and

immobilized FLAG::huPrP (Figure 4 M, lanes 1 and 2) were able to interact with each other

in vitro as shown in the pull down assay depicted in Figure 4 M. As already observed on

wild-type CHO and CHO-S-745 cells, HSPGs did not influence the interaction due to the

presence of the direct interaction domains (Figure 4M, lanes 2 and 3). However, HSPGs did

affect the LRP-PrP53-93 interaction (HSPG-dependent binding domain on PrP) and the

LRPdelBD-PrP interaction (lacking the direct binding domain on LRP) in CHO-S-745 cells

(Figure 4G-J and K, respectively).

Discussion

Cell-binding and internalization studies proved that the 37-kDa LRP/67-kDa LR acts as the

receptor for the cellular PrPc, on the cell surface (Gauczynski et al., 2001b). In order to

investigate the interaction domains on PrP and LRP-LR mediating the binding of these two

proteins a series of interaction studies employing the yeast two-hybrid system as well as PrP-

binding assays with neuronal and non-neuronal cells including the SFV-system have been

performed.
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Mapping of the LRP interaction sites on PrP

First, we aimed to determine which part of the PrP interacts with LRP. We performed a yeast

two-hybrid analysis with a series of PrP deletion variants and employed a series of PrP

peptides covering the entire PrP in various cell-binding assays.

In the yeast two-hybrid system, we identified the PrP domain aa144-179 as a direct LRP-

binding domain, termed PrPLRPbd1. This binding domain was confirmed in cell-binding

assays in N2a and NT2 cells with PrP peptides encompassing the entire PrP sequence. As

already observed with full-length PrP (Gauczynski et al., 2001b), the staining pattern with the

PrP peptides to N2a and NT2 cells is also punctuate due to either receptor clustering or PrP-

PrP peptide aggregation, or both. Receptor clustering was observed with a variety of other

cell-surface receptors such as the FGF receptor (Utton et al., 2001), the muscle nicotinic

acetylcholine receptor (AChR) (Hoch et al., 2001)  or the tumor necrosis factor receptor

(TNFR55) (De Wilde et al., 2001). In addition to the yeast two-hybrid assay, which identified

the direct PrP-LRP-LR interaction domain PrPLRPbd1, the cell-binding assay identified a

second binding domain between aa53 and aa93 of PrP, termed PrPLRPbd2. This domain was

not functional in the yeast two-hybrid system, indicating that an additional factor lacking in

the yeast cell nucleus is required for mediating the interaction between LRP and PrP through

PrPLRPbd2. Employing a mutant HSPG-deficient CHO cell line, in the binding assay revealed

that PrPLRPbd2 binds to LRP via HSPGs. This finding was confirmed by using the PrP

peptide 53-93 corresponding to PrPLRPbd2. PrP53-93 failed to bind to the mutant CHO cells

but the binding was restored in a dose-dependent manner by the addition of soluble HSPGs.

Our mapping data, which resulted in the identification of two LRP-binding sites on PrP, are

consistent with the results obtained with PrP knock-out mice expressing PrPs with N-

proximal deletions, suggesting that PrP could bind to its natural ligand, termed Lprp which

could represent a PrP receptor, in a region C-terminal to aa 134 of the PrP (Shmerling et al.,

1998). In line with this study, PrPLRPbd1 would correspond to the Lprp-binding domain. The

same authors hypothesized the existence of a second domain located more N-terminally

initiating a signal transduction necessary to maintain normal cellular functions. Recently, a

signal transduction activity of the PrP by activation of the tyrosine kinase Fyn was described

(Mouillet-Richard et al., 2000). As PrP resides as a GPI-anchored protein outside the cell,

whereas the tyrosine kinase Fyn locates to the inner plasma membrane inside the cell,

transmembrane orientated LRP-LR might be a reasonable candidate mediating the

intracellular signal transduction between PrPc and Fyn. The cytosolic domain of N-syndecans
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(syndecan-3), one of a family of four  transmembrane cell surface HSPGs, has recently been

shown to bind to complexes containing c-Src and Fyn kinases (Kinnunen et al., 1998). This

activity is related to neurite outgrowth (Kinnunen et al., 1998). Hence, it is also conceivable

that HSPGs might be necessary for the so far hypothetical LRP-LR-mediated signal

transduction between PrPc and Fyn. A possible intercellular role of the PrP-LRP-LR

interaction involving HSPGs which might result in signalling or cell attachment (for review

see (Gauczynski et al., 2001a) will be further investigated in detailed cell-cell interaction

assays.

Recently,  studies on the transmission of human prions to transgenic mice suggested that a so

far unidentified protein X may participate in the formation of the PrPres. Substitution of

residues 167, 171 and 218 prevented PrPres formation suggesting that protein X may interact

with those residues of the prion protein (Kaneko et al., 1997b). As aa 167 and 171 reside

within the direct PrP-LRP interaction domain termed PrPLRPbd1 it cannot be excluded that

LRP-LR might function as protein X. Application of LRP-LR in PrP oligo/multimerization

processes may enlighten a possible role of the 37-kDa/67-kDa laminin receptor in PrPres

formation.

Mapping of the PrP interaction sites on LRP

A yeast two-hybrid analysis with C-terminal LRP truncations extended a previous analysis

(Rieger et al., 1997) and retrenched that the direct PrP-binding domain to aa161-179 of LRP.

As the binding domain PrPLRPbd2 on PrP is HSPG-dependent, we hypothesized that a second

indirect binding domain for PrP may also exist on LRP. To test this hypothesis, we analyzed

PrP-binding to wild-type CHO cells, to mutant HSPG-deficient CHO cells and to both cell

types hyperexpressing either the full length LRP::FLAG or an LRP mutant lacking the direct

PrP-binding domain (aa161-180), termed LRPdelBD::FLAG. HSPGs failed to increase the

binding of GST::huPrP to CHO wild-type and CHO-S745 cells due to the presence of the

direct binding domains on PrP and LRP. CHO and CHO-S745 cells transfected with

recombinant SFV RNAs further revealed the role of HSPGs in the binding of PrP to LRP.

Hyperexpression of LRP::FLAG or LRPdelBD::FLAG in wild-type CHO cells resulted in

approximately the same increase of GST::huPrP-binding when compared with non-

transfected cells. This indicates that binding of PrP to LRP::FLAG can occur via a second

PrP-interaction domain present in LRPdelBD::FLAG. In HSPG-deficient CHO cells,

however, PrP-binding to cells hyperexpressing LRPdelBD::FLAG was similar to non-
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transfected cells, indicating that the second interaction domain on LRP was not functioning.

In contrast, LRP::FLAG hyperexpressing HSPG-deficient CHO cells showed an increased

binding of GST::huPrP due to the presence of the direct HSPG-independent PrP-binding

domain (aa161-179). The addition of HSPGs to LRPdelBD::FLAG hyperexpressing HSPG-

deficient CHO cells restored GST::huPrP-binding to levels achieved with LRP::FLAG

hyperexpressing cells. The data demonstrate the existence of a second HSPG-dependent PrP-

binding domain on LRP, residing either between aa101 and 160 or aa181 and 285 of LRP.

The identification of a HSPG-binding domain on LRP-LR which resides between aa 205 and

229 of LRP-LR (Kazmin et al., 2000) suggests that this domain may represent the HSPG-

dependent-binding site for PrP. A monoclonal antibody directed against aa 167-243 of LRP

reduces PrP-binding to neuronal cells (Gauczynski et al., 2001b) suggesting that the indirect

binding domain may reside between aa180 and 285 rather than aa101 to 160 of LRP.

Interaction of PrP and LRP in vitro

Rec. purified PrP and LRP interact with each other in vitro due to the presence of the direct

PrP-LRP interaction domains. The influence of HSPGs on the indirect PrP-LRP interaction

domains, however, was only detectable on the HSPG-deficient CHO-S745 cells employing

PrP53-93 (representing the indirect binding domain on PrP) and LRPdelBD (lacking the

direct binding domain on LRP).

The relationship between 37-kDa LRP and 67-kDa LR 

Attempts to isolate the gene for the 67-kDa LR revealed a cDNA fragment encoding the 37-

kDa LRP (Grosso et al., 1991; Rao et al., 1983; Yow et al., 1988). Pulse-Chase experiments

with 37kDa LRP specific antibodies demonstrated that 37-kDa LRP is the precursor of 67-

kDa LR (Castronovo et al., 1991; Rao et al., 1989). The 37-kDa molecule encoded by the

full-lengh gene identified for the LR is virtually identical to the ribosomal protein p40. The

37LRP/p40 evolved from a ribosomal protein essential for protein synthesis lacking any

laminin-binding abilities, to a laminin-binding cell surface receptor (for review see (Ardini et

al., 1998). The molecular structure of the 37-kDa LRP/67-kDa LR and the mechanism by

which the 37-kDa LRP forms the mature 67-kDa LR remains unclear. Our data from a yeast

two-hybrid analysis show that LRP fails to interact with itself, an argument against the

hypothesis of a direct homodimerization. In addition, homogeneous rec. LRP::FLAG appears

to be monomeric as analyzed by size-exclusion chromatography. Although we only used 0.1
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% Triton-X-100 in the purification procedure, we cannot exclude that this small amount of

non-ionic detergent may disrupt a native dimeric state of the receptor. A recent study

suggested that acylation of LRP would allow it to associate with a heterologous molecule

(Buto et al., 1998). In the light of our results, the relationship between the 37-kDa LRP and

67-kDa LR might be explained by the association of an LRP molecule with heparan sulfates.

Role of heparan sulfates in the PrP-LRP interaction process

The binding of chicken PrP to the surface of mammalian cells has been shown to depend

partly on the availability of heparan sulfates expressed by these cells (Shyng et al., 1995). PrP

interacts with heparan sulfates (Brimacombe et al., 1999; Caughey et al., 1994; Chen et al.,

1995a; Gabizon et al., 1993). Recent studies demonstrated that the binding of copper to PrP

which occurs within the octarepeat region (Brown et al., 1997) (corresponding to PrPLRPbd2)

can be competed by the addition of HSPGs (Brimacombe et al., 1999), confirming that this

region of PrP binds to HSPGs. Finally, LRP-LR has also been shown to be a heparin/heparan

sulfate-binding molecule (Guo et al., 1992; Kazmin et al., 2000). The predicted �-helical

structure (aa205-aa229) of LRP-LR is proposed to have heparin binding characteristics

(Kazmin et al., 2000). The requirement of heparin-like molecules for the formation of a

ligand-receptor complex is not unprecedented and is well illustrated by the example of the

binding of the FGF to its receptor, FGFR (Yayon et al., 1991; Spivak et al., 1994;

Venkataraman et al., 1999). All these data match very well with our findings, providing a

comprehensive model of the PrP-LRP-LR interaction (Figure 5). A heparan sulfate arm of a

cell-surface HSPG molecule might be located between PrPLRPbd2 and the indirect binding

domain of LRP to create a sandwich interaction site, whereas PrP would interact with LRP-

LR (aa161-179) directly via PrPLRPbd1. We cannot exclude that HSPGs intervene in a more

indirect manner, by changing the conformation of LRP-LR as to render it amenable to its

interaction with the PrPLRPbd2 region of PrP.

Components blocking the direct and indirect PrP-LRP interaction domains on PrP and LRP

may represent a novel class of molecules suitable for a therapeutic intervention in prion

diseases.
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Materials and methods

Construction of pSFV1-LRPdelBD::FLAG- preparation of SFV mRNAs in vitro

The LRP mutant pSFV1-LRPdelBD::FLAG (deletion of the direct PrP-binding domain

located between aa161 and aa180) was generated by the QuikChangeTM site-directed

mutagenesis method (Stratagene) using the pSFV1-LRP::FLAG plasmid DNA (Gauczynski et

al., 2001b) as template for PCR and confirmed by dideoxy sequencing. The rec. plasmid

DNAs pSFV3-lacZ (Life Technologies), pSFV1-LRP::FLAG and pSFV1-LRPdelBD::FLAG

were linearized, purified and transcribed as described (Gauczynski et al., 2001b). The correct

length of the transcripts was verified by agarose gel electrophoresis. RNA was stored at -

20°C. 

Mammalian cell culture, transfection and co-transfection studies with the SFV system

Mutant CHO cells (S745) deficient in xylose transferase (Esko et al., 1985) as well as wild-

type CHO (K1) were cultivated in NUT.MIX.F-12(HAM) supplemented with GLUTAMAX-I

(GIBCO-BRL), 10 % fetal calf serum (FCS), 100 µg/ml penicillin and 100 µg/ml

streptomycin at 37 °C with 5 % CO2. Transfection and co-transfection were carried out as

described (Gauczynski et al., 2001b). Transfection efficiencies as determined by transfecting

SFV3-lacZ control RNA followed by X-gal staining were � 80% for CHO-K1 or CHO-S745

cells.

Purification of LRP::FLAG from the SFV system

Transfection of BHK cells with the rec. SFV LRP::FLAG RNA was performed as described

(Gauczynski et al., 2001b). The total volume of the electroporated cells was plated on 10-cm

dishes containing 15 ml of complete growth medium followed by incubation for at least 48 h

at 37 °C. Fourty-eight hours post transfection, cells were harvested, washed once with

phosphate-buffered saline (PBS) and then lysed in PBS supplemented with 0.1% Triton-X100

by repeated freezing and thawing. The crude lysate was obtained by centrifugation at 14 000

r.p.m, 4°C for 15 min and purified by the batch method using an anti-FLAG M2 affinity gel

(Sigma). The FLAG-tagged protein was bound over night by rotating at 4°C, washed four

times with Tris-buffered saline (TBS), eluted over night by competition with 1 ml TBS

containing 100 µg/ml FLAG peptides and dialyzed against 20 mM Hepes, pH 7.4. The purity
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and the concentration of the protein was checked by SDS-PAGE followed by silver staining

of the gel.

Recombinant  proteins generated in the Baculovirus and Escherichia coli system

Rec. GST, GST::huPrP23-230, GST::haPrP23-89 and GST::haPrP90-231 were expressed in

Baculovirus infected Sf9 cells and purified to homogeneity as described for hamster

GST::PrP fusions previously (Weiss et al., 1995; Weiss et al., 1996). GST-fused PrP-peptides

(haPrP23-52, haPrP53-93, haPrP90-109, haPrP129-175, haPrP180-210, haPrP218-231) were

expressed in Escherichia coli and purified to homogeneity as described for GST fusions

(Weiss et al., 1995). cDNA encoding for huPrP110-128 was cloned via EcoRI (5') and

BamHI (3') into pGEX-2T, GST::huPrP110-128 was expressed in E. coli and purified to

homogeneity as described (Weiss et al., 1995). All rec. proteins were dialyzed against 20 mM

Hepes, pH 7.4. 

PrP-binding assays followed by immunofluorescence analysis

N2a, and human NT2 cells were maintained in DMEM medium containing 10 % FCS, 1 %

glutamine, 100 µg/ml penicillin and 100 µg/ml streptomycin. Mutant CHO cells (S745) as

well as wild-type CHO-K1 were cultivated as described above. For competition studies the

cells were either pre-incubated for 2 h with the individual antibody diluted in culture medium

or co-incubated with rec. protein and antibody (inoculum saturation). In case of pre-

incubation, medium was replaced and cells were incubated overnight with 4 µg/ml of rec.

GST-fusion proteins per ml of culture medium. Cells were then washed three times with PBS

and prepared for immunofluorescence microscopy, which was performed as described

(Gauczynski et al., 2001b).

PrP-Binding assay in cell culture followed by western blotting

CHO/CHO-S745 cells 8x105 (either non-transfected or transfected with rec. SFV RNAs)

were seeded on 6-well plates and incubated at 37 °C. Twenty-four hours post-transfection,

cells were incubated in medium containing 5 µg/ml of rec. GST-huPrP23-230 18 h at 37°C.

Together with the rec. protein, cells were co-incubated with 40 µg/ml of HSPGs (when

indicated). Cells were then washed several times with PBS and scraped off in PBS. After

centrifugation the pellets were resuspended in lysis buffer (25 mM Tris-HCl pH 7.4, 150 mM

NaCl, 1 mM CaCl2, 3 mM MgCl2, 1 % NP-40). After addition of Laemmli buffer, samples
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were separated by SDS-PAGE and blotted on PVDF membrane. Western blotting was

performed with the monoclonal anti-PrP antibody 3B5 or the pAb LRP W3 and peroxidase-

coupled secondary antibodies.

Mapping of LRP and PrP-binding sites in the yeast two-hybrid system

Constructions of plasmids pSH2-1 and pJG4-5 were described previously (Rieger et al.,

1997). For mapping the LRP-PrP interaction site on PrP, the following C-terminal truncated

constructs of PrP were generated: pSH2-1-GST::huPrP23-93, pSH2-1-GST::huPrP23-118,

pSH2-1-GST::huPrP23-127, pSH2-1-GST::huPrP23-131, pSH2-1-GST::huPrP23-143, pSH2-

1-GST::huPrP23-154, pSH2-1-GST::huPrP23-181, and pSH2-1-GST::huPrP180-230. The

PrP-fragments were amplified by PCR using oligodesoxyribonucleotides coding for different

PrP sequences flanked by a BamHI (5‘) and a SalI (3‘) restriction site. The fragments were

cloned via BamHI and SalI into the vector pSH2-1-GST. All PrP constructs were confirmed

by sequencing. The different bait plasmids, the prey plasmid pJG4-5-LRP44-295 and the

reporter plasmid pSH18-34 (lacZ) were co-transformed into EGY48 cells and transformants

were tested in �-galactosidase assays. Construction of the plasmid pSH2-1-GST::huPrP23-

230 was described previously (Rieger et al., 1997). For mapping the PrP interaction site on

LRP, the C-terminal truncated constructs of LRP pJG4-5-LRP44-101 and pJG4-5-LRP44-160

were designed. The LRP fragments were amplified by PCR using oligodesoxyribonucleotides

coding for different LRP sequences flanked by EcoRI (5‘) and SalI (3‘). The fragments were

cloned via EcoRI and XhoI restriction sites into the vector pJG4-5. The resulting constructs

were confirmed by didesoxysequencing. The different bait plasmids, the prey plasmids and

the reporter plasmid pSH18-34 (lacZ) were cotransformed into EGY48 cells and

transformants were tested in �-galactosidase assays.

LRP-LRP and gal-3-PrP interaction studies in the yeast two-hybrid system

The constructs pSH2-1-GST, pJG4-5-GST, pSH2-1-GST::huPrP and pJG4-5-LRP44-295

were described previously (Rieger et al., 1997). The LRP44-295 encoding cDNA was PCR

amplified from pJG4-5-LRP44-295. The PCR-product flanked by EcoRI (5‘) and SalI (3‘)

restriction sites, respectively, was cloned into the vector pSH2-1 via both restriction sites

resulting in pSH2-1-LRP44-295 which was confirmed by dideoxy sequencing. Yeast

transformations and dotting were carried out as described above. Total RNA was isolated

from 293 cells by RNeasy kit (Quiagen). Gal-3 cDNA was amplified by RT-PCR and
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subcloned into pSH2-1 via EcoRI (5‘) and SalI (3‘) restriction sites resulting in pSH2-1-Gal-

3, which was confirmed by dideoxy sequencing. The huPrP23-230 encoding cDNA was

excised from pSH2-1-GST::huPrP23-230 and subcloned into pJG4-5 via EcoRI and SalI. The

resulting plasmid pJG4-5-GST::huPrP23-230 was confirmed by didesoxy sequencing. Yeast

transformations and dotting was carried out as described above.

Analysis of native LRP::FLAG by size-exclusion chromatography

The Superose 12 PC 3.2/30 column (Amersham Pharmacia) was calibrated with the LMW

calibration kit in 20 mM HEPES pH 7,4. Purified LRP-FLAG (2.5 µg) of expressed in the

SFV system were loaded in a total volume of 25µl. Chromatography was performed at a flow

rate of 30µl/min. The eluted LRP was detected with a UV-M II monitor at 280 nm.

In vitro interaction of PrP and LRP

Rec. FLAG::huPrP23-230 was expressed in the Baculovirus system (C. Hundt et al,

manuscript in preparation) according to rec. FLAG::haPrP23-231 (Rieger et al., 1997) and

immobilized on anti-FLAG M1 beads. Twenty microlitres of beads (1:1 slurry; 500 ng of

FLAG::huPrP), were incubated in TBS supplemented with 2 mM MgCl2 with 500 ng of rec.

GST and 1 µg of GST-LRP (Rieger et al., 1997), respectively (molar ratio: 1:1) in the absence

and presence of 1.5 µg HSPGs (Sigma). Homogeneity of GST-LRP, GST and

FLAG::huPrP23-231 was proven on silver-stained SDS-PA gels. After 1h at room

temperature, the supernatant was removed, beads washed four times with TBS, boiled in

SDS-sample buffer and analysed by western blotting developed with mAb GST.

Antibodies

pAb LRP W3 (Rieger et al., 1997) was purified by protein A-Sepharose chromatography.

mAb GST (Santa Cruz Biotechnology), mAb VLA6 (Immunotech.), mAb 3B5 (G.

Hunsmann), mAb SAF70 (aa 140-180 of PrP) and pAb JB007 (CEA, France), secondary

fluorescein isothiocyanate (FITC), Cy3 (indocarbocyanine) and Texas Red-conjugated

antibodies (used at 1:100 dilutions; Jackson Laboratories/Southern Biotechnology) were used. 
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Fig. 1. Identification of direct PrP-LRP interaction domains. (A) Identification of the direct
PrP-LRP interaction domain on PrP. HuPrP23-93 (row 1), huPrP23-118 (row 2), huPrP23-
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127 (row 3), huPrP23-131 (row 4), huPrP23-143 (row 5), huPrP23-154 (row 6), huPrP23-181
(row 7) and huPrP180-230 (row 8) were co-expressed in fusion with GST in the bait position
together with LRP in prey position of the yeast two-hybrid system. (B) Retrenchment of the
direct PrP-LRP interaction domain on LRP (Rieger et al., 1997). LRP44-101 (row 1), LRP44-
160 (row2), LRP44-295 (row 3) were co-expressed in prey position together with huPrP23-
230 fused to GST in bait position of the yeast two-hybrid system. *Interactions between
LRP157-295 and LRP 180-295 (in prey position) versus huPrP23-230 fused to GST (in bait
position) have been investigated previously (Rieger et al., 1997). (C) PrP144-179 interacts
directly with LRP161-179 in the yeast two-hybrid system. PrP144-179 fused to GST in bait
position was co-expressed with LRP161-179 (row 1), LRP180-295 (row 2) and LRP44-160
(row 3) in prey position of the yeast two-hybrid system. (A-C) All interactions were
monitored by the �-galactosidase reporter system.

Fig.2.  LRP fails to interact with itself in the yeast two-hybrid system and appears monomeric
by native size-exclusion chromatography. Gal-3 fails to interact with PrP and LRP. (A)
huPrP23-230 and LRP fail to interact with the �-galactoside lectin gal-3 in the yeast two-
hybrid system. huPrP23-230 fused to GST in bait position was co-expressed with LRP44-295
in prey position (row 1), gal-3 in bait position was co-expressed with GST::huPrP23-230 (row
2), and LRP44-295 (row 3) in prey position. (B) LRP fails to interact with itself in the yeast
two-hybrid system. GST (row 1), LRP44-295 (row 2) and GST::huPrP23-230 (row 3) were
expressed in bait and GST (row 1), and LRP44-295 (row 2 and 3) in the prey position of the
yeast two-hybrid system. Detection (A and B) by the �-galactosidase reporter system. (C)
Analysis of rec. LRP::FLAG on SDS-PAGE. One microgram of rec. LRP::FLAG purified
under native conditions from the SFV system was analyzed on a 12.5 % SDS-PA-gel stained
with silver (lane 1). Marker proteins are indicated. (D) Analysis of rec. native LRP::FLAG by
size exclusion chromatography. Homogeneous LRP::FLAG (2.2 µg) were analyzed by size
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exclusion chromatography on a Superose12PC3.2/30 column (Amersham Pharmacia). Marker
proteins are indicated.

Fig. 3. Identification of PrP-interaction domains for LRP/LR by binding assays with rec.
prion peptides on NT2 and N2a cells. (A-C) Binding to NT2 cells. NT2 cells were incubated
with PrP peptides fused to GST in the absence (A-C) and presence (insets in A-C) of the
preincubated pAb LRP W3 (dilution 1:50). The following  peptides (4 µg/ml) were used:
GST::PrP53-93 (A), GST::PrP90-109 (B) and GST::PrP129-175 (C). Immunofluorescence
analysis was performed by triple labelling involving actin staining (phalloidin, red), nuclear
staining [4‘,6-diamidino-2-phenylindole (DAPI), blue] and GST staining (sec. Ab FITC,
green) (magnification x630). (D-J) Binding to N2a cells. N2a cells were incubated with PrP
peptides fused to GST in the absence (D-J) or presence of either pre-incubated pAb LRP
(dilution 1:50) (bottom insets in D-J) or pre-incubated mAb VLA6 (dilution 1:50) (top inset
in E and H). The following peptides (4 µg/ml) were used: GST::PrP23-52 (D), GST::PrP53-
93 (E), GST::PrP90-109 (F), GST::PrP110-128 (G), GST::PrP129-175 (H), GST::PrP180-
210 (I) and GST::PrP218-230 (J). Immunofluorescence was performed with mAb GST, sec.
Ab Texas Red, DAPI staining; magnification x400).
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Fig. 4. Influence of HSPGs on the LRP-LR-PrP-binding reaction analyzed by wild-type and
mutant HSPG-deficient CHO cells; use of an LRP deletion mutant lacking the direct PrP-
binding domain on LRP; PrP-LRP in vitro interaction studies. (A-F) Binding of
GST::huPrP23-230 to CHO cells and to HSPG-deficient CHO cells (S745) (Esko et al., 1985)
in the absence and presence of antibodies. Binding of 4 µg/ml GST::huPrP23-230 to CHO
wild-type cells in the absence of any antibody (A), in the presence of the pAb LRP W3 (1:50)
(C), mAb SAF 70 (aa140-180 of PrP) (E). Binding of GST::huPrP23-230 to CHO-S745 cells
in the absence of any antibody (B), in the presence of the pAb LRP W3 (D) and in the
presence of the mAb SAF 70 (F). The mAb SAF70 was used at a 1:1000 dilution to saturate
GST::huPrP23-230 while pAb LRP was pre-incubated with the cells at a 1:50 dilution prior to
addition of the rec. PrP. Immunofluorescence analysis: pAb LRP (sec. Ab FITC ), mAb 3F4
(sec. Ab Texas Red; DAPI staining; magnification 400x). (G-J) Binding of GST::PrP53-93 to
CHO wild-type and CHO-S745 cells. Binding of 4 µg/ml GST::huPrP53-93 to CHO wild-
type (G) and CHO-S745 cells in the absence of HSPGs (H), and in the presence of 10 (I) and
40 µg/ml (J) HSPGs, respectively. Immunofluorescence analysis: mAb GST (sec. Ab Texas
Red; DAPI staining; magnification x400). (K) Binding of PrP by wild-type CHO and mutant
HSPG-deficient CHO-S745 cells hyperexpressing LRP::FLAG or LRPdelBD::FLAG
(lacking aa 161-180). CHO cells (lanes 1-6) either hyperexpressing LRP::FLAG (lanes 1 and
2), LRPdelBD::FLAG (lanes 3 and 4) by the SFV system or non-tranfected (lanes 5 and 6)
were incubated with 5 µg/ml GST::huPrP (lanes 2, 4 and 6). CHO-S745 cells (lanes 7-13)
either hyperexpressing LRP::FLAG (lanes 7 and 8), LRPdelBD::FLAG (lanes 9-11) by the
SFV system or non-transfected (lanes 12 and 13) were incubated with 5 µg/ml GST::huPrP
(lanes 8, 10, 11 and 13). HSPGs (40 µg/ml) were added simultaneously with GST::huPrP to
the CHO-S745 cells overexpressing LRPdelBD::FLAG (lane 11). Total cell extracts were
analyzed by western blotting employing the mAb 3B5 (upper panels) or pAb LRP W3 (lower
panels). (L) Binding of PrP by non-transfected wild-type CHO and mutant HSPG-deficient
CHO-S745 cells. Non-transfected CHO wild-type cells (lanes 1-3) and non-transfected CHO-
S745 cells (lanes 4-6) were incubated with 5 µg/ml GST::huPrP (lanes 2, 3, 5 and 6). HSPGs
(40 µg/ml) were added simultaneously with GST::huPrP to both cell types (lanes 3 and 6,
respectively). Total cell extracts were analyzed as described in (K). Interaction of rec.
FLAG::PrP and rec. GST::LRP in vitro (M). FLAG::huPrP23-230 (0.5 µg) immobilized on
anti-FLAG Sepharose beads analyzed on a 12 % SDS-PA gel stained with silver (lane 1) and
by western blotting employing the pAb JB007 (lane 2) were incubated with 1 µg of
GST::LRP in the absence (lane 4) or in the presence of 1.5 µg/µl HSPGs (lane 3), 0.5 µg of
GST in the absence (lane 6) or the presence of 1.5 µg/µl HSPGs (lane 5). Unloaded beads
were incubated with 1 µg of GST::LRP in the presence of 1.5 µg/µl HSPGs (lane 7). Beads
after washing were analyzed by western blotting on a 12% SDS PA-gel employing mAb GST
(sec. antibody POD).
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Fig. 5. Model for the function of LRP-LR as the receptor for PrP. The PrP molecule binds to
LRP-LR via PrPLRPbd1 and PrPLRPbd2. PrPLRPbd2 (aa 53-93) is dependent on the presence of
a heparan sulfate arm of a HSPG molecule whereas PrPLRPbd1 (aa 144-179) interacts directly
with LRP-LR (as shown in the yeast two-hybrid system). The simultaneous presence of both
PrPLRPbd1 and PrPLRPbd2 would stabilize considerably the binding of the entire PrP molecule
to its receptor. Direct binding of LRP-LR to PrP occurs via the direct binding site located
between aa 161-179 of LRP-LR (Figure 1). The indirect HSPG-dependent binding domain
might locate between aa 101 and 160 or between aa 180-285 [presumably aa 205 and 229 of
LRP (Kazmin et al., 2000)]. The association of LRP-LR with HSPGs might explain the
relationship between 37-kDa LRP and 67-kDa LR.
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Abstract

Data from cell culture and animal models of prion disease support the separate involvement of

both heparan sulfate proteoglycans and copper (II) ions in prion (PrP) metabolism. Though

direct interactions between prion protein and heparin have been recorded, little is known of

the structural features implicit in this interaction or of the involvement of copper (II) ions.

Using biosensor and ELISA methodology we report direct heparin and heparan sulfate-

binding activity in recombinant PrPc. We also demonstrate that the interaction of recombinant

PrPc with heparin is weakened in the presence of Cu(II) ions and is particularly sensitive to

competition with dextran sulfate. Competitive inhibition experiments with chemically

modified heparins also indicate that 2-O-sulfate groups (but not 6-O-sulfate groups) are

essential for heparin recognition. We have also identified three regions of the prion protein

capable of independent binding to heparin and heparan sulfate: residues 23-52, 53-93 and

110-128. Interestingly, the interaction of an octapeptide-spanning peptide motif aa53-93 with

heparin is enhanced by Cu(II) ions. Significantly, a peptide of this sequence is able to inhibit

the binding of full-length prion molecule to heparin, suggesting a direct role in heparin

recognition within the intact protein. The collective data suggest a complex interaction

between prion protein and heparin/ heparan sulfate and has implications for the cellular and

pathological functions of prion proteins. 

Introduction

Considerable effort has been devoted to the identification of natural receptors for prion

protein (PrP) both to refine the understanding of prion metabolism and to reveal potential

targets for therapeutic intervention in the transmissible spongiform encephalopathies (TSEs).

One group of potential co-factors are the glycosaminoglycans (GAGs) and in particular

membrane proteins and extracellular matrix components elaborated with heparan sulfate (HS)

sugar chains. Heparan sulfates (of which heparin is a heavily sulfated variant) are expressed

on a wide variety of cell types, including those of neural origin, and modulate the activity of a

wealth of cell-surface and extracellular signaling molecules such as growth factors and

cytokines (Maccarana et al., 1993; Wrenshall and Platt, 1999). In the TSE field it is known

that HSPGs co-localize with the insoluble aggregates of the prion (PrPSc) that accumulate in

the brain tissue of TSE affected animals (Guiroy et al., 1991; McBride et al., 1998; Snow et
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al., 1990). They also promote the formation of amyloid structures typical of Alzheimer’s

disease (a condition with many morphological similarities to prion diseases) when co-injected

with A�-protein into the brains of rats (Snow et al., 1994). Administration of selected anionic

compounds can restrict tissue-specific accumulation of PrPSc and the onset of

neurodegenerative features in experimental models of prion disease, Pentosan sulfate and

DS500 (dextran sulfate with av. MW 500,000) being particularly effective examples

(Ladogana et al., 1992; Beringue et al., 2000). The mode of action of these compounds is

uncertain, one possibility being that they compete with endogenous HSPGs for prion. A direct

association with amyloid structures has also been considered (Caspi et al., 1998). Sulfated

GAGs and lipopolyamines (a group of molecules that reverse many of the actions of heparin)

modulate the expression of PrPSc in cultured cells (Caughey and Raymond, 1993; Gabizon et

al., 1993; Supattapone et al., 1999) and several investigators have described direct

interactions between cellular or recombinant prion and GAGs (Brimacombe et al., 1999;

Caughey et al., 1994). Of particular significance is the detection of a glucose polysaccharide

in prion rods purified from scrapie-infected hamster brains (Appel et al., 1999). Two recent

papers suggest that HS may play a critical role in the molecular events leading to PrPsc

production and the acquisition of infectivity. Wong and colleagues have demonstrated that the

cell-free conversion of PrP to a protease-resistant folding-variant may be stimulated by the

addition of HS (Wong et al., 2001) and an heparitinase-sensitive fraction of cell extract will

promote the reconstitution of infectivity to DMSO-dispersed prion rods (Shaked et al.,

2001a).The 37 kDa laminin receptor (LRP/LR), identified originally as a potential binding

partner for PrP (Rieger et al., 1997) has now been confirmed as a cell surface receptor

(Gauczynski et al., 2001) and heparan sulfate proteoglycans (HSPGs) have been identified as

co-factors in this interaction via indirect binding domains on both proteins (Hundt et al.,

2001).

A notable feature of prion biology is the chelation of divalent cations, especially copper

(Brown et al., 1997; Hornshaw et al., 1995; Jobling et al., 2001), and there is considerable

interest in the possible connection between metal-binding status and conformation (Brown et

al., 2000; Miura et al., 1999; Qin et al., 2000; Shaked et al., 2001b; Wong et al., 2000). Metal

binding resides primarily in an octapeptide repeat motif between residues 53-93 of

mammalian PrP though more distal binding sites have also been proposed (Jobling et al.,

2001; Shaked et al., 2001b). Intriguingly manganese and copper have quite distinct effects on

the adoption of proteinase resistance by PrP (Brown et al., 2000). The role of this octapeptide

repeat in prion disease progression is poorly understood. Though PrP null-mutant mice can be
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restored to scrapie susceptibility by introduction of PrP transgenes lacking this motif (Fischer

et al., 1996; Flechsig et al., 2000), scrapie incubation times are still extended compared to

wild type (Supattapone et al., 2001). 

Combined heparin-binding activity and divalent cation chelation have been demonstrated for

several other proteins, notably superoxide dismutase (Marklund, 1982) and the APP protein of

Alzheimer’s disease (Multhaup et al., 1995). A potential interaction between the heparin- and

copper-binding functions of prion protein would be an intriguing scenario. There is certainly

evidence that the two functions map to the same region of the molecule. Shyng and colleagues

have reported that the region between residues 25 and 91 (incorporating the octapeptide repeat

region) is sufficient for PrP binding to HSPG moieties on N2a cells. They also demonstrated

that unlike intact PrPc, the surface expression of a mutant PrP without this N-terminal

segment is not subject to down-regulation by provision of soluble pentosan sulfate (Shyng et

al., 1995). Elsewhere, a naturally truncated PrP present in significant amounts in the human

brain and lacking residues amino-terminal to 111 or 112 (including the octapeptide-repeat),

has no heparin-binding activity (Chen et al., 1995). Furthermore the PrP sequence aa53-93 is

directly involved in an HSPG-dependent interaction between recombinant PrP and laminin

receptor precursor (LRP) (Hundt et al., 2001). Significantly, whereas Caughey found that

heparin binding by PrPc is independent of divalent ion concentration (Caughey et al., 1994)

Brimacombe has reported a study in which the binding of recombinant PrP to experimental

nickel surfaces is heparin-sensitive (Brimacombe et al., 1999).

The only other region of PrP with supporting evidence for a role in GAG binding is the

central, hydrophobic and amyloidogenic sequence between residues 106-126 (De Gioia et al.,

1994; Gasset et al., 1992). This sequence undoubtedly plays a major role in the biosynthesis

of the protease-resistant form of PrP (PrPSc). Cells expressing engineered variants of PrPc

deleted for residues in this region of the molecule do not support the propagation of

homologous PrPSc and PrP molecules deleted for this sequence cannot be converted to

protease-resistant forms in vitro (Horiuchi and Caughey, 1999). Several groups have

investigated the cytotoxic properties of the central region (Forloni et al., 1993; Jobling et al.,

1999). Significantly a neurotoxic activity associated with a peptide corresponding to residues

106-126 can be abrogated by soluble heparin and related GAGs (Perez et al., 1998). Though

copper has been shown to affect the aggregation and neurotoxic properties of this region

(Jobling et al., 2001), the influence of copper on any interaction with GAGs is not

documented.
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Recombinant PrP has now been expressed and purified by several groups (Volkel et al., 1998;

Weiss et al., 1995; Zahn et al., 1997). These efforts have yielded proteins that resemble PrPc

in that they fold into �-helical and �-sheeted structures (Gauczynski et al., 2001; Volkel et

al., 1998). They are also proteinase K sensitive (Weiss et al., 1996), suggesting a lack of

infectivity. Crucially, N-terminally-tagged PrP retains propagating activity (Telling et al.,

1997) and PrP retains Hsp60 chaperone binding activity when tagged with GST (Edenhofer et

al., 1996). 

In this study we confirm a direct interaction between recombinant PrPc and both heparin and

HS and show that the binding of full-length recombinant GST::PrPc to heparin is significantly

weakened in the presence of copper (II) ions. Competitive inhibition studies reveal that

dextran sulfate is a highly potent inhibitor of the PrPc-heparin interaction, and that 2-O

sulfates of heparin are an essential component of the PrPc binding site(s). In a second series of

experiments biosensor and ELISA analysis applied to both glutathione sulfotransferase-

tagged recombinant peptides (covering the whole sequence of hamster PrP; (Hundt et al.,

2001; Edenhofer et al., 1996)) and synthetic peptides have enabled us to identify three

sequences in PrP with independent heparin / HS binding activity: residues 23-52, 53-93 and

110-128. At higher concentrations than those which affect intact PrP protein, copper (II)

enhances heparin-binding by isolated peptide 53-93, and in the presence of Cu(II) this peptide

effectively competes with full-length haPrPc for heparin binding. The divergent actions of

copper (II) ions on full-length PrP and on the peptide 53-93 are discussed.

Experimental procedures 

Materials 

Bovine lung heparin (BLH; H-4898), porcine intestinal heparin (PIH; H-9399), low molecular

weight heparin from porcine intestinal mucosa (LMW PIH; H-5284, average mol. weight

approx. 6000), pentosan polysulfate (PPS), dextran sulfate (DS8; D-4911, average mol.

weight approx. 8000) and chondroitin sulfate (CS; C-8254) were obtained from Sigma.

Porcine Intestinal heparan sulfate fraction II (PMHS) was obtained from Organon and bovine

kidney HS (BKHS, H-7640) was from Sigma. Both types of HS were pre-treated with

chondroitin ABC lyase to eliminate chondroitin sulfate contaminants. Stock solution of 2.2

mM Cu(II), Zn(II), Ni(II), Mg(II) and Mn(II) were prepared in glycine (4.5 mM in distilled

water) after the method of Brown et al. (Brown et al., 1997). Recombinant streptavidin (S-
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0677) from streptomyces avidinii was purchased from Sigma. The biotin donors biocytin

hydrazide (B-9014), biotin amidocaproate-NHS (B-3295) and biotin amidocaproate 3-sulfo-

NHS (B-1022) were also from Sigma. Modified heparins: (persulfated (oversulfated), and 2O-

and 6-O-desulfated BLH) were prepared and sulfation status confirmed as previously reported

(Jaseja, 1989; Yates et al., 1996).

Expression and purification of recombinant hamster GST::PrPc fusion protein and

peptides

GST::PrPc (23-231) of Syrian golden hamster and human sequence and the GST::haPrPc

fragments GST::P23-52 (P1), GST::P53-93 (P2), GST::P90-109 (P3), GST::P110-128 (P4n),

GST::P129-175 (P4), GST::P180-210 (Px) and GST::P218-231 (P5) were expressed from

baculovirus in Sf9 insect cells (GST::PrPc ) and from E. coli (peptides) as previously

described (Hundt et al., 2001; Weiss et al., 1995). Protein and peptides were dialysed into

20mM HEPES pH 7.4 and stored at 4oC. Heparin/ HS binding activity was examined within 2

months of preparation.

Preparation of synthetic PrP peptides with human sequence 

Peptides corresponding to residues 23-52 (P1), 53-93 (P2), 90-109 (P3), 110-128 (P4n), 129-

175 (P4), 180-210 (Px) and 218-231 (P5) of the normal human PrP sequence were

synthesized on an AMS 422 multiple peptide synthesizer (Abimed) using FMOC chemistry

(preloaded HMP (Wang) resin, tBu/Trt protection, Arg-Pmc; Trp-Boc, PyBOP activation).

After completion of the synthesis the peptides were cleaved using 92.5% TFA / 2.5 % H2O /

5% tri-Isopropylsilane, precipitated and washed with tert-Buthyl-methyl-ether. The

deprotected crude peptides were purified by reversed-phase HPLC (Sykam HPLC-system,

GROM C18 column, 20 x 250 mm, 5 µ). The identity of the purified peptides was confirmed

by MALDI-TOF mass spectrometry (Bruker Reflex III).

Biotinylation of heparin and HS for immobilisation 

Three methods were adopted for biotinylation of heparins and HS: a.) GAGs were labeled by

reaction of their aldehydic reducing groups using a method based on Nadkarni et al.

(Nadkarni and Linhardt, 1997) Briefly 50 nmol of saccharide was dissolved in 50 �l

formamide containing 50 mM biocytin hydrazide and heated at 37oC for 24 h. Heparin/ HS

labeled in this way was used for occasional biosensor analysis of GST::haPrPc binding. b.)

The second procedure is a modification of that described by Rahmoune et al. (Rahmoune et
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al., 1998) and labels the free amino groups reported to occur occasionally along the length of

heparin and HS. To 50 nmol heparin / HS in dH2O was added 30 �l of a 50 mM solution of

biotin amidocaproate-NHS in DMSO. The mixture was briefly mixed and left for 3 days at

room temperature. This method was used to biotinylate heparin and HS for biosensor studies

of both GST::haPrPc and peptide binding. c.) A third procedure, used in ELISA studies of PrP

and peptide binding is a modification of that of Lee and Conrad and also labels mid-chain

(Lee and Conrad, 1984): 5 �mol heparin or HS was dissolved in 0.5 ml of sodium carbonate

buffer pH 8.6 containing 15 �mol biotin amidocaproate 3-sulfo-NHS. The mixtures were

shaken briefly to mix and left to stand at room temperature for 3 days. Free label and solvent

was removed from all labelling reactions as follows: 5 volumes of pre-chilled ethanol were

added to each tube and the sample stored at –20o C for 30 minutes. The sample was next

centrifuged (5 minutes, 13,000 rpm) and the ethanol decanted, chilled for a second time and

re-centrifuged. The precipitate from both stages was combined in 400�l dH2O and

fractionated by gel filtration using 3 x Hi-Trap columns (Pharmacia) arranged in series.

Biotin-containing fractions were detected at 232 nm and the labeled GAG eluting in the void

volume was retained. 

Biosensor analysis of GST::PrPc and PrP peptide binding to heparin and HS 

Biosensor analysis was performed on a Bia2000 instrument (BiaCore). Two channels of a

Pioneer-C1 biosensor chip (BiaCore, planar surface) were coated with streptravidin (injection

of 50 �l solution of streptavidin, 1 mg/ml in sodium acetate buffer, pH 4.5). One streptavidin

conditioned channel was then incubated with biotinylated heparin or HS (method of

biotinylation dependent on test protein (see above), and the second surface left unmodified to

control for non-GAG specific binding events. The mobile phase in all biosensor analyses was

HBS-P (HEPES buffered saline, 10mM HEPES pH 7.4, 0.15 M NaCl, 0.005% polysorbate

20) pre-prepared by the manufacturer (BiaCore). GST::ha PrPc and GST::ha PrPc partial

peptides were obtained as dilute (ca. 10-100 ng��l) solutions in 20mM HEPES buffer, pH 7.4.

Proteins were injected with no additional dilution, or pre-diluted in HBS-N (HEPES buffered

saline with no detergent). All samples were dispensed in microfuge tubes and centrifuged for

5 minutes at 10000 rpm prior to analysis to remove particulates. Samples were injected

(KINJECT command, 30 �l) onto both biosensor surfaces at a flow-rate of 10-20 �l/min and

at a temperature of 25 o C. A dissociation period of 120 seconds was selected. The following

solutions were routinely used to regenerate the chip surfaces between PrP samples (volume):

2M NaCl (10 �l), 10mM HCl (5 �l) 10 mM NaOH (5 �l) and 2 mg/ml BLH (10 �l). To
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resolve heparin/HS specific binding events the pattern of mass changes (response units: RU)

recorded at the un-derivatised surface of ther biosensor chip was subtracted from the signal

recorded at the heparin/ HS-derivatised surface.

ELISA analysis of binding of GST::PrP peptides and protein to heparin 

Analysis of heparin /HS binding by full-length and peptidic GST fusions was performed on

Maxisorb and Polysorb (Nunc) 96-well plates respectively. The plates were pre-coated with 3

�g/ml streptavidin in 0.2 M bicarbonate buffer, 0.15 M NaCl, pH 9.3 and left to stand

overnight at 4oC. Plates were then washed briefly in PBST (0.05% Tween-20 in phosphate

buffered saline, pH 7.4) and blocked for 2 hours with 10% Seablock blocking reagent

(Pierce), 0.5% Tween-20 in phosphate buffered saline. Biotin-conjugated bovine lung

heparin, porcine intestinal heparin and porcine mucosal HS substrates were then applied to the

plates (3 columns each x 8 rows) at a concentration of 75 �g/ml diluted in PBST. A separate

array of wells (3 columns x 8 rows) was incubated with PBST alone. Biotinylated heparin /

HS / PBST was left in contact with the wells for a minimum of three hours at room

temperature after which period the wells were washed with PBST. GST-tagged proteins were

the applied, diluted in 10% Seablock (Pierce) in PBS to minimise non-specific interactions. In

general, one row of 12 wells (3 wells each per biotinylated GAG and control) were devoted to

each GST::PrPc or GST::peptide preparation, and 35 �l of sample dispensed in each well. In

certain experiments PrP preparations were mixed with non-biotinylated GAGs and synthetic

PrP peptides prior to incubation. Divalent cations ions were also supplemented in certain

experiments, from stock mixtures with glycine. Following the incubation period (minimum 2

hour duration) GST::PrPc / peptide was decanted and the wells washed thoroughly with

PBST. All wells were then treated (1hr at room temperature) with 35 �l of either monoclonal

anti-GST (Clone GST-2, G-1160, Sigma) or polyclonal rabbit anti-GST (G-7781, Sigma)

applied at a dilution of 1:200 in PBST. In a final incubation phase, after another round of

washing, wells were incubated (1 hour, room temperature) with 35 �l sheep anti-mouse IgG

(F(ab’)2)-peroxidase conjugate (NA 9310, Amersham, for assays employing the monoclonal

anti-GST) or anti-rabbit Ig (F(ab’)2)-peroxidase conjugate (NA-9340, Amersham, for assays

employing the polyclonal anti-GST) diluted 1:1000 in PBST. Colour was developed by

addition of 100 �l per well o-phenylene-diamine substrate solution (1 x 30mg OPD tablet

(Sigma P-8412) per 75 �l phosphate-citrate buffer (0.05M) pH 5.0 containing 0.03% sodium

perborate (Sigma P-4922)). Absorbance was measured at 490nm after quenching the wells
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with 50 �l 0.5M H2SO4. Results with monoclonal and polyclonal anti-GST antibodies were

essentially identical.

ELISA analysis of binding of GST::haPrPc to immobilised synthetic PrP peptides. 

An ELISA was established to examine the potential for PrP-PrP interactions. Peptides P1 (23-

52), P2 (53-93) and P4n (110-128) (50 �g/ml in 0.2 M sodium bicarbonate buffer, pH 9.3

containing 0.15 M NaCl) were coated onto wells of a Maxisorb microtitre plate (Nunc). A

fourth block of three columns was left uncoated. After coating (overnight, 4oC) all wells were

blocked with 3% bovine serum albumin in PBS containing 0.2% tween-20 (2 hours at room

temperature). GST::haPrPc was subsequently applied at 1�g/ml in PBS containing 3% BSA.

After 2 hours incubation the plate was thoroughly washed (6 x in PBS/ 0.05% tween-20) and

bound GST::haPrPc detected with polyclonal rabbit anti-GST/ anti-rabbit Ig (F(ab’)2)-

peroxidase conjugate as described above (conventional heparin-binding ELISA). In inhibition

studies a selection of GAGs (100 �g/ml) were supplemented during the GST::haPrPc

incubation phase. 

Results

Recombinant hamster PrPc binds to immobilised heparin and HS

Surface plasmon resonance instruments are able to detect the mass changes that accompany

the binding of soluble analyte to ligand immobilised on a detector surface. Initial experiments

in this study investigated the binding of the GST::haPrPc fusion protein to immobilised

heparin and HS. Figures 1a and 1b show the resonance profiles or sensorgrams recorded when

short pulses of recombinant hamster GST::PrPc were injected over bovine lung heparin and

porcine intestinal HS surfaces (immobilised via mid-chain biotinylation). The sensorgrams

indicate the net binding response on the derivatised surfaces after subtraction of any signal

generated on an underivatised control surface. Also shown are the resonance patterns

generated by injection of an identical volume of carrier buffer alone (“buffer”). During the

period of contact between sample and surface (phase A, 180 secs), a positive binding signal

which was considerably higher than that of buffer alone (60-80 RU vs. 10 RU) was observed

on both GAG-derivatised surfaces. Since the size of the signal achieved is in part dependent

on the density of immobilised heparin and HS (unknown for these surfaces) it is not

appropriate to estimate realtive binding avidity to heparin and HS from a comparison of signal
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strengths. Under identical conditions glutathione sulfotransferase alone yielded no net binding

to heparin or HS-derivatised surfaces. The two surfaces differed considerably in the shape of

the response curve during the dissociative period (D, 120 secs). Approximately half of the

GST::haPrPc which had accumulated on the heparin surface during the contact phase (A)

showed very rapid dissociation at the onset of the dissociative phase (D) to be followed by a

stable phase when very little further movement was recorded. In contrast dissociation of

GST::haPrPc from the HS surface was more progressive, though the proportion of

accumulated RU lost in the dissociative phase was similar to heparin at 50 percent. Both

surfaces were washed with short pulses of strong saline (2M NaCl) and weak acid (10mM

HCl) at identical times after PrP application. These washes would be expected to have a

strongly disruptive effect on heparin and HS directed binding. Such washing accounted for

approximately 50% and 70% removal of residual GST::haPrPc from heparin and HS

respectively.

Prion protein is known to bind copper (II) ions in vitro, and earlier investigations have

revealed a linkage between divalent cation and polyanion binding activities (Brimacombe et

al., 1999). This prompted us to undertake a second series of biosensor experiments in which

GST::haPrPc was mixed with 10 �M copper (II) before injection onto heparin (Fig. 2a). This

addition had three consequences: the absolute signal strength was reduced, the binding curve

tended to plateau more quickly (i.e. tended towards equilibrium more rapidly) and bound

protein was apparently resistant to removal with a strong salt solution. A physiological

concentration of copper (II) at synaptic terminals (a tissue rich in PrP) is in the region 10-20

�M (Brown et al., 1997). Fig. 2b displays the responses generated on heparin by sequential

injections of GST::haPrPc mixed with increasing concentrations (0-50 �M) of copper (II). The

curve shapes altered dramatically as the concentration of Cu(II) was increased. As in Fig. 2A

the rising phase of the curves assumed a more flattened shape toward the end of the contact

phase and the high salt washes had a progressively smaller effect on the proportion of bound

protein released. Note that the transient elevation of RU at the start of the dissociative period

(indicated by the arrows “D”) was encountered inconsistently in experiments with full-length

GST::haPrPc and is difficult to explain in terms of movement of the protein (which should

show net dissociation during this phase). A difference in the interaction between the running

buffer and the derivatised and coated surfaces in such experiments may account for this effect

though buffer-only injections were essentially without signal. In parallel experiments

GST::haPrPc was applied to an HS-derivatised surface in the presence or absence of Cu(II). In

this case Cu(II) had no observable effect on the extent of binding (data not shown). 
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An ELISA for heparin / HS binding by GST-tagged PrPc proteins and peptides was developed

to confirm the findings of biosensor analysis. Fig. 3a shows data obtained when GST::haPrPc

was titrated on two heparins (bovine lung and porcine intestinal heparin) and porcine mucosal

HS. Note that copper (II) was not added in these experiments. The binding signals on heparin

proved to be much stronger than those generated by HS, but in both cases was dose

dependent. Fig. 3b displays the results of a related ELISA in which GST::huPrPc (1�g/ml)

was applied to porcine intestinal heparin-coated wells in the presence of increasing

concentrations of four divalent cations: Cu(II), Zn(II), Ni(II) and Mn(II). Copper (II) has the

most dramatic inhibitory effect on the binding (maximal inhibition between 2-4 �M Cu(II)),

whilst manganese (II) is apparently without influence. An intermediate level of inhibition was

achieved in the presence of zinc and nickel. The ability of copper (II) to disrupt binding of

GST::PrPc to heparin supports data from biosensor experiments and it is interesting that in

both methodologies high levels (50�M) of copper (II) fails to abolish heparin binding by

GST::PrPc completely. A primary purpose of the ELISA was to grade a number of sulfated

polysaccharides on their ability to disrupt the interaction between GST::haPrPc and heparin.

Fig. 3c, d shows the results of incubation of GST::haPrPc on PIH coated wells in the presence

of increasing concentrations of sulfated GAGs, in the presence or absence of Cu(II). Similar

data were obtained for binding to immobilised BLH (data not shown) and BLH and bovine

kidney HS (BKHS) produced similar inhibitory profiles to PIH and PMHS respectively (data

not shown). Irrespective of the source of heparin used as capture reagent, pentosan polysulfate

(PPS) and dextran sulfate (MW8000, DS8) were the most potent inhibitors of heparin binding

(on a weight for weight basis). The heparins were substantially weaker by comparison and

both the low molecular weight PI heparin (LMW PIH) and two sources of HS were without

effect. When copper (II) was added, the inhibitory activity of the GAGs/ polysaccharides was

generally potentiated. Intact PIH (and also BLH, data not shown) now approached DS and

PPS in inhibitory effect and the binding of GST::haPrP to PIH was weakly (but incompletely)

disrupted by LMW PIH. These findings support the conclusion that Cu(II) weakens the

interaction between full-length hamster PrP and heparin.

In a separate experiment human recombinant PrPc was allowed to bind to PI-heparin in the

presence of a selection of GAGs and modified heparins, provided at 10 and 100 �g/ml (Fig.

4). Again BLH was a good inhibitor of heparin-binding, whereas PMHS had essentially no

effect. Both persulfated (oversulfated) heparin and selectively de-6-O-sulfated heparin were

less effective inhibitors than unmodified BLH. de-2-O-sulfated heparin lacked inhibitory

activity completely at 10 �g/ml and inhibited only weakly at 100 �g/ml. These results indicate
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an important role for 2-O-sulfate groups in the prion-heparin interaction. Interestingly, low

concentrations of 2-O-desulfated heparin, like CS (see also Fig. 3c) appear to promote PrPc

binding to immobilised heparin.

Binding of GST::hamster PrP peptide fusions and synthetic PrP peptides (of human

sequence) to immobilised heparin / HS 

To identify regions of the PrP molecule with independent heparin / HS binding activity,

recombinant GST::fusions of partial hamster PrP sequences which collectively spanned the

entire hamster prion sequence (Hundt et al., 2001; Weiss et al., 1995) were injected over a

heparin-derivatised biosensor surface. When several independent batches of peptides were

tested (no more than 2 months after expression-purification), P2 (53-93) and P4n (110-128)

consistently yielded the most significant binding to heparin (Fig. 5a). P1, P3, P4, P5 and Px

gave weak biosensor responses in general, although significant binding of P1 and P5 to

heparin was recorded in a few batches. Note that the increase in signal occurring with P4n

injection was not reversed by high salt, weak acid, alkaline or soluble heparin washes:

procedures which should have disrupted all but the strongest electrostatic interactions.

Peptides were tested in succession (as in Fig. 5a) and individually with no evidence of sample

order-related enhancement or reduction of signal strength for any peptide. In some

experiments FGF-receptor (a well-characterised heparin-binding protein) was injected before

and after a series of the PrP peptides and no change was observed in the extent of binding of

this protein (data not shown).

Subsequent experiments revealed that the heparin-binding activity of both GST::P2 (53-93)

and GST::P4n (110-128) were sensitive to copper (II) addition, elevating and suppressing

biosensor response respectively. GST::haPrP P2 (53-93) produced the most significant

response when applied to the HS-derivatised biosensor surface but in contrast to its binding of

heparin, recognition of HS was not influenced by Cu(II) (data not shown). 

Although GST itself displays no heparin-binding activity in the buffer conditions chosen for

GST::haPrP/peptides (data not shown), it was conceivable that the GST portion of the fusion

could affect heparin binding activities of the contiguous PrP sequence. Indeed such an effect

may explain the inconsistent binding observed for some GST-linked peptides (particularly

GST::P5 (218-231). For this reason synthetic PrP peptides with no tag were also tested for

binding to bovine lung heparin. (Fig. 5b). As the biosensor instrument transduces mass

changes at the detector surface, low molecular weight analytes such as peptides tend to

produce relatively weak signals per mol of bound analyte. By working at high sample
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concentrations (in the range 0.1-1.0 mg/ml) the signal strength produced by low molecular

analytes can be maximised, so long as surface binding sites are non-limiting. However such

data should be interpreted with caution as high analyte concentrations can produce rate-

limiting diffusional artefacts, re-binding phenomena, and increase the tendency for self-self

interactions. Of the synthetic peptides only P1 (23-52), P2 (53-93) and P4n (110-128) yielded

positive biosensor responses indicating that these three sequences are the strongest candidate

heparin/ HS-binding regions in the prion molecule. Again peptides were tested singly and in

different order of injection with no effect on the patterns of binding.

All GST-fusion peptides were tested for heparin binding by ELISA. Only GST::P1 (23-52)

bound heparin reproducibly, providing a signal that was selectively inhibited (Fig. 6a). Note

that the heparin-binding exhibited by P1 (23-52) like full-length PrP, was not competed by

chondroitin sulfate. In order to explore the potential for intermolecular PrP-PrP interactions

via the peptide sequences under investigation, GST::haPrPc was incubated in microtitre wells

coated with synthetic peptides P1 (23-52), P2 (53-93) and P4n (110-128). No other peptides

were screened. A clear interaction was observed between the full-length PrP and imobilised

P1 (Fig. 6b) This binding was not significantly inhibited by addition of soluble heparin,

pentosan polysulfate or dextran sulfate which suggests a predominantly hydrophobic basis.

Additional biosensor experiments indicated that synthetic peptides P1 (23-52), P2 (53-93) and

P4n (110-128) were capable of binding HS (data not shown), however only P2 (53-93) bound

both GAGs in a concentration dependent manner (Fig. 7a, b). Heparin recognition was

successfully competed with soluble heparin (data not shown) and porcine intestinal HS,

though a weak inhibitor of the binding of synthetic P2 to immobilised heparin (data not

shown) was an effective competitor for the binding of P2 to an HS-derivatised surface (Fig.

7c). It was noted that P2 (53-93) bound to the HS-derivatised surface in the presence of

soluble PMHS was more readily eluted with the wash sequence (BLH, NaCl, NaOH) than P2

bound in the absence of competitor.

Copper (II) ions substantially enhance the heparin binding activity of synthetic peptide

P2 (53-93) 

As P2 (53-93) encompasses a region of PrP containing motifs for copper binding, biosensor

experiments were conducted to assess any influence of copper availability on the heparin

binding activity of this peptide. The biosensor response produced by 1 mg/mL P2 (53-93) was

substantially enhanced (~ 7-fold) by the addition of 10�M Cu(II) (Fig. 8a). Intriguingly a

second injection of P2 peptide (without added copper) applied immediately after one
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containing Cu(II) generated a higher signal (ca. 2-3 fold) than the initial injection of P2 over a

washed heparin surface. This strongly suggested that a proportion of the enhancing activity of

Cu(II) might be exercised in a complex with the heparin substrate. To investigate this further

we compared the accumulation of synthetic P2 on the heparin surface after two pre-

treatments: i.) after injection of Cu(II) alone and ii.) after injection of Cu(II) followed by

EGTA (a potent chelator of copper) (Fig. 8b). Injection of a brief pulse of EGTA between

injections of Cu(II) and P2 greatly reduced the enhancement possible by pre-treatment with

Cu(II) alone. Demonstrating the selectivity of this effect no enhancement of response was

recorded when Cu(II) was applied in advance of an injection of P1 peptide (Fig. 8b) or P4n

peptide (data not shown). To assess the ability of alternative metals to enhance heparin-

binding by P2 (53-93), P2 (53-93) the peptide was injected in the absence of additional cation

and also in the presence of 50�M copper (II), magnesium (II), nickel (II) or manganese (II)

(Fig. 8c). None of the alternative cations replicated precisely the action of copper. Neither

magnesium (II) or manganese (II) affected binding significantly and although nickel (II)

induced a larger absolute response the rapid return of signal to baseline at completion of the

contact period was indicative of a very weak interaction. Since copper (II) had an inhibitory

influence on binding of PrP to heparin in the range 0-2 �M (Fig. 3B), we decided to apply P2

peptide at a range of Cu(II) concentrations (Fig. 8d). We subsequently found that the greatest

enhancing activity was afforded at relatively high concentrations (>10 �M). In the

concentration range that inhibits full-length PrP binding to heparin, Cu(II) had no clear

influence on the behaviour of synthetic P2 (53-93) peptide. 

Competitive ELISA to determine the relevance of P1, P2 and P4n sequences in the

binding of full-length GST::haPrPc to heparin

To access which sequences, singly or in combination, might contact heparin within the fully

folded recombinant GST::haPrPc molecule a competition ELISA was developed in which

GST::haPrPc was incubated on heparin in the presence of synthetic peptides P1, P2 and P4n

(Fig. 9). It was anticipated that sequences contributing to heparin-binding in native PrP would

compete with PrP for heparin when presented as peptides in solution. In this experiment

synthetic peptides were either pre-incubated on heparin in advance of GST::ha PrPc or mixed

directly with GST::haPrPc. Experiments were also conducted both in the presence and

absence of added Cu(II). With no added Cu(II), none of the peptides affected the binding of

GST::haPrP to heparin (Fig. 9a) yet when copper (II) was supplemented at 50 �M (a change

which predictably reduced the binding signal due to GST::haPrPc, maximum absorbance of ~
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0.4 ODU versus 0.7 ODU) co-incubation with synthetic peptide P2 (53-93) resulted in a

significantly lower binding signal on both BLH and PIH substrates than GST::haPrPc alone

(Fig. 9b).

Discussion

Prion proteins are placed firmly in the heparin-binding category of proteins. Not only have

direct interactions been demonstrated with PrP (Brimacombe et al., 1999; Caughey et al.,

1994), GAGs have been shown to influence PrPsc accumulation in both cell-culture and in

vitro converting experiments (Caughey and Raymond, 1993; Gabizon et al., 1993; Shaked et

al., 2001a; Supattapone et al., 1999; Wong et al., 2001) and to modulate PrPsc propagation

and disease onset in animal models for scrapie (Beringue et al., 2000; Ladogana et al., 1992).

This study has addressed three areas of current interest: the structural features of GAGs that

engender PrP-binding ability, the influence of metal ions on GAG-binding and the location of

GAG binding domains within PrP.

By both biosensor and ELISA techniques we were able to show direct binding of PrP to

heparin, thus confirming earlier work (Brimacombe et al., 1999; Caughey et al., 1994). We

were also able to demonstrate a direct interaction between PrP and purified heparan sulfate.

This complements previous studies in which PrP-HS binding was strongly implicated but not

directly demonstrated (eg. (Hundt et al., 2001; Shaked et al., 2001a; Wong et al., 2001)). Two

aspects of the interaction with heparin were of particular interest. Firstly a weakened

interaction in the presence of copper (II) ions was detected in several experiments (eg. Figs.

2a and b, 3b-d, Fig. 9) and the direct ELISA (Fig. 3b) indicated that this inhibition was only

partial ie that significant proportion of heparin affinity remains even in high concentrations of

copper. Nickel (II) and zinc (II), but not manganese (II) ions were also inhibitory, though not

as strongly as copper. A related effect was first described by Brimacombe et al., who reported

that recombinant PrP could be displaced from an experimental nickel biosensor surface by

pulses of heparin (Brimacombe et al., 1999). PrP loaded with copper and manganese assume

distinct conformations with differing levels of protease-resistance (Brown et al., 2000; Miura

et al., 1999; Qin et al., 2000; Shaked et al., 2001b; Wong et al., 2000). Our data suggests that

one of the first consequences of metal induced conformational changes may be an altered

affinity for endogenous HSPGs. Similarly, bioactive HSPGs may influence the uptake of

metal ions by PrP.
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The specificity of the PrP-heparin interaction was also investigated. The interaction of PrP

with heparin (as detected by the ELISA) could be disrupted by soluble heparin, HS and by

other sulfated polysaccharides (Fig. 3c, d and Fig. 4) but was refractory to inhibition by CS,

confirming earlier work by others (Caughey et al., 1994). This last observation on the non-

activity of CS has a special significance as it suggests that presentation of sulfates is not in

itself sufficient for prion-binding activity. A particularly interesting finding was the potent

inhibitory activity of a fraction of dextran sulfate of average MW 8000 (DS8). On a weight /

volume basis this preparation was found to be superior to heparin and at least as effective as

pentosan polysulfate (PPS), a polyanion with well-documented anti-prion activities in tissue

culture and animal models (Ladogana et al., 1992; Shyng et al., 1995). It would be of great

interest to compare the inhibitory activity of DS8 with fractions of higher MW such as DS500

(average MW 500,000) which is a particularly effective inhibitor of PrPsc propagation in cell

culture (Caughey and Raymond, 1993) and a potent anti-prion agent in animal studies of

prion disease (Beringue et al., 2000). Using this competition ELISA we also explored the

contribution to prion binding of 2- and 6-O sulfate groupings, two of the three types of sulfate

which elaborate heparin and HS (N-sulfates were not examined in this study). Removal of 2-

O sulfates was found to significantly reduce the inhibitory activity of BLH in the competitive

ELISA (Fig. 4), suggesting an important role in prion-ligation. FGF-2 and hepatocyte growth

factor are other heparin-binding proteins with a particular requirement for 2-O sulfate (Ono et

al., 1999). 

The location of heparin-binding sites in the prion protein has not been determined

conclusively. This study revealed three sites in the recombinant molecule with independent

affinity for GAGs, namely stretches 23-52, 53-93 and 110-128. While the first sequence (23-

52) has no previously reported affinity for GAGs, there is some evidence for GAG binding

activity in the other two. The biosensor response generated by P2(53-93) on both heparin and

HS surfaces was concentration-dependent and selectively inhibitible and so of the three

sequences heparin-binding is least likely therefore to be an artefact of aggregation in solution.

As this sequence encompasses a major copper-binding motif its heparin-binding

characteristics were also examined with and without added Cu(II) ions. In contrast to the

intact molecule, accumulation of P2 (53-93) on heparin-binding was clearly enhanced by

Cu(II) addition. The enhancing effect was not dependent on co-mixing and could be produced

simply by conditioning the heparin surface with copper in advance of P2 (53-93) application.

Certainly it is possible to form complexes between glycosaminoglycans and copper (II) in

vitro and this is the basis of a sensitive detection method for heparin (Toida et al., 1997). This
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supports a model in which copper ions may associate directly with the P2 sequence, with P2

following transfer from the heparin surface, or as part of a complex of all three components. It

is difficult to square the binding properties of the intact molecule and P2 (53-93). Either an

enhancing influence of copper on heparin-binding via P2 is not manifest in the native protein,

or if present, is masked by another copper-modulated heparin-binding activity elsewhere in

the sequence. A candidate for such a site is P4n (110-128) and preliminary data, not presented

here, indicates that heparin-binding of P4n is abrogated by Cu(II). As with the complete

molecule alternative metals had divergent effects on the binding of P2 (53-93) to heparin and

it may be significant that manganese afforded no enhancing effect. Given its strong heparin-

binding behaviour in biosensor studies, it was surprising that GST::P2 (53-93) was not

identified as heparin-binding in the direct ELISA and the reason for this is not clear.

Nevertheless in the presence of Cu(II) ions synthetic P2 (53-93) appeared to reduce heparin

binding by co-mixed GST::haPrPc. This result again supports a heparin-binding function for

P2 (53-93) and suggests that the sequence is the predominant site for heparin recognition in

the full-length protein

P1(23-52) demands particular attention as it proved positive in all tests of direct heparin and

HS binding, including in the ELISA where concentration-dependence and target specificity

were established (Fig. 6a). However as we were not able to demonstrate competition between

this peptide and full-length GST::haPrPc for binding to heparin (Fig. 9a, b) we propose that

this sequence is a major heparin-binding site in intact PrPc. A more important bindign partner

may be sequences within PrP itself for we were able to show a direct interaction between the

immobilised peptide and GST::haPrPc (Fig. 6a). Such an interaction may be a means by which

putative receptors for this sequence such as nucleic acids (Weiss et al., 1997) and Hsp60-like

chaperonins could influence fibril formation.

In biosensor analysis P4n (110-128) bound heparin and HS both as a GST::fusion and as a

free peptide, but presented no heparin binding in the ELISA. This peptide particularly yielded

biosensor signals that could not be reversed by salt washing or extremes of pH. A possible

explanation for this unusual behaviour is extensive aggregate formation either in solution or

in situ at the heparin surface especially as a related sequence (106-126) shows a well

described propensity for fibril formation (De Gioia et al., 1994; Gasset et al., 1992).

Significantly the �-sheeted structures characteristic of peptide 106-126 in weakly acidic ionic

buffers (conditions in which fibrils are also favoured) are evidently highly stable (resistant to

5% SDS or alkali to pH 12) (De Gioia et al., 1994). That P4n should show an affinity for

heparin/HS was of interest as it has shown elsewhere that the cytotoxic properties of peptide
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106-126 may be abrogated by addition of GAGs (Perez et al., 1998). Again however, an

excess of P4n (110-128) did not interfere with the binding of full-length PrP to heparin and

for this reason is considered a weaker candidate for a true physiological role in heparin/ HS

binding than P2 (53-93).

To summarize we have identified three sites of heparin / HS binding activity in recombinant

prion, and have shown that for at least one of these peptides designated P2 (residues 53-93)

this activity is copper (II) sensitive. Which sequence makes the most important contribution to

the interaction between full-length PrP and heparin is not clear though synthetic P2 peptide

was shown to compete with the full-length prion molecule for binding to heparin. A

prominent role for P2 (53-93) in direct HS binding was predicted from recent work

demonstrating the strictly HSPG dependent binding of this peptide manner to mammalian

cells (20). The behaviour of the sequence with native PrP must be different to that of the free

peptide because of the significantly divergent effects of copper (II) ions on the two species.

Lastly, the sensitivity of PrPc-heparin binding to disruption with dextran sulphate and

pentosan polysulfate, both of which have been proposed as candidate prophylactic molecules

and the demonstration of intimate role of 2-O sulfate in heparin recognition was particularly

interesting. Our data suggests that further investigation of the identified heparin-binding

domains, and the potential specificity of carbohydrate binding sites in heparan sulfate, will

lead to further insights into the role of HS in the function of prion proteins.
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Fig. 1. Biosensor analysis of binding of full-length GST::haPrPc to heparin and HS-
derivatised surfaces. Sensorgrams produced by injection of recombinant GST::haPrPc (30 �l,
15 �g/ml, 10�l/min flow rate) onto bovine lung heparin (A) and porcine intestinal heparan
sulfate (B) coated biosensor surfaces (immobilised GAGs biotinylated mid-chain according to
(Nadkarni and Linhardt, 1997)). The sensorgram displays the net response (in RU) for the the
GAG-derivatised surface after subtraction of non-specific events as recorded on the non-
derivatised control surface. The response changes recorded after injection of buffer alone have
been superimposed (“buffer”). After a short period during which the sample makes contact
with the control and heparin-derivatised surfaces (period A, 180 secs) the sample was
exchanged for running buffer (period D, 120 secs) during which the the major movement of
GST::haPrPc was dissociation from the chip surface. After each injection of GST::haPrPc the
chip surfaces were washed with 2M NaCl and 10mM HCl. The amount of residual
GST::haPrPc removed from the heparin and HS surfaces by these washes is marked RHEP and
RHS .
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Fig. 2. Addition of Cu(II) ions suppress the biosensor response generated when GST::haPrPc

is injected onto heparin. (A) GST::haPrP (40 �l, 16 �g/ml) was injected over heparin (bovine
lung, biotinylated at reducing termini, according to Nadkarni (Nadkarni and Linhardt, 1997) )
in the absence of added Cu(II) ions, and subsequently in the presence of 10�M Cu(II).
Initiation of dissociation phase for each sample application marked with letter D. (B)
GST::haPrPc (30 �l, 10 �g/ml) mixed with successively higher concentrations of Cu(II) (final
concentration in �M shown in boxes) was injected over heparin. Initiation of injections
marked by black arrows. Initiation of dissociation phase for each sample indicated by arrow
with adjacent letter D. Between injections the chip surface was washed with 2 M NaCl (solid
arrows) and 10mM HCl (open arrows). Note that neither buffer alone nor buffer containing 50
�M Cu(II) yielded a biosensor response on the heparin surface (data not shown). 
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Fig. 3. ELISA analysis of PrPc binding to heparin/ HS. Concentration and divalent cation
dependency and inhibition with soluble GAGs. (A) ELISA signals generated by the
application of increasing concentrations of GST::haPrPc to immobilised BLH (triangles), PIH
(boxes) or PMHS (circles). (B) Absorbance signals generated by incubation of 1�g/ml
GST::huPrPc onto PIH coated wells in the presence of increasing concentrations (0-16�M) of
Mn (II), Zn (II), Ni (II) and Cu(II). (C, D) ELISA experiments in which GST::haPrPc was
incubated on immobilised PIH in the presence of increasing concentrations of sulfated
polysaccharides and GAGs. The experiment was conducted in the absence (B) or presence (C)
of 50 �M Cu(II). Inhibitors are as follows: PIH: solid line, open square; LMW PIH: solid line,
open diamond; PMHS: solid line, closed circle; PPS: dashed line, open triangle; DS8: dashed
line, open circle; CS: dashed line, open square. In all ELISA experiments values represent
mean ± standard deviation of net absorbances (background subtracted) achieved from three
experiments.

Fig. 4. Contribution of 2-O and 6-O sulfation to heparin recognition by PrPc. Data from
ELISA in which GST::huPrPc (2.5 �g/ml) was incubated in wells coated with PIH with no
addition or in the presence of selected GAGs (BLH, PMHS, CS) and chemically modified
heparins at 10 and 100 �g/ml. PER-S: oversulfated bovine lung heparin; 2-O-DeS: de-2-O-
sulfated BLH; 6-O-DeS: de-6-O-sulfated BLH.
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Fig. 5. Biosensor analysis of heparin-binding by GST-tagged and synthetic peptides. (A)
GST::haPrP peptides were applied to a heparin surface (BLH modified with biotin at mid-
chain sites according to (Nadkarni and Linhardt, 1997)) at the following concentrations
(�g/ml): P1(23-52), 50; P2 (53-93), 50; P3 (90-109), 100; P4 (129-175), 80; P4n (110-128),
110; P5 (218-231), 80; Px (180-210), 120. Injection volumes were 30 �l. Asterisks mark the
sample applications (GST::P2 and GST::P4n ) that yielded significant biosensor responses.
The surfaces were washed with 10 �l 2 M NaCl, 5 �l 10 mM HCl and 5 �l 10 mM NaOH
following the injection of GST::P1 and washed with with 10 �l 2 M NaCl following injection
of GST::P4n. (B) Synthetic peptides P1 (23-52), P2 (53-93), P3 (90-109), P4 (129-175), P4n
(110-128), Px (180-210) and P5 (218-231) of human sequence were applied at a concentration
of 1.0 mg/ml (volume 30�l) to a bovine lung heparin-derivatised surface (mid-chain
biotinylated).

-20

20

60

100

140

0 700 1400 2100 2800

Time (secs)

R
es

po
ns

e 
(R

U
) P2PxP5P4P3P1 P4n

B

-10

10

30

50

70

0 1000 2000 3000 4000

Time (secs)

R
es

po
ns

e 
(R

U
)

PxP5P4n

P4P3P2P1 *

*wash

2 M NaCl

A



Chapter VI 141

Fig. 6. Heparin binding of P1 (23-52) is inhibited by soluble heparin but not PMHS or CS and
immobilised P1 peptide, but not P2 or P4n binds PrPc. (A) This histogram shows the results of
an ELISA analysis to determine the inhibitory effect of soluble GAGs, bovine lung heparin
(BLH), chondroitin sulfate (CS) and porcine mucosa heparan sulfate (PMHS) all at 20 �g/ml,
on the binding of GST::P1 (23-52) (5 �g/ml) to immobilised heparins. Target surfaces are as
follows: un-modified control surface (white column); BLH (black column); PIH (shaded
column). The right-hand side of the histogram depicts the absorbances achieved when a
dilution series of GST::P1 (23-52) is applied to the same surfaces in the absence of competitor
GAGs (single measurements, no error bars). (B) Histogram showing the signals produced in
an ELISA to detect binding of GST::haPrPc to immobilised peptides P1, P2 and P4n. The
following GAGs were co-incubated with GST::haPrPc at 100 �g/ml to assess the GAG-
dependency of any interaction: column 1: buffer only (no haPrPc, no GAG); column 2: GST:
haPrPc only (no GAG), column 3-8: haPrPc + BLH, PMHS, PPS, DS, CS and LMW PIH
respectively. 
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Fig. 7. Biosensor response due to binding of synthetic P2 (53-93) peptide to heparin and HS is
concentration dependent and HS recognition is sensitive to competition with soluble HS.
Synthetic P2 (53-93) was applied to BLH- (A) and PMHS-derivatised (B) surfaces at a range
of concentrations (values in mg/ml indicated above the respective sensorgram profiles,
overlaid on a common axis). (C): injection of 1 mg/ml synthetic P2 (53-93) over an HS
surface (HS biotinylated mid-chain according to Rahmoune method (Rahmoune et al., 1998))
in the absence (injection at t = 500 s) or presence of 20 �g/ml soluble PMHS (injection at t =
1500 s). At position (N) the baseline response on HS- and control channels has been
artificially equated to facilitate comparison of the two binding curves. After each sample
injection surfaces were washed with 10 �l BLH (2 mg/ml), 10 �l 2 M NaCl and 5 �l 10 mM
NaOH. 
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Fig. 8. The influence of Cu(II) on the biosensor response generated upon injection of P2 (53-
93) over heparin. (A) Synthetic peptide P2 (53-93) was applied to a heparin surface at 1.0
mg/ml in HBS-P buffer (1st injection) or in buffer containing 10 �M Cu(II) ions (2nd
injection). A third injection of peptide (2nd Cu-free application) bound more strongly than the
first. This suggested that a sustained modification of the surface by the earlier (Cu(II)
supplemented) injection had occurred. 10 �M Cu(II) alone (in the same buffer, injection # 4)
produces no resonance change. (B) Synthetic P2 (53-93) peptide (0.25 mg/ml) was applied to
the heparin surface following a pulse (10 �l, 2 mM) of EGTA (1st injection); a pulse (30 �l,
50 �M) of Cu(II) (2nd injection); a pulse of Cu(II) followed by a pulse of EGTA (3rd
injection). Closed arrows (other than P2 applications) indicate applications of EGTA. Open
arrows indicate applications of Cu(II). A triple wash regime of NaCl (2M), HCl (10mM) and
NaOH (10mM) was applied immediately after each P2 injection. Beyond t= 3000s: synthetic
P1 (23-52) peptide (0.25 mg/ml) applied alone or supplemented with 50 �M Cu(II). (C)
Synthetic P2 (53-93) peptide (0.25 mg/ml) was injected with no added divalent cation, or
mixed with 50 �M of each of Cu(II), Mg(II), Ni(II) or Mn(II) ions (total injected volume 30
�l). After each application of peptide the heparin (and control) surfaces were washed (W)
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with NaCl (2M), HCl (10mM) and NaOH (10mM) and also with EGTA (2 mM, 10 �l)
(arrows marked E). Injections of buffer alone and 50�M Cu(II) are indicated by the first two
arrowed boxes and provide no response. (D) Sensorgram displaying biosensor responses on a
BLH surface due to applications of synthetic P2 (53-93) peptide (33 �g/mL in HBS) mixed
with increasing concentrations of Cu(II) (final Cu(II) concentration in �M shown in boxes).
Between injections the heparin surface was washed with 5�L each of 2M NaCl, 10mM HCl,
10mM NaOH and 5mM EGTA.

Fig. 9. Synthetic P2 (53-93) peptide interferes with the binding of GST::haPrPc to
immobilised heparin. (A) Histogram depicting the results of a two-phase ELISA designed to
test the effect of pre-application or co-incubation of synthetic peptides P1, P2 and P4n on the
binding of GST::haPrPc to heparin. In the first phase each of the synthetic peptides (at 50
�g/ml) or buffer alone were incubated in wells of a microtitre plate pre-coated with heparin.
In the second phase two combinations were tested: 1. GST::haPrPc (1 �g/ml) or buffer alone
was added to each of the wells (columns marked “PRE”). 2. a mixture of GST::haPrPc (at 1
�g/ml) and each of the synthetic peptides (50 �g/ml) was added to wells pre-incubated with
buffer only (columns marked “CO”). (B) The experiment was repeated in the presence of
50�M Cu(II) ions. Target substrates were as follows: un-modified (white column), BLH
(black column) and PIH (shaded column). All procedures were replicated in wells lacking
immobilised heparin (background controls). Error bars indicate the standard deviations of the
net (background subtracted) absorbances from three wells. Control wells receiving only buffer
(no GST::haPrPc) presented a minimal background signal. Note that control wells which
incubated with buffer alone or synthetic peptides followed by buffer (no GST::haPrPc)
generated a negligible signal (data not shown). The asterisk marks the data for GST::haPrPc

co-incubated with P2 (53-93) peptide. A students t-test comparison was applied to absorbance
values generated by co-incubation on PIH of GST::haPrPc with P2 (53-93) (data marked by
asterisk) and incubation of GST::haPrPc (no added peptide). The resulting probability value
P<0.01 indicates that the reduction in ELISA signal as a result of co-incubation with P2 (53-
93) is statistically significant.
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Abstract

Recently, the prion-like protein termed Doppel (Dpl) was identified (Moore et al., 1999). This

protein showed �25% sequence identity with all known prion proteins. We have evidence that

the cellular prion protein (PrP) is dimeric under native conditions (Hundt et al., submitted), a

finding which was recently confirmed by the resolution of its crystal structure (Knaus et al.,

2001). Human PrP interacts with its 37-kDa/67-kDa laminin receptor (Gauczynski et al.,

2001b). The prion-like Dpl showed neither an interaction with itself nor with the laminin

receptor in the yeast two-hybrid system. In addition, there is no interaction of the doppel

protein with the cellular prion protein indicating that Dpl and PrP may be not tightly related.

Introduction

Prion diseases are fatal neurodegenerative disorders of mammals (Aguzzi and Weissmann,

1998; Prusiner, 1998; Lasmézas and Weiss, 2000). A major feature of these diseases is the

conversion of the non-pathogenic, cellular prion protein PrPc into its pathogenic isoform PrPSc

(for review see (Prusiner, 2001)). This isoform has a strong tendency to polymerize forming

amyloid aggregates. Recent publications demonstrate that PrPc shows also  dimerization

properties. The crystal structure of human PrP reveals the dimeric nature of the prion protein

(Knaus et al., 2001). We could also prove by gelfiltration that PrP is dimeric under native

conditions and interacts with itself in the yeast two-hybrid system (Hundt et al., submitted).

Besides the self-interaction of the prion protein the cellular receptor termed 37-kDa/67-kDa

laminin receptor for the prion protein was identified which reveals direct and indirect

interaction domains with PrPc (Gauczynski et al., 2001b), (Hundt et al., 2001). 

Recently, a prion-like protein termed Doppel (Dpl) was identified (Moore et al., 1999). The

homology of Dpl and PrP is about 25% and the Dpl protein has a series of common features

with cellular PrP (for summary see table 1). Although both proteins have different size they

are processed during maturation and a signal peptide and a signal sequence was detached.

Both proteins are glycosylated at two residues located at the C-terminal part of the proteins

and share the same structural pattern: three �-helices and two �-sheets. Within the Prn-p-gene

there are defined mutations/polymorphisms which affect transmissible spongiform

encephalopathies (TSEs) in human and animals. Analogous there were some mutations

investigated within the Prn-d-gene, but their relevance for the development of TSEs is not yet
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proven. Besides this common features there are several differences between Dpl and PrP. One

major difference represents the lack of the octarepeat region in the doppel protein located

within the unstructured N-terminus of the prion protein. The region is responsible for copper

binding (Stockel et al., 1998) and interacts with heparan sulfate proteoglycans (HSPGs) at the

cell surface (Hundt et al., 2001) mediating the interaction of PrP with its 37-kDa/67-kDa

laminin receptor via indirect interaction domains. These results indicate that the octarepeat

region might be important for the physiological function of the prion protein. Since Dpl lacks

the octarepeat region we hypothesize that Dpl cannot full-fill all functions of PrP. The

proposed transmembrane region of PrP (aa 106-126) which seems to have neurotoxic effects

(Haik et al., 2000) is also lacking in Dpl. In contrast to the prion protein, which exhibits one

disulfide bridge due to two cystein residues encoded by the Prn-p-gene, the Prn-d-locus

encodes four cystein residues, responsible for the formation of two disulfide bridges.

Materials, methods and results

In this manuscript we investigated whether Dpl reveals the same properties as PrPc regarding

self-interaction and binding to the 37-kDa/67-kDa laminin receptor employing the yeast two-

hybrid system (for review see (Vidal and Legrain, 1999)). We PCR-amplified on cDNA level

the mature form of Doppel termed Dpl27-154 employing oligodeoxy ribonucleotides flanking

the Dpl-sequence introducing an EcoRI (5‘) and a SalI (3‘) restriction site from cDNA

generated from cultivated HeLa cells by RT-PCR. The PCR-product was cloned into the

vector pSH2-1 via EcoRI and SalI restriction sites resulting in pSH2-1-Dpl27-154. The

Dpl27-154 encoding cDNA was excised from pSH2-1-via EcoRI (5‘) and SalI (3‘) and

subcloned into pJG4-5 restricted with EcoRI and XhoI resulting in pJG4-5-Dpl27-154. All

plasmids were confirmed by didesoxy sequencing. The construction of pSH2-1-GST, pSH-2-

1-GST::huPrP23-230 and pJG4-5-LRP44-295 was described previously (Rieger et al., 1997).

The different bait and prey plasmids and the reporter plasmid pSH18-34 (lacZ) were co-

transformed into EGY48 yeast cells and transformants were tested employing the �-

galactosidase assay.

The Dpl27-154 protein failed to interact with GST::huPrP23-230 (Fig. 1 row 2). GST in prey

position did not interact with Dpl (Fig. 1 row 1) demonstrating that there is no unspecific

effect of the GST part of the GST::huPrP23-230 fusion protein. In contrast to GST::huPrP23-

230 (Fig.1 row5) Dpl27-154 failed to interact with LRP44-295, the cellular receptor for PrP
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(Fig. 1 row 3). In contrast to PrP which interact with each other (Hundt et al., submitted),

Dpl27-154 did not interact with itself in the yeast two-hybrid system (Fig.1 row 4). To test

whether Dpl 27-154 is expressed in the yeast two-hybrid system we co-transformed yeast

cells EGY48 with pSH2-1-Dpl27-154 (bait-protein) and pJG4-5-Dpl27-154 (prey protein).

Western-blot analysis with a polyclonal anti-Dpl antibody (kindly provided by H. M. Schätzl,

Munich) revealed that the two fusion proteins were properly expressed (Fig. 2). The observed

molecular weights of 21 kDa and 36 kDa for the bait and prey proteins match very well with

calculated molecular weights of 21 kDa (lexA-DNA-binding domain: 7 kDa and Dpl27-154:

14 kDa) and 36 kDa (acidic activation domain B42: 22 kDa and Dpl27-154: 14 kDa).

Therefore we can exclude that the lack of interaction of Dpl with PrP, LRP and itself is a

consequence of non-expressed bait- and prey proteins.

Discussion

The incapability of Dpl to dimerize with itself was recently proposed by modelling the

potential interaction interface (Warwicker, 2000). According to the model PrP dimerization

might take place via a �-hairpin structure located between aa 119 and 128, a non-polar region

lacking in the Dpl protein. We have further evidence that the major interaction domain for the

PrP/PrP interaction is the octarepeat region (Hundt et al., submitted) which is highly

conserved in different mammalian species (Schätzl et al., 1995). Besides the capability of the

octarepeat region to bind HSPGs and therefore mediating the interaction between PrP and the

37-kDa/67-kDa laminin receptor (Hundt et al., 2001) one feature represents the binding of

copper (Aronoff-Spencer et al., 2000) and the possibility to make a copper-mediated protein-

protein interactions. In Alzheimer’s disease, which represents a neurologic disease

comparable to TSEs copper-induced aggregation is observed (Atwood et al., 1998). An

analogous induction of the aggregation of the prion protein which occurs during the disease

process might be conceivable. The octarepeat region is missing within the Dpl protein and

therefore metal-induced dimerization is unlikely. In a yeast two-hybrid analysis we were able

to detect a further interaction domain for the PrP/PrP interaction which is located in the core

region of the prion protein between aa 90-230 (Hundt et al., submitted). This core region

shows similarities to the structured region of Dpl which was analysed by NMR (Mo et al.,

2001). Dimerization via this region is conceivable analogous to PrP. In contrast to PrP, Dpl is

able to form two disulfide bridges confirmed by several methods (Mo et al., 2001). This may
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confer the structure of Dpl a more rigid behaviour which probably prevent the attachment of a

second Dpl molecule forming a dimer. The formation of two disulfide bridges in the Doppel

protein might as well not allow domain swapping which contribute to dimer formation of PrP

observed in the investigation of the crystal structure of PrP (Knaus et al., 2001). 

The different structural features of PrP and Dpl might also be the reason for the absence of an

interaction of Dpl with the 37-kDa/67-kDa laminin receptor, the receptor for cellular PrP

(Gauczynski et al., 2001b). We can not exclude that additional factors which are not present

in the nucleus of the yeast cells might mediate the Dpl-LRP interaction. For PrP HSPGs

arbitrate the interaction with LRP/LR detected in cell binding assays (Hundt et al., 2001).

Whether HSPGs or other factors have an influence on the binding of Doppel to LRP has to be

further investigated. 

Dpl fails to interact with PrP. This might be explained with the different expression patterns

of PrP and Dpl in vivo. PrP is expressed mainly in neuronal tissues and in the brain, which is

the most relevant location for the development of TSEs. In contrast, the main expression locus

for Dpl represents the testis (Silverman et al., 2000) and the heart of wild-type mice (Moore et

al., 1999). Dpl was not detectable in the brain of wild-type mice. Mice however, lacking the

prion gene express Dpl in the brain (Moore et al., 1999). Therefore, the failure of interaction

of PrP and Dpl in the yeast two-hybrid system is not astonishing. Whether Dpl can fulfill the

functions of PrP in PrP0/0 cells remains still unclear. The transport of copper and SOD activity

proposed functions of the prion protein might not be adopted by Dpl due to the lack of the

copper-binding octarepeat region. The role of Dpl in signal transduction necessary for cell

survival postulated by Shmerling (Shmerling et al., 1998) has also to be further investigated. 



150 Chapter VII

Table 1: Comparison of Dpl and PrP

feature prion protein* doppel protein
universal properties:
- protein size (human)
- mature form (human)
- signal peptide /
signal sequence
- disulfide bridge
-  octarepeat region
- copper binding
- glycosylation sites
- mutation/polymorphism
- transmembrane region
- structure
- pK treatment

253 aa
aa 23-230
yes

1
yes
yes
2
at least 22 (human)
aa 106-126 (supp.)
3 helices/2 �-sheets
sensitive (PrPc)

179 aa
aa 27-154
yes

2
no
no
2
4 (human)
no
3 helices/2 �-sheets
sensitive

(Moore et al., 1999)
(Silverman et al., 2000)
(Moore et al., 1999)

(Moore et al., 1999)
(Moore et al., 1999)
(Moore et al., 1999)
(Moore et al., 1999)
(Peoc'h et al., 2000)
(Moore et al., 1999)
(Mo et al., 2001)
(Lu et al., 2000)

expression:
- during RNA
embryogenesis
- in the CNS
- PrP0/0 mice
- main local expression 

yes

high level
no
brain

yes

low level
upregulation
testis

(Moore et al., 1999)

(Moore et al., 1999)
(Moore et al., 1999)
(Silverman et al., 2000)

PrPSc propagation PrPc dependent Dpl dispensable (Behrens et al., 2001)
oxidative stress SOD activity induction of oxid.

stress markers
(Wong et al., 2001)

* For citation see Advances in Protein Chemistry, 2001 Vol. 57: Prion Proteins, Academic
Press
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Fig. 1: Interaction study of the prion-like protein Dpl. HuDpl27-154 in bait-position (row 1-4)
was co-expresseed with GST (row 1), GST::huPrP23-230 (row 2), LRP44-295 (row 3) and
Dpl27-154 (row 4) in prey-position of the yeast two-hybrid system. For positive control
GST::huPrP23-230 in bait position and LRP44-295 in prey position was co-expressed (row 5)
(Hundt et al., 2001). Interactions were detected by the �-galactosidase reporter system. 

Fig. 2: Analysis of Dpl by SDS-PAGE and Western blotting. The expression of Dpl in bait
and prey position of the yeast two-hybrid system was analysed on a 12,5% SDS-PA gel.
Western blotting was performed employing a polyclonal Dpl-antibody (generous gift from H.
Schätzl, Munich). Marker proteins are indicated.
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Abstract

Recently the participation of the prion protein in signal transduction processes has been

investigated (Mouillet-Richard et al., 2000). PrP mediated activation of the tyrosine kinase

Fyn was shown opening new insights into the function of PrP. Here, we demonstrate the

direct interaction of PrP with the tyrosine kinase Fyn employing the yeast two-hybrid system.

In contrast, 37-kDa/67-kDa LRP/LR, the receptor for the prion protein, is not able to interact

directly with tyrosine kinase Fyn. Since heparan sulfate proteoglycens (HSPGs) mediate the

indirect interaction between 37-kDa/67-kDa LRP/LR and PrP, we propose a comparative

model for the PrP mediated tyrosine kinase Fyn activation involving cell surface HSPGs. 

Introduction

Prions have been extensively studied within the last twenty-five years and represent a new

class of infectious agents causing transmissible spongiform encephalopathies (TSEs) (for

review see (Prusiner et al., 1998; Lasmézas and Weiss, 2000; Aguzzi and Weissmann, 1998)).

Many details are known about the biochemical features of the protein and the conversion

reaction of the cellular prion protein PrPc into its pathogenic isoform PrPSc (for review

(Prusiner, 1998)). The physiological function of the prion protein, however,  still remains

unclear. Mice ablated from PrP are viable and develop quite normally (Bueler et al., 1992;

Manson et al., 1994), others showed differences in circadian activity rhythms and sleep

behaviour (Tobler et al., 1996) and altered synaptic functions (Collinge et al., 1994). The

Purkinje cell degeneration observed in PrP0/0 mice (Sakaguchi et al., 1996), however, was due

to an overexpression of doppel, located downstream of the Prn-p gene (Weissmann, 1996).

One major function of PrP is its necessity for the development of TSEs. Transgenic mice

lacking the Prn-p gene were not able to propagate the disease after inoculation with the

scrapie agent (Bueler et al., 1993). PrP might also be involved in the copper metabolism

(Brown et al., 1997), since copper binds to the prion protein (Hornshaw et al., 1995). A SOD

activity of PrP has been identified (Brown et al., 1999) indicating that PrP might play a role in

the cellular resistance machinery against oxidative stress. Very recently, the role of PrP in

signal transduction was investigated (Mouillet-Richard et al., 2000). The PrPc dependent

activation of the tyrosine kinase Fyn was demonstrated in neuronal cells. The activation might

be mediated by caveolin or clathrin, which might trigger the signal from the exterior to the
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interior of the cells. PrPc anchores at the outer membrane, whereas tyrosine kinase Fyn locates

at the inner plasma membrane. In contrast, there are some evidences that other factors mediate

the signal transduction since PrP and Fyn are located in detergent resistant complexes without

caveolin (Gorodinsky and Harris, 1995). Possible candidates are cadherins which interact

with the Fyn kinase (Yagi and Takeichi, 2000) and represent also binding partners of PrP

(Cashman and Dodelet, 1997). 

One possible mediator for the signal transduction between PrP and the tyrosin kinase Fyn is

the 37-kDa/67-kDa laminin receptor LRP/LR. This receptor, identified as an interactor for

PrPc (Rieger et al., 1997), was characterized as the receptor for the cellular prion protein

(Gauczynski et al., 2001b). LRP/LR is localized on the cell surface of mammalian cells

spanning the cell membrane via a transmembrane domain stretching from aa 86 to aa 101 (for

review see (Gauczynski et al., 2001a)). The C-terminus of LRP/LR is located to the

extracellular space encompassing the laminin and PrP binding sites (Hundt et al., 2001).

Therefore LRP/LR represents an suspicious candidate mediating the PrP signal transducion

activity. The participation of PrP within the signal transduction cascades was enforced by the

investigation of the susceptibility of the prion protein to enzymatic phosphorylation (Negro et

al., 2000). Tyrosine kinase Fyn seems to mediate multiple signal transduction pathways via

different molecules (Kai et al., 1997).

Material, methods and results

We now wanted to know whether the interaction of PrP with Fyn observed in the antibody-

cross-linking experiment (Mouillet-Richard, 2000) is also detectable in the yeast two-hybrid

system and therefore is direct in the absence of any co-factors. Recently, the yeast two-hybrid

system identified besides an indirect HSPG mediated interaction between PrP and LRP/LR

confirmed in cell binding assays (Hundt et al., 2001) a direct interaction between both

molecules. This interaction was used as a positive control for PrP-Fyn interaction studies (Fig.

1 row 4).

To investigate the relationship between PrP, LRP and Fyn, we cloned the cDNA encoding

human Fyn kinase into the bait plasmid of the yeast two-hybrid system by PCR using a cDNA

encoding for human tyrosine kinase Fyn (kindly provided by A. Ullrich, Munich). The PCR

product was cloned via EcoRI (5‘) and SalI (3‘) restriction sites into the vector pSH2-1

resulting in pSH2-1-Fyn2-537. The preparation of the prey plasmids was described elsewhere
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(Hundt et al., 2001). The different bait and prey plasmids and the reporter plasmid pSH18-34

(lacZ) were co-transformed into EGY48 yeast cells and transformants were tested employing

the �-galactosidase assay.

Tyrosine kinase Fyn interacts directly with the human prion protein aa 23-230 in the yeast

two-hybrid system (Fig.1 row 2). PrP was utilized as a fusion protein with GST. For

specificity control no interaction between Fyn and GST was observed (Fig.1 row 1). In

addition, no interaction between Fyn and LRP2-295 was detected (Fig.1 row 3) suggesting

that either PrP dependent Fyn activation occurs directly or an additional factor may trigger the

PrP dependent tyrosine kinase Fyn interaction.

Discussion

The prion protein is GPI-anchored on the surface of neuronal cells (Stahl et al., 1987). How

can the extracellular prion protein interact directly with the intracellular tyrosine kinase Fyn?

The expression patterns of PrP and Fyn in mammalian cells are similar. Both proteins are

extensively expressed in neurons (Bare et al., 1993) and in the brain (Yagi et al., 1994;

Caughey et al., 1988). PrP and Fyn are further detectable in detergent-resistant complexes

lacking caveolin (Gorodinsky and Harris, 1995). Studies of PrP translocation at the

endoplasmatic reticulum (ER) revealed new topologic forms of the prion protein (Hegde et

al., 1998). Two transmembrane forms of PrP spanning the membrane of the ER in different

orientations were identified termed CtmPrP (C-terminal part of PrP is located to the lumen of

the ER) and NtmPrP (N-terminus located to the lumen of the ER). Mutations within the

transmembrane region increased the level of the CtmPrP form which was then detectable in the

brain of transgenic mice (Hegde et al., 1998). Recently, the transmembrane forms were

identified in in vitro translation systems (Stewart and Harris, 2001). The transport of

transmembrane proteins processed in the ER and the Golgi complex is performed by vesicles.

The transmembrane proteins were never released into the cytosol but transported to the

plasma membrane via budding of the vesicle. PrP once stuck in the membrane of the ER

might rest as a transmembrane protein at the membrane. Therefore, it is conceivable that

transmembrane forms of PrP exist in wild-type cells in addition to the GPI-anchored PrP.

These transmembrane forms might be able to interact with the intracellular tyrosine kinase

Fyn. In normal cells, the signal transduction via these transmembrane forms does not seem to

play a dominant role and the signal might be transmitted via other factors. In patients
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suffering from GSS (Gerstmann-Sträussler-Scheinker syndrome) due to a mutation within the

prion gene at position 117 (A117V) which favours the transmembrane form CtmPrP, the direct

signal transduction activity of PrP activating Fyn is probably increased. This enhanced signal

transmission or the blockage of the Fyn kinase with CtmPrP regarding regular functions of Fyn

might perhaps lead to the progression of the disease. The effect of the mutation A117V on the

interaction behaviour of PrP and Fyn has to be investigated in the yeast two-hybrid system.

Recently, an interaction of PrP with the intracellular adaptor protein Grb2 involved in the

intracellular signal transduction was identified employing the yeast two-hybrid system

(Spielhaupter and Schatzl, 2001). Therefore direct interaction of PrP with molecules of the

signal transduction cascade could be a common feature of the cellular prion protein.

The majority of the wild-type prion protein is located on the outer side of the membrane

suggesting that additional factors might participate in signal transduction processes. One

possible mediator might be the laminin receptor LRP/LR which binds to PrP in a direct and an

indirect way (Hundt et al., 2001). The indirect interaction is mediated by heparan sulfate

proteoglycans (HSPGs) located to the cell membrane. The interaction of HSPGs with other

proteins is not detectable in the yeast two-hybrid system, due to the absence of HSPGs in the

nucleus of yeast cells where the interaction occurs. There is some evidence that the tyrosine

kinase Fyn is related to HSPGs. The proteoglycan N-syndecan (syndecan-3) was co-purified

with Fyn from the hippocampus (Lauri et al., 1999) and both molecules were involved in

neurite outgrowth (Kinnunen et al., 1998). Therefore HSPGs could act as regulators

transmitting signals between extracellular HSPG binding factors and the Fyn signalling

pathway. This opens the possibility that during cell-cell-communication essential for cell

survival, LRP interacts with PrP from one cell stimulating a signal cascade via HSPG to the

cytosol of another cell (intercellular signalling) (Fig.2: I). Another possibility is intracellular

signalling (Fig.2: II), whereas the signal is mediated by HSPGs from PrP to tyrosine kinase

Fyn of the same cell. The cascades might lead to activation of Fyn and to further reactions

within the cell. The involvement of other factors could not be excluded and has to be further

investigated. The influence of HSPGs on the signal transduction and the consequences for the

development of prion diseases comparable to Alzheimer‘s disease where HSPGs are

accumulated in �-amyloid deposits (Snow et al., 1994) have to be further enlightened.
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Fig. 1: Interaction study of the tyrosine kinase Fyn. Human tyrosine kinase Fyn in bait
position (row 1-3) was co-expressed with GST (row 1), GST::huPrP23-230 (row 2) and
LRP2-295 (row3) in prey position of the yeast two-hybrid system. For positive control
GST::huPrP23-230 in bait position and LRP44-295 in prey position was co-expressed (row 4)
(Hundt et al., 2001). Interactions were detected by the �-galactosidase reporter system. 
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Fig. 2: Model for the signal transduction of the prion protein and the tyrosine kinase Fyn. PrP
is located on the outer membrane of a cell and binds to its receptor LRP/LR via a direct and a
HSPG-dependent binding domain (Hundt et al., 2001). The tyrosine kinase Fyn is located on
the innerside of the cell and interact with the proteoglycan moiety of the HSPG. It is possible
that the heparan sulfate arm of the HSPG molecule can mediate the binding of LRP/LR and
PrP of another cell (intercellular signalling) (I) or of the same cell (intracellular signalling)
(II). This will probably lead to the start of a signal cascade where Fyn is activated and
phosphorylation of other factors might occur. 
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moPrP mouse PrP
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PK proteinase K
Pli PrP ligand
PMSF phenylmethyl-sulfonylfluoride
PrPc cellular prion protein
PrPres resistent prion protein
PrPSc Scrapie (pathogenic)-isoform of PrP 
PrPsen sensitive prion protein
PVDF polyvinyliden-difluoride
r.p.m. rounds per minute
rec. recombinant
rER rough ER
RNA ribonucleic acid
RT-PCR reverse transcription PCR
SAF Scrapie associated fibrils
sCJD sporadic CJD
SDS sodium dodecyl sulfate
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SOD superoxide dismutase
TBS tris buffered saline
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TMD transmembrane domain
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UK United Kingdom
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