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Summary

RNA polymerase (Pol) I, Pol II and Pol III carry out transcription in eukaryotes, a

process that is essential to all cell. Ribosomal RNA synthesis by Pol I accounts for the

majority of transcription products, which highlights its biological importance. During

initiation Pol I is recruited to the promoter with the assistance of the general transcrip-

tion factors Rrn3 and core factor (CF), a trimeric complex consisting of Rrn6, Rrn7

and Rrn11. Well-de�ned initiation as well as processive and accurate Pol I elongation

are equally important for cell viability. However, the mechanisms of both processes

are poorly understood.

Here, I report a 3.8Å resolution cryo-electron microscopy structure of elongating S.

cerevisiae Pol I on a 39 nucleotide DNA sca�old that embeds an 11 nucleotide mismatch

bubble with a 8 nucleotide RNA-DNA hybrid. The structure reveals details of active

Pol I, such as a completely helical 'bridge helix' and repulsion of the RNA cleavage

stimulating domain of A12.2 from the active centre. The �ndings suggest a coupling of

cleft states with activity. While an expanded cleft indicates inactive Pol I, it contracts

upon binding of an RNA-DNA hybrid. In collaboration with the Frangakis laboratory,

we further analysed Pol I on Miller spreads under ex vivo conditions. Cryo-electron

tomography and subtomogram averaging con�rmed the contracted cleft state under

near physiological conditions and further allowed analysing the relative orientation of

Pols.

Additionally, I report a 4.2Å resolution cryo-electron microscopy structure of initially

transcribing yeast Pol I bound to initiation factors. Collaborating with Tobias Gub-

bey, who solved the CF crystal structure, allowed me to generate a pseudo-atomic

model. In collaboration with Christoph Engel, we further found a second CF bind-

ing interface, which blocks the Pol I cleft for DNA loading. Taken together, we show

how upstream promoter DNA is bound by an interplay of Pol I and CF, which to-

gether introduce a 30◦ DNA bend. In addition to the promoter associated domain,

CF contains another module that docks to the Pol I - Rrn3 complex. Furthermore,

I modelled a closed complex, which shows that DNA is loaded on Pol I in an expan-

ded cleft state between protrusion and clamp domains. For initial transcription the

cleft then contracts and thereby allows RNA synthesis. Based on comparison with

the Pol II system we suggest that the mechanism of promoter recognition in Pol I is

unique among eukaryotic polymerases, relying on DNA bendability and meltability

rather than on sequence recognition.

Altogether, my studies expand our mechanistic understanding of Pol I transcription

for both regulatory important steps, initiation and elongation.
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1. Introduction

1.1. Transcription

The genetic information of all organisms, from bacteria to eukaryotes, is encoded in

their DNA. While every single cell in a multicellular organism has the same genes, the

subset of genes that are transcribed in a speci�c cell type di�ers. Thus, transcription

plays an important role determining the cell's phenotype. Assembly of an RNA chain

from individual ribonucleotides, is catalysed by DNA-dependent RNA polymerases

(Pols) which, due to their fundamental function, are essential in all three kingdoms of

life but di�er in complexity (Werner and Grohmann, 2011).

Bacteriophages, like T7, encode for single subunit, 'right-handed' polymerases. Com-

plexity is increased in bacteria and archea, which each possess a single type of multi-

subunit Pol. While Pols in eukaryotes are built from a related structural framework,

these higher organisms encode for three di�erent polymerases (Pol I, Pol II and Pol III).

In plants, the additional Pol IV and PolV predominantly transcribe non-coding RNAs.

All nuclear Pol di�er in function. Pol I, II and III synthesize mainly ribosomal, mes-

senger and transfer RNA, respectively. According to the central dogma of biology,

messenger RNA (mRNA) is translated to proteins by ribosomes. The main compon-

ent of these ribonucleoprotein complexes is ribosomal RNA (rRNA). In yeast, the 35S

precursor is transcribed by Pol I and later spliced into 28S, 18S and 5.S rRNA. During

translation, rRNA functions catalytically as well as structurally.

All Pols catalyse the same chemical reaction. The release of pyrophosphate is the

driving force to form a phosphodiester bond between the 3' hydroxyl group of the

growing RNA chain with the incoming ribonucleotide. Consequently, the catalytic

mechanism of all eukaryotic polymerases is very similar. However, they have diverged

in order to be specialists for their speci�c tasks. This is particularly true when it

comes to regulation of transcription and is also re�ected in the subunit composition of

the enzymes. Pol I consists of 14 subunits with a total molecular weight of 590 kDa in
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1. Introduction

S. cerevisiae (Table 1.1). The core is conserved between Pol II and III and comprises

ten subunits. The �ve subunits Rpb5, Rpb6, Rpb8, Rpb10 and Rpb12 are common

to all three polymerases. The two largest subunits A190 and A135 are unique to Pol I

but are homologous to the Pol II subunits Rpb1 and Rpb2, respectively. AC40 and

AC19 are shared between Pol I and Pol III and are homologous to Rpb3 and Rpb11,

respectively. The N-terminal domain of A12.2 shows similarity to Rpb9 and the stalk

subunits A14 and A43 can be compared to Rpb4 and Rpb7 of Pol II. The two speci�c

subunits of Pol I, A49 and A34.5, share features of the general Pol II transcription

factors TFIIF and TFIIE (Eichner et al., 2010; Vannini and Cramer, 2012).

Table 1.1. Eukaryotic (Pol I, II and III) and bacterial RNA polymerase subunits.
The molecular weight of S. cerevisiae Pol I (in total 590 kDa) is stated in a separate column.
Table adopted from Werner and Grohmann (2011).

Pol I Pol II Pol III Bacteria Pol I [kDa]
A190 Rpb1 C160 β subunit 186
A135 Rpb2 C128 β subunit 136
AC40 Rpb3 AC40 α subunit 38
AC19 Rpb11 AC19 α subunit 16
Rpb6 Rpb6 Rpb6 ω subunit 18
Rpb5 Rpb5 Rpb5 25
Rpb8 Rpb8 Rpb8 17
Rpb10 Rpb10 Rpb10 8
Rpb12 Rpb12 Rpb12 8
A14 Rpb4 C17 15
A43 Rpb7 C25 36
A12 Rpb9 C11 14
A49 C53 47
A34.5 C37 27

1.2. Organization of rDNA genes

As Pol I transcription accounts for about half of the overall eukaryotic transcription

(Moss, 2004; Russell and Zomerdijk, 2005), the rDNA genes have been studied extens-

ively. In all eukaryotes, rDNA is arranged in repeats with a conserved layout across

species (Moss et al., 2007). Since most repeats are inactive under normal growth con-

ditions, controlling the fraction of active rDNA repeats seems plausible to regulate

Pol I transcription (Conconi et al., 1989). Furthermore, genome stability is suggested

as a primary function of inactive rDNA repeats (Ide et al., 2010).

2



1.3. Transcription cycle

25S 25S 18S18S
5.8S5S 5S

rDNA repeat   ~ 9 kb

rDNA rDNA rDNA
n 

 n ~ 150

L RCEN CENTELChromosome XII ( )

rDNA

rRNA

Pol I

Processosome

35S gene   ~6.9 kb IGS   ~2.3 kb

Figure 1.1. Organisation of rDNA genes. S. cerevisiae rDNA repeats are localised on
chromosome XII and consist of the 35S gene and the intergenic spacer (IGS). The Miller
spread shown was taken from Osheim et al. (2009) and the zoom-in circle visualizes Pol I
together with its rDNA template and rRNA product, which is further processed within the
processosome.

The genome of yeast cells contains about 150 rDNA repeats, which are embedded

with upstream and downstream �anking regions (Hamperl et al., 2013) (Figure 1.1).

Each repeat is built up by the 35S gene and the intergenic spacer (IGS). The IGS

also hosts the 5S gene, which is transcribed by Pol III in antisense direction to the

35S gene. The high loading rate of rDNA genes is visualized in 'Miller spreads' of

nucleolar chromatin (Miller and Beatty, 1969). As Pol I travels along the gene, its

RNA product is extended, and the nascent rRNA is further compacted and thereby

forms the 'processosome'. This terminal knob is highly dynamic and processes the

35S rRNA precursor co-transcriptionally into 18S, 25S and 5.S rRNA (Osheim et al.,

2004).

1.3. Transcription cycle

The transcription cycle of all Pols involves three main stages, initiation, elongation and

termination. During initiation, the polymerase has to be recruited to the promoter

and the DNA duplex has to unwind. After leaving the promoter, the polymerase

elongates along the gene until it reaches a termination signal.
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1. Introduction
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DNA melting

Initial
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Figure 1.2. Transcription cycle. Scheme of the Pol I transcription cycle. States with
known structures are marked with bold font. The image of dimeric Pol I was adopted from
Engel et al. (2013)) and the Rrn3 crystal structure also revealed dimers (Blattner et al.,
2011). These two homo-dimers form an initiation competent Pol I-Rrn3 hetero-dimer and
this complex was solved by cryo-EM (Engel et al., 2016; Pilsl et al., 2016). Apart from Rrn3,
CF is also involved in promoter recognition. The role of TBP in the Pol I system is unclear,
but numerous crystal structures were solved and showed that TBP induces a bend into
DNA (Gietl and Grohmann, 2013). Subsequent to promoter recognition, the transition to an
open complex occurs via DNA melting. Then, the initially transcribing complex escapes the
promoter and productive elongation occurs followed by either re-initiation or termination.
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1.3. Transcription cycle

During the �rst step of the transcription cycle, Pol I is recruited to the promoter. As

Pol I can dimerize into an inactive state it has to be rendered initiation competent by

its recruiting factor Rrn3 (Engel et al., 2016, 2013; Fernández-Tornero et al., 2013; Pilsl

et al., 2016). According to our current understanding, the hetero-dimer of Pol I and

Rrn3 is further bound by the trimeric core factor (CF). While this system resembles

the minimal, but speci�c, initiation system, the upstream activating factor (UAF),

is also involved in initiation (Figure 1.3). It cooperatively supports DNA binding

and enhances initiation activity. Furthermore, UAF is supposed to play a role in

determining the rDNA gene promoter speci�city for Pol I, but prevents Pol II and

Pol III transcription at the same time. The role of TBP is currently discussed. While,

TBP was found to be part of the PIC and to stimulate transcription (Aprikian et al.,

2000; Ste�an et al., 1998), it was also shown not to be needed for Pol I activity (Keener

et al., 1998).

Figure 1.3. rDNA gene promoter. In addition to Pol I, the initiation factors Rrn3 and
the core factor (CF) bind the promoter core element (CE) in the yeast nucleolus. The CE also
harbours the transcription start site (TSS) indicated by an arrow. The upstream activating
sequence (UAS) is recognised by the upstream activating factor (UAF) and both elements are
bridged by TBP, although the Pol I promoter is TATA-less. The CE ranges from nucleotides
-38 to +5 and the UAS from -60 to -155, with +1 indicating the TSS (Meier and Thoma,
2005). Figure adopted from Knutson and Hahn (2013).

Following successful recruitment of Pol I to the promoter, promoter opening occurs

and the �rst ribonucleotide is incorporated, which actually initiates transcription.

While Pol I moves from 3' to 5' along the template DNA, elongation proceeds in 5'

to 3' direction. When the newly synthesized RNA reaches a length of 10 nucleotides,

promoter clearance occurs. This process involves the removal of initiation factors and

was shown to be rate limiting (Panov et al., 2001).

After promoter clearance, Pol I enters the phase of transcription elongation, which is

characterized by a very dense loading of Pols on the rDNA genes at the same time.

The high number of Pols on a gene was visualized in 'Miller spreads' (Miller and
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1. Introduction

Beatty, 1969). Incorporation of incorrect nucleotides can result in Pol I pausing. To

rescue paused Pol, it has to backtrack and to cleave o� the wrongly incorporated

nucleotides from the RNA 3'-end. While Pol II relies on the cleavage factor TFIIS,

Pol I has the built-in subunit A12.2, which can render the active site of the enzyme

cleavage competent and thereby enables e�cient elongation.

Upon termination, the elongation complex is destabilized and subsequently DNA,

RNA and polymerase dissociate from each other. The Pol I termination sequence

includes a 15 bp long T-rich sequence upstream of a Reb1-binding site. While this

sequence together with Reb1 is su�cient to terminate Pol I in vitro, the process is

much more complex in vivo and a coupling of rRNA processing as well as transcription

re-initiation is discussed (Nemeth et al., 2013).

1.4. Structural studies of the RNA polymerase I

system

1.4.1. RNA polymerase I crystal structure

First structural insights into the architecture of Pol were gained by electron micro-

scopy of 2D crystals (Schultz et al., 1993), but high resolution information remained

elusive for more than two decades. A working model about the position of the Pol I spe-

ci�c subunits was derived from negative stain immunolabelling (Bischler et al., 2002).

Cryo-EM data gave rise to a model of the functional architecture of the complete en-

zyme (Kuhn et al., 2007), and the stalk as well as dimerisation domain sub-complexes

were characterized individually (Geiger et al., 2010; Kuhn et al., 2007). Finally, well-

di�racting crystals of the complete enzyme were obtained and the structure of S.

cerevisiae Pol I was determined at 2.8Å resolution (Engel et al., 2013; Fernández-

Tornero et al., 2013). These studies not only gave insights into the structure of Pol I

speci�c features, but also in the regulation of rDNA transcription (Figure 1.4).

Pol I was observed in a dimeric state, in which the stalk of one enzyme invades the cleft

of the other and its 'connector' stabilizes the dimer. DNA binding is not possible in this

conformation for three reasons and thus, the polymerase was trapped in an inactive

state. Firstly, the adjacent Pol I blocks the DNA path. Secondly, the cleft is expanded

and too wide to properly hold DNA and thirdly, the 'expander' is localized close to

the active site and would clash with a potential DNA-RNA hybrid. Furthermore, the

6



1.4. Structural studies of the RNA polymerase I system

Figure 1.4. RNA polymerase I crystal structure. (A) Pol I ribbon model. All domains
were resolved in the crystal structure except for the mobile tandem winged helix domain of
A49. (B) Pol I dimerization is visualized with one enzyme shown in ribbon and the other in
surface representation. (C) Cleft expansion of Pol I (black) compared to Pol II (orange). The
models were superimposed on the second largest subunits. (D) Bridge helix superimposed
with electron density mesh (upper panel). Ribbon model of Pol II (orange) and Pol I (green)
bridge helix (bottom panel). (E) The Expander (red) in the Pol I crystal structure is next
to the bridge helix and would clash with a DNA-RNA hybrid. Figure adopted from Engel
et al. (2013).
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1. Introduction

bridge helix adopts an expanded conformation and changes in the bridge helix are

generally linked to Pol functionality (Jovanovic et al., 2011).

While Pol I possess built-in proofreading activity, Pol II relies on the additional factor

TFIIS (Kettenberger et al., 2003). The C-terminal domain of A12.2 ful�ls this role,

rendering the composite active site of Pol I active for cleavage and was indeed observed

at a similar position as TFIIS with its catalytic loop reaching into the active site of

the enzyme.

1.4.2. Rrn3 crystal structure

The initiation factor Rrn3 is involved in the recruitment of Pol I to the promoter

and its interaction with Pol I is coupled to cell growth regulation (Grummt and Voit,

2010). Certain Rrn3 phosphorylations impair Pol I binding and reduce transcriptional

activity (Mayer et al., 2005). Structure-function analysis of Rrn3 gave insights into

Rrn3-regulated Pol I transcription (Blattner et al., 2011) (Figure 1.5).

Figure 1.5. Crystal structure of Rrn3. (A) Front (left panel) and back (right panel)
view of Rrn3. Each HEAT repeat (H1 to H10) consists of two anti-parallel α-helices. The
N-terminal serine patch is highlighted in blue and stretches over helices α3, α4, α5 and
α8. The C-terminal dimerization interface is coloured in orange. (B) SAXS con�rms Rrn3
dimerization in solution (upper panel). The SAXS envelope is shown as grey semi-transparent
surface and the Rrn3 dimer from the crystal structure is depicted as ribbon model. Point
mutations in the dimer interface disrupt Rrn3 dimerization and consequently, these mutations
are eluted at later volumes in size-exclusion chromatography experiments (bottom panel).
Figure adopted from Blattner et al. (2011).

Rrn3 is a mainly helical protein of 23α-helices, of which 20 are arranged in an anti-

parallel manner forming HEAT repeats. HEAT repeats are commonly involved in

protein-protein interactions and indeed, an N-terminal serine patch of Rrn3 binds

8



1.4. Structural studies of the RNA polymerase I system

to Pol I. Phospho-mimetic mutations in this patch negatively in�uence binding and

further impair Pol I promoter recruitment. While Rrn3 and Pol I bind each other in

a 1:1 ratio, the crystals revealed dimeric Rrn3. Next to the N-terminal serine patch,

Rrn3 contains an additional C-terminal protein interaction domain, the dimerisation

interface. SAXS analysis con�rmed that Rrn3 dimerizes not only under crystallization

conditions, but also in solution and dimerization can further be disrupted by speci�c

point mutations. A model of the Pol I-Rrn3 complex, in which Rrn3 lies on the back of

the enzyme in close proximity of the RNA exit channel and the stalk, was hypothesized

on the basis of lysine-lysine cross-linking.

1.4.3. RNA polymerase I - Rrn3 complex structure

While the crystallographic studies of Pol I and Rrn3 already lead to models of the Pol I-

Rrn3 complex (Blattner et al., 2011; Engel et al., 2013), these models were further

re�ned by cryo-EM analysis (Engel et al., 2016; Pilsl et al., 2016). Going from the

N-terminal to the C-terminal Rrn3 helices, the N-terminal HEAT repeats form the

serine patch, which binds to the stalk of Pol I. A Pol I speci�c clamp insertion further

interacts with Rrn3. The binding interface is completed with the dock domain and

two loops of the Pol I subunits AC19 and AC40. Upon Rrn3 binding, the expanded

Pol I cleft also contracts partially.

Figure 1.6. Structure of Rrn3 in complex with Pol I. (A) Ribbon model of Pol I-Rrn3
together with the EM density superimposed. Rrn3 is shown in green. (B) Protein interaction
interface between Pol I and Rrn3. Figure adopted from Engel et al. (2016).
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1.4.4. Core factor architecture

The core initiation factor 'CF' of Pol I consists of Rrn6, Rrn7 and Rrn11 and com-

prise a total molecular mass of 220 kDa. CF domains were predicted computationally

and a topological model was derived from cross-linking coupled to mass spectrometry

(Knutson et al., 2014) (Figure 1.7). Rrn7 is homologous to the Pol II transcription

factor TFIIB and harbours a zinc ribbon, two cyclins and a C-terminal domain. Cent-

ral tetratricopeptide repeats (TPRs) characterize Rrn11 and the biggest subunit Rrn6

consists of a WD40 β-propeller followed by a helical domain. Strongest contacts are

made between the β-propeller and the TPRs.

Mutational studies in vivo and in vitro underline the functional relevance of CF (Knut-

son et al., 2014). The elements within which mutations are lethal, but retain CF

integrity, will most likely be involved in interactions with Pol I or might play a role

in promoter recognition. For Rrn7 this is the case for its C-terminal domain includ-

ing the zinc ribbon. In the case of Rrn11 its very N-terminal part together with the

C-terminal TPR elements ful�l the same criteria.

Figure 1.7. Core factor cross-linking coupled to mass spectrometry analysis. (A)
CF distant restraints. (B) CF topology with the central Rrn11 TPR, Rrn6 WD40, Rrn
6 helical and Rrn7 C-terminal domains. (C) Functional CF analysis showing essential CF
domains and those which are needed for CF integrity. All �gures were adopted from Knutson
et al. (2014).
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1.5. Aims and scope

The groundbreaking crystal structure of Pol I (Engel et al., 2013; Fernández-Tornero

et al., 2013) gave many insights into Pol I speci�c features such as the expanded cleft

and the role of A12.2 as well as the novel 'expander' and 'connector' elements. As the

enzyme was trapped in the inactive state of a dimer, this further raised the question

how the transition to an active enzyme occurs.

Here, I determined the elongation complex to a resolution of 3.8Å that revealed a

contracted active centre cleft with bound DNA and RNA, and a narrowed pore beneath

the active site that no longer holds the RNA-cleavage stimulating domain of A12.2.

To investigate active Pol I under more native conditions on rDNA genes, we teamed

up with the Frangakis group. In this collaboration, we not only con�rmed the cleft

contraction with Miller spread tomography, but also de�ned the relative positions of

adjacent Pols.

The Pol I crystal structure provided the basis for further structural investigations on

transcription regulation (Engel et al., 2016; Fernández-Tornero et al., 2013). The

very �rst step of transcription, initiation, is most critical for regulation and thus of

particular interest. How do the initiation factors Rrn3 and CF interact with Pol I, how

does the transcription machinery bind to promoter DNA, and how is the start site for

RNA synthesis localized?

To answer these questions, I determined the structure of the initially transcribing com-

plex (ITC), which contains Pol I, Rrn3 and CF, as well as unwound promoter DNA

and a short RNA-DNA hybrid to 4.2Å resolution. As no high resolution information

was available for the CF and de novo model building into the EM map was not feasible

due to high CF �exibility, collaborating with Tobias Gubbey was essential. He solved

the crystal structure of CF, which I then used to interpret cryo-EM maps. In collab-

oration with Christoph Engel we further extended our knowledge of the pre-initiation

complex (PIC) in absence of promoter DNA. Furthermore, I modelled a closed and

open complex. Finally, we showed how CF binds upstream promoter DNA, docks

to the initiation-competent Pol I-Rrn3 complex, and loads DNA over the polymerase

wall into an expanded active centre cleft. DNA opening between the protrusion and

clamp domains is then coupled with contraction of the Pol I cleft resulting in an active

enzyme conformation and RNA synthesis.
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2. Results and Discussion

2.1. Structure of RNA polymerase I transcribing

rDNA genes

Results presented in this section are published and were obtained in a collaboration

with the Frangakis lab. Author contributions are stated on page VI.

S. Neyer∗, M. Kunz∗, C. Geiss, M. Hantsche, V.-V. Hodirnau, A. Seybert, C. Engel,

M. P. Sche�er, P. Cramer, A. S. Frangakis. (2016) Structure of RNA polymerase I

transcribing rDNA genes. Nature. doi:10.1038/nature20561
∗ These authors contributed equally to this work.

While focusing on the single particle cryo-EM analysis, the following section gives a

comprehensive picture of all results presented in this study. Methods are described

in section 3.1. Supplemental data and methods that were predominantly obtained by

the collaborators are described in the appendix B and D, respectively.

2.1.1. Abstract

RNA polymerase I (Pol I) is a highly processive enzyme that transcribes ribosomal

DNA (rDNA) and regulates growth of eukaryotic cells (Goodfellow and Zomerdijk,

2013; Grummt, 2013; Novello and Stirpe, 1970; Roeder and Rutter, 1969). Crystal

structures of free Pol I from the yeast Saccharomyces cerevisiae revealed dimers of the

enzyme stabilized by a 'connector' element and an expanded cleft containing the active

centre in an inactive conformation (Engel et al., 2016; Fernández-Tornero et al., 2013).

The central bridge helix was unfolded and a Pol I-speci�c 'expander' element occupied

the DNA-template-binding site. The structure of Pol I in its active transcribing con-

formation is yet to be determined, whereas structures of Pol II and Pol III have been

solved with bound DNA template and RNA transcript (Gnatt et al., 2001; Ho�mann
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2. Results and Discussion

et al., 2015; Kettenberger et al., 2004). Here we report structures of active transcrib-

ing Pol I from yeast solved by two di�erent cryo-electron microscopy approaches. A

single-particle structure at 3.8Å resolution reveals a contracted active centre cleft with

bound DNA and RNA, and a narrowed pore beneath the active site that no longer

holds the RNA cleavage-stimulating domain of subunit A12.2. A structure at 29Å

resolution that was determined from cryo-electron tomograms of Pol I enzymes tran-

scribing cellular rDNA con�rms contraction of the cleft and reveals that incoming and

exiting rDNA enclose an angle of about approximately 150◦. The structures suggest a

model for the regulation of transcription elongation in which contracted and expanded

polymerase conformations are associated with active and inactive states, respectively.

2.1.2. Single particle cryo-EM

To determine the structure of transcribing Pol I, we performed single-particle cryo-

electron microscopy (cryo-SP) with a reconstituted yeast Pol I elongation complex

(EC) containing a DNA-RNA sca�old (Figure 2.2A and 2.1) similar to the one used

to study transcribing mammalian Pol II (Bernecky et al., 2016). Particle classi�cation

enabled us to reconstitute the Pol I EC structure at 3.8 Å resolution from approxim-

ately 94,000 single particles (Figure 2.2C, 2.3 and 2.4). The electron density revealed

the downstream DNA, the DNA-RNA hybrid (Figure 2.2B), and all Pol I domains

except for the �exibly linked C-terminal domain of subunit A49 (Jennebach et al.,

2012; Pilsl et al., 2016) and the C-terminal domain of subunit A12.2. An atomic

model with excellent stereochemistry was obtained by �tting rigid domains of the

Pol I crystal structure (Engel et al., 2013), positioning nucleic acids from the bovine

Pol II EC structure (Bernecky et al., 2016), and manually rebuilding regions that were

structurally altered (Table 2.1).
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Figure 2.1. Preparation of Pol I elongation complex (EC) for cryo-SP. (A) Size-
exclusion chromatogram (Superose 6 Increase 3.2/300; GE Healthcare) of reconstituted Pol I
EC. Higher absorbance at 260 nm (red line) than at 280 nm (blue line) indicates presence
of nucleic acids. Coomassie-stained SDS-PAGE analysis of pooled peak fractions shows the
presence of all 12 Pol I subunits. (B) Coomassie-stained SDS-PAGE analysis of titration with
BS3 cross-linker. Gel is cropped to large subunits A190 and A135. A shift to higher molecu-
lar weight is observed with increasing BS3 concentration indicating successful crosslinking.
0.9mM BS3 was chosen for �nal sample preparation.
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Figure 2.2. Cryo-SP structure of yeast Pol I EC at 3.8Å resolution. (A) Nucleic
acid sca�old and Pol I-nucleic acid interactions. Template DNA, non-template DNA and
RNA are shown in blue, cyan, and red, respectively. Filled circles represent nucleotides that
were well resolved in the cryo-EM density. Pol I residues within 4Å distance are depicted
together with the subunit identi�er (A for A190, B for A135). The active site metal ion A
is depicted as a magenta sphere. (B) Electron density for the DNA-RNA hybrid with the
�nal model superimposed. (C) Ribbon model of the Pol I EC. The view is from the 'front'
(Cramer et al., 2001) with the incoming downstream DNA pointing towards the reader.
Subunit colour code used throughout.

Comparison of the resulting Pol I EC structure with the previous Pol I structure (Engel

et al., 2013; Fernández-Tornero et al., 2013) reveals that the active centre cleft is

contracted by up to 13Å (Fig. 2.5A). Contraction occurs via relative movement of the

two major polymerase modules 'core' and 'shelf' (Cramer et al., 2001) as predicted

(Engel et al., 2013). The shelf module moves together with the clamp domain as a

single 'shelf-clamp' unit, slightly rotating with respect to the core module (Fig. 2.5E).

Another module, the 'jaw-lobe', moves closer to downstream DNA by up to 7Å (Fig.

2.5A and D). Comparison of the Pol I EC with EC structures of Pol II (Gnatt et al.,

2001; Kettenberger et al., 2004), Pol III (Ho�mann et al., 2015), and bacterial RNA

polymerase (Vassylyev et al., 2007) reveal that all these polymerases adopt a similar

contracted conformation in their transcribing state.
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Figure 2.3. Cryo-SP particle sorting pipeline. Annotated arrows indicate the direc-
tion of processing and provide information regarding the number of particles used and the
classi�cation masks applied. A representative micrograph of the Pol I EC under cryo con-
ditions showed particles of the expected size. A set of 1500 particles was picked manually
with EMAN2 (Tang et al., 2007) and used to generate initial 2D classes for template based
auto-picking in Relion (Scheres, 2012). After cleaning by manual inspection and in 2D classi-
�cation, per frame B-factor weighting and translational movie alignment was applied to the
remaining 282 k particles. The colouring of the surfaces is according the standard polymerase
subunit colouring: A190, A135, A49, A43, AC40, A34.5, Rpb5, Rpb6, AC19, Rpb8, A14,
A12.2, Rpb10 and Rpb12 are coloured in grey, wheat, light blue, slate, red, pink, magenta,
silver blue, yellow, green, hot pink, orange, blue and lemon, respectively. Template DNA,
non-template DNA and RNA are depicted in medium blue, sky blue and red, respectively.
The structures against greyed background indicate �nal EC and Pol I monomer structures.
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Figure 2.4. Quality of cryo-SP reconstructions. (A) Top and bottom view of local
resolution surface maps. (B) Representative areas of the cryo-SP density for Pol I EC (left
panel) and Pol I monomer (right panel). The A190 helix α19 (upper panel) and the A135
strand β40 (lower panel) are depicted together with the re�ned model superimposed. (C)
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Correlation (FSC) curves. Blue lines indicate the FSC between half maps of the respective
reconstruction and red lines indicate FSC between the derived model against the cryo-SP
map.
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2.1. Structure of RNA polymerase I transcribing rDNA genes

Table 2.1. Model re�nement statistics. Statistics for the core of Pol I excluding
A14/A43 and A34.5/A49 are provided in parenthesis.

Pol I Monomer Pol I EC
Map CC (whole unit cell) 0.850 (0.844) 0.728 (0.724)
Map CC (around atoms) 0.703 (0.739) 0.733 (0.763)

rmsd (bonds) 0.008 (0.008) 0.007 (0.007)
rmsd (angles) 1.00 (0.86) 0.929 (0.864)

All-atom clashscore 32.11 (26.42) 13.72 (10.7)
Ramachandran plot

outliers 0.4% (0.2%) 0.4% (0.1%)
allowed 4.9% (4.6%) 6.6% (6.5%)
favored 94.7% (95.2%) 93.0% (93.4%)

Rotamer outliers 1.0% (0%) 1.1% (0%)
C-beta deviations 1 (0) 1 (0)
EMRinger score 0.65 (0.72) 2.74 (2.93)
Molprobity score 2.56 (2.24) 2.12 (1.98)

In the EC structure, the connector is detached from Pol I, as observed when Pol I is

bound to the initiation factor Rrn3 (Engel et al., 2016; Pilsl et al., 2016). The expander

is also displaced, enabling Pol I to form extensive interactions with the DNA-RNA

hybrid (Fig. 2.2A). The enzyme contacts the DNA template at positions +4 to -9

and the RNA transcript at positions -1 to -8 (+1 represents the nucleotide addition

site). Pol I generally binds nucleic acids with the same elements as Pol II (Kettenberger

et al., 2004), but uses several Pol I-speci�c residues to contact the upstream part of the

DNA-RNA hybrid. The active centre adopts a catalytically competent conformation.

The bridge helix is folded throughout (Fig. 2.5B and C) and the trigger loop is largely

mobile, allowing for binding of the nucleoside triphosphate substrate. The polymerase

switch regions and cleft loops adopt similar positions as in the Pol II EC (Kettenberger

et al., 2004) except that fork loop 1 is bent away from the hybrid (Fig. 2.6A), as in

the Pol III EC (Ho�mann et al., 2015) and in a Pol II initiation intermediate (Plaschka

et al., 2016).

The Pol I EC structure also provides insights into the regulation of the intrinsic RNA

cleavage activity of Pol I. RNA cleavage requires subunit A12.2 (Kuhn et al., 2007;

Sosunov et al., 2003), which consists of two domains. The N-terminal domain re-

sembles that of the Pol II subunit Rpb9, whereas the C-terminal domain corresponds

to the catalytic domain of the Pol II RNA cleavage factor TFIIS (Kettenberger et al.,

2003; Ruan et al., 2011). In the EC structure, the N-terminal domain of A12.2 re-
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mains at the outer rim of the Pol I funnel region, whereas its C-terminal domain is

displaced from the pore that it occupies in the Pol I crystal structures (Engel et al.,

2013; Fernández-Tornero et al., 2013; Kostrewa et al., 2015). Displacement of the

A12.2 C-terminal domain from the pore apparently occurs during cleft contraction

because modelling of this domain in the pore results in a clash with the contracted

shelf module (Fig. 2.6B and C). Thus A12.2 can only enter the active centre when

the cleft is fully or partially expanded. This predicts that Pol I adopts a partially

expanded conformation during A12.2 action, which is required for RNA proofreading

and polymerase reactivation after backtracking.
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Figure 2.5. Cleft contraction and module movements. (A) Comparison of structures
of Pol I EC (orange) and free, dimeric Pol I (PDB 4C2M, black) after superposition of their
A135 subunits. Cleft width was measured between subunit A190 residue E414 and subunit
A135 residue K434. For clarity, only subunits A190 and A135 are displayed. (B) Electron
density of the folded bridge helix in the Pol I EC. (C) Comparison of bridge helices in the
EC (orange) and free Pol I (black). (D) Pol I EC ribbon model coloured by four mobile
modules. The peripheral subcomplexes A14/A43 and A49/A34.5 are omitted for clarity.
(E) Movements of polymerase modules upon cleft contraction. Ribbon models of free Pol I
(grey) and EC are shown after superposition of their core modules (omitted). Arrows indicate
movement and rotation of the clamp-shelf and the jaw-lobe modules.
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Figure 2.6. Additional details on Pol I EC. (A) Cleft loops. Ribbon model of ECs
of all three S. cerevisiae RNA polymerases superimposed on the bridge helix. Bridge helix
(green) and downstream DNA together with DNA-RNA hybrid (blue and red) are given for
Pol I. (B) Ribbon model of free Pol I (4C2M, black and orange) superimposed on the shown
inner A190 funnel helix α21 with Pol I EC (gray, green and pink). As a consequence of cleft
contraction, parts of the shelf module move in and reduce the width of the pore to impair
binding of the C-terminal domain of A12.2. (C) Modeling the A12.2 C-terminal domain
into the pore of the contracted Pol I EC results in a clash. In the upper part, a surface
representation of domains in free Pol I shows that the C-terminal domain of A12.2 �lls the
pore that is lined by the A190 funnel helix α21 and loop 1572-1579 of the A190 cleft domain
in the shelf module. In the lower part, cleft contraction observed in the EC reduces the width
of the pore, causing a steric clash in the model.
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To investigate whether the structural di�erences between the Pol I EC and the free Pol I

dimer arise from nucleic acid binding or from conversion of a dimer to a monomer,

we also solved the structure of monomeric Pol I in the absence of nucleic acids at

4.0Å resolution using approximately 80,000 single particles (Fig. 2.3 and 2.7A). In this

structure, the connector and expander were also displaced, but the Pol I cleft was only

partially contracted (approximately 5Å), as observed in the Pol I-Rrn3 complex (Engel

et al., 2016; Pilsl et al., 2016). The central bridge helix remained partially unwound,

and the C-terminal domain of A12.2 remained in the pore (Fig. 2.7B and C).

Thus conversion of the Pol I dimer to a monomer leads to a partially expanded con-

formation, but not to the fully contracted, active conformation. The partially ex-

panded conformation resembles the conformation observed when the bacterial RNA

polymerase adopts a paused (Weixlbaumer et al., 2013) or an inhibited (Tagami et al.,

2010) state. In both polymerases, movement of a rigid shelf-clamp unit allows for

expansion of the cleft and a widening of the pore (called the 'secondary channel' in

bacterial RNA polymerase). Available data thus suggest that RNA polymerases can

adopt partially expanded and contracted conformations that are associated with in-

active and active states, respectively. Binding of nucleic acids in the cleft apparently

maintains the contracted conformation and excludes A12.2 from the pore, whereas re-

arrangements in the nucleic acids upon misincorporation or pausing could induce the

partially expanded conformation that is transcriptionally inactive but enables A12.2

entry into the pore and enzyme reactivation by RNA cleavage. According to this

model, transcription elongation can be regulated by allosteric coupling of nucleic acid

binding with cleavage factor binding in the cleft and pore, respectively, via contraction

and expansion of the polymerase.
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the incoming downstream DNA pointing towards the reader. The coloring of the surfaces is
according to standard polymerase coloring: subunits A190, A135, A49, A43, AC40, A34.5,
Rpb5, Rpb6, AC19, Rpb8, A14, A12.2, Rpb10 and Rpb12 are colored in grey, wheat, light
blue, slate, red, pink, magenta, silver blue, yellow, green, hot pink, orange, blue and lemon,
respectively. (B) Free Pol I (PDB 4C2M, black) and Pol I Monomer (orange) were super-
imposed on A135. Cleft width was measured between indicated residues. For clarity, only
subunits A190 and A135 are shown. (C) Electron microscopy density (semi-transparent
grey) is shown together with models for the bridge helix, trigger loop (both grey) and the
C-terminal domain of A12.2. The expander (red) is not present in this structure but modelled
here based on the crystal structure of the free Pol I dimer, revealing a clash.
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2.1.3. Miller spread cryo-tomography

To investigate the physiological relevance of the cryo-SP structure, we further de-

termined the structure of the natural Pol I EC that forms in yeast cells by promoter-

dependent initiation on rDNA with the use of cryo-electron tomography (cryo-ET)

(Fig. 2.8). We spread active rDNA genes from exponentially growing yeast cells onto

an electron microscopy grid such that they formed 'Miller trees' (Miller and Beatty,

1969) (Extended Fig. B.1). To overcome previous limitations in sample preparation,

we used instant plunge-freezing to keep the sample in a close-to-native environment.

The obtained images revealed the detailed arrangement of Pol I enzymes along rDNA,

nascent RNA emerging from Pol I, and large densities at the RNA ends that resemble

classical knobs and large small-subunit processomes (Fig. 2.8A and B) (Osheim et al.,

2004). From the cryo-ET images, we selected 11 complete Miller trees and several

smaller Pol I trails, each containing 10-20 Pol I enzymes with associated RNA. This

yielded 993 transcribing Pol I enzymes for further analysis.

We observed that each rDNA gene is loaded with approximately 70 Pol I enzymes,

which showed a median centre-to-centre distance of 18+/-10 nm (Fig. 2.8C, Extended

Fig. B.2A and B), consistent with previous results (Osheim et al., 2004). Only ap-

proximately 2% of the Pol I complexes were separated by a distance of approximately

12 nm, which would allow for interaction between enzymes. Furthermore, consecut-

ive enzymes show random relative orientations, arguing against speci�c interactions

that were suggested previously (Albert et al., 2011). Each triple of successive Pol I

molecules created a triangle with an in-plane angle of approximately 150◦ (Fig. 2.8C

and Extended Fig. B.2A, B and C) that was independent of the length of the DNA

between enzymes. This angle could not be obtained from the cryo-SP structure, be-

cause density for upstream DNA was poor.

We used sub-tomogram averaging (n=225) to obtain a cryo-ET structure of the cel-

lular transcribing Pol I at a resolution of approximately 2.9 nm (FSC 0.5 criterion;

approximately 2.5 nm with the FSC 0.143 criterion; Fig. 2.9A). The cryo-ET struc-

ture strongly resembled the cryo-SP structure, showing an overall cross-correlation

score of 0.85. An FSC plot between the cryo-ET and cryo-SP structures decreased

beyond the 0.143 threshold at 3.1 nm (Extended Data Fig. 8a). The peripheral sub-

complexes A14/A43 and A34.5/A49 were �exible, consistent with the weaker density

observed in the cryo-SP structure (Fig. 2.3). The width of the active centre cleft was
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Figure 2.8. Cryo-ET analysis of Pol I transcribing rDNA genes. (A) 2 nm thick
tomographic slice though a cryo-ET image with two of the Miller trees, showing the terminal
knobs (grey circles), the DNA (typical examples marked by blue arrows), the RNA (red-pink
arrows), and the Pol I enzymes (yellow and dark yellow circles for �rst and second Miller trees,
respectively). Several nucleosomes are attached to DNA like beads on a string (white box).
(B) Three-dimensional surface rendering of the �rst Miller tree in (a), showing the terminal
knobs (light grey), DNA (blue), RNA (red), possible RNA-modifying complexes (cyan), and
Pol I complexes (yellow). (C) Schematic of three consecutive Pol I enzymes together with
probability density localization (heat map) of the upstream Pol I, the �rst downstream Pol I
(in the centre), and the second downstream Pol I (on the y-axis). (D) Fit of the Pol I EC
ribbon model from cryo-SP into the cryo-ET reconstruction in grey. The good �t observed
here is not possible with the expanded conformation of Pol I (Fig. 2.9B).
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Figure 2.9. Comparisons between cryo-ET and cryo-SP structures. (A) FSC of the
cryo-ET structure with a resolution of 29Å (purple line) and mutual FSC between the cryo-
ET structure and cryo-SP structure with estimated resolutions of 44Å and 31Å, respectively
(green line). Resolutions were measured at FSC 0.5 and 0.143 criteria, respectively. (B) Poor
�t of the expanded, free Pol I crystal structure (4C2M) to the cryo-ET density (grey). Note
that the clamp domain does not �t the density unless the polymerase is in the contracted
conformation (compare Fig. 2.8).

the same in both structures (Fig. 2.8D, and Fig. 2.9C), con�rming that the contracted

cryo-SP structure represented the natural conformation of actively transcribing Pol I.

Taken together, we used here two independent cryo-electron microscopic approaches

to de�ne the contracted Pol I conformation as the active, transcribing state of the

enzyme, and provide evidence that the elongation phase of transcription is regulated

by cleft contraction and expansion.

26



2.2. Structural basis of RNA polymerase I transcription initiation

2.2. Structural basis of RNA polymerase I

transcription initiation

Results presented in this section are in preparation for publication and were obtained

in a collaboration with Tobias Gubbey and Christoph Engel. Author contributions

are stated on page VII.

C. Engel∗, T. Gubbey∗, S. Neyer∗, S. J. Sainsbury, C. Oberthür, C. Bäjen, C. Ber-

necky, P. Cramer. (2016) Structural basis of RNA polymerase I transcription initi-

ation. (manuscript in preparation)
∗ These authors contributed equally to this work.

While focusing on the analysis of the initially transcribing and the closed complex

structure, the following section gives a comprehensive picture of all results presented

in this study. Methods are described in section 3.2. Supplemental data and methods

that were predominantly obtained by the collaborators are described in the appendix C

and E, respectively.

2.2.1. Abstract

Gene class-speci�c transcription results from promoter-speci�c assembly of RNA poly-

merases (Pols) I, II, and III with their speci�c initiation factors. The molecular basis

of promoter speci�city remained elusive because structural studies of transcription

initiation complexes were limited to Pol II. Here we use a combination of X-ray crys-

tallography and cryo-electron microscopy to obtain a structural model for Pol I initi-

ation. The Pol I-speci�c core initiation factor contains two modules, one that binds

upstream promoter DNA, and one that docks to the initiation-competent Pol I-Rrn3

complex. This results in loading of DNA onto the polymerase wall and into an ex-

panded active center cleft. DNA opening between the protrusion and clamp domains

enables cleft contraction that results in an active enzyme conformation and RNA syn-

thesis. Comparison with the Pol II system indicates that promoter speci�city stems

from alternative initiation factor structures and contacts with DNA and polymerase,

and from di�erences in the 'bendability' and 'meltability' of promoter DNA.
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2. Results and Discussion

2.2.2. Introduction

Transcription in eukaryotic cells is carried out by three di�erent RNA polymerases,

Pol I, II, and III (Roeder and Rutter, 1969). The polymerases share a conserved active

center (Cramer et al., 2001) and form structurally similar complexes for transcription

elongation (Gnatt et al., 2001; Ho�mann et al., 2015; Neyer et al., 2016; Tafur et al.,

2016), but they synthesize di�erent classes of RNAs. Whereas Pol I synthesizes the

ribosomal RNA (rRNA) precursor (Moss et al., 2007), Pol II and Pol III mainly pro-

duce mRNAs and tRNAs, respectively. For gene class-speci�c transcription the poly-

merases assemble with di�erent sets of initiation factors at their speci�c promoters.

The mechanisms underlying promoter-speci�c initiation and gene class-speci�c tran-

scription remain poorly understood.

Whereas the structure of initiation complexes of Pol I and Pol III are unknown, re-

cent studies have elucidated the structural basis for Pol II initiation (He et al., 2016;

Plaschka et al., 2016; Robinson et al., 2016). Initiation begins with the assembly of

Pol II and the general initiation factors TFIIB, -D, -E, -F and -H on promoter DNA,

to form a closed complex (CC) (Buratowski et al., 1989; Grunberg and Hahn, 2013;

Roeder, 1996; Sainsbury et al., 2015). In the CC, promoter DNA is positioned above

the active center cleft of Pol II, running along the tip of the clamp domain. Upon ATP

hydrolysis by a translocase in TFIIH, DNA is unwound and the template strand is

inserted into the active center, resulting in an open complex (OC) (Grunberg et al.,

2012). Subsequently, the transcription start site (TSS) is recognized and RNA syn-

thesis commences, giving rise to an initially transcribing complex (ITC). When the

RNA product grows beyond a critical length, initiation factors dissociate and the

elongation complex (EC) forms.

Pol II initiation critically depends on TFIIB. TFIIB bridges between Pol II and pro-

moter DNA, and its location on Pol II determines the topology of the initiation com-

plex (Kostrewa et al., 2009). TFIIB comprises an N-terminal zinc ribbon domain that

binds the dock domain of Pol II (Bushnell et al., 2004; Chen and Hahn, 2004) and is

essential for recruiting Pol II to the promoter (Ha et al., 1991; Lin et al., 1991; Ma-

lik et al., 1991). TFIIB further contains two cyclin domains (Nikolov et al., 1995)

that are located on the Pol II wall to position promoter DNA above the cleft (Chen

and Hahn, 2004; Kostrewa et al., 2009). The TFIIB linker and reader elements con-

nect the TFIIB ribbon and cyclin domains, and participate in DNA opening and TSS

recognition, respectively (Kostrewa et al., 2009; Sainsbury et al., 2013).
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2.2. Structural basis of RNA polymerase I transcription initiation

The initiation system of Pol I di�ers substantially from that of Pol II. Initiation by

yeast Pol I requires Rrn3 and the core factor (CF), which consists of subunits Rrn6,

Rrn7, and Rrn11 (Keener et al., 1998; Lalo et al., 1996). Rrn3 is an extended HEAT

repeat protein (Blattner et al., 2011) that binds Pol I at the stalk subcomplex A14/A43

(Blattner et al., 2011; Engel et al., 2016; Pilsl et al., 2016), thereby stabilizing the

initiation-competent, monomeric form of Pol I. Rrn6 contains a predicted WD40 β-

propeller and a helical domain (Knutson et al., 2014). Rrn7 is predicted to resemble

TFIIB and to contain an N-terminal ribbon, two cyclin fold domains and a C-terminal

domain (Knutson and Hahn, 2011; Naidu et al., 2011), but the TFIIB reader is poorly

conserved. Rrn11 is predicted to contain a tetratricopeptide repeat (TPR) domain

(Knutson et al., 2014). The human counterpart of CF, selectivity factor 1 (Russell

and Zomerdijk, 2006), comprises homologues to Rrn6 (TAF1C), Rrn7 (TAF1B), and

Rrn11 (TAF1A), and the additional subunits TAF1D and TAF12 (Denissov et al.,

2007; Gorski et al., 2007).

Here we elucidate the molecular basis of Pol I transcription initiation with the use of

a structural biology hybrid approach. We report the crystal structure of yeast CF

and show it strongly di�ers from TFIIB. We also report the cryo-electron microscopy

(cryo-EM) structures of the Pol I-Rrn3-CF complex and a Pol I ITC containing Rrn3,

CF and the ribosomal DNA promoter. Biochemical probing of these structures using a

minimal promoter-speci�c initiation assay elucidates the mechanism of Pol I initiation.

Comparison of our results with the Pol II system reveal major di�erences and provide

insights into the molecular basis and evolution of gene promoter speci�city of the

di�erent transcription systems.

2.2.3. Crystal structure of core factor

We obtained Saccharomyces cerevisiae core factor (CF) after heterologous co-expression

of its three subunits in E. coli (Methods appendix E). For CF puri�cation, we modi�ed

previously published protocols (Bedwell et al., 2012; Knutson et al., 2014) and could

remove co-purifying chaperones (Methods appendix E). Puri�ed CF contained the

three subunits in apparently stoichiometric amounts (Fig. C.1) and could be crystal-

lized by vapor di�usion (Methods appendix E). The crystal structure was determined

by single-wavelength anomalous di�raction (SAD) using selenomethionine-derivatized

crystals in space group P65 (Table C.1 and C.2). Native crystals comprised six CF

complexes per asymmetric unit in space group P1 and di�racted to 3.2 Å resolution.
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2. Results and Discussion

Building of an atomic model was supported by sequence markers, including 21 selen-

ium sites that revealed the location of methionine residues. We additionally located

17 cysteine residues and 5 sulphate ions with the use of anomalous di�raction from

sulphur atoms, and introduced six additional methionine markers in regions that were

di�cult to build (Methods, appendix E). The structure was re�ned to R/Rfree factors

of 26.0/28.9% with good stereochemistry (Table C.1).

2.2.4. Core factor comprises two modules

The crystal structure reveals that CF comprises two modules that are �exibly linked

and separated by a central canyon (Fig. 2.10). Module I is formed by an N-terminal

seven-bladed β-propeller domain in Rrn6 and by subunit Rrn11, which forms a super-

helical TPR domain and a novel helical domain that we name 'propeller- and promoter-

associated domain' (PAD). Module II is formed by a unique helical C-terminal domain

in Rrn6 ('headlock domain') that wraps around Rrn7, which forms two cyclin folds

as predicted (Knutson and Hahn, 2011; Naidu et al., 2011). The C-terminal Rrn7

cyclin domain contains an insertion that forms six helices (α8a-f) and reaches over to

module I (Fig. 2.10B, C.1). The structure lacks only the mobile N- and C-terminal

regions of Rrn6, an insertion in the β-propeller, the 93 N-terminal residues of Rrn7

which includes the �exibly linked ribbon domain, and a mobile insertion in the Rrn11

PAD. The structure enabled us to manually curate alignments of CF subunit sequences

from di�erent species (Fig. C.2, C.3). The CF structure rationalizes e�ects of known

mutations. For example, the Rrn11 N-terminus is buried in the Rrn6 β-propeller,

explaining why its deletion is lethal (Knutson et al., 2014).

2.2.5. Rrn7 di�ers from TFIIB

A search for structural similarity to Rrn7 using PDBeFold (Krissinel and Henrick,

2004) identi�ed TFIIB and its archaeal homologue TFB (PDB 1VOL and 1D3U), and

led to a structure-based alignment of Rrn7 with TFIIB (Fig. 2.11A-C, C.2). This is

consistent with the predicted sequence homology of Rrn7 and TFIIB (Blattner et al.,

2011; Knutson and Hahn, 2011; Naidu et al., 2011). However, the Rrn7 cyclin domains

are imbedded in the CF structure and di�er strongly from their TFIIB counterparts.

In particular, the surface of cyclin domain II is altered by an insertion that bridges

between the CF modules.
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Figure 2.10. Crystal Structure of yeast Core Factor. (A) Domain organization
of the CF subunits Rrn6 (blue), Rrn7 (green) and Rrn11 (yellow) indicated by a to-scale
bar diagram. Domain boundaries, unstructured regions and polymerase interacting regions
(PIRs) are indicated. (textbfB) Architecture of CF: Rrn6 forms a seven-bladed WD40 β-
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of which the second is interrupted by a large insertion. TFIIB-homologous elements on the
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2.2. Structural basis of RNA polymerase I transcription initiation

Modelling of CF onto DNA based on a superposition of Rrn7 with TFIIB in the Pol II

initiation complex structure (Plaschka et al., 2016) shows that Rrn7 cannot bind to

DNA in the way TFIIB does (Fig. 2.11C). Major clashes are revealed between mod-

elled DNA and Rrn7 cyclin domains (α1, α4a, α10, and loops α2-α3 and α7-α8), the

Rrn6 β-propeller and the headlock domain helix α2. Furthermore, modelling CF onto

Pol I under the assumption that the N-terminal cyclin domain of Rrn7 binds to the

polymerase wall like TFIIB does (Kostrewa et al., 2009; Sainsbury et al., 2013) leads

to major clashes between CF and the Pol I wall and protrusion domains (Fig. 2.11D).

Taken together, Rrn7 structurally di�ers from TFIIB and can neither bind DNA nor

the polymerase like TFIIB does, questioning our current Pol II-based model of Pol I ini-

tiation complex architecture (Blattner et al., 2011; Knutson et al., 2014), and arguing

that the position of CF on Pol I di�ers from that of TFIIB on Pol II.

2.2.6. Structure of the Pol I-Rrn3-CF complex

To determine the position of CF on the Pol I-Rrn3 complex, we formed a complex of

endogenous S. cerevisiae Pol I with recombinant Rrn3 and CF. CF bound to Pol I in

a stoichiometric manner when Rrn3 was present (Fig. C.4). The puri�ed 18-subunit,

883-kDa complex was subjected to negative-stain EM analysis, leading to a 3D re-

construction at 16Å resolution (Fig. C.5, Methods appendix E). Subsequent cryo-EM

analysis and particle sorting led to three reconstructions at resolutions of 7.7Å, 8.8Å

and 9.0Å (Fig. 2.12, C.6, C.7). A model of the Pol I-Rrn3-CF complex was derived by

unambiguously placing crystal structures of Pol I (PDB 4C2M), Rrn3 (PDB 3TJ1),

and CF (this work) into the reconstructions and re�ning the position of protein do-

mains as rigid bodies (Methods appendix E). The Pol I conformation and Rrn3 position

were highly similar to those in the previously reported Pol I-Rrn3 complex structure

(Engel et al., 2016; Pilsl et al., 2016). Thus Pol I remained in the partially expanded

conformation that is similar to free monomeric Pol I.

2.2.7. CF contains three Pol I-interacting regions

In the Pol I-Rrn3-CF complex structure, module I of CF contacts the upstream end of

the polymerase cleft (Fig. 2.12A), whereas module II protrudes outwards and is mobile,

adopting di�erent positions in the three EM reconstructions (Fig. C.7). CF interacts

with the Pol I-Rrn3 complex using three polymerase-interacting regions (PIRs) that are
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Figure 2.12. Cryo-EM reconstruction of Pol I in complex with Rrn3 and Core
Factor. (A) Overview of the Pol I - Rrn3 - CF cryo-EM reconstruction at 7.7Å resolution
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region (PIR) I between Pol I, Rrn3 and CF. As previously suggested (Engel et al., 2016) a
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center cleft (dashed line). (D) PIR III: Rrn7 helix α8e (see Fig. 1) binds the wall domain of
A135, especially the Pol I speci�c �ap loop and an A135 loop β28-β29..
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2.2. Structural basis of RNA polymerase I transcription initiation

de�ned in the cryo-EM density at the level of secondary structure (Fig. 2.12B-D). The

N-terminal ribbon domain of Rrn7 (PIR I), which is mobile in the free CF structure,

contacts the Pol I dock domain, like the TFIIB ribbon binds Pol II, and additionally

contacts the Rrn3 loop α8-α9 (Fig. 2.12B). The C-terminal half of the Rrn11 TPR

domain (PIR II) contacts the Pol I clamp and protrusion, leading to an ordering of

loop α11-α12 (Fig. 2.12C). Helix α8e of the Rrn7 insertion domain (PIR III) contacts

the Pol I wall (Fig. 3D). The N-terminal cyclin domain of Rrn7 is embedded in CF

module II and thus positioned far away from the Pol I surface, whereas its counterpart

in TFIIB contacts the Pol II wall, consistent with fundamentally di�erent modes of

DNA binding in the two systems. Provided that CF binding blocks the upstream edge

of the Pol I active center cleft, major structural changes must occur for DNA loading.

2.2.8. Structure of the initially transcribing complex

To investigate how the Pol I-Rrn3-CF structure is reorganized upon promoter DNA

loading and initial transcription, we solved the cryo-EM structure of an ITC that

includes Pol I, Rrn3, CF, and a nucleic acid sca�old based on the natural promoter se-

quence (Methods section 3.2). The sca�old consisted of promoter DNA from positions

-80 to +23 (+1 depicts the transcription start site), a mismatched bubble region (po-

sitions -8 to +8), and a 6-nucleotide RNA product. After selecting 567,000 particles

that contained complete ITC complexes in a de�ned overall conformation (Fig. 2.14),

we obtained a cryo-EM structure at an overall resolution of 4.2Å (Fig. 2.13) with

higher resolution in the core and lower resolution at the periphery (Fig. 2.15).

In the resulting ITC structure, Pol I was no longer in the expanded conformation

but rather adopted the contracted conformation observed in the EC (Neyer et al.,

2016). CF occupied an alternative position on the Pol I surface (Fig. 2.13A) that

strongly di�ers from its position in the Pol I-Rrn3-CF complex lacking nucleic acids.

CF moved by up to 90Å and rotated by up to 30 degrees, binding the outer surface of

Pol I between protrusion and wall domains. Whereas the Rrn7 ribbon (PIR I) remains

bound to the polymerase dock domain, CF module I forms alternative contacts with

Pol I. PIR II now contacts the outer protrusion and PIR III contacts Rpb12 and the

Pol I-speci�c wall loop 2-3 (Fig. 2.13B). Compared with the Pol I-Rrn3-CF complex,

CF employs the same PIRs to contact Pol I in the ITC. However, CF occupies enables

promoter DNA loading into the cleft and cleft contraction, which are both not possible

in the free Pol I-Rrn3-CF complex.
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Figure 2.13. Cryo-EM reconstruction of initially transcribing Pol I. (A) Overview
of the yeast Pol I ITC �ltered cryo-EM reconstruction (transparent). Pol I, Rrn3 and DNA are
shown in grey cartoon apart from protrusion and wall domains (wheat) and Rpb12 (lemon).
CF and its promoter interaction and coloured as in Fig. 3. (A) PID II/III contacts the Pol I
protrusion in the ITC. Cryo-EM density for TPR helices (yellow mesh) and cylin II insertion
helix α8e (green mesh).
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Figure 2.14. Pol I ITC sample preparation and cryo-SP data processing. (A) Size-
exclusion chromatogram (Superose 6 Increase 3.2/300) of reconstituted Pol I ITC. Coomassie-
stained SDS-PAGE of pooled peak fractions (shaded grey area) shows stoichiometric Pol I
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2D averages after unsupervised 2D classi�cation. (D) Processing tree with density elements
coloured as in Fig. 2.13.
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Figure 2.15. Cryo-EM reconstruction of a Pol I-Rrn3-CF initially transcribing
complex. (A) Local resolution surface maps at normal density threshold (left panel) and
lower density threshold (right panel). (B) Representative areas of the cryo-EM density for
the Pol I core. Upper panel shows the superimposed helical bridge helix as ribbon model.
The A190 helix α19 (lower left panel) and the A135 strand β40 are depicted together with
the model superimposed. (C) Fourier shell correlation curves of the Pol I ITC density. (D)
Angular distribution of particles used to reconstruct Pol I ITC density. (E) Ribbon model
of distal upstream DNA region and Rrn7 Cyclin I together with the surface representation of
Rrn7 helix α4a. ITC DNA binding comes together with CF re-arrangement as the Cyclin I
insertion becomes �exible and would otherwise clash with DNA. (F) Back view of closed DNA
modelled DNA on the Pol I ITC conformation displaying a contracted cleft reveals a major
DNA-protrusion clash and a minor DNA-rudder clash. (G) Replacing contracted Pol I with
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Pol I clamp core helices visualizes the alternative rudder conformation present in Pol II. In
this conformation no clash with the closed DNA is observed.
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2.2. Structural basis of RNA polymerase I transcription initiation

2.2.9. Promoter DNA location and contacts

The course of DNA through the ITC can be followed for most of its path from around

position -32 upstream to position +20 downstream of the active site (Fig. 2.16). Up-

stream DNA adopts a previously unobserved position that di�ers from that in Pol II

initiation complexes (Fig. 2.16B). Upstream DNA runs alongside the Rrn11 PAD,

bends by approximately 30◦, and enters the cleft between the Pol I wall and protru-

sion. The DNA bend apparently occurs only upon CF docking to Pol I, because regions

upstream and downstream of the bend are bound by CF and Pol I, respectively.

Upstream DNA thus forms two major contacts that are likely relevant for promoter

recognition (Fig. 2.16C, D). A distal upstream contact is formed between the DNA

region at around registers -35 to -25 and the Rrn11 PAD helices α1 and α2, which

contact the DNA major and minor groove, respectively (Fig. 2.16C), and form a

positively charged patch (Fig. 2.16E). A proximal upstream contact is formed between

the promoter region around registers -10 to -18 and elements in the Pol I protrusion and

wall domains that are speci�c to Pol I and conserved among yeast (Fig. 2.16D). The

polymerase region also binds to upstream DNA in an elongation complex (Tafur et al.,

2016), although the orientation of the DNA di�ers. The downstream DNA duplex and

the DNA-RNA hybrid are positioned in the Pol I cleft essentially as observed in the

EC (Neyer et al., 2016), with the hybrid adopting a tilted conformation (Cheung and

Cramer, 2011).

2.2.10. Pol I initiation on a minimal promoter

To test the functional signi�cance of our structural observations, we established a

minimal initiation assay. We used closed promoter DNA encompassing positions -38

to +24 of the natural S. cerevisiae rDNA promoter (Methods appendix E), puri�ed

Pol I and a 5-fold molar excess of recombinant Rrn3 and CF. Transcription depends

on all factors, and initiates after the addition of NTPs and α32P-labelled ATP, to

form a Pol I-speci�c full-length RNA product of 24 nucleotides in length (Fig. 2.17A).

In our assay, the TATA box-binding protein (TBP) was not required, consistent with

our structural observations and previous biochemistry (Keener et al., 1998; Pilsl et al.,

2016).

To validate our assay, we used recombinant Rrn3 variants with inhibitory point muta-

tions S145D or S185D that interfere with Pol I binding (Blattner et al., 2011; Engel
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2.2. Structural basis of RNA polymerase I transcription initiation

Figure 2.16. Pol I and CF contact the rDNA promoter at three distinct sites.
(A) Schematic view of promoter contacts with the used sca�old. Semi-transparent stretches
are not included in the model. Promoter- contacts are labelled according to their position
relative to the TSS. (B) Overview of the yeast ITC in ribbon presentation with �ltered
electron density superimposed. Pol I (grey, apart from labelled domains), Rrn3 (brown)
and DNA (blue) are shown are shown in cartoon representation. Semi-transparent density
for nucleic acids (grey) is superimposed. (C) Distal upstream DNA extends beyond the
polymerase and is recognized by PAD helices α1 and α2. Helix α2 marks the edge of straight
DNA before it bends towards the polymerase. Helix α1 stretches alongside the major groove.
The sequence of helix α1 is given (positively charged residues in blue) and the conservation
among yeast species is indicated (Fig. C.3). (D) Pol I protrusion and wall domains contact
the upstream promoter. A structure-based sequence alignment of S. cerevisiae Pol I and Pol II
and conversation of Pol I residues amongst yeasts are indicated. (E) Surface representation
of CF in a similar view as in (B) colored according to its charge as calculated with the
Adaptive Poisson-Boltzmann Solver (APBS) (Baker et al., 2001) ranging from -3 kT/e (red)
to +3 kT/e (blue). A positively charged patch is formed by the Rrn11 PAD and recognized
promoter DNA.

et al., 2016). Indeed, these point mutations in Rrn3 abolished (S145D) or slightly

reduced (S185D) Pol I initiation (Fig. 2.17B), providing a positive control. These res-

ults show that Pol I requires only recombinant Rrn3 and CF for initiation in vitro,

consistent with published results (Bedwell et al., 2012; Keener et al., 1998; Pilsl et al.,

2016), and demonstrating the relevance of our structural studies for understanding

Pol I initiation.

2.2.11. Determinants of Pol I initiation

We next tested recombinant puri�ed CF variants for their e�ect on Pol I initiation.

These experiments showed that mutations in PIR I had a drastic e�ect, demonstrat-

ing that the Rrn7 ribbon domain is essential for initiation (Fig. 2.17C). Mutation of

residues in PIR II showed weak e�ects, with the exception of the E351R charge re-

versal mutation (Fig. 2.17D), which apparently destroys salt bridges with K106 and

K174 of Pol I subunit A135 that are observed in the ITC (Fig. 2.17E). A deletion of

Rrn7 helix α8e of PIR III reduced initiation, but mutation of single residues in this

helix had no e�ect (Fig. 2.17F).

We also tested which regions of the Pol I promoter were important for initiation

(Fig. 2.17G, H). We inserted deletions or sequence randomizations in 10-bp windows

upstream of the transcription start site. This showed that the upstream promoter

region at register -1 to -30 is essential for correct initiation. The DNA region between
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2. Results and Discussion

Figure 2.17. Promoter-Speci�c initiation outlines importance of Pol I - CF inter-
faces. (A) Urea gel resulting from Pol I-speci�c initiation assays (Methods appendix E). A
speci�c initiation band at 24 nucleotides length becomes visible only if CF and Rrn3 are ad-
ded. This e�ect is Pol I-dependent, since Pol II cannot initiate from the Pol I promoter under
identical conditions (Fig. C.8). TBP slightly reduces initiation e�ciency, likely due to unspe-
ci�c DNA binding. RNA length in bases is displayed on the left. (B) Rrn3 phopho-mimetic
mutants show an obstruction (S145D) or slight reduction (S185D) of initiation e�ciency,
likely due to interference with Pol I-Rrn3 binding (Blattner et al., 2011). (C) PIR I mutants
show a strong reduction of initiation capabilities, underlining the importance of the ribbon
contact. A partial B-linker deletion led to a reduction in initiation e�ciency. (D) Point
mutations of PIR II show little e�ect, with the exception of Rrn11 E351R, which reduced
initiation signi�cantly. (E) Environment of the mutated Rrn11 residue E351 in the ITC.
Charge reversal would disturb the interface and disable interaction with protrusion lysines
106 and 174. (F) Point mutations in Rrn7 insertion helix α8e (PIR III) show no e�ect,
whereas a complete deletion of the helix had an in�uence. (G) Randomization of 10 base
pair stretches in the upstream region of our promoter sca�old led to an abolishment of initi-
ation. Randomization of the -38 to -31 stretch reduces initiation, while a reversal of the �rst
three transcribed base pairs showed only little e�ect.
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2.2. Structural basis of RNA polymerase I transcription initiation

registers -31 and -38 contributes marginally to e�cient initiation. Taken together,

these results strongly support our structural observations. They con�rm that PIRs I-

III in CF are critical for initiation, and show that the upstream DNA region that is

contacted within the ITC is essential for initiation.

2.2.12. Models of the CC and OC

To obtain a complete picture of Pol I initiation, structures of the CC and OC are also

required. Unfortunately, the structure of a Pol I CC cannot be obtained, because DNA

spontaneously opens during complex assembly. We could however model the CC based

on our ITC structure. We extended upstream promoter DNA in the ITC downstream,

placing canonical B-DNA through the cleft. This leads to clashes with the protrusion

and the rudder on opposite sides of the cleft. Modelling shows that these clashes can

be avoided when the compacted Pol I structure in the ITC is replaced by the partially

expanded structure observed in the Pol I-Rrn3 and Pol I-Rrn3-CF complexes. We

therefore exchanged the compacted Pol I-Rrn3 subcomplex in the ITC against the

free Pol I-Rrn3 structure (Engel et al., 2016) after superposition of polymerase active

centres In the obtained CC model, DNA runs through the expanded cleft with no

major clashes, and contacts Rpb5 at the downstream end of the cleft.

In the OC, the DNA template must be present in the active center to position nucleos-

ide triphosphate substrates for initial RNA synthesis. We therefore modelled the OC

by removing RNA from our ITC structure. Consistent with this approach, structures

of the Pol II OC and ITC are virtually identical, except for the lack of the RNA in the

OC (Plaschka et al., 2016). The obtained models of the Pol I CC and OC enabled us

to rationalize the initiation-elongation transition.

2.2.13. Discussion

Here we report on a tour-de-force to elucidate the structural basis of transcription

initiation by Pol I. We report the crystal structure of the heterotrimeric CF, which to-

gether with previous structures of Pol I (Engel et al., 2013; Fernández-Tornero et al.,

2013) and Rrn3 (Blattner et al., 2011) completes the repertoire of high-resolution

structures required to resolve Pol I initiation complexes with a structural biology hy-

brid approach. We then determined cryo-EM structures of the Pol I-Rrn3-CF complex

and of an ITC, which additionally contained natural promoter DNA and a short initial
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RNA product. The ITC structure enabled modelling of the OC, whereas a combin-

ation of the ITC and Pol I-Rrn3 structures resulted in a model of the CC. Finally,

we present in vitro experimental evidence supporting the functional relevance of the

structures.
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Figure 2.18. Transition from a closed to an initially transcribing Pol I complex
and comparison to Pol II. (A) Modelled Pol I closed complex side view slice with Rrn
6 omitted for clarity. DNA (blue), protrusion (wheat), Rrn11 (yellow), Rrn7 (green) and
the active site magnesium (magenta) are highlighted. Proximal and distal promoter DNA is
connected with bent B-DNA generated with 3D-DART (van Dijk and Bonvin, 2009). (B)
Pol I ITC side view slice, color code as in (A). (C) Top view of expanded closed complex
model. A black outline marks the protrusion position assuming a contracted cleft state and
shows a clash with the DNA. (D) Pol II closed complex (Plaschka et al., 2016). (E) Pol II
ITC (Plaschka et al., 2015). (F) Superimposition of Pol I and Pol II ITC reconstructions.
Pol II upstream promoter DNA (light blue) is situated on the upper rims of the cleft while
its Pol I counterpart (dark blue) can enter the cleft deeper. Pol II promoter DNA (light blue
trace) exits the polymerase straight and is then turned towards the core module side by
TBP. In contrast, Pol I upstream promoter DNA (dark blue trace) is �rstly bend around the
protrusion and, secondly, kinked between Pol I and CF.

Our results converge with previous data on a model for Pol I transcription initiation

and the transition to elongation (Fig. 2.18). First, Rrn3 binding stabilizes Pol I in

an initiation-competent monomeric form with a largely expanded active center cleft
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2.2. Structural basis of RNA polymerase I transcription initiation

(Blattner et al., 2011; Engel et al., 2016; Pilsl et al., 2016). Second, CF recognizes

and binds promoter DNA at a distal element upstream of the transcription start site,

using its positively charged PAD domain. Third, CF uses three PIRs to dock to Pol I

and to load closed promoter DNA into an expanded polymerase cleft, forming the

CC. A proximal promoter region contacts Pol I-speci�c regions on the protrusion and

wall, likely contributing to promoter recognition. Fourth, DNA opening between the

protrusion and clamp enables formation of an OC with downstream DNA positioned as

in the EC (Neyer et al., 2016). Spontaneous DNA opening my be rendered irreversible

by trapping of the non-template DNA strand, similar to the bacterial RNA polymerase

system (Feklistov and Darst, 2011; Murakami et al., 2002), because the A135 lobe can

bind non-template single-stranded DNA (Tafur et al., 2016). The OC may additionally

be stabilized or functionally completed by the mobile tandem winged helix domain of

Pol I subunit A49 which binds proximal upstream DNA (Geiger et al., 2010; Tafur

et al., 2016). Fifth, RNA synthesis commences in the OC, leading to formation of the

ITC. Finally, RNA growth leads to displacement of the Rrn7 ribbon that occupies the

RNA exit site, likely triggering displacement of CF and formation of the EC.

The most striking �nding from our work is the unique architecture of the Pol I initi-

ation complex, which strongly di�ers from its Pol II counterpart (Fig. 2.18). In the

Pol I system, promoter DNA runs over the wall and through the active center cleft

(Fig. 2.18A). In contrast, DNA is suspended high above the wall in the Pol II system,

due to binding of TFIIB cyclin I between DNA and the wall (Fig. 2.18C). In addition,

the Pol I and Pol II systems di�er in the nature and direction of the bend in upstream

DNA. Whereas the Pol I promoter is bend by approximately 30◦ around register -30

in one direction, the Pol II promoter is bend by approximately 90◦ at register -35 in

the opposite direction (Fig. 2.18E).

These observations elucidate the molecular basis for promoter speci�city and opening.

We suggest that the Pol I initiation machinery can recognize a combination of the

'bendability' of upstream promoter DNA and the 'meltability' of the region around the

transcription start site. Our structural observations predict that docking of a CF-DNA

complex to the Pol I-Rrn3 complex is only possible when DNA can be bent in a speci�c

way at the interface of CF and Pol I. We predict that the CF-promoter complex can

only dock to Pol I if the required DNA bend can be introduced. We also predict that

DNA will only open when an easy-to-melt DNA region is placed between the clamp and

protrusion at the appropriate distance from the bend, providing additional promoter

speci�city. Only DNA that combines such bendability and meltability will be trapped
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in the cleft, leading to formation of a stable OC that provides the binding energy

required to compensate for the energy cost to open DNA. This model for promoter

recognition based on global DNA features explains why Pol I promoter sequences are

not conserved (Moss et al., 2007).

Some aspects of the Pol I initiation mechanism resemble initiation in the bacterial

σ70-dependent transcription system. Although the direction and bend of upstream

DNA di�er in the bacterial complex (Murakami et al., 2002; Zhang et al., 2012; Zuo

and Steitz, 2015), DNA opening by Pol I does not require ATP hydrolysis, may in-

volve trapping of the non-template single strand as observed in the bacterial system

(Feklistov and Darst, 2011), and may involve closure of the cleft, also as observed for

bacterial RNA polymerase (Chakraborty et al., 2012). In the Pol II system, spontan-

eous DNA opening can occur (Plaschka et al., 2016), but may generally be impaired

because DNA is suspended over the cleft, limiting interactions of downstream DNA

with the polymerase, and giving rise to a requirement for TFIIH to open DNA with

the use of ATP hydrolysis (Grunberg et al., 2012; Kim et al., 2000).
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3. Materials and Methods

3.1. Structure of RNA polymerase I transcribing

rDNA genes

3.1.1. Preparation of Pol I elongating complex

Endogenous 14-subunit Pol I was prepared from S. cerevisiae as described (Engel

et al., 2013), with some modi�cations. Yeast strain CB010 expressing a C-terminal

FLAG/10x histidine-tagged A190 subunit was fermented and harvested during the

exponential phase. For Pol I puri�cation, 350 g of cells were used. Proteins were pre-

cipitated overnight at 4◦C with ammonium sulfate (2M). Re-solubilized Pol I was

enriched by large-scale a�nity puri�cation with Ni-NTA beads (Qiagen, Hilden, Ger-

many). Further enrichment with anion and cation exchange chromatography yielded

to pure Pol I enzyme. The sample was applied to a Superose 6 10/300 size exclusion

column (GE Healthcare, Little Chalfont, UK) in 5mM HEPES (pH 7.8), 150mM

potassium acetate, 1mM MgCl2, 10µM ZnCl2 and 10µM β-mercaptoethanol.

DNA and RNA were purchased from IDT (Coralville, USA) and Exiqon (Vedbaek,

Denmark), respectively. The nucleic acid sca�old sequences were as follows. Template

DNA, 5'-AAGCTCAAGTACTTAAGCCTGGTCATTACTAGTACTGCC-3'; nontem-

plate DNA, 5'GGCAGTACTAGTAAACTAGTATTGAAAGTACTTGAGCTT-3';

RNA, 5'-UAUCUGCAUGUAGACCAGGC-3' (in underlined nucleosides, a methyl-

ene bridge connects the 2'-O and the 4'-C atoms of the ribose ring, thereby forming

locked nucleic acids). Nucleic acids were annealed by continuously decreasing tem-

perature from 95◦C to room temperature (RT) over a period of 60min. EC assembly

was achieved by incubating Pol I (300µg, 3.5mg/mL) with a two-fold molar excess of

sca�old for 10min at room temperature (Fig. 2.1).
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3.1.2. Single-particle cryo-electron microscopy

For single-particle cryo-electron microscopy (cryo-SP), Pol I EC complexes at a con-

centration of 200µg/mL were cross-linked with 0.9mM BS3 (Sigma Aldrich, St. Louis,

USA) for 30min at 30◦C after optimization (Fig. 2.1). The reaction was stopped by

adding 50mM ammonium bicarbonate, and the sample was puri�ed by size exclu-

sion chromatography on a Superose 6 3.2/300 column (GE Healthcare, Little Chalf-

ont, USA) equilibrated in 5mM HEPES (pH 7.8), 150mM potassium acetate, 1mM

MgCl2, 10µMZnCl2 and 10µM β-mercaptoethanol. A 4µL aliquot of 100µg/mL

puri�ed sample was applied to a glow-discharged (10 s) R1.2/1.3 UltrAuFoilTM grid

(Quantifoil, Grossloebichau, Germany), and plunge-frozen in liquid ethane (Vitrobot

Mark IV (FEI, Hillsboro, USA) at 95% humidity, 4◦C, 8.5 s blotting time, blot force

14). Dose-fractionated movies (30 frames, 0.25 s each) were collected at a nominal

magni�cation of 130,000x (1.05Å/ pixel) in nanoprobe energy-�ltered transmission

electron microscopy (EFTEM) mode at 300 kV with a Titan Krios (FEI, Hillsboro,

USA) electron microscope using a GIF Quantum SE post-column energy �lter in zero

loss peak mode and a K2 Summit detector (Gatan, Pleasanton, USA). The camera

was operated in counting mode with a dose rate of approximately 7.5 e−/pixel/sec

and a total dose of approximately 56 e−/Å2. Defocus values ranged from -0.6 to -3µm

with marginal (<0.1µm) astigmatism. Global motion correction was performed as

described (Li et al., 2013), but cryo-SP images were not partitioned.

3.1.3. Cryo-SP image processing

Parameters of the contrast transfer function (CTF) on each micrograph were estimated

with CTFFIND4 (Rohou and Grigorie�, 2015). In a �rst step, approximately 1500

particles were picked with the semi-automated swarm method of EMAN2's e2boxer.py

(Tang et al., 2007). Relion was used for the whole-image processing work�ow (Scheres,

2012) unless stated otherwise. Reference-free 2D classes were generated, seven of

which were used for template-based auto-picking after �ltering to 20Å. We extracted

401,000 particles from 2300 micrographs with a 2302 pixel box and used them for

further processing. Pixels with 5 standard deviations from the mean value were re-

placed with values from a Gaussian distribution. All images were normalized to make

the average density of the background equal to zero during pre-processing. False-

positive particles showing very bright dots, which were presumably gold contamin-

ation, were removed by manual inspection or unsupervised 2D classi�cation. The
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3.1. Structure of RNA polymerase I transcribing rDNA genes

remaining 282,000 particles were aligned on a reference generated from the PDB entry

4C2M (Engel et al., 2013) �ltered to 40Å. To correct for local motion and for radiation

damage, we used the movie processing function of Relion including 'particle polishing'

(Scheres, 2012). Local resolution was estimated as described (Cardone et al., 2013;

Plaschka et al., 2015).

During classi�cation of cryo-SP images (Fig. 2.3), we �rst separated out particles

lacking nucleic acids. To this end, the Pol I cleft of the average resulting after the �rst

round of alignment was masked. The subsequent classi�cation led to 4 classes: (1) nuc-

leic acid-free Pol I (115,000 particles); (2) Pol I elongation complex (94,000 particles;

hereafter referred to as 'EC'); (3) Pol I elongation complex with an alternative DNA

conformation (37,000 particles); and (4) other particles (35,000 particles). Among the

nucleic acid-free polymerase particles, 80,000 particles displayed a de�ned position of

the C-terminal domain of A12.2. We refer to the SP average of these particles as the

'monomer'.

In a second step, a mask around the dimerization domain was applied to remove

particles from which the A49/34.5 subcomplex dissociated. This led to 32,000 and

40,000 particles in case of the Pol I monomer and Pol I EC, respectively. To visualize

the mobile stalk, we then applied a mask around A14/43 during re�nement allowing

only local searches.

Gold-standard Fourier Shell Correlations (FSCs) were calculated during the 3D re�ne-

ment in Relion between two independently re�ned halves of the data. According to

the FSC 0.143 criterion, global resolutions of 4.0Å and 3.8Å were estimated for Pol I

monomer and EC structures, respectively, which were sharpened with temperature

factors of -146Å2 and -149 Å2, respectively.

3.1.4. Structural modelling

Two separate models were built for the monomer and the Pol I EC. PDB entry 4C2M

(Engel et al., 2013) was used as the starting model in both cases. Models were construc-

ted lacking the expander, connector and, in case of the EC, the C-terminal domain of

A12.2. The models were further truncated by removing the peripheral subcomplexes

A49/34.5 and A14/43. The starting models were placed in densities for the monomer

and the EC by �tting in UCSF Chimera (Pettersen et al., 2004), followed by rigid body

�tting with a Phenix real space re�nement (Adams et al., 2010). Rigid body groups

were de�ned based on module de�nitions originally proposed for Pol II (Cramer et al.,
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2001). A starting model for DNA and RNA was derived from bovine Pol II (Bernecky

et al., 2016) and further re�ned. Structurally altered regions were adjusted to the

density in COOT (Emsley et al., 2010) followed by real space re�nement in Phenix.

To generate complete models, structure of subcomplexes A49/34.5 and A14/43 were

�t into the classi�ed map in Chimera. No changes were made within the domains

during model building, except for A34.5 C-terminal tail. The models were validated

using the FSC between the model and the map, EMRinger (Barad et al., 2015) and

Molprobity (Chen et al., 2010).
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3.2. Structural basis of RNA polymerase I

transcription initiation

3.2.1. Preparation of Pol I ITC complexes

Pol I, CF, Rrn3, and TBP were puri�ed separately and reconstituted in vitro on

a promoter sca�old. S. cerevisiae Pol I was puri�ed from endogenous material as

described before (Neyer et al., 2016). All initiation factors were expressed recom-

binantly in E. coli . CF was puri�ed as described above and Rrn3 and TBP as

described before (Blattner et al., 2011; Plaschka et al., 2016). Nucleic acids were

purchased from IDT (Coralville, USA) with these sequences: Template DNA, 5'- CT-

TGTCTTCAACTGCTTTCGCATGAAGTACCTCCCAACTACTTTTCCTCACAC-

TTGTACTCCATGACTAAACCCCCCCTCCCATTACAAACTAAAATCTTACT-3';

nontemplate DNA, 5'- AGTAAGATTTTAGTTTGTAATGGGAGGGGGGGTTTAG-

TCATGGAGTACAAGTGTGAGGAAAAGTAGTTGGGACAAGTGCTTGCATCG-

TGCAGTTGAAGACAAG-3'; RNA, 5'- AUGCGA-3'. Nucleic acids were annealed

in water in a 1:1:1 ratio by continuously decreasing temperature from 95◦C to room

temperature over a period of 60minutes. The Pol I-Rrn3 complex was pre-assembled

by incubating polymerase with a 5-fold excess of Rrn3 at 4◦C overnight. On the next

day, 5-fold excess of CF, and 1.2-fold excess of DNA-RNA sca�old and TBP were

added. The sample was incubated at room temperature for 20minute, followed by

an hour on ice. Stochiometric ITC eluted as a homogenous peak from a Superose 6

3.2/300 size exclusion column (GE Healthcare, USA) in complex preparation bu�er

(5mM HEPES pH 7.8, 150mM potassium acetate, 1mM MgCl2, 10µM ZnCl2, 5%

v/v glycerol, 10µM β-mercaptoethanol). The peak fractions (Fig.2.14) were pooled,

and cross-linked with 0.1% glutaraldehyde for 30minutes at 4◦C before the reaction

was quenched with a mixture of 2.5mM aspartate and lysine. After 5minutes incub-

ation at 4◦C, ammonium-bicarbonate was added to a �nal concentration of 100mM.

After cross-linking and quenching, the bu�er was exchanged to sample bu�er (com-

plex preparation bu�er lacking glycerol) using Micro P30 Bio-Spin columns (Bio-Rad,

USA) and �ltered with 4mm PES Captiva syringe �lters with a pore size of 0.2µm

(Agilent, USA). Final complex concentration of 0.13mg/mL was achieved by reducing

the sample volume in Vivaspin 500 with a 100 kDa cut-o� (Sartorius, Germany).

51



3. Materials and Methods

3.2.2. ITC single-particle cryo-EM and image processing

A 4µL aliquot of puri�ed sample was applied to a glow-discharged R2/2 UltrAuFoilTM

grid (Quantifoil, Germany), and plunge-frozen in liquid ethane (Vitrobot Mark IV

(FEI, USA) at 95% humidity, 4◦C, 8.5 s blotting time, blot force 14). Dose-fractionated

movies (24 frames, approximately 60 e−/Å2 total dose) were collected at a nominal

magni�cation of 95,000x (1.13Å/pixel) in nanoprobe mode at 300 kV with a Titan

Krios (FEI, USA) electron microscope using a Falcon2 detector (FEI, USA). Defo-

cus values ranged from -0.8 to -2.5µm with marginal (<0.1µm) astigmatism. Global

motion correction and dose weighting was performed using Unblur (Brilot et al., 2012).

Parameters of the contrast transfer function (CTF) of each micrograph were estim-

ated with CTFFIND4 (Rohou and Grigorie�, 2015). In a �rst step, approximately

20,000 particles were picked with the semi-automated swarm method of EMAN2's

e2boxer.py (Tang et al., 2007). Relion was used for the whole-image processing work-

�ow (Scheres, 2012) unless stated otherwise. Reference-free 2D classes were generated,

ten of which were used for template-based auto-picking after �ltering to 20Å. We ex-

tracted 2,498,000 particles from 6,000 micrographs with a 3302 pixel box and used

them for further processing. Pixels with more than 5 standard deviations from the

mean value were replaced with values from a Gaussian distribution. All images were

normalized to make the average density of the background equal to zero during pre-

processing. False-positive particles showing very bright dots, which were presumably

gold contamination, were removed by manual inspection or unsupervised 2D classi�ca-

tion. The remaining 1,328,000 particles were aligned to a reference generated from one

Pol I molecule of the PDB entry 4C2M (Engel et al., 2013) �ltered to 40Å. According

to the 0.143FSC criteria, the initial reconstruction reached an overall resolution of

3.5Å (Fig. 2.15).

During classi�cation (Fig. 2.14), we �rst separated 371 000 particles lacking CF with

or without Rrn3 and DNA. The resulting reconstruction of a Pol I-Rrn3-DNA complex

was resolved to 3.8Å (0.143FSC criteria, not shown). 957 000 particles contained CF.

This subset was also classi�ed based on DNA and Rrn3 occupancy, resulting in a

sub-set of 567,000 complete particles. The corresponding ITC reconstruction reaches

an overall resolution of 4.2Å (0.143FSC criteria). For visualization, the density was

either �ltered to its nominal resolution or sharpened with a B-factor of -315Å2. Local

resolution (Fig. 2.15) was estimated as described before (Plaschka et al., 2015).
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3.2.3. Structural modelling of the ITC and CC

To generate a model of the Pol I ITC, we used the known crystal structures of Pol I

(PDB 4C2M), Rrn3 (3TJ1) and CF (this study) as starting point (Blattner et al.,

2011; Engel et al., 2013). The �exible expander, connector and C-terminal domain of

A12.2 were removed from the Pol I structure. Rigid body groups were de�ned as before

(Engel et al., 2013) and rigid body �tted using Phenix real space re�nement (Adams

et al., 2010). The starting coordinates for the downstream DNA and RNA were

extracted from the Pol I EC (Neyer et al., 2016). Since upstream DNA did not allow

one to distinguish individual nucleotides, we modelled its straight parts with B-DNA

generated and rigid body-�tted in Coot (Emsley et al., 2010). We had included TBP

in our sample preparation, but did not observe any corresponding cryo-EM density.

Due to �exibility, density quality of CF areas varied highly. While the overall volume

is large enough and has the correct shape to accommodate CF, not all parts are well

resolved. In particular, density for the distal CF module II is poor, whereas density

for module I is very good, revealing secondary structure elements. Therefore, we �tted

CF elements as rigid bodies based on the location of well resolved domains, resulting

in the model displayed in Fig. 2.13. However, the PDB coordinates were restricted to

well-ordered domains presenting as de�ned secondary structures in our reconstruction.

For modelling of the closed promoter DNA complex (CC) of Pol I, canonical straight

B-DNA was generated in COOT (Emsley et al., 2010) and placed in an ITC such

that DNA superimposed with DNA in the ITC at the distal upstream PAD contact

and such contacts a conserved TPSA motif in Rpb5 (Bernecky et al., 2016). We then

overlayed the Pol I-Rrn3 structure (PDB code 5G5L) via its active center in order to

avoid a clash between proximal upstream promoter DNA and the A135 protrusion

domain by using the partially expanded cleft con�rmation (Engel et al., 2016). In

order to compare CCs and ITCs of Pol I and Pol II, complexes were superimposed

via their active site regions using Chimera (Pettersen et al., 2004). PDB codes of

the superimposed Pol II CC and ITC were 5FZ5 (Plaschka et al., 2016) and 4V1N

(Plaschka et al., 2015), respectively.
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With the determination of the Pol I crystal structure (Engel et al., 2013; Fernández-

Tornero et al., 2013), high-resolution structural information of a eukaryotic polymerase

other than Pol II became available for the �rst time. The Pol I crystals contained

inactive dimers suggesting that an additional regulatory event is required to yield an

active enzyme. It was recently shown how Rrn3 converts Pol I dimers into an initiation

competent Pol I monomer (Engel et al., 2016; Pilsl et al., 2016).

We now expanded our structural knowledge of the Pol I transcription cycle by a series

of additional steps (Figure 4.1 and 1.2). The Pol I dimer is in an equilibrium with

its monomeric form and we probed for conformational changes that result from this

transition. The crystal structure of the CF is now available, which, together with

Pol I and Rrn3, completes the set of high-resolution structures of the pre-initiation

complex. The model of the closed initiation complex was derived by analysing the

DNA binding interface of CF and by comparison with the Pol II system. We further

solved an initially transcribing complex that allowed us to discuss DNA opening. The

structure of elongating Pol I completes the set of transcribing eukaryotic polymerases.

Transition from inactive to active Pol I was characterized by a change in the cleft

width, which was con�rmed by ex vivo cryo-ET data.

4.1. Completion of transcription cycle snapshots

In a next step, the models of closed and open initiation complexes need to be supported

by additional experimental data. Determination of the open complex structure by

cryo-EM promises to be comparable to structure determination of the ITC as sample

preparation di�ers only by the presence of RNA. As we discovered in this study,

Pol I positions the promoter DNA about 25Å deeper in the cleft during initiation as

expected. Consequently, the size of the mismatch bubble should be decreased.
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Figure 4.1. Transcription cycle. Scheme of the Pol I transcription cycle. States with
known structures are marked with bold font. The crystal structure of Pol I was solved as an
inactive dimer (Engel et al., 2013; Fernández-Tornero et al., 2013) ('Pol I Dimer' panel adop-
ted from Engel et al. (2013)) and the Rrn3 crystal structure also revealed dimers (Blattner
et al., 2011). These two homo-dimers form an initiation competent Pol I-Rrn3 hetero-dimer
and this complex was solved be cryo-EM (Engel et al., 2016; Pilsl et al., 2016). Apart from
Rrn3, CF is also involved in promoter recognition. Subsequent to promoter recognition, the
transition to an open complex occurs via DNA melting. Then, the initially transcribing com-
plex escapes the promoter and productive elongation occurs followed by either re-initiation
or termination.
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Additionally, a series of structures with di�erently sized mismatch bubbles, will allow

monitoring of DNA opening and the conformational changes accompanying it. As the

Pol I initiation complex is capable of opening DNA without ATP hydrolysis, such a

study of sequential DNA opening faces the same challenge as the study of a closed

complex. In both cases, the enzyme has to be trapped. In bacteria, rudder deletions

were shown to severely impair transcription initiation (Kuznedelov et al., 2002) and

our models suggest that the same might be the case in the Pol I system. In vitro

experiments revealed that the tandem winged helix is essential for initiation but not

for elongation (Pilsl et al., 2016). Thus, rudder or tandem winged helix deletions may

allow sample preparation of a de�ned state.

Structural studies of transcriptional termination are challenging, as the elongation

complex has to be destabilized in order to release its template and product. A Reb1

binding site follows the T-rich sequence at the end of rDNA genes. One model of

termination assumes that Reb 1 functions as a road block on DNA and the T-stretch

causes destabilization of the DNA-RNA hybrid leading to dissociation of the elonga-

tion complex (Nemeth et al., 2013). The crystal structure of Reb1 together with its

termination sequence supports this hypothesis and in the same study direct interaction

between Reb1 and A12.2 was discovered (Jaiswal et al., 2016). With that knowledge

further structural studies of Pol I transcription termination become feasible. This is

particularly promising as the Pol III subunit C11, which is homologous to A12.2, is

involved in termination (Arimbasseri et al., 2013).

4.2. Upstream activating factor as part of the

initiation complex

The general transcription factors Rrn3 and CF are su�cient to initiate Pol I tran-

scription in vitro (Moss et al., 2007). Therefore, we limited our studies to this core

initiation complexes in context of promoter DNA. In vivo an additional upstream ac-

tivating sequence (UAS) from -60 to -150 (+1 corresponds to the transcription start

site) stimulates transcription (Bordi et al., 2001; Keys et al., 1996). The hexameric

upstream activating factor (UAF) consists of Rrn5, Rrn9, Rrn10, Uaf30, H3 and H4

(Keener et al., 1997). Protein interactions are mediated between UAF, CF and TBP,

but not directly between UAF and Pol I (Knutson and Hahn, 2013). The UAF sub-

unit Uaf30 facilitates UAS binding in the presence or absence of other factors (Hontz
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et al., 2008), but the mechanism of how UAF stimulates transcription remains elu-

sive. Available puri�cation protocols for endogenous UAF (Keener et al., 1998) can

be optimized for structural studies and then used to assemble a complete initiation

complex. The development of baculovirus systems may also allow for recombinant

UAF expression in insect cells, bearing the advantage of higher �exibility if mutations

are desired (Berger et al., 2004).

Besides increasing Pol I activity, UAF also silences rDNA gene transcription by Pol II

and its absence alters the chromatin architecture (Goetze et al., 2010). A structure

of UAF in complex with the Pol I transcription machinery may also elucidate how the

polymerase switch (Vu et al., 1999) is prevented.

4.3. In-depth elongation studies

The EC has to be highly processive in order to transcribe complete genes without

premature termination. The transcription factor Spt5, NusG in bacteria, dimerizes

with Spt4 and its architecture on Pol II was modelled (Martinez-Rucobo et al., 2011).

The NGN domain of Spt5 binds at the clamp core helices, thereby locking the nucleic

acids inside the cleft and stabilizing the EC. Spt4/5 was further shown to play a role

in Pol I transcription (Schneider et al., 2006). We can now test structurally whether

the conserved transcription factor Spt4/5 supports Pol I transcription in the same way

as it does for Pol II activity.

During processive elongation Pol I may incorporate a wrong nucleotide that does not

base-pair with its template according to Watson-Crick. To prevent release of RNA

with sequence mismatches, Pol I possesses a built-in proofreading mechanism, the

RNA cleavage activity of A12.2 (Kettenberger et al., 2003). Additionally, stalled and

backtracked Pol I also depends on A12.2 to continue elongation. Stalling may happen

as processing of the rRNA is extensively coupled to transcription and both in�uence

each other (Woolford and Baserga, 2013). Here we showed the correlation of cleft

contraction with activity states of Pol I. When Pol I binds a perfect DNA-RNA hybrid,

cleft contraction also narrows the pore that accommodates the C-terminal domain

of A12.2. Thus, RNA cleavage is prevented. After incorporation of an incorrect

nucleotide, the hybrid will be distorted and might then cause widening of the pore

to allow the catalytic domain of A12.2 to reach into the active site. As partial RNA

cleavage would lead to a heterogeneous mixture of complex state, A12.2 has to be
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inactivated. Point mutations at the tip of the catalytic loop of TFIIS, the Pol II

homologue of A12.2, were demonstrated to prevent cleavage but maintain the structure

of its cleavage activating domain (Cheung and Cramer, 2011). Yeast strains harbouring

analogous mutations in A12.2 can be used to test our hypothesis.

4.4. Rationalized drug design for cancer therapy

Cancer cells are characterized by uncontrolled cell growth that requires highly in-

creased protein synthesis. Consequently, ribosome biogenesis, and in turn also Pol I

transcription, is up-regulated. Aggressive cancer cells even display enlarged nucleoli

(Derenzini et al., 2000). This makes the Pol I transcription machinery a potential

target for anti-cancer therapeutics (Poortinga et al., 2015). CX-5461 is such a drug

in clinical trials. It prevents the interaction of SL-1, the human CF homologue, with

promoter DNA and impairs Pol I activity approximately 350-fold over Pol II or Pol III

activity (Drygin et al., 2011). We can test if CX-5461 is not only active in human cells

but also in yeast and further determine the binding a�nity between CF and CX-5461.

The newly derived structure of the CF may help to discover the molecular mechanism

of CX-5461 action.

Based on the ITC structure the best suited DNA construct can be designed for co-

crystallization of CF with DNA. A high-resolution structure of CF in complex with

DNA would give valuable insights into promoter recognition and this interaction can

be disrupted in clinical applications.

4.5. Pol I transcription in its natural environment

Continuous improvements in cryo-EM image processing, data collection and sample

preparation, gradually improve the resolution achievable from subtomogram averaging.

With approximately 9Å resolution, the mammalian ribosome is one of the best re-

solved asymmetric complexes so far (Pfe�er et al., 2015). The resolution of our sub-

tomogram average of Pols on Miller spreads is limited by particle number. Increasing

particle number is not trivial, as preparing Miller spreads suitable for data collection is

very challenging. Generally, Miller spreads are most frequently prepared from Xenopus

laevis oocytes as their high transcriptional activity eases sample preparation (Miller

and Beatty, 1969). Here we used Miller spreads from S. cerevisiae, which allowed
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us to directly compare between cryo-ET and cryo-SP reconstructions from the same

organism. Switching to X. laevis might improve formation of Miller spreads suitable

for imaging, thereby overcoming a current bottleneck.

The characteristic shape of Miller spreads allows one to correlate positions in the

tomogram with its rDNA sequence, if the �eld of view is su�ciently large. With

that information, Pols can be sorted depending on their genomic position. As Pol I

transcription initiation is not only observed from the rDNA promoter but also from

promoters within the intergenic spacer region (Mayer et al., 2006), one could thereby

assess whether the conformation of the enzymes di�er.

The cryo-ET polymerase reconstruction shown here did not reveal de�ned additional

features accounting for accompanying transcription factors. These binding partners

must either have dissociated during sample preparation or are highly dynamic. Optim-

izing bu�er conditions or �xation by covalent cross-linking might help to trap distinct

Pol I complexes on a Miller spread.

Ultimately tomographic studies can elucidate higher ordered Pol I transcription units

which are disrupted upon spreading. To overcome these limitations, the nucleolus

or even the cell is frozen as a whole. Focused ion beam milling then generates a

thin lamella at the region of interest that allows imaging (Narayan and Subramaniam,

2015). While the thick sample is non-transparent, the area of interest has to be chosen

by complementary techniques. Fluorescent labelling of Pol I would allow for correlative

cryo-�uorescence light microscopy and cryo-electron tomography (Koning et al., 2014).
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Results presented in this section are published.

W. Mühlbacher, S. Sainsbury, M. Hemann, M. Hantsche, S. Neyer, F. Herzog, P.

Cramer (2014) Conserved architecture of the core RNA polymerase II initiation com-

plex. Nature Communications. doi:10.1038/ncomms5310

A.1. Abstract

Site speci�c cross-linking coupled to mass spectrometry (XL-MS) has the power to

bridge between structures at high and low resolution. In many cases it is very chal-

lenging to determine the structure of huge biological assemblies to high resolution.

Although cryo-EM improved dramatically during the last years, de novo building of

structures is possible in no more than a few cases. Commonly, high-resolution struc-

tures of sub-domains are solved with x-ray crystallography and then �tted into the

EM density. Depending on the resolution of the reference map, additional restraints

are required to unambiguously place the domain. In such an integrative approach,

XL-MS is frequently used (Leitner et al., 2016).

A typical XL-MS experiment results in a long list of distant restraints. To simplify

cross-link interpretation, we wrote a Matlab based script that converts a list of cross-

links to a vector-based diagram. Additionally, it is possible to export a list without

redundant distance restraints.

Today, more sophisticated tools are available. Common examples are xVIS (Grimm

et al., 2015), xTract (Walzthoeni et al., 2015) and xiNET (Combe et al., 2015).
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Figure A.1. Example of cross-link map. The trimeric complex proteinA/B/C is shown.
Intra and inter cross-links are visualized as green and blue lines, respectively, while possible
candidates are coloured in red. For proteinA, domains are highlighted. Magenta and yellow
lines represent α-helices and β-strands, respectively. The axes are typically suppressed but
can be used to determine the position of the boxes representing complex subunits. X- and
y-values have to be provided in the default �le. They correspond to the middle left edge of
the box. It is recommended to set these values randomly in the �rst place. For a second
round, optimized positions can be determined by moving the boxes in a vector based graphics
suite.

A.2. Data preparation and input �les

As input �les, tab delimited *.txt �les have to be placed in the folder 'input'. The

names of these �les should re�ect what is contained in the variable �le within the main

script (BiClAn). The input �les are formatted in the way that the third and fourth

column state the position of cross-links of the subunits given in column one and two,

respectively. The �fth column allows one to mark a cross-link, e.g. as a candidate and

allows it to be drawn in a di�erent manner (Figure A.2). Please note, that inter and

intra cross-links have to be provided in separate input �les. The protein names may

not include spaces. This is true for all input �les.

The variable default loads a tab delimited �le which sets the name of the proteins and

allows the subunits to be treated separately (Figure A.2). Please note that you have

to give the name of the proteins in descending alphabetical order (as they are called

in �le). Two additional rows are needed at the end of the document. The easiest way

to generate this �le is to use a spreadsheet program and save as tab delimited *.txt.
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Figure A.2. Input �les. All �les required to generate the demo diagram are displayed.
As with the others, default.txt is a tab delimited �le. In this �gure a screenshot from a
spreadsheet program is shown to highlight the meaning of each column. However, it was
saved as *.txt later on.
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The number of amino acids is given in the second column. Although no axes are

displayed, the diagram is an x-y-coordinate system (Figure A.1). The value in column

eight and nine sets the x- and y-value, respectively. Whether an operation has ('1')

or has not ('0') to be executed for a speci�c subunit this can be set in the residual

columns.

Before drawing distance restraints, the user has to choose which input �les to use. As

shown in Figure A.3 , this is done by handing over the index of the input �le to variable

'i'. By executing these functions one by one, cross-links from di�erent experiments

can be drawn in di�erent colors to make them distinguishable.

Figure A.3. Script excerpt. Parts of the BiClAn script are shown to demonstrate how
to choose which dataset (loaded in �le) has to be drawn. The variable 'i' sets the index of
the respective input �le. In this example intra cross-links of 'demo_intra' are drawn. Inter
cross-links from selected subunits to all subunits are drawn in case of 'demo_inter1' and
'demo_inter1'.
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A.3. Domains and secondary structure

As optional features, domain architecture and secondary structure information of sub-

units can be displayed. In this case input �les have to follow a speci�c nomenclature.

Starting with the name as given in default, _sec or _dom is used as su�x for a tab-

delimited *.txt �le. H, E and C represent helices, strands and regions neither forming

helices nor strands, respectively. Domain information is given in four columns. Column

one will be neglected by BiClAn, but may not contain spaces. The second column

states the name of the domain, whose boundaries are set in column three and four.

A.4. Output �les

The generated MATLAB �gure can be saved as a pixel based image (e.g. *.png or

*.jpg) as well as a vector based graphic (e.g. *.eps or *.ai). By changing the size of the

window displaying your diagram you also change the size of the saved image. If the

�gures are saved as a graphic, clipping masks might be added. It is possible to remove

those in a vector graphic program. The variable 'sorted' contains (for each input �le

individually) a table of unique cross-links. The names of the involved subunits are

represented in column one and two by the indices as indicated in default (Figure A.2).

The respective amino acid number is given in column three and four. Whether a

cross-link was labelled as a candidate is displayed in column three.
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B. Extended Figures of the

Elongation study

Figures presented in this section are published and were obtained in a collaboration

with the Frangakis lab. Author contributions are stated on page VI.

S. Neyer∗, M. Kunz∗, C. Geiss, M. Hantsche, V.-V. Hodirnau, A. Seybert, C. Engel,

M. P. Sche�er, P. Cramer, A. S. Frangakis. (2016) Structure of RNA polymerase I

transcribing rDNA genes. Nature. doi:10.1038/nature20561
∗ These authors contributed equally to this work.

The following section presents supplemental �gures that were predominantly obtained

by the collaborators. Results and methods are presented in chapter 2.1 and 3.1,

respectively. Methods, which were predominantly used by the collaborators, are de-

scribed in appendix D.
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B. Extended Figures of the Elongation study
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10 µm

Miller tree

Miller tree shown in Fig. 3

Figure B.1. Yeast cells, lysed to leak their nucleoplasm, prepared with negative
stain and visualized under cryo conditions. (a) Electron micrograph of a negatively
stained lysed yeast cell, with the nucleoplasm spread on the carbon support �lm. The upper
left of the micrograph is occupied by the grid bar. The yeast cell has released the nuclear
context on the grid, which appears as an electron-lucent leakage. (b) Electron micrograph
of the leaked nucleoplasm of a plunge-frozen yeast cell at close-to-native conditions. In the
lower left corner, the yeast cell can be seen as an electron-dense patch. The nucleoplasm is
embedded in an ice layer and the asterisks indicate three Miller trees found in the vicinity
of this cell. The Miller tree indicated with the red asterisk was used for recording of the
tilt-series in Fig. 2.8.
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Figure B.2. Relative positions of polymerases towards each other and of protrud-
ing nucleic acids. (a) Schematic of three consecutive Pol I enzymes as seen in the tomo-
gram. (b) Histogram of center-center distance d of two consecutive Pols as depicted in (a).
(c) Histogram of in-plane angle φ spanned by three consecutive Pols as depicted in (a). (d)
Focused sub-tomogram averaging around the RNA. The RNA exits Pol I as a approximately
10Å thick density, both in the slice and in the isosurface representation. (e) Sub-tomogram
average with the alignment focused on the downstream DNA. The downstream DNA is a
long, straight 2 nm density, both in the slice and in the isosurface representation. In both
(d) and (e), the Pol I molecule is a globular approximately 12 nm featureless density. (f)
Stereo pair of the sub-tomogram average shows the positions of the nascent RNA chain as
green balls. The positions that were manually identi�ed by three independent users, without
previous knowledge of the positions of the sub-tomogram average, correspond closely to the
position of the RNA exit site that was postulated by the X-ray crystallography structure.
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C. Extended Figures and Tables of

the Initiation study

Figures and Tables presented in this section are in preparation for publication and

were obtained in a collaboration with Tobias Gubbey and Christoph Engel. Author

contributions are stated on page VII.

C. Engel∗, T. Gubbey∗, S. Neyer∗, S. J. Sainsbury, C. Oberthür, C. Bäjen, C. Ber-

necky, P. Cramer. (2016) Structural basis of RNA polymerase I transcription initi-

ation. (manuscript in preparation)
∗ These authors contributed equally to this work.

The following section presents �gures and tables that were predominantly obtained

by the collaborators. Results and methods are presented in chapter 2.2 and 3.2,

respectively. Methods, which were predominantly obtained by the collaborators are

described in appendix E.
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C. Extended Figures and Tables of the Initiation study
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Figure C.1. Crystal structure of yeast Core Factor. Caption on next page.
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Figure C.1. Crystal structure of yeast Core Factor. (A) Coomassie-stained SDS-
PAGE of puri�ed CF shows stoichiometric bands for the three subunits Rrn6, Rrn7 and
Rrn11. (B) Cartoon representation of the CF crystal structure colored according to local
B-factors (center), shows large di�erences. Central parts are well ordered and display low
B-factors and a well-de�ned 2Fo-Fc map that allows for the unambiguous placement of side
chains (eg. Rrn7 helix α7, left, map at 0.9σ). In contrast, peripheral elements, such as the
Rrn11 TPR helix α13 (right; map at 0.9σ) have a high B-factor and show less well-de�ned
density. (C) Cartoon representation of the Rrn7 helix α4. Anomalous di�erence density
peaks for sulfur (map at 2.6σ, yellow) and selenium (map at 5.0σ, blue) con�rm the residue
placement in Rrn7. (D) Rrn6 helix α6 (blue cartoon) and the Rrn7 helix α1 (green cartoon)
with an anomalous di�erence density peak for selenium (map at 5.0σ, blue) and a strong
sulphate (map at 2.6σ, yellow) that is coordinated in proximity to Rrn6 H705. (E) Rrn7
helices α6 and α8f with the anomalous di�erence density for selenium. The map for the
native protein (5.0σ) is shown in blue, for the F438M mutant (5.0σ) in red. (F) Cartoon rep-
resentation of CF with domain coloring with pointing out the location and type of mutation
for structure validation and helices identi�cation. (G) Detailed view of the Rrn6 structure in
cartoon representation shows the large distance between WD40 and headlock domains and
emphasizes the synergy with Rrn7 and Rrn11. A peptide in the N-terminal region of Rrn6
(20-27) is ordered and could be assigned due to a Leucin-to-Methionine mutation of residue
25 and an anomalous sulphur signal of Cysteine 27 (Methods). This peptide interacts with
Rrn11 TPR helices α9, α11 and α13 (Fig. 3C), contributing to the network of intimate
CF subunits intereactions. (H) Rrn11: PAD and TRP domains form compact assemblies
which are placed around the Rrn6 beta propeller. (I) Rrn7: With the 93 N-terminal residues
disordered, the cyclin domains and a cyclin II insertion form a compact arrangement, from
which only insertion helix α8e protrudes, forming PIR III in complex with Pol I. Addition-
ally, helix α8d forms a contact with the �rst tandem repeat of Rrn11 helices α5/α6, thereby
contributing to the strong association of Rrn11 with Rrn7. (J) Architecture of the Rrn6 β-
propeller. The �rst sheet (7/4, red) is followed by a 110 residue insertion which is succeeded
by 27 further sheets forming a 7-bladed propeller (each blade depicted in a di�erent color)
between residues 185 and 555. Striking homologies with the sca�olding protein RACK1 and
the histone-binding factor WDR5 were detected by a PDBeFold homology search (Hussain
et al., 2014; Schuetz et al., 2006).
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C. Extended Figures and Tables of the Initiation study

Figure C.2. Sequence alignments of Rrn7. (A) Structure-based sequence alignment of
S. cerevisiae Rrn7 with TFIIB (4BBS and 5FYW). Structures were manually superposed in
COOT and corresponding elements were assigned accordingly. For a 3D structure comparison
see Fig. 2.11. Among minor di�erences, a 34 residue insertion adds helix α4a to cyclin I, that
interferes with DNA binding (Fig. 2.15). The Rrn7 cyclin II insertion-helix α8e is �exibly
connected to the rest of the polypeptide but embeds itself between the Rrn11 TRP helices
α6 and α7, thereby protruding from the otherwise compact assembly of Rrn7 (Fig. S1I),
and forming PIR III (Fig. 2.12D). (B) Sequence and secondary structure prediction based
alignment of yeast and human Rrn7 (TAF1B). In higher organisms, the reader/linker region
further truncated and an additional, apparently �exible insertion between cyclin I helices α2
and α3 is predicted. In the structure of CF (Fig. 2.10), this would position the human TAF1B
insertion close to α4a and would also lie in the modelled path of PAD-bound promoter DNA.
(C) A multiple sequence alignment of Rrn7 shows that the protein is conserved throughout
species and shows high sequence similarity with other yeasts.
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Figure C.3. Secondary structure based alignment of Rrn6 and Rrn11. (A) The
domain architecture of Rrn6 and Rrn11 are conserved between yeast (S.c.) and human
(H.s.). (B) A sequence and secondary structure prediction based alignment of Rrn6 between
yeast species shows conserved and variable elements. (C) Sequence and secondary structure
prediction based alignment of Rrn11 among yeast species.

75



C. Extended Figures and Tables of the Initiation study

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure C.4. Proteins used in this study and formation of a Pol I-Rrn3-CF com-
plex.Size exclusion pro�le of a sample containing Pol I and a 5-fold molecular access of Rrn3
and CF. Retention volumes of A280 peaks of single samples are indicated. Two 10/300 Su-
perose 6 columns (GE Healthcare) were connected. Coomassie-stained SDS-PAGE gels of
Pol I, Rrn3 and Core Factor after puri�cation and of the assembled complex peak (top) are
shown.
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Figure C.5. Classi�cation of the Pol I-Rrn3-CF negative-stain EM dataset. (A)
Exemplary micrograph of the cryo-EM dataset. The scale bar is 100 nm. (B) Processing
and classi�cation tree. As in the cryo-EM dataset, a Pol I-Rrn3 structure and two structures
of Pol I with damaged particles or clamp/stalk �exibilities are observed. The amount of
particles with bound CF is higher in negative stain preparations, which is likely due to a
higher stability originating from grids with continuous carbon support �lm (methods). (C)
Angular distribution of single particle orientations used in cryo-EM reconstruction of the
Pol I-Rrn3 complex. Shades indicate the number of particles assigned to a view; red dots
indicate represented views. (D) Representative 2D class averages of the particles used for the
Pol I-Rrn3 negative-stain EM reconstruction. (E) FSC plot for half-maps of the Pol I-Rrn3-
CF negative stain reconstruction. 0.143 and 0.5 FSC criteria indicated. The �rst data point
after phase randomization is omitted. (F) A Fit of Pol I, Rrn3 and CF into the negative stain
envelop shows density for the entire CF. CF may additionally contact the N-terminal region
of Rrn3, as indicated by the presence of additional density (black line) and as previously
suggested (Peyroche et al., 2000).
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C. Extended Figures and Tables of the Initiation study
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Figure C.6. Classi�cation of the Pol I-Rrn3-CF cryo-EM dataset. (A) Exemplary
micrograph of the cryo-EM dataset. The scale bar is 100 nm. (B) Processing and classi-
�cation tree. A Pol I-Rrn3 structure was previously published (Engel et al., 2016) and two
structures of Pol I with dissociated A49/34.5 sub-complex or disordered clamp could not be
further classi�ed and result from damaged particles or clamp/stalk �exibilities in the absence
of a binding partner, such as a second Pol I molecule, Rrn3 or template DNA.
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Figure C.7. Details of three Pol I-Rrn3-CF reconstructions. (A) Fit of Pol I, Rrn3
and CF domains in the three obtained reconstructions from front and side view. While prox-
imal CF parts, especially the PIRs are well de�ned, distal CF parts appear more �exible. (B)
Angular distribution plots (left) and 2D class averages (right) for the three reconstructions.
Shades indicate the number of particles assigned to a view; red dots indicate represented
views. (C) Example densities for the subunits Rpb5 and Rpb8 as and the A190 funnel
helices indicate a high quality of �t for all reconstructions. (D) FSC plot for half-maps of
the Pol I-Rrn3-CF cryo-EM reconstructions. 0.143 and 0.5 FSC criteria indicated. The �rst
data point after phase randomization is omitted. (E) Overlay of the three reconstructions
shows that Pol I and Rrn3 stay inert, while the position of CF can vary up to 14 /AA, but
maintaining the same PIRs. In complex with Pol I and CF, Rrn3 adopts a conformation
which is similar to the crystal structure (Blattner et al., 2011). Reconstruction 3 showed
additional density spanning from the Rrn7ribbon towards the A190 zipper loop (Fig. 3).
This indicates that Rrn7 residues 30-40 pass the A190 lid on its outside. In contrast, the
B-reader/-linker elements of TFIIB pass the lid inside the polymerase cleft. The reader helix
is apparently not present in Rrn7 (Fig. C.2) but the linker helix of TFIIB occupies the same
position on the clamp coiled-coil helices (Kostrewa et al., 2009) as Rrn11 TPR helix α12 does
(Fig. 2.12) in PIR II. (F) Local resolution of reconstruction 3 displays a well ordered, high
resolution core and more �exible outer rims, especially CF module II. 79



C. Extended Figures and Tables of the Initiation study

Figure C.8. Initial transcription assay shows Pol I-speci�city of CF. (A) The
initiation assay (compare Fig. 5) using Pol II instead of Pol I. Pol II shows no speci�c band
at 24nt, but initiates from ds-breaks more e�ciently than Pol I. Titrations of Rrn3 ((B);
constant CF concentration, no TBP), CF ((C); constant Rrn3 concentration, no TBP) or
TBP ((D); constant CF and Rrn3 concentration) from 0 to 50-fold molar access show that
initiation is inhibited by high amounts of CF and TBP, probably due to multiple unspeci�c
DNA binding events. (E)-(H) Coomassie-stained SDS-PAGE gels of used components and
CF-mutants.
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Table C.1. Data collection, phasing and re�nement statistics for SAD and native
structures. Values in parentheses are for highest-resolution shell.

Native 1 Native 2 SeMet
Data collection PX1 Pilatus M1 PX1 EIGER 16M PX3 Pilatus 2M-F65
Space group P65 P1 P65

Cell dimensions
a,b,c (Å) 109.09,109.09,383.80 109.07,109.14,385.64 108.70,108.70,383.40
α,β,γ (◦) 90.000,90.000,120.000 90.021,90.009,95.976 90.000,90.000,120.000

Wavelength (Å) 1.00000 0.99995 0.97941
Resolution (Å) 50.0 - 3.2 60.0 - 3.2 50.0 - 4.00
Rmerge (%) 9.1 (282.9) 9.2 (235.1) 34.3 (227.3)
I/σ(I) 22.14 (1.38) 14.83 (1.12) 13.50 (2.08)
CC1/2 100 (54.0) 99.9 (41.7) 99.9 (73.9)

Completeness (%) 100 (99.9) 98.9 (99.4) 99.9 (100.0)
Redundancy (%) 11.6 (11.8) 8.3 (8.2) 42.7 (42.3)
Re�nement

Resolution (Å) 54.57 - 3.20
No. re�ections 251 065
Rwork/Rfree (%) 25.96 /28.90
No. atoms 62 484
Protein 64 328
Sulfate 150
B factors 147.28
Protein 147.18

Ligand / ion 184.83
Water NA

rms deviations
Bond lengths (Å) 0.008
Bond angles (◦) 1.190
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Table C.2. Data collection and phasing statistics for SAD datasets. SeMet mutant A, B and C correspond to Rrn11-L430M /
Rrn7-I408M, Rrn6-L25M / Rrn7-F438M and Rrn11-L3M / Rrn7-V212M, respectively. Values in parentheses are for highest-resolution
shell.

Sulphur - Peak SeMet mutant A SeMet mutant B SeMet mutant C
Data collection PX1 EIGER 16M PX1 EIGER 16M PX1 EIGER 16M PX1 EIGER 16M
Space group P65 P65 P65 P65

Cell dimensions
a,b,c (Å) 108.65, 108.65, 384.60 108.25, 108.25, 381.60 109.05, 109.05, 384.20 109.20, 109.20, 384.60
α,β,γ (◦) 90,90,120 90,90,120 90,90,120 90,90,120

Wavelength (Å) 2.06640 0.97848 0.97865 0.97846
Resolution (Å) 40 - 3.4 35 - 4.0 35 - 4.0 35 - 4.2
Rmerge (%) 53.5 (194.1) 46.5 (229.1) 34.9 (223.9) 37.4 (133.8)
I/σ(I) 29.64 (2.38) 12.4 (2.02) 12.23 (2.05) 14.61 (2.25)
CC1/2 99.8 (37.2) 99.3 (74.1) 99.8 (78.4) 99.5 (47.1)

Completeness (%) 99.3 (92.6) 99.9 (100.0) 99.8 (100.0) 99.6 (97.6)
Redundancy 385.2 (81.5) 36.1 (24.4) 39.5 (30.1) 51.5 (19.5)
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Table C.3. Cleft expansion states of Pol I. Pol I undergoes movements of its prede�ned
domains during the steps of initiation. To correlate functional Pol I states, we compared cleft
expansion in published Pol I structures (Engel et al., 2016; Engel et al., 2013; Neyer et al.,
2016). In order to de�ne cleft expansion states, we measured residue distances indicative
for cleft expansion on the downstream edge (between A190 residues G231 and K1331), the
upstream edge (A190 residue E414 and A135 residue K434) and compared to the crystal
structure (A190 residue E414). This shows a constant cleft contraction throughout activation
states, as predicted. Upon contraction, the A43-connector, the A12.2 C-terminal domain,
and the A190 expander domains apparently detach and the bridge helix is rewound.

Downstream Clamp-Protrusion A190414 relative to 4C2M
Dimer (4C2M) 42 (Å) 41 (Å) NA
Free Monomer 42 (Å) 39 (Å) 6 (Å)

Pol I - Rrn3 (5G5L) 41 (Å) 36 (Å) 6 (Å)
PIC 39 (Å) 36 (Å) 7 (Å)
ITC 35 (Å) 29 (Å) 15 (Å)
EC 34 (Å) 28 (Å) 17 (Å)
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D. Extended Materials and

Methods of the Elongation

study

Materials and methods presented in this section are published and were obtained in a

collaboration with the Frangakis lab. Author contributions are stated on page VI.

S. Neyer∗, M. Kunz∗, C. Geiss, M. Hantsche, V.-V. Hodirnau, A. Seybert, C. Engel,

M. P. Sche�er, P. Cramer, A. S. Frangakis. (2016) Structure of RNA polymerase I

transcribing rDNA genes. Nature. doi:10.1038/nature20561
∗ These authors contributed equally to this work.

The following section presents supplemental material and methods that were pre-

dominantly obtained by the collaborators. Results and methods are presented in

chapter 2.1 and 3.1, respectively. Figures, which were predominantly obtained by the

collaborators, are described in chapter B.

D.1. Miller tree preparation and cryo-ET imaging

Miller chromatin spreads (Miller and Beatty, 1969) were prepared as described (Osheim

et al., 2009) using the NOY1071 yeast strain with 25 copies of rDNA repeats (Machin

et al., 2006), with the following modi�cations: yeast cells were grown to mid-log phase

(A600=0.4) at 30◦C; sucrose was precluded from the sucrose-formalin cushion; and

after depositing the yeast lysate on electron microscopy (EM) grids, the grids were

transferred to 11mM KCl pH 9 water for rapid plunge-freezing.

Prior to cryo-ET analysis, the yeast lysate was centrifuged on 300 mesh copper grids

with an approximately 30 nm thick carbon support layer evaporated by a carbon-coater

208Carbon (Cressington, Watford, UK) and glow-discharged with a strong plasma for
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approximately 1min using a home-made device. The grids were immediately plunge-

frozen in liquid ethane by a Vitrobot Mark IV (FEI, Eindhoven, The Netherlands)

with 25 blotting force, 3 s blotting and 10-15 s draining time and the blotting chamber

set to 100% humidity at 10◦C. Cryo-grids were mounted into autoloader grids with

C-clippings (FEI, Eindhoven, The Netherlands) in an EM FC6 cryo-microtome (Leica,

Wetzlar, Germany) that was cooled with liquid nitrogen under gaseous �ow to -150◦C.

During mounting, grids were visually inspected to determine whether they contained

an intact carbon �lm.

Tilt-series were recorded using DigitalMicrograph (Gatan Inc., California, USA) at a

nominal magni�cation of 33,000x (4.0Å/pixel) in EFTEM mode at 300 keV using a

Titan Krios with a GATAN GIF Quantum SE post-column energy �lter in zero loss

peak mode and a K2 Summit detector. The camera was operated in counting mode

with a dose rate of approximately 15 e−/pixel/sec and a total dose of approximately

100 e−/Å2. The tilt-series ranged from -63◦ to +63◦ with an angular increment of 2◦

and defocus set at -5µm. Tilted images were �ducial-less aligned (Castano-Diez et al.,

2007) and reconstructed by super-sampling SART (Kunz and Frangakis, 2014). The

CTF was measured and corrected in slices in 3D (Kunz and Frangakis, 2016).

D.2. Reconstruction and segmentation of Miller

trees

3D reconstructions were visualized with the EMpackage in Amira (Pruggnaller et al.,

2008) (FEI, Eindhoven, The Netherlands & Zuse Institute, Berlin, Germany) and

analyzed by custom image processing scripts written in MATLAB (all scripts are

freely accessible). Segmentation of the Miller trees was performed manually in Amira

by drawing contours encompassing individual features on mildly Gaussian low-pass

�ltered tomograms using the high-contrast option of super-sampling SART (Kunz

and Frangakis, 2014).

D.3. Sub-tomogram averaging of Pol I enzymes

For sub-tomogram averaging (i.e. the cryo-ET structure) we selected �ve Miller trees

with an obvious transcriptional directionality (several Miller trees were not completely
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D.3. Sub-tomogram averaging of Pol I enzymes

in the �eld of view). Of those, the 225 best-resolved Pol I enzymes contributed to the

sub-tomogram average, in which the orientation con�rmed the transcription direction

and the RNA exit site matched previous observations (Bernecky et al., 2016). Sub-

tomograms containing transcribing Pol I enzymes on rDNA were manually selected.

The enzymes were re-centered using a Gaussian blob of the size of Pol I. The positions

of all sub-tomograms were subsequently indexed such that they were placed sequen-

tially on the DNA. Since the DNA was visible in the reconstructions, the indexing was

unambiguous.

Sub-tomogram averaging was then performed on each Miller tree individually. This

was to guarantee that the directionalities of the enzymes are not mixed due to the

globular shape of the enzyme, the pseudo-symmetry axis, and the varying ice thickness

of the recording area leading to di�erent signal-to-noise ratio among the enzymes. The

Euler angles were determined a priori for each of the three consecutive Pol I enzymes

per Miller tree by calculating the vector from center-to-center position. Constrained

sub-tomogram averaging was performed on sub-tomograms with 64x64x64 voxels using

a spherical mask ( 20 nm diameter). To ensure the robustness of the sub-tomogram

averaging two di�erent starting references were used (a) the average of all rotationally

pre-aligned Pol I enzymes per strand, and (b) a Gaussian blob of the size of Pol I. Both

converged to the approximately same density. During sub-tomogram averaging of each

individual Miller tree, polymerases were low-pass �ltered and the alignment was run

with a translational freedom of 10 voxels around the Gaussian blob re�ned position, a

full rotational freedom for phi and psi, and a constrained rotational freedom of +-30 ◦

for theta with 5◦ sampling increment, until the average reached convergence. The

missing wedge was taken into account during the entire alignment.

The sub-tomogram averages of each Miller tree were individually inspected and the

orientation of the Pol I enzymes on each Miller tree was analyzed. The 3' to 5' dir-

ectionality of the enzymes on each Miller tree was analyzed. If all enzymes had the

same directionality (i.e. the signal-to-noise ratio was su�cient to align them prop-

erly), their sub-tomogram average was used for further processing. If the enzymes

had con�icting directionalities (including complete random directionality), their sub-

tomogram average was rejected. Five Miller trees quali�ed for this criterion. Their

enzyme directionality was visualized compared to the Miller-tree directionality, and

they all conformed. Finally, the 225 enzymes (from the 993 total enzymes in the

tomograms) of the �ve selected Miller trees were subjected to a re�ned sub-tomogram

averaging and the resulting cryo-ET structure reached a resolution of approximately
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2.9 nm with the FSC 0.5 threshold criterion (approximately 3.1 nm when compared to

the cryo-SP structure).

D.4. Additional cryo-ET analysis

In the tomograms both the DNA and the RNA could be seen emanating from the

enzymes. They were manually localized as close as possible to the enzyme and sub-

sequently sub-tomogram averaging was performed around this position. To obtain

evidence for the RNA exit channel visualized in the cryo-SP structure, we made three

independent attempts to manually select the position of exiting RNA on Pol I in the

tomogram without prior knowledge of the structure (Extended Fig. B.2F). The res-

ulting point distribution of exiting RNA on the cryo-ET structure agreed with the

location of the RNA exit channel in the cryo-SP map and further con�rmed the cor-

rect superposition of the two independent structures.

The distances of consecutive Pol I enzymes were calculated as the Euclidian distance

between their center-to-center positions. For plotting the probability density function,

one enzyme was centered, the downstream enzyme was placed on the y-axis, and the

upstream enzyme was placed on the plane. Between three consecutive neighboring

enzymes, the in-plane angle was estimated.

For �tting of structures to the cryo-ET reconstruction, rigid body �tting of the cryo-

ET and the cryo-SP structures of the Pol I EC was performed automatically. This

resulted in a global cross-correlation value of approximately 0.8 and a FSC shown in

Fig. 2.9A. The contour level for the cryo-ET structure for volume rendering of our

average was calculated from the theoretical molecular mass with an average protein

density of 0.8 kDa/nm3.
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of the Initiation study

Materials and methods presented in this section are in preparation for publication and

were obtained in a collaboration with Tobias Gubbey and Christoph Engel. Author

contributions are stated on page VII.

C. Engel∗, T. Gubbey∗, S. Neyer∗, S. J. Sainsbury, C. Oberthür, C. Bäjen, C. Ber-

necky, P. Cramer. (2016) Structural basis of RNA polymerase I transcription initi-

ation. (manuscript in preparation)
∗ These authors contributed equally to this work.

The following section presents materials and methods that were predominantly ob-

tained by the collaborators. Results and methods are presented in chapter 2.2 and 3.2,

respectively. Figures and Tables, which were predominantly obtained by the collabor-

ators are described in appendix C.

E.1. Additional cryo-ET analysis

Core factor (CF) subunits from S. cerevisiae were co-expressed in E. coli BL21-

CodonPlus(DE3)-RIL cells form two plasmids. Rrn6 and Rrn11 were cloned into

pET-21b with a C-terminal 6xHis tag on Rrn11. Rrn7 was expressed from pET-28b

with an N-terminal 6xHis tag. A single colony was used to inoculate 100mL LB me-

dium and incubated overnight at 37◦C with ampicillin, kanamycin and chloramphen-

icol. The pre-culture was diluted 1:100 to inoculate 4 L of LB medium and incubated

at 37◦C until OD600 values reached 0.5-0.7. Cultures were cooled on ice for 20min

and expression was induced with 0.1mM IPTG. Cells were grown at 18◦C for 18 h

and harvested by centrifugation, washed with phosphate-bu�ered saline (PBS) at 4◦C,

�ash frozen in liquid nitrogen and stored at -80◦C.
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For expression of seleno-methionine labelled core factor, a 4 L LB starter culture was

grown until OD600 reached 0.3-0.5. Cells were collected by centrifugation and washed

three times with PBS to remove residual media. Cells were re-suspended in minimum

medium depleted for methionine (Molecular Dimensions) to an OD600 of 0.2 - 0.3. The

culture was incubated for 1.5 h at 37◦C with antibiotics under shaking. After starva-

tion, cell growth was induced by adding selenomethionine stock solution (Molecular

Dimensions). After reaching an OD600 of 0.6, the temperature was reduced to 18◦C

and additional amino acids were added (25mg/l lysine, threonine, and phenylalanine;

12.5mg/L leucine, isoleucine, and valine). Expression was induced by adding IPTG

to a concentration of 1mM. Cells were grown for 18 h, harvested by centrifugation,

frozen in liquid nitrogen and stored at -80◦C.

E.2. Puri�cation of core factor

A pellet obtained from 4L cell culture was re-suspended in bu�erA (20mM imidazole,

350mM NaCl, 10mM MgCl2, 10% (v/v) Glycerol, 20mM Hepes pH 7.8, 1mM DTT,

1x protease inhibitor). Cells were lysed by sonication using a Branson Digital Soni�er.

The lysate was cleared by centrifugation and the supernatant was �ltered with a

0.22µm �lter (Millipore) to remove cell debris. Cell lysate was then applied to a Ni-

NTA column (5ml column volume (CV), GE Healthcare) and bound CF washed with

5CV of bu�erB (25mM imidazole, 200mM NaCl, 10mM MgCl2, 10% (v/v) glycerol,

20mM HEPES pH 7.8, 1mM DTT) at 4◦C. The column was transferred to room

temperature, washed with 2.5CV of bu�erC (50mM imidazole, 200mM NaCl, 10mM

MgCl2, 10% (v/v) glycerol, 20mM HEPES pH 7.8, 1mM DTT, 5mM ATP, 2mg/ml

denatured protein), incubated for 10min, and washed again with 2.5CV bu�erC. This

procedure was previously used (Rial and Ceccarelli, 2002) and aims at the removal of

tightly bound chaperones. The column was transferred to 4◦C and washed with 5CV

bu�erD (50mM imidazole, 200mM NaCl, 10mM MgCl2, 10% (v/v) glycerol, 20mM

HEPES pH 7.8, 1mM DTT). Elution was performed with 5CV of bu�erE (350mM

imidazole, 200mM NaCl, 10mM MgCl2, 10% (v/v) glycerol, 20mM HEPES pH 7.8,

1mM DTT). Protein was then fractionated on a 5ml heparin column (GE Healthcare).

Protein was loaded in bu�er F (1 mMMgCl2, 10% (v/v) glycerol, 20mM HEPES pH

7.8, 1mM DTT) and then eluted with a gradient ranging for 0 to 2M NaCl, including

a plateau at 550mM NaCl of 2CVs. CF-containing fractions were concentrated to 1ml

using a 100 kDa cut-o� centrifugal �lter (Millipore). Size exclusion chromatography
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was carried out with a Superose 6 10/300 column (GE Healthcare) in bu�erG (200mM,

1mM MgCl2, 5% (v/v) glycerol, 10mM HEPES pH 7.8, 10µM ZnCl2, 1mM DTT).

CF-containing fractions were concentrated using a 100 kDa cut-o� centrifugal �lter

(Millipore) and directly used or �ash-frozen in liquid nitrogen and stored at -80◦C.

E.3. Crystallization of core factor

CF was thawed and crystallized by hanging-drop vapour di�usion using a reservoir

solution containing 0.5M ammonium sulfate, 12% (m/v) PEG4000, 0.1M MES pH

6.0 and 1mM DTT. Pre-greased Crystalgen SuperClear 24-well Plates (Jena Bios-

cience) and siliconized cover slides (Jena Bioscience) were used to set 1µl drops with

a reservoir volume of 0.5ml. Obtained initial crystals were improved by micro-seeding

using a seed-bead kit (Hampton Research) and yielded rod-shaped crystals with a

hexagonal base and a length of up to 300µm. Crystals were harvested after 5-7 day

and transferred to a cryo-protectant solution containing the reservoir condition and

25% (v/v) glycerol in three steps. Crystals were �ash-frozen and stored in liquid

nitrogen until data collection.

E.4. Crystal structure determination

Data were collected at the Swiss Light Source in Villigen on the beamline PX1 with

a Pilatus 6M Detector (Dectris) or an EIGER 16M detector (Dectris), and beamline

PX3 using a PILATUS 2M-F detector (Dectris). Di�raction was observed to 3.2Å

resolution and data was processed with XDS (Kabsch, 2010), showing P65 symmetry,

as con�rmed using the program Pointless (Evans, 2006) in the CCP4 suite (Winn

et al., 2011). The presence of one molecule per asymmetric unit (AU) was suggested

by Matthews probability coe�cient estimation (Matthews, 1968). Molecular replace-

ment (MR) using TFIIB variants, various WD40 β-propeller domains and/or TPR

domains as search models was unsuccessful. Thus, phase information was obtained

by single wavelength anomalous di�raction (SAD) from selenomethionine-labelled CF

crystals. Di�raction data was collected on PX3 at three di�erent χ angels. Datasets

were merged, showing a strong anomalous signal until approximately 6Å resolution

(Table C.1). A total of 21 selenium atoms were found using the SHELX C/D pipeline

(Sheldrick, 2010) or HYSS, and an initial map was obtained using Phenix.autosol
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(Adams et al., 2010). Phase extension to approximately 3.2Å using the Phenix suite

improved the initial map (Fig. C.1).

Structure determination was impaired by protein �exibility and a pseudo-symmetric

arrangement of CF molecules. To derive additional sequence markers for model build-

ing, sulphur atom positions were determined from a sulphur-SAD dataset recorded

from a native crystal at high redundancy and a wavelength of 2Å. Using anomalous

peaks for both methionine and cysteine residues as sequence markers, an initial model

was built in COOT (Cowtan, 2010). To improve chain tracing and residue positioning,

a total of six residues were mutated to methionine in pairs of two. Selenomethionine-

labeled protein was prepared, SAD data was collected (Table C.2) and anomalous

di�erence maps calculated using the CCP4 suite. This allowed for the unambiguous

localization of residues Rrn6-L25, Rrn7-V212, Rrn7-I408, Rrn7-F438 and Rrn11-L430

(Fig. C.1). The Rrn11-L73M mutation did not yield a selenium signal, suggesting

�exibility of this region. Because re�nement of the structure in space group P65 us-

ing phenix.re�ne, Refmac (Murshudov et al., 1997) or BUSTER (Smart et al., 2012)

did not result in free R-factors below 35%, the data was reprocessed in lower sym-

metry space groups. MR placed six CF molecules in P1, showing a super-helical,

pseudo-symmetric arrangement, but slightly deviating from translational and rota-

tional crystallographic symmetry.

Re�nement of the structure was carried out in space group P1 using phenix.re�ne with

Cartesean non-crystallographic symmetry (NCS) restraints, 42 rigid body groups, 18

TLS groups, individual isotropic atomic displacement parameters and coordinate re-

�nement. In the �nal stages, de�ned secondary structures were �xed as such and

geometry target weights set to at a wxc scale of 0.25. This enabled re�nement of

our model to 3.2Å resolution with R/Rfree factors of 26.0/28.9% and good stereo-

chemistry (Table C.1). At a global resolution of 3.2Å we observed di�erences in the

quality of the electron density map for di�erent protein regions. While the electron

density map allowed for the clear assignment of residues in most parts of Rrn7, the

C-terminal (TPR) part of Rrn11 and the regions of Rrn6 are more �exible, resulting

in local di�erences in B-factors and map quality (Fig. C.1). A single helical density

could not be assigned with certainty, but apparently belongs to the �exible N-terminal

region in the Rrn11 PAD. We modelled this density with poly-alanine and arbitrary

residue numbers.
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E.5. Preparation and cryo-EM analysis of

Pol I-Rrn3-CF complex

Samples were prepared and cryo-EM data was collected as described (Engel et al.,

2016). Apart from particles with disordered stalk and clamp domains, we observed

particles with dissociated A49-A34.5 subcomplex, which has lower a�nity to the Pol I

core (Geiger et al., 2010) and Pol I in complex with Rrn3 (Engel et al., 2016). A total

of 23,784 particles with localized noise were subsequently found to be in complex with

CF at great heterogeneity. Those particles were subjected to focused classi�cation

using a CF mask (Fig. C.6). The largest resulting class was sub-classi�ed using local

searches. Three classes displayed CF in di�erent orientations, of which the largest

was sub-classi�ed using local searches. The �nal reconstructions CF-1, CF-2 and CF-

3 contained 8317, 5972 and 3065 particles, respectively. A mask encompassing Pol I,

Rrn3 and CF was calculated using RELION (Scheres, 2012) and used in 3D re�nement

to yield reconstructions at 9.0Å, 8.8Å and 7.7Å resolution, respectively. Particles

showed a preferred orientation which was, however, not exclusively occupied (Fig. C.7).

Resolution is based on the gold-standard FSC (0.143 criterion) and temperature factors

were automatically determined and applied in RELION (-247.8Å2, -433.4Å2 and -

628.2Å2 for the �nal reconstructions).

At the nominal resolution of 7.7Å we derived a pseudo-atomic model of the Pol I-Rrn3-

CF complex based on published crystal structures (PDB codes 4C2M and 3TJ1) and

the structure of CF presented here. A model of a Pol I monomer lacking the expander

and the connector was constructed from the PDB entry 4C2M using COOT (Emsley

et al., 2010) and placed into the density using UCSF Chimera (Pettersen et al., 2004).

Previously de�ned domains of Pol I were rigid body-�tted in real space using COOT.

A Rrn3 monomer (PDB 3TJ1) was also �tted to the density with USCF Chimera

and adjusted with COOT. Geometric parameters of residues located in connections

between shifted domains were regularized applying standard geometrical restraints

in COOT. As Pol I adopted the same con�rmation in all three reconstructions, one

model was built at 7.7Å and used for all three structures. CF was globally �tted

using Chimera and split into 5 rigid bodies which were separately �tted and slightly

adjusted in COOT (A: Rrn11 291-440, B: Rrn11 206-282 and Rrn7 370-420, C: Rrn11

1-205, D: Rrn6 20-558, E: Rrn6 567-779 and Rrn7 94-369 and Rrn7 432-514). Figures

were prepared with UCSF Chimera or PyMOL.
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E.6. Negative stain EM of the Pol I-Rrn3-CF

complex

Pol I-Rrn3-CF complex was prepared as before but applied to gradient �xation (GraFix)

as described (Kastner et al., 2008). A 4mL gradient from 10% to 30% sucrose was

prepared, using a Gradient Master 108 (BioComp) with 0.025% glutaraldehyde and

50µL sample volume. Centrifugation for 16 h at 32,000 rpm and 4◦C yielded 20 frac-

tions of 0.2mL. Crosslinking was quenched by adding aspartate or lysine to a �nal

concentration of 10mM. Fractions 14-15 from the top contained Pol I-Rrn3-CF com-

plex and were diluted to approximately 0.10mg mL−1. Continuous carbon coated

grids (Quantifoil) were glow-discharged for 20 s before applying 5µL sample and in-

cubated for 1min. Grids were washed by �oating on a 0.5mL drop of distilled water

for 1min, stained for 1min on a 50µL drop of 2% (w/v) uranyl formiate solution,

and blotted dry. Images were acquired on a 4k x 4k CCD camera (TVIPS) at 88 k

magni�cation (2.51Å/pix) with a Philips CM200 FEG electron microscope operated

at 160 kV. A total of 863 micrographs were collected with a defocus range of -1 to

-4µm, manually sorted and CTF corrected using CTFFIND3 (Mindell and Grigor-

ie�, 2003). Semi-automatic particle picking using EMAN2 (Tang et al., 2007) yielded

44,937 particles which were 3D classi�ed in a single round using a Pol I monomer

from PDB entry 4C2M as reference (�ltered to 40Å). Subsequently, particles were

re�ned using RELION 1.3, which yielded low resolution envelops of Pol I-Rrn3 and

Pol I-Rrn3-CF complexes at 28 Å and 16 Å resolution, respectively (Fig. C.5).

E.7. Pol I promoter-speci�c transcription initiation

assay

The 38 residues upstream of the Pol I transcription start site (TSS) were previously

shown to be su�cient for Pol I initiation (Keener et al., 1998). Hence, we used a dsDNA

sca�old comprising the region from -38 to +24 (Integrated DNA Technologies). Non-

template: GAGTACAAGTGTGAGGAAAAGTAGTTGGGAGGTACTTCATGCGA-

AAGCAGTTGAAGACAAG; Template: CTTGTCTTCAACTGCTTTCGCATGA-

AGTACCTCCCAACTACTTTTCCTCACACTTGTACTC. Pol I, Pol II, CF, CF-mu-

tants, Rrn3, and TBP were puri�ed as described but omitting the �nal size exclu-

sion step for Pol I (Blattner et al., 2011; Engel et al., 2016; Plaschka et al., 2016;
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Sydow and Cramer, 2009). A 5x reaction bu�er (RB) was prepared, consisting of

180 mMammonium sulphate, 60mM HEPES (pH 7.8), 10mM magnesium sulphate,

30µM ZnCl2, 30% (v/v) glycerol and 15mM DTT. In a total volume of 10µL, the ini-

tiation reaction was prepared on ice comprising 0.1µM Pol I (or Pol II), 5-fold molar

access of CF variants, Rrn3, and/or TBP, and 0.1µM dsDNA sca�old and 2µL of

5x RB. The reaction was �lled to 8.75µL volume with sterile water and 1.25µL of a

NTP mix was added which contains 20µM GTP, 20µM UTP, 20µM CTP, 2µM ATP

(Thermo Scienti�c) and 0.8µM [α-32P] (2.5µCi/µl; Perkin Elmer). The reaction was

well mixed and incubated at 30◦C for 30min. To stop the reaction, 10µL of 2x TBE-

Urea Sample Bu�er (Thermo Scienti�c) were added, well mixed, incubated at 95◦C

for 3min and stored on ice. A 20% Urea-polyacrylamide gel was freshly prepared

and pre-run at 500V for 10min in sterile 1x TBE bu�er (Thermo Scienti�c). As a

RNA-size standard, the decade marker system (Thermo Scienti�c) was used. Samples

were loaded and run at 250V for 1 h 45min. The gel was incubated on a Phospho-

Screen for 3-12 h at -20◦C and red out using a Typhoon FLA 9500 (GE Healthcare).

For titration experiments, used molar access steps for transcription factors were 0, 1x,

2.5x, 5x, 10x, 20x and 50x compared to Pol I.
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Glossary

E. coli Escherichia coli

S. cerevisiae Saccharomyces cerevisiae

X. laevis Xenopus laevis

ATP adenosine triphosphate

AU asymmetric unit

bp base pair

BS3 bis(sulfosuccinimidyl)suberate

CC closed complex

CE core element

CF core factor

cryo-EM cryo-electron microscopy

cryo-ET cryo-electron tomography

cryo-SP single-particle cryo-electron mi-

croscopy

CTF contrast transfer function

CTP cytidine triphosphate

CV column volume

DNA deoxyribonucleic acid

dsDNA double stranded DNA

DTT dithiothreitol

EC elongation complex

EM electron microscopy

FSC Fourier Shell Correlation

GraFix gradient �xation

GTP guanosine triphosphate

IGS Intergenic spacer

IPTG isopropyl-β-D-thiogalactopyranosid

ITC initially transcribing complex

k thousand

LB lysogeny broth

MR molecular replacement

mRNA messenger RNA

NCS non-crystallographic symmetry

Ni-NTA nickel-nitrilotriacetic acid

NTP nucleoside triphosphate

OC open complex

PAD propeller- and promoter-associated

domain

PBS phosphate bu�ered saline

PIC pre-initiation complex

PIR polymerase interacting regions

Pol RNA polymerase

Pols RNA polymerases

RB reaction bu�er

rDNA ribosomal DNA

rmsd root-mean-square deviation
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Glossary

RNA ribonucleic acid

rRNA ribosomal RNA

RT room temperature

SAD single-wavelength anomalous dif-

fraction

SAXS small-angle x-ray scattering

SDS-PAGE sodium dodecyl sulfate poly-

acrylamide gel electrophoresis

TBP TATA-box binding protein

TPR tetratricopeptide repeat

tRNA transfer RNA

TSS transcription start site

UAF upstream activating factor

UAS upstream activating sequence

UTP uridine triphosphate

XL-MS cross-linking coupled to mass

spectrometry
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