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1. Zusammenfassung 
Ziel des vorliegenden Habilitationsprojekts war es, zu untersuchen, welche 

Strukturen sich in bestimmten Tumorentitäten als Angriffspunkte für eine Therapie 

und/oder als Biomarker eignen, ob sie funktionelle Relevanz für Tumorigenese und 

Metastasierung haben und über welche Mechanismen sie ihre Effekte ausüben. 

Im Rahmen dieses Themenkomplexes wurde bei Mamma-, Ovarial- und 

Prostatakarzinomen erstmals gezeigt, dass das Zytoskelettprotein LASP1 in diesen 

Tumorentitäten stark überexprimiert ist und über die Regulation des Proteins Zyxin 

die Proliferation und Migration der Tumorzellen fördert (Frietsch et al., 2010; 

Grünewald et al., 2006, 2007a; Hailer et al., 2014), was mit einer signifikant 

schlechteren Prognose korrelierte (Frietsch et al., 2010; Grünewald et al., 2007b; 

Hailer et al., 2014). Ähnliche Beobachtungen wurden mit meinem Beitrag im 

Medulloblastomen gemacht (Traenka et al., 2010). Darüber hinaus lieferten meine 

Arbeiten den ersten Beleg dafür, dass LASP1 auch im Zellkern lokalisiert ist (Frietsch 

et al., 2010; Grünewald et al., 2007b) und damit wie LPP (Grünewald et al., 2009) 

und TRIP6 (Willier et al., 2011) zur Gruppe der nukleo-zytoplasmatischen Shuttle-

Proteine gehört (Frietsch et al., 2010; Grünewald and Butt, 2008; Grünewald et al., 

2007b; Orth et al., 2015; Vaman et al., 2015). In einer Folgearbeit verhalf ich zur 

Identifikation eines epigenetischen Mechanismus, der zur Überexpression von ZEB1 

und damit zur verstärkten Metastasierung von Mammakarzinomen führt (Sahay et al., 

2015). In weiteren Arbeiten trug ich zur metabolischen Charakterisierung von 

Mammakarzinomen bei, wodurch u. a. belegt wurde, dass deren Metastasen 

spezifische Veränderungen im Stoffwechsel aufweisen, die einer zielgerichteten 

Therapie zugänglich sind (Christen et al., 2016; Elia et al., 2017). Ähnliche 

Beobachtungen wurden von mir in der pädiatrischen akuten B lymphoblastischen 

Leukämiezellen gemacht, die den Glukose-Sensor MondoA stark überexprimieren 

und so ihre Glukoseaufnahme und Proliferation steigern (Wernicke et al., 2012). In 

einer weiteren Forschungsarbeit mit meinem Beitrag wurde gezeigt, dass LASP1 in 

chronisch myeloischen Leukämiezellen durch das Fusions-Onkoprotein BCR-ABL 

phosphoryliert wird und sich als Biomarker für das Monitoring der Aktivität von BCR-

ABL-Inhibitoren eignet (Frietsch et al., 2014). 

Ein weiterer Schwerpunkt des Habilitationsprojekts lag auf pädiatrischen Sarkomen 

wie dem Rhabdomyosarkom und dem Ewing Sarkom, die oft mit einer schlechten 

Prognose verbunden sind (Thiel et al., 2013, 2016). Ein besonderes Merkmal des 
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Ewing Sarkoms ist die Expression des Fusions-Onkoproteins EWSR1-FLI1, das als 

aberrierender Transkriptionsfaktor fungiert. In einer experimentellen Studie 

demonstrierte ich, dass die exosomale mRNA von EWSR1-FLI1 als potentieller 

Biomarker im peripheren Blut dienen kann (Miller und Grünewald, 2015; Miller et al., 

2013). In einer zusätzlichen Arbeit wurden zwei neue diagnostische Biomarker für 

Ewing Sarkome charakterisiert, deren Detektion mittels Immunhistochemie (IHC) 

eine einfache und robuste Abgrenzung von Ewing Sarkomen gegenüber anderen 

kleinrundzelligen Sarkomen ermöglicht (Baldauf et al., 2017). 

Durch die Kombination von Genexpressions-Analysen und funktionellen 

Experimenten zeigte ich, dass die im Ewing Sarkom stark überexprimierte 

Oxidoreduktase STEAP1 (Grünewald et al., 2012a) durch reaktive Sauerstoffspezies 

zum invasiven Wachstum und zum oxidativen Stress-Phänotyp von Ewing Sarkomen 

beiträgt (Grünewald et al., 2012b), was mit dem klinischen Outcome korrelierte 

(Grünewald et al., 2012c). In einer Folgearbeit mit meinem Beitrag wurde belegt, 

dass STEAP1 als spezifische Zielstruktur einer Immuntherapie dienen kann 

(Grünewald et al., 2012a; Schirmer et al., 2016). Weiterführende bioinformatische 

Analysen wiesen zudem darauf hin, dass sich auch zahlreiche Karzinome durch 

einen oxidativen Stress-Phänotyp und eine kompensatorische Überaktivierung der 

Thioredoxin- und Glutathion-Systeme auszeichnen (Rotblat et al., 2013). In der Tat 

stellen spezifische Anpassungsmechanismen an Stressbedingungen einen 

Selektionsvorteil dar (Sannino et al., 2016). Diesbezüglich wurde in zwei Arbeiten mit 

meinem Beitrag gezeigt, dass die Proteine YB1 und G3BP1 in Sarkomzellen die 

Bildung von Stressgranula fördern, was die Metastasierung begünstigt (El-Naggar et 

al., 2015; Somasekharan et al., 2015). 

Ein anderes im Ewing Sarkom stark überexprimiertes Gen kodiert für den 

Zytoskelett-Regulator TRIP6, das dem durch LASP1 regulierten Protein Zyxin 

strukturell ähnlich ist (Willier et al., 2011). In funktionellen Experimenten zeigte ich, 

dass die Überexpression von TRIP6 mit verstärktem Tumorwachstum und 

Metastasierung von Ewing Sarkom-Zellen assoziiert ist (Grünewald et al., 2013). 

Zusätzlich trug ich zur funktionellen Charakterisierung von EWSR1-FLI1-induzierten 

Genen wie GPR64, DKK2, CHM1 und PAPPA bei (Blaeschke et al., 2016; Hauer et 

al., 2013; Kirschner et al., 2017; Richter et al., 2013). Für CHM1 und PAPPA konnten 

mit meinem Beitrag adoptive T Zell-Therapien entwickelt werden (Blaeschke et al., 

2016; Kirschner et al., 2017), die teilweise bereits bei Ewing Sarkom-Patienten 
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eingesetzt werden (Thiel et al., 2017) und für die Fratrizid-Ereignisse durch einen 

neuen Biomarker vorhergesagt werden können (Kirschner et al., 2016). 

Ewing Sarkome treten ca. 10-20x häufiger bei Europäern als bei Afrikanern auf. In 

einer weiteren Arbeit wurde hierfür einen erster Erklärungsansatz beschrieben 

(Grünewald et al., 2015): So konnte ich mittels funktioneller Genomik zeigen wie 

EWSR1-FLI1 innerhalb eines bekannten Suszeptibilitäts-Locus mit einer 

regulatorischen Variante interagiert und so das Gen EGR2 hochreguliert (Grünewald 

et al., 2015). Funktionelle Experimente demonstrierten, dass die Unterdrückung von 

EGR2 die Proliferation von Ewing Sarkom-Zellen stark reduziert und in einem 

Mausmodell sogar zur Tumorregression führte. Dies könnte durch die Verknüpfung 

von EGR2 mit dem fibroblast growth factor (FGF)-Signalweg bedingt sein, der das 

Wachstum von Ewing Sarkom-Zelllinien stark fördert (Grünewald et al., 2015). Eine 

vergleichende Untersuchung in öffentlichen Datensätzen ergab eine hochsignifikant 

erhöhte Frequenz der oben beschrieben Risiko-Variante im Erbgut von Europäern im 

Vergleich zu Afrikanern (Grünewald et al., 2015). Diese Ergebnisse zeigen 

beispielhaft, wie das Zusammenspiel einer häufigen Keimbahn-Variante mit einem 

seltenen Onkogen wichtige Signalwege so modifizieren kann, dass schließlich die 

Tumorentstehung gefördert und das populationsspezifische Krebsrisiko erhöht wird 

(Grünewald and Delattre, 2016; Grünewald et al., 2016). Darüber hinaus wies die 

enge Verzahnung von EGR2 mit dem FGF-Signalweg darauf hin, dass dessen 

Blockierung therapeutisch nutzbar sein könnte, was in einer Folgearbeit mit meinem 

Beitrag belegt wurde (Cidre-Aranaz et al., 2017). In einer von mir durchgeführten 

Delphi-Umfrage an 24 deutschsprachigen Universitäts-Kinderkliniken wurde zudem 

eine empirische Bewertung von experimentellen Therapien bei krebskranken Kindern 

erhoben (Grünewald et al., 2012d). 
 

 

2. Einleitung 
Eine der wahrscheinlich wichtigsten Herausforderungen für die moderne Medizin in 

der Behandlung von krebskranken Patienten liegt in der Transformation 

konventioneller Therapieschemata zu einer sich immer weiter differenzierenden 

personalisierten Medizin (Schilsky, 2010). Bahnbrechende technologische 

Entwicklungen haben es in den vergangenen 20 Jahren ermöglicht, Tumoren 

Genom- und Transkriptom-weit zu analysieren (Vucic et al., 2012). Durch ständig 
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sinkende Kosten und Weiterentwicklungen im Bereich der Bioinformatik werden 

solche „Omics“-Analysen in naher Zukunft ein Standardverfahren bei jedem 

krebskranken Patienten sein (Vucic et al., 2012). Es ist davon auszugehen, dass 

schon bald Genom-Sequenzierungen sowie die Interpretation der gewonnenen 

Daten mit entsprechenden „bench-top“-Geräten auf den Krankenstationen selbst 

innerhalb von wenigen Stunden für sehr geringe Kosten durchführbar sein werden. 

Eine wesentliche Aufgabe der forschenden Medizin liegt nun darin die teilweise 

patientenspezifischen (epi-)genetischen Veränderungen der Tumorzellen im Hinblick 

auf deren mögliche funktionelle Relevanz sowie Nutzbarkeit als Biomarker und/oder 

Zielstruktur einer individualisierten Krebstherapie zu bewerten (Rotblat und 

Grünewald, 2015). Diese Aufgaben fallen in den Bereich der funktionellen Genomik. 

Prominente Beispiele dafür, wie durch Forschungsergebnisse aus der funktionellen 

Genomik die Heilungsaussichten von Patienten maßgeblich verbessert werden 

konnten, sind der niedermolekulare Inhibitor Imatinib bei der chronisch myeloischen 

Leukämie (Druker et al., 2006) und beim gastrointestinalen Stromatumor (Demetri et 

al., 2002) sowie die Antikörper Trastuzumab und Pertuzumab beim HER2/neu-

positiven Mammakarzinom (Swain et al., 2015). Stimuliert durch diese wichtigen 

Erfolge für die personalisierte Medizin wurden internationale Konsortien wie das 

ICGC (International Cancer Genome Consortium) mit dem Ziel gegründet, globale 

Ressourcen zu bündeln, um auch für seltenere Krebserkrankungen hohe Fallzahlen 

an standardisiert analysierten Tumoren zu erreichen und die erhobenen Daten der 

Öffentlichkeit zur Verfügung zu stellen (Zhang et al., 2011). Hierbei zeigte sich, dass 

sich insbesondere hypermutierte Tumoren des Erwachsenenalters für neue 

immuntherapeutische Verfahren eignen (Neoantigene) (Gubin et al., 2015), 

wohingegen oligo-mutierte pädiatrische Tumoren eher subtilere Veränderungen 

aufweisen, die bei entsprechender funktioneller Charakterisierung dennoch neue 

Ansatzpunkte für eine individualisierte Therapie bieten können (Grünewald und 

Fulda, 2016). So ist bei kindlichen Tumoren davon auszugehen, dass die detaillierte 

Charakterisierung von Interaktionen aus Veränderungen der Keimbahn und den 

meist wenigen somatischen Mutationen eventuell zusätzliche Zielstrukturen 

identifizieren wird (Grünewald und Delattre, 2016; Grünewald et al., 2016). 

Eine weitere wichtige Aufgabe der forschenden Medizin wird darin liegen, nicht nur 

die inter-individuellen Unterschiede der Patienten und korrespondierenden Tumoren 

zu verstehen, sondern auch die Mechanismen und klinischen Auswirkungen der 
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intra-tumoralen Heterogenität (Grünewald et al., 2011). Aus diesen Kernaufgaben 

der modernen Krebsmedizin ergeben sich wichtige Fragstellungen zur klinischen und 

funktionellen Bedeutung von tumorspezifischen Veränderungen, die im Rahmen der 

hier zusammengefassten experimentellen Arbeiten behandelt wurden. 

 
 
3. Zielsetzung und Fragestellung 
Ziel dieses Habilitationsprojekts war es, mittels funktioneller Genomik neue 

Angriffspunkte und Biomarker für eine schonende Therapie von Patienten mit 

malignen Tumoren zu identifizieren und zu charakterisieren. Die Schwerpunkte lagen 

dabei im Erwachsenenbereich auf gynäkologischen und urologischen Tumoren und 

bei kindlichen Krebserkrankungen auf Sarkomen. Im Speziellen wurden folgende 

Fragestellungen angegangen: 

1. Welche Strukturen eignen sich in den jeweiligen Tumorentitäten als 

therapeutische Angriffspunkte? 

2. Welche Strukturen eignen sich in den jeweiligen Tumorentitäten als 

diagnostische, prognostische und/oder prädiktive Biomarker? 

3. Haben die identifizierten Strukturen funktionelle Relevanz für Tumorigenese 

und Metastasierung? 

4. Über welche Mechanismen üben diese Strukturen ihre Effekte aus? 
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4. Zusammenfassung und Diskussion themenbezogener eigener Arbeiten 
 

4.1 Silencing of LASP-1 influences zyxin localization, inhibits proliferation and 
reduces migration in breast cancer cells 
Thomas G. P. Grünewald, Ulrike Kämmerer, Elfriede Schulze, Detlev Schindler, Arnd 

Hönig, Michael Zimmer, Elke Butt 

Exp Cell Res. 2006; 312:974–82. 

 

Tomasetto et al. haben 1995 die Überexpression von LASP1 mRNA in humanen 

Mammakarzinomen anhand von Northern blots nachgewiesen (Tomasetto et al., 

1995a). Unklar blieb jedoch die Funktion von LASP1 für diese Tumoren. 

In der unter 4.1 genannten Studie wurde die hohe Expression von LASP1 in 

Mammakarzinomen mittels Immunhistochemie (IHC) bestätigt sowie eine Reihe von 

funktionellen Experimenten durchgeführt. So wurde gezeigt, dass sich die 

Herunterregulation von LASP1 in Mammakarzinom-Zelllinien mittels RNA-Interferenz 

stark inhibierend auf die Migration auswirkt, wohingegen die ektope Überexpression 

in Mesangialzellen der australischen Beutelratte die Motilität deutlich steigerte 

(Grünewald et al., 2006). Diese Ergebnisse deuteten auf eine wichtige Rolle von 

LASP1 im Hinblick auf Metastasierung hin und darauf, dass eine gewisse Menge an 

LASP1 in fokalen Kontakten für ein normales Migrationsverhalten notwendig ist, 

zumal die artifizielle Überexpression von LASP1 in Mammakarzinom-Zellen, die 

ohnehin schon LASP1 überexprimieren, ebenfalls zu einer Hemmung der Migration 

führte. 

Darüber hinaus wurde gezeigt, dass der knockdown von LASP1 zu einer stark 

verringerten Proliferation und Arretierung des Zellzyklus in der G2-Phase führt. Diese 

in Mammakarzinom-Zelllinien gewonnenen Erkenntnisse wurden mehrfach in 

anderen Tumorentitäten bestätigt (Orth et al., 2015). In weiterführenden 

Experimenten zeigte sich, dass der Verlust von LASP1 an fokalen Kontakten auch 

zum Verlust des nukleo-zytoplasmatischen Shuttle-Proteins Zyxin führt, das dann 

vermehrt im Zellkern lokalisiert ist. Interessanterweise wird Zyxin in Ewing Sarkomen 

nur sehr gering exprimiert und ist dort ebenfalls nur diffus im Zytoplasma verteilt, statt 

sich in Aktin-reichen Zelladhäsionsplaques anzusammeln (Amsellem et al., 2005). 

Ein Zyxin-Gentransfer in EWSR1-FLI1-transformierte Fibroblasten führte dagegen 

zur Akkumulation von Zyxin an fokalen Kontakten und zu einer verringerten 
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Proliferationsrate. Deshalb wurde Zyxin in Ewing Sarkomen bereits als 

Tumorsuppressor-Protein beschrieben (Amsellem et al., 2005). 

Dies könnte im Umkehrschluss bedeuten, dass Tumorzellen, die LASP1 stark 

überexprimieren, vermehrt Zyxin an fokale Kontakte rekrutieren und dadurch Zyxin 

bei der Ausübung der Tumorsuppressor-Funktion behindern (Grünewald und Butt, 

2008).  

 

 

4.2 Overexpression of LASP-1 mediates migration and proliferation of human 
ovarian cancer cells and influences zyxin localization 
Thomas G. P. Grünewald, Ulrike Kämmerer, Christiane Winkler, Detlev Schindler, 

Albert Sickmann, Arnd Hönig, Elke Butt 

Br J Cancer. 2007; 96:296–305. 

 

Die unter 4.1 beschriebene Arbeit legte nahe, dass die Überexpression von LASP1 

zur Aggressivität von Mammakarzinomen beiträgt (Grünewald et al., 2006). In der 

unter 4.2 genannten Folgearbeit wurde untersucht, ob ähnliche Effekte auch bei 

Ovarialkarzinomen vorliegen. Tatsächlich ist LASP1 auch in verschiedenen 

Ovarialkarzinom-Zelllinien und primären Ovarialkarzinomen überexprimiert. In 

funktionellen Analysen konnte gezeigt werden, dass LASP1 auch in Ovarialkarzinom-

Zelllinien zur Proliferation und zur Zellzyklus-Progression sowie zur Migration und 

Lokalisation von Zyxin an fokalen Kontakten beiträgt (Grünewald et al., 2007a). 

Interessanterweise hatte der LASP1 knockdown weder Einfluss auf das Aktin- noch 

auf das Tubulin-Zytoskelett, und ein knockdown von Zyxin alleine hatte auch keinen 

Einfluss auf die Migration von Ovarialkarzinom-Zelllinien. Diese Experimente wiesen 

darauf hin, dass der LASP1 über die Lokalisation von Zyxin hinausgehende Effekte 

auf die Migration haben könnte. 

Zudem wurde mithilfe von 2D-Proteom-Gelelektrophoresen und anschließender 

Massenspektrometrie ein durch LASP1 differenziell reguliertes Protein gefunden – 

namentlich 14-3-3σ (Grünewald et al., 2007a). Dabei scheint der knockdown von 

LASP1 zu einer verstärkten Expression von 14-3-3σ zu führen, das als 

Tumorsuppressor die Zellzyklusprogression in der G2/M-Phase hemmt (Peng et al., 

1997). 
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In weiterführenden Arbeiten wurde belegt, dass LASP1 ein direkter Bindungspartner 

von 14-3-3σ ist und dass die durch LASP1 vermittelte Unterdrückung von 14-3-3σ 

zur Aggressivität von Dickdarmkarzinomen beiträgt (Shao et al., 2016). Zudem 

erwies sich, dass eine gleichzeitige niedrige 14-3-3σ- und hohe LASP1-Expression 

mit besonders schlechten Heilungsaussichten von Patienten mit 

Dickdarmkarzinomen einhergehen (Shao et al., 2016). Die LASP1-14-3-3σ-

Signalkaskade wurde deshalb als neue therapeutische Zielstruktur vorgeschlagen 

(Shao et al., 2016). 

 

 

4.3 Nuclear localization and cytosolic overexpression of LASP-1 correlates with 
tumor size and nodal-positivity of human breast carcinoma 
Thomas G. P. Grünewald*, Ulrike Kämmerer*, Michaela Kapp, Matthias Eck, 

Johannes Dietl, Elke Butt, Arnd Hönig (* geteilte Erstautorenschaft) 

BMC Cancer. 2007; 7:198. 

 

Die unter 4.1 beschriebene Studie belegte erstmals die hohe Expression von LASP1 

in Mammakarzinomen (Grünewald et al., 2006). Um das Expressionsmuster und 

dessen klinische Relevanz besser zu charakterisieren, wurde die unter 4.3 genannte 

Folgearbeit durchgeführt. Diese ergab, dass die LASP1-Expression signifikant positiv 

mit dem klinischen Stadium von Patientinnen mit Mammakarzinomen korreliert. Da 

LASP1 sowohl Proliferation als auch Migration beeinflusst (Grünewald et al., 2006), 

erschien es plausibel, dass Mammakarzinome mit hoher LASP1-Expression häufig 

bereits zum Operationszeitpunkt metastasiert waren und einen großen 

Tumorquerschnitt erreichten. Zudem wurde in dieser Arbeit zum ersten Mal mittels 

konfokaler Mikroskopie sowie Western blots gezeigt, dass LASP1 nicht nur an 

fokalen Kontakten, sondern auch im Zellkern lokalisiert ist (Grünewald et al., 2007b), 

was LASP1 in die Familie der nukleo-zytoplasmatischen Shuttle-Proteine einreiht 

(Grünewald und Butt, 2008; Orth et al., 2015). LASP1 ist dabei nicht nur in Zellkernen 

von Tumorzellen nachweisbar, sondern auch in proliferierenden Zellen der 

Basalzellschicht der Epidermis, wohingegen nicht-proliferierende obere 

Epithelschichten keine nukleäre LASP1-Immunoreaktivität aufwiesen (Grünewald et 

al., 2007b). Die nukleäre Translokation von LASP1 könnte somit für die Proliferation 

von sowohl Tumor- als auch Normalgeweben bedeutsam sein. 
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Der genaue Mechanismus der nukleären Translokation von LASP1, welches selbst 

kein nukleäres Importsignal besitzt, wurde von Mihlan et al. beschrieben (Mihlan et 

al., 2013): LASP1 muss mit einem weiteren nukleo-zytoplasmatischen Shuttle-

Protein, ZO2, hetero-dimerisieren, um in den Zellkern zu gelangen (Mihlan et al., 

2013). Im Zellkern scheint LASP1 als Plattform für TGFβ-vermittelte Signalwege und 

SNAIL zu dienen (Duvall-Noelle et al., 2016; Niu et al., 2016), womit LASP1 direkt in 

Prozesse wie EMT (Epithelial to Mesenchymal Transition) involviert sein könnte. Die 

mögliche Assoziation der nukleären Translokation von LASP1 mit individuellen 

Zellzyklusphasen wurde in einer Folgestudie untersucht (siehe 4.4). 

 
 
4.4 Nuclear localisation of LASP-1 correlates with poor long-term survival in 
female breast cancer 
Jochen J. Frietsch*, Thomas G. P. Grünewald*, Sabrina Jasper, Ulrike Kämmerer, 

Sabine Herterich, Michaela Kapp, Arnd Hönig, Elke Butt (* geteilte Erstautorenschaft) 

Br J Cancer. 2010; 102:1645–53. 

 

In Vorarbeiten (siehe 4.3) konnte gezeigt werden, dass LASP1 mit dem Nodalstatus 

und der Tumorgröße korreliert und dass LASP1 auch im Zellkern lokalisiert ist 

(Grünewald et al., 2007b).  

In der Folgearbeit (4.4) wurde nun experimentell belegt, dass die Kernlokalisation 

von LASP1 stark mit bestimmten Zellzyklusphasen assoziiert ist: Während in der G1-

Phase nur relativ wenig LASP1 im Zellkern vorkommt, wird es vermehrt in der S-

Phase nachgewiesen, und am stärksten in der G2/M-Phase (Frietsch et al., 2010). 

Diese Beobachtung korrespondierte mit dem Befund, dass der knockdown von 

LASP1 in Ovarial- und Mammakarzinom-Zelllinien zu einem Zellzyklus-Arrest in der 

G2-Phase führt (Grünewald et al., 2006, 2007a). In einer großen Patientenkohorte 

konnte zudem belegt werden, dass es insbesondere der LASP1-Kernstatus ist, der 

mit dem Gesamtüberleben von Mammakarzinom-Patientinnen korreliert (Frietsch et 

al., 2010). Ähnliche Korrelationen wurden mittlerweile an zahlreichen weiteren 

Tumorentitäten nachgewiesen (Orth et al., 2015). 

In frühen Arbeiten zu LASP1 wurde drüber spekuliert (Tomasetto et al., 1995b, 

1995a), ob die hohe LASP1-Expression in Mammakarzinomen möglicherweise mit 

einer Amplifikation des LASP1-Genlocus und/oder dem Verlust von p53, das LASP1 
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als direktes transkriptionelles Zielgen hat (Wang et al., 2009), zusammenhängt. In 

der unter 4.4 genannten Studie konnte erstmals gezeigt werden, dass die 

Dysregulation von LASP1 weder mit einer möglichen Genamplifikation noch dem 

Verlust von TP53 assoziiert ist. Tatsächlich zeigte die genetische Analyse von 63 

mikro-dissezierten histologischen Schnittpräparaten mit anschließender qRT-PCR 

eine Amplifikation des LASP1-Gens in nur einem Fall (1 von 63; 1,6 %) (Frietsch et 

al., 2010). Folglich wird die LASP1-Überexpression in den meisten 

Mammakarzinomen vermutlich eher durch transkriptionelle Regulation als durch 

Genamplifikation hervorgerufen und ist somit als aktiver Prozess in der 

Tumorigenese anzusehen. 

 

 

4.5 Loss of tumor suppressor mir-203 mediates overexpression of LIM and SH3 
Protein 1 (LASP1) in high-risk prostate cancer thereby increasing cell 
proliferation and migration 
Amelie Hailer*, Thomas G. P. Grünewald*, Martin Orth, Cora Reiss, Burkhard Kneitz, 

Martin Spahn, Elke Butt (* geteilte Erstautorenschaft) 

Oncotarget. 2014; 5:4144–53. 

 

Das Prostatakarzinom gehört zu den häufigsten Krebserkrankungen der westlichen 

Welt. Trotz seiner Häufigkeit existieren derzeit keine verlässlichen molekularen 

Biomarker für die Vorhersage, ob ein Patient einen indolenten oder aggressiven 

Subtyp dieser Erkrankung entwickeln wird (Sboner et al., 2010). Patienten werden 

daher häufig übertherapiert, was eine erhebliche Therapie-assoziierte Morbidität 

bedingt (Daskivich et al., 2011). In der unter 4.5 genannten Arbeit wurde an einem 

Kollektiv von definierten „high-risk“ Prostatakarzinomen untersucht, ob LASP1 einen 

Beitrag zum aggressiven Verhalten der Tumoren hat. In der Tat konnte gezeigt 

werden, dass LASP1 insbesondere in Metastasen sowie in einer Subgruppe von 

high-risk Prostatakarzinomen überexprimiert ist (Hailer et al., 2014). Mittels Gene-

Set-Enrichment-Analysen (GSEA) konnte in verfügbaren Genexpressions-

Microarraydaten gezeigt werden, dass die LASP1-Überexpression mit einer 

Aktivierung von Signalwegen einhergeht, die in Zellmigrationsprozesse involviert 

sind. In funktionellen Experimenten wurde demonstriert, dass die Suppression von 

LASP1 in Prostatakarzinom-Zelllinien mit einer verringerten Zellmigration und 
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Zellproliferation assoziiert ist (Hailer et al., 2014). In dem Patientenkollektiv korrelierte 

sowohl die zytoplasmatische als auch die nukleäre Immunoreaktivität von LASP1 mit 

einem signifikant schnelleren biochemischen Progress sowie dem Verlust der 

Tumorsuppressor-micro-RNA 203 (mir-203) (Hailer et al., 2014). Von mir-203 ist 

bekannt, dass sie physiologisch in die Unterdrückung der LASP1-Expression 

involviert ist (Orth et al., 2015). Zwei unabhängig Arbeiten bestätigten kürzlich, dass 

LASP1 bei der Karzinogenese und Progression von Prostatakarzinomen eine 

wichtige Rolle spielt (Dejima et al., 2017; Sun et al., 2017). 

Diese Ergebnisse deuten drauf hin, dass LASP1 eventuell als zusätzlicher Biomarker 

für die Risikoabschätzung und damit Therapieplanung von Patienten mit 

Prostatakarzinomen dienen könnte. 

 

 

4.6 MondoA is highly overexpressed in acute lymphoblastic leukemia cells and 
modulates their metabolism, differentiation and survival 
Caroline M. Wernicke, Günther H. S. Richter, Beate C. Beinvogl, Stephanie Plehm, 

Anna-Melissa Schlitter, Obul R. Bandapalli, Olivia Prazeres da Costa, Uwe E. 

Hattenhorst, Ines Volkmer, Martin S. Staege, Irene Esposito, Stefan Burdach, 

Thomas G. P. Grünewald 

Leuk Res. 2012; 36:1185–92. 

 

Die akute lymphoblastische B-Zell Leukämie (common ALL, cALL) ist die häufigste 

Krebserkrankung bei Kindern. Obschon die cALL bei der Mehrzahl der Patienten gut 

behandelt und sogar dauerhaft geheilt werden kann, ist die Prognose insbesondere 

bei Rückfällen ungünstig. In vielen Fällen kommen dann Hochdosis-Chemotherapien 

und Stammzelltransplantationen zum Einsatz, die mit erheblicher akuter und 

chronischer Toxizität verbunden sind (Wernicke et al., 2011). Um neue 

therapeutische Zielstrukturen zu erfassen, die in cALL-Zellen, aber kaum in 

Normalgeweben exprimiert werden, führten wir eine umfangreiche 

Genexpressionsanalyse mit Affymetrix Microarrays durch. Diese ergab, dass der 

Transkriptionsfaktor MondoA (alias MLXIP) besonders hoch in cALL-Zellen gebildet 

wird (Wernicke et al., 2012). In funktionellen Experimenten konnte gezeigt werden, 

dass der knockdown von MondoA mit einer verminderten Glucoseaufnahme und 

Proliferation von cALL-Zellen einhergeht. Zudem hemmt die Unterdrückung von 
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MondoA das klonogene Wachstum. Durch Transkriptom-Analysen konnte belegt 

werden, dass MondoA zur Aufrechterhaltung eines unreifen Phänotyps sowie zur 

Apoptose-Resistenz beiträgt (Wernicke et al., 2012). Ähnliche Effekte wurden in einer 

Folgestudie in Neuroblastomen beschrieben, wo die MondoA-Überexpression mit 

besonders schlechtem Gesamtüberleben assoziiert ist (Carroll et al., 2015). MondoA 

könnte deshalb sowohl bei der cALL als auch beim Neuroblastom als sinnvolle 

Zielstruktur für eine gerichtete Tumortherapie sowie als Biomarker für die 

Prognoseabschätzung dienen. 

 

 

4.7 STEAP1 is associated with the invasive and oxidative stress phenotype of 
Ewing tumors 
Thomas G. P. Grünewald, Isabelle Diebold, Irene Esposito, Stephanie Plehm, 

Kristina Hauer, Uwe Thiel, Patricia da Silva-Buttkus, Frauke Neff, Rebekka Unland, 

Carsten Müller-Tidow, Colette Zobywalski, Katharina Lohrig, Urs Lewandrowski, 

Albert Sickmann, Olivia Prazeres da Costa, Agnes Görlach, Andrea Cossarizza, Elke 

Butt, Günther H. S. Richter, Stefan Burdach 

Mol Cancer Res. 2012; 10:52–65.  

 

Ewing Sarkome sind die zweithäufigsten malignen Knochentumore des Kindes- und 

Jugendalters (Sand et al., 2015). Trotz bislang erzielter Fortschritte in der 

Behandlung beträgt die Fünf-Jahres-Überlebensrate für Patienten mit disseminierter 

Erkrankung weniger als 30% (Gaspar et al., 2015). Außerdem sind derzeitige 

multimodale Therapie-Protokolle mit erheblicher akuter und chronischer Toxizität 

verbunden, weshalb schonendere und gleichzeitig effektivere Therapiestrategien 

unbedingt notwendig sind (Burdach und Jürgens, 2002; Potratz et al., 2012).  

Ein besonderes Merkmal des Ewing Sarkoms ist die pathognomonische Expression 

von chimären Transkriptionsfaktoren, die durch eine Fusion des EWSR1-Gens 

(Ewing sarcoma breakpoint region 1) mit verschiedenen Mitgliedern der ETS-

Genfamilie (erythroblast transformation specific) entstehen (in 85 % der Fälle FLI1, in 

10 % ERG) (Riggi und Stamenkovic, 2007). EWSR1-FLI1 und EWSR1-EGR sind 

aberrierende Transkriptionsfaktoren, die an GGAA-Motive im Erbgut binden und 

entweder aktivierende oder supprimierende Wirkung auf Zielgene haben. Beide 

Fusionsonkogene induzieren erhebliche Veränderungen im Transkriptom, die in ihrer 
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Gesamtheit den malignen und hochaggressiven Phänotyp von Ewing Sarkomen 

ausmachen (Delattre et al., 1992; Gangwal et al., 2008; Guillon et al., 2009). Außer 

EWSR1-ETS-Genfusionen kommen beim Ewing Sarkomen kaum weitere 

rekurrierende somatische Mutationen vor, weshalb das Ewing Sarkom eine der 

genetisch stabilsten Tumorentitäten darstellt (Brohl et al., 2014; Crompton et al., 

2014; Tirode et al., 2014). Dies ist für die Charakterisierung einer stabil exprimierten 

und durch EWSR1-ETS induzierten tumorexklusiven Expressionssignatur von großer 

Bedeutung. 

Trotz der hochspezifischen Expression der chimären EWSR1-ETS-Fusionsproteine, 

die nur in Ewing Sarkom-Zellen vorhanden sind und prinzipiell ideale Angriffspunkte 

für zielgerichtete Therapien darstellen würden, ist die Entwicklung von spezifischen 

Therapien gegen EWSR1-ETS-Fusionsproteine aus nachfolgenden Gründen 

erschwert: 

(1) EWSR1-ETS-Fusionsproteine sind nur schlecht löslich, was strukturelle Analysen 

mittels Kristallographie oder Kernspinresonanz, die zur Konzipierung und Herstellung 

von sog. small molecules notwendig sind, stark beeinträchtigt (Uren und Toretsky, 

2005). (2) EWSR1-ETS-Fusionsproteine sind kaum immunogen. (3) EWSR1-ETS-

Fusionsproteine sind im Zellkern lokalisiert und haben keine enzymatische Funktion. 

Alternativ zu diesen Ansätzen stellen spezifische EWSR1-ETS-Zielgene einen 

Ansatzpunkt zur Entwicklung einer schonenden und effektiveren Therapie dar. Mittels 

funktioneller Genomik ist es in den letzten Jahren gelungen, einige EWSR1-ETS-

Zielgene, die im Ewing Sarkom stark, aber gleichzeitig im Normalgewebe kaum 

exprimiert sind, zu identifizieren und funktionell zu charakterisieren (Blaeschke et al., 

2016; Hauer et al., 2013; Kirschner et al., 2017; Richter et al., 2013). 

So konnte gezeigt werden, dass die im Ewing Sarkom stark überexprimierte 

Oxidoreduktase STEAP1 (six-transmembrane epithelial antigen of the prostate 1) 

(Grünewald et al., 2012a) durch reaktive Sauerstoffspezies (ROS) zum invasiven 

Wachstum und zum oxidativen Stress-Phänotyp von Ewing Sarkomen beiträgt 

(Grünewald et al., 2012b). Interessanterweise fehlt STEAP1 im Gegensatz zu 

anderen STEAP-Proteinen eine N-terminale Oxidoreduktase-Domäne (Grünewald et 

al., 2012a). Dennoch kann STEAP1 über eine spezielle Eisen-Reaktion zur ROS-

Produktion beitragen (Kim et al., 2016).  

Durch Transkriptom-Analysen konnte gezeigt werden, dass STEAP1 die drei Gene 

MMP1, DTX3L und ADIPOR1 über eine gesteigerte ROS-Produktion hochreguliert 



 
	

14 

(Grünewald et al., 2012b). Funktionelle Experimente belegten, dass der individuelle 

knockdown von MMP1, DTX3L oder ADIPOR1 teilweise den Phänotyp des STEAP1 

knockdowns kopiert. Zusammengefasst weisen diese Daten darauf hin, dass sich 

STEAP1 aufgrund seiner hohen Expression in Ewing Sarkomen im Vergleich zu 

Normalgeweben sowie seines Beitrags zum aggressiven Verhalten dieser 

Tumorentität als neue therapeutische Zielstruktur eignen könnte (Grünewald et al., 

2012b, 2012a).	

 

 

4.8 High STEAP1 expression is associated with improved outcome of Ewing’s 
sarcoma patients 
Thomas G. P. Grünewald*, Andreas Ranft*, Irene Esposito*, Patricia da Silva-

Buttkus, Michaela Aichler, Daniel Baumhoer, Karl-Ludwig Schäfer, Laura Ottaviano, 

Christopher Poremba, Gernot Jundt, Heribert Jürgens, Uta Dirksen, Günther H.S. 

Richter, Stefan Burdach (* geteilte Erstautorenschaft) 

Ann Oncol 2012; 23:2185–90. 

 

In der unter 4.7 genannten Arbeit wurde gezeigt, dass STEAP1 zum oxidativen 

Stress-Phänotyp von Ewing Sarkomen beiträgt, was in Modellsystemen zu einer 

erhöhten Invasivität der Tumorzellen führt. Unklar blieb jedoch die klinische Relevanz 

von STEAP1 für Ewing Sarkome. Es wurde deshalb die unter 4.8 beschriebene 

Folgestudie zur Untersuchung des prognostischen und/oder prädiktiven Potentials 

von STEAP1 initiiert. Dazu wurden insgesamt 114 Primärtumoren mittels IHC auf 

STEAP1 gefärbt und die Immunoreaktivität wurde semiquantitativ von drei 

unabhängigen Beobachtern bewertet. Ein Abgleich mit klinischen Daten ergab, dass 

überraschenderweise eine erhöhte STEAP1-Expression mit einem verbesserten 

Gesamtüberleben assoziiert ist. Multivariate Cox-Regressions-Analysen belegten 

dabei, dass dieser Zusammenhang nicht durch andere bekannte klinische 

Prognoseparameter bedingt ist. Weiterführende Experimente zeigten, dass der 

knockdown von STEAP1 in Ewing Sarkom-Zelllinien zu einem verringerten 

Ansprechen der Tumorzellen auf die Chemotherapeutika Doxorubicin und Etoposid 

führt. Interessanterweise verbesserte sich das Ansprechen auf diese beiden 

Chemotherapeutika, die regelmäßig bei Ewing Sarkom-Patienten zum Einsatz 

kommen (Gaspar et al., 2015), wenn die intrazellulären Level der reaktiven 
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Sauerstoffspezies erhöht waren (Grünewald et al., 2012c). Dies legt nahe, dass die 

beobachtete Korrelation der erhöhten STEAP1-Expression mit einem besseren 

Gesamtüberleben durch ein besseres Ansprechen auf Chemotherapeutika bedingt 

sein könnte. Obschon diese Hypothese noch validiert werden muss, konnte bereits in 

einer anderen Studie ein ähnlicher Zusammenhang einer erhöhten STEAP1-

Expression mit einem besseren klinischen Verlauf bei Patienten mit 

Dickdarmkarzinomen beobachtet werden (Lee et al., 2016). Aufgrund seiner 

präferenziellen Expression in Tumorgeweben im Vergleich zu Normalgeweben wird 

STEAP1 derzeit intensiv als neue Zielstruktur für antibody-drug-conjugates und für 

Zell-basierte Immuntherapien untersucht (Grünewald et al., 2012a). In einer 

Folgearbeit wurde bereits demonstriert, dass STEAP1 als spezifische Zielstruktur 

einer adoptiven Immuntherapie für Ewing Sarkome dienen kann (Grünewald et al., 

2012a; Schirmer et al., 2016).  

 

 

4.9 Anti-oxidative stress response genes: bioinformatic analysis of their 
expression and relevance in multiple cancers 
Barak Rotblat*, Thomas G. P. Grünewald*, Gabriel Leprivier*, Gerry Melino, Richard 

A. Knight (* geteilte Erstautorenschaft) 

Oncotarget. 2013 Dec; 4(12):2577-90 

 

In den unter 4.7 und 4.8 beschriebenen Arbeiten wurde gezeigt, dass ein erhöhter 

intrazellulärer oxidativer Stress zum aggressiven Phänotyp von Ewing Sarkomen 

beitragen kann, diese u. U. aber auch für ROS-abhängige Chemotherapeutika 

sensibilisiert. In der unter 4.9 benannten Folgearbeit wurde dieser Ansatz 

systematisch in Genexpressionsdaten 994 maligner Tumoren und 353 

Normalgeweben analysiert (Rotblat et al., 2013). Im Speziellen wurden die 

Genexpressionsprofile von 285 sogenannten „oxidative stress genes“ miteinander 

verglichen und mit hierarchischem Clustering in Gruppen zugeordnet. Hierdurch 

konnte eine Signatur aus 116 Genen identifiziert werden, die in vielen Karzinomen im 

Vergleich zu Normalgeweben hochgradig überexprimiert werden (Rotblat et al., 

2013). Gene-set Enrichment-Analysen dieser Gene zeigten, dass sie hauptsächlich 

im Thioredoxin- und Glutathion-System involviert sind und somit zur Kompensation 

von oxidativem Stress beitragen könnten (Rotblat et al., 2013). Durch Abgleich mit 
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klinischen Daten konnte gezeigt werden, dass die Überexpression verschiedener 

Schlüsselfaktoren dieser Signalwege wie TXN und GCLC im nicht-kleinzelligen 

Lungenkarzinom mit einem signifikant schlechteren Gesamtüberleben einhergeht 

(Rotblat et al., 2013). Das kompensatorische Anti-Oxidantien-System maligner 

Tumoren könnte also als therapeutischer Angriffspunkt genutzt werden (Rotblat et 

al., 2013), da sich eine Inhibition diese Kompensationssysteme wahrscheinlich 

negativ auf das Tumorwachstum auswirken würde (Gorrini et al., 2013). 

 

 

4.10 The Zyxin-related protein thyroid receptor interacting protein 6 (TRIP6) is 
overexpressed in Ewing’s sarcoma and promotes migration, invasion and cell 
growth 
Thomas G. P. Grünewald*, Semjon Willier*, Dirk Janik, Rebekka Unland, Cora Reiss, 

Olivia Prazeres da Costa, Thorsten Buch, Uta Dirksen, Günther H. S. Richter, Frauke 

Neff, Stefan Burdach, Elke Butt (* geteilte Erstautorenschaft) 

Biol Cell. 2013; 105:535–47 

 
Die Mitglieder der Zyxin-Proteinfamilie sind in vielfältige zelluläre Funktionen 

eingebunden. Hierbei nehmen sie, teilweise funktionell redundant, Einfluss auf 

zytoplasmatische und nukleäre Prozesse (Willier et al., 2011). In der unter 4.10 

genannten Studie konnte durch Analyse von öffentlich verfügbaren Microarraydaten 

belegt werden, dass lediglich das Protein TRIP6 (thyroid receptor interacting protein 

6) aus der Zyxin-Proteinfamilie in Ewing Sarkomen deutlich überexprimiert ist 

(Grünewald et al., 2013). TRIP6 dient, neben seiner Funktion in der Organisation des 

Zytoskeletts, auch nukleär als Kotranskriptionsfaktor und als Kofaktor in der 

Telomerprotektion. Vielfach wurde eine Implikation dieses multifunktionellen 

Adapterproteins in maligne Prozesse dokumentiert (Willier et al., 2011). Die 

Überexpression von TRIP6 in Ewing Sarkomen ist jedoch unabhängig von EWSR1-

FLI1. Eine Bindung von EWSR1-FLI1 an eine putative Bindungsstelle im Promotor 

von TRIP6 konnte nicht nachgewiesen werden (Grünewald et al., 2013).  

Die Analyse von Microarrays nach Herunterregulation von TRIP6 in Ewing Sarkom-

Zelllinien identifizierte mehrere Signalwege, welche mit Proliferation und Invasivität 

assoziiert sind und die nach knockdown von TRIP6 vermindert aktiviert werden 

(Grünewald et al., 2013). Die für verschiedene Malignome relevanten Proteine RDX, 
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CD164 und CRYZ konnten als Zielgene des Kotranskriptionsfaktors TRIP6 mithilfe 

von qRT-PCR validiert werden (Grünewald et al., 2013). Durch Verringerung der 

Proteinmenge von TRIP6 in Ewing Sarkomen mittels RNA-Interferenz kam es zu 

deutlich reduziertem klonogenem Wachstum und Migration der Zellen in vitro. Nach 

induzierbarem TRIP6-knockdown konnte eine verminderte Tumorigenese und 

hepatische Metastasierung in vivo beobachtet werden (Grünewald et al., 2013). 

Zusammengefasst deuten diese Daten auf eine Beteiligung von TRIP6 in der 

Pathogenese des Ewing Sarkoms und insbesondere beim Prozess der 

Metastasierung hin. Somit legen diese Ergebnisse eine weitere Evaluierung von 

TRIP6 als Biomarker oder molekulare Zielstruktur für therapeutische Ansätze in 

Ewing Sarkomen nahe (Grünewald et al., 2013). In der Tat belegte eine andere 

Studie kürzlich, dass TRIP6 als putatives Zielgen des RhoA-Signalwegs eine Rolle in 

Prozessen der Zytoskelett-Organisation haben könnte (Katschnig et al., 2017), die 

bei Migrations- und Metastasierungsprozessen eine wichtige Rolle spielen. 

 
 
4.11 First identification of Ewing’s sarcoma-derived extracellular vesicles and 
exploration of their biological and potential diagnostic implications 
Isabella V. Miller, Graca Raposo, Ulrich Welsch, Olivia Prazeres da Costa, Uwe 

Thiel, Maria Lebar, Martina Maurer, Hans-Ulrich Bender, Irene von Luettichau, 

Günther H. S. Richter, Stefan Burdach, Thomas G. P. Grünewald 

Biol Cell. 2013; 105:289–303. 

 

Derzeit arbeiten mehrere Gruppen intensiv an der Entwicklung von Biomarkern für 

die minimal-residual-disease (MRD)-Diagnostik des Ewing Sarkoms. Einen 

möglichen Ansatzpunkt stellen hierbei zirkulierende freie Desoxynukleinsäuren 

(cfDNA) dar, mit besonderem Augenmerk auf durch EWSR1-ETS kodierte 

patientenspezifische cfDNAs. Tatsächlich konnte bereits gezeigt werden, dass mit 

digital-droplet PCR-Technologien ein Monitoring von Ewing Sarkom-Patienten 

anhand von Patienten-spezifischer EWSR1-ETS cfDNA möglich ist (Krumbholz et al., 

2016). Ein anderer von uns verfolgter Ansatz besteht in der Detektion sogenannter 

extrazellulärer Vesikel, u. a. den Exosomen, die von den meisten Zellen 

abgeschieden werden und einen RNA-Fingerprint ihrer jeweiligen Ursprungszelle 

beherbergen (Miller und Grünewald, 2015). So konnte bereits gezeigt werden, dass 
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Ewing Sarkom-Zellen mRNAs der Fusionsonkogene in Exosomen verpacken und 

abscheiden, und dass die exosomalen mRNAs von EWSR1-FLI1 und STEAP1 

potentielle Biomarker im peripheren Blut darstellen (Miller und Grünewald, 2015; 

Miller et al., 2013).  

 
 
4.12 Robust diagnosis of Ewing sarcoma by immunohistochemical detection of 
super-enhancer-driven EWSR1-ETS targets 
Michaela C. Baldauf*, Martin F. Orth*, Marlene Dallmayer*, Aruna Marchetto, Julia S. 

Gerke, Rebeca Alba Rubio, Merve M. Kiran, Julian Musa, Maximilian M. L. Knott, 

Shunya Ohmura, Jing Li, Nusret Akpolat, Ayse N. Akatli, Özlem Özen, Uta Dirksen, 

Wolfgang Hartmann, Enrique de Alava, Daniel Baumhoer, Giuseppina Sannino, 

Thomas Kirchner, Thomas G. P. Grünewald (* geteilte Erstautorenschaft) 

Oncotarget. 2017 Aug DOI 10.18632/oncotarget.20098, Advance Online Publication. 

 
Ewing Sarkome wurden erstmals 1921 vom amerikanischen Pathologen James 

Ewing beschrieben (Ewing, 2006). Fast 100 Jahre nach der Erstbeschreibung durch 

James Ewing ist die Histogenese dieses undifferenzierten kleinrundzelligen Tumors 

immer noch ungeklärt (Kovar et al., 2016). Einige Studien weisen auf eine 

Entstehung aus mesenchymalen Stammzellen hin, die entweder vom Mesoderm 

oder der Neuralleiste abstammen (von Levetzow et al., 2011; Tirode et al., 2007). 

Der undifferenzierte Phänotyp der Ewing Sarkom-Zellen bereitet in der 

histopathologischen Diagnostik oftmals Probleme in der Abgrenzung zu anderen 

kleinrundzelligen Sarkomen. In der unter 4.12 genannten Arbeit wurden mittels 

vergleichender Transkriptomanalysen von Ewing Sarkomen und 20 sogenannten 

„morphological mimics“ drei Kandidaten-Biomarker (ATP1A1, GLG1 und BCL11B) 

identifiziert (Baldauf et al., 2017). Funktionelle und bioinformatische Analysen 

belegten dabei, dass diese drei Gene kaum in Normalgeweben exprimiert werden 

und dass ihre Expression durch die Bindung von EWSR1-FLI1 an benachbarte 

GGAA-Mikrosatelliten mit Charakteristika von Super-Enhancern angetrieben wird. 

Die spezifische Expression der drei Gene wurde mittels IHC in einem tissue-

microarray bestätigt. Systematische Analysen der Expressionslevel in den 

verschiedenen Tumorentitäten ergaben, dass die Expression von BCL11B und/oder 

GLG1 bei CD99-positiven Tumoren in diesem tissue-microarray eine Spezifität von 
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mindestens 96 % für Ewing Sarkome erreicht (Baldauf et al., 2017). Darüber hinaus 

wurde durch diese Studie gezeigt, dass EWSR1-NFATc2-positive kleinrundzellige 

Sarkome von klassischen EWSR1-ETS-positiven Ewing Sarkomen abzugrenzen sind 

und sehr wahrscheinlich eine eigenständige Tumorentität darstellen (Baldauf et al., 

2017). 

 
 
4.13 Chimeric EWSR1-FLI1 regulates the Ewing sarcoma susceptibility gene 
EGR2 via a GGAA microsatellite 
Thomas G. P. Grünewald, Virginie Bernard, Pascale Gilardi-Hebenstreit, Virginie 

Raynal, Didier Surdez, Marie-Ming Aynaud, Olivier Mirabeau, Florencia Cidre-

Aranaz, Franck Tirode, Sakina Zaidi, Gaelle Perot, Annelinie H. Jonker, Carlo 

Lucchesi, Marie-Cécile Le Deley, Odile Oberlin, Perrine Marec-Bérard, Amélie S. 

Véron, Stephanie Reynaud, Eve Lapouble, Valentina Boeva, Thomas Rio Frio, Javier 

Alonso, Smita Bhatia, Gaelle Pierron, Geraldine Cancel-Tassin, Olivier Cussenot, 

David G. Cox, Lindsay M. Morton, Mitchell J. Machiela, Stephen J. Chanock, Patrick 

Charnay, Olivier Delattre 

Nat Genet. 2015; 47:1073–8.  

 
Ewing Sarkome kommen circa 10-20x häufiger bei Europäern als bei Afrikanern vor 

(Worch et al., 2011), was auf einen starken Beitrag der Keimbahnvariabilität, also der 

angeborenen genetischen Varianten im menschlichen Erbgut, zur Tumorentstehung 

hinweist. Vor diesem Hintergrund identifizierte eine Genom-weite Assoziationsstudie 

(GWAS) drei Stellen im Erbgut von Europäern, die zum Ewing Sarkom 

prädisponieren (Postel-Vinay et al., 2012). Unklar blieb jedoch, wie diese 

sogenannten Suszeptibilitäts-Loci das Risiko für Ewing Sarkome erhöhen. In der 

unter 4.13 genannten Studie wurde hierfür ein erster mechanistischer 

Erklärungsansatz beschrieben: Es konnte gezeigt werden, wie der für Ewing 

Sarkome charakteristische Transkriptionsfaktor EWSR1-FLI1, der durch eine 

erworbene somatische Mutation entsteht, innerhalb eines Suszeptibilitäts-Locus mit 

einer angeborenen regulatorischen Variante interagiert und so das Suszeptibilitäts-

Gen EGR2 (early growth response-2) hochreguliert (Grünewald und Delattre, 2016; 

Grünewald et al., 2015). Interessanterweise liegt diese regulatorische Variante in 

einem GGAA-Mikrosatelliten. GGAA-Mikrosatelliten sind sich wiederholende 
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Nukleinsäuren in unserem Erbgut, denen oft keinerlei Funktion zugesprochen wird, 

die aber insbesondere von EWSR1-FLI1 benutzt werden, um die Expression 

spezifischer Gene anzutreiben (Riggi et al., 2014). Die genannte regulatorische 

Variante modifiziert dabei einen bestimmten GGAA-Mikrosatelliten derart, dass die 

Bindung von EWSR1-FLI1 und somit die Expression von EGR2 in Ewing Sarkom-

Zellen stark gesteigert werden (Grünewald et al., 2015). In funktionellen 

Experimenten wurde beobachtet, dass die Unterdrückung von EGR2 die 

Zellteilungsrate von Ewing Sarkom-Zellen hemmt und in einem Mausmodell sogar 

zur Rückbildung der Tumoren führt. Weitere funktionelle Analysen zeigten, dass 

EGR2 „downstream“ des fibroblast growth factor (FGF)-Signalwegs agiert, der das 

Wachstum von Ewing Sarkom Zelllinien stark fördert (Grünewald et al., 2015). Eine 

vergleichende Untersuchung in öffentlichen verfügbaren Datensätzen verschiedener 

humaner Populationen ergab eine hochsignifikant erhöhte Frequenz dieser Risiko-

Variante im Erbgut von Europäern im Vergleich zu Afrikanern. Diese häufige 

angeborene Erbgutvariante bleibt jedoch solange bedeutungslos, bis durch eine 

zusätzliche erworbene Mutation das Fusionsonkogen EWSR1-FLI1 in bestimmten 

Zellen entsteht (Grünewald et al., 2015). 

EGR2 stellt somit ein Suszeptibilitäts-Gen für das Ewing Sarkom dar, dessen 

EWSR1-FLI1-abhängige Überexpression in Ewing Sarkomen durch eine Risiko-

Variante innerhalb eines GGAA-Mikrosatelliten vermittelt wird (Grünewald et al., 

2015). Diese Studie demonstriert somit beispielhaft, wie eine angeborene 

Suszeptibilitäts-Variante der Keimbahn unser Verständnis über die Funktionsweise 

einer Krebsart-spezifischen erworbenen Mutation (EWSR1-FLI1) erweitern kann. Sie 

zeigt auch, wie das Zusammenspiel einer häufigen Keimbahn-Variante mit einem 

seltenen Onkogen wichtige Signalwege so modifizieren kann, dass schließlich die 

Tumorentstehung gefördert und möglicherweise das populationsspezifische 

Krebsrisiko erhöht wird. Darüber hinaus weist die enge Verzahnung von EGR2 mit 

dem FGF-Signalweg darauf hin, dass die Blockierung dieses Signalwegs 

therapeutisch genutzt werden könnte (Cidre-Aranaz et al., 2017). 
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5. Ausblick 
Im vorliegenden Habilitationsprojekt wurden mittels funktioneller Genomik 

verschiedene potentielle Zielstrukturen in malignen Tumoren charakterisiert und ihre 

mögliche Eignung als Biomarker bewertet. Ein Schwerpunkt lag dabei auf dem 

nukleo-zytoplasmatische Shuttle-Protein LASP1, das u. a. in humanen Mamma- und 

Ovarialkarzinomen sowie einer Untergruppe an high-risk Prostatakarzinomen stark 

überexprimiert ist und mit einem schlechteren klinischen Verlauf der betroffenen 

Patienten korreliert. Analoge Beobachtungen wurden auch in Medulloblastomen 

gemacht (Traenka et al., 2010). Unklar bleibt jedoch, über welchen Mechanismus 

LASP1 die Zellzyklusprogression und Migration fördert und ob dieser einer 

zielgerichteten Therapie zugänglich ist. Ein weiterer Schwerpunkt dieses 

Habilitationsprojekts lag auf der Identifikation von neuen Zielstrukturen im Ewing 

Sarkom. Hier wurden insbesondere STEAP1, TRIP6 und EGR2 untersucht. Diese 

Proteine sind in Ewing Sarkomen stark überexprimiert und fördern den aggressiven 

Phänotyp dieser Erkrankung. Aufgrund seiner membranständigen Lokalisation 

scheint insbesondere STEAP1 eine attraktive immuntherapeutisch nutzbare 

Zielstruktur zu sein (Grünewald et al., 2012a; Schirmer et al., 2016). Durch seine 

Funktion als Oxidoreduktase und die hierdurch bedingten erhöhten intrazellulären 

ROS-Level könnte STEAP1 zudem als prädiktiver Biomarker für das Ansprechen auf 

ROS-abhängige Chemotherapeutika dienen. Da STEAP1 im Prostata- und 

Mammakarzinom ebenfalls stark überexprimiert ist (Grünewald et al., 2012a), stellt 

sich die Frage, ob STEAP1 auch hier mit dem klinischen Verlauf und/oder dem 

Ansprechen auf Chemotherapeutika assoziiert ist. Zudem wurden in diesem 

Habilitationsprojekt neue potentielle Biomarker für die Diagnostik und die 

Verlaufskontrolle in der IHC am Tumorgewebe bzw. im peripheren Blut identifiziert, 

deren Eignung in größer angelegten Studien prospektiv validiert werden soll. 

Durch funktionelle Genomik und Integration von Keimbahn-Genomik mit somatischen 

Mutationsprofilen wurden im Ewing Sarkom erste Erklärungsansätze für das 

epidemiologische Inzidenzmuster sowie ein möglicher Beitrag des FGF-Signalwegs 

zur Pathogenese dieser Erkrankung aufgedeckt (Grünewald et al., 2015). Inwieweit 

andere Signalwege eine Rolle bei der Keimbahn-Prädisposition zum Ewing Sarkom 

spielen und ob diese therapeutisch nutzbar sind, muss in nachfolgenden Studien 

geklärt werden. Wir planen, diese und weitere Fragestellungen der funktionellen 

Genomik in zukünftigen Arbeiten anzugehen.   
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LIM and SH3 protein (LASP-1), initially identified from human breast cancer, is a specific
focal adhesion protein involved in cell migration. LASP-1 is an actin binding protein, which
also interacts with the proline-rich domains of zyxin, a scaffolding protein required for cell
movement and gene transcription.

In the present work, we analyzed the effect of LASP-1 on different human breast cancer
cell lines. Transfection with LASP-1-specific siRNA resulted in a reduced protein level of
LASP-1 in BT-20 andMCF-7 cell lines. The siRNA-treated cells were arrested in G2/M phase of
cell cycle, and proliferation of the tumor cells was suppressed by 30–50% corresponding to
around 50% of the cells being transfected successfully as seen by immunofluorescence. In
addition, tumor cells showed a 50% reduced migration after siRNA treatment, while
overexpression of LASP-1 in non-tumor PTK-2 cells, which do not express endogenous LASP-
1, resulted in a significant increase in cell motility. LASP-1 silencing is accompanied with a
reduced binding of the of LASP-1 binding partner zyxin to focal contacts without changes in
actin stress fiber organization as observed in immunofluorescence experiments.

The data provide evidence for an essential role of LASP-1 in tumor cell growth and
migration, possibly by influencing the localization of zyxin.

© 2005 Elsevier Inc. All rights reserved.
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Introduction

Breast cancer is the most frequent malignancy among women
and ranks first as a cause of cancer deaths among women at
ages 20 to 59 years [1]. Despite the use of endocrine therapy,
systemic chemotherapy and novel approaches such as
treatment with trastuzumab (Herceptin®), the outcome of
metastatic breast cancer has not substantially improved.
Metastatic disease remains generally incurable with a median

survival time of only a few years [2,3], hence additional
therapeutic modalities are required to improve treatment. To
improve the outcome, new therapies are required, and genes
that are overexpressed in metastatic cancer cells are promis-
ing targets for novel therapeutic targets.

LASP-1 (Lim and SH3 domain protein) was initially
identified from a cDNA library of breast cancer metastases,
and the gene was mapped to human chromosome 17q21 [4,5].
Human LASP-1 encodes a protein of 261 amino acids
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containing an N-terminal LIM domain followed by two actin
binding sites and a C-terminal src homology SH3 domain. The
actin binding domains in the core of the LASP-1 protein
mediate an interaction between LASP-1 and the actin cyto-
skeleton at cell membrane extensions, but not along the actin
stress fibers [6–9]. The SH3 domain at the C-terminus is
involved in protein–protein interactions through binding to
proline-rich sequences, specifically with zyxin, lipoma pre-
ferred partner (LPP) and vasodilator stimulated phosphopro-
tein (VASP) [9,10]. Although the specific cellular functions of
LASP-1 have not been defined, the protein–protein interac-
tions mediated by the LIM and SH3 domains can be regarded
as scaffolds for the formation of complexes of higher order.

LASP-1 is a cAMP- and cGMP-depending signaling protein
[8]. In rabbit parietal cells, elevation of intracellular cAMP
induced a partial translocation of LASP-1 to the apically
directed F-actin-rich intracellular canaliculus, which is the
site of active HCl secretion [11,12]. Moreover, phosphorylation
resulted in a translocation of the protein from the membrane
to the cytosol and was associated with reduced cell migration
[8]. In addition, LASP-1 expression has been reported to be
increased in metastatic breast cancer, suggesting that over-
expression of LASP-1may be involved in themigratory process
of these cells [4]. Surprisingly, both increase in LASP-1, and
depletion in COS-7, HEK293 and MCF-7 cells inhibited basal
and growth-factor-stimulated cell migration [13].

In this study, we demonstrate that LASP-1 is highly over-
expressed in breast cancer tissue andmetastatic breast cancer
cells. Silencing of the LASP-1 gene by RNAi technique retarded
cell proliferation and cell migration of breast cancer cells in
vitro without influencing the expression of other proteins
related to the LASP-1 signaling pathway. Furthermore, the
knock-down of LASP-1 severely affected zyxin localization.

Materials and methods

Tissue samples

The studies were performed with approval of the Ethics
Committee of the University of Wuerzburg. Tissue samples
of 10 archival cases each of ductal carcinoma in situ (DCIS)
without any invasive component, invasive breast carcinoma
and lymph node metastases of breast carcinoma as well as
three samples of normal breast tissue from reduction mam-
moplasty were obtained from the Department of Pathology of
the University of Wuerzburg and reviewed by a pathologist to
confirm the diagnosis.

Immunohistochemistry

For immunohistochemical staining procedures, endogenous
peroxidase was blocked by incubation in 0.1% hydrogen
peroxide in PBS for 5 min. The slides were then incubated
with the polyclonal anti-LASP antibody diluted 1:1000 in
“antibody diluent” (DAKO, Hamburg, Germany) followed by
the EnVision/rabbit detection system (DAKO). Histogreen
(Linaris, Wertheim, Germany) was used as the chromogen,
and cells were counterstained with hematoxylin (Sigma,
Deisenhofen, Germany).

Cell culture conditions

Cell lines were obtained from Cell Line Services (Heidelberg,
Germany) and grown at 1 × 105 cells/ml in a plastic cell culture
flask in a humidified incubator under 5% CO2 atmosphere. BT-
20 and MCF-7 cells derived from human breast carcinoma
were cultured in HBCA medium (Biochrom, Berlin, Germany).
PTK-2 cells (Potorous tridactylis kidney) were grown in DMEM
medium, 2 mM glutamine (Life Technologies, Karsruhe,
Germany). HUVEC (human umbilical vein endothelial cells)
were cultured in endothelial cell basal medium EBM (Cambrex
Bio Science Walkersville, MD). The HUVEC cell lines were
kindly supplied by the Department of Nephrology, University
of Wuerzburg, Germany.

All media contained 10% heat-inactivated fetal bovine serum
(PAA, Linz, Austria) and 1% streptomycin/ampicillin (Invitrogen,
Karlsruhe, Germany) and were cultured at 37°C in a humidified
atmosphere of 5% CO2/95% air. Cells were checked routinely and
found to be free of contamination by bacteria or fungi.

siRNA preparation and transfection

Expression of human and mouse LASP-1 was knocked down
with siRNA duplexes targeting the sequence 5′-AAG GTG
AAC TGT CTG GAT AAG-3′ (bases 49–69), 5′-CUUAUCCAGA-
CAGUUCACCdTdT-3′. For silencing of the human enabled
homolog Drosophila gene (ENAH), the following siRNA
sequence was used: (bases 204–224), 5′-CUGUGUAGCUU-
GAUUGUACdTdT-3′. A BLAST search against the complete
human and mouse genomes verified that the selected
sequences were specific for the respective target genes.
The scrambled Neuropilin 1 (NP1) 5′-AGAGAUGUAGUCG-
CUCGCUdTdT-3′ was used as a control that targeted no
known mRNA sequences. All siRNAs were obtained from
Dharmacon RNA Technologies (Lafayette, CO). The siControl
Non-Targeting siRNA from Dharmacon could not be used in
our cell system due to toxic effects.

Cells in the exponential growth phase were plated in six-
well plates at a density of 0.5 × 105 cells/well, grown for 24
h and transfected with 1 μg siRNA in reduced serum medium
OPTI-MEM-I (Gibco, Paisley, UK) according to the manufac-
turer's protocol in 30–50% confluency. For the formation of the
siRNA–lipid complexes, 3 μl siRNA stock solution (20 μM) was
diluted in 100 μl OPTI-MEM, mixed with 3 μl Metafectene
(Biontex,Munich, Germany) in 100 μl OPTI-MEMand incubated
at room temperature for 17 min. Subsequently, the culture
medium was removed and replaced by 1 ml OPTI-MEM-I and
the siRNA–lipid complexes (1.2 ml total volume).

After 4 h of incubation at 37°C, 1.2 ml of cell culture
medium with 20% fetal bovine serum was added, and
incubation was continued for 36–56 h. For control cells,
Metafectene alone and/or 1 μg siRNA scrambled NP1 oligonu-
cleotides were used.

At least three independent experiments were performed
for each cell line, and representative results are shown.

Cell proliferation assay

For proliferation assay, cells were transfected as de-
scribed. At the time points indicated, cells were
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trypsinized, and cell numbers were determined by a Coulter
Counter (Beckman, Fullerton, CA). Experiments were per-
formed in triplicate for each time point. Cell viability was
evaluated by counting trypan-blue-positive and -negative
cells under a phase-contrast microscope (Zeiss Axiovert,
Aalen, Germany).

Western blot analysis

For Western blotting, cells were prepared by lysing in
Laemmli sample buffer, and equal amounts of protein,
according to the cell count, were resolved by 12% SDS-
PAGE. After blotting on nitrocellulose membrane and block-
ing with 3% nonfat dry milk in 10 mM Tris, pH 7.5, 100 mM
NaCl, 0.1% (w/v) Tween 20, the membrane was first
incubated with the antibodies raised against LASP-1
(1:10,000) [8], caspase-3 (1:1000) (New England Biolabs,
Frankfurt, Germany), VASP M4 (1:1000) (Nanotools, Tuebin-
gen, Germany) or PKA (1:1000) (Abcam, Cambridge, UK)
followed by incubation with horseradish-peroxidase-coupled
goat anti-rabbit IgG (Biorad, Munich, Germany), diluted
1:5000 and detected by ECL or ECL plus (Amersham
Biosciences, Freiburg, Germany). For Mena, the primary
mouse monoclonal antibody was used at a dilution of
1:2000 (BD Bioscience, San Diego, CA) followed by a
secondary horseradish-peroxidase-coupled goat-anti-mouse
IgA antibody diluted 1:5000 (Sigma, Deisenhofen, Germany).
For zyxin, mouse hybridoma supernatant (kindgift of Dr. J.
Wehland, GBF Braunschweig, Germany) [14] was used at a
dilution of 1:100 followed by a secondary horseradish-
peroxidase-coupled goat-anti-mouse IgA antibody diluted
1:5000. Protein bands were visualized by autoradiography.
Quantification of signal transduction by densitometry was
carried out using the Odyssey system (Li-Cor, Bad Homburg,
Germany).

Annexin V analysis

For apoptosis detection, cells were stained with anti-Annexin
V-FITC (BD Pharmingen, Heidelberg, Germany) following the
manufacturer's instructions. In brief, cells were harvested 1
h after transfection, washed twice in ice-cold PBS and
resuspended in Annexin V-binding buffer at 1 × 106 cells/ml.
Two microliters of the Annexin V-FITC antibody and 2 μl of
propidium iodide (10 μg/ml) were added to 100 μl of cell
suspension and incubated for 15 min at room temperature.
Cells were then washed once in binding buffer, resuspended
in 200 μl binding buffer and immediately analyzed in a FACS-
Scan Cytometer (Becton Dickinson, Heidelberg). A total of
10,000 cells per sample were evaluated for specific staining.
Results were analyzed using the WinMDI-software (Version
2.8, ©Joseph Trotter).

FACS

For cell cycle analysis, BT-20 cells were harvested 44
h after LASP-1 siRNA transfection. The cells were pelleted
and stained with DAPI (Sigma, Deisenhofen, Germany) at
a final concentration of 2 μg/ml in permeabilizing buffer
containing 0.1 M Tris–HCl pH 7.4, 0.154 M NaCl, 0.5 mM

MgCl2, 1 mM CaCl2, 0.1% NP-40 and 0.2% BSA in ddH2O
for 30 min at 4°C in the dark. Bivariate flow histograms
were recorded on an analytical dual-laser equipped
cytometer (LSR1, Becton Dickinson Biosciences, Heidelberg,
Germany) using UV excitation. Resulting cell cycle dis-
tributions were quantitated with the MPLUS AV software
(Phoenix Flow Systems, San Diego, CA). For technical
details, see [15].

Immunofluorescence

For immunofluorescence microscopy, cells were grown
on glass chamber slides, fixed in 4% (w/v) paraformal-
dehyde in PBS, permeabilized with 0.1% (w/v) Triton X-
100 in PBS and then stained with affinity-purified LASP-1
antibody (1:2000) followed by secondary Cy3-labeled anti-
rabbit antibody (Dianova, Hamburg, Germany) or mouse
Zyxin hybridoma supernatant (1:10) followed by second-
ary FITC-labeled goat-anti-mouse antibody (Sigma, Dei-
senhofen, Germany). Oregon green phalloidin (Molecular
Probes, Leiden, The Netherlands) was used for actin
staining.

Migration experiments

Cells were cultured in medium in 25 cm2 flasks to appro-
ximately 30–40% confluency and transfected with 2.5 μg
LASP-1 siRNA or 2.5 μg WT LASP-1 pcDNA3 (8) using 10 μl
Metafectene. After 48 h of incubation and overnight
starving, 1 × 105 cells per 100 μl incubation medium (with
1 mM MgCl2) were seeded in the upper chamber of BSA-
coated 8 μM pore size transwell chambers (Corning star,
Cambridge, MA). Cells were allowed to migrate through the
porous membrane for 4 h at 37°C. Cells remaining at the
upper surface were completely removed using a cotton
carrier. The lower surfaces of the membranes were then
stained in a solution of 1% (w/v) crystal violet in 2%
ethanol for 30 s and rinsed afterwards in distilled water.
Cell-associated crystal violet was extracted by incubation in
10% acetic acid for 20 min and measured at 595 nm
absorbance.

Results

LASP-1 is overexpressed in breast cancer tissue

To assess the role of LASP-1 in breast cancer, we examined
its expression in benign breast tissue, in breast samples
containing ductal carcinoma in situ (DCIS), in primary
breast cancer and breast cancer metastases in the lymph
node. Immunohistochemistry clearly allowed to localize
LASP-1 expression in the myoepithelial cells of normal
breast tissue, while luminal epithelial cells were LASP-1-
negative in all normal breast tissues in ductus as well as in
acini (Fig. 1A). In samples containing DCIS, weak but clear
LASP-1-positive hyperplastic epithelial cells could be seen
next to the LASP-1-positive myoepithelial cells (Fig. 1B). In
all samples containing invasive breast cancer, a strong
positivity of the tumor cells for LASP-1 was seen (Fig. 1C).
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No correlation was seen between the overexpression of
LASP-1 in malign breast tissue and histologic subtype
(lobular and invasive ductal carcinoma), tumor size or

nodal status respectively (not shown). In addition to
primary lesions, all lymph node metastases showed a
marked overexpression of LASP-1 (Fig. 1D).

Fig. 1 – Immunohistochemical staining of normal and cancerous breast tissue samples at different stages of tumor
development. LASP-1 was detected using anti-LASP-1 rabbit polyclonal antibody in paraffin-embedded tissue samples. (A)
Normal breast tissuewith two ducti in the center and the acini at the left and right sides. LASP-1 is positive in themyoepithelial
cells (white head arrow) surrounding the LASP-1-negative luminal epithelia cells (black arrow). (B) In DCIS, LASP-1 is expressed
within the hyperplastic areas (arrows). (C) In breast cancer, all cancer cells are intensively stained positive for LASP (Arrows). (D)
In lymph nodemetastases, breast cancer cells are intensively stained for LASP-1. LASP-1-positive structures are seen in brown
(DAB). All sections were counterstained with hematoxylin. Magnification ×400 (A–C) and ×630 (D).

Fig. 2 – LASP-1 knock-down. A total of 50,000 cells of the BT-20 breast cancer cell line were plated and allowed to grow for 24
h (until 40% confluency). siRNA LASP-1was transfected into cells in a concentration of 60 nM. Cells were harvested after 2, 19, 24
and 44 h of siRNA LASP-1 treatment. Total cell protein was analyzed by Western blot with antibodies against LASP-1, β-actin
and caspase-3. Control cells were treated with scrambled NP1 siRNA. Upper panel: densitometric quantification of the LASP-1
Western blot analysis standardized to β-actin.
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Silencing of LASP-1 in BT-20 and MCF-7 cells inhibits
proliferation in vitro

To study the possible role of LASP-1 in breast cancer, we
performed knock-down of the gene in the breast cancer cell
lines BT-20 and MCF-7 by siRNA. The effect of siRNA
transfection on the expression of LASP-1 was followed by
Western blot analysis 24 h and 44 h after transfection. The
amount of LASP-1 protein, standardized to β-actin, was
reduced up to 50% after 44 h (Fig. 2) compared to the scrambled
NP1 siRNA-transfected control cells. This corresponds to
around 50% of the cells being transfected successfully as
seen by immunofluorescence. In parallel to the protein knock-
down,weobserveda slowerproliferation rate in LASP-1 siRNA-
transfected cells compared to controls (Fig. 4A). The viability of
cells was similar in both cultures as trypan blue staining
detected no more than 5–8% dead cells in all experiments. To
test whether the decreased proliferation could be due to
apoptosis, we carried out a Western blot analysis with an
anti-caspase-3 antibody. The antibody recognizes both the
non-active pro-caspase-3 (38 kDa) and the active cleaved
caspase-3 protein (17 kDa). As shown in Fig. 2, treatment of
BT-20 cells with the LASP-1 siRNA duplex produced no active
caspase 3. To rule out caspase-independent apoptosis path-
ways, we also performed Annexin V staining. Analysis of the
FACS data (Fig. 3) showed no significant cell death in response
to LASP-1 siRNA treatment. Similar results were obtainedwith
MCF-7 cells (data not shown).

To ensure that the observed antiproliferative effectwas due
to specific knock-down of LASP-1, BT-20 cells were transfected
with siRNA against human Drosophila enabled protein (ENAH),
a protein also known to bind to zyxin in focal contacts and to be
involved in cell motility [16]. Western blot analysis revealed an
almost total loss of ENAH protein after ENAH siRNA treatment
in BT-20 cells without affecting cell proliferation (Fig. 5A),
whereas the knock-down of LASP-1 displayed a decreased
proliferation rate (Figs. 4A and 5B).

Western blot analysis was performed to further examine the
specificity of the siRNA treatment. Since LASP-1 acts as a
scaffolding protein, we assessed the protein levels of the LASP-
1 cytoskeletal interacting partners VASP, zyxin and actin as well
as the level of protein kinase A (known to phosphorylate LASP-1

and ENAH) before and after siRNA LASP-1 and siRNA ENAH
treatment. The data revealed no change in protein expression of
the interacting proteins after LASP-1 silencing (Figs. 2, 5 and 6).

Downregulation of LASP-1 induces G2 phase accumulation in
BT-20 cells

We next analyzed cell cycle distributions of siRNA-treated BT-20
cells using flow cytometry. After incubation with LASP-1 siRNA for
44h, theproportionof cells accumulated in theG2phaseamounted
to 33.6% (Fig. 4B), whereas the same cells treated with scrambled

Fig. 3 – LASP-1 siRNA treatment does not induce apoptosis. A total of 1 × 106 cells/ml was stained with Annexin V-FITC and
analyzed by FACS. No significantly higher rate of apoptosis (around 2%) was observed in siRNA LASP-1-treated BT-20 cells
compared to cells transfectedwith scrambled siRNANP1 orMetafectene alone (Control), respectively. PI, propidium iodide stain.

Fig. 4 – LASP-1 siRNA treatment impairs BT-20 cell
proliferation by inducing G2 phase accumulation. (A) BT-20 cells
were transfected with siRNA LASP-1 or scrambled NP1 siRNA
(Control). After the indicated periods of time, the cells were
harvested, and their total number was determined using a
Coulter counter. (B) FACS analysis of LASP-1 siRNA-treated
BT-20 cells shows G2 phase accumulation as opposed to the
same cells transfected with scrambled NP1 siRNA.
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Fig. 5 – Inhibition of cell proliferation is specific for LASP-1 silencing. BT-20 cells were treated with either ENAH siRNA (A)
or LASP-1 siRNA (B). 44 h post-transfection, cells were photographed, harvested and counted to visualise reduced proliferation
of siRNA LASP-1 treated cells (Cell culture). Western blot analysis was performed to assess the expression of LASP-1, ENAH,
VASP and PKA in cell extracts from siRNA LASP-treated and scrambled NP1 siRNA control cells showing comparable protein
levels between knock-down and control cells.

Fig. 6 – LASP-1 is required for zyxin localization at focal adhesions. Immunofluorescence images of LASP-1 (red) and zyxin
(green) in siRNA LASP-1-treated BT-20 cells. Cells were stained with primary polyclonal antibody against LASP-1 and with
mouse zyxin hybridoma supernatant. Western blot analysis was performed to assess LASP-1 and zyxin levels in cell extract
aliquots from LASP-1 siRNA and scrambled NP1 siRNA-treated BT-20 cells above.
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NP1 siRNA as a control had only 23.3% G2 phase proportion. Upon
mock transfection, 23.4% of cells arrested in G2 phase, while the G2
phase proportion was 22.8% without transfection. The S phase
fractions were comparable for LASP-1 and scrambled NP1 siRNA
treatments (38.0 and 33.5%, respectively). Similar results were
obtained in three independent experiments.

Silencing of LASP-1 results in reduced zyxin binding to focal
adhesions

LASP-1 has previously been shown to localize to sites of cell
adhesion and to interact with zyxin and actin [9,10]. To assess

whether silencing of LASP-1 affects these binding partners,
siRNA LASP-1-treated BT-20 cells were stainedwith phalloidin
green against actin or mouse anti-zyxin hybridoma superna-
tant and an FITC-labeled secondary antibody. In LASP-1,
siRNA-transfected cells zyxin was absent from the focal
adhesions, while the cellular level of zyxin remained un-
changed as confirmed by Western blot analysis (Fig. 6).
However, the absence of zyxin from focal contacts did not
lead to changes in focal adhesionmorphology as visualized by
vinculin staining (Fig. 7). Likewise, the actin filament was not
disturbed—less actin bundles, a blurred network of shorter
filaments and some F-actin aggregates are typical for highly

Fig. 7 – LASP-1 silencing is not influencing actin and vinculin localization. Immunofluorescence images of BT-20 cells and
HUVEC transfected with siRNA LASP-1 and stained with antibodies against LASP-1 (red), vinculin (green) and actin (green).
Shown are representative sections of a mixed population of both LASP-1 downregulated cells (arrows) and non-infected cells
demonstrating no changes in actin and vinculin distribution of cells lacking LASP-1.

Fig. 8 – LASP-1 is necessary for cell migration. BT-20 cells and PTK-2 cells were transfected with LASP-1 siRNA, scrambled NP1
siRNA (Control), wild-type LASP-1 pcDNA3 or empty vector (Control pcDNA3). Migrationwasmeasured over 4 h in a Transwell®

cell culture chamber. At least four chambers from three different experiments were analyzed. Each bars represent the
mean ± SD. Corresponding Western blots of control cells, LASP-1 siRNA-transfected cells or LASP-1 pcDNA3-transfected cells
probed with anti-LASP-1 polyclonal antibody are shown in the lower panel.
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metastatic cancer cell lines [17]. Similar results were obtained
with HUVEC demonstrating a loss of zyxin at the sites of focal
contacts without changing cellular zyxin protein levels (Fig. 6).
Interestingly, zyxin could still bedetectedalong theactin stress
fibers in HUVEC (co-localization of zyxin/actin not shown), an
observation that is consistent with earlier results demonstrat-
ing LASP-1 presence only in the focal adhesion plaques and
lamellopodia but not along the actin stress fibers [9,12].

Overexpression of LASP-1 in non-cancer cells increases cell
migration

Although the function of LASP-1 is not known, recent results
suggest an important role for the protein in cell adhesion and
migration [8,13]. To directly examine the function of LASP-1 on
cell motility, we performed migration experiments in a
modified Boyden chamber with BT-20 cells either transfected
with LASP-1 siRNA to downregulate the protein or BT-20 and
PTK-2 cells transiently transfected with wild-type LASP-1
pcDNA3 plasmid to overexpress the protein. Cells were seeded
in the upper chamber of a transwell polycarbonatemembrane.
After 4 h, those cells that had migrated through the porous
membrane were counted. Depletion of LASP-1 in BT-20 cells
strongly reduced cell migration (Fig. 8), while exogenous
expression of LASP-1 in non-cancer PTK-2 cells, containing
no detectable level of LASP-1, caused a significant increase in
cellmotility (Fig. 8), suggesting that LASP-1 is necessary for cell
migration.

Surprisingly, amplification of LASP-1 in BT-20 breast cancer
cells also inhibited cell motility (Fig. 8). Most likely, the
amplification of LASP-1 in cancer cells already overexpressing
this scaffolding protein (10-fold overexpression in case of BT-
20 compared to humanmesangial cells, data not shown) leads
to disrupted pathways and changes in the cytoskeleton
structure which influences cell migration. A similar effect of
reduced motility in cancer cells has been observed by Lin and
co-workers in MCF-7 cells [13]. Additional experiments to
transfect wild-type LASP-1 pcDNA3 plasmid in normal human
mesangial cells failed, while amplification of LASP-1 in
primary human umbilical vein endothelial cells (HUVEC)
exhibited only a slight but not significant increase in cell
migration, most likely due to the very slow motility rate of
these cells (Butt E; unpublished results).

Discussion

Cellmigration and the controlled assembly and disassembly of
focal adhesions are a highly integratedmultistepprocess and a
central feature in the molecular pathology of cancer [18]. To
date, more than 50 different adhesion proteins have been
identified that regulate the rate and organization of actin
polymerization and focal adhesion turnover in protrusion.
LASP-1 has been shown to interact with lipoma preferred
partner (LPP) and zyxin, both of which can influence actin
filament dynamics. The binding occurs between the C-
terminal SH3 domain of LASP-1 and the N-terminal proline-
rich domains of zyxin and LPP [8,13]. We found that depletion
of LASP-1 from breast cancer BT-20 cells strongly inhibits cell
migration, while amplification of wild-type LASP-1 in normal

kidney cells of rat kangaroo (PTK-2) stimulated cell motility,
pointing to an important role of the protein for metastasis.
However, cell adhesion and spreading are not affected by
LASP-1 silencing as demonstrated by Lin and co-workers [13].
In the same study, LASP-1 was shown to be involved in cell
migration upon growth factor stimulation, whereas treatment
of cells with apoptosis-inducing reagents resulted in phos-
phorylation of LASP-1 at Tyr-171 and relocalization of the
protein from focal adhesions to the periphery of the cell,
leading to cell death. In an earlier published work, over-
expression of LASP-1 mRNA in metastatic lymph nodes
derived from breast cancer patients and the co-amplification
of the gene together with HER-2/neu (c-erbB2) in 12% of
mammary tumorsweredemonstrated [4,19]. And just recently,
an IGF-I induced expression of the LASP-1 gene in MCF-7 cells
was described [20]. Concordant with the published findings on
mRNA level, our immunohistochemical data show LASP-1 to
be absent frombenignbreast gland epithelial cells,while LASP-
1 expression is detectable in DCIS and to very high levels in
breast carcinoma and lymph nodemetastasis. These own and
the published data are emphasizing the important role for
LASP-1 for cancer metastasis.

An additional observation underscores the importance of
LASP-1 in cancer. Recent studies have shown LASP-1 to be
transcriptionally upregulated in response to the morphogen
Sonic Hedgehog [21]. Disruption of the Hedgehog signaling
cascade leads to a number of developmental disorders and
plays a key role in the formation of a range of human cancers.
In this context, it is interesting to note that zyxin also has been
identified as a differentially transcribed gene in several types
of cancer by microarray technology [22].

Zyxin is localized primarily at focal adhesion plaques and
plays a central role in actin filament polymerization in
mammalian cells [23]. Silencing of zyxin in HeLa cells resulted
in significantly reduced actin stress fibers [24], whereas under
cyclic stretch zyxin only dissociated from focal contacts and
accumulated in thenucleus,without affecting vinculin or actin
filaments [25]. In our immunofluorescence experiments, we
observed a diffuse cytoplasmic localization of zyxin without
protein loss and without changes in either vinculin distribu-
tion or actin stress fiber organization after LASP-1 knock-
down, demonstrating the importance of LASP-1 for binding
and recruiting zyxin to focal adhesions. The decreased cell
motility after LASP-1 silencing can be explained by the
functional loss of zyxin as a scaffolding protein that facilitates
the formation ofmolecular complexes to promote site-specific
actin assembly required for cell movement. This is in
agreement with previous findings using a non-genetic ap-
proach and injecting a peptide derived from the N-terminus of
zyxin to displace zyxin from its normal subcellular location,
thus leading to reduced cell migration [26].

Recent work has shown that zyxin also shuttles through
the nucleus – most likely by association with other LIM
proteins – andmay regulate gene transcription [27–29]. During
mitosis, a fraction of zyxin becomes associatedwith the tumor
suppressor h-warts at the mitotic apparatus [30]. H-warts is a
key player in mitosis in mammalian cells, and loss of its
function disrupts normal cell cycle regulation possibly leading
to tumor development [31]. In BT-20 cells transfected with
LASP-1 siRNA, zyxin has been shown to dissociate from focal
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adhesion plaques and to distribute diffusely into the cyto-
plasm. It is therefore likely that part of zyxin enters the
nucleus, binds to h-warts and leads to G2 cell cycle arrest and
inhibits proliferation as observed after LASP-1 silencing.

In summary, our observations suggest an expanded role for
LASP-1 in proliferation and breast cancer cell migration.
Further studies will define the potential of LASP-1 antibody
as an independent marker for diagnosis of breast cancer as
well as a marker for prognosis of this disease.
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Overexpression of LASP-1 mediates migration and proliferation of
human ovarian cancer cells and influences zyxin localisation

TGP Grunewald1, U Kammerer2, C Winkler3, D Schindler4, A Sickmann3, A Honig2 and E Butt*,1

1Institute of Clinical Biochemistry and Pathobiochemistry, University of Wurzburg, Grombuehlstr. 12, D-97080 Wurzburg, Germany; 2Department of
Obstetrics and Gynecology, University of Wurzburg, Josef-Schneider-Str. 4, D-97080 Wurzburg, Germany; 3Protein Mass Spectrometry and Functional
Proteomics Group, Rudolf-Virchow-Center for Experimental Biomedicine, Versbacher Straße 9, 97078 Wurzburg, Germany and 4Department of Human
Genetics, University of Wurzburg, Biozentrum am Hubland, D-97074 Wurzburg, Germany

LIM and SH3 protein 1 (LASP-1), initially identified from human breast cancer, is a specific focal adhesion protein involved in cell
proliferation and migration. In the present work, we analysed the effect of LASP-1 on biology and function of human ovarian cancer
cell line SKOV-3 using small interfering RNA technique (siRNA).Transfection with LASP-1-specific siRNA resulted in a reduced
protein level of LASP-1 in SKOV-3 cells. The siRNA-treated cells were arrested in G2/M phase of the cell cycle and proliferation of
the tumour cells was suppressed by 60–90% corresponding to around 70% of the cells being transfected successfully as seen by
immunofluorescence. Moreover, transfected tumour cells showed a 40% reduced migration. LASP-1 silencing is accompanied by a
reduced binding of the LASP-1-binding partner zyxin to focal contacts without changes in actin stress fibre and microtubule
organisation or focal adhesion morphology as observed by immunofluorescence. In contrast, silencing of zyxin is not influencing cell
migration and had neither influence on LASP-1 expression nor actin cytoskeleton and focal contact morphology suggesting that
LASP-1 is necessary and sufficient for recruiting zyxin to focal contacts.The data provide evidence for an essential role of LASP-1 in
tumour cell growth and migration, possibly through influencing zyxin localization.
British Journal of Cancer (2007) 96, 296–305. doi:10.1038/sj.bjc.6603545 www.bjcancer.com
Published online 9 January 2007
& 2007 Cancer Research UK
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Ovarian cancer is the sixth most common cancer among women
worldwide, with estimated 190 000 new cases and 114 000 deaths
caused through this neoplasm each year (Parkin et al, 2001).
Epithelial ovarian cancer represents 90–95% of all ovarian
tumours (Auersperg et al, 2001; Quirk and Natarajan, 2005),
which is detected in 60.6% cases in advanced stages of disease
due to unspecific or absent symptoms in early stages. Although
tremendous efforts have been undertaken to improve the
therapeutic outcome, ovarian cancer still remains the most lethal
malignoma among gynaecological tumours of women in the
western world, given that only 35% of ovarian cancer patients
show a 5-year survival (Legge et al, 2005).
About 90% of all epithelial ovarian tumours are sporadic and are

diagnosed in women without germline mutations in known
susceptibility loci. However, the remaining cases are heritable.
Data from several international studies suggest that patients with a
loss of heterozygosity of the BRCA1 and BRCA2 genes, which are
located on 17q21 and found in hereditary forms of breast cancer,
have a 6–61-fold increased lifetime risk of ovarian cancer
compared with general population rates (Antoniou et al, 2003).

The Lim and SH3 domain protein LASP-1 was initially identified
from a cDNA library of breast cancer metastases. The gene was
also mapped to human chromosome 17q21 in a region that is
altered in 20–30% of human breast cancers (Tomasetto et al,
1995a, b), suggesting that it could play a role in tumour
development and metastasis of breast and ovarian cancer.
Human LASP-1 encodes a membrane-associated protein of 261

amino acids containing an N-terminal LIM domain, followed by
two actin-binding sites and a C-terminal src homology SH3
domain. The actin-binding domains in the core of the LASP-1
protein mediate an interaction between LASP-1 and actin at cell
membrane extensions, but not along the actin stress fibres
(Schreiber et al, 1998; Chew et al, 2002; Butt et al, 2003; Keicher
et al 2004; Nakagawa et al, 2006). The exact cellular function of
LASP-1 is still not known, but the protein has previously been
reported to localise within multiple sites of dynamic actin
assembly such as focal contacts, focal adhesions, lamellipodia,
membrane ruffles and pseudopodia (Tomasetto et al, 1995a; Chew
et al, 1998, 2000, 2002; Lin et al, 2004).
The SH3 domain at the C-terminus is involved in protein–

protein interactions through binding to proline-rich sequences,
specifically with zyxin, pallidin, lipoma preferred partner (LPP)
and vasodilator-stimulated phosphoprotein (VASP) (Keicher et al,
2004; Li et al, 2004; Rachlin and Otey, 2006).
Moreover, recent data showed that LASP-1 specifically interacts

via its nebulin-like repeats with Krp1, a focal adhesion protein
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involved in cell migration. Mutation analysis of LASP-1
demonstrates that its SH3 domain is necessary for pseudopodial
extension and invasion (Spence et al, 2006). Thus the protein–
protein interactions mediated by the LIM and SH3 domains can be
regarded as scaffolds for the formation of complexes of higher
order.
LASP-1 is a cAMP- and cGMP-dependent protein kinase

substrate with a specific phosphorylation site on serine 146 (Butt
et al, 2003). In rabbit parietal cells, elevation of intracellular cAMP
by forskolin induced a partial translocation of LASP-1 to the
apically directed F-actin-rich intracellular canaliculus, which is the
site of active HCl secretion (Chew et al, 1998, 2000). Beyond this,
phosphorylation on serine 146 resulted in translocation of the
protein from the membrane to the cytosol and was followed by
reduced cell migration (Butt et al, 2003). It has also been shown
that the SH3 domain of LASP-1 interacts with the N-terminus of
Ableson tyrosine kinase and that phosphorylation of LASP-1 at
tyrosine 171 is associated with the loss of LASP-1 from focal
adhesions and the initiation of cell death, but without changes in
dynamic of migratory processes (Lin et al, 2004).
In addition, LASP-1 expression has been reported to be

increased in metastatic breast cancer, suggesting that overexpres-
sion of LASP-1 may be involved in the migratory process of these
cells (Tomasetto et al, 1995a). Surprisingly, both increase and
depletion of LASP-1 in COS-7, HEK293 and MCF-7 cells inhibited
basal and growth factor-stimulated cell migration (Lin et al, 2004).
Interestingly, recent work has shown, that knock-down of LASP-

1 in metastatic breast cancer cell lines BT-20 and MCF-7 results in
a strong inhibition of proliferation and migration and leads to a
reduction of zyxin at focal contacts through absence of LASP-1
(Grunewald et al, 2006).
In this study we demonstrate that LASP-1 is highly over-

expressed in ovarian cancer tissue and metastatic ovarian cancer
cell lines. Silencing of the LASP-1 gene by RNA interference in the
ovarian cancer cell line SKOV-3 reduced cell proliferation and
cell migration in vitro without influencing the actin cytoskeleton,
microtubule polymerisation and focal adhesion morphology.
Furthermore, the knock-down of LASP-1 severely affected zyxin
localisation.

MATERIALS AND METHODS

Tissue samples

The studies were performed with approval of the Ethics Committee
of the University of Wurzburg. Tissue samples of 26 archival cases
each of serous epithelial ovarian carcinomas with and without
invasive components (obtained from the Department of Pathology
of the University of Wurzburg and reviewed by a pathologist to
confirm the diagnosis), as well as two samples of ascitic fluid
containing ovarian cancer cells of women with metastatic ovarian
cancer were analysed.

Immunohistochemistry

For immunohistochemical staining procedures, endogenous per-
oxidase was blocked by incubation in 0.1% hydrogen peroxide in
PBS for 5min. The slides were then incubated with the polyclonal
anti-LASP-1 antibody (Butt et al, 2003) diluted 1 : 1000 in ‘antibody
diluent’ (DAKO, Hamburg, Germany), followed by the EnVision/
rabbit detection system (DAKO). Histogreen (Linaris, Wertheim,
Germany) was used as the chromogen and cells were counter-
stained with haematoxylin (Sigma, Deisenhofen, Germany).

Cell culture conditions

Cell lines (SKOV-3, OAW-42 and PA-1) were obtained from the
Cell Line Services (Heidelberg, Germany) and grown at 1! 105

cellsml"1in a plastic cell culture flask in a humidified incubator at
371C under 5% CO2 atmosphere in RPMI 1640 medium (PAA,
Linz, Austria) containing 10% heat-inactivated foetal bovine serum
(PAA) and 1% streptomycin/ampicillin (Invitrogen, Karlsruhe,
Germany). For primary tumour cell culture, effusions (20–500ml)
were centrifuged, cell pellets washed twice in PBS (Biochrom,
Berlin, Germany),resuspended in RPMI 1640 medium supplemen-
ted as described and then seeded on the bottom of a cell culture
flask. After 1 h, all nonadherent (mostly leucocytes) cells were
washed away and adherent tumour cells cultured in RPMI 1640/
10%FCS/streptomycin/ampillicin. Contaminating fibroblasts were
deleted by trypsin treatment every other day and the remaining
tumour cell monolayer was cultured until homogeneous morphol-
ogy of the cells (passage 3–4) was reached. Cells were checked
routinely and found to be free of contamination by bacteria or
fungi.

small interfering RNA preparation and transfection

Expression of human LASP-1 was knocked down with siRNA
duplexes targeting the sequence 50-AAG GTG AAC TGT CTG GAT
AAG-30 (bases 49–69), 50-CUUAUCCAGACAGUUCACCdTdT-30.
The control siRNA 50-AGAGAUGUAGUCGCUCGCUdTdT-30 tar-
geting no known mRNA sequence was used as a control. Both
siRNAs were obtained from Dharmacon RNA Technologies
(Lafayette, CO, USA). The siControl nontargeting siRNA from
Dharmacon could not be used in our cell system owing to toxic
effects. A BLAST search against the complete human and murine
genome verified that the selected sequences were specific for the
respective target gene.
Cells in the exponential phase of growth were plated in six-well

plates at a density of 0.5! 105 cells/well, grown for 24 h and
transfected with 1 mg (60 nM) siRNA in reduced serum medium
OPTI-MEM-I (Gibco, Paisley, UK) at 30–50% confluence. For
the formation of the siRNA–lipid complexes, 3 ml siRNA stock
solution (20 mM) was diluted in 100ml OPTI-MEM, mixed with 3 ml
Metafectene (Biontex, Munich, Germany) in 100 ml OPTI-MEM and
incubated at room temperature for 17min. Subsequently, the
culture medium was removed and replaced by 1ml OPTI-MEM-I
and the siRNA–lipid complexes (1.2ml total volume). After 4 h
incubation at 371C, 1.2ml of cell culture medium with 20% foetal
bovine serum was added, and incubation was continued for 36–
56 h. For control cells, Metafectene alone (MOCK-transfection)
and/or 1 mg scrambled control-siRNA were used.
Silencing of zyxin was achieved with Hs_ZYX_1_HP validated

siRNA at a final concentration of 10 nM using HiPerfect transfec-
tion reagent (Qiagen, Hilden, Germany) according to the
manufacturer’s directions. For zyxin control experiments, non-
silencing control siRNA, Alexa Fluor 488 labelled, provided by
Quiagen, was used.
At least three independent experiments were performed for each

cell line, and representative results are shown.

Cell proliferation assay

For proliferation assay, cells were transfected as described. At the
time points indicated, cells were trypsinised and cell numbers were
determined by a Coulter counter (Beckman, Fullerton, CA, USA).
Experiments were performed in triplicate for each time point. Cell
viability was evaluated by counting trypan blue-positive and
-negative cells under a phase-contrast microscope (Zeiss Axiovert,
Aalen, Germany).

Western blot analysis

For Western blotting, cells were prepared by lysing in Laemmli
sample buffer and equal amounts of protein, according to the cell
count, were resolved by 12% SDS–PAGE. After blotting on
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nitrocellulose membrane and blocking with 3% nonfat dry milk in
10mM Tris, pH 7.5, 100mM NaCl and 0.1% (w/v) Tween 20, the
membrane was first incubated with the antibodies raised against
LASP-1 (1 : 10 000) (Butt et al, 2003), caspase-3 (1 : 1000) (New
England Biolabs, Frankfurt, Germany) or mouse zyxin hybridoma
supernatant (1 : 100; kind gift from Dr J Wehland, GBF Braunschweig,
Germany; Rottner et al, 2000), followed by incubation with
horseradish peroxidase-coupled goat anti-rabbit IgG or goat anti
mouse IgG (Biorad, Munich, Germany), diluted 1 : 5000 and
detection by ECL or ECL plus (Amersham Biosciences, Freiburg,
Germany). Protein bands were visualised by autoradiography.
Quantification of the signals was carried out by densitometry using
the Odyssey system (Li-Cor, Bad Homburg, Germany).

FACS

For cell cycle analysis, SKOV-3 cells were harvested 48 h after
LASP-1 siRNA transfection. The cells were pelleted and stained
with DAPI (Sigma) at a final concentration of 2 mgml"1 in
permeabilisation buffer containing 0.1 M Tris—HCl, pH 7.4,
0.154 M NaCl, 0.5mM MgCl2, 1mM CaCl2, 0.1% NP-40 and 0.2%
BSA in ddH2O for 30min at 41C in the dark. Bivariate flow
histograms were recorded on an analytical, dual-laser-equipped
cytometer (LSR1, Becton Dickinson Biosciences, Heidelberg,
Germany) using UV excitation. Resulting cell cycle distributions
were quantified with the MPLUS AV software (Phoenix Flow
Systems, San Diego, CA, USA). For technical details, see Schindler
and Hoehn (1999).

Two-dimensional-gelelectrophoreses and mass
spectrometry

Isoelectric focusing for two-dimensional (2D) gel electrophoresis
was performed using the Protean IEF cell from Biorad (Munich,
Germany) according to the instructions of the manufacturer. The
SKOV-3 homogenate (about 200 mg protein) was solubilised for
15min by sonication in 320ml lysis buffer containing 7M urea, 2 M

thiourea, 4% (w/v) CHAPS, 15mM DTT (electrophoresis grade),
0.5% carrier ampholytes, pH 3–10. Pellet homogenate was loaded
on a 17-cm immobilised IPG strip, pH 3–10 and resolved
overnight at 50V. Focussing was carried out for 1 h at 250V, 1 h
at 500V and 15 h at 7000V. After equilibration in 50mM Tris, pH
8.9, 6 M urea, 30% (w/v) glycerol and 2% (w/v) SDS, gels were
immediately applied to a vertical 10% SDS gel without a stacking
gel. Electrophoresis was carried out at 81C with a constant current
of 40mA per gel. Proteins were visualised by Coomassie Brilliant
Blue R-250 (Sigma) staining.
Gel pieces were washed two times alternating with 50mM

ammonium hydrogen carbonate buffer and 25mM ammonium
hydrogen carbonate buffer with 50% acetonitrile. Proteins were
reduced with 10mM DTT for 30min at 561C and subsequently
alkylated by incubation with 20mM iodoacetamide at room
temperature for 30min. Again samples were washed as described
before. Gel pieces were shrunken in a SpeedVac (Thermo Electron,
Dreieich, Germany) and rehydrated with 12.5 ng of trypsin in
50mM ammonium hydrogen carbonate buffer. Digestion was
performed by incubation at 371C overnight. The resulting peptides
were extracted by application of 15 ml of 5% formic acid for 10min.
Separation of complex peptide mixtures was achieved by using

reversed-phase chromatography. For nano-LC-ESI-MS/MS experi-
ments, a setup consisting of an autosampler (Famos, Dionex,
Idstein, Germany) and precolumn concentration (Switchos,
Dionex) before nano-LC separation (Ultimate, Dionex) was used.
Precolumns (300-mm inner diameter! 1-mm length) and separa-
tion columns (75 mm inner diameter! 150-mm length, C18
PepMapTM) were purchased from Dionex. Gradient elution was
performed using a linear gradient from 5 to 50% solvent B (84%
acetonitrile, 0.1% formic acid) during a period of 2 h. Solvent A

was 0.1% formic acid in water. Separation was followed by rinsing
the column with 95% B for 5min before equilibration to 5%
solvent B before the next separation cycle.
Peptides were directly eluted into an ESI mass spectrometer. For

mass spectrometric analysis, an ESI linear ion trap LTQ (Thermo
Electron, Dreieich, Germany), using distal-coated fused silica tips
(New Objective, Woburn, MA, USA), spray voltage was set around
1800V. A survey scan (m/z 350–2000) was followed by five MS/MS
scans fragmenting the five most intensive peptide signals.
Mass spectra were transformed into peak lists in dta or mgf

format using the wo in-house software solution raw2dta (Boehm
et al, 2004). Generated data were processed in parallel with the
search algorithms SequestTM, Version 27 (Yates et al, 1995) and
MascotTM, Version 2.1.6 (Perkins et al, 1999). For sequence
alignment, the swissprot database from October 2005 was used.
As fixed modification, carbamidomethylation of cysteine residues
was used, and as variable modification oxidation of methionine
residues was selected. As filter criteria for Sequest we accepted in
the first instance only positive peptide hits with a minimum cross-
correlation factor of 2.5, a CN value of 0.25, and a preliminary
ranking of one. For the Mascot algorithm the minimum score was
set to 40 for each peptide. Only protein hits that were identified
with these parameters by both algorithms and had at minimum
two identified peptides were accepted. Additionally, all significant
hits were revised manually.

Immunfluorescence

For immunfluorescence microscopy, cells were grown on glass
chamber slides, fixed in 4% (w/v) paraformaldehyde in PBS,
permeabilised with 0.1% (w/v) Triton X-100 in PBS and then
stained with affinity-purified LASP-1 antibody (1 : 2000, 1 h),
followed by secondary Cy3-labelled anti-rabbit antibody (1 : 500,
30min) (Dianova, Hamburg, Germany) or mouse zyxin hybridoma
supernatant (1 : 10, 2 h), followed by secondary Cy2 labelled goat-
anti mouse antibody (1 : 500, 1 h) (Dianova). Oregon green
phalloidin (Molecular Probes, Leiden, The Netherlands) was used
for actin staining. Tubulin was stained with an anti-a-tubulin
antibody (3 mgml"1) (Calbiochem, Darmstadt, Germany). DNA
was counterstained with DAPI (1 : 2500) (Calbiochem) for 2min.

Migration experiments

Cells were cultured in medium in 25 cm2 flasks to approximately
30–40% confluence and transfected with 10 nM zyxin siRNA or
30 nM LASP-1 siRNA (Keicher et al, 2004) using 10 ml Metafectene.
After 48 h incubation and overnight starving, 1! 105 cells in 100 ml
incubation medium (with 1mM MgCl2) were seeded in the upper
chamber of BSA-coated 8 mM pore size transwell Boyden chambers
(Corning star, Cambridge, MA, USA). Cells were allowed to
migrate through the porous membrane for 4 h at 371C. Cells
remaining at the upper surface were completely removed using a
cotton carrier. The lower surfaces of the membranes were then
stained in a solution of 1% (w/v) crystal violet in 2% ethanol for
30 s and rinsed afterwards in distilled water. Cell-associated crystal
violet was extracted by incubation in 10% acetic acid for 20min
and measured at 595 nm absorbance.

RESULTS

LASP-1 is overexpressed in ovarian cancer tissue

To assess the role of LASP-1 in ovarian cancer, we examined its
expression in 26 ovarian cancer samples from different patients
with or without invasive components. Immunohistochemistry
clearly allowed to localise LASP-1 expression in 14 out of 26
malignant ovarian tissues (53.8%). Strong immunoreactivity was
observed in nine cases (Figure 1A), whereas five probes showed a
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medium to low LASP-1 expression (Figure 1B) and 12 specimens
(46.2%) were considered to be LASP-1 negative.
Normal benign epithelial cells were LASP-1-negative in all

ovarian tissues even when malignant epithelial cancer cells close to
these normal epithelial cells displayed a strong positivity for LASP-
1 (Figure 1D).
In analogy to previous findings in myoepithelial cells of human

breast tissue (Grunewald et al, 2006), a massive overexpression in
vascular smooth muscle cells could be observed (Figure 1C).

LASP-1 is strongly expressed in ovarian cancer cell lines

In order to study the significance of LASP-1 overexpression in
ovarian cancer, we tested three ovarian cancer cell lines (SKOV-3,
OAV-42 and PA-1) as well as two primary cell cultures derived
from ascitic fluid of patients with peritoneal metastatic ovarian
cancer for LASP-1 expression. Loading was standardised to 3! 105

cells per slot and controlled by b-actin loading control signal
intensity.
Only the three ovarian cancer cell lines showed a high LASP-1

signal, whereas the two primary cell lines were LASP-1 negative
(Figure 2). Interestingly, the solid primary ovarian cancer tissue
preparations of these two patients showed intensive LASP-1
staining (data not shown).
We chose SKOV-3 cells as a cellular model for ovarian cancer

because in these cells the BRCA1 and BRCA2 genes, which are
located next to the LASP-1 gene on chromosome 17q21, are
upregulated (Rauh-Adelmann et al, 2000).

Silencing of LASP-1 in SKOV-3 cells inhibits proliferation
in vitro

To investigate the function of LASP-1 in the ovarian cancer cell
line SKOV-3, we performed a knock-down of the gene using the
powerful RNAi technique. The effect of siRNA transfection on the

expression of LASP-1 was followed by Western blot analysis 0, 24,
48 and 53 h after transfection. The amount of LASP-1 protein,
standardised to b-actin, was reduced up to 58% after 48 h (Figure 3,
lower panel) compared with the control siRNA-transfected control
cells. This corresponds to around 70% of the cells being
transfected successfully as seen by immunofluorescence. Parallel
to the protein knock-down, we observed a slower proliferation rate
in LASP-1 siRNA-transfected cells compared with control cells
(Figure 3, upper panel). The viability of cells was similar in both
cultures as trypan blue staining detected no more than 5–8% dead
cells in all experiments. To test whether the decreased proliferation
could be due to apoptosis, we carried out a Western blot analysis
with an anti-caspase-3 antibody. The antibody recognises both the
non-active pro-caspase-3 (38 kDa) and the active cleaved caspase-3
protein (17 kDa). As shown in Figure 4B, treatment of SKOV-3
cells with the LASP-1 siRNA duplex produced no active caspase-3,

Figure 1 Immunohistochemical staining of cancerous ovarian tissue. LASP-1 was detected using anti-LASP-1 rabbit polyclonal antibody in paraffin-
embedded tissue samples. (A) Ovarian cancer tissue with two cystic structures containing malignant cells, which are strongly LASP-1 positive (arrow), and an
LASP-1-negative lymphocytic inflammation (star). (B) Infiltrating tumour cells displaying medium LASP-1 expression (arrow). (C) Three ductus with
malignant epithelial cells and medium LASP-1 expression and a blood vessel in longitudinal cut with vascular smooth muscle cells showing strong LASP-1
positivity (arrow). (D) Two epithelial strata separated through connective tissue. The arrow indicates malignant LASP-1-positive and the star benign LASP-1-
negative epithelial cells. LASP-1þ cells are stained in brown (DAB). All sections were counterstained with haematoxylin.
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Figure 2 Western blot of different ovarian cancer cell lines. A total of
200 000 cells from established ovarian cancer cell lines (SKOV-3, OAW-42
and PA1), as well as primary cells derived from ascitic fluid of two patients
(ascitis T and B) with peritoneal metastatic ovarian cancer, were analysed
for LASP-1 expression by Western blot. Loading was controlled by b-actin
Western blot.
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indicating that apoptosis might not explain the reduced
proliferation.

Downregulation of LASP-1 induces G2 phase accumulation
in SKOV-3 cells

We next analysed cell cycle distributions of siRNA-treated SKOV-3
cells using flow cytometry. After incubation with LASP-1 siRNA
for 48 h, the proportion of cells accumulating in the G2 phase
amounted to 19.4% (Figure 4A), whereas the same cells treated
with Metafectene alone (MOCK transfection) as a control had only
6.7% G2 phase proportion. Conversely, the G1 fraction decreased
from 73.4% in MOCK-treated cells to 48% in LASP-1-silenced
SKOV-3 cells. The S phase fraction for siRNA LASP-1-treated cells
was 32.6% and for MOCK transfection 19.9%, respectively. Similar
results were obtained in three independent experiments indicating
that in LASP-1-silenced SKOV-3 cells mitotic progression cannot
proceed normally. However, immunfluorescence staining of
a-tubulin and DNA in the cells reveald no reduced tubulin
polymerisation in the LASP-1-silenced cells arrested in G2/M phase
(Figure 4C).

Knock-down of LASP-1 results in protein changes of
glycolytic metabolism and cell cycle regulation

Under LASP-1 knock-down conditions it might be necessary for
the maintenance of cellular steady state to upregulate alternative

proteins to overcome functionally the loss of LASP-1. We used 2D
gel electrophoreses to resolve the homogenate of SKOV-3 cells
before and after LASP-1 silencing. Subtractive analysis of the two
gels showed a high degree of similarity, however, at least five
proteins have been identified to become up-, or respectively
downregulated by LASP-1 silencing in three independent experi-
ments: pyruvate kinase (up), enolase-1 (down), glucose dehydro-
genase (down), 14-3-3 (up) and heat-shock protein (Hsp) 27 (up)
(Figure 5).

Silencing of LASP-1 results in reduced zyxin binding to
focal adhesions

LASP-1 has previously been shown to localise to sites of cell
adhesion and to interact with zyxin and actin (Chew et al, 2002;
Li et al, 2004). To assess whether silencing of LASP-1 affects these
binding partners, siRNA-treated SKOV-3 cells were stained with
phalloidin green against actin or mouse anti-zyxin hybridoma
supernatant. In LASP-1 siRNA-transfected cells, zyxin was absent
from focal adhesions, whereas the cellular level of zyxin remained
unchanged as confirmed by Western blot analysis (Figure 6).
However, absence of zyxin from focal contacts did not lead to
changes in focal adhesion morphology as visualized by vinculin
staining (Figure 6). Likewise, actin filament assembly was not
disturbed (Figure 6), despite less actin bundles, a blurred network
of shorter filaments and some F-actin aggregates are typical for
highly metastatic cancer cell lines (Liu et al, 2004).

Silencing of zyxin does not change LASP-1 localisation or
focal adhesion morphology

As knock-down of LASP-1 is altering zyxin localisation, we further
assessed the interaction of both proteins in a reverse experiment
by knocking down zyxin. Transfection of SKOV-3 with zyxin-
specific siRNA dramatically reduced zyxin expression down to
10–20%, while the cellular level of LASP-1 and b-actin remained
unchanged as confirmed by Western blot analysis (Figure 7).
Immunofluorescence of the zyxin-silenced cells illustrated lack
of zyxin at the focal adhesions without altering the position of
LASP-1 (Figure 7), suggesting that LASP-1 is necessary for the
positioning and recruiting of zyxin to focal adhesions. Other focal
adhesion proteins, for example, b-actin (Figure 7) and vinculin
(data not shown), were unaffected by the zyxin knock-down.

Silencing of LASP-1, but not of zyxin, decreases cell
migration

Although the exact function of LASP-1 is not known, recent results
suggest an important role for this protein in cell adhesion and
migration (Butt et al, 2003; Lin et al, 2004; Grunewald et al, 2006;
Nakagawa et al, 2006). To directly examine the relevance of
LASP-1 for cell motility we performed migration experiments in a
modified Boyden chamber with SKOV-3 cells either transfected
with LASP-1 siRNA or zyxin siRNA to downregulate the respective
protein. Cells were seeded in the upper chamber of a transwell
polycarbonate membrane. After 4 h, those cells that had migrated
through the porous membrane were counted. Depletion of LASP-1
in SKOV-3 cells strongly reduced cell migration, while zyxin
knock-down had no influence on cell migration (Figure 8)
suggesting that LASP-1 acts as a positive regulator for cell motility.

DISCUSSION

Cell migration and controlled assembly and disassembly of focal
adhesions are highly integrated multistep processes and a central
feature in the molecular pathology of cancer (Ridley et al, 2003).
To date, more than 50 different adhesion proteins that regulate the
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Figure 3 Silencing of LASP-1 in SKOV-3 cells inhibits proliferation. A
total of 40 000 cells of the SKOV-3 cells were plated and allowed to grow
for 24 h (up to 40% confluence). Small interfering RNA LASP-1 was
transfected into cells in a concentration of 60 nM. Cells were harvested after
0, 24, 44 and 53 h of siRNA treatment. Control cells were treated with
control siRNA. Upper panel: treatment with siRNA LASP-1 impairs SKOV-
3 cell proliferation. After the indicated periods of time, the cells were
harvested, and their total number was determined using a Coulter counter.
Lower panel: Densitometric quantification and Western blot analysis of
LASP-1 expression standardised to b-actin at the corresponding time
points shows a reduction of LASP-1 expression of about 60% 44 h after
transfection with siRNA LASP-1.
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rate and organisation of actin polymerisation and focal adhesion
turnover in protrusion have been identified.
In earlier publications, overexpression of LASP-1 mRNA in

metastatic lymph nodes derived from breast cancer patients, as
well as the co-amplification of the gene together with HER-2/neu
(c-erbB2) were demonstrated (Chew et al, 1998; Legge et al, 2005).
Two additional observations underscore the importance of LASP-1
in cancer. First, altered expression of LASP-1 is associated with
the MLL gene in acute myeloid leukaemia (Strehl et al, 2003).
Second, recent studies have shown LASP-1 to be transcriptionally
upregulated in response to the morphogen Sonic Hedgehog
(Ingram et al, 2002).
Consistent with these data, we just recently described the

overexpression of LASP-1 to very high levels in breast carcinomas
and lymph node metastases (Grunewald et al, 2006). The
functional significance of LASP-1 in cancer metastasis is further
supported by the presented data showing high LASP-1 expression

in ovarian cancer tissue and reduced cell migration in ovarian
cancer cells depleted of LASP-1. The absence of LASP-1 in cultures
of primary ovarian cancer cells in contrast to established cell lines
may reflect a downregulation of LASP-1 in the nonmigratory
floating ascites cells which will be reverted after several passages of
adherent cell culture. Comparable observations are published for
LASP-1 in human mesenchymal stem cells showing an upregula-
tion of the protein during later passages (Sun et al, 2006).
During LASP-1 silencing we observed reduced cell cycle

progression and an induced G2/M phase accumulation of the cells
without disrupted normal mitotic microtubule polymerisation.
This was accompanied by the upregulation and downregulation
of several proteins. The differentially expressed proteins pyruvate
kinase, enolase-1 and glucose dehydrogenase are part of the
glycolytic metabolism and their regulation correlates well with
the cell cycle arrest in G2/M after LASP-1 silencing. Furthermore,
pyruvate kinase and glucose dehydrogenase have been suspected
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to be highly important for tumour cell metabolism (Altenberg and
Greulich, 2004). Pyruvat kinase is one of the proteins to be
upregulated in cancer cells gaining energy by means of aerobic
glycolysis, which is a characteristic of a number of cancer entities
(Gatenby and Gillies, 2004). In addition, pyruvat kinase has been
identified as a proteomic marker of cancer progression in breast
cancer (Isidoro et al, 2005). The glycolytic enzyme enolase-1 as
well as HSP27, two additional proteins identified in the 2D-gel
experiments, are associated with high metastatic activity in breast
cancer cells (Espana et al, 2005; Zhang et al, 2005).
14-3-3, found to be upregulated after LASP-1 depletion in

ovarian cancer cells, has been implicated in cell cycle deregulation.
The 14-3-3 proteins are a family of highly conserved DNA-binding
proteins, which associate with the centrosomes during mitosis and
are inhibitors of G2/M progression at the mitotic and G2 cell cycle
checkpoint (Pietromonaco et al, 1996; Wang and Shakes, 1996;
Hermeking et al, 1997; Peng et al, 1997; Alvarez et al, 2002).
Overexpression of 14-3-3 led to cell cycle arrest in cell culture
models (Tzivion et al, 2006) and, therefore, might contribute to the
observed G2 arrest in ovarian cancer cells lacking LASP-1.
Heat-shock proteins are molecular chaperons and are induced

during cellular stress. Upregulation of HSP27 after LASP-1
silencing correlates well with increased survival by inhibiting key
effectors of the apoptotic pathway (Concannon et al, 2003).
So far, the identified proteins are regulated in response to cell

cycle arrest, but do not substitute for LASP-1 after silencing.
Recently, several LASP-1-binding partners have been identified.

Along with zyxin (Li et al, 2004) and actin (Schreiber et al, 1998),
LASP-1 interacts with Krp1 (Spence et al, 2006), palladin (Rachlin
and Otey 2006), lipoma-preferred partner (LPP) and VASP
(Keicher et al, 2004), which all can influence actin filament
dynamics and pseudopodial elongation. In the case of palladin,
LPP and zyxin, the binding occurs between the C-terminal SH3
domain of LASP-1 and the N-terminal proline-rich domains of
these proteins, whereas in the case of Krp1, binding is observed
between the nebulin-like repeats of LASP-1 and the N-terminal
BTB/POZ domain of Krp1. The interaction of LASP-1 and Krp1 is
crucial for pseudopodial elongation in fibroblasts in absence of
fibronectin and results in their colocalisation with F-actin at the
tips of extending pseudopodia (Spence et al, 2006).
Zyxin is localised primarily at focal adhesion plaques and plays

a central role in actin filament polymerisation in mammalian cells
(Beckerle, 1997).

Silencing of zyxin in HeLa cells resulted in significantly
reduced actin stress fibres (Griffith et al, 2005), whereas under
cyclic stretch zyxin only dissociated from focal contacts and
accumulated in the nucleus, without affecting vinculin or actin
filaments (Cattaruzza et al, 2004). Recent data show that in
genetically zyxin-deficient fibroblasts, focal adhesions are depleted
from Mena and VASP, and that cells lacking zyxin display deficits
in actin cytoskeleton remodelling (Hoffman et al, 2006). In our
immunflourescence experiments with LASP-1-deficient SKOV-3
cells, we observed a diffuse cytoplasmic localiation of zyxin
without protein loss and without changes in neither vinculin
distribution nor actin stress fibre organisation, emphasising the
importance of LASP-1 for binding and recruiting zyxin to focal
adhesions.
The loss of zyxin at the sites of focal contacts without changing

cellular zyxin protein levels is not restricted to cancer cells, but was
also observed in human umbilical vein endothelial cells (Grune-
wald et al, 2006). Interestingly, in these cells, zyxin could still be
detected along the actin stress fibres, indicating the potential
existence of another zyxin-recruiting protein along actin stress
fibres since earlier results detected LASP-1 only in the focal
adhesion plaques (Chew et al, 2002; Butt et al, 2003).
In our zyxin knock-down experiments, neither changes in

LASP-1 localisation, actin cytoskeleton, microtubule polymerisa-
tion nor vinculin distribution were detectable suggesting that zyxin
does not change focal adhesion morphology. This is concordant
with the fact that genetically zyxin-deficient fibroblasts show even
enhanced adhesion to surface and increased integrin expression
(Hoffman et al, 2006). In synopsis, our LASP-1 and zyxin silencing
studies have demonstrated that LASP-1 is necessary for recruiting
zyxin to focal contacts.
The decreased cell motility after LASP-1 silencing can be

explained by the functional loss of zyxin as a scaffolding protein
that facilitates the formation of molecular complexes to promote
site-specific actin assembly required for cell migration. This is in
agreement with previous findings using a nongenetic approach
and injecting a peptide derived from the N-terminus of zyxin to
displace zyxin from its normal subcellular location thus leading
to reduced cell migration (Drees et al, 1999). On the other hand,
the knock-down of zyxin in SKOV-3 cells had no influence on cell
migration while genetically zyxin-deficient fibroblasts display
enhanced migration (Hoffman et al, 2006). These contrary effects
have not been fully elucidated yet.

14-3-3
Enolase-1

Glucose 
dehydrogenase

Figure 5 Two-dimensional gel of SKOV-3 proteins after LASP-1 silencing. Sections are showing differences between cellular proteins from control (upper
panel) and LASP-1 knock-down (lower panel) SKOV-3 cells. Proteins were separated on nonlinear IPG-strips, pH 3–10. Two dimensional gels were stained
with Coomassie blue. Proteins were identified following tryptic digestion and analysis of the resulting peptides by ESI-MS/MS.
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Recent work has shown that zyxin also shuttles through the
nucleus – most likely by association with other LIM proteins – and
may regulate gene transcription (Nix et al, 2001; Wang and
Gilmore, 2003; Kadrmas and Beckerle, 2004). During mitosis, a
fraction of zyxin becomes associated with the tumour suppressor
h-warts at the mitotic apparatus (Hirota et al, 2000). h-warts is a
key player in mitosis in mammalian cells and loss of its function
disrupts normal cell cycle regulation, possibly leading to tumour

development (Iida et al, 2004). In SKOV-3 cells transfected with
LASP-1 siRNA, zyxin has been shown to dissociate from focal
adhesion plaques and to distribute diffusely into the cytoplasm. It
is, therefore, likely that part of zyxin enters the nucleus, binds to
h-warts and leads to G2 cell cycle arrest and inhibition of
proliferation as observed after LASP-1 silencing.
Interestingly, in Ewing tumour cells, zyxin is only expressed at

very low levels and remains diffusely distributed throughout the
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Figure 6 LIM and SH3 protein 1 (LASP-1) is required for zyxin localisation at focal adhesions. Immunfluorescent images of LASP-1, zyxin, vinculin and
b-actin in siRNA LASP-1-treated SKOV-3 cells. Focal adhesions are marked with white arrows. Positions of downregulated cells are marked with stars.
Western blot (WB) analysis to assess LASP-1 and zyxin levels in the LASP-1 siRNA and control siRNA-treated SKOV-3 cells were performed from the
corresponding immunofluorescent cell extracts.
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cytoplasm instead of concentrating in actin-rich dynamic struc-
tures. Zyxin gene transfer into EWS-FLI1-transformed fibroblasts

elicits reconstitution of zyxin-rich focal adhesions and leads to
decreased cell motility and inhibition of anchorage independent
tumour growth, indicating that zyxin has tumour suppressor
activity in these cells (Amsellem et al, 2005).
Similar to findings in human breast cancer (Grunewald et al,

2006), our immunofluorescence experiments have shown that
absence of LASP-1 in focal contacts dramatically influences zyxin
distribution. In reverse, tumour cells, that are overexpressing
LASP-1, could functionally inhibit zyxin from shuttling into the
nucleus and acting as a tumour suppressor through increased
recruiting of zyxin to focal contacts by LASP-1. In summary, our
observations suggest an expanded role for LASP-1 in proliferation
and cancer cell migration. Further studies will define the potential
of LASP-1 as an independent marker for diagnosis of cancer, as
well as a marker for prognosis of this disease.
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Butt E, Gambaryan S, Göttfert N, Galler A, Marcus K, Meyer HE (2003)
Actin binding of human LIM and SH3 protein is regulated by cAMP- and

! -Actin

Zyxin

Z
yx

in
 s

iR
N

A

LASP-1

C
on

tr
ol

 s
iR

N
A

! -Actin

LASP-1

Zyxin

Zyxin

Figure 7 Zyxin silencing is not influencing actin and LASP-1 localisation. Immunoflourescent images of SKOV-3 cells transfected with siRNA zyxin and
stained with antibodies against LASP-1 and b-actin. Shown are representative sections of a mixed population of both, zyxin downregulated cells and
nontransfected cells, demonstrating-no changes in actin and LASP-1 distribution of cells lacking zyxin.

M
ig

ra
tio

n 
(%

)

WB Zyxin

Control LASP-1 Control Zyxin
siRNA siRNA siRNA siRNA

WB LASP-1

0

50

100

0

50

100

Figure 8 LIM and SH3 protein 1 is necessary for cell migration. SKOV-3
cells were transfected with LASP-1 siRNA, zyxin siRNA or control siRNA.
Migration was measured over 4 h in a Transwells cell culture chamber.
At least four chambers from three different experiments were analysed
(P-values significantly different from that of Control by t-test; Po0.001).
Each bar represents the mean7s.d. Corresponding Western blots of
control cells and LASP-1 siRNA-transfected or zyxin siRNA-transfected
cells are shown in the lower panel.

LASP-1 in human ovarian cancer
TGP Grunewald et al

304

British Journal of Cancer (2007) 96(2), 296 – 305 & 2007 Cancer Research UK

M
o
le
cu

la
r
D
ia
g
n
o
stics



cGMP-dependent protein kinase phosphorylation on serine 146. J Biol
Chem 278: 15601–15607

Cattaruzza M, Lattrich C, Hecker M (2004) Focal adhesion protein zyxin is
a mechanosensitive modulator of gene expression in vascular smooth
muscle cells. Hypertension 43: 726–730

Chew CS, Chen X, Parente JA, Tarrer S, Okamoto C, Qin HY (2002) Lasp-1
binds to non-muscle F-actin in vitro and is localized within multiple sites
of dynamic actin assembly in vivo. J Cell Sci 115: 4787–4799

Chew CS, Parente JA, Chen X, Chaponnier C, Cameron RS (2000) The LIM
and SH3 domain containing protein, lasp-1, may link the cAMP-
signaling pathway with dynamic membrane restructuring activities in
ion transporting epithelia. J Cell Sci 113: 2035–2045

Chew CS, Parente JR, Zhou CJ, Baranco E, Chen X (1998) Lasp-1 is a
regulated phosphoprotein within the cAMP-signaling pathway in the
gastric parietal cell. J Physiol 275: C56–C67

Concannon CG, Gorman AM, Samali A (2003) On the role of Hsp27 in
regulating apoptosis. Apoptosis 8: 61–70

Drees BE, Andrews KM, Beckerle MC (1999) Molecular dissection of zyxin
function reveals its involvement in cell motility. J Cell Biol 147: 1549–
1560

Espana L, Martin B, Aragues R, Chiva C, Oliva B, Andreu D, Sierra A (2005)
Bcl-x(L)-mediated changes in metabolic pathways of breast cancer cells:
from survival in the blood stream to organ-specific metastasis. Am J
Pathol 167: 1125–1137

Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis?
Nat Rev Cancer 4: 891–899

Griffith E, Coutts AS, Black DM (2005) RNAi knock-down of the focal
adhesion protein TES reveals its role in actin stress fibre organisation.
Cell Mot Cytoskelt 60: 140–152

Grunewald TG, Kammerer U, Schulze E, Schindler D, Honig A, Zimmer M,
Butt E (2006) Silencing of LASP-1 influences zyxin localization, inhibits
proliferation and reduces migration in breast cancer cells. Exp Cell Res
312: 974–982

Hermeking H, Lengauer C, Polyak K, He TC, Zhang L, Thiagalingam S,
Kinzler KW, Vogelstein B (1997) 14-3-3 sigma is p53-regulated inhibitor
of G2/M progression. Mol Cell 1: 3–11

Hirota T, Morisaki T, Nishiyama Y, Marumoto T, Tada K, Hara T, Masuko
N, Inagaki M, Hatakeyama K, Saya H (2000) Zyxin, a regulator of actin
filament assembly, targets the mitotic apparatus by interacting with
h-warts/LATS1 tumour suppressor. J Cell Biol 5: 1073–1086

Hoffman LM, Jensen CJ, Kloeker S, Wang CL, Yoshigi M, Beckerle MC (2006)
Gentic ablation of zyxin causes Mena/VASP mislocalization, increased
motility, and deficits in actin remodelling. J Cell Biol 172: 771–782

Iida S, Hirota T, Morisaki T, Marumoto T, Hara T, Kuninaka S, Honda S,
Kosai K, Kawasuji M, Pallas DC, Saya H (2004) Tumour suppressor
WARTS ensures genomic integrity by regulating both mitotic progres-
sion and tetraploidy checkpoint function. Oncogene 23: 5266–5274

Isidoro A, Casado E, Redondo A, Acebo P, Espinosa E, Alonso AM, Cejas P,
Hardisson D, Fresno Vara JA, Belda-Iniesta C, Gonzales-Baron M,
Cuezva JM (2005) Breast carcinomas fulfill the Warburg hypothesis and
provide metabolic markers of cancer prognosis. Carcinogenesis 26:
2095–2104

IngramWJ, Wicking CA, Grimmond SM, Forrest AR, Wainwright BJ (2002)
Novel genes regulated by sonic Hedgehog in pluripotent mesenchymal
cells. Oncogene 21: 8196–8205

Kadrmas JL, Beckerle MC (2004) The LIM domain: from the cytoskeleton to
the nucleus. Nat Rev Mol Cel Biol 5: 920–931

Keicher C, Gambaryan S, Schulze E, Marcus K, Meyer HE, Butt E (2004)
Phosphorylation of mouse LASP-1 on threonine 156 by cAMP-and
cGMP-dependent protein kinase. Biochem Biophys Res Com 24: 308–316

Legge F, Ferrandina G, Salutari V, Scambia G (2005) Biological
characterization of ovarian cancer: prognostic and therapeutic implica-
tions. Ann Oncol 16: 95–101

Li B, Zhuang LB, Trueb B (2004) Zyxin interacts with the SH3 domains of
the cytoskeletal proteins LIM-nebulette and Lasp-1. J Bio Chem 279:
20401–20410

Lin HY, Park ZY, Lin D, Brahmbhatt AA, Rio M, Yates JR, Klemke RL
(2004) Regulation of cell migration and survival by focal adhesion
targeting of LASP-1. J Cell Biol 165: 421–432

Liu CR, Ma CS, Ning JY, You JF Liao SL, Zheng J (2004) Differential
thymosin beta 10 expression levels and actin filament organisation in
tumour cell lines with different metastatic potential. Chin Med J 117:
213–218

Nakagawa H, Terasaki AG, Suzuki H, Ohashi K, Miyamoto S (2006) Short-
term retention of actin filament binding proteins on lamellipodial actin
bundles. FEBS Lett 580: 3223–3228

Nix DA, Fradelizi J, Bockholt S, Menichi B, Louvard D, Friedrich E,
Becherle MC (2001) Targeting of zyxin to sites of actin membrane
interaction and to nucleus. J Biol Chem 276: 34759–34767

Parkin DM, Bray F, Pisani P (2001) Estimating the world cancer burden:
Globocan 2000. Int J Cancer 94: 153–156

Peng CY, Graves PR, Thoma RS, Wu Z, Shaw AS, Piwnica-Worms H
(1997) Mitotic and G2 checkpoint control: regulation of 14-3-3
protein binding by phosphorylation of Cdc25C on serine-216. Science
277: 1501–1505

Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based
protein identification by searching sequence databases using mass
spectrometry data. Electrophoresis 20: 3551–3567

Pietromonaco SF, Seluja GA, Aitken A, Elias L (1996) Association of 14-3-3
proteins with centrosomes. Blood Cells Mol Dis 22: 225–237

Quirk JT, Natarajan N (2005) Ovarian cancer incidnce in the United States,
1992–1999. Gynecol Oncol 97: 519–523

Rachlin AS, Otey CA (2006) Identification of pallidin isoforms and
characterization of an isoform-specific interaction between LASP-1 and
pallidin. J Cell Sci 119: 995–1004

Rauh-Adelmann C, Kin-Mang L, Sabeti N, Long JP, Mok SC, Ho S (2000)
Altered expression of BRCA1, BRCA2 and newly identified BRCA2 exon
12 deletion variant in malignant human ovarian, prostate, and breast
cancer cell lines. 28: 236–246

Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G,
Parsons JT, Horwitz AR (2003) Cell migration: integrating signals from
front to back. Science 302: 1704–1709

Rottner K, Krause M, Gimona M, Small JV, Wehland J (2000) Zyxin is not
colocalized with VASP at lamellipodial tips and exhibits different
dynamics to vinculin, paxillin and VASP in focal adhesions.Mol Biol Cell
12: 3103–3113

Schindler D, Hoehn H (1999) Flow cytometric testing for syndromes with
chromosomal instability. In Diagnostic Cytogenetics Wegner RD (ed) pp
269–281. Berlin: Springer

Schreiber V, Moog-Lutz C, Regnier CH, Chenard MP, Boeuf H, Vonesch JL,
Tomasetto C, Ri MC (1998) Lasp-1, a novel type of actin-binding protein
accumulating in cell membrane extensions. Mol Med 4: 675–687

Spence HJ, McGarry L, Chew CS, Carragher NO, Scott-Carrhager LA, Yuan
Z, Croft DR, Olson MF, Frame M, Ozanne BW (2006) AP-1 differentially
expressed proteins Krp1 and fibronectin cooperatively enhance Rho-
ROCK-independent mesenchymal invasion by altering the function,
localization, and activity of nondifferentially expressed proteins.Mol and
Cell Biol 26: 1480–1495

Strehl S, Borkhardt A, Slany R, Fuchs UE, König K, Haas OA (2003) The
human LASP1 gene is fused to MLL in an acute myeloid leukemia with
t(11;17)(q23;q21). Oncogene 22: 157–160

Sun HJ, Bahk YY, Choi YR, Shim JH, Han SH, Lee JW (2006) A proteomic
analysis during seriel subculture and osteogenic differentiation of human
mesenchymal stem cells. J Orthop Res 24: 2059–2071

Tomasetto C, Moog-Lutz C, Regnier CH, Schreiber V, Basset P, Rio MC
(1995b) Lasp-1 (MLN 50) defines a new LIM protein subfamily
characterized by the association of LIM and SH3 domains. FEBS Lett
373: 245–249

Tomasetto C, Regnier C, Moog-Lutz C, Mattei MG, Chenard MP, Lidereau
R, Basset P, Rio MC (1995a) Identification of four novel human genes
amplified and overexpressed in breast carcinoma and localized to the
q11–q21.3 region of chromosome 17. Genomics 28: 367–376

Tzivion G, Gupta VS, Kaplun L, Balan V (2006) 14-3-3 proteins as potential
oncogenes. Semin Cancer Biol 16: 203–213

Wang W, Shakes DC (1996) Molecular evolution of the 14-3-3 protein
family. J Mol Evol 43: 384–398

Wang Y, Gilmore TD (2003) Zyxin and paxillin proteins: focal adhesion
plaque LIM domain proteins go nuclear. Biochem Biophys Acta 1593:
115–120

Yates III JR, Eng JK, McCormack AL, Schieltz D (1995) Method to correlate
tandem mass spectra of modified peptides to amino acid sequences in
the protein database. Anal Chem 67: 1426–1436

Zhang D, Tai LK, Wong LL, Chiu LL, Sethi SK, Koay ES (2005) Proteomic
study reveals that proteins involved in metabolic and detoxification
pathways are highly expressed in HER-2/neu-positive breast cancer.
Mol Cell Proteomics 4: 1686–1696

LASP-1 in human ovarian cancer
TGP Grunewald et al

305

British Journal of Cancer (2007) 96(2), 296 – 305& 2007 Cancer Research UK

M
o
le
cu

la
r
D
ia
g
n
o
st
ic
s



BioMed Central

Page 1 of 10
(page number not for citation purposes)

BMC Cancer

Open AccessResearch article
Nuclear localization and cytosolic overexpression of LASP-1 
correlates with tumor size and nodal-positivity of human breast 
carcinoma
Thomas GP Grunewald†1, Ulrike Kammerer†2, Michaela Kapp2, 
Matthias Eck3, Johannes Dietl2, Elke Butt*1 and Arnd Honig2

Address: 1Institute of Clinical Biochemistry and Pathobiochemistry, University of Wuerzburg, Grombuehlstr. 12, D-97080 Wuerzburg, Germany, 
2Department of Obstetrics and Gynecology, University of Wuerzburg, Josef-Schneider-Str. 4, D-97080 Wuerzburg, Germany and 3Institute of 
Pathology, University of Wuerzburg, Josef-Schneider-Str. 2, D-97080 Wuerzburg, Germany

Email: Thomas GP Grunewald - Thgruenewald@web.de; Ulrike Kammerer - frak057@mail.uni-wuerzburg.de; 
Michaela Kapp - M.Kapp@mail.uni.wuerzburg.de; Matthias Eck - Matth.Eck@gmx.de; Johannes Dietl - frauenklinik@mail.uni-wuerzburg.de; 
Elke Butt* - butt@klin-biochem.uni-wuerzburg.de; Arnd Honig - arnd_honig@hotmail.com
* Corresponding author    †Equal contributors

Abstract
Background: LIM and SH3 protein 1 (LASP-1), initially identified from human breast cancer, is a specific focal
adhesion protein involved in cell proliferation and migration, which was reported to be overexpressed in 8–12 %
of human breast cancers and thought to be exclusively located in cytoplasm.

Methods: In the present work we analyzed the cellular and histological expression pattern of LASP-1 and its
involvement in biological behavior of human breast cancer through correlation with standard clinicopathological
parameters and expression of c-erbB2 (HER-2/neu), estrogen- (ER) and progesterone-receptors (PR). For this
purpose immunohistochemical staining intensity and percentage of stained cells were semi-quantitatively rated to
define a LASP-1 immunoreactive score (LASP-1-IRS). LASP-1-IRS was determined in 83 cases of invasive ductal
breast carcinomas, 25 ductal carcinomas in situ (DCIS) and 18 fibroadenomas. Cellular LASP-1 distribution and
expression pattern was visualized by immunofluorescence and confocal microscopy and assessed through
separate Western blots of nuclear and cytosol preparations of BT-20, MCF-7, MDA-MB231, and ZR-75/1 breast
cancer cells.

Results: Statistical analysis revealed that the resulting LASP-1-IRS was significantly higher in invasive carcinomas
compared to fibroadenomas (p = 0.0176). Strong cytoplasmatic expression of LASP-1 was detected in 55.4 % of
the invasive carcinomas, which correlated significantly with nuclear LASP-1-positivity (p = 0.0014), increased
tumor size (p = 0.0159) and rate of nodal-positivity (p = 0.0066). However, levels of LASP-1 expression did not
correlate with average age at time point of diagnosis, histological tumor grading, c-erbB2-, ER- or PR-expression.

Increased nuclear localization and cytosolic expression of LASP-1 was found in breast cancer with higher tumor
stage as well as in rapidly proliferating epidermal basal cells. Confocal microscopy and separate Western blots of
cytosolic and nuclear preparations confirmed nuclear localization of LASP-1.

Conclusion: The current data provide evidence that LASP-1 is not exclusively a cytosolic protein, but is also
detectable within the nucleus. Increased expression of LASP-1 in vivo is present in breast carcinomas with higher
tumor stage and therefore may be related with worse prognosis concerning patients' overall survival.
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Background
Breast cancer is the most frequent malignancy among
women and ranks first as cause of cancer deaths among
women at ages between 20 to 59 years [1]. Despite the use
of endocrine therapy, systemic chemotherapy and novel
approaches such as treatment with trastuzumab (Hercep-
tin®), outcome of metastatic breast cancer has not substan-
tially improved. Metastatic disease remains generally
incurable with a median survival time of only a few years
[2,3]. Thus, new therapeutic modalities are required to
improve the outcome. Genes that are overexpressed in
metastatic cancer cells are promising targets for novel
therapeutic agents.

The LIM and SH3 domain protein LASP-1 was initially
identified from a cDNA library of breast cancer metas-
tases. The gene was mapped to human chromosome
17q21 in a region that is altered in 20–30% of human
breast cancers [4,5], suggesting that it could play a role in
tumor development and metastases of breast cancer.

Human LASP-1 encodes a membrane-bound protein of
261 amino acids containing one N-terminal LIM domain,
followed by two actin-binding sites and a C-terminal src
homology SH3 domain. The actin-binding domains in
the core of LASP-1 mediate an interaction between LASP-
1 and actin at cell membrane extensions, but not along
actin stress fibers [6-10].

Recent data showed an additional interaction of LASP-1
via its nebulin like actin-binding repeats with kelch
related protein 1 (Krp1), a focal adhesion protein
involved in cell migration. The exact cellular function of
LASP-1 is not known yet, but the protein has previously
been reported to localize within multiple sites of dynamic
actin assembly such as focal contacts, focal adhesions,
lamellipodia, membrane ruffles and pseudopodia
[4,7,11-13].

The C-terminal SH3 domain of LASP-1 is involved in pro-
tein-protein interactions through binding to proline-rich
sequences, specifically with zyxin, palladin, lipoma pre-
ferred partner (LPP) and vasodilator stimulated phospho-
protein (VASP) [9,14,15]. Mutation analysis of LASP-1 led
to the conclusion that its SH3 domain is necessary for
pseudopodial extension and invasion [16].

Although no binding partner for the LIM domain of LASP-
1 has been identified so far, previous data have shown
that the zinc-finger module in the LIM domain of LASP-1
is an morphologically and perhaps functionally inde-
pendent folding-unit of this protein harboring the possi-
bility of direct binding to DNA [17].

Moreover, LASP-1 is substrate of Abelson tyrosine kinase.
Abelson tyrosine kinase is strongly involved in carcino-
genesis of hematopoetic tumors, such as B-cell lympho-
mas [18]. Phosphorylation of LASP-1 at tyrosine 171 is
associated with loss of LASP-1 from focal adhesion points
and the initiation of cell death, but without changes in
dynamics of migratory processes [13]. In addition, phos-
phorylation of LASP-1 at serine 146 by cAMP- and cGMP-
dependent protein kinases resulted in a translocation of
the protein from membrane to cytosol and was followed
by reduced cell migration [8]. All these protein-protein
interactions mediated by the LIM and SH3 domains can
be regarded as scaffolds for the formation of higher order
complexes and suggest that LASP-1 could be part of
important signaling pathways and a structural protein as
well.

LASP-1 expression has been reported to be increased in
metastatic breast cancer, suggesting that overexpression of
LASP-1 may be involved in the migratory process of these
cells [4]. Interestingly, knock-down of LASP-1 by RNA-
interference in metastatic breast cancer cell lines BT-20
and MCF-7, as well as in the ovarian cancer cell line
SKOV-3 resulted in a strong inhibition of proliferation,
migration and in cell cycle arrest in G2-phase without
induction of apoptosis or necrosis. Furthermore, LASP-1
silencing was accompanied by a reduced binding of the
LASP-1 binding partner zyxin to focal contacts.

Reversely, artificial overexpression of LASP-1 in non-neo-
plastic PTK2 (Potorous tridactylis kidney) cells hardly
expressing endogenous LASP-1, resulted in a acceleration
of migration [19,20].

In this study we demonstrate that LASP-1 is not only a
cytosolic, but also a nuclear located protein, which is
highly overexpressed in breast cancer tissue compared to
benign fibroadenomas. Furthermore, we provide evidence
that its cytosolic overexpression and nuclear localization
correlates significantly with tumor size and nodal-positiv-
ity of human breast carcinomas.

Methods
Tissue samples
The studies were performed with approval of the Ethics
Committee of the University of Wuerzburg. Paraffin
embedded tissue samples of 126 archival cases with con-
firmed histological diagnosis were obtained from the
department of Pathology of the University of Wuerzburg.

We analyzed 25 cases of ductal carcinoma in situ without
any invasive component (DCIS), 83 invasive ductal breast
carcinomas and 18 fibroadenomas as well as three sam-
ples of normal breast tissue from reduction mammo-
plasty.
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The patients with invasive breast carcinomas were aged
from 32 to 96 (mean 58.6 ± 13.52) years. In this study all
carcinomas, which were mainly collected from patients
undergoing wide excisions, have been classified according
to criteria of the WHO and recorded as invasive ductal car-
cinomas by a pathologist. Grading of malignancy of duc-
tal carcinomas was evaluated according to the Scarff,
Bloom and Richardson criteria with guidelines as sug-
gested by Nottingham City Hospital Pathologists [21].
Tumor staging was performed according to parameters of
the TNM system [22].

Immunohistochemistry
For immunohistochemical staining procedures tissue sec-
tions were cut from regular paraffin embedded tissue at 2–
3 µm. Sections were placed onto APES (3-amino-propyl-
triethoxy-silane; Roth, Karlsruhe, Germany) coated slides,
dewaxed in xylene, rehydrated in graded ethanol and in
TRIS-buffered saline (TBS; 25 mM TRIS/HCl, pH 7.4, 137
mM NaCl, 2.7 mM KCl). For antigen retrieval, sections
were subjected to heat pretreatment by boiling it in 0.01
M of sodium citrate buffer (pH 6.0) for 10 min in a micro-
wave oven (600Watt/sec.). Endogenous peroxidase was
blocked by incubation in 0.1% hydrogen peroxide in PBS
for 5 min. Slides were then incubated with the polyclonal
anti-LASP-1 antibody [8] diluted 1:1000 in "antibody
diluent" (DAKO, Hamburg, Germany) followed by EnVi-
sion/rabbit detection system (DAKO, Hamburg, Ger-
many). 3,3'-Diaminobenzidine (DAB; DAKO, Hamburg,
Germany) was used as chromogen and sections were
counterstained in hematoxylin (Mayers, Sigma, Deisen-
hofen, Germany), dehydrated through graded ethanol
and embedded in Entelan (Merck, Darmstadt, Germany).

Evaluation of immunohistochemical LASP-1 staining and 
LASP-1-IRS
To assess the role of LASP-1 in human breast cancer, we
examined its expression in 83 breast carcinoma samples
from patients selected randomly from January 2000 to
December 2006 with or without invasive components.

Semi-quantitative evaluation of LASP-1 immunostaining
was carried out by three independent observers (TG, UK
and EB) through defining of the percentage of positive
cells and the staining intensity as described below. In
most of all cases (> 90%) the independently determined
LASP-1-IRS was consistent within all observers. In the rare
event of divergent evaluation, a consensus was found. For
positive controls we used breast cancer sections previously
described as highly LASP-1-positive [19]. In negative con-
trols with omitted primary antibody or with pre-immune
serum no staining was observed.

Scoring of cytosolic LASP-1 expression was carried out in
analogy to scoring of hormone receptor Immune Reactive

Score (IRS) ranging from 0–12 according to Remmele et
al. [23], which is used routinely in surgical pathology for
the quantification of hormone receptor expression in
mammary carcinoma.

The percentage of LASP-1-postitive stained cells was
scored in five grades (grade 0 = 0–19%, grade 1 = 20–39%,
grade 2 = 40–59%, grade 1 = 60–79% and grade 4 = 80–
100% LASP-1 expressing tumor cells). The fraction of
LASP-1-positive stained cells was scored after having
examined 10 high-power fields (40×) of one section for
each sample. In addition, the intensity of LASP-1 expres-
sion by the tumor cells was determined (grade 0 = none,
grade 1 = low, grade 2 = moderate, grade 3 = strong). The
multiplication of these two grading scores calculates the
immunoreactive score for LASP-1 expression (LASP-1-
IRS) in stained tissue (% LASP-1-positive tumor cells ×
staining intensity = LASP-1-IRS). Examples for the very
heterogeneous LASP-1 expression in invasive breast can-
cer are given in Figure 1.

For better statistical discrimination samples scored with
cytosolic LASP-1-IRS < 5 were classified as LASP-1-nega-
tive, those with LASP-1-IRS > 5 or higher as LASP-1-posi-
tive.

Nuclear LASP-1-positivity was scored by determining per-
centage of positive nuclei regardless of cytosolic LASP-1
expression and staining intensity. In analogy to the scor-
ing of the proliferation marker Ki67 samples were consid-
ered as nuclear-positive (NUC+) if 10% or more cells
showed nuclear staining for LASP-1 [24].

Heterogeneous LASP-1 expression in human invasive breast cancerFigure 1
Heterogeneous LASP-1 expression in human invasive 
breast cancer. Immunohistochemical staining of different 
LASP-1 expression intensity levels in human invasive breast 
cancer samples (DAB, brown; magnification 100×). (A+B) 
low LASP-1-IRS (< 5). (C+D) medium to high LASP-1-IRS (> 
5).
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The immunomarkers c-erbB2 (HER-2/neu), estrogen
receptor (ER) and progesterone receptor (PR) assessed in
this study had been previously detected by standard
immunohistochemistry and were drawn from the archival
database of the Department of Pathology, Wuerzburg.

Statistical analysis
Graph Pad Prism software test statistics was used to assess
LASP-1 expression and the categorical parameters of inter-
est. Furthermore, multivariate non-parametric analysis
was performed using Fisher's exact (F) and Mann-Whitney
(M) test. In the statistical analysis invasive ductal carcino-
mas were sorted in groups depending on nodal-positive
or nodal-negative status and small (T1 = ∅ max. 2 cm) or
larger tumor size (> T1). This dichotomous graduation
was made on the basis of a recent meta-analysis stating
that the most beneficial prognostic criteria are nodal-neg-
ativity and a small tumor size at time point of diagnosis
[25].

Further stratification of our tumor samples according to
extent of nodal positivity and advanced tumor size was
abandoned, since there are no additional major therapeu-
tic implications [26].

Cell culture conditions
Cell lines (MCF-7, BT-20, MDA-MB231 and ZR-75/1)
were obtained from Cell Line Services (Heidelberg, Ger-
many) and grown at 1 × 105 cells/ml in a plastic cell cul-
ture flask in a humidified incubator at 37°C under 5%
CO2 atmosphere in HBCA-medium [27] containing 10%
heat-inactivated fetal bovine serum (PAA, Linz, Austria)
and 1% streptomycin/ampicillin (Invitrogen, Karlsruhe,
Germany). Cells were cultured until homogeneous mor-
phology of cells was reached (passage 3–4) since LASP-1
belongs to a group of several differential expressed pro-
teins that are up-regulated after later passages [28].

Immunofluorescence and confocal imaging
For confocal microscopy, cells were grown until homoge-
nous morphology at a maximum of 70% confluence on
glass chamber slides, fixed in 4% (w/v) paraformaldehyde
in PBS, permeabilized with 0.1% (w/v) Triton X-100 in
PBS, and then stained with affinity-purified LASP-1 anti-
body (1:2000) followed by secondary Cy3-labeled anti-
rabbit antibody (1:500) (Dianova, Hamburg, Germany).

Fluorescence and transmission-DIC images were recorded
on a modified confocal microscope (Leica SP5, Man-
nheim, Germany) with a 100× NA 1.4 objective (Leica,
Wetzlar, Germany). Fluorescence was detected with SP5
spectral emission setting at 570–650 nm for the Cy3 and
with the DIC-transmission channel. The images were
recorded with 512 × 512 pixels with lateral resolution
between 90 and 200 nm and a recording rate of 400 lines

per second. Each image was also line averaged 4 times and
the entire frame was averaged twice for optimal signal to
noise ratio. The images were converted to .tiff format and
analyzed with Photoshop™ software.

Preparation of nuclear and cytosolic cell fractions
Human breast cancer cell lines were harvested at 80% con-
fluence through trypsination. Isolation of nuclei and
cytosol was carried out using NE-PER Nuclear and Cyto-
plasmic Extraction Reagents (Pierce, Bonn, Germany) fol-
lowing the manufacturers instructions. Probes were
solved in Laemmli sample buffer at a final concentration
of 1 × 106 /ml and stored at -20°C before Western Blot
electrophoresis.

Western blot analysis
For Western blotting cells were lysed in Laemmli sample
buffer. Equal amounts of protein, according to cell count,
were resolved by 12% SDS-PAGE. After blotting on nitro-
cellulose membrane and blocking with 3% nonfat dry
milk in 10 mM Tris, pH 7.5, 100 mM NaCl, 0.1% (w/v)
Tween 20, the membrane was first incubated with the
antibody raised against LASP-1 (1:10000) [8] followed by
incubation with horseradish peroxidase-coupled goat
anti-rabbit IgG (Biorad, Munich, Germany), diluted
1:5000, and visualization was done using ECL (Amer-
sham Biosciences, Freiburg, Germany). Protein bands
were visualized by autoradiography. Quantification of
autoradiography signals was carried out by densitometry
using the ImageJ software (NIH, Bethesda, USA).

GAPDH was used as a specific cytosolic marker to exclude
cytoplasmatic contamination of the nuclei preparation
and was visualized by incubating NC membrane with pol-
yclonal anti-GAPDH primary antibody (1:1000; Santa
Cruz, Santa Cruz, USA). Anti Lamin A+C antibody (1: 50;
Abcam, Cambridge, UK) served as a specific nuclear
marker to exclude nuclear contamination in cytoplas-
matic cell samples [29-31]. At least three independent
experiments have been carried out and representative
results are shown.

Results
LASP-1 is overexpressed in invasive breast cancer tissue
LASP-1 expression was detected in cytoplasm of tumor
cells, leukocytes, myoepithelial cells and vascular smooth
muscle cells, but not in stromal cells. Immunohistochem-
istry clearly allowed to localize LASP-1 expression in car-
cinoma cells of 76 malignant breast carcinomas (91.56
%), whereas in seven patients LASP-1 could not be
detected in invasive neoplastic cells. Medium to high
LASP-1-IRS (>5) was observed in 46 cases (55.4%), which
were considered to be LASP-1-positive, while 37 probes
(44.6%) showed a low LASP-1-IRS (<5) and were consid-
ered to be LASP-1-negative (Table 1 and Figure 2B). In
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contrast, LASP-1 could not be detected in benign epithe-
lial cells of reduction mammoplasty.

In analogy to previous findings in myoepithelial and vas-
cular smooth muscle cells of human breast and ovarian
tissue [19,20], LASP-1 overexpression could be observed
in highly proliferating epidermal basal cells (Figure 3A),
while cells of non-proliferating superficial layers or der-
mal connective tissue cells like fibroblasts showed only
weak LASP-1 expression. Interestingly, strong nuclear
LASP-1-positivity could be observed in about 29% of all
breast carcinomas as well as in nuclei of epidermal basal
cells (Figures 3A, 3B and 3C), whereas all other breast car-
cinoma nuclei were negative for LASP-1 and the cells only
displayed perinuclear and cytosolic LASP-1 enrichment
(Figure 3D).

In 89% of all tumor-samples, which were scored to be
LASP-1-negative, LASP-1 was not detectable within the
nucleus, while 43.5% of all LASP-1-positive specimens
showed clear nuclear LASP-1 staining. Thus nuclear stain-

Histological expression pattern of LASP-1Figure 3
Histological expression pattern of LASP-1. Immunohis-
tochemical staining of LASP-1 (DAB, brown, magnification 
100×) in different cell types. White arrows indicate LASP-1-
negative nuclei, black arrows LASP-1-positive nuclei. (A) 
LASP-1 is highly overexpressed in physiologically proliferating 
epidermal basal cells, compared to superficial epidermal 
strata or dermal connective tissue cells. (B+C) LASP-1 is 
localized abundantly in nuclei of invasive breast cancer cells 
compared to LASP-1-negative nuclei of stromal cells. (D) 
Invasive breast cancer cells with LASP-1-negative nuclei but 
perinuclear and cytosolic LASP-1 overexpression. (E) 
Nuclear and cytosolic LASP-1-positive breast cancer cells in 
direct neighborhood to infiltrating LASP-1-negative lym-
phocytes.

Table 1: Statistical analysis of LASP-1 expression in 83 breast cancer samples (in-CA), 25 ductal carcinomas in situ (DCIS) and 18 
fibroadenomas (FIBRO). IRS: immune reactive score; n.s.: not significant

LASP-1 + LASP-1 - IRS mean IRS STDV IRS Median p-values (Fisher's exact)

n % n %

FIBRO 4 22.2 14 77.8 3.11 2.22 3 0.7315 n.s. 0.0176*
DCIS 8 32 17 68 3.48 2.80 3 0.7315 n.s. 0.066 n.s. 0.0176*
in-CA 46 55.4 37 44.6 5.75 3.73 8 0.066 n.s. 0.0176*

Graphical illustration of statistical LASP-1 distributionFigure 2
Graphical illustration of statistical LASP-1 distribu-
tion. (A) LASP-1-IRS (immunoreactive score) is significantly 
higher in invasive breast carcinomas (in-Ca) compared to 
fibroadenomas (Fibro). Error bars represent standard devia-
tion. (B) Distribution of LASP-1-positivity (L+) and LASP-1-
negativity (L-) in fibroadenomas, DCIS and invasive breast 
cancer. (C+D) Positive nodal status (N+) and tumor size 
(>T1) correlate significantly with LASP-1-positivity. Signifi-
cant statistical differences are labeled with one star (p < 0.05) 
or two stars (p < 0.01).
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ing is correlated with cytosolic LASP-1 expression and sig-
nificantly higher in LASP-1-positive cells compared to
LASP-1-negative samples (p = 0.0014; Table 2).

However, two samples (2.4%) showed a very high nuclear
LASP-1-positivity with concurrent low cytosolic staining
(Figure 3B).

This nuclear staining is unlikely to be unspecific, because
nuclei of other benign stromal cells like fibrocytes are
LASP-1-negative, even when located right next to cancer
cells (Figures 3B and 3C).

This observation is even more obvious in Figure 3E, show-
ing strong LASP-1-positive nuclei and cytosol of human
breast cancer cells in comparison to LASP-1-negative
nuclei of neighboring infiltrating lymphocytes.

LASP-1 expression is significantly higher in invasive breast 
cancer compared to fibroadenomas and is correlated with 
TNM-staging
Comparison of average LASP-1 expression of fibroadeno-
mas, DCIS and invasive breast cancer demonstrated that
invasive cancer cells display significantly higher LASP-1
expression than fibroadenomas (p = 0.0176), as seen in
Table 1 and Figure 2A. In contrast, staining intensity of
LASP-1 in DCIS was not significantly higher than in

fibroadenomas, but also not significantly lower than in
invasive breast cancer (Table 1 and Figures 2A and 2B).

To evaluate the clinical relevance of the heterogeneous
LASP-1 expression, LASP-1-IRS was compared to clinico-
pathological and biological parameters. Positive correla-
tions were found between LASP-1-IRS and TNM-staging
regarding tumor size T (p = 0.0159) and nodal-positivity
(p = 0.0066; Table 2) (Figures 2C and 2D). No correlation
was found with age at time of surgery (Table 3), grading,
ER- and PR-positivity and HER-2/neu-expression (Table
2).

To evaluate the possible relevance of LASP-1 as a prognos-
tic marker for lymph node metastasis in human breast
cancer disease, a contingency test was performed and
prognostic indices were calculated. Sensitivity of LASP-1-
IRS-scoring to predict node-positivity is 85% with a specif-
icity of 36.4%, (positive and negative predictive value
73.9 vs. 51.3%, respectively).

LASP-1 is detectable within the nucleus by confocal 
microscopy
To further assess the cellular expression pattern of LASP-1,
we performed confocal and non-confocal microscopy of
immunofluorescence labeled LASP-1 in the breast cancer
cell line BT-20. The immunofluorescence images showed
a variable cellular expression pattern of the protein. In
addition to the reported localization of LASP-1 (white
arrows) to focal contacts and tips of lamellipodia (Figure
4A) [4,7,11-13], LASP-1 was detected in the cytosol (Fig-
ure 4C), perinuclear (Figures 4B and 4D) and nuclear (Fig-
ures 4B and 4E). This is in accordance to the LASP-1
localization observed in the breast tissue samples (Figure
3). A similar immunohistochemical staining pattern was
detected in MCF-7 breast cancer cells and SKOV-3 ovarian
cancer cells (data not shown).

LASP-1 is detectable in nuclear fractions of various breast 
cancer cell lines by Western blotting
To verify the nuclear localization of LASP-1, MCF-7, BT-
20, MDA-MB231 and ZR-75/1 breast cancer cells were
separated in cytosolic and nuclear fractions and assessed
by Western blot. Equal amounts of protein, according to

Table 3: Statistical analysis of LASP-1 (L) expression in relation 
to age. FIBRO: fibroadenome (n = 18); DCIS: ductal carcinomas 
in situ (n = 25); in-CA: invasive breast cancer (n = 83).

FIBRO DCIS in-CA

L + L - L + L - L + L -

Age (yrs) mean 40.8 40 54.1 54.5 61.1 55.1
STDEV 8.9 16.1 11.6 13.7 13.7 11.9

Table 2: Statistical analysis of LASP-1 distribution and expression 
in correlation to clinicopathological and biological parameters. 
LASP-1 (L) protein expression was analyzed in 83 breast cancer 
samples. Associations with clinicopathological and biological 
parameters were analyzed using Mann-Whitney-test (M) and 
Fisher's exact test (F); n.s.: not significant.

Total 
(n = 83)

L + 
(n = 46)

L - 
(n = 37)

p-value 
(Test)

n % n % n %

Nodal status N+ 50 60.2 34 73.9 16 43.2 0.0066 (F)
N- 33 39.9 12 26.1 21 56.8 **

Tumor size T1 39 47 16 34.8 23 62.2 0.0159 (F)
>T1 44 53 30 65.2 14 37.8 *

Grading G1 3 3.6 0 0 3 8.1 0.9593 (M)
G2 39 47 24 52.2 15 40.5 n.s.
G3 41 49.4 22 47.8 19 51.4

c-erB-2 Her+ 18 21.7 12 26.1 6 16.2 0.3005 (F)
Her- 65 78.3 34 73.9 31 83.8 n.s.

Estrogen 
receptor

ER+ 60 72.3 33 71.7 27 73 1.0 (F)

ER- 23 27.7 13 28.3 10 27 n.s.
Progesterone 
receptor

PR+ 51 61.5 26 56.5 25 67.6 0.3673 (F)

PR- 32 38.5 20 43.5 12 32.4 n.s.
Nuclear 
positivity

NUC
+

24 29 20 43.5 4 11 0.0014 (F)

NUC- 59 71 26 56.5 33 89 **
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cell count, were resolved by 12% SDS-PAGE and blotted
on nitrocellulose membrane. As seen in Figure 5, LASP-1
is clearly detectable in the nuclei of human breast cancer
cell lines MCF-7 and BT-20, while nuclei of MDA-MB231
and ZR-75/1 cells were found to be negative for LASP-1 in
the nuclear fraction. GAPDH was used as a specific
cytosolic marker to exclude cytoplasmatic contamination
of nuclei samples during preparation. Reversely Lamin
A+C served as a specific nuclear marker to exclude nuclear
contamination in cytoplasmatic cell fractions (Figure 5).

Discussion
In the present work we investigated for the first time the
expression of LASP-1 in a series of 83 invasive breast car-
cinomas at protein level and compared the data to clini-
cally established breast cancer parameters. We found that
the degree of immunohistochemical staining correlated
significantly with nodal metastasis and tumor size but
seems to be independent of other parameters such as age,
grading and estrogen or progesterone receptor status.

In contrast to earlier publications, demonstrating the co-
amplification of the LASP-1 gene together with HER-2/
neu (c-erbB2) [4,32], our statistical analysis revealed no
relation between LASP-1 protein level and HER-2/neu
protein expression.

A previous study also showed that LASP-1 mRNA is over-
expressed in only 8–12% of all human breast cancers [5].

However, our immunohistochemical analysis provide evi-
dence that the LIM and SH3 domain protein is highly
expressed (LASP-1-positive) in 55.4% of all tested breast
cancer samples. This discrepancy could be due to the fact
that Tomasetto et al. [4] used total surgical specimens for
their mRNA isolation, containing undefined amounts of
LASP-1 free benign tissue, while our data focused on
malign cells only.

Consistent with the high expression of LASP-1 in breast
tumors recent data demonstrated the functional signifi-
cance of LASP-1 for cancer metastasis. Silencing of LASP-1
by RNAi in highly LASP-1 expressing human breast and
ovarian cancer cells led to reduced cell proliferation,
migration and to cell cycle arrest in G2-phase [19,20].

These experiments are supported by our present study
proving the significantly higher expression of LASP-1 in
invasive breast carcinomas compared to benign fibroade-
nomas. The rate of strongly LASP-1 expressing samples of
invasive ductal carcinomas amounted 55.4% (LASP-1-IRS
> 5). Moreover, statistical analysis provided evidence for a
positive correlation of cytosolic as well as nuclear LASP-1-
positivity with tumor size and nodal-positivity indicating
an important role of LASP-1 in proliferation and migra-
tion.

These data resemble those of another focal adhesion pro-
tein, ENAH. ENAH is a member of the ENAH/VASP pro-
tein family, which regulates cell migration and actin-
cytoskeleton organization at focal contacts. Like LASP-1,
ENAH is not detectable in benign breast epithelium, but
is weakly expressed in low-risk benign diseases like
fibroadenomas and strongly expressed in invasive breast

Western Blot of nuclear and cytosolic fractions of the cancer cell lines MCF-7, BT-20, MDA-MB231 and ZR-75/1Figure 5
Western Blot of nuclear and cytosolic fractions of the 
cancer cell lines MCF-7, BT-20, MDA-MB231 and ZR-
75/1. LASP-1 is detectable in nuclear (N) as well as in cyto-
plasmatic (C) cell fractions of breast cell lines MCF-7 and BT-
20, but not in the nucleus of MDA-MB231 and ZR-75/1 cells. 
GAPDH was used as a cytoplasmatic marker, Lamin A + C as 
nuclear markers to exclude contamination during cell frac-
tion isolation.

Cellular LASP-1 expression pattern visualized by confocal microscopyFigure 4
Cellular LASP-1 expression pattern visualized by 
confocal microscopy. Non-confocal (A+B) and confocal 
(C-E) microscopy of LASP-1 immunostaining in BT-20 breast 
cancer cells revealed that LASP-1 (red) is mainly detectable 
in focal contacts (A) and in the cytosol (C). In addition, more 
than 30% of the cells show a nuclear staining (B+E), and in 
some cells a perinuclear localization of LASP-1 is visible 
(B+D).
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cancers. Similar to LASP-1, there is a significant correla-
tion of ENAH-expression and tumor size (p < 0.05) [33].
In contrast to LASP-1, siRNA induced ENAH-knock-down
does not affect cell proliferation while LASP-1 silencing
resulted in strong inhibition of cell growth and migration
[19]. Thus, it is likely that among several focal adhesion
proteins which are overexpressed in breast cancer LASP-1
has more regulative function than others.

In a recent investigation, a cDNA microarray was used to
establish a prognostic index for nodal-positive breast can-
cer [34]. Similar to our study, all 20 patients were LASP-1-
positive, albeit LASP-1 was found to be one out of five
genes being under-expressed in patients that died within
5 years after surgery. This is in part differing from our
results demonstrating a correlation between high LASP-1
protein levels and nodal-positivity. However, in many
cases there are significant discrepancies between the meas-
ured mRNA levels and protein data indicating post-tran-
scriptional mechanism of regulation and stabilization
[35].

In the present work we provide evidence for LASP-1 being
not only a cytosolic, but also a nuclear protein. By our
immunohistochemical stainings LASP-1 was detectable in
nuclei of 29% of all investigated breast carcinomas inde-
pendent of its actual cytosolic expression. Images taken
with confocal microscopy confirmed nuclear localization
of LASP-1 within the nucleus in BT-20 and MCF-7 breast
cancer cells. Although these monoclonal cell lines are
genetically identical, immunostaining demonstrated a
variable cytosolic and nuclear LASP-1 localization, possi-
bly dependent on cell cycle. Western blot analysis verified
nuclear LASP-1 localization in MCF-7 and BT-20 cells
while breast cancer cell lines MDA-MB231 and ZR-75/1
only displayed a cytosolic but no nuclear LASP-1 localiza-
tion. Cell line ZR-75/1 is known to be highly estrogen and
progesterone dependent [36] and was found to have the
highest c-erbB2-expression among eight characterized
breast- and four ovarian-cancer cell lines [37], whereas
MDA-MB231 cells are ER- and PR-receptor negative and
express HER-2/neu only at very low levels [38]. However,
in our study LASP-1-IRS as well as nuclear LASP-1-positiv-
ity did not correlate with ER-, PR- or HER-2/neu-expres-
sion.

Previous data have shown that the zinc-finger containing
LIM domain of LASP-1 is a morphologically and perhaps
functionally independent folding-unit offering the possi-
bility of direct binding to DNA [17]. In general, LIM
domains are specialized double zinc-finger motifs inter-
acting with many different proteins in association with
the cytoskeleton and even form homeodomains to
become nuclear transcription factors [39,40]. No hetero-
or homodimerization of LASP-1 has been reported yet [9].

However, LASP-1 binding partner zyxin is a LIM domain
containing protein known to be a nuclear shuttle protein
involved in cell migration and cell cycle control [41,42],
which could act as a potential interaction partner of LASP-
1 in cell core.

In our present study we could demonstrate that LASP-1 is
not only highly expressed in fast proliferating malignant
tumor cells, but also in proliferating regenerative epider-
mal basal cells, while slowly proliferating dermal fibrob-
lasts are LASP-1-negative. This observation is consistent
with previous findings showing that LASP-1 expression
positively influences tumor cell proliferation [19,20].
However, preliminary results show no correlation
between the well-known proliferation marker Ki67 and
LASP-1 expression (data not shown). Nevertheless, previ-
ous publications have shown that Ki67 expression is often
considered as false positive and is inferior in evaluating
tumor proliferation activity compared to standardized
mitotic index at optimal cut-off points. This implies that
evaluation of patients' prognosis by Ki67 expression has
to be appraised with caution [43].

Further statistical calculations with contingency tests
demonstrated that according to our data, postoperative
relevance of LASP-1 expression for prediction of nodal-
positivity has a sensitivity of about 85%, suggesting that
LASP-1 could be used as a predictive marker for lymph
node metastasis together with other markers like the supe-
rior method of sentinel lymph node biopsy with an aver-
age sensitivity of about 95% [44]. Thus postoperative
non-invasive LASP-1 scoring in primary tumor tissue
could accomplish node-positivity prediction as an addi-
tional marker to invasive sentinel node biopsy, especially
in cases of negative sentinel node biopsy or if patients
reject invasive sentinel node biopsy.

Conclusion
This study is the first description of LASP-1 as a nuclear
protein, whose cytosolic expression and nuclear localiza-
tion correlates in vivo with tumor size and nodal positiv-
ity of human invasive ductal carcinoma of the breast. In
summary, our observations suggest an expanded role for
LASP-1 in biological breast cancer behavior. Further pro-
spective studies will be necessary to define the potential of
LASP-1 as an independent marker for diagnosis of cancer
as well as a marker for prognosis of this disease.
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Nuclear localisation of LASP-1 correlates with poor long-term
survival in female breast cancer
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BACKGROUND: LIM and SH3 protein 1 (LASP-1) is a nucleo-cytoplasmatic signalling protein involved in cell proliferation and migration
and is upregulated in breast cancer in vitro studies have shown that LASP-1 might be regulated by prostate-derived ETS factor
(PDEF), p53 and/or LASP1 gene amplification. This current study analysed the prognostic significance of LASP-1 on overall survival
(OS) in 177 breast cancer patients and addressed the suggested mechanisms of LASP-1-regulation.
METHODS: Nucleo-cytoplasmatic LASP-1-positivity of breast carcinoma samples was correlated with long-term survival,
clinicopathological parameters, Ki67-positivity and PDEF expression. Rate of LASP1 amplification was determined in micro-dissected
primary breast cancer cells using quantitative RT–PCR. Cell-phase dependency of nuclear LASP-1-localisation was studied in
synchronised cells. In addition, LASP-1, PDEF and p53 expression was compared in cell lines of different tumour entities to define
principles for LASP-1-regulation.
RESULTS: We showed that LASP-1 overexpression is not due to LASP1 gene amplification. Moreover, no correlation between
p53-mutations or PDEF-expression and LASP-1-status was observed. However, nuclear LASP-1-localisation in breast carcinomas is
increased during proliferation with peak in G2/M-phase and correlated significantly with Ki67-positivity and poor OS.
CONCLUSION: Our results provide evidence that nuclear LASP-1-positivity may serve as a negative prognostic indicator for long-term
survival of breast cancer patients.
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Breast cancer is expected to account for 26% of all new cancer cases
among women in the western world of which 89% will survive 5
years after diagnosis (Jemal et al, 2007). In spite of the significant
improvements in diagnostic and therapeutic modalities for the
treatment of cancer patients, metastasis still composes the major
cause of mortality being responsible for 60% of breast cancer deaths
(Hanahan and Weinberg, 2000). Metastatic disease remains generally
incurable with a median survival time of only a few years. Regardless
of the increase in its incidence, mortality related to breast cancer is
decreasing because of raised awareness and screening, as well as
multidisciplinary treatment. The introduction of endocrine therapy
and the treatment with trastuzumab (Herceptin) in patients with
HER-2/neu overexpression reduced the rates of recurrence by 50%
and significantly improved survival (Widakowich et al, 2007).
Nevertheless, breast cancer remains a multi-step process linked to
more than one single molecular alteration. Therefore, elucidating
genes that are overexpressed in breast cancer cells may yield
promising targets for novel therapeutic agents (Mauriac et al, 2005).

The LIM and SH3 domain protein (LASP-1) was initially
identified from a cDNA library of breast cancer metastases. It
became the first member of a newly defined LIM-protein subfamily
of the nebulin group characterised by the combined presence
of LIM and SH3 domains (Grunewald and Butt, 2008). LASP-1 is
localised within multiple sites of dynamic F-actin assembly such
as focal contacts, lamellipodia and membrane ruffles it binds to the
specific shuttle proteins Zyxin and lipoma preferred partner (LPP)
and is involved in cell migration and proliferation (Schreiber et al,
1998; Chew et al, 2002; Butt et al, 2003; Nakagawa et al, 2006).
Silencing of LASP-1 by RNA-interference in various cancer cell
lines resulted in strong inhibition of proliferation and migration
with cell cycle arrest in G2/M-phase (Grunewald et al, 2006,
2007b).

LIM and SH3 protein 1 mRNA is expressed ubiquitously at low
basal levels in all normal human tissues, but is overexpressed in
metastatic human breast cancer (Grunewald and Butt, 2008) and
ovarian cancer (Grunewald et al, 2007b; Dimova et al, 2009). In a
recent case–control study, LASP-1-expression correlated signifi-
cantly with tumour size and nodal-positivity (Grunewald et al,
2007a). Albeit the protein is predominantly situated at focal
adhesions, nuclear localisation of the protein could be clearly
detected by confocal microscopy and western blots of cytosolic
and nuclear preparations from various breast cancer cell lines
(Grunewald et al, 2007a). These data prompted us to further
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investigate the long-term survival in relation to nuclear and
cytosolic LASP-1-localisation in a large well-characterised cohort
of breast cancer patients and to analyse the nuclear LASP-1-
localisation in the different phases of the cell cycle.

In invasive breast cancer cells, LASP-1-expression was signifi-
cantly inversely affected by prostate-derived ETS factor (PDEF), a
transcription factor known to repress a variety of genes that are
possibly involved in oncogenesis, such as the apoptosis regulator
survivin (Ghadersohi et al, 2007) and the pro-invasive protease
uPA (Turner et al, 2008).

Real-time PCR analysis confirmed upregulation of LASP1
mRNA in PDEF-deficient invasive and highly metastatic breast
cancer cells (MBA-MB-231, BT-549), while in the non-invasive
MCF-7 breast cancer cell line, endogenously expressing PDEF, a
reduced LASP-1 protein level was detected (Turner et al, 2008).

In a study conduced with hepatocellular carcinoma (HCC),
LASP-1 was repressed by wild-type p53 at the transcriptional
level (Wang et al, 2009). Functional negative p53 mutations led to
increased LASP-1-expression and to a more aggressive HCC
phenotype (Wang et al, 2009).

In this study, we aimed to determine whether the PDEF level or
mutations of the tumour suppressor p53 represent a general
mechanism of LASP-1 deregulation in human cancer. Thus, we
analysed several tumour cell lines of different entities as well as
breast cancer tissue for LASP-1-expression in correlation to PDEF
protein concentration and p53 status.

As LASP1 gene amplification was reported earlier in one breast
cancer cell line (Tomasetto et al, 1995b) and in 40% of crude
extracts of lymph nodes derived from metastatic breast cancer
(Tomasetto et al, 1995a) and was accounted for the principal cause
of LASP-1 overexpression, we also re-analysed the rate of LASP1
gene amplification in individual micro-dissected primary breast
cancer cells. It is noteworthy that the LASP1 gene maps to a region
(17q12) that is altered in 20–30% of human breast cancers
(Tomasetto et al, 1995a, b) and tumours bearing amplifications
of 17q11-21 are associated with an adverse prognosis because
of increased resistance to chemotherapy and endocrine therapy
(Ross and Fletcher, 1999).

MATERIALS AND METHODS

Tissue samples

The studies were performed with approval of the ethics committee
of the University of Wuerzburg. Paraffin-embedded tissue samples
of surgical biopsies from 177 patients with invasive breast
cancer were obtained from the Department of Pathology of the
University of Wuerzburg. The patients were aged from 32 to 85
(mean 55.3±11.9) years. All carcinomas were mainly collected
from patients that underwent wide excisions.

Grading of malignancy of ductal carcinomas was evaluated
according to the Scarff, Bloom and Richardson criteria as
suggested by Nottingham City Hospital Pathologists (Dalton
et al, 2000). Tumour staging was performed according to para-
meters of the TNM system (Singletary and Connolly, 2006).

Ten paraffin-embedded breast tissue samples from reduction
mammoplasties were used as control tissue to obtain reference
DNA for the evaluation of the quantitative RT–PCR results.

Immunohistochemistry

For immunohistochemical staining procedures tissue sections were
cut from regular paraffin-embedded tissue at 2–3 mm. Sections
were placed onto APES (3-amino-propyltriethoxy-silane; Roth,
Karlsruhe, Germany) coated slides, dewaxed twice in xylene for
10 min, rehydrated in graded ethanol (two changes in 96%,
one change in 70%, one change with distilled water) and in

TRIS-buffered saline (25 mM TRIS/HCl, pH 7.4, 137 mM NaCl,
2.7 mM KCl) for 1 min each. For antigen retrieval, sections were
subjected to heat pretreatment by boiling in 0.01 M of sodium
citrate buffer (pH 6.0) for 5 min in a microwave oven (800 W s – 1).
Endogenous peroxidase was blocked by incubation in 3.0%
hydrogen peroxide in methyl alcohol for 5 min, washed in PBS
and incubated in Beriglobin (Aventis-Behring GmbH, Marburg,
Germany) 1 : 10 in PBS at room temperature (RT) for 15 min to
prevent unspecified attachments. Slides were then incubated with
the polyclonal anti-LASP-1 antibody (Butt et al, 2003) diluted
1 : 1000 in antibody diluent (DAKO, Hamburg, Germany) or with
Ki67 antibody (DAKO) diluted 1 : 100 in antibody diluent at 4 1C
overnight followed by EnVision/rabbit detection system (DAKO)
for 30 min at RT. 3,30-Diaminobenzidine (DAB; DAKO) was used
as chromogen and sections were counterstained in haematoxylin
(Mayers, Sigma, Deisenhofen, Germany), dehydrated through
graded ethanol (in the inverse way as described above) and
embedded in Entelan (Merck, Darmstadt, Germany). The specifi-
city of the LASP-1 antibody is shown in Supplementary Figure 1.

For PDEF staining, slices were incubated in Beriglobin, diluted
1 : 50 in PBS at RT for 15 min before incubation with polyclonal
anti-PDEF antibody (Invitrogen, Karlsruhe, Germany) diluted
1 : 50 in ‘antibody diluent’ (DAKO) at 4 1C overnight. After
washing with PBS, the slides were incubated for 15 min with
biotinylated secondary antibody followed by 15 min incubation
with streptavidin-HRP (both LSAB2 system DAKO). The specifi-
city of the PDEF antibody is shown in Supplementary Figure 2.

Evaluation of immunohistochemical LASP-1 staining
and LASP-1-IRS

After staining procedure, the slides were screened and scored as
previously described (Grunewald et al, 2007a). To assess the role of
LASP-1 in human breast cancer, we examined its expression in 177
breast carcinoma samples from patients selected randomly from
January 1985 to December 2007. Semi-quantitative evaluation
of LASP-1 immunostaining was carried out by defining the
percentage of positive cells and the staining intensity as described
below. For positive controls, breast cancer sections previously
described as highly LASP-1-positive (Grunewald et al, 2006, 2007a)
were used. No staining was observed in negative controls with
omitted primary antibody or with pre-immune serum (data not
shown).

Scoring of cytosolic LASP-1-expression was carried out in
analogy to the scoring of hormone receptor Immune Reactive
Score (IRS) ranging from 0 to 12 according to Remmele et al
(Remmele and Stegner, 1987), which is used routinely in surgical
pathology for the quantification of hormone receptor expression in
mammary carcinoma.

The percentage of LASP-1-postitive stained cells was scored
in five grades (grade 0¼ 0 –19%, grade 1¼ 20– 39%, grade
2¼ 40–59%, grade 3¼ 60– 79% and grade 4¼ 80–100% LASP-1-
expressing tumour cells) by examining 10 high-power fields (" 40
magnification) in each tissue sample. In addition, the intensity of
LASP-1-expression by the tumour cells was determined (score
0¼ none, score 1¼ low, score 2¼moderate, score 3¼ strong). The
multiplication of these two grading scores (% LASP-1-positive
tumour cells" staining intensity) calculates the immunoreactive
score for LASP-1-expression (LASP-1-IRS). Examples for the very
heterogeneous LASP-1-expression in invasive breast cancer are
given in Figure 1.

For better statistical discrimination, samples scored with
cytosolic LASP-1-IRS o5 were classified as LASP-1-negative,
those with LASP-1-IRS 45 as LASP-1-positive.

Nuclear LASP-1-staining was scored by determining percentage
of positive nuclei regardless of cytosolic LASP-1-expression and
cytosolic staining intensity. Samples were considered as nuclear-
positive when 10% or more cells showed nuclear LASP-1 staining.
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Examples for nuclear LASP-1 staining are observed in Figures 1C
and D.

The immunomarkers c-erbB2 (HER-2/neu), oestrogen receptor
and progesterone receptor assessed in this study had been
previously detected by standard immunohistochemistry and were
drawn from the archival database of the Department of Pathology
of the University of Wuerzburg.

Scoring of Ki67-positivity

Immunohistochemical scoring was performed by counting
10 randomly selected 40" high-power fields containing repre-
sentative sections of tumour and calculated as the percentage of
positively stained cells to total cells by counting at least 1000
malignant cells. Ki67 X10% nuclear staining was required for a
positive classification (Tan et al, 2005).

Statistical analysis

Associations between nuclear or cytosolic LASP-1-localisation
were evaluated by multivariate non-parametric analysis using
Fisher’s exact (F) and Mann–Whitney (M) test. These tests were
conducted using Graph Pad Prism Software for Windows
(GraphPad Software, Inc., La Jolla, CA, USA). Po0.05 were
regarded as statistically significant.

Tissue preparation, micro-dissection, DNA preparation

In all, 64 formalin-fixed paraffin-embedded breast cancer tissue
samples of the patient cohort and 10 control breast tissues were
placed onto PEN-membrane coated slides (polyethylene naphtha-
late; Leica, Wetzlar, Germany) were deparaffinised (two changes of
xylene, two changes of 96% ethanol, one change of 70% ethanol,
one change with distilled water, 1 min each). After staining with
haematoxylin for 90 s and eosin for 60 s, all sections were rinsed
3" with distilled water. The slides were then air-dried at RT and
used for micro-dissection. Incubation and staining times were kept
as short as possible to enhance DNA recovery and proteinase
K digestion (Godfrey et al, 2000; Ehrig et al, 2001).

Laser capture micro-dissection was performed using the
Laser MicroBeam System (Leica LMD 6000; Leica). Tumour tissue

(2.0– 2.5 mm2) was captured into the lid of a 0.5 ml reaction tube
and digested with 30 ml proteinase K digestion buffer (50 mM Tris,
pH 8.1; 1 mM ethylenediamine tetraacetic acid; 0.5% Tween 20;
3 mU ml – 1 proteinase K). Subsequently, the tubes were closed in
this inverted position and incubated for 50–60 h at 37 1C.
Undigested debris was removed by centrifugation at 14 000 g for
5 min, and proteinase K was inactivated by incubation at 95 1C for
10 min. The samples can be stored safely for months at #20 1C
(Lehmann and Kreipe, 2001).

Quantitative RT–PCR

Quantitative analysis of genomic LASP1 DNA was performed by
monitoring the increase in fluorescence of the dye SYBR Green
(SYBR Green Supermix, Bio-Rad, Munich, Germany) using the
iCycler iQ System (Bio-Rad).

Primers were designed to meet specific criteria by using Primer3
software (http://frodo.wi.mit.edu) (Rozen and Skaletsky, 2000) and
were obtained from Operon Biotechnologie GmbH (Cologne,
Germany). The sequences of the primers used for LASP1 DNA
amplification were 50-TGTCTCCTGACTGGTTGCGT-30, and 50-TG
ATCTGGTCCTGGGTCTTC-30. Primers for GAPDH were used as
internal reference gene: 50-ATCAAGAAGGTGGTGAAGCAG-30 and
50-TACTCCTTGGAGGCCATGTG-30.

SYBR Green PCR was performed in optical caps for a 96-well
tray (Bio-Rad) using a 25 ml final reaction mixture containing 1 ml
of each primer pair (stock 5 mM), 1 ml of the micro-dissected lysed
tissue sample, 12.5ml iQ SYBR Green (Bio-Rad) and sterile water.
The reaction mixture was preheated at 95 1C for 5 min, followed
by 40 cycles at 95 1C, 57 1C and 72 1C for 30 s each.

All amplification curves generated with SYBR Green from
stained tissue showed the typical sigmoid curve. In every run, a
negative control was included to exclude false-positive results.
Melting curve analysis was implemented to ensure the correct PCR
product. Each tissue sample was analysed at least twice for LASP1
and twice for GAPDH.

The relative gene copy number was evaluated on the basis of the
threshold cycles (CT values) of the gene of interest CT(LASP1) and
of the internal reference gene CT(GAPDH).

The CT(GAPDH)/CT(LASP1) ratio in benign control breast
tissues will reflect non-amplified LASP1 conditions. In case of a

Grade 0 Grade 1

Grade 2 Grade 3

Figure 1 Representative images of heterogeneous LASP-1-expression in human invasive breast cancer. Immunohistochemical staining of LASP-1
(DAB, brown, magnification " 20). (A) No LASP-1-expression (grade 0). (B) Low LASP-1-expression (grade 1). (C) Medium LASP-1-expression (grade 2).
(D) High LASP-1-expression (grade 3). Arrows in (C) and (D) point to LASP-1-positive nuclei.
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LASP1 gene amplification in tumour samples, the threshold cycle
number will decrease while the values for the CT(GAPDH)/
CT(LASP1) ratio will increase. The reference range from 10 micro-
dissected normal breast tissues was determined as 0.9699±0.0743.
Therefore, the expectation interval can be calculated as:
m±2 s¼ (0.82127850221.118530727) with m (arithmetic mean)
and s (s.d.).

Cell lines and cell culture conditions

Hepatocellular carcinoma cell lines Hep-3B and Hep-G2, breast
cancer cell lines BT-20, MCF-7 and MDA-MB-231, urothelial
cancer cell lines T24 and RT-4, glioblastoma cell lines U251MG,
U138MG and U87MG, medulloblastoma cell lines DAOY and
D283 as well as chorioncarcinoma cell lines JEG-3 and JAR were
obtained from Cell Line Services (Heidelberg, Germany) and
grown in plastic cell culture flasks in a humidified incubator at
37 1C under 5% CO2 atmosphere in RPMI 1640 medium containing
10% heat-inactivated fetal bovine serum (PAA, Linz, Austria)
and 1% streptomycin/ampicillin (Invitrogen). Cells were cultured
until homogeneous morphology of cells was reached (passage
3–4) because LASP-1 belongs to a group of several differential
expressed proteins that are upregulated after later passages
(Sun et al, 2006).

p53 Mutations

Cell lines with known p53 mutations are listed in the database:
http://p53.free.fr. All mutations result in a non-functional p53
protein: http://p53.iarc.fr.

Cell cycle synchronisation and FACS analysis

BT-20 cells were rendered quiescent (G0) by serum deprivation in
RPMI 1640 with 0.1% FCS for 24 h followed by incubation with
medium supplemented with 10% FCS to allow cell cycle re-entry in
G1. To block S-phase transition, cells were incubated in medium
supplemented with 10% FCS and 2 mg ml – 1 aphidicolin for 24 h
(Sigma). To synchronise the culture at G2/M phase, cells in the
S-phase were released in RPMI 1640 medium supplemented with
10% FCS for 12 h.

Cell cycle distribution was monitored by propidium iodide
staining and measuring fluorescence in a FACScan 2 (Becton
Dickinson, Heidelberg, Germany). BT-20 cells were harvested by
trypsination and fixed in 70% ethanol (4 1C) for 1 h followed
by incubated in a solution containing 50 mg ml – 1 RNase in PBS for
30 min. For staining, 50 mg ml – 1 propidium iodide was added for
another 30 min. Cells were analysed by FACS, and the proportion
in G0/G1, S and G2/M phases was estimated using Modfit cell cycle
analysis programme. Measurements were performed on at least
three independent synchronisation experiments.

Preparation of nuclear and cytosolic cell fractions

Human breast cancer cell lines were harvested at 80% confluence
through trypsination. Isolation of nuclei and cytosol was carried
out using NE-PER nuclear and cytoplasmic extraction Reagents
(Pierce, Bonn, Germany) following the manufacturer’s instruc-
tions. Samples were solved in Laemmli sample buffer at a final
concentration of 1" 106 ml – 1 and stored at #20 1C before western
blot electrophoresis.

Western blot analysis

For western blotting, cells were lysed in Laemmli sample buffer.
Equal amounts of protein, according to cell count, were resolved
by 12% SDS–PAGE. After blotting on nitrocellulose membrane
and blocking with 3% non-fat dry milk in 10 mM Tris, pH 7.5,

100 mM NaCl, 0.1% (w/v) Tween 20, the membrane was incubated
with the antibody raised against LASP-1 (1 : 20 000) (Butt et al,
2003) or PDEF antibody (1 : 1000) followed by incubation with
horseradish peroxidase-coupled goat anti-rabbit IgG (Bio-Rad),
diluted 1 : 5000, and visualised by ECL (Amersham Biosciences,
Freiburg, Germany). Quantification of autoradiography signals
was carried out by densitometry using the ImageJ software (NIH,
Bethesda, MD, USA).

GAPDH (1 : 1000; Santa Cruz, Heidelberg, Germany) was used as
a specific cytosolic marker to exclude cytoplasmic contamination
of the nuclei preparation. Anti-Lamin AþC antibody (1 : 50;
Abcam, Cambridge, UK) served as a specific nuclear marker
to exclude nuclear contamination in cytoplasmic cell samples. At
least three independent experiments have been carried out and
representative results are shown.

RESULTS

Overexpression of LASP-1 in breast cancer is not due to
gene amplification

As increasing amounts of contaminating non-malignant cells lead
to a significant decrease in detection sensitivity (Kallioniemi et al,
1994), we used individual micro-dissected breast cancer cells to
examine the LASP1 copy number in DNA samples from 64 patients
with known invasive breast carcinoma selected randomly from
January 2000 to December 2007.

We detected only 1 out of 64 tissue samples (1.5%) with a
CT(GAPDH)/CT(LASP1) ratio higher than the expectation interval,
showing a negligible rate of LASP1 gene amplification. Therefore,
the observed overexpression of the LASP-1 protein in more than
55% of human breast cancers (Grunewald et al, 2007a) is likely due
to reasons distinct from gene amplification.

LASP-1 overexpression neither correlates with PDEF
expression nor with p53 mutations

Commonly, the inner layer of benign ductal luminal epithelial cells
show a high nuclear PDEF staining while in invasive ductal
carcinoma, a weak PDEF staining is detected mainly in the cytosol
(Feldman et al, 2003), (Figure 2). To determine whether the
reported reciprocal effect of PDEF on LASP-1 in non-invasive and
invasive breast cancer cell lines (Turner et al, 2008) is transferable
to breast tumour patient samples, we evaluated 35 primary breast
cancer tissues for PDEF expression; 17 with known high (X8)
LASP-1 IRS and 18 specimens with low (p3) LASP-1-IRS.

In all 35 tested human breast cancer samples, we observed
a comparable cytosolic PDEF localisation without significant
differences in staining intensity. Only two out of the tested
samples showed in parts additional nuclear PDEF staining. No
correlation between the PDEF levels in invasive ductal carcinoma
and high or low LASP-1 expression could be detected.

When examining tumour cell lines of different entities, an
overall PDEF expression is observed that does not correlate per se
with low LASP-1 protein concentration (Figure 3). For example,
while the PDEF levels are similar in all three tested breast cancer
cell lines (MDA-MB-231, BT-20, MCF-7) LASP-1 expression is only
reduced in MCF-7 cells. Analogous differences are also observed
with glioblastoma and chorioncarcinoma cell lines (Figure 3).

To test whether LASP1 is transcriptionally regulated by p53, we
analysed several human cancer cell lines of different tumour
entities with and without known p53 mutations for LASP-1-
expression by western blot. All mutations result in a functionally
inactive tumour suppressor. In summary, the analysis showed no
correlation between high LASP-1-expression and p53 mutations
(Figure 3). For instance, in spite of the total loss of function
because of an additional stop codon in the p53 gene of the
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urothelial cell line T24, both, p53 wild-type RT-4 and p53 mutant
T24 urothelial cancer cell lines express high levels of LASP-1. In
contrast, the chorioncarcinoma cell line JEG-3 with a p53 mutation
and the breast carcinoma cell line MCF-7-expressing wild-type p53
show low LASP-1-expression.

Nuclear localisation of LASP-1 correlates with poor long-
term survival

In an earlier case–control study, a strong cytoplasmic staining for
LASP-1 was detected in 455% of the invasive tumours, which
correlated significantly with increased tumour size and rate
of nodal-positivity. In addition, we observed a distinct nuclear
LASP-1-localisation pattern that was absent in benign tissue
(Grunewald et al, 2007a).

We therefore performed a retrospective study (January 1985
until December 2007) with samples of 177 archival cases of
confirmed histological diagnosis of invasive breast carcinomas to

evaluate the long-term survival of breast tumour patients in
relation to nuclear and cytoplasmic LASP-1-positivity.

Cytoplasmic LASP-1 protein expression was detected in 95% of
the breast carcinomas; thereof 31% showed an additional nuclear
LASP-1 staining (Figure 1, Table 1). A low cytoplasmic expression
correlated with negative/low nuclear staining and a high cytoplas-
mic LASP-1-expression with high nuclear localisation (Table 1).

The prognostic effect of nuclear and cytosolic LASP-1 staining
was further tested using the Kaplan–Meier survival analysis. There
was a significant correlation (P¼ 0.025) between patients with
positive nuclear LASP-1 staining and poor overall survival (OS)
(Figure 4A, Table 2) while there was no significant association
between OS and cytoplasmic LASP-1 staining (Figure 4B,
P¼ 0.404). Surprisingly, a relationship between high positive
nuclear staining and low grading (P¼ 0.025) was observed,
whereas all other clinical parameters analysed (i.e., nodal status,
oestrogen and progesterone receptor status, recurrence) did not
correlate with nuclear LASP-1-localisation (Table 3).

Figure 2 Immunohistochemical staining of PDEF (DAB, brown, magnification " 400) in benign breast tissue (A and B) and invasive ductal breast cancer
samples (C and D) showing a nuclear PDEF staining in normal tissue and a more cytosolic PDEF localisation in tumour cells.
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Rate of nuclear LASP-1-localisation increases during
proliferation and augments in G2/M phase

There are two facts regarding LASP-1 that seem to be linked:
(a) the prominent nuclear localisation of LASP-1 in primary breast

cancer (Figure 1) (Grunewald et al, 2007a) and (b) cell cycle arrest
at G2/M accompanied by reduced cell proliferation after knock-
down of LASP-1 in breast carcinoma cell lines (Grunewald et al,
2006). Therefore, it was tempting to speculate that the rate of
nuclear LASP-1-localisation might be cell cycle dependent. To test
this hypothesis, BT-20 cell lysates were subjected to cytoplasmic
and nuclear fractioning. Purity of the fractions was confirmed by
probing western blot membranes for the nucleus marker Lamin
AþB and the cytoplasmic marker GAPDH. Figure 5A shows that
there was virtually no cross-contamination.

In cells with an asynchronous cell cycle, in non-proliferating
G0 phase cells (resting/senescent) and in G1 phase cells
(G1/S-checkpoint), LASP-1 was found primarily within the
cytoplasm (95%) (Figures 5A and B). During proliferation
(S-phase) the nuclear LASP-1 concentration increased up to 10%
and reached a peak at G2/M phase (G2/M) although the overall
LASP-1 protein level did not change (data not shown).

As LPP and Zyxin are known binding partners of LASP-1
(Keicher et al, 2004; Li et al, 2004) and are discussed as possible
shuttle proteins to transfer LASP-1 into the nucleus we also
controlled their distribution during cell cycle phases. Consistently,
like LASP-1, both proteins showed a cell phase-dependent nuclear
increase in G2/M (Figure 5B) without changes in absolute protein
concentration. All cell cycle phases were controlled by flow
cytometry (Figure 5C).

To further validate the influence of nuclear LASP-1 occurence
on cell proliferation, we quantified the number of positive stained
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Figure 4 Outcome of patients with nuclear and cytosolic LASP-1
localisation. Kaplan–Meier plots measuring patients OS in years against
cumulative survival for nuclear (A) and cytosolic (B) LASP-1 staining. The
analysis included patients diagnosed from 1985 to 2007 (n¼ 177). Nuclear
LASP-1-positivity is associated with poor OS.

Table 1 Analysis of overall survival in relation to LASP-1 staining
intensity

LASP-1
staining
intensity

No. of
patients

Positive
nuclear
LASP-1
staining

No. of
deceased
patients

Overall
survival (%)

Score 0 9 0 (0%) 0 100
Score 1 46 6 (13%) 7 84.8
Score 2 109 46 (42.2%) 27 75.2
Score 3 13 4 (28.5%) 4 69.2
Total 177 56 (31%) 38 89.6

Abbreviation: LASP-1¼ LIM and SH3 protein 1.

Table 2 Analysis of overall survival in relation to nuclear LASP-1-
positivity

Nuclear
LASP-1-
positivity

No. of
patients

No. of
deceased
patients

Overall
survival (%)

No 121 21 82.6
Yes 56 17 69.6

Abbreviation: LASP-1¼ LIM and SH3 protein 1.

Table 3 Univariate analysis of positive nuclear LASP-1 staining and
clinicopathological parameters

Parameters Positive nuclear LASP-1 staining P-value

Nodal status
N+ (n¼ 83) 31 (37.3%)
N# (n¼ 94) 25 (26.6%) 0.2 (F)

Tumour size
Tis (n¼ 3) 0 (0.0%)
T1 (n¼ 108) 37 (34.3%)
T2 (n¼ 51) 15 (29.4%)
T3 (n¼ 5) 2 (40.0%)
T4 (n¼ 10) 2 (20.0%) 0.69 (M)

Metastasis
M+ (n¼ 6) 1 (16.7%)
M# (n¼ 171) 55 (32.2%) 0.67 (F)

Grading
G1 (n¼ 7) 4 (57.1%)
G2 (n¼ 69) 27 (39.1%
G3 (n¼ 45) 9 (20.0%) 0.03 (M)

Recurrence
Yes (n¼ 36) 8 (22.2%)
No (n¼ 87) 27 (31.0%) 0.38 (F)

ER
ER+ (n¼ 98) 28 (28,6%)
ER# (n¼ 62) 23 (37.1%) 0.3 (F)

Progesteron receptor
PR+ (n¼ 86) 22 (25.6%)
PR# (n¼ 71) 27 (38.0%) 0.13 (F)

HER2/neu
Her+ (n¼ 27) 6 (33.3%)
Her# (n¼ 47) 18 (28.1%) 0.77 (F)

Abbreviations: ER¼ oestrogen receptor; F¼ Fisher’s exact test; LASP-1¼ LIM and
SH3 protein 1; M¼Mann–Whitney Test; PR¼ progesterone receptor. Statistical
significance is assumed when Po0.05.
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cells for the proliferation marker Ki67 in 30 breast cancer tissue
samples with known high LASP-1 IRSX8 and either nuclear or
cytosolic LASP-1 localisation.

Although only 30.7% of the invasive ductal carcinoma samples
with cytosolic LASP-1 expression are positive for Ki67 staining,
68.7% of the breast cancer tissues with nuclear LASP-1 occurrence
show positive staining for the proliferation marker Ki67 (w2 test;
P¼ 0.04).

DISCUSSION

The LASP1 gene was initially identified from a cDNA library of
metastatic axillary lymph nodes (MLN) from human breast cancer
and therefore called MLN50. The gene was mapped to chromo-
somal region 17q11-q21.3, a region known to contain the c-erbB-2
(HER-2/neu) and the BRCA1 oncogene and to be altered in
20–30% of all breast cancers (Tomasetto et al, 1995a, b). Since its
discovery in 1995, several experimental approaches have been
carried out to determine the cause of LASP-1 overexpression and
its regulatory mechanisms. For instance, LASP-1 overexpression
was reported to be due to LASP1 gene amplification detected in
12 out of 98 tested whole breast cancer samples (Bieche et al, 1996)

while Tomasetto et al detected an amplification of LASP1 only in
one (BT-474) out of eight different breast cancer cell lines
(Tomasetto et al, 1995b). Others observed deregulation of normal
LASP-1-expression in relation to changes in PDEF and urokinase-
type plasminogen activator (uPA) concentration or because of loss
of p53 tumour suppressor activity (Turner et al, 2008; Salvi et al,
2009; Wang et al, 2009).

However, in this work, we analysed the expression pattern of
LASP-1 in primary invasive breast cancers using micro-dissected
tissues. Our data clearly show that the LASP1 gene is not amplified
in the vast majority of human breast cancers (only 1 out of
64 cases), suggesting that LASP-1 overexpression is mediated
through transcriptional regulation rather than gene amplification.
In the context of transcriptional regulation, we revealed that
LASP-1 overexpression does not correlate per se with defects in
the tumour suppressor protein p53 transcriptionally repressing
LASP-1 (Wang et al, 2009). Although the data for the regulation of
LASP1 gene expression by p53 are convincing, there are clearly
additional mechanisms involved in LASP-1 protein upregulation
such as transcriptional cofactors and decay rates than just
functional defects in p53.

As for PDEF, we could not confirm an association between
low PDEF protein expression and high LASP-1 levels although
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Figure 5 Cell cycle-dependent nuclear and cytosolic LASP-1 distribution. (A) Western blotting of nuclear (N) and cytosolic (C) proteins levels of LPP,
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Turner et al showed that re-expression of PDEF in cells with low
PDEF protein expression resulted in reduced LASP-1 levels
(Turner et al, 2008).

However, PDEF mRNA concentration and protein expression in
breast cancer cell lines is discussed controversially. As reported
earlier, PDEF protein detection did not always correspond to PDEF
mRNA levels. Although some studies showed increased PDEF
mRNA (Turcotte et al, 2007) or protein expression in invasive
ductal carcinoma (Sood et al, 2007) others observed reduced
protein expression in breast cancer cells (Feldman et al, 2003;
Doane et al, 2006; Ghadersohi et al, 2007; Turner et al, 2008).
Recently, this discrepancy was explained by the identification of
two microRNAs in human breast tumour samples that directly
repressed PDEF protein expression in spite of the detection of high
PDEF mRNA concentration (Findlay et al, 2008).

In a recent paper by Grunewald et al, LASP-1 was reported to be
highly expressed in invasive breast carcinomas compared with
fibroadenomas. Strong cytoplasmic staining for LASP-1 was found
in 55.4% of the invasive breast tumours (Grunewald et al, 2007a).
In addition to the reported localisation at focal contacts and
lamellipodia, a perinuclear and nuclear distribution of the protein
was observed. These data hint to a potential additional signalling
function of LASP-1 as a shuttle protein thereby transducing growth
signals from the sites of cellular contacts with the ECM into the
nucleus.

In support of this hypothesis, this work shows a cell cycle-
dependent increase of nuclear LASP-1 during the mitotic G2/M
phase in proliferating tumour cells (Figure 5C) while serum-
starved quiescent cells (G0) as well as cells in G1 and S-phase show
only minor levels of the protein in the nucleus. Our observations
are consistent with earlier data showing a specific cell cycle arrest
at G2/M and inhibition of cell proliferation after LASP-1 knock-
down in breast and ovarian cancer cell lines (Grunewald et al,
2006, 2007a, b). In reverse, a high LASP-1 concentration in the
nucleus would show sustained cell proliferation. In fact, we found
that approximately 70% of the patient samples with nuclear
LASP-1 staining were positive for the cell proliferation marker
Ki67 while only 30% of the patients with cytosolic LASP-1
expression showed positive Ki67 staining.

Consistently, earlier studies revealed a correlation between
LASP-1-expression and tumour size as well as nodal-positivity in
human breast carcinoma (Grunewald et al, 2007a). The present
continuative long-term follow-up strengthens the assumed
link between increased nuclear LASP-1-localisation and poor
survival of patients with breast cancer suggesting an effect of
nuclear LASP-1 on cell proliferation, especially because the
absolute amount of cytosolic LASP-1-expression does not correlate
with patients’ OS.

Unexpectedly, we found a high nuclear localisation of LASP-1 in
differentiated G1 tumours while in parallel nuclear LASP-1
abundance was correlated with worse prognosis. It is possible
that tumours with a high nuclear LASP-1-expression represent a
subgroup with poor survival irrespective of the grading. This
could, for example, be due to a decreased response to endocrine or
chemotherapeutic treatment. However, the number of available G1
tumours was very low. Therefore, we will not draw definitive
conclusions regarding these data.

On the molecular level, the zinc-finger containing LIM-domain of
LASP-1 offers a possibility for direct binding to DNA (Hammarstrom
et al, 1996). LASP-1 may even form heterodomains to become a
nuclear transcription factor (Kadrmas and Beckerle, 2004).

Although LASP-1 sequence analysis revealed no nuclear
localisation signal, the classical import pathway for the nucleus
(Kutay and Guttinger, 2005), LASP-1 binds to the well-charac-
terised shuttle proteins and transcription factors LPP and Zyxin
that are upregulated in a wide variety of human cancers (Beckerle,
1997; Petit et al, 2003; Keicher et al, 2004; Li et al, 2004; Grunewald
et al, 2009). For Zyxin, it is known that during mitosis a fraction
of the cytoplasmic-dispersed protein becomes phosphorylated
(most likely by Cdc2 kinase) and associates with the tumour
suppressor h-warts (LATS1), a key governor of G2/M-progression,
at the mitotic apparatus (Hirota et al, 2000).

Our data suggest that pathophysiological localisation of LASP-1
in the nucleus of malignant cells may induce mitosis and thereby
enhance cell proliferation, possibly in concert with Zyxin and LPP.
Further work will be needed to identify the nuclear shuttle
partner(s) of LASP-1, the mechanism of nuclear translocation and
the regulation of cell cycle progression.

The present continuative long-term follow-up provides evidence
for the relation of increased nuclear LASP-1-localisation and
poor survival of patients leading to the question whether nuclear
LASP-1-positivity defines a subgroup of patients with unfavour-
able prognosis that is not responding to conventional treatment
approaches. Future work is on the way to elucidate the precise
molecular and clinical effect of LASP-1 nuclear overexpression.
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ABSTRACT

Several studies have linked overexpression of the LIM and SH3 domain protein 
1 (LASP1) to progression of breast, colon, liver, and bladder cancer. However, 
its expression pattern and role in human prostate cancer (PCa) remained largely 
undefined.

Analysis of published microarray data revealed a significant overexpression of 
LASP1 in PCa metastases compared to parental primary tumors and normal prostate 
epithelial cells. Subsequent gene-set enrichment analysis comparing LASP1-high 
and -low PCa identified an association of LASP1 with genes involved in locomotory 
behavior and chemokine signaling. These bioinformatic predictions were confirmed 
in vitro as the inducible short hairpin RNA-mediated LASP1 knockdown impaired 
migration and proliferation in LNCaP prostate cancer cells. 

By immunohistochemical staining and semi-quantitative image analysis of 
whole tissue sections we found an enhanced expression of LASP1 in primary PCa 
and lymph node metastases over benign prostatic hyperplasia. Strong cytosolic and 
nuclear LASP1 immunoreactivity correlated with PSA progression. Conversely, qRT-
PCR analyses for mir-203, which is a known translational suppressor of LASP1 in 
matched RNA samples revealed an inverse correlation of LASP1 protein and mir-203 
expression. Collectively, our results suggest that loss of mir-203 expression and thus 
uncontrolled LASP1 overexpression might drive progression of PCa.

INTRODUCTION

Prostate cancer (PCa) is the most frequent cancer 
of men in the western world [1]. Although many PCa 
are rather indolent tumors and remain clinically stable 
for many years or even decades and do not require any 
treatment, more aggressive PCa subtypes metastasize early 
and are associated with dismal outcome [2-4]. In 1986, 
introduction of prostate specific antigen (PSA) testing 
has significantly improved early diagnosis of PCa [5]. 
However, although high serum PSA levels may correlate 

with PCa aggressiveness [6], PSA testing has caused a 
stage shift to less aggressive PCa. Over-detection and 
over-treatment are the main drawbacks of PSA-testing 
and unintentionally affect patients’ quality of life [7]. 
Consequently, there is an urgent need for prognostic 
biomarkers to discriminate indolent from highly 
aggressive PCa in order to better guide an individual 
patient´s treatment.

Recently, Erho et al. [8] developed and validated a 
PCa genomic classifier set with 22 markers that predicts 
metastatic progression better than clinicopathologic 
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variables. The LIM and SH3 protein 1 (LASP1) is one of 
these markers. 

LASP1 is a nucleo-cytosolic shuttling protein 
involved in migration, adhesion, proliferation and cell 
cycle progression of many cancers [9]. LASP1 was 
initially identified from a cDNA library of breast cancer 
metastases and the corresponding protein is overexpressed 
in more than 50% of all breast cancers [10-12]. Besides its 
function as a structural scaffolding protein at sites of actin 
assembly such as invadopodia and membrane ruffles [13], 
LASP1 likely acts as a signaling molecule transducing 
information from the cytoplasm into the nucleus [14]. 
LASP1 is expressed in virtually all normal tissues [9], 
but overexpressed in many cancer entities such as the 
aggressive pediatric brain tumor medulloblastoma [15] as 
well as breast [12], ovarian [16] and colorectal carcinoma 
[17]. Moreover, LASP1 overexpression correlates with 
adverse outcome in these cancer entities suggesting an 
oncogenic function of LASP1 [12, 15, 17]. Expression 
of LASP1 is regulated i) by tumor suppressor p53 on the 
genomic level as shown for hepatocellular carcinoma 
[18] and ii) on the protein level by microRNA mir-203 as 
described for esophageal squamous cell carcinoma [19], 
breast cancer [20], and PCa [21, 22].

Here, we investigated the LASP1 expression pattern 
in a large series of surgically treated high-risk PCa samples 
(n=161) and correlated LASP1 protein levels with mir-203 
expression levels in a subset of the same tumors (n=138). 

In addition, we investigated the effect of RNA interference 
mediated LASP1 knockdown in a metastatic PCa cell line.

Our data demonstrate for the first time that LASP1 
is overexpressed in a subset of high-risk PCa and that this 
expression correlates with PSA progression. qRT-PCR 
revealed a correlation between high LASP1 protein levels 
and reduced mir-203 expression in the PCa tissue samples. 
Cell culture experiments underline the more proliferative 
and migratory PCa phenotype in high LASP1 expressing 
cells. 

These data might represent a first step toward 
characterizing LASP1 as a promising novel candidate 
biomarker to discriminate indolent from aggressive PCa.

RESULTS

LASP1 mRNA expression is increased in prostate 

cancer metastases and is associated with pathways 

involved in cell migration

As LASP1 is overexpressed in several cancer 
entities [15-17], we assessed the LASP1 mRNA 
expression pattern in publicly available microarray 
datasets. Specifically, microarray data of primary PCa 
(n=61) and PCa metastases (n=25) were compared with 
normal prostate tissue (n=18). As displayed in Figure 1A, 

Figure 1: LASP1 mRNA expression is increased in prostate cancer metastases and is associated with pathways involved 

in cell migration A: LASP1 is significantly overexpressed in PCa metastases compared to parental primary tumors and 
normal prostate epithelial cells (p=0.028; Student´s t test metastasis versus normal and primary). B: Gene expression signatures 
in the top 10 LASP1-high versus top 10 LASP1-low PCa samples by gene-set enrichment analysis (GSEA). C: GSEA analysis of the PCa 
microarray data, showing significant enrichment of genes involved in locomotory behaviour and chemokine signaling. 
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LASP1 is significantly (p=0.028) overexpressed in PCa 
metastases compared to normal tissues and the primary 
tumor.

To investigate LASP1 correlated pathways, we 
analyzed a large PCa microarray study (n=154) for 
LASP1 expression. As displayed in Figure 1B, LASP1 is 

moderately expressed in most PCa samples but appears 
to be overexpressed in about 15% of PCa samples 
(designated as LASP1-high). Subsequently, we compared 
the gene expression signatures in the top 10 LASP1-high 
versus top 10 LASP1-low PCa samples (Figure 1B and 
Supplemental Table 1) by gene-set enrichment analysis 

Figure 2: LASP1 protein expression is elevated in metastatic prostate cancer A: Representative immunostaining of BPH: 
most hyperplastic cells are LASP1 negative, both, for cytosol and nucleus (green arrows). Smooth muscle cells of blood vessels are 
positive for LASP1 (blue arrow). B: Representative PCa immunostaining (Gleason 8): most cells display positive LASP1 staining, both, 
for cytosol (IRS 4) and nuclei (red arrows). C and D: Prostate cancer (Gleason 8) with corresponding LNM, respectively: in PCa most 
cells are weak positive for cytosolic LASP1 staining (IRS 1) (green arrows). Few cells show additional positive nuclear LASP1 staining 
(red arrow). Compared to the primary tumor shown in C, in LNM (D) the overall cytosolic LASP1 staining (IRS 4) (green arrows) and the 
amount of cells with additional LASP1 positive nuclei (red arrows) are increased. LASP1 positive lymphocytes are marked with a black 
asterisk. (DAB, brown, magnification x40)

Table 1: Patient characteristics (n=161)

Parameters Median
Age at surgery, years (range) 65.9 (43-81)
Mean follow-up, months (range) 47.14 (1-105)
Nuclear LASP1 positivity 56 (34.78%)
LASP1-IRS positivity 39 (24.22%)
Clinical failure/ clinical recurrence 19 (11.80%)
Mean preoperative PSA (ng/ml) (range) 48.07 (20-160)
Death for any reason 22 (13.66%)
Cancer related death (CRD) 10 (6.21%)
Cancer specific survival, months (range) 43.7 (14-63)
Biochemical progression / PSA progression 41 (25.47%)
Average time to PSA progression, months(range) 22.8 (1-54)
Average time to clinical progression, months (range) 26.79 (3-89)
Gleason score
6 3 (1.86%)
7 49 (30.43%)
8 52 (32.3%)
9 43 (26.71%)
10 14 (8.7%)
Pathological tumor stage
pT2 23 (14.29%)
pT3a 44 (27.33%)
pT3b 67 (41.61%)
pT4 27 (16.77%)
Lymph node positive 59 (36.65%)
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(GSEA). GSEA revealed that LASP1 overexpression in 
clinical PCa samples is strongly correlated (p<0.001) with 

gene signatures involved in locomotory behaviour and 
chemokine signaling (Figure 1C). Collectively, these data 
indicate that LASP1 overexpression is associated with a 
more aggressive PCa phenotype.

LASP1 protein expression is elevated in metastatic 

prostate cancer 

To validate our findings on LASP1 overexpression in 
a subset of PCa samples on protein level, we investigated 
the LASP1 protein expression pattern by immuno-
histochemistry (IHC) in specimens from 15 benign 
prostatic hyperplasias (BPH), 161 high-risk PCa derived 
from patients with pre-treatment PSA >20 ng/ml who 
underwent radical prostatectomy, and 17 corresponding 
lymph node metastases (LNM). Representative samples 
for the observed LASP1 immunoreactivity are shown in 
Figure 2. Analysis of the Immune Reactive Scores (IRS) 
revealed that the median expression of LASP1 increases 
from BPH (IRS 2.0 ± 1) to PCa (IRS 3.0 ± 2) and LNM 
(IRS 4.0 ± 1). Interestingly, only PCa and LNM showed 
very high IRS values up to 12 while in BPH, the IRS 
maximum is 6. Accordingly, a low cytosolic LASP1 
expression correlated with negative/low nuclear staining 
and a high cytosolic expression with high nuclear LASP1 
immunoreactivity (p=0.0001, Table 2). These analyses 
confirmed an increase of LASP1 protein levels in 
metastatic high-risk PCa.

Silencing of LASP1 impairs proliferation and 

migration of prostate cancer cells in vitro

To functionally assess the role of LASP1 in 
high-risk PCa, we used the LNCaP cell line, which is 
commonly used as an in vitro model for metastasized PCa 
[23]. LNCaP cells were stably transfected with inducible 
shRNA against LASP1 or a control shRNA. Doxycyclin-
induced LASP1 knockdown was confirmed for every 
experiment by Western blot (WB) and showed an average 
silencing of LASP1 of about 50% (Figure 3, lowest panel). 

Proliferation was assessed by cell counting and 
revealed a significant inhibition of cell proliferation up 
to 31% upon LASP1 silencing (Figure 3). Similar results 
were obtained using a CellTiter-Glo® Luminescent assay 

Figure 3: Silencing of LASP1 impairs proliferation 

and migration of prostate cancer cells in vitro. Used 
were non-transfected LNCaP wild type cells (WT) and cells 
stably transfected with control shRNA or shRNA against 
LASP1. Adhesion: After 4 days LASP1 knockdown, cells were 
seeded in 48-well plates and incubated for 7.5h. Adherent cells 
were counted using CellTiterGlo®. Proliferation: Cells were 
seeded in T25 flasks. Knockdown was induced with doxycycline 
(Dox) and cells were counted after 4 days. Migration: After 4 
days LASP1 knockdown, cells were seeded in modified Boyden 
chambers and incubated for 4 h. Migrated cells were fixed, 
stained with crystal violet and absorbance was measured. Bar 
plots represent mean ±SEM; p, Student´s t test, versus control. 
LASP1 knockdown efficiency was controlled by Western blot. 
Actin is shown as loading control.

Table 2: LASP1 and mir-203 expression in BPH, PCa and LNM

Positive
LASP1
nucleus
(≥10%) 

Mean
Nuclear
staining
(range)

Positive 
LASP1
(IRS>5)

Median
IRS
(range)

∆CT
mir-203
(subset)

BPH (n=15) 1 (6.7%) 3.3 (0-13) 1 (6.7%) 2 (0-6) -0.54 ± 0.16   (15)
PCa (n=161) 56 (34.8%) 16.3 (0-95) 39 (24.2%) 3 (0-12) -1.54 ± 0.12 (138)
LNM (n=17) 5 (29.4%) 12.5 (2-50) 2 (11.8%) 4 (1-11) -2.39 ± 0.26   (12)
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(data not shown).
Since LASP1 has been shown to promote cell 

motility and metastasis in other tumor entities [17, 24] 
we analyzed cell migration and adhesion of LNCaP 
cells before and after LASP1 silencing with a modified 

Boyden-chamber and an adhesion assay, respectively. 
We observed a strong reduction in migratory potential by 
39% upon LASP1 silencing but no significant effect on 
adhesion (Figure 3). Taken together, these data provide 
evidence that LASP1 is functionally involved in PCa cell 
proliferation and migration.

Cytosolic and nuclear LASP positivity correlate 

with PSA progress

The prognostic impact of cytosolic and nuclear 
LASP1 immunoreactivity was tested using Kaplan-Meier 
survival analyses. We found a significant correlation 
between PSA recurrence, both, with nuclear LASP1 

Figure 4: Cytosolic and nuclear LASP1 positivity 

correlate with PSA progress A: Kaplan-Meier plot 
displaying patients’ probability for PSA progress stratified 
by cytosolic LASP1 positivity (IRS>5) and negativity 
(IRS<5) B: Kaplan-Meier plot displaying patients’ 
probability for PSA progress stratified by nuclear LASP1 
positivity (NUC≥10%) and negativity (NUC<10%).

Figure 5: mir-203 levels are reduced in prostate cancer 

Reduced mir-203 levels correspond to enhanced LASP1 
protein concentrations. mir-203 expression was analysed by 
qRT-PCR. Relative mir-203 expression values are presented as 
mean ± SEM.

Table 3: Univariate analysis of positive nuclear LASP1 localisation and cytosolic LASP1 staining with clinico-

pathological parameters (n=161)

Parameters
(No. patients)

Positive 
nuclear
LASP1 
(≥10 %)

p-value  Positive
 cytosolic
 LASP1
 (IRS >5)

p-value

Nodal status  
N+  (59)
N-  (102)

16 (27.1%)
40 (39.2%)

0.13 (F)
7 (11.9%)
32 (31.4%)

0.007 (F)

Tumour size  
pT2 (23)
pT3a (44)
pT3b (67)
pT4  (27)

11 (47.8%)
16 (36.4%)
19 (28.4%)
10 (37.0%)

0.33 (M) 
11 (47.8%)
13 (29.5%)
9 (13.4%)
6 (22.2%)

0.012 (M)

Gleason Score       
6  (3)
7  (49)
8  (52)
9  (43)
10  (14)

1 (33.3%)
18 (36.7%)
24 (46.2%)
9 (20.9%)
4 (28.6%)

0.16 (M)
0 (0.0%)
11 (22.4%)
15 (28.8%)
10 (23.3%)
3 (21.4%)

0.84 (M)

Recurrence   (19)
PSA progress (41)
Cancer related death (10)

5 (26.3%)
22 (53.7%)
3 (30%)

0.35 (LT)
0.02 (LT)
0.54 (LT)

6 (31.6%)
16 (34.1%)
5 (50%)

0.54 (LT)
0.04 (LT)
0.10 (LT)

(F) Fisher´s exact test, (M) Mann-Whitney-U-test; (LT) Log-rank test; statistical significance 
is assumed at p<0.05.
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positivity (p=0.017) and with strong LASP1 IRS (p=0.044) 
(Figure 4). These statistical associations were confirmed 
by univariate analysis (Table 3). For cancer related death 
(CRD), we failed to attend significance between cytosolic 
LASP1 levels and this parameter (p=0.1, Table 3). 
However, the overall number of deceased persons (n=10) 
was too low for a statistically robust conclusion on CRD 
(Table 1). Univariate analysis of the data revealed no 
correlation between Gleason score and high cytosolic or 
nuclear LASP1 immunoreactivity (Table 3). In synopsis, 
LASP1 protein expression correlates with PSA progress.

mir-203 levels are reduced in prostate cancer

To investigate the role of mir-203 on LASP1 
expression in PCa, we assessed the mir-203 levels for 
a subset of our cohort described in Table 2 (15 BPH, 
138 high-risk PCa and 12 corresponding PCa/LNM) by 
qRT-PCR and matched the RNA data with the LASP1 
IRS values determined by IHC (Table 2). For PCa a 
significant correlation between high cytosolic LASP1 
protein levels (IRS>5) as well as high nuclear LASP1 
levels (NUC≥10%) and reduced mir-203 expression is 
observed (p=0.002 and p=0.038, respectively). Expression 
levels of mir-203 are significantly reduced from BPH over 
PCa (p=0.006) to LNM (p=0.036) while in return LASP1 
protein levels are increased, supporting the hypothesis of 
LASP1 as a potential marker for aggressive PCa (Figure 
5). 

DISCUSSION

Current clinical staging is unable to accurately 
identify PCa subsets that are prone to progress to 
aggressive lethal disease, even if high Gleason scores 
and elevated PSA levels are used as combined prognostic 
markers [25]. This has contributed to a serious dilemma 
of overtreatment [26]. In the present study we identified 
LASP1 as a potential new prognostic PCa biomarker since 
the protein is significantly overexpressed in PCa compared 
with BPH (p=0.03) in our cohort. Moreover, analysis of 17 
specimens of PCa and their corresponding LNM exhibited 
higher LASP1 levels in metastases, which points to a role 
of LASP1 in tumor progression. In addition, we analyzed 
LASP1 expression in high-risk PCa (Gleason score >8 
and PSA>20 ng/ml) and correlated the immunoreactive 
LASP1 scores with clinicopathological data, which 
yielded a significant correlation between cytosolic and 
nuclear LASP1 levels and PSA progression. Similarly, 
a correlation between nuclear LASP1 localisation and 
poor overall survival is observed in breast cancer [11]. 
For colorectal cancer [17] and medulloblastoma [15] no 
distinct differentiation between cytosolic and nuclear 
LASP1 positivity was performed but patient survival was 
again inversely correlated with global LASP1 expression. 

Unexpectedly, no correlation with clinical progression 
is observed in our study (Table 3). However, on average 
it lasts 8 years from PSA progression to clinically overt 
metastasis [27]. Our median study follow up was 4 
years, which might explain, at least in part, the lack of 
statistically association of LASP1 levels with clinical 
progression in our cohort.

In support of our observations in primary PCa, we 
found a functional role of LASP1 in LNCaP cells. Besides 
a moderate reduction of cell proliferation, we observed 
an impaired migration of LNCaP cells upon inducible 
shRNA-mediated LASP1 knockdown. These in vitro 
results correspond to the in silico predictions derived from 
our GSEA of microarrays of primary PCa, which showed 
an association of LASP1 expression with transcriptional 
signatures involved in locomotory pathways. In analogy, 
reduced cellular migration upon LASP1 knockdown was 
observed in medulloblastoma [15], breast cancer [24], 
and colorectal cancer [17]. Consistently, in several cancer 
entities such as breast cancer [20], bladder cancer [28], 
squamous cell carcinoma [19] and now PCa, increased 
LASP1 protein levels are connected to reduced mir-203 
RNA levels and concomitant enhanced cell proliferation 
and migration. 

Notably, in parallel to our experiments, Erho et 
al. identified LASP1 as one out of 22 marker in a PCa 
genomic classifier (GC) [8]. The study revealed that 60% 
of clinical high-risk patients would be reclassified as low-
risk with a cumulative incidence of metastasis of only 
2.4% at 5 years post radical prostatectomy. Conversely, 
patients with the highest GC score had nearly 10 times 
higher cumulative incidence of metastasis by 5 years. The 
value of this GC in routine clinical practice was assessed 
in two additional studies [29] [30].

In summary, our results suggest that LASP1 
overexpression, most likely mediated by the loss of mir-
203 expression, is involved in progression and metastasis 
of PCa. These data add further functional support for 
LASP1 being part of the new GC set that discriminates 
indolent from more aggressive PCa subtypes.

METHODS

Tissue samples and study population

Patients’ clinicopathologic characteristics are 
summarized in Table 1. 161 archived paraffin-embedded 
tissue samples from human prostate cancer (PCa) with 
confirmed histological diagnoses (radical prostatectomy), 
17 corresponding lymph node metastases (LNM) and 
samples of 15 benign prostatic hyperplasia (BPH) were 
obtained from the Department of Pathology of the 
University of Karlsruhe, Germany [31]. All studies were 
performed with the approval of the Institutional Review 
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board of the Universities of Wuerzburg and Karlsruhe 
and complied with national laws and the declaration of 
Helsinki. Grading of PCa malignancy was evaluated 
according to the Gleason score [32]. Tumor staging 
was conducted according to parameters of the TNM 
classification system [4]. Follow-up was performed every 
3 months for the first 2 years after surgery, every 6 months 
in the following 3 years, and annually thereafter. Clinical 
recurrence is the clinical failure after prostatectomy 
defined either as histologically proven local recurrence 
or distant metastasis confirmed by a CT or bone scan 
that had the date of failure. Biochemical progression/
PSA progression was defined as PSA ≥0.2 ng/ml on 2 
consecutive follow-up visits.

Microarray and gene-set enrichment analyses 

(GSEA)

To compare LASP1 mRNA expression in malignant 
and normal prostate tissue publicly available microarray 
data of primary (n=61) and metastatic PCa (n=25) as well 
as normal prostate tissue (n=18) were retrieved from the 
Gene Expression Omnibus (GEO; accession numbers: 
GSE6604, GSE6605, GSE6606, Affymetrix HG-U95Av2 
arrays). In addition a much larger publicly available gene 
expression data of a study analyzing n=154 individual PCa 
samples was retrieved from the GEO (accession number: 
GSE17951, Affymetrix HG-U133Aplus2.0 microarrays) 
for pathway analyses. Expression data were manually 
revised for their correct annotations and simultaneously 
normalized by Robust Multi-array Average (RMA) [33, 
34] using custom brainarray (v15 and v17 ENTREZG) 
CDF files yielding one optimized probe-set for each gene 
corresponding to the ENTREZ gene ID as described 
elsewhere [35]. To identify pathways and biological 
processes associated with LASP1 overexpression in PCa 
we applied a gene-set enrichment analysis (GSEA) on the 
normalized microarray data [36]. GSEA was performed 
with 1000 permutations using a pre-ranked list composed 
of the log2-transformed fold changes of the median gene 
expression values comparing the top 10 LASP1-high with 
the top 10 LASP1-low PCa samples (Supplemental Table 
1).

Immunohistochemistry

For immunostaining, sections were placed onto 
SuperFrost® slides (Langenbrinck, Emmendingen, 
Germany), dewaxed in xylene, rehydrated in graded 
ethanol and in dH20. For antigen retrieval, sections were 
subjected to heat pre-treatment by boiling in 0.01 M of 
sodium citrate buffer (pH 6.0) for 10 min in a microwave 
oven (750 Watt/sec.). Endogenous peroxidase was blocked 
by incubation in 0.1% hydrogen peroxide in PBS for 5 
min. Slides were then incubated with the polyclonal anti-

LASP1 antibody [37] diluted 1:1000 in “antibody diluent” 
(DAKO, Hamburg, Germany) followed by EnVision/
rabbit detection system (DAKO, Hamburg, Germany). 
All immunohistological samples were evaluated by two 
independent scientists for defining of the percentage of 
LASP1 positive cells and the cytosolic immunoreactivity. 
Scoring of cytosolic LASP1 expression was carried out in 
analogy to the scoring of the hormone receptor Immune 
Reactive Score (IRS), ranging from 0-12 according to 
Remmele et al. and is described in detail for LASP1 in 
breast cancer [12, 38]. For better statistical discrimination, 
samples scored with cytosolic LASP1-IRS <5 were 
classified as LASP1-negative and those with LASP1-
IRS >5 as LASP1-positive. Nuclear LASP1 positivity: 
Nuclear LASP1 positivity was scored by determining 
the percentage of positive nuclei regardless of cytosolic 
LASP1 immunoreactivity. Samples were considered as 
nuclear-positive if 10% or more cells showed nuclear 
LASP1 staining.

Cell lines and culture conditions

PCa cell line LNCaP derived from a lymph node 
metastasis was purchased from American Type Culture 
Collection (ATCC, Manassas, USA). Cells were grown 
in plastic cell culture flasks at 37ºC under 5% CO2 
atmosphere in RPMI 1640 medium (Life Technologies, 
Darmstadt, Germany) containing 10% heat-inactivated 
fetal bovine serum (FBS), 1% penicillin/streptomycin, 1% 
non-essential amino acids and 1% pyruvate (all Invitrogen, 
Darmstadt, Germany). Mycoplasma contamination was 
ruled out by PCR.

mir-203 - qRT-PCR

Total RNA was extracted from PCa, LNM and 
BPH tissues with Total RNA Extraction Kit (Life 
Technologies). The RNA concentration was determined 
with a Bioanalyser (Biorad, Munich, Germany). cDNA 
was synthesized according to the TaqMan miR Assay 
protocol (Life Technologies). Mature mir expression was 
quantified in tissue samples with TaqManR mir assay 
kits and an Applied Biosystems 7900 HT system. We 
followed the protocol provided in the manufacturer´s 
instruction (Applied Biosystems, Foster City, CA, USA). 
The expression of RNU6B was used for normalization. 
Relative mir expression was calculated with the ΔCt-
method (ΔCt sample = Ct RNU6B - Ct sample). 
Calculations were carried out assuming equal RNA-
concentrations and complete efficacy of qRT-PCR.
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RNA interference 

For generation of an inducible LASP1 
knockdown, LNCaP cells were infected with lentivirus 
(MOI: 1:10) containing a pTRIPZ vector with 
either a short hairpin RNA (shRNA) against LASP1 
(clone V2THS-64686 mature antisense sequence 
5’-GGCAAGTGGAATATCTTATAT-3’, Thermo 
Scientific) or respective non-targeting control shRNA. 
Successfully transduced LNCaP were selected in 0.5 µg/
ml puromycin (Invitrogen). Knockdown efficiency upon 
doxycycline-treatment (0.5µg/ml) was confirmed by WB.

Lentivirus production: 5.5x106 HEK293T cells 
were seeded into a 100 mm cell culture dish coated with 
0.01% poly-L-lysine (Sigma-Aldrich, Deisenhofen, 
Germany) one day prior to transfection and cultured in 
DMEM (Invitrogen) supplemented with 10% FBS, 1% 
penicillin/streptomycin (both Invitrogen). Arrest-InTM 
(Thermo Scientific) was used as transfection reagent. 
DNA/Arrest-In™ complexes were formed by mixing 9 
µg of the particular pTRIPZ vector DNA, with 28.5 µg of 
optimized packaging plasmid mix (pTLA1-Pak, pTLA1-
Enz, pTLA1-Env, pTLA1-Rev and pTLA1-TOFF, all 
Open Biosystems, Thermo Scientific) in 1ml DMEM with 
187.5 µg Arrest-InTM diluted in 1ml DMEM. Supernatant 
was harvested 48h and 72h after transfection and lentiviral 
particles were isolated by filtration and subsequent 
ultracentrifugation.

Western blot (WB)

Cells were lysed in Laemmli-buffer containing 10% 
β-mercaptoethanol (Sigma-Aldrich). Equal amounts of 
cells were resolved by 10% SDS-PAGE. After blotting on 
a nitrocellulose membrane (Schleicher&Schuell, Dassel, 
Germany) the membrane was blocked with 3% nonfat dry 
milk (Biorad) in TBS-T buffer (10 mM TRIS, 150 mM 
NaCl, 0.1% (w/v) Tween, pH 7.5). Then the membrane 
was incubated with a self-generated primary antibody 
against LASP1 [35] diluted 1:8000 and anti-β-Actin by 
Santa Cruz (Santa Cruz, CA, USA) diluted 1:2000. Finally 
the membrane was washed with TBS-T and incubated 
with the secondary antibody goat-anti-rabbit horseradish 
peroxidase-coupled and diluted 1:5000 (Biorad). The 
amount of detected protein was visualized by enhanced 
chemiluminescence (Amersham Biosciences, Freiburg, 
Germany) and autoradiography. Quantification of 
autoradiography signals was carried out by densitometry 
using the ImageJ software (NIH, Bethesda, USA).

Proliferation assays

Non-transduced LNCaP cells and cells stable 
transduced with control shRNA or shRNA against LASP1 

were seeded in 48-well plates. Per well 1x104 cells were 
seeded. After 24 h, medium was replaced by medium +/- 
doxycycline (0.5 µg/ml). 96h after knockdown induction, 
cells were counted with CellTiter-Glo ® Luminescent 
Cell Viability Assay (Promega) following manufacturer´s 
instruction. Assays were performed in 5 independent 
experiments, each with 6 replicates. In addition, the 
experiment was performed in T25 flasks and cells were 
counted with Neubauer chamber. Knockdown of LASP1 
was confirmed in each experiment by WB.

Adhesion assay 

To assess cell adhesion non transduced LNCaP cells 
and cells stable transduced with control shRNA or shRNA 
against LASP1 were grown for 96h in media (as described 
previously) +/- doxycycline (0.5µg/ml). Cells were seeded 
in 48-well plates, per well 4x104 cells in 100µl media. 
Cells were allowed to attach for 7.5 h at 37°C (ca. 50 % 
adhesion of control cells). In 5 of 8 wells, non-adherent 
cells were removed by gentle washing with PBS and wells 
were refilled with 100 µl medium. Wells with non washed-
off cells served as 100 % value of seeded cells. Cells were 
counted with CellTiter-Glo ® Luminescent Cell Viability 
Assay (Promega) following manufacturer´s instruction. 
Assays were performed in 6 independent experiments, 
(each with 5 replicates). Knockdown of LASP1 was 
comfirmed in each experiment by WB.

Migration assay

Cellular migration was assessed by a modified 
Boyden chamber assay (transwell chambers, Corning 
Star, Cambridge, MA, USA). Cells were serum-starved 
overnight, trypsinized, adjusted for viability, counted, and 
re-suspended in serum-free medium to a concentration of 
1x106 cells/ml. Before the experiment, the lower surface 
of the filter membrane (8 µM pore size) was coated for 
15 min with 100 µl fibronectin solution (5 µg/ml; Sigma-
Aldrich) as a chemo-attractant. The inner filter chambers 
were coated with 100 µl 10% FBS in RPMI medium for 
30 min. 100 µl cell suspension was placed in the upper 
filter chambers. The chambers were placed in 24-well 
plates and cultured in 500 µl RPMI medium with 10% 
FBS for 4 h at 37°C to allow the cells to migrate through 
the porous membrane. Non-migrated cells from the top 
surface were removed using a cotton swab. Migrated cells 
at the lower surface of the membranes were stained in 200 
µl 1% (w/v) crystal violet in 2% ethanol in a 24-well plate 
for 30 sec and rinsed twice afterwards in distilled water. 
Cell-associated crystal violet was extracted by incubating 
the membrane in 200 µl 10% acetic acid for 20 min and 
measured at 595 nm absorbance using a plate reader 
(Molecular Devices, Crawley, UK). Four independent 
experiments, each with 6 replicates, were performed
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a  b  s  t  r  a  c  t

Acute  lymphoblastic  leukemia  (ALL)  is  the  most  common  childhood  cancer.  To  identify  novel  candi-
dates  for targeted  therapy,  we performed  a comprehensive  transcriptome  analysis  identifying  MondoA
(MLXIP)  – a transcription  factor  regulating  glycolysis  – to be  overexpressed  in ALL  compared  to nor-
mal  tissues.  Using  microarray-profiling,  gene-set  enrichment  analysis,  RNA  interference  and  functional
assays we  show  that MondoA  overexpression  increases  glucose  catabolism  and  maintains  a  more  imma-
ture phenotype,  which  is associated  with  enhanced  survival  and  clonogenicity  of leukemia  cells.  These
data point  to an important  contribution  of  MondoA  to  leukemia  aggressiveness  and  make  MondoA  a
potential  candidate  for  targeted  treatment  of ALL.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Acute lymphoblastic leukemia (ALL) is the most common child-
hood cancer, of which common ALL (cALL) constitutes the most
frequent entity carrying an early pre-B cell phenotype [1].  Although
today cALL is associated with good survival, conventional therapies
are accompanied with considerable toxicity [2].  Hence, targeted
therapy may  be key to reducing the toxic burden of cure [2–4].

To identify novel targets for therapy of cALL, we performed a
transcriptome analysis of early pre-B cell ALL and fetal early pre-B
cells (FEB) that revealed a novel signature of genes highly over-
expressed in ALL [5].  One of the most prominent among them

∗ Corresponding author at: Children’s Cancer Research Center, Laboratory of Func-
tional Genomics and Transplantation Biology, Klinikum rechts der Isar, Technische
Universität München, Kölner Platz 1, 80804 Munich, Germany.
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was MondoA (alias MAX-like protein X (MLX) interacting pro-
tein, MLXIP)  – the founding member of the basic helix-loop-helix
leucine zipper transcription factors of the Mondo family, which
have pleiotropic but functionally largely uncharacterized effects
on cell metabolism [6].  MondoA is ubiquitously expressed with
high expression in skeletal muscle [6]. Its paralog, MondoB (alias
MLX  interacting protein-like, MLXIPL, or carbohydrate responsive
element-binding protein, CHREBP), is most highly expressed in the
liver [7,8], where it regulates aerobic glycolysis, lipogenesis and
nucleotide synthesis [9,10].  The N-termini of both proteins are con-
served across family members and contain cytoplasmic localization
and transcription activation domains [6,9]. It was recently proposed
that a novel N-terminal domain might interact with glucose-6-
phosphate to dictate the glucose response of Mondo family proteins
[11]. MondoA forms heterodimers with MLX, a member of the
MYC/MAX/MAD family of transcription factors [6,12–14]. This
heterodimerization seems to be essential for its transcriptional
function [6].  Recently, MondoA:MLX heterodimers have been dis-
cussed as a parallel network to MYC:MAX, which have broad effects

0145-2126/$ – see front matter ©  2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.leukres.2012.05.009
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on cellular growth, proliferation and survival [15,16]. MondoA:MLX
heterodimers are localized at the outer mitochondrial membrane
where they are believed to sense the intracellular energy state since
they may  accumulate in the nucleus upon excess glucose avail-
ability, more precisely upon accumulation of glucose-6-phosphate
as the first step in glycolysis, to guide an adaptive transcriptional
response [11,14]. Accordingly, we hypothesized that MondoA may
modulate the metabolic activity of leukemia cells and, hence, aimed
to define its potential role for the malignant phenotype of ALL. In
the current study, we show that MondoA is highly overexpressed
in ALL compared to normal tissues and provide evidence that its
overexpression not only enhances glucose consumption, but also
contributes to the maintenance of a more immature phenotype,
which is associated with increased survival and clonogenicity of
leukemia cells.

2. Materials and methods

2.1. Cell lines and reagents

Human T cell lineage ALL lines LOUCY, HSB-2, DND-41, PEER, KE-37, ALL-SIL,
HPB-ALL, P12-Ichikawa, JURKAT-J6, MOLT-4, TALL-1, JURKAT, BE13, and CCRF-CEM,
and  human B cell lineage ALL lines SKW6, cALL2, 697, SD-1, RS4;11, REH, and
Nalm6 were obtained from the German Collection of Microorganisms and Cell Cul-
tures (DSMZ) or ATCC (LGC standards). Hepatocellular carcinoma lines HepG2 and
Hep3B were provided by Dr. Elke Butt (Institute for Clinical Biochemistry, Univer-
sity  of Würzburg, Germany). Retrovirus packaging cell line PT67 was  obtained from
Takara Bio Europe/Clontech (Saint-Germain-en-Laye, France). Cells were grown
in  a humidified incubator at 37 ◦C in 5% CO2 atmosphere in RPMI 1640 media
(Invitrogen, Karlsruhe, Germany) containing 20% fetal bovine serum (Biochrom,
Berlin, Germany), 1% glutamine, 100 !g/mL gentamicin (Invitrogen) and 200 mg/dL
d-glucose. All cell lines were checked routinely for purity and mycoplasma con-
tamination. All reagents were purchased from Sigma (Deisenhofen, Germany) if not
otherwise specified.

2.2. Human samples

The Institutional Review Boards of the Universities of Halle-Wittenberg and
Leipzig and of the Technische Universität München approved the current study.
Patient-derived samples were obtained from the Departments of Pediatrics of
the  Universities of Halle-Wittenberg and Leipzig and the Technische Universität
München according to legal guidelines of local authorities. Written informed con-
sent was  obtained from all donors and/or their legal guardians.

2.3. Preparation of acute lymphoblastic leukemia (ALL) cells and fetal early pre-B
cells (FEB)

Pre-therapy cALL samples were obtained from bone marrow aspirates (n = 24)
or  peripheral blood (n = 1) of children treated according to the ALL-BFM study of the
Society for Pediatric Oncology and Hematology (GPOH). Flow cytometric assessment
of  CD10 and CD19 confirmed the presence of leukemic blasts (>90% of cells) in each
sample. FEB highly expressing the early B cell markers CD10 and CD19 were isolated
from umbilical cord blood samples of healthy newborns. CD19+ cells were puri-
fied  with CD19 Dynabeads (Dynal Biotech, Oslo, Norway) and magnetic cell sorting
(MACS, Miltenyi Biotech, Bergisch Gladbach, Germany). Dynabeads were removed
with DETACHaBEAD CD19 (Invitrogen). After detachment CD19+ cells were stained
with anti-CD10-PE antibody (BD Biosciences, San Jose, CA) and subsequently with
anti-PE microbeads and purified via MACS (both Miltenyi Biotech).

2.4. RNA extraction and quantitative real-time PCR (qRT-PCR)

RNA was  isolated using the RNeasy kit (Qiagen, Düsseldorf, Germany). Gene
expression was  analyzed by qRT-PCR using TaqMan Universal PCR Master Mix  with
an AB 7300 Real-Time PCR System (Applied Biosystems, Darmstadt, Germany).
Primers and probes were obtained as TaqMan Gene Expression Assays (Applied
Biosystems, listed in Supplementary Data), which consisted of a FAM dye-labeled
TaqMan MGB  probe and two unlabeled PCR primers. The concentration of primers
and probes were 900 and 250 nM,  respectively. Results were normalized to the
leukemia housekeeping gene beta-2-microglobulin (B2M) [17] and quantified by the
ddCt-method.

2.5.  Constructs, retroviral gene transfer and RNA interference (RNAi)

For stable silencing of MondoA, oligonucleotides of the short hairpin cor-
responding to a MondoA small interfering RNA (siRNA) were cloned into the

retroviral pSIREN-RetroQ vector (Takara Bio Europe/Clontech). Retroviral constructs
were transfected by electroporation into PT67 packaging cells, and viral super-
natant was isolated 48 h after transfection. Target cells (Nalm6) were infected
in  the presence of 4 !g/mL polybrene. Single-cell-cloned stable infectants were
isolated after selection in 2 !g/mL puromycin for at least 7 days and were first
used for subsequent assays after at least 7 additional days in culture without
puromycin to avoid biases through acute infection and/or puromycin toxicity. The
siRNA target sequences of Hs MLXIP 1 (SI04144469) and Hs MLXIP 3 (SI04371052)
(Qiagen GmbH, Hilden, Germany) were 5′-CAGGACGATGACATGCTGTAT-3′ and 5′-
CACAGTTTAGATCCAGTTGGA-3′ , respectively. As a control the corresponding shRNA
of the AllStars negative control siRNA (#1027280, Qiagen) was used. Each experi-
ment shown in this study, analyzing stably MondoA silenced Nalm6 cells (referred to
as  “pSImondoA” cells) compared to non-silenced Nalm6 cells (referred to as “pSIneg-
ative” cells), was  performed with three independent infectants expressing either
shMLXIP 1 or shMLXIP 3.

2.6. Microarray analysis

Total RNA was amplified and labeled using Affymetrix GeneChip Whole Tran-
script Sense Target Labeling Kit. cRNA was hybridized to Affymetrix Human Gene
1.0  ST arrays or HG-U133A arrays. Arrays were either RMA-normalized (Human
Gene 1.0 ST) or scaled to the same target intensity of 500 (default setting) using the
trimmed mean signal of all probe sets (HG-U133A). Quality assessment consisted
of  RNA degradation plots, Affymetrix control metrics, sample cross-correlation,
and probe-level visualizations. RMA-normalization incorporated background cor-
rection, quantile normalization, and probe-level summation. Microarray data were
deposited at the gene expression omnibus (GSE34670 and GSE33967). Subsequent
analysis was carried out with signal intensities that were log2-transformed for
equal representation of over- and underexpressed genes and then median cen-
tered to remove biases based on single expression values. Unsupervised hierarchical
clustering [18] and principal component analysis were accomplished by use of Gen-
esis  [19]. For identification of differentially expressed genes we used significance
analysis of microarrays (SAM) [20]. Gene-set enrichment analysis (GSEA) and path-
way  analyses were performed with the GSEA tool (http://www.broad.mit.edu/gsea)
[21]. Comparison of independent published microarray studies was performed with
the  R2 microarray analysis and visualization platform (http://r2.amc.nl). All pub-
lished datasets analyzed with the R2 platform were generated with Affymetrix
HG-U133Plus2.0 microarrays and expression data were normalized with the MAS5.0
algorithm within the Affymetrix Expression Console.

2.7. Metabolism assay

Media turnover and metabolic activity of leukemia cells was assessed as fol-
lows: 3 × 106 pSInegative and pSImondoA Nalm6 infectants were incubated for 72 h
in  20 mL  RPMI 1640 media containing 200 mg/dL d-glucose and phenol red. There-
after, metabolic activity was assessed by spectroscopic (IMPLEN GmbH, Munich,
Germany) pH measurement in cell-free conditioned media (absorption measure-
ment at 557 nm).

2.8. Analysis of glucose concentrations

Glucose levels of conditioned media were analyzed with a commercial Breeze
2  glucometer (Bayer Vital GmbH, Leverkusen, Germany) in an aliquot (5 !L) of
cell-free conditioned media according to the manufacturer’s protocol. Each mea-
surement was  performed in duplicate.

2.9. Flow cytometry

Cells were harvested, prepared and stained using propidium iodide for
cell  cycle analysis as previously described [22]. The annexin-V-PE/7-AAD (7-
aminoactinomycin-d)  apoptosis detection kit 1 (Beckton Dickinson) was  used to
assess apoptosis and necrosis. Cluster of differentiation (CD) molecules were ana-
lyzed using antibodies (all Becton Dickinson) against CD10 (PE, Lot: 555375), CD19
(FITC, Lot: 560994), CD22 (FITC, Lot: 30141), and CD24 (PE, Lot: 23219). Samples
were analyzed on a FACScalibur flow cytometer using Cellquest Pro (Becton Dickin-
son).

2.10. Assessment of clonogenicity

Clonogenicity was  assessed with a commercial colony-forming assay (R&D Sys-
tems, Wiesbaden-Nordenstadt, Germany) as previously described [22].

2.11. Statistical analysis

Data were analyzed by unpaired two-tailed student’s t-test, Spearman’s rank
correlation coefficient (rs) and Fisher’s exact test as indicated using Prism 5.0b
(GraphPad Software). p values <0.05 were considered significant.
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Fig. 1. MondoA is highly and stably overexpressed in leukemia. (A) MondoA expression in childhood early pre-B cell ALL, FEB and normal tissues (GSE34670, GSE2361). (B)
Box-dot-plots showing MondoA expression in pre-B cell ALL (GSE7440), AML  (GSE17855), whole blood (GSE6575), and normal tissues (GSE7307; GSE3526). (C) MondoA
expression in primary B ALL, BM or PBMCs (GSE13204; GSE7186). Data were retrieved via oncomineTM. (D) Summary of multiple (n ≥ 10) expression analyses of B ALL lines.
Mean ± SEM. (E) Correlation of MondoA and MLX  in 21 ALL lines (see methods). Two  independent experiments. Dashed line = linear regression. Spearman’s rank correlation
coefficient (rs). (F) MondoA and MondoB expression in Nalm6, RS4;11, SD-1, cALL2, HepG2 and Hep3B. Two different MondoB primer assays: MondoB inv/MondoB mto.
Standard and double amount of cDNA (1×/2×).  Mean ± SEM of two  independent experiments; t-test.
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Fig. 2. MondoA expression increases metabolic activity. (A) MondoA expression in Nalm6 cells either expressing nonsense shRNA (clones #1 and #2, hereafter summarized
as  pSInegative) or specific MondoA shRNAs (clone #1 = shMLXIP 1 and clones #2 and #3 = shMLXIP 3; hereafter summarized as pSImondoA). Mean ± SEM of at least four
independent measurements. (B) Metabolic activity of pSInegative and pSImondoA cells (normalized to cell count). Mean ± SEM of three independent experiments. (C)
Remaining media d-glucose after 72 h. Mean ± SEM of three independent experiments; *p < 0.05, **p < 0.01; t-test.

3. Results

3.1. MondoA is highly and stably overexpressed in leukemia

Microarray analysis of 25 primary early pre-B cell ALL sam-
ples versus 9 highly purified FEB samples (fraction of CD10+ and
CD19+ cells of >82%) (GSE34670) [5] revealed that MondoA is highly
overexpressed in leukemia. This observation was extended by com-
paring our microarray data to those of a published study of 36
normal adult and fetal tissues (GSE2361) [23] (Fig. 1A). These data
were further validated using the R2 microarray analysis and visu-
alization tool (http://r2:aml.nl), comparing a pre-B cell ALL study
with an acute myeloid leukemia (AML), a whole blood and two
independent normal tissue studies (Fig. 1B) [24–26].  Additionally,
MondoA overexpression in ALL was confirmed by reanalysis of two
independent published microarray studies that directly compared
B cell lineage ALL samples with peripheral blood mononuclear cells
(PBMCs) and bone marrow (BM) (Fig. 1C) [27,28].

As B cell lineage ALL comprises the most common type of
leukemia among children [3],  we chose four B cell lineage ALL lines
for further investigation – two with high (Nalm6, RS4;11) and two
with relatively low (SD-1, cALL2) MondoA expression levels. As
seen in Fig. 1D, MondoA is expressed in a remarkably stable fash-
ion, with very little oscillation (note small error bars). Interestingly,
the binding partner of MondoA, MLX, is strongly coexpressed with
MondoA (rs = 0.77, 95%CI: 0.5 to 0.9, p < 0.0001, n = 21; 7 B ALL and 14
T ALL lines) (Fig. 1E). However, the MondoA paralog MondoB [7,8] is
neither expressed in the MondoA-high nor MondoA-low ALL lines
(tested with two different MondoB primer assays and increasing
cDNA employment). In contrast, MondoB can be readily detected in
the human hepatocellular carcinoma lines HepG2 and Hep3B (posi-
tive controls) (Fig. 1F). Taken together, these data provide evidence
that MondoA, but not MondoB, is highly and stably overexpressed
in human ALL compared to AML  and normal tissues including FEB,
BM and PBMCs.

3.2. MondoA expression increases metabolic activity

To test the functional role of MondoA, we performed knockdown
experiments. We generated single-cell-cloned MondoA-silencing
and non-silencing cell lines of the highly MondoA expressing
parental Nalm6 line [pSImondoA (either expressing shMLXIP 1 or
shMLXIP 3, see Section 2) and pSInegative, respectively] (Fig. 2A).
We first investigated the impact of MondoA knockdown on the
metabolic activity and glucose utilization. MondoA-suppressed
Nalm6 clones and respective controls were incubated in RPMI 1640

media containing 200 mg/dL d-glucose for 72 h and media turnover
and media glucose levels were measured thereafter. As expected,
constitutive MondoA knockdown reduced the metabolic activity of
leukemia cells, which led to a higher amount of remaining non-
metabolized glucose in the conditioned culture media (Fig. 2B–C).

3.3. MondoA knockdown promotes differentiation of leukemia
cells

To gain a more functional insight, two different pSInegative
Nalm6 clones and three different pSImondoA Nalm6 clones were
subjected to a whole-transcriptome microarray analysis. MondoA
knockdown differentially regulates 191 genes (mean log2 fold
change ±0.5, p < 0.05, t-test) of which 49 genes were up- and 142
genes were downregulated (Fig. 3A and Supplementary Table 1).
Surprisingly, gene-set enrichment analysis (GSEA) did not only
reveal strong enrichment of gene-sets involved in metabolism,
but a most significant enrichment of gene-sets involved in
the maintenance of stemness, B cell differentiation as well as
chemo/stress-resistance and survival (Fig. 3B and Supplementary
Table 2). For instance, the gene-set STEMCELL COMMON DN (now
renamed in RAMALHO STEMNESS DN) contains genes, which are
usually depleted in embryonic, neural and hematopoietic stem cells
[29], whereas the gene-set BLEO HUMAN LYMPH HIGH 4HRS UP
comprises genes involved in DNA repair, cell cycle regulation, and
apoptosis, which are differentially regulated in human lympho-
cytes 4 h following treatment with a high dose of bleomycin [30].

To validate these microarray data, we  selected three up- and
three downregulated genes of the 40 top-ranked genes (Fig. 3A), all
of which have been previously associated with B cell lineage ALL
and B cell activation and/or differentiation [31–38].  Their differen-
tial regulation upon MondoA knockdown was  entirely confirmed
on RNA or protein level by qRT-PCR or flow cytometry (Fig. 3C–D).
Moreover, apart from these genes, whose regulation seemed to take
place on the transcriptional level (microarrays), we also tested for
the B cell marker CD24 [39], which was  not significantly regulated
on RNA level. Strikingly, we  also found an upregulation of CD24 on
protein level in MondoA suppressed Nalm6 cells. Together, these
data suggest that MondoA knockdown results in a more differenti-
ated leukemia phenotype (Fig. 3C–D).

3.4. MondoA enhances survival and clonogenicity of leukemia
cells

Differentiation therapy is successfully employed to treat certain
types of acute myeloid leukemia [40]. We  therefore investigated
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Fig. 3. MondoA knockdown promotes differentiation of leukemia cells. (A) Heatmap and hierarchical clustering of 40 top up- and downregulated genes. Arrows: genes
selected for validation. (B) Enrichment plots of significantly enriched gene-sets. NES = normalized enrichment score. (C) Expression analysis of MondoA, CD79a, TGFBR2
(transforming growth factor beta receptor 2), DNTT (terminal deoxynucleotidyl-transferase), PDGFRA (platelet-derived growth factor receptor alpha), DDIT3 (DNA-damage-
inducible transcript 3). Mean ± SEM of at least two  independent experiments. (D) Analysis of CD22 and CD24 by flow cytometry. Linear fold changes are mean ± SEM of two
independent experiments. *p < 0.05, **p < 0.01; t-test.

whether the MondoA knockdown-mediated differentiation of ALL
cells can mitigate the malignant phenotype in our model. We
first conducted experiments addressing cell cycle progression and
found no differences, as pSInegative and pSImondoA Nalm6 cells
exhibited similar distributions of G1, S and G2/M phases (Fig. 4A).

Interestingly, MondoA knockdown downregulates genes shar-
ing a significant overlap with a published expression signature
of downregulated genes in primary childhood B cell lineage ALL
that responded well to apoptosis-inducing therapy with glucocor-
ticoids (Fig. 4B and Supplementary Table 3) [41]. This indicates that
MondoA knockdown may  shift gene expression toward a signature
favoring apoptosis and reducing aggressiveness of leukemia cells. In

accordance, flow cytometric analysis of apoptosis and necrosis with
annexin-V-PE and 7-AAD staining revealed that MondoA knock-
down leads to increased rates of spontaneous cell death (Fig. 4C).
In addition, clonogenicity of the MondoA-suppressed Nalm6 cells
was significantly impaired (Fig. 4D).

4. Discussion

The current study aimed to determine the role of MondoA
in ALL regarding glucose metabolism, growth and survival. Our
results provide for the first time evidence that MondoA is highly
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Fig. 4. MondoA enhances survival and clonogenicity of leukemia cells. (A) Cell cycle analysis (propidium iodide). Mean ± SEM of three independent experiments. (B) Venn
diagram: overlap between a published microarray study of childhood ALL and the current study (Supplementary Table 3). Fisher’s exact test. (C) Summary of results of flow
cytometric measurements of apoptotic cells. Mean ± SEM of linear fold changes of two independent experiments. (D) Analysis of clonogenicity with colony-forming assays.
Mean  ± SEM of three independent experiments. Scale bar = 1000 !m.  *p < 0.05; t-test.

overexpressed in ALL compared to normal tissues and that MondoA
promotes glucose utilization of leukemia cells. Moreover, our data
indicate that MondoA contributes to the maintenance of a more
immature leukemia phenotype, which is linked with enhanced
leukemia clonogenicity and survival.

So far, there are no reports on mutations involving MondoA
or other alterations that might drive its overexpression. How-
ever, in preliminary experiments we found 6 conserved runt
related transcription factor 1 (RUNX1) binding sites close to two
methylation-prone CpG-islands in the MondoA promoter and a
strong correlation of MondoA and RUNX1 expression in leukemia
(Supplementary Figure 1 and Supplementary Table 4). Moreover,
treatment of ALL cells with the demethylating agent zebularine
increased MondoA expression (Supplementary Figure 1) suggest-
ing that RUNX1 and/or MondoA promoter demethylation might
play a role in MondoA overexpression.

Since MondoA is involved in glucose metabolism of many dif-
ferent cell types [12–14],  we first examined an association of
MondoA and glucose consumption. As expected, we  found that
MondoA knockdown decreases the metabolic activity and the
overall glucose uptake of leukemia cells suggesting that MondoA
overexpression may  contribute to their highly glycolytic pheno-
type, which is a common feature of many cancers known as the
Warburg effect [42]. As we did not detect any expression of Mon-
doB in our leukemia cell lines, we conclude that MondoA, but not
MondoB, is involved in the pathological metabolism of ALL.

However, our microarray and GSEA analyses revealed a hitherto
unexpected role of MondoA in blocking leukemia cell differ-
entiation as indicated by the differential expression of specific
genes and proteins upon MondoA knockdown. Interestingly, these
factors were previously associated with growth, B cell activa-
tion and differentiation as well as survival: for instance, TGFBR2

(transforming growth factor beta receptor 2) promotes cellular
lineage fate decisions and terminal differentiation of many differ-
ent cell types [33]. DNTT (terminal deoxynucleotidyltransterase)
is expressed in normal and malignant pre-B and pre-T lympho-
cytes during early differentiation and contributes to the generation
of antigen-receptor diversity [43]. In addition, DNTT has a strong
anti-apoptotic function as its overexpression may  contribute to
resistance of leukemia cells to thiopurine-based chemothera-
peutics [32]. Accordingly, downregulation of DNTT by MondoA
knockdown may  in part explain the increased cell death in our
model. Similarly, DDIT3 (DNA-damage-inducible transcript 3, also
known as CHOP-10 and GADD153) is involved in differentiation and
survival of various tissues [31,34,35].  Moreover, PDGFRA (platelet-
derived growth factor receptor alpha) is frequently overexpressed
in childhood ALL [37] and often rearranged in myeloid and lym-
phoid neoplasms [36].

Furthermore, we detected an upregulation of the B cell markers
CD22, CD24 and CD79a upon MondoA knockdown. This upregu-
lation of differentiation markers [38,39,44] support the GSEA in
silico prediction that MondoA overexpression maintains a more
immature phenotype. In addition, enhanced CD24 expression
may  promote apoptosis in pre-B cells [45,46] converging with
the fact that MondoA knockdown increases rates of spontaneous
cell death and shifts gene expression toward a signature related
to enhanced sensitivity of leukemia cells toward chemotherapy
(GSEA, Table 1). Consistently, MondoA downregulation leads to
decreased clonogenicity and to transcriptional changes similar to
those seen in ALL samples derived from patients that responded
well to treatment with glucocorticoids [41]. These data suggest
that MondoA overexpression may  contribute to a worse outcome
of ALL patients because especially more immature cells with a
leukemia stem-cell phenotype are believed to be therapy-resistant
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and the main source of relapse [47]. Taking together our findings
of less differentiation and enhanced survival and clonogenicity of
leukemia cells through MondoA, the enrichment of genes involved
in chemo-/stress-resistance in the GSEA and the anti-apoptotic and
chemoresistance-conferring MondoA target genes such as DNTT,
MondoA appears to be a promising therapeutic drug target. How-
ever, there is currently no drug available or under development that
can specifically target MondoA.

In synopsis, our data hint to a contribution of MondoA to
leukemia aggressiveness and to a possible role of MondoA as an
attractive candidate for targeted treatment of ALL. Future studies
will have to determine the pathways involved in regulation and
functioning of MondoA and to evaluate MondoA as a therapeutic
target and as a biomarker for ALL.
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Abstract
Ewing tumors comprise the second most common type of bone-associated cancer in children and are

characterized by oncogenic EWS/FLI1 fusion proteins and early metastasis. Compelling evidence suggests that
elevated levels of intracellular oxidative stress contribute to enhanced aggressiveness of numerous cancers,
possibly including Ewing tumors. Using comprehensive microarray analyses and RNA interference, we
identified the six-transmembrane epithelial antigen of the prostate 1 (STEAP1)—a membrane-bound
mesenchymal stem cell marker of unknown function—as a highly expressed protein in Ewing tumors
compared with benign tissues and show its regulation by EWS/FLI1. In addition, we show that STEAP1
knockdown reduces Ewing tumor proliferation, anchorage-independent colony formation as well as invasion in
vitro and decreases growth and metastasis of Ewing tumor xenografts in vivo. Moreover, transcriptome and
proteome analyses as well as functional studies revealed that STEAP1 expression correlates with oxidative stress
responses and elevated levels of reactive oxygen species that in turn are able to regulate redox-sensitive and
proinvasive genes. In synopsis, our data suggest that STEAP1 is associated with the invasive behavior and
oxidative stress phenotype of Ewing tumors and point to a hitherto unanticipated oncogenic function of
STEAP1. Mol Cancer Res; 10(1); 52–65. !2011 AACR.

Introduction

Ewing tumors are highly metastatic bone-associated can-
cers of enigmatic histogenesis mostly affecting children.
Established therapies still have limited success in advanced
stages of the disease despite high toxicity (1). Thus, selective

and less toxic drugs are the prerequisites to reduce the toxic
burden of cure.
Ewing tumors express chimeric EWS/ETS (Ewing sar-

coma breakpoint region 1/E-twenty-six) fusion proteins
derived from chromosomal translocations with EWS/FLI1
(Ewing sarcoma breakpoint region 1/friend leukemia virus
integration 1) being the predominant one (85%).EWS/FLI1
encodes an oncogenic transcription factor that determines
the complex and highly malignant phenotype of Ewing
tumors (2). Hence, the detailed functional characterization
of the EWS/FLI1-induced transcriptome may be key to
understand the underlying mechanisms of the disease and
ultimately to halt its progression (3, 4).
Previously, we identified a specific expression signature

of approximately 40 genes that are highly upregulated in
Ewing tumors compared with benign tissues (3). Part of
this signature is the six-transmembrane epithelial antigen
of the prostate 1 (STEAP1)—a membrane-bound protein
possibly contributing to transmembrane electron transfer
(5, 6).
Among STEAP proteins, only STEAP1 is overexpressed

in many carcinomas including prostate and bladder cancer,
where it locates to plasma and endosomal membranes (6, 7),
but its precise cellular function remains elusive. Recently,
STEAP1 was validated as a bona fide marker for mesenchy-
mal stem cells (MSC; ref. 8) supporting the relationship of
Ewing tumors with MSCs (9). Moreover, STEAP1 mRNA
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circulates in peripheral blood (6, 10), and its detection in
bone marrow of patients with Ewing tumors is indicative for
occult Ewing tumor cells (11).
In contrast, STEAP1 mRNA is not detectable in blood of

healthy donors and is hardly expressed in benign tissues,
except for low amounts in urothelium and prostate (6, 10).
Because of its high tumor specificity and membrane-bound
localization, STEAP1 might serve as a promising candidate
for targeted therapy (6, 10, 11). In accordance, monoclonal
antibodies against STEAP1 inhibit growth of xenografted
prostate and bladder cancer (12).
STEAP proteins are homologues of NADPH oxidases

(NOX; refs. 13, 14), which are involved in cellular reactive
oxygen species (ROS) metabolism and frequently overex-
pressed in cancer (15). Like NOX, all STEAP proteins,
except for STEAP1, are equipped with an N-terminal
NADPþ oxidoreductase (7, 13). In addition, all STEAP
members contain aC-terminal ferric oxidoreductase. Thus, a
role in cellular iron homeostasis is assumed for these proteins
(16). However, in contrast to other STEAP proteins,
STEAP1 does not facilitate iron uptake and reduction,
suggesting another distinct function (7).
ROS play a key role in oncogenic signaling and elevated

ROS levels are a salient feature of many highly invasive
cancers (17, 18), possibly including Ewing tumors (19).
Sound evidence suggests thatmanymalignancies take advan-
tage of a permanently active "oxidative stress phenotype"
leading to enhanced invasiveness, which has been recognized
as an additional hallmark of cancer (20). On the basis of its
homology to NOX and its overexpression in highly meta-
static cancers, we hypothesized that STEAP1 is involved in
the invasive behavior and oxidative stress phenotype of
Ewing tumors.
In the present study, we investigate the putative onco-

genic function of STEAP1. We prove that STEAP1 is
induced by EWS/FLI1 and that its expression promotes
proliferation, invasiveness, anchorage-independent colony
formation, tumorigenicity, and metastasis of Ewing
tumors. Moreover, transcriptome and proteome analyses
as well as functional studies reveal that STEAP1 expression
is associated with elevated ROS levels that regulate ROS-
sensitive signaling molecules and proinvasive genes via
STAT1.

Materials and Methods

Cell lines and reagents
Ewing tumor cell lines (MHH-ES1, SK-ES1, RDES,

SK-N-MC, TC-71), neuroblastoma lines (CHP126,
MHH-NB11, SHSY5Y, SIMA), rhabdomyosarcoma cell
line RH-30, and B-cell leukemia lines (Nalm6, 697, cALL2)
were obtained from the German Collection of Microorgan-
isms and Cell Cultures (DSMZ). A673 was purchased from
American Type Culture Collection (LGC Standards). SB-
KMS-KS1, previously described as SBSR-AKS, is an Ewing
tumor cell line with a type 1 EWS/FLI1 translocation
established in our laboratory (4). Human MSCs L87 and
V54.2 were immortalized with SV40 large T-antigen (4).

Retrovirus packaging cell line PT67 was obtained from
Takara Bio Europe/Clontech. Cells were grown at 37"C in
5% CO2 in a humidified atmosphere in RPMI-1640 (Invi-
trogen) containing 10% FBS (Biochrom), 1% glutamine,
and 100 mg/mL gentamycin (Invitrogen). Cell lines were
checked routinely for purity (EWS/FLI1 translocation prod-
uct, surface antigen, or HLA-phenotype) and Mycoplasma
contamination. Reagents were purchased from Sigma, if not
otherwise specified.

Quantitative real-time PCR
Gene expression was analyzed using TaqMan Universal

PCR Master Mix, TaqMan Gene Expression Assays, and
fluorescence detection with an AB 7300 Real-Time PCR
System (Applied Biosystems). Results were normalized to
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and
quantified by the DDCt method. Primers are listed in
Supplementary Methods.

RNA interference
Transfection was described previously (4). For siRNA, see

Supplementary Methods.

Chromatin immunoprecipitation
Chromatin immunoprecipitation was essentially carried

out as described (4). For primers, see Supplementary
Methods.

Western blotting
Procedures were described previously (4). For antibodies,

see Supplementary Methods. Specificity of the STEAP1
antibody was assessed previously (21, 22).

Tissue samples
The Institutional Review Board of the Technische Uni-

versit€atM€unchen (Munich, Germany) approved the current
study. Archival tumor samples were obtained from the
Department of Pathology of the Technische Universit€at
M€unchen.

Histology and immunohistochemistry
Procedures were described previously (4). See Supple-

mentary Methods.

Microarrays
Experiments were essentially carried out as described

previously (4). See Supplementary Methods.

Two-dimensional gel electrophoresis and mass
spectrometry
Two-dimensional (2D) isoelectric focusing/SDS-PAGE

were essentially carried out as described previously (23). For
spot selection and mass spectrometry, see Supplementary
Methods.

Flow cytometry
Cells were stained 48 to 72 hours after transfection as

described (24). Samples were analyzed on a FACScalibur
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flow cytometer (Becton Dickinson). At least 30,000
events per sample were recorded. See Supplementary
Methods.

Proliferation assays
Cell numbers were counted in real-time with a bioelectric

xCELLigence instrument (Roche/ACEA Biosciences) mon-
itoring impedance across gold micro-electrodes on the bot-
tom of E-plates. Immediately after transfection with siRNA,
1.6 # 104 cells were seeded in wells in 200 mL media
containing 10% FBS. Cellular impedance was measured
periodically. Transfection efficacywas controlled byWestern
blot analysis and/or quantitative real-time PCR (qRT-PCR).

Invasion assays
A total of 5 # 105 transiently transfected cells in 500 mL

serum-free media was seeded into the upper chambers of
Matrigel-covered Transwell plates (Becton Dickinson). Bot-
tom chambers contained 500 mL media with 10% FBS.
After 48 hours, invading cells were stained with 4 mg/mL
CalceinAM (Becton Dickinson) in Hank's balanced salt
solution and photographed with a Zeiss AxioCam MRm
camera on a Zeiss Axiovert 100 microscope (Zeiss). The
number of invading cells was normalized to proliferation as
assessed with xCELLigence (Roche/ACEA Biosciences). N-
Acetylcysteine (NAC) or H2O2 pretreatment of Matrigel
plates did not affect invasiveness of untreated Ewing tumor
cells plated subsequently.

Constructs and retroviral gene transfer
See Supplementary Methods.

Colony-forming assay
Procedures were described previously (4).

Mice and in vivo experiments
Immunodeficient Rag2$/$gc$/$mice on a BALB/c back-

ground were obtained from the Central Institute for Exper-
imental Animals (Kawasaki) and maintained under patho-
gen-free conditions in accordance with the institutional
guidelines and approval by local authorities. Experiments
were carried out in 6- to 16-week-oldmice. For in vivo tumor
growth, 3 # 106 Ewing tumor cells in 0.2 mL PBS were
subcutaneously injected in groins. The amount of 2# 106 to
5# 106 cells has been previously reported to be optimal for
assessment of local growth of Ewing tumor xenografts
(4, 25). Mice bearing tumors greater than 10 mm in
diameter (determined with a caliper) were considered pos-
itive (event). To analyze metastatic potential, tumor cells
were injected intravenously. Five weeks later, mice were
euthanized and metastasis was monitored in individual
organs. All macroscopically visible metastases within an
organ were counted. Tumors and affected tissues were
excised for histology and gene expression analysis.

Measurement of ROS and mitochondrial mass
Procedures were described previously (26). See Supple-

mentary Methods.

Glutathione assay
Cellular glutathione was assessed with a colorimetric assay

kit following the manufacturer's instructions (Cayman
Europe).

Electron microscopy
Procedures were described previously (27, 28).

Statistics
Unpaired two-tailed Student t test or independent one-

sample t test were used; P < 0.05 was considered significant.

Results

STEAP1 is highly expressed in Ewing tumors and
induced by EWS/FLI1
Previously, we identified STEAP1 in an Ewing tumor

expression signature (3). To substantiate this observation, we
matched our microarray data against those of neuroblasto-
mas and a normal body map composed of benign fetal and
adult tissues. As seen in Fig. 1A and B, STEAP1 is highly
expressed in Ewing tumors but virtually not expressed in
neuroblastomas and benign tissues. High STEAP1 expres-
sion in Ewing tumors was confirmed by qRT-PCR and
Western blot analysis (Fig. 1C). To test whether EWS/ETS
transcription factors can induce STEAP1, we transfected
MSCs with EWS/FLI1-containing vectors and observed a 5-
to 6-fold increase of STEAP1 expression in 2 MSC lines
(L87 and V54.2; Fig. 1D). Vice versa, RNA interference–
mediated EWS/FLI1 silencing in Ewing tumor cells reduced
STEAP1 expression (Fig. 1E). Moreover, the STEAP1
promoter contains 2 evolutionarily conserved ETS-binding
sites ($1,465 and $250 bp upstream of the transcriptional
start site), which proved to be enriched for FLI1 in chro-
matin immunoprecipitation (Fig. 1F). We next confirmed
STEAP1 overexpression in primary Ewing tumors on pro-
tein level. As positive controls, we chose prostate cancer
because of its known overexpression of STEAP1 (6). Figure
1G shows that among a series of tumors, which are usually
included in the histologic differential diagnosis of Ewing
tumors (29, 30), only Ewing tumors display very high
STEAP1 levels. Consistently, the analysis of a sarcoma gene
expression library (137 sarcomas; 14 entities) revealed that
STEAP1 discriminates Ewing tumors from other sarcomas
(sensitivity, 89.5%; specificity, 82.2%; ref. 31).

Knockdown of STEAP1 inhibits proliferation, invasion,
anchorage-independent colony formation,
tumorigenicity and metastasis of Ewing tumor cells
Because STEAP1 is overexpressed in Ewing tumors, we

tested whether RNA interference–mediated STEAP1 silenc-
ing impacts the Ewing tumor phenotype. Using an xCEL-
Ligence instrument, we observed that STEAP1 knockdown
reduced proliferation of Ewing tumor cells (Fig. 2A) without
affecting rates of apoptosis and/or necrosis or inducing cell-
cycle arrest (Supplementary Fig. S1). Moreover, STEAP1
silencing inhibited cellular invasiveness through Matrigel
(Fig. 2B), whereas STEAP1 overexpression in Ewing tumor
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Figure 1. STEAP1 is highly expressed in Ewing tumors (ET) and induced by EWS/FLI1. A and B, RNAmicroarrays of 26 Ewing tumors and 16 neuroblastomas
(GSE1824, GSE1825, GSE15757) compared with 36 benign tissues (GSE2361) for STEAP1 expression. Mean % SEM. C, quantification of STEAP1 by qRT-
PCRandWestern blot analysis in Ewing tumor (type 1 and 2 translocation), neuroblastoma, and leukemia cell lines.Mean%SEMof 3 experiments (duplicates/
group). Loading control: hypoxanthine phosphoribosyltransferase 1 (HPRT); NTC, no template control. D, analysis of STEAP1 and EWS/FLI1 by qRT-PCR in
MSCs (L87 and V54.2) transfected with pMSCVews/fli1 (pEWS/FLI1) or empty vector (pNEO). Mean % SEM of 3 experiments/cell line (duplicates/group). E,
expression of STEAP1 and EWS/FLI1 in Ewing tumor cell lines after EWS/FLI1 silencing. Mean % SEM of 2 experiments/cell line (duplicates/group).
F, chromatin immunoprecipitation (ChIP) of the STEAP1 promoter: FLI1 is enriched at the ETS consensus sites at $250 and $1,465 bp upstream of the
transcriptional start site (TSS). The$850-bp region is devoid of the ETS recognition sequences and served as negative control. Mean%SEMof 3ChIPs; t test.
G, immunohistochemistry for STEAP1 of prostate cancer (PCa), Ewing tumor, synovial sarcoma, sclerosing epithelioid fibrosarcoma, osteosarcoma,
malignant peripheral nerve sheath tumor (mPNST), B-cell non–Hodgkin lymphoma (NHL), alveolar rhabdomyosarcoma (Alv. rhabdom), and neuroblastoma.
Scale bars, 500 and 125 mm.
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cells with low STEAP1 expression increased invasiveness and
proliferation (Supplementary Fig. S1). Interestingly,
STEAP1 levels correlated with invasiveness of different
Ewing tumor cell lines (Supplementary Fig. S1). To evaluate
the effect of long-term knockdown of STEAP1, we gener-
ated STEAP1 short hairpin RNA–expressing infectants of 2
Ewing tumor cell lines (SK-N-MC and SB-KMS-KS1).

Constitutive STEAP1 silencing reduced colony formation
of Ewing tumor cells in methylcellulose in a dose-dependent
manner (Fig. 2C and Supplementary Table S1). Consis-
tently, these infectants exhibited delayed tumor growth in
Rag2$/$gc$/$mice (Fig. 2D andE). Persistence of STEAP1
knockdown was confirmed ex vivo in each xenograft (Fig.
2D). Comparing the xenografts with or without STEAP1

Figure 2. Knockdown of STEAP1 inhibits proliferation, invasion, anchorage-independent colony formation, tumorigenicity, and metastasis of Ewing tumor
cells. A, analysis of proliferation of transfected Ewing tumor cells with xCELLigence. Cellular impedance is displayed as relative cell index. Mean% SEM of 2
experiments/cell line (heptaplicates/group). Western blot analysis was conducted 100 hours after transfection. B, analysis of invasiveness of SK-N-MC and
SB-KMS-KS1 (transfected with siRNA 48 hours before seeding). Western blot analyses show STEAP1 knockdown efficacy. Mean % SEM of 3 experiments
(pentaplicates/group). C, anchorage-independent colony formation of SK-N-MC with constitutive STEAP1 knockdown (pSIsteap1). Scale bars, 1,000 mm.
Mean%SEMof 3experiments (duplicates/group).D, tumorigenicity of SK-N-MC infectants (5miceper group) and ex vivo confirmation ofSTEAP1 knockdown
by qRT-PCR. Mean% SEM. E, combined analysis of tumor growth as take-to-event time of 3 experiments (14 mice pSIControl; 18 mice pSIsteap1). Mean%
SEM. "Take" is the day when the tumor exceeded 2 mm and "event" when the tumor exceeded 10 mm in diameter. F, quantification of necrotic area
(14 xenografts per group). Mean % SEM of 3 experiments. G, evaluation of metastatic potential of pSIsteap1 infectants (intravenously injected; 4 mice per
group). All macroscopically visible metastases were counted and their small round blue phenotype was confirmed by histology (scale bar ¼ 10 mm for
macroscopy, 1,000 and 100 mm for histology; arrow, micrometastasis). Mean % SEM; t test. n.s., nonsignificant.
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silencing, we did not find changes in immunohistochemistry
for the apoptosis marker caspase-3 or for tumor-infiltrating
macrophages (tested byMAC3; not shown). In addition, no
differences in vascularization, quantified by CD31 staining
(not shown), and in intratumoral necrosis were observed
(Fig. 2F). Similarly to local tumor growth, experimental
metastasis into the liver was diminished after STEAP1
knockdown (Fig. 2G). Although our cell lines showed a
high propensity to metastasize into livers, we only noted
kidney metastases in mice injected with control cells
(pSIControl; not shown). Taken together, these results
suggest that STEAP1 supports Ewing tumor growth and
invasiveness.

STEAP1 silencing leads to adaptations in oxidative stress
response systems
In accordance with data in HEK-293T cells (7), we did

not find evidence for STEAP1 to impact iron uptake and
reduction in Ewing tumors (Supplementary Fig. S2). How-
ever, to gain functional insight into how STEAP1 influences
Ewing tumor malignancy, we conducted whole transcrip-
tome microarrays (GSE26422) to identify concordantly
regulated genes in A673 and SK-N-MC cells after STEAP1
silencing (minimum mean log2 fold change %0.32; maxi-
mum variation of 40% across siRNAs). STEAP1 knock-
down differentially regulates 87 genes (41 upregulated and
46 downregulated; Fig. 3A and Supplementary Table S2).
STEAP1-dependent gene regulation was confirmed on
selected genes after STEAP1 knockdown (Fig. 3B) and
STEAP1 overexpression (Supplementary Fig. S2).
Among the 40 top-regulated genes, 20% were assigned to

the ubiquitin–proteasome system (UPS), suggesting that
STEAP1 might play a role in protein modification that
requires enhanced proteasomal decay. Consistently, gene set
enrichment analysis (GSEA) revealed that STEAP1 silencing
regulates gene sets involved in oxidative stress responses, type
II conjugation, and proteolysis (Supplementary Table S3),
which are part of the oxidative stress phenotype seen in
cancer (32, 33).
In support of the prediction that changes in oxidative

stress responses influence overall proteome composition,
STEAP1 knockdown altered the protein levels of 121 spots
(81 spots upregulated and 40 spots downregulated) of 845
spots detected in 2D gel electrophoresis of SK-N-MC cells
(minimum linear fold change %2 in 3 independent experi-
ments as assessed by densitometric analysis with PDquest
Advanced; BioRad; P < 0.05).
The 24 most significantly regulated spots and 1 nonreg-

ulated control spot were excised for proteomic analysis. By
mass spectrometry, 132 different proteins were identified, of
which 17% were assigned to protein transport and folding,
13% to invasion, and 11% to the redox system according to
their gene ontology (GO) annotations (Fig. 3C). Among
these proteins are several redox enzymes such as peroxire-
doxins and superoxide dismutases, which are dysregulated in
a large cohort of cancers (15, 34). Moreover, endosomal
redox stress response proteins (35, 36) were identified
including T-complex chaperones, heat shock proteins, pro-

tein-disulfide isomerases as well as co-chaperones. Further-
more, we identified mediators of posttranscriptional mRNA
processing such as heterogeneous nuclear ribonucleopro-
teins, THO complex proteins, and eukaryotic translation
initiation factors (Supplementary Table S4). Notably, we
found dysregulation of 2 of 6 key modules of the hexameric
proteasomal ATPase (PSMC5 and PSMC6) and identified 2
further subunits (PSMC3 and PSMC4) in regulated spots by
proteomic means as well as key modules of the proteolytic
cavities of the proteasome and immunoproteasome
(PSMA3, PSMB5, PSMB8, and PSMB9), which are critical
for protein quality control upon oxidative stress (ref. 37;
Supplementary Fig. S2). These data were confirmed by
GSEA pathway analysis (Table 1). In summary, these
analyses suggest that STEAP1 silencing leads to adaptations
in oxidative stress response systems, supporting the hypoth-
esis that STEAP1 is associated with the oxidative stress
phenotype of Ewing tumors.

STEAP1 expression is associated with ROS levels of
Ewing tumors cells
We next investigated whether the long-term knockdown

of STEAP1 can lead to altered ROS levels. Indeed, consti-
tutive STEAP1 silencing decreased ROS-levels (Fig. 4A),
whereas STEAP1 overexpression increased ROS levels (Fig.
4B) as quantified by dihydroethidium fluorescence. More-
over, STEAP1 knockdown reduced mitochondrial ROS
without changing mitochondrial mass as quantified by
MitoSOX Red and MitoTracker Green staining, respective-
ly (Fig. 4C and D). Consistently, STEAP1 knockdown
decreased the cellular pool of oxidized glutathione (gluta-
thione disulfide) but increased the amount of reduced
glutathione (GSH; Fig. 4E). Interestingly, reassessment of
our microarray data revealed that STEAP1 is most prom-
inently expressed in Ewing tumors among other NOX and
STEAPproteins (Supplementary Fig. S3). It should be noted
that we did not detect obvious morphologic changes of
Ewing tumor cells and their mitochondria upon STEAP1
knockdown (Fig. 4F).

ROS are critical for Ewing tumor proliferation and
invasiveness
Our data and recent discussion in the literature (19)

indicate that ROS might promote Ewing tumor aggres-
siveness. In accordance, treatment of Ewing tumor cells with
the antioxidant NAC reduced colony formation, prolifera-
tion, and invasiveness of Ewing tumor cells in a dose-
dependent manner (Fig. 5A–C). Similar results have been
obtained with PEGylated-superoxide dismutase and PEGy-
lated-catalase (Supplementary Fig. S4). Reciprocally, treat-
ment of STEAP1 silenced Ewing tumor cells with H2O2
rescued the invasive phenotype of STEAP1 knockdown cells
(Fig. 5D).
We next tested whether STEAP1-regulated genes con-

tribute to the oxidative stress phenotype observed. We
choose MMP-1, ADIPOR1, and DTX3L for follow-up due
to their high expression in Ewing tumors and their involve-
ment in oxidative stress responses (34, 38, 39). Notably,
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Figure 3. STEAP1 silencing leads to adaptations in oxidative stress response systems. A, heatmaps of differentially expressed genes after STEAP1 silencing
(normalizedmedian centered log2 values) including genes selected for validation (arrows). B, validation of differential gene expression byqRT-PCR. ADIPOR1,
adiponectin receptor 1;MMP-1,matrixmetallopeptidase 1; USP18, ubiquitin-specific peptidase 18; TAP1, transporter 1, ATP-binding cassette, sub-family B;
DTX3L, E3 ubiquitin–protein ligase deltex 3-like; PSMB9, proteasome subunit b-9. Mean % SEM of at least 2 experiments/cell line (duplicates/group); t test.
C, left, distribution of functional GO annotations of differentially expressed proteins in SK-N-MC as identified by 2D gel electrophoresis and mass
spectrometry 72 hours after RNA interference. Right, representative 2D gels of siControl and siSTEAP1, micrographs showing regulated spots (arrows), and
the computational overlay summary of up, down, and nonregulated spots of 3 experiments.
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expression ofMMP-1, ADIPOR1, and DTX3L appeared to
be ROS sensitive in Ewing tumor cells as H2O2 treatment
induced their expression in a time-dependent manner (Fig.
5E). Moreover, H2O2 treatment rescued MMP-1, ADI-
POR1, and DTX3L, but not STEAP1, expression in a dose-
dependent manner implying that STEAP1 is upstream of
ROS signaling whereas the other genes are potentially
downstream (Fig. 5F). Interestingly, silencing of these genes
reduced invasiveness through Matrigel (Fig. 5G), whereas
only ADIPOR1 knockdown significantly reduced Ewing
tumor proliferation (Fig. 5H). In summary, these data
suggest that oxidative stress may support Ewing tumor
aggressiveness possibly, in part, via enhanced expression of
MMP-1, ADIPOR1, and DTX3L.

STEAP1 knockdown inhibits STAT1 activation
Using GSEA to search for common transcription factor

motifs within the 87 differentially regulated genes after
STEAP1 silencing, we identified STAT1 (P ¼ 0.07) and
its downstream cofactors, IFN response factors (IRF) 1, 2, 7,
and 8 (P < 0.05; ref. 40) as top-ranked putative STEAP1
targets. Consistently, interrogation of the GSEA Molecular
Signatures Database (C2; v3.0) with these 87 genes revealed
a strong overrepresentation of gene sets involved in IFN
signaling accompanying STEAP1 expression (Fig. 6A and
B). Interestingly, STAT1, a downstream effector of ROS and
IFNs (41), is predominantly expressed inEwing tumors (Fig.
6C). Of note, alike STEAP1 silencing, STAT1 silencing
reduced the expression of STEAP1 target genes but left
STEAP1 expression unaffected. Moreover, the downregula-
tion of these genes could (apart from MMP-1 in 2 of 3 cell
lines tested) not be rescued byH2O2, suggesting that STAT1

may be downstream of ROS and STEAP1 (compare Figs.
6D and 5F). Indeed, STEAP1 silencing results in less
phosphorylated STAT1, which can be rescued by exogenous
H2O2 and IFN-g (Fig. 6E). However, Ewing tumor cells
virtually do not endogenously produce IFNs and STEAP1
silencing neither alters their expression nor their secretion as
seen by microarray (Fig. 6F) and ELISPOT analyses (Sup-
plementary Fig. S5). In summary, these data indicate that
STEAP1 and ROS may, in part, mediate their transcrip-
tional effects via IFN-independent activation of STAT1
(Fig. 6G).

Discussion

The current study assessed the involvement of STEAP1 in
the invasive and oxidative stress phenotype of Ewing tumors.
We show that STEAP1 is induced by EWS/FLI1 and
important for Ewing tumor malignancy.Moreover, our data
support amodel whereby STEAP1 expression is linked to the
maintenance of oxidative stress of Ewing tumors and
increased Ewing tumor aggressiveness, probably mediated
via STAT1. We show that STEAP1 is highly expressed in
Ewing tumors compared with benign tissues and a series of
other sarcomas implying that STEAP1 could be used in
routine pathology as an additional marker for Ewing tumor
diagnosis.
Our data indicate that STEAP1 is important for anchor-

age-independent colony formation and invasiveness of
Ewing tumor cells in vitro and for tumorigenicity and
metastasis in vivo. Moreover, we show that STEAP1
expression correlates with increased cellular ROS levels,
which in turn induce the redox-sensitive and proinvasive

Table 1. GSEA pathway analysis of differentially regulated proteins as identified by 2D gel electrophoresis
and mass spectrometry

Gene set namea Function Kb kc k/K P

REACTOME_CHAPERONIN_
MEDIATED_PROTEIN_FOLDING

Chaperonin-mediated
protein folding

50 7 0.14 <0.001

REACTOME_PREFOLDIN_MEDIATED_
TRANSFER_OF_SUBSTRATE_TO_CCT_TRIC

Chaperonin-mediated
protein folding

28 7 0.25 <0.001

REACTOME_FORMATION_OF_TUBULIN_
FOLDING_INTERMEDIATES_BY_CCT_TRIC

Chaperonin-mediated
protein folding

22 6 0.27 <0.001

KEGG_PROTEASOME Proteasomal protein decay 48 6 0.13 <0.001
REACTOME_SCF_BETA_TRCP_
MEDIATED_DEGRADATION_OF_EMI1

Ubiquitin ligase–mediated
protein processing

48 6 0.13 <0.001

REACTOME_SCF_SKP2_MEDIATED_
DEGRADATION_OF_P27_P21

Ubiquitin ligase–mediated
protein processing

52 6 0.12 <0.001

REACTOME_ASSOCIATION_OF_TRIC_CCT_WITH_
TARGET_PROTEINS_DURING_BIOSYNTHESIS

Chaperonin-mediated
protein folding

29 5 0.17 <0.001

REACTOME_METABOLISM_
OF_PROTEINS

Translation, posttranslational
modification, and protein folding

215 12 0.06 0.024

aREACTOME, BIOCARTA, and KEGG pathway gene sets were used for analysis.
bK ¼ number of genes in gene set.
ck ¼ number of genes in overlap.
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genesMMP-1, DTX3L, and ADIPOR1. Consistently, Pan
and colleagues found that STEAP1 overexpression pro-
motes ROS-mediated hyperproliferation of thyroid
epithelial cells (42).
ROS participate in oncogenic signaling and elevated ROS

levels are a salient feature of aggressive cancers (17, 18).
Disturbances in the delicate ROS balance can lead to protein
misfolding, accumulation of dysfunctional proteins, and
activation of cellular stress responses (36). In accordance,
STEAP1 silencing provokes transcriptional and posttran-
scriptional adaptations of oxidative stress responses com-
prising the redox, chaperone, endopeptidase, and UPS.
These observations are compatible with the hypothesis that
STEAP1 is associated with an enhanced oxidative stress

phenotype in Ewing tumors. Consistently, we found that
STEAP1 positively correlates with cytoplasmic and mito-
chondrial ROS levels. As mitochondrial morphology
remained unaffected, we suppose that mitochondrial ROS
levels change concomitantly with cytoplasmic ROS levels
upon STEAP1-silencing, a mechanism also seen in the
context of NOX proteins ("ROS-cross-talk"; ref. 43). The
role of STEAP1 in ROSmodulation is supported by in silico
predictions and crystallography of STEAP proteins defining
them as heme-containing redox enzymes (5, 13). Less
aggressive ROS are well known to interact with heme iron
of heme-containing proteins (15). Here, a nonenzymatic 2-
electron oxidation of heme generates ferryl-heme and an
unstable free radical that may be released as more aggressive

Figure 4. STEAP1 expression is associatedwith ROS levels of Ewing tumor cells. A andB,measurement of ROSwith dihydroethidium (DHE) fluorescence after
constitutive STEAP1 silencing (pSIsteap1) or STEAP1 overexpression (pSteap1).Mean%SEMof 3 experiments/cell line (octaplicates/group). Controls set as
100%.CandD, representative images of flowcytometricmeasurements ofmitochondrial ROS (MitoSOXRed) andmitochondrialmass (MitoTracker Green) in
Ewing tumor cells 72 hours after RNA interference. Minimum 30,000 events per group; 3 experiments/cell line. For positive control in MitoSOX Red stainings,
an aliquot of the cells was preincubated with 100 mmol/L hydrogen peroxide (H2O2; blue). E, analysis of reduced (GSH) and oxidized glutathione (glutathione
disulfide; GSSG) 48 hours after transfection. Mean % SEM of 2 experiments/cell line. F, low-power electron micrographs of SK-N-MC 80 hours after
transfection showing no differences in mitochondrial morphology (scale bars, 0.4 mm). ', P < 0.05; '', P < 0.01; ''', P < 0.001; t test.
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Figure 5. ROSare critical for Ewing tumor proliferation and invasiveness. A, colony formation of Ewing tumor cells treatedwithNACor vehicle (H2O). Images are
representative for 3 experiments per cell line (duplicates/group). B, analysis of proliferation of SK-N-MC and SB-KMS-KS1 treated with NAC every 48 hours
usingxCELLigence.Mean%SEMof2experimentsper cell line (quadruplicates/group).C, analysisof invasivenessofSK-N-MCandSB-KMS-KS1 treatedwith
NAC. Mean% SEM of 2 experiments per cell line (pentaplicates/group). D, invasiveness of STEAP1-silenced SK-N-MC and SB-KMS-KS1 with/without H2O2

rescue. For H2O2 rescue, cells were treated periodically with H2O2 (cumulative dosage: 40 mmol/L). Mean% SEM of 2 experiments per cell line (pentaplicates/
group). E, MMP-1, ADIPOR1, and DTX3L expression in SK-N-MC treated with 50 mmol/L H2O2 for 0 to 9 hours. Mean % SEM of 5 experiments (duplicates/
group). F, analysis of STEAP1, MMP-1, ADIPOR1, and DTX3L expression in STEAP1-silenced A673 and SK-N-MC 6 hours after treatment with H2O2.
Mean% SEM of at least 2 experiments per cell line (duplicates/group). G, invasiveness of SK-N-MC and SB-KMS-KS1 transfected 48 hours before seeding.
Mean % SEM of 2 experiments per cell line (pentaplicates/group) H, analysis of proliferation of SK-N-MC and SB-KMS-KS1. Knockdown was confirmed by
qRT-PCR (controls set as 1).Mean%SEMof 2 experiments per cell line (heptaplicates/group). ',P < 0.05; '',P < 0.01; ''',P < 0.001; t test. n.s., nonsignificant.
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Figure 6. STEAP1 knockdown inhibits STAT1 activation. A, matrix diagram of the GSEA leading edge set-to-set analysis showing enrichment of IFN-related
gene sets. NES, normalized enrichment score. B, gene-in-subset analysis reveals representation of validatedSTEAP1 target genes (black bars)within leading-
edge genes. C, expression (mean % SEM) of different STAT proteins in 26 Ewing tumor microarrays. D, expression analysis of STEAP1 target genes by
qRT-PCR 48 hours after STAT1 silencing and H2O2 treatment (50 mmol/L for 6 hours).
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ROS in a site-specific manner depending on the localization
of the protein (44, 45). As STEAP1 contains a ferric
oxidoreductase, it is tempting to speculate that the protein
generates ROS by itself (7, 42). However, although STEAP1
target genes appear to be downstream of ROS (Fig. 5F), it
remains possible that part of STEAP1-induced ROS merely
accompany upstream events involved in the STEAP1
phenotype.
Multiple studies proved that permanently elevated ROS

levels activate prometastatic and proproliferative signaling in
cancer (17, 19, 20). In agreement, we provide evidence that
antioxidants reduce colony formation, proliferation, and
invasion of Ewing tumor cells suggesting that Ewing tumors
may benefit from an activated oxidative stress phenotype.
Among STEAP1-regulated genes, we focused on MMP-1,
ADIPOR1, and DTX3L all of which are implicated in ROS
signaling. For instance,MMP-1 has been shown to be highly
ROS inducible (34, 46) and its overexpression increases
invasiveness and metastasis of a variety of cancers (47).
ADIPOR1 is the cognate receptor for adiponectin, which
stimulates proliferation of hematopoietic stem cells (48).
Although the precise function of the ubiquitin ligase
DTX3L is not defined, recent work suggests that DTX3L
monoubiquitylates histone H4 lysine 91 and thereby
protects DNA from ROS (39). Here, we show that these
genes are highly inducible by ROS and regulated by
STAT1. STAT1 had been traditionally viewed as a mere
IFN signal transducer but has recently been linked with
aggressiveness, therapy resistance, and oxidative stress
responses of several cancers (49, 50). Consistently, we
prove that the coordinated expression of MMP-1, ADI-

POR1, and DTX3L fosters the invasive and proliferative
phenotype of Ewing tumors.
In summary, this work for the first time provides evidence

that an activated oxidative stress phenotype enhances Ewing
tumor malignancy: we show that STEAP1 overexpression
promotes proliferation, invasiveness, anchorage-indepen-
dent colony formation, tumorigenicity, and metastasis of
Ewing tumors. Because STEAP1 is overexpressed in a wide
variety of carcinomas, its oncogenic function may have
general relevance for tumor progression and targeted
therapy.
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High STEAP1 expression is associated with improved
outcome of Ewing’s sarcoma patients
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Background: Ewing’s sarcoma (ES) is the second most common bone or soft-tissue sarcoma in childhood and
adolescence and features a high propensity to metastasize. The six-transmembrane epithelial antigen of the prostate 1
(STEAP1) is a membrane-bound mesenchymal stem cell marker highly expressed in ES. Here, we investigated the role
of STEAP1 as an immunohistological marker for outcome prediction in patients with ES.
Patients and methods: Membranous STEAP1 immunoreactivity was analyzed using immunohistochemistry in 114
primary pre-chemotherapy ES of patients diagnosed from 1983 to 2010 and compared with clinical parameters and
patient outcome. Median follow-up was 3.85 years (range 0.43–17.51).
Results: A total of 62.3% of the ES samples displayed detectable STEAP1 expression with predominant localization of
the protein at the plasma membrane. High membranous STEAP1 immunoreactivity was found in 53.5%, which
correlated with better overall survival (P = 0.021). Accordingly, no or low membranous STEAP1 expression was
identified as an independent risk factor in multivariate analysis (hazard ratio 2.65, P = 0.036).
Conclusion: High membranous STEAP1 expression predicts improved outcome and may help to define a specific
subgroup of ES patients, who might benefit from adapted therapy regimens.
Key words: biomarker, Ewing’s sarcoma, outcome, risk stratification, STEAP1

introduction
Ewing’s sarcoma (ES) is a highly aggressive bone or soft-tissue
cancer mostly affecting children and young adolescents [1–4].
Even though multimodal treatments have led to remarkable
improvements in survival of patients with localized disease,
prognosis of patients with metastatic disease remains poor with
an event-free survival of <25% [4–7].
ES is characterized by EWS–ETS translocations [8] encoding

aberrant transcription factors that determine the complex and
highly malignant phenotype of this disease [9]. Although
different variants of EWS–ETS fusion proteins exist, they fail to

provide reliable biomarkers for individual risk stratification
[10, 11]. Several trials proved the clinicopathological
parameters, tumor site, tumor volume, age at diagnosis,
responsiveness to chemotherapy, and sites of metastatic
disease, to have major prognostic value [10, 12, 13]. However,
the currently available biological markers for ES are very
limited [12, 14, 15]. Nevertheless, the discovery of novel
prognostic and/or predictive biomarkers would potentially lead
to a better understanding of tumor heterogeneity, enable
individual risk stratification, and might help to guide targeted
therapy [16–19].
We previously identified an expression signature comprising

∼40 genes that are highly overexpressed in ES compared with
normal tissues and that might constitute promising candidates
for risk prediction and targeted therapy [9, 20]. Among them,
we identified the six-transmembrane epithelial antigen of the
prostate 1 (STEAP1), which is a membrane-bound channel
protein possibly involved in transmembrane electron transfer
[21, 22]. Apart from low amounts in prostate and urothelium,†These authors contributed equally to this work.
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STEAP1 is virtually not expressed in normal tissues [23, 24].
In contrast, STEAP1 is strongly overexpressed in many cancers
including prostate, breast, and bladder carcinoma as well as ES
[23–25]. STEAP1 messenger RNA (mRNA) circulates in
peripheral blood of cancer patients [26] and its detection in
bone marrow is indicative for occult residual tumor cells in
patients with ES [27]. Moreover, STEAP1 was found to be a
bona fide marker for human mesenchymal stem cells [28]
lending support to the hypothesis of a mesenchymal origin of
ES [29].
In addition, we recently showed that STEAP1 overexpression

increases the invasive properties and intracellular levels of
reactive oxygen species (ROS) of ES cells [24]. However, the
diagnostic potential of STEAP1 for ES remained
undetermined.
In the current study, we investigated the value of STEAP1 as

an immunohistological marker for outcome prediction of
patients with ES. We provide evidence that high membranous
STEAP1 expression is associated with improved overall survival
(OS). Moreover, high membranous STEAP1 immunoreactivity
showed a trend toward a better histological tumor response to
chemotherapy and, conversely, STEAP1-silenced ES cells were
more resistant to chemotherapy in vitro. These data unravel a
hitherto unanticipated role of STEAP1 as a promising
independent biomarker for outcome prediction of ES.

materials and methods

study population, ES tissue samples, and tissue
microarray
The Technische Universität München and the Universities of Basel,
Düsseldorf, and Münster approved the current study. A total of 114
archival paraffin-embedded primary ES samples before treatment with
confirmed histological diagnosis (reference pathology) were obtained from
the Departments of Pathology of the Technische Universität München and
the University of Düsseldorf as well as from the Bone Tumor Reference
Center at the Institute of Pathology of the University of Basel.
Representative formalin-fixed, paraffin-embedded tumor blocks were
selected for either tissue microarray (TMA) construction at the Department
of Pathology of the University of Düsseldorf (66 samples) or open
procedures at the Departments of Pathology of the Technische Universität
München (6 samples) and the University of Basel (42 samples). Each TMA
slide contained reference tissues of ES xenografts with known STEAP1
expression as internal controls (see supplemental Methods, available at
Annals of Oncology online).

Pertinent clinical data of patients were compiled from two sources:
first, the Ewing trial center of the University Hospital Münster (93
patients enrolled in the CESS 81, CESS 86, EICESS 92, or EURO-E.W.
I.N.G. 99 trials) and second, the Department of Pathology of the
University of Basel (21 patients). Informed consent was obtained from
all patients and/or their legal guardians. The study population included
60 males and 54 females with a median age of 16.9 years (range 0.6–
59.8 years).

immunohistochemistry and evaluation of STEAP1
immunoreactivity
Immunohistochemistry (IHC) analyses were done on formalin-fixed,
paraffin-embedded, pre-chemotherapy primary tumors. All tissue slides
were collected at the Department of Pathology of the Technische

Universität München for immediate IHC staining. For IHC, 4-μm sections
were cut and stained by an automated immunostainer with an iView DAB
detection kit (Ventana Medical System, Tucson, AZ) according to the
company’s protocol. The following primary antibody was used: polyclonal
rabbit anti-STEAP1 (1:50; H-105, sc-25514, Santa Cruz). Antigen retrieval
was carried out by microwave treatment in Dako target retrieval solution,
citrate, pH 6.0. Sections were counterstained with hematoxylin. For internal
controls, we used tumors of xenografted ES cell lines with known STEAP1
mRNA and protein expression levels (see supplemental Methods and
Figure S1, available at Annals of Oncology online). Specificity of the
STEAP1 antibody was assessed previously by others [30, 31] and reassessed
by us using immunoblot and indirect immunofluorescence, as previously
described [32, 33] (see supplemental Methods and Figure S1, available at
Annals of Oncology online). These control experiments further confirmed
the specificity of the used STEAP1 antibody, in agreement with published
findings on the STEAP1 protein [23, 24, 34]. Semi-quantitative evaluation
of STEAP1 immunostaining was carried out in a blinded manner by a
pathologist (IE) and two scientist experienced in histopathology (PS-B,
MA) after having examined at least three high-power fields (40×) of one
section for each sample. The intensity of membranous STEAP1
immunoreactivity was determined as grade 0 = none, grade 1 = faint, grade
2 =moderate, and grade 3 = strong (Figure 1). Intensity scoring was
independently recorded and in case of disagreement determined by
consensus. For better statistical discrimination, samples were classified into
two groups as previously described [32, 35]: samples with grade 0 and 1
were classified as STEAP1 low and those with grade 2 and 3 as STEAP1
high.

Figure 1. Examples of heterogeneous membranous six-transmembrane
epithelial antigen of the prostate 1 (STEAP1) immunoreactivity in Ewing’s
sarcoma (ES): All samples depicted were located on the same tissue
microarray slide and stained simultaneously by an automated
immunostainer (see ‘materials and methods’ section). Membranous
STEAP1 immunoreactivity (brown color) was scored according to reference
ES with known STEAP1 expression levels, with grade 3 = strong (A), grade
2 =moderate (B), grade 1 = faint (C), and grade 0 = no immunoreactivity
(D). Grades 3 and 2 were classified as STEAP1 high and grades 1 and 0 as
STEAP1 low. Scale bars = 20 μm for overview and 80 μm for detail images.
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statistical analyses
Statistical analyses were carried out with SPSS 19 (IBM Corporation,
Armonk, NY) and SAS 9.2 (SAS Institute, Cary, NC). OS was estimated by
the Kaplan–Meier method. OS time was defined as the interval between the
date of diagnosis and the date of last follow-up or death. Living patients
were censored at the date of most recent consultation. Group comparisons
were calculated by log-rank test. Multivariate analyses were carried out by
applying the Cox proportional hazard method. Differences in proportions
between groups were evaluated by chi-square or Fisher’s exact test.
Significance level was set at P < 0.05 for two-sided testing. No alpha
corrections were carried out for multiple testing. Outcome was analyzed on
an exploratory basis.

results

STEAP1 is expressed in the majority of ES and
mainly locates to plasma membranes
We first aimed to define the expression pattern of STEAP1 in
ES. Of the 114 ES available for IHC, 71 displayed detectable
membranous STEAP1 immunoreactivity (62.3%, grades 1–3).
Examples of the differential membranous STEAP1
immunoreactivity are given in Figure 1. A total of 53.5% (n =
61) of the ES were scored as membranous STEAP1 high and
46.5% (n = 53) as membranous STEAP1 low; 24.6% (28 of
114) of the cases showed maximum membranous STEAP1
expression (grade 3; see Figure 1). In agreement with previous
findings in breast, bladder, and prostate carcinoma [21, 23, 25],
we noted a predominant plasma membranous localization of
STEAP1 without defined apical or basal accentuation and
mostly without cytoplasmic STEAP1 immunoreactivity. Only a
few ES samples showed a faint to moderate cytoplasmic
STEAP1 staining.

membranous STEAP1 expression and OS
We next aimed to determine whether membranous STEAP1
expression correlates with outcome of ES patients. Patient
characteristics are given in Table 1. Univariate analysis on the
predictive value of membranous STEAP1 immunoreactivity
showed a lower survival rate in patients with ES classified as
membranous STEAP1-low (5-year OS = 0.57; n = 53) when
compared with membranous STEAP1-high cases (5-year OS =
0.79; n = 61) (P = 0.021) (Figure 2).

multivariate analysis
We next analyzed the impact of risk stratification in patients
with membranous STEAP1-high ES compared with patients
with membranous STEAP1-low ES to rule out a possible bias
by favorable risk factor patterns in STEAP1-high cases. The
multivariate analysis served to identify underlying factors that
could influence prognosis. We included the known prognostic
factors metastatic stage at diagnosis (M0, M1, M2), site (axial
versus nonaxial), and age (<15 versus ≥15 years) [7, 12, 13] in
the multivariate analysis. Eighty-three patients (72.8%) had
localized disease (M0), 20 patients (17.5%) had pulmonary
metastases (M1), and 11 patients (9.6%) had disseminated
disease including other metastases than in lungs (M2). Sixty-
six patients (57.9%) presented with an axial site ES and 48
patients (42.1%) with a non-axial site ES. Forty-six patients

(40.4%) were aged <15 years, and 68 patients (59.6%) were
aged >15 years at time of diagnosis.
The major risk factor was metastatic disease at diagnosis

[M0: hazard ratio (HR) = 1.00; M1: HR = 2.19; M2: HR = 4.38;
P = 0.002]. Membranous STEAP1-low expression (HR = 1.76;
P = 0.094), age (>15 years, HR = 1.69; P = 0.135), and primary
axial tumor site (HR 1.30; P = 0.435) showed only a tendency
or no major impact on survival (n = 114; Table 2).
In a second step, we analyzed the major group of patients

with localized disease (M0; n = 83). Here, membranous
STEAP1-low expression (HR = 2.59; P = 0.036) and age (>15
years; HR = 3.39; P = 0.030) were major risk factors concerning
survival in relation to primary axial tumor site (HR 1.76; P =
0.218) (Table 3), which most likely still only showed a

Table 1. Patient characteristics (n = 114)

Variable Label n (%)

Sex Male 60 (52.6)
Female 54 (47.4)

Age at diagnosis <15 years 46 (40.4)
≥15 years 68 (59.6)

Risk group M0 (no metastases) 83 (72.8)
M1 (lung metastases) 20 (17.5)
M2 (other ± lung
metastases)

11 (9.7)

Site Axial 66 (57.9)
Non-axial 48 (42.1)

Tumor volumea <200 ml 55 (71.4)
≥200 ml 22 (28.6)

Histological responsea Good (<10% viable cells) 46 (78.0)
Poor (≥10% viable cells) 13 (22.0)

Membranous six-
transmembrane
epithelial antigen of the
prostate 1 expression

How 53 (46.5)
High 61 (53.5)

aThese parameters relate to subsets of the study population.

Figure 2. Six-transmembrane epithelial antigen of the prostate 1
(STEAP1) expression correlates with overall survival (OS): Kaplan–Meier
estimates for OS probability for membranous STEAP1 expression (n = 114,
P = 0.021). Log-rank test.
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tendency on survival due to the limited size of our patient
cohort.
Tumor volume: A tumor volume categorization (<200 versus

≥200 ml) was only available in 77 patients. Fifty-five patients
(71.4%) had a tumor volume <200 ml and 22 patients (28.6%)
had a tumor volume >200 ml. Multivariate analysis in this
subcohort of 77 patients adding tumor volume as known
prognostic factor to the other established prognostic factors
described above (metastatic disease at diagnosis, age >15 years,
and primary axial tumor site [7, 12, 13]) confirmed metastatic
disease at diagnosis (P = 0.002) and membranous STEAP1-low
expression (HR = 2.65; P = 0.036) as major risk factors.

association of STEAP1 expression with histological
response to chemotherapy
Since high membranous STEAP1 immunoreactivity correlated
with improved OS, we tested whether this observation is
associated with a better response to treatment as estimated by
Salzer–Kuntschik tumor regression states [36]. For 59 patients
(51.8%), data were available for histological response following
induction chemotherapy without concurrent early
radiotherapy. Forty-six patients (78%) showed a good
histological response (<10% viable tumor cells) and 13 patients
(22%) a poor histological response (≥10% viable tumor cells);
80.6% of the patients with membranous STEAP1-high
expression showed a good histological response compared with
73.9% of the patients with membranous STEAP1-low

expression (P = 0.748) (Table 4). To test whether differential
STEAP1 expression may indeed alter response to
chemotherapy in vitro, we transiently knocked down STEAP1
in cultured ES cells by RNA interference and assessed their
rates of necrosis by flow cytometry. STEAP1-silenced ES cells
treated with either doxorubicin or etoposide for 24 h exhibited
lower rates of necrosis compared with ES cells with high
STEAP1 expression (P < 0.01; t-test, n = 4) (Figure S2),
indicating that low STEAP1 expression may confer ES cells
with a more resistant phenotype to chemotherapy.

discussion
Combined modality treatment is crucial for successful therapy
of patients with ES [7]. So far, various studies have identified
metastatic state, tumor volume, tumor site, age, sex, and
histological response to chemotherapy as important risk
factors, with primary metastasis as the most unfavorable one
[7, 12, 13, 37]. Although there is agreement that clinical
management will benefit from biological markers that can
guide therapeutic decisions [12], apart from the proliferation
marker Ki67 [38, 39], there are no bona fide
immunohistological markers available predicting outcome of
patients with ES [12, 15].
This is, to the best of our knowledge, the first report

evaluating the potential of STEAP1 for outcome prediction in
ES. Regarding independent risk factors in our series, high
membranous STEAP1 expression had a strong impact on OS
in multivariate analysis.
Moreover, membranous STEAP1-high immunoreactivity

showed a trend toward a better tumor response compared with
membranous STEAP1-low immunoreactivity as estimated by
Salzer–Kuntschik regression states. Even though this
subsample tendency has to be validated in a larger cohort, it is
noteworthy that high STEAP1 expression improves response of
ES cells to chemotherapy in vitro. Hence, it is tempting to
speculate that STEAP1 may exert a biological function that
sensitizes ES to drugs such as doxorubicin and etoposide,
which are essential components of current ES treatment
protocols [40].
On the molecular level, STEAP1 is a homologue of NADPH

oxidases [41, 42], which are involved in cellular ROS
production and frequently overexpressed in cancer [43, 44].
Consistent with this notion, we recently demonstrated that
STEAP1 overexpression in ES cells increases their intracellular
ROS levels [24]. Similar observations were obtained by Pan
et al. in thyroid epithelial cells [45] Pharmacologically, multiple
studies demonstrated that certain chemotherapeutics like

Table 2. Summary of results of the multivariate analysis in all patients
(n = 114)

Variable Label Risk ratio
(95% CI)

P

Risk group M0 (no metastases) 1 0.002
M1 (lung metastases) 2.19 (1.04–4.61) 0.039
M2 (other ± lung
metastases)

4.38 (1.83–10.5) 0.001

Membranous
STEAP1 expression

Low 1.78 (0.91–3.48) 0.094

Age ≥15 years 1.69 (0.85–3.37) 0.135
Site Axial 1.30 (0.68–2.48) 0.435

STEAP1, six-transmembrane epithelial antigen of the prostate 1 and CI,
confidence interval.

Table 3. Summary of results of the multivariate analysis in patients with
localized disease (n = 83)

Variable Label Risk ratio
(95% CI)

P

Membranous STEAP1
expression

Low 2.59 (1.07–6.29) 0.036

Age ≥15 years 3.39 (1.13–10.2) 0.030
Site Axial 1.76 (0.72–4.31) 0.218

STEAP1, six-transmembrane epithelial antigen of the prostate 1 and CI,
confidence interval.

Table 4. Summary of results of correlation of membranous STEAP1
immunoreactivity with tumor regression grade (n = 59)

Histological response

Good Poor P

Membranous STEAP1 expression Low 17 (73.9%) 6 (26.1%)
High 29 (80.6%) 7 (19.4%) 0.748

STEAP1, six-transmembrane epithelial antigen of the prostate 1.
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doxorubicin and etoposide become more potent at increased
intracellular ROS levels [46, 47]. Moreover, radiotherapy is
known to be more effective in combination with ROS-
generating radiosensitizers [47, 48]. Thus, the apparent survival
benefit seen in membranous STEAP1-high ES patients may be
caused by elevated intracellular ROS levels of the ES cells,
which might sensitize them to radiochemotherapy.
As outlined above, metastasis of ES is the most adverse

clinical parameter indicative for dismal prognosis with a 5-
year relapse-free survival of ∼21% compared with 55% in
patients with localized disease. Strikingly, the observed
survival benefit of membranous STEAP1-high compared
with membranous STEAP1-low immunoreactivity is
similarly strong like the dramatic difference in survival
indicated by localized versus metastatic disease. Hence, our
data suggest that high membranous STEAP1 expression
may be a property of an independent risk group of ES
patients, who specifically might benefit from adapted radio-
chemotherapy protocols.
Despite we are fully aware of the retrospective nature of this

study and its associated limitations, STEAP1 may constitute a
promising new biomarker for outcome prediction of ES
patients, which is readily available due to standardized
assessment by immunohistochemistry. Therefore, we strongly
recommend to validate this observation in prospective studies
and to experimentally elucidate the precise molecular role of
STEAP1 in ES.
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ABSTRACT:
Cells mount a transcriptional anti-oxidative stress (AOS) response program 

to scavenge reactive oxygen species (ROS) that arise from chemical, physical, 
and metabolic challenges. This protective program has been shown to reduce 
carcinogenesis triggered by chemical and physical insults. However, it is also 
hijacked by established cancers to thrive and proliferate within the hostile tumor 
microenvironment and to gain resistance against chemo- and radiotherapies. 
Therefore, targeting the AOS response proteins that are exploited by cancer cells 
is an attractive therapeutic strategy. In order to identify the AOS genes that are 
suspected to support cancer progression and resistance, we analyzed the expression 
patterns of 285 genes annotated for being involved in oxidative stress in 994 tumors 
and 353 normal tissues. Thereby we identified a signature of 116 genes that are 
highly overexpressed in multiple cancers while being only minimally expressed in 
normal tissues. To establish which of these genes are more likely to functionally drive 
cancer resistance and progression, we further identified those whose overexpression 
correlates with negative patient outcome in breast and lung carcinoma. Gene-set 
enrichment, gene ontology, network, and pathway analyses revealed that members 
of the thioredoxin and glutathione pathways are prominent components of this 
oncogenic signature and that activation of these pathways is common feature of many 
cancer entities. Interestingly, a large fraction of these AOS genes are downstream 
targets of the transcription factors NRF2, NF-kappaB, and FOXM1, and rely on NADPH 
for their enzymatic activities highlighting promising drug targets. We discuss these 
findings and propose therapeutic strategies that may be applied to overcome cancer 
resistance.

INTRODUCTION

The stressful biological conditions that exist within 
the tumor microenvironment exert strong adaptive 
pressure on cancer cells which in turn exploit endogenous 
pathways to reprogram their transcriptome, proteome, and 

metabolism to survive and thrive under these conditions 
[1-6]. Therefore, proteins that facilitate these adaptation 
processes are attractive drug targets as they are expected 
to be active only in tumor tissues, which are exposed to 
stress, but not in non-stressed normal tissues [2, 7, 8]. 
Oxidative stress is commonly associated with cancer and 
cancer cells have been shown to promote expression of 
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ROS scavenging pathways in order to survive, proliferate, 
and resist radio- and chemotherapy [9-11]. While 
these basic biological principles have been extensively 
demonstrated and reviewed elsewhere [12], especially 
in the context of the transcription factor nuclear factor 
(erythroid-derived 2)-like 2 (NRF2 or NFE2L2) [13-
15], it is still not clear which groups of AOS genes are 
overexpressed in multiple cancers compared with normal 
tissues. Similarly, it is as yet not defined which groups 
of AOS genes predict for bad prognosis and in different 
cancer entities.

Here, we systematically evaluated the mRNA 
expression patterns of all genes (n=285) annotated by 
GO(Gene Ontology) as being involved in ‘oxidative stress’ 
(including AOS genes) in publicly available microarray 
data sets and identified a sub-group of genes that is highly 
overexpressed in multiple cancers compared to normal 
tissues. Subsequently, by using multiple unsupervised 
analyses, we found that the glutathione and thioredoxin 

pathways are significantly enriched among these genes. 
Interestingly, high expression of a significant number 
of these genes is negatively correlated with survival in 
breast and lung carcinoma, suggesting that they might 
play a protective role in cancer cells as opposed to merely 
reflecting a transcriptional response to oxidative stress. 
We discuss these genes, the regulators of their expression, 
their specific role in cancer, and possible therapeutic 
strategies that can hit these targets. 

Identification of oxidative stress response genes 
highly expressed in multiple cancers: enrichment 
in glutathione and thioredoxin pathways-related 
genes 

We wondered whether specific oxidative stress 
response genes are highly overexpressed in cancer 
as compared to normal tissues. Because we are 
primarily interested in how cancer cells adapt to their 
microenvironment found within solid tumors we focused 
our analysis on carcinomas as they constitute the 
most frequent type of solid tumors. Using hierarchical 
clustering, we observed that the 285 genes cluster into 6 
clusters (hereafter referred to as “groups”) (Figure 1; Table 
S1). Groups 2-5 were found to be cancer type specific 
(Figure 1; Table S1). While these may be interesting 
in the context of the corresponding cancers entity, they 
may also reflect genes highly expressed in the tissue of 
origin, and therefore will require further in-depth analysis. 
More interestingly, we identified a group of genes that is 
highly overexpressed in multiple cancers compared to 
normal tissues (group 6), as well as a group that is highly 
overexpressed in normal tissues compared to cancers 
(group 1).

Figure 1: Gene expression patterns of 285 oxidative 
stress  genes in 353 normal tissues and various 
carcinomas (total n=994, 10 different entities). Gene 
expression data were retrieved from the Gene Expression 
Omnibus (GEO; http://www.ncbi.nlm.nih.gov/gds) of published 
microarray studies (all Affymetrix HG-U133plus2.0). Normal 
tissue n=353 (GSE3526) [133]. Carcinomas: bladder n=102 
(GSE31684, GSE7476), breast n=107 (GSE36774), colorectal 
n=177 (GSE17536), gastric cancer (ga) n=43 (GSE22377), 
liver (hepatocellular carcinoma) n=91 (GSE9843), kidney (ki) 
n=52 (GSE11151), melanoma (melan) n=101 (GSE10282, 
GSE15605), lung (non-small-cell lung cancer, NSCLC) n=196 
(GSE37745), pancreas (pan) n=52 (GSE17891, GSE32676), 
ovary (ov) n=73 (GSE14001, GSE18520). All microarray 
data were normalized simultaneously by RMA [134] using 
custom brainarray (v15.0) ENTREZG CDF-files as previously 
described [132, 135, 136]. Hierarchical clustering of genes 
(1-Pearson correlation) and k-means clustering (2 signatures, 
10,000 iterations) of microarray samples were performed with 
GENE-E software (http://www.broadinstitute.org/cancer/
software/GENE-E/index.html). Gene expression data were log2 
transformed for depiction in a heat-map.
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Breast cancer ENTREZ ID
Gene (probe ID) P-value

Bad prognosis BTG3 10950 (360504) 0.00357
CASP3 836 (540397) 0.0000453
CDC2 983 (5360092) 0.0000105
ECT2 1894 (5420064) 0.00012
EGLN1 54583 (6130168) 0.00586
FOXM1 2305 (5390044) 2.51E-08
G6PD* 2539 (5700072) 0.00748
GAPDH 2597 (1940184) 0.00321
HMOX1* 3162 (6180100) 0.000294
LONP1 9361 (870538) 0.0031
NUDT1 4521 (6180369) 0.0016
PRDX4* 10549 (940131) 0.00276
PSMB5 5693 (3610041) 0.00337
SELS 55829 (7100450) 0.00844
SERPINE1 5054 (6840139) 0.00167
SRXN1* 140809 (3190176) 0.00336
TXNRD1* 7296 (6220603) 0.00000169

Good prognosis PON2 5445 (7040022) 0.00457
SIRT1 23411 (6940021) 0.00918

Lung cancer NCBI ID
NCBI ID (probe ID) P-value

Bad prognosis COL1A1 1277 (926) 0.000675
GAPDH 2597 (1738) 0.00185
GCLC* 2729 (14771) 0.00354
GSS* 2937 (267) 0.00934
NQO1* 1728 (20812) 0.0045
RNF7 9616 (12099) 0.00439
STK24 8428 (10957) 0.00195
TXN* 7295 (10753) 0.00789
TXNRD1* 7296 (8394) 0.00284

Good prognosis NFKB1 4790 (3750) 0.000849

* NRF2 targets

Table 1: List of AOS response genes highly expressed in cancers which correlate with 
outcome in breast or lung cancer. The cancer AOS response signature was analyzed 
using bioprofiling.de GENE_SRV to identify cancers in which these genes have significant 
predictive power. Only genes that were found to correlate with survival are shown. Gene 
name, ENTREZ ID, microarray probeset ID and p value are provided. Kaplan-Meier 
plots for all the indicated genes are displayed in Figure S1-S3.
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GO analysis using bioprofiling.de [16] (Table S2) 
confirmed that in both groups ‘response to oxidative stress’ 
and ‘response to hydrogen peroxide’ were the top two 
categories (p<10-15) confirming, as expected, that both 
lists (groups 1 and 6) are significantly enriched in genes 
involved in oxidative stress response. While the first two 
GO categories were similar between group 1 and group 6 
the third was different. ‘Aging’ was the third identified GO 
category in the list of genes that are highly expressed in 
normal tissues (group 1) (p<10-7) while ‘cellular response 
to hydrogen peroxide’ (p<10-12) was the third category 
found in the list of genes that are highly expressed in 
cancer (group 6) (Table S2). It is interesting to note that 
the expression of AOS genes that are linked to aging is a 
feature of normal tissue in light of the discussion on the 
similarities and differences between expression of stress 
genes in cancer and aging [10, 17].

To identify possible common biological features 
of the genes represented in each of the two lists we next 
queried common protein folds of the encoded proteins. 
Using Interpro (bioprofiling.de; [16]) we found that the 
list of genes that are highly expressed in cancer (group 
6) is significantly enriched (p<10-6; Table S3) in proteins 
that contain ‘Alkyl hydroperoxide reductase subunit C/ 
Thiol specific antioxidant’ domains, ‘Thioredoxin fold’, 
and ‘Thioredoxin like fold’, whereas the genes that are 
highly expressed in normal tissues (group 1) did not result 
in specifically enriched protein fold(s). Moreover, using 
pathway and network analysis (bioprofiling.de R_Spider; 
[18]), we found the ‘Glutathione metabolism’ pathway 
among the genes highly expressed in cancers (11 genes; 

p=0.01) with a specific sub-group of 9 genes (p<0.005) 
whose products are known to interact with one another, 
such as glutamate cysteine ligase catalytic subunit (GCLC) 
and glutamate cysteine ligase modifier subunit (GCLM) 
(Figure 2A)[19]. Collectively, these analyses suggest that 
elevated glutathione synthesis and thioredoxin pathway 
activity are common features of cancer cells.

Identification of AOS response genes highly 
expressed in cancers which predict negative 
patient outcome

In order to identify possible drug targets within the 
list of genes that are up-regulated in cancer (group 6) we 
used the bioprofiling.de GENE_SRV tool that screens a 
list of genes against publicly available expression and 
patient survival data [20]. Specifically, this tool identifies 
cancer entities in which a particular gene signature is 
significantly enriched for predictors of patient outcome. 
We found significant predictive power of some genes in 
group 6 (highly expressed in cancers) in breast and lung 
cancers (p=0.035) and in chronic lymphocytic leukemia 
(CLL) (p=0.037). Since this study exclusively addresses 
AOS genes in solid tumors, we focus our discussion on the 
first two cancer entities. Kaplan-Meier plots for all genes 
that exhibited significant predictive power are summarized 
in Table 1 and Figure S1-3 (typical plots are shown in 
Figure 2B).

In lung cancer, 9 genes correlated with poor 
prognosis, including GCLC, NAD(P)H dehydrogenase 

Figure 2: Enrichment of genes coding for enzymes involved in glutathione synthesis in the cancer AOS genes signature. 
A. The depicted gene network was identified by R_SPIDER as statistically enriched in the list of genes that are highly expressed in cancers 
(group 6) (Table S1). Genes are represented by red boxes, known interactions between the corresponding proteins are displayed as blue 
lines and metabolites by green circles. B. Typical Kaplan-Meier plots are shown.
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(quinone) 1 (NQO1) and thioredoxin (TXN), and 1 with 
good outcome (Figure 2B and Figure S1). In breast 
cancer, 17 genes were associated with poor prognosis, 
such as glucose-6-phosphate dehydrogenase (G6PD), 
heme oxygenase (decycling) 1 (HMOX1) and thioredoxin 
reductase 1 (TXNRD1), and only 2 with good outcome 
(Table 1 and Figure S2-S3). The finding that the majority 
of the genes are predictors for negative patient outcome 
supports the model that the AOS response genes, which 
are up-regulated in cancer, may facilitate cancer cell 
adaptation to the tumor environment and/or resistance to 
therapy. We therefore argue that the genes identified by 
our analyses as being highly overexpressed in carcinomas 
and correlating negatively with prognosis may constitute 
attractive drug targets as well, which will be further 
discussed below.

Relevance of the glutathione and thioredoxin 
pathways as essential components of multiple 
cancers and potential drug targets

Thioredoxin pathway

The thioredoxin system is highly conserved 
throughout evolution and we observed that multiple 

members of this system are highly overexpressed in 
multiple cancers (Figure 1; group 6) and confer dismal 
prognosis in lung and breast cancers (Table 1 and Figure 
S1-S3). TXN is a small protein that reduces oxidized 
proteins and supports peroxiredoxin (PRDX)-mediated 
H2O2 clearance (Figure 3) [21]. It also positively 
regulates the activity of PTP1B, the phosphatase of the 
tyrosine kinase PDGF-beta, leading to increased PDGF-
beta signaling [20] and it negatively regulates the tumor 
suppressor PTEN [22, 23]. These functions point to an 
oncogenic role of TXN. 

In support to this notion, the expression of a number 
of TXN-related genes has been reported to predict 
negative patient outcome in multiple cancers [24]. Among 
the TXN-related genes we identified to be up-regulated 
in cancers (group 6), TXN expression was associated 
with reduced survival in various cancers, such as gastric, 
colorectal, non-small cell lung cancers and squamous 
cell carcinoma [25-27], whereas TXNRD1 expression 
was correlated with poor survival in breast cancer and 
squamous cell carcinoma [28, 29]. Furthermore, PRDX1 
level was found to predict poor patient survival in non-
small cell lung, ovarian, and breast cancers [30-32], and 
PRDX3 and PRDX4 expression were correlated with poor 
prognosis in hepatocellular carcinoma and squamous cell 

Figure 3: Glutathione and TXN systems. Genes that are highly expressed in tumors versus normal tissues are highlighted in gray 
and those associated with bad prognosis in lung or breast cancer are highlighted in yellow. The redox state of proteins and metabolites is 
depicted in color (red=reduced and blue=oxidized). Metabolites are boxed and inhibitors are circled. This scheme is adapted from [137].
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carcinoma respectively [33, 34].
Among TXN pathway inhibitors, the TXN 

inhibitor PX-12 was shown to be well-tolerated in phase 
I trials [35]. However, in a phase II trial it exhibited 
limited therapeutic benefits possibly related to its 
pharmacokinetics [36], which prompted the development 
of better TNX inhibitors. An alternative strategy to inhibit 
TXN is to block TXN reductases [37], such as TXNRD1, 
that reduce and recycle TXN (Figure 3). TXNRD1 is 
an interesting drug target as its gene was found in our 
analysis to be up-regulated in cancers compared with 
normal tissues (Figure 1A; group 6). Moreover its high 
expression correlates with worse prognosis in both lung 
and breast cancer (Table 1 and Figure S1-S2). Indeed, 
its inhibitor Auranofin [38] can induce apoptosis and 
inhibit cancer cell growth in vitro, and is currently tested 
in clinical trials for CLL (phase II). Moreover, Auranofin 
was suggested to be used for treatment of glioblastoma 
[39], breast [40], lung [41-43], and other cancers [44]. 
Interestingly, Auranofin is an example of drug repurposing 
as it is a well-tolerated FDA-approved drug being already 
used for treatment of rheumatoid arthritis [38].
Glutathione pathway

Glutathione is the most abundant antioxidant in 
the cell and is involved in resistance of cancer cells 
to oxidative stress arising from detachment, hypoxia, 
radio- and chemotherapy [45-52]. GCLC and glutathione 
synthetase (GSS), whose genes were identified by our 
analysis to be highly overexpressed in cancers (Figure 
2) and to confer bad prognosis in patients (Figure S1), 
are both essential enzymes catalyzing the synthesis of 
glutathione from glutamate, cysteine and glycine (Figure 
3). 

Previous reports have highlighted the clinical 
relevance for some of the glutathione-related genes 
we identified to be up-regulated in melanoma only 
(group 5) and in all cancers (group 6). The importance 
for glutathione S-transferase pi 1 (GSTP1) expression 
as a factor of bad prognosis and of poor response to 
chemotherapy has been reported in head and neck, gastric, 
colon, breast and ovarian cancers [53-60]. In addition, 
high GCLC and GCLM levels were associated with poor 
progression-free survival in diffuse large B-cell lymphoma 
[61], and glutathione peroxidase (GPX) activity was 
found to be specifically high in prostate and lung cancers 
compared to corresponding normal tissues [62, 63].

The glutathione pathway can be inhibited using 
specific drugs such as buthionine sulfoximine (BSO). 
The latter is a well-known inhibitor of GCLC [64] and 
has been shown to have only little adverse effects in 
humans [65, 66]. However, its efficacy as an anticancer 
drug is limited possibly due to bypass effects by other 
detoxification pathways such as the TXN pathway. In 
line with this notion, it was recently demonstrated that 

only when both the glutathione and the TXN pathways 
were inhibited simultaneously, using BSO and Auranofin, 
respectively, there was significant inhibition of head and 
neck squamous cell carcinoma growth in vitro and in vivo 
[67]. The synergistic effects were efficiently blocked by 
N-acetyl cysteine (NAC), that replenishes glutathione, 
but not by catalase suggesting that the simultaneous 
inhibition of TXN and the glutathione pathways rather 
than redcution of total anti-oxidant cellular capacity is 
responsible for the growth inhibitory effect [67]. Similarly, 
it was shown that simultaneous inhibition of TXN and 
glutathione systems resulted in synergistic killing of lung 
cancer cells [41]. This was demonstrated using Auranofin 
and the AKT inhibitor MK2206, whose efficacy depends 
on the activity of KEAP1. KEAP1 is a known inhibitor of 
the transcription factor NRF2 that promotes the expression 
GCLC and other key enzymes in the glutathione synthesis 
pathway [68-71]. These data once more underscore that 
there is a synergistic effect caused by simultaneous block 
of the TXN system and the glutathione pathway. Our 
finding that genes enriched for both pathways are highly 
overexpressed in multiple cancers further supports this 
strategy of inhibiting both pathways simultaneously to 
achieve effective targeted anti-cancer therapy. 

Transcription factors regulating the cancer AOS 
response genes and their clinical relevance

NRF2

Our first analysis is based on gene expression 
data that reflects the sum activities of regulators of 
gene expression including those of transcription factors. 
We observed that in the genes list that predict poor 
outcome, 9 are known NRF2 targets (Table 1 and Figure 
S1-S3). These include genes involved in glutathione 
and TXN pathways, G6PD that is involved in NADPH 
generation (Figure 2) and NQO1 and HMOX1 that encode 
detoxification enzymes [68, 69, 72-79]. Because NRF2 
promotes the expression of oxidative stress detoxifying 
proteins, it is not surprising that NRF2 depletion results 
in increased tumor formation in mice challenged with 
carcinogens [80-83]. However, cancer cells also exploit 
NRF2 to reduce oxidative stress and resist chemotherapy 
[84-87]. In line with these two seemingly opposing NRF2 
functions, recent data provides evidence that NRF2 
knockout mice develop more K-RAS induced tumors on 
the one hand, but these are less aggressive on the other 
hand [88]. These observations support the concept that 
cancer cells exploit NRF2 to adapt to oxidative stress and 
to resist chemotherapy. This concept gained support by 
identification of somatic mutations in NRF2 itself and in 
its inhibitor, KEAP1, that lead to increased NRF2 activity 
in tumors (reviewed [13, 84, 87, 89, 90]). It is therefore an 
attractive strategy to block NRF2 in order to reduce the 
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expression of its downstream target genes that are involved 
in both the glutathione and TXN pathways. Interestingly, 
the natural compound Brustatol was recently found to 
inhibit NRF2 in cells and to promote tumor sensitization 
to chemotherapy in vivo [91], suggesting that NRF2 is 
druggable and that using an NRF2 antagonist may be a 
feasible therapeutic strategy. 
FOXM1

Another transcription factor we found to be 
deregulated in multiple cancers is FOXM1, an oncogenic 
protein known to control proliferation, DNA damage 
repair, angiogenesis, and AOS response [92, 93]. Indeed, 
our analysis showed that FOXM1 is highly expressed 
in multiple cancers (Figure 1) and associated with bad 
prognosis in breast cancer (Table 1 and Figure S2). These 
findings further reinforce previous studies reporting highly 
abnormal expression of FOXM1 in vast number of cancers 
and its correlation with poor prognosis [92, 94-97].

FOXM1 is known to regulate the expression of 
important AOS genes including catalase, superoxide 
dismutase 2 (SOD2) and PRDX3 [97, 98] which we found 
to be highly overexpressed in multiple cancers (group 
6) (Table S1), at the exception of catalase, exclusively 
overexpressed in hepatocellular carcinoma (group 3) 
(Table S1). Like NRF2 [99], FOXM1 is induced by active 
RAS [97] and required for mutant RAS-mediated invasion, 
anchorage independent growth [100], and development of 
lung abnormalities in vivo [101].

FOXM1 can be inhibited by classic proteasome 
inhibitors [96, 102, 103], by piperlongumine that acts as a 
proteasome inhibitor [104] and promotes autophagic cell 
death [11], by a peptide derived from ARF [105] and by 
the CDK4/6 inhibitor PD0332991 [106]. Interestingly, 
PD0332991 is currently tested in clinical trials (phase II) 
in breast cancer patients emphasizing the importance of 
FOXM1 in breast cancer (for review see [95]). Because 
proteasome inhibitors are already used in the clinic to 
treat multiple myeloma [107, 108], it is possible that 
these inhibitors might prove being beneficial in breast 
cancers patients, whose tumors highly express FOXM1. 
Consistently, several ROS inducers effectively killed 
breast cancer cells when combined with proteasome 
inhibitors or siRNA-mediated knockdown of FOXM1 
[103]. 
NF-kappaB 

Our analysis revealed that among the cancer 
oxidative stress response genes identified (group 6), a 
number of them are NF-kappaB targets (Table 1). NF-
kappaB is essential for proliferation, cell adhesion, 
inflammatory response and AOS response [109, 
110], and its activity is deregulated in cancers [111]. 
Interestingly, a number of oxidative stress response genes 
are transcriptionally controlled by NF-kappaB including 
SOD1, SOD2, GPX1, GSTP1 and the NRF2 targets GCLC, 
GCLM, NQO1 and HO-1 [112, 113]. This transcriptional 

regulation forms the basis for the protective role of NF-
kappaB under oxidative stress [112]. This is especially 
relevant in the tumor context as we found that a number 
of these NF-kappaB targets are highly upregulated in 
multiple cancers (group 6, Table 1), supporting the notion 
of an elevated NF-kappaB activity in cancers as a strategy 
to manage oxidative stress conditions. 

Several targeting approaches are being developed to 
inhibit NF-kappaB activity in cancers. The current strategy 
is to block NF-kappaB to sensitize tumors to chemotherapy 
and radiotherapy, since previous reports showed that 
inhibiting NF-kappaB leads to radiosensitization in 
radioresistant cancer cells [114, 115]. This is in agreement 
with the capacity of NF-kappaB to support an antioxidant 
program of which tumor cells may take advantage to 
resist oxidative stress-inducing therapies [116]. Thus, 
few natural compounds, such as curcumin, resveratrol 
and genistein, have been shown to inhibit NF-kappaB 
and to enhance the response to chemotherapeutic agents 
(for review[117]). A specific inhibitor of NF-kappaB 
nuclear translocation, namely dehydroxy-methylepoxy-
quinomicin (DHMEQ), was shown to increase antitumor 
activities of taxane in a mouse model of thyroid cancer 
[118]. In addition, NF-kappaB activity can be blocked by 
direct inhibition of its upstream activator IKK, and the 
IKK inhibitor Bay 11-7082 leads to enhanced efficacy of 
cisplatin or paclitaxel in an ovarian tumor model [119, 
120].

The cancer oxidative stress response metabolic 
program: NADPH is a key factor

Our analysis showed that the TXN and glutathione 
pathways are up-regulated in multiple cancers at the 
transcriptional level and that high expression of a 
significant number of these genes is correlated with 
poor survival. Because both of these pathways rely on 
NADPH (Figure 3) it raises the possibility that cancer 
cells will be highly sensitive to NADPH depletion. 
Indeed, it was demonstrated that the survival of cancer 
cells requires activation of the AMPK pathway to maintain 
NADPH levels under metabolic stress, which is usually 
encountered within solid tumors [7, 121, 122]. Similarly, it 
was demonstrated that survival of cells under detachment 
conditions, a hallmark of transformation, is dependent on 
the pentose phosphate pathway that generates NADPH 
[10, 123]. Moreover, NRF2 was shown to promote cancer 
cell proliferation by increasing NADPH generation 
through transcriptional up-regulation of a number of 
enzyme-encoding genes including G6PD [74] (Figure 3). 
Another study showed that TAp73, a transcription factor 
that is a member of the p53 family [124-128], facilitates 
the growth of transformed and of cancer cells in vitro 
and in vivo by up regulating the expression of G6PD and 
therefore NADPH levels [129].
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In our analysis, G6PD was found to be up-regulated 
in cancer (Figure 1) and bad prognosis in breast cancer 
(Table 1 and Figure S3). As G6PD fuels the TXN and 
glutathione pathways with NADPH (Figure 3), we 
speculate that G6PD might represent a highly attractive 
novel drug target. It is therefore encouraging that 
compounds that inhibit G6PD in vitro were synthesized 
recently [130]. However, more work is needed in order to 
find lead G6PD inhibitors as candidate anti-cancer drugs.

CONCLUSIONS AND FUTURE 
PERSPECTIVES

The concept that the AOS response is utilized by 
cancer cells to promote their proliferation, adaptation, 
and resistance is now widely accepted by the scientific 
community and, therefore, numerous attempts to target 
AOS response genes as a therapeutic approach have been 
reported [10, 116, 131]. However, targeting endogenous 
proteins raises the concern of adverse off-target effects. 
Thus it is required to determine which proteins play a 
critical role in cancer as compared with normal tissues, as 
these are expected to offer a sufficient therapeutic window 
for intervention. Owing to the increasing availability of 
patient-derived gene expression, mutation, epigenetic, and 
survival data, it is now possible to use bioinformatics tools 
to screen for such targets in large cohorts for individual 
cancer entities as well as across histological entities [132].

Here, we used publicly available patient-derived 
gene expression and survival data, and identified genes 
that belong to two major detoxification pathways.  
Specifically, we show that genes belonging to the 
glutathione and TXN pathways are highly overexpressed 
in multiple cancers versus normal tissues and demonstrate 
that their high expression correlates with worse patient 
survival, pointing to a possible role of these genes as 
drug targets. Moreover, transcription factors such as 
NRF2, FOXM1, and NF-kappaB as well as key metabolic 
enzymes such as G6PD that altogether drive the activity of 
these pathways, were identified in our analysis providing 
further support to the argument that these are important 
drug targets. Because the TXN and glutathione pathways 
are hyperactive in multiple cancers, we hypothesize that 
simultaneous inhibition of both pathways via targeting 
common regulators such as NRF2 or common metabolic 
requirements such as NADPH, may be highly efficient and 
should be prioritized in drug development. 
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The Zyxin-related protein thyroid
receptor interacting protein 6
(TRIP6) is overexpressed in Ewing’s
sarcoma and promotes migration,
invasion and cell growth
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Background information. Ewing’s sarcoma (ES) is the second most common bone-associated malignancy in chil-
dren and is driven by the fusion oncogene EWS/FLI1 and characterised by rapid growth and early metastasis.
Here, we explored the role of the Zyxin-related protein thyroid receptor interacting protein 6 (TRIP6) in ES. The
Zyxin family comprises seven homologous proteins involved in migration and proliferation of many cell types of
which Zyxin has been described as a tumour suppressor in ES.

Results. By interrogation of published microarray data (n = 1254), we observed that of all Zyxin proteins, only
TRIP6 is highly overexpressed in primary ES compared with normal tissues. Re-analysis of published EWS/FLI1
gain- and loss-of-function microarray experiments as well as chromatin-immunoprecipitation assays revealed that
TRIP6 overexpression is not mediated by EWS/FLI1. Microarray and subsequent gene-set enrichment analyses
of ES cells with and without RNA interference-mediated TRIP6 knockdown demonstrated that TRIP6 expression
confers a pro-proliferative and pro-invasive transcriptional signature to ES cells. While short-term proliferation was
not considerably affected by TRIP6 knockdown, silencing of the protein significantly reduced migration, invasion,
long-term proliferation and clonogenicity of ES cells in vitro as well as tumourigenicity in vivo.

Conclusions. Taken together, our data indicate that TRIP6 acts, in contrast to Zyxin, as an oncogene that partially
accounts for the autonomous migratory, invasive and proliferative properties of ES cells independent of EWS/FLI1.

! Additional supporting information may be found in the online version of this article at the publisher’s
web-site

1These authors contributed equally to this work.
2To whom correspondence should be addressed (email
thomas.gruenewald@lrz.tum.de)
3To whom correspondence should be addressed (email
e.butt@klin-biochem.uni-wuerzburg.de)
Key words: Clonogenicity, Ewing’s sarcoma, Invasion, Migration, TRIP6.
Abbreviations used: ChIP, chromatin-immunoprecipitation; EIOGES,
EWS/FLI1-independent genes overexpressed in ES; ES, Ewing’s sarcoma;

EWS/FLI1, Ewing sarcoma breakpoint region 1/friend leukaemia virus
integration 1; FA, focal adhesion; FBS, foetal bovine serum; GEO, Gene
Expression Omnibus; GSEA, gene-set enrichment analysis; HE, haematoxylin
and eosin; PI, propidium iodide; qRT-PCR, quantitative real-time PCR; RNAi,
RNA interference; SEM, standard error of the mean; shRNA, short hairpin
RNA; siRNA, small interfering RNA; TRIP6, thyroid receptor interacting
protein 6.
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Introduction
Ewing’s sarcoma (ES) is an aggressive bone-associated
cancer of likely mesenchymal origin mostly affect-
ing children and young adolescents (Mackintosh
et al., 2010). Even though multimodal therapy has
remarkably improved survival of patients with lo-
calised disease, prognosis of patients with metastatic
disease still remains poor with an event-free sur-
vival of less than 25% (Haeusler et al., 2010;
Ladenstein et al., 2010). ES is characterised by the
expression of chimeric Ewing sarcoma breakpoint re-
gion 1/E-twenty-six (EWS/ETS) fusion proteins de-
rived from chromosomal translocations with Ewing
sarcoma breakpoint region 1/friend leukaemia virus
integration 1 (EWS/FLI1) being the predominant
mutation (85% of cases) (Delattre et al., 1992, 1994).
EWS/FLI1 encodes an oncogenic transcription factor
that determines the complex and highly malignant
phenotype of ES (May et al., 1993). Despite the great
propensity of ES towards early metastasis, recent evi-
dence showed that EWS/FLI1 expression rather re-
duces cellular adhesion and migration of ES cells
(Chaturvedi et al., 2012). These data are consistent
with previous reports demonstrating that the impor-
tant focal adhesion (FA) remodelling protein Zyxin,
which has strong pro-adhesive and pro-migratory
functions, is constitutively down-regulated in ES
(Amsellem et al., 2005). In fact, Zyxin was ascribed
to have tumour-suppressor activity in ES as ZYXIN
gene transfer in EWS/FLI1-transformed fibroblasts
(that usually lack clonogenic potential unless being
transformed [Alt et al., 2011]) and SK-N-MC ES
cells decreased clonogenicity in vitro and tumouri-
genicity in vivo (Amsellem et al., 2005). In addition,
Zyxin was shown to be up-regulated in ES cells upon
antibody-mediated ligation of CD99 (Cerisano et al.,
2004), a prominent ES biomarker that inhibits dif-
ferentiation of ES cells (Rocchi et al., 2010), which
was accompanied by increased cell–cell adhesion and
subsequent apoptosis (Cerisano et al., 2004).

So far, the Zyxin-family consists of seven homol-
ogous and in many aspects functionally redundant
proteins named Zyxin, filamin binding LIM protein
1, alias Migfilin (FBLIM1), Wilms tumour 1 inter-
acting protein (WTIP), AJUBA, LIM domains con-
taining 1 (LIMD1), LIM domain containing preferred
translocation partner in lipoma (LPP) and thyroid re-
ceptor interacting protein 6 (TRIP6) (Ferrand et al.,
2009; Grunewald et al., 2009; Willier et al., 2011).

Besides their scaffolding functions at sites of actin-
remodelling in FAs and invadopodia, Zyxin proteins
are potent signal transducers that shuttle between the
cytoplasm and the nucleus mediated by specific im-
port/export mechanisms to link FA signalling to the
transcriptional machinery (Nix and Beckerle, 1997;
Zheng and Zhao, 2007; Grunewald et al., 2009;
Willier et al., 2011; Wang et al., 2012).

By analysing the gene expression patterns of all
Zyxin-family members in over 900 microarrays of
nine different paediatric cancer entities (including
161 primary ES) and in 353 normal tissues, we identi-
fied TRIP6 to be the only Zyxin-family member that
is overexpressed in primary ES. The human TRIP6
gene is located on chromosome 7q22 and encodes
a protein of 476 aa (molecular weight 50.3 kDa)
(Willier et al., 2011), which is highly conserved across
species (86% identity with murine TRIP6) (Wang
et al., 1999). TRIP6 is ubiquitously expressed in
normal tissues with peak expression in thyroid gland
and superior cervical ganglion (Willier et al., 2011).
The protein is a versatile scaffold at FAs involved
in cytoskeletal organisation, coordinated cell migra-
tion and tissue invasion (Willier et al., 2011). Via its
LIM and TDC domains, TRIP6 interacts with dif-
ferent components of the lysophosphatidic acid, NF-
κB (nuclear factor κB), glucocorticoid and AMPK
(AMP-activated protein kinase) signalling pathways
(Xu et al., 2004; Li et al., 2005; Solaz-Fuster et al.,
2006). In the nucleus, TRIP6 has transcriptional
cofactor activity and regulates the transcriptional
responses of these pathways (Kassel et al., 2004;
Diefenbacher et al., 2008, 2010; Willier et al., 2011).
Moreover, intranuclear TRIP6, but not Zyxin, asso-
ciates with proteins ensuring telomere protection and
hence may play a role in genome stability (Sheppard
and Loayza, 2010; Sheppard et al., 2011). Accord-
ingly, TRIP6 is engaged in key cellular processes such
as cell migration, invasion, proliferation, differentia-
tion and survival. These diverse functions of TRIP6
are found to be deregulated in various cancers such as
nasopharyngeal, ovarian and lung carcinoma as well
as glioblastoma (Chastre et al., 2009; Fei et al., 2013;
Lin et al., 2013).

Here, we show that – in contrast to Zyxin – TRIP6
expression confers a pro-proliferative and pro-invasive
transcriptional signature to ES cells, which is consis-
tent with the observed reduction of migration, inva-
sion, long-term proliferation and clonogenicity upon
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TRIP6 knockdown in vitro as well as the impaired tu-
mourigenic and metastatic phenotype in vivo. There-
fore, TRIP6 might represent an attractive candidate
for targeted therapy.

Results
TRIP6 is the only Zyxin-family member being
highly overexpressed in primary ES compared
with normal tissues
To investigate the gene expression pattern of the seven
Zyxin-family members (TRIP6, Zyxin, AJUBA,
LIMD1, LPP, WTIP and FBLIM1) publicly avail-
able microarray datasets for normal tissues [n = 353,
GSE3526 (Roth et al., 2006)] were compared with
datasets from nine different (mostly) paediatric can-
cer entities (total n = 901) comprising 161 ES
(GSE12102, GSE17618 and GSE34620), 101 rhab-

domyosarcomas (E-TABM 1202), 178 medulloblas-
tomas (GSE10327, GSE12992 and GSE37418),
169 neuroblastomas (GSE13136, GSE16237 and
GSE16476), 62 retinoblastomas (GSE29683), 53
paediatric gliomas (GSE19578), 34 synovial sar-
comas (GSE20196), 45 osteosarcomas (GSE33458,
GSE14827) and 98 B-precursor acute lymphoblas-
tic leukaemias (GSE28460). All data were gener-
ated on the same microarray platform (Affymetrix
HG-U133plus2.0) and normalised simultaneously
by Robust Multi-array Average (RMA) using custom
brainarray CDF files (v15 ENTREZG).

As displayed in Figure 1, TRIP6 is the only Zyxin-
family member being highly overexpressed in pri-
mary ES compared with normal tissues. Moreover,
TRIP6 expression is considerably high in paediatric
gliomas and synovial sarcomas, whereas all other
Zyxin-family members, except AJUBA, show low

Figure 1 TRIP6 is the only Zyxin-family member being highly overexpressed in primary ES compared with normal
tissues

Normal, normal tissue; ES, Ewing’s sarcoma; RMS, rhabdomyosarcoma; MB, medulloblastoma; NB, neuroblastoma; RB,
retinoblastoma; glioma, paediatric glioma; SS, synovial sarcoma; OS, osteosarcoma; c-ALL, paediatric B-precursor acute lym-
phoblastic leukaemia. All datasets were normalised simultaneously using RMA and custom brainarray (v15 ENTREZG) CDF files.
Data are depicted as box-plots. Whiskers indicate the 10th and 90th percentile. Outliers are displayed as dots. The data are
presented in linear scale. Brainarray ENTREZG probeset IDs are given in brackets. Lower right: representative WBs of TRIP6
and Zyxin in seven ES cell lines (MHH-ES1, SK-ES1, RDES, A673, TC-71, SK-N-MC and SB-KMS-KS1). The neuroblastoma
cell line SHSY5Y served as a positive control for Zyxin expression. In each lane of the gel, an equivalent of 1 × 105 cells was
loaded. β-Actin served as a loading control.
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basal levels in all analysed cancer entities. AJUBA
is overexpressed in rhabdomyosarcoma, synovial sar-
coma and to a lesser extent in osteosarcoma (Fig-
ure 1). The high expression of TRIP6 and the ab-
sence of Zyxin in ES were confirmed on protein level
by Western blot (WB) in a panel of seven different
ES cell lines (Figure 1, lower right).

To test whether this high overexpression of TRIP6
depends on the presence of the transcription factor
EWS/FLI1, we re-analysed a published EWS/FLI1
loss-of-function microarray experiment (GSE14543,
Affymetrix HG-U133A (Kauer et al., 2009). As dis-
played in Supplemental Figure 1A, RNA interfer-
ence (RNAi)-mediated knockdown of EWS/FLI1 did
not considerably and consistently alter the mRNA
expression levels of TRIP6 in five different ES cell
lines compared with known or likely EWS/FLI1 tar-
get genes such as NKX2.2, NPY1R and STEAP1
(Smith et al., 2006; Körner et al., 2008; Grunewald
et al., 2012a, 2012b). Conversely, re-analysis of a
published time-course microarray study showed that
EWS/FLI1 overexpression (gain-of-function) fails to
induce TRIP6 in human mesenchymal stem cells,
the most likely cells of origin of ES [GSE8665,
Affymetrix HG-U133A (Miyagawa et al., 2008),
Supplemental Figure 1B]. Consistently, no binding
of EWS/FLI1 to a conserved ETS motif within the
TRIP6 promoter could be detected in chromatin-
immunoprecipitation (ChIP) (not shown).

Taken together, these data suggest that TRIP6 is
the only Zyxin-related protein exclusively overex-
pressed in ES in an EWS/FLI1-independent manner.

TRIP6 confers a transcriptional signature related
to invasiveness and proliferation
To gain insight in the role of TRIP6 for ES cells,
we performed microarray analyses (Affymetrix Hu-
man Gene 1.0 ST) 48 h after transfection with two
different small interfering RNA (siRNAs) targeting
TRIP6 in two different ES cell lines (A673 and SK-
N-MC). Knockdown efficacy of the siRNAs was con-
firmed by quantitative real-time PCR (qRT-PCR)
and WB (Figures 2A and 2B).

As illustrated in Figure 2C, TRIP6 knockdown
modulates the expression of 170 genes (36 up/134
down, minimum mean log2 FC of ±0.4, P < 0.001)
in both cell lines (Supplemental Table 1). Among
them, we chose the genes CD164, RDX and CRYZ
for validation of the microarray data by qRT-PCR

(Figure 2D). Subsequent gene-set enrichment anal-
ysis (GSEA) of the microarray data indicated that
TRIP6 expression is associated with the modulation
of gene-sets involved in invasiveness (Bidus et al.,
2006; Winnepenninckx et al., 2006) and prolifer-
ation (Chang et al., 2004; Kong et al., 2007) of
other cancers and mesenchymal cells, respectively
(Figure 2E).

Knockdown of TRIP6 impairs migration and
invasiveness of ES cells in vitro
To validate the GSEA prediction, we subjected ES
cells to migration and invasion assays. Using a
transwell-system (modified Boyden chamber), we ob-
served that TRIP6 knockdown significantly reduced
cell migration to about 80% of the controls (Fig-
ure 3A). Moreover, the cellular invasiveness of ES
cells in a Matrigel-covered transwell-system was re-
duced even more pronounced after TRIP6 knock-
down (Figure 3B). These data confirm that TRIP6
overexpression enhances the migratory and invasive
properties of ES cells.

Knockdown of TRIP6 reduces long-term
proliferation and clonogenicity of ES cells in vitro
as well as tumourigenicity in vivo
Our microarray data predicted that TRIP6 plays a role
in proliferation of ES cells. To validate this predic-
tion, we performed RNAi experiments and tested the
short- and long-term effects of TRIP6-suppression on
ES proliferation. As seen from Figure 4A proliferation
of ES cells with transient knockdown of TRIP6 was
not considerably affected 48 h–60 h after transfection,
as measured by Cell Titer assays. Similarly, short-term
knockdown of TRIP6 (<72 h) had no significant
impact on rates of apoptosis and cell cycle progres-
sion of ES cells as tested with AnnexinV/7AAD- and
propidium iodide (PI) staining, respectively (Supple-
mental Figure 2). However, using xCELLigence, a
system that records cell proliferation for a longer pe-
riod of time, we observed a moderate but significant
cell type-dependent decrease of proliferation upon
knockdown of TRIP6 after 72 h–100 h (Figure 4B).

To analyse whether the knockdown of TRIP6 im-
pacts the clonogenic properties of ES cells, we gen-
erated a Doxycycline-inducible short hairpin RNA
(shRNA) expression system in the ES cell line
A673 and seeded these cells and the corresponding
nonsense-shRNA control cells at low density into
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Figure 2 TRIP6 confers a transcriptional signature related to invasiveness and proliferation

(A) Measurement of knockdown efficacy of TRIP6 siRNAs by qRT-PCR 48 h after transfection. Data are mean and standard
error of the mean (SEM) of n = 5 experiments. (B) Confirmation of TRIP6 knockdown 48 h after transfection by WB in A673,
SK-N-MC and SB-KMS-KS1 ES cells. (C) Heatmap of 170 differentially expressed genes (36 up/134 down, minimum mean
log2 FC of ±0.4, P < 0.001) in A673 and SK-N-MC cells 48 h after transfection with siRNA. Arrows mark genes selected for
validation. (D) Validation of microarray data by qRT-PCR with the genes CD164, CRYZ and RDX. Data are mean and SEM of n = 3
experiments. (E) Enrichment plots of significantly altered gene-sets as yielded by the GSEA of the microarray data (MSigDB, c2
curated gene-sets: chemical and genetic perturbations).

C⃝ 2013 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd 539



T. G. P. Grunewald and others

Figure 3 Knockdown of TRIP6 impairs migration and invasiveness of ES cells in vitro

(A) Analysis of cellular migration using a transwell-system (modified Boyden chamber). Data are mean and SEM of at least three
experiments. (B) Analysis of cellular invasiveness of ES cells after knockdown of TRIP6 in a Matrigel-covered transwell-system.
Data are mean and SEM of n = 4 experiments. #P < 0.08, *P < 0.05, **P < 0.01, ***P < 0.001, t-test.

wells of 12-well plates. Upon Doxycycline-mediated
knockdown of TRIP6 for 12 days, we observed a
significant, more than five-fold decrease of colony
numbers and colony size (expressed as clonogenicity
index as described in the Materials and Methods
section) (Figure 4C). This observation was validated
in periodically re-transfected A673, SK-N-MC
and SB-KMS-KS1 cells with two different siRNAs
against TRIP6 (Figure 4D). The data suggest
a TRIP6 concentration-dependent reduction of
clonogenicity in these cells (Figure 4D).

Consistently, the tumourigenic potential of xeno-
transplanted A673 cells bearing a Doxycycline-
induced TRIP6 knockdown, was significantly de-
creased in vivo without changing the rates of necrosis
(as evidenced by serial sectioning of the xenografts
and calculation of the ratios of necrotic versus total
tumour area in haematoxylin and eosin (HE) staining
Figures 4E and 4F). The persistence of the TRIP6
knockdown was confirmed by qRT-PCR in each
xenograft ex vivo (Figure 4G). In addition, TRIP6
knockdown was associated with a considerable re-
duction in average size of liver metastases (equates
in vivo colonies) after injection of A673 in the tail
vein of immunocompromised mice (see arrows in
Figure 4H).

Taken together, these data suggest that long-term
knockdown of TRIP6 decreases proliferation, clono-
genicity and tumourigenicity of ES cells.

Discussion
This study aimed to explore the relevance of TRIP6
for ES pathology. We showed that among all seven
Zyxin-family proteins only TRIP6 is overexpressed
in ES compared with normal tissues and that its ex-
pression appears to be independent of EWS/FLI1, the
predominant oncogenic driver in ES (Kovar, 2010).
Moreover, we demonstrate that TRIP6 expression
confers a more aggressive phenotype to ES cells re-
sulting in enhanced migration and invasion as well
as accelerated proliferation and clonogenicity.

The role of Zyxin-family proteins in ES, espe-
cially of Zyxin itself, has been investigated previously
in two independent studies (Cerisano et al., 2004;
Amsellem et al., 2005). There, the absence of Zyxin
correlated with enhanced cellular survival as well as
inhibition of ES differentiation, and the authors con-
cluded that Zyxin may act as a tumour suppressor
in ES (Cerisano et al., 2004; Amsellem et al., 2005).
In contrast, we now demonstrate that this conclusion
might not hold true for all Zyxin-family proteins,
as the Zyxin-related protein TRIP6 has rather onco-
genic potential in this tumour entity.

This observation is consistent with recent data
showing that TRIP6 can promote tumourigen-
esis in nasopharyngeal cancer cells upon bind-
ing and inactivation of p27 Kip1 – a tumour
suppressor and inhibitor of cyclin-dependent ki-
nase 2 (CDK2) – which ultimately stimulates cell
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Figure 4 Knockdown of TRIP6 reduces long-term proliferation and clonogenicity of ES cells in vitro as well as
tumourigenicity in vivo

(A) Analysis of short-term proliferation using a Cell Titer assay (read-out at max. 60 h after transfection with siRNA as indicated).
Data are mean and SEM of at least three experiments. (B) Results of long-term proliferation assays using the xCELLigence
system (transfection of cells at 0 and 48 h). (C) Analysis of clonogenicity in A673 cells, stably transfected with Doxycycline-
inducible shRNA expression system as indicated. Data are mean and SEM of n = 3 experiments. WB images show representative
knockdown of TRIP6 after treatment of cells with Doxycycline at the experimental endpoint. (D) Validation of clonogenicity assay
in three ES cell lines using transient (re)-transfection with two different siRNAs against TRIP6 as indicated. Data are mean and
SEM of n = 3 experiments. Knockdown of TRIP6 was confirmed by WB on day 12. (E) Analysis of tumourigenicity of A673
shRNA infectants in Rag2−/−yc−/− mice (3 shControl, 4 shTRIP6). Log-rank test. (F) Analysis of necrotic area per total tumour
area by HE staining of formalin-fixed paraffin-embedded xenografts. (G) Confirmation of TRIP6 knockdown by qRT-PCR ex vivo.
(H) Analysis of metastatic potential (four mice/group) by quantification of the average size of liver metastases (equals in vivo
colonies) per total organ area. *P < 0.05, **P < 0.01, ***P < 0.001, t-test.
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proliferation (Lin et al., 2013). Our transcriptomic
profiling and GSEA further support that TRIP6 ex-
pression is accompanied by a gene expression sig-
nature related to proliferation (Figure 2E). For in-
stance, the gene-sets KONG E2F3 TARGETS and
CHANG CYCLING GENES were derived from two
studies describing the pro-proliferative effect of these
genes in mesenchymal cells (murine embryonic fi-
broblasts and human fibroblasts, respectively) (Chang
et al., 2004; Kong et al., 2007). Moreover, we noted
a down-regulation of the transcripts encoding Cyclin
A1 (CCNA1), cyclin-dependent kinase 1 (CDK1) and
their target E2F8 (Supplemental Table 1), all of which
coordinate progression of the cell cycle (Lammens
et al., 2009; Malumbres and Barbacid, 2009;
Marlow et al., 2012).

These data suggest that in ES cells TRIP6 is, at
least in part, involved in cell cycle regulatory pro-
cesses. However, these effects are visible only after
prolonged knockdown of TRIP6 since 48 h after
siRNA transfection our cell cycle analyses did not
result in considerable changes of the cell cycle phases
(Supplemental Figure 2B), whereas long-term sup-
pression of TRIP6 significantly reduced cell prolif-
eration and, more pronounced, clonogenicity of ES
cells (Figure 4). In this context, it is interesting to
note that upon TRIP6 knockdown the spindle and
kinetochore complex subunits 1 and 2 (SKA1/2) are
down-regulated in ES cells (as seen by our microar-
ray analysis, Supplemental Table 1). SKA1 and -2
are important players required for accurate cell divi-
sion by establishing stable kinetochore–microtubule
interactions (Jeyaprakash et al., 2012).

Consistent with results drawn from other cancer
models (for review see Willier et al., 2011), we
observed that TRIP6 expression enhances the mi-
gratory and invasive properties of ES cells. Recent
evidence demonstrated that EWS/FLI1 suppression
surprisingly reduces cell motility, which is unex-
pected as ES is a highly metastatic and aggressive
tumour (Chaturvedi et al., 2012). This observation
suggests that target genes of the transcription fac-
tor EWS/FLI1 in their overall function rather in-
hibit than stimulate cell motility (Chaturvedi et al.,
2012). Hence, it is tempting to speculate that ES cells
need to express genes in an EWS/FLI1-independent
manner to maintain their basal migratory properties
despite the expression of EWS/FLI1. In line with
this hypothesis, our data indicate that TRIP6 might

be one representative of this group of pro-migratory
and pro-invasive, EWS/FLI1-independent genes that
are overexpressed in ES (EIOGES). Up-regulation of
EIOGES may be due to the developmental stage of
the cells in which the EWS/FLI1 translocation may
occur (pre-translocational EIOGES). Alternatively,
up-regulation of EIOGES may be caused by a se-
lective advantage conferred by EIOGES in addition
to the EWS/FLI1 translocation (post-translocational
EIOGES). However, it remains to be determined why
only TRIP6 is overexpressed in ES while all other
Zyxin-family members are down-regulated – an ef-
fect possibly mediated by specific patterns of DNA-
methylation and/or histone-modifications as well as
expression of specific miRNAs (Brandl et al., 2009;
Verrier et al., 2011; Bullock et al., 2012; Cock-Rada
and Weitzman, 2013).

In summary, we show that TRIP6 expression con-
fers a pro-proliferative and pro-invasive phenotype
to ES cells, which suggests, that TRIP6, in contrast
to Zyxin, acts as an oncogene in ES. TRIP6 might
therefore represent an attractive candidate for tar-
geted therapy.

Materials and methods
Cell lines and culture conditions
The A673 cell line was purchased from ATCC. The SB-KMS-
KS1 cell line is an ES cell line with an EWS/FLI1 type 1
translocation, which was established and extensively function-
ally characterised in our laboratory (Richter et al., 2009, 2013;
Grunewald et al., 2012a; Miller et al., 2013). All other cell lines
were obtained from the German Collection of Microorganisms
and Cell Culture (DSMZ). Cells were grown at 37◦C in 5% CO2
in a humidified atmosphere in RPMI 1640 medium (Invitrogen)
containing 10% foetal bovine serum (FBS) (Invitrogen), 1%
L-glutamine and 100 µg/ml gentamicin (both Invitrogen). Cell
lines were checked routinely for presence of EWS/ETS translo-
cation, surface antigen and/or HLA phenotype by PCR or flow
cytometry, respectively. Mycoplasma contamination was ruled
out with the MycoAlertTM Mycoplasma Detection Kit accord-
ing to the manufacturer’s instructions (Lonza).

RNAi with siRNA and generation of shRNA infectants
For transient protein knockdown, cells were transfected
with siRNA using the HiPerFect transfection reagent
(Qiagen) according to standard procedures for large-scale
transfection in 100 mm dishes. 2 × 106 cells were plated into
100 mm culture dishes at a final volume of 12 ml
medium containing 5 nM siRNA and 36 µl transfection
reagent and incubated at least 48 h. Concentration of me-
dia and reagents were adapted accordingly for transfec-
tion in smaller volumes. Knockdown efficacy was assessed
by qRT-PCR and/or WB. Sequences of siRNAs used (all
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Qiagen): siTRIP6 4 5′-GGCUGCUUUGUAUGUUCUATT-
3′ (sense) and 5′-UAGAACAUACAAAGCAGCCCA-3′ (an-
tisense), siTRIP6 5 5′-GGAGGAGACUGUGAGAAUUTT-
3′ (sense) and 5′-AAUUCUCACAGUCUCCUCCTG-3′ (anti-
sense). The validated non-silencing Qiagen AllStars Negative
Control siRNA was used as a control (siControl).

For generation of an inducible TRIP6 knockdown, A673
ES cells were infected with lentivirus (MOI: 1:10) con-
taining a pTRIPZ vector with either a shRNA against
TRIP6 (clone V3THS 315580, mature antisense sequence
5′-TCTCCGCAGCCACCACACT-3′; Thermo Scientific) or re-
spective non-targeting control shRNA. Single-cell cloned A673
infectants were selected in 0.5 µg/ml Puromycin (Invitrogen).
Knockdown efficacy upon Doxycycline-treatment (0.5 µg/ml)
was confirmed by WB.

Lentivirus production
5.5 × 106 HEK293T cells were seeded into a 100 mm cell
culture dish one day before transfection and cultured in DMEM
(Invitrogen) supplemented with 10% FBS, 100 units/ml peni-
cillin and 100 µg/ml streptomycin (both Invitrogen). Arrest-
InTM (Thermo Scientific) was used as transfection reagent.
DNA/Arrest-InTM complexes were formed by mixing 9 µg of
the particular pTRIPZ vector DNA, with 28.5 µg of optimised
packaging plasmid mix (pTLA1-Pak, pTLA1-Enz, pTLA1-Env,
pTLA1-Rev and pTLA1-TOFF; all Open Biosystems, Thermo
Scientific). Supernatant was harvested 48 h after transfection and
lentiviral particles were isolated by filtration and subsequent ul-
tracentrifugation.

RNA extraction and reverse transcription
RNA extraction was performed with the RNeasy Mini Kit (Qia-
gen) according to the manufacturer’s instructions. Isolated RNA
was reversely transcribed using the High-Capacity cDNA Re-
verse Transcription Kit (Applied Biosystems) under these ther-
mal conditions: 10 min at 25◦C, 120 min at 37◦C, 5 min at
85◦C and terminal hold at 4◦C.

Quantitative real-time polymerase chain reaction
qRT-PCR was performed by use of MaximaTM Probe/ROX
qPCR Master Mix (2×) containing Hot Start Taq Poly-
merase, PCR buffer and dNTPs. Gene-specific expression as-
says were obtained from Applied Biosystems, which con-
sisted of a FAMTM dye-labelled TaqMan R⃝ MGB probe
and two unlabelled PCR primers (B2M Hs00984230 m1,
CD164 Hs00174789 m1, CRYZ Hs01086229 m1, RDX
Hs00988414 g1, TRIP6 Hs00377979 m1). qRT-PCRs were
carried out in 96-well format in duplicate measurements. The
final concentration of primers and probe were 900 and 250 nM,
respectively. Fluorescence was measured with an AB 7300 Real-
Time PCR System (Applied Biosystems). Gene expression val-
ues were normalised to that of the housekeeping gene beta-2-
microglobulin (B2M) using the ""Ct-method.

Microarray analyses
A673 and SK-N-MC cells were transfected with siRNA and
cultivated for 48 h. Thereafter, RNA was extracted and RNA
quality was checked using a Bioanalyzer (Agilent). Total
RNA (200 ng) was amplified and labelled using Affymetrix
GeneChip Whole Transcript Sense Target Labeling Kit. cRNA

was hybridised to Affymetrix Human Gene 1.0 ST arrays
as described previously (Miller et al., 2013). Quality assess-
ment consisted of RNA degradation plots, Affymetrix con-
trol metrics, sample cross-correlation and probe-level visuali-
sations. Normalisation incorporated (separately for each RNA
type dataset) background correction, quantile normalisation
and probe-level summation by RMA (Irizarry et al., 2003).
Data were normalised using custom brainarray CDF files (v15
ENTREZG) (Dai et al., 2005), analysed with the GENE-E soft-
ware (http://www.broadinstitute.org/cancer/software/GENE-E/)
and deposited at the Gene Expression Omnibus (GEO;
GSE48010). GSEA was performed with the GSEA tool
(http://www.broad.mit.edu/gsea) using a pre-ranked list and
1000 permutations. For the interrogation of publicly
available microarray data, datasets were retrieved from
the GEO and the Array Express platform of the EBI
(http://www.ebi.ac.uk/arrayexpress/), manually checked for their
correct annotations and simultaneously RMA-normalised using
brainarray custom CDF files (v15 ENTREZG) as previously de-
scribed (Willier et al., 2013). Individual data accession numbers
are given in the results section.

Western blot
Cells were lysed in Laemmli-buffer containing 10%
β-mercaptoethanol (Sigma–Aldrich). Equal amounts of cells
were resolved by 10% SDS-PAGE. After blotting on a nitro-
cellulose membrane (Schleicher&Schuell), the membrane was
blocked with 3% non-fat dry milk (Biorad) in TBS-T buffer
[10 mM Tris, 150 mM NaCl, 0.1% (w/v) Tween, pH 7.5]. Then
the membrane was incubated with the primary antibodies anti-
TRIP6 (4B7 by Sigma-Aldrich, diluted 1:250) and anti-beta-
Actin (SC-1616-R by Santa Cruz, diluted 1:2000), respectively.
Finally, the membrane was washed with TBS-T and incubated
with the secondary antibodies goat-anti-mouse and goat-anti-
rabbit both horseradish peroxidase-coupled and diluted 1:5000
(both Biorad). The amount of detected protein was visualised
by enhanced chemiluminescence (Amersham Biosciences) and
autoradiography.

Chromatin-immunoprecipitation
The TRIP6 promoter contains one conserved ETS binding site
−2281 bp upstream of the transcriptional start site (TSS). For
ChIP, ES cells were fixed in 1% formaldehyde for 10 min.
After neutralisation with glycine, nuclei were isolated using
hypotonic lysis buffer (20 mM Tris–Cl pH 8, 185 mM KCl,
0.5% NP-40). The nuclear fraction was lysed in RIPA-buffer
(50 mM Tris–Cl pH 7.4, 150 mM NaCl, 0.1% SDS, 0.5%
Na-deoxycholate, 1% NP-40) supplemented with a protease
inhibitor mix (Roche). Samples were sonicated to an average
DNA length of 500 bp as estimated by gel-electrophoresis.
ChIP was carried out with 3 µg of the following antibodies:
anti-FLI1 (C19) and normal rabbit IgG (both Santa Cruz).
Each ChIP was performed with 13 µg total DNA. qRT-PCR
was performed using Power SYBR Green PCR Master Mix
(Applied Biosystems). All ChIPs were normalised to IgG-IPs
and to non-specific binding to an unrelated genomic region
(−2845 bp away from the TSS of TRIP6). Primer sequences:
−2281: forward 5′-GAGTGGACAGCATCCTCCTC-3′,
reverse 5′-CCACACACTGACAGCAAGGT-3′; −2845:
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forward 5′-GGCTGATCTCGAACTTCCAA-3′, reverse
5′-AGACGCAGAGACCTCTTCCA-3′.

Proliferation assays
CellTiter 96 R⃝ AQueous Non-Radioactive Cell Proliferation Assay
(Promega): Cells were transfected with siRNA and subsequently
seeded in 48-well plates. Per well 1.5 × 104 A673 or 3 × 104

SK-N-MC cells were seeded. After 48–60 h, cells were treated
according to the manufacturer’s protocol and absorbance was
measured at 490 nm with an ELISA reader.

xCELLigence (Roche/ACEA Biosciences): Cell numbers were
counted in real-time with a bioelectric xCELLigence instru-
ment monitoring impedance across gold microelectrodes on the
bottom of E-plates. Immediately after transfection with siRNA,
1.6 × 104 cells were seeded in 200 µl medium containing 10%
FBS and transfection reagents in 96-wells of E-plates. Cellu-
lar impedance was measured periodically every 4 h thereafter.
Medium was changed and cells were re-transfected with siRNA
after 48 h to maintain knockdown of TRIP6.

Analysis of migration and invasion
Cellular migration was assessed by a modified Boyden cham-
ber assay (transwell chambers, Corning Star). Cells were serum-
starved overnight, trypsinised, adjusted for viability, counted
and re-suspended in serum-free medium to a concentration of
1 × 106 cells/ml. Before the experiment, the lower surface of
the filter membrane (8 µM pore size) was coated for 15 min
with 100 µl fibronectin solution (5 µg/ml; Sigma–Aldrich) as
a chemo-attractant. The inner filter chambers were coated with
100 µl 10% FBS in RPMI medium for 30 min. Hundred mi-
croliters of cell suspension was placed in the upper filter cham-
bers. The chambers were placed in 24-well plates and cultured
in 500 µl RPMI medium with 10% FBS for 4 h at 37◦C to
allow the cells to migrate through the porous membrane. Non-
migrated cells from the top surface were removed using a cotton
swab. Migrated cells at the lower surface of the membranes were
stained in 200 µl 1% (w/v) crystal violet in 2% ethanol in a
24-well plate for 30 s and rinsed twice afterwards in distilled
water. Cell-associated crystal violet was extracted by incubating
the membrane in 200 µl 10% acetic acid for 20 min and mea-
sured at 595 nm absorbance using a plate reader. For analysis of
cellular invasiveness, 5 × 104 transiently transfected cells were
seeded in 500 µl serum-free medium into the upper chambers of
Matrigel-covered transwell plates (Becton Dickinson). Bottom
chambers contained 500 µl medium with 10% FBS. After 48 h,
invaded cells were stained with 4 µg/ml Calcein AM (Merck)
in HBSS and photographed with an AxioCam MRm camera at-
tached on an Axiovert 100 microscope (both Zeiss). The number
of invaded cells was normalised to proliferation as assessed with
xCELLigence (Roche/ACEA Biosciences).

Analysis of cell cycle and apoptosis by flow cytometry
Cell cycle phases of ES cells were analysed using PI (Sigma-
Aldrich) as previously described (Grunewald et al., 2012a).
2 × 106 cells were harvested 48 h after transfection with siRNA
by trypsination. Cells were washed twice with sample buffer
(PBS with 0.5% FBS), fixed in 70% ethanol at 4◦C and sub-
sequently stained by resuspension in 300 µl PI staining so-
lution for 45 min in the dark before flow cytometry analysis.
The annexin-V-PE/7-AAD apoptosis detection kit 1 (Becton

Dickinson) was used according to the manufacturer’s protocol to
assess apoptosis and necrosis 72 h after transfection with siRNA.
Samples were analysed on a FACScalibur flow cytometer using
Cellquest software (both Becton Dickinson).

Clonogenicity assays
Clonogenic assays were essentially performed as described
(Franken et al., 2006). A673 shRNA infectants harbouring ei-
ther an inducible non-silencing shRNA construct or an inducible
TRIP6-silencing construct were seeded at 1 × 103 cells/well in
12-well plates and treated with 0.5 µg/ml Doxycycline or ve-
hicle. To assess clonogenicity after transient transfection with
siRNA, cells were transiently transfected before seeding in 12-
well plates (1 × 103/well for A673, 2 × 103/well for SK-N-MC
and SB-KMS-KS1) and re-transfected on days 3, 6 and 9 to main-
tain the TRIP6 knockdown throughout the assay period. Knock-
down efficacy was controlled at day 12 by WB. Colonies were
methanol-fixed and stained with crystal violet. Colony number
and area were quantified on scanned plates with the Image-J soft-
ware (NIH). Relative clonogenicity is depicted as `clonogenicity
index’, which is the product of the colony number and average
colony size.

Histology
Formalin-fixed tumour and organ samples were processed and
embedded in paraffin. For histology, 4 µm sections were cut from
paraffin blocks and stained with HE as a standardised staining
for analysis of percentage of tumour necrosis. After scanning of
the slides with a NanoZoomer-XR C12000 (Hamamatsu), the
areas of organs and metastases were measured manually using
the program NDP.view (Hamamatsu).

Mice and in vivo experiments
Immunodeficient Rag2−/−γ c

−/− mice on a BALB/c background
were obtained from the Central Institute for Experimental Ani-
mals (Kawasaki) and maintained under pathogen-free conditions
in accordance with the German Animal Protection Law, institu-
tional guidelines and approval by the Regierung von Oberbay-
ern. Experiments were performed in 6–16 week-old mice. For
in vivo tumour growth 2 × 106 ES cells in 200 µl PBS were
subcutaneously injected in groins. Once tumours were palpa-
ble, 1 mg/ml Doxycycline (Sigma–Aldrich) was added to the
drinking water. Mice bearing tumours greater than 10 mm in
diameter (determined with a caliper) were considered positive
and sacrificed. Xenografts were excised and formalin-fixed for
histology after removal of a small fraction for RNA extraction.
To analyse metastatic potential, 2 × 106 cells were injected
in the tail veins of male Rag2−/−γ c

−/− mice, which received
Doxycycline-containing drinking water throughout the time of
the experiment. Five weeks after intravenous injection, mice were
euthanised and metastasis was monitored in individual organs
by HE staining. Metastases were counted by serial sectioning of
individual organs and ratios of metastasis area over total organ
area were calculated.

Statistical analyses
Differences in proportions between groups were evaluated by
independent one-sample t-test, two-tailed Student’s t-test or log-
rank test as indicated. Statistical significance level was set at
P < 0.05.
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Background Information: Exosomes are small RNA- and protein-containing extracellular vesicles (EVs) that are
thought to mediate hetero- and homotypic intercellular communication between normal and malignant cells.
Tumour-derived exosomes are believed to promote re-programming of the tumour-associated stroma to favour
tumour growth and metastasis. Currently, exosomes have been intensively studied in carcinomas. However, little
is known about their existence and possible role in sarcomas.

Results: Here, we report on the identification of vesicles with exosomal features derived from Ewing’s sarcoma
(ES), the second most common soft-tissue or bone cancer in children and adolescents. ES cell line-derived EVs
have been isolated by ultracentrifugation and analysed by flow-cytometric assessment of the exosome-associated
proteins CD63 and CD81 as well as by electron microscopy. They proved to contain ES-specific transcripts
including EWS-FLI1, which were suitable for the sensitive detection of ES cell line-derived exosomes by qRT-PCR
in a pre-clinical model for patient plasma. Microarray analysis of ES cell line-derived exosomes revealed that they
share a common transcriptional signature potentially involved in G-protein-coupled signalling, neurotransmitter
signalling and stemness.

Conclusions: In summary, our results imply that ES-derived exosomes could eventually serve as biomarkers for
minimal residual disease diagnostics in peripheral blood and prompt further investigation of their potential biological
role in modification of the ES-associated microenvironment.

! Additional supporting information may be found in the online version of this article at the publisher’s
web-site.
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Key words: Biomarker, Extracellular vesicles, Exosomes, Ewing’s sarcoma, Microarray.
Abbreviations: ES, Ewing’s sarcoma; ETS, E-twenty six; EVs, extracellular vesicles; EWS, Ewing sarcoma breakpoint region 1; FBS, fetal bovine serum; FC, fold
change; FLI1, Friend leukaemia virus integration 1; GEO, Gene Expression Omnibus; LPA, lysophosphatidic acid; LPARs, LPA receptors; miRNA, micro RNA; MRD,
minimal residual disease; MVB, multivesicular body; qRT-PCR, quantitative real-time polymerase chain reaction.
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Introduction
Extracellular vesicles (EVs) including exosomes and
other microvesicles are 30–1000 nm sized, mem-
braned vesicles, which are secreted by several cell
types and which incorporate mRNA, micro RNA
(miRNA) and proteins. By delivering this cargo to
and into recipient cells, EVs have pleiotropic roles
in intercellular communication (Pant et al., 2012).
Especially cancer cells appear to manipulate their
microenvironment via EVs, as tumour-derived EVs
were shown to induce angiogenesis (Nazarenko et al.,
2010; Umezu et al., 2012), to prepare pre-metastatic
niches (Hood et al., 2011; Peinado et al., 2012) and
to modulate anti-tumour immune responses (Chaput
and Thery, 2011). These effects are believed to be me-
diated, at least in part, through re-programming of
stromal cells by horizontal transfer of mRNAs, such
as that encoding the tyrosine kinase MET (Peinado
et al., 2012), miRNAs inducing epigenetic changes
(Umezu et al., 2012) and proteins, for example
the oncogenic receptor EGFRvIII (Al-Nedawi et al.,
2008).

To enable this transfer of functional molecules, EVs
are selectively packed with specific cargo during their
biogenesis. Whereas so-called microvesicles are shed-
ded directly from the plasma membrane, exosomes
are generated in the cells’ late endosomes and mul-
tivesicular bodies (MVBs) before being released into
the microenvironment during the fusion of MVBs
with the plasma membrane (Michelet et al., 2010;
Bobrie et al., 2011). The cell-specific cargo of EVs
offers the possibility to use them as specific tumour
biomarkers, which was already shown in glioblastoma
(Skog et al., 2008; Noerholm et al., 2012), melanoma
(Logozzi et al., 2009; Peinado et al., 2012), prostate
(Duijvesz et al., 2011; Bryant et al., 2012), ovarian
(Keller et al., 2009) and lung carcinoma (Rabino-
wits et al., 2009). So far, the investigation of EVs
and more specifically vesicles with features of exo-
somes was dominantly focused on those released by
carcinomas. However, it is less clear whether human
sarcomas also release exosome-like vesicles and if so:
what is their functionally active cargo?

Ewing’s sarcoma (ES) is the second most common
soft-tissue or bone cancer in children and adoles-
cents, which features high rates of early metastasis
(Cotterill et al., 2000). The ES is characterised by
a specific chromosomal translocation that generates a
fusion oncoprotein composed of the transcription fac-
tor EWS (Ewing sarcoma breakpoint region 1) and a

DNA binding domain of an ETS (E-twenty six) fam-
ily member, in 85% FLI1 (Friend leukaemia virus
integration 1) (Delattre et al., 1994). As a conse-
quence, the transcriptional dysregulation caused by
EWS-FLI1 dictates the malignant phenotype of ES
(May et al., 1993; Toomey et al., 2010).

In an effort to identify highly upregulated genes in
ES compared with normal tissues, we previously de-
scribed a comprehensive microarray analysis yielding
a signature of 37 genes (including EZH2, STEAP1,
NPY1R, DKK2 and CCND1) that are highly over-
expressed in ES (Staege et al., 2004). This extremely
high expression in ES renders them to be candidates
for specific ES biomarkers, which, in addition to the
detection of EWS-ETS transcripts, are eventually use-
ful for diagnosis of minimal residual disease (MRD).

Indeed, some of these transcripts were qualified
as surrogate markers for ES detection in bone mar-
row (Cheung et al., 2007). However, given the high
instability of free mRNA in peripheral blood and
the low frequency or even absence of circulating tu-
mour cells (Vermeulen et al., 2006), detection of such
transcripts in peripheral blood is challenging. In con-
trast, mRNA is conserved and protected in exosomes
(Valadi et al., 2007). Hence, exosome enrichment in
patient-derived plasma of peripheral blood could of-
fer an advantage to detect specific mRNAs.

Generally, the reliable detection of such marker
transcripts could help detecting residual disease ear-
lier and thus potentially improve patients’ outcome
due to an earlier onset of rescue therapies. Further-
more, reliable screening of MRD in peripheral blood
could partially replace testing by invasive bone mar-
row puncture. Moreover, the identification of ES cell
line-derived exosomes as mediators of intercellular
exchange of information would provide new insight
in the underlying biology of this disease, which might
accelerate the development of new biomarkers and
therapeutic options.

Here, we report on the first identification of ES cell
line-derived EVs with characteristics of exosomes,
explore their diagnostic potential in a pre-clinical
setting and define their transcriptional signature.

Results
ES cell lines release vesicles with characteristics
of exosomes
The first indication that ES might release exosome-
like vesicles was provided by re-analysis of published
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Figure 1 Ewing’s sarcoma cell lines release vesicles with characteristics of exosomes.
(A) ES cell lines highly express enzymes necessary for exosome generation such as ALIX, CHMP4A, Syntenin and TSG101
(Baietti et al., 2012). Microarray data of 353 normal tissues and 161 primary ES are represented as box-plots. Whiskers
indicate the 10th and 90th percentiles. Outliers are displayed as dots. Unpaired t-test with Welch’s correction. (B) Schematic
representation of the exosome preparation from supernatant of ES cell lines by ultracentrifugation. All exosomes enriched from
cell culture supernatant were prepared according to this scheme. (C) Electron microscopy shows vesicles of 30–100 nm diameter
corresponding to exosomes (arrows). (D) Flow cytometric analysis of the exosomal surface markers CD63 and CD81, as well as
the endoplasmic reticulum marker Calnexin and the Golgi marker GM130. Exosomes were bound on 4 µm latex beads before
incubation with isotype control (grey colour) or specific antibodies (black colour), respectively. At least 30,000 events per group
were recorded; two experiments per cell line.

microarray data of 353 normal tissues and 161 pri-
mary ES [GSE3526 (Roth et al., 2006), GSE34620
(Postel-Vinay et al., 2012), GSE12102 (Scotlandi
et al., 2009) and GSE17679 (Savola et al., 2011)].
We observed a high expression of exosome-associated
genes such as CD63 and CD81 (Thery et al., 2006)
(Supplementary Figure 1). To examine this obser-
vation more closely, we investigated the expression

of typical exosomal marker genes as well as compo-
nents necessary for exosome generation and release.
Compared with normal tissue, several genes, espe-
cially from the Syntenin/ALIX pathway, are highly
expressed in ES (Figure 1A). Of note, these genes
have been recently reported to participate in exo-
some biogenesis/secretion (Baietti et al., 2012). We
next isolated exosomes from cell culture supernatants
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of the ES cell lines A673, SK-N-MC and SB-KMS-
KS1 by ultracentrifugation (Figure 1B). Electron mi-
croscopy highlighted the presence of vesicles with the
size of exosomes (30–100 nm) (Figure 1C). Addition-
ally, the ES cell line-derived exosomes were detected
by flow cytometry via staining for CD63 and CD81
(Figure 1D). In contrast, the endoplasmic reticulum
marker Calnexin (alias CANX) and the Golgi matrix
protein GM130 (alias GOLGA2) (Williams, 2006;
Nakamura, 2010) were undetectable on exosomes,
while being readily detectable within the parental
A673 and SK-N-MC ES cells (Supplementary
Figure 2), further confirming the endosomal origin
and exosomal nature of these ES cell line-derived EVs
(Figure 1D).

ES cell line-derived exosomes contain mRNAs
highly specific for ES including EWS-FLI1
To investigate if the ES cell line-derived exosomes
contain RNA, we profiled the product of an RNA
extraction from exosome lysates with a Bioanalyzer
(Agilent). This analysis demonstrated that the
exosomes contain a broad spectrum of RNA, which
consists especially of small RNAs. In contrast, RNA
of the parental cells displayed the typical RNA profile
with high abundance of ribosomal RNA
(Figure 2A). The RNA profile of our exosome
preparations is similar to that derived from murine
mast cells as previously described (Valadi et al.,
2007).

In order to examine whether this exosomal RNA
harbours intact messenger RNAs, we performed
quantitative real-time (qRT)-PCR analysis of a set
of genes, which are highly overexpressed and thus
specific for ES in comparison to normal tissues. Can-
didate genes fulfilling these criteria were identified
in a two-step process using microarray data of us
and others obtained from Affymetrix HG-U133A
chips as a discovery cohort [n = 63 ES and n =
36 normal tissues; GSE1825 (Staege et al., 2004),
GSE15757 (Burdach et al., 2009), GSE7007 (Tirode
et al., 2007), E-MEXP-1142 (Schaefer et al., 2008)
and GSE2361 (Ge et al., 2005)] and published mi-
croarray data of others derived from Affymetrix HG-
U133plus2.0 chips as a validation cohort [n = 161
ES, n = 353 normal tissues; GSE34620 (Postel-Vinay
et al., 2012), GSE12102 (Scotlandi et al., 2009),
GSE17679 (Savola et al., 2011) and GSE3526 (Roth
et al., 2006)].

Genes were ranked according to their linear fold
change (FC) of the median expression levels in pri-
mary ES compared with normal tissue. Then, those 30
transcripts (corresponding to the top 0.25% of probe-
sets) showing the highest FC in median gene expres-
sion in the discovery cohort were reassessed in the
validation cohort. Finally, those 10 transcripts, which
had a mean FC higher than 10 in both cohorts and
which were previously implicated in ES pathology
were selected as potential biomarkers (Table 1). The
analysis of the validation cohort also identified LIPI
as a promising candidate since the HG-U133plus2.0
microarrays contain probes for this gene (whereas the
HG-U133A microarrays do not) (Figure 2B). In ad-
dition to these transcripts, EWS-FLI1 was examined
in all continuative experiments as it constitutes the
most specific marker for ES. Of note, these in total
12 potential marker transcripts could be readily and
reproducibly detected in exosome preparations from
cell culture supernatant (Figure 2C), suggesting that
part of the RNA in ES cell line-derived exosomes is
functional mRNA.

To assess whether these mRNAs are conserved and
thus stabilised in exosomes, we treated ES exosomes
with RNase. As expected, exosomal RNA was pro-
tected from RNase-mediated degradation in intact
exosomes (Figure 2D). In contrast, the RNA of ex-
osomes, whose membranes were disrupted by soni-
cation before RNase-treatment, was completely de-
graded (Figure 2D). These experiments suggested
that a considerable amount of RNA harvested from
the supernatant of ES cells by ultracentrifugation is
packed within exosomes. Furthermore, we enriched
exosomes from cell culture supernatant in the pres-
ence of RNase (Supplementary Figure 3). Despite
the continuous presence of RNase, we were still able
to enrich our specific transcripts, further confirm-
ing that these transcripts are indeed packed within
exosomes.

To challenge this observation, we tested if the en-
richment of exosomes derived from supernatant of
ES-cell lines would lead to a higher yield of RNA
compared with isolation of RNA from an equal vol-
ume of supernatant without exosome enrichment
when applying the same method of exosome en-
richment and purification as described in Figure 1B.
We observed a median 2.5-fold increase (range: 1.9–
3.8) of detectable transcripts at a relation of super-
natant volume to exosomal concentration volume
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Figure 2 See figure legend on next page
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Figure 2 ES derived exosomes contain functional mRNAs, including ES-specific transcripts
(A) Representative images of Bioanalyzer profiles of exosomal and cellular RNA from A673 cells. The spectrum of exosomal RNA
contains a high amount of small RNAs, but few ribosomal RNAs. (B) Microarray analysis of the expression of candidate marker
transcripts in 353 normal tissues (N) compared to 161 primary ES (E). (C) Representative qRT-PCR results of six potential marker
transcripts and the housekeeping gene B2M showing their stable expression in ES cell line-derived exosomes. Similar results
were obtained for the other marker transcripts (not shown). Data are mean +− SEM of three experiments (duplicates/group).
(D) RNase-treatment revealed no degradation of mRNA inside intact exosomes, but within exosomes which were sonicated
to disrupt their membranes prior to RNase-treatment. As an additional control, isolated cellular RNA was treated with RNase
to demonstrate full RNase activity. Representative DNA gel image of B2M, EWS-FLI1 and STEAP1 after 50 cycles of PCR. (E)
Upper panel: Gain of transcripts through exosome enrichment compared with an equal volume of supernatant measured by
qRT-PCR. Lower panel: Yield of exosomal transcripts through exosome enrichment compared to an equal volume of supernatant
after ultracentrifugation measured by qRT-PCR. Both experiments: mean +− SEM of three experiments (duplicates/group). (F)
Illustration of potential degradation of free mRNA during ultracentrifugation. All experiments shown in Figure 2 were performed
with A673-derived exosomes.

Table 1 Overview on the selected candidate marker genes based on their fold changes (FCs) in the discovery and validation
cohort

FCs Ewing versus normal tissues

Entrez ID Gene symbol Description Discovery Validation Mean FC

4886 NPY1R Neuropeptide Y receptor Y1 64.8 105.6 85.2
10149 GPR64 G-protein-coupled receptor 64 35.9 89.6 62.8
27123 DKK2 dickkopf homolog 2 20.5 78.8 49.7
4821 NKX2.2 NK2 homeobox 2 62.0 29.5 45.8
149998 LIPI Lipase, member 1 NA 44.4 44.4
2146 EZH2 Enhancer of zeste homolog 2 17.8 59.9 38.9
26872 STEAP1 Six transmembrane epithelial antigen

of the prostate 1
17.6 51.6 34.6

190 NR0B1 Nuclear receptor subfamily 0, group
B, member 1

16.8 30 23.4

595 CCND1 Cyclin D1 10.7 19.5 15.1
5579 PRKCB Protein kinase C, beta 19.7 6.7 13.2
9452 ITM2A Integral membrane protein 2A 13.1 8.5 10.8

of 30:1 (Figure 2E upper panel). In contrast, the
yield of RNA in exosome preparations compared
with the supernatant after ultracentrifugation was
considerably higher (median: 17.8-fold; range: 9.4–
40,835.6), confirming that our applied exosome en-
richment process is efficient and that the majority
of the RNA containing exosomes is pelleted during
ultracentrifugation (Figure 2E lower panel). The dis-
crepancy of these two differential effects could be
caused by free or protein-bound RNA in cell culture
supernatant, which might be degraded in the pos-
sibly RNase-contaminated setting of ultracentrifu-
gation (Figure 2F). Considering that human plasma
contains active RNase (Tsui et al., 2002; Reddi and
Holland, 1976), the substantial gain of transcripts by
exosome enrichment and their protection from RNase

within exosomes suggest that this method could be a
valuable approach to use these specific transcripts as
stable biomarkers in peripheral blood.

Specific ES markers can be detected in ES cell
line-derived exosomes re-suspended in healthy
donor plasma
We then strove to assess the performance of our ex-
osome enrichment method and the suitability of our
candidate genes as potential ES biomarkers in pe-
ripheral blood. Accordingly, we first validated the
specificity of the 12 potential marker transcripts by
confirming their high expression (as predicted by mi-
croarrays) in ES cell lines by qRT-PCR. As negative
controls we used neuroblastoma and leukaemia cell
lines. Apart from EZH2 and CCND1, which are
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expressed in many cancer entities (Diehl, 2002;
Chang and Hung, 2012), as well as DKK2, which
is upregulated in neuroblastoma (Revet et al., 2010),
all other marker transcripts were rather specific for ES
(Figure 3A).

Next, we tested for the presence of these marker
transcripts in plasma of healthy donors to reject
those, which can be unspecifically detected in plasma
even before exosome enrichment. Of note, by qRT-
PCR (50 cycles) five out of the 12 marker tran-
scripts could neither be detected in all tested 20
healthy plasma samples (Figure 3B), nor in exo-
some preparations of 10 additional healthy plasma
samples (not shown), indicating their high speci-
ficity for ES (which was anticipated for EWS-FLI1).
Thus, the five markers NR0B1, NKX2.2, STEAP1,
LIPI and EWS-FLI1 were eligible for further
analysis.

To assess the sensitivity of these five markers in
a pre-clinical setting, we designed a plasma model
based on a calculation that involved data of our usual
exosome yields (0.8 µg protein equivalent of 1 × 106

A673 cells in 48 h) as well as estimates about the
possible behaviour of ES exosomes in vivo. Based on
previously published data, we assumed that exosomes
could be stable in blood for 8 days (Thery et al., 2006)
and that more than 1% of the exosomes of a clini-
cal ES would be released into the circulation. If a
given ES comprised about 1 × 109 cells, which cor-
responds to a tumour volume of 1 cm3 (James et al.,
1999), and the plasma volume was 2.7 l, we can cal-
culate that the amount of exosomes in 10 ml plasma
would account 0.24 µg. Accordingly, for the pre-
clinical model, ES cell line-derived exosomes were se-
rially diluted (range: 30–0.1 µg exosome equivalent)
in 10 ml of plasma of a healthy donor and then iso-
lated by ultracentrifugation (Figure 3C). Strikingly,
all marker transcripts could be detected by qRT-PCR
down to a concentration of 0.3 µg/10 ml plasma at
least once in two experiments (Figure 3D) and to some
extent even down to 0.1 µg/10 ml (not shown). More-
over, the packing of these transcripts within ES cell
line-derived exosomes protected them from RNase-
mediated degradation, as the additional incubation
of re-suspended exosomes with active RNase had a
negligible effect on the abundance and detectability
of these specific marker transcripts (Supplementary
Figure 4).

Taken together, these results indicate that NR0B1,
NKX2.2, STEAP1, LIPI and EWS-FLI1 constitute
specific and sensitive marker transcripts for detection
of ES cell line-derived exosomes in peripheral blood.

ES cell line-derived exosomes share a common
transcriptional signature
To gain insight into the potential (patho-)biological
function of ES cell line-derived exosomes, we sub-
jected RNA isolated from exosomes and their
parental ES cell lines (A673, SK-N-MC and SB-
KMS-KS1) to microarray analysis (Affymetrix Hu-
man Gene ST 1.0). We first filtered the microarray
data for probe-sets annotating known genes that are
at least minimally expressed (minimal average ex-
pression intensity !10 in natural scale across all six
samples) yielding a total of 13,610 different probe-
sets. This list of probe-sets was then filtered for those
probe-sets which show an at least two-fold (log2) dif-
ferential regulation between exosomes and their cor-
responding parental cell line. As seen in the Venn dia-
gram in Figure 4A, exosomes from all three cell lines
display a significant degree of overlap of in total 1382
strongly regulated probe-sets (10.15% of all probe-
sets) corresponding to 1288 individual genes (Sup-
plementary Data). Unsupervised hierarchical cluster-
ing of the samples and probe-sets further confirmed a
strong match of the exosomal and the cellular RNA
samples, respectively (Figure 4B).

We then performed a gene-set enrichment analysis
(GSEA) with these commonly differentially regulated
1382 probe-sets and the remaining non-regulated
probe-sets. GSEA demonstrated a significant enrich-
ment of transcripts in exosomes that are involved
in G-protein-coupled signalling, neurotransmit-
ter signalling and stemness (Figure 4C). For instance,
the ‘MIKKELSEN_MEF_ICP_WITH_H3K27ME3’
gene-set (Mikkelsen et al., 2008) describes a set
of transcripts differentially expressed in murine
embryonic fibroblasts with induced pluripotent stem
cell characteristics that is associated with histone 3
lysine 27 tri-methylation, which has been previously
reported to be implicated in the maintenance of
a more immature phenotype of ES (Richter et al.,
2009). In synopsis, these results indicate that ES
cell line-derived exosomes are significantly enriched
for a common set of transcripts involved in signal
transduction and stemness.
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Figure 3 Evaluation of specificity and sensitivity of candidate marker transcripts
(A) qRT-PCR of selected 12 candidate marker transcripts in seven ES, two neuroblastoma (NBL) and two leukaemia (LK) cell lines.
NTC: no-template-control. Mean +− SEM of two experiments (duplicates/group). (B) Heatmap of marker transcript expression
as measured by qRT-PCR normalised to B2M in 20 healthy plasma samples. White colour represents delta-Ct values equal
or greater than 0, whereas black colour represents no detection of the corresponding transcript in 50 PCR cycles (triplicate
measurements). The houskeeping genes ACTB and GAPDH were used as positive controls. Asterisks mark transcripts that were
undetectable in all plasma samples. (C) Schematic representation of the dilution of ES cell line-derived exosomes in plasma
of healthy donors. (D) Representative DNA gel images of qRT-PCR products of B2M, EWS-FLI1, STEAP1 and NR0B1 with or
without exosome enrichment and progressive dilution of exosomes in healthy plasma. Similar results were obtained for LIPI and
NKX2.2 (not shown).
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Figure 4 ES cell line-derived exosomes share a common transcriptional signature
(A) Venn diagram of gene annotating probe-sets, which are differentially regulated between exosomes and their corresponding
parental cell line (min. log2 FC ! 2), showing a significant degree of overlap (two-tailed chi-square test). (B) Unsupervised
hierarchical clustering (average linkage) of the individual samples and the commonly differentially regulated 1382 probe-sets.
Data were log2-transformed and median-centred for depiction in a heatmap. (C) GSEA of the 1382 commonly differentially
regulated and non-regulated probe-sets. NES: normalised enrichment score; NOM: nominal P value; FDR: false discovery rate.
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Discussion
This study aimed to determine if ES secrete EVs, to
characterise their RNA cargo and to explore in a pre-
clinical setting, whether certain transcripts within
the ES cell line-derived EVs might constitute suit-
able candidates for validation as biomarkers in a sub-
sequent clinical study.

Here, we report on the identification of ES cell
line-derived EVs, which show features of exosomes,
such as the size of 30–100 nm in electron microscopy
and the strong enrichment for CD63 and CD81–two
tetraspanins associated with the internal vesicles of
MVBs and consequently present on the surface of re-
leased exosomes (Escola et al., 1998). In addition, the
endoplasmic reticulum and Golgi markers Calnexin
and GM130 were undetectable on these ES cell line-
derived EVs, further proving their endosomal origin
and thus exosomal nature. We additionally demon-
strate that these ES cell line-derived exosomes are
packed with RNA, which is protected from degrada-
tion by RNases. Moreover, we show that they share
a common set of transcripts that are potentially in-
volved in intercellular communication, and provide
pre-clinical evidence that these exosomes contain spe-
cific transcripts such as EWS-FLI1, which can be po-
tentially used as ES markers in peripheral blood.

Interestingly, our set of the top five markers
(NR0B1, NKX2.2, STEAP1, LIPI and EWS-FLI1)
is similar to that of Cheung et al. (2007) who screened
for highly overexpressed genes by microarrays to
identify candidates for detection of occult ES bone
marrow metastases. However, in comparison with
their study, we additionally identified LIPI through
the use of publicly available microarray data-sets built
on a chip platform that contains probes for this gene.

Moreover, our analyses show that these transcripts
are not detectable by qRT-PCR (50 cycles) in pe-
ripheral blood of 20 healthy donors. In contrast, they
were readily detectable in plasma into which minute
amounts of ES exosomes have been added. These re-
sults point to a high specificity of these five transcripts
for ES and suggest that they might provide sufficient
sensitivity for detection of MRD, which needs to be
assessed in future clinical investigations.

NR0B1 (alias DAX1) is a key transcription factor
highly expressed in embryonic development of the
adrenal gland and only minimally or even not ex-
pressed in adult tissues. NR0B1 knockdown in ES
cells significantly reduces their proliferative capacity

(Kinsey et al., 2006; Garcia-Aragoncillo et al., 2008).
Similarly, the knockdown of the transcription fac-
tor NKX2.2 and the membrane-bound oxidoreduc-
tase STEAP1 impairs ES proliferation (Smith et al.,
2006; Grunewald et al., 2012b) and both proteins
proved to be valuable markers for ES in immunohis-
tochemistry (Yoshida et al., 2012; Grunewald et al.,
2012c). Interestingly, STEAP3 is actively involved
in exosome production and release (Grunewald et al.,
2012a), which might be also true for other STEAP
proteins. Although little is known about the ac-
tivity of the lysophosphatidic acid (LPA)-producing
phospholipase LIPI in ES, recent work has shown
that ES express different transcript variants of LIPI
and the cognate LPA-receptors (LPARs) (Schmiedel
et al., 2011), suggesting that ES could principally use
the LPA/LPARs-signalling pathway to promote their
growth, migration and invasiveness in an auto- and/or
paracrine fashion as seen in other cancers (Willier
et al., 2011).

Apart from these five markers, our microarray anal-
ysis identified a set of over 1200 transcripts that are
either highly enriched or depleted in exosomes de-
rived from ES cell lines. Especially the transcripts
that are highly enriched in exosomes might con-
stitute a means used by ES to communicate with
other ES cells and/or the microenvironment by lat-
eral transfer of mRNAs and miRNAs. In other can-
cers such as gastric and mammary carcinoma, recent
evidence has shown that tumour-derived exosomes
mobilise stromal cells and induce the differentia-
tion of normal mesenchymal stem cells into cancer-
associated fibroblasts by specifically delivering sig-
nalling molecules packed in exosomes into recipi-
ent cells (Gu et al., 2012; Luga et al., 2012). More-
over, in glioblastoma EVs serve as paracrine signalling
molecules between tumour cells to promote dynamic
adaptations on hypoxia by triggering G-protein-
coupled receptors (Svensson et al., 2011). Notably,
our GSEA demonstrated that the ES cell line-derived
exosomes are significantly enriched for transcripts
implicated in G-protein-coupled signalling, neuro-
transmitter signalling and stemness. Moreover, as the
ES cell line-derived exosomes contain the mRNA
of the ES-specific transcription factor EWS-FLI1,
it would be interesting to document if EWS-FLI1
can be transferred to and expressed in recipient cells
of the tumour-associated stroma, and if so, which
role(s) this event might have regarding oncogenic
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re-programming of the microenvironment? Since
EWS-FLI1 is known to induce an endothelial gene ex-
pression signature in ES and mesenchymal stem cells
(Staege et al., 2004; Tirode et al., 2007), it is tempt-
ing to speculate whether ES exosomes play a role
in induction of neo-angiogenesis. Considering that
ES display neuroectodermal features and a neuroecto-
dermal transcriptional signature (Staege et al., 2004;
von Levetzow et al., 2011), it is noteworthy that ES
cell line-derived exosomes contain significantly more
transcripts involved in neurotransmitter signalling
than their parental cells, which might argue for an
active role of ES exosomes in neuroectodermal differ-
entiation. Although further experiments are required
to understand the precise (patho-)biological role of
ES exosomes, the identified set of commonly enriched
transcripts presented in this study constitutes a ini-
tial step for future experiments. However, future pro-
teomic analyses, for example by mass spectrometry,
are warranted to fully characterise the exosomal cargo
of ES. Additionally, it would be interesting to analyse
if differently sized exosomes are packed with a dis-
tinct RNA and protein content, which is currently
not accessible for investigation as there is as yet no
established technique available that enables the def-
inite distinction of exosomal subfractions (Minogue
and Waugh, 2012).

Furthermore, if ES are indeed capable of deliver-
ing and receiving transcriptional cues via exosomes–
perhaps mediated by specific cognate docking sites
(Rana and Zoller, 2011)–a clinical application of ex-
osomes might be considered too, for example by de-
livering short interfering RNAs against EWS-FLI1
specifically to ES cells.

In summary, this study describes the first identifi-
cation of ES cell line-derived exosomes, pre-clinically
explores their diagnostic potential and defines their
transcriptional signature by microarrays. The fact
that ES cell lines produce exosomes containing mR-
NAs such as EWS-FLI1 might have important impli-
cations in our understanding of how ES cells interact
with each other and how they possibly re-program
their microenvironment.

Materials and methods
Cell lines and culture conditions
All cell lines except for the A673 cell line, which was purchased
from ATCC, and the SB-KMS-KS1 cell line were obtained from
the German Collection of Microorganisms and Cell Cultures

(DSMZ). SB-KMS-KS1, previously named SBSR-AKS, is an ES
cell line with an EWS-FLI1 type 1 translocation, which was
established in our laboratory (Richter et al., 2009; Grunewald
et al., 2012b). Cells were grown in RPMI 1640 media (Invit-
rogen) containing 10% fetal bovine serum (FBS) (Biochrom),
1% glutamine and 100 µg/ml gentamycin (Invitrogen) at 37◦C
in 5% CO2 atmosphere. For experiments requiring FBS but
exosome-free media, FBS was ultracentrifuged for 2 h at 100,000
x g before use to clear it from bovine serum exosomes. Cell lines
were routinely checked for mycoplasma contamination and pu-
rity (status of EWS-ETS fusion transcript in ES cell lines).

Provenience of blood samples and plasma preparation
Human blood samples were obtained with IRB approval of the
Faculty for Medicine of the Technische Universität München
(TUM) in frame of the Neo-Ident study (approval no: 2562/09).
All donors gave written informed consent. Peripheral blood sam-
ples were obtained from 20 healthy adult donors, whose health
status was checked by a standardised questionnaire. Peripheral
blood was drawn into EDTA-coated collection tubes (Sarstedt)
and centrifuged for 7 min at 540 x g. Plasma was carefully trans-
ferred into a new tube, centrifuged for 15 min at 1,800 x g to
remove platelets. Then, it was filtered through a 0.45 µm filter
(Sartorius) and again centrifuged at 1,800g for 3 min to clear
it from debris. All centrifugation steps were performed at 4◦C.
Plasma samples were stored at −80◦C if they were not used ad
hoc for exosome enrichment or RNA extraction.

Exosome preparation
Exosomes were prepared from the cell culture supernatant of
A673, SK-N-MC and SB-KMS-KS1 ES cell lines using the
classical ultracentrifugation protocol as described previously
(Thery et al., 2006). ES cells at 80% confluency were washed
with PBS and cultured in fresh RPMI 1640 media contain-
ing exosome-depleted FBS, 1% glutamine and 100 µg/ml gen-
tamycin (both Invitrogen). After 48 h supernatant was collected
and centrifuged at 300 x g for 10 min, at 2,000 x g for 10 min and
at 10,000 x g for 30 min to clear it from debris. Subsequently,
exosomes were collected by ultracentrifugation at 100,000 x g
for 70 min, pooled, re-suspended in PBS and once more ultra-
centrifuged at 100,000 x g for 60 min using an Optima XL-90
ultracentrifuge with a 70.1 Ti rotor (both Beckman Coulter).
Exosomes from human plasma samples were isolated by ultra-
centrifugation at 110,000 x g for 120 min using a SW 41 Ti
rotor (Beckman Coulter). All exosome pellets were re-suspended
in PBS and stored at −80◦C if they were not used immediately
for subsequent analyses.

The amount of harvested exosomes was estimated by mea-
suring the protein content with a commercial Bradford assay
(Bio-Rad). Briefly, 5 µl of the re-suspended exosome pellet were
diluted with 5 µl of PBS. Then, 1 ml of Bradford solution (Bio-
Rad) (diluted 1:5 in distilled water) was added. After 3 min, pro-
tein concentrations were measured photometrically at 595 nm
and referenced to defined BSA standards. The average amount
of exosomes harvested from supernatant of 1 × 106 A673 cells
after 48 h incubation was 0.8 µg.

Isolation of cellular and exosomal RNA
Cellular RNA was isolated using the RNeasy mini kit (Qia-
gen) according to the manufacturer’s protocol. Exosomal and
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free plasma RNA were extracted with the UltraSens Virus Kit
(Qiagen). Here, the centrifugation step after the addition of the
carrier RNA was performed for plasma at 660 x g and for ex-
osomes at 830g in order to receive optimal results. To extract
RNA from cells and exosomes for microarray analysis the miR-
CURY RNA isolation kit (Exiquon) was used according to the
manufacturer’s protocol and as described previously (Eldh et al.,
2012). RNA concentration and quality were checked photomet-
rically at 260 nm. RNA was stored at −80◦C. To prove that
the exosomal RNA is protected from RNases, RNase-treatment
was performed with 0.1 µg/µl RNase A (Fermentas) for 10 min
at 37◦C. As a negative control, exosomes were sonicated thrice
for 10 s at 80% amplitude with a digital sonicator (Branson)
to disrupt their membrane before RNase-treatment as described
previously (Keller et al., 2011).

qRT-PCR and DNA gelelectrophoresis
RNA (1 µg RNA/reaction) was reverse transcribed us-
ing the High-Capacity cDNA Reverse Transcription Kit
(Applied Biosystems). For qRT-PCR, 1 µl cellular cDNA,
2 µl exosomal or 4 µl plasma cDNA were mixed with the
TaqMan Universal PCR Master Mix (Applied Biosystems)
and the corresponding primers (final volume: 20 µl). Primers
were purchased as specific TaqMan Gene Expression Assays
(Applied Biosystems): STEAP1 Hs00185180_m1, LIPI
Hs01017703_m1, NR0B1 Hs00230864_m1, NKX2.2
Hs00159616_m1, GPR64 Hs00971379_m1, EZH2
Hs00544830_m1, NPY1R Hs00168565_m1, ITM2A
Hs01011360_g1, DKK2 Hs00205294_m1, PRKCB
Hs00176998_m1, B2M Hs00187842_m1, GAPDH
Hs99999905_m1, ACTB Hs01060665_g1. For the detection
of the EWS-FLI1 fusion transcript, the following primers
were used: 5′-TAGTTACCCACCCCAAACTGGAT-3′ (sense),
5′-GGGCCGTTGCTCTGTATTCTTAC-3′ (antisense) and
probe 5′-FAM-CAGCTACGGGCAGCA-3′. qRT-PCR was
performed with an AB 7300 Real-Time PCR System (Applied
Biosystems). For DNA gel electrophoresis, a 2% agarose gel was
prepared and a mix of 20 µl of cDNA and 2 µl of Blue Juice
Gel Loading Buffer (Invitrogen) were loaded in each lane. DNA
amplicons were visualised with a Gene Genius Bio imaging
system (Syngene).

Microarray analysis
A673, SK-N-MC and SB-KMS-KS1 cells were cultivated for
48 h. Thereafter, RNA was extracted separately from the cells
and the exosomes harvested from the supernantant as described
in the section “Exosome preparation”. RNA quality was checked
using a Bioanalyzer (Agilent). Total RNA (200 ng) was ampli-
fied and labelled using Affymetrix GeneChip Whole Transcript
Sense Target Labeling Kit. cRNA was hybridised to Affymetrix
Human Gene 1.0 ST arrays. Arrays were RMA normalised. Qual-
ity assessment consisted of RNA degradation plots, Affymetrix
control metrics, sample cross-correlation and probe-level visual-
isations. Normalisation incorporated (separately for each RNA
type data-set) background correction, quantile normalisation and
probe-level summation by RMA.

The microarray data were analysed with the GENE-
E software package (http://www.broadinstitute.org/cancer/
software/GENE-E/) and deposited at the Gene Expression Om-

nibus (GEO; GSE42282). GSEA was performed with the GSEA
tool (http://www.broad.mit.edu/gsea) using a pre-ranked list and
1,000 permutations.

For the interrogation of publicly available microarray data,
data-sets were retrieved from the GEO and the Array Express
platform of the EMBL-EBI (http://www.ebi.ac.uk/arrayexpress/),
manually revised for their correct annotations, and then simul-
taneously RMA-normalised using brainarray custom CDF files
(v15 ENTREZG). Individual data accession numbers are given
in the Results section.

Flow cytometry
For flow cytometry, exosomes derived from A673 and SK-N-
MC ES cells were incubated with 4 µm aldehyde/sulphate la-
tex beads (Invitrogen) overnight and blocked with 1 M glycine
and 0.5% BSA in PBS before incubation with CD63 (sc-5275),
CD81 (sc-7637) or corresponding isotype control antibodies (all
Santa Cruz). The same procedure was applied for testing ES
cell line-derived exosomes for the markers Calnexin (sc-80645,
Santa Cruz) and GM130 (ab76154, Abcam). Before and after
incubation with the secondary antibody [goat anti-mouse IgG1
FITC (sc-2078) and goat anti-rabbit IgG1 FITC (sc-2012); both
Santa Cruz], three washing/blocking steps with 0.5% BSA in
PBS were carried out. For positive control of the Calnexin and
GM130 antibodies, intact A673 and SK-N-MC cells were fixed
with 4% paraformaldehyde, permeabilised with 90% methanol
and blocked with 0.5% BSA in PBS before incubation with spe-
cific antibodies. Samples were analysed on a FACScalibur flow
cytometer using Cellquest Pro software (both Becton Dickin-
son). At least 30,000 events/sample were recorded.

Electron microscopy
Electron microscopy studies were performed as previously de-
scribed (Raposo et al., 1996). Briefly, exosomes re-suspended in
PBS were deposited for 20 min at RT on formvar-carbon coated
electron microscopy grids. The samples were fixed for 20 min
in PBS-2% PFA (Electron Microscopy Sciences), and quenched
in PBS 50 mM glycine. After fixation in glutaraldehyde 1%
(Electron Microscopy Sciences) grids were rinsed in water and
contrast and embedding was performed with an ice-cold mixture
of methylcellulose and uranyl acetate for 10 min. Grids were air-
dried before observation. Samples were observed at 80 kV with
a CM120 Twin FEIelectron microscope (FEI Company) and dig-
ital images were acquired with a numeric camera (Keen View,
Soft Imaging System).

Statistical analyses
Differences in proportions between groups were evaluated by
two-tailed chi-square test, unpaired t-test with Welch’s correc-
tion or unpaired two-tailed Student’s t-test. Statistical signifi-
cance level was set at P < 0.05.
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ABSTRACT
Ewing sarcoma is an undifferentiated small-round-cell sarcoma. Although 

molecular detection of pathognomonic EWSR1-ETS fusions such as EWSR1-FLI1 
enables definitive diagnosis, substantial confusion can arise if molecular diagnostics 
are unavailable. Diagnosis based on the conventional immunohistochemical marker 
CD99 is unreliable due to its abundant expression in morphological mimics.

To identify novel diagnostic immunohistochemical markers for Ewing sarcoma, 
we performed comparative expression analyses in 768 tumors representing 21 
entities including Ewing-like sarcomas, which confirmed that CIC-DUX4-, BCOR-
CCNB3-, EWSR1-NFATc2-, and EWSR1-ETS-translocated sarcomas are distinct entities, 
and revealed that ATP1A1, BCL11B, and GLG1 constitute specific markers for Ewing 
sarcoma. Their high expression was validated by immunohistochemistry and proved 
to depend on EWSR1-FLI1-binding to highly active proximal super-enhancers. 
Automated cut-off-finding and combination-testing in a tissue-microarray comprising 
174 samples demonstrated that detection of high BCL11B and/or GLG1 expression is 
sufficient to reach 96% specificity for Ewing sarcoma. While 88% of tested Ewing-like 
sarcomas displayed strong CD99-immunoreactivity, none displayed combined strong 
BCL11B- and GLG1-immunoreactivity.

Collectively, we show that ATP1A1, BCL11B, and GLG1 are EWSR1-FLI1 targets, 
of which BCL11B and GLG1 offer a fast, simple, and cost-efficient way to diagnose 
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INTRODUCTION

Ewing sarcoma is characterized by the presence of 
chimeric EWSR1-ETS fusion oncogenes [1]. Before the 
discovery of this unifying genetic hallmark, diagnosing 
Ewing sarcoma definitively was challenging [2] as Ewing 
sarcoma tumors are largely composed of undifferentiated 
cells displaying a small-round-cell phenotype [3, 4]. This 
phenotype is shared by many other tumor entities such 
as rhabdomyosarcoma and neuroblastoma [5]. Recently, 
several so-called Ewing-like sarcoma subtypes have been 
identified [6-9]. These tumors are characterized by distinct 
fusion oncogenes and transcriptomic signatures [6-12], as 
well as (most likely) by distinct clinical behavior [6, 12, 
13]. 

Although Ewing sarcoma can usually be reliably 
distinguished from its morphological mimics by 
cytogenetic and molecular genetic analyses [14, 15], 
there is currently no robust biomarker available for 
routine histology. Substantial diagnostic confusion can 
arise because sophisticated cytogenetic and molecular 
diagnostic techniques are not universally available or 
too expensive for some diagnostic facilities (particularly 
in developing countries). While the widely used 
immunohistochemical biomarker CD99 shows high 
sensitivity for Ewing sarcoma, its low specificity and 
high expression in morphological mimics such as CIC- 
and BCOR-rearranged sarcomas, as well as in certain 
lymphoma subtypes and poorly differentiated synovial 
sarcoma, are problematic [3, 11-13, 16-18]. Thus, 
CD99 alone is unreliable to definitively diagnose Ewing 
sarcoma. Other studies identified auxiliary markers such 
as NKX2-2 and FLI1, which may help in some cases [19, 
20]. However, a systematic and agnostic transcriptome-
wide screen for auxiliary markers and testing of their 
value when used in combination has not been done so 
far. In the current study, comparative expression analyses 
revealed that ATP1A1, BCL11B, and GLG1 constitute 
potential specific markers for Ewing sarcoma. Expression 
of these genes appeared to be induced by EWSR1-FLI1-
bound super-enhancers, which showed high activity in 
reporter assays. Specific immunohistochemical staining 
of these proteins in comprehensive tissue microarrays 
(TMAs) combined with automated cut-off determination 
and combination-testing demonstrated that detecting high 
BCL11B and/or GLG1 levels is sufficient to reach 96% 
specificity for Ewing sarcoma. In fact, these markers were 
extremely effective at discriminating Ewing sarcoma from 
Ewing-like sarcomas.

Hence, these results provide a fast, simple and 
cost-efficient means of diagnosing Ewing sarcoma by 

immunohistochemistry (IHC), which is a considerable 
advantage for diagnostic facilities where molecular 
diagnostics are not available. This finding may 
significantly reduce the number of misdiagnosed patients 
and thus improve patient care.

RESULTS

ATP1A1, BCL11B, and GLG1 are strongly 
overexpressed in Ewing sarcoma compared to 
tumor entities of differential diagnostic relevance

To identify highly specific diagnostic markers 
for Ewing sarcoma, we retrieved publicly available 
microarray gene expression data comprising genetically 
confirmed EWSR1-ETS-translocated Ewing sarcomas 
[21], 20 additional tumor entities of potential differential 
diagnostic relevance [5], and 71 normal tissue types. The 
set of morphological mimics also comprised CIC-DUX4-, 
BCOR-CCNB3-, and EWSR1-NFATc2-translocated 
sarcomas, which proved to be distinct entities as 
determined by unsupervised principal component analysis 
(PCA) (Supplementary Figure 1).

We then proceeded to perform comparative 
expression analysis on the entire dataset: Based on these 
microarray expression data the median expression of 
every gene represented on the Affymetrix HG-U133Plus2 
microarray was determined. Next, we calculated the 
expression ratio (ER) for every gene based on its median 
expression in pairwise comparisons of Ewing sarcoma 
and the remaining tumor entities. Only genes, which were 
strongly overexpressed in Ewing sarcoma compared to all 
other tumor entities defined by a minimal log2-transformed 
ER of > 2, were considered as diagnostically relevant. Of 
the 19,702 genes represented on the microarray platform, 
51 had an ER of > 2 across all tested tumor entities. In 
parallel, the level of significance of the differential 
expression of all genes in pairwise comparisons of Ewing 
sarcoma relative to all other tumor entities was calculated. 
Only 10 genes exhibited a Bonferroni-corrected P value < 
0.05 (Figure 1a, 1b). Next, both gene lists were crossed, 
which showed that only 3 genes, termed ATP1A1 (ATPase 
Na+/K+ transporting subunit alpha1), BCL11B (B-cell 
CLL/lymphoma 11B), and GLG1 (Golgi glycoprotein 1) 
were both strongly and highly significantly overexpressed 
in Ewing sarcoma compared to all other tumor entities 
(Figure 1b).

Then, the expression profiles of these three 
candidate biomarkers were compared to the conventional 

Ewing sarcoma by immunohistochemistry. These markers may significantly reduce the 
number of misdiagnosed patients, and thus improve patient care.
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Ewing sarcoma marker CD99 across all tumor entities. 
While CD99 showed broad expression in many different 
tumor entities, ATP1A1, BCL11B, and GLG1 were only 
expressed at low levels in every tumor entity relative to 
Ewing sarcoma, indicating a higher specificity for this 
disease than CD99 (Figure 1c). 

Because commixture of tumor tissue with normal 
cells, which could express the three markers, could 
complicate immunohistochemical evaluation, we explored 
the expression levels of ATP1A1, BCL11B, and GLG1 and 
that of CD99 in Ewing sarcoma samples relative to 71 
normal tissue types comprising 998 samples. As displayed 
in Supplementary Figure 2, ATP1A1, BCL11B, and GLG1 
were only lowly expressed in some normal tissue types, 
while CD99 was rather broadly expressed across many 
normal tissue types. In fact, our three markers, except for 
BCL11B in thymus, were statistically significantly higher 
(P < 0.05) expressed in Ewing sarcoma as compared to 
any tested normal tissue type.

EWSR1-FLI1 induces ATP1A1, BCL11B, 
and GLG1 expression by binding to GGAA-
microsatellites found in super-enhancers

The specific expression of the three candidate 
biomarkers in primary Ewing sarcoma suggests a possible 
regulatory relationship between them and EWSR1-FLI1. 
In fact, ATP1A1 and GLG1 were previously shown to 
be upregulated after ectopic expression of EWSR1-FLI1 
in the rhabdomyosarcoma cell line RD [22]. Moreover, 
BCL11B was shown to be upregulated by EWSR1-FLI1 
in Ewing sarcoma cell lines [23].

To further explore this regulatory relationship, 
available gene expression data were assessed, which 
showed that the ectopic EWSR1-FLI1 expression in 

embryonic stem cells was sufficient to significantly induce 
the expression of ATP1A1, BCL11B, and GLG1 (Figure 
2a). Conversely, the shRNA-mediated knockdown of 
EWSR1-FLI1 in six different Ewing sarcoma cell lines 
significantly decreased their expression levels (Figure 2b). 
Such consistent EWSR1-FLI1-dependent regulation was 
not observed for CD99 (Figure 2a, 2b).

These data in cell lines suggested that ATP1A1, 
BCL11B, and GLG1 may be direct EWSR1-FLI1 target 
genes. Testing this hypothesis involved analyzing 
available ChIP-Seq and DNase-Seq data generated 
in Ewing sarcoma cell lines, which showed strong 
EWSR1-FLI1-binding to GGAA-microsatellites close 
to these genes. Notably, these GGAA-microsatellites 
exhibit characteristics of active EWSR1-FLI1-dependent 
enhancers (Figure 3a). In fact, EWSR1-FLI1 is known to 
convert non-functional GGAA-microsatellites into potent 
enhancers to steer a large proportion of its target genes [24-
26]. Strong EWSR1-FLI1-dependent enhancer activity of 
these GGAA-microsatellites in luciferase reporter assays 
was consistently observed (Figure 3b). In agreement 
with previous observations [27], these EWSR1-FLI1-
dependent enhancers showed the typical H3K27ac profile 
of so-called super-enhancers in the A673 and SK-N-MC 
Ewing sarcoma cell lines (Figure 3c, Supplementary 
Tables 1 & 2). Super-enhancers are often found near 
genes that have cell type-specific functions and contribute 
to cell identity [28, 29]. In addition to these findings in 
vitro, gene-set enrichment analyses of either ATP1A1-, 
BCL11B-, or GLG1-correlated genes within 166 primary 
Ewing sarcoma tumors revealed that the most significantly 
(min. NES = 3.08, P < 0.001, q < 0.001) associated gene 
expression signature among the 3,687 tested was for each 
candidate marker ‘ZHANG_TARGETS_OF_EWSR1-
FLI1_FUSION’ [22] (Supplementary Table 3). Consistent 
with the previous finding that EWSR1-FLI1 and EWSR1-

Table 1: Composition of the TMA
Entity n
Ewing sarcoma 47
Alveolar Soft Part Sarcoma 3
Ewing-like sarcoma 17
Ganglioneuroblastoma 7
Leiomyosarcoma 5
Liposarcoma 19
Malignant Fibrous Histiocytoma 3
Nephroblastoma 21
Neuroblastoma 16
Osteosarcoma 15
Rhabdomyosarcoma 11
Synovial sarcoma 10
n total: 174
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Figure 1: ATP1A1, BCL11B, and GLG1 are strongly overexpressed in Ewing sarcoma compared to tumor entities of 
differential diagnostic relevance. A. Volcano plots of pairwise comparison of gene expression in Ewing sarcoma (EWS) and indicated 
tumor entities. Diffuse large B-cell lymphoma (DLBCL); mucosa-associated lymphoid tissue (MALT) lymphoma; malignant peripheral 
nerve sheath tumor (MPNST); alveolar rhabdomyosarcoma (ARMS); and embryonal rhabdomyosarcoma (ERMS). Genes represented in 
green color had an expression ratio > 2 (log2) and a P value < 0.05 (Bonferroni-corrected). B. Size-proportional Venn diagram showing the 
overlap of genes differentially and significantly (minimal log2 expression ratio > 2; P value < 0.05, Bonferroni corrected) overexpressed 
in Ewing sarcoma relative to all other tumor entities given in A and C. C. Scatter dot plot depicting gene expression levels of ATP1A1, 
BCL11B, GLG1, and CD99 as determined by Affymetrix HG-U133Plus2.0 microarrays in primary tumors of 21 different entities. Ewing 
sarcoma is highlighted in green, Ewing-like sarcomas (CIC-DUX4 or BCOR-CCNB3 translocation positive) are highlighted in orange. 
Horizontal bars represent median expression levels. The number of analyzed samples is given in parentheses.
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ERG bind to highly similar DNA-motifs [30], all three 
genes are similarly highly expressed in Ewing sarcoma 
cell lines regardless of the specific EWSR1-ETS status 
(Supplementary Figure 3). Collectively, these data 
strongly suggest that ATP1A1, BCL11B, and GLG1 are 
direct EWSR1-ETS target genes.

ATP1A1 and GLG1 may have prognostic relevance 
in Ewing sarcoma

To explore the potential of ATP1A1, BCL11B, 
GLG1, and CD99 as prognostic biomarkers, we analyzed 
the association of their expression levels with outcome in a 

Figure 2: EWSR1-FLI1 is sufficient to induce ATP1A1, BCL11B, and GLG1 expression. A. Analysis of gene expression 
levels of ATP1A1, BCL11B, GLG1 and CD99 by Affymetrix HG-U133Plus2.0 microarrays in human embryonic stem cells after ectopic 
expression of EWSR1-FLI1 (GSE64686). Bars represent the medians. Two-tailed student’s t test. B. Analysis of gene expression levels of 
ATP1A1, BCL11B, GLG1 and CD99 by Affymetrix HG-U133A microarrays 96 h after short hairpin RNA-mediated knockdown of EWSR1-
FLI1 in six different Ewing sarcoma cell lines (GSE14543 and GSE27524). Data are represented as before-after plots in which each dot 
represents a cell line. Two-tailed student’s t test.
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large cohort of Ewing sarcoma patients (n = 166). Whereas 
higher ATP1A1 and GLG1 expression levels showed a 

significant correlation with better patient outcome (P = 
0.006 and P = 0.0028, respectively), BCL11B and CD99 

Figure 3: EWSR1-FLI1 binds to GGAA-microsatellites with enhancer activity located close to or within the ATP1A1, 
BCL11B, or GLG1 gene. A. Published DNase-Seq and ChIP-Seq data generated in Ewing sarcoma cell lines were displayed in the 
UCSC genome browser. shGFP, control; shEF1, shEWSR1-FLI1. GGAA-mSat, GGAA-microsatellite. B. Luciferase reporter assays in 
A673/TR/shEF1 cells containing a doxycycline (Dox)-inducible shRNA against EWSR1-FLI1 confirmed the EWSR1-FLI1-dependent 
enhancer activity of cloned GGAA-microsatellites (1 kb fragments). EWSR1-FLI1 knockdown was confirmed by qRT-PCR 72 h after 
shRNA induction. Data are presented as mean and SEM of n = 3 independent experiments. Two-tailed student’s t-test. * P < 0.05; ** 
P < 0.01; *** P < 0.001. C. Genome-wide analysis of published H3K27ac profiles of A673 and SK-N-MC Ewing sarcoma cell lines 
(GSE61944) identified super-enhancers proximal to ATP1A1, BCL11B, GLG1, and CD99. Enhancers are ranked by their H3K27ac density.
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expression levels did not (Supplementary Figure 4).

High expression of BCL11B and/or GLG1 is 
sufficient to robustly diagnose Ewing sarcoma by 
IHC

To confirm the overexpression of ATP1A1, BCL11B, 
and GLG1 on the protein level, a comprehensive TMA 

including many solid tumor entities closely resembling 
Ewing sarcoma and other sarcoma entities was generated 
(Table 1). Immunohistochemical staining of the TMAs 
was carried out with anti-ATP1A1, anti-BCL11B, anti-
GLG1 and anti-CD99 antibodies, and immunoreactivity 
scores (IRS) were determined in analogy to the Remmele 
and Stegner [31] scoring system (IRS range from 0 to 
12; Figure 4a, 4b). As displayed in Figure 4b, CD99 
expression was not very specific for Ewing sarcoma 

Figure 4: High expression of BCL11B and/or GLG1 is sufficient to robustly diagnose Ewing sarcoma by IHC. A. 
Representative IHC images for the indicated marker. ATP1A1 is expressed in the cytoplasm, BCL11B in the nucleus, GLG1 at the 
perinuclear Golgi apparatus, and CD99 at the membrane. Scale bars = 100 µm. For ATP1A1, BCL11B, and GLG1 a red and for CD99 a 
brown chromogen was used. B. Scatter dot plots of the individual IRS for the indicated marker. The number of analyzed samples is given 
in parentheses. Bars represent mean IRS values, whiskers indicate the 95%-CI. Green dashed lines indicate the cut-offs to define sensitivity 
and specificity for detecting Ewing sarcoma as given in the table below. ASPS: alveolar soft part sarcoma. C. Proposed work-flow for 
establishing robust diagnosis of Ewing sarcoma.
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compared to other sarcoma entities as well as Ewing-like 
sarcomas. However, CD99 reached 100% sensitivity for 
Ewing sarcoma in this TMA when applying a cut-off of 
IRS > 2. Compared to CD99, the three candidate markers 
were all less sensitive at any given cut-off, but much 
more specific (specificity 90 - 97%) when being highly 
expressed (defined as IRS > 9) (Supplementary Table 4).

Automated cut-off-finding and combination-testing 
algorithms were then applied to the samples and set of 
candidate markers to identify a minimal set of markers and 
optimal cut-offs for robustly diagnosing Ewing sarcoma 
by IHC. These analyses indicated that while CD99 is a 
very valuable marker for screening for Ewing sarcoma, 
it needs auxiliary markers to establish a robust diagnosis. 
Further analyses indicated that while ATP1A1 exhibited 
high specificity (90%), it had no additional value for 
establishing Ewing sarcoma diagnosis if it was combined 
with BCL11B and GLG1. In fact, detecting high BCL11B 
and/or GLG1 expression in CD99-high tumors reached a 
specificity for Ewing sarcoma of at least 96%, and of 99% 
if both markers were highly expressed (defined as IRS 
> 9). Strikingly, strong combined immunoreactivity for 
BCL11B and GLG1 was not observed in any of the tested 
Ewing-like sarcomas, while CD99 immunoreactivity was 
found in 15 of 17 cases (88%). 

Thus, the following work-flow is proposed to 
establish a diagnosis of Ewing sarcoma (Figure 4c): In 
the case of clinically and/or radiologically suspected 
Ewing sarcoma, a biopsy should first be stained for CD99. 
If CD99 is positive (defined as IRS > 2), confirmatory 
molecular diagnostic procedures (such as FISH, qRT-
PCR, and/or next-generation sequencing), if available, 
are preferred. If molecular diagnostic procedures are 
unavailable or the biopsy material is not suitable, an IHC-
staining for BCL11B and GLG1 as well as subsequent 
scoring according to the Remmele and Stegner system 
should be performed. Since high expression of BCL11B 
and/or GLG1 (defined as IRS > 9) was found in 79% of 
all Ewing Sarcoma cases and associated with a specificity 
of 96%, diagnosis of Ewing sarcoma should be strongly 
considered if one or both markers are highly expressed.

Collectively, our data provide evidence that fast 
and robust diagnosis of Ewing sarcoma is enabled by 
immunohistochemical detection of the super-enhancer-
driven EWSR1-ETS targets BCL11B and GLG1.

DISCUSSION

Ewing sarcoma is genetically defined by 
pathognomonic EWSR1-ETS fusion transcripts [1]. To 
date, at least 18 types of chimeric EWSR1-FLI1 transcripts 
have been reported [6]. Alternatively, EWSR1 can be fused 
with ERG, ETV1, E1A-F (alias ETV4) or FEV in Ewing 
sarcoma [6]. Although CIC-DUX4- and BCOR-CCNB3-
translocated sarcomas were shown previously to be 
distinct from EWSR1-ETS-translocated Ewing sarcomas 

[12, 32], the situation was less clear for EWSR1-NFATc2-
translocated sarcomas. In fact, these tumors were until 
recently still considered by some authors as being simply a 
variant of Ewing sarcoma [33]. However, our PCA showed 
that EWSR1-NFATc2-translocated sarcomas are clearly 
distinct from EWSR1-ETS-translocated Ewing sarcomas, 
and confirm that EWSR1-NFATc2-translocated sarcomas 
also do not show any transcriptomic similarity with neither 
CIC-DUX4- nor BCOR-CCNB3-translocated sarcomas 
(Supplementary Figure 1).

Although several molecular diagnostic tools are 
available to identify Ewing sarcoma among morphological 
mimics by detecting these gene fusions (e.g. by FISH, 
qRT-PCR, and/or direct sequencing), there are several 
limitations: All these techniques require good-quality 
DNA or RNA, which is not available in more than 10% 
of cases [11]. In addition, FISH can sometimes yield 
non-informative results [14]. Moreover, there is a risk of 
falsely diagnosing a tumor as Ewing sarcoma based on 
FISH, because break-apart of the EWSR1 gene can also be 
observed in other sarcoma entities such as desmoplastic 
small-round-cell tumor (DSRCT), clear cell sarcoma, 
angiomatoid fibrous histiocytoma, extraskeletal myxoid 
chondrosarcoma, and a subset of myxoid liposarcoma 
[34]. Conversely, PCR-based assays can yield false 
negative results as the PCR may not cover the entire 
spectrum of different EWSR1-ETS fusions. Thus, some 
authors recommend combining FISH and qRT-PCR [11]. 
However, these sophisticated techniques are not available 
in all diagnostic facilities, especially in developing 
countries, which poses a significant obstacle to accurately 
diagnosing Ewing sarcoma.

To offer a simple, fast, and cost-effective way to 
reliably diagnose Ewing sarcoma by IHC, we combined 
in silico, in vitro, and in situ analyses, and found that 
the high expression of BCL11B and/or GLG1 is nearly 
diagnostic for this disease. It was shown that both genes 
are direct EWSR1-FLI1-targets, which are specifically 
overexpressed in Ewing sarcoma. In fact, their genetic 
loci exhibit EWSR1-FLI1-dependent super-enhancers 
that usually control the expression of tissue-defining 
genes [28]. In particular, the high expression of the 
chosen markers was highly effective in discriminating 
Ewing sarcoma from EWSR1-ETS-negative Ewing-like 
sarcomas, which expressed CD99 at high levels in 88% 
of our cases. Nevertheless, it should be noted that some 
small-round-cell sarcoma subtypes such as DSRCTs 
could not be included in our primary screen as compatible 
gene expression microarrays were not publicly available. 
However, Surdez et al. published a transcriptomic 
comparison of DSRCTs and the same Ewing sarcoma 
samples as used in the current study, which proved 
that none of our markers ranges among the top 150 
overexpressed probesets in DSCRT [35]. This finding was 
replicated in a subsequent study [25].

Previously, another EWSR1-FLI1 target gene, 
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NKX2-2, was proposed to serve in combination with 
CD99 as a useful immunohistochemical marker for Ewing 
sarcoma [36]. In our comparative microarray analyses, 
NKX2-2 did not, however, meet the stringent selection 
criteria for further validation. Similarly, another report 
showed that NKX2-2 is not fully specific for Ewing 
sarcoma [20]. 

Although most Ewing sarcoma tumors show 
little infiltration by lymphocytes [37], the fact that 
BCL11B is expressed in normal T cells (Supplementary 
Figure 2) should be taken into account when assessing 
immunoreactivity in small-round-cell tumors. In 
indeterminate cases, a CD3 staining may be helpful 
(Supplementary Figure 5).

In agreement with similar findings on different 
markers in other cancer entities [38, 39], ATP1A1 
and GLG1 may have diagnostic as well as prognostic 
utility. However, this finding needs to be validated in an 
independent and larger cohort on the protein level.

Interestingly, all three original candidate markers 
play a role in fibroblast growth factor (FGF)-signaling. 
ATP1A1 is required for unconventional secretion of FGF 
[40], BCL11B promotes FGF-signaling by transcriptional 
suppression of a negative feedback inhibitor [23, 41], 
and GLG1 (alias cysteine-rich FGF receptor) is known to 
regulate intracellular levels of FGF [42]. Several studies 
have shown that FGF promotes EWSR1-FLI1 expression 
[43] and growth of Ewing sarcoma cells in vitro and in 
vivo [25, 41], and that FGF-inhibitors could be used as 
a targeted treatment for Ewing sarcoma patients [44]. 
Although more work needs to be done to elucidate the 
precise role of ATP1A1, BCL11B, and GLG1 in FGF-
signaling, it is tempting to speculate that they could 
serve as predictive biomarkers for the efficacy of FGF-
inhibitors.

Collectively, we propose utilizing BCL11B and 
GLG1 as novel biomarkers for the diagnosis of Ewing 
sarcoma and recommend validating their diagnostic 
value in a prospective and multi-centered setting. It will 
be essential to further develop and characterize specific 
monoclonal antibodies directed against these proteins to 
improve and standardize their diagnostic utility.

MATERIALS AND METHODS

Human samples and ethics approval

Human tissue samples were retrieved from the 
archives of the Institute of Pathology of the LMU Munich 
(Germany), the Department of Pathology, Turgut Ozal 
Medical Center, Inonu University (Turkey), the Başkent 
University Hospital (Turkey), the Gerhard-Domagk-
Institute for Pathology of the University of Münster 
(Germany), the Institute of Biomedicine of Seville (Spain), 

and the Bone Tumour Reference Centre at the Institute of 
Pathology of the University Hospital Basel (Switzerland) 
with approval of the corresponding institutional review 
boards. The LMU Munich’s ethics committee approved 
the current study (approval no. 550-16 UE).

Microarray analyses

Publicly available gene expression data generated 
with the Affymetrix HG-U133Plus2.0 DNA microarray for 
1,790 samples comprising 21 tumor entities and 71 normal 
tissue types were retrieved from several repositories. 
Accession codes are given in Supplementary Table 5. 
All Ewing sarcoma samples were genetically verified to 
contain a specific EWSR1-ETS translocation as previously 
described [21]. After rigorous quality-checks (including the 
Relative Log Expression (RLE) and Normalized Unscaled 
Standard Error (NUSE)) and careful clinical annotation 
validation, expression intensities were calculated 
simultaneously with the Robust Multi-array Average 
(RMA) algorithm (including background adjustment, 
quantile normalization and summarization, using custom 
brainarray chip description file (CDF, ENTREZG, V19)), 
which yielded one optimized probe-set per gene [45]. 
The pairwise ER of every gene was calculated based on 
its median expression levels in primary Ewing sarcoma 
tumors and any of the 20 other remaining tumor entities. 
The differential gene expression’s statistical significance 
was calculated with an unpaired, two-tailed Student’s 
t-test. The resulting P values were adjusted for multiple 
testing with the Bonferroni method. Only genes with an 
ER of > 2 between Ewing sarcoma and any other tumor 
entity and a Bonferroni-corrected P value < 0.05 across 
all tumor entities compared with Ewing sarcoma were 
considered diagnostically relevant. PCA was performed in 
R [46]. Publicly available gene expression microarray data 
for ectopic EWSR1-FLI1 expression in embryonic stem 
cells (Affymetrix HG-U133Plus2.0; GSE64686 [47]) and 
from Ewing sarcoma cell lines that were either transiently 
transfected with an shRNA directed against EWSR1-FLI1 
or a control shRNA (TC252, SK-N-MC, STA-ET-7.2, 
STA-ET-1, WE68; Affymetrix HG-U133A; GSE14543 
[48]) or stably transduced with a doxycycline-inducible 
shRNA against EWSR1-FLI1 (A673; Affymetrix HG-
U133A 2.0; GSE27524 [49]) were normalized by RMA 
using custom brainarray CDF (ENTREZG, v19).

To identify the pathways and biological processes 
associated with a given gene present in normalized gene 
expression data from primary Ewing sarcoma tumors, 
gene-set enrichment analyses (GSEAs) were performed 
on ranked lists of genes in which all genes were ranked by 
their correlation coefficient with the given reference gene 
(MSigDB, c2.all.v5.1). GSEA was carried out with 1,000 
permutations in default settings [50].
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Analysis of DNase-Seq and ChIP-Seq data and 
genome-wide identification of super-enhancers

Publicly available data were retrieved from the 
Gene Expression Omnibus (GEO). ENCODE SK-N-
MC DNase-Seq (GSM736570) [51] were analyzed in the 
Nebula environment [52] using Model-based Analysis 
of ChIP-Seq v1.4.2 (MACS) [53] and converted to 
*.wig format for display in the UCSC Genome Browser 
[54]. Preprocessed ChIP-Seq data from Riggi et al. [55] 
(GSE61944) were converted to *.wig format with the 
UCSC’s bigWigToWig conversion tool. 

The following samples were used in this study:
ENCODE_SKNMC_hg19_DNAseHS_rep2
GSM1517546 SKNMC.shGFP96.FLI1
GSM1517555 SKNMC.shFLI196.FLI1
GSM1517547 SKNMC.shGFP96.H3K27ac
GSM1517556 SKNMC.shFLI196.H3K27ac
GSM1517569 A673.shGFP48.FLI1
GSM1517572 A673.shFLI148.FLI1
GSM1517571 A673.shGFP96.H3.k27ac
GSM1517574 A673.shFLI196.H3K27ac
ChIP-seq data of the histone modification H3K27ac 

in A673 and SK-N-MC Ewing sarcoma cell lines 
(shGFP96) from a genome-wide chromatin analysis 
(GSE61944) conducted by Riggi et al. [55] were used 
for epigenetic analysis of enhancers. The already aligned 
Sequence Read Archives (*.sra) of both cell lines and the 
corresponding whole cell extracts were downloaded from 
GEO. Before peak calling with MACS2 [53], the data 
were prepared with SAMtools [56]. ChIP peak annotation 
was done with HOMER [57]. Super-enhancers were 
identified with ROSE [28, 58].

Cell culture, DNA constructs, and reporter assays

A673/TR/shEF1 Ewing sarcoma cells, which 
harbor a doxycycline-inducible shRNA against EWSR1-
FLI1, were described previously [59] and kindly provided 
by J. Alonso (Madrid, Spain). Unmodified A673 cells 
were obtained from ATCC. All cells were grown at 
37°C in 5% CO2 in a humidified atmosphere in RPMI 
1640 medium (Biochrom) containing 10% Tetracycline-
free FCS (Biochrom), 100 U/ml penicillin, and 100 μg/
ml streptomycin (both Biochrom). Cell line purity was 
confirmed by short tandem repeat profiling (latest profiling 
15th December 2015), and cells were checked routinely 
for the absence of mycoplasma by PCR. Human GGAA-
microsatellites close to the ATP1A1, BCL11B, or GLG1 
gene were cloned from the A673 Ewing sarcoma cell line 
into the pGL3-luc vector (Promega) upstream of the SV40 
minimal promoter. qRT-PCRs-Primer sequences were as 
follows: 

forward 
5’-CTAGCCCGGGCTCGAGAGCAA 

CACAAGGACTCAATTAC-3’ and reverse 
5’-GATCGCAGATCTCGAGCTACTATGATGCAAA 
GCTGAGTG-3’ for the ATP1A1 associated GGAA-
microsatellite;

forward 5’-CTAGCCCGGGCTCGAG 
GCCGTCTCTCTGTTCCTTAT-3’ and reverse 
5’-GATCGCAGATCTCGAGAATCTCTGCTCCT 
TCATCCC-3’ for the BCL11B associated GGAA-
microsatellite; and

forward 
5’-CTAGCCCGGGCTCGAGGCTACTATAGCCAA 

ATGCAAAGAAGAA-3’ and reverse 
5’-GATCGCAGATCTCGAG TGCACTGGGTTATA-
CAGAAAGAGTTC-3’ for the GLG1 associated GGAA-
microsatellite.

For the reporter assays, 3 × 105 A673/TR/shEF1 
cells per well of a six-well plate were seeded in 2.5 ml 
medium and transfected with pGL3-luc vectors and Renilla 
pGL3-Rluc (ratio, 100:1) using Lipofectamine LTX and 
Plus Reagent (Invitrogen). After 4 h transfection media 
were replaced by media with or without doxycycline (1 
μg/ml). Cells were lysed after 72 h and assayed with a 
dual luciferase assay system (Berthold). Firefly luciferase 
activity was normalized to Renilla luciferase activity.

RNA extraction, reverse transcription, and 
quantitative real-time PCR (qRT-PCR)

RNA was extracted with the Nucleospin II kit 
(Macherey-Nagel) and reverse-transcribed using the 
High-Capacity cDNA Reverse Transcription Kit (Applied 
Biosystems). qRT-PCRs were performed using SYBR 
green (Applied Biosystems). Oligonucleotides were 
purchased from MWG Eurofins Genomics. Reactions 
were run on a Bio-Rad CFX Connect instrument and 
analyzed using Bio-Rad CFX Manager 3.1 software. 
Primer sequences for EWSR1-FLI1 and RPLP0 were 
reported previously [25].

Construction of TMAs and IHC

A total of 174 archival formalin-fixed and paraffin-
embedded (FFPE) primary tissue samples with reviewed 
histological diagnosis were obtained from the participating 
institutions and collected at LMU Munich’s Institute of 
Pathology. Representative FFPE tumor blocks were also 
selected for TMA construction at LMU Munich’s Institute 
of Pathology. A detailed description of the TMA is given 
in Table 1.

All Ewing sarcoma FFPE samples showed 
cytogenetic evidence for a translocation of the EWSR1 
gene as determined by fluorescence in situ hybridization 
(FISH) and were reviewed by a reference pathologist. For 
this study, Ewing-like sarcomas were defined as small-
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round-cell sarcomas being either positive for CIC-DUX4 
(8 cases) or BCOR-CCNB3 (2 cases) or unclassified (7 
cases) after extensive reference pathologist work-up. Each 
TMA slide contained three cores (each 1 mm in diameter) 
from every sample as well as internal controls. 

For IHC, 4 μm sections were cut, and antigen 
retrieval was performed with microwave treatment with 
750W at pH7.5 TRIS buffer (2 x 15 min) using the antigen 
retrieval AR kit (DCS, HK057-5KE) for GLG1 or the 
Target Retrieval Solution (Dako, S1699) for BCL11B 
and ATP1A1. Blockage of endogenous peroxidase was 
performed using 7.5% aqueous H2O2 solution at room 
temperature and blocking serum from the corresponding 
kits for 20 min.

Slides were then incubated for 60 min with 
the primary antibodies anti-ATP1A1 (1:330 dilution, 
Proteintech, 14418-1-AP) [60], anti-BCL11B (1:1000 
dilution, Abcam, ab70453) or anti-GLG1 (1:250 dilution, 
Sigma, HPA010815) [61]. Then slides were incubated with 
a secondary anti-rabbit IgG antibody (ImmPress Reagent 
Kit, Peroxidase-conjugated) followed by target detection 
using AECplus chromogen for 10 min (Dako, K3461).

For IHC of CD99, 4-μm sections were cut and 
incubated for 32 min with an anti-CD99 antibody (1:40 
dilurion, Dako, 12E7) using the Roche UltraView 
detection kit.

Evaluation of immunoreactivity and automated 
cut-off finding

Semi-quantitative evaluation of marker 
immunostaining was carried out by three independent 
observers (MCB, MD, MFO) analogous to scoring of 
hormone receptor IRS ranging from 0-12 according 
to Remmele and Stegner [31], which is routinely used 
in surgical pathology to quantify hormone receptor 
expression in mammary carcinoma.

The percentage of cells with marker expression was 
scored and classified in five grades (grade 0 = 0-19%, 
grade 1 = 20-39%, grade 2 = 40-59%, grade 3 = 60-79% 
and grade 4 = 80-100%) after examination of 10 high-
power fields (40×) of at least one section per sample. In 
addition, the intensity of marker immunoreactivity was 
determined (grade 0 = none, grade 1 = low, grade 2 = 
moderate and grade 3 = strong). The product of these two 
grades defined the final IRS. Sensitivity and specificity of 
each marker for Ewing sarcoma were calculated with an 
in-house generated VBA (Visual Basic for Applications) 
script implemented in Microsoft Excel (Microsoft). The 
script computed sensitivity and specificity for all possible 
combinations of markers and within these combinations, 
for all possible cut-offs for every marker. The best 
marker and cut-off combination was chosen based on the 
following criteria: high specificity (defined as > 95%), 
high sensitivity, and discriminability between positive 

(IRS higher than the cut-off) and negative samples.

Survival analysis

Microarray data of 166 primary Ewing sarcoma 
tumors (GSE63157 [62], GSE34620 [21], GSE12102 
[63], and GSE17618 [64]), which had well-curated 
clinical annotations available, were downloaded from 
the GEO. The data were generated on Affymetrix HG-
U133Plus2.0 or Affymetrix HuEx-1.0-st microarray 
chips and normalized separately by RMA using custom 
brainarray CDF files (v20). Batch effects were removed 
using ComBat [65, 66]. Samples were stratified into 
two groups based on their median intra-tumoral gene 
expression levels. Significance levels were calculated with 
a Mantel-Haenszel test. P values < 0.05 were considered 
statistically significant.

Abbreviations

CDF-chip description file; DSRCT-desmoplastic 
small-round-cell tumor; GEO-gene expression omnibus; 
IRS-immunoreactivity score; PCA-principal component 
analysis; RMA-robust multi-array average; VBA-
visual basic for applications; ChIP-Seq-chromatin 
immunoprecipitation followed by high-throughput 
sequencing; ER-expression ratio; FGF-fibroblast growth 
factor; GSEA-gene-set enrichment analysis; IHC-
immunohistochemisty; MACS-Model-based Analysis of 
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Deciphering the ways in which somatic mutations and 
germline susceptibility variants cooperate to promote cancer 
is challenging. Ewing sarcoma is characterized by fusions 
between EWSR1 and members of the ETS gene family, 
usually EWSR1-FLI1, leading to the generation of oncogenic 
transcription factors that bind DNA at GGAA motifs1–3.  
A recent genome-wide association study4 identified susceptibility 
variants near EGR2. Here we found that EGR2 knockdown 
inhibited proliferation, clonogenicity and spheroidal growth 
in vitro and induced regression of Ewing sarcoma xenografts. 
Targeted germline deep sequencing of the EGR2 locus in affected 
subjects and controls identified 291 Ewing-associated SNPs. At 
rs79965208, the A risk allele connected adjacent GGAA repeats 
by converting an interspaced GGAT motif into a GGAA motif, 
thereby increasing the number of consecutive GGAA motifs 
and thus the EWSR1-FLI1–dependent enhancer activity of this 
sequence, with epigenetic characteristics of an active regulatory 
element. EWSR1-FLI1 preferentially bound to the A risk allele, 
which increased global and allele-specific EGR2 expression. 
Collectively, our findings establish cooperation between a 
dominant oncogene and a susceptibility variant that regulates a 
major driver of Ewing sarcomagenesis.

Ewing sarcoma is an aggressive pediatric malignancy that likely arises 
from neural crest– or mesoderm-derived mesenchymal stem cells 
(MSCs)5,6. It is driven by oncogenic fusions between EWSR1 and 

genes in the ETS family (mostly FLI1)1,7. EWSR1-FLI1 binds DNA 
either at ETS-like consensus sites containing a GGAA core motif or, 
more specifically with respect to other ETS family members, at GGAA 
microsatellites, where the enhancer activity increases with the number 
of consecutive GGAA motifs2,3. Notably, ~40% of EWSR1-FLI1  
binding occupancy maps to GGAA microsatellites8. Aside from 
EWSR1-FLI1, Ewing sarcoma is known for its paucity of recurrent 
somatic abnormalities9–11.

Epidemiological studies have documented striking disparities in 
the incidence of Ewing sarcoma across human populations12, imply-
ing a strong contribution of germline variation to Ewing sarcoma 
tumorigenesis. Our recent genome-wide association study (GWAS) 
identified three significant susceptibility loci with higher odds ratios 
(ORs) than commonly observed in adult cancers (OR > 1.5, compared 
with OR < 1.3 for adult cancers)4,13. However, the potential oncogenic 
cooperation between the major EWSR1-FLI1 somatic alteration and 
these Ewing sarcoma susceptibility loci remains to be elucidated. Here 
we focused on the chr10q21.3 susceptibility locus, which harbors two 
plausible candidate genes, ADO (2-aminoethanethiol dioxygenase), 
encoding a non-heme iron enzyme that converts cysteamine into tau-
rine14, and EGR2 (early growth response 2; also known as KROX20), 
encoding a conserved zinc-finger transcription factor that promotes 
proliferation, differentiation and/or survival in different cell types, 
including neural crest–derived Schwann cells and mesoderm-derived 
osteoprogenitors15,16. Previous data showed that ADO and EGR2 are 
overexpressed in Ewing sarcoma compared with other solid tumors 
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and that their elevated expression is associated with risk alleles4. EGR2 
and, to a lesser extent, ADO are also strongly overexpressed in Ewing 
sarcoma relative to their expression in normal tissues (Fig. 1a and 
Supplementary Fig. 1). Comparative analysis of microarray data from 
seven pediatric soft tissue and brain tumor types showed that EGR2, 
but not ADO, clusters with established EWSR1-FLI1 target genes17 
(Fig. 1b). To further explore the expression quantitative trait locus 
(eQTL) properties of the Ewing sarcoma chr10 susceptibility locus, we 
evaluated available genotype and matched expression data sets from 
Ewing sarcoma and other small-round-cell tumors, as well as from 
normal tissues4,18–23. Interestingly, the Ewing sarcoma risk-associated 
rs1848797, which was genotyped in all data sets, was associated with 
higher EGR2 and ADO expression only in Ewing sarcoma, and not 
in EWSR1-FLI1–negative tissues (Table 1, Supplementary Data and 
Supplementary Fig. 2). Moreover, ectopic EWSR1-FLI1 expression in 
human MSCs specifically induced EGR2 expression (Fig. 1c), whereas 
EWSR1-FLI1 knockdown by specific small interfering RNA (siRNA) 
consistently reduced EGR2 expression in four different Ewing sarcoma 
cell lines (Supplementary Fig. 3). Such regulation by EWSR1-FLI1 
was not observed for ADO. These data strongly suggest that EGR2 
and ADO are specifically regulated by eQTLs in Ewing sarcoma, but 
that only EGR2 is EWSR1-FLI1 dependent.

Knockdown experiments showed that inhibition of EGR2, but not 
of ADO, impaired the proliferation and clonogenicity of four differ-
ent Ewing sarcoma cell lines, reduced cell cycle progression through 

S-phase and reduced cell viability (Fig. 2a,b and Supplementary  
Fig. 4). To confirm the contribution of EGR2 to Ewing sarcoma 
growth, we generated Ewing sarcoma cell lines with a doxycycline-
inducible anti-EGR2 small-hairpin RNA (shRNA) expression system. 
Long-term EGR2 knockdown not only dramatically reduced anchor-
age-independent spheroidal growth in vitro but, even more strikingly, 
also induced the regression of Ewing sarcoma xenografts in vivo  
(Fig. 2c,d). Consistent with the hypothesis that EGR2 acts down-
stream of EWSR1-FLI1, transcriptome profiling of Ewing sarcoma 
cells after knockdown of either gene showed highly significantly  
overlapping transcriptional signatures (Fig. 2e and Supplementary 
Data). Collectively, these data suggest that EGR2 is an EWSR1-FLI1–
induced target gene critical for Ewing sarcoma tumorigenicity.

As several reports have shown that EGR2 acts downstream of  
the epidermal growth factor (EGF) and fibroblast growth factor (FGF)  
pathway15,24,25, we explored a potential contribution of these path-
ways to Ewing sarcoma growth and EGR2 regulation. Whereas  
EGF receptors (EGFRs) are minimally expressed in Ewing sarcoma,  
some FGF receptors (FGFRs), particularly FGFR1, are highly 
expressed (Supplementary Fig. 5a). Consistently, bFGF, but not 
EGF, strongly induced both proliferation of and EGR2 expression in 
Ewing sarcoma cells (Supplementary Fig. 5b,c). These data indicate  
that EWSR1-FLI1 and FGF signaling converge to upregulate the 
expression of EGR2.

To fine-map the chr10 susceptibility locus and to identify variants 
that potentially contribute to EGR2 overexpression, we performed tar-
geted deep sequencing across the chr10 susceptibility locus, including 
the flanking haplotype blocks, in the germline DNA of 343 individuals 
with Ewing sarcoma and 251 genetically matched controls (median 
target-region coverage  10×, 91.35%; median nucleotide cover-
age, 217×). Genetic matching was based on principal-component  
analysis4 of SNP array data (Supplementary Fig. 6). After quality 
control metrics had been applied to the sequencing data (for example,  

10× coverage per position, genotype call rate of 90% and com-
pliance with Hardy-Weinberg equilibrium), 290 common SNPs 
(minor allele frequency > 0.05) were identified that were significantly  
associated with Ewing sarcoma (P < 0.05; Fig. 3a, Supplementary 
Data and Supplementary Fig. 7). These included all 14 sentinel  
SNPs reported in our previous GWAS4. Haplotype and linkage dis-
equilibrium (LD) analysis showed that this locus consists of discrete 
subhaploblocks (Fig. 3a and Supplementary Data).
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Figure 1 EGR2 overexpression is mediated by EWSR1-FLI1. (a) EGR2 and ADO expression levels in Ewing sarcoma (EwS, GSE34620) and normal 
tissue (GSE3526). The normal-body atlas consisted of 353 microarrays representing 63 individual tissue types (Supplementary Fig. 1). Data are shown 
as medians (horizontal bars) with ranges for the 25th–75th percentile (box) and 10th–90th percentile (whiskers). P values determined via two-tailed 
unpaired Student’s t-test with Welch’s correction. (b) Between-group analysis. Genes (gray dots) and tumor samples (colored spheres) are separated 
along three axes. EwS, Ewing sarcoma (n = 279); RMS, rhabdomyosarcoma (n = 121); OS, osteosarcoma (n = 25); DSRCT, desmoplastic small- 
round-cell tumor (n = 32); MB, medulloblastoma (n = 52); NB, neuroblastoma (n = 64); MRT, malignant rhabdoid tumor (n = 35). The main genes 
specifically overexpressed in Ewing sarcoma are indicated. (c) Quantitative real-time PCR analysis of EGR2 and ADO expression in human MSC lines 
L87 and V54-2 after ectopic EWSR1-FLI1 expression (pEWSR1-FLI1) as compared with empty vector (pControl). Data are shown as the mean and 
s.e.m.; n  9 independent experiments. The EWSR1-FLI1 targets NR0B1 and PRKCB served as positive controls17,35. EWSR1-FLI1 expression was 
confirmed by immunoblot (loading control: -actin).

Table 1 Overexpression of EGR2 and ADO is mediated by  
Ewing sarcoma–specific eQTLs

P value correlation with rs1848797

Tissue type n EGR2 ADO

Malignant Ewing sarcoma 117 0.0077 0.0023
Medulloblastoma 283 ns ns
Neuroblastoma 74 ns ns
AML 106 ns ns

Normal LCL 329 ns ns
Airway epithelium 114 ns ns
Broad GTEx 1,421 ns ns

eQTL analyses across tissue types identified Ewing sarcoma–specific correlations of 
EGR2 and ADO expression with the risk allele at rs1848797. The Broad GTEx database 
comprised 13 normal tissue types ( 60 samples per tissue type). ns, not significant; 
AML, acute myeloid leukemia; LCL, lymphoblastoid cell lines.
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To prioritize SNPs for functional assessment, we crossed our 
sequencing data with published chromatin immunoprecipitation 
(ChIP)-Seq, DNase-Seq and ENCODE data, with particular focus 
on Ewing sarcoma cell lines8,26,27, as recent studies have suggested 
that most causal SNPs cluster in epigenetically active and cell- 
type-specific regulatory elements28,29 (Fig. 3a). We also included 
data on conserved EGR2 regulatory elements previously mapped in 
animal models30 (Fig. 3a and Supplementary Fig. 8). We observed 
activating chromatin marks, signals for formaldehyde-assisted  
isolation of regulatory elements (FAIRE) and/or DNaseI hypersen-
sitivity at five main loci: two loci corresponding to known EGR2 
regulatory elements (MSE (myelinating Schwann cell enhancer)30 
and BoneE (bone enhancer) (unpublished data); Supplementary 
Fig. 8), one to the ADO promoter, and two to GGAA microsatel-
lites (mSat1 and mSat2) that overlapped with EWSR1-FLI1 ChIP-
Seq signals (Fig. 3a). Because the ADO promoter does not contain 
Ewing sarcoma–associated SNPs, it was not further investigated. 
Luciferase reporter assays indicated that BoneE and MSE had no and 
weak activity in Ewing sarcoma, respectively (Fig. 3b,c). In contrast, 
both GGAA microsatellites exhibited strong EWSR1-FLI1–dependent  
enhancer-like activity (Fig. 3b,c). This activity corresponded to 
EWSR1-FLI1–dependent activating chromatin marks H3K4me1 and 
H3K27ac (Fig. 3a) and was consistent with recent evidence suggesting 
that EWSR1-FLI1 can act as a pioneer transcription factor to create 
de novo enhancers at GGAA microsatellites27.

Because of its observed higher enhancer activity, relatively simpler 
structure compared with that of mSat1, and localization in the sub-
haploblock containing some of the most significant Ewing sarcoma– 
associated SNPs (Figs. 3a and 4a and Supplementary Fig. 9), we 
focused on mSat2 and carried out PCR-based targeted long-read 

(300/300 nt) deep resequencing of all samples to analyze its genetic 
architecture. This yielded 1,158 analyzable mSat2 sequences, which 
revealed another SNP, rs79965208, in strong LD (D  = 0.97) with the 
nearby rs6479860, one of the strongest sentinel SNPs from our GWAS4 
(Fig. 4a and Supplementary Data). The significant association of the 
A allele of rs79965208 with Ewing sarcoma (P = 0.022, logistic regres-
sion) was replicated in two independent cohorts, the first based on 
direct sequencing of this SNP in 156 additional Ewing sarcoma sub-
jects and 184 controls of European descent (P = 6.15 × 10−3, logistic 
regression), and the second on imputation from the 1000 Genomes 
Project Phase 3 reference panel31 of 162 individuals with first pri-
mary Ewing sarcoma from the Childhood Cancer Survivor Study32 
genotyped on Illumina HumanOmni5Exome arrays and 435 cancer-
free controls from the Division of Cancer Epidemiology and Genetics  
(P = 9.33 × 10−6, logistic regression) (Supplementary Data).

Interestingly, rs79965208 converts a GGAT motif into a GGAA 
motif, thereby connecting two adjacent GGAA repeats (Fig. 4a). The 
first GGAA repeat is polymorphic and contains a median number of 11 
GGAA motifs, whereas the second is not polymorphic and is composed 
of four GGAA motifs. The A allele at rs79965208 therefore increases 
the median number of consecutive GGAA motifs from 11 to 16.

The previously described threshold for exponentially increasing 
EWSR1-FLI1–dependent enhancer activity is >12 consecutive GGAA 
motifs3. In the current study, a significantly larger proportion of Ewing 
sarcoma mSat2 sequences contained >12 GGAA motifs than did con-
trols (65.88% versus 54.99%, P = 2.10 × 10−6, two-tailed Fisher’s exact 
test). We subsequently examined the enhancer properties of mSat2 
corresponding to the reference sequence (hg19) containing either the 
T or the A allele at rs79965208 in a luciferase assay. Relative to the 
T allele, the A allele increased the EWSR1-FLI1–induced enhancer 
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Figure 2 EGR2 is critical for the growth and tumorigenicity of Ewing sarcoma. (a) xCELLigence proliferation kinetics of A673 cells. Data shown are the 
mean  s.e.m. of results obtained with two different siRNAs against EGR2 and three different siRNAs against ADO; n  6 technical replicates. EGR2 
or ADO knockdown was confirmed at 48 h by quantitative real-time PCR (mean  s.e.m., n  4 independent experiments) and immunoblot (loading 
control: -actin). (b) Validation of xCELLigence results by cell counting (including supernatant) 96 h after transfection of A673, SK-N-MC, EW7 
and POE cells. Data are mean and s.e.m. of results obtained with two different siRNAs against EGR2 and three different siRNAs against ADO; n  3 
independent experiments. (c) Left, phase-contrast images of sphere-formation assays (scale bars, 1 mm). Right, mean and s.e.m. of n  3 independent 
experiments performed with SK-N-MC and POE containing a doxycycline-inducible shRNA against EGR2 (shEGR2_4 or shEGR2_5). Also shown is a 
representative EGR2 immunoblot for POE cells (96-h doxycycline treatment; loading control, -actin). (d) Growth curves for subcutaneously xenografted 
POE or SK-N-MC cells in mice (shControl and shEGR2_4). When tumors reached a volume of 75–100 mm3, doxycycline and sucrose (Dox +) or sucrose 
alone (Dox −) was added to the drinking water (treatment). Mean  s.e.m.; n  6 mice per group. P values determined via two-tailed unpaired Student’s 
t-test. (e) Size-proportional Venn diagrams of up- and downregulated genes 48 h after knockdown of EWSR1-FLI1 (siEF1) or EGR2 (siEGR2) in A673 
and SK-N-MC cells (minimum log2 fold change  0.5, Benjamini-Hochberg–corrected P < 0.05). Fisher’s exact test.
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Figure 3 Fine-mapping and epigenetic 
profiling revealed candidate EGR2 regulatory 
elements. (a) Top, Manhattan plot of 1,440 
SNPs identified by targeted deep sequencing 
within the chr10 susceptibility locus and 
flanking haplotype blocks. rs10995305 was 
the SNP most significantly associated with 
Ewing sarcoma at this locus (false discovery 
rate (FDR)-corrected P = 1.27 × 10−4). The 
blue lines indicate the recombination-rate 
estimates from the HapMap project36. Middle, 
LD plot of the chr10 susceptibility locus hotspot 
(chr10:64,449,549–64,756,872) based on 
the analysis of 290 significant Ewing sarcoma–
associated SNPs in 343 affected subjects  
(a subset of the original GWAS cohort4) and 
251 controls. Bottom, epigenetic profile of the 
chr10 susceptibility locus hotspot in the Ewing 
sarcoma cell lines SK-N-MC, A673 and EW502. 
Displayed are signals from published ChIP-Seq 
or DNase-Seq data for RNA polymerase II  
(pol II), DNaseI hypersensitivity (HS), EWSR1-
FLI1 (EF1), H3K4me1 and H3K27ac in  
Ewing sarcoma cells transfected with either  
a control shRNA (shGFP) or a specific shRNA 
against EWSR1-FLI1 (shEF1), and FAIRE8,26,27. 
The read count is given on the left. mSat1  
and mSat2 are GGAA microsatellites 
(Supplementary Fig. 8). (b,c) Normalized 
luciferase reporter signals in A673-TR-shEF1 
and SK-N-MC–TR–shEF1 cells containing a doxycycline-inducible shRNA against EWSR1-FLI1. EWSR1-FLI1 knockdown was confirmed by quantitative 
real-time PCR and immunoblot (loading control: -tubulin). Data are shown as means and s.e.m.; n  5 independent experiments.

Figure 4 Germline variation at mSat2 
modulates EWSR1-FLI1–dependent EGR2 
expression. (a) Coordinates, epigenetic  
profile and sequence of the mSat2 locus. 
Consistent with previous studies, H3K4me1 
and H3K27ac signals peaked adjacent to the 
repetitive GGAA mSat8,27. The P value  
reported for rs6479860 reflects the  
significance of its association with Ewing 
sarcoma. (b) Luciferase reporter signals of 
mSat2 with the T or A allele at rs79965208. 
Data are mean and s.e.m.; n  6 independent 
experiments. P values determined via two-tailed 
unpaired Student’s t-test. (c) EGR2 expression 
measured by quantitative real-time PCR in 117 
Ewing samples (103 primary tumors and 14 
cell lines). EGR2 expression was normalized to 
that of RPLP0 and is displayed as expression 
relative to that of the median sample (set 
as 1). Horizontal bars represent means, and 
whiskers represent the 95% confidence interval 
boundaries. P value determined via linear 
regression. (d) Allele fraction of reads mapping 
to rs79965208 generated in a ChIP-MiSeq 
experiment in the A/T Ewing cell line MHH-ES1 
(Supplementary Fig. 10 and Supplementary Data). (e) Left, representative Integrative Genomics Viewer37 pile-up of reads covering the EGR2  
3  UTR rs61865883 in matched constitutional or tumor DNA and tumor-derived RNA. The sample EW012 exhibited transcriptional allelic imbalance  
of EGR2, whereas EW577 did not. Right, raw rs61865883 allele fractions of targeted RNA deep sequencing in 45 Ewing sarcomas heterozygous 
(A/T) for the transcribed EGR2 3  UTR allelic marker rs61865883. Horizontal bars represent means, and whiskers show the 95% confidence interval 
boundaries. P values determined via parametric two-tailed Student’s t-test. (f) Regulatory model of EWSR1-FLI1 and mSat2 controlling EGR2 
expression and proliferation of Ewing sarcoma cells in convergence with the FGF pathway.

activity of mSat2 (Fig. 4b). This transcription-activation property was 
observed in two Ewing sarcoma cell lines and was strictly dependent 
on EWSR1-FLI1, as its doxycycline-induced knockdown abrogated 
luciferase activity (Fig. 4b).

In accordance with the reporter assays, the A allele was associated 
with significantly higher EGR2 expression in Ewing sarcoma tumors 
(Fig. 4c). Consistently, ChIP experiments in the A/T Ewing sarcoma 
cell line MHH-ES1 using a specific antibody to FLI1 followed by  
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targeted deep sequencing of mSat2 identified significant enrichment 
of reads containing the A allele (Fig. 4d and Supplementary Fig. 10), 
indicating that EWSR1-FLI1 preferentially bound to the A allele of 
rs79965208. Moreover, taking advantage of a transcribed SNP in the  
3  UTR of EGR2 (rs61865883), we assessed allele-specific EGR2 
expression via targeted RNA deep sequencing. Across 45 individu-
als with heterozygosity for rs61865883, the transcriptional allelic 
imbalance was significantly higher in 16 tumors heterozygous for 
rs79965208 (A/T) than in 29 tumors homozygous (A/A or T/T) for 
this locus (Fig. 4e). Collectively, our results show that EGR2 is a 
Ewing sarcoma susceptibility gene whose overexpression in tumors is  
mediated by EWSR1-FLI1 through a risk-conferring enhancer-like 
polymorphic GGAA microsatellite (Fig. 4f).

Importantly, we noted that the chr10 signal was strongly reduced 
when we performed association testing conditionally on rs79965208, 
which indicated that this SNP is a major functional variant at this 
locus. However, some association signal was still observed, so it 
remains plausible that other SNPs could also have a regulatory effect 
on EGR2 expression through other mechanisms (Supplementary  
Fig. 11). The relatively low EGR2 expression observed in some Ewing 
sarcoma cases, particularly in cases with the T/T genotype, sug-
gests that EGR2 might not always be absolutely necessary for Ewing  
sarcoma growth, and that growth may thus rely on alternative ‘trans-
formation-facilitating genes’, possibly linked to other Ewing sarcoma 
susceptibility loci. However, we could not test whether Ewing sarcoma 
cells with a T/T genotype at rs79965208 have decreased sensitivity  
to EGR2 knockdown, as the T/T genotype was not observed across  
21 different Ewing sarcoma cell lines (Supplementary Data).

As the incidence of Ewing sarcoma is higher in Europeans than in 
Africans12, we investigated the frequency of the A allele at rs79965208 
across human populations, as determined by the 1000 Genomes 
Project31 (Supplementary Data). Strikingly, the A risk allele is 
highly significantly more frequent in non-African human popula-
tions (mean, 0.64; range, 0.57–0.70; n = 1,886) than in Africans (0.25; 
n = 691) (P = 2.20 × 10−16, Fisher’s exact test), which suggests that 
rs79965208 underwent a recent expansion in non-Africans and that 
it might contribute to the variable susceptibility to Ewing sarcoma 
across populations.

To our knowledge, this constitutes one of the first reports of how a 
germline variant highly correlated with the reported GWAS signal can 
inform our understanding of a cancer-specific acquired genetic abnor-
mality22. Furthermore, our findings are in line with predictions that 
causal variants are not necessarily among the most significant variations 
leading to the identification of the susceptibility loci, but rather are in 
strong LD with them33,34. Moreover, they illustrate the contribution of 
a common germline variant that alters one or more key biological path-
ways in Ewing sarcoma through the modification of transcription regu-
latory elements that mediate the effects of a dominant oncogene13.

URLs. https://www.addgene.org/21915/; http://www.gtexportal.
org/home/; http://www.r-project.org/; https://github.com/jstjohn/
SeqPrep; http://broadinstitute.github.io/picard/; http://www.clustal.
org/omega/.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Accession codes. Primary microarray data are compliant with the 
MIAME guidelines and were deposited at the Gene Expression 
Omnibus (GEO) under accession GSE62090.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Cell culture. Ewing sarcoma cell lines A673, SK-N-MC, RDES and SK-ES1 
were obtained from the American Type Culture Collection (ATCC); lines 
MHH-ES1 and TC-71 were from the German Collection of Microorganisms 
and Cell Cultures (DSMZ); lines EW1, EW3, EW7, EW16, EW18, EW23, EW24 
and ORS were from the International Agency for Research on Cancer (Lyon, 
France); lines STA-ET-1, STA-ET-3, and STA-ET-8 were from the Children’s 
Cancer Research Institute Vienna (kindly provided by H. Kovar); lines ES7, 
EW22 and POE were from the Institut Curie Research Centre (Paris, France);  
and line TC-32 was from the University of Nantes (kindly provided by  
F. Redini). A673-TR-shEF1 and SK-N-MC–TR–shEF1 harbor a doxycycline-
inducible shRNA against EWSR1-FLI1 (ref. 38). Neuroblastoma: SK-N-SH, 
IMR-32; breast cancer: MDA-MB-231; alveolar rhabdomyosarcoma: SJ-RH30 
(from ATCC). Human MSC lines L87 and V54-2 were kindly provided by  
P. Nelson (University Hospital LMU)39,40. Cells were grown at 37 °C in 5% CO2 
in a humidified atmosphere in RPMI 1640 medium (Gibco) containing 10% 
FCS (Eurobio), 100 U/ml penicillin and 100 g/ml streptomycin (Gibco). Cell 
line purity and authenticity were confirmed by deep sequencing of suscepti-
bility loci and short tandem repeat profiling. Cells were checked routinely by 
PCR for the absence of mycoplasma.

Transient transfection. Cells were seeded at a density of 1 × 105 to 2 × 105 
per well of a six-well plate in a volume of 2.1 ml medium. Cell numbers were 
adjusted accordingly for transfection in larger or smaller volumes, and cells 
were transfected with siRNA (15 nM) with RNAiMAX (Invitrogen). The 
Qiagen AllStars Negative Control non-targeting siRNA was used as a control. 
siRNAs are listed in the Supplementary Data. For transfection with plasmids,  
3 × 105 cells per well of a six-well plate were seeded in 2.5 ml medium and 
transfected with Lipofectamine LTX and Plus Reagent (Invitrogen). The 
pCDH1-MCS1-Puro (pControl) (System Biosciences) and the pCDH1-EWSR1- 
FLI1 (pEWSR1-FLI1) vectors were described previously3,35.

Doxycycline-inducible shRNA constructs. Negative-control and specific 
shRNAs against EGR2 were purchased from Sigma-Aldrich (Supplementary 
Data) and cloned into the pLKO-Tet-On all-in-one system41 (Addgene). 
Lentivirus was produced in HEK293T cells (from ATCC). SK-N-MC and 
POE cells were infected with a multiplicity of infection of 10 and selected 
for 7 d using 1–2 g/ml puromycin (Invitrogen). Puromycin-resistant clones 
were grown from single cells. Knockdown efficacy was assessed in individual 
clones by quantitative real-time PCR (qRT-PCR) 96 h after the addition of 
doxycycline (1 g/ml).

RNA extraction, reverse transcription and qRT-PCR. RNA was extracted 
with the Nucleospin II kit (Macherey-Nagel) and reverse-transcribed using 
the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems). 
PCRs were performed either using TaqMan assays with qRT-PCR Mastermix 
Plus without UNG (Eurogentec) or using SYBR green (Applied Biosystems). 
Oligonucleotides were purchased from MWG Eurofins Genomics 
(Supplementary Data). Reactions were run on an ABI/PRISM 7500 instrument 
and analyzed using the 7500 system SDS software (Applied Biosystems).

DNA microarrays. RNA from A673 and SK-N-MC cells was extracted 48 h 
after transfection with siRNA. RNA quality was checked with a Bioanalyzer 
(Agilent). Total RNA (200 ng) was amplified and labeled with the Affymetrix 
GeneChip Whole Transcript Sense Target Labeling Kit. Antisense copy RNA 
was hybridized on Affymetrix Human Gene 2.1 ST arrays. Data were normal-
ized by means of Probe Logarithmic Intensity Error (PLIER) estimation and 
custom brainarray CDF (v16)42, are compliant with the MIAME guidelines, 
and were deposited in the Gene Expression Omnibus (GEO; GSE62090).

eQTL analyses. Microarray data retrieved from GEO were normalized by 
robust multiarray averaging using custom brainarray CDF (v18)42. Accession 
codes are listed in the Supplementary Data. Matched genotype data for 
rs1848797 were retrieved from the series-matrix files of the original studies, 
except for the neuroblastoma and LCL data sets, for which genotypes were 
kindly provided by J. Maris (Children’s Hospital of Philadelphia, Pennsylvania, 
USA) or by L. Liang (Harvard School of Public Health, Boston, Massachusetts, 

USA) and W. Cookson (Imperial College, London, UK). Additionally, the 
Broad GTEx database23 was assessed for associations of EGR2 and ADO 
expression with the genotypes at rs1848797 (data censoring: July 8, 2014; 13 
normal tissue types with at least 60 samples per tissue type, amounting to 1,421 
samples). P values of linear regressions are reported.

Between-group analysis (BGA). BGA was performed as described35. In total, 
279 Ewing sarcomas (GSE34620, GSE34800, GSE12102, and unpublished data), 
together with 32 desmoplastic small-round-cell tumors (unpublished data), 
52 medulloblastomas (GSE12992 and unpublished data), 64 neuroblastomas 
(GSE12460 and unpublished data), 121 rhabdomyosarcomas (E-TABM-1202 
and unpublished data), 35 malignant rhabdoid tumors (unpublished data) 
and 25 osteosarcomas (GSE14827), were included in the BGA, which was 
carried out with the made4 R package43. All microarray data were generated 
on Affymetrix HG-U133Plus2.0 arrays and simultaneously normalized using 
the gcrma package version 2.18.1 in R.

Immunoblots. Immunoblots were done with rabbit polyclonal anti-EGR2 
(1/2,000, PRB-236P, Covance), mouse monoclonal anti-FLI1 (1:5,000, clone 
7.3)44, rabbit polyclonal anti-FLI1 (1:250, RB-9295-PCL, Thermo Scientific), 
rabbit monoclonal anti-ADO (1:1,000, EPR6581, Abcam), mouse monoclonal 
anti– -tubulin (1:10,000, DM1A, Sigma-Aldrich), and mouse monoclonal 
anti– -actin (1:10,000, A-5316, Sigma-Aldrich). Then membranes were incu-
bated with an anti-rabbit or anti-mouse immunoglobulin G (IgG) horserad-
ish peroxidase–coupled secondary antibody (1:3,000, NA934 or NXA931, 
respectively; Amersham Biosciences). Proteins were detected by enhanced 
chemiluminescence (Pierce).

Sequence alignments. Mouse and human DNA sequences of EGR2 enhancers 
were aligned using Clustal  (v1.2.0)45.

Immunohistochemistry. Analyses were done on archived tumors derived 
from xenografted Ewing sarcoma cell lines (A673, TC-71, SK-ES1), an alveolar  
rhabdomyosarcoma cell line (SJ-RH30), and a neuroblastoma cell line  
(IMR-32) grown in immunocompromised mice. Sections were stained  
with polyclonal rabbit anti-EGR2 as the primary antibody (1:50, Covance, 
PRB-236P) and hematoxylin.

Proliferation assays. xCELLigence. Cells were counted in real time with an 
xCELLigence instrument (Roche/ACEA Biosciences) monitoring imped-
ance across gold microelectrodes. 8.5 × 103 cells per well of a 96-well plate 
were seeded in 200 l medium containing transfection reagents (hexaplicates 
per group). Medium and transfection reagents were refreshed after 48 h. For 
Coulter counting, cells were plated in six-well plates and transfected immedi-
ately after seeding with siRNA. After 96 h, cells (including supernatant) were 
harvested and counted in a Vi-CELL XR Cell Viability Analyzer (Beckman 
Coulter) (duplicates per group). For Resazurin assay, 3 × 103 to 5 × 103 cells 
per well of a 96-well plate were seeded in 100 l medium containing the 
desired growth factor. After 72–96 h, Resazurin (Sigma-Aldrich) was added 
(20 g/ml) and cells were incubated for another 2–6 h, depending on the cell 
line. Fluorescence signals proportional to the number of cells were recorded 
in a FLUOstar Omega plate reader (BMG labtech SARL).

Analysis of cell cycle and apoptosis. Cell cycle phases were analyzed using 
propidium iodide (PI) (Sigma-Aldrich). 96 h after transfection with siRNA, 
cells (including supernatant) were harvested, fixed in 70% ethanol at 4 °C, and 
stained with PI solution (40 g/ml, with 100 g/ml RNase A). For analysis 
of apoptosis, cells (including supernatant) were harvested 96 h after trans-
fection and stained with the Annexin-V-FITC/PI Apoptosis Detection Kit 
II (Becton Dickinson). Samples were assayed on an LSR II flow cytometer 
(Becton Dickinson). Data were analyzed with FlowJo software (TreeStar).

Clonogenic growth assays. Assays were performed essentially as described46. 
Depending on the cell line, 1.5 × 103 to 3 × 103 cells per well of a 12-well plate were 
seeded in 1 ml medium containing 5% FCS for A673 cells and 10% FCS for SK-
N-MC, EW7 and POE cells. Cells were transfected with siRNA 24 h after seed-
ing and re-transfected every 96 h. After 9–14 d, colonies were methanol-fixed  
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and stained with crystal violet. Colony number and area were quantified on 
scanned plates with ImageJ. Relative clonogenicity is reported as the product 
of the colony number and the average colony size.

Spheroidal growth assays. 2 × 102 cells per well of a 96-well plate were 
seeded in 120 l in an equal mix of 10% FCS–containing RPMI 1640 medium 
and AIM-V medium (Gibco) in plates covered with attachment-preventing 
poly-2-hydroxyethyl-metacrylate (20 mg/ml PolyHEMA, Sigma-Aldrich). 
Doxycycline (1 g/ml) was added for the induction of EGR2 knockdown. 
We used the following clones: SK-N-MC shControl#19, shEGR2_4#31, 
shEGR2_5#2, POE shControl21b, shEGR2_4#22, and shEGR2_5#2. After 9–11 
d, spheres were documented by phase-contrast microscopy (four individual 
images per well; octaplicates per group). Images were analyzed with ImageJ. 
The relative sphere-formation capacity is reported as the product of the sphere 
number and the average sphere size.

DNA constructs and mutagenesis. Human elements mSat1, mSat2, MSE and 
BoneE were PCR cloned using the primers listed in the Supplementary Data 
into the pGL3-luc vector (Promega) upstream of the SV40 minimal promoter. 
T-to-A mutagenesis of mSat2 at rs79965208 was done with the QuickChange 
Mutagenesis Kit (Clontech).

Reporter assays and constructs. A673-TR-shEF1 and SK-N-MC–TR–shEF1 
(ref. 38) were transfected with pGL3-luc vectors and Renilla pGL3-Rluc (ratio, 
100:1). After 4 h, transfection media were replaced by media with or without 
doxycycline (1 g/ml). Cells were lysed after 48 h and assayed with a dual 
luciferase assay system (Promega). Firefly luciferase activity was normalized 
to Renilla luciferase activity.

Chromatin immunoprecipitation. ChIP was done with rabbit polyclo-
nal anti-FLI1 (C19-X, Santa Cruz Biotechnology) or a rabbit IgG con-
trol in MHH-ES1 cells using the iDeal ChIP-Seq Kit for Transcription 
Factors (Diagenode). DNA was sheared to an average size of 500 bp to 
enable mSat2 PCR amplification followed by deep sequencing in an 
Illumina MiSeq instrument (>42,000×). ChIP efficacy was validated by 
qRT-PCR using a CCND1 EWSR1-FLI1 binding site47 (positive con-
trol) and an intronic CCND1 locus (negative control; Supplementary  
Fig. 10). Primers are listed in the Supplementary Data.

Xenotransplantation experiments and mice. 8 × 106 POE or 15 × 106 SK-N-
MC cells containing either a doxycycline-inducible negative control shRNA 
(POE shControl#21b or SK-N-MC shControl#19) or a specific shRNA against 
EGR2 (POE shEGR2_4#22 or SK-N-MC shEGR2_4#31) were injected subcu-
taneously in the flanks of 6-week-old female C.B-17/SCID mice (Charles River 
Laboratories) in an equal mix of PBS and Matrigel (BD Biosciences). When 
tumors reached a volume of 75–100 mm3, mice were randomly assigned to 
either the control (5% sucrose in drinking water) or the treatment (doxycy-
cline (2 mg/l) and 5% sucrose in drinking water) group. Tumor growth was 
monitored with a caliper every 2–3 d. Mice were killed once tumors reached 
a volume of 1,500 mm3, calculated as V = a × b2/2, with a being the larg-
est diameter and b the smallest. Doxycycline-induced EGR2 knockdown was 
confirmed by qRT-PCR 72 h after the start of doxycycline treatment in ali-
quots of the injected cells that were grown in parallel in vitro. Experiments 
were conducted in accordance with the recommendations of the European 
Community (86/609/EEC), the French Competent Authority, and UKCCCR 
(guidelines for the welfare and use of animals in cancer research). The sample 
size was not predetermined.

Human samples. Ewing sarcoma patients from France have been referred to 
the Institut Curie Hospital for molecular diagnosis since 1990. All subjects 
included in this study had a specific EWSR1-ETS fusion. Constitutional DNA 
of adequate quality was available for 343 subjects. This study received approval 
by institutional review boards and ethics committees (Comité de Protection 
des Personnes Ile-de-France I). Consent was obtained through communication 
with patients or families either by the referring oncologists or by the Institut 
Curie Unité de Génétique Somatique. Genomic DNA was isolated from bone 
marrow or blood via proteinase K lysis and a phenol chloroform extraction 

method. We included control samples from 251 French subjects originally 
obtained as part of the Cancer Genetic Markers of Susceptibility (CGEMS) 
prostate cancer project48. All control subjects were male and recruited in the 
geographical areas close to Paris, Nancy and Brest through participation in a 
systematic health-screening program funded by the French National Health 
Insurance. All controls were determined to be unaffected by cancer through 
medical examination and blood tests for prostate-specific antigen. The sample 
size was not predetermined.

Analysis of population substructure. Principal-component analysis (PCA) 
was performed as described4 to select genetically matching cases and con-
trols for sequencing and association testing. To ensure genetic homogeneity in 
populations of affected subjects and controls, we used an EM-fitted Gaussian 
mixture clustering method assuming one cluster and noise to exclude isolated 
subjects (Supplementary Fig. 6). Noise was initialized by the NNclean func-
tion in the prabclus R package, which determines whether data points are noise 
or part of a cluster on the basis of a Poisson process model. This was followed 
by definition of the partition between the core of the data (one cluster) and 
the noise using the mclustBIC function of the mclust R package. Clustering 
was carried out in two dimensions for cases versus controls on the basis of the 
relative contribution of the first two PCA vectors.

DNA capturing and next-generation sequencing. Illumina HiSeq2500 
(non-repetitive regions). DNA capturing of all three susceptibility loci4 was 
done with a customized Nextera target-enrichment system (Illumina). For 
all loci, the given risk haploblock and the adjacent 5  and 3  haploblocks 
were captured, for a total target size of 993 kb (library size, 500 bp; 2,614 
Nextera probes with a predicted average coverage of the target regions of 95%: 
chr1:11,023,000–11,088,000 (171 probes); chr10:64,252,000–64,967,000 (1,882 
probes); chr15:40,203,000–40,416,000 (561 probes)). Repetitive regions such 
as GGAA microsatellites were omitted in the Nextera design. Constitutional 
DNA was captured from 343 Ewing sarcoma cases and 251 controls. In addi-
tion, DNA from 14 Ewing sarcoma cell lines was captured. Massive parallel-
end deep sequencing was done in an Illumina HiSeq2500 instrument (rapid 
mode; 150/150 nt) yielding a median capturing rate of 91.35% with at least 
10× across samples and target regions and a median read depth per sample of 
217× (Supplementary Fig. 6).

Illumina MiSeq (GGAA microsatellites). The mSat2 region was amplified by 
PCR with the primers listed in the Supplementary Data and Phusion High-
Fidelity DNA polymerase (Thermo Scientific). After barcoding (Fluidigm), 
massive parallel-end deep sequencing was done in an Illumina MiSeq instru-
ment (300/300 nt). Paired-end reads were merged using SeqPrep tools with 
the default parameters (median coverage, 124×).

Variant calling, genotyping, and statistical assessment. HiSeq reads were 
mapped on hg19 (NCBI GhR36 build) using BWA 0.6.2 with up to 4% mis-
matches allowed. BAM files were preprocessed according to the recommenda-
tions of the Genome Analysis Toolkit (GATK) using Samtools 1.8 (ref. 49),  
Picard tools 1.97 and GATK2.2.16 (ref. 50). Variant calling was done with 
GATK, focusing on single-nucleotide variants (SNVs) supported by 2 identi-
cal alternative reads at positions with 10× in 90% of the samples. Genotype 
calling was done with the GATK DepthOfCoverage function. SNVs were 
defined as homozygous if the alternative allele ratio (AAR) was <0.2 or >0.8, 
whereas heterozygous SNVs were defined by an AAR within  2 s.d. of the 
mean AAR of the non-homozygous SNVs. SNVs that had a minor allele  
frequency of >0.05 and that did not depart from Hardy-Weinberg equilibrium 
in the entire cohort were considered for further analyses. Regional associa-
tion results were plotted using LocusZoom51. The workflow is summarized 
in Supplementary Figure 7.

Association testing and analysis of LD. Statistical differences in genotype dis-
tributions were assessed with a logistic regression. Associations were adjusted 
for significant PCA eigenvectors (EV1, EV5 and EV6). P values were adjusted by 
false discovery rate. Significantly different SNVs were annotated with informa-
tion available from the dbSNPv137 and RefGene databases using ANNOVAR 
v2013. LD and haplotype analyses were done with PLINK and HaploView52,53 
as described by Gabriel et al.54. Association testing conditional to rs79965208 
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was done with PLINK53 with a logistic regression including significant PCA 
eigenvectors (EV1, EV5 and EV6) and the ‘condition’ command option.

Analysis of mSat2 MiSeq reads. To avoid mapping errors, we aligned raw 
reads on specific ‘anchor’ sequences (Supplementary Data) flanking mSat2. 
We determined the sequence between these anchors using a custom script 
designed to report the two alleles of each sample, taking into account a PCR-
based slippage bias generating n – 1 GGAA repeats co-occurring with n GGAA 
repeats and a lower PCR-amplification rate affecting long GGAA stretches ( 19 
GGAA repeats). Only alleles supported by 10× were reported. Comparison 
of results with matched mSat2 Sanger sequences in 57 subjects showed an 
accuracy rate of our custom script and MiSeq analysis of 97.4%.

Replication of association results. A first replication of the initial rs79965208 
association result was conducted in an independent sample of individuals 
of European descent, which was part of our preceding GWAS4. The pool of 
affected subjects included 156 individuals of European descent. Controls were 
184 unaffected women from the French E3N cohort55. In this cohort, the 
mSat2 region containing rs79965208 was directly sequenced in an Illumina 
MiSeq instrument. A second replication of the association of rs79965208 
with Ewing sarcoma was conducted in an independent sample of individuals 
of European descent from the United States. This group of affected subjects 
included 162 individuals identified from the Childhood Cancer Survivor Study 
(CCSS), a multi-institutional follow-up study of 5-year survivors of childhood 
cancer diagnosed between 1970 and 1986 (ref. 32). Subjects were genotyped 
on the Illumina HumanOmni5Exome array as part of a larger project within 
the CCSS, with 4,052,581 unique polymorphic loci and 5,324 unique samples 
from unrelated individuals of European descent passing quality control thresh-
olds (missing rate < 0.1, locus genotype concordance > 0.99 in 539 blinded 
duplicate samples, sample missing rate < 0.08, sample heterozygosity of 
0.11–0.16, and genotyped sex concordant with self-report). Controls were 435 
individuals of European descent from the Division of Cancer Epidemiology 
and Genetics reference panel of cancer-free adults56. A region of 1 Mb of 
rs79965208 was imputed using the 1000 Genomes Project Phase 3 reference 
panel in IMPUTE2 (ref. 57). The rs79965208 SNP was well imputed (info 
score = 0.952). Associations were assessed using logistic regression models and 
adjusted for significant PCA eigenvectors (EV1, EV2 and EV9). The sample 
size was not predetermined.

Analysis of allele-specific expression. Allele-specific EGR2 expression was 
assessed via targeted RNA sequencing (Illumina HiSeq2500) in 45 individu-
als with Ewing sarcoma who were heterozygous in constitutional DNA for 
rs61865883 (located in the EGR2 3  UTR), serving as transcribed allelic 
marker. Recurrent loss of heterozygosity at the EGR2 locus was ruled out 
previously4,11 and was further excluded by targeted DNA sequencing of  
10 out of the 45 subjects for which matched tumor and constitutional DNA 
were available. For each of these 45 subjects, we statistically compared the raw 
rs61865883 allele fractions of 16 tumors heterozygous for rs79965208 (A/T) 
with those of 29 tumors that were homozygous for rs79965208 (A/A or T/T) 
using a parametric two-tailed Student’s t-test.

Analysis of ChIP-Seq, DNase-Seq and FAIRE-Seq data. Publicly available 
data were retrieved from the GEO. *.bed files from Patel et al.8 (GSE31838) 
were generated in FAIRE-Seq experiments in EW502 Ewing cells (GSM790218) 
and converted to hg19. ENCODE26 SK-N-MC DNase-Seq (GSM736570) and 

RNA Pol II ChIP-Seq data (GSM1010793), together with the FAIRE-Seq data, 
were analyzed in the Nebula environment58 using Model-based Analysis of 
ChIP-Seq v1.4.2 (MACS)59 and converted to *.wig format for display in the 
UCSC Genome Browser60. Preprocessed ChIP-Seq data from Riggi et al.27 
(GSE61944) were converted from *.bigwig to *.wig format using the UCSC 
bigWigToWig conversion tool. Samples used were GSM1517544 SK-N-MC_
shGFP_48h_FLI1, GSM1517553 SK-N-MC_shFLI1_48h_FLI1, GSM1517569 
A673_shGFP_48h_FLI1, GSM1517572 A673_shFLI1_48h_FLI1, GSM1517548 
SK-N-MC_shGFP_96h_H3K4me1, GSM1517557 SK-N-MC_shFLI1_96h_
H3K4me1, GSM1517545 SK-N-MC_shGFP_48h_H3K27ac, and GSM1517554 
SK-N-MC_shFLI1_48h_H3K27ac.
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