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Chromatin organization endows eukaryotic genomes with stability 
and regulates gene expression. DNA within chromatin is spooled 
around histone proteins, forming nucleosomes. Arrays of nucleo-
somes are further folded to accommodate the genome in the nuclear 
volume. Tight packaging inevitably leads to the occlusion of DNA 
sequences that can no longer be accessed by regulatory proteins. 
However, chromatin has to be dynamic to permit cells to respond to 
environmental or developmental challenges. Crucial to a dynamic 
and regulated use of the genome are the actions of ATP-consuming 
nucleosome-remodeling enzymes1,2.

Nucleosome-remodeling enzymes use energy from ATP hydrolysis 
to weaken or disrupt histone-DNA contacts in the otherwise extremely 
stable nucleosome particle. They thereby catalyze histone exchange, 
partial or complete nucleosome disassembly and formation of new 
nucleosomes or repositioning of existing ones. The precise outcome of 
a remodeling reaction is frequently determined by regulatory subunits 
that associate with the ATPase2–5.

The ATPase domains of all nucleosome-remodeling complexes are 
conserved and distantly related to superfamily 2 (SF2) DNA heli-
cases. On the basis of similarity of their ATPase domain sequences, 
all known or presumed nucleosome-remodeling enzymes constitute 
24 subfamilies4,6. Despite this complexity, it is becoming clear that 
the remodeling enzymes studied to date are related in structure and 
mechanism. Deciphering the fundamental mechanism of a basic 
remodeling reaction remains an important goal2–5.

Most insight into the mechanism of nucleosome remodeling has 
been obtained by studying representatives of three subfamilies of 
remodelers: ISWI, Snf2 and Chd1. They all slide nucleosomes along 
DNA, and although differences have been noted7,8, they share a 

strategic interaction site on the nucleosome. Their ATPase ‘motor’ 
domain engages the nucleosomal DNA about two helical turns off 
the nucleosomal dyad at superhelix location 2 (SHL2)9–11. This site 
is characterized by structural variability of the histone-DNA inter-
actions. It can accommodate a gain or loss of one base pair (bp), a 
feature that could be exploited during the remodeling reaction12–14. 
Furthermore, the histone H4 N terminus, which is mechanistically 
involved in remodeling reactions catalyzed by ISWI and Chd1, ema-
nates from the nucleosome core around SHL2 (refs. 15–19). At SHL2, 
the ATPase domain is thought to translocate on DNA in accord with 
its helicase ancestry9,20,21. The ATPase domain may thereby force 
additional DNA into the nucleosome, change the twist in the DNA 
or otherwise perturb histone-DNA contacts2,4,22.

In several cases it was observed that successful remodeling required 
accessory domains in addition to the ATPase. These domains are 
thought to provide the appropriate mechanical or topological context 
for remodeling. For ISWI-type enzymes, the C terminus harbors a 
DNA-binding module in the form of the HSS domain (Fig. 1a). Deletion 
of the HSS domain markedly reduced the ability of Drosophila ISWI to 
associate with and remodel nucleosomes23. Subsequent cross-linking 
and cryo-EM studies with the ISWI orthologs in yeast revealed interac-
tions of the HSS domain with DNA flanking the nucleosome, so-called 
linker or extranucleosomal DNA24,25. Deletion of this DNA dimin-
ished not only the binding affinity but also the ATP turnover and the  
remodeling capacity of ISWI26,27.

These results collectively support models in which the nucleosomal 
contacts made by the ISWI ATPase and HSS modules delimit a topo-
logical domain of nucleosomal DNA. Conceivably, a conformational 
change between the ATPase and the HSS modules, mediated by a 

1Adolf Butenandt Institut, Ludwig-Maximilians-Universität, Munich, Germany. 2Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität, Munich,  

Germany. Correspondence should be addressed to F.M.-P. (Felix.Mueller-Planitz@med.uni-muenchen.de) or P.B.B. (pbecker@med.uni-muenchen.de).

Received 3 May; accepted 1 November; published online 2 December 2012; doi:10.1038/nsmb.2457

The ATPase domain of ISWI is an autonomous 
nucleosome remodeling machine
Felix Mueller-Planitz1,2, Henrike Klinker1,2, Johanna Ludwigsen1,2 & Peter B Becker1,2

ISWI slides nucleosomes along DNA, enabling the structural changes of chromatin required for the regulated use of eukaryotic 
genomes. Prominent mechanistic models imply cooperation of the ISWI ATPase domain with a C-terminal DNA-binding 
function residing in the HAND-SANT-SLIDE (HSS) domain. Contrary to these models, we show by quantitative biochemical 
means that all fundamental aspects of nucleosome remodeling are contained within the compact ATPase module of Drosophila 
ISWI. This domain can independently associate with DNA and nucleosomes, which in turn activate ATP turnover by inducing 
a conformational change in the enzyme, and it can autonomously reposition nucleosomes. The role of the HSS domain is to 
increase the affinity and specificity for nucleosomes. Nucleosome-remodeling enzymes may thus have evolved directly from 
ancestral helicase-type motors, and peripheral domains have furnished regulatory capabilities that bias the remodeling reaction 
toward different structural outcomes.
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‘hinge’ that connects the two, may destabilize the DNA-histone con-
tacts in this domain and pull linker DNA into the nucleosome16,18. 
The excess DNA would initially bulge out from the histone surface. 
Eventually it may escape from the other side of the nucleosome and 
re-form the canonical nucleosome structure at a different position 
on DNA.

This model predicts that the HSS domain plays an integral part dur-
ing the remodeling reaction. Underscoring its importance, deletion 
of a related domain in Chd1 strongly reduced the overall remodeling 
efficiency28. Unexpectedly, a different study concluded that deletion 
of the DNA-binding module in the C terminus of Chd1 does not com-
pletely abolish the nucleosome sliding activity. Rather, the C terminus 
was suggested to affect the directionality of the process11. Thus, the 
DNA-binding domain may not be essential for the remodeling proc-
ess as such. It might instead determine the overall outcome of the 
remodeling reaction, either the direction of nucleosome sliding11 or 
the positioning of the substrate nucleosome in the context of nucleo-
some spacing28. This conclusion is not readily compatible with the 
hinge model, which was mainly derived from studies on ISWI-type 
enzymes. Do these studies reveal a fundamental difference between 
ISWI- and Chd1-type remodelers with respect to their use of binding 
domains for linker DNA? How can ATP hydrolysis–driven confor-
mational changes be productive in the absence of the main linker 
DNA–binding domain?

We set out to address these issues in the context of Drosophila 
ISWI. Our quantitative analysis reveals two ATPase domain con-
formations, which drastically differ in their catalytic competency. 
Nucleic acids induce a change of conformation, thereby activat-
ing the enzyme. Furthermore, we show that the ATPase domain  
has an intrinsic ability to bind nucleosomes, to functionally inter-
act with the H4 N terminus and to remodel nucleosomes. Accessory 
domains in chromatin remodelers may thus have evolved to regu-
late an autonomous basic remodeling module. Our data place  
firm limits on the mechanistic models of nucleosome remodeling 
and favor models in which the ATPase domain performs the fun-
damental steps involved in remodeling, such as breaking histone- 
DNA contacts and moving nucleosomes, whereas the HSS domain 
fulfills auxiliary duties, such as increasing the affinity and specificity 
for nucleosomes.

RESULTS
The ATPase domain adopts different conformations in solution
The ATPase activity of ISWI is activated by free and nucleosomal 
DNA23,29. To dissect this effect in a quantitative manner, we 
obtained highly purified enzyme preparations by using an opti-
mized purification protocol that included affinity, ion-exchange and 
size-exclusion chromatography. Further purification did not affect  
the results.

We first measured ATP turnover by unliganded ISWI and deter-
mined the reaction velocities for varying ATP concentrations. 
Whereas enzymes typically show a simple saturation behavior with 
increasing substrate concentrations, ISWI featured a more complex 
biphasic response. After an initial rise of the reaction velocity with 
increasing ATP concentrations, the curve entered a second phase and 
continued to rise until at least 50 mM of ATP (Fig. 1a).

The two phases of the curve indicated that different enzyme popu-
lations existed with strongly differing observed Michaelis (Km,obs) 
values. We hypothesized that these populations may correspond to 
ISWI molecules in different conformations. Kinetic and thermody-
namic modeling confirmed that this scenario could indeed account 
for the data (Supplementary Fig. 1).

However, the biphasic ATPase response could also be due to a 
number of trivial reasons. Most importantly, we ruled out a contami-
nating ATPase being responsible for one of the two phases by analyzing 
a point mutant with an amino acid change in the Walker B motif of the 
ISWI ATPase domain (E257Q), that prevents ATP hydrolysis. Although 
this mutant was expressed at similar levels and prepared in the same way 
as the wild type, we could not detect any ATP hydrolysis for this mutant 
(Fig. 1a). We have ruled out additional scenarios, such as enzyme 
dimerization and contamination with DNA, that could, in principle, 
explain the unusual shape of the curve (discussed in Supplementary 

Note; Supplementary Fig. 2a,b).
According to prominent models of ISWI function, the HSS and 

ATPase domains intimately cooperate during nucleosome remodel-
ing2–4,24,30. In this scenario the HSS domain might be expected to 
directly influence ATP hydrolysis. We tested this hypothesis by truncat-
ing ISWI in a poorly conserved region that separates the ATPase domain 
from the HSS domain (Fig. 1b). Our construct spanned a conserved 
N-terminal region (NTR; Supplementary Fig. 3), both ATPase lobes 
and the ‘bridge’ at the C-terminal end, which is conserved between 
ISWI and Chd1 remodelers and docks against both ATPase lobes31,32. 
In most experiments, we used a construct that lacked nonconserved 
amino acids at the N terminus, spanning amino acids 26–648  
(ISWI26–648). We repeated a number of experiments with ISWI1–697, 
which also included less-conserved regions on both termini.
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Figure 1  Steady-state ATP hydrolysis. (a,b) ATP concentration dependence 

of ATP turnover by DNA-free ISWIFL (a) and ISWI26–648 (b), both 4 µM.  

The response was biphasic, with the first phase completed with 

submillimolar concentrations of ATP (a, inset). Steady-state ATPase 

parameters extracted from fits (lines) are listed in Table 1. Domain 

schematics for ISWIFL and ISWI26–648 are shown on top. In addition 

to wild-type (WT), an ATPase-deficient mutant (E257Q) was used as a 

negative control in a. (c) Strong stimulation of ATP hydrolysis of ISWIFL 

and ISWI26–648 by saturating concentrations of a 39-bp-long DNA duplex 

(80 to 400 nM). The assays were performed with 100 mM Mg2+; similar 

results were obtained in a buffer containing lower Mg2+ concentrations 

or varying enzyme concentrations (Supplementary Table 1 and 

Supplementary Fig. 2a,b and data not shown). 
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As in the case with full-length ISWI (ISWIFL), the ATP concentra-
tion dependencies of unliganded ISWI26–648 and ISWI1–697 were bipha-
sic, which suggested that the two conformations involve the ATPase 
domain (Fig. 1b and data not shown). Unexpectedly, steady-state 
ATPase parameters (kcat/Km,obs, kcat,obs and Km,obs) differed by less than 
three-fold between the three enzymes (Fig. 1 and Table 1 and data not 
shown). This similarity attested to the integrity of the two truncated 
proteins and showed that the C terminus did not substantially influ-
ence ATP hydrolysis, at least when no DNA ligand was bound.

DNA ligands strongly influence the ATP hydrolysis mechanism
To test how DNA binding affected the catalytic parameters, we 
repeated the analyses in the presence of a 39-bp-long DNA duplex. 
Varying the length of the DNA from 19 to ~3,000 bp did not con-
siderably affect the kcat,obs (below and data not shown). In contrast 
to the ligand-free enzyme, DNA-bound ISWIFL exhibited standard 
Michaelis-Menten–type kinetics (data not shown). Furthermore, 
DNA strongly stimulated kcat/Km,obs (61-fold; Fig. 1c and Table 1).

Like stimulation by DNA, stimulation by chromatin abolished the 
biphasic response to the ATP concentration (data not shown). Relative 
to DNA, chromatin binding increased the affinity for nucleotides by 
six-fold (Supplementary Fig. 4). In addition, kcat,obs increased by  
4- to 14-fold, depending on the enzyme concentration (Supplementary 

Fig. 2c and Supplementary Table 1; here we employed lower Mg2+ 
concentrations to prevent aggregation of chromatin). This depend-
ence of kcat,obs on the enzyme concentration is consistent with binding 

of two functionally interacting ISWI molecules per nucleosome, as 
previously suggested (Supplementary Fig. 2d,e)33.

DNA binding to the ATPase domain activates ATP hydrolysis
Nucleic acids typically directly bind the ATPase domain of SF2 heli-
cases34,35. Using the ISWI26–648 construct, we confirmed in a double-
filter binding assay that the ATPase domain of ISWI indeed harbors a 
DNA-binding site (Supplementary Fig. 5). Consistent with its DNA-
binding function23–25,36, the HSS domain increased the DNA affinity  
by 20-fold.

DNA could, in principle, activate ATP hydrolysis by binding to either 
of the two binding sites or to both. Whereas nucleic acids often directly 
bind and stimulate the ATPase activity of SF2 helicases34,35, we pre-
viously suggested that it was DNA binding to the HSS domain that 
conferred most DNA stimulation23. However, at that time we did not 
account for the reduced DNA affinity when the HSS domain is missing. 
To differentiate between the two sites and to probe their involvement in 
the regulation of ATP turnover, we titrated DNA to the ISWI constructs 
that lacked the HSS domain and measured ATP turnover. DNA was a 
potent activator of ATP hydrolysis of ISWI26–648 and ISWI1–697 (Fig. 1c 
and data not shown). Overall, their ATPase parameters were strikingly 
similar to those of ISWIFL, indicating that DNA binding at the ATPase 
domain, not the HSS domain, drives the stimulation (Table 1).

DNA binding affects the conformation of the ATPase domain
To test whether DNA binding activated ATP turnover by triggering a 
conformational change in the ATPase domain, as seen for evolution-
arily related proteins37, we turned to limited proteolysis experiments. 
Consistent with a structural change, limited digestion with trypsin 
led to a different cleavage pattern and a substantially faster cleavage 
of ISWI26–648 in the presence of DNA (Fig. 2a). A different protease 
(GluC) and partial trypsin digests of ISWIFL yielded analogous results 
(data not shown).

Additional proteolysis experiments firmly ruled out that the differ-
ent cleavage pattern was simply due to occlusion of the predominant 
cleavage sites by DNA. From a comparison of the electrophoretic 
mobility of proteolytic fragments obtained with trypsin, which cleaves 
at lysines and arginines, and LysC, which is specific for lysine, we 
concluded that the major tryptic digestion product of the DNA-free 
enzyme arose from a cut next to a lysine (Supplementary Fig. 6). 
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Figure 2 Limited proteolysis revealed a DNA-induced conformational 

change within the ATPase domain of ISWI. (a–c) Protease digestion of 

DNA-free and DNA-bound ISWI26–648 by trypsin (a), LysC (b) and ArgC 

(c) for 5, 15, 30, 60, 90 and 160 min. Left, SDS-PAGE gels. Undigested 

protein served as the zero time point (0). M, molecular-weight marker. 

Right, quantification of the gel bands. The data were fit by a single 

exponential function (lines). Addition of 39-bp-long DNA duplexes  

(10 µM) led to a different banding pattern and 4.4-fold and 5.1-fold 

faster digestion rates by trypsin and ArgC, respectively, without affecting 

LysC digests. Arrows indicate a protease-stable fragment only seen in the 

presence of DNA.

Table 1 Steady-state ATPase parametersa

ISWIFL ISWI26–648

kcat/Km,obs (M
–1 s–1) kcat,obs (s

–1) Km,obs (mM) kcat/Km,obs (M
–1 s–1) kcat,obs (s

–1) Km,obs (mM)

− DNA Phase 1 60 ± 10 0.014 ± 0.004 0.24 ± 0.03 21 ± 3* 0.007 ± 0.002 0.36 ± 0.02*

Phase 2 NA >0.046 >50 NA >0.02 >25

+ DNA 3,700 ± 900* 0.51 ± 0.09 0.15 ± 0.05 4,100 ± 900* 1.0 ± 0.1 0.25 ± 0.01

aValues were measured in reaction buffer containing 100 mM Mg2+. Where indicated (asterisks), errors are minimum and maximum values of two independent measurements. Otherwise, errors 

are s.d. of at least three independent measurements. DNA reactions contained saturating concentrations of a 39-bp DNA duplex. NA, Not applicable.
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Notably, DNA binding did not affect the digestion kinetics of LysC, 
which provided strong evidence against occlusion (Fig. 2b). If acces-
sibility of the lysine remained the same, then arginine residues must 
become more exposed with DNA to explain the trypsin results. We 
confirmed this prediction with the arginine-specific protease ArgC. 
ArgC produced a similar cleavage pattern as trypsin in the presence of 
DNA and experienced a similar rate enhancement by DNA (Fig. 2a,c). 
In summary, the proteolysis experiments showed that the enzyme 
conformation changed upon DNA binding. We suggest that these 
conformations are related to the conformations detected independ-
ently by the ATP-hydrolysis results above.

We noted that an ~60 kDa fragment accumulated in trypsin and 
ArgC digests when DNA was present (Fig. 2a,c), which suggested 
that DNA binding led to a well-folded, protease-resistant structure. 
N-terminal Edman sequencing and LC-MS/MS analysis of this frag-
ment mapped the cleavage sites to accessory sequences outside of the 
ATPase core (Arg91 and Arg93 in the NTR and Arg589 at the C termi-
nus; Supplementary Fig. 3). These accessory regions therefore took 
part in regulatory conformational changes induced by DNA binding 
(Discussion).

Nucleosome recognition involves the ATPase and HSS domains
Our data showed that the ISWI ATPase domain independently reacted 
to DNA association. We asked next whether the ATPase domain alone 
could specifically recognize an entire nucleosome, whether the HSS 
domain increased this specificity and to what extent stimulation of 
ATP hydrolysis by nucleosomes required the HSS domain.

We started by titrating nucleosomal arrays to ISWI26–648 and 
ISWIFL under subsaturating ATP conditions, measuring the kcat/Km,obs 
(Fig. 3a,b). Effects of nucleosomes on the affinity of ATP (discussed 
above) should be detectable under these conditions, whereas they are 
masked with saturating ATP. Much to our surprise, saturating con-
centrations of nucleosomal arrays stimulated ISWI26–648 much more 
strongly than DNA (17-fold). The level of stimulation and even the 
absolute hydrolysis rates were comparable between ISWI26–648 and 
ISWIFL (Fig. 3b and Supplementary Table 1). These results indicated 
that ISWIFL and ISWI26–648 could form the same important contacts 
to the nucleosome that mediated the stimulation.

We next probed whether these contacts were to linker DNA by 
deleting the linker altogether, using nucleosome core particles 
(NCPs). NCPs stimulated hydrolysis of ISWI26–648 just as well as 
arrays. Also the apparent affinity of arrays and NCPs remained unaf-
fected (Fig. 3a). Notably, even ISWIFL did not react to deletion of 
the linker (Fig. 3b). These results ruled out that the contact respon-
sible for ATPase stimulation was between the HSS domain and  
linker DNA.

When ATP and DNA ligand are subsaturating, the specificity with 
which ISWI discriminates between different DNA ligands can be deter-
mined (ref. 38 and mathematical derivation not shown). ISWI26–648 
possessed a moderate ability to distinguish between naked and nucleo-
somal DNA (six-fold for both NCPs and arrays). In contrast, ISWIFL 
strongly discriminated between naked and nucleosomal DNA (>60-
fold for both NCPs and arrays; Fig. 3c). This result indicated that the 
HSS domain formed important contacts to the NCP, which increased 
the specificity for nucleosomes. Because of tight binding, we could only 
extract lower limits for the specificity of ISWIFL. For the same reason, we 
could not test whether HSS-linker interactions provided additional spe-
cificity. In addition to specificity, the HSS domain markedly improved 
the apparent affinity for nucleosomes, as ISWIFL saturated with much 
lower concentrations of nucleosomes than ISWI26–648 (≤25 nM  
versus >0.5 µM, respectively; Fig. 3a and data not shown).

We confirmed that the HSS–linker DNA interaction is also negligi-
ble for ATPase activation under saturating ATP conditions (Fig. 3d). 
NCPs stimulated the kcat,obs by 11-fold relative to naked DNA, whereas 
nucleosomal arrays stimulated kcat,obs at most by ~two-fold more than 
NCPs. Notably, ISWI26–648 apparently lost its ability to discriminate 
free DNA from NCPs or arrays with saturating ATP, as all these ligands 
gave indistinguishable stimulation at similar concentrations (data not 
shown). This result suggested that the relatively poor discriminatory 
power that ISWI26–648 possessed at subsaturating ATP concentrations 
was further reduced when the enzyme was saturated with nucleotides, 
which resulted in enzyme that did not profit from the nucleosomal acti-
vation at SHL2 (discussed below) but instead sampled DNA elsewhere 
on the surface of the nucleosome (Supplementary Note). Figure 3e 
summarizes ISWI-nucleosome interactions and their functions uncov-
ered in this section.

0 0.5 1.0 1.5

0

2 × 10
4

4 × 10
4

Concentration of nucleic acid ligand (µM)

k
c
a

t 
/K

m
,o

b
s
 (

M
–

1
 s

–
1
)

147-bp DNA

NCP

Nucleosomal array

59-bp

DNA

Plasmid

DNA

147-bp

DNA

NCP Nucleosomal

array

0

1

2

3

k
c
a

t,
o

b
s
 (

s
–

1
)

11×

20×

Stimulation of kcat/Km,obs 
relative to naked DNA (fold)

ISWI26–648

ISWIFL

147-bp DNA NCP Nucleosomal array

1 23 ± 8* 17 ± 9

1 15 ± 2* 11 ± 3

Specificity over naked DNA (fold)

ISWI26–648

ISWIFL

147-bp DNA NCP Nucleosomal array

1 6 ± 3* 6 ± 3*

>60 >60

b

d

c

e

a

N

ATPase

HSS Flanking 
DNA 

x

Affinity

Not 
observed

Speci�city (major) 

and affinity

Speci�city (minor)  

and stimulation of kcat /Km

–

Figure 3 Interactions between domains of  

ISWI and the nucleosome and their importance 

for catalysis and substrate specificity.  

(a) Marked stimulation of kcat/Km,obs for ATP 
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simple binding isotherm (lines). Results of 
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superimposed. (b) Stimulation of kcat/Km,obs 
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(d) Strong stimulation of kcat,obs of ISWIFL by 
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The ATPase domain senses the histone H4 N-terminal tail
Stimulation of ATP turnover by nucleosomes has been shown to 
require the histone H4 N-terminal tail17,19. The location of the H4 
tail near the interaction site of the ATPase domain at SHL2 would be 
consistent with a direct effect of the H4 tail on the ATPase domain. 
Structural similarity of the SANT domain with histone tail–binding 
proteins, however, would point to the HSS domain as the sensor of 
the H4 tail23,39. Using ISWI26–648, we directly tested whether the HSS 
domain is required to detect the H4 tail.

In a previous publication, we showed that ATP turnover was faster 
when ISWIFL was presented with a synthetic H4 tail peptide in addi-
tion to DNA40. Surprisingly, ISWI26–648 was similarly sensitive to the 
presence of the peptide (Fig. 4). On the basis of these results, we sug-
gest that the HSS domain is not necessary for the recognition of the 
H4 tail, a conclusion that is further corroborated below.

The ATPase domain is sufficient to remodel nucleosomes
Our results so far argued that many important functionalities 
of ISWI are built into its ATPase module. We were curious as to 
whether these functionalities also sufficed to remodel nucleosomes, 
which would be consistent with recent evidence obtained for Chd1  
(refs. 11,31), or whether additional conformational changes between 
the HSS and ATPase were required for remodeling, as previously  
suggested2,3,24,30.

We analyzed nucleosome remodeling in three different ways. 
First, we probed whether ISWI26–648 could reposition the histone 

octamer in mononucleosomes, an activity that is well documented 
for ISWIFL

41. Differently positioned nucleosomes can be visualized 
through their different mobility in native gels. Unexpectedly, the reac-
tion products generated by ISWI26–648 in this assay resembled those 
of ISWIFL (Fig. 5a).

Second, we tested nucleosome repositioning in the context of  
25-mer nucleosomal arrays, a more physiological substrate (Fig. 5b). 
Each linker DNA contained an exposed AvaI restriction site. As 
expected, AvaI fully digested unremodeled arrays to mononucleo-
somes. After remodeling by ISWI26–648, in contrast, AvaI could not 
fully digest the arrays, which indicated occlusion of a fraction of AvaI 
sites by nucleosomes (Fig. 5c). Protection of these sites by binding of 
ISWI was ruled out by experiments that lacked ATP and by exhaus-
tive AvaI digests.

The third assay probed accessibility of restriction sites that were pro-
tected by nucleosomes in the array before remodeling42. Accessibility 
of four restriction enzyme sites, distributed over an entire gyre of 
nucleosomal DNA, dramatically changed upon incubation with 
ISWI26–648 in an ATP hydrolysis–dependent manner (Fig. 5d).

To quantify the effect of the deletion of the HSS domain on remod-
eling, we adapted a previously described assay43. We generated nucle-
osomal arrays in which the central nucleosome protected a unique 
restriction site before remodeling (KpnI; Fig. 6a). By following the 
accessibility of the KpnI site, we collected time courses for increas-
ing ISWI concentrations at saturating ATP and plotted the observed 
remodeling rate constants over the enzyme concentration to obtain 
the maximal reaction velocity (Fig. 6b–d and Supplementary Fig. 7). 
Comparison of the maximal velocities showed that ISWIFL remodeled 
arrays approximately an order of magnitude faster than ISWI26–648 
(Fig. 6e). As shown above, ISWIFL also hydrolyzed ATP at an order 
of magnitude faster than ISWI26–648 under similar conditions, owing 
to improved binding specificity. Thus, per ATP hydrolyzed, the effi-
ciency of remodeling was similar for both enzymes.

Deletion of the histone H4 tail was shown to impair remodeling by 
ISWIFL

15–19. Remodeling by ISWI26–648 should be similarly affected 
if, as we suggested above, the ATPase domain directly recognized 
the H4 tail. By monitoring remodeling of nucleosomal arrays that 
lacked the H4 N-terminal tail, we found that ISWI26–648 was at least 

0

0.4

0.8

1.2

0 40 80 120 160

Concentration of peptide (µM)

0

0.4

0.8

1.2

0 40 80 120 160

Concentration of peptide (µM)

A
T

P
 h

y
d
ro

ly
z
e
d
 p

e
r 

e
n
z
y
m

e
 (

s
–

1
)

ba

Scrambled peptide 2

Scrambled peptide 1
H4 tail peptide

Figure 4 An N-terminal peptide of histone H4 activated ISWI ATP turnover. 

(a,b) ATP hydrolysis rates of ISWIFL (a) and ISWI26–648 (b), both 0.5 µM, 

in the presence of DNA (1.2 mg ml−1 salmon sperm DNA) and saturating 

ATP concentrations (1 mM). Two peptides with a scrambled amino acid 

sequence served as specificity controls. Error bars, s.d. (n = 4).

a
Time (min)

+ + + + – + + + + –ATP

ISWIFL ISWI26–648

Free DNA

Unremodeled 

Remodeled 

5 kb

1 kb

0.2 kb

+ – + –ATP

AvaI

ISWIFL ISWI26–648

+ ++ +

c

AvaI 

digest

DNA 

puriication

+ ISWI

+ ATP

AvaI 

digest

DNA 

puriication

AvaI site 

AluI
BsiWIBsrBI

BanI

–8–30–49–61–72 72

b

0

AvaI AvaI

–102 95

d

5 20 60 18
0

18
0

5 20 60 18
0

18
0

AluI BsiWIBsrBI

0.2 kb

5 kb

0.6 kb

W
T

E
25

7Q

– W
T

E
25

7Q

– W
T

E
25

7Q

– W
T

E
25

7Q

–

BanI

ISWI26–648

Figure 5 The HSS domain is not required for repositioning 

mononucleosomes or nucleosomes within arrays. (a) Mononucleosome-

sliding assay. Mononucleosomes, centrally positioned on a 197-bp  

Widom-601 DNA, were incubated for the indicated time with ATP and  

ISWI and analyzed by native PAGE. Quench DNA migrated more slowly 

and was cut off for clarity. Control reactions (−) were depleted of ATP with 

apyrase before addition of ISWI. (b) Schematic depiction of the 25-mer 

nucleosomal arrays used in c and d. Each nucleosome protected the  

indicated restriction enzyme sites, whereas the linker DNA contained  

an exposed AvaI site (magnification). Numbers specify base pairs  

relative to the pseudodyad axis (0). (c) Polynucleosome-sliding assay.  

Top, schematic depiction of the assay. Bottom, nucleosomal arrays 

incubated with ISWI and ATP as indicated. Control reactions were 

depleted of ATP as above (−). kb, kilobases. (d) Restriction enzyme 

accessibility assays. Nucleosomal arrays were incubated with ATP,  

the indicated restriction enzymes and wild-type (WT) or mutant  

ISWI26–648 (E257Q). DNA was then deproteinized and resolved by  

gel electrophoresis. Samples incubated without enzyme (−) served  

as controls.

n
p
g

©
 2

0
1

3
 N

a
tu

re
 A

m
e

ri
c

a
, 

In
c

. 
A

ll
 r

ig
h

ts
 r

e
s

e
rv

e
d

.



NATURE STRUCTURAL & MOLECULAR BIOLOGY VOLUME 20 NUMBER 1 JANUARY 2013 87

A R T I C L E S

as sensitive toward deletion of the H4 tail as ISWIFL, confirming our 
previous conclusion (16-fold; Fig. 6e).

DISCUSSION
Our major conclusion is that—contrary to widespread belief—all fun-
damental aspects of nucleosome-remodeling catalysis are contained 
within the compact ATPase domain of ISWI. The ATPase module 
alone was able to recognize the DNA and histone moiety of substrate 
nucleosomes. Substrate binding triggered a conformational change 
within the ATPase domain along with an increased affinity for ATP. 
The ATPase module alone was able to remodel nucleosomes. In 
conjunction with recent related observations for the Chd1 remod-
eler11, these findings suggest that nucleosome remodeling could have 
evolved from helicase-type motors without further requirements for 
accessory domains44.

Mechanistic implications for nucleosome remodeling
Several current models ascribe critical functions to the HSS domain 
during remodeling. The HSS domain was suggested to bind and release 
DNA and drag it into the nucleosome upon cues from the ATPase 
domain, to form channels for nucleosomal DNA or to stabilize high-
energy structures such as DNA bulges off the histone surface2–4,16,24,30. 
Notably, we found that ISWI lacking its HSS domain still remodeled 
nucleosomes, although the reaction proceeded an order of magnitude 
more slowly. This defect, however, was accounted for by a propor-
tionally decreased ATP turnover. We therefore conclude that the HSS 
domain is not an integral component of the motor core of ISWI.

Whereas passive secondary roles of the HSS during remodeling 
are fully consistent with our results (discussed below), our ATPase 
data do not favor models that postulate active coordination, that is, 
transduction of energy, between the ATPase and the HSS domains. 
Steady-state ATP hydrolysis parameters (kcat/Km,obs) of ligand-free, 
DNA-bound and nucleosome-bound ISWI largely remained unaf-
fected when the HSS was deleted. Notably, the characteristic biphasic 
ATP concentration dependence of hydrolysis was preserved when the 
HSS domain was missing. It remains possible, though, that energy is 
transduced only after the rate-limiting step of ATP hydrolysis, because 
steady-state measurements are blind to that regime.

The autonomy of the ATPase domain does not appear to be a spe-
cialty of ISWI, because Chd1 derivatives that lack their C-terminal 
DNA-binding domain can still slide nucleosomes11,31. This com-
monality adds to the growing list of shared functional properties of 
ISWI and Chd1 remodelers (ref. 28 and references therein). In fact, 
substantial parts of both enzymes are also structurally related. Chd1 
harbors a SANT-SLIDE domain in place of the HSS domain of ISWI28, 
and both enzymes contain the bridge motif adjacent to the conserved 

ATPase domain31,32. Although the N-terminal parts of both enzymes 
lack any apparent homology, they nevertheless may perform similar 
functions (discussed below).

How does ISWI remodel nucleosomes without the involvement of 
the HSS domain? Previous studies placed the ATPase region of several 
remodelers close to SHL2 of the nucleosome, whereas the HSS domain 
of ISWI was found to bind the linker DNA9–11,18,24,25,45. As ISWI26–648 
discriminates between nucleosomes and DNA and is sensitive to the 
H4 tail, at least a fraction of ISWI26–648 can productively bind at SHL2 
(Fig. 7a, step 1).

Figure 6 Remodeling by ISWI26–648 is only moderately slower  

than remodeling by ISWIFL, and it is sensitive to H4 tail deletion.  

(a) Schematic depiction of the remodeling assay. The central nucleosome 

in a 13-mer nucleosomal array occluded a unique KpnI site. (b) Exemplary 

time courses for remodeling by ISWIFL and ISWI26–648 (both 3 µM).  

In control reactions (−), the quench solution was added together with 

ATP. (c) Time-course data collected for varying ISWI26–648 concentrations 

and fit to a single exponential function to extract the rate constant kobs 

(line). (d) Maximal velocity with which ISWI26–648 remodeled nucleosomes 

(kobs,max), obtained by extrapolating to saturating enzyme concentrations 

(lines). Data points were from several independent experiments.  

(e) Effects of HSS and H4 tail deletion on the maximal remodeling 

velocities kobs,max. Values for kobs,max for ISWIFL and ISWI26–648 were 

obtained as above at saturating ATP concentrations (Supplementary  

Fig. 7). Errors are standard errors of the fit.
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Strong histone-DNA contacts are present around SHL2 (refs. 46,47). 
Weakening the strongest contacts is expected to be rate limiting for 
remodeling. This could occur when the binding energy of the remod-
eler toward the nucleosome is exploited48 or when the ATPase domain 
tries to translocate on DNA while interacting with histones, for exam-
ple, at the H4 tail. Translocation puts a strain on the nucleosome, caused 
either by the presence of excess DNA or by a change in the twist of the 
DNA, which locally destabilizes histone-DNA interactions (Fig. 7a, 
step 2)12,13,22. The ATPase domain may even be strong enough to pump 
more DNA toward the dyad than the nucleosomal surface can accom-
modate, causing it to detach and bulge out2,16,18,30,49. The latter model 
is difficult to envision for remodeling by the truncated ISWI enzyme, 
owing to a lack of domains that help form and stabilize the bulge.

Once key contacts between histones and DNA are weakened, alter-
native sets of histone-DNA contacts might become energetically more 
preferable, leading to a repositioning of the histones relative to DNA 
(Fig. 7a, step 3). DNA-histone contacts may adjust concertedly or—
perhaps more probably—only locally, such that the strain propagates 
in multiple steps around the nucleosome4,22.

Accessory domains may have evolved to optimize catalysis and 
modulate the outcome of the reaction, which explains their diver-
sity among remodeling machines (Fig. 7b)2,4. We showed that, 
consistent with previous findings23, the HSS domain increased the 
affinity of ISWI toward DNA, a feature that is expected to enhance 
processivity16,50,51. In agreement with cross-linking results24, we 
obtained evidence for direct contacts between the HSS domain 
and the NCP. This interaction was a major source for specificity 
toward the nucleosome. As such, the HSS domain improves the 
productive association of the ATPase domain at SHL2, which in 
turn enhances remodeling. The HSS domain could also optimize 
catalysis by weakening the DNA-histone interactions at the edge of 
the nucleosome11,16. Through interactions with additional subunits 
and the linker DNA23–25,36,52, the HSS may assist sensing the length 
of the linker or a preferred DNA sequence and therefore bias the 
remodeling reaction toward specific outcomes such as nucleosome 
spacing or positioning11,24,25,27,28.

Conformational changes within the ATPase domain
How do the conformational changes within the ATPase domain relate 
to previously reported structural changes in related enzymes? The 
catalytic domain of the distant relative Sulfolobus Sso1653 was crys-
tallized with and without bound DNA35. The two structures showed 
only minor differences well inside the ATPase core and therefore are 
unlikely to account for the increased exposure of peripheral arginines 
upon DNA binding. In conflict with the crystallographic data but 
in better agreement with our results, a FRET study using the same 
Sulfolobus protein concluded that DNA binding leads to a major struc-
tural rearrangement between the two ATPase lobes37.

Additional crystallographic evidence supports a high degree of flex-
ibility between the two ATPase lobes. The ATPase lobes of relatives of 
ISWI crystallized in a multitude of very different orientations31,35,53,54. 
Conformational changes between the two ATPase lobes may be func-
tionally important for these enzymes, for example, for translocation 
on DNA or regulation of enzyme activity5,44. Conceivably, multiple 
orientations of ISWI’s ATPase lobes coexist in solution, accounting for 
the different enzyme species detected by our ATPase experiments32. 
DNA may preferentially stabilize a subset of these states, thereby 
aligning the composite catalytic site formed at the cleft between both 
lobes5. As motifs of both ATPase lobes are thought to contact ATP35, 
a proper alignment of the lobes might increase the affinity for ATP, 
explaining our biochemical data.

The increased exposure of peripheral arginines upon DNA binding 
also suggests that these regions undergo structural changes. Trypsin 
cleaved DNA-bound ISWI adjacent to a conserved acidic motif in the 
NTR (Supplementary Fig. 3). Despite a lack of sequence similarity, 
the NTR of Chd1 also contains a highly acidic motif, which was sug-
gested to act as a pseudosubstrate and compete with DNA for binding 
to lobe 2. The authors proposed that, in excellent agreement with our 
proteolytic results, DNA binding would force a structural rearrange-
ment in Chd1 in which the NTR undocks from lobe 2 (ref. 31). The 
NTRs of both enzymes may therefore fulfill similar roles and gate the 
entrance to the nucleic acid–binding site.

On the C-terminal side, trypsin cut the polypeptide chain within 
the ‘brace’ motif of lobe 2 (ref. 4). The brace is in close contact with 
lobe 1 and is directly followed by a stretch of amino acids that folds 
back to form a bridge between both ATPase lobes31,32. We suggest 
that the brace or bridge may hold the ATPase lobes in a configura-
tion that is not fully competent for ATP hydrolysis and that binding 
of nucleic acids relieves this inhibition. These results reinforce the 
notion that the ATPase domain represents an autonomous remodeling 
engine, which is optimized and modulated by the evolution of acces-
sory domains and subunits.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Enzyme expression and purification. pPROEX-HTb–based expression plas-
mids with genes encoding Drosophila ISWIFL, ISWIFL E257Q, ISWI26–648 and 
ISWI1–697 were kindly provided by C. Müller (EMBL, Heidelberg, Germany). 
All genes were fused N terminally to a His6-TEV tag . The E257Q mutation was 
introduced into ISWI26–648 by QuikChange mutagenesis (Stratagene). Expression 
and purification was performed as described32. The His6-TEV tag was cleaved 
off by TEV protease for ISWIFL and ISWI1–697. For ISWI26–648, experiments were 
carried out in the presence of the tag. ATPase parameters of ISWI26–648 with and 
without tag were quantitatively the same (data not shown).

Enzyme assays and enzyme ligands. Unless otherwise stated, reactions were 
performed at 28 °C in a buffer containing 25 mM HEPES-KOH, pH 7.6, 100 mM 
potassium acetate, 1.5 mM magnesium acetate, 0.1 mM EDTA, 10% glycerol, 
10 mM β-mercaptoethanol. As indicated, some ATPase assays were performed in 
a buffer with an increased buffering capacity (250 mM HEPES-KOH, pH 7.6) and 
excess Mg2+ ions (100 mM magnesium acetate) to prevent high concentrations of 
ATP from substantially altering the pH and the concentration of free unchelated 
Mg2+ ions. Both buffers yielded comparable ATPase parameters (Table 1 and 
Supplementary Table 1). Remodeling was followed in 25 mM HEPES-KOH, 
pH 7.6, 50 mM NaCl, 1 mM MgCl, 0.1 mM EDTA, 10% glycerol and 1 mM 
DTT at 26 °C. All remodeling reactions contained an ATP-regenerating system 
consisting of phosphoenolpyruvate (3–6 mM) and a pyruvate kinase-lactate 
dehydrogenase mixture (15.5 U/ml; Sigma). Nucleotides were always added as 
stoichiometric complexes with Mg2+. ADP and AMPPNP were purified before 
use55. ATP was purified if used at concentrations exceeding 3 mM or if no ATP 
regenerating system was used.

HPLC-purified oligopeptides and DNA oligonucleotides were purchased 
(Peptide Specialty Laboratories and Biomers, respectively; Supplementary 

Table 2). Short DNA duplexes were created by annealing. The 147-bp DNA used 
for NCP reconstitution was purified from SmaI digests of a plasmid harboring 
derivatives of the Widom-601 sequence with terminal SmaI sites. 197-bp DNA 
was generated by AvaI digests of a pUC derivative containing 25 repeats of the 
Widom-601 sequence (kindly provided by D. Rhodes, NTU, Singapore). During 
nucleosome assembly, it is expected that the 147-bp and 197-bp DNA form 0-N-2 
and 29-N-23 nucleosomes, respectively14,56. DNA used for 13-mer nucleosomal 
arrays was gene synthesized (Genscript). It contained 197-bp repeats of Widom- 
601 derivatives with a KpnI site at position −32 relative to the dyad axis of the 
central nucleosome.

Mono- and polynucleosomes were reconstituted with recombinant Drosophila 
histones by salt-gradient dialysis as described57,58. H4 tail–deleted arrays lacked 
the 19 N-terminal amino acids of histone H4. Nucleosomal arrays were purified 
by Mg2+ precipitation (25-mer arrays, 3.5 mM; 13-mer WT-H4 arrays, 5 mM; 
13-mer H4 tail–deleted arrays, 8.5 mM)42,58. The 13-mer arrays were subse-
quently dialyzed into 10 mM Tris, pH 7.7, 0.1 mM EDTA, pH 8, 1 mM DTT. 
Mononucleosomes used in the TLC ATPase assay were purified over a glycerol 
gradient (10% to 30%) and buffer exchanged into reaction buffer by ultrafiltra-
tion. The concentration of nucleosomal DNA was determined by measuring its 
DNA content by UV absorbance at 260 nm. The indicated concentrations of 
nucleosomal arrays refer to the concentration of individual nucleosomes. Unless 
otherwise noted, nucleosomes with WT-H4 were used.

Steady-state ATP hydrolysis assays. Two different ATPase assays were 
employed. A thin-layer chromatography (TLC)–based assay was used to fol-
low hydrolysis of [γ-32P]ATP in reactions that required the use of subsaturating 
ATP concentrations (Fig. 3a–c and Supplementary Fig. 4). All other ATPase 
data were collected by a coupled ATP-hydrolysis assay in 384-well plates as 
described32. For the TLC assay, reactions were initiated by addition of trace 
amounts of [γ-32P]ATP supplemented with 1 µm purified, nonradioactive ATP. 
Three time points (in addition to a ‘zero’ time point from a reaction that lacked 
enzyme) were collected by stopping the reaction with three volumes of 2 mM 
EDTA, 0.3 M NaH2PO4, 1 M LiCl. Control experiments showed that ISWI 
was fully quenched on time scales that were much faster than the experiments 
required. Reactions were spotted on PEI cellulose F (Merck) and developed in 
0.3 M NaH2PO4, 1 M LiCl. After autoradiography, signals were quantified, and 
a line was fit through the data points of each time course. kcat/Km,obs values 
were obtained from the slopes by normalizing for the enzyme concentration. 

When the enzyme and ATP concentrations were varied four- and five-fold, 
respectively, measured rates deviated less than two-fold.

Partial proteolysis assays. If not specified otherwise, ISWI26–648 (2.5 µM) was 
partially proteolyzed with trypsin (20 nM; Promega), LysC (38 nM; Roche) or 
ArgC (21 nM; Roche). The reaction was stopped by addition of two volumes of 
SDS sample buffer and immediate incubation at 95 °C for 10 min. Samples were 
separated by SDS-PAGE (12%) and stained by Coomassie Blue.

Double-filter DNA-binding assay. 39-bp DNA was 5′ labeled with [γ-32P]ATP by 
polynucleotide kinase. Trace amounts of labeled DNA were incubated for 10 min 
with varying ISWI concentrations. The mixture was then applied on a membrane 
sandwich composed of a protein-binding (Protran-BA85, Whatman) and a DNA-
binding membrane (Hybond-N+, Amersham) as described59.

Nucleosome-sliding assays. For mononucleosome sliding, centrally positioned 
mononucleosomes (197-bp DNA; 160 nM) were incubated with ATP (0.5 mM), 
ISWIFL (30 nM) or ISWI26–648 (300 nM). Time points were quenched by apyrase 
(2.5 U/µl) and excess linearized plasmid DNA (0.4 mg/ml). Native PAGE (4.5%) 
was performed with 0.2 µg mononucleosomal DNA.

For polynucleosome sliding, 25-mer regular nucleosomal arrays (30 nM) were 
incubated with ATP (100 µM) and ISWIFL (10 nM) or ISWI26–648 (300 nM). 
Remodeling was quenched after 6 h with apyrase (2.5 U/µl). The arrays were 
then digested with AvaI (1.2 U/µl) for 3 h at 26 °C. Samples were deproteinized 
and analyzed as described below. Exhaustive digests with high concentrations of 
AvaI overnight gave analogous results.

Restriction enzyme accessibility assay. 25-mer nucleosomal arrays (100 nM) 
were incubated for 1 h with wild-type or E257Q mutant ISWI26–648 (both 5 µM), 
ATP (50 µM) and the indicated restriction enzymes (AluI, 0.5 U/µl; BsrBI, 
0.5 U/µl; BsiWI, 1 U/µl; BanI, 2 U/µl). The reactions were stopped with EDTA 
(20–40 mM) and SDS (0.4%). Samples were deproteinized, and DNA was ethanol 
precipitated, resolved by agarose gel electrophoresis and visualized by ethidium 
bromide staining.

To quantitate remodeling, 13-mer arrays (20 or 100 nM) were incubated with 
ISWIFL or ISWI26–648, respectively, ATP (1 mM) and KpnI (2 U/µl). Reactions 
were quenched and analyzed as above. Negligible accessibility (<5%) was seen 
when the reaction was simultaneously initiated and quenched or when ISWI was 
omitted. Controls showed that the ATP-regenerating system was not depleted 
throughout the assay. kobs for remodeling was obtained by fitting the time courses 
to a single exponential function (equation (1)). The maximal remodeling velo-
cities (kobs,max) were obtained by fitting the data to standard or inverse binding 
isotherms (equation (2)). 
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Observed remodeling rates were proportionally faster for ISWI26–648 (but not 
ISWIFL) when the KpnI concentration was raised from 2 U/µl to 5 U/µl. This rate 
enhancement was independent of the ISWI26–648 concentration between 0.3 and 
30 µM. Reported rates, including the maximal remodeling rate constant kobs,max, 
are therefore lower estimates for ISWI26–648. The reported deleterious effect of 
the HSS deletion on remodeling is consequently an upper estimate.

Kinetic and thermodynamic modeling and data fitting. Modeling was 
performed in Mathematica (Wolfram Research). Data were fit with Matlab 
(The Mathworks) or KaleidaGraph (Synergy Software). The biphasic 
ATPase data were fit to equation (3) (Fig. 1a,b). As saturation with ATP 
was not achieved, the second phase was represented only by the linear term 
m*[ATP]. m possesses a complex dependence on the rate and equilibrium 
constants in the reaction scheme (Supplementary Fig. 1a) and was not  
interpreted further. 

v k K m= ∗ + ∗cat,obs,Phase 1 m,obs,Phase 1ATP ATP]) + ATP][ ]/( [ [
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No need for a power stroke in ISWI-mediated
nucleosome sliding
Johanna Ludwigsen1, Henrike Klinker1,2 & Felix Mueller-Planitz1+

1Adolf-Butenandt-Institute, Ludwig-Maximilians-Universität and 2Center for Integrated Protein ScienceMunich, Munich, Germany

Nucleosome remodelling enzymes of the ISWI family reposition
nucleosomes in eukaryotes. ISWI contains an ATPase and a
HAND-SANT-SLIDE (HSS) domain. Conformational changes
between these domains have been proposed to be critical for
nucleosome repositioning by pulling flanking DNA into the
nucleosome. We inserted flexible linkers at strategic sites in
ISWI to disrupt this putative power stroke and assess its
functional importance by quantitative biochemical assays. No-
tably, the flexible linkers did not disrupt catalysis. Instead of
engaging in a power stroke, the HSS module might therefore
assist DNA to ratchet into the nucleosome. Our results clarify the
roles had by the domains and suggest that the HSS domain
evolved to optimize a rudimentary remodelling engine.
Keywords: ISWI; chromatin remodelling; nucleosome sliding
EMBO reports (2013) 14, 1092–1097. doi:10.1038/embor.2013.160

INTRODUCTION
Nucleosomes are the basic packaging units of chromatin in
eukaryotes. By binding tightly to B146 bp of DNA, they act as
physical barriers for the cellular machinery that needs to access
the underlying DNA, for example, during transcription, DNA
replication and DNA repair. The cell must precisely control the
genomic location of nucleosomes to allow for a regulated use of
the genetic material in response to different environmental and
developmental stimuli.

Mobilizing the nucleosomes is a challenge for the cell as they
are inherently stable particles. Dozens of DNA-histone contacts
must be broken to rearrange nucleosomes. The cell thus employs
dedicated enzymes, so called ATP-dependent nucleosome
remodelling factors, to shift the position of nucleosomes along
DNA [1]. Remodelling factors of the ISWI and several other
families can move nucleosomes along DNA in a process that
is termed nucleosome sliding. Elucidating the molecular
mechanisms of remodelling enzymes remains a pressing goal.

Early mechanistic clues came from the observation that all
remodelling factors contain ATPase engines that are evolutionary
related to DNA helicases [2]. Indeed, many remodellers can
translocate on DNA much like helicases do [3–5]. However,
unlike helicases, they do not separate the DNA strands.
Remarkably, the ATPase domains of several remodellers localize
to DNA well within the nucleosome, two helical turns away from
the nucleosomal dyad, suggesting that helicase-like translocation
of DNA takes place inside the nucleosome [5–9].

DNA translocation within the nucleosome begs the question
how DNA enters the nucleosome in the first place. For

remodelling by ISWI enzymes, it has been proposed that a

conformational change mechanically pulls flanking DNA into the

nucleosome [10–13]. The energy required for this conformational

change would come from hydrolysis of ATP. A step that uses

chemical energy to perform mechanical work is often called a

power stroke, a terminology that we adopt herein. The carboxy-

terminal DNA-binding domain (DBD) of ISWI, which comprises

the HAND, SANT and SLIDE (HSS) domains, would be intimately

involved in such a power stroke, as it binds to the DNA that flanks

the nucleosome [14]. Notably, recent models propose that the

power stroke takes place only after the first 7 bp of DNA have

been extruded already from the nucleosome’s exit site through

the translocase activity of the ATPase domain. The size of the

proposed power stroke has been measured to be r3 bp [11].
Other data appear to be in conflict but can be reconciled with

the power stroke model. We and others have shown that ISWI can
remodel nucleosomes even if the HSS module is missing [15,16].
Similarly, the C-terminal DBD of Chd1, composed of a
related SANT-SLIDE module [17], is also not required for
remodelling [18,19]. Nevertheless, the remodelling activity of
ISWI decreases an order of magnitude on deletion or mutation of
the HSS module [10,15]. This drop in activity could potentially be
attributed to a missing power stroke in the deletion mutants.

Other scenarios, however, can also explain the drop in activity
incurred by deletion of the HSS module without invoking a power
stroke. As the HSS domain is the nucleosome recognition
module [15,20], the ATPase domain lacks sufficient specificity
to dock productively to its binding site on the nucleosome. Lack
of specificity can result in lower observed ATPase and re-
modelling activity. This problem becomes especially apparent
with saturating concentrations of ATP [15]. In addition, the
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removal of the HSS module might allow a polypeptide motif at
the C-terminal end of the ATPase domain known as ‘bridge’ or
‘NegC’ to inhibit the enzyme by holding the ATPase domain in a
catalytically less active conformation [15,16].

Here we explore whether a power stroke operating between the
ATPase and HSS module constitutes an important part of the
catalytic strategy of Drosophila ISWI. As rigidity in the force-
transducing regions of the protein is necessary during a power
stroke, one can test the functional relevance of the putative
power stroke by artificially increasing the flexibility of these
enzyme regions [21,22]. To this end, we inserted glycine-serine
rich linkers at several strategic locations in the protein. These
linkers act like random coils with a high degree of flexibility
[23,24]. Surprisingly, ISWI enzymes with these artificial, flexible
hinges showed no defect in ATPase, restriction enzyme
accessibility-based remodelling and nucleosome sliding assays.
These results strongly argue against the power stroke model. We
instead conclude that the HSS module assumes a more passive
role during catalysis in that it mainly increases the time the ATPase
engine can productively engage with the proper binding site
on the nucleosome. With regards to how DNA enters the
nucleosome, we propose that DNA ratchets into the nucleosome
once the tension that builds up by extruding base pairs (bp) from
the exit site becomes too large.

RESULTS
To probe for the importance of the putative ATP-dependent power
stroke, we inserted glycine- and serine-rich flexible linkers [23,24]
into regions of ISWI that could conceivably transmit the force.
The ‘brace’ and ‘bridge’ at the C-terminal end of the ATPase
domain could be such elements, because they intimately
contact both ATPase lobes and thus could directly react to
the ATPase cycle [2,15,16,19,25]. The connection between the
ATPase and HSS modules is another prime candidate, as the force
generated by the ATPase domain must reach the HSS module.
Force transmitted from the HAND-SANT to the SLIDE domain
would have to go through the connecting spacer helix, as no
tertiary contacts between SANT and SLIDE exist [20]. We chose
altogether four insertion points (Fig 1A). Linker lengths varied
between 10 and 20 amino acids. When fully extended, these
linkers can reach B4–8 nm, a significant range considering
the size of the proposed power stroke (r3 bp, equivalent to
r1 nm; [11]). All ISWI preparations (Fig 1B) were monodisperse
as judged by size exclusion chromatography (supplementary
Fig S1 online). The monodispersity attests to the overall structural
integrity of the enzymes.

The HSS domain has been proposed to communicate to the
ATPase domain and modulate its ATP hydrolysis. Mutations in
the SLIDE domain, for instance, can allosterically affect ATP
hydrolysis [10]. Moreover, nucleosomes no longer stimulate
ATP hydrolysis better than naked DNA when the HSS domain is
removed with saturating, although not with sub-saturating,
concentrations of ATP [15]. We therefore tested if the ISWI
derivatives that have a more flexible link between the ATPase and
C-terminal domains could efficiently hydrolyse ATP. We used
saturating ATP concentrations to measure ATP turnover, and in
fact throughout this study, as defects in the function of the HSS
domain become maximally apparent under these conditions [15].

DNA-stimulated ATPase rates of all mutants were indistinguish-
able from wild-type ISWI (ISWIWt), deviating no more than 1.3-
fold (Fig 2). All mutants, just as the wild type, hydrolysed ATP an
order of magnitude faster when bound to nucleosomes than to
DNA. Importantly, absolute rates for the nucleosome stimulated
reaction varied by no more than 1.8-fold between ISWIWt and all
its derivatives. As ATPase rates were largely unaffected, we
conclude that the artificial flexible joints did not disrupt the
putative communication between the domains and suggest that
force transduction is not necessary for efficient ATP hydrolysis. In
addition, we conclude that all mutants were properly folded
and recognized DNA and nucleosomes like their wild-type
counterpart. Indeed, similar concentrations of DNA and nucleo-
somes saturated the wild type and insertion mutants. For
comparison, an order of magnitude higher concentrations
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had to be used to saturate ISWI that completely lacked the HSS
domain (ISWIDHSS; [15] and data not shown).

The ATPase results do not favour but also do not rule out the
power stroke hypothesis. For example, even though the insertion
mutants efficiently hydrolysed ATP, a power stroke might be
necessary to couple hydrolysis to remodelling. To test this
scenario, we performed remodelling assays.

Remodelling leads to exposure of nucleosomal DNA to solvent
and can be detected with restriction endonucleases that cut the
exposed DNA. We used a quantitative assay that monitors
exposure of a unique KpnI site that is occluded by the central
nucleosome in a 13-mer nucleosomal array [15]. Rate constants
for remodelling (kobs) were determined by measuring exposure of
the KpnI site over time and fitting the data to single exponential
functions (Fig 3A). Several remodeller concentrations were used to
control for possible differences in binding affinities between the
ISWI derivatives and the known property of full-length ISWI to
inhibit its own catalysis at higher concentrations (Fig 3B) [15].

Unexpectedly, none of the ISWI derivatives containing flexible
linkers showed remodelling defects. Used at the same concentra-
tion, they all exposed the KpnI site as efficiently as ISWIWt, with
kobs differing by no more than a factor of 1.3. For comparison,
ISWIDHSS exposed nucleosomal DNA an order of magnitude more
slowly (Fig 3C), confirming previous results [15].

As exposed nucleosomal DNA might be an early intermediate
during nucleosome sliding, it was important to test if formation of
these intermediates was successfully coupled to nucleosome
sliding. We monitored sliding in the context of nucleosomal
arrays. Each linker DNA contained an exposed AvaI restriction site
that became protected upon sliding (Fig 4A) [15].

Surprisingly, but in accordance with the results shown above,
all insertion mutants were able to slide nucleosomes over the AvaI
sites (Fig 4B). In fact, time courses showed that ISWIWt and all
insertion mutants moved nucleosomes with similar efficiency. As
shown before [15], also ISWIDHSS relocated nucleosomes,
although higher concentrations and longer incubation times
were necessary.

DISCUSSION AND CONCLUSIONS
According to recent mechanistic models, the ATPase engine of
ISWI is bound to DNA well within the nucleosome and starts the
remodelling process by translocating single bp of DNA in the
direction of the exit side of the nucleosome. ATP hydrolysis is
required for the transport of each bp. Only after the initial 7 bp of
DNA have exited the nucleosome will fresh DNA enter from
the opposite side of the nucleosome [10,11]. How DNA enters the
nucleosome is unclear.

Prominent models favor a power stroke as a mechanism for how
DNA enters the nucleosome [10–13]. At this stage of remodelling,
hydrolysis of ATP does not fuel transport of DNA according to
these models. Instead, ATP hydrolysis would be coupled to a
conformational change between the HSS and ATPase modules.
This conformational change exerts force onto the HSS domain and
the DNA at the entry site bound by it. Three bp thereby enter the
nucleosome (Fig 5A). Subsequently, the ATPase engine resumes
transporting single bp toward the exit site [10,11].

In striking opposition to predictions derived from the power
stroke model, none of the glycine-rich flexible insertions caused
any detectable catalytic defects. Apparently, ISWI can tolerate
considerable flexibility between individual domains. Notably,
the Bowman lab came to very similar conclusions in a recent
study that focused on the related remodelling enzyme Chd1 [26].
We note that inherent flexibility in the remodellers might allow
the DBD and ATPase domain of one enzyme molecule to
simultaneously contact two neighbouring nucleosomes, a
situation that has recently been suggested to be important for
remodelling by ISWI enzymes [27].

We were particularly surprised that the 10–20 amino acid
long insertions on either side of the brace–bridge polypeptide
did not hamper catalysis, as this polypeptide makes intimate
contacts with the ATPase domain and was proposed to regulate
the enzyme [15,16,19,25]. Depending on whether or not the
structure of the brace and bridge is disrupted by the insertions,
we can either conclude that this region might be of lesser
importance for remodelling than previously hypothesized [16] or
that build-up of force is not necessary for proper function of the
brace–bridge polypeptide.

If not by a power stroke, how else can flanking DNA enter the
nucleosome? We propose that the HSS and ATPase domains work
independently of each other with no need for direct coordination
during catalysis (Fig 5B). The HSS domain is an important
recognition module for the nucleosome [15,20] and is expected
to anchor the enzyme to the nucleosome. Anchoring increases
the chance for the ATPase engine to productively engage the
nucleosome and start with the translocation of DNA. After the first
seven translocation steps, the structure of the nucleosome
becomes highly strained, particularly around the DNA delimited
by the ATPase and HSS module, such that translocation stalls.
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Eventually, the HSS domain loses its grip on the DNA flanking the
nucleosome, allowing 3 bp to ratchet in.

Although not part of a power stroke, the HSS module clearly
evolved to carry out important functions that collectively optimize
remodelling by an order of magnitude [10,15]. Besides established
functions such as anchoring the remodeller to the nucleosome and
increasing the processivity [10,15], we hypothesize that the HSS
module improves catalysis by changing the structure of the
nucleosome around the DNA entry site, perhaps by locally
separating the DNA from the histone surface [13,28]. Other
remodelling subfamilies that do not interact with flanking DNA
and therefore cannot engage in a power stroke in the first place
might in fact use a similar mechanism [29], pointing to an unified
remodelling strategy shared between several remodeller subfamilies.

METHODS
Protein expression and purification. pPROEX-HTb-based expres-
sion plasmids with genes encoding Drosophila melanogaster
ISWIWt and ISWIDHSS were kindly provided by C. Müller (EMBL,
Heidelberg, Germany). All genes were fused amino-terminally to a
His6-TEV tag. Flexible linkers were introduced into ISWIWt by
polymerase incomplete primer extension at the appropriate
positions [30]. All ISWI derivatives were fully sequenced.
Expression and purification were performed as described [25].
The His6-TEV tag was cleaved off by TEV protease for all ISWI
constructs except for ISWIDHSS. Catalytic parameters of ISWIDHSS

are unaffected by the presence of the tag [15].
Enzyme assays and enzyme ligands. All assays were performed in
25mM HEPES-KOH, pH 7.6, 50mM NaCl, 1mM MgCl2, 0.1mM
EDTA, 10% glycerol, 0.2 g/l BSA and 1 mM DTT at 26 1C in the

presence of an ATP-regenerating system as described [15].
Nucleosomes were reconstituted with recombinant Drosophila
melanogaster histones by salt-gradient dialysis [31]. The
concentration of nucleosomal DNA was determined by measuring
its UV absorption at 260nm. For nucleosomal arrays, concentrations
refer to the concentration of individual nucleosomes.
ATP hydrolysis assays. ATP hydrolysis was monitored using an
NADH-coupled assay as described [25]. Saturating concentrations
of ATP-Mg2þ (1mM), linearized plasmid DNA (pT7blue derivative;
0.2mg/ml) and nucleosomes reconstituted on the same plasmid
DNA (0.1mg/ml) were used. Saturation was controlled in all cases
by titration of the ligand at least over a 16-fold range.
Nucleosome remodelling assay. Remodelling activity was probed
as previously described [15] by incubating 13-mer nucleosomal
arrays (100 nM) with ISWI derivatives at the indicated
concentrations, ATP-Mg2þ (1mM) and KpnI (2U/ml). Reactions
were quenched with SDS (0.4%) and EDTA (20mM) before the
samples were deproteinized and analysed as described [15].
Nucleosome sliding assay. Nucleosome sliding was performed as
described [15] by incubation of 25-mer nucleosomal arrays
(30 nM) with ATP-Mg2þ (0.2mM) and the respective ISWI
derivative (ISWIDHSS: 300 nM; all other enzymes: 5 nM). After
quenching the reaction with apyrase (2.5U/ml), arrays were
digested with AvaI (1.1U/ml) at 26 1C for 3–3.5 h. The AvaI digest
was terminated with EDTA (40mM) and SDS (0.4%) before the
samples were deproteinized and analysed as described [15].

Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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Supplementary Figure 1: Proteins of  this  study analyzed by size exclusion chromatography  (SEC). All 
proteins were purified by metal affinity and  ion exchange chromatography prior to SEC (see Methods). 
(A)  ISWI mutants  (1  to  1.6 mg  of  insertion mutants  and  3.4 mg  of  ISWIΔHSS) were  separated  over  a 
Superdex 200 10/300 GL column  (GE Healthcare). UV absorption was measured at 280 nm except  for 
ISWIΔHSS  (254  nm)  to  prevent  saturation  of  the UV  detector.  (B)  ISWIWt  (7 mg) was  separated  over  a 
HiLoad 16/600 Superdex 200 column (GE Healthcare). Absorption was measured at 280 nm. The mobile 
phase  contained  50  mM  Hepes‐KOH  pH  7.6,  0.2  mM  EDTA,  200  mM  potassium  acetate  and  1  mM 
dithiothreitol  for all  insertion mutants and  ISWIWt, and 25 mM Hepes‐KOH pH 7.6, 1.5 mM magnesium 
acetate, 0.1 mM EDTA, 100 mM potassium chloride, 10% glycerol and 10 mM beta‐mercaptoethanol for 
ISWIΔHSS. 
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Supplementary  Figure  2: Original  agarose  gel used  to  generate  Figure  3A. Remodeling  time  courses 
were obtained for ISWIWt and ISWI871:13 aa as explained in Figure 3. Mock‐treated sample (‐ISWI) served as 
a control. Red labeled lanes are shown in Figure 3A. M: molecular weight marker; kb: kilobases. 
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Abstract ISWI-family nucleosome remodeling enzymes need the histone H4 N-terminal tail to

mobilize nucleosomes. Here we mapped the H4-tail binding pocket of ISWI. Surprisingly the

binding site was adjacent to but not overlapping with the docking site of an auto-regulatory motif,

AutoN, in the N-terminal region (NTR) of ISWI, indicating that AutoN does not act as a simple

pseudosubstrate as suggested previously. Rather, AutoN cooperated with a hitherto

uncharacterized motif, termed AcidicN, to confer H4-tail sensitivity and discriminate between DNA

and nucleosomes. A third motif in the NTR, ppHSA, was functionally required in vivo and provided

structural stability by clamping the NTR to Lobe 2 of the ATPase domain. This configuration is

reminiscent of Chd1 even though Chd1 contains an unrelated NTR. Our results shed light on the

intricate structural and functional regulation of ISWI by the NTR and uncover surprising parallels

with Chd1.

DOI: 10.7554/eLife.21477.001

Introduction
Eukaryotic cells package their DNA into chromatin. Chromatin organization allows cells to compact,

protect and regulate their genomes. Nucleosomes are the primary building blocks of chromatin.

These particles consist of ~150 bp of DNA that wrap almost twice around an octamer of histones.

Nucleosomal DNA, however, is not accessible to most nuclear factors. Nature therefore evolved

ATP-dependent nucleosome remodeling complexes that can alter the position or the structure of

nucleosomes as necessary.

Numerous remodeling complexes with distinct activities are active in any cell. Some move nucleo-

somes along DNA, eject histones or exchange them for histone variants, and some can even perform

several of these activities (Zhou et al., 2016). How the various remodelers are regulated in response

to cellular needs is not well understood. Several remodelers, for instance, respond to post-transla-

tional modifications present on histones (Swygert and Peterson, 2014). Others are directly regu-

lated by post-translational modifications (Kim et al., 2010) or react to small signaling molecules

(Zhao et al., 1998). Cells also adjust the subunit composition of remodeling complexes during

development (Lessard et al., 2007). All these examples indicate exquisite levels of controls exerted

over remodeling complexes. The fact that mutations in subunits of human remodeling factors

strongly associate with and in some cases drive cancers underscores the necessity to regulate

remodeler activity (Kadoch and Crabtree, 2015; Garraway and Lander, 2013).

Remodelers of the ISWI family – like most other remodelers – can reposition nucleosomes along

DNA in a process termed nucleosome sliding. ISWI’s activity is directly regulated by the histone H4

N-terminal tail and by DNA that flanks the nucleosome, so called linker DNA. The regulation
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imposed by these epitopes has direct consequences for the biological output of ISWI remodelers.

By measuring the length of linker DNA, ISWI can generate arrays of evenly spaced nucleosomes

(Lieleg et al., 2015; Yang et al., 2006; Yamada et al., 2011), a characteristic feature of chromatin.

Arrays of nucleosomes can further compact. In the compacted state, the histone H4 N-terminal tail

of one nucleosome contacts the acidic patch formed by H2A and H2B of a neighboring nucleosome

(Luger et al., 1997; Dorigo et al., 2004). This interaction sequesters the H4 tail, which now is no

longer available for binding to and stimulating the activity of ISWI. Thus, ISWI’s activity on the com-

pacted chromatin would decrease, ensuring the unidirectionality of the reaction. This process is in

line with the importance of some ISWI complexes in heterochromatin biology (Bozhenok et al.,

2002).

How ISWI senses the H4 tail is largely unknown. Evidence points to the ATPase domain of ISWI

directly binding the H4 tail (Racki et al., 2014; Mueller-Planitz et al., 2013), consistent with the tail

directly influencing catalytic reaction steps (Clapier et al., 2001; Dang et al., 2006). However, a

domain at the C-terminal side of ISWI, the HAND-SANT-SLIDE (HSS) domain, has been implicated in

binding the H4 tail as well (Boyer et al., 2004; Grüne et al., 2003). Another layer of regulation is

imposed by the non-catalytic subunit termed ACF1, which associates with ISWI and sequesters the

H4 tail under certain conditions (Hwang et al., 2014).

ISWI recognizes amino acids R17H18R19 within the H4 tail, which are part of a stretch of amino

acids called basic patch (Fazzio et al., 2005; Hamiche et al., 2001; Clapier et al., 2002). Notably,

ISWI contains an identical motif, here called AutoN. Mutation of AutoN’s two arginines to alanines

(referred to as 2RA) increased the DNA-stimulated ATPase activity and nucleosome sliding, and sup-

pressed the dependence of ISWI’s ATPase and sliding activities on the H4 tail. According to the cur-

rent model, AutoN directly binds to and blocks the H4-tail binding site, acting as a gatekeeper for

the H4 tail. This model necessitates a conformational change of the NTR to allow binding of H4

(Hwang et al., 2014; Clapier and Cairns, 2012). Indeed, a conformational change could be traced

to AutoN upon nucleic acid binding (Mueller-Planitz et al., 2013). Of note, the 2RA mutation

eLife digest In the cells of animals, plants and other eukaryotes, DNA wraps tightly around

proteins called histones to form structures known as nucleosomes that resemble beads on a string.

When nucleosomes are sufficiently close to each other they interact and clump together, which

compacts the DNA and prevents the genes in that stretch of DNA being activated.

But how do cells mobilize their nucleosomes? A nucleosome remodeling enzyme called ISWI can

slide nucleosomes along DNA. ISWI becomes active when it interacts with a ‘tail’ region of a histone

protein called H4. However, the H4 tail prefers to interact with neighboring nucleosomes instead of

with ISWI. Therefore when ISWI slides a nucleosome close to another one, the H4 tail of the

nucleosome binds instead to its new neighbor so that ISWI cannot continue to slide. By this

mechanism, ISWI is proposed to pile up nucleosomes, which subsequently compact, leading to the

inactivation of this part of the genome.

To investigate how ISWI recognizes the H4 tail, Ludwigsen et al. mapped where the H4 tail binds

to ISWI by combining the biochemical methods of cross-linking and mass spectrometry. In addition,

mutagenesis experiments identified a new motif in the enzyme that is essential for recognizing the

H4 tail. In the absence of the nucleosome, this motif – called AcidicN – works with a neighboring

motif called AutoN to keep ISWI in an inactive state. The two motifs also work together to enable

ISWI to distinguish between nucleosomes and DNA. Further evidence suggests that other

remodeling enzymes have similar regulation mechanisms; therefore this method of controlling

nucleosome remodeling may have been conserved throughout evolution.

Further studies are now needed to detect the shape changes that occur in ISWI as it recognizes

the histone tail and work out how this leads to nucleosome remodeling. Inside cells, ISWI is usually

found within large complexes that consist of many proteins. It therefore also remains to be

discovered whether the proteins in these complexes impose additional layers of regulation and

complexity on the activity of ISWI.

DOI: 10.7554/eLife.21477.002
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diminished but did not abolish the H4-tail dependency, implicating also other regions in the H4 rec-

ognition process (Clapier and Cairns, 2012).

The AutoN motif is embedded in a structurally and functionally poorly characterized domain

referred to as the N-terminal region (NTR). Besides AutoN, the NTR contains additional motifs: an

acidic region that we termed AcidicN, the ‘post-post-helicase-SANT-associated’ (ppHSA) motif, so

named because it follows the post-HSA motif in remodelers of the Snf2 family (Mueller-

Planitz et al., 2013; Szerlong et al., 2008), and a weakly conserved AT-hook (Mueller-

Planitz et al., 2013; Aravind and Landsman, 1998). Their functions remain unknown.

Here, we systematically interrogated the functions of all conserved motifs within the NTR by

mutagenesis and a series of quantitative biochemical assays in vitro and in vivo. We paid particular

attention to probe for possible crosstalk between these motifs and the H4 tail to understand its rec-

ognition process. Using protein crosslinking followed by mass spectrometry and protein structural

modeling we obtained information about the general structural architecture of the NTR-ATPase

module. With similar approaches, we mapped the H4-tail binding site. We interpret our results

within a unified structural and functional framework for the combined inhibition of ISWI by the NTR

and recognition of the histone H4 tail. Contrary to current models, we propose that AutoN does not

occlude the binding pocket of the H4 tail and that inhibition by AutoN involves a more elaborate

mechanism than simple mimicry of the H4 basic patch.

Results

The NTR contains conserved motifs
Multiple sequence alignment of ISWI homologs revealed several sequence motifs in the NTR of ISWI

(Mueller-Planitz et al., 2013). To assess their degree of conservation we queried the UniProt data-

base for ISWI homologs (Figure 1—figure supplement 1). Sequence alignment of these candidates

showed conservation of AutoN (Clapier and Cairns, 2012) but also indicated that two other motifs,

termed ppHSA and AcidicN, were at least as conserved (Figure 1). In contrast, an AT-hook

(Aravind and Landsman, 1998) was poorly conserved. Of note, a separate PSI-BLAST of the NTR of

ISWI revealed conservation of ppHSA across multiple families of remodelers, including Snf2, Lsh and

Ino80, suggesting shared function (Figure 1F). ppHSA and AcidicN have not been characterized so

far.

The ppHSA motif is important for structural stability
To study its physiological role, we serially truncated the NTR of Isw1 in Saccharomyces cerevisiae

(Figure 2A) and tested whether these truncation variants complemented a previously characterized

growth defect of a yeast triple knockout (TKO) strain lacking three remodelers (DISW1, DISW2,

DCHD1) at elevated temperatures (Tsukiyama et al., 1999). To assess whether complementation

was dependent on the expression level, the alleles were placed under the control of synthetic pro-

moters of varying strengths (Blazeck et al., 2012). Protein expression levels were measured by

Western blot analysis (Figure 2—figure supplement 1E).

Expression of none of the N-terminal truncation variants fully complemented the growth pheno-

type, indicating functional relevance of the NTR in vivo. In contrast, the TKO strain that was comple-

mented with full-length Isw1 grew essentially as well as the DISW2, DChd1 double knockout strain

(DKO; Figure 2B, Figure 2—figure supplement 1A). Isw1 variants that lacked the AutoN-AcidicN

region in addition to ppHSA grew modestly better than Isw1DppHSA, in line with the general inhibi-

tory nature of AcidicN and AutoN (compare rows 1 and 2 of Figure 2—figure supplement 1B,C to

the same rows in D; see also below).

We noted a pronounced toxicity of all Isw1 mutants as indicated by slow growth at elevated

expression levels (for instance, compare row four with row five in Figure 2—figure supplement 1B,

C,D). Full-length Isw1, on the other hand, was not toxic at comparable expression levels (Figure 2—

figure supplement 1A).

Toxicity at high expression levels could be caused by structural instability of the N-terminally trun-

cated Isw1 variants. Indeed, analogous ISWI derivatives from Drosophila melanogaster proved diffi-

cult to purify (see below), supporting the notion that mutations in the NTR destabilize ISWI

structure.
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The ppHSA motif does not substantially contribute to catalysis
Toxicity of the Isw1 NTR deletions precluded a detailed analysis in vivo. Importantly, the in vivo

results left open the possibility that NTR-deleted Isw1 was catalytically inactive. We therefore contin-

ued to study the function of the NTR motifs in vitro using purified Drosophila ISWI proteins.

Although ISWI variants carrying mutations or deletions in the NTR generally expressed well, we

failed to purify them using standard protocols. For each ISWI variant, we screened through a variety

of expression and purification strategies to improve the yield of soluble protein. The strategies that

RFDFLLKQTEIFTHFM-TNSAKSP-----------TKPKGRPKKIKDKDKEKDVADHRHRKTEQEEDEELLAED

A ATPase domain

ppHSA

Dm ISWI (43-64)

Hs SNF2H (88-109)

Hs SNF2L (91-112)

Hs SMCA2 (522-543)

Hs SMCA4 (546-567)

Hs HELLS (64-85)

Hs INO80 (381-402)

Dm ISWI

Sc Isw1

AT-hook AutoN AcidicN

10271

ISWI

Snf2

Lsh
Ino80

NTR Lobe 1 HSSLobe 2

ED

F
91 94

RFEHLLSLSGLFKHFIESKAAKDPKFRQVLDVLEENKANG-----KGKGKHQDV--RRRKTEHEEDAELLKEED

73

Figure 1. The NTR of ISWI contains several conserved sequence motifs. (A) Schematic representation of the ISWI

domain composition. The grey inset shows the sequence and motifs of the NTR. Arrows indicate amino acids

within the NTR of Drosophila ISWI that crosslinked to Lobe 2 of the ATPase domain (Table 1). HSS, HAND-SANT-

SLIDE domain. (B–E) Sequence logos showing the sequence conservation of (B) ppHSA, (C) AT-hook, (D) AutoN,

and (E) AcidicN. X-Axis values are amino acid positions in D. melanogaster ISWI. See Figure 1—figure

supplement 1 for full alignment. (F) Alignment of the ppHSA motif of Drosophila (Dm) ISWI with the human

(Hs) ISWI homologs SNF2H and SNF2L and representatives of unrelated remodeler families.

DOI: 10.7554/eLife.21477.003

The following figure supplement is available for figure 1:

Figure supplement 1. Alignment of ISWI homologs from various organisms.

DOI: 10.7554/eLife.21477.004
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we employed included fusion to solubility tags (Z2, GB1, NusA, TrxA), fusion to or co-expression of

chaperones (trigger factor, GroES/GroEL, DnaK/DnaJ/GrpE) and inclusion of protease sites (3C) at

three locations in the NTR to cleave off parts of the N-terminus after purification. The strategies that

proved successful are summarized schematically in Figure 3—figure supplement 1 and Figure 6—

figure supplement 1.

We first benchmarked the DNA- and chromatin-stimulated ATPase activities of ISWI that lacked

ppHSA (ISWIDppHSA) or both ppHSA and AT-hook (ISWIDppHSA; DAT-hook) against the activity of wild-

type ISWI (ISWIWT). We used saturating ATP and nucleic acid concentrations as indicated by control

experiments with varying levels of ligands (Figure 3—figure supplement 2). DNA- and chromatin-

stimulated ATPase rates of the truncation mutants varied by no more than 1.8-fold from ISWIWT

(Figure 3A,B) indicating that ppHSA and AT-hook were largely dispensable for ATP hydrolysis and

for proper recognition of chromatin.

To evaluate whether ppHSA and AT-hook were required to efficiently couple ATP hydrolysis to

nucleosome remodeling, we employed a quantitative remodeling assay. This assay monitors remod-

eling of a single nucleosome in the context of a 25-mer nucleosomal array by measuring the remod-

eling-dependent exposure of a unique restriction enzyme site originally occluded by the nucleosome

(Mueller-Planitz et al., 2013). Time courses of the remodeling reaction were fit to single exponential

functions to extract the observed remodeling rate constant kobs (Figure 3C; Figure 3—figure sup-

plement 3), which provided us with a quantitative measure to compare the remodeling activities of

ISWI and its derivatives.

Remodeling was affected only modestly by deletion of parts of the NTR (3.3- and 1.4-fold for

ISWIDppHSA and ISWIDppHSA, DAT-hook, respectively; Figure 3C). In conclusion, ATPase and remodeling

data suggested that both ppHSA and AT-hook are not absolutely required for catalysis in vitro. The
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Figure 2. Functional importance of the NTR of yeast Isw1 in vivo. (A) Successive N-terminal truncation mutants of

Isw1. Note that Isw1DNTR lacked the entire N-terminus up to the first seven residues of AcidicN (Figure 1E). (B)

Complementation assay with Isw1DppHSA. A yeast strain lacking ISW1, ISW2 and CHD1 (TKO) was transformed with

Isw1 derivatives under control of promoters of varying strengths. In comparison to a strain lacking only ISW2 and

CHD1 (DKO), Isw1WT fully complemented the growth phenotype at elevated temperatures (37˚C). In contrast,

Isw1DppHSA did not complement at any expression level. Results for other Isw1 variants can be found in Figure 2—

figure supplement 1. Growth was assessed by spotting tenfold serial dilutions of liquid cultures.

DOI: 10.7554/eLife.21477.005

The following figure supplement is available for figure 2:

Figure supplement 1. Complementation assay with N-terminal truncation variants of Isw1.

DOI: 10.7554/eLife.21477.006
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modest decreases in remodeling activities could be due to lower stability of these enzymes (see

above).

The NTR contacts Lobe 2 of the ATPase domain
We speculated that the NTR might stabilize the structure of ISWI by adopting a similar configuration

as the two chromo domains of the related remodeler Chd1. Like the NTR, the chromo domains are

located directly N-terminal to the ATPase module. Notably, they bridge over and pack against the

second ATPase lobe, presumably locking the ATPase in an inactive state (Figure 4A) (Hauk et al.,

2010).

To explore, we first determined the binding interface of the chromo domains (amino acids 239–

284) on Lobe 2 of the ATPase module using the PISA algorithm (www.ebi.ac.uk/pdbe/pisa/) and

visualized the analogous surface on a homology model of ISWI (Figure 4B; cyan). We then site-spe-

cifically inserted the UV-crosslinking amino acid p-benzoyl-p-phenylalanine (abbreviated Bpa or B)
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Figure 3. The ppHSA motif is largely dispensable for catalysis. (A) N-terminal truncation mutants of Drosophila

ISWI. (B) DNA- and nucleosome-stimulated ATP turnover. ATPase rates were measured in the presence of

saturating concentrations of ATP (1 mM), DNA (0.2 g/l) or nucleosomes (0.1 g/l). Errors for nucleosome-stimulated

rates of ISWI deletion mutants are minimal and maximal values of two independent measurements, and s.d. for all

other measurements (n � 4). ATPase rates in absence of nucleic acids were <0.022 s�1 for all ISWI variants (data

not shown). (C) Remodeling activity was determined by measuring the accessibility changes of a unique KpnI

restriction site in a 25-mer nucleosomal array (100 nM nucleosomes, 300 nM enzyme). Errors are s.d. (n � 3) except

for ISWIDppHSA; DAT-hook for which minimal and maximal values of two independent measurements are shown. Raw

data of the remodeling assay can be found in Figure 3—figure supplement 3. Color code as in panel B.

DOI: 10.7554/eLife.21477.007

The following figure supplements are available for figure 3:

Figure supplement 1. Cloning and purification of N-terminal truncation variants of Drosophila ISWI.

DOI: 10.7554/eLife.21477.008

Figure supplement 2. Saturation controls for ISWIWT and ISWIDppHSA in ATPase assays.

DOI: 10.7554/eLife.21477.009

Figure supplement 3. Determination of the rate constants for remodeling (kobs; Figure 3C) for ISWIWT and

N-terminal truncation mutants of ISWI.

DOI: 10.7554/eLife.21477.010
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into this hypothetical binding interface in ISWI (H483B; Figure 4B, red) using established strategies

(Forné et al., 2012; Chin et al., 2002).
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Figure 4. The NTR contacts Lobe 2 of the ATPase domain. (A) Surface representation of the Chd1 crystal structure (PDB code 3MWY) (Hauk et al.,

2010). ATPase Lobe 1 and 2 are colored dark and light grey, respectively, and the N-terminal chromo domains cyan. (B) Homology model of the ISWI

ATPase domain (Forné et al., 2012). Cyan: hypothetical binding interface of the ISWI NTR (see main text), red: position of Bpa substitution (H483). (C–

E) Mass spectrometric validation of the crosslink XL1 (Table 1) formed between Bpa at position 483 and an NTR peptide. (C) Isotopic distribution of the

crosslinked peptide. (D) UV-dependent increase of the signal for the crosslinked peptide. Extracted ion chromatograms of the ions were used for the

quantification. (E) High resolution, high accuracy MS2 fragmentation spectrum. Top right: summary of observed product ions mapped onto the

sequence of the crosslinked peptide. B: Bpa. (F) Predicted docking interface of AcidicN (blue and dark blue), AutoN (cyan and dark blue) and

overlapping regions (dark blue) in the structural model of ISWI. The predicted interface for AcidicN overlaps with the interface for the acidic helix of the

N-terminal chromo domains of Chd1 (orange) (Hauk et al., 2010).

DOI: 10.7554/eLife.21477.011

The following figure supplements are available for figure 4:

Figure supplement 1. The effect of the H483B mutation on chromatin remodeling.

DOI: 10.7554/eLife.21477.012

Figure supplement 2. Validation of additional crosslinks detected in the ISWIH483B dataset.

DOI: 10.7554/eLife.21477.013

Figure supplement 3. Structural predictions of NTR elements.

DOI: 10.7554/eLife.21477.014
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We first tested whether mutagenesis of H483 impacted catalysis. The H483B mutation diminished

the DNA- and chromatin-stimulated ATPase activity of full-length ISWI by fourfold each, a result that

may not be surprising given that the mutation is located in the conserved ‘block D’ of Snf2 ATPases

(Flaus et al., 2006) (Figure 6—figure supplement 4). Importantly, the remodeling activity of

ISWIH483B was reduced to a similar degree (threefold), indicating that the efficiency of remodeling

per hydrolyzed ATP was unchanged (Figure 4—figure supplement 1). We conclude that ISWIH483B,

albeit hydrolyzing ATP more slowly than ISWIWT, efficiently coupled ATP hydrolysis to chromatin

remodeling, which suggested that the mutant remained structurally largely intact. Also, auto-regula-

tion of ISWIH483B by its NTR was unperturbed because mutagenesis of the NTR had analogous

effects on ISWIWT and ISWIH483B (see below), further justifying the use of ISWIH483B for crosslinking

experiments.

Crosslinking of full-length ISWIH483B was induced by UV irradiation, and the crosslinks were

mapped by high accuracy mass spectrometry (MS) (Forné et al., 2012; Mueller-Planitz, 2015).

Remarkably, ISWIH483B crosslinked to several positions in the NTR within or adjacent to the ppHSA

motif (Figure 1A, arrows; Figure 4C–E; Figure 4—figure supplement 2; Table 1). We indepen-

dently replicated these crosslinking results with a truncated form of ISWI (ISWI26-648), which lacked

the HSS domain and non-conserved N-terminal amino acids (data not shown).

In our previous work, we incorporated Bpa in a variety of places on Lobes 1 and 2 of the ATPase

domain but never observed crosslinks to the NTR (Forné et al., 2012; Mueller-Planitz, 2015). We

therefore suggest that the ppHSA motif specifically docked to a location in proximity of amino acid

483 in Lobe 2. Docking of the NTR against Lobe 2 may be necessary for the structural integrity of

ISWI-type remodelers (see above). The presence of ppHSA in other remodelers (Snf2, Lsh and Ino80;

Figure 1F) predicts similar functions beyond the ISWI family.

If the NTR is structurally close to Lobe 2 of the ATPase module, AutoN and the neighboring Acid-

icN motif may also be able to contact Lobe 2. To explore this idea, we performed in silico docking

studies to predict the binding site of AutoN and AcidicN. We carried out three independent docking

runs to model the interaction of Lobe 2 with AutoN, AcidicN and AutoN-AcidicN, respectively (see

Materials and methods for details). All three ab initio docking runs yielded a large cluster of models

that identified the preferred binding site for AutoN and AcidicN (Figure 4F; Figure 4—figure sup-

plement 3A). Docking of scrambled peptides as a control partially diminished the preference for

this binding pocket (data not shown). Docking of AutoN-AcidicN against a homology model com-

prising both ATPase lobes gave very similar results, suggesting specificity of the motifs for binding

to Lobe 2 (Figure 4—figure supplement 3B). We validated the docking results by mutagenesis fur-

ther below.

Strikingly, AcidicN, which is predicted to be a-helical (Figure 4—figure supplement 3C,D), con-

tacted Lobe 2 precisely where an acidic helix of the chromo domains of Chd1 bound (Hauk et al.,

2010), which suggested conservation of this binding mode. Based on our results, we propose the

Table 1. Overview of crosslinks formed by ISWIH483B.

ID Mass (D a) Error (ppm)

Bpa peptide Target peptide

Sequence*,† Site Sequence† Site

XL1 3220.4946 �1.9 LDGQTPBEDRNR 483 QTEIFTHFMoxTNSAK‡ 59–60

XL2 3204.5056 �3.7 LDGQTPBEDRNR 483 QTEIFTHFMTNSAK‡ 60–61

XL3 2950.3474 �1.0 LDGQTPBEDR 483 QTEIFTHFMoxTNSAK‡ 55–59

XL4 2934.3571 �2.6 LDGQTPBEDR 483 QTEIFTHFMTNSAK‡ 59–61

XL5 2207.0968 +0.2 LDGQTPBEDRNR 483 SPTKPK‡ 69–72

XL6 1936.9645 �6.1 LDGQTPBEDR 483 SPTKPK‡ 71–72

XL7 1736.8594 �6.1 LDGQTPBEDR 483 GRPK 75

*B symbolizes Bpa.
†Crosslinked amino acids are underlined; oxindicates oxidized methionine (+15.9949 Da).
‡Precise attachment sites not distinguishable from data.

DOI: 10.7554/eLife.21477.015
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NTR to adopt a structural architecture akin to the chromo domains of Chd1 (Figure 4A) despite

complete lack of sequence conservation between the two.

The H4 tail binds Lobe 2 adjacent to AutoN-AcidicN
Due to sequence similarity, the H4 tail and AutoN may compete for the same binding site

(Hwang et al., 2014; Clapier and Cairns, 2012). We thus set out to identify the H4-tail binding

pocket within ISWI and compare it to the predicted AutoN interaction surface.

We adopted two complementary crosslinking approaches. First, we used two different H4-tail

peptides, which carried a Bpa moiety either at amino acid 1 or 10 (T1B and L10B peptides, respec-

tively), and bound these peptides to ISWI26-648 in the presence of DNA (Mueller-Planitz et al.,

2013). After irradiation, a lower-mobility band was detected by SDS-PAGE, which suggested suc-

cessful crosslinking (Figure 5—figure supplement 1A,E). We mapped several crosslinks of the H4

peptides to Lobe 2 by MS (Figure 5—figure supplement 1A–F; Table 2). Control experiments

showed that the T1B H4 peptide stimulated the ATPase activity like a wild-type H4 peptide (Fig-

ure 5—figure supplement 2A).

Because the peptides may not exclusively bind ISWI in the physiological binding pocket, we pur-

sued a second approach. We reconstituted entire nucleosomes bearing a photo-reactive benzophe-

none on the N-terminal tail of H4. Benzophenone labeling was achieved by chemical modification of

single cysteine mutants of H4 (T1C and L10C). These nucleosomes bound to full-length ISWI and

stimulated its ATPase activity like wild-type nucleosomes (Figure 5—figure supplement 2B,C) sug-

gesting that they were properly recognized by the remodeler. UV-irradiation of full-length ISWI

bound to benzophenone-labeled T1C nucleosomes retarded the mobility of the remodeler during

SDS-PAGE, indicative of successful crosslinking (Figure 5A). MS analysis mapped a crosslink to Lobe

2 of ISWI (Figure 5B–D). We repeated these crosslinking experiments with the human ISWI homolog

SNF2H. Both T1C- and L10C-labeled nucleosomes crosslinked to Lobe 2 of SNF2H (Figure 5—fig-

ure supplement 1G–J). In summary, two very different crosslinking approaches, one employing Bpa-

containing peptides and one using benzophenone-derivatized nucleosomes, consistently yielded

crosslinks between the H4 tail and Lobe 2 of the ATPase domain. Table 2 lists all crosslink candi-

dates, classified in terms of their reliability (see Materials and methods). Notably, methionine resi-

dues were overrepresented as targets of the photo-crosslinking approach, consistent with the

known preference of benzophenones for methionine (Wittelsberger et al., 2006). In summary, our

data strongly indicated the H4-tail binding site to reside on or close to Lobe 2.

To identify the H4-tail binding pocket we turned to crosslink-guided in silico docking of the H4-

tail peptide. We only used the five crosslinks for this analysis that passed stringent quality controls

(Table 2, high reliability; see also Materials and methods). The predicted docking interface is

Table 2. Overview of H4-tail mediated crosslinks.

ID Reliability H4 Remodeler construct Mass (Da) Error (ppm)

H4 peptide Remodeler peptide

Sequence* Site Sequence† Site

XL11 high nucleosomal ISWIWT 2034.8571 �0.2 XGR 1 QIQEFNMDNSAK 495

XL12 high nucleosomal SNF2H 2251.9753 �0.4 GXGK 10 VLDILEDYCMWR 520

XL13a high peptide ISWI26-648 1648.7601 �0.4 BGR 1 LDGQTPHEDR 482

XL13b high peptide ISWI26-648 1918.9052 �0.9 BGR 1 LDGQTPHEDRNR 482

XL13c high peptide ISWI26-648 3340.5374 �2.8 BGR 1 LDGQTPHEDRNRQIQEFNMDNSAK 482

XL14 medium nucleosomal SNF2H 2222.9624 �1.5 XGR 1 VLDILEDYCMWR‡ 519–22

XL15 medium peptide ISWI26-648 1257.6261 +2.3 BGR 1 MVIQGGR 578

XL16 medium peptide ISWI26-648 1424.7832 �3.9 BGR 1 IVERAEVK 568

XL17 medium peptide ISWI26-648 1453.7998 �4.6 GBGK 10 IVERAEVK 568

*B symbolizes Bpa; X symbolizes Benzophenone-labeled cysteine.
†Crosslinked amino acids are underlined.
‡Precise attachment sites not distinguishable from data.

DOI: 10.7554/eLife.21477.016
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Figure 5. The binding sites of the NTR and the H4-tail on Lobe 2 are proximal. (A–D) Crosslinking of nucleosomes

containing benzophenone-labeled H4 to ISWI. (A) Crosslinking time course analyzed by SDS-PAGE and

Coomassie staining. The asterisk marks a UV-irradiation dependent band of lower mobility containing the crosslink

mapped in B–D. (B–D) Mapping and validation of a crosslink (XL11; Table 2) formed in the upshifted band in A.

Isotopic distribution of the crosslinked peptide, MS2 spectrum and quantification as in Figure 4. (E) Crosslink-

guided in silico docking of an H4 peptide (amino acids 1–20) to ISWI. The predicted docking interface of the H4

tail on Lobe 2 is illustrated in a yellow and red color scale, which indicates low to high contact probabilities

between the docked H4 tail and Lobe 2. The contact probabilities were calculated from a family of 383 docked

structures (see Materials and methods). For comparison, the predicted docking interface of the NTR is shown in

shades of blue (see Figure 4F).

DOI: 10.7554/eLife.21477.017

The following figure supplements are available for figure 5:

Figure 5 continued on next page
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visualized in Figure 5E and Figure 5—figure supplement 3. Note that not all lower quality cross-

links were compatible with this binding mode, possibly because the H4-tail peptide bound flexibly

or in multiple binding modes (Racki et al., 2014). Some of these modes may not be strongly popu-

lated or functionally active as crosslinking can in principle trap fleeting intermediates. We also cannot

rule out false positives among the lower quality candidates.

AcidicN helps ISWI to recognize chromatin
Interestingly, the predicted docking interface of AcidicN was in close proximity to the H4-tail inter-

face. This prompted us to investigate the function of AcidicN and – in the following section – its

potential involvement in the H4-tail recognition process.

To study its function, we replaced three or six negatively charged amino acids in AcidicN by

uncharged ones using conservative E to Q and D to N mutations. These mutants were denoted

ISWI+3 and ISWI+6 respectively (Figure 6A). To improve solubility, ISWI+6 was fused to a solubility

tag (Z2-tag; Figure 6—figure supplement 1). Control experiments ruled out interference of the Z2-

tag on catalytic properties of ISWI (Figure 6—figure supplement 2A,B).

Of note, the +3 and+6 mutants had a strongly deregulated ATPase, hydrolyzing ATP markedly

faster than ISWIWT when presented with saturating amounts of naked DNA. In fact, DNA-stimulated

ATPase rates of ISWI+6 reached values of nucleosome-stimulated ISWIWT rates. Also its basal ATPase

activity was strongly (20-fold) upregulated compared to ISWIWT (Figure 6B; Figure 6—figure sup-

plement 3A,B). To rule out that co-purifying contaminating ATPases overwhelm the ATPase signal,

we combined the +6 mutation with a point mutation in the ATPase that abrogates ATPase activity

(E257Q). ATP hydrolysis and remodeling were negligible for ISWI+6; E257Q, providing strong evidence

against this possibility (Figure 6—figure supplement 2B,C).

In contrast to the DNA-stimulated reaction, nucleosome-stimulated ATPase and remodeling activ-

ities were comparable between the AcidicN mutants and ISWIWT (Figure 6B,C). Taken together,

these results indicated that the AcidicN mutants were not simply hyperactive, but misregulated

instead. More specifically, mutation of AcidicN prevented ISWI from properly recognizing whether

chromatin was bound and led to futile ATP hydrolysis in the absence of chromatin.

To independently test this conclusion and to further validate the usefulness of the H483B mutant

used further above, we combined the H483B and AcidicN mutations (Figure 6—figure supplement

4). DNA-stimulated ATP hydrolysis was strongly upregulated in the ISWI+3; H483B and ISWI+6; H483B

double mutants relative to the ISWIH483B single mutant and reached levels of the chromatin-stimu-

lated reaction. These data closely paralleled and therefore independently validated our results

obtained with ISWI+3 and ISWI+6. We conclude that AcidicN regulates ISWIWT and ISWIH483B in a

very similar fashion, further justifying the use of ISWIH483B for crosslinking experiments above.

To validate the predicted binding interface of AcidicN on Lobe 2 and to further probe the func-

tionality of this interaction, we introduced mutations in Lobe 2. We selected three positively charged

residues for mutagenesis, K403, R458 and R508, which are predicted to participate in docking to the

negatively charged AcidicN motif (Figure 7A; Figure 7—figure supplement 1). Charge-reversal of

these residues would be expected to weaken docking of AcidicN to Lobe2 and – in the simplest

case – phenocopy the effects of the mutation of AcidicN. Indeed, the interface mutants had a

strongly upregulated DNA-stimulated ATPase activity whereas chromatin-stimulated ATP turnover

and nucleosome remodeling were largely unaffected (Figure 7B,C; Figure 7—figure supplement

2). The interface mutants therefore behaved just like the AcidicN mutants discussed above. A control

mutant (ISWIR486; 488D), carrying amino acid substitutions just outside of the predicted AcidicN bind-

ing interface, however, retained its ability to discriminate chromatin over DNA in the ATP hydrolysis

Figure 5 continued

Figure supplement 1. Additional crosslinks between the H4 tail and ISWI or SNF2H.

DOI: 10.7554/eLife.21477.018

Figure supplement 2. Controls for possible adversary effects of covalent modifications of the H4 tail.

DOI: 10.7554/eLife.21477.019

Figure supplement 3. Surfaces on Lobe 2 that were sampled by selected amino acids in the H4 tail during

crosslink-guided structural docking.

DOI: 10.7554/eLife.21477.020
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assay (Figure 7B). These data support the notion that AcidicN interacts with Lobe 2 at the predicted

interface and that this interaction is functionally important to discriminate whether chromatin is

bound to the enzyme.

AcidicN and AutoN cooperate during recognition of chromatin and H4
tail
To explore whether AcidicN takes part in H4-tail recognition, we measured the dependence of Acid-

icN mutants on the H4 tail in remodeling assays. Strikingly, the +3 and+6 ISWI derivatives lost most

of their reliance on the H4 tail during remodeling (Figure 8A). In contrast, ISWIDppHSA and

ISWIDppHSA; DAT-hook retained a strong H4-tail dependence, which indicated that ppHSA had little

involvement in H4-tail recognition.

Two AcidicN interface mutants described above (K403D and R458D) also depended less on the

H4 tail during remodeling than ISWIWT (Figure 8A). The third mutant (R508D) and the control

mutant (R485; 488D) were apparently still sensitive towards loss of the H4 tail. These two mutants,

however, were not saturated with tail-less chromatin so that the calculated values represented upper

limits for the H4-tail dependence (<24 fold and <15 fold, respectively; Figure 8—figure supplement

1E and data not shown).

Lack of the H4-tail dependence of AcidicN mutants was reminiscent of the phenotype previously

described for the ISWI2RA mutation in AutoN (Clapier and Cairns, 2012). The 2RA mutation
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Figure 6. AcidicN is a strong negative regulator of the ATPase. (A) Design of AcidicN derivatives of ISWI (see also

Figure 6—figure supplement 1A). (B) Effects of AcidicN mutation on ATP hydrolysis in absence or presence of

saturating concentrations of DNA and chromatin. In absence of DNA, ATPase activities of ISWIWT (#) and ISWI+3
(§) were �0.06 s�1. Errors are s.d. (n � 4). (C) Effects of AcidicN mutation on the remodeling activities.

Nucleosomal arrays containing wild-type H4 were used. Errors are s.d. (n � 3) except for ISWI+3 for which minimal

and maximal values of two independent measurements are shown. Color code as in panel (B). Raw data of the

remodeling assay can be found in Figure 8—figure supplement 1. Results for ISWIWT (*) are replotted for

comparison from Figure 3B,C.

DOI: 10.7554/eLife.21477.021

The following figure supplements are available for figure 6:

Figure supplement 1. AcidicN and AutoN mutants.

DOI: 10.7554/eLife.21477.022

Figure supplement 2. Comparison of ATPase and remodeling activities of ISWI control variants used in this study.

DOI: 10.7554/eLife.21477.023

Figure supplement 3. Saturation controls for ISWI+6 in ATPase assays.

DOI: 10.7554/eLife.21477.024

Figure supplement 4. AcidicN mutations upregulate the ATPase activity of ISWIH483B.

DOI: 10.7554/eLife.21477.025
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(Figure 6—figure supplement 1) suppressed the dependence on the H4 tail also in our experi-

ments, albeit our quantitative analysis showed an even more robust reduction than previously seen

(Figure 8A). ISWI2RA was catalytically fully active, as was an AcidicN and AutoN double mutant

(ISWI+6; 2RA; Figure 8—figure supplement 1). Like the respective single mutants, ISWI+6; 2RA barely

relied on the presence of the H4 tail (Figure 8A; Figure 8—figure supplement 1).

Compared to the respective single mutants, the ISWI+6; 2RA double mutant hydrolyzed ATP even

faster in the absence of any ligand (Figure 8B). This result suggested that both motifs contributed

to repression of the basal ATPase activity. In contrast, DNA- and chromatin-stimulated ATP turnover

rates were not further perturbed by the double mutation (Figure 8B), consistent with both motifs

cooperating during discrimination of chromatin from DNA.

Discussion
Dozens of ATP-dependent chromatin remodeling factors are at work in any eukaryotic cell. Their

activities impact every process that involves the cell’s genetic material, including transcription, repli-

cation, DNA repair and recombination. Dysfunction and improper regulation of these complexes

may have dire consequences for human health (Kadoch and Crabtree, 2015; Garraway and

Lander, 2013). Perhaps as a consequence, remodelers across many families independently evolved

intricate mechanisms for autoregulation (Clapier and Cairns, 2012; Hauk et al., 2010; Wang et al.,

2014; Clapier et al., 2016; Gottschalk et al., 2009).
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The following figure supplements are available for figure 7:

Figure supplement 1. Coomassie-stained SDS-PAGE of purified recombinant ISWI constructs analyzed in Figure 7.

DOI: 10.7554/eLife.21477.027

Figure supplement 2. Determination of rate constants for remodeling of AcidicN interface mutants.

DOI: 10.7554/eLife.21477.028
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It has been known for many years that the activity of ISWI remodelers is regulated by the H4 tail

(Clapier et al., 2001). Regulation by the H4 tail was later also discovered for remodelers of the

Chd1 (Ferreira et al., 2007) and Alc1 families (Ahel et al., 2009). The molecular mechanism of H4-

tail recognition and regulation has remained elusive, not least because the tail’s binding site had not

been mapped. Using crosslinking-MS, we found the H4 tail to bind to the conserved Lobe 2 of the

ATPase module. Direct binding to the ATPase domain explains regulation of otherwise divergent

remodeler families and explains the influence of the H4 tail on catalytic, as opposed to purely bind-

ing steps (Clapier et al., 2001; Dang et al., 2006). Our data do not rule out additional binding sites

on other domains and on ISWI’s partner subunit ACF1 as proposed earlier (Boyer et al., 2004;

Grüne et al., 2003; Hwang et al., 2014).

ISWI and Chd1 proteins have evolved a complex autoregulatory mechanism. This mechanism

involves an autoinhibitory domain N-terminal to the ATPase. Inhibition by this domain is countered

in an unknown fashion by H4-tail binding. Two limiting scenarios can explain the data (Figure 9).

The first model has been proposed earlier (Clapier and Cairns, 2012) and posits that AutoN acts

as a pseudosubstrate by mimicking part of the basic patch of the H4 tail. In fact, AutoN (amino acids

‘RHRK’, which are present in many but not all ISWI proteins; Figure 1D and Figure 1—figure sup-

plement 1) was initially discovered by way of its resemblance to the amino acids ‘R17H18R19K20’ on

histone H4 (Clapier and Cairns, 2012). In this model, the basic patch of the H4 tail must compete

with AutoN for the same binding site on the ATPase domain, such that AutoN and possibly the

entire NTR is displaced upon tail binding (Clapier and Cairns, 2012; Hauk et al., 2010). This model

is supported by the observations that the NTR can in principle undergo conformational changes

(Mueller-Planitz et al., 2013) and that the chromo domains of Chd1 must rearrange before the

ATPase domain assumes a catalytically active conformation (Hauk et al., 2010). Direct experimental

support for a shared binding site of AutoN and H4 basic patch has been lacking, however, and the
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DOI: 10.7554/eLife.21477.029

The following figure supplement is available for figure 8:

Figure supplement 1. Raw data of the remodeling assays.

DOI: 10.7554/eLife.21477.030
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resemblance of the two motifs may be purely coincidental in principle. Of the four amino acids that

resemble the H4 tail, only three (R17H18R19) were found to be functionally important for ISWI

enzymes (Fazzio et al., 2005; Clapier et al., 2002; Clapier and Cairns, 2012). Recent crystallo-

graphic evidence also did not support the molecular mimicry hypothesis (see below) (Yan et al.,

2016).

We favor a second, simpler model, which does not invoke molecular mimicry (Figure 9). In this

model, the AutoN and the H4-tail binding sites are not identical, possibly allowing simultaneous

binding of both to Lobe 2 at least temporarily. This scenario is fully compatible with our suggestion

that the docking sites for the H4 tail and AutoN-AcidicN are adjacent to each other but not overlap-

ping (Figure 5E). Conceivably, the negatively charged AcidicN motif may even promote binding of

the basic H4 tail to a neighboring site. A structural rearrangement of the NTR upon H4 tail binding is

compatible with but not required in this model. Similarly, conformational changes of the NTR upon

DNA binding (Mueller-Planitz et al., 2013; Hauk et al., 2010) or during other steps of the reaction

cycle are also fully consistent with it.

Intriguing parallels between ISWI’s NTR and Chd1’s chromo domains become apparent. Our

crosslinking results indicate that the NTR of ISWI docks against Lobe 2 of the ATPase domain in a

very similar fashion as the chromo domains of Chd1, and docking appears to involve an acidic motif

in both cases (Hauk et al., 2010). Thus, the overall conformational architecture of ISWI’s ATPase

module may be shared with Chd1. Moreover, both domains are known to inhibit the ATPase, both

are predicted to undergo conformational changes upon substrate binding (Mueller-Planitz et al.,

2013; Clapier and Cairns, 2012) and both confer sensitivity towards the histone H4 tail (Clapier and

ppHSA AcidicN

AutoN

Lobe1

Lobe2

H4 tail

INACTIVE ACTIVE
H4 tailH4 t

Figure 9. Proposed models for autoregulation imposed by the NTR and the recognition process of the H4 tail.

The ppHSA motif, AcidicN and AutoN dock against Lobe 2 of the ATPase domain, promoting an overall structural

architecture of the ATPase module that is reminiscent of Chd1 (Figure 4A). AcidicN and AutoN functionally

collaborate in the H4 tail recogniton process. The docking site of AutoN-AcidicN is adjacent to the H4 tail

potentially allowing simultaneous binding (top). Alternatively, the H4 tail may displace the NTR as suggested

previously (bottom) (Clapier and Cairns, 2012).

DOI: 10.7554/eLife.21477.031
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Cairns, 2012; Hauk et al., 2010). Thus, despite complete lack of sequence conservation between

both domains, they appear to have evolved very similar functionalities.

The NTR of ISWI contains several conserved motifs whose functions have mostly remained unex-

plored so far. Because the ppHSA motif and adjacent regions crosslinked to the ATPase lobe 2, we

suggest that it is important for docking the NTR against the ATPase domain. Consistent with such a

structural role of this motif, we found that ISWIDppHSA is destabilized in vitro and in vivo. Of note, the

ppHSA motif is present in a wide variety of unrelated remodelers, including Ino80, Lsh, and Snf2,

suggesting that their ATPases, too, might bind the ppHSA motif and assemble into a structurally

analogous architecture.

In this study, we functionally characterized AcidicN, a novel motif in the NTR. ISWI with a mutated

AcidicN had a deregulated, hyperactive ATPase activity. Notably, this mutant hydrolyzed ATP with

comparable velocities when bound to either DNA or nucleosomes, indicating that it lost its ability to

discriminate between them. In particular, it lost its H4-tail dependence. This phenotype is reminis-

cent of mutations in the acidic helix in Chd1 (Hauk et al., 2010), underscoring the functional paral-

lels between the NTR and chromo domains discussed above. The effects of AcidicN mutations were

also remarkably similar to AutoN mutations (Clapier and Cairns, 2012), which suggested that they

work together. The mechanism of autoinhibition by the NTR therefore may involve more than simple

mimicry of H4’s basic patch by AutoN (Clapier and Cairns, 2012). Supporting its functional impor-

tance, AcidicN is at least as conserved as AutoN in our alignments.

During the revision of this manuscript, a crystal structure of the ATPase module of ISWI from a

thermophilic fungus became available (Yan et al., 2016). Even though both studies relied on differ-

ent approaches, they arrived at very similar conclusions. As suggested by our crosslinking and

modeling data, the NTR packed against the ATPase domain in the structure of the thermostable

ISWI. We correctly predicted the AcidicN binding pocket on Lobe 2 (Figure 4—figure supplement

3A), and our crosslinks between Lobe 2 and the NTR were fully supported by the structure as well.

Finally, the authors succeeded in co-crystallizing a histone H4-tail peptide with Lobe 2 of the ATPase.

Even though only the basic patch of the tail peptide was visible in the structure, its location over-

lapped well with the position of the modeled H4 basic patch (Figure 5—figure supplement 3C).

AutoN crystallized in closer proximity to the interaction site of the basic patch than suggested by

modeling, but molecular mimicry of AutoN with the basic patch was not supported by the structure.

Sensitive biophysical assays will be instrumental in the future for resolving conformational changes

that may occur during H4-tail recognition and for understanding their functional importance in ISWI

complexes. Moreover, ascertaining the predicted role of H4-tail recognition for the formation or

maintenance of compact heterochromatic regions remains an important goal.

Materials and methods

Amino acid sequence alignments and sequence logos
Search for homologous proteins of full-length Drosophila ISWI and alignment of sequences were

done using HHblits with standard settings. Sequence logos of conserved NTR motifs were derived

with WebLogo three from this alignment (Schneider and Stephens, 1990). Proteins containing the

ppHSA motif were identified by PSI-BLAST against the 120 N-terminal amino acids of ISWI. The

alignment was done using T-Coffee. Sequence alignments were visualized using Jalview 2.9.

Spotting assays
S. cerevisiae Isw1 alleles were cloned into selected destination vectors of a galactose-inducible

hybrid promoter library (generously provided by Dr. Hal Alper, UT Austin, USA) (Blazeck et al.,

2012). The following destination vectors were used, sorted according to increasing promoter

strength: Gal4pBS2-Pleum (denoted ‘+’ in Figure 2B; Figure 2—figure supplement 1), Gal4pBS4-

Pleum (‘++’), UASgal-A9-Pcyc (‘+++’), and UASgal-Pgal (‘++++’). Destination vectors were XbaI and ClaI

digested and gel purified. Isw1 derivatives were PCR-amplified from yeast genomic DNA, gel puri-

fied and ligated into the destination vectors by Gibson assembly. All spotting assays employed

untagged Isw1 variants. All constructs were sequence verified before transformation. As an empty

vector control, the UAS promoter, coding and terminator sequences were removed from the

Gal4pBS2-Pleum plasmid by AscI and MluI digest and subsequent self-ligation.
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YTT227 (TKO), YTT225 (DKO) and W1588-4c (wild-type; Table 3) were transformed with indicated

plasmids via a standard transformation protocol. Single colonies were picked and grown overnight

in Synthetic complete (SC)-Ura + Glucose (2%) media. The culture was then diluted to OD 0.05 in

SC-Ura Galactose media (2%) and grown for 24 hr. Cells were diluted again to OD 0.1 in Galactose

media and grown for another 24 hr before spotting. Cells were diluted to OD 1.0, and tenfold serial

dilutions were spotted on galactose media and incubated at 30˚C, 37˚C or 38.5˚C for 72 hr. At least

two replicates were performed on different days with a single transformant of a sequence-verified

clone.

Western analysis
For Western analysis, Isw1 variants were C-terminally tagged by fusion to a cassette containing a

(GGS)2 linker, a 3C cleavage site, a (GGS)5 linker and a TAP tag. YTT227 that expressed TAP-tagged

Isw1 variants was induced with galactose as above, diluted to OD 0.1 and grown to OD 1.0 in 10 ml

SC-Ura + Galactose media. YFMP047 (Table 3), containing a genomically TAP-tagged Isw1 allele,

was grown as a control in YPAD media. Cells were harvested, washed twice with cold water and dis-

solved in 200 ml Extraction buffer (40 mM Hepes-KOH pH 7.5, 10% Glycerol, 350 mM NaCl, 0.1%

Tween-20, 1 mg/ml Pepstatin, 2 mg/ml Leupeptin, 2 mg/ml Aprotinin, 1 mM PMSF. Glass beads (200

ml) were added, and the suspension was vortexed for 10 min with a 30 s on/off cycle on ice. After

centrifugation (13,000 rpm, 20 min 4˚C), supernatants were harvested, aliquoted (50 ml), flash frozen,

and stored at �80˚C for subsequent use. Supernatants were thawed on ice and 50 mg of each

extract was loaded on a 10% SDS gel. Anti-TAP antibody (CAB1001, ThermoFisher; 1:5000 dilution)

was used to detect TAP-tagged ISW1 mutants and anti-H3 antibody (ab1791, Abcam; 1:20,000 dilu-

tion) was used as a loading control. Membranes were scanned using the LI-COR Odyssey IR imaging

system (ODY-0853) and bands were quantified using Image Studio Lite v5.2.5. Expression levels

were normalized to the signal of genomically integrated TAP-tagged Isw1. Two technical replicates

were performed.

Construct design and cloning of Drosophila ISWI variants
A pPROEX-HTb–based expression plasmid with the gene encoding Drosophila ISWIWT (kindly pro-

vided by C. Müller; EMBL, Heidelberg, Germany) served as the template for all ISWI variants. An

overview over cloned ISWI variants is presented in Figure 3—figure supplement 1A and Figure 6—

figure supplement 1A. All ISWI genes were fused N-terminally to a His6-tag. To generate

ISWIDppHSA and ISWIDppHSA; DAT-hook, a 3C cleavage site was introduced at the desired site by Quik-

Change mutagenesis or polymerase incomplete primer extension. The trigger factor gene was

amplified from pTf16 (Takara Bio Inc.) and fused to the ISWIWT gene by Gibson assembly. ISWI+6
was subcloned into the pET-Z2 plasmid (kindly provided by Dr. Arie Geerlof, Helmholtz Zentrum,

Munich, Germany).

Protein expression and purification of ISWI variants
Expression and purification of His6-tagged ISWIWT and its derivatives was performed essentially as

described (Forné et al., 2012) with the following variations. Tags or parts of the NTR were cleaved

off by specific proteases (TEV and 3C, respectively) as indicated (Figure 3—figure supplement 1A;

Figure 6—figure supplement 1A). ISWIH483B was expressed and purified as described (Forné et al.,

2012). During its purification, the UV light of the FPLC remained switched off to protect the Bpa res-

idue. All ISWI variants were purified once except ISWI+3 and Z2-ISWI+6, which were purified twice.

Table 3. Yeast strains used in this study.

Strain Genotype Reference

W1588-4C MATa ade2-1 his3-11,15 leu2-3,112 trp1-1 ura3-1 can1-100 but RAD5 Tsukiyama et al. (1999)

YTT227 MATa ade2-1 his3-11,15 leu2-3,112 trp1-1 ura3-1 can1-100 but RAD5 isw1::ADE2 isw2::LEU2 chd1::TRP1 Tsukiyama et al. (1999)

YTT225 MATa ade2-1 his3-11,15 leu2-3,112 trp1-1 ura3-1 can1-100 but RAD5 isw2::LEU2 chd1::TRP1 Tsukiyama et al. (1999)

YFMP047 MATa his3D1 leu2D0 met15D0 ura3D0 ISW1-TAP::HIS3MX6 Open Biosystems

DOI: 10.7554/eLife.21477.032
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The independent preparations were indistinguishable in ATPase assays (ISWI+3 and Z2-ISWI+6).

Whereas ISWI+3 preparations were not directly compared, independent Z2-ISWI+6 preparations also

yielded same results in remodeling assays.

Expression and purification of SNF2H
A pBH4-based expression plasmid encoding full-length human SNF2H (kindly provided by G. Narli-

kar; UCSF, San Francisco) was transformed into Rosetta competent E. coli cells. Protein expression

was performed in 2x YT medium (20 g/l tryptone, 10 g/l yeast extract, 10 g/l NaCl) supplemented

with 34 mg/l chloramphenicol and 100 mg/l ampicillin. Expression of SNF2H was induced by addi-

tion of 0.4 mM IPTG at 18˚C for approximately 18 hr. Bacteria cells were resuspended in 20 ml lysis

buffer per 1 l culture (25 mM HEPES pH 8.0, 300 mM KCl, 7.5 mM imidazole, 10% glycerol, 1 mM

DTT) supplemented with protease inhibitors (1 mM PMSF, 1 mg/l Aprotinin, 1 mg/l Leupeptin, 0.7

mg/l Pepstatin) per 1 l culture, and lysed by French Press (Thermo Spectronic) and ultrasonication

(Branson). Per 1 l lysed bacteria culture, 1000 U Benzonase (Merck Millipore) were added. The lysate

was clarified by centrifugation (30 min, SS34 rotor). The N-terminal His6-tagged SNF2H was purified

by nickel affinity chromatography (HisTrap HP, 5 ml; GE Healthcare). An elution gradient was applied

with 25 mM HEPES pH 7.0, 300 mM KCl and 400 mM Imidazole and enzyme-containing fractions

were pooled. Contaminating DNA was removed by passing the sample over an anion exchange col-

umn (Mono Q 5/50 GL ion exchange column; GE Healthcare) that was pre-equilibrated in SEC buffer

(25 mM HEPES pH 7.5, 300 mM KCl, 1 mM DTT). The flow-through of the column was collected. The

protein sample was concentrated to 0.5–1 ml per 1 l of original E. coli culture in centrifugal filters

(Amicon Ultra-4, 30 kDa MWCO; Millipore). TEV protease (prepared in-house) was added to a final

concentration of 0.075–0.15 mg/ml and the concentrated protein sample was dialyzed against 1 l

SEC buffer overnight in dialysis tubing (6000–8000 Da MWCO; Sectra/Por). The protein sample was

loaded onto a size exclusion chromatography column (Superdex 200 HiLoad 16/60, 120 ml; GE

Healthcare) pre-equilibrated in SEC buffer. Elution fractions were pooled according to purity and, as

necessary, concentrated and dialyzed into storage buffer (25 mM HEPES pH 7.5, 210 mM KCl, 15%

glycerol, 1 mM DTT) for at least 16 hr.

Nucleosome reconstitution
Drosophila histones were purified as described (Klinker et al., 2014; Luger et al., 1999). The 187

bp long Widom-601 derivative used for end-positioned mononucleosomes (0N40) was excised from

pFMP151 with SmaI (NEB) and PAGE purified. DNA for 25-mer nucleosomal arrays used in remodel-

ing assays was excised from pFMP233 with EcoRI HF, HincII and AseI (NEB) and purified by phenol/

chloroform extraction and ethanol precipitation. Polynucleosomes used in ATP-hydrolysis assays

were assembled on linearized plasmid DNA (pT7 blue derivative). Histone octamers, mononucleo-

somes and polynucleosomes, including 25-mer nucleosomal arrays, were prepared by salt-gradient

dialysis as described (Mueller-Planitz et al., 2013; Luger et al., 1999). Mononucleosomes were fur-

ther purified by glycerol gradient ultracentrigation. Nucleosomal arrays were purified further by

Mg2+ precipitation (3.5 mM for WT-H4 arrays, 8.5 mM for H4-tail deleted arrays) (Mueller-

Planitz et al., 2013). The concentration of nucleosomal DNA was determined by measuring its UV

absorption at 260 nm. For nucleosomal arrays, concentrations refer to the concentration of individual

nucleosomes.

Enzyme assays
Remodeling and ATPase assays were performed in 25 mM HEPES-KOH, pH 7.6, 50 mM NaCl, 1 mM

MgCl2, 0.1 mM EDTA, 10% glycerol, 0.2 g/l BSA and 1 mM DTT at 26˚C in the presence of a ATP

regenerating system as described (Mueller-Planitz et al., 2013).

ATP hydrolysis was monitored by an NADH-coupled ATP hydrolysis assay (Mueller-Planitz et al.,

2013; Forné et al., 2012). Saturating concentrations of ATP-Mg2+ (1 mM) and of nucleic acids

ligands were used (0.2 mg/ml of linearized pT7blue and 0.1 mg/ml of chromatin assembled on the

same DNA, respectively). Saturation of DNA and chromatin was controlled by varying the concentra-

tion of the ligands at least 16-fold (Figure 3—figure supplement 2; Figure 6—figure supplement

3). Occasional occurrence of air bubbles in ATPase experiments precluded accurate measurements;

affected samples were excluded from the analysis. In no other assays were outliers excluded.
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Remodeling activity was probed by a restriction enzyme accessibility assay (Mueller-Planitz et al.,

2013). A 25-mer nucleosomal array with a 197 bp nucleosomal repeat length was used. The 19th

nucleosome of this array occluded a unique KpnI site at position �32 relative to its dyad (Mueller-

Planitz et al., 2013). Arrays (100 nM) were incubated with ISWI derivatives at the indicated concen-

trations, ATP-Mg2+ (1 mM) and KpnI (2 U/ml). Reactions were quenched with SDS (0.4%) and EDTA

(20 mM) before the samples were deproteinized, ethanol precipitated and resolved by agarose gel

electrophoresis (Mueller-Planitz et al., 2013). kobs for remodeling was obtained by fitting time

courses to a single exponential function. When the enzyme concentration was varied �threefold,

typically between 100 nM and 300 nM, similar values for kobs were obtained with a few exceptions,

suggesting that arrays were generally saturated (Figure 3—figure supplement 3; Figure 4—figure

supplement 1; Figure 7—figure supplement 2; Figure 8—figure supplement 1A–D and data not

shown). The exceptions comprised ISWIDppHSA; DAT-hook, ISWI+3 and ISWIH483B on WT-arrays and

ISWI+3, ISWIR508D and ISWIR486; 488D on tail-less H4 arrays.

UV crosslinking
To site-specifically attach a UV-reactive benzophenone residue to full-length histone H4, single cys-

teines were introduced into the histone H4 tail by site directed mutagenesis at the indicated posi-

tions. 4-(N-Maleimido)benzophenone (Sigma) was dissolved to 100 mM in N,N-Dimethylformamide

(DMF) and added to a final concentration of 3 mM to denatured single cysteine variants of H4 (1

mg/ml) in 20 mM Tris/HCl pH 7.1, 7 M Guanidine-HCl, 5 mM EDTA, 2 mM TCEP for 2 hr at room

temperature. After a 3 hr incubation in the dark, the labeling reaction was stopped by adding 20

mM DTT for 20 min.

UV-Crosslinking was performed in uncoated 384-well plates or 96-well plates (Greiner) on ice

using the 365 nm irradiation of a BioLink UV-Crosslinker (Peqlab) for the indicated durations. Cross-

linking between benzophenone-labeled nucleosomes (0N40; 1 mM) and stoichiometric amounts of

ISWI or SNF2H was performed in 20 mM Tris/HCl, pH 7.7, 100 mM KCl, 0.1 mM EDTA, 3 mM DTT.

Crosslinking between ISWI26-648 (0.1 mg/ml) and a histone H4 peptide comprising the 24 N-terminal

amino acids of H4 carrying a Bpa substitution at position 1 or 10 was carried out in the presence of

13 mM 59 bp DNA duplex in 25 mM HEPES-KOH, pH 7.6, 50 mM NaCl, 1 mM MgCl2, 0.1 mM

EDTA, 10% glycerol and 1 mM DTT for 3 hr as above. Samples were subsequently digested with

benzonase before further processing. Crosslinking between Bpa variants of ISWI (H483B) was carried

out as described (Forné et al., 2012).

UV-irradiated samples and unirradiated control samples were separated by SDS-PAGE and Coo-

massie stained. Protein bands were excised and trypsin digested for subsequent mass spectrometry

as described (Forné et al., 2012; Wilm et al., 1996).

Mapping of crosslinks by LC-MS/MS
For LC-MS/MS, 5 ml were injected in either an Ultimate 3000 system (Thermo) and desalted on-line

in a C18 micro column (75 mm i.d. x 15 cm, packed with C18 PepMap, 3 mm, 100 Å by LC Packings)

or desalted offline using C18 Stagetip and injected in an Ultimate 3000 RSLCnano system (Thermo).

Desalted sample was then separated in a 15 cm analytical C18 micro column (75 mm i.d. packed with

C18 PepMap, 3 mm, 100 Å by LC Packings or homepacked 75 mm ID with ReproSil-Pur C18-AQ 2.4

mm from Dr. Maisch) with a 40 to 60 min gradient from 5% to 60% acetonitrile in 0.1% formic acid.

The effluent from the HPLC was directly electrosprayed into an LTQ-Orbitrap XL as described before

(Forné et al., 2012) or a Q Exactive HF MS (Thermo). The Q Exactive HF MS was operated in a

data-dependent mode. Survey full scan MS spectra (from m/z 375–1600) were acquired with resolu-

tion R = 60,000 at m/z 400 (AGC target of 3 � 106). The ten most intense peptide ions with charge

states between 3 and 5 were sequentially isolated to a target value of 1 � 105, and fragmented at

27% normalized collision energy. Typical mass spectrometric conditions were: spray voltage, 1.5 kV;

no sheath and auxiliary gas flow; heated capillary temperature, 250˚C; ion selection threshold,

33.000 counts.

Each Thermo binary raw file was converted to a dta file using Decon2LS (Zimmer et al., 2006) or

to an mgf file using Proteome Discoverer 1.4 (Thermo) and -as needed- recalibrated with the Post-

Search Recalibrator Node. Crosslinks were mapped by Crossfinder (Forné et al., 2012; Mueller-
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Planitz, 2015). Typical error windows were ±10 ppm for MS1 searches and ±15 ppm for MS2

searches. All amino acid residues were regarded as potential sites of crosslinking.

Crosslink candidates were independently validated by the authors J.L., S.P., N.H. and F.M.-P. and

rated as high, medium and low confidence. The validation comprised a general assessment of the

spectrum quality, removal of wrong product ion assignments, and evaluation of the actual evidence

for the presence of the two peptides within the crosslink. The mass spectrometry data have been

deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset

identifier PXD005831.

In silico docking studies
Interactions between NTR motifs and the histone H4 tail with Lobe 2 were modeled using the fully

blind peptide-protein docking protocol pepATTRACT (Schindler et al., 2015a) in the ATTRACT

docking engine (de Vries et al., 2015) (www.attract.ph.tum.de/peptide.html). The termini of the

motifs (‘peptides’) were left uncharged, other parameters were set to the default values as described

(Schindler et al., 2015a). Briefly, for each motif three idealized peptide conformations (extended, a-

helical and poly-proline) were generated from sequence and this peptide ensemble was docked rig-

idly against the protein domain using the ATTRACT coarse-grained force field (Zacharias, 2003).

The top-ranked 1000 structures were subjected to two stages of atomistic refinement using the flexi-

ble interface refinement method iATTRACT (Schindler et al., 2015b) and a short molecular dynam-

ics simulation in implicit solvent with the AMBER program (Case et al., 2014). The pepATTRACT

protocol requires neither knowledge about the peptide binding site nor of the bound peptide con-

formation and is therefore suitable for predicting complexes between proteins and motifs from

intrinsically unstructured regions.

The structure of ISWI ATPase Lobe 2 (residues 352–637) was modeled by homology from the

structure of Chd1 (PDB 3MWY) using MODELLER (Webb and Sali, 2016). We performed three

docking runs modeling the potential binding site for the AutoN motif (residues 89–97;

DHRHRKTEQ), the AcidicN motif (residues 96–104; EQEEDEELL) and the full module AutoN+Acid-

dicN (residues 89–104; DHRHRKTEQEEDEELL) separately. During the first two runs, we modeled the

peptide ensemble from the sequence as described above. For the third run, we used PEP-FOLD2

(Shen et al., 2014), PEP-FOLD3 (Lamiable et al., 2016) and I-TASSER (Yang et al., 2015) servers to

predict the structure of the module. We used the resulting 13 conformations for ensemble docking

to Lobe 2. To test the specificity of the docking solutions, we also modeled Lobe 2 binding to scram-

bled sequences of AutoN (HRQHKDERT), AcidicN (LEDELQEEE) and AutoN-AcidicN (HLREQLDTHE

REDEKE). Docking of AutoN-AcidicN against the homology model comprising both ATPase lobes

was done as described above.

During docking of the histone H4 tail (residues 1–20) to Lobe 2, we used the five high confidence

crosslinks (Table 3), which – due to redundancy – provided three unique amino acid linkages. These

linkages were used as upper harmonic distance restraints with a maximum distance of 20 Å to guide

the modeling (pepATTRACT-local protocol) (Schindler et al., 2015a). After molecular dynamics

refinement (see above), which did not apply crosslinking restraints for technical reasons, models

were filtered for those that still satisfied the distance restraints provided by the crosslinks, yielding

383 models. All figures were created using PyMOL (www.pymol.org).
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Figure 1. The NTR of ISWI contains several conserved sequence motifs. (A) Schematic representation of the ISWI domain composition. The grey inset

shows the sequence and motifs of the NTR. Arrows indicate amino acids within the NTR of Drosophila ISWI that crosslinked to Lobe 2 of the ATPase

domain (Table 1). HSS, HAND-SANT-SLIDE domain. (B–E) Sequence logos showing the sequence conservation of (B) ppHSA, (C) AT-hook, (D) AutoN,

and (E) AcidicN. X-Axis values are amino acid positions in D. melanogaster ISWI. See Figure 1—figure supplement 1 for full alignment. (F) Alignment

of the ppHSA motif of Drosophila (Dm) ISWI with the human (Hs) ISWI homologs SNF2H and SNF2L and representatives of unrelated remodeler

families.
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Figure 1—figure supplement 1. Alignment of ISWI homologs from various organisms. Search for homologous proteins and alignment was done using

HHblits (toolkit.tuebingen.mpg.de/hhblits). 26 Sequences lacking an NTR were manually deleted from the alignment.
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Figure 2. Functional importance of the NTR of yeast Isw1 in vivo. (A) Successive N-terminal truncation mutants of

Isw1. Note that Isw1DNTR lacked the entire N-terminus up to the first seven residues of AcidicN (Figure 1E). (B)

Complementation assay with Isw1DppHSA. A yeast strain lacking ISW1, ISW2 and CHD1 (TKO) was transformed with

Isw1 derivatives under control of promoters of varying strengths. In comparison to a strain lacking only ISW2 and

CHD1 (DKO), Isw1WT fully complemented the growth phenotype at elevated temperatures (37˚C). In contrast,

Isw1DppHSA did not complement at any expression level. Results for other Isw1 variants can be found in Figure 2—

figure supplement 1. Growth was assessed by spotting tenfold serial dilutions of liquid cultures.
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Figure 2—figure supplement 1. Complementation assay with N-terminal truncation variants of Isw1. (A–D) Growth assays as in Figure 2B. Expression

levels were estimated by Western analysis (see panel E). Results in D (30˚C and 37˚C) are replotted from Figure 2. (E) Exemplary Western blot to

determine relative expression levels (tabulated in A–D) using an Anti-TAP antibody. TAP-tagged Isw1 variants under control of the indicated promoter

were expressed. Their expression level was normalized against genomically TAP-tagged wild-type Isw1. Errors are minimal and maximal values of two

technical replicates. H3 served as a loading control.
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Figure 3. The ppHSA motif is largely dispensable for catalysis. (A) N-terminal truncation mutants of Drosophila

ISWI. (B) DNA- and nucleosome-stimulated ATP turnover. ATPase rates were measured in the presence of

saturating concentrations of ATP (1 mM), DNA (0.2 g/l) or nucleosomes (0.1 g/l). Errors for nucleosome-stimulated

rates of ISWI deletion mutants are minimal and maximal values of two independent measurements, and s.d. for all

other measurements (n � 4). ATPase rates in absence of nucleic acids were <0.022 s�1 for all ISWI variants (data

not shown). (C) Remodeling activity was determined by measuring the accessibility changes of a unique KpnI

restriction site in a 25-mer nucleosomal array (100 nM nucleosomes, 300 nM enzyme). Errors are s.d. (n � 3) except

for ISWIDppHSA; DAT-hook for which minimal and maximal values of two independent measurements are shown. Raw

data of the remodeling assay can be found in Figure 3—figure supplement 3. Color code as in panel B.
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orange arrowheads indicate a 3C protease cleavage site that were used to cleave off the tag. (B) Coomassie stained SDS-PAGE of purified recombinant

ISWI variants.
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Figure 3—figure supplement 2. Saturation controls for ISWIWT and ISWIDppHSA in ATPase assays. (A,B) Linearized

pT7blue DNA was titrated over a 16-fold range. 0.2 mg/ml were saturating for ISWIWT. (A) and ISWIDppHSA (B). (C,

D) Titration of chromatin assembled on linearized pT7blue DNA. 0.1 mg/ml were close to saturation for ISWIWT (C)

and ISWIDppHSA (D). Errors are s.d. (n � 7).
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Figure 3—figure supplement 3. Determination of the rate constants for remodeling (kobs; Figure 3C) for ISWIWT and N-terminal truncation mutants of

ISWI. (A) Exemplary remodeling time courses for ISWIWT, ISWIDppHSA and ISWIDppHSA; DAT-hook. Asterisks mark a contaminating non-nucleosomal DNA

(competitor DNA) that was not completely removed during preparation of nucleosomal arrays. Mock: Sample lacking ISWI. (B) Quantification of time

courses shown in (A). Data were fit to a single exponential function to extract the rate constant kobs. The reactions progressed similarly fast when 100

nM and 300 nM enzyme were employed, suggesting saturation of chromatin. Because ISWIDppHSA; DAT-hook at 50 nM was substoichiometric to

nucleosomes (100 nM), it remodeled noticeably more slowly than at 300 nM.
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Figure 4. The NTR contacts Lobe 2 of the ATPase domain. (A) Surface representation of the Chd1 crystal structure (PDB code 3MWY) (Hauk et al.,

2010). ATPase Lobe 1 and 2 are colored dark and light grey, respectively, and the N-terminal chromo domains cyan. (B) Homology model of the ISWI

ATPase domain (Forné et al., 2012). Cyan: hypothetical binding interface of the ISWI NTR (see main text), red: position of Bpa substitution (H483). (C–

E) Mass spectrometric validation of the crosslink XL1 (Table 1) formed between Bpa at position 483 and an NTR peptide. (C) Isotopic distribution of the

crosslinked peptide. (D) UV-dependent increase of the signal for the crosslinked peptide. Extracted ion chromatograms of the ions were used for the

quantification. (E) High resolution, high accuracy MS2 fragmentation spectrum. Top right: summary of observed product ions mapped onto the

sequence of the crosslinked peptide. B: Bpa. (F) Predicted docking interface of AcidicN (blue and dark blue), AutoN (cyan and dark blue) and

overlapping regions (dark blue) in the structural model of ISWI. The predicted interface for AcidicN overlaps with the interface for the acidic helix of the

N-terminal chromo domains of Chd1 (orange) (Hauk et al., 2010).
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Figure 4—figure supplement 1. The effect of the

H483B mutation on chromatin remodeling. With 0.3 mM

enzyme, the observed rate constant for remodeling

(kobs) was ~threefold affected by the mutation. Note,

however, that ISWIH483B, in contrast to ISWIWT, was not

fully saturating at this concentration, as suggested by

the saturation control (0.1 mM enzyme). Error bars are s.

d. (n � 3) for ISWIWT and minimal and maximal values

of two independent measurements for ISWIH483B. Data

marked with an asterisk (*) was replotted from

Figure 3C.
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Crosslink XL6 to P71K72. For description of data, see Figure 4.
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Figure 4—figure supplement 3. Structural predictions of NTR elements. (A) Predicted docking interface of AcidicN. The cyan to blue color scale

denotes low to high contact probabilities. The location of AcidicN in the MtISWI crystal structure (PDB 5JXR), which became available during the

revision of this study, is shown in red. (B) Predicted docking interface (blue) of the AutoN-AcidicN peptide in the structural model of ISWI. During

docking, both Lobe 1 and Lobe 2 were present (cf. the docking interface shown in Figure 4F). The acidic helix of the N-terminal chromo domains of

Chd1 is shown in orange for reference. (C) Structure prediction of a peptide comprising AutoN and AcidicN (DHRHRKTEQEEDEELL) by PEP-FOLD and

I-TASSER. (D) Helical Propensity of amino acids 23–112 of ISWI predicted by four different algorithms (see legend).
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Figure 5. The binding sites of the NTR and the H4-tail on Lobe 2 are proximal. (A–D) Crosslinking of nucleosomes containing benzophenone-labeled

H4 to ISWI. (A) Crosslinking time course analyzed by SDS-PAGE and Coomassie staining. The asterisk marks a UV-irradiation dependent band of lower

mobility containing the crosslink mapped in B–D. (B–D) Mapping and validation of a crosslink (XL11; Table 2) formed in the upshifted band in A.

Isotopic distribution of the crosslinked peptide, MS2 spectrum and quantification as in Figure 4. (E) Crosslink-guided in silico docking of an H4 peptide

(amino acids 1–20) to ISWI. The predicted docking interface of the H4 tail on Lobe 2 is illustrated in a yellow and red color scale, which indicates low to

high contact probabilities between the docked H4 tail and Lobe 2. The contact probabilities were calculated from a family of 383 docked structures

(see Materials and methods). For comparison, the predicted docking interface of the NTR is shown in shades of blue (see Figure 4F).
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Figure 5—figure supplement 1. Additional crosslinks between the H4 tail and ISWI or SNF2H. (A–D) SDS-PAGE

analysis and MS mapping of crosslinks formed between a synthetic H4 tail peptide containing Bpa at amino acid
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Figure 5—figure supplement 1 continued

one to the following amino acids in ISWI26-648: H482 (A; XL13a in Table 2); M578 (B; XL15); R568 (C; XL16). (E–F)

MS mapping and SDS-PAGE analysis of crosslinks formed between a synthetic H4 tail peptide containing Bpa at

amino acid 10 to R568 of ISWI26-648 (XL17). Asterisks next to SDS gels mark upshifted bands indicative of successful

crosslinking. (G,H) SDS-PAGE analysis and MS mapping of crosslinks formed by benzophenone-labeled T1C

nucleosomes to C519M520W521R522 of SNF2H (XL14). (I,J) SDS-PAGE analysis and MS mapping of crosslinks formed

by benzophenone-labeled L10C nucleosomes to position 520 of SNF2H (XL12). B: Bpa, X: Benzophenone-labeled

cysteine, 0N40: Mononucleosomes with 40 bp of DNA flanking one side of the nucleosome.
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Figure 5—figure supplement 2. Controls for possible adversary effects of covalent modifications of the H4 tail.

(A) H4 tail peptides (amino acid 1–24) carrying a T1B substitution stimulated the ATPase of ISWIWT (0.5 mM) activity

similarly well as WT tail peptides in the presence of 1.2 g/l salmon sperm DNA. In contrast, a scrambled sequence

with a Bpa moiety at position one did not noticeably stimulate the ATPase. The ATP concentration was 1 mM.

Scrambled and WT peptide data were replotted from ref. 15. (B) T1C and L10C mononucleosomes labeled with 4-

(N-Maleimido)benzophenone (4MBP) stimulated the ATPase activity of ISWIWT similarly well as WT nucleosomes. A

reaction without nucleosomes (�) served as a control. (C) WT and 4MBP-labeled T1C and L10C mononucleosomes

(200 nM) bound ISWIWT (0 to 400 nM) similarly well in an electrophoretic mobility shift assay. Samples were

resolved on a 5% native polyacrylamide gel.
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Figure 5—figure supplement 3. Surfaces on Lobe 2 that were sampled by selected amino acids in the H4 tail during crosslink-guided structural

docking. (A) Interaction surface of histone H4 T1 on Lobe 2 of ISWI. Crosslinked amino acids (Table 2) are shown as spheres. Blue, high confidence

crosslink positions used for modeling; black and grey, lower confidence crosslink positions. Precise attachment sites are not available for XL14 (grey). (B)

Interaction surface of H4 L10. Coloring of spheres as in (A). (C) Predicted interaction surface of H4 K16. H4 K16 from the crystal structure of MtISWI

Lobe 2 in complex with an H4 peptide (PDB 5JXT) is shown as stick representation for reference. The color scales indicate contact probabilities

between individual amino acids in the H4 tail and Lobe 2 across a family of 383 structural models.
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Figure 6. AcidicN is a strong negative regulator of the ATPase. (A) Design of AcidicN derivatives of ISWI (see also Figure 6—figure supplement 1A).

(B) Effects of AcidicN mutation on ATP hydrolysis in absence or presence of saturating concentrations of DNA and chromatin. In absence of DNA,

ATPase activities of ISWIWT (#) and ISWI+3 (§) were �0.06 s�1. Errors are s.d. (n � 4). (C) Effects of AcidicN mutation on the remodeling activities.

Nucleosomal arrays containing wild-type H4 were used. Errors are s.d. (n � 3) except for ISWI+3 for which minimal and maximal values of two

independent measurements are shown. Color code as in panel (B). Raw data of the remodeling assay can be found in Figure 8—figure supplement 1.

Results for ISWIWT (*) are replotted for comparison from Figure 3B,C.
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Figure 6—figure supplement 1. AcidicN and AutoN mutants. (A) Construct design. Only the NTR region of ISWI including affinity and solubility tags

are shown (not to scale). Blue arrowheads indicate a TEV cleavage site. Tags were removed by protease cleavage as indicated. (B) Coomassie-stained

SDS-PAGE of purified recombinant proteins.
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Figure 6—figure supplement 2. Comparison of ATPase and remodeling activities of ISWI control variants used in

this study. (A) The Z2 solubility tag did not interfere with DNA- and chromatin-stimulated ATPase activities.

Saturating amounts of nucleic acid ligands (0.2 mg/ml of linearized pT7blue and 0.1 mg/ml of chromatin

assembled on the same DNA, respectively) and ATP (1 mM) were used. The unstimulated basal activity was �0.05

s�1. Errors are s.d. (n � 3). (B) The Z2 solubility tag did not interfere with remodeling rates on wild-type H4

containing chromatin and tail-less H4 chromatin. Z2-tagged ISWI+6; E257Q, which contained a point mutation in the

ATPase domain rendering it catalytically inactive, was included as a control. Its activity on tail-less H4 arrays was

undetectable (§). Errors are s.d. (n � 3) except for the ATPase-dead construct (ISWI+6; E257Q), which was tested

once. (C) DNA- and chromatin-stimulated ATP hydrolysis rates of the ATPase dead double mutant ISWI+6; E257Q
were negligible (�0.04 s�1). Errors are s.d. (n � 3) for ISWIWT and minimal and maximal values of two independent

measurements for ISWI+6; E257Q. The asterisks (*) mark data that were replotted for comparison from Figure 3B,C.
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Figure 6—figure supplement 3. Saturation controls for ISWI+6 in ATPase assays. (A) Linearized pT7blue DNA was titrated over a 16-fold range. 0.2

mg/ml were saturating. (B) Titration of chromatin assembled on linearized pT7blue DNA. 0.1 mg/ml were close to saturation.
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Figure 6—figure supplement 4. AcidicN mutations upregulate the ATPase activity of ISWIH483B. Relative to

ISWIWT, ISWIH483B had a ~fourfold diminished DNA- and chromatin-stimulated ATPase activity. Additional

mutation of AcidicN (+3; +6) strongly activated both DNA- and chromatin-stimulated ATP turnover. Errors are s.d.

for ISWIWT and minimal and maximal values of two independent measurements for all other constructs. Data for

ISWIWT (*) were replotted for comparison from Figure 3B.
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Figure 7. Validation of the predicted binding interface of AcidicN on Lobe 2. (A) Homology model of the ISWI ATPase domain. Dark and light grey,

ATPase lobes 1 and 2, respectively; blue, hypothetical binding interface of AcidicN as in Figure 4—figure supplement 3A. Positively charged residues

selected for mutagenesis are shown in red (AcidicN interface mutant) and orange (control mutant). (B) Mutation of the AcidicN interface (K403D, R458D

and R508D) strongly upregulated DNA-stimulated ATP hydrolysis relative to ISWIWT, whereas the nucleosome-stimulated ATP turnover was similar. In

contrast, a control mutation (R486; 488D) had little effect on ATP hydrolysis. Saturating concentrations of DNA and chromatin were used. Errors are s.d.

for ISWIWT and minimal and maximal values of two independent measurements for all other constructs. (C) AcidicN interface variants of ISWI robustly

remodeled nucleosomes within twofold of ISWIWT. Nucleosomal arrays containing wild-type H4 were used. Errors are s.d. (n � 3) for ISWIWT and

minimal and maximal values of two independent measurements for all other constructs. Raw data of the remodeling assay can be found in Figure 7—

figure supplement 2. Color code as in (B). Results for ISWIWT (*) were replotted for comparison from Figure 3B,C.
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Figure 7—figure supplement 1. Coomassie-stained

SDS-PAGE of purified recombinant ISWI constructs

analyzed in Figure 7.
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Figure 7—figure supplement 2. Determination of rate constants for remodeling of AcidicN interface mutants. (A) Exemplary remodeling time courses

on WT H4-arrays for interface mutants. Asterisks mark a contaminating non-nucleosomal DNA (competitor DNA) that was not completely removed

during preparation of nucleosomal arrays. Mock: Sample lacking ISWI. (B) Quantification of time courses shown in (A). Data were fit to a single

exponential function to extract kobs (see Figure 7C).
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Figure 8. Mutation of AcidicN, the AcidicN binding interface or AutoN suppresses dependence on the H4-tail. (A)

H4-tail dependence of the remodeling activities of ISWI variants. Values were calculated from the observed

remodeling rate constants obtained for WT and tail-less H4 chromatin (Figure 8—figure supplement 1E). (B) ATP

hydrolysis measurements of ISWT+6, ISWI2RA and ISWI+6; 2RA in absence or presence of saturating concentrations

of DNA and chromatin.
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Figure 8—figure supplement 1. Raw data of the remodeling assays. (A–D) Determination of rate constants (kobs)

from remodeling assays for ISWI+6, ISWI2RA and ISWI+6; 2RA. Shown are exemplary time courses on nucleosomal
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Figure 8—figure supplement 1 continued

arrays containing wild-type (A,C) and tail-less H4 (B,D). Data were fit to a single exponential function to extract the

rate constant kobs. (E) Rate constants for remodeling of ISWI variants used in this study (all 300 nM). Errors are s.d.

(n � 3) for ISWIWT, ISWIDppHSA, and ISWI+6 and minimal and maximal values of two independent measurements for

all other variants. Samples, in which the enzyme concentration was not saturating, are indicated (§). Data marked

with asterisks (*) were replotted from previous figures for better overview.
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Figure 9. Proposed models for autoregulation imposed by the NTR and the recognition process of the H4 tail.

The ppHSA motif, AcidicN and AutoN dock against Lobe 2 of the ATPase domain, promoting an overall structural

architecture of the ATPase module that is reminiscent of Chd1 (Figure 4A). AcidicN and AutoN functionally

collaborate in the H4 tail recogniton process. The docking site of AutoN-AcidicN is adjacent to the H4 tail

potentially allowing simultaneous binding (top). Alternatively, the H4 tail may displace the NTR as suggested

previously (bottom) (Clapier and Cairns, 2012).
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